

EUROPE

Denmark

2730 HERLEV
Herlev Torv, 4
Tel (45-42) 948533
Telex 35411
Telefax (45-42) 948694

Finland

LO HJA SF-08150
Kaqalankatu, 2
Tel 1215511
Telefax 1215566

France

94253 GENTILLY Cedex
7, Avenue Gailleni - BP 93
Tel (33-1) 47 40 75 75
Telex 632570 STMHQ
Telefax (33-1) 47407910

67000 STRASBOURG
20, Place des Hailes
Tel (33) 88 75 50 66
Telex 870001 F
Telefax (33) 88 22 29 32

Germany

6000 FRANKFURT
Gutleutstrasse, 322
Tel (49-69) 237492
Telex 176997 689
Telefax (49-69) 231957
Teletex 6997689 = STVBP

8011 GRASBRUNN
Bretonlscher Ring, 4
Neukerloh Technopark
Tel (49-89) 46006-0
Telex 528211
Telefax (49-89) 4605454
Teletex 897107 = STDISTR

3000 HANNOVER 1
Eckenerstrasse, 5
Tel (49-511) 634191
Telex 175118418
Telefax (49-511) 633552
Teletex 5118418 csfbeh

8500 NURNBERG 20
Erlenstegenstrasse,72
Tel (49-911) 59893-0
Telex 626243
Telefax (49-911) 5980701

5200 SIEGBURG
Frankfurter Str 22a
Tel (49-2241) 660 84-86
Telex 889510
Telelax (49-2241) 67584

7000 STUTTGART
Oberer Krrchhaldenweg, 135
Tel (49-711) 692041
Telex 721718
Telefax (49-711) 691408

SALES OFFICES

Italy

20090 ASSAGO (MI)
Vie MllanoflOll - Strada 4 -
Palazzo A/4/A
Tel (39-2) 892131 (10 lines)
Telex 330131 - 330141 SGSAGR
Telefax (39-2) 8250449

40033 CASALECCHIO 01 RENO (BO)
Via R Fuclnl, 12
Tel (39-51) 591914
Telex 512442
Telelax (39-51) 591305

00161 ROMA
Via A Torlonla, 15
Tel (39-6) 8443341
Telex 620653 SGSATE I
Telelax (39-6) 8444474

Netherlands

5652 AR EINDHDVEN
Meerenakkerweg, 1
Tel (31-40) 550015
Telex 51186
Telelax (31-40) 528835

Spain

08021 BARCELONA
Calle Platon, 6 41h Floor, 5th Door
Tel (34-3) 4143300 - 4143361
Telelax (34-3) 2021461

28027 MADRID
Calle Albacete, 5
Tel (34-1) 4051615
Telex 27060 TCCE E
Telefax (34-1) 4031134

Sweden

S-16421 KISTA
Borgarijordsgatan, 13 - Box 1094
Tel (46-8) 7939220
Telex 12078 THSWS
Telelax (46-8) 7504950

Switzerland

1218 GRAND-SACONNEX (GENEVA)
Chemin Frangols-Lehmann 18/A
Tel (41-22) 7986462
Telex 415493STM CH
Telelax (41-22) 7984869

United Kingdom and Eire

MARLOW, BUCKS SL7 lYL
Planar House, Parkway
Globe Park
Tel (44-628) 890800
Telex 847458
Telefax (44-628) 890391

AMERICAS

Brazil

05413 sAo PAULO
R Hennque Schaumann 286-CJ33
Tel (55-11) 883-5455
Telex (391) 11-37988 "UMBR BR"
Telelax 11-551-128-22367

Canada

BRAMPTON, ONTARIO
341, Main St North
Tel (416) 455-0505
Telelax 416-455-2606

USA

NORTH & SOUTH AMERICAN
MARKETING HEADQUARTERS
1000, East Bell Road
Phoenix, AZ 85022
(1)-(602) 867-6100

SALES COVERAGE BY STATE

ALABAMA
Huntsville - (205) 533-5995

ARIZONA
Phoenix - (602) 867-6340

CALIFORNIA
Santa Ana - (714) 957-6018
San Jose - (408) 452-8585

COLORADO
Boulder (303) 449-9000

ILLINOIS
Schaumburg - (708) 517-1890

INDIANA
Kokomo - (317) 459-4700

MASSACHUSETTS
Lincoln - (617) 259-0300

MICHIGAN
Livonia - (313) 462-4030

NEW JERSEY
Voorhees - (609) 772-6222

NEW YORK
Poughkeepsie - (914) 454-8813

NORTH CAROLINA
Raleigh - (919) 787-6555

TEXAS
Carrollton - (214) 466-8844

ASIA/PACIFIC

Australia

NSW 2027 EOGECLIFF
SUite 211, Edgecllff Centre
203-233, New South Head Road
Tel (61-2) 327 39 22
Telex 071 126911 TCAUS
Telelax (61-2) 327 61 76

Hong Kong

WANCHAI
22nd Floor - Hopewell Centre
183, Queen's Road East
Tel (852-5) 8615788
Telex 60955 ESGIES HX
Telelax (852-5) 8656589

India

NEW DELHI 110001
Liaison Office
62, Upper Ground Floor
World Trade Centre
Barakhamba Lane
Tel 3715191
Telex 031-66816 STMIIN
Telefax 3715192

Korea

SEOUL 121
8th Floor Shlnwon BUilding
823-14, YUksam-Dong
Kang-Nam-Gu
Tel (82-2) 553-0399
Telex' SGSKOR K29998
Telefax (82-2) 552-1051

Malaysia

PULAU PI NANG 10400
4th Floor, SUite 4-03
Bangunan FOp, 123D Jalan Anson
Tel (04) 379735
Telefax (04) 379816

Singapore

SINGAPORE 2056
28 Ang Mo KID - Industrial Park, 2
Tel (65) 48214 11
Telex RS 55201 ESGIES
Telefax (65) 4820240

Taiwan

TAIPEI
12th Floor
571, Tun Hua South Road
Tel (886-2) 755-4111
Telex 10310 ESGIE TW
Telelax (886-2) 755-4008)

JAPAN

TOKYO 108
Nisseki Takanawa Bid 4F
2-18-10 Takanawa
Mlnato-ku
Tel (81-3) 3280-4125
Telelax (81-3) 3280-4131

THE T9000
TRANSPUTER
PRODUCTS
OVERVIEW
MANUAL
First Edition 1991

i..., I ® ~i~@m~'i~~JI
INMOS IS a member of the SGS-THOMSON Microelectronics Group

INMOS Databook series

Transputer Databook

Military and Space Transputer Databook

Transputer Development and iq Systems Databook

Graphics Databook

Transputer Applications Notebook: Architecture and Software

Transputer Applications Notebook: Systems and Performance

The T9000 Transputer Products Overview Manual

Copyright © INMOS Limited 1991

INMOS reserves the right to make changes in specifications at any time and without notice.
The information furnished by INMOS in this publication is believed to be accurate; however,
no responsibility is assumed for its use, nor for any infringement of patents or other rights of
third parties resulting from its use. No licence is granted under any patents, trademarks or oth­
er rights of INMOS .

• , ~lJ'ilmOS~IMS and occam are trademarks of INMOS Limited.

iiii iiii@m~l~~©'i is a registered trademark of SGS-THOMSON Microelectronics Group.

INMOS is a member of the SGS-THOMSON Microelectronics Group.

INMOS document number: 72 TRN 228 00

ORDER CODE: DBTRANSPST/1

I Contents overview

Contents... v

Preface xiii

Part 1: Product Family Overview 1

Introducing the INMOS IMS T9000 family . 3

2 The IMS T9000 transputer .. 7

3 Simplicity of system design. 16

4 Protection and error handling ... 20

5 Support for multiprocessing. 22

6 Communication links .. 28

7 Network communications .. 35

8 Other communications devices . 43

9 Software and systems ... 45

10 References. 51

Part 2: Product Family Preliminary Information 53

IMS T9000 transputer . 55

IMS C104 packet routing switch. 139

IMS C100 system protocol converter ... 163

iv Contents overview

Contents

Preface .. xiii

Part 1: Product Family Overview 1

1 Introducing the INMOS IMS T9000 family . 3

1 .1 Performance. 3

1.2 Multiprocessing. 3

1.3 Communications support devices . 4

1 .4 Software. 4

1 .S Applications. S

2 The IMS T9000 transputer 7

2.1

2.2

2.3

2.4

2.S

Overview

Processor .. .
Hierarchical memory system
Communications system
Multiple internal buses
System services .. .

The transputer architecture .. .

Support for concurrent processes

Pipelined, superscalar implementation

The pipeline .. .
Grouping of instructions
Improvements over IMS T80S

Hierarchical memory system

2.S.1 Main cache .. .
Cache operation .. .
Use as on-Chip RAM

2.S.2 Workspace cache
Cache operation .. .

7

7
8
8
8
9
9

10

10

11
11
12
12

13
13
14
14
14

3 Simplicity of system design 16

3.1 Single SMHz clock input ... 16

3.2 Programmable memory interface .. 16

3.3 Control links and configuration .. 16

3.4 Loading and bootstrapping. 17

3.S Examples. 18

4 Protection and error handling 20

4.1 Error handling .. 20

4.2 Protected mode .. 20

Protected mode processes 20
Executing illegal instructions 20
Memory management . 21

vi Contents

5 Support for multiprocessing .. 22

Fast interrupt response and process switch . 22
5.1 The transputer model of concurrency 22

Processes and channels . 22
Program structure . 22
Example.. 23
Multiprocessor programs. 24

5.2 Other models of concurrency . 25

Shared memory .. 25
5.3 Hardware scheduler ... 26

5.4 Interrupts, events and timers .. 26

5.5 Shared resources ... Z7

6 Communication links .. 28

6.1 Using links between transputers ... 28
6.2 Advantages of using links. 28

Efficiency ... 28
Simplicity ... 28
Hardware independence . 29

6.3 IMS T9000 links . 29

6.3.1 Virtual channels .. 30
Virtual links . 30
Sending packets ... 31
Receiving packets ... 31
The virtual channel processor. 31
Implementation . 32

6.3.2 Levels of link protocol. .. 32
Packet level protocol . 33
Token level protocol . 33
Bit level protocol ... 33

7 Network communications 35

7.1

7.2

7.3

Message routing

Advantages for the programmer
Routers .. .
Separating routers and processors
Parallel networks .. .

The IMS C104

Wormhole routing .. .
Minimizing routing delays
Control links .. .

7.2.1 Using IMS T9000s with IMS C104s
Header deletion
Routing control channels

Routing algorithms :

7.3.1 Labelling networks
7.3.2 Avoiding deadlock

35

35
35
36
36
36

36
37
38
38
38
40
40
41
42

8 Other communications devices 43

8.1 Mixing transputer types: the IMS C100 43

Contents vii

8.2 Interfacing to peripherals and host systems . 44

9 Software and systems 45

9.1

9.2

Development software .. .

9.1.1 Configuration tools .. .
Hardware description .. .
Software description
Mapping software to hardware
Configuration languages
Types of networks

9.1.2 Initializing and loading a network
Levels of initialization .. .
Booting a system from link
Booting a system from ROM

9.1 .3 Host servers .. .
9.1 .4 Debugging
9.1.5 IMS T805 emulation .. .
iq Systems products .. .

9.2.1 IMS T9000 products
Compatible development products
IMS T9000 specific products
Host interfaces

45

45
46
46
46
46
46
47
47
47
47
47
48
48
48

48
49
49
50

10 References . 51

Part 2: Product Family Preliminary Information 53

IMS T9000 transputer.. 55

1 Introduction... 56

2 Preliminary pin designations 58

3 Processor... 60

3.1

3.2

3.3

3.4

3.5

3.6

3.7

Registers

Processes and concurrency

Priority

Process types

3.4.1 G-processes: global trap-handling and debugging
3.4.2 L-processes: local error handling and debugging
Timers

Block move

Semaphores .. .

60

61

62

63

63
64
67
68

68

4 Communications, events and resources 69

4.1 Efficient variable-length communications. 69

4.2 Processor-to-processor communications 69

viii

4.3

4.4

4.5

4.6

Contents

Virtual link control blocks .. .

4.3.1 Errors .. .
VCP and CPU configuration registers

4.4.1 MemStart register .. .
4.4.2 Minimum invalid virtual channel register
4.4.3 Extemal resource channel base register
4.4.4 Header area base register
4.4.5 Header offset register .. .
4.4.6 Packet header limit registers
4.4.7 VCP command register
4.4.8 VCP status register
4.4.9 VCP link mode register
4.4.10 Event mode register .. .
Events
Resources .. .

71

71
72

72
73
73
73
73
75
75
75
75
75
76

77

5 Memory management 78

5.1 Protection, stack extension, and logical to physical address translation 78

5.2 Regions. 78

5.3 Region descriptors .. 80

5.4 Machine registers ... 81

5.5 Debugging . 81

6 Main Cache ... 82

6.1 Cache instructions. 84

6.2 Cache configuration registers. 84

7 Programmable memory interface . 85

7.1 Pin functions ... 85

7.1.1 ProcClockOut . 85
7.1.2 MemDataO-63. 85
7.1.3 MemAdd2-31 .. 85
7.1.4 notMemWrBO-3. 85
7.1.5 notMemRASO-3 .. 86
7.1.6 notMemCASO-3 86
7.1.7 notMemPSO-3... 86
7.1.8 MemWait . 86
7.1.9 MemReqln, MemGranted . 86
7.1.10 MemReqOut ... 87
7.1 .11 notMemBootCE. 87
7.1.12 notMemRf ... 87

7.2 Extemal Bus Cycles ... 88

7.2.1 Extemal DRAM cycles. 89
7.2.2 Extemal non-DRAM cycles. 91
7.2.3 Bank switching. .. 92

7.3 PMI configuration registers. 94

7.3.1 Bank address registers .. 94
Address registers . 94
Mask registers ... 95

Contents ix

RAS bits registers .. 95
Fonnat control registers 95
BootSpace allocation 97

7.3.2 Strobe timing registers .. 97
Strobe registers . 97
Timing control registers . 98
Refresh control register . 99

8 Data/Strobe links .. 101

8.1 LOW-level flow control ... 101

8.2 Link speeds ... 102

8.3 Errors on links . 102

8.4 Link configuration registers ... 103

9 Control links .. 105

9.1 Initialization. .. 105

9.2 Commands. .. 105

9.3 Errors on control links .. 107
9.4 Stand alone mode .. 107

9.5 Link speed .. 107

9.6 Control link configuration registers 107

10 Levels of reset and the configuration space .. 108

10.1 Reset Levels . 108

10.1 .1 Level 0 - hardware reset . 108
10.1 .2 Level 1 - labelled control network . 108
10.1.3 Level 2 - configured network .. 109
10.1 .4 Level 3 - booted network 109
10.1 .5 Loading code ... 109

10.2 Configuration space. .. 109

11 Instruction set ... 110

11 .1 Direct functions .. 110

11 .2 Prefix functions . 110

11 .3 Indirect functions ... 111

11 .4 Efficiency of encoding ... 111

11 .5 Interaction of the processor pipeline and the instruction set 111

11.6 Floating point instructions 114
11.7 Instruction characteristics .. 114

12 Performance .. 127

12.1 Integer operations. .. 127

12.2 Floating point operations .. 129

12.3 Predefines.................. 130

13 Compatibility with the IMS T805 .. 131

13.1 Binary code compatibility .. 131

x Contents

13.2 Source level compatibility .. 131

13.3 Compatibility issues. .. 131

14 Mixed T9000 and T2/T4/T8 systems 133
14.1 Byte mode. .. 133

15 Package specifications 135
15.1 208 pin ceramic quad flat pack package dimensions 135

15.2 208 pin ceramic quad flat pack thermal characteristics .. 136

16 Thermal management 137

Power considerations ... 137

IMS C104 packet routing switch 139

1 Introduction ... 140

2 Overview.. 141
2.1 Communication on IMS T9000 transputers 141

3 Operation of IMS C104 networks 142
3.1 Wormhole routing ... 142
3.2 Interval labeling 143

3.3 Modular composition of networks .. 144

3.4 Use of parallel networks. .. 146

3.5 Hot spot avoidance. .. 147

4 Control of the IMS C104 148
4.1 Programmable parameters .. 148

4.1 .1 Partitioning .. 149
4.1.2 Grouped adaptive routing 151

4.2 Registers. .. 152

5 Control links .. 153
5.1 Commands. .. 154
5.2 Link speeds .. 155

5.3 Control link configuration registers. .. 155

6 Data/Strobe links 156
6.1 Low-level flow control ... 157

6.2 Link speeds .. 157

6.3 Errors on links .. 157
6.4 Link configuration registers. .. 158

7 Levels of reset ... 160
7.1 Level 0 - hardware reset. .. 160

Contents xi

7.2 Level 1 - labelled control network. 160

7.3 Level 2 - configured network. 160

7.4 Level 3 . 160

8 Software.. 161

8.1 IMS T9000 configuration tools . 161

9 Preliminary pin designations 162

IMS C100 system protocol converter. 163

1 Introduction... 164

2 IMS C100 modes of operation. 165

2.1 Mode pins .. 165

2.2 Mode 0: Enables a T9-series transputer to be used in a T2/T4/T8-series network. . 166

2.3 Mode 1: Enables a T2/T4/T8-series system to use a T9-series sUbsystem 167

2.4 Mode 2: Enables a T9-series system to use an existing T2/T4/T8-series subsystem 168

2.5 Mode 3: Enables a T9-series system to use a T2/T4/T8-series subsystem 169

3 Link protocols and link protocol conversion. 171

3.1 T2/T4/T8 series oversampled links 171

3.2 T9 series data/strobe links. 171

3.2.1 Byte mode. 173
3.3 Data protocol conversion. 174

3.3.1 Byte-stream conversion................................... 174
3.3.2 Packetized conversion. 175

4 Control protocols and control protocol conversion 177

4.1

4.2

4.3

T2/T4/T8 type control

T9 type control

Control protocol conversion .. .

4.3.1 RAE master control (mode 0)
4.3.2 CLinkO master control (modes 1, 2 and 3)
4.3.3 as Link 0 special function

177

177

178

179
181
185

5 Links... 186

5.1 Data links ... 186

5.1.1 Data link speeds . 186
5.1.2 DS links in modes 1,2 and 3 186

5.2 Control links ... 187

5.2.1 Control link speeds . 187

6 Configuration .. ,..... 188

6.1 Configuration space . 188

xii Contents

6.2 Data OS link configuration registers. .. 189

6.3 Control link configuration registers. .. 190

7 Levels of reset ... 191

7.1 Resetting links .. 191

7.2 Level 0 - hardware reset. .. 191

7.3 Level 1 - labelled control network. .. 191

7.4 Level 2 - configured network. .. 191

7.5 Level 3 .. 191

8 Software .. 192

8.1 Toolsets. .. 192

9 Pin designations .. 193

xiii

Preface

The T9000 Transputer Products Overview Manual introduces the latest member of the transputer range of
microprocessors, the IMS T9OO0, Transputers are designed to provide extremely high performance in
single processor applications and are also designed with hardware and software features for the construc­
tion of multiprocessing systems,

Other transputer products include the IMS T225, a 16 bit microprocessor, the 32 bit IMS T425 and the
IMS T8xx series, which are 32 bit microprocessors with an on-chip 64 bit floating point processor, Details
of these and their support devices can be found in The Transputer Databook, which is available as a sepa­
rate publication, Other transputer related documents, including various application and technical notes,
are also available from INMOS.

This manual consists of two parts; an overview section and a set of more detailed documents for the first
members of the new product range. Part 1, the overview, introduces the transputer architecture and then
the features and benefits of the IMS T9000family. Part 2 contains preliminary information on the IMS T9000
transputer, the IMS C104 packet routing switch and the IMS C100 system protocol converter. This is ad­
vance information and is subject to change.

More detailed documentation on the IMS T9000family is in preparation. This will include a hardware refer­
ence manual, a programmers reference manual, a system networking manual and various application
notes. Documentation for systems and software products will also be updated to reflect added support
for the IMS T9OO0. For the latest information, contact your local SGS-THOMSON sales outlet.

Software and hardware examples given in this book are outline design studies and are included to illustrate
various ways in which transputers can be used. The examples are not intended to provide accurate applica­
tion designs.

In addition to transputer products the INMOS product range also includes development systems, systems
products and high performance graphics devices. For further information regarding INMOS products
please contact your local SGS-THOMSON sales outlet.

xiv

• Part 1

Product Family
Overview

2 Product Family Overview

Product family overview 3

1 Introducing the INMOS IMS T9000 family

The INMOS IMS T9000 is the latest member of the transputer family. It is designed to provide far higher
performance and greatly improved communications facilities.

INMOS has used advanced CMOS technology to integrate a 32-bit integer processor, a 64-bit floating point
processor, 16 Kbytes of cache memory, a communications processor and four high bandwidth serial com­
munications links on a single IMS T9000 chip.

The IMS T9000 transputer excels in real-time embedded applications, delivering exceptional single pro­
cessor performance and scaleable multiprocessor capability.

The IMS T9000 is binary compatible with previous transputers. It extends the transputer range, making it
easy to upgrade and complement existing transputer systems. There is extensive, industry standard soft­
ware support for all members of the transputer family; this includes high level language compilers, systems
software (such as real time operating systems) as well as an extensive range of development tools.

1 .1 Performance

It is essential that any microprocessor family designed for the embedded system market provides the re­
quired performance at low cost.

The transputer family includes a 16 bit processor, a 32 bit range of fast Integer and floating pOint processors
and now, the highest performance member of the family, the IMS T9000. These are all designed to make
it easy to design low cost, high performance systems.

• Single processor performance: the IMS T9000 transputer boasts exceptional single processor
performance; the new superscalar CPU is capable of a peak performance of 200 MIPS and 25
MFLOPS.

• Real-time performance: the IMS T9000 offers sub-microsecond interrupt response and context
switch times, making it ideal for high performance real-time systems. I

• Communications performance: the four IMS T9000 communication links provide a total of
80 Mbytes/second bidirectional bandwidth.

• Multiprocessor performance: the interprocessor communications architecture gives scaleable
performance - the ability to increase the performance of a system by adding more processors.

• Usable performance: the IMS T9000 implementation makes it easy for compilers to fully exploit
the sUPE3rscalar performance using a range of industry standard programming languages.

• Price/performance: the IMS T9000 offers supercomputer performance at an embedded systems
price.

1.2 Multiprocessing

For applications that demand performance that single processors cannot provide, the IMS T9000 has com­
plete on-chip support for multiprocessing:

• Hardware scheduler: the transputer architecture includes instruction level support for the cre­
ation and scheduling of any number of concurrent processes

• Inter-process communication: the transputer instruction set includes instructions for communi­
cating between concurrent processes. The same instructions are used to communicate between
processes running on a single transputer and between processes running on separate
transputers.

• Inter-processor communication subsystem: the presence of a dedicated communications pro­
cessor which operates concurrently with the main processor, makes interprocessor communica-

4 Product family overview

tions flexible and efficient. The integration of the communications system on-chip makes it easy
to write programs for multiprocessor systems

• System control and monitoring: all the IMS T9000 transputers in a system can be initialized,
loaded with code and monitored for errors through a completely independent communications
system.

1.3 Communications support devices

The IMS T9000 transputer is complemented by a range of communlcallons penpherals that extend the com­
munications capabilities of the IMS T9000. The IMS C1XX family ensures that any size of IMS T9000 system
can be constructed, connecting first generation and second generation transputers and providing an inter­
face to the outside world.

• IMS C104 packet routing switch: the IMS C104 is a complete routing switch on a single Chip.
The IMS C1 04 connects 32 links to each other via a 32 by 32 way, non-blocking crossbar switch
with sub-microsecond latency. This allows Simple, fast communication between IMS T9000
transputers that are not directly connected. Multiple IMS C104s can be connected together to
make larger and more complex networks, linking any number of IMS T9000 transputers, or any
other devices that use the link protocol.

• The IMS C1 00 system protocol convertor: the IMS C1 00 system protocol convertor converts
between the first generation transputer links and control signals and the new IMS T9000 proto­
col.The IMS C100 provides an inter-networking solution for transputer systems, allowing networks
to be constructed using the optimum mix of transputers to satisfy processing power, communica­
tion bandwidth and system cost.

1 .4 Software

The success of any microprocessor is determined as much by the quality of its software development tools
as by any other feature.

INMOS has over a decade of experience in developing software tools for transputers and for multiproces­
sing systems. The range of compilers and powerful development tools support all the reqUirements of soft­
ware developers.

• Compatibility: instruction set compatibility with the first generation transputer family means that
the IMS T9000 transputer has inherited a significant range of development and application soft­
ware.

• The transputer toolset: the transputer toolset is a set of development tools for programming,
configuring and debugging mixed transputer systems.

The toolset is available on a variety of host computers including:

• IBM PC

• NEC PC

• VAX

• Sun 3

• Sun 4

• Debugger: INMOS provides a powerful, interactive debugger for debugging programs running
on networks of transputers This provides full source level debugging with the ability to set break­
pOints in any process and on any processor, and then to examine the state of the stopped process
as well as the lOW-level state of the processor.

Product family overview 5

• Compilers: for fast time to market, and to satisfy the diverse programming requirements of differ­
ent application areas, the toolset can be used with a variety of industry standard compilers, all
with major support for multiprocessing.

The IMS T9000 is supported by a range of compilers including:

• ANSI C

• C+ +

• Fortran

• occam

• Ada

• System software: system software support for the IMS T9000 reflects the requirements ofthe em­
bedded systems marketplace. A range of operating systems and real-time kernels are available
for the transputer including:

• C Executive

• VRTX

• CHORUS distributed Unix

This impressive array of development tools, industry standard compilers and system software satisfies the
demands of the embedded systems market. It also ensures that the user can benefit from a significant re­
duction in the critical time to market.

1.5 Applications

The transputer family provides unprecedented price/performance solutions for a wide range of embedded
systems applications.

The IMS T9000 transputer has been specifically developed to satisfy the requirements of three segments
of the embedded systems market:

• Imaging: the imaging market comprises applications that involve the generation, manipulation
and transmission of image data. Such applications include:

• Laser printers

• Graphics systems

• Image processing systems

• Industrial inspection systems

• Robotics

• Embedded computing: the embedded computing market comprises applications that are run
within a computer environment and add overall p~rformance and functionality to the computer
system. Such applications include:

• Application accelerators: (graphics, numerical, scientific, DTP)

• Disk arrays and high performance file servers

• Databases

• X terminals

6 Product family overview

• Supercomputers

• Factory automation

• Communications: the embedded communications market can be segmented into two main ar­
eas that require high performance microprocessors. These are:

, • Networking: low cost LAN interfacing - FOOl, Ethernet; internetworking systems - bridges,
gateways and routers.

• Packet switching systems.

The IMS T9000 transputer Is highly applicable to the communications market due to its integrated architec­
ture combining high performance CPU and communication links with a packet based protocol. The
IMS C104 packet routing switch has been designed to support the IMS T90OO, and is useful in a range of
telecommunications switching applications.

The transputer family provides a range of price/performance solutions for all the above applications.

Product family overview 7

2 The IMS T9000 transputer
The IMS T9000 is the latest member in the transputer family of high performance microprocessors. It is part
of a broad range of 16 and 32 bit microprocessors with compatible instructions sets and interfaces. As well
as providing high performance processing, they are designed to be simple to use and enable the construc­
tion of low cost systems. Transputers include functions to enable multitasking on a single processor and
the building of multiprocessor systems.

2.1 Overview

Programmable
Memory

Interface

r;;;;-;
~

Virtual
Channel

Processor

Link 0

Link 1

Link 2

Link 3

Figure 2.1 Block diagram of IMS T9000

The IMS T9000 integrates a high performance central processing unit (CPU), a 16 Kbyte cache, communi­
cations system and other support functions on a single Chip. The main functional blocks of the IMS T9000
are shown in figure 2.1. The function of each of these is outlined below, more details will be found in the
following sections.

Processor

The IMS T9000 CPU contains a 32 bit arithmetic and logic unit (ALU) and a 64 bit floating point unit (FPU).
The FPU operates on 32 and 64 bit floating point numbers as specified by the IEEE 754 standard. The CPU

8 Product family overview

also includes instructions for byte and half word operations. The CPU uses 32 bit linear addressing and
can address up to 4 Gbytes of memory.

The IMS T9000 is binary compatible with previous transputers. In particular it implements the same instruc­
tion set as the IMS T805 [1] with many additions.

The instruction set is designed for efficient execution of compiled code and there is a wide range of lan­
guage compilers available for the transputer including a Plum-Hall validated ANSI C compiler, a validated
Ada compiler and Fortran, occam and C++ compilers. These are complemented by a full set of software
tools for developing and debugging programs for single transputers and networks of transputers. In addi­
tion there are a number of system level software products, such as real time kemels and distributed operat­
ing systems.

The transputer includes a hardware kemel for scheduling processes and performing communications.
These operations are directly supported in the instruction set.

The IMS T9000 can run code in protected mode. In this mode all memory accesses are made through a
memory management unit which checks and translates addresses before using them to address the
memory system. Further, only a subset of the full instruction set may be executed, preventing protected
code from executing privileged instructions.

There is improved support for error handling over earlier transputers; errors can be trapped and handled
independently for each process in addition to the global error handling provided previously.

Hierarchical memory system

The IMS T9000 includes a 16 Kbyte unified cache to provide single cycle access to instructions and data.
The cache provides a peak bandwidth of 200 Mwords/s. The CPU also includes another small cache for
the most frequently used local variables of a program which provides another 150 Mwords/s of memory
bandwidth.

The external memory interface is highly programmable, allowing large memory systems, containing differ­
ent types of devices, to be built with little or no external logic. There are four independent sets of memdry
control signals simplifying the use of different device types in the same system. The memory can interface
to 8, 16, 32 or 64 bit wide devices. The maximum data transfer rate across the memory interface is
50 Mwords/s.

Communications system

An important issue in multiprocessor system design is the communications architecture. To achieve effi­
ciency and ease of use, communications must be properly integrated into the entire processor architecture.

The transputer hardware and instruction set provides simple and efficient communications between pro­
cesses and between processors. Both internal and external communications are handled identically, using
the same source code and machine instructions.

To support interprocessor communications, there is a complete communications subsystem on Chip. This
includes four 100 Mbits/s full-duplex, serial communication links each with its own pair of direct memory
access (DMA) channels. The links can be directly connected between transputers with no external buffering
or other glue logic. The use of serial links simplifies routing of links on a circuit boards and the interconnec­
tion of boards in a system. A communications processor, which manages all link communications, oper­
ates concurrently with the main CPU so tMt data transfers do not adversely affect CPU operation.

Two additional links are provided for system control and monitoring. Initialization and booting of the proces­
sor can optionally be done through these links.

The communications subsystem also includes four 'Event' channels. As well as acting as interrupt inputs,
these can be used, as inputs or outputs, for more general synchronization and signalling.

Multiple internal buses

To support the high degree of concurrent operation on the IMS T9000, and to maintain the high internal data
rates reqUired, there are four sets of 32 bit address and data buses internally. These provide multi-port ac­
cess to the on-chip cache from the various functional units of the IMS T9000.

Product family overview 9

System services

The system services section provides all the general faci I ities necessary for the operation of the transputer
This includes the power and ground connections, and the clock input (5 MHz). Other important connections
are a capacitor, which is required for the on-chip phase locked loops which generate all the internal high
frequency clocks, and the processor speed select pins which can be used to select the frequency of the
internal clocks (up to the maximum speed for a particular device). There is also a reset input - however,
as the IMS T9000 includes on-chip power-on reset circuitry, external reset logic may not be required in an
emQedded control application.

2.2 The transputer architecture

An important design decision was that transputers should be programmed in a high level language. The
instruction set has, therefore, been designed for simple and efficient compilation. The instructions are all
of the same format and chosen to give a compact representation of the operations most frequently occur­
ring in programs.

The CPU of the IMS T9000 contains three registers (Areg, Breg and Creg) used for expression evaluation,
which form a hardware stack. Loading a value into the stack pushes Breg Into Creg, and Areg into Breg,
before loading Areg. Storing a value from Areg pops Breg into Areg, and Creg into Breg. Similarly, the
FPU includes a three register floating-point evaluation stack. When values are loaded onto, or stored from,
the stack the floating-paint registers push and pop in the same way as the Areg, Breg and Creg registers.
Analysis of a large number of programs, shows that 3 registers provides an effective balance between code
compactness and implementation complexity

Registers Locals Program

Areg

Breg

Creg

Workspace ptr

Next Instruction

Operand

Figure 2.2 Processor registers and memory

The transputer has three other registers used when executing code These are:

• The instruction pointer which paints to the next instruction to be executed.

• The workspace painter which paints to an area of store where local variables are kept. This area
is also used as a stack for procedure calls, etc.

• The operand register which is used in the formation of instruction operands.

The addresses of floating-point values are formed on the CPU stack, and values are transferred between
the addressed memory locations and the FPU stack under the control of the CPU.

Most transputer functions use the contents of these stacks, and most instructions reference the stacks im­
plicitly. For example the add instruction adds the top two values in the CPU stack, leaving the result on the

10 Product family overview

top of the stack. The use of a stack reduces the need for instructions to specify the location oftheir operands
which reduces the size of instructions and hence of compiled code.

2.3 Support for concurrent processes

Most computers have the ability to effectively run several user tasks or processes concurrently. These pro­
cesses are created and scheduled by the host operating system. The operating system kemel provides
the ability for processes to communicate with the operating system and with each other.

Every transputer includes a hardware kernel with the ability to execute many software processes at the
same time, to create new processes rapidly, and to perform communication between processes within a
transputer and between processes on different transputers. All of these operations are integrated into the
hardware and instruction set of the transputer and are very efficient. Further detai Is of the transputers sched­
uling mechanism will be found in section 5.

2.4 Pipelined, superscalar implementation

To increase the execution rate of the transputer instruction set, the IMS T9000 is able to issue several in­
structions per cycle. A superscEilar micro-architecture was designed which implements the same high level
architecture and instruction set as the IMS T805 but with much higher performance.

Some recent implementations of pipelined and superscalar microprocessors have required very careful
programming to obtain the claimed performance. They require that instructions are presented to the pipe­
line in a sequence that will keep the processor busy. This makes developing effective compilers very diffi­
cult, often forcing programmers to resort to assembly code to achieve the required performance. This puts
the burden of arranging the correct sequencing of instructions on the programmer, adding to the develop­
ment time and hence costs of a product.

Instruction

Fetch

Instruction

Grouping

III
Workspace

Cache

~

ALU/

FPU

Figure 2.3 Block diagram of grouper and pipeline

1m

Write/
Jump

Product family overview 11

The details of the IMS T9000 pipeline are transparent to the programmer. The processor appears to be the
simple transputer architecture described above and straightforward code written for that programming
model will get nearly the best performance out of the processor. An optimising compiler for the IMS T9000
can, of course, generate more efficient code if the details of the internal architecture are taken into account.

The pipeline

Instructions are executed in a five stage pipeline: the first can fetch two local variables; the second can
perform two address calculations, for accessing non-local or subscripted variables; the third stage can
load two non-local variables; the next can perform an ALU or FPU operation; and the final stage can do
a conditional jump or write.

A conventional pipeline is designed to allow several instructions to be executed simultaneously; different
parts of each instruction being handled in different stages of the pipeline. In order to allow rnultiple instruc­
tions to be issued per cycle (as well as rnultiple instructions being executed in each cycle) the IMS T9000
does not simply send a sequence of instructions through the pipeline but has hardware which assembles
groups of instructions from the instruction stream. These groups are chosen to make the best use of the
available hardware and one group can be sent through the pipeline every cycle. Instructions are put into
groups in the order that they arrive at the CPU; dependencies within the group are handled autornatically
by the pipeline.

The grouper can be thought of as a hardware optimizer; it recognizes commonly occurring code sequences
that the processor can execute effectively. The design of the grouping mechanism and the pipeline is based
on analysis of the code typically generated by high level language compilers.

An IMS T9000 running at 50 MHz can execute code compiled for the IMS T805 typically1 0 tirnes faster than
a 20 MHz IMS T805. This means that existing development tools and software can be used to generate
code for the IMS T9000. It also means that only a modest amount of work is required to modify compilers
to produce code optimized for the IMS T9000.

Grouping of instructions

The grouping of instructions takes advantage of the high degree of concurrency and multiple buses in the
processor. For example, both caches are multi-ported and can each support two reads by the CPU simulta­
neously. This allows two load local instructions to go into one group, and the group could also contain two
sets of instructions to calculate addresses and fetch non-local variables. These could all be combined with
an arithmetic operation such as add. More details of the transputer instruction set can be found in [3].

As an example of how the grouper works, consider the assignment and expression evaluation shown be­
low. The code produced is shown along with the number of the pipeline stages in which it is executed.

a[i+l] = b[j+15] + c [k+7];

ldl j rn load local variable j
ldl b rn load base address of array b
wsub [gJ calculate address of b [j]
ldnl 15 [gJrID load value of element b [j + 15]

ldl k rn
ldl c rn
wsub [gJ
Idnl 7 [gJrID load value of c [k+7]
add @] add two values on top of stack

ldl i rn
ldl a rn
wsub [gJ
stnl 1 [gJ1m store Into a [i +1]

This code sequence will be executed as three groups (Le. in 3 cycles) as shown below. The exact contents
of each group will depend on the code which precedes and follows this. The first group might contain other
instructions from earlier in the instruction stream.

12 Product family overview

first group Idl, Idl, wsub, Idnl

second group Idl, Idl, wsub, Idnl, add

third group Ildl, Idl, wsub, stnl

Since the processor can fetch one word, containing four bytes of instructions and data, in each cycle it
is possible to achieve a continuous execution rate of four instructions per cycle (200 MIPS). However, if
any of the instructions require more than one cycle to execute, then the instruction fetch mechanism can
continue to fetch instructions so that larger groups can be built up. Up to a instructions can be put into one
group and there may be five groups in the pipeline at any time.

Improvements over IMS T805

In addition to executing several instructions each cycle, the number of cycles required to perform many
arithmetic and logical operations has been reduced from previous transputers by adding extra hardware.
This, combined with the faster clock speed and new micro-architecture, means a ten-fold increase in speed
over the IMS Ta05.

In addition there is improved support for error handling, and protecting code and data from the errant behav­
ior of a program. The IMS T9000 provides better access to the transputers scheduling mechanism, making
it easier to implement software kemels for a particular processing model.

2.5 Hierarchical memory system

CPU VCP Scheduler
(with intemal registers) Link engine

t I' ~

Qj
II::
::l~

..Q(/)
Q)

.QS
tic\!
S~

Workspace cache

(/)

E

t
~

~
Crossbar switch Main cache

~

~
_.--

External memory

Figure 2.4 IMS T9000 hierarchical memory system

Product family overview 13

The IMS T9000 has a complete, hierarchical memory system providing fast and efficient access to data
and instructions. There are two separate caches on chip, a general purpose unified (code and data) cache
and a small cache for local variables.

These caches can provide fast, multi-ported access to data because they are on chip. They also reduce
the number and frequency of accesses to external memory, allowing lower cost, slower devices to be used
without degrading performance. Finally, because the majority of external memory accesses will be cache
refills (and therefore multiple word reads and writes) fast memory access methods, such as page mode,
can be used.

2.5.1 Main cache

The main cache consists of four independent banks, each containing 256 lines. Each line holds data from
four consecutive words (16 bytes) in memory. An access can be made to every bank on every cycle which,
with the multiple internal buses, means there is a very high bandwidth between the cache and different
functional units within the IMS T9000.

CPU VCP

Crossbar switch and arbitrator

4 x 32 bit address buses
4 x 32 bit data buses

Four banks of cache

PMI

Figure 2.5 Diagram of four banks of cache

Scheduler

The four cache banks are accessed by a number of different functional units in the IMS T9000, some of
these units have multiple ports into the cache. To allow four simultaneous reads and writes to take place
in each cycle, there are four sets of address and data buses. An arbitrator controls access from the various
functional units to the cache banks.

Cache operation

Each of the four banks is addressed by a quarter of the memory space. This division of the address space is
done using bits 4 and 5 ofthe address, the bottom four bits are used to select a byte within a line. Each line
consists of: 16 bytes of RAM for the data; 26 bits of associative memory which holds the address of this line

14 Product famil}f overview

of data; and two control bits to indicate if the line is valid and if it has been modified since it was read in (is
'dirty'). When a memory access is made, the address is checked against the contents of the appropriate
bank. If the address is present (and the line is valid) then the access can go ahead, reading or writing the
data in a single cycle.

A cache refill engine ensures that there is always one empty line available. Then, if a requested address is
not in the cache (a 'cache miss'), the four words containing the data are read from memory into the empty
line. The refill engine then has to ensure that a new empty line is created. It does this by choosing a line at
random and, if the data has been modified since it was read into the cache, writing it out to memory. The line
is then marked as invalid, i.e. empty and available for use. This is known as 'early write-back' as it writes
the chosen line out to memory before a cache miss occurs.

The reading and writing of cache lines takes advantage of any fast memory access methods that are avail­
able (e.g. 64 bit wide accesses or page mode DRAM).

Use as on-chip RAM

At reset, the cache behaves as 16 Kbytes of normal RAM, enabling the IMS T9000 to be used with no exter­
nal memory. There may be many applications where a number of transputers are used, each requiring little
or no external memory - used in this way the IMS T9000 provides extremely high performance (single cycle
memory reads and writes) combined with extremely low cost (possibly no external components except a
clock). Starting up in this mode provides compatibility with earlier transputers which have a fixed amount of
on-Chip RAM. It also makes it possible to test the hardware of a new transputer system as it is known that
there is 16 Kbytes of working RAM which can be used by test software.

During the initialization of the IMS T9000 the cache may be programmed to behave as 16 Kbytes of cache,
as 16 Kbytes of RAM, or as half cache and half RAM. This can be very useful when certain data or code, e.g.
an interrupt handler, must be accessed quickly and in a more deterministic way than a cache provides. The
remaining 8 Kbytes of cache will be large enough to achieve high performance.

2.5.2 Workspace cache

The workspace cache can hold a copy of the first 32 words of procedure stack and workspace. It is triple
ported, allowing two reads and a write in every cycle. The workspace cache allows local data to be ac­
cessed without going outSide the CPU, effectively giving zero cycle access and reducing the load on the
main cache and external memory. It also means that the pipeline can do four data reads (as well as an
instruction fetch) in each cycle: 2 from the local cache and 2 from the main cache.

Because local variables can be accessed quickly, they can be read in the first stage of the pipeline and
can then be used for non-local address calculations in the next stage. The workspace cache is
write-through; whenever data is written into the local cache it is also written to the main cache. This means
there is no overhead for flushing the cache on interrupt or context switch.

The workspace cache is part of the processor pipeline and, in many ways, it is equivalent to the general
purpose register set found on other microprocessors, providing fast access to frequently used data. To
make use of this architecture, the INMOS ANSI C compilerrecognizes the 'regi ster' keyword and places
those variables lower in the function's workspace so they are more likely to be cached.

Cache operation

The cache is organized as a 32 word circular buffer and is addressed using the bottom five bits of the work­
space pOinter. As the workspace pointer moves up and down, it rolls around the cache. When the work­
space pOinter is moved down, on a procedure call for instance, the locations that 'roll into' the cache are
marked as invalid and become valid as they are read or written. The first time a variable is read, it is copied
from the main cache (and, of course, fetched from main memory if it is not in the main cache). Lines are
marked as invalid when they 'rollout' of the cache as the workspace pOinter is moved up (e.g. on a return
from a procedure call). On a context switch or interrupt, the entire contents of the cache are marked as
invalid.

This is illustrated in figure 2.6, where the state of the workspace cache during a procedure call and return
sequence is shown. Before the call, the locations in the workspace cache above the workspace pOinter

Product family overview 15

which have been read or written by the program contain valid data. After the call, the workspace pOinter
moves down - initially the locations which are above the workspace pOinter are invalid; as they are ac­
cessed by the program they are filled with data and marked as valid. When the procedure returns, the loca­
tions which it used will be marked as invalid. As long as the workspace of the called procedure is less than
32 words, some of the workspace of the calling procedure will still be valid after the return. Nested proce­
dure calls, or calls of procedures with a large workspace requirement will cause the workspace pOinter
to wrap around so that some of the data at the top of the program workspace is no longer in the cache.

6HC-AHh£J Locations used
~H'h'7:>"1 by calling
6HC-AHh£J procedure
I'-"..L...<-L-LA'-'t'o--- workspace

pOinter

Locations
f-.-----j marked as

invalid
f-.-----j

Before procedure call

Locations available
~oV'n""""" for use by called

~oV'n"""""
procedure

After procedure
call

workspace
pOinter

1'-"--L-L.L~"4-____ - workspace
pOinter

Locations
f-.-------j newly marked

as invalid
f-.-------j

After return from
procedure

Figure 2.6 Effects of call and return on workspace cache

As the cache is a circular buffer, moving the workspace pOinter by 32 or more will cause the pOinter into
the cache to wrap right round, marking every line as invalid.

16 Product family overview

3 Simplicity of system design

Many features of the IMS T9000, as with the original transputer range, exist to simplify the user's design
task and to reduce the amount of support hardware and software that is required. This means that designers
can spend more time working on their application and less time worrying about details. Using transputers
can result in smaller, simpler designs, easier system debugging, faster time to market and lower system
cost. Some of these features and their benefits are outlined below.

3.1 Single 5MHz clock input

All transputers, no matter what the processor speed, and all support devices require only a single 5MHz
clock input; on-chip phase locked loops generate all the high frequency intemal clocks required for the
processor and links. Because of the asynchronous nature of the link hardware differences in the clock
phase between devices is not important. This means that each processor can have a local clock.

This simplifies system clock generation and distribution, especially where multiple transputers are used.
The use of low frequency signals around a system can be particularly important in electrically noisy environ­
ments such as industrial control systems.

3.2 Programmable memory interface

The first generation of 32 bit transputers have a memory interface which can be programmed to generate
all the timing signals required by a memory system, meaning that little extemal logic is required to build
a complete system.

The IMS T9000 takes this idea further by providing greater functionality and flexibility. The IMS T9000 pro­
grammable memory interface (PMI) provides complete support for DRAM including multiplexing of row/co­
lumn addresses, refresh, and page mode accesses. It is possible to connect up to 8 Mbytes of 1 M x 4
DRAM with no extemal logic. The amount of memory which can be connected directly is limited only by
capacitive loading; larger amounts of memory will require only the addition of buffering on the address and
data lines.

The IMS T9000 memory interface will automatically exploit any fast access modes for the memory system.
For example if 64 bit wide DRAM is used then an entire cache line can be read in two memory operations.
If page mode DRAM is available, then reads or writes with the same row address will be done using page
mode, greatly reducing the cycle time. This will always be used for cache line reads and writes, where four
consecutive words will be transferred, but it will also work for any set of reads and writes from the same
page.

In addition to supporting fast DRAM, the IMS T9000 will also efficiently interface to other devices, such as
SRAM, ROM or memory mapped peripherals. The PMI on the IMS T9000 divides the address space into
four banks1. Each bank provides separate decoding and timing control, generating all the signals needed
for the device types in that bank. The address range, timing, memory type and bus width can be pro­
grammed independently for each bank. There is an additional preset bank for slow, byte-wide ROM. This
is intended for systems where the processor is booted from ROM. Only memory reads can be done from
this bank.

The parameters for the memory interface are programmed into a number of configuration registers. A soft­
ware tool is provided in the transputer development system to simplify the task of designing with the PMI.
This tool can be used interactively to describe the parameters for each memory bank. It then produces an
output file which can be used by other parts of the development system for initializing and loading
transputers. The program also produces timing diagrams and descriptions which can be used in document­
ing the system design.

3.3 Control links and configuration

The IMS T9000 has a pair of control links. One is used for receiving commands and sending status informa­
tion, the other provides a cascade connection so that all devices in a system can be daisy-chained togeth-
1 There IS no connection between the four banks In the memory Interface and the four banks In the main cache

Product family overview 17

er. The control links use the same link protocol as the IMS T9000 data links and provide a control network
which is completely independent of the normal data communication network.

The control links have through routing hardware so that the controlling processor (possibly an IMS T9000)
appears to have a direct connection to every device in the system.

The control links are kept totally separate from the links used for program communication in a system. A
program running on the IMS T9000 cannot send messages down the control links. The separation of control
and data links ensures that the control links are completely reliable. For extra reliability, they can be run
at a lower bit rate.

CLinkOl----'--(CLink1 CLinkOl----'--(CLink1 CLinkOl--'---(CLink1

T9000 T9000 T9000

Figure 3.1 Network of control links

The control links provide an independent communication network which can be used to load code, do hard­
ware debugging, monitor a running system for errors and perform diagnostic functions, both for a single
IMS T9000 and a network.

Because of the great flexibility of the memory interface and the communications system of the IMS T9000
there are a number of configuration registers that need to be programmed. For all of these, the development
tools will program the registers using high level descriptions of the system. For example, as noted above,
there is an interactive tool for developing configuration data for the PM!. Similarly, the communication sys­
tem is set up using high level language descriptions of the software and hardware networks.

There are two ways of programming the configuration registers: by writing to them from a program running
on the IMS T9000 itself; orvia a control link from the host system. The first method is used when the system
is booted from ROM, for example in an embedded system. The second method can be used in a develop­
ment environment or, in a multi-transputer system, where only one processor is initialized (or 'configured')
from ROM and all the others are configured via their control links from that root processor. In both cases
the IMS T9000 development tools will generate the data to be programmed into ROM or sent to the control
link of a processor.

There are a number of stages of initializing and loading code onto the IMS T9000 after it has been reset.
These are known as 'reset levels' and during the initialization process, every IMS T9000 must go through
each level from complete reset, to having application code running. Each of these levels can be done from
ROM or through a control link.

3.4 Loading and bootstrapping

The transputer can also be bootstrapped in two ways: from code received down a link or from ROM. All
INMOS development tools generate programs to be loaded by either method as required during develop­
ment or in a production system.

There are a number of advantages to the ability to load code from a link. It greatly simplifies the develop­
ment cycle - there is no need to keep programming new EPROMs with new versions of code (or use an
EPROM emulator); it can simply be loaded down a link. It simplifies testing of hardware - a transputer pro­
vided with the minimal essential extemal signals (5 volts, clock, etc) will be guaranteed to work; there is

18 Product family overview

then16 Kbytes of on-chip RAM in which to load test code. In a multiprocessor system, only the root proces­
sor needs to be booted from ROM - the others can be booted down a link with code contained in that sys­
tem ROM. It is even possible to switch between ROM and link booting, in order to do field testing and diag­
nose faults in an installed system.

3.5 Examples

To show how simple it is to build systems using the IMS T9000, a few example block diagrams are given
here. In the simplest cases these are almost complete circuit diagrams.

The first example (figure 3.2) is a complete working system using the IMS T9000s intemal RAM as the sys­
tem memory. The processor boots from ROM which contains the application software. This processor can
communicate with other transputers or peripherals through its data links. It can be set to boot from ROM
or from link for development and test purposes. The full16 Kbytes of on-chip RAM is available for program
workspace.

5V
II

t I I II I
VDD CapPlus CapMinus

EPROM

+

StartFromROM

i ... ~
OE

notMemBootCE CE

MemAdd2-31 Address
4/ ClinkO

8/ 16 MemDataO-7 Data linkO-3

Reset IMS T9000

Circuit Reset

5MHz Clockln
Clock

GND

~
All other inputs tied to ground

Figure 3.2 Complete IMS T9000 system with EPROM

Figure 3.3 shows how a low cost system can be built using a small amount of SRAM. This could be com­
bined with ROM and peripherals for a low cost embedded application.

Product family overview

2 x IMS 1820 (64K x 4 SRAM

notMemPS1 f-------IOE OE

MemAdd2-15 f-T-_...,..;1.;.6"""-i AO-15

notMemWrB2

notMemWrB3 A1

notMemWrBO 1---LW~~~ij

AO-15

W

MemDataO-63 1-_..,8 ____ _____

Figure 3.3 Low cost system with 64 Kbyte of SRAM

19

The third example in figure 3.4 shows how a large amount of DRAM can be connected to the IMS T9000
with no external logic for decoding, control signal generation or buffering.

notMemPSO -

notMemRAS -

notMemCAS -

MemAdd2-31 -
notMemWrBO

notMemWrB1

notMemWrB2

notMemWrB3

MemDataO-63

r-- Up to 8 Mbytes of 1 M x 4 DRAM ~

OE r----
RAS I"-

CAS I"-

AO-n I--

WDO-3

I

4 /
/

64

OE

RAS

CAS

AO-n

WDO-3

I

4
/

OE

RAS

CAS

WDO-3

4

Figure 3.4 High performance system with 8 Mbytes of DRAM.

The memory in each bank is enabled by separate strobe signals so all of the above memory types could
be combined on a single IMS T9000.

20 Product family overview

4 Protection and error handling

The IMS T9000 extends the error handling of earlier transputers to allow error conditions to be easily
trapped and handled in software. It can run code in a protected mode where all memory accesses are
checked and certain, privileged, instructions cannot be executed.

4.1 Error handling

The first transputers have only a global mechanism for trapping errors; stopping the entire processor when
an error is detected. The IMS T9000 extends this to allow a trap handler to be associated with a process
to provide more localized error handling. When an error occurs, control is transferred to the trap handler
with information about the nature of the error and where it occurred.

The action of a trap handler will, in general, be dependent on the language or operating system being used
and will be invisible to the applications programmer. Some languages may include support for user written
error handlers. After taking the appropriate action, for example to report or correct the error, the trap handler
can retum control to the process which caused the error which can then continue execution. Each process
can have its own trap handler, or one trap handler can be shared by several (or all) of the processes on
the transputer.

To maintain compatibility with earlier transputers, the IMS T9000 can also run processes in a global error
mode where the behavior on error is identical to the IMS T805. These two types of processes are known
as L-processes and G-processes (for Local and Global error handling) respectively. Both L- and G-pro­
cesses can be run in parallel, the processor dynamically switching modes as it switches between pro­
cesses. This allows code compiled for the IMS T805 (which will always be in global error mode) to be run
in parallel with code specifically compiled for the IMS T9000.

4.2 Protected mode

The IMS T9000 can also run code in protected mode. This is designed to allow run-time checking of pro­
grams written in 'unsafe' languages such as C and also to provide memory management. For example,
C allows pOinters to data or functions. Without checks for valid pOinters, these could contain an illegal
memory address such as: another process's data or code; a non word aligned address; or a function point­
er which does not point to valid code. As no checks are defined in the language it is important to be able
to check such accesses at run time, if needed.

The protection mechanism is intended to support software development and debugging, and programming
secure systems. It protects the user's processes or tasks from each other and also protects an operating
system kemel, or other run time support, from user code. Although code run in this mode is frequently re­
ferred to as a 'protected process', it is not the process which is protected but the rest of the world that is
protected from errors in the process.

Protected mode processes

Any L-process can run a piece of code as a protected mode process (or P-process); the processor saves
the state of the L-process and starts executing the P-process. The P-process is executed until control is
returned to the L-process because of an error, protection violation or some other reason. It is important to
realize that P-processes are not scheduled by the transputer's own scheduler - they only run under the
control of a supeNisor L-process. Any of the instructions or other events that might cause a P-process to
be descheduled, will cause control to be retumed to the supeNisor. The relationship between a P-process
and its supeNisor is analogous to that between an L-process and its trap-handler. In both cases the proces­
sor can be thought of as swapping between the two pieces of code.

Executing illegal instructions

Because control is retumed to the supeNisor when a P-process attempts to execute a privileged or illegal
instruction, it is possible to provide communication and other facilities to a P-process in a controlled way,
but one which is invisible to the programmer. For example, the input and output instructions are privileged

Product family overview 21

so, if a P-process attempts a communication then it will trap to the supervisor L-process. This L-process
can examine the state ofthe P-process and, ifthe attempted communication is 'legal', perform the commu­
nication and return control to the P-process. The P-process will continue as if a normal communication had
occurred.

There is also a 'syscall' instruction which can be used by a P-process to explicitly request some action
by the supervisor.

Memory management

When running in protected mode, all memory accesses are checked and translated. Each P-process can
access four regions of memory. The size and base address of each region can be set, and each can have
different protections. Each area can be given permission for code to be executed from it and for data to
be written. For example an area of memory containing code would normally be marked with execute per­
mission but write protected.

All addresses generated when the processor is running in protected mode are logical addresses. These
are translated to physical addresses by combining the low order bits of the logical address with the high
order bits from the control register for that region. The translation and checking is done in parallel with other
address generation operations and so imposes no overhead on memory access time.

The IMS T9000's memory management can be used to implement swapping of memory to and from disk
and relocation (although it does not support page-based virtual memory). This can be used to implement
most operating system kernels. It can also be used for 'stack extension'. All the instructions which move
the workspace pOinter are checked for a valid address after the operation. If it is found that the workspace
address is no longer valid then a trap occurs, the supervisor process can then allocate more memory for
the processes stack and restart it.

22 Product famHy overview

5 Support for multiprocessing

The requirement for processing performance in embedded systems is continuously increasing as control
algorithms become more sophisticated and as systems become more complex. In the long term, the only
solution to these ever increasing demands for performance is the use of multiple processors to perform
parallel processing.

Transputers are the only microprocessors specifically designed to tackle the problems of building multipro­
cessor systems.There are advantages other than Just performance to using multiple transputers in a sys­
tem; it allows scaleable systems to be built, where more processors can be added as demand increases,
or to provide the optimum balance of price versus performance. The communications facilities of the
transputer family can also be used to build distributed systems where, for example, the processors are
located near the equipment or components they control and use links to communicate with other proces­
sors in the system. In addition, transputers can be used to build high reliability, fault tolerant systems.

Fast Interrupt response and process switch

In most embedded applications, there is a need for fast real time response (both to extemal interrupts and
for context switching in multitasking systems). The design of the IMS T9000 processor explOits the pres­
ence of the two on-chip caches by having only a small number of registers in the CPU. This means that
there is little state to be saved when an interrupt or task switch occurs, so these operations are extremely
fast. These types of operations are very efficient on the transputer because of the hardware scheduler.

The register stacks are duplicated so that, when a process running on the IMS T9000 is interrupted, the
contents of the stacks do not need to be written to memory. This results in a sub-microsecond interrupt
response. Furthermore, the duplication of the register stacks enables floating-point arithmetic to be used
in an interrupt routine without any performance penalty.

5.1 The transputer model of concurrency

The model of concurrency and communication implemented by the transputer hardware is based on the
ideas of communicating sequential processes. All the features for creating processes and communicating
between them are accessible from any high level language for the transputer and are implemented directly
by the occam programming language [2].

Processes and channels

Each process can be regarded as a black box with internal state, which can communicate with other pro­
cesses using communication channels. Each channel is a point to point connection between two pro­
cesses. One process always inputs from the channel and the other always outputs to it. Communication
is synchronized: the first process ready to communicate waits until the second Is also ready, then the data
is copied from the outputting process to the inputting process and both processes continue.

Each process starts, performs a number of actions and then terminates. An action may be a set of sequen­
tial processes performed one after another, as in a conventional programming language, or a set of parallel
processes to be performed at the same time as one another. Since a process is itself composed of pro­
cesses, some of which may be executed in parallel, a process may contain any amount of internal concur­
rency, and this may change with time as processes start and terminate. Ultimately, all processes are con­
structed from three primitive processes: aSSignment; input and output.

Program structure

Figure 5.1 shows an example of a system constructed from three communicating processes. In this case
there are separate processes to handle the external hardware (the screen and keyboard) and to execute
the main, application, process. This is a modular design - only the hardware handling processes have to
be changed If the software is moved to a new environment, the same interface (the data sent and received
on channels or 'protocol') can be presented to the application process. The keyboard handler can be inter­
rupt driven, only being scheduled when a character is typed, the interrupts appearing as communications.
The input and output processes can provide buffering and other filtering of the data, all of which is invisible

Product family overview 23

to the main application process, which could even be placed on a separate processor. This use of separate
processors need not just be for performance reasons but might be done, for instance, if there are a large
number of peripheral devices which could be better handled by a low cost 16 bit transputer. One or more
high performance transputers could then be used for the main computing processes.

to application

echo

from application

Figure 5.1 Processes and channels

Example

The code for creating parallel processes in C is very simple. For example, if the three processes in the
example above are external functions, then the following code is all that is needed to run them in parallel:

#include <stdlib.h>
#include <channel.h>
#include <process.h>

/*
declare externally defined functions

*/
extern keyboard_handler (Process *p, Channel *to app, Channel *echo);
extern screen handler (Process *p, Channel *echo, Channel *from app);
extern application (Process *p, Channel *to_app, Channel *from_apP);

/*
declare pointers to process and channel data structures

*/
Process *kbd_p, *scrn_p, *appn_p;
Channel *to_app, *from_app, *echo;

/*
allocate and initialize channel data structures

*/
to_app
from_app
echo

/*

ChanAlloc () ;
ChanAlloc () ;
ChanAlloc () ;

24 Product family overview

allocate and initialize the process data structures
*/
kbd_p
scrn_p
appn_p

/*

ProcAlloc (keyboard_handler, 0, 2, to_app, echo);
ProcAlloc (screen_handler, 0, 2, echo, from_app);
ProcAlloc (application, 0, 2, to_app, from_app);

now run the three processes in parallel, this call
will return when all three processes have terminated

*/
ProcPar (kbd_p, scrn_p, appn_p, NULL);

A more complete explanation of how parallel programs can be written for the transputer can be found in
INMOS Technical Note 68, "Developing parallel C programs for transputers" [5].

The equivalent program in occam would be:

CHAN OF BYTE to.app, from. app , echo
PAR

keyboard. handler (to.app, echo)
screen. handler (echo, from.app)
application (to.app, from.app)

Multiprocessor programs

Figure 5.2 Transputers and links

Every transputer implements these concepts of concurrency and communication. As a result, the same
model can be used to program an individual transputer or to program a network of transputers. Figure 5.2
shows a typical network of transputers connected by serial links. When a number of processes run on an
individual transputer, the processor shares its time between the concurrent processes, and channel com­
munication is Implemented by moving data within memory. When this programming model is used to pro­
gram a network of transputers, each transputer executes the process, or processes, allocated to it.

Communication between processes on different transputers is implemented directly by transputer links.
Thus the same program can be implemented on a variety of transputer configurations, with one configura-

Product family overview 25

tion optimized for cost, another for performance, or another for an appropriate balance of cost and perform­
ance as illustrated in figure 5.3.

P

Figure 5.3 Mapping processes onto one or several transputers

5.2 Other models of concurrency

Although the transputer has direct support for concurrent process which communicate via channels, it is
possible to use the same features of the transputer to build other types of multiprocessor system or to sup­
port different scheduling models. The IMS T9000 includes a number of instructions for manipulating the
transputer process queues; these make it simple to write real-time kemels, exploiting the efficient task
switching of the transputer architecture. There are also instructions for ensuring that the data in the cache
and in memory are consistent. These can be very useful when implementing a shared memory system.

Shared memory

In a shared memory system, a number of processors have some sort of common area of memory which
they can all access. This has some advantages over the channel communication model, especially where
very large amounts of data need to be shared or moved between processors. The transputer has hardware
and software support for shared memory systems.

The PMI has a set of signals for controlling access to the extemal memory interface by an extemal device.
This is primarily intended for use with a DMA based co-processor. It can also be used, with extemal arbitra­
tion logic, to allow all of the processors in a system to access the shared memory.

Alternatively, there may be a number of blocks of memory that can be switched into the memory map of
different processors under software control. These blocks can be used for exchanging data and passing
messages between processors. To synchronize the switching of these blocks of memory between proces­
sors, the ideal method is to pass messages over the transputer links; as the memory is switched to a pro­
cessor's address space, it is sent a message from the previous user of the memory to inform it that it is
now the new 'owner' of the memory. This allows large amounts of data to be moved from one processor
to another but without the overhead of copying all of it over a link.

In any shared memory system, the use of a cache can be a problem. In the IMS T9000 there are instructions
for forcing changed data in the cache to be written out to main memory and for marking data in the cache
as invalid so that it will be read from main memory. As the exchange of data is synchronized between pro­
cessors, these instructions can be used to make sure that the correct data is in both the main memory and
the cache of the processors involved.

It is also possible to mark banks of external memory to be 'un-cacheable'; data from that area of memory
will never be put in the cache. This ensures that a number of processors or other devices which make ran­
dom reads and writes of that memory will always get the most up to date data. In this case there must still

26 Product family overview

be some synchronization of the memory accesses to make sure that information is not read by a processor
until it has been written; again, this synchronization can be done over the transputer links.

5.3 Hardware scheduler

The IMS T9000 processor includes a hardware scheduler which implements the transputer model of con­
currency. In many applications this will remove the need for a software kernel. However, the transputers
own scheduling mechanisms can be accessed from software to provide efficient support for the implemen­
tation of standard real-time kernels.

At any time, a transputer process may be:

active

inactive

being executed
on a list waiting to be executed

ready to input
ready to output
waiting until a specified time

The schedlJlI:!r operates in such a way that inactive processes do not consume any processor time. The
active processes waiting to be executed are held on a list of process workspaces. This is implemented
using two registers, one of which pOints to the first process on the list, the other to the last. In figure 5.4,
P is executing, and Q, Rand S are active, awaiting execution.

A process runs until it is unable to proceed because it is waiting to input or output, or waiting for the timer.
Whenever a process is unable to proceed, its instruction pointer is saved in its workspace and the next
process is taken from the list. Actual process switch times are very small as little state needs to be saved;
it is not necessary for the processor to save the evaluation stack on descheduling.

Current process

Next Instruction
p

Workspace ptr

Active processes on queue

Front ptr

Back ptr

Figure 5.4 Transputer process queue

5.4 Interrupts, events and timers

As well as process scheduling and communications, the scheduling hardware also supports simple handl­
ing of interrupts and timers. Any event that a process might need to wait for (whether it be a communication,

Product family overview 27

an interrupt or a timeout) can be treated in the same way as a communication. For example, an interrupt
handler simply has to wait for an input from a special channel which is mapped onto an interrupt ('Event')
input. Because inputs are synchronized, that process will not proceed until the 'input' becomes ready, i.e.
until there is an interrupt.

This makes interrupts on the transputer very easy to use. An interrupt handler is simply a process like any
other waiting on an input from the interrupt 'channel'. This contrasts greatly with the traditional idea of an
interrupt handler as something difficult which needs to use special instructions and be written in a very dif­
ferent way from other program code (usually in assembler).

The IMS T9000 has four sets of pins, known as 'Event' Channels, which can be used for control and synchro­
nization purposes. Each Event channel can be configured either as an input or an output. As inputs they
can be used as interrupts, to cause a fast processor response to a external signals. When an Event channel
is configured as an output, the process outputting to it will be descheduled until the external device pro­
vides the necessary handshake signal.

The transputer has two timers; one of which 'ticks' every microsecond, the other ticks every 64 microsec­
onds. The current value of the processor timer can be read, or a process can perform a timer input in which
case it wi II become ready to execute when a specified time has been reached. Both these uses of the timer
are treated as inputs similar to channel communication. If the timer is simply being read then the current
timer value is provided immediately; if the process is waiting for a particular time, then it is descheduled
until that time.

5.5 Shared resources

The IMS T9000 also provides efficient hardware support for controlling access to a shared resource. This
could be a hardware resource (e.g. a printer) or a piece of software running on a particular processor in
a network. Each process which wants to use the resource (a 'client') can make a request to the controlling
process (the 'server'). This request is done in the form of a channel communication and can, therefore, be
done across a network by using transputer links. If the resource is available then the requesting client is
given access to it, otherwise it is put on a queue until the resource becomes free. If multiple clients request
a resource then they are all automatically queued until it is available.

Client processes

Figure 5.5 Client/server model of resources

The resource mechanism can provide pairs of channels between the server and the processes accessing
it. This can be used, for example, to implement remote procedure calls across a transputer system.

28 Product family overview

6 Communication links

Transputer links provide a simple and regular way of interfacing to peripherals and host systems as well
as communicating between transputers. On a single transputer, processes can communicate via channels;
the provision of links allows processes on different transputers to communicate in the same way. The
IMS C104 routing device enables this communication to take place across a network, even between
transputers that are not directly connected.

The same communication model can be used to communicate with peripheral devices or a host system
using a link adaptor which converts from the bit-serial protocol of the links to a parallel port.

6.1 Using links between transputers

Transputer links can be used to implement point to point communication between transputers. This allows
transputer networks of arbitrary size and topology to be constructed. Point to point links have many advan­
tages over bus based communications in a multiprocessor system:

• There is no contention for the communication mechanism, regardless of the number of processors
in the system.

• There is no capacitive load penalty as more processors are added to the system.

• The communications bandwidth does not saturate as more communicating devices are added
to the system. Rather, the larger the number of transputers, the greater the total communications
bandwidth of the system.

• Because each transputer in a system uses its own local memory, overall memory bandwidth is
proportional to the number of transputers in the system. This is in contrast to a large, global
memory where the processors must share the available memory bandwidth.

For small systems, the four transputer links on the IMS T9000 can provide complete connection between
up to five devices. By using additional message routing devices such as the IMS C104, networks of any
size can be built with complete connection between all IMS T9000s. If a system does not need complete
connection or the flexibility of routing that the IMS C1 04 provides, then networks can be built justfrom direct­
ly connected transputers.

6.2 Advantages of using links

The advantages of using links for communication are efficiency, simplicity and hardware independence.

Efficiency

There is a separate DMA controller for every input and every output channel which allows data to be trans­
ferred without processor involvement. To exploit this, the transputer deschedules a process which is waiting
for a communication to complete, freeing the processor to execute another process. When the communica­
tion is complete, the process is rescheduled, providing automatic synchronization with the data transfer.

Simplicity

The communication links are, however, very simple to use. The transputer has simple instructions for per­
forming input and output and these are available to the programmer either as function/procedure calls in
a high level language or, in the case of occam, as an integral part of the language. For example, in a C
program, to transfer an array of 256 bytes from the array data to a channel c, the following call could be
used:

ChanOut (c, data, 256):
I

In occam, the same operatiorn could be written as:
j!

c ! 256::data

Product family overview 29

This output operation requires four instructions: three to load the address of the channel, the address of
the data and the number of bytes, followed by the output instruction itself. It is worthwhile comparing this
with the complex code required to do the equivalent transfer on a traditional microprocessor. For example,
it would require a DMA controller to be programmed and, in order to allow some degree of multitasking,
it would be necessary to set up the interrupt hardware and write an interrupt handlerto control the data trans­
fer. All of this is done automatically by the input and output instructions on the transputer.

As a more concrete example, consider the case of a file server running on a host system talking to a pro­
gram running on the transputer. This would provide the transputer program with all the host operating sys­
temfacilities such as filing system, terminal i/o etc. Atthe transputer end, the communication is very simple:
a single line of code, as outlined above. At the host end, a lot of complex code (probably written in assem­
bler) is required to handle the data transfer, either programming a DMA controller or polling the status regis­
ters of the memory mapped port. In the case of a Unix system, it will also be necessary to write a device
driver to interface to the hardware.

Of course, when the communication is between two transputers, then both ends of the communication are
equally simple.

Hardware independence

As well as being fast and easy to use, channel communications provide a degree of hardware indepen­
dence.

The same communication mechanism can be used to communicate between concurrent processes, with
peripherals or a host system, and even to handle interrupts. This simplifies the development and testing
of code as each process can be functionally tested before being used in the complete system. A good
description of program development for transputers can be found in [4].

Furthermore, exactly the same code can be used to communicate between processes on the same
transputer (using so called 'soft channels') and to communicate between transputers (using links, or 'hard
channels'). Not only is the source code the same, but the same transputer instructions are used - the
transputer determines at run time whether it is using a hard or a soft channel. This saves the programmer
from having to make decisions aboutthe final hardware implementation while developing and testing code.
The IMS T9000 takes this separation of software from hardware one step further than previous transputers.

6.3 IMS T9000 links

On previous transputers the programmer was limited to assigning two channels, one in each direction, to
each link. To map a particular piece of software onto a given hardware configuration the programmer has
to map processes to processors within the constraints of available connectivity. The problem is illustrated
in figure 6.1 where 3 channels are required between two processors, but only a single link connection is
available.

One possible solution, and one that is frequently suggested by transputer users, is the addition of more
links. Howeverthis does not really solve the problems; there is still limited connectivity available. The num­
ber of extra links that can be added is I imited by VLSI technology. This 'solution' does not address the more
general communication problems in networks, such as communication between non-adjacent processors,
or combining networks in a simple and regular way.

30 Product family overview

Figure 6.1 Multiple communication channels required between processors

6.3.1 Vlnual channels

The solution chosen in the IMS T9000 was to add multiplexing hardware to allow any number of processes
to use each link, so physical links can be shared transparently. These channels which share a link are
known as 'virtual channels'; they have the same behavior as software channels.

The IMS T9000 has fOur data communication links, each with a DMA controller and the ability to synchro­
nize with the scheduling of processes. The links and DMA engines are controlled by a separate communi­
cations processor, the virtual channel processor (VCP), which works concurrently with the CPU. This sup­
ports practically a large number of virtual channels on each link.

VCP VCP

Figure 6.2 Shared links between IMS T9000s

Vlnuallinks

Each message sent across a link is divided into packets. Every packet requires a header to identify its
destination process. Packets from different messages are interleaved on the link. There are a number of
advantages to this:

• It makes the transputer simpler to use as It separates the software configuration from the hard­
ware. The programmer does not need to limit the number of channels between processors or ex­
plicitly allocate channels to links.

Product family overview 31

• Channels are, generally, not busy all the time therefore the VCP can make better use of hardware
resource by keeping the links busy with messages from different channels.

• Messages from different channels can effectively be sent concurrently - the processor does not
have to wait for a long message to complete before sending another.

Virtual channels are always created in pairs to form a 'virtual link'; this means there is no need for a return
address in packets, the acknowledgements are simply sent back along the other channel of the virtual link.

Sending packets

The IMS T9000 sends the first packet of a message and then waits for an acknowledgement from the receiv­
ing processor before sending the next. The process which sent the message cannot proceed until the last
packet of the message has been acknowledged. Messages and acknowledgements from other virtual
links can be sent while waiting for an acknowledgement on a virtual link. This ensures that a single virtual
link cannot monopolize a physical link.

A

~BI

Packets arriving on link

Figure 6.3 Multiple channels sharing a link

Receiving packets

The initial packet of a message is acknowledged if a process has requested a message on that virtual link.
The acknowledgement can be sent as soon as the inputting process is identified, as long as the inputter
is able to accept another packet. This means that the entire packet does not have to be received before
the acknowledgement is sent. In this way the acknowledgement can be received by the transmitter before
all of the data packet has been sent and the transmitter can send the next message packet immediately.

The IMS T9000 provides one packet buffer for each virtual link so that each input can be ready to accept
an unsolicited packet. This means that other virtual channels sharing a physical link are not delayed if one
virtual channel is not ready to input. This buffering of the first packet only takes place if the receiving process
is not ready to input, otherwise the data is written directly to the inputting process's workspace. This buffer
is not visible to the programmer; all communications are still synchronized at the message level.

The virtual channel processor

The VCP routes messages to and from processes on IMS T9000s. It shares each physical link between
any number of processes. It also supports non-local communications by using the IMS C1 04 to route mes-

32 Product family overview

sages in a network of transputers. This can provide multiple virtual channels between any two transputers
in a network. Requests to send messages are queued by the VCP so that the main CPU is not delayed
waiting for packets to be sent.

Implementation

To achieve the speed required to match a faster processor, and to support the virtual channel protocol, a
new, simple link standard has been implemented. The original transputer links are referred to as over­
sampled (OS) links and use a pair of wires. The IMS T9000 links have four wires for each link (a data and
strobe line in each direction) and are known as OS links. All signals are TTL compatible.

The links are asynChronous; the receiving device synchronizes to the incoming data. This simplifies clock
distribution within a system, the exact phase or frequency of the clock on a pair of communicating
IMS T9000s is not critical. It also means that devices with different processor speeds can communicate.

6.3.2 Levels of link protocol.

As with any communications system, the links can be be described at a number of levels with a hierarchy
of protocols. At the highest level a message consists of the data that the user sends down a channel from
one process to another. Any type of data or message can be sent in this way. This communication is syn­
chronized; it will not take place until both processes are ready and the two processes will not continue until
the message transfer is complete.

I header I 32 data bytes

•
•
•

I I First end of packet packet

header I 32 data bytes I end of packet I

I header I 1 to 32 data bytes I end of message I ~~~~et
Long message (greater than 32 bytes)

I header I o to 32 data bytes I end of message I

Short message (0 to 32 data bytes)

end of packet

Acknowledge packet

Figure 6.4 High Level protocol

Product family overview 33

Packet level protocol

In order to transfer a message from one IMS T9000 to another, the virtual channel processor sends it as
one or more packets. This allows packets from a number of different channels to be interleaved on the same
link. Each packet is acknowledged by the receiving IMS T9000, to maintain synchronized communication
and to limit the amount of buffering required.

Every packet has a header defining the destination address followed by the data bytes and, finally, an 'end
of packet' or 'end of message' token. See figure 6.4.This simple protocol supports messages of any length;
the receiving device knows when each packet and message ends without needing to keep track of the
number of bytes received. It also maintains synchronization at the message level.

A packet can contain up to 32 data bytes. If a message is longer than 32 bytes then it is split up into anumber
of packets all, except the last, terminated by an 'end of packet' token. The last packet of the message,
which may contain less than a full 32 bytes, is terminated by an 'end of message' token.

Shorter messages can be sent in a single packet, containing ° to 32 bytes of data, terminated by the 'end
of message' token. With this protocol zero length messages can be sent, allowing efficient synchronization
between processors.

Packet acknowledgements are sent as zero length packets terminated with an 'end of packet' token. This
type of packet can never occur as part of a message because a zero length data packet must always be
the last, and only, packet of a message, and will therefore be terminated by an 'end of message' token.

Token level protocol

In order to support the packet level protocol described above, a lower level protocol is needed for encoding
tokens which may contain a data byte or control information. Each token has a parity bit plus a control bit
which is used to distinguish between data and control tokens. In addition to the parity and control bits, data
tokens contain 8 bits of data and control tokens have two bits to indicate the token type (e.g. 'end of mes­
sage').

Control bit

Parity bit 8 Data bits

~ /~--------------~~~----------------~

Data token P ° D D D D D D D

End of packet token P °
End of message token I,--p __ -,-, __ --''--_____ 0--.11

Figure 6.5 Low level protocol

Bit level protocol

At the lowest, hardware, level the signals on the data and strobe lines of a link encode a sequence of bit
values. The protocol guarantees that only one of the two wires will have an edge in each bit time. The levels
on the data wire give the values of the transmitted bits. The strobe signal changes state whenever the data
wire does not. These two signals encode a clock along with the data which makes it easy to asynchronous­
ly detect the data at the receiving end.

34 Product family overview

o o o o

Data

Strobe

Figure 6.6 Hardware level

The first generation of transputers use a phase locked loop to synthesize a high frequency clock signal
which is then used to sample the link data. This is adequate for the data rates involved, but would not easily
support the bit rates of 100 Mbits/s and greater used by the IMS T9000.

Product family overview 35

7 Network communications

The use of INMOS links for directly connecting transputers has already been described. The new link proto­
col not only simplifies the use of links between processors but also provides hardware support for routing
messages across a network.

7.1 Message routing

The VCP (virtual channel processor) on the sending IMS T9000 packetizes messages to be sent over a link
and adds a header to each packet to identify the destination process. At the receiving end, the VCP uses
the header to send the data in each packet to the intended process. These headers can also be used for
routing packets through a communication system connecting a number of IMS T9000s together. This ex­
tends the idea of multiple channels on a single hardware link to multiple channels through a communica­
tions system; a communications channel can be established between any two processes even if they are
running on transputers that are not directly connected. The header still just specifies the destination of the
packet; the programmer does not need to know how to route that message to its destination.

Advantages for the programmer

The ability to have channels between any two processes in a network has a number of significant advan­
tages for the programmer. It simplifies the description of multiprocessor systems by separating the hard­
ware architecture from the software configuration. The programmer doesn't need to be concemed with the
details of placing channels on links or routing messages through the network. This removes a lot of the
problems with placing of processes on processors - the decision now can be made just on the basis of
the resources (memory size, etc.) available on each processor without worrying about the available con­
nectivity.

The programming model for networks of IMS T9000 transputers is unchanged from that for the first genera­
tion of transputers. There is, however, greater flexibility in configuring software. An important feature is that
the hardware and software configurations, and therefore their descriptions, can be kept completely inde­
pendent. The same hardware, and the same description of that hardware, can be used for many different
programs.

Routers

The routing components in a network can be separated from the processing elements. Messages can be
passed from one processor, through any number of routing devices, to the destination processor. This
creates a temporary path through the routing system for that message so, from the programmers point of
view, there still appears to be a single channel directly connecting a process on one transputer with a pro­
cess on another.

T9000 T9000 T9000 T9000

I I I I

Routing system of one or
more routing devices

Figure 7.1 A routing system

As a packet arrives on a link, the destination address must be inspected before the outgoing link can be
determined. The time before the output link can be determined is therefore proportional to the address

36 Product family overview

length. Further, the address itself must be transmitted through the network and consumes network band­
width. It is therefore important that this address be as short as possible, both to minimize latency and maxi­
mize bandwidth.

The router needs to arbitrate between packets which arrive at the same time and have to be sent out of
the same link. Ideally, it should start to output the packet as soon as possible; i.e. immediately after the
output link is determined, provided that the link is not already in use by another packet. This keeps the
latency through the network small, in contrast to a typical packet switching network which uses a 'store
and forward' algorithm in which each packet is read into a buffer, the address information is decoded and
then the packet is sent out. The delay that would be introduced by this is unacceptable in a transputer net­
work. Also the amount of buffering needed would make a VLSI implementation of a large routing switch
impractical.

Separating routers and processors

There are a number of advantages to keeping the communications devices and processing elements sepa­
rate in a system. Processors can be directly connected where appropriate, which avoids the silicon costs
and extra routing delays in a small system that doesn't need to use the routers. Also, the design of the
routing devices and processing elements can be optimized for their different roles. For example, the routing
component can have a larger number of links than would be possible if the two devices were integrated,
because the processor already needs a large number of pins for the memory interface and other functions.
Having a routing device with many links means that large network with a small number of routers can be
built, hence minimizing cost and latency and maximizing bandwidth. If messages had to flow through the
processor, it would increase the pin count, power consumption and packaging costs. This approach also
allows the construction of scaleable architectures where the communications throughput and processing
power can be balanced.

Parallel networks

Because the new link architecture allows all the virtual channels of a transputer to use a single link, com­
plete, system-wide connectivity can be provided by connecting just one link from each transputer to the
routing network. This means that the IMS T9000, with its four links, can be connected to several different
networks This can be exploited in a number of ways. For example, two or more networks can be used in
parallel to increase bandwidth, to provide a general purpose communications network and an independent
monitoring/debugging network, or as a 'user' network running in parallel with a physically separate 'sys­
tem' network.

7.2 The IMS C104

An important benefit of the IMS T9000's serial links is that it is easy to implement a full crossbar in VLSI,
even with a large number of links. The use of a crossbar allows packets to be passing through all links at
the same time, making the best possible use of the available bandwidth.

If the routing logic can be kept simple it can be provided for all the input links in the router. This avoids the
need to share the hardware, which would cause extra delays when several packets arrive at the same time.
It is also desirable to avoid the need for the large number of packet buffers commonly used in routing sys­
tems. The use of small buffers and simple routing hardware allows a single VLSI chip to provide efficient
routing between a large number of links.

Wormhole routing

The IMS C104 (figure 7.2) is one of a family of compatible communications support devices for the
IMS T9000. It includes a full 32 x 32 non-blocking crossbar switch, enabling messages to be routed from
any of its links to any other link. In order to minimize latency, the switch uses 'wormhole routing' - the con­
nection through the crossbar is set up as soon as the header has been read. The header and the rest of
the packet can start being transmitted from the output link immediately. The path through the switch disap­
pears after the 'end of packet/message' token has passed through. This is illustrated in figure 7.3. This
method is simple to implement and provides very low latency as the entire packet doesn't have to be read
in before the connection is made.

Product family overview 37

I Clink 0 L
I System Command ~

services processor ~

I
L Clink 1
I

1

<=?r Link 0 I"
I

32x32
Crossbar

switch

13 Link 31 I" '" I

Figure 7.2 Block diagram of IMS C:104

Mi!1imizing routing delays

The ability to start outputting a packet while it is still being input can significantly reduce delay, especially
in lightly loaded networks. The delay can be further minimized by keeping the headers short and by using
fast, simple hardware to determine the link to be used for output. The IMS C1 04 uses a simple routing algo­
rithm based on interval routing (described in section 7.3.1).

T9000
or

C104

T9000
or

C104

T9000
or

C104

'"

C104 T9000
or

C104

I C104 T9000
or

I~ C104

Figure 7.3 Packet passing through IMS C104

Because the route through each IMS C1 04 disappears as soon as the packet has passed through and the
packets from all the channels that pass through a particular link are interleaved, a single virtual channel
cannot 'hog' a route through a network. Messages will not be blocked waiting for another message to pass
through the system, they will only have to wait for one packet.

3 :c8=--_________________________ -'-P'-'ro'-'dcc:u.:.:;c'-=-'t ~amily overview

Control links

Like the IMS T9000, the IMS C104 has two control links. One link receives control and programming infor­
mation, the other enables all the devices in a system to be daisy-chained. The routing information for each
link of each IMS C104 is programmed, via the control link, from the controlling processor.

7.2.1 Using IMS T9000s with IMS C104s

A single IMS C104 can be used to provide full connectivity between 32 IMS T9000s. It can also be used
to connect other compatible communications devices, for example to provide an interface to first genera­
tion transputers via a protocol converter, or to peripheral devices via a link adaptor. IMS C104s can also
be connected together to build larger switches connecting bigger networks of IMS T9000s.

The IMS C1 04s that the packets pass through do not need to have information about the complete route
to the destination, only which link each packet should be sent out of at each point. Each of the IMS C1 04s
in the network programmed with information that determines which output link should be used for each
header value. In this way, each IMS C104 can route packets out of whichever link will send it towards its
destination.

Header deletion

An approach that simplifies the construction of networks is to provide two levels of header on each packet.
The first header specifies the destination transputer (actually, the output link from the routing network), this
header is removed as the packet leaves the routing system. This exposes the second header which tells
the VCP in the destination transputer which process (actually, which virtual channel) this packet is for. To
support this, the IMS C104 can route packets of any length. Any information after the initial header bytes
used by the IMS C1 04 is just treated as part of the packet, even if it is going to be interpreted as a header
elsewhere in the system.The IMS C104 can set any output link to do header deletion, i.e. to remove the
routing header from the front of a packet after it been used to make the routing decision. The first part of
the remaining data is then treated as a header by the next device that receives the packet.

Header used to select

T9000 virtual link in T9000

~ T9000

VCP I IIIfZI1 IMS C104 I -t
VCP

Header used to select
0 link of 1 4 utput C 0

Figure 7.4 Header deletion

As can be seen from figure 7.5, by using separate headers to identify the destination processor and a pro­
cess within that processor, the label I ing of I inks in a routing network is separated from the labelling of virtual
channels within each processor. For instance, if the same 2 byte header were used to do all the routing
in a network, then the virtual channels in all the transputers would have to be uniquely labelled with a value
in the range 0 to 64K. However, by using two 1 byte headers, all the IMS T9000s can use virtual channel
numbers in the range 0 to 255. The first byte of the header will be used by the routing system to ensure
that the packets reach the appropriate IMS T9000 before the virtual channel number is decoded.

Product family overview

Virtual
channels:

Virtual
channels:

(a) labeling the system with 2 byte headers

Network of C104s

(b) labeling the system with two 1 byte headers

Network of C104s

Figure 7.5 Using header deletion to label a network

I

sub-network of Ci'-1:...;O;...;4..:;.S ___1.. _____ --.

sub-network of C104s

_ used to route pa~et
through sub-network,
deleted on output.

_ used to route packet
through SUb-netwOrk,
deleted on output.

final header used to identify
• virtual channel on T9000 ;"-..1...--,

Figure 7.6 Using header deletion to route through sub-networks

39

40 Product family overview

The advantages of using header deletion in a network are:

• It separates the headers, and therefore the routing information, for virtual channels from those for
the routing network.

• The labelling of the network can be done independently of the application software running on
the network.

• There is no limit to the number of virtual channels that can be handled by a system.

Any number of headers can be added to the beginning of a packet so that header deletion can also be
used to combine hierarchies of networks as shown in figure 7.6. An extra header is added to route the mes­
sage through each network. The header at the front of each packet is deleted as it leaves each network
to enter a sub-network.

Routing control channels

For very large networks, the usual method of connecting control links, in a chain, might introduce an unde­
sirable delay. In this case, because of the common virtual link protocol, an IMS C1 04 can be used to route
the control links to all the devices in a system more directly, as shown in figure 7.7.

Control link CL'lnkO from host ----)l-.j

Data link
from host

CLinkO

IMS C104

CLinkO

T9000

CLinkO

T9000

CLinkO

T9000

CLinkO

T9000

Figure 7.7 Routing control links through an IMS C104

7,3 Routing algorithms

In order to route a message through a network, an algorithm is required which is: complete (ensures that
all messages arrive); deadlock free; optimal (packets take the shortest route); scaleable (networks of any
size can be built) and simple to implement.

Product family overview 41

7.3.1 Labelling networks

.--~

Destinations reachable
from this output link

Link 0 r------- 40,18,49
Link 0 40 : 18 49

Link 1 r------- 25,45, 17,6,39
25 : Link 1 45 17 6 39

Link 2 r------- 24,22,28,34 Link 2 24 ' 22 28 34

Link 3 r------- 36, 42 Link 3 36 : 42

Lookup table required

Figure 7.8 Labelling a network

For each routing component there will be a number of destinations which can be reached via each of its
output links. Therefore, there needs to be a method of deciding which output link to use for each packet
that arrives. The addresses that can be reached through any link will depend on the way the network is
labelled. An obvious way of determining which destinations are accessible from each link, is to have a
lookup table associated with all the outputs (see figure 7.8). In practice, this is difficult to implement. There
must be an upper bound on the lookup table size and it may require a large number of comparisons be­
tween the header value and the contents of the table. This is ineffiCient in silicon area and also potentially
slow.

Link 0

Link 1

Link 2

Link 3

Destinations reachable
from this output link

25,28,34,36,39

6, 17

40,42,45,49

18,22,24

Interval routing table required

Figure 7.9 Interval labelling

However, a labelling scheme can be chosen for the network such that each output link has a range of node
addresses that can be reached through it. If it is then ensured that the ranges for each link are non-overlap­
ping, a very simple test is possible. The header just has to be tested to see into which range, or interval,
it falls and, hence, which output link to use. For example, in figure 7.9, a header with address n would be
tested against each of the four intervals shown below:

Interval Output link

6~n<18 •

18~n<25' 3

42 Product family overview

25~n < 40. 0

4O~n<50. 2

The advantages of interval labelling are that:

• It is 'complete' - any network can be labelled.

• It is simple to implement in hardware - it requires little silicon area which means it can be provided
for a large number of links as well as keeping costs and power dissipation down.

• Because it is Simple, it is also very fast, keeping routing delays to a minimum.

7.3.2 Avoiding deadlock

Deadlock can occur in a network unless the routing algorithm is designed to avoid it. Any program with
communicating processes can also deadlock if not designed carefully. It is important here, to distinguish
between deadlock as a property of the network and as a property of a program running on the network.
A deadlock free network cannot cause a program to deadlock (but, of course, neither can it prevent a badly
designed program from deadlocking). An essential property of a router in a deadlock free network is that,
like a transputer or an IMS C104, it can communicate on all of its links concurrently.

As a simple example consider a network of four nodes (see figure 7.10) with one link in each direction be­
tween each node. If the routing algorithm sends all messages clockwise and all nodes start sending to
the opposite corner at the same time, every link will become busy and the network will deadlock. It is possi­
ble to add buffers to the network, but this will only delay the point at which deadlock occurs. The amount
of buffering needed to avoid deadlock is dependent on the network size and the application program run­
ning on the network

.. ~

~

, It

~

Figure 7.10 Deadlock in a network

In this example, deadlock can easily be avoided by modifying the routing algorithm to send messages in
opposite directions from alternate nodes. In this case, each node will only need to send one message in
each direction at any time. In this network, buffering can be added just to smooth the flow of data (I.e. to
prevent a process having to wait to send a message when the network is busy) but it is not needed to pre­
vent deadlock.

It is possible to use interval labelling to label any network in a deadlock free way. Many regular networks
have optimal, deadlock free routing algorithms. Examples are trees, hypercubes and grids. These net­
works can then be combined, so that any network can be optimally labelled as if constructed from these
sub-networks.

Product family overview 43

8 Other communications devices

To complete the IMS T9000 family, a full range of communications products are planned. These will provide
the ability to interface transputers to a range of devices and technologies.

8.1 Mixing transputer types: the IMS C1 00

The first of these devices is the IMS C1 00. This allows an IMS T9000 to communicate with a first generation
transputer. The two transputer families have different electrical characteristics and data protocol. The
IMS C100 converts between the four wire DS links of the IMS T9000 and the two wire as links of the earlier
transputers.

The other conversion done by the IMS C1 00 is between the IMS T9000 control links and the Reset, Error
and Analyse signals used to control the IMS T805 and similar device.

The IMS C1 00 provides an inter-networking solution for transputers, allowing transputer systems to be con­
structed using the optimum mix of devices. The IMS C100 has four modes of operation to enable:

• A single IMS T9000 to work in a network of first generation transputers.

• An existing transputer system to control a sub-system of IMS T9000s.

• An IMS T9000 network to interface to a network of first generation transputers.

• A first generation transputer to emulate an IMS T9000.

as links DS links

IMS C100 IMS T9000

PowerOnReset
Reset

Analyse

Error

system

ClinkO ClinkO
Reset
TReset ResetOut Reset
Analyseln Error

I

Figure 8.1 IMS C100 used with an IMS T9000

I
ROM

The IMS C1 00 converts both data and control protocols between the two transputer types and is intended
to be used in conjunction with software running on the attached transputers.

44 Product family overview

CLink1 CLinkO

OS links as links

IMS C100
IMS T2xx/T4xx/T8xx

system

ResetOut Reset
Reset AnalyseOut Analyse

Error Error

Figure 8.2 IMS C100 used with a first generation transputer

8.2 Interfacing to peripherals and host systems

To complete the family of communications devices, a range of interface devices are being designed. These
will convert between the serial link format and a parallel interface, for example. The first of these devices
will interface to a microprocessor bus. This will allow the IMS T9000 to communicate with non-transputer
systems.

:i
"

I

Product family overview 45

9 Software and systems

INMOS provides a wide range of standard software and hardware products to support development for
the transputer. These have been designed to enable users to evaluate transputers and to develop systems
easily and within the shortest possible timescales.

Development tools include compilers for languages such as C, Fortran and occam as well as the software
needed to test, program and debug systems built from one or many transputers. All the special features
of the transputer are available from high level languages (either as part ofthe language or as library calls).A
wide range of software is also available from third-party suppliers including compilers, such as Ada, and
real-time kernels, e.g. VRTX and C Executive.

INMOS also supplies a range of modular hardware products. These exploit the ability to build very compact
transputer systems (such as an IMS T805 with 4 Mbytes of memory on a board measuring approximately
2.5 cms by 9 cms) to provide a range of small, cost effective 'TRansputer Modules' (TRAMs). These mod­
ules can be mounted on a variety of motherboards, which are available for a range of host systems. The
motherboards provide an interface to the host development system and can be connected to build larger
systems. The standard sizes and interfaces of the modules and motherboards have been adopted by a
number of third party developers to extend the range of compatible systems products available to
transputer users.

INMOS will continue to support all these standards for the IMS T9000 product family, extending them where
necessary to exploit the new features of these products.

More details of the systems and software products currently available for the transputer family can be found
in [5].

9.1 Development software

INMOS has a range of development software, running on different hosts, for the transputer family. These
tools are aimed mainly at developing code for embedded systems, i.e. not necessarily running under the
control of an operating system. It is expected thatthe end products will either be connected to a host system
or will be completely self-contained units.

Software can be developed in standard high level languages using cross-compilers running on a range
of host machines. Programs for single transputers can be developed using just conventional programming
tools, such as compilers and linkers. All the languages include extensive support, in the form of run-time
libraries, for concurrency and communication. It is possible to write a program consisting of many concur­
rent processes entirely in C (or any other language available for the transputer).

Programs written for multi-transputer systems, or programs written as many sub-programs running in paral­
lel on a single processor, will require the use of extra programming tools. The transputer development sys­
tem includes tools for preparing a program.for execution on a parallel processing system and for debug­
ging such systems. These tools include 'configuration' tools which are used for describing the hardware,
mapping processes to transputers and setting up the communications channels. It is possible to boot and
load a network with code from the host development system, or from a ROM connected to one of the
transputers in the network. Programs can communicate with a 'server' on the host system to get access
to host facilities such as i/O. In addition there are tools for debugging a program running on a network of
transputers. An outline of some of these transputer specific tools is given below.

All of the programming tools are available for all members of the transputer family and, where appropriate,
are used in the same way and provide the same functions for all processor types.

9.1.1 Configuration tools

In discussing IMS T9000 transputer systems, the word 'configuration' is used in two senses. The first is
when an IMS T9000 transputer, or an IMS C1 04, is initialized - at this time a number of internal 'configura­
tion' registers have to be written to program the PMI, the VCP and other subsystems. The process of prepar­
ing a program for loading onto a transputer network is also referred to as 'configuration' (and the software

46 Product family overview

tools used are known as 'configurers'). In this description of the development process, the word 'configura­
tion' is reserved for the latter meaning of software configuration; the setting up of the hardware will be called
'initialization' .

The configuration tools are used to build programs consisting of a number of processes or SUb-programs
running in parallel on one or more transputers. Input files are used to describe the hardware, the software
and a mapping of the software onto the hardware. From these, the configuration tools produce the files
which are used to initialize and load the transputer network.

Hardware description

The hardware is described using a Network Description Language (NDL). For each transputer in the sys­
tem, this specifies the processor type, the amount and types of memory and peripheral devices. It also
describes the routing network used, if any, and how the data and control links of all the devices in the sys­
tem are connected.

The configuration tools use this description to program the PMI and VCP registers of the IMS T9000 and
to label the links of any IMS C104s used. The information in this file is also used to create the bootable
version of a program to run on the network.

If certain Simple rules are followed in the construction and labelling of networks, then the tools can check
the descriptions for errors and deadlock freedom. The NDL description can also be checked against the
actual hardware.

Software description

The NDL file for a particular system will normally be provided by the hardware vendor or designer. The pro­
grammers using the system only need to include a reference to the NDL file in the software configuration
file.The NDL description exports the names of the processors and routes in the network for use in the soft­
ware and mapping description.

The software description has to specify the Object code files for each process in the system and the proce­
dure interface (parameters and their types). Optionally, other language dependent attributes can be de­
fined. For example, the size of stack and heap areas for a C program can be specified. The software de­
scription must also specify the way that any communication channels are used between processes.

Mapping software to hardware

A mapping of software (processes) onto hardware (transputers) must also be given. The mapping can be
as simple as a series of statements of the form: 'place process on processor' for each process in the
program. Any number of processes can be placed on each processor, allowing a program to be initially
tested on a single processor before the multi-processor version is tried. The configuration tools automati­
cally work out the mapping of channels onto virtual links. If necessary, for example to access the host sys­
tem or a particular piece of hardware, the programmer can explicitly map channels onto links or routes
through the network.

Configuration languages

To provide a degree of flexibility for the user, there are two 'dialects' of configuration language: a C-like
one and an ocCam-style one. These perform identical functions but each has a different syntax, loosely
based on these languages. These configuration languages are used for describing the structure of the soft­
ware and how it is mapped onto the hardware.

lYPes of networks

The INMOS development tools support development of programs for:

Networks consisting of IMS T9000 transputers only (,non-routed' networks).

Networks consisting of IMS T9000 transputers and IMS C104 routers ('routed' networks).

Networks consisting of any other transputer types.

Product family overview 47

The tools do not directly support arbitrary, mixed networks of IMS T9000 transputers and first generation
devices. However, it is possible to connect the two types of networks, via an IMS C1 00, although the code
for the two sub-networks has to be developed separately. The two networks can then be loaded from the
host, via a common route.

In the case of non-routed networks (of any transputer type) the configuration tools automatically add routing
software to the program to provide any communications required between processors which are not direct­
ly connected.

A network of IMS T9000 transputers can be loaded with code compiled for an IMS T805 or an IMS T9000.
This allows users to write programs for the IMS T9000 even if the compiler used is only available for the
IMS T805. It also means that existing, compiled code can be run on an IMS T9000 system.

9.1.2 Initializing and loading a network

Transputer systems can be bootstrapped in two ways; either from ROM or from link. The initialization and
initial code loading are done via the control link. This initial boot code then loads the main application code
from the data links of the processor.

Levels of initialization

The initialization and loading of code for the IMS T9000 are done in a number of stages. The various levels
of initialization can be done either by code running on an IMS T9000 booted from ROM, or from the host
system via the control link. In a network, different processors may be initialized to different levels from ROM
with the later stages being done via the control link.

Booting a system from link

The 'boot from link' option is normally used during program development or whenever a system needs to
be able to run different programs at different times.

In order to load a network from a host system, connections to a single control link and a single data link
are required. This data link normally goes directly to an IMS T9000, the rest of the network being loaded
via this processor. The development tools generate data files which are used to do all the initialization and
loading of code onto the network.

Booting a system from ROM

The development tools can produce a number of different types of ROM. These range in function from per­
forming the (partial) initialization of a single IMS T9000, to booting an entire system.

When booting a system completely from ROM, it is possible to have a Single ROM on one processor. This
root processor boots from the ROM and then initializes and loads the rest of the network via links; all other
transputers in the network being set to boot from link.

9.1.3 Host servers

A server is a program that runs on the host machine to give software, running on an attached transputer
system, access to various host facilities such as i/o and disk storage. The server typically loads the execut­
able code onto the transputer network via a link interface. It then waits for requests and data to be sent by
the transputer program. These requests generally come from the run-time library, when the program makes
calls to standard input and output functions (e.g. printf () in C).

The server allows the development tools running on the host to control the target transputer system in order
to reset the system, do any initialization needed and then load a bootable program file. Software running
on the host can also use the server to access the transputer system for testing and debugging.

The nature of the connection from the host to the transputer system depends on the type of the host system,
but generally provides access to transputer links either directly, via a link adaptor on the host bus, or
through some other standard communications system such as Ethemet. In many cases the server software

48 Product family overview

includes a device driver, which handles the low level details of the hardware interface, pius a set of func-
tions to access the link through the device driver. ~~

9.1.4 Debugging

INMOS provides an interactive symbolic debugger for debugging programs running on networks of
transputers. This supports source level debugging of programs which consist of a number of parallel pro­
cesses running on any number of processors. The user can set breakpoints, inspect the state of processes
(including expression evaluation, modification of variables, backtracing procedure calls, etc) as well as
examining the low level state of each transputer in the system. A very useful feature is the ability to 'jump'
down a communication channel between two processes - this allows the state of two communicating pro­
cesses to be examined.

The debugger is currently being developed further to make it more powerful and easier to use. Some of
the features that will be added are:

• Window based user interface.

• List all processes running in the network.

• Stop processes to examine their state.

• Source level single stepping.

• History tracing (e.g. keeping track of communications events).

• Variable watchpointing.

9.1.5 IMS T805 emulation

An IMS T9000 can be booted from a ROM which performs all initialization and then executes a loader pro­
gram. The loader then waits for code to arrive on any of the data links. This emulates the behavior of the
IMS T805 which, after reset, waits for bootstrap code to arrive on a link. With the addition of an IMS C100
to do protocol conversion, this provides the ability to plug an IMS T9000 directly into an existing transputer
network and program it as if it were an IMS T805.

Because the IMS T9000 is binary compatible with, and has the same programming model as, previous
transputers the programmer can use existing development tools, source code, libraries and programming
techniques.

This compatibility also makes it easy for systems companies to port existing software, such as real-time
kemels, compilers and so on, that have already been developed for the current transputer range. This en­
ables an IMS T9000 specific version of these products to be developed very quickly. Additional work can
then be done, if necessary, to extend the product to make use of new features of the IMS T9000.

9.2 iq Systems products

There is already a wide range of TRAMs and motherboards designed for the first generation of transputers.
This includes modules with transputers plus various amounts and types of memory, through to various in­
dustry standard interfaces such as SCSI and GPIB. There is a complementary range of motherboards inter­
facing to hosts such as PC and Sun.

These TRAMs and industry standard motherboards make it easy to develop, prototype and build multipro­
cessor systems, based on the transputer family.

9.2.1 IMS T9000 products

To support the IMS T9000, a number of products compatible with the existing TRAM definition are being
designed. In the longer term a new module standard is being defined to exploit the faster links and other

Product family overview 49

features of the IMS T9000. In addition the approach to systems design using the IMS T9OO0 will be some­
what different because of the facilities provided by the virtual links.

The objectives of the new range of systems products are:

o No jumpers or switches on boards - the user can simply plug together modules to build a system
and start using It.

o No cables for interconnection within a system - all link interconnections via a backplane and
IMS C104s.

o Flexible but fixed network topology - this will be chosen to provide complete connection between
all transputers in a system with minimal latency.

o Provision of 3.3V for new high speed, low power components.

o Ability to use existing TRAMs where appropriate.

o Ability to build fault tolerant and 'live insertion' systems.

o Standard interfaces inside and outside the box.

The opportunity will be taken to increase the modularity of the systems components, and to improve the
design mechanically and provide better support for peripheral interface connections. To allowflexible inter­
connection of boards and modules, a backplane architecture is being defined to enable the construction
of routed and non-routed systems. These and other changes are being made based on experience and
customer feedback.

The new standards will embrace modules, boards and system interconnections. This includes the con­
struction and interconnection of scaleable systems with small (1-10) through medium (up to 64) to large
(> 256) numbers of processors.

The new module standard will include the provision of a ROM which may be used to provide configuration
data for the memory interface, etc. In some cases the processor might boot from this ROM as well. The
ROM will also be used to store useful information about the board, such as the module type, serial number,
vendor, memory size and speed, and information about other peripheral devices.

The new backplanes will be based on metric standards and will provide a standard backplane interface.
This will probably follow the board and connector formats defined by the Futurebus Plus standard.

The transputer links are, naturally, used for connecting between transputers on a single board or within a
system. There is also a need for longer connections between systems, for example to support interfacing
between a target system and the development host. Two standards are being defined; an electrical connec­
tion for distances up to about 10 meters, and a low cost optical fiber interconnect for longer distances.

Compatible development products

Initially, INMOS will provide a TRAM compatible with current standards but containing an IMS T9000. To
provide compatibility this will have an IMS C100 to convert the links and control signals. The IMS T9OO0
will boot from ROM so it can be initialized and then be ready to load code down a data link; it will then
appear just like a very fast IMS TS05.

This TRAM can be used in an existing development environment to do initial evaluation of code running
on the IMS T9000. The program running on this TRAM can communicate but will obviously not have the
IMS T9oo0 advantages of very high speed links and the virtual channel mechanism.

A similar product will be developed, allowing the IMS T9OO0 to be used in an existing development system,
but providing direct connection of the IMS T9OO0 links. This will enable more realistic multiple IMS T9OO0
development to be undertaken.

IMS T9000 specific products

INMOS is developing a range of IMS T9000 modules based on the new standard. These will range from
simple 'compute only' modules, with a transputer and memory, through to interface modules. These will

50 Product family overview

provide access to standards such as SCSI, FOOl, etc. Motherboards for these modules will also be
supplied, both to the new standard and for popular host computers, such as the IBM PC.

Host Interfaces

There is a need to provide a new type of interface to efficiently support communication between a host
system and a program running on an IMS T9000 system.

The existence of multiple virtual links into a network can be exploited to simplify the way that software on
the transputer accesses host services. This can also be used to provide all transputers with access to the
host. The handling of virtual channels on the host could be implemented in hardware for highest perform­
ance or software for greatest flexibility and lowest cost. The choice depends on the capabilities of the par­
ticular host hardware and operating system, as well as user requirements. For example, the data transfer
speed required will be different in a development situation and an accelerator.

The requirements for connecting into the data link network and the control network are qUite different. The
data links will typically have a relatively small number of virtual channels connecting to the host, but Will
require very high data rates (especially if the IMS T9000 system is being used an an accelerator or co-pro­
cessor). There are potentially a very large number of virtual control links but these can run at a lower data
~a '

Product family overview 51

10 References

The transputer databook, INMOS Limited, 1990

2 occam 2 reference manual, Prentice Hall, 1988

3 The transputer instruction set - A compiler writer's guide, Prentice Hall, 1988

4 Technical note 5: "Program design for concurrent systems",
The transputer applications notebook - Systems and performance, INMOS Limited, 1989

5 The transputer development and iq systems databook, 2nd Edition, INMOS Limited, 1991

52 Product family overview

• Part 2

Product Family
Preliminary
Information

53

54 Product Family Preliminary Information

o OUlJmos®
FEATURES

Instruction set compatible with the IMS T805
Pipelined superscalar micro-architecture
Workspace cache
Programmable memory interface
4 Gbyte physical address space
16 Kbyte instruction and data cache
200 MIPS peak
> 70 MIPS sustained
25 MFLOPs peak
> 15 MFLOPs sustained
Sub-microsecond interrupt response
Per process error handling
Enhanced support for pre-emptive schedulers
Memory protection and address translation
64 K virtual communication channels
Support for message routing
80 Mbytes/s total bi-directional link bandwidth
Separate control system
Single 5 MHz clock input
50 MHz intemal clock
Single 5 V ± 5% power supply

This is preliminary information on a product
under development and product details may
change.

iT/®!~r;m~~f~n
INMOS IS a member of the SGS-THOMSON Microelectronics Group

55

IMS T9000
transputer

Preliminary Information

Processor Pipeline

Address ~ Work- Generator FPU

space 1-----'1---1
Cache Address

Generator ALU
2

I System Services I 'I'I Virtual U Channel

I I r1 Processor
. Timers . W

16 Kbyte
Instruction
and Data

Cache

~ Link 0

~ ~ Link 1

~ Link 2

1 Link 3

I EventO-3!

Programmable V
Memory I'< U(J
Interface ~ Clink 0

:===~ I Clink 1 I
L-

4 x 32 intemal Data and
4 x 32 intemal Address

buses

April 1991

42146002

56 ~MS T9000 transputer

1 Introduction

This document contains preliminary hardware information for the IMS T9000 transputer.

The IMS T9000 transputer is a 32-bit CMOS microprocessor designed to be used in applications which
require high performance combined with high integration and simplicity of use. It is instruction set compat­
ible with the IMS T805 transputer. with additional support for multiprocessing and real-time applications.
Software support for the IMS T9000 transputer includes: ANSI C compilers, ANSI Fortran compilers, and
occam compilers, developed and supported by INMOS and third party software companies.

Figure 1.1 shows the major operational units of the IMS T9000 transputer.

The IMS T9000 has a pipelined superscalar architecture, which allows multiple instructions to be executed
every processor cycle. Compilers can generate code without considering any details of the pipeline as
the hardware organizes the incoming instruction stream into optimum groups of instructions. Other features
which contribute to performance are a 16 Kbyte instruction and data cache, a 64-bit floating point unit, and
a high bandwidth programmable memory interface. The floating point unit incorporates hardware to
perform divide and square root. A separate workspace cache stores 32 locations relative to the workspace
pointer to provide zero latency access to local variables. The IMS T9000 has four communication links for
fast inter-processor communications.

The 16 Kbyte cache provides a peak bandwidth of 200 Mwords/sec. It can also be programmed to function
as 16 Kbyte of on-chip memory, or as 8 Kbyte of on-chip memory and 8 Kbyte of cache. This allows small
applications to run with no external memory, and guarantees deterministic code behavior for applications
where this is critical.

Transputers provide hardware support for scheduling processes, and this can be used directly by applica­
tions written, for example, in C, Fortran or occam. It can also be used to simplify the software implementa­
tion of real-time kernels and operating systems. The process, model of the IMS T9000 transputer provides
per process error handling and debugging support, and allows programs to be run in a protected logical
address space. To improve the efficiency of real-time kernels access to the state of the processor has been
simplified, and full control over interrupts and timeslicing has been provided.

Communication between processes takes place over channels, and is implemented in hardware. The
same machine instructions are used for communication between processes on the same processor as for
communication between processes on different IMS T9000 processors. On the IMS T9000, communication
between processes on different processors takes place over virtual channels. Virtual channels are multi­
plexed onto each physical link by the virtual channel processor. Communication between IMS T9000
transputers that are not directly connected is achieved by using a separate dynamic routing switch, the
IMS Cl04.

With virtual channels it is not necessary for the programmer to allocate channels to physical links, and the
allocation of processes to processors is simplified. The programming of powerful multiprocessor systems
is therefore flexible and elegant.

The IMS T9000 has four high bandwidth serial communication links. To support virtual channels and
dynamic message switching, and to provide a higher data bandwidth with high data integrity, each physical
link consists of four wires, two in each direction, one carrying data and one carrying a strobe. The links
are therefore referred to as data-strobe (OS) links. The four OS links support a total bidirectional data
bandwidth of 80 Mbytes/sec.

Two separate control links are provided to enable networks of IMS T9000 processors to be controlled and
monitored for errors, even during the presence of faults in the normal data communications network. The
control links of IMS T9000s and IMS Cl04s can be daisy chained, and/or connected into a tree by
connection to aiMS Cl 04. Whatever the physical connectivity the controlling network forms a logical tree,
and a control processor is connected at its root. For small systems (such as a single IMS T9000 transputer)
there is no need to use the control links as all necessary functionality can be controlled from software.

The highly integrated programmable memory interface has a 4 Gbyte physical address space, and
provides a peak bandwidth of 50 Mwords/sec. Four independent banks of external memory are supported,

IMS T9000 transputer 57

and this allows the implementation of mixed memory systems, with support for DRAM, SRAM, EPROM and
VRAM. It has a 64-bit data bus, and each bank of memory can be configured to be 8,16,32 or64 bits wide.
The full performance of the IMS T9000 can be exploited using relatively low-cost DRAM, and up to 8 Mbytes
of DRAM can be connected with no external components.

VCC
GND

Cap Plus
Cap Minus

Reset
Error

Start From ROM
Clockln

ProcSpeedSelectO-2

ProcClockOut
notMemRf
MemWait

MemReqln
MemGranted
MemReqOut

notMemBootCE
notMemRASO-3
notMemCASO-3

notMemPSO-3
notMemWrBO-3

MemAdd2-31

MemDataO-63

Instruction Decoder/ Work-
Buffer Grouper space

System
Services

Timers

16 Kbyte
Instruction
and Data

Cache

Programmable
Memory
Interface

Cache

p~""-'""'-=~"'-'iiiiiJ- LlnklnDataO
LlnkOutDataO
LlnklnStrobeO

!;--;-c--=--=--=--=c9T~ LlnkOutStrobeO
kt-~';"';';"-'"""':""':';~iJ- LlnkinData1

LlnkOutData1
LlnkinStrobe1

!;--;-c:-r;;:-r;;:-r;;:-r;;:-&'"J" LlnkOutStrobe1
F;r-'-~--"-''''''----''-'W..:t- LlnkinData2

LlnkOutData2
LlnkinStrobe2

L.,-:-r;;:-r;;~:-r;;:-&'"J" LlnkOutStrobe2
I';r-~~L=-::':"';""...:.."or+- LlnkinData3

Event 0-3

Clink 0

Clink 1

LlnkOutData3
LlnkinStrobe3
LlnkOutStrobe3

CLlnklnDataO
CLinkOutDataO
CLlnklnStrobeO
CLinkOutStrobeO

CLlnkinData1
CLinkOutData1
CLlnklnStrobe 1
CLinkOutStrobe1

4 x 32 internal Data and
4 x 32 internal Address

buses

Figure 1.1 IMS T9OO0 block diagram

58 IMS T9000 transputer

2 Preliminary pin designations

Signal names are prefixed by not if they are active low, otherwise they are active high.

Pin In/Out Function

VCC, GND Power supply and return

Cap Plus, CapMinus External capacitor for internal clock power supply

Clockln in Input clock

ProcSpeedSelectO-2 in Processor speed selectors

Reset in System reset

StartFromROM in Boot from external ROM or from link

Error out Error indicator

Table 2.1 IMS T9000 system services

Pin In/Out Function

ProcClockOut out Processor clock

MemAdd2-31 out Address bus

MemDataO-63 in/out Data bus

notMemRASO-3 out RAS strobes - one per bank

notMemCASO-3 out CAS strobes - one per bank

notMemPSO-3 out Programmable strobes - one per bank

notMemWrBO-3 t out Byte-addressing write strobes

MemWait in Memory cycle extender

MemReqln in Direct memory access request

MemGranted out Direct memory access granted

MemReqOut out Processor reqUires memory bus

notMemBootCE out Bootstrap ROM chip enable

notMemRf out Dynamic memory refresh indicator

t these pins have different functions depending on the external port sizes

Table 2.2 IMS T9000 programmable memory interface

Pin In/Out Function

EventlnO-3 in Event inputs

EventOutO-3 out Event outputs

Table 2.3 IMS T9000 event

IMS T9000 transputer 59

Pin In/Out Function

LinklnOataO-3 in Link input data channels

LinklnStrobeO-3 in Link input strobes

LinkOutDataO-3 out Link output data channels

LinkOutStrobeO-3 out Link output strobes

CLinklnOataO-1 in Control link input data channels

CLinklnStrobeO-1 in Control link input strobes

CLinkOutDataO-1 out Control link output data channels

CLinkOutStrobeO-1 out Control link output strobes

Table 2.4 IMS T9000 link

60 IMS T9000 transputer

3 Processor

The IMS T9000 transputer has a 32-bit pipelined processor. The pipeline consists of 5 stages and, where
possible, multiple instructions are combined into a group and passed down the pipeline together. This al­
lows more than one instruction to be executed on each processor cycle. Code can be generated for the IMS
T9000 transputer without considering the details of the pipeline. However, optimizing compilers can pro­
duce more efficient code if these details are taken into consideration.

Background details of earlier transputers can be found in Transputer Instruction Set - A Compiler Writers'
Guide. Much of the information in this guide can be directly applied to the IMS T9000transputer. This prelim­
inary information' outlines the implications of the extensions which have been implemented in the IMS
T9000 transputer.

3.1 Registexs

The design of the IMS T9000 transputer processor exploits the availability of a fast on-chip cache and a
workspace cache by having only a small number of registers; six registers are used in the execution of a
sequential integer process. The six registers are:

• The workspace pOinter which pOints to an area of store where local variables are kept

• The instruction pOinter which pOints to the next instruction to be executed.

• The operand register which is used in the formation of instruction operands.

• The Areg, Breg and Creg registers which form an evaluation stack.

Areg, Breg and Creg are sources and destinations for most arithmetic and logical operations. Loading a
value into the staGk pushes Breg into Creg, and Areg into Breg, before loading Areg. Storing a value from
Areg, pops Breg into Areg and Creg into Breg, the value left in Creg is undefined.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For exam­
pie, the add instruction adds the top two values in the stack and places the result on the top of the stack. The
use of a stack removes the need for instructions to re-specify the location of their operands. No hardware
mechanism is provided to detect that more than three values have been loaded onto the stack. It is easy for
the compiler to ensure that this never happens.

A separate floating point evaluation stack is provided, consisting of FPAreg, FPBreg, and FPCreg. The
floating point evaluation stack behaves in a similar way to the integer evaluation stack.

Any location in memory can be accessed relative to the workspace pointer, enabling the workspace to be of
any size. The first 32 words relative to the workspace pOinter may be cached by the workspace cache.

R egisters Locals Program

Areg

Breg

Creg

Workspace

Next Instruction

Operand

Figure 3.1 Registers used in sequential integer processes

IMS T9000 transputer 61

3.2 Processes and concurrency

A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number
of each.

The processor has a microcoded scheduler which enables any number of concurrent processes to be ex­
ecuted together, sharing the processor time. This removes the need for a software kemel, although kemels
can still be written.

At any time, a process may be

Active

Inactive

Being executed.
Interrupted by a higher priority process.
On a list waiting to be executed.

Ready to input.
Ready to output.
Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time. Each
active high priority process executes in turn until it becomes inactive. The scheduler allocates a portion of
the processor's time to each active low-priority process in turn (see section 3.3). Active processes waiting
to be executed are held in two linked lists of process workspaces, one of high priority processes and one of
low priority processes. Each list is implemented using two registers, one of which pOints to the first process
in the list, the other to the last. In the linked process list shown in figure 3.2, process S is executing and P, Q
and R are active, awaiting execution. Only the low priority process queue registers are shown; the high
priority process ones behave in a similar manner.

Registers Locals I Program I
FPtr1 (Front)

P
r--- n I I

BPtr1 (Back)
J

Q n I I

Areg

Breg ---- R ~
Creg

Workspace S

Next Instruction

Operand

Figure 3.2 Linked process list

Function High Priority Low Priority

Pointer to front of active process list FptrO Fptr1

Pointer to back of active process list BptrO Bptr1

Table 3.1 Priority queue control registers

62 IMS T9000 transputer

Each process runs until it has completed its action or is descheduled whilst waiting (for a communication
from another process or transputer, or for a time delay to complete). In order for several processes to oper­
ate in parallel, a low-priority process is only permitted to execute for a maximum of two timeslice periods.
Afterthis, the machine deschedules the current process at the next timeslicing point, adds it to the end ofthe
low-priority scheduling list and instead executes the next active process. The timeslice period is approxi­
mately 1 ms.

There are only certain instructions at which a process may be descheduled. These are known as desche­
duling pOints. A process may only betimesliced at certain descheduling pOints. These are known as times­
licing pOints. As a result, an expression evaluation can be guaranteed to execute without the process being
timesliced part way through.

Whenever a process is unable to proceed, its instruction pOinter is saved in the process workspace and the
next process taken from the list. Process scheduling pOinters are updated by instructions which cause
scheduling operations, and pOinters or active queues should not be altered directly.

The processor provides a number of special instructions to support the process model, including start pro­
cess and end process. When a main process executes a parallel construct, start process instructions are
used to create the necessary additional concurrent processes. A start process instruction creates a new
process by adding a new workspace to the end of the scheduling list, enabling the new concurrent process
to be executed together with the ones already being executed. When a process is made active it is always
added to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses a
workspace location as a counter of the parallel construct components which have still to terminate. The
counter is initialized to the number of components before the processes are started. Each component ends
with an end process instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. Forthe last component, the counter is zero and the
main process continues.

3.3 Priority

The IMS T9000 transputer directly supports two levels of priority. Priority 1 (low priority) processes are ex­
ecuted whenever there are no active priority a (high priority) processes.

High priority processes are expected to execute for a short time. If one or more high priority processes are
able to proceed, then the first on the queue is selected and executes until it has to wait for a communication,
a timer input, or until it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to pro­
ceed, then one is selected. Low priority processes are periodically timesliced to provide an even distribu­
tion of processor lime between computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority process
becomes active to the time when it starts processing is 2 n -2 timeslice periods. It is then able to execute for
between one and two timeslice periods, less any time taken by high priority processes. This assumes that
no process monopolizes the transputer's time; i.e. it has a distribution of timeslicing pOints.

When the processor is executing a low-priority process and a high-priority process becomes ready to ex­
ecute, an interrupt occurs. The state of the low-priority process is saved into 'shadow' registers and the
high-priority process is executed. When no further high-priority processes are able to run, the state of the
interrupted low-priority process is loaded from the shadow registers and the low-priority process is re­
started.

Instructions are provided on the IMS T9000 transputer to allow a high-priority process to store the shadow
registers to memory and to load them from memory. Instructions are also provided to allow a process to
eXChange an alternative process queue for either priority process queue. These instructions enable a pre­
emptive scheduler to be constructed.

Note that the workspace pointer is always word aligned so that bits a and 1 of the WdescReg register are
free to store the process priority and type. The priority of a process is stored as bit a of the WdescReg
register. For a low priority process this bit is set to 1, for a high priority process to O.

IMS T9000 transputer 63

3.4 Process types

The IMS T90DO transputer schedules two types of process; one is identical to that provided by existing
transputers, the other provides additional trap-handling and debugging capabilities.

When running a process of the first type the IMS T90DO transputer implements the same global trap­
handling and debugging mechanisms as the IMS T225, IMS T425, IMS T805 and IMS T801 transputers.
Processes of this type are therefore referred to as G-processes.

When running a process of the second type the IMS T9000 transputer provides a set of localized, per­
process, trap-handling and debugging mechanisms. Processes of this type are therefore referred to as
L -processes.

111etype of a process is stored as bit 1 oftheWdescReg register. For a G-process this bit is set to 0, for an
L-process it is set to 1. Both types of process may be present on the process queue at the same time, the
IMS T9000 dynamically switches to and from emulating the IMS T805.

3.4.1 G-processes: global trap-handling and debugging

111e layout of the workspace for a G-process is shown in table 3.2.

Word offset Location name Purpose

-1 p.lptr the instruction pOinter of a descheduled process

-2 p.Llnk the address of the workspace of the next process in scheduling
queue

-2 p.Count message length in variable length communication

-3 p.Polnter saved pOinter to communication data area

-3 p.State saved alternative state

-3 p.Length length of message received in variable length communication

-4 p.TLlnk address of the workspace of the next process on the timer queue

-5 p.llme time that a process on a timer list is waiting for

Table 3.2 Word offsets from Wptr and names for data locations in a G-process workspace

Note that in some cases, a word offset is shared by more than one location name. 111is is because the
location specified by such an offset is used for a number of different purposes at different times. For exam­
ple when the p.Count slot contains information about the message length, the process is not on a schedul­
ing queue and so the location is not required to contain p.Llnk information.

111ere are two flags which indicate errors: the ErrorFlag, which indicates errors detected within the CPU;
and the FPErrorFlag, which indicates errors detected within the FPU. The testerr Instruction sets Areg to
false if the error flag is set, and true otherwise. It also clears the error flag. 111e stoperr instruction desche­
dules the current process if the ErrorFlag is set, allowing graceful system degradation when execution of a
process gives rise to an error. stoperr does not affect the status of the error flag. The fptesterr instruction sets
Areg to false if the floating point error flag is set, and to true otherwise.The fptesterr instruction also clears
the floating point errorflag.The fpchkerr instruction OR's the floating point error flag into the main error flag.
111is allows floating point errors to be given equal importance to errors on the integer processor.

If the HaltOnErrorFlag is set and the ErrorFlag is set then the processor will halt and an error message will
be output on the control link (CLlnkO).

In G-processes a number of instructions facilitate the implementation of breakpoints. These instructions
overload the operation of jO . Normally jO behaves as a no-op which might cause timeslicing. SetjObreak
enables the breakpointing facilities and causes jO to act as a breakpointing instruction. When breakpoint­
ing is enabled, jO swaps the current IptrReg and Wptr with an IptrReg and Wptr stored in memory above
MemStart. The breakpoint instruction does not cause timeslicing, and preserves the state of the registers.

For further information on G-processes in general refer to Chapters 6 and 7 of Transputer Instruction Set - A
Compiler Writer's Guide.

64 IMS T9000 transputer

3.4.2 L-processes: local error handling and debugging

This is a new process type introduced on the IMS T9000 transputer to allow error conditions to be handled
on a per process basis. The layout of the workspace for an L-process is shown in table 3.3.

Word offset Location name Purpose

-1 p.lptr the instruction pOinter of a descheduled process

-2 p.Llnk the address of the workspace of the next process in scheduling
queue

-2 p.Count message length in variable length communication

-3 p.napHandler trap-handler identity

-4 p.Pointer saved pointer to communication data area

-4 p.State saved alternative state

-4 p.Length length of message received in variable length communication

-5 p.TLlnk address of the workspace of the next process on the timer queue

-6 p.1ime time that a process on a timer list is waiting for

Table 3.3 Word offsets from Wptr and names for data locations in a L-process workspace

Each L-process has a trap-handler, a set of error flags, and a set of trap enable bits. Whenever an error is
detected the appropriate error flag is set, and depending on the state of the trap enable bits, the trap-han­
dier is invoked. Trap-handlers may be shared between processes of the same priority.

When an L -process is executing the identity of the trap-handler is held in the trap-handler register (ThReg).
When an L-process is inactive the identity of the trap-handler is held in the process workspace.

If the value of the trap-handler in the workspace of an L -process is NotProcess.p this indicates that the null
trap-handler will be used. Any process which executes with the null trap-handler ignores any floating point
errors and any invalid non-word aligned accesses. Any other error results in the processor halting and an
error message being output on the control link CLinkO.

A trap-handler consists of a trap-handler data structure (THOS) and a process to be executed when an error
occurs. The THOS contains: a block of store into which state can be saved when an error occurs; the identity
of the trap handler process; am:!. a queue of processes waiting to use the trap handler. The layout of a THOS
is shown in table 3.4.

Location name Purpose

th.Cntl Control word

th.Wptr Wptr of trap-handler process

th.lptr IptrReg of trap-handler process

th.Fptr Front of trap-hander process queue

th.Bptr Back of trap-handler process queue

th.Eptr Pointer to instruction causing error

th.eWu Upper bound for watchpoint

th.eWI Lower bound for watchpoint

th.sWptr L-process descriptor

th.slptr L-process instruction painter

th.sAreg L-process A register

th.sBreg L-process B register

th.sCreg L-process C register

Table 3.4 Contents of a trap-handler data structure

IMS T9000 transputer 65

The control word is used to control the operation of the trap-handler, and to store the flags and trap enable
bits whenever the trap-handler is not being used by an executing process. When an L"-process starts to
execute (and its trap-handler is not already in use by a process sharing it) its trap-handler is loaded from its
workspace into the ThReg, the trap control bits in its control word are loaded into the StatusReg and the
process is allowed to execute.

The trap control bits contained in the trap-handler control word are shown in table 3.5, The control word
contains a number of flags which may be set when error conditions occur. A trap enable bit is usually asso­
ciated with each flag.

Flag name Function Bit name Function

ErrorFlag T8xx compatible error flag

FPErrorFlag T8xx compatible FP error flag FPErrorTeBit

IntErrorFlag Error explicitly set or range

IntOvFlag Integer overflow or divide by zero IntOvTeBit

FPlnOpFlag IEEE invalid operation flag FPlnOpTeBit

FPDivByZeroFlag IEEE divide by zero flag FPDlvByZeroTeBit

FPOvFlag IEEE overflow flag FPOvTeBit

FPUndFlag IEEE underflow flag FPUndTeBit

FPlnexFlag IEEE inexact result flag FPlnexTeBit

UnalignTeBit trap unaligned access

Step Bit single-stepping enabled

WtchPntEnbl watchpoint enabled

ThlnUse trap-handler in use

Table 3.5 Trap control bits of trap-handler control word

All error conditions are classified into one or more error classes. The state of the trap enaple bits determine
whether the trap-handler is invoked when an error condition occurs. The error classes supported, the flags
they set, and the conditions for them to invoke the trap-handler, are detailed in table 3.6.

66 IMS T9000 transputer

Error class Cause of error Flags set Condition for trap to
be taken

/ntegerError Error explicitly set or range er- ErrorFlag, IntErrorFlag Always
ror.

/ntegerOvert/ow An integer overflow or divide by ErrorFlag, IntOvFlag If null trap-handler or if
zero. IntOvTeBit set

FPNanOr/nfinity Operations involving NaN or In- FPErrorFlag, FPlnOp- If FPErrorTeBit set
finity that would cause the Flag (if a signalling NaN
FPErrorFlag on the T8 trans- is involved)
puter to be set.

FP/nvalidOp An IEEE floating point invalid FPErrorFlag, FPlnOp- If FPErrorTeBit or
operation. Flag FPlnOpTeBit set

FPDivideByZero An IEEE floating point divide by FPErrorFlag, FPDiv- If FPErrorTeBit or
zero operation. ByZeroFlag FPDivByZeroTeBit set

FPOvert/ow An IEEE floating pOint overflow FPErrorFlag, FPOvFlag If FPErrorTeBit or
operation. FPOvTeBit set

FPUndert/ow An IEEE floating point under- FPUndFlag If FPUndTeBit set
flow operation.

FP/nexact An IEEE floating point inexact FPlnexFlag If FPlnexTeBit set
operation.

Unalign An operation involving a non- None If UnalignTeBit set
word aligned address.

II/egallnstruction An illegal instruction, . None Always

Table 3.6 Error classes

The classes of error that can be generated by each instruction are given in the instruction set definition
tables (chapter 11). L-processes can be set up to invoke the trap-handler on precisely the same types of
error as would have been detected by a T8xx transputer by setting the IntOvTeBit and the FPErrorTeBit.

In the T8xx transputer the two least significant bits of an address are ignored by instructions that reference a
word. However, L-processes on the IMS T9000 transputer will treat non-word aligned accesses as errors if
the UnAlignTeBit is set.

The ThlnUse bit acts as an interlock to prevent more than one process using the same trap-handler. This is
achieved by setting the bit in the control word when the trap-handler is entered and clearing it when the
trap-handler is exited. Before an L -process is executed the processor checks the ThlnUse bit in the control
word of its trap-handler. If the trap-handler is found to be in use then the L-process is queued onto the
trap-handler's process queue. All of the processes on the trap-handler's process queue are dequeued and
inserted onto the front of the appropriate process queue when the trap-handler is exited.

When a trap-handler is invoked the integer state of the processor is written to the THDS. The floating pOint
state is restored to the state which was present before the operation was performed. (This makes it simple
for the trap-handler to compute the correct value to be delivered to an IEEE exception handler.). The floating
point and block move state of the processor is not saved by the hardware, and it is left to the trap-handler to
save this state as necessary using the floating point store all (fpsta/I) and store 2D move (stmove2dinit)
instructions. The error flags and trap enable bits are written from the StatusReg to the control word of the
trap-handler, and the ThlnUse bit is set. The trap-handler process is then started with codes for the trap
cause being returned in Areg and Breg, and Creg containing a pOinter to the trap-handler just invoked.

Once a trap-handler has completed it loads any floating point and block move state using the fp/dall and
move2dinit instructions respectively, and executes the trap return instruction. The Areg contains a pOinter
to the trap-handler, and Breg contains a conditional argument to the trap return instruction. If the value in
Breg is zero then the errant process will be descheduled. If it is not zero then the error flags and trap enable
bits will be reloaded into the StatusReg from the trap-handler control word, the integer state of the proces­
sor will be reloaded from the THDS, and the errant process will be allowed to continue.

IMs T9000 transputer 67

The current error flags and trap enable bits may be examined by using the load error flags instruction, which
pushes the error flags and trap enable bits from the statusReg into Areg. The error flags and trap enable
bits in the Status Reg may be set to the value in the Areg using the store error flags instruction.

Any block of store may be used as a THDS. The block must be initialized by: setting th.Fptr to NotPro­
cess.p; initializing th.Wptr and th.lptr for a suitable process; and setting the ThlnUse bit of the control word
to 0 and the other bits selecting traps as desired.

When running an L-process the IMS T9000 transputer provides support for breakpointing, for Single-step­
ping of instructions, and for a watchpointed region. For this process type the IMS T9000 transputer always
interprets the jO instruction as a breakpoint which causes the trap-handler to be called, with the state of
the process being saved as described above.

Single-stepping can be enabled by setting the Step Bit in the trap-handler control word. If this bit is set,
then a trap occurs after execution of a single instruction by an L-process.

A watchpointed region is supported by the upper and lowerwatchpoint bounds specified in the trap-handler
data structure. If the watchpoint enable bit (WtchPntEnbl) in the trap-handler control word is set then a write
to an address between these bounds causes the trap-handler to be invoked.

3.5 Timers

The transputer has two 32-bit timer clocks which 'tick' periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented every microsecond, cycling
completely in approximately 4295 seconds. The other is accessible only to low priority processes and is
incremented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of ap­
proximately 76 hours.

ClockO

Clock1

TNextRegO

TNextReg1

Current value of high priority (level 0) process clock

Current value of low priority (level 1) process clock

Indicates time of earliest event on high priority (level 0) timer queue

Indicates time of earliest event on low priority (level 1) timer queue

Table 3.7 Timer registers

I

I

The current value of the processor clock can be read by executing a load timer instruction. A process can
arrange to perform a timer input, in which case it will become ready to execute after a specified time has
been reached. The timer input instruction requires a time to be specified. If this time is in the 'past' then the
instruction has no effect. If the time is in the 'future' then the process is descheduled. When the specified
time is reached the process is scheduled again.

Figure 3.3 shows two processes waiting on the timer queue, one waiting for time 21 , the other for time 31.

TimerO ~---­
~Alarm

TNextRegO C 21 ~

TPtrReg I---""""l----------.-J

Figure 3.3 Timer registers

Workspaces Program

21

Empty

31

68 IMS T9000 transputer

3.6 Block move

The block move on the transputer moves any number of bytes from any byte boundary in memory, to any
other byte boundary, using the smallest possible number of word read, and word or part-word writes.

3.7 Semaphores

The IMS T9000 transputer provides an efficient implementation of an n-valued semaphore for processes
on the same processor. signal and wait instructions are provided which operate on a data structure which
may be located at any address in memory. A semaphore is implemented by a three word data structure.
The word locations in the data structure are shown in figure 3.8. The data structure must be initialized with
s.Count set to n for an n-valued semaphore and with s.Front set to NotProcess.p.

Location name Purpose

s.Count Number of processes which may be granted semaphore

s.Front Front of waiting queue

s.Back Back of waiting queue

Table 3.8 Contents of a semaphore data structure

'i

IMS T9000 transputer 69

4 Communications, events and resources

Communication between processes may be achieved by means of channels. Channel communication is
point-to-point, synchronized, uni-directional and unbuffered. As a result, a channel needs no process
queue, no message queue and no message buffer, and so can be implemented very efficiently.

An internal channel between two processes executing on the same transputer is implemented by a single
word in memory; an external channel between processes executing on different transputers is implemented
by means of point-to-point links. The processor provides a number of operations to support message
passing along channels, the most important being input message (input) and output message (output).

The input and output instructions use the address of the channel to determine whether the channel is inter­
nal or external. Thus the same instruction sequence can be used for either, allowing a process to be written
and compiled without knowledge of where its channels are connected.

Channel communication takes place when both the inputting and outputting processes are ready. Thus, the
process which first becomes ready must wait until the second is also ready. A process performs an input or
output by loading the evaluation stack with; a pointer to a message, the address of a channel, and a count
of the number of bytes to be transferred, and then executing an input or output instruction. Data is trans­
ferred if the other process is ready. If the other process is not ready then the one executing the communica­
tions instruction will be descheduled.

4.1 Efficient variable-length communications

Communication,using the input and output instructions requfres both communication processes to have
knowledge of the length of the message that is to be transferred. To allow the secure and efficient communi­
cation of variable-length data, the vin (variable input) and vout (variable output) instructions may be used
instead of input and output. Variable length communication requires only the outputting process to have
knowledge of the length of the message prior to tr~nsfer.

When both a vin and a vout instruction have been executed by processes referring to the same channel,
providing the length specified by vout does not exceed the length specified by vin, data is transferred from
the outputting process to the inputting process just the same as if input and output had been used.

However, in the case where the length specified by vout exceeds that specified by vin, a -1 is returned in the
count location of the workspace of the Inputting process, to indicate that an error has occurred in communi­
cation.

The Idcnt (load count) instruction is provided to enable the inputting process to determine either how much
data was transferred during a variable length communication, or whether an error in communication
occurred.

4.2 Processor-to-processor communications

The IMS T9000 incorporates a hardware communications processor, called the Virtual Channel Processor
(VCP), which is able to multiplex any number of virtual channels over each physical link. Each message
is split into a sequence of packets, and packets from different messages may be interleaved over each
physical link. Interleaving packets from different messages allows any number of processes to communi­
cate simultaneously via each physical link. IMS T9000 transputers may be connected directly or via a net­
work of IMS C104 dynamic routing devices. Communication channels can be established between any
two processes regardless of where they are physically located, or whether the channels are routed through
a network. Thus, programs can be independent of network topology.

In order that packets which are parts of different messages can be distinguished by the VCP ofthe transput­
er which receives them, each received packet contains one or two bytes which identify a virtual input chan­
nel of the receiving transputer. When a packet is transmitted it may also contain information to route the
packet through a packet switching network. The combination of any routing information and the identifica­
tion of the virtual input channel of the receiving transputer is called the packet header. Every packet of a

70 IMS T9000 transputer

message ends with an end-of-packet (EOP) token, except the last packet which ends with an end-of­
message (EOM) token.

The maximum length of data in each packet is 32 bytes. All but the last packet of a message contain the
maximum amount of data; the last contains the maximum amount of data or less. Each packet has the struc­
ture illustrated in figure 4.1. The header bytes (containing routing and channel information) are transmitted
first, followed by the data bytes of the packet (if any), followed by the encoded end of packet marker.

I header I data bytes I end of packet I

Figure 4.1 Structure of a packet

The VCP distinguishes three types of packet, depending on whether or not there are any bytes of data in the
packet, and whether it is terminated with an EOP or an EOM. If the packet is terminated with an EOM token it
is the last, possibly the only, packet of a message. If it contains data and is terminated with an EOP token it
is part of a message. If it contains no data and is terminated with an EOP token it is taken as the acknowl­
edgement of a previously transmitted packet.

The VCP enforces a high-level protocol on each virtual channel. Each packet of data sent along a virtual
channel must be acknowledged before the next is sent to ensure that no data is lost. The last packet must
be acknowledged before the outputting process is rescheduled to ensure synchronized communication.
Data packets on a virtual channel are acknowledged by the VCP by sending acknowledge packets on
another virtual channel back to the VCP which sent them. This acknowledgement is process-to-process
(processor-to-processor) and is transparent to intermediate network components.

Virtual channels always occur in pairs between pairs of communicating processors, with one virtual chan­
nel in each direction. If a message is being communicated in one direction the virtual channel in the oppo­
site direction is used to return acknowledge packets to the sender. The associated pair of virtual channels
is referred to as a virtual link. A virtual link can transfer messages in both directions at the same time with
data packets and acknowledge packets being interleaved on both of the virtual channels. Because virtual
channels are always pairedjn this way it is not necessary to include source information in the packets.
Thus packet headers need only represent their destinations.

Each end of a virtual link is represented by a data structure called a virtual link control block (VLCB). A
number of instructions are provided on the IMS T9000 for manipulating these data structures. These instruc­
tions may be used to establish the links, dynamically alter.the connections, activate, deactivate and reset
the channels, place channels into resource mode and debug parallel programs.

The VCP of a transputer will send the first packet of a message on a virtual channel to another transputer
after the CPU performs an output (output, outbyte, outwordm variable output) instruction. When the VCP of
the second transputer receives the packet, it identifies the virtual channel on which the packet was received
from the packet header. If a process on the second transputer has performed an input instruction on the
channel, the data contained in the packet is stored in the data space of the inputting process. If there is no
process ready to receive the first packet then it is placedjn an in-store packet buffer associated with the
virtual link, which is large enough to hold the 32-byte maximum data length.when the inputting process
becomes ready the first packet is copied from the buffer into the data space of the process and an acknowl­
edge packet is sent. This buffering is transparent to the processes because it is never in use when the pro­
cesses are active. It enables short messages (not longer than 32 bytes) to be sent with only one packet.

In order that the data contained in a buffer is not overwritten, the VCP of a transputer which has sent one
packet of a message on a virtual channel to another transputer does not send another packet on that chan­
nel until it receives an acknowledgment that a process on the second transputer has become ready to re­
ceive the message. When this happens the first packet is copied from the buffer to the data space of the
process.

IMS T9000 transputer 71

4.3 Vjrtuallink control blocks

Associated with each virtual link are two virtual link control blocks (VLCB's), one in the memory of each
transputer connected by the link. These blocks store information to control the operation of the virtual link.
Each VLCB is 8 words long and aligned on an 8-word boundary. Table 4.1 shows the information stored in
each VLCB. In addition to the 8 word VLCB is a pair of words for resource channels.

VLCB Location Function Initialise to:

DataQueueLink Link to next VLCB with a data packet to send zero

AckQueueLink Link to next VLCB with an acknowledge packet to send zero

OutputWdesc Workspace descriptor of outputting process NotProcess.p

InputWdesc Workspace descriptor of inputting process NotProcess.p

Output Limit Limiting address from which data may be sent NotPointer.p

InputLimit Limiting address to which data may be written BufferEmptyp

HeaderCtrl Header and control word NotHeader.p

BufferPointer Pointer to the input packet buffer NotPointer.p

Table 4.1 Content of the VLCB

The physical links are shared by a number of virtual links by threading the control blocks, of the virtual links
waiting to use the links, on linked lists. Since each channel of the virtual link may carry both packets of data
and acknowledge packets there may be a packet of data and/or an empty acknowledge packet to be sent
on a virtual link. Thus the control block contains two queue painters for threading onto the lists; the Data­
QueueLink and AckQueueLink locations. These locations must be initialized to zero.

OutputWdesc and InputWdesc store the workspace descriptors of the processes (if any) sending and/or
receiving messages on the virtual link. These wbrkspace descriptors must be initialized to NotProcess.p.

HeaderCtrl contains a number of bits of control information, and either the header to be included with each
packet sent on that virtual link, or the length of the header and an offset to the location in memory where it
may be found. Table 4.2 shows the bit fields stored in the most significant byte of the HeaderCtrl word.

Bit field Function

Header type (2 bits) ° bytes 0,1 are an offset, byte 2 is a length
1 byte ° is the header
2 bytes 0,1 are the header
3 bytes 0,1,2 are the header

Link number (2 bits) The physical link used by this virtual link

Input normal The virtual input channel is operating normally

Output normal The virtual output channel is operating normally

Table 4.2 Bit fields in the most significant byte of HeaderCtrl

Headers up to 3 bytes long are held In the VLCB; longer headers are held in a speCial region of memory.
The encoding of short headers within the HeaderCtrl word saves a memory access on every packet sent.

4.3.1 Errors

The links can detect disconnection and parity errors. The VCP can detect the following non-attributable
errors (errors which cannot be attributed to a particular process): Invalid header; Short non-terminal packet;
and Oversize packet. All of these errors cause a serious error to be signalled.

The VCP can also detect a length overrun on an input. This is dealt with by recording an invalid message
length (-1) in the workspace of the inputting process. The process must recognise and handle the error after
it has been rescheduled, which it can do with·the Idcnt instruction.

72 IMS T9000 transputer

4.4 VCP and CPU configuration registers

The VCP and CPU (in common with a number of other sub-systems of the IMS T9000) are controlled via
registers in a configuration space. The registers are accessed via the Ideonf and steonf instructions, or via
CPeek and CPoke command messages received along control link CLinkO. This section describes the
functionality of the VCP and CPU to be controlled by bit fields in the associated configuration registers.
It also defines the relationship between the addressing of channels and the addressing of store. The com­
plete bit format of each register and the addresses of the registers in the configuration space are not in­
cluded in this preliminary information.

A channel address is the value used to access a channel in a communication instruction. The IMS T9000
channel address space is shown in figure 4.2. The IMS T9000 memory map is shown in figure 4.3.

Event channels are always accessed via channel addresses. The physical links are normally accessed via
virtual channels. However, each IMS T9000 physical link may be set to operate in byte mode for use in
mixed transputer systems (see chapter 14). They are then accessed via the hard channel addresses.

Address Channel address

Internal channels

MemStart

Illegal
MinlnvalidChan

Virtual channels

Minlnt + 16 jj. 80000040

Events

Minlnt +8 # 80000020

Hard channel inputs
Minlnt + 4 80000010

Hard channel outputs
Minlnt 80000000

Figure 4.2 IMS T9000 channel address space

4.4.1 MemStart register

The communications instructions operate by treating all channel addresses at or above the MemStart reg­
ister as being internal channel communications - that is between processes executing on the same proces­
sor. All channel communications below this address are transferred to the VCp, after checking for illegal
addresses.

The Idmemstartval instruction can be used to obtain the value of MemStart.

Packet buffers may be allocated below MemStart in the memory map.

IMS T9000 transputer 73

4.4.2 Minimum Invalid virtual channel register

\ There is a range of channel addresses below MemStart which do not correspond to valid virtual channels,
and which will normally contain virtual link control blocks and headers. The first channel address which
corresponds to an invalid virtual channel is held in MinlnvalidChan.

MemStart

HeaderBase

ExternalRCBase

Minln t

Process workspace

Header area

Resource channel extra
words

Virtual link control blocks

Hard and event channel
control words

Access via
special
instructions

(Base of memory)

Figure 4.3 IMS T9000 memory map

4.4.3 External resource channel base register

A resource channel is a channel which may be in normal mode or resource channel mode, plus a two word
data structure (see section 4.6 on resources). For local users the extra two words are contiguous with the
word used as the channel. For remote users an extra two words are associated with each input virtual chan­
nel and Event input. These extra words are allocated together in a block, and the base of the block is de­
fined by the ExternalRCBase register.

4.4.4 Header area base register

If the header aSSOCiated with a virtual channel is longer than three bytes, it is not held in the VLCB asso­
ciated with that channel, but resides in a separate region of store. The base of this region is defined by the
HeaderBase register.

4.4.5 Header offset register

The VCP must convert the channel address and header number to the memory address of the VLCB

The HeaderOffsetO-3 registers are each programmed with an offset which is subtracted from the value
contained in the header of a packet which has been input on the associated physical link. The address of
the virtual link control block to which a packet is directed is calculated by the VCP hardware using the fol­
lowing formula:

74 IMS T9000 transputer

Memory address = vlink.base + ((Header - HeaderOffset) < < vlink.shift)

where for the IMS T9000: vlink.base = Mlnlnt + 64, and vlink.shift = 5.

Figure 4.4 shows the mapping of channel addresses and header numbers to the memory address of the
VLCB. The example given shows 3 virtual links (6 virtual channels) using 2 words for long headers.

Channel space Header value Memory space
%BO 1-_ln.;...te_r_na_l_c_h_an_n_e_ls-""''----!-_____ 1-----=4!::!4'--p_ro_c_e_ss_w_o_rk_s'--pa_c_e---j %BO
%AC ~ 43 %AC
%A8 42 Header area %A8
%A4 41 41 Resource channel %A4
%AO 40 words %AO
~ ~ / ~ ~
%98 38 38 %98
%94 37 / 37 VLCB %94
%90 36 / 36 for channels %90
%8C 35 35 20, 21 %8C
%88 34 / 34 %88
%84 33 33 %84
%80 Illegal channels 32 / %80

%7C 31 / 31 %7C
%78 30 / 30 %78
%74 29 / 29 VLCB %74
%70 28 2 / 28 %70
7< / for channels
%6C 27 / 27 18, 19 %6C
%68 26 / / 26 %68
%64 25 25 %64
%60 24 / %60
%5C 23 / /' 23 %5C
%58 / /' 22 %58
%54 /' 21 %54
%50 /' 20 VLCB %50
%4C Virtual /' 19 for channels %4C
%48 channels 0 18 16, 17 %48
%44 17 %44
%40 I---_____ ~~_~ _ _ _ _~~k------~ %40
%3C Out 15 15 %3C
%38 In 14 14 %38
%34 Out 13 13 %34
%30 Event In 12 12 %30
%2C channels Out 11 11 Hard and %2C
%28 In 10 10 event channel %28
%24 Out 9 9 control words %24
%20 8 %20
%1C 7 7 %1C
%18 Hard input 6 6 %18
%14 channels 5 5 %14
%10 4 %10
%C 3 3 %C
%8 Hard output 2 2 %8
%4 channels 1 1 %4
%0 %0

Channel address Channel number Occam address Machine address

Note: %n represents a 32 bit hex value with the top bit implicitly set.

Figure 4.4 Mapping of channel addresses and header numbers to the memory address of the VLCB

IMS T9000 transputer 75

4.4.6 Packet header limit registers

The base and limit of packet headers which are acceptable on each physical link are stored in the Header­
LowerO-3 and HeaderUpperO-3 registers. Out of range headers cause the associated packets to be
discarded and, unless the MaskError flag (see section 4.4.9) is set, will generate errors. These registers
can be used for enhanced system security.

4.4.7 VCP command register

The VCPCommand register enables commands to be issued to the VCP. Each bit of the register corre­
sponds to a command, see table 4.3 below. The command is executed when the bit is set. Each write to the
register can set only one bit.

Bit Bit field Function

0 Start Start the VCP

1 Stop Stop the VCP 'cleanly' so that channel states are preserved. The VCP
accepts messages currently in transit but no new messages can be
sent.

2 Reset Reset the VCP - stops the VCP and resets the registers to their unde-
fined level 2 state.

Table 4.3 Bit fields in the VCPCommand register

4.4.8 VCP status register

The VCPStatus register contains information following the occurrence of an error on an input packet (see
section 4.3.1 for the types of errors that can occur). Once an error is flagged the packet body is discarded
and the following information is returned to the VCPStatus register; the header ofthe packet, the error code,
and the link number on which the packet was input. Any subsequent errors are not recorded.

Writes to this register clear the contents regardless of the value written.

4.4.9 VCP link mode register

The VCPLinkO-3Mode register contains information about the links LinkO-3.

Bit Bit field Function

0 ByteMode Sets the links LinkO-3 to operate in byte mode (see section 14.1).

1 MaskError Masks the error flag for LinkO-3.

2 HeaderLength Programs the expected length of the incoming packet header (1 or 2
bytes) for each physical link LinkO-3.

Table 4.4 Bit fields in the VCPLinkO-3Mode registers

4.4.10 Event mode register

The EventMode register contains 4 bits which specify for each event channel EventO-3 whether it is an
input or an output channel (see section 4.5).

76 IMS T9000 transputer

4.5 Events

The EventlnO-3 and EventOutO-3 pins provide an asynchronous handshake interface between extemal
events and intemal processes. Event channels provide process synchronization but cannot transfer any
data. Each pair of Eventln and EventOut pins can act either an input or an output event channel, but not
both. This is specified in the EventMode register and the 4 pairs of event channels EventO-3 may be set
independently of each other.

Input event channel

When an extemal event takes an Eventln pin high the associated extemal event channel is made
ready to communicate with a process. When both the event channel and the process are ready
the processor takes the associated EventOut pin high and the process, if waiting, is scheduled.
EventOut is removed after Eventln goes low.

Output event channel

The IMS T9000 asserts the EventOut pin to instruct extemal hardware to perform an action. When
both the event channel and the extemal hardware are ready the extemal hardware asserts the as­
sociated Eventln pin and responds to the instruction. Eventln should be removed after EventOut
goes low.

/

Only one process may use each event channel at any given time. If no process requires an event to occur
EventOut will never be taken high. Although an Eventln triggers the channel on a transition from low to
high, it must not be removed before EventOut is high. All Eventln pins should be low during Reset; if not
they will be ignored unti I Reset has gone low and retumed high. EventOut is taken low when Reset occurs
or when a resetch instruction is executed on that channel.

Input event channel

Eventln --1 \~--
Extemal hardware asserts Eventln

EventOut -~t
T9000 acknowledges event request

Output event channel

Eventln -f ~
Extemal hardware acknowledges event request

EventOut \'------
T9000 asserts EventOut

Figure 4.5 Event

IMS T9000 transputer 77

4.6 Resources
The IMS T9000 supports the efficient implementation of shared resources. This is done by enabling a num­
ber of (user) processes to communicate with a single server process via resource channels. Access to the
server process is controlled by a resource data structure which resides on the same transputer as the server
process. The resource data structure consists of three words in memory. The word locations in the data
structure are shown in table 4.5, and must be initialized with all three words set to NotProcess.p. The queue
contains resource channels (local and/or remote) on which processes waiting to access the server have
performed an output. The flag word contains the identity of a server if one is waiting to service users'
requests.

Location name Purpose

RCqf Front of queue

RCqb Back of queue

RCc Flag

Table 4.5 Contents of a resource data structure

The user processes are connected to the server process via resource channels. A resource channel be­
tween a process and a server situated on the same processor is implemented by a three word data structure
in memory. A resource channel between a process and a server on a remote machine is implemented by a
virtual channel. The user processes communicate to the server process by executing normal output (out­
put, outbyte, outword and variable output) instructions. The server process is connected to a user process
by means of the grant instruction; once connected the server process can communicate with the user pro­
cess by means of input instructions.

The enable grant and disable grant instructions enable resources to be used in alternative constructs.

78 IMS T9000 transputer

5 Memory management

The memory management mechanism in the IMS T9000 transputer is designed to support the development
and debugging of programs, to allow the safe execution of programs written in insecure languages, and
to support address translation. It also supports the dynamic extension of a calling stack. The mechanism
does not support page-based virtual memory.

The memory management mechanism is only invoked for a special type of protected process - known as
a P-process. A P-process is run under the control of an ordinary parent transputer process, known as the
supervisor (or sometimes the stUb). A P-process is created by the supervisor process executing a go pro­
tected instruction. This instruction loads the state of the P-process from memory, loads the memory man­
agement registers, and starts to execute the P-process.

The P-process may execute only a subset of the IMS T9000 instruction set. The addresses of all memory
accesses generated by the P-process are treated as logical addresses; they are checked and translated
into physical addresses by hardware. If the P-process attempts to access an illegal address, execute a
privileged instruction, or causes an error, control is returned to the supervisor process. Control will also be
returned to the supervisor process if the P-process exceeds its timesl ice or executes a system call instruc­
tion. When a trap occurs the P-process's state is saved to memory and the supervisor process is restarted.

5.1 Protection, stack extension, and logical to physical address translation

The memory management mechanism in the IMS T9000 provides for the checking and translation of four
independently sized regions of addresses. The P-process may read from any region, but may only write
to or execute code out of regions which have the appropriate permissions. All read, write and instruction
fetch accesses attempted by the executing P-process are checked. If an illegal access is attempted then
the P-process traps back to the supervisor process. It is not normally possible to continue execution of a
P-process after an illegal access has been attempted.

In addition to checking the validity of memory accesses, the hardware checks that the location pOinted
to by the workspace pOinter (WPtr) is writable. If a call, ajw or gajw instruction causes the workspace point­
er to address a non-writeable address then the P-process traps. However, in this case, the supervisor pro­
cess can restart execution of the P-process after extending the region. In this way it is possible to execute
stack extension on demand.

A region may be of size 2n bytes, with a minimum size of 256 bytes (64 words) and a maximum size of 230

bytes. A region of size 2n bytes may be translated onto any 2n byte boundary in the physical address space.
The physical addresses associated with the four regions must not overlap. The legal logical addresses
within a region either occupy the top 2n addresses within that region or occupy the bottom 2n addresses
within that region. A consequence of this is that, except for when the maximal sized region (230 bytes) is
in use, it is possible to ensure that the addresses 0 and #80000000, which are commonly used as null point­
ers, do not correspond to legal addresses and so access to such an address is immediately detected as
a violation.

5.2 Regions

The logical address space of a P-process is divided into four regions. Each region is sized, assigned ac­
cess permissions, and has its address accesses translated independently of the others. The two most sig­
nificant bits of a logical address are used to determine to which region reference is being made. The terms
region 0, region 1, region 2, and region 3 are used to refer to the regions having addresses with the most
significant bits set to 00, 01, 10 and 11 respectively.

The legal logical addresses within a region either occupy the top 2n addresses within that region or occupy
the bottom 2n addresses within that region. The following table shows the legal addresses within each re­
gion. The memory mapping for the logical addresses is illustrated in figure 5.1 and table 5.1.

IMS T9000 transputer

I 231 _1

2 31 - 2k

Region 1 : 01 xx......... ~

Region 0 : OOXX......... ~

-1

Region 3: 11xx ~

-230_2n

Region 2 : 1OXX ~

non-accessible

non-accessible

non-accessible

non-accessible

non-accessible

non-accessible

non-accessible

--' ______________ - 231

regions positioned at top regions positioned at bottom

Figure 5.1 Position of region addresses in logical memory space

79

80 IMS T9000 transputer

Positioned from top of region Positioned from bottom of region

Region Size Most posHive Most negative Most positive Most negative
address address address address

0 21 230 -1 ~-21 21 - 1 0

1 2k 231 - 1 231 - 2k 230 +2L 1 230

2 2n -230 - 1 _230 - 2n -231 + 2n - 1 231

3 2m -1 -2m -230 + 2m -1 -230

Table 5.1 Region addresses

5.3 Region descriptors

A region descriptor defines the size of a region, the position of the logical region, the address translation,
and the write and instruction fetch permissions (write-permit and execute-permit respectively) associated
with that region.

A region descriptor is a single word. Bit 0 indicates whether writes may be made to the region (1 =
write-permit). Bit 1 indicates whether instructions may be fetched from the region (1 = execute-permit). Bit
2 indicates the position of the logical region (1 = top, 0 = bottom). The remaining bits specify the size
of the region and the address of the phYSical region to which the logical region should be relocated. For
a region of size 2n bytes, bit n-1 is set to 1. All bits below bit n-1 are set to 0 (except for the write-permit,
execute-permit and position bits; bits 0, 1 and 2). The remaining high-order bits, bits 31 through n, are used
to replace the corresponding bits in the logical address which is being translated.

Note that the minimum region size of 256 bytes implies that bits 2 through 6 of the region descriptor must
be set to O.

A region can be set to have zero size by programming its region descriptor with the null descriptor,
#8000000. A number of other invalid region descriptors exist, and these should not be used.

An example of a logical to physical address translation which is positioned at the top of region 2 is shown
in the following diagram. This region has execute permission but is read-only.

logical address 110 11 1 1 ... 1 111 Isb logical address

.... II .-

2 bits 30 - n bits n bits

pxw

RegionReg2 relocation 11 ioI 0 ... 0 101111101
~ Joe ,.

32 - n bits n bits

physical address relocation Isb logical address

....
32 - n bits n bits

Figure 5.2 Logical to physical address translation

Note that for the logical address to be valid, bits n through to 29 must be 1 's if the position bit (bit 2) in the
region descriptor is set to 1, and must be O's if the position bit is O.

IMS T9000 transputer 81

5.4 Machine registers

The IMS T9000 transputer has the following registers related to the operation of memory management for
P-processes:

Register Description

RegionRegO register descriptor for region 0

RegionReg1 register descriptor for region 1

RegionReg2 register descriptor for region 2

RegionReg3 register descriptor for region 3

PstateReg pointer to the P-process state vector

WdescStubReg process descriptor of the supervisor

Table 5.2 Memory management registers

The RegionRegX register contains the region descriptor for region X. As described above, the region des­
criptor defines the size, position, physical address and permissions of a region as a single 32-bit word.

The PstateReg register contains a pOinter to a block of memory where the state of the executing P-process
is to be saved when it traps to its supervisor process.

The WdescStubReg register contains the workspace descriptor of the supervisor process which is control­
ling the execution of the current P-process.

5.5 Debugging

The support provided for debugging a running P-process is an extension of that provided for L-processes,
which is described in section 3.4.2. However, whenever the trap-handler would have been invoked for an
L-process, for a P-process control is returned to its supervisor process. The supervisor process is responsi­
ble for taking any necessary action. Thus, the following debug operations will cause control to be returned
to the supervisor process.

• a jO instruction acting as a breakpoint

• execution of a single instruction when single-stepping enabled

• a write access to the watchpoint region

82 IMS T9000 transputer

6 Main Cache

The IMS T9000 has a 16 Kbyte associative unified write-back (also known as copy-back) cache. That is,
memory writes update the cache (if applicable) without necessarily updating memory immediately. Updat­
ing of memory occurs when the line that has been changed is discarded from the cache, thus main memory
changes on every miss not on every write. A random replacement strategy is used. At power-on the cache
behaves as 16 Kbytes of internal memory, so that the IMS T9000 may be used with no external memory.
During configuration the cache may be programmed to behave as 16 Kbytes of cache, 16 Kbytes of internal
RAM, or 8 Kbytes of cache and 8 Kbytes of internal RAM. The cache has a peak bandwidth of 200
Mwords/s.

The cache is arranged as four independent cache banks, each caching a quarter of the address space. The
directory search covers all lines in the cache bank selected. Each bank has 256 lines, with 4 words per line
and each line having its own fully-associative tag, see figure 6.1.The banks are selected on address bits
MemAdd4-5. MemAdd2-3 determine which word in the line is selected.

Address 32 bit data

I
MernA dd6-31 1 J MemAdd2-3 ~

/
+

~

~

MemAdd4-5

t I

I
I

iTag memory
256 lines

----r-- :=: ----r--
----r-- =: ----f-

----=- . ..,
-----~ ;.: ------

------
256 compare

signals

\

I

I

4 x 32 bit data

Data memory
256 lines

Figure 6.1 Cache operation

I

An access can be made to each cache bank on every cycle allowing up to four separate accesses to be
made to the cache in a single cycle. An arbiter decides which functional unit of the IMS T9000 gains access
to each of the cache banks on each cycle. Figure 6.2 shows the major operational units of the cache.

If a physical address requested is missing from the cache, the address is passed to the cache refill engine.
The refill engine arbitrates between this and earlier accesses which have misses outstanding. If the missing
address is cacheable, the refill engine generates all the addresses needed to refill the associated cache
line. The programmable memory interface (PMI) fetches the line requested by the refill engine from external
memory. If the address is marked un-cacheable only the missed address is fetched.

IMS T9000 transputer

,--

f----
s

L--

,--

f----
s

L--

,--

r-s
L--

,--

r-s
L--

,--

r-s
L--

,--

f----
s

L--

,--

f----
S

L--

,--

f----
s

L--

Address
crossbar

Data
crossbar

°1

1

21

I

3

CAM DATA
256 lines 4 words per
per bank line

26 bit tag 32 bit 32 bit 32 bit 32 bit
word word word word

-

'--

-

Hit

MemAdd6-31

=- ----<
0--- "'- / 3,2 ---=

MemAdd2-3
I

Address PMI data
control control

Port
States

Crossbar controller

PMI address Data
control control

,---
f----

s
L--

Refill engine

~
External
Address

+ External
Data

,--

~
eg-
L--

Figure 6.2 Cache block diagram

32

32

32

32

32

32

32

32

"-;

83

Ports

-

NonLocalA
-

s
-
-

NonLocalB
-

s
-

-

WriteResult
-

s
-
-

IFetch
-

s
-
~

Comms1
f---

s
~

,-

Comms2
rs
~

,-

Comms3
f---

S
~

r---:.
Scheduler

f---
s
~

84 IMS T9000 transputer

6.1 Cache Instructions

lhe IMS T9000 provides four instructions to support interfacing the cache to external hardware systems.
lhe flush dirty cache block (fdcb) and flush dirty cache line (fdcl) instructions write back specified cache
lines, and the lines are labeled clean. lhe invalidate cache block (Ieb) and invalidate cache line (leI) in­
structions Invalidate specified cache lines.

6.2 Cache configuration registers

lhe cache (in common with a number of other SUb-systems of the IMS T9000) is controlled via registers
in a configuration space. lhe registers are accessed via the {deonf and steonf instructions, or via CPeek.
and CPoke command messages received along control link CLinkO. This section describes the functionaj­
ity of the cache to be controlled by the associated configuration registers. lhe complete bit format of each
register and the addresses of the registers In the configuration space are not included in this preliminary
information.

The RAMsize register defines the amount df RAM which is allocated to be intemal RAM. It can be pro­
grammed to be D, 8 or 16 Kbytes. Internal RAM is implemented by locking lines into the cache. lhe
RAMLIneNumber and RAMAddress registers allow the addresses of the locked cache lines to be confi­
gured by the user. lhis enables the RAM to be located anywhere in the processors physical address range.

The RandomSeed register allows the random number generators used for cache line replacement to be
seeded. A default seed is loaded on reset.

IMS T9000 transputer 85

7 Programmable memory interface

The IMS T9000 programmable memory interface (PMI) is designed to support memory subsystems with
minimal external support logic. The interface has internal logic to provide decode and timing control
functions and can be programmed through the configuration registers as described in section 7.3 below.

The external address space is partitioned into four banks (not to be confused with the four cache banks
detailed in chapter 6). This allows the implementation of mixed memory systems, with support for DRAM,
SRAM, EPROM and VRAM. The timing of each of the four memory banks can be programmed separately,
with a different device type being placed in each bank with no external hardware support. The PMI has a
64 bit data bus, and each bank of memory can be configured to be 8,16,32 or 64 bits wide. The PMI directly
supports: 8,16, 32 and 64bitSRAM; 32 and 64 bit DRAM. All banks programmed to be 64 bit wide memory
are defined as cacheable and always transfer a full 64 bit operand to and from extemal memory to the
internal cache, providing fast cache refill. The full performance of the IMS T9000 transputer can be exploited
using relatively low-cost DRAM, and up to 8 Mbytes of DRAM can be connected with no external
components.

The transputer uses word addressing. 64 bit wide memory is defined as an array of 8 byte words with
MemAdd3-31 selecting an array. No further addressing is performed for 64 bit memory. 32 bit wide
memory is defined as an array of 4 byte words with MemAdd2-31 selecting an array. Each byte of this
array is addressable with the byte enable pins notMemWrBO-3 selecting a byte within the array. 16 bit
wide memory is defined as an array of 2 byte words with MemAdd1-31 selecting an array and
notMemWrBO-1 selecting a byte within the array. 8 bit wide memory is defined as an array of 1 byte words
with MemAddO-31 selecting an array.

In the following sections a cycle is one processor clock cycle and a phase is one quarter of the duration
of one processor clock cycle.

7.1 Pin functions

7.1.1 ProcClockOut

Output timing signal at rated clock frequency of device.

7.1.2 MemDataO-63

The data bus transfers 64, 32, 16 or 8 bit data items depending on the bus width configuration. For 64-bit
data items the most significant bit is carried on MemData63. For 32 bit data items the most significant bit
is MemData31. MemDataO-15 transfers 16 bit data items, and MemDataO-7 transfers 8 bit data items.

7.1.3 MemAdd2-31

The address bus may be operated in both multiplexed and non-multiplexed modes. When a bank is
configured to contain DRAM, or other multiplexed memory, then the internally generated 32 bit address is
multiplexed as row and column addresses through the external address bus. The multiplexing is controlled
by the FormatControl registers.

7.1.4 notMemWrBO-3

The transputer uses word addressing therefore four byte-write strobes are provided to select one of four
bytes addressed by MemAdd2-31. For a bank configured to 32, 16 or 8 bits, the lower order address bits
are multiplexed onto the unused byte-write pins to give an address bus 30,31 or 32 bits wide respectively.
notMemWrBO addresses the least significant byte. All four strobes have the same timing and are only
active during write cycles. The timing is controlled by the WriteStrobe registers.

86 IMS T9000 transputer

The function of the byte enables notMemWrBO-3 for different bank size configurations is given in table
7.1 below.

External port size

64 bit 32 bit 16 bit S bit

notMemWrB3 set active (0) enables becomes becomes
MemData24-31 MemAdd1 MemAdd1

notMemWrB2 set active (0) enables undefined becomes
MemData16-23 MemAddO

notMemWrB1 set active (0) enables enables undefined
MemDataS-15 MemDataS-15

notMemWrBO set active (0) enables enables enables
MemDataO-7 MemDataO-7 MemDataO-7

Table 7.1 notMemWrBO-3 pins

7.1.5 notMemRASO-3

The four programmable RAS strobes are controlled by the TimingControl and RASStrobe registers. One
strobe is allocated to each of the four banks which are decoded on chip. If a bank is programmed to contain
DRAM, or other multiplexed memory, then the associated notMemRAS pin acts as its RAS strobe by
default. For banks which do not contain DRAM the notMemRAS pin is available as a general purpose
programmable strobe.

7.1.6 notMemCASO-3

The four programmable CAS strobes are controlled by the CAS Strobe registers. One strobe is allocated
to each of the four banks which are decoded on chip. If a bank is programmed to contain DRAM, or other
multiplexed memory, then the associated notMemCAS pin acts as its CAS strobe by default. For banks
which do not contain DRAM the notMemCAS pin is available as a general purpose programmable strobe.

7.1.7 notMemPSO-3

These four additional programmable strobes are controlled by the ProgStrobe registers. One strobe is
allocated to each of the four banks which are decoded on chip.

7.1.S MemWait

Wait states can be selected by taking MemWait high. MemWait is sampled during RASTime and CAS­
Time. MemWait retains the state of any strobe during the cycle in which MemWaitwas asserted. MemWait
suspends the cycle counter and the strobe generation logic until deasserted. When MemWait is de­
asserted cycles continue as programmed by the configuration registers.

7.1.9 MemReqln, MemGranted

Direct memory access (DMA) can be requested at anytime by driving the asynchronous MemReqln signal
high. The address and data buses are tristated after the current memory cycle terminates. If the current
memory cycle is part of a cache line write back or fill then the four words of the line are transferred before
the buses are tristated.

Strobes are left inactive during the DMA transfer. If a DMA is active for longer than one programmed refresh
interval then external logic is responsible for providing refresh.

MemGranted follows the timing of the bus being tristated and can be used to signal to the device request­
ing the DMA that it has control of the bus.

IMS T9000 transputer 87

Table 7.2 below lists the processor pin state while MemGranted is asserted.

Pin Name Mem Granted State

MemAdd3-31 floating

MemDataO-63 floating

notMemWrBO-3 inactive

notMemRASO-3 inactive

notMemCASO-3 inactive

notMemPSO-3 inactive

notMemRf inactive

MemReqOut active

notMemBootCE inactive

Table 7.2 MemGranted pin states

7.1.10 MemReqOut

The MemReqOut pin indicates to external logic that IMS T9000 external bus cycles are pending and execu­
tion will sti311 if a DMA transfer is initiated, or has stalled if a DMA transfer is in progress.

Once a DMA transfer has been granted the IMS T9000 processor can continue to execute out of the internal
cache until an access to external rnemory is required. The MemReqOut pin will be taken high and external
logic can use this information to interrupt the DMA transfer in progress. The external logic should deassert
MemReqln when the memory buses are available for the processor to use.

7.1.11 notMemBootCE

The IMS T9000 has a dedicated area of external mernory address space of fixed size and timing. This
functions as a fifth bank with fixed decode and tirning parameters. This is to provide slow access to
configuration/ bootstrap code stored in ROM. notMemBootCE is used to access external memory placed
in this dedicated address range. This address space can also be used to access code/data which is not
bootstrap code if reqUired.

7.1.12 notMemRf

The IMS T9000 can be operated with memory refresh enabled or disabled. The selection is made during
memory configuration, when the refresh signal is also determined.

notMemRf indicates that the current cycle is a refresh cycle. It is asserted low at the beginning of the refresh
cycle and deasserted high at the end of the refresh cycle.

88 IMS T9000 transputer

7.2 External Bus Cycles

The IMS T9000 programmable memory interface is designed to provide efficient support for dynamic
memory without compromising support for other devices, such as static memory and I/O devices. This flexi­
bility is provided by allowing the required waveforms to be programmed via the configuration registers
described in section 7.3.

Interaction of the PMI with the on-chip cache is highly optimized. In order to support specialized memory
types, addresses within 8, 16 or 32 bit memory banks can be specified to be cacheable or non-cacheable
Note, 64 bit memory is always defined as cacheable. In addition, each bank can be specified to contain
8/16/32/64 bit wide SRAM, or 32/64 bit wide DRAM memory. The PMI synthesizes the required number of
cycles to assemble full words before transferring them to or from the internal cache.

A generic memory interface cycle consists of a number of defined periods, or times, as shown in figure 7.1 .
This generic memory cycle uses DRAM terminology to clarify the use of the interface in the most complex
Situations, but can be programmed to provide waveforms for a wide range of other device types. The timing
of each of the four memory banks can be programmed separately, with a different device type being placed
in each bank with no extemal hardware support.

;N'

Address bus

Data bus (read)

Data bus (write)

I. BusReleaseTime

I RASTime I III

~ \v* row

CASTime . i. PrechargeTime .I
'--__ ..:.c.::..ol:.:::uc:.:.m.::..n'--_~f~------

I I

I ~
~------~--~(~~d~~~in~;\>r-------

~----da-ta--ou-t----~~rl-----------

internal read
latch

Figure 7.1 Generic memory cycle

·1

The RASTIme and CASTime are consecutive. The CASTIme is followed by concurrent Precharge and
BusRelease times. Thus, for DRAM, the times are used for RAS, CAS, and precharge respectively. Fornon­
multiplexed addressed memory the RASTime is programmed to be zero and there is no RAS time.

If programmed to be non-zero, and page-mode memory is present in a bank, the RASTime will only occur
if consecutive accesses are not in the same page. The RASTime will not commence until the Precharge­
Time for a previous access to the same bank has completed. During this time the address is multiplexed
by the amount specified in the FormatControl register so as to output the row address on the address bus.
During the RASTime a transition can be programmed on the RAS strobe, but not on any other strobe.

During the CASTime the programmable strobes and byte-write strobes are active. The address is output
on the address bus without being shifted. Write data is valid during CASTime. Read data is latched into
the interface during the last clock cycle of the CASTime.

The PrechargeTime and BusReleaseTime commence concurrently at the end of the CASTime. A
PrechargeTime will occur to the current bank if:

• the next access is to the same bank but to a different row address.

• the next cycle is to a different bank.

The BusReleaseTIme runs concurrently with the PrechargeTime and will occur if:

• the current cycle is a read and the next cycle is a write.

• the current cycle is a read and the next cycle is a read to a different bank.

The BusReleaseTime is provided to allow slow devices to float to a high impedance state.

IMS T9000 transputer 89

7.2.1 External DRAM cycles

The IMS T9000 interface has logic to utilize page-mode DRAM.The intemallogic determines if page-mode
accesses are appropriate and constructs the required waveforms as defined by the limingControl
register. For random accesses to dynamic memory the interface will execute a RASllme, followed by a
CASlime, followed by a Prechargelime. Figure 7.2 shows a random access to dynamic memory in
bank O.

I RAS I CAS I Pre~harge I RAS I CAS I pre~harge I
TimeO TimeO • TimeO ~. ~ .. TlmeO ~ .. TimeO ~. TlmeO ~

notMemRASO T\ V I \ I V I

notMemCASO
I I ~ I I I ~ I

I I I I I I

notMemPSO (OE)
I I Lil I I

Li
I

MemAdd2-31 =l rowM i column N { K row X i column Y {
I I I I I I

MemDataO-63
I I

c=J
I I I

c=J
I

Figure 7.2 Random read access to DRAM from bank 0

For consecutive accesses within the same page in a single bank the row address remains constant and
only subsequent column addresses change. To perform a cache line transfer 4 consecutive addresses are
transferred, and a RASlime sub-cycle is only required for the first transfer across the extemal data bus.
This may be omitted if the previous access to the bank was in the same page. To read a cache line from a 32
bit wide bank of DRAM in bank 2 the PMI will execute a single RASlime, followed by four CASlimes,
followed by a Prechargelime, as shown in figure 7.3.

90

notMemRAS2

notMemCAS2

notMemPS2 (OE)

MemAdd2-31

MemDataO-63

RAS
Time2

CAS I
Time2

CAS I
Time2

IMS T9000 transputer

CAS I CAS I preCharg,
Time2 Time2 Time2

, ,

\'-------.Jr----+---+---+---lr-I

Figure 7.3 Page-mode access to DRAM - 32 bit interface cache refill from bank 2

For a 64 bit wide bank of DRAM the PMI will execute a single RASTime, followed by two CASTime followed
by a PrechargeTime, as shown in figure 7.4.

RAS CAS
Time3 Time3

CAS I Precharg~
Time3 Time3 I

, ,

notMemRAS3 \~----------t---jn

notMemCAS3

notMemPS3 (OE)

MemAdd2-31

MemDataO-63

Figure 7.4 Page-mode access to DRAM - 64 bit interface cache refill from bank 3

IMS T9000 transputer 91

The IMS T9000 is not limited to performing only cache-line refills in page-mode. As long as the row address
remains constant, then the PMI will continually operate in page-mode.

Figure 7.5 shows an extended page mode cycle from DRAM.

notMemRAS1

notMemCAS1

notMemPS1 (OE)

MemAdd2-31

RAS
Time1

CAS
Time1

MemDataO-63 __ -'-----__ --'-_--{

CAS
Time1

II

CAS
Time1

Figure 7.5 Extended page mode access from bank 1

7.2.2 External non-DRAM cycles

CAS I Precharg~
Time1 Time1 I

The IMS T9000 interface does not explicitly distinguish between a bank which is programmed as dynamic
memory and a bank which is not dynamic memory. This is to allow complete flexibility in the use of the
strobes and the various timing parameters. lhe correct mode of access is determined by proper program­
ming of the limingControlO-3 register parameters. Some of these parameters are inapplicable to a static
memory bank and should be programmed to zero. Static memory cycles can be adequately defined by
the CASlime parameter. For a cache line read from static memory the RASlime is programmed to be zero
and no RAS sub-cycle occurs. lhe PMI will execute four CASlime cycles for a cache line refill from a 32
bit wide bank of non-DRAM, as shown in figure 7.6.

92 IMS T9000 transputer

CAS CAS CAS CAS
TImeO TimeO TImeO TimeO

notMemCASO

MemAdd2-31

MemDataO-63

notMElmPSO (OE)

Figure 7.6 32 bit non-DRAM bank 0 cache refill

7.2.3 Bank swHchlng

Precharge TIme and Bus Release TIme allow consecutive cycles to access different banks without the
need for any external controlling logic. Figure 7.7 shows switching between SRAM in bank 0 and SRAM
in bank1. A Bus Release TIme is inserted between the two accesses. The CAS, PS and Write strobes are
inactive during this time, the RAS strobe is unaffected.

motMemCASO

notMemPSO

notMemCAS1

notMemPS1

MemAdd2-31

MemDataO-63

CAS
TimeO

CAS
TimeO

Bus I CAS
Release Time1
TIme 0 ,

CAS
TIme1

I I I I I I
~-------f colM 1COIM+1r

Figure 7.7 SRAM bank 0 to SRAM bank 1 with bus release time

IMS T9000 transputer 93

Figure 7.8 shows switching between DRAM in banks 0 and 1. During PrechargeTImeO the strobes for
bank 0 are inactive and the strobes for bank 1 operate as defined by their configuration registers. Access
is made to bank 1 whilst bank 0 is precharging. The example shown has the PrechargeTime programmed
as 2 cycles.

I
RAS I CAS PrechargeTimeO

Ti meO Ti meO RAS 1 CAS

__ +1 ~ I 1/ Time1 1 Time1

notMemRAS 0 \'------,------1

PrechargeTime1

notMemCAS 0 -----'--1----',1 ~r;-I---If-----'-----,---
I I I 1

notMemPS 0 i-----rl L)ct--I -I ---r----+----,

notMemRAS 1 I I I \'----CI~V---+----I
I I I 1 I
I I I 1 ~rr--I ~-----, notMemCAS 1

notMemPS 1 I I I I~I

MemAdd2-31 I I I 1 col Y)1_ ~------'
I I I 1 I

MemDataO-63

I 19 1 9
Figure 7.8 DRAM bank 0 to DRAM bank 1 switching, no bus release time

94 IMS T9000 transputer

Figure 7.9 shows switching between DRAM in bank 1 and SRAM in bank 2. The example shown has the
Prechargelime for bank 1 programmed as 1 cycle and the bank 2 CASlime as 2 cycles.

I CASTime2 I CASTime2 I RAS CAS ,preCharg~ I Time1 Time1 I Time1

I I notMemRAS 0 \ I y I
I I I I I

notMemCAS 0 ILiI I I I
notMemPS 0 ILiI I I I

I I A I /-+ notMemCAS 1 \
I I I I I

notMemPS 1 I I \ IT\ I II , , I
ro~x)<

*
MemAdd2-31 ~ colY

I I I I I I
MemDataO-63

I I Q I Q Q
Figure 7.9 DRAM bank 0 to SRAM bank 1 switching, no bus release time

7.3 PMI configuration registers

The PMI (in common with a number of other sUb-systems of the IMS T9000) is controlled via a separate
configuration address space. The registers in this address space are accessed via the /dcon' and stconf
instructions, or via CPeek and CPoke command messages down CLinkO. This section describes the func­
tionality of the PMI to be controlled by the associated configuration registers. The complete bit format of
each register and the addresses of the registers in the configuration space are not included in this prelimi­
nary information.

The PMI configuration registers are divided into 2 sets. The bank address registers define the structure of
the extemal address space and how it is allocated to the four banks and the strobe timing registers define
the timing of the strobe edges for the four banks. The function of the registers is to eliminate extemal decode
and timing logic.

7.3.1 Bank address registers

The addresses of operands generated by IMS T9000 intemal sUbsystems are analyzed by the PMI. It uses
the values of the configuration registers to establish which bank the address is applicable to and the type
of access. The incoming address and the bank address registers are compared. The bits that are not of
interest are masked off by the mask address register (MaskO-3). This is performed in parallel for all four
banks.

Address registers

The AddressO-3 registers define the base address for each of the four banks. The base address must be
word aligned.

IMS T9000 transputer 95

Mask registers

The MaskO-3 registers define the bits in the address which should be compared to the address register for
the appropriate bank.

1 in a given bit position indicates that the corresponding bits should be compared.

o indicates they should be ignored.

If all bits which are to be compared are the same in the presented address and the address register for a
bank then the address is a hit on the bank.

RAS bits registers

The RASBitsO-3 registers define the bits in the address which should be compared to the last access to the
same bank to determine whether a page hit has occurred. The register contents are only used if the RAS­
Time in the TimingControl register is programmed to be non-zero.

1 in a given bit position indicates that the corresponding bits should be compared.

o indicates they should be ignored.

If all bits which are to be compared are the same in the presented address as in the previous access, then
the address is a page hit and a RAS cycle will not be generated.

Format control registers

The FormatControlO-3 registers control general aspects of operation of each bank of the PMI.

Bit field Function Units

ShiftAmount Right shift for the on-chip multiplexing for the bank -

PortSize Bit width of the bank (8, 16, 32 or 64 bits) -

CacheMode Cacheability status of addresses in the bank -

Table 7.3 Format control register fields

The ShiftAmount is defined as the amount of right shift to be applied to the extemal address field,for the
duration of the RASTime.The shift amount is only active during the RASTime.

The PortSize defines the size of the external port that occupies the selected bank.The coding of the bits are
defined in table 7.4. The PortSize parameter is used by the byte-alignment network to assemble/
disassemble data bytes to transfer arbitrary-sized operands to arbitrary-sized ports.

PortSize Programmed bus widths

00 64 bits

01 32 bits

10 16 bits

11 8 bits

Table 7.4 PortSize

The Cache Mode bit field defines if the bank is occupied by devices whose contents can be transferred to
the IMS T9000 internal cache. Note, any bank which is programmed to have 64 bit memory is defined as a
cacheable area.

CacheMode Cacheability

0 Non-cacheable

1 Cacheable

Table 7.5 CacheMode

96 IMS T9000 transputer

Figure 7.10 illustrates programming of the configuration registers for given bank configurations. Banks 0
and 1 are shown conataining an external bus width of 32 bits, banks 2 and 3 with an external port size of
64 bits. All the banks have a programmed RASTime, except bank 4 which has RASTime set to zero. In the
example shown in the figure the base addresses for each of the four banks are as follows:

Bank

0

1

2

3

Physical address

C3COOOOO - C3FFFFFF

B0300000 - B03FFFFF

50EOOOOO - 50FFFFFF

OE1 F8000 -OE1 FFFFF

10 bit row
address

10 bit column
address

Address2 ~~'-=-'"'-"'--"-'-'~4~=~~~=~~=~P~
Mask2

~------------~~~~~~~~~~~~~

RASBits2 ~;;..;;;,,;;;..-"....:::...:::...;;;

FormatControl2 ,"""~,,,"-,",--,,--"-":J:@

L--.J
PortSize

~

CacheMode

Figure 7.10 Programming page configuration registers

BankO

1M x4

DRAM

Bank1

256Kx 4

DRAM

Bank2

256Kx 4

DRAM

Bank3

8Kx8

SRAM

IMS T9000 transputer 97

BootSpace allocation

The IMS T9000 includes support for a fifth bank of external memory which is not user programmable. The
function of this bank is to provide a configuration/ bootstrap area of external memory. The port size of this
bank is hardwired to be a byte wide interface.

7.3.2 Strobe timing registers

The PMI constructs control waveforms with the required timing in the appropriate bank from the contents
of the TlmingControlO-3 registers. The internal pipeline structure of the IMS T9000 allows internally pend­
ing cycles to be analyzed while the bus is currently in use. The bus control logic can construct the required
timing and control waveforms from information about the current bus cycle and the next pending cycle.

Strobe registers

The RASStrobeO-3 registers, CASStrobeO-3 registers, ProgStrobeO-3 registers and the WrlteS­
trobeO-3 registers all have a common format, as given in table 7.6. The falling (E1) and rising (E2) edges of
a waveform are defined to occur during the CASTIme. During other sub-cycles the programmable strobe
pins are held in the inactive state.

Bit field

E1T1me

E2Time

ActiveCode

notMemRASO-3

notMemCASO-3
or

notMemPSO-3
or

notMemWrBO-3

Function Units

Location of falling edge from CASTIme start phase!!

Location of rising edge from CASTime start phase~

Cycle type in which strobe is active -

Table 7.6 Strobe register fields

Start of cycle

I RASTime I CASTime 1 PrechargeTime

--IE2TlmeIE1Tlme----1 '1

I \' y LY~-----1
! L E2Time-1 1

I I E1Ttmel I ,..--J-------I

i i \ /
i A falling edge may i A rising or falling edge! All strobes within

be programmed for may be programmed I bank are inactive
the RAS strobe for each strobe

Reset all
strobes in bank

Figure 7.11 Strobe activity within a memory cycle

If DRAM is present in a bank the E2T1me for the associated RASStrobe register is.typically programmed
to be shorter that the E1Time so that the RAS strobe falls during the RASTime of the cycle and rises again
during the CASTime of the cycle.

98 IMS T9000 transputer

ActlveCode determines the type of cycle (read or write) during which the strobe will be active. The coding
of these bits is indicated below.

ActiveCode Bus activity

00 Inactive

01 Active during read only

10 Active during write only

11 Active during read and write

Table 7.7 ActlveCode

The timing programmed in the WriteStrobe register for a bank is used for all four byte-write strobes for
writes in that bank.

TIming control registers

The TImingControlO-3 registers define for each bank timing parameters for the peripheral devices
allocated to that memory bank. The parameters defined by the register are shown in table 7.8.

Bit field Function Units

RASTIme Duration of RAS sub-cycle cycles

RASEdgeTIme Delay from start of RAS sub-cycle to falling edge of RAS strobe phases

CASTIme Duration of CAS sub-cycle cycles

PrechargeTIme Duration of precharge time cycles

BusReleasel1me Duration of bus release time cycles

WaitEnable Enables the MemWait pin -

Table 7.8 Timing control register fields

RASTIme sets the length of the RAS sub-cycle. If this is programmed to zero then no RAS sub-cycle will
occur.

RASEdgel1me sets the delay from the start of the RAS sub-cycle to when the RAS strobe goes low. This
is only required if RASl1me is programmed to be non-zero.

Figure 7.12 gives an example of the programming of the strobe timing registers for a write cycle in bank 1.

IMS T9000 transputer

RASTime CASTime PrechargeTime RASEdgeTime

TImingControl1 1 1 0001 1 1 001 1 1 1 0010 1 10000101

Emme E2Time

RASStrobe1 o 1 1 1 001 1 Reserved

EHime E2Time

CASStrobe1 0001 1 0 1 1 Reserved

EHime E2Time

ProgStrobe1 001 1 1 0 1 1 Reserved

E1Time E2Time

WriteStrobe1 001 1 1 10001 Reserved

RASTime CASTime PrechargeTime

I I I I I I I I I I I I I I I I I I I

notMemRAS1 ~ \ /

notMemCAS1 \ /

notMemPS1 \ /

notMemWrBO-3 \ /

Figure 7.12 Programming of the strobe timing registers for bank 1

Refresh control register

99

The RefreshControl register specifies the banks which require refreshing and the interval between succes­
sive refreshes. The refresh timing is also programmed in this register, and is the same for all banks.

The PMI ensures that CAS and RAS are both high for the required time before every refresh cycle by insert­
ing a PrechargeTIme in the last bank being accessed and ensuring all PrechargeTImes are complete.

The CAS Strobe is taken low at the beginning of the refresh time. The position of the RAS falling edge
(RASedge) and the time before RAS and CAS can be taken high again (RefreshTIme) are programmed.
Each of these actions occurs in sequence for each bank. A cycle is inserted between each bank in order to
spread current peaks. If no DRAM has been programmed for a bank then no transitions occur on the RAS or
CAS strobes. Once all refreshes have occurred a PrechargeTime is initiated in all banks and further ac­
cesses may occur.

The RefreshControl register is loaded during the configuration phase and if the Refresh Interval is zero,
then no refreshes will take place. The register bit fields are allocated the following functions.

100 IMS T9000 transputer

Bit field Function Units

RefreshTime Refresh time cycles

RASedge Refresh RAS falling edge phases

Refreshlnterval Defines DRAM refresh interval cycles

DRAMO-3 Defines which banks require refresh 1-

Table 7,9 Refresh control register fields

Figure 7,13 illustrates programming of the refresh control register, The example shows DRAM programmed
in banks 0, 1 and 3, no DRAM programmed in bank 2, After a refresh, a PrechargeTime is introduced after
each bank has completed in turn, In the example shown the PrechargeTime for each bank is programmed
(in the strobe timing registers) as 1 cycle, After refresh has completed in bank 3, further accesses may
proceed for all banks once any precharge times are complete,

RefreshTime RASedge Refreshlnterval DRAMO-3

RefreshControl LI _LI 0_1 _0_0-L1_-,1_0_0_0_0_1_0~_--,-1_0_1_1_0_0_1_0_0_0_0-,-_IL1_1 _0_1-1-1 --.J

notMemCASO

notMemRASO

notMemCAS1

notMemRAS1

notMemCAS2

notMemRAS2

notMemCAS3

notMemRAS3

PrevIous
bank

Time e res Ime TimeD Time1 Tlme3 preChargetIJ II R f hT' II II ~ Precharge Precharge Precharge

I I I I I I II I I II I I II I II I I II I I II I I II I I
RASedge

\~----------I/

\~---------'/

\~-----~/

\~-----~/

\~-------~
\~------~

Figure 7,13 Programming of the refresh control register

IMS T9000 transputer 101

8 Data/Strobe links
The IMS T9000 has four bidirectional links for normal inter-processor communications, and two additional
links which can only be used for control purposes. All of these links use a protocol with two wires in each
direction, one for data and one to carry a strobe signal. These links are therefore referred to as data/strobe
(DS)links: The DS links are capable of:

• Up to 100 MBaud.

• 80 MBytes/second peak total bidirectional data rate.

• Support for virtual channels and through routing.

The links are TTL compatible and are series matched to 100 ohm transmission lines.

Each DS pair carries tokens and an encoded clock. The tokens can be data or control tokens. Figure 8.1
shows the format of data and control tokens on the data and strobe wires. Data tokens are 10 bits long
and contain a parity bit, a flag which is set to 0 to indicate a data token, and 8 bits of data. Control tokens
are 4 bits long and contain a parity bit, a flag which is set to 1 to indicate a control token, and 2 bits to
indicate the type of control token.

Parity bit Parity bit

1 1":: Data 1 TO;~,
I

0 0 0 o 0:

Data :1 Lfl n
Strobe r-------'n'--------'n'-----__ u

I" Bits covered by parity bit in second token ·1
Figure 8.1 Link data format

The parity bit in any token covers the parity of the data or control bits in the previous token, and the data/con­
trol flag in the same token, as shown in figure 8.1. This allows single bit errors in the token type flag to be
detected. Odd parity checking is used. To ensure the immediate detection of errors null tokens are sent
in the absence of other tokens. The coding of the control tokens is shown in table 8.1.

Flow control token FCT Pl00

End of packet EOP Pl0l

End of message EOM Pll0

Escape token ESC Plll

Null token NUL ESC Pl00

Table 8.1 Control token codings

8.1 LOW-level flow control

The DS link protocol separates the functions of flow control and process synchronization. Flow control is
done entirely within the link module and process synchronization is built into a higher-level packet system
(see chapter 4).

102, IMS T9000 transputer

Token-level flow control is perfonned in each link module, and the additional flow control tokens used are
not visible to the higher-level packet protocol. The token-level flow control mechanism prevents a sender
from overrunning the input buffer of a receiving link, Each receiving link input contains a buffer for at least
8 tokens (more buffering than this is in fact provided). Whenever the link input has sufficient buffering avail­
able to consume a further 8 tokens a FCT is transmitted on the associated link output, and this FCT gives
the sender permission to transmit a further 8 tokens. Once the sender has transmitted a further 8 tokens
it waits until it receives another FCT before transmitting any more tokens. The provision of more than 8 to­
kens of buffering on each link input ensures that in practice the next FCT is received before the previous
block of 8 tokens has been fully transmitted, so the token-level flow control does not restrict the maximum
bandwidth of the link.

Note that token-level flow control is imposed on a device-to-device basis across each physical link,
whereas packet-level flow control is perfonned on a processor-to-processor baSiS, and message syn­
chronization is performed on a process-to-process basis.

8.2 Link speeds

The IMS T9000 links can support a range of communication speeds, which are programmed by writing to
registers in the configuration space. At reset all links are configured to run at the BaseSpeed of 10
Mbits/sec.

Only the transmission speed of a link is programmed as reception is asynchronous. This means that links
running at different speeds can be connected, provided that each device is capable of receiving at the
speed of the connected transmitter.

The transmission speed of all of the links on a given device are related to the speed of a single on-chip
clock. The frequency of this master clock is programmed through the Speed Multiply bit field described
in section 8.4. The master frequency is divided down to obtain the transmission frequency for each link.
The division factor can be programmed separately for each link via the Speed Divide bit field described
in section 8.4. For a given device, with a given programmed master clock frequency, this arrangement al­
lows each link to be run at one of four transmission speeds, as shown in table 8.2.

Speed Divide

SpeedMultiply /1 /2 /4 /8 BaseSpeed

8 80 40 20 10.0 10

10 100 50 25 12.5 10

12 Reserved 60 30 15.0 10

14 Reserved 70 35 17.5 10

16 Reserved 80 40 20.0 10

18 Reserved 90 45 22.5 10

20 Reserved 100 50 25.0 10

Table 8.2 Link transmission speed in Mbits/sec

8.3 Errors on links

Link inputs detect parity and disconnection conditions as errors. A disconnection error indicates one of
two things: either the link has been physically disconnected, or an error has occurred at the other end of
the link which has then stopped transmitting. The bit fields ParltyError and DiscError indicate when parity
and disconnect errors occur.

The DS links are designed to be highly reliable within a single subsystem and can be operated in one of
two enVironments, determined by the LocalizeError bit in each link.

In the majority of applications, the communications system should be regarded as being totally reliable.
In this environment errors are considered to be very rare, but are treated as being catastrophic if they do

IMS T9000 transputer 103

occur. This environment is the default on power-on reset, with all links having their LocalizeError bit set
to O. If an error occurs it will be detected and reported via a message sent along CLinkO. The CPU and
VCP of the IMS T9000 will be halted. Normal practice will then be to reset the sUbsystem in which the error
has occurred and to restart the application.

For some applications, for instance when a disconnect or parity error may be expected during normal oper­
ation, an even higher level of reliability is required. This level of fault tolerance is supported by localizing
errors to the link on which they occur, by setting the LocalizeError bit of the link to 1. In addition a data
link layer process must be connected to each virtual channel associated with the link. These processes
are responsible for establishing and maintaining a higher level flow control, using time-out to detect that
a message has not completed, and requesting retransmission. If an error occurs, packets in transit at the
time of the error will be discarded or truncated, and the link will be reset without the error being reported
via the control link.

For information on the data link layer refer to chapter 4 of 'Computer Networks' by Andrew S. Tanenbaum,
published by Prentice-Hal/International (ISBN: 0-13-166836-6).

8.4 Link configuration registers

The links (in common with a number of other sub-systems of the IMS T9000) are controlled via a separate
configuration address space. The registers in this address space are accessed via the Idconf and stconf
instructions, or via CPeek and CPoke command messages received along CLinkO.

Each OS link has three registers, the LinkMode register, LinkCommand register and LinkStatus register.

In addition the configuration space contains the DSLinkPLL register which contains the SpeedMultiply
bit. This takes the 5 MHz input clock and multiplies it by a programmable value to provide the root clock
for all the OS links.

The tables below describe the functionality of the OS links to be controlled, and the associated bit fields
in the configuration registers.

Bit field Function

SpeedMultiply Sets OS link master clock to required value (see table 8.2).

Table 8.3 Bit fields in the DSLinkPLL register

The LinkO-3Mode registers power up into a default state and may be reprogrammed before or after the
link has been started.

Bit Bit field Function

1:0 Speed Divide Sets transmit speed of the LinkO-3 (see table 8.2).
00 = / 1 ,01 = /2, 10 = /4, 11 = /8

2 SpeedSelect Sets the LinkO-3 to transmit at the speed determined by the SpeedDi-
vide bits as opposed to the base speed of 10 Mbits/s.

3 LocalizeError When set errors are no longer reported to the control link. Packets in
transit at the time of an error will be discarded or truncated.

Table 8.4 Bit fields in the LinkO-3Mode registers

The LinkO-3Command registers are write only and contain four bits which when set cause a specific ac­
tion to be taken by the OS link.

104 IMS T9000 transputer

Bit Bit field Function

0 ResetLink Resets the link engine of the LlnkO-3. The token state is reset, the flow
control credit is set to zero, the buffers are marked as empty, and the
parity state is reset.

1 StartLink When a transition from 0 to 1 occurs LinkO-3 will be initialized and com-
mence operation.

2 ResetOutput Sets both outputs of LinkO-3 low.

3 WrongParity The LinkO-3 output will generate incorrect parity. This may be used to
force a parity error on the transputer at the other end of the LinkO-3.

Table 8.5 Bit fields in the LinkO-3Command registers

The LinkO-3Status registers are read only and contain six bits which contain information about the state
of the DS link.

Bit Bit field Function

0 Link Error Flags that an error has occurred on the LinkO-3.

1 LlnkStarted Flags that the output LinkO-3 has been started and no errors have been
detected.

2 ResetOutputCom- Flags that ResetOutput has completed on the LlnkO-3.
plete

3 ParityError Flags that a parity error has occurred on the LinkO-3.

4 DiscError Flags that a disconnect error has occurred on the LinkO-3.

5 TokenReceived Flags that a token has been seen on the LlnkO-3 since ResetLink.

Table 8.6 Bit fields in the LlnkO-3Status registers

IMS T9000 transputer 105

9 Control links

The control links on alilMS T9000 transputer family products allow a separate control network to be used
to assist in error handling and configuring, booting, resetting and analysing processors and other compo­
nents connected in a system, even in the presence of errors on the data communications links in the net­
work. Many of these functions can also be performed directly by software running on an IMS T9000.

The device has two bidirectional control links; CLinkO and CLink1 . They use the same elect~ical and pack­
et level protocols as the normal data links, and a control link network will generally be connected to one
of the data links of a controlling IMS T9000. All communications with the controlling processor are via
CLinkO. CLink1 is provided to allow IMS T9000 product family components to be connected in a daisy­
chain. This allows a simple physical connectivity to be used for the controlling network, as shown in figure
9.1.

0 I
" '1

r---- T9000 ~

I
Controlling T9000

1
- - - - - - - -

I

/"" - - - - - - - --

I
0 ' ' ' 1 0 1 0'" 1

~ T9000 T9000 I-- - T9000 ~

I
I I

Figure 9.1 A daisy-chained control link network

For large systems IMS C1 04 dynamic packet routing devices can be used to connect the controlling net­
work as a physical tree. In all cases the controlling network forms a logical tree with each device having a
virtual link connected to the control process at the root of the logical tree.

9.1 Initialization

When the network is initialized the first communication with each device programs identity and return ad­
dresses to establish the virtual channels between the control process and that device. The identity address
determines whether a packet arriving on CLinkO is for that device, and if not, the message is forwarded
along CLink1 until it reaches its destination.

9.2 Commands

A high level protocol is defined for the controlling network to allow the control process to issue commands
to, and receive re~ponses from, devices in the network. Commands are sent as packets with the first byte
after the header containing a command code, which may be followed by additional data. The following
table details the command codes. Each command is terminated by an EOM token.

106 IMS T9000 transputer

Command Additional data Function

Start Return header Allocates an identity and return header to each node. This rnustbe
the first command. received following power on reset.

Reset Level Resets the processor to the given level (see section 10.1).

Identify None Returns the identity and the revision number of the device.

Stop None Stops the processor 'cleanly' so that register values are pre-
served. Acts like the Analyse pin on the TS transputer.

CPeek Address Returns the value stored at the given address in the device config-
uration space. If the address is invalid (e.g. does not exist in the
programmed external memory map) an invalid status is returned.

CPoke Address, data Writes data to the configuration space register at the given
address. If the address is invalid an invalid status is returned.

Peek Address Returns the word value stored at the given address in the normal
address space. If the address is invalid an invalid status is
returned.

Poke Address, data Writes data to the given address in the normal address space. If
the address is invalid an invalid status is returned.

Run Wdesc,lptr Causes the processor to start executing with given Wdesc and
Iptr.

Boot Address, length Sends the address of the memory into which the boot code is to
be written, together with the length of the data to be input.

BootData Data This command is followed by 16 bytes of data which are written
in 4 byte words to the current value of the boot address. The boot
address is incremented after each write.

ReBoot None Causes reboot from ROM.

RecoverError None This command is used in error recovery on the control links (see
section 9.3).

ErrorHandshake None Handshakes error message.

Table 9.1 Control link codes

Each command message is acknowledged by an acknowledge packet in the normal manner (see section
4.2). In addition the higher level control protocol requires that all command messages are acknowledged
by a response message before the control process can send another command message to the same de­
vice. (However, Reset and RecoverError command messages may be sent to any node at any time to allow
the control process to handle error conditions in the network.)

The response message can contain the result of a Peek or Identify command, or it may be simply a hand­
shake code corresponding to the command message. Table 9.2 lists the response messages to each ofthe
command messages. The data parameter 'Status' indicates whether or not there has been an error in per­
forming the operation.

IMS T9000 transputer 107

Response Additional Data

StartHandShake None

ResetHandShake Status

IdentifyResult Device type and rev

StopHandShake Status

CPeekResult Data, status

CPokeHandShake Status

PeekResult Data, status

PokeHandShake Status

RunHandShake Status

StartBootHandShake Status

BootDataHandShake Status

RecoverHandShake None

Error Error code

Table 9.2 Control link responses

9.3 Errors on control links

The control link network is assumed to be designed and connected by the user to achieve very high reliabil­
ity. The control links should be operated at a low enough speed to ensure this.

If a parity or disconnect error occurs on CLink1 then an error message is sent to the control process along
CLinkO. If a parity or disconnect error occurs on CLinkO then an error message cannot be sent to the control
process. However, the output of CLinkO is halted, and this will be detected by the adjacent device, which
will report the error to the control process. In this manner ali errors on the control link system are reported
to the control process.

9.4 Stand alone mode

In a small system, such as a single IMS T9000, in which CLinkO of each device is not connected, the IMS
T9000 can be set to operate in stand alone mode by setting a bit in its Status register.

In stand alone mode the occurrence of a catastrophic error causes the fifth bank (see page 97) to be re­
enabled and the ROM code restarted. A flag is set in the configuration space to indicate that such a restart
has occurred. This flag can be accessed by the testpranal instruction.

9.5 Link speed

Each control link is powered up running at a standard speed of 10 MHz. This speed can be subsequently
changed during configuration by programming the relevant SpeedDivide bit field in the configuration
space. The speed selection for control links is identical to that of the data DS-links (see section 8.2), and
the control links share the master link clock.

9.6 Control link configuration registers

The link module hardware in each control link is identical to that in each data link. An equivalent set of con­
figuration bit fields is provided for each control link, as was described in section 8.4 for the data links.

108 IMS T9000 transputer

10 Levels of reset and the configuration space

The term configuration is used to refer to the sequence of operations required to take an IMS T9000 trans­
puter network from its power-on state to having an application, or operating system, running. In doing so
the state of the network must be taken through a sequence of defined levels or reset levels. These are
shown in figure 10.1 .

power
up level 0 level 1 level 2 level 3 application

l I label control configure boot I
I network network code I

~-------------+I--------------~------------~----------~I~

I Links - wait state
I PMI - undefined
I VCP - undefined
: Link engines - defined
I Cache - default

I I
I I I I
I Nodes - assigned I Links - speeds selectedl Run command sent I
I Identities I PMI - defined I Boot code executed I
I Control links - running I VCP - defined I Virtual links set up I
: : Start registers set: :

I I I I

t t

running

Configure
from ROM

or links

Boot
from ROM

or links

Load code

Figure 10.1 Reset levels

10.1 Reset Levels

During configuration the state of a network of IMS T9000 transputers is changed in a sequence of phases.
Each phase takes the network from one reset level to the next:

10.1.1 Level 0 - hardware reset

After a hardware reset each IMS T9000 is in the following state:

The processor is stopped, Wdesc is NotProcess.p and the scheduler queues are empty.

The state of the PMI and VCP is not defined, and both are inactive.

All the (data and contrOl) links are in Wait state with a default speed of 10 MHz. Each link is in
TimesOneMode and Halt is false. The identity and retum headers for the control links are
undefined.

The cache is initialized to act as 16 Kbytes of on-chip RAM.

The network can be retumed to level 0 by taking all the reset pins in the network high.

10.1.2 Level 1 - labelled control network

The labelling phase moves from level 0 to level 1. In it the identity and retum headers are set by a Start
command message being received on CLinkO, as described in section 9.2. Levell for the network has
all identity and retum headers configured and all connected control links operational.

In a small system, such as a single IMS T9000 operating in stand alone mode (see section 9.4), the identity
and retum headers remain undefined. Any error occurring which would normally output an error message
on CLinkO will result in the fifth bank being re-enabled and the ROM code being restarted. Levell in this
case is considered to have the identity and retum headers configured as undefined.

IMS T9000 transputer 109

The network can be reset to level 1 by sending a reset command message to each IMS T9000. After this
reset message the identity and retum headers are still valid. All other registers in the configuration space are
reset to their level 0 values.

10.1.3 Level 2 - configured network

The configuration phase moves from level 1 to level 2. The state (resident in the configuration space) re­
quired to make all subsystems of the IMS T9000 operational, is programmed. If the StartFromROM pin
was sampled high at the end of the hardware reset then a process will be executed from ROM. This will
use the stconf instruction to program the configuration space registers. If the Start From Rom pin was
sampled low then the configuration space will be programmed by CPoke command messages received
down CLinkO.

The network can be reset to level 2 by sending a reset command message to each IMS T9000. At this level
of reset the application program is stopped (possibly in order to reload and run another one that is configu­
ration compatible) whilst the hardware configuration is unchanged. This level of reset leaves the values in
the configuration space of the PMI unaltered and still active.

10.1.4 Level 3 - booted network

The booting phase moves from level 2 to level 3. This phase is responsible for setting up the virtual links
for the network using the instructions described in section 4. This is always performed by running code,
but this code can either be executed from ROM, or be loaded down the control link using the Boot and
BootData command message.

10.1.5 Loading code

The network is now connected and code can be loaded via the communication links, or executed from
ROM.

10.2 Configuration space

A number of sUbsystems of the IMS T9000 are controlled through a separate address space, the configura­
tion space. These addresses are accessed either by the /dconf and stconf instructions, or by CPeek and
CPoke command messages received along CLinkO. The locations accessed via the configuration address
space are 32-bit registers for controlling the VCp, cache, PMI, and links. The features controlled via this
address space are generally machine specific. Configuration and system code which uses them should
be kept self contained to allow easy migration of code to future transputer implementations.

The functionality controlled by most of these registers has been described in earlier sections of this
document.

110 IMS T9000 transputer

11 Instruction set

The transputer instruction set has been designed for simple and efficient compilation of high-level lan­
guages. All instructions have the same format, designed to give a compact representation ofthe operations
occurring most frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the
byte are a function code and the four least significant bits are a data value.

Function

7

Operand Register

Figure 11.1 Instruction format

11 .1 Direct functions

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Thirteen of
these, shown in table 11.1, are used to encode the most important functions.

load constant

load local

load non-local

jump

adjust workspace

add constant

store local

store non-local

conditional jump

Table 11.1 Direct functions

equals constant

load local pOinter

load non-local

call

The most common operations in a program are the loading of small literal values and the loading and stor­
ing of one of a small number of variables. The load constant instruction enables values between 0 and 15 to
be loaded with a single byte instruction. The load local and store local instructions access locations in
memory relative to the workspace pointer. The first 16 locations can be accessed using a single byte in­
struction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the Areg register. Compact sequences of these instructions allow efficient access to
data structures, and provide for simple implementations of the static links or displays used in the implemen­
tation of high level programming languages such as occam, Pascal or ADA.

11.2 Prefix functions

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative
prefix.

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction's operand. All instructions, except the prefix instructions, end
by clearing the operand register ready for the next instruction.

The prefix instruction loads its four data bits into the operand register and then shifts the operand register
up four places. The negative prefix instruction is similar, except that it complements the operand register
before shifting it up. Consequently operands can be extended to any length up to the length ofthe operand
register by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be repre­
sented using one prefix instruction.

IMS T9000 transputer 111

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly,
they simplify language compilation by providing a completely uniform way of allowing any instruction to
take an operand of any size. Thirdly, they allow operands to be represented in a form independent of the
processor word length.

11 .3 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up t016 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

Encoding of the indirect functions is chosen so that the most frequently occurring operations are repre­
sented without the use of a prefix instruction. These include arithmetic, logical and comparison operations
such as add, exclusive or and greater than. Less frequently occurring operations have encodings which
require a single prefix operation.

11.4 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as load local and add require just one pro­
cessor cycle or less with grouping.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up With fetching instructions. Furthermore, as memory is word accessed the processor
will receive four instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance. There is a pre-fetch buffer which contains several words, so the processor rarely has to wait
for an instruction fetch before proceeding. Since the buffer is transparent on jumps, there is little time penal­
ty when a jump instruction causes the buffer contents to be discarded.

11.5 Interaction of the processor pipeline and the instruction set

The IMS T9000 has a pipelined processor with 5 pipeline stages. Each stage is dedicated to a particular
operation, which in the main correspond to individual instructions, although even some of the simple in­
structions are operated on in more than one pipeline stage.

Stage Operation Function

0 Local Push constants and locals onto the execution stack.

1 Address Calculate addresses of non-local operands.

2 Read Read non-local variables.

3 Alu Stack-based ALU and FPU operations.

4 Conditional Jump/Store Conditional jump or write results back to memory.

Table 11.2 Pipeline stages

The IMS T9000 treats commonly occurring sequences of instructions as if they were a single 'grouped'
operation. The pipelined execution unit is able to execute several groups at the same time. Most groups
execute in one cycle, thus delivering an instruction rate well in excess of one instruction per cycle. An exam­
ple of decoding is shown below:

112 IMS T9000 transputer

Program Mnemonic Group

x:= 0 Ide 0; stl x 1st group

y:= #24 pfix 2; Ide 4; stl y 2nd group

w:= x + y Idl x; Idl y; add 3rd group

stl w 4th group

z:=w+(x+y) Idl x; Idl y; add 5th group

Idl w; add; stl z 6th group

e[O] : = a[3] + b[4] Idl a; Idnl 3; Idl b; Idnl 4; add 7th group

Idl e; stnl 0 8th group

bU] := ali] Idl i; Idl a; wsub; Idnl 0 9th group

Idl j; Idl b; wsub; stnl 0 10th group

Table 11.3 Expression evaluation

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number
of these can be minimized by careful choice of the evaluation order.

Groups commonly take one cycle at each stage in the pipeline, so that as groups are passed continuously
down the pipeline one group is executed per cycle. However, a number of factors may cause a group to
take more than one cycle at a given stage in the pipeline. These are enumerated below:

Long ALU/FPU operations: Most ALU/FPU operations take one cycle; those frequently used in­
structions which take longer are shown in the table below. The processor cycles column of the
instruction set tables detail ali instructions which take longer than one cycle.

Operation Cycles Notes

prod 2-5

mul 2-5

div 5 12

rem 6 - 13

Imul 3 6

Idiv 15

Ishr 2

Ishl 2

crcbyte 4

crcword 16

fpadd 2 1

fpsub 2 1

fpmul (single) 2 1

fpmul (double) 3 1

fpdiv (single) 8 1

fpdiv (double) 15 1

fprem (single) 5 -74 1

fprem (double) 5 - 529 1

fprange (single) 5-10 1

fprange (double) 5-17 1

table continued overleaf

IMS T9000 transputer 113

Notes:

table continued from previous page

Operation Cycles Notes

fpsqn (single) 8 1

fpsqn (double) 15 1

These figures assume normalized values, there is a 2 cycle overhead for each denor­
malized operand or result (except there is no overhead for a denormalized result from
fprem).

Table 11.4 Speed of ALU/FPU operations

2 Stack conflicts: There are occasions when a group will produce a value on the integer or floating
point evaluation stack which will then be used by the group. If the following group requires it in
an earlier pipeline stage than it is produced in, then the group will haveto wait. This occurs mainly
with the subscript instructions. Table 11.5 below shows the stages in which values are produced
and consumed. If a value is produced and pushed onto the stack in stage n in a particular group,
and is consumed in stagem in the following group, then n -m extra cycles will have to be allowed
for.

,r-(j Stage

Instruction Consumed Produced

Ide 0

Idl
\

0

Idlp 0

mint 0

Idnlp 1 1

All subscript instructions 1 1

Idnl 1 2

load16 1 2

Ib 1 2

All ALU and FPU instructions 3 3

ej 4

All store instructions 4

Table 11.5 Stages in which instructions operate

3 Load/store conflicts: Stores occur in later pipeline stages than loads, so if the load is to the same
address as the store, the memory is not yet in the state that the group expects it to be in. When
this happens, the second group proceeds until the operand that would have been loaded is ac­
tually used, at which point it waits until the data that is to be written has passed it. All writes gener­
ate their values at stage 4, which are then consumed in either stages 1 or 3. If it is in stage 3, then
there will be no penalty, but there will be a 2 cycle penalty when the value is consumed in stage
1. The load may not occur in the immediately following cycle, but in the subsequent one, in which
case any penalty is one cycle less.

4 Jumps: A jump causes a pipeline to be (partially) empty while the instruction at the destination
address is fetched and decoded. The number of cycles added to the normal time for a group is
given in the following table:

114

Notes:

IMS T9000 transputer

Instruction Cycles

j 2

cj (taken) 4

lend (loop back) 2

lend (terminate) 5

call 3

ret 2

All these figures assume cache hits, if cache misses occur it may take longer, depen­
dent on the PMI speed.

Table 11.6 Jumps

11.6 Floating point instructions

In the T8xx transputer the basic addition, subtraction, multiplication and division operations are performed
by single instructions. Certain less frequently used floating point instructions are selected by a value in
register Areg (this should be taken into account when allocating registers). A load constant instruction Idc
is used to load register Areg; the floating point entry instruction fpentry then uses this value to select the
floating point operation. This pair of instructions is termed a selector sequence. Names of operations
which use fpentry begin with fpu.

In the IMS T9000 all FPU operations can be performed by an equivalent single instruction coding, the names
of these operations begin with fp as oppose to fpu. However, the fpentry instruction has been retained in
order to provide compatibility with the T8.

11.7 Instruction characteristics

Tables 11.10 to 11.44 give the complete set of instructions grouped by function, with tables 11.33 to 11.44
detailing the new IMS T9000 instructions.

The Function Codes table 11.10 gives the basic function code set. Where the operand is less than 16, a
single byte encodes the complete instruction. If the operand is greater than 15, one prefix instruction (Pfix) is
required for each additional four bits of the operand. If the operand is negative the first prefix instruction will
be nfix. Examples of pfix and nfix coding are given in table 11.7.

IMS T9000 transputer 115

Mnemonic Function code Memory code

Ide #3 #4 #43

Ide #35

is coded as

pfix #3 #2 #23

Ide #5 #4 #45

Ide #987

is coded as

pfix #9 #2 #29

pfix #8 #2 #28

Ide #7 #4 #47

Ide -31 (Ide #FFFFFFE1)

is coded as

nfix #1 #6 #61

Ide #1 #4 #41

Table 11.7 prefix coding

Tables 11.11 to 11.44 give details of the operation codes. Where an operation code is less than16 (e.g.
add: operation code 05), the operation can be stored as a single byte comprising the operate function code
F and the operand (5 in the example). Where an operation code is greaterthan15 (e.g. ladd: operation code
16), the pfixfunction code 2 is used to extend the instruction. Ifthe operand code is negative (e.g. initvlcb:
operation code 16), the nfix function code 6 is used to extend the instruction. These examples are illus­
trated In table 11.8.

The load device identity (Iddevid) instruction (table 11.22) pushes the device type identity into the Areg
register. Each product is allocated a unique group of numbers for use with the Iddevid instruction. The
product identity numbers for the IMS T9000 will start at 60.

In the Floating Point Operation Codes (tables 11.24 to 11.32), a selector sequence code is indicated in
brackets in the Operation Code column. This refers to the indirection code, the operand for the Ide instruc­
tion (see section 11.6).

Mnemonic Function code Memory code

add (op. code #5) #F5

is coded as

opr add #F #F5

ladd (op. code #16) #21F6

is coded as

pfix #1 #2 #21

opr #6 #F #F6

initvleb (op. code #16) #61F6

is coded as

nfix #1 #6 #61

opr #6 #F , #F6

Table 11.8 operate coding

Where applicable the instruction set tables contain a processor cycles column. This refers to the number
of cycles taken by an instruction.

116 IMS T9000 transputer

There are a number of errors that can be trapped. When this occurs, an error code is returned to the trap
handler. Any instruction which is not in the instruction set tables is an invalid instruction and is flagged ille­
gal, returning an error code to the trap handler.

The Note column of the tables indicates the descheduling and error features of an instruction as described
in table 11.9. It also indicates which instructions cannot be used in G-, L- or P-processes.

Ident Feature

E Error can be explicitly set

0 Integer overflow / divide by zero error

U Unaligned memory access to word / half word

M Invalid memory address for P-process

i IEEE invalid operation exception

z IEEE divide by zero exception

0 IEEE overflow exception

u IEEE underflow exception

x IEEE inexact exception

t T800 FPU error exception

I Interruptible instruction

B Instruction can cause a breakpoint, G-processes only

T Timesliceable instruction

p Instruction not allowed in P-process

G Instruction not allowed in G-process

L Instruction not allowed in L -process

D The instruction is a descheduling point

d Denormalized operands or results can take 2 processor
cycles longer

Table 11 .9 Instruction features

IMS T9000 transputer 117

Function Memory Mnemonic Name Notes
Code Code

0 OX j jump B,T,D

1 1X Idlp load local pOinter

2 2X pfix prefix

3 3X Idnl load non-local M,U

4 4X Ide load constant

5 5X Idnlp load non-local pOinter

6 6X nfix negative prefix

7 7X Idl load local M

a ax adc add constant 0

9 9X call call M

A AX cj conditional jump

B BX ajw adjust workspace M

C CX eqc equals constant

D DX stl store local M

E EX stnl store non-local M,U

F FX opr operate

Table 11.10 IMS T9000 function codes

Operation Memory Mnemonic Processor Name Notes
Code Code cycles

46 24F6 and 1 and

4B 24FB or 1 or

33 23F3 xor 1 exclusive or

32 23F2 not 1 bitwise not

41 24F1 shl 1 shift left

40 24FO shr 1 shift right

05 . F5 add 1 add 0

OC FC sub 1 subtract 0

53 25F3 mul 2-5 multiply 0

72 27F2 fmul 3-6 fractional multiply 0

2C 22FC div 5 -12 divide 0

1F 21FF rem 6 -13 remainder 0

09 F9 gt 1 greater than

04 F4 diff 1 difference

52 25F2 sum 1 sum

08 Fa prod 2-5 product

Table 11.11 IMS T9000 arithmetic/logical operation codes

118 IMS T9000 transputer

Operation Memory Mnemonic Processor Name Notes
Code Code cycles

16 21F6 ladd 1 long add 0

38 23F8 Isub 1 long subtract 0

37 23F7 Isum 1 long sum

4F 24FF Idiff 1 long diff

31 23F1 Imul 3-6 long multiply

1A 21 FA Idiv 15 long divide 0

36 23F6 Ishl 2 long shift left

35 23F5 Ishr 2 long shift right

19 21F9 norm 2-3 normalize

Table 11.12 IMS T9000 long arithmetic operation codes

Operation Memory Mnemonic Name Notes
Code Code

00 FO rev reverse

3A 23FA xword sign extend to word

56 25F6 cword check word E

10 21FO xdble extend to double

4C 24FC csngl check single E

42 24F2 mint minimum integer

5A 25FA dup duplicate top of stack

79 27F9 pop pop processor stack

Table 11.13 IMS T9000 general operation codes

Operation Memory Mnemonic Name Notes
Code Code

58 25F8 move2dinit initialize data for 20 block move

5C 25FC move2dall 20 block copy M,I

50 25FO move2dnonzero 20 block copy non-zero bytes M,I

5E 25FE move2dzero 20 block copy zero bytes I' M,I

Table 11.14 IMS T9000 20 block move operation codes

Operation Memory Mnemonic Processor Name Notes
Code Code cycles

74 27F4 crcword 16 calculate crc on word

75 27F5 crcbyte 4 calculate crc on byte

76 27F6 bitcnt 8 count bits set in word

77 27F7 bitrevword 1 reverse bits in word

78 27F8 bitrevnbits 1 reverse bottom n bits in word

Table 11.15 IMS T9000 CRC and bit operation codes

IMS T9000 transputer 119

Operation Memory Mnemonic Name Notes
Code Code

02 F2 bsub byte subscript

OA FA wsub word subscript

81 28F1 wsubdb form double word subscript

34 23F4 bcnt byte count

3F 23FF wcnt word count

01 F1 Ib load byte M

3B 23FB sb store byte M

4A 24FA move move message M,I

Table 11.16 IMS T9000 indexing/array operation codes

Operation Memory Mnemonic Name Notes
Code Code

22 22F2 Idtimer load timer

2B 22FB tin timer input p'I,D

4E 24FE talt timer alt start P

51 25F1 taltwt timer alt wait p'I,D

47 24F7 enbt enable timer P

2E 22FE dist disable timer P,I

Table 11.17 IMS T9000 timer handling operation codes

Operation Memory Mnemonic Name Notes
Code Code

07 F7 in input message P.D,I

OB FB out output message P.D,I

OF FF outword output word P.D,I

OE FE outbyte output byte P.D,I

43 24F3 alt alt start P

44 24F4 altwt altwait P.D

45 24F5 altend alt end P

49 24F9 enbs enable skip P

30 23FO diss disable skip P

48 24F8 enbc enable channel P

2F 22FF disc disable channel P

12 21F2 resetch reset channel P

Table 11.18 IMS T9000 input/output operation codes

120 IMS T9000 transputer

Operation Memory Mnemonic Name Notes
Code Code

20 22FO ret return M

1B 21FB Idpi load pointer to instruction

3C 23FC gajw general adjust workspace M,U

06 F6 gcall general call

21 22F1 lend loop end M,T,U,
D

Table 11.19 IMS T9000 control operation codes

Operation Memory Mnemonic Name Notes
Code Code

OD FD startp start process P

03 F3 endp end process P,D

39 23F9 runp run process P

15 21F5 stapp stop process P,D

1E 21FE Idpri load current priority

Table 11.20 IMS T9000 scheduling operation codes

Operation Memory Mnemonic Name Notes
Code Code

13 21F3 csubO check subscript from 0 E

4D 24FD ccnt1 check count from 1 E

29 22F9 testerr test error false and clear L,P

10 21FO seterr set error E

55 25F5 stoperr stop on error L,P,D

57 25F7 clrhalterr clear halt-an-error P

58 25F8 sethalterr set halt -on-error P

59 25F9 testhalterr test halt-an-error P

Table 11.21 IMS T9000 error handling operation codes

Operation Memory Mnemonic Name Notes
Code Code

2A 22FA testpranal test processor analyze P

3E

I
23FE

I
saveh save high priority queue registers L,p,U

3D 23FD savel save low priority queue registers L,p,U

18 21F8 sthf store high priority front painter L,P

50 25FO sthb store high priority back pointer L,P

1C 21FC stlf store low priority front painter L,P

17 21F7 sllb store low priority back painter L,P

54 25F4 sttimer store timer L,P

17C 2127FC Iddevid load device identity

7E 27FE Idmemstartval load value of memstart address P

Table 11.22 IMS T9000 processor initialization operation codes

IMS T9000 transputer 121

Operation Memory Mnemonic Name Notes
Code Code

B1 2BF1 break break B,L,P

B2 2BF2 clrjObreak clear jump 0 break enable flag P

B3 2BF3 setjObreak set jump 0 break enable flag P

B4 2BF4 testjObreak test jump 0 break enable flag set P

Table 11 .23 IMS T9000 debugger support codes

Operation Memory Mnemonic Name Notes
Code Code

8E 28FE fpldnlsn fp load non-local single M,U

8A 28FA fpldnldb fp load non-local double M,U

86 28F6 fpldnlsni fp load non-local indexed single M,U

82 28F2 fpldnldbi fp load non-local indexed double M,U

9F 29FF fpldzerosn load zero single

AO 2AFO fpldzerodb load zero double
~

AA 2AFA fpldnladdsn fp load non local & add single M,U,i,
o,u,x,t

A6 2AF6 fpldnladddb fp load non local & add double M,U,i,
o,u,x,t

AC 2AFC fpldnlmulsn fp load non local & multiply single M,U,i,
o,u,x,t

A8 2AF8 fpldnlmuldb fp load non local & multiply double M,U,i,
o,u,x,t

88 28F8 fpstnlsn fp store non-local single M,U

84 28F4 fpstnkjb fp store non-local double M,U

9E 29FE fpstnli32 store non-local int32 M,U

Table 11.24 IMS T9000 floating point load/store operation codes

Operation Memory Mnemonic Name Notes
Code Code

AB 2AFB fpentry
r

floating point unit entry

A4 2AF4 fprev fp reverse

A3 2AF3 fpdup fp duplicate

Table 11 .25 IMS T9000 floating point general operation codes

Operation Memory Mnemonic Name Notes
Code Code

DO (22) 20FO fprn set rounding mode to round nearest

06 (06) 20F6 fprz set rounding mode to round zero

04 (04) 20F4 fprp set rounding mode to round positive

05 (OS) 20F5 fprm set rounding mode to round minus

Table 11.26 IMS T9000 floating point rounding operation codes

122 IMS T9000 transputer

Operation Memory Mnemonic Name Notes
Code Code

83 28F3 fpchkerr check fp error E

9C 29FC fptesterr test fp error false and clear

CB (23) 2CFB fpseterr set fp error t

OC (9C) 20FC fpclrerr clear fp error

Table 11.27 IMS T9000 floating point error operation codes

Operation Memory Mnemonic Processor Name Notes
Code Code cycles

94 29F4 fpgt 2 fp greater than i,t

95 29F5 fpeq 2 fp equality i,t

92 29F2 fpordered 1 fp orderability i

91 29F1 fpnan 1 fp NaN i

93 29F3 fpnotfinite 1 fp not finite i

OE (OE) 20FE fpchki32 2 check in range of type int32 i,t

OF (OF) 20FF fpchki64 2 check in range of type int64 i,t

Table 11.28 IMS T9000 floating point comparison operation codes

Operation Memory Mnemonic Processor Name Notes
Code Code cycles

07 (07) 20F7 fpr321or64 2 real32 to real64 i,t,d

08 (08) 20F8 fpr64tor32 2 real64 to real32 i,o,u,
x,t,d

90 29FO fprtoi32 2-4 real to int32 i,x,t

96 29F6 fpi3210r32 2-4 int32 to real32 M,U,x

98 29F8 fpi3210r64 2 int32 to real64 M,U

9A 29FA fpb321or64 2 bit32 to real64 M,U

00 (00) 20FO fpnoround 2 real64 to real32, no round

A1 2AF1 fpint 2-4 round to floating integer i,x,t

Table 11.29 IMS T9000 floating point conversion operation codes

IMS T9000 transputer 123

Operation Memory Mnemonic Processor cycles Name Notes
Code Code

Single Double

S7 2SF7 fpadd 2 2 fp add i,o,u,x,t,d

S9 2SF9 fpsub 2 2 fp subtract i,o,u,x,t,d

SB 2SFB fpmul 2 3 fp multiply i,o,u,x,t,d

SC 2SFC fpdiv S 15 fp divide i,z,o,u,x,t,
d

DB (OB) 2DFB fpabs 1 1 fp absolute i,t

DA(OA) 2DFA fpexpinc32 2 2 multiply by 232 i,o,t,d

D9 (09) 2DF9 fpexpdec32 2 2 divide by 232 i,u,x,t,d

D2 (12) 2DF2 fpmulby2 2 2 multiply by 2.0 i,o,t,d

D1 (11) 2DF1 fpdivby2 2 2 divide by 2.0 i,u,x,t,d

Table 11.30 IMS T9000 floating point arithmetic operation codes

Operation fpentry Memory Mnemonic Processor Name Notes
Code code Code cycles

Single Double

nla 01 412AFB fpusqrtfirst 2 2 ftoating-point
square root first

nla 02 422AFB fpusqrtstep 2 2 floating-point
square root step

nla 03 432AFB fpusqrtlast S 15 floating-point i,x,t,d
square root last

SF nla 2SFF fpremfirst 5 -74 5 - 529 fp remainder I,i,u,t

90 nla 29FO fpremstep 2 2 floating-point re-
mainder step

Table 11.31 IMS T9000 floating point operation codes which are included for compatibility with the
IMS TS05

The following tables detail the instructions provided on the IMS T9000 which are additional tothe IMS TS05
instruction set.

Operation Memory Mnemonic Processor Name Notes
Code Code cycles

Single Double

CF 2CFF fprem 5 -74 5 - 529 fp remainder I,i,u,t

D3 2DF3 fpsqrt S 15 fp square root i,x,t,d

SD 2SFD fprange 5-10 5-17 floating point range reduce i,u,t

97 29F7 fpge 2 2 fp greater than or equality i,t

9B 29FB fplg 2 2 fp less than or greater than i,t

Table 11.32 IMS T9000 additional floating point operation codes

124 IMS T9000 transputer

Operation Memory Mnemonic Name Notes
Code Code

CA 2CFA Is load 16 bit word MU

F9 2FF9 Isx load 16 bit word extended MU

C8 2CF8 ss store 16 bit word MU

F8 2FF8 xsword sign extend 16 bit word

FA 2FFA cs check 16 bit word signed E

FB 2FFB csu check 16 bit word unsigned E

C1 2CF1 ssub 16 bit word subscript

B9 2BF9 Ibx load byte extended M

B8 2BF8 xbword extend byte to word

BA 2BFA cb check byte signed E

BB 2BFB cbu check byte unsigned E

Table 11.33 IMS T9000 part word support operation codes

Operation Memory Mnemonic Name Notes
Code Code

00 60FO swapqueue swap run queue P

01 60F1 swaptimer swap timer queue P

02 60F2 insertqueue insert onto front of run queue P

BO 2BFO settimeslice set timeslice enable/ disable P

03 60F3 timeslice timeslice T,D

B5 2BF5 Idproc load process type P

Table 11.34 IMS T9000 process queue manipulation and timeslicing operation codes

Operation Memory Mnemonic Name Notes
Code Code

C2 2CF2 Idth load trap handler G,P

09 60F9 seith select trap handler G,p,D

B6 2BF6 Idflags load error flags G

B7 2BF7 stflags store error flags G

OA 60FA goprot go protected G',P

OB 60FB tret trap retum G,P

08 60F8 syscall system call G

Table 11.35 IMS T9000 trap handler operation codes

IMS T9000 transputer 125

Operation Memory Mnemonic Name Notes
Code Code

OE 60FE fpldall floating-point load all M,U

OF 60FF fpstall floating-point store all M,U

10 61FO stmove2dinit store 20 move initialize data

DC 60FC Idshadow load shadow registers P

00 60FO stshadow store shadow registers P

Table 11 .36 IMS T9000 state storage and retrieval operation codes

Operation Memory Mnemonic Name Notes
Code Code

C9 2CF9 chantype channel type p,E,U

16 61F6 initvlcb initialize virtual link control block P,E

C3 2CF3 Idchstatus load channel status P,E

14 61F4 readhdr read header p,E,U,1

17 61F7 setchmode set channel mode P,E

19 61F9 swapbfr swap buffer p,E,U

1S 61FS sethdr set header p,E,U

15 61F5 writehdr write header p,U,1

1A 61 FA Idvlcb load virtual link control block p,U

1B 61FB stvlcb store virtual link control block P,U

1E 61FE stopch stop channel p,E,O

BO 2BFO readbfr read buffer p,E,U

BC 2BFC insphdr inspect header p,E,U

Table 11.37 IMS T9000 channel and virtual link operation codes

Operation Memory Mnemonic Name Notes
Code Code

CO 2CFO Idcnt load count P,E

1C 61FC vin variable input p,1,E,U,O

10 61FO vout variable output p,1,E,U,O

Table 11.38 IMS T9000 variable length i/o operation codes

126 IMS T9000 transputer

Operation Memory Mnemonic Name Notes
Code Code

11 61F1 grant grant resource P,D

12 61F2 enbg enable grant P

13 61F3 disg disable grant P

28 62F8 Idresptr load resource queue pOinter p,E,U

29 62F9 stresptr store resource queue pOinter p,E,U

2A 62FA erdsq empty resource data structure P,U
queue

2B 62FB irdsq insert resource data structure queue P

2C 62FC mkrc make resource channel P,E

2D 62FD unmkrc unmake resource channel P,E

Table 11.39 IMS T9000 resource channel operation codes

Operation Memory Mnemonic Name Notes
Code Code

05 60F5 wait wait on semaphore P,U,O,D

04 60F4 signal signal semaphore p,U,O

Table 11.40 IMS T9000 semaphore operation codes

Operation Memory Mnemonic Name Notes
Code Code

BE 2BFE Idconf load configuration P

BF 2BFF stconf store configuration P

Table 11.41 IMS T9000 configuration operation codes

Operation Memory Mnemonic Name Notes
Code Code

20 62FO fdca flush dirty cache address P

22 62F2 fdcl flush dirty cache line P

21 62F1 ica invalidate cache address P

23 62F3 icl invalidate cache line P

Table 11.42 IMS T9000 cache operation codes

Operation Memory Mnemonic Name Notes
Code Code

C4 2CF4 intdis interrupt disable P

C5 2CF5 intenb interrupt enable P

Table 11.43 IMS T9000 interrupt operation codes

Operation Memory Mnemonic Processor Name Notes
Code Code cycles

C7 2CF7 cir 2 check in range E

CC 2CFC ciru 2 check in range unsigned E

5F 25F5 gtu 1 unsigned greater than

Table 11.44 IMS T9000 miscellaneous operation codes

IMS T9000 transputer 127

12 Performance

The performance of the IMS T9000 is measured in terms of the number of (internal) processor cycles re­
quired to execute the program. The figures here relate to occam programs. For the same function. other
languages should achieve approximately the same performance as occam.

The following tables are based on the time it takes to do ALU and FPU operations and it should be noted
that many other instructions may be overlapped (see section 11.5).

12.1 Integer operations

These figures are estimates and give the minimum/maximum times for a particular operation.

Operation

Names

variables

in expressions

assigned to or input to

in PROC or FUNCTION call

channels

Array Variables (1-d)

constant subscript

variable

plus subscript check

variable + constant subscript

plus subscript check

expression subscript

plus subscript check

Declarations

CHAN OF protocol

[size] CHAN OF protocol

PROC

Primitives

assignment

input

output

STOP (call error handler)

SKIP

Arithmetic Operators

+
*
I
REM

» «

table continued overleaf

TIme (cycles)

o
o to 1

o
1

o
o to 1

3

o to 1

4

3

1

2

3 + 5 * size

o

o
15 or [5 + move)

16 or [5 + move)

7

o

1

2to 5

5 to 12

6 to 13

1

128 IMS T9000 transputer

table continued from previous page

Operation Time (cycles)

Modulo Arithmetic Operators

PLUS MINUS 1

TIMES 2t05

Boolean Operators

OR

first operand true 3 to 4

first operand false o to 1

AND

first operand true 0

first operand false 3

NOT o to 1

Comparison Operators

= < > 1

> < 1

>= <= 1

Bit Operators

!\ \/ > < ~ 1

Expressions

constant 0

check if error 1

Timers

timer input 1

timer AFTER 4 to 00

ALT (timer) 20 to 00

ALT guard 7 to 00

Constructs

SEQ 0

IF 0

IF guard 4

ALT (non timer) 11 to 17

ALT guard 7 to 16

PAR 20 * branches - 6

WHILE 4 + 3 */oops

Procedures and Function

call and retum 6 to 8

scalar parameter o to 1

array parameter 2

table continued overleaf

IMS T9000 transputer 129

table continued from previous page

Operation Time (cycles)

Replicators

replicated SEQ (1 to 3) + 3 * count
replicated IF (4 to 6) + 3 * count
replicated AL T (13 to 23) + (13 to 22) * count
replicated timer ALT (2 to 00) + (13 to 00) * count
replicated PAR 10 + 27 * count
range check on any of above 2

Table 12.1 Integer Performance

12.2 Floating point operations

All references to REAL32 or REALM operands within programs compiled for the IMS T9000 normally pro­
duce the following performance figures.

Operation REAL32 Time (cycles) REAL64 Time (cycles) Notes

Names

variables

in expressions 0 o to 1

assigned to o to 1 1 to 2

input to 1 1

in PROC or FUNCTION call 0 0

Arithmetic Operators

+ - 2 2 1

* 2 3 1

I 8 15 1

SQRT 8 15 1

REM 5to 74 5to 529 1,2

Comparison Operators

= <> 2 2

> < 2 2

>= <= 2 2

Conversions

REAL32 to- 2

REALM to- 2

INT32 to - 2to4 2

INT64 to- 12 8

To INT32 from - 4to 6 4to 6

To INT64 from- 11 11

Notes:
1 These figures assume normalized values, there is a 2 cycle overhead for each denormalized oper­

and or result (except there is no overhead for a denormalized result from fprem).
2 Typical value for REAL 3 2 is 5 to 11; for REALM is 5 to 18, longer times are extremely rare.

Table 12.2 Floating point performance

130 IMS T9000 transputer

12.3 Predefines

Operation TIme (cycles)

LONGADD 1

LONG SUM 1

LONGSUB 1

LONGDIFF 1

LONGPROD 3 to 6

LONGDIV 15

SHIFTRIGHT 2

SHIFTLEFT 2

NORMALISE 2to 3

ASHIFTRIGHT 3

ASHIFTLEFT 4

ROTATERIGHT 3

ROTATELEFT 3

FRACMUL 3 to 6

BITCOUNT 8

CRCBYTE 4

CRCWORD 16

BITREVNBIT 1

BITREVWORD 1

Table 12.3 Predefines

IMS T9000 transputer 131

13 Compatibility with the IMS Ta05

13.1 Binary code compatibility

Existing binary code compiled for the IMS T805 will run on the IMS T9000, even though the IMS T9000 has
been designed to provide a significant performance improvement compared to the IMS T805, and includes
a number of major functional enhancements. This has been achieved by the provision of a special process
type (the G-process, see section 3.4) which retains compatibility with IMS T805 binary code.

Prior to any IMS T805 compatible code being loaded, a preamble must be executed on the IMS T9000.
This preamble programs the behavior of the subsystems of the IMS T9000 (including its memory interface
and links) and emulates the boot time behaviour of the IMS T805. That is, it allows code to be booted down
the data links of the IMS T9000 in the same way as for the IMS T805. In situations where the IMS T9000 is
required to act as a direct replacement for the IMS T805 this preamble will usually be performed by code
executing out of ROM. The preamble is invisible to IMS T805 compatible code when it is run.

In order to provide a simple hardware interface between first generation T2/T4/T8-family components and
T9000-family components a systems converter, the IMS C1 00, has been designed. The IMS C1 00 performs
protocol conversions between T2/T4/T8-family oversampled links (OS-links) and T9000-family links (DS­
links). It also converts the Reset, Analyse and Error signals of the T2/T4/T8-family components to appro­
priate command messages on IMS T9000 control links.

If configured IMS T805 binary compatible code is to be run on an IMS T9000, connected via an IMS C1 00
to a network of T2/T4/T8-family components, then byte mode must be set via the VCP configuration regis­
ters (see section 4.4.9, page 75). No virtual channels may be used. Code on both the IMS T9000 and any
connected T2/T4/T8-family transputers will run unmodified.

It is possible to make use of virtual channels in this situation by reconfiguring the IMS T805 binary compat­
ible code, and thereby changing its external channel addresses. To make use of virtual channels across
links to T2/T4/T8-family components it is necessary to add protocol conversion software to those
T2/T4/T8-family transputers directly connected to the IMS T9000 via IMS C100 systems converters.

13.2 Source level compatibility

The code which must be generated for both new process types (L -processes and P-processes, see sec­
tion 3.4) is still instruction set compatible with the IMS T805 transputer. A number of additional instructions
and in-store data structures have been provided to support new features, and some in-store data struc­
tures have been modified. Existing compilers for the IMS T805 transputer will be able to make use of the
new capabilities of the IMS T9000 without significant modification. Existing source code will be able to be
recompiled directly through a modified compiler, with the exception that language specific additions for
allocating processes to processors and channels to hard links may need to be modified in order to exploit
virtual channels.

13.3 Compatibility issues

The following are the only known exceptions to the compatibility of IMS T805 binary code described above.
All are unlikely to occur in compiled binary code, but may be present in assembler code for certain systems
software, such as real-time kernels:

The IMS T9000 stores all of its interrupted state in internal registers, whereas the IMS T805 stores
some of its interrupted state in memory locations. Code which directly references these memory
locations on the IMS T805 will need to be modified to run on the IMS T9000.

2 If a block move instruction on a T2/T4/T8 transputer is interrupted, when it is restarted the last word
accessed prior to interrupt is accessed again. This second access will not occur on the IMS
T9000. Code which modifies the interrupted state of a process on a T2/T4/T8 transputer to prevent
the second access will need to be modified to run on an IMS T9000.

132 IMS T9000 transputer

3 The floating point unit on the IMS T9000 does not always return the same type of NaN as the
T2/T4/T8 transputer, even when running a G-process. Most code written for the T2/T4/T8-trans­
puter will not make use of the distinction between signalling and non-signalling NaNs and will
function identically on T2/T4/T8 and IMS T9000 transputers.

4 The transfer of messages across OS-links is not synchronized. This allows, for example, two four
byte messages to be sent and for them to be received as a single 8 byte message on the receiving
T2/T4/T8 transputer. This is not consistent with the communication of messages between pro­
cesses on the same processor. In this case the transfer of ~essages is synchronized.

On the IMS T9000 the communication of messages across DS-links is also synchronized. Code
which makes use of the lack of message synchronization across OS-links will have to be modi­
fied to run on networks of IMS T9000 transputers.

5 Storing a value from Areg, pops Breg into Areg and Creg into Breg, the value left in Creg is unde­
fined. On T2/T4/T8transputers the value i'n Creg actually remains unchanged. Although this was
never specified, this fact was used by some users. It should be noted that this is not guaranteed
to be the case on the IMS T9000.

The published behavior of the IMS T805 is defined in the IMS TB05 transputerdatasheet (document number
42144000) and in The Transputer Instruction Set - A Compiler Writer's Guide (document number 72 TRN
11905).

IMS T9000 transputer 133

14 Mixed T9000 and T2/T4/T8 systems

14.1 Byte mode

Each IMS T9000 data link (LinkO-3) may be set to operate either in virtual channel mode (as described in
section 4.2) or in byte mode by setting the associated bit in the VCPLinkO-3Mode registers. The IMS
T9000 links can be set independently of each other, enabling each IMS T9000 to be connected to several
different networks.

In byte mode, the IMS T9000 links are designed to operate in conjunction with the IMS C1 00 system proto­
col converter, which converts to the oversampled links (OS-links) used on earlier (T2/T4/T8) transputer
products. The IMS C100 uses a mode of operation in which it converts packetized messages on the IMS
T9000 links to and from byte-streams on the OS-links.

IMS T9000 to T2/T4/T8 - The IMS C100 buffers a packet, which it acknowledges as soon as it
has room to buffer another. This is repeated until it receives a packet terminated with an EOM,
which it acknowledges when the last byte is acknowledged on the OS-link.

PowerOnReset
Reset

Analyse

Error

CLinkO

as link

as link C100

as link

as link

Reset
TReset ResetOut
Analyseln

signifies packetized protocol

• • signifies byte stream protocol

,..---- ... CLinkO

OS link

OS link T9000

OS link

OS link

Reset

Error

I I
I

ROM

Figure 14.1 Converting an IMS T9000 transputer for use in a T2/T 4/T8 series network

T2/T4/T8 to IMS T9000 - The IMS T9000 sends information about how much data it wishes to
input on a separate virtual channel to the IMS C100. The IMS C100 then forms packets to send
to the IMS T9000. The IMS C100 informs the IMS T9000when an unsolicited byte arrives, to enable
al terna t i ve to work. This is done by sending a zero-length message to the IMS T9000.

134 IMS T9000 transputer

.. ------ CLink1 CLinkO fc-------

.. _Q~-'lD~_ . "*_Q~Ii!:l~ ___

.. _Q~llDlL_ C100 ~ _ QS_llnlL ___
T2/T4/T8

.. _Q~llD~_ r< - Q~JlnlL ___

.. _Q~llD~_ "* _ QSJlDlL ___

ResetOut Reset
Reset AnalyseOut Analyse

Error Error

- - - signifies packetized protocol

- signifies byte stream protocol

Figure 14.2 Converting a T2/T4/T8 series transputer for use in an H-series network

The IMS C1 00 can respond to both data bytes and acknowledges on the OS-links immediately by buffering
data from the IMS T9000 and holding a count of the input length, thus maintaining full bandwidth along them.

Note that two IMS T9000 links in byte mode will not work correctly if connected directly together.

Refer to the IMS C 100 System Protocol Converter Preliminary Information for further information on enab­
ling IMS T9000s to interface with earlier transputer products and vice versa.

IMS T9000 transputer 135

15 Package specifications

The IMS T9000 is available in a 208 pin ceramic quad flat pack package which conforms to JEDEC specifi­
cations. It is a cavity down package with the dimensions and thermal characteristics detailed below.

15.1 208 pin ceramic quad flat pack package dimensions

52

~ . A ~2

@] t
Seating A1
plane

o
0 1

0 3 --------------~~I

208 pin ceramic
quad flat pack
cavity down

top view

Detail A-A

156

... ' A-A

H Datum
plane

Figure 15.1 208 pin ceramic quad flat pack dimensions

136 IMS T9000 transputer

Millimeters Inches
Symbol Min Max Min Max Notes

A 4.07

A1 0.25

A2 3.17 3.67

0 31.65 32.15

01 27.90 28.10

03 25.50 Ref

ZD 1.25 Ref

E 31.65 [32.15

E1 27.90 28.10

E3 25.50 Ref

ZE 1.25 Ref

L 0.651 0.95

e 0.50 Basic

B 0.151 0.25

Notes

To be determined at seating plane C.

2 To be determined at seating plane H.

0.160

0.010

0.125 0.144

1.246 1.266 1

1.098 1.106 2

1.004 Ref

0.049 Ref

1.246 [1.266 1

1.098 1.106 2

1.004 Ref

0.049 Ref

0.0261 0.037

0.020 Basic

0.0061 0.010

Table 15.1 208 pin ceramic quad flat pack dimensions

15.2 208 pin ceramic quad flat pack thermal characteristics

The junction to case thermal resistance (8Jc) of the package is given below.

Parameter

Junction to case thermal resistance

Table 15.2 Thermal characteristics

Technical notes describing the thermal behavior of specific package and heat sink combinations will be
issued subsequent to this preliminary information.

IMS T9000 transputer 137

16 Thermal management

The following section describes the relationship between the thermal resistance, temperature and power
dissipation of the device.

The peak operating temperature TJ of the chip is:

TJ = TA + eJA * Po

where TA is the external ambient temperature in oc, eJA is the junction-to-ambient thermal resistance in
°C/w, and Po is the peak power dissipated by the chip. The maximum junction temperature TJ for an IMS
T9000 to operate at the specified maximum operating frequency is 100°C. Derating curves of maximum
operating frequency against power dissipation will be included in the final datasheet.

eJA for the package is dependent on air flow and heat sink:

eJA = eJC + eCA

where eCA is the case-to-ambient thermal resistance and eJC is the junction-to-case thermal resistance
which is given in the table 15.2.

A reasonable operating ambient temperature range (T A) can be achieved using a heat sink and/or forced
air flow cooling. A heat sink and ambient airflow cooling can be used to reduce the case to ambient thermal
resistance (eCA) and hence the junction to ambient thermal resistance (eJA), thus increasing T A The design
of a heat Sink will need to be determined by the system designer taking into account both thermal perform­
ance requirements and size requirements.

Power considerations

The intemal power dissipation of the IMS T9000 depends on Vee, and is substantially independent of tem­
perature. It is dependent on operating frequency and program execution. The typical peak internal power
dissipation (PINT) for an IMS T9000 operating at 50 MHz is 3W.

The total power dissipation of the IMS T9000 is dependent on operating frequency, program execution,
external memory configuration, and output pin loading.

The total peak power dissipation Po of the chip is:

Po = PINT + PpMI

The peak power dissipation of the PMI (PPMI) can be determined for a given memory configuration from
the following equation:

where,

PPMI = VCC2 * ((npA * Cp1nA * fA) + (npS * Cp1nS * fs) + (npo * Cp1no * fo))

np is the total number of active (address/ strobel data) pins
Cp1n is the actual capacitance per (address/ strobel data) pin
f is the effective operating frequency per (address/ strobel data) pin

The maximum allowable capacitances that can be connected to each class of pins are:

Symbol Parameter Max Units

Cp1nA Capacitance per address pin 250 pF

Cp1nS Capacitance per strobe pin 60 pF

Cp1no Capacitance per data pin 60 pF

npA * Cp1nA Total address bus capacitance 2500 pF

nps * Cp1nS Total strobe pins capacitance 500 pF

npo * Cplno Total data bus capacitance 5000 pF

Table 16.1 Capacitance specifications

138 IMS T9000 transputer

": . ,,:,,:.:.

FEATURES

32 way programmable packet router
100 Mbits/s serial bi-directional links
640 Mbytes/s bandwidth
Concurrent processing of packets
High rate of packet processing

- up to 200 M packets/s
Less than 1 J.l second packet latency
Non-blocking crossbar
Separate control system
Wormhole interval routing algorithm
Cascadable to any depth
No loss of signal integrity
Partitioning
Grouped adaptive routing

This is preliminary information on a product under
development and product details may change.

!, l ~5~©~~u~~~

139

IMS C104
packet routing

switch
Preliminary Information

System Command V'---'
1 Clink 01

services processor r
1 Clink 11

1I

U
Link 0

32x32
Crossbar .

switch

.

~
Link 31

INMOS IS a member of the SGS-THOMSON Microelectronics Group

April 1991

42147001

140 IMS C104 packet routing switch

1 Introduction

This document contains preliminary information for the IMS C104 packet routing switch. The IMS C104 is
part of a new product family based around the IMS T9000 transputer.

The IMS C1 04 is a complete, low latency, packet routing switch on a single Chip. It connects 32 high band­
width serial communication links to each other via a 32 by 32 way non-blocking crossbar switch, enabling
messages to be routed from any of its links to any other link. The links operate concurrently and the transfer
of a packet between one pair of links does not affect the data rate for another packet passing between a
second pair of links. Each link can operate at up to 100 MBits/s, providing a bidirectional bandwidth of 20
MBytes/s, with the IMS C104 supporting a rate of packet processing of up to 200 M packets/so

The IMS C104 allows communication between IMS T9000 transputers that are not directly connected. A
single IMS C1 04 can be used to connect up to 32 IMS T9000 transputers. The IMS C1 04 can also be con­
nected to other IMS C104s to make larger and more complex switching networks, linking any number of
IMS T9000 transputers, link adaptors, and any other devices that use the link protocol. Another member
of the IMS T9000 productfamily, the IMS C101 flexible link adaptor, will allow links to be interfaced to periph­
eral buses and devices.

The IMS C104 enables networks to be built which effectively emulate a direct connection between each
of the devices in the system. In the absence of any contention for a link output, the packet latency will be
less than 1 J.l- second.

A message on aiMS C1 04 communication system is transmitted as a sequence of packets. To ensure that
packets which are parts of different messages can be routed, each packet contains a header. The IMS C1 04
uses the header of each packet arriving to determine the link to be used to output the packet. Anything after
the header is treated as the packet body until the packet terminator is received. This enables the IMS C1 04
to transmit packets of arbitrary length.

In most packet switching networks complete packets are stored intemally, decoded, and then routed to
the destination node. This causes relatively long delays due to high latency at each node. To overcome
this limitation, the IMS C104 uses wormhole routing, in which the routing deciSion is taken as soon as the
routing information, which is contained in the packet header, has been input. Therefore the packet header
can be received, and the routing decision taken, before the whole packet has been transmitted by the
source. A packet may be passing through several nodes at anyone time. Thus, latency is minimized and
transmission can be continuous.

The term wormhole routing comes from the analogy of a worm crawling through soil, creating a hole that
closes again behind its tail. Wormhole routing is invisible as far as the senders and receivers of packets
are concemed, its only effect is to minimize the latency in message transmission.

The routing algorithm which makes the routing decision is called interval labeling, which is complete, dead­
lock free, inexpensive and fast. Each destination in a network is labeled with a number, and this number
is used as the destination address in a packet header. Each link in a routing switch is labeled with an interval
of possible header values, and only packets whose header value falls within that interval are output via
that link. .

The IMS C1 04 is controlled and programmed via a control link. The IMS C1 04 has two separate control links,
one for receiving commands and one to provide daisy chaining. The control links enable networks of IMS
T9000 transputers and IMS C1 O4s to be controlled and monitored for errors. The control links can be con­
nected into a daisy chain or tree, with a controlling processor, such as an IMS T9000, at the root.

The IMS C1 04 contains a hardware mechanism to allow independently programmed networks to be con­
nected together. It also has additional citcuitryto reduce the impact of message congestion on worst-case
latency and bandWidth, in heavily loaded networks.

A set of tools will be available to support the configuration of IMS T9000 systems. The tools will provide
support in the configuration and initialization of networks consisting of IMS T9000 processors and IMS C1 04
routing switches. These tools will be contained as a standard part of the Version 3 toolsets for C, occam
and FORTRAN.

IMS C104 packet routing switch 141

2 Overview

2.1 Communication on IMS T9000 transputers

The IMS C104 is part of a new product family based around the IMS T9000 transputer. Communication
between processes on one IMS T9000 transputer takes place over software channels. Communication
between processes on different processors takes place over virtual channels. Multiple virtual channels are
multiplexed onto each physical link by a communications processor within the IMS T9000. The links use
a protocol which supports virtual channels and dynamic message routing, and provides a high data band­
width.

Each message is split into a sequence of packets, and packets from different messages may be inter­
leaved over each physical link. Interleaving packets from different messages allows any number of
processes to communicate simultaneously via each physical link. Communication channels can be estab­
lished between any two processes regardless of where they are physically located, or whether the chan­
nels are routed through a network. Thus, programs can be independent of network topology.

In order that packets which are parts of different messages can be distinguished by the transputer which
receives them, each packet contains a one or two byte header which identifies a virtual input channel of the
receiving transputer. The packet header is also used to route the packet through a network. Bytes following
the header are treated as the data section of the packet until a packet termination token is received. A
packet termination token is either an EOP (end of packet) token or an EOM (end of message) token.

The maximum length of data in each packet which the IMS T9000 can transmit is 32 bytes. All but the last
packet of a message contains the maximum amount of data; the last contains the maximum amount of data
or less.

The communications processor within the IMS T9000 enforces a high-level protocol on each virtual
channel. To maintain synchronized communication, and to ensure that no data is lost, each packet of data
sent along a virtual channel must be acknowledged before the next is sent. The last packet must be
acknowledged before the outputting process is rescheduled. Data packets on a virtual channel are ac­
knowledged by the communications processor by sending acknowledge packets on another virtual chan­
nel back to the processor which sent them. Acknowledge packets are packets containing no data and
which are always terminated by an EOP token. This acknowledgement is process-to-process and is trans­
parent to intermediate network components.

Virtual channels always occur in pairs between pairs of communicating processors, with one virtual
channel in each direction. If a message is being communicated in one direction the virtual channel in the
opposite direction is used to return acknowledge packets to the sender. The associated pair of virtual
channels is referred to as a virtual link. A virtual link can transfer messages in both directions at the same
time with data packets and acknowledge packets being interleaved on both of the virtual channels.
Because virtual channels are always paired in this way it is not necessary to include source information
in the packets. Thus packet headers need only represent their destinations.

The IMS C104 allows communication between IMS T9000 transputers that are not directly connected.

142 --------- IMS C104 packet routing switch

3 Operation of IMS C104 networks
A single IMS Cl04 can be used to connect up to 32 IMS T9000 transputers that are not directly connected
to each other. The IMS Cl 04 can also be connected to other IMS Cl O4s to make larger and more complex
switching networks, linking any number of IMS T9000 transputers, link adaptors, and any other devices that
use the link protocol.

The IMS Cl04 uses a 1 or 2 byte header of each packet arriving, to determine the link to be used to output
the packet. The output link taken is independent of the input link on which the packet arrives. Bytes follow­
ing the header are treated as the data section of the packet until a packet termination token is received.This
enables the IMS Cl 04 to transmit packets of arbitrary length. .

An IMS Cl04 network consists of one or more IMS Cl04 routing devices connected together by bi-direc­
tional links. Each device is called a node of the network. Some links of the network are connected to the
exterior of the network, to transputers or to another network. These links are called terminal links.

In order to support the efficient routing of packets through a network the IMS Cl 04 implements a complete
routing algorithm in hardware.The component parts of the algorithm are described in the following sections.

3.1 Wormhole routing

In most packet-switching networks each routing switch inputs the whole of a packet, decodes the routing
information, and then forwards the packet to the next node. This is undesirable in transputer networks be­
cause it reqUires storage for packets in each routing switch and it causes long delays between the output
of a packet and its reception.

The IMS Cl04 uses wormhole routing (figure 3.1) in which the routing decision is taken as soon as the
header of the packet has been input. If the output link is free, the header is output and the rest of the packet
is sent directly from input to output without being stored. If the output link is not free the packet is buffered.
The packet header, in passing through a network of IMS Cl04s, creates a temporary circuit through which
the data flows. As the end of the packet is pulled through, the circuit vanishes. The wormhole analogy is
based on the comparison with a worm crawling through sandy soil, which creates a hole that closes again
behind its tail.

The implications of wormhole routing are that a packet can be passing through several IMS Cl04s at the
same time, and the head of the packet may be received by the destination before the whole packet has
been transmitted by the source. Thus latency is minimized and transmission can be continuous.

Wormhole routing is invisible as far as the senders and receivers of packets are concerned. Its major effect
is to minimize the latency in the message transmission.

Packet header is read, routing rIllliCilllli1iOilli4~1 _____ I~C104
decision is taken. .. .

If output link is free, packet is
sent directly from input to output
creating temporary circuit.

As tail is pulled through the circuit
vanishes. Header may enter next
switch before packet has left
previous switch.

C104 p ___ ~C104

Cl04 r===::::::JIIII~CI04

Figure 3.1 Wormhole routing

Cl04

Cl04

IMS C104 packet routing switch 143

3.2 Interval labeling

Wormhole routing requires a routing strategy to decide which link a packet should be output from. TIle IMS
C104 uses a routing scheme called interval labeling, whereby each output link of an IMS C104 is assigned
a range, or interval, of labels. This interval contains the number of all the terminal nodes (I.e. IMS T9000
transputer, gateway to another network, peripheral chip, etc) which are accessible via that link. Each
terminal link of a network has an associated interval of labels. On entering a network the packet header
contains a label. The label determines which link the packet is to be output to and hence must occur within
the interval associated with the destination link.

As the packet arrives at an IMS C1 04 the selection of the outgOing link is made by comparing the header
value with the set of intervals, as in the example shown in figure 3.2. The intervals are contiguous and non­
overlapping and assigned so that each header value can only belong to one of the intervals. The output
link associated with the interval in which the header value lies is the one selected. In the example the
incoming header contains the value 154, which lies between 145 and 186, so the packet is output along
link 8.

154

Compare with
interval table

s

187

145

98

15

0

link
elected

6
3
4

1
8 Send packet down link 8
7

2
5

Figure 3.2 Interval labeling

Figure 3.3 gives an example of interval routing for a network of two IMS C104's and six IMS T9000
transputers showing one virtual link per transputer. The example shows six virtual channels, one to each
transputer, labeled 0 to 5. The interval contains the labels of all virtual channels accessible via that link.
TIle interval notation [3,6) is read as meaning that the header value must be greater than or equal to 3 and
less than 6. If the progress of a packet with the header value 4 is followed from IMS T9OO01 then it is evident
that it passes through both IMS C104s before leaving on the link to IMS T9OO04.

C1041 C1042
Intervals: [0,1) [1,2) [2,3) [3,6) [0,3) [3,4) [4,5) [5,6)

Figure 3.3 Interval routing

144 IMS C1 04 packet routing switch

It is possible to label all the major network topologies such that packets follow an optimal route through
the network, and such that the network is deadlock free. Optimal, deadlock free labelings, which will be
provided to customers, are available for grids, hypercubes, trees and various multi-stage networks. A few
topologies, such as rings, cannot be labeled in an optimal deadlock free manner. Although they can be
labeled so that they are deadlock free, this is at the expense of not using one or more of the links, so that
the labeling is not optimal. Optimal deadlock free labelings exist if one or more additional links are used.

Interval routing ensures that each packet takes the shortest route with low control overhead, and that all
packets reach their destinations. It is independent of network topology and the output link selected is
independent of the input link used. 111e transfer of a packet between one pair of links does not affect the
data rate for another packet passing between a second pair of links. 111e hardware required to implement
interval routing is simple, enabling many routing decisions to be made concurrently, thus providing a high
rate of packet processing.

3.3 Modular composition of networks

To assist in the modular composition of routing networks the IMS C104 contains a hardware mechanism
to implement header deletion. Header deletion mode is where each link output of the IMS C104 can be
programmed to delete the header of a packet before transmitting the remainder of the packet.

111e benefits achieved by header deletion are:

Simplified labeling of systems, by separating out the task of labeling networks from that of
identifying virtual channels on IMS T9000 transputers.

2 Removal of the limit of a maximum of 64K virtual channels per system.

3 Hierarchical composition of networks.

Figure 3.4 illustrates how header deletion is used to simplify the labeling of systems by separating out the
task of labeling networks from that of identifying virtual channels on IMS T9000 transputers. Figure 3.4(a)
shows a system of 256 IMS T9000 transputers connected by a network of IMS C1 04s. All of the link inputs
in the system are programmed to receive 2 byte h~aders. The IMS C104 interval routing tables and IMS
T9000 headers (stored in the IMS T9000) are programmed to support 256 virtual channels connected to
each IMS T9000 transputer, with the header values allocated as shown in figure 3.4(a).

Figure 3.4(b) shows the same system but with all the link inputs in the system programmed to receive 1
byte headers, and with the terminal links of the IMS C104 network programmed to delete headers. Note
that the IMS T9000 transputer and the IMS C104 can both be configured to accept headers which are 1 or
2 bytes long. A packet is now transmitted with a header consisting of two 1 byte sub-headers. It should
be noted that as far as the IMS C104 is concerned the packet has just one header, any subsequent sub­
headers are treated as part of the data body of the packet. The first 1 byte sub-header routes the packet
across the network to the terminal link which the packet is to be sent out of; the terminal links being num­
bered from 0 to 255 as shown. This header is deleted as the packet leaves a terminal link of the network.
The second 1 byte sub-header is then exposed, and is interpreted by the destination IMS T9000 transputer
to identify the target virtual channel.

IMS C104 packet routing switch

Virtual
channels:

Virtual
channels:

0-255

0-255

(a) labeling the system with 2 byte headers

256-511 65279-65535

(b) labeling the system with two 1 byte headers

0-255 0-255

Figure 3.4 Header deletion used to separat~network labeling and virtual channel identification.

145

In this manner header deletion allows network routing information to be separated out from the identification
of virtual channels on IMS T9000 transputers. A first header is used to route the packet across a network
to a terminal link, and a second header is used to identify a virtual channel within the destination transputer.
The use of two 1 byte headers also decreases latency.

Lf'~r

The total number of virtu1:!1 channels in the system shown in figure 3.4 has not been increased, as headers
are still 2 bytes long in total. However, the total number of virtual channels in the system can now be in­
creased by programming the links on the IMS T9000 transputers to accept 2 byte headers (whilst the IMS
e104s still accept 1 byte headers).

In this case a packet is transmitted with a header consisting of a 1 byte sub-header and a second 2 byte
sub-header. As before, the first 1 byte sub-header routes the packet across the network and is deleted
as the packet leaves a terminal link of the network. Thus exposing the second 2 byte sub-header which
allows 64K separate virtual channels to be identified on the destination IMS T9000 transputer. Header
deletion thereby removes the limit of 64K virtual channels in a total system, and replaces it with the less
constraining limit of 64K virtual channels on each IMS T9000 transputer.

Header deletion also allows networks to be connected together, as shown in figure 3.5. In this example
a packet is routed through two networks and then to a virtual channel on an IMS T9000 transputer. All of
the terminal links of the two networks are set to header deletion mode. Figure 3.5 shows the header as it
is routed through the network. The header of the packet in this case is made up of three concatenated sub­
headers. The first sub-header routes the packet across the first network and is deleted as the packet leaves

146 IMS C104 packet routing switch

the terminal link of the network. The second sub-header routes the packet across the second network in
the same way. Finally the third header is exposed to identify the destination virtual channel on the IMS T9000
transputer.

In the case in which each IMS Cl 04 is treated as a separate network and has its link outputs set to header
deletion mode, packets can be explicitly steered across a network. This is at the expense of having 1 byte
of header for each IMS Cl 04 traversed.

direction of travel

header made up of
concatenated sub-headers

sub-network of Cl04s

packet body

_ used to route packet
through sub-network,
deleted on output.

sub-network of Cl04s ------

used to route packet
through sub-network,
deleted on output.

c=J~ header used to identify
virtual channel on T9000

T9000

Figure 3.5 Hierarchical composition of networks using header deletion

A major advantage of extending the capabilities of the IMS C1 04, through header deletion, is that headers
can be minimized for small systems, thus optimizing network latency and network bandwidth, whilst still
enabling more complex, larger, systems to be constructed efficiently.

3.4 Use of parallel networks

System wide communication can be provided by connecting each transputer to a single routing network
via one or more of its links. However, as each transputer has several links it can be connected to several
different networks. These can be completely distinct networks, or simply logical sub-networks of one net­
work of IMS Cl04s. The use of multiple networks can provide the following:

• Higher available processor to processor bandwidth.

• Separate networks for different priority messages. The link protocol does not provide any support
for associating a priority with a packet. This can be supported by providing a separate network
for each required message priority.

IMS C1 04 packet routing switch 147

• Separate networks for identified concurrent data streams in a system designed for a specific
application.

3.5 Hot spot avoidance

The routing algorithms described so far provide efficient deadlock free communications and allow a wide
range of networks to be constructed from a standard router. Packets are delivered at high speed and low
latency provided that there are no collisions between packets travelling through any single link.

Unfortunately, in any sparse communication network, some communications pattems cannot be realized
without collisions. A link over which an excessive amount of communication is required to take place at
any instant is referred to as a hot spot in the network, and results in packets being stalled for an
unpredictable length of time.

To eliminate network hot spots, the IMS C1 04 can optionally implement a two phase routing algorithm. This
involves every packet being first sent to a randomly chosen intermediate destination; from the intermediate
destination it is forwarded to its final destination. This algorithm, referred to as Universal Routing, is
designed to maximize capacity and minimize delay under conditions of heavy load. (This has been proven
by simulations and theory. Refer to 'A scheme for fast parallel communication' SIAM J. of Computing, 11
(1982) 350-361). It trades this off against best case performance in an empty network.

To implement two phase routing each packet must have a 'random' header prep ended to it as it enters the
randomizing network, which indicates its intermediate destination. This is implemented on the IMS C104
by enabling each input link to be programmed into a random header generation mode. In this mode the
input link adds a random header to the front of each packetthat it receives. The random header is generated
from within a programmed range. The IMS C1 04 then treats this random header as the header of the packet,
(the destination header is now treated as part of the data body of the packet), and routes the packet accord­
ingly. The packet is routed on through the network until it reaches its random intermediate destination where
the first phase of routing terminates.

Each IMS C104 link recognizes a range of portal values. The portal values set the random phase routing
interval. This interval is compared with each arriving header. Any packet with a header within this interval
will be recognized by the IMS C104; the random header will be deleted; and the header that is exposed
is used to route the packet through the network to its final destination.

Note that the deletion of the random header associated with universal routing is different to that of the
operation of header deletion mode, as described in section 3.3 above. Header deletion mode deletes
headers as the packet is sent along a link output, whereas header deletion associated with universal rout­
ing occurs when the random header of the packet input into the IMS C104 is recognized to be within the
portal range.

In order to ensure that deadlock does not occur the two phases of routing must use completely separate
links. This is achieved by assigning destination headers and random headers from distinct intervals. All
links in the network must be considered to be either destination or random links. The intervals associated
with a given link on aiMS C104 must be a sub-interval of the destination or random headerrange as appro­
priate.

Effectively this scheme provides two separate networks; one for the randomizing phase and one for the
destination phase. The combination will be deadlock free if the separate networks are deadlock free.

Universal routing can be beneficially applied to a wide variety of network topologies, including hypercubes
and arrays. There are a small number of network topologies where universal routing is not always
beneficial, as it can prevent highly optimal routings through the network being utilized.

148 IMS C104 packet routing switch

4 Control of the IMS C104

The IMS C104 is controlled and programmed via the control links (see chapter 5). Messages sent to the
IMS C104 allow its configuration registers to be set and read. The registers can be accessed via CPeek
and CPoke command messages sent along the control links and control the interval selector, the random
number generator and the links.

4.1 Programmable parameters

Interval routing is achieved in the IMS C104 by interval selector units. An interval selector performs the
routing decision for each packet. It consists of 35 base and limit comparators (see figure 4.1). Each compa­
rator is connected to a pair of registers, except the lowest whose base is fixed at zero. Each register is
connected to the limit of one comparator and the base of the next comparator, except the top registerwhich
is connected to the limit of the top comparator only. These registers must be programmed with a set of
unsigned 16 bit values ascending from zero, thus the intervals are non-overlapping and each header value
can only belong to one of the intervals. This sets the interval for each link. Any link can be assigned to any
interval. The output of each comparator is connected to a register (SelectLinkn). The SelectLinkn register
contains the number of the associated output link. The contents are sent to the address gate if the packet
header is greater than or equal to the base and less than the limit value of the adjoining comparator.

The interval selector reads in the value of the header and the pre-programmed comparators determine the
corresponding link address for output Once the path through the crossbar is set the tokens are passed
through until an EOP or EOM terminator token is detected.

Each link input of aiMS C1 04 can be set to random header generation mode by the Randomize flag. In
random header generation mode the random header generator produces a header which is added in front
of the existing header and is used to route the packet to a random node, thus implementing the universal
routing algorithm

The lower limit and range of the random number generator must be programmed into the RandomBase
and RandomRange registers.

Associated with each interval is a flag, held in the DiscardO-34 bit field, which indicates which of the inter­
vals is the portal. If the input header is indicated as belonging to a portal interval (i.e. the random header
has reached its random intermediate destination) the 'Discard' signal is sent to the header buffer telling
it to discard the header. In this case the output of the ladder of comparators is not sent to the crossbar and
the next 1 or 2 bytes of data (dependent on the HeaderLength flag) is taken as the new header and is again
processed using the interval labeling algorithm.

If the header is not flagged asthe portal by the DiscardO-34 bits the 'No' signal is sent to the address gate,
which then allows the address which is produced from the ladder of comparators to be sent out to the cross­
bar. If none of the flags DiscardO-34 is set, the portal mechanism is disabled.

IMS C104 packet routing switch 149

Interval34

SelectLink34 Comparator

Discard34

Address

Interval1

SelectLink1 Comparator

Discard1 IntervalO

SelectLinkO Comparator

DiscardO zero

Discard
Header

Figure 4.1 Interval selector registers

Each link can be set to input 1 or 2 byte headers. This is determined by the HeaderLengthO-31 flag in·
the configuration registers which are set after power on. It allows headers to be minimized for small sys­
tems, thus optimizing network latency and network bandwidth, whilst also enabling large homogeneous
systems to be constructed. Heterogeneous and hierarchical systems can be implemented using hierarch i­
cal labeling and header deletion (which is implemented by setting the DeleteHeaderO-31 flag for a given
link).

4.1.1 Partitioning

All the parameters described above are programmable on a per link baSis. This enables an IMS C104 to
be used as part of two or more different networks. For example, a single IMS C1 04 could be used for access
to both a data network and a control network (see figure 4.2).

Partitioning provides economy in small systems, where using an IMS C104 solely for the control network
is not desired.

150 IMS C104 packet routing switch

Network 1 Network 2
C104 used in a data network C104 used in a control network

[0,9)

[3,6) ~
I+---~

Single C1 04 used between 2 networks

Interval table for links 4, 5 and 6

Interval SelectLink

14 4

Netw ork2
[9, 10) 10 5

Link6
Link5

[0,9) Link4 c •
____ .-9101. ____

[10, 14)
---- ----

9 6

° I
-

LinkO
[1,2) Interval table for links 0, 1, 2 and 3

Link1 Link3 . .
[0,1) [3,6)

Link2

Interval SelectLink

6 3

Netw ork 1 [2,3) 3 2

2 ° 1 1

° -

Figure 4.2 Using partitioning to enable one IMS C1 04 to be used by two different networks

IMS C104 packet routing switch 151

4.1.2 Grouped adaptive routing

The IMS C1 04 can implement grouped adaptive routing. Sets of consecutive numbered links can be confi­
gured to be grouped, so that a packet routed to any link in the set would be sent down any free link of the
set. This achieves improved network performance in terms of both latency and throughput.

Figure 4.3 gives an example of grouped adaptive routing. Consider a message routed from C1041, via
C1042, to T90001. On entering C1042 the header specifies that the message is to be output down linkS
to T90001. If linkS is already in use, the message will automatically be routed down Link5, Link7 or linkS,
dependent on which link is available first. The links can be configured in groups by setting the GroupO-31
bit fields. Each bit corresponds to a link and can be set to 'Start' to begin a group and 'Continue' to be
included in a group, as shown in figure 4.3.

Link4

Link8

Link7

Link6

Link5

Settings in GroupO-31 bit field for C1042

o Start
1 Continue
2 Continue

Grouped

3 Continue
4 Start
5 Start
6 Continue
7 Continue Grouped
8 Continue
9 Start
10 Continue J Grouped

11 Start

31 Start

Figure 4.3 Grouped adaptive routing

/
/

152 IMS C104 packet routing switch

4.2 Registers

All the parameters described above are loaded into the appropriate registers by the command processor
in response to commands received on the control link (see section 5.1). The parameters must be supplied
before the device can operate.

The functionality controlled by these registers is described below. The complete bit format of each register
and the addresses of the registers are not included in this preliminary information.

Bit field Function

HeaderLength Sets the header length to 1 or 2 bytes

Randomize Sets a given link input to random header generation mode

DeleteHeader Sets a given link output to delete header mode

Table 4.1 Bit fields in the link configuration registers per link

Bit field Function

IntervalO-34 Sets the intervals for each link \

SelectLinkO-34 Indicates the associated link from which the packet is to be output

DiscardO-34 Indicates which of the intervals is the portal

Table 4.2 Interval selector registers per link

Bit field Function

RandomSeed Start of 16 bit pseudo-random sequence

RandomBase Base level of random number

RandomRange Range of random number

Table 4.3 Bit fields in the random nL-!mber generator registers per link

Bit field Function

Group Each bit can be set to 'start of group' or 'continuation of group'.

Table 4.4 Bit field to set grouped adaptive routing per link

IMS C1 04 packet routing switc'--h _____ _ 153

5 Control links

The control links on the IMS C104 allow a separate control network to be used to assist in configuring, error
handling and resetting of components connected in a system, even in the presence of errors on the data
communications links in the network.

The IMS C1 04 has two bidirectional control links; CLinkO and CLink1. They use the same electrical and
packet level protocols as the communication data/strobe (OS) links (refer to chapter 6). Thus, an IMS C104
can be connected by its control link to a data OS link of a controlling IMS T9000 transputer and the IMS
T9000 can issue commands to the IMS C104.

All communications with the controlling processor are via CLinkO. The IMS C1 04 is programmed via com­
mands along ClinkO. CLink1 provides a daisy-chain link, allowing a simple physical connectivity to be
used for controlling networks.

The control links can be connected into a daisy chain ortree, with a controlling processor at the root. Figure
5.1 shows daisy-chained IMS C104's connected to one of the data OS links of a controlling IMS T9000
transputer, each IMS C104 has 32 data OS links but is shown as having just 5 links for clarity.

o

T9000 Example shown with a controlling T9000 transputer

o o , 1 o

C104 C104 C104

/
Figure 5.1 A daisy-chained control link network

Figure 5.2 gives an example of a daisy-chained control link network in which the IMS C1 04 is used to route
control link packets from the control processor to the application network. In this example the controlled
application network consists of IMS T9000 transputers, and three data OS links of the IMS C104 are
connected to the control links of the application network to provide fan-out of the controlling system.

This provides a separate network of virtual channels between the root processor and the individual nodes
of the application network. The control network is in effect a root node with a singlevirtuallinkto each node
of the application network.

In order to establish the virtual channels between the root and each node, an identity and return address
must be given to each node. The identity address is used to establish whether or not a packet arriving on
CLinkO is for that node and if not the message is forwarded down CLink1 until it reaches its destination.
Any output must be prefixed by the return header in order to identify the node of origin to the controlling
process and to route the message through the IMS C1 04.

CLink1 is connected back to the IMS C1 04 by data OS link (LinkO), and used to route messages back to the
control processor.

154

control
processo , 0

control link

communication link

-

-

IMS C104 packet routing switch

routing device

controlled application network

T9000 T9000

t

--
t

--
t

T9000 T9000 T9000 -

I
--

I
-'

I

T9000 T9000 T9000 -

I I I

Figure 5.2 An IMS C104 providing fan-out.

5.1 Commands

A high level protocol is defined for the controlling network to allow the devices to issue commands to, and
receive responses from, other devices in the network. Commands are sent as packets with the first byte
after the header containing a command code, which may be followed by additional data. The following
table details the command codes. Each command is terminated by an EOM token.

Command Additional data Function

Start Return header Allocates an identity and return header to each node. This must be
the first command received following power on reset.

Reset Level Resets the IMS C104 to the given level (see chapter 7).

Identify None Returns the identity and the revision number of the device.

RecoverError None This command is used in error recovery on control system failure.

CPeek Address Retums the value stored at the given address in the device configu-
ration space. If the address is invalid an invalid status is returned.

CPoke Address, data Writes data to the configuration space at the given address. If the
address is invalid an invalid status is returned.

ErrorHandshake None Handshakes error message.

Tabie 5.1 Control link codes

IMS C104 packet routing switch 155

Each command message is acknowledged by an acknowledge packet which is a packet containing no
data and terminated by an EOP token. In addition the higher level control protocol requires that all com­
mand messages are acknowledged by a response message, in orderto avoid deadlock, before the control
process can send another command message to the same device. (However, Start, Reset and Recover­
Error command messages may be sentto any node at anytime to allow the control process to handle error
conditions in the network.)

The response message can contain the result of a CPeek or Identify command, or it may be simply a hand­
shake code corresponding to the command message. Each message is preceded by the retum header and
followed by an EOM token. Table 5.2 lists the response messages to each of the command messages. The
data parameter 'Status' Indicates whether or not there has been an error in performing the operation.

Response Additional data

StartHandShake None

ResetHandShake Status

IdentifyResult Device type and rev

RecoverHandShake None

CPeekResult Data, status

CPokeHandShake Status

Error Error code

Table 5.2 Control link responses

The error code indicates the cause of error as either;

• packet too short - for instance if the header length was set at 2 bytes and a packet consisting
of a1 byte header and a terminator code was received then an error would occur.

• header out of range - if the header value received was not within the range of the interval selector.

• link error

• control link error - protocol

• control link error - command code

All the error codes must be handshaken from the root with the ErrorHandShake command.

5.2 Link speeds

After power-on the control links run at a default speed of 1 0 MHz; this can be changed by means of CPokes.
The speed selection for control links is identical to that of the data OS links (see section 6.2), and the control
links share the same master clock.

5.3 Control link configuration registers

The link module hardware in each control link is identical to that in each data link. An equivalent set of con­
figuration bit fields is provided for each control link, as for the data links (see section 6.4).

\

156 IMS C104 packet routing switch

6 Data/Strobe links

The IMS C1 04 has 32 links used for routing, and two control links which are used for monitoring and control
purposes only. All of these links use a protocol with two wires in each direction, one for data and one to
carry a strobe signal and are referred to as data/strobe (OS) links.

The links are TTL compatible and are series matched to 100 ohm transmission lines.

Each OS pair carries tokens and an encoded clock. The tokens can be data or control tokens. Figure 6.1
shows the format of data and control tokens on the data and strobe wires. Data tokens are 10 bits long
and consist of a parity bit, a flag which is set to 0 to indicate a data token, and 8 bits of data. Control tokens
are 4 bits long and consist of a parity bit, a flag which is set to 1 to indicate a control token, and 2 bits to
indicate the type of control token.

Parity bit Parity bit

1 Dr: 1 Comrol fl'9
Data ~,~ I

0 0 0 o 0:

Data ~I Ul n
Strobe u

Bits covered by parity bit in second token ·1
Figure 6.1 Link data format

The parity bit in any token covers the parity of the data or control bits in the previous token, and the data/con­
trol flag in the same token, as shown in figure 6.1. This allows single bit errors in the token type flag to be
detected. Odd parity checking is used. To ensure the immediate detection of errors null tokens are sent
in the absence of other tokens. The coding of the control tokens is shown in table 6.1.

Flow control token FCT P100

End of packet EOP P101

End of message EOM P110

Escape token ESC P111

Null token NUL ESC P100

Table 6.1 Control token codings

IMS C104 packet routing switch 157

6.1 Low-level flow control

The DS link protocol separates the functions of flow control and process synchronization. Flow control is
done entirely within the link module and process synchronization is built into a higher-level packet system.

Token-level flow control is performed in each link module, and the additional flow control tokens used are
not visible to the higher-level packet protocol. The token-level flow control mechanism prevents a sender
from overrunning the input buffer of a receiving link. Each receiving link input contains a buffer for at least
8 tokens (more buffering than this is in fact provided). Whenever the link input has sufficient buffering avail­
able to consume a further 8 tokens a FCT is transmitted on the associated link output, and this FCT gives
the sender permission to transmit a further 8 tokens. Once the sender has transmitted a further 8 tokens
it waits until it receives another FCT before transmitting any more tokens. The provision of more than 8
tokens of buffering on each link input ensures that in practice the next FCT is received before the previous
block of 8 tokens has been fully transmitted, so the token-level flow control does not restrict the maximum
bandwidth of the link.

6.2 Link speeds

The IMS C1 04 links can support a range of communication speeds, which are programmed by writing to
registers using the CPoke command via control link CLinkO. At reset all links are configured to run at the
BaseSpeed of 10 Mbits/sec.

Only the transmission speed of a link is programmed as reception is asynchronous. This means that links
running at different speeds can be connected, provided that each device is capable of receiving at the
speed of the connected transmitter.

The transmission speed of all of the links on a given device are related to the speed of a single on-chip
clock. The frequency of this master clock is programmed through the SpeedMultlply bit field described
in section 6.4. The master frequency is divided down to obtain the transmission frequency for each link.
The division factor can be programmed separately for each link via the Speed Divide bit field described
in section 6.4. For a given device, with a given programmed master clock frequency, this arrangement
allows each link to be run at one of four transmission speeds, as shown in table 6.2.

Speed Divide

Speed Multiply 11 12 14 18 BaseSpeed

8 80 40 20 10.0 10

10 100 50 25 12.5 10

12 Reserved 60 30 15.0 10

14 Reserved 70 35 17.5 10

16 Reserved 80 40 20.0 10

18 Reserved 90 45 22.5 10

20 Reserved 100 50 25.0 10

Table 6.2 Link transmission speed in Mbits/sec

6.3 Errors on links

Link inputs detect parity and disconnection conditions as errors. A disconnection error indicates one of
two things: either the link has been physically disconnected, or an error has occurred at the other end of
the link which has then stopped transmitting. The bit fields ParityError and DiscError indicate when parity
and disconnect errors occur.

The DS links are designed to be highly reliable within a single SUbsystem and can be operated in one of
two environments, determined by the LocalizeError bit in each link.

158 IMS C104 packet routing switch

In the majority of applications, the communications system should be regarded as being totally reliable.
In this environment errors are considered to be very rare, but are treated as being catastrophic if they do
occur. This environment is the default on power-on reset, with all links having their LocalizeError bit set
to O. If an error occurs it will be detected and reported via a message sent along CLinkO. Normal practice
will then be to reset the subsystem in which the error has occurred and to restart the application.

For some applications, for instance when a disconnect or parity error may be expected during normal oper­
ation, an even higher level of reliability is required. This level of fault tolerance is supported by localizing
errors to the link on which they occur, by setting the LocalizeError bit of the link to 1. In addition a data
link layer process must be connected to each virtual channel associated with the link. These processes
are responsible for establishing and maintaining a higher level flow control, using time-out to detect that
a message has not completed, and requesting retransmission. If an error occurs, packets in transit at the
time of the error will be discarded or truncated.

For information on the data link layer refer to chapter 4 of 'Computer Networks' by Andrew S. Tanenbaum,
published by Prentice-Hal/International (ISBN: 0-13-166836-6).

6.4 Link configuration registers

The links are controlled via registers accessed via the control link (see chapter 4).

Each link has three registers, the LinkMode register, LinkCommand register and LinkStatus register.

In addition the configuration space contains the DSLinkPLL register which contains the SpeedMultiply
bit. This takes the 5 MHz input clock and multiplies it by a programmable value to provide the root clock
for all the OS links.

The tables below describe the functionality of the OS links to be controlled, and the associated bit fields
in the configuration registers.

Bit field Function

SpeedMultiply Sets OS link master clock to required value (see table 6.2).

Table 6.3 Bit fields in the DSLinkPLL register

The LinkO-3Mode registers power up into a default state and may be re-programmed before or after the
link has been started.

Bit Bit field Function

1:0 Speed Divide Sets transmit speed of the LinkO-3 (see table 6.2).
00 = /1, 01 = /2, 10 = /4, 11 = /8

2 SpeedSelect Sets the LinkO-3 to transmit at the speed determined by the SpeedDi-
vide bits as opposed to the base speed of 10 Mbits/s.

3 LocalizeError Packets in transit at the time of an error will be discarded or truncated.
When set false communication on the link stops until the link is reset.

Table 6.4 Bit fields in the LinkO-3Mode registers

The LinkO-3Command registers are write only and contain four bits which when set cause a specific
action to be taken by the OS link.

IMS C104 packet routing switch 159

Bit Bit field Function

0 ResetLink Resets the link engine of the LinkO-3. The token state is reset, the flow
control credit is set to zero, the buffers are marked as empty, and the
parity state is reset.

1 StartLink When a transition from Oto 1 occurs LinkO-3 will be initialized and com-
mence operation.

2 ResetOutput Sets both outputs of LinkO-3 low.

3 WrongParity The LinkO-3 output will generate incorrect parity. This may be used to
force a parity error on the transputer at the other end of the LinkO-3.

Table 6.5 Bit fields in the LinkO-3Command registers

, The LinkO-3Status registers are read only and contain six bits which contain information about the state
of the DS link.

Bit Bit field Function

0 Link Error Flags that an error has occurred on the LinkO-3.

1 LinkStarted Flags that the output LinkO-3 has been started and no errors have been
detected.

2 ResetOutputCom- Flags that ResetOutput has completed on the LinkO-3.
plete

3 ParityError Flags that a parity error has occurred on the LinkO-3.

4 DiscError Flags that a disconnect error has occurred on the LinkO-3.

5 TokenReceived Flags that a token has been seen on the LinkO-3 since ResetLink.

Table 6.6 Bit fields in the LinkO-3Status registers

160 IMS C1 04 packet routing switch

7 Levels of reset

The IMS C104 can be reset to a given level using the Reset command or Reset pin. The different levels
of reset are described below.

A reset results in any packets currently being routed within the IMS C104 being lost, except for a Reset3
command which has no effect on the IMS C104.

7.1 Level 0 - hardware reset

The network can be retumed to level 0 by taking all the Reset pins in the network high.

After a hardware reset each IMS C104 is in the following state:

All the (data and control) links are in Wait state with a default speed of 10 MHz. The identity and retum
headers for the control links are undefined. All registers are undefined and contain their default values. The
packet processors are inactive.

7.2 Level 1 - labelled control network

The network can be reset to level 1 by sending a Reset1 command message to each IMS C104.

This level of reset leaves the identity and retum headers unaltered and all connected control links remain
operational. All the data links are in Wait state with a default speed of 10 MHz. All registers are reset to
their level 0 default values. All data in the IMS C104 is lost.

7.3 Level 2 - configured network

The network can be reset to level 2 by sending a Reset2 command message to each IMS C104.

At this level of reset the identity and retum headers are unaltered and register contents are unaffected. All
data in the IMS C1 04 is lost. The data links are reset and retumed to the Wait state. The packet processors
are deactivated.

7.4 Level 3

Reset level 3 is invalid on the IMS C104. If a Reset3 command message is received from an IMS T9000
transputer it is hand shaken with status set to false.

IMS C1 04 packet routing switch 161

8 Software

8.1 IMS T9000 configuration tools

A set of tools is available to support the configuration of IMS T9OO0 systems. The tools will, among other
things, provide support for the configuration and initialization of networks consisting of IMS T9000 proces­
sors and IMS C104 routing switches.

The tools will be able to set the attributes of each device in the network by sending initialization data down
the control link, and will setthe processors into a state ready to receive an application down the data links.

A Network Description Language (NDL) is used to describe networks of devices and the labeling of IMS
C 1 04s, and wi II allow the specification of values for all the attributes of a device.

The Network Description Language will support the following:

• declaration of processors, IMS C104 routing chips and their interconnections.

• specification of attributes for IMS C1 04 routing chips; including interval settings, header deletion
and randomization characteristics.

• the construction of the control system, including chains of devices plus a predefined method of
using the IMS C1 04 as a fan-out. It is possible to calculate the IMS C1 04 attributes (including inter­
val values) for such devices used in the control system.

• desired message routing paths.

From the NDL file the initialization tools produce a file containing the network initialization data. This data
is sent down the control link to the network.

Once the network has been initialized, programs are built and loaded to the network in the same way as
for T2{T4{T8-series processors.

162 IMS C104 packet routing switch

9 Preliminary pin designations

Pin In/Out Function

VCC,GND Power supply and return

Cap Plus, Cap Minus External capacitor for internal clock power supply

Clockln in Input clock

Reset in System reset

Table 9.1 IMS C104 system services

Pin In/Out Function

LinklnDataO-31 in Link input data channels

LinklnStrobeO-31 in Link input strobes

LinkOutDataO-31 out Link output data channels

LinkOutStrobeO-31 out Link output strobes

CLinklnDataO-1 in Control link input data channel

CLinklnStrobeO-1 in Control link input strobe

CLinkOutDataO-1 out Control link output data channel

CLinkOutStrobeO-1 out Control link output strobe

Table 9.2 IMS C104 links

163

•••.... ® IMS C100
system protocol

converter

FEATURES

Communicates between T2xx/T4XX/TSxx and
T9000 transputers

T2/T4/TS-series and T9-series data link
protocol
T2/T4/TS-series and T9-series control
protocol
Converts data and control protocols

Four modes of operation:

Mode 0: Enables a single T9-series transputer
to be used in a T2/T4/TS-series network

Mode 1: Enables a T2/T4/TS-series transputer
system to use a T9-series subsystem

Mode 2: Enables a T9-series transputer
system to use an existing T2/T4/TS-series
subsystem without modifications to the
T2/T 4/TS software

Clink 0

as Link 0

as Link 1

as Link 2

Mode 3: Enables a T9-series transputer as Link 3
system to use an existing T2/T4/TS-series
subsystem, and enables a T2/T4/TS-series
transputer to emulate a T9-series transputer

This is preliminary information on a product
under development and product details may
change.

Jt.., L ~~~;~gr::D~~
INMOS is a member of the SGS-THOMSON Microelectronics Group

Preliminary Information

conversion unit

Data
conversion unit

Data
conversion unit

Data
conversion unit

System services

Clink 1

DS Link 0

DS Link 1

DS Link 2

DS Link 3

April 1991

42147501

164 IMS C100 system protocol converter

1 Introduction

This document contains preliminary information for the IMS C100 system protocol converter.

The IMS C100 is part of a new product family based around the IMS T9OO0 transputer, referred to as the
'T9-series'. The current family of T2xxJT4xxJT8xx transputers are referred to as 'T2{T4{T8-series'.

T9-series transputers are binary compatible with T2{T4{T8-series transputers. However T9-series
transputers have different physical links and data protocols than T2{T4{T8-series transputers. The IMS
C100 is a system protocol converter which converts between these protocols. It allows mixed systems,
consisting of both T9-series and T2{T4{T8-series transputers, to be constructed.

T2{T4{T8-series transputer links consist of two wires, one in each direction, and use an asynchronous bit­
serial (byte-stream) protocol. Each bit received is sampled five times and hence the links are referred to
as oversampled (OS) links. Each link provides a pair of channels, one in each direction and can operate
at up to 20 MBits/sec, providing a bidirectional bandwidth of 2.4 MBytes/sec.

T9-series transputer links consist of four wires, two in each direction, one carrying data and one carrying
a strobe. The links are therefore referred to as data-strobe (OS) links. Each link can operate at up to 100
MBits/sec, providing a bidirectional bandwidth of 20 MBytes/sec. The OS link protocol supports virtual
channels and dynamic message routing, and provides a high data bandwidth.

T2{T4{T8-series transputers are controlled by means of Reset, Analyse and Error pins on each device
and are inspected and booted by means of a special protocol on their links. On T9-series transputers this
is achieved by special links, called control links.

The IMS C100 provides an inter-networking solution for transputer systems, allowing systems to be
constructed using the optimum mix of transputers, for processing power, communication bandwidth and
system cost.

The IMS C100 converts both data and control protocols of T9-series transputer systems to those of
T2{T4{T8-series, and vice versa. It is intended to be used in conjunction with software running on either
T9-series or T2{T4{T8-series transputers and can operate in one of four modes.

This document describes the operation of the IMS C1 00 in detail, and summarizes the background informa­
tion necessary to understand the full implications of each mode of operation.

IMS CtOO system protocol converter 165

2 IMS C100 modes of operation

This chapter describes the modes of operation of the IMS C100 and gives examples of its use in each
mode. For a complete understanding of the implications of this chapter consult chapters 3 and 4, which
describe the link and control protocols of T2/T4/T8-series and T9-series components, and how the IMS
C100 converts between these protocols.

The four modes of operation of the IMS C100 are listed below:

Mode 0: enables a T9-series transputer with ROM, from which the transputer boots, to emulate
a T2/T4/T8-series transputer.

Mode t: enables a T2/T4/T8-series system to use a T9-series sUbsystem.

Mode 2: enables a T9-series system to use an existing T2/T4/T8-series subsystem without any
modification to the existing T2/T4/T8-series software.

Mode 3: enables a T9-series system to use an optimum T2/T4/T8-series subsystem and
enables a T2/T4/T8-series transputer to emulate a T9-series transputer.

2.1 Mode pins

The IMS C1 00 has two mode pins (ModeO-1) which must be set at power-on. These pins determine which
type of conversion is to be performed between the data links, which system interface is regarded as master,
and whether OSLinkO has special initial behavior. In modes 2 and 3 OSLinkO is usurped to generate the
pre-boot protocol of the T2/T4/T8-series transputer until the transputer is booted (refer to section 4.3.3 for
further information). Table 2.1 details the mode settings.

The as link protocol synchronizes the communications of each byte of data, and hence the term byte­
stream protocol has been adopted. OS links use a high level packet protocol and hence the term
packetized protocol has been adopted. Each IMS T9000 transputer OS link may be set to operate in virtual
channel mode or in byte mode (see section 3.2.1). The IMS T9000 OS links operating in byte mode, in
conjunction with an IMS C100, convert the OS links to the byte stream protocol.

Modet ModeO Mode Conversion type System master OSLinkO

Low Low 0 Byte-stream Reset, Analyse, Error Not special

Low High 1 Packetized Control link 0 Not special

High Low 2 Byte-stream Control link 0 Special

High High 3 Packetized Control link 0 Special

Table 2.1 ModeO-1 pins

The behavior of the IMS C100 is undefined if the mode pins are changed after reset.

166 IMS C100 system protocol converter

2.2 Mode 0: Enables a single T9-series transputer to be used in a T2/T4/T8-series network

The purpose of this mode is to allow a single IMS T9000 transputer to operate as a fast IMS TS05.

Connect control link ClinkO of the IMS C1 00 to ClinkO of the IMS T9000 transputer, connect the four data
OS links (DSlinkO-3) of the IMS C100 to the four data links of the IMS T90oo, and set the IMS C1 00 into
mode 0, as shown in figure 2.1. The combination of the IMS C1 00 and the IMS T9000 transputer has Reset,
Analyse and Error pins.

PowerOnReset
Reset

Analyse

Error

ClinkO

as link

as link C100

as link

as link

Reset
TReset ResetOut
Analyseln

signifies packetized protocol

.. • signifies byte stream protocol

.----.. ClinkO

OS link

OS link T9000

OS link

OS link

Reset

Error

I I
I

ROM

Figure 2.1 Mode 0 - converting an IMS T9000 transputer for use in a T2/T4/TS-series network

The StartFromROM pin on the IMS T9000 transputer must be set high so that the IMS T9000 transputer
boots from ROM. The ROM software configures the IMS T9000, and sets the IMS T9000 data links into byte
mode, so that they interact with the IMS C1 00 OS links operating in byte-stream conversion mode to gener­
ate the T2/T4/TS-series transputer protocol on the as links of the IMS C100. The software, which will be
supplied to customers, also emulates the pre-boot protocol of T2/T4/TS-series transputers.

The TReset pin indicates transputer reset of the connected T2/T4/TS-series transputer. If the TReset pin
of the IMS C100 is asserted with Analyseln low, the IMS C100 is reset, and the signal is reproduced on
ResetOut, which causes the IMS T9000 to be reset also. When the Reset pin on the IMS T9000 goes low
execution is restarted from ROM.

The Reset pin is provided in this case for systems which separate power-on reset from transputer reset.
When the Reset pin is asserted it always causes a reset of both the IMS C100 and the attached IMS T9000
(by being reproduced on ResetOut).

The TReset and Analyseln signals are used in this mode only and are ignored in modes 1, 2 and 3.

IMS C100 system protocol converter 167

2.3 Mode 1: Enables a T2/T4/T8-serles system to use a T9-series subsystem

The purpose of this mode is to allow a T9-series SUbsystem to be connected to, and controlled from, a
T2/T4JTB-series network.

Communication is in the packetized protocol, and software must be run on the T2/T4JTB-series system to
interface the packetized protocol, and to control the T9-series SUbsystem.

To enable a T2/T4JTB-series system to use an T9-series subsystem setthe IMS C1 00 to mode 1 , and con­
nect one or more OS links from the T2JT4JTB-series system to the OS data links of the IMS C100. Since
T9-series systems are controlled entirely via links this enables T9-series subsystems to be configured,
booted, reset and analyzed from a T2/T4JTB-series system. An example network is shown in figure 2.2.
The RAE signals to the T2/T4JTB-series network are shown by the dotted line. The IMS C004 programmable
link switch has 32 links, of which only six are shown in this example.

Note that, by 'looping back' through the control links of the IMS C100, the T2/T4JTB-series system obtains
full control of the device. Note, however, that the IMS C100 must be given its identity before any of the
devices in the T9-series subsystem.

T2/T 4JTB-series
control input port
~

Reset
Analyse
Error

• • 14-----+lT2/T4JTB

T2JT4JT8/4---~T2/T4JTBI+----rr:2/T4JTB

I
I
I
I
I
I
I

1-------------1
I I
I C100 I
L I

II
L __ _

~ l.... CLinkO }
- - OSLink1 DSLink1 - - -} T9-series
- - OSLink2 _-_-_-_ OS Links control port

--------- OSLlnk3

---- signifies packetized protocol

• • signifies byte stream protocol

Figure 2.2 Mode 1 - T2/T4JTB-series system using T9-series subsystems

168 IMS C1 00 system protocol converter

2.4 Mode 2: Enables a T9-serles system to use an existing T2fT4fT8-series subsystem

The purpose of this mode is to allow T9-series systems to use an existing T2/T4/T8-series subsystem.
without having to change either the hardware or the software of the T2/T 4/T8-series subsystem. For exam­
ple, a SCSI TRAM purchased as a functional sUbsystem from a third party supplier (Including both hardware
and the associated software drivers) can be used unmodified as a subsystem to a T~-series system. Thus
this mode protects users existing investment in transputer-based equipment.

Figure 2.3 shows how a T2/T4/T8-series control port can be provided using an IMS C1 00 in mode 2. Each
IMS C104 packet routing switch has 32 data links, of which only seven are shown in this example. Note
that the data OS links of the IMS C100 must be connected directly to IMS T9oo0data links set into byte
mode, and cannot be connected to an IMS C104 packet routing switch.

The T2/T4/T8-series subsystem is controlled via CLinkO of the IMS C100. After power-on, commands sent
along CLinkO are converted to the appropriate T2/T4/T8-series byte sequences which are sent along
OSLinkO of the IMS C1 00. This allows the memory of transputers in the T2/T4/T8-series subsystem to be
peeked and poked, and for it to be booted.

Assertion of the AnalyseOut and ResetOut pins results in the Reset and Analyse pins of the connected
T2/T4/T8-series transputer being asserted, enabling it to be stopped and analyzed.

~§1+-~~;i~~>~~ ~: C100) ~
t ///// : \\ '-.'-.'-.'-.'-. L---l-----------...J

/ \ '-. 1

I--').---,-_-{,/-----" 1 ~\---.. /i------------I
i \ 1 - _...J
1 -- - T9000 I-----~ T9000 1-------'<""-+1 T9000 14-+----1 }
1 \ 1 C100 T2/T~/T8-
1 \ 1 ~~
1 \ t 1 control
1----- _________ ..::,, ___ J port

\
\

r---------, \

C100 'I
CLinkO ...J

'-----.-j DSLinkO
DSLink1 OSLink1

DSLlnk2
L..-_____ -.-j DSLink3

ResetOut
AnalyseOut

Error

---- signifies packetized protocol

- signifies byte stream protocol

Reset
Analyse
Error

T2/T 4/T8-series
control port

Figure 2.3 Mode 2 - T9-series system using existing T2/T4/T8-series subsystems

IMS C100 system protocol converter 169

2.5 Mode 3: Enables a T9-series system to use a T2/T4/T8-serles subsystem

The purpose of this mode is to allow T9-series systems to be bui It which use T2/T 4/T8-series subsystems,
enabling systems to be built using the optimum mix of transputers with regard to cost and performance.

Communication is in the packetized protocol. Thus the data OS links of the IMS C1 00 can be connected
directly to an IMS C104 packet routing switch, as in figure 2.4.

Software to interface to the packetized protocol must be run on all T2/T4/T8-series links connected to the
IMS C1OO.

~--------------I

--~ t /----~ I /----~ t rl

cLink08cLink1 6 8 I

-- T9OO0 ----~~y~~---- T9000 -i-
~ /// I t I

// I " I / , I

i~~ T9~ ~---~~f:}~~--~1 + p-.
I / "- I

/ "- t I 1- _____ 1_ - - - - - -/- - - - - - - - '>.... - - - - - - - - ---'
I / "-,,-
I / "-
I / C100 'I
I /
I /- ~
I /
I /
I

I
I

DSLinkO
DSLink1
DSLink2

L_____ DSLink3

ResetOut
AnalyseOut

Error

signifies packetized protocol

- signifies byte stream protocol

OS Links

T2/T 4/T8-series
control port

Figure 2.4 Mode 3 - T9-series system using optimum T2/T4/T8-series subsystems

The T2/T4/T8-series subsystem is controlled via CLinkO of the IMS C100. Messages into CLinkO of the
IMS C1 00 cause individual links to be reset, and the ResetOut and AnalyseOut pins to be toggled. Asser­
tion of the AnalyseOut and ResetOut pins results in the Reset and Analyse pins of the connected
T2/T4/T8-series transputer being asserted, enabling it to be stopped and analyzed.

An error from within the IMS C 100 and a signal on the Error pin both cause an Error message to be sent
from CLinkO.

170 IMS C1 00 system protocol converter

The IMS C100 operating in mode 3 enables a T2/T4/TS-series transputer to emulate an IMS T9000
transputer. This is achieved by connecting the ResetOut, AnalyseOut, and Error pins of the IMS C1 00 to
the Reset, Analyse, and Error pins of the T2/T4/TS-series transputer and setting the IMS C1 00 into mode
3. This combination of the IMS C100 and the T2/T4/TS-series transputer has a control link 0 (CLinkO), and
a control link 1 (CLink1) for daisy-chaining. Figure 14.2 shows a T2/T4/TS-series transputer being con­
verted to an IMS T9000 interface, with the T2/T4/TS-series transputer being booted from a link. Software
must be run on the T2/T4/TS-series transputer to convert the OS links to the packetized protocol.

.-------. CLink1 CLinkO ,..-------

OS link -4-------- ~-OJ>J.in~---.
._ j).§ lin.!5. __ C100 ~-QSlin~--_

T2/T4/TS
OS link ~-O~lln~--_ .-------.
OS link -+------- ~-O~lln~---.

ResetOut Reset
Reset AnalyseOut Analyse

Error Error

-- - - signifies packetized protocol

- signifies byte stream protocol

Figure 2.5 Mode 3- converting a T2/T4/TS-series transputer for use in a T9-series network

IMS C100 system protocol converter 171

3 Link protocols and link protocol conversion

This chapter describes the different link protocols used on T2/T4/T8-series and T9-series components,
and the two types of conversion between the link protocols that the IMS C100 supports.

3.1 T2/T4/T8 series oversampled links

T2/T4/T8-series transputer links consist of two wires, one in each direction, and use an asynChronous bit­
serial protocol. Link inputs are sampled five times in each bit period, and hence the links are referred to
as oversampled (OS) links.

Messages are transmitted as a sequence of single byte communications, each of which must be acknowl­
edged. The acknowledge packets are used both to signal reception ofthe data bytes and to maintain flow
control.

A link provides a pair of channels, one input and one output channel. Every byte of data sent on an output
channel is acknowledged on the input channel of the same link, thus each signal line carries both data and
control information.

Each data byte is transmitted as a high start bit followed by another high bit followed by eight data bits
followed by a low stop bit, as shown in figure 3.1. The least significant bit of data is transmitted first. After
transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies that the receiving link is able to receive another byte.

The receiving transputer can send an acknowledge as soon as the data has been identified (provided there
is sufficient buffer space for another data byte, and that an inputting process is ready to receive the data
byte) so that communications can be continuous.

The link protocol synchronizes the communications of each byte of data, and hence the term byte-stream
protocol has been adopted. As the protocol supports the transmission of an arbitrary sequence of bytes
transputers of different word lengths can be connected together.

Data J
Acknowledge

I
o

Data

o

o

o I I o ,:

Figure 3.1 as link data and acknowledge formats

The T2/T4/T8-series transputer family includes link adaptor devices, the IMS C011 and IMS C012, which
enable as links to interface with non-transputer devices.

3.2 T9 series data/strobe links

T9-series transputer links consist of four wires, two in each direction, one for data and one to carry a strobe
signal. These links are therefore referred to as data/strobe (OS) links.

Communication between processes on one IMS T9000 transputer takes place over software channels.
Communication between processes on different processors takes place over virtual channels. Virtual
channels are multiplexed onto each physical link by a communications processor within the IMS T9000.

172 IMS C1 00 system protocol converter

111e data links support a physical link protocol to support virtual channels and dynamic message routing,
and to provide a high data bandwidth.

Each message is split into a sequence of packets, each of which has the structure shown in figure 3.2.
Packets from different messages may be interleaved over each physical link. Interleaving packets from
different messages allows any number of processes to communicate simultaneously via each physical
link. Communication channels can be established between any two processes regardless of where they
are physically located, or whether the channels are routed through a network. Thus, programs can be inde­
pendent of network topology.

header packet body

Figure 3.2 Structure of a packet on DS links

packet
terminator

In order that packets which are parts of different messages can be distinguished by the transputer which
receives them, each packet contains a one or two byte header which identifies a virtual input channel of the
receiving transputer. The packet header is also used to route the packet through a network. Bytes following
the header are treated as the data section of the packet until a packet termination token is received. A
packet termination token is either an EOP (end of packet) token or an EOM (end of message) token.

111e maximum length of data in each packet which the IMS T9000 can transmit is 32 bytes. All but the last
packet of a message contains the maximum amount of data; the last contains the maximum amount of data
or less.

111e communications processor within the IMS T9000 enforces a high-level protocol on each virtual chan­
nel. To maintain synchronized communication, and to ensure that no data is lost, each packet of data sent
along a virtual channel must be acknowledged before the next is sent. 111e last packet must be acknowl­
edged before the outputting process is rescheduled. Data packets on a virtual channel are acknowledged
by the communications processor by sending acknowledge packets on another virtual channel back to
the processor which sent them. Acknowledge packets are packets containing no data and which are al­
ways terminated by an EOP token. The acknowledge packets perform packet-level flow-control and pro­
cess synchronization.

Virtual channels always occur in pairs between pairs of communicating processors, with one virtual
channel in each direction. If a message is being communicated in one direction the virtual channel in the
opposite direction is used to return acknowledge packets to the sender. The aSSOCiated pair of virtual chan­
nels is referred to as a virtual link. A virtual link can transfer messages in both directions at the same time
with data packets and acknowledge packets being interleaved on both of the virtual channels. Because
virtual channels are always paired in this way it is not necessary to include source information in the
packets. 111us packet headers need only represent their destinations.

Figure 3.3 shows the format of data and control tokens on the data and strobe wires. Data tokens are 10
bits long and contain a parity bit, a flag which is set to 0 to indicate the presence of a data token, and 8
bits of data. Control tokens are 4 bits long and contain a parity bit, a flag which is set to 1 to indicate the
presence of a control token, and 2 bits to indicate the type of control token.

IMS C100 system protocol converter 173

Parity bit Parity bit

1 Dr~ Data 1 T~'f;~T
I

0 0 o· o O·

Data ~I Ul n
Strobe u

I'" . ·1 Bits covered by parity bit in second token

Figure 3.3 DS link data format

The parity bit in any token covers the parity of the data or control bits in the previous token, and the datal
control flag in the same token, as shown in figure 3.3. This allows single bit errors in the token type flag
to be detected. Odd parity checking is used. To ensure the immediate detection of errors null tokens are
sent in the absence of other tokens. The coding of the control tokens is shown in table 3.1.

Flow control token FCT P100

End of packet EOP P101

End of message EOM P110

Escape token ESC P111

Null token NUL ESC P100

Table 3.1 Control token codings

The DS-link protocol separates the functions of flow control and process synchronization. Token-level flow
control is performed in each link module, and the additional flow control tokens used are not visible to the
higher-level packet protocol. The token-level flow control mechanism prevents a sender from overrunning
the input buffer of a receiving link.

Each receiving link input contains a buffer for at least 8 tokens (more buffering than this is in fact provided).
Whenever the link input has sufficient buffering available to consume a further 8 tokens (consisting of data
and EOP or EOM tokens) a FCT is transmitted on the associated link output, and this FCT gives the sender
permission to transmit a further 8 tokens. Once the sender has transmitted a further 8 tokens it waits until
it receives another FCT before transmitting any more tokens. The provision of more than 8 tokens of buffer­
ing on each link input ensures that in practice the next FCT is received before the previous block of 8 tokens
has been fully transmitted, so that the token-level flow control does not restrict the maximum bandwidth
of the link.

DS links use a high level packet protocol and hence the term packetized protocol has been adopted.

3.2.1 Byte mode

Each IMS T9000 data DS link may be set to operate either in virtual channel mode or in byte mode. Byte
mode is provided to allow IMS T9000 DS links to communicate with OS links carrying the byte-stream pro­
tocol via an IMS C100. The mode is set for each IMS T9000 link LinkO-3 by the ByteModeO-3 bit fields in
the configuration registers (as described in the IMS T9000 Preliminary Information). Setting the IMS T9000
links independently of each other, enables each IMS T9000 transputer to be connected to several different
networks.

174 IMS C100 system protocol converter

3.3 Data protocol conversion

The IMS C100 is able to convert between the OS and DS link protocols in two ways:

Byte stream conversion: This is where the message/ packet level is removed from the DS links.

The DS link of a connected T9-series transputer is set to byte mode. A pair of channels is then
supported from the T9-series transputer, ,hrough the IMS C100, to a T2/T4/T8-series transputer.
Software on the T2/T4/T8-series transputer sees the channels as being identical to that through
a normal OS link. No modification to the T2/T4/T8-series transputer software is needed.

Packetized conversion: This is where the message/ packet level is added to the OS links.

A process must be run on the connected T2/T 4/T8-series transputer to impose a software packet
protocol onto the OS link. This is converted to the hardware supported packet protocol on the DS
link by the IMS C100.

The IMS C100 data DS and OS links are paired, and all pairs perform one or other type of conversion,
depending on the mode. In modes 1 and 3, all four link pairs convert the packetized protocol; in modes
o and 2, all four convert the byte-stream protocol.

The two types of conversion are described in more detail below. Each pair of data links functions in the
same way and the following sections describe the action of one pair in each of the two types.

3.3.1 Byte-stream conversion

The OS link of the IMS C1 00, operating in byte-stream mode, is identical to an OS link on a T2/T4/T8-series
component. No modification to software running on a connected T2/T4/T8-series transputer is needed.

The DS link of the connected T9-series transputer must be set in byte mode and connected to the DS link
of the IMS C1 00. The IMS C1 00 cannot be directly connected to an IMS C1 04 when this type of conversion
is being used. The IMS T9000 DS link set in byte mode is able to send and receive single bytes. Software
on the T9-series transputer will send and receive messages normally, via a pair of channels.

A special protocol is used between the IMS C100 and the T9-series transputer. This protocol is invisible
to the user, and is described here for completeness. Data is transferred along the DS link in the form of
packets each with a single byte header. Each packet is terminated with either an EOP or EOM token.

The IMS C1 00 interprets packets from the T9-series transputer as indicated in table 3.2. Note: the DS links
of an IMS T9000 transputer which have been set into byte mode generate this protocol automatically.

Header Data Terminator Interpretation Notes

0 32 bytes EOP Part of message

0 1-32 bytes EOM End of message

0 none EQP Acknowledgement

1 1-4 bytes EOM Input count 1

1 none EOM Reset link 2

Notes

The IMS C100 knows the length of a message from the IMS T9000 to the T2/T4/T8-series
transputer as this is indicated by an EOM token. In order for it to know the length of a message
from the T2/T 4/T8-series to the IMS T9000 transputer the I MS T9000 musttell it expl icitly. The' input
count' packet contains the count of the data bytes to be transferred from the OS link to the DS
link of the IMS C100.

2 The 'reset link' packet is sent whenever an IMS T9000 link in byte mode is reset. Its effect is to
cause the reset of the associated OS link (see Reset chapter 7).

Table 3.2 Packets from IMS T9000 to IMS C100

IMS C100 system protocol converter 175

The IMS C1 00 can respond to both data bytes and acknowledges on the OS links immediately by buffering
data from the IMS T9000 and holding a count of the input length, thus maintaining full bandwidth.

The IMS C100 sends packets along the OS link, as shown in table 3.3. Note: OS links of an IMS T9000
transputer which have been set into byte mode accept this protocol automatically.

Header Data Terminator Interpretation Notes

0 32 bytes EOP Part of message

0 1-32 bytes EOM End of message

0 none EOP Acknowledgement 1

0 none EOM Unsolicited byte 2

Notes

1 The acknowledgement packet is sent when the IMS C100 is ready to receive more data.

2 If a byte is received from the OS link whilst the output count is zero, the count is effectively reduced
to -1 and an unsolicited packet is sent.

Table 3.3 Packets from IMS C100 to IMS T9000

3.3.2 Packetized conversion

This conversion type allows software on a connected T2/T4/T8-series transputer to use virtual channels
to communicate with processes in the connected T9-series system. The IMS C100 can be directly con­
nected to an IMS C104 when this type of conversion is being used.

With packetized conversion the OS links of the IMS C100 are operationally identical to the OS links of
T9-series transputers.

Software must be run on the connected T2/T4/T8-series transputer to:

Packetize the messages output from the T2/T4/T8-series transputer, according to the protocol
described below.

2 Interpret the packetized messages arriving on the T2/T4/T8-series transputer.

The IMS C1 00 converts packets between the software supported protocol on the OS link and the hardware
supported packetized protocol on the OS link.

The length of packets in T9-series OS links is indicated by terminator codes EOP or EOM. In order for the
IMS C100 to determine the length of the packet on OS links, the length must be given explicitly as an un­
signed 8 bit value ('count byte') at the start of the packet.

count byte I N bytes

Figure 3.4 Structure of a software supported packet on OS links

The first byte of a (software supported) packet on an OS link is defined to be a count byte as in figure 3.5.

7 6

Packet
type bit

o
Count

Figure 3.5 Structure of a count byte in an OS link packet.

If the packet type bit in the count byte is 0 then the packet is equivalent to a OS link packet terminated by
an EOP token. If the packet type bit is 1 then the packet is equivalent to a OS link packet terminated by
an EOM token.

- 176 IMS C1 00 system protocol converter

Received on OS link of IMS C100 Packet type bit in Transmitted on OS link of IMS C100
count byte

(Count byte) (N bytes) 0 (N bytes) EOP

(Count byte) (N bytes) 1 (N bytes) EOM

Table 3.4 Packets from T2/T4/T8 to IIItiS C100

The packet level of the OS link protocol is represented in the OS link protocol for different representations
of a packet containing N bytes, including the header, see figure 3.6.

packet length (N bytes)

header packet body I EOP or EOMI

Figure 3.6 Structure of a packet on OS links

Packets received on the OS link, from the connected T9-series component, which are less than 7 bytes
have zero bytes added, making 8 bytes in all including the count byte. This improves the efficiency of
software running on T2/T4/T8-series transputers. The extra bytes added must be discarded by the
T2/T4/T8-series transputer inputting software.

Note thatthese transformations are independent of details of the structure of the packet, such as the header
length.

IMS C1 00 system protocol converter 177

4 Control protocols and control protocol conversion

This chapter describes the different control protocols used on T2/T4{T8-series and T9-series components,
and the two types of control protocol conversion that the IMS C100 supports.

4.1 T2{T4{T8 type control

T2{T4{T8-series transputers are controlled by means of Reset, Analyse and Error pins (RAE) on each
device, and are inspected and booted by means of a special protocol across the transputer links
(T2/T4{T8-type contrOl).

The falling edge of Reset initializes the transputer, triggers the memory configuration sequence and starts
the bootstrap routine.

The processor and the OS links start after reset. The transputer obeys a bootstrap program which can either
be in off-chip ROM or can be received from one of the links.

A software error, such as arithmetic overflow, array bounds violation or divide by zero, causes an error flag
to be set in the transputer processor. The flag is directly connected to the Error pin. Both the flag and the
pin can be ignored, orthe transputer stopped. Stopping the transputer on an error means thatthe error can­
not cause further corruption.

As well as containing the error in this way it is possible to determine the state of the transputer and its
memory at the time the error occurred.

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling
point. From Analyse being asserted, the processor will halt within three time slice periods plus the time
taken for any high priority process to complete. Reset may then be asserted. When Reset comes low again
the transputer will be in its reset state, but the registers contain information on the state of the machine when
it was halted by the assertion of Analyse, permitting analysis of the halted machine.

Input links will continue with outstanding transfers Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link
acknowledgement, the links will be inactive within a few microseconds of the transputer halting.

4.2 T9 type control

T9-series transputers are controlled by a pair of control links, CLinkO-1, on each device (T9-type control).

The control links on all T9-series transputer family products allow a separate control network to be used
to assist in configuring, booting, error handling, resetting and analysing processors and other components
connected in a system, even in the presence of errors on the data communications links in the network.
Many of these functions can also be performed directly by software running on an IMS T9oo0 transputer.

Each IMS T9000 transputer has two bidirectional control links, CLinkO and CLink1, which use the same
electrical and packet level protocols as the OS data links. CLinkO will be connected via a control link net­
work to one of the data links of a controlling IMS T9000 transputer, or to a different host via a link adaptor.
All communications with the controlling processor are via CLinkO. CLink1 is provided to allow T9-series
product family components to be connected in a daisy-chain. This allows a simple physical connectivity
to be used for the contrOlling network, as shown in figure 4.1.

The controlling network provides each device with a virtual link connected to the control process.

When the network is initialized the first communication with each device programs identity and retum
addresses to establish the virtual link between the control process and that device. The identity address
determines whether a packet arriving on CLinkO is for that device, and if not, the packet is forwarded along
CLlnk1 until it reaches its destination.

178 IMS C100 system protocol converter

T9000

Controlling T9000 transputer

r - - - - - --"

o ", ,,'1 0 ", ,,'1 0 ", ,,'1
r--L~ r--L~ r-~~

T9000 1----------1 T9000 T9000

Figure 4.1 A daisy-chained control link network

A high level protocol is defined for the controlling network to allow the control process to issue commands
to, and receive responses from, devices in the network. Commands are sent as normal packets but with
the first byte after the header containing a command code, which may be followed by additional data.

4.3 Control protocol conversion

To enable T2/T4/T8-series subsystems to be easily incorporated into T9-series transputer systems (and
vice versa) the IMS C1 00 converts between the two control systems described above. The subsystem to
be connected can be controlled either through reset, analyse and error Signals, or through control link
CLinkO of the IMS C100:

RAE master: The TReset and Analyseln pins of the IMS C100 act as master and errors are re­
ported by the Error pin of the connected IMS T9000 transputer.

The IMS T9000 transputer is booted from ROM. The ROM code sets the IMS T9000 OS links in
byte mode and emulates the boot time behaviour of the T2/T4/T8-series transputer. That is, it al­
lows code to be booted down the data links of the IMS T9000 transputer in the same way as for
T2/T 4/T8-series transputers.

CLlnkO maSter: The CLinkO of the IMS C1 00 acts as master. Commands received on CLlnkO are
converted either to signals on the Reset and Analyse pins, or into T2/T4/T8-series Boot, Peek
and Poke messages transmitted along OSLinkO. Signals on the Error pin are converted to Error
messages transmitted along OSLlnkO.

The mode determines which conversion is to be carried out. The IMS C100 has two control links, one for
issuing and receiving commands (CLlnkO) and one for daisy-chaining (CLlnk1). In mode 0 CLinkO gener­
ates commands, and in modes 1-3 it is receptive to commands.

The two types of conversion are described in more detail below.

IMS C1 00 system protocol converter 179

4.3.1 RAE master control (mode 0)

In mode 0 T2/T4/T8-type control is the master control and the IMS C100 translates Reset and Analyse pin
signals from the T2/T4/T8-series transputer to control link commands in T9-series transputers.

In this mode the IMS C100 cannot receive commands from an IMS T9000 transputer, but can issue com­
mands via CLinkO. In effect the IMS C1 00 acts like the root process in a network of IMS T9000 transputers.
The commands generated are the same as those received by an IMS T9000.

Figure 4.2 illustrates mode 0 in which the IMS C1 00 converts a T2/T4/T8-series interface to an T9-series
interface by translating the Reset and Analyse pin signals from the T2/T4/T8-series transputer into com­
mands sent via CLinkO to the IMS T9000 transputer.

Note in this mode CLinkO of the IMS C100 is connected to CLinkO of the IMS T9000 transputer. The
standard connection of control links is to connect CLinkO to CLink1.

Power-onReset
Reset

Analyse

Error

CLinkO CLinkO

OS link OS link
OS link C100 DS link T9000
os link OS link

OS link os link

Reset
TReset ResetOut Reset
Analyseln Error

I •
I ROM I

L ___________ -

Figure 4.2 RAE master control mode 0

The IMS C1 00 sends commands as packets. Each message is preceded by the retum header and followed
by an EOM token. The first byte after the header contains a command code, which may be followed by
additional data. The first bit of the command code indicates whether the packet is a command/error or a
handshake. Table 4.1 outlines the command codes that can be sent from an IMS C1 00 in mode 0 to a con­
nected IMS T9000 transputer. It also describes the effect of the commands on a connected IMS T9000.

Command Additional data Function

Start Retum header Programs the IMS T9000's CLinkO by allocating an identity and
retum header.

Reset Level Resets the IMS T9000 to the given level.

Stop None Stops the processor 'cleanly' so that registervalues are preserved.
Acts like the Analyse pin on the T8 transputer.

Reboot None Causes reboot from ROM

Table 4.1 Commands sent from the IMS C100 in mode 0 to an IMS T9000

Table 4.2 lists the response messages received by the IMS C1 00. The response message is a handshake
code corresponding to the command message. The data parameter 'Status' indicates whether or not there
has been an error in performing the operation. Status can be 1 if the command was in some way incorrect
or inappropriate, and consequently not obeyed, or 0 otherwise.

180

Response

StartHandShake

ResetHandShake

StopHandShake

ReBootHandShake

Error

IMS C1 00 system protocol converter

Additional data

I None

I Status

Status

Status

Error code

Table 4.2 Response messages received by the IMS C100 in mode 0

After power-on reset a Start command sent from the IMS C1 00, via CLinkO, provides the retum header to
program CLinkO of the attached IMS T9000 transputer. The IMS T9000 retums a StartHandShake which
programs the identity of the IMS C1 00. This forms the virtual link between the root (IMS C1 00) and the node
(IMS T9000).

The IMS C100 sends Reset, Stop, Reboot commands via CLinkO as a response to pins going high in given
sequences, as described below.

If the Reset pin goes high then the IMS C100 will send a Reset command (reset level :1) to the attached
IMS T9000 (this resets all registers, stops the PMI, VCP and CPU but retains the control links identity and
retum header). The IMS C100 will receive the ResetHandShake and the Reset pin will be taken low. A
ReBoot command will then be sent to the IMS T9000.

Reboot

The Reboot command will cause the attached IMS T9000 to boot from ROM using a Wptr and Iptr from
a fixed location in ROM. The ROM code, configures the IMS T9000, sets the links into byte mode, starts
them, and then emulates the T2/T4/T8-series pre-boot protocol.

Analyse

In response to the Analyseln pin being asserted the IMS C100 will send a Stop command from CLinkO
to the IMS T9000. The Stop command causes the processor to be stopped whilst preserving register
values.

When the TReset pin is asserted a Reset command (reset level 3 - to stop the CPU) is sent. The Reset
command is followed by a ResetHandshake from the IMS T9000. When both TReset and Analyseln are
deasserted the IMS C100 sends a Reboot command. This restarts the ROM code. If this code executes
a testpranaJ instruction it can take special action to assist the debugger before it repeats the above pre-boot
sequence.

Error

If an error occurs on the IMS T9000, this is signalled by the Error pin. It also causes an Error message to
be sent from CLinkO of the IMS T9000, which is received by CLinkO of the IMS C100 and ignored.

IMS C100 system protocol converter 181

4.3.2 CLinkO master control (modes 1, 2 and 3)

In modes 1, 2 and 3, T9-type control is the master control. In these modes CLinkO and CLink1 act as a
daisy chain (see figure 4.3) with CLinkO saving the header of the first packet it receives, and only inputting
subsequent packets with the same header. Packets with a different header are relayed out of CLink1. All
packets received on CLink1 are relayed out of CLinkO. There is a fair arbiter to deal with the case that the
IMS C1 00 needs to send a packet at the same time as a packet arrives on CLink1. Note this is identical
to the daisy-chaining behavior of the IMS T9000 (as described in the IMS T9000 Preliminary Information).

All packets received on CLinkO with the same header as the first packet received are input by the IMS C1 00
and decoded as either acknowledge packets (which allow further messages to be sent by the IMS C1 00),
or as messages. Messages are further subdivided into commands and handshakes. A handshake indi­
cates that a previously sent error message has been received, and so another can be sent.

- -,

1--------------: CLinkO CLink1
I
L_ CLink1 CLinkO ----

,

Mode 1
T9-series C100

T2/T4/T8- as links DS links system
series

system

;- CLinkO CLink1 ---- CLinkO CLink1 ----:-
Mode2or3

as links
, T9-series DS links C100

system T2/T4/T8-
, series

ResetOut system
AnalyseOut

Error
• ____________________________________ J

Figure 4.3 CLinkO master control modes 1, 2 and 3

Table 4.3 details the commands which can be sent from the T9-series control processor to the IMS C1 00.
Each comniand is terminated by an EOM token.

The commands recognized by the IMS C1 00 are the same as those received by an IMS T9000 transputer.
However the execution of commands is adapted to the appropriate T2/T4/T8-series behavior.

182 IMS C100 system protocol converter

Command Additional data Function

Start Return header Programs the C100's CLinkO by allocating an identity and return
header.

Reset Level Resets the IMS C100 and consequently the connected T2/T4/T8-
series transputer.

Identify None Returns the identity and the revision number of the device.

Stop None Asserts the AnalyseOut pin, resulting in the Analyse pin on the
connected T2/T4/T8-series transputer being asserted.

CPeek Address Returns the value stored at the given address in the device configu-
ration space. If the address is invalid an invalid status is returned.

CPoke Address, data Writes data to the configuration space at the given address. If the
address is invalid an invalid status is returned.

Peek16 Address Peeks from connected 16 bit transputer.

Peek32 Address Peeks from connected 32 bit transputer.

Poke 16 Address, data Pokes to connected 16 bit transputer.

Poke32 Address, data Pokes to connected 32 bit transputer.

Run16 Wdesc,lptr Ignored and handshake sent with invalid status.

Run32 Wdesc,lptr Ignored and handshake sent with invalid status.

Boot16 Address, length Starts boot sequence (16 bit words).

Boot32 Address, length Starts boot sequence (32 bit words).

BootData Data Continues the boot sequence.

ReBoot None Causes reboot from ROM.

RecoverError None Used in error recovery on control system failure.

ErrorHandshake None Handshakes error message.

Table 4.3 Commands received by the IMS C100 in modes 1, 2 and 3 from an IMS T9000

Each command message is acknowledged by an acknowledge packet which is a packet containing no
data and terminated by an EOP token. In addition the higher level control protocol requires that all com­
mand messages are acknowledged by a response message before the control process can send another
command message to the same device, so appropriate responses must be generated by the IMS C100
in this mode of operation. (However, Start, Reset and RecoverError command messages may be sent to
any node at any time to allow the control process to handle error conditions in the network.)

The response message can contain the result of a Peek or Identify command, or it may be simply a hand­
shake code corresponding to the command message. Each message is preceded by the return header
and followed by an EOM token. Table 4.4 lists the response messages to each of the command messages.
1 he data parameter 'Status' indicates whether or not there has been an error in performing the operation.
Status can be 1 if the command was in some way incorrect or inappropriate, and consequently not obeyed,
or 0 otherwise.

Commands sent which cannot be converted to T2/T4/T8-series actions, or commands which are illegal
in certain states, are hand shaken with status set to 1.

IMS C100 system protocol converter

Response Additional data

StartHandShake None

ResetHandShake Status

IdentifyResult Device type and rev

StopHandShake Status

CPeekResult Data, status

CPokeHandShake Status

Peek16Result Data, status

Peek32Result Data, status

Poke 16HandShake Status

Poke32HandShake Status

Run 16HandShake Status

Run32HandShake Status

StartBoot16HandShake Status

StartBoot32HandShake Status

BootDataHandShake Status

ReBootHandShake Status

RecoverHandShake None

Error Error code

Table 4.4 Messages sent by the IMS C100 in modes1, 2 and 3

The IMS C100 error codes are listed in table 4.5.

Error code Cause Of error

0 Parity or disconnect error on CLllnk1

1 Protocol error on CLllnkO e.g. bad command length, extra acknowledge

2 Unrecognized command code on CLiinkO

3 Signal on Error pin

4 Parity or disconnect error on DSLIinkO

5 Parity or disconnect error on DSLllnk1

6 Parity or disconnect error on DSLlink2

7 Parity or disconnect error on DSLllnk3

8 Overlong packet on OSLInkO

9 Overlong packet on OSLink1

10 Overlong packet on OSLink2

11 Overlong packet on OSLink3

12 Invalid count OSLInkO (Le. count = 0)

13 Invalid count OSLink1

14 Invalid count OSLink2

15 Invalid count OSLink3

Table 4.5 Error codes

183

184 IMS C1 00 system protocol converter

All the error codes must be hand shaken from the root processor with the ErrorHandShake command.

Errors are reported by sending an error message with the corresponding code, or, in the case of an error
on CLinkO, by causing a disconnection. Software at the root processor can then take appropriate action.

There are four control link commands which correspond to the special protocol of an un booted T2/T4/T8-
series transputer. These cause messages to be generated from OSLinkO in certain modes of operation
of the IMS C100 for which the behavior of OSLinkO is defined to be special (see section 4.3.3). The
assumed length (N) of addresses and data can be either 16 or 32 bits depending on whether a command
is being sent to a 16 bit or 32 bit transputer.

Peek

On receipt of a PeekN command, and the associated peek address, the IMS C1 00 sends from OSLinkO
the following sequence of bytes:

1 (BYTE);address[O]; ... address[N]

When the last byte has been sent and acknowledged the IMS C100 awaits an associated response. A
PeekNResult is returned with the returned bytes as data and a status byte of O.

If the communication does not complete (for example if there is no transputer connected), the peeking
process will not receive a PeekNResult and can time-out, and, if required, reset the IMS C1 00 with a Reset
command.

Poke

On receipt of a PokeN command, and the associated poke address and data, the IMS C100 sends from
OSLinkO the following sequence of bytes:

O(BYTE); address[O]; ... address[N] ;data[O]; ... data[N]

The command is acknowledged immediately, and if and when the last byte of the above communication
is acknowledged, a PokeNHandshake is returned with a status of O.

If the communication does not complete (for example because there is no transputer connected after all),
the poking process will not receive a PokeNHandshake and can time-out, and reset the IMS C100.

Boot

On receipt of a BootN command, and the associated boot address and length byte, the IMS C100 sends
the length byte from OSLinkO and discards the address.

The BootN command is acknowledged immediately, and if and when the length byte is acknowledged by
a (::onnected transputer, a BootNHandShake response is sent with a status of O.

The value of the length byte is kept by the IMS C100 as a count, and that number of bytes are then received
by CLinkO, as a sequence of BootData messages. The bytes are sent out on the OS link. Each arriving
BootData message is acknowledged immediately, but not handshaken until all its data bytes have been
sent and acknowledged on the OS link. Once all bytes have been sent and acknowledged a BootData­
HandShake is sent with a status byte of O.

After a BootN command has been received, the booting flag is set, and any further PeekN, PokeN or BootN
commands are invalid. Once the number of bytes as allowed for in the count of the BootN command have
been received, the booting flag is unset, and the booted flag is set; BootData commands are then also
invalid. All such invalid commands are acknowledged and hand shaken irnmediately, but with a status byte
of 1. No other action is taken. The booting and booted flags are reset by any Reset command.

IMS C100 system protocol converter 185

Reset

On receipt of a Reset command on CLinkO, the IMS C100 asserts its ResetOut pin. This pin is deasserted
by a CPoke command. Whilst the ResetOut pin is asserted Stop, PeekN, PokeN, BootN, BootData and
Run commands are invalid and will be handshaken immediately with a status of 1.

Analyse

On receipt of a Stop command on CLinkO, the IMS C1 00 asserts its AnalyseOut pin. This pin is deasserted
by a CPoke command. Whilst the AnalyseOut pin is asserted PeekN, PokeN, BootN, BootData and Run
commands are invalid and will be hand shaken immediately with a status of 1.

AnalyseOut / ~
t t

Stop CPoke

ResetOut ~ \ / \
t t t t

Reset CPoke Reset CPoke

Figure 4.4 Resetting and analyzing in modes 1 , 2 and 3

4.3.3 OS Link 0 special function

In modes 2 and 3, the control links are the system master, and the default assumption is that at least
OSLinkO IS connected to an unbooted T2/T4/T8-series transputer. Commands to peek, poke and boot the
T2/T4/T8-series transputer, arriving down CLinkO, are converted to T2/T4/T8-series protocol and sent
down OSLInkO. OSLInkO is usurped to generate the pre-boot protocol of the T2/T4/T8-series transputer
until the transputer is booted.

This default is controlled by the booted flag which is set automatically by the booting sequence (BootN,
BootData) or Reboot, and reset by the Reset command.

186 IMS C100 system protocol converter

5 Links

5.1 Data links

The IMS ClOO has eight data links. OSLinkO-3 are oversampled links and DSLinkO-3 are data/strobe
links. Each OS link is paired with a OS link, for data protocol conversion. All pairs of links perform one or
other type of conversion, depending on mode.

Each pair of links is joined by a conversion unit. OSLinkO can be diverted into the control conversion unit
by a switch which is controlled by the booted flag. Refer to section 4.3.3 for description of OSLinkO special
function in modes 2 and 3.

The OS and OS links are TIL compatible.

5.1.1 Data link speeds

There are four pins to set the operating speed of the links. OSLinknSpecial pins set the operating speed
of the OS links and DSLinknSpecial pins set the default speed of the OS links.

OSLinkO-3 support a communication speed of 10 Mbits/sec. In addition they can be used at 20 Mbits/sec
which is determined by the OSLinknSpecial pin. Links are not synchronized with Clockln and are insensi­
tive to their phases. Thus links from independently clocked systems may communicate, providing only that
the clocks are nominally identical and within specification.

The OSLinkOSpecial pin enables the speed of OSLinkO to be set independently of OS links 1, 2, 3 and
the DSLinkOSpecial pin enables the default speed of DSLinkO to be set independently of OS links 1, 2,
3 (see table 5.1).

The OS link speeds must only be set at power-on. If these pins are changed after power-on the IMS ClOO
is not guaranteed to function correctly until it has been reset.

OSLinkOSpecial OSLink123Speciai OS link speed

0 0 10MHz

1 1 20 MHz

DSLinkOSpecial DSLink123Speciai OS default link speed

0 0 25 MHz

1 1 50 MHz

Table 5.1 LinkSpecial pins

5.1.2 OS links in modes 1, 2 and 3

The IMS ClOO OS links can support a range of communication speeds, which are programmed by writing
to registers in the configuration space using the CPoke command via CLinkO. At reset all data OS links
run at the default speed determined by the DSLinkOSpecial and DSLink123Speciai pins.

Only the transmission speed of a OS link is programmed as reception is asynchronous. This means that
OS links running at different speeds can be connected, provided that each device is capable of receiving
at the speed of the connected transmitter.

The transmission speeds of all of the OS links (data and control links) on a given device are related to the
speed of a single on-chip clock. The frequency of this master clock is programmed through the SpeedMul­
tiply bit field. The master frequency is divided down to obtain the transmission frequency for each OS link.
The division factor can be programmed separately for each OS link via the Speed Divide bit field. For a
given device, with a given programmed master clock frequency, this arrangement allows each OS link to

IMS C100 system protocol converter 187

be run at one of four transmission speeds, as shown in table 8.2. The BaseSpeed is the default speed of
10 MHz.

SpeedOivide

SpeedMultiply /1 /2 /4 /8 BaseSpeed

8 80 40 20 10.0 10

10 100 50 25 12.5 10

12 Reserved 60 30 15.0 10

14 Reserved 70 35 17.5 10

16 Reserved 80 40 20.0 10

18 Reserved 90 45 22.5 10

20 Reserved 100 50 25.0 10

Table 5.2 OS link transmission speed in Mbits/sec

Errors on OS links

OS link inputs detect parity and disconnection conditions as errors. A disconnection error indicates one
of two things: either the OS link has been physically disconnected, or an error has occurred at the other
end of the OS link which has then stopped transmitting. The bit fields ParityError and OiscError indicate
when parity and disconnect errors occur.

The OS links are designed to be highly reliable within a single subsystem and can be operated in one of
two environments, determined by the LocalizeError bit in each link.

In the majority of applications, the communications system should be regarded as being totally reliable.
In this environment errors are considered to be very rare, but are treated as being catastrophic if they do
occur. This environment is the default on power-:on reset, with all links having their LocalizeError bit set
to O. If ali error occurs it will be detected and reported via a message sent along CLinkO. Normal practice
will then be to reset the subsystem in which the error has occurred and to restart the application.

For some applications, for instance when a disconnect or parity error may be expected during normal oper­
ation, an even higher level of reliability is required. This level of fault tolerance is supported by localizing
errors to the link on which they occur, by setting the LocalizeError bit of the link to 1. In addition a data
link layer process must be connected to each virtual channel associated with the link. These processes
are responsible for establishing and maintaining a higher level flow control, using time-out to detect that
a message has not completed, and requesting retransmission. If an error occurs, packets in transit at the
time of the error will be discarded or truncated, and the link will be reset without the error being reported
via the control link.

For information on the data link layer refer to chapter 4 of 'Computer Networks' by Andrew S. Tanenbaum,
published by Prentice-Hal/International (ISBN: 0-13-166836-6).

5.2 Control links

The IMS C100 has two bidirectional control links; CLinkO and CLink1. They use the same electrical and
packet level protocols as the OS links (refer to section 3.2).

All communications with the controlling processor are via CLinkO. CLink1 provides a daisy-chain link,
allowing a simple physical connectivity to be used for controlling networks.

The behavior of CLinkO depends on the mode as detailed in section 4.3.

5.2.1 Control link speeds

After power-on the control I inks run at a default speed of 10M Hz; this can be changed by means of CPokes.

188 IMS Cl00 system protocol converter

6 Configuration

6.1 Configuration space

The IMS ClOO can be controlled via the configuration address space. These addresses are accessed by
CPeek and CPoke command messages received along CLinkO.

The configuration bus can be used to reset any individual DS link or any link pair in packetized conversion
mode, modes 1 and 3.

Table 6.1 gives the configuration space map.

Address Function Reset Value Notes

#1001 IMS Cl00 Device type Also used by the Identify
command

#1002 IMS ClOO Device type and rev

#1003 IMS Cl00 Command/Status see table 6.2 and Write to command word,
word table 6.3 read from status word

#1005 IMS ClOO DSLinkPLL see table 8.3

#8001 DSLinkOMode

#8101 DSLinkl Mode

#8201 DSLink2Mode

#8301 DSLink3Mode

#8002 DSLinkOCommand

#8102 DSLinkl Command ,
#8202 DSLink2Command

#8302 DSLink3Command

#8003 DSLinkOStatus see Reset chapter 7

#8103 DSLinkl Status

#8203 DSLink2Status

#8303 DSLink3Status

#FDOl CLinkOMode

#FEOl CLinklMode

#FD02 CLinkOCommand

#FE02 CLinkl Command

#FD03 CLinkOStatus see Reset chapter 7

#FE03 CLinkl Status Depends on mode

Table 6.1 Configuration space map

The IMS ClOO Command and Status words have the structure shown below.

IMS C1 00 system protocol converter

Bit Function

4 Link pair 0 reset

5 Link pair 1 reset

6 Link pair 2 reset

7 Link pair 3 reset

30 End Reset

31 End Analyse

Table 6.2 Command word

Bit Status of pin

16 ModeO

17 Mode1

18 DSLInkOSpeclal

19 DSLlnk123Speciai

20 OSLInkOSpecial

21 OSLlnk123Speciai

Table 6.3 Status word

A bit set in the Command word effects the indicated function. The command word is write only.
A bit set in the Status word indicates the current status. The status word is read only.

6.2 Data DS link configuration registers

189

Each OS link has three registers, the DSLInkMode register, DSLlnkCommand register and DSLInkStatus
register.

In addition the configuration space contains the DSLlnkPLL register which contains the SpeedMuHiply
bit. This takes the 5 MHz input clock and multiplies it by a programmable value to provide the root clock
for all the OS links.

The tables below describe the functionality of the OS links to be controlled, and the associated bit fields
in the configuration registers.

BHfleld Function

SpeedMuHlply Sets OS link master clock to required value (see table 8.2).

Table 6.4 Bit fields in the DSLlnkPLL register

The DSLlnkO-3Mode registers power up into a default state and may be reprogrammed before or after
the link has been started.

Bit Bit field Function

1:0 Speed Divide Sets transmit speed of the DSLInk (see table 8.2).
00 = /1,01 = /2, 10 = /4, 11 = /8

2 SpeedSelect Sets the DSLInk to transmit at the speed determined by the SpeedDi-
vide bits as opposed to the base speed of 10 Mbits/s.

3 LocalizeError When set errors are no longer reported to the control link. Packets in
transit at the time of an error will be discarded or truncated.

Table 6.5 Bit fields in the DSLlnkO-3Mode registers

190 IMS C100 system protocol converter

The DSLinkO-3Command registers are write only and contain four bits which when set cause a specific
action to be taken by the OS link.

Bit Bit field Function

0 ResetLink Resets the link engine of the DSLink. The token state is reset, the flow
control credit is set to zero, the buffers are marked as empty, and the
parity state is reset.

1 StartLink When a transition from 0 to 1 occurs the DSLink will be initialized and
commence operation.

2 ResetOutput Sets both outputs of the DSLink low.

3 Wrong Parity The DSLink output will generate incorrect parity. This may be used to
force a parity error on a transputer at the other end of the DSLink.

Table 6.6 Bit fields in the DSLinkO-3Command registers

The DSLinkO-3Status registers are read only and contain six bits which contain information about the state
of the OS link.

Bit Bit field Function

0 LinkError Flags that an error has occurred on the DSLink.

1 LinkStarted Flags that the output DSLink has been started and no errors have been
detected.

2 ResetOutputCom- Flags that ResetOutput has completed on the DSLink.
plete

3 ParityError Flags that a parity error has occurred on the DSLink.

4 DiscError Flags that a disconnect error has occurred on the DSLink.

5 TokenReceived Flags that a token has been seen on the DSLink since ResetLink.

Table 6.7 Bit fields in the DSLinkO-3Status registers

6.3 Control link configuration registers

The link module hardware in each control link is identical to that in each data OS link. An equivalent set
of configuration bit fields is provided for each control link, as for the data OS links.

IMS C100 system protocol converter 191

7 Levels of reset

The IMS C100 can be reset to a given level using the Reset command or Reset pin. The different levels
of reset are described below.

7.1 Resetting links

There are two basic mechanisms for resetting links. One applies in the byte-stream conversion mode, in
which case a specific packet received from an attached IMS T9000 or similar causes the OS link of the
pair and the internal state of the data conversion unit to be reset. The other mechanism is the configuration
bus, which can be used to reset any individual OS link or any link pair, see section 6.1 .

7.2 Level 0 - hardware reset

In all modes the IMS C100 is reset by asserting the Reset pin high. The ResetOut pin follows the Reset
pin. In mode 0 the IMS C100 is also reset by a similar transition on TReset, providing Analyseln is low.

After a hardware reset has been deasserted each IMS C100 is in the following state:

All the links are in Wait state, with the data links operating at their default speed set by the LinkSpecial
pins and the control links operating at their default speed of 10 MHz. The identity and return headers for
the control links are undefined. All registers contain their default values. All buffers are cleared; all latched
error signals are cleared; and the AnalyseOut pin is taken low.

7.3 Level 1 - labelled control network

The network can be reset to level 1 by sending a Reset1 command message to each IMS C100.

This level of reset leaves the identity and return headers unaltered and all connected control links remain
operational. All the data links are in Wait state and operate at the default speed set by the LinkSpecial pins.
All registers are reset to their default values. All buffers are cleared.

The ResetOut pin is set high.

7.4 Level 2 - configured network

The network can be reset to level 2 by sending a Reset2 command message to each IMS C100.

At thIS level of reset the identity and return headers are unaltered and register contents are unaffected. All
buffers are cleared. The data links are reset and retumed to the Wait state.

The ResetOut pin is set high.

7.5 Level 3

If a Reset3 command message is received, for example from an IMS T9000 transputer, it is handshaken
with a status of O.

The ResetOut pin is set high.

192 IMS C100 system protocol converter

8 Software

8.1 Toolsets

The IMS Dx2xx toolsets refers to the C, occam and FORTRAN toolsets written in C and supporting
T2{T4/T8-series transputer networks.

A set of C, occam and FORTRAN toolsets is also available which incorporate T9-series transputer
support. The tools provide support in the configuration and initialization of T9-series networks. The tools
set the attributes of each device in the T9-series network by sending initialization data down the control
link, and set the processors into a state ready to receive an application down the data DS links. A Network
Description Language (NDL) is used to describe networks of devices and allows the specification of values
for all the attributes of a device. From the NDL file the initialization tools produce a file containing the net­
work initialization data. This data is sent down the control link to the network. Once the network has been f

initialized, programs can be built and loaded to the network in the same way as for T2/T4/T8-series
processors.

The IMS T9000 configuration tools do not directly support the configuration of mixed T9-series and
T2{T4/T8-series systems. Systems made up of T9-series networks and T2{T4/T8-series networks
connected together via IMS C1 ODs can be configured, with each network being configured and loaded sep­
arately using the appropriate toolset. The user is able to specify (in the NDL file) the edges of an T9-series
network whIch communicate with a T2/T4/T8-series network.

IMS C100 system protocol converter 193

9 Pin designations

Pin In/Out Function
,

VCC,GND Power supply and return

Cap Plus, Cap Minus External capacitor for internal clock power supply

Clockln in 5 MHz input clock

ClockOutO-1 out Internally generated high speed clock output.

Table 9.1 IMS C100 system services

Pin In/Out Function

Reset in System reset

ResetOut out Asserts the Reset pin on any connected T9-series or
T2/T4/T8-series device.

TReset in Mode 0 T2/T4/T8-series transputer reset

Error in Modes 1-3 error indicator - rnessage sent from CLinkO

Analyseln in Mode 0 error analysis

AnalyseOut out Mode 1-3 error analysis - message received on CLinkO

ModeO-1 in Mode of operation

Table 9.2 IMS C100 control unit

Pin In/Out Function

OSLinklnO-3 in OS link input data channels

OSLinkOutO-3 out OS link output data channels

DSLinklnDataO-3 in OS link input data channels

DSLinklnStrobeO-3 in OS link input strobes

DSLinkOutDataO-3 out OS link output data channels

DSLinkOutStrobeO-3 out OS link output strobes

CLinklnDataO-1 in Control link input data channels

CLinklnStrobeO-1 in Control link input strobes

CLinkOutDataO-1 out Control link output data channels

CLinkOutStrobeO-1 out Control link output strobes

OSLinkOSpecial in OS link 0 speed selection

OSLink123Speciai in OS link 1, 2, 3 speed selection

DSLinkOSpecial in OS link 0 speed selection

DSLink123Speciai in OS link 1, 2, 3 speed selection

Table 9.3 IMS C100 links

194 IMS C1 00 system protocol converter

