THE

TRANSPUTER

DATABOOK

nmMos

SECOND EDITION 1989



\SEEEEt

INMOS Limited

1000 Aztec West
Almondsbury

Bristol BS12 4SQ

UK

Telephone (0454) 616616
Telex 444723

INMOS Japan K.K.

4th Floor No 1 Kowa Bldg
11-41 Akasaka 1-chome
Minato-ku

Tokyo 107

Japan

Telephone 03-505 2840
Telex J29507 TEI JPN
Fax 03-505 2844

INMOS Corporation

PO Box 16000

Colorado Springs

CO 80935

USA

Telephone (719) 630 4000

Telex (Easy Link) 629 44 936

INMOS SARL

Immeuble Monaco

7 rue Le Corbusier

SILIC 219

94518 Rungis Cedex
France

Telephone (1) 46.87.22.01
Telex 201222

LOCAL U.S. SALES OFFICES

INMOS Corporation

200 E Sandpointe

Surte 650

Santa Ana

CA 92707
Telephone(714) 957 6018

INMOS Corpoation

2620 Augustine Drive
Suite 100

Santa Clara

CA 95054

Telephone (408) 727 7771

INMOS Corporation
12400 Whitewater Drive
Suite 120

Minnetonka

MN 55343

Telephone (612) 932 7121

INMOS Corporation
6025-G Atlantic Bivd
Norcross

GA 30071

Telephone (404) 242 7444

INMOS Corporation

5 Burlington Woods Drive
Suite 201

Burlington

MA 01803

Telephone (617) 229 2550

INMOS Corporation
10200 E Girard Avenue
Suite B239

Denver

CO 80231

Telephone (303) 368 0561

INMOS GmbH

Danziger Strasse 2

8057 Eching

Munich

West Germany

Telephone (089) 319 10 28
Telex 522645

INMOS Corporation
14643 Dallas Parkway
Suite 730

Dallas

TX 75240

Telephone (214) 490 9522

INMOS Corporation

9861 Broken Land Parkway
Suite 320

Columbia

MD 21046

Telephone (301) 995 6952

INMOS Corporation

PO Box 272

Fishkill

NY 12524

Telephone (914) 897 2422



INMOS Databook Series

Transputer Databook

Military Micro-products Databook

Transputer Support Databook: Development and Sub-systems
Memory Databook

Graphics Databook

Digital Signal Processing Databook

Transputer Applications Notebook: Architecture and Software

Transputer Applications Notebook: Systems and Performance

Copyright ©INMOS Limited 1989

INMOS reserves the right to make changes in specifications at any time and without notice.
The information furnished by INMOS in this publication is believed to be accurate; however,
no responsibility is assumed for its use, nor for any infringement of patents or other rights

of third parties resulting from its use. No licence is granted under any patents, trademarks
or other rights of INMOS.

@ . lnmos , IMS and occam are trademarks of the INMOS Group of Companies.
INMOS is a member of the SGS-THOMSON Microelectronics Group.
INMOS document number: 72 TRN 203 01

Printed at Redwood Burn Ltd, Trowbridge



inmos

TRANSPUTER
DATABOOK

Second Edition 1989



Contents overview

10

1

12

13

14

INMOS

Transputer architecture

Transputer overview

IMS T805 engineering data

IMS T801 engineering data

IMS T800 engineering data

IMS T425 engineering data

IMS T414 engineering data

IMS T222 engineering data

IMS T225 preview

IMS M212 preview

IMS C004 engineering data

IMS CO011 engineering data

IMS C012 engineering data

Quality and Reliability

Index

27

47

127

189

261

333

399

453

463

479

503

529

551

557



Contents
Preface XiX
Notation and nomenclature XX
1 INMOS 1
1 Introduction 2
1.1 Manufacturing 2
1.2 Assembly 2
1.3 Test 2
1.4 Quality and Reliability 2
1.5 Military 2
1.6 Future Developments 3
1.6.1 Research and Development 3
1.6.2 Process Developments 3
2 Transputer architecture 5
1 Introduction 6
1.1 Overview 7
Transputers and occam 7
1.2 System design rationale 8
1.2.1 Programming 8
1.2.2  Hardware 9
1.2.3 Programmable components 9
1.3 Systems architecture rationale 9
1.3.1 Point to point communication links 9
1.3.2 Local memory 10
1.4 Communication 10
2 occam model 12
241 Overview 12
2.2 occam overview 13
221 Processes 13
Assignment 13
Input 13
Output 13
2.2.2  Constructions 14
Sequence 14
Parallel 14
Communication 15
Conditional 15
Alternation 15
Loop 16
Selection 16
Replication 16
2.2.3 Types 17
224 Declarations, arrays and subscripts 17
2.2,5 Procedures 18
2.2.6  Functions 18
2.2.7 Expressions 18




228 Timer 19

2.29 Peripheral access 19

2.3 Configuration 20
PLACED PAR 20

PRI PAR 20

2.3.1 INMOS standard links 20

3 Error handling 21
4 Program development 22
4.1 Logical behaviour 22

4.2 Performance measurement 22

4.3 Separate compilation of 0CCam and other languages 22

4.4 Memory map and placement 23

5 Physical architecture 24
5.1 INMOS serial links 24

5.1.1 Overview 24

5.1.2 Link electrical specification 24

5.2 System services 24

5.2.1 Powering up and down, running and stopping 24

5.2.2 Clock distribution 25

5.3 Bootstrapping from ROM or from a link 25

5.4 Peripheral interfacing 25

3 Transputer overview 27
1 Introduction 28
2 The transputer: basic architecture and concepts 29
2.1 A programmable device 29

22 occam 29

2.3 VLSI technology 29

2.4 Simplified processor with micro-coded scheduler 30

3 Transputer internal architecture 31
3.1 Sequential processing 32

3.2 Instructions 32

3.2.1 Direct functions 33

3.2.2  Prefix functions 33

3.2.3 Indirect functions 34

3.2.4 Efficiency of encoding 34

3.3 Support for concurrency 34

3.4 Communications 36

3.4.1 Internal channel communication 36

3.42  External channel communication 38

3.4.3 Communication links 39

3.5 Timer 40

3.6 Alternative 40

3.7 Floating point instructions 40

3.7.1 Optimising use of the stack 41

3.7.2  Concurrent operation of FPU and CPU 41

3.8 Floating point unit design 42




vi

3.9 Graphics capability 43

3.9.1 Example - drawing coloured text 43

4 Conclusion 45
4 IMS T805 engineering data 47
1 Introduction 48
2 Pin designations 51
3 Processor 52
3.1 Registers 52

3.2 Instructions 53

3.2.1 Direct functions 53

3.2.2  Prefix functions 53

3.23 Indirect functions 54

3.2.4  Expression evaluation 54

3.2.5 Efficiency of encoding 54

3.3 Processes and concurrency 55

34 Priority 56

3.5 Communications 56

3.6 Block move 57

3.7 Timers 57

4 Instruction set summary 59
4.1 Descheduling points 60

4.2 Error instructions 61

4.3 Debugging support 61

4.4 Floating point errors 61

5 Floating point unit 69
6 System services 71
6.1 Power 71

6.2 CapPlus, CapMinus 71

6.3 Clockin 71

6.4 ProcSpeedSelect0-2 72

6.5 Reset 73

6.6 Bootstrap 73

6.7 Peek and poke 75

6.8 Analyse 75

6.9 Error, Errorin 76

7 Memory 77
8 External memory interface 79
8.1 Pin functions 80

8.1.1 MemAD2-31 80

8.1.2 notMemRd 80

8.1.3 MemnotWrDO 80

8.1.4 notMemWrB0-3 80

8.1.5 notMemS0-4




vii

8.1.6 MemWait 80

8.1.7 MemnotRfD1 80

8.1.8 notMemRf 80

8.1.9 RefreshPending 80

8.1.10 MemReq, MemGranted 81

8.1.11 MemConfig 81

8.1.12 ProcClockOut 82

8.2 Read cycle 83

8.3 Write cycle 88

8.4 Wait 89

8.5 Memory refresh 91

8.6 Direct memory access 94

8.7 Memory configuration 96

8.7.1 Internal configuration 96

8.7.2  External configuration 98

9 Events 103
10 Links 105
11 Electrical specifications 108
11.1 DC electrical characteristics 108

11.2 Equivalent circuits 109

11.3 AC timing characteristics 110

11.4 Power rating 112

12 Performance 113
121 Performance overview 113

12.2 Fast multiply, TIMES 115

12.3 Arithmetic 116

12.4 Floating point operations 117

12.4.1 Floating point functions 117

12.4.2 Special purpose functions and procedures 118

125 Effect of external memory 118

12.6 Interrupt latency 119

13 Package specifications 120
13.1 84 pin grid array package 120

13.2 84 pin PLCC J-bend package 122

13.3 84 lead quad cerpack package 124

14 Ordering 126
IMS T801 engineering data 127
1 Introduction 128
2 Pin designations 131




viii

3 Processor 132
3.1 Registers 132

3.2 Instructions 133

3.2.1 Direct functions 133

3.2.2  Prefix functions 133

3.2.3 Indirect functions 134

3.24  Expression evaluation 134

3.2.5 Efficiency of encoding 134

3.3 Processes and concurrency 135

3.4 Priority 136

3.5 Communications 136

3.6 Block move 137

3.7 Timers 137

4 Instruction set summary 139
4.1 Descheduling points 140

4.2 Error instructions 141

4.3 Debugging support 141

4.4 Floating point errors 141

5 Floating point unit 149
6 System services 151
6.1 Power 151

6.2 CapPlus, CapMinus 151

6.3 Clockin 151

6.4 ProcSpeedSelect0-2 152

6.5 Reset 153

6.6 Bootstrap 153

6.7 Peek and poke 155

6.8 Analyse 155

6.9 ErrorOut 156

7 Memory 157
8 External memory interface 159
8.1 Pin functions 160

8.1.1 MemA2-31 160

8.1.2 MemDO0-31 160

8.1.3 notMemCE 160

8.1.4 notMemWrBO0-3 161

8.1.5 MemWait 161

8.1.6 MemReq, MemGranted 161

8.1.7  ProcClockOut 162

8.2 Read cycle 163

8.3 Write cycle 164

8.4 Wait 165

8.5 Direct memory access 167

9 Events 169
10 Links 171




11 Electrical specifications 174
11.1 DC electrical characteristics 174

11.2 Equivalent circuits 175

11.3 AC timing characteristics 176

11.4 Power rating 177

12 Performance 179
12.1 Performance overview 179

12.2 Fast multiply, TIMES 181

12.3 Arithmetic 182

12.4 Floating point operations 183

12.4.1 Floating point functions 183

12.4.2 Special purpose functions and procedures 184

12.5 Effect of external memory 184

12.6 Interrupt latency 185

13 Package specifications 186
13.1 100 pin grid array package 186

14 Ordering 188
IMS T800 engineering data 189
1 Introduction 190
2 Pin designations 192
3 Processor 193
3.1 Registers 193

3.2 Instructions 194

3.2.1 Direct functions 194

3.2.2  Prefix functions 194

3.2.3 Indirect functions 195

3.2.4  Expression evaluation 195

3.2.5 Efficiency of encoding 195

3.3 Processes and concurrency 196

3.4 Priority 197

3.5 Communications 197

3.6 Block move 198

3.7 Timers 198

4 Instruction set summary 200
4.1 Descheduling points 201

4.2 Error instructions 202

4.3 Floating point errors 202

5 Floating point unit 209




6 System services 211
6.1 Power 211

6.2 CapPlus, CapMinus 211

6.3 Clockin 211

6.4 ProcSpeedSelect0-2 212

6.5 Reset 213

6.6 Bootstrap 213

6.7 Peek and poke 215

6.8 Analyse 215

6.9 Error, Errorin 216

7 Memory 217
8 External memory interface 219
8.1 ProcClockOut 219

8.2 Tstates 219

8.3 Internal access 220

8.4 MemAD2-31 221

8.5 MemnotWrD0O 221

8.6 MemnotR{D1 221

8.7 notMemRd 221

8.8 notMemS0-4 221

8.9 notMemWrB0-3 225

8.10 MemConfig 228

8.10.1 Internal configuration 228

8.10.2 External configuration 230

8.11 notMemRf 235

8.12 MemWait 236

8.13 MemReq, MemGranted 238

9 Events 240
10 Links 241
11 Electrical specifications 244
11.1 DC electrical characteristics 244

11.2 Equivalent circuits 245

11.3 AC timing characteristics 246

11.4 Power rating 248

12 Performance 249
12.1 Performance overview 249

12.2 Fast multiply, TIMES 251

12.3 Arithmetic 252

12.4 Floating point operations 253

12.4.1 Floating point functions 253

12.4.2 Special purpose functions and procedures 254

12.5 Effect of external memory - 254

12.6 Interrupt latency 255




Xi

13 Package specifications 256
13.1 84 pin grid array package 256

13.2 84 lead quad cerpack package 258

14 Ordering 260
IMS T425 engineering data 261
1 Introduction 262
2 Pin designations 264
3 Processor 265
3.1 Registers 265

3.2 Instructions 266

3.2.1 Direct functions 266

3.2.2  Prefix functions 266

3.2.3 Indirect functions 267

3.2.4  Expression evaluation 267

3.2.5 Efficiency of encoding 267

3.3 Processes and concurrency 268

3.4 Priority 269

3.5 Communications 269

3.6 Block move 270

3.7 Timers 270

4 Instruction set summary 272
4.1 Descheduling points 273

4.2 Error instructions 274

4.3 Debugging support 274

5 System services 280
5.1 Power 280

5.2 CapPlus, CapMinus 280

5.3 Clockin 280

5.4 ProcSpeedSelect0-2 281

5.5 Reset 282

5.6 Bootstrap 282

5.7 Peek and poke 284

5.8 Analyse 284

5.9 Error, Errorin 285

6 Memory 286
7 External memory interface 288
71 ProcClockOut 288

7.2 Tstates 288

7.3 Internal access 289

7.4 MemAD2-31 290

7.5 MemnotWrDO 290

7.6 MemnotRfD1 290

7.7 notMemRd

290




Xii

7.8 notMemS0-4 290

7.9 notMemWrB0-3 294

7.10 MemConfig 297

7.10.1 Internal configuration 297

7.10.2 External configuration 299

711 RefreshPending 304

712 notMemRf 305

7.13 MemWait 306

7.14 MemReq, MemGranted 308

8 Events 310
9 Links 312
10 Electrical specifications 315
10.1 DC electrical characteristics 315

10.2 Equivalent circuits 316

10.3 AC timing characteristics 317

10.4 Power rating 319

11 Performance 320
11.1 Performance overview 320

11.2 Fast multiply, TIMES 322

11.3 Arithmetic 322

11.4 Floating point operations 323

11.4.1 Special purpose functions and procedures 324

11.5 Effect of external memory 324

11.6 Interrupt latency 325

12 Package specifications 326
12.1 84 pin grid array package 326

12.2 84 pin PLCC J-bend package 328

12.3 84 lead quad cerpack package 330

13 Ordering 332
8 IMS T414 engineering data 333
1 Introduction 334
2 Pin designations 336
3 Processor 337
3.1 Registers 337

3.2 Instructions 338

3.2.1 Direct functions 338

3.2.2  Prefix functions 338

3.2.3 Indirect functions 339

3.2.4  Expression evaluation 339

3.2.5 Efficiency of encoding 339

3.3 Processes and concurrency 340

3.4 Priority 341

3.5 Communications 341




Xiii

3.6 Timers 342

4 Instruction set summary 343
41 Descheduling points 344

4.2 Error instructions 344

5 System services 349
5.1 Power 349

5.2 CapPlus, CapMinus 349

5.3 Clockin 349

5.4 Reset 351

5.5 Bootstrap 351

5.6 Peek and poke 353

5.7 Analyse 353

5.8 Error 354

6 Memory 355
7 External memory interface 357
71 ProcClockOut 357

7.2 Tstates 357

7.3 Internal access 358

7.4 MemAD2-31 359

7.5 MemnotWrDO 359

7.6 MemnotR{D1 359

7.7 notMemRd 359

7.8 notMemSO0-4 359

7.9 notMemWrB0-3 363

7.10 MemConfig 366

7.10.1 Internal configuration 366

7.10.2 External configuration 368

711 notMemRf 373

7.12 MemWait 374

713 MemReq, MemGranted 376

8 Events 378
9 Links 379
10 Electrical specifications 382
10.1 DC electrical characteristics 382

10.2 Equivalent circuits 383

10.3 AC timing characteristics 384

10.4 Power rating 386

11 Performance 387
11.1 Performance overview 387

11.2 Fast multiply, TIMES 389

11.3 Arithmetic 389

11.4 Floating point operations 390

11.5 Effect of external memory 391

11.6 Interrupt latency 392




Xiv

12 Package specifications 393
12.1 84 pin grid array package 393

12.2 84 pin PLCC J-bend package 395

13 Ordering 397
9 IMS T222 engineering data 399
1 Introduction 400
2 Pin designations 402
3 Processor 403
3.1 Registers 403

3.2 Instructions 404

3.2.1 Direct functions 404

3.2.2 Prefix functions 404

3.2.3 Indirect functions 405

3.2.4  Expression evaluation 405

3.2.5 Efficiency of encoding 405

3.3 Processes and concurrency 406

3.4 Priority 407

3.5 Communications 407

3.6 Timers 408

4 Instruction set summary 409
4.1 Descheduling points 410

4.2 Error instructions 410

5 System services 415
5.1 Power 415

5.2 CapPlus, CapMinus 415

5.3 Clockin 415

5.4 Reset 416

5.5 Bootstrap 416

5.6 Peek and poke 418

5.7 Analyse 418

5.8 Error 419

6 Memory 420
7 External memory interface 422
7.1 ProcClockOut 422

7.2 Tstates 423

7.3 Internal access 423

7.4 MemAO0-15 423

7.5 MemDO0-15 423

7.6 notMemWrBO0-1 424

7.7 notMemCE 426

7.8 MemBAcc 428

7.9 MemWait 429

7.10 MemReq, MemGranted 431




XV

8 Events 433
9 Links 434
10 Electrical specifications 437
10.1 DC electrical characteristics 437

10.2 Equivalent circuits 438

10.3 AC timing characteristics 439

10.4 Power rating 441

11 Performance 442
11.1 Performance overview 442

11.2 Fast multiply, TIMES 444

11.3 Arithmetic 444

11.4 Floating point operations 445

11.5 Effect of external memory 446

11.6 Interrupt latency 447

12 Package specifications 448
121 68 pin grid array package 448

12.2 68 pin PLCC J-bend package 450

13 Ordering 452
10 IMS T225 preview 453
1 Introduction 454
2 Pin designations 456
3 Instruction set summary 457
4 Package specifications 459
4.1 68 pin grid array package 459

4.2 68 pin PLCC J-bend package 460

5 Ordering 461
11 IMS M212 preview 463
1 Introduction 464
1.1 IMS M212 peripheral processor 465

1.1.1  Central processor 465

1.1.2  Peripheral interface 465

1.1.3 Disk controller 465

1.1.4 Links 466

1.1.5 Memory system 466

1.1.6  Error handling 466

2 Operation 467
2.1 Mode 1 467

2.2 Mode 2 468




Xvi

3 Applications 469
4 Package specifications 473
4.1 68 pin grid array package 473

4.2 68 pin PLCC J-bend package 475

5 Ordering 477
12 IMS C004 engineering data 479
1 Introduction 480
2 Pin designations 481
3 System services 482
3.1 Power 482

3.2 CapPlus, CapMinus 482

3.3 Clockin 482

3.4 Reset 484

4 Links 485
5 Switch implementation 489
6 Applications 490
6.1 Link switching 490

6.2 Multiple IMS C004 control 490

6.3 Bidirectional exchange 490

6.4 Bus systems 490

7 Electrical specifications 494
7.1 DC electrical characteristics 494

7.2 Equivalent circuits 495

7.3 AC timing characteristics 496

7.4 Power rating 497

8 Package specifications 498
8.1 84 pin grid array package 498

8.2 84 lead quad cerpack package 500

9 Ordering 502
13 IMS CO11 engineering data 503
1 Introduction 504
2 Pin designations 505




Xvii

3 System services 506
3.1 Power 506

3.2 CapMinus 506

3.3 Clockin 506

3.4 SeparatelQ 507

3.5 Reset 508

4 Links 509
5 Mode 1 parallel interface 512
5.1 Input port 512

5.2 Output port 513

6 Mode 2 Parallel interface 514
6.1 DO0-7 514

6.2 notCS 514

6.3 RnotW 514

6.4 RSO0-1 514

6.4.1 Input Data Register 514

6.4.2 Input Status Register 517

6.4.3 Output Data Register 517

6.4.4 Output Status Register 517

6.5 Inputint 517

6.6 Outputint 518

6.7 Data read 518

6.8 Data write 518

7 Electrical specifications 519
7.1 DC electrical characteristics 519

7.2 Equivalent circuits 520

7.3 AC timing characteristics 521

7.4 Power rating 523

8 Package specifications 524
8.1 28 pin plastic dual-in-line package 524

8.2 28 pin ceramic dual-in-line package 525

8.3 28 pin SOIC package 526

8.4 Pinout 527

9 Ordering 528
14 IMS C012 engineering data 529
1 Introduction 530
2 Pin designations 531
3 System services 532
3.1 Power 532

3.2 CapMinus 532

3.3 Clockin 532

3.4 Reset 534




xviii

4 Links 535
5 Parallel interface 538
5.1 DO-7 538

5.2 notCS 538

5.3 RnotW 538

5.4 RSO0-1 538

5.4.1  Input Data Register 538

5.4.2 Input Status Register 541

5.4.3 Output Data Register 541

5.4.4 Output Status Register 541

5.5 Inputint 541

5.6 Outputint 542

5.7 Data read 542

5.8 Data write 542

6 Electrical specifications 543
6.1 DC electrical characteristics 543

6.2 Equivalent circuits 544

6.3 AC timing characteristics 545

6.4 Power rating 547

7 Package specifications 548
7.1 24 pin plastic dual-in-line package 548

7.2 Pinout 549

8 Ordering 550
A Quality and Reliability 551
A Quality and Reliability 552
A1 Total quality control (TQC) and reliability programme 552

A2 Quality and reliability in design 552

A3 Document control 553

A4 New product qualification 553

A.5 Product monitoring programme 553

A.6 Production testing and quality monitoring procedure 554

A.6.1 Reliability testing 554

A6.2 Production testing 554

A.6.3 Quality monitoring procedure 555

B Index 557

B Index 559




Xix

Preface

This databook describes the architecture of the transputer family of products and details some of the devices
which make up that family. Iltems described include the 32 bit and 16 bit transputer products IMS T805,
IMS T801, IMS T800, IMS T425, IMS T414, IMS T222 and IMS T225; the peripheral controller IMS M212;
and the communications devices IMS C004, IMS C011 and IMS C012. For details of the military version of
a device refer to The Military Micro-products Databook which is available as a separate publication.

The databook first describes the transputer architecture and general features of transputer family devices. It
then continues with the various product datasheets.

A transputer is a single VLSI device with processor, memory and communications links for direct connection
to other transputers. Concurrent systems can be constructed from a collection of transputers operating
concurrently and communicating through links. The transputer can be used as a building block for concurrent
processing systems, with occam as the associated design formalism.

Current transputer products include the 16 bit IMS T222, the 32 bit IMS T414 and IMS T425, and the IMS T800,
IMS T801 and IMS T805 which are 32 bit transputers with an integral high speed floating point processor. A
product preview of the IMS T225, which is a 16 bit transputer with debugger support, is also included.

The IMS M212 is an intelligent peripheral controller. It contains a 16 bit processor, on-chip memory and
communications links. It contains hardware and interface logic to control disk drives and can be used as a
programmable disk controller or as a general purpose peripheral interface.

The INMOS serial communication link is a high speed system interconnect which provides full duplex com-
munication between members of the transputer family. It can also be used as a general purpose interconnect
even where transputers are not used. The IMS C011 and IMS C012 link adaptors are communications de-
vices enabling the INMOS serial communication link to be connected to parallel data ports and microprocessor
buses. Ths IMS C004 is a programmable link switch. It provides a full crossbar switch between 32 link inputs
and 32 link outputs.

The transputer development system referred to in this databook comprises an integrated editor, compiler
and debugging system which enables transputers to be programmed in 0ccam and in industry standard
languages, for example, C, Fortran, Pascal. The Transputer Development System Manual is supplied with
the transputer development system and is available as a separate publication.

Other information relevant to all transputer products is contained in the occam Reference Manual, supplied
with INMOS software products and available as a separate publication. If more detail on the machine level
operation is required, refer to Transputer Instruction Set - A Compiler Writers’ Guide, which is available as a
separate publication.

Various application and technical notes are also available from INMOS.

Software and hardware examples given in this databook are outline design studies and are included to
illustrate various ways in which transputers can be used. The examples are not intended to provide accurate
application designs.

In addition to transputer devices, the INMOS product range also includes graphics products, digital signal
processing devices and memory devices. For further information concerning INMOS products, please contact
your local INMOS sales outlet.
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Notation and nomenclature

The nomenclature and notation in general use throughout this databook is described below.

Significance

The bits in a byte are numbered 0 to 7, with bit 0 least significant. The bytes in words are numbered from 0,
with byte 0 least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered 0. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Similarly, components of arrays are numbered starting from 0 and stored in memory with component 0 at the
lowest address.

Transputer memory is byte addressed, with words aligned on four-byte boundaries for 32 bit devices and on
two-byte boundaries for 16 bit devices.

Hexadecimal values are prefixed with #, as in #1DF.

Where a byte is transmitted serially, it is always transmitted least significant bit (0) first. In general, wherever
a value is transmitted as a number of component values, the least significant component is transmitted first.
Where an array is transmitted serially, component 0 is transmitted first. Consequently, block transfers to and
from memory are performed starting with the lowest (most negative) address and ending with the highest
(most positive) one.

In diagrams, the least significant component of a value is to the right hand side of the diagram. Component 0
of an array is at the bottom of a diagram, as are the most negative memory locations.

Signal naming conventions

Signal names identifying individual pins of a transputer chip have been chosen to avoid being cryptic, giving
as much information as possible. The majority of transputer signals are active high. Those which are active
low have names commencing with not; names such as RnotW imply that the first component of the name
refers to its active high state and the second to its active low state. Capitals are used to introduce new
components of a name, as in ProcClockOut.

All transputer signals described in the text of this databook are printed in bold. Registers and flags internal to
a device are printed in italics, as are instruction operation codes. ltalics are also used for emphasis. occam
program notation is printed in a £ixed space teletype style.

References
The databook is divided into several chapters, each chapter having a number of sections and subsections.

Figures and tables have reference numbers tied to relevant sections of a particular chapter of the databook.
Unless otherwise stated, all references refer to those within the current chapter of the databook.
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Transputer product numbers
All INMOS products, both memories and transputers, have a part number of the general form

IMS abbbc-xyyz
Field a identifies the product group. This is a digit for memory products and a letter for other devices, the
particular letter indicating the type of product (table 1). Field bb% identifies the product within that group and
field ¢ is its revision code. Field x denotes the package type, whilst field yy indicates speed variants etc.
The final field z indicates to which specification the component is qualified; standard, military etc. Where
appropriate some identifiers may be omitted, depending on the device.

A typical product part would be IMS T800C-G20S.

Table 1 INMOS products

IMS 1... Static RAM products

IMS A... Digital signal processors

IMS B... PC boards and modular hardware
IMS C... Communications adaptors
IMS D... Development system

IMS G... Graphics products

IMS L... Literature

IMS M... Peripheral control transputers
IMS P... occam programming system
IMS S... Software product

IMS T... Transputers
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1 Introduction

INMQCS is a recognised leader in the development and design of high-performance integrated circuits and is
a pioneer in the field of parallel processing. The company manufactures components designed to satisfy the
most demanding of current processing applications and also provide an upgrade path for future applications.
Current designs and development will meet the requirements of systems in the next decade. Computing
requirements essentially include high-performance, flexibility and simplicity of use. These characteristics are
central to the design of all INMOS products.

INMOS has a consistent record of innovation over a wide product range and supplies components to system
manufacturing companies in the United States, Europe, Japan and the Far East. As developers of the
Transputer, a unique microprocessor concept with a revolutionary architecture, and the occam parallel
processing language, INMOS has established the standards for the future exploitation of the power of parallel
processing. INMOS products include a range of transputer products in addition to a highly successful range
of high-performance graphics devices, an innovative and successful range of high-performance digital signal
processing (DSP) devices and a broad range of fast static RAMs, an area in which it has achieved a greater
than 10% market share.

The corporate headquarters, product design team and worldwide sales and marketing management are based
at Bristol, UK.

INMOS is constantly upgrading, improving and developing its product range and is committed to maintaining
a global position of innovation and leadership.

1.1 Manufacturing

INMOS products are manufactured at the INMOS Newport, Duffryn facility which began operations in 1983.
This is an 8000 square metre building with a 3000 square metre cleanroom operating to Class 10 environment
in the work areas.

To produce high performance products, where each microchip may consist of up to 400,000 transistors,

INMOS uses advanced manufacturing equipment. Wafer steppers, plasma etchers and ion implanters form
the basis of fabrication.

1.2 Assembly

Sub-contractors in Korea, Taiwan, Hong Kong and the UK are used to assemble devices.

1.3 Test

The final testing of commercial products is carried out at the INMOS Newport, Coed Rhedyn facility. Military
final testing takes place at Colorado Springs.

1.4 Quality and Reliability

Stringent controls of quality and reliability provide the customer with early failure rates of less than 1000
ppm and long term reliability rates of better than 100 FITs (one FIT is one failure per 1000 million hours).
Requirements for military products are even more stringent.

1.5 Military

Various INMOS products are already available in military versions processed in full compliance with MIL-STD-
883C. Further military programmes are currently in progress.
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1.6 Future Developments
1.6.1 Research and Development
INMOS has achieved technical success based on a position of innovation and leadership in products and

process technology in conjunction with substantial research and development investment. This investment
has averaged 18% of revenues since inception and it is anticipated that future investment will be increased.

1.6.2 Process Developments

One aspect of the work of the Technology Development Group at Newport is to scale the present 1.2 micron
technology to 1.0 micron for products to be manufactured in 1989/90. In addition, work is in progress on the
development of 0.8 micron CMOS technology.
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1.1 Overview

A transputer is a microcomputer with its own local memory and with links for connecting one transputer to
another transputer.

The transputer architecture defines a family of programmable VLSI components. The definition of the ar-
chitecture falls naturally into the logical aspects which define how a system of interconnected transputers is
designed and programmed, and the physical aspects which rzfine how transputers, as VLS| components,
are interconnected and controlled.

A typical member of the transputer product family is a single chip containing processor, memory, and com-
munication links which provide point to point connection between transputers. In addition, each transputer
product contains special circuitry and interfaces adapting it to a particular use. For example, a peripheral
control transputer, such as a graphics or disk controller, has interfaces tailored to the requirements of a
specific device.

A transputer can be used in a single processor system or in networks to build high performance concur-
rent systems. A network of transputers and peripheral controllers is easily constructed using point-to-point
communication.

Figure 1.2 Transputer network
Transputers and occam

Transputers can be programmed in most high level languages, and are designed to ensure that compiled
programs will be efficient. Where it is required to exploit concurrency, but still to use standard languages,
occam can be used as a harness to link modules written in the selected languages.

To gain most benefit from the transputer architecture, the whole system can be programmed in 0occam
(pages 12, 29). This provides all the advantages of a high level language, the maximum program efficiency
and the ability to use the special features of the transputer.

occam provides a framework for designing concurrent systems using transputers in just the same way
that boolean algebra provides a framework for designing electronic systems from logic gates. The system
designer’s task is eased because of the architectural relationship between occam and the transputer. A
program running in a transputer is formally equivalent to an 0ccam process, so that a network of transputers
can be described directly as an occam program.
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Figure 1.3 A node of four transputers

1.2 System design rationale

The transputer architecture simplifies system design by the use of processes as standard software and
hardware building blocks.

An entire system can be designed and programmed in 0ccam, from system configuration down to low level
/0 and real time interrupts.

1.21 Programming

The software building block is the process. A system is designed in terms of an interconnected set of
processes. Each process can be regarded as an independent unit of design. It communicates with other
processes along point-to-point channels. Its internal design is hidden, and it is completely specified by the
messages it sends and receives. Communication between processes is synchronized, removing the need for
any separate synchronisation mechanism.

Internally, each process can be designed as a set of communicating processes. The system design is
therefore hierarchically structured. At any level of design, the designer is concerned only with a small and
manageable set of processes.

occam is based on these concepts, and provides the definition of the transputer architecture from the logical
point of view (pages 12, 29).
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1.2.2 Hardware

Processes can be implemented in hardware. A transputer, executing an occam program, is a hardware
process. The process can be independently designed and compiled. lts internal structure is hidden and it
communicates and synchronizes with other transputers via its links, which implement 0Ccam channels.

Other hardware implementations of the process are possible. For example, a transputer with a different
instruction set may be used to provide a different cost/performance trade-off. Alternatively, an implementation
of the process may be designed in terms of hard-wired logic for enhanced performance.

The ability to specify a hard-wired function as an occam process provides the architectural framework for
transputers with specialized capabilities (e.g., graphics). The required function (e.g., a graphics drawing and
display engine) is defined as an occam process, and implemented in hardware with a standard occam
channel interface. It can be simulated by an occam implementation, which in turn can be used to test the
application on a development system.

1.2.3 Programmable components

A transputer can be programmed to perform a specialized function, and be regarded as a ‘black box’ thereafter.
Some processes can be hard-wired for enhanced performance.

A system, perhaps constructed on a single chip, can be built from a combination of software processes, pre-
programmed transputers and hardware processes. Such a system can, itself, be regarded as a component
in a larger system.

The architecture has been designed to permit a network of programmable components to have any desired
topology, limited only by the number of links on each transputer. The architecture minimizes the constraints
on the size of such a system, and the hierarchical structuring provided by occam simplifies the task of
system design and programming.

The result is to provide new orders of magnitude of performance for any given application, which can now
exploit the concurrency provided by a large number of programmable components.

1.3 Systems architecture rationale
1.3.1 Point to point communication links

The transputer architecture simplifies system design by using point to point communication links. Every
member of the transputer family has one or more standard links, each of which can be connected to a link
of some other component. This allows transputer networks of arbitrary size and topology to be constructed.

Point to point communication links have many advantages over multi-processor buses:

There is no contention for the communication mechanism, regardless of the number of
transputers in the system.

There is no capacitive load penalty as transputers are added to a system.

The communications bandwidth does not saturate as the size of the system increases.
Rather, the larger the number of transputers in the system, the higher the total communi-
cations bandwidth of the system. However large the system, all the connections between
transputers can be short and local.
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1.3.2 Local memory

Each transputer in a system uses its own local memory. Overall memory bandwidth is proportional to the
number of transputers in the system, in contrast to a large global memory, where the additional processors
must share the memory bandwidth.

Because memory interfaces are not shared, and are separate from the communications interfaces, they can
be individually optimized on different transputer products to provide high bandwidth with the minimum of
external components.

1.4 Communication

To provide synchronised communication, each message must be acknowledged. Consequently, a link requires
at least one signal wire in each direction.

Transputer 1 Transputer 2
>
process w process x
¢
process y process z

Figure 1.4 Links communicating between processes

A link between two transputers is implemented by connecting a link interface on one transputer to a link
interface on the other transputer by two one-directional signal lines, along which data is transmitted serially.

The two signal wires of the link can be used to provide two 0CCam channels, one in each direction. This
requires a simple protocol. Each signal line carries data and control information.

The link protocol provides the synchronized communication of 0cCam. The use of a protocol providing for
the transmission of an arbitrary sequence of bytes allows transputers of different word length to be connected.

Each message is transmitted as a sequence of single byte communications, requiring only the presence of
a single byte buffer in the receiving transputer to ensure that no information is lost. Each byte is transmitted
as a start bit followed by a one bit followed by the eight data bits followed by a stop bit. After transmitting a
data byte, the sender waits until an acknowledge is received; this consists of a start bit followed by a zero
bit. The acknowledge signifies both that a process was able to receive the acknowledged byte, and that the
receiving link is able to receive another byte. The sending link reschedules the sending process only after
the acknowledge for the final byte of the message has been received.

Data bytes and acknowledges are multiplexed down each signal line. An acknowledge can be transmitted as
soon as reception of a data byte starts (if there is room to buffer another one). Consequently transmission
may be continuous, with no delays between data bytes.
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Data 0 1 2 3 4 5 6 7

Acknowledge

1 0

Figure 1.5 Link protocol

The links are designed to make the engineering of transputer systems straightforward. Board layout of two
wire connections is easy to design and area efficient. All transputers will support a standard communications
frequency of 10 Mbits/sec, regardless of processor performance. Thus transputers of different performance
can be directly connected and future transputer systems will directly communicate with those of today.

Transputer 1 Transputer 2 Transputer 1 Transputer 2
P ——
] e
Common clock Clock 1 Clock 2

Figure 1.6 Clocking transputers

Link communication is not sensitive to clock phase. Thus, communication can be achieved between inde-
pendently clocked systems as long as the communications frequency 1s the same.

The transputer family includes a number of link adaptor devices which provide a means of interfacing trans-
puter links to non-transputer devices.
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2 occam model

The programming model for transputers is defined by occam (page 29). The purpose of this section is to
describe how to access and control the resources of transputers using 0ccam. A more detailed description
is available in the occam programming manual and the transputer development system manual (provided
with the development system).

The transputer development system will enable transputers to be programmed in other industry standard
languages. Where it is required to exploit concurrency, but still to use standard languages, 0ccam can be
used as a harness to link modules written in the selected languages.

2.1 Overview

In occam processes are connected to form concurrent systems. Each process can be regarded as a black
box with internal state, which can communicate with other processes using point to point communication
channels. Processes can be used to represent the behaviour of many things, for example, a logic gate, a
microprocessor, a machine tool or an office.

The processes themselves are finite. Each process starts, performs a number of actions and then terminates.
An action may be a set of sequential processes performed one after another, as in a conventional programming
language, or a set of parallel processes to be performed at the same time as one another. Since a process
is itself composed of processes, some of which may be executed in parallel, a process may contain any
amount of internal concurrency, and this may change with time as processes start and terminate.

Ultimately, all processes are constructed from three primitive processes - assignment, input and output. An
assignment computes the value of an expression and sets a variable to the value. Input and output are
used for communicating between processes. A pair of concurrent processes communicate using a one way
channel connecting the two processes. One process outputs a message to the channel and the other process
inputs the message from the channel.

The key concept is that communication is synchronized and unbuffered. If a channel is used for input
in one process, and output in another, communication takes place when both processes are ready. The
value to be output is copied from the outputting process to the inputting process, and the inputting and
outputting processes then proceed. Thus communication between processes is like the handshake method
of communication used in hardware systems.

Since a process may have internal concurrency, it may have many input channels and output channels
performing communication at the same time.

Every transputer implements the occam concepts of concurrency and communication. As a result, occam
can be used to program an individual transputer or to program a network of transputers. When occam is
used to program an individual transputer, the transputer shares its time between the concurrent processes
and channel communication is implemented by moving data within the memory. When occam is used to
program a network of transputers, each transputer executes the process allocated to it. Communication
between occam processes on different transputers is implemented directly by transputer links. Thus the
same 0ccam program can be implemented on a variety of transputer configurations, with one configuration
optimized for cost, another for performance, or another for an appropriate balance of cost and performance.

The transputer and 0ccam were designed together. All transputers include special instructions and hardware
to provide maximum performance and optimal implementations of the occam model of concurrency and
communications.

All transputer instruction sets are designed to enable simple, direct and efficient compilation of occam.
Programming of 1/0, interrupts and timing is standard on all transputers and conforms to the 0ccam model.

Different transputer variants may have different instruction sets, depending on the desired balance of cost,
performance, internal concurrency and special hardware. The occam level interface will, however, remain
standard across all products.
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Figure 2.1 Mapping processes onto one or several transputers

2.2 occam overview
221 Processes

After it starts execution, a process performs a number of actions, and then either stops or terminates. Each
action may be an assignment, an input, or an output. An assignment changes the value of a variable, an
input receives a value from a channel, and an output sends a value to a channel.

At any time between its start and termination, a process may be ready to communicate on one or more of
its channels. Each channel provides a one way connection between two concurrent processes; one of the
processes may only output to the channel, and the other may only input from it.

Assignment
An assignment is indicated by the symbol :=. The example
v = e

sets the value of the variable v to the value of the expression e and then terminates, for example:
x := 0setsxtozero,andx := x + 1 increases the value of x by 1.

Input
An input is indicated by the symbol ? The example
c ? x
inputs a value from the channel ¢, assigns it to the variable x and then terminates.
Output
An output is indicated by the symbol ! The example
c!le

outputs the value of the expression e to the channel c.
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222 Constructions

A number of processes can be combined to form a construct. A construct is itself a process and can therefore
be used as a component of another construct. Each component process of a construct is written two spaces
further from the left hand margin, to indicate that it is part of the construct. There are four classes of constructs
namely the sequential, parallel, conditional and the alternative construct.

Sequence

A sequential construct is represented by

The component processes P1, P2, P3 ... are executed one after another. Each component process starts
after the previous one terminates and the construct terminates after the last component process terminates.
For example

SEQ
cl ?
x =
c2 !

+ 1

LI

inputs a value, adds one to it, and then outputs the result.

Sequential constructs in occam are similar to programs written in conventional programming languages.
Note, however, that they provide the performance and efficiency equivalent to that of an assembler for a
conventional microprocessor.

Parallel

A parallel construct is represented by

The component processes P1, P2, P3 ... are executed together, and are called concurrent processes. The
construct terminates after all of the component processes have terminated, for example:

PAR
cl ? x
c2 !y

allows the communications on channels ¢1 and c2 to take place together.

The parallel construct is unique to 0ccam. It provides a straightforward way of writing programs which directly
reflects the concurrency inherent in real systems. The implementation of parallelism on a single transputer
is highly optimized so as to incur minimal process scheduling overhead.
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Communication

Concurrent processes communicate only by using channels, and communication is synchronized. If a channel
is used for input in one process, and output in another, communication takes place when both the inputting
and the outputting processes are ready. The value to be output i1s copied from the outputting process to the
inputting process, and the processes then proceed.

Communication between processes on a single transputer is via memory-to-memory data transfer. Between
processes on different transputers it is via standard links. In either case the occam program is identical.

Conditional
A conditional construct

IF
conditionl
Pl
condition2
P2

means that P1 is executed if conditionl is true, otherwise P2 is executed if condition2 is true, and
so on. Only one of the processes is executed, and then the construct terminates, for example:

IF
x =0
y :=y +1
x <> 0
SKIP

increases y only if the value of x is 0.
Alternation

An alternative construct

ALT
inputl
Pl
input2
P2
input3
P3

waits until one of inputl, input2, input3 ... is ready. If inputl first becomes ready, inputl
is performed, and then process P1 is executed. Similarly, if input2 first becomes ready, input2 is
performed, and then process P2 is executed. Only one of the inputs is performed, then its corresponding
process is executed and then the construct terminates, for example:

ALT
count ? signal
counter := counter + 1
total ? signal
SEQ
out ! counter
counter := 0

either inputs a signal from the channel count, and increases the variable counter by 1, or alternatively
inputs from the channel total, outputs the current value of the counter, then resets it to zero.
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The ALT construct provides a formal language method of handling external and internal events that must be
handled by assembly level interrupt programming in conventional microprocessors.

Loop

WHILE condition
P

repeatedly executes the process P until the value of the condition is false, for example:

WHILE (x - 5) > 0
x :(=x - 5

leaves x holding the value of (x remainder 5) if x were positive.
Selection
A selection construct

CASE s

n
Pl

m,q
P2

means that P1 is executed if s has the same value as n, otherwise P2 is executed if s has the same value
as m or q, and so on, for example:

CASE direction

up

x :=x + 1
down

x :=x -1

increases the value of x if direction is equal to up, otherwise if direction is equal to down the value
of x is decreased.

Replication

A replicator is used with a SEQ, PAR, IF or ALT construction to replicate the component process a number
of times. For example, a replicator can be used with SEQ to provide a conventional loop.

SEQ i = 0 FOR n
P

causes the process P to be executed n times.

A replicator may be used with PAR to construct an array of concurrent processes.

PAR i = 0 FOR n
Pi

constructs an array of n similar processes PO, P1, ..., Pn-1. The index i takes the values 0, 1, ..., n-1,in
PO, P1, ..., Pn-1 respectively.
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2.23 Types

Every variable, expression and value has a type, which may be a primitive type, array type, record type or
variant type. The type defines the length and interpretation of data.

All implementations provide the primitive types shown in table 2.1.

Table 2.1 Types

CHAN OF protocol Each communication channel provides communication between
two concurrent processes. Each channel is of a type which
allows communication of data according to the specified protocol.

TIMER Each timer provides a clock which can be used by any number
of concurrent processes.

BOOL The values of type BOOL are true and false.

BYTE The values of type BYTE are unsigned numbers n
in the range 0 <=n< 256.

INT Signed integers n in the range —2%' <=n< 23!,

INT16 Signed integers n in the range —2'° <=n< 215,

INT32 Signed integers n in the range —23' <=n< 2%,

INT64 Signed integers n in the range —2%3 <=n< 2%,

REAL32 Floating point numbers stored using a sign bit, 8 bit exponent and
23 bit fraction in ANSI/IEEE Standard 754-1985 representation.’

REAL64 Floating point numbers stored using a sign bit, 11 bit exponent and
52 bit fraction in ANSI/IEEE Standard 754-1985 representation.’

224 Declarations, arrays and subscripts
A declaration T x declares x as a new channel, variable, timer or array of type T, for example:

INT x:
P

declares x as an integer variable for use in process P.

Array types are constructed from component types. Forexample [ n 1 T is an array type constructed from
n components of type T.

A component of an array may be selected by subscription, for example v [e] selects the e’th component of
V.

A set of components of an array may be selected by subscription, for example [v FROM e FOR c] selects
the ¢ components vie]l, v[e + 1], ... v[e + c - 1]. A setof components of an array may
be assigned, input or output.

VIEEE Standard for Binary Floating-Point arithmetic
ANSI/IEEE Std 754-1985
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2.25 Procedures

A process may be given a name, for example:
PROC square (INT n)
n :=n *n
defines the procedure square. The name may be used as an instance of the process, for example:
square (x)
is equivalent to
n IS x:
2.2.6 Functions
A function can be defined in the same way as a procedure. For example:
INT FUNCTION factorial (VAL INT n)
INT product:
VALOF
IF
n >0
SEQ
product :=1
SEQ i =1 FOR n

product := product * i
RESULT product

defines the function factorial, which may appear in expressions such as

m := factorial (6)

227 Expressions

An expression is constructed from the operators given in table 2.2, from variables, numbers, the truth values
TRUE and FALSE, and the brackets ( and ).

Table 2.2 Operators

Operator Operand types Description
+ - * / REM integer, real arithmetic operators
PLUS MINUS TIMES AFTER integer modulo arithmetic
= <> any primitive relational operators
> < >= <= integer, real relational operators
AND OR NOT boolean boolean operators
/\ \/ > ~ integers bitwise operators: and, or, xor, not
<< >> integer shift operators
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For example, the expression
5+ 7)) / 2
evaluates to 6, and the expression
(#1DF /\ #FO) >> 4
evaluates to #D (the character # introduces a hexadecimal constant).

A string is represented as a sequence of ASCII characters, enclosed in double quotation marks ". If the
string has n characters, then it is an array of type [n]BYTE.

2.2.8 Timer

All transputers incorporate a timer. The implementation directly supports the 0ccam model of time. Each
process can have its own independent timer, which can be used for internal measurement or for real time
scheduling.

A timer input sets a variable to a value of type INT representing the time. The value is derived from a clock,
which changes at regular intervals, for example:

tim ? v
sets the variable v to the current value of a free running clock, declared as the timer tim.

A delayed input takes the following form

tim ? AFTER e

A delayed input is unable to proceed until the value of the timer satisfies (timer AFTER ¢). The comparison
performed is a modulo comparison. This provides the effect that, starting at any point in the timer’s cycle,
the previous half cycle of the timer is considered as being before the current time, and the next half cycle is
considered as being after the current time.

2.29 Peripheral access

The implementation of occam provides for peripheral access by extending the input and output primitives
with a port input/output mechanism. A port is used like an 0ccam channel, but has the effect of transferring
information to and from a block of addresses associated with a peripheral.

Ports behave like occam channels in that only one process may input from a port, and only one process
may output to a port. Thus ports provide a secure method of accessing external memory mapped status
registers etc.

Note that there is no synchronization mechanism associated with port input and output. Any timing constraints
which result from the use of asynchronous external hardware will have to be programmed explicitly. For
example, a value read by a port input may depend upon the time at which the input was executed, and
inputting at an invalid time would produce unusable data.

During applications development it is recommended that the peripheral is modelled by an 0CCam process
connected via channels.
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2.3 Configuration

occam programs may be configured for execution on one or many transputers. The transputer development
system provides the necessary tools for correctly distributing a program configured for many transputers.

Configuration does not affect the logical behaviour of a program (see section four, Program development).
However, it does enable the program to be arranged to ensure that performance requirements are met.

PLACED PAR

A parallel construct may be configured for a network of transputers by using the PLACED PAR construct.
Each component process (termed a placement) is executed by a separate transputer. The variables and
timers used in a placement must be declared within each placement process.

PRI PAR

On any individual transputer, the outermost parallel construct may be configured to prioritize its components.
Each process is executed at a separate priority. The first process has the highest priority, the last process
has the lowest priority. Lower priority components may only proceed when all higher priority components are
unable to proceed.

2.31 INMOS standard links
Each link provides one channel in each direction between two transputers.

A channel (which must already have been declared) is associated with a link by a channel association, for
example:

PLACE LinkOInput AT 4
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3 Error handling

Errors in 0Cccam programs are either detected by the compiler or can be handled at runtime in one of three
ways.

1 Cause the process to STOP allowing other processes to continue.

2 Cause the whole system to halt.

3 Have an arbitrary (undefined) effect.
The occam process STOP starts but never terminates. In method 1, an errant process stops and in particular
cannot communicate erroneous data to other processes. Other processes will continue to execute until they
become dependent on data from the stopped process. It is therefore possible, for example, to write a
process which uses a timeout to warn of a stopped process, or to construct a redundant system in which
several processes performing the same task are used to enable the system to continue after one of them
has failed.
Method 1 is the preferred method of executing a program.

Method 2 is useful for program development and can be used to bring transputers to an immediate halt,
preventing execution of further instructions. The transputer Error output can be used to inform the transputer
development system that such an error has occurred. No variable local to the process can be overwritten
with erroneous data, facilitating analysis of the program and data which gave rise to the error.

Method 3 is useful only for optimising programs which are known to be correct!

When a system has stopped or halted as a result of an error, the state of all transputers in the system can
be analysed using the transputer development system.

For languages other than occam, the transputer provides facilities for handling individual errors by software.
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4 Program development

The development of programs for multiple processor systems can involve experimentation. In some cases,
the most effective configuration is not always clear until a substantial amount of work has been done. For
this reason, it is desirable that most of the design and programming can be completed before hardware
construction is started.

4.1 Logical behaviour

An important property of occam in this context is that it provides a clear notion of ‘logical behaviour’; this
relates to those aspects of a program not affected by real time effects.

It is guaranteed that the logical behaviour of a program is not altered by the way in which the processes
are mapped onto processors, or by the speed of processing and communication. Consequently a program
ultimately intended for a network of transputers can be compiled, executed and tested on a single computer
used for program development.

Even if the application uses only a single transputer, the program can be designed as a set of concurrent
processes which could run on a number of transputers. This design style follows the best traditions of
structured programming; the processes operate completely independently on their own variables except
where they explicitly interact, via channels. The set of concurrent processes can run on a single transputer
or, for a higher performance product, the processes can be partitioned amongst a number of transputers.

It is necessary to ensure, on the development system, that the logical behaviour satisfies the application
requirements. The only ways in which one execution of a program can differ from another in functional
terms result from dependencies upon input data and the selection of components of an ALT. Thus a simple
method of ensuring that the application can be distributed to achieve any desired performance is to design
the program to behave ‘correctly’ regardless of input data and ALT selection.

4.2 Performance measurement

Performance information is useful to gauge overall throughput of an application, and has to be considered
carefully in applications with real time constraints.

Prior to running in the target environment, an occam program should be relatively mature, and indeed should
be correct except for interactions which do not obey the 0ccam synchronization rules. These are precisely
the external interactions of the program where the world will not wait to communicate with an 0ccam process
which is not ready. Thus the set of interactions that need to be tested within the target environment are well
identified.

Because, in 0CCam, every program is a process, it is extremely easy to add monitor processes or simulation
processes to represent parts of the real time environment, and then to simulate and monitor the anticipated
real time interactions. The occam concept of time and its implementation in the transputer is important.
Every process can have an independent timer enabling, for example, all the real time interactions to be
modelled by separate processes and any time dependent features to be simulated.

4.3 Separate compilation of 0cCam and other languages

A program portion which is separately compiled, and possibly written in a language other than occam, may
be executed on a single transputer.

If the program is written in occam, then it takes the form of a single PROC, with only channel parameters. If
the program is written in a language other than occam, then a run-time system is provided which provides
input/output to 0ccam channels.
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Such separately compiled program portions are linked together by a framework of channels, termed a harness.
The harness is written in occam. It includes all configuration information, and in particular specifies the
transputer configuration in which the separately compiled program portion is executed.

Transputers are designed to allow efficient implementations of high level languages, such as C, Pascal and
Fortran. Such languages will be available in addition to occam.

At runtime, a program written in such a language is treated as a single occam process. Facilities are
provided in the implementations of these languages to allow such a program to communicate on occam
channels. It can thus communicate with other such programs, or with programs written in occam. These
programs may reside on the same transputer, in which case the channels are implemented in store, or may
reside on different transputers, in which case the channels are implemented by transputer links.

It is therefore possible to implement 0CCam processes in conventional high level languages, and arrange for
them to communicate. It is possible for different parts of the same application to be implemented in different
high level languages.

The standard input and output facilities provided within these languages are implemented by a well-defined
protocol of communications on 0ccam channels.

The development system provides facilities for management of separately compiled occam.

4.4 Memory map and placement
The low level memory model is of a signed address space.

Memory is byte addressed, the lowest addressed byte occupying the least significant byte position within the
word.

The implementation of occam supports the allocation of the code and data areas of an occam process to
specific areas of memory. Such a process must be a separately compiled PROC, and must not reference any
variables and timers other than those declared within it.
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5 Physical architecture
5.1 INMOS serial links
5.1.1 Overview

All transputers have several links. The link protocol and electrical characteristics form a standard for all
INMOS transputer and peripheral products.

All transputers support a standard link communications frequency of 10 Mbits/sec. Some devices also support
other data rates. Maintaining a standard communications frequency means that devices of mixed performance
and type can intercommunicate easily.

Each link consists of two unidirectional signal wires carrying both data and control bits. The link signals are
TTL compatible so that their range can be easily extended by inserting buffers.

The INMOS communication links provide for communication between devices on the same printed circuit
board or between printed circuit boards via a back plane. They are intended to be used in electrically quiet
environments in the same way as logic signals between TTL gates.

The number of links, and any communication speeds in addition to the standard speed of 10 Mbits/sec, are
given in the product data for each product.

5.1.2 Link electrical specification

The quiescent state of the link signals is low, for a zero. The link input signals and output signals are standard
TTL compatible signals.

For correct functioning of the links the specifications for maximum variation in clock frequency between two
transputers joined by a link and maximum capacitive load must be met. Each transputer product also has
specified the maximum permissible variation in delay in buffering, and minimum permissible edge gradients.
Details of these specifications are provided in the product data.

Provided that these specifications are met then any buffering employed may introduce an arbitrary delay into
a link signal without affecting its correct operation.

5.2 System services

5.21 Powering up and down, running and stopping

At all times the specification of input voltages with respect to the GND and VCC pins must be met. This
includes the times when the VCC pins are ramping to 5 V, and also while they are ramping from 5 V down
to 0 V.

The system services comprise the clocks, power, and signals used for initialization.

The specification includes minimum times that VCC must be within specification, the input clock must be
oscillating, and the Reset signal must be high before Reset goes low. These specifications ensure that
internal clocks and logic have settled before the transputer starts.

When the transputer is reset the memory interface is initialised (if present and configurable).

The processor and INMOS serial links start after reset. The transputer obeys a bootstrap program which
can either be in off-chip ROM or can be received from one of the links. How to specify where the bootstrap
program is taken from depends upon the type of transputer being used. The program will normally load up
a larger program either from ROM or from a peripheral such as a disk.

During power down, as during power up, the input and output pins must remain within specification with
respect to both GND and VCC.
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A software error, such as arithmetic overflow, array bounds violation or divide by zero, causes an error flag to
be set in the transputer processor. The flag is directly connected to the Error pin. Both the flag and the pin
can be ignored, or the transputer stopped. Stopping the transputer on an error means that the error cannot
cause further corruption.

As well as containing the error in this way it is possible to determine the state of the transputer and its memory
at the time the error occurred.

5.2.2 Clock distribution

All transputers operate from a standard 5SMHz input clock. High speed clocks are derived internally from the
low frequency input to avoid the problems of distributing high frequency clocks. Within limits the mark-to-
space ratio, the voltage levels and the transition times are immaterial. The limits on these are given in the
product data for each product. The asynchronous data reception of the links means that differences in the
clock phase between chips is unimportant.

The important characteristic of the transputer’s input clock is its stability, such as is provided by a crystal
oscillator. An R-C oscillator is inadequate. The edges of the clock should be monotonic (without kinks), and
should not undershoot below -0.5 V.

5.3 Bootstrapping from ROM or from a link

The program which is executed after reset can either reside in ROM in the transputer’s address space or it
can be loaded via any one of the transputer’'s INMOS serial links.

The transputer bootstraps from ROM by transferring control to the top two bytes in memory, which will
invariably contain a backward jump into ROM.

If bootstrapping from a link, the transputer bootstraps from the first link to receive a message. The first byte
of the message is the count of the number of bytes of program which follow. The program is loaded into
memory starting at a product dependent location MemStart, and then control is transferred to this address.

Messages subsequently arriving on other links are not acknowledged until the transputer processor obeys
a process which inputs from them. The loading of a network of transputers is controlled by the transputer
development system, which ensures that the first message each transputer receives is the bootstrap program.

5.4 Peripheral interfacing

All transputers contain one or more INMOS serial links. Certain transputer products also have other application
specific interfaces. The peripheral control transputers contain specialized interfaces to control a specific
peripheral or peripheral family.

In general, a transputer based application will comprise a number of transputers which communicate using
INMOS links. There are three methods of communicating with peripherals.

The first is by employing peripheral control transputers (eg for graphics or disks), in which the transputer chip
connects directly to the peripheral concerned (figure 5.1). The interface to the peripheral is implemented by
special purpose hardware within the transputer. The application software in the transputer is implemented
as an occam process, and controls the interface via 0ccam channels linking the processor to the special
purpose hardware.

The second method is by employing link adaptors (figure 5.2). These devices convert between a link and a
specialized interface. The link adaptor is connected to the link of an appropriate transputer, which contains
the application designer’s peripheral device handler implemented as an 0CCam process.

The third method is by memory mapping the peripheral onto the memory bus of a transputer (figure 5.3).
The peripheral is controlled by memory accesses issued as a result of PORT inputs and outputs. The
application designer’s peripheral device handler provides a standard occam channel interface to the rest of
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the application.

The first transputers implement an event pin which provides a simple means for an external peripheral to
request attention from a transputer.

In all three methods, the peripheral driver interfaces to the rest of the application via occam channels.
Consequently, a peripheral device can be simulated by an occam process. This enables testing of all
aspects of a transputer system before the construction of hardware.

Peripheral control

transputer
- > -
Peripheral control Transputer Peripheral control
transputer | — transputer

v

Peripheral control
transputer

Figure 5.1 Transputer with peripheral control transputers

Link Adaptor

l¢—— Transputer < Link Adaptor

g 1 {;

Application Microprocessor
interface controlled peripheral

Figure 5.2 Transputer with link adaptors

Peripheral chip Peripheral chip

~ | B O

Figure 5.3 Memory mapped peripherals
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1 Introduction

The INMOS transputer family is a range of system components each of which combines processing, memory
and interconnect in a single VLSI chip. A concurrent system can be constructed from a collection of transputers
which operate concurrently and communicate through serial communication links. Such systems can be
designed and programmed in 0Ccam, a language based on communicating processes, and in other industry
standard languages. Transputers have been sucessfully used in application areas ranging from embedded
systems to supercomputers.

The first member of the family, the IMS T414 32-bit transputer, was introduced in September 1985, and has
enabled concurrency to be applied in a wide variety of applications such as simulation, robot control, image
synthesis, and digital signal processing. Many computationally intensive applications can exploit large arrays
of transputers; the system performance depending on the number of transputers, the speed of inter-transputer
communication and the performance of each transputer processor.

The power of transputer based systems lies in the smoothly scaleable performance offered by adding more
transputers. The transputer embodies the concepts required for effective parallel processing.

Further transputer products are continually being developed which increase the memory, processing perfor-
mance and communications performance. An important example is the floating point transputer first intro-
duced in 1987.
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2 The transputer: basic architecture and concepts
2.1 A programmable device

The transputer is a component designed to exploit the potential of VLSI. This technology allows large numbers
of identical devices to be manufactured cheaply. For this reason, it is attractive to implement a concurrent
system using a number of identical components, each of which is customised by an appropriate program.
The transputer is, therefore, a VLSI device with a processor, memory to store the program executed by
the processor, and communication links for direct connection to other transputers. Transputer systems can
be designed and programmed using occam which allows an application to be described as a collection of
processes which operate concurrently and communicate through channels. The transputer can therefore be
used as a building block for concurrent processing systemis, with 0ccam as the associated design formalism.

2.2 occam

occam enables a system to be described as a collection of concurrent processes, which communicate with
each other and with peripheral devices through channels. occam programs are built from three primitive
processes:

= e assign expression e to variable v
' e output expression e to channel ¢
? v input from channel ¢ to variable v

004

The primitive processes are combined to form constructs:

SEQuential components executed one after another
PARallel components executed together
ALTernative component first ready is executed

A construct is itself a process, and may be used as a component of another construct.

Conventional sequential programs can be expressed with variables and assignments, combined in sequential
constructs. IF and WHILE constructs are also provided.

Concurrent programs can be expressed with channels, inputs and outputs, which are combined in parallel
and alternative constructs.

Each occam channel provides a communication path between two concurrent processes. Communication
is synchronised and takes place when both the inputting process and the outputting process are ready. The
data to be output is then copied from the outputting process to the inputting process, and both processes
continue.

An alternative process may be ready for input from any one of a number of channels. In this case, the input
is taken from the channel which is first used for output by another process.

2.3 VLSI technology

One important property of VLSI technology is that communication between devices is very much slower than
communication within a device. In a computer, almost every operation that the processor performs involves
the use of memory. For this reason a transputer includes both processor and memory in the same integrated
circuit device.
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In any system constructed from integrated circuit devices, much of the physical bulk arises from connections
between devices. The size of the package for an integrated circuit is determined more by the number of
connection pins than by the size of the device itself. In addition, connections between devices provided by
paths on a circuit board consume a considerable amount of space.

The speed of communication between electronic devices is optimised by the use of one-directional signal
wires, each connecting two devices. If many devices are connected by a shared bus, electrical problems of
driving the bus require that the speed is reduced. Also, additional control logic and wiring are required to
control sharing of the bus.

To provide maximum speed with minimal wiring, the transputer uses point-to-point serial communication links
for direct connection to other transputers. The protocols used on the transputer links are discussed later.

24 Simplified processor with micro-coded scheduler

The most effective implementation of simple programs by a programmable computer is provided by a se-
quential processor. Consequently, the transputer has a fairly conventional microcoded processor. There is
a small core of about 32 instructions which are used to implement simple sequential programs. In addition
there are other, more specialised groups of instructions which provide facilities such as long arithmetic and
process scheduling.

As a process executed by a transputer may itself consist of a number of concurrent processes the transputer
has to support the occam programming model internally. The transputer, therefore, has a microcoded
scheduler which shares the processor time between the concurrent processes. The scheduler provides two
priority levels; any high priority process which can run will do so in preference to any low priority process.
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3 Transputer internal architecture

Internally, a transputer consists of a memory, processor and communications system connected via a 32-bit
bus. The bus also connects to the external memory interface, enabling additional local memory to be used.
The processor, memory and communications system each occupy about 25% of the total silicon area, the
remainder being used for power distribution, clock generators and external connections.

The floating point transputers each have an on-chip floating point unit. The small size and high performance
of this unit come from a design which takes careful note of silicon economics. This contrasts starkly with
conventional co-processors, where the floating point unit typically occupies more area than a complete micro-
processor, and requires a second chip.

The block diagram 3.1 indicates the way in which the major blocks of the transputer are interconnected.

FPU
- CPU — CPU
RAM == ) RAM =
> Links >  Links
(
Memory Interface Memory Interface
Floating Point Transputer Transputer

Figure 3.1 Transputer interconnections

The CPU of the transputers contains three registers (A, B and C) used for integer and address arithmetic,
which form a hardware stack. Loading a value into the stack pushes B into C, and A into B, before loading A.
Storing a value from A pops B into A and C into B. Similarly, the FPU includes a three register floating-point
evaluation stack, containing the AF, BF, and CF registers. When values are loaded onto, or stored from the
stack the AF, BF and CF registers push and pop in the same way as the A, B and C registers.

The addresses of floating point values are formed on the CPU stack, and values are transferred between the
addressed memory locations and the FPU stack under the control of the CPU. As the CPU stack is used only
to hold the addresses of floating point values, the wordlength of the CPU is independent of that of the FPU.
Consequently, it would be possible to use the same FPU together with a 16-bit CPU.

The transputer scheduler provides two priority levels. The FPU register stack is duplicated so that when the
floating point transputer switches from low to high priority none of the state in the floating point unit is written
to memory. This results in a worst-case interrupt response of about 3 us. Furthermore, the duplication of
the register stack enables floating point arithmetic to be used in an interrupt routine without any performance
penalty.
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3.1 Sequential processing
The design of the transputer processor exploits the availability of fast on-chip memory by having only a small
number of registers; the CPU contains six registers which are used in the execution of a sequential process.
The small number of registers, together with the simplicity of the instruction set enables the processor to have
relatively simple (and fast) data-paths and control logic.
The six registers are:

The workspace pointer which points to an area of store where local variables are kept.

The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.
The A, B and C registers which form an evaluation stack, and are the sources and destinations for most

arithmetic and logical operations. Loading a value into the stack pushes B into C, and A into B, before
loading A. Storing a value from A, pops B into A and C into B.

Registers Locals Program

A

B

C
Workspace N

Next inst >

Operand

Figure 3.2 Registers

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

3.2 Instructions

It was a design decision that the transputer should be programmed in a high-level language. The instruction
set has, therefore, been designed for simple and efficient compilation. It contains a relatively small number
of instructions, all with the same format, chosen to give a compact representation of the operations most
frequently occuring in programs. The instruction set is independant of the processor wordlength, allowing the
same microcode to be used for transputers with different wordlengths. Each instruction consists of a single
byte divided into two 4-bit parts. The four most significant bits of the byte are a function code, and the four
least significant bits are a data value.
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|Function I Data I
7 43 0

Figure 3.3 Instruction format

3.2.1 Direct functions

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Thirteen of
these are used to encode the most important functions performed by any computer. These include:

load constant add constant

load local store local load local pointer
load non-local store non-local

jump conditional jump call

The most common operations in a program are the loading of small literal values, and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of block structured programming languages such as occam.

3.2.2 Prefix functions

Two more of the function codes are used to allow the operand of any instruction to be extended in length.
These are:

prefix negative prefix
All instructions are executed by loading the four data bits into the least significant four bits of the operand

register, which is then used as the the instruction’s operand. All instructions except the prefix instructions
end by clearing the operand register, ready for the next instruction.

IFunction | Data |

7 43‘0

Operand Register ' ]

Figure 3.4 Instruction operand register

The prefix instruction loads its four data bits into the operand register, and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.
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The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation, by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3.23 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

The encoding of the indirect functions is chosen so that the most frequently occuring operations are repre-
sented without the use of a prefix instruction. These include arithmetic, logical and comparison operations
such as

add exclusive or greater than

Less frequently occuring operations have encodings which require a single prefix operation (the transputer
instruction set is not large enough to require more than 512 operations to be encoded!).

The IMS T800 has additional instructions which load into, operate on, and store from, the floating point
register stack. It also contains new instructions which support colour graphics, pattern recognition and the
implementation of error correcting codes. These instructions have been added whilst retaining the existing
IMS T414 instruction set. This has been possible because of the extensible instruction encoding used in
transputers.

3.24 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte (ie without the use
of prefix instructions). Many of these instructions, such as load constant and add require just one processor
cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive several instructions for every fetch.

Short instructions also improve the effectiveness of instruction prefetch, which in turn improves processor
performance. There is an extra word of prefetch buffer so that the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.

3.3 Support for concurrency

The processor provides efficient support for the 0ccam model of concurrency and communication. It has a
microcoded scheduler which enables any number of concurrent processes to be executed together, sharing
the processor time. This removes the need for a software kernel. The processor does not need to support the
dynamic allocation of storage as the occam compiler is able to perform the allocation of space to concurrent
processes.
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At any time, a concurrent process may be

active - being executed
- on a list waiting to be executed
inactive - ready to input

- ready to output
- waiting until a specified time

The scheduler operates in such a way that inactive processes do not consume any processor time. The active
processes waiting to be executed are held on a list. This is a linked list of process workspaces, implemented
using two registers, one of which points to the first process on the list, the other to the last. In figure 3.5, S is
executing, and P, Q and R are active, awaiting execution.

Registers Locals Program
Front E— R
P -
Back —
P>
Q ¢
A >
— R | ¢
B
c > s
|
Workspace
Next Inst \g
Operand

Figure 3.5 Linked process list

A process is executed until it is unable to proceed because it is waiting to input or output, or waiting for the
timer. Whenever a process is unable to proceed, its instruction pointer is saved in its workspace and the next
process is taken from the list. Actual process switch times are very small as little state needs to be saved; it
is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model. These include
start process end process

When a parallel construct is executed, start process instructions are used to create the necessary concurrent
processes. A start process instruction creates a new process by adding a new workspace to the end of the
scheduling list, enabling the new concurrent process to be executed together with the ones already being
executed.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the components of the parallel construct which have still to terminate.
The counter is initialised to the number of components before the processes are ’started’. Each component
ends with an end process instruction which decrements and tests the counter. For all but the last component,
the counter is non zero and the component is descheduled. For the last component, the counter is zero and
the component continues.
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3.4 Communications

Communication between processes is achieved by means of channels. occam communication is point-to-
point, synchronised and unbuffered. As a result, a channel needs no process queue, ho message queue and
no message buffer.

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
links. The processor provides a number of operations to support message passing, the most important being

input message output message

The input message and output message instructions use the address of the channel to determine whether
the channel is internal or external. This means that the same instruction sequence can be used for both hard
and soft channels, allowing a process to be written and compiled without knowledge of where its channels
are connected.

As in the occam model, communication takes place when both the inputting and outputting processes are
ready. Consequently, the process which first becomes ready must wait until the second one is also ready.

A process performs an input or output by loading the evaluation stack with a pointer to a message, the
address of a channel, and a count of the number of bytes to be transferred, and then executing an input
message or an output message instruction.

3.4.1 Internal channel communication

At any time, an internal channel (a single word in memory) either holds the identity of a process, or holds the
special value empty. The channel is initialised to empty before it is used.

When a message is passed using the channel, the identity of the first process to become ready is stored
in the channel, and the processor starts to execute the next process from the scheduling list. When the
second process to use the channel becomes ready, the message is copied, the waiting process is added to
the scheduling list, and the channel reset {o its initial state. It does not matter whether the inputting or the
outputting process becomes ready first.

In figure 3.6, a process P is about to execute an output instruction on an ‘empty’ channel C. The evaluation
stack holds a pointer to a message, the address of channel C, and a count of the number of bytes in the
message.

P C

Registers

A: count

B: channel ———»{ Empty

C: Pointer

Figure 3.6 Output to empty channel
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After executing the output instruction, the channel C holds the address of the workspace of P, and the address
of the message to be transferred is stored in the workspace of P. P is descheduled, and the process starts
to execute the next process from the scheduling list.

P C

Workspace

Next Inst |«——— P

Pointer

Figure 3.7

The channel C and the process P remain in this state until a second process, Q executes an output instruction
on the channel.

P C Q
Workspace
A: Count
Next Inst |« P l@——— B: Channel
Pointer C: Pointer
Figure 3.8

The message is copied, the waiting process P is added to the scheduling list, and the channel C is reset to
its initial ‘empty’ state.

P C
Workspace
Next Inst Empty
—p List —>

Figure 3.9
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3.4.2 External channel communication

When a message is passed via an external channel the processor delegates to an autonomous link interface
the job of transferring the message and deschedules the process. When the message has been transferred
the link interface causes the processor to reschedule the waiting process. This allows the processor to
continue the execution of other processes whilst the external message transfer is taking place.

Each link interface uses three registers:
a pointer to a process workspace

a pointer to a message
a count of bytes in the message

In figure 3.10 processes P and Q executed by different transputers communicate using a channel C imple-
mented by a link connecting two transputers. P outputs, and Q inputs.

P C Q
Registers Registers
Count Count
Channel > ¢ Channel
Pointer ¢ | Pointer

Figure 3.10 Communication between transputers

P c Q
Workspace Workspace

Next Inst |<g——o P Q —— Next Inst

Pointer L—o——0— Pointer

Figure 3.11

When P executes its output instruction, the registers in the link interface of the transputer executing P are
initialised, and P is descheduled. Similarly, when Q executes its input instruction, the registers in the link
interface of the process executing Q are initialised, and Q is descheduled (figure 3.11).

The message is now copied through the link, after which the workspaces of P and Q are returned to the
corresponding scheduling lists (figure 3.12). The protocol used on P and Q ensures that it does not matter
which of P and Q first becomes ready.
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P C Q
Workspace Workspace
Next Inst Next Inst
—p List S - O—0—] —p| List .
Figure 3.12

3.4.3 Communication links

A link between two transputers is implemented by connecting a link interface on one transputer to a link
interface on the other transputer by two one-directional signal wires, along which data is transmitted serially.
The two wires provide two Ooccam channels, one in each direction. This requires a simple protocol to
multiplex data and control information. Messages are transmitted as a sequence of bytes, each of which
must be acknowledged before the next is transmitted. A byte of data is transmitted as a start bit followed by
a one bit followed by eight bits of data followed by a stop bit. An acknowledgement is transmitted as a start
bit followed by a stop bit. An acknowledgement indicates both that a process was able to receive the data
byte and that it is able to buffer another byte.

The protocol permits an acknowledgement to be generated as soon as the receiver has identified a data
packet. In this way the acknowledgement can be received by the transmitter before all of the data packet has
been transmitted and the transmitter can transmit the next data packet immediately. Some transputers do
not implement this overlapping and achieve a data rate of 0.8 Mbytes/sec using a link to transfer data in one
direction. However, by implementing the overlapping and including sufficient buffering in the link hardware,
the rate can be more than doubled to achieve 1.8 Mbytes/sec in one direction, and 2.4 Mbytes/sec when the
link carries data in both directions. The diagram below shows the signals that would be observed on the two
link wires when a data packet is overlapped with an acknowledgement.

1 1 Data 0
Data byte
1 0

Acknowledge message

Figure 3.13 Link data and acknowledge formats
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Input Link 1 0

Output Link 1 1 <I——I—| DAITA ;» 0
1 1 |

time

Figure 3.14 Overlapped link acknowledge

3.5 Timer

The transputer has a clock which ‘ticks’ every microsecond. The current value of the processor clock can be
read by executing a read timer instruction.

A process can arrange to perform a timer input, in which case it will become ready to execute after a specified
time has been reached.

The timer input instruction requires a time to be specified. If this time is in the ‘past’ (i.e. ClockReg AFTER
SpecifiedTime) then the instruction has no effect. If the time is in the ‘future’ (i.e. SpecifiedTime AFTER
Clockreg or SpecifiedTime = ClockReg) then the process is descheduled. When the specified time is reached
the process is scheduled again.

3.6 Alternative

The occam alternative construct enables a process to wait for input from any one of a number of channels,
or until a specific time occurs. This requires special instructions, as the normal input instruction deschedules
a process until a specific channel becomes ready, or until a specific time is reached. The instructions are:

enable channel disable channel
enable timer disable timer
alternative wait

The alternative is implemented by ’enabling’ the channel input or timer input specified in each of its compo-
nents. The ’alternative wait’ is then used to deschedule the process if none of the channel or timer inputs is
ready; the process will be re-scheduled when any one of them becomes ready. The channel and timer inputs
are then 'disabled’. The ’disable’ instructions are also designed to select the component of the alternative to
be executed; the first component found to be ready is executed.

3.7 Floating point instructions

The core of the floating point instruction set was established fairly early in the design of the floating point
transputer. This core includes simple load, store and arithmetic instructions. Examination of statistics derived
from FORTRAN programs suggested that the addition of some more complex instructions would improve
performance and code density. Proposed changes to the instruction set were assesed by examining their
effect on a number of numerical programs. For each proposed instruction set, a compiler was constructed,
the programs compiled with it, and the resulting code then run on a simulator. The resulting instruction set is
now described.

In the floating point transputer operands are transferred between the transputer’s memory and the floating
point evaluation stack by means of floating point load and store instructions. There are two groups of such
instructions, one for single length numbers, one for double length. In the description of the load and store
instructions which follow only the double length instructions are described. However, there are single length



3 Transputer internal architecture 41

instructions which correspond with each of the double length instructions.

The address of a floating point operand is computed on the CPU’s stack and the operand is then loaded,
from the addressed memory location, onto the FPU’s stack. Operands in the floating point stack are tagged
with their length. The operand’s tag will be set when the operand is loaded or is computed. The tags allow
the number of instructions needed for floating point operations to be reduced; there is no need, for example,
to have both floating add single and floating add double instructions; a single floating add will suffice.

3.7.1 Optimising use of the stack

The depth of the register stacks in the CPU and FPU is carefully chosen. Floating point expressions commonly
have embedded address calculations, as the operands of floating point operators are often elements of one
dimensional or two dimensional arrays. The CPU stack is deep enough to allow most integer calculations
and address calculations to be performed within it. Similarly, the depth of the FPU stack allows most floating
point expressions to be evaluated within it, employing the CPU stack to form addresses for the operands.

No hardware is used to deal with stack overflow. A compiler can easily examine expressions and introduce
temporary variables in memory to avoid stack overflow. The number of such temporary variables can be
minimised by careful choice of the evaluation order; an algorithm to perform this optimisation is given in the
Prentice Hall publication Transputer Instruction Set - A Compiler Writers’ Guide. The algorithm is used to
optimise the use of the integer stack of the transputer CPU.

3.7.2 Concurrent operation of FPU and CPU

In the floating point transputer the FPU operates concurrently with the CPU. This means that it is possible to
perform an address calculation in the CPU whilst the FPU performs a floating point calculation. This can lead
to significant performance improvements in real applications which access arrays heavily. This aspect of the
floating point transputer’s performance was carefully assessed, partly through examination of the ‘Livermore
Loops’ (refer to The Livermore Fortran Kernels: A Computer Test of the Numerical Performance Range).
These are a collection of small kernels designed to represent the types of calculation performed on super-
computers. They are of interest because they contain constructs which occur in real programs which are
not represented in such programs as the Whetstone benchmark. In particular, they contain accesses to two
and three-dimensional arrays, operations where the concurrency within the floating point transputer is used
to good effect. In some cases the compiler is able to choose the order of performing address calculations so
as to maximise overlapping; this involves a modification of the algorithm mentioned earlier.

As a simple example of overlapping consider the implementation of Livermore Loop 7. The occam program
for loop 7 is as follows:

-- LIVERMORE LOOP 7
SEQ k = 0 FOR n
x[k] := ulk] + ((( r*(z[k] + (xr*y[k]))) +
(t* ((ulk+3] + (r*(ulk+2] + (r*ulk+1])))))
(t* ((u[k+6] + (r*(u[k+5] + (r*ul[k+4])))))

)) +

))

The first stage in the computation of this is to load the value y[k]. This requires a sequence of four
instructions. A further three instructions cause r to be loaded and the FPU multiply to be initiated.

Although the floating point multiplication takes several cycles to complete, the CPU is able to continue exe-
cuting instructions whilst the FPU performs the multiplication. Thus the CPU can execute the next segment
of code which computes the address of z [k] whilst the FPU perfroms the multiplication.

Finally, the value z [k] is pushed onto the floating point stack and added to the previously computed subex-
pression r*y [k]. It is not until value z [k] is loaded that the CPU needs to synchronise with the FPU.

The computation of the remainder of the expression proceeds in the same way, and the FPU never has to
wait for the CPU to perform an address calculation.
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3.8 Floating point unit design

In designing a concurrent systems component such as a transputer, it is important to maximise the per-
formance obtained from a given area of silicon; many components can be used together to deliver more
performance. This contrasts with the design of a conventional co-processor where the aim is to maximise
the performance of a single processor by the use of a large area of silicon. As a result, in designing the
floating point transputer, the performance benefits of silicon hungry devices such as barrel shifters and flash
multipliers were carefully examined.

A flash multiplier is too large to fit on chip together with the processor, and would therefore necessitate the
use of a separate co-processor chip. The introduction of a co-processor interface to a separate chip slows
down the rate at which operands can be transferred to and from the floating point unit. Higher performance
can, therefore, be obtained from a slow multiplier on the same chip as the processor than from a fast one
on a separate chip. This leads to an important conclusion: a separate co-processor chip is not appropriate
for scalar floating point arithmetic. A separate co-processor would be effective where a large amount of
work can be handed to the co-processor by transferring a small amount of information; for example a vector
co-processor would require only the addresses of its vector operands to be transferred via the co-processor
interface.

It turns out that a flash multiplier also operates much more quickly than is necessary. Only a pipelined vector
processor can deliver operands at a rate consistent with the use of such devices. In fact, any useful floating
point calculation involves more operand accesses than operations. As an example consider the assignment
y[i] := y[i] + (t * x[i]) which constitutes the core of the LINPACK floating point benchmark.
To perform this it is necessary to load three operands, perform two operations and to store a result. If we
assume that it takes twice as long to perform a floating point operation as to load or store a floating point
number then the execution time of this example would be evenly split between operand access time and
operation time. This means that there would be at most a factor of two available in performance improvement
from the use of an infinitely fast floating point unit!

Unlike a flash multiplier, a fast normalising shifter is important for fast floating point operation. When imple-
menting IEEE arithmetic it may be necessary to perform a long shift on every floating point operation and
unless a fast shifter is incorporated into the floating point unit the maximum operation time can become very
long. Fortunately, unlike a flash multiplier, it is possible to design a fast shifter in a reasonable area of silicon.
The shifter used is designed to perform a shift in a single cycle and to normalise in two cycles.

Consequently, the floating point unit contains a fast normalising shifter but not a flash multiplier. However
there is a certain amount of logic devoted to multiplication and division. Multiplication is performed three-bits
per cycle, and division is performed two-bits per cycle. Figure 3.15 illustrates the physical layout of the floating
point unit.

- ALU ALU
ROM Fraction Exponent ROM
Datapath Datapath

Normalising ~ Shifter

Interface

Block diagram of floating point unit

Figure 3.15 Floating point unit block diagram

The datapaths contain registers and shift paths. The fraction datapath is 59 bits wide, and the exponent
data path is 13 bits wide. The normalising shifter interfaces to both the fraction data path and the exponent
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datapath. This is because the data to be shifted will come from the fraction datapath whilst the magnitude
of the shift is associated with the exponent datapath. One further interesting aspect of the design is the
microcode ROM. Although the diagram shows two ROMSs, they are both part of the same logical ROM. This
has been split in two so that control signals do not need to be bussed through the datapaths.

3.9 Graphics capability

The fast block move instructions of the transputers make them suitable for use in graphics applications
using byte-per-pixel colour displays. The block move on the transputer is designed to saturate the memory
bandwidth, moving any number of bytes from any byte boundary in memory to any other byte boundary using
the smallest possible number of word read and write operations.

Some transputers extend this capability by incorporation of a two-dimensional version of the block move
(Move2d) which can move windows around a screen at full memory bandwidth, and conditional versions of
the same block move which can be used to place templates and text into windows. One of these operations
(Dxraw2d) copies bytes from source to destination, writing only non-zero bytes to the destination. A new object
of any shape can therefore be drawn on top of the current image. A further operation (C1ip2d) copies only
zero bytes in the source. All of these instructions achieve the speed of the simple move instruction, enabling
a 1 million pixel screen to be drawn many times per second. Unlike the conventional ‘bit-blt’ instruction, it is
never necessary to read the destination data.

3.9.1 Example - drawing coloured text

Drawing proportional spaced text provides a simple example of the use of the two-dimensional move instruc-
tions. The font is stored in a two dimensional array Font; the height of Font is the fixed character height,
and the start of each character is defined by an array start. The textures of the character and its back-
ground are selected from an array of textures; the textures providing a range of colours or even stripes and
tartans!

An occam procedure to perform such drawing is given below and the effect of each stage in the drawing
process is illustrated by the diagrams on the final page of this document. First, (1) the texture for the character
is selected and copied to a temporary area and (2) the character in the font is used to clip this texture to the
appropriate shape. Then (3) the background texture is selected and copied to the screen, and (4) the new
character drawn on top of it.

-- Draw character ch in texture F on background texture B
PROC DrawChar (VAL INT Ch, F, B)
SEQ
IF
(x + width[ch]) > screenwidth
SEQ
x 0
y :=y + height
(x + width[ch]) <= screenwidth
SKIP
[height] [maxwidth] BYTE Temp
SEQ
Move2d (Texture[F],0,0, Temp,0,0, width[ch], height)
Clip2d (Font [ch], start[ch],0, Temp, 0,0, width[ch],height)
Move2d (Texture[B], 0,0, Screen,x,y, width[ch],height))
Draw2d (Temp, 0,0, Screen,x,y, width[ch],height)
X := x + width[ch]

This procedure will fill a 1 million pixel screen with proportionally spaced characters in about 1/6 second.
Obviously, a simpler and faster version could be used if the character colour or background colour was
restricted. The operation of this procedure is illustrated in figure 3.16.
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Figure 3.16 Use of enhanced graphics instructions
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4 Conclusion

The INMOS transputer family is a range of system components which can be used to construct high per-
formance concurrent systems. As all members of the family incorporate INMOS communications links, a
system may be constructed from different members of the family. All transputers provide hardware support
for concurrency and offer exceptional performance on process scheduling, inter-process communication and
inter-transputer communication.

The design of the transputers takes careful note of silicon economics. The central processor used in the
transputer offers a performance comparable with that of other VLSI processors several times larger. The
small size of the processor allows a memory and communications system to be integrated on to the same
VLSI device. This level of integration allows very fast access to memory and very fast inter-transputer
communication. Similarly, the transputer floating point unit is integrated into the same device as the central
processor, eliminating the delays inherent in communicating data between devices.
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1 Introduction

The IMS T805 transputer is a 32 bit CMOS microcomputer with a 64 bit floating point unit and graphics support.
It has 4 Kbytes on-chip RAM for high speed processing, a configurable memory interface and four standard
INMOS communication links. The instruction set achieves efficient implementation of high level languages
and provides direct support for the 0ccam model of concurrency when using either a single transputer or a
network. Procedure calls, process switching and typical interrupt latency are sub-microsecond.

For convenience of description, the IMS T805 operation is split into the basic blocks shown in figure 1.1.

Floating Point Unit

AN
VCC — jc\l

GND — @

CapPlus
CapMinus 30 32 bit
E—

Anl:Iesse; System N Y] Processor
Errgrln services
Error <——
BootFromROM —>

Clockln ——> Link «— LinkSpecial

ProcSpeedSelect0-2 —> Services < LinkOSpecial

«—— Link123Special

Timers L32 Link < Linkln0
N—1 Interface —— LinkOut0

7

T

4K bytes "5 Link |<— Linkin1
of /"3‘2“'1 N—1 Interface +—> LinkOut1

On-chip N— 1
RAM 357] Link |~ Linkin2

N— ] Interface +— LinkOut2

DisableIntRam —>

ProcClockOut <=—— V/?'\ Link le LinkIn3
notMemS0-4 < N—{ Interface — LinkOut3
notMemWrB0-3 <—
notMemRd <—— Eyternal 4_32_!\ «—— EventReq
notMemRf <—— Memory N~ U Event ——»Eventcvclg.
RefreshPending <—— Interface L —> EventWaiting
Melvt'::a&vxfe:n —_— e MemnotWrDO
g 32 > MemnotRfD1
MemReq N MemAD2-31

MemGranted -=—

Figure 1.1 IMS T805 block diagram

The processor speed of a device can be pin-selected in stages from 17.5 MHz up to the maximum allowed
for the part. A device running at 30 MHz achieves an instruction throughput of 30 MIPS peak and 15 MIPS
sustained. The extended temperature version of the device complies with MIL-STD-883C.

The IMS T805 provides high performance arithmetic and floating point operations. The 64 bit floating point unit
provides single and double length operation to the ANSI-IEEE 754-1985 standard for floating point arithmetic.
It is able to perform floating point operations concurrently with the processor, sustaining a rate of 2.2 Mflops
at a processor speed of 20 MHz and 3.3 Mflops at 30 MHz.
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High performance graphics support is provided by microcoded block move instructions which operate at the
speed of memory. The two-dimensional block move instructions provide for contiguous block moves as well
as block copying of either non-zero bytes of data only or zero bytes only. Block move instructions can be used
to provide graphics operations such as text manipulation, windowing, panning, scrolling and screen updating.

Cyclic redundancy checking (CRC) instructions are available for use on arbitrary length serial data streams,
to provide error detection where data integrity is critical. Another feature of the IMS T805, useful for pattern
recognition, is the facility to count bits set in a word.

The IMS T805 can directly access a linear address space of 4 Gbytes. The 32 bit wide memory interface
uses multiplexed data and address lines and provides a data rate of up to 4 bytes every 100 nanoseconds
(40 Mbytes/sec) for a 30 MHz device. A configurable memory controller provides all timing, control and DRAM
refresh signals for a wide variety of mixed memory systems.

System Services include processor reset and bootstrap control, together with facilities for error analysis. Error
signals may be daisy-chained in multi-transputer systems.

The standard INMOS communication links allow networks of transputer family products to be constructed by
direct point to point connections with no external logic. The IMS T805 links support the standard operating
speed of 10 Mbits/sec, but also operate at 5 or 20 Mbits/sec. Each link can transfer data bi-directionally at
up to 2.35 Mbytes/sec.

The IMS T805 is pin compatible with the IMS T800, as the extra inputs used are all held to ground on the
IMS T800. The IMS T805-20 can thus be plugged directly into a circuit designed for a 20 MHz version of the
IMS T800.

The transputer is designed to implement the 0CCam language, detailed in the occam Reference Manual, but
also efficiently supports other languages such as C, Pascal and Fortran. Access to the transputer at machine
level is seldom required, but if necessary refer to the Transputer Instruction Set - A Compiler Writers’ Guide.
The instruction set of the IMS T805 is the same as that of the IMS T800.

This data sheet supplies hardware implementation and characterisation details for the IMS T805. ltis intended
to be read in conjunction with the Transputer Architecture chapter, which details the architecture of the
transputer and gives an overview of occam.

The IMS T805 instruction set contains a number of instructions to facilitate the implementation of breakpoints.
For further information concerning breakpointing, refer to Support for debugging/breakpointing in transputers
(technical note 61).

Figure 1.2 shows the internal datapaths for the IMS T805.
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Figure 1.2 IMS T805 internal datapaths
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2

P:n designations

Table 2.1 IMS T805 system services

Pin In/Out Function
VCC, GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockin in Input clock
ProcSpeedSelect0-2 in Processor speed selectors
Reset in System reset
Error out Error indicator
Errorin in Error daisychain input
Analyse in Error analysis
BootFromRom in Boot from external ROM or from link

DisableIntRAM

in

Disable internal RAM

Table 2.2 IMS T805 external memory interface

Pin In/Out Function
ProcClockOut out Processor clock
MemnotWrDO in/out Multiplexed data bit 0 and write cycle warning
MemnotR{D1 in/out Multiplexed data bit 1 and refresh warning
MemAD2-31 in/out Multiplexed data and address bus
notMemRd out Read strobe
notMemWrBO0-3 out Four byte-addressing write strobes
notMemS0-4 out Five general purpose strobes
notMemRf out Dynamic memory refresh indicator
RefreshPending out Dynamic refresh is pending
MemWait in Memory cycle extender
MemReq in Direct memory access request
MemGranted out Direct memory access granted
MemConfig in Memory configuration data input

Table 2.3 IMS T805 event

Pin In/Out Function
EventReq in Event request
EventAck out Event request acknowledge
EventWaiting out Event input requested by software

Table 2.4 IMS T805 link

Pin In/Out Function
LinkIn0-3 in Four serial data input channels
LinkOut0-3 out Four serial data output channels
LinkSpecial in Select non-standard speed as 5 or 20 Mbits/sec
LinkOSpecial in Select special speed for Link 0

Link123Special

in

Select special speed for Links 1,2,3

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 120.
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3 Processor

The 32 bit processor contains instruction processing logic, instruction and work pointers, and an operand
register. It directly accesses the high speed 4 Kbyte on-chip memory, which can store data or program.
Where larger amounts of memory or programs in ROM are required, the processor has access to 4 Gbytes
of memory via the External Memory Interface (EMI).

3.1 Registers
The design of the transputer processor exploits the availability of fast on-chip memory by having only a small
number of registers; six registers are used in the execution of a sequential process. The small number of
registers, together with the simplicity of the instruction set, enables the processor to have relatively simple
(and fast) data-paths and control logic. The six registers are:

The workspace pointer which points to an area of store where local variables are kept.

The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, B and C registers which form an evaluation stack.

A, Band C are sources and destinations for most arithmetic and logical operations. Loading a value into the
stack pushes Binto C, and A into B, before loading A. Storing a value from A, pops Binto A and C into B.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be
of any size.

Further register details are given in Transputer Instruction Set - A Compiler Writers’ Guide.

Registers Locals Program
A
B
C
Workspace
Next Inst
Operand

Figure 3.1 Registers
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3.2 Instructions

The instruction set has been designed for simple and efficient compilation of high-level languages. All in-
structions have the same format, designed to give a compact representation of the operations occurring most
frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte
are a function code and the four least significant bits are a data value.

Function] Data l

7 43 , 0

[ Operand Register | ‘

Figure 3.2 Instruction format

3.21 Direct functions

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Ten of these,
shown in table 3.1, are used to encode the most important functions.

Table 3.1 Direct functions

load constant add constant

load local store local load local pointer
load non-local store non-local

jump conditional jump call

The most common operations in a program are the loading of small literal values and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of high level programming languages such as occam, C, Fortran, Pascal or ADA.

3.2.2 Prefix functions

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative
prefix.

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction’s operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.
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The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3.23 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as

add, exclusive or and greater than. Less frequently occurring operations have encodings which require a
single prefix operation.

3.24 Expression evaluation

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number
of these can be minimised by careful choice of the evaluation order.

Table 3.2 Expression evaluation

Program Mnemonic
x=0 ldc 0
stl X
X = #24 pfix 2
Idc 4
stl X
X=y+2Z Idl y
Idl z

add
stl X

3.25 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as load constant and add require just one
processor cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive four instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.
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3.3 Processes and concurrency

A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number
of each (page 56). '

The processor has a microcoded scheduler which enables any number of concurrent processes to be exe-
cuted together, sharing the processor time. This removes the need for a software kernel.

At any time, a concurrent process may be

Active - Being executed.
- On alist waiting to be executed.

Inactive - Ready to input.
- Ready to output.
- Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time. It allocates
a portion of the processor’s time to each process in turn. Active processes waiting to be executed are held
in two linked lists of process workspaces, one of high priority processes and one of low priority processes
(page 56). Each list is implemented using two registers, one of which points to the first process in the list,
the other to the last. In the Linked Process List figure 3.3, process S is executing and P, Q and R are active,
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones
perform in a similar manner.

Registers Locals Program
FPtr1  (Front) p
BPtr1  (Back) f i
Q
A \ |
B R
C
Workspace > S
Next Inst
Operand

Figure 3.3 Linked process list

Table 3.3 Priority queue control registers

Function High Priority | Low Priority
Pointer to front of active process list Fptro Fptr1
Pointer to back of active process list Bptr0 Bptr1

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from
another process or transputer, or for a time delay to complete. In order for several processes to operate in
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly
descheduled at the next descheduling point (page 60). The time slice period is 5120 cycles of the external
5 MHz clock, giving ticks approximately 1 ms apart.
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A process can only be descheduled on certain instructions, known as descheduling points (page 60). As a
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way
through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and
the next process taken from the list. Process scheduling pointers are updated by instructions which cause
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 us, as
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model, including start process
and end process. When a main process executes a parallel construct, start process instructions are used
to create the necessary additional concurrent processes. A start process instruction creates a new process
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be
executed together with the ones already being executed. When a process is made active it is always added
to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the parallel construct components which have still to terminate. The
counter is initialised to the number of components before the processes are started. Each component ends
with an end process instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and the
main process continues.

3.4 Priority

The IMS T805 supports two levels of priority. Priority 1 (low priority) processes are executed whenever there
are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more high priority processes are
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until
it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed,
then one is selected.

Low priority processes are periodically timesliced to provide an even distribution of processor time between
computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority process
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for
between one and two timeslice periods, less any time taken by high priority processes. This assumes that
no process monopolises the transputer’s time; 1.e. 1t has a distribution of descheduling points (page 60).

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 ms at the
standard frequency of 5 MHz).

If a high priority process is waiting for an external channel to become ready, and if no other high priority
process is active, then the interrupt latency (from when the channel becomes ready to when the process
starts executing) is typically 19 processor cycles, a maximum of 78 cycles (assuming use of on-chip RAM).
If the floating point unit is not being used at the time then the maximum interrupt latency is only 58 cycles.
To ensure this latency, certain instructions are interruptable.

35 Communications
Communication between processes is achieved by means of channels. Process communication is point-to-

point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.
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A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
links. The processor provides a number of operations to support message passing, the most important being
input message and output message.

The input message and output message instructions use the address of the channel to determine whether
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a
process to be written and compiled without knowledge of where its channels are connected.

The process which first becomes ready must wait until the second one is also ready. A process performs an
input or output by loading the evaluation stack with a pointer to a message, the address of a channel, and
a count of the number of bytes to be transferred, and then executing an input message or output message
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one
the process will deschedule.

3.6 Block move

The block move on the transputer moves any number of bytes from any byte boundary in memory, to any
other byte boundary, using the smallest possible number of word read, and word or part-word writes.

A block move instruction can be interrupted by a high priority process. On interrupt, block move is completed
to a word boundary, independent of start position. When restarting after interrupt, the last word written is
written again. This appears as an unnecessary read and write in the simplest case of word aligned block
moves, and may cause problems with FIFOs. This problem can be overcome by incrementing the saved
destination (BreglIntSaveloc) and source pointer (CregintSaveloc) values by BytesPerWord during the high
priority process.

3.7 Timers

The transputer has two 32 bit timer clocks which ‘tick’ periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented every microsecond, cycling com-
pletely in approximately 4295 seconds. The other is accessible only to low priority processes and is incre-
mented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of approximately
76 hours.

Table 3.4 Timer registers

Clocko Current value of high priority (level 0) process clock
Clock1 Current value of low priority (level 1) process clock
TNextReg0 Indicates time of earliest event on high priority (level 0) timer queue
TNextReg1 Indicates time of earliest event on low priority (level 1) timer queue

The current value of the processor clock can be read by executing a load timer instruction. A process can
arrange to perform a timer input, in which case it will become ready to execute after a specified time has
been reached. The timer input instruction requires a time to be specified. If this time is in the ‘past’ then the
instruction has no effect. If the time is in the ‘future’ then the process is descheduled. When the specified
time is reached the process is scheduled again.
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Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31.

Timer0 Workspaces Program
Comparator Alarm —I_,,

TNextReg0

21
TPirLoc | | Emply l

31

Figure 3.4 Timer registers
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4 Instruction set summary

The Function Codes table 4.8 gives the basic function code set (page 53). Where the operand is less than 16,
a single byte encodes the complete instruction. If the operand is greater than 15, one prefix instruction (pfix)
is required for each additional four bits of the operand. If the operand is negative the first prefix instruction
will be nfix.

Table 4.1 prefix cocing

Function Memory
Mnemonic code code

ldc #3 #4 #43
Idc #35

is coded as
pfix #3 #2 #23
Idc #5 #4 #45
Idc #987

is coded as
pfix #9 #2 #29
pfix #8 #2 #28
Ide #7 #4 #47
ldc -31 (/dc #FFFFFFE1)

is coded as
nfix #1 #6 #61
lde #1 #4 #41

Tables 4.9 to 4.28 give details of the operation codes. Where an operation code is less than 16 (e.g. add:
operation code 05), the operation can be stored as a single byte comprising the operate function code F and
the operand (5 in the example). Where an operation code is greater than 15 (e.g. /add: operation code 16),
the prefix function code 2 is used to extend the instruction.

Table 4.2 operate coding

Function Memory
Mnemonic code code
add (op. code #5) #F5
is coded as
opr add #F #F5
ladd (op. code #16) #21F6
is coded as
pfix #1 #2 #21
opr #6 #F #F6

The load device identity (/ddevid) instruction (table 4.20) pushes the device type identity into the A register.
Each product is allocated a unique group of numbers for use with the lddevid instruction. The product identity
numbers for the IMS T805 are 10 to 19 inclusive.

In the Floating Point Operation Codes tables 4.22 to 4.28, a selector sequence code (page 69) is indicated
in the Memory Code column by s. The code given in the Operation Code column is the indirection code, the
operand for the ldc instruction.

The FPU and processor operate concurrently, so the actual throughput of floating point instructions is better
than that implied by simply adding up the instruction times. For full details see Transputer Instruction Set - A
Compiler Writers’ Guide.
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The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing
in internal memory. The number of cycles is given for the basic operation only; where the memory code
for an instruction is two bytes, the time for the prefix function (one cycle) should be added. For a 20 MHz
transputer one cycle is 50 ns. Some instruction times vary. Where a letter is included in the cycles column it
is interpreted from table 4.3.

Table 4.3 Instruction set interpretation

Ident Interpretation
b Bit number of the highest bit set in register A. Bit 0 is the least significant bit.

m Bit number of the highest bit set in the absolute value of register A.
Bit 0 is the least significant bit.

n Number of places shifted.

Number of words in the message. Part words are counted as full words. If the message
is not word aligned the number of words is increased to include the part words at either
end of the message.

Number of words per row.
r Number of rows.

The DE column of the tables indicates the descheduling/error features of an instruction as described in
table 4.4.

Table 4.4 Instruction features

Ident Feature See page:
D The instruction is a descheduling point 60
E The instruction will affect the Error flag 61, 76
F The instruction will affect the FP_Error flag 69, 61
4.1 Descheduling points

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 55). They are
also the ones at which the processor will halt if the Analyse pin is asserted (page 75).

Table 4.5 Descheduling point instructions

input message oulput message output byte output word
timer alt wait timer input stop on error alt wait
jump loop end end process stop process
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4.2 Error instructions
The instructions in table 4.6 are the only ones which can affect the Error flag (page 76) directly. Note,

however, that the floating point unit error flag FP-Error is set by certain floating point instructions (page 61),
and that Error can be set from this flag by focheckerror.

Table 4.6 Error setting instructions

add add constant subtract

multiply fractional multiply divide remainder

long add long subtract long divide

set error testerr focheckerror

check word check subscript from 0  check single check count from 1
4.3 Debugging support

Table 4.21 contains a number of instructions to facilitate the implementation of breakpoints. These instructions
overload the operation of jO. Normally jO is a no-op which might cause descheduling. SetjObreak enables the
breakpointing facilities and causes jO to act as a breakpointing instruction. When breakpointing is enabled,
jO swaps the current Iptr and Wptr with an Iptr and Wptr stored above MemStart. The breakpoint instruction
does not cause descheduling, and preserves the state of the registers. It is possible to single step the pro-
cessor at machine level using these instructions. Refer to Support for debugging/breakpointing in transputers
(technical note 61) for more detailed information regarding debugger support.

4.4 Floating point errors

The instructions in table 4.7 are the only ones which can affect the floating point error flag FP_Error (page 69).
Error is set from this flag by focheckerror if FP_Error is set.

Table 4.7 Floating point error setting instructions

foadd fosub formul fodiv
foldnladdsn foldnladddb foldnimulsn foldnimuldb
foremfirst fousqrtfirst fogt foeq
fouseterror fouclearerror fotesterror

fouexpincby32 fouexpdecby32 foumulby2 foudivby2
four32tor64 four64tor32 foucki32 foucki64
fortoi32 fouabs foint
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Table 4.8 IMS T805 function codes

Function Memory Processor D
Code Code Mnemonic Cycles Name E
0 0X j 3 jump D
1 1X Idip 1 load local pointer
2 2X pfix 1 prefix
3 3X ldnl 2 load non-local
4 4X ldc 1 load constant
5 5X ldnip 1 load non-local pointer
6 6X nfix 1 negative prefix
7 7X Idl 2 load local
8 8X adc 1 add constant E
9 9X call 7 call
A AX cj 2 conditional jump (not taken)
4 conditional jump (taken)
B BX ajw 1 adjust workspace
Cc CX eqc 2 equals constant
D DX stl 1 store local
E EX stnl 2 store non-local
F FX opr - operate
Table 4.9 IMS T805 arithmetic/logical operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
46 24F6 and 1 and
4B 24FB or 1 or
33 23F3 xor 1 exclusive or
32 23F2 not 1 bitwise not
41 24F1 shl n+2 shift left
40 24F0 shr n+2 shift right
05 F5 add 1 add E
oC FC sub 1 subtract E
53 25F3 mul 38 multiply E
72 27F2 fmul 35 fractional multiply (no rounding) E
40 fractional multiply (rounding) E
2C 22FC div 39 divide E
1F 21FF rem 37 remainder E
09 F9 gt 2 greater than
04 F4 diff 1 difference
52 25F2 sum 1 sum
08 F8 prod b+4 product for positive register A
m+5 product for negative register A
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Table 4.10 IMS T805 long arithmetic operation codes

Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
16 21F6 ladd 2 long add E
38 23F8 Isub 2 long subtract E
37 23F7 Isum 3 HNg sum
4F 24FF Idiff 3 long diff
31 23F1 Imul 33 long multiply
1A 21FA Idiv 35 long divide E
36 23F6 Ishl n+3 long shift left (n<32)
n-28 long shift left(n>32)
35 23F5 Ishr n+3 long shift right (n<32)
n-28 long shift right (n>32)
19 21F9 norm n+5 normalise (n<32)
n-26 normalise (n>32)
3 normalise (n=64)
Table 4.11 IMS T805 general operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
00 FO rev 1 reverse
3A 23FA xword 4 extend to word
56 25F6 cword 5 check word E
1D 21FD xdble 2 extend to double
4C 24FC csngl 3 check single E
42 24F2 mint 1 minimum integer
5A 25FA dup 1 duplicate top of stack
79 27F9 pop 1 pop processor stack
Table 4.12 IMS T805 2D block move operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
5B 25FB move2dinit 8 initialise data for 2D block move
5C 25FC move2dall (2p+23)*r | 2D block copy
5D 25FD move2dnonzero (2p+23)#r | 2D block copy non-zero bytes
5E 25FE move2dzero (2p+23)*r | 2D block copy zero bytes
Table 4.13 IMS T805 CRC and bit operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
74 27F4 crcword 35 calculate crc on word
75 27F5 crcbyte 11 calculate crc on byte
76 27F6 bitent b+2 count bits set in word
77 27F7 bitrevword 36 reverse bits in word
78 27F8 bitrevnbits n+4 reverse bottom n bits in word
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Table 4.14 IMS T805 indexing/array operation codes

Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
02 F2 bsub 1 byte subscript
0A FA wsub 2 word subscript
81 28F1 wsubdb 3 form double word subscript
34 23F4 bent 2 byte count
3F 23FF went 5 word count
01 F1 lb 5 load byte
3B 23FB sb 4 store byte
4A 24FA move 2w+8 move message
Table 4.15 IMS T805 timer handling operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
22 22F2 Idtimer 2 load timer
2B 22FB tin 30 timer input (time future) D
4 timer input (time past) D
4E 24FE talt 4 timer alt start
51 25F1 taltwt 15 timer alt wait (time past) D
48 timer alt wait (time future) D
47 24F7 enbt 8 enable timer
2E 22FE dist 23 disable timer
Table 4.16 IMS T805 input/output operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
07 F7 in 2w+19 input message D
0B FB out 2w+19 output message D
OF FF outword 23 output word D
OE FE outbyte 23 output byte D
43 24F3 alt 2 alt start
44 24F4 altwt 5 alt wait (channel ready) D
17 alt wait (channel not ready) D
45 24F5 altend 4 alt end
49 24F9 enbs 3 enable skip
30 23F0 diss 4 disable skip
12 21F2 resetch 3 reset channel
48 24F8 enbc 7 enable channel (ready)
5 enable channel (not ready)
2F 22FF disc 8 disable channel
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Table 4.17 IMS T805 control operation codes

Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
20 22F0 ret 5 return
1B 21FB ldpi 2 load pointer to instruction
3C 23FC gajw 2 general adjust workspace
06 F6 gcall 4 general call
21 22F1 lend 10 loop end (loop) D
5 loop end (exit) D
Table 4.18 IMS T805 scheduling operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
0D FD startp 12 start process D
03 F3 endp 13 end process D
39 23F9 runp 10 run process
15 21F5 stopp 11 stop process
1E 21FE Idpri 1 load current priority
Table 4.19 IMS T805 error handling operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
13 21F3 csub0 2 check subscript from 0 E
4D 24FD centi 3 check count from 1 E
29 22F9 testerr 2 test error false and clear (no error)
3 test error false and clear (error)
10 21F0 seterr 1 set error E
55 25F5 stoperr 2 stop on error (no error) D
57 25F7 clrhalterr 1 clear halt-on-error
58 25F8 sethalterr 1 set halt-on-error
59 25F9 testhalterr 2 test halt-on-error
Table 4.20 IMS T805 processor initialisation operation codes
Operation | Memory Processor o D
Code Code Mnemonic Cycles Name E
2A 22FA testpranal 2 test processor analysing
3E 23FE saveh 4 save high priority queue registers
3D 23FD savel 4 save low priority queue registers
18 21F8 sthf 1 store high priority front pointer
50 25F0 sthb 1 store high priority back pointer
1C 21FC stif 1 store low priority front pointer
17 21F7 stib 1 store low priority back pointer
54 25F4 sttimer 1 store timer
17C 2127FC | lddevid 1 load device identity
7E 27FE ldmemstartval 1 load value of memstart address
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Table 4.21 IMS T805 debugger support codes

Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
0 00 jump O 3 jump 0 (break not enabled) D
11 jump 0 (break enabled, high priority)
13 jump O (break enabled, low priority)
B1 2BF1 break 9 break (high priority)
11 break (low priority)
B2 2BF2 clrj0break 1 clear jump 0 break enable flag
B3 2BF3 setjObreak 1 set jump 0 break enable flag
B4 2BF4 testjObreak 2 test jump 0 break enable flag set
7A 27FA timerdisableh 1 disable high priority timer interrupt
7B 27FB timerdisablel 1 disable low priority timer interrupt
7C 27FC timerenableh 6 enable high priority timer interrupt
7D 27FD timerenablel 6 enable low priority timer interrupt
Table 4.22 IMS T805 floating point load/store operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
8E 28FE fpldnisn 2 fp load non-local single
8A 28FA fpldnidb 3 fp load non-local double
86 28F6 fpldnlisni 4 fp load non-local indexed single
82 28F2 fpldnidbi 6 fp load non-local indexed double
9F 29FF fpldzerosn 2 load zero single
A0 2AF0 fpldzerodb 2 load zero double
AA 2AFA fpldnladdsn 8/11 fp load non local & add single F
A6 2AF6 fpldnladddb 9/12 fp load non local & add double F
AC 2AFC fpldnimulsn 13/20 fp load non local & multiply single F
A8 2AF8 fpldnimuldb 21/30 fp load non local & multiply double F
88 28F8 fpstnisn 2 fp store non-local single
84 28F4 fpstnidb 3 fp store non-local double
9E 29FE fpstnli32 4 store non-local int32
Processor cycles are shown as Typical/Maximum cycles.
Table 4.23 IMS T805 floating point general operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
AB 2AFB fpentry 1 floating point unit entry
A4 2AF4 forev 1 fp reverse
A3 2AF3 fodup 1 fp duplicate
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Table 4.24 IMS T805 floating point rounding operation codes

Operation | Memory Processor
Code Code Mnemonic Cycles Name
22 s fpurn 1 set rounding mode to round nearest
06 s fpurz 1 set rounding mode to round zero
04 s fpurp 1 set rounding mode to round positive
05 s fourm 1 set rounding mode to round minus
Table 4.25 IMS T805 floating point error operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
83 28F3 fpchkerror 1 check fp error E
9C 29FC fptesterror 2 test fp error false and clear F
23 s fpuseterror 1 set fp error F
9C s fpuclearerror 1 clear fp error F
Table 4.26 IMS T805 floating point comparison operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
94 29F4 fpgt 4/6 fp greater than F
95 29F5 fpeq 3/5 fp equality F
92 29F2 fpordered 3/4 fp orderability
91 29F1 fpnan 2/3 fp NaN
93 29F3 fpnotfinite 2/2 fp not finite
0E s fpuchki32 3/4 check in range of type int32 F
OF s fouchki64 3/4 check in range of type int64 F
Processor cycles are shown as Typical/Maximum cycles.
Table 4.27 IMS T805 floating point conversion operation codes
Operation | Memory Processor D
Code Code Mnemonic Cycles Name E
07 s fpur32tor64 3/4 real32 to real64 F
08 s fpur64tor32 6/9 real64 to real32 F
aD 29FD fortoi32 7/9 real to int32 F
96 29F6 fpi32tor32 8/10 int32 to real32 ‘
98 29F8 fpi32tor64 8/10 int32 to real64
9A 29FA fpb32tor64 8/8 bit32 to real64
oD s fpunoround 2/2 real64 to real32, no round
A1 2AF1 fpint 5/6 round to floating integer F

Processor cycles are shown as Typical/Maximum cycles.
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Table 4.28 IMS T805 floating point arithmetic operation codes

Operation | Memory Processor cycles D
Code Code Mnemonic Single | Double Name E
87 28F7 fpadd 6/9 6/9 fp add F
89 28F9 fpsub 6/9 6/9 fp subtract F
8B 28FB fomul 11/18 18/27 | fp multiply F
8C 28FC fpdiv 16/28 31/43 | fp divide F
0B s fpuabs 2/2 2/2 fp absolute F
8F 28FF fpremfirst 36/46 36/46 | fp remainder first step F
90 29F0 fpremstep 32/36 32/36 | fp remainder iteration
01 s fpusartfirst 27/29 27/29 | fp square root first step F
02 s fpusqrtstep 42/42 42/42 | fp square root step
03 s fpusqrtlast 8/9 8/9 fo square root end
0A s fpuexpinc32 6/9 6/9 multiply by 232 F
09 s fpuexpdec32 6/9 6/9 divide by 2%2 F
12 s foumulby2 6/9 6/9 multiply by 2.0 F
11 s fpudivby2 6/9 6/9 divide by 2.0 F

Processor cycles are shown as Typical/Maximum cycles.
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5 Floating point unit

The 64 bit FPU provides single and double length arithmetic to floating point standard ANSI-IEEE 754-1985.
It is able to perform floating point arithmetic concurrently with the central processor unit (CPU), sustaining
3.3 Mflops on a 30 MHz device. All data communication between memory and the FPU occurs under control
of the CPU.

The FPU consists of a microcoded computing engine with a three deep floating point evaluation stack for
manipulation of floating point numbers. These stack registers are FA, FB and FC, each of which can hold
either 32 bit or 64 bit data; an associated flag, set when a floating point value is loaded, indicates which. The
stack behaves in a similar manner to the CPU stack (page 52).

As with the CPU stack, the FPU stack is not saved when rescheduling (page 55) occurs. The FPU can
be used in both low and high priority processes. When a high priority process interrupts a low priority one
the FPU state is saved inside the FPU. The CPU will service the interrupt immediately on completing its
current operation. The high priority process will not start, however, before the FPU has completed its current
operation.

Points in an instruction stream where data need to be transferred to or from the FPU are called synchronisation
points. At a synchronisation point the first processing unit to become ready will wait until the other is ready.
The data transfer will then occur and both processors will proceed concurrently again. In order to make
full use of concurrency, floating point data source and destination addresses can be calculated by the CPU
whilst the FPU is performing operations on a previous set of data. Device performance is thus optimised by
minimising the CPU and FPU idle times.

The FPU has been designed to operate on both single length (32 bit) and double length (64 bit) floating
point numbers, and returns results which fully conform to the ANSI-IEEE 754-1985 floating point arithmetic
standard. Denormalised numbers are fully supported in the hardware. All rounding modes defined by the
standard are implemented, with the default being round to nearest.

The basic addition, subtraction, multiplication and division operations are performed by single instructions.
However, certain less frequently used floating point instructions are selected by a value in register A (when
allocating registers, this should be taken into account). A load constant instruction /dc is used to load
register A; the floating point entry instruction fpentry then uses this value to select the floating point operation.
This pair of instructions is termed a selector sequence.

Names of operations which use fpentry begin with fou. A typical usage, returning the absolute value of a
floating point number, would be

Idc fpuabs; foentry;

Since the indirection code for fouabs is 0B, it would be encoded as

Table 5.1 fpentry coding

Function Memory
Mnemonic code code
Idc fouabs #4 #4B
foentry (op. code #AB) #2AFB
is coded as
pfix #A #2 #2A
opr #B #F #FB
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The remainder and square root instructions take considerably longer than other instructions to complete. In
order to minimise the interrupt latency period of the transputer they are split up to form instruction sequences.
As an example, the instruction sequence for a single length square root is
fousqrtfirst;  fousqgrtstep;  fousqristep;  fousqrtlast;

The FPU has its own error flag FP-Error. This reflects the state of evaluation within the FPU and is set in
circumstances where invalid operations, division by zero or overflow exceptions to the ANSI-IEEE 754-1985
standard would be flagged (page 61). FP-Erroris also set if an input to a floating point operation is infinite
or is not a number (NaN). The FP.Error flag can be set, tested and cleared without affecting the main Error
flag, but can also set Error when required (page 61). Depending on how a program is compiled, it is possible
for both unchecked and fully checked floating point arithmetic to be performed.

Further details on the operation of the FPU can be found in Transputer Instruction Set - A Compiler Writers’
Guide.

Table 5.2 Typical floating point operation times for IMS T805

T805-20 T805-30
Operation Single length Double length Single length Double length
add 350 ns 350 ns 233 ns 233 ns
subtract 350 ns 350 ns 233 ns 233 ns
multiply 550 ns 1000 ns 367 ns 667 ns
divide 850 ns 1600 ns 567 ns 1067 ns

Timing is for operations where both operands are normalised fp numbers.
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6 System services

System services include all the necessary logic to initialise and sustain operation of the device. They also
include error handling and analysis facilities.

6.1 Power

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power-
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive
periods of latchup.

6.2 CapPlus, CapMinus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1uF
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an
impedance less than 3 Ohms between 100 KHz and 10 MHz. If a polarised capacitor is used the negative
terminal should be connected to CapMinus. Total PCB track length should be less than 50 mm. The
connections must not touch power supplies or other noise sources.

vCC
CapPlus P.C.B. track
[ .
Phase-locked DCZC;;C‘?,:‘CJr:g
loops T 1uF
[
CapMinus P.C.B. track
GND

Figure 6.1 Recommended PLL decoupling

6.3 Clockin

Transputer family components use a standard clock frequency, supplied by the user on the Clockin input.
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockin,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer devices may be connected to a common clock, or may have individual clocks providing
each one meets the specified stability criteria. In a multi-clock system the relative phasing of Clockin clocks
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the
specified limits of Clockin pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockin must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.
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Table 6.1 Input clock

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TDCLDCH | ClockIn pulse width low 40 ns 1
TDCHDCL | Clockin pulse width high 40 ns 1
TDCLDCL | Clockin period 200 ns 1,2,4
TDCerror Clockin timing error +0.5 ns 1,3
TDC1DC2 | Difference in Clockin for 2 linked devices 400 ppm 1,4
TDCr Clockin rise time 10 ns 1,5
TDCf Clockin fall time 8 ns 1,5

Notes

1 These parameters are not tested.

2 Measured between corresponding points on consecutive falling edges.

3 Variation of individual falling edges from their nominal times.

4 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

5 Clock transitions must be monotonic within the range VIH to VIL (table 11.3).

TDCerror

TDCerror

90%

10%— — — —

TDCLDCH TDCHDCL
TDCLDCL
90%

TDCerror

6.4

ProcSpeedSelect0-2

Figure 6.2 Clockin timing

Processor speed of the IMS T805 is variable in discrete steps. The desired speed can be selected, up to the
maximum rated for a particular component, by the three speed select lines ProcSpeedSelect0-2. The pins
are tied high or low, according to the table below, for the various speeds. The pins are arranged so that the
IMS T805 can be plugged directly into a board designed for a IMS T425.

Only six of the possible speed select combinations are currently used; the other two are not valid speed
selectors. The frequency of Clockin for the speeds given in the table is 5 MHz.
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Table 6.2 Processor speed selection

Proc Proc Proc Processor Processor

Speed Speed Speed Clock Cycle

Select2 Select1 Select0 | Speed MHz Time ns Notes
0 0 0 20.0 50.0
0 0 1 225 44.4
0 1 0 25.0 40.0
0 1 1 30.0 33.3
1 0 0 35.0 28.6
1 0 1 Invalid
1 1 0 175 57.1
1 1 1 Invalid

Note: Inclusion of a speed selection in this table does not imply immediate availability.

6.5 Reset

Reset can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. After VCC is
valid Clockln should be running for a minimum period TDCVRL before the end of Reset. The falling edge of
Reset initialises the transputer, triggers the memory configuration sequence and starts the bootstrap routine.
Link outputs are forced low during reset; link inputs and EventReq should be held low. Memory request
(DMA) must not occur whilst Reset is high but can occur before bootstrap (page 94).

After the end of Reset there will be a delay of 144 periods of Clockin (figure 6.3). Following this, the
MemWrDO, MemRfD1 and MemAD2-31 pins will be scanned to check for the existence of a pre-programmed
memory interface configuration (page 96). This lasts for a further 144 periods of Clockln. Regardless of
whether a configuration was found, 36 configuration read cycles will then be performed on external memory
using the default memory configuration (page 98), in an attempt to access the external configuration ROM.
A delay will then occur, its period depending on the actual configuration. Finally eight complete and con-
secutive refresh cycles will initialise any dynamic RAM, using the new memory configuration. If the memory
configuration does not enable refresh of dynamic RAM the refresh cycles will be replaced by an equivalent
delay with no external memory activity.

If BootFromRom is high bootstrapping will then take place immediately, using data from external memory;
otherwise the transputer will await an input from any link. The processor will be in the low priority state.

Reset |
Action | e — - -< -
nterna xterna
Delay configuration configuration Delay Refresh Boot
Figure 6.3 IMS T805 post-reset sequence
6.6 Bootstrap

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, Boot-
FromRom may be dynamically changed but must obey the specified timing restrictions. It is sampled once
only by the transputer, before the first instruction is executed after Reset is taken low.

If BootFromRom is connected high (e.g. to VCC) the transputer starts to execute code from the top two bytes
in external memory, at address #7FFFFFFE. This location should contain a backward jump to a program in
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ROM. Following this access, BootFromRom may be taken low if required. The processor is in the low priority
state, and the W register points to MemStart (page 77).

Table 6.3 Reset and Analyse

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high 8 Clockin 1
TDCVRL | Clockin running before Reset end 10 ms 2
TAHRH Analyse setup before Reset 3 ms
TRLAL Analyse hold after Reset end 1 Clockin 1
TBRVRL | BootFromRom setup 0 ms
TRLBRX | BootFromRom hold after Reset 0 ms 3
TALBRX BootFromRom hold after Analyse 3
Notes
1 Full periods of Clockin TDCLDCL required.
2 At power-on reset.
3 Must be stable until after end of bootstrap period. See Bootstrap section.
Clockln VA /. NS
| TDCVRL / /
[
vCccC
TPVRH ~ TRHRL
Reset
TBRVR’—" = TRLBRX | ,
] ]
BootFromRom I | J J N

Figure 6.4 Transputer reset timing with Analyse low

TRHRL
Reset /[

TAHRH > TRLAL
Analyse ]
TBRVRL >| < TALBR)J/
l

’ /[

J—X

BootFromRom

Figure 6.5 Transputer reset and analyse timing
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If BootFromRom is connected low (e.g. to GND) the transputer will wait for the first bootstrap message to
arrive on any one of its links. The transputer is ready to receive the first byte on a link within two processor
cycles TPCLPCL after Reset goes low.

If the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following
reception of the last byte the transputer will start executing code at MemStart as a low priority process.
BootFromRom may be taken high after reception of the last byte, if required. The memory space immediately
above the loaded code is used as work space. Messages arriving on other links after the control byte has
been received and on the bootstrapping link after the last bootstrap byte will be retained until a process inputs
from them.

6.7 Peek and poke

Any location in internal or external memory can be interrogated and altered when the transputer is waiting
for a bootstrap from link. If the control byte is 0 then eight more bytes are expected on the same link. The
first four byte word is taken as an internal or external memory address at which to poke (write) the second
four byte word. If the control byte is 1 the next four bytes are used as the address from which to peek (read)
a word of data; the word is sent down the output channel of the same link.

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses
may be made in this way until the control byte is greater than 1, when the transputer will commence reading
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link
as the control byte.

6.8 Analyse

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling
point (page 60). From Analyse being asserted, the processor will halt within three time slice periods plus
the time taken for any high priority process to complete. As much of the transputer status is maintained as is
necessary to permit analysis of the halted machine. Processor flags Error, HaltOnError and EnableJOBreak
are normally cleared at reset on the IMS T805; however, if Analyse is asserted the flags are not altered.
Memory refresh continues.

Input links will continue with outstanding transfers. Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link
acknowledgement, the links should be inactive within a few microseconds of the transputer halting.

Reset should not be asserted before the transputer has halted and link transfers have ceased. When Reset
is taken low whilst Analyse is high, neither the memory configuration sequence nor the block of eight refresh
cycles will occur; the previous memory configuration will be used for any external memory accesses. If
BootFromRom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a
control byte on any link. If Analyse is taken low without Reset going high the transputer state and operation
are undefined. After the end of a valid Analyse sequence the registers have the values given in table 6.4.

Table 6.4 Register values after Analyse

/ MemStart if bootstrapping from a link, or the external memory bootstrap address if
bootstrapping from ROM.

W MemStart if bootstrapping from ROM, or the address of the first free word after the
bootstrap program if bootstrapping from link.

A The value of / when the processor halted.

B The value of W when the processor halted, together with the priority of the process
when the transputer was halted (i.e. the W descriptor).

(o The ID of the bootstrapping link if bootstrapping from link.
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6.9 Error, Errorin

The Error pin carries the OR’ed output of the internal Error flag and the Errorin input. If Error is high
it indicates either that Errorln is high or that an error was detected in one of the processes. An internal
error can be caused, for example, by arithmetic overflow, divide by zero, array bounds violation or software
setting the flag directly (page 61). It can also be set from the floating point unit under certain circumstances
(page 61, 69). Once set, the Error flag is only cleared by executing the instruction testerr. The error is not
cleared by processor reset, in order that analysis can identify any errant transputer (page 75).

A process can be programmed to stop if the Error flag is set; it cannot then transmit erroneous data to other
processes, but processes which do not require that data can still be scheduled. Eventually all processes
which rely, directly or indirectly, on data from the process in error will stop through lack of data. Errorin does
not directly affect the status of a processor in any way.

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error
becomes set after HaltOnErrorhas been set, all processes on that transputer will cease but will not necessarily
cause other transputers in a network to halt. Setting Ha/tOnError after Error will not cause the transputer to
halt; this allows the processor reset and analyse facilities to function with the flags in indeterminate states.

An alternative method of error handling is to have the errant process or transputer cause all transputers
to halt. This can be done by ’daisy-chaining’ the Errorin and Error pins of a number of processors and
applying the final Error output signal to the EventReq pin of a suitably programmed master transputer. Since
the process state is preserved when stopped by an error, the master transputer can then use the analyse
function to debug the fault. When using such a circuit, note that the Errorflag is in an indeterminate state on
power up; the circuit and software should be designed with this in mind.

Error checks can be removed completely to optimise the performance of a proven program; any unexpected
error then occurring will have an arbitrary undefined effect.

If @ high priority process pre-empts a low priority one, status of the Error and HaltOnError flags is saved for
the duration of the high priority process and restored at the conclusion of it. Status of both flags is transmitted
to the high priority process. Either flag can be altered in the process without upsetting the error status of any
complex operation being carried out by the pre-empted low priority process.

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access to
memory for data. Memory refresh will continue to take place.

After halting due to the Error flag changing from 0 to 1 whilst HaltOnError is set, register / points two bytes
past the instruction which set Error. After halting due to the Analyse pin being taken high, register / points
one byte past the instruction being executed. In both cases / will be copied to register A.

Latch
Master N— aic 3 Yy — N ¥
Transputer Y Y
T805 T805 T805
Event slave 0 slave 1 slave n

GND —{Errorin Error—>Errorin Error|---»Errorin Error
(transputer links not shown) ._)

Figure 6.6 Error handling in a multi-transputer system
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7 Memory :

The IMS T805 has 4 Kbytes of fast internal static memory for high rates of data throughput. Each inter-
nal memory access takes one processor cycle ProcClockOut (page 82). The transputer can also access
4 Gbytes of external memory space. Internal and external memory are part of the same linear address space.
Internal RAM can be disabled by holding DisableIntRAM high. All internal addresses are then mapped to
external RAM. This pin should not be altered after Reset has been taken low.

IMS T805 memory is byte addressed, with words aligned on four-byte boundaries. The least significant byte
of a word is the lowest addressed byte.

The bits in a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered 0. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Internal memory starts at the most negative address #80000000 and extends to #80000FFF. User memory
begins at #80000070; this location is given the name MemStart. An instruction Idmemstartval is provided to
obtain the value of MemStart.

The context of a process in the transputer model involves a workspace descriptor (WPtr) and an instruction
pointer (IPtr). WPtr is a word address pointer to a workspace in memory. IPtr points to the next instruction to
be executed for the process which is the currently executing process. The context switch performed by the
breakpoint instruction swaps the WPtr and IPtr of the currently executing process with the WPtr and IPtr held
above MemStart. Two contexts are held above MemStart, one for high priority and one for low priority; this
allows processes at both levels to have breakpoints. Note that on bootstrapping from a link, these contexts
are overwritten by the loaded code. If this is not acceptable, the values should be peeked from memory
before bootstrapping from a link.

The reserved area of internal memory below MemStart is used to implement link and event channels.

Two words of memory are reserved for timer use, TPtrLoc0 for high priority processes and TPtrLoc? for low
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on
the timer queue at that priority level.

Values of certain processor registers for the current low priority process are saved in the reserved IntSavelLoc
locations when a high priority process pre-empts a low priority one. Other locations are reserved for extended
features such as block moves and floating point operations.

External memory space starts at #80001000 and extends up through #00000000 to #7FFFFFFF. Memory
configuration data and ROM bootstrapping code must be in the most positive address space, starting at
#7FFFFF6C and #7FFFFFFE respectively. Address space immediately below this 1s conventionally used for
ROM based code.
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IMS T805 engineering data
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Figure 7.1 IMS T805 memory map
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8 External memory interface

The External Memory Interface (EMI) allows access to a 32 bit address space, supporting dynamic and static
RAM as well as ROM and EPROM. EMI timing can be configured at Reset to cater for most memory types
and speeds, and a program is supplied with the Transputer Development System to aid in this configuration.

There are 17 internal configurations which can be selected by a single pin connection (page 96). If none are
suitable the user can configure the interface to specific requirements, as shown in page 98.

The timing parameters in the following tables are based on 17 MHz and 20 MHz parts. Data for higher speeds
is based on tests on a limited number of samples and may change when full characterisation is completed.

The external memory cycle is divided into six Tstates with the following functions:

T1 Address setup time before address valid strobe.
T2 Address hold time after address valid strobe.
T3 Read cycle tristate or write cycle data setup.
T4 Extendable data setup time.

T5 Read or write data.

T6 Data hold.

Under normal conditions each Tstate may be from one to four periods Tm long, the duration being set during
memory configuration. The default condition on Reset is that all Tstates are the maximum four periods Tm
long to allow external initialisation cycles to read slow ROM.

Period T4 can be extended indefinitely by adding externally generated wait states.

An external memory cycle is always an even number of periods Tm in length and the start of T1 always
coincides with a rising edge of ProcClockOut. |If the total configured quantity of periods Tm is an odd
number, one extra period Tm will be added at the end of T6 to force the start of the next T1 to coincide with
a rising edge of ProcClockOut. This period is designated E in configuration diagrams (figure 8.19).

During an internal memory access cycle the external memory interface bus MemAD2-31 reflects the word
address used to access internal RAM, MemnotWrDO reflects the read/write operation and MemnotRfD1 is
high; all control strobes are inactive. This is true unless and until a memory refresh cycle or DMA (memory
request) activity takes place, when the bus will carry the appropriate external address or data.

The bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for
hardware debugging in conjuction with peek and poke (page 75).

ProcClockout /"~ N__ ~  N___~  ___
MemnotWrDO 3\ Write Read Read X
MemnotRfD1 :>/ X
MemAD2-31 X Address > Address > Address X

Figure 8.1 IMS T805 bus activity for internal memory cycle
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8.1 Pin functions

8.1.1 MemAD2-31

External memory addresses and data are multiplexed on one bus. Only the top 30 bits of address are output
on the external memory interface, using pins MemAD2-31. They are normally output only during Tstates T1

and T2, and should be latched during this time. The data bus is 32 bits wide. It uses MemAD2-31 for the
top 30 bits and MemnotRfD1 and MemnotWrDO for the lower two bits.

8.1.2 notMemRd
For a read cycle the read strobe notMemRd is low during T4 and T5. Data is read by the transputer on the
rising edge of this strobe, and may be removed immediately afterward. If the strobe duration is insufficient it

may be extended by adding extra periods Tm to either or both of the Tstates T4 and T5. Further extension
may be obtained by inserting wait states at the end of T4.

8.1.3 MemnotWrDO

During T1 ahd T2 this pin will be low if the cycle is a write cycle, otherwise it will be high. During Tstates T3
to T6 it becomes bit 0 of the data bus. In both cases it follows the general timing of MemAD2-31.

8.1.4 notMemWrB0-3

Because the transputer uses word addressing, four write strobes are provided; one to write each byte of the
word. notMemWrBO0 addresses the least significant byte.

8.1.5 notMemS0-4
To facilitate control of different types of memory and devices, the EMI is provided with five strobe outputs,

four of which can be configured by the user. The strobes are conventionally assigned the functions shown in
the read and write cycle diagrams, although there is no compulsion to retain these designations.

8.1.6 MemWait

Wait states can be selected by taking MemWait high. Externally generated wait states can be added to
extend the duration of T4 indefinitely.

8.1.7 MemnotRfD1
During T1 and T2, this pin is low if the address on MemAD2-31 is a refresh address, otherwise it is high.

During Tstates T3 to T6 it becomes bit 1 of the data bus. In both cases it follows the general timing of
MemAD2-31.

8.1.8 notMemRf

The IMS T805 can be operated with memory refresh enabled or disabled. The selection is made during
memory configuration, when the refresh interval is also determined.

8.1.9 RefreshPending

When high, this pin signals that a refresh cycle is pending.
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Figure 8.2 IMS T805 dynamic RAM application

8.1.10 MemReq, MemGranted

Direct memory access (DMA) can be requested at any time by driving the asynchronous MemReq input high.
MemGranted follows the timing of the bus being tristated and can be used to signal to the device requesting

the DMA that it has control of the bus. Note that MemGranted changes on the falling edge of ProcClockOut
and can therefore be sampled to establish control of the bus on the rising edge of ProcClockOut.

8.1.11  MemConfig

MemConfig is an input pin used to read configuration data when setting external memory interface (EMI)
characteristics.
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8.1.12 ProcClockOut

This clock is derived from the internal processor clock, which is in turn derived from Clocklin. Its period is
equal to one internal microcode cycle time, and can be derived from the formula

TPCLPCL = TDCLDCL / PLLx

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the ClockIn Period and PLLx is the phase
lock loop factor for the relevant speed part, obtained from the ordering details (Ordering section).

The time value Tm is used to define the duration of Tstates and, hence, the length of external memory cycles;
its value is exactly half the period of one ProcClockOut cycle (0.5«TPCLPCL), regardless of mark/space
ratio of ProcClockOut.

Edges of the various external memory strobes coincide with rising or falling edges of ProcClockOut. It should
be noted, however, that there is a skew associated with each coincidence. The value of skew depends on
whether coincidence occurs when the ProcClockOut edge and strobe edge are both rising, when both are
falling or if either is rising when the other is falling. Timing values given in the strobe tables show the best
and worst cases. If a more accurate timing relationship is required, the exact Tstate timing and strobe edge
to ProcClockOut relationships should be calculated and the correct skew factors applied from the edge skew
timing table 8.4.

Table 8.1 ProcClockOut

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE

TPCLPCL | ProcClockQut period a-2 a a+2 ns 1,5

TPCHPCL | ProcClockOut pulse width high b-11.5 b b+3.5 ns 2,5

TPCLPCH | ProcClockQOut pulse width low c ns 3,5

Tm ProcClockOut half cycle b-1 b b+1 ns 2,5

TPCstab ProcClockOut stability 8 % 4,5
Notes

1 ais TDCLDCL/PLLXx.
2 b is 0.5xTPCLPCL (half the processor clock period).
3 ¢ is TPCLPCL-TPCHPCL.

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points on
the cycles.

5 This parameter is sampled and not 100% tested.

<« TPCLPCH _| TPCHPCL
TPCLPCL

Figure 8.3 IMS T805 ProcClockOut timing
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8.2 Read cycle

Byte addressing is carried out internally by the transputer for read cycles. For a read cycle the read strobe
notMemRd is low during T4 and T5. Read cycle data may be set up on the data bus at any time after the
start of T3, but must be valid when the transputer reads it at the end of T5. Data may be removed any time
during T6, but must be off the bus no later than the end of that period.

notMemSO0 is a fixed format strobe. Its leading edge is always coincident with the start of T2 and its trailing
edge always coincident with the end of T5.

The leading edge of notMemS1 is always coincident with the start of T2, but its duration may be configured
to be from zero to 31 periods Tm. Regardless of the configured duration, the strobe will terminate no later
than the end of T6. The strobe is sometimes programmed to extend beyond the normal end of Tmx. When
wait states are inserted into an EMI cycle the end of Tmx is delayed, but the potential active duration of the
strobe is not altered. Thus the strobe can be configured to terminate relatively early under certain conditions
(page 89). If notMemS1 is configured to be zero it will never go low.

notMemS2, notMemS3 and notMemS4 are identical in operation. They all terminate at the end of T5, but
the start of each can be delayed from one to 31 periods Tm beyond the start of T2. If the duration of one of
these strobes would take it past the end of T5 it will stay high. This can be used to cause a strobe to become
active only when wait states are inserted. If one of these strobes is configured to zero it will never go low.
Figure 8.6 shows the effect of Wait on strobes in more detail; each division on the scale is one period Tm.

In the read cycle timing diagrams ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm.

Table 8.2 Read

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TaZdV Address tristate to data valid 0 ns

TdVRdH Data setup before read 25 ns

TRdHdX Data hold after read 0 ns

TSOLRdL | notMemSO0 before start of read a-4 a a+4 ns 1
TSOHRdH | End of read from end of notMemS0 -4 4 ns

TRdLRdH | Read period b-3 b+5 ns 2

Notes

1 ais total of T2+T3 where T2, T3 can be from one to four periods Tm each in length.

2 b is total of T4+Twait+T5 where T4, T5 can be from one to four periods Tm each in length and Twait may be
any number of periods Tm in length.
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Tstate | T4 | T2 | T8 | T4 | 15 | 76 | T1 |
ProcClockOut
- Tmx |
MemnotWrDO > LLLLLLLLLLKL pata >
MemnotRfD1 > {LLLLLLLLK pata D>
MemAD2-31 > Address {LLLLLLKLLLKLK pata D)<
TavsoL TsoLax | 12V ] Tl rvRagHaX
TSOLRIL . TRdLRdH
notMemRd 1< TSOHRdH
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notMemSO0 AN
(CE)
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notMemS1 \ h
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Figure 8.4 IMS T805 external read cycle: static memory
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Table 8.3 IMS T805 strobe timing

SYMBOL |[(n) PARAMETER MIN | NOM | MAX | UNITS | NOTE
TavSoL Address setup before notMemS0 a-8 ns 1
TSO0LaX Address hold after notMemS0 b-8 b b+8 ns 2
TSOLSOH notMemS0 pulse width low c-5 c+6 ns 3
TSOLS1L 1 | notMemS1 from notMemS0 -4 4 ns
TSOLS1H | 5 | notMemS1 end from notMemS0 d-1 d+9 ns 4,6
TSOHS1H | 9 | notMemS1 end from notMemS0 end e-8 e+4 ns 5,6
TSOLS2L 2 | notMemS2 delayed after notMemS0 f-6 f+5 ns 7
TSOLS2H | 6 | notMemS2 end from notMemS0 c-5 c+7 ns 3
TSOHS2H | 10 | notMemS2 end from notMemS0 end -4 7 ns
TSOLS3L | 3 | notMemS3 delayed after notMemS0 f-6 f+5 ns 7
TSOLS3H | 7 | notMemS3 end from notMemS0 c-5 c+7 ns 3
TSOHS3H | 11 | notMemS3 end from notMemS0 end -4 7 ns
TSOLS4L | 4 | notMemS4 delayed after notMemS0 f-6 f+5 ns 7
TSOLS4H | 8 | notMemS4 end from notMemS0 c-5 c+7 ns 3
TSOHS4H | 12 | notMemS4 end from notMemS0 end -4 7 ns
Tmx Complete external memory cycle g 8
Notes

1 ais T1 where T1 can be from one to four periods Tm in length.
2 b is T2 where T2 can be from one to four periods Tm in length.

3 c is total of T2+T3+T4+Twait+T5 where T2, T3, T4, T5 can be from one to four periods Tm each in length and
Twait may be any number of periods Tm in length.

4 d can be from zero to 31 periods Tm in length.
5 e can be from -27 to +4 periods Tm in length.

6 If the configuration would cause the strobe to remain active past the end of T6 it will go high at the end of T6.
If the strobe is configured to zero periods Tm it will remain high throughout the complete cycle Tmx.

7 f can be from zero to 31 periods Tm in length. If this length would cause the strobe to remain active past the
end of T5 it will go high at the end of T5. If the strobe value is zero periods Tm it will remain low throughout
the complete cycle Tmx.

8 g is one complete external memory cycle comprising the total of T1+T2+T3+T4+Twait+T5+T6 where T1, T2,
T3, T4, T5 can be from one to four periods Tm each in length, T6 can be from one to five periods Tm in length
and Twait may be zero or any number of periods Tm in length.
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Tstate |

T1

|
ProcClockout "~ N____ ~  U___/  L__ /7 L

T2 | 13 | T4 | 15 | T6 | T1 |

Tmx I

MemnotWrDO >—

LLLLLLLLKLLLK pata <

MemnotR{D1 >—

CLLLLLLLLLKLK pata P>

MemAD2-31 >

Address CLLLLLLLLLKLK pata >~

TavsoL TsoLax | AV T qqvnagHex
TSOLRAL . TRALRaH |~ 'o0HRdH
notMemRd \[
TSOLSOH .
notMemS0
(RAS)
—<TsoLs1L © TSOHSTH
- TSOLSTH ® ~ ®
notMemS1
(ALE)
TS0LS2H (&)
—> TSoLs2L @ —»l< TSOHS2H
notMemS2 \t‘
(AMUX)
TSOLS3H @D
—> TSOLS3L (® —>1<—TSOHS3H )
notMemS3 ———{
(CAS)
- TSOLS4H
TsoLsaL (@ , ol TSOHS4H @
notMemS4
(Wait state)

Figure 8.5 IMS T805 external read cycle: dynamic memory
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Tstate | T1|T2|T3|T4|T5| 76| T1|

Tstate |T1|T2|T3|T4| W |W|T5|T6|T1]

notMemS1 notMemS1 [ I

notMemS2 notMemS2 |
No wait states Wait states inserted
Figure 8.6 IMS T805 effect of wait states on strobes
Table 8.4 Strobe SO to ProcClockOut skew
SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TPCHSOH | notMemSo0 rising from ProcClockQut rising -6 4 ns
TPCLSOH | notMemSo0 rising from ProcClockOut falling -5 10 ns
TPCHSOL | notMemSo0 falling from ProcClockOut rising -8 3 ns
TPCLSOL | notMemSO0 falling from ProcClockOut falling -5 7 ns

ProcClockOut T / J ]
J TPCHSOL -« TPCLSOH '<-TPCLSOL

TPCHSOH
NotMemSO0

_F

Figure 8.7 IMS T805 skew of notMemS0 to ProcClockOut
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8.3 Write cycle

For write cycles the relevant bytes in memory are addressed by the write strobes notMemWrB0-3. If a
particular byte is not to be written, then the corresponding data outputs are tristated.

For a write cycle pin MemnotWrDO will be low during T1 and T2. Write data is placed on the bus at the start
of T3 and removed at the end of T6. If T6 is extended to force the next cycle Tmx (page 80) to start on a
rising edge of ProcClockOut, data will be valid during this time also.

The transputer has both early and late write cycle modes. For a late write cycle the relevant write strobes
notMemWrBO0-3 are low during T4 and T5; for an early write they are also low during T3. Data should be
latched into memory on the rising edge of the strobes in both cases, although it is valid until the end of T6.
If the strobe duration is insufficient, it may be extended at configuration time by adding extra periods Tm to
either or both of Tstates T4 and T5 for both early and late modes. For an early cycle they may also be added
to T3. Further extension may be obtained by inserting wait states at the end of T4. If the data hold time is
insufficient, extra periods Tm may be added to T6 to extend it.

In the write cycle timing diagram ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm. The strobe is inactive during internal memory cycles.

Table 8.5 Write

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TdVWrH Data setup before write d-7 d+10 ns 15
TWrHdX Data hold after write a-10 a+5 ns 1,2
TSOLWrL | notMemSO0 before start of early write b-5 b+5 ns 1.3

notMemSO0 before start of late write c-5 c+b ns 1,4
TSOHWrH | End of write from end of notMemS0 -5 4 ns 1
TWrLWrH | Early write pulse width d-4 d+7 ns 1,5

Late write pulse width e-4 e+7 ns 1,6

Notes

1 Timing is for all write strobes notMemWrB0-3.

2 ais T6 where T6 can be from one to five periods Tm in length.

3 b is T2 where T2 can be from one to four periods Tm in length.

4 ¢ is total of T2+T3 where T2, T3 can be from one to four periods Tm each in length.

5 d is total of T3+T4+Twait+T5 where T3, T4, T5 can be from one to four periods Tm each in length and Twait
may be zero or any number of periods Tm in length.

6 e is total of T4+Twait+T5 where T4, T5 can be from one to four periods Tm each in length and Twait may be
zero or any number of periods Tm in length.
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Tstate | T4 | T2 | T8 | T4 | 158 | T6 | T1 |
ProcClockout /" N___ ~ U~ L__A L
l Tmx
MemnotWrDO > 4 Data <
MemnotRfD1 > Data 24
MemAD2-31 >« Address Data <
TavSoL . TSOLaX TAVWH IWrHdX
TSOLWIL, TWrLWrH
notMemWrB0-3 \k
(early write)
TSOLWrL . TWrLWrH
notMemWrB0-3 ‘L
(late write) ~—>a— TSOHWIH
TSOLSOH
notMemSO0 AN
(CE) N
—><TSOLS1L (D — TSOHS1H (®
- TSOLS1H (®
notMemS1 N l/—x
(ALE)
Figure 8.8 IMS T805 external write cycle
8.4 Wait

Taking MemWait high with the timing shown (figure 8.9) will extend the duration of T4. MemWait is sampled
relative to the falling edge of ProcClockOut during a T3 period, and should not change state in this region.
By convention, notMemS4 is used to synchronize wait state insertion. If this or another strobe is used, its
delay should be such as to take the strobe low an even number of periods Tm after the start of T1, to coincide
with a rising edge of ProcClockOut.

MemWait may be kept high indefinitely, although if dynamic memory refresh is used it should not be kept
high long enough to interfere with refresh timing. MemWait operates normally during all cycles, including
refresh and configuration cycles. It does not affect internal memory access in any way.

If the start of T5 would coincide with a falling edge of ProcClockOut an extra wait period Tm (EW) is
generated by the EMI to force coincidence with a rising edge. Rising edge coincidence is only forced if wait
states are added, otherwise coincidence with a falling edge is permitted.
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Table 8.6 Memory wait
SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TPCLWtH | Wait setup -(0.5Tm+9) ns 1,2
TPCLWLL | Wait hold 0.5Tm+10 ns 1,2
TWILWtH | Delay before re-assertion of Wait 2Tm
Notes
1 ProcClockOut load should not exceed 50pf.
2 If wait period exceeds refresh interval, refresh cycles will be lost.
Tstate | T2 | T3 | T4 |_w | 15 | T6 | T1 |
ProcClockOut __/—\
TPCLWIL
TPCLW{H je—>1_—]
MemWait 4 ) AN
TWILWtH
MemADO-31 Address >~ <CLLLLLLLLLLLLLLLLL Data > Address
notMemRd \ /
Tstate | ™3 | T4 | T4 | . W | W | EW | T8 | T6
ProcClockOut
MemWait AN
Tstate | T3 | T4 | T4 | W | EW |,W | EW | T5
ProcClockOut
MemWait 707770000 NN

Figure 8.9 IMS T805 memory wait timing
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8.5 Memory refresh

The RefreshPending pin is asserted high when the external memory interface is about to perform a refresh
cycle. It remains high until the refresh cycle is started by the transputer. The mimimum time for the Re-
freshPending pin to be high is for one cycle of ProcClockOut (two periods Tm), when the EMI was not
about to perform a memory read or write. If the EMI was held in the tristate condition with MemGranted
asserted, then RefreshPending will be asserted when the refresh controller in the EMI is ready to perform
a refresh. MemReq may be re-asserted any time after the commencement of the refresh cycle. Refresh-
Pending changes state near the rising edge of ProcClockOut and can therefore be sampled by the falling
edge of ProcClockOut.

If no DMA is active then refresh will be performed following the end of the current internal or external memory
cycle. If DMA is active the transputer will wait for DMA to terminate before commencing the refresh cycle.
Unlike MemnotRfD1, RefreshPending is never tristated and can thus be interrogated by the DMA device;
the DMA cycle can then be suspended, at the discretion of the DMA device, to allow refresh to take place.

The simple circuit of Figure 8.10 will suspend DMA requests from the external logic when RefreshPending
is asserted, so that a memory refresh cycle can be performed. DMA is restored on completion of the refresh
cycle. The transputer will not perform an external memory cycle other than a refresh cycle, using this method,
until the requesting device removes its DMA request.

DMA Request

MemReq

IMS

Logic T805

\
L/
°<r RefreshPending

Figure 8.10 IMS T805 refresh with DMA

When refresh is disabled no refresh cycles occur. During the post-Reset period eight dummy refresh cycles
will occur with the appropriate timing but with no bus or strobe activity.

A refresh cycle uses the same basic external memory timing as a normal external memory cycle, except that
it starts two periods Tm before the start of T1. If a refresh cycle is due during an external memory access,
it will be delayed until the end of that external cycle. Two extra periods Tm (periods R in the diagram) will
then be inserted between the end of T6 of the external memory cycle and the start of T1 of the refresh cycle
itself. The refresh address and various external strobes become active approximately one period Tm before
T1. Bus signals are active until the end of T2, whilst notMemRf remains active until the end of T6.

For a refresh cycle, MemnotR{D1 goes low before notMemRf goes low and MemnotWrDO goes high with
the same timing as MemnotRfD1. All the address lines share the same timing, but only MemAD2-11 give
the refresh address. MemAD12-30 stay high during the address period, whilst MemAD31 remains low.
Refresh cycles generate strobes notMem$0-4 with timing as for a normal external cycle, but notMemRd and
notMemWrB0-3 remain high. MemWait operates normally during refresh cycles.

Refresh cycles do not interrupt internal memory accesses, although the internal addresses cannot be reflected
on the external bus during refresh.
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Table 8.7 Memory refresh

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE

TRfLRfH Refresh pulse width low a-2 a+9 ns 1

TRaVSOL | Refresh address setup before notMemS0 b-12 ns

TRILSOL | Refresh indicator setup before notMemSO0 b-4 b b+6 ns 2
Notes

1 ais total Tmx+Tm.

2 b is total T1+Tm where T1 can be from one to four periods Tm in length.

Tstate | T4 | 15 | T6 | T1 | T2 [ T3 | T4 | T5 | Te | T1 |
&oénn;‘f\ll)%)féi X X Address X Data X

Tstate | T6 | R | R | T1 | T2 | T3 | T4 | 75 | T6 | T1 |

MemAD2-11 X ><Refresh address
notMemsS0 TRaVSOLN
TRILSOL_|  tRiLRH .
notMemRf TN )/__
MemnotWrDO
MemnotRfD1 >
MemAD12-30 Y
MemAD31 ﬁt

Figure 8.11 IMS T805 refresh cycle timing
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| R | R | 71|
pocClockout /N / N/ o/ o/ ./ LU
notMems0 L
MemReq AN
MemGranted \

RefreshPending
notMemRf

MemAD2-11

X Xﬁefresh Address

Figure 8.12 IMS T805 RefreshPending timing
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8.6 Direct memory access

Direct memory access (DMA) can be requested at any time by taking the asynchronous MemReq input high.
The transputer samples MemReq during the final period Tm of T6 of both refresh and external memory
cycles. To guarantee taking over the bus immediately following either, MemReq must be set up at least two
periods Tm before the end of T6. In the absence of an external memory cycle, MemReq is sampled during
every low period of ProcClockOut. The address bus is tristated two periods Tm after the ProcClockOut
rising edge which follows the sample. MemGranted is asserted one period Tm after that.

Removal of MemReq is sampled during each low period of ProcClockOut and MemGranted is removed
synchronously with the next falling edge of ProcClockOut. If accurate timing of DMA is required, MemReq
should be set low coincident with a falling edge of ProcClockOut. Further external bus activity, either refresh,
external cycles or reflection of internal cycles, will commence at the next rising edge of ProcClockOut.

Strobes are left in their inactive states during DMA. DMA cannot interrupt a refresh or external memory cycle,
and outstanding refresh cycles will occur before the bus is released to DMA. DMA does not interfere with
internal memory cycles in any way, although a program running in internal memory would have to wait for
the end of DMA before accessing external memory. DMA cannot access internal memory. If DMA extends
longer than one refresh interval (Memory Refresh Configuration Coding, table 8.11), the DMA user becomes
responsible for refresh. DMA may also inhibit an internally running program from accessing external memory.

DMA allows a bootstrap program to be loaded into external RAM ready for execution after reset. If MemReq is
held high throughout reset, MemGranted will be asserted before the bootstrap sequence begins. MemReq
must be high at least one period TDCLDCL of Clockln before Reset. The circuit should be designed to
ensure correct operation if Reset could interrupt a normal DMA cycle.

Table 8.8 Memory request

SYMBOL PARAMETER MIN NOM MAX UNITS | NOTE
TMRHMGH | Memory request response time 4Tm-2ns 7Tm+7ns
TMRLMGL | Memory request end response time 2Tm-2ns 5Tm+22ns
TADZMGH | Bus tristate hefore memory granted Tm-2ns Tm+22ns
TMGLADV | Bus active after end of memory granted -10ns Tm+2ns
Notes

1 These values assume no external memory cycle is in progress. If an external cycle is active, maximum time
could be (1 EMI cycle Tmx)+(1 refresh cycle TRfLRfH)+(6 periods Tm).

ProcClockOut WW /_W

MemAD2-31

MemReq /, NN\N

/L TMRHMGH . TMRLMGL
MemGranted l:
MemnotWrDO TADZMGH -:] TMGLADV l;_
MemnotR{D1 >>

Figure 8.13 IMS T805 memory request timing
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MemReq l___m
MemGranted [ 77/
Reset

Configuration

sequgnce [DTTTETDIR [B]
D Pre- and post-configuration delays (figure 6.3)

I Internal configuration sequence

E External configuration sequence

R Initial refresh sequence
B Bootstrap sequence

Figure 8.14 IMS T805 DMA sequence at reset

MemReq

External Memory : -
Interface cycles _HReadorwite H _Refresh _} { Read or Write -

MemGranted

MemnotRfD1

MemnotWrD0O
MemAD2-31

Figure 8.15 IMS T805 operation of MemReq, MemGranted with external, refresh memory cycles

MemReq

External Memory TUT2ITSITAITSITE T1|T2[T3[T4[T5[T6
Interface activity — L EMI cycle EMI cycle

MemGranted

MemnotWrDO
MemnotRfD1
MemAD2-31

Internal Memory Cycles

Figure 8.16 IMS T805 operation of MemReq, MemGranted with external, internal memory cycles
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8.7 Memory configuration

MemConfig is an input pin used to read configuration data when setting external memory interface (EMI)
characteristics. It is read by the processor on two occasions after Reset goes low; first to check if one of the
preset internal configurations is required, then to determine a possible external configuration.

8.7.1 Internal configuration

The internal configuration scan comprises 64 periods TDCLDCL of Clockln during the internal scan period
of 144 Clockln periods. MemnotWrD0, MemnotRfD1 and MemAD2-32 are all high at the beginning of the
scan. Starting with MemnotWrDO, each of these lines goes low successively at intervals of two Clockin
periods and stays low until the end of the scan. If one of these lines is connected to MemConfig the preset
internal configuration mode associated with that line will be used as the EMI configuration. The default
configuration is that defined in the table for MemAD31; connecting MemConfig to VCC will also produce
this default configuration. Note that only 17 of the possible configurations are valid, all others remain at the
default configuration.

Table 8.9 IMS T805 internal configuration coding

Duration of each Tstate Strobe Write | Refresh | Cycle

periods Tm coefficient cycle | interval | time

Clockin | Proc

Pin Tt T2 T3 T4 T5 T6|s1 s2 s3 s4| type | cycles | cycles
MemnotWrDO | 1 1 1 1 1 1130 1 3 5 late 72 3
MemnotR{D1 1 2 1 1 1 2 130 1 2 7 late 72 4
MemAD2 1 2 1 1 2 31|30 1 2 7 late 72 5
MemAD3 2 3 1 1 2 3|30 1 3 8 late 72 6
MemAD4 1 1 1 1 1 1 3 1 2 3 | early 72 3
MemAD5 . 1 1 2 1 2 1 5 1 2 3 | early 72 4
MemAD6 2 1 2 1 3 1 6 1 2 3 | early 72 5
MemAD7 2 2 2 1 3 2|7 1 3 4 | early 72 6
MemAD8 1 1 1 1 1 113 1 2 3 | early t 3
MemAD9 1 1 2 1 2 113 2 5 9 | eary t 4
MemAD10 2 2 2 2 4 2|3 2 3 8 late 72 7
MemAD11 3 3 3 38 3 3|30 2 4 13| late 72 9
MemAD12 it 1 2 1 2 114 1 2 3 |eary 72 4
MemAD13 2 1 2 1 2 21|15 1 2 3 | early 72 5
MemAD14 2 2 2 1 3 2|6 1 3 4 | early 72 6
MemAD15 2 1 2 3 3 3|8 1 2 3 ]|early 72 7
MemAD31 4 4 4 4 4 4 {31 30 30 18| late 72 12

t Provided for static RAM only.
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Tstate|1]|2]3|4|5|6]1|2|3]|4|5|6]|1]2

notMemS0 | ] [ L
notMems1 | 30 [ L
notMemS2 ™ ;1 |

notMemS3 3 | L
notMemsS4 _: _ 5 =
notMemRd L L
notMemWr late | | 1]

MemConfig=MemnotWrD0

Tstate|1,1|2,2,2|3|4|5,5|6,6,6]1,2
notMemso~ | [
notMemS1 | 30 [
notMems2~ 1] [
notMems3~ 3 | [

notMemS4 _ _: _ _ _8_ _ _ _ _ _ _
notMemRd T
notMemWr  late L]

MemConfig=MemAD3

Tstate|1]2,2]|3]4|5|6,6]|1]2,2|3|4|5

notMemso™ | [ |
notMemS1 30 [

notMemsS2 1 [ |
notMemsS3 2 L
notMemS4 _: _ 7 _ _ _ _ _ _ _ _ _
notMemRd 1 |-
notMemWr late L L

MemConfig=MemnotR{D1

Tstate|1,1]2,2]3,3|4|5,5,5|6,6]1,1

notMemS0 ~ | I
notMems1~ | 7 [
notMems2~ 1| [
notMems3~ { 3 | [
notMemS4 4 l [

notMemRd l [

notMemwWr  early | [

MemConfig=MemAD7

Figure 8.17 IMS T805 internal configuration
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Delay Internal configuration External configuration

Periods of Clockin

64 periods 16 periods| Read at . Read at
of Clockin |0:0:010 1 1 5 6 6:60f Clockin |7FFFFFEC{7FFFFF70}
2i4i6:8 02 8024
MemnotWrDO [[ r
MemnotRID1 | |
MemAD2 i /| I o3 &
MemAD3 /| | 777/ W 7%/7,
\ ¥ / / ¥ Yy / [ i Y
MemAD31 / / / BZZ 7
MemConfig D I /| 777/ W 777,
MemConfig @ |

) Jyoo )

8 Internal configuration: MemConfig connected to MemAD2
External configuration: MemConfig connected to inverse of MemAD3

Figure 8.18 IMS T805 internal configuration scan

8.7.2 External configuration

If MemConfig is held low until MemnotWrDO goes low the internal configuration is ignored and an external
configuration will be loaded instead. An external configuration scan always follows an internal one, but if an
internal configuration occurs any external configuration is ignored.

The external configuration scan comprises 36 successive external read cycles, using the default EMI con-
figuration preset by MemAD31. However, instead of data being read on the data bus as for a normal read
cycle, only a single bit of data is read on MemConfig at each cycle. Addresses put out on the bus for each
read cycle are shown in table 8.10, and are designed to address ROM at the top of the memory map. The
table shows the data to be held in ROM; data required at the MemConfig pin is the inverse of this.

MemConfig is typically connected via an inverter to MemnotWrDO0. Data bit zero of the least significant byte
of each ROM word then provides the configuration data stream. By switching MemConfig between various
data bus lines up to 32 configurations can be stored in ROM, one per bit of the data bus. MemConfig can be
permanently connected to a data line or to GND. Connecting MemConfig to GND gives all Tstates configured
to four periods; notMemS1 pulse of maximum duration; notMemS2-4 delayed by maximum; refresh interval
72 periods of Clocklin; refresh enabled; late write.

The external memory configuration table 8.10 shows the contribution of each memory address to the 13 con-
figuration fields. The lowest 12 words (#7FFFFF6C to #7FFFFF98, fields 1 to 6) define the number of extra
periods Tm to be added to each Tstate. If field 2 is 3 then three extra periods will be added to T2 to extend
it to the maximum of four periods.

The next five addresses (field 7) define the duration of notMemS1 and the following fifteen (fields 8 to 10)
define the delays before strobes notMemS2-4 become active. The five bits allocated to each strobe allow
durations of from 0 to 31 periods Tm, as described in strobes page 80.

Addresses #7FFFFFEC to #7FFFFFF4 (fields 11 and 12) define the refresh interval and whether refresh is to
be used, whilst the final address (field 13) supplies a high bit to MemConfig if a late write cycle is required.

The columns to the right of the coding table show the values of each configuration bit for the four sample



8 External memory interface 99

external configuration diagrams. Note the inclusion of period E at the end of T6 in some diagrams. This is
inserted to bring the start of the next Tstate T1 to coincide with a rising edge of ProcClockOut (page 82).

Wait states W have been added to show the effect of them on strobe timing; they are not part of a configuration.
In each case which includes wait states, two wait periods are defined. This shows that if a wait state would
cause the start of T5 to coincide with a falling edge of ProcClockOut, another period Tm is generated by
the EMI to force it to coincide with a rising edge of ProcClockOut. This coincidence is only necessary if wait
states are added, otherwise coincidence with a falling edge is permitted. Any configuration memory access
is only permitted to be extended using wait, up to a total of 14 Clockin periods.

Tstate|1]2,2|3,3|4|5|6,6,E|1]|2,2|3 Tstate|1]2]3,3|4|wWwWw|5|6]|1]2|3,3

notMemso™ | [ 1 notMemS0 [ 1
notMemS1 8 [ notMemsSt1_: 0 _
notMemsS2 3 [ notMems2™ i 2 | [ L
notMemS3 Lf—l_ notMemS3 7 1
notMemsa 4 || notMemS4 6 L
notMemRd 1 notMemRd | [
notMemWr early | [ | notMemWr  late | [

MemWait@©__ ~ — ~— — ———————— MemWait @ [ ] [

O MemWait @) | I

Example 1 Example 2

Tstate|1]2|3,3]4wWwWW|5|6,6,E|1]|2 Tstate|1]2,2]3,3|4|ww|5|6,6,E|1]2

notMemS0 ~ | L notMemS0 ~ | L
notMemS1 ™~ [1] L notMemS1 ™~ |1] L
notMems2_ ;. ~ ~ " "~ """~~~ notMemS2 7 L]
notMemS3 _ ¢ _ _ _ _ 9_ _ _ _ _ _ _ notMemS3 5 |
notMemsa™ 2 | [ notMems4 ¢+ 3 | [
notMemRd~ | [ notMemRd ~ | [
notMemWr  late | [ notMemWr early | [
MemWait @ 1 MemWait (D 1
MemWait (3 I MemWait 3 [ I
Example 3 Example 4

(0) No wait states inserted
(1) One wait state inserted
(2) Two wait states inserted
(3) Three wait states inserted

Figure 8.19 IMS T805 external configuration
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Internal configuration, External configuration Delay
2 g ¢ g 2 8 g z g |
= OF E oE O E O£ B O£ K
Address [ [ [ e w [ [ [ w
oL ok &£ B B g & &
MemnotWrDO _|' 11—
MemnotRiD1 _ [ U0 U U0V A div v divia—-
MemAD2 A g va: & A A e —
Men;ADa _wAv2: 07 I’/*//l ) l//*//l v l//*A v —
\
MemAD31 [T AN\ i v divid——-
MemConfig (D™ | 1 H T gy —
notMemRd [ L L L]

MemConfig connected to inverse of MemnotWrDO

Configuration field 1; T1 configured for 2 periods Tm
(3 Configuration field 2; T2 configured for 3 periods Tm
(9 Configuration field 10; most significant bit of notMemS4 configured high
(8 Configuration field 11; refresh interval configured for 36 periods Clockin
(® Configuration field 12; refresh enabled
(@ Configuration field 13; early write cycle

Figure 8.20 IMS T805 external configuration scan



8 External memoty interface

101

Table 8.10 IMS T805 external configuration coding

Scan MemAD Example diagram

cycle address Field Function 1 2 3 4
1 7FFFFF6C 1 T1 least significant bit 0 0 0 0
2 7FFFFF70 1 T1 most significant bit 0 0 0 0
3 7FFFFF74 2 T2 least significant bit 1 0 0 1
4 7FFFFF78 2 T2 most significant bit 0 0 0 0
5 7FFFFF7C 3 T3 least significant bit 1 1 1 1
6 7FFFFF80 3 T3 most significant bit 0 0 0 0
7 7FFFFF84 4 T4 least significant bit 0 0|0 0
8 7FFFFF88 4 T4 most significant bit 0 0 0 0
9 7FFFFF8C 5 T5 least significant bit 0 0] 0 0
10 7FFFFF90 5 T5 most significant bit 0 0 0 0
11 7FFFFF94 6 T6 least significant bit 1 0 1 1
12 7FFFFF98 6 T6 most significant bit 0 0 0 0
13 7FFFFFOC 7 notMemS1 least significant bit 0 0 1 1
14 7FFFFFAOQ 7 0 0| o0 0
15 7FFFFFA4 7 4 [} 0 0] 0 0
16 7FFFFFA8 7 1 010 0
17 7FFFFFAC 7 notMemS1 most significant bit 0 0 0 0
18 7FFFFFBO 8 notMemS2 least significant bit 1 0 0 1
19 7FFFFFB4 8 1 1 0 1
20 7FFFFFB8 8 I { 0 040 1
21 7FFFFFBC 8 0 0| O 0
22 7FFFFFCO 8 notMemS2 most significant bit 0 0 0 0
23 7FFFFFC4 9 notMemS3 least significant bit 1 1 1 1
24 7FFFFFC8 9 0 1 0 0
25 7FFFFFCC 9 [l i) 0 1 0 1
26 7FFFFFDO 9 0 0 1 0
27 7FFFFFD4 9 notMemS3 most significant bit 0 0 0 0
28 7FFFFFD8 10 | notMemS4 least significant bit 0 0 0 1
29 7FFFFFDC 10 0 1 1 1
30 | 7FFFFFEQ | 10 4 Y 1tp1)p0}0
31 | 7FFFFFE4 | 10 01010710
32 7FFFFFES8 10 | notMemS4 most significant bit 0 0 0 0
33 7FFFFFEC 11 Refresh Interval least significant bit - - - -
34 7FFFFFFO 11 Refresh Interval most significant bit - - - -
35 7FFFFFF4 12 | Refresh Enable - - -
36 7FFFFFF8 13 | Late Write 0 1 1
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Table 8.11 IMS T805 memory refresh configuration coding

Refresh Interval Field 11 Complete
interval in us encoding cycle (ms)
18 3.6 00 0.922
36 7.2 01 1.843
54 10.8 10 2.765
72 14.4 11 3.686

Refresh intervals are in periods of Clockln and Clockin frequency is 5 MHz:
Interval = 18 * 200 = 3600 ns

Refresh interval is between successive incremental refresh addresses.
Complete cycles are shown for 256 row DRAMS.

Table 8.12 Memory configuration

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TMCVRdH | Memory configuration data setup 25 ns
TRAHMCX | Memory configuration data hold 0 ns
TSOLRdH | notMemSO0 to configuration data read a-12 a+12 ns 1
Notes
1 ais 16 periods Tm.
Tetate | T4 | T2 | T8 | T4 ; T5 | T6 | LA
T™Tm TTTTTTTTTTT T T T T T TT T T T T T T T T
MemnotWrDO NLLLLLLKLLKLLKLL pata >
MemnotR{D1 LKL pata 20>
MemAD2-31 —<  Address <LK pata >y <
notMemSO0
TSOLRdH )
notMemRd
TMCVRdH
[<-TRdHMCX
MemConfig LKL pata >

Figure 8.21 IMS T805 external configuration read cycle timing
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9 Events

EventReq and EventAck provide an asynchronous handshake interface between an external event and an
internal process. When an external event takes EventReq high the external event channel (additional to the
external link channels) is made ready to communicate with a process. When both the event channel and the
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck
is removed after EventReq goes low.

EventWaiting is asserted high by the transputer when a process executes an input on the event channel;
typically with the occam EVENT ? ANY instruction. It remains high whilst the transputer is waiting for or
servicing EventReq and is returned low when EventAck goes high. The EventWaiting pin changes near the
falling edge of ProcClockOut and can therefore be sampled by the rising edge of ProcClockOut.

The EventWaiting pin can only be asserted by executing an in instruction on the event channel. The
EventWaiting pin is not asserted high when an enable channel (enbc) instruction is executed on the Event
channel (during an ALT construct in occam, for example). The EventWaiting pin can be asserted by executing
the occam input on the event channel (such as Event ? ANY), provided that this does not occur as a
guard in an alternative process. The EventWaiting pin can not be used to signify that an alternative process
(ALT) is waiting on an input from the event channel.

EventWaiting allows a process to control external logic; for example, to clock a number of inputs into a
memory mapped data latch so that the event request type can be determined.

Only one process may use the event channel at any given time. If no process requires an event to occur
EventAck will never be taken high. Although EventReq triggers the channel on a transition from low to high,
it must not be removed before EventAck is high. EventReq should be low during Reset; if not it will be
ignored until it has gone low and returned high. EventAck is taken low when Reset occurs.

If the process is a high priority one and no other high priority process is running, the latency is as described
on page 56. Setting a high priority task to wait for an event input allows the user to interrupt a transputer
program running at low priority. The time taken from asserting EventReq to the execution of the microcode
interrupt handler in the CPU is four cycles. The following functions take place during the four cycles:

Cycle 1 Sample EventReq at pad on the rising edge of ProcClockOut and synchronise.
Cycle 2 Edge detect the synchronised EventReq and form the interrupt request.
Cycle 3 Sample interrupt vector for microcode ROM in the CPU.

Cycle 4 Execute the interrupt routine for Event rather than the next instruction.
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Table 9.1 Event

SYMBOL PARAMETER MIN NOM MAX UNITS | NOTE
TVHKH Event request response 0 ns

TKHVL Event request hold 0 ns

TVLKL Delay before removal of event acknowledge 0 6Tm+7ns

TKLVH Delay before re-assertion of event request 0 ns

TKHEWL | Event acknowledge to end of event waiting 0 ns

TKLEWH | End of event acknowledge to event waiting 0 ns

EventReq
TVHKH
EventAck /
TKHEWL TKLEWH
EventWaiting * ‘[ j’ * \
Process waiting for Event Event waiting for Process

Figure 9.1 IMS T805 event timing
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10 Links

Four identical INMOS bi-directional serial links provide synchronized communication between processors
and with the outside world. Each link comprises an input channel and output channel. A link between two
transputers is implemented by connecting a link interface on one transputer to a link interface on the other
transputer. Every byte of data sent on a link is acknowledged on the input of the same link, thus each signal
line carries both data and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first.
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte
and that the receiving link is able to receive another byte. The sending link reschedules the sending process
only after the acknowledge for the final byte of the message has been received.

The IMS T805 links support the standard INMOS communication speed of 10 Mbits/sec. In addition they can
be used at 5 or 20 Mbits/sec for 17 MHz, 20 MHz, and 25 MHz devices, and 20 Mbits/sec for faster devices.
Links are not synchronised with Clockin or ProcClockOQut and are insensitive to their phases. Thus links
from independently clocked systems may communicate, providing only that the clocks are nominally identical
and within specification.

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

Link speeds can be set by LinkSpecial, LinkOSpecial and Link123Special. The link 0 speed can be set
independently. Table 10.1 shows uni-directional and bi-directional data rates in Kbytes/sec for each link
speed; LinknSpecial is to be read as LinkOSpecial when selecting link 0 speed and as Link123Special for
the others. Data rates are quoted for a transputer using internal memory, and will be affected by a factor
depending on the number of external memory accesses and the length of the external memory cycle.

Table 10.1 Speed Settings for Transputer Links

Link Linkn Kbytes/sec
Special Special | Mbits/sec Uni Bi Notes
0 0 10 910 1250
0 1 5 450 670 1
1 0 10 910 1250
1 1 20 1740 2350

Notes

1 This setting is reserved for IMS T805-30 and faster devices.

__|n™H[oJ1]2]3]4]5]6]7]L, H]L,

| Data | | Ack |

Figure 10.1 IMS T805 link data and acknowledge packets
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Table 10.2 Link

SYMBOL PARAMETER MIN NOM MAX | UNITS | NOTE
TJQr LinkOut rise time 20 ns 1
TJQf LinkOut fall time 10 ns 1
TJDr LinkIn rise time 20 ns 1
TJDf Linkin fall time 20 ns 1
TJQJD Buffered edge delay 0 ns
TJBskew | Variation in TJQJD 20 Mbits/s 3 ns 2
10 Mbits/s 10 ns 2
5 Mbits/s 30 ns 2
CLiz LinkIn capacitance @ f=1MHz 7 pF 1
CLL LinkOut load capacitance 50 pF
RM Series resistor for 1000 transmission line 56 ohms
Notes

1 These parameters are sampled, but not 100% tested.

2 This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

Figure 10.2 IMS T805 link timing

LinkOut 15V—— — - - - — - - -

Latest TUQJD
Earliest TUQJD

Linkin  15V— - - — - -

TJBskew

Figure 10.3 IMS T805 buffered link timing



10 Links

107

LinkOut

Linkin

Transputer family device A

Linkin

LinkOut
Transputer family device B

Figure 10.4 IMS T805 Links directly connected

LinkOut

Linkin

Transputer family device A

RM

Zo=100o0hms

Zo=100ohms

Linkin

LinkOut
Transputer family device B

Figure 10.5 IMS T805 Links connected by transmission line

LinkOut

Linkin

Transputer family device A

N

L

buffers

o

Linkin

b
~

LinkOut
Transputer family device B

Figure 10.6 IMS T805 Links connected by buffers
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11 Electrical specifications

1141 DC electrical characteristics

Table 11.1 Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS | NOTE
VCC DC supply voltage 0 7.0 \Y 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 \ 1,23
I Input current +25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 °C 2
TA Ambient temperature under bias -55 125 °C 2
PDmax Maximum allowable dissipation 2 w
Notes

-

All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods

may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as VCC or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND

and VCC.
Table 11.2 Operating conditions

SYMBOL PARAMETER MIN MAX UNITS | NOTE
VCC DC supply voltage 4.75 5.25 \Y 1
VI, VO Input or output voltage 0 VCC \ 1,2
CL Load capacitance on any pin 60 pF
TA Operating temperature range IMS T805-S 0 70 °C 3
TA Operating temperature range IMS T805-M -55 125 °C 3

Notes
1 All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear ft/min transverse air flow.
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Table 11.3 DC characteristics
SYMBOL PARAMETER MIN MAX UNITS | NOTE
VIH High level input voltage 2.0 VCC+0.5 \ 1,2
VIL Low level input voltage -0.5 08 \' 1,2
Il Input current @ GND<VI<VCC +10 uA 1,2
VOH Output high voltage @ IOH=2mA VCC-1 \' 1,2
VvOL Output low voltage @ IOL=4mA 04 \Y 1,2
10S Output short circuit current @ GND<VO<VCC 36 65 mA 1,2,3,6
65 100 mA 1,2,4,6
102 Tristate output current @ GND<VO<VCC +10 uA 1,2
PD Power dissipation 1.2 W 25
CIN Input capacitance @ f=1MHz 7 pF 6
coz Output capacitance @ f=1MHz 10 pF 6
Notes
1 All voltages are with respect to GND.
2 Parameters for IMS T805-S measured at 4.75V<VCC<5.25V and 0°C<TA<70°C.
Input clock frequency = 5 MHz.
3 Current sourced from non-link outputs.
4 Current sourced from link outputs.
5 Power dissipation varies with output loading and program execution.
Power dissipation for processor operating at 20 MHz.
6 This parameter is sampled and not 100% tested.
11.2 Equivalent circuits
vCC
R1 Load for: R1 R2 Equivalent load:
Output — Link outputs 1K96 47K |1 Schottky TTL input
Other outputs | 970R 24K |2 Schottky TTL inputs
50pF == R2 Diodes are 1N916
GND

Figure 11.1

Load circuit for AC measurements
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Vdd-1
Inputs VIH
ov
Vdd-1
Inputs VIL
ov
tpHL '
Vdd J
Outputs 1.5V
ov
tpLH
vdd ]
Outputs 1.5V
ov

Figure 11.2 AC measurements timing waveforms

vcce
Test point \’:j
510R
Output under test

=
D 50pF -E T

Figure 11.3 Tristate load circuit for AC measurements

11.3 AC timing characteristics

Table 11.4 Input, output edges

SYMBOL PARAMETER MIN MAX UNITS | NOTE
TDr Input rising edges 2 20 ns 1,2,4
TDf Input falling edges 2 20 ns 1,2,4
TQr Output rising edges 25 ns 1,5
TQf Output falling edges 15 ns 1,5
TSO0LaHZ | Address high to tristate a a+b ns 3
TSOLalLZ | Address low to tristate a a+6 ns 3
Notes

1 Non-link pins; see section on links.
2 Allinputs except Clockin; see section on Clockin.

3 ais T2 where T2 can be from one to four periods Tm in length.
Address lines include MemnotWrD0O, MemnotRfD1, MemAD2-31.

4 These parameters are not tested.

5 These parameters are sampled, but not 100% tested.
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Figure 11.5 IMS T805 tristate timing relative to notMemS0

30 30 - Rise time
— Rise time -

Time 20 Time 20 Fall time
ns - Fall time ns —/
Skew

10 %/ 10

T I 1T 17 11 [ I T T 1T 177
40 60 80 100 40 60 80 100
Load Capacitance pF Load Capacitance pF
Link EMI

Figure 11.6 Typical rise/fall times
Notes

1 Skew is measured between notMemSO0 with a standard load (2 Schottky TTL inputs and 30 pF) and notMemS0
with a load of 2 Schottky TTL inputs and varying capacitance.
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11.4 Power rating

Internal power dissipation Pryr of transputer and peripheral chips depends on VCC, as shown in figure 11.7.
Pryr is substantially independent of temperature.

Total power dissipation Pp of the chip is

Pp = Py + Pro
where Pro is the power dissipation in the input and output pins; this is application dependent.
Internal working temperature T'; of the chip is

Ty=Ts+0J4 % Pp

where T4 is the external ambient temperature in °C and §J, is the junction-to-ambient thermal resistance in
°C/W. 6J, for each package is given in the Packaging Specifications section.

_~ T805-30 (projected)
8005 T805-25
T T805-20
700 T805-17
Power ]
PINT 600
mw -
500
T T T T T T T T T T T T 1
44 46 48 50 52 54 56
VCC Volts
Figure 11.7 IMS T805 internal power dissipation vs VCC
|
I
650
Power 600 +
PD —
mwW 550 —
2 +
500
€L
T T I T T T T T T T T I I
15 20 25 30
Processor frequency MHz

Figure 11.8 IMS T805 typical power dissipation with processor speed
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12 Performance

The performance of the transputer is measured in terms of the number of bytes required for the program, and
the number of (internal) processor cycles required to execute the program. The figures here relate to occam
programs. For the same function, other languages should achieve approximately the same performance as
occam.

With transputers incorporating an FPU, this type of performance calculation is straight forward when consider-
ing only integer data types. However, when floating point calculations using the REAL32 and REAL64 data
types are present in the program, complications arise due to the concurrency inherent in the transputer’s de-
sign whereby integer calculations can be overlapped with floating point calculations. A more comprehensive
guide to the impact of this concurrency on transputer performance can be found in the Transputer Instruction
Set - A Compiler Writers’ Guide.

12.1 Performance overview

These figures are averages obtained from detailed simulation, and should be used only as an initial guide;
they assume operands are of type INT. The abbreviations in table 12.1 are used to represent the quantities
indicated. In the replicator section of the table, figures in braces {} are not necessary if the number of
replications is a compile time constant. To estimate performance, add together the time for the variable
references and the time for the operation.

Table 12.1 Key to performance table

np | number of component processes

ne number of processes earlier in queue

r 1 if INT parameter or array parameter, 0 if not

ts number of table entries (table size)

w width of constant in nibbles

p number of places to shift

Eg | expression used in a guard

Et timer expression used in a guard

Tb | most significant bit set of multiplier ((-1) if the multiplier is 0)

Tbp | most significant bit set in a positive multiplier when counting from zero ((-1) if the multiplier is 0)
The | most significant bit set in the two’s complement of a negative multiplier
nsp | Number of scalar parameters in a procedure

nap | Number of array parameters in a procedure
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Table 12.2 Performance

Size (bytes)

Time (cycles)

Names
variables
in expression
assigned to or input to
in PROC or FUNCTION call,
corresponding to an INT parameter
channels

Array Variables (for single dimension arrays)

constant subscript
variable subscript
expression subscript

Declarations

CHAN OF protocol

[size] CHAN OF protocol

PROC .
Primitives

assignment

input

output

STOP

SKIP

Arithmetic operators
+ -
*
/
REM
>> <<

Modulo Arithmetic operators
PLUS
MINUS
TIMES (fast multiply, positive operand)
TIMES (fast multiply, negative operand)

Boolean operators
OR
AND NOT

Comparison operators
= constant
= variable
<> constant
<> variable
> <
>= <=
Bit operators
NN <~

Expressions
constant in expression
check if error

1.1+r
1.1+r

1.1+r
1.1

0
5.3
5.3
3.1

9.4
body+2

- - N PPN = [« VIER N o]

N=2WwWw-=2NO

~E

2.1+2(r)
1.1+(n)

1.14(r)
2.1

0
7.3
7.3

3.1
2.2 + 20.2«size
0

0
26.5
26
25
0

1
39
40
38

3+p

4+Tbp
5+Tbe

[\Sle.]

ANNOTWW—

N

o g
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Table 12.3 Performance
Size (bytes) Time (cycles)
Timers
timer input 2 3
timer AFTER
if past time 2 4
with empty timer queue 2 31
non-empty timer queue 2 38+nex*9
ALT (timer)
with empty timer queue 6 52
non-empty timer queue 6 59+nex9
timer alt guard 8+2Eg+2Et 34+2Eg+2Et
Constructs
SEQ 0 0
IF 1.3 1.4
if guard 3 4.3
ALT (non timer) 6 26
alt channel guard 10.2+2Eg 20+2Eg
skip alt guard 8+2Eg 10+2Eg
PAR 11.5+(np-1)*7.5 19.5+(np-1)+30.5
WHILE 4 12
Procedure or function call
3.5+(nsp-2)*1.1 16.5+(nsp-2)1.1
+nap=*2.3 +nap*2.3
Replicators
replicated SEQ 7.3{+5.1} (-3.8)+15.1xcount{+7.1}
replicated IF 12.3{+5.1} (-2.6)+19.4xcount{+7.1}
replicated ALT 24.8{+10.2} 25.4+33.4xcount{+14.2}
replicated timer ALT 24.8{+10.2} 62.4+33.4xcount{+14.2}
replicated PAR 39.1{+5.1} (-6.4)+70.9xcount{+7.1}

12.2 Fast multiply, TIMES

The IMS T805 has a fast integer multiplication instruction product. For a positive multiplier its execution time
is 4+Tbp cycles, and for a negative multiplier 5+Tbc cycles (table 12.1). The time taken for a multiplication
by zero is 3 cycles.

Implementations of high level languages on the transputer may take advantage of this instruction. For example,
the occam modulo arithmetic operator TIMES is implemented by the instruction and the right-hand operand is
treated as the multiplier. The fast multiplication instruction is also used in high level language implementations
for the multiplication implicit in multi-dimensional array access.
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123 Arithmetic

A set of functions are provided within the development system to support the efficient implementation of
multiple length integer arithmetic. In the IMS T805, floating point arithmetic is taken care of by the FPU. In
table 12.4 n gives the number of places shifted and all arguments and resuits are assumed to be local. Full
details of these functions are provided in the occam reference manual, supplied as part of the development
system and available as a separate publication.

When calculating the execution time of the predefined maths functions, no time needs to be added for calling

overhead. These functions are compiled directly into special purpose instructions which are designed to
support the efficient implementation of multiple length integer arithmetic and floating point arithmetic.

Table 12.4 Arithmetic performance

+ cycles for
Function Cycles parameter access ¢
LONGADD 2 7
LONGSUM 3 8
LONGSUB 2 7
LONGDIFF 3 8
LONGPROD 34 8
LONGDIV 36 8
SHIFTRIGHT (n<32) 4+n 8
(n>=32) n-27
SHIFTLEFT (n<32) 4+n 8
(n>=32) n-27
NORMALISE (n<32) n+6 7
(n>=32) n-25
(n=64) 4
ASHIFTRIGHT SHIFTRIGHT+2 5
ASHIFTLEFT SHIFTLEFT+4 5
ROTATERIGHT SHIFTRIGHT 7
ROTATELEFT SHIFTLEFT 7
FRACMUL LONGPROD+4 5

t Assuming local variables.
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124 Floating point operations

All references to REAL32 or REAL64 operands within programs compiled for the IMS T805 normally produce

the following performance figures.

Table 12.5 Floating point performance

Size (bytes) | REAL32 Time (cycles) | REAL64 Time (cycles)

Names
variables
in expression
assigned to or input to

corresponding to a REAL
parameter
Arithmetic operators
+ -
*

/
REM

Comparison operators

in PROC or FUNCTION call,

= 2 4 4
<> 3 6 [}
> < 2 5 5
>= <= 3 7 7
Conversions

REAL32 to - 2 3
REALG64 to - 2 6

To INT32 from - 5 9 9
To INT64 from - 18 32 32
INT32 to - 3 7 7
INT64 to - 14 24 22

3.1 3 5
3.1 3 5
1141 1.1+r 1.14r
2 7 7
2 11 20
2 17 32

-
=
-
©
w
~

12.4.1 Floating point functions

These functions are provided by the development system. They are compiled directly into special purpose
instructions designed to support the efficient implementation of some of the common mathematical functions
of other languages. The functions provide ABS and SQRT for both REAL32 and REAL64 operand types.

Table 12.6 IMS T805 floating point arithmetic performance

+ cycles for parameter access 1
Function | Cycles REAL32 REAL64
ABS 2 8
SQRT 118 8
DABS 2 12
DSQRT 244 12

t Assuming local variables.
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12.4.2 Special purpose functions and procedures

The functions and procedures given in tables 12.8 and 12.9 are provided by the development system to give
access to the special instructions available on the IMS T805. Table 12.7 shows the key to the table.

Table 12.7 Key to special performance table

Tb | most significant bit set in the word counting from zero

n number of words per row (consecutive memory locations)
r number of rows in the two dimensional move

nr | number of bits to reverse

Table 12.8 Special purpose functions performance

+ cycles for
Function Cycles parameter access t
BITCOUNT 2+Tb 2
CRCBYTE 11 8
CRCWORD 35 8
BITREVNBIT 5+nr 4
BITREVWORD 36 2

t Assuming local variables.

Table 12.9 Special purpose proc<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>