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Preface 

The T9000 Transputer Products Overview Manual introduces the latest member of the transputer range of 
microprocessors, the IMS T9OO0, Transputers are designed to provide extremely high performance in 
single processor applications and are also designed with hardware and software features for the construc­
tion of multiprocessing systems, 

Other transputer products include the IMS T225, a 16 bit microprocessor, the 32 bit IMS T425 and the 
IMS T8xx series, which are 32 bit microprocessors with an on-chip 64 bit floating point processor, Details 
of these and their support devices can be found in The Transputer Databook, which is available as a sepa­
rate publication, Other transputer related documents, including various application and technical notes, 
are also available from INMOS. 

This manual consists of two parts; an overview section and a set of more detailed documents for the first 
members of the new product range. Part 1, the overview, introduces the transputer architecture and then 
the features and benefits of the IMS T9000family. Part 2 contains preliminary information on the IMS T9000 
transputer, the IMS C104 packet routing switch and the IMS C100 system protocol converter. This is ad­
vance information and is subject to change. 

More detailed documentation on the IMS T9000family is in preparation. This will include a hardware refer­
ence manual, a programmers reference manual, a system networking manual and various application 
notes. Documentation for systems and software products will also be updated to reflect added support 
for the IMS T9OO0. For the latest information, contact your local SGS-THOMSON sales outlet. 

Software and hardware examples given in this book are outline design studies and are included to illustrate 
various ways in which transputers can be used. The examples are not intended to provide accurate applica­
tion designs. 

In addition to transputer products the INMOS product range also includes development systems, systems 
products and high performance graphics devices. For further information regarding INMOS products 
please contact your local SGS-THOMSON sales outlet. 
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1 Introducing the INMOS IMS T9000 family 

The INMOS IMS T9000 is the latest member of the transputer family. It is designed to provide far higher 
performance and greatly improved communications facilities. 

INMOS has used advanced CMOS technology to integrate a 32-bit integer processor, a 64-bit floating point 
processor, 16 Kbytes of cache memory, a communications processor and four high bandwidth serial com­
munications links on a single IMS T9000 chip. 

The IMS T9000 transputer excels in real-time embedded applications, delivering exceptional single pro­
cessor performance and scaleable multiprocessor capability. 

The IMS T9000 is binary compatible with previous transputers. It extends the transputer range, making it 
easy to upgrade and complement existing transputer systems. There is extensive, industry standard soft­
ware support for all members of the transputer family; this includes high level language compilers, systems 
software (such as real time operating systems) as well as an extensive range of development tools. 

1 .1 Performance 

It is essential that any microprocessor family designed for the embedded system market provides the re­
quired performance at low cost. 

The transputer family includes a 16 bit processor, a 32 bit range of fast Integer and floating pOint processors 
and now, the highest performance member of the family, the IMS T9000. These are all designed to make 
it easy to design low cost, high performance systems. 

• Single processor performance: the IMS T9000 transputer boasts exceptional single processor 
performance; the new superscalar CPU is capable of a peak performance of 200 MIPS and 25 
MFLOPS. 

• Real-time performance: the IMS T9000 offers sub-microsecond interrupt response and context 
switch times, making it ideal for high performance real-time systems. I 

• Communications performance: the four IMS T9000 communication links provide a total of 
80 Mbytes/second bidirectional bandwidth. 

• Multiprocessor performance: the interprocessor communications architecture gives scaleable 
performance - the ability to increase the performance of a system by adding more processors. 

• Usable performance: the IMS T9000 implementation makes it easy for compilers to fully exploit 
the sUPE3rscalar performance using a range of industry standard programming languages. 

• Price/performance: the IMS T9000 offers supercomputer performance at an embedded systems 
price. 

1.2 Multiprocessing 

For applications that demand performance that single processors cannot provide, the IMS T9000 has com­
plete on-chip support for multiprocessing: 

• Hardware scheduler: the transputer architecture includes instruction level support for the cre­
ation and scheduling of any number of concurrent processes 

• Inter-process communication: the transputer instruction set includes instructions for communi­
cating between concurrent processes. The same instructions are used to communicate between 
processes running on a single transputer and between processes running on separate 
transputers. 

• Inter-processor communication subsystem: the presence of a dedicated communications pro­
cessor which operates concurrently with the main processor, makes interprocessor communica-
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tions flexible and efficient. The integration of the communications system on-chip makes it easy 
to write programs for multiprocessor systems 

• System control and monitoring: all the IMS T9000 transputers in a system can be initialized, 
loaded with code and monitored for errors through a completely independent communications 
system. 

1.3 Communications support devices 

The IMS T9000 transputer is complemented by a range of communlcallons penpherals that extend the com­
munications capabilities of the IMS T9000. The IMS C1XX family ensures that any size of IMS T9000 system 
can be constructed, connecting first generation and second generation transputers and providing an inter­
face to the outside world. 

• IMS C104 packet routing switch: the IMS C104 is a complete routing switch on a single Chip. 
The IMS C1 04 connects 32 links to each other via a 32 by 32 way, non-blocking crossbar switch 
with sub-microsecond latency. This allows Simple, fast communication between IMS T9000 
transputers that are not directly connected. Multiple IMS C104s can be connected together to 
make larger and more complex networks, linking any number of IMS T9000 transputers, or any 
other devices that use the link protocol. 

• The IMS C1 00 system protocol convertor: the IMS C1 00 system protocol convertor converts 
between the first generation transputer links and control signals and the new IMS T9000 proto­
col.The IMS C100 provides an inter-networking solution for transputer systems, allowing networks 
to be constructed using the optimum mix of transputers to satisfy processing power, communica­
tion bandwidth and system cost. 

1 .4 Software 

The success of any microprocessor is determined as much by the quality of its software development tools 
as by any other feature. 

INMOS has over a decade of experience in developing software tools for transputers and for multiproces­
sing systems. The range of compilers and powerful development tools support all the reqUirements of soft­
ware developers. 

• Compatibility: instruction set compatibility with the first generation transputer family means that 
the IMS T9000 transputer has inherited a significant range of development and application soft­
ware. 

• The transputer toolset: the transputer toolset is a set of development tools for programming, 
configuring and debugging mixed transputer systems. 

The toolset is available on a variety of host computers including: 

• IBM PC 

• NEC PC 

• VAX 

• Sun 3 

• Sun 4 

• Debugger: INMOS provides a powerful, interactive debugger for debugging programs running 
on networks of transputers This provides full source level debugging with the ability to set break­
pOints in any process and on any processor, and then to examine the state of the stopped process 
as well as the lOW-level state of the processor. 
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• Compilers: for fast time to market, and to satisfy the diverse programming requirements of differ­
ent application areas, the toolset can be used with a variety of industry standard compilers, all 
with major support for multiprocessing. 

The IMS T9000 is supported by a range of compilers including: 

• ANSI C 

• C+ + 

• Fortran 

• occam 

• Ada 

• System software: system software support for the IMS T9000 reflects the requirements ofthe em­
bedded systems marketplace. A range of operating systems and real-time kernels are available 
for the transputer including: 

• C Executive 

• VRTX 

• CHORUS distributed Unix 

This impressive array of development tools, industry standard compilers and system software satisfies the 
demands of the embedded systems market. It also ensures that the user can benefit from a significant re­
duction in the critical time to market. 

1.5 Applications 

The transputer family provides unprecedented price/performance solutions for a wide range of embedded 
systems applications. 

The IMS T9000 transputer has been specifically developed to satisfy the requirements of three segments 
of the embedded systems market: 

• Imaging: the imaging market comprises applications that involve the generation, manipulation 
and transmission of image data. Such applications include: 

• Laser printers 

• Graphics systems 

• Image processing systems 

• Industrial inspection systems 

• Robotics 

• Embedded computing: the embedded computing market comprises applications that are run 
within a computer environment and add overall p~rformance and functionality to the computer 
system. Such applications include: 

• Application accelerators: (graphics, numerical, scientific, DTP) 

• Disk arrays and high performance file servers 

• Databases 

• X terminals 
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• Supercomputers 

• Factory automation 

• Communications: the embedded communications market can be segmented into two main ar­
eas that require high performance microprocessors. These are: 

, • Networking: low cost LAN interfacing - FOOl, Ethernet; internetworking systems - bridges, 
gateways and routers. 

• Packet switching systems. 

The IMS T9000 transputer Is highly applicable to the communications market due to its integrated architec­
ture combining high performance CPU and communication links with a packet based protocol. The 
IMS C104 packet routing switch has been designed to support the IMS T90OO, and is useful in a range of 
telecommunications switching applications. 

The transputer family provides a range of price/performance solutions for all the above applications. 
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2 The IMS T9000 transputer 
The IMS T9000 is the latest member in the transputer family of high performance microprocessors. It is part 
of a broad range of 16 and 32 bit microprocessors with compatible instructions sets and interfaces. As well 
as providing high performance processing, they are designed to be simple to use and enable the construc­
tion of low cost systems. Transputers include functions to enable multitasking on a single processor and 
the building of multiprocessor systems. 

2.1 Overview 

Programmable 
Memory 

Interface 

r;;;;-; 
~ 

Virtual 
Channel 

Processor 

Link 0 

Link 1 

Link 2 

Link 3 

Figure 2.1 Block diagram of IMS T9000 

The IMS T9000 integrates a high performance central processing unit (CPU), a 16 Kbyte cache, communi­
cations system and other support functions on a single Chip. The main functional blocks of the IMS T9000 
are shown in figure 2.1. The function of each of these is outlined below, more details will be found in the 
following sections. 

Processor 

The IMS T9000 CPU contains a 32 bit arithmetic and logic unit (ALU) and a 64 bit floating point unit (FPU). 
The FPU operates on 32 and 64 bit floating point numbers as specified by the IEEE 754 standard. The CPU 
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also includes instructions for byte and half word operations. The CPU uses 32 bit linear addressing and 
can address up to 4 Gbytes of memory. 

The IMS T9000 is binary compatible with previous transputers. In particular it implements the same instruc­
tion set as the IMS T805 [1] with many additions. 

The instruction set is designed for efficient execution of compiled code and there is a wide range of lan­
guage compilers available for the transputer including a Plum-Hall validated ANSI C compiler, a validated 
Ada compiler and Fortran, occam and C++ compilers. These are complemented by a full set of software 
tools for developing and debugging programs for single transputers and networks of transputers. In addi­
tion there are a number of system level software products, such as real time kemels and distributed operat­
ing systems. 

The transputer includes a hardware kemel for scheduling processes and performing communications. 
These operations are directly supported in the instruction set. 

The IMS T9000 can run code in protected mode. In this mode all memory accesses are made through a 
memory management unit which checks and translates addresses before using them to address the 
memory system. Further, only a subset of the full instruction set may be executed, preventing protected 
code from executing privileged instructions. 

There is improved support for error handling over earlier transputers; errors can be trapped and handled 
independently for each process in addition to the global error handling provided previously. 

Hierarchical memory system 

The IMS T9000 includes a 16 Kbyte unified cache to provide single cycle access to instructions and data. 
The cache provides a peak bandwidth of 200 Mwords/s. The CPU also includes another small cache for 
the most frequently used local variables of a program which provides another 150 Mwords/s of memory 
bandwidth. 

The external memory interface is highly programmable, allowing large memory systems, containing differ­
ent types of devices, to be built with little or no external logic. There are four independent sets of memdry 
control signals simplifying the use of different device types in the same system. The memory can interface 
to 8, 16, 32 or 64 bit wide devices. The maximum data transfer rate across the memory interface is 
50 Mwords/s. 

Communications system 

An important issue in multiprocessor system design is the communications architecture. To achieve effi­
ciency and ease of use, communications must be properly integrated into the entire processor architecture. 

The transputer hardware and instruction set provides simple and efficient communications between pro­
cesses and between processors. Both internal and external communications are handled identically, using 
the same source code and machine instructions. 

To support interprocessor communications, there is a complete communications subsystem on Chip. This 
includes four 100 Mbits/s full-duplex, serial communication links each with its own pair of direct memory 
access (DMA) channels. The links can be directly connected between transputers with no external buffering 
or other glue logic. The use of serial links simplifies routing of links on a circuit boards and the interconnec­
tion of boards in a system. A communications processor, which manages all link communications, oper­
ates concurrently with the main CPU so tMt data transfers do not adversely affect CPU operation. 

Two additional links are provided for system control and monitoring. Initialization and booting of the proces­
sor can optionally be done through these links. 

The communications subsystem also includes four 'Event' channels. As well as acting as interrupt inputs, 
these can be used, as inputs or outputs, for more general synchronization and signalling. 

Multiple internal buses 

To support the high degree of concurrent operation on the IMS T9000, and to maintain the high internal data 
rates reqUired, there are four sets of 32 bit address and data buses internally. These provide multi-port ac­
cess to the on-chip cache from the various functional units of the IMS T9000. 
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System services 

The system services section provides all the general faci I ities necessary for the operation of the transputer 
This includes the power and ground connections, and the clock input (5 MHz). Other important connections 
are a capacitor, which is required for the on-chip phase locked loops which generate all the internal high 
frequency clocks, and the processor speed select pins which can be used to select the frequency of the 
internal clocks (up to the maximum speed for a particular device). There is also a reset input - however, 
as the IMS T9000 includes on-chip power-on reset circuitry, external reset logic may not be required in an 
emQedded control application. 

2.2 The transputer architecture 

An important design decision was that transputers should be programmed in a high level language. The 
instruction set has, therefore, been designed for simple and efficient compilation. The instructions are all 
of the same format and chosen to give a compact representation of the operations most frequently occur­
ring in programs. 

The CPU of the IMS T9000 contains three registers (Areg, Breg and Creg) used for expression evaluation, 
which form a hardware stack. Loading a value into the stack pushes Breg Into Creg, and Areg into Breg, 
before loading Areg. Storing a value from Areg pops Breg into Areg, and Creg into Breg. Similarly, the 
FPU includes a three register floating-point evaluation stack. When values are loaded onto, or stored from, 
the stack the floating-paint registers push and pop in the same way as the Areg, Breg and Creg registers. 
Analysis of a large number of programs, shows that 3 registers provides an effective balance between code 
compactness and implementation complexity 

Registers Locals Program 

Areg 

Breg 

Creg 

Workspace ptr 

Next Instruction 

Operand 

Figure 2.2 Processor registers and memory 

The transputer has three other registers used when executing code These are: 

• The instruction pointer which paints to the next instruction to be executed. 

• The workspace painter which paints to an area of store where local variables are kept. This area 
is also used as a stack for procedure calls, etc. 

• The operand register which is used in the formation of instruction operands. 

The addresses of floating-point values are formed on the CPU stack, and values are transferred between 
the addressed memory locations and the FPU stack under the control of the CPU. 

Most transputer functions use the contents of these stacks, and most instructions reference the stacks im­
plicitly. For example the add instruction adds the top two values in the CPU stack, leaving the result on the 
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top of the stack. The use of a stack reduces the need for instructions to specify the location oftheir operands 
which reduces the size of instructions and hence of compiled code. 

2.3 Support for concurrent processes 

Most computers have the ability to effectively run several user tasks or processes concurrently. These pro­
cesses are created and scheduled by the host operating system. The operating system kemel provides 
the ability for processes to communicate with the operating system and with each other. 

Every transputer includes a hardware kernel with the ability to execute many software processes at the 
same time, to create new processes rapidly, and to perform communication between processes within a 
transputer and between processes on different transputers. All of these operations are integrated into the 
hardware and instruction set of the transputer and are very efficient. Further detai Is of the transputers sched­
uling mechanism will be found in section 5. 

2.4 Pipelined, superscalar implementation 

To increase the execution rate of the transputer instruction set, the IMS T9000 is able to issue several in­
structions per cycle. A superscEilar micro-architecture was designed which implements the same high level 
architecture and instruction set as the IMS T805 but with much higher performance. 

Some recent implementations of pipelined and superscalar microprocessors have required very careful 
programming to obtain the claimed performance. They require that instructions are presented to the pipe­
line in a sequence that will keep the processor busy. This makes developing effective compilers very diffi­
cult, often forcing programmers to resort to assembly code to achieve the required performance. This puts 
the burden of arranging the correct sequencing of instructions on the programmer, adding to the develop­
ment time and hence costs of a product. 

Instruction 

Fetch 

Instruction 

Grouping 

III 
Workspace 

Cache 

~ 

ALU/ 

FPU 

Figure 2.3 Block diagram of grouper and pipeline 

1m 

Write/ 
Jump 



Product family overview 11 

The details of the IMS T9000 pipeline are transparent to the programmer. The processor appears to be the 
simple transputer architecture described above and straightforward code written for that programming 
model will get nearly the best performance out of the processor. An optimising compiler for the IMS T9000 
can, of course, generate more efficient code if the details of the internal architecture are taken into account. 

The pipeline 

Instructions are executed in a five stage pipeline: the first can fetch two local variables; the second can 
perform two address calculations, for accessing non-local or subscripted variables; the third stage can 
load two non-local variables; the next can perform an ALU or FPU operation; and the final stage can do 
a conditional jump or write. 

A conventional pipeline is designed to allow several instructions to be executed simultaneously; different 
parts of each instruction being handled in different stages of the pipeline. In order to allow rnultiple instruc­
tions to be issued per cycle (as well as rnultiple instructions being executed in each cycle) the IMS T9000 
does not simply send a sequence of instructions through the pipeline but has hardware which assembles 
groups of instructions from the instruction stream. These groups are chosen to make the best use of the 
available hardware and one group can be sent through the pipeline every cycle. Instructions are put into 
groups in the order that they arrive at the CPU; dependencies within the group are handled autornatically 
by the pipeline. 

The grouper can be thought of as a hardware optimizer; it recognizes commonly occurring code sequences 
that the processor can execute effectively. The design of the grouping mechanism and the pipeline is based 
on analysis of the code typically generated by high level language compilers. 

An IMS T9000 running at 50 MHz can execute code compiled for the IMS T805 typically1 0 tirnes faster than 
a 20 MHz IMS T805. This means that existing development tools and software can be used to generate 
code for the IMS T9000. It also means that only a modest amount of work is required to modify compilers 
to produce code optimized for the IMS T9000. 

Grouping of instructions 

The grouping of instructions takes advantage of the high degree of concurrency and multiple buses in the 
processor. For example, both caches are multi-ported and can each support two reads by the CPU simulta­
neously. This allows two load local instructions to go into one group, and the group could also contain two 
sets of instructions to calculate addresses and fetch non-local variables. These could all be combined with 
an arithmetic operation such as add. More details of the transputer instruction set can be found in [3]. 

As an example of how the grouper works, consider the assignment and expression evaluation shown be­
low. The code produced is shown along with the number of the pipeline stages in which it is executed. 

a[i+l] = b[j+15] + c [k+7]; 

ldl j rn load local variable j 
ldl b rn load base address of array b 
wsub [gJ calculate address of b [j ] 
ldnl 15 [gJrID load value of element b [j + 15] 

ldl k rn 
ldl c rn 
wsub [gJ 
Idnl 7 [gJrID load value of c [k+7] 
add @] add two values on top of stack 

ldl i rn 
ldl a rn 
wsub [gJ 
stnl 1 [gJ1m store Into a [ i +1] 

This code sequence will be executed as three groups (Le. in 3 cycles) as shown below. The exact contents 
of each group will depend on the code which precedes and follows this. The first group might contain other 
instructions from earlier in the instruction stream. 
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first group Idl, Idl, wsub, Idnl 

second group Idl, Idl, wsub, Idnl, add 

third group Ildl, Idl, wsub, stnl 

Since the processor can fetch one word, containing four bytes of instructions and data, in each cycle it 
is possible to achieve a continuous execution rate of four instructions per cycle (200 MIPS). However, if 
any of the instructions require more than one cycle to execute, then the instruction fetch mechanism can 
continue to fetch instructions so that larger groups can be built up. Up to a instructions can be put into one 
group and there may be five groups in the pipeline at any time. 

Improvements over IMS T805 

In addition to executing several instructions each cycle, the number of cycles required to perform many 
arithmetic and logical operations has been reduced from previous transputers by adding extra hardware. 
This, combined with the faster clock speed and new micro-architecture, means a ten-fold increase in speed 
over the IMS Ta05. 

In addition there is improved support for error handling, and protecting code and data from the errant behav­
ior of a program. The IMS T9000 provides better access to the transputers scheduling mechanism, making 
it easier to implement software kemels for a particular processing model. 

2.5 Hierarchical memory system 
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Figure 2.4 IMS T9000 hierarchical memory system 
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The IMS T9000 has a complete, hierarchical memory system providing fast and efficient access to data 
and instructions. There are two separate caches on chip, a general purpose unified (code and data) cache 
and a small cache for local variables. 

These caches can provide fast, multi-ported access to data because they are on chip. They also reduce 
the number and frequency of accesses to external memory, allowing lower cost, slower devices to be used 
without degrading performance. Finally, because the majority of external memory accesses will be cache 
refills (and therefore multiple word reads and writes) fast memory access methods, such as page mode, 
can be used. 

2.5.1 Main cache 

The main cache consists of four independent banks, each containing 256 lines. Each line holds data from 
four consecutive words (16 bytes) in memory. An access can be made to every bank on every cycle which, 
with the multiple internal buses, means there is a very high bandwidth between the cache and different 
functional units within the IMS T9000. 

CPU VCP 

Crossbar switch and arbitrator 

4 x 32 bit address buses 
4 x 32 bit data buses 

Four banks of cache 

PMI 

Figure 2.5 Diagram of four banks of cache 

Scheduler 

The four cache banks are accessed by a number of different functional units in the IMS T9000, some of 
these units have multiple ports into the cache. To allow four simultaneous reads and writes to take place 
in each cycle, there are four sets of address and data buses. An arbitrator controls access from the various 
functional units to the cache banks. 

Cache operation 

Each of the four banks is addressed by a quarter of the memory space. This division of the address space is 
done using bits 4 and 5 ofthe address, the bottom four bits are used to select a byte within a line. Each line 
consists of: 16 bytes of RAM for the data; 26 bits of associative memory which holds the address of this line 
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of data; and two control bits to indicate if the line is valid and if it has been modified since it was read in (is 
'dirty'). When a memory access is made, the address is checked against the contents of the appropriate 
bank. If the address is present (and the line is valid) then the access can go ahead, reading or writing the 
data in a single cycle. 

A cache refill engine ensures that there is always one empty line available. Then, if a requested address is 
not in the cache (a 'cache miss'), the four words containing the data are read from memory into the empty 
line. The refill engine then has to ensure that a new empty line is created. It does this by choosing a line at 
random and, if the data has been modified since it was read into the cache, writing it out to memory. The line 
is then marked as invalid, i.e. empty and available for use. This is known as 'early write-back' as it writes 
the chosen line out to memory before a cache miss occurs. 

The reading and writing of cache lines takes advantage of any fast memory access methods that are avail­
able (e.g. 64 bit wide accesses or page mode DRAM). 

Use as on-chip RAM 

At reset, the cache behaves as 16 Kbytes of normal RAM, enabling the IMS T9000 to be used with no exter­
nal memory. There may be many applications where a number of transputers are used, each requiring little 
or no external memory - used in this way the IMS T9000 provides extremely high performance (single cycle 
memory reads and writes) combined with extremely low cost (possibly no external components except a 
clock). Starting up in this mode provides compatibility with earlier transputers which have a fixed amount of 
on-Chip RAM. It also makes it possible to test the hardware of a new transputer system as it is known that 
there is 16 Kbytes of working RAM which can be used by test software. 

During the initialization of the IMS T9000 the cache may be programmed to behave as 16 Kbytes of cache, 
as 16 Kbytes of RAM, or as half cache and half RAM. This can be very useful when certain data or code, e.g. 
an interrupt handler, must be accessed quickly and in a more deterministic way than a cache provides. The 
remaining 8 Kbytes of cache will be large enough to achieve high performance. 

2.5.2 Workspace cache 

The workspace cache can hold a copy of the first 32 words of procedure stack and workspace. It is triple 
ported, allowing two reads and a write in every cycle. The workspace cache allows local data to be ac­
cessed without going outSide the CPU, effectively giving zero cycle access and reducing the load on the 
main cache and external memory. It also means that the pipeline can do four data reads (as well as an 
instruction fetch) in each cycle: 2 from the local cache and 2 from the main cache. 

Because local variables can be accessed quickly, they can be read in the first stage of the pipeline and 
can then be used for non-local address calculations in the next stage. The workspace cache is 
write-through; whenever data is written into the local cache it is also written to the main cache. This means 
there is no overhead for flushing the cache on interrupt or context switch. 

The workspace cache is part of the processor pipeline and, in many ways, it is equivalent to the general 
purpose register set found on other microprocessors, providing fast access to frequently used data. To 
make use of this architecture, the INMOS ANSI C compilerrecognizes the 'regi ster' keyword and places 
those variables lower in the function's workspace so they are more likely to be cached. 

Cache operation 

The cache is organized as a 32 word circular buffer and is addressed using the bottom five bits of the work­
space pOinter. As the workspace pointer moves up and down, it rolls around the cache. When the work­
space pOinter is moved down, on a procedure call for instance, the locations that 'roll into' the cache are 
marked as invalid and become valid as they are read or written. The first time a variable is read, it is copied 
from the main cache (and, of course, fetched from main memory if it is not in the main cache). Lines are 
marked as invalid when they 'rollout' of the cache as the workspace pOinter is moved up (e.g. on a return 
from a procedure call). On a context switch or interrupt, the entire contents of the cache are marked as 
invalid. 

This is illustrated in figure 2.6, where the state of the workspace cache during a procedure call and return 
sequence is shown. Before the call, the locations in the workspace cache above the workspace pOinter 
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which have been read or written by the program contain valid data. After the call, the workspace pOinter 
moves down - initially the locations which are above the workspace pOinter are invalid; as they are ac­
cessed by the program they are filled with data and marked as valid. When the procedure returns, the loca­
tions which it used will be marked as invalid. As long as the workspace of the called procedure is less than 
32 words, some of the workspace of the calling procedure will still be valid after the return. Nested proce­
dure calls, or calls of procedures with a large workspace requirement will cause the workspace pOinter 
to wrap around so that some of the data at the top of the program workspace is no longer in the cache. 

6HC-AHh£J Locations used 
~H'h'7:>"1 by calling 
6HC-AHh£J procedure 
I'-"..L...<-L-LA'-'t'o--- workspace 

pOinter 

Locations 
f-.-----j marked as 

invalid 
f-.-----j 

Before procedure call 

Locations available 
~oV'n""""" for use by called 

~oV'n""""" 
procedure 

After procedure 
call 

workspace 
pOinter 

1'-"--L-L.L~"4-____ - workspace 
pOinter 

Locations 
f-.-------j newly marked 

as invalid 
f-.-------j 

After return from 
procedure 

Figure 2.6 Effects of call and return on workspace cache 

As the cache is a circular buffer, moving the workspace pOinter by 32 or more will cause the pOinter into 
the cache to wrap right round, marking every line as invalid. 
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3 Simplicity of system design 

Many features of the IMS T9000, as with the original transputer range, exist to simplify the user's design 
task and to reduce the amount of support hardware and software that is required. This means that designers 
can spend more time working on their application and less time worrying about details. Using transputers 
can result in smaller, simpler designs, easier system debugging, faster time to market and lower system 
cost. Some of these features and their benefits are outlined below. 

3.1 Single 5MHz clock input 

All transputers, no matter what the processor speed, and all support devices require only a single 5MHz 
clock input; on-chip phase locked loops generate all the high frequency intemal clocks required for the 
processor and links. Because of the asynchronous nature of the link hardware differences in the clock 
phase between devices is not important. This means that each processor can have a local clock. 

This simplifies system clock generation and distribution, especially where multiple transputers are used. 
The use of low frequency signals around a system can be particularly important in electrically noisy environ­
ments such as industrial control systems. 

3.2 Programmable memory interface 

The first generation of 32 bit transputers have a memory interface which can be programmed to generate 
all the timing signals required by a memory system, meaning that little extemal logic is required to build 
a complete system. 

The IMS T9000 takes this idea further by providing greater functionality and flexibility. The IMS T9000 pro­
grammable memory interface (PMI) provides complete support for DRAM including multiplexing of row/co­
lumn addresses, refresh, and page mode accesses. It is possible to connect up to 8 Mbytes of 1 M x 4 
DRAM with no extemal logic. The amount of memory which can be connected directly is limited only by 
capacitive loading; larger amounts of memory will require only the addition of buffering on the address and 
data lines. 

The IMS T9000 memory interface will automatically exploit any fast access modes for the memory system. 
For example if 64 bit wide DRAM is used then an entire cache line can be read in two memory operations. 
If page mode DRAM is available, then reads or writes with the same row address will be done using page 
mode, greatly reducing the cycle time. This will always be used for cache line reads and writes, where four 
consecutive words will be transferred, but it will also work for any set of reads and writes from the same 
page. 

In addition to supporting fast DRAM, the IMS T9000 will also efficiently interface to other devices, such as 
SRAM, ROM or memory mapped peripherals. The PMI on the IMS T9000 divides the address space into 
four banks1. Each bank provides separate decoding and timing control, generating all the signals needed 
for the device types in that bank. The address range, timing, memory type and bus width can be pro­
grammed independently for each bank. There is an additional preset bank for slow, byte-wide ROM. This 
is intended for systems where the processor is booted from ROM. Only memory reads can be done from 
this bank. 

The parameters for the memory interface are programmed into a number of configuration registers. A soft­
ware tool is provided in the transputer development system to simplify the task of designing with the PMI. 
This tool can be used interactively to describe the parameters for each memory bank. It then produces an 
output file which can be used by other parts of the development system for initializing and loading 
transputers. The program also produces timing diagrams and descriptions which can be used in document­
ing the system design. 

3.3 Control links and configuration 

The IMS T9000 has a pair of control links. One is used for receiving commands and sending status informa­
tion, the other provides a cascade connection so that all devices in a system can be daisy-chained togeth-
1 There IS no connection between the four banks In the memory Interface and the four banks In the main cache 
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er. The control links use the same link protocol as the IMS T9000 data links and provide a control network 
which is completely independent of the normal data communication network. 

The control links have through routing hardware so that the controlling processor (possibly an IMS T9000) 
appears to have a direct connection to every device in the system. 

The control links are kept totally separate from the links used for program communication in a system. A 
program running on the IMS T9000 cannot send messages down the control links. The separation of control 
and data links ensures that the control links are completely reliable. For extra reliability, they can be run 
at a lower bit rate. 

CLinkOl----'--( CLink1 CLinkOl----'--( CLink1 CLinkOl--'---( CLink1 

T9000 T9000 T9000 

Figure 3.1 Network of control links 

The control links provide an independent communication network which can be used to load code, do hard­
ware debugging, monitor a running system for errors and perform diagnostic functions, both for a single 
IMS T9000 and a network. 

Because of the great flexibility of the memory interface and the communications system of the IMS T9000 
there are a number of configuration registers that need to be programmed. For all of these, the development 
tools will program the registers using high level descriptions of the system. For example, as noted above, 
there is an interactive tool for developing configuration data for the PM!. Similarly, the communication sys­
tem is set up using high level language descriptions of the software and hardware networks. 

There are two ways of programming the configuration registers: by writing to them from a program running 
on the IMS T9000 itself; orvia a control link from the host system. The first method is used when the system 
is booted from ROM, for example in an embedded system. The second method can be used in a develop­
ment environment or, in a multi-transputer system, where only one processor is initialized (or 'configured') 
from ROM and all the others are configured via their control links from that root processor. In both cases 
the IMS T9000 development tools will generate the data to be programmed into ROM or sent to the control 
link of a processor. 

There are a number of stages of initializing and loading code onto the IMS T9000 after it has been reset. 
These are known as 'reset levels' and during the initialization process, every IMS T9000 must go through 
each level from complete reset, to having application code running. Each of these levels can be done from 
ROM or through a control link. 

3.4 Loading and bootstrapping 

The transputer can also be bootstrapped in two ways: from code received down a link or from ROM. All 
INMOS development tools generate programs to be loaded by either method as required during develop­
ment or in a production system. 

There are a number of advantages to the ability to load code from a link. It greatly simplifies the develop­
ment cycle - there is no need to keep programming new EPROMs with new versions of code (or use an 
EPROM emulator); it can simply be loaded down a link. It simplifies testing of hardware - a transputer pro­
vided with the minimal essential extemal signals (5 volts, clock, etc) will be guaranteed to work; there is 
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then16 Kbytes of on-chip RAM in which to load test code. In a multiprocessor system, only the root proces­
sor needs to be booted from ROM - the others can be booted down a link with code contained in that sys­
tem ROM. It is even possible to switch between ROM and link booting, in order to do field testing and diag­
nose faults in an installed system. 

3.5 Examples 

To show how simple it is to build systems using the IMS T9000, a few example block diagrams are given 
here. In the simplest cases these are almost complete circuit diagrams. 

The first example (figure 3.2) is a complete working system using the IMS T9000s intemal RAM as the sys­
tem memory. The processor boots from ROM which contains the application software. This processor can 
communicate with other transputers or peripherals through its data links. It can be set to boot from ROM 
or from link for development and test purposes. The full16 Kbytes of on-chip RAM is available for program 
workspace. 
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Figure 3.2 Complete IMS T9000 system with EPROM 

Figure 3.3 shows how a low cost system can be built using a small amount of SRAM. This could be com­
bined with ROM and peripherals for a low cost embedded application. 
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Figure 3.3 Low cost system with 64 Kbyte of SRAM 
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The third example in figure 3.4 shows how a large amount of DRAM can be connected to the IMS T9000 
with no external logic for decoding, control signal generation or buffering. 
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Figure 3.4 High performance system with 8 Mbytes of DRAM. 

The memory in each bank is enabled by separate strobe signals so all of the above memory types could 
be combined on a single IMS T9000. 
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4 Protection and error handling 

The IMS T9000 extends the error handling of earlier transputers to allow error conditions to be easily 
trapped and handled in software. It can run code in a protected mode where all memory accesses are 
checked and certain, privileged, instructions cannot be executed. 

4.1 Error handling 

The first transputers have only a global mechanism for trapping errors; stopping the entire processor when 
an error is detected. The IMS T9000 extends this to allow a trap handler to be associated with a process 
to provide more localized error handling. When an error occurs, control is transferred to the trap handler 
with information about the nature of the error and where it occurred. 

The action of a trap handler will, in general, be dependent on the language or operating system being used 
and will be invisible to the applications programmer. Some languages may include support for user written 
error handlers. After taking the appropriate action, for example to report or correct the error, the trap handler 
can retum control to the process which caused the error which can then continue execution. Each process 
can have its own trap handler, or one trap handler can be shared by several (or all) of the processes on 
the transputer. 

To maintain compatibility with earlier transputers, the IMS T9000 can also run processes in a global error 
mode where the behavior on error is identical to the IMS T805. These two types of processes are known 
as L-processes and G-processes (for Local and Global error handling) respectively. Both L- and G-pro­
cesses can be run in parallel, the processor dynamically switching modes as it switches between pro­
cesses. This allows code compiled for the IMS T805 (which will always be in global error mode) to be run 
in parallel with code specifically compiled for the IMS T9000. 

4.2 Protected mode 

The IMS T9000 can also run code in protected mode. This is designed to allow run-time checking of pro­
grams written in 'unsafe' languages such as C and also to provide memory management. For example, 
C allows pOinters to data or functions. Without checks for valid pOinters, these could contain an illegal 
memory address such as: another process's data or code; a non word aligned address; or a function point­
er which does not point to valid code. As no checks are defined in the language it is important to be able 
to check such accesses at run time, if needed. 

The protection mechanism is intended to support software development and debugging, and programming 
secure systems. It protects the user's processes or tasks from each other and also protects an operating 
system kemel, or other run time support, from user code. Although code run in this mode is frequently re­
ferred to as a 'protected process', it is not the process which is protected but the rest of the world that is 
protected from errors in the process. 

Protected mode processes 

Any L-process can run a piece of code as a protected mode process (or P-process); the processor saves 
the state of the L-process and starts executing the P-process. The P-process is executed until control is 
returned to the L-process because of an error, protection violation or some other reason. It is important to 
realize that P-processes are not scheduled by the transputer's own scheduler - they only run under the 
control of a supeNisor L-process. Any of the instructions or other events that might cause a P-process to 
be descheduled, will cause control to be retumed to the supeNisor. The relationship between a P-process 
and its supeNisor is analogous to that between an L-process and its trap-handler. In both cases the proces­
sor can be thought of as swapping between the two pieces of code. 

Executing illegal instructions 

Because control is retumed to the supeNisor when a P-process attempts to execute a privileged or illegal 
instruction, it is possible to provide communication and other facilities to a P-process in a controlled way, 
but one which is invisible to the programmer. For example, the input and output instructions are privileged 
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so, if a P-process attempts a communication then it will trap to the supervisor L-process. This L-process 
can examine the state ofthe P-process and, ifthe attempted communication is 'legal', perform the commu­
nication and return control to the P-process. The P-process will continue as if a normal communication had 
occurred. 

There is also a 'syscall' instruction which can be used by a P-process to explicitly request some action 
by the supervisor. 

Memory management 

When running in protected mode, all memory accesses are checked and translated. Each P-process can 
access four regions of memory. The size and base address of each region can be set, and each can have 
different protections. Each area can be given permission for code to be executed from it and for data to 
be written. For example an area of memory containing code would normally be marked with execute per­
mission but write protected. 

All addresses generated when the processor is running in protected mode are logical addresses. These 
are translated to physical addresses by combining the low order bits of the logical address with the high 
order bits from the control register for that region. The translation and checking is done in parallel with other 
address generation operations and so imposes no overhead on memory access time. 

The IMS T9000's memory management can be used to implement swapping of memory to and from disk 
and relocation (although it does not support page-based virtual memory). This can be used to implement 
most operating system kernels. It can also be used for 'stack extension'. All the instructions which move 
the workspace pOinter are checked for a valid address after the operation. If it is found that the workspace 
address is no longer valid then a trap occurs, the supervisor process can then allocate more memory for 
the processes stack and restart it. 
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5 Support for multiprocessing 

The requirement for processing performance in embedded systems is continuously increasing as control 
algorithms become more sophisticated and as systems become more complex. In the long term, the only 
solution to these ever increasing demands for performance is the use of multiple processors to perform 
parallel processing. 

Transputers are the only microprocessors specifically designed to tackle the problems of building multipro­
cessor systems.There are advantages other than Just performance to using multiple transputers in a sys­
tem; it allows scaleable systems to be built, where more processors can be added as demand increases, 
or to provide the optimum balance of price versus performance. The communications facilities of the 
transputer family can also be used to build distributed systems where, for example, the processors are 
located near the equipment or components they control and use links to communicate with other proces­
sors in the system. In addition, transputers can be used to build high reliability, fault tolerant systems. 

Fast Interrupt response and process switch 

In most embedded applications, there is a need for fast real time response (both to extemal interrupts and 
for context switching in multitasking systems). The design of the IMS T9000 processor explOits the pres­
ence of the two on-chip caches by having only a small number of registers in the CPU. This means that 
there is little state to be saved when an interrupt or task switch occurs, so these operations are extremely 
fast. These types of operations are very efficient on the transputer because of the hardware scheduler. 

The register stacks are duplicated so that, when a process running on the IMS T9000 is interrupted, the 
contents of the stacks do not need to be written to memory. This results in a sub-microsecond interrupt 
response. Furthermore, the duplication of the register stacks enables floating-point arithmetic to be used 
in an interrupt routine without any performance penalty. 

5.1 The transputer model of concurrency 

The model of concurrency and communication implemented by the transputer hardware is based on the 
ideas of communicating sequential processes. All the features for creating processes and communicating 
between them are accessible from any high level language for the transputer and are implemented directly 
by the occam programming language [2]. 

Processes and channels 

Each process can be regarded as a black box with internal state, which can communicate with other pro­
cesses using communication channels. Each channel is a point to point connection between two pro­
cesses. One process always inputs from the channel and the other always outputs to it. Communication 
is synchronized: the first process ready to communicate waits until the second Is also ready, then the data 
is copied from the outputting process to the inputting process and both processes continue. 

Each process starts, performs a number of actions and then terminates. An action may be a set of sequen­
tial processes performed one after another, as in a conventional programming language, or a set of parallel 
processes to be performed at the same time as one another. Since a process is itself composed of pro­
cesses, some of which may be executed in parallel, a process may contain any amount of internal concur­
rency, and this may change with time as processes start and terminate. Ultimately, all processes are con­
structed from three primitive processes: aSSignment; input and output. 

Program structure 

Figure 5.1 shows an example of a system constructed from three communicating processes. In this case 
there are separate processes to handle the external hardware (the screen and keyboard) and to execute 
the main, application, process. This is a modular design - only the hardware handling processes have to 
be changed If the software is moved to a new environment, the same interface (the data sent and received 
on channels or 'protocol') can be presented to the application process. The keyboard handler can be inter­
rupt driven, only being scheduled when a character is typed, the interrupts appearing as communications. 
The input and output processes can provide buffering and other filtering of the data, all of which is invisible 
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to the main application process, which could even be placed on a separate processor. This use of separate 
processors need not just be for performance reasons but might be done, for instance, if there are a large 
number of peripheral devices which could be better handled by a low cost 16 bit transputer. One or more 
high performance transputers could then be used for the main computing processes. 

to application 

echo 

from application 

Figure 5.1 Processes and channels 

Example 

The code for creating parallel processes in C is very simple. For example, if the three processes in the 
example above are external functions, then the following code is all that is needed to run them in parallel: 

#include <stdlib.h> 
#include <channel.h> 
#include <process.h> 

/* 
declare externally defined functions 

*/ 
extern keyboard_handler (Process *p, Channel *to app, Channel *echo); 
extern screen handler (Process *p, Channel *echo, Channel *from app); 
extern application (Process *p, Channel *to_app, Channel *from_apP); 

/* 
declare pointers to process and channel data structures 

*/ 
Process *kbd_p, *scrn_p, *appn_p; 
Channel *to_app, *from_app, *echo; 

/* 
allocate and initialize channel data structures 

*/ 
to_app 
from_app 
echo 

/* 

ChanAlloc ( ) ; 
ChanAlloc ( ) ; 
ChanAlloc ( ) ; 
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allocate and initialize the process data structures 
*/ 
kbd_p 
scrn_p 
appn_p 

/* 

ProcAlloc (keyboard_handler, 0, 2, to_app, echo); 
ProcAlloc (screen_handler, 0, 2, echo, from_app); 
ProcAlloc (application, 0, 2, to_app, from_app); 

now run the three processes in parallel, this call 
will return when all three processes have terminated 

*/ 
ProcPar (kbd_p, scrn_p, appn_p, NULL); 

A more complete explanation of how parallel programs can be written for the transputer can be found in 
INMOS Technical Note 68, "Developing parallel C programs for transputers" [5]. 

The equivalent program in occam would be: 

CHAN OF BYTE to.app, from. app , echo 
PAR 

keyboard. handler (to.app, echo) 
screen. handler (echo, from.app) 
application (to.app, from.app) 

Multiprocessor programs 

Figure 5.2 Transputers and links 

Every transputer implements these concepts of concurrency and communication. As a result, the same 
model can be used to program an individual transputer or to program a network of transputers. Figure 5.2 
shows a typical network of transputers connected by serial links. When a number of processes run on an 
individual transputer, the processor shares its time between the concurrent processes, and channel com­
munication is Implemented by moving data within memory. When this programming model is used to pro­
gram a network of transputers, each transputer executes the process, or processes, allocated to it. 

Communication between processes on different transputers is implemented directly by transputer links. 
Thus the same program can be implemented on a variety of transputer configurations, with one configura-
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tion optimized for cost, another for performance, or another for an appropriate balance of cost and perform­
ance as illustrated in figure 5.3. 

P 

Figure 5.3 Mapping processes onto one or several transputers 

5.2 Other models of concurrency 

Although the transputer has direct support for concurrent process which communicate via channels, it is 
possible to use the same features of the transputer to build other types of multiprocessor system or to sup­
port different scheduling models. The IMS T9000 includes a number of instructions for manipulating the 
transputer process queues; these make it simple to write real-time kemels, exploiting the efficient task 
switching of the transputer architecture. There are also instructions for ensuring that the data in the cache 
and in memory are consistent. These can be very useful when implementing a shared memory system. 

Shared memory 

In a shared memory system, a number of processors have some sort of common area of memory which 
they can all access. This has some advantages over the channel communication model, especially where 
very large amounts of data need to be shared or moved between processors. The transputer has hardware 
and software support for shared memory systems. 

The PMI has a set of signals for controlling access to the extemal memory interface by an extemal device. 
This is primarily intended for use with a DMA based co-processor. It can also be used, with extemal arbitra­
tion logic, to allow all of the processors in a system to access the shared memory. 

Alternatively, there may be a number of blocks of memory that can be switched into the memory map of 
different processors under software control. These blocks can be used for exchanging data and passing 
messages between processors. To synchronize the switching of these blocks of memory between proces­
sors, the ideal method is to pass messages over the transputer links; as the memory is switched to a pro­
cessor's address space, it is sent a message from the previous user of the memory to inform it that it is 
now the new 'owner' of the memory. This allows large amounts of data to be moved from one processor 
to another but without the overhead of copying all of it over a link. 

In any shared memory system, the use of a cache can be a problem. In the IMS T9000 there are instructions 
for forcing changed data in the cache to be written out to main memory and for marking data in the cache 
as invalid so that it will be read from main memory. As the exchange of data is synchronized between pro­
cessors, these instructions can be used to make sure that the correct data is in both the main memory and 
the cache of the processors involved. 

It is also possible to mark banks of external memory to be 'un-cacheable'; data from that area of memory 
will never be put in the cache. This ensures that a number of processors or other devices which make ran­
dom reads and writes of that memory will always get the most up to date data. In this case there must still 
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be some synchronization of the memory accesses to make sure that information is not read by a processor 
until it has been written; again, this synchronization can be done over the transputer links. 

5.3 Hardware scheduler 

The IMS T9000 processor includes a hardware scheduler which implements the transputer model of con­
currency. In many applications this will remove the need for a software kernel. However, the transputers 
own scheduling mechanisms can be accessed from software to provide efficient support for the implemen­
tation of standard real-time kernels. 

At any time, a transputer process may be: 

active 

inactive 

being executed 
on a list waiting to be executed 

ready to input 
ready to output 
waiting until a specified time 

The schedlJlI:!r operates in such a way that inactive processes do not consume any processor time. The 
active processes waiting to be executed are held on a list of process workspaces. This is implemented 
using two registers, one of which pOints to the first process on the list, the other to the last. In figure 5.4, 
P is executing, and Q, Rand S are active, awaiting execution. 

A process runs until it is unable to proceed because it is waiting to input or output, or waiting for the timer. 
Whenever a process is unable to proceed, its instruction pointer is saved in its workspace and the next 
process is taken from the list. Actual process switch times are very small as little state needs to be saved; 
it is not necessary for the processor to save the evaluation stack on descheduling. 

Current process 

Next Instruction 
p 

Workspace ptr 

Active processes on queue 

Front ptr 

Back ptr 

Figure 5.4 Transputer process queue 

5.4 Interrupts, events and timers 

As well as process scheduling and communications, the scheduling hardware also supports simple handl­
ing of interrupts and timers. Any event that a process might need to wait for (whether it be a communication, 
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an interrupt or a timeout) can be treated in the same way as a communication. For example, an interrupt 
handler simply has to wait for an input from a special channel which is mapped onto an interrupt ('Event') 
input. Because inputs are synchronized, that process will not proceed until the 'input' becomes ready, i.e. 
until there is an interrupt. 

This makes interrupts on the transputer very easy to use. An interrupt handler is simply a process like any 
other waiting on an input from the interrupt 'channel'. This contrasts greatly with the traditional idea of an 
interrupt handler as something difficult which needs to use special instructions and be written in a very dif­
ferent way from other program code (usually in assembler). 

The IMS T9000 has four sets of pins, known as 'Event' Channels, which can be used for control and synchro­
nization purposes. Each Event channel can be configured either as an input or an output. As inputs they 
can be used as interrupts, to cause a fast processor response to a external signals. When an Event channel 
is configured as an output, the process outputting to it will be descheduled until the external device pro­
vides the necessary handshake signal. 

The transputer has two timers; one of which 'ticks' every microsecond, the other ticks every 64 microsec­
onds. The current value of the processor timer can be read, or a process can perform a timer input in which 
case it wi II become ready to execute when a specified time has been reached. Both these uses of the timer 
are treated as inputs similar to channel communication. If the timer is simply being read then the current 
timer value is provided immediately; if the process is waiting for a particular time, then it is descheduled 
until that time. 

5.5 Shared resources 

The IMS T9000 also provides efficient hardware support for controlling access to a shared resource. This 
could be a hardware resource (e.g. a printer) or a piece of software running on a particular processor in 
a network. Each process which wants to use the resource (a 'client') can make a request to the controlling 
process (the 'server'). This request is done in the form of a channel communication and can, therefore, be 
done across a network by using transputer links. If the resource is available then the requesting client is 
given access to it, otherwise it is put on a queue until the resource becomes free. If multiple clients request 
a resource then they are all automatically queued until it is available. 

Client processes 

Figure 5.5 Client/server model of resources 

The resource mechanism can provide pairs of channels between the server and the processes accessing 
it. This can be used, for example, to implement remote procedure calls across a transputer system. 
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6 Communication links 

Transputer links provide a simple and regular way of interfacing to peripherals and host systems as well 
as communicating between transputers. On a single transputer, processes can communicate via channels; 
the provision of links allows processes on different transputers to communicate in the same way. The 
IMS C104 routing device enables this communication to take place across a network, even between 
transputers that are not directly connected. 

The same communication model can be used to communicate with peripheral devices or a host system 
using a link adaptor which converts from the bit-serial protocol of the links to a parallel port. 

6.1 Using links between transputers 

Transputer links can be used to implement point to point communication between transputers. This allows 
transputer networks of arbitrary size and topology to be constructed. Point to point links have many advan­
tages over bus based communications in a multiprocessor system: 

• There is no contention for the communication mechanism, regardless of the number of processors 
in the system. 

• There is no capacitive load penalty as more processors are added to the system. 

• The communications bandwidth does not saturate as more communicating devices are added 
to the system. Rather, the larger the number of transputers, the greater the total communications 
bandwidth of the system. 

• Because each transputer in a system uses its own local memory, overall memory bandwidth is 
proportional to the number of transputers in the system. This is in contrast to a large, global 
memory where the processors must share the available memory bandwidth. 

For small systems, the four transputer links on the IMS T9000 can provide complete connection between 
up to five devices. By using additional message routing devices such as the IMS C104, networks of any 
size can be built with complete connection between all IMS T9000s. If a system does not need complete 
connection or the flexibility of routing that the IMS C1 04 provides, then networks can be built justfrom direct­
ly connected transputers. 

6.2 Advantages of using links 

The advantages of using links for communication are efficiency, simplicity and hardware independence. 

Efficiency 

There is a separate DMA controller for every input and every output channel which allows data to be trans­
ferred without processor involvement. To exploit this, the transputer deschedules a process which is waiting 
for a communication to complete, freeing the processor to execute another process. When the communica­
tion is complete, the process is rescheduled, providing automatic synchronization with the data transfer. 

Simplicity 

The communication links are, however, very simple to use. The transputer has simple instructions for per­
forming input and output and these are available to the programmer either as function/procedure calls in 
a high level language or, in the case of occam, as an integral part of the language. For example, in a C 
program, to transfer an array of 256 bytes from the array data to a channel c, the following call could be 
used: 

ChanOut (c, data, 256): 
I 

In occam, the same operatiorn could be written as: 
j! 

c ! 256::data 
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This output operation requires four instructions: three to load the address of the channel, the address of 
the data and the number of bytes, followed by the output instruction itself. It is worthwhile comparing this 
with the complex code required to do the equivalent transfer on a traditional microprocessor. For example, 
it would require a DMA controller to be programmed and, in order to allow some degree of multitasking, 
it would be necessary to set up the interrupt hardware and write an interrupt handlerto control the data trans­
fer. All of this is done automatically by the input and output instructions on the transputer. 

As a more concrete example, consider the case of a file server running on a host system talking to a pro­
gram running on the transputer. This would provide the transputer program with all the host operating sys­
temfacilities such as filing system, terminal i/o etc. Atthe transputer end, the communication is very simple: 
a single line of code, as outlined above. At the host end, a lot of complex code (probably written in assem­
bler) is required to handle the data transfer, either programming a DMA controller or polling the status regis­
ters of the memory mapped port. In the case of a Unix system, it will also be necessary to write a device 
driver to interface to the hardware. 

Of course, when the communication is between two transputers, then both ends of the communication are 
equally simple. 

Hardware independence 

As well as being fast and easy to use, channel communications provide a degree of hardware indepen­
dence. 

The same communication mechanism can be used to communicate between concurrent processes, with 
peripherals or a host system, and even to handle interrupts. This simplifies the development and testing 
of code as each process can be functionally tested before being used in the complete system. A good 
description of program development for transputers can be found in [4]. 

Furthermore, exactly the same code can be used to communicate between processes on the same 
transputer (using so called 'soft channels') and to communicate between transputers (using links, or 'hard 
channels'). Not only is the source code the same, but the same transputer instructions are used - the 
transputer determines at run time whether it is using a hard or a soft channel. This saves the programmer 
from having to make decisions aboutthe final hardware implementation while developing and testing code. 
The IMS T9000 takes this separation of software from hardware one step further than previous transputers. 

6.3 IMS T9000 links 

On previous transputers the programmer was limited to assigning two channels, one in each direction, to 
each link. To map a particular piece of software onto a given hardware configuration the programmer has 
to map processes to processors within the constraints of available connectivity. The problem is illustrated 
in figure 6.1 where 3 channels are required between two processors, but only a single link connection is 
available. 

One possible solution, and one that is frequently suggested by transputer users, is the addition of more 
links. Howeverthis does not really solve the problems; there is still limited connectivity available. The num­
ber of extra links that can be added is I imited by VLSI technology. This 'solution' does not address the more 
general communication problems in networks, such as communication between non-adjacent processors, 
or combining networks in a simple and regular way. 
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Figure 6.1 Multiple communication channels required between processors 

6.3.1 Vlnual channels 

The solution chosen in the IMS T9000 was to add multiplexing hardware to allow any number of processes 
to use each link, so physical links can be shared transparently. These channels which share a link are 
known as 'virtual channels'; they have the same behavior as software channels. 

The IMS T9000 has fOur data communication links, each with a DMA controller and the ability to synchro­
nize with the scheduling of processes. The links and DMA engines are controlled by a separate communi­
cations processor, the virtual channel processor (VCP), which works concurrently with the CPU. This sup­
ports practically a large number of virtual channels on each link. 

VCP VCP 

Figure 6.2 Shared links between IMS T9000s 

Vlnuallinks 

Each message sent across a link is divided into packets. Every packet requires a header to identify its 
destination process. Packets from different messages are interleaved on the link. There are a number of 
advantages to this: 

• It makes the transputer simpler to use as It separates the software configuration from the hard­
ware. The programmer does not need to limit the number of channels between processors or ex­
plicitly allocate channels to links. 



Product family overview 31 

• Channels are, generally, not busy all the time therefore the VCP can make better use of hardware 
resource by keeping the links busy with messages from different channels. 

• Messages from different channels can effectively be sent concurrently - the processor does not 
have to wait for a long message to complete before sending another. 

Virtual channels are always created in pairs to form a 'virtual link'; this means there is no need for a return 
address in packets, the acknowledgements are simply sent back along the other channel of the virtual link. 

Sending packets 

The IMS T9000 sends the first packet of a message and then waits for an acknowledgement from the receiv­
ing processor before sending the next. The process which sent the message cannot proceed until the last 
packet of the message has been acknowledged. Messages and acknowledgements from other virtual 
links can be sent while waiting for an acknowledgement on a virtual link. This ensures that a single virtual 
link cannot monopolize a physical link. 

A 

~BI 

Packets arriving on link 

Figure 6.3 Multiple channels sharing a link 

Receiving packets 

The initial packet of a message is acknowledged if a process has requested a message on that virtual link. 
The acknowledgement can be sent as soon as the inputting process is identified, as long as the inputter 
is able to accept another packet. This means that the entire packet does not have to be received before 
the acknowledgement is sent. In this way the acknowledgement can be received by the transmitter before 
all of the data packet has been sent and the transmitter can send the next message packet immediately. 

The IMS T9000 provides one packet buffer for each virtual link so that each input can be ready to accept 
an unsolicited packet. This means that other virtual channels sharing a physical link are not delayed if one 
virtual channel is not ready to input. This buffering of the first packet only takes place if the receiving process 
is not ready to input, otherwise the data is written directly to the inputting process's workspace. This buffer 
is not visible to the programmer; all communications are still synchronized at the message level. 

The virtual channel processor 

The VCP routes messages to and from processes on IMS T9000s. It shares each physical link between 
any number of processes. It also supports non-local communications by using the IMS C1 04 to route mes-
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sages in a network of transputers. This can provide multiple virtual channels between any two transputers 
in a network. Requests to send messages are queued by the VCP so that the main CPU is not delayed 
waiting for packets to be sent. 

Implementation 

To achieve the speed required to match a faster processor, and to support the virtual channel protocol, a 
new, simple link standard has been implemented. The original transputer links are referred to as over­
sampled (OS) links and use a pair of wires. The IMS T9000 links have four wires for each link (a data and 
strobe line in each direction) and are known as OS links. All signals are TTL compatible. 

The links are asynChronous; the receiving device synchronizes to the incoming data. This simplifies clock 
distribution within a system, the exact phase or frequency of the clock on a pair of communicating 
IMS T9000s is not critical. It also means that devices with different processor speeds can communicate. 

6.3.2 Levels of link protocol. 

As with any communications system, the links can be be described at a number of levels with a hierarchy 
of protocols. At the highest level a message consists of the data that the user sends down a channel from 
one process to another. Any type of data or message can be sent in this way. This communication is syn­
chronized; it will not take place until both processes are ready and the two processes will not continue until 
the message transfer is complete. 

I header I 32 data bytes 

• 
• 
• 

I I First end of packet packet 

header I 32 data bytes I end of packet I 

I header I 1 to 32 data bytes I end of message I ~~~~et 
Long message (greater than 32 bytes) 

I header I o to 32 data bytes I end of message I 

Short message (0 to 32 data bytes) 

end of packet 

Acknowledge packet 

Figure 6.4 High Level protocol 
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Packet level protocol 

In order to transfer a message from one IMS T9000 to another, the virtual channel processor sends it as 
one or more packets. This allows packets from a number of different channels to be interleaved on the same 
link. Each packet is acknowledged by the receiving IMS T9000, to maintain synchronized communication 
and to limit the amount of buffering required. 

Every packet has a header defining the destination address followed by the data bytes and, finally, an 'end 
of packet' or 'end of message' token. See figure 6.4.This simple protocol supports messages of any length; 
the receiving device knows when each packet and message ends without needing to keep track of the 
number of bytes received. It also maintains synchronization at the message level. 

A packet can contain up to 32 data bytes. If a message is longer than 32 bytes then it is split up into anumber 
of packets all, except the last, terminated by an 'end of packet' token. The last packet of the message, 
which may contain less than a full 32 bytes, is terminated by an 'end of message' token. 

Shorter messages can be sent in a single packet, containing ° to 32 bytes of data, terminated by the 'end 
of message' token. With this protocol zero length messages can be sent, allowing efficient synchronization 
between processors. 

Packet acknowledgements are sent as zero length packets terminated with an 'end of packet' token. This 
type of packet can never occur as part of a message because a zero length data packet must always be 
the last, and only, packet of a message, and will therefore be terminated by an 'end of message' token. 

Token level protocol 

In order to support the packet level protocol described above, a lower level protocol is needed for encoding 
tokens which may contain a data byte or control information. Each token has a parity bit plus a control bit 
which is used to distinguish between data and control tokens. In addition to the parity and control bits, data 
tokens contain 8 bits of data and control tokens have two bits to indicate the token type (e.g. 'end of mes­
sage'). 

Control bit 

Parity bit 8 Data bits 

~ /~--------------~~~----------------~ 

Data token P ° D D D D D D D 

End of packet token P ° 
End of message token I,--p __ -,-, __ --''--_____ 0--.11 

Figure 6.5 Low level protocol 

Bit level protocol 

At the lowest, hardware, level the signals on the data and strobe lines of a link encode a sequence of bit 
values. The protocol guarantees that only one of the two wires will have an edge in each bit time. The levels 
on the data wire give the values of the transmitted bits. The strobe signal changes state whenever the data 
wire does not. These two signals encode a clock along with the data which makes it easy to asynchronous­
ly detect the data at the receiving end. 
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o o o o 

Data 

Strobe 

Figure 6.6 Hardware level 

The first generation of transputers use a phase locked loop to synthesize a high frequency clock signal 
which is then used to sample the link data. This is adequate for the data rates involved, but would not easily 
support the bit rates of 100 Mbits/s and greater used by the IMS T9000. 
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7 Network communications 

The use of INMOS links for directly connecting transputers has already been described. The new link proto­
col not only simplifies the use of links between processors but also provides hardware support for routing 
messages across a network. 

7.1 Message routing 

The VCP (virtual channel processor) on the sending IMS T9000 packetizes messages to be sent over a link 
and adds a header to each packet to identify the destination process. At the receiving end, the VCP uses 
the header to send the data in each packet to the intended process. These headers can also be used for 
routing packets through a communication system connecting a number of IMS T9000s together. This ex­
tends the idea of multiple channels on a single hardware link to multiple channels through a communica­
tions system; a communications channel can be established between any two processes even if they are 
running on transputers that are not directly connected. The header still just specifies the destination of the 
packet; the programmer does not need to know how to route that message to its destination. 

Advantages for the programmer 

The ability to have channels between any two processes in a network has a number of significant advan­
tages for the programmer. It simplifies the description of multiprocessor systems by separating the hard­
ware architecture from the software configuration. The programmer doesn't need to be concemed with the 
details of placing channels on links or routing messages through the network. This removes a lot of the 
problems with placing of processes on processors - the decision now can be made just on the basis of 
the resources (memory size, etc.) available on each processor without worrying about the available con­
nectivity. 

The programming model for networks of IMS T9000 transputers is unchanged from that for the first genera­
tion of transputers. There is, however, greater flexibility in configuring software. An important feature is that 
the hardware and software configurations, and therefore their descriptions, can be kept completely inde­
pendent. The same hardware, and the same description of that hardware, can be used for many different 
programs. 

Routers 

The routing components in a network can be separated from the processing elements. Messages can be 
passed from one processor, through any number of routing devices, to the destination processor. This 
creates a temporary path through the routing system for that message so, from the programmers point of 
view, there still appears to be a single channel directly connecting a process on one transputer with a pro­
cess on another. 

T9000 T9000 T9000 T9000 

I I I I 

Routing system of one or 
more routing devices 

Figure 7.1 A routing system 

As a packet arrives on a link, the destination address must be inspected before the outgoing link can be 
determined. The time before the output link can be determined is therefore proportional to the address 
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length. Further, the address itself must be transmitted through the network and consumes network band­
width. It is therefore important that this address be as short as possible, both to minimize latency and maxi­
mize bandwidth. 

The router needs to arbitrate between packets which arrive at the same time and have to be sent out of 
the same link. Ideally, it should start to output the packet as soon as possible; i.e. immediately after the 
output link is determined, provided that the link is not already in use by another packet. This keeps the 
latency through the network small, in contrast to a typical packet switching network which uses a 'store 
and forward' algorithm in which each packet is read into a buffer, the address information is decoded and 
then the packet is sent out. The delay that would be introduced by this is unacceptable in a transputer net­
work. Also the amount of buffering needed would make a VLSI implementation of a large routing switch 
impractical. 

Separating routers and processors 

There are a number of advantages to keeping the communications devices and processing elements sepa­
rate in a system. Processors can be directly connected where appropriate, which avoids the silicon costs 
and extra routing delays in a small system that doesn't need to use the routers. Also, the design of the 
routing devices and processing elements can be optimized for their different roles. For example, the routing 
component can have a larger number of links than would be possible if the two devices were integrated, 
because the processor already needs a large number of pins for the memory interface and other functions. 
Having a routing device with many links means that large network with a small number of routers can be 
built, hence minimizing cost and latency and maximizing bandwidth. If messages had to flow through the 
processor, it would increase the pin count, power consumption and packaging costs. This approach also 
allows the construction of scaleable architectures where the communications throughput and processing 
power can be balanced. 

Parallel networks 

Because the new link architecture allows all the virtual channels of a transputer to use a single link, com­
plete, system-wide connectivity can be provided by connecting just one link from each transputer to the 
routing network. This means that the IMS T9000, with its four links, can be connected to several different 
networks This can be exploited in a number of ways. For example, two or more networks can be used in 
parallel to increase bandwidth, to provide a general purpose communications network and an independent 
monitoring/debugging network, or as a 'user' network running in parallel with a physically separate 'sys­
tem' network. 

7.2 The IMS C104 

An important benefit of the IMS T9000's serial links is that it is easy to implement a full crossbar in VLSI, 
even with a large number of links. The use of a crossbar allows packets to be passing through all links at 
the same time, making the best possible use of the available bandwidth. 

If the routing logic can be kept simple it can be provided for all the input links in the router. This avoids the 
need to share the hardware, which would cause extra delays when several packets arrive at the same time. 
It is also desirable to avoid the need for the large number of packet buffers commonly used in routing sys­
tems. The use of small buffers and simple routing hardware allows a single VLSI chip to provide efficient 
routing between a large number of links. 

Wormhole routing 

The IMS C104 (figure 7.2) is one of a family of compatible communications support devices for the 
IMS T9000. It includes a full 32 x 32 non-blocking crossbar switch, enabling messages to be routed from 
any of its links to any other link. In order to minimize latency, the switch uses 'wormhole routing' - the con­
nection through the crossbar is set up as soon as the header has been read. The header and the rest of 
the packet can start being transmitted from the output link immediately. The path through the switch disap­
pears after the 'end of packet/message' token has passed through. This is illustrated in figure 7.3. This 
method is simple to implement and provides very low latency as the entire packet doesn't have to be read 
in before the connection is made. 
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Figure 7.2 Block diagram of IMS C:104 

Mi!1imizing routing delays 

The ability to start outputting a packet while it is still being input can significantly reduce delay, especially 
in lightly loaded networks. The delay can be further minimized by keeping the headers short and by using 
fast, simple hardware to determine the link to be used for output. The IMS C1 04 uses a simple routing algo­
rithm based on interval routing (described in section 7.3.1). 
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Figure 7.3 Packet passing through IMS C104 

Because the route through each IMS C1 04 disappears as soon as the packet has passed through and the 
packets from all the channels that pass through a particular link are interleaved, a single virtual channel 
cannot 'hog' a route through a network. Messages will not be blocked waiting for another message to pass 
through the system, they will only have to wait for one packet. 
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Control links 

Like the IMS T9000, the IMS C104 has two control links. One link receives control and programming infor­
mation, the other enables all the devices in a system to be daisy-chained. The routing information for each 
link of each IMS C104 is programmed, via the control link, from the controlling processor. 

7.2.1 Using IMS T9000s with IMS C104s 

A single IMS C104 can be used to provide full connectivity between 32 IMS T9000s. It can also be used 
to connect other compatible communications devices, for example to provide an interface to first genera­
tion transputers via a protocol converter, or to peripheral devices via a link adaptor. IMS C104s can also 
be connected together to build larger switches connecting bigger networks of IMS T9000s. 

The IMS C1 04s that the packets pass through do not need to have information about the complete route 
to the destination, only which link each packet should be sent out of at each point. Each of the IMS C1 04s 
in the network programmed with information that determines which output link should be used for each 
header value. In this way, each IMS C104 can route packets out of whichever link will send it towards its 
destination. 

Header deletion 

An approach that simplifies the construction of networks is to provide two levels of header on each packet. 
The first header specifies the destination transputer (actually, the output link from the routing network), this 
header is removed as the packet leaves the routing system. This exposes the second header which tells 
the VCP in the destination transputer which process (actually, which virtual channel) this packet is for. To 
support this, the IMS C104 can route packets of any length. Any information after the initial header bytes 
used by the IMS C1 04 is just treated as part of the packet, even if it is going to be interpreted as a header 
elsewhere in the system.The IMS C104 can set any output link to do header deletion, i.e. to remove the 
routing header from the front of a packet after it been used to make the routing decision. The first part of 
the remaining data is then treated as a header by the next device that receives the packet. 

Header used to select 

T9000 virtual link in T9000 

~ T9000 

VCP I IIIfZI1 IMS C104 I -t 
VCP 

Header used to select 
0 link of 1 4 utput C 0 

Figure 7.4 Header deletion 

As can be seen from figure 7.5, by using separate headers to identify the destination processor and a pro­
cess within that processor, the label I ing of I inks in a routing network is separated from the labelling of virtual 
channels within each processor. For instance, if the same 2 byte header were used to do all the routing 
in a network, then the virtual channels in all the transputers would have to be uniquely labelled with a value 
in the range 0 to 64K. However, by using two 1 byte headers, all the IMS T9000s can use virtual channel 
numbers in the range 0 to 255. The first byte of the header will be used by the routing system to ensure 
that the packets reach the appropriate IMS T9000 before the virtual channel number is decoded. 
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The advantages of using header deletion in a network are: 

• It separates the headers, and therefore the routing information, for virtual channels from those for 
the routing network. 

• The labelling of the network can be done independently of the application software running on 
the network. 

• There is no limit to the number of virtual channels that can be handled by a system. 

Any number of headers can be added to the beginning of a packet so that header deletion can also be 
used to combine hierarchies of networks as shown in figure 7.6. An extra header is added to route the mes­
sage through each network. The header at the front of each packet is deleted as it leaves each network 
to enter a sub-network. 

Routing control channels 

For very large networks, the usual method of connecting control links, in a chain, might introduce an unde­
sirable delay. In this case, because of the common virtual link protocol, an IMS C1 04 can be used to route 
the control links to all the devices in a system more directly, as shown in figure 7.7. 

Control link CL'lnkO from host ----)l-.j 

Data link 
from host 

CLinkO 

IMS C104 

CLinkO 

T9000 

CLinkO 
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T9000 
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T9000 

Figure 7.7 Routing control links through an IMS C104 

7,3 Routing algorithms 

In order to route a message through a network, an algorithm is required which is: complete (ensures that 
all messages arrive); deadlock free; optimal (packets take the shortest route); scaleable (networks of any 
size can be built) and simple to implement. 
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7.3.1 Labelling networks 

.----------------------------------------------------------------------~ 
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Link 2 r------- 24,22,28,34 Link 2 24 ' 22 28 34 

Link 3 r------- 36, 42 Link 3 36 : 42 

Lookup table required 

Figure 7.8 Labelling a network 

For each routing component there will be a number of destinations which can be reached via each of its 
output links. Therefore, there needs to be a method of deciding which output link to use for each packet 
that arrives. The addresses that can be reached through any link will depend on the way the network is 
labelled. An obvious way of determining which destinations are accessible from each link, is to have a 
lookup table associated with all the outputs (see figure 7.8). In practice, this is difficult to implement. There 
must be an upper bound on the lookup table size and it may require a large number of comparisons be­
tween the header value and the contents of the table. This is ineffiCient in silicon area and also potentially 
slow. 
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Link 2 

Link 3 

Destinations reachable 
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25,28,34,36,39 
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18,22,24 

Interval routing table required 

Figure 7.9 Interval labelling 

However, a labelling scheme can be chosen for the network such that each output link has a range of node 
addresses that can be reached through it. If it is then ensured that the ranges for each link are non-overlap­
ping, a very simple test is possible. The header just has to be tested to see into which range, or interval, 
it falls and, hence, which output link to use. For example, in figure 7.9, a header with address n would be 
tested against each of the four intervals shown below: 

Interval Output link 

6~n<18 • 

18~n<25' 3 
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25~n < 40. 0 

4O~n<50. 2 

The advantages of interval labelling are that: 

• It is 'complete' - any network can be labelled. 

• It is simple to implement in hardware - it requires little silicon area which means it can be provided 
for a large number of links as well as keeping costs and power dissipation down. 

• Because it is Simple, it is also very fast, keeping routing delays to a minimum. 

7.3.2 Avoiding deadlock 

Deadlock can occur in a network unless the routing algorithm is designed to avoid it. Any program with 
communicating processes can also deadlock if not designed carefully. It is important here, to distinguish 
between deadlock as a property of the network and as a property of a program running on the network. 
A deadlock free network cannot cause a program to deadlock (but, of course, neither can it prevent a badly 
designed program from deadlocking). An essential property of a router in a deadlock free network is that, 
like a transputer or an IMS C104, it can communicate on all of its links concurrently. 

As a simple example consider a network of four nodes (see figure 7.10) with one link in each direction be­
tween each node. If the routing algorithm sends all messages clockwise and all nodes start sending to 
the opposite corner at the same time, every link will become busy and the network will deadlock. It is possi­
ble to add buffers to the network, but this will only delay the point at which deadlock occurs. The amount 
of buffering needed to avoid deadlock is dependent on the network size and the application program run­
ning on the network 

.. ~ 

~ 

, It 

~ 

Figure 7.10 Deadlock in a network 

In this example, deadlock can easily be avoided by modifying the routing algorithm to send messages in 
opposite directions from alternate nodes. In this case, each node will only need to send one message in 
each direction at any time. In this network, buffering can be added just to smooth the flow of data (I.e. to 
prevent a process having to wait to send a message when the network is busy) but it is not needed to pre­
vent deadlock. 

It is possible to use interval labelling to label any network in a deadlock free way. Many regular networks 
have optimal, deadlock free routing algorithms. Examples are trees, hypercubes and grids. These net­
works can then be combined, so that any network can be optimally labelled as if constructed from these 
sub-networks. 
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8 Other communications devices 

To complete the IMS T9000 family, a full range of communications products are planned. These will provide 
the ability to interface transputers to a range of devices and technologies. 

8.1 Mixing transputer types: the IMS C1 00 

The first of these devices is the IMS C1 00. This allows an IMS T9000 to communicate with a first generation 
transputer. The two transputer families have different electrical characteristics and data protocol. The 
IMS C100 converts between the four wire DS links of the IMS T9000 and the two wire as links of the earlier 
transputers. 

The other conversion done by the IMS C1 00 is between the IMS T9000 control links and the Reset, Error 
and Analyse signals used to control the IMS T805 and similar device. 

The IMS C1 00 provides an inter-networking solution for transputers, allowing transputer systems to be con­
structed using the optimum mix of devices. The IMS C100 has four modes of operation to enable: 

• A single IMS T9000 to work in a network of first generation transputers. 

• An existing transputer system to control a sub-system of IMS T9000s. 

• An IMS T9000 network to interface to a network of first generation transputers. 

• A first generation transputer to emulate an IMS T9000. 
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PowerOnReset 
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system 
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Reset 
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I 

Figure 8.1 IMS C100 used with an IMS T9000 

I 
ROM 

The IMS C1 00 converts both data and control protocols between the two transputer types and is intended 
to be used in conjunction with software running on the attached transputers. 
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Figure 8.2 IMS C100 used with a first generation transputer 

8.2 Interfacing to peripherals and host systems 

To complete the family of communications devices, a range of interface devices are being designed. These 
will convert between the serial link format and a parallel interface, for example. The first of these devices 
will interface to a microprocessor bus. This will allow the IMS T9000 to communicate with non-transputer 
systems. 
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9 Software and systems 

INMOS provides a wide range of standard software and hardware products to support development for 
the transputer. These have been designed to enable users to evaluate transputers and to develop systems 
easily and within the shortest possible timescales. 

Development tools include compilers for languages such as C, Fortran and occam as well as the software 
needed to test, program and debug systems built from one or many transputers. All the special features 
of the transputer are available from high level languages (either as part ofthe language or as library calls).A 
wide range of software is also available from third-party suppliers including compilers, such as Ada, and 
real-time kernels, e.g. VRTX and C Executive. 

INMOS also supplies a range of modular hardware products. These exploit the ability to build very compact 
transputer systems (such as an IMS T805 with 4 Mbytes of memory on a board measuring approximately 
2.5 cms by 9 cms) to provide a range of small, cost effective 'TRansputer Modules' (TRAMs). These mod­
ules can be mounted on a variety of motherboards, which are available for a range of host systems. The 
motherboards provide an interface to the host development system and can be connected to build larger 
systems. The standard sizes and interfaces of the modules and motherboards have been adopted by a 
number of third party developers to extend the range of compatible systems products available to 
transputer users. 

INMOS will continue to support all these standards for the IMS T9000 product family, extending them where 
necessary to exploit the new features of these products. 

More details of the systems and software products currently available for the transputer family can be found 
in [5]. 

9.1 Development software 

INMOS has a range of development software, running on different hosts, for the transputer family. These 
tools are aimed mainly at developing code for embedded systems, i.e. not necessarily running under the 
control of an operating system. It is expected thatthe end products will either be connected to a host system 
or will be completely self-contained units. 

Software can be developed in standard high level languages using cross-compilers running on a range 
of host machines. Programs for single transputers can be developed using just conventional programming 
tools, such as compilers and linkers. All the languages include extensive support, in the form of run-time 
libraries, for concurrency and communication. It is possible to write a program consisting of many concur­
rent processes entirely in C (or any other language available for the transputer). 

Programs written for multi-transputer systems, or programs written as many sub-programs running in paral­
lel on a single processor, will require the use of extra programming tools. The transputer development sys­
tem includes tools for preparing a program.for execution on a parallel processing system and for debug­
ging such systems. These tools include 'configuration' tools which are used for describing the hardware, 
mapping processes to transputers and setting up the communications channels. It is possible to boot and 
load a network with code from the host development system, or from a ROM connected to one of the 
transputers in the network. Programs can communicate with a 'server' on the host system to get access 
to host facilities such as i/O. In addition there are tools for debugging a program running on a network of 
transputers. An outline of some of these transputer specific tools is given below. 

All of the programming tools are available for all members of the transputer family and, where appropriate, 
are used in the same way and provide the same functions for all processor types. 

9.1.1 Configuration tools 

In discussing IMS T9000 transputer systems, the word 'configuration' is used in two senses. The first is 
when an IMS T9000 transputer, or an IMS C1 04, is initialized - at this time a number of internal 'configura­
tion' registers have to be written to program the PMI, the VCP and other subsystems. The process of prepar­
ing a program for loading onto a transputer network is also referred to as 'configuration' (and the software 
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tools used are known as 'configurers'). In this description of the development process, the word 'configura­
tion' is reserved for the latter meaning of software configuration; the setting up of the hardware will be called 
'initialization' . 

The configuration tools are used to build programs consisting of a number of processes or SUb-programs 
running in parallel on one or more transputers. Input files are used to describe the hardware, the software 
and a mapping of the software onto the hardware. From these, the configuration tools produce the files 
which are used to initialize and load the transputer network. 

Hardware description 

The hardware is described using a Network Description Language (NDL). For each transputer in the sys­
tem, this specifies the processor type, the amount and types of memory and peripheral devices. It also 
describes the routing network used, if any, and how the data and control links of all the devices in the sys­
tem are connected. 

The configuration tools use this description to program the PMI and VCP registers of the IMS T9000 and 
to label the links of any IMS C104s used. The information in this file is also used to create the bootable 
version of a program to run on the network. 

If certain Simple rules are followed in the construction and labelling of networks, then the tools can check 
the descriptions for errors and deadlock freedom. The NDL description can also be checked against the 
actual hardware. 

Software description 

The NDL file for a particular system will normally be provided by the hardware vendor or designer. The pro­
grammers using the system only need to include a reference to the NDL file in the software configuration 
file.The NDL description exports the names of the processors and routes in the network for use in the soft­
ware and mapping description. 

The software description has to specify the Object code files for each process in the system and the proce­
dure interface (parameters and their types). Optionally, other language dependent attributes can be de­
fined. For example, the size of stack and heap areas for a C program can be specified. The software de­
scription must also specify the way that any communication channels are used between processes. 

Mapping software to hardware 

A mapping of software (processes) onto hardware (transputers) must also be given. The mapping can be 
as simple as a series of statements of the form: 'place process on processor' for each process in the 
program. Any number of processes can be placed on each processor, allowing a program to be initially 
tested on a single processor before the multi-processor version is tried. The configuration tools automati­
cally work out the mapping of channels onto virtual links. If necessary, for example to access the host sys­
tem or a particular piece of hardware, the programmer can explicitly map channels onto links or routes 
through the network. 

Configuration languages 

To provide a degree of flexibility for the user, there are two 'dialects' of configuration language: a C-like 
one and an ocCam-style one. These perform identical functions but each has a different syntax, loosely 
based on these languages. These configuration languages are used for describing the structure of the soft­
ware and how it is mapped onto the hardware. 

lYPes of networks 

The INMOS development tools support development of programs for: 

Networks consisting of IMS T9000 transputers only (,non-routed' networks). 

Networks consisting of IMS T9000 transputers and IMS C104 routers ('routed' networks). 

Networks consisting of any other transputer types. 
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The tools do not directly support arbitrary, mixed networks of IMS T9000 transputers and first generation 
devices. However, it is possible to connect the two types of networks, via an IMS C1 00, although the code 
for the two sub-networks has to be developed separately. The two networks can then be loaded from the 
host, via a common route. 

In the case of non-routed networks (of any transputer type) the configuration tools automatically add routing 
software to the program to provide any communications required between processors which are not direct­
ly connected. 

A network of IMS T9000 transputers can be loaded with code compiled for an IMS T805 or an IMS T9000. 
This allows users to write programs for the IMS T9000 even if the compiler used is only available for the 
IMS T805. It also means that existing, compiled code can be run on an IMS T9000 system. 

9.1.2 Initializing and loading a network 

Transputer systems can be bootstrapped in two ways; either from ROM or from link. The initialization and 
initial code loading are done via the control link. This initial boot code then loads the main application code 
from the data links of the processor. 

Levels of initialization 

The initialization and loading of code for the IMS T9000 are done in a number of stages. The various levels 
of initialization can be done either by code running on an IMS T9000 booted from ROM, or from the host 
system via the control link. In a network, different processors may be initialized to different levels from ROM 
with the later stages being done via the control link. 

Booting a system from link 

The 'boot from link' option is normally used during program development or whenever a system needs to 
be able to run different programs at different times. 

In order to load a network from a host system, connections to a single control link and a single data link 
are required. This data link normally goes directly to an IMS T9000, the rest of the network being loaded 
via this processor. The development tools generate data files which are used to do all the initialization and 
loading of code onto the network. 

Booting a system from ROM 

The development tools can produce a number of different types of ROM. These range in function from per­
forming the (partial) initialization of a single IMS T9000, to booting an entire system. 

When booting a system completely from ROM, it is possible to have a Single ROM on one processor. This 
root processor boots from the ROM and then initializes and loads the rest of the network via links; all other 
transputers in the network being set to boot from link. 

9.1.3 Host servers 

A server is a program that runs on the host machine to give software, running on an attached transputer 
system, access to various host facilities such as i/o and disk storage. The server typically loads the execut­
able code onto the transputer network via a link interface. It then waits for requests and data to be sent by 
the transputer program. These requests generally come from the run-time library, when the program makes 
calls to standard input and output functions (e.g. printf () in C). 

The server allows the development tools running on the host to control the target transputer system in order 
to reset the system, do any initialization needed and then load a bootable program file. Software running 
on the host can also use the server to access the transputer system for testing and debugging. 

The nature of the connection from the host to the transputer system depends on the type of the host system, 
but generally provides access to transputer links either directly, via a link adaptor on the host bus, or 
through some other standard communications system such as Ethemet. In many cases the server software 
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includes a device driver, which handles the low level details of the hardware interface, pius a set of func-
tions to access the link through the device driver. ~~ 

9.1.4 Debugging 

INMOS provides an interactive symbolic debugger for debugging programs running on networks of 
transputers. This supports source level debugging of programs which consist of a number of parallel pro­
cesses running on any number of processors. The user can set breakpoints, inspect the state of processes 
(including expression evaluation, modification of variables, backtracing procedure calls, etc) as well as 
examining the low level state of each transputer in the system. A very useful feature is the ability to 'jump' 
down a communication channel between two processes - this allows the state of two communicating pro­
cesses to be examined. 

The debugger is currently being developed further to make it more powerful and easier to use. Some of 
the features that will be added are: 

• Window based user interface. 

• List all processes running in the network. 

• Stop processes to examine their state. 

• Source level single stepping. 

• History tracing (e.g. keeping track of communications events). 

• Variable watchpointing. 

9.1.5 IMS T805 emulation 

An IMS T9000 can be booted from a ROM which performs all initialization and then executes a loader pro­
gram. The loader then waits for code to arrive on any of the data links. This emulates the behavior of the 
IMS T805 which, after reset, waits for bootstrap code to arrive on a link. With the addition of an IMS C100 
to do protocol conversion, this provides the ability to plug an IMS T9000 directly into an existing transputer 
network and program it as if it were an IMS T805. 

Because the IMS T9000 is binary compatible with, and has the same programming model as, previous 
transputers the programmer can use existing development tools, source code, libraries and programming 
techniques. 

This compatibility also makes it easy for systems companies to port existing software, such as real-time 
kemels, compilers and so on, that have already been developed for the current transputer range. This en­
ables an IMS T9000 specific version of these products to be developed very quickly. Additional work can 
then be done, if necessary, to extend the product to make use of new features of the IMS T9000. 

9.2 iq Systems products 

There is already a wide range of TRAMs and motherboards designed for the first generation of transputers. 
This includes modules with transputers plus various amounts and types of memory, through to various in­
dustry standard interfaces such as SCSI and GPIB. There is a complementary range of motherboards inter­
facing to hosts such as PC and Sun. 

These TRAMs and industry standard motherboards make it easy to develop, prototype and build multipro­
cessor systems, based on the transputer family. 

9.2.1 IMS T9000 products 

To support the IMS T9000, a number of products compatible with the existing TRAM definition are being 
designed. In the longer term a new module standard is being defined to exploit the faster links and other 
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features of the IMS T9000. In addition the approach to systems design using the IMS T9OO0 will be some­
what different because of the facilities provided by the virtual links. 

The objectives of the new range of systems products are: 

o No jumpers or switches on boards - the user can simply plug together modules to build a system 
and start using It. 

o No cables for interconnection within a system - all link interconnections via a backplane and 
IMS C104s. 

o Flexible but fixed network topology - this will be chosen to provide complete connection between 
all transputers in a system with minimal latency. 

o Provision of 3.3V for new high speed, low power components. 

o Ability to use existing TRAMs where appropriate. 

o Ability to build fault tolerant and 'live insertion' systems. 

o Standard interfaces inside and outside the box. 

The opportunity will be taken to increase the modularity of the systems components, and to improve the 
design mechanically and provide better support for peripheral interface connections. To allowflexible inter­
connection of boards and modules, a backplane architecture is being defined to enable the construction 
of routed and non-routed systems. These and other changes are being made based on experience and 
customer feedback. 

The new standards will embrace modules, boards and system interconnections. This includes the con­
struction and interconnection of scaleable systems with small (1-10) through medium (up to 64) to large 
(> 256) numbers of processors. 

The new module standard will include the provision of a ROM which may be used to provide configuration 
data for the memory interface, etc. In some cases the processor might boot from this ROM as well. The 
ROM will also be used to store useful information about the board, such as the module type, serial number, 
vendor, memory size and speed, and information about other peripheral devices. 

The new backplanes will be based on metric standards and will provide a standard backplane interface. 
This will probably follow the board and connector formats defined by the Futurebus Plus standard. 

The transputer links are, naturally, used for connecting between transputers on a single board or within a 
system. There is also a need for longer connections between systems, for example to support interfacing 
between a target system and the development host. Two standards are being defined; an electrical connec­
tion for distances up to about 10 meters, and a low cost optical fiber interconnect for longer distances. 

Compatible development products 

Initially, INMOS will provide a TRAM compatible with current standards but containing an IMS T9000. To 
provide compatibility this will have an IMS C100 to convert the links and control signals. The IMS T9OO0 
will boot from ROM so it can be initialized and then be ready to load code down a data link; it will then 
appear just like a very fast IMS TS05. 

This TRAM can be used in an existing development environment to do initial evaluation of code running 
on the IMS T9000. The program running on this TRAM can communicate but will obviously not have the 
IMS T9oo0 advantages of very high speed links and the virtual channel mechanism. 

A similar product will be developed, allowing the IMS T9OO0 to be used in an existing development system, 
but providing direct connection of the IMS T9OO0 links. This will enable more realistic multiple IMS T9OO0 
development to be undertaken. 

IMS T9000 specific products 

INMOS is developing a range of IMS T9000 modules based on the new standard. These will range from 
simple 'compute only' modules, with a transputer and memory, through to interface modules. These will 
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provide access to standards such as SCSI, FOOl, etc. Motherboards for these modules will also be 
supplied, both to the new standard and for popular host computers, such as the IBM PC. 

Host Interfaces 

There is a need to provide a new type of interface to efficiently support communication between a host 
system and a program running on an IMS T9000 system. 

The existence of multiple virtual links into a network can be exploited to simplify the way that software on 
the transputer accesses host services. This can also be used to provide all transputers with access to the 
host. The handling of virtual channels on the host could be implemented in hardware for highest perform­
ance or software for greatest flexibility and lowest cost. The choice depends on the capabilities of the par­
ticular host hardware and operating system, as well as user requirements. For example, the data transfer 
speed required will be different in a development situation and an accelerator. 

The requirements for connecting into the data link network and the control network are qUite different. The 
data links will typically have a relatively small number of virtual channels connecting to the host, but Will 
require very high data rates (especially if the IMS T9000 system is being used an an accelerator or co-pro­
cessor). There are potentially a very large number of virtual control links but these can run at a lower data 
~a ' 
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o OUlJmos® 
FEATURES 

Instruction set compatible with the IMS T805 
Pipelined superscalar micro-architecture 
Workspace cache 
Programmable memory interface 
4 Gbyte physical address space 
16 Kbyte instruction and data cache 
200 MIPS peak 
> 70 MIPS sustained 
25 MFLOPs peak 
> 15 MFLOPs sustained 
Sub-microsecond interrupt response 
Per process error handling 
Enhanced support for pre-emptive schedulers 
Memory protection and address translation 
64 K virtual communication channels 
Support for message routing 
80 Mbytes/s total bi-directional link bandwidth 
Separate control system 
Single 5 MHz clock input 
50 MHz intemal clock 
Single 5 V ± 5% power supply 

This is preliminary information on a product 
under development and product details may 
change. 

iT/®!~r;m~~f~n 
INMOS IS a member of the SGS-THOMSON Microelectronics Group 
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1 Introduction 

This document contains preliminary hardware information for the IMS T9000 transputer. 

The IMS T9000 transputer is a 32-bit CMOS microprocessor designed to be used in applications which 
require high performance combined with high integration and simplicity of use. It is instruction set compat­
ible with the IMS T805 transputer. with additional support for multiprocessing and real-time applications. 
Software support for the IMS T9000 transputer includes: ANSI C compilers, ANSI Fortran compilers, and 
occam compilers, developed and supported by INMOS and third party software companies. 

Figure 1.1 shows the major operational units of the IMS T9000 transputer. 

The IMS T9000 has a pipelined superscalar architecture, which allows multiple instructions to be executed 
every processor cycle. Compilers can generate code without considering any details of the pipeline as 
the hardware organizes the incoming instruction stream into optimum groups of instructions. Other features 
which contribute to performance are a 16 Kbyte instruction and data cache, a 64-bit floating point unit, and 
a high bandwidth programmable memory interface. The floating point unit incorporates hardware to 
perform divide and square root. A separate workspace cache stores 32 locations relative to the workspace 
pointer to provide zero latency access to local variables. The IMS T9000 has four communication links for 
fast inter-processor communications. 

The 16 Kbyte cache provides a peak bandwidth of 200 Mwords/sec. It can also be programmed to function 
as 16 Kbyte of on-chip memory, or as 8 Kbyte of on-chip memory and 8 Kbyte of cache. This allows small 
applications to run with no external memory, and guarantees deterministic code behavior for applications 
where this is critical. 

Transputers provide hardware support for scheduling processes, and this can be used directly by applica­
tions written, for example, in C, Fortran or occam. It can also be used to simplify the software implementa­
tion of real-time kernels and operating systems. The process, model of the IMS T9000 transputer provides 
per process error handling and debugging support, and allows programs to be run in a protected logical 
address space. To improve the efficiency of real-time kernels access to the state of the processor has been 
simplified, and full control over interrupts and timeslicing has been provided. 

Communication between processes takes place over channels, and is implemented in hardware. The 
same machine instructions are used for communication between processes on the same processor as for 
communication between processes on different IMS T9000 processors. On the IMS T9000, communication 
between processes on different processors takes place over virtual channels. Virtual channels are multi­
plexed onto each physical link by the virtual channel processor. Communication between IMS T9000 
transputers that are not directly connected is achieved by using a separate dynamic routing switch, the 
IMS Cl04. 

With virtual channels it is not necessary for the programmer to allocate channels to physical links, and the 
allocation of processes to processors is simplified. The programming of powerful multiprocessor systems 
is therefore flexible and elegant. 

The IMS T9000 has four high bandwidth serial communication links. To support virtual channels and 
dynamic message switching, and to provide a higher data bandwidth with high data integrity, each physical 
link consists of four wires, two in each direction, one carrying data and one carrying a strobe. The links 
are therefore referred to as data-strobe (OS) links. The four OS links support a total bidirectional data 
bandwidth of 80 Mbytes/sec. 

Two separate control links are provided to enable networks of IMS T9000 processors to be controlled and 
monitored for errors, even during the presence of faults in the normal data communications network. The 
control links of IMS T9000s and IMS Cl04s can be daisy chained, and/or connected into a tree by 
connection to aiMS Cl 04. Whatever the physical connectivity the controlling network forms a logical tree, 
and a control processor is connected at its root. For small systems (such as a single IMS T9000 transputer) 
there is no need to use the control links as all necessary functionality can be controlled from software. 

The highly integrated programmable memory interface has a 4 Gbyte physical address space, and 
provides a peak bandwidth of 50 Mwords/sec. Four independent banks of external memory are supported, 



IMS T9000 transputer 57 

and this allows the implementation of mixed memory systems, with support for DRAM, SRAM, EPROM and 
VRAM. It has a 64-bit data bus, and each bank of memory can be configured to be 8,16,32 or64 bits wide. 
The full performance of the IMS T9000 can be exploited using relatively low-cost DRAM, and up to 8 Mbytes 
of DRAM can be connected with no external components. 
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Figure 1.1 IMS T9OO0 block diagram 
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2 Preliminary pin designations 

Signal names are prefixed by not if they are active low, otherwise they are active high. 

Pin In/Out Function 

VCC, GND Power supply and return 

Cap Plus, CapMinus External capacitor for internal clock power supply 

Clockln in Input clock 

ProcSpeedSelectO-2 in Processor speed selectors 

Reset in System reset 

StartFromROM in Boot from external ROM or from link 

Error out Error indicator 

Table 2.1 IMS T9000 system services 

Pin In/Out Function 

ProcClockOut out Processor clock 

MemAdd2-31 out Address bus 

MemDataO-63 in/out Data bus 

notMemRASO-3 out RAS strobes - one per bank 

notMemCASO-3 out CAS strobes - one per bank 

notMemPSO-3 out Programmable strobes - one per bank 

notMemWrBO-3 t out Byte-addressing write strobes 

MemWait in Memory cycle extender 

MemReqln in Direct memory access request 

MemGranted out Direct memory access granted 

MemReqOut out Processor reqUires memory bus 

notMemBootCE out Bootstrap ROM chip enable 

notMemRf out Dynamic memory refresh indicator 

t these pins have different functions depending on the external port sizes 

Table 2.2 IMS T9000 programmable memory interface 

Pin In/Out Function 

EventlnO-3 in Event inputs 

EventOutO-3 out Event outputs 

Table 2.3 IMS T9000 event 
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Pin In/Out Function 

LinklnOataO-3 in Link input data channels 

LinklnStrobeO-3 in Link input strobes 

LinkOutDataO-3 out Link output data channels 

LinkOutStrobeO-3 out Link output strobes 

CLinklnOataO-1 in Control link input data channels 

CLinklnStrobeO-1 in Control link input strobes 

CLinkOutDataO-1 out Control link output data channels 

CLinkOutStrobeO-1 out Control link output strobes 

Table 2.4 IMS T9000 link 
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3 Processor 

The IMS T9000 transputer has a 32-bit pipelined processor. The pipeline consists of 5 stages and, where 
possible, multiple instructions are combined into a group and passed down the pipeline together. This al­
lows more than one instruction to be executed on each processor cycle. Code can be generated for the IMS 
T9000 transputer without considering the details of the pipeline. However, optimizing compilers can pro­
duce more efficient code if these details are taken into consideration. 

Background details of earlier transputers can be found in Transputer Instruction Set - A Compiler Writers' 
Guide. Much of the information in this guide can be directly applied to the IMS T9000transputer. This prelim­
inary information' outlines the implications of the extensions which have been implemented in the IMS 
T9000 transputer. 

3.1 Registexs 

The design of the IMS T9000 transputer processor exploits the availability of a fast on-chip cache and a 
workspace cache by having only a small number of registers; six registers are used in the execution of a 
sequential integer process. The six registers are: 

• The workspace pOinter which pOints to an area of store where local variables are kept 

• The instruction pOinter which pOints to the next instruction to be executed. 

• The operand register which is used in the formation of instruction operands. 

• The Areg, Breg and Creg registers which form an evaluation stack. 

Areg, Breg and Creg are sources and destinations for most arithmetic and logical operations. Loading a 
value into the staGk pushes Breg into Creg, and Areg into Breg, before loading Areg. Storing a value from 
Areg, pops Breg into Areg and Creg into Breg, the value left in Creg is undefined. 

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For exam­
pie, the add instruction adds the top two values in the stack and places the result on the top of the stack. The 
use of a stack removes the need for instructions to re-specify the location of their operands. No hardware 
mechanism is provided to detect that more than three values have been loaded onto the stack. It is easy for 
the compiler to ensure that this never happens. 

A separate floating point evaluation stack is provided, consisting of FPAreg, FPBreg, and FPCreg. The 
floating point evaluation stack behaves in a similar way to the integer evaluation stack. 

Any location in memory can be accessed relative to the workspace pointer, enabling the workspace to be of 
any size. The first 32 words relative to the workspace pOinter may be cached by the workspace cache. 

R egisters Locals Program 

Areg 

Breg 

Creg 

Workspace 

Next Instruction 

Operand 

Figure 3.1 Registers used in sequential integer processes 
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3.2 Processes and concurrency 

A process starts, performs a number of actions, and then either stops without completing or terminates 
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in 
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number 
of each. 

The processor has a microcoded scheduler which enables any number of concurrent processes to be ex­
ecuted together, sharing the processor time. This removes the need for a software kemel, although kemels 
can still be written. 

At any time, a process may be 

Active 

Inactive 

Being executed. 
Interrupted by a higher priority process. 
On a list waiting to be executed. 

Ready to input. 
Ready to output. 
Waiting until a specified time. 

The scheduler operates in such a way that inactive processes do not consume any processor time. Each 
active high priority process executes in turn until it becomes inactive. The scheduler allocates a portion of 
the processor's time to each active low-priority process in turn (see section 3.3). Active processes waiting 
to be executed are held in two linked lists of process workspaces, one of high priority processes and one of 
low priority processes. Each list is implemented using two registers, one of which pOints to the first process 
in the list, the other to the last. In the linked process list shown in figure 3.2, process S is executing and P, Q 
and R are active, awaiting execution. Only the low priority process queue registers are shown; the high 
priority process ones behave in a similar manner. 

Registers Locals I Program I 
FPtr1 (Front) 

P 
r--- n I I 

BPtr1 (Back) 
J 

Q n I I 

Areg 

Breg ---- R ~ 
Creg 

Workspace S 

Next Instruction 

Operand 

Figure 3.2 Linked process list 

Function High Priority Low Priority 

Pointer to front of active process list FptrO Fptr1 

Pointer to back of active process list BptrO Bptr1 

Table 3.1 Priority queue control registers 
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Each process runs until it has completed its action or is descheduled whilst waiting (for a communication 
from another process or transputer, or for a time delay to complete). In order for several processes to oper­
ate in parallel, a low-priority process is only permitted to execute for a maximum of two timeslice periods. 
Afterthis, the machine deschedules the current process at the next timeslicing point, adds it to the end ofthe 
low-priority scheduling list and instead executes the next active process. The timeslice period is approxi­
mately 1 ms. 

There are only certain instructions at which a process may be descheduled. These are known as desche­
duling pOints. A process may only betimesliced at certain descheduling pOints. These are known as times­
licing pOints. As a result, an expression evaluation can be guaranteed to execute without the process being 
timesliced part way through. 

Whenever a process is unable to proceed, its instruction pOinter is saved in the process workspace and the 
next process taken from the list. Process scheduling pOinters are updated by instructions which cause 
scheduling operations, and pOinters or active queues should not be altered directly. 

The processor provides a number of special instructions to support the process model, including start pro­
cess and end process. When a main process executes a parallel construct, start process instructions are 
used to create the necessary additional concurrent processes. A start process instruction creates a new 
process by adding a new workspace to the end of the scheduling list, enabling the new concurrent process 
to be executed together with the ones already being executed. When a process is made active it is always 
added to the end of the list, and thus cannot pre-empt processes already on the same list. 

The correct termination of a parallel construct is assured by use of the end process instruction. This uses a 
workspace location as a counter of the parallel construct components which have still to terminate. The 
counter is initialized to the number of components before the processes are started. Each component ends 
with an end process instruction which decrements and tests the counter. For all but the last component, the 
counter is non zero and the component is descheduled. Forthe last component, the counter is zero and the 
main process continues. 

3.3 Priority 

The IMS T9000 transputer directly supports two levels of priority. Priority 1 (low priority) processes are ex­
ecuted whenever there are no active priority a (high priority) processes. 

High priority processes are expected to execute for a short time. If one or more high priority processes are 
able to proceed, then the first on the queue is selected and executes until it has to wait for a communication, 
a timer input, or until it completes processing. 

If no process at high priority is able to proceed, but one or more processes at low priority are able to pro­
ceed, then one is selected. Low priority processes are periodically timesliced to provide an even distribu­
tion of processor lime between computationally intensive tasks. 

If there are n low priority processes, then the maximum latency from the time at which a low priority process 
becomes active to the time when it starts processing is 2 n -2 timeslice periods. It is then able to execute for 
between one and two timeslice periods, less any time taken by high priority processes. This assumes that 
no process monopolizes the transputer's time; i.e. it has a distribution of timeslicing pOints. 

When the processor is executing a low-priority process and a high-priority process becomes ready to ex­
ecute, an interrupt occurs. The state of the low-priority process is saved into 'shadow' registers and the 
high-priority process is executed. When no further high-priority processes are able to run, the state of the 
interrupted low-priority process is loaded from the shadow registers and the low-priority process is re­
started. 

Instructions are provided on the IMS T9000 transputer to allow a high-priority process to store the shadow 
registers to memory and to load them from memory. Instructions are also provided to allow a process to 
eXChange an alternative process queue for either priority process queue. These instructions enable a pre­
emptive scheduler to be constructed. 

Note that the workspace pointer is always word aligned so that bits a and 1 of the WdescReg register are 
free to store the process priority and type. The priority of a process is stored as bit a of the WdescReg 
register. For a low priority process this bit is set to 1, for a high priority process to O. 



IMS T9000 transputer 63 

3.4 Process types 

The IMS T90DO transputer schedules two types of process; one is identical to that provided by existing 
transputers, the other provides additional trap-handling and debugging capabilities. 

When running a process of the first type the IMS T90DO transputer implements the same global trap­
handling and debugging mechanisms as the IMS T225, IMS T425, IMS T805 and IMS T801 transputers. 
Processes of this type are therefore referred to as G-processes. 

When running a process of the second type the IMS T9000 transputer provides a set of localized, per­
process, trap-handling and debugging mechanisms. Processes of this type are therefore referred to as 
L -processes. 

111etype of a process is stored as bit 1 oftheWdescReg register. For a G-process this bit is set to 0, for an 
L-process it is set to 1. Both types of process may be present on the process queue at the same time, the 
IMS T9000 dynamically switches to and from emulating the IMS T805. 

3.4.1 G-processes: global trap-handling and debugging 

111e layout of the workspace for a G-process is shown in table 3.2. 

Word offset Location name Purpose 

-1 p.lptr the instruction pOinter of a descheduled process 

-2 p.Llnk the address of the workspace of the next process in scheduling 
queue 

-2 p.Count message length in variable length communication 

-3 p.Polnter saved pOinter to communication data area 

-3 p.State saved alternative state 

-3 p.Length length of message received in variable length communication 

-4 p.TLlnk address of the workspace of the next process on the timer queue 

-5 p.llme time that a process on a timer list is waiting for 

Table 3.2 Word offsets from Wptr and names for data locations in a G-process workspace 

Note that in some cases, a word offset is shared by more than one location name. 111is is because the 
location specified by such an offset is used for a number of different purposes at different times. For exam­
ple when the p.Count slot contains information about the message length, the process is not on a schedul­
ing queue and so the location is not required to contain p.Llnk information. 

111ere are two flags which indicate errors: the ErrorFlag, which indicates errors detected within the CPU; 
and the FPErrorFlag, which indicates errors detected within the FPU. The testerr Instruction sets Areg to 
false if the error flag is set, and true otherwise. It also clears the error flag. 111e stoperr instruction desche­
dules the current process if the ErrorFlag is set, allowing graceful system degradation when execution of a 
process gives rise to an error. stoperr does not affect the status of the error flag. The fptesterr instruction sets 
Areg to false if the floating point error flag is set, and to true otherwise.The fptesterr instruction also clears 
the floating point errorflag.The fpchkerr instruction OR's the floating point error flag into the main error flag. 
111is allows floating point errors to be given equal importance to errors on the integer processor. 

If the HaltOnErrorFlag is set and the ErrorFlag is set then the processor will halt and an error message will 
be output on the control link (CLlnkO). 

In G-processes a number of instructions facilitate the implementation of breakpoints. These instructions 
overload the operation of jO . Normally jO behaves as a no-op which might cause timeslicing. SetjObreak 
enables the breakpointing facilities and causes jO to act as a breakpointing instruction. When breakpoint­
ing is enabled, jO swaps the current IptrReg and Wptr with an IptrReg and Wptr stored in memory above 
MemStart. The breakpoint instruction does not cause timeslicing, and preserves the state of the registers. 

For further information on G-processes in general refer to Chapters 6 and 7 of Transputer Instruction Set - A 
Compiler Writer's Guide. 
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3.4.2 L-processes: local error handling and debugging 

This is a new process type introduced on the IMS T9000 transputer to allow error conditions to be handled 
on a per process basis. The layout of the workspace for an L-process is shown in table 3.3. 

Word offset Location name Purpose 

-1 p.lptr the instruction pOinter of a descheduled process 

-2 p.Llnk the address of the workspace of the next process in scheduling 
queue 

-2 p.Count message length in variable length communication 

-3 p.napHandler trap-handler identity 

-4 p.Pointer saved pointer to communication data area 

-4 p.State saved alternative state 

-4 p.Length length of message received in variable length communication 

-5 p.TLlnk address of the workspace of the next process on the timer queue 

-6 p.1ime time that a process on a timer list is waiting for 

Table 3.3 Word offsets from Wptr and names for data locations in a L-process workspace 

Each L-process has a trap-handler, a set of error flags, and a set of trap enable bits. Whenever an error is 
detected the appropriate error flag is set, and depending on the state of the trap enable bits, the trap-han­
dier is invoked. Trap-handlers may be shared between processes of the same priority. 

When an L -process is executing the identity of the trap-handler is held in the trap-handler register (ThReg). 
When an L-process is inactive the identity of the trap-handler is held in the process workspace. 

If the value of the trap-handler in the workspace of an L -process is NotProcess.p this indicates that the null 
trap-handler will be used. Any process which executes with the null trap-handler ignores any floating point 
errors and any invalid non-word aligned accesses. Any other error results in the processor halting and an 
error message being output on the control link CLinkO. 

A trap-handler consists of a trap-handler data structure (THOS) and a process to be executed when an error 
occurs. The THOS contains: a block of store into which state can be saved when an error occurs; the identity 
of the trap handler process; am:!. a queue of processes waiting to use the trap handler. The layout of a THOS 
is shown in table 3.4. 

Location name Purpose 

th.Cntl Control word 

th.Wptr Wptr of trap-handler process 

th.lptr IptrReg of trap-handler process 

th.Fptr Front of trap-hander process queue 

th.Bptr Back of trap-handler process queue 

th.Eptr Pointer to instruction causing error 

th.eWu Upper bound for watchpoint 

th.eWI Lower bound for watchpoint 

th.sWptr L-process descriptor 

th.slptr L-process instruction painter 

th.sAreg L-process A register 

th.sBreg L-process B register 

th.sCreg L-process C register 

Table 3.4 Contents of a trap-handler data structure 
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The control word is used to control the operation of the trap-handler, and to store the flags and trap enable 
bits whenever the trap-handler is not being used by an executing process. When an L"-process starts to 
execute (and its trap-handler is not already in use by a process sharing it) its trap-handler is loaded from its 
workspace into the ThReg, the trap control bits in its control word are loaded into the StatusReg and the 
process is allowed to execute. 

The trap control bits contained in the trap-handler control word are shown in table 3.5, The control word 
contains a number of flags which may be set when error conditions occur. A trap enable bit is usually asso­
ciated with each flag. 

Flag name Function Bit name Function 

ErrorFlag T8xx compatible error flag 

FPErrorFlag T8xx compatible FP error flag FPErrorTeBit 

IntErrorFlag Error explicitly set or range 

IntOvFlag Integer overflow or divide by zero IntOvTeBit 

FPlnOpFlag IEEE invalid operation flag FPlnOpTeBit 

FPDivByZeroFlag IEEE divide by zero flag FPDlvByZeroTeBit 

FPOvFlag IEEE overflow flag FPOvTeBit 

FPUndFlag IEEE underflow flag FPUndTeBit 

FPlnexFlag IEEE inexact result flag FPlnexTeBit 

UnalignTeBit trap unaligned access 

Step Bit single-stepping enabled 

WtchPntEnbl watchpoint enabled 

ThlnUse trap-handler in use 

Table 3.5 Trap control bits of trap-handler control word 

All error conditions are classified into one or more error classes. The state of the trap enaple bits determine 
whether the trap-handler is invoked when an error condition occurs. The error classes supported, the flags 
they set, and the conditions for them to invoke the trap-handler, are detailed in table 3.6. 
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Error class Cause of error Flags set Condition for trap to 
be taken 

/ntegerError Error explicitly set or range er- ErrorFlag, IntErrorFlag Always 
ror. 

/ntegerOvert/ow An integer overflow or divide by ErrorFlag, IntOvFlag If null trap-handler or if 
zero. IntOvTeBit set 

FPNanOr/nfinity Operations involving NaN or In- FPErrorFlag, FPlnOp- If FPErrorTeBit set 
finity that would cause the Flag (if a signalling NaN 
FPErrorFlag on the T8 trans- is involved) 
puter to be set. 

FP/nvalidOp An IEEE floating point invalid FPErrorFlag, FPlnOp- If FPErrorTeBit or 
operation. Flag FPlnOpTeBit set 

FPDivideByZero An IEEE floating point divide by FPErrorFlag, FPDiv- If FPErrorTeBit or 
zero operation. ByZeroFlag FPDivByZeroTeBit set 

FPOvert/ow An IEEE floating pOint overflow FPErrorFlag, FPOvFlag If FPErrorTeBit or 
operation. FPOvTeBit set 

FPUndert/ow An IEEE floating point under- FPUndFlag If FPUndTeBit set 
flow operation. 

FP/nexact An IEEE floating point inexact FPlnexFlag If FPlnexTeBit set 
operation. 

Unalign An operation involving a non- None If UnalignTeBit set 
word aligned address. 

II/egallnstruction An illegal instruction, . None Always 

Table 3.6 Error classes 

The classes of error that can be generated by each instruction are given in the instruction set definition 
tables (chapter 11). L-processes can be set up to invoke the trap-handler on precisely the same types of 
error as would have been detected by a T8xx transputer by setting the IntOvTeBit and the FPErrorTeBit. 

In the T8xx transputer the two least significant bits of an address are ignored by instructions that reference a 
word. However, L-processes on the IMS T9000 transputer will treat non-word aligned accesses as errors if 
the UnAlignTeBit is set. 

The ThlnUse bit acts as an interlock to prevent more than one process using the same trap-handler. This is 
achieved by setting the bit in the control word when the trap-handler is entered and clearing it when the 
trap-handler is exited. Before an L -process is executed the processor checks the ThlnUse bit in the control 
word of its trap-handler. If the trap-handler is found to be in use then the L-process is queued onto the 
trap-handler's process queue. All of the processes on the trap-handler's process queue are dequeued and 
inserted onto the front of the appropriate process queue when the trap-handler is exited. 

When a trap-handler is invoked the integer state of the processor is written to the THDS. The floating pOint 
state is restored to the state which was present before the operation was performed. (This makes it simple 
for the trap-handler to compute the correct value to be delivered to an IEEE exception handler.). The floating 
point and block move state of the processor is not saved by the hardware, and it is left to the trap-handler to 
save this state as necessary using the floating point store all (fpsta/I) and store 2D move (stmove2dinit) 
instructions. The error flags and trap enable bits are written from the StatusReg to the control word of the 
trap-handler, and the ThlnUse bit is set. The trap-handler process is then started with codes for the trap 
cause being returned in Areg and Breg, and Creg containing a pOinter to the trap-handler just invoked. 

Once a trap-handler has completed it loads any floating point and block move state using the fp/dall and 
move2dinit instructions respectively, and executes the trap return instruction. The Areg contains a pOinter 
to the trap-handler, and Breg contains a conditional argument to the trap return instruction. If the value in 
Breg is zero then the errant process will be descheduled. If it is not zero then the error flags and trap enable 
bits will be reloaded into the StatusReg from the trap-handler control word, the integer state of the proces­
sor will be reloaded from the THDS, and the errant process will be allowed to continue. 
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The current error flags and trap enable bits may be examined by using the load error flags instruction, which 
pushes the error flags and trap enable bits from the statusReg into Areg. The error flags and trap enable 
bits in the Status Reg may be set to the value in the Areg using the store error flags instruction. 

Any block of store may be used as a THDS. The block must be initialized by: setting th.Fptr to NotPro­
cess.p; initializing th.Wptr and th.lptr for a suitable process; and setting the ThlnUse bit of the control word 
to 0 and the other bits selecting traps as desired. 

When running an L-process the IMS T9000 transputer provides support for breakpointing, for Single-step­
ping of instructions, and for a watchpointed region. For this process type the IMS T9000 transputer always 
interprets the jO instruction as a breakpoint which causes the trap-handler to be called, with the state of 
the process being saved as described above. 

Single-stepping can be enabled by setting the Step Bit in the trap-handler control word. If this bit is set, 
then a trap occurs after execution of a single instruction by an L-process. 

A watchpointed region is supported by the upper and lowerwatchpoint bounds specified in the trap-handler 
data structure. If the watchpoint enable bit (WtchPntEnbl) in the trap-handler control word is set then a write 
to an address between these bounds causes the trap-handler to be invoked. 

3.5 Timers 

The transputer has two 32-bit timer clocks which 'tick' periodically. The timers provide accurate process 
timing, allowing processes to deschedule themselves until a specific time. 

One timer is accessible only to high priority processes and is incremented every microsecond, cycling 
completely in approximately 4295 seconds. The other is accessible only to low priority processes and is 
incremented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of ap­
proximately 76 hours. 

ClockO 

Clock1 

TNextRegO 

TNextReg1 

Current value of high priority (level 0) process clock 

Current value of low priority (level 1) process clock 

Indicates time of earliest event on high priority (level 0) timer queue 

Indicates time of earliest event on low priority (level 1) timer queue 

Table 3.7 Timer registers 

I 

I 

The current value of the processor clock can be read by executing a load timer instruction. A process can 
arrange to perform a timer input, in which case it will become ready to execute after a specified time has 
been reached. The timer input instruction requires a time to be specified. If this time is in the 'past' then the 
instruction has no effect. If the time is in the 'future' then the process is descheduled. When the specified 
time is reached the process is scheduled again. 

Figure 3.3 shows two processes waiting on the timer queue, one waiting for time 21 , the other for time 31. 

TimerO ~ ...........---­
~Alarm 

TNextRegO C 21 ~ 

TPtrReg I---""""l----------.-J 

Figure 3.3 Timer registers 

Workspaces Program 

21 

Empty 

31 



68 IMS T9000 transputer 

3.6 Block move 

The block move on the transputer moves any number of bytes from any byte boundary in memory, to any 
other byte boundary, using the smallest possible number of word read, and word or part-word writes. 

3.7 Semaphores 

The IMS T9000 transputer provides an efficient implementation of an n-valued semaphore for processes 
on the same processor. signal and wait instructions are provided which operate on a data structure which 
may be located at any address in memory. A semaphore is implemented by a three word data structure. 
The word locations in the data structure are shown in figure 3.8. The data structure must be initialized with 
s.Count set to n for an n-valued semaphore and with s.Front set to NotProcess.p. 

Location name Purpose 

s.Count Number of processes which may be granted semaphore 

s.Front Front of waiting queue 

s.Back Back of waiting queue 

Table 3.8 Contents of a semaphore data structure 
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4 Communications, events and resources 

Communication between processes may be achieved by means of channels. Channel communication is 
point-to-point, synchronized, uni-directional and unbuffered. As a result, a channel needs no process 
queue, no message queue and no message buffer, and so can be implemented very efficiently. 

An internal channel between two processes executing on the same transputer is implemented by a single 
word in memory; an external channel between processes executing on different transputers is implemented 
by means of point-to-point links. The processor provides a number of operations to support message 
passing along channels, the most important being input message (input) and output message (output). 

The input and output instructions use the address of the channel to determine whether the channel is inter­
nal or external. Thus the same instruction sequence can be used for either, allowing a process to be written 
and compiled without knowledge of where its channels are connected. 

Channel communication takes place when both the inputting and outputting processes are ready. Thus, the 
process which first becomes ready must wait until the second is also ready. A process performs an input or 
output by loading the evaluation stack with; a pointer to a message, the address of a channel, and a count 
of the number of bytes to be transferred, and then executing an input or output instruction. Data is trans­
ferred if the other process is ready. If the other process is not ready then the one executing the communica­
tions instruction will be descheduled. 

4.1 Efficient variable-length communications 

Communication,using the input and output instructions requfres both communication processes to have 
knowledge of the length of the message that is to be transferred. To allow the secure and efficient communi­
cation of variable-length data, the vin (variable input) and vout (variable output) instructions may be used 
instead of input and output. Variable length communication requires only the outputting process to have 
knowledge of the length of the message prior to tr~nsfer. 

When both a vin and a vout instruction have been executed by processes referring to the same channel, 
providing the length specified by vout does not exceed the length specified by vin, data is transferred from 
the outputting process to the inputting process just the same as if input and output had been used. 

However, in the case where the length specified by vout exceeds that specified by vin, a -1 is returned in the 
count location of the workspace of the Inputting process, to indicate that an error has occurred in communi­
cation. 

The Idcnt (load count) instruction is provided to enable the inputting process to determine either how much 
data was transferred during a variable length communication, or whether an error in communication 
occurred. 

4.2 Processor-to-processor communications 

The IMS T9000 incorporates a hardware communications processor, called the Virtual Channel Processor 
(VCP), which is able to multiplex any number of virtual channels over each physical link. Each message 
is split into a sequence of packets, and packets from different messages may be interleaved over each 
physical link. Interleaving packets from different messages allows any number of processes to communi­
cate simultaneously via each physical link. IMS T9000 transputers may be connected directly or via a net­
work of IMS C104 dynamic routing devices. Communication channels can be established between any 
two processes regardless of where they are physically located, or whether the channels are routed through 
a network. Thus, programs can be independent of network topology. 

In order that packets which are parts of different messages can be distinguished by the VCP ofthe transput­
er which receives them, each received packet contains one or two bytes which identify a virtual input chan­
nel of the receiving transputer. When a packet is transmitted it may also contain information to route the 
packet through a packet switching network. The combination of any routing information and the identifica­
tion of the virtual input channel of the receiving transputer is called the packet header. Every packet of a 
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message ends with an end-of-packet (EOP) token, except the last packet which ends with an end-of­
message (EOM) token. 

The maximum length of data in each packet is 32 bytes. All but the last packet of a message contain the 
maximum amount of data; the last contains the maximum amount of data or less. Each packet has the struc­
ture illustrated in figure 4.1. The header bytes (containing routing and channel information) are transmitted 
first, followed by the data bytes of the packet (if any), followed by the encoded end of packet marker. 

I header I data bytes I end of packet I 

Figure 4.1 Structure of a packet 

The VCP distinguishes three types of packet, depending on whether or not there are any bytes of data in the 
packet, and whether it is terminated with an EOP or an EOM. If the packet is terminated with an EOM token it 
is the last, possibly the only, packet of a message. If it contains data and is terminated with an EOP token it 
is part of a message. If it contains no data and is terminated with an EOP token it is taken as the acknowl­
edgement of a previously transmitted packet. 

The VCP enforces a high-level protocol on each virtual channel. Each packet of data sent along a virtual 
channel must be acknowledged before the next is sent to ensure that no data is lost. The last packet must 
be acknowledged before the outputting process is rescheduled to ensure synchronized communication. 
Data packets on a virtual channel are acknowledged by the VCP by sending acknowledge packets on 
another virtual channel back to the VCP which sent them. This acknowledgement is process-to-process 
(processor-to-processor) and is transparent to intermediate network components. 

Virtual channels always occur in pairs between pairs of communicating processors, with one virtual chan­
nel in each direction. If a message is being communicated in one direction the virtual channel in the oppo­
site direction is used to return acknowledge packets to the sender. The associated pair of virtual channels 
is referred to as a virtual link. A virtual link can transfer messages in both directions at the same time with 
data packets and acknowledge packets being interleaved on both of the virtual channels. Because virtual 
channels are always pairedjn this way it is not necessary to include source information in the packets. 
Thus packet headers need only represent their destinations. 

Each end of a virtual link is represented by a data structure called a virtual link control block (VLCB). A 
number of instructions are provided on the IMS T9000 for manipulating these data structures. These instruc­
tions may be used to establish the links, dynamically alter.the connections, activate, deactivate and reset 
the channels, place channels into resource mode and debug parallel programs. 

The VCP of a transputer will send the first packet of a message on a virtual channel to another transputer 
after the CPU performs an output (output, outbyte, outwordm variable output) instruction. When the VCP of 
the second transputer receives the packet, it identifies the virtual channel on which the packet was received 
from the packet header. If a process on the second transputer has performed an input instruction on the 
channel, the data contained in the packet is stored in the data space of the inputting process. If there is no 
process ready to receive the first packet then it is placedjn an in-store packet buffer associated with the 
virtual link, which is large enough to hold the 32-byte maximum data length.when the inputting process 
becomes ready the first packet is copied from the buffer into the data space of the process and an acknowl­
edge packet is sent. This buffering is transparent to the processes because it is never in use when the pro­
cesses are active. It enables short messages (not longer than 32 bytes) to be sent with only one packet. 

In order that the data contained in a buffer is not overwritten, the VCP of a transputer which has sent one 
packet of a message on a virtual channel to another transputer does not send another packet on that chan­
nel until it receives an acknowledgment that a process on the second transputer has become ready to re­
ceive the message. When this happens the first packet is copied from the buffer to the data space of the 
process. 
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4.3 Vjrtuallink control blocks 

Associated with each virtual link are two virtual link control blocks (VLCB's), one in the memory of each 
transputer connected by the link. These blocks store information to control the operation of the virtual link. 
Each VLCB is 8 words long and aligned on an 8-word boundary. Table 4.1 shows the information stored in 
each VLCB. In addition to the 8 word VLCB is a pair of words for resource channels. 

VLCB Location Function Initialise to: 

DataQueueLink Link to next VLCB with a data packet to send zero 

AckQueueLink Link to next VLCB with an acknowledge packet to send zero 

OutputWdesc Workspace descriptor of outputting process NotProcess.p 

InputWdesc Workspace descriptor of inputting process NotProcess.p 

Output Limit Limiting address from which data may be sent NotPointer.p 

InputLimit Limiting address to which data may be written BufferEmptyp 

HeaderCtrl Header and control word NotHeader.p 

BufferPointer Pointer to the input packet buffer NotPointer.p 

Table 4.1 Content of the VLCB 

The physical links are shared by a number of virtual links by threading the control blocks, of the virtual links 
waiting to use the links, on linked lists. Since each channel of the virtual link may carry both packets of data 
and acknowledge packets there may be a packet of data and/or an empty acknowledge packet to be sent 
on a virtual link. Thus the control block contains two queue painters for threading onto the lists; the Data­
QueueLink and AckQueueLink locations. These locations must be initialized to zero. 

OutputWdesc and InputWdesc store the workspace descriptors of the processes (if any) sending and/or 
receiving messages on the virtual link. These wbrkspace descriptors must be initialized to NotProcess.p. 

HeaderCtrl contains a number of bits of control information, and either the header to be included with each 
packet sent on that virtual link, or the length of the header and an offset to the location in memory where it 
may be found. Table 4.2 shows the bit fields stored in the most significant byte of the HeaderCtrl word. 

Bit field Function 

Header type (2 bits) ° bytes 0,1 are an offset, byte 2 is a length 
1 byte ° is the header 
2 bytes 0,1 are the header 
3 bytes 0,1,2 are the header 

Link number (2 bits) The physical link used by this virtual link 

Input normal The virtual input channel is operating normally 

Output normal The virtual output channel is operating normally 

Table 4.2 Bit fields in the most significant byte of HeaderCtrl 

Headers up to 3 bytes long are held In the VLCB; longer headers are held in a speCial region of memory. 
The encoding of short headers within the HeaderCtrl word saves a memory access on every packet sent. 

4.3.1 Errors 

The links can detect disconnection and parity errors. The VCP can detect the following non-attributable 
errors (errors which cannot be attributed to a particular process): Invalid header; Short non-terminal packet; 
and Oversize packet. All of these errors cause a serious error to be signalled. 

The VCP can also detect a length overrun on an input. This is dealt with by recording an invalid message 
length (-1) in the workspace of the inputting process. The process must recognise and handle the error after 
it has been rescheduled, which it can do with·the Idcnt instruction. 
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4.4 VCP and CPU configuration registers 

The VCP and CPU (in common with a number of other sub-systems of the IMS T9000) are controlled via 
registers in a configuration space. The registers are accessed via the Ideonf and steonf instructions, or via 
CPeek and CPoke command messages received along control link CLinkO. This section describes the 
functionality of the VCP and CPU to be controlled by bit fields in the associated configuration registers. 
It also defines the relationship between the addressing of channels and the addressing of store. The com­
plete bit format of each register and the addresses of the registers in the configuration space are not in­
cluded in this preliminary information. 

A channel address is the value used to access a channel in a communication instruction. The IMS T9000 
channel address space is shown in figure 4.2. The IMS T9000 memory map is shown in figure 4.3. 

Event channels are always accessed via channel addresses. The physical links are normally accessed via 
virtual channels. However, each IMS T9000 physical link may be set to operate in byte mode for use in 
mixed transputer systems (see chapter 14). They are then accessed via the hard channel addresses. 

Address Channel address 

Internal channels 

MemStart 

Illegal 
MinlnvalidChan 

Virtual channels 

Minlnt + 16 jj. 80000040 

Events 

Minlnt +8 # 80000020 

Hard channel inputs 
# Minlnt + 4 80000010 

Hard channel outputs 
# Minlnt 80000000 

Figure 4.2 IMS T9000 channel address space 

4.4.1 MemStart register 

The communications instructions operate by treating all channel addresses at or above the MemStart reg­
ister as being internal channel communications - that is between processes executing on the same proces­
sor. All channel communications below this address are transferred to the VCp, after checking for illegal 
addresses. 

The Idmemstartval instruction can be used to obtain the value of MemStart. 

Packet buffers may be allocated below MemStart in the memory map. 



IMS T9000 transputer 73 

4.4.2 Minimum Invalid virtual channel register 

\ There is a range of channel addresses below MemStart which do not correspond to valid virtual channels, 
and which will normally contain virtual link control blocks and headers. The first channel address which 
corresponds to an invalid virtual channel is held in MinlnvalidChan. 

MemStart 

HeaderBase 

ExternalRCBase 

Minln t 

Process workspace 

Header area 

Resource channel extra 
words 

Virtual link control blocks 

Hard and event channel 
control words 

Access via 
special 
instructions 

(Base of memory) 

Figure 4.3 IMS T9000 memory map 

4.4.3 External resource channel base register 

A resource channel is a channel which may be in normal mode or resource channel mode, plus a two word 
data structure (see section 4.6 on resources). For local users the extra two words are contiguous with the 
word used as the channel. For remote users an extra two words are associated with each input virtual chan­
nel and Event input. These extra words are allocated together in a block, and the base of the block is de­
fined by the ExternalRCBase register. 

4.4.4 Header area base register 

If the header aSSOCiated with a virtual channel is longer than three bytes, it is not held in the VLCB asso­
ciated with that channel, but resides in a separate region of store. The base of this region is defined by the 
HeaderBase register. 

4.4.5 Header offset register 

The VCP must convert the channel address and header number to the memory address of the VLCB 

The HeaderOffsetO-3 registers are each programmed with an offset which is subtracted from the value 
contained in the header of a packet which has been input on the associated physical link. The address of 
the virtual link control block to which a packet is directed is calculated by the VCP hardware using the fol­
lowing formula: 



74 IMS T9000 transputer 

Memory address = vlink.base + ((Header - HeaderOffset) < < vlink.shift) 

where for the IMS T9000: vlink.base = Mlnlnt + 64, and vlink.shift = 5. 

Figure 4.4 shows the mapping of channel addresses and header numbers to the memory address of the 
VLCB. The example given shows 3 virtual links (6 virtual channels) using 2 words for long headers. 

Channel space Header value Memory space 
%BO 1-_ln.;...te_r_na_l_c_h_an_n_e_ls-""''----!-_____ 1-----=4!::!4'--p_ro_c_e_ss_w_o_rk_s'--pa_c_e---j %BO 
%AC ~ 43 %AC 
%A8 42 Header area %A8 
%A4 41 41 Resource channel %A4 
%AO 40 words %AO 
~ ~ / ~ ~ 
%98 38 38 %98 
%94 37 / 37 VLCB %94 
%90 36 / 36 for channels %90 
%8C 35 35 20, 21 %8C 
%88 34 / 34 %88 
%84 33 33 %84 
%80 Illegal channels 32 / %80 

%7C 31 / 31 %7C 
%78 30 / 30 %78 
%74 29 / 29 VLCB %74 
%70 28 2 / 28 %70 
7< / for channels 
%6C 27 / 27 18, 19 %6C 
%68 26 / / 26 %68 
%64 25 25 %64 
%60 24 / %60 
%5C 23 / /' 23 %5C 
%58 / /' 22 %58 
%54 /' 21 %54 
%50 /' 20 VLCB %50 
%4C Virtual /' 19 for channels %4C 
%48 channels 0 18 16, 17 %48 
%44 17 %44 
%40 I---_____ ~~_~ _ _ _ _~~k------~ %40 
%3C Out 15 15 %3C 
%38 In 14 14 %38 
%34 Out 13 13 %34 
%30 Event In 12 12 %30 
%2C channels Out 11 11 Hard and %2C 
%28 In 10 10 event channel %28 
%24 Out 9 9 control words %24 
%20 8 %20 
%1C 7 7 %1C 
%18 Hard input 6 6 %18 
%14 channels 5 5 %14 
%10 4 %10 
%C 3 3 %C 
%8 Hard output 2 2 %8 
%4 channels 1 1 %4 
%0 %0 

Channel address Channel number Occam address Machine address 

Note: %n represents a 32 bit hex value with the top bit implicitly set. 

Figure 4.4 Mapping of channel addresses and header numbers to the memory address of the VLCB 
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4.4.6 Packet header limit registers 

The base and limit of packet headers which are acceptable on each physical link are stored in the Header­
LowerO-3 and HeaderUpperO-3 registers. Out of range headers cause the associated packets to be 
discarded and, unless the MaskError flag (see section 4.4.9) is set, will generate errors. These registers 
can be used for enhanced system security. 

4.4.7 VCP command register 

The VCPCommand register enables commands to be issued to the VCP. Each bit of the register corre­
sponds to a command, see table 4.3 below. The command is executed when the bit is set. Each write to the 
register can set only one bit. 

Bit Bit field Function 

0 Start Start the VCP 

1 Stop Stop the VCP 'cleanly' so that channel states are preserved. The VCP 
accepts messages currently in transit but no new messages can be 
sent. 

2 Reset Reset the VCP - stops the VCP and resets the registers to their unde-
fined level 2 state. 

Table 4.3 Bit fields in the VCPCommand register 

4.4.8 VCP status register 

The VCPStatus register contains information following the occurrence of an error on an input packet (see 
section 4.3.1 for the types of errors that can occur). Once an error is flagged the packet body is discarded 
and the following information is returned to the VCPStatus register; the header ofthe packet, the error code, 
and the link number on which the packet was input. Any subsequent errors are not recorded. 

Writes to this register clear the contents regardless of the value written. 

4.4.9 VCP link mode register 

The VCPLinkO-3Mode register contains information about the links LinkO-3. 

Bit Bit field Function 

0 ByteMode Sets the links LinkO-3 to operate in byte mode (see section 14.1). 

1 MaskError Masks the error flag for LinkO-3. 

2 HeaderLength Programs the expected length of the incoming packet header (1 or 2 
bytes) for each physical link LinkO-3. 

Table 4.4 Bit fields in the VCPLinkO-3Mode registers 

4.4.10 Event mode register 

The EventMode register contains 4 bits which specify for each event channel EventO-3 whether it is an 
input or an output channel (see section 4.5). 
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4.5 Events 

The EventlnO-3 and EventOutO-3 pins provide an asynchronous handshake interface between extemal 
events and intemal processes. Event channels provide process synchronization but cannot transfer any 
data. Each pair of Eventln and EventOut pins can act either an input or an output event channel, but not 
both. This is specified in the EventMode register and the 4 pairs of event channels EventO-3 may be set 
independently of each other. 

Input event channel 

When an extemal event takes an Eventln pin high the associated extemal event channel is made 
ready to communicate with a process. When both the event channel and the process are ready 
the processor takes the associated EventOut pin high and the process, if waiting, is scheduled. 
EventOut is removed after Eventln goes low. 

Output event channel 

The IMS T9000 asserts the EventOut pin to instruct extemal hardware to perform an action. When 
both the event channel and the extemal hardware are ready the extemal hardware asserts the as­
sociated Eventln pin and responds to the instruction. Eventln should be removed after EventOut 
goes low. 

/ 

Only one process may use each event channel at any given time. If no process requires an event to occur 
EventOut will never be taken high. Although an Eventln triggers the channel on a transition from low to 
high, it must not be removed before EventOut is high. All Eventln pins should be low during Reset; if not 
they will be ignored unti I Reset has gone low and retumed high. EventOut is taken low when Reset occurs 
or when a resetch instruction is executed on that channel. 

Input event channel 

Eventln --1 \~--
Extemal hardware asserts Eventln 

EventOut -~t 
T9000 acknowledges event request 

Output event channel 

Eventln -f ~ 
Extemal hardware acknowledges event request 

EventOut \'------
T9000 asserts EventOut 

Figure 4.5 Event 
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4.6 Resources 
The IMS T9000 supports the efficient implementation of shared resources. This is done by enabling a num­
ber of (user) processes to communicate with a single server process via resource channels. Access to the 
server process is controlled by a resource data structure which resides on the same transputer as the server 
process. The resource data structure consists of three words in memory. The word locations in the data 
structure are shown in table 4.5, and must be initialized with all three words set to NotProcess.p. The queue 
contains resource channels (local and/or remote) on which processes waiting to access the server have 
performed an output. The flag word contains the identity of a server if one is waiting to service users' 
requests. 

Location name Purpose 

RCqf Front of queue 

RCqb Back of queue 

RCc Flag 

Table 4.5 Contents of a resource data structure 

The user processes are connected to the server process via resource channels. A resource channel be­
tween a process and a server situated on the same processor is implemented by a three word data structure 
in memory. A resource channel between a process and a server on a remote machine is implemented by a 
virtual channel. The user processes communicate to the server process by executing normal output (out­
put, outbyte, outword and variable output) instructions. The server process is connected to a user process 
by means of the grant instruction; once connected the server process can communicate with the user pro­
cess by means of input instructions. 

The enable grant and disable grant instructions enable resources to be used in alternative constructs. 
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5 Memory management 

The memory management mechanism in the IMS T9000 transputer is designed to support the development 
and debugging of programs, to allow the safe execution of programs written in insecure languages, and 
to support address translation. It also supports the dynamic extension of a calling stack. The mechanism 
does not support page-based virtual memory. 

The memory management mechanism is only invoked for a special type of protected process - known as 
a P-process. A P-process is run under the control of an ordinary parent transputer process, known as the 
supervisor (or sometimes the stUb). A P-process is created by the supervisor process executing a go pro­
tected instruction. This instruction loads the state of the P-process from memory, loads the memory man­
agement registers, and starts to execute the P-process. 

The P-process may execute only a subset of the IMS T9000 instruction set. The addresses of all memory 
accesses generated by the P-process are treated as logical addresses; they are checked and translated 
into physical addresses by hardware. If the P-process attempts to access an illegal address, execute a 
privileged instruction, or causes an error, control is returned to the supervisor process. Control will also be 
returned to the supervisor process if the P-process exceeds its timesl ice or executes a system call instruc­
tion. When a trap occurs the P-process's state is saved to memory and the supervisor process is restarted. 

5.1 Protection, stack extension, and logical to physical address translation 

The memory management mechanism in the IMS T9000 provides for the checking and translation of four 
independently sized regions of addresses. The P-process may read from any region, but may only write 
to or execute code out of regions which have the appropriate permissions. All read, write and instruction 
fetch accesses attempted by the executing P-process are checked. If an illegal access is attempted then 
the P-process traps back to the supervisor process. It is not normally possible to continue execution of a 
P-process after an illegal access has been attempted. 

In addition to checking the validity of memory accesses, the hardware checks that the location pOinted 
to by the workspace pOinter (WPtr) is writable. If a call, ajw or gajw instruction causes the workspace point­
er to address a non-writeable address then the P-process traps. However, in this case, the supervisor pro­
cess can restart execution of the P-process after extending the region. In this way it is possible to execute 
stack extension on demand. 

A region may be of size 2n bytes, with a minimum size of 256 bytes (64 words) and a maximum size of 230 

bytes. A region of size 2n bytes may be translated onto any 2n byte boundary in the physical address space. 
The physical addresses associated with the four regions must not overlap. The legal logical addresses 
within a region either occupy the top 2n addresses within that region or occupy the bottom 2n addresses 
within that region. A consequence of this is that, except for when the maximal sized region (230 bytes) is 
in use, it is possible to ensure that the addresses 0 and #80000000, which are commonly used as null point­
ers, do not correspond to legal addresses and so access to such an address is immediately detected as 
a violation. 

5.2 Regions 

The logical address space of a P-process is divided into four regions. Each region is sized, assigned ac­
cess permissions, and has its address accesses translated independently of the others. The two most sig­
nificant bits of a logical address are used to determine to which region reference is being made. The terms 
region 0, region 1, region 2, and region 3 are used to refer to the regions having addresses with the most 
significant bits set to 00, 01, 10 and 11 respectively. 

The legal logical addresses within a region either occupy the top 2n addresses within that region or occupy 
the bottom 2n addresses within that region. The following table shows the legal addresses within each re­
gion. The memory mapping for the logical addresses is illustrated in figure 5.1 and table 5.1. 
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Figure 5.1 Position of region addresses in logical memory space 
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Positioned from top of region Positioned from bottom of region 

Region Size Most posHive Most negative Most positive Most negative 
address address address address 

0 21 230 -1 ~-21 21 - 1 0 

1 2k 231 - 1 231 - 2k 230 +2L 1 230 

2 2n -230 - 1 _230 - 2n -231 + 2n - 1 231 

3 2m -1 -2m -230 + 2m -1 -230 

Table 5.1 Region addresses 

5.3 Region descriptors 

A region descriptor defines the size of a region, the position of the logical region, the address translation, 
and the write and instruction fetch permissions (write-permit and execute-permit respectively) associated 
with that region. 

A region descriptor is a single word. Bit 0 indicates whether writes may be made to the region (1 = 
write-permit). Bit 1 indicates whether instructions may be fetched from the region (1 = execute-permit). Bit 
2 indicates the position of the logical region (1 = top, 0 = bottom). The remaining bits specify the size 
of the region and the address of the phYSical region to which the logical region should be relocated. For 
a region of size 2n bytes, bit n-1 is set to 1. All bits below bit n-1 are set to 0 (except for the write-permit, 
execute-permit and position bits; bits 0, 1 and 2). The remaining high-order bits, bits 31 through n, are used 
to replace the corresponding bits in the logical address which is being translated. 

Note that the minimum region size of 256 bytes implies that bits 2 through 6 of the region descriptor must 
be set to O. 

A region can be set to have zero size by programming its region descriptor with the null descriptor, 
#8000000. A number of other invalid region descriptors exist, and these should not be used. 

An example of a logical to physical address translation which is positioned at the top of region 2 is shown 
in the following diagram. This region has execute permission but is read-only. 

logical address 110 11 1 1 ... 1 111 Isb logical address 

.... II .-

2 bits 30 - n bits n bits 

pxw 

RegionReg2 relocation 11 ioI 0 ... 0 101111101 
~ Joe ,. 

32 - n bits n bits 

physical address relocation Isb logical address 

.... 
32 - n bits n bits 

Figure 5.2 Logical to physical address translation 

Note that for the logical address to be valid, bits n through to 29 must be 1 's if the position bit (bit 2) in the 
region descriptor is set to 1, and must be O's if the position bit is O. 
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5.4 Machine registers 

The IMS T9000 transputer has the following registers related to the operation of memory management for 
P-processes: 

Register Description 

RegionRegO register descriptor for region 0 

RegionReg1 register descriptor for region 1 

RegionReg2 register descriptor for region 2 

RegionReg3 register descriptor for region 3 

PstateReg pointer to the P-process state vector 

WdescStubReg process descriptor of the supervisor 

Table 5.2 Memory management registers 

The RegionRegX register contains the region descriptor for region X. As described above, the region des­
criptor defines the size, position, physical address and permissions of a region as a single 32-bit word. 

The PstateReg register contains a pOinter to a block of memory where the state of the executing P-process 
is to be saved when it traps to its supervisor process. 

The WdescStubReg register contains the workspace descriptor of the supervisor process which is control­
ling the execution of the current P-process. 

5.5 Debugging 

The support provided for debugging a running P-process is an extension of that provided for L-processes, 
which is described in section 3.4.2. However, whenever the trap-handler would have been invoked for an 
L-process, for a P-process control is returned to its supervisor process. The supervisor process is responsi­
ble for taking any necessary action. Thus, the following debug operations will cause control to be returned 
to the supervisor process. 

• a jO instruction acting as a breakpoint 

• execution of a single instruction when single-stepping enabled 

• a write access to the watchpoint region 
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6 Main Cache 

The IMS T9000 has a 16 Kbyte associative unified write-back (also known as copy-back) cache. That is, 
memory writes update the cache (if applicable) without necessarily updating memory immediately. Updat­
ing of memory occurs when the line that has been changed is discarded from the cache, thus main memory 
changes on every miss not on every write. A random replacement strategy is used. At power-on the cache 
behaves as 16 Kbytes of internal memory, so that the IMS T9000 may be used with no external memory. 
During configuration the cache may be programmed to behave as 16 Kbytes of cache, 16 Kbytes of internal 
RAM, or 8 Kbytes of cache and 8 Kbytes of internal RAM. The cache has a peak bandwidth of 200 
Mwords/s. 

The cache is arranged as four independent cache banks, each caching a quarter of the address space. The 
directory search covers all lines in the cache bank selected. Each bank has 256 lines, with 4 words per line 
and each line having its own fully-associative tag, see figure 6.1.The banks are selected on address bits 
MemAdd4-5. MemAdd2-3 determine which word in the line is selected. 

Address 32 bit data 

I 
MernA dd6-31 1 J MemAdd2-3 ~ 

/ 
+ 

~ 

~ 

MemAdd4-5 

t I 

I 
I 

iTag memory 
256 lines 

----r-- :=: ----r--
----r-- =: ----f-

----=- . .., 
-----~ ;.: ------

------ .... 
256 compare 

signals 

\ 

I 

I 

4 x 32 bit data 

Data memory 
256 lines 

Figure 6.1 Cache operation 

I 

An access can be made to each cache bank on every cycle allowing up to four separate accesses to be 
made to the cache in a single cycle. An arbiter decides which functional unit of the IMS T9000 gains access 
to each of the cache banks on each cycle. Figure 6.2 shows the major operational units of the cache. 

If a physical address requested is missing from the cache, the address is passed to the cache refill engine. 
The refill engine arbitrates between this and earlier accesses which have misses outstanding. If the missing 
address is cacheable, the refill engine generates all the addresses needed to refill the associated cache 
line. The programmable memory interface (PMI) fetches the line requested by the refill engine from external 
memory. If the address is marked un-cacheable only the missed address is fetched. 
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6.1 Cache Instructions 

lhe IMS T9000 provides four instructions to support interfacing the cache to external hardware systems. 
lhe flush dirty cache block (fdcb) and flush dirty cache line (fdcl) instructions write back specified cache 
lines, and the lines are labeled clean. lhe invalidate cache block (Ieb) and invalidate cache line (leI) in­
structions Invalidate specified cache lines. 

6.2 Cache configuration registers 

lhe cache (in common with a number of other SUb-systems of the IMS T9000) is controlled via registers 
in a configuration space. lhe registers are accessed via the {deonf and steonf instructions, or via CPeek. 
and CPoke command messages received along control link CLinkO. This section describes the functionaj­
ity of the cache to be controlled by the associated configuration registers. lhe complete bit format of each 
register and the addresses of the registers In the configuration space are not included in this preliminary 
information. 

The RAMsize register defines the amount df RAM which is allocated to be intemal RAM. It can be pro­
grammed to be D, 8 or 16 Kbytes. Internal RAM is implemented by locking lines into the cache. lhe 
RAMLIneNumber and RAMAddress registers allow the addresses of the locked cache lines to be confi­
gured by the user. lhis enables the RAM to be located anywhere in the processors physical address range. 

The RandomSeed register allows the random number generators used for cache line replacement to be 
seeded. A default seed is loaded on reset. 
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7 Programmable memory interface 

The IMS T9000 programmable memory interface (PMI) is designed to support memory subsystems with 
minimal external support logic. The interface has internal logic to provide decode and timing control 
functions and can be programmed through the configuration registers as described in section 7.3 below. 

The external address space is partitioned into four banks (not to be confused with the four cache banks 
detailed in chapter 6). This allows the implementation of mixed memory systems, with support for DRAM, 
SRAM, EPROM and VRAM. The timing of each of the four memory banks can be programmed separately, 
with a different device type being placed in each bank with no external hardware support. The PMI has a 
64 bit data bus, and each bank of memory can be configured to be 8,16,32 or 64 bits wide. The PMI directly 
supports: 8,16, 32 and 64bitSRAM; 32 and 64 bit DRAM. All banks programmed to be 64 bit wide memory 
are defined as cacheable and always transfer a full 64 bit operand to and from extemal memory to the 
internal cache, providing fast cache refill. The full performance of the IMS T9000 transputer can be exploited 
using relatively low-cost DRAM, and up to 8 Mbytes of DRAM can be connected with no external 
components. 

The transputer uses word addressing. 64 bit wide memory is defined as an array of 8 byte words with 
MemAdd3-31 selecting an array. No further addressing is performed for 64 bit memory. 32 bit wide 
memory is defined as an array of 4 byte words with MemAdd2-31 selecting an array. Each byte of this 
array is addressable with the byte enable pins notMemWrBO-3 selecting a byte within the array. 16 bit 
wide memory is defined as an array of 2 byte words with MemAdd1-31 selecting an array and 
notMemWrBO-1 selecting a byte within the array. 8 bit wide memory is defined as an array of 1 byte words 
with MemAddO-31 selecting an array. 

In the following sections a cycle is one processor clock cycle and a phase is one quarter of the duration 
of one processor clock cycle. 

7.1 Pin functions 

7.1.1 ProcClockOut 

Output timing signal at rated clock frequency of device. 

7.1.2 MemDataO-63 

The data bus transfers 64, 32, 16 or 8 bit data items depending on the bus width configuration. For 64-bit 
data items the most significant bit is carried on MemData63. For 32 bit data items the most significant bit 
is MemData31. MemDataO-15 transfers 16 bit data items, and MemDataO-7 transfers 8 bit data items. 

7.1.3 MemAdd2-31 

The address bus may be operated in both multiplexed and non-multiplexed modes. When a bank is 
configured to contain DRAM, or other multiplexed memory, then the internally generated 32 bit address is 
multiplexed as row and column addresses through the external address bus. The multiplexing is controlled 
by the FormatControl registers. 

7.1.4 notMemWrBO-3 

The transputer uses word addressing therefore four byte-write strobes are provided to select one of four 
bytes addressed by MemAdd2-31. For a bank configured to 32, 16 or 8 bits, the lower order address bits 
are multiplexed onto the unused byte-write pins to give an address bus 30,31 or 32 bits wide respectively. 
notMemWrBO addresses the least significant byte. All four strobes have the same timing and are only 
active during write cycles. The timing is controlled by the WriteStrobe registers. 
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The function of the byte enables notMemWrBO-3 for different bank size configurations is given in table 
7.1 below. 

External port size 

64 bit 32 bit 16 bit S bit 

notMemWrB3 set active (0) enables becomes becomes 
MemData24-31 MemAdd1 MemAdd1 

notMemWrB2 set active (0) enables undefined becomes 
MemData16-23 MemAddO 

notMemWrB1 set active (0) enables enables undefined 
MemDataS-15 MemDataS-15 

notMemWrBO set active (0) enables enables enables 
MemDataO-7 MemDataO-7 MemDataO-7 

Table 7.1 notMemWrBO-3 pins 

7.1.5 notMemRASO-3 

The four programmable RAS strobes are controlled by the TimingControl and RASStrobe registers. One 
strobe is allocated to each of the four banks which are decoded on chip. If a bank is programmed to contain 
DRAM, or other multiplexed memory, then the associated notMemRAS pin acts as its RAS strobe by 
default. For banks which do not contain DRAM the notMemRAS pin is available as a general purpose 
programmable strobe. 

7.1.6 notMemCASO-3 

The four programmable CAS strobes are controlled by the CAS Strobe registers. One strobe is allocated 
to each of the four banks which are decoded on chip. If a bank is programmed to contain DRAM, or other 
multiplexed memory, then the associated notMemCAS pin acts as its CAS strobe by default. For banks 
which do not contain DRAM the notMemCAS pin is available as a general purpose programmable strobe. 

7.1.7 notMemPSO-3 

These four additional programmable strobes are controlled by the ProgStrobe registers. One strobe is 
allocated to each of the four banks which are decoded on chip. 

7.1.S MemWait 

Wait states can be selected by taking MemWait high. MemWait is sampled during RASTime and CAS­
Time. MemWait retains the state of any strobe during the cycle in which MemWaitwas asserted. MemWait 
suspends the cycle counter and the strobe generation logic until deasserted. When MemWait is de­
asserted cycles continue as programmed by the configuration registers. 

7.1.9 MemReqln, MemGranted 

Direct memory access (DMA) can be requested at anytime by driving the asynchronous MemReqln signal 
high. The address and data buses are tristated after the current memory cycle terminates. If the current 
memory cycle is part of a cache line write back or fill then the four words of the line are transferred before 
the buses are tristated. 

Strobes are left inactive during the DMA transfer. If a DMA is active for longer than one programmed refresh 
interval then external logic is responsible for providing refresh. 

MemGranted follows the timing of the bus being tristated and can be used to signal to the device request­
ing the DMA that it has control of the bus. 
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Table 7.2 below lists the processor pin state while MemGranted is asserted. 

Pin Name Mem Granted State 

MemAdd3-31 floating 

MemDataO-63 floating 

notMemWrBO-3 inactive 

notMemRASO-3 inactive 

notMemCASO-3 inactive 

notMemPSO-3 inactive 

notMemRf inactive 

MemReqOut active 

notMemBootCE inactive 

Table 7.2 MemGranted pin states 

7.1.10 MemReqOut 

The MemReqOut pin indicates to external logic that IMS T9000 external bus cycles are pending and execu­
tion will sti311 if a DMA transfer is initiated, or has stalled if a DMA transfer is in progress. 

Once a DMA transfer has been granted the IMS T9000 processor can continue to execute out of the internal 
cache until an access to external rnemory is required. The MemReqOut pin will be taken high and external 
logic can use this information to interrupt the DMA transfer in progress. The external logic should deassert 
MemReqln when the memory buses are available for the processor to use. 

7.1.11 notMemBootCE 

The IMS T9000 has a dedicated area of external mernory address space of fixed size and timing. This 
functions as a fifth bank with fixed decode and tirning parameters. This is to provide slow access to 
configuration/ bootstrap code stored in ROM. notMemBootCE is used to access external memory placed 
in this dedicated address range. This address space can also be used to access code/data which is not 
bootstrap code if reqUired. 

7.1.12 notMemRf 

The IMS T9000 can be operated with memory refresh enabled or disabled. The selection is made during 
memory configuration, when the refresh signal is also determined. 

notMemRf indicates that the current cycle is a refresh cycle. It is asserted low at the beginning of the refresh 
cycle and deasserted high at the end of the refresh cycle. 
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7.2 External Bus Cycles 

The IMS T9000 programmable memory interface is designed to provide efficient support for dynamic 
memory without compromising support for other devices, such as static memory and I/O devices. This flexi­
bility is provided by allowing the required waveforms to be programmed via the configuration registers 
described in section 7.3. 

Interaction of the PMI with the on-chip cache is highly optimized. In order to support specialized memory 
types, addresses within 8, 16 or 32 bit memory banks can be specified to be cacheable or non-cacheable 
Note, 64 bit memory is always defined as cacheable. In addition, each bank can be specified to contain 
8/16/32/64 bit wide SRAM, or 32/64 bit wide DRAM memory. The PMI synthesizes the required number of 
cycles to assemble full words before transferring them to or from the internal cache. 

A generic memory interface cycle consists of a number of defined periods, or times, as shown in figure 7.1 . 
This generic memory cycle uses DRAM terminology to clarify the use of the interface in the most complex 
Situations, but can be programmed to provide waveforms for a wide range of other device types. The timing 
of each of the four memory banks can be programmed separately, with a different device type being placed 
in each bank with no extemal hardware support. 
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Figure 7.1 Generic memory cycle 
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The RASTIme and CASTime are consecutive. The CASTIme is followed by concurrent Precharge and 
BusRelease times. Thus, for DRAM, the times are used for RAS, CAS, and precharge respectively. Fornon­
multiplexed addressed memory the RASTime is programmed to be zero and there is no RAS time. 

If programmed to be non-zero, and page-mode memory is present in a bank, the RASTime will only occur 
if consecutive accesses are not in the same page. The RASTime will not commence until the Precharge­
Time for a previous access to the same bank has completed. During this time the address is multiplexed 
by the amount specified in the FormatControl register so as to output the row address on the address bus. 
During the RASTime a transition can be programmed on the RAS strobe, but not on any other strobe. 

During the CASTime the programmable strobes and byte-write strobes are active. The address is output 
on the address bus without being shifted. Write data is valid during CASTime. Read data is latched into 
the interface during the last clock cycle of the CASTime. 

The PrechargeTime and BusReleaseTime commence concurrently at the end of the CASTime. A 
PrechargeTime will occur to the current bank if: 

• the next access is to the same bank but to a different row address. 

• the next cycle is to a different bank. 

The BusReleaseTIme runs concurrently with the PrechargeTime and will occur if: 

• the current cycle is a read and the next cycle is a write. 

• the current cycle is a read and the next cycle is a read to a different bank. 

The BusReleaseTime is provided to allow slow devices to float to a high impedance state. 
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7.2.1 External DRAM cycles 

The IMS T9000 interface has logic to utilize page-mode DRAM.The intemallogic determines if page-mode 
accesses are appropriate and constructs the required waveforms as defined by the limingControl 
register. For random accesses to dynamic memory the interface will execute a RASllme, followed by a 
CASlime, followed by a Prechargelime. Figure 7.2 shows a random access to dynamic memory in 
bank O. 

I RAS I CAS I Pre~harge I RAS I CAS I pre~harge I 
TimeO TimeO • TimeO ~. ~ .. TlmeO ~ .. TimeO .... ~. TlmeO ~ 
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I I ~ I I I ~ I 

I I I I I I 
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MemDataO-63 
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c=J 
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c=J 
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Figure 7.2 Random read access to DRAM from bank 0 

For consecutive accesses within the same page in a single bank the row address remains constant and 
only subsequent column addresses change. To perform a cache line transfer 4 consecutive addresses are 
transferred, and a RASlime sub-cycle is only required for the first transfer across the extemal data bus. 
This may be omitted if the previous access to the bank was in the same page. To read a cache line from a 32 
bit wide bank of DRAM in bank 2 the PMI will execute a single RASlime, followed by four CASlimes, 
followed by a Prechargelime, as shown in figure 7.3. 
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Figure 7.3 Page-mode access to DRAM - 32 bit interface cache refill from bank 2 

For a 64 bit wide bank of DRAM the PMI will execute a single RASTime, followed by two CASTime followed 
by a PrechargeTime, as shown in figure 7.4. 
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Figure 7.4 Page-mode access to DRAM - 64 bit interface cache refill from bank 3 
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The IMS T9000 is not limited to performing only cache-line refills in page-mode. As long as the row address 
remains constant, then the PMI will continually operate in page-mode. 

Figure 7.5 shows an extended page mode cycle from DRAM. 
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Figure 7.5 Extended page mode access from bank 1 

7.2.2 External non-DRAM cycles 

CAS I Precharg~ 
Time1 Time1 I 

The IMS T9000 interface does not explicitly distinguish between a bank which is programmed as dynamic 
memory and a bank which is not dynamic memory. This is to allow complete flexibility in the use of the 
strobes and the various timing parameters. lhe correct mode of access is determined by proper program­
ming of the limingControlO-3 register parameters. Some of these parameters are inapplicable to a static 
memory bank and should be programmed to zero. Static memory cycles can be adequately defined by 
the CASlime parameter. For a cache line read from static memory the RASlime is programmed to be zero 
and no RAS sub-cycle occurs. lhe PMI will execute four CASlime cycles for a cache line refill from a 32 
bit wide bank of non-DRAM, as shown in figure 7.6. 
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Figure 7.6 32 bit non-DRAM bank 0 cache refill 

7.2.3 Bank swHchlng 

Precharge TIme and Bus Release TIme allow consecutive cycles to access different banks without the 
need for any external controlling logic. Figure 7.7 shows switching between SRAM in bank 0 and SRAM 
in bank1. A Bus Release TIme is inserted between the two accesses. The CAS, PS and Write strobes are 
inactive during this time, the RAS strobe is unaffected. 

motMemCASO 

notMemPSO 

notMemCAS1 

notMemPS1 

MemAdd2-31 

MemDataO-63 

CAS 
TimeO 

CAS 
TimeO 

Bus I CAS 
Release Time1 
TIme 0 , 

CAS 
TIme1 

I I I I I I 
~-------f colM 1COIM+1r 

Figure 7.7 SRAM bank 0 to SRAM bank 1 with bus release time 
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Figure 7.8 shows switching between DRAM in banks 0 and 1. During PrechargeTImeO the strobes for 
bank 0 are inactive and the strobes for bank 1 operate as defined by their configuration registers. Access 
is made to bank 1 whilst bank 0 is precharging. The example shown has the PrechargeTime programmed 
as 2 cycles. 

I 
RAS I CAS PrechargeTimeO 

Ti meO Ti meO RAS 1 CAS 

__ +1 ~ I 1/ Time1 1 Time1 

notMemRAS 0 \'------,------1 

PrechargeTime1 

notMemCAS 0 -----'--1----',1 ~r;-I---If-----'-----,---
I I I 1 

notMemPS 0 i-----rl L)ct--I -I ---r----+----, 

notMemRAS 1 I I I \'----CI~V---+----I 
I I I 1 I 
I I I 1 ~rr--I ~-----, notMemCAS 1 

notMemPS 1 I I I I~I 

MemAdd2-31 I I I 1 col Y )1_ ~------' 
I I I 1 I 

MemDataO-63 

I 19 1 9 
Figure 7.8 DRAM bank 0 to DRAM bank 1 switching, no bus release time 
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Figure 7.9 shows switching between DRAM in bank 1 and SRAM in bank 2. The example shown has the 
Prechargelime for bank 1 programmed as 1 cycle and the bank 2 CASlime as 2 cycles. 

I CASTime2 I CASTime2 I RAS CAS ,preCharg~ I Time1 Time1 I Time1 

I I notMemRAS 0 \ I y I 
I I I I I 

notMemCAS 0 ILiI I I I 
notMemPS 0 ILiI I I I 

I I A I /-+ notMemCAS 1 \ 
I I I I I 

notMemPS 1 I I \ IT\ I II , , I 
ro~x )< 

* 
MemAdd2-31 ~ colY 

I I I I I I 
MemDataO-63 

I I Q I Q Q 
Figure 7.9 DRAM bank 0 to SRAM bank 1 switching, no bus release time 

7.3 PMI configuration registers 

The PMI (in common with a number of other sUb-systems of the IMS T9000) is controlled via a separate 
configuration address space. The registers in this address space are accessed via the /dcon' and stconf 
instructions, or via CPeek and CPoke command messages down CLinkO. This section describes the func­
tionality of the PMI to be controlled by the associated configuration registers. The complete bit format of 
each register and the addresses of the registers in the configuration space are not included in this prelimi­
nary information. 

The PMI configuration registers are divided into 2 sets. The bank address registers define the structure of 
the extemal address space and how it is allocated to the four banks and the strobe timing registers define 
the timing of the strobe edges for the four banks. The function of the registers is to eliminate extemal decode 
and timing logic. 

7.3.1 Bank address registers 

The addresses of operands generated by IMS T9000 intemal sUbsystems are analyzed by the PMI. It uses 
the values of the configuration registers to establish which bank the address is applicable to and the type 
of access. The incoming address and the bank address registers are compared. The bits that are not of 
interest are masked off by the mask address register (MaskO-3). This is performed in parallel for all four 
banks. 

Address registers 

The AddressO-3 registers define the base address for each of the four banks. The base address must be 
word aligned. 
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Mask registers 

The MaskO-3 registers define the bits in the address which should be compared to the address register for 
the appropriate bank. 

1 in a given bit position indicates that the corresponding bits should be compared. 

o indicates they should be ignored. 

If all bits which are to be compared are the same in the presented address and the address register for a 
bank then the address is a hit on the bank. 

RAS bits registers 

The RASBitsO-3 registers define the bits in the address which should be compared to the last access to the 
same bank to determine whether a page hit has occurred. The register contents are only used if the RAS­
Time in the TimingControl register is programmed to be non-zero. 

1 in a given bit position indicates that the corresponding bits should be compared. 

o indicates they should be ignored. 

If all bits which are to be compared are the same in the presented address as in the previous access, then 
the address is a page hit and a RAS cycle will not be generated. 

Format control registers 

The FormatControlO-3 registers control general aspects of operation of each bank of the PMI. 

Bit field Function Units 

ShiftAmount Right shift for the on-chip multiplexing for the bank -

PortSize Bit width of the bank (8, 16, 32 or 64 bits) -

CacheMode Cacheability status of addresses in the bank -

Table 7.3 Format control register fields 

The ShiftAmount is defined as the amount of right shift to be applied to the extemal address field,for the 
duration of the RASTime.The shift amount is only active during the RASTime. 

The PortSize defines the size of the external port that occupies the selected bank.The coding of the bits are 
defined in table 7.4. The PortSize parameter is used by the byte-alignment network to assemble/ 
disassemble data bytes to transfer arbitrary-sized operands to arbitrary-sized ports. 

PortSize Programmed bus widths 

00 64 bits 

01 32 bits 

10 16 bits 

11 8 bits 

Table 7.4 PortSize 

The Cache Mode bit field defines if the bank is occupied by devices whose contents can be transferred to 
the IMS T9000 internal cache. Note, any bank which is programmed to have 64 bit memory is defined as a 
cacheable area. 

CacheMode Cacheability 

0 Non-cacheable 

1 Cacheable 

Table 7.5 CacheMode 
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Figure 7.10 illustrates programming of the configuration registers for given bank configurations. Banks 0 
and 1 are shown conataining an external bus width of 32 bits, banks 2 and 3 with an external port size of 
64 bits. All the banks have a programmed RASTime, except bank 4 which has RASTime set to zero. In the 
example shown in the figure the base addresses for each of the four banks are as follows: 

Bank 

0 

1 

2 

3 

Physical address 

C3COOOOO - C3FFFFFF 

B0300000 - B03FFFFF 

50EOOOOO - 50FFFFFF 

OE1 F8000 -OE1 FFFFF 

10 bit row 
address 

10 bit column 
address 

Address2 ~~'-=-'"'-"'--"-'-'~4~=~~~=~~=~P~ 
Mask2 

~------------~~~~~~~~~~~~~ 

RASBits2 ~;;..;;;,,;;;..-"....:::...:::...;;; 

FormatControl2 ,"""~,,,"-,",--,,--"-":J:@ 

L--.J 
PortSize 

~ 

CacheMode 

Figure 7.10 Programming page configuration registers 

BankO 

1M x4 

DRAM 

Bank1 

256Kx 4 

DRAM 

Bank2 

256Kx 4 

DRAM 

Bank3 

8Kx8 

SRAM 
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BootSpace allocation 

The IMS T9000 includes support for a fifth bank of external memory which is not user programmable. The 
function of this bank is to provide a configuration/ bootstrap area of external memory. The port size of this 
bank is hardwired to be a byte wide interface. 

7.3.2 Strobe timing registers 

The PMI constructs control waveforms with the required timing in the appropriate bank from the contents 
of the TlmingControlO-3 registers. The internal pipeline structure of the IMS T9000 allows internally pend­
ing cycles to be analyzed while the bus is currently in use. The bus control logic can construct the required 
timing and control waveforms from information about the current bus cycle and the next pending cycle. 

Strobe registers 

The RASStrobeO-3 registers, CASStrobeO-3 registers, ProgStrobeO-3 registers and the WrlteS­
trobeO-3 registers all have a common format, as given in table 7.6. The falling (E1) and rising (E2) edges of 
a waveform are defined to occur during the CASTIme. During other sub-cycles the programmable strobe 
pins are held in the inactive state. 

Bit field 

E1T1me 

E2Time 

ActiveCode 

notMemRASO-3 

notMemCASO-3 
or 

notMemPSO-3 
or 

notMemWrBO-3 

Function Units 

Location of falling edge from CASTIme start phase!! 

Location of rising edge from CASTime start phase~ 

Cycle type in which strobe is active -

Table 7.6 Strobe register fields 

Start of cycle 

I RASTime I CASTime 1 PrechargeTime 

--IE2TlmeIE1Tlme----1 '1 

I \' y LY~-----1 
! L E2Time-1 1 

I I E1Ttmel I ,..--J-------I 

i i \ / 
i A falling edge may i A rising or falling edge! All strobes within 

be programmed for may be programmed I bank are inactive 
the RAS strobe for each strobe 

Reset all 
strobes in bank 

Figure 7.11 Strobe activity within a memory cycle 

If DRAM is present in a bank the E2T1me for the associated RASStrobe register is.typically programmed 
to be shorter that the E1Time so that the RAS strobe falls during the RASTime of the cycle and rises again 
during the CASTime of the cycle. 
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ActlveCode determines the type of cycle (read or write) during which the strobe will be active. The coding 
of these bits is indicated below. 

ActiveCode Bus activity 

00 Inactive 

01 Active during read only 

10 Active during write only 

11 Active during read and write 

Table 7.7 ActlveCode 

The timing programmed in the WriteStrobe register for a bank is used for all four byte-write strobes for 
writes in that bank. 

TIming control registers 

The TImingControlO-3 registers define for each bank timing parameters for the peripheral devices 
allocated to that memory bank. The parameters defined by the register are shown in table 7.8. 

Bit field Function Units 

RASTIme Duration of RAS sub-cycle cycles 

RASEdgeTIme Delay from start of RAS sub-cycle to falling edge of RAS strobe phases 

CASTIme Duration of CAS sub-cycle cycles 

PrechargeTIme Duration of precharge time cycles 

BusReleasel1me Duration of bus release time cycles 

WaitEnable Enables the MemWait pin -

Table 7.8 Timing control register fields 

RASTIme sets the length of the RAS sub-cycle. If this is programmed to zero then no RAS sub-cycle will 
occur. 

RASEdgel1me sets the delay from the start of the RAS sub-cycle to when the RAS strobe goes low. This 
is only required if RASl1me is programmed to be non-zero. 

Figure 7.12 gives an example of the programming of the strobe timing registers for a write cycle in bank 1. 
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RASTime CASTime PrechargeTime RASEdgeTime 

TImingControl1 1 1 0001 1 1 001 1 1 1 0010 1 10000101 

Emme E2Time 

RASStrobe1 o 1 1 1 001 1 Reserved 

EHime E2Time 

CASStrobe1 0001 1 0 1 1 Reserved 

EHime E2Time 

ProgStrobe1 001 1 1 0 1 1 Reserved 

E1Time E2Time 

WriteStrobe1 001 1 1 10001 Reserved 

RASTime CASTime PrechargeTime 

I I I I I I I I I I I I I I I I I I I 

notMemRAS1 ~ \ / 

notMemCAS1 \ / 

notMemPS1 \ / 

notMemWrBO-3 \ / 

Figure 7.12 Programming of the strobe timing registers for bank 1 

Refresh control register 

99 

The RefreshControl register specifies the banks which require refreshing and the interval between succes­
sive refreshes. The refresh timing is also programmed in this register, and is the same for all banks. 

The PMI ensures that CAS and RAS are both high for the required time before every refresh cycle by insert­
ing a PrechargeTIme in the last bank being accessed and ensuring all PrechargeTImes are complete. 

The CAS Strobe is taken low at the beginning of the refresh time. The position of the RAS falling edge 
(RASedge) and the time before RAS and CAS can be taken high again (RefreshTIme) are programmed. 
Each of these actions occurs in sequence for each bank. A cycle is inserted between each bank in order to 
spread current peaks. If no DRAM has been programmed for a bank then no transitions occur on the RAS or 
CAS strobes. Once all refreshes have occurred a PrechargeTime is initiated in all banks and further ac­
cesses may occur. 

The RefreshControl register is loaded during the configuration phase and if the Refresh Interval is zero, 
then no refreshes will take place. The register bit fields are allocated the following functions. 
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Bit field Function Units 

RefreshTime Refresh time cycles 

RASedge Refresh RAS falling edge phases 

Refreshlnterval Defines DRAM refresh interval cycles 

DRAMO-3 Defines which banks require refresh 1-

Table 7,9 Refresh control register fields 

Figure 7,13 illustrates programming of the refresh control register, The example shows DRAM programmed 
in banks 0, 1 and 3, no DRAM programmed in bank 2, After a refresh, a PrechargeTime is introduced after 
each bank has completed in turn, In the example shown the PrechargeTime for each bank is programmed 
(in the strobe timing registers) as 1 cycle, After refresh has completed in bank 3, further accesses may 
proceed for all banks once any precharge times are complete, 

RefreshTime RASedge Refreshlnterval DRAMO-3 

RefreshControl LI _LI 0_1 _0_0-L1_-,1_0_0_0_0_1_0~_--,-1_0_1_1_0_0_1_0_0_0_0-,-_IL1_1 _0_1-1-1 --.J 

notMemCASO 

notMemRASO 

notMemCAS1 

notMemRAS1 

notMemCAS2 

notMemRAS2 

notMemCAS3 

notMemRAS3 

PrevIous 
bank 

Time e res Ime TimeD Time1 Tlme3 preChargetIJ II R f hT' II II ~ Precharge Precharge Precharge 

I I I I I I II I I II I I II I II I I II I I II I I II I I 
RASedge 

\~----------I/ 

\~---------'/ 

\~-----~/ 

\~-----~/ 

\~-------~ 
\~------~ 

Figure 7,13 Programming of the refresh control register 
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8 Data/Strobe links 
The IMS T9000 has four bidirectional links for normal inter-processor communications, and two additional 
links which can only be used for control purposes. All of these links use a protocol with two wires in each 
direction, one for data and one to carry a strobe signal. These links are therefore referred to as data/strobe 
(DS)links: The DS links are capable of: 

• Up to 100 MBaud. 

• 80 MBytes/second peak total bidirectional data rate. 

• Support for virtual channels and through routing. 

The links are TTL compatible and are series matched to 100 ohm transmission lines. 

Each DS pair carries tokens and an encoded clock. The tokens can be data or control tokens. Figure 8.1 
shows the format of data and control tokens on the data and strobe wires. Data tokens are 10 bits long 
and contain a parity bit, a flag which is set to 0 to indicate a data token, and 8 bits of data. Control tokens 
are 4 bits long and contain a parity bit, a flag which is set to 1 to indicate a control token, and 2 bits to 
indicate the type of control token. 

Parity bit Parity bit 

1 1":: Data 1 TO;~, 
I 

0 0 0 o 0: 

Data :1 Lfl n 
Strobe r-------'n'--------'n'-----__ u 

I" Bits covered by parity bit in second token ·1 
Figure 8.1 Link data format 

The parity bit in any token covers the parity of the data or control bits in the previous token, and the data/con­
trol flag in the same token, as shown in figure 8.1. This allows single bit errors in the token type flag to be 
detected. Odd parity checking is used. To ensure the immediate detection of errors null tokens are sent 
in the absence of other tokens. The coding of the control tokens is shown in table 8.1. 

Flow control token FCT Pl00 

End of packet EOP Pl0l 

End of message EOM Pll0 

Escape token ESC Plll 

Null token NUL ESC Pl00 

Table 8.1 Control token codings 

8.1 LOW-level flow control 

The DS link protocol separates the functions of flow control and process synchronization. Flow control is 
done entirely within the link module and process synchronization is built into a higher-level packet system 
(see chapter 4). 



102, IMS T9000 transputer 

Token-level flow control is perfonned in each link module, and the additional flow control tokens used are 
not visible to the higher-level packet protocol. The token-level flow control mechanism prevents a sender 
from overrunning the input buffer of a receiving link, Each receiving link input contains a buffer for at least 
8 tokens (more buffering than this is in fact provided). Whenever the link input has sufficient buffering avail­
able to consume a further 8 tokens a FCT is transmitted on the associated link output, and this FCT gives 
the sender permission to transmit a further 8 tokens. Once the sender has transmitted a further 8 tokens 
it waits until it receives another FCT before transmitting any more tokens. The provision of more than 8 to­
kens of buffering on each link input ensures that in practice the next FCT is received before the previous 
block of 8 tokens has been fully transmitted, so the token-level flow control does not restrict the maximum 
bandwidth of the link. 

Note that token-level flow control is imposed on a device-to-device basis across each physical link, 
whereas packet-level flow control is perfonned on a processor-to-processor baSiS, and message syn­
chronization is performed on a process-to-process basis. 

8.2 Link speeds 

The IMS T9000 links can support a range of communication speeds, which are programmed by writing to 
registers in the configuration space. At reset all links are configured to run at the BaseSpeed of 10 
Mbits/sec. 

Only the transmission speed of a link is programmed as reception is asynchronous. This means that links 
running at different speeds can be connected, provided that each device is capable of receiving at the 
speed of the connected transmitter. 

The transmission speed of all of the links on a given device are related to the speed of a single on-chip 
clock. The frequency of this master clock is programmed through the Speed Multiply bit field described 
in section 8.4. The master frequency is divided down to obtain the transmission frequency for each link. 
The division factor can be programmed separately for each link via the Speed Divide bit field described 
in section 8.4. For a given device, with a given programmed master clock frequency, this arrangement al­
lows each link to be run at one of four transmission speeds, as shown in table 8.2. 

Speed Divide 

SpeedMultiply /1 /2 /4 /8 BaseSpeed 

8 80 40 20 10.0 10 

10 100 50 25 12.5 10 

12 Reserved 60 30 15.0 10 

14 Reserved 70 35 17.5 10 

16 Reserved 80 40 20.0 10 

18 Reserved 90 45 22.5 10 

20 Reserved 100 50 25.0 10 

Table 8.2 Link transmission speed in Mbits/sec 

8.3 Errors on links 

Link inputs detect parity and disconnection conditions as errors. A disconnection error indicates one of 
two things: either the link has been physically disconnected, or an error has occurred at the other end of 
the link which has then stopped transmitting. The bit fields ParltyError and DiscError indicate when parity 
and disconnect errors occur. 

The DS links are designed to be highly reliable within a single subsystem and can be operated in one of 
two enVironments, determined by the LocalizeError bit in each link. 

In the majority of applications, the communications system should be regarded as being totally reliable. 
In this environment errors are considered to be very rare, but are treated as being catastrophic if they do 
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occur. This environment is the default on power-on reset, with all links having their LocalizeError bit set 
to O. If an error occurs it will be detected and reported via a message sent along CLinkO. The CPU and 
VCP of the IMS T9000 will be halted. Normal practice will then be to reset the sUbsystem in which the error 
has occurred and to restart the application. 

For some applications, for instance when a disconnect or parity error may be expected during normal oper­
ation, an even higher level of reliability is required. This level of fault tolerance is supported by localizing 
errors to the link on which they occur, by setting the LocalizeError bit of the link to 1. In addition a data 
link layer process must be connected to each virtual channel associated with the link. These processes 
are responsible for establishing and maintaining a higher level flow control, using time-out to detect that 
a message has not completed, and requesting retransmission. If an error occurs, packets in transit at the 
time of the error will be discarded or truncated, and the link will be reset without the error being reported 
via the control link. 

For information on the data link layer refer to chapter 4 of 'Computer Networks' by Andrew S. Tanenbaum, 
published by Prentice-Hal/International (ISBN: 0-13-166836-6). 

8.4 Link configuration registers 

The links (in common with a number of other sub-systems of the IMS T9000) are controlled via a separate 
configuration address space. The registers in this address space are accessed via the Idconf and stconf 
instructions, or via CPeek and CPoke command messages received along CLinkO. 

Each OS link has three registers, the LinkMode register, LinkCommand register and LinkStatus register. 

In addition the configuration space contains the DSLinkPLL register which contains the SpeedMultiply 
bit. This takes the 5 MHz input clock and multiplies it by a programmable value to provide the root clock 
for all the OS links. 

The tables below describe the functionality of the OS links to be controlled, and the associated bit fields 
in the configuration registers. 

Bit field Function 

SpeedMultiply Sets OS link master clock to required value (see table 8.2). 

Table 8.3 Bit fields in the DSLinkPLL register 

The LinkO-3Mode registers power up into a default state and may be reprogrammed before or after the 
link has been started. 

Bit Bit field Function 

1:0 Speed Divide Sets transmit speed of the LinkO-3 (see table 8.2). 
00 = / 1 ,01 = /2, 10 = /4, 11 = /8 

2 SpeedSelect Sets the LinkO-3 to transmit at the speed determined by the SpeedDi-
vide bits as opposed to the base speed of 10 Mbits/s. 

3 LocalizeError When set errors are no longer reported to the control link. Packets in 
transit at the time of an error will be discarded or truncated. 

Table 8.4 Bit fields in the LinkO-3Mode registers 

The LinkO-3Command registers are write only and contain four bits which when set cause a specific ac­
tion to be taken by the OS link. 
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Bit Bit field Function 

0 ResetLink Resets the link engine of the LlnkO-3. The token state is reset, the flow 
control credit is set to zero, the buffers are marked as empty, and the 
parity state is reset. 

1 StartLink When a transition from 0 to 1 occurs LinkO-3 will be initialized and com-
mence operation. 

2 ResetOutput Sets both outputs of LinkO-3 low. 

3 WrongParity The LinkO-3 output will generate incorrect parity. This may be used to 
force a parity error on the transputer at the other end of the LinkO-3. 

Table 8.5 Bit fields in the LinkO-3Command registers 

The LinkO-3Status registers are read only and contain six bits which contain information about the state 
of the DS link. 

Bit Bit field Function 

0 Link Error Flags that an error has occurred on the LinkO-3. 

1 LlnkStarted Flags that the output LinkO-3 has been started and no errors have been 
detected. 

2 ResetOutputCom- Flags that ResetOutput has completed on the LlnkO-3. 
plete 

3 ParityError Flags that a parity error has occurred on the LinkO-3. 

4 DiscError Flags that a disconnect error has occurred on the LinkO-3. 

5 TokenReceived Flags that a token has been seen on the LlnkO-3 since ResetLink. 

Table 8.6 Bit fields in the LlnkO-3Status registers 
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9 Control links 

The control links on alilMS T9000 transputer family products allow a separate control network to be used 
to assist in error handling and configuring, booting, resetting and analysing processors and other compo­
nents connected in a system, even in the presence of errors on the data communications links in the net­
work. Many of these functions can also be performed directly by software running on an IMS T9000. 

The device has two bidirectional control links; CLinkO and CLink1 . They use the same elect~ical and pack­
et level protocols as the normal data links, and a control link network will generally be connected to one 
of the data links of a controlling IMS T9000. All communications with the controlling processor are via 
CLinkO. CLink1 is provided to allow IMS T9000 product family components to be connected in a daisy­
chain. This allows a simple physical connectivity to be used for the controlling network, as shown in figure 
9.1. 

0 I 
" '1 

r---- T9000 ~ 

I 
Controlling T9000 

1 
- - - - - - - -

I 

/"" - - - - - - - --

I 
0 ' ' ' 1 0 1 0'" 1 

~ T9000 T9000 I-- - T9000 ~ 

I 
I I 

Figure 9.1 A daisy-chained control link network 

For large systems IMS C1 04 dynamic packet routing devices can be used to connect the controlling net­
work as a physical tree. In all cases the controlling network forms a logical tree with each device having a 
virtual link connected to the control process at the root of the logical tree. 

9.1 Initialization 

When the network is initialized the first communication with each device programs identity and return ad­
dresses to establish the virtual channels between the control process and that device. The identity address 
determines whether a packet arriving on CLinkO is for that device, and if not, the message is forwarded 
along CLink1 until it reaches its destination. 

9.2 Commands 

A high level protocol is defined for the controlling network to allow the control process to issue commands 
to, and receive re~ponses from, devices in the network. Commands are sent as packets with the first byte 
after the header containing a command code, which may be followed by additional data. The following 
table details the command codes. Each command is terminated by an EOM token. 
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Command Additional data Function 

Start Return header Allocates an identity and return header to each node. This rnustbe 
the first command. received following power on reset. 

Reset Level Resets the processor to the given level (see section 10.1). 

Identify None Returns the identity and the revision number of the device. 

Stop None Stops the processor 'cleanly' so that register values are pre-
served. Acts like the Analyse pin on the TS transputer. 

CPeek Address Returns the value stored at the given address in the device config-
uration space. If the address is invalid (e.g. does not exist in the 
programmed external memory map) an invalid status is returned. 

CPoke Address, data Writes data to the configuration space register at the given 
address. If the address is invalid an invalid status is returned. 

Peek Address Returns the word value stored at the given address in the normal 
address space. If the address is invalid an invalid status is 
returned. 

Poke Address, data Writes data to the given address in the normal address space. If 
the address is invalid an invalid status is returned. 

Run Wdesc,lptr Causes the processor to start executing with given Wdesc and 
Iptr. 

Boot Address, length Sends the address of the memory into which the boot code is to 
be written, together with the length of the data to be input. 

BootData Data This command is followed by 16 bytes of data which are written 
in 4 byte words to the current value of the boot address. The boot 
address is incremented after each write. 

ReBoot None Causes reboot from ROM. 

RecoverError None This command is used in error recovery on the control links (see 
section 9.3). 

ErrorHandshake None Handshakes error message. 

Table 9.1 Control link codes 

Each command message is acknowledged by an acknowledge packet in the normal manner (see section 
4.2). In addition the higher level control protocol requires that all command messages are acknowledged 
by a response message before the control process can send another command message to the same de­
vice. (However, Reset and RecoverError command messages may be sent to any node at any time to allow 
the control process to handle error conditions in the network.) 

The response message can contain the result of a Peek or Identify command, or it may be simply a hand­
shake code corresponding to the command message. Table 9.2 lists the response messages to each ofthe 
command messages. The data parameter 'Status' indicates whether or not there has been an error in per­
forming the operation. 
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Response Additional Data 

StartHandShake None 

ResetHandShake Status 

IdentifyResult Device type and rev 

StopHandShake Status 

CPeekResult Data, status 

CPokeHandShake Status 

PeekResult Data, status 

PokeHandShake Status 

RunHandShake Status 

StartBootHandShake Status 

BootDataHandShake Status 

RecoverHandShake None 

Error Error code 

Table 9.2 Control link responses 

9.3 Errors on control links 

The control link network is assumed to be designed and connected by the user to achieve very high reliabil­
ity. The control links should be operated at a low enough speed to ensure this. 

If a parity or disconnect error occurs on CLink1 then an error message is sent to the control process along 
CLinkO. If a parity or disconnect error occurs on CLinkO then an error message cannot be sent to the control 
process. However, the output of CLinkO is halted, and this will be detected by the adjacent device, which 
will report the error to the control process. In this manner ali errors on the control link system are reported 
to the control process. 

9.4 Stand alone mode 

In a small system, such as a single IMS T9000, in which CLinkO of each device is not connected, the IMS 
T9000 can be set to operate in stand alone mode by setting a bit in its Status register. 

In stand alone mode the occurrence of a catastrophic error causes the fifth bank (see page 97) to be re­
enabled and the ROM code restarted. A flag is set in the configuration space to indicate that such a restart 
has occurred. This flag can be accessed by the testpranal instruction. 

9.5 Link speed 

Each control link is powered up running at a standard speed of 10 MHz. This speed can be subsequently 
changed during configuration by programming the relevant SpeedDivide bit field in the configuration 
space. The speed selection for control links is identical to that of the data DS-links (see section 8.2), and 
the control links share the master link clock. 

9.6 Control link configuration registers 

The link module hardware in each control link is identical to that in each data link. An equivalent set of con­
figuration bit fields is provided for each control link, as was described in section 8.4 for the data links. 
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10 Levels of reset and the configuration space 

The term configuration is used to refer to the sequence of operations required to take an IMS T9000 trans­
puter network from its power-on state to having an application, or operating system, running. In doing so 
the state of the network must be taken through a sequence of defined levels or reset levels. These are 
shown in figure 10.1 . 

power 
up level 0 level 1 level 2 level 3 application 

l I label control configure boot I 
I network network code I 

~-------------+I--------------~------------~----------~I~ 

I Links - wait state 
I PMI - undefined 
I VCP - undefined 
: Link engines - defined 
I Cache - default 

I I 
I I I I 
I Nodes - assigned I Links - speeds selectedl Run command sent I 
I Identities I PMI - defined I Boot code executed I 
I Control links - running I VCP - defined I Virtual links set up I 
: : Start registers set: : 

I I I I 

t t 

running 

Configure 
from ROM 

or links 

Boot 
from ROM 

or links 

Load code 

Figure 10.1 Reset levels 

10.1 Reset Levels 

During configuration the state of a network of IMS T9000 transputers is changed in a sequence of phases. 
Each phase takes the network from one reset level to the next: 

10.1.1 Level 0 - hardware reset 

After a hardware reset each IMS T9000 is in the following state: 

The processor is stopped, Wdesc is NotProcess.p and the scheduler queues are empty. 

The state of the PMI and VCP is not defined, and both are inactive. 

All the (data and contrOl) links are in Wait state with a default speed of 10 MHz. Each link is in 
TimesOneMode and Halt is false. The identity and retum headers for the control links are 
undefined. 

The cache is initialized to act as 16 Kbytes of on-chip RAM. 

The network can be retumed to level 0 by taking all the reset pins in the network high. 

10.1.2 Level 1 - labelled control network 

The labelling phase moves from level 0 to level 1. In it the identity and retum headers are set by a Start 
command message being received on CLinkO, as described in section 9.2. Levell for the network has 
all identity and retum headers configured and all connected control links operational. 

In a small system, such as a single IMS T9000 operating in stand alone mode (see section 9.4), the identity 
and retum headers remain undefined. Any error occurring which would normally output an error message 
on CLinkO will result in the fifth bank being re-enabled and the ROM code being restarted. Levell in this 
case is considered to have the identity and retum headers configured as undefined. 
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The network can be reset to level 1 by sending a reset command message to each IMS T9000. After this 
reset message the identity and retum headers are still valid. All other registers in the configuration space are 
reset to their level 0 values. 

10.1.3 Level 2 - configured network 

The configuration phase moves from level 1 to level 2. The state (resident in the configuration space) re­
quired to make all subsystems of the IMS T9000 operational, is programmed. If the StartFromROM pin 
was sampled high at the end of the hardware reset then a process will be executed from ROM. This will 
use the stconf instruction to program the configuration space registers. If the Start From Rom pin was 
sampled low then the configuration space will be programmed by CPoke command messages received 
down CLinkO. 

The network can be reset to level 2 by sending a reset command message to each IMS T9000. At this level 
of reset the application program is stopped (possibly in order to reload and run another one that is configu­
ration compatible) whilst the hardware configuration is unchanged. This level of reset leaves the values in 
the configuration space of the PMI unaltered and still active. 

10.1.4 Level 3 - booted network 

The booting phase moves from level 2 to level 3. This phase is responsible for setting up the virtual links 
for the network using the instructions described in section 4. This is always performed by running code, 
but this code can either be executed from ROM, or be loaded down the control link using the Boot and 
BootData command message. 

10.1.5 Loading code 

The network is now connected and code can be loaded via the communication links, or executed from 
ROM. 

10.2 Configuration space 

A number of sUbsystems of the IMS T9000 are controlled through a separate address space, the configura­
tion space. These addresses are accessed either by the /dconf and stconf instructions, or by CPeek and 
CPoke command messages received along CLinkO. The locations accessed via the configuration address 
space are 32-bit registers for controlling the VCp, cache, PMI, and links. The features controlled via this 
address space are generally machine specific. Configuration and system code which uses them should 
be kept self contained to allow easy migration of code to future transputer implementations. 

The functionality controlled by most of these registers has been described in earlier sections of this 
document. 
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11 Instruction set 

The transputer instruction set has been designed for simple and efficient compilation of high-level lan­
guages. All instructions have the same format, designed to give a compact representation ofthe operations 
occurring most frequently in programs. 

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the 
byte are a function code and the four least significant bits are a data value. 

Function 

7 

Operand Register 

Figure 11.1 Instruction format 

11 .1 Direct functions 

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Thirteen of 
these, shown in table 11.1, are used to encode the most important functions. 

load constant 

load local 

load non-local 

jump 

adjust workspace 

add constant 

store local 

store non-local 

conditional jump 

Table 11.1 Direct functions 

equals constant 

load local pOinter 

load non-local 

call 

The most common operations in a program are the loading of small literal values and the loading and stor­
ing of one of a small number of variables. The load constant instruction enables values between 0 and 15 to 
be loaded with a single byte instruction. The load local and store local instructions access locations in 
memory relative to the workspace pointer. The first 16 locations can be accessed using a single byte in­
struction. 

The load non-local and store non-local instructions behave similarly, except that they access locations in 
memory relative to the Areg register. Compact sequences of these instructions allow efficient access to 
data structures, and provide for simple implementations of the static links or displays used in the implemen­
tation of high level programming languages such as occam, Pascal or ADA. 

11.2 Prefix functions 

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative 
prefix. 

All instructions are executed by loading the four data bits into the least significant four bits of the operand 
register, which is then used as the instruction's operand. All instructions, except the prefix instructions, end 
by clearing the operand register ready for the next instruction. 

The prefix instruction loads its four data bits into the operand register and then shifts the operand register 
up four places. The negative prefix instruction is similar, except that it complements the operand register 
before shifting it up. Consequently operands can be extended to any length up to the length ofthe operand 
register by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be repre­
sented using one prefix instruction. 
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The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed 
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, 
they simplify language compilation by providing a completely uniform way of allowing any instruction to 
take an operand of any size. Thirdly, they allow operands to be represented in a form independent of the 
processor word length. 

11 .3 Indirect functions 

The remaining function code, operate, causes its operand to be interpreted as an operation on the values 
held in the evaluation stack. This allows up t016 such operations to be encoded in a single byte instruction. 
However, the prefix instructions can be used to extend the operand of an operate instruction just like any 
other. The instruction representation therefore provides for an indefinite number of operations. 

Encoding of the indirect functions is chosen so that the most frequently occurring operations are repre­
sented without the use of a prefix instruction. These include arithmetic, logical and comparison operations 
such as add, exclusive or and greater than. Less frequently occurring operations have encodings which 
require a single prefix operation. 

11.4 Efficiency of encoding 

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without 
the use of prefix instructions. Many of these instructions, such as load local and add require just one pro­
cessor cycle or less with grouping. 

The instruction representation gives a more compact representation of high level language programs than 
more conventional instruction sets. Since a program requires less store to represent it, less of the memory 
bandwidth is taken up With fetching instructions. Furthermore, as memory is word accessed the processor 
will receive four instructions for every fetch. 

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor 
performance. There is a pre-fetch buffer which contains several words, so the processor rarely has to wait 
for an instruction fetch before proceeding. Since the buffer is transparent on jumps, there is little time penal­
ty when a jump instruction causes the buffer contents to be discarded. 

11.5 Interaction of the processor pipeline and the instruction set 

The IMS T9000 has a pipelined processor with 5 pipeline stages. Each stage is dedicated to a particular 
operation, which in the main correspond to individual instructions, although even some of the simple in­
structions are operated on in more than one pipeline stage. 

Stage Operation Function 

0 Local Push constants and locals onto the execution stack. 

1 Address Calculate addresses of non-local operands. 

2 Read Read non-local variables. 

3 Alu Stack-based ALU and FPU operations. 

4 Conditional Jump/Store Conditional jump or write results back to memory. 

Table 11.2 Pipeline stages 

The IMS T9000 treats commonly occurring sequences of instructions as if they were a single 'grouped' 
operation. The pipelined execution unit is able to execute several groups at the same time. Most groups 
execute in one cycle, thus delivering an instruction rate well in excess of one instruction per cycle. An exam­
ple of decoding is shown below: 
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Program Mnemonic Group 

x:= 0 Ide 0; stl x 1st group 

y:= #24 pfix 2; Ide 4; stl y 2nd group 

w:= x + y Idl x; Idl y; add 3rd group 

stl w 4th group 

z:=w+(x+y) Idl x; Idl y; add 5th group 

Idl w; add; stl z 6th group 

e[O] : = a[3] + b[4] Idl a; Idnl 3; Idl b; Idnl 4; add 7th group 

Idl e; stnl 0 8th group 

bU] := ali] Idl i; Idl a; wsub; Idnl 0 9th group 

Idl j; Idl b; wsub; stnl 0 10th group 

Table 11.3 Expression evaluation 

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number 
of these can be minimized by careful choice of the evaluation order. 

Groups commonly take one cycle at each stage in the pipeline, so that as groups are passed continuously 
down the pipeline one group is executed per cycle. However, a number of factors may cause a group to 
take more than one cycle at a given stage in the pipeline. These are enumerated below: 

Long ALU/FPU operations: Most ALU/FPU operations take one cycle; those frequently used in­
structions which take longer are shown in the table below. The processor cycles column of the 
instruction set tables detail ali instructions which take longer than one cycle. 

Operation Cycles Notes 

prod 2-5 

mul 2-5 

div 5 12 

rem 6 - 13 

Imul 3 6 

Idiv 15 

Ishr 2 

Ishl 2 

crcbyte 4 

crcword 16 

fpadd 2 1 

fpsub 2 1 

fpmul (single) 2 1 

fpmul (double) 3 1 

fpdiv (single) 8 1 

fpdiv (double) 15 1 

fprem (single) 5 -74 1 

fprem (double) 5 - 529 1 

fprange (single) 5-10 1 

fprange (double) 5-17 1 

table continued overleaf 
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Notes: 

table continued from previous page 

Operation Cycles Notes 

fpsqn (single) 8 1 

fpsqn (double) 15 1 

These figures assume normalized values, there is a 2 cycle overhead for each denor­
malized operand or result (except there is no overhead for a denormalized result from 
fprem). 

Table 11.4 Speed of ALU/FPU operations 

2 Stack conflicts: There are occasions when a group will produce a value on the integer or floating 
point evaluation stack which will then be used by the group. If the following group requires it in 
an earlier pipeline stage than it is produced in, then the group will haveto wait. This occurs mainly 
with the subscript instructions. Table 11.5 below shows the stages in which values are produced 
and consumed. If a value is produced and pushed onto the stack in stage n in a particular group, 
and is consumed in stagem in the following group, then n -m extra cycles will have to be allowed 
for. 

,r-(j Stage 

Instruction Consumed Produced 

Ide 0 

Idl 
\ 

0 

Idlp 0 

mint 0 

Idnlp 1 1 

All subscript instructions 1 1 

Idnl 1 2 

load16 1 2 

Ib 1 2 

All ALU and FPU instructions 3 3 

ej 4 

All store instructions 4 

Table 11.5 Stages in which instructions operate 

3 Load/store conflicts: Stores occur in later pipeline stages than loads, so if the load is to the same 
address as the store, the memory is not yet in the state that the group expects it to be in. When 
this happens, the second group proceeds until the operand that would have been loaded is ac­
tually used, at which point it waits until the data that is to be written has passed it. All writes gener­
ate their values at stage 4, which are then consumed in either stages 1 or 3. If it is in stage 3, then 
there will be no penalty, but there will be a 2 cycle penalty when the value is consumed in stage 
1. The load may not occur in the immediately following cycle, but in the subsequent one, in which 
case any penalty is one cycle less. 

4 Jumps: A jump causes a pipeline to be (partially) empty while the instruction at the destination 
address is fetched and decoded. The number of cycles added to the normal time for a group is 
given in the following table: 
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Instruction Cycles 

j 2 

cj (taken) 4 

lend (loop back) 2 

lend (terminate) 5 

call 3 

ret 2 

All these figures assume cache hits, if cache misses occur it may take longer, depen­
dent on the PMI speed. 

Table 11.6 Jumps 

11.6 Floating point instructions 

In the T8xx transputer the basic addition, subtraction, multiplication and division operations are performed 
by single instructions. Certain less frequently used floating point instructions are selected by a value in 
register Areg (this should be taken into account when allocating registers). A load constant instruction Idc 
is used to load register Areg; the floating point entry instruction fpentry then uses this value to select the 
floating point operation. This pair of instructions is termed a selector sequence. Names of operations 
which use fpentry begin with fpu. 

In the IMS T9000 all FPU operations can be performed by an equivalent single instruction coding, the names 
of these operations begin with fp as oppose to fpu. However, the fpentry instruction has been retained in 
order to provide compatibility with the T8. 

11.7 Instruction characteristics 

Tables 11.10 to 11.44 give the complete set of instructions grouped by function, with tables 11.33 to 11.44 
detailing the new IMS T9000 instructions. 

The Function Codes table 11.10 gives the basic function code set. Where the operand is less than 16, a 
single byte encodes the complete instruction. If the operand is greater than 15, one prefix instruction (Pfix) is 
required for each additional four bits of the operand. If the operand is negative the first prefix instruction will 
be nfix. Examples of pfix and nfix coding are given in table 11.7. 
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Mnemonic Function code Memory code 

Ide #3 #4 #43 

Ide #35 

is coded as 

pfix #3 #2 #23 

Ide #5 #4 #45 

Ide #987 

is coded as 

pfix #9 #2 #29 

pfix #8 #2 #28 

Ide #7 #4 #47 

Ide -31 (Ide #FFFFFFE1) 

is coded as 

nfix #1 #6 #61 

Ide #1 #4 #41 

Table 11.7 prefix coding 

Tables 11.11 to 11.44 give details of the operation codes. Where an operation code is less than16 (e.g. 
add: operation code 05), the operation can be stored as a single byte comprising the operate function code 
F and the operand (5 in the example). Where an operation code is greaterthan15 (e.g. ladd: operation code 
16), the pfixfunction code 2 is used to extend the instruction. Ifthe operand code is negative (e.g. initvlcb: 
operation code 16), the nfix function code 6 is used to extend the instruction. These examples are illus­
trated In table 11.8. 

The load device identity (Iddevid) instruction (table 11.22 ) pushes the device type identity into the Areg 
register. Each product is allocated a unique group of numbers for use with the Iddevid instruction. The 
product identity numbers for the IMS T9000 will start at 60. 

In the Floating Point Operation Codes (tables 11.24 to 11.32), a selector sequence code is indicated in 
brackets in the Operation Code column. This refers to the indirection code, the operand for the Ide instruc­
tion (see section 11.6). 

Mnemonic Function code Memory code 

add ( op. code #5) #F5 

is coded as 

opr add #F #F5 

ladd (op. code #16) #21F6 

is coded as 

pfix #1 #2 #21 

opr #6 #F #F6 

initvleb ( op. code #16) #61F6 

is coded as 

nfix #1 #6 #61 

opr #6 #F , #F6 

Table 11.8 operate coding 

Where applicable the instruction set tables contain a processor cycles column. This refers to the number 
of cycles taken by an instruction. 
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There are a number of errors that can be trapped. When this occurs, an error code is returned to the trap 
handler. Any instruction which is not in the instruction set tables is an invalid instruction and is flagged ille­
gal, returning an error code to the trap handler. 

The Note column of the tables indicates the descheduling and error features of an instruction as described 
in table 11.9. It also indicates which instructions cannot be used in G-, L- or P-processes. 

Ident Feature 

E Error can be explicitly set 

0 Integer overflow / divide by zero error 

U Unaligned memory access to word / half word 

M Invalid memory address for P-process 

i IEEE invalid operation exception 

z IEEE divide by zero exception 

0 IEEE overflow exception 

u IEEE underflow exception 

x IEEE inexact exception 

t T800 FPU error exception 

I Interruptible instruction 

B Instruction can cause a breakpoint, G-processes only 

T Timesliceable instruction 

p Instruction not allowed in P-process 

G Instruction not allowed in G-process 

L Instruction not allowed in L -process 

D The instruction is a descheduling point 

d Denormalized operands or results can take 2 processor 
cycles longer 

Table 11 .9 Instruction features 
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Function Memory Mnemonic Name Notes 
Code Code 

0 OX j jump B,T,D 

1 1X Idlp load local pOinter 

2 2X pfix prefix 

3 3X Idnl load non-local M,U 

4 4X Ide load constant 

5 5X Idnlp load non-local pOinter 

6 6X nfix negative prefix 

7 7X Idl load local M 

a ax adc add constant 0 

9 9X call call M 

A AX cj conditional jump 

B BX ajw adjust workspace M 

C CX eqc equals constant 

D DX stl store local M 

E EX stnl store non-local M,U 

F FX opr operate 

Table 11.10 IMS T9000 function codes 

Operation Memory Mnemonic Processor Name Notes 
Code Code cycles 

46 24F6 and 1 and 

4B 24FB or 1 or 

33 23F3 xor 1 exclusive or 

32 23F2 not 1 bitwise not 

41 24F1 shl 1 shift left 

40 24FO shr 1 shift right 

05 . F5 add 1 add 0 

OC FC sub 1 subtract 0 

53 25F3 mul 2-5 multiply 0 

72 27F2 fmul 3-6 fractional multiply 0 

2C 22FC div 5 -12 divide 0 

1F 21FF rem 6 -13 remainder 0 

09 F9 gt 1 greater than 

04 F4 diff 1 difference 

52 25F2 sum 1 sum 

08 Fa prod 2-5 product 

Table 11.11 IMS T9000 arithmetic/logical operation codes 
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Operation Memory Mnemonic Processor Name Notes 
Code Code cycles 

16 21F6 ladd 1 long add 0 

38 23F8 Isub 1 long subtract 0 

37 23F7 Isum 1 long sum 

4F 24FF Idiff 1 long diff 

31 23F1 Imul 3-6 long multiply 

1A 21 FA Idiv 15 long divide 0 

36 23F6 Ishl 2 long shift left 

35 23F5 Ishr 2 long shift right 

19 21F9 norm 2-3 normalize 

Table 11.12 IMS T9000 long arithmetic operation codes 

Operation Memory Mnemonic Name Notes 
Code Code 

00 FO rev reverse 

3A 23FA xword sign extend to word 

56 25F6 cword check word E 

10 21FO xdble extend to double 

4C 24FC csngl check single E 

42 24F2 mint minimum integer 

5A 25FA dup duplicate top of stack 

79 27F9 pop pop processor stack 

Table 11.13 IMS T9000 general operation codes 

Operation Memory Mnemonic Name Notes 
Code Code 

58 25F8 move2dinit initialize data for 20 block move 

5C 25FC move2dall 20 block copy M,I 

50 25FO move2dnonzero 20 block copy non-zero bytes M,I 

5E 25FE move2dzero 20 block copy zero bytes I' M,I 

Table 11.14 IMS T9000 20 block move operation codes 

Operation Memory Mnemonic Processor Name Notes 
Code Code cycles 

74 27F4 crcword 16 calculate crc on word 

75 27F5 crcbyte 4 calculate crc on byte 

76 27F6 bitcnt 8 count bits set in word 

77 27F7 bitrevword 1 reverse bits in word 

78 27F8 bitrevnbits 1 reverse bottom n bits in word 

Table 11.15 IMS T9000 CRC and bit operation codes 
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Operation Memory Mnemonic Name Notes 
Code Code 

02 F2 bsub byte subscript 

OA FA wsub word subscript 

81 28F1 wsubdb form double word subscript 

34 23F4 bcnt byte count 

3F 23FF wcnt word count 

01 F1 Ib load byte M 

3B 23FB sb store byte M 

4A 24FA move move message M,I 

Table 11.16 IMS T9000 indexing/array operation codes 

Operation Memory Mnemonic Name Notes 
Code Code 

22 22F2 Idtimer load timer 

2B 22FB tin timer input p'I,D 

4E 24FE talt timer alt start P 

51 25F1 taltwt timer alt wait p'I,D 

47 24F7 enbt enable timer P 

2E 22FE dist disable timer P,I 

Table 11.17 IMS T9000 timer handling operation codes 

Operation Memory Mnemonic Name Notes 
Code Code 

07 F7 in input message P.D,I 

OB FB out output message P.D,I 

OF FF outword output word P.D,I 

OE FE outbyte output byte P.D,I 

43 24F3 alt alt start P 

44 24F4 altwt altwait P.D 

45 24F5 altend alt end P 

49 24F9 enbs enable skip P 

30 23FO diss disable skip P 

48 24F8 enbc enable channel P 

2F 22FF disc disable channel P 

12 21F2 resetch reset channel P 

Table 11.18 IMS T9000 input/output operation codes 
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Operation Memory Mnemonic Name Notes 
Code Code 

20 22FO ret return M 

1B 21FB Idpi load pointer to instruction 

3C 23FC gajw general adjust workspace M,U 

06 F6 gcall general call 

21 22F1 lend loop end M,T,U, 
D 

Table 11.19 IMS T9000 control operation codes 

Operation Memory Mnemonic Name Notes 
Code Code 

OD FD startp start process P 

03 F3 endp end process P,D 

39 23F9 runp run process P 

15 21F5 stapp stop process P,D 

1E 21FE Idpri load current priority 

Table 11.20 IMS T9000 scheduling operation codes 

Operation Memory Mnemonic Name Notes 
Code Code 

13 21F3 csubO check subscript from 0 E 

4D 24FD ccnt1 check count from 1 E 

29 22F9 testerr test error false and clear L,P 

10 21FO seterr set error E 

55 25F5 stoperr stop on error L,P,D 

57 25F7 clrhalterr clear halt-an-error P 

58 25F8 sethalterr set halt -on-error P 

59 25F9 testhalterr test halt-an-error P 

Table 11.21 IMS T9000 error handling operation codes 

Operation Memory Mnemonic Name Notes 
Code Code 

2A 22FA testpranal test processor analyze P 

3E 

I 
23FE 

I 
saveh save high priority queue registers L,p,U 

3D 23FD savel save low priority queue registers L,p,U 

18 21F8 sthf store high priority front painter L,P 

50 25FO sthb store high priority back pointer L,P 

1C 21FC stlf store low priority front painter L,P 

17 21F7 sllb store low priority back painter L,P 

54 25F4 sttimer store timer L,P 

17C 2127FC Iddevid load device identity 

7E 27FE Idmemstartval load value of memstart address P 

Table 11.22 IMS T9000 processor initialization operation codes 
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Operation Memory Mnemonic Name Notes 
Code Code 

B1 2BF1 break break B,L,P 

B2 2BF2 clrjObreak clear jump 0 break enable flag P 

B3 2BF3 setjObreak set jump 0 break enable flag P 

B4 2BF4 testjObreak test jump 0 break enable flag set P 

Table 11 .23 IMS T9000 debugger support codes 

Operation Memory Mnemonic Name Notes 
Code Code 

8E 28FE fpldnlsn fp load non-local single M,U 

8A 28FA fpldnldb fp load non-local double M,U 

86 28F6 fpldnlsni fp load non-local indexed single M,U 

82 28F2 fpldnldbi fp load non-local indexed double M,U 

9F 29FF fpldzerosn load zero single 

AO 2AFO fpldzerodb load zero double 
~ 

AA 2AFA fpldnladdsn fp load non local & add single M,U,i, 
o,u,x,t 

A6 2AF6 fpldnladddb fp load non local & add double M,U,i, 
o,u,x,t 

AC 2AFC fpldnlmulsn fp load non local & multiply single M,U,i, 
o,u,x,t 

A8 2AF8 fpldnlmuldb fp load non local & multiply double M,U,i, 
o,u,x,t 

88 28F8 fpstnlsn fp store non-local single M,U 

84 28F4 fpstnkjb fp store non-local double M,U 

9E 29FE fpstnli32 store non-local int32 M,U 

Table 11.24 IMS T9000 floating point load/store operation codes 

Operation Memory Mnemonic Name Notes 
Code Code 

AB 2AFB fpentry 
r 

floating point unit entry 

A4 2AF4 fprev fp reverse 

A3 2AF3 fpdup fp duplicate 

Table 11 .25 IMS T9000 floating point general operation codes 

Operation Memory Mnemonic Name Notes 
Code Code 

DO (22) 20FO fprn set rounding mode to round nearest 

06 (06) 20F6 fprz set rounding mode to round zero 

04 (04) 20F4 fprp set rounding mode to round positive 

05 (OS) 20F5 fprm set rounding mode to round minus 

Table 11.26 IMS T9000 floating point rounding operation codes 
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Operation Memory Mnemonic Name Notes 
Code Code 

83 28F3 fpchkerr check fp error E 

9C 29FC fptesterr test fp error false and clear 

CB (23) 2CFB fpseterr set fp error t 

OC (9C) 20FC fpclrerr clear fp error 

Table 11.27 IMS T9000 floating point error operation codes 

Operation Memory Mnemonic Processor Name Notes 
Code Code cycles 

94 29F4 fpgt 2 fp greater than i,t 

95 29F5 fpeq 2 fp equality i,t 

92 29F2 fpordered 1 fp orderability i 

91 29F1 fpnan 1 fp NaN i 

93 29F3 fpnotfinite 1 fp not finite i 

OE (OE) 20FE fpchki32 2 check in range of type int32 i,t 

OF (OF) 20FF fpchki64 2 check in range of type int64 i,t 

Table 11.28 IMS T9000 floating point comparison operation codes 

Operation Memory Mnemonic Processor Name Notes 
Code Code cycles 

07 (07) 20F7 fpr321or64 2 real32 to real64 i,t,d 

08 (08) 20F8 fpr64tor32 2 real64 to real32 i,o,u, 
x,t,d 

90 29FO fprtoi32 2-4 real to int32 i,x,t 

96 29F6 fpi3210r32 2-4 int32 to real32 M,U,x 

98 29F8 fpi3210r64 2 int32 to real64 M,U 

9A 29FA fpb321or64 2 bit32 to real64 M,U 

00 (00) 20FO fpnoround 2 real64 to real32, no round 

A1 2AF1 fpint 2-4 round to floating integer i,x,t 

Table 11.29 IMS T9000 floating point conversion operation codes 
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Operation Memory Mnemonic Processor cycles Name Notes 
Code Code 

Single Double 

S7 2SF7 fpadd 2 2 fp add i,o,u,x,t,d 

S9 2SF9 fpsub 2 2 fp subtract i,o,u,x,t,d 

SB 2SFB fpmul 2 3 fp multiply i,o,u,x,t,d 

SC 2SFC fpdiv S 15 fp divide i,z,o,u,x,t, 
d 

DB (OB) 2DFB fpabs 1 1 fp absolute i,t 

DA(OA) 2DFA fpexpinc32 2 2 multiply by 232 i,o,t,d 

D9 (09) 2DF9 fpexpdec32 2 2 divide by 232 i,u,x,t,d 

D2 (12) 2DF2 fpmulby2 2 2 multiply by 2.0 i,o,t,d 

D1 (11) 2DF1 fpdivby2 2 2 divide by 2.0 i,u,x,t,d 

Table 11.30 IMS T9000 floating point arithmetic operation codes 

Operation fpentry Memory Mnemonic Processor Name Notes 
Code code Code cycles 

Single Double 

nla 01 412AFB fpusqrtfirst 2 2 ftoating-point 
square root first 

nla 02 422AFB fpusqrtstep 2 2 floating-point 
square root step 

nla 03 432AFB fpusqrtlast S 15 floating-point i,x,t,d 
square root last 

SF nla 2SFF fpremfirst 5 -74 5 - 529 fp remainder I,i,u,t 

90 nla 29FO fpremstep 2 2 floating-point re-
mainder step 

Table 11.31 IMS T9000 floating point operation codes which are included for compatibility with the 
IMS TS05 

The following tables detail the instructions provided on the IMS T9000 which are additional tothe IMS TS05 
instruction set. 

Operation Memory Mnemonic Processor Name Notes 
Code Code cycles 

Single Double 

CF 2CFF fprem 5 -74 5 - 529 fp remainder I,i,u,t 

D3 2DF3 fpsqrt S 15 fp square root i,x,t,d 

SD 2SFD fprange 5-10 5-17 floating point range reduce i,u,t 

97 29F7 fpge 2 2 fp greater than or equality i,t 

9B 29FB fplg 2 2 fp less than or greater than i,t 

Table 11.32 IMS T9000 additional floating point operation codes 
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Operation Memory Mnemonic Name Notes 
Code Code 

CA 2CFA Is load 16 bit word MU 

F9 2FF9 Isx load 16 bit word extended MU 

C8 2CF8 ss store 16 bit word MU 

F8 2FF8 xsword sign extend 16 bit word 

FA 2FFA cs check 16 bit word signed E 

FB 2FFB csu check 16 bit word unsigned E 

C1 2CF1 ssub 16 bit word subscript 

B9 2BF9 Ibx load byte extended M 

B8 2BF8 xbword extend byte to word 

BA 2BFA cb check byte signed E 

BB 2BFB cbu check byte unsigned E 

Table 11.33 IMS T9000 part word support operation codes 

Operation Memory Mnemonic Name Notes 
Code Code 

00 60FO swapqueue swap run queue P 

01 60F1 swaptimer swap timer queue P 

02 60F2 insertqueue insert onto front of run queue P 

BO 2BFO settimeslice set timeslice enable/ disable P 

03 60F3 timeslice timeslice T,D 

B5 2BF5 Idproc load process type P 

Table 11.34 IMS T9000 process queue manipulation and timeslicing operation codes 

Operation Memory Mnemonic Name Notes 
Code Code 

C2 2CF2 Idth load trap handler G,P 

09 60F9 seith select trap handler G,p,D 

B6 2BF6 Idflags load error flags G 

B7 2BF7 stflags store error flags G 

OA 60FA goprot go protected G',P 

OB 60FB tret trap retum G,P 

08 60F8 syscall system call G 

Table 11.35 IMS T9000 trap handler operation codes 
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Operation Memory Mnemonic Name Notes 
Code Code 

OE 60FE fpldall floating-point load all M,U 

OF 60FF fpstall floating-point store all M,U 

10 61FO stmove2dinit store 20 move initialize data 

DC 60FC Idshadow load shadow registers P 

00 60FO stshadow store shadow registers P 

Table 11 .36 IMS T9000 state storage and retrieval operation codes 

Operation Memory Mnemonic Name Notes 
Code Code 

C9 2CF9 chantype channel type p,E,U 

16 61F6 initvlcb initialize virtual link control block P,E 

C3 2CF3 Idchstatus load channel status P,E 

14 61F4 readhdr read header p,E,U,1 

17 61F7 setchmode set channel mode P,E 

19 61F9 swapbfr swap buffer p,E,U 

1S 61FS sethdr set header p,E,U 

15 61F5 writehdr write header p,U,1 

1A 61 FA Idvlcb load virtual link control block p,U 

1B 61FB stvlcb store virtual link control block P,U 

1E 61FE stopch stop channel p,E,O 

BO 2BFO readbfr read buffer p,E,U 

BC 2BFC insphdr inspect header p,E,U 

Table 11.37 IMS T9000 channel and virtual link operation codes 

Operation Memory Mnemonic Name Notes 
Code Code 

CO 2CFO Idcnt load count P,E 

1C 61FC vin variable input p,1,E,U,O 

10 61FO vout variable output p,1,E,U,O 

Table 11.38 IMS T9000 variable length i/o operation codes 
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Operation Memory Mnemonic Name Notes 
Code Code 

11 61F1 grant grant resource P,D 

12 61F2 enbg enable grant P 

13 61F3 disg disable grant P 

28 62F8 Idresptr load resource queue pOinter p,E,U 

29 62F9 stresptr store resource queue pOinter p,E,U 

2A 62FA erdsq empty resource data structure P,U 
queue 

2B 62FB irdsq insert resource data structure queue P 

2C 62FC mkrc make resource channel P,E 

2D 62FD unmkrc unmake resource channel P,E 

Table 11.39 IMS T9000 resource channel operation codes 

Operation Memory Mnemonic Name Notes 
Code Code 

05 60F5 wait wait on semaphore P,U,O,D 

04 60F4 signal signal semaphore p,U,O 

Table 11.40 IMS T9000 semaphore operation codes 

Operation Memory Mnemonic Name Notes 
Code Code 

BE 2BFE Idconf load configuration P 

BF 2BFF stconf store configuration P 

Table 11.41 IMS T9000 configuration operation codes 

Operation Memory Mnemonic Name Notes 
Code Code 

20 62FO fdca flush dirty cache address P 

22 62F2 fdcl flush dirty cache line P 

21 62F1 ica invalidate cache address P 

23 62F3 icl invalidate cache line P 

Table 11.42 IMS T9000 cache operation codes 

Operation Memory Mnemonic Name Notes 
Code Code 

C4 2CF4 intdis interrupt disable P 

C5 2CF5 intenb interrupt enable P 

Table 11.43 IMS T9000 interrupt operation codes 

Operation Memory Mnemonic Processor Name Notes 
Code Code cycles 

C7 2CF7 cir 2 check in range E 

CC 2CFC ciru 2 check in range unsigned E 

5F 25F5 gtu 1 unsigned greater than 

Table 11.44 IMS T9000 miscellaneous operation codes 
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12 Performance 

The performance of the IMS T9000 is measured in terms of the number of (internal) processor cycles re­
quired to execute the program. The figures here relate to occam programs. For the same function. other 
languages should achieve approximately the same performance as occam. 

The following tables are based on the time it takes to do ALU and FPU operations and it should be noted 
that many other instructions may be overlapped (see section 11.5). 

12.1 Integer operations 

These figures are estimates and give the minimum/maximum times for a particular operation. 

Operation 

Names 

variables 

in expressions 

assigned to or input to 

in PROC or FUNCTION call 

channels 

Array Variables (1-d) 

constant subscript 

variable 

plus subscript check 

variable + constant subscript 

plus subscript check 

expression subscript 

plus subscript check 

Declarations 

CHAN OF protocol 

[size] CHAN OF protocol 

PROC 

Primitives 

assignment 

input 

output 

STOP (call error handler) 

SKIP 

Arithmetic Operators 

+ 
* 
I 
REM 

» « 

table continued overleaf 

TIme (cycles) 

o 
o to 1 

o 
1 

o 
o to 1 

3 

o to 1 

4 

3 

1 

2 

3 + 5 * size 

o 

o 
15 or [5 + move) 

16 or [5 + move) 

7 

o 

1 

2to 5 

5 to 12 

6 to 13 

1 
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table continued from previous page 

Operation Time (cycles) 

Modulo Arithmetic Operators 

PLUS MINUS 1 

TIMES 2t05 

Boolean Operators 

OR 

first operand true 3 to 4 

first operand false o to 1 

AND 

first operand true 0 

first operand false 3 

NOT o to 1 

Comparison Operators 

= < > 1 

> < 1 

>= <= 1 

Bit Operators 

!\ \/ > < ~ 1 

Expressions 

constant 0 

check if error 1 

Timers 

timer input 1 

timer AFTER 4 to 00 

ALT (timer) 20 to 00 

ALT guard 7 to 00 

Constructs 

SEQ 0 

IF 0 

IF guard 4 

ALT (non timer) 11 to 17 

ALT guard 7 to 16 

PAR 20 * branches - 6 

WHILE 4 + 3 */oops 

Procedures and Function 

call and retum 6 to 8 

scalar parameter o to 1 

array parameter 2 

table continued overleaf 
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table continued from previous page 

Operation Time (cycles) 

Replicators 

replicated SEQ (1 to 3) + 3 * count 
replicated IF (4 to 6) + 3 * count 
replicated AL T (13 to 23) + (13 to 22) * count 
replicated timer ALT (2 to 00) + (13 to 00) * count 
replicated PAR 10 + 27 * count 
range check on any of above 2 

Table 12.1 Integer Performance 

12.2 Floating point operations 

All references to REAL32 or REALM operands within programs compiled for the IMS T9000 normally pro­
duce the following performance figures. 

Operation REAL32 Time (cycles) REAL64 Time (cycles) Notes 

Names 

variables 

in expressions 0 o to 1 

assigned to o to 1 1 to 2 

input to 1 1 

in PROC or FUNCTION call 0 0 

Arithmetic Operators 

+ - 2 2 1 

* 2 3 1 

I 8 15 1 

SQRT 8 15 1 

REM 5to 74 5to 529 1,2 

Comparison Operators 

= <> 2 2 

> < 2 2 

>= <= 2 2 

Conversions 

REAL32 to- 2 

REALM to- 2 

INT32 to - 2to4 2 

INT64 to- 12 8 

To INT32 from - 4to 6 4to 6 

To INT64 from- 11 11 

Notes: 
1 These figures assume normalized values, there is a 2 cycle overhead for each denormalized oper­

and or result (except there is no overhead for a denormalized result from fprem). 
2 Typical value for REAL 3 2 is 5 to 11; for REALM is 5 to 18, longer times are extremely rare. 

Table 12.2 Floating point performance 
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12.3 Predefines 

Operation TIme (cycles) 

LONGADD 1 

LONG SUM 1 

LONGSUB 1 

LONGDIFF 1 

LONGPROD 3 to 6 

LONGDIV 15 

SHIFTRIGHT 2 

SHIFTLEFT 2 

NORMALISE 2to 3 

ASHIFTRIGHT 3 

ASHIFTLEFT 4 

ROTATERIGHT 3 

ROTATELEFT 3 

FRACMUL 3 to 6 

BITCOUNT 8 

CRCBYTE 4 

CRCWORD 16 

BITREVNBIT 1 

BITREVWORD 1 

Table 12.3 Predefines 
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13 Compatibility with the IMS Ta05 

13.1 Binary code compatibility 

Existing binary code compiled for the IMS T805 will run on the IMS T9000, even though the IMS T9000 has 
been designed to provide a significant performance improvement compared to the IMS T805, and includes 
a number of major functional enhancements. This has been achieved by the provision of a special process 
type (the G-process, see section 3.4) which retains compatibility with IMS T805 binary code. 

Prior to any IMS T805 compatible code being loaded, a preamble must be executed on the IMS T9000. 
This preamble programs the behavior of the subsystems of the IMS T9000 (including its memory interface 
and links) and emulates the boot time behaviour of the IMS T805. That is, it allows code to be booted down 
the data links of the IMS T9000 in the same way as for the IMS T805. In situations where the IMS T9000 is 
required to act as a direct replacement for the IMS T805 this preamble will usually be performed by code 
executing out of ROM. The preamble is invisible to IMS T805 compatible code when it is run. 

In order to provide a simple hardware interface between first generation T2/T4/T8-family components and 
T9000-family components a systems converter, the IMS C1 00, has been designed. The IMS C1 00 performs 
protocol conversions between T2/T4/T8-family oversampled links (OS-links) and T9000-family links (DS­
links). It also converts the Reset, Analyse and Error signals of the T2/T4/T8-family components to appro­
priate command messages on IMS T9000 control links. 

If configured IMS T805 binary compatible code is to be run on an IMS T9000, connected via an IMS C1 00 
to a network of T2/T4/T8-family components, then byte mode must be set via the VCP configuration regis­
ters (see section 4.4.9, page 75). No virtual channels may be used. Code on both the IMS T9000 and any 
connected T2/T4/T8-family transputers will run unmodified. 

It is possible to make use of virtual channels in this situation by reconfiguring the IMS T805 binary compat­
ible code, and thereby changing its external channel addresses. To make use of virtual channels across 
links to T2/T4/T8-family components it is necessary to add protocol conversion software to those 
T2/T4/T8-family transputers directly connected to the IMS T9000 via IMS C100 systems converters. 

13.2 Source level compatibility 

The code which must be generated for both new process types (L -processes and P-processes, see sec­
tion 3.4) is still instruction set compatible with the IMS T805 transputer. A number of additional instructions 
and in-store data structures have been provided to support new features, and some in-store data struc­
tures have been modified. Existing compilers for the IMS T805 transputer will be able to make use of the 
new capabilities of the IMS T9000 without significant modification. Existing source code will be able to be 
recompiled directly through a modified compiler, with the exception that language specific additions for 
allocating processes to processors and channels to hard links may need to be modified in order to exploit 
virtual channels. 

13.3 Compatibility issues 

The following are the only known exceptions to the compatibility of IMS T805 binary code described above. 
All are unlikely to occur in compiled binary code, but may be present in assembler code for certain systems 
software, such as real-time kernels: 

The IMS T9000 stores all of its interrupted state in internal registers, whereas the IMS T805 stores 
some of its interrupted state in memory locations. Code which directly references these memory 
locations on the IMS T805 will need to be modified to run on the IMS T9000. 

2 If a block move instruction on a T2/T4/T8 transputer is interrupted, when it is restarted the last word 
accessed prior to interrupt is accessed again. This second access will not occur on the IMS 
T9000. Code which modifies the interrupted state of a process on a T2/T4/T8 transputer to prevent 
the second access will need to be modified to run on an IMS T9000. 
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3 The floating point unit on the IMS T9000 does not always return the same type of NaN as the 
T2/T4/T8 transputer, even when running a G-process. Most code written for the T2/T4/T8-trans­
puter will not make use of the distinction between signalling and non-signalling NaNs and will 
function identically on T2/T4/T8 and IMS T9000 transputers. 

4 The transfer of messages across OS-links is not synchronized. This allows, for example, two four 
byte messages to be sent and for them to be received as a single 8 byte message on the receiving 
T2/T4/T8 transputer. This is not consistent with the communication of messages between pro­
cesses on the same processor. In this case the transfer of ~essages is synchronized. 

On the IMS T9000 the communication of messages across DS-links is also synchronized. Code 
which makes use of the lack of message synchronization across OS-links will have to be modi­
fied to run on networks of IMS T9000 transputers. 

5 Storing a value from Areg, pops Breg into Areg and Creg into Breg, the value left in Creg is unde­
fined. On T2/T4/T8transputers the value i'n Creg actually remains unchanged. Although this was 
never specified, this fact was used by some users. It should be noted that this is not guaranteed 
to be the case on the IMS T9000. 

The published behavior of the IMS T805 is defined in the IMS TB05 transputerdatasheet (document number 
42144000) and in The Transputer Instruction Set - A Compiler Writer's Guide (document number 72 TRN 
11905). 
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14 Mixed T9000 and T2/T4/T8 systems 

14.1 Byte mode 

Each IMS T9000 data link (LinkO-3) may be set to operate either in virtual channel mode (as described in 
section 4.2) or in byte mode by setting the associated bit in the VCPLinkO-3Mode registers. The IMS 
T9000 links can be set independently of each other, enabling each IMS T9000 to be connected to several 
different networks. 

In byte mode, the IMS T9000 links are designed to operate in conjunction with the IMS C1 00 system proto­
col converter, which converts to the oversampled links (OS-links) used on earlier (T2/T4/T8) transputer 
products. The IMS C100 uses a mode of operation in which it converts packetized messages on the IMS 
T9000 links to and from byte-streams on the OS-links. 

IMS T9000 to T2/T4/T8 - The IMS C100 buffers a packet, which it acknowledges as soon as it 
has room to buffer another. This is repeated until it receives a packet terminated with an EOM, 
which it acknowledges when the last byte is acknowledged on the OS-link. 

PowerOnReset 
Reset 

Analyse 

Error 

CLinkO 

as link 

as link C100 

as link 

as link 

Reset 
TReset ResetOut 
Analyseln 

signifies packetized protocol 

• • signifies byte stream protocol 

,..---- ... CLinkO 

OS link 

OS link T9000 

OS link 

OS link 

Reset 

Error 

I I 
I 

ROM 

Figure 14.1 Converting an IMS T9000 transputer for use in a T2/T 4/T8 series network 

T2/T4/T8 to IMS T9000 - The IMS T9000 sends information about how much data it wishes to 
input on a separate virtual channel to the IMS C100. The IMS C100 then forms packets to send 
to the IMS T9000. The IMS C100 informs the IMS T9000when an unsolicited byte arrives, to enable 
al terna t i ve to work. This is done by sending a zero-length message to the IMS T9000. 
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.. ------ CLink1 CLinkO fc-------

.. _Q~-'lD~_ . "*_Q~Ii!:l~ ___ 

.. _Q~llDlL_ C100 ~ _ QS_llnlL ___ 
T2/T4/T8 

.. _Q~llD~_ r< - Q~JlnlL ___ 

.. _Q~llD~_ "* _ QSJlDlL ___ 

ResetOut Reset 
Reset AnalyseOut Analyse 

Error Error 

- - - signifies packetized protocol 

- signifies byte stream protocol 

Figure 14.2 Converting a T2/T4/T8 series transputer for use in an H-series network 

The IMS C1 00 can respond to both data bytes and acknowledges on the OS-links immediately by buffering 
data from the IMS T9000 and holding a count of the input length, thus maintaining full bandwidth along them. 

Note that two IMS T9000 links in byte mode will not work correctly if connected directly together. 

Refer to the IMS C 100 System Protocol Converter Preliminary Information for further information on enab­
ling IMS T9000s to interface with earlier transputer products and vice versa. 
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15 Package specifications 

The IMS T9000 is available in a 208 pin ceramic quad flat pack package which conforms to JEDEC specifi­
cations. It is a cavity down package with the dimensions and thermal characteristics detailed below. 

15.1 208 pin ceramic quad flat pack package dimensions 

52 

~ . A ~2 

@] t 
Seating A1 
plane 

o 
0 1 

0 3 --------------~~I 

208 pin ceramic 
quad flat pack 
cavity down 

top view 

Detail A-A 

156 

... ' A-A 

H Datum 
plane 

Figure 15.1 208 pin ceramic quad flat pack dimensions 
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Millimeters Inches 
Symbol Min Max Min Max Notes 

A 4.07 

A1 0.25 

A2 3.17 3.67 

0 31.65 32.15 

01 27.90 28.10 

03 25.50 Ref 

ZD 1.25 Ref 

E 31.65 [ 32.15 

E1 27.90 28.10 

E3 25.50 Ref 

ZE 1.25 Ref 

L 0.651 0.95 

e 0.50 Basic 

B 0.151 0.25 

Notes 

To be determined at seating plane C. 

2 To be determined at seating plane H. 

0.160 

0.010 

0.125 0.144 

1.246 1.266 1 

1.098 1.106 2 

1.004 Ref 

0.049 Ref 

1.246 [ 1.266 1 

1.098 1.106 2 

1.004 Ref 

0.049 Ref 

0.0261 0.037 

0.020 Basic 

0.0061 0.010 

Table 15.1 208 pin ceramic quad flat pack dimensions 

15.2 208 pin ceramic quad flat pack thermal characteristics 

The junction to case thermal resistance (8Jc) of the package is given below. 

Parameter 

Junction to case thermal resistance 

Table 15.2 Thermal characteristics 

Technical notes describing the thermal behavior of specific package and heat sink combinations will be 
issued subsequent to this preliminary information. 
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16 Thermal management 

The following section describes the relationship between the thermal resistance, temperature and power 
dissipation of the device. 

The peak operating temperature TJ of the chip is: 

TJ = TA + eJA * Po 

where TA is the external ambient temperature in oc, eJA is the junction-to-ambient thermal resistance in 
°C/w, and Po is the peak power dissipated by the chip. The maximum junction temperature TJ for an IMS 
T9000 to operate at the specified maximum operating frequency is 100°C. Derating curves of maximum 
operating frequency against power dissipation will be included in the final datasheet. 

eJA for the package is dependent on air flow and heat sink: 

eJA = eJC + eCA 

where eCA is the case-to-ambient thermal resistance and eJC is the junction-to-case thermal resistance 
which is given in the table 15.2. 

A reasonable operating ambient temperature range (T A) can be achieved using a heat sink and/or forced 
air flow cooling. A heat sink and ambient airflow cooling can be used to reduce the case to ambient thermal 
resistance (eCA) and hence the junction to ambient thermal resistance (eJA), thus increasing T A The design 
of a heat Sink will need to be determined by the system designer taking into account both thermal perform­
ance requirements and size requirements. 

Power considerations 

The intemal power dissipation of the IMS T9000 depends on Vee, and is substantially independent of tem­
perature. It is dependent on operating frequency and program execution. The typical peak internal power 
dissipation (PINT) for an IMS T9000 operating at 50 MHz is 3W. 

The total power dissipation of the IMS T9000 is dependent on operating frequency, program execution, 
external memory configuration, and output pin loading. 

The total peak power dissipation Po of the chip is: 

Po = PINT + PpMI 

The peak power dissipation of the PMI (PPMI) can be determined for a given memory configuration from 
the following equation: 

where, 

PPMI = VCC2 * ((npA * Cp1nA * fA) + (npS * Cp1nS * fs) + (npo * Cp1no * fo)) 

np is the total number of active (address/ strobel data) pins 
Cp1n is the actual capacitance per (address/ strobel data) pin 
f is the effective operating frequency per (address/ strobel data) pin 

The maximum allowable capacitances that can be connected to each class of pins are: 

Symbol Parameter Max Units 

Cp1nA Capacitance per address pin 250 pF 

Cp1nS Capacitance per strobe pin 60 pF 

Cp1no Capacitance per data pin 60 pF 

npA * Cp1nA Total address bus capacitance 2500 pF 

nps * Cp1nS Total strobe pins capacitance 500 pF 

npo * Cplno Total data bus capacitance 5000 pF 

Table 16.1 Capacitance specifications 
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FEATURES 

32 way programmable packet router 
100 Mbits/s serial bi-directional links 
640 Mbytes/s bandwidth 
Concurrent processing of packets 
High rate of packet processing 

- up to 200 M packets/s 
Less than 1 J.l second packet latency 
Non-blocking crossbar 
Separate control system 
Wormhole interval routing algorithm 
Cascadable to any depth 
No loss of signal integrity 
Partitioning 
Grouped adaptive routing 

This is preliminary information on a product under 
development and product details may change. 
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1 Introduction 

This document contains preliminary information for the IMS C104 packet routing switch. The IMS C104 is 
part of a new product family based around the IMS T9000 transputer. 

The IMS C1 04 is a complete, low latency, packet routing switch on a single Chip. It connects 32 high band­
width serial communication links to each other via a 32 by 32 way non-blocking crossbar switch, enabling 
messages to be routed from any of its links to any other link. The links operate concurrently and the transfer 
of a packet between one pair of links does not affect the data rate for another packet passing between a 
second pair of links. Each link can operate at up to 100 MBits/s, providing a bidirectional bandwidth of 20 
MBytes/s, with the IMS C104 supporting a rate of packet processing of up to 200 M packets/so 

The IMS C104 allows communication between IMS T9000 transputers that are not directly connected. A 
single IMS C1 04 can be used to connect up to 32 IMS T9000 transputers. The IMS C1 04 can also be con­
nected to other IMS C104s to make larger and more complex switching networks, linking any number of 
IMS T9000 transputers, link adaptors, and any other devices that use the link protocol. Another member 
of the IMS T9000 productfamily, the IMS C101 flexible link adaptor, will allow links to be interfaced to periph­
eral buses and devices. 

The IMS C104 enables networks to be built which effectively emulate a direct connection between each 
of the devices in the system. In the absence of any contention for a link output, the packet latency will be 
less than 1 J.l- second. 

A message on aiMS C1 04 communication system is transmitted as a sequence of packets. To ensure that 
packets which are parts of different messages can be routed, each packet contains a header. The IMS C1 04 
uses the header of each packet arriving to determine the link to be used to output the packet. Anything after 
the header is treated as the packet body until the packet terminator is received. This enables the IMS C1 04 
to transmit packets of arbitrary length. 

In most packet switching networks complete packets are stored intemally, decoded, and then routed to 
the destination node. This causes relatively long delays due to high latency at each node. To overcome 
this limitation, the IMS C104 uses wormhole routing, in which the routing deciSion is taken as soon as the 
routing information, which is contained in the packet header, has been input. Therefore the packet header 
can be received, and the routing decision taken, before the whole packet has been transmitted by the 
source. A packet may be passing through several nodes at anyone time. Thus, latency is minimized and 
transmission can be continuous. 

The term wormhole routing comes from the analogy of a worm crawling through soil, creating a hole that 
closes again behind its tail. Wormhole routing is invisible as far as the senders and receivers of packets 
are concemed, its only effect is to minimize the latency in message transmission. 

The routing algorithm which makes the routing decision is called interval labeling, which is complete, dead­
lock free, inexpensive and fast. Each destination in a network is labeled with a number, and this number 
is used as the destination address in a packet header. Each link in a routing switch is labeled with an interval 
of possible header values, and only packets whose header value falls within that interval are output via 
that link. . 

The IMS C1 04 is controlled and programmed via a control link. The IMS C1 04 has two separate control links, 
one for receiving commands and one to provide daisy chaining. The control links enable networks of IMS 
T9000 transputers and IMS C1 O4s to be controlled and monitored for errors. The control links can be con­
nected into a daisy chain or tree, with a controlling processor, such as an IMS T9000, at the root. 

The IMS C1 04 contains a hardware mechanism to allow independently programmed networks to be con­
nected together. It also has additional citcuitryto reduce the impact of message congestion on worst-case 
latency and bandWidth, in heavily loaded networks. 

A set of tools will be available to support the configuration of IMS T9000 systems. The tools will provide 
support in the configuration and initialization of networks consisting of IMS T9000 processors and IMS C1 04 
routing switches. These tools will be contained as a standard part of the Version 3 toolsets for C, occam 
and FORTRAN. 
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2 Overview 

2.1 Communication on IMS T9000 transputers 

The IMS C104 is part of a new product family based around the IMS T9000 transputer. Communication 
between processes on one IMS T9000 transputer takes place over software channels. Communication 
between processes on different processors takes place over virtual channels. Multiple virtual channels are 
multiplexed onto each physical link by a communications processor within the IMS T9000. The links use 
a protocol which supports virtual channels and dynamic message routing, and provides a high data band­
width. 

Each message is split into a sequence of packets, and packets from different messages may be inter­
leaved over each physical link. Interleaving packets from different messages allows any number of 
processes to communicate simultaneously via each physical link. Communication channels can be estab­
lished between any two processes regardless of where they are physically located, or whether the chan­
nels are routed through a network. Thus, programs can be independent of network topology. 

In order that packets which are parts of different messages can be distinguished by the transputer which 
receives them, each packet contains a one or two byte header which identifies a virtual input channel of the 
receiving transputer. The packet header is also used to route the packet through a network. Bytes following 
the header are treated as the data section of the packet until a packet termination token is received. A 
packet termination token is either an EOP (end of packet) token or an EOM (end of message) token. 

The maximum length of data in each packet which the IMS T9000 can transmit is 32 bytes. All but the last 
packet of a message contains the maximum amount of data; the last contains the maximum amount of data 
or less. 

The communications processor within the IMS T9000 enforces a high-level protocol on each virtual 
channel. To maintain synchronized communication, and to ensure that no data is lost, each packet of data 
sent along a virtual channel must be acknowledged before the next is sent. The last packet must be 
acknowledged before the outputting process is rescheduled. Data packets on a virtual channel are ac­
knowledged by the communications processor by sending acknowledge packets on another virtual chan­
nel back to the processor which sent them. Acknowledge packets are packets containing no data and 
which are always terminated by an EOP token. This acknowledgement is process-to-process and is trans­
parent to intermediate network components. 

Virtual channels always occur in pairs between pairs of communicating processors, with one virtual 
channel in each direction. If a message is being communicated in one direction the virtual channel in the 
opposite direction is used to return acknowledge packets to the sender. The associated pair of virtual 
channels is referred to as a virtual link. A virtual link can transfer messages in both directions at the same 
time with data packets and acknowledge packets being interleaved on both of the virtual channels. 
Because virtual channels are always paired in this way it is not necessary to include source information 
in the packets. Thus packet headers need only represent their destinations. 

The IMS C104 allows communication between IMS T9000 transputers that are not directly connected. 
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3 Operation of IMS C104 networks 
A single IMS Cl04 can be used to connect up to 32 IMS T9000 transputers that are not directly connected 
to each other. The IMS Cl 04 can also be connected to other IMS Cl O4s to make larger and more complex 
switching networks, linking any number of IMS T9000 transputers, link adaptors, and any other devices that 
use the link protocol. 

The IMS Cl04 uses a 1 or 2 byte header of each packet arriving, to determine the link to be used to output 
the packet. The output link taken is independent of the input link on which the packet arrives. Bytes follow­
ing the header are treated as the data section of the packet until a packet termination token is received.This 
enables the IMS Cl 04 to transmit packets of arbitrary length. . 

An IMS Cl04 network consists of one or more IMS Cl04 routing devices connected together by bi-direc­
tional links. Each device is called a node of the network. Some links of the network are connected to the 
exterior of the network, to transputers or to another network. These links are called terminal links. 

In order to support the efficient routing of packets through a network the IMS Cl 04 implements a complete 
routing algorithm in hardware.The component parts of the algorithm are described in the following sections. 

3.1 Wormhole routing 

In most packet-switching networks each routing switch inputs the whole of a packet, decodes the routing 
information, and then forwards the packet to the next node. This is undesirable in transputer networks be­
cause it reqUires storage for packets in each routing switch and it causes long delays between the output 
of a packet and its reception. 

The IMS Cl04 uses wormhole routing (figure 3.1) in which the routing decision is taken as soon as the 
header of the packet has been input. If the output link is free, the header is output and the rest of the packet 
is sent directly from input to output without being stored. If the output link is not free the packet is buffered. 
The packet header, in passing through a network of IMS Cl04s, creates a temporary circuit through which 
the data flows. As the end of the packet is pulled through, the circuit vanishes. The wormhole analogy is 
based on the comparison with a worm crawling through sandy soil, which creates a hole that closes again 
behind its tail. 

The implications of wormhole routing are that a packet can be passing through several IMS Cl04s at the 
same time, and the head of the packet may be received by the destination before the whole packet has 
been transmitted by the source. Thus latency is minimized and transmission can be continuous. 

Wormhole routing is invisible as far as the senders and receivers of packets are concerned. Its major effect 
is to minimize the latency in the message transmission. 

Packet header is read, routing rIllliCilllli1iOilli4~1 _____ I~C104 
decision is taken. .. . 

If output link is free, packet is 
sent directly from input to output 
creating temporary circuit. 

As tail is pulled through the circuit 
vanishes. Header may enter next 
switch before packet has left 
previous switch. 

C104 p ___ ~C104 

Cl04 r===::::::JIIII~CI04 

Figure 3.1 Wormhole routing 

Cl04 

Cl04 
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3.2 Interval labeling 

Wormhole routing requires a routing strategy to decide which link a packet should be output from. TIle IMS 
C104 uses a routing scheme called interval labeling, whereby each output link of an IMS C104 is assigned 
a range, or interval, of labels. This interval contains the number of all the terminal nodes (I.e. IMS T9000 
transputer, gateway to another network, peripheral chip, etc) which are accessible via that link. Each 
terminal link of a network has an associated interval of labels. On entering a network the packet header 
contains a label. The label determines which link the packet is to be output to and hence must occur within 
the interval associated with the destination link. 

As the packet arrives at an IMS C1 04 the selection of the outgOing link is made by comparing the header 
value with the set of intervals, as in the example shown in figure 3.2. The intervals are contiguous and non­
overlapping and assigned so that each header value can only belong to one of the intervals. The output 
link associated with the interval in which the header value lies is the one selected. In the example the 
incoming header contains the value 154, which lies between 145 and 186, so the packet is output along 
link 8. 

154 

Compare with 
interval table 

s 

187 

145 

98 

15 

0 

link 
elected 

6 
3 
4 

1 
8 Send packet down link 8 
7 

2 
5 

Figure 3.2 Interval labeling 

Figure 3.3 gives an example of interval routing for a network of two IMS C104's and six IMS T9000 
transputers showing one virtual link per transputer. The example shows six virtual channels, one to each 
transputer, labeled 0 to 5. The interval contains the labels of all virtual channels accessible via that link. 
TIle interval notation [3,6) is read as meaning that the header value must be greater than or equal to 3 and 
less than 6. If the progress of a packet with the header value 4 is followed from IMS T9OO01 then it is evident 
that it passes through both IMS C104s before leaving on the link to IMS T9OO04. 

C1041 C1042 
Intervals: [0,1) [1,2) [2,3) [3,6) [0,3) [3,4) [4,5) [5,6) 

Figure 3.3 Interval routing 
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It is possible to label all the major network topologies such that packets follow an optimal route through 
the network, and such that the network is deadlock free. Optimal, deadlock free labelings, which will be 
provided to customers, are available for grids, hypercubes, trees and various multi-stage networks. A few 
topologies, such as rings, cannot be labeled in an optimal deadlock free manner. Although they can be 
labeled so that they are deadlock free, this is at the expense of not using one or more of the links, so that 
the labeling is not optimal. Optimal deadlock free labelings exist if one or more additional links are used. 

Interval routing ensures that each packet takes the shortest route with low control overhead, and that all 
packets reach their destinations. It is independent of network topology and the output link selected is 
independent of the input link used. 111e transfer of a packet between one pair of links does not affect the 
data rate for another packet passing between a second pair of links. 111e hardware required to implement 
interval routing is simple, enabling many routing decisions to be made concurrently, thus providing a high 
rate of packet processing. 

3.3 Modular composition of networks 

To assist in the modular composition of routing networks the IMS C104 contains a hardware mechanism 
to implement header deletion. Header deletion mode is where each link output of the IMS C104 can be 
programmed to delete the header of a packet before transmitting the remainder of the packet. 

111e benefits achieved by header deletion are: 

Simplified labeling of systems, by separating out the task of labeling networks from that of 
identifying virtual channels on IMS T9000 transputers. 

2 Removal of the limit of a maximum of 64K virtual channels per system. 

3 Hierarchical composition of networks. 

Figure 3.4 illustrates how header deletion is used to simplify the labeling of systems by separating out the 
task of labeling networks from that of identifying virtual channels on IMS T9000 transputers. Figure 3.4(a) 
shows a system of 256 IMS T9000 transputers connected by a network of IMS C1 04s. All of the link inputs 
in the system are programmed to receive 2 byte h~aders. The IMS C104 interval routing tables and IMS 
T9000 headers (stored in the IMS T9000) are programmed to support 256 virtual channels connected to 
each IMS T9000 transputer, with the header values allocated as shown in figure 3.4(a). 

Figure 3.4(b) shows the same system but with all the link inputs in the system programmed to receive 1 
byte headers, and with the terminal links of the IMS C104 network programmed to delete headers. Note 
that the IMS T9000 transputer and the IMS C104 can both be configured to accept headers which are 1 or 
2 bytes long. A packet is now transmitted with a header consisting of two 1 byte sub-headers. It should 
be noted that as far as the IMS C104 is concerned the packet has just one header, any subsequent sub­
headers are treated as part of the data body of the packet. The first 1 byte sub-header routes the packet 
across the network to the terminal link which the packet is to be sent out of; the terminal links being num­
bered from 0 to 255 as shown. This header is deleted as the packet leaves a terminal link of the network. 
The second 1 byte sub-header is then exposed, and is interpreted by the destination IMS T9000 transputer 
to identify the target virtual channel. 
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Virtual 
channels: 

Virtual 
channels: 

0-255 

0-255 

(a) labeling the system with 2 byte headers 

256-511 65279-65535 

(b) labeling the system with two 1 byte headers 

0-255 0-255 

Figure 3.4 Header deletion used to separat~network labeling and virtual channel identification. 
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In this manner header deletion allows network routing information to be separated out from the identification 
of virtual channels on IMS T9000 transputers. A first header is used to route the packet across a network 
to a terminal link, and a second header is used to identify a virtual channel within the destination transputer. 
The use of two 1 byte headers also decreases latency. 

Lf'~r 

The total number of virtu1:!1 channels in the system shown in figure 3.4 has not been increased, as headers 
are still 2 bytes long in total. However, the total number of virtual channels in the system can now be in­
creased by programming the links on the IMS T9000 transputers to accept 2 byte headers (whilst the IMS 
e104s still accept 1 byte headers). 

In this case a packet is transmitted with a header consisting of a 1 byte sub-header and a second 2 byte 
sub-header. As before, the first 1 byte sub-header routes the packet across the network and is deleted 
as the packet leaves a terminal link of the network. Thus exposing the second 2 byte sub-header which 
allows 64K separate virtual channels to be identified on the destination IMS T9000 transputer. Header 
deletion thereby removes the limit of 64K virtual channels in a total system, and replaces it with the less 
constraining limit of 64K virtual channels on each IMS T9000 transputer. 

Header deletion also allows networks to be connected together, as shown in figure 3.5. In this example 
a packet is routed through two networks and then to a virtual channel on an IMS T9000 transputer. All of 
the terminal links of the two networks are set to header deletion mode. Figure 3.5 shows the header as it 
is routed through the network. The header of the packet in this case is made up of three concatenated sub­
headers. The first sub-header routes the packet across the first network and is deleted as the packet leaves 
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the terminal link of the network. The second sub-header routes the packet across the second network in 
the same way. Finally the third header is exposed to identify the destination virtual channel on the IMS T9000 
transputer. 

In the case in which each IMS Cl 04 is treated as a separate network and has its link outputs set to header 
deletion mode, packets can be explicitly steered across a network. This is at the expense of having 1 byte 
of header for each IMS Cl 04 traversed. 

direction of travel 

header made up of 
concatenated sub-headers 

sub-network of Cl04s 

packet body 

_ used to route packet 
through sub-network, 
deleted on output. 

sub-network of Cl04s ------

used to route packet 
through sub-network, 
deleted on output. 

c=J~ header used to identify 
virtual channel on T9000 

T9000 

Figure 3.5 Hierarchical composition of networks using header deletion 

A major advantage of extending the capabilities of the IMS C1 04, through header deletion, is that headers 
can be minimized for small systems, thus optimizing network latency and network bandwidth, whilst still 
enabling more complex, larger, systems to be constructed efficiently. 

3.4 Use of parallel networks 

System wide communication can be provided by connecting each transputer to a single routing network 
via one or more of its links. However, as each transputer has several links it can be connected to several 
different networks. These can be completely distinct networks, or simply logical sub-networks of one net­
work of IMS Cl04s. The use of multiple networks can provide the following: 

• Higher available processor to processor bandwidth. 

• Separate networks for different priority messages. The link protocol does not provide any support 
for associating a priority with a packet. This can be supported by providing a separate network 
for each required message priority. 
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• Separate networks for identified concurrent data streams in a system designed for a specific 
application. 

3.5 Hot spot avoidance 

The routing algorithms described so far provide efficient deadlock free communications and allow a wide 
range of networks to be constructed from a standard router. Packets are delivered at high speed and low 
latency provided that there are no collisions between packets travelling through any single link. 

Unfortunately, in any sparse communication network, some communications pattems cannot be realized 
without collisions. A link over which an excessive amount of communication is required to take place at 
any instant is referred to as a hot spot in the network, and results in packets being stalled for an 
unpredictable length of time. 

To eliminate network hot spots, the IMS C1 04 can optionally implement a two phase routing algorithm. This 
involves every packet being first sent to a randomly chosen intermediate destination; from the intermediate 
destination it is forwarded to its final destination. This algorithm, referred to as Universal Routing, is 
designed to maximize capacity and minimize delay under conditions of heavy load. (This has been proven 
by simulations and theory. Refer to 'A scheme for fast parallel communication' SIAM J. of Computing, 11 
(1982) 350-361). It trades this off against best case performance in an empty network. 

To implement two phase routing each packet must have a 'random' header prep ended to it as it enters the 
randomizing network, which indicates its intermediate destination. This is implemented on the IMS C104 
by enabling each input link to be programmed into a random header generation mode. In this mode the 
input link adds a random header to the front of each packetthat it receives. The random header is generated 
from within a programmed range. The IMS C1 04 then treats this random header as the header of the packet, 
(the destination header is now treated as part of the data body of the packet), and routes the packet accord­
ingly. The packet is routed on through the network until it reaches its random intermediate destination where 
the first phase of routing terminates. 

Each IMS C104 link recognizes a range of portal values. The portal values set the random phase routing 
interval. This interval is compared with each arriving header. Any packet with a header within this interval 
will be recognized by the IMS C104; the random header will be deleted; and the header that is exposed 
is used to route the packet through the network to its final destination. 

Note that the deletion of the random header associated with universal routing is different to that of the 
operation of header deletion mode, as described in section 3.3 above. Header deletion mode deletes 
headers as the packet is sent along a link output, whereas header deletion associated with universal rout­
ing occurs when the random header of the packet input into the IMS C104 is recognized to be within the 
portal range. 

In order to ensure that deadlock does not occur the two phases of routing must use completely separate 
links. This is achieved by assigning destination headers and random headers from distinct intervals. All 
links in the network must be considered to be either destination or random links. The intervals associated 
with a given link on aiMS C104 must be a sub-interval of the destination or random headerrange as appro­
priate. 

Effectively this scheme provides two separate networks; one for the randomizing phase and one for the 
destination phase. The combination will be deadlock free if the separate networks are deadlock free. 

Universal routing can be beneficially applied to a wide variety of network topologies, including hypercubes 
and arrays. There are a small number of network topologies where universal routing is not always 
beneficial, as it can prevent highly optimal routings through the network being utilized. 



148 IMS C104 packet routing switch 

4 Control of the IMS C104 

The IMS C104 is controlled and programmed via the control links (see chapter 5). Messages sent to the 
IMS C104 allow its configuration registers to be set and read. The registers can be accessed via CPeek 
and CPoke command messages sent along the control links and control the interval selector, the random 
number generator and the links. 

4.1 Programmable parameters 

Interval routing is achieved in the IMS C104 by interval selector units. An interval selector performs the 
routing decision for each packet. It consists of 35 base and limit comparators (see figure 4.1). Each compa­
rator is connected to a pair of registers, except the lowest whose base is fixed at zero. Each register is 
connected to the limit of one comparator and the base of the next comparator, except the top registerwhich 
is connected to the limit of the top comparator only. These registers must be programmed with a set of 
unsigned 16 bit values ascending from zero, thus the intervals are non-overlapping and each header value 
can only belong to one of the intervals. This sets the interval for each link. Any link can be assigned to any 
interval. The output of each comparator is connected to a register (SelectLinkn). The SelectLinkn register 
contains the number of the associated output link. The contents are sent to the address gate if the packet 
header is greater than or equal to the base and less than the limit value of the adjoining comparator. 

The interval selector reads in the value of the header and the pre-programmed comparators determine the 
corresponding link address for output Once the path through the crossbar is set the tokens are passed 
through until an EOP or EOM terminator token is detected. 

Each link input of aiMS C1 04 can be set to random header generation mode by the Randomize flag. In 
random header generation mode the random header generator produces a header which is added in front 
of the existing header and is used to route the packet to a random node, thus implementing the universal 
routing algorithm 

The lower limit and range of the random number generator must be programmed into the RandomBase 
and RandomRange registers. 

Associated with each interval is a flag, held in the DiscardO-34 bit field, which indicates which of the inter­
vals is the portal. If the input header is indicated as belonging to a portal interval (i.e. the random header 
has reached its random intermediate destination) the 'Discard' signal is sent to the header buffer telling 
it to discard the header. In this case the output of the ladder of comparators is not sent to the crossbar and 
the next 1 or 2 bytes of data (dependent on the HeaderLength flag) is taken as the new header and is again 
processed using the interval labeling algorithm. 

If the header is not flagged asthe portal by the DiscardO-34 bits the 'No' signal is sent to the address gate, 
which then allows the address which is produced from the ladder of comparators to be sent out to the cross­
bar. If none of the flags DiscardO-34 is set, the portal mechanism is disabled. 
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Figure 4.1 Interval selector registers 

Each link can be set to input 1 or 2 byte headers. This is determined by the HeaderLengthO-31 flag in· 
the configuration registers which are set after power on. It allows headers to be minimized for small sys­
tems, thus optimizing network latency and network bandwidth, whilst also enabling large homogeneous 
systems to be constructed. Heterogeneous and hierarchical systems can be implemented using hierarch i­
cal labeling and header deletion (which is implemented by setting the DeleteHeaderO-31 flag for a given 
link). 

4.1.1 Partitioning 

All the parameters described above are programmable on a per link baSis. This enables an IMS C104 to 
be used as part of two or more different networks. For example, a single IMS C1 04 could be used for access 
to both a data network and a control network (see figure 4.2). 

Partitioning provides economy in small systems, where using an IMS C104 solely for the control network 
is not desired. 
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Figure 4.2 Using partitioning to enable one IMS C1 04 to be used by two different networks 
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4.1.2 Grouped adaptive routing 

The IMS C1 04 can implement grouped adaptive routing. Sets of consecutive numbered links can be confi­
gured to be grouped, so that a packet routed to any link in the set would be sent down any free link of the 
set. This achieves improved network performance in terms of both latency and throughput. 

Figure 4.3 gives an example of grouped adaptive routing. Consider a message routed from C1041, via 
C1042, to T90001. On entering C1042 the header specifies that the message is to be output down linkS 
to T90001. If linkS is already in use, the message will automatically be routed down Link5, Link7 or linkS, 
dependent on which link is available first. The links can be configured in groups by setting the GroupO-31 
bit fields. Each bit corresponds to a link and can be set to 'Start' to begin a group and 'Continue' to be 
included in a group, as shown in figure 4.3. 
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Figure 4.3 Grouped adaptive routing 
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4.2 Registers 

All the parameters described above are loaded into the appropriate registers by the command processor 
in response to commands received on the control link (see section 5.1). The parameters must be supplied 
before the device can operate. 

The functionality controlled by these registers is described below. The complete bit format of each register 
and the addresses of the registers are not included in this preliminary information. 

Bit field Function 

HeaderLength Sets the header length to 1 or 2 bytes 

Randomize Sets a given link input to random header generation mode 

DeleteHeader Sets a given link output to delete header mode 

Table 4.1 Bit fields in the link configuration registers per link 

Bit field Function 

IntervalO-34 Sets the intervals for each link \ 

SelectLinkO-34 Indicates the associated link from which the packet is to be output 

DiscardO-34 Indicates which of the intervals is the portal 

Table 4.2 Interval selector registers per link 

Bit field Function 

RandomSeed Start of 16 bit pseudo-random sequence 

RandomBase Base level of random number 

RandomRange Range of random number 

Table 4.3 Bit fields in the random nL-!mber generator registers per link 

Bit field Function 

Group Each bit can be set to 'start of group' or 'continuation of group'. 

Table 4.4 Bit field to set grouped adaptive routing per link 
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5 Control links 

The control links on the IMS C104 allow a separate control network to be used to assist in configuring, error 
handling and resetting of components connected in a system, even in the presence of errors on the data 
communications links in the network. 

The IMS C1 04 has two bidirectional control links; CLinkO and CLink1. They use the same electrical and 
packet level protocols as the communication data/strobe (OS) links (refer to chapter 6). Thus, an IMS C104 
can be connected by its control link to a data OS link of a controlling IMS T9000 transputer and the IMS 
T9000 can issue commands to the IMS C104. 

All communications with the controlling processor are via CLinkO. The IMS C1 04 is programmed via com­
mands along ClinkO. CLink1 provides a daisy-chain link, allowing a simple physical connectivity to be 
used for controlling networks. 

The control links can be connected into a daisy chain ortree, with a controlling processor at the root. Figure 
5.1 shows daisy-chained IMS C104's connected to one of the data OS links of a controlling IMS T9000 
transputer, each IMS C104 has 32 data OS links but is shown as having just 5 links for clarity. 

o 

T9000 Example shown with a controlling T9000 transputer 

o o , 1 o 

C104 C104 C104 

/ 
Figure 5.1 A daisy-chained control link network 

Figure 5.2 gives an example of a daisy-chained control link network in which the IMS C1 04 is used to route 
control link packets from the control processor to the application network. In this example the controlled 
application network consists of IMS T9000 transputers, and three data OS links of the IMS C104 are 
connected to the control links of the application network to provide fan-out of the controlling system. 

This provides a separate network of virtual channels between the root processor and the individual nodes 
of the application network. The control network is in effect a root node with a singlevirtuallinkto each node 
of the application network. 

In order to establish the virtual channels between the root and each node, an identity and return address 
must be given to each node. The identity address is used to establish whether or not a packet arriving on 
CLinkO is for that node and if not the message is forwarded down CLink1 until it reaches its destination. 
Any output must be prefixed by the return header in order to identify the node of origin to the controlling 
process and to route the message through the IMS C1 04. 

CLink1 is connected back to the IMS C1 04 by data OS link (LinkO), and used to route messages back to the 
control processor. 
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Figure 5.2 An IMS C104 providing fan-out. 

5.1 Commands 

A high level protocol is defined for the controlling network to allow the devices to issue commands to, and 
receive responses from, other devices in the network. Commands are sent as packets with the first byte 
after the header containing a command code, which may be followed by additional data. The following 
table details the command codes. Each command is terminated by an EOM token. 

Command Additional data Function 

Start Return header Allocates an identity and return header to each node. This must be 
the first command received following power on reset. 

Reset Level Resets the IMS C104 to the given level (see chapter 7). 

Identify None Returns the identity and the revision number of the device. 

RecoverError None This command is used in error recovery on control system failure. 

CPeek Address Retums the value stored at the given address in the device configu-
ration space. If the address is invalid an invalid status is returned. 

CPoke Address, data Writes data to the configuration space at the given address. If the 
address is invalid an invalid status is returned. 

ErrorHandshake None Handshakes error message. 

Tabie 5.1 Control link codes 
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Each command message is acknowledged by an acknowledge packet which is a packet containing no 
data and terminated by an EOP token. In addition the higher level control protocol requires that all com­
mand messages are acknowledged by a response message, in orderto avoid deadlock, before the control 
process can send another command message to the same device. (However, Start, Reset and Recover­
Error command messages may be sentto any node at anytime to allow the control process to handle error 
conditions in the network.) 

The response message can contain the result of a CPeek or Identify command, or it may be simply a hand­
shake code corresponding to the command message. Each message is preceded by the retum header and 
followed by an EOM token. Table 5.2 lists the response messages to each of the command messages. The 
data parameter 'Status' Indicates whether or not there has been an error in performing the operation. 

Response Additional data 

StartHandShake None 

ResetHandShake Status 

IdentifyResult Device type and rev 

RecoverHandShake None 

CPeekResult Data, status 

CPokeHandShake Status 

Error Error code 

Table 5.2 Control link responses 

The error code indicates the cause of error as either; 

• packet too short - for instance if the header length was set at 2 bytes and a packet consisting 
of a1 byte header and a terminator code was received then an error would occur. 

• header out of range - if the header value received was not within the range of the interval selector. 

• link error 

• control link error - protocol 

• control link error - command code 

All the error codes must be handshaken from the root with the ErrorHandShake command. 

5.2 Link speeds 

After power-on the control links run at a default speed of 1 0 MHz; this can be changed by means of CPokes. 
The speed selection for control links is identical to that of the data OS links (see section 6.2), and the control 
links share the same master clock. 

5.3 Control link configuration registers 

The link module hardware in each control link is identical to that in each data link. An equivalent set of con­
figuration bit fields is provided for each control link, as for the data links (see section 6.4). 

\ 
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6 Data/Strobe links 

The IMS C1 04 has 32 links used for routing, and two control links which are used for monitoring and control 
purposes only. All of these links use a protocol with two wires in each direction, one for data and one to 
carry a strobe signal and are referred to as data/strobe (OS) links. 

The links are TTL compatible and are series matched to 100 ohm transmission lines. 

Each OS pair carries tokens and an encoded clock. The tokens can be data or control tokens. Figure 6.1 
shows the format of data and control tokens on the data and strobe wires. Data tokens are 10 bits long 
and consist of a parity bit, a flag which is set to 0 to indicate a data token, and 8 bits of data. Control tokens 
are 4 bits long and consist of a parity bit, a flag which is set to 1 to indicate a control token, and 2 bits to 
indicate the type of control token. 

Parity bit Parity bit 

1 Dr: 1 Comrol fl'9 
Data ~,~ I 

0 0 0 o 0: 

Data ~I Ul n 
Strobe u 

Bits covered by parity bit in second token ·1 
Figure 6.1 Link data format 

The parity bit in any token covers the parity of the data or control bits in the previous token, and the data/con­
trol flag in the same token, as shown in figure 6.1. This allows single bit errors in the token type flag to be 
detected. Odd parity checking is used. To ensure the immediate detection of errors null tokens are sent 
in the absence of other tokens. The coding of the control tokens is shown in table 6.1. 

Flow control token FCT P100 

End of packet EOP P101 

End of message EOM P110 

Escape token ESC P111 

Null token NUL ESC P100 

Table 6.1 Control token codings 
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6.1 Low-level flow control 

The DS link protocol separates the functions of flow control and process synchronization. Flow control is 
done entirely within the link module and process synchronization is built into a higher-level packet system. 

Token-level flow control is performed in each link module, and the additional flow control tokens used are 
not visible to the higher-level packet protocol. The token-level flow control mechanism prevents a sender 
from overrunning the input buffer of a receiving link. Each receiving link input contains a buffer for at least 
8 tokens (more buffering than this is in fact provided). Whenever the link input has sufficient buffering avail­
able to consume a further 8 tokens a FCT is transmitted on the associated link output, and this FCT gives 
the sender permission to transmit a further 8 tokens. Once the sender has transmitted a further 8 tokens 
it waits until it receives another FCT before transmitting any more tokens. The provision of more than 8 
tokens of buffering on each link input ensures that in practice the next FCT is received before the previous 
block of 8 tokens has been fully transmitted, so the token-level flow control does not restrict the maximum 
bandwidth of the link. 

6.2 Link speeds 

The IMS C1 04 links can support a range of communication speeds, which are programmed by writing to 
registers using the CPoke command via control link CLinkO. At reset all links are configured to run at the 
BaseSpeed of 10 Mbits/sec. 

Only the transmission speed of a link is programmed as reception is asynchronous. This means that links 
running at different speeds can be connected, provided that each device is capable of receiving at the 
speed of the connected transmitter. 

The transmission speed of all of the links on a given device are related to the speed of a single on-chip 
clock. The frequency of this master clock is programmed through the SpeedMultlply bit field described 
in section 6.4. The master frequency is divided down to obtain the transmission frequency for each link. 
The division factor can be programmed separately for each link via the Speed Divide bit field described 
in section 6.4. For a given device, with a given programmed master clock frequency, this arrangement 
allows each link to be run at one of four transmission speeds, as shown in table 6.2. 

Speed Divide 

Speed Multiply 11 12 14 18 BaseSpeed 

8 80 40 20 10.0 10 

10 100 50 25 12.5 10 

12 Reserved 60 30 15.0 10 

14 Reserved 70 35 17.5 10 

16 Reserved 80 40 20.0 10 

18 Reserved 90 45 22.5 10 

20 Reserved 100 50 25.0 10 

Table 6.2 Link transmission speed in Mbits/sec 

6.3 Errors on links 

Link inputs detect parity and disconnection conditions as errors. A disconnection error indicates one of 
two things: either the link has been physically disconnected, or an error has occurred at the other end of 
the link which has then stopped transmitting. The bit fields ParityError and DiscError indicate when parity 
and disconnect errors occur. 

The DS links are designed to be highly reliable within a single SUbsystem and can be operated in one of 
two environments, determined by the LocalizeError bit in each link. 
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In the majority of applications, the communications system should be regarded as being totally reliable. 
In this environment errors are considered to be very rare, but are treated as being catastrophic if they do 
occur. This environment is the default on power-on reset, with all links having their LocalizeError bit set 
to O. If an error occurs it will be detected and reported via a message sent along CLinkO. Normal practice 
will then be to reset the subsystem in which the error has occurred and to restart the application. 

For some applications, for instance when a disconnect or parity error may be expected during normal oper­
ation, an even higher level of reliability is required. This level of fault tolerance is supported by localizing 
errors to the link on which they occur, by setting the LocalizeError bit of the link to 1. In addition a data 
link layer process must be connected to each virtual channel associated with the link. These processes 
are responsible for establishing and maintaining a higher level flow control, using time-out to detect that 
a message has not completed, and requesting retransmission. If an error occurs, packets in transit at the 
time of the error will be discarded or truncated. 

For information on the data link layer refer to chapter 4 of 'Computer Networks' by Andrew S. Tanenbaum, 
published by Prentice-Hal/International (ISBN: 0-13-166836-6). 

6.4 Link configuration registers 

The links are controlled via registers accessed via the control link (see chapter 4). 

Each link has three registers, the LinkMode register, LinkCommand register and LinkStatus register. 

In addition the configuration space contains the DSLinkPLL register which contains the SpeedMultiply 
bit. This takes the 5 MHz input clock and multiplies it by a programmable value to provide the root clock 
for all the OS links. 

The tables below describe the functionality of the OS links to be controlled, and the associated bit fields 
in the configuration registers. 

Bit field Function 

SpeedMultiply Sets OS link master clock to required value (see table 6.2). 

Table 6.3 Bit fields in the DSLinkPLL register 

The LinkO-3Mode registers power up into a default state and may be re-programmed before or after the 
link has been started. 

Bit Bit field Function 

1:0 Speed Divide Sets transmit speed of the LinkO-3 (see table 6.2). 
00 = /1, 01 = /2, 10 = /4, 11 = /8 

2 SpeedSelect Sets the LinkO-3 to transmit at the speed determined by the SpeedDi-
vide bits as opposed to the base speed of 10 Mbits/s. 

3 LocalizeError Packets in transit at the time of an error will be discarded or truncated. 
When set false communication on the link stops until the link is reset. 

Table 6.4 Bit fields in the LinkO-3Mode registers 

The LinkO-3Command registers are write only and contain four bits which when set cause a specific 
action to be taken by the OS link. 
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Bit Bit field Function 

0 ResetLink Resets the link engine of the LinkO-3. The token state is reset, the flow 
control credit is set to zero, the buffers are marked as empty, and the 
parity state is reset. 

1 StartLink When a transition from Oto 1 occurs LinkO-3 will be initialized and com-
mence operation. 

2 ResetOutput Sets both outputs of LinkO-3 low. 

3 WrongParity The LinkO-3 output will generate incorrect parity. This may be used to 
force a parity error on the transputer at the other end of the LinkO-3. 

Table 6.5 Bit fields in the LinkO-3Command registers 

, The LinkO-3Status registers are read only and contain six bits which contain information about the state 
of the DS link. 

Bit Bit field Function 

0 Link Error Flags that an error has occurred on the LinkO-3. 

1 LinkStarted Flags that the output LinkO-3 has been started and no errors have been 
detected. 

2 ResetOutputCom- Flags that ResetOutput has completed on the LinkO-3. 
plete 

3 ParityError Flags that a parity error has occurred on the LinkO-3. 

4 DiscError Flags that a disconnect error has occurred on the LinkO-3. 

5 TokenReceived Flags that a token has been seen on the LinkO-3 since ResetLink. 

Table 6.6 Bit fields in the LinkO-3Status registers 
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7 Levels of reset 

The IMS C104 can be reset to a given level using the Reset command or Reset pin. The different levels 
of reset are described below. 

A reset results in any packets currently being routed within the IMS C104 being lost, except for a Reset3 
command which has no effect on the IMS C104. 

7.1 Level 0 - hardware reset 

The network can be retumed to level 0 by taking all the Reset pins in the network high. 

After a hardware reset each IMS C104 is in the following state: 

All the (data and control) links are in Wait state with a default speed of 10 MHz. The identity and retum 
headers for the control links are undefined. All registers are undefined and contain their default values. The 
packet processors are inactive. 

7.2 Level 1 - labelled control network 

The network can be reset to level 1 by sending a Reset1 command message to each IMS C104. 

This level of reset leaves the identity and retum headers unaltered and all connected control links remain 
operational. All the data links are in Wait state with a default speed of 10 MHz. All registers are reset to 
their level 0 default values. All data in the IMS C104 is lost. 

7.3 Level 2 - configured network 

The network can be reset to level 2 by sending a Reset2 command message to each IMS C104. 

At this level of reset the identity and retum headers are unaltered and register contents are unaffected. All 
data in the IMS C1 04 is lost. The data links are reset and retumed to the Wait state. The packet processors 
are deactivated. 

7.4 Level 3 

Reset level 3 is invalid on the IMS C104. If a Reset3 command message is received from an IMS T9000 
transputer it is hand shaken with status set to false. 
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8 Software 

8.1 IMS T9000 configuration tools 

A set of tools is available to support the configuration of IMS T9OO0 systems. The tools will, among other 
things, provide support for the configuration and initialization of networks consisting of IMS T9000 proces­
sors and IMS C104 routing switches. 

The tools will be able to set the attributes of each device in the network by sending initialization data down 
the control link, and will setthe processors into a state ready to receive an application down the data links. 

A Network Description Language (NDL) is used to describe networks of devices and the labeling of IMS 
C 1 04s, and wi II allow the specification of values for all the attributes of a device. 

The Network Description Language will support the following: 

• declaration of processors, IMS C104 routing chips and their interconnections. 

• specification of attributes for IMS C1 04 routing chips; including interval settings, header deletion 
and randomization characteristics. 

• the construction of the control system, including chains of devices plus a predefined method of 
using the IMS C1 04 as a fan-out. It is possible to calculate the IMS C1 04 attributes (including inter­
val values) for such devices used in the control system. 

• desired message routing paths. 

From the NDL file the initialization tools produce a file containing the network initialization data. This data 
is sent down the control link to the network. 

Once the network has been initialized, programs are built and loaded to the network in the same way as 
for T2{T4{T8-series processors. 
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9 Preliminary pin designations 

Pin In/Out Function 

VCC,GND Power supply and return 

Cap Plus, Cap Minus External capacitor for internal clock power supply 

Clockln in Input clock 

Reset in System reset 

Table 9.1 IMS C104 system services 

Pin In/Out Function 

LinklnDataO-31 in Link input data channels 

LinklnStrobeO-31 in Link input strobes 

LinkOutDataO-31 out Link output data channels 

LinkOutStrobeO-31 out Link output strobes 

CLinklnDataO-1 in Control link input data channel 

CLinklnStrobeO-1 in Control link input strobe 

CLinkOutDataO-1 out Control link output data channel 

CLinkOutStrobeO-1 out Control link output strobe 

Table 9.2 IMS C104 links 
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1 Introduction 

This document contains preliminary information for the IMS C100 system protocol converter. 

The IMS C100 is part of a new product family based around the IMS T9OO0 transputer, referred to as the 
'T9-series'. The current family of T2xxJT4xxJT8xx transputers are referred to as 'T2{T4{T8-series'. 

T9-series transputers are binary compatible with T2{T4{T8-series transputers. However T9-series 
transputers have different physical links and data protocols than T2{T4{T8-series transputers. The IMS 
C100 is a system protocol converter which converts between these protocols. It allows mixed systems, 
consisting of both T9-series and T2{T4{T8-series transputers, to be constructed. 

T2{T4{T8-series transputer links consist of two wires, one in each direction, and use an asynchronous bit­
serial (byte-stream) protocol. Each bit received is sampled five times and hence the links are referred to 
as oversampled (OS) links. Each link provides a pair of channels, one in each direction and can operate 
at up to 20 MBits/sec, providing a bidirectional bandwidth of 2.4 MBytes/sec. 

T9-series transputer links consist of four wires, two in each direction, one carrying data and one carrying 
a strobe. The links are therefore referred to as data-strobe (OS) links. Each link can operate at up to 100 
MBits/sec, providing a bidirectional bandwidth of 20 MBytes/sec. The OS link protocol supports virtual 
channels and dynamic message routing, and provides a high data bandwidth. 

T2{T4{T8-series transputers are controlled by means of Reset, Analyse and Error pins on each device 
and are inspected and booted by means of a special protocol on their links. On T9-series transputers this 
is achieved by special links, called control links. 

The IMS C100 provides an inter-networking solution for transputer systems, allowing systems to be 
constructed using the optimum mix of transputers, for processing power, communication bandwidth and 
system cost. 

The IMS C100 converts both data and control protocols of T9-series transputer systems to those of 
T2{T4{T8-series, and vice versa. It is intended to be used in conjunction with software running on either 
T9-series or T2{T4{T8-series transputers and can operate in one of four modes. 

This document describes the operation of the IMS C1 00 in detail, and summarizes the background informa­
tion necessary to understand the full implications of each mode of operation. 
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2 IMS C100 modes of operation 

This chapter describes the modes of operation of the IMS C100 and gives examples of its use in each 
mode. For a complete understanding of the implications of this chapter consult chapters 3 and 4, which 
describe the link and control protocols of T2/T4/T8-series and T9-series components, and how the IMS 
C100 converts between these protocols. 

The four modes of operation of the IMS C100 are listed below: 

Mode 0: enables a T9-series transputer with ROM, from which the transputer boots, to emulate 
a T2/T4/T8-series transputer. 

Mode t: enables a T2/T4/T8-series system to use a T9-series sUbsystem. 

Mode 2: enables a T9-series system to use an existing T2/T4/T8-series subsystem without any 
modification to the existing T2/T4/T8-series software. 

Mode 3: enables a T9-series system to use an optimum T2/T4/T8-series subsystem and 
enables a T2/T4/T8-series transputer to emulate a T9-series transputer. 

2.1 Mode pins 

The IMS C1 00 has two mode pins (ModeO-1) which must be set at power-on. These pins determine which 
type of conversion is to be performed between the data links, which system interface is regarded as master, 
and whether OSLinkO has special initial behavior. In modes 2 and 3 OSLinkO is usurped to generate the 
pre-boot protocol of the T2/T4/T8-series transputer until the transputer is booted (refer to section 4.3.3 for 
further information). Table 2.1 details the mode settings. 

The as link protocol synchronizes the communications of each byte of data, and hence the term byte­
stream protocol has been adopted. OS links use a high level packet protocol and hence the term 
packetized protocol has been adopted. Each IMS T9000 transputer OS link may be set to operate in virtual 
channel mode or in byte mode (see section 3.2.1). The IMS T9000 OS links operating in byte mode, in 
conjunction with an IMS C100, convert the OS links to the byte stream protocol. 

Modet ModeO Mode Conversion type System master OSLinkO 

Low Low 0 Byte-stream Reset, Analyse, Error Not special 

Low High 1 Packetized Control link 0 Not special 

High Low 2 Byte-stream Control link 0 Special 

High High 3 Packetized Control link 0 Special 

Table 2.1 ModeO-1 pins 

The behavior of the IMS C100 is undefined if the mode pins are changed after reset. 
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2.2 Mode 0: Enables a single T9-series transputer to be used in a T2/T4/T8-series network 

The purpose of this mode is to allow a single IMS T9000 transputer to operate as a fast IMS TS05. 

Connect control link ClinkO of the IMS C1 00 to ClinkO of the IMS T9000 transputer, connect the four data 
OS links (DSlinkO-3) of the IMS C100 to the four data links of the IMS T90oo, and set the IMS C1 00 into 
mode 0, as shown in figure 2.1. The combination of the IMS C1 00 and the IMS T9000 transputer has Reset, 
Analyse and Error pins. 

PowerOnReset 
Reset 

Analyse 

Error 

ClinkO 

as link 

as link C100 

as link 

as link 

Reset 
TReset ResetOut 
Analyseln 

signifies packetized protocol 

.. • signifies byte stream protocol 

.----.. ClinkO 

OS link 

OS link T9000 

OS link 

OS link 

Reset 

Error 

I I 
I 

ROM 

Figure 2.1 Mode 0 - converting an IMS T9000 transputer for use in a T2/T4/TS-series network 

The StartFromROM pin on the IMS T9000 transputer must be set high so that the IMS T9000 transputer 
boots from ROM. The ROM software configures the IMS T9000, and sets the IMS T9000 data links into byte 
mode, so that they interact with the IMS C1 00 OS links operating in byte-stream conversion mode to gener­
ate the T2/T4/TS-series transputer protocol on the as links of the IMS C100. The software, which will be 
supplied to customers, also emulates the pre-boot protocol of T2/T4/TS-series transputers. 

The TReset pin indicates transputer reset of the connected T2/T4/TS-series transputer. If the TReset pin 
of the IMS C100 is asserted with Analyseln low, the IMS C100 is reset, and the signal is reproduced on 
ResetOut, which causes the IMS T9000 to be reset also. When the Reset pin on the IMS T9000 goes low 
execution is restarted from ROM. 

The Reset pin is provided in this case for systems which separate power-on reset from transputer reset. 
When the Reset pin is asserted it always causes a reset of both the IMS C100 and the attached IMS T9000 
(by being reproduced on ResetOut). 

The TReset and Analyseln signals are used in this mode only and are ignored in modes 1, 2 and 3. 
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2.3 Mode 1: Enables a T2/T4/T8-serles system to use a T9-series subsystem 

The purpose of this mode is to allow a T9-series SUbsystem to be connected to, and controlled from, a 
T2/T4JTB-series network. 

Communication is in the packetized protocol, and software must be run on the T2/T4JTB-series system to 
interface the packetized protocol, and to control the T9-series SUbsystem. 

To enable a T2/T4JTB-series system to use an T9-series subsystem setthe IMS C1 00 to mode 1 , and con­
nect one or more OS links from the T2JT4JTB-series system to the OS data links of the IMS C100. Since 
T9-series systems are controlled entirely via links this enables T9-series subsystems to be configured, 
booted, reset and analyzed from a T2/T4JTB-series system. An example network is shown in figure 2.2. 
The RAE signals to the T2/T4JTB-series network are shown by the dotted line. The IMS C004 programmable 
link switch has 32 links, of which only six are shown in this example. 

Note that, by 'looping back' through the control links of the IMS C100, the T2/T4JTB-series system obtains 
full control of the device. Note, however, that the IMS C100 must be given its identity before any of the 
devices in the T9-series subsystem. 

T2/T 4JTB-series 
control input port 
~ 

Reset 
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Error 

• • 14-----+lT2/T4JTB 

T2JT4JT8/4---~T2/T4JTBI+----rr:2/T4JTB 

I 
I 
I 
I 
I 
I 
I 

1-------------1 
I I 
I C100 I 
L I 

II 
L __ _ 

~ l.... CLinkO } 
- - OSLink1 DSLink1 - - -} T9-series 
- - OSLink2 _-_-_-_ OS Links control port 

--------- OSLlnk3 

---- signifies packetized protocol 

• • signifies byte stream protocol 

Figure 2.2 Mode 1 - T2/T4JTB-series system using T9-series subsystems 
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2.4 Mode 2: Enables a T9-serles system to use an existing T2fT4fT8-series subsystem 

The purpose of this mode is to allow T9-series systems to use an existing T2/T4/T8-series subsystem. 
without having to change either the hardware or the software of the T2/T 4/T8-series subsystem. For exam­
ple, a SCSI TRAM purchased as a functional sUbsystem from a third party supplier (Including both hardware 
and the associated software drivers) can be used unmodified as a subsystem to a T~-series system. Thus 
this mode protects users existing investment in transputer-based equipment. 

Figure 2.3 shows how a T2/T4/T8-series control port can be provided using an IMS C1 00 in mode 2. Each 
IMS C104 packet routing switch has 32 data links, of which only seven are shown in this example. Note 
that the data OS links of the IMS C100 must be connected directly to IMS T9oo0data links set into byte 
mode, and cannot be connected to an IMS C104 packet routing switch. 

The T2/T4/T8-series subsystem is controlled via CLinkO of the IMS C100. After power-on, commands sent 
along CLinkO are converted to the appropriate T2/T4/T8-series byte sequences which are sent along 
OSLinkO of the IMS C1 00. This allows the memory of transputers in the T2/T4/T8-series subsystem to be 
peeked and poked, and for it to be booted. 

Assertion of the AnalyseOut and ResetOut pins results in the Reset and Analyse pins of the connected 
T2/T4/T8-series transputer being asserted, enabling it to be stopped and analyzed. 
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Figure 2.3 Mode 2 - T9-series system using existing T2/T4/T8-series subsystems 
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2.5 Mode 3: Enables a T9-series system to use a T2/T4/T8-serles subsystem 

The purpose of this mode is to allow T9-series systems to be bui It which use T2/T 4/T8-series subsystems, 
enabling systems to be built using the optimum mix of transputers with regard to cost and performance. 

Communication is in the packetized protocol. Thus the data OS links of the IMS C1 00 can be connected 
directly to an IMS C104 packet routing switch, as in figure 2.4. 

Software to interface to the packetized protocol must be run on all T2/T4/T8-series links connected to the 
IMS C1OO. 

~--------------I 

--~ t /----~ I /----~ t rl 

cLink08cLink1 6 8 I 

-- T9OO0 ----~~y~~---- T9000 -i-
~ /// I .......................... t I 

// I " I / , I 

i~~ T9~ ~---~~f:}~~--~1 + p-. 
I / "- I 

/ "- t I 1- _____ 1_ - - - - - -/- - - - - - - - '>.... - - - - - - - - ---' 
I / "-,,-
I / "-
I / C100 'I 
I / 
I /- ~ 
I / 
I / 
I 

I 
I 

DSLinkO 
DSLink1 
DSLink2 

L_____ DSLink3 

ResetOut 
AnalyseOut 

Error 

signifies packetized protocol 

- signifies byte stream protocol 

OS Links 

T2/T 4/T8-series 
control port 

Figure 2.4 Mode 3 - T9-series system using optimum T2/T4/T8-series subsystems 

The T2/T4/T8-series subsystem is controlled via CLinkO of the IMS C100. Messages into CLinkO of the 
IMS C1 00 cause individual links to be reset, and the ResetOut and AnalyseOut pins to be toggled. Asser­
tion of the AnalyseOut and ResetOut pins results in the Reset and Analyse pins of the connected 
T2/T4/T8-series transputer being asserted, enabling it to be stopped and analyzed. 

An error from within the IMS C 100 and a signal on the Error pin both cause an Error message to be sent 
from CLinkO. 
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The IMS C100 operating in mode 3 enables a T2/T4/TS-series transputer to emulate an IMS T9000 
transputer. This is achieved by connecting the ResetOut, AnalyseOut, and Error pins of the IMS C1 00 to 
the Reset, Analyse, and Error pins of the T2/T4/TS-series transputer and setting the IMS C1 00 into mode 
3. This combination of the IMS C100 and the T2/T4/TS-series transputer has a control link 0 (CLinkO), and 
a control link 1 (CLink1) for daisy-chaining. Figure 14.2 shows a T2/T4/TS-series transputer being con­
verted to an IMS T9000 interface, with the T2/T4/TS-series transputer being booted from a link. Software 
must be run on the T2/T4/TS-series transputer to convert the OS links to the packetized protocol. 

.-------. CLink1 CLinkO ,..-------

OS link -4-------- ~-OJ>J.in~---. 
._ j).§ lin.!5. __ C100 ~-QSlin~--_ 

T2/T4/TS 
OS link ~-O~lln~--_ .-------. 
OS link -+------- ~-O~lln~---. 

ResetOut Reset 
Reset AnalyseOut Analyse 

Error Error 

-- - - signifies packetized protocol 

- signifies byte stream protocol 

Figure 2.5 Mode 3- converting a T2/T4/TS-series transputer for use in a T9-series network 
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3 Link protocols and link protocol conversion 

This chapter describes the different link protocols used on T2/T4/T8-series and T9-series components, 
and the two types of conversion between the link protocols that the IMS C100 supports. 

3.1 T2/T4/T8 series oversampled links 

T2/T4/T8-series transputer links consist of two wires, one in each direction, and use an asynChronous bit­
serial protocol. Link inputs are sampled five times in each bit period, and hence the links are referred to 
as oversampled (OS) links. 

Messages are transmitted as a sequence of single byte communications, each of which must be acknowl­
edged. The acknowledge packets are used both to signal reception ofthe data bytes and to maintain flow 
control. 

A link provides a pair of channels, one input and one output channel. Every byte of data sent on an output 
channel is acknowledged on the input channel of the same link, thus each signal line carries both data and 
control information. 

Each data byte is transmitted as a high start bit followed by another high bit followed by eight data bits 
followed by a low stop bit, as shown in figure 3.1. The least significant bit of data is transmitted first. After 
transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed 
by a zero bit. The acknowledge signifies that the receiving link is able to receive another byte. 

The receiving transputer can send an acknowledge as soon as the data has been identified (provided there 
is sufficient buffer space for another data byte, and that an inputting process is ready to receive the data 
byte) so that communications can be continuous. 

The link protocol synchronizes the communications of each byte of data, and hence the term byte-stream 
protocol has been adopted. As the protocol supports the transmission of an arbitrary sequence of bytes 
transputers of different word lengths can be connected together. 

Data J 
Acknowledge 

I 
o 

Data 

o 

o 

o I I o ,: 

Figure 3.1 as link data and acknowledge formats 

The T2/T4/T8-series transputer family includes link adaptor devices, the IMS C011 and IMS C012, which 
enable as links to interface with non-transputer devices. 

3.2 T9 series data/strobe links 

T9-series transputer links consist of four wires, two in each direction, one for data and one to carry a strobe 
signal. These links are therefore referred to as data/strobe (OS) links. 

Communication between processes on one IMS T9000 transputer takes place over software channels. 
Communication between processes on different processors takes place over virtual channels. Virtual 
channels are multiplexed onto each physical link by a communications processor within the IMS T9000. 
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111e data links support a physical link protocol to support virtual channels and dynamic message routing, 
and to provide a high data bandwidth. 

Each message is split into a sequence of packets, each of which has the structure shown in figure 3.2. 
Packets from different messages may be interleaved over each physical link. Interleaving packets from 
different messages allows any number of processes to communicate simultaneously via each physical 
link. Communication channels can be established between any two processes regardless of where they 
are physically located, or whether the channels are routed through a network. Thus, programs can be inde­
pendent of network topology. 

header packet body 

Figure 3.2 Structure of a packet on DS links 

packet 
terminator 

In order that packets which are parts of different messages can be distinguished by the transputer which 
receives them, each packet contains a one or two byte header which identifies a virtual input channel of the 
receiving transputer. The packet header is also used to route the packet through a network. Bytes following 
the header are treated as the data section of the packet until a packet termination token is received. A 
packet termination token is either an EOP (end of packet) token or an EOM (end of message) token. 

111e maximum length of data in each packet which the IMS T9000 can transmit is 32 bytes. All but the last 
packet of a message contains the maximum amount of data; the last contains the maximum amount of data 
or less. 

111e communications processor within the IMS T9000 enforces a high-level protocol on each virtual chan­
nel. To maintain synchronized communication, and to ensure that no data is lost, each packet of data sent 
along a virtual channel must be acknowledged before the next is sent. 111e last packet must be acknowl­
edged before the outputting process is rescheduled. Data packets on a virtual channel are acknowledged 
by the communications processor by sending acknowledge packets on another virtual channel back to 
the processor which sent them. Acknowledge packets are packets containing no data and which are al­
ways terminated by an EOP token. The acknowledge packets perform packet-level flow-control and pro­
cess synchronization. 

Virtual channels always occur in pairs between pairs of communicating processors, with one virtual 
channel in each direction. If a message is being communicated in one direction the virtual channel in the 
opposite direction is used to return acknowledge packets to the sender. The aSSOCiated pair of virtual chan­
nels is referred to as a virtual link. A virtual link can transfer messages in both directions at the same time 
with data packets and acknowledge packets being interleaved on both of the virtual channels. Because 
virtual channels are always paired in this way it is not necessary to include source information in the 
packets. 111us packet headers need only represent their destinations. 

Figure 3.3 shows the format of data and control tokens on the data and strobe wires. Data tokens are 10 
bits long and contain a parity bit, a flag which is set to 0 to indicate the presence of a data token, and 8 
bits of data. Control tokens are 4 bits long and contain a parity bit, a flag which is set to 1 to indicate the 
presence of a control token, and 2 bits to indicate the type of control token. 
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Parity bit Parity bit 
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I'" . ·1 Bits covered by parity bit in second token 

Figure 3.3 DS link data format 

The parity bit in any token covers the parity of the data or control bits in the previous token, and the datal 
control flag in the same token, as shown in figure 3.3. This allows single bit errors in the token type flag 
to be detected. Odd parity checking is used. To ensure the immediate detection of errors null tokens are 
sent in the absence of other tokens. The coding of the control tokens is shown in table 3.1. 

Flow control token FCT P100 

End of packet EOP P101 

End of message EOM P110 

Escape token ESC P111 

Null token NUL ESC P100 

Table 3.1 Control token codings 

The DS-link protocol separates the functions of flow control and process synchronization. Token-level flow 
control is performed in each link module, and the additional flow control tokens used are not visible to the 
higher-level packet protocol. The token-level flow control mechanism prevents a sender from overrunning 
the input buffer of a receiving link. 

Each receiving link input contains a buffer for at least 8 tokens (more buffering than this is in fact provided). 
Whenever the link input has sufficient buffering available to consume a further 8 tokens (consisting of data 
and EOP or EOM tokens) a FCT is transmitted on the associated link output, and this FCT gives the sender 
permission to transmit a further 8 tokens. Once the sender has transmitted a further 8 tokens it waits until 
it receives another FCT before transmitting any more tokens. The provision of more than 8 tokens of buffer­
ing on each link input ensures that in practice the next FCT is received before the previous block of 8 tokens 
has been fully transmitted, so that the token-level flow control does not restrict the maximum bandwidth 
of the link. 

DS links use a high level packet protocol and hence the term packetized protocol has been adopted. 

3.2.1 Byte mode 

Each IMS T9000 data DS link may be set to operate either in virtual channel mode or in byte mode. Byte 
mode is provided to allow IMS T9000 DS links to communicate with OS links carrying the byte-stream pro­
tocol via an IMS C100. The mode is set for each IMS T9000 link LinkO-3 by the ByteModeO-3 bit fields in 
the configuration registers (as described in the IMS T9000 Preliminary Information). Setting the IMS T9000 
links independently of each other, enables each IMS T9000 transputer to be connected to several different 
networks. 
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3.3 Data protocol conversion 

The IMS C100 is able to convert between the OS and DS link protocols in two ways: 

Byte stream conversion: This is where the message/ packet level is removed from the DS links. 

The DS link of a connected T9-series transputer is set to byte mode. A pair of channels is then 
supported from the T9-series transputer, ,hrough the IMS C100, to a T2/T4/T8-series transputer. 
Software on the T2/T4/T8-series transputer sees the channels as being identical to that through 
a normal OS link. No modification to the T2/T4/T8-series transputer software is needed. 

Packetized conversion: This is where the message/ packet level is added to the OS links. 

A process must be run on the connected T2/T 4/T8-series transputer to impose a software packet 
protocol onto the OS link. This is converted to the hardware supported packet protocol on the DS 
link by the IMS C100. 

The IMS C100 data DS and OS links are paired, and all pairs perform one or other type of conversion, 
depending on the mode. In modes 1 and 3, all four link pairs convert the packetized protocol; in modes 
o and 2, all four convert the byte-stream protocol. 

The two types of conversion are described in more detail below. Each pair of data links functions in the 
same way and the following sections describe the action of one pair in each of the two types. 

3.3.1 Byte-stream conversion 

The OS link of the IMS C1 00, operating in byte-stream mode, is identical to an OS link on a T2/T4/T8-series 
component. No modification to software running on a connected T2/T4/T8-series transputer is needed. 

The DS link of the connected T9-series transputer must be set in byte mode and connected to the DS link 
of the IMS C1 00. The IMS C1 00 cannot be directly connected to an IMS C1 04 when this type of conversion 
is being used. The IMS T9000 DS link set in byte mode is able to send and receive single bytes. Software 
on the T9-series transputer will send and receive messages normally, via a pair of channels. 

A special protocol is used between the IMS C100 and the T9-series transputer. This protocol is invisible 
to the user, and is described here for completeness. Data is transferred along the DS link in the form of 
packets each with a single byte header. Each packet is terminated with either an EOP or EOM token. 

The IMS C1 00 interprets packets from the T9-series transputer as indicated in table 3.2. Note: the DS links 
of an IMS T9000 transputer which have been set into byte mode generate this protocol automatically. 

Header Data Terminator Interpretation Notes 

0 32 bytes EOP Part of message 

0 1-32 bytes EOM End of message 

0 none EQP Acknowledgement 

1 1-4 bytes EOM Input count 1 

1 none EOM Reset link 2 

Notes 

The IMS C100 knows the length of a message from the IMS T9000 to the T2/T4/T8-series 
transputer as this is indicated by an EOM token. In order for it to know the length of a message 
from the T2/T 4/T8-series to the IMS T9000 transputer the I MS T9000 musttell it expl icitly. The' input 
count' packet contains the count of the data bytes to be transferred from the OS link to the DS 
link of the IMS C100. 

2 The 'reset link' packet is sent whenever an IMS T9000 link in byte mode is reset. Its effect is to 
cause the reset of the associated OS link (see Reset chapter 7). 

Table 3.2 Packets from IMS T9000 to IMS C100 
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The IMS C1 00 can respond to both data bytes and acknowledges on the OS links immediately by buffering 
data from the IMS T9000 and holding a count of the input length, thus maintaining full bandwidth. 

The IMS C100 sends packets along the OS link, as shown in table 3.3. Note: OS links of an IMS T9000 
transputer which have been set into byte mode accept this protocol automatically. 

Header Data Terminator Interpretation Notes 

0 32 bytes EOP Part of message 

0 1-32 bytes EOM End of message 

0 none EOP Acknowledgement 1 

0 none EOM Unsolicited byte 2 

Notes 

1 The acknowledgement packet is sent when the IMS C100 is ready to receive more data. 

2 If a byte is received from the OS link whilst the output count is zero, the count is effectively reduced 
to -1 and an unsolicited packet is sent. 

Table 3.3 Packets from IMS C100 to IMS T9000 

3.3.2 Packetized conversion 

This conversion type allows software on a connected T2/T4/T8-series transputer to use virtual channels 
to communicate with processes in the connected T9-series system. The IMS C100 can be directly con­
nected to an IMS C104 when this type of conversion is being used. 

With packetized conversion the OS links of the IMS C100 are operationally identical to the OS links of 
T9-series transputers. 

Software must be run on the connected T2/T4/T8-series transputer to: 

Packetize the messages output from the T2/T4/T8-series transputer, according to the protocol 
described below. 

2 Interpret the packetized messages arriving on the T2/T4/T8-series transputer. 

The IMS C1 00 converts packets between the software supported protocol on the OS link and the hardware 
supported packetized protocol on the OS link. 

The length of packets in T9-series OS links is indicated by terminator codes EOP or EOM. In order for the 
IMS C100 to determine the length of the packet on OS links, the length must be given explicitly as an un­
signed 8 bit value ('count byte') at the start of the packet. 

count byte I N bytes 

Figure 3.4 Structure of a software supported packet on OS links 

The first byte of a (software supported) packet on an OS link is defined to be a count byte as in figure 3.5. 

7 6 

Packet 
type bit 

o 
Count 

Figure 3.5 Structure of a count byte in an OS link packet. 

If the packet type bit in the count byte is 0 then the packet is equivalent to a OS link packet terminated by 
an EOP token. If the packet type bit is 1 then the packet is equivalent to a OS link packet terminated by 
an EOM token. 
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Received on OS link of IMS C100 Packet type bit in Transmitted on OS link of IMS C100 
count byte 

(Count byte) (N bytes) 0 (N bytes) EOP 

(Count byte) (N bytes) 1 (N bytes) EOM 

Table 3.4 Packets from T2/T4/T8 to IIItiS C100 

The packet level of the OS link protocol is represented in the OS link protocol for different representations 
of a packet containing N bytes, including the header, see figure 3.6. 

packet length (N bytes) 

header packet body I EOP or EOMI 

Figure 3.6 Structure of a packet on OS links 

Packets received on the OS link, from the connected T9-series component, which are less than 7 bytes 
have zero bytes added, making 8 bytes in all including the count byte. This improves the efficiency of 
software running on T2/T4/T8-series transputers. The extra bytes added must be discarded by the 
T2/T4/T8-series transputer inputting software. 

Note thatthese transformations are independent of details of the structure of the packet, such as the header 
length. 
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4 Control protocols and control protocol conversion 

This chapter describes the different control protocols used on T2/T4{T8-series and T9-series components, 
and the two types of control protocol conversion that the IMS C100 supports. 

4.1 T2{T4{T8 type control 

T2{T4{T8-series transputers are controlled by means of Reset, Analyse and Error pins (RAE) on each 
device, and are inspected and booted by means of a special protocol across the transputer links 
(T2/T4{T8-type contrOl). 

The falling edge of Reset initializes the transputer, triggers the memory configuration sequence and starts 
the bootstrap routine. 

The processor and the OS links start after reset. The transputer obeys a bootstrap program which can either 
be in off-chip ROM or can be received from one of the links. 

A software error, such as arithmetic overflow, array bounds violation or divide by zero, causes an error flag 
to be set in the transputer processor. The flag is directly connected to the Error pin. Both the flag and the 
pin can be ignored, orthe transputer stopped. Stopping the transputer on an error means thatthe error can­
not cause further corruption. 

As well as containing the error in this way it is possible to determine the state of the transputer and its 
memory at the time the error occurred. 

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling 
point. From Analyse being asserted, the processor will halt within three time slice periods plus the time 
taken for any high priority process to complete. Reset may then be asserted. When Reset comes low again 
the transputer will be in its reset state, but the registers contain information on the state of the machine when 
it was halted by the assertion of Analyse, permitting analysis of the halted machine. 

Input links will continue with outstanding transfers Output links will not make another access to memory 
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link 
acknowledgement, the links will be inactive within a few microseconds of the transputer halting. 

4.2 T9 type control 

T9-series transputers are controlled by a pair of control links, CLinkO-1, on each device (T9-type control). 

The control links on all T9-series transputer family products allow a separate control network to be used 
to assist in configuring, booting, error handling, resetting and analysing processors and other components 
connected in a system, even in the presence of errors on the data communications links in the network. 
Many of these functions can also be performed directly by software running on an IMS T9oo0 transputer. 

Each IMS T9000 transputer has two bidirectional control links, CLinkO and CLink1, which use the same 
electrical and packet level protocols as the OS data links. CLinkO will be connected via a control link net­
work to one of the data links of a controlling IMS T9000 transputer, or to a different host via a link adaptor. 
All communications with the controlling processor are via CLinkO. CLink1 is provided to allow T9-series 
product family components to be connected in a daisy-chain. This allows a simple physical connectivity 
to be used for the contrOlling network, as shown in figure 4.1. 

The controlling network provides each device with a virtual link connected to the control process. 

When the network is initialized the first communication with each device programs identity and retum 
addresses to establish the virtual link between the control process and that device. The identity address 
determines whether a packet arriving on CLinkO is for that device, and if not, the packet is forwarded along 
CLlnk1 until it reaches its destination. 
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T9000 

Controlling T9000 transputer 
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T9000 1----------1 T9000 T9000 

Figure 4.1 A daisy-chained control link network 

A high level protocol is defined for the controlling network to allow the control process to issue commands 
to, and receive responses from, devices in the network. Commands are sent as normal packets but with 
the first byte after the header containing a command code, which may be followed by additional data. 

4.3 Control protocol conversion 

To enable T2/T4/T8-series subsystems to be easily incorporated into T9-series transputer systems (and 
vice versa) the IMS C1 00 converts between the two control systems described above. The subsystem to 
be connected can be controlled either through reset, analyse and error Signals, or through control link 
CLinkO of the IMS C100: 

RAE master: The TReset and Analyseln pins of the IMS C100 act as master and errors are re­
ported by the Error pin of the connected IMS T9000 transputer. 

The IMS T9000 transputer is booted from ROM. The ROM code sets the IMS T9000 OS links in 
byte mode and emulates the boot time behaviour of the T2/T4/T8-series transputer. That is, it al­
lows code to be booted down the data links of the IMS T9000 transputer in the same way as for 
T2/T 4/T8-series transputers. 

CLlnkO maSter: The CLinkO of the IMS C1 00 acts as master. Commands received on CLlnkO are 
converted either to signals on the Reset and Analyse pins, or into T2/T4/T8-series Boot, Peek 
and Poke messages transmitted along OSLinkO. Signals on the Error pin are converted to Error 
messages transmitted along OSLlnkO. 

The mode determines which conversion is to be carried out. The IMS C100 has two control links, one for 
issuing and receiving commands (CLlnkO) and one for daisy-chaining (CLlnk1). In mode 0 CLinkO gener­
ates commands, and in modes 1-3 it is receptive to commands. 

The two types of conversion are described in more detail below. 
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4.3.1 RAE master control (mode 0) 

In mode 0 T2/T4/T8-type control is the master control and the IMS C100 translates Reset and Analyse pin 
signals from the T2/T4/T8-series transputer to control link commands in T9-series transputers. 

In this mode the IMS C100 cannot receive commands from an IMS T9000 transputer, but can issue com­
mands via CLinkO. In effect the IMS C1 00 acts like the root process in a network of IMS T9000 transputers. 
The commands generated are the same as those received by an IMS T9000. 

Figure 4.2 illustrates mode 0 in which the IMS C1 00 converts a T2/T4/T8-series interface to an T9-series 
interface by translating the Reset and Analyse pin signals from the T2/T4/T8-series transputer into com­
mands sent via CLinkO to the IMS T9000 transputer. 

Note in this mode CLinkO of the IMS C100 is connected to CLinkO of the IMS T9000 transputer. The 
standard connection of control links is to connect CLinkO to CLink1. 

Power-onReset 
Reset 

Analyse 

Error 

CLinkO CLinkO 

OS link OS link 
OS link C100 DS link T9000 
os link OS link 

OS link os link 

Reset 
TReset ResetOut Reset 
Analyseln Error 

I • 
I ROM I 

L ___________ - - - - - - - - - - - - - - - - - - - - - - - - - -

Figure 4.2 RAE master control mode 0 

The IMS C1 00 sends commands as packets. Each message is preceded by the retum header and followed 
by an EOM token. The first byte after the header contains a command code, which may be followed by 
additional data. The first bit of the command code indicates whether the packet is a command/error or a 
handshake. Table 4.1 outlines the command codes that can be sent from an IMS C1 00 in mode 0 to a con­
nected IMS T9000 transputer. It also describes the effect of the commands on a connected IMS T9000. 

Command Additional data Function 

Start Retum header Programs the IMS T9000's CLinkO by allocating an identity and 
retum header. 

Reset Level Resets the IMS T9000 to the given level. 

Stop None Stops the processor 'cleanly' so that registervalues are preserved. 
Acts like the Analyse pin on the T8 transputer. 

Reboot None Causes reboot from ROM 

Table 4.1 Commands sent from the IMS C100 in mode 0 to an IMS T9000 

Table 4.2 lists the response messages received by the IMS C1 00. The response message is a handshake 
code corresponding to the command message. The data parameter 'Status' indicates whether or not there 
has been an error in performing the operation. Status can be 1 if the command was in some way incorrect 
or inappropriate, and consequently not obeyed, or 0 otherwise. 
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Response 

StartHandShake 

ResetHandShake 

StopHandShake 

ReBootHandShake 

Error 
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Additional data 

I None 

I Status 

Status 

Status 

Error code 

Table 4.2 Response messages received by the IMS C100 in mode 0 

After power-on reset a Start command sent from the IMS C1 00, via CLinkO, provides the retum header to 
program CLinkO of the attached IMS T9000 transputer. The IMS T9000 retums a StartHandShake which 
programs the identity of the IMS C1 00. This forms the virtual link between the root (IMS C1 00) and the node 
(IMS T9000). 

The IMS C100 sends Reset, Stop, Reboot commands via CLinkO as a response to pins going high in given 
sequences, as described below. 

If the Reset pin goes high then the IMS C100 will send a Reset command (reset level :1) to the attached 
IMS T9000 (this resets all registers, stops the PMI, VCP and CPU but retains the control links identity and 
retum header). The IMS C100 will receive the ResetHandShake and the Reset pin will be taken low. A 
ReBoot command will then be sent to the IMS T9000. 

Reboot 

The Reboot command will cause the attached IMS T9000 to boot from ROM using a Wptr and Iptr from 
a fixed location in ROM. The ROM code, configures the IMS T9000, sets the links into byte mode, starts 
them, and then emulates the T2/T4/T8-series pre-boot protocol. 

Analyse 

In response to the Analyseln pin being asserted the IMS C100 will send a Stop command from CLinkO 
to the IMS T9000. The Stop command causes the processor to be stopped whilst preserving register 
values. 

When the TReset pin is asserted a Reset command (reset level 3 - to stop the CPU) is sent. The Reset 
command is followed by a ResetHandshake from the IMS T9000. When both TReset and Analyseln are 
deasserted the IMS C100 sends a Reboot command. This restarts the ROM code. If this code executes 
a testpranaJ instruction it can take special action to assist the debugger before it repeats the above pre-boot 
sequence. 

Error 

If an error occurs on the IMS T9000, this is signalled by the Error pin. It also causes an Error message to 
be sent from CLinkO of the IMS T9000, which is received by CLinkO of the IMS C100 and ignored. 
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4.3.2 CLinkO master control (modes 1, 2 and 3) 

In modes 1, 2 and 3, T9-type control is the master control. In these modes CLinkO and CLink1 act as a 
daisy chain (see figure 4.3) with CLinkO saving the header of the first packet it receives, and only inputting 
subsequent packets with the same header. Packets with a different header are relayed out of CLink1. All 
packets received on CLink1 are relayed out of CLinkO. There is a fair arbiter to deal with the case that the 
IMS C1 00 needs to send a packet at the same time as a packet arrives on CLink1. Note this is identical 
to the daisy-chaining behavior of the IMS T9000 (as described in the IMS T9000 Preliminary Information). 

All packets received on CLinkO with the same header as the first packet received are input by the IMS C1 00 
and decoded as either acknowledge packets (which allow further messages to be sent by the IMS C1 00), 
or as messages. Messages are further subdivided into commands and handshakes. A handshake indi­
cates that a previously sent error message has been received, and so another can be sent. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -, 

1--------------: CLinkO CLink1 
I 
L_ CLink1 CLinkO ----

, 

Mode 1 
T9-series C100 

T2/T4/T8- as links DS links system 
series 

system 

;- CLinkO CLink1 ---- CLinkO CLink1 ----:-
Mode2or3 

as links 
, T9-series DS links C100 

system T2/T4/T8-
, series 

ResetOut system 
AnalyseOut 

Error 
• ____________________________________ J 

Figure 4.3 CLinkO master control modes 1, 2 and 3 

Table 4.3 details the commands which can be sent from the T9-series control processor to the IMS C1 00. 
Each comniand is terminated by an EOM token. 

The commands recognized by the IMS C1 00 are the same as those received by an IMS T9000 transputer. 
However the execution of commands is adapted to the appropriate T2/T4/T8-series behavior. 
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Command Additional data Function 

Start Return header Programs the C100's CLinkO by allocating an identity and return 
header. 

Reset Level Resets the IMS C100 and consequently the connected T2/T4/T8-
series transputer. 

Identify None Returns the identity and the revision number of the device. 

Stop None Asserts the AnalyseOut pin, resulting in the Analyse pin on the 
connected T2/T4/T8-series transputer being asserted. 

CPeek Address Returns the value stored at the given address in the device configu-
ration space. If the address is invalid an invalid status is returned. 

CPoke Address, data Writes data to the configuration space at the given address. If the 
address is invalid an invalid status is returned. 

Peek16 Address Peeks from connected 16 bit transputer. 

Peek32 Address Peeks from connected 32 bit transputer. 

Poke 16 Address, data Pokes to connected 16 bit transputer. 

Poke32 Address, data Pokes to connected 32 bit transputer. 

Run16 Wdesc,lptr Ignored and handshake sent with invalid status. 

Run32 Wdesc,lptr Ignored and handshake sent with invalid status. 

Boot16 Address, length Starts boot sequence (16 bit words). 

Boot32 Address, length Starts boot sequence (32 bit words). 

BootData Data Continues the boot sequence. 

ReBoot None Causes reboot from ROM. 

RecoverError None Used in error recovery on control system failure. 

ErrorHandshake None Handshakes error message. 

Table 4.3 Commands received by the IMS C100 in modes 1, 2 and 3 from an IMS T9000 

Each command message is acknowledged by an acknowledge packet which is a packet containing no 
data and terminated by an EOP token. In addition the higher level control protocol requires that all com­
mand messages are acknowledged by a response message before the control process can send another 
command message to the same device, so appropriate responses must be generated by the IMS C100 
in this mode of operation. (However, Start, Reset and RecoverError command messages may be sent to 
any node at any time to allow the control process to handle error conditions in the network.) 

The response message can contain the result of a Peek or Identify command, or it may be simply a hand­
shake code corresponding to the command message. Each message is preceded by the return header 
and followed by an EOM token. Table 4.4 lists the response messages to each of the command messages. 
1 he data parameter 'Status' indicates whether or not there has been an error in performing the operation. 
Status can be 1 if the command was in some way incorrect or inappropriate, and consequently not obeyed, 
or 0 otherwise. 

Commands sent which cannot be converted to T2/T4/T8-series actions, or commands which are illegal 
in certain states, are hand shaken with status set to 1. 
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Response Additional data 

StartHandShake None 

ResetHandShake Status 

IdentifyResult Device type and rev 

StopHandShake Status 

CPeekResult Data, status 

CPokeHandShake Status 

Peek16Result Data, status 

Peek32Result Data, status 

Poke 16HandShake Status 

Poke32HandShake Status 

Run 16HandShake Status 

Run32HandShake Status 

StartBoot16HandShake Status 

StartBoot32HandShake Status 

BootDataHandShake Status 

ReBootHandShake Status 

RecoverHandShake None 

Error Error code 

Table 4.4 Messages sent by the IMS C100 in modes1, 2 and 3 

The IMS C100 error codes are listed in table 4.5. 

Error code Cause Of error 

0 Parity or disconnect error on CLllnk1 

1 Protocol error on CLllnkO e.g. bad command length, extra acknowledge 

2 Unrecognized command code on CLiinkO 

3 Signal on Error pin 

4 Parity or disconnect error on DSLIinkO 

5 Parity or disconnect error on DSLllnk1 

6 Parity or disconnect error on DSLlink2 

7 Parity or disconnect error on DSLllnk3 

8 Overlong packet on OSLInkO 

9 Overlong packet on OSLink1 

10 Overlong packet on OSLink2 

11 Overlong packet on OSLink3 

12 Invalid count OSLInkO (Le. count = 0) 

13 Invalid count OSLink1 

14 Invalid count OSLink2 

15 Invalid count OSLink3 

Table 4.5 Error codes 
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All the error codes must be hand shaken from the root processor with the ErrorHandShake command. 

Errors are reported by sending an error message with the corresponding code, or, in the case of an error 
on CLinkO, by causing a disconnection. Software at the root processor can then take appropriate action. 

There are four control link commands which correspond to the special protocol of an un booted T2/T4/T8-
series transputer. These cause messages to be generated from OSLinkO in certain modes of operation 
of the IMS C100 for which the behavior of OSLinkO is defined to be special (see section 4.3.3). The 
assumed length (N) of addresses and data can be either 16 or 32 bits depending on whether a command 
is being sent to a 16 bit or 32 bit transputer. 

Peek 

On receipt of a PeekN command, and the associated peek address, the IMS C1 00 sends from OSLinkO 
the following sequence of bytes: 

1 (BYTE);address[O]; ... address[N] 

When the last byte has been sent and acknowledged the IMS C100 awaits an associated response. A 
PeekNResult is returned with the returned bytes as data and a status byte of O. 

If the communication does not complete (for example if there is no transputer connected), the peeking 
process will not receive a PeekNResult and can time-out, and, if required, reset the IMS C1 00 with a Reset 
command. 

Poke 

On receipt of a PokeN command, and the associated poke address and data, the IMS C100 sends from 
OSLinkO the following sequence of bytes: 

O(BYTE); address[O]; ... address[N] ;data[O]; ... data[N] 

The command is acknowledged immediately, and if and when the last byte of the above communication 
is acknowledged, a PokeNHandshake is returned with a status of O. 

If the communication does not complete (for example because there is no transputer connected after all), 
the poking process will not receive a PokeNHandshake and can time-out, and reset the IMS C100. 

Boot 

On receipt of a BootN command, and the associated boot address and length byte, the IMS C100 sends 
the length byte from OSLinkO and discards the address. 

The BootN command is acknowledged immediately, and if and when the length byte is acknowledged by 
a (::onnected transputer, a BootNHandShake response is sent with a status of O. 

The value of the length byte is kept by the IMS C100 as a count, and that number of bytes are then received 
by CLinkO, as a sequence of BootData messages. The bytes are sent out on the OS link. Each arriving 
BootData message is acknowledged immediately, but not handshaken until all its data bytes have been 
sent and acknowledged on the OS link. Once all bytes have been sent and acknowledged a BootData­
HandShake is sent with a status byte of O. 

After a BootN command has been received, the booting flag is set, and any further PeekN, PokeN or BootN 
commands are invalid. Once the number of bytes as allowed for in the count of the BootN command have 
been received, the booting flag is unset, and the booted flag is set; BootData commands are then also 
invalid. All such invalid commands are acknowledged and hand shaken irnmediately, but with a status byte 
of 1. No other action is taken. The booting and booted flags are reset by any Reset command. 
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Reset 

On receipt of a Reset command on CLinkO, the IMS C100 asserts its ResetOut pin. This pin is deasserted 
by a CPoke command. Whilst the ResetOut pin is asserted Stop, PeekN, PokeN, BootN, BootData and 
Run commands are invalid and will be handshaken immediately with a status of 1. 

Analyse 

On receipt of a Stop command on CLinkO, the IMS C1 00 asserts its AnalyseOut pin. This pin is deasserted 
by a CPoke command. Whilst the AnalyseOut pin is asserted PeekN, PokeN, BootN, BootData and Run 
commands are invalid and will be hand shaken immediately with a status of 1. 

AnalyseOut / ~ 
t t 

Stop CPoke 

ResetOut ~ \ / \ 
t t t t 

Reset CPoke Reset CPoke 

Figure 4.4 Resetting and analyzing in modes 1 , 2 and 3 

4.3.3 OS Link 0 special function 

In modes 2 and 3, the control links are the system master, and the default assumption is that at least 
OSLinkO IS connected to an unbooted T2/T4/T8-series transputer. Commands to peek, poke and boot the 
T2/T4/T8-series transputer, arriving down CLinkO, are converted to T2/T4/T8-series protocol and sent 
down OSLInkO. OSLInkO is usurped to generate the pre-boot protocol of the T2/T4/T8-series transputer 
until the transputer is booted. 

This default is controlled by the booted flag which is set automatically by the booting sequence (BootN, 
BootData) or Reboot, and reset by the Reset command. 
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5 Links 

5.1 Data links 

The IMS ClOO has eight data links. OSLinkO-3 are oversampled links and DSLinkO-3 are data/strobe 
links. Each OS link is paired with a OS link, for data protocol conversion. All pairs of links perform one or 
other type of conversion, depending on mode. 

Each pair of links is joined by a conversion unit. OSLinkO can be diverted into the control conversion unit 
by a switch which is controlled by the booted flag. Refer to section 4.3.3 for description of OSLinkO special 
function in modes 2 and 3. 

The OS and OS links are TIL compatible. 

5.1.1 Data link speeds 

There are four pins to set the operating speed of the links. OSLinknSpecial pins set the operating speed 
of the OS links and DSLinknSpecial pins set the default speed of the OS links. 

OSLinkO-3 support a communication speed of 10 Mbits/sec. In addition they can be used at 20 Mbits/sec 
which is determined by the OSLinknSpecial pin. Links are not synchronized with Clockln and are insensi­
tive to their phases. Thus links from independently clocked systems may communicate, providing only that 
the clocks are nominally identical and within specification. 

The OSLinkOSpecial pin enables the speed of OSLinkO to be set independently of OS links 1, 2, 3 and 
the DSLinkOSpecial pin enables the default speed of DSLinkO to be set independently of OS links 1, 2, 
3 (see table 5.1). 

The OS link speeds must only be set at power-on. If these pins are changed after power-on the IMS ClOO 
is not guaranteed to function correctly until it has been reset. 

OSLinkOSpecial OSLink123Speciai OS link speed 

0 0 10MHz 

1 1 20 MHz 

DSLinkOSpecial DSLink123Speciai OS default link speed 

0 0 25 MHz 

1 1 50 MHz 

Table 5.1 LinkSpecial pins 

5.1.2 OS links in modes 1, 2 and 3 

The IMS ClOO OS links can support a range of communication speeds, which are programmed by writing 
to registers in the configuration space using the CPoke command via CLinkO. At reset all data OS links 
run at the default speed determined by the DSLinkOSpecial and DSLink123Speciai pins. 

Only the transmission speed of a OS link is programmed as reception is asynchronous. This means that 
OS links running at different speeds can be connected, provided that each device is capable of receiving 
at the speed of the connected transmitter. 

The transmission speeds of all of the OS links (data and control links) on a given device are related to the 
speed of a single on-chip clock. The frequency of this master clock is programmed through the SpeedMul­
tiply bit field. The master frequency is divided down to obtain the transmission frequency for each OS link. 
The division factor can be programmed separately for each OS link via the Speed Divide bit field. For a 
given device, with a given programmed master clock frequency, this arrangement allows each OS link to 
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be run at one of four transmission speeds, as shown in table 8.2. The BaseSpeed is the default speed of 
10 MHz. 

SpeedOivide 

SpeedMultiply /1 /2 /4 /8 BaseSpeed 

8 80 40 20 10.0 10 

10 100 50 25 12.5 10 

12 Reserved 60 30 15.0 10 

14 Reserved 70 35 17.5 10 

16 Reserved 80 40 20.0 10 

18 Reserved 90 45 22.5 10 

20 Reserved 100 50 25.0 10 

Table 5.2 OS link transmission speed in Mbits/sec 

Errors on OS links 

OS link inputs detect parity and disconnection conditions as errors. A disconnection error indicates one 
of two things: either the OS link has been physically disconnected, or an error has occurred at the other 
end of the OS link which has then stopped transmitting. The bit fields ParityError and OiscError indicate 
when parity and disconnect errors occur. 

The OS links are designed to be highly reliable within a single subsystem and can be operated in one of 
two environments, determined by the LocalizeError bit in each link. 

In the majority of applications, the communications system should be regarded as being totally reliable. 
In this environment errors are considered to be very rare, but are treated as being catastrophic if they do 
occur. This environment is the default on power-:on reset, with all links having their LocalizeError bit set 
to O. If ali error occurs it will be detected and reported via a message sent along CLinkO. Normal practice 
will then be to reset the subsystem in which the error has occurred and to restart the application. 

For some applications, for instance when a disconnect or parity error may be expected during normal oper­
ation, an even higher level of reliability is required. This level of fault tolerance is supported by localizing 
errors to the link on which they occur, by setting the LocalizeError bit of the link to 1. In addition a data 
link layer process must be connected to each virtual channel associated with the link. These processes 
are responsible for establishing and maintaining a higher level flow control, using time-out to detect that 
a message has not completed, and requesting retransmission. If an error occurs, packets in transit at the 
time of the error will be discarded or truncated, and the link will be reset without the error being reported 
via the control link. 

For information on the data link layer refer to chapter 4 of 'Computer Networks' by Andrew S. Tanenbaum, 
published by Prentice-Hal/International (ISBN: 0-13-166836-6). 

5.2 Control links 

The IMS C100 has two bidirectional control links; CLinkO and CLink1. They use the same electrical and 
packet level protocols as the OS links (refer to section 3.2). 

All communications with the controlling processor are via CLinkO. CLink1 provides a daisy-chain link, 
allowing a simple physical connectivity to be used for controlling networks. 

The behavior of CLinkO depends on the mode as detailed in section 4.3. 

5.2.1 Control link speeds 

After power-on the control I inks run at a default speed of 10M Hz; this can be changed by means of CPokes. 
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6 Configuration 

6.1 Configuration space 

The IMS ClOO can be controlled via the configuration address space. These addresses are accessed by 
CPeek and CPoke command messages received along CLinkO. 

The configuration bus can be used to reset any individual DS link or any link pair in packetized conversion 
mode, modes 1 and 3. 

Table 6.1 gives the configuration space map. 

Address Function Reset Value Notes 

#1001 IMS Cl00 Device type Also used by the Identify 
command 

#1002 IMS ClOO Device type and rev 

#1003 IMS Cl00 Command/Status see table 6.2 and Write to command word, 
word table 6.3 read from status word 

#1005 IMS ClOO DSLinkPLL see table 8.3 

#8001 DSLinkOMode 

#8101 DSLinkl Mode 

#8201 DSLink2Mode 

#8301 DSLink3Mode 

#8002 DSLinkOCommand 

#8102 DSLinkl Command , 
#8202 DSLink2Command 

#8302 DSLink3Command 

#8003 DSLinkOStatus see Reset chapter 7 

#8103 DSLinkl Status 

#8203 DSLink2Status 

#8303 DSLink3Status 

#FDOl CLinkOMode 

#FEOl CLinklMode 

#FD02 CLinkOCommand 

#FE02 CLinkl Command 

#FD03 CLinkOStatus see Reset chapter 7 

#FE03 CLinkl Status Depends on mode 

Table 6.1 Configuration space map 

The IMS ClOO Command and Status words have the structure shown below. 
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Bit Function 

4 Link pair 0 reset 

5 Link pair 1 reset 

6 Link pair 2 reset 

7 Link pair 3 reset 

30 End Reset 

31 End Analyse 

Table 6.2 Command word 

Bit Status of pin 

16 ModeO 

17 Mode1 

18 DSLInkOSpeclal 

19 DSLlnk123Speciai 

20 OSLInkOSpecial 

21 OSLlnk123Speciai 

Table 6.3 Status word 

A bit set in the Command word effects the indicated function. The command word is write only. 
A bit set in the Status word indicates the current status. The status word is read only. 

6.2 Data DS link configuration registers 
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Each OS link has three registers, the DSLInkMode register, DSLlnkCommand register and DSLInkStatus 
register. 

In addition the configuration space contains the DSLlnkPLL register which contains the SpeedMuHiply 
bit. This takes the 5 MHz input clock and multiplies it by a programmable value to provide the root clock 
for all the OS links. 

The tables below describe the functionality of the OS links to be controlled, and the associated bit fields 
in the configuration registers. 

BHfleld Function 

SpeedMuHlply Sets OS link master clock to required value (see table 8.2). 

Table 6.4 Bit fields in the DSLlnkPLL register 

The DSLlnkO-3Mode registers power up into a default state and may be reprogrammed before or after 
the link has been started. 

Bit Bit field Function 

1:0 Speed Divide Sets transmit speed of the DSLInk (see table 8.2). 
00 = /1,01 = /2, 10 = /4, 11 = /8 

2 SpeedSelect Sets the DSLInk to transmit at the speed determined by the SpeedDi-
vide bits as opposed to the base speed of 10 Mbits/s. 

3 LocalizeError When set errors are no longer reported to the control link. Packets in 
transit at the time of an error will be discarded or truncated. 

Table 6.5 Bit fields in the DSLlnkO-3Mode registers 
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The DSLinkO-3Command registers are write only and contain four bits which when set cause a specific 
action to be taken by the OS link. 

Bit Bit field Function 

0 ResetLink Resets the link engine of the DSLink. The token state is reset, the flow 
control credit is set to zero, the buffers are marked as empty, and the 
parity state is reset. 

1 StartLink When a transition from 0 to 1 occurs the DSLink will be initialized and 
commence operation. 

2 ResetOutput Sets both outputs of the DSLink low. 

3 Wrong Parity The DSLink output will generate incorrect parity. This may be used to 
force a parity error on a transputer at the other end of the DSLink. 

Table 6.6 Bit fields in the DSLinkO-3Command registers 

The DSLinkO-3Status registers are read only and contain six bits which contain information about the state 
of the OS link. 

Bit Bit field Function 

0 LinkError Flags that an error has occurred on the DSLink. 

1 LinkStarted Flags that the output DSLink has been started and no errors have been 
detected. 

2 ResetOutputCom- Flags that ResetOutput has completed on the DSLink. 
plete 

3 ParityError Flags that a parity error has occurred on the DSLink. 

4 DiscError Flags that a disconnect error has occurred on the DSLink. 

5 TokenReceived Flags that a token has been seen on the DSLink since ResetLink. 

Table 6.7 Bit fields in the DSLinkO-3Status registers 

6.3 Control link configuration registers 

The link module hardware in each control link is identical to that in each data OS link. An equivalent set 
of configuration bit fields is provided for each control link, as for the data OS links. 
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7 Levels of reset 

The IMS C100 can be reset to a given level using the Reset command or Reset pin. The different levels 
of reset are described below. 

7.1 Resetting links 

There are two basic mechanisms for resetting links. One applies in the byte-stream conversion mode, in 
which case a specific packet received from an attached IMS T9000 or similar causes the OS link of the 
pair and the internal state of the data conversion unit to be reset. The other mechanism is the configuration 
bus, which can be used to reset any individual OS link or any link pair, see section 6.1 . 

7.2 Level 0 - hardware reset 

In all modes the IMS C100 is reset by asserting the Reset pin high. The ResetOut pin follows the Reset 
pin. In mode 0 the IMS C100 is also reset by a similar transition on TReset, providing Analyseln is low. 

After a hardware reset has been deasserted each IMS C100 is in the following state: 

All the links are in Wait state, with the data links operating at their default speed set by the LinkSpecial 
pins and the control links operating at their default speed of 10 MHz. The identity and return headers for 
the control links are undefined. All registers contain their default values. All buffers are cleared; all latched 
error signals are cleared; and the AnalyseOut pin is taken low. 

7.3 Level 1 - labelled control network 

The network can be reset to level 1 by sending a Reset1 command message to each IMS C100. 

This level of reset leaves the identity and return headers unaltered and all connected control links remain 
operational. All the data links are in Wait state and operate at the default speed set by the LinkSpecial pins. 
All registers are reset to their default values. All buffers are cleared. 

The ResetOut pin is set high. 

7.4 Level 2 - configured network 

The network can be reset to level 2 by sending a Reset2 command message to each IMS C100. 

At thIS level of reset the identity and return headers are unaltered and register contents are unaffected. All 
buffers are cleared. The data links are reset and retumed to the Wait state. 

The ResetOut pin is set high. 

7.5 Level 3 

If a Reset3 command message is received, for example from an IMS T9000 transputer, it is handshaken 
with a status of O. 

The ResetOut pin is set high. 
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8 Software 

8.1 Toolsets 

The IMS Dx2xx toolsets refers to the C, occam and FORTRAN toolsets written in C and supporting 
T2{T4/T8-series transputer networks. 

A set of C, occam and FORTRAN toolsets is also available which incorporate T9-series transputer 
support. The tools provide support in the configuration and initialization of T9-series networks. The tools 
set the attributes of each device in the T9-series network by sending initialization data down the control 
link, and set the processors into a state ready to receive an application down the data DS links. A Network 
Description Language (NDL) is used to describe networks of devices and allows the specification of values 
for all the attributes of a device. From the NDL file the initialization tools produce a file containing the net­
work initialization data. This data is sent down the control link to the network. Once the network has been f 

initialized, programs can be built and loaded to the network in the same way as for T2/T4/T8-series 
processors. 

The IMS T9000 configuration tools do not directly support the configuration of mixed T9-series and 
T2{T4/T8-series systems. Systems made up of T9-series networks and T2{T4/T8-series networks 
connected together via IMS C1 ODs can be configured, with each network being configured and loaded sep­
arately using the appropriate toolset. The user is able to specify (in the NDL file) the edges of an T9-series 
network whIch communicate with a T2/T4/T8-series network. 
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9 Pin designations 

Pin In/Out Function 
, 

VCC,GND Power supply and return 

Cap Plus, Cap Minus External capacitor for internal clock power supply 

Clockln in 5 MHz input clock 

ClockOutO-1 out Internally generated high speed clock output. 

Table 9.1 IMS C100 system services 

Pin In/Out Function 

Reset in System reset 

ResetOut out Asserts the Reset pin on any connected T9-series or 
T2/T4/T8-series device. 

TReset in Mode 0 T2/T4/T8-series transputer reset 

Error in Modes 1-3 error indicator - rnessage sent from CLinkO 

Analyseln in Mode 0 error analysis 

AnalyseOut out Mode 1-3 error analysis - message received on CLinkO 

ModeO-1 in Mode of operation 

Table 9.2 IMS C100 control unit 

Pin In/Out Function 

OSLinklnO-3 in OS link input data channels 

OSLinkOutO-3 out OS link output data channels 

DSLinklnDataO-3 in OS link input data channels 

DSLinklnStrobeO-3 in OS link input strobes 

DSLinkOutDataO-3 out OS link output data channels 

DSLinkOutStrobeO-3 out OS link output strobes 

CLinklnDataO-1 in Control link input data channels 

CLinklnStrobeO-1 in Control link input strobes 

CLinkOutDataO-1 out Control link output data channels 

CLinkOutStrobeO-1 out Control link output strobes 

OSLinkOSpecial in OS link 0 speed selection 

OSLink123Speciai in OS link 1, 2, 3 speed selection 

DSLinkOSpecial in OS link 0 speed selection 

DSLink123Speciai in OS link 1, 2, 3 speed selection 

Table 9.3 IMS C100 links 
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