

•
INMOS Limited
1000 Aztec West
Almondsbury
Bristol BS12 4SQ
UK
Telephone (0454) 616616
Telex 444723

INMOS Japan K.K.
4th Floor No 1 Kowa Bldg
11-41 Akasaka 1-chome
Mlnato-ku
Tokyo 107
Japan
Telephone 03-505 2840
Telex J29507 TEl JPN
Fax 03-505 2844

INMOS Corporation
PO Box 16000
Colorado Spnngs
CO 80935
USA
Telephone (719) 630 4000
Telex (Easy Link) 629 44 936

INMOSSARL
Immeuble Monaco
7 rue Le Corbusler
SIUC 219
94518 Rungls Cedex
France
Telephone (1) 46.87.22.01
Telex 201222

LOCAL U.S. SALES OFFICES

INMOS Corporation
200 E Sand pOinte
SUite 650
Santa Ana
CA92707
Telephone(714) 957 6018

INMOS Corpoation
2620 Augustine Dnve
SUite 100
Santa Clara
CA95054
Telephone (408) 727 7771

INMOS Corporation
12400 Whitewater Dnve
Suite 120
Minnetonka
MN 55343
Telephone (612) 932 7121

INMOS Corporation
6025-G Atlantic Blvd
Norcross
GA30071
Telephone (404) 242 7444

INMOS Corporation
5 Burlington Woods Dnve
SUite 201
Burlington
MA01803
Telephone (617) 229 2550

INMOS Corporation
10200 E Girard Avenue
SUite B239
Denver
CO 80231
Telephone (303) 368 0561

INMOSGmbH
Danziger Strasse 2
8057 Echlng
MUnich
West Germany
Telephone (089) 319 10 28
Telex 522645

INMOS Corporation
14643 Dallas Parkway
SUite 730
Dallas
TX 75240
Telephone (214) 490 9522

INMOS Corporation
9861 Broken Land Parkway
SUite 320
Columbia
MD 21046
Telephone (301) 995 6952

INMOS Corporation
PO Box 272
Fishkill
NY 12524
Telephone (914) 897 2422

INMOS Databook Series

Transputer Databook
Military Micro-products Databook
Transputer Support Databook: Development and Sub-systems
Memory Databook
Graphics Databook
Digital Signal Processing Databook
Transputer Applications Notebook: Architecture and Software
Transputer Applications Notebook: Systems and Performance

Copyright @INMOS Limited 1989

INMOS reserves the right to make changes in specifications at any time and without notice.
The information furnished by INMOS in this publication is believed to be accurate; however,
no responsibility is assumed for its use, nor for any infringement of patents or other rights
of third parties resulting from its use. No licence is granted under any patents, trademarks
or other rights of INMOS .

• , IIrimos , IMS and occam are trademarks of the INMOS Group of Companies.

INMOS is a member of the SGS-THOMSON Microelectronics Group.

INMOS document number: 72 TRN 203 01

Printed at Redwood Burn Ltd, Trowbridge

c lIJi)mos

TRANSPUTER
DATABOOK

Second Edition 1989

iii

Contents overview

1 INMOS

2 Transputer architecture 5

3 Transputer overview 27

4 IMS Ta05 engineering data 47

5 IMS Ta01 engineering data 127

6 IMS TaOO engineering data 189

7 IMS T425 engineering data 261

a IMS T414 engineering data 333

9 IMS T222 engineering data 399

10 IMS T225 preview 453

11 IMS M212 preview 463

12 IMS C004 engineering data 479

13 IMS C011 engineering data 503

14 IMS C012 engineering data !i29

A Quality and Reliability 551

B Index 557

iv

Contents

Preface xix

Notation and nomenclature xx

1 INMOS

Introduction 2
1.1 Manufacturing 2
1.2 Assembly 2
1.3 Test 2
1.4 Quality and Reliability 2
1.5 Military 2
1.6 Future Developments 3

1.6.1 Research and Development 3
1.6.2 Process Developments 3

2 Transputer architecture 5

Introduction 6
1.1 Overview 7

Transputers and occam 7
1.2 System design rationale 8

1.2.1 Programming 8
1.2.2 Hardware 9
1.2.3 Programmable components 9

1.3 Systems architecture rationale 9
1.3.1 Point to point communication links 9
1.3.2 Local memory 10

1.4 Communication 10

2 occam model 12
2.1 Overview 12
2.2 occam overview 13

2.2.1 Processes 13
Assignment 13
Input 13
Output 13

2.2.2 Constructions 14
Sequence 14
Parallel 14
Communication 15
Conditional 15
Alternation 15
Loop 16
Selection 16
Replication 16

2.2.3 Types 17
2.2.4 Declarations, arrays and subscripts 17
2.2.5 Procedures 18
2.2.6 Functions 18
2.2.7 Expressions 18

v

2.2.8 Timer 19
2.2.9 Peripheral access 19

2.3 Configuration 20
PLACED PAR 20
PRI PAR 20

2.3.1 INMOS standard links 20

3 Error handling 21

4 Program development 22
4.1 Logical behaviour 22
4.2 Performance measurement 22
4.3 Separate compilation of occam and other languages 22
4.4 Memory map and placement 23

5 Physical architecture 24
5.1 INMOS serial links 24

5.1.1 Overview 24
5.1.2 Link electrical specification 24

5.2 System services 24
5.2.1 Powering up and down, running and stopping 24
5.2.2 Clock distribution 25

5.3 Bootstrapping from ROM or from a link 25
5.4 Peripheral interfacing 25

3 Transputer overview 27

Introduction 28

2 The transputer: basic architecture and concepts 29
2.1 A programmable device 29
2.2 occam 29
2.3 VLSI technology 29
2.4 Simplified processor with micro-coded scheduler 30

3 Transputer internal architecture 31
3.1 Sequential processing 32
3.2 Instructions 32

3.2.1 Direct functions 33
3.2.2 Prefix functions 33
3.2.3 Indirect functions 34
3.2.4 Efficiency of encoding 34

3.3 Support for concurrency 34
3.4 Communications 36

3.4.1 Internal channel communication 36
3.4.2 External channel communication 38
3.4.3 Communication links 39

3.5 Timer 40
3.6 Alternative 40
3.7 Floating point instructions 40

3.7.1 Optimising use of the stack 41
3.7.2 Concurrent operation of FPU and CPU 41

3.8 Floating point unit design 42

vi

3.9 Graphics capability 43
3.9.1 Example· drawing coloured text 43

4 Conclusion 45

4 IMS TaOS engineering data 47

Introduction 48

2 Pin designations 51

3 Processor 52
3.1 Registers 52
3.2 Instructions 53

3.2.1 Direct functions 53
3.2.2 Prefix functions 53
3.2.3 Indirect functions 54
3.2.4 Expression evaluation 54
3.2.5 Efficiency of encoding 54

3.3 Processes and concurrency 55
3.4 Priority 56
3.5 Commun ications 56
3.6 Block move 57
3.7 Timers 57

4 Instruction set summary 59
4.1 Descheduling pOints 60
4.2 Error instructions 61
4.3 Debugging support 61
4.4 Floating point errors 61

5 Floating point unit 69

6 System services 71
6.1 Power 71
6.2 CapPlus, CapMinus 71
6.3 Clockln 71
6.4 ProcSpeedSelectO·2 72
6.5 Reset 73
6.6 Bootstrap 73
6.7 Peek and poke 75
6.8 Analyse 75
6.9 Error, Errorln 76

7 Memory 77

8 External memory interface 79
8.1 Pin functions 80

8.1.1 MemAD2·31 80
8.1.2 notMemRd 80
8.1.3 MemnotWrDO 80
8.1.4 notMemWrBO·3 80
8.1.5 notMemSO·4 80

vii

8.1.6 MemWait 80
8.1.7 MemnotRfD1 80
8.1.8 notMemRf 80
8.1.9 RefreshPending 80
8.1.10 MemReq, MemGranted 81
8.1.11 MemConfig 81
8.1.12 ProcClockOut 82

8.2 Read cycle 83
8.3 Write cycle 88
8.4 Wait 89
8.5 Memory refresh 91
8.6 Direct memory access 94
8.7 Memory configuration 96

8.7.1 Internal configuration 96
8.7.2 External configuration 98

9 Events 103

10 Links 105

11 Electrical specifications 108
11.1 DC electrical characteristics 108
11.2 Equivalent circuits 109
11.3 AC timing characteristics 110
11.4 Power rati ng 112

12 Performance 113
12.1 Performance overview 113
12.2 Fast multiply, TIMES 115
12.3 Arithmetic 116
12.4 Floating pOint operations 117

12.4.1 Floating point functions 117
12.4.2 Special purpose functions and procedures 118

12.5 Effect of external memory 118
12.6 Interrupt latency 119

13 Package specifications 120
13.1 84 pin grid array package 120
13.2 84 pin PLCC J-bend package 122
13.3 84 lead quad cerpack package 124

14 Ordering 126

5 IMS T801 engineering data 127

1 Introduction 128

2 Pin designations 131

viii

3 Processor 132
3.1 Registers 132
3.2 Instructions 133

3.2.1 Direct functions 133
3.2.2 Prefix functions 133
3.2.3 Indirect functions 134
3.2.4 Expression evaluation 134
3.2.5 Efficiency of encoding 134

3.3 Processes and concurrency 135
3.4 Priority 136
3.5 Communications 136
3.6 Block move 137
3.7 Timers 137

4 Instruction set summary 139
4.1 Descheduling points 140
4.2 Error instructions 141
4.3 Debugging support 141
4.4 Floating point errors 141

5 Floating point unit 149

6 System services 151
6.1 Power 151
6.2 CapPlus, CapMinus 151
6.3 Clockln 151
6.4 ProcSpeedSelectO·2 152
6.5 Reset 153
6.6 Bootstrap 153
6.7 Peek and poke 155
6.8 Analyse 155
6.9 ErrorOut 156

7 Memory 157

8 External memory interface 159
8.1 Pin functions 160

8.1.1 MemA2·31 160
8.1.2 MemDO·31 160
8.1.3 notMemCE 160
8.1.4 notMemWrBO·3 161
8.1.5 MemWait 161
8.1.6 MemReq, MemGranted 161
8.1.7 ProcClockOut 162

8.2 Read cycle 163
8.3 Write cycle 164
8.4 Wait 165
8.5 Direct memory access 167

9 Events 169

10 Links 171

ix

11 Electrical specifications 174
11.1 DC electrical characteristics 174
11.2 Equivalent circuits 175
11.3 AC timing characteristics 176
11.4 Power rating 177

12 Performance 179
12.1 Performance overview 179
12.2 Fast multiply, TIMES 181
12.3 Arithmetic 182
12.4 Floating point operations 183

12.4.1 Floating point functions 183
12.4.2 Special purpose functions and procedures 184

12.5 Effect of external memory 184
12.6 Interrupt latency 185

13 Package specifications 186
13.1 100 pin grid array package 186

14 Ordering 188

6 IMS TaOO engineering data 189

Introduction 190

2 Pin designations 192

3 Processor 193
3.1 Registers 193
3.2 Instructions 194

3.2.1 Direct functions 194
3.2.2 Prefix functions 194
3.2.3 Indirect functions 195
3.2.4 Expression evaluation 195
3.2.5 Efficiency of encoding 195

3.3 Processes and concurrency 196
3.4 Priority 197
3.5 Communications 197
3.6 Block move 198
3.7 Timers 198

4 Instruction set summary 200
4.1 Descheduling points 201
4.2 Error instructions 202
4.3 Floating point errors 202

5 Floating point unit 209

x

6 System services 211
6.1 Power 211
6.2 CapPlus, CapMinus 211
6.3 Clockln 211
6.4 ProcSpeedSelectO·2 212
6.5 Reset 213
6.6 Bootstrap 213
6.7 Peek and poke 215
6.8 Analyse 215
6.9 Error, Errorln 216

7 Memory 217

8 External memory interface 219
8.1 ProcClockOut 219
8.2 Tstates 219
8.3 Internal access 220
8.4 MemAD2·31 221
8.5 MemnotWrDO 221
8.6 MemnotRfD1 221
8.7 notMemRd 221
8.8 notMemSO·4 221
8.9 notMemWrBO·3 225
8.10 MemConfig 228

8.10.1 Internal configuration 228
8.10.2 External configuration 230

8.11 notMemRf 235
8.12 MemWait 236
8.13 MemReq, MemGranted 238

9 Events 240

10 Links 241

11 Electrical specifications 244
11.1 DC electrical characteristics 244
11.2 Equivalent circuits 245
11.3 AC timing characteristics 246
11.4 Power rating 248

12 Performance 249
12.1 Performance overview 249
12.2 Fast multiply, TIMES 251
12.3 Arithmetic 252
12.4 Floating point operations 253

12.4.1 Floating point functions 253
12.4.2 Special purpose functions and procedures 254

12.5 Effect of external memory 254
12.6 Interrupt latency 255

xi

13 Package specifications 256
13.1 84 pin grid array package 256
13.2 84 lead quad cerpack package 258

14 Ordering 260

7 IMS T425 engineering data 261

1 Introduction 262

2 Pin designations 264

3 Processor 265
3.1 Registers 265
3.2 Instructions 266

3.2.1 Direct functions 266
3.2.2 Prefix functions 266
3.2.3 Indirect functions 267
3.2.4 Expression evaluation 267
3.2.5 Efficiency of encoding 267

3.3 Processes and concurrency 268
3.4 Priority 269
3.5 Communications 269
3.6 Block move 270
3.7 Timers 270

4 Instruction set summary 272
4.1 Descheduling points 273
4.2 Error instructions 274
4.3 Debugging support 274

5 System services 280
5.1 Power 280
5.2 CapPlus, CapMinus 280
5.3 Clockln 280
5.4 ProcSpeedSelectO·2 281
5.5 Reset 282
5.6 Bootstrap 282
5.7 Peek and poke 284
5.8 Analyse 284
5.9 Error, Errorln 285

6 Memory 286

7 External memory interface 288
7.1 ProcClockOut 288
7.2 Tstates 288
7.3 Internal access 289
7.4 MemAD2·31 290
7.5 MemnotWrDO 290
7.6 MemnotRfD1 290
7.7 notMemRd 290

xii

7.8 notMemSO·4
7.9 notMemWrBO-3
7.10 MemConfig

7.10.1 Internal configuration
7.10.2 External configuration

7.11 RefreshPending
7.12 notMemRf
7.13 MemWait
7.14 MemReq, MemGranted

8 Events

9 Links

10 Electrical specifications
10.1 DC electrical characteristics
10.2 Equivalent circuits
10.3 AC timing characteristics
10.4 Power rating

11 Performance
11.1 Performance overview
11.2 Fast multiply, TIMES
11.3 Arithmetic
11.4 Floating point operations

11.4.1 Special purpose functions and procedures
11.5 Effect of external memory
11.6 Interrupt latency

12 Package specifications
12.1 84 pin grid array package
12.2 84 pin PLCC J-bend package
12.3 84 lead quad cerpack package

13 Ordering

8 IMS T414 engineering data

Introduction

2 Pin designations

3 Processor
3.1 Registers
3.2 Instructions

3.2.1 Direct functions
3.2.2 Prefix functions
3.2.3 Indirect functions
3.2.4 Expression evaluation
3.2.5 Efficiency of encoding

3.3 Processes and concurrency
3.4 Priority
3.5 Communications

290
294
297
297
299
304
305
306
308

310

312

315
315
316
317
319

320
320
322
322
323
324
324
325

326
326
328
330

332

333

334

336

337
337
338
338
338
339
339
339
340
341
341

xiii

3.6 Timers 342

4 Instruction set summary 343
4.1 Descheduling points 344
4.2 Error instructions 344

5 System services 349
5.1 Power 349
5.2 CapPlus, Cap Minus 349
5.3 Clockln 349
5.4 Reset 351
5.5 Bootstrap 351
5.6 Peek and poke 353
5.7 Analyse 353
5.8 Error 354

6 Memory 355

7 External memory interface 357
7.1 ProcClockOut 357
7.2 Tstates 357
7.3 Internal access 358
7.4 MemAD2-31 359
7.5 MemnotWrDO 359
7.6 MemnotRfD1 359
7.7 notMemRd 359
7.8 notMemSO-4 359
7.9 notMemWrBO-3 363
7.10 MemConfig 366

7.10.1 Internal configuration 366
7.10.2 External configuration 368

7.11 notMemRf 373
7.12 MemWait 374
7.13 MemReq, MemGranted 376

8 Events 378

9 Links 379

10 Electrical specifications 382
10.1 DC electrical characteristics 382
10.2 Equivalent circuits 383
10.3 AC timing characteristics 384
10.4 Power rating 386

11 Performance 387
11.1 Performance overview 387
11.2 Fast multiply, TIMES 389
11.3 Arithmetic 389
11.4 Floating point operations 390
11.5 Effect of external memory 391
11.6 Interrupt latency 392

xiv

12 Package specifications 393
12.1 84 pin grid array package 393
12.2 84 pin PLCC J·bend package 395

13 Ordering 397

9 IMS T222 engineering data 399

Introduction 400

2 Pin designations 402

3 Processor 403
3.1 Registers 403
3.2 Instructions 404

3.2.1 Direct functions 404
3.2.2 Prefix functions 404
3.2.3 Indirect functions 405
3.2.4 Expression evaluation 405
3.2.5 Efficiency of encoding 405

3.3 Processes and concurrency 406
3.4 Priority 407
3.5 Communications 407
3.6 Timers 408

4 Instruction set summary 409
4.1 Descheduling points 410
4.2 Error instructions 410

5 System services 415
5.1 Power 415
5.2 CapPlus, CapMinus 415
5.3 Clockln 415
5.4 Reset 416
5.5 Bootstrap 416
5.6 Peek and poke 418
5.7 Analyse 418
5.8 Error 419

6 Memory 420

7 External memory interface 422
7.1 ProcClockOut 422
7.2 Tstates 423
7.3 Internal access 423
7.4 MemAO·15 423
7.5 MemDO·15 423
7.6 notMemWrBO·1 424
7.7 notMemCE 426
7.8 MemBAcc 428
7.9 MemWait 429
7.10 MemReq, MemGranted 431

xv

8 Events 433

9 Links 434

10 Electrical specifications 437
10.1 DC electrical characteristics 437
10.2 Equivalent circuits 438
10.3 AC timing characteristics 439
10.4 Power rating 441

11 Performance 442
11.1 Performance overview 442
11.2 Fast multiply, TIMES 444
11.3 Arithmetic 444
11.4 Floating point operations 445
11.5 Effect of external memory 446
11.6 Interrupt latency 447

12 Package specifications 448
12.1 68 pin grid array package 448
12.2 68 pin PLCC J-bend package 450

13 Ordering 452

10 IMS T225 preview 453

Introduction 454

2 Pin designations 456

3 Instruction set summary 457

4 Package specifications 459
4.1 68 pin grid array package 459
4.2 68 pin PLCC J-bend package 460

5 Ordering 461

11 IMS M212 preview 463

Introduction 464
1.1 IMS M212 peripheral processor 465

1.1.1 Central processor 465
1.1.2 Peripheral interface 465
1.1.3 Disk controller 465
1.1.4 Links 466
1.1.5 Memory system 466
1.1.6 Error handling 466

2 Operation 467
2.1 Mode 1 467
2.2 Mode 2 468

xvi

3 Applications 469

4 Package specifications 473
4.1 68 pin grid array package 473
4.2 68 pin PLCC J·bend package 475

5 Ordering 477

12 IMS C004 engineering data 479

Introduction 480

2 Pin designations 481

3 System services 482
3.1 Power 482
3.2 CapPlus, CapMinus 482
3.3 Clockln 482
3.4 Reset 484

4 Links 485

5 Switch implementation 489

6 Applications 490
6.1 Link switching 490
6.2 Multiple IMS C004 control 490
6.3 Bidirectional exchange 490
6.4 Bus systems 490

7 Electrical specifications 494
7.1 DC electrical characteristics 494
7.2 Equivalent circuits 495
7.3 AC timing characteristics 496
7.4 Power rating 497

8 Package specifications 498
8.1 84 pin grid array package 498
8.2 84 lead quad cerpack package 500

9 Ordering 502

13 IMS C011 engineering data 503

Introduction 504

2 Pin designations 505

xvii

3 System services 506
3.1 Power 506
3.2 CapMinus 506
3.3 Clockln 506
3.4 SeparatelQ 507
3.5 Reset 508

4 Links 509

5 Mode 1 parallel interface 512
5.1 Input port 512
5.2 Output port 513

6 Mode 2 Parallel interface 514
6.1 00-7 514
6.2 notCS 514
6.3 RnotW 514
6.4 RSO-1 514

6.4.1 Input Data Register 514
6.4.2 Input Status Register 517
6.4.3 Output Data Register 517
6.4.4 Output Status Register 517

6.5 Inputlnt 517
6.6 Outputlnt 518
6.7 Data read 518
6.8 Data write 518

7 Electrical specifications 519
7.1 DC electrical characteristics 519
7.2 Equivalent circuits 520
7.3 AC timing characteristics 521
7.4 Power rating 523

8 Package specifications 524
8.1 28 pin plastic dual-in-line package 524
8.2 28 pin ceramic dual-in-line package 525
8.3 28 pin SOIC package 526
8.4 Pinout 527

9 Ordering 528

14 IMS C012 engineering data 529

Introduction 530

2 Pin designations 531

3 System services 532
3.1 Power 532
3.2 CapMinus 532
3.3 Clockln 532
3.4 Reset 534

xviii

4 Links 535

5 Parallel interface 538
5.1 00-7 538
5.2 notCS 538
5.3 RnotW 538
5.4 RSO-1 538

5.4.1 Input Data Register 538
5.4.2 Input Status Register 541
5.4.3 Output Data Register 541
5.4.4 Output Status Register 541

5.5 Inputlnt 541
5.6 Outputlnt 542
5.7 Data read 542
5.8 Data write 542

6 Electrical specifications 543
6.1 DC electrical characteristics 543
6.2 Equivalent circuits 544
6.3 AC timing characteristics 545
6.4 Power rating 547

7 Package specifications 548
7.1 24 pin plastic dual-in-line package 548
7.2 Pinout 549

8 Ordering 550

A Qualit~ and Reliability 551

A Quality and Reliability 552
A.1 Total quality control (TQC) and reliability programme 552
A.2 Quality and reliability in design 552
A.3 Document control 553
A.4 New product qualification 553
A.5 Product monitoring programme 553
A.6 Production testing and quality monitoring procedure 554

A.6.1 Reliability testing 554
A.6.2 Production testing 554
A.6.3 Quality monitoring procedure 555

B Index 557

B Index 559

xix

Preface

This databook describes the architecture of the transputer family of products and details some of the devices
which make up that family. Items described include the 32 bit and 16 bit transputer products IMS T805,
IMS T801, IMS T800, IMS T425 , IMS T414, IMS T222 and IMS T225; the peripheral controller IMS M212;
and the communications devices IMS C004, IMS C011 and IMS C012. For details of the military version of
a device refer to The Military Micro-products Databook which is available as a separate publication.

The databook first describes the transputer architecture and general features of transputer family devices. It
then continues with the various product datasheets.

A transputer is a single VLSI device with processor, memory and communications links for direct connection
to other transputers. Concurrent systems can be constructed from a collection of transputers operating
concurrently and communicating through links. The transputer can be used as a building block for concurrent
processing systems, with occam as the associated design formalism.

Current transputer products include the 16 bit IMS T222, the 32 bit IMS T414 and IMS T425, and the IMS T800,
IMS T801 and IMS T805 which are 32 bit transputers with an integral high speed floating point processor. A
product preview of the IMS T225, which is a 16 bit transputer with debugger support, is also included.

The IMS M212 is an intelligent peripheral controller. It contains a 16 bit processor, on-Chip memory and
communications links. It contains hardware and interface logic to control disk drives and can be used as a
programmable disk controller or as a general purpose peripheral interface.

The INMOS serial communication link is a high speed system interconnect which provides full duplex com­
munication between members of the transputer family. It can also be used as a general purpose interconnect
even where transputers are not used. The IMS C011 and IMS C012 link adaptors are communications de­
vices enabling the INMOS serial communication link to be connected to parallel data ports and microprocessor
buses. Ths IMS C004 is a programmable link switch. It provides a full crossbar switch between 32 link inputs
and 32 link outputs.

The transputer development system referred to in this databook comprises an integrated editor, compiler
and debugging system which enables transputers to be programmed in occam and in industry standard
languages, for example, C, Fortran, Pascal. The Transputer Development System Manual is supplied with
the transputer development system and is available as a separate publication.

Other information relevant to all transputer products is contained in the occam Reference Manual, supplied
with INMOS software products and available as a separate publication. If more detail on the machine level
operation is required, refer to Transputer Instruction Set - A Compiler Writers' Guide, which is available as a
separate publication.

Various application and technical notes are also available from INMOS.

Software and hardware examples given in this databook are outline design studies and are included to
illustrate various ways in which transputers can be used. The examples are not intended to provide accurate
application designs.

In addition to transputer devices, the INMOS product range also includes graphics products, digital signal
processing devices and memory devices. For further information concerning INMOS products, please contact
your local INMOS sales outlet.

xx

Notation and nomenclature

The nomenclature and notation in general use throughout this databook is described below.

Significance

The bits in a byte are numbered 0 to 7, with bit 0 least significant. The bytes in words are numbered from 0,
with byte 0 least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered O. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Similarly, components of arrays are numbered starting from 0 and stored in memory with component 0 at the
lowest address.

Transputer memory is byte addressed, with words aligned on four-byte boundaries for 32 bit devices and on
two-byte boundaries for 16 bit devices.

Hexadecimal values are prefixed with #, as in #1 OF.

Where a byte is transmitted serially, it is always transmitted least significant bit (0) first. In general, wherever
a value is transmitted as a number of component values, the least significant component is transmitted first.
Where an array is transmitted serially, component 0 is transmitted first. Consequently, block transfers to and
from memory are performed starting with the lowest (most negative) address and ending with the highest
(most positive) one.

In diagrams, the least significant component of a value is to the right hand side of the diagram. Component 0
of an array is at the bottom of a diagram, as are the most negative memory locations.

Signal naming conventions

Signal names identifying individual pins of a transputer chip have been chosen to avoid being cryptic, giving
as much information as possible. The majority of transputer signals are active high. Those which are active
low have names commencing with not; names such as RnotW imply that the first component of the name
refers to its active high state and the second to its active low state. Capitals are used to introduce new
components of a name, as in ProcClockOut.

All transputer signals d~scribed in the text of this databook are printed in bold. Registers and flags internal to
a device are printed in italics, as are instruction operation codes. Italics are also used for emphasis. occam
program notation is printed in a fixed space teletype style.

References

The databook is divided into several chapters, each chapter having a number of sections and subsections.
Figures and tables have reference numbers tied to relevant sections of a particular chapter of the databook.
Unless otherwise stated, all references refer to those within the current chapter of the databook.

xxi

Transputer product numbers

All INMOS products, both memories and transputers, have a part number of the general form

IMS abbbc-xyyz

Field a identifies the product group. This is a digit for memory products and a letter for other devices, the
particular letter indicating the type of product (table j). Field bb!:> identifies the product within that group and
field c is its revision code. Field x denotes the package type, whilst field yy indicates speed variants etc.
The final field z indicates to which specification the component is qualified; standard, military etc. Where
appropriate some identifiers may be omitted, depending on the device.

A typical product part would be IMS TBOOC-G20S.

Table 1 INMOS products

IMS 1 ... Static RAM products

IMSA ... Digital signal processors

IMSB ... PC boards and modular hardware

IMSC ... Communications adaptors

IMS D ... Development system

IMSG ... Graphics products

IMS L... Literature

IMSM ... Peripheral control transputers

IMS P ... occam programming system

IMSS ... Software product

IMST ... Transputers

xxii

ltITmos Chapter 1

e INMOS

2

1 Introduction

INMOS is a recognised leader in the development and design of high-performance integrated circuits and is
a pioneer in the field of parallel processing. The company manufactures components designed to satisfy the
most demanding of current processing applications and also provide an upgrade path for future applications.
Current designs and development will meet the requirements of systems in the next decade. Computing
requirements essentially include high-performance, flexibility and simplicity of use. These characteristics are
central to the design of all INMOS products.

INMOS has a consistent record of innovation over a wide product range and supplies components to system
manufacturing companies in the United States, Europe, Japan and the Far East. As developers of the
Transputer, a unique microprocessor concept with a revolutionary architecture, and the occam parallel
processing language, INMOS has established the standards for the future exploitation of the power of parallel
processing. INMOS products include a range of transputer products in addition to a highly successful range
of high-performance graphics devices, an innovative and successful range of high-performance digital signal
processing (DSP) devices and a broad range of fast static RAMs, an area in which it has achieved a greater
than 10% market share.

The corporate headquarters, product design team and worldwide sales and marketing management are based
at Bristol, UK.

INMOS is constantly upgrading, improving and developing its product range and is committed to maintaining
a global position of innovation and leadership.

1.1 Manufacturing

INMOS products are manufactured at the INMOS Newport, Duffryn facility which began operations in 1983.
This is an 8000 square metre building with a 3000 square metre cleanroom operating to Class 10 environment
in the work areas.

To produce high performance products, where each microchip may consist of up to 400,000 transistors,
INMOS uses advanced manufacturing equipment. Wafer steppers, plasma etchers and ion implanters form
the basis of fabrication.

1.2 Assembly

Sub-contractors in Korea, Taiwan, Hong Kong and the UK are used to assemble devices.

1.3 Test

The final testing of commercial products is carried out at the INMOS Newport, Coed Rhedyn facility. Military
final testing takes place at Colorado Springs.

1.4 Quality and Reliability

Stringent controls of quality and reliability provide the customer with early failure rates of less than 1000
ppm and long term reliability rates of better than 100 FITs (one FIT is one failure per 1000 million hours).
Requirements for military products are even more stringent.

1.5 Military

Various INMOS products are already available in military versions processed in full compliance with MIL-STD-
883C. Further military programmes are currently in progress.

Introduction 3

1.6 Future Developments

1.6.1 Research and Development

INMOS has achieved technical success based on a position of innovation and leadership in products and
process technology in conjunction with substantial research and development investment. This investment
has averaged 18% of revenues since inception and it is anticipated that future investment will be increased.

1.6.2 Process Developments

One aspect of the work of the Technology Development Group at Newport is to scale the present 1.2 micron
technology to 1.0 micron for products to be manufactured in 1989/90. In addition, work is in progress on the
development of 0.8 micron CMOS technology.

4 INMOS

Ilrilmos Chapter 2

e transputer
arch itectu re

5

6

1 Introduction

Reset
Analyse
Error System Processor BootFromROM services
Clockln
VCC
GND

Link Linkln
Interface LinkOut

On-chip •
RAM •

•

Application specific Interface

Figure 1.1 Transputer architecture

1 Introduction 7

1.1 Overview

A transputer is a microcomputer with its own local memory and with links for connecting one transputer to
another transputer.

The transputer architecture defines a family of programmable VLSI components. The definition of the ar­
chitecture falls naturally into the logical aspects which define how a system of interconnected transputers is
designed and programmed, and the physical aspects which ('"fine how transputers, as VLSI components,
are interconnected and controlled.

A typical member of the transputer product family is a single chip containing processor, memory, and com­
munication links which provide point to point connection between transputers. In addition, each transputer
product contains special circuitry and interfaces adapting it to a particular use. For example, a peripheral
control transputer, such as a graphics or disk controller, has interfaces tailored to the requirements of a
specific device.

A transputer can be used in a single processor system or in networks to build high performance concur­
rent systems. A network of transputers and peripheral controllers is easily constructed using point-to-point
communication.

Figure 1.2 Transputer network

Transputers and occam

Transputers can be programmed in most high level languages, and are designed to ensure that compiled
programs will be efficient. Where it is required to exploit concurrency, but still to use standard languages,
occam can be used as a harness to link modules written in the selected languages.

To gain most benefit from the transputer architecture, the whole system can be programmed in occam
(pages 12, 29). This provides all the advantages of a high level language, the maximum program efficiency
and the ability to use the special features of the transputer.

occam provides a framework for designing concurrent systems using transputers in just the same way
that boolean algebra provides a framework for designing electronic systems from logiC gates. The system
deSigner's task is eased because of the architectural relationship between occam and the transputer. A
program running in a transputer is formally equivalent to an occam process, so that a network of transputers
can be described directly as an occam program.

8 2 transputer architecture

~-------------t--~--------------, , , , , , ,
,

Transputer
, , , , ,

, , , , ,
4~

,
, ,
, , , , , ,

-:-. . r--+ ,
Transputer Transputer

,
, ,
~

.... ~ , ,
, ~ l , , ,
, , , , , , . ,
, ,
,

Transputer
, , ,

, , , ,

~ --------------j- --~- -------------:

Figure 1.3 A node of four transputers

1.2 System design rationale

The transputer architecture simplifies system design by the use of processes as standard software and
hardware building blocks.

An entire system can be designed and programmed in occam, from system configuration down to low level
1/0 and real time interrupts.

1.2.1 Programming

The software building block is the process. A system is designed in terms of an interconnected set of
processes. Each process can be regarded as an independent unit of design. It communicates with other
processes along point-to-point channels. Its internal design is hidden, and it is completely specified by the
messages it sends and receives. Communication between processes is synchronized, removing the need for
any separate synchronisation mechanism.

Internally, each process can be designed as a set of communicating processes. The system design is
therefore hierarchically structured. At any level of design, the deSigner is concerned only with a small and
manageable set of processes.

occam is based on these concepts, and provides the definition of the transputer architecture from the logical
point of view (pages 12, 29).

Introduction 9

1.2.2 Hardware

Processes can be implemented in hardware. A transputer, executing an occam program, is a hardware
process. The process can be independently designed and compiled. Its internal structure is hidden and it
communicates and synchronizes with other transputers via its links, which implement occam channels.

Other hardware implementations of the process are possible. For example, a transputer with a different
instruction set may be used to provide a different c0sVperforma,lce trade-off. Alternatively, an implementation
of the process may be designed in terms of hard-wired logic for enhanced performance.

The ability to specify a hard-wired function as an occam process provides the architectural framework for
transputers with specialized capabilities (e.g., graphics). The required function (e.g., a graphics drawing and
display engine) is defined as an occam process, and implemented in hardware with a standard occam
channel interface. It can be simulated by an occam implementation, which in turn can be used to test the
application on a development system.

1.2.3 Programmable components

A transputer can be programmed to perform a specialized function, and be regarded as a 'black box' thereafter.
Some processes can be hard-wired for enhanced performance.

A system, perhaps constructed on a Single chip, can be built from a combination of software processes, pre­
programmed transputers and hardware processes. Such a system can, itself, be regarded as a component
in a larger system.

The architecture has been designed to permit a network of programmable components to have any desired
topology, limited only by the number of links on each transputer. The architecture minimizes the constraints
on the size of such a system, and the hierarchical structuring provided by occam simplifies the task of
system design and programming.

The result is to provide new orders of magnitude of performance for any given application, which can now
exploit the concurrency provided by a large number of programmable components.

1.3 Systems architecture rationale

1.3.1 Point to pOint communication links

The transputer architecture simplifies system design by using point to point communication links. Every
member of the transputer family has one or more standard links, each of which can be connected to a link
of some other component. This allows transputer networks of arbitrary size and topology to be constructed.

Point to point communication links have many advantages over mUlti-processor buses:

There is no contention for the communication mechanism, regardless of the number of
transputers in the system.

There is no capacitive load penalty as transputers are added to a system.

The communications bandwidth does not saturate as the size of the system increases.
Rather, the larger the number of transputers in the system, the higher the total communi­
cations bandwidth of the system. However large the system, all the connections between
transputers can be short and local.

10 2 transputer architecture

1.3.2 Local memory

Each transputer in a system uses its own local memory. Overall memory bandwidth is proportional to the
number of transputers in the system, in contrast to a large global memory, where the additional processors
must share the memory bandwidth.

Because memory interfaces are not shared, and are separate from the communications interfaces, they can
be individually optimized on different transputer products to provide high bandwidth with the minimum of
external components.

1.4 Communication

To provide synchronised communication, each message must be acknowledged. Consequently, a link requires
at least one signal wire' in each direction.

Transputer 1 Transputer 2

I
1 1

I 1 1
process w process x

I
L .. 1

I 1 1
process y process z

Figure 1.4 Links communicating between processes

A link between two transputers is implemented by connecting a link interface on one transputer to a link
interface on the other transputer by two one-directional signal lines, along which data is transmitted serially.

The two signal wires of the link can be used to provide two occam channels, one in each direction. This
requires a simple protocol. Each signal line carries data and control information.

The link protocol provides the synchronized communication of occam. The use of a protocol providing for
the transmission of an arbitrary sequence of bytes allows transputers of different word length to be connected.

Each message is transmitted as a sequence of single byte communications, requiring only the presence of
a single byte buffer in the receiving transputer to ensure that no information is lost. Each byte is transmitted
as a start bit followed by a one bit followed by the eight data bits followed by a stop bit. After transmitting a
data byte, the sender waits until an acknowledge is received; this consists of a start bit followed by a zero
bit. The acknowledge signifies both that a process was able to receive the acknowledged byte, and that the
receiving link is able to receive another byte. The sending link reschedules the sending process only after
the acknowledge for the final byte of the message has been received.

Data bytes and acknowledges are multiplexed down each signal line. An acknowledge can be transmitted as
soon as reception of a data byte starts (if there is room to buffer another one). Consequently transmission
may be continuous, with no delays between data bytes.

1 Introduction 11

Data 0 2 3 4 5 6 7

11 I 0

Acknowledge

E8
Figure 1.5 Link protocol

The links are designed to make the engineering of transputer systems straightforward. Board layout of two
wire connections is easy to design and area efficient. All transputers will support a standard communications
frequency of 10 Mbits/sec, regardless of processor performance. Thus transputers of different performance
can be directly connected and future transputer systems will directly communicate with those of today.

Transputer 1 Transputer 2 Transputer 1 Transputer 2

..
....

~

.... .. ~
Common clock Clock 1 Clock 2

Figure 1.6 Clocking transputers

Link communication is not sensitive to clock phase. Thus, communication can be achieved between inde­
pendently clocked systems as long as the communications frequency IS the same.

The transputer family includes a number of link adaptor devices which provide a means of interfacing trans­
puter links to non-transputer devices.

12

2 occam model

The programming model for transputers is defined by occam (page 29). The purpose of this section is to
describe how to access and control the resources of transputers using occam. A more detailed description
is available in the occam programming manual and the transputer development system manual (provided
with the development system).

The transputer development system will enable transputers to be programmed in other industry standard
languages. Where it is required to exploit concurrency, but still to use standard languages, occam can be
used as a harness to link modules written in the selected languages.

2.1 Overview

In occam processes are connected to form concurrent systems. Each process can be regarded as a black
box with internal state, which can communicate with other processes using point to point communication
channels. Processes can be used to represent the behaviour of many things, for example, a logic gate, a
microprocessor, a machine tool or an office.

The proces~es themselves are finite. Each process starts, performs a number of actions and then terminates.
An action may be a set of sequential processes performed one after another, as in a conventional programming
language, or a set of parallel processes to be performed at the same time as one another. Since a process
is itself composed of processes, some of which may be executed in parallel, a process may contain any
amount of internal concurrency, and this may change with time as processes start and terminate.

Ultimately, all processes are constructed from three primitive processes - assignment, input and output. An
assignment computes the value of an expression and sets a variable to the value. Input and output are
used for communicating between processes. A pair of concurrent processes communicate using a one way
channel connecting the two processes. One process outputs a message to the channel and the other process
inputs the message from the channel.

The key concept is that communication is synchronized and unbuffered. If a channel is used for input
in one process, and output in ahother, communication takes place when both processes are ready. The
value to be output is copied from the outputting process to the inputting process, and the inputting and
outputting processes then proceed. Thus communication between processes is like the handshake method
of communication used in hardware systems.

Since a process may have internal concurrency, it may have many input channels and output channels
performing communication at the same time.

Every transputer implements the occam concepts of concurrency and communication. As a result, occam
can be used to program an individual transputer or to program a network of transputers. When occam is
used to program an individual transputer, the transputer shares its time between the concurrent processes
and channel communication is implemented by moving data within the memory. When occam is used to
program a network of transputers, each transputer executes the process allocated to it. Communication
between occam processes on different transputers is implemented directly by transputer links. Thus the
same occam program can be implemented on a variety of transputer configurations, with one configuration
optimized for cost, another for performance, or another for an appropriate balance of cost and performance.

The transputer and occam were designed together. All transputers include special instructions and hardware
to provide maximum performance and optimal implementations of the occam model of concurrency and
communications.

All transputer instruction sets are designed to enable simple, direct and efficient compilation of occam.
Programming of 110, interrupts and timing is standard on all transputers and conforms to the occam model.

Different transputer variants may have different instruction sets, depending on the desired balance of cost,
performance, internal concurrency and special hardware. The occam level interface will, however, remain
standard across all products.

2 occam model 13

Figure 2.1 Mapping processes onto one or several transputers

2.2 occam overview

2.2.1 Processes

After it starts execution, a process performs a number of actions, and then either stops or terminates. Each
action may be an assignment, an input, or an output. An assignment changes the value of a variable, an
input receives a value from a channel, and an output sends a value to a channel.

At any time between its start and termination, a process may be ready to communicate on one or more of
its channels. Each channel provides a one way connection between two concurrent processes; one of the
processes may only output to the channel, and the other may only input from it.

Assignment

An assignment is indicated by the symbol : =. The example

v := e

sets the value of the variable v to the value of the expression e and then terminates, for example:
x : = 0 sets x to zero, and x : = x + 1 increases the value of x by 1.

Input

An input is indicated by the symbol ? The example

c ? x

inputs a value from the channel c, assigns it to the variable x and then terminates.

Output

An output is indicated by the symbol ! The example

c ! e

outputs the value of the expression e to the channel c.

14 2 transputer architecture

2.2.2 Constructions

A number of processes can be combined to form a construct. A construct is itself a process and can therefore
be used as a component of another construct. Each component process of a construct is written two spaces
further from the left hand margin, to indicate that it is part of the construct. There are four classes of constructs
namely the sequential, parallel, conditional and the alternative construct.

Sequence

A sequential construct is represented by

SEQ
1'1
1'2
1'3

The component processes 1'1, 1'2, 1'3 ... are executed one after another. Each component process starts
after the previous one terminates and the construct terminates after the last component process terminates.
For example

SEQ
c1? x
x := x + 1
c2 x

inputs a value, adds one to it, and then outputs the result.

Sequential constructs in occam are similar to programs written in conventional programming languages.
Note, however, that they provide the performance and efficiency equivalent to that of an assembler for a
conventional microprocessor.

Parallel

A parallel construct is represented by

PAR
1'1
1'2
1'3

The component processes 1'1, 1'2, 1'3 ... are executed together, and are called concurrent processes. The
construct terminates after all of the component processes have terminated, for example:

PAR
c1 ? x
c2 ! y

allows the communications on channels c1 and c2 to take place together.

The parallel construct is unique to occam. It provides a straightforward way of writing programs which directly
reflects the concurrency inherent in real systems. The implementation of parallelism on a single transputer
is highly optimized so as to incur minimal process scheduling overhead.

2 occam model 15

Communication

Concurrent processes communicate only by using channels, and communication is synchronized. If a channel
is used for input in one process, and output in another, communication takes place when both the inputting
and the outputting processes are ready. The value to be output IS copied from the outputting process to the
inputting process, and the processes then proceed.

Communication between processes on a single transputer is via memory-to-memory data transfer. Between
processes on different transputers it is via standard links. In either case the occam program is identical.

Conditional

A conditional construct

IF
condition1

P1
condition2

P2

means that P1 is executed if condition1 is true, otherwise P2 is executed if condi tion2 is true, and
so on. Only one of the processes is executed, and then the construct terminates, for example:

IF
x = 0

y .- y + 1
x <> 0

SKIP

increases y only if the value of x is O.

Alternation

An alternative construct

ALT
input1

P1
input2

P2
input 3

P3

waits until one of input 1, input2, input3 ... is ready. If input1 first becomes ready, input1
is performed, and then process P1 is executed. Similarly, if input2 first becomes ready, input2 is
performed, and then process P2 is executed. Only one of the inputs is performed, then its corresponding
process is executed and then the construct terminates, for example:

ALT
count ? signal

counter ;= counter + 1
total ? signal

SEQ
out ! counter
counter ;= 0

either inputs a signal from the channel count, and increases the variable counter by 1, or alternatively
inputs from the channel total, outputs the current value of the counter, then resets it to zero.

16 2 transputer architecture

The ALT construct provides a formal language method of handling external and internal events that must be
handled by assembly level interrupt programming in conventional microprocessors.

Loop

WHILE condition
P

repeatedly executes the process P until the value of the condition is false, for example:

WHILE (x - 5) > 0
x := x - 5

leaves x holding the value of (x remainder 5) if x were positive.

Selection

A selection construct

CASE s
n

Pl
m,q

P2

means that Pl is executed if s has the same value as n, otherwise P2 is executed if s has the same value
as m or q, and so on, for example:

CASE direction
up

x := x + 1
down

x := x - 1

increases the value of x if direction is equal to up, otherwise if direction is equal to down the value
of x is decreased.

Replication

A replicator is used with a SEQ, PAR, IF or ALT construction to replicate the component process a number
of times. For example, a replicator can be used with SEQ to provide a conventional loop.

SEQ i = 0 FOR n
P

causes the process P to be executed n times.

A replicator may be used with PAR to construct an array of concurrent processes.

PAR i = 0 FOR n
Pi

constructs an array of n similar processes PO, Pl, ... , Pn-l. The index i takes the values 0, 1, ... , n-1, in
PO, Pl, ... , Pn-l respectively.

2 occam model 17

2.2.3 Types

Every variable, expression and value has a type, which may be a primitive type, array type, record type or
variant type. The type defines the length and interpretation of data.

All implementations provide the primitive types shown in table 2.1.

CHAN OF protocol

TIMER

BOOL
BYTE

INT

INT16

INT32

INT64
REAL32

REAL 64

Table 2.1 Types

Each communication channel provides communication between
two concurrent processes. Each channel is of a type which
allows communication of data according to the specified protocol.

Each timer provides a clock which can be used by any number
of concurrent processes.

The values of type BOOL are true and false.

The values of type BYTE are unsigned numbers n
in the range 0 <=n< 256.

Signed integers n in the range _231 <=n< 231 .

Signed integers n in the range _215 <=n< 215.

Signed integers n in the range _231 <=n< 231 .

Signed integers n in the range _263 <=n< 263.

Floating pOint numbers stored using a sign bit, 8 bit exponent and
23 bit fraction in ANSI/IEEE Standard 754-1985 representation.1

Floating point numbers stored using a sign bit, 11 bit exponent and
52 bit fraction in ANSI/IEEE Standard 754-1985 representation.1

2.2.4 Declarations, arrays and subscripts

A declaration T x declares x as a new channel, variable, timer or array of type T, for example:

INT x:
p

declares x as an integer variable for use in process P.

Array types are constructed from component types. For example [n] T is an array type constructed from
n components of type T.

A component of an array may be selected by subscription, for example v [e] selects the e'th component of
v.

A set of components of an array may be selected by subscription, for example [v FROM e FOR c] selects
the c components v[e], v[e + 1], '" v[e + c - 1]. A set of components of an array may
be assigned, input or output.

1 IEEE Standard for Bmary Floatmg-Pomt Bnthmetlc
ANSI/IEEE SId 754-1985

18

2.2.5 Procedures

A process may be given a name, for example:

PROC square (INT n)
n := n * n

2 transputer architecture

defines the procedure square. The name may be used as an instance of the process, for example:

square (x)

is equivalent to

n IS x:
n := n * n

2.2.6 Functions

A function ca,n be defined in the same way as a procedure. For example:

INT FUNCTION factorial (VAL INT n)
INT product:
VALOF

IF
n >= 0

SEQ
product := 1
SEQ i = 1 FOR n

product := product * i
RESULT product

defines the function factorial, which may appear in expressions such as

m := factorial (6)

2.2.7 Expressions

An expression is constructed from the operators given in table 2.2, from variables, numbers, the truth values
TRUE and FALSE, and the brackets (and) .

Table 2.2 Operators

Operator Operand types Description

+ - * / REM integer, real arithmetic operators

PLUS MINUS TIMES AFTER integer modulo arithmetic

= <> any primitive relational operators

> < >= <= integer, real relational operators

AND OR NOT boolean boolean operators

/\ \I >< - integers bitwise operators: and, or, xor, not

« » integer shift operators

2 occam model 19

For example, the expression

(5 + 7) / 2

evaluates to 6, and the expression

(#10F /\ #FO) » 4

evaluates to #0 (the character # introduces a hexadecimal constant).

A string is represented as a sequence of ASCII characters, enclosed in double quotation marks". If the
string has n characters, then it is an array of type [n] BYTE.

2.2.8 Timer

All transputers incorporate a timer. The implementation directly supports the occam model of time. Each
process can have its own independent timer, which can be used for internal measurement or for real time
scheduling.

A timer input sets a variable to a value of type INT representing the time. The value is derived from a clock,
which changes at regular intervals, for example:

tim ? v

sets the variable v to the current value of a free running clock, declared as the timer tim.

A delayed input takes the following form

tim? AFTER e

A delayed input is unable to proceed until the value of the timer satisfies (timer AFTER e). The comparison
performed is a modulo comparison. This provides the effect that, starting at any point in the timer's cycle,
the previous half cycle of the timer is considered as being before the current time, and the next half cycle is
considered as being after the current time.

2.2.9 Peripheral access

The implementation of occam provides for peripheral access by extending the input and output primitives
with a port input/output mechanism. A port is used like an occam channel, but has the effect of transferring
information to and from a block of addresses associated with a peripheral.

Ports behave like occam channels in that only one process may input from a port, and only one process
may output to a port. Thus ports provide a secure method of accessing external memory mapped status
registers etc.

Note that there is no synchronization mechanism associated with port input and output. Any timing constraints
which result from the use of asynchronous external hardware will have to be programmed explicitly. For
example, a value read by a port input may depend upon the time at which the input was executed, and
inputting at an invalid time would produce unusable data.

During applications development it is recommended that the peripheral is modelled by an occam process
connected via channels.

20 2 transputer architecture

2.3 Configuration

occam programs may be configured for execution on one or many transputers. The transputer development
system provides the necessary tools for correctly distributing a program configured for many transputers.

Configuration does not affect the logical behaviour of a program (see section four, Program development).
However, it does enable the program to be arranged to ensure that performance requirements are met.

PLACED PAR

A parallel construct may be configured for a network of transputers by using the PLACED PAR construct.
Each component process (termed a placement) is executed by a separate transputer. The variables and
timers used in a placement must be declared within each placement process.

PRI PAR

On any individual transputer, the outermost parallel construct may be configured to prioritize its components.
Each process is executed at a separate priority. The first process has the highest priority, the last process
has the lowest priority. Lower priority components may only proceed when all higher priority components are
unable to proceed.

2.3.1 INMOS standard links

Each link provides one channel in each direction between two transputers.

A channel (which must already have been declared) is associated with a link by a channel association, for
example:

PLACE LinkOlnput AT 4 :

21

3 Error handling

Errors in occam programs are either detected by the compiler or can be handled at runtime in one of three
ways.

1 Cause the process to STOP allowing other processes to continue.

2 Cause the whole system to halt.

3 Have an arbitrary (undefined) effect.

The occam process STOP starts but never terminates. In method 1, an errant process stops and in particular
cannot communicate erroneous data to other processes. Other processes will continue to execute until they
become dependent on data from the stopped process. It is therefore possible, for example, to write a
process which uses a timeout to warn of a stopped process, or to construct a redundant system in which
several processes performing the same task are used to enable the system to continue after one of them
has failed.

Method 1 is the preferred method of executing a program.

Method 2 is useful for program development and can be used to bring transputers to an immediate halt,
preventing execution of further instructions. The transputer Error output can be used to inform the transputer
development system that such an error has occurred. No variable local to the process can be overwritten
with erroneous data, facilitating analysIs of the program and data which gave rise to the error.

Method 3 is useful only for optimising programs which are known to be correct!

When a system has stopped or halted as a result of an error, the state of all transputers in the system can
be analysed using the transputer development system.

For languages other than occam, the transputer provides facilities for handling individual errors by software.

22

4 Program development

The development of programs for multiple processor systems can involve experimentation. In some cases,
the most effective configuration is not always clear until a substantial amount of work has been done. For
this reason, it is desirable that most of the design and programming can be completed before hardware
construction is started.

4.1 Logical behaviour

An important property of occam in this context is that it provides a clear notion of 'logical behaviour'; this
relates to those aspects of a program not affected by real time effects.

It is guaranteed that the logical behaviour of a program is not altered by the way in which the processes
are mapped onto processors, or by the speed of processing and communication. Consequently a program
ultimately intended for a network of transputers can be compiled, executed and tested on a single computer
used for program development.

Even if the application uses only a single transputer, the program can be designed as a set of concurrent
processes which could run on a number of transputers. This design style follows the best traditions of
structured programming; the processes operate completely independently on their own variables except
where they explicitly interact, via channels. The set of concurrent processes can run on a single transputer
or, for a higher performance product, the processes can be partitioned amonQ,st a number of transputers.

It is necessary to ensure, on the development system, that the logical behaviour satisfies the application
requirements. The only ways in which one execution of a program can differ from another in functional
terms result from dependencies upon input data and the selection of components of an ALT. Thus a simple
method of ensuring that the application can be distributed to achieve any desired performance is to design
the program to behave 'correctly' regardless of input data and ALT selection.

4.2 Performance measurement

Performance information is useful to gauge overall throughput of an application, and has to be considered
carefully in applications with real time constraints.

Prior to running in the target environment, an occam program should be relatively mature, and indeed should
be correct except for interactions which do not obey the occam synchronization rules. These are precisely
the external interactions of the program where the world will not wait to communicate with an occam process
which is not ready. Thus the set of interactions that need to be tested within the target environment are well
identified.

Because, in occam, every program is a process, it is extremely easy to add monitor processes or simulation
processes to represent parts of the real time environment, and then to simulate and monitor the anticipated
real time interactions. The occam concept of time and its implementation in the transputer is important.
Every process can have an independent timer enabling, for example, all the real time interactions to be
modelled by separate processes and any time dependent features to be simulated.

4.3 Separate compilation of occam and other languages

A program portion which is separately compiled, and possibly written in a language other than occam, may
be executed on a single transputer.

If the program is written in occam, then it takes the form of a single FROe, with only channel parameters. If
the program is written in a language other than occam, then a run-time system is provided which provides
inpuVoutput to occam channels.

4 Program development 23

Such separately compiled program portions are linked together by a framework of channels, termed a harness.
The harness is written in occam. It includes all configuration information, and in particular specifies the
transputer configuration in which the separately compiled program portion is executed.

Transputers are designed to allow efficient implementations of high level languages, such as C, Pascal and
Fortran. Such languages will be available in addition to occam.

At runtime, a program written in such a language is treated as a single occam process. Facilities are
provided in the implementations of these languages to allow such a program to communicate on occam
channels. It can thus communicate with other such programs, or with programs written in occam. These
programs may reside on the same transputer, in which case the channels are implemented in store, or may
reside on different transputers, in which case the channels are implemented by transputer links.

It is therefore possible to implement occam processes in conventional high level languages, and arrange for
them to communicate. It is possible for different parts of the same application to be implemented in different
high level languages.

The standard input and output facilities provided within these languages are implemented by a well-defined
protocol of communications on occam channels.

The development system provides facilities for management of separately compiled occam.

4.4 Memory map and placement

The low level memory model is of a signed address space.

Memory is byte addressed, the lowest addressed byte occupying the least significant byte position within the
word.

The implementation of occam supports the allocation of the code and data areas of an occam process to
specific areas of memory. Such a process must be a separately compiled PROC, and must not reference any
variables and timers other than those declared within it.

24

5 Physical architecture

5.1 INMOS serial links

5.1.1 Overview

All transputers have several links. The link protocol and electrical characteristics form a standard for all
INMOS transputer and peripheral products.

All transputers support a standard link communications frequency of 10 Mbits/sec. Some devices also support
other data rates. Maintaining a standard communications frequency means that devices of mixed performance
and type can intercommunicate easily.

Each link consists of two unidirectional signal wires carrying both data and control bits. The link signals are
TTL compatible so that their range can be easily extended by inserting buffers.

The INMOS communication links provide for communication between devices on the same printed circuit
board or between printed circuit boards via a back plane. They are intended to be used in electrically quiet
environments in the same way as logic signals between TTL gates.

The number of links, and any communication speeds in addition to the standard speed of 10 Mbits/sec, are
given in the product data for each product.

5.1.2 Link electrical specification

The quiescent state of the link signals is low, for a zero. The link input signals and output signals are standard
TTL compatible signals.

For correct functioning of the links the specifications for maximum variation in clock frequency between two
transputers joined by a link and maximum capacitive load must be met. Each transputer product also has
specified the maximum permisE1ible variation in delay in buffering, and minimum permissible edge gradients.
Details of these specifications are provided in the product data.

Provided that these specifications are met then any buffering employed may introduce an arbitrary delay into
a link signal without affecting its correct operation.

5.2 System services

5.2.1 Powering up and down, running and stopping

At all times the specification of input voltages with respect to the GND and vee pins must be met. This
includes the times when the vee pins are ramping to 5 V, and also while they are ramping from 5 V down
to 0 V.

The system services comprise the clocks, power, and signals used for initialization.

The specification includes minimum times that vee must be within specification, the input clock must be
oscillating, and the Reset signal must be high before Reset goes low. These specifications ensure that
internal clocks and logic have settled before the transputer starts.

When the transputer is reset the memory interface is initialised (if present and configurable).

The processor and INMOS serial links start after reset. The transputer obeys a bootstrap program which
can either be in off-chip ROM or can be received from one of the links. How to specify where the bootstrap
program is taken from depends upon the type of transputer being used. The program will normally load up
a larger program either from ROM or from a peripheral such as a disk.

During power down, as during power up, the input and output pins must remain within specification with
respect to both GND and vee.

5 Physical architecture 25

A software error, such as arithmetic overflow, array bounds violation or divide by zero, causes an error flag to
be set in the transputer processor. The flag is directly connected to the Error pin. Both the flag and the pin
can be ignored, or the transputer stopped. Stopping the transputer on an error means that the error cannot
cause further corruption.

As well as containing the error in this way it is possible to determine the state of the transputer and its memory
at the time the error occurred.

5.2.2 Clock distribution

All transputers operate from a standard 5MHz Input clock. High speed clocks are derived internally from the
low frequency input to avoid the problems of distributing high frequency clocks. Within limits the mark-to­
space ratio, the voltage levels and the transition times are immaterial. The limits on these are given in the
product data for each product. The asynchronous data reception of the links means that differences in the
clock phase between chips is unimportant.

The important characteristic of the transputer's input clock is its stability, such as is provided by a crystal
oscillator. An R-C oscillator is inadequate. The edges of the clock should be monotonic (without kinks), and
should not undershoot below -0.5 V.

5.3 Bootstrapping from ROM or from a link

The program which is executed after reset can either reside in ROM in the transputer's address space or it
can be loaded via anyone of the transputer's INMOS serial links.

The transputer bootstraps from ROM by transferring control to the top two bytes in memory, which will
invariably contain a backward jump into ROM.

If bootstrapping from a link, the transputer bootstraps from the first link to receive a message. The first byte
of the message is the count of the number of bytes of program which follow. The program is loaded into
memory starting at a product dependent location MemStart, and then control is transferred to this address.

Messages subsequently arriving on other links are not acknowledged until the transputer processor obeys
a process which inputs from them. The loading of a network of transputers is controlled by the transputer
development system, which ensures that the first message each transputer receives is the bootstrap program.

5.4 Peripheral interfacing

All transputers contain one or more INMOS serial links. Certain transputer products also have other application
specific interfaces. The peripheral control transputers contain specialized interfaces to control a specific
peripheral or peripheral family.

In general, a transputer based application will comprise a number of transputers which communicate using
INMOS links. There are three methods of communicating with peripherals.

The first is by employing peripheral control transputers (eg for graphics or disks), in which the transputer chip
connects directly to the peripheral concerned (figure 5.1). The interface to the peripheral is implemented by
special purpose hardware within the transputer. The application software in the transputer is implemented
as an occam process, and controls the interface via occam channels linking the processor to the special
purpose hardware.

The second method is by employing link adaptors (figure 5.2). These devices convert between a link and a
specialized interface. The link adaptor is connected to the link of an appropriate transputer, which contains
the application deSigner's peripheral device handler implemented as an occam process.

The third method is by memory mapping the peripheral onto the memory bus of a transputer (figure 5.3).
The peripheral is controlled by memory accesses issued as a result of PORT inputs and outputs. The
application deSigner's peripheral device handler provides a standard occam channel interface to the rest of

26 2 transputer architecture

the application.

The first transputers implement an event pin which provides a simple means for an external peripheral to
request attention from a transputer.

In all three methods, the peripheral driver interfaces to the rest of the application via occam channels.
Consequently, a peripheral device can be simulated by an occam process. This enables testing of all
aspects of a transputer system before the construction of hardware.

Peripheral control
transputer

Transputer
Peripheral control

transputer

Figure 5.1 Transputer with peripheral control transputers

Transputer

Figure 5.2 Transputer with link adaptors

transputer

Figure 5.3 Memory mapped peripherals

Itrnmos Chapter 3

_ transputer
• overview

27

28

1 Introduction

The INMOS transputer family is a range of system components each of which combines processing, memory
and interconnect in a single VLSI chip. A concurrent system can be constructed from a collection of transputers
which operate concurrently and communicate through serial communication links. Such systems can be
designed and programmed in occam, a language based on communicating processes, and in other industry
standard languages. Transputers have been sucessfully used in application areas ranging from embedded
systems to supercomputers.

The first member of the family, the IMS T414 32-bit transputer, was introduced in September 1985, and has
enabled concurrency to be applied in a wide variety of applications such as simulation, robot control, image
synthesis, and digital signal processing. Many computationally intensive applications can exploit large arrays
of transputers; the system performance depending on the number of transputers, the speed of inter-transputer
communication and the performance of each transputer processor.

The power of transputer based systems lies in the smoothly scaleable performance offered by adding more
transputers. The transputer embodies the concepts required for effective parallel processing.

Further transputer products are continually being developed which increase the memory, processing perfor­
mance and communications performance. An important example is the floating point transputer first intro­
duced in 1987.

29

2 The transputer: basic architecture and concepts

2.1 A programmable device

The transputer is a component designed to exploit the potential of VLSI. This technology allows large numbers
of identical devices to be manufactured cheaply. For this reason, it is attractive to implement a concurrent
system using a number of identical components, each of which is customised by an appropriate program.
The transputer is, therefore, a VLSI device with a processor, memory to store the program executed by
the processor, and communication links for direct connection to other transputers. Transputer systems can
be designed and programmed using occam which allows an application to be described as a collection of
processes which operate concurrently and communicate through channels. The transputer can therefore be
used as a building block for concurrent processing systems, with occam as the associated design formalism.

2.2 occam

occam enables a system to be described as a collection of concurrent processes, which communicate with
each other and with peripheral devices through channels. occam programs are built from three primitive
processes:

v := e
c e
c ? v

assign expression e to variable v
output expression e to channel c
input from channel c to variable v

The primitive processes are combined to form constructs:

SEQuential
PARallel
ALTernative

components executed one after another
components executed together
component first ready is executed

A construct is itself a process, and may be used as a component of another construct.

Conventional sequential programs can be expressed with variables and assignments, combined in sequential
constructs. IF and WHILE constructs are also provided.

Concurrent programs can be expressed with channels, inputs and outputs, which are combined in parallel
and alternative constructs.

Each occam channel provides a communication path between two concurrent processes. Communication
is synchronised and takes place when both the inputting process and the outputting process are ready. The
data to be output is then copied from the outputting process to the inputting process, and both processes
continue.

An alternative process may be ready for input from anyone of a number of channels. In this case, the input
is taken from the channel which is first used for output by another process.

2.3 VLSI technology

One important property of VLSI technology is that communication between devices is very much slower than
communication within a device. In a computer, almost every operation that the processor performs involves
the use of memory. For this reason a transputer includes both processor and memory in the same integrated
circuit device.

30 3 transputer overview

In any system constructed from integrated circuit devices, much of the physical bulk arises from connections
between devices. The size of the package for an integrated circuit is determined more by the number of
connection pins than by the size of the device itself. In addition, connections between devices provided by
paths on a circuit board consume a considerable amount of space.

The speed of communication between electronic devices is optimised by the use of one-directional signal
wires, each connecting two devices. If many devices are connected by a shared bus, electrical problems of
driving the bus require that the speed is reduced. Also, additional control logic and wiring are required to
control sharing of the bus.

To provide maximum speed with minimal wiring, the transputer uses point-to-point serial communication links
for direct connection to other transputers. The protocols used on the transputer links are discussed later.

2.4 Simplified processor with micro-coded scheduler

The most effective implementation of simple programs by a programmable computer is provided by a se­
quential processor. Consequently, the transputer has a fairly conventional microcoded processor. There is
a small core of about 32 instructions which are used to implement simple sequential programs. In addition
there are other, more specialised groups of instructions which provide facilities such as long arithmetic and
process scheduling.

As a process executed by a transputer may itself consist of a number of concurrent processes the transputer
has to support the occam programming model internally. The transputer, therefore, has a microcoded
scheduler which shares the processor time between the concurrent processes. The scheduler provides two
priority levels; any high priority process which can run will do so in preference to any low priority process.

31

3 Transputer internal architecture

Internally, a transputer consists of a memory, processor and communications system connected via a 32-bit
bus. The bus also connects to the external memory interface, enabling additional local memory to be used.
The processor, memory and communications system each occupy about 25% of the total silicon area, the
remainder being used for power distribution, clock generators and external connections.

The floating point transputers each have an on-Chip floating point unit. The small size and high performance
of this unit come from a design which takes careful note of silicon economics. This contrasts starkly with
conventional co-processors, where the floating point unit typically occupies more area than a complete micro­
processor, and requires a second Chip.

The block diagram 3.1 indicates the way in which the major blocks of the transputer are interconnected.

FPU

t
f- CPU ~ CPU

RAM ..- t RAM t
...... Links f- Links

Memory Interface Memory Interface

Floating Point Transputer Transputer

Figure 3.1 Transputer interconnections

The CPU of the transputers contains three registers (A, B and C) used for integer and address arithmetic,
which form a hardware stack. Loading a value into the stack pushes B into C, and A into B, before loading A.
Storing a value from A pops B into A and C into B. Similarly, the FPU includes a three register floating-point
evaluation stack, containing the AF, BF, and CF registers. When values are loaded onto, or stored from the
stack the AF, BF and CF registers push and pop in the same way as the A, Band C registers.

The addresses of floating point values are formed on the CPU stack, and values are transferred between the
addressed memory locations and the FPU stack under the control of the CPU. As the CPU stack is used only
to hold the addresses of floating point values, the wordlength of the CPU is independent of that of the FPU.
Consequently, it would be possible to use the same FPU together with a 16-bit CPU.

The transputer scheduler provides two priority levels. The FPU register stack is duplicated so that when the
floating point transputer switches from low to high priority none of the state in the floating point unit is written
to memory. This results in a worst-case interrupt response of about 3 /-'s. Furthermore, the duplication of
the register stack enables floating point arithmetic to be used in an interrupt routine without any performance
penalty.

32 3 transputer overview

3.1 Sequential processing

The design of the transputer processor exploits the availability of fast on-chip memory by having only a small
number of registers; the CPU contains six registers which are used in the execution of a sequential process.
The small number of registers, together with the simplicity of the instruction set enables the processor to have
relatively simple (and fast) data-paths and control logiC.

The six registers are:

The workspace pOinter which points to an area of store where local variables are kept.

The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, Band C registers which form an evaluation stack, and are the sources and destinations for most
arithmetic and logical operations. Loading a value into the stack pushes B into C, and A into B, before
loading A. Storing a value from A, pops B into A and C into B.

Registers L oca s Program

A

8

C

Workspace ~
Next inst ..
Operand

Figure 3.2 Registers

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

3.2 Instructions

It was a design decision that the transputer should be programmed in a high-level language. The instruction
set has, therefore, been designed for simple and efficient compilation. It contains a relatively small number
of instructions, all with the same format, chosen to give a compact representation of the operations most
frequently occuring in programs. The instruction set is independant of the processor wordlength, allowing the
same microcode to be used for transputers with different word lengths. Each instruction consists of a single
byte divided into two 4-bit parts. The four most significant bits of the byte are a function code, and the four
least significant bits are a data value.

3 Transputer internal architecture 33

Function Data

7 4 3 o

Figure 3.3 Instruction format

3.2.1 Direct functions

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Thirteen of
these are used to encode the most important functions performed by any computer. These include:

load constant
load local
load non-local
jump

add constant
store local
store non-local
conditional jump

load local pointer

call

The most common operations in a program are the loading of small literal values, and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pOinter. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of block structured programming languages such as occam.

3.2.2 Prefix functions

Two more of the function codes are used to allow the operand of any instruction to be extended in length.
These are:

prefix negative prefix

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the the instruction'S operand. All instructions except the prefix instructions
end by clearing the operand register, ready for the next instruction.

I Function I Data I
7 4 3 ~ 0

I Operand Register I I

Figure 3.4 Instruction operand register

The prefix instruction loads its four data bits into the operand register, and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.

34 3 transputer overview

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation, by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
word length.

3.2.3 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

The encoding of the indirect functions is chosen so that the most frequently occuring operations are repre­
sented without the use of a prefix instruction. These include arithmetic, logical and comparison operations
such as

add exclusive or greater than

Less frequently occuring operations have encodings which require a single prefix operation (the transputer
instruction set is not large enough to require more than 512 operations to be encoded!).

The IMS T800 has additional instructions which load into, operate on, and store from, the floating point
register stack. It also contains new instructions which support colour graphics, pattern recognition and the
implementation of error correcting codes. These instructions have been added whilst retaining the existing
IMS T414 instruction set. This has been possible because of the extensible instruction encoding used in
transputers.

3.2.4 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte (ie without the use
of prefix instructions). Many of these instructions, such as load constant and add require just one processor
cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive several instructions for every fetch.

Short instructions also improve the effectiveness of instruction prefetch, which in turn improves processor
performance. There is an extra word of prefetch buffer so that the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.

3.3 Support for concurrency

The processor provides efficient support for the occam model of concurrency and communication. It has a
microcoded scheduler which enables any number of concurrent processes to be executed together, sharing
the processor time. This removes the need for a software kernel. The processor does not need to support the
dynamic allocation of storage as the occam compiler is able to perform the allocation of space to concurrent
processes.

3 Transputer internal architecture

At any time, a concurrent process may be

active - being executed
- on a list waiting to be executed

inactive - ready to input
ready to output

- waiting until a specified time

35

The scheduler operates in such a way that inactive processes do not consume any processor time. The active
processes waiting to be executed are held on a list. This is a linked list of process workspaces, implemented
using two registers, one of which points to the first process on the list, the other to the last. In figure 3.5, Sis
executing, and P, Q and R are active, awaiting execution.

Registers Locals Program

Front ~ ..
P

Back f-- n I I
.I

a ~ : : ~ A ..
~ R .J I I

B

C U S

Workspace

Next Ins! ~

Operand

Figure 3.5 Linked process list

A process is executed until it is unable to proceed because it is waiting to input or output, or waiting for the
timer. Whenever a process is unable to proceed, its instruction pointer is saved in its workspace and the next
process is taken from the list. Actual process switch times are very small as little state needs to be saved; it
is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model. These include

start process end process

When a parallel construct is executed, start process instructions are used to create the necessary concurrent
processes. A start process instruction creates a new process by adding a new workspace to the end of the
scheduling list, enabling the new concurrent process to be executed together with the ones already being
executed.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the components of the parallel construct which have stili to terminate.
The counter is initialised to the number of components before the processes are 'started'. Each component
ends with an end process instruction which decrements and tests the counter. For all but the last component,
the counter is non zero and the component is descheduled. For the last component, the counter is zero and
the component continues.

36 3 transputer overview

3.4 Communications

Communication between processes is achieved by means of channels. occam communication is point-to­
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
links. The processor provides a number of operations to support message passing, the most important being

input message output message

The input message and output message instructions use the address of the channel to determine whether
the channel is internal or external. This means that the same instruction sequence can be used for both hard
and soft channels, allowing a process to be written and compiled without knowledge of where its channels
are connected.

As in the occam model, communication takes place when both the inputting and outputting processes are
ready. Consequently, the process which first becomes ready must wait until the second one is also ready.

A process performs an input or output by loading the evaluation stack with a pointer to a message, the
address of a channel, and a count of the number of bytes to be transferred, and then executing an input
message or an output message instruction.

3.4.1 Internal channel communication

At any time, an internal channel (a single word in memory) either holds the identity of a process, or holds the
special value empty. The channel is initialised to empty before it is used.

When a message is passed using the channel, the identity of the first process to become ready is stored
in the channel, and the processor starts to execute the next process from the scheduling list. When the
second process to use the channel becomes ready, the message is copied, the waiting process is added to
the scheduling list, and the channel reset to its initial state. It does not matter whether the inputting or the
outputting process becomes ready first.

In figure 3.6, a process P is about to execute an output instruction on an 'empty' channel C. The evaluation
stack holds a pointer to a message, the address of channel C, and a count of the number of bytes in the
message ..

P c
Registers

A: count

B: channel .J Empty J I
c: Pointer

Figure 3.6 Output to empty channel

3 Transputer internal architecture 37

After executing the output instruction, the channel C holds the address of the workspace of P, and the address
of the message to be transferred is stored in the workspace of P. P is descheduled, and the process starts
to execute the next process from the scheduling list.

P C

Workspace

I
P I Next Inst I

Pointer

Figure 3.7

The channel C and the process P remain in this state until a second process, Q executes an output instruction
on the channel.

P C a
Workspace

A: Count

Next Inst I P ~ B: Channel
I I

Pointer C: Pointer

Figure 3.8

The message is copied, the waiting process P is added to the scheduling list, and the channel C is reset to
its initial 'empty' state.

P C

Workspace

Next Inst ~

List ~

Figure 3.9

38 3 transputer overview

3.4.2 External channel communication

When a message is passed via an external channel the processor delegates to an autonomous link interface
the job of transferring the message and deschedules the process. When the message has been transferred
the link interface causes the processor to reschedule the waiting process. This allows the processor to
continue the execution of other processes whilst the external message transfer is taking place.

Each link interface uses three registers:

a pointer to a process workspace
a pointer to a message
a count of bytes in the message

In figure 3.10 processes P and Q executed by different transputers communicate using a channel C imple­
mented by a link connecting two transputers. P outputs, and Q inputs.

P
Registers

Count

Channel

Pointer

P
W k or space

Next Inst ...

C

.. ...
~

Figure 3.10 Communication between transputers

C

P Q

Pointer Pointer

Count Count

Figure 3.11

Q

Registers

Count

Channel

Pointer

Q

W k or space

Next Inst

When P executes its output instruction, the registers in the link interface of the transputer executing Pare
initialised, and P is descheduled. Similarly, when Q executes its input instruction, the registers in the link
interface of the process executing Q are initialised, and Q is descheduled (figure 3.11).

The message is now copied through the link, after which the workspaces of P and Q are returned to the
corresponding scheduling lists (figure 3.12). The protocol used on P and Q ensures that it does not matter
which of P and Q first becomes ready.

3 Transputer internal architecture

p

k Wor space

Next Inst

Li st ~

3.4.3 Communication links

c

~

Figure 3.12

Q

W k or space

Next Inst

List

39

A link between two transputers is implemented by connecting a link interface on one transputer to a link
interface on the other transputer by two one-directional signal wires, along which data is transmitted serially.
The two wires provide two occam channels, one in each direction. This requires a simple protocol to
multiplex data and control information. Messages are transmitted as a sequence of bytes, each of which
must be acknowledged before the next is transmitted. A byte of data is transmitted as a start bit followed by
a one bit followed by eight bits of data followed by a stop bit. An acknowledgement is transmitted as a start
bit followed by a stop bit. An acknowledgement indicates both that a process was able to receive the data
byte and that it is able to buffer another byte.

The protocol permits an acknowledgement to be generated as soon as the receiver has identified a data
packet. In this way the acknowledgement can be received by the transmitter before all of the data packet has
been transmitted and the transmitter can transmit the next data packet immediately. Some transputers do
not implement this overlapping and achieve a data rate of 0.8 Mbytes/sec using a link to transfer data in one
direction. However, by implementing the overlapping and including sufficient buffering in the link hardware,
the rate can be more than doubled to achieve 1.8 Mbytes/sec in one direction, and 2.4 Mbytes/sec when the
link carries data in both directions. The diagram below shows the signals that would be observed on the two
link wires when a data packet is overlapped with an acknowledgement.

Data o

Data byte

Acknowledge message

Figure 3.13 Link data and acknowledge formats

40 3 transputer overview

Input Link

Output Link

time

Figure 3.14 Overlapped link acknowledge

3.5 Timer

The transputer has a clock which 'ticks' every microsecond. The current value of the processor clock can be
read by executing a read timer instruction.

A process can arrange to perform a timer input, in which case it will become ready to execute after a specified
time has been reached.

The timer input instruction requires a time to be specified. If this time is in the 'past' (i.e. ClockReg AFTER
SpecifiedTime) then the instruction has no effect. If the time is in the 'future' (i.e. SpecifiedTime AFTER
Clockregor SpecifiedTime = ClockReg) then the process is descheduled. When the specified time is reached
the process is scheduled again.

3.6 Alternative

The occam alternative construct enables a process to wait for input from anyone of a number of channels,
or until a specific time occurs. This requires special instructions, as the normal input instruction deschedules
a process until a specific channel becomes ready, or until a specific time is reached. The instructions are:

enable channel
enable timer
alternative wait

disable channel
disable timer

The alternative is implemented by 'enabling' the channel input or timer input specified in each of its compo­
nents. The 'alternative wait' is then used to deschedule the process if none of the channel or timer inputs is
ready; the process will be re-scheduled when anyone of them becomes ready. The channel and timer inputs
are then 'disabled'. The 'disable' instructions are also designed to select the component of the alternative to
be executed; the first component found to be ready is executed.

3.7 Floating point instructions

The core of the floating point instruction set was established fairly early in the design of the floating point
transputer. This core includes simple load, stortl and arithmetic instructions. Examination of statistics derived
from FORTRAN programs suggested that the addition of some more complex instructions would improve
performance and code density. Proposed changes to the instruction set were assesed by examining their
effect on a number of numerical programs. For each proposed instruction set, a compiler was constructed,
the programs compiled with it, and the resulting code then run on a simulator. The resulting instruction set is
now described.

In the floating point transputer operands are transferred between the transputer's memory and the floating
point evaluation stack by means of floating point load and store instructions. There are two groups of such
instructions, one for single length numbers, one for double length. In the description of the load and store
instructions which follow only the double length instructions are described. However, there are single length

3 Transputer internal architecture 41

instructions which correspond with each of the double length instructions.

The address of a floating point operand is computed on the CPU's stack and the operand is then loaded,
from the addressed memory location, onto the FPU's stack. Operands in the floating point stack are tagged
with their length. The operand's tag will be set when the operand is loaded or is computed. The tags allow
the number of instructions needed for floating point operations to be reduced; there is no need, for example,
to have both floating add single and floating add double instructions; a single floating add will suffice.

3.7.1 Optimising use of the stack

The depth of the register stacks in the CPU and FPU is carefully chosen. Floating point expressions commonly
have embedded address calculations, as the operands of floating point operators are often elements of one
dimensional or two dimensional arrays. The CPU stack is deep enough to allow most integer calculations
and address calculations to be performed within it. Similarly, the depth of the FPU stack allows most floating
point expressions to be evaluated within it, employing the CPU stack to form addresses for the operands.

No hardware is used to deal with stack overflow. A compiler can easily examine expressions and introduce
temporary variables in memory to avoid stack overflow. The number of such temporary variables can be
minimised by careful choice of the evaluation order; an algorithm to perform this optimisation is given in the
Prentice Hall publication Transputer Instruction Set - A Compiler Writers' Guide. The algorithm is used to
optimise the use of the integer stack of the transputer CPU.

3.7.2 Concurrent operation of FPU and CPU

In the floating point transputer the FPU operates concurrently with the CPU. This means that it is possible to
perform an address calculation in the CPU whilst the FPU performs a floating point calculation. This can lead
to significant performance improvements in real applications which access arrays heavily. This aspect of the
floating point transputer's performance was carefully assessed, partly through examination of the 'Livermore
Loops' (refer to The Livermore Fortran Kernels: A Computer Test of the Numerical Performance Range).
These are a collection of small kernels designed to represent the types of calculation performed on super­
computers. They are of interest because they contain constructs which occur in real programs which are
not represented in such programs as the Whetstone benchmark. In particular, they contain accesses to two
and three-dimensional arrays, operations where the concurrency within the floating point transputer is used
to good effect. In some cases the compiler is able to choose the order of performing address calculations so
as to maximise overlapping; this involves a modification of the algorithm mentioned earlier.

As a simple example of overlapping consider the implementation of Livermore Loop 7. The occam program
for loop 7 is as follows:

-- LIVERMORE LOOl? 7
SEQ k = 0 FOR n

x [k] : = u [k] + « (r* (z [k] + (r*y [k]) » +
(t* «u [k+3] + (r* (u [k+2] + (r*u [k+l]»»») +
(t* «u [k+6] + (r* (u [k+5] + (r*u [k+4]) » »»

The first stage in the computation of this is to load the value y [k]. This requires a sequence of four
instructions. A further three instructions cause r to be loaded and the FPU multiply to be initiated.

Although the floating point multiplication takes several cycles to complete, the CPU is able to continue exe­
cuting instructions whilst the FPU performs the multiplication. Thus the CPU can execute the next segment
of code which computes the address of z [k] whilst the FPU perfroms the multiplication.

Finally, the value z [k] is pushed onto the floating point stack and added to the previously computed subex­
pression r*y [k]. It is not until value z [k] is loaded that the CPU needs to synchronise with the FPU.

The computation of the remainder of the expression proceeds in the same way, and the FPU never has to
wait for the CPU to perform an address calculation.

42 3 transputer overview

3.8 Floating point unit design

In designing a concurrent systems component such as a transputer, it is important to maximise the per­
formance obtained from a given area of silicon; many components can be used together to deliver more
performance. This contrasts with the design of a conventional co-processor where the aim is to maximise
the performance of a single processor by the use of a large area of silicon. As a result, in designing the
floating pOint transputer, the performance benefits of silicon hungry devices such as barrel shifters and flash
multipliers were carefully examined.

A flash multiplier is too large to fit on chip together with the processor, and would therefore necessitate the
use of a separate co-processor Chip. The introduction of a co-processor interface to a separate chip slows
down the rate at which operands can be transferred to and from the floating point unit. Higher performance
can, therefore, be obtained from a slow multiplier on the same chip as the processor than from a fast one
on a separate Chip. This leads to an important conclusion: a separate co-processor chip is not appropriate
for scalar ffoating point arithmetic. A separate co-processor would be effective where a large amount of
work can be handed to the co-processor by transferring a small amount of information; for example a vector
co-processor would require only the addresses of its vector operands to be transferred via the co-processor
interface.

It turns out that a flash multiplier also operates much more quickly than is necessary. Only a pipelined vector
processor can deliver operands at a rate consistent with the use of such devices. In fact, any useful floating
point calculation involves more operand accesses than operations. As an example consider the aSSignment
y[i] := y[i] + (t * x[i]) which constitutes the core of the UNPACK floating point benchmark.
To perform this it is necessary to load three operands, perform two operations and to store a result. If we
assume that it takes twice as long to perform a floating point operation as to load or store a floating point
number then the execution time of this example would be evenly split between operand access time and
operation time. This means that there would be at most a factor of two available in performance improvement
from the use of an infinitely fast floating point unit!

Unlike a flash multiplier, a fast normalising shifter is important for fast floating point operation. When imple­
menting IEEE arithmetic it may be necessary to perform a long shift on every floating point operation and
unless a fast shifter is incorporated into the floating point unit the maximum operation time can become very
long. Fortunately, unlike a flash multiplier, it is possible to design a fast shifter in a reasonable area of silicon.
The shifter used is designed to perform a shift in a single cycle and to normalise in two cycles.

Consequently, the floating point unit contains a fast normalising shifter but not a flash multiplier. However
there is a certain amount of logic devoted to multiplication and division. Multiplication is performed three-bits
per cycle, and division is performed two-bits per cycle. Figure 3.15 illustrates the physical layout of the floating
point unit.

- ALU ALU

ROM Fraction Exponent ROM
Datapath Datapath

Normalising Shifter

Interface

Block diagram of floating point unit

Figure 3.15 Floating point unit block diagram

The datapaths contain registers and shift paths. The fraction datapath is 59 bits wide, and the exponent
data path is 13 bits wide. The normalising shifter interfaces to both the fraction data path and the exponent

3 Transputer internal architecture 43

datapath. This is because the data to be shifted will come from the fraction datapath whilst the magnitude
of the shift is associated with the exponent datapath. One further interesting aspect of the design is the
microcode ROM. Although the diagram shows two ROMs, they are both part of the same logical ROM. This
has been split in two so that control signals do not need to be bussed through the datapaths.

3.9 Graphics capability

The fast block move instructions of the transputers make them suitable for use in graphics applications
using byte-per-pixel colour displays. The block move on the transputer is designed to saturate the memory
bandwidth, moving any number of bytes from any byte boundary in memory to any other byte boundary using
the smallest possible number of word read and write operations.

Some transputers extend this capability by incorporation of a two-dimensional version of the block move
(Move2d) which can move windows around a screen at full memory bandwidth, and conditional versions of
the same block move which can be used to place templates and text into windows. One of these operations
(Draw2d) copies bytes from source to destination, writing only non-zero bytes to the destination. A new object
of any shape can therefore be drawn on top of the current image. A further operation (Cl.ip2d) copies only
zero bytes in the source. All of these instructions achieve the speed of the simple move instruction, enabling
a 1 million pixel screen to be drawn many times per second. Unlike the conventional 'bit-bit' instruction, it is
never necessary to read the destination data.

3.9.1 Example· drawing coloured text

Drawing proportional spaced text provides a Simple example of the use of the two-dimensional move instruc­
tions. The font is stored in a two dimensional array Font; the height of Font is the fixed character height,
and the start of each character is defined by an array start. The textures of the character and its back­
ground are selected from an array of textures; the textures providing a range of colours or even stripes and
tartans!

An occam procedure to perform such drawing is given below and the effect of each stage in the drawing
process is illustrated by the diagrams on the final page of this document. First, (1) the texture for the character
is selected and copied to a temporary area and (2) the character in the font is used to clip this texture to the
appropriate shape. Then (3) the background texture is selected and copied to the screen, and (4) the new
character drawn on top of it.

-- Draw character ch in texture F on background texture B
PROC DrawChar(VAL INT Ch, F, B)

SEQ
IF

(x + width[ch]) > screenwidth
SEQ

x := 0
y := y + height

(x + width[ch]) <= screenwidth
SKIP

[height] [maxwidth] BYTE Temp :
SEQ

Move2d(Texture[F],0,0, Temp, 0, 0, width[Ch],height)
Cl.ip2d(Font[ch],start[ch],0, Temp,O,O, width[ch],height)
Move2d(Texture[B],0,0, Screen,x,y, width[ch],height»
Draw2d(Temp,0,0, Screen,x,y, width[ch],height)
x := x + width[ch]

This procedure will fill a 1 million pixel screen with proportionally spaced characters in about 1/6 second.
Obviously, a simpler and faster version could be used if the character colour or background colour was
restricted. The operation of this procedure is illustrated in figure 3.16.

44 3 transputer overview

1)

Move2d

temp
texture #1

D
temp

2)

[g Clip2d

character temp

temp

3)

Move2d

texture #2

screen

4)

Draw2d

temp

screen

Figure 3.16 Use of enhanced graphics instructions

45

4 Conclusion

The INMOS transputer family is a range of system components which can be used to construct high per­
formance concurrent systems. As all members of the family incorporate INMOS communications links, a
system may be constructed from different members of the family. All transputers provide hardware support
for concurrency and offer exceptional performance on process scheduling, inter-process communication and
inter-transputer communication.

The design of the transputers takes careful note of silicon economics. The central processor used in the
transputer offers a performance comparable with that of other VLSI processors several times larger. The
small size of the processor allows a memory and communications system to be integrated on to the same
VLSI device. This level of integration allows very fast access to memory and very fast inter-transputer
communication. Similarly, the transputer floating point unit is integrated into the same device as the central
processor, eliminating the delays inherent in communicating data between devices.

46 3 transputer overview

®

c O[fl)mos
FEATURES

32 bit architecture
33 ns internal cycle time
30 MIPS (peak) instruction rate
4.3 Mflops (peak) instruction rate
Pin compatible with IMS T800, IMS T425 and IMS T414
Debugging support
64 bit on-chip floating point unit which conforms to
IEEE 754
4 Kbytes on-chip static RAM
120 Mbyteslsec sustained data rate to internal memory
4 Gbytes directly addressable external memory
40 Mbyteslsec sustained data rate to external memory
630 ns response to interrupts
Four INMOS serial links 5/10/20 Mbitslsec
Bi-directional data rate of 2.4 Mbyteslsec per link
High performance graphics support with block move
instructions
Boot from ROM or communication links
Single 5 MHz clock input
Single +5V ±5% power supply
MIL-STD-883C processing will be available

APPLICATIONS

Scientific and mathematical applications
High speed multi processor systems
High performance graphics processing
Supercomputers
Workstations and workstation clusters
Digital signal processing
Accelerator processors
Distributed databases
System simulation
Telecommunications
Robotics
Fault tolerant systems
Image processing
Pattern recognition
Artificial intelligence

42144000

47

IMS T80S
transputer

Preliminary Data

System
Services

4k bytes
of

On-chip
RAM

External
Memory
Interface

Floating Point Unit

May 1989

48

1 Introduction

The IMS T805 transputer is a 32 bit CMOS microcomputer with a 64 bit floating point unit and graphics support.
It has 4 Kbytes on-chip RAM for high speed processing, a configurable memory interface and four standard
INMOS communication links. The instruction set achieves efficient implementation of high level languages
and provides direct support for the occam model of concurrency when using either a single transputer or a
network. Procedure calis, process switching and typical interrupt latency are sub-microsecond.

For convenience of description, the IMS T805 operation is spl:t into the basic blocks shown in figure 1.1.

VCC
GND

Cap Plus
CapMinus

Reset
Analyse
Errorln

Error
BootFromROM

Clockln
ProcSpeedSelectO·2

DisablelntRam

ProcClockOut
notMemSO·4

notMemWrBO·3
notMemRd
notMemRf

RefreshPending
MemWait

MemConfig
MemReq

MemGranted

System
services

4k bytes
of

On-chip
RAM

External
Memory
Interface

Floating Point Unit

LinkSpecial
LinkOSpecial

:=====~~- Link123Speciai

LinklnO
LinkOutO

Linkln1
LinkOut1

Linkln2
LinkOut2

Linkln3
LinkOut3

E EventReq
Event EventAck

'---__ ---' EventWaltmg

MemnotWrDO
32 MemnotRfD1

MemAD2·31

Figure 1.1 IMS T805 block diagram

The processor speed of a device can be pin-selected in stages from 17.5 MHz up to the maximum allowed
for the part. A device running at 30 MHz achieves an instruction throughput of 30 MIPS peak and 15 MIPS
sustained. The extended temperature version of the device complies with MIL-STO-883C.

The IMS T805 provides high performance arithmetic and floating point operations. The 64 bit floating point unit
provides single and double length operation to the ANSI-IEEE 754-1985 standard for floating point arithmetic.
It is able to perform floating point operations concurrently with the processor, sustaining a rate of 2.2 Mflops
at a processor speed of 20 MHz and 3.3 Mflops at 30 MHz.

Introduction 49

High performance graphics support is provided by microcoded block move instructions which operate at the
speed of memory. The two-dimensional block move instructions provide for contiguous block moves as well
as block copying of either non-zero bytes of data only or zero bytes only. Block move instructions can be used
to provide graphics operations such as text manipulation, windowing, panning, scrolling and screen updating.

Cyclic redundancy checking (CRC) instructions are available for use on arbitrary length serial data streams,
to provide error detection where data integrity is critical. Another feature of the IMS TaOS, useful for pattern
recognition, is the facility to count bits set in a word.

The IMS TaOS can directly access a linear address space of 4 Gbytes. The 32 bit wide memory interface
uses multiplexed data and address lines and provides a data rate of up to 4 bytes every 100 nanoseconds
(40 Mbytes/sec) for a 30 MHz device. A configurable memory controller provides all timing, control and DRAM
refresh signals for a wide variety of mixed memory systems.

System Services include processor reset and bootstrap control, together with facilities for error analysis. Error
signals may be daisy-chained in multi-transputer systems.

The standard INMOS communication links allow networks of transputer family products to be constructed by
direct point to point connections with no external logic. The IMS TaOS links support the standard operating
speed of 10 Mbits/sec, but also operate at S or 20 Mbits/sec. Each link can transfer data bi-directionally at
up to 2.3S Mbytes/sec.

The IMS TaOS is pin compatible with the IMS TaOO, as the extra inputs used are all held to ground on the
IMS TaOO. The IMS Ta05-20 can thus be plugged directly into a circuit designed for a 20 MHz version of the
IMS TaOO.

The transputer is designed to implement the occam language, detailed in the occam Reference Manual, but
also efficiently supports other languages such as C, Pascal and Fortran. Access to the transputer at machine
level is seldom required, but if necessary refer to the Transputer Instruction Set - A Compiler Writers' Guide.
The instruction set of the IMS Ta05 is the same as that of the IMS TaOO.

This data sheet supplies hardware implementation and characterisation details for the IMS T805. It is intended
to be read in conjunction with the Transputer Architecture chapter, which details the architecture of the
transputer and gives an overview of occam.

The IMS Ta05 instruction set contains a number of instructions to facilitate the implementation of breakpoints.
For further information concerning breakpointing, refer to Suppart far debugginglbreakpainting in transputers
(technical note 61).

Figure 1.2 shows the internal datapaths for the IMS Ta05.

50

4 Kbyte
RAM

configuration
register &
timing control

external
memory
interface

4 IMS T80S engineering data

Figure 1.2 IMS T805 internal datapaths

2 Pin designations

Table 2.1 IMS T805 system services

Pin In/Out Function
VCC,GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockln in Input clock
ProcSpeedSelectO-2 in Processor speed selectors
Reset in System reset
Error out Error indicator
Errorln in Error daisychain input
Analyse in Error analysis
BootFromRom in Boot from external ROM or from link
DisablelntRAM in Disable internal RAM

Table 2.2 IMS T805 external memory interface

Pin In/Out Function
ProcClockOut out Processor clock
MemnotWrDO in/out Multiplexed data bit a and write cycle warning
MemnotRfD1 in/out Multiplexed data bit 1 and refresh warning
MemAD2-31 in/out Multiplexed data and address bus
notMemRd out Read strobe
notMemWrBO-3 out Four byte-addressing write strobes
notMemSO-4 out Five general purpose strobes
notMemRf out Dynamic memory refresh indicator
RefreshPending out Dynamic refresh is pending
MemWait in Memory cycle extender
MemReq in Direct memory access request
MemGranted out Direct memory access granted
MemConfig in Memory configuration data input

Table 2.3 IMS T805 event

Pin In/Out Function
EventReq in Event request
EventAck out Event request acknowledge
EventWaiting out Event input requested by software

Table 2.4 IMS T805 link

Pin In/Out Function
LinklnO-3 in Four serial data input channels
LinkOutO-3 out Four serial data output channels
LinkSpecial in Select non-standard speed as 5 or 20 Mbits/sec
LinkOSpecial in Select special speed for Link a
Link123Speciai in Select special speed for Links 1,2,3

Signal names are prefixed by not If they are active low, otherwise they are active high.
Pinout details for various packages are given on page 120.

51

52

3 Processor

The 32 bit processor contains instruction processing logic, instruction and work pointers, and an operand
register. It directly accesses the high speed 4 Kbyte on-chip memory, which can store data or program.
Where larger amounts of memory or programs in ROM are required, the processor has access to 4 Gbytes
of memory via the External Memory Interface (EMI).

3.1 Registers

The design of the transputer processor exploits the availability of fast on-chip memory by having only a small
number of registers; six registers are used in the execution of a sequential process. The small number of
registers, together with the simplicity of the instruction set, enables the processor to have relatively simple
(and fast) data-paths and control logic. The six registers are:

The workspace pointer which points to an area of store where local variables are kept.

The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, Band C registers which form an evaluation stack.

A, Band C are sources and destinations for most arithmetic and logical operations. Loading a value into the
stack pushes B into C, and A into B, before loading A. Storing a value from A, pops B into A and C into B.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be
of any size.

Further register details are given in Transputer Instruction Set - A Compiler Writers' Guide.

Registers L ocas p rogram

A

B

C

Workspace --
Next Inst

Operand

Figure 3.1 Registers

3 Processor 53

3.2 Instructions

The instruction set has been designed for simple and efficient compilation of high-level languages. All in­
structions have the same format, designed to give a compact representation of the operations occurring most
frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte
are a function code and the four least significant bits are a data value.

Operand Register

Figure 3.2 Instruction format

3.2.1 Direct functions

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Ten of these,
shown in table 3.1, are used to encode the most important functions.

load constant

load local

load non-local

jump

Table 3.1 Direct functions

add constant

store local

store non-local

conditional jump

load local pOinter

call

The most common operations in a program are the loading of small literal values and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of high level programming languages such as occam, C, Fortran, Pascal or ADA.

3.2.2 Prefix functions

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative
prefix.

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction's operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.

54 4 IMS T805 engineering data

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3.2.3 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as
add, exclusive or and greater than. Less frequently occurring operations have encodings which require a
single prefix operation.

3.2.4 Expression evaluation

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number
of these can be minimised by careful choice of the evaluation order.

Table 3.2 Expression evaluation

Program Mnemonic

x := 0 Ide a
stl x

x := #24 pfix 2
Ide 4
stl x

x := y + z Idl y
Idl z
add
stl x

3.2.5 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as load constant and add require just one
processor cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive four instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.

3 Processor 55

3.3 Processes and concurrency

A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions, A transputer can run several processes in
parallel (concurrently), Processes may be assigned either high or low priority, and there may be any number
of each (page 56). .

The processor has a microcoded scheduler which enables any number of concurrent processes to be exe­
cuted together, sharing the processor time. This removes the need for a software kernel.

At any time, a concurrent process may be

Active Being executed.
On a list waiting to be executed.

Inactive Ready to input.
Ready to output.
Waiting until a specified time.

The SCheduler operates in such a way that inactive processes do not consume any processor time. It allocates
a portion of the processor's time to each process in turn. Active processes waiting to be executed are held
in two linked lists of process workspaces, one of high priority processes and one of low priority processes
(page 56). Each list is implemented using two registers, one of which points to the first process in the list,
the other to the last. In the linked Process List figure 3.3, process S is executing and P, Q and R are active,
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones
perform in a similar manner.

R . t egis ers L ocas I P rograml

FPtr1 (Front) ~ P ---I I
BPtr1 (Back) I

~ Q
A

B 4 R I

C

Workspace I---- S

Next Inst

Operand

Figure 3.3 Linked process list

Table 3.3 Priority queue control registers

Function High Priority Low Priority
Poi nter to front of active process list FptrO Fptr1
Pointer to back of active process list BptrO Bptr1

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from
another process or transputer, or for a time delay to complete. In order for several processes to operate in
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly
descheduled at the next descheduling point (page 60). The time slice period is 5120 cycles of the external
5 MHz clock, giving ticks approximately 1 ms apart

56 4 IMS T80S engineering data

A process can only be descheduled on certain instructions, known as descheduling points (page 60). As a
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way
through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and
the next process taken from the list. Process scheduling pointers are updated by instructions which cause
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 f.Ls, as
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model, including start process
and end process. When a main process executes a parallel construct, start process instructions are used
to create the necessary additional concurrent processes. A start process instruction creates a new process
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be
executed together with the ones already being executed. When a process is made active it is always added
to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the parallel construct components which have stili to terminate. The
counter is initialised to the number of components before the processes are started. Each component ends
with an end process instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and the
main process continues.

3.4 Priority

The IMS T805 supports two levels of priority. Priority 1 (lOW priority) processes are executed whenever there
are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more high priority processes are
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until
it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed,
then one is selected.

Low priority processes are periodically timesliced to provide an even distribution of processor time between
computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority process
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for
between one and two timeslice periods, less any time taken by high priority processes. This assumes that
no process monopolises the transputer's time; I.e. It has a distribution of deschedullng points (page 60).

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 ms at the
standard frequency of 5 MHz).

If a high priority process is waiting for an external channel to become ready, and if no other high priority
process is active, then the interrupt latency (from when the channel becomes ready to when the process
starts executing) is typically 19 processor cycles, a maximum of 78 cycles (assuming use of on-chip RAM).
If the floating point unit is not being used at the time then the maximum interrupt latency is only 58 cycles.
To ensure this latency, certain instructions are interruptable.

3.5 Communications

Communication between processes is achieved by means of channels. Process communication is point-to­
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.

3 Processor 57

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point
links. The processor provides a number of operations to support message passing, the most important being
input message and output message.

The input message and output message instructions use the address of the channel to determine whether
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a
process to be written and compiled without knowledge of where its channels are connected.

The process which first becomes ready must wait until the second one is also ready. A process performs an
input or output by loading the evaluation stack with a pOinter to a message, the address of a channel, and
a count of the number of bytes to be transferred, and then executing an input message or output message
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one
the process will deschedule.

3.6 Block move

The block move on the transputer moves any number of bytes from any byte boundary in memory, to any
other byte boundary, using the smallest possible number of word read, and word or part-word writes.

A block move instruction can be interrupted by a high priority process. On interrupt, block move is completed
to a word boundary, independent of start position. When restarting after interrupt, the last word written is
written again. This appears as an unnecessary read and write in the simplest case of word aligned block
moves, and may cause problems with FIFOs. This problem can be overcome by incrementing the saved
destination (BreglntSaveLoc) and source pOinter (CreglntSaveLoc) values by BytesPerWord during the high
priority process.

3.7 Timers

The transputer has two 32 bit timer clocks which 'tick' periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented every microsecond, cycling com­
pletely in approximately 4295 seconds. The other is accessible only to low priority processes and is incre­
mented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of approximately
76 hours.

ClockO
Clock 1
TNextRegO
TNextReg1

Table 3.4 Timer registers

Current value of high priority (level 0) process clock
Current value of low priority (level 1) process clock
Indicates time of earliest event on high priority (level 0) timer queue
Indicates time of earliest event on low priority (level 1) timer queue

The current value of the processor clock can be read by executing a load timer instruction. A process can
arrange to perform a timer input, in which case it will become ready to execute after a specified time has
been reached. The timer input instruction requires a time to be specified. If this time is in the 'past' then the
instruction has no effect. If the time is in the 'future' then the process is descheduled. When the specified
time is reached the process is scheduled again.

58 4 IMS T80S engineering data

Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31.

TimerO Works paces Program

Alarm

TNextRegO '--__ ---' 21

TPtrLoc Empty

31

Figure 3.4 Timer registers

59

4 Instruction set summary

The Function Codes table 4.8 gives the basic function code set (page 53). Where the operand is less than 16,
a single byte encodes the complete instruction. If the operand is greater than 15, one prefix instruction (pfix)
is required for each additional four bits of the operand. If the operand is negative the first prefix instruction
will be nfix.

Table <f.1 prefix cooing

Function Memory
Mnemonic code code

Ide #3 #4 #43

Ide #35
is coded as

pfix #3 #2 #23
Ide #5 #4 #45

Ide #987
is coded as

pfix #9 #2 #29
pfix #8 #2 #28
Ide #7 #4 #47

Ide -31 (Ide #FFFFFFE1)
is coded as

nfix #1 #6 #61
Ide #1 #4 #41

Tables 4.9 to 4.28 give details of the operation codes. Where an operation code is less than 16 (e.g. add:
operation code 05), the operation can be stored as a single byte comprising the operate function code F and
the operand (5 in the example). Where an operation code is greater than 15 (e.g. ladd: operation code 16),
the prefix function code 2 is used to extend the instruction.

Table 4.2 operate coding

Function Memory
Mnemonic code code

add (op. code #5) #F5
is coded as

apr add #F #F5

ladd (op. code #16) #21F6
is coded as

pfix #1 #2 #21
apr #6 #F #F6

The load device identity (lddevid) instruction (table 4.20) pushes the device type identity into the A register.
Each product is allocated a unique group of numbers for use with the Iddevid instruction. The product identity
numbers for the IMS T805 are 10 to 19 inclusive.

In the Floating Point Operation Codes tables 4.22 to 4.28, a selector sequence code (page 69) is indicated
in the Memory Code column by s. The code given in the Operation Code column is the indirection code, the
operand for the Ide instruction.

The FPU and processor operate concurrently, so the actual throughput of floating point instructions is better
than that implied by simply adding up the instruction times. For full details see Transputer Instruction Set - A
Compiler Writers' Guide.

60 4 IMS Ta05 engineering data

The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing
in internal memory. The number of cycles is given for the basic operation only; where the memory code
for an instruction is two bytes, the time for the prefix function (one cycle) should be added. For a 20 MHz
transputer one cycle is 50 ns. Some instruction times vary. Where a letter is included in the cycles column it
is interpreted from table 4.3.

Table 4.3 Instruction set interpretation

Ident Interpretation

b Bit number of the highest bit set in register A. Bit 0 is the least significant bit.

m Bit number of the highest bit set in the absolute value of register A.
Bit 0 is the least significant bit.

n Number of places shifted.

w Number of words in the message. Part words are counted as full words. If the message
is not word aligned the number of words is increased to include the part words at either
end of the message.

p Number of words per row.

r Number of rows.

The DE column of the tables indicates the descheduling/error features of an instruction as described in
table 4.4.

Table 4.4 Instruction features

Ident Feature See page:

0 The instruction is a descheduling point 60

E The instruction will affect the Error flag 61,76

F The instruction will affect the FP_Error flag 69,61

4.1 Descheduling pOints

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 55). They are
also the ones at which the processor will halt if the Analyse pin is asserted (page 75).

input message
timer alt wait
jump

Table 4.5 Descheduling point instructions

output message
timer input
loop end

output byte
stop on error
end process

output word
alt wait
stop process

4 Instruction set summary 61

4.2 Error instructions

The instructions in table 4.6 are the only ones which can affect the Error flag (page 76) directly. Note,
however, that the floating point unit error flag FP_Error is set by certain floating point instructions (page 61),
and that Error can be set from this flag by fpcheckerror.

Table 4.6 Error setting instructions

add
multiply
long add
set error
check word

add constant
fractional multiply
long subtract
testerr
check subscript from 0

4.3 Debugging support

subtract
divide
long divide
fpcheckerror
check single

remainder

check count from 1

Table 4.21 contains a number of instructions to facilitate the implementation of breakpoints. These instructions
overload the operation of jO. Normally jO is a no-op which might cause descheduling. SetjObreak enables the
breakpointing facilities and causes jO to act as a breakpointing instruction. When breakpointing is enabled,
jO swaps the current Iptr and Wptr with an Iptr and Wptr stored above MemStart. The breakpoint instruction
does not cause descheduling, and preserves the state of the registers. It is possible to single step the pro­
cessor at machine level using these instructions. Refer to Support for debugginglbreakpointing in transputers
(technical note 61) for more detailed information regarding debugger support.

4.4 Floating point errors

The instructions in table 4.7 are the only ones which can affect the floating point error flag FP_Error (page 69).
Error is set from this flag by fpcheckerror if FP_Error is set.

fpadd
fpldnladdsn
fpremfirst
fpuseterror
fpuexpincby32
fpur32tor64
fprtoi32

Table 4.7 Floating point error setting instructions

fpsub
fpldnladddb
fpusqrtfirst
fpuclearerror
fpuexpdecby32
fpur64tor32
fpuabs

fpmul
fpldnlmulsn
fpgt
fptesterror
fpumulby2
fpucki32
fpint

fpdiv
fpldnlmuldb
fpeq

fpudivby2
fpucki64

62 4 IMS T805 engineering data

Table 4.8 IMS T805 function codes

Function Memory Processor D
Code Code Mnemonic Cycles Name E

0 OX j 3 jump D
1 1X Idlp 1 load local pointer
2 2X pfix 1 prefix
3 3X Idnl 2 load non-local
4 4X Idc 1 load constant
5 5X Idnlp 1 load non-local pOinter
6 6X nfix 1 negative prefix
7 7X Idl 2 load local
8 8X adc 1 add constant E
9 9X call 7 call
A AX cj 2 conditional jump (not laken)

4 conditional jump (Iaken)
B BX ajw 1 adjust workspace
C CX eqc 2 equals constant
D DX stl 1 store local
E EX slnl 2 store non-local
F FX opr - operate

Table 4.9 IMS T805 arithmetic/logical operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

46 24F6 and 1 and
4B 24FB or 1 or
33 23F3 xor 1 exclusive or
32 23F2 not 1 bitwise not
41 24F1 shl n+2 shift left
40 24FO shr n+2 shift right

05 F5 add 1 add E
OC FC sub 1 subtract E
53 25F3 mul 38 multiply E
72 27F2 fmul 35 fractional multiply (no rounding) E

40 fractional multiply (rounding) E
2C 22FC div 39 divide E
1F 21FF rem 37 remainder E
09 F9 gt 2 greater than
04 F4 diff 1 difference
52 25F2 sum 1 sum
08 F8 prod b+4 product for positive register A

m+5 product for negative register A

4 Instruction set summary 63

Table 4.10 IMS T805 long arithmetic operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

16 21F6 ladd 2 long add E
38 23F8 Isub 2 long subtract E
37 23F7 Isum 3 Irmg sum
4F 24FF Idiff 3 long diff
31 23F1 Imul 33 long multiply
1A 21 FA Idiv 35 long divide E
36 23F6 Ish I n+3 long shift left (n<32)

n-28 long shift left(n~32)
35 23F5 Ishr n+3 long shift right (n<32)

n-28 long shift right (n~32)
19 21F9 norm n+5 normalise (n<32)

n-26 normalise (n~32)
3 normalise (n=64)

Table 4.11 IMS T805 general operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

00 FO rev 1 reverse
3A 23FA xword 4 extend to word
56 25F6 cword 5 check word E
10 21 FO xdble 2 extend to double
4C 24FC csngl 3 check single E
42 24F2 mint 1 minimum integer
SA 25 FA dup 1 duplicate top of stack
79 27F9 pop 1 pop processor stack

Table 4.12 IMS T805 20 block move operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

5B 25FB move2dinit 8 initialise data for 20 block move
5C 25FC move2dall (2p+23)H 20 block copy
50 25FO move2dnonzero (2p+23)*r 20 block copy non-zero bytes
5E 25FE move2dzero (2p+23)*r 20 block copy zero bytes

Table 4.13 IMS T805 CRC and bit operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

74 27F4 crcword 35 calculate crc on word
75 27F5 crcbyte 11 calculate crc on byte

76 27F6 bitcnt b+2 count bits set in word
77 27F7 bitrevword 36 reverse bits in word
78 27F8 bitrevnbits n+4 reverse bottom n bits in word

64 4 IMS T805 engineering data

Table 4.14 IMS T805 indexing/array operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

02 F2 bsub 1 byte subscript
OA FA wsub 2 word subscript
81 28F1 wsubdb 3 form double word subscript
34 23F4 bcnt 2 byte count
3F 23FF wcnt 5 word count
01 F1 Ib 5 load byte
3B 23FB sb 4 store byte

4A 24FA move 2w+8 move message

Table 4.15 IMS T805 timer handling operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

22 22F2 Idtimer 2 load timer
2B 22FB tin 30 timer input (time future) D

4 timer input (time past) 0
4E 24FE talt 4 timer alt start
51 25F1 taltwt 15 timer alt wait (time past) D

48 timer alt wait (time future) D
47 24F7 enbt 8 enable timer
2E 22FE dist 23 disable timer

Table 4.16 IMS T805 inpuVoutput operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

07 F7 in 2w+19 input message D
OB FB out 2w+19 output message 0
OF FF outward 23 output word D
OE FE outbyte 23 output byte D

43 24F3 alt 2 alt start
44 24F4 altwt 5 alt wait (channel ready) D

17 alt wait (channel not ready) 0
45 24F5 altend 4 alt end

49 24F9 enbs 3 enable skip

30 23FO diss 4 disable skip

12 21F2 resetch 3 reset channel
48 24F8 enbc 7 enable channel (ready)

5 enable channel (not ready)
2F 22FF disc 8 disable channel

4 Instruction set summary 65

Table 4.17 IMS TB05 control operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

20 22FO ret 5 return
1B 21FB Idpi 2 load pointer to instruction
3C 23FC gajw 2 general adjust workspace
06 F6 gcall 4 general call
21 22F1 lend 10 loop end (loop) D

5 loop end (exit) D

Table 4.1B IMS TB05 scheduling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

OD FD startp 12 start process D
03 F3 endp 13 end process D
39 23F9 runp 10 run process
15 21F5 stopp 11 stop process
1E 21FE Idpri 1 load current priority

Table 4.19 IMS TB05 error handling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

13 21 F3 csubO 2 check subscript from 0 E
4D 24FD ccnt1 3 check count from 1 E
29 22F9 testerr 2 test error false and clear (no error)

3 test error false and clear (error)
10 21FO seterr 1 set error E
55 25F5 stoperr 2 stop on error (no error) D
57 25F7 clrhalterr 1 clear halt-on-error
58 25F8 sethalterr 1 set halt-on-error
59 25F9 testhalterr 2 test halt-on-error

Table 4.20 IMS T805 processor initialisation operation codes
_ ...

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

2A 22FA testpranal 2 test processor analysing
3E 23FE saveh 4 save high priority queue registers
3D 23FD savel 4 save low priority queue registers
1B 21FB sthf 1 store high priority front pointer
50 25FO sthb 1 store high priority back pointer
1C 21FC stlf 1 store low priority front pOinter
17 21F7 sllb 1 store low priority back pointer
54 25F4 sttimer 1 store timer

17C 2127FC Iddevid 1 load device identity
7E 27FE Idmemstartval 1 load value of memstart address

66 4 IMS T80S engineering data

Table 4.21 IMS T805 debugger support codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

0 00 jump 0 3 jump 0 (break not enabled) 0
11 jump 0 (break enabled, high priority)
13 jump 0 (break enabled, low priority)

B1 2BF1 break 9 break (high priority)
11 break (low priority)

B2 2BF2 clrjObreak 1 clear jump 0 break enable flag
B3 2BF3 setjObreak 1 set jump 0 break enable flag
B4 2BF4 testjObreak 2 test jump 0 break enable flag set
7A 27FA timerdisableh 1 disable high priority timer interrupt
7B 27FB timerdisablel 1 disable low priority timer interrupt
7C 27FC timerenableh 6 enable high priority timer interrupt
70 27FO timerenablel 6 enable low priority timer interrupt

Table 4.22 IMS T805 floating point load/store operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

8E 28FE fpldnlsn 2 fp load non-local single
8A 28 FA fpldnldb 3 fp load non-local double
86 28F6 fpldnlsni 4 fp load non-local indexed single
82 28F2 fpldnldbi 6 fp load non-local indexed double
9F 29FF fpldzerosn 2 load zero single
AD 2AFO fpldzerodb 2 load zero double
AA 2AFA fpldnladdsn 8/11 fp load non local & add single F
A6 2AF6 fpldnladddb 9/12 fp load non local & add double F
AC 2AFC fpldnlmulsn 13/20 fp load non local & multiply single F
A8 2AF8 fpldnlmuldb 21/30 fp load non local & multiply double F
88 28F8 fpstnlsn 2 fp store non-local single
84 28F4 fpstnldb 3 fp store non-local double
9E 29FE fpstnli32 4 store non-local int32

Processor cycles are shown as Typical/Maximum cycles.

Table 4.23 IMS T805 floating point general operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

AB 2AFB fpentry 1 floating point unit entry
A4 2AF4 fprev 1 fp reverse
A3 2AF3 fpdup 1 fp duplicate

4 Instruction set summary 67

Table 4.24 IMS T80S floating point rounding operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

22 s fpurn 1 set rounding mode to round nearest
06 s fpurz 1 set rounding mode to round zero
04 s fpurp 1 ! set rounding mode to round positive
05 s fpurm 1 I set rounding mode to round minus

Table 4.25 IMS T80S floating point error operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

83 28F3 fpchkerror 1 check fp error E
9C 29FC fptesterror 2 test fp error false and clear F
23 s fpuseterror 1 set fp error F
9C s fpuclearerror 1 clear fp error F

Table 4.26 IMS T80S floating point comparison operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

94 29F4 fpgt 4/6 fp greater than F
95 29FS fpeq 3/5 fp equality F
92 29F2 fpordered 3/4 fp orderability
91 29F1 fpnan 213 fp NaN
93 29F3 fpnotfinite 2/2 fp not finite
OE s fpuchki32 3/4 check in range of type int32 F
OF s fpuchki64 3/4 check in range of type int64 F

Processor cycles are shown as Typical/Maximum cycles.

Table 4.27 IMS T80S floating point conversion operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

07 s fpur32tor64 3/4 real32 to real64 F
08 s fpur64tor32 6/9 real64 to real32 F
9D 29FD fprtoi32 7/9 real to int32 F
96 29F6 fpi32tor32 8/10 int32 to real32

,

98 29F8 fpi32tor64 8/10 int32 to real64
9A 29 FA fpb32tor64 8/8 bit32 to real64
OD s fpunoround 2/2 real64 to real32, no round
A1 2AF1 fpint 5/6 round to floating integer F

Processor cycles are shown as Typical/Maximum cycles.

68 4 IMS T80S engineering data

Table 4.28 IMS T80S floating point arithmetic operation codes

Operation Memory Processor cycles D
Code Code Mnemonic Single Double Name E

87 28F7 fpadd 6/9 6/9 fp add F
89 28F9 fpsub 6/9 6/9 fp subtract F
88 28F8 fpmul 11/18 18/27 fp multiply F
8C 28FC fpdiv 16/28 31143 fp divide F
08 s fpuabs 2/2 212 fp absolute F
8F 28FF fpremfirst 36/46 36/46 fp remainder first step F
90 29FO fpremstep 32/36 32/36 fp remainder iteration
01 s fpusqrtfirst 27/29 27/29 fp square root first step F
02 s fpusqrtstep 42/42 42142 fp square root step
03 s fpusq rtlast 8/9 8/9 fp square root end
OA s fpuexpinc32 6/9 6/9 multiply by 232 F

09 s fpuexpdec32 6/9 6/9 divide by 232 F
12 s fpumulby2 6/9 6/9 multiply by 2.0 F
11 s fpudivby2 6/9 6/9 divide by 2.0 F

Processor cycles are shown as Typical/Maximum cycles.

69

5 Floating point unit

The 64 bit FPU provides single and double length arithmetic to floating point standard ANSI-IEEE 754-1985.
It is able to perform floating point arithmetic concurrently with the central processor unit (CPU), sustaining
3.3 Mflops on a 30 MHz device. All data communication between memory and the FPU occurs under control
of the CPU.

The FPU consists of a microcoded computing engine with a three deep floating point evaluation stack for
manipulation of floating point numbers. These stack registers are FA, FB and Fe, each of which can hold
either 32 bit or 64 bit data; an associated flag, set when a floating point value is loaded, indicates which. The
stack behaves in a similar manner to the CPU stack (page 52).

As with the CPU stack, the FPU stack is not saved when rescheduling (page 55) occurs. The FPU can
be used in both low and high priority processes. When a high priority process interrupts a low priority one
the FPU state is saved inside the FPU. The CPU will service the interrupt immediately on completing its
current operation. The high priority process will not start, however, before the FPU has completed its current
operation.

Points in an instruction stream where data need to be transferred to or from the FPU are called synchronisation
points. At a synchronisation point the first processing unit to become ready will wait until the other is ready.
The data transfer will then occur and both processors will proceed concurrently again. In order to make
full use of concurrency, floating point data source and destination addresses can be calculated by the CPU
whilst the FPU is performing operations on a previous set of data. Device performance is thus optimised by
minimising the CPU and FPU idle times.

The FPU has been designed to operate on both single length (32 bit) and double length (64 bit) floating
point numbers, and returns results which fully conform to the ANSI-IEEE 754-1985 floating point arithmetic
standard. Denormalised numbers are fully supported in the hardware. All rounding modes defined by the
standard are implemented, with the default being round to nearest.

The basic addition, subtraction, multiplication and division operations are performed by single instructions.
However, certain less frequently used floating point instructions are selected by a value in register A (when
allocating registers, this should be taken into account). A load constant instruction Ide is used to load
register A; the floating point entry instruction fpentry then uses this value to select the floating point operation.
This pair of instructions is termed a selector sequence.

Names of operations which use fpentry begin with fpu. A typical usage, returning the absolute value of a
floating point number, would be

Ide fpuabs; fpentry;

Since the indirection code for fpuabs is DB, it would be encoded as

Table 5.1 fpentry coding

Function Memory
Mnemonic code code

Ide fpuabs #4 #48

fpentry (op. code #A8) #2AF8
is coded as

pfix #A #2 #2A
apr #8 #F #F8

70 4 IMS Ta05 engineering data

The remainder and square root instructions take considerably longer than other instructions to complete. In
order to minimise the interrupt latency period of the transputer they are split up to form instruction sequences.
As an example, the instruction sequence for a single length square root is

fpusqrtfirst; fpusqrtstep; fpusqrtstep; fpusqrtlast;

The FPU has its own error flag FP_Error. This reflects the state of evaluation within the FPU and is set in
circumstances where invalid operations, division by zero or overflow exceptions to the ANSI-I EEE 754-1985
standard would be flagged (page 61). FP_Error is also set if an input to a floating point operation is infinite
or is not a number (NaN). The FP_Errorfiag can be set, tested and cleared without affecting the main Error
flag, but can also set Errorwhen required (page 61). Depending on how a program is compiled, it is possible
for both unchecked and fully checked floating point arithmetic to be performed.

Further details on the operation of the FPU can be found in Transputer Instruction Set - A Compiler Writers'
Guide.

Table 5.2 Typical floating point operation times for IMS T805

Ta05-20 Ta05·30
Operation Single length Double length Single length Double length

add 350 ns 350 ns 233 ns 233 ns
subtract 350 ns 350 ns 233 ns 233 ns
multiply 550 ns 1000 ns 367 ns 667 ns
divide 850 ns 1600 ns 567 ns 1067 ns

Timing is for operations where both operands are normalised fp numbers.

71

6 System services

System services include all the necessary logic to initialise and sustain operation of the device. They also
include error handling and analysis facilities.

6.1 Power

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power­
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive
periods of latch up.

6.2 CapPlus, Cap Minus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1 f.LF
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an
impedance less than 3 Ohms between 100 KHz and 10 MHz. If a polarised capacitor is used the negative
terminal should be connected to CapMinus. Total PCB track length should be less than 50 mm. The
connections must not touch power supplies or other noise sources.

CapPlus P.C.B. track

CapMinus P.C.B. track

Figure 6.1 Recommended PLL decoupling

6.3 Clockln

Decoupling
capacitor

1f.LF

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input.
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer devices may be connected to a common clock, or may have individual clocks providing
each one meets the specified stability criteria. In a multi-clock system the relative phasing of Clockln clocks
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the
specified limits of Clockln pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.

72 4 IMS TaOS engineering data

Table 6.1 Input clock

SYMBOL PARAMETER MIN NOM
TOCLDCH Clockln pulse width low 40
TOCHDCL Clockln pulse width high 40
TOCLDCL Clockln period
TDCerror Clockln timing error
TOC1DC2 Difference in Clockln for 2 linked devices
TDCr Clockln rise time
TDCf Clockln fall time

Notes

These parameters are not tested.

2 Measured between corresponding points on consecutive falling edges.

3 Variation of individual falling edges from their nominal times.

200

MAX UNITS
ns
ns
ns

±0.5 ns
400 ppm
10 ns
a ns

4 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

S Clock transitions must be monotonic within the range VIH to VIL (table 11.3).

TDCerror

2.0v- --
1.5vO.8v= = = = -

TDCerror

"'H~~_../

TDCLDCH TDCHDCL

TDCLDCL

90% K-n
10%---- -

TOCf

_nnA
10% - - - --

TDCr

Figure 6.2 Clockln timing

6.4 ProcSpeedSelectO·2

NOTE
1
1

1,2,4
1,3
1,4
1,5
1,5

Processor speed of the IMS Ta05 is variable in discrete steps. The desired speed can be selected, up to the
maximum rated for a particular component, by the three speed select lines ProcSpeedSelectO·2. The pins
are tied high or low, according to the table below, for the various speeds. The pins are arranged so that the
IMS Ta05 can be plugged directly into a board designed for aiMS T425.

Only six of the possible speed select combinations are currently used; the other two are not valid speed
selectors. The frequency of Clockln for the speeds given in the table is 5 MHz.

6 System services 73

Table 6.2 Processor speed selection

Proc Proc Proc Processor Processor
Speed Speed Speed Clock Cycle
Select2 Select1 SelectO Speed MHz Time ns Notes

0 0 0 20.0 SO.O
0 0 1 22_5 44.4
0 1 0 2S.0 40.0
0 1 1 30.0 33.3
1 0 0 3S.0 28.6
1 0 1 Invalid
1 1 0 17.S S7.1
1 1 1 Invalid

Note: Inclusion of a speed selection in this table does not imply immediate availability.

6.5 Reset

Reset can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. After VCC is
valid Clockln should be running for a minimum period TDCVRL before the end of Reset. The falling edge of
Reset initialises the transputer, triggers the memory configuration sequence and starts the bootstrap routine.
Link outputs are forced low during reset; link inputs and EventReq should be held low. Memory request
(DMA) must not occur whilst Reset is high but can occur before bootstrap (page 94).

After the end of Reset there will be a delay of 144 periods of Clockln (figure 6.3). Following this, the
MemWrDO, MemRfD1 and MemAD2-31 pins will be scanned to check for the existence of a pre-programmed
memory interface configuration (page 96). This lasts for a further 144 periods of Clockln. Regardless of
whether a configuration was found, 36 configuration read cycles will then be performed on external memory
using the default memory configuration (page 98), in an attempt to access the external configuration ROM.
A delay will then occur, its period depending on the actual configuration. Finally eight complete and con­
secutive refresh cycles will initialise any dynamic RAM, using the new memory configuration. If the memory
configuration does not enable refresh of dynamic RAM the refresh cycles will be replaced by an equivalent
delay with no external memory activity.

If BootFromRom is high bootstrapping will then take place immediately, using data from external memory;
otherwise the transputer will await an input from any link. The processor will be in the low priority state.

Reset ~L __ _

Action
Internal External

configuration configuration

~I
Delay Delay Refresh Boot

Figure 6.3 IMS T80S post-reset sequence

6.6 Bootstrap

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, Boot­
FromRom may be dynamically changed but must obey the specified timing restrictions. It is sampled once
only by the transputer, before the first instruction is executed after Reset is taken low.

If BootFromRom is connected high (e.g. to VCC) the transputer starts to execute code from the top two bytes
in external memory, at address #7FFFFFFE. This location should contain a backward jump to a program in

74 4 IMS TaOS engineering data

ROM. Following this access, BootFromRom may be taken low if required. The processor is in the low priority
state, and the W register points to MemStart (page 77).

Table 6.3 Reset and Analyse

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high a Clockln 1
TDCVRL Clockln running before Reset end 10 ms 2
TAHRH Analyse setup before Reset 3 ms
TRLAL Analyse hold after Reset end 1 Clockln 1
TBRVRL BootFromRom setup 0 ms
TRLBRX BootFromRom hold after Reset 0 ms 3
TALBRX BootFromRom hold after Analyse 3

Notes

1 Full periods of Clockln TDCLDCL required.

2 At power-on reset.

3 Must be stable until after end of bootstrap period. See Bootstrap section.

Clockln

VCC

TPVRH

Reset
TBRVRL TRLBRX

BootFromRom

Figure 6.4 Transputer reset timing with Analyse low

TRHRL

Reset

TAHRH

Analyse

BootFromRom

Figure 6.5 Transputer reset and analyse timing

6 System services 75

If BootFromRom is connected low (e.g. to GND) the transputer will wait for the first bootstrap message to
arrive on anyone of its links. The transputer is ready to receive the first byte on a link within two processor
cycles TPCLPCL after Reset goes low.

If the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following
reception of the last byte the transputer will start executing code at MemStart as a low priority process.
BootFromRom may be taken high after reception of the last byte, if required. The memory space immediately
above the loaded code is used as work space. Messages arriving on other links after the control byte has
been received and on the bootstrapping link after the last bootstrap byte will be retained until a process inputs
from them.

6.7 Peek and poke

Any location in internal or external memory can be interrogated and altered when the transputer is waiting
for a bootstrap from link. If the control byte is 0 then eight more bytes are expected on the same link. The
first four byte word is taken as an internal or external memory address at which to poke (write) the second
four byte word. If the control byte is 1 the next four bytes are used as the address from which to peek (read)
a word of data; the word is sent down the output channel of the same link.

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses
may be made in this way until the control byte is greater than 1, when the transputer will commence reading
its bootstrap program. Any link can be used, but addreSses and data must be transmitted via the same link
as the control byte.

6.8 Analyse

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling
point (page 60). From Analyse being asserted, the processor will halt within three time slice periods plus
the time taken for any high priority process to complete. As much of the transputer status is maintained as is
necessary to permit analysis of the halted machine. Processor flags Error, HaltOnError and EnableJOBreak
are normally cleared at reset on the IMS T805; however, if Analyse is asserted the flags are not altered.
Memory refresh continues.

Input links will continue with outstanding transfers. Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link
acknowledgement, the links should be inactive within a few microseconds of the transputer halting.

Reset should not be asserted before the transputer has halted and link transfers have ceased. When Reset
is taken low whilst Analyse is high, neither the memory configuration sequence nor the block of eight refresh
cycles will occur; the previous memory configuration will be used for any external memory accesses. If
BootFromRom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a
control byte on any link. If Analyse is taken low without Reset going high the transputer state and operation
are undefined. After the end of a valid Analyse sequence the registers have the values given in table 6.4.

Table 6.4 Register values after Analyse

MemStart if bootstrapping from a link, or the external memory bootstrap address if
bootstrapping from ROM.

W MemStart if bootstrapping from ROM, or the address of the first free word after the
bootstrap program if bootstrapping from link.

A The value of I when the processor halted.

B The value of Wwhen the processor halted, together with the priority of the process
when the transputer was halted (i.e. the Wdescriptor).

C The ID of the bootstrapping link if bootstrapping from link.

76 4 IMS T80S engineering data

6.9 Error" Errorln

The Error pin carries the OR'ed output of the internal Error flag and the Errorln input. If Error is high
it indicates either that Errorln is high or that an error was detected in one of the processes. An internal
error can be caused, for example, by arithmetic overflow, divide by zero, array bounds violation or software
setting the flag directly (page 61). It can also be set from the floating point unit under certain circumstances
(page 61, 69). Once set, the Error flag is only cleared by executing the instruction testerr. The error is not
cleared by processor reset, in order that analysis can identify any errant transputer (page 75).

A process can be programmed to stop if the Error flag is set; it cannot then transmit erroneous data to other
processes, but processes which do not require that data can still be scheduled. Eventually all processes
which rely, directly or indirectly, on data from the process in error will stop through lack of data. Errorln does
not directly affect the status of a processor in any way.

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error
becomes set after HaltOnErrorhas been set, all processes on that transputer will cease but will not necessarily
cause other transputers in a network to halt. Setting HaltOnError after Error will not cause the transputer to
halt; this allows the processor reset and analyse facilities to function with the flags in indeterminate states.

An alternative method of error handling is to have the errant process or transputer cause all transputers
to halt. This can be done by 'daisy-chaining' the Errorln and Error pins of a number of processors and
applying the final Error output signal to the EventReq pin of a suitably programmed master transputer. Since
the process state is preserved when stopped by an error, the master transputer can then use the analyse
function to debug the fault. When using such a circuit, note that the Errorflag is in an indeterminate state on
power up; the circuit and software should be designed with this in mind.

Error checks can be removed completely to optimise the performance of a proven program; any unexpected
error then occurring will have an arbitrary undefined effect.

If a high priority process pre-empts a low priority one, status of the Error and HaltOnError flags is saved for
the duration of the high priority process and restored at the conclusion of it. Status of both flags is transmitted
to the high priority process. Either flag can be altered in the process without upsetting the error status of any
complex operation being carried out by the pre-empted low priority process.

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access to
memory for data. Memory refresh will continue to take place.

After halting due to the Error flag changing from 0 to 1 whilst HaltOnError is set, register I pOints two bytes
past the instruction which set Error. After halting due to the Analyse pin being taken high, register I pOints
one byte past the instruction being executed. In both cases I will be copied to register A.

Master
Transputer

Event
T805

slave 0
GND Errorln Error

(transputer links not shown)

T805
slave 1

T805
slave n

Errorln Error ... Errorln Error

Figure 6.6 Error handling in a multi-transputer system

77

7 Memory

The IMS T805 has 4 Kbytes of fast internal static memory for high rates of data throughput. Each inter­
nal memory access takes one processor cycle ProcClockOut (page 82). The transputer can also access
4 Gbytes of external memory space. Internal and external memory are part of the same linear address space.
Internal RAM can be disabled by holding DisablelntRAM high. All internal addresses are then mapped to
external RAM. This pin should not be altered after Reset has been taken low.

IMS T805 memory is byte addressed, with words aligned on four-byte boundaries. The least significant byte
of a word is the lowest addressed byte.

The bits in a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered O. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Internal memory starts at the most negative address #80000000 and extends to #80000FFF. User memory
begins at #80000070; this location is given the name MemStart. An instruction Idmemstartval is provided to
obtain the value of MemStart.

The context of a process in the transputer model involves a workspace descriptor (WPtr) and an instruction
pointer (IPtr). WPtr is a word address pOinter to a workspace in memory. IPtr points to the next instruction to
be executed for the process which is the currently executing process. The context switch performed by the
breakpoint instruction swaps the WPtr and IPtr of the currently executing process with the WPtr and IPtr held
above MemStart. Two contexts are held above MemStart, one for high priority and one for low priority; this
allows processes at both levels to have breakpoints. Note that on bootstrapping from a link, these contexts
are overwritten by the loaded code. If this is not acceptable, the values should be peeked from memory
before bootstrapping from a link.

The reserved area of internal memory below MemStart is used to implement link and event channels.

Two words of memory are reserved for timer use, TPtrLocO for high priority processes and TPtrLoc1 for low
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on
the timer queue at that priority level.

Values of certain processor registers for the current low priority process are saved in the reserved IntSaveLoc
locations when a high priority process pre-empts a low priority one. Other locations are reserved for extended
features such as block moves and floating point operations.

External memory space starts at #80001000 and extends up through #00000000 to #7FFFFFFF. Memory
configuration data and ROM bootstrapping code must be in the most positive address space, starting at
#7FFFFF6C and #7FFFFFFE respectively. Address space immediately below thiS IS conventionally used for
ROM based code.

78 4 IMS T80S engineering data

,-h_i _M_a_ch_i-rn_e_m_a p_-----,Io Byte address Word offsets ,....-__ o_c_c_a_m_m_a....:.p_---,

1 Reset Inst I _I ##07FFFFFFE I
- - #7FFFFFF8

Memory configuration #7FFFFF6C
~------------~

f-----------ll #80001000 - Start of external memory - #0400 11-_______ --1
- #80000070 MemStart MemStart #1 C -

Reserved for #8000006C
Extended functions #80000048

EreglntSaveLoc #80000044

STATUSI ntSaveLoc #80000040

CreglntSaveLoc #8000003C
BreglntSaveLoc #80000038

Areg IntSaveLoc #80000034

IpfrlntSaveLoc #80000030

WdesclntSaveLoc #8000002C
TPtrLoc1
TPtrLocO

#80000028
Note 1

#80000024
Event #80000020 #08 Event

Link 3 Input #8000001C #07 Link 3 Input
Link 2 Input #80000018 #06 Link 2 Input
Link 1 Input #80000014 #05 Link 1 Input
Link 0 Input #80000010 #04 Link 0 Input

Link 3 Output #8000000C #03 Link 3 Output
Link 2 Output #80000008 #02 Link 2 Output
Link 1 Output #80000004 #01 Link 1 Output
Link 0 Output #80000000 (Base of memory) #00 Link 0 Output

Figure 7.1 IMS T805 memory map

79

8 External memory interface

The External Memory Interface (EMI) allows access to a 32 bit address space, supporting dynamic and static
RAM as well as ROM and EPROM. EMI timing can be configured at Reset to cater for most memory types
and speeds, and a program is supplied with the Transputer Development System to aid in this configuration.

There are 17 internal configurations which can be selected by a single pin connection (page 96). If none are
suitable the user can configure the interface to specific requirements, as shown in page 98.

The timing parameters in the following tables are based on 17 MHz and 20 MHz parts. Data for higher speeds
is based on tests on a limited number of samples and may change when full characterisation is completed.

The external memory cycle is divided into six Tstates with the following functions:

T1 Address setup time before address valid strobe.

T2 Address hold time after address valid strobe.

T3 Read cycle tristate or write cycle data setup.

T4 Extendable data setup time.

T5 Read or write data.

T6 Data hold.

Under normal conditions each Tstate may be from one to four periods Tm long, the duration being set during
memory configuration. The default condition on Reset is that all Tstates are the maximum four periods Tm
long to allow external initialisation cycles to read slow ROM.

Period T4 can be extended indefinitely by adding externally generated wait states.

An external memory cycle is always an even number of periods Tm in length and the start of T1 always
coincides with a rising edge of ProcClockOut. If the total configured quantity of periods Tm is an odd
number, one extra period Tm will be added at the end of T6 to force the start of the next T1 to coincide with
a rising edge of ProcClockOut. This period is designated E in configuration diagrams (figure 8.19).

During an internal memory access cycle the external memory interface bus MemAD2·31 reflects the word
address used to access internal RAM, MemnotWrDO reflects the read/write operation and MemnotRfD1 is
high; all control strobes are inactive. This is true unless and until a memory refresh cycle or DMA (memory
request) activity takes place, when the bus will carry the appropriate external address or data.

The bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for
hardware debugging in conjuction with peek and poke (page 75).

ProcClockOut

MemnotWrDO :=A Write / Read Read "<
MemnotRfD1 J "<
MemAD2-31 =>< Address X Address X Address X

Figure 8.1 IMS T80S bus activity for internal memory cycle

80 4 IMS T80S engineering data

8.1 Pin functions

8.1.1 MemAD2-31

External memory addresses and data are multiplexed on one bus. Only the top 30 bits of address are output
on the external memory interface, using pins MemAD2-31. They are normally output only during Tstates T1
and T2, and should be latched during this time. The data bus is 32 bits wide. It uses MemAD2-31 for the
top 30 bits and MemnotRfD1 and MemnotWrDO for the lower two bits.

8.1.2 notMemRd

For a read cycle the read strobe notMemRd is low during T4 and TS. Data is read by the transputer on the
rising edge of this strobe, and may be removed immediately afterward. If the strobe duration is insufficient it
may be extended by adding extra periods Tm to either or both of the Tstates T4 and TS. Further extension
may be obtained by inserting wait states at the end of T4.

8.1.3 MemnotWrDO

During T1 ahd T2 this pin will be low if the cycle is a write cycle, otherwise it will be high. During Tstates T3
to T6 it becomes bit 0 of the data bus. In both cases it follows the general timing of MemAD2-31.

8.1.4 notMemWrBO-3

Because the transputer uses word addressing, four write strobes are provided; one to write each byte of the
word. notMemWrBO addresses the least significant byte.

8.1.S notMemSO-4

To facilitate control of different types of memory and devices, the EMI is provided with five strobe outputs,
four of which can be configured by the user. The strobes are conventionally assigned the functions shown in
the read and write cycle diagrams, although there is no compulsion to retain these designations.

8.1.6 MemWait

Wait states can be selected by taking MemWait high. Externally generated wait states can be added to
extend the duration of T4 indefinitely.

8.1.7 MemnotRfD1

Dunng T1 and T2, this pin is low if the address on MemAD2-31 is a refresh address, otherwise it is high.
During Tstates T3 to T6 it becomes bit 1 of the data bus. In both cases it follows the general timing of
MemAD2-31.

8.1.8 notMemRf

The IMS T80S can be operated with memory refresh enabled or disabled. The selection is made during
memory configuration, when the refresh interval is also determined.

8.1.9 RefreshPending

When high, this pin signals that a refresh cycle is pending.

8 External memory interface

Clockln
(5 MHz)

LinkOln

LinkOOut

Link11n
Link10ut

Link21n
Link20ut

Link31n
Link30ut

100K1
GND

..--.
56R

As LinkO

~

56R

=l As Link2

M emConfig

L/')

0
<I:
E
CIl
:E

I

CC ~~ CapPlus V J; -.t III!I. I.JII' III CapMinus GND ~ :r 11111• 111:11. ~

r- notMemWrB3 - I I
K*4

I- notMemWrB2 ~mic
K*4 I- notMemWrB1
~mic

IMS r- notMemWrBO
256K*4 z-----:

I- notMemRd notOE-TBOS Dynamic I- notMemS3 notCAS-
I-notMemS2- RAM rz-
r- notMemS1 notRAS-

f- "otMemS. l i" ~
Column ~ Row/Column
address address

latch r multiplexor
L .:>. L. ;:>. .z; ;:>.

8'-"" C1> 0 M

I 0 00 L/') C)I ... OM ,.... ::-1 1 ;:-1 I to
... $N NSN co
00 0 0 0 00 0 0 0
c:c:<I: <I: <I: c:c:<I: <I: <I:
EEE E E EEE E E
CIlCllCll CIl CIl CIlCllCll CIl CIl

":E:E:E,,,
"

:E", , :E 7 ,:E:E:E", ,:E"":E,,,

Figure 8.2 IMS T805 dynamic RAM application

8.1.10 MemReq, MemGranted

81

K*4
~mic
M
V-

....
M

J
N
0
<I:
E
CIl
:E

Direct memory access (DMA) can be requested at any time by driving the asynchronous MemReq input high.

MemGranted follows the timing of the bus being tristated and can be used to signal to the device requesting
the DMA that it has control of the bus. Note that MemGranted changes on the falling edge of ProcClockOut
and can therefore be sampled to establish control of the bus on the rising edge of ProcClockOut.

8.1.11 MemConfig

MemConfig is an input pin used to read configuration data when setting external memory interface (EMI)
characteristics.

82 4 IMS T80S engineering data

8.1.12 ProcClockOut

This clock is derived from the internal processor clock, which is in turn derived from Clockln. Its period is
equal to one internal microcode cycle time, and can be derived from the formula

TPCLPCL = TDCLDCL / PLLx

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the Clockln Period and PLLx is the phase
lock loop factor for the relevant speed part, obtained from the ordering details (Ordering section).

The time value Tm is used to define the duration of Tstates and, hence, the length of external memory cycles;
its value is exactly half the period of one ProcClockOut cycle (0.5* TPCLPCL), regardless of mark/space
ratio of ProcClockOut.

Edges of the various external memory strobes coincide with rising or falling edges of ProcClockOut. It should
be noted, however, that there is a skew associated with each coincidence. The value of skew depends on
whether coincidence occurs when the ProcClockOut edge and strobe edge are both rising, when both are
falling or if either is rising when the other is falling. Timing values given in the strobe tables show the best
and worst cases. If a more accurate timing relationship is required, the exact Tstate timing and strobe edge
to ProcClockOut relationships should be calculated and the correct skew factors applied from the edge skew
timing table 8.4.

Table 8.1 ProcClockOut

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCLPCL ProcClockOut period a-2 a a+2 ns 1,5
TPCHPCL ProcClockOut pulse width high b-11.5 b b+3.5 ns 2,5
TPCLPCH ProcClockOut pulse width low c ns 3,5
Tm ProcClockOut half cycle b-1 b b+1 ns 2,5
TPCstab ProcClockOut stability 8 % 4,5

Notes

a is TDCLDCUPLLx.

2 b is 0.5. TPCLPCL (half the processor clock period).

3 c is TPCLPCL-TPCHPCL.

4 Stability is the variation 01 cycle periods between two consecutive cycles, measured at corresponding points on
the cycles.

5 This parameter is sampled and not 100% tested.

1.5v - - - - -

" ~P~L;C~ { ~P~H;"~ - ~

TPCLPCL

Figure 8.3 IMS T805 ProcClockOut timing

8 External memory interface 83

8.2 Read cycle

Byte addressing is carried out internally by the transputer for read cycles. For a read cycle the read strobe
notMemRd is low during T4 and T5. Read cycle data may be set up on the data bus at any time after the
start of T3, but must be valid when the transputer reads it at the end of T5. Data may be removed any time
during T6, but must be off the bus no later than the end of that period.

notMemSO is a fixed format strobe. Its leading edge is always coincident with the start of T2 and its trailing
edge always coincident with the end of T5.

The leading edge of notMemS1 is always coincident with the start of T2, but its duration may be configured
to be from zero to 31 periods Tm. Regardless of the configured duration, the strobe will terminate no later
than the end of T6. The strobe is sometimes programmed to extend beyond the normal end of Tmx. When
wait states are inserted into an EMI cycle the end of Tmx is delayed, but the potential active duration of the
strobe is not altered. Thus the strobe can be configured to terminate relatively early under certain conditions
(page 89). If notMemS1 is configured to be zero it will never go low.

notMemS2, notMemS3 and notMemS4 are identical in operation. They all terminate at the end of T5, but
the start of each can be delayed from one to 31 periods Tm beyond the start of T2. If the duration of one of
these strobes would take it past the end of T5 it will stay high. This can be used to cause a strobe to become
active only when wait states are inserted. If one of these strobes is configured to zero it will never go low.
Figure 8.6 shows the effect of Wait on strobes in more detail; each division on the scale is one period Tm.

In the read cycle timing diagrams ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm.

Table 8.2 Read

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TaZdV Address tristate to data valid 0 ns
TdVRdH Data setup before read 25 ns
TRdHdX Data hold after read 0 ns
TSOLRdL notMemSO before start of read a-4 a 8+4 ns 1
TSOHRdH End of read from end of notMemSO -4 4 ns
TRdLRdH Read period b-3 b+5 ns 2

Notes

a is total of T2+ T3 where T2, T3 can be from one to four periods Tm each in length.

2 b is total of T4+ Twait+ TS where T4, TS can be from one to four periods Tm each in length and Twalt may be
any number of periods Tm in length.

84

Tstate I T1 T2 T3

ProcClockOut
Tmx

MemnotWrDO

MemnotRfD1

MemAD2-31 Address

TaVSOL

notMemRd

T4

TSOLSOH

notMemSO
(CE)

TSOLS1L CD
TSOLS1H ®

notMemS1
(ALE)

4 IMS Taos engineering data

T5 T6 T1

Figure 8.4 IMS T80S external read cycle: static memory

8 External memory interface

Table 8.3 IMS T805 strobe timing

SYMBOL en) PARAMETER
TaVSOL Address setup before notMemSO
TSOLaX Address hold after notMemSO
TSOLSOH notMemSO pulse width low
TSOLS1L 1 notMemS1 from notMemSO
TSOLS1H 5 notMemS1 end from notMemSO
TSOHS1H 9 notMemS1 end from notMemSO end
TSOLS2L 2 notMemS2 delayed after notMemSO
TSOLS2H 6 notMemS2 end from notMemSO
TSOHS2H 10 notMemS2 end from notMemSO end
TSOLS3L 3 notMemS3 delayed after notMemSO
TSOLS3H 7 notMemS3 end from notMemSO
TSOHS3H 11 notMemS3 end from notMemSO end
TSOLS4L 4 notMemS4 delayed after notMemSO
TSOLS4H 8 notMemS4 end from notMemSO
TSOHS4H 12 notMemS4 end from notMemSO end
Tmx Complete external memory cycle

Notes

1 a is T1 where T1 can be from one to four periods Tm in length.

2 b is T2 where T2 can be from one to four periods Tm in length.

MIN
a-8
b-8
c-5
-4

d-1
e-8
f-6
c-5
-4
f-6
c-5
-4
f-6
c-5
-4

85

NOM MAX UNITS NOTE
ns 1

b b+8 ns 2
c+6 ns 3

4 ns
d+9 ns 4,6
e+4 ns 5,6
f+5 ns 7
c+7 ns 3

7 ns
f+5 ns 7
c+7 ns 3

7 ns
f+5 ns 7
c+7 ns 3

7 ns
g 8

3 c is total of T2+ T3+ T4+ Twalt+ T5 where T2, T3, T4, T5 can be from one to four periods Tm each in length and
Twalt may be any number of periods Tm in length.

4 d can be from zero to 31 periods Tm in length.

5 e can be from -27 to +4 periods Tm in length.

6 If the configuration would cause the strobe to remain active past the end of T6 it will go high at the end of T6.
If the strobe is configured to zero periods Tm it will remain high throughout the complete cycle Tmx.

7 f can be from zero to 31 periods Tm in length. If this length would cause the strobe to remain active past the
end of T5 it will go high at the end of T5. If the strobe value is zero periods Tm it will remain low throughout
the complete cycle Tmx.

8 9 is one complete external memory cycle comprising the total of T1+ T2+ T3+ T4+ Twait+ T5+ T6 where T1, T2,
T3, T4, T5 can be from one to four periods Tm each in length, T6 can be from one to five periods Tm in length
and Twait may be zero or any number of periods Tm in length.

86

Tstate I T1 T2 T3

ProcClockOut
Tmx

MemnotWrDO

MemnotRfD1

MemAD2-31 Address

TaVSOL

TSOLRdL

notMemRd

4 IMS T805 engineering data

T4 TS T6 T1

TRdLRdH

TSOHS2H@

TSOHS3H@

TSOHS4H@

Figure 8.5 IMS T80S external read cycle: dynamic memory

8 External memory interface 87

Tstate IT11T21 T31 T41 TsIT61T11 Tstate I T1 I T21 T31 T41 W I W I Tsl T61 T1 I

notMemS1 I I notMemS1 I I
notMemS2 notMemS2

No wait states Wait states inserted

Figure 8.6 IMS T80S effect of wait states on strobes

Table 8.4 Strobe SO to ProcClockOut skew

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCHSOH notMemSO rising from ProcClockOut rising -6 4 ns
TPCLSOH notMemSO rising from ProcClockOut falling -5 10 ns
TPCHSOL notMemSO falling from ProcClockOut rising -8 3 ns
TPCLSOL notMemSO falling from ProcClockOut falling -5 7 ns

ProcClockOut ~ ~ ~ ~

j r- TPCHSOH j r-TPCHSOL J 1-TPCLSOH J 1-TPCLSOL

NotMemSO ~ ~ ~ ~

Figure 8.7 IMS T80S skew of notMemSO to ProcClockOut

88 4 IMS T805 engineering data

8.3 Write cycle

For write cycles the relevant bytes in memory are addressed by the write strobes notMemWrBO-3. If a
particular byte is not to be written, then the corresponding data outputs are tristated.

For a write cycle pin MemnotWrDO will be low during T1 and T2. Write data is placed on the bus at the start
of T3 and removed at the end of T6. If T6 is extended to force the next cycle Tmx (page 80) to start on a
rising edge of ProcClockOut, data will be valid during this time also.

The transputer has both early and late write cycle modes. For a late write cycle the relevant write strobes
notMemWrBO-3 are low during T4 and T5; for an early write they are also low during T3. Data should be
latched into memory on the rising edge of the strobes in both cases, although it is valid until the end of T6.
If the strobe duration is insufficient, it may be extended at configuration time by adding extra periods Tm to
either or both of Tstates T4 and T5 for both early and late modes. For an early cycle they may also be added
to T3. Further extension may be obtained by inserting wait states at the end of T4. If the data hold time is
insufficient, extra periods Tm may be added to T6 to extend it.

In the write cycle timing diagram ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm. The strobe is inactive during internal memory cycles.

Table 8.S Write

SYMBOL PARAMETER MIN
TdVWrH Data setup before write d-7
TWrHdX Data hold after write a-10
TSOLWrL notMemSO before start of early write b-S

notMemSO before start of late write c-5
TSOHWrH End of write from end of notMemSO -5
TWrLWrH Early write pulse width d-4

Late write pulse width e-4

Notes

Timing is for all write strobes notMemWrBO-3.

2 a is T6 where T6 can be from one to five periods Tm in length.

3 b is T2 where T2 can be from one to four periods Tm in length.

NOM MAX
d+10
a+S
b+S
c+5

4
d+7
e+7

4 c is total of T2+ T3 where T2, T3 can be from one to four periods Tm each in length.

UNITS NOTE
ns 1,S
ns 1,2
ns 1,3
ns 1,4
ns 1
ns 1,S
ns 1,6

5 d is total of T3+ T4+ Twait+ T5 where T3, T4, T5 can be from one to four periods Tm each in length and Twait
may be zero or any number of periods Tm in length.

6 e is total of T4+ Twait+ T5 where T4, T5 can be from one to four periods Tm each in length and Twait may be
zero or any number of periods Tm in length.

8 External memory interface

Tstate I T1 T2 T3 T4

ProcClockOut
Tmx

MemnotWrDO

MemnotRfD1

MemAD2-31

notMemWrBO­
(early write)

:::>-
:::>-
:::>-

3

Data

Data

Address Data

TaVSOL TSOLaX
TdVWrH

TSOLWrL TWrLWrH

~

TS

TSOLWrL TWrLWrH

notMemWrBO­
(late write)

notMemSO
(GE)

notMemS1
(ALE)

3

-...

'\
TSOLSOH

---TSOLS1L(j)
TSOLS1H ®

T6 T1

r<
K

K
TWrHdX

-...1--TSOHWrH

-... r-TSOHS1H ®

~

Figure 8.8 IMS T80S external write cycle

8.4 Wait

89

Taking MemWait high with the timing shown (figure 8.9) will extend the duration of T4. MemWait is sampled
relative to the falling edge of ProcClockOut during a T3 period, and should not change state in this region.
By convention, notMemS4 is used to synchronize wait state insertion. If this or another strobe is used, its
delay should be such as to take the strobe Iowan even number of periods Tm after the start of T1, to coincide
with a rising edge of ProcClockOut.

MemWait may be kept high indefinitely, although if dynamic memory refresh is used it should not be kept
high long enough to interfere with refresh timing. MemWait operates normally during all cycles, including
refresh and configuration cycles. It does not affect internal memory access in any way.

If the start of T5 would coincide with a falling edge of ProcClockOut an extra wait period Tm (EW) is
generated by the EMI to force coincidence with a rising edge. Rising edge coincidence is only forced if wait
states are added, otherwise coincidence with a falling edge is permitted.

90 4 IMS T80S engineering data

Table 8.6 Memory wait

SYMBOL PARAMETER MIN
TPCLWtH Wait setup -(0.5Tm+9)
TPCLWtL Wait hold 0.5Tm+10
TWtLWtH Delay before re-assertion of Wait 2Tm

Notes

1 ProcClockOut load should not exceed 50pt.

2 If wait period exceeds refresh interval, refresh cycles will be lost.

Tstate I
ProcClockOut

MemWait

T3

NOM MAX

T6 T1

MemAD0-31 Address >-«<<<<<<<<<<<<<<<<< Data »-< Address

notMemRd ""'---------/

UNITS
ns
ns

T'~ ProcClockOut

MemWait

T'I~5
ProcClockOut

MemWait

Figure 8.9 IMS Ta05 memory wait liming

NOTE
1,2
1,2

8 External memory interface 91

8.5 Memory refresh

The RefreshPending pin is asserted high when the external memory interface is about to perform a refresh
cycle. It remains high until the refresh cycle is started by the transputer. The mimi mum time for the Re­
freshPending pin to be high is for one cycle of ProcClockOut (two periods Tm), when the EMI was not
about to perform a memory read or write. If the EMI was held in the tristate condition with MemGranted
asserted, then RefreshPending will be asserted when the refresh controller in the EMI is ready to perform
a refresh. MemReq may be re-asserted any time after the commencement of the refresh cycle. Refresh­
Pending changes state near the rising edge of ProcClockOut and can therefore be sampled by the falling
edge of ProcClockOut.

If no DMA is active then refresh will be performed following the end of the current internal or external memory
cycle. If DMA is active the transputer will wait for DMA to terminate before commencing the refresh cycle.
Unlike MemnotRfD1, RefreshPending is never tristated and can thus be interrogated by the DMA device;
the DMA cycle can then be suspended, at the discretion of the DMA device, to allow refresh to take place.

The simple circuit of Figure B.1 0 will suspend DMA requests from the external logic when RefreshPending
is asserted, so that a memory refresh cycle can be performed. DMA is restored on completion of the refresh
cycle. The transputer will not perform an external memory cycle other than a refresh cycle, using this method,
until the requesting device removes its DMA request.

DMA Reauest
MemReQ I IMS Logic

I
TBOS

~ RefreshPendino
~

Figure B.10 IMS TBOS refresh with DMA

When refresh is disabled no refresh cycles occur. During the post-Reset period eight dummy refresh cycles
will occur with the appropriate timing but with no bus or strobe activity.

A refresh cycle uses the same basic external memory timing as a normal external memory cycle, except that
it starts two periods Tm before the start of T1. If a refresh cycle is due during an external memory access,
it will be delayed until the end of that external cycle. Two extra periods Tm (periods R in the diagram) will
then be inserted between the end of T6 of the external memory cycle and the start of T1 of the refresh cycle
itself. The refresh address and various external strobes become active approximately one period Tm before
T1. Bus signals are active until the end of T2, whilst notMemRf remains active until the end of T6.

For a refresh cycle, MemnotRfD1 goes low before notMemRf goes low and MemnotWrDO goes high with
the same timing as MemnotRfD1. All the address lines share the same timing, but only MemAD2-11 give
the refresh address. MemAD12-30 stay high during the address period, whilst MemAD31 remains low.
Refresh cycles generate strobes notMemSO-4 with timing as for a normal external cycle, but notMemRd and
notMemWrBO-3 remain high. MemWait operates normally during refresh cycles.

Refresh cycles do not interrupt internal memory accesses, although the internal addresses cannot be reflected
on the external bus during refresh.

92 4 IMS Ta05 engineering data

Table B.7 Memory refresh

SYMBOL PARAMETER MIN NOM MAX UNITS
TRfLRfH Refresh pulse width low a-2 8+9 ns
TRaVSOL Refresh address setup before notMemSO b-12 ns
TRfLSOL Refresh indicator setup before notMemSO b-4 b b+6 ns

Notes

1 a is total Tmx+ Tm.

2 b is total T1+ Tm where T1 can be from one to four periods Tm in length.

Tstate I T4 I T5 I T6 I T1 I T2 I T3 I T4 I T5 I T6 I T1 I
normal cycle -~X~-------X Address X
MemAD2-31 - Data

Tstate I T6 I R R I T1 I T2 I T3 I T 4 I T5 I T6 I T1 I
MemAD2-11 ==><=:) Refresh address

notMemSO ~ TRaVSO~
TRfLSOL J TRfLRfH

notMemRf

MemnotWrDO

MemnotRfD1

MemAD12-30

MemAD31

Figure 8.11 IMS TB05 refresh cycle timing

NOTE
1

2

8 External memory interface

ProcClockOut

notMemSO

MemReq

MemGranted

RefreshPending _---L..Z ___ ---'Z
notMemRf

93

I R I R I T1 I

\\\\\

\'--------
\'----

\'-----
MemAD2-11 ___________________ ~Refresh Address

Figure 8.12 IMS T80S RefreshPending timing

94 4 IMS T805 engineering data

8.S Direct memory access

Direct memory access (DMA) can be requested at any time by taking the asynchronous MemReq input high.
The transputer samples MemReq during the final period Tm of TS of both refresh and external memory
cycles. To guarantee taking over the bus immediately following either, MemReq must be set up at least two
periods Tm before the end of TS. In the absence of an external memory cycle, MemReq is sampled during
every low period of ProcClockOut. The address bus is tristated two periods Tm after the ProcClockOut
rising edge which follows the sample. MemGranted is asserted one period Tm after that.

Removal of MemReq is sampled during each low period of ProcClockOut and MemGranted is removed
synchronously with the next falling edge of ProcClockOut. If accurate timing of DMA is required, MemReq
should be set low coincident with a falling edge of ProcClockOut. Further external bus activity, either refresh,
external cycles or reflection of internal cycles, will commence at the next rising edge of ProcClockOut.

Strobes are left in their inactive states during DMA. DMA cannot interrupt a refresh or external memory cycle,
and outstanding refresh cycles will occur before the bus is released to DMA. DMA does not interfere with
internal memory cycles in any way, although a program running in internal memory would have to wait for
the end of DMA before acceSSing external memory. DMA cannot access internal memory. If DMA extends
longer than one refresh interval (Memory Refresh Configuration Coding, table 8.11), the DMA user becomes
responsible for refresh. DMA may also inhibit an internally running program from accessing external memory.

DMA allows a bootstrap program to be loaded into external RAM ready for execution after reset. If MemReq is
held high throughout reset, MemGranted will be asserted before the bootstrap sequence begins. MemReq
must be high at least one period TDCLDCL of Clockln before Reset. The circuit should be designed to
ensure correct operation if Reset could interrupt a normal DMA cycle.

Table 8.8 Memory request

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TMRHMGH Memory request response time 4Tm-2ns 7Tm+7ns
TMRLMGL Memory request end response time 2Tm-2ns STm+22ns
TADZMGH Bus tristate before memory granted Tm-2ns Tm+22ns
TMGLADV Bus active after end of memory granted -10ns Tm+2ns

Notes

These values assume no external memory cycle is in progress. If an external cycle is active, maximum time
could be (1 EMI cycle Tmx)+(1 refresh cycle TRfLRfH)+(6 periods Tm).

ProcClockOut

MemReq

MemGranted

MemnotWrDO
MemnotRfD1
MemAD2-31

TMRHMGH TMRLMGL

TMGLADV

Figure 8.13 IMS T80S memory request timing

1

8 External memory interface

MemReq

MemGranted

Reset

Configuration
sequence

D Pre- and post-configuration delays (figure 6.3)
I Internal configuration sequence
E External configuration sequence
R Initial refresh sequence
B Bootstrap sequence

Figure 8.14 IMS TB05 DMA sequence at reset

MemReq /////// "'~-----
External Memory-u Read or Write H Refresh
Interface cycles ----.n .. I Read or Write r-c=
MemGranted / "'~---
MemnotRfD1 -----------~~~/~------------~<~-----------
MemnotWrDO
MemAD2-31 -------------~)~----------~<~---------

Figure B.15 IMS TB05 operation of MemReq, MemGranted with external, refresh memory cycles

Figure 8.16 IMS T805 operation of MemReq, MemGranted with external, internal memory cycles

95

96 4 IMS T805 engineering data

8.7 Memory configuration

MemConfig is an input pin used to read configuration data when setting external memory interface (EMI)
characteristics. It is read by the processor on two occasions after Reset goes low; first to check if one of the
preset internal configurations is required, then to determine a possible external configuration.

8.7.1 Internal configuration

The internal configuration scan comprises 64 periods TDCLDCL of Clockln during the internal scan period
of 144 Clockln periods. MemnotWrDO, MemnotRfD1 and MemAD2-32 are all high at the beginning of the
scan. Starting with MemnotWrDO, each of these lines goes low successively at intervals of two Clockln
periods and stays low until the end of the scan. If one of these lines is connected to MemConfig the preset
internal configuration mode associated with that line will be used as the EMI configuration. The default
configuration is that defined in the table for MemAD31; connecting MemConfig to VCC will also produce
this default configuration. Note that only 17 of the possible configurations are valid, all others remain at the
default configuration.

Table 8.9 IMS T805 internal configuration coding

Duration of each Tstate Strobe Write Refresh Cycle
periods Tm coefficient cycle interval time

Clockln Proc
Pin T1 T2 T3 T4 T5 T6 s1 s2 s3 s4 type cycles cycles

MemnotWrDO 1 1 1 1 1 1 30 1 3 5 late 72 3
MemnotRfD1 1 2 1 1 1 2 30 1 2 7 late 72 4
MemAD2 1 2 1 1 2 3 30 1 2 7 late 72 5
MemAD3 2 3 1 1 2 3 30 1 3 8 late 72 6
MemAD4 1 1 1 1 1 1 3 1 2 3 early 72 3
MemAD5 1 1 2 1 2 1 5 1 2 3 early 72 4
MemAD6 2 1 2 1 3 1 6 1 2 3 early 72 5
MemAD7 2 2 2 1 3 2 7 1 3 4 early 72 6
MemAD8 1 1 1 1 1 1 30 1 2 3 early t 3
MemAD9 1 1 2 1 2 1 30 2 5 9 early t 4
MemAD10 2 2 2 2 4 2 30 2 3 8 late 72 7
MemAD11 3 3 3 3 3 3 30 2 4 13 late 72 9
MemAD12 1 1 2 1 2 1 4 1 2 3 early 72 4
MemAD13 2 1 2 1 2 2 5 1 2 3 early 72 5
MemAD14 2 2 2 1 3 2 6 1 3 4 early 72 6
MemAD15 2 1 2 3 3 3 8 1 2 3 early 72 7
MemAD31 4 4 4 4 4 4 31 30 30 18 late 72 12

t Provided for static RAM only.

8 External memory interface

Tstate 11 121314151611 121314151611 12

notMemSO

notMemS1 !
nmMemS2 i~1~=--;=-~~--~

i
notMemS3 ! 3

-+i----~-------------notMemS4 _ f-- __ !L ________ _
notMemRd

MemConfig=MemnotWrDO

Tstate 11 11 12 12 12131415 1 516 1 6 1 611 12

notMemSOj I
notMemS1 j 30 I
notMemS2 _-m_i-i 1~;::::~----'r ___ _

notMemS3 _---l-i -=3~--=:::;:==-__ _
notMemS4 __ L ___ 13 ______ _

MemConfig=MemAD3

Tstate 11 1212131415161611 12 1 2131415

notMemSO I 11'-__ _
notMemS1 I 30 n
notMemS2 -tn

~~~-----=:::;----
notMemS3 ! 2 

-+i----~------------notMemS4 _ f-- __ ~ ________ _ 

MemConfig=MemnotRfD1 

Tstate 11 11 12 I 213 131415 I 5 1 516 I 611 11 

notMemSOj I 
notMemS1j 7 

notMemS2 -Tn I 
notMemS3 ----l-!:.I :..:;3=::::;-------"1---

notMemS4 4 L-J 
notMemRd L--.Jr---
notMemWr early 

MemConfig=MemAD7 

Figure S.17 IMS TS05 internal configuration 

97 



98 

Delay 

MemnotWrDO 

MemnotRfD1 

MemAD2 

MemAD3 

t 
MemAD31 

MemConfig G) 
MemConfig ® 

4 IMS T805 engineering data 

Internal configuration External configuration 

Periods of Clockln 16 periods Read at : Read at : 
56 6i6 of Clockln 7FFFFF6Ci7FFFFF70i 

802!4 

CD Internal configuration: MemConfig connected to MemAD2 
® External configuration: MemConfig connected to inverse of MemAD3 

Figure 8.18 IMS T805 internal configuration scan 

8.7.2 External configuration 

If MemConfig is held low until MemnotWrDO goes low the internal configuration is ignored and an external 
configuration will be loaded instead. An external configuration scan always follows an internal one, but if an 
internal configuration occurs any external configuration is ignored. 

The external configuration scan comprises 36 successive external read cycles, using the default EMI con­
figuration preset by MemAD31. However, instead of data being read on the data bus as for a normal read 
cycle, only a single bit of data is read on MemConfig at each cycle. Addresses put out on the bus for each 
read cycle are shown in table 8.10, and are designed to address ROM at the top of the memory map. The 
table shows the data to be held in ROM; data required at the MemConfig pin is the inverse of this. 

MemConfig is typically connected via an inverter to MemnotWrDO. Data bit zero of the least significant byte 
of each ROM word then provides the configuration data stream. By switching MemConfig between various 
data bus lines up to 32 configurations can be stored in ROM, one per bit of the data bus. MemConfig can be 
permanently connected to a data line or to GND. Connecting MemConfig to GND gives all Tstates configured 
to four periods; notMemS1 pulse of maximum duration; notMemS2·4 delayed by maximum; refresh interval 
72 periods of Clockln; refresh enabled; late write. 

The external memory configuration table 8.10 shows the contribution of each memory address to the 13 con­
figuration fields. The lowest 12 words (#7FFFFF6C to #7FFFFF98, fields 1 to 6) define the number of extra 
periods Tm to be added to each Tstate. If field 2 is 3 then three extra periods will be added to T2 to extend 
it to the maximum of four periods. 

The next five addresses (field 7) define the duration of notMemS1 and the following fifteen (fields 8 to 10) 
define the delays before strobes notMemS2·4 become active. The five bits allocated to each strobe allow 
durations of from 0 to 31 periods Tm, as described in strobes page 80. 

Addresses #7FFFFFEC to #7FFFFFF4 (fields 11 and 12) define the refresh interval and whether refresh is to 
be used, whilst the final address (field 13) supplies a high bit to MemConfig if a late write cycle is required. 

The columns to the right of the coding table show the values of each configuration bit for the four sample 



8 External memory interface 99 

external configuration diagrams. Note the inclusion of period E at the end of T6 in some diagrams. This is 
inserted to bring the start of the next Tstate T1 to coincide with a rising edge of ProcClockOut (page 82). 

Wait states W have been added to show the effect of them on strobe timing; they are not part of a configuration. 
In each case which includes wait states, two wait periods are defined. This shows that if a wait state would 
cause the start of T5 to coincide with a falling edge of ProcClockOut, another period Tm is generated by 
the EMI to force it to coincide with a rising edge of ProcClockOut. This coincidence is only necessary if wait 
states are added, otherwise COincidence with a falling edge is permitted. Any configuration memory access 
is only permitted to be extended using wait, up to a total of 14 Clockln periods. 

Tstate 1112,213,314Isls,S,EI112,213 

notMemSO"l 1 L-
notMemS1 8 
notMemS2 --t:i ::::;;3;::::;-~-=--;:===-~=== 
notMemS3 _in~:.i 1~:::;:::::;;-~1_ -_ -_ -_ -_ -_ -'~L== 
notMemS4 4 U 
notMemRd U.------
notMemWr eaJiYl L 
~m~H®--------------

MemWait ® - - - - - - - - - - - - - -

Example 1 

TstateI11213,314Iw,w,wlsls,S,EI112 

notMemSO "IlL 

notMemS1 \..1J L 
notMemS2 - r ----0 - - - - - - -

notMemS3 1 9 
notMemS4 ~ - - - - - - - - - - -

notMemRd _-;-:-:--.,L----~r-__ _ 

notMemWr 

MemWait@ 

MemWait®~ 

Example 3 

i No wait states inserted 
lOne wait state inserted 
2 Two wait states inserted 
3 Three wait states inserted 

Tstate 11 1213 ,314Iw,w,wlslsI1 1213 ,3 

notMemSO 
~i====~====~~=== notMemS1 _ L.. ___ IL _______ _ 

notMemS2 ~ 1 L 

notMemS3 i 7 U 
notMemS4 1 S U r ---

notMemRd I 
notMemWr -";"la"7te-.,"------' r---

MemWait@ 

MemWait®~ '-------'I 
Example 2 

Tstate 11 12 ,213,314Iw,wlsI6, 6 , E 11 12 

notMemSO "IlL 

notMemS1 ~:. 1 L 
notMemS2 7 U 
notMemS3 I: s ~r---
notMemS4.-:--..:3=-.:1 :::;------'r--­
notMemRd 

notMemWr --eariYl .... ____ --' 
MemWait CD __ --->II ... _____ _ 
MemWait ® 11'--____ _ 

Example 4 

Figure 8.19 IMS T80S external configuration 



100 4 IMS T805 engineering data 

Internal configuration External configuration 

() 0 '<t co () () 0 it If CD r-... r-... r-... r-... UJ l.L. 
l.L. l.L. l.L. l.L. l.L. l.L. l.L. l.L. l.L. 

Address l.L. l.L. l.L. l.L. l.L. l.L. l.L. l.L. l.L. 
l.L. l.L. l.L. l.L. l.L. l.L. l.L. l.L. l.L. 
l.L. l.L. l.L. l.L. l.L. l.L. l.L. l.L. l.L. 
l.L. l.L. l.L. l.L. l.L. l.L. l.L. l.L. l.L. 
r-... r-... r-... r-... r-... r-... t:- t:- r-... 

MemnotWrDO 

MemnotRfD1 

MemAD2 

MemAD3 , 
MemAD31 

MemConfig CD 
notMemRd 

I" ® -I"" ® -II" -I" 0 ® "I" "'1" -I ® CD 
CD MemConfig connected to inverse of MemnotWrDO 
® Configuration field 1; T1 configured for 2 periods Tm 

~ 
Configuration field 2; T2 configured for 3 periods Tm 

4 Configuration field 10; most significant bit of notMemS4 configured high 
5 Configuration field 11; refresh interval configured for 36 periods Clockln 
6 Configuration field 12; refresh enabled 
7 Configuration field 13; early write cycle 

Figure 8.20 IMS T80S external configuration scan 

Delay 



8 External memory interface 101 

Table 8.10 IMS T805 external configuration coding 

Scan MemAD Example diagram 
cycle address Field Function 1 2 3 4 

1 7FFFFF6C 1 T1 least significant bit 0 0 0 0 
2 7FFFFF70 1 T1 most significant bit 0 0 0 0 
3 7FFFFF74 2 T2 least significant bit 1 0 0 1 
4 7FFFFF78 2 T2 most significant bit 0 0 0 0 
5 7FFFFF7C 3 T3 least significant bit 1 1 1 1 
6 7FFFFF80 3 T3 most significant bit 0 0 0 0 
7 7FFFFF84 4 T4 least significant bit 0 0 0 0 
8 7FFFFF88 4 T4 most significant bit 0 0 0 0 
9 7FFFFF8C 5 T5 least significant bit 0 0 0 0 
10 7FFFFF90 5 T5 most significant bit 0 0 0 0 
11 7FFFFF94 6 T6 least significant bit 1 0 1 1 
12 7FFFFF98 6 T6 most significant bit 0 0 0 0 
13 7FFFFF9C 7 notMemS1 least significant bit 0 0 1 1 
14 7FFFFFAO 7 0 0 0 0 
15 7FFFFFA4 7 JJ. JJ. 0 0 0 0 
16 7FFFFFAS 7 1 0 0 0 
17 7FFFFFAC 7 notMemS1 most significant bit 0 0 0 0 
18 7FFFFFBO 8 notMemS2 least significant bit 1 0 0 1 
19 7FFFFFB4 8 1 1 0 1 
20 7FFFFFB8 8 JJ. JJ. 0 0 0 1 
21 7FFFFFBC 8 0 0 0 0 
22 7FFFFFCO 8 notMemS2 most significant bit 0 0 0 0 
23 7FFFFFC4 9 notMemS3 least significant bit 1 1 1 1 
24 7FFFFFC8 9 0 1 0 0 
25 7FFFFFCC 9 JJ. JJ. 0 1 0 1 
26 7FFFFFDO 9 0 0 1 0 
27 7FFFFFD4 9 notMemS3 most significant bit 0 0 0 0 
28 7FFFFFD8 10 notMemS4 least significant bit 0 0 0 1 
29 7FFFFFDC 10 0 1 1 1 
30 7FFFFFEO 10 JJ. JJ. 1 1 0 0 
31 7FFFFFE4 10 0 0 0 0 
32 7FFFFFE8 10 notMemS4 most significant bit 0 0 0 0 
33 7FFFFFEC 11 Refresh Interval least significant bit - - - -
34 7FFFFFFO 11 Refresh Interval most significant bit - - - -
35 7FFFFFF4 12 Refresh Enable - - - -
36 7FFFFFF8 13 Late Write 0 1 1 0 



102 4 IMS Ta05 engineering data 

Table 8.11 IMS T805 memory refresh configuration coding 

Refresh Interval Field 11 Complete 
interval in ~s encoding cycle (ms) 

18 3.6 00 0.922 
36 7.2 01 1.843 
54 10.8 10 2.765 
72 14.4 11 3.686 

Refresh intervals are in periods of Clockln and Clockln frequency is 5 MHz: 

Interval = 18 * 200 = 3600 ns 

Refresh interval is between successive incremental refresh addresses. 
Complete cycles are shown for 256 row DRAMS. 

Table 8.12 Memory configuration 

SYMBOL PARAMETER MIN 
TMCVRdH Memory configuration data setup 25 
TRdHMCX Memory configuration data hold 0 
TSOLRdH notMemSO to configuration data read a-12 

Notes 

1 a is 16 periods Tm. 

T1 T2 T3 T4 T5 

NOM MAX 

a+12 

T6 

UNITS 
ns 
ns 
ns 

T1 Tstate I 
Tm 

MemnotWrDO --./ 

I I I I I I I I I I I I I 

'--««««.«< Data >>>>-_~r-

I I I I I 

MemnotRfD1 --./ '-««««««< Data »> r-
MemAD2-31 -< Address >-<<<<<<<<<<<<< Data »> C 
notMemSO ~'----_----J 

1_ TSOLRdH 

notMemRd 

MemConfig 
J f+-TMCVRdH 

-- ~TRdHMCX 
-------<~ Data Y»>----

Figure 8.21 IMS T805 external configuration read cycle timing 

NOTE 

1 



103 

9 Events 

EventReq and EventAck provide an asynchronous handshake interface between an external event and an 
internal process. When an external event takes EventReq high the external event channel (additional to the 
external link channels) is made ready to communicate with a process. When both the event channel and the 
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck 
is removed after EventReq goes low. 

EventWaiting is asserted high by the transputer when a process executes an input on the event channel; 
typically with the occam EVENT ? ANY instruction. It remains high whilst the transputer is waiting for or 
servicing EventReq and is returned low when EventAck goes high. The EventWaiting pin changes near the 
falling edge of ProcClockOut and can therefore be sampled by the rising edge of ProcClockOut. 

The EventWaiting pin can only be asserted by executing an in instruction on the event channel. The 
EventWaiting pin is not asserted high when an enable channel (enbc) instruction is executed on the Event 
channel (during an ALTconstruct in occam, for example). The EventWaiting pin can be asserted by executing 
the occam input on the event channel (such as Event? ANY), provided that this does not occur as a 
guard in an alternative process. The EventWaiting pin can not be used to signify that an alternative process 
(ALT) is waiting on an input from the event channel. 

EventWaiting allows a process to control external logic; for example, to clock a number of inputs into a 
memory mapped data latch so that the event request type can be determined. 

Only one process may use the event channel at any given time. If no process requires an event to occur 
EventAck will never be taken high. Although EventReq triggers the channel on a transition from low to high, 
it must not be removed before EventAck is high. EventReq should be low during Reset; if not it will be 
ignored until it has gone low and returned high. EventAck is taken low when Reset occurs. 

If the process is a high priority one and no other high priority process is running, the latency is as described 
on page 56. Setting a high priority task to wait for an event input allows the user to interrupt a transputer 
program running at low priority. The time taken from asserting EventReq to the execution of the microcode 
interrupt handler in the CPU is four cycles. The following functions take place during the four cycles: 

Cycle 1 Sample EventReq at pad on the rising edge of ProcClockOut and synchronise. 

Cycle 2 Edge detect the synchronised EventReq and form the interrupt request. 

Cycle 3 Sample interrupt vector for microcode ROM in the CPU. 

Cycle 4 Execute the interrupt routine for Event rather than the next instruction. 



104 

SYMBOL 
TVHKH 
TKHVL 
TVLKL 
TKLVH 
TKHEWL 
TKLEWH 

Table 9.1 Event 

PARAMETER 
Event request response 
Event request hold 
Delay before removal of event acknowledge 
Delay before re-assertion of event request 
Event acknowledge to end of event waiting 
End of event acknowledge to event waiting 

EventReq 
TVHKH 

TKHVL 

EventAck 

TKHEWL 

EventWaiting t 
Process waiting for Event 

MIN 
0 
0 
0 
0 
0 
0 

4 IMS T805 engineering data 

NOM 

TVLKL 

TKLVH 

TKLEWH 

MAX 

6Tm+7ns 

UNITS 
ns 
ns 

ns 
ns 
ns 

Event waiting for Process 

NOTE 

Figure 9.1 IMS T805 event timing 



105 

10 Links 

Four identical INMOS bi-directional serial links provide synchronized communication between processors 
and with the outside world. Each link comprises an input channel and output channel. A link between two 
transputers is Implemented by connecting a link interface on one transputer to a link interface on the other 
transputer. Every byte of data sent on a link is acknowledged on the input of the same link, thus each signal 
line carries both data and control information. 

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one 
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first. 
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed 
by a zero bit. The acknowledge signifies both that a process, was able to receive the acknowledged data byte 
and that the receiving link is able to receive another byte. The sending link reschedules the sending process 
only after the acknowledge for the final byte of the message has been received. 

The IMS T805 links support the standard INMOS communication speed of 10 Mbits/sec. In addition they can 
be used at 5 or 20 Mbits/sec for 17 MHz, 20 MHz, and 25 MHz devices, and 20 Mbits/sec for faster devices. 
Links are not synchronised with Clockln or ProcClockOut and are insensitive to their phases. Thus links 
from independently clocked systems may communicate, providing only that the clocks are nominally identical 
and within specification. 

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a 
single printed circuit board or between two boards via a backplane. Direct connection may be made between 
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 ohm 
transmission line should be used with series matching resistors RM. When this is done the line delay should 
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent. 

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within 
the skew tolerance of the link, although the absolute value of the delay is immaterial. 

Link speeds can be set by LinkSpecial, LinkOSpecial and Link123Special. The link 0 speed can be set 
independently. Table 10.1 shows uni-directional and bi-directional data rates in Kbyteslsec for each link 
speed; LinknSpecial is to be read as LinkOSpecial when selecting link 0 speed and as Llnk123Speciai for 
the others. Data rates are quoted for a transputer using internal memory, and will be affected by a factor 
depending on the number of external memory accesses and the length of the external memory cycle. 

Notes 

Table 10.1 Speed Settings for Transputer Links 

Link Linkn Kbytes/sec 
Special Special Mbitslsec Uni 

0 0 10 910 
0 1 5 450 
1 0 10 910 
1 1 20 1740 

1 This setting is reserved for IMS T805-30 and faster devices. 

~HIHloI1121314151617IL, 
I Data I 

Bi Notes 
1250 
670 1 

1250 
2350 

JHlL...::CL-!-1 _ 
I Ack I 

Figure 10.1 IMS T805 link data and acknowledge packets 



106 4 IMS T80S engineering data 

Table 10.2 Link 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TJQr LinkOut rise time 20 ns 1 
TJQf LinkOut fall time 10 ns 1 
TJDr Linkln rise time 20 ns 1 
TJDf Linkln fall time 20 ns 1 
TJQJD Buffered edge delay 0 ns 
TJBskew Variation in T JQJD 20 Mbits/s 3 ns 2 

10 Mbits/s 10 ns 2 
5 Mbitsls 30 ns 2 

CLiZ Linkln capacitance @ f=lMHz 7 pF 1 
Cll LinkOut load capacitance 50 pF 
RM Series resistor for lOOn transmission line 56 ohms 

Notes 

These parameters are sampled, but not 100% tested. 

2 This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by 
such things as short term variation in supply voltages and differences in delays for rising and falling edges. 

90% 
LinkOut 

10% 

90% 
Linkln 

10% 

Figure 10.2 IMS Ta05 link timing 

LinkO:t::~~ --: ---
Earliest TJQJD toE 

Linkln 1.5V- - - - ~ ~ ~---
TJBskew- ~ 

Figure 10.3 IMS Ta05 buffered link timing 



10 Links 107 

Transputer family device A 

LinkOut I · I Linkln 

________ L_i_nk_l_n~.~--------~~r---------_L_L_in_k_O_u_t ____ __ 

Transputer family device B 

Figure 10.4 IMS Ta05 Links directly connected 

Transputer family device A Zo=1000hms 

LlokOut ~ L,"klo 

Linkln ~ LinkOut 
--------' Zo=1000hms RM Transputer family device B 

Figure 10.5 IMS Ta05 Links connected by transmission line 

Transputer family device A 

LinkOut r------r> Linkln 
buffers 

Linkln <}- LinkOut 

Transputer family device B 

Figure 10.6 IMS Ta05 Links connected by buffers 



10B 

11 Electrical specifications 

11.1 DC electrical characteristics 

Table 11.1 Absolute maximum ratings 

SYMBOL PARAMETER MIN MAX UNITS NOTE 
vee De supply voltage 0 7.0 V 1,2,3 
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3 
II Input current ±25 mA 4 
OSCT Output short circuit time (one pin) 1 s 2 
TS Storage temperature -65 150 °C 2 
TA Ambient temperature under bias -55 125 °C 2 
PDmax Maximum allowable dissipation 2 W 

Notes 

1 All voltages are with respect to GND. 

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those 
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may 
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods 
may affect reliability. 

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical 
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the 
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate 
logic level such as vee or GND. 

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND 
and vee. 

Table 11.2 Operating conditions 

SYMBOL PARAMETER MIN MAX UNITS NOTE 
VCC DC supply voltage 4.75 5.25 V 1 
VI, VO Input or output voltage 0 VCC V 1,2 
CL Load capacitance on any pin 60 pF 
TA Operating temperature range IMS TB05-S 0 70 °C 3 
TA Operating temperature range IMS TB05-M -55 125 °C 3 

Notes 

1 All voltages are with respect to GND. 

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics. 

3 Air flow rate 400 linear It/min transverse air flow. 



11 Electrical specifications 109 

Table 11.3 DC characteristics 

SYMBOL PARAMETER MIN MAX UNITS NOTE 
VIH High level input voltage 2.0 VCC+0.5 V 1,2 
VIL Low level input voltage -0.5 0.8 V 1,2 
II Input current @ GND<VI<VCC ±10 /LA 1,2 
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2 
VOL Output low voltage @ IOL=4mA 0.4 V 1,2 
lOS Output short circuit current @ GND<VO<VCC 36 65 mA 1,2,3,6 

65 100 mA 1,2,4,6 
10Z Tristate output current @ GND<VO<VCC ±10 /LA 1,2 
PO Power dissipation 1.2 W 2,5 
CIN Input capacitance @ f=1MHz 7 pF 6 
COz Output capacitance @ f=1MHz 10 pF 6 

Notes 

All voltages are with respect to GND. 

2 Parameters for IMS T80S-S measured at 4.7SV<VCC<S.2SV and 0·C<TA<70·C. 
Input clock frequency = S MHz. 

3 Current sourced from non-link outputs. 

4 Current sourced from link outputs. 

5 Power dissipation varies with output loading and program execution. 
Power dissipation for processor operating at 20 MHz. 

6 This parameter is sampled and not 100% tested. 

11.2 Equivalent circuits 

VCC -r--

R1[J Load for: R1 R2 Equivalent load: 

I~ Link outputs 1K96 47K 1 Schottky TTL input Output ..... 

" 
Other outputs 970R 24K 2 Schottky TTL inputs 

OR2 

-+-
50pF = ~ ~~ Diodes are 1 N91 6 

" GND 
-I-

Figure 11.1 Load circuit for AC measurements 



110 4 IMS T805 engineering data 

Vdd-1 

~ Inputs 
OV 

Vdd-1 
Inputs VIL / 

OV ~ 

tpHL 

Vdd ~.5V Outputs 
OV 

tpLH 

Vdd 
Y,.5V Outputs 

OV 

Figure 11.2 AC measurements timing waveforms 

Test point 
Output under test 

510R 

GND ------~----------~!--

VCC 

Figure 11.3 Tristate load circuit for AC measurements 

11.3 AC timing characteristics 

Table 11.4 Input, output edges 

SYMBOL PARAMETER MIN MAX 
TOr Input rising edges 2 20 
TD! Input falling edges 2 20 
Tar Output rising edges 25 
TO! Output falling edges 15 
TSOLaHZ Address high to tristate a a+6 
TSOLaLZ Address low to tristate a a+6 

Notes 

Non·link pins; see section on links. 

2 All inputs except Clockln; see se~tion on Clockln. 

3 a is T2 where T2 can be from one to four periods Tm in length. 
Address lines include MemnotWrDO, MemnotRfD1, MemAD2-31. 

4 These parameters are not tested. 

5 These parameters are sampled, but not 100% tested. 

UNITS NOTE 
ns 1,2,4 
ns 1,2,4 
ns 1,5 
ns 1,5 
ns 3 
ns 3 



11 Electrical specifications 111 

Time 
ns 

Notes 

90% 

10% 

90% 

10% 

30 

20 

10 

90% -----~------
----- -- ------
TOf =====A====== TOr 

10% 

-----J\------
----- -- ------
TOf 

-----A----------- -- ------
Tar 

90% 

10% 

Figure 11.4 IMS T805 input and output edge timing 

Figure 11.5 IMS T805 tristate timing relative to notMemSO 

30 Rise time 

Rise time 

Fall time 

40 60 80 100 
Load Capacitance pF 

Link 

Time 20 
ns 

10 

Figure 11.6 Typical rise/fall times 

Fall time 

Skew 

40 60 80 100 
Load Capacitance pF 

EMI 

Skew is measured between notMemSO with a standard load (2 Schottky TTL inputs and 30 pF) and notMemSO 
with a load of 2 Schottky TTL inputs and varying capacitance. 



112 4 IMS T805 engineering data 

11.4 Power rating 

Internal power dissipation PINT of transputer and peripheral chips depends on vee, as shown in figure 11.7. 
PINT is substantially independent of temperature. 

Total power dissipation PD of the chip is 

where PIO is the power dissipation in the input and output pins; this is application dependent. 

Internal working temperature TJ of the chip is 

TJ = TA +8JA * PD 

where TA is the external ambient temperature in ·C and 8JA is the junction-to-ambient thermal resistance in 
·CIW. 8JA for each package is given in the Packaging Specifications section . 

BOO 

700 

Power 
PINT 600 
mW 

500 

./ 
./ 

./ 

./ 
./ 

./ 
./ 

./ 

./ TB05-30 (projected) 
./ 

4.4 4.6 4.B 5.0 5.2 5.4 5.6 
vee Volts 

Figure 11.7 IMS TB05 internal power dissipation vs VCC 

-
650 -

-
Power 600 -

PO -
mW 550 -

-
500 

+ 

+ 

_I­
I 

I I I I I I I I I I I I I I 

15 20 25 30 
Processor frequency MHz 

Figure 11.B IMS TB05 typical power dissipation with processor speed 



113 

12 Performance 

The performance of the transputer is measured in terms of the number of bytes required for the program, and 
the number of (internal) processor cycles required to execute the program. The figures here relate to occam 
programs. For the same function, other languages should achieve approximately the same performance as 
occam. 

With transputers incorporating an FPU, this type of performance calculation is straight forward when consider­
ing only integer data types. However, when floating point calculations using the REAL32 and REAL64 data 
types are present in the program, complications arise due to the concurrency inherent in the transputer's de­
sign whereby integer calculations can be overlapped with floating pOint calculations. A more comprehensive 
guide to the impact of this concurrency on transputer performance can be found in the Transputer Instruction 
Set - A Compiler Writers' Guide. 

12.1 Performance overview 

These figures are averages obtained from detailed simulation, and should be used only as an initial guide; 
they assume operands are of type INT. The abbreviations in table 12.1 are used to represent the quantities 
indicated. In the replicator section of the table, figures in braces {} are not necessary if the number of 
replications is a compile time constant. To estimate performance, add together the time for the variable 
references and the time for the operation. 

Table 12.1 Key to performance table 

np number of component processes 
ne number of processes earlier in queue 
r 1 if INT parameter or array parameter, 0 if not 
ts number of table entries (table size) 
w width of constant in nibbles 
p number of places to shift 
Eg expression used in a guard 
Et timer expression used in a guard 
Tb most significant bit set of multiplier ((-1) if the multiplier is 0) 
Tbp most significant bit set in a positive multiplier when counting from zero ((-1) if the multiplier is 0) 
Tbc most significant bit set in the two's complement of a negative multiplier 
nsp Number of scalar parameters in a procedure 
nap Number of array parameters in a procedure 



114 4 IMS Taos engineering data 

Table 12.2 Performance 

Names 
variables 

in expression 
assigned to or input to 
in PROC or FUNCTION call, 

corresponding to an INT parameter 
channels 

Array Variables (for single dimension arrays) 
constant subscript 
variable subscript 
expression subscript 

Declarations 
CHAN OF protocol 
[si.ze] CHAN OF protocol 
PROC 

Primitives 
assignment 
input 
output 
STOP 
SKIP 

Arithmetic operators 
+ -
* 
/ 
REM 
» « 

Modulo Arithmetic operators 
PLUS 
MINUS 
TIMES (fast multiply, positive operand) 
TIMES (fast multiply, negative operand) 

Boolean operators 
OR 
AND NOT 

Comparison operators 
= constant 
= variable 
<> constant 
<> variable 
> < 
>= <= 

Bit operators 
/\ \I >< -

Expressions 
constant in expression 
check if error 

Size (bytes) 

1.1+r 
1.1+r 

1.1+r 
1.1 

o 
5.3 
5.3 

3.1 
9.4 

body+2 

o 
4 
1 
2 
o 

1 
2 
2 
2 
2 

2 
1 
1 
1 

4 
1 

o 
2 
1 
3 
1 
2 

2 

w 
4 

Time (cycles) 

2.1+2(r) 
1.1+(r) 

1.1 +(r) 
2.1 

o 
7.3 
7.3 

3.1 
2.2 + 20.2*si.ze 

o 

o 
26.5 
26 
25 
o 

1 
39 
40 
38 

3+p 

2 
1 

4+Tbp 
5+Tbc 

8 
2 

1 
3 
3 
5 
2 
4 

2 

w 
6 



12 Performance 115 

Table 12.3 Performance 

Size (bytes) Time (cycles) 

Timers 
timer input 2 3 
timer AFTER 

if past time 2 4 
with empty timer queue 2 31 
non-empty timer queue 2 38+ne*9 

ALT (timer) 
with empty timer queue 6 52 
non-empty timer queue 6 59+ne*9 
timer alt guard 8+2Eg+2Et 34+2Eg+2Et 

Constructs 
SEQ 0 0 
IF 1.3 1.4 

if guard 3 4.3 
ALT (non timer) 6 26 

alt channel guard 10.2+2Eg 20+2Eg 
skip alt guard 8+2Eg 10+2Eg 

PAR 11.5+(np-1)*7.5 19.5+(np-1 )*30.5 
WHILE 4 12 

Procedure or function call 
3.5+(nsp-2)*1.1 16.5+(nsp-2)* 1.1 

+nap*2.3 +nap*2.3 

Replicators 
replicated SEQ 7.3{ +5.1} (-3.8)+ 15.1 *count{ +7.1} 
replicated IF 12.3{+5.1 } (-2.6)+ 19.4*count{ +7.1} 
replicated ALT 24.8{+10.2} 25.4+33.4*count{ + 14.2} 
replicated timer ALT 24.8{+10.2} 62.4+33.4*count{ + 14.2} 
replicated PAR 39.1{+5.1} (-6.4)+70.9*count{ +7.1} 

12.2 Fast multiply, TIMES 

The IMS T805 has a fast integer multiplication instruction product. For a positive multiplier its execution time 
is 4+ Tbp cycles, and for a negative multiplier 5+ Tbc cycles (table 12.1). The time taken for a multiplication 
by zero is 3 cycles. 

Implementations of high level languages on the transputer may take advantage of this instruction. For example, 
the occam modulo arithmetic operator TIMES is implemented by the instruction and the right-hand operand is 
treated as the multiplier. The fast multiplication instruction is also used in high level language implementations 
for the multiplication implicit in multi-dimensional array access. 



116 4 IMS T805 engineering data 

12.3 Arithmetic 

A set of functions are provided within the development system to support the efficient implementation of 
multiple length integer arithmetic. In the IMS T805, floating point arithmetic is taken care of by the FPU. In 
table 12.4 n gives the number of places shifted and all arguments and results are assumed to be local. Full 
details of these functions are provided in the occam reference manual, supplied as part of the development 
system and available as a separate publication. 

When calculating the execution time of the predefined maths functions, no time needs to be added for calling 
overhead. These functions are compiled directly into special purpose instructions which are designed to 
support the efficient implementation of multiple length integer arithmetic and floating pOint arithmetic. 

Table 12.4 Arithmetic performance 

+ cycles for 
Function Cycles parameter access t 

LONGADD 2 7 
LONGSUM 3 8 
LONGSUB 2 7 
LONGDIFF 3 8 
LONGPROD 34 8 
LONGDIV 36 8 
SHIFTRIGHT (n<32) 4+n 8 

(n>=32) n-27 
SHIFTLEFT (n<32) 4+n 8 

(n>=32) n-27 
NORMALISE (n<32) n+6 7 

(n>=32) n-25 
(n=64) 4 

ASHIFTRIGHT SHIFTRIGHT+2 5 
ASHIFTLEFT SHIFTLEFT+4 5 
ROTATERIGHT SHIFTRIGHT 7 
ROTATE LEFT SHIFTLEFT 7 
FRACMUL LONGPROD+4 5 

t Assuming local variables. 



12 Performance 117 

12.4 Floating point operations 

All references to REAL32 or REAL 64 operands within programs compiled for the IMS T805 normally produce 
the following performance figures. 

Table 12.5 Floating point performance 

Size (bytes) REAL32 Time (cycles) REAL64 Time (cycles) 

Names 
variables 

in expression 3.1 3 5 
assigned to or input to 3.1 3 5 
in PROC or FUNCTION call, 

corresponding to a REAL 
parameter 1.1+r 1.1+r 1.1+r 

Arithmetic operators 
+ - 2 7 7 

* 2 11 20 
/ 2 17 32 
REM 11 19 34 

Comparison operators 
= 2 4 4 
<> 3 6 6 
> < 2 5 5 
>= <= 3 7 7 

Conversions 
REAL32to- 2 3 
REAL64 to- 2 6 
To INT32 from - 5 9 9 
To INT64 from - 18 32 32 
INT32 to- 3 7 7 
INT64 to - 14 24 22 

12.4.1 Floating poi nt functions 

These functions are provided by the development system. They are compiled directly into special purpose 
instructions designed to support the efficient implementation of some of the common mathematical functions 
of other languages. The functions provide ABS and SQRT for both REAL32 and REAL64 operand types. 

Table 12.6 IMS T805 floating point arithmetic performance 

+ cycles for parameter access t 
Function Cycles REAL32 REAL 64 
ABS 2 8 
SQRT 118 8 
DABS 2 12 
DSQRT 244 12 

t Assuming local variables. 



118 4 IMS T805 engineering data 

12.4.2 Special purpose functions and procedures 

The functions and procedures given in tables 12.8 and 12.9 are provided by the development system to give 
access to the special instructions available on the IMS T805. Table 12.7 shows the key to the table. 

Table 12.7 Key to special performance table 

Tb most significant bit set in the word counting from zero 
n number of words per row (consecutive memory locations) 

number of rows in the two dimensional move 
nr number of bits to reverse 

Table 12.8 Special purpose functions performance 

+ cycles for 
Function Cycles parameter access t 

BITCOUNT 2+Tb 2 
CRCBYTE 11 8 
CRCWORD 35 8 
BITREVNBIT 5+nr 4 
BITREVWORD 36 2 

t Assuming local variables. 

Table 12.9 Special purpose procedures performance 

+ cycles for 
Procedure Cycles parameter access t 

MOVE2D 8+(2n+23)H 8 
DRAW2D 8+(2n+23)H 8 
CLIP2D 8+(2n+23)*r 8 

t Assuming local variables. 

12.5 Effect of external memory 

Extra processor cycles may be needed when program and/or data are held in external memory, depending 
both on the operation being performed, and on the speed of the external memory. After a processor cycle 
which initiates a write to memory, the processor continues execution at full speed until at least the next 
memory access. 

Whilst a reasonable estimate may be made of the effect of external memory, the actual performance will 
depend upon the exact nature of the given sequence of operations. 

External memory is characterized by the number of extra processor cycles per external memory cycle, denoted 
as e. For the IMS T805, with the fastest external memory the value of e is 2; a typical value for a large external 
memory is 5. 

If a program is stored in external memory, and e has the value 2 or 3, then no extra cycles need be estimated 
for linear code sequences. For larger values of e, the number of extra cycles required for linear code 
sequences may be estimated at (e-3)/4. A transfer of control may be estimated as requiring e+3 cycles. 

These estimates may be refined for various constructs. In table 12.10 n denotes the number of components 
in a construct. In the case of IF, the n'th conditional is the first to evaluate to TRUE, and the costs include the 



12 Performance 119 

costs of the conditionals tested. The number of bytes in an array assignment or communication is denoted 
by b. 

Table 12.10 External memory performance 

IMS T80S 
Program off chip Data off chip 

Boolean expressions e-2 0 
IF 3en-8 en 
Replicated IF (6e-4)n+7 (5e-2)n+8 
Replicated SEQ (3e-3)n+2 (4e-2)n 
PAR (3e-1)n+8 3en+4 
Replicated PAR (10e-8)n+8 16en-12 
ALT (2e-4)n+6e (2e-2)rl+ 1 Oe-8 
Array assignment and 0 max (2e, e(b/2)) 

communication in 
one transputer 

The following simulation results illustrate the effect of storing program and/or data in external memory. The 
results are normalized to 1 for both program and data on chip. The first program (Sieve of Erastosthenes) 
is an extreme case as it is dominated by small, data access intensive loops; it contains no concurrency, 
communication, or even multiplication or division. The second program is the pipeline algorithm for Newton 
Raphson square root computation. 

Table 12.11 IMS T805 external memory performance 

Program e=2 e=3 e=4 e=S On chip 
Program off chip 1 1.3 1.5 1.7 1.9 1 

2 1.1 1.2 1.2 1.3 1 

Data off chip 1 1.5 1.8 2.1 2.3 1 
2 1.2 1.4 1.6 1.7 1 

Program and data off chip 1 1.8 2.2 2.7 3.2 1 
2 1.3 1.6 1.8 2.0 1 

12.6 Interrupt latency 

If the process is a high priority one and no other high priority process is running, the latency is as described 
in table 12.12. The timings given are in full processor cycles TPCLPCL; the number of Tm states is also 
given where relevant. Maximum latency assumes all memory accesses are internal ones. 

Table 12.12 Interrupt latency 

Typical Maximum 
TPCLPCL Tm TPCLPCL Tm 

IMS T805 with FPU in use 19 38 78 156 

IMS T805 with FPU not in use 19 38 58 116 



120 

13 Package specifications 

13.1 84 pin grid array package 

1 2 3 4 5 6 7 8 9 10 

A Refresh Link Proc Link Link Link Link Event Mem Clock 123 GND Pending Special Out Special InO Out1 In2 Ack Wait 

Proc Event LinkO Link Link Link Event Mem not 
Speed Clockln Waiting Special OutO Out2 Out3 Req Req Mem 
SelectO WrB3 

B 

Cap Cap Link Link Mem Mem not 
GND vec VCC Mem Minus Plus In1 In3 Config Granted WrB1 

C 

Proc 
~ 

not not not 
Error Speed Errorln I'" Index Mem Mem Mem D 

Select2 Rf WrB2 WrBO 

Disable Boot not not 
E Int From Reset Mem Mem VCC 

RAM ROM IMS T805 Rd SO 
84 pin grid array 

Proc Mem top view not not not 
Speed Analyse AD31 Mem Mem Mem 
Select1 S3 S2 S4 

F 

Mem Mem Mem not 

AD30 GND AD27 not GND Mem 
WrDO S1 

G 

Mem Mem Mem Mem Mem Mem Mem Mem Mem 
vec not AD29 AD25 AD23 AD16 AD12 AD8 AD4 AD3 RfD1 

H 

Mem Mem Mem Mem Mem Mem GND Mem Mem Mem 
AD28 AD24 AD22 AD19 AD17 AD13 AD6 AD5 AD2 J 

Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem 
AD26 AD21 AD20 AD18 AD15 AD14 AD11 AD10 AD9 AD7 K 

Figure 13.1 IMS T805 84 pin grid array package pinout 



13 Package specifications 121 

,M ;1 E r 10 9 8 7 6 5 4 3 2 1 

9
F

f@@@@@@@@)@)@)A 
@@)@@@)@@@)@)@) B 

@)@)@@@)@)@@)@@) C 

@@@) @)@)@) D 

@)@)@ @@)@) E 
K k @)@)@ @)@)@) F 

@)@)@ @)@)@) G 

@@)@@@@)@@)@)@) H 

1""""'---~ ___ )o_I_Jooi.11tJi t- ~;::: :K:::: .~ ~ 

index 

rr 
AB 

~ 
I .. 

~ 

I---

I I 

Figure 13.2 84 pin grid array package dimensions 

Table 13.1 84 pin grid array package dimensions 

Millimetres Inches 
DIM NOM Tal NOM Tal Notes 

A 26.924 ±0.254 1.060 ±0.010 
B 17.019 ±0.127 0.670 ±0.005 
C 2.456 ±0.278 0.097 ±0.011 
D 4.572 ±0.127 0.180 ±0.005 
E 3.302 ±0.127 0.130 ±0.005 
F 0.457 ±0.025 0.018 ±0.002 Pin diameter 
G 1.143 ±0.127 0.045 ±0.005 Flange diameter 
K 22.860 ±0.127 0.900 ±0.005 
L 2.540 ±0.127 0.100 ±0.005 
M 0.508 0.020 Chamfer 

Package weight is approximately 7.2 grams 

Table 13.2 84 pin grid array package junction to ambient thermal resistance 

PARAMETER 
At 400 linear ft/min transverse air flow 



122 

13.2 84 pin PLCC J-bend package 

CapMinus 12 
VCC 13 

ProcSpeedSelectO 14 
GND15 

Errorln 16 
ProcSpeedSelect2 17 

Error 18 
BootFromROM 19 

Reset 20 
DisablelntRAM 21 

ProcSpeedSelect1 22 
Analyse 23 

MemAD3124 
MemAD3025 
MemAD2926 

GND 27 
MemAD2828 
MemAD2729 
MemAD2630 
MemAD2531 
MemAD2432 

IMS T805 
84 pin J-bend 
Chip Carrier 

Top View 

4 IMS T805 engineering data 

74 MemReq 
73 MemGranted 
72 MemWait 
71 notMemRf 
70 notMemWrB3 
69 notMemWrB2 
68 notMemWrB1 
67 notMemWrBO 
66 notMemRd 
65 notMemSO 
64 VCC 
63 notMemS4 
62 notMemS3 
61 notMemS2 
60 notMemS1 
59 GND 
58 MemnotWrDO 
57 MemnotRfD1 
56 MemAD2 
55 MemAD3 
54 MemAD4 

Figure 13.3 IMS T805 84 pin PLCC J-bend package pinout 



13 Package specifications 123 

AB 

=,1 ........................................... ' ...................... III 
• OIl B : 
c A------~ 

Figure 13.4 84 pin PLCC J-bend package dimensions 

Table 13.3 84 pin PLCC J-bend package dimensions 

Millimetres Inches 
DIM NOM TOl NOM TOl Notes 

A 30.226 ±0.127 1.190 ±O.OOS 
B 29.312 ±0.127 1.1S4 ±O.OOS 
C 3.810 ±0.127 0.1S0 ±O.OOS 
D 0.S08 ±0.127 0.020 ±O.OOS 
F 1.270 ±0.127 O.OSO ±O.OOS 
G 0.4S7 ±0.127 0.018 ±O.OOS 
J 0.000 ±0.OS1 0.000 ±0.002 
K 0.4S7 ±0.127 0.018 ±O.OOS 
L 0.762 ±0.127 0.030 ±O.OOS 

Package weight is approximately 7.0 grams 

Table 13.4 84 pin PLCC J-bend package junction to ambient thermal resistance 

PARAMETER 
At 400 linear fVmin transverse air flow 



124 4 IMS T80S engineering data 

13.3 84 lead quad cerpack package 

The leads are unformed to allow the user to form them to specific requirements. 

eapMinus 75 
vee 76 

ProcSpeedSelectO 77 
GND 78 

Errorln 79 
ProcSpeedSelect2 80 

Error 81 
BootFromROM 82 

Reset 83 
DisablelntRAM 84 

ProcSpeedSelect1 1 
Analyse 2 

MemAD31 3 
MemAD30 4 
MemAD29 5 

GND 6 
MemAD28 7 
MemAD27 8 
MemAD26 9 
MemAD2S10 
MemAD2411 

• IMS T80S 
84 lead 

quad cerpack 

Figure 13.5 IMS T805 84 lead quad cerpack package pinout 

53 MemReq 
52 MemGranted 
51 MemWait 
50 notMemRf 
49 notMemWrB3 
48 notMemWrB2 
47 notMemWrB1 
46 notMemWrBO 
45 notMemRd 
44 notMemSO 
43 vee 
42 notMemS4 
41 notMemS3 
40 notMemS2 
39 notMemS1 
38 GND 
37 MemnotWrDO 
36 MemnotRfD1 
35 MemAD2 
34 MemAD3 
33 MemAD4 



13 Package specifications 

l 

Figure 13.6 84 lead quad cerpack package dimensions 

Millimetres Inches 
DIM NOM TOl NOM TOl Notes 
A 38.100 ±0.508 1.500 ±0.020 
B 26.924 ±0.305 1.060 ±0.012 

C 20.574 ±0.203 0.810 ±0.008 
0 19.558 ±0.254 0.770 ±0.010 
E 0.508 0.020 
F 1.270 ±0.051 0.050 ±0.002 
G 2.489 ±0.305 0.098 ±0.012 
H 0.635 ±0.076 0.025 ±0.003 
J 1.143 ±0.102 0.045 ±0.004 
K 3.099 0.122 Max. 
l 27.940 1.100 Max. 
M 0.178 ±0.025 0.007 ±0.001 

Table 13.584 lead quad cerpack package dimensions 

Section through 
package 

125 



126 

14 Ordering 

This section indicates the designation of speed and package selections for the various devices. Speed of 
Clockln is 5 MHz for all parts. Transputer processor cycle time is nominal; it can be calculated more exactly 
using the phase lock loop factor PLLx, as detailed in the external memory section. 

For availability contact local INMOS sales office or authorised distributor. 

Table 14.1 IMS T805 ordering details 

INMOS Processor Processor 
designation clock speed cycle time PLLx Package 

IMS T80S·G17S 17.5 MHz 57 ns 3.5 Ceramic Pin Grid 
IMS T80S·G20S 20.0 MHz 50 ns 4.0 Ceramic Pin Grid 
IMS T80S·G2SS 25.0 MHz 40 ns 5.0 Ceramic Pin Grid 
IMS T80S·G30S 30.0 MHz 33 ns 6.0 Ceramic Pin Grid 

IMS TBOS·J17S 17.5 MHz 57 ns 3.5 Plastic PLCC J-8end 
IMS T80S·J20S 20.0 MHz 50 ns 4.0 Plastic PLCC J-8end 

IMS T80S·G17M 17.5 MHz 57 ns 3.5 Ceramic Pin Grid MIL Spec 
IMS T80S·G20M 20.0 MHz 50 ns 4.0 Ceramic Pin Grid MIL Spec 

IMS T80S·Q17M 17.5 MHz 57 ns 3.5 Quad Cerpack MIL Spec 
IMS T80S·Q20M 20.0 MHz 50 ns 4.0 Quad Cerpack MIL Spec 

The timing parameters in this datasheet are based on 17 MHz and 20 MHz parts. Data for higher speeds is 
based on tests on a limited number of samples and may change when full characterisation is completed. 



c 

DITTImOS 
FEATURES 

32 bit architecture 
33 ns internal cycle time 
30 MIPS (peak) instruction rate 
4.3 Mflops (peak) instruction rate 
Debugging support 
64 bit on-chip floating point unit which conforms to 
IEEE 754 
4 Kbytes on-chip static RAM 
120 Mbytes/sec sustained data rate to internal memory 
4 Gbytes directly addressable external memory 
60 Mbytes/sec sustained data rate to external memory 
630 ns response to interrupts 
Four INMOS serial links 10/20 Mbits/sec 
Bi-directional data rate of 2.4 Mbyteslsec per link 
High performance graphics support with block move 
instructions 
Boot from ROM or communication links 
Single 5 MHz clock input 
Single +5V ±5% power supply 
MIL-STD-883e processing will be available 

APPLICATIONS 

Scientific and mathematical applications 
High speed multi processor systems 
High performance graphics processing 
Supercomputers 
Workstations and workstation clusters 
Digital signal processing 
Accelerator processors 
Distributed databases 
System simulation 
Telecommunications 
Robotics 
Fault tolerant systems 
Image processing 
Pattern recognition 
Artificial intelligence 

421441 00 

127 

IMS T801 
transputer 

Preliminary Data 

System 
Services 

4k bytes 
of 

On-chip 
RAM 

External 
Memory 
Interface 

Floating Point Unit 

May 1989 



128 

1 Introduction 

The IMS T801 transputer is a 32 bit CMOS microcomputer with a 64 bit floating point unit and graphics support. 
It has 4 Kbytes on-chip RAM for high speed processing, a 32 bit non-multiplexed external memory interface 
and four standard INMOS communication links. The instruction set achieves efficient implementation of high 
level languages and provides direct support for the occam model of concurrency when using either a single 
transputer or a network. Procedure calls, process switching and typical interrupt latency are sub-microsecond. 

For convenience of description, the IMS T801 operation is split into the basic blocks shown in figure 1.1. 

VCC 
GND 

CapPlus 
CapMinus 

Reset 
Analyse 

ErrorOut 
BootFromROM 

Clockln 
ProcSpeedSelectO-2 

ProcClockOut 
notMemWrBO-3 

notMemCE 

MemWait 
MemReq 

MemGranted 

System 
services 

4k bytes 
of 

On-chip 
RAM 

External 
Memory 
Interface 

Floating Point Unit 

LinkSpeed 

LinklnO 
LinkOutO 

Linkln1 
LinkOut1 

Linkln2 
LinkOut2 

Linkln3 
LinkOut3 

E EventReq 
Event EventAck 

'--__ ---' EventWaiting 

32 MemDO-31 

30 MemA2-31 

Figure 1.1 IMS T801 block diagram 

The processor speed of a device can be pin-selected in stages from 17.5 MHz up to the maximum allowed 
for the part. A device running at 30 MHz achieves an instruction throughput of 30 MIPS peak and 15 MIPS 
sustained. The extended temperature version of the device complies with MIL-STD-883C. 

The IMS T801 provides high performance arithmetic and floating point operations. The 64 bit floating pOint unit 
provides Single and double length operation to the ANSI-IEEE 754-1985 standard for floating point arithmetic. 
It is able to perform floating point operations concurrently with the processor, sustaining a rate of 2.2 Mflops 
at a processor speed of 20 MHz and 3.3 Mflops at 30 MHz. 



1 Introduction 129 

High performance graphics support is provided by microcoded block move instructions which operate at the 
speed of memory. The two-dimensional block move instructions provide for contiguous block moves as well 
as block copying of either non-zero bytes of data only or zero bytes only. Block move instructions can be used 
to provide graphics operations such as text manipulation, windowing, panning, scrolling and screen updating. 

Cyclic redundancy checking (CRC) instructions are available for use on arbitrary length serial data streams, 
to provide error detection where data integrity is critical. Another feature of the IMS T801, useful for pattern 
recognition, is the facility to count bits set in a word. 

The IMS T801 can directly access a linear address space of 4 Gbytes. The 32 bit wide memory interface 
uses non-multiplexed data and address lines and provides a data rate of up to 4 bytes every 66 nanoseconds 
(60 Mbytes/sec) for a 30 MHz device. 

System Services include processor reset and bootstrap control, together with facilities for error analysis. 

The standard INMOS communication links allow networks of transputer family products to be constructed by 
direct point to point connections with no external logic. The IMS T801 links support the standard operating 
speed of 10 Mbits/sec, but also operate at 20 Mbits/sec. Each link can transfer data bi-directionally at up to 
2.35 Mbytes/sec. 

The transputer is designed to implement the occam language, detailed in the occam Reference Manual, but 
also efficiently supports other languages such as C, Pascal and Fortran. Access to the transputer at machine 
level is seldom required, but if necessary refer to the Transputer Instruction Set - A Compiler Witers' Guide, 
where the IMS T800 instruction set is applicable. 

This data sheet supplies hardware implementation and characterisation details for the IMS T801. It is intended 
to be read in conjunction with the Transputer Architecture chapter, which details the architecture of the 
transputer and gives an overview of occam. 

The IMS T801 instruction set contains a number of instructions to facilitate the implementation of breakpoints. 
For further information concerning breakpointing, refer to Support for debugginglbreakpointing in transputers 
(technical note 61). 

Figure 1.2 shows the internal datapaths for the IMS T801. 



130 

4 Kbyte 
RAM 

external 
memory 
interface 

5 IMS T801 engineering data 

Figure 1.2 IMS T801 internal datapaths 



2 Pin designations 

Table 2.1 IMS T801 system services 

Pin InlOut Function 
VCC,GNO Power supply and return 
CapPlus, CapMinus E~ternal capacitor for internal clock power supply 
Clockln in Input clock 
ProcSpeedSelectO-2 in Processor speed selectors 
Reset in System reset 
ErrorOut out Error indicator 
Analyse in Error analysis 
BootFromRom in Boot from external ROM or from link 

Table 2.2 IMS T801 external memory interface 

Pin InlOut Function 
ProcClockOut out Processor clock 
MemA2-31 out Thirty address lines 
OataO-31 inlout Thirty-two non-multiplexed data lines 
notMemWrBO-3 out Four byte-addressing write strobes 
notMemCE out Chip enable 
MemWait in Memory cycle extender 
MemReq in Direct memory access request 
MemGranted out Direct memory access granted 

Table 2.3 IMS T801 event 

Pin InlOut Function 
EventReq in Event request 
EventAck out Event request acknowledge 
EventWaiting out Event input requested by software 

Table 2.4 IMS T801 link 

Pin InlOut Function 
LinklnO-3 in Four serial data input channels 
LinkOutO-3 out Four serial data output channels 
LinkSpeed in Select speed for Links 0-3 to 10 or 20 Mbits/sec 

Signal names are prefixed by not if they are active low, otherwise they are active high. 
Pinout details for various packages are given on page 186. 

131 



132 

3 Processor 

The 32 bit processor contains instruction processing logic, instruction and work pOinters, and an operand 
register. It directly accesses the high speed 4 Kbyte on-chip memory, which can store data or programs. 
Where larger amounts of memory or programs in ROM are required, the processor has access to 4 Gbytes 
of memory via the External Memory Interface (EM I). 

3.1 Registers 

The design of the transputer processor exploits the availability of fast on-chip memory by having only a small 
number of registers; six registers are used in the execution of a sequential process. The small number of 
registers, together with the simplicity of the instruction set, enables the processor to have relatively simple 
(and fast) data-paths and control logic. The six registers are: 

The workspace pointer which points to an area of store where local variables are kept. 

The instruction pointer which points to the next instruction to be executed. 

The operand register which is used in the formation of instruction operands. 

The A, Band C registers which form an evaluation stack. 

A, Band C are sources and destinations for most arithmetic and logical operations. Loading a value into the 
stack pushes B into C, and A into B, before loading A. Storing a value from A, pops B into A and C into B. 

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example, 
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of 
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a 
large number of programs show that three registers provide an effective balance between code compactness 
and implementation complexity. 

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack. 
It is easy for the compiler to ensure that this never happens. 

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be 
of any size. 

Further register details are given in Transputer Instruction Set - A Compiler Writers' Guide. 

R . eglsters L ocas p rogram 

A 

B 

C 

Workspace -
Next Inst 

Operand 

Figure 3.1 Registers 



3 Processor 133 

3.2 Instructions 

The instruction set has been designed for simple and efficient compilation of high-level languages. All in­
structions have the same format, designed to give a compact representation of the operations occurring most 
frequently in programs. 

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte 
are a function code and the four least significant bit!> are a data value. 

Operand Register 

Figure 3.2 Instruction format 

3.2.1 Direct functions 

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Ten of these, 
shown in table 3.1, are used to encode the most important functions. 

load constant 

load local 

load non-local 

jump 

Table 3.1 Direct functions 

add constant 

store local 

store non-local 

conditional jump 

load local pointer 

call 

The most common operations in a program are the loading of small literal values and the loading and storing 
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be 
loaded with a single byte instruction. The load local and store local instructions access locations in memory 
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction. 

The load non-local and store non-local instructions behave similarly, except that they access locations in 
memory relative to the A register. Compact sequences of these instructions allow efficient access to data 
structures, and provide for simple implementations of the static links or displays used in the implementation 
of high level programming languages such as occam, C, Fortran, Pascal or ADA. 

3.2.2 Prefix functions 

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative 
prefix. 

All instructions are executed by loading the four data bits into the least significant four bits of the operand 
register, which is then used as the instruction's operand. All instructions except the prefix instructions end by 
clearing the operand register, ready for the next instruction. 

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up 
four places. The negative prefix instruction is similar, except that it complements the operand register before 
shifting it up. Consequently operands can be extended to any length up to the length of the operand register 
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented 
using one prefix instruction. 



134 5 IMS T801 engineering data 

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed 
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they 
simplify language compilation by providing a completely uniform way of allowing any instruction to take an 
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor 
wordlength. 

3.2.3 Indirect functions 

The remaining function code, operate, causes its operand to be interpreted as an operation on the values 
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction. 
However, the prefix instructions can be used to extend the operand of an operate instruction just like any 
other. The instruction representation therefore provides for an indefinite number of operations. 

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented 
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as 
add, exclusive or and greater than. Less frequently occurring operations have encodings which require a 
single prefix operation. 

3.2.4 Expression evaluation 

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number 
of these can be minimised by careful choice of the evaluation order. 

Table 3.2 Expression evaluation 

Program Mnemonic 

x := 0 Idc 0 
stl x 

x := #24 pfix 2 
Idc 4 
stl x 

x := y + z Idl y 
Idl z 
add 
stl x 

3.2.5 Efficiency of encoding 

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without 
the use of prefix instructions. Many of these instructions, such as load constant and add require just one 
processor cycle. 

The instruction representation gives a more compact representation of high level language programs than 
more conventional instruction sets. Since a program requires less store to represent it, less of the memory 
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor 
will receive four instructions for every fetch. 

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor 
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction 
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes 
the buffer contents to be discarded. 



3 Processor 135 

3.3 Processes and concurrency 

A process starts, performs a number of actions, and then either stops without completing or terminates 
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in 
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number 
of each (page 136). 

The processor has a microcoded scheduler whicl"l enables any number of concurrent processes to be exe­
cuted together, sharing the processor time. This removes the need for a software kernel. 

At any time, a concurrent process may be 

Active Being executed. 
- On a list waiting to be executed. 

Inactive - Ready to input. 
Ready to output. 
Waiting until a specified time. 

The scheduler operates in such a way that inactive processes do not consume any processor time. It allocates 
a portion of the processor's time to each process in turn. Active processes waiting to be executed are held 
in two linked lists of process workspaces, one of high priority processes and one of low priority processes 
(page 136). Each list is implemented using two registers, one of which points to the first process in the list, 
the other to the last. In the Linked Process List figure 3.3, process S is executing and P, Q and R are active, 
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones 
perform in a similar manner. 

R . t egis ers L ocas I P rograml 

FPtr1 (Front) f---- P ~ 

BPtr1 (Back) t-

~ 
I 

Q 
A 

B L., R 

C 

Workspace - S 

Next Inst 

Operand 

Figure 3.3 Linked process list 

Table 3.3 Priority queue control registers 

Function High Priority Low Priority 
Pointer to front of active process list FptrO Fptr1 
Pointer to back of active process list BptrO Bptr1 

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from 
another process or transputer, or for a time delay to complete. In order for several processes to operate in 
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly 
descheduled at the next descheduling point (page 140). The time slice period is 5120 cycles of the external 
5 MHz clock, giving ticks approximately 1 ms apart. 



136 5 IMS T801 engineering data 

A process can only be descheduled on certain instructions, known as descheduling points (page 140). As a 
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way 
through. 

Whenever a process is unable to proceed, its instruction pOinter is saved in the process workspace and 
the next process taken from the list. Process scheduling pointers are updated by instructions which cause 
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 f.1.S, as 
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling. 

The processor provides a number of special operations to support the process model, including start process 
and end process. When a main process executes a parallel construct. start process instructions are used 
to create the necessary additional concurrent processes. A start process instruction creates a new process 
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be 
executed together with the ones already being executed. When a process is made active it is always added 
to the end of the list, and thus cannot pre-empt processes already on the same list. 

The correct termination of a parallel construct is assured by use of the end process instruction. This uses 
a workspace location as a counter of the parallel construct components which have still to terminate. The 
counter is initialised to the number of components before the processes are started. Each component ends 
with an end process instruction which decrements and tests the counter. For all but the last component, the 
counter is non zero and the component is descheduled. For the last component, the counter is zero and the 
main process continues. 

3.4 Priority 

The IMS T801 supports two levels of priority. Priority 1 (low priority) processes are executed whenever there 
are no active priority 0 (high priority) processes. 

High priority processes are expected to execute for a short time. If one or more high priority processes are 
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until 
it completes processing. 

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed, 
then one is selected. 

Low priority processes are periodically timesliced to provide an even distribution of processor time between 
computationally intensive tasks. 

If there are n low priority processes, then the maximum latency from the time at which a low priority process 
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for 
between one and two timeslice periods, less any time taken by high priority processes. This assumes that 
no process monopolises the transputer's time; i.e. it has a distribution of descheduling points (page 140). 

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 ms at the 
standard frequency of 5 MHz). 

If a high priority process is waiting for an external channel to become ready, and if no other high priority 
process is active, then the interrupt latency (from when the channel becomes ready to when the process 
starts executing) is typically 19 processor cycles, a maximum of 78 cycles (assuming use of on-chip RAM). 
If the floating point unit is not being used at the time then the maximum interrupt latency is only 58 cycles. 
To ensure this latency, certain instructions are interruptable. 

3.5 Communications 

Communication between processes is achieved by means of channels. Process communication is point-to­
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and 
no message buffer. 



3 Processor 137 

A channel between two processes executing on the same transputer is implemented by a single word in 
memory; a channel between processes executing on different transputers is implemented by point-to-point 
links. The processor provides a number of operations to support message passing, the most important being 
input message and output message. 

The input message and output message instructions use the address of the channel to determine whether 
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a 
process to be written and compiled without knowledge of where its channels are connected. 

The process which first becomes ready must wait until the second one is also ready. A process performs an 
input or output by loading the evaluation stack with a pointer to a message, the address of a channel, and 
a count of the number of bytes to be transferred, and then executing an input message or output message 
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one 
the process will deschedule. 

3.6 Block move 

The block move on the transputer moves any number of bytes from any byte boundary in memory, to any 
other byte boundary, using the smallest possible number of word read, and word or part-word writes. 

A block move instruction can be interrupted by a high priority process. On interrupt, block move is completed 
to a word boundary, independent of start position. When restarting after interrupt, the last word written is 
written again. This appears as an unnecessary read and write in the simplest case of word aligned block 
moves, and may cause problems with FIFOs. This problem can be overcome by incrementing the saved 
destination (BreglntSaveLoc) and source pointer (CreglntSaveLoc) values by BytesPerWord during the high 
priority process. 

3.7 Timers 

The transputer has two 32 bit timer clocks which 'tick' periodically. The timers provide accurate process 
timing, allowing processes to deschedule themselves until a specific time. 

One timer is accessible only to high priority processes and is incremented every microsecond, cycling com­
pletely in approximately 4295 seconds. The other is accessible only to low priority processes and is incre­
mented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of approximately 
76 hours. 

ClockO 
Clock1 
TNextRegO 
TNextReg1 

Table 3.4 Timer registers 

Current value of high priority (level 0) process clock 
Current value of low priority (level 1) process clock 
Indicates time of earliest event on high priority (level 0) timer queue 
Indicates time of earliest event on low priority (level 1) timer queue 

The current value of the processor clock can be read by executing a load timer instruction. A process can 
arrange to perform a timer input, in which case it will become ready to execute after a specified time has 
been reached. The timer input instruction requires a time to be specified. If this time is in the 'past' then the 
instruction has no effect. If the time is in the 'future' then the process is descheduled. When the specified 
time is reached the process is scheduled again. 



138 5 IMS T801 engineering data 

Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31. 

TimerO Workspaces Program 

Alarm 

TNextRegO L...-__ ---' 21 

TPtrLoc 

Figure 3.4 Timer registers 



139 

4 Instruction set summary 

The Function Codes table 4.8 gives the basic function code set (page 133). Where the operand is less than 16, 
a single byte encodes the complete instruction. If the operand is greater than 15, one prefix instruction (pfix) 
is required for each additional four bits of the operand. If the operand is negative the first prefix instruction 
will be nfix. 

Table 4.1 prefix coding 

Function Memory 
Mnemonic code code 

Ide #3 #4 #43 

Ide #35 
is coded as 

pfix #3 #2 #23 
Ide #5 #4 #45 

Ide #987 
is coded as 

pfix #9 #2 #29 
pfix #8 #2 #28 
Ide #7 #4 #47 

Ide -31 (Ide #FFFFFFE1) 
is coded as 

nfix #1 #6 #61 
Ide #1 #4 #41 

Tables 4.9 to 4.28 give details of the operation codes. Where an operation code is less than 16 (e.g. add: 
operation code 05), the operation can be stored as a single byte comprising the operate function code F and 
the operand (5 in the example). Where an operation code is greater than 15 (e.g. ladd: operation code 16), 
the prefix function code 2 is used to extend the instruction. 

Table 4.2 operate coding 

Function Memory 
Mnemonic code code 

add (op. code #5) #F5 
is coded as 

opr add #F #F5 

ladd (op. code #16) #21F6 
is coded as 

pfix #1 #2 #21 
opr #6 #F #F6 

The load device identity (lddevid) instruction (table 4.20) pushes the device type identity into the A register. 
Each product is allocated a unique group of numbers for use with the Iddevid instruction. The product identity 
numbers for the IMS T801 are 20 to 29 inclusive. 

In the Floating Point Operation Codes tables 4.22 to 4.28, a selector sequence code (page 149) is indicated 
in the Memory Code column by s. The code given in the Operation Code column is the indirection code, the 
operand for the Ide instruction. 

The FPU and processor operate concurrently, so the actual throughput of floating point instructions is better 
than that implied by simply adding up the instruction times. For full details see Transputer Instruction Set - A 
Compiler Writers' Guide. 



140 5 IMS T801 engineering data 

The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing 
in internal memory. The number of cycles is given for the basic operation only; where the memory code 
for an instruction is two bytes, the time for the prefix function (one cycle) should be added. For a 20 MHz 
transputer one cycle is 50 ns. Some instruction times vary. Where a letter is included in the cycles column it 
is interpreted from table 4.3. 

Table 4.3 Instruction set interpretation 

Ident Interpretation 

b Bit number of the highest bit set in register A. Bit 0 is the least significant bit. 

m Bit number of the highest bit set in the absolute value of register A. 
Bit 0 is the least significant bit. 

n Number of places shifted. 

w Number of words in the message. Part words are counted as full words. If the message 
is not word aligned the number of words is increased to include the part words at either 
end of the message. 

p Number of words per row. 

r Number of rows. 

The DE column of the tables indicates the descheduling/error features of an instruction as described in 
table 4.4. 

Table 4.4 Instruction features 

Ident Feature See page: 

D The instruction is a descheduling point 140 

E The instruction will affect the Error flag 141, 156 

F The instruction will affect the FP_Error flag 149, 141 

4.1 Descheduling points 

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 135). They are 
also the ones at which the processor will halt if the Analyse pin is asserted (page 155). 

input message 
timer alt wait 
jump 

Table 4.5 Descheduling point instructions 

output message 
timer input 
loop end 

output byte 
stop on error 
end process 

output word 
alt wait 
stop process 



4 Instruction set summary 141 

4.2 Error instructions 

The instructions in table 4.6 are the only ones which can affect the Error flag (page 156) directly. Note, 
however, that the floating point unit error flag FP_Error is set by certain floating point instructions (page 141), 
and that Error can be set from this flag by fpcheckerror. 

Table 4.6 Error setting instructions 

add 
multiply 
long add 
set error 
check word 

add constant 
fractional multiply 
long subtract 
testerr 
check subscript from 0 

4.3 Debugging support 

subtract 
divide 
long divide 
fpcheckerror 
check single 

remainder 

check count from 1 

Table 4.21 contains a number of instructions to facilitate the implementation of breakpoints. These instructions 
overload the operation of jO. Normally jO is a no-op which might cause descheduling. SetjObreak enables the 
breakpointing facilities and causes jO to act as a breakpointing instruction. When breakpointing is enabled, 
jO swaps the current Iptr and Wptr with an Iptr and Wptr stored above MemStart. The breakpoint instruction 
does not cause descheduling, and preserves the state of the registers. It is possible to single step the pro­
cessor at machine level using these instructions. Refer to Support for debugginglbreakpointing in transputers 
(technical note 61) for more detailed information regarding debugger support. 

4.4 Floating point errors 

The instructions in table 4.7 are the only ones which can affect the floating point error flag FP_Error (page 149). 
Error is set from this flag by fpcheckerror if FP_Error is set. 

fpadd 
fpldnladdsn 
fpremfirst 
fpuseterror 
fpuexpincby32 
fpur32tor64 
fprtoi32 

Table 4.7 Floating point error setting instructions 

fpsub 
fpldnladddb 
fpusqrtfirst 
fpuclearerror 
fpuexpdecby32 
fpur64tor32 
fpuabs 

fpmul 
fpldnlmulsn 
fpgt 
fptesterror 
fpumulby2 
fpucki32 
fpint 

fpdiv 
fpldnlmuldb 
fpeq 

fpudivby2 
fpucki64 



142 5 IMS T801 engineering data 

Table 4.S IMS TS01 function codes 

Function Memory Processor D 
Code Code Mnemonic Cycles Name E 

0 OX j 3 jump D 
1 1X Idlp 1 load local pointer 
2 2X pfix 1 prefix 
3 3X Idnl 2 load non-local 
4 4X Ide 1 load constant 
5 5X Idnlp 1 load non-local pointer 
6 6X nfix 1 negative prefix 
7 7X Idl 2 load local 
S SX adc 1 add constant E 
9 9X call 7 call 
A AX cj 2 conditional jump (not taken) 

4 conditional jump (taken) 
B BX ajw 1 adjust workspace 
C CX eqc 2 equals constant 
D DX stl 1 store local 
E EX stnl 2 store non-local 
F FX opr - operate 

Table 4.9 IMS TS01 arithmetic/logical operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

46 24F6 and 1 and 
4B 24FB or 1 or 
33 23F3 xor 1 exclusive or 
32 23F2 not 1 bitwise not 
41 24F1 shl n+2 shift left 
40 24FO shr n+2 shift right 

05 F5 add 1 add E 
OC FC sub 1 subtract E 
53 25F3 mul 3S multiply E 
72 27F2 fmul 35 fractional multiply (no rounding) E 

40 fractional multiply (rounding) E 
2C 22FC div 39 divide E 
1F 21FF rem 37 remainder E 
09 F9 gt 2 greater than 
04 F4 diff 1 difference 
52 25F2 sum 1 sum 
OS FS prod b+4 product for positive register A 

m+5 product for negative register A 



4 Instruction set summary 143 

Table 4.10 IMS T801 long arithmetic operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

16 21F6 ladd 2 long add E 
38 23F8 Isub 2 long subtract E 
37 23F7 Isum 3 long sum 
4F 24FF Idiff 3 long diff 
31 23F1 Imul 33 long multiply 
1A 21 FA Idiv 35 long divide E 
36 23F6 Ish I n+3 long shift left (n<32) 

n-28 long shift left(n:;::32) 
35 23F5 Ishr n+3 long shift right (n<32) 

n-28 long shift right (n:;::32) 
19 21 F9 norm n+5 normalise (n<32) 

n-26 normalise (n:;::32) 
3 normalise (n=64) 

Table 4.11 IMS T801 general operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

00 FO rev 1 reverse 
3A 23 FA xword 4 extend to word 
56 25F6 cword 5 check word E 
10 21FD xdble 2 extend to double 
4C 24FC csngl 3 check single E 
42 24F2 mint 1 minimum integer 
5A 25 FA dup 1 duplicate top of stack 
79 27F9 pop 1 pop processor stack 

Table 4.12 IMS T801 20 block move operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

58 25F8 move2dinit 8 initialise data for 20 block move 
5C 25FC move2dall (2p+23)*r 20 block copy 
50 25FO move2dnonzero (2p+23)H 20 block copy non-zero bytes 
5E 25FE move2dzero (2p+23)H 20 block copy zero bytes 

Table 4.13 IMS T801 CRC and bit operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

74 27F4 crcword 35 calculate crc on word 
75 27F5 crcbyte 11 calculate crc on byte 

76 27F6 bitcnt b+2 count bits set in word 
77 27F7 bitrevword 36 reverse bits in word 
78 27F8 bitrevnbits n+4 reverse bottom n bits in word 



144 5 IMS T801 engineering data 

Table 4.14 IMS T801 indexing/array operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

02 F2 bsub 1 byte subscript 
OA FA wsub 2 word subscript 
81 28F1 wsubdb 3 form double word subscript 
34 23F4 bcnt 2 byte count 
3F 23FF wcnt 5 word count 
01 F1 Ib 5 load byte 
3B 23FB sb 4 store byte 

4A 24FA move 2w+8 move message 

Table 4.15 IMS T801 timer handling operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

22 22F2 Idtimer 2 load timer 
2B 22FB tin 30 timer input (time future) D 

4 timer input (time past) D 
4E 24FE talt 4 timer alt start 
51 25F1 taltwt 15 timer alt wait (time past) D 

48 timer alt wait (time future) D 
47 24F7 enbt 8 enable timer 
2E 22FE dist 23 disable timer 

Table 4.16 IMS T801 input/output operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

07 F7 in 2w+19 input message D 
OB FB out 2w+19 output message D 
OF FF outword 23 output word D 
OE FE outbyte 23 output byte D 

43 24F3 alt 2 alt start 
44 24F4 altwt 5 alt wait (channel ready) D 

17 alt wait (channel not ready) D 
45 24F5 altend 4 alt end 

49 24F9 enbs 3 enable skip 
30 23FO diss 4 disable skip 

12 21F2 res etch 3 reset channel 
48 24F8 enbc 7 enable channel (ready) 

5 enable channel (not ready) 
2F 22FF disc 8 disable channel 



4 Instruction set summary 145 

Table 4.17 IMS T801 control operation codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

20 22FO ret 5 return 
1B 21FB Idpi 2 load pOinter to instruction 
3C 23FC gajw 2 general adjust workspace 
06 F6 gcall 4 general call 
21 22F1 lend 10 loop end (loop) D 

5 loop end (exit) D 

Table 4.18 IMS T801 scheduling operation codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

OD FD startp 12 start process D 
03 F3 endp 13 end process D 
39 23F9 runp 10 run process 
15 21F5 stopp 11 stop process 
1E 21FE Idpri 1 load current priority 

Table 4.19 IMS T801 error handling operation codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

13 21F3 csubO 2 check subscript from 0 E 
4D 24FD ccnt1 3 check count from 1 E 
29 22F9 testerr 2 test error false and clear (no error) 

3 test error false and clear (error) 
10 21FO seterr 1 set error E 
55 25F5 stoperr 2 stop on error (no error) D 
57 25F7 clrhalterr 1 clear halt-on-error 
58 25F8 sethalterr 1 set halt-on-error 
59 25F9 testhalterr 2 test halt-on-error 

Table 4.20 IMS T801 processor initialisation operation codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

2A 22FA testpranal 2 test processor analysing 
3E 23FE saveh 4 save high priority queue registers 
3D 23FD savel 4 save low priority queue registers 
18 21F8 sthf 1 store high priority front pOinter 
50 25FO sthb 1 store high priority back pointer 
1C 21FC stlf 1 store low priority front pointer 
17 21F7 stlb 1 store low priority back pointer 
54 25F4 sttimer 1 store timer 

17C 2127FC Iddevid 1 load device identity 
7E 27FE Idmemstartval 1 load value of memstart address 



146 5 IMS T801 engineering data 

Table 4.21 IMS T801 debugger support codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

0 00 jump 0 3 jump 0 (break not enabled) D 
11 jump 0 (break enabled, high priority) 
13 jump 0 (break enabled, low priority) 

B1 2BF1 break 9 break (high priority) 
11 break (low priority) 

B2 2BF2 clrjObreak 1 clear jump 0 break enable flag 
B3 2BF3 setjObreak 1 set jump 0 break enable flag 
B4 2BF4 testjObreak 2 test jump 0 break enable flag set 
7A 27FA timerdisableh 1 disable high priority timer interrupt 
7B 27FB timerdisablel 1 disable low priority timer interrupt 
7C 27FC timerenableh 6 enable high priority timer interrupt 
7D 27FD timerenablel 6 enable low priority timer interrupt 

Table 4.22 IMS T801 floating point load/store operation codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

8E 28FE fpldnlsn 2 fp load non-local single 
8A 28FA fpldnldb 3 fp load non-local double 
86 28F6 fpldnlsni 4 fp load non-local indexed single 
82 28F2 fpldnldbi 6 fp load non-local indexed double 
9F 29FF fpldzerosn 2 load zero single 
AO 2AFO fpldzerodb 2 load zero double 
AA 2AFA fpldnladdsn 8/11 fp load non local & add single F 
A6 2AF6 fpldnladddb 9/12 fp load non local & add double F 
AC 2AFC fpldnlmulsn 13/20 fp load non local & multiply single F 
A8 2AF8 fpldnlmuldb 21/30 fp load non local & multiply double F 
88 28F8 fpstnlsn 2 fp store non-local single 
84 28F4 fpstnldb 3 fp store non-local double 
9E 29FE fpstnli32 4 store non-local int32 

Processor cycles are shown as Typical/Maximum cycles. 

Table 4.23 IMS T801 floating point general operation codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

AB 2AfB fpentry 1 floating point unit entry 
A4 2AF4 fprev 1 fp reverse 
A3 2AF3 fpdup 1 fp duplicate 



4 Instruction set summary 147 

Table 4.24 IMS T801 floating point rounding operation codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

22 s fpurn 1 set rounding mode to round nearest 
06 s fpurz 1 set rounding mode to round zero 
04 s fpurp 1 set rounding mode to round positive 
05 s fpurm 1 set rounding mode to round minus 

Table 4.25 IMS T801 floating point error operation codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

83 28F3 fpchkerror 1 check fp error E 
9C 29FC fptesterror 2 test fp error false and clear F 
23 s fpuseterror 1 set fp error F 
9C s fpuclearerror 1 clear fp error F 

Table 4.26 IMS T801 floating point comparison operation codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

94 29F4 fpgt 4/6 fp greater than F 
95 29F5 fpeq 3/5 fp equality F 
92 29F2 fpordered 3/4 fp orderability 
91 29F1 fpnan 2/3 fp NaN 
93 29F3 fpnotfinite 2/2 fp not finite 
OE s fpuchki32 3/4 check in range of type int32 F 
OF s fpuchki64 3/4 check in range of type int64 F 

Processor cycles are shown as Typical/Maximum cycles. 

Table 4.27 IMS T801 floating point conversion operation codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

07 s fpur32tor64 3/4 real32 to real64 F 
08 s fpur64tor32 6/9 real64 to real32 F 
90 29FO fprtoi32 7/9 real to int32 F 
96 29F6 fpi32tor32 8/10 int32 to real32 
98 29F8 fpi32tor64 8/10 inl32 to real64 
9A 29FA fpb32tor64 8/8 bit32 to real64 
00 s fpunoround 2/2 real64 to real32, no round 
Ai 2AFi fpint 5/6 round 10 floating integer F 

Processor cycles are shown as Typical/Maximum cycles. 



148 5 IMS T801 engineering data 

Table 4.28 IMS T801 floating point arithmetic operation codes 

Operation Memory Processor cycles 0 
Code Code Mnemonic Single Double Name E 

87 28F7 fpadd 6/9 6/9 fp add F 
89 28F9 fpsub 6/9 6/9 fp subtract F 
88 28F8 fpmul 11/18 18/27 fp multiply F 
8C 28FC fpdiv 16/28 31/43 fp divide F 
08 s fpuabs 2/2 2/2 fp absolute F 
8F 28FF fpremfirst 36/46 36/46 fp remainder first step F 
90 29FO fpremstep 32/36 32/36 fp remainder iteration 
01 s fpusqrtfirst 27/29 27/29 fp square root first step F 
02 s fpusqrtstep 42/42 42/42 fp square root step 
03 s fpusqrtlast 8/9 8/9 fp square root end 
OA s fpuexpinc32 6/9 6/9 multiply by 232 F 
09 s fpuexpdec32 6/9 6/9 divide by 232 F 
12 s fpumulby2 6/9 6/9 multiply by 2.0 F 
11 s fpudivby2 6/9 6/9 divide by 2.0 F 

Processor cycles are shown as Typical/Maximum cycles. 



149 

5 Floating point unit 

The 64 bit FPU provides single and double length arithmetic to floating point standard ANSI-IEEE 754-1985. 
It is able to perform floating point arithmetic concurrently with the central processor unit (CPU), sustaining 
3.3 Mflops on a 30 MHz device. All data communication between memory and the FPU occurs under control 
of the CPU. 

The FPU consists of a microcoded computing engine with a three deep floating point evaluation stack for 
manipulation of floating point numbers. These stack registers are FA, FB and Fe, each of which can hold 
either 32 bit or 64 bit data; an associated flag, set when a floating point value is loaded, indicates which. The 
stack behaves in a similar manner to the CPU stack (page 132). 

As with the CPU stack, the FPU stack is not saved when rescheduling (page 135) occurs. The FPU can 
be used in both low and high priority processes. When a high priority process interrupts a low priority one 
the FPU state is saved inside the FPU. The CPU will service the interrupt immediately on completing its 
current operation. The high priority process will not start, however, before the FPU has completed its current 
operation. 

Points in an instruction stream where data need to be transferred to or from the FPU are called synchronisation 
points. At a synchronisation point the first processing unit to become ready will wait until the other is ready. 
The data transfer will then occur and both processors will proceed concurrently again. In order to make 
full use of concurrency, floating point data source and destination addresses can be calculated by the CPU 
whilst the FPU is performing operations on a previous set of data. Device performance is thus optimised by 
minimising the CPU and FPU idle times. 

The FPU has been designed to operate on both single length (32 bit) and double length (64 bit) floating 
point numbers, and returns results which fully conform to the ANSI-IEEE 754-1985 floating point arithmetic 
standard. Denormalised numbers are fully supported in the hardware. All rounding modes defined by the 
standard are implemented, with the default being round to nearest. 

The basic addition, subtraction, multiplication and division operations are performed by single instructions. 
However, certain less frequently used floating point instructions are selected by a value in register A (when 
allocating registers, this should be taken into account). A load constant instruction Idc is used to load 
register A; the floating point entry instruction fpentry then uses this value to select the floating point operation. 
This pair of instructions is termed a selector sequence. 

Names of operations which use fpentry begin with fpu. A typical usage, returning the absolute value of a 
floating pOint number, would be 

Idc fpuabs; fpentry; 

Since the indirection code for fpuabs is 08, it would be encoded as 

Table 5.1 fpentry coding 

Function Memory 
Mnemonic code code 

Idc fpuabs #4 #4B 

fpentry (op. code #AB) #2AFB 
is coded as 

pfix #A #2 #2A 
opr #B #F #FB 



150 5 IMS T801 engineering data 

The remainder and square root instructions take considerably longer than other instructions to complete. In 
order to minimise the interrupt latency period of the transputer they are split up to form instruction sequences. 
As an example, the instruction sequence for a single length square root is 

fpusqrtfirst; fpusqrtstep; fpusqrtstep; fpusqrt/ast; 

The FPU has its own error flag FP_Error. This reflects the state of evaluation within the FPU and is set in 
circumstances where invalid operations, division by zero or overflow exceptions to the ANSI-IEEE 754-1985 
standard would be flagged (page 141). FP_Error is also set if an input to a floating point operation is infinite or 
is not a number (NaN). The FP_Errorflag can be set, tested and cleared without affecting the main Errorflag, 
but can also set Error when required (page 141). Depending on how a program is compiled, it is possible for 
both unchecked and fully checked floating point arithmetic to be performed. 

Further details on the operation of the FPU can be found in Transputer Instruction Set - A Compiler Writers' 
Guide. 

Table 5.2 Typical floating point operation times for IMS T801 

T801·20 T801·30 
Operation Single length Double length Single length Double length 

add 350 ns 350 ns 233 ns 233 ns 
subtract 350 ns 350 ns 233 ns 233 ns 
multiply 550 ns 1000 ns 367 ns 667 ns 
divide 850 ns 1600 ns 567 ns 1067 ns 

Tim ing is for operations where both operands are normalised fp numbers. 



151 

6 System services 

System services include all the necessary logic to initialise and sustain operation of the device. They also 
include error handling and analysis facilities. 

6.1 Power 

Power is supplied to the device via the VCC and GND pins. The supply must be decoupled close to the chip 
by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer boards 
are recommended; if two layer boards are used, extra care should be taken in decoupling. 

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power­
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive 
periods of latch up. 

6.2 CapPlus, CapMinus 

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1 J.lF 
capacitor to be connected between Cap Plus and CapMinus. A ceramic capacitor is preferred, with an 
impedance less than 3 Ohms between 100 KHz and 10 MHz. If a polarised capacitor is used the negative 
terminal should be connected to CapMinus. Total PCB track length should be less than 50 mm. The 
connections must not touch power supplies or other noise sources. 

VCC 0-
CapPlus P.C.B. track 

I Phase-locked I Decoupling 
= = capacitor loops 1J.1F 

GND .Q. 
CapMinus P.C.B. track 

Figure 6.1 Recommended PLL decoupling 

6.3 Clockln 

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input. 
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type, 
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln, 
simplifying system design and avoiding problems of distributing high speed clocks externally. 

A number of transputer devices may be connected to a common clock, or may have individual clocks providing 
each one meets the specified stability criteria. In a multi-clock system the relative phasing of Clockln clocks 
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the 
specified limits of Clockln pulse widths are met. 

Oscillator stability is important. Clockln must be derived from a crystal OSCillator; RC oscillators are not 
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be 
monotonic and remain within the specified voltage and time limits. 



152 5 IMS T801 engineering data 

Table 6.1 Input clock 

SYMBOL PARAMETER MIN NOM MAX UNITS 
TDCLDCH Clockln pulse width low 40 ns 
TDCHDCL Clockln pulse width high 40 ns 
TDCLDCL Clockln period 200 ns 
TDCerror Clockln timing error ±O.S ns 
TDC1DC2 Difference in Clockln for 2 linked devices 400 ppm 
TDCr Clockln rise time 10 ns 
TDCf Clockln fall time 8 ns 

Notes 

These parameters are not tested. 

2 Measured between corresponding points on consecutive falling edges. 

3 Variation of individual falling edges from their nominal times. 

4 This value allows the use of 200 ppm crystal oscillators for two devices connected together by a link. 

S Clock transitions must be monotonic within the range VIH to VIL (table 11.3). 

TDCerror 

2.0v- - -
1.SvO.8v= = = = -

TDCLDCH 

TDCerror 

TDCHDCL 

90% K---
10%---- -

TDCf 

TDCLDCL 

90%----1[--

10% _ - - - --
TDCr 

Figure 6.2 Clockln timing 

6.4 ProcSpeedSelectO·2 

NOTE 
1 
1 

1,2,4 
1,3 
1,4 
1,5 
1,5 

Processor speed of the IMS T801 is variable in discrete steps. The desired speed can be selected, up to the 
maximum rated for a particular component, by the three speed select lines ProcSpeedSelectO-2. The pins 
are tied high or low, according to table 6.2, for the various speeds. The frequency of Clockln for the speeds 
given in table 6.2 is 5 MHz. There are six valid speed select combinations. 



6 System services 153 

Table 6.2 Processor speed selection 

Proc Proc Proc Processor Processor 
Speed Speed Speed Clock Cycle 
Select2 Select1 SelectO Speed MHz Time ns Notes 

0 0 0 20.0 50.0 
0 0 1 22.5 44.4 
0 1 0 25.0 40.0 
0 1 1 30.0 33.3 
1 0 0 35.0 28.6 
1 0 1 Invalid 
1 1 0 17.5 57.1 
1 1 1 Invalid 

Note: Inclusion of a speed selection in this table does not imply immediate availability. 

6.5 Reset 

Reset can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. After VCC 
is valid Clockln should be running for a minimum period TOCVRL before the end of Reset. The falling edge 
of Reset initialises the transputer and starts the bootstrap routine. Link outputs are forced low during reset; 
link inputs and EventReq should be held low. Memory request (OMA) must not occur whilst Reset is high 
but can occur before bootstrap (page 167). 

If BootFromRom is high, bootstrapping will take place immediately after Reset goes low, using data from 
external memory; otherwise the transputer will await an input from any link. The processor will be in the low 
priority state. 

6.6 Bootstrap 

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, Boot­
FromRom may be dynamically changed but must obey the specified timing restrictions. It is sampled once 
only by the transputer, before the first instruction is executed after Reset is taken low. 

If BootFromRom is connected high (e.g. to VCC) the transputer starts to execute code from the top two bytes 
in external memory, at address #7FFFFFFE. This location should contain a backward jump to a program in 
ROM. Following this access, BootFromRom may be taken low if required. The processor is in the low priority 
state, and the W register points to MemStart (page 157). 



154 5 IMS T801 engineering data 

Table 6.3 Reset and Analyse 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TPVRH Power valid before Reset 10 ms 
TRHRL Reset pulse width high 8 Clockln 1 
TDCVRL Clockln running before Reset end 10 ms 2 
TAHRH Analyse setup before Reset 3 ms 
TRLAL Analyse hold after Reset end 1 Clockln 1 
TBRVRL BootFromRom setup 0 ms 
TRLBRX BootFromRom hold after Reset 0 ms 3 
TALBRX BootFromRom hold after Analyse 3 

Notes 

1 Full periods of Clockln TDCLDCL required. 

2 At power-on reset. 

3 Must be stable until after end of bootstrap period. See Bootstrap section. 

Clockln 

VCC 

TPVRH 

Reset 
TBRVRL TRLBRX 

BootFromRom 

Figure 6.3 Transputer reset timing with Analyse low 

TRHRL 

Reset 

TAHRH 

Analyse 

BootFromRom 

Figure 6.4 Transputer reset and analyse timing 



6 System services 155 

If BootFromRom is connected low (e.g. to GND) the transputer will wait for the first bootstrap message to 
arrive on anyone of its links. The transputer is ready to receive the first byte on a link within two processor 
cycles TPCLPCL after Reset goes low. 

If the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The 
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following 
reception of the last byte the transputer will start executing code at MemStart as a low priority process. 
BootFromRom may be taken high after reception of the last byte, if required. The memory space immediately 
above the loaded code is used as work space. Messages arriving on other links after the control byte has 
been received and on the bootstrapping link after the last bootstrap byte will be retained until a process inputs 
from them. 

6.7 Peek and poke 

Any location in internal or external memory can be interrogated and altered when the transputer is waiting 
for a bootstrap from link. If the control byte is 0 then eight more bytes are expected on the same link. The 
first four byte word is taken as an internal or external memory address at which to poke (write) the second 
four byte word. If the control byte is 1 the next four bytes are used as the address from which to peek (read) 
a word of data; the word is sent down the output channel of the same link. 

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses 
may be made in this way until the control byte is greater than 1, when the transputer will commence reading 
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link 
as the control byte. 

6.8 Analyse 

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling point 
(page 140). From Analyse being asserted, the processor will halt within three time slice periods plus the 
time taken for any high priority process to complete. As much of the transputer status is maintained as is 
necessary to permit analysis of the halted machine. Processor flags Error and HaltOnError are not altered at 
reset, whether Analyse is asserted or not. Memory refresh continues. 

Input links will continue with outstanding transfers. Output links will not make another access to memory 
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link 
acknowledgement, the links should be inactive within a few microseconds of the transputer halting. 

Reset should not be asserted before the transputer has halted and link transfers have ceased. When Reset 
is taken low whilst Analyse is high, neither the memory configuration sequence nor the block of eight refresh 
cycles will occur; the previous memory configuration will be used for any external memory accesses. If 
BootFromRom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a 
control byte on any link. If Analyse is taken low without Reset going high the transputer state and operation 
are undefined. After the end of a valid Analyse sequence the registers have the values given in table 6.4. 

Table 6.4 Register values after Analyse 

MemStart if bootstrapping from a link, or the external memory bootstrap address if 
bootstrapping from ROM. 

W MemStart if bootstrapping from ROM, or the address of the first free word after the 
bootstrap program if bootstrapping from link. 

A The value of I when the processor halted. 

B The value of Wwhen the processor halted, together with the priority of the process 
when the transputer was halted (Le. the W descriptor). 

C The ID of the bootstrapping link if bootstrapping from link. 



156 5 IMS T801 engineering data 

6.9 ErrorOut 

The ErrorOut pin is connected directly to the internal Error flag and follows the state of that flag. If ErrorOut 
is high it indicates an error in one of the processes caused, for example, by arithmetic overflow, divide by 
zero, array bounds violation or software setting the flag directly (page 141). It can also be set from the floating 
point unit under certain circumstances (page 141, 149). Once set, the Error flag is only cleared by executing 
the instruction testerr. The error is not cleared by processor reset, in order that analysis can identify any 
errant transputer (page 155). 

A process can be programmed to stop if the Error flag is set; it cannot then transmit erroneous data to other 
processes, but processes which do not require that data can still be scheduled. Eventually all processes 
which rely, directly or indirectly, on data from the process in error will stop through lack of data. 

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error 
becomes set after HaltOnError has been set, all processes on that transputer will cease but will not necessarily 
cause other transputers in a network to halt. Setting HaltOnError after Errorwill not cause the transputer to 
halt; this allows the processor reset and analyse faCilities to function with the flags in indeterminate states. 

An alternative method of error handling is to have the errant process or transputer cause all transputers to 
halt. This can be done by applying the ErrorOut output signal of the errant transputer to the EventReq pin 
of a suitably programmed master transputer. Since the process state is preserved when stopped by an error, 
the master transputer can then use the analyse function to debug the fault. When using such a circuit, note 
that the Error flag is in an indeterminate state on power up; the circuit and software should be designed with 
this in mind. 

Error checks can be removed completely to optimise the performance of a proven program; any unexpected 
error then occurring will have an arbitrary undefined effect. 

If a high priority process pre-empts a low priority one, status of the Error and HaltOnError flags is saved 
for the duration of the high priority process and restored at the conclusion of it. Status of the Error flag is 
transmitted to the high priority process but the HaltOnError flag is cleared before the process starts. Either 
flag can be altered in the process without upsetting the error status of any complex operation being carried 
out by the pre-empted low priority process. 

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before 
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access to 
memory for data. Memory refresh will continue to take place. 

After halting due to the Error flag changing from 0 to 1 whilst HaltOnError is set, register I points two bytes 
past the instruction which set Error. After halting due to the Analyse pin being taken high, register I points 
one byte past the instruction being executed. In both cases I will be copied to register A. 

Analyse 
Slave Slave 

~ Latch I Master 
Transputer Transputer 

0 1 
Transputer Reset 

Event 
I ErrorOut[O] I ErrorOut [1] 

(transputer links not shown) 0- Slave 0- Slave 
Transputer Transputer .....-- 2 I- 3 

ErrorOut[2] I 
ErrorOut[3] I 

Figure 6.5 Error handling in a multi-transputer system 



157 

7 Memory 

The IMS T801 can access 4 Gbytes of external memory space. The IMS T801 also has 4 Kbytes of fast 
internal static memory for high rates of data throughput. Each internal memory access takes one processor 
cycle ProcClockOut (page 162). Internal and external memory are part of the same linear address space. 

IMS T801 memory is byte addressed, with words aligned on four-byte boundaries. The least significant byte 
of a word is the lowest addressed byte. 

The bits in a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with 
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the 
components are numbered in order of increasing numerical significance, with the least significant component 
numbered O. Where values are stored in memory, the least significant component value is stored at the 
lowest (most negative) address. 

Internal memory starts at the most negative address #80000000 and extends to #80000FFF. User memory 
begins at #80000070; this location is given the name MemStart. 

The reserved area of internal memory below MemStart is used to implement link and event channels. 

Two words of memory are reserved for timer use, TPtrLocO for high priority processes and TptrLoc1 for low 
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on 
the timer queue at that priority level. 

Values of certain processor registers for the current low priority process are saved in the reserved IntSaveLoc 
locations when a high priority process pre-empts a low priority one. Other locations are reserved for extended 
features such as block moves and floating point operations. 

External memory space starts at #80001000 and extends up through #00000000 to #7FFFFFFF. ROM boot­
strapping code must be in the most positive address space, starting at #7FFFFFFE. Address space immedi­
ately below this is conventionally used for ROM based code. 



158 5 IMS T801 engineering data 

rhi~_M-=aC.;..h...;l-Tne.;.....;m.;..a,""p'----..:;.,lo Byte address 

rem I~ I I :FFFFFFEj ! 
1 _______ -11 #80001000 - Start of external memory - #0400 -1-1 _______ -1_ 

! - #80000070 MemStart MemStart #1 C -

Notes 

Reserved for #8000006C 
Extended functions #80000048 

EreglntSaveLoc #80000044 

STATUSlntSaveLoc #80000040 

CreglntSaveLoc #8000003C 
BreglntSaveLoc #80000038 

Areg IntSaveLoc #80000034 

IptrlntSaveLoc #80000030 

WdesclntSaveLoc #8000002C 

TPtrLoc1 

TPtrLocO 

#80000028 
Note 1 

#80000024 

Event #80000020 #08 Event 

Link 3 Input #8000001C #07 Link 3 Input 

Link 2 Input #80000018 #06 Link 2 Input 

Link 1 Input #80000014 #05 Link 1 Input 

Link 0 Input #80000010 #04 Link 0 Input 

Link 3 Output #8000000C #03 Link 3 Output 

Link 2 Output #80000008 #02 Link 2 Output 

Link 1 Output #80000004 #01 Link 1 Output 

Link 0 Output #80000000 (Base of memory) #00 Link 0 Output 

Figure 7.1 IMS T801 memory map 

1 These locations are used as auxiliary processor registers and should not be manipulated by the user. Like 
processor registers, their contents may be useful for implementing debugging tools (Analyse, page 155). For 
details see Transputer Instruction Set - A Compiler Writers' Guide. 



159 

8 External memory interface 

The IMS TB01 External Memory Interface (EMI) allows access to a 32 bit address space via separate address 
and data buses. 

The external memory cycle is divided into four Tstates with the following functions: 

T1 Address and control setup time. 

T2 Data setup time. 

T3 Data read/write. 

T4 Data and address hold after access. 

Each Tstate is half a processor cycle TPCLPCL long. An external memory cycle is always a complete 
number of cycles TPCLPCL in length. The start of T1 always coincides with a rising edge of ProcClockOut. 
T2 can be extended indefinitely by adding externally generated wait states of one complete processor cycle 
each. 

During an internal memory access cycle the external memory interface address bus MemA2·31 reflects the 
word address used to access internal RAM, notMemWrBO·3 and notMemCE are inactive and the data bus 
MemDO·31 is tristated. This is true unless and until a DMA (memory request) activity takes place, when the 
MemA2·31, MemDQ.31, notMemCE and notMemWrBO·3 signals will be placed in a high impedance state 
by the transputer. 

Bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for 
hardware debugging in conjuction with peek and poke (page 155). 

ProcClockOut 

notMemWrBO·3 y 
notMemCE y 

Write Read Read '<'--­
'<~-

MemA2·31 ===>< Address X Address X Address X'-___ _ 
MemDO-31 ~~------------------~C 

Figure B.1 IMS TB01 bus activity for 3 internal memory cycles 



160 5 IMS TB01 engineering data 

B.1 Pin functions 

B.1.1 MemA2-31 

External memory addresses are output on a non-multiplexed 30 bit bus. The address is valid at the start of 
T1 and remains so until the end of T4. 

8.1.2 MemDO-31 

The non-multiplexed data bus is 32 bits wide. The data bus is high impedance except when the transputer is 
writing data. If only one byte is being written, the unused 24 bits of the bus are high impedance at that time. 

If the data setup time for read or write is too short it can be extended by inserting wait states at the end of 
T2. 

B.1.3 notMemCE 

The active low signal notMemCE is used to enable external memory on both read and write cycles. 

Table 8.1 notMemCE to ProcClockOut skew 

TB01-30 TB01-25 TB01-20 

SYMBOL PARAMETER MIN MAX MIN MAX MIN MAX NOTE 

TPCHEL notMemCE falling 6 10 8 12 10 14 1 
from ProcClockOut rising 

TPCLEH ProcClockOut falling 6 10 8 12 10 14 1 
to notMemCE rising 

Notes 

Units are ns. 

ProcClockOut ~ j TPCHEL 

~ 

~ J TPCLEH 

J= notMemCE 

Figure 8.2 IMS T801 skew of notMemCE to ProcClockOut 



8 External memory interface 

Clockln 
(5 MHz) 

LinkOln 

LinkOOut 

Link11n 
Link10ut 

Link21n 
Link20ut 

Link31n 
Link30ut 

Reset 
Analyse 
MemWait 
MemReq 

100~i 
GND 
~ 

56R 

j As LinkO 

.JI--
56R 

As Link2 

I 

~~ CapPlus 
CapMinus 

- ErrorOut 

-notMemCE 
- notMemWrBO 
- notMemWrB1 
- notMemWrB2 
- notMemWrB3 

IMS 
- MemDO-7 

T801 -MemD8-15 

- MemD16-23 

- MemD24-31 

- MemGranted 

J l 
MemA2-31 

CC V J;; J;; III -t" J;; 
GND T T "'!- ";" T 

'--

'--

~*4 '--

~iC 
K*4 - ~tic 

64K.4 ~ rz-
Static 
RAM ~ 

L. ~ 

Figure 8.3 IMS T801 static RAM application 

8.1.4 notMemWrBO-3 

161 

K.4 

~iC 

rz-' 

I 

Four write enables notMemWrBO-3 are provided, one to write each byte of a word. When writing a word, the 
four appropriate write enables are asserted; when writing a byte only the appropriate write enable is asserted. 

8.1.5 MemWait 

Wait states can be selected by taking MemWait high. Externally generated wait states of one complete 
processor cycle can be added to extend the duration of T2 indefinitely. 

8.1.6 MemReq, MemGranted 

Direct memory access (DMA) can be requested at any time by driving the asynchronous MemReq input high. 

MemGranted follows the timing of the bus being tristated and can be used to signal to the device requesting 
the DMA that it has control of the bus. Note that MemGranted changes on the falling edge of ProcClockOut 
and can therefore be sampled to establish control of the bus on the rising edge of ProcClockOut. 



162 5 IMS T801 engineering data 

8.1.7 ProcClockOut 

This clock is derived from the internal processor clock, which is in turn derived from Clockln. Its period is 
equal to one internal microcode cycle time, and can be derived from the formula 

TPCLPCL = TDCLDCL / PLLx 

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the Clockln Period and PLLx is the phase 
lock loop factor for the relevant speed part, obtained from the ordering details (Ordering section). 

Edges of the various external memory strobes are synchronised by, but do not all coincide with, rising or 
falling edges of ProcClockOut. 

Table 8.2 ProcClockOut 

SYMBOL PARAMETER 
TPCLPCL ProcClockOut period 
TPCHPCL ProcClockOut pulse width high 
TPCLPCH ProcClockOut pulse width low 
TPCstab ProcClockOut stability 

Notes 

1 • is TDCLDCLlPLLx. 

2 b is 0.5. TPCLPCL (half the processor clock period). 

3 cis TPCLPCL-TPCHPCL. 

MIN 
a-1 

b-2.5 

NOM MAX UNITS NOTE 
a a+1 ns 1 
b b+2.5 ns 2 
c ns 3 

4 % 4 

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points on 
the cycles. 

1.5v - - - - - ----{---- - ~ 
TPCLPCH TPCHPCL 

TPCLPCL 

Figure 8.4 IMS T801 ProcClockOut timing 



8 External memory interface 163 

8.2 Read cycle 

Read cycle data may be set up on the bus at any time after the start of T1, but must be valid when the 
IMS T801 reads it during T4. Data can be removed any time after the rising edge of notMemCE, but must 
be off the bus no later than the middle of T1, which allows for bus turn-around time before the data lines are 
driven at the start of T2 in a processor write cycle. 

Byte addressing is carried out internally by the IMS T801 for read cycles. 

Table 8.3 Read cycle 

T801-30 T801-25 T801-20 
SYMBOL PARAMETER MIN MAX MIN MAX MIN 
TAVEL Address valid before chip enable low 6 8 10 
TELEH Chip enable low 48 53 58 64 72 
TEHEL Delay before chip enable re-assertion 14 16 20 
TEHAX Address hold after chip enable high 6 8 10 
TELDrV Data valid from chip enable low 0 34 0 40 0 
TAVDrV Data valid from address valid 0 40 0 48 0 
TDrVEH Data setup before chip enable high 14 18 25 
TEHDrZ Data hold after chip enable high 0 14 0 16 0 
TWEHEL Write enable setup before chip enable 14 16 20 

low 
TPCHEL ProcClockOut high to chip enable low 6 8 10 

Notes 

1 This parameter is common to read and write cycles and to byte-wide memory accesses. 

2 These values assume back-to-back external memory accesses. 

3 Units are ns. 

4 Timing is for all four write enables notMemWrBO-3. 

Tstates I T1 I T2 I T3 I T 4 I T1 

ProcClockOut 

MemA2-31 

notMemCE 

DataO-31 

---=:L TWEHEl 

notMemWrBO-3 -~--7----------'\'========== 
Figure 8.5 IMS T801 external read cycle 

MAX 

78 

47 
57 

20 

NOTE 
1,3 
1,3 

1,2,3 
1,3 
3 
3 
3 
3 

3,4 

1,3 



164 5 IMS TS01 engineering data 

S.3 Write cycle 

For write cycles the relevant bytes in memory are addressed by the write enables notMemWrBO-3. If a par­
ticular byte is not to be written, then the corresponding data outputs are tristated. notMemWrBO addresses 
the least significant byte. 

The write enables are gated with the chip enable signal notMemCE, allowing them to be used without 
notMemCE for simple designs. 

Data may be strobed into memory using notMemWrBO-3 without the use of notMemCE, as the write enables 
go high between consecutive external memory write cycles. 

Write data is placed on the data bus at the start of T2 and removed at the end of T4. The write cycle is 
completed with notMemCE going high. 

Table 8.4 Write cycle 

TS01-30 TS01-25 TS01-20 

SYMBOL PARAMETER MIN MAX MIN MAX MIN 

TDwVEH Data setup before chip enable high 33 40 50 

TEHDwZ Data hold after write 6 10 8 12 10 

TDwZEL Write data invalid to next chip enable 6 8 10 

TWELEL Write enable setup to chip -1 0 -2 0 -3 
enable low 

TEHWEH Write enable hold after chip enable 0 1 0 2 0 
high 

Notes 

Units are ns. 

2 Timing is for all four write enables notMemWrBO·3. 

Tstates I T1 I T2 I T3 I T4 I T1 

ProcClockOut 

MemA2-31 ==X~ ______ --,X'-___ _ 
notMemCE 

DataO-31 

TDwVEH t 
~----., i TDwZEL 

>-+--< 
\~TEHDwZ 

:J TWELEL r;:: TEHWEH 

notMemWrBO-3 _==:o'\ __ L-_____ -'-l ____ _ 

Figure 8.6 IMS T801 external write cycle 

MAX 

15 

0 

3 

NOTE 

1 

1 

1 

1,2 

1,2 



8 External memory interface 165 

8.4 Wait 

Taking MemWait high with the timing shown in the diagram will extend the duration of T2 by one processor 
cycle TPCLPCL. One wait state comprises the pair W1 and W2. MemWait is sampled during T2, and should 
not change state in this region. If MemWait is still high when sampled in W2 then another wait period will be 
inserted. This can continue indefinitely. Internal memory access is unaffected by the number of wait states 
selected. 

The wait state generator can be a simple digital delay line, synchronised to notMemCE. The Single Wait 
State Generator circuit in figure 8.7 can be extended to provide two or more wait states, as shown in figure 
8.8. 

Table 8.5 Memory wait 

TS01-30 TS01-25 TS01-20 

SYMBOL PARAMETER MIN MAX MIN MAX MIN MAX NOTE 

TPCHWtH MemWait asserted after 16 20 25 
ProcClockOut high 

TAVWtH MemWait asserted after 16 20 25 
Address valid 

TPCHWtL Wait low after 22 28 35 
ProcClockOut high 

Notes 

Units are ns. 

Tstates T1 I T2 I W1 I W2 I T3 I T 4 I T1 

ProcClockOut 

I----------------~~----
MemA2-31 ~ X'-___ _ 
notMemCE 

TAVWtH 
TPCHWtH 

MemWait 

OataO-31 ~}---~('--_______ >----c= 
notMemWrBO-3 ~ I 

Figure 8.7 IMS T801 memory wait timing 

1 

1 

1 



166 

notMemCE 

VCC ---l~ 
1/2 74F74 

~S 
L-c R 

5 IMS T801 engineering data 

notMemCE -------I D Q 1----....... MemWait 
ProcClockOut CP 

Figure 8.7 Single wait state generator 

r- - - - - - - - -I 

-'~------"------'r-VCC 

S S 
R R 

.-----1 D Q I----l----I D Q 1----'---- MemWait 

GND CP CP 

1/2 74F74 1/2 74F74 
ProcClockOut --------__ -------------4~~----------4_-

L-. ______ __ I 

Figure 8.8 Extendable wait state generator 



8 External memory interface 167 

8.5 Direct memory access 

Direct memory access (DMA) can be requested at any time by driving the asynchronous MemReq input 
high. MemReq is sampled during T1 of the processor cycle and the DMA device will then have control of 
the bus at the beginning of the next processor cycle, (after one ProcClockOut for internal accesses and 
two ProcClockOut cycles for external memory accesses, without wait states). When the processor transfers 
control of the bus the signals MemA2-31, notMemWrBO-3 and notMemCE are tristated and MemGranted 
is asserted high. MemGranted follows the timing of the bus being tristated and can be used to signal to 
the device requesting the DMA that it has control of the bus. Note that MemGranted changes on the falling 
edge of ProcClockOut and can therefore be sampled to establish control of the bus on the rising edge of 
ProcClockOut. During the DMA cycles, MemReq is sampled during each high phase of ProcClockOut and 
after it is taken low, control of the bus will be returned to the processor within two ProcClockOut cycles. 

The processor is still able to access its internal memory while the DMA transfer proceeds, however when an 
external memory request is made the processor is forced to wait until the end of the DMA request. The DMA 
device has no access to the transputer's internal memory. 

While control of the bus is being transferred from the processor to the DMA device, an extra clock phase, 
(one quarter of a ProcClockOut cycle) is allowed before the DMA transfer begins to ensure that the not­
MemCE and notMemWrBO-3 signals have been driven high before being tristated. This normally removes 
the requirement for external pull-up resistors. 

DMA allows a bootstrap program to be loaded into external memory for execution after reset. If MemReq 
is asserted high during reset, MemGranted will be asserted high allowing access to the external memory 
before the bootstrap sequence begins. MemReq must be asserted for at least one period of TDCLDCL of 
Clockln before Reset is asserted. The DMA control circuitry should ensure that correct operation will result 
if Reset should interrupt a normal DMA cycle. 

MemReq 

MemGranted 

Reset 

Bootstrap 
activity 

B Bootstrap sequence 

Figure 8.9 IMS T801 DMA sequence at reset 



168 5 IMS T801 engineering data 

Table 8.6 Memory request 

T801·30 T801·25 T801·20 

SYMBOL PARAMETER MIN MAX MIN MAX MIN MAX NOTE 

TMRHMGH Memory request response time 58 a 70 a 85 a 1,2 

TMRLMGL Memory request end response 60 66 75 80 90 100 2 
time 

TAZMGH Address bus tristate before 0 0 0 2 
MemGranted 

TDZMGH Data bus tristate before 0 0 0 2 
MemGranted 

Notes 

Maximum response time a depends on whether an external memory cycle is in progress. Maximum time is 
(2 processor cycles) + (number of wait state cycles) for word access. 

2 Units are ns. 

Tstate I T1 I T2 I T3 I T4 I T1 I T2 I Tn I T4 I T1 I T2 I T3 I T4 I T1 I 
ProcClockOut 

notMemCE 

notMemWrBO·3 

MemA2·31 

OataO·31 

MemReq 

TMRHMGH TMRLMGL 

MemGranted 

Write TriState DMA Write 

Figure 8.10 IMS T801 memory request timing 



169 

9 Events 

EventReq and EventAck provide an asynchronous handshake interface between an external event and an 
internal process. When an external event takes EventReq high the external event channel (additional to the 
external link channels) is made ready to communicate with a process. When both the event channel and the 
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck 
is removed after EventReq goes low. 

EventWaiting is asserted high by the transputer when a process executes an input on the event channel; 
typically with the occam EVENT ? ANY instruction. It remains high whilst the transputer is waiting for or 
servicing EventReq and is returned low when EventAck goes high. The EventWaiting pin changes near the 
falling edge of ProcClockOut and can therefore be sampled by the rising edge of ProcClockOut. 

The EventWaiting pin can only be asserted by executing an in instruction on the event channel. The 
EventWaiting pin is not asserted high when an enable channel (enbc) instruction is executed on the Event 
channel (during an ALTconstruct in occam, for example). The EventWaiting pin can be asserted by executing 
the occam input on the event channel (such as Event? ANY), provided that this does not occur as a 
guard in an alternative process. The EventWaiting pin can not be used to signify that an alternative process 
(AL T) is waiting on an input from the event channel. 

EventWaiting allows a process to control external logic; for example, to clock a number of inputs into a 
memory mapped data latch so that the event request type can be determined. 

Only one process may use the event channel at any given time. If no process requires an event to occur 
EventAck will never be taken high. Although EventReq triggers the channel on a transition from low to high, 
it must not be removed before EventAck is high. EventReq should be low during Reset; if not it will be 
ignored until it has gone low and returned high. EventAck is taken low when Reset occurs. 

If the process is a high priority one and no other high priority process is running, the latency is as described 
on page 136. Setting a high priority task to wait for an event input allows the user to interrupt a transputer 
program running at low priority. The time taken from asserting EventReq to the execution of the microcode 
interrupt handler in the CPU is four cycles. The following functions take place during the four cycles: 

Cycle 1 Sample EventReq at pad on the rising edge of ProcClockOut and synchronise. 

Cycle 2 Edge detect the synchronised EventReq and form the interrupt request. 

Cycle 3 Sample interrupt vector for microcode ROM in the CPU. 

Cycle 4 Execute the interrupt routine for Event rather than the next instruction. 



170 

Table 9.1 Event 

SYMBOL PARAMETER 
TVHKH Event request response 
TKHVL Event request hold 
TVLKL Delay before removal of event acknowledge 
TKLVH Delay before re-assertion of event request 
TKHEWL Event acknowledge to end of event waiting 
TKLEWH End of event acknowledge to event waiting 

Notes 

a is 3 processor cycles TPCLPCL. 

EventReq 
TVHKH 

TKHVL 

EventAck 

TKHEWL 

EventWaiting t 
Process waiting for Event 

5 IMS T801 engineering data 

MIN NOM 
0 
0 
0 
0 
0 
0 

TVLKL 

TKLVH 

TKLEWH 

MAX UNITS 
ns 
ns 

a+5 ns 
ns 
ns 
ns 

Event waiting for Process 

NOTE 

1 

Figure 9.1 IMS T801 event timing 



171 

10 Links 

Four identical INMOS bi-directional serial links provide synchronized communication between processors 
and with the outside world. Each link comprises an input channel and output channel. A link between two 
transputers is implemented by connecting a link interface on one transputer to a link interface on the other 
transputer. Every byte of data sent on a link is acknowledged on the input of the same link, thus each signal 
line carries both data and control information. 

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one 
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first. 
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed 
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte 
and that the receiving link is able to receive another byte. The sending link reschedules the sending process 
only after the acknowledge for the final byte of the message has been received. 

The IMS T801 links allow an acknowledge packet to be sent before the data packet has been fully received. 
This overlapped acknowledge technique is fully compatible with all other INMOS transputer links. 

The IMS T801 links support the standard INMOS communication speed of 10 Mbitslsec. In addition they 
can be used at 20 Mbits/sec for IMS T801-20 and IMS T801-25. Links are not synchronised with Clockln 
or ProcClockOut and are insensitive to their phases. Thus links from independently clocked systems may 
communicate, providing only that the clocks are nominally identical and within specification. 

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a 
single printed circuit board or between two boards via a backplane. Direct connection may be made between 
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 Ohm 
transmission line should be used with series matching resistors RM. When this is done the line delay should 
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent. 

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within 
the skew tolerance of the link, although the absolute value of the delay is immaterial. 

Link speeds can be set by LinkSpeed. LlnkSpeed allows Links 0, 1, 2 or 3 to be set to 10 or 20 Mbitslsec. 
Table 10.1 shows uni-directional and bi-directional data rates in Kbyteslsec for each link speed. Data rates 
are quoted for a transputer using internal memory, and will be affected by a factor depending on the number 
of external memory accesses and the length of the external memory cycle. 

Table 10.1 Speed Settings for Transputer Links 

Link Kbytes/sec 
Special Mbits/sec Uni 

0 10 910 
1 20 1740 

.JH'H101112131 4 151s171L, 

I Data I 

Bi 
1250 
2350 

JHl_L..I-' _ 
I Ack I 

Figure 10.1 IMS T801 link data and acknowledge packets 



172 5 IMS T801 engineering data 

Table 10.2 Link 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TJQr LinkOut rise time 20 ns 1 
TJQf LinkOut fall time 10 ns 1 
TJDr Linkln rise time 20 ns 1 
TJDf Linkln fali time 20 ns 1 
TJQJD Buffered edge delay 0 ns 
TJBskew Variation in T JQJD 20 Mbits/s 3 ns 2 

10 Mbits/s 10 ns 2 
CLiZ Linkln capacitance @ f=1MHz 7 pF 1 
Cll LinkOut load capacitance 50 pF 
RM Series resistor for 100n transmission line 56 ohms 

Notes 

These parameters are sampled, but are not 100% tested. 

2 This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by 
such things as short term variation in supply voltages and differences in delays for rising and falling edges. 

90% 
LinkOut 

10% 

90% - - - - - - - ..rc=-==-==-=-=. 
linkln 

10% - - - - -

Figure 10.2 IMS T801 link timing 

LinkO:~S~~~~ - -;: - - -

Earliest TJQJD ~ 

Linkln 1.5V----~ ~ ~---t:'--
TJBskew~ 1-+ 

Figure 10.3 IMS T801 buffered link timing 

TJQf 



10 Links 

Transputer family device A 

unkOut·1 

Linkln 
I 

Linkln 

LinkOut 

Transputer family device B 

Figure 10.4 IMS T801 Links directly connected 

Transputer family device A Zo=1000hms 

L1nkOut ~ L1nkln 

Linkln ~ LinkOut 
-------'=-------'-' Zo=1000hms RM Transputer family device B 

Figure 10.5 IMS T801 Links connected by transmission line 

Transputer family device A 

LinkOut ~ Linkln 
buffers 

Linkln <}- LinkOut 
Transputer family device B 

Figure 10.6 IMS T801 Links connected by buffers 

173 



174 

11 Electrical specifications 

11.1 DC electrical characteristics 

Table 11.1 Absolute maximum ratings 

SYMBOL PARAMETER MIN MAX UNITS NOTE 
VCC DC supply voltage 0 7.0 V 1,2,3 
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3 
II Input current ±25 mA 4 
OSCT Output short circuit time (one pin) 1 s 2 
TS Storage temperature -65 150 °C 2 
TA Ambient temperature under bias -55 125 °C 2 
PDmax Maximum allowable dissipation 2 W 

Notes 

All voltages are with respect to GND. 

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those 
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may 
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods 
may affect reliability. 

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical 
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the 
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate 
logic level such as vee or GND. 

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND 
and vee. 

Table 11.2 Operating conditions 

SYMBOL PARAMETER MIN MAX UNITS NOTE 
vec DC supply voltage 4.75 5.25 V 
VI, VO Input or output voltage 0 VCC V 
CL Load capacitance on any pin 60 pF 
TA Operating temperature range 0 70 °C 

Notes 

All voltages are with respect to GND. 

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics. 

3 Air flow rate 400 linear It/min transverse air flow. 

1 
1,2 

3 



11 Electrical specifications 175 

Table 11.3 DC characteristics 

SYMBOL PARAMETER MIN MAX UNITS NOTE 
VIH High level input voltage 2.0 VCC+0.5 V 1,2 
VIL Low level input voltage -0.5 0.8 V 1,2 
II Input current . @GND<VkVCC ±10 p.A 1,2 
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2 
VOL Output low voltage @ IOL=4mA 0.4 V 1,2 
lOS Output short circuit current @ GND<VO<VCC 36 65 mA 1,2,3,6 

65 100 mA 1,2,4,6 
10Z Tristate output current @ GND<VO<VCC ±10 p.A 1,2 
PD Power dissipation 1.2 W 2,5 
CIN Input capacitance @f=1MHz 7 pF 6 
COZ Output capacitance @ f=1MHz 10 pF 6 

Notes 

All voltages are with respect to GND. 

2 Parameters for IMS TS01-S measured at 4.7SV<VCC<S.2SV and 0°C<TA<70°C. 
Input clock frequency = 5 MHz. 

3 Current sourced from non-link outputs excluding ProcClockOut. 

4 Current sourced from link outputs and ProcClockOut. 

5 Power dissipation varies with output loading and program execution. 
Power dissipation for processor operating at 20 MHz. 

6 This parameter is sampled and not 100% tested. 

11_2 Equivalent circuits 

VCC -r----

R1[) Load for: R1 

Output I .... Link outputs 1K96 
I ..... 

~, Other outputs 970R 

= [ )R2 
""'F-

50pF = ~~ Diodes are 1 N916 

~~ 
GND 

R2 

47K 
24K 

Figure 11.1 Load circuit for AC measurements 

Equivalent load: 

1 Schottky TTL input 
2 Schottky TTL inputs 



176 5 IMS T801 engineering data 

Vdd-1 

~ Inputs 
OV 

Vdd-1 V Inputs VIL 
OV -----./ 

tpHL 

Vdd ~.5V Outputs 
OV 

tpLH 

Vdd I 

Outputs y,.SV 
OV 

Figure 11.2 AC measurements timing waveforms 

Test point 
Output under test 

GND 

510R 

t 

VCC 

Figure 11.3 Tristate load circuit for AC measurements 

11.3 AC timing characteristics 

Table 11.4 Input, output edges 

SYMBOL PARAMETER MIN MAX 
TOr Input rising edges 2 20 
TOf Input falling edges 2 20 
TOr Output rising edges 25 
TOf Output falling edges 15 

Notes 

1 Non-link pins; see section on links. 

2 All inputs except Clockln; see section on Clockln. 

3 These parameters are not tested. 

4 These parameters are sampled, but are not 100% tested. 

UNITS NOTE 
ns 1,2,3 
ns 1,2,3 
ns 1,4 
ns 1,4 



11 Electrical specifications 177 

90% 90% --mK--m-
----- -- ------
TOf 

m--X------
----- -- ------
TOr 

10% 10% 

__ m)\ _____ _ 
----- -- ------
Tat 

-----x----------- -- ------
Tar 

90% 90% 

10% 10% 

Figure 11.4 IMS T801 input and output edge timing 

30 30 Rise time 

Time 20 
ns 

10 

Rise time 

Fall time 
Time 20 

ns 

10 

Fall time 

Skew 

40 60 80 100 40 60 80 100 

Notes 

Load Capacitance pF 
Link and ProcClockOut 

Figure 11.5 Typical rise/fall times 

Load Capacitance pF 
EMI 

Skew is measured between notMemCE with a standard load (2 Schottky TTL inputs and 30 pF) and notMemCE 
with a load of 2 Schottky TTL inputs and varying capacitance. 

11.4 Power rating 

Internal power dissipation PINT of transputer and peripheral chips depends on VCC, as shown in figure 11.6. 
PINT is substantially independent of temperature. 

Total power dissipation PD of the chip is 

where PIQ is the power dissipation in the input and output pins; this is application dependent. 

Internal working temperature TJ of the chip is 

where TA is the external ambient temperature in °C and ()JA is the junction-to-ambient thermal resistance in 
°CIW. ()JA for each package is given in the Packaging Specifications section. 



178 

800 

700 

Power 
PINT 600 
mW 

500 

..,.... ..,.... 

..,.... ..,.... 

5 IMS T801 engineering data 

..,.... T801-30 (projected) ..,.... 
..,....""'" T801-25 

..,....""'" T801-20 

4.4 4.6 4.8 5.0 5.2 5.4 5.6 
vee Volts 

Figure 11.6 IMS T801 internal power dissipation vs vee 

- -:-
650-

-
Power 600- + 

PO -
mW 550-

- + 
500-

I I I I I I I I I I I I I 

15 20 25 30 
Processor frequency MHz 

Figure 11.7 IMS T801 typical power dissipation with processor speed 



179 

12 Performance 

The performance of the transputer is measured in terms of the number of bytes required for the program, and 
the number of (internal) processor cycles required to execute the program. The figures here relate to occam 
programs. For the same function, other languages should achieve approximately the same performance as 
occam. 

With transputers incorporating an FPU, this type of performance calculation is straight forward when consider­
ing only integer data types. However, when floating point calculations using the REAL32 and REAL64 data 
types are present in the program, complications arise due to the concurrency inherent in the transputer's de­
sign whereby integer calculations can be overlapped with floating point calculations. A more comprehensive 
guide to the impact of this concurrency on transputer performance can be found in the Transputer Instruction 
Set - A Compiler Writers' Guide. 

12.1 Performance overview 

These figures are averages obtained from detailed simulation, and should be used only as an initial guide; 
they assume operands are of type INT. The abbreviations in table 12.1 are used to represent the quantities 
indicated. In the replicator section of the table, figures in braces {} are not necessary if the number cf 
replications is a compile time constant. To estimate performance, add together the time for the variable 
references and the time for the operation. 

Table 12.1 Key to performance table 

np number of component processes 
ne number of processes earlier in queue 
r 1 if INT parameter or array parameter, 0 if not 
ts number of table entries (table size) 
w width of constant in nibbles 
p number of places to shift 
Eg expression used in a guard 
Et timer expression used in a guard 
Tb most significant bit set of multiplier ((-1) if the multiplier is 0) 
Tbp most significant bit set in a positive multiplier when counting from zero ((-1) if the multiplier is 0) 
Tbc most significant bit set in the two's complement of a negative multiplier 
nsp Number of scalar parameters in a procedure 
nap Number of array parameters in a procedure 



180 5 IMS T801 engineering data 

Table 12.2 Performance 

Size (bytes) Time (cycles) 

Names 
variables 

in expression 
assigned to or input to 
in PROC or FUNCTION call, 

corresponding to an INT parameter 
channels 

Array Variables (for single dimension arrays) 
constant subscript 
variable subscript 
expression subscript 

Declarations 
CHAN OF protocol 
[size] CHAN OF protocol 
PROC 

Primitives 
assignment 
input 
output 
STOP 
SKIP 

Arithmetic operators 
+ -
* 
/ 
REM 
» « 

Modulo Arithmetic operators 
PLUS 
MINUS 
TIMES (fast multiply, positive operand) 
TIMES (fast multiply, negative operand) 

Boolean operators 
OR 
AND NOT 

Comparison operators 
= constant 
= variable 
<> constant 
<> variable 
> < 
>= <= 

Bit operators 
/\ \I >< 

Expressions 
constant in expression 
check if error 

1.1+r 
1.1+r 

1.1+r 
1.1 

o 
5.3 
5.3 

3.1 
9.4 

body+2 

o 
4 
1 
2 
o 

1 
2 
2 
2 
2 

2 
1 
1 
1 

4 
1 

o 
2 
1 
3 
1 
2 

2 

w 
4 

2.1+2(r) 
1.1+(r) 

1.1+(r) 
2.1 

o 
7.3 
7.3 

3.1 
2.2 + 20.2*size 

o 

o 
26.5 
26 
25 
o 

1 
39 
40 
38 

3+p 

2 
1 

4+Tbp 
5+Tbc 

8 
2 

1 
3 
3 
5 
2 
4 

2 

w 
6 



12 Performance 181 

Table 12.3 Performance 

Size (bytes) Time (cycles) 

Timers 
timer input 2 3 
timer AFTER 

if past time 2 4 
with empty timer queue 2 31 
non-empty timer queue 2 38+ne*9 

ALT (timer) 
with empty timer queue 6 52 
non-empty timer queue 6 59+ne*9 
timer alt guard 8+2Eg+2Et 34+2Eg+2Et 

Constructs 
SEQ 0 0 
IF 1.3 1.4 

if guard 3 4.3 
ALT (non timer) 6 26 

alt channel guard 10.2+2Eg 20+2Eg 
skip alt guard 8+2Eg 10+2Eg 

PAR 11.5+(np-1)* 7.5 19.5+(np-1 )*30.5 
WHILE 4 12 

Procedure or function call 
3.5+(nsp-2)*1.1 16.5+(nsp-2)*1.1 

+nap*2.3 +nap*2.3 

Replicators 
replicated SEQ 7.3{ +5.1} (-3.8)+ 15.1 *count{ +7.1 } 
replicated IF 12.3{+5.1} (-2.6)+ 19.4*count{ +7.1} 
replicated ALT 24.8{+10.2} 25.4+33.4*count{ + 14.2} 
replicated timer ALT 24.8{+10.2} 62.4+33.4*count{ + 14.2} 
replicated PAR 39.1{+5.1} (-6.4)+70.9*count{ +7.1 } 

12.2 Fast multiply, TIMES 

The IMS T801 has a fast integer multiplication instruction product. For a positive multiplier its execution time 
is 4+ Tbp cycles, and for a negative multiplier 5+ Tbc cycles (table 12.1). The time taken for a multiplication 
by zero is 3 cycles. 

Implementations of high level languages on the transputer may take advantage of this Instruction. For example, 
the occam modulo arithmetic operator TIMES is implemented by the instruction and the right-hand operand is 
treated as the multiplier. The fast multiplication instruction is also used in high level language implementations 
for the multiplication implicit in mUlti-dimensional array access. 



182 5 IMS T801 engineering data 

12.3 Arithmetic 

A set of functions are provided within the development system to support the efficient implementation of 
multiple length integer arithmetic. In the IMS T801, floating point arithmetic is taken care of by the FPU. In 
table 12.4 n gives the number of places shifted and all arguments and results are assumed to be local. Full 
details of these functions are provided in the occam reference manual, supplied as part of the development 
system and available as a separate publication. 

When calculating the execution time of the predefined maths functions, no time needs to be added for calling 
overhead. These functions are compiled directly into special purpose instructions which are designed to 
support the efficient implementation of multiple length integer arithmetic and floating point arithmetic. 

Table 12.4 Arithmetic performance 

+ cycles for 
Function Cycles parameter access t 

LONGADO 2 7 
LONGSUM 3 8 
LONGSOB 2 7 
LONGO IFF 3 8 
LONGPROO 34 8 
LONGOIV 36 8 
SBIF'l'RIGBT (n<32) 4+n 8 

(n>=32) n-27 
SBIFTLEFT (n<32) 4+n 8 

(n>=32) n-27 
NORMALISE (n<32) n+6 7 

(n>=32) n-25 
(n=64) 4 

ASBIFTRIGBT SBIFTRIGBT+2 5 
ASBIFTLEFT SBIFTLEFT+4 5 
ROTATERIGHT SHIF'l'RIGHT 7 
ROTATELEFT SBIFTLEFT 7 
FRACMUL LONGPROO+4 5 

t Assuming local variables. 



12 Performance 183 

12.4 Floating point operations 

All references to REAL32 or REAL 64 operands within programs compiled for the IMS T801 normally produce 
the following performance figures. 

Table 12.5 Floating point performance 

Size (bytes) REAL32 Time (cycles) REAL64 Time (cycles) 

Names 
variables 

in expression 3.1 3 5 
assigned to or input to 3.1 3 5 
in PROC or FUNCTION call, 

corresponding to a REAL 
parameter 1.1+r 1.1+r 1.1+r 

Arithmetic operators 
+ - 2 7 7 

* 2 11 20 
/ 2 17 32 
REM 11 19 34 

Comparison operators 
= 2 4 4 
<> 3 6 6 
> < 2 5 5 
>= <= 3 7 7 

Conversions 
REAL32 to- 2 3 
REAL64 to- 2 6 
To INT32 from - 5 9 9 
To INT64 from - 18 32 32 
INT32 to- 3 7 7 
INT64 to- 14 24 22 

12.4.1 Floating pOint functions 

These functions are provided by the development system. They are compiled directly into special purpose 
instructions designed to support the efficient implementation of some of the common mathematical functions 
of other languages. The functions provide ABS and SQRT for both REAL32 and REAL64 operand types. 

Table 12.6 IMS T801 floating point arithmetic performance 

+ cycles for parameter access t 
Function Cycles REAL32 REAL 64 
ABS 2 8 
SQRT 118 8 
DABS 2 12 
DSQRT 244 12 

t Assuming local variables. 



184 5 IMS TB01 engineering data 

12.4.2 Special purpose functions and procedures 

The functions and procedures given in tables 12.8 and 12.9 are provided by the development system to give 
access to the special instructions available on the IMS T801. Table 12.7 shows the key to the table. 

Table 12.7 Key to special performance table 

Tb most significant bit set in the word counting from zero 
n number of words per row (consecutive memory locations) 
r number of rows in the two dimensional move 
nr number of bits to reverse 

Table 12.8 Special purpose functions performance 

+ cycles for 
Function Cycles parameter access t 

BITCOUNT 2+Tb 2 
CRCBYTE 11 8 
CRCWORD 35 8 
BITREVNBIT 5+nr 4 
BITREVWORD 36 2 

t Assuming local variables. 

Table 12.9 Special purpose procedures performance 

+ cycles for 
Procedure Cycles parameter access t 

MOVE2D 8+(2n+23)*r B 
DRAW2D 8+(2n+23).r 8 
CLIP2D 8+(2n+23)*r 8 

t Assuming local variables. 

12.5 Effect of external memory 

Extra processor cycles may be needed when program and/or data are held in external memory, depending 
both on the operation being performed, and on the speed of the external memory. After a processor cycle 
which initiates a write to memory, the processor continues execution at full speed until at least the next 
memory access. 

Whilst a reasonable estims.te may be made of the effect of external memory, the actual performance will 
depend upon the exact nature of the given sequence of operations. 

External memory is characterized by the number of extra processor cycles per external memory cycle, denoted 
as e. The value of e for the IMS T801 is greater than or equal to 1. 

If a program is stored in external memory, and e has the value 2 or 3, then no extra cycles need be estimated 
for linear code sequences. For larger values of e, the number of extra cycles required for linear code 
sequences may be estimated at (e-3)/4. A transfer of control may be estimated as requiring e+3 cycles. 

These estimates may be refined for various constructs. In table 12.10 n denotes the number of components 
in a construct. In the case of IF, the n'th conditional is the first to evaluate to TRUE, and the costs include the 
costs of the conditionals tested. The number of bytes in an array assignment or communication is denoted 
by b. 



12 Performance 185 

Table 12.10 External memory performance 

IMS T801 
Program off chip Data off chip 

Boolean expressions e-2 0 
IF 3en-8 en 
Replicated IF (6e-4)n+7 (5e-2)n+8 
Replicated SEQ (3e-3)n+2 (4e-2)n 
PAR (3e-1)n+8 3en+4 
Replicated PAR (10e-8)n+8 16en-12 
ALT (2e-4)n+6e (2e-2)n+ 1 Oe-8 
Array assignment and 0 max (2e, e(b/2)) 

communication in 
one transputer 

The following simulation results illustrate the effect of storing program and/or data in external memory. The 
results are normalized to 1 for both program and data on chip. The first program (Sieve of Erastosthenes) 
is an extreme case as it is dominated by small, data access intensive loops; it contains no concurrency, 
communication, or even multiplication or division. The second program is the pipeline algorithm for Newton 
Raphson square root computation. 

Table 12.11 IMS T801 external memory performance 

Program e=2 e=3 e=4 e=5 On chip 
Program off chip 1 1.3 1.5 1.7 1.9 1 

2 1.1 1.2 1.2 1.3 1 

Data off chip 1 1.5 1.8 2.1 2.3 1 
2 1.2 1.4 1.6 1.7 1 

Program and data off chip 1 1.8 2.2 2.7 3.2 1 
2 1.3 1.6 1.8 2.0 1 

12.6 Interrupt latency 

If the process is a high priority one and no other high priority process is running, the latency is as described 
in table 12.12. The timings given are in full processor cycles TPCLPCL; the number of Tm states is also 
given where relevant. Maximum latency assumes all memory accesses are internal ones. 

Table 12.12 Interrupt latency 

Typical Maximum 
TPCLPCL Tm TPCLPCL Tm 

IMS T801 with FPU in use 19 38 78 156 

IMS T801 with FPU not in use 19 38 58 116 



186 

13 Package specifications 

13.1 100 pin grid array package 

I-(nde~ 2 3 4 5 6 7 8 9 10 

A A21 A23 A25 A26 A30 A31 D2 D5 D6 D13 

B A5 A9 A11 A24 A29 GND D3 D7 VCC D14 

C A4 A6 A8 A22 A10 DO D4 D9 D12 D16 

D GND A2 A3 A7 A27 D1 D8 D10 D15 D17 

E A17 A19 A18 A20 A28 D11 D18 D19 D20 D21 

F A16 A15 A14 A13 Reset Error D24 GND D23 D22 Out 

not not Link Link 
G A12 Mem Mem GND In1 Speed D31 D27 D26 D25 

WrB2 WrBO 

not Mem Mem Link Link Proc Proc H Mem Wait Req Out3 InO Clock GND Speed1 D30 D28 
WrB3 Out 

not Mem Event Link Link Event Boot 
J Mem Granted Req In2 Out1 Waiting Clockln From Analyse D29 

WrB1 Rom 

not Event Link Link Link Cap Cap Proc Proc 
K Mem VCC 

CE Ack In3 Out2 OutO Plus Minus SpeedO Speed2 

Figure 13.1 IMS T801 100 pin grid array package pinout - top view 



13 Package specifications 

..... M -i E r index , ~ I 10 9 8 7 6 5 4 3 2 1 

rr =iFr@@@@@@@@@@A ~ @@@@@@@@@@ B 

@@@@@@@@@@ C 

@@@@@@@@@@ 0 

@@@@@@@@@@ E 
AB1 K k @@@@@@@@@@ F 

-I 
1 

@@@@@@@@@@ G 

@@@@@@@@@@ H 

:L @@@@@@@@@@ J 

.. ' 

Figure 13.2 100 pin grid array package dimensions 

Table 13.1 100 pin grid array package dimensions 

Millimetres Inches 
DIM NOM TOl NOM TOl Notes 

A 26.924 ±0.254 1.060 ±0.010 
B1 17.019 ±0.127 0.670 ±O.OOS 
B2 18.796 ±0.127 0.740 ±0.005 
C 2.4S6 ±0.278 0.097 ±0.011 
D 4.S72 ±0.127 0.180 ±0.005 
E 3.302 ±0.127 0.130 ±O.OOS 
F 0.457 ±0.051 0.018 ±0.002 Pin diameter 
G 1.143 ±0.127 0.045 ±0.005 Flange diameter 
K 22.860 ±0.127 0.900 ±0.005 
L 2.S40 ±0.127 0.100 ±O.OOS 
M 0.S08 0.020 Chamfer 

Table 13.2 100 pin grid array package junction to ambient thermal resistance 

PARAMETER 
At 400 linear ftlmin transverse air flow 

187 



188 

14 Ordering 

This section indicates the designation of speed and package selections for the various devices. Speed of 
Clockln is 5 MHz for all parts. Transputer processor cycle time is nominal; it can be calculated more exactly 
using the phase lock loop factor PLLx, as detailed in the external memory section. 

For availability contact local INMOS sales office or authorised distributor. 

Table 14.1 IMS T801 ordering details 

INMOS Processor Processor 
designation clock speed cycle time PLLx Package 

IMS T801-G20S 20.0 MHz 50 ns 4.0 Ceramic Pin Grid 
IMS T801-G25S 25.0 MHz 40 ns 5.0 Ceramic Pin Grid 
IMS T801-G30S 30.0 MHz 33 ns 6.0 Ceramic Pin Grid 

IMS T801-G20M 20.0 MHz 50 ns 4.0 Ceramic Pin Grid 



c O[fUmos 
FEATURES 

32 bit architecture 
33 ns internal cycle time 
30 MIPS (peak) instruction rate 
4.3 Mflops (peak) instruction rate 
64 bit on-chip floating point unit which conforms to 
IEEE 754 
4 Kbytes on-chip static RAM 
120 Mbytes/sec sustained data rate to internal memory 
4 Gbytes directly addressable external memory 
40 Mbytes/sec sustained data rate to external memory 
630 ns response to interrupts 
Four INMOS serial links 5/10/20 Mbits/sec 
Bi-directional data rate of 2.4 Mbytes/sec per link 
High performance graphics support with block move 
instructions 
Boot from ROM or communication links 
Single 5 MHz clock input 
Single +5V ±5% power supply 
MIL-STD-883C processing is available 

APPLICATIONS 

Scientific and mathematical applications 
High speed multi processor systems 
High performance graphics processing 
Supercomputers 
Workstations and workstation clusters 
Digital signal processing 
Accelerator processors 
Distributed databases 
System simulation 
Telecommunications 
Robotics 
Fault tolerant systems 
Image processing 
Pattern recognition 
Artificial intelligence 

42140603 

189 

IMS T800 
transputer 

Engineering Data 

System 
Services 

4k bytes 
of 

On-chip 
RAM 

External 
Memory 
Interface 

Floating Point Unit 

May 1989 



190 

1 Introduction 

The IMS T800 transputer is a 32 bit CMOS microcomputer with a 64 bit floating point unit and graphics support. 
It has 4 Kbytes on-chip RAM for high speed processing, a configurable memory interface and four standard 
INMOS communication links. The instruction set achieves efficient implementation of high level languages 
and provides direct support for the occam model of concurrency when using either a single transputer or a 
network. Procedure calls, process switching and typical interrupt latency are sub-microsecond. 

For convenience of description, the IMS T800 operation is split into the basic blocks shown in figure 1.1. 

VCC 
GND 

CapPlus 
CapMinus 

Reset 
Analyse 
Errorln 

Error 
BootFromROM 

Clockln 
ProcSpeedSelectO-2 

DisablelntRam 

ProcClockOut 
notMemSO-4 

notMemWrBQ-3 
notMemRd 
notMemRf 

MemWait 
MemConfig 

MemReq 
MemGranted 

System 
services 

4k bytes 
of 

On-Chip 
RAM 

External 
Memory 
Interface 

Floating Point Unit 

LinkSpecial 
LinkOSpecial 

~====::::;-~- Link123Speciai 

32 

LinklnO 
LinkOutO 

Linkln1 
LinkOut1 

Linkln2 
LinkOut2 

Linkln3 
LinkOut3 

F EventReq 
Event. EventAck 

MemnotWrDO 
MemnotRfD1 
MemAD2-31 

Figure 1.1 IMS T800 block diagram 

The processor speed of a device can be pin-selected in stages frqm 17.5 MHz up to the maximum allowed 
for the part. A device running at 30 MHz achieves an instruction throughput of 30 MIPS peak and 15 MIPS 
sustained. The extended temperature version of the device complies with MIL-STD-883C. 

The IMS T800 provides high performance arithrnetic and floating point operations. The 64 bit floating point unit 
provides single and double length operation to the ANSI-IEEE 754-1985 standard for floating point arithmetic. 
It is able to perform floating point operations concurrently with the processor, sustaining a rate of 2.2 Mflops 
at a processor speed of 20 MHz and 3.3 Mflops at 30 MHz. 



1 Introduction 191 

High performance graphics support is provided by microcoded block move instructions which operate at the 
speed of memory. The two-dimensional block move instructions provide for contiguous block moves as well 
as block copying of either non-zero bytes of data only or zero bytes only. Block move instructions can be used 
to provide graphics operations such as text manipulation, windowing, panning, scrolling and screen updating. 

Cyclic redundancy checking (CRC) instructions are available for use on arbitrary length serial data streams, 
to provide error detection where data integrity is critical. Another feature of the IMS T800, useful for pattern 
recognition, is the facility to count bits set in a wor~1. 

The IMS T800 can directly access a linear address space of 4 Gbytes. The 32 bit wide memory interface 
uses multiplexed data and address lines and provides a data rate of up to 4 bytes every 100 nanoseconds 
(40 Mbytes/sec) for a 30 MHz device. A configurable memory controller provides all timing, control and DRAM 
refresh signals for a wide variety of mixed memory systems. 

System Services include processor reset and bootstrap control, together with facilities for error analysiS. Error 
signals may be daisy-chained in multi-transputer systems. 

The standard INMOS communication links allow networks of transputer family products to be constructed by 
direct point to point connections with no external logic. The IMS T800 links support the standard operating 
speed of 10 Mbits/sec, but also operate at 5 or 20 Mbits/sec. Each link can transfer data bi-directionally at 
up to 2.35 Mbytes/sec. 

The transputer is designed to implement the occam language, detailed in the occam Reference Manual, but 
also efficiently supports other languages such as C, Pascal and Fortran. Access to the transputer at machine 
level is seldom required, but if necessary refer to the Transputer Instruction Set - A Compiler Witers' Guide. 

This data sheet supplies hardware implementation and characterisation details for the IMS T800. It is intended 
to be read in conjunction with the Transputer Architecture chapter, which details the architecture of the 
transputer and gives an overview of occam. 



192 

2 Pin designations 

Table 2.1 IMS T800 system services 

Pin In/Out Function 
VCC,GND Power supply and return 
CapPlus, CapMinus External capacitor for internal clock power supply 
Clockln in Input clock 
ProcSpeedSelectO-2 in Processor speed selectors 
Reset in System reset 
Error out Error indicator 
Errorln in Error daisychain input 
Analyse in Error analysis 
BootFromRom in Boot from external ROM or from link 
DisablelntRAM in Disable internal RAM 
DoNotWire Must not be wired 

Table 2.2 IMS T800 external memory interface 

Pin In/Out Function 
ProcClockOut out Processor clock 
MemnotWrDO in/out Multiplexed data bit 0 and write cycle warning 
MemnotRfD1 in/out Multiplexed data bit 1 and refresh warning 
MemAD2-31 in/out Multiplexed data and address bus 
notMemRd out Read strobe 
notMemWrBO-3 out Four byte-addressing write strobes 
notMemSO-4 out Five general purpose strobes 
notMemRf out Dynamic memory refresh indicator 
MemWait in Memory cycle extender 
MemReq in Direct memory access request 
MemGranted out Direct memory access granted 
MemConfig in Memory configuration data input 

Table 2.3 IMS T800 event 

Pin In/Out Function 
EventReq in Event request 
EventAck out Event request acknowledge 

Table 2.4 IMS T800 link 

Pin In/Out Function 
LinklnO-3 in Four serial data input channels 
LinkOutO-3 out Four serial data output channels 
LinkSpecial in Select non-standard speed as 5 or 20 Mbits/sec 
LinkOSpecial in Select special speed for Link 0 
Link123Speciai in Select special speed for Links 1 ,2,3 

Signal names are prefixed by not if they are active low, otherwise they are active high. 
Pinout details for various packages are given on page 256. 



193 

3 Processor 
The 32 bit processor contains instruction processing logic, instruction and work pointers, and an operand 
register. It directly accesses the high speed 4 Kbyte on-chip memory, which can store data or program. 
Where larger amounts of memory or programs in ROM are required, the processor has access to 4 Gbytes 
of memory via the External Memory Interface (EM I). 

3.1 Registers 

The design of the transputer processor exploits the availability of fast on-chip memory by having only a small 
number of registers; six registers are used in the execution of a sequential process. The small number of 
registers, together with the simplicity of the instruction set, enables the processor to have relatively simple 
(and fast) data-paths and control logic. The six registers are: 

The workspace pointer which points to an area of store where local variables are kept. 

The instruction pOinter which points to the next instruction to be executed. 

The operand register which is used in the formation of instruction operands. 

The A, Band C registers which form an evaluation stack. 

A, Band C are sources and destinations for most arithmetic and logical operations. Loading a value into the 
stack pushes B into C, and A into B, before loading A. Storing a value from A, pops B into A and C into B. 

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example, 
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of 
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a 
large number of programs show that three registers provide an effective balance between code compactness 
and implementation complexity. 

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack. 
It is easy for the compiler to ensure that this never happens. 

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be 
of any size. 

Further register details are given in Transputer Instruction Set - A Compiler Writers' Guide. 

R . t egis ers L ocas p rogram 

A 

B 

C 

Workspace -Next Inst 

Operand 

Figure 3.1 Registers 



194 6 IMS T800 engineering data 

3.2 Instructions 

The instruction set has been designed for simple and efficient compilation of high-level languages. All in­
structions have the same format, designed to give a compact representation of the operations occurring most 
frequently in programs. 

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte 
are a function code and the four least significant bits are a data value. 

Operand Register 

Figure 3.2 Instruction format 

3.2.1 Direct functions 

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Ten of these, 
shown in table 3.1, are used to encode the most important functions. 

load constant 
load local 
load non-local 
jump 

Table 3.1 Direct functions 

add constant 
store local 
store non-local 
conditional jump 

load local pointer 

call 

The most common operations in a program are the loading of small literal values and the loading and storing 
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be 
loaded with a single byte instruction. The load local and store local instructions access locations in memory 
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction. 

The load non-local and store non-local instructions behave similarly, except that they access locations in 
memory relative to the A register. Compact sequences of these instructions allow efficient access to data 
structures, and provide for simple implementations of the static links or displays used in the implementation 
of high level programming languages such as occam, C, Fortran, Pascal or ADA. 

3.2.2 Prefix functions 

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative 
prefix. 

All instructions are executed by loading the four data bits into the least significant four bits of the operand 
register, which is then used as the instruction's operand. All instructions except the prefix instructions end by 
clearing the operand register, ready for the next instruction. 

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up 
four places. The negative prefix instruction is similar, except that it complements the operand register before 
shifting it up. Consequently operands can be extended to any length up to the length of the operand register 
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented 
using one prefix instruction. 



3 Processor 195 

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed 
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they 
simplify language compilation by providing a completely uniform way of allowing any instruction to take an 
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor 
wordlength. 

3.2.3 Indirect functions 

The remaining function code, operate, causes its operand to be interpreted as an operation on the values 
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction. 
However, the prefix instructions can be used to extend the operand of an operate instruction just like any 
other. The instruction representation therefore provides for an indefinite number of operations. 

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented 
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as 
add, exclusive or and greater than. Less frequently occurring operations have encodings which require a 
single prefix operation. 

3.2.4 Expression evaluation 

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number 
of these can be minimised by careful choice of the evaluation order. 

Table 3.2 Expression evaluation 

Program Mnemonic 

x := 0 Ide a 
stl x 

x := #24 pfix 2 
Ide 4 
stl x 

x := y + z Idl y 
Idl z 
add 
stl x 

3.2.5 Efficiency of encoding 

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without 
the use of prefix instructions. Many of these instructions, such as load constant and add require just one 
processor cycle. 

The instruction representation gives a more compact representation of high level language programs than 
more conventional instruction sets. Since a program requires less store to represent it, less of the memory 
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor 
will receive four instructions for every fetch. 

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor 
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction 
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes 
the buffer contents to be discarded. 



196 6 IMS T800 engineering data 

3.3 Processes and concurrency 

A process starts, performs a number of actions, and then either stops without completing or terminates 
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in 
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number 
of each (page 197). 

The processor has a microcoded scheduler which enables any number of concurrent processes to be exe­
cuted together, sharing the processor time. This removes the need for a software kernel. 

At any time, a concurrent process may be 

Active Being executed. 
On a list waiting to be executed. 

Inactive - Ready to input. 
Ready to output. 
Waiting until a specified time. 

The scheduler operates in such a way that inactive processes do not consume any processor time. It allocates 
a portion of the processor's time to each process in turn. Active processes waiting to be executed are held 
in two linked lists of process workspaces, one of high priority processes and one of low priority processes 
(page 197). Each list is implemented using two registers, one of which pOints to the first process in the list, 
the other to the last. In the Linked Process List figure 3.3, process S is executing and P, Q and R are active, 
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones 
perform in a similar manner. 

R eglsters L ocas , P rogram, 

FPtr1 (Front)~ P 
f-------j I 

BPtr1 (Back) I 

~ Q 
A 

B 4 R I 

C 

Workspace - S 

Next Inst 

Operand 

Figure 3.3 Linked process list 

Table 3.3 Priority queue control registers 

Function High Priority Low Priority 
Pointer to front of active process list FptrO Fptr1 
Pointer to back of active process list BptrO Bptr1 

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from 
another process or transputer, or for a time delay to complete. In order for several processes to operate in 
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly 
descheduled at the next descheduling point (page 201). The time slice period is 5120 cycles of the external 
5 MHz clock, giving ticks approximately 1 ms apart. 



3 Processor 197 

A process can only be descheduled on certain instructions, known as descheduling points (page 201). As a 
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way 
through. 

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and 
the next process taken from the list. Process scheduling pointers are updated by instructions which cause 
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 J.ls, as 
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling. 

The processor provides a number of special operations to support the process model, including start process 
and end process. When a main process executes a parallel construct, start process instructions are used 
to create the necessary additional concurrent processes. A start process instruction creates a new process 
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be 
executed together with the ones already being executed. When a process is made active it is always added 
to the end of the list, and thus cannot pre-empt processes already on the same list. 

The correct termination of a parallel construct is assured by use of the end process instruction. This uses 
a workspace location as a counter of the parallel construct components which have still to terminate. The 
counter is initialised to the number of components before the processes are started. Each component ends 
with an end process instruction which decrements and tests the counter. For all but the last component, the 
counter is non zero and the component is descheduled. For the last component, the counter is zero and the 
main process continues. 

3.4 Priority 

The IMS T800 supports two levels of priority. Priority 1 (low priority) processes are executed whenever there 
are no active priority 0 (high priority) processes. 

High priority processes are expected to execute for a short time. If one or more high priority processes are 
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until 
it completes processing. 

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed, 
then one is selected. 

Low priority processes are periodically timesliced to provide an even distribution of processor time between 
computationally intensive tasks. 

If there are n low priority processes, then the maximum latency from the time at which a low priority process 
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for 
between one and two timeslice periods, less any time taken by high priority processes. This assumes that 
no process monopolises the transputer's time; i.e. it has a distribution of descheduling points (pag~ 201). 

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 ms at the 
standard frequency of 5 MHz). 

If a high priority process is waiting for an external channel to become ready, and if no other high priority 
process is active, then the interrupt latency (from when the channel becomes ready to when the process 
starts executing) is typically 19 processor cycles, a maximum of 78 cycles (assuming use of on-chip RAM). 
If the floating point unit is not being used at the time then the maximum interrupt latency is only 58 cycles. 
To ensure this latency, certain instructions are interruptable. 

3.5 Communications 

Communication between processes is achieved by means of channels. Process communication is point-to­
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and 
no message buffer. 



198 6 IMS T800 engineering data 

A channel between two processes executing on the same transputer is implemented by a single word in 
memory; a channel between processes executing on different transputers is i'mplemented by point-to-point 
links. The processor provides a number of operations to support message passing, the most important being 
input message and output message. 

The input message and output message instructions use the address of the channel to determine whether 
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a 
process to be written and compiled without knowledge of where its channels are connected. 

The process which first becomes ready must wait until the second one is also ready. A process performs an 
input or output by loading the evaluation stack with a pointer to a message, the address of a channel, and 
a count of the number of bytes to be transferred, and then executing an input message or output message 
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one 
the process will deschedule. 

3.6 Block move 

The block move on the transputer moves any number of bytes from any byte boundary in memory, to any 
other byte boundary, using the smallest possible number of word read, and word or part-word writes. 

A block move instruction can be interrupted by a high priority process. On interrupt, block move is completed 
to a word boundary, independent of start position. When restarting after interrupt, the last word written is 
written again. This appears as an unnecessary read and write in the simplest case of word aligned block 
moves, and may cause problems with FIFOs. This problem can be overcome by incrementing the saved 
destination (BreglntSaveLoc) and source pointer (CreglntSaveLoc) values by BytesPerWord during the high 
priority process. 

3.7 Timers 

The transputer has two 32 bit timer clocks which 'tick' periodically. The timers provide accurate process 
timing, allowing processes to deschedule themselves until a specific time. 

One timer is accessible only to high priority processes and is incremented every microsecond, cycling com­
pletely in approximately 4295 seconds. The other is accessible only to low priority processes and is incre­
mented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of approximately 
76 hours. 

ClockO 
Clock 1 
TNextRegO 
TNextReg1 

Table 3.4 Timer registers 

Current value of high priority (level 0) process clock 
Current value of low priority (level 1) process clock 
Indicates time of earliest event on high priority (level 0) timer queue 
Indicates time of earliest event on low priority (level 1) timer queue 

The current value of the processor clock can be read by executing a load timer instruction. A process can 
arrange to perform a timer input, in which case it will become ready to execute after a specified time has 
been reached. The timer input instruction requires a time to be specified. If this time is in the 'past' then the 
instruction has no effect. If the time is in the 'future' then the process is descheduled. When the specified 
time is reached the process is scheduled again. 



3 Processor 199 

Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31. 

Workspaces Program 

Alarm r L. - I--

21 

I 
~ 

L Empty 

31 

Figure 3.4 Timer registers 



200 

4 Instruction set summary 

The Function Codes table 4.8. gives the basic function code set (page 194). Where the operand is less 
than 16, a single byte encodes the complete instruction. If the operand is greater than 15, one prefix 
instruction (pfix) is required for each additional four bits of the operand. If the operand is negative the first 
prefix instruction will be nfix. 

Table 4.1 prefix coding 

Function Memory 
Mnemonic code code 

Ide #3 #4 #43 

Ide #35 
is coded as 

pfix #3 #2 #23 
Ide #5 #4 #45 

Ide #987 
is coded as 

pfix #9 #2 #29 
pfix #8 #2 #28 
Ide #7 #4 #47 

Ide -31 (Ide #FFFFFFE1) 
is coded as 

nfix #1 #6 #61 
Ide #1 #4 #41 

Tables 4.9 to 4.27 give details of the operation codes. Where an operation code is less than 16 (e.g. add: 
operation code 05), the operation can be stored as a single byte comprising the operate function code F and 
the operand (5 in the example). Where an operation code is greater than 15 (e.g. ladd: operation code 16), 
the prefix function code 2 is used to extend the instruction. 

Table 4.2 operate coding 

Function Memory 
Mnemonic code code 

add (op. Cbruz#5) #F5 
is coded as ",,-, 

apr add #F #F5 

ladd (op. code #16) #21F6 
is coded as 

prix #1 #2 #21 
apr #6 #F #F6 

In the Floating Point Operation Codes tables 4.21 to 4.27, a selector sequence code (page 209) is indicated 
in the Memory Code column by s. The code given in the Operation Code column is the indirection code, the 
operand for the Ide instruction. 

The FPU and processor operate concurrently, so the actual throughput of floating point instructions is better 
than that implied by simply adding up the instruction times. For full details see Transputer Instruction Set - A 
Compiler Writers' Guide. 



4 Instruction set summary 201 

The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing 
in internal memory. The number of cycles is given for the basic operation only; where the memory code 
for an instruction is two bytes, the time for the prefix function (one cycle) should be added. For a 20 MHz 
transputer one cycle is 50 ns. Some instruction times vary. Where a letter is included in the cycles column it 
is interpreted from table 4.3. 

Table 4.3 InstriJction set interpretation 

Ident Interpretation 

b Bit number of the highest bit set in register A. Bit 0 is the least significant bit. 

m Bit number of the highest bit set in the absolute value of register A. 
Bit 0 is the least significant bit. 

n Number of places shifted. 

w Number of words in the message. Part words are counted as full words. If the message 
is not word aligned the number of words is increased to include the part words at either 
end of the message. 

p Number of words per row. 

r Number of rows. 

The DE column of the tables indicates the descheduling/error features of an instruction as described in 
table 4.4. 

Table 4.4 Instruction features 

Ident Feature See page: 

D The instruction is a descheduling point 201 

E The instruction will affect the Error flag 202,216 

F The instruction will affect the FP_Error flag 209,202 

4.1 Descheduling points 

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 196). They are 
also the ones at which the processor will halt if the Analyse pin is asserted (page 215). 

input message 
timer alt wait 
jump 

Table 4.5 Descheduling point instructions 

output message 
timer input 
loop end 

output byte 
stop on error 
end process 

output word 
alt wait 
stop process 



202 6 IMS T800 engineering data 

4.2 Error instructions 

The instructions in table 4.6 are the only ones which can affect the Error flag (page 216) directly. Note. 
however, that the floating point unit error flag FP_Error is set by certain floating point instructions (page 202). 
and that Error can be set from this flag by fpcheckerror. 

Table 4.6 Error setting instructions 

add 
multiply 
long add 
set error 
check word 

add constant 
fractional multiply 
long subtract 
testerr 
check subscript from 0 

4.3 Floating point errors 

subtract 
divide 
long divide 
fpcheckerror 
check single 

remainder 

check count from 1 

The instructions in table 4.7 are the only ones which can affect the floating point error flag FP_Error(page 209). 
Error is set from this flag by fpcheckerror if FP_Error is set. 

fpadd 
fpldnladdsn 
fpremfirst 
fpuseterror 
fpuexpincby32 
fpur32tor64 
fprtoi32 

Table 4.7 Floating point error setting instructions 

fpsub 
fpldnladddb 
fpusqrtfirst 
fpuclearerror 
fpuexpdecby32 
fpur64tor32 
fpuabs 

fpmul 
fpldnlmulsn 
fpgt 
fptesterror 
fpumulby2 
fpucki32 
fpint 

fpdiv 
fpldnlmuldb 
fpeq 

fpudivby2 
fpucki64 



4 Instruction set summary 203 

Table 4.8 IMS T800 function codes 

Function Memory Processor 0 
Code Code Mnemonic Cycles Name E 

0 OX j 3 jump D 
1 1X Idlp 1 load local pointer 
2 2X pfix 1 prefix 
3 3X Idnl 2 load non-local 
4 4X Ide 1 load constant 
5 5X Idnlp 1 load non-local pointer 
6 6X nfix 1 negative prefix 
7 7X Idl 2 load local 
8 8X adc 1 add constant E 
9 9X call 7 call 
A AX cj 2 conditional jump (not taken) 

4 conditional jump (taken) 
B BX ajw 1 adjust workspace 
C CX eqc 2 equals constant 
D DX stl 1 store local 
E EX stnl 2 store non-local 
F FX opr - operate 

Table 4.9 IMS T800 arithmetic/logical operation codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

46 24F6 and 1 and 
4B 24FB or 1 or 
33 23F3 xor 1 exclusive or 
32 23F2 not 1 bitwise not 
41 24F1 shl n+2 shift left 
40 24FO shr n+2 shift right 

05 F5 add 1 add E 
OC FC sub 1 subtract E 
53 25F3 mul 38 multiply E 
72 27F2 fmul 35 fractional multiply (no rounding) E 

40 fractional multiply (rounding) E 
2C 22FC div 39 divide E 
1F 21FF rem 37 remainder E 
09 F9 gt 2 greater than 
04 F4 diff 1 difference 
52 25F2 sum 1 sum 
08 F8 prod b+4 product for positive register A 

m+5 product for negative register A 



204 6 IMS T800 engineering data 

Table 4.10 IMS T800 long arithmetic operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

16 21F6 ladd 2 long add E 
38 23F8 Isub 2 long subtract E 
37 23F7 Isum 3 long sum 
4F 24FF Idill 3 long dill 
31 23F1 Imul 33 long multiply 
1A 21 FA Idiv 35 long divide E 
36 23F6 Ishl n+3 long shift left (n<32) 

n-28 long shift left(n~32) 
35 23F5 Ishr n+3 long shift right (n<32) 

n-28 long shilt right (n~32) 
19 21F9 norm n+5 normalise (n<32) 

n-26 normalise (n~32) 
3 normalise (n=64) 

Table 4.11 IMS T800 general operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

00 FO rev 1 reverse 
3A 23 FA xword 4 extend to word 
56 25F6 cword 5 check word E 
10 21FO xdble 2 extend to double 
4C 24FC csngl 3 check single E 
42 24F2 mint 1 minimum integer 
5A 25FA dup 1 duplicate top 01 stack 

Table 4.12 IMS T800 20 block move operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

58 25F8 move2dinit 8 initialise data lor 20 block move 
5C 25FC move2dall (2p+23)H 20 block copy 
50 25FO move2dnonzero (2p+23)H 20 block copy non-zero bytes 
5E 25FE move2dzero (2p+23)*r 20 block copy zero bytes 

Table 4.13 IMS T800 CRC and bit operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

74 27F4 crcword 35 calculate crc on word 
75 27F5 crcbyte 11 calculate crc on byte 

76 27F6 bitcnt b+2 count bits set in word 
77 27F7 bltrevword 36 reverse bits in word 
78 27F8 bitrevnbits n+4 reverse bottom n bits in word 



4 Instruction set summary 205 

Table 4.14 IMS T800 indexing/array operation codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

02 F2 bsub 1 byte subscript 
OA FA wsub 2 word subscript 
81 28F1 wsubdb 3 form double word subscript 
34 23F4 bcnt 2 byte count 
3F 23FF wcnt 5 word count 
01 F1 Ib 5 load byte 
3B 23FB sb 4 store byte 

4A 24FA move 2w+8 move message 

Table 4.15 IMS T800 timer handling operation codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

22 22F2 Idtimer 2 load timer 
2B 22FB tin 30 timer input (time future) D 

4 timer input (time past) D 
4E 24FE talt 4 timer alt start 
51 25F1 taltwt 15 timer alt wait (time past) D 

48 timer alt wait (time future) D 
47 24F7 enbt 8 enable timer 
2E 22FE dist 23 disable timer 

Table 4.16 IMS T800 input/output operation codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

07 F7 in 2w+19 input message D 
OB FB out 2w+19 output message D 
OF FF outword 23 output word D 
OE FE outbyte 23 output byte D 

43 24F3 alt 2 alt start 
44 24F4 altwt 5 alt wait (channel ready) D 

17 alt wait (channel not ready) D 
45 24F5 altend 4 alt end 

49 24F9 enbs 3 enable skip 
30 23FO diss 4 disable skip 

12 21F2 resetch 3 reset channel 
48 24F8 enbc 7 enable channel (ready) 

5 enable channel (not ready) 
2F 22FF disc 8 disable channel 



206 6 IMS T800 engineering data 

Table 4.17 IMS T800 control operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

20 22FO ret 5 return 
1B 21FB Idpi 2 load pointer to instruction 
3C 23FC gajw 2 general adjust workspace 
06 F6 gcall 4 general call 
21 22F1 lend 10 loop end (loop) 0 

5 loop end (exit) 0 

Table 4.18 IMS T800 scheduling operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

00 FO startp 12 start process 0 
03 F3 endp 13 end process 0 
39 23F9 runp 10 run process 
15 21F5 stopp 11 stop process 
1E 21FE Idpri 1 load current priority 

Table 4.19 IMS T800 error handling operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

13 21F3 csubO 2 check subscript from 0 E 
40 24FD ccnt1 3 check count from 1 E 
29 22F9 testerr 2 test error false and clear (no error) 

3 test error false and clear (error) 
10 21FO seterr 1 set error E 
55 25F5 stoperr 2 stop on error (no error) 0 
57 25F7 clrhalterr 1 clear halt-on-error 
58 25F8 sethalterr 1 set halt-on-error 
59 25F9 testhalterr 2 test halt-on-error 

Table 4.20 IMS T800 processor initialisation operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

2A 22FA testpranal 2 test processor analysing 
3E 23FE saveh 4 save high priority queue registers 
3D 23FO savel 4 save low priority queue registers 
18 21F8 sthf 1 store high priority front pointer 
50 25FO sthb 1 store high priority back pointer 
1C 21FC stlf 1 store low priority front pointer 
17 21F7 stlb 1 store low priority back pointer 
54 25F4 sttimer 1 store timer 



4 Instruction set summary 207 

Table 4.21 IMS T800 floating point load/store operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

8E 28FE fpldnlsn 2 fp load non-local single 
8A 28FA fpldnldb 3 fp load non-local double 
86 28F6 fpldnlsni 4 fp load non-local indexed single 
82 28F2 fpldnldbi 6 fp load non-local indexed double 
9F 29FF fpldzerosn 2 load zero single 
AO 2AFO fpldzerodb 2 load zero double 
AA 2AFA fpldnladdsn 8/11 fp load non local & add single F 
A6 2AF6 fpldnladddb 9/12 fp load non local & add double F 
AC 2AFC fpldnlmulsn 13/20 fp load non local & multiply single F 
A8 2AF8 fpldnlmuldb 21/30 fp load non local & multiply double F 
88 28F8 fpstnlsn 2 fp store non-local single 
84 28F4 fpstnldb 3 fp store non-local double 
9E 29FE fpstnli32 4 store non-local int32 

Processor cycles are shown as Typical/Maximum cycles. 

Table 4.22 IMS T800 floating pOint general operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

AS 2AFS fpentry 1 floating point unit entry 
A4 2AF4 fprev 1 fp reverse 
A3 2AF3 fpdup 1 fp duplicate 

Table 4.23 IMS T800 floating point rounding operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

22 s fpurn 1 set rounding mode to round nearest 
06 s fpurz 1 set rounding mode to round zero 
04 s fpurp 1 set rounding mode to round positive 
05 s fpurm 1 set rounding mode to round minus 

Table 4.24 IMS T800 floating point error operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

83 28F3 fpchkerror 1 check fp error E 
9C 29FC fptesterror 2 test fp error false and clear F 
23 s fpuseterror 1 set fp error F 
9C s fpuclearerror 1 clear fp error F 



208 6 IMS T800 engineering data 

Table 4.25 IMS T800 floating point comparison operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

94 29F4 fpgt 4/6 fp greater than F 
95 29F5 fpeq 3/5 fp equality F 
92 29F2 fpordered 3/4 fp orderability 
91 29F1 fpnan 2/3 fp NaN 
93 29F3 fpnotfinite 2/2 fp not finite 
OE s fpuchki32 3/4 check in range of type int32 F 
OF s fpuchki64 3/4 check in range of type int64 F 

Processor cycles are shown as Typical/Maximum cycles. 

Table 4.26 IMS T800 floating point conversion operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

07 s fpur32tor64 3/4 real32 to real64 F 
08 s fpur64tor32 6/9 real64 to real32 F 
90 29FO fprtoi32 7/9 real to int32 F 
96 29F6 fpi32tor32 8/10 int32 to real32 
98 29F8 fpi32tor64 8/10 int32 to real64 
9A 29 FA fpb32tor64 8/8 bit32 to real64 
00 s fpunoround 2/2 real64 to real32, no round 
A1 2AF1 fpint 5/6 round to floating integer F 

Processor cycles are shown as Typical/Maximum cycles. 

Table 4.27 IMS T800 floating point arithmetic operation codes 

Operation Memory Processor cycles D 
Code Code Mnemonic Single Double Name E 

87 28F7 fpadd 6/9 6/9 fp add F 
89 28F9 fpsub 6/9 6/9 fp subtract F 
88 28F8 fpmul 11/18 18/27 fp multiply F 
8C 28FC fpdiv 16/28 31/43 fp divide F 
08 s fpuabs 2/2 2/2 fp absolute F 
8F 28FF fpremfirst 36/46 36/46 fp remainder first step F 
90 29FO fpremstep 32/36 32/36 fp remainder iteration 
01 s fpusqrtfirst 27/29 27/29 fp square root first step F 
02 s fpusqrtstep 42/42 42/42 fp square root step 
03 s fpusqrtlast 8/9 8/9 fp square root end 
OA s fpuexpinc32 6/9 6/9 multiply by 232 F 
09 s fpuexpdec32 6/9 6/9 divide by 232 F 
12 s fpumulby2 6/9 6/9 multiply by 2.0 F 
11 s fpudivby2 6/9 6/9 divide by 2.0 F 

Processor cycles are shown as Typical/Maximum cycles. 



209 

5 Floating point unit 

The 64 bit FPU provides single and double length arithmetic to floating point standard ANSI-IEEE 754-1985. 
It is able to perform floating point arithmetic concurrently with the central processor unit (CPU), sustaining 
3.3 Mflops on a 30 MHz device. All data communication between memory and the FPU occurs under control 
of the CPU. 

The FPU consists of a microcoded computing engine with a three deep floating point evaluation stack for 
manipulation of floating point numbers. These stack registers are FA, FB and Fe, each of which can hold 
either 32 bit or 64 bit data; an associated flag, set when a floating point value is loaded, indicates which. The 
stack behaves in a similar manner to the CPU stack (page 193). 

As with the CPU stack, the FPU stack is not saved when rescheduling (page 196) occurs. The FPU can 
be used in both low and high priority processes. When a high priority process interrupts a low priority one 
the FPU state is saved inside the FPU. The CPU will service the interrupt immediately on completing its 
current operation. The high priority process will not start, however, before the FPU has completed its current 
operation. 

Points in an instruction stream where data need to be transferred to or from the FPU are called synchronisation 
points. At a synchronisation point the first processing unit to become ready will wait until the other is ready. 
The data transfer will then occur and both processors will proceed concurrently again. In order to make 
full use of concurrency, floating point data source and destination addresses can be calculated by the CPU 
whilst the FPU is performing operations on a previous set of data. Device performance is thus optimised by 
minimising the CPU and FPU idle times. 

The FPU has been designed to operate on both single length (32 bit) and double length (64 bit) floating 
point numbers, and returns results which fully conform to the ANSI-IEEE 754-1985 floating point arithmetic 
standard. Denormalised numbers are fully supported in the hardware. All rounding modes defined by the 
standard are implemented, with the default being round to nearest. 

The basic addition, subtraction, multiplication and division operations are performed by single instructions. 
However, certain less frequently used floating point instructions are selected by a value in register A (when 
allocating registers, this should be taken into account). A load constant instruction Idc is used to load 
register A; the floating point entry instruction fpentry then uses this value to select the floating point operation. 
This pair of instructions is termed a selector sequence. 

Names of operations which use fpentry begin with fpu. A typical usage, returning the absolute value of a 
floating point number, would be 

Idc fpuabs; fpentry; 

Since the indirection code for fpuabs is OB, it would be encoded as 

Table 5.1 fpentry coding 

Function Memory 
Mnemonic code code 

Idc fpuabs #4 #4B 

fpentry (op. code #AB) #2AFB 
is coded as 

pfix #A #2 #2A 
opr #B #F #FB 



210 6 IMS T800 engineering data 

The remainder and square root instructions take considerably longer than other instructions to complete. In 
order to minimise the interrupt latency period of the transputer they are split up to form instruction sequences. 
As an example, the instruction sequence for a single length square root is 

fpusqrtfirst; fpusqrtstep; fpusqrtstep; fpusqrtlast; 

The FPU has its own error flag FP.Error. This reflects the state of evaluation within the FPU and is set in 
circumstances where invalid operations, division by zero or overflow exceptions to the ANSI-IEEE 754-1985 
standard would be flagged (page 202). FP.Error is also set if an input to a floating point operation is infinite or 
is not a number (NaN). The FP.Errorfiag can be set, tested and cleared without affecting the main Errorflag, 
but can also set Errorwhen required (page 202). Depending on how a program is compiled, it is possible for 
both unchecked and fully checked floating point arithmetic to be performed. 

Further details on the operation of the FPU can be found in Transputer Instruction Set - A Compiler Writers' 
Guide. 

Table 5.2 Typical floating point operation times for IMS TaOO 

T800·20 T800·30 
Operation Single length Double length Single length Double length 

add 350 ns 350 ns 233 ns 233 ns 
subtract 350 ns 350 ns 233 ns 233 ns 
multiply 550 ns 1000 ns 367 ns 667 ns 
divide 850 ns 1600 ns 567 ns 1067 ns 

Timing is for operations where both operands are normalised fp numbers. 



211 

6 System services 

System services include all the necessary logic to initialise and sustain operation of the device. They also 
include error handling and analysis facilities. 

6.1 Power 

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise 
inductance within the package. All supply pins must be connected. The supply must be decoupled close to 
the chip by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer 
boards are recommended; if two layer boards are used. extra care should be taken in decoupling. 

Input voltages must not exceed specification with respect to VCC and GND. even during power-up and power­
down ramping. otherwise latchup can occur. CMOS devices can be permanently damaged by excessive 
periods of latch up. 

6.2 CapPlus, Cap Minus 

The internally derived power supply for internal clocks requires an external low leakage. low inductance 1 J.LF 
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred. with an 
impedance less than 3 Ohms between 100 KHz and 10 MHz. If a polarised capacitor is used the negative 
terminal should be connected to CapMinus. Total PCB track length should be less than 50 mm. The 
connections must not touch power supplies or other noise sources. 

CapPlus P.C.B. track 

CapMinus P.C.B. track 

Figure 6.1 Recommended PLL decoupling 

6.3 Clockln 

Decoupling 
capacitor 

1J.LF 

Transputer family components use a standard clock frequency. supplied by the user on the Clockln input. 
The nominal frequency of this clock for all transputer family components is 5 MHz. regardless of device type. 
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln. 
simplifying system design and avoiding problems of distributing high speed clocks externally. 

A number of transputer devices may be connected to a common clock. or may have individual clocks providing 
each one meets the specified stability criteria. In a multi-clock system the relative phasing of Clockln clocks 
is not important. due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the 
specified limits of Clockln pulse widths are met. 

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not 
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be 
monotonic and remain within the specified voltage and time limits. 



212 6 IMS T800 engineering data 

Table 6.1 Input clock 

SYMBOL PARAMETER MIN NOM 
TDCLDCH Clockln pulse width low 40 
TDCHDCL Clockln pulse width high 40 
TOCLDCL Clockln period 
TDCerror Clockln timing error 
TOC1DC2 Difference in Clockln for 2 linked devices 
TOCr Clockln rise time 
TOCf Clockln fall time 

Notes 

1 These paramters are not tested. 

2 Measured between corresponding points on consecutive falling edges. 

3 Variation of individual falling edges from their nominal times. 

200 

MAX UNITS 
ns 
ns 
ns 

±0.5 ns 
400 ppm 
10 ns 
8 ns 

4 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link. 

5 Clock transitions must be monotonic within the range VIH to V1L (table 11.3). 

TDCerror 

2.0v- --
1.5vO.8v= = = = -

TDCerror 

Ik===~ 
TDCLDCH TDCHDCL 

TDCLDCL 

90% K---
10%- - - - -

TDCf 

90%----A 
10%- - - -- - -TDC-;--

Figure 6.2 Clockln timing 

6.4 ProcSpeedSelectD-2 

NOTE 
1 
1 

1,2,4 
1,3 
1,4 
1,5 
1,5 

Processor speed of the IMS T800 is variable in discrete steps. The desired speed can be selected, up to the 
maximum rated for a particular component, by the three speed select lines ProcSpeedSelectO·2. The pins 
are tied high or low, according to the table below, for the various speeds. The pins are arranged so that the 
IMS T425 can be plugged directly into a board designed for aiMS T800. 

Only six of the possible speed select combinations are currently used; the other two are not valid speed 
selectors. The frequency of Clockln for the speeds given in the table is 5 MHz. 



6 System services 213 

Table 6.2 Processor speed selection 

Proc Proc Proc Processor Processor 
Speed Speed Speed Clock Cycle 
Select2 Select1 SelectO Speed MHz Time ns Notes 

0 0 0 20.0 50.0 
0 0 1 22.5 44.4 
0 1 0 25.0 40.0 
0 1 1 30.0 33.3 
1 0 0 35.0 28.6 
1 0 1 Invalid 
1 1 0 17.5 57.1 
1 1 1 Invalid 

Note: Inclusion of a speed selection in this table does not imply immediate availability. 

6.5 Reset 

Reset can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. After VCC is 
valid Clockln should be running for a minimum period TDCVRL before the end of Reset. The falling edge of 
Reset initialises the transputer, triggers the memory configuration sequence and starts the bootstrap routine. 
Link outputs are forced low during reset; link inputs and EventReq should be held low. Memory request 
(DMA) must not occur whilst Reset is high but can occur before bootstrap (page 238). 

After the end of Reset there will be a delay of 144 periods of Clockln (figure 6.3). Following this, the 
MemWrDO, MemRfD1 and MemAD2-31 pins will be scanned to check for the existence of a pre-programmed 
memory interface configuration (page 228). This lasts for a further 144 periods of Clockln. Regardless of 
whether a configuration was found, 36 configuration read cycles will then be performed on external memory 
using the default memory configuration (page 230), in an attempt to access the external configuration ROM. 
A delay will then occur, its period depending on the actual configuration. Finally eight complete and con­
secutive refresh cycles will initialise any dynamic RAM, using the new memory configuration. If the memory 
configuration does not enable refresh of dynamic RAM the refresh cycles will be replaced by an equivalent 
delay with no external memory activity. 

If BootFromRom is high bootstrapping will then take place immediately, using data from external memory; 
otherwise the transputer will await an input from any link. The processor will be in the low priority state. 

Reset ~~ ______________________________________________________ _ 

Action 
Delay Delay Refresh Boot Internal External 

configuration configuration 

Figure 6.3 IMS T800 post-reset sequence 

6.6 Bootstrap 

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, Boot­
FromRom may be dynamically changed but must obey the specified timing restrictions. It is sampled once 
only by the transputer, before the first instruction is executed after Reset is taken low. 

If BootFromRom is connected high (e.g. to VCC) the transputer starts to execute code from the top two bytes 
in external memory, at address #7FFFFFFE. This location should contain a backward jump to a program in 
ROM. Following this access, BootFromRom may be taken low if required. The processor is in the low priority 



214 6 IMS T800 engineering data 

state, and the W register points to MemStart (page 217). 

Table 6.3 Reset and Analyse 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TPVRH Power valid before Reset 10 ms 
TRHRL Reset pulse width high 8 Clockln 1 
TDCVRL Clockln running before Reset end 10 ms 2 
TAHRH Analyse setup before Reset 3 ms 
TRLAL Analyse hold after Reset end 1 Clockln 1 
TBRVRL BootFromRom setup 0 ms 
TRLBRX BootFromRom hold after Reset 0 ms 3 
TALBRX BootFromRom hold after Analyse 3 

Notes 

1 Full periods of Clockln TDCLDCL required. 

2 At power-on reset. 

3 Must be stable until after end of bootstrap period. See Bootstrap section. 

Clockln 

vee 
TPVRH 

Reset 
TBRVRL 

BootFromRom 

Figure 6.4 Transputer reset timing with Analyse low 

TRHRL 

Reset 

TAHRH 

Analyse 

BootFromRom 

Figure 6.5 Transputer reset and analyse timing 



6 System services 215 

If BootFromRom is connected low (e.g. to GND) the transputer will wait for the first bootstrap message to 
arrive on anyone of its links. The transputer is ready to receive the first byte on a link within two processor 
cycles TPCLPCL after Reset goes low. 

If the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The 
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following 
reception of the last byte the transputer will start executing code at MemStart as a low priority process. 
BootFromRom may be taken high after reception of the last byte, if required. The memory space immediately 
above the loaded code is used as work space. Messages arriving on other links after the control byte has 
been received and on the bootstrapping link after the last bootstrap byte will be retained until a process inputs 
from them. 

6.7 Peek and poke 

Any location in internal or external memory can be interrogated and altered when the transputer is waiting 
for a bootstrap from link. If the control byte is 0 then eight more bytes are expected on the same link. The 
first four byte word is taken as an internal or external memory address at which to poke (write) the second 
four byte word. If the control byte is 1 the next four bytes are used as the address from which to peek (read) 
a word of data; the word is sent down the output channel of the same link. 

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses 
may be made in this way until the control byte is greater than 1, when the transputer will commence reading 
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link 
as the control byte. 

6.8 Analyse 

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling pOint 
(page 201). From Analyse being asserted, the processor will halt within three time slice periods plus the 
time taken for any high priority process to complete. As much of the transputer status is maintained as is 
necessary to permit analysis of the halted machine. Processor flags Error and HaltOnError are not altered 
at reset, whether Analyse is asserted or not. Memory refresh continues. 

Input links will continue with outstanding transfers. Output links will not make another access to memory 
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link 
acknowledgement, the links should be inactive within a few microseconds of the transputer halting. 

Reset should not be asserted before the transputer has halted and link transfers have ceased. When Reset 
is taken low whilst Analyse is high, neither the memory configuration sequence nor the block of eight refresh 
cycles will occur; the previous memory configuration will be used for any external memory accesses. If 
BootFromRom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a 
control byte on any link. If Analyse is taken low without Reset going high the transputer state and operation 
are undefined. After the end of a valid Analyse sequence the registers have the values given in table 6.4. 

Table 6.4 Register values after Analyse 

MemStart if bootstrapping from a link, or the external memory bootstrap address if 
bootstrapping from ROM. 

W MemStart if bootstrapping from ROM, or the address of the first free word after the 
bootstrap program if bootstrapping from link. 

A The value of I when the processor halted. 

B The value of Wwhen the processor halted, together with the priority of the process 
when the transputer was halted (Le. the W descriptor). 

C The 10 of the bootstrapping link if bootstrapping from link. 



216 6 IMS T800 engineering data 

6.9 Error, Errorln 

The Error pin carries the OR'ed output of the internal Error flag and the Errorln input. If Error is high 
it indicates either that Errorln is high or that an error was detected in one of the processes. An internal 
error can be caused, for example, by arithmetic overflow, divide by zero, array bounds violation or software 
setting the flag directly (page 202). It can also be set from the floating point unit under certain circumstances 
(page 202, 209). Once set, the Errorflag is only cleared by executing the instruction testerr. The error is not 
cleared by processor reset, in order that analysis can identify any errant transputer (page 215). 

A process can be programmed to stop if the Error flag is set; it cannot then transmit erroneous data to other 
processes, but processes which do not require that data can still be scheduled. Eventually all processes 
which rely, directly or indirectly, on data from the process in error will stop through lack of data. Errorln does 
not directly affect the status of a processor in any way. 

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error 
becomes set after HaltOnErrorhas been set, all processes on that transputer will cease but will not necessarily 
cause other transputers in a network to halt. Setting HaltOnError after Error will not cause the transputer to 
halt; this allows the processor reset and analyse facilities to function with the flags in indeterminate states. 

An alternative method of error handling is to have the errant process or transputer cause all transputers 
to halt. This can be done by 'daisy-chaining' the Errorln and Error pins of a number of processors and 
applying the final Error output signal to the EventReq pin of a suitably programmed master transputer. Since 
the process state is preseNed when stopped by an error, the master transputer can then use the analyse 
function to debug the fault. When using such a circuit, note that the Errorflag is in an indeterminate state on 
power up; the circuit and software should be designed with this in mind. 

Error checks can be removed completely to optimise the performance of a proven program; any unexpected 
error then occurring will have an arbitrary undefined effect. 

If a high priority process pre-empts a low priority one, status of the Error and HaltOnError flags is saved for 
the duration of the high priority process and restored at the conclusion of it. Status of both flags is transmitted 
to the high priority process. Either flag can be altered in the process without upsetting the error status of any 
complex operation being carried out by the pre-empted low priority process. 

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before 
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access to 
memory for data. Memory refresh will continue to take place. 

After halting due to the Error flag changing from 0 to 1 whilst HaltOnError is set, register I pOints two bytes 
past the instruction which set Error. After halting due to the Analyse pin being taken high, register I points 
one byte past the instruction being executed. In both cases I will be copied to register A. 

H --_ ... -
Latch J Master , f , f --.---- , f 

Transputer 
T800 T425 T800 

Event slave 0 slave 1 slave n 

r GND - Errorln Error ,.... Errorln Error .... Errorln Error1 
(transputer links not shown) 

Figure 6.6 Error handling in a multi-transputer system 



217 

7 Memory 

The IMS T800 has 4 Kbytes of fast internal static memory for high rates of data throughput. Each internal 
memory access takes one processor cycle ProcClockOut (page 219). The transputer can also access 
4 Gbytes of external memory space. Internal and external memory are part of the same linear address 
space. Internal RAM can be disabled by holding DisablelntRAM high. All internal addresses are then 
mapped to external RAM. This pin should not be altered after Reset has been taken low. 

IMS T800 memory is byte addressed, with words aligned on four-byte boundaries. The least significant byte 
of a word is the lowest addressed byte. 

The bits in a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with 
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the 
components are numbered in order of increasing numerical significance, with the least significant component 
numbered O. Where values are stored in memory, the least significant component value is stored at the 
lowest (most negative) address. 

Internal memory starts at the most negative address #80000000 and extends to #80000FFF. User memory 
begins at #80000070; this location is given the name MemStart. 

The reserved area of internal memory below MemStart is used to implement link and event channels. 

Two words of memory are reserved for timer use, TPtrLocO for high priority processes and TPtrLoc1 for low 
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on 
the timer queue at that priority level. 

Values of certain processor registers for the current low priority process are saved in the reserved IntSaveLoc 
locations when a high priority process pre-empts a low priority one. Other locations are reserved for extended 
features such as block moves and floating point operations. 

External memory space starts at #80001000 and extends up through #00000000 to #7FFFFFFF. Memory 
configuration data and ROM bootstrapping code must be in the most positive address space, starting at 
#7FFFFF6C and #7FFFFFFE respectively. Address space immediately below this is conventionally used for 
ROM based code. 



218 6 IMS T800 engineering data 

hi Machine map 10 Byte address Word offsets occam map 
.rl R~e-s"':'e~t ::"::ln~st':':"I;":"";;'':'':':':'!''---:';:'_1 ##70FFFFFFE j..---"--"------'''-----. 
. - #7FFFFFF8 

Memory configuration #7FFFFF6C 
~------~ 

~I-! _______ ---I! #80001000 - Start of external memory - #0400 !I--_______ -I 
. - #80000070 MemStart MemStart #1 C -

Notes 

Reserved for #8000006C 
Extended functions #80000048 

Ereg IntSaveLoc #80000044 

STATUSlntSaveLoc #80000040 

Creg IntSaveLoc #8000003C 

Breg IntSaveLoc #80000038 

Areg IntSaveLoc #80000034 

IptrlntSaveLoc #80000030 

WdesclntSaveLoc #8000002C 

TPtrLoc1 
TPtrLocO 

#80000028 
Note 1 

#80000024 

Event #80000020 #08 Event 

Link 3 Input #8000001C #07 Link 3 Input 

Link 2 Input #80000018 #06 Link 2 Input 

Link 1 Input #80000014 #05 Link 1 Input 

Link 0 Input #80000010 #04 Link 0 Input 

Link 3 Output #8000000C #03 Link 3 Output 

Link 2 Output #80000008 #02 Link 2 Output 

Link 1 Output #80000004 #01 Link 1 Output 

Link 0 Output #80000000 (Base of memory) #00 Link 0 Output 

Figure 7.1 IMS T800 memory map 

1 These locations are used as auxiliary processor registers and should not be manipulated by the user. Like 
processor registers, their contents may be useful for implementing debugging tools (Analyse, page 215). For 
details see Transputer Instruction Set" A Compiler Writers' Guide. 



219 

8 External memory interface 

The External Memory Interface (EMI) allows access to a 32 bit address space, supporting dynamic and static 
RAM as well as ROM and EPROM. EMI timing can be configured at Reset to cater for most memory types 
and speeds, and a program is supplied with the Transputer Development System to aid in this configuration. 

There are 17 internal configurations which can be selected by a single pin connection (page 228). If none 
are suitable the user can configure the interface to specific requirements, as shown in page 230. 

8.1 ProcClockOut 

This clock is derived from the internal processor clock, which is in turn derived from Clockln. Its period is 
equal to one internal microcode cycle time, and can be derived from the formula 

TPCLPCL = TDCLDCL I PLLx 

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the Clockln Period and PLLx is the phase 
lock loop factor for the relevant speed part, obtained from the ordering details (Ordering section). 

The time value Tm is used to define the duration of Tstates and, hence, the length of external memory cycles; 
its value is exactly half the period of one ProcClockOut cycle (0.5* TPCLPCL), regardless of mark/space 
ratio of ProcClockOut. 

Edges of the various external memory strobes coincide with rising or falling edges of ProcClockOut. It should 
be noted, however, that there is a skew associated with each coincidence. The value of skew depends on 
whether coincidence occurs when the ProcClockOut edge and strobe edge are both riSing, when both are 
falling or if either is rising when the other is falling. Timing values given in the strobe tables show the best 
and worst cases. If a more accurate timing relationship is required, the exact Tstate timing and strobe edge 
to ProcClockOut relationships should be calculated and the correct skew factors applied from the edge skew 
timing table 8.4. 

The timing parameters in the following tables are based on full characterisation of the 17 MHz and 20 MHz 
parts. Data for higher speeds is based on tests on a limited number of samples and may change when full 
characterisation is completed. 

8.2 Tstates 

The external memory cycle is divided into six Tstates with the following functions: 

T1 Address setup time before address valid strobe. 

T2 Address hold time after address valid strobe. 

T3 Read cycle tristate or write cycle data setup. 

T4 Extendable data setup time. 

T5 Read or write data. 

T6 Data hold. 

Under normal conditions each Tstate may be from one to four periods Tm long, the duration being set during 
memory configuration. The default condition on Reset is that all Tstates are the maximum four periods Tm 
long to allow external initialisation cycles to read slow ROM. 

Period T4 can be extended indefinitely by adding externally generated wait states. 

An external memory cycle is always an even number of periods Tm in length and the start of T1 always 
coincides with a rising edge of ProcClockOut. If the total configured quantity of periods Tm is an odd 
number, one extra period Tm will be added at the end of T6 to force the start of the next T1 to coincide with 



220 6 IMS TaOO engineering data 

a rising edge of ProcClockOut. This period is designated E in configuration diagrams (figure 8.11). 

Table 8.1 ProcClockOut 

SYMBOL PARAMETER 
TPCLPCL ProcClockOut period 
TPCHPCL ProcClockOut pulse width high 
TPCLPCH ProcClockOut pulse width low 
Tm ProcClockOut half cycle 
TPCstab ProcClockOut stability 

Notes 

a is TDCLDCUPLLx. 

2 b is 0.5. TPCLPCL (half the processor clock period). 

3 c is TPCLPCL-TPCHPCL. 

MIN 
a-2 

b-11.5 

b-1 

NOM MAX UNITS NOTE 
a a+2 ns 1,5 
b b+3.5 ns 2,5 
c ns 3,5 
b b+1 ns 2,5 

8 0/0 4,5 

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points on 
the cycles. 

5 This parameter is sampled and not 100% tested. 

1.5v - - - - - ,----{---- -
~ 

TPCLPCH TPCHPCL 
TPCLPCL 

Figure 8.1 IMS T800 ProcClockOut timing 

8.3 Internal access 

During an internal memory access cycle the external memory interface bus MemAD2·31 reflects the word 
address used to access internal RAM, MemnotWrDO reflects the read/write operation and MemnotRfD1 is 
high; all control strobes are inactive. This is true unless and until a memory refresh cycle or DMA (memory 
request) activity takes place, when the bus will carry the appropriate external address or data. 

The bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for 
hardware debugging in conjuction with peek and poke (page 215). 

ProcClockOut 

MemnotWrDO ~ Write / Read Read '< 
MemnotRfD1 =>' '< 
MemAD2-31 =>< Address X Address X Address X 

Figure 8.2 IMS T800 bus activity for internal memory cycle 



8 External memory interface 221 

8.4 MemAD2·31 

External memory addresses and data are multiplexed on one bus. Only the top 30 bits of address are 
output on the external memory interface, using pins MemAD2·31. They are normally output only during 
Tstates T1 and T2, and should be latched during this time. Byte addressing is carried out internally by the 
transputer for read cycles. For write cycles the relevant bytes in memory are addressed by the write strobes 
notMemWrBO·3. 

The data bus is 32 bits wide. It uses MemAD2·31 for the top 30 bits and MemnotRfD1 and MemnotWrDO 
for the lower two bits. Read cycle data may be set up on the bus at any time after the start of T3, but must 
be valid when the transputer reads it at the end of T5. Data may be removed any time during T6, but must 
be off the bus no later than the end of that period. 

Write data is placed on the bus at the start of T3 and removed at the end of T6. If T6 is extended to force 
the next cycle Tmx (page 221) to start on a rising edge of ProcClockOut, data will be valid during this time 
also. 

8.5 MemnotWrDO 

During T1 and T2 this pin will be low if the cycle is a write cycle, otherwise it will be high. During Tstates T3 
to T6 it becomes bit 0 of the data bus. In both cases it follows the general timing of MemAD2·31. 

8.6 MemnotRfD1 

During T1 and T2, this pin is low if the address on MemAD2·31 is a refresh address, otherwise it is high. 
During Tstates T3 to T6 it becomes bit 1 of the data bus. In both cases it follows the general timing of 
MemAD2·31. 

8.7 notMemRd 

For a read cycle the read strobe notMemRd is low during T4 and T5. Data is read by the transputer on the 
rising edge of this strobe, and may be removed immediately afterward. If the strobe duration is insufficient it 
may be extended by adding extra periods Tm to either or both of the Tstates T4 and T5. Further extension 
may be obtained by inserting wait states at the end of T4. 

In the read cycle timing diagrams ProcClockOut is included as a guide only; it is shown with each Tstate 
configured to one period Tm. 

8.8 notMemSQ·4 

To facilitate control of different types of memory and devices, the EMI is provided with five strobe outputs, 
four of which can be configured by the user. The strobes are conventionally assigned the functions shown in 
the read and write cycle diagrams, although there is no compulsion to retain these designations. 

notMemSO is a fixed format strobe. Its leading edge is always coincident with the start of T2 and its trailing 
edge always coincident with the end of T5. 

The leading edge of notMemS1 is always coincident with the start of T2, but its duration may be configured 
to be from zero to 31 periods Tm. Regardless of the configured duration, the strobe will terminate no later 
than the end of T6. The strobe is sometimes programmed to extend beyond the normal end of Tmx. When 
wait states are inserted into an EMI cycle the end of Tmx is delayed, but the potential active duration of the 
strobe is not altered. Thus the strobe can be configured to terminate relatively early under certain conditions 
(page 236). If notMemS1 is configured to be zero it will never go low. 



222 6 IMS TaOO engineering data 

notMemS2, notMemS3 and notMemS4 are identical in operation. They all terminate at the end of T5, but 
the start of each can be delayed from one to 31 periods Tm beyond the start of T2. If the duration of one of 
these strobes would take it past the end of T5 it will stay high. This can be used to cause a strobe to become 
active only when wait states are inserted. If one of these strobes is configured to zero it will never go low. 
Figure 8.5 shows the effect of Wait on strobes in more detail; each division on the scale is one period Tm. 

Table 8.2 Read 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TaZdV Address tristate to data valid 0 ns 
TdVRdH Data setup before read 25 ns 
TRdHdX Data hold after read 0 ns 
TSOLRdL notMemSO before start of read a-4 a 8+4 ns 1 
TSOHRdH End of read from end of notMemSO -4 4 ns 
TRdLRdH Read period b-3 b+5 ns 2 

Notes 

a is total of T2+ T3 where T2, T3 can be from one to four periods Tm each in length. 

2 b is total of T4+ Twalt+ T5 where T4, T5 can be from one to four periods Tm each in length and Twalt may be 
any number of periods Tm in length. 

Tstate I T1 T2 T3 

ProcClockOut 
Tmx 

MemnotWrDO 

MemnotRfD1 

MemAD2-31 Address 

TaVSOL 

TSOLRdL 

notMemRd 

T4 

TSOLSOH 

notMemSO 
(GE) 

notMemS1 
(ALE) 

TSOLS1L(j) 
TSOLS1H 5 

T5 T6 

Figure 8.3 IMS T800 external read cycle: static memory 

T1 

TSOHS1H@ 



8 External memory interface 

Tstate I T1 T2 T3 

ProcClockOut 
Tmx 

MemnotWrDO 

MemnotRfD1 

MemAD2-31 Address 

TaVSOL 

T4 T5 

TSOLRdL TRdLRdH 

notMemRd 

notMemSO 
(RAS) 

notMemS1 
(ALE) 

notMemS2 
(AMUX) 

notMemS3 
(CAS) 

notMemS4 
(Wait state) 

TSOLSOH 

TSOLS1LCD ® 
TSOLS1H 5 

TSOLS2H 6 

TSOLS2L® 

TSOLS3H 7 

TSOLS3L@ 

TSOLS4L 4 

T6 T1 

TSOHS2H@ 

TSOHS3H@ 

TSOHS4H@ 

Figure S.4 IMS TSOO external read cycle: dynamic memory 

223 



224 6 IMS T800 engineering data 

Table S.3 IMS TSOO strobe timing 

SYMBOL I (n) PARAMETER MIN 
TaVSOL Address setup before notMemSO a-S 
TSOLaX Address hold after notMemSO b-S 
TSOLSOH notMemSO pulse width low c-5 
TSOLS1L 1 notMemS1 from notMemSO -4 
TSOLS1H 5 notMemS1 end from notMemSO d-1 
TSOHS1H 9 notMemS1 end from notMemSO end e-8 
TSOLS2L 2 notMemS2 delayed after notMemSO 1-6 
TSOLS2H 6 notMemS2 end from notMemSO c-S 
TSOHS2H 10 notMemS2 end from notMemSO end -4 
TSOLS3L 3 notMemS3 delayed after notMemSO 1-6 
TSOLS3H 7 notMemS3 end from notMemSO c-S 
TSOHS3H 11 notMemS3 end from notMemSO end -4 
TSOLS4L 4 notMemS4 delayed after notMemSO 1-6 
TSOLS4H 8 notMemS4 end from notMemSO c-S 
TSOHS4H 12 notMemS4 end from notMemSO end -4 
Tmx Complete external memory cycle 

Notes 

a is Tl where Tl can be from one to four periods Tm in length. 

2 b is T2 where T2 can be from one to four periods Tm in length. 

NOM MAX UNITS NOTE 
ns 1 

b b+8 ns 2 
c+6 ns 3 

4 ns 
d+9 ns 4,6 
e+4 ns S,6 
I+S ns 7 
c+7 ns 3 

7 ns 
I+S ns 7 
c+7 ns 3 

7 ns 
I+S ns 7 
c+7 ns 3 

7 ns 
g 8 

3 c is total of T2+ T3+ T4+ Twait+ TS where T2, T3, T4, TS can be from one to four periods Tm each in length and 
Twai! may be any number of periods Tm in length. 

4 d can be from zero to 31 periods Tm in length. 

S e can be from -27 to +4 periods Tm in length. 

6 If the configuration would cause the strobe to remain active past the end of TS it will go high at the end of TS. 
If the strobe is configured to zero periods Tm it will remain high throughout the complete cycle Tmx. 

7 f can be from zero to 31 periods Tm in length. If this length would cause the strobe to remain active past the 
end of TS it will go high at the end of TS. If the strobe value is zero periods Tm it will remain low throughout 
the complete cycle Tmx. 

8 9 is one complete external memory cycle comprising the total of Tl+T2+T3+T4+Twalt+TS+TS where n, T2, 
T3, T4, TS can be from one to four periods Tm each in length, TS can be from one to five periods Tm in length 
and Twalt may be zero or any number of periods Tm in length. 

TstateIT1IT21T3IT4ITSIT6IT11 Tstate IT11T21T3IT41 W I W ITSIT61T11 

notMemS1 I I notMemS1 I I 

notMemS2 notMemS2 

No wait states Wait states inserted 

Figure 8.S IMS T800 effect of wait states on strobes 



8 External memory interface 22S 

Table 8.4 Strobe SO to ProcClockOut skew 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TPCHSOH notMemSO rising from ProcClockOut rising -6 4 ns 
TPCLSOH notMemSO rising from ProcClockOut falling -S 10 ns 
TPCHSOL notMemSO falling from ProcClockOut rising -8 3 ns 
TPCLSOL notMemSO falling from ProcClockOut falling -S 7 ns 

ProcClockOut ~ ~ ~ ~ 

~PCHSOH ~TPCHSOL ~PCLSOH ~ TPCLSOL 
NotMemSO 

Figure 8.6 IMS T800 skew of notMemSO to ProcClockOut 

8.9 notMemWrBQ-3 

Because the transputer uses word addressing, four write strobes are provided; one to write each byte of the 
word. If a particular byte is not to be written, then the corresponding data outputs are tristated. notMemWrBO 
addresses the least significant byte. 

The transputer has both early and late write cycle modes. For a late write cycle the relevant write strobes 
notMemWrBO-3 are low during T4 and T5; for an early write they are also low during T3. Data should be 
latched into memory on the rising edge of the strobes in both cases, although it is valid until the end of T6. 
If the strobe duration is insufficient, it may be extended at configuration time by adding extra periods Tm to 
either or both of Tstates T4 and T5 for both early and late modes. For an early cycle they may also be added 
to T3. Further extension may be obtained by inserting wait states at the end of T4. If the data hold time is 
insufficient, extra periods Tm may be added to T6 to extend it. 

Table 8.S Write 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TdVWrH Data setup before write d-7 d+10 ns 1,S 
TWrHdX Data hold after write 8-10 8+S ns 1,2 
TSOLWrL notMemSO before start of early write b-S b+S ns 1,3 

notMemSO before start of late write c-S c+S ns 1,4 
TSOHWrH End of write from end of notMemSO -S 4 ns 1 
TWrLWrH Early write pulse width d-4 d+7 ns 1,S 

Late write pulse width e-4 e+7 ns 1,6 

Notes 

Timing is for all write strobes notMemWrBO-3. 

2 a is T6 where T6 can be from one to five periods Tm in length. 

3 b is T2 where T2 can be from one to four periods Tm in length. 

4 c is total of T2+ 13 where T2, T3 can be from one to four periods Tm each in length. 

S d is total of T3+T4+Twalt+T5 where T3, T4, T5 can be from one to four periods Tm each in length and Twait 
may be zero or any number of periods Tm in length. 

6 e is total of T4+ Twalt+ T5 where T4, T5 can be from one to four periods Tm each in length and Twalt may be 
zero or any number of periods Tm in length. 



226 

Tstate I T1 T2 T3 T4 

ProcClockOut 
Tmx 

MemnotWrDO =>-
MemnotRfD1 =>-
MemAD2-31 =>-

notMemWrB~ 
(early write) 

Data 

Data 

Address Data 

TaVSOL TSOLaX 
TdVWrH 

TSOLWrL TWrLWrH 

~ 

T5 

TSOLWrL TWrLWrH 

3 notMemWrBO­
(late write) 

notMemSO 
(eE) 

notMemS1 
(ALE) 

--

~ 
TSOLSOH 

r-TSOLS1 L CD 
TSOLS1H ® 

6 IMS TSOO engineering data 

T6 T1 

-< 
-< 
-< 

TWrHdX 

__ ~TSOHWrH 

-- ~TSOHS1H ® 

~ 

Figure S.7 IMS TSOO external write cycle 

In the write cycle timing diagram ProcClockOut is included as a guide only; it is shown with each Tstate 
configured to one period Tm. The strobe is inactive during internal memory cycles. 



8 External memory Interface 

Clockln 
(5 MHz) 

LinkOln 

100~~ 
GND 

,........, 

56R LinkOOut 

Link11n 
Link10ut j As LinkO 

Link21n 
Link20ut 

Link31n 
Link30ut 

M 

..r-I-
56R 

j As Link2 

emConfig 

It) 
0 
C( 

E 
~ 

I 

C VCC ~~ apPlus ~~:l::.l~ CapMinus GNDTT ; ","'T 
I 

I r notMemWrB3 - 1\*4 
- notMemWrB2 ~~ic 
- notMemWrB1 1\*4 fv1 

a~ic 
IMS - notMemWrBO r -notMemRd notOE- 256K*4 M 
T800 Dynamic -notMemS3 notCAS-

-notMemS2- RAM ,...... 
-notMemS1 notRAS-

-notMemSD1 ~" 
I Column ~ Row/Column 
address address 

latch multiplexor 
J. ~ J. ~ J. ~ 

8 ...... en 0 ... M ... 0 
00"" 

It) l ... o~ I ,... ,... 
3::a:N ... I :iE-I cb ... N _$N ,... 
'0'00 0 0 00 0 0 0 
ccC( C( C( ccC( C( C( 

EEE E E EEi E E 

"~~~7 ... ~"7 
GI 

... ~ 
GI 

... :! ... ~~:!7 7 ... :!7 

Figure 8.8 IMS T800 dynamic RAM application 

227 

. 
1\*4 
a~ic 
M 

,.......... 

... 
l N 
0 
C( 

E 
GI 

... :!7 



228 6 IMS T800 engineering data 

8.10 MemConfig 

MemConfig is an input pin used to read configuration data when setting external memory interface (EMI) 
characteristics. It is read by the processor on two occasions after Reset goes low; first to check if one of the 
preset internal configurations is required. then to determine a possible external configuration. 

8.10.1 Internal configuration 

The internal configuration scan comprises 64 periods TDCLDCL of Clockln during the internal scan period 
of 144 Clockln periods. MemnotWrDO. MemnotRfD1 and MemAD2-32 are all high at the beginning of the 
scan. Starting with MemnotWrDO. each of these lines goes low successively at intervals of two Clockln 
periods and stays low until the end of the scan. If one of these lines is connected to MemConfig the preset 
internal configuration mode associated with that line will be used as the EMI configuration. The default 
configuration is that defined in the table for MemAD31; connecting MemConfig to VCC will also produce 
this default configuration. Note that only 17 of the possible configurations are valid. all others remain at the 
default configuration. 

Table 8.6 IMS T800 internal configuration coding 

Duration of each Tstate Strobe Write Refresh Cycle 
periods Tm coefficient cycle interval time 

Clockln Proc 
Pin T1 T2 T3 T4 TS T6 s1 s2 s3 s4 type cycles cycles 

MemnotWrDO 1 1 1 1 1 1 30 1 3 5 late 72 3 
MemnotRfD1 1 2 1 1 1 2 30 1 2 7 late 72 4 
MemAD2 1 2 1 1 2 3 30 1 2 7 late 72 5 
MemAD3 2 3 1 1 2 3 30 1 3 8 late 72 6 
MemAD4 1 1 1 1 1 1 3 1 2 3 early 72 3 
MemADS 1 1 2 1 2 1 5 1 2 3 early 72 4 
MemAD6 2 1 2 1 3 1 6 1 2 3 early 72 5 
MemAD7 2 2 2 1 3 2 7 1 3 4 early 72 6 
MemAD8 1 1 1 1 1 1 30 1 2 3 early t 3 
MemAD9 1 1 2 1 2 1 30 2 5 9 early t 4 
MemAD10 2 2 2 2 4 2 30 2 3 8 late 72 7 
MemAD11 3 3 3 3 3 3 30 2 4 13 late 72 9 
MemAD12 1 1 2 1 2 1 4 1 2 3 early 72 4 
MemAD13 2 1 2 1 2 2 5 1 2 3 early 72 5 
MemAD14 2 2 2 1 3 2 6 1 3 4 early 72 6 
MemAD1S 2 1 2 3 3 3 8 1 2 3 early 72 7 
MemAD31 4 4 4 4 4 4 31 30 30 18 late 72 12 

t Provided for static RAM only. 



8 External memory interface 

Tstate 11 121314151611 121314151611 12 

notMemSO 

notMemS1 ! 
notMemS2 1:;: 1~=----;:=--=:::;-----;:= 
notMemS3 i 3 

~i--=---------n~~m~_~ __ ~ ________ _ 

notMemRd 

MemConfig=MemnotWrDO 

Tstate 11 11 12 12 1 2131415 1 516 1 6 1 611 12 

notMemSOI I 
notMemS1 I 30 I 
notMemS2 _----rn __ i~· 1~==::;-----...J ,...-____ _ 
n~Mems3 ___ ~i~3~~~==~ ______ _ 

i 
n~~m~ __ ~ ___ J ______ _ 

MemConfig=MemAD3 

229 

Tstate 11 12 1 213141516 1 611 12 1 2131415 

notMemSO IL ______ --'IIL ____ __ 
notMemS1 I 30 n 
notMemS2 --ml:;i 1::;-----=='-;===--.::;------

notMemS3 : 2 
notMemS4-_4L--_--_~~~_-_-_-_-_-_-_-_--_ 

MemConfig=MemnotRfD1 

Tstatel11112121313141slsls16161111 

notMemSOI I 
notMemS11 7 

notMemS2 ----rn ___ i~1-=;:::==;_----~---
notMemS3 i 3 I 
notMemS4 ---+-! -----=-;4----=:;-L---.J----"r----
notMemRd L--Jr-----
notMemWr early 

MemConfig=MemAD7 

Figure 8.9 IMS T800 internal configuration 



230 

Delay 

MemnotWrDO 

MemnotRfD1 

MemAD2 

MemAD3 

t t 
MemAD31 

MemConfig CD 
MemConfig ® 

6 IMS T800 engineering data 

Internal configuration External configuration 

CD Internal configuration: MemConfig connected to MemAD2 
® External configuration: MemConfig connected to inverse of MemAD3 

Figure 8.10 IMS T800 internal configuration scan 

8.10.2 External configuration 

If MemConfig is held low until MemnotWrDO goes low the internal configuration is ignored and an external 
configuration will be loaded instead. An external configuration scan always follows an internal one, but if an 
internal configuration occurs any external configuration is ignored. 

The external configuration scan comprises 36 successive external read cycles, using the default EMI con­
figuration preset by MemAD31. However, instead of data being read on the data bus as for a normal read 
cycle, only a single bit of data is read on MemConfig at each cycle. Addresses put out on the bus for each 
read cycle are shown in table 8.7, and are designed to address ROM at the top of the memory map. The 
table shows the data to be held in ROM; data required at the MemConfig pin is the inverse of this. 

MemConfig is typically connected via an inverter to MemnotWrDO. Data bit zero of the least significant byte 
of each ROM word then provides the configuration data stream. By switching MemConfig between various 
data bus lines up to 32 configurations can be stored in ROM, one per bit of the data bus. MemConfig can be 
permanently connected to a data line or to GND. Connecting MemConfig to GND gives all Tstates configured 
to four periods; notMemS1 pulse of maximum duration; notMemS2·4 delayed by maximum; refresh interval 
72 periods of Clockln; refresh enabled; late write. 

The external memory configuration table 8.7 shows the contribution of each memory address to the 13 con­
figuration fields. The lowest 12 words (#7FFFFF6C to #7FFFFF98, fields 1 to 6) define the number of extra 
periods Tm to be added to each Tstate. If field 2 is 3 then three extra periods will be added to T2 to extend 
it to the maximum of four periods. 

The next five addresses (field 7) define the duration of notMemS1 and the following fifteen (fields 8 to 10) 
define the delays before strobes notMemS2·4 become active. The five bits allocated to each strobe allow 
durations of from 0 to 31 periods Tm, as described in strobes page 221. 

Addresses #7FFFFFEC to #7FFFFFF4 (fields 11 and 12) define the refresh interval and whether refresh is to 
be used, whilst the final address (field 13) supplies a high bit to MemConfig if a late write cycle is required. 

The columns to the right of the coding table show the values of each configuration bit for the four sample 



8 External memory interface 231 

external configuration diagrams. Note the inclusion of period E at the end of T6 in some diagrams. This is 
inserted to bring the start of the next Tstate T1 to coincide with a rising edge of ProcClockOut (page 219). 

Wait states W have been added to show the effect of them on strobe timing; they are not part of a configuration. 
In each case which includes wait states, two wait periods are defined. This shows that if a wait state would 
cause the start of T5 to coincide with a falling edge of ProcClockOut, another period 1m is generated by 
the EMI to force it to coincide with a rising edge of ProcClockOut. This coincidence is only necessary if wait 
states are added, otherwise coincidence with a falling edge is permitted. Any configuration memory access 
is only permitted to be extended using wait, up to a total of 14 Clockln periods. 

Tstate 11 121213 13141s16 I 6 IE 11 12 1213 

notMemSO I I ~ 

notMemS1 8 
notMemS2 -l=: :::::;;3;::::;-L-1-=--;:===-~=== 

notMemS3 _--m-t-i.· 1~:::;:::::::;;-~I======~L== 
notMemS4 4 U 
notMemRd U,...-----
notMemWr --eariYl L 

MemWait ® - - - - - - - - - - - - - -
MemWait ® - - - - - - - - - - - - - -

Example 1 

Tstate 11 1213 I 3141wlwlwIsl6 I 6 I E 11 12 

notMemSO IlL 
notMemS1 \.1J L 
notMemS2 - r - - - - 0 - - - - - - -
notMemS3 ! 9 
notMemS4 =-fu-=l- - - - - -,- - - -
notMemRd 
notMemWr -.,-Ia-:-te-.,'------' r----

MemWait@ 

MemWait®~ 

Example 3 

i No wait states inserted 
1 One wait state inserted 
2 Two wait states inserted 
3 Three wait states inserted 

Tstate 11 1213 13141wlwlwIsl611 1213 13 

nmMems°-4i======;======-_==== 
notMemS1 _ L.. ___ <L _______ _ 

notMemS2 ~:I 2 I L 
notMemS3 7 U 
notMemS4 i 6 LJ'---
notMemRd _.,....,.._,L.I ___ --' ,..-__ _ 
not MemWr 

MemWait@ 

MemWait®~ '--__ ---'I 
Example 2 

Tstate 11 12121313141wlwIsl6 I 61 E 11 12 

notMemSO IlL 
notMemS1 W.!: 1 L 
notMemS2 7 U 
notMemS3 5 L.-J.-----
notMems4~~3~~I~ __ --,,..-__ _ 

notMemRd 

notMemWr eariYlL ____ -' 
MemWait (i) __ ---'IlL _____ _ 

MemWait ® 11'-____ _ 
Example 4 

Figure 8.11 IMS T800 external configuration 



232 6 IMS TBOO engineering data 

Internal configuration External configuration Delay 

Address 

MemnotWrDO 

MemnotRfD1 

MemAD2 

MemAD3 

t 
MemAD31 

MemConfig CD 
notMemRd 

CD MemConfig connected to inverse of MemnotWrDO 

() 
w 
u.. u.. u.. 
u.. u.. 
t-. 

® 

i Configuration field 1; T1 configured for 2 periods Tm 
3 Configuration field 2; T2 configured for 3 periods Tm 
4 Configuration field 10; most significant bit of notMemS4 configured high 
5 Configuration field 11; refresh interval configured for 36 periods Clockln 
6 Configuration field 12; refresh enabled 
7 Configuration field 13; early write cycle 

Figure B.12 IMS TBOO external configuration scan 



8 External memory interface 233 

Table 8.7 IMS T800 external configuration coding 

Scan MemAD Example diagram 
cycle address Field Function 1 2 3 4 

1 7FFFFF6C 1 T1 least significant bit 0 0 0 0 
2 7FFFFF70 1 T1 most significant bit 0 0 0 0 
3 7FFFFF74 2 T2 least significant bit 1 0 0 1 
4 7FFFFF78 2 T2 most significant bit 0 0 0 0 
5 7FFFFF7C 3 T3 least significant bit 1 1 1 1 
6 7FFFFF80 3 T3 most significant bit 0 0 0 0 
7 7FFFFF84 4 T4 least significant bit 0 0 0 0 
8 7FFFFF88 4 T 4 most significant bit 0 0 0 0 
9 7FFFFF8C 5 T5 least significant bit 0 0 0 0 
10 7FFFFF90 5 T5 most significant bit 0 0 0 0 
11 7FFFFF94 6 T6 least significant bit 1 0 1 1 
12 7FFFFF98 6 T6 most significant bit 0 0 0 0 
13 7FFFFF9C 7 notMemS1 least significant bit 0 0 1 1 
14 7FFFFFAO 7 0 0 0 0 
15 7FFFFFA4 7 .ij. .ij. 0 0 0 0 
16 7FFFFFA8 7 1 0 0 0 
17 7FFFFFAC 7 notMemS1 most significant bit 0 0 0 0 
18 7FFFFFBO 8 notMemS2 least significant bit 1 0 0 1 
19 7FFFFFB4 8 1 1 0 1 
20 7FFFFFB8 8 .ij. .ij. 0 0 0 1 
21 7FFFFFBC 8 0 0 0 0 
22 7FFFFFCO 8 notMemS2 most significant bit 0 0 0 0 
23 7FFFFFC4 9 notMemS3 least significant bit 1 1 1 1 
24 7FFFFFC8 9 0 1 0 0 
25 7FFFFFCC 9 .ij. .ij. 0 1 0 1 
26 7FFFFFDO 9 0 0 1 0 
27 7FFFFFD4 9 notMemS3 most significant bit 0 0 0 0 
28 7FFFFFD8 10 notMemS4 least significant bit 0 0 0 1 
29 7FFFFFDC 10 0 1 1 1 
30 7FFFFFEO 10 .ij. .ij. 1 1 0 0 
31 7FFFFFE4 10 0 0 0 0 
32 7FFFFFE8 10 notMemS4 most significant bit 0 0 0 0 
33 7FFFFFEC 11 Refresh Interval least significant bit - - - -
34 7FFFFFFO 11 Refresh Interval most significant bit - - - -
35 7FFFFFF4 12 Refresh Enable - - - -
36 7FFFFFF8 13 Late Write 0 1 1 0 



234 6 IMS T800 engineering data 

Table 8.8 IMS T800 memory refresh configuration coding 

Refresh Interval Field 11 Complete 
interval In JLS encoding cycle (mS) 

18 3.6 00 0.922 
36 7.2 01 1.843 
54 10.8 10 2.765 
72 14.4 11 3.686 

Refresh intervals are in periods of Clockln and Clockln frequency is 5 MHz: 

Interval = 18 • 200 = 3600 ns 

Refresh interval is between successive incremental refresh addresses. 
Complete cycles are shown for 256 row DRAMS. 

Table 8.9 Memory configuration 

SYMBOL PARAMETER MIN 
TMCVRdH Memory configuration data setup 25 
TRdHMCX Memory configuration data hold 0 
TSOLRdH notMemSO to configuration data read a-12 

Notes 

1 a is 16 periods Tm. 

T1 T2 T3 T4 T5 

NOM MAX 

a+12 

T6 

UNITS 
ns 
ns 
ns 

T1 Tstate I 
Tm 

MemnotWrDO -../ 

I I I I I I I I I I I I I I I 

'-««««««< Data »)>--_----Jr-

I I I 

MemnotRfD1 -../ '-««««««< Data »)>---_-Jr-

MemAD2-31 -< Address >-««««««< Data ») C 
notMemSO ~~------~TS~O-L~R-dH--------/ 

notMemRd 

MemConfig 
J ..-TMCVRdH 

-- ~TRdHMCX 
---------««««<~ Data »)~---

Figure 8.13 IMS T800 external configuration read cycle timing 

NOTE 

1 



8 External memory interface 235 

8.11 notMemRf 

The IMS T800 can be operated with memory refresh enabled or disabled. The selection is made during 
memory configuration, when the refresh interval is also determined. Refresh cycles do not interrupt internal 
memory accesses, although the internal addresses cannot be reflected on the external bus during refresh. 

When refresh is disabled no refresh cycles occur. During the post-Reset period eight dummy refresh cycles 
will occur with the appropriate timing but with no bus or strobe activity. 

A refresh cycle uses the same basic external memory timing as a normal external memory cycle, except that 
it starts two periods Tm before the start of T1. If a refresh cycle is due during an external memory access, 
it will be delayed until the end of that external cycle. Two extra periods Tm (periods R in the diagram) will 
then be inserted between the end of T6 of the external memory cycle and the start of T1 of the refresh cycle 
itself. The refresh address and various external strobes become active approximately one period Tm before 
T1. Bus signals are active until the end of T2, whilst notMemRf remains active until the end of T6. 

For a refresh cycle, MemnotRfD1 goes low before notMemRf goes low and MemnotWrDO goes high with 
the same timing as MemnotRfD1. All the address lines share the same timing, but only MemAD2·11 give 
the refresh address. MemAD12·30 stay high during the address period, whilst MemAD31 remains low. 
Refresh cycles generate strobes notMemSO·4 with timing as for a normal external cycle, but notMemRd and 
notMemWrBO·3 remain high. MemWait operates normally during refresh cycles. 

Table 8.10 Memory refresh 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TRfLRfH Refresh pulse width low a-2 a+9 ns 1 
TRaVSOL Refresh address setup before notMemSO b-12 ns 
TRfLSOL Refresh indicator setup before notMemSO b-4 b b+6 ns 2 

Notes 

a is total Tmx+ Tm. 

2 b is total T1+ Tm where T1 can be from one to four periods Tm in length. 



236 6 IMS T800 engineering data 

Tstate 1 T4 1 T5 1 T6 1 T1 1 T2 1 T3 1 T4 1 T5 1 T6 1 T1 1 

normal cycle 
MemAD2-31 _----LX'--'--__ ---'X Address X Data 

Tstate 1 T6 1 R R 1 T1 1 T2 1 T3 1 T 4 1 T5 1 T6 1 T1 1 

MemAD2-11 ==><==> Refresh address 

notMemSO ~ TRaVSO~ 
TRfLSOL .1 TRfLRfH 

notMemRf 

MemnotWrDO 

MemnotRfD1 

MemAD12-30 

MemAD31 

Figure 8.14 IMS T800 refresh cycle timing 

8.12 MemWait 

Taking MemWait high with the timing shown will extend the duration of T4. MemWait is sampled relative 
to the falling edge of ProcClockOut during a T3 period, and should not change state in this region. By 
convention, notMemS4 is used to synchronize wait state insertion. If this or another strobe is used, its delay 
should be such as to take the strobe Iowan even number of periods Tm after the start of T1, to coincide with 
a rising edge of ProcClockOut. 

MemWait may be kept high indefinitely, although if dynamic memory refresh is used it should not be kept 
high long enough to interfere with refresh timing. MemWait operates normally during all cycles, including 
refresh and configuration cycles. It does not affect internal memory access in any way. 

If the start of T5 would coincide with a falling edge of ProcClockOut an extra wait period Tm (EW) is 
generated by the EMI to force coincidence with a rising edge. Rising edge coincidence is only forced if wait 
states are added, otherwise coincidence with a falling edge is permitted. 



8 External memory interface 237 

Table 8.11 Memory wait 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TPCLWtH Wait setup -(O.5Tm+9) ns 1,2 
TPCLWtL Wait hold O.5Tm+10 ns 1,2 
TWtLWtH Delay before re-assertion of Wait 2Tm 

Notes 

1 ProcClockOut load should not exceed SOpf. 

2 If wait period exceeds refresh interval, refresh cycles will be lost. 

Tstate I T2 T6 T1 

ProcClockOut 

MemWait 

MemAD0-31 Address X<<<<<<<<<<<<<<<<<< Data »-< Address 

notMemRd "" / 

TS~6 ProcClockOut 

MemWait 

Tst~5 ProcClockOut 

MemWait 

Figure 8.15 IMS T800 memory wait timing 



238 6 IMS T800 engineering data 

8.13 MemReq, MemGranted 

Direct memory access (DMA) can be requested at any time by taking the asynchronous MemReq input high. 
The transputer samples MemReq during the final period Tm of T6 of both refresh and external memory 
cycles. To guarantee taking over the bus immediately following either, MemReq must be set up at least two 
periods Tm before the end of T6. In the absence of an external memory cycle, MemReq is sampled during 
every low period of ProcClockOut. The address bus is tristated two periods Tm after the ProcClockOut 
rising edge which follows the sample. MemGranted is asserted one period Tm after that. 

Removal of MemReq is sampled during each low period of ProcClockOut and MemGranted is removed 
synchronously with the next falling edge of ProcClockOut. If accurate timing of DMA is required, MemReq 
should be set low coincident with a falling edge of ProcClockOut. Further external bus activity, either refresh, 
external cycles or reflection of internal cycles, will commence at the next rising edge of ProcClockOut. 

Strobes are left in their inactive states during DMA. DMA cannot interrupt a refresh or external memory cycle, 
and outstanding refresh cycles will occur before the bus is released to DMA. DMA does not interfere with 
internal memory cycles in any way, although a program running in internal memory would have to wait for 
the end of DMA before accessing external memory. DMA cannot access internal memory. If DMA extends 
longer than one refresh interval (Memory Refresh Configuration Coding, table 8.8), the DMA user becomes 
responsible for refresh. DMA may also inhibit an internally running program from accessing external memory. 

DMA allows a bootstrap program to be loaded into external RAM ready for execution after reset. If MemReq is 
held high throughout reset, MemGranted will be asserted before the bootstrap sequence begins. MemReq 
must be high at least one period TDCLDCL of Clockln before Reset. The circuit should be designed to 
ensure correct operation if Reset could interrupt a normal DMA cycle. 

Table 8.12 Memory request 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TMRHMGH Memory request response time 4Tm-2ns 7Tm+7ns 
TMRLMGL Memory request end response time 2Tm-2ns 5Tm+22ns 
TADZMGH Bus tristate before memory granted Tm-2ns Tm+22ns 
TMGLADV Bus active after end of memory granted -10ns Tm+2ns 

Notes 

1 These values assume no external memory cycle is in progress. If an external cycle is active, maximum time 
could be (1 EMI cycle Tmx)+(1 refresh cycle TRfLRfH)+(6 periods Tm). 

ProcClockOut 

MemReq 

MemGranted 

MemnotWrDO 
MemnotRfD1 
MemAD2-31 

TMRHMGH TMRLMGL 

TMGLADV 

Figure 8.16 IMS T800 memory request timing 

1 



8 External memory interface 

MemReq 

MemGranted 

Reset 

Configuration 
sequence 

D Pre- and post-configuration delays (figure 6.3) 
I Internal configuration sequence 
E External configuration sequence 
R Initial refresh sequence 
B Bootstrap sequence 

Figure 8.17 IMS T800 DMA sequence at reset 

MemReq /////// ""~------
External Memory--u . H I u--­
Interface cycles ---.n Read or Wnt~ '-_R_8_fr_e_sh_S-----! Read or Write ~ 

MemGranted 

MemnotRfD1 

MemnotWrDO 
MemAD2-31 

---------~~ ""~---
-----------~~~/~------------~<~-------------

------------~)~----------~<~------------

Figure 8.18 IMS T800 operation of MemReq, MemGranted with external, refresh memory cycles 

MemReq 

External Memory 
Interface activity 

////////// // ""~ ____ ...L.J// 
Internal Memory Cycles 

MemGranted ___________ ~~~ ______ ~~ ""---

MemnotWrDO 
MemnotRfD1 ) ( )>---------<C 
MemAD2-31 ~------~ 

Figure 8.19 IMS T800 operation of MemReq, MemGranted with external, internal memory cycles 

239 



240 

9 Events 

EventReq and EventAck provide an asynchronous handshake interface between an external event and an 
internal process. When an external event takes EventReq high the external event channel (additional to the 
external link channels) is made ready to communicate with a process. When both the event channel and the 
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck 
is removed after EventReq goes low. 

Only one process may use the event channel at any given time. If no process requires an event to occur 
EventAck will never be taken high. Although EventReq triggers the channel on a transition from low to high, 
it must not be removed before EventAck is high. EventReq should be low during Reset; if not it will be 
ignored until it has gone low and returned high. EventAck is taken low when Reset occurs. 

If the process is a high priority one and no other high priority process is running, the latency is as described 
on page 197. Setting a high priority task to wait for an event input allows the user to interrupt a transputer 
program running at low priority. The time taken from asserting EventReq to the execution of the microcode 
interrupt handler in the CPU is four cycles. The following functions take place during the four cycles: 

Cycle 1 Sample EventReq at pad on the rising edge of ProcClockOut and synchronise. 

Cycle 2 Edge detect the synchronised EventReq and form the interrupt request. 

Cycle 3 Sample interrupt vector for microcode ROM in the CPU. 

Cycle 4 Execute the interrupt routine for Event rather than the next instruction. 

Table 9.1 Event 

SYMBOL PARAMETER MIN NOM MAX UNITS 
TVHKH Event request response 0 ns 
TKHVL Event request hold 0 ns 
TVLKL Delay before removal of event acknowledge 0 6Tm+7ns 
TKLVH Delay before re-assertion of event request 0 ns 

EventReq 
TVHKH r- .... .... TVLKL 

TKHVL TKLVH 

EventAck 

Figure 9.1 IMS T800 event timing 

NOTE 



241 

10 Links 

Four identical INMOS bi-directional serial links provide synchronized communication between processors 
and with the outside world. Each link comprises an input channel and output channel. A link between two 
transputers is implemented by connecting a link interface on one transputer to a link interface on the other 
transputer. Every byte of data sent.on a link is acknowledged on the input of the same link, thus each signal 
line carries both data and control information. 

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one 
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first. 
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed 
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte 
and that the receiving link is able to receive another byte. The sending link reschedules the sending process 
only after the acknowledge for the final byte of the message has been received. 

The IMS TaOO links allow an acknowledge packet to be sent before the data packet has been fully received. 
This overlapped acknowledge technique is fully compatible with all other INMOS transputer links. 

The IMS TaOO links support the standard INMOS communication speed of 10 Mbits/sec. In addition they can 
be used at 5 or 20 Mbits/sec. Links are not synchronised with Clockln or ProcClockOut and are insensitive 
to their phases. Thus links from independently clocked systems may communicate, providing only that the 
clocks are nominally identical and within specification. 

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a 
single printed circuit board or between two boards via a backplane. Direct connection may be made between 
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 ohm 
transmission line should be used with series matching resistors RM. When this is done the line delay should 
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent. 

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within 
the skew tolerance of the link, although the absolute value of the delay is immaterial. 

Link speeds can be set by LinkSpecial, LinkOSpecial and Link123Special. The link 0 speed can be set 
independently. Table 10.1 shows uni-directional and bi-directional data rates in Kbytes/sec for each link 
speed; LinknSpecial is to be read as LinkOSpecial when selecting link 0 speed and as Link123Special for 
the others. Data rates are quoted for a transputer using internal memory, and will be affected by a factor 
depending on the number of external memory accesses and the length of the external memory cycle. 

Table 10.1 Speed Settings for Transputer Links 

Link Linkn 
Special Special Mbits/sec 

0 0 10 
0 1 5 
1 0 10 
1 1 20 

~H'H10111213141516171L, 
I D~a I 

Kbytes/sec 
Uni 
910 
450 
910 

1740 

Bi 
1250 
670 

1250 
2350 

ffil,--L-,-, _ 
I Ack I 

Figure 10.1 IMS TaOO link data and acknowledge packets 



242 6 IMS TaOO engineering data 

Table 10.2 Link 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TJQr LinkOut rise time 20 ns 1 
TJQf LinkOut fall time 10 ns 1 
TJDr Linkln rise time 20 ns 1 
TJDf Linkln fall time 20 ns 1 
TJQJD Buffered edge delay 0 ns 
TJBskew Variation in T JQJD 20 Mbits/s 3 ns 2 

10 Mbits/s 10 ns 2 
5 Mbits/s 30 ns 2 

CLiZ Linkln capacitance @ f=1MHz 7 pF 1 
Cll LinkOut load capacitance 50 pF 
RM Series resistor for 100n transmission line 56 ohms 

Notes 

These paramters are sampled, but are not 100% tested. 

2 This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by 
such things as short term variation in supply voltages and differences in delays for rising and falling edges. 

90% 
LinkOut 

10% 

90% 
Linkln 

10% 

Figure 10.2 IMS T800 link timing 

unk""'LaI~;:~ ~ -~ ---
Earliest TJQJD .. 

Linkln 1.5V- - - - ~ X ~-- -X 
TJBskew- J.+. 

Figure 10.3 IMS T800 buffered link timing 



10 Links 243 

Transputer family device A 

LinkOut I · I Linkln 

____ !:Li~n~k:!!lnu: -----CE-------i LinkOut 
Transputer family device B 

Figure 10.4 IMS T800 Links directly connected 

Transputer family device A Zo=100ohms 

UnkOut ~ Unk'n 

Linkln ~ LinkOut 
-------' Zo=100ohms RM Transputer family device B 

Figure 10.5 IMS T800 Links connected by transmission line 

Transputer family device A 

LinkOut ~ Linkln 
buffers 

Linkln ()- LinkOut 
Transputer family device B 

Figure 10.6 IMS T800 Links connected by buffers 



244 

11 Electrical specifications 

11.1 DC electrical characteristics 

Table 11.1 Absolute maximum ratings 

SYMBOL PARAMETER MIN MAX UNITS NOTE 
VCC DC supply voltage 0 7.0 V 1,2,3 
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3 
II Input current ±25 mA 4 
OSCT Output short circuit time (one pin) 1 s 2 
TS Storage temperature -65 150 °C 2 
TA Ambient temperature under bias -55 125 °C 2 
PDmax Maximum allowable dissipation 2 W 

Notes 

All voltages are with respect to GND. 

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those 
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may 
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods 
may affect reliability. 

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical 
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the 
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate 
logic level such as vee or GND. 

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND 
and vee. 

Table 11.2 Operating conditions 

SYMBOL PARAMETER MIN MAX UNITS NOTE 
VCC DC supply voltage 4.75 5.25 V 1 
VI, VO Input or output voltage 0 VCC V 1,2 
CL Load capacitance on any pin 60 pF 
TA Operating temperature range IMS TSOO-S 0 70 °C 3 
TA Operating temperature range IMS TSOO-M -55 125 °C 3 

Notes 

1 All voltages are with respect to GND. 

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics. 

3 Air flow rate 400 linear ft/min transverse air flow. 



11 Electrical specifications 245 

Table 11.3 DC characteristics 

SYMBOL PARAMETER MIN MAX UNITS NOTE 
VIH High level input voltage 2.0 VCC+0.5 V 1,2 
VIL Low level input voltage -0.5 0.8 V 1,2 
II Input current @ GND<VI<VCC ±10 J-tA 1,2 
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2 
VOL Output low voltage @ IOL=4mA 0.4 V 1,2 
lOS Output short circuit current @ GND<VO<VCC 36 65 mA 1,2,3,6 

65 100 mA 1,2,4,6 
10Z Tristate output current @ GND<VO<VCC ±10 J-tA 1,2 
PD Power dissipation 1.2 W 2,5 
CIN Input capacitance @ f=1MHz 7 pF 6 
COZ Output capacitance @ f=1MHz 10 pF 6 

Notes 

All voltages are with respect to GND. 

2 Parameters for IMS T800-S measured at 4.75V<VCC<5.25V and 0°C<TA<70°C. 
Input clock frequency = 5 MHz. 

3 Current sourced from non-link outputs. 

4 Current sourced from link outputs. 

5 Power dissipation varies with output loading and program execution. 
Power dissipation for processor operating at 20 MHz. 

6 This parameter is sampled and not 100% tested. 

11.2 Equivalent circuits 

VCC-~ 

R1 ] Load for: R1 R2 Equivalent load: 

Output I~ Link outputs 1K96 47K 1 Schottky TTL input 
1""""1 

." Other outputs 970R 24K 2 Schottky TTL inputs 

50pF = 1= OR2 
.,~ Diodes are 1 N916 

'-

." 
GND 

Figure 11.1 Load circuit for AC measurements 



246 6 IMS T800 engineering data 

Vdd-1 

~ Inputs 
OV 

Vdd-1 / Inputs VIL 
OV -------./ 

tpHL 

Vdd ~.5V Outputs 
OV 

tpLH 

Vdd I 

Outputs Y,.5V 
OV 

Figure 11.2 AC measurements timing waveforms 

Test point 

Output under test 
510R 

GND --------~-----------!+--

VCC 

Figure 11.3 Tristate load circuit for AC measurements 

11.3 AC timing characteristics 

Table 11.4 Input, output edges 

SYMBOL PARAMETER MIN MAX 
TDr Input rising edges 2 20 
TDf Input falling edges 2 20 
TOr Output rising edges 25 
TOf Output falling edges 15 
TSOLaHZ Address high to tristate a a+6 
TSOLaLZ Address low to tristate a a+6 

Notes 

1 Non-link pins; see section on links. 

2 All inputs except Clockln; see section on Clockln. 

3 a is T2 where T2 can be from one to four periods Tm in length. 
Address lines include MemnotWrDO, MemnotRfD1, MemAD2·31. 

UNITS NOTE 
ns 1,2 
ns 1,2 
ns 1 
ns 1 
ns 3 
ns 3 



11 Electrical specifications 

Notes 

90% 

10% 

90% 

10% 

30 
Time 

ns 
20 

10 

-----1\----------- -- ------
TOt 

90% -----It------
----- -- ------
TOr 

10% 

-----h------
----- -- ------
Tat 

-----X----------- -- ------
Tar 

90% 

10% 

Figure 11.4 IMS T800 input and output edge timing 

40 

Load 

Figure 11.5 IMS T800 tristate timing relative to notMemSO 

Rise time 

Fall time 

6080100 

Capacitance pF 

Link 

Time 
ns 

30 

20 

10 

40 60 80 

Load Capacitance pF 

EMI 

Figure 11.6 Typical rise/fall times 

100 

Skew is measured between notMemSO with a standard load (2 Schottky TTL inputs and 30pF) and 
notMemSO with a load of 2 Schottky TIL inputs and varying capacitance. 

247 



24S 6 IMS TSOO engineering data 

11.4 Power rating 

Internal power dissipation PINT of transputer and peripheral chips depends on vee, as shown in figure 11.7. 
PINT is substantially independent of temperature. 

Total power dissipation PD of the chip is 

where PIO is the power dissipation in the input and output pins; this is application dependent. 

Internal working temperature TJ of the chip is 

where TA is the external ambient temperature in °C and OJA is the junction-to-ambient thermal resistance in 
°CIW. OJA for each package is given in the Packaging Specifications section. 

SOO 

700 

Power 
PINT 600 
mW 

500 

4.4 4.6 4.S 5.0 5.2 5.4 5.6 

vee Volts 

Figure 11.7 IMS TSOO internal power dissipation vs VCC 

-
650 -

-

Power 600 - + 
PO -

mW 550 -
- + 

500 -

I I I I I I I I I I I I I I 

15 20 25 30 

Processor frequency MHz 

Figure 11.S IMS TSOO typical power dissipation with processor speed 



249 

12 Performance 

The performance of the transputer is measured in terms of the number of bytes required for the program, and 
the number of (internal) processor cycles required to execute the program. The figures here relate to occam 
programs. For the same function, other languages should achieve approximately the same performance as 
occam. 

With transputers incorporating an FPU, this type of performance calculation is straight forward when consider­
ing only integer data types. However, when floating point calculations using the REAL32 and REAL64 data 
types are present in the program, complications arise due to the concurrency inherent in the transputer's de­
sign whereby integer calculations can be overlapped with floating point calculations. A more comprehensive 
guide to the impact of this concurrency on transputer performance can be found in the Transputer Instruction 
Set - A Compiler Writers' Guide. 

12.1 Performance overview 

These figures are averages obtained from detailed simulation, and should be used only as an initial guide; 
they assume operands are of type :INT. The abbreviations in table 12.1 are used to represent the quantities 
indicated. In the replicator section of the table, figures in braces {} are not necessary if the number of 
replications is a compile time constant. To estimate performance, add together the time for the variable 
references and the time for the operation. 

Table 12.1 Key to performance table 

np number of component processes 
ne number of processes earlier in queue 
r 1 if :INT parameter or array parameter, 0 if not 
ts number of table entries (table size) 
w width of constant in nibbles 
p number of places to shift 
Eg expression used in a guard 
Et timer expression used in a guard 
Tb most significant bit set of multiplier ((-1) if the multiplier is 0) 
Tbp most significant bit set in a positive multiplier when counting from zero ((-1) if the multiplier is 0) 
Tbc most significant bit set in the two'S complement of a negative multiplier 
nsp Number of scalar parameters in a procedure 
nap Number of array parameters in a procedure 



250 6 IMS T800 engineering data 

Table 12.2 Performance 

Size (bytes) Time (cycles) 

Names 
variables 

in expression 
assigned to or input to 
in PRce or FUNCTION call, 

corresponding to an INT parameter 
channels 

Array Variables (for single dimension arrays) 
constant subscript 
variable subscript 
expression subscript 

Declarations 
CHAN OF protocol 
[size] CHAN OF protocol 
PRce 

Primitives 
assignment 
input 
output 
STOP 
SKIP 

Arithmetic operators 
+ -
* 
I 
REM 
» « 

Modulo Arithmetic operators 
PLUS 
MINUS 
TIMES (fast multiply, positive operand) 
TIMES (fast multiply, negative operand) 

Boolean operators 
OR 
AND NOT 

Comparison operators 
= constant 
= variable 
<> constant 
<> variable 
> < 
>= <= 

Bit operators 
/\ \I >< 

Expressions 
constant in expression 
check if error 

1.1+r 
1.1+r 

1.1+r 
1.1 

o 
5.3 
5.3 

3.1 
9.4 

body+2 

o 
4 
1 
2 
o 

1 
2 
2 
2 
2 

2 
1 
1 
1 

4 
1 

o 
2 
1 
3 
1 
2 

2 

w 
4 

2.1+2(r) 
1.1+(r) 

1.1+(r) 
2.1 

o 
7.3 
7.3 

3.1 
2.2 + 20.2.size 

o 

o 
26.5 
26 
25 
o 

1 
39 
40 
38 

3+p 

2 
1 

4+Tbp 
5+Tbc 

8 
2 

1 
3 
3 
5 
2 
4 

2 

w 
6 



12 Performance 251 

Table 12.3 Performance 

Size (bytes) Time (cycles) 

Timers 
timer input 2 3 
timer AFTER 

if past time 2 4 
with empty timer queue 2 31 
non-empty timer queue 2 38+ne*9 

ALT (timer) 
with empty timer queue 6 52 
non-empty timer queue 6 59+ne.9 
timer alt guard 8+2Eg+2Et 34+2Eg+2Et 

Constructs 
SEQ 0 0 
IF 1.3 1.4 

if guard 3 4.3 
ALT (non timer) 6 26 

alt channel guard 10.2+2Eg 20+2Eg 
skip alt guard 8+2Eg 10+2Eg 

PAR 11.5+(np-1).7.5 19.5+(np-1 ).30.5 
WHILE 4 12 

Procedure or function call 
3.5+(nsp-2)*1.1 16.5+(nsp-2)*1.1 

+nap*2.3 +nap*2.3 

Replicators 
replicated SEQ 7.3{+5.1 } (-3.8)+ 15.1.count{ +7.1} 
replicated IF 12.3{+5.1} (-2.6)+ 19.4.count{ +7.1 } 
replicated ALT 24.8{ + 1 0.2} 25.4+33.4.count{ + 14.2} 
replicated timer ALT 24.8{ + 1 0.2} 62.4+33.4*count{ + 14.2} 
replicated PAR 39.f{+5.1} (-6.4)+70.9.count{ +7.1} 

12.2 Fast multiply, TIMES 

The IMS T800 has a fast integer multiplication instruction product. For a positive multiplier its execution time 
is 4+ Tbp cycles, and for a negative multiplier 5+ Tbc cycles (table 12.1). The time taken for a multiplication 
by zero is 3 cycles. 

Implementations of high level languages on the transputer may take advantage of this instruction. For example, 
the occam modulo arithmetic operator TIMES is implemented by the instruction and the right-hand operand is 
treated as the multiplier. The fast multiplication instruction is also used in high level language implementations 
for the multiplication implicit in multi-dimensional array access. 



252 6 IMS T800 engineering data 

12.3 Arithmetic 

A set of functions are provided within the development system to support the efficient implementation of 
multiple length integer arithmetic. In the IMS T800, floating point arithmetic is taken care of by the FPU. In 
table 12.4 n gives the number of places shifted and all arguments and results are assumed to be local. Full 
details of these functions are provided in the occam reference manual, supplied as part of the development 
system and available as a separate publication. 

When calculating the execution time of the predefined maths functions, no time needs to be added for calling 
overhead. These functions are compiled directly into special purpose instructions which are designed to 
support the efficient implementation of multiple length integer arithmetic and floating point arithmetic. 

Table 12.4 Arithmetic performance 

+ cycles for 
Function Cycles parameter access t 

LONGADD 2 7 
LONGSUM 3 8 
LONGSUB 2 7 
LONGDIFF 3 8 
LONGPROD 34 8 
LONGDIV 36 8 
SHIFTRIGHT (n<32) 4+n 8 

(n>=32) n-27 
SHIFTLEFT (n<32) 4+n 8 

(n>=32) n-27 
NORMALISE (n<32) n+6 7 

(n>=32) n-25 
(n=64) 4 

ASHIFTRIGHT SHIFTRIGHT+2 5 
ASHIFTLEFT SHIFTLEFT+4 5 
ROTATERIGHT SHIFTRIGHT 7 
ROTATE LEFT SHIFTLEFT 7 
FRACMUL LONGPROD+4 5 

t Assuming local variables. 



12 Performance 253 

12.4 Floating point operations 

All references to REAL32 or REAL 64 operands within programs compiled for the IMS T800 normally produce 
the following performance figures. 

Table 12.5 Floating point performance 

Size (bytes) REAL32 Time (cycles) REAL64 Time (cycles) 

Names 
variables 

in expression 3.1 3 5 
assigned to or input to 3.1 3 5 
in PROC or FUNCTION call, 

corresponding to a REAL 
parameter 1.1+r 1.1+r 1.1+r 

Arithmetic operators 
+ - 2 7 7 

* 2 11 20 
/ 2 17 32 
REM 11 19 34 

Comparison operators 
= 2 4 4 
<> 3 6 6 
> < 2 5 5 
>= <= 3 7 7 

Conversions 
REAL32 to- 2 3 
REAL64 to- 2 6 
To INT32 from - 5 9 9 
To INT64 from - 18 32 32 
INT32 to- 3 7 7 
INT64 to- 14 24 22 

12.4.1 Floating point functions 

These functions are provided by the development system. They are compiled directly into special purpose 
instructions designed to support the efficient implementation of some of the common mathematical functions 
of other languages. The functions provide ABS and SQRT for both REAL32 and REAL64 operand types. 

Table 12.6 IMS T800 floating pOint arithmetic performance 

+ cycles for parameter access t 
Function Cycles REAL32 REAL 64 
ABS 2 8 
SQRT 118 8 
DABS 2 12 
DSQRT 244 12 

t Assuming local variables. 



254 6 IMS T800 engineering data 

12.4.2 Special purpose functions and procedures 

The functions and procedures given in tables 12.8 and 12.9 are provided by the development system to give 
access to the special instructions available on the IMS T800. Table 12.7 shows the key to the table. 

Table 12.7 Key to special performance table 

Tb most significant bit set in the word counting from zero 
n number of words per row (consecutive memory locations) 
r number of rows in the two dimensional move 
nr number of bits to reverse 

Table 12.8 Special purpose functions performance 

+ cycles for 
Function Cycles parameter access t 

BJ:TCOONT 2+Tb 2 
CRCBYTE 11 8 
CRCWORD 35 8 
BJ:TREVNBJ:T 5+nr 4 
BJ:TREVWORD 36 2 

t Assuming local variables. 

Table 12.9 Special purpose procedures performance 

+ cycles for 
Procedure Cycles parameter access t 

MOVE2D 8+(2n+23)*r 8 
DRAW2D 8+(2n+23).r 8 
CLJ:P2D 8+(2n+23)*r 8 

t Assuming local variables. 

12.5 Effect of external memory 

Extra processor cycles may be needed when program and/or data are held in external memory, depending 
both on the operation being performed, and on the speed of the external memory. After a processor cycle 
which initiates a write to memory, the processor continues execution at full speed until at least the next 
memory access. 

Whilst a reasonable estimate may be made of the effect of external memory, the actual performance will 
depend upon the exact nature of the given sequence of operations. 

External memory is characterized by the number of extra processor cycles per external memory cycle, denoted 
as e. For the IMS T800, with the fastest external memory the value of e is 2; a typical value for a large external 
memory is 5. 

If a program is stored in external memory, and e has the value 2 or 3, then no extra cycles need be estimated 
for linear code sequences. For larger values of e, the number of extra cycles required for linear code 
sequences may be estimated at (e-3)/4. A transfer of control may be estimated as requiring e+3 cycles. 

These estimates may be refined for various constructs. In table 12.10 n denotes the number of components 
in a construct. In the case of J:F, the n'th conditional is the first to evaluate to TRUE, and the costs include the 



12 Performance 255 

costs of the conditionals tested. The number of bytes in an array assignment or communication is denoted 
by b. 

Table 12.10 External memory performance 

IMS T800 
Program off ::hip Data off chip 

Boolean expressions e-2 0 
IF 3en-8 en 
Replicated IF (6e-4)n+7 (5e-2)n+8 
Replicated SEQ (3e-3)n+2 (4e-2)n 
PAR (3e-1 )n+8 3en+4 
Replicated PAR (10e-8)n+8 16en-12 
ALT (2e-4)n+6e (2e-2)n+ 1 Oe-8 
Array assignment and 0 max (2e, e(b/2)) 

communication in 
one transputer 

The following simUlation results illustrate the effect of storing program and/or data in external memory. The 
results are normalized to 1 for both program and data on chip. The first program (Sieve of Erastosthenes) 
is an extreme case as it is dominated by small, data access intensive loops; it contains no concurrency, 
communication, or even multiplication or division. The second program is the pipeline algorithm for Newton 
Raphson square root computation. 

Table 12.11 IMS T800 external memory performance 

Program e=2 e=3 e=4 e=5 On chip 
Program off chip 1 1.3 1.5 1.7 1.9 1 

2 1.1 1.2 1.2 1.3 1 

Data off chip 1 1.5 1.8 2.1 2.3 1 
2 1.2 1.4 1.6 1.7 1 

Program and data off chip 1 1.8 2.2 2.7 3.2 1 
2 1.3 1.6 1.8 2.0 1 

12.6 Interrupt latency 

If the process is a high priority one and no other high priority process is running, the latency is as described 
in table 12.12. The timings given are in full processor cycles TPCLPCL; the number of Tm states is also 
given where relevant. Maximum latency assumes all memory accesses are internal ones. 

Table 12.12 Interrupt latency 

Typical Maximum 
TPCLPCL Tm TPCLPCL Tm 

IMS T800 with FPU in use 19 38 78 156 

IMS T800 with FPU not in use 19 38 58 116 



256 

13 Package specifications 

13.1 84 pin grid array package 

2 3 4 5 6 7 8 9 10 

A 
DoNot Link Proc Link Link Link Link Event Mem 
Wire Special Clock 123 InO Out1 In2 Ack GND Wait Out Special 

Proc DoNot LinkO Link Link Link Event Mem not 
Speed Clockln Wire Special OutO Out2 Out3 Req Req Mem 
SelectO WrB3 

B 

Cap Cap Link Link Mem Mem not 
GND VCC VCC Mem Minus Plus In1 In3 Contig Granted WrB1 

C 

, ,/ 
Proc 

'" Index 
not not not 

Error Speed Errorln Mem Mem Mem D 
Select2 Rt WrB2 WrBO 

Disable Boot not not 
E Int From Reset Mem Mem VCC 

RAM ROM IMS T800 Rd SO 
84 pin grid array 

Proc Mem top view not not not 
Speed Analyse AD31 Mem Mem Mem 
Select1 S3 S2 S4 

F 

Mem Mem Mem not 

AD30 GND AD27 not GND Mem 
WrDO S1 

G 

Mem Mem Mem Mem Mem Mem Mem Mem Mem 

AD29 AD25 AD23 VCC AD16 AD12 AD8 AD4 AD3 not 
RfD1 

H 

Mem Mem Mem Mem Mem Mem GND Mem Mem Mem 
AD28 AD24 AD22 AD19 AD17 AD13 AD6 AD5 AD2 J 

Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem 
AD26 AD21 AD20 AD18 AD15 AD14 AD11 AD10 AD9 AD7 K 

Figure 13.1 IMS T800 84 pin grid array package pinout 



13 Package specifications 257 

~ 

-

I I 

)tM ~ E r 10 9 8 7 6 5 4 3 2 1 

=iFr@)@)@)@)@)@)@@@)@)A 
@)@)@)@)@)@)@@)@)@) B 

@)@)@)@)@)@)@@)@)@) C 

@)@@) @)@)@) 0 

@)@)@) @)@)@) E 
K k @)@)@) @)@)@) F 

@)@)@) @)@)@) G 

@)@)@)@)@)@)@@)@)@) H 

fooIl .. ;.--_~ ___ ._1 ----;.~11 tJi f- ~;:::: K: : : : .~ ; 

index 

rr 
AB1 

~ 
I .. 

Figure 13.284 pin grid array package dimensions 

Table 13.1 84 pin grid array package dimensions 

Millimetres Inches 
DIM NOM TOl NOM TOl Notes 
A 26.924 ±0.254· 1.060 ±0.010 

B1 17.019 ±0.127 0.670 ±0.005 
B2 18.796 ±0.127 0.740 ±0.005 
C 2.456 ±0.278 0.097 ±0.011 
0 4.572 ±0.127 0.180 ±0.005 
E 3.302 ±0.127 0.130 ±0.005 
F 0.457 ±0.025 0.018 ±0.002 Pin diameter 
G 1.143 ±0.127 0.045 ±0.005 Flange diameter 
K 22.860 ±0.127 0.900 ±0.005 
L 2.540 ±0.127 0.100 ±0.005 
M 0.508 0.020 Chamfer 

Package weight is approximately 7.2 grams 

Table 13.2 84 pin grid array package junction to ambient thermal resistance 

PARAMETER 
At 400 linear fUmin transverse air flow 



258 6 IMS T800 engineering data 

13.2 84 lead quad cerpack package 

The leads are unformed to allow the user to form them to specific requirements. 

CapMinus 75 
VCC76 

ProcSpeedSelectO 77 
GND78 

Errorln 79 
ProcSpeedSelect2 80 

Error 81 
BootFromROM 82 

Reset 83 
DisablelntRAM 84 

ProcSpeedSelect1 1 
Analyse 2 

MemAD31 3 
MemAD30 4 
MemAD29 5 

GND 6 
MemAD28 7 
MemAD27 8 
MemAD26 9 
MemAD2510 
MemAD2411 

• IMS T800 
84 lead 

quad cerpack 

Figure 13.3 IMS T800 84 lead quad cerpack package pinout 

53 MemReq 
52 MemGranted 
51 MemWait 
50 notMemRf 
49 notMemWrB3 
48 notMemWrB2 
47 notMemWrB1 
46 notMemWrBO 
45 notMemRd 
44 notMemSO 
43 VCC 
42 notMemS4 
41 notMemS3 
40 notMemS2 
39 notMemS1 
38 GND 
37 MemnotWrDO 
36 MemnotRfD1 
35 MemAD2 
34 MemAD3 
33 MemAD4 



13 Package specifications 

L 

D 

I" C .. I 

Figure 13.4 84 lead quad cerpack package dimensions 

Millimetres Inches 
DIM NOM TOL NOM TOL Notes 

A 38.100 ±0.508 1.500 ±0.020 

B 26.924 ±0.305 1.060 ±0.012 

C 20.574 ±0.203 0.810 ±0.008 

D 19.558 ±0.254 0.770 ±0.010 

E 0.508 0.020 

F 1.270 ±0.051 0.050 ±0.002 

G 2.489 ±0.305 0.098 ±0.012 

H 0.635 ±0.076 0.025 ±0.003 

J 1.143 ±0.102 0.045 ±0.004 

K 3.099 0.122 Max. 

L 27.940 1.100 Max. 

M 0.178 ±0.025 0.007 ±0.001 

Table 13.3 84 lead quad cerpack package dimensions 

Section through 
package 

259 



260 

14 Ordering 

This section indicates the designation of speed and package selections for the various devices. Speed of 
Clockln is 5 MHz for all parts. Transputer processor cycle time is nominal; it can be calculated more exactly 
using the phase lock loop factor PLLx, as detailed in the external memory section. 

For availability contact local INMOS sales office or authorised distributor. 

Table 14.1 IMS T800 ordering details 

INMOS Processor Processor 
designation clock speed cycle time PLLx Package 

IMS T800·G17S 17.5 MHz 57 ns 3.5 Ceramic Pin Grid 
IMS T800·G20S 20.0 MHz 50 ns 4.0 Ceramic Pin Grid 
IMS T800·G25S 25.0 MHz 40 ns 5.0 Ceramic Pin Grid 
IMS T800·G30S 30.0 MHz 33 ns 6.0 Ceramic Pin Grid 

IMS T800·G17M 17.5 MHz 57 ns 3.5 Ceramic Pin Grid MIL Spec 
IMS T800·G20M 20.0 MHz 50 ns 4.0 Ceramic Pin Grid MIL Spec 

IMS T800·Q17M 17.5 MHz 57 ns 3.5 Quad Cerpack MIL Spec 
IMS T800·Q20M 20.0 MHz 50 ns 4.0 Quad Cerpack MIL Spec 

The timing parameters in this datasheet are based on full characterisation of the 17 MHz and 20 MHz 
parts. Data for higher speeds is based on tests on a limited number of samples and may change when full 
characterisation is completed. 



c o[ft)mos 
FEATURES 

32 bit architecture 
33 ns internal cycle time 
30 MIPS (peak) instruction rate 
Pin compatible with IMS T80S, IMS T800 and IMS T414 
Debugging support 
4 Kbytes on-Chip static RAM 
120 Mbytes/sec sustained data rate to internal memory 
4 Gbytes directly addressable external memory 
40 Mbytes/sec sustained data rate to external memory 
630 ns response to interrupts 
Four INMOS serial links S/10/20 Mbits/sec 
High performance graphics support with block move 
instructions 
Boot from ROM or communication links 
Single S MHz clock input 
Single +SV ±S% power supply 
MIL-STD-883C processing will be available 

APPLICATIONS 

High speed multi processor systems 
High performance graphics processing 
Supercomputers 
Workstations and workstation clusters 
Digital signal processing 
Accelerator processors 
Distributed databases 
System simulation 
Telecommunications 
Robotics 
Fault tolerant systems 
Image processing 
Pattern recognition 
Artificial intelligence 

42142602 

261 

IMS T425 
transputer 

Advance Data 

System 
Services 

4k bytes 
of 

On-Chip 
RAM 

External 
Memory 
Interface 

May 1989 



262 

1 Introduction 

The IMS T425 transputer is a 32 bit CMOS microcomputer with graphics support. It has 4 Kbytes on-chip 
RAM for high speed processing, a configurable memory interface and four standard INMOS communication 
links. The instruction set achieves efficient implementation of high level languages and provides direct support 
for the occam model of concurrency when using either a single transputer or a network. Procedure calls, 
process switching and typical interrupt latency are sub-microsecond. 

For convenience of description, the IMS T425 operation is split into the basic blocks shown in figure 1.1. 

VCC 
GND 

Cap Plus 
CapMinus 

Reset 
Analyse 
Errorln 

Error 
BootFromROM 

Clockln 
ProcSpeedSelectO-2 

DisablelntRam 

ProcClockOut 
notMemSO-4 

notMemWrBO-3 
notMemRd 
notMemRf 

RefreshPending 
MemWait 

MemConfig 
MemReq 

MemGranted 

System 
services 

4k bytes 
of 

On-chip 
RAM 

External 
Memory 
Interface 

LinkSpecial 
LinkOSpecial 

~==~--- Link123Speciai 

LinklnO 
LinkOutO 

Linkln1 
LinkOut1 

Linkln2 
LinkOut2 

Linkln3 
LinkOut3 

E EventReq 
Event EventAck 

L-__ --I EventWaiting 

MemnotWrDO 
32 MemnotRfD1 

MemAD2-31 

Figure 1.1 IMS T 425 block diagram 

The processor speed of a device can be pin-selected in stages from 17.5 MHz up to the maximum allowed 
for the part. A device running at 30 MHz achieves an instruction throughput of 30 MIPS peak and 15 MIPS 
sustained. The extended temperature version of the device complies with MIL-STD-883C. 

High performance graphics support is provided by microcoded block move instructions which operate at the 
speed of memory. The two-dimensional block move instructions provide for contiguous block moves as well 
as block copying of either non-zero bytes of data only or zero bytes only. Block move instructions can be used 
to provide graphics operations such as text manipulation, windowing, panning, scrolling and screen updating. 

Cyclic redundancy checking (CRC) instructions are available for use on arbitrary length serial data streams, 
to provide error detection where data integrity is critical. Another feature of the IMS T425, useful for pattern 
recognition, is the facility to count bits set in a word. 



Introduction 263 

The IMS T425 can directly access a linear address space of 4 Gbytes. The 32 bit wide memory interface 
uses multiplexed data and address lines and provides a data rate of up to 4 bytes every 100 nanoseconds 
(40 Mbytes/sec) for a 30 MHz device. A configurable memory controller provides all timing, control and DRAM 
refresh signals for a wide variety of mixed memory systems. 

System Services include processor reset and bootstrap control, together with facilities for error analysis. Error 
signals may be daisy-chained in multi-transputer systems. 

The standard INMOS communication links allow networks of transputer family products to be constructed by 
direct point to point connections with no external logic. The IMS T425 links support the standard operating 
speed of 10 Mbits/sec, but also operate at 5 or 20 Mbits/sec. Each link can transfer data bi-directionally at 
up to 2.35 Mbytes/sec. 

The IMS T425 is pin compatible with the IMS T800 and can be plugged directly into a circuit designed for 
that device. It has a number of additions to improve hardware interfacing and to facilitate software initialising 
and debugging. The improvements have been made in an upwards-compatible manner. Software should be 
recompiled, although no changes to the source code are necessary. 

The IMS T425-20 is also pin compatible with the IMS T414-20, as the extra inputs used are all held to ground 
on the IMS T414. The IMS T425-20 can thus be plugged directly into a Circuit designed for a 20 MHz version 
of the IMS T414. 

The transputer is designed to implement the occam language, detailed in the occam Reference Manual, but 
also efficiently supports other languages such as C, Pascal and Fortran. Access to the transputer at machine 
level is seldom required, but if necessary refer to the Transputer Instruction Set - A Compiler Writers' Guide. 
The instruction set of the IMS T425 is the same as that of the IMS T800, except that the IMS T800 floating 
point instructions are replaced by the IMS T414 floating point support instructions. 

This data sheet supplies hardware implementation and characterisation details for the IMS T 425. It is intended 
to be read in conjunction with the Transputer Architecture chapter, which details the architecture of the 
transputer and gives an overview of occam. 



264 

2 Pin designations 

Table 2.1 IMS T425 system services 

Pin In/Out Function 
VCC,GND Power supply and return 
CapPlus, Cap!YIinus External capacitor for internal clock power supply 
Clockln in Input clock 
ProcSpeedSelectO-2 in Processor speed selectors 
Reset in System reset 
Error out Error indicator 
Errorln in Error daisychain input 
Analyse in Error analysis 
BootFromRom in Boot from external ROM or from link 
DisablelntRAM in Disable internal RAM 

Table 2.2 IMS T425 external memory interface 

Pin In/Out Function 
ProcClockOut out Processor clock 
MemnotWrDO in/out Multiplexed data bit 0 and write cycle warning 
MemnotRfD1 in/out Multiplexed data bit 1 and refresh warning 
MemAD2-31 in/out Multiplexed data and address bus 
notMemRd out Read strobe 
notMemWrBO-3 out Four byte-addressing write strobes 
notMemSO-4 out Five general purpose strobes 
notMemRf out Dynamic memory refresh indicator 
RefreshPending out Dynamic refresh is pending 
MemWait in Memory cycle extender 
MemReq in Direct memory access request 
MemGranted out Direct memory access granted 
MemConfig in Memory configuration data input 

Table 2.3 IMS T425 event 

Pin In/Out Function 
EventReq in Event request 
EventAck out Event request acknowledge 
EventWaiting out Event input requested by software 

Table 2.4 IMS T425 link 

Pin In/Out Function 
LinklnO-3 in Four serial data input channels 
LinkOutO-3 out Four serial data output channels 
LinkSpecial in Select non-standard speed as 5 or 20 Mbits/sec 
LinkOSpecial in Select special speed for Link 0 
Link123Speciai in Select special speed for Links 1,2,3 

Signal names are prefixed by not if they are active low, otherwise they are active high. 
Pinout details for various packages are given on page 326. 



265 

3 Processor 

The 32 bit processor contains instruction processing logic, instruction and work pointers, and an operand 
register. It directly accesses the high speed 4 Kbyte on-chip memory, which can store data or program. 
Where larger amounts of memory or programs in ROM are required, the processor has access to 4 Gbytes 
of memory via the External Memory Interface (EMI). 

3.1 Registers 

The design of the transputer processor exploits the availability of fast on-chip memory by having only a small 
number of registers; six registers are used in the execution of a sequential process. The small number of 
registers, together with the simplicity of the instruction set, enables the processor to have relatively simple 
(and fast) data-paths and control logic. The six registers are: 

The workspace pointer which points to an area of store where local variables are kept. 

The instruction pointer which points to the next instruction to be executed. 

The operand register which is used in the formation of instruction operands. 

The A, Band C registers which form an evaluation stack. 

A, Band C are sources and destinations for most arithmetic and logical operations. Loading a value into the 
stack pushes B into C, and A into B, before loading A. Storing a value from A, pops B into A and C into B. 

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example, 
the add instruction adds the top two values in the stack and places the result on the top of the stack. Th9 use of 
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a 
large number of programs show that three registers provide an effective balance between code compactness 
and implementation complexity. 

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack. 
It is easy for the compiler to ensure that this never happens. 

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be 
of any size. 

Further register details are given in Transputer Instruction Set - A Compiler Writers' Guide. 

R . t egis ers L ocas p rogram 

A 

B 

C 

Workspace f--
Next Inst 

Operand 

Figure 3.1 Registers 



266 7 IMS T425 engineering data 

3.2 Instructions 

The instruction set has been designed for simple and efficient compilation of high-level languages. All in­
structions have the same format, designed to give a compact representation of the operations occurring most 
frequently in programs. 

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte 
are a function code and the four least significant bits are a data value. 

Operand Register 

Figure 3.2 Instruction format 

3.2.1 Direct functions 

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Ten of these, 
shown in table 3.1, are used to encode the most important functions. 

load constant 

load local 

load non-local 

jump 

Table 3.1 Direct functions 

add constant 

store local 

store non-local 

conditional jump 

load local pointer 

call 

The most common operations in a program are the loading of small literal values and the loading and storing 
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be 
loaded with a single byte instruction. The load local and store local instructions access locations in memory 
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction. 

The load non-local and store non-local instructions behave similarly, except that they access locations in 
memory relative to the A register. Compact sequences of these instructions allow efficient access to data 
structures, and provide for simple implementations of the static links or displays used in the implementation 
of high level programming languages such as occam, C, Fortran, Pascal or ADA. 

3.2.2 Prefix functions 

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative 
prefix. 

All instructions are executed by loading the four data bits into the least significant four bits of the operand 
register, which is then used as the instruction's operand. All instructions except the prefix instructions end by 
clearing the operand register, ready for the next instruction. 

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up 
four places. The negative prefix instruction is Similar, except that it complements the operand register before 
shifting it up. Consequently operands can be extended to any length up to the length of the operand register 
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented 
using one prefix instruction. 



3 Processor 267 

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed 
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they 
simplify language compilation by providing a completely uniform way of allowing any instruction to take an 
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor 
wordlength. 

3.2.3 Indirect functions 

The remaining function code, operate, causes its operand to be interpreted as an operation on the values 
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction. 
However, the prefix instructions can be used to extend the operand of an operate instruction just like any 
other. The instruction representation therefore provides for an indefinite number of operations. 

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented 
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as 
add, exclusive or and greater than. Less frequently occurring operations have encodings which require a 
single prefix operation. 

3.2.4 Expression evaluation 

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number 
of these can be minimised by careful choice of the evaluation order. 

Table 3.2 Expression evaluation 

Program Mnemonic 

x := 0 Idc 0 
stl x 

x := #24 pfix 2 
Idc 4 
stl x 

x := y + z Idl y 
Idl z 
add 
stl x 

3.2.5 Efficiency of encoding 

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without 
the use of prefix instructions. Many of these instructions, such as load constant and add require just one 
processor cycle. 

The instruction representation gives a more compact representation of high level language programs than 
more conventional instruction sets. Since a program requires less store to represent it, less of the memory 
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor 
will receive four instructions for every fetch. 

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor 
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction 
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes 
the buffer contents to be discarded. 



268 7 IMS T425 engineering data 

3.3 Processes and concurrency 

A process starts, performs a number of actions, and then either stops without completing or terminates 
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in 
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number 
of each (page 269). 

The processor has a microcoded scheduler which enables any number of concurrent processes to be exe­
cuted together, sharing the processor time. This removes the need for a software kernel. 

At any time, a concurrent process may be 

Active Being executed. 
On a list waiting to be executed. 

Inactive - Ready to input. 
Ready to output. 
Waiting until a specified time. 

The scheduler operates in such a way that inactive processes do not consume any processor time. It allocates 
a portion of the processor's time to each process in turn. Active processes waiting to be executed are held 
in two linked lists of process workspaces, one of high priority processes and one of low priority processes 
(page 269). Each list is implemented using two registers, one of which points to the first process in the list, 
the other to the last. In the Linked Process List figure 3.3, process S is executing and P, Q and R are active, 
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones 
perform in a similar manner. 

R eglsters L ocas I P rograml 

FPtr1 (Front)~ P -------t 
BPtr1 (Back) r-

~ Q 
A 

B --... R 

C 

Workspace - S 

Next Inst 

Operand 

Figure 3.3 Linked process list 

Table 3.3 Priority queue control registers 

Function High Priority Low Priority 
Pointer to front of active process list FptrO Fptr1 
Pointer to back of active process list BptrO Bptr1 

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from 
another process or transputer, or for a time delay to complete. In order for several processes to operate in 
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly 
descheduled at the next descheduling point (page 273). The time slice period is 5120 cycles of the external 
5 MHz clock, giving ticks approximately 1 ms apart. 



3 Processor 269 

A process can only be descheduled on certain instructions, known as descheduling points (page 273). As a 
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way 
through. 

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and 
the next process taken from the list. Process scheduling pOinters are updated by instructions which cause 
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 p,s, as 
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling. 

The processor provides a number of special operations to support the process model, including start process 
and end process. When a main process executes a parallel construct, start process instructions are used 
to create the necessary additional concurrent processes. A start process instruction creates a new process 
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be 
executed together with the ones already being executed. When a process is made active it is always added 
to the end of the list, and thus cannot pre-empt processes already on the same list. 

The correct termination of a parallel construct is assured by use of the end process instruction. This uses 
a workspace location as a counter of the parallel construct components which have still to terminate. The 
counter is initialised to the number of components before the processes are started. Each component ends 
with an end process instruction which decrements and tests the counter. For all but the last component, the 
counter is non zero and the component is descheduled. For the last component, the counter is zero and the 
main process continues. 

3.4 Priority 

The IMS T425 supports two levels of priority. Priority 1 (low priority) processes are executed whenever there 
are no active priority 0 (high priority) processes. 

High priority processes are expected to execute for a short time. If one or more high priority processes are 
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until 
it completes processing. 

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed, 
then one is selected. 

Low priority processes are periodically timesliced to provide an even distribution of processor time between 
computationally intensive tasks. 

If there are n low priority processes, then the maximum latency from the time at which a low priority process 
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for 
between one and two timeslice periods, less any time taken by high priority processes. This assumes that 
no process monopolises the transputer's time; i.e. it has a distribution of descheduling points (page 273). 

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 ms at the 
standard frequency of 5 MHz). 

If a high priority process is waiting for an external channel to become ready, and if no other high priority 
process is active, then the interrupt latency (from when the channel becomes ready to when the process 
starts executing) is typically 19 processor cycles, a maximum of 58 cycles (assuming use of on-Chip RAM). 

3.5 Communications 

Communication between processes is achieved by means of channels. Process communication is point-to­
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and 
no message buffer. 

A channel between two processes executing on the same transputer is implemented by a single word in 
memory; a channel between processes executing on different transputers is implemented by point-to-point 



270 7 IMS T425 engineering data 

links. The processor provides a number of operations to support message passing, the most important being 
input message and output message. 

The input message and output message instructions use the address of the channel to determine whether 
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a 
process to be written and compiled without knowledge of where its channels are connected. 

The process which first becomes ready must wait until the second one is also ready. A process performs an 
input or output by loading the evaluation stack with a pointer to a message, the address of a chanhel, and 
a count of the number of bytes to be transferred, and then executing an input message or output message 
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one 
the process will deschedule. 

3.6 Block move 

The block move on the transputer moves any number of bytes from any byte boundary in memory, to any 
other byte boundary, using the smallest possible number of word read, and word or part-word writes. 

A block mOVe instruction can be interrupted by a high priority process. On interrupt, block move is completed 
to a word boundary, independent of start position. When restarting after interrupt, the last word written is 
written again. This appears as an unnecessary read and write in the simplest case of word aligned block 
moves, and may cause problems with FIFOs. This problem can be overcome by incrementing the saved 
destination (BreglntSaveLoc) and source pointer (CreglntSaveLoc) values by BytesPerWord during the high 
priority process. 

3.7 Timers 

The transputer has two 32 bit timer clocks which 'tick' periodically. The timers provide accurate process 
timing, allowing processes to deschedule themselves until a specific time. 

One timer is accessible only to high priority processes and is incremented every microsecond, cycling com­
pletely in approximately 4295 seconds. The other is accessible only to low priority processes and is incre­
mented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of approximately 
76 hours. 

ClockO 
Clock 1 
TNextRegO 
TNextReg1 

Table 3.4 Timer registers 

Current value of high priority (level 0) process clock 
Current value of low priority (level 1) process clock 
Indicates time of earliest event on high priority (level 0) timer queue 
Indicates time of earliest event on low priority (level 1) timer queue 

The current value of the processor clock can be read by executing a load timer instruction. A process can 
arrange to perform a timer input, in which case it will become ready to execute after a specified time has 
been reached. The timer input instruction requires a time to be specified. If this time is in the 'past' then the 
instruction has no effect. If the time is in the 'future' then the process is descheduled. When the specified 
time is reached the process is scheduled again. 



3 Processor 271 

Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31. 

TimerO Workspaces Program 

Alarm 

TNextRegO 
'-------' 

21 

TPtrLoc Empty 

31 

Figure 3.4 Timer registers 



272 

4 Instruction set summary 

The Function Codes table 4.7. gives the basic function code set (page 266). Where the operand is less 
than 16, a single byte encodes the complete instruction. If the operand is greater than 15, one prefix 
instruction (pfix) is required for each additional four bits of the operand. If the operand is negative the first 
prefix instruction will be nfix. 

Table 4.1 prefix coding 

Function Memory 
Mnemonic code code 

Ide #3 #4 #43 

Ide #35 
is coded as 

pfix #3 #2 #23 
Ide #5 #4 #45 

Ide #987 
is coded as 

pfix #9 #2 #29 
pfix #8 #2 #28 
Ide #7 #4 #47 

Ide -31 (Ide #FFFFFFE1) 
is coded as 

nfix #1 #6 #61 
Ide #1 #4 #41 

Tables 4.8 to 4.21 give details of the operation codes. Where an operation code is less than 16 (e.g. add: 
operation code 05), the operation can be stored as a single byte comprising the operate function code F and 
the operand (5 in the example). Where an operation code is greater than 15 (e.g. ladd: operation code 16), 
the prefix function code 2 is used to extend the instruction. 

Table 4.2 operate coding 

Function Memory 
Mnemonic code code 

add (op. code #5) #F5 
is coded as 

opr add #F #F5 

ladd (op. code #16) #21F6 
is coded as 

pfix #1 #2 #21 
opr #6 #F #F6 

The load device identity (lddevid) instruction (table 4.20) pushes the device type identity into the A register. 
Each product is allocated a unique group of numbers for use with the Iddevid instruction. The product identity 
numbers for the IMS T425 are 0 to 9 inclusive. 

The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing 
in internal memory. The number of cycles is given for the basic operation only; where the memory code 
for an instruction is two bytes, the time for the prefix function (one cycle) should be added. For a 20 MHz 
transputer one cycle is 50 ns. Some instruction times vary. Where a letter is included in the cycles column it 
is interpreted from table 4.3. 



4 Instruction set summary 273 

Table 4.3 Instruction set interpretation 

Ident Interpretation 

b Bit number of the highest bit set in register A. Bit 0 is the least significant bit. 

m Bit number of the highest bit set in the absolute value of register A. 
Bit 0 is the least significant bit. 

n Number of places shifted. 

w Number of words in the message. Part words are counted as full words. If the message 
is not word aligned the number of words is increased to include the part words at either 
end of the message. 

p Number of words per row. 

r Number of rows. 

The DE column of the tables indicates the descheduling/error features of an instruction as described in 
table 4.4. 

Table 4.4 Instruction features 

Ident Feature See page: 

D The instruction is a descheduling point 273 

E The instruction will affect the Error flag 274, 285 

4.1 Descheduling points 

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 268). They are 
also the ones at which the processor will halt if the Analyse pin is asserted (page 284). 

input message 
timer aft wait 
jump 

Table 4.5 Descheduling point instructions 

output message 
timer input 
loop end 

output byte 
stop on error 
end process 

output word 
alt wait 
stop process 



274 7 IMS T425 engineering data 

4.2 Error instructions 

The instructions in table 4.6 are the only ones which can affect the Error flag (page 285) directly. 

Table 4.6 Error setting instructions 

add 
multiply 
long add 
set error 
check word 

add constant 
fractional multiply 
long subtract 
testerr 
check subscript from 0 

4.3 Debugging support 

subtract 
divide 
long divide 

check single 

remainder 

cf/err 
check count from 1 

Table 4.21 contains a number of instructions to facilitate the implementation of breakpoints. These instructions 
overload the operation of jO. Normally jO is a no-op which might cause descheduling. SetjObreak enables the 
breakpointing facilities and causes jO to act as a breakpointing instruction. When breakpointing is enabled, 
jO swaps the current Iptr and Wptr with an Iptr and Wptr stored above MemStart. The breakpoint instruction 
does not cause descheduling, and preserves the state of the registers. It is possible to single step the pro­
cessor at machine level using these instructions. Refer to Support for debugginglbreakpointing in transputers 
(technical note 61) for more detailed information regarding debugger support. 



4 Instruction set summary 275 

Table 4.7 IMS T425 function codes 

Function Memory Processor D 
Code Code Mnemonic Cycles Name E 

0 OX j 3 jump 0 
1 1X Idlp 1 load local pOinter 
2 2X pfix 1 prefix 
3 3X Idnl 2 load non-local 
4 4X Idc 1 load constant 
5 5X Idnlp 1 load non-local pointer 
6 6X nfix 1 negative prefix 
7 7X Idl 2 load local 
S SX adc 1 add constant E 
9 9X call 7 call 
A AX cj 2 conditional jump (not taken) 

4 conditional jump (taken) 
B BX ajw 1 adjust workspace 
C CX eqc 2 equals constant 
0 OX stl 1 store local 
E EX stnl 2 store non-local 
F FX opr - operate 

Table 4.S IMS T425 arithmetic/logical operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

46 24F6 and 1 and 
4B 24FB or 1 or 
33 23F3 xor 1 exclusive or 
32 23F2 not 1 bitwise not 
41 24F1 shl n+2 shift left 
40 24FO shr n+2 shift right 

05 F5 add 1 add E 
OC FC sub 1 subtract E 
53 25F3 mul 3S multiply E 
72 27F2 fmul 35 fractional multiply (no rounding) E 

40 fractional multiply (rounding) E 
2C 22FC div 39 divide E 
1F 21FF rem 37 remainder E 
09 F9 gt 2 greater than 
04 F4 diff 1 difference 
52 25F2 sum 1 sum 
OS FS prod b+4 product for positive register A 

m+5 product for negative register A 



276 7 IMS T425 engineering data 

Table 4.9 IMS T425 long arithmetic operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

16 21F6 ladd 2 long add E 
38 23F8 Isub 2 long subtract E 
37 23F7 Isum 3 long sum 
4F 24FF Idiff 3 long diff 
31 23F1 Imul 33 long multiply 
1A 21 FA Idiv 35 long divide E 
36 23F6 Ishl n+3 long shift left (n<32) 

n-28 long shift left(n~32) 
35 23F5 Ishr n+3 long shift right (n<32) 

n-28 long shift right (n~32) 
19 21F9 norm n+5 normalise (n<32) 

n-26 normalise (n~32) 
3 normalise (n=64) 

Table 4.10 IMS T425 general operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

00 FO rev 1 reverse 
3A 23FA xword 4 extend to word 
56 25F6 cword 5 check word E 
10 21FO xdble 2 extend to double 
4C 24FC csngl 3 check single E 
42 24F2 mint 1 minimum integer 
SA 25FA dup 1 duplicate top of stack 
79 27F9 pop 1 pop processor stack 

Table 4.11 IMS T425 floating point support operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

73 27F3 cflerr 3 check floating point error E 
9C 29FC fptesterr 1 load value true (FPU not present) 

63 26F3 unpacksn 15 unpack single length fp number 

60 26FO roundsn 12/15 round single length fp number 

6C 26FC postnormsn 5/30 post-normalise correction of 
single length fp number 

71 27F1 Idinf 1 load single length infinity 

Processor cycles are shown as Typical/Maximum cycles. 



4 Instruction set summary 277 

Table 4.12 IMS T425 2D block move operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

5B 25FB move2dinit 8 initialise data for 2D block move 
5C 25FC move2dall (2p+23)H 2D block copy 
5D 25FD move2dnonzero (2p+23)H 2D block copy non-zero bytes 
5E 25FE move2dzero (2p+23)H 2D block copy zero bytes 

Table 4.13 IMS T425 CRC and bit operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

74 27F4 crcword 35 calculate crc on word 
75 27F5 crcbyte 11 calculate crc on byte 

76 27F6 bitcnt b+2 count bits set in word 
77 27F7 bitrevword 36 reverse bits in word 
78 27F8 bitrevnbits n+4 reverse bottom n bits in word 

Table 4.14 IMS T425 indexing/array operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

02 F2 bsub 1 byte subscript 
OA FA wsub 2 word subscript 
81 28F1 wsubdb 3 form double word subscript 
34 23F4 bcnt 2 byte count 
3F 23FF wcnt 5 word count 
01 F1 Ib 5 load byte 
3B 23FB sb 4 store byte 

4A 24FA move 2w+8 move message 

Table 4.15 IMS T425 timer handling operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

22 22F2 Idtimer 2 load timer 
2B 22FB tin 30 timer input (time future) D 

4 timer input (time past) D 
4E 24FE talt 4 timer alt start 
51 25F1 taltwt 15 timer alt wait (time past) D 

48 timer alt wait (time future) D 
47 24F7 enbt 8 enable timer 
2E 22FE dist 23 disable timer 



278 7 IMS T425 engineering data 

Table 4.16 IMS T425 inpuVoutput operation codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

07 F7 in 2w+19 input message D 
OB FB out 2w+19 output message D 
OF FF outword 23 output word D 
OE FE outbyte 23 output byte D 

43 24F3 alt 2 alt start 
44 24F4 altwt 5 alt wait (channel ready) D 

17 alt wait (channel not ready) D 
45 24F5 altend 4 alt end 

49 24F9 enbs 3 enable skip 
30 23FO diss 4 disable skip 

12 21F2 resetch 3 reset channel 
48 24F8 enbc 7 enable channel (ready) 

5 enable channel (not ready) 
2F 22FF disc 8 disable channel 

Table 4.17 IMS T425 control operation codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

20 22FO ret 5 return 
1B 21FB Idpi 2 load pointer to instruction 
3C 23FC gajw 2 general adjust workspace 
06 F6 gcall 4 general call 
21 22F1 lend 10 loop end (loop) D 

5 loop end (exit) D 

Table 4.18 IMS T425 scheduling operation codes 

Operation Memory Processor 0 
Code Code Mnemonic Cycles Name E 

OD FD startp 12 start process D 
03 F3 endp 13 end process D 
39 23F9 runp 10 run process 
15 21F5 stopp 11 stop process 
1E 21FE Idpri 1 load current priority 



4 Instruction set summary 279 

Table 4.19 IMS T425 error handling operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

13 21F3 csubO 2 check subscript from 0 E 
4D 24FD ccnt1 3 check count from 1 E 
29 22F9 testerr 2 test error false and clear (no error) 

3 test error false and clear (error) 
10 21FO seterr 1 set error E 
55 25F5 stoperr 2 stop on error (no error) D 
57 25F7 clrhalterr 1 clear halt-on-error 
58 25F8 sethalterr 1 set halt-on-error 
59 25F9 testhalterr 2 test halt -on-e rror 

Table 4.20 IMS T425 processor initialisation operation codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

2A 22FA testpranal 2 test processor analysing 
3E 23FE saveh 4 save high priority queue registers 
3D 23FD savel 4 save low priority queue registers 
18 21F8 sthf 1 store high priority front pointer 
50 25FO sthb 1 store high priority back pointer 
1C 21FC stlf 1 store low priority front pointer 
17 21F7 stlb 1 store low priority back pointer 
54 25F4 sttimer 1 store timer 

17C 2127FC Iddevid 1 load device identity 
7E 27FE Idmemstartval 1 load value of memstart address 

Table 4.21 IMS T425 debugger support codes 

Operation Memory Processor D 
Code Code Mnemonic Cycles Name E 

0 00 jump 0 3 jump 0 (break not enabled) D 
11 jump 0 (break enabled, high priority) 
13 jump 0 (break enabled, low priority) 

B1 2BF1 break 9 break (high priority) 
11 break (low priority) 

B2 2BF2 clrjObreak 1 clear jump 0 break enable flag 
B3 2BF3 setjObreak 1 set jump 0 break enable flag 
B4 2BF4 testjObreak 2 test jump 0 break enable flag set 
7A 27FA timerdisableh 1 disable high priority ti mer interrupt 
7B 27FB timerdisablel 1 disable low priority timer interrupt 
7C 27FC timerenableh 6 enable high priority timer interrupt 
7D 27FD timerenablel 6 enable low priority timer interrupt 



280 

5 System services 

System services include all the necessary logic to initialise and sustain operation of the device. They also 
include error handling and analysis facilities. 

5.1 Power 

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise 
inductance within the package. All supply pins must be connected. The supply must be decoupled close to 
the chip by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer 
boards are recommended; if two layer boards are used, extra care should be taken in decoupling. 

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power­
down ramping, otherwise latch up can occur. CMOS devices can be permanently damaged by excessive 
periods of latch up. 

5.2 CapPlus, CapMinus 

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1/lF 
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an 
impedance less than 3 Ohms between 100 KHz ?nd 10 MHz. If a polarised capacitor is used the negative 
terminal should be connected to CapMinus. Total PCB track length should be less than 50 mm. The 
connections must not touch power supplies or other noise sources. 

CapPlus P.C.B. track 

CapMinus P.C.B. track 

Figure 5.1 Recommended PLL decoupling 

5.3 Clockln 

Decoupling 
capacitor 

1/lF 

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input. 
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type, 
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln, 
simplifying system design and avoiding problems of distributing high speed clocks externally. 

A number of transputer devices may be connected to a common clock, or may have individual clocks providing 
each one meets the specified stability criteria. In a multi-clock system the relative phasing of Clockln clocks 
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the 
specified limits of Clockln pulse widths are met. 

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not 
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be 
monotonic and remain within the specified voltage and time limits. 



5 System services 

Table 5.1 Input clock 

SYMBOL PARAMETER MIN NOM 
TDCLDCH Clockln pulse width low 40 
TDCHDCL Clockln pulse width high 40 
TDCLDCL Clockln period 
TDCerror Clockln timing error 
TDC1DC2 Difference in Clockln for 2 linked devices 
TDCr Clockln rise time 
TDCf Clockln fall time 

Notes 

These paramters are not tested. 

2 Measured between corresponding points on consecutive falling edges. 

3 Variation of individual falling edges from their nominal times. 

200 

MAX UNITS 
ns 
ns 
ns 

±0.5 ns 
400 ppm 
10 ns 
8 ns 

4 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link. 

S Clock transitions must be monotonic within the range VIH to VIL (table 10.3). 

TDCerror 

2.0v- - -
1.5v- - - - - - -

0.8v- - - -

TDCLDCH 

TDCerror 

TDCHDCL 

90% K---
10%---- -

TDCf 

TDCLDCL 

90%----1(;--

10% _ - - - --
TDCr 

Figure 5.2 Clockln timing 

5.4 ProcSpeedSelectO-2 

281 

NOTE 
1 
1 

1,2,4 
1,3 
1,4 
1,5 
1,5 

Processor speed of the IMS T425 is variable in discrete steps. The desired speed can be selected, up to the 
maximum rated for a particular component, by the three speed select lines ProcSpeedSelectO-2. The pins 
are tied high or low, according to the table below, for the various speeds. The pins are arranged so that the 
IMS T425 can be plugged directly into a board designed for aiMS T800. 

Only six of the possible speed select combinations are currently used; the other two are not valid speed 
selectors. The frequency of Clockln for the speeds given in the table is 5 MHz. 



282 7 IMS T425 engineering data 

Table 5.2 Processor speed selection 

Proc Proc Proc Processor Processor 
Speed Speed Speed Clock Cycle 
Select2 Select1 SelectO Speed MHz Time ns Notes 

0 0 0 20.0 50.0 
0 0 1 22.5 44.4 
0 1 0 25.0 40.0 
0 1 1 30.0 33.3 
1 0 0 35.0 28.6 
1 0 1 Invalid 
1 1 0 17.5 57.1 
1 1 1 Invalid 

Note: Inclusion of a speed selection in this table does not imply immediate availability. 

5.5 Reset 

Reset can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. After VCC is 
valid Clockln should be running for a minimum period TDCVRL before the end of Reset. The falling edge of 
Reset initialises the transputer, triggers the memory configuration sequence and starts the bootstrap routine. 
Link outputs are forced low during reset; link inputs and EventReq should be held low. Memory request 
(DMA) must not occur whilst Reset is high but can occur before bootstrap (page 308). 

After the end of Reset there will be a delay of 144 periods of Clockln (figure 5.3). Following this, the 
MemWrDO, MemRfD1 and MemAD2·31 pins will be scanned to check for the existence of a pre-programmed 
memory interface configuration (page 297). This lasts for a further 144 periods of Clockln. Regardless of 
whether a configuration was found, 36 configuration read cycles will then be performed on external memory 
using the default memory configuration (page 299), in an attempt to access the external configuration ROM. 
A delay will then occur, its period depending on the actual configuration. Finally eight complete and con­
secutive refresh cycles will initialise any dynamic RAM, using the new memory configuration. If the memory 
configuration does not enable refresh of dynamic RAM the refresh cycles will be replaced by an equivalent 
delay with no external memory activity. 

If BootFromRom is high bootstrapping will then take place immediately, using data from external memory; 
otherwise the transputer will await an input from any link. The processor will be in the low priority state. 

Reset ~~ ______________________________________________________ _ 

Delay Internal External 
configuration configuration 

"I Action 

Delay Refresh Boot 

Figure 5.3 IMS T425 post-reset sequence 

5.6 Bootstrap 

The transputer can be bootstrapped either from a link or from external ROM. To faCilitate debugging, Boot· 
FromRom may be dynamically changed but must obey the specified timing restrictions. It is sampled once 
only by the transputer, before the first instruction is executed after Reset is taken low. 

I! BootFromRom is connected high (e.g. to VCC) the transputer starts to execute code from the top two bytes 
in external memory, at address #7FFFFFFE. This location should contain a backward jump to a program in 
ROM. Following this access, BootFromRom may be taken low if required. The processor is in the low priority 



5 System services 283 

state, and the W register points to MemStart (page 286). 

Table 5.3 Reset and Analyse 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TPVRH Power valid before Reset 10 ms 
TRHRL Reset pulse width high 8 Glockln 1 
TDGVRL Glockln running before Reset end 10 ms 2 
TAHRH Analyse setup before Reset 3 ms 
TRLAL Analyse hold after Reset end 1 Glockln 1 
TBRVRL BootFromRom setup 0 ms 
TRLBRX BootFromRom hold after Reset 0 ms 3 
TALBRX BootFromRom hold after Analyse 3 

Notes 

1 Full periods of Clockln TDCLDCL required. 

2 At power-on reset. 

3 Must be stable until after end of bootstrap period. See Bootstrap section. 

Clockln 

VCC 

TPVRH 

Reset 
TBRVRL TRLBRX 

BootFromRom 

Figure 5.4 Transputer reset timing with Analyse low 

TRHRL 

Reset 

TAHRH 

Analyse 

BootFromRom 

Figure 5.5 Transputer reset and analyse timing 



284 7 IMS T425 engineering data 

If BootFromRom is connected low (e.g. to GND) the transputer will wait for the first bootstrap message to 
arrive on anyone of its links. The transputer is ready to receive the first byte on a link within two processor 
cycles TPCLPCL after Reset goes low. 

If the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The 
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following 
reception of the last byte the transputer will start executing code at MemStart as a low priority process. 
BootFromRom may be taken high after reception of the last byte, if required. The memory space immediately 
above the loaded code is used as work space. Messages arriving on other links after the control byte has 
been received and on the bootstrapping link after the last bootstrap byte will be retained until a process inputs 
from them. 

5.7 Peek and poke 

Any location in internal or external memory can be interrogated and altered when the transputer is waiting 
for a bootstrap from link. If the control byte is 0 then eight more bytes are expected on the same link. The 
first four byte word is taken as an internal or external memory address at which to poke (write) the second 
four byte word. If the control byte is 1 the next four bytes are used as the address from which to peek (read) 
a word of data; the word is sent down the output channel of the same link. 

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses 
may be made in this way until the control byte is greater than 1, when the transputer will commence reading 
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link 
as the control byte. 

5.8 Analyse 

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling point 
(page 273). From Analyse being asserted, the processor will halt within three time slice periods plus the 
time taken for any high priority process to complete. As much of the transputer status is maintained as is 
necessary to permit analysis of the halted machine. Processor flags Error, HaltOnError and EnableJOBreak 
are normally cleared at reset on the IMS T425; however, if Analyse is asserted the flags are not altered. 
Memory refresh continues. 

Input links will continue with outstanding transfers. Output links will not make another access to memory 
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link 
acknowledgement, the links should be inactive within a few microseconds of the transputer halting. 

Reset should not be asserted before the transputer has halted and link transfers have ceased. When Reset 
is taken low whilst Analyse is high, neither the memory configuration sequence nor the block of eight refresh 
cycles will occur; the previous memory configuration will be used for any external memory accesses. If 
BootFromRom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a 
control byte on any link. If Analyse is taken low without Reset going high the transputer state and operation 
are undefined. After the end of a valid Analyse sequence the registers have the values given in table 5.4. 

Table 5.4 Register values after Analyse 

MemStart if bootstrapping from a link, or the external memory bootstrap address if 
bootstrapping from ROM. 

W MemStart if bootstrapping from ROM, or the address of the first free word after the 
bootstrap program if bootstrapping from link. 

A The value of I when the processor halted. 

B The value of Wwhen the processor halted, together with the priority of the process 
when the transputer was halted (i.e. the W descriptor). 

C The ID of the bootstrapping link if bootstrapping from link. 



5 System services 285 

5,9 Error, Errorln 

The Error pin carries the OR'ed output of the internal Error flag and the Errorln input. If Error is high it 
indicates either that Errorln is high or that an error was detected in one of the processes. An internal error 
can be caused, for example, by arithmetic overflow, divide by zero, array bounds violation or software setting 
the flag directly (page 274). Once set, the Error flag is only cleared by executing the instruction testerr. The 
error is not cleared by processor reset, in order that analysis can identify any errant transputer (page 284). 

A process can be programmed to stop if the Error flag is set; it cannot then transmit erroneous data to other 
processes, but processes which do not require that data can still be scheduled. Eventually all processes 
which rely, directly or indirectly, on data from the process in error will stop through lack of data. Errorln does 
not directly affect the status of a processor in any way. 

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error 
becomes set after HaltOnErrorhas been set, all processes on that transputer will cease but will not necessarily 
cause other transputers in a network to halt. Setting HaltOnError after Error will not cause the transputer to 
halt; this allows the processor reset and analyse facilities to function with the flags in indeterminate states. 

An alternative method of error handling is to have the errant process or transputer cause all transputers 
to halt. This can be done by 'daisy-chaining' the Errorln and Error pins of a number of processors and 
applying the final Error output signal to the EventReq pin of a suitably programmed master transputer. Since 
the process state is preserved when stopped by an error, the master transputer can then use the analyse 
function to debug the fault. When using such a circuit, note that the Errorflag is in an indeterminate state on 
power up; the circuit and software should be designed with this in mind. 

Error checks can be removed completely to optimise the performance of a proven program; any unexpected 
error then occurring will have an arbitrary undefined effect. 

If a high priority process pre-empts a low priority one, status of the Error and HaltOnError flags is saved for 
the duration of the high priority process and restored at the conclusion of it. Status of both flags is transmitted 
to the high priority process. Either flag can be altered in the process without upsetting the error status of any 
complex operation being carried out by the pre-empted low priority process. 

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before 
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access to 
memory for data. Memory refresh will continue to take place. 

After halting due to the Error flag changing from 0 to 1 whilst HaltOnError is set, register I points two bytes 
past the instruction which set Error. After halting due to the Analyse pin being taken high, register I points 
one byte past the instruction being executed. In both cases I will be copied to register A. 

H I 
~-. ----

Master Latch I -_ ..... 
of f of f t t 

Transputer 
T800 T425 T800 

Event slave 0 slave 1 slave n t GND - Errorln Error f-- Errorln Error .... Errorln Error1 
(transputer links not shown) 

Figure 5.6 Error handling in a multi-transputer system 



286 

6 Memory 

The IMS T425 has 4 Kbytes of fast internal static memory for high rates of data throughput. Each internal 
memory access takes one processor cycle ProcClockOut (page 288). The transputer can also access 
4 Gbytes of external memory space. Internal and external memory are part of the same linear address 
space. Internal RAM can be disabled by holding DisablelntRAM high. All internal addresses are then 
mapped to external RAM. This pin should not be altered after Reset has been taken low. 

IMS T425 memory is byte addressed, with words aligned on four-byte boundaries. The least significant byte 
of a word is the lowest addressed byte. 

The bits in a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with 
byte 0 the least Significant. In general, wherever a value is treated as a number of component values, the 
components are numbered in order of increasing numerical significance, with the least significant component 
numbered o. Where values are stored in memory, the least significant component value is stored at the 
lowest (most negative) address. 

Internal memory starts at the most negative address #80000000 and extends to #80000FFF. User memory 
begins at #80000070; this location is given the name MemStart. An instruction Idmemstartval is provided to 
obtain the value of MemStart. 

The context of a process in the transputer model involves a workspace descriptor (WPtr) and an instruction 
pointer (IPtr). WPtr is a word address pOinter to a workspace in memory. IPtr points to the next instruction to 
be executed for the process which is the currently executing process. The context switch performed by the 
breakpoint instruction swaps the WPtr and IPtr of the currently executing process with the WPtr and IPtr held 
above MemStart. Two contexts are held above MemStart, one for high priority and one for low priority; this 
allows processes at both levels to have breakpoints. Note that on bootstrapping from a link, these contexts 
are overwritten by the loaded code. If this is not acceptable, the values should be peeked from memory 
before bootstrapping from a link. 

The reserved area of internal memory below MemStart is used to implement link and event channels. 

Two words of memory are reserved for timer use, TPtrLocO for high priority processes and TPtrLoc1 for low 
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on 
the timer queue at that priority level. 

Values of certain processor registers for the current low priority process are saved in the reserved IntSaveLoc 
locations when a high priority process pre-empts a low priority one. Other locations are reserved for extended 
features such as block moves. 

External memory space starts at #80001000 and extends up through #00000000 to #7FFFFFFF. Memory 
configuration data and ROM bootstrapping code must be in the most positive address space, starting at 
#7FFFFF6C and #7FFFFFFE respectively. Address space immediately below this is conventionally used for 
ROM based code. 



6 Memory 287 

rh_i __ M_a_c_h_in.-e_m_a ..... p __ I....,o Byte address Word offsets r-__ o_c_c_a_m_m_a,-p_--, 

1 Reset Inst I _I ##70FFFFFFE j j 
- - #7FFFFFF8 

Memory configuration #7FFFFF6C 
~-------~ 

~ _______ --II #80001000 - Start of external memory - #0400 f-I-----------ll 
- #80000070 MemStart MemStart #1 C - -

Notes 

Reserved for 
Extended functions 

Ereg IntSaveLoc 
STATUSlntSaveLoc 

CreglntSaveLoc 
BreglntSaveLoc 
Areg IntSaveLoc 

IptrlntSaveLoc 
WdesclntSaveLoc 

TPtrLoc1 
TPtrLocO 

Event 

Link 3 Input 
Link 2 Input 

Link 1 Input 
Link 0 Input 

Link 3 Output 
Link 2 Output 

Link 1 Output 
Link 0 Output 

#8000006C 
#80000048 
#80000044 

#80000040 

#8000003C 
#80000038 
#80000034 

#80000030 

#8000002C 
#80000028 

#80000024 
#80000020 

#8000001C 

#80000018 
#80000014 
#80000010 

#8000000C 
#80000008 
#80000004 
#80000000 

Note 1 

(Base of memory) 

Figure 6.1 IMS T425 memory map 

#08 Event 
#07 Link 3 Input 

#06 Link 2 Input 

#05 Link 1 Input 
#04 Link 0 Input 

#03 Link 3 Output 
#02 Link 2 Output 
#01 Link 1 Output 
#00 Link 0 Output 

1 These locations are used as auxiliary processor registers and should not be manipulated by the user. Like 
processor registers, their contents may be useful for implementing debugging tools (Analyse, page 284). For 
details see Transputer Instruction Set - A Compiler Writers' Guide. 



288 

7 External memory interface 

The External Memory Interface (EMI) allows access to a 32 bit address space, supporting dynamic and static 
RAM as well as ROM and EPROM. EMI timing can be configured at Reset to cater for most memory types 
and speeds, and a program is supplied with the Transputer Development System to aid in this configuration. 

There are 17 internal configurations which can be selected by a single pin connection (page 297). If none 
are suitable the user can configure the interface to specific requirements, as shown in page 299. 

7.1 ProcClockOut 

This clock is derived from the internal processor clock, which is in turn derived from Clockln. Its period is 
equal to one internal microcode cycle time, and can be derived from the formula 

TPCLPCL = TDCLDCL / PLLx 

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the Clockln Period and PLLx is the phase 
lock loop factor for the relevant speed part, obtained from the ordering details (Ordering section). 

The time value Tm is used to define the duration of Tstates and, hence, the length of external memory cycles; 
its value is exactly half the period of one ProcClockOut cycle (0.5* TPCLPCL), regardless of mark/space 
ratio of ProcClockOut. 

Edges of the various external memory strobes coincide with rising or falling edges of ProcClockOut. It should 
be noted, however, that there is a skew associated with each coinCidence. The value of skew depends on 
whether coincidence occurs when the ProcClockOut edge and strobe edge are both rising, when both are 
falling or if either is rising when the other is falling. Timing values given in the strobe tables show the best 
and worst cases. If a more accurate timing relationship is required, the exact Tstate timing and strobe edge 
to ProcClockOut relationships should be calculated and the correct skew factors applied from the edge skew 
timing table 7.4. 

The timing parameters in the following tables are based on 17 MHz and 20 MHz parts. Data for higher speeds 
is based on tests on a limited number of samples and may change when full characterisation is completed. 

7.2 Tstates 

The external memory cycle is divided into six Tstates with the following functions: 

T1 Address setup time before address valid strobe. 

T2 Address hold time after address valid strobe. 

T3 Read cycle tristate or write cycle data setup. 

T4 Extendable data setup time. 

T5 Read or write data. 

T6 Data hold. 

Under normal conditions each Tstate may be from one to four periods Tm long, the duration being set during 
memory configuration. The default condition on Reset is that all Tstates are the maximum four periods Tm 
long to allow external initialisation cycles to read slow ROM. 

Period T4 can be extended indefinitely by adding externally generated wait states. 

An external memory cycle is always an even number of periods Tm in length and the start of T1 always 
coincides with a rising edge of ProcClockOut. If the total configured quantity of periods Tm is an odd 
number, one extra period Tm will be added at the end of T6 to force the start of the next T1 to coincide with 
a rising edge of ProcClockOut. This period is designated E in configuration diagrams (figure 7.11). 



7 External memory interface 289 

Table 7.1 ProcClockOut 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TPCLPCL ProcClockOut period a-2 a a+2 ns 1,5 
TPCHPCL ProcClockOut pulse width high b-11.5 b b+3.5 ns 2,5 
TPCLPCH ProcClockOut pulse width low c ns 3,5 
Tm ProcClockOut half cycle b-1 b b+1 ns 2,5 
TPCstab ProcClockOut stability 8 0/0 4,5 

Notes 

a is TDCLDCLlPLLx. 

2 b is 0.5. TPCLPCL (half the processor clock period). 

3 c is TPCLPCL-TPCHPCL. 

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points on 
the cycles. 

5 This parameter is sampled and not t 00% tested. 

1.5v - - - - - ~----{---- - 'C.. 
TPCLPCH TPCHPCL 

TPCLPCL 

Figure 7.1 IMS T425 ProcClockOut timing 

7.3 Internal access 

During an internal memory access cycle the external memory interface bus MemAD2-31 reflects the word 
address used to access internal RAM, MemnotWrDO reflects the read/write operation and MemnotRfD1 is 
high; all control strobes are inactive. This is true unless and until a memory refresh cycle or DMA (memory 
request) activity takes place, when the bus will carry the appropriate external address or data. 

The bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for 
hardware debugging in conjuction with peek and poke (page 284). 

ProcClockOut 

MemnotWrDO ~ Write / Read Read '< 
MemnotRfD1 ~ '< 
MemAD2-31 :=x Address X Address X Address X 

Figure 7.2 IMS T425 bus activity for internal memory cycle 



290 7 IMS T42S engineering data 

7.4 MemAD2·31 

External memory addresses and data are multiplexed on one bus. Only the top 30 bits of address are 
output on the external memory interface, using pins MemAD2·31. They are normally output only during 
Tstates T1 and T2, and should be latched during this time. Byte addressing is carried out internally by the 
transputer for read cycles. For write cycles the relevant bytes in memory are addressed by the write strobes 
notMemWrBO·3. 

The data bus is 32 bits wide. It uses MemAD2·31 for the top 30 bits and MemnotRfD1 and MemnotWrDO 
for the lower two bits. Read cycle data may be set up on the bus at any time after the start of T3, but must 
be valid when the transputer reads it at the end of TS. Data may be removed any time during T6, but must 
be off the bus no later than the end of that period. 

Write data is placed on the bus at the start of T3 and removed at the end of T6. If T6 is extended to force 
the next cycle Tmx (page 290) to start on a rising edge of ProcClockOut, data will be valid during this time 
also. 

7.S MemnotWrDO 

During T1 and T2 this pin will be low if the cycle is a write cycle, otherwise it will be high. During Tstates T3 
to T6 it becomes bit 0 of the data bus. In both cases it follows the general timing of MemAD2·31. 

7.6 MemnotRfD1 

During T1 and T2, this pin is low if the address on MemAD2·31 is a refresh address, otherwise it is high. 
During Tstates T3 to T6 it becomes bit 1 of the data bus. In both cases it follows the general timing of 
MemAD2·31. 

7.7 notMemRd 

For a read cycle the read strobe notMemRd is low during T4 and TS. Data is read by the transputer on the 
rising edge of this strobe, and may be removed immediately afterward. If the strobe duration is insufficient it 
may be extended by adding extra periods Tm to either or both of the Tstates T4 and TS. Further extension 
may be obtained by inserting wait states at the end of T4. 

In the read cycle timing diagrams ProcClockOut is included as a guide only; it is shown with each Tstate 
configured to one period Tm. 

7.8 notMemSO·4 

To facilitate control of different types of memory and devices, the EMI is provided with five strobe outputs, 
four of which can be configured by the user. The strobes are conventionally assigned the functions shown in 
the read and write cycle diagrams, although there is no compulsion to retain these designations. 

notMemSO is a fixed format strobe. Its leading edge is always coincident with the start of T2 and its trailing 
edge always coincident with the end of TS. 

The leading edge of notMemS1 is always cOincident with the start of T2, but its duration may be configured 
to be from zero to 31 periods Tm. Regardless of the configured duration, the strobe will terminate no later 
than the end of T6. The strobe is sometimes programmed to extend beyond the normal end of Tmx. When 
wait states are inserted into an EMI cycle the end of Tmx is delayed, but the potential active duration of the 
strobe is not altered. Thus the strobe can be configured to terminate relatively early under certain conditions 
(page 306). If notMemS1 is configured to be zero it will never go low. 



7 External memory interface 291 

notMemS2, notMemS3 and notMemS4 are identical in operation. They all terminate at the end of T5, but 
the start of each can be delayed from one to 31 periods Tm beyond the start of T2. If the duration of one of 
these strobes would take it past the end of T5 it will stay high. This can be used to cause a strobe to become 
active only when wait states are inserted. If one of these strobes is configured to zero it will never go low. 
Figure 7.5 shows the effect of Wait on strobes in more detail; each division on the scale is one period Tm. 

Table 7.2 Read 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TaZdV Address tristate to data valid 0 ns 
TdVRdH Data setup before read 25 ns 
TRdHdX Data hold after read 0 ns 
TSOLRdL notMemSO before start of read 8-4 8 8+4 ns 1 
TSOHRdH End of read from end of notMemSO -4 4 ns 
TRdLRdH Read period b-3 b+5 ns 2 

Notes 

a is total of T2+ T3 where T2, T3 can be from one to four periods Tm each in length. 

2 b is total of T4+ Twalt+ T5 where T4, T5 can be from one to four periods Tm each in length and Twalt may be 
any number of periods Tm in length. 

Tstate I T1 T2 T3 

ProcClockOut 
Tmx 

MemnotWrDO 

MemnotRfD1 

MemAD2--31 Address 

TaVSOL 

TSOLRdL 

notMemRd 

T4 

TSOLSOH 

notMemSO 
(CE) 

notMemS1 
(ALE) 

TSOLS1L<D 
TSOLS1H 5 

T5 T6 

Figure 7.3 IMS T425 external read cycle: static memory 

T1 

TSOHS1H@) 



292 

Tstate I T1 T2 T3 

ProcClockOut 
Tmx 

MemnotWrDO 

MemnotRfD1 

MemAD2-31 Address 

TaVSOL 

TSOLRdL 

notMemRd 

7 IMS T425 engineering data 

T4 T5 T6 T1 

TRdLRdH 

TSOHS1H@ 

TSOHS2H@ 

TSOHS3H (jJ) 

TSOHS4H@ 

Figure 7.4 IMS T425 external read cycle: dynamic memory 



7 External memory interface 293 

Table 7.3 IMS T42S strobe timing 

SYMBOL (n) PARAMETER MIN NOM MAX UNITS NOTE 
TaVSOl Address setup before notMemSO 
TSOLaX Address hold after notMemSO 
TSOLSOH notMemSO pulse width low 
TSOLS1l 1 notMemS1 from notMemSO 
TSOLS1H S notMemS1 end from notMemSO 
TSOHS1H 9 notMemS1 end from notMemSO end 
TSOLS2L 2 notMemS2 delayed after notMemSO 
TSOLS2H 6 notMemS2 end from notMemSO 
TSOHS2H 10 notMemS2 end from notMemSO end 
TSOLS3L 3 notMemS3 delayed after notMemSO 
TSOLS3H 7 notMemS3 end from notMemSO 
TSOHS3H 11 notMemS3 end from notMemSO end 
TSOLS4L 4 notMemS4 delayed after notMemSO 
TSOLS4H 8 notMemS4 end from notMemSO 
TSOHS4H 12 notMemS4 end from notMemSO end 
Tmx Complete external memory cycle 

Notes 

1 a is n where T1 can be from one to four periods Tm in length. 

2 b is T2 where T2 can be from one to four periods Tm in length. 

a-8 ns 1 
b-8 b b+8 ns 2 
c-S c+6 ns 3 
-4 4 ns 

d-1 d+9 ns 4,6 
e-8 e+4 ns S,6 
f-6 f+S ns 7 
c-S c+7 ns 3 
-4 7 ns 
f-6 f+S ns 7 
c-S c+7 ns 3 
-4 7 ns 
f-6 f+S ns 7 
c-S c+7 ns 3 
-4 7 ns 

9 8 

3 c is total of T2+ T3+ T4+ Twait+ T5 where T2, T3, T4, T5 can be from one to four periods Tm each in length and 
Twait may be any number of periods Tm in length. 

4 d can be from zero to 31 periods Tm in length. 

S e can be from -27 to +4 periods Tm in length. 

6 If the configuration would cause the strobe to remain active past the end of T6 it will go high at the end of TG. 
If the strobe is configured to zero periods Tm it will remain high throughout the complete cycle Tmx. 

7 f can be from zero to 31 periods Tm in length. If this length would cause the strobe to remain active past the 
end of T5 it will go high at the end of T5. If the strobe value is zero periods Tm it will remain low throughout 
the complete cycle Tmx. 

8 9 is one complete external memory cycle comprising the total of T1+T2+T3+T4+Twalt+T5+TG where n, T2, 
T3, T4, T5 can be from one to four periods Tm each in length, TG can be from one to five periods Tm in length 
and Twalt may be zero or any number of periods Tm in length .. 

TstateIT1IT2IT3IT4ITS!T6!T1! Tstate!T1!T2!T3!T4!W!W!TS!T6IT11 

notMemS1 I I notMemS1 I ! 

notMemS2 notMemS2 

No wait states Wait states inserted 

Figure 7.S IMS T42S effect of wait states on strobes 



294 7 IMS T425 engineering data 

Table 7.4 Strobe SO to ProcClockOut skew 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TPCHSOH notMemSO rising from ProcClockOut rising -s 4 ns 
TPCLSOH notMemSO rising from ProcClockOut falling -S 10 ns 
TPCHSOL notMemSO falling from ProcClockOut rising -8 3 ns 
TPCLSOL notMemSO falling from ProcClockOut falling -S 7 ns 

ProcClockOut ~ ~ ~ ~ 

~PCHSOH ~TPCHSOL ~PCLSOH ~PCLSOL 
NotMemSO 

Figure 7.S IMS T42S skew of notMemSO to ProcClockOut 

7.9 notMemWrB0-3 

Because the transputer uses word addressing, four write strobes are provided; one to write each byte of the 
word. If a particular byte is not to be written, then the corresponding data outputs are tristated. notMemWrBO 
addresses the least significant byte. 

The transputer has both early and late write cycle modes. For a late write cycle the relevant write strobes 
notMemWrBO-3 are low during T4 and T5; for an early write they are also low during T3. Data should be 
latched into memory on the rising edge of the strobes in both cases, although it is valid until the end of TS. 
If the strobe duration is insufficient, it may be extended at configuration time by adding extra periods Tm to 
either or both of Tstates T4 and T5 for both early and late modes. For an early cycle they may also be added 
to T3. Further extension may be obtained by inserting wait states at the end of T4. If the data hold time is 
insufficient, extra periods Tm may be added to T6 to extend it. 

Table 7.5 Write 

SYMBOL PARAMETER MIN 
TdVWrH Data setup before write d-7 
TWrHdX Data hold after write 8-10 
TSOLWrL notMemSO before start of early write b-S 

notMemSO before start of late write c-S 
TSOHWrH End of write from end of notMemSO -S 
TWrLWrH Early write pulse width d-4 

Late write pulse width e-4 

Notes 

Timing is for all write strobes notMemwrBO-3. 

2 a is T6 where T6 can be from one to five periods Tm in length. 

3 b is T2 where T2 can be from one to four periods Tm in length. 

NOM MAX 
d+10 
8+S 
b+S 
c+5 

4 
d+7 
e+7 

4 c is total of T2+ T3 where T2, T3 can be from one to four periods Tm each in length. 

UNITS NOTE 
ns 1,S 
ns 1,2 
ns 1,3 
ns 1,4 
ns 1 
ns 1,S 
ns 1,S 

S d is total of T3+ T4+ Twalt+ TS where T3, T4, TS can be from one to four periods Tm each in length and Twalt 
may be zero or any number of periods Tm in length. 

6 e is total of T4+ Twalt+ TS where T4, TS can be from one to four periods Tm each in length and Twait may be 
zero or any number of periods Tm in length. 



7 External memory interface 

Tstate I T1 T2 T3 T4 

ProcClockOut 
Tmx 

MemnotWrDO =>-
MemnotRfD1 =>-
MemAD2-31 =>-

3 notMemWrBO­
(early write) 

Data 

'" Data 

Address Data 

TaVSOL TSOLaX 
TdVWrH 

TSOLWrL TWrLWrH 

~ 

T5 

TSOLWrL TWrLWrH 

3 notMemWrBO­
(late write) 

notMemSO 
(CE) 

notMemS1 
(ALE) 

-
~ 

TSOLSOH 

r-TSOLS1 L CD 
TSOLS1H ® 

T6 T1 

-< 
-< 
-< 

TWrHdX 

_~TSOHWrH 

- ~TSOHS1H ® 

~ 

Figure 7.7 IMS T425 external write cycle 

295 

In the write cycle timing diagram ProcClockOut is included as a guide only; it is shown with each Tstate 
configured to one period Tm. The strobe is inactive during internal memory cycles. 



296 

Clockln 
(5 MHz) 

LinkOln 

LinkOOut 

Link11n 
Link10ut 

Link21n 
Link20ut 

Link31n 

100K rl 
GND :.:t 
~ 

56R 
=l As LinkO 

56R 

:j As Link2 Link30ut 
MemConfig 

I 

7 IMS T425 engineering data 

rll, CapPlus 
1111 CapMinus 

r'-----J'----.J--, 

VCC J: ;t ,,,:,. II:'"~ J: 
GND T T 'II~I. 11,111 T 

IMS 
T425 

r'-----, 

r-'-----, ~*4 

~===?=~i1 ~mic _ notMemWr83 _ I 1\*4 
- notMemWr82 ---' aMlmic f7---, 
_ notMemWrB1 ___ ----' ,c==;-}<~*4 I'" 
- notMemWrBO _____ -/ r.mic 
_ notMemRd----notOE _ 256K*~ IVI 

_ notMemS3 notCAS - Dynamic 
_ notMemS2- RAM r 
- notMemS1 ---+-notRAS -'-7-'<'""'7""~ 

address address 

- notMemSO l ~;...: ~ 

I Column Row/Column 

latch multiplexor 
L.t.-r---....~-' .t. ~ .t. ~ 

en ... 
I ... ... 

c 
c:r: 
~ 

",=='7 

o 
;!: 
c 
c:r: 
E 

... ~ 7 

Figure 7.8 IMS T425 dynamic RAM application 



7 External memory interface 297 

7.10 MemConfig 

MemConfig is an input pin used to read configuration data when setting external memory interface (EMI) 
characteristics. It is read by the processor on two occasions after Reset goes low; first to check if one of the 
preset internal configurations is required, then to deterrnine a possible external configuration. 

7.10.1 Internal configuration 

The internal configuration scan comprises 64 periods TDCLDCL of Clockln during the internal scan period 
of 144 Clockln periods. MemnotWrDO, MemnotRfD1 and MemAD2·32 are all high at the beginning of the 
scan. Starting with MemnotWrDO, each of these lines goes low successively at intervals of two Clockln 
periods and stays low until the end of the scan. If one of these lines is connected to MemConfig the preset 
internal configuration mode associated with that line will be used as the EMI configuration. The default 
configuration is that defined in the table for MemAD31; connecting MemConfig to VCC will also produce 
this default configuration. Note that only 17 of the possible configurations are valid, all others remain at the 
default configuration. 

Table 7.6 IMS T425 internal configuration coding 

Duration of each Tstate Strobe Write Refresh Cycle 
periods Tm coefficient cycle interval time 

Clockln Proc 
Pin T1 T2 T3 T4 T5 T6 s1 s2 s3 s4 type cycles cycles 

MemnotWrDO 1 1 1 1 1 1 30 1 3 5 late 72 3 
MemnotRfD1 1 2 1 1 1 2 30 1 2 7 late 72 4 
MemAD2 1 2 1 1 2 3 30 1 2 7 late 72 5 
MemAD3 2 3 1 1 2 3 30 1 3 8 late 72 6 
MemAD4 1 1 1 1 1 1 3 1 2 3 early 72 3 
MemAD5 1 1 2 1 2 1 5 1 2 3 early 72 4 
MemAD6 2 1 2 1 3 1 6 1 2 3 early 72 5 
MemAD7 2 2 2 1 3 2 7 1 3 4 early 72 6 
MemAD8 1 1 1 1 1 1 30 1 2 3 early t 3 
MemAD9 1 1 2 1 2 1 30 2 5 9 early t 4 
MemAD10 2 2 2 2 4 2 30 2 3 8 late 72 7 
MemAD11 3 3 3 3 3 3 30 2 4 13 late 72 9 
MemAD12 1 1 2 1 2 1 4 1 2 3 early 72 4 
MemAD13 2 1 2 1 2 2 5 1 2 3 early 72 5 
MemAD14 2 2 2 1 3 2 6 1 3 4 early 72 6 
MemAD15 2 1 2 3 3 3 8 1 2 3 early 72 7 
MemAD31 4 4 4 4 4 4 31 30 30 18 late 72 12 

t Provided for static RAM only. 



298 

Tstate 11 1213141s1611 1213141s1611 12 

notMemSO 

notMemS1 ! 
notMemS2 ~i 1:;-":.:::..----;:=--=;---;:::: 

i 
notMemS3 i 3 

notMemS4 ---+L------;::-~-----------------­
notMemRd 

MemConfig=MemnotWrDO 

Tstate 11 I 1 12 I 2 I 213141s I sl6 I 6 I 611 12 

notMemSOI I 
notMemS1 I 30 I 
notMemS2 ----rrl __ i~1~==~--...Jr---_ 
notMemS3 i 3 
notMemS4 _-_-i-L-=_-_~_==~;;::::_=_~_-_-_-_-_ 

MemConfig=MemAD3 

7 IMS T425 engineering data 

Tstate 11 12 I 213141s16 1611 12 1213141s 

notMemSO I r--l'--__ _ 
notMemS1 I 30 n 
notMemS2 -tn 

~~~---=:::;--
notMemS3 i 2

-+i--~-------notMemS4 _ i-- __ ~ ________ _

MemConfig=MemnotRfD1

Tstate 11 11 12 I 213 I 3141s I s Isl6 I 611 11

notMemSOI I
notMemS11 7

~:::: 7:.1
3 I

notMemS4 --l--=-4""---=::;-L-J--~--
notMemRd L-Jr---
notMemWr early

MemConfig=MemAD7

Figure 7.9 IMS T42S internal configuration

7 External memory interface

Delay

MemnotWrDO

MemnotRfD1

MemAD2

MemAD3

t
MemAD31

MemConfig CD
MemConfig ®

Internal configuration

CD Internal configuration: MemConfig connected to MemAD2
® External configuration: MemConfig connected to inverse of MemAD3

External configuration

Figure 7.10 IMS T 425 internal configuration scan

7.10.2 External configuration

299

If MemConfig is held low until MemnotWrDO goes low the internal configuration is ignored and an external
configuration will be loaded instead. An external configuration scan always follows an internal one, but if an
internal configuration occurs any external configuration is ignored.

The external configuration scan comprises 36 successive external read cycles, using the default EMI con­
figuration preset by MemAD31. However, instead of data being read on the data bus as for a normal read
cycle, only a single bit of data is read on MemConfig at each cycle. Addresses put out on the bus for each
read cycle are shown in table 7.7, and are designed to address ROM at the top of the memory map. The
table shows the data to be held in ROM; data required at the MemConfig pin is the inverse of this.

MemConfig is typically connected via an inverter to MemnotWrDO. Data bit zero of the least significant byte
of each ROM word then provides the configuration data stream. By switching MemConfig between various
data bus lines up to 32 configurations can be stored in ROM, one per bit of the data bus. MemConfig can be
permanently connected to a data line or to GND. Connecting MemConfig to GND gives all Tstates configured
to four periods; notMemS1 pulse of maximum duration; notMemS2·4 delayed by maximum; refresh interval
72 periods of Clockln; refresh enabled; late write.

The external memory configuration table 7.7 shows the contribution of each memory address to the 13 con­
figuration fields. The lowest 12 words (#7FFFFF6C to #7FFFFF98, fields 1 to 6) define the number of extra
periods Tm to be added to each Tstate. If field 2 is 3 then three extra periods will be added to T2 to extend
it to the maximum of four periods.

The next five addresses (field 7) define the duration of notMemS1 and the following fifteen (fields 8 to 10)
define the delays before strobes notMemS2·4 become active. The five bits allocated to each strobe allow
durations of from 0 to 31 periods Tm, as described in strobes page 290.

Addresses #7FFFFFEC to #7FFFFFF4 (fields 11 and 12) define the refresh interval and whether refresh is to
be used, whilst the final address (field 13) supplies a high bit to MemConfig if a late write cycle is required.

The columns to the right of the coding table show the values of each configuration bit for the four sample

300 7 IMS T425 engineering data

external configuration diagrams. Note the inclusion of period E at the end of T6 in some diagrams. This is
inserted to bring the start of the next Tstate T1 to coincide with a rising edge of ProcClockOut (page 288).

Wait states W have been added to show the effect of them on strobe timing; they are not part of a configuration.
In each case which includes wait states, two wait periods are defined. This shows that if a wait state would
cause the start of T5 to coincide with a falling edge of ProcClockOut, another period Tm is generated by
the EMI to force it to coincide with a rising edge of ProcClockOut. This coincidence is only necessary if wait
states are added, otherwise coincidence with a falling edge is permitted. Any configuration memory access
is only permitted to be extended using wait, up to a total of 14 Clockln periods.

Tstate 11 121213 1 3141s16 1 6 1 E 11 12 I 213

notMemSO I 1 ~

notMemS1 8
notMemS2 -+1=;3;=:;-~-=--;::::=~~==

notMemS3 _iTl-ti.· ~1 =::;=:::::;--...Jrl~~====~.::L=
notMemS4 4 U
notMemRd U.-----
notMemWr earTYl L
~m~H®--------------

MemWait ® - - - - - - - - - - - - - -

Example 1

Tstate 11121313141wlwlwIsl6161 EI112

notMemSO IlL
notMemS1 -W L
notMemS2 - r- - - - - -0 - - - - - - -

notMemS3 _ L ____ J3 ______ _

notMemS4 -i2l 1

notMemRd_~_~~---~~ __ _
notMemWr

MemWait@

MemWait @.--J
Example 3

~ No wait states inserted
1 One wait state inserted
2 Two wait states inserted
3 Three wait states inserted

Tstate 11 1213 13141wIWlwIsl611 121313

notMemso~i======;======-_===
notMemS1 _ L ___ <L _______ _
notMemS2 -tn 1 L
notMemS3 i 7 U
notMemS4! 6 U'---
notMemRd
notMemWr --:-Ia-:-te-...,L------'r----

MemWait@

MemWait @.--J '--__ ---'I
Example 2

Tstatel112121313141wlwIsl6161EI112

notMemSO IlL
L notMemS1 r::.1

notMemS2 --+.---=7----'U

notMemS3 --+---;:s;------,L-jr----

notMemS4~~3~~~ __ ~~ __ __
notMemRd

notMemWr earTYl '-------'
MemWait CD __ ---'nL-_____ _
MemWait@ II '-------

Example 4

Figure 7.11 IMS T425 external configuration

7 External memory interface

Internal configuration External configuration

() 0 v
to " "

co () () 0

" " LU LI..
LI.. LI.. LI.. LI.. LI.. LI.. LI..

Address LI.. LI.. LI..
LI.. LI.. LI..

LI.. LI.. LI.. LI..
LI.. LI.. LI.. LI..

LI.. LI.. LI.. LI.. LI.. LI.. LI..
LI.. LI.. LI.. LI.. LI.. LI.. LI..
r:-- r:-- r:-- " " r:-- r:--

MemnotWrDO

MemnotRfD1

MemAD2

MemAD3

t
MemAD31

MemConfig CD
notMemRd

® ®
G) MemConfig connected to inverse of MemnotWrDO
® Configuration field 1 ; T1 configured for 2 periods Tm
® Configuration field 2; T2 configured for 3 periods Tm
@ Configuration field 10; most significant bit of notMemS4 configured high
® Configuration field 11 ; refresh interval configured for 36 periods Clockln
® Configuration field 12; refresh enabled
(}) Configuration field 13; early write cycle

Figure 7.12 IMS T425 external configuration scan

301

Delay

v co
LI.. LI..
LI.. LI..
LI.. LI..
LI.. LI..
LI.. LI..
LI.. LI..
r:-- r:--

® (7)

302 7 IMS T425 engineering data

Table 7.7 IMS T425 external configuration coding

Soan MemAD Example diagram
cycle address Field Function 1 2 3 4

1 7FFFFF6C 1 T1 least significant bit 0 0 0 0
2 7FFFFF70 1 T1 most significant bit 0 0 0 0
3 7FFFFF74 2 T2 least significant bit 1 0 0 1
4 7FFFFF78 2 T2 most significant bit 0 0 0 0
5 7FFFFF7C 3 T3 least significant bit 1 1 1 1
6 7FFFFF80 3 T3 most significant bit 0 0 0 0
7 7FFFFF84 4 T4 least significant bit 0 0 0 0
8 7FFFFF88 4 T4 most significant bit 0 0 0 0
9 7FFFFF8C 5 T5 least significant bit 0 0 0 0
10 7FFFFF90 5 T5 most significant bit 0 0 0 0
11 7FFFFF94 6 T6 least significant bit 1 0 1 1
12 7FFFFF98 6 T6 most significant bit 0 0 0 0
13 7FFFFF9C 7 notMemS1 least significant bit 0 0 1 1
14 7FFFFFAO 7 0 0 0 0
15 7FFFFFA4 7 .IJ. .IJ. 0 0 0 0
16 7FFFFFA8 7 1 0 0 0
17 7FFFFFAC 7 notMemS1 most significant bit 0 0 0 0
18 7FFFFFBO 8 notMemS2 least significant bit 1 0 0 1
19 7FFFFFB4 8 1 1 0 1
20 7FFFFFB8 8 .IJ. .IJ. 0 0 0 1
21 7FFFFFBC 8 0 0 0 0
22 7FFFFFCO 8 notMemS2 most significant bit 0 0 0 0
23 7FFFFFC4 9 notMemS3 least significant bit 1 1 1 1
24 7FFFFFC8 9 0 1 0 0
25 7FFFFFCC 9 .IJ. .IJ. 0 1 0 1
26 7FFFFFDO 9 0 0 1 0
27 7FFFFFD4 9 notMemS3 most significant bit 0 0 0 0
28 7FFFFFD8 10 notMemS4 least significant bit 0 0 0 1
29 7FFFFFDC 10 0 1 1 1
30 7FFFFFEO 10 .IJ. .IJ. 1 1 0 0
31 7FFFFFE4 10 0 0 0 0
32 7FFFFFE8 10 notMemS4 most significant bit 0 0 0 0
33 7FFFFFEC 11 Refresh Interval least significant bit - - - -
34 7FFFFFFO 11 Refresh Interval most significant bit - - - -
35 7FFFFFF4 12 Refresh Enable - - - -
36 7FFFFFF8 13 Late Write 0 1 1 0

7 External memory interface

Table 7.8 IMS T425 memory refresh configuration coding

Refresh Interval Field 11 Complete
interval in P.s encoding cycle (mS)

18 3.6 00 0.922
36 7.2 01 1.843
54 10.8 10 2.765
72 14.4 11 3.686

Refresh intervals are in periods of Clockln and Clockln frequency is 5 MHz:

Interval = 18 • 200 = 3600 ns

Refresh interval is between successive incremental refresh addresses.
Complete cycles are shown for 256 row DRAMS.

Table 7.9 Memory configuration

SYMBOL PARAMETER MIN
TMCVRdH Memory configuration data setup 25
TRdHMCX Memory configuration data hold 0
TSOLRdH notMemSO to configuration data read a-12

Notes

1 a is 16 periods Tm.

T1 T2 T3 T4 T5

NOM MAX

a+12

T6

UNITS
ns
ns
ns

T1 Tstate I
Tm

MemnotWrDO --./

I I I I I I I I I

'-«(«<<<<<<<< Data »>>-_~r-

I I I I I I I I I

MemnotRfD1 --./ '-««««««< Data »>>-_~r-

MemAD2-31 -<,-_Ad_d_res_s~>-«««««<,« Data >))>---C

notMemSO ~'---_---"'/
1_ TSOLRdH

notMemRd

MemConfig
~

I--TMCVRdH
-r:-TRdHMCX

--------<<<<<<<<<<< Data y))>----

Figure 7.13 IMS T425 external configuration read cycle timing

303

NOTE

1

304 7 IMS T425 engineering data

7.11 RefreshPending

When high, this pin signals that a refresh cycle is pending. It remains high until the refresh cycle is started by
the transputer. The minimum time for the RefreshPending pin to be high is for one cycle of ProcClockOut
(two periods Tm), when the EMI was not about to perform a memory read or write. If the EMI was held in
the tristate condition with MemGranted asserted, then RefreshPending will be asserted when the refresh
controller in the EMI is ready to perform a refresh. MemReq may be re-asserted any time after the com­
mencement of the refresh cycle. RefreshPending changes state near the rising edge of ProcClockOut and
can therefore be sampled by the falling edge of ProcClockOut.

If no DMA is active then refresh will be performed following the end of the current internal or external memory
cycle. If DMA is active the transputer will wait for DMA to terminate before commencing the refresh cycle.
Unlike MemnotRfD1, RefreshPending is never tristated and can thus be interrogated by the DMA device;
the DMA cycle can then be suspended, at the discretion of the DMA device, to allow refresh to take place.

The simple circuit of Figure 7.14 will suspend DMA requests from the external logic when RefreshPending
is asserted, so that a memory refresh cycle can be performed. DMA is restored on completion of the refresh
cycle. The transputer will not perform an external memory cycle other than a refresh cycle, using this method,
until the requesting device removes its DMA request.

DMA Request
MemReq I IMS Logic I T425

RefreshPendino

Figure 7.14 IMS T425 refresh with DMA

R R I T1 I
ProcClockOut

notMemSO

MemReq \\\\\
MemGranted \'--------

RefreshPending _--L.Z ___ ---'Z \L..-_
notMemRf \'----

MemAD2-11 ______________________ C)<Refresh Address

Figure 7.15 IMS T425 RefreshPending timing

7 External memory interface 305

7.12 notMemRf

The IMS T425 can be operated with memory refresh enabled or disabled. The selection is made during
memory configuration, when the refresh interval is also determined. Refresh cycles do not interrupt internal
memory accesses, although the internal addresses cannot be reflected on the external bus during refresh.

When refresh is disabled no refresh cycles occur. During the post-Reset period eight dummy refresh cycles
will occur with the appropriate timing but with no bus or strobe activity.

A refresh cycle uses the same basic external memory timing as a normal external memory cycle, except that
it starts two periods Tm before the start of T1. If a refresh cycle is due during an external memory access,
it will be delayed until the end of that external cycle. Two extra periods Tm (periods R in the diagram) will
then be inserted between the end of T6 of the external memory cycle and the start of T1 of the refresh cycle
itself. The refresh address and various external strobes become active approximately one period Tm before
T1. Bus signals are active until the end of T2, whilst notMemRf remains active until the end of T6.

For a refresh cycle, MemnotRfD1 goes low before notMemRf goes low and MemnotWrDO goes high with
the same timing as MemnotRfD1. All the address lines share the same timing, but only MemAD2·11 give
the refresh address. MemAD12·30 stay high during the address period, whilst MemAD31 remains low.
Refresh cycles generate strobes notMemSO·4 with timing as for a normal external cycle, but notMemRd and
notMemWrBO·3 remain high. MemWait operates normally during refresh cycles.

Table 7.10 Memory refresh

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TRfLRfH Refresh pulse width low a-2 a+9 ns 1
TRaVSOL Refresh address setup before notMemSO b-12 ns
TRfLSOL Refresh indicator setup before notMemSO b-4 b b+6 ns 2

Notes

a is total Tmx+ Tm.

2 b is total T1+ Tm where T1 can be from one to four periods Tm in length.

306 7 IMS T425 engineering data

w~I~I~I~lnl~lnl~I~I~lnl

~o~~~b~~~ X X Address X Data x=::
Tstate I T6 I R R I T1 I T2 I T3 I T4 I T5 I T6 I T1 I

MemAD2-11 ~ Refresh address

notMemSO ---./ TRaVSO~
TRfLSOL I TRfLRfH

notMemRf

MemnotWrDO

MemnotRfD1

MemAD12-30

MemAD31

Figure 7.16 IMS T 425 refresh cycle timing

7.13 MemWait

Taking MemWait high with the timing shown will extend the duration of T4. MemWait is sampled relative
to the falling edge of ProcClockOut during a T3 period, and should not change state in this region. By
convention, notMemS4 is used to synchronize wait state insertion. If this or another strobe is used, its delay
should be such as to take the strobe Iowan even number of periods Tm after the start of T1, to cOincide with
a rising edge of ProcClockOut.

MemWait may be kept high indefinitely, although if dynamic memory refresh is used it should not be kept
high long enough to interfere with refresh timing. MemWait operates normally during all cycles, including
refresh and configuration cycles. It does not affect internal memory access in any way.

If the start of T5 would coincide with a falling edge of ProcClockOut an extra wait period Tm (EW) is
generated by the EMI to force coincidence with a rising edge. Rising edge coincidence is only forced if wait
states are added, otherwise coincidence with a falling edge is permitted.

7 External memory interface

Table 7.11 Memory wait

SYMBOL PARAMETER MIN NOM MAX
TPCLWtH Wait setup -(0.5Tm+9)
TPCLWtL Wait hold 0.5Tm+10
TWtLWtH Delay before re-assertion of Wait 2Tm

Notes

1 ProcClockOut load should not exceed SOpt.

2 If wait period exceeds refresh interval, refresh cycles will be lost.

Tstate I T2 T3

ProcClockOut

MemWalt

MemAD0-31 Address >-««<<<<<<<<<<<<<<< Data »-< Address

notMemRd

Ts

ProcClockOut

MemWait

T

ProcClockOut

MemWait

" /

Figure 7.171MS T425 memory wait timing

307

UNITS NOTE
ns 1,2
ns 1,2

308 7 IMS T425 engineering data

7.14 MemReq, MemGranted

Direct memory access (DMA) can be requested at any time by taking the asynchronous MemReq input high.
The transputer samples MemReq during the final period Tm of T6 of both refresh and external memory
cycles. To guarantee taking over the bus immediately following either, MemReq must be set up at least two
periods Tm before the end of T6. In the absence of an external memory cycle, MemReq is sampled during
every low period of ProcClockOut. The address bus is tristated two periods Tm after the ProcClockOut
rising edge which follows the sample. MemGranted is asserted one period Tm after that.

Removal of MemReq is sampled during each low period of ProcClockOut and MemGranted is removed
synchronously with the next falling edge of ProcClockOut. If accurate timing of DMA is required, MemReq
should be set low coincident with a falling edge of ProcClockOut. Further external bus activity, either refresh,
external cycles or reflection of internal cycles, will commence at the next rising edge of ProcClockOut.

Strobes are left in their inactive states during DMA. DMA cannot interrupt a refresh or external memory cycle,
and outstanding refresh cycles will occur before the bus is released to DMA. DMA does not interfere with
internal memory cycles in any way, although a program running in internal memory would have to wait for
the end of DMA before accessing external memory. DMA cannot access internal memory. If DMA extends
longer than one refresh interval (Memory Refresh Configuration Coding, table 7.8), the DMA user becomes
responsible for refresh. DMA may also inhibit an internally running program from accessing external memory.

DMA allows a bootstrap program to be loaded into external RAM ready for execution after reset. If MemReq is
held high throughout reset, MemGranted will be asserted before the bootstrap sequence begins. MemReq
must be high at least one period TDCLDCL of Clockln before Reset. The circuit should be designed to
ensure correct operation if Reset could interrupt a normal DMA cycle.

Table 7.12 Memory request

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TMRHMGH Memory request response time 4Tm-2ns 7Tm+7ns
TMRLMGL Memory request end response time 2Tm-2ns 5Tm+22ns
TADZMGH Bus tristate before memory granted Tm-2ns Tm+22ns
TMGLADV Bus active after end of memory granted -10ns Tm+2ns

Notes

These values assume no external memory cycle is in progress. If an external cycle is active, maximum time
could be (1 EMI cycle Tmx)+(l refresh cycle TRfLRfH)+(6 periods Tm).

ProcClockOut

MemReq

MemGranted

MemnotWrDO
MemnotRfD1
MemAD2-31

T6

TMRHMGH TMRLMGL

TMGLADV

Figure 7.18 IMS T 425 memory request timing

1

7 External memory interface

MemReq

MemGranted

Reset

Configuration
sequence

D Pre- and post-configuration delays (figure 5.3)
I Internal configuration sequence
E External configuration sequence
R Initial refresh sequence
B Bootstrap sequence

Figure 7.19 IMS T425 DMA sequence at reset

MemReq /////// "''--------
External Memory--u . H I u--­
Interface cycles -1l Read or Wnte '--_R_e_fr_es_h_J-------i Read or Write ~

MemGranted

MemnotRfD1

MemnotWrDO
MemAD2-31

----------------~~ "''------
-----------~~~/~----------~(~------------

--------------~)~----------~(~------------

Figure 7.20 IMS T425 operation of MemReq, MemGranted with external, refresh memory cycles

MemReq

External Memory
Interface activity

////////// //

MemGranted /
---------~

"''--____ -L..J//
Internal Memory Cycles

"''------~/ ~
MemnotWrDO
MemnotRfD1
MemAD2-31

________ ~)~----~('__ ________ ~)~--~c=

Figure 7.21 IMS T425 operation of MemReq, MemGranted with external, internal memory cycles

309

310

8 Events

EventReq and EventAck provide an asynchronous handshake interface between an external event and an
internal process. When an external event takes EventReq high the external event channel (additional to the
external link channels) is made ready to communicate with a process. When both the event channel and the
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck
is removed after EventReq goes low.

EventWaiting is asserted high by the transputer when a process executes an input on the event channel;
typically with the occam EVENT ? ANY instruction. It remains high whilst the transputer is waiting for or
servicing EventReq and is returned low when EventAck goes high. The EventWaiting pin changes near the
falling edge of ProcClockOut and can therefore be sampled by the rising edge of ProcClockOut.

The EventWaiting pin can only be asserted by executing an in instruction on the event channel. The
EventWaiting pin is not asserted high when an enable channel (enbc) instruction is executed on the Event
channel (during an ALT construct in occam, for example). The EventWaiting pin can be asserted by executing
the occam input on the event channel (such as Event? ANY), provided that this does not occur as a
guard in an alternative process. The EventWaiting pin can not be used to signify that an alternative process
(AL T) is waiting on an input from the event channel.

EventWaiting allows a process to control external logic; for example, to clock a number of inputs into a
memory mapped data latch so that the event request type can be determined. This function is not available
on the IMS T414 and IMS T800.

Only one process may use the event channel at any given time. If no process requires an event to occur
EventAck will never be taken high. Although EventReq triggers the channel on a transition from low to high,
it must not be removed before EventAck is high. EventReq should be low during Reset; if not it will be
ignored until it has gone low and returned high. EventAck is taken low when Reset occurs.

If the process is a high priority one and no other high priority process is running, the latency is as described
on page 269. Setting a high priority task to wait for an event input allows the user to interrupt a transputer
program running at low priority. The time taken from asserting EventReq to the execution of the microcode
interrupt handler in the CPU is four cycles. The following functions take place during the four cycles:

Cycle 1 Sample EventReq at pad on the rising edge of ProcClockOut and synchronise.

Cycle 2 Edge detect the synchronised EventReq and form the interrupt request.

Cycle 3 Sample interrupt vector for microcode ROM in the CPU.

Cycle 4 Execute the interrupt routine for Event rather than the next instruction.

8 Events

SYMBOL
TVHKH
TKHVL
TVLKL
TKLVH
TKHEWL
TKLEWH

Table 8.1 Event

PARAMETER
Event request response
Event request hold
Delay before removal of event acknowledge
Delay before re-assertion of event request
Event acknowledge to end of event waiting
End of event acknowledge to event waiting

EventReq
TVHKH

TKHVL

EventAck

TKHEWL

EventWaiting t
Process waiting for Event

MIN
0
0
0
0
0
0

NOM

TVLKL

TKLVH

TKLEWH

MAX UNITS
ns
ns

6Tm+7ns
ns
ns
ns

t
Event waiting for Process

Figure 8.1 IMS T425 event timing

311

NOTE

312

9 Links

Four identical INMOS bi-directional serial links provide synchronized communication between processors
and with the outside world. Each link comprises an input channel and output channel. A link between two
transputers is implemented by connecting a link interface on one transputer to a link interface on the other
transputer. Every byte of data sent on a link is acknowledged on the input of the same link, thus each signal
line carries both data and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first.
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte
and that the receiving link is able to receive another byte. The sending link reschedules the sending process
only after the acknowledge for the final byte of the message has been received.

The IMS T425 links allow an acknowledge packet to be sent before the data packet has been fully received.
This overlapped acknowledge technique is fully compatible with all other INMOS transputer links.

The IMS T425 links support the standard INMOS communication speed of 10 Mbits/sec. In addition they can
be used at 5 or 20 Mbits/sec. Links are not synchronised with Clockln or ProcClockOut and are insensitive
to their phases. Thus links from independently clocked systems may communicate, providing only that the
clocks are nominally identical and within specification.

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

Link speeds can be set by LinkSpecial, LinkOSpecial and Link123Speciai. The link 0 speed can be
set independently. Table 9.1 shows uni-directional and bi-directional data rates in Kbytes/sec for each link
speed; LinknSpecial is to be read as LinkOSpecial when selecting link 0 speed and as Link123Speciai for
the others. Data rates are quoted for a transputer using internal memory, and will be affected by a factor
depending on the number of external memory accesses and the length of the external memory cycle.

Table 9.1 Speed Settings for Transputer Links

Link Linkn
Special Special Mbits/sec

0 0 10
0 1 5
1 0 10
1 1 20

~HIHloI1121314151617IL,
I Data I

Kbytes/sec
Uni
910
450
910

1740

Bi
1250
670

1250
2350

JHlL-L-l1 __

I Ack I

Figure 9.1 IMS T425 link data and acknowledge packets

9 Links 313

Table 9.2 Link

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr LinkOut rise time 20 ns 1
TJQf LinkOut fall time 10 ns 1
TJDr Linkln rise time 20 ns 1
TJDf Linkln fall time 20 ns 1
TJQJD Buffered edge delay 0 ns
TJBskew Variation in T JQJD 20 Mbits/s 3 ns 2

10 Mbits/s 10 ns 2
5 Mbits/s 30 ns 2

CLiZ Linkln capacitance @ f=1MHz 7 pF 1
Cll LinkOut load capacitance 50 pF
RM Series resistor for 100n transmission line 56 ohms

Notes

These paramters are sampled, but are not 100% tested.

2 This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

90%
LinkOut

10% - - --
TJQf

90% - - - - - - - ..r:=-==-=:-=-=--.

Linkln
10% - - - - -

TJDr

Figure 9.2 IMS T425 link timing

LlnkOU~t:,~~~ -; - --

Earliest TJQJD ..

Linkln 1.5V- - - - 2 X ~-- -
;X ~

TJBskew--

Figure 9.3 IMS T425 buffered link timing

314

Transputer family device A

LinkOu, I
Linkln

...

...

7 IMS T425 engineering data

I Unkln

LinkOut
Transputer family device B

Figure 9.4 IMS T425 Links directly connected

Transputer family device A Zo=100ohms

unkO"~ Unkln

Linkln ~ LinkOut
------...... Zo=100ohms RM Transputer family device B

Figure 9.5 IMS T425 Links connected by transmission line

Transputer family device A

LinkOut --1) Linkln
buffers

Linkln <J- LinkOut
Transputer family device B

Figure 9.6 IMS T425 Links connected by buffers

315

10 Electrical specifications

10.1 DC electrical characteristics

Table 10.1 Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 0 7.0 V 1.2.3
VI. VO Voltage on input and output pins -0.5 VCC+0.5 V 1.2.3
II Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 °C 2
TA Ambient temperature under bias -55 125 °C 2
PDmax Maximum allowable dissipation 2 W

Notes

All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical
fields. However. it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as vce or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and vee.

Table 10.2 Operating conditions

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 4.75 5.25 V
VI. VO Input or output voltage 0 VCC V
CL Load capacitance on any pin 60 pF
TA Operating temperature range IMS T425-S 0 70 °C
TA Operating temperature range IMS T425-M -55 125 °C

Notes

All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear It/min transverse air flow.

1
1.2

3
3

316 7 IMS T425 engineering data

Table 10.3 DC characteristics

SYMBOL PARAMETER MIN MAX UNITS NOTE
VIH High level input voltage 2.0 VCC+0.5 V 1,2
VIL Low level input voltage -0.5 0.8 V 1,2
II Input current @ GND<VkVCC ±10 J1-A 1,2
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2
VOL Output low voltage @ IOL=4mA 0.4 V 1,2
lOS Output short circuit current @ GND<VO<VCC 36 65 mA 1,2,3,6

65 100 mA 1,2,4,6
10Z Tristate output current @ GND<VO<VCC ±10 J1-A 1,2
PD Power dissipation 1.0 W 2,5
CIN Input capacitance @ f=1MHz 7 pF 6
COZ Output capacitance @ f=1MHz 10 pF 6

Notes

All voltages are with respect to GND.

2 Parameters for IMS T425-S measured at 4.75V<VCC<5.25V and 0°C<TA<70°C.
Input clock frequency = 5 MHz.

3 Current sourced from non-link outputs.

4 Current sourced from link outputs.

5 Power dissipation varies with output loading and program execution.
Power dissipation for processor operating at 20 MHz.

6 This parameter is sampled and not 100% tested.

10.2 Equivalent circuits

Load for: R1 R2 Equivalent load:

Output 47K 1 Schottky TTL input
24K 2 Schottky TTL inputs ~r

Link outputs 1 K96
Other outputs 970R

50pF = = [JR2 ,~
,~

Diodes are 1 N916

GND __ +-~~ ____ -~r __

Figure 10.1 Load circuit for AC measurements

10 Electrical specifications

Vdd-1

~ Inputs
OV

Vdd-1
Inputs VIL V

OV ----./

tpHL

Vdd ~.5V Outputs
OV

tpLH

Vdd
Y,.5V Outputs

OV

Figure 10.2 AC measurements timing waveforms

Test point

Output under test

GND -------+----------~-

VCC

Figure 10.3 Tristate load circuit for AC measurements

10.3 AC timing characteristics

Table 10.4 Input, output edges

SYMBOL PARAMETER MIN MAX
TOr Input rising edges 2 20
TOf Input falling edges 2 20
Tar Output rising edges 25
TOf Output falling edges 15
TSOLaHZ Address high to tristate a a+6
TSOLaLZ Address low to tristate a a+6

Notes

Non-link pins; see section on links.

2 All inputs except Clockln; see section on Clockln.

3 a is T2 where T2 can be from one to four periods Tm in length.
Address lines include MemnotWrDO, MemnotRfD1, MemAD2-31.

317

UNITS NOTE
ns 1,2
ns 1,2
ns 1
ns 1
ns 3
ns 3

318

Notes

90%

10%

90%

10%

30
Time

ns
20

10

7 IMS T425 engineering data

90% -----;4------
----- -- ------
TOr

-----K------
----- -- ------
TOt

10%

-----;4------
----- -- ------
Tar

-----K------
----- -- ------
Tat

90%

10%

Figure 10.4 IMS T425 input and output edge timing

15::~--}~-----
10% ------~--k--

Figure 10.5 IMS T425 tristate timing relative to notMemSO

Rise time

Fall time

40 6080100

Load Capacitance pF

Link

Time
ns

30

20

10

406080100

Load Capacitance pF

EMI

Figure 10.6 Typical rise/fall times

Skew is measured between notMemSO with a standard load (2 Schottky TTL inputs and 30pF) and
notMemSO with a load of 2 Schottky TTL inputs and varying capacitance.

10 Electrical specifications 319

10.4 Power rating

Internal power dissipation PINT of transputer and peripheral chips depends on vee, as shown in figure 10.7.
PINT is substantially independent of temperature.

Total power dissipation PD of the chip is

where PIO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature TJ of the chip is

where TA is the external ambient temperature in °C and OJA is the junction-to-ambient thermal resistance in
°C/W. OJA for each package is given in the Packaging Specifications section.

T425-25
600 T425-20

T425-17

Power 500
PINT
mW 400

300

4.4 4.6 4.8 5.0 5.2 5.4 5.6

vee Volts

Figure 10.7 IMS T425 internal power dissipation vs vec

525

Power 500
PO
mW 475-

-
450 -

+

+
I I I I I I I I I I I I I I

15 20 25 30
Processor frequency MHz

Figure 10.8 IMS T425 typical power dissipation with processor speed

320

11 Performance

The performance of the transputer is measured in terms of the number of bytes required for the program, and
the number of (internal) processor cycles required to execute the program. The figures here relate to occam
programs. For the same function, other languages should achieve approximately the same performance as
occam.

11.1 Performance overview

These figures are averages obtained from detailed simulation, and should be used only as an initial guide;
they assume operands are of type :IN'l'. The abbreviations in table 11.1 are used to represent the quantities
indicated. In the replicator section of the table, figures in braces {} are not necessary if the number of
replications is a compile time constant. To estimate performance, add together the time for the variable
references and the time for the operation.

Table 11.1 Key to performance table

np number of component processes
ne number of processes earlier in queue
r 1 if INT parameter or array parameter, 0 if not
ts number of table entries (table size)
w width of constant in nibbles
p number of places to shift
Eg expression used in a guard
Et timer expression used in a guard
Tb most significant bit set of multiplier ((-1) if the multiplier is 0)
Tbp most significant bit set in a positive multiplier when counting from zero ((-1) if the multiplier Is 0)
Tbc most significant bit set in the two's complement of a negative multiplier
nsp Number of scalar parameters in a procedure
nap Number of array parameters in a procedure

11 Performance

Table 11.2 Performance

Names
variables

in expression
assigned to or input to
in PROC or FUNCTION call,

corresponding to an INT parameter
channels

Array Variables (for single dimension arrays)
constant subscript
variable subscript
expression subscript

Declarations
CHAN OF protocol
[size] CHAN OF protocol
PROC

Primitives
assignment
input
output
STOP
SKIP

Arithmetic operators
+ -
*
/
REM
» «

Modulo Arithmetic operators
PLUS
MINUS
TIMES (fast multiply, positive operand)
TIMES (fast multiply, negative operand)

Boolean operators
OR
AND NOT

Comparison operators
= constant
= variable
<> constant
<> variable
> <
>= <=

Bit operators
/\ \I ><

Expressions
constant in expression
check if error

Size (bytes)

1.1+r
1.1+r

1.1+r
1.1

o
5.3
5.3

3.1
9.4

body+2

o
4
1
2
o

1
2
2
2
2

2
1
1
1

4
1

o
2
1
3
1
2

2

w
4

Time (cycles)

2.1 +2(r)
1.1 +(r)

1.1+(r)
2.1

o
7.3
7.3

3.1
2.2 + 20.2*size

o

o
26.5
26
25
o

1
39
40
38

3+p

2
1

4+Tbp
5+Tbc

8
2

1
3
3
5
2
4

2

w
6

321

322 7 IMS T425 engineering data

Table 11.3 Performance

Size (bytes) Time (cycles)

Timers
timer input 2 3
timer AFTER

if past time 2 4
with empty timer queue 2 31
non-empty timer queue 2 38+ne*9

ALT (timer)
with empty timer queue 6 52
non-empty timer queue 6 59+ne*9
timer alt guard 8+2Eg+2Et 34+2Eg+2Et

Constructs
SEQ 0 0
IF 1.3 1.4

if guard 3 4.3
ALT (non timer) 6 26

alt channel guard 10.2+2Eg 20+2Eg
skip alt guard 8+2Eg 10+2Eg

PAR. 11.5+(np-1)* 7.5 19.5+(np-1)*30.5
WHILE 4 12

Procedure or function call
3.5+(nsp-2)*1.1 16.5+(nsp-2)*1.1

+nap*2.3 +nap*2.3

Replicators
replicated SEQ 7.3{ +5.1} (-3.8)+ 15.1 *count{ +7.1}
replicated IF 12.3{+5.1} (-2.6)+ 19.4*count{ +7.1}
replicated ALT 24.8{ + 1 0.2} 25.4+33.4*count{ +14.2}
replicated timer ALT 24.8{ + 1 0.2} 62.4+33.4*count{ + 14.2}
replicated PAR. 39.1{+5.1} (-6.4)+70.9*count{ +7.1}

11.2 Fast multiply, TIMES

The IMS T425 has a fast integer multiplication instruction product. For a positive multiplier its execution time
is 4+ Tbp cycles, and for a negative multiplier 5+ Tbc cycles (table 11.1). The time taken for a multiplication
by zero is 3 cycles.

Implementations of high level languages on the transputer may take advantage of this instruction. For example,
the occam modulo arithmetic operator TIMES is implemented by the instruction and the right-hand operand is
treated as the multiplier. The fast multiplication instruction is also used in high level language implementations
for the multiplication implicit in multi-dimensional array access.

11.3 Arithmetic

A set of functions are provided within the development system to support the efficient implementation of
multiple length integer arithmetic and floating point arithmetic. In table 11.4 n gives the number of places
shifted and all arguments and results are assumed to be local. Full details of these functions are provided
in the occam reference manual, supplied as part of the development system and available as a separate
publication.

When calculating the execution time of the predefined maths functions, no time needs to be added for calling
overhead. These functions are compiled directly into special purpose instructions which are designed to
support the efficient implementation of multiple length integer arithmetic and floating point arithmetic.

11 Performance 323

Table 11.4 Arithmetic performance

+ cycles for
Function Cycles parameter access t

LONGADD 2 7
LONGSUM 3 8
LONGSOB 2 7
LONGDIFF 3 8
LONGPROD 34 8
LONGDIV 36 8
SHIFTRIGHT (n<32) 4+n 8

(n>=32) n-27
SHIFTLEFT (n<32) 4+n 8

(n>=32) n-27
NORMALISE (n<32) n+6 7

(n>=32) n-25
(n=64) 4

ASHIFTRIGHT SBIFTRIGBT+2 5
ASHIFTLEFT SBIFTLEFT+4 5
ROTATERIGHT SBIFTRIGBT 7
ROTATELEFT SBIFTLEFT 7
FRACMUL LONGPROD+4 5

t Assuming local variables.

11.4 Floating point operations

Floating point operations for the IMS T425 are provided by a run-time package. This requires approximately
400 bytes of memory for the single length arithmetic operations, and 2500 bytes for the double length arithmetic
operations. Table 11.5 summarizes the estimated performance of the package.

Table 11.5 IMS T425 floating point operations performance

Processor cycles
IMS T425

Typical Worst
REAL32 + - 230 300

* 200 240

/ 245 280
< > = >= <= <> 60 60

REAL 64 + - 565 700

* 760 940

/ 1115 1420
< > = >= <= <> 60 60

324 7 IMS T425 engineering data

11.4.1 Special purpose functions and procedures ,
The functions and procedures given in tables 11.7 and 11.8 are provided by the development system to give
access to the special instructions available on the IMS T425. Table 11.6 shows the key to the table.

Table 11.6 Key to special performance table

Tb most significant bit set in the word counting from zero
n number of words per row (consecutive memory locations)
r number of rows in the two dimensional move
nr number of bits to reverse

Table 11.7 Special purpose functions performance

+ cycles for
Function Cycles parameter access t

BITCOUNT 2+Tb 2
CRCBYTE 11 8
CRCWORD 35 8
BITREVNBIT 5+nr 4
BITREVWORD 36 2

t Assuming local variables.

Table 11.8 Special purpose procedures performance

+ cycles for
Procedure Cycles parameter access t

MOVE2D 8+(2n+23)H 8
DRAW2D 8+(2n+23)*r 8
CLIP2D 8+(2n+23)H 8

t Assuming local variables.

11.5 Effect of external memory

Extra processor cycles may be needed when program and/or data are held in external memory, depending
both on the operation being performed, and on the speed of the external memory. After a processor cycle
which initiates a write to memory, the processor continues execution at full speed until at least the next
memory access.

Whilst a reasonable estimate may be made of the effect of external memory, the actual performance will
depend upon the exact nature of the given sequence of operations.

External memory is characterized by the number of extra processor cycles per external memory cycle, denoted
as e. For the IMS T425 , with the fastest external memory the value of e is 2; a typical value for a large external
memory is 5. '

If program is stored in external memory, and e has the value 2 or 3, then no extra cycles need be estimated for
linear code sequences. For larger values of e, the number of extra cycles required for linear code sequences
may be estimated at (e-3)/4. A transfer of control may be estimated as requiring e+3 cycles.

11 Performance 325

These estimates may be refined for various constructs. In table 11.9 n denotes the number of components in
a construct. In the case of IF, the n'th conditional is the first to evaluate to TRUE, and the costs include the
costs of the conditionals tested. The number of bytes in an array assignment or communication is denoted
by b.

•
Table 11.9 External memory performance

IMS T425
Program off chip Data off chip

Boolean expressions e-2 0
IF 3en-S en
Replicated IF (6e-4)n+7 (5e-2)n+S.
Replicated SEQ (3e-3)n+2 (4e-2)n
PAR (3e-1)n+S 3en+4
Replicated PAR (10e-S)n+S 16en-12
ALT (2e-4)n+6e (2e-2)n+ 1 Oe-S
Array assignment and 0 max (2e, e(b/2))

communication in
one transputer

The following simulation results illustrate the effect of storing program and/or data in external memory. The
results are normalized to 1 for both program and data on Chip. The first program (Sieve of Erastosthenes)
is an extreme case as it is dominated by small, data access intensive loops; it contains no concurrency,
communication, or even multiplication or division. The second program is the pipeline algorithm for Newton
Raphson square root computation.

Table 11.10 IMS T 425 external memory performance

Program e=2 e=3 e=4 e=5 On chip
Program off chip 1 1.3 1.5 1.7 1.9 1

2 1.1 1.2 1.2 1.3 1

Data off chip 1 1.5 1.S 2.1 2.3 1
2 1.2 1.4 1.6 1.7 1

Program and data off chip 1 1.8 2.2 2.7 3.2 1
2 1.3 1.6 1.S 2.0 1

11.6 Interrupt latency

If the process is a high priority one and no other high priority process is running, the latency is as described
in table 11.11. The timings given are in full processor cycles TPCLPCL; the number of Tm states is also
given where relevant. Maximum latency assumes all memory accesses are internal ones.

Table 11 .11 Interrupt latency

Typical Maximum
TPCLPCL I Tm TPCLPCL I Tm

IMS T425 19 I 3S 53 I 116

326

12 Package specifications

12.1 84 pin grid array package

2 3 4 5 6 7 8 9 10

A Refresh Link Proc Link Link Link Link Event Mem
Pending Special Clock 123 InO Out1 In2 Ack GND Wait Out Special

Proc Event LinkO Link Link Link Event Mem not
Speed Clockln Waiting Special OutO Out2 Out3 Req Req Mem
SelectO WrB3

B

Cap Cap Link Link Mem Mem not
GND VCC VCC Mem Minus Plus In1 In3 Config Granted WrB1

C

Proc ." not not
'" Index

not
Error Speed Errorln Mem Mem Mem D

Select2 Rf WrB2 WrBO

Disable Boot not not
E Int From Reset Mem Mem VCC

RAM ROM IMS T425 Rd SO
84 pin grid array

Proc Mem top view not not not
Speed Analyse AD31 Mem Mem Mem
Select1 S3 S2 S4

F

Mem Mem Mem not

AD30 GND AD27 not GND Mem
WrDO S1

G

Mem Mem Mem Mem Mem Mem Mem Mem Mem
VCC not AD29 AD25 AD23 AD16 AD12 AD8 AD4 AD3 RfD1

H

Mem Mem Mem Mem Mem Mem GND Mem Mem Mem
AD28 AD24 AD22 AD19 AD17 AD13 AD6 AD5 AD2 J

Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem
AD26 AD21 AD20 AD18 AD15 AD14 AD11 AD10 AD9 AD7 K

Figure 12.1 IMS T 425 84 pin grid array package pinout

12 Package specifications 327

)fM ~ E r 10 9 8 7 6 5 4 3 2 1

=iFr@@@@@@@@)@@A
@@@@@@@@)@@ B

@@@@@@@@)@@ C

@@@ @)@@ D

@@@ @)@@ E
K h @@@ @@@ F

@@@ @@@ G

@@@@@@@@)@@ H

~,,,--~ ___)o_,----;)oo.-!,ltJi f ;;::: :K::: :.f ~

index

rr
AB

~
IE

D

C-
1

I

Figure 12.2 84 pin grid array package dimensions

Table 12.1 84 pin grid array package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 26.924 ±0.254 1.060 ±0.010
B 17.019 ±0.127 0.670 ±0.005
C 2.456 ±0.278 0.097 ±0.011
D 4.572 ±0.127 0.180 ±0.005
E 3.302 ±0.127 0.130 ±0.005
F 0.457 ±0.025 0.018 ±0.002 Pin diameter
G 1.143 ±0.127 0.045 ±0.005 Flange diameter
K 22.860 ±0.127 0.900 ±0.005
l 2.540 ±0.127 0.100 ±0.005
M 0.508 0.020 Chamfer

Package weight is approximately 7.2 grams

Table 12.284 pin grid array package junction to ambient thermal resistance

PARAMETER
At 400 linear ft/min transverse air flow

328

12.2 84 pin PLCC J-bend package

CapMinus 12
VCC 13

ProcSpeedSelectO 14
GND15

Errorln 16
ProcSpeedSelect2 1 7

Error 18
BootFromROM 19

Reset 20
DisablelntRAM 21

ProcSpeedSelect1 22
Analyse 23

MemAD3124
MemAD3025
MemAD2926

GND 27
MemAD2828
MemAD2729
MemAD2630
MemAD2531
MemAD2432

IMS T425
84 pin J-bend
Chip Carrier

Top View

7 IMS T425 engineering data

74 MemReq
73 MemGranted
72 MemWait
71 notMemRf
70 notMemWrB3
69 notMemWrB2
68 notMemWrB1
67 notMemWrBO
66 notMemRd
65 notMemSO
64 VCC
63 notMemS4
62 notMemS3
61 notMemS2
60 notMemS1
59 GND
58 MemnotWrDO
57 MemnotRfD1
56 MemAD2
55 MemAD3
54 MemAD4

Figure 12.3 IMS T425 84 pin PLCC J-bend package pinout

12 Package specifications 329

Figure 12.4 84 pin PlCC J-bend package dimensions

Table 12.3 84 pin PlCC J-bend package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes
A 30.226 ±0.127 1.190 ±O.OOS
B 29.312 ±0.127 1.1S4 ±O.OOS
C 3.810 ±0.127 0.1S0 ±O.OOS
D 0.S08 ±0.127 0.020 ±O.OOS
F 1.270 ±0.127 O.OSO ±O.OOS
G 0.4S7 ±0.127 0.018 ±O.OOS
J 0.000 ±0.OS1 0.000 ±0.002
K 0.4S7 ±0.127 0.018 ±O.OOS
l 0.762 ±0.127 0.030 ±O.OOS

Package weight is approximately 7.0 grams

Table 12.4 84 pin PlCC J-bend package junction to ambient thermal resistance

PARAMETER
At 400 linear fVmin transverse air flow

330 7 IMS T425 engineering data

12.3 84 lead quad cerpack package

The leads are unformed to allow the user to form them to specific requirements.

eapMinus 75
vee 76

ProcSpeedSelectO 77
GND 78

Errorln 79
ProcSpeedSelect2 80

Error 81
BootFromROM 82

Reset 83
DisablelntRAM 84

ProcSpeedSelect1 1
Analyse 2

MemAD31 3
MemAD30 4
MemAD29 5

GND 6
MemAD28 7
MemAD27 8
MemAD26 9
MemAD2511
MemAD2411

• IMS T425
84 lead

quad cerpack

Figure 12.5 IMS T425 84 lead quad cerpack package pinout

53 MemReq
52 MemGranted
51 MemWait
50 notMemRf
49 notMemWrB3
48 notMemWrB2
47 notMemWrB1
46 notMemWrBO
45 notMemRd
44 notMemSO
43 vee
42 notMemS4
41 notMemS3
40 notMemS2
39 notMemS1
38 GND
37 MemnotWrDO
36 MemnotRfD1
35 MemAD2
34 MemAD3
33 MemAD4

12 Package specifications

l

Figure 12.6 84 lead quad cerpack package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 38.100 ±0.508 1.500 ±0.020

B 26.924 ±0.305 1.060 ±0.012

C 20.574 ±0.203 0.810 ±0.008

D 19.558 ±0.254 0.770 ±0.010

E 0.508 0.020

F 1.270 ±0.051 0.050 ±0.002

G 2.489 ±0.305 0.098 ±0.012

H 0.635 ±0.076 0.025 ±0.003

J 1.143 ±0.102 0.045 ±0.004

K 3.099 0.122 Max.

l 27.940 1.100 Max.

M 0.178 ±0.025 0.007 ±0.001

Table 12.5 84 lead quad cerpack package dimensions

Section through
package

331

332

13 Ordering

This section indicates the designation of speed and package selections for the various devices. Speed of
Clockln is 5 MHz for all parts. Transputer processor cycle time is nominal; it can be calculated more exactly
using the phase lock loop factor PLLx, as detailed in the external memory section.

For availability contact local INMOS sales office or authorised distributor.

Table 13.1 IMS T 425 ordering details

INMOS Processor Processor
designation clock speed cycle time PLLx Package

IMS T42S-G17S 17.5 MHz 57 ns 3.5 Ceramic Pin Grid
IMS T42S-G20S 20.0 MHz 50 ns 4.0 Ceramic Pin Grid
IMS T42S-G2SS 25.0 MHz 40 ns 5.0 Ceramic Pin Grid
IMS T42S-G30S 30.0 MHz 33 ns 6.0 Ceramic Pin Grid

IMS T42S-J17S 17.5 MHz 57 ns 3.5 Plastic PLCC J-8end
IMS T42S-J20S 20.0 MHz 50 ns 4.0 Plastic PLCC J-8end

IMS T42S-G17M 17.5 MHz 57 ns 3.5 Ceramic Pin Grid MIL Spec
IMS T42S-G20M 20.0 MHz 50 ns 4.0 Ceramic Pin Grid MIL Spec

IMS T42S-Q17M 17.5 MHz 57 ns 3.5 Quad Cerpack MIL Spec
IMS T42S-Q20M 20.0 MHz 50 ns 4.0 Quad Cerpack MIL Spec

The timing parameters in this datasheet are based on 17 MHz and 20 MHz parts. Data for higher speeds is
based on tests on a limited number of samples and may change when full characterisation is completed.

c

DITTImOS
FEATURES

32 bit architecture
50 ns internal cycle time
20 MIPS (peak) instruction rate
IMS T414-20 is pin compatible with the IMS TS05-20,

IMS TSOO-20 and IMS T425-20
2 Kbytes on-chip static RAM
SO Mbytes/sec sustained data rate to internal memory
4 Gbytes directly addressable external memory
26 Mbytes/sec sustained data rate to external memory
950 ns response to interrupts
Four INMOS serial links 5/10/20 Mbitslsec
Bi-directional data rate of 1.6 Mbytes/sec per link
Internal timers of 1 /loS and 64 /los
Boot from ROM or communication links
Single 5 MHz clock input
Single +5V ±5% power supply

APPLICATIONS

High speed multi processor systems
Real time processing
Microprocessor applications
Workstations and workstation clusters
Image processing
Graphics processing
Accelerator processors
Distributed databases
Supercomputers
System simulation
Digital signal processing
Telecommunications
Robotics
Fault tolerant systems
Medical instrumentation
Pattern recognition
Artificial intelligence

42140305

333

IMS T414
transputer

The IMS T425
is recommended
for new designs

Engineering Data

System
Services

2k bytes
of

On-chip
RAM

External
Memory
Interface

May 19S9

334

1 Introduction

The IMS T414 transputer is a 32 bit CMOS microcomputer with 2 Kbytes on-chip RAM for high speed
processing, a configurable memory interface and four standard INMOS communication links. The instruction
set achieves efficient implementation of high level languages and provides direct support for the occam
model of concurrency when using either a single transputer or a network. Procedure calls, process switching
and typical interrupt latency are sub-microsecond. The IMS T414 provides high performance arithmetic
and microcode support for floating point operations. A device running at 20 MHz achieves an instruction
throughput of 10 MIPS.

For convenience of description, the IMS T414 operation is split into the basic blocks shown in figure 1.1.

VCC
GND

CapPlus
CapMinus

Reset
Analyse

Error
BootFromROM

Clockln

DisablelntRam

ProcClockOut
notMemSO-4

notMemWrBO-3
notMemRd
notMemRf

MemWait
MemConfig

MemReq
MemGranted

System
services

2k bytes
of

On-chip
RAM

External
Memory
Interface

LinkSpecial
LinkOSpecial

~====:::::-~- Link123Speciai

32

LinklnO
LinkOutO

Linkln1
LinkOut1

Linkln2
LinkOut2

Linkln3
LinkOut3

F EventReq
Event. EventAck

MemnotWrDO
MemnotRfD1
MemAD2-31

Figure 1.1 IMS T414 block diagram

Introduction 335

The IMS T414 can directly access a linear address space of 4 Gbytes. The 32 bit wide memory interface
uses multiplexed data and address lines and provides a data rate of up to 4 bytes every 150 nanoseconds
(26.6 Mbytes/sec) for a 20 MHz device. A configurable memory controller provides all timing, control and
DRAM refresh signals for a wide variety of mixed memory systems.

System Services include processor reset and bootstrap control, together with facilities for error analysis.

The INMOS communication links allow networks of transputer family products to be constructed by direct
point to point connections with no external logic. The IMS T 414 links support the standard operating speed
of 10 Mbits/sec, but also operate at 5 or 20 Mbits/sec.

The IMS T414 is designed to implement the occam language, detailed in the occam Reference Manual, but
also efficiently supports other languages such as C, Pascal and Fortran. Access to the transputer at machine
level is seldom required, but if necessary refer to the Transputer Instruction Set - A Compiler Writers' Guide.

This data sheet supplies hardware implementation and characterisation details for the IMS T 414. It is intended
to be read in conjunction with the Transputer Architecture chapter, which details the architecture of the
transputer and gives an overview of occam.

336

2 Pin designations

Table 2.1 IMS T414 system services

Pin In/Out Function
VCC,GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockln in Input clock
Reset in System reset
Error out Error indicator
Analyse in Error analysis
BootFromRom in Bootstrap from external ROM or from link
DisablelntRAM in Disable internal RAM
HoldToGND Must be connected to GND
DoNotWire Must not be wired

Table 2.2 IMS T414 external memory interface

Pin In/Out Function
ProcClockOut out Processor clock
MemnotWrDO in/out Multiplexed data bit 0 and write cycle warning
MemnotRfD1 in/out Multiplexed data bit 1 and refresh warning
MemAD2·31 in/out Multiplexed data and address bus
notMemRd out Read strobe
notMemWrBO·3 out Four byte-addressing write strobes
notMemSO·4 out Five general purpose strobes
notMemRf out Dynamic memory refresh indicator
MemWait in Memory cycle extender
MemReq in Direct memory access request
MemGranted out Direct memory access granted
MemConfig in Memory configuration data input

Table 2.3 IMS T414 event

Pin In/Out Function
EventReq in Event request
EventAck out Event request acknowledge

Table 2.4 IMS T414 link

Pin In/Out Function
LinklnO-3 in Four serial data input channels
LinkOutO·3 out Four serial data output channels
LinkSpecial in Select non-standard speed as 5 or 20 Mbits/sec
LinkOSpecial in Select special speed for Link 0
Link123Special in Select special speed for Links 1,2,3

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 393.

337

3 Processor

The 32 bit processor contains instruction processing logic, instruction and work pointers, and an operand
register. It directly accesses the high speed 2 Kbyte on-chip memory, which can store data or program.
Where larger amounts of memory or programs in ROM are required, the processor has access to 4 Gbytes
of memory via the External Memory Interface (EM I).

3.1 Registers

The design of the transputer processor exploits the availability of fast on-chip memory by having only a small
number of registers; six registers are used in the execution of a sequential process. The small number of
registers, together with the simplicity of the instruction set, enables the processor to have relatively simple
(and fast) data-paths and control logic. The six registers are:

The workspace pointer which points to an area of store where local variables are kept.

The instruction pOinter which pOints to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, Band C registers which form an evaluation stack.

A, Band C are sources and destinations for most arithmetic and logical operations. Loading a value into the
stack pushes B into C, and A into B, before loading A. Storing a value from A, pops B into A and C into B.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be
of any size.

Further register details are given in Transputer Instruction Set - A Compiler Writers' Guide.

R . t egis ers L ocas p rogram

A

B

C

Workspace ~
Next Inst

Operand

Figure 3.1 Registers

338 8 IMS T414 engineering data

3.2 Instructions

The instruction set has been designed for simple and efficient compilation of high-level languages. All in­
structions have the same format, designed to give a compact representation of the operations occurring most
frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte
are a function code and the four least significant bits are a data value.

Operand Register

Figure 3.2 Instruction format

3.2.1 Direct functions

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Ten of these,
shown in table 3.1, are used to encode the most important functions.

load constant

load local

load non-local

jump

Table 3.1 Direct functions

add constant

store local

store non-local

conditional jump

load local pointer

call

The most common operations in a program are the loading of small literal values and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of high level programming languages such as occam, C, Fortran, Pascal or ADA.

3.2.2 Prefix functions

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative
prefix.

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction's operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.

3 Processor 339

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
word length.

3.2.3 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as
add, exclusive or and greater than. Less frequently occurring operations have encodings which require a
single prefix operation.

3.2.4 Expression evaluation

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number
of these can be minimised by careful choice of the evaluation order.

Table 3.2 Expression evaluation

Program Mnemonic

x := 0 Ide 0
stl x

x := #24 pfix 2
Ide 4
stl x

x := y + z Idl y
Idl z
add
stl x

3.2.5 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as load constant and add require just one
processor cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive four instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.

340 8 IMS T414 engineering data

3.3 Processes and concurrency

A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number
of each (page 341).

The processor has a microcoded scheduler which enables any number of concurrent processes to be exe­
cuted together, sharing the processor time. This removes the need for a software kernel.

At any time, a concurrent process may be

Active Being executed.
On a list waiting to be executed.

Inactive - Ready to input.
Ready to output.
Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time. It allocates
a portion of the processor's time to each process in turn. Active processes waiting to be executed are held
in two linked lists of process workspaces, one of high priority processes and one of low priority processes
(page 341). Each list is implemented using two registers, one of which points to the first process in the list,
the other to the last. In the Linked Process List figure 3.3, process S is executing and P, Q and R are active,
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones
perform in a similar manner.

R eglsters L ocas I P rograml

FPtr1 (Front)~ P f----L
BPtr1 (Back) r-

~ I Q
A

B --.. R I

c
Workspace f----- S

Next Inst

Operand

Figure 3.3 Linked process list

Table 3.3 Priority queue control registers

Function High Priority Low Priority
Pointer to front of active process list FptrO Fptr1
Pointer to back of active process list BptrO Bptr1

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from
another process or transputer, or for a time delay to complete. In order for several processes to operate in
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly
descheduled at the next descheduling point (page 344). The time slice period is 5120 cycles of the external
5 MHz clock, giving ticks approximately 1 ms apart.

3 Processor 341

A process can only be descheduled on certain instructions, known as descheduling points (page 344). As a
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way
through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and
the next process taken from the list. Process scheduling pointers are updated by instructions which cause
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 Ji-s, as
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model, including start process
and end process. When a main process executes a parallel construct, start process instructions are used
to create the necessary additional concurrent processes. A start process instruction creates a new process
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be
executed together with the ones already being executed. When a process is made active it is always added
to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the parallel construct components which have still to terminate. The
counter is initialised to the number of components before the processes are started. Each component ends
with an end process instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and the
main process continues.

3.4 Priority

The IMS T414 supports two levels of priority. Priority 1 (lOW priority) processes are executed whenever there
are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more high priority processes are
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until
it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed,
then one is selected.

Low priority processes are periodically timesliced to provide an even distribution of processor time between
computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority process
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for
between one and two timeslice periods, less any time taken by high priority processes. This assumes that
no process monopolises the transputer's time; i.e. it has a distribution of descheduling points (page 344).

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 ms at the
standard frequency of 5 MHz).

If a high priority process is waiting for an external channel to become ready, and if no other high priority
process is active, then the interrupt latency (from when the channel becomes ready to when the process
starts executing) is typically 19 processor cycles, a maximum of 58 cycles (assuming use of on-chip RAM).

3.5 Communications

Communication between processes is achieved by means of channels. Process communication is point-to­
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.

A channel between two processes executing on the same transputer is implemented by a Single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point

342 8 IMS T414 engineering data

links. The processor provides a number of operations to support message passing, the most important being
input message and output message.

The input message and output message instructions use the address of the channel to determine whether
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a
process to be written and compiled without knowledge of where its channels are connected.

The process which first becomes ready must wait until the second one is also ready. A process performs an
input or output by loading the evaluation stack with a pOinter to a message, the address of a channel, and
a count of the number of bytes to be tran~ferred, and then executing an input message or output message
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one
the process will deschedule.

3.6 Timers

The transputer has two 32 bit timer clocks which 'tick' periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented every microsecond, cycling com­
pletely in approximately 4295 seconds. The other is accessible only to low priority processes and is incre­
mented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of approximately
76 hours.

ClockO
Clock 1
TNextRegO
TNextReg1

Table 3.4 Timer registers

Current value of high priority (level 0) process clock
Current value of low priority (level 1) process clock
Indicates time of earliest event on high priority (level 0) timer queue
Indicates time of earliest event on low priority (level 1) timer queue

The current value of the processor clock can be read by executing a load timer instruction. A process can
arrange to perform a timer input, in which case it will become ready to execute after a specified time has
been reached. The timer input instruction requires a time to be specified. If this time is in the 'past' then the
instruction has no effect. If the time is in the 'future' then the process is descheduled. When the specified
time is reached the process is scheduled again.

Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31.

TimerO Workspaces Program

Alarm

TNextRegO L-___ ...J 21

TPtrLoc Empty

31

Figure 3.4 Timer registers

343

4 Instruction set summary

The Function Codes table 4.7. gives the basic function code set (page 338). Where the operand is less
than 16, a single byte encodes the complete instruction. If the operand is greater than 15, one prefix
instruction (pfix) is required for each additional four bits of the operand. If the operand is negative the first
prefix instruction will be nfix.

Table 4.1 prefix coding

Mnemonic

Ide #3

Ide #35
is coded as

pfix #3
Ide #5

Ide
is coded as

pfix
pfix
Ide

Ide
is coded as

nfix
Ide

#987

#9
#8
#7

-31

#1
#1

(Ide

Function
code

#4

#2
#4

#2
#2
#4

#FFFFFFE1)

#6
#4

Memory
code

#43

#23
#45

#29
#28
#47

#61
#41

Tables 4.8 to 4.18 give details of the operation codes. Where an operation code is less than 16 (e.g. add:
operation code 05), the operation can be stored as a single byte comprising the operate function code F and
the operand (5 in the example). Where an operation code is greater than 15 (e.g. ladd: operation code 16),
the prefix function code 2 is used to extend the instruction.

Table 4.2 operate coding

Function Memory
Mnemonic code code

add (op. code #5) #F5
is coded as

opr add #F #F5

ladd (op. code #16) #21F6
is coded as

pfix #1 #2 #21
opr #6 #F #F6

The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing
in internal memory. The number of cycles is given for the basic operation only; where the memory code
for an instruction is two bytes, the time for the prefix function (one cycle) should be added. For a 20 MHz
transputer one cycle is 50 ns. Some instruction times vary. Where a letter is included in the cycles column it
is interpreted from table 4.3.

344 8 IMS T414 engineering data

Table 4.3 Instruction set interpretation

Ident Interpretation

b Bit number of the highest bit set in register A. Bit 0 is the least significant bit.

n Number of places shifted.

w Number of words in the message. Part words are counted as full words. If the message
is not word aligned the number of words is increased to include the part words at either
end of the message.

The DE column of the tables indicates the descheduling/error features of an instruction as described in
table 4.4.

Table 4.4 Instruction features

Ident Feature See page:

D The instruction is a descheduling point 344

E The instruction will affect the Error flag 344, 354

4.1 Descheduling points

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 340). They are
also the ones at which the processor will halt if the Analyse pin is asserted (page 353).

input message
timer aft wait
jump

4.2 Error instructions

Table 4.5 Descheduling point instructions

output message
timer input
loop end

output byte
stop on error
end process

output word
aft wait
stop process

The instructions in table 4.6 are the only ones which can affect the Error flag (page 354) directly.

add
multiply
long add
set error
check word

Table 4.6 Error setting instructions

add constant
fractional multiply
long subtract
testerr
check subscript from 0

subtract
divide
long divide

check single

remainder

cf/err
check count from 1

4 Instruction set summary 345

Table 4.7 IMS T414 function codes

Function Memory Processor 0
Code Code Mnemonic Cycles Name E

0 OX j 3 jump 0
1 1X Idlp 1 load local pointer
2 2X pfix 1 prefix
3 3X Idnl 2 load non-local
4 4X Idc 1 load constant
5 5X Idnlp 1 load non-local pOinter
6 6X nfix 1 negative prefix
7 7X Idl 2 load local
8 8X adc 1 add constant E
9 9X call 7 call
A AX cj 2 conditional jump (not taken)

4 conditional jump (taken)
B BX ajw 1 adjust workspace
C CX eqc 2 equals constant
0 OX stl 1 store local
E EX stnl 2 store non-local
F FX opr - operate

Table 4.8 IMS T414 arithmetic/logical operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

46 24F6 and 1 and
4B 24FB or 1 or
33 23F3 xor 1 exclusive or
32 23F2 not 1 bitwise not
41 24F1 shl n+2 shift left
40 24FO shr n+2 shift right

05 F5 add 1 add E
OC FC sub 1 subtract E
53 25F3 mul 38 multiply E
72 27F2 fmul 35 fractional multiply (no rounding) E

40 fractional multiply (rounding) E
2C 22FC div 39 divide E
1F 21FF rem 37 remainder E
09 F9 gt 2 greater than
04 F4 diff 1 difference
52 25F2 sum 1 sum
08 F8 prod b+4 product

346 8 IMS T414 engineering data

Table 4.9 IMS T414 long arithmetic operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

16 21F6 ladd 2 long add E
38 23F8 Isub 2 long subtract E
37 23F7 Isum 3 long sum
4F 24FF Idiff 3 long diff
31 23F1 Imul 33 long multiply
1A 21 FA Idiv 35 long divide E
36 23F6 Ishl n+3 long shift left (n<32)

n-28 long shift left(n?:32)
35 23F5 Ishr n+3 long shift right (n<32)

n-28 long shift right (n?:32)
19 21F9 norm n+5 normalise (n<32)

n-26 normalise (n?:32)
3 normalise (n=64)

Table 4.10 IMS T 414 floating point support operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

73 27F3 cflerr 3 check floating point error E
63 26F3 unpacksn 15 unpack single length fp number
60 26FO roundsn 12/15 round single length fp number
6C 26FC postnormsn 5/30 post-normalise correction of

single length fp number

71 27F1 Idinf 1 load single length infinity

Processor cycles are shown as Typical/Maximum cycles.

Table 4.11 IMS T414 general operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

00 FO rev 1 reverse

3A 23FA xword 4 extend to word
56 25F6 cword 5 check word E
10 21FO xdble 2 extend to double
4C 24FC csngl 3 check single E
42 24F2 mint 1 minimum integer

4 Instruction set summary 347

Table 4.12 IMS T414 indexing/array operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

02 F2 bsub 1 byte subscript
OA FA wsub 2 word subscript
34 23F4 bcnt 2 byte count
3F 23FF wcnt 5 word count
01 F1 Ib 5 load byte
3B 23FB sb 4 store byte
4A 24FA move 2w+8 move message

Table 4.13 IMS T414 timer handling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

22 22F2 Idtimer 2 load timer
2B 22FB tin 30 timer input (time future) D

4 timer input (time past) D
4E 24FE talt 4 timer alt start
51 25F1 taltwt 15 timer alt wait (time past) D

48 timer alt wait (time future) D
47 24F7 enbt 8 enable timer
2E 22FE dist 23 disable timer

Table 4.14 IMS T414 inpuVoutput operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

07 F7 in 2w+19 input message D
OB FB out 2w+19 output message D
OF FF outword 23 output word D
OE FE outbyte 23 output byte D

43 24F3 alt 2 alt start
44 24F4 altwt 5 alt wait (channel ready) D

17 alt wait (channel not ready) D
45 24F5 altend 4 alt end

49 24F9 enbs 3 enable skip
30 23FO diss 4 disable skip

12 21F2 resetch 3 reset channel
48 24F8 enbc 7 enable channel (ready)

5 enable channel (not ready)
2F 22FF disc 8 disable channel

348 8 IMS T414 engineering data

Table 4.15 IMS T414 control operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

20 22FO ret 5 return
1B 21FB Idpi 2 load pOinter to instruction
3C 23FC gajw 2 general adjust workspace
06 F6 gcall 4 general call
21 22F1 lend 10 loop end (loop) D

5 loop end (exit) D

Table 4.16 IMS T414 scheduling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

OD FD startp 12 start process D
03 F3 endp 13 end process D
39 23F9 runp 10 run process
15 21F5 stopp 11 stop process
1E 21FE Idpri 1 load current priority

Table 4.17 IMS T414 error handling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

13 21F3 csubO 2 check subscript from 0 E
4D 24FD ccnt1 3 check count from 1 E
29 22F9 testerr 2 test error false and clear (no error)

3 test error false and clear (error)
10 21FO seterr 1 set error E
55 25F5 stoperr 2 stop on error (no error) D
57 25F7 clrhalterr 1 clear halt-on-error
58 25F8 sethalterr 1 set halt-on-error
59 25F9 testhalterr 2 test halt-on-error

Table 4.18 IMS T414 processor initialisation operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

2A 22 FA testpranal 2 test processor analysing
3E 23FE saveh 4 save high priority queue registers
3D 23FD savel 4 save low priority queue registers
18 21F8 sthf 1 store high priority front pointer
50 25FO sthb 1 store high priority back pointer
1C 21FC stlf 1 store low priority front pointer
17 21F7 stlb 1 store low priority back pointer
54 25F4 sttimer 1 store timer

349

5 System services

System services include all the necessary logic to initialise and sustain operation of the device. They also
include error handling and analysis facilities.

5.1 Power

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power­
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive
periods of latch up.

5.2 CapPlus, Cap Minus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1 J.!F
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an
impedance less than 3 Ohms between 100 KHz and 20 MHz. If a polarised capacitor is used the negative
terminal should be connected to CapMinus. Total PCB track length should be less than 50 mm. The
connections must not touch power supplies or other noise sources.

CapPlus P.C.B. track

CapMinus P.C.B. track

Figure 5.1 Recommended PLL decoupling

5.3 Clockln

Decoupling
capacitor

1J.!F

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input.
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer devices may be connected to a common clock, or may have individual clocks providing
each one meets the specified stability criteria. In a multi-clock system the relative phaSing of Clockln clocks
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the
specified limits of Clockln pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.

350 8 IMS T414 engineering data

Table 5.1 Input clock

SYMBOL PARAMETER MIN NOM MAX UNITS
TDCLDCH Clockln pulse width low 40 ns
TOCHDCL Clockln pulse width high 40 ns
TOCLDCL Clockln period 200 ns
TDCerror Clockln timing error ±0.5 ns
TOC1DC2 Difference in Clockln for 2 linked devices 400 ppm
TOCr Clockln rise time 10 ns
TOCf Clockln fall time 8 ns

Notes

These paramters are not tested.

2 Measured between corresponding points on consecutive falling edges.

3 Variation of individual falling edges from their nominal times.

4 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

5 Clock transitions must be monotonic within the range VIH to VIL (table 10.3).

TDCerror

2.0v- --
1.5vO.8v= = = = -

TDCLDCH TDCHDCL

TOCLDCL

TDCerror

90%----A
10% - - - --

TDCr

90% h---
10%- - - - -TDCf

Figure 5.2 Clockln timing

NOTE
1
1

1,2,4
1,3
1,4
1,5
1,5

5 System services 351

5.4 Reset

Reset can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. After VCC is
valid Clockln should be running for a minimum period TDCVRL before the end of Reset. The falling edge of
Reset initialises the transputer, triggers the memory configuration sequence and starts the bootstrap routine.
Link outputs are forced low during reset; link inputs and EventReq should be held low. Memory request
(DMA) must not occur whilst Reset is high but can occur before bootstrap (page 376).

After the end of Reset there will be a delay of 144 periods of Clockln (figure 5.3). Following this, the
MemWrDO, MemRfD1 and MemAD2-31 pins will be scanned to check for the existence of a pre-programmed
memory interface configuration (page 366). This lasts for a further 144 periods of Clockln. Regardless of
whether a configuration was found, 36 configuration read cycles will then be performed on external memory
using the default memory configuration (page 368), in an attempt to access the external configuration ROM.
A delay will then occur, its period depending on the actual configuration. Finally eight complete and con­
secutive refresh cycles will initialise any dynamic RAM, using the new memory configuration. If the memory
configuration does not enable refresh of dynamic RAM the refresh cycles will be replaced by an equivalent
delay with no external memory activity.

If BootFromRom is high bootstrapping will then take place immediately, using data from external memory;
otherwise the transputer will await an input from any link. The processor will be in the low priority state.

Reset ~~ __ ___

Action
Delay Internal External

configuration configuration Delay Refresh Boot

Figure 5.3 IMS T 414 post-reset sequence

5.5 Bootstrap

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, Boot·
FromRom may be dynamically changed but must obey the specified timing restrictions. It is sampled once
only by the transputer, before the first instruction is executed after Reset is taken low.

If BootFromRom is connected high (e.g. to VCC) the transputer starts to execute code from the top two bytes
in external memory, at address #7FFFFFFE. This location should contain a backward jump to a program in
ROM. Following this access, BootFromRom may be taken low if required. The processor is in the low priority
state, and the W register points to MemStart (page 355).

If BootFromRom is connected low (e.g. to GND) the transputer will wait for the first bootstrap message to
arrive on anyone of its links. The transputer is ready to receive the first byte on a link within two processor
cycles TPCLPCL after Reset goes low.

If the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following
reception of the last byte the transputer will start executing code at MemStart as a low priority process.
BootFromRom may be taken high after reception of the last byte, if required. The memory space immediately
above the loaded code is used as work space. Messages arriving on other links after the control byte has
been received and on the bootstrapping link after the last bootstrap byte will be retained until a process inputs
from them.

352 8 IMS T414 engineering data

Table 5.2 Reset and Analyse

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high 8 Clockln 1
TDCVRL Clockln running before Reset end 10 ms 2
TAHRH Analyse setup before Reset 3 ms
TRLAL Analyse hold after Reset end 1 Clockln 1
TBRVRL BootFromRom setup 0 ms
TRLBRX BootFromRom hold after Reset 0 ms 3
TALBRX BootFromRom hold after Analyse 3

Notes

1 Full periods of Clockln TDCLDCL required.

2 At power-on reset.

3 Must be stable until after end of bootstrap period. See Bootstrap section.

Clockln

VCC

TPVRH

Reset
TBRVRL TRLBRX

BootFromRom

Figure 5.4 Transputer reset timing with Analyse low

TRHRL

Reset

TAHRH

Analyse

BootFromRom

Figure 5.5 Transputer reset and analyse timing

5 System services 353

5.6 Peek and poke

Any location in internal or external memory can be interrogated and altered when the transputer is waiting
for a bootstrap from link. If the control byte is 0 then eight more bytes are expected on the same link. The
first four byte word is taken as an internal or external memory address at which to poke (write) the second
four byte word. If the control byte is 1 the next four bytes are used as the address from which to peek (read)
a word of data; the word is sent down the output channel of the same link.

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses
may be made in this way until the control byte is greater than 1, when the transputer will commence reading
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link
as the control byte.

5.7 Analyse

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling point
(page 344). From Analyse being asserted, the processor will halt within three time slice periods plus the
time taken for any high priority process to complete. As much of the transputer status is maintained as is
necessary to permit analysis of the halted machine. Processor flags Error and HaltOnError are not altered
at reset, whether Analyse is asserted or not. Memory refresh continues.

Input links will continue with outstanding transfers. Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link
acknowledgement, the links should be inactive within a few microseconds of the transputer halting.

Reset should not be asserted before the transputer has halted and link transfers have ceased. When Reset
is taken low whilst Analyse is high, neither the memory configuration sequence nor the block of eight refresh
cycles will occur; the previous memory configuration will be used for any external memory accesses. If
BootFromRom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a
control byte on any link. If Analyse is taken low without Reset going high the transputer state and operation
are undefined. After the end of a valid Analyse sequence the registers have the values given in table 5.3.

Table 5.3 Register values after Analyse

MemStart if bootstrapping from a link, or the external memory bootstrap address if
bootstrapping from ROM.

W MemStart if bootstrapping from ROM, or the address of the first free word after the
bootstrap program if bootstrapping from link.

A The value of I when the processor halted.

B The value of Wwhen the processor halted, together with the priority of the process
when the transputer was halted (i.e. the W descriptor).

C The 10 of the bootstrapping link if bootstrapping from link.

354 8 IMS T414 engineering data

5.8 Error

The Error pin is connected directly to the internal Error flag and follows the state of that flag. If Error is
high it indicates an error in one of the processes caused, for example, by arithmetic overflow, divide by zero,
array bounds violation or software setting the flag directly (page 344). Once set, the Errorflag is only cleared
by executing the instruction testerr. The error is not cleared by processor reset, in order that analysis can
identify any errant transputer (page 353).

A process can be programmed to stop if the Error flag is set; it cannot then transmit erroneous data to other
processes, but processes which do not require that data can still be scheduled. Eventually all processes
which rely, directly or indirectly, on data from the process in error will stop through lack of data.

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error
becomes set after HaltOnErrorhas been set, all processes on that transputer will cease but will not necessarily
cause other transputers in a network to halt. Setting HaltOnError after Error will not cause the transputer to
halt; this allows the processor reset and analyse facilities to function with the flags in indeterminate states.

An alternative method of error handling is to have the errant process or transputer cause all transputers to
halt. This can be done by applying the Error output signal of the errant transputer to the EventReq pin of a
suitably programmed master transputer. Since the process state is preserved when stopped by an error, the
master transputer can then use the analyse function to debug the fault. When using such a circuit, note that
the Error flag is in an indeterminate state on power up; the circuit and software should be designed with this
in mind.

Error checks can be removed completely to optimise the performance of a proven program; any unexpected
error then occurring will have an arbitrary undefined effect.

If a high priority process pre-empts a low priority one, status of the Error and HaltOnError flags is saved
for the duration of the high priority process and restored at the conclusion of it. Status of the Error flag is
transmitted to the high priority process but the HaltOnError flag is cleared before the process starts. Either
flag can be altered in the process without upsetting the error status of any complex operation being carried
out by the pre-empted low priority process.

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access to
memory for data. Memory refresh will continue to take place.

After halting due to the Error flag changing from 0 to 1 whilst HaltOnError is set, register I points two bytes
past the instruction which set Error. After halting due to the Analyse pin being taken high, register I points
one byte past the instruction being executed. In both cases I will be copied to register A.

~ Analyse .. Slave Slave Master
Transputer ~

Latch Transputer Transputer ..
Reset 0 1

A~
Event

I Error[O] I Error[1]

Slave Slave
(transputer links not shown) Transputer Transputer - 2 r-- 3 - Error[2] I

Error[3] I
--

Figure 5.6 Error handling in a mUlti-transputer system

355

6 Memory

The IMS T414 has 2 Kbytes of fast internal static memory for high rates of data throughput. Each internal
memory access takes one processor cycle ProcClockOut (page 357). The transputer can also access
4 Gbytes of external memory space. Internal and external memory are part of the same linear address
space. Internal RAM can be disabled by holding DisablelntRAM high. All internal addresses are then
mapped to external RAM. This pin should not be altered after Reset has been taken low.

IMS T414 memory is byte addressed, with words aligned on four-byte boundaries. The least significant byte
of a word is the lowest addressed byte.

The bits in a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered O. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Internal memory starts at the most negative address #80000000 and extends to #800007FF. User memory
begins at #80000048; this location is given the name MemStart.

The reserved area of internal memory below MemStart is used to implement link and event channels.

Two words of memory are reserved for timer use, TPtrLocO for high priority processes and TPtrLoc1 for low
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on
the timer queue at that priority level.

Values of certain processor registers for the current low priority process are saved in the reserved IntSaveLoc
locations when a high priority process pre-empts a low priority one.

External memory space starts at #80000800 and extends up through #00000000 to #7FFFFFFF. Memory
configuration data and ROM bootstrapping code must be in the most positive address space, starting at
#7FFFFF6C and #7FFFFFFE respectively. Address space immediately below this is conventionally used for
ROM based code.

356 8 IMS T414 engineering data

hi Machine map 10 Byte address Word offsets ...--__ O_C_C_8_m_m_a...:.p_---,

1 Reset Inst I .1 ##7

0

FFFFFFE 1
- • #7FFFFFF8
~M-e-m-O-r-y-C-On-f-ig-U-ra-ti-0-n~#7FFFFF6C

~II-----------il #80000800 - Start of external memory - #0200 lr---------1

Notes

#80000048 MemStart MemStart #12

Ereg IntSaveLoc #80000044

STATUSintSaveLoc #80000040

CreglntSaveLoc #8000003C
BreglntSaveLoc #80000038

Areg IntSaveLoc #80000034

IptrlntSaveLoc #80000030

WdesclntSaveLoc #8000002C
TPtrLoc1 #80000028
TPtrLocO #80000024

Event #80000020
Note 1

#08 Event
Link 3 Input #8000001C #07 Link 3 Input
Link 2 Input #80000018 #06 Link 2 Input
Link 1 Input #80000014 #05 Link 1 Input
Link 0 Input #80000010 #04 Link 0 Input

Link 3 Output #8000000C #03 Link 3 Output
Link 2 Output #80000008 #02 Link 2 Output
Link 1 Output #80000004 #01 Link 1 Output
Link 0 Output #80000000 (Base of memory) #00 Link 0 Output

Figure 6.1 IMS T414 memory map

1 These locations are used as auxiliary processor registers and should not be manipulated by the user. Like
processor registers, their contents may be useful for implementing debugging tools (Analyse, page 353). For
details see Transputer Instruction Set - A Compiler Writers' Guide.

357

7 External memory interface

The External Memory Interface (EMI) allows access to a 32 bit address space, supporting dynamic and static
RAM as well as ROM and EPROM. EMI timing can be configured at Reset to cater for most memory types
and speeds, and a program is supplied with the Transputer Development System to aid in this configuration.

There are 13 internal configurations which can be selected by a single pin connection (page 366). If none
are suitable the user can configure the interface to specific requirements, as shown in page 368.

7.1 ProcClockOut

This clock is derived from the internal processor clock, which is in turn derived from Clockln. Its period is
equal to one internal microcode cycle time, and can be derived from the formula

TPCLPCL = TDCLDCL I PLLx

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the Clockln Period and PLLx is the phase
lock loop factor for the relevant speed part, obtained from the ordering details (Ordering section).

The time value Tm is used to define the duration of Tstates and, hence, the length of external memory cycles;
its value is exactly half the period of one ProcClockOut cycle (O.5.TPCLPCL), regardless of mark/space
ratio of ProcClockOut.

Edges of the various external memory strobes coincide with rising or falling edges of ProcClockOut. It should
be noted, however, that there is a skew associated with each coincidence. The value of skew depends on
whether coincidence occurs when the ProcClockOut edge and strobe edge are both rising, when both are
falling or if either is rising when the other is falling. Timing values given in the strobe tables show the best
and worst cases. If a more accurate timing relationship is required, the exact Tstate timing and strobe edge
to ProcClockOut relationships should be calculated and the correct skew factors applied from the edge skew
timing table 7.4.

7.2 Tstates

The external memory cycle is divided into six Tstates with the following functions:

T1 Address setup time before address valid strobe.

T2 Address hold time after address valid strobe.

T3 Read cycle tristate or write cycle data setup.

T4 Extendable data setup time.

T5 Read or write data.

T6 Data hold.

Under normal conditions each Tstate may be from one to four periods Tm long, the duration being set during
memory configuration. The default condition on Reset is that all Tstates are the maximum four periods Tm
long to allow external initialisation cycles to read slow ROM.

Period T4 can be extended indefinitely by adding externally generated wait states.

An external memory cycle is always an even number of periods Tm in length and the start of T1 always
coincides with a rising edge of ProcClockOut. If the total configured quantity of periods Tm is an odd
number, one extra period Tm will be added at the end of T6 to force the start of the next T1 to coincide with
a rising edge of ProcClockOut. This period is designated E in configuration diagrams (figure 7.11).

358 8 IMS T414 engineering data

Table 7.1 ProcClockOut

SYMBOL PARAMETER
TPCLPCL ProcClockOut period
TPCHPCL ProcClockOut pulse width high
TPCLPCH ProcClockOut pulse width low
Tm ProcClockOut half cycle
TPCstab ProcClockOut stability

Notes

a is TDCLDCLlPLLx.

2 b is 0.5* TPCLPCL (half the processor clock period).

3 cis TPCLPCL-TPCHPCL.

MIN
a-1

b-2.5

b-O.5

NOM MAX UNITS NOTE
a a+1 ns 1
b b+2.5 ns 2
c ns 3
b b+O.5 ns 2

4 % 4

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points on
the cycles.

1.5v - - - - -

, ~P~L;;'~ {' ~P~H;"~ - "--=--
TPCLPCL

Figure 7.1 IMS T414 ProcClockOut timing

7.3 Internal access

During an internal memory access cycle the external memory interface bus MemAD2-31 reflects the word
address used to access internal RAM, MemnotWrDO reflects the read/write operation and MemnotRfD1 is
high; all control strobes are inactive. This is true unless and until a memory refresh cycle or DMA (memory
request) activity takes place, when the bus will carry the appropriate external address or data.

The bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for
hardware debugging in conjuction with peek and poke (page 353).

ProcClockOut

MemnotWrDO =:::A Write / Read Read '<
MemnotRfD1 :y '<
MemAD2-31 ~ Address X Address X Address X

Figure 7.2 IMS T414 bus activity for internal memory cycle

7 External memory interface 359

7.4 MemAD2-31

External memory addresses and data are multiplexed on one bus. Only the top 30 bits of address are
output on the external memory interface, using pins MemAD2-31. They are normally output only during
Tstates T1 and T2, and should be latched during this time. Byte addressing is carried out internally by the
transputer for read cycles. For write cycles the relevant bytes in memory are addressed by the write strobes
notMemWrBO-3.

The data bus is 32 bits wide. It uses MemAD2-31 for the top 30 bits and MemnotRfD1 and MemnotWrDO
for the lower two bits. Read cycle data may be set up on the bus at any time after the start of T3, but must
be valid when the transputer reads it at the end of TS. Data may be removed any time during TS, but must
be off the bus no later than the end of that period.

Write data is placed on the bus at the start of T3 and removed at the end of TS. If TS is extended to force
the next cycle Tmx (page 359) to start on a rising edge of ProcClockOut, data will be valid during this time
also.

7.S MemnotWrDO

During T1 and T2 this pin will be low if the cycle is a write cycle, otherwise it will be high. During Tstates T3
to TS it becomes bit 0 of the data bus. In both cases it follows the general timing of MemAD2-31.

7.S MemnotRfD1

During T1 and T2, this pin is low if the address on MemAD2-31 is a refresh address, otherwise it is high.
During Tstates T3 to TS it becomes bit 1 of the data bus. In both cases it follows the general timing of
MemAD2-31.

7.7 notMemRd

For a read cycle the read strobe notMemRd is low during T4 and TS. Data is read by the transputer on the
rising edge of this strobe, and may be removed immediately afterward. If the strobe duration is insufficient it
may be extended by adding extra periods Tm to either or both of the Tstates T4 and TS. Further extension
may be obtained by inserting wait states at the end of T4.

In the read cycle timing diagrams ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm.

7.8 notMemSO-4

To facilitate control of different types of memory and devices, the EMI is provided with five strobe outputs,
four of which can be configured by the user. The strobes are conventionally assigned the functions shown in
the read and write cycle diagrams, although there is no compulsion to retain these designations.

notMemSO is a fixed format strobe. Its leading edge is always coincident with the start of T2 and its trailing
edge always coincident with the end of TS.

The leading edge of notMemS1 is always coincident with the start of T2, but its duration may be configured
to be from zero to 31 periods Tm. Regardless of the configured duration, the strobe will terminate no later
than the end of TS. The strobe is sometimes programmed to extend beyond the normal end of Tmx. When
wait states' are inserted into an EMI cycle the end of Tmx is delayed, but the potential active duration of the
strobe is not altered. Thus the strobe can be configured to terminate relatively early under certain conditions
(page 374). If notMemS1 is configured to be zero it will never go low.

360 8 IMS T414 engineering data

notMemS2, notMemS3 and notMemS4 are identical in operation. They all terminate at the end of T5, but
the start of each can be delayed from one to 31 periods Tm beyond the start of T2. If the duration of one of
these strobes would take it past the end of T5 it will stay high. This can be used to cause a strobe to become
active only when wait states are inserted. If one of these strobes is configured to zero it will never go low.
Figure 7.5 shows the effect of Wait on strobes in more detail; each division on the scale is one period Tm.

Table 7.2 Read

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TaZdV Address tristate to data valid 0 ns
TdVRdH Data setup before read 20 ns
TRdHdX Data hold after read 0 ns
TSOLRdL notMemSO before start of read a-2 a a+2 ns 1
TSOHRdH End of read from end of notMemSO -1 1 ns
TRdLRdH Read period b b+6 ns 2

Notes

a is total of T2+ T3 where T2, T3 can be from one to four periods Tm each in length.

2 b is total of T4t Twai!+ T5 where T4, T5 can be from one to four periods Tm each in length and Twai! may be
any number of periods Tm in length.

Tstate I T1 T2 T3

ProcClockOut
Tmx

MemnotWrDO

MemnotRfD1

MemAD2-31 Address

TaVSOL

TSOLRdL

notMemRd

T4

TSOLSOH

notMemSO
(CE)

notMemS1
(ALE)

TSOLS1L(D
TSOLS1H 5

T5 T6 T1

TSOHRdH

TSOHS1H ®

Figure 7.3 IMS T414 external read cycle: static memory

7 External memory interface

Tstate I T1 T2 T3

ProcClockOut
Tmx

MemnotWrDO

MemnotRfD1

MemAD2-31 Address

TaVSOL

TSOLRdL

notMemRd

T4 T5 T6 T1

TRdLRdH

TSOHS1H®

TSOHS2H@

TSOHS3H@

TSOHS4H@

Figure 7.4 IMS T414 external read cycle: dynamic memory

361

362 8 IMS T414 engineering data

Table 7.3 IMS T414 strobe timing

SYMBOL (n) PARAMETER
TaVSOL Address setup before notMemSO
TSOLaX Address hold after notMemSO
TSOLSOH notMemSO pulse width low
TSOLS1L 1 notMemS1 from notMemSO
TSOLS1H 5 notMemS1 end from notMemSO
TSOHS1H 9 notMemS1 end from notMemSO end
TSOLS2L 2 notMemS2 delayed after notMemSO
TSOLS2H S notMemS2 end from notMemSO
TSOHS2H 10 notMemS2 end from notMemSO end
TSOLS3L 3 notMemS3 delayed after notMemSO
TSOLS3H 7 notMemS3 end from notMemSO
TSOHS3H 11 notMemS3 end from notMemSO end
TSOLS4L 4 notMemS4 delayed after notMemSO
TSOLS4H 8 notMemS4 end from notMemSO
TSOHS4H 12 notMemS4 end from notMemSO end
Tmx Complete external memory cycle

Notes

a is T1 where T1 can be from one to four periods Tm in length.

2 b is T2 where T2 can be from one to four periods Tm in length.

MIN

c
0
d

e-1
1-1
c+4

0
1-1
c+4

0
1-1
c+4

0

NOM MAX UNITS NOTE
a ns 1
b ns 2

c+6 ns 3
2 ns

d+6 ns 4,6
e+4 ns 5,6
1+4 ns 7
c+8 ns 3

2 ns
1+3 ns 7
c+8 ns 3

2 ns
1+2 ns 7
c+8 ns 3

2 ns
g 8

3 c is total of T2+ T3+ T4+ Twalt+ TS where T2, T3, T4, TS can be from one to four periods Tm each in length and
Twalt may be any number of periods Tm in length.

4 d can be from zero to 31 periods Tm in length.

5 e can be from -27 to +4 periods Tm in length.

6 If the configuration would cause the strobe to remain active past the end of T6 it will go high at the end of T6.
If the strobe is configured to zero periods Tm it will remain high throughout the complete cycle Tmx.

7 f can be from zero to 31 periods Tm in length. If this length would cause the strobe to remain active past the
end of TS it will go high at the end of TS. If the strobe value is zero periods Tm it will remain low throughout
the complete cycle Tmx.

8 9 is one complete external memory cycle comprising the total of T1+T2+T3+T4+Twait+TS+T6 where T1, T2,
T3, T4, TS can be from one to four periods Tm each in length, T6 can be from one to five periods Tm in length
and Twalt may be zero or any number of periods Tm in length.

Tstate I T1 I T21 T31 T41 T51 Tsl T11 Tstate IT11T21 T31T41 W I w I T51T61Tli

notMemS1 I I notMemS1 --, I

notMemS2 notMemS2

No wait states Wait states inserted

Figure 7.5 IMS T414 effect of wait states on strobes

7 External memory interface 363

Table 7.4 Strobe SO to ProcClockOut skew

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCHSOH Strobe rising from ProcClockOut rising 0 3 ns
TPCLSOH Strobe rising from ProcGlockOut falling 1 4 ns
TPCHSOL Strobe falling from ProcClockOut rising -3 0 ns
TPCLSOL Strobe falling from ProcClockOut falling -1 2 ns

ProcClockOut ~ ~ ~ ~

j r-TPCHSOH j r- TPCHSOL J 1-TPCLSOH J 1-TPCLSOL

NotMemSO --.J ~ --.J ~

Figure 7.6 IMS T414 skew of notMemSO to ProcClockOut

7.9 notMemWrBO·3

Because the transputer uses word addressing, four write strobes are provided; one to write each byte of the
word. If a particular byte is not to be written, then the corresponding data outputs are tristated. notMemWrBO
addresses the least significant byte.

The transputer has both early and late write cycle modes. For a late write cycle the relevant write strobes
notMemWrBO·3 are low during T4 and TS; for an early write they are also low during T3. Data should be
latched into memory on the rising edge of the strobes in both cases, although it is valid until the end of TG.
If the strobe duration is insufficient, it may be extended at configuration time by adding extra periods Tm to
either or both of Tstates T4 and TS for both early and late modes. For an early cycle they may also be added
to T3. Further extension may be obtained by inserting wait states at the end of T4. If the data hold time is
insufficient, extra periods Tm may be added to TG to extend it.

Table 7.5 Write

SYMBOL PARAMETER MIN
TdVWrH Data setup before write d
TWrHdX Data hold after write a
TSOLWrL notMemSO before start of early write b-3

notMemSO before start of late write c-3
TSOHWrH End of write from end of notMemSO -2
TWrLWrH Early write pulse width d

Late write pulse width e

Notes

Timing is for all write strobes notMemWrBO·3.

2 a is T6 where T6 can be from one to five periods Tm in length.

3 b is T2 where T2 can be from one to four periods Tm in length.

NOM MAX

b+2
c+2

2
d+6
e+6

4 c is total of T2+ T3 where T2. T3 can be from one to four periods Tm each in length.

UNITS NOTE
ns 1,5
ns 1,2
ns 1,3
ns 1,4
ns 1
ns 1,5
ns 1,6

S d is total of T3+ T4+ Twait+ TS where T3, T4, T5 can be from one to four periods Tm each in length and Twait
may be zero or any number of periods Tm in length.

6 e is total of T4+ Twait+ T5 where T4, T5 can be from one to four periods Tm each in length and Twai! may be
zero or any number of periods Tm in length.

364

Tstate I T1 T2 T3 T4

ProcClockOut
Tmx

MemnotWrDO =>-
MemnotRfD1 =>-
MemAD2-31 =>-

3 notMemWrBO­
(early write)

Data

Data

Address . Data

TaVSOL TSOLaX
TdVWrH

TSOLWrL TWrLWrH

~

T5

TSOLWrL TWrLWrH

notMemWrBO­
(late write)

notMemSO
(eE)

notMemS1
(ALE)

3

.......

~
TSOLSOH

r-TSOLS1 L CD
TSOLS1H ®

8 IMS T414 engineering data

T6 T1

-<
-<
-<

TWrHdX

....... k- TSOHWrH

.......TSOHS1H ®

~

Figure 7.7 IMS T414 external write cycle

In the write cycle timing diagram ProcClockOut is included as a guide only; it is shown with each Tstate
configured to one period Tm. The strobe is inactive during internal memory cycles.

7 External memory interface

Clockln
(5 MHz)

____ -;:L--1,.1.::JI.L;CiaapPMPI,.UnSus notErrorW,oredOr VCC ~ ~ ."l,. II~II' ~ j··1 GND T T Ill!'. II~I. T
- Error~-------~;::::::::L""'_'-_~-/""

LinkOln

LinkOOut

100Krl
GN~ :.t.

.---.

Link11n "I
Link10ut --..j As LinkO

Link21n

Link20ut

Link31n
56R

As Link2
Link30ut

MemConfig

I

IMS
T414

~l I ---. M4

~====;=c~I~1 aM,mic _ notMemWrB3 I 1'-*4
_ notMemWrB2 __ -,J I ~mic
_ notMemWrB1 M4 ~
- notMemWrBO aMrmic f-7---,

_ notMemRd----notOE _ 256K*~ I; I

- notMemS3 notCAS - Dynam,c .,...-.
_ notMemS2 _ RAM
- notMemS1 ---t-notRAS -'-r-"<:""T"~

address address

- notMemSO l ~i'-' ~

/
column Row/Column

latch multiplexor
'-"".".----.....~-' "" ~ """

en ... ,
,.... ,....
o «
E
C1)

.... :E 7

o

~
o «
E
C1)

" :E 7

Figure 708 IMS T414 dynamic RAM application

365

366 8 IMS T414 engineering data

7.10 MemConfig

MemConfig is an input pin used to read configuration data when setting external memory interface (EMI)
characteristics. It is read by the processor on two occasions after Reset goes low; first to check if one of the
preset internal configurations is required, then to determine a possible external configuration.

7.10.1 Internal configuration

The internal configuration scan comprises 64 periods TDCLDCL of Clockln during the internal scan period
of 144 Clockln periods. MemnotWrDO, MemnotRfD1 and MemAD2·32 are all high at the beginning of the
scan. Starting with MemnotWrDO, each of these lines goes low successively at intervals of two Clockln
periods and stays low until the end of the scan. If one of these lines is connected to MemConfig the preset
internal configuration mode associated with that line will be used as the EMI configuration. The default
configuration is that defined in the table for MemAD31; connecting MemConfig to VCC will also produce
this default configuration. Note that only 13 of the possible configurations are valid, all others remain at the
default configuration.

Table 7.6 IMS T414 internal configuration coding

Duration of each Tstate Strobe Write Refresh Cycle
periods Tm coefficient cycle interval time

Clockln Proc
Pin T1 T2 T3 T4 T5 T6 s1 s2 s3 s4 type cycles cycles

MemnotWrDO 1 1 1 1 1 1 30 1 3 5 late 72 3
MemnotRfD1 1 2 1 1 1 2 30 1 2 7 late 72 4
MemAD2 1 2 1 1 2 3 30 1 2 7 late 72 5
MemAD3 2 3 1 1 2 3 30 1 3 8 late 72 6
MemAD4 1 1 1 1 1 1 3 1 2 3 early 72 3
MemAD5 1 1 2 1 2 1 5 1 2 3 early 72 4
MemAD6 2 1 2 1 3 1 6 1 2 3 early 72 5
MemAD7 2 2 2 1 3 2 7 1 3 4 early 72 6
MemAD8 1 1 1 1 1 1 30 1 2 3 early t 3
MemAD9 1 1 2 1 2 1 30 2 5 9 early t 4
MemAD10 2 2 2 2 4 2 30 2 3 8 late 72 7
MemAD11 3 3 3 3 3 3 30 2 4 13 late 72 9
MemAD31 4 4 4 4 4 4 31 30 30 18 late 72 12

t Provided for static RAM only.

7 External memory interface

Tstate 11 121314151611 121314151611 12

notMemSO

notMemS1!
notMemS2 1:;1 1;:;-''-''--;:=--=:;----;:::

i
notMemS3 1 3

-4i--~--------notMemS4 _ l-- __ ~ ________ _
notMemRd

notMemWr

MemConfig=MemnotWrDO

Tstate 11 I 1 12 I 2 I 2131415 I 516 I 6 I 611 12

notMemSOi I
notMemS1 i 30 I
notMemS2 --rn
notMems3---+i~3~~--~------
notMemS4 __ ~ ___ Jl ______ _

MemConfig=MemAD3

367

Tstate 11 12 I 213141516 I 611 12 I 2131415

notMemSO 1'-___ ---'11'-____ __
notMemS1 I 30 n
notMemS2 ---rn;::;i 1::;----=~==-:::;------
notMemS3 1 2
notMemS4-_4L--_-_~~--_-_-_--_-_-_-_--_-_

MemConfig=MemnotRfD1

Tstate 11 11 121213131415151516 I 611 11

notMemSOi I

notMemS1i 7

notMemS2 --rn
notMems3---+:~3==~----~I-----
notMemS4 4 ~

notMemRd L-Jr---
notMemWr early

MemConfig=MemAD7

Figure 7.9 IMS T 414 internal configuration

368

Delay

MemnotWrDO

MemnotRfD1

MemAD2

MemAD3

t
MemAD31

MemConfig CD
MemConfig ®

8 IMS T414 engineering data

Internal configuration External configuration

CD Internal configuration: MemConfig connected to MemAD2
® External configuration: MemConfig connected to inverse of MemAD3

Figure 7.10 IMS T414 internal configuration scan

7.10.2 External configuration

If MemConfig is held low until MemnotWrDO goes low the internal configuration is ignored and an external
configuration will be loaded instead. An external configuration scan always follows an internal one, but if an
internal configuration occurs any external configuration is ignored.

The external configuration scan comprises 36 successive external read cycles, using the default EMI con­
figuration preset by MemAD31. However, instead of data being read on the data bus as for a normal read
cycle, only a single bit of data is read on MemConfig at each cycle. Addresses put out on the bus for each
read cycle are shown in table 7.7, and are designed to address ROM at the top of the memory map. The
table shows the data to be held in ROM; data required at the MemConfig pin is the inverse of this.

MemConfig is typically connected via an inverter to MemnotWrDO. Data bit zero of the least significant byte
of each ROM word then provides the configuration data stream. By switching MemConfig between various
data bus lines up to 32 configurations can be stored in ROM, one per bit of the data bus. MemConfig can be
permanently connected to a data line or to GND. Connecting MemConfig to GND gives all Tstates configured
to four periods; notMemS1 pulse of maximum duration; notMemS2-4 delayed by maximum; refresh interval
72 periods of Clockln; refresh enabled; late write.

The external memory configuration table 7.7 shows the contribution of each memory address to the 13 con­
figuration fields. The lowest 12 words (#7FFFFF6C to #7FFFFF98, fields 1 to 6) define the number of extra
periods Tm to be added to each Tstate. If field 2 is 3 then three extra periods will be added to T2 to extend
it to the maximum of four periods.

The next five addresses (field 7) define the duration of notMemS1 and the following fifteen (fields 8 to 10)
define the delays before strobes notMemS2-4 become active. The five bits allocated to each strobe allow
durations of from 0 to 31 periods Tm, as described in strobes page 359.

Addresses #7FFFFFEC to #7FFFFFF4 (fields 11 and 12) define the refresh interval and whether refresh is to
be used, whilst the final address (field 13) supplies a high bit to MemConfig if a late write cycle is required.

The columns to the right of the coding table show the values of each configuration bit for the four sample

7 External memory interface 369

external configuration diagrams. Note the inclusion of period E at the end of T6 in some diagrams. This is
inserted to bring the start of the next Tstate T1 to coincide with a rising edge of ProcClockOut (page 357).

Wait states W have been added to show the effect of them on strobe timing; they are not part of a configuration.
In each case which includes wait states, two wait periods are defined. This shows that if a wait state would
cause the start of T5 to coincide with a falling edge of ProcClockOut, another period Tm is generated by
the EMI to force it to coincide with a rising edge of ProcClockOut. This coincidence is only necessary if wait
states are added, otherwise coincidence with a falling edge is permitted. Any configuration memory access
is only permitted to be extended using wait, up to a total of 14 Clockln periods.

Tstate 11 12 12 13 1 3141516 1 6 1 E 11 12 1 213

notMemSO tiL-
notMemS1 8

notMemS2 ! 3 ~
notMemS3~ 1 L
notMemS4 4 LJ
notMemRd LJ
notMemWr ---eariYl L

MemWait ® - - - - - - - - - - - - - -
MemWait ® - - - - - - - - - - - - - -

Example 1

Tstate 11121313141wIWlwI516161 EI112

notMemSO tiL
notMemS1 l1J L
notMemS2 - r- - - - - 0 - - - - - - -
notMemS3 _ L ____ Jl ______ _
notMemS4 --t"2--l 'I ---

notMemRd 1

notMemWr

MemWait@

MemWait®~

Example 3

;
No wait states inserted

1 One wait state inserted
2 Two wait states inserted
3 Three wait states inserted

Tstate 11 121313141wlwlwl51611 121313

notMemso~i======;======-_====
notMemS1 _ ~ ___ Q.. _______ _

:::=:~: r, 2 7 J L
notMemS4 6 LJ
notMemRd r-----

notMemWr

MemWait@

MemWait®~ '----_-.>1
Example 2

Tstate 11 1212131 3141wlwl516 1 6 1 E 11 12

notMemSO tiL
L notMemS1 ~

notMemS2 -+----::;7---,U

notMemS3 5 ~r----

notMemS4 _--.:3=-.:::1 ~ __ ---' ,--__ _
notMemRd

notMemWr ---eariYl'--___ --'
MemWait CD __ ----'IlL _____ _

MemWait ® __ ----'11'--___ _
Example 4

Figure 7,11 IMS T414 external configuration

370 8 IMS T414 engineering data

Internal configuration External configuration

()
UJ
u..

Address
u..
u..
u..
u.. ,....

MemnotWrDO

MemnotRfD1

MemAD2

MemAD3

t
MemAD31

MemConfig CD
notMemRd

® ® ®
CD MemConfig connected to inverse of MemnotWrDO
® Configuration field 1; T1 configured for 2 periods Tm
® Configuration field 2; T2 configured for 3 periods Tm o Configuration field 10; most significant bit of notMemS4 configured high
® Configuration field 11; refresh interval configured for 36 periods Clockln
® Configuration field 12; refresh enabled o Configuration field 13; early write cycle

Figure 7.12 IMS T414 external configuration scan

Delay

7 External memory interface 371

Table 7.7 IMS T414 external configuration coding

Scan MemAD Example diagram
cycle address Field Function 1 2 3 4

1 7FFFFF6C 1 . T1 least significant bit 0 0 0 0
2 7FFFFF70 1 T1 most significant bit 0 0 0 0
3 7FFFFF74 2 T2 least significant bit 1 0 0 1
4 7FFFFF78 2 T2 most significant bit 0 0 0 0
5 7FFFFF7C 3 T3 least significant bit 1 1 1 1
6 7FFFFF80 3 T3 most significant bit 0 0 0 0
7 7FFFFF84 4 T4 least significant bit 0 0 0 0
8 7FFFFF88 4 T4 most significant bit 0 0 0 0
9 7FFFFF8C 5 T5 least significant bit 0 0 0 0
10 7FFFFF90 5 T5 most significant bit 0 0 0 0
11 7FFFFF94 6 T6 least significant bit 1 0 1 1
12 7FFFFF98 6 T6 most significant bit 0 0 0 0
13 7FFFFF9C 7 notMemS1 least significant bit 0 0 1 1
14 7FFFFFAO 7 0 0 0 0
15 7FFFFFA4 7 .u- .u- 0 0 0 0
16 7FFFFFA8 7 1 0 0 0
17 7FFFFFAC 7 notMemS1 most significant bit 0 0 0 0
18 7FFFFFBO 8 notMemS2 least significant bit 1 0 0 1
19 7FFFFFB4 8 1 1 0 1
20 7FFFFFB8 8 .u- .u- 0 0 0 1
21 7FFFFFBC 8 0 0 0 0
22 7FFFFFCO 8 notMemS2 most significant bit 0 0 0 0
23 7FFFFFC4 9 notMemS3 least significant bit 1 1 1 1
24 7FFFFFC8 9 0 1 0 0
25 7FFFFFCC 9 .u- .u- 0 1 0 1
26 7FFFFFDO 9 0 0 1 0
27 7FFFFFD4 9 notMemS3 most significant bit 0 0 0 0
28 7FFFFFD8 10 notMemS4 least significant bit 0 0 0 1
29 7FFFFFDC 10 0 1 1 1
30 7FFFFFEO 10 .u- .u- 1 1 0 0
31 7FFFFFE4 10 0 0 0 0
32 7FFFFFE8 10 notMemS4 most significant bit 0 0 0 0
33 7FFFFFEC 11 Refresh Interval least significant bit - - - -
34 7FFFFFFO 11 Refresh Interval most significant bit - - - -
35 7FFFFFF4 12 Refresh Enable - - - -
36 7FFFFFF8 13 Late Write 0 1 1 0

372 8 IMS T414 engineering data

Table 7.8 IMS T 414 memory refresh configuration coding

Refresh Interval Field 11 Complete
interval in J,ts encoding cycle (mS)

18 3.6 00 0.922
36 7.2 01 1.843
54 10.8 10 2.765
72 14.4 11 3.686

Refresh intervals are in periods of Clockln and Clockln frequency is 5 MHz:

Interval = 18 * 200 = 3600 ns

Refresh interval is between successive incremental refresh addresses.
Complete cycles are shown for 256 row DRAMS.

Table 7.9 Memory configuration

SYMBOL PARAMETER MIN NOM MAX
TMCVRdH Memory configuration data setup 30
TRdHMCX Memory configuration data hold 0
TSOLRdH notMemSO to configuration data read a a+6

Notes

1 a is 16 periods Tm.

Tstate I T1 T2 T3 T4 T5 T6
I I I I I I I I I I I I I I I I

UNITS

ns
ns
ns

T1
I I

~«««««~ ~----'~ Data »>
MemnotRfD1 -../ '-««<~«««~ Data ~----'~ ~2>

>-«««<~««~ MemAD2-31 --< Address
~-,-.::..C-.c.:.c::_~

Data ~~) >----~c

notMemSO ~'---------./ I. TSOLRdH

notMemRd

MemConfig
J -<E-TMCVRdH

--...t:-TRdHMCX ---------<<<<<<<<<<<= Data y))>----

Figure 7.13 IMS T414 external configuration read cycle timing

NOTE

1

7 External memory interface 373

7.11 notMemRf

The IMS T414 can be operated with memory refresh enabled or disabled. The selection is made during
memory configuration, when the refresh interval is also determined. Refresh cycles do not interrupt internal
memory accesses, although the internal addresses cannot be reflected on the external bus during refresh.

When refresh is disabled no refresh cycles occur. During the post-Reset period eight dummy refresh cycles
will occur with the appropriate timing but with no bus or strobe activity.

A refresh cycle uses the same basic external memory timing as a normal external memory cycle, except that
it starts two periods Tm before the start of T1. If a refresh cycle is due during an external memory access,
it will be delayed until the end of that external cycle. Two extra periods Tm (periods R in the diagram) will
then be inserted between the end of T6 of the external memory cycle and the start of T1 of the refresh cycle
itself. The refresh address and various external strobes become active approximately one period Tm before
T1. Bus signals are active until the end of T2, whilst notMemRf remains active until the end of T6.

For a refresh cycle, MemnotRfD1 goes low before notMemRf goes low and MemnotWrDO goes high with
the same timing as MemnotRfD1. All the address lines share the same timing, but only MemAD2·11 give
the refresh address. MemAD12·30 stay high during the address period, whilst MemAD31 remains low.
Refresh cycles generate strobes notMemSO·4 with timing as for a normal external cycle, but notMemRd and
notMemWrBO·3 remain high. MemWait operates normally during refresh cycles.

Table 7.10 Memory refresh

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TRfLRfH Refresh pulse width low a a+6 ns 1
TRaVSOL Refresh address setup before notMemSO T1-5 ns
TRfLSOL Refresh indicator setup before notMemSO b-5 b+5 ns 2

Notes

a is total Tmx+ Tm.

2 b is total T1+ Tm where T1 can be from one to four periods Tm in length.

374 8 IMS T414 engineering data

normal cycle X
MemAD2-31 -- X Address X'-___ D_a_ta __ ~><=

Tstate 1 T6 1 R R 1 T1 1 T2 1 T3 1 T 4 1 T5 1 T6 1 T1 1

MemAD2-11 ~ Refresh address

notMemSO ~ TRaVSO~
TRfLSOL _I TRfLRfH

notMemRf

MemnotWrDO

MemnotRfD1

MemAD12-30

MemAD31

Figure 7.14 IMS T414 refresh cycle timing

7.12 MemWait

Taking MemWait high with the timing shown will extend the duration of T4. MemWait is sampled relative
to the falling edge of ProcClockOut during a T3 period, and should not change state in this region. By
convention, notMemS4 is used to synchronize wait state insertion. If this or another strobe is used, its delay
should be such as to take the strobe Iowan even number of periods Tm after the start of n, to coincide with
a rising edge of ProcClockOut.

MemWait may be kept high indefinitely, although if dynamic memory refresh is used it should not be kept
high long enough to interfere with refresh timing. MemWait operates normally during all cycles, including
refresh and configuration cycles. It does not affect internal memory access in any way.

If the start of T5 would coincide with a falling edge of ProcClockOut an extra wait period Tm (EW) is
generated by the EMI to force coincidence with a rising edge. Rising edge coincidence is only forced if wait
states are added, otherwise coincidence with a falling edge is permitted.

7 External memory interface 375

Table 7.11 Memory wait

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPCHWtH Wait setup O.5Tm+3 ns 1,2
TPCHWtL Wait hold O.5Tm+3 ns 1,2
TWtLWtH Delay before re-assertion of Wait 2Tm ns

Notes

1 ProcClockOut load should not exceed SOp!.

2 If wait period exceeds refresh interval, refresh cycles will be lost.

Tstate I T2 T3 T4 W T5 T6 T1

ProcClockOut

MemWait

MemAD0-31 Address >-«<<<<<<<<<<<<<<<<< Data >>-< Address

notMemRd "'~----~/

TSI~6
ProcClockOut

MemWait

TSI~S
ProcClockOut

MemWait

Figure 7.15 IMS T414 memory wait timing

376 8 IMS T414 engineering data

7.13 MemReq, MemGranted

Direct memory access (DMA) can be requested at any time by taking the asynchronous MemReq input high.
The transputer samples MemReq during the final period Tm of T6 of both refresh and external memory
cycles. To guarantee taking over the bus immediately following either, MemReq must be set up at least two
periods Tm before the end of T6. In the absence of an external memory cycle, MemReq is sampled during
every low period of ProcClockOut. The address bus is tristated two periods Tm after the ProcClockOut
rising edge which follows the sample. MemGranted is asserted one period Tm after that.

Removal of MemReq is sampled during each low period of ProcClockOut and MemGranted is removed
synchronously with the next falling edge of ProcClockOut. If accurate timing of DMA is required, MemReq
should be set low coincident with a falling edge of ProcClockOut. Further external bus activity, either refresh,
external cycles or reflection of internal cycles, will commence at the next rising edge of ProcClockOut.

Strobes are left in their inactive states during DMA. DMA cannot interrupt a refresh or external memory cycle,
and outstanding refresh cycles will occur before the bus is released to DMA. DMA does not interfere with
internal memory cycles in any way, although a program running in internal memory would have to wait for
the end of DMA before accessing external memory. DMA cannot access internal memory. If DMA extends
longer than one refresh interval (Memory Refresh Configuration Coding, table 7.8), the DMA user becomes
responsible for refresh. DMA may also inhibit an internally running program from accessing external memory.

DMA allows a bootstrap program to be loaded into external RAM ready for execution after reset. If MemReq is
held high throughout reset, MemGranted will be asserted before the bootstrap sequence begins. MemReq
must be high at least one period TDCLDCL of Clockln before Reset. The circuit should be designed to
ensure correct operation if Reset could interrupt a normal DMA cycle.

Table 7.12 Memory request

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TMRHMGH Memory request response time 4 7 Tm 1
TMRLMGL Memory request end response time 2 5 Tm
TADZMGH Bus tristate before memory granted 1 Tm
TMGLADV Bus active after end of memory granted 1 Tm

Notes

1 These values assume no external memory cycle is in progress. If an external cycle is active, maximum time
could be (1 EMI cycle Tmx)+(1 refresh cycle TRfLRfH)+(6 periods Tm).

ProcClockOut

MemReq

MemGranted

MemnotWrDO
MemnotRfD1
MemAD2-31

TMRHMGH TMRLMGL

TMGLADV

Figure 7.16 IMS T414 memory request timing

7 External memory interface

MemReq

MemGranted

Reset

Configuration
sequence

D Pre- and post-configuration delays (figure 5.3)
I Internal configuration sequence
E External configuration sequence
R Initial refresh sequence
B Bootstrap sequence

B

Figure 7.17 IMS T414 DMA sequence at reset

MemReq ""'-------
External Memory~ I Read or Write H Refresh
Interface cycles ~ .. I Read or Write I-c=
MemGranted / ""~----
MemnotRfD1

MemnotWrDO
MemAD2-31

-----------~~~/~------------~(~-------------

--------~)~---------~(~------------

Figure 7.18 IMS T414 operation of MemReq, MemGranted with external, refresh memory cycles

MemReq

External Memory
Interface activity

MemGranted

MemnotWrDO
MemnotRfD1
MemAD2-31

////////// // ""~-----"'--'//
Internal Memory Cycles

------~/ ""~----~/ ~
_____ ~)~----~('-______ ~)~------~c=

Figure 7.19 IMS T414 operation of MemReq, MemGranted with external, internal memory cycles

377

378

8 Events

EventReq and EventAck provide an asynchronous handshake interface between an external event and an
internal process. When an external event takes EventReq high the external event channel (additional to the
external link channels) is made ready to communicate with a process. When both the event channel and the
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck
is removed after EventReq goes low.

Only one process may use the event channel at any given time. If no process requires an event to occur
EventAck will never be taken high. Although EventReq triggers the channel on a transition from low to high,
it must not be removed before EventAck is high. EventReq should be low during Reset; if not it will be
ignored until it has gone low and returned high. EventAck is taken low when Reset occurs.

If the process is a high priority one and no other high priority process is running, the latency is as described
on page 341. Setting a high priority task to wait for an event input allows the user to interrupt a transputer
program running at low priority. The time taken from asserting EventReq to the execution of the microcode
interrupt handler in the CPU is four cycles. The following functions take place during the four cycles:

Cycle 1 Sample EventReq at pad on the rising edge of ProcClockOut and synchronise.

Cycle 2 Edge detect the synchronised EventReq and form the interrupt request.

Cycle 3 Sample interrupt vector for microcode ROM in the CPU.

Cycle 4 Execute the interrupt routine for Event rather than the next instruction.

Table 8.1 Event

SYMBOL PARAMETER MIN NOM MAX UNITS
TVHKH Event request response 0 ns
TKHVL Event request hold 0 ns
TVLKL Delay before removal of event acknowledge 0 a ns
TKLVH Delay before re-assertion of event request 0 ns

Notes

a is 3 processor cycles TPCLPCL.

EventReq
TVHKH t- r-TVLKL

TKHVL TKLVH

EventAck

Figure 8.1 IMS T 414 event timing

NOTE

1

379

9 Links

Four identical INMOS bi-directional serial links provide synchronized communication between processors
and with the outside world. Each link comprises an input channel and output channel. A link between two
transputers is implemented by connecting a link interface on one transputer to a link interface on the other
transputer. Every byte of data sent on a link is acknowledged on the input of the same link, thus each signal
line carries both data and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first.
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte
and that the receiving link is able to receive another byte. The sending link reschedules the sending process
only after the acknowledge for the final byte of the message has been received.

The IMS T414 links support the standard INMOS communication speed of 10 Mbits/sec. In addition they can
be used at 5 or 20 Mbits/sec. Links are not synchronised with Clockln or ProcClockOut and are insensitive
to their phases. Thus links from independently clocked systems may communicate, providing only that the
clocks are nominally identical and within specification.

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

Link speeds can be set by LinkSpecial, LinkOSpecial and Link123Special. The link 0 speed can be
set independently. Table 9.1 shows un i-directional and bi-directional data rates in Kbytes/sec for each link
speed; LinknSpecial is to be read as LinkOSpecial when selecting link 0 speed and as Link123Speciai for
the others. Data rates are quoted for a transputer using internal memory, and will be affected by a factor
depending on the number of external memory accesses and the length of the external memory cycle.

Table 9.1 Speed Settings for Transputer Links

Link Linkn Kbytes/sec
Special Special Mbits/sec Uni Bi

0 0 10 400 800
0 1 5 200 400
1 0 10 400 800
1 1 20 800 1600

~HIHloI1121314151617IL, JHl_L....JI'---_
I Data I I Ack I

Figure 9.1 IMS T414 link data and acknowledge packets

380 8 IMS T414 engineering data

Table 9.2 Link

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr LinkOut rise time 20 ns 1
TJQf LinkOut fall time 10 ns 1
TJDr Linkln rise time 20 ns 1
TJDf Linkln fall time 20 ns 1
TJQJD Buffered edge delay 0 ns
TJBskew Variation in T JQJD 20 Mbits/s 3 ns 2

10 Mbits/s 10 ns 2
5 Mbits/s 30 ns 2

CLiZ Linkln capacitance @ f=1MHz 7 pF 1
Cll LinkOut load capacitance 50 pF
RM Series resistor for 100n transmission line 56 ohms

Notes

These paramters are sampled, but are not 100% tested.

2 This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

90%
LinkOut

10%

90% - - - - - - - ..c-:=-==-==-=-=
Linkln

10% - - - - -
TJDr

Figure 9.2 IMS T414 link timing

unkOU~t:,~~~ - -: - - -

Earliest T JQJD ~

Linkln 1.5V- - - - ~ ~ ~---
TJBskew- ~

Figure 9.3 IMS T414 buffered link timing

TJQf

9 Links 381

Transputer family device A

LinkOut I · I Linkln

___ ---.!L~i~nk~l~n~:-----.. E------l LinkOut

Transputer family device B

Figure 9.4 IMS T414 Links directly connected

Transputer family device A Zo=100ohms

LinkOul ~c=r-j lInkin

Linkln ~ LinkOut
--------" Zo=100ohms RM Transputer family device B

Figure 9.5 IMS T414 Links connected by transmission line

Transputer family device A

LinkOut r------r> Linkln
buffers

Linkln <J-- LinkOut

Transputer family device B

Figure 9.6 IMS T414 Links connected by buffers

382

10 Electrical specifications

10.1 DC electrical characteristics

Table 10.1 Absolute maximum ratings

SYMBOL rARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 0 7.0 V 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3
II Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 °C 2
TA Ambient temperature under bias -55 125 °C 2
PDmax Maximum allowable dissipation 2 W

Notes

1 All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as vee or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and vee.

Table 10.2 Operating conditions

SYMBOL PARAMETER MIN MAX UNITS NOTE
VCC DC supply voltage 4.75 5.25 V
VI, VO Input or output voltage 0 VCC V
CL Load capacitance on any pin 60 pF
TA Operating temperature range 0 70 °C

Notes

1 All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear It/min transverse air flow.

1
1,2

3

10 Electrical specifications

Table 10.3 DC characteristics

SYMBOL PARAMETER MIN MAX
VIH High level input voltage 2.0 VCC+0.5
VIL Low level input voltage -0.5 0.8

" Input current @GND<VkVCC ±10
±50

VOH Output high voltage @ IOH;"2mA VCC-1
VOL Output low voltage @ IOL=4mA 0.4
lOS Output short circuit current @ GND<VO<VCC 36 65

65 100
10Z Tristate output current @ GND<VO<VCC ±10
PO Power dissipation 900
CIN Input capacitance @ f=1MHz 7
COZ Output capacitance @ f=1MHz 10

Notes

All voltages are with respect to GND.

2 Parameters for IMS T414-S measured at 4.75V<VCC<5.25V and 0°C<TA<70°C.
Input clock frequency = 5 MHz.

3 Current sourced from non-link outputs.

4 Current sourced from link outputs.

5 Power dissipation varies with output loading and program execution.

6 This parameter is sampled and not 100% tested.

7 For inputs other than those in Note 8.

8 For MemReq, MemWait, MemConfig, Analyse, Reset, Clockln, EventReq, LinklnO-3,
LinkSpecial, LlnkOSpecial, Llnk123Special, BootFromRom, HoldToGND.

10.2 Equivalent circuits

vCC--

UNITS
V
V

Jl-A
Jl-A
V
V

mA
mA
Jl-A
mW
pF
pF

R1] Load for: R1 R2 Equivalent load:

.... Link outputs 1K96 47K 1 Schottky TIL input

383

NOTE
1,2
1,2

1,2,7
1,2,8
1,2
1,2

1,2,3,6
1,2,4,6

1,2
2,5
6
6

Output
.."

Other outputs 970R 24K 2 Schottky TIL inputs

50pF = ~)R2 .." Diodes are 1 N916
'-

.."
'-

GND

Figure 10.1 Load circuit for AC measurements

384 8 IMS T414 engineering data

Vdd-1

~ Inputs
OV

Vdd-1 V Inputs VIL
OV --./

tpHL

Vdd ~.5V Outputs
OV

tpLH

Vdd
Y,.5V Outputs

OV

Figure 10.2 AC measurements timing waveforms

Test point
Output under test

510R

GND -------4----------~t~

VCC

Figure 10.3 Tristate load circuit for AC measurements

10.3 AC timing characteristics

Table 10.4 Input, output edges

SYMBOL PARAMETER MIN MAX
TDr Input rising edges 2 20
TDf Input falling edges 2 20
Tar Output rising edges 25
TOf Output falling edges 15
TSOLaHZ Address high to tristate a a+6
TSOLaLZ Address low to tristate a a+6

Notes

Non-link pins; see section on links.

2 All inputs except Clockln; see section on Clockln.

3 a is T2 where T2 can be from one to four periods Tm in length.
Address lines include MemnotWrDO, MemnotRfD1, MemAD2-31.

UNITS NOTE
ns 1,2
ns 1,2
ns 1
ns 1
ns 3
ns 3

10 Electrical specifications

Notes

90%

10%

90%

10%

30
Time

ns
20

10

90% -----K------
----- -- ------
TOf

-----x----------- -- ------
TOr

10%

-----K----------- -- ------
TQf

-----X----------- -- ------
TQr

90%

10%

Figure 10.4 IMS T 414 input and output edge timing

15:':~L~--}~-----
10% ______ ~ __ ~--

Figure 10.5 IMS T414 tristate timing relative to notMemSO

Rise time

Fall time

40 60 80 100

Load Capacitance pF

Link

30
Time

ns
20

10

40 6080100

Load Capacitance pF

EMI

Figure 10.6 Typical rise/fall times

Skew is measured between notMemSO with a standard load (2 Schottky TIL inputs and 30pF) and
notMemSO with a load of 2 Schottky TIL inputs and varying capacitance.

385

386 8 IMS T414 engineering data

10.4 Power rating

Internal power dissipation PINT of transputer and peripheral chips depends on vee, as shown in figure 10.7.
PINT is substantially independent of temperature.

Total power dissipation PD of the chip is

where PIO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature TJ of the chip is

TJ=TA+BJA*PD

where TA is the external ambient temperature in De and BJA is the junction-to-ambient thermal resistance in
DefIN. BJA for each package is given in the Packaging Specifications section.

600

Power 500
PINT
mW

400

300

4.4 4.6 4.8 5.0 5.2 5.4 5.6
vee Volts

Figure 10.7 IMS T414 internal power dissipation vs vee

387

11 Performance

The performance of the transputer is measured in terms of the number of bytes required for the program, and
the number of (internal) processor cycles required to execute the program. The figures here relate to occam
programs. For the same function, other languages should achieve approximately the same performance as
occam.

11.1 Performance overview

These figures are averages obtained from detailed simulation, and should be used only as an initial guide;
they assume operands are of type INT. The abbreviations in table 11.1 are used to represent the quantities
indicated. In the replicator section of the table, figures in braces {} are not necessary if the number of
replications is a compile time constant. To estimate performance, add together the time for the variable
references and the time for the operation.

Table 11.1 Key to performance table

np number of component processes
ne number of processes earlier in queue
r 1 if INT parameter or array parameter, 0 if not
ts number of table entries (table size)
w width of constant in nibbles
p number of places to shift
Eg expression used in a guard
Et timer expression used in a guard
Tb most significant bit set of multiplier ((-1) if the multiplier is 0)
Tbp most significant bit set in a positive multiplier when counting from zero ((-1) if the multiplier is 0)
Tbc most significant bit set in the two's complement of a negative multiplier
nsp Number of scalar parameters in a procedure
nap Number of array parameters in a procedure

388 8 IMS T414 engineering data

Table 11.2 Performance

Size (bytes) Time (cycles)

Names
variables

in expression
assigned to or input to
in PROC or FUNCTION call,

corresponding to an INT parameter
channels

Array Variables (for single dimension arrays)
constant subscript
variable subscript
expression subscript

Declarations
CHAN OF protocol
[size] CHAN OF protocol
PROC

Primitives
assignment
input
output
STOP
SKIP

Arithmetic operators
+ -
*
/
REM
» «

Modulo Arithmetic operators
PLUS
MINUS
TIMES (fast multiply)

Boolean operators
OR
AND NOT

Comparison operators
= constant
= variable
<> constant
<> variable
> <
>= <=

Bit operators
/\ \I ><

Expressions
constant in expression
check if error

1.1+r
1.1+r

1.1+r
1 .1

o
5.3
5.3

3.1
9.4

body+2

o
4
1
2
o

1
2
2
2
2

2
1
1

4
1

o
2
1
3
1
2

2

w
4

2.1 +2(r)
1.1 +(r)

1.1 +(r)
2.1

o
7.3
7.3

3.1
2.2 + 20.2*size

o

o
26.5
26
25
o

1
39
40
38

3+p

2
1

4+Tb

8
2

1
3
3
5
2
4

2

w
6

11 Performance 389

Table 11.3 Performance

Size (bytes) Time (cycles)

Timers
timer input 2 3
timer AFTER

if past time 2 4
with empty timer queue 2 31
non-empty timer queue 2 38+ne*9

ALT (timer)
with empty timer queue 6 52
non-empty timer queue 6 59+ne*9
timer alt guard 8+2Eg+2Et 34+2Eg+2Et

Constructs
SEQ 0 0
IF 1.3 1.4

if guard 3 4.3
ALT (non timer) 6 26

alt channel guard 10.2+2Eg 20+2Eg
skip alt guard 8+2Eg 10+2Eg

PAR 11.5+(np-1)* 7.5 19.5+(np-1)*30.5
WHILE 4 12

Procedure or function call
3.5+(nsp-2)*1.1 16.5+(nsp-2)*1.1

+nap*2.3 +nap*2.3
Replicators

replicated SEQ 7.3{ +5.1} (-3.8)+ 15.1 *count{ +7.1}
replicated IF 12.3{+5.1 } (-2.6)+19.4*count{ +7.1}
replicated ALT 24.8{ + 1 0.2} 25.4+33.4*count{ + 14.2}
replicated timer ALT 24.8{+10.2} 62.4+33.4*count{ + 14.2}
replicated PAR 39.f{+5.1} (-6.4)+70.9*count{ +7.1 }

11.2 Fast multiply, TIMES

The IMS T414 has a fast integer multiplication instruction product. The time taken for a fast multiply is 4+Tb.
The time taken for a multiplication by zero is 3 cycles. For example, if the multiplier is 1 the time taken is
4 cycles, if the multiplier is -1 (all bits set) the time taken is 35 cycles.

Implementations of high level languages on the transputer may take advantage of this instruction. For example,
the occam modulo arithmetic operator TIMES is implemented by the instruction and the right-hand operand is
treated as the multiplier. The fast multiplication instruction is also used in high level language implementations
for the multiplication implicit in multi-dimensional array access.

11.3 Arithmetic

A set of functions are provided within the development system to support the efficient implementation of
multiple length integer arithmetic and floating point arithmetic. In table 11.4 n gives the number of places
shifted and all arguments and results are assumed to be local. Full details of these functions are provided
in the occam reference manual, supplied as part of the development system and available as a separate
publication.

When calculating the execution time of the predefined maths functions, no time needs to be added for calling
overhead. These functions are compiled directly into speCial purpose instructions which are designed to
support the efficient implementation of multiple length integer arithmetic and floating point arithmetic.

390 8 IMS T414 engineering data

Table 11.4 Arithmetic performance

+ cycles for
Function Cycles parameter access t

LONGADD 2 7
LONGSUM 3 8
LONGSOB 2 7
LONGDIFF 3 8
LONGPROD 34 8
LONGDIV 36 8
SHIFTRIGHT (n<32) 4+n 8

(n>=32) n-27
SHIFTLEFT (n<32) 4+n 8

(n>=32) n-27
NORMALISE (n<32) n+6 7

(n>=32) n-25
(n=64) 4

ASHIFTRIGHT SHIFTRIGHT+2 5
ASHIFTLEFT SHIFTLEFT+4 5
ROTATERIGHT SHIFTRIGHT 7
ROTATE LEFT SHIFTLEFT 7
FRACMUL LONGPROD+4 5

t Assuming local variables.

11.4 Floating point operations

Floating point operations for the IMS T414 are provided by a run-time package. This requires approximately
400 bytes of memory for the single length arithmetic operations, and 2500 bytes for the double length arithmetic
operations. Table 11.5 summarizes the estimated performance of the package.

Table 11.5 IMS T 414 floating point operations performance

Processor cycles
IMS T414

Typical Worst
REAL32 + - 230 300

* 200 240

/ 245 280

< > = >= <= <> 60 60

REAL 64 + - 565 700

* 760 940

/ 1115 1420

< > = >= <= <> 60 60

11 Performance 391

11.5 Effect of external memory

Extra processor cycles may be needed when program and/or data are held in external memory, depending
both on the operation being performed, and on the speed of the external memory. After a processor cycle
which initiates a write to memory, the processor continues execution at full speed until at least the next
memory access.

Whilst a reasonable estimate may be made of the effect of external memory, the actual performance will
depend upon the exact nature of the given sequence of operations.

External memory is characterized by the number of extra processor cycles per external memory cycle, denoted
as e. For the IMS T414, with the fastest external memory the value of e is 2; a typical value for a large external
memory is 5.

If program is stored in external memory, and e has the value 2 or 3, then no extra cycles need be estimated for
linear code sequences. For larger values of e, the number of extra cycles required for linear code sequences
may be estimated at (e-3)/4. A transfer of control may be estimated as requiring e+3 cycles.

These estimates may be refined for various constructs. In table 11.6 n denotes the number of components in
a construct. In the case of IF, the n'th conditional is the first to evaluate to TRUE, and the costs include the
costs of the conditionals tested. The number of bytes in an array assignment or communication is denoted
by b.

Table 11.6 External memory performance

IMS T414
Program off chip Data off chip

Boolean expressions e-2 0
IF 3en-8 en
Replicated IF (6e-4)n+7 (5e-2)n+8
Replicated SEQ (3e-3)n+2 (4e-2)n
PAR (3e-1)n+8 3en+4
Replicated PAR (10e-8)n+8 16en-12
ALT (2e-4)n+6e (2e-2)n+ 1 Oe-8
Array assignment and 0 max (2e, e(b/2))

communication in
one transputer

For the I MS T 414 the effective rate of INMOS links is slowed down on output from external memory by e
cycles per word output, and on input to external memory at 10 Mbits/sec by e-6 cycles per word if e2:6.

The following Simulation results illustrate the effect of storing program and/or data in external memory. The
results are normalized to 1 for both program and data on Chip. The first program (Sieve of Erastosthenes)
is an extreme case as it is dominated by small, data access intensive loops; it contains no concurrency,
communication, or even multiplication or division. The second program is the pipeline algorithm for Newton
Raphson square root computation.

392 8 IMS T414 engineering data

Table 11.71MS T414 external memory performance

Program e=2 e=3 e=4 e=5 On chip
Program off chip 1 1.3 1.5 1.7 1.9 1

2 1.1 1.2 1.2 1.3 1

Data off chip 1 1.5 1.8 2.1 2.3 1
2 1.2 1.4 1.6 1.7 1

Program and data off chip 1 1.8 2.2 2.7 3.2 1
2 1.3 1.6 1.8 2.0 1

11.6 Interrupt latency

If the process is a high priority one and no other high priority process is running, the latency is as described
in table 11.8. The timings given are in full processor cycles TPCLPCL; the number of Tm states is also given
where relevant. Maximum latency assumes all memory accesses are internal ones.

Table 11.8 Interrupt latency

Typical Maximum
TPCLPCL I Tm TPCLPCL I Tm

IMS T414 19 I 38 53 I 116

393

12 Package specifications

12.1 84 pin grid array package

1 2 3 4 5 6 7 8 9 10

A
DoNot Link Proc Link Link Link Link Event Mem
Wire Special Clock 123 InO Out1 In2 Ack GND Wait Out Special

Hold DoNot LinkO Link Link Link Event Mem not
To Clockln Wire Special OutO Out2 Out3 Req Req Mem

GND WrB3
B

Cap Cap Link Link Mem Mem not
GND VCC VCC Mem Minus Plus In1 In3 Config Granted WrB1

C

Hold Hold
I~

not not not
Error To To " Index Mem Mem Mem D

GND GND Rf WrB2 WrBO

Disable Boot not not
E Int From Reset Mem Mem VCC

RAM ROM IMS T414 Rd SO
84 pin grid array

Hold Mem top view not not not
To Analyse AD31 Mem Mem Mem

GND S3 S2 S4
F

Mem Mem Mem not
GND not GND Mem AD30 AD27 WrDO S1

G

Mem Mem Mem Mem Mem Mem Mem Mem Mem
VCC not AD29 AD25 AD23 AD16 AD12 AD8 AD4 AD3 RfD1

H

Mem Mem Mem Mem Mem Mem GND Mem Mem Mem
AD28 AD24 AD22 AD19 AD17 AD13 AD6 AD5 AD2 J

Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem
AD26 AD21 AD20 AD18 AD15 AD14 AD11 AD10 AD9 AD7 K

Figure 12.1 IMS T 414 84 pin grid array package pinout

394 8 IMS T414 engineering data

~

-I
1

.... M ~ E r ' ~ I 10 9 8 7 6 5 4 3 2 1

=iFr@@@@@@@@@@A
@@@@@@@@@@ B

@@@@@@@@@@ C

@@@ @@@ D

@@@ @@@ E
K h @@@ @@@ F

@@@ @@@ G

@@@@@@@@@@ H

fool! 0('--- ~ ___)O_! ----i)O~1 J cJi t-~; : : : : K: : : : .f ~

index

rr
AB

~
I"

Figure 12.2 84 pin grid array package dimensions

Table 12.1 84 pin grid array package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 26.924 ±0.254 1.060 ±0.O10
B 17.019 ±0.127 0.670 ±0.005
C 2.456 ±0.278 0.097 ±0.O11
D 4.572 ±0.127 0.180 ±0.005
E 3.302 ±0.127 0.130 ±0.005
F 0.457 ±0.025 0.018 ±0.002 Pin diameter
G 1.143 ±0.127 0.045 ±0.005 Flange diameter
K 22.860 ±0.127 0.900 ±0.005
L 2.540 ±0.127 0.100 ±0.005
M 0.508 0.020 Chamfer

Package weight is approximately 7.2 grams

Table 12.284 pin grid array package junction to ambient thermal resistance

PARAMETER
At 400 linear fVmin transverse air flow

12 Package specifications

12.2 84 pin PLCC J·bend package

CapMinus 1
VCC 2

HoldToGND 3
GND 4

HoldToGND 5
HoldToGND 6

Error 7
BootFromROM 8

Reset 9
DisablelntRAM 10

HoldToGND 11

Notes

Analyse 12
MemAD31 13
MemAD30 14
MemAD29 15

GND16
MemAD2817
MemAD2718
MemAD26 19
MemAD2520
MemAD24 21

~~N~om~~~~~MN~omw~m~v
oo~wmm~~~~~~~~~~IDm~mIDID

IMS T414
84 pin J-Bend
Chip Carrier
Top View

NMv~m~mmO~NM~~m~oomO~N
NNNNNNNNMMMMMMMMMMvvV

Figure 12.3 IMS T414 84 pin PLCC J-bend package pinout

395

63 MemReq
62 MemGranted
61 MemWait
60 notMemRf
59 notMemWrB3
58 notMemWrB2
57 notMemWrB1
56 notMemWrBO
55 notMemRd
54 notMemSO
53 vce
52 notMemS4
51 notMemS3
50 notMemS2
49 notMemS1
48 GND
47 MemnotWrDO
46 MemnotRfD1
45 MemAD2
44 MemAD3
43 MemAD4

Since the manufacture of the IMS T414, the pin numbers for the 84 pin J-bend chip carrier have been re­
arranged, however the pin functions remain the same.

396 8 IMS T414 engineering data

index

f+------ B ------; 11
~-----A-----~·~·

Figure 12.4 84 pin PlCC J-bend package dimensions

Table 12.3 84 pin PlCC J-bend package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 30.226 ±0.127 1.190 ±0.005
B 29.312 ±0.127 1.154 ±0.005
C 3.810 ±0.127 0.150 ±0.005
D 0.508 ±0.127 0.020 ±0.005
F 1.270 ±0.127 0.050 ±0.005
G 0.457 ±0.127 0.018 ±0.005
J 0.000 ±0.051 0.000 ±0.002
K 0.457 ±0.127 0.018 ±0.005
l 0.762 ±0.127 0.030 ±0.005

Package weight is approximately 7.0 grams

Table 12.4 84 pin PlCC J-bend package junction to ambient thermal resistance

PARAMETER
At 400 linear fVmin transverse air flow

397

13 Ordering

This section indicates the designation of speed and package selections for the various devices. Speed of
Clockln is 5 MHz for all parts. Transputer processor cycle time is nominal; it can be calculated more exactly
using the phase lock loop factor PLLx, as detailed in the external memory section.

For availability contact local INMOS sales office or authorised distributor.

Table 13.1 IMS T 414 ordering details

INMOS Processor Processor
designation clock speed cycle time PLLx Package

IMS T414-G15S 15 MHz 67 ns 3.0 Ceramic Pin Grid
IMS T414-G20S 20 MHz 50 ns 4.0 Ceramic Pin Grid

IMS T414-J15S 15 MHz 67 ns 3.0 Plastic PLCC J-8end
IMS T414-J20S 20 MHz 50 ns 4.0 Plastic PLCC J-8end

398 8 IMS T414 engineering data

c orromos
FEATURES

16 bit architecture
50 ns internal cycle time
20 MIPS (peak) instruction rate
IMS T222-20 is pin compatible with IMS T225-20
4 Kbytes on-chip static RAM
40 Mbytes/sec sustained data rate to internal memory
64 Kbytes directly addressable Elxternal memory
20 Mbytes/sec sustained data rate to external memory
950 ns response to interrupts
Four INMOS serial links 5/10/20 Mbits/sec
Bi-directional data rate of 2.4 Mbytes/sec per link
Internal timers of 1 JLs and 64 JLs
Boot from ROM or communication links
Single 5 MHz clock input
Single +5V ±5% power supply
MIL-STD-883C processing is available

APPLICATIONS

Real time processing
Microprocessor applications
High speed multi processor systems
Industrial control
Robotics
System simulation
Digital signal processing
Telecommunications
Fault tolerant systems
Medical instrumentation

42142402

399

IMS T222
transputer

Engineering Data

System
Services

EJ
4k bytes "'-_N

of
On-Chip

RAM

External
Memory
Interface

May 1989

400

1 Introduction

The IMS T222 transputer is a 16 bit CMOS microcomputer with 4 Kbytes on-chip RAM for high speed
processing, an external memory interface and four standard INMOS communication links. The instruction set
achieves efficient implementation of high level languages and provides direct support for the occam model
of concurrency when using either a single transputer or a network. Procedure calls, process switching and
typical interrupt latency are sub-microsecond. A device running at 20 MHz achieves an instruction throughput
of 20 MIPS peak. The extended temperature version of the device complies with MIL-STD-883C.

For convenience of description, the IMS T222 operation is split into the basic blocks shown in figure 1.1.

VCC
GND

CapPlus
CapMinus

Reset
Analyse

Error
BootFromROM

Clockln

DisablelntRam

ProcClockOut
notMemCE

notMemWrBO-1

MemWait
MemBAcc

MemReq
MemGranted

System
services

4k bytes
of

On-chip
RAM

External
Memory
Interface

LinkSpecial
LinkOSpecial

:=====~~- Link123Speciai

LinklnO
LinkOutO

Linkln1
LinkOut1

Linkln2
LinkOut2

Linkln3
LinkOut3

F EventReq
Event. EventAck

16 MemDO-15

16 MemAO-15

Figure 1.1 IMS T222 block diagram

The IMS T222 can directly access a linear address space of 64 Kbytes. The 16 bit wide non-multiplexed
external memory interface provides a data rate of up to 2 bytes every 100 nanoseconds (20 Mbyteslsec) for
a 20 MHz device.

System Services include processor reset and bootstrap control, together with facilities for error analysis.

1 Introduction 401

The INMOS communication links allow networks of transputers to be constructed by direct point to point
connections with no external logic. The links support the standard operating speed of 10 Mbits/sec, but also
operate at 5 or 20 Mbitslsec. The links support overlapped acknowledge; each IMS T222 link can transfer
data bi-directionally at up to 2.05 Mbytes/sec.

The IMS T222 is designed to implement the occam language, detailed in the occam Reference Manual,
but also efficiently supports other languages such as C and Pascal. Access to the transputer at machine
level is seldom required, but if necessary refer to the Transputer Instruction Set - A Compiler lM"iters' Guide.

This data sheet supplies hardware implementation and characterisation details for the IMS T222. It is intended
to be read in conjunction with the Transputer Architecture chapter, which details the architecture of the
transputer and gives an overview of occam.

402

2 Pin designations

Table 2.1 IMS T222 system services

Pin In/Out Function
VCC,GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockln in Input clock
Reset in System reset
Error out Error indicator
Analyse in Error analysis
BootFromRom in Bootstraps from external ROM or from link
DisablelntRAM in Disable internal RAM
HoldToGND Must be connected to GND

Table 2.2 IMS T222 external memory interface

Pin In/Out Function
ProcClockOut out Processor clock
MemAO-15 out Sixteen address lines
MemDO-15 inlout Sixteen data lines
notMemWrBO-1 out Two byte-addressing write strobes
notMemCE out Chip enable
MemBAcc in Byte access mode selector
MemWait in Memory cycle extender
MemReq in Direct memory access request
MemGranted out Direct memory access granted

Table 2.3 IMS T222 event

Pin In/Out Function
EventReq in Event request
EventAck out Event request acknowledge

Table 2.4 IMS T222 link

Pin In/Out Function
LinklnO-3 in Four serial data input channels
LinkOutO-3 out Four serial data output channels
LinkSpecial in Select non-standard speed as 5 or 20 Mbitslsec
LinkOSpecial in Select special speed for Link 0
Link123Speciai in Select special speed for Links 1 ,2,3

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 448.

403

3 Processor

The 16 bit processor contains instruction processing logic, instruction and work pOinters, and an operand
register. It directly accesses the high speed 4 Kbyte on-chip memory, which can store data or program.
Where larger amounts of memory or programs in ROM are required, the processor has access to 64 Kbytes
of memory via the External Memory Interface (EM I).

3.1 Registers

The design of the transputer processor exploits the availability of fast on-chip memory by having only a small
number of registers; six registers are used in the execution of a sequential process. The small number of
registers, together with the simplicity of the instruction set, enables the processor to have relatively simple
(and fast) data-paths and control logic. The six registers are:

The workspace pointer which pOints to an area of store where local variables are kept.

The instruction pointer which points to the next instruction to be executed.

The operand register which is used in the formation of instruction operands.

The A, Band C registers which form an evaluation stack.

A, Band C are sources and destinations for most arithmetic and logical operations. Loading a value into the
stack pushes B into C, and A into B, before loading A. Storing a value from A, pops B into A and C into B.

Expressions are evaluated on the evaluation stack, and instructions refer to the stack implicitly. For example,
the add instruction adds the top two values in the stack and places the result on the top of the stack. The use of
a stack removes the need for instructions to respecify the location of their operands. Statistics gathered from a
large number of programs show that three registers provide an effective balance between code compactness
and implementation complexity.

No hardware mechanism is provided to detect that more than three values have been loaded onto the stack.
It is easy for the compiler to ensure that this never happens.

Any location in memory can be accessed relative to the workpointer register, enabling the workspace to be
of any size.

Further register details are given in Transputer Instruction Set - A Compiler Writers' Guide.

R . t egis ers L ocas p rogram

A

B

C

Workspace r----
Next Inst

Operand

Figure 3.1 Registers

404 9 IMS T222 engineering data

3.2 Instructions

The instruction set has been designed for simple and efficient compilation of high-level languages. All in­
structions have the same format, designed to give a compact representation of the operations occurring most
frequently in programs.

Each instruction consists of a single byte divided into two 4-bit parts. The four most significant bits of the byte
are a function code and the four least significant bits are a data value.

Operand Register

Figure 3.2 Instruction format

3.2.1 Direct functions

The representation provides for sixteen functions, each with a data value ranging from 0 to 15. Ten of these,
shown in table 3.1, are used to encode the most important functions.

load constant

load local

load non-local

jump

Table 3.1 Direct functions

add constant

store local

store non-local

conditional jump

load local pointer

call

The most common operations in a program are the loading of small literal values and the loading and storing
of one of a small number of variables. The load constant instruction enables values between 0 and 15 to be
loaded with a single byte instruction. The load local and store local instructions access locations in memory
relative to the workspace pointer. The first 16 locations can be accessed using a single byte instruction.

The load non-local and store non-local instructions behave similarly, except that they access locations in
memory relative to the A register. Compact sequences of these instructions allow efficient access to data
structures, and provide for simple implementations of the static links or displays used in the implementation
of high level programming languages such as occam, C or Pascal.

3.2.2 Prefix functions

Two more function codes allow the operand of any instruction to be extended in length; prefix and negative
prefix.

All instructions are executed by loading the four data bits into the least significant four bits of the operand
register, which is then used as the instruction's operand. All instructions except the prefix instructions end by
clearing the operand register, ready for the next instruction.

The prefix instruction loads its four data bits into the operand register and then shifts the operand register up
four places. The negative prefix instruction is similar, except that it complements the operand register before
shifting it up. Consequently operands can be extended to any length up to the length of the operand register
by a sequence of prefix instructions. In particular, operands in the range -256 to 255 can be represented
using one prefix instruction.

3 Processor 405

The use of prefix instructions has certain beneficial consequences. Firstly, they are decoded and executed
in the same way as every other instruction, which simplifies and speeds instruction decoding. Secondly, they
simplify language compilation by providing a completely uniform way of allowing any instruction to take an
operand of any size. Thirdly, they allow operands to be represented in a form independent of the processor
wordlength.

3.2.3 Indirect functions

The remaining function code, operate, causes its operand to be interpreted as an operation on the values
held in the evaluation stack. This allows up to 16 such operations to be encoded in a single byte instruction.
However, the prefix instructions can be used to extend the operand of an operate instruction just like any
other. The instruction representation therefore provides for an indefinite number of operations.

Encoding of the indirect functions is chosen so that the most frequently occurring operations are represented
without the use of a prefix instruction. These include arithmetic, logical and comparison operations such as
add, exclusive or and greater than. Less frequently occurring operations have encodings which require a
single prefix operation.

3.2.4 Expression evaluation

Evaluation of expressions sometimes requires use of temporary variables in the workspace, but the number
of these can be minimised by careful choice of the evaluation order.

Table 3.2 Expression evaluation

Program Mnemonic
Idc 0
stl x

x := #24 pfix 2
Idc 4
stl x

x := y + z Idl y
Idl z
add
stl x

3.2.5 Efficiency of encoding

Measurements show that about 70% of executed instructions are encoded in a single byte; that is, without
the use of prefix instructions. Many of these instructions, such as load constant and add require just one
processor cycle.

The instruction representation gives a more compact representation of high level language programs than
more conventional instruction sets. Since a program requires less store to represent it, less of the memory
bandwidth is taken up with fetching instructions. Furthermore, as memory is word accessed the processor
will receive two instructions for every fetch.

Short instructions also improve the effectiveness of instruction pre-fetch, which in turn improves processor
performance. There is an extra word of pre-fetch buffer, so the processor rarely has to wait for an instruction
fetch before proceeding. Since the buffer is short, there is little time penalty when a jump instruction causes
the buffer contents to be discarded.

406 9 IMS T222 engineering data

3.3 Processes and concurrency

A process starts, performs a number of actions, and then either stops without completing or terminates
complete. Typically, a process is a sequence of instructions. A transputer can run several processes in
parallel (concurrently). Processes may be assigned either high or low priority, and there may be any number
of each (page 407).

The processor has a microcoded scheduler which enables any number of concurrent processes to be exe­
cuted together, sharing the processor time. This removes the need for a software kernel.

At any time, a concurrent process may be

Active Being executed.
On a list waiting to be executed.

Inactive Ready to input.
Ready to output.
Waiting until a specified time.

The scheduler operates in such a way that inactive processes do not consume any processor time. It allocates
a portion of the processor's time to each process in turn. Active processes waiting to be executed are held
in two linked lists of process workspaces, one of high priority processes and one of low priority processes
(page 407). Each list is implemented using two registers, one of which pOints to the first process in the list,
the other to the last. In the Linked Process List figure 3.3, process S is executing and P, Q and R are active,
awaiting execution. Only the low priority process queue registers are shown; the high priority process ones
perform in a similar manner.

R eglsters L ocas I P rograml

FPtr1 (Front) f----- P ---I I
BPtr1 (Back) r

~ Q
A

I B --- R

C

Workspace - S

Next Inst

Operand

Figure 3.3 Linked process list

Table 3.3 Priority queue control registers

Function High Priority Low Priority
Pointer to front of active process list FptrO Fptr1
Pointer to back of active process list BptrO Bptr1

Each process runs until it has completed its action, but is descheduled whilst waiting for communication from
another process or transputer, or for a time delay to complete. In order for several processes to operate in
parallel, a low priority process is only permitted to run for a maximum of two time slices before it is forcibly
descheduled at the next descheduling point (page 410). The time slice period is 5120 cycles of the external
5 MHz clock, giving ticks approximately 1 ms apart.

3 Processor 407

A process can only be descheduled on certain instructions, known as descheduling points (page 410). As a
result, an expression evaluation can be guaranteed to execute without the process being timesliced part way
through.

Whenever a process is unable to proceed, its instruction pointer is saved in the process workspace and
the next process taken from the list. Process scheduling pointers are updated by instructions which cause
scheduling operations, and should not be altered directly. Actual process switch times are less than 1 J.l,s, as
little state needs to be saved and it is not necessary to save the evaluation stack on rescheduling.

The processor provides a number of special operations to support the process model, including start process
and end process. When a main process executes a parallel construct, start process instructions are used
to create the necessary additional concurrent processes. A start process instruction creates a new process
by adding a new workspace to the end of the scheduling list, enabling the new concurrent process to be
executed together with the ones already being executed. When a process is made active it is always added
to the end of the list, and thus cannot pre-empt processes already on the same list.

The correct termination of a parallel construct is assured by use of the end process instruction. This uses
a workspace location as a counter of the parallel construct components which have still to terminate. The
counter is initialised to the number of components before the processes are started. Each component ends
with an end process instruction which decrements and tests the counter. For all but the last component, the
counter is non zero and the component is descheduled. For the last component, the counter is zero and the
main process continues.

3.4 Priority

The IMS T222 supports two levels of priority. Priority 1 (lOW priority) processes are executed whenever there
are no active priority 0 (high priority) processes.

High priority processes are expected to execute for a short time. If one or more high priority processes are
able to proceed, then one is selected and runs until it has to wait for a communication, a timer input, or until
it completes processing.

If no process at high priority is able to proceed, but one or more processes at low priority are able to proceed,
then one is selected.

Low priority processes are periodically timesliced to provide an even distribution of processor time between
computationally intensive tasks.

If there are n low priority processes, then the maximum latency from the time at which a low priority process
becomes active to the time when it starts processing is 2n-2 timeslice periods. It is then able to execute for
between one and two timeslice periods, less any time taken by high priority processes. This assumes that
no process monopolises the transputer's time; i.e. it has a distribution of descheduling points (page 410).

Each timeslice period lasts for 5120 cycles of the external 5 MHz input clock (approximately 1 ms at the
standard frequency of 5 MHz).

If a high priority process is waiting for an external channel to become ready, and if no other high priority
process is active, then .the interrupt latency (from when the channel becomes ready to when the process
starts executing) is typically 19 processor cycles, a maximum of 53 cycles (assuming use of on-Chip RAM).

3.5 Communications

Communication between processes is achieved by means of channels. Process communication is point-to­
point, synchronised and unbuffered. As a result, a channel needs no process queue, no message queue and
no message buffer.

A channel between two processes executing on the same transputer is implemented by a single word in
memory; a channel between processes executing on different transputers is implemented by point-to-point

408 9 IMS T222 engineering data

links. The processor provides a number of operations to support message passing, the most important being
input message and output message.

The input message and output message instructions use the address of the channel to determine whether
the channel is internal or external. Thus the same instruction sequence can be used for both, allowing a
process to be written and compiled without knowledge of where its channels are connected.

The process which first becomes ready must wait until the second one is also ready. A process performs an
input or output by loading the evaluation stack with a pointer to a message, the address of a channel, and
a count of the number of bytes to be transferred, and then executing an input message or output message
instruction. Data is transferred if the other process is ready. If the channel is not ready or is an external one
the process will deschedule.

3.6 Timers

The transputer has two 16 bit timer clocks which 'tick' periodically. The timers provide accurate process
timing, allowing processes to deschedule themselves until a specific time.

One timer is accessible only to high priority processes and is incremented every microsecond, cycling com­
pletely in approximately 65 milliseconds. The other is accessible only to low priority processes and is incre­
mented every 64 microseconds, giving exactly 15625 ticks in one second. It has a full period of approximately
four seconds.

ClockO
Clock 1
TNextRegO
TNextReg1

Table 3.4 Timer registers

Current value of high priority (level 0) process clock
Current value of low priority (level 1) process clock
Indicates time of earliest event on high priority (level 0) timer queue
Indicates time of earliest event on low priority (level 1) timer queue

The current value of the processor clock can be read by executing a load timer instruction. A process can
arrange to perform a timer input, in which case it will become ready to execute after a specified time has
been reached. The timer input instruction requires a time to be specified. If this time is in the 'past' then the
instruction has no effect. If the time is in the 'future' then the process is descheduled. When the specified
time is reached the process is scheduled again.

Figure 3.4 shows two processes waiting on the timer queue, one waiting for time 21, the other for time 31.

TimerO Workspaces Program

Alarm

TNextRegO '--__ ---' 21

TPtrLoc Empty

31

Figure 3.4 Timer registers

409

4 Instruction set summary

The Function Codes table 4.7. gives the basic function code set (page 404). Where the operand is less
than 16, a single byte encodes the complete instruction. If the operand is greater than 15, one prefix
instruction (pfix) is required for each additional four bits of the operand. If the operand is negative the first
prefix instruction will be nfix.

Table 4.1 prefix coding

Mnemonic

Ide #3

Ide #35
is coded as

pfix #3
Ide #5

Ide
is coded as

pfix
pfix
Ide

Ide
is coded as

nfix
Ide

#987

#9
#8
#7

-31

#1
#1

(Ide

Function
code

#FFE1)

#4

#2
#4

#2
#2
#4

#6
#4

Memory
code

#43

#23
#45

#29
#28
#47

#61
#41

Tables 4.8 to 4.17 give details of the operation codes. Where an operation code is less than 16 (e.g. add:
operation code 05), the operation can be stored as a single byte comprising the operate function code F and
the operand (5 in the example). Where an operation code is greater than 15 (e.g. ladd: operation code 16),
the prefix function code 2 is used to extend the instruction.

Table 4.2 operate coding

Function Memory
Mnemonic code code

add (op. code #5) #F5
is coded as

opr add #F #F5

ladd (op. code #16) #21F6
is coded as

pfix #1 #2 #21
opr #6 #F #F6

The Processor Cycles column refers to the number of periods TPCLPCL taken by an instruction executing
in internal memory. The number of cycles is given for the basic operation only; where the memory code
for an instruction is two bytes, the time for the prefix function (one cycle) should be added. For a 20 MHz
transputer one cycle is 50 ns. Some instruction times vary. Where a letter is included in the cycles column it
is interpreted from table 4.3.

410 9 IMS T222 engineering data

Table 4.3 Instruction set interpretation

Ident Interpretation

b Bit number of the highest bit set in register A. Bit 0 is the least significant bit.

n Number of places shifted.

w Number of words in the message. Part words are counted as full words. If the message
is not word aligned the number of words is increased to include the part words at either
end of the message.

The DE column of the tables indicates the descheduling/error features of an instruction as described in
table 4.4.

Table 4.4 Instruction features

Ident Feature See page:

D The instruction is a descheduling point 410
E The instruction will affect the Error flag 410,419

4.1 Descheduling points

The instructions in table 4.5 are the only ones at which a process may be descheduled (page 406). They are
also the ones at which the processor will halt if the Analyse pin is asserted (page 418).

input message
timer alt wait
jump

4.2 Error instructions

Table 4.5 Descheduling point instructions

output message
timer input
loop end

output byte
stop on error
end process

output word
alt wait
stop process

The instructions in table 4.6 are the only ones which can affect the Error flag (page 419) directly.

add
multiply
long add
set error
check word

Table 4.6 Error setting instructions

add constant

long subtract
testerr
check subscript from 0

subtract
divide
long divide

check single

remainder

check count from 1

4 Instruction set summary 411

Table 4.7 IMS T222 function codes

Function Memory Processor D
Code Code Mnemonic Cycles Name E

0 OX j 3 jump D
1 1X Idlp 1 load local pointer
2 2X pfix 1 prefix
3 3X Idnl 2 load non-local
4 4X Idc 1 load constant
5 5X Idnlp 1 load non-local pointer
6 6X nfix 1 negative prefix
7 7X Idl 2 load local
S SX adc 1 add constant E
9 9X call 7 call
A AX cj 2 conditional jump (not taken)

4 conditional jump (taken)
B BX ajw 1 adjust workspace
C CX eqc 2 equals constant
D DX stl 1 store local
E EX stnl 2 store non-local
F FX opr - operate

Table 4.S IMS T222 arithmetic/logical operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

46 24F6 and 1 and
4B 24FB or 1 or
33 23F3 xor 1 exclusive or
32 23F2 not 1 bitwise not
41 24F1 shl n+2 shift left
40 24FO shr n+2 shift right

05 F5 add 1 add E
OC FC sub 1 subtract E
53 25F3 mul 23 multiply E
2C 22FC div 24 divide E
1F 21FF rem 21 remainder E
09 F9 gt 2 greater than
04 F4 diff 1 difference
52 25F2 sum 1 sum
OS FS prod b+4 product

412 9 IMS T222 engineering data

Table 4.9 IMS T222 long arithmetic operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

16 21F6 ladd 2 long add E
38 23F8 Isub 2 long subtract E
37 23F7 Isum 3 long sum
4F 24FF Idiff 3 long diff
31 23F1 Imul 17 long multiply
1A 21 FA Idiv 19 long divide E
36 23F6 Ish I n+3 long shift left (n<16)

n-12 long shift left(n~ 16)
35 23F5 Ishr n+3 long shift right (n<16)

n-12 long shift right (n~ 16)
19 21F9 norm n+5 normalise (n<16)

n-10 normalise (n~16)
3 normalise (n=32)

Table 4.10 IMS T222 general operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

00 FO rev 1 reverse

3A 23FA xword 4 extend to word
56 25F6 cword 5 check word E
1D 21FD xdble 2 extend to double
4C 24FC csngl 3 check single E
42 24F2 mint 1 minimum integer

Table 4.11 IMS T222 indexing/array operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

02 F2 bsub 1 byte subscript
OA FA wsub 2 word subscript
34 23F4 bcnt 2 byte count
3F 23FF wcnt 4 word count
01 F1 Ib 5 load byte
3B 23FB sb 4 store byte

4A 24FA move 2w+8 move message

4 Instruction set summary 413

Table 4.12 IMS T222 timer handling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

22 22F2 Idtimer 2 load timer
2B 22FB tin 30 timer input (time future) D

4 timer input (time past) D
4E 24FE talt 4 timer alt start
51 25F1 taltwt 15 timer alt wait (time past) D

48 timer alt wait (time future) D
47 24F7 enbt 8 enable timer
2E 22FE dist 23 disable timer

Table 4.13 IMS T222 input/output operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

07 F7 in 2w+19 input message D
OB FB out 2w+19 output message D
OF FF outword 23 output word D
OE FE outbyte 23 output byte D

43 24F3 alt 2 alt start
44 24F4 altwt 5 alt wait (channel ready) D

17 alt wait (channel not ready) D
45 24F5 altend 4 alt end

49 24F9 enbs 3 enable skip
30 23FO diss 4 disable skip

12 21F2 resetch 3 reset channel
48 24F8 enbc 7 enable channel (ready)

5 enable channel (not ready)
2F 22FF disc 8 disable channel

Table 4.14 IMS T222 control operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

20 22FO ret 5 return
1B 21FB Idpi 2 load pointer to instruction
3C 23FC gajw 2 general adjust workspace
06 F6 gcall 4 general call
21 22F1 lend 10 loop end (loop) D

5 loop end (exit) D

414 9 IMS T222 engineering data

Table 4.15 IMS T222 scheduling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

00 Fo startp 12 start process 0
03 F3 endp 13 end process 0
39 23F9 runp 10 run process
15 21F5 stopp 11 stop process
1E 21FE Idpri 1 load current priority

Table 4.16 IMS T222 error handling operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

13 21F3 csubO 2 check subscript from 0 E
40 24Fo ccnt1 3 check count from 1 E
29 22F9 testerr 2 test error false and clear (no error)

3 test error false and clear (error)
10 21FO seterr 1 set error E
55 25F5 stoperr 2 stop on error (no error) 0
57 25F7 clrhalterr 1 clear halt-on-error
58 25F8 sethalterr 1 set halt-on-error
59 25F9 testhalterr 2 test halt-on-error

Table 4.17 IMS T222 processor initialisation operation codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

2A 22FA testpranal 2 test processor analysing
3E 23FE saveh 4 save high priority queue registers
3D 23Fo savel 4 save low priority queue registers
18 21F8 sthf 1 store high priority front pointer
50 25FO sthb 1 store high priority back pointer
1C 21FC stlf 1 store low priority front pointer
17 21F7 stlb 1 store low priority back pointer
54 25F4 sttimer 1 store timer

415

5 System services

System services include all the necessary logic to initialise and sustain operation of the device. They also
include error handling and analysis facilities.

5.1 Power

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise
inductance within the package. All supply pins must be connected. The supply must be decoupled close to
the chip by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer
boards are recommended; if two layer boards are used, extra care should be taken in decoupling.

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power­
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive
periods of latch up.

5.2 CapPlus, CapMinus

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1 J.tF
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an
impedance less than 3 Ohms between 100 KHz and 20 MHz. If a polarised capacitor is used the negative
terminal should be connected to CapMinus. Total PCB track length should be less than 50 mm. The
connections must not touch power supplies or other noise sources.

CapPlus P.C.B. track

CapMinus P.C.B. track

Figure 5.1 Recommended PLL decoupling

5.3 Clockln

Decoupling
capacitor

1J.tF

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input.
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type,
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln,
simplifying system design and avoiding problems of distributing high speed clocks externally.

A number of transputer devices may be connected to a common clock, or may have individual clocks providing
each one meets the specified stability criteria. In a multi-clock system the relative phasing of Clockln clocks
is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant provided the
specified limits of Clockln pulse widths are met.

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be
monotonic and remain within the specified voltage and time limits.

416 9 IMS T222 engineering data

Table 5.1 Input clock

SYMBOL PARAMETER MIN NOM
TOCLDCH Clockln pulse width low 40
TDCHDCL Clockln pulse width high 40
TOCLDCL Clockln period
TDCerror Clockln timing error
TOC1DC2 Difference in Clockln for 2 linked devices
TOCr Clockln rise time
TOCf Clockln fall time

Notes

1 These paramters are not tested.

2 Measured between corresponding points on consecutive falling edges.

3 Variation of individual falling edges from their nominal times.

200

MAX UNITS
ns
ns
ns

±0.5 ns
400 ppm
10 ns
8 ns

4 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link.

S Clock transitions must be monotonic within the range VIH to VIL (table 10.3).

TDCerror

2.0v- --
1.5vO.8v : : : : -

It:::::.::~
TDCLOCH TOCHDCL

TDCLDCL

TDCerror

90%---11
10% -----

TOCr

90% h"---
10%- - - - -TDCf-

Figure 5.2 Clockln timing

5.4 Reset

NOTE
1
1

1,2,4
1,3
1,4
1,5
1,5

Reset can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. After VCC
is valid Clockln should be running for a minimum period TDCVRL before the end of Reset. The falling edge
of Reset initialises the transputer and starts the bootstrap routine. Link Ol.ltputs are forced low during reset;
link inputs and EventReq should be held low. Memory request (DMA) must not occur whilst Reset is high but
can occur before bootstrap (page 431). If BootFromRom is high bootstrapping will take place immediately
after Reset goes low, using data from external memory; otherwise the transputer will await an input from any
link. The processor will be in the low priority state.

5.5 Bootstrap

The transputer can be bootstrapped either from a link or from external ROM. To facilitate debugging, Boot·
FromRom may be dynamically changed but must obey the specified timing restrictions. It is sampled once
only by the transputer, before the first instruction is executed after Reset is taken low.

If BootFromRom is connected high (e.g. to VCC) the transputer starts to execute code from the top two
bytes in external memory, at address #7FFE. This location should contain a backward jump to a program

5 System services 417

in ROM. Following this access, BootFromRom may be taken low if required. The processor is in the low
priority state, and the W register points to MemStart (page 420).

Table 5.2 Reset and Analyse

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TPVRH Power valid before Reset 10 ms
TRHRL Reset pulse width high 8 Clockln 1
TDCVRL Clockln running before Reset end 10 ms 2
TAHRH Analyse setup before Reset 3 ms
TRLAL Analyse hold after Reset end 1 Clockln 1
TBRVRL BootFromRom setup 0 ms
TRLBRX BootFromRom hold after Reset 0 ms 3
TALBRX BootFromRom hold after Analyse 3

Notes

Full periods of Clockln TDCLDCL required.

2 At power-on reset.

3 Must be stable until after end of bootstrap period. See Bootstrap section.

Clockln

VCC

TPVRH

Reset
TBRVRL

BootFromRom

Figure 5.3 Transputer reset timing with Analyse low

TRHRL

Reset

TAHRH

Analyse

BootFromRom

Figure 5.4 Transputer reset and analyse timing

418 9 IMS T222 engineering data

If BootFromRom is connected low (e.g. to GND) the transputer will wait for the first bootstrap message to
arrive on anyone of its links. The transputer is ready to receive the first byte on a link within two processor
cycles TPCLPCL after Reset goes low.

If the first byte received (the control byte) is greater than 1 it is taken as the quantity of bytes to be input. The
following bytes, to that quantity, are then placed in internal memory starting at location MemStart. Following
reception of the last byte the transputer will start executing code at MemStart as a low priority process.
BootFromRom may be taken high after reception of the last byte, if required. The memory space immediately
above the loaded code is used as work space. Messages arriving on other links after the control byte has
been received and on the bootstrapping link after the last bootstrap byte will be retained until a process inputs
from them.

5.6 Peek and poke

Any location in internal or external memory can be interrogated and altered when the transputer is waiting
for a bootstrap from link. If the control byte is 0 then four more bytes are expected on the same link. The
first two byte word is taken as an internal or external memory address at which to poke (write) the second
two byte word. If the control byte is 1 the next two bytes are used as the address from which to peek (read)
a word of data; the word is sent down the output channel of the same link.

Following such a peek or poke, the transputer returns to its previously held state. Any number of accesses
may be made in this way until the control byte is greater than 1, when the transputer will commence reading
its bootstrap program. Any link can be used, but addresses and data must be transmitted via the same link
as the control byte.

5.7 Analyse

If Analyse is taken high when the transputer is running, the transputer will halt at the next descheduling point
(page 410). From Analyse being asserted, the processor will halt within three time slice periods plus the
time taken for any high priority process to complete. As much of the transputer status is maintained as is
necessary to permit analysis of the halted machine. Processor flags Error and HaltOnError are not altered
at reset, whether Analyse is asserted or not.

Input links will continue with outstanding transfers. Output links will not make another access to memory
for data but will transmit only those bytes already in the link buffer. Providing there is no delay in link
acknowledgement, the links should be inactive within a few microseconds of the transputer halting.

Reset should not be asserted before the transputer has halted and link transfers have ceased. If BootFrom·
Rom is high the transputer will bootstrap as soon as Analyse is taken low, otherwise it will await a control
byte on any link. If Analyse is taken low without Reset going high the transputer state and operation are
undefined. After the end of a valid Analyse sequence the registers have the values given in table 5.3.

Table 5.3 Register values after Analyse

MemStart if bootstrapping from a link, or the external memory bootstrap address if
bootstrapping from ROM.

W MemStart if bootstrapping from ROM, or the address of the first free word after the
bootstrap program if bootstrapping from link.

A The value of I when the processor halted.

8 The value of Wwhen the processor halted, together with the priority of the process
when the transputer was halted (i.e. the W descriptor).

C The ID of the bootstrapping link if bootstrapping from link.

5 System services 419

5.8 Error

The Error pin is connected directly to the internal Error flag and follows the state of that flag. If Error is
high it indicates an error in one of the processes caused, for example, by arithmetic overflow, divide by zero,
array bounds violation or software setting the flag directly (page 410). Once set, the Error flag is only cleared
by executing the instruction testerr. The error is not cleared by processor reset, in order that analysis can
identify any errant transputer (page 418).

A process can be programmed to stop if the Error flag is set; it cannot then transmit erroneous data to other
processes, but processes which do not require that data can still be scheduled. Eventually all processes
which rely, directly or indirectly, on data from the process in error will stop through lack of data.

By setting the HaltOnError flag the transputer itself can be programmed to halt if Error becomes set. If Error
becomes set after HaltOnErrorhas been set, all processes on that transputer will cease but will not necessarily
cause other transputers in a network to halt. Setting HaltOnError after Errorwill not cause the transputer to
halt; this allows the processor reset and analyse facilities to function with the flags in indeterminate states.

An alternative method of error handling is to have the errant process or transputer cause all transputers to
halt. This can be done by applying the Error output signal of the errant transputer to the EventReq pin of a
suitably programmed master transputer. Since the process state is preserved when stopped by an error, the
master transputer can then use the analyse function to debug the fault. When using such a circuit, note that
the Errorflag is in an indeterminate state on power up; the circuit and software should be designed with this
in mind.

Error checks can be removed completely to optimise the performance of a proven program; any unexpected
error then occurring will have an arbitrary undefined effect.

If a high priority process pre-empts a low priority one, status of the Error and HaltOnError flags is saved
for the duration of the high priority process and restored at the conclusion of it. Status of the Error flag is
transmitted to the high priority process but the HaltOnError flag is cleared before the process starts. Either
flag can be altered in the process without upsetting the error status of any complex operation being carried
out by the pre-empted low priority process.

In the event of a transputer halting because of HaltOnError, the links will finish outstanding transfers before
shutting down. If Analyse is asserted then all inputs continue but outputs will not make another access to
memory for data.

After halting due to the Error flag changing from 0 to 1 whilst HaltOnError is set, register I points two bytes
past the instruction which set Error. After halting due to the Analyse pin being taken high, register I pOints
one byte past the instruction being executed. In both cases I will be copied to register A.

~ Analyse .. Slave Slave Master Latch
Transputer ~ .. . Transputer Transputer

Reset P
0 1

Event
~ I Error[O] I Error[1]

Slave Slave
(transputer links not shown) Transputer Transputer - 2 f-- 3

--,.
Error[2] I

Error[3]I

Figure 5.5 Error handling in a multi-transputer system

420

6 Memory

The IMS T222 has 4 Kbytes of fast internal static memory for high rates of data throughput. Each internal
memory access takes one processor cycle ProcClockOut (page 422). The transputer can also access an
additional 60 Kbytes of external memory space. Internal and external memory are part of the same linear
address space. Internal RAM can be disabled by holding DisablelntRAM high. All internal addresses are
then mapped to external RAM. This pin should not be altered after Reset has been taken low.

IMS T222 memory is byte addressed, with words aligned on two-byte boundaries. The least significant byte
of a word is the lowest addressed byte.

The bits In a byte are numbered 0 to 7, with bit 0 the least significant. The bytes are numbered from 0, with
byte 0 the least significant. In general, wherever a value is treated as a number of component values, the
components are numbered in order of increasing numerical significance, with the least significant component
numbered O. Where values are stored in memory, the least significant component value is stored at the
lowest (most negative) address.

Internal memory starts at the most negative address #8000 and extends to #8FFF. User memory begins at
#8024; this location is given the name MemStart.

The reserved area of internal memory below MemStart is used to implement link and event channels.

Two words of memory are reserved for timer use, TPtrLocO for high priority processes and TPtrLoc1 for low
priority processes. They either indicate the relevant priority timer is not in use or point to the first process on
the timer queue at that priority level.

Values of certain processor registers for the current low priority process are saved in the reserved IntSaveLoc
locations when a high priority process pre-empts a low priority one.

External memory space starts at #9000 and extends up through #0000 to #7FFF. ROM bootstrapping code
must be in the most positive address space, starting at #7FFE. Address space immediately below this is
conventionally used for ROM based code.

6 Memory 421

,-h_i __ M_a_c_h_in.-e_m_a..!;.p __ I..:,o Byte address

II-R_e_s_e_t _In_st--'I'--__ ---II #7FFE

Word offsets occam map

_1..-----'-----'-'----; I 1#0

11----------11 #9000 - Start of external memory - #0800 _II-_______ -1

Notes

Ereg IntSaveLoc

STATUSlntSaveLoc

CreglntSaveLoc

Breg IntSaveLoc

AreglntSaveLoc

IptrlntSaveLoc

WdesclntSaveLoc

TPtrLoc1

TPtrLocO

Event

Link 3 Input

Link 2 Input

Link 1 Input

link 0 Input

link 3 Output

Link 2 Output

Link 1 Output

Link 0 Output

#8024 MemStart
#8022

MemStart #12

#8020

#801E

#801C

#801 A

#8018

#8016

#8014

#8012

#8010

#800E

#800C

#80OA

#8008

#8006

#8004

#8002

#8000

Note 1

(Base of memory)

Figure 6.1 IMS T222 memory map

#08

#07

#06

#05

#04

#03

#02

#01

#00

Event

Link 3 Input

Link 2 Input

Link 1 Input

Link 0 Input

Link 3 Output

Link 2 Output

Link 1 Output

Link 0 Output

These locations are used as auxiliary processor registers and should not be manipulated by the user. Like
processor registers, their contents may be useful for implementing debugging tools (Analyse, page 418). For
details see Transputer Instruction Set - A Compiler Writers' Guide.

422

7 External memory interface

The IMS T222 External Memory Interface (EMI) allows access to a 16 bit address space via separate address
and data buses. The data bus can be configured for either 16 bit or 8 bit memory access, allowing the use of
a single bank of byte-wide memory. Both word-wide and byte-wide access may be mixed in a single memory
system (page 428).

7.1 ProcClockOut

This clock is derived from the internal processor clock, which is in turn derived from Clockln. Its period is
equal to one internal microcode cycle time, and can be derived from the formula

TPCLPCL = TDCLDCL I PLLx

where TPCLPCL is the ProcClockOut Period, TDCLDCL is the Clockln Period and PLLx is the phase
lock loop factor for the relevant speed part, obtained from the ordering details (Ordering section).

Edges of the various external memory strobes are synchronised by, but do not all coincide with, rising or
falling edges of ProcClockOut.

Table 7.1 ProcClockOut

SYMBOL PARAMETER
TPCLPCL ProcClockOut period
TPCHPCL ProcClockOut pulse width high
TPCLPCH ProcClockOut pulse width low
TPCstab ProcClockOut stability

Notes

1 a is TDCLDCLlPLLx.

2 b is 0.5* TPCLPCL (half the processor clock period).

3 cis TPCLPCL-TPCHPCL.

MIN
8-2
b-7

NOM MAX UNITS NOTE
8 8+2 ns 1,5
b b+7 ns 2,5
c ns 3,5

8 % 4,5

4 Stability is the variation of cycle periods between two consecutive cycles, measured at corresponding points on
the cycles.

5 This parameter is sampled and not 100% tested.

1.5v - - - - - ----{----- - ~
TPCLPCH TPCHPCL

TPCLPCL

Figure 7.1 IMS T222 ProcClockOut timing

7 External memory Interface 423

7.2 Tstates

The external memory cycle is divided into four Tstates with the following functions:

T1 Address and control setup time.

T2 Data setup time.

T3 Data read/write.

T4 Data and address hold after access.

Each Tstate is half a processor cycle TPCLPCL long. An external memory cycle is always a complete number
of cycles TPCLPCL in length and the start of T1 always coincides with a rising edge of ProcClockOut. T2
can be extended indefinitely by adding externally generated wait states of one complete processor cycle each.

7.3 Internal access

During an internal memory access cycle the external memory interface address bus MemAO·15 reflects the
word address used to access internal RAM, notMemWrBO·1 and notMemCE are inactive and the data bus
MemDO·15 is tristated. This is true unless and until a DMA (memory request) activity takes place, when the
lines will be placed in a high impedance state by the transputer.

Bus activity is not adequate to trace the internal operation of the transputer in full, but may be used for
hardware debugging in conjuction with peek and poke (page 418).

7.4 MemAO·15

External memory addresses are output on a non-multiplexed 16 bit bus. The address is valid at the start of
n and remains so until the end of T4, with the timing shown. Byte addressing is carried out internally by the
IMS T222 for read cycles. For write cycles the relevant bytes in memory are addressed by the write enables
notMemWrBO·1.

The transputer places the address bus in a high impedance state during DMA.

7.5 MemDO·15

The non-multiplexed data bus is 16 bits wide. Read cycle data may be set up on the bus at any time after
the start of n, but must be valid when the IMS T222 reads it during T4. Data can be removed any time after
the rising edge of notMemCE, but must be off the bus no later than the middle of n, which allows for bus
turn-around time before the data lines are driven at the start of T2 in a processor write cycle.

Write data is placed on the bus at the start of T2 and removed at the end of T4. It is normally written into
memory in synchronism with notMemCE going high.

The data bus is high impedance except when the transputer is writing data. If only one byte is being written,
the unused 8 bits of the bus are high impedance at that time. In byte access mode MemD8·15 are high
impedance during the external memory cycle which writes the most significant (second) byte (page 428).

If the data setup time for read or write is too short it can be extended by inserting wait states at the end of
T2 (page 429).

424 9 IMS T222 engineering data

Table 7.2 Read

T222-20 T222-17
SYMBOL PARAMETER MIN MAX MIN MAX
TAVEL Address valid before chip enable low 8 12
TELEH Chip enable low 68 80 83 88
TEHEL Delay before chip enable re-assertion 19 24
TEHAX Address hold after chip enable high 3 12
TELDrV Data valid from chip enable low 0 50 0 53
TAVDrV Data valid from address valid 0 63 0 65
TDrVEH Data setup before chip enable high 22 30
TEHDrZ Data hold after chip enable high 0 20 0 24
TWEHEL Write enable setup before chip enable low 18 24
TPCHEL ProcClockOut high to chip enable low 8 12

Notes

This parameter is common to read and write cycles and to byte-wide memory accesses.

2 These values assume back-to-back external memory accesses.

3 Timing is for both write enables notMemWrBO-1.

Tstates

ProcClockOut

I T1 I T2 I T3 I T4 I T1

MemAO-15 __ ~IL-,-____________ ~

notMemCE

TAVDrV

TELDrV

DataO-15

\'------notMemWrBO-1 ~
i TWEHEL

Figure 7.2 IMS T222 external read cycle

7.6 notMemWrBO-1

UNITS NOTE
ns 1
ns 1
ns 1,2
ns 1
ns
ns
ns
ns
ns 3
ns 1

Two write enables are provided, one to write each byte of the word. When writing a word, both write enables
are asserted; when writing a byte only the appropriate write enable is asserted. notMemWrBO addresses
the least significant byte. The write enables are active before the chip enable signal notMemCE becomes
active, thus reducing memory access time and the risk of bus contention.

The write enables are synchronised with the chip enable signal notMemCE, allowing them to be used without
notMemCE for simple designs.

7 External memory interface 425

Data may be strobed into memory using notMemWrBO-1 without the use of notMemCE, as the write enables
go high between consecutive external memory write cycles. The write enables are placed in a high impedance
state during DMA, and are inactive during internal memory access.

Table 7.3 Write

T222-20 T222-17
SYMBOL PARAMETER MIN MAX MIN MAX
TDwVEH Data setup before chip enable high 50 57
TEHDwZ Data hold after write 5 25 12 17
TDwZEL Write data invalid to next chip enable 1
TWELEL Write enable setup before chip enable low -8 3
TEHWEH Write enable hold after chip enable high -3 6

Notes

1 Timing is for both write enables notMemWrBO-1.

Tstates

ProcClockOut

I T1 I T2 I T3 I T4 I T1

12
-4 0
0 4

MemAO-15 ==>< _______ ---1X'--__ _

notMemCE

TDwVEH t
~~ TDwZEL

----.~TEHDwZ
DataO-15 >--+----<

=:j
notMemWrBO-3 _=:=\ __ --"--______ --L _____ _

TWELEL

Figure 7.3 IMS T222 external write cycle

ProcClockOut

notMemWrBO-1 ~ Write Read Read

notMemCE ~

MemAO-15 =>< Address X Address X Address

MemDO-15 =>
Figure 7.4 IMS T222 bus activity for 3 internal memory cycles

'<
'<
X

<

UNITS NOTE
ns
ns
ns
ns 1
ns 1

426 9 IMS T222 engineering data

7.7 notMemCE

The active low signal notMemCE is used to enable external memory on both read and write cycles.

Clockln
(5 MHz)

LlnkOln

LinkOOut

Llnk11n
Llnk10ut

Link21n
Llnk20ut

Link31n
Link30ut

Reset
Analyse
MemWalt
MemReq

100K1
GND

..--.
56R

J As LinkO

.-r-1-
56R

J As Link2

I

C PI VCC ~~ ap us lit lit .J.. .!.. lit CapMinus
GNDTT'" 'r T

r- ErrorOut

r-notMemCE
r- notMemWrB1
r- notMemWrBO

-H
~ MemD12·15

IMS ~.4
T222 '--

~tic ~MemD8-11
M4 ~

~MemD4·7
-H ~~ic

~.4 M ~
~MemDO·3

'-- ~tic
16K.4 ~ r-<

Static
RAM Iz-',.

- MemGranted
'"

J l
MemAO·15

Figure 7.5 IMS T222 static RAM application

7 External memory interface 427

Tstate T1 I T2 T3 I T4 T1 1T2

ProcClockOut

MemA1·15 Address X
MemAO /
notMemCE " / '" MemDO·7 ID < Data ><~<~~
MemD8·15 ID <~~~~
notMemWrBO ~ /
notMemWrB1 ~ '\

Figure 7.6 IMS T222 Least significant byte write in word access mode

Tstate T1 I T2 I T3 I T4 I T1 T2 I T3 I T4 I T1

ProcClockOut

MemA1·15

MemAO

notMemCE

MemDO·7

MemD8·15

notMemWrBO

Address

--~--------------~/
,,'--___ -J/ ,,'--___ ...J/

ID--------------«Data most significant byte>-<

ID---«Data most significant byte)>-------------«

,,~----------~~~
notMemWrB1 ~ __ -"-_______ --J/ "--
MemBacc ~~~~

Figure 7.7 IMS T222 Most significant byte write to byte-wide memory

428 9 IMS T222 engineering data

7.8 MemBAcc

The IMS T222 will, by default, perform word access at even memory locations. Access to byte-wide memory
can be achieved by taking MemBAcc high with the timing shown. Where all external memory operations are
to byte-wide memory, MemBAcc may be wired permanently high. The state of this signal is latched during
T2.

If MemBAcc is low then a full word will be accessed in one external memory cycle, otherwise the high and
low bytes of the word will be separately accessed during two consecutive cycles. The first (least significant)
byte is accessed at the word address (MemAO is low). The second (most significant) byte is accessed at the
word address +1 (MemAO is high).

With MemBAcc high, the first cycle is identical with a normal word access cycle. However, it will be im­
mediately followed by another memory cycle, which will use MemDO-7 to read or write the second (most
significant) byte of data. During this second cycle notMemWrB1 remains high, both for read and write, and
MemD8-15 are high impedance. When writing a single byte with MemBAcc high, both the first and second
cycles are performed with notMemWrBO asserted in the appropriate cycle.

Table 7.4 Byte-wide memory access

T222-20 T222-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE
TEL BAH MemBAcc high from chip enable 12 15 ns
TELBAL MemBAcc low from chip enable 32 29 ns

Tstate T1 T2 T3 T4 T1 T2 I T3 T4

ProcClockOut

MemA1-15 ~ _______________________ A_d_d_r_e_ss ______________________ ><==
MemAO -~~--------~/ '=
MemDO-7 Least significant byte Most significant byte

MemD8-15 Most significant byte

notMemCE

notMemWrBO

notMemWrB1

MemBAcc

Figure 7.8 IMS T222 word write to byte-wide memory

7 External memory interface 429

7.9 MemWait

Taking MemWait high with the timing shown in the diagram will extend the duration of T2 by one processor
cycle TPCLPCL. One wait state comprises the pair W1 and W2. MemWait is sampled during T2, and should
not change state in this region. If Mel11Wait is still high when sampled in W2 then another wait period will be
inserted. This can continue indefinitely. Internal memory access is unaffected by the number of wait states
selected.

The wait state generator can be a simple digital delay line, synchronised to notMemCE. The Single Wait
State Generator circuit in figure 7.10 can be extended to provide two or more wait states, as shown in
figure 7.11.

Table 7.5 Memory wait

T222-20 T222-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE
TPCHWtH MemWait asserted after ProcClockOut high 25 27 ns
TPCHWtL Wait low after ProcClockOut high 45 39 ns

Tstate T1 T2 W1 I W2 T3 T4 T1

ProcClockOut

MemAO-15

notMemCE

MemWait

MemDO-15 ==>~----~(~ ____________ ~D~al~a ________ ~>~----~<==

notMemWrBO-1 /

Figure 7.9 IMS T222 memory wait timing

430

notMemCE

9 IMS T222 engineering data

VCC -0-
1/2 74F74

4t-C S
--c R

notMemCE 0 0 MemWait
ProcClockOut CP

GND

Figure 7.10 Single wait state generator

r - - - - - - --,

-'~------------.. ----------.--VCC

S
R

,--------jD 01------'-----1

CP

S
R
o 0 1----'----) .. MemWait

CP

1/2 74F74 1/2 74F74
ProcClockOut ----~-------_r~------~-

L ______ __ I

Figure 7.11 Extendable wait state generator

7 External memory interface 431

7.10 MemReq, MemGranted

Direct memory access (DMA) can be requested at any time by taking the asynchronous MemReq input high.
For external memory cycles, the IMS T222 samples MemReq during the first high phase of ProcClockOut
after notMemCE goes low. In the absence of an external memory cycle, MemReq is sampled during every
rising edge of ProcClockOut. MemAO·15, MemDO·15, notMemWrBO·1 and notMemCE are tristated before
MemGranted is asserted.

Removal of MemReq is sampled at each rising edge of ProcClockOut and MemGranted removed with
the timing shown. Further external bus activity, either external cycles or reflection of internal cycles, will
commence during the next low phase of ProcClockOut.

Chip enable, write enables, address bus and data bus are in a high impedance state during DMA. External
circuitry must ensure that notMemCE and notMemWrBO·1 do not become active whilst control is being
transferred; it is recommended that a 10K resistor is connected from VCC to each pin. DMA cannot interrupt
an external memory cycle. DMA does not interfere with internal memory cycles in any way, although a program
running in internal memory would have to wait for the end of DMA before accessing external memory. DMA
cannot access internal memory.

MemReq

MemGranted

Reset

Bootstrap
activity B

B Bootstrap sequence

MemReq

External Memory
Interface activity

MemGranted

notMemWrBO·1

notMemCE

MemAO·15

MemDO·15

Figure 7.12 IMS T222 DMA sequence at reset

/////// , _____ --'-J/7

~nternal Memory CYCle~S
1I11I21T31T41 tI1II2M!1iw3T31T4 . -1 EMI cycle. I--------iIEMI cyCle with wait r--------1

------/ ,,'---------/
""'-=7 ,'----...... / ''-__ 7 , ----.... ~

-------'>~---~~--------~>~-----~
-<~««»~------~(«<<<<<<< »r------

Figure 7.13 IMS T222 operation of MemReq and MemGranted with external and internal memory cycles

432 9 IMS T222 engineering data

DMA allows a bootstrap program to be loaded into external RAM ready for execution after reset. If MemReq is
held high throughout reset, MemGranted will be asserted before the bootstrap sequence begins. MemReq
must be high at least one period TDCLDCL of Clockln before Reset. The circuit should be designed to
ensure correct operation if Reset could interrupt a normal DMA cycle.

Table 7.6 Memory request

T222-20 T222-17
SYMBOL PARAMETER MIN MAX MIN MAX UNITS NOTE

TMRHMGH Memory request response time 75 a 100 a ns 1
TMRLMGL Memory request end response time 80 155 100 114 ns
TAZMGH Addr. bus tristate before MemGranted 0 0 ns
TAVMGL Addr. bus active after MemGranted end 0 0 ns
TDZMGH Data bus tristate before MemGranted 0 0 ns
TEZMGH Chip enable tristate before MemGranted 0 0 ns 2
TEVMGL Chip enable active after MemGranted end -6 0 ns
TWEZMGH Write enable tristate before MemGranted 0 0 ns 2
TWEVMGL Write enable active after MemGranted end -6 0 ns

Notes

Maximum response time a depends on whether an external memory cycle is in progress and whether byte
access is active. Maximum time is (2 processor cycles) + (number of wait state cycles) for word access; in byte
access mode this time is doubled.

2 When using DMA, notMemCE and notMemWrBO-1 should be pulled up with a resistor (typically 1.2k). Capac­
itance should be limited to a maximum of 50pF.

Tstate I Tl I T2 I T3 I T4 I Tl

ProcClockOut

MemReq

~--I~TMRLMGL

MemGranted

TAVMGL

MemAO-15

MemDO-15

TEVMGL

notMemCE

TWEVMGL

notMemWrBO-1 ______ ~ ________ -J

Figure 7.14 IMS T222 memory request timing

433

8 Events

EventReq and EventAck provide an asynchronous handshake interface between an external event and an
internal process. When an external event takes EventReq high the external event channel (additional to the
external link channels) is made ready to communicate with a process. When both the event channel and the
process are ready the processor takes EventAck high and the process, if waiting, is scheduled. EventAck
is removed after EventReq goes low.

Only one process may use the event channel at any given time. If no process requires an event to occur
EventAck will never be taken high. Although EventReq triggers the channel on a transition from low to high,
it must not be removed before EventAck is high. EventReq should be low during Reset; if not it will be
ignored until it has gone low and returned high. EventAck is taken low when Reset occurs.

If the process is a high priority one and no other high priority process is running, the latency is as described
on page 407. Setting a high priority task to wait for an event input allows the user to interrupt a transputer
program running at low priority. The time taken from asserting EventReq to the execution of the microcode
interrupt handler in the CPU is four cycles. The following functions take place during the four cycles:

Cycle 1 Sample EventReq at pad on the rising edge of ProcClockOut and synchronise.

Cycle 2 Edge detect the synchronised EventReq and form the interrupt request.

Cycle 3 Sample interrupt vector for microcode ROM in the CPU.

Cycle 4 Execute the interrupt routine for Event rather than the next instruction.

Table 8.1 Event

SYMBOL PARAMETER MIN NOM MAX UNITS
TVHKH Event request response 0 ns
TKHVL Event request hold 0 ns
TVLKL Delay before removal of event acknowledge 0 8+7ns
TKLVH Delay before re-assertion of event request 0 ns

Notes

1 a is 3 processor cycles TPCLPCL.

EventReq

EventAck

Figure 8.1 IMS T222 event timing

NOTE

1

434

9 Links

Four identical INMOS bi-directional serial links provide synchronized communication between processors
and with the outside world. Each link comprises an input channel and output channel. A link between two
transputers is implemented by connecting a link interface on one transputer to a link interface on the other
transputer. Every byte of data sent on a link is acknowledged on the input of the same link, thus each signal
line carries both data and control information.

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted firs!.
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed
by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged data byte
and that the receiving link is able to receive another byte. The sending link reschedules the sending process
only after the acknowledge for the final byte of the message has been received.

The IMS T222 links allow an acknowledge packet to be sent before the data packet has been fully received.
This overlapped acknowledge technique is fully compatible with all other INMOS transputer links. The hard
output channels are not double buffered. There is thus a pause between transmission of the last byte of
a word of the message and the first byte of the next word. This pause time is related to memory speed.
Hard input channels have one byte of double buffering and are unlikely to affect the data rate. The dominant
factor affecting link bandwidth is therefore the memory bandwidth of the transmitting transputer, as shown in
table 9.1. Internal memory access time is similar to zero wait state external access time. Times are for two
interconnected IMS T222's with 20 Mbits/sec link speed.

Table 9.1 Memory/Link speed relationship

Memory Speed Byte Output Word Memory Unidirectioal
(20MHz device) Time nS Read nS Data Rate Mbytes/sec
1 cycle (0 wait) 575 200 1.48
2 cycle (1 wait) 575 250 1.42
3 cycle (2 wait) 575 300 1.38

The IMS T222 links support the standard INMOS communication speed of 10 Mbits/sec. In addition they can
be used at 5 or 20 Mbits/sec. Links are not synchronised with Clockln or ProcClockOut and are insensitive
to their phases. Thus links from independently clocked systems may communicate, providing only that the
clocks are nominally identical and within specification.

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a
single printed circuit board or between two boards via a backplane. Direct connection may be made between
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 ohm
transmission line should be used with series matching resistors RM. When this is done the line delay should
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent.

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within
the skew tolerance of the link, although the absolute value of the delay is immaterial.

Link speeds can be set by LinkSpecial, LinkOSpecial and Link123Speciai. The link 0 speed can be
set independently. Table 9.2 shows uni-directional and bi-directional data rates in Kbytes/sec for each link
speed; LinknSpecial is to be read as LinkOSpecial when selecting link 0 speed and as Link123Speciai for
the others. Data rates are quoted for a transputer using internal memory, and will be affected by a factor
depending on the number of external memory accesses and the length of the external memory cycle.

9 Links 435

Table 9.2 Speed Settings for Transputer Links

Link Linkn Kbytes/sec
Special Special Mbits/sec Uni Bi

0 0 10 800 1130
0 1 5 430 590
1 0 10 800 1130
1 1 20 1480 2050

.J H 'Hlo111213141516171l, JHlL....-l -,-, _
I Data I I Ack I

Figure 9.1 IMS T222 link data and acknowledge packets

Table 9.3 Link

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE
TJQr LinkOut rise time 20 ns 1
TJQf LinkOut fall time 10 ns 1
TJDr Linkln rise time 20 ns 1
TJDf Linkln fall time 20 ns 1
TJQJD Buffered edge delay 0 ns
TJBskew Variation in T JQJD 20 Mbits/s 3 ns 2

10 Mbits/s 10 ns 2
5 Mbits/s 30 ns 2

CLiZ Linkln capacitance @ f=1MHz 7 pF 1
Cll LinkOut load capacitance 50 pF
RM Series resistor for 100n transmission line 56 ohms

Notes

1 These paramters are sampled, but are not 100% tested.

2 This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by
such things as short term variation in supply voltages and differences in delays for rising and falling edges.

90%
LinkOut

10%

90%
Linkln

10% - - - --

Figure 9.2 IMS T222 link timing

436 9 IMS T222 engineering data

LinkOutLaI~;:~~ - ~ - - -

Earliest TJQJD ..

Linkln 1.SV- - - - ~ X K-- -><
TJBskew- I--

Figure 9.3 IMS T222 buffered link timing

Transputer family device A

LinkOut I · I Linkln

________ L_i_n_kl_n~: ---------c.----------L_L_in_k_O_u_t ____ __
Transputer family device B

Figure 9.4 IMS T222 Links directly connected

Transputer family device A Zo=1000hms

LlnkOul ~ Ltnkln

Linkln ~ LinkOut
________ :.:c.:...:.:.:.:c:..'-" Zo=1000hms RM Transputer family device B

Figure 9.5 IMS T222 Links connected by transmission line

Transputer family device A

LinkOut -{) Linkln
buffers

Linkln <}---- LinkOut
Transputer family device B

Figure 9.6 IMS T222 Links connected by buffers

437

10 Electrical specifications

10.1 DC electrical characteristics

Table 10.1 Absolute maximum ratings

SYMBOL PARAMETER MIN MAX UNITS NOTE

VCC DC supply voltage 0 7.0 V 1,2,3
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3
II Input current ±25 mA 4
OSCT Output short circuit time (one pin) 1 s 2
TS Storage temperature -65 150 DC 2
TA Ambient temperature under bias -55 125 DC 2
PDmax Maximum allowable dissipation 2 W

Notes

All voltages are with respect to GND.

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods
may affect reliability.

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate
logic level such as vee or GND.

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND
and vcc.

Table 10.2 Operating conditions

SYMBOL PARAMETER MIN MAX UNITS NOTE

VCC DC supply voltage 4.75 5.25 V
VI, VO Input or output voltage 0 VCC V
CL Load capacitance on any pin 60 pF
TA Operating temperature range IMS T222-S 0 70 DC
TA Operating temperature range IMS T222-M -55 125 DC

Notes

All voltages are with respect to GND.

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics.

3 Air flow rate 400 linear ft/min transverse air flow.

1
1,2

3
3

438 9 IMS T222 engineering data

Table 10.3 DC characteristics

SYMBOL PARAMETER MIN MAX UNITS NOTE
VIH High level input voltage 2.0 VCC+0.5 V 1,2
VIL Low level input voltage -0.5 0.8 V 1,2
II Input current @GND<VkVCC ±10 p.A 1,2
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2
VOL Output low voltage @ IOL=4mA 0.4 V 1,2
lOS Output short circuit current @ GND<VO<VCC 36 65 mA 1,2,3,6

65 100 mA 1,2,4,6
10Z Tristate output current @ GND<VO<VCC ±10 p.A 1,2
PD Power dissipation 700 mW 2,5
CIN Input capacitance @ f=1MHz 7 pF 6
COZ Output capacitance @ f=1MHz 10 pF 6

Notes

1 All voltages are with respect to GND.

2 Parameters for IMS T222-S measured at 4.75V<VCC<5.25V and 0°C<TA<70°C.
Input clock frequency = 5 MHz.

3 Current sourced from non-link outputs.

4 Current sourced from link outputs.

5 Power dissipation varies with output loading and program execution.

6 This parameter is sampled and not 100% tested.

10.2 Equivalent circuits

vee --t-

R1[Load for: R1

Output ~ Link outputs 1K96
I

." Other outputs 970R

50pF = = [R2 "
Diodes are 1 N91 6

-
." -GND

R2

47K
24K

Figure 10.1 Load circuit for AC measurements

Equivalent load:

1 Schottky TIL input
2 Schottky TIL inputs

10 Electrical specifications

Vdd-1

~ Inputs
OV

Vdd-1 V Inputs VIL
OV ~

tpHL

Vdd ~.5V Outputs
OV

tpLH

Vdd
Y,.5V Outputs

OV

Figure 10.2 AC measurements timing waveforms

Test point

Output under test
510R

GND --------~----------+!--

VCC

Figure 10.3 Tristate load circuit for AC measurements

10.3 AC timing characteristics

Table 10.4 Input, output edges

SYMBOL PARAMETER MIN MAX
TOr Input rising edges 2 20
TDf Input falling edges 2 20
Tar Output rising edges 25
TOf Output falling edges 15

Notes

Non-link pins; see section on links.

2 All inputs except Clockln; see section on Clockln.

439

UNITS NOTE
ns 1,2
ns 1,2
ns 1
ns 1

440

Notes

90%

10%

90%

10%

30
Time

ns
20

10

9 IMS T222 engineering data

m--hm---
----- -- ------
TOt

90% -----lC ----
----- -- ------
TOr

10%

-----h------
----- -- ------
TQt

-----lC--------- -- ------
TQr

90%

10%

Figure 10.4 IMS T222 input and output edge timing

Rise time

Fall time

40 6080100

Load Capacitance pF

Link

30
Time

ns
20

10

40 60 80 100

Load Capacitance pF

EMI

Figure 10.5 Typical rise/fall times

1 Skew is measured between notMemCE with a standard load (2 Schottky TIL inputs and 30pF) and
notMemCE with a load of 2 Schottky TIL inputs and varying capacitance.

10 Electrical specifications 441

10.4 Power rating

Internal power dissipation PI NT of transputer and peripheral chips depends on VCC, as shown in figure 10.6.
PINT is substantially independent of temperature.

Total power dissipation PD of the chip is

where PJO is the power dissipation in the input and output pins; this is application dependent.

Internal working temperature TJ of the chip is

where TA is the external ambient temperature in °C and eJA is the junction-to-ambient thermal resistance in
°CIW. eJA for each package is given in the Packaging Specifications section.

500
Power
PINT 400
mW

300

4.4 4.6 4.8 5.0 5.2 5.4 5.6
VCC Volts

Figure 10.6 IMS T222 internal power dissipation vs vee

442

11 Performance

The performance of the transputer is measured in terms of the number of bytes required for the program, and
the number of (internal) processor cycles required to execute the program. The figures here relate to occam
programs. For the same function, other languages should achieve approximately the same performance as
occam.

11.1 Performance overview

These figures are averages obtained from detailed simulation, and should be used only as an initial guide;
they assume operands are of type INT. The abbreviations in table 11.1 are used to represent the quantities
indicated. In the replicator section of the table, figures in braces {} are not necessary if the number of
replications is a compile time constant. To estimate performance, add together the time for the variable
references and the time for the operation.

Table 11.1 Key to performance table

np number of component processes
ne number of processes earlier in queue
r 1 if INT parameter or array parameter, 0 if not
ts number of table entries (table size)
w width of constant in nibbles
p number of places to shift
Eg expression used in a guard
Et timer expression used in a guard
Tb most significant bit set of multiplier ((-1) if the multiplier is 0)
Tbp most significant bit set in a positive multiplier when counting from zero ((-1) if the multiplier is 0)
Tbc most significant bit set in the two's complement of a negative multiplier
nsp Number of scalar parameters in a procedure
nap Number of array parameters in a procedure

11 Performance

Table 11.2 Performance

Names
variables

in expression
assigned to or input to
in PROC or FUNCTION call,

corresponding to an INT parameter
channels

Array Variables (for single dimension arrays)
constant subscript
variable subscript
expression subscript

Declarations
CHAN OF protocol
[size] CHAN OF protocol
PROC

Primitives
assignment
input
output
STOP
SKIP

Arithmetic operators
+ -
1<

I
REM
» «

Modulo Arithmetic operators
PLUS
MINUS
TIMES (fast multiply)

Boolean operators
OR
AND NOT

Comparison operators
= constant
= variable
<> constant
<> variable
> <
>= <=

Bit operators
/\ \I ><

Expressions
constant in expression
check if error

Size (bytes)

1.1+r
1.1+r

1.1+r
1.1

o
5.3
5.3

3.1
9.4

body+2

o
4
1
2
o

1
2
2
2
2

2
1
1

4
1

o
2
1
3
1
2

2

w
4

Time (cycles)

2.1 +2(r)
1.1 +(r)

1.1+(r)
2.1

o
7.3
7.3

3.1
2.2 + 20.2*size

o

o
26.5
26
25
o

1
23
24
22

3+p

2
1

4+Tb

8
2

1
3
3
5
2
4

2

w
6

443

444 9 IMS T222 engineering data

Table 11.3 Performance

Size (bytes) Time (cycles)

Timers
timer input 2 3
timer AFTER

if past time 2 4
with empty timer queue 2 31
non-empty timer queue 2 38+ne*9

ALT (timer)
with empty timer queue 6 52
non-empty timer queue 6 59+ne*9
timer alt guard 8+2Eg+2Et 34+2Eg+2Et

Constructs
SEQ 0 0
IF 1.3 1.4

if guard 3 4.3
ALT (non timer) 6 26

alt channel guard 10.2+2Eg 20+2Eg
skip alt guard 8+2Eg 10+2Eg

PAR 11.5+(np-1)*7.5 19.5+(np-1)*30.5
WHILE 4 12

Procedure or function call
3.5+(nsp-2)*1.1 16.5+(nsp-2)*1.1

+nap*2.3 +nap*2.3
Replicators

replicated SEQ 7.3{+5.1} (-3.8)+ 15.1 *count{ +7.1}
replicated IF 12.3{+5.1 } (-2.6)+19.4*count{ +7.1}
replicated ALT 24.8{ + 1 0.2} 25.4+33.4*count{ + 14.2}
replicated timer ALT 24.8{ + 1 0.2} 62.4+33.4*count{ + 14.2}
replicated PAR 39.f{+5.1} (-6.4)+70.9*count{ +7.1}

11.2 Fast multiply. TIMES

The IMS T222 has a fast integer multiplication instruction product. The time taken for a fast multiply is 4+ Tb.
The time taken for a multiplication by zero is 3 cycles. For example, if the multiplier is 1 the time taken is
4 cycles, if the multiplier is -1 (all bits set) the time taken is 19 cycles.

Implementations of high level languages on the transputer may take advantage of this instruction. For example,
the occam modulo arithmetic operator TIMES is implemented by the instruction and the right-hand operand is
treated as the multiplier. The fast multiplication instruction is also used in high level language implementations
for the multiplication implicit in multi-dimensional array access.

11.3 Arithmetic

A set of functions are provided within the development system to support the efficient implementation of
multiple length integer arithmetic and floating point arithmetic where relevant. In table 11.4 n gives the number
of places shifted and all arguments and results are assumed to be local. Full details of these functions are
provided in the occam reference manual, supplied as part of the development system and available as a
separate publication.

When calculating the execution time of the predefined maths functions, no time needs to be added for calling
overhead. These functions are compiled directly into special purpose instructions which are designed to
support the efficient implementation of multiple length integer arithmetic and floating point arithmetic.

11 Performance 445

Table 11.4 Arithmetic performance

+ cycles for
Function Cycles parameter access t

LONGADD 2 7
LONGSUM 3 8
LONGSUB 2 7
LONGDIFF 3 8
LONGPROD 18 8
LONGDIV 20 8
SBIFTRIGBT (n<16) 4+n 8

(n>=16) n-11 8
SBIFTLEFT (n<16) 4+n 8

(n>=16) n-11 8
NORMALISE (n<16) n+6 7

(n>=16) n-9 7
(n=32) 4 7

ASBIFTRIGBT SHIFTRIGHT+2 5
ASHIFTLEFT SHIFTLEFT+4 5
ROTATERIGHT SHIFTRIGHT 7
ROTATELEFT SHIFTLEFT 7

t Assuming local variables.

11.4 Floating point operations

Floating point operations for the IMS T222 are provided by a run-time package. This requires approximately
2000 bytes of memory for the double length arithmetic operations, and 2500 bytes for the quadruple length
arithmetic operations. Table 11.5 summarizes the estimated performance of the package.

Table 11.5 IMS T222 floating point operations performance

Processor cycles
IMS T222

Typical Worst
REAL32 + - 530 705

* 650 705

/ 1000 1410
< > = >= <= <> 60 60

REAL 64 + - 875 1190

* 1490 1950

/ 2355 3255
< > = >= <= <> 60 60

446 9 IMS T222 engineering data

11.5 Effect of external memory

Extra processor cycles may be needed when program and/or data are held in external memory, depending
both on the operation being performed, and on the speed of the external memory. After a processor cycle
which initiates a write to memory, the processor continues execution at full speed until at least the next
memory access.

Whilst a reasonable estimate may be made of the effect of external memory, the actual performance will
depend upon the exact nature of the given sequence of operations.

External memory is characterized by the number of extra processor cycles per external memory cycle, denoted
as e. The value of e for the IMS T222 with no wait states is 1.

If a program is stored in external memory, and e has the value 2 or 3, then no extra cycles need be estimated
for linear code sequences. For larger values of e, the number of extra cycles required for linear code
sequences may be estimated at (2e·1)/4 per byte of program. A transfer of control may be estimated as
requiring e+3 cycles.

These estimates may be refined for various constructs. In table 11.6 n denotes the number of components in
a construct. In the case of IF, the n'th conditional is the first to evaluate to TRUE, and the costs include the
costs of the conditionals tested. The number of bytes in an array assignment or communication is denoted
by b.

Table 11.6 External memory performance

IMS T222
Program off chip Data off chip

Boolean expressions e-1 0
IF 3en-1 en
Replicated IF 6en+ge-12 (5e-2)n+6
Replicated SEQ (4e-3)n+3e (4e-2)n+3-e
PAR 4en 3en
Replicated PAR (17e-12)n+9 16en
ALT (4e-1)n+ge-4 (4e-1)n+ge-3
Array assignment and 0 max (2e, eb)

communication in
one transputer

The following Simulation results illustrate the effect of storing program and/or data in external memory. The
results are normalized to 1 for both program and data on Chip. The first program (Sieve of Erastosthenes)
is an extreme case as it is dominated by small, data access intensive loops; it contains no concurrency,
communication, or even multiplication or division. The second program is the pipeline algorithm for Newton
Raphson square root computation.

11 Performance 447

Table 11.7 IMS T222 external memory performance

Program e=1 e=2 e=3 e=4 On chip
Program off chip 1 1.2 1.4 1.8 2.1 1

2 1.1 1.2 1.4 1.6 1

Data off chip 1 1.2 1.5 1.8 2.1 1
2 1.1 1,.3 1.4 1.6 1

Program and data off chip 1 1.4 1.9 2.5 3.0 1
2 1.2 1.5 1.8 2.1 1

11.6 Interrupt latency

If the process is a high priority one and no other high priority process is running, the latency is as described
in table 11.8. The timings given are in full processor cycles TPCLPCL; the number of Tm states is also given
where relevant. Maximum latency assumes all memory accesses are internal ones.

Table 11.8 Interrupt latency

Typical Maximum
TPCLPCL I Tm TPCLPCL I Tm

IMS T222 19 I 53 I

448

12 Package specifications

12.1 68 pin grid array package

1 2 3 4 5 6 7 8 9 10

A
- -- - ~ -", - -..... -r---r-' Proc

(co, LinkO Clock VCC
Link Link Link Link Link Oi~~~le]

Plus Special Out InO Out1 Out2 In2 In3) RAM

I HoldTo Clockln Link Link123 Link Link Link Event Ho'dTo too",,]
GNO Special Special OutO In1 Out3 Req GNO

- -
B

Event"1
(Reset

Boot
Cap) (Mem Mem 1 From Minus ACk) Wait Req

ROM -
c

(Error HOldTO] Mem Mem I
GNO I~ndex I BAcc Granted D

Mem Mem

1 I
(not I GNO l Mem DO 01 IMS T222

CE
68 Pin Grid Array

(J
Top View .ot) not

J
Mem Mem

Mem Mem
02 03

WrB1 WrBO

E

F

(Mem
GNO J (.om) Mem) 04 A2 AO G

- -
(Mem Mem Mem) I Mem Mem Mem) 05 07 09 AS A6 A1

H

- ~~ -
(Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem) 06 010 012 014 A15 A13 A10 A8 A7 A3

"
J

(Mom Mem Mem Mem Mem VCC Mom) M~ Mem Mem) 08 011 013 015 A14 A12 A11 A9 A4

- - - - -
K

Figure 12.1 IMS T222 68 pin grid array package pinout

12 Package specifications 449

,M ~ E r
=iFf@@@@@@@@@@A

@@@@@@@@@@ B

@@@ @@@ C

@ @ @ @ D

@ @ @ @ E
K h @@ @@

@ @ @ @ G

@@@ @@@ H

141 .. ;---~ ___ .. _1 ---l ..
Ooll
l tJ! t-~;::: :K::: : .~ ~

index

rr
~

I ..

10 9 8 7 6 5 4 3 2 1

~

-

I I

F

Figure 12.2 68 pin grid array package dimensions

Table 12.1 68 pin grid array package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 26.924 ±0.254 1.060 ±0.010
B 17.019 ±0.127 0.670 ±0.008
C 2.466 ±0.279 0.097 ±0.011
D 4.572 ±0.127 0.180 ±0.005
E 3.302 ±0.127 0.130 ±0.005
F 0.457 ±0.051 0.018 ±0.002 Pin diameter
G 1.270 ±0.127 0.050 ±0.005 Flange diameter
K 22.860 ±0.127 0.900 ±0.005
l 2.540 ±0.127 0.100 ±0.005
M 0.508 0.020 Chamfer

Package weight is approximately 6.8 grams

Table 12.2 68 pin grid array package junction to ambient thermal resistance

PARAMETER
At 400 linear ftlmin transverse air flow

450 9 IMS T222 engineering datI

12.2 68 pin PLCC J-bend package

HoldToGND 10
BootFromROM 11

Reset 12
Error 13

HoldToGND 14
MemDO 15
MemD1 16
MemD217
MemD3 18
MemD419
MemOS 20

GND 21
Mem622
Mem723
Mem824

MemD925
Mem10 26

m=~m~vMN~=~~~v~N~
(0 CD co coco coC.Q co

IMS T222
68 pin J-Bend

Chip Carrier
Top View

~mmO~N~~~co~=mO~NM
NNNMMMMMMMMMMvvvv

60 DisablelntRam
59 EventAck
58 HoldToGND
57 Analyse
56 MemBAcc
55 MemWait
54 MemReq
53 MemGranted
52 GND
51 notMemCE
50 notMemWrBO
49 notMemWrB1
48 MemAO
47 MemA1
46 MemA2
45 MemA3
44 MemA4

Figure 12.3 IMS T222 68 pin PLCC J-bend package pinout

12 Package specifications 451

index

Figure 12.4 68 pin PLCC J-bend package dimensions

Table 12.3 68 pin PLCC J-bend package dimensions

Millimetres Inches
DIM NOM TOL NOM TOL Notes
A 25.146 ±0.127 0.990 ±0.005
B 24.232 ±0.127 0.954 ±0.005
C 3.810 ±0.127 0.150 ±0.005
D 0.508 ±0.127 0.020 ±0.005
F 1.270 ±0.127 0.050 ±0.005
G 0.457 ±0.127 0.018 ±0.005
J 0.000 ±0.051 0.000 ±0.002
K 0.457 ±0.127 0.018 ±0.005
L 0.762 ±0.127 0.030 ±0.005

Package weight is approximately 5.0 grams

Table 12.4 68 pin PLCC J-bend package junction to ambient thermal resistance

PARAMETER
At 400 linear fVmin transverse air flow

452

13 Ordering

This section indicates the designation of speed and package selections for the various devices. Speed of
Clockln is 5 MHz for all parts. Transputer processor cycle time is nominal; it can be calculated more exactly
using the phase lock loop factor PLLx, as detailed in the external memory section.

For availability contact local INMOS sales office or authorised distributor.

Table 13.1 IMS T222 ordering details

INMOS Processor Processor
designation clock speed cycle time PLLx Package

IMS T222·G17S 17.5 MHz 57 ns 3.5 Ceramic Pin Grid
IMS T222·G20S 20.0 MHz 50 ns 4.0 Ceramic Pin Grid

IMS T222·J17S 17.5 MHz 57 ns 3.5 Plastic J-8end
IMS T222·J20S 20.0 MHz 50 ns 4.0 Plastic J-8end

IMS T222·G17M 17.5 MHz 57 ns 3.5 Ceramic Pin Grid MIL Spec
IMS T222·G20M 20.0 MHz 50 ns 4.0 Ceramic Pin Grid MIL Spec

c O[IT}mos
FEATURES

16 bit architecture
33 ns internal cycle time
30 MIPS (peak) instruction rate
IMS T225-20 is pin compatible with IMS T222-20
Debugging support
4 Kbytes on-chip static RAM
60 Mbyteslsec sustained data rate to internal memory
64 Kbytes directly addressable external memory
30 Mbyteslsec sustained data rate to external memory
630 ns response to interrupts
Four INMOS serial links 5/10/20 Mbitslsec
Bi-directional data rate of 2.4 Mbyteslsec per link
Internal timers of 1 J.l.s and 64 J.l.s
Boot from ROM or communication links
Single 5 MHz clock input
Single +5V ±5% power supply
MIL-STD-883C processing will be available

APPLICATIONS

Real time processing
Microprocessor applications
High speed multi processor systems
Industrial control
Robotics
System simulation
Digital signal processing
Telecommunications
Fault tolerant systems
Medical instrumentation

453

IMS T225
transputer

Product Preview

"" System '\
Services

4k bytes
of

On-chip
RAM

External
Memory
Interface

May 1989

454

1 Introduction

The IMS T225 transputer is a 16 bit CMOS microcomputer with 4 Kbytes on-chip RAM for high speed
processing, an external memory interface and four standard INMOS communication links. The instruction set
achieves efficient implementation of high level languages and provides direct support for the occam model
of concurrency when using either a single transputer or a network. Procedure calls, process switching and
typical interrupt latency are sub-microsecond. A device running at 30 MHz achieves an instruction throughput
of 15 MIPS.

For convenience of description, the IMS T225 operation is split into the basic blocks shown in figure 1.1.

VCC
GND

CapPlus
CapMinus

Reset
Analyse

Error
BootFromROM

Clockln
ProcSpeedSelectO-2

DisablelntRam

ProcClockOut
notMemCE

notMemWrBO·1

MemWait
MemBAcc

MemReq
MemGranted

System
services

4k bytes
of

On-Chip
RAM

External
Memory
Interface

LinkSpecial
LinkOSpecial

~====~..---- Link123Speciai

LinklnO
LinkOutO

Linkln1
LlnkOun

Linkln2
LinkOut2

Linkln3
LinkOut3

F EventReq
Event. EventAck

16 MemD0-15

16 MemAO·15

Figure 1.1 IMS T225 block diagram

The IMS T225 is functionally equivalent to the IMS T222 but has the addition of three speed select pins
(ProcSpeedSelectO·2) and improved links. The IMS T225 is pin compatible with the IMS T222 and is
a direct replacement in many applications. The IMS T225 can directly access a linear address space of
64 Kbytes. The 16 bit wide non-multiplexed external memory interface provides a data rate of up to 2 bytes
every 100 nanoseconds (20 Mbytes/sec) for a 20 MHz device.

System Services include processor reset and bootstrap control, together with facilities for error analysis.

The INMOS communication links allow networks of transputers to be constructed by direct point to point
connections with no external logiC. The links support the standard operating speed of 10 Mbits/sec, but also

1 Introduction 455

operate at 5 or 20 Mbits/sec. The links have been improved over those of the IMS T222 and fully support
overlapped acknowledge; each IMS T225 link can transfer data bi-directionally at up to 2.4 Mbytes/sec. The
link speed settings are the same as those on the IMS T800 (see page 241).

The IMS T225 instruction set contains a number of instructions to facilitate the implementation of breakpoints.
For further information concerning breakpointing, refer to Support for debugginglbreakpointing in transputers
(technical note 61).

456

2 Pin designations

Table 2.1 IMS T225 system services

Pin In/Out Function
VCC,GND Power supply and return
CapPlus, CapMinus External capacitor for internal clock power supply
Clockln in Input clock
ProcSpeedSelectO-2 in Processor speed selectors
Reset in System reset
Error out Error indicator
Analyse in Error analysis
BootFromRom in Bootstraps from external ROM or from link
DisablelntRAM in Disable internal RAM

Table 2.2 IMS T225 external memory interface

Pin In/Out Function
ProcClockOut out Processor clock
MemAO-15 out Sixteen address lines
MemD0-15 in/out Sixteen data lines
notMemWrBO-1 out Two byte-addressing write strobes
notMemCE out Chip enable
MemBAcc in Byte access mode selector
MemWait in Memory cycle extender
MemReq in Direct memory access request
MemGranted out Direct memory access granted

Table 2.3 IMS T225 event

Pin In/Out Function
EventReq in Event request
EventAck out Event request acknowledge

Table 2.4 IMS T225 link

Pin In/Out Function
LinklnO-3 in Four serial data input channels
LinkOutO-3 out Four serial data output channels
LinkSpecial in Select non-standard speed as 5 or 20 Mbits/sec
LinkOSpecial in Select special speed for Link 0
Link123Speciai in Select special speed for Links 1 ,2,3

Signal names are prefixed by not if they are active low, otherwise they are active high.
Pinout details for various packages are given on page 459.

457

3 Instruction set summary

The instruction set of the IMS T225 is the same as that of the IMS T222 with a number of additions. The
instructions additional to those of the IMS T222 are listed below.

The load device identity (Iddevid) instruction (table 3.4) pushes the device type identity into the A register.
Each product is allocated a unique group of numbers for use with the Iddevid instruction. The product identity
numbers for the IMS T225 are 40 to 49 inclusive.

Table 3.5 contains a number of instructions to facilitate the implementation of breakpoints. These instructions
overload the operation of jO. Normally jO is a no-op which might cause descheduling. SetjObreak enables the
breakpointing facilities and causes jO to act as a breakpointing instruction. When breakpointing is enabled,
jO swaps the current Iptr and Wptr with an Iptr and Wptr stored above MemStart. The breakpoint instruction
does not cause descheduling, and preserves the state of the registers. It is possible to single step the pro­
cessor at machine level using these instructions. Refer to Support for debugginglbreakpointing in transputers
(technical note 61) for more detailed information regarding debugger support.

Table 3.1 IMS T225 arithmetic/logical operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

08 F8 prod b+4 product for positive register A
m+5 product for negative register A

Table 3.2 IMS T225 general operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

5A 25FA dup 1 duplicate top of stack
79 27F9 pop 1 pop processor stack

Table 3.3 IMS T225 CRC and bit operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E

74 27F4 crcword 35 calculate crc on word
75 27F5 crcbyte 11 calculate crc on byte

76 27F6 bitcnt b+2 count bits set in word
77 27F7 bitrevword 36 reverse bits in word
78 27F8 bitrevnbits n+4 reverse bottom n bits in word

Table 3.4 IMS T225 processor initialisation operation codes

Operation Memory Processor 0
Code Code Mnemonic Cycles Name E
17C 2127FC Iddevid 1 load device identity
7E 27FE Idmemstartval 1 load value of memstart address

458 10 IMS T225 preview

Table 3.5 IMS T225 debugger support codes

Operation Memory Processor D
Code Code Mnemonic Cycles Name E

0 00 jump 0 3 jump 0 (break not enabled) 0
11 jump 0 (break enabled, high priority)
13 jump 0 (break enabled, low priority)

B1 2BF1 break 9 break (high priority)
11 break (low priority)

B2 2BF2 clrjObreak 1 clear jump 0 break enable flag
B3 2BF3 setjObreak 1 set jump 0 break enable flag
B4 2BF4 testjObreak 2 test jump 0 break enable flag set
7A 27FA timerdisableh 1 disable high priority timer interrupt
7B 27FB timerdisablel 1 disable low priority timer interrupt
7C 27FC timerenableh 6 enable high priority timer interrupt
70 27FO timerenablel 6 enable low priority timer interrupt

459

4 Package specifications

4.1 68 pin grid array package

2 3 4 5 6 7 8 9 10

A
Cap LinkO Proc Link Link Link Link Link Disable

Clock VCC Int Plus Special Out InO Out1 Out2 In2 In3 RAM

Proc Link Link123 Link Link Link Event Proc
Speed Clockln Special Special OutO In1 Out3 Req Speed Analyse
Select1 SelectO

B

Boot Cap Event Mem Mem Reset From
ROM Minus Ack Wait Req C

,
Proc

I'" Index Mem Mem Error Speed BAcc Granted Select2
D

Mem Mem not
GND Mem DO D1 IMS T225 CE

E

68 pin grid array

Mem Mem top view not not

D2 D3 Mem Mem
WrB1 WrBO

F

Mem GND Mem Mem
D4 A2 AO G

Mem Mem Mem Mem Mem Mem
D5 D7 D9 A5 A6 A1 H

Mem Mem Mem Mem Mem Mem Mem Mem Mem Mem
D6 D10 D12 D14 A15 A13 A10 A8 A7 A3 J

Mem Mem Mem Mem Mem VCC Mem Mem Mem Mem
D8 D11 D13 D15 A14 A12 A11 A9 A4 K

Figure 4.1 IMS T225 68 pin grid array package pinout

Details of the 68 pin grid array package dimensions are given on page 449

460

4.2 68 pin PLCC J-bend package

ProcSpeedSelect1 1 0
BootFromROM 11

Reset 12
Error 13

ProcSpeedSelect2 1 4
MemDO 15
MemD1 16
MemD2 17
MemD318
MemD419
MemD520

GND 21
Mem622
Mem723
Mem824

MemD925
Mem1026

mOO~~~vMN~OO~~~vMN~
to <..0 to <..0<.0 <.0 co c,o

IMS T225
68 pin J-Bend

Chip Carrier
Top View

~oomO_NMv~<..O~oomO_NM

NNNMMMMMMMMMMvvvv

10 IMS T225 preview

60 DisablelntRam
59 EventAck
58 ProcSpeedSelectO
57 Analyse
56 MemBAcc
55 MemWait
54 MemReq
53 MemGranted
52 GND
51 notMemCE
50 notMemWrBO
49 notMemWrB1
48 MemAO
47 MemA1
46 MemA2
45 MemA3
44 MemA4

Figure 4.2 IMS T225 68 pin PLCC J-bend package pinout

Details of the 68 pin PLCC J-bend package dimensions are given on page 451.

461

5 Ordering

This section indicates the designation of speed and package selections for the various devices. Speed of
Clockln is 5 MHz for all parts. Transputer processor cycle time is nominal; it can be calculated more exactly
using the phase lock loop factor PLLx, as detailed in the external memory section.

For availability contact local INMOS sales office or authorised distributor.

Table 5.1 IMS T225 ordering details

INMOS Processor Processor
designation clock speed cycle time PLLx Package

IMS T22S-G17S 17.5 MHz 57 ns 3.5 Ceramic Pin Grid
IMS T22S-G20S 20.0 MHz 50 ns 4.0 Ceramic Pin Grid
IMS T22S-G2SS 25.0 MHz 40 ns 5.0 Ceramic Pin Grid
IMS T22S-G30S 30.0 MHz 33 ns 6.0 Ceramic Pin Grid

IMS T22S-J17S 17.5 MHz 57 ns 3.5 Plastic J-8end
IMS T22S-J20S 20.0 MHz 50 ns 4.0 Plastic J-8end

462 10 IMS T225 preview

c

DITTImOS
FEATURES

ST506/ST 412, SA400/450 compatible interface
Full disk interface logic on chip
Minimum of external components required
On-chip 16 bit processor
2 Kbytes on-chip RAM
4 Kbytes on-chip ROM disk control software
External memory interface
Hardware CRC/ECC generator
Two bi-directional 8 bit data ports
Two 10/20 Mbits/sec INMOS serial links
External event interrupt
Variable wait states for slow memory
Internal timers
Support for run-time error diagnostics
Bootstraps from ROM, link or disk
Single 5 MHz processor clock input
Power dissipation less than 1 Watt

463

IMS M212
disk
processor

Product Preview

System
Services

4k bytes
of

On-chip
ROM

2k bytes
of

On-chip
RAM

External
Memory
Interface

16 bit
Processor

Disk
Controller

464

1 Introduction

The IMS M212 peripheral processor is an intelligent peripheral controller of the INMOS transputer family,
configured for connection to soft sectored winchester and floppy disk drives. It satisfies the demand for
increasing intelligence in peripheral controllers and maintains a high degree of flexibility, allowing designers
to modify the controller function without altering the hardware.

Reset
Analyse
Error
BootFromROM
LinkSpeed
Clockln
VCC

System
services

GND
HoldToGND
CapPlus __ ~=::rl-....J
CapMinus

notCE
ALE
RnotW
Wait
ProcClockOut
DisintROM

4k bytes
of

On-chip
ROM

2k bytes
of

On-chip
RAM

External
Memory
Interface

ADO-7 AO-7

16 bit
Processor

Event I+-- EventReq
~ ________ ~~EventAck

Peripheral
Ports and
Disk
Control
Logic

PAO-7 PBO-7

LinklnO
LinkOutO

Linkln1
LinkOut1

notlndex
notWr iteG ate
Early
Late
notWriteData
PhaseUp
PhaseDn
Vln
ReadData
WriteClock

Figure 1.1 IMS M212 block diagram

The disk control function has been designed to provide easy connection, with minimal external hardware,
to a standard winchester and/or floppy disk interface. Two byte-wide programmable bidirectional ports are
provided to control and monitor disk functions such as head position, drive selection and disk status. A
dedicated port is provided for serial data interfaces and critical timing signals.

Introduction 465

The IMS M212 is programmed as a normal transputer, permitting extremely powerful peripheral control facil­
ities to be built into the device and thus reducing the load on the traditional central processor of a computer.
Full details are given in the IMS M212 Disk Processor Product Data manual.

1.1 IMS M212 peripheral processor

1.1.1 Central processor

At the heart of the IMS M212 is a 16 bit processor which is compatible with the transputer family. Its design
achieves compact programs, efficient high level language implementation and provides direct support for the
occam model of concurrency. The processor shares its time between any number of concurrent processes.
A process waiting for communication or a timer does not consume any processor time. Two levels of process
priority enable fast interrupt response to be achieved.

The IMS M212 has been designed so that the on-chip processor performs as many functions as possible,
providing flexible operation and minimising on-chip disk-specific hardware.

1.1.2 Peripheral interface

The two 8 bit data ports PAO·7 and PBO·7 are controlled by the processor via a pair of channels. This allows
the programmer to modify the function of these ports in order to implement a wide variety of applications.

The peripheral interface includes data output registers and TTL compatible input ports, as well as facilities
for defining the direction of the pins on a bit-selectable basis. The interface contains logic to detect a change
of state on the input pins and to store this change for interrogation by the program.

In addition to this, the external memory interface can support memory mapped peripherals on its byte-wide
data bus. An event pin is also provided, so that peripherals can request attention.

1.1.3 Disk controller

The disk interface provides a simple interconnection to ST506/ST 412 and SA400/SA450 compatible disk
drives via ten dedicated disk control lines and the two general purpose 8 bit bidirectional data ports PAO·7
and PBO·7. Although the on-chip disk control hardware handles much of the specialised data conversion,
as many disk operations as possible are controlled by the processor, using sequences of control and data
information.

The processor can program and interrogate all the registers controlling the disk functions and data ports, and
thereby control the external interface lines. As a result of this versatility, the IMS M212 can also be used in
applications other than disk control ones.

A versatile hardware 32 bit Error Correcting Codes (ECC) and 16 bit Cyclic Redundancy Codes (CRC)
generator is included to check data integrity. ECC's allow certain classes of errors to be corrected as well as
detected, whilst CRC's only allow detection.

When writing data to the disk the hardware serialises the data and encodes it into a Frequency Modulated
(FM) or Modified Frequency Modulated (MFM) data stream. Any necessary precompensation is performed
internally before outputting the data together with the necessary control signals. Any necessary modification
of the data, for instance writing the Address Marks (AM) or inserting the CRC/ECC bytes, is automatically
performed by the hardware.

When reading data from disk the raw read data is input and the function known as data separation is performed
internally. The hardware examines the data stream for an Address Mark to achieve byte synchronisation and
then searches for the desired sector information. When the required data is located it is decoded and a serial
to parallel conversion is performed before the data is transferred to the processor.

466 11 IMS M212 preview

1.1.4 Links

The IMS M212 uses a DMA block transfer mechanism to transfer messages between memory and another
transputer product via the INMOS links. The link interfaces and the processor all operate concurrently,
allowing processing to continue while data is being transferred on all of the links.

The host interface of the IMS M212 is via two INMOS standard links, providing simple connection to any
transputer based system or, via a link adaptor, to a conventional microprocessor system. Link speeds of
10 Mbits/sec and 20 Mbits/sec are available, making the device compatible with all other INMOS transputer
products.

The on-chip disk control logic is controlled by the processor, using simple command sequences, via two
channels which appear to the processor as a normal pair of hardware channels.

1.1.5 Memory system

The 2 Kbytes of on-chip static RAM can be used for program or data storage, as a sector buffer or to store
parameter and format information. It can be extended off chip, via the external memory interface, to provide
a total of 64 Kbytes. Internal and external memory appear as a single contiguous address space.

Software contained in 4 Kbytes of internal ROM enables the IMS M212 to be used as a stand alone disk
processor. The ROM can be disabled to free the address space for external memory.

1.1.6 Error handling

High level language execution is made secure with array bounds checking, arithmetic overflow detection etc.
A flag is set when an error is detected, and the error can be handled internally by software or externally by
sensing the error pin. System state is preserved for subsequent analysis.

467

2 Operation

The IMS M212 can be used in two modes: Mode 1, which uses the software in the internal ROM, and Mode 2,
which relies upon custom designed software.

2.1 Mode 1

Mode 1 operation uses code in the on-chip ROM to control the disk controller hardware, and little knowledge
of the hardware is required to implement winchester and floppy disk drivers. The programming interface to
all drive types is identical, and there is sufficient flexibility to allow a wide variety of formats and drive types
to be used.

Both ST506/412 compatible winchester and SA400/450 compatible floppy drives are supported in standard
double density formats; this includes common 5.25 and 3.5 inch drives. Up to 4096 cylinders are allowed.
Floppy drives can have up to 8 heads and winchesters up to 16 heads. There can be between 1 and 256
sectors per track, with sector sizes of 128 to 16384 bytes in powers of 2. Drives with or without 'seek complete'
and 'ready' lines are supported, and step rates can be from 64 J.l.s to 16 ms. A range of non-standard formats
can also be set up for user-specific requirements.

As with transputers, the IMS M212 can be bootstrapped from ROM or via a link. In addition, the Mode 1
monitor process also provides a facility whereby the disk processor can bootstrap itself with code read from
a disk; this code runs instead of the Mode 1 process. Another option sends a standard bootstrap message,
read from a disk, out of link 0; the Mode 1 process then continues as normal. It is also possible in Mode 1
to send a command, at any time, to bootstrap from code in the sector buffer.

General workspace for Mode 1 is contained in on-chip RAM, which also provides 1280 bytes of sector buffer.
Contiguous external RAM immediately past the internal RAM will automatically be used to extend the size of
the sector buffer. As many sectors as will fit into the sector buffer can be stored in it at the same time.

In Mode 1 a separate data area, in on-Chip RAM, contains all the required control information (parameters)
for each of the four possible drives. Parameters may be read from or written to via the links, and contain such
information as the capacity of the disk, current position of the heads, desired sector for reading or writing,
drive type, timing details etc.

Command and data bytes are accepted down either of the IMS M212 links; an interlock system prevents
conflict between commands received on both links simultaneously. Any results are returned on the link which
received the command. Available commands are

EndOfSequence
ReadBuffer
Restore
Pol/Drives

Initialise
WriteBuffer
Seek
FormatTrack

ReadParameter
ReadSector
Se/ectHead
Boot

Write Parameter
WriteSector
Se/ectDrive

Disk access commands implicitly select the drive, perform a seek and select the head. If an ECC or CRC
error is found when reading a sector, a programmable number of automatic retries are performed and a
subsequent correction attempted if possible. Mode 1 supports two of the four IMS M212 ECC/CRC modes -
ECC and CRC. Either CRC or ECC can be specified in either of the ID or Data fields, making it possible to
have floppies with correctable Data fields.

All appropriate parameters are checked to ensure that, for example, an attempt is not made to access a
non-existent sector, relieving the host processor of such checking. Another feature which reduces the load
on the host processor is the logical sector mode, in which all the sectors are specified as a single linear
address space rather than physical cylinder/head/sector.

The logical address can also be auto-incremented if desired, as can the sector buffer. This allows a number
of consecutive sectors to be read from or written to the disk with little overhead. As a sticky status checking
technique is used, the status only has to be checked once at the end of a stream of commands; if an error
occurred then reading and writing is inhibited, so that the logical address can be inspected to find where the
error occurred.

468 11 IMS M212 preview

2.2 Mode 2

In Mode 2 operation the internal ROM is bypassed, allowing the device to utilise user-defined software. This
software can be held in external ROM, bootstrapped from a floppy or winchester disk, or loaded from the
host processor via a link into internal or external RAM.

In this mode the user services the disk control hardware via a pair of on-chip high bandwidth channels. Using
these channels the processor has access to the 49 registers which control the operation of the disk controller.
Sequences of control codes and data bytes are sent by the processor to the disk controller logic via one of
the hardware channels and data returned to the IMS M212 processor via the other. Each control code is a
single byte, and may be followed by one or more data bytes.

In Mode 2 the designer can define new commands which are more complex than otherwise available. Exam­
ples include a Format Disk command as an extension to the Format Track; an application-specific directory
structure; a software interface to optimise a particular file structure. Mode 2 also allows the user to optimise
data transfer; thus, data could be read from a disk with no interleave, or data transfers could be re-ordered
to minimise head movement. Disk searches can be arranged such that data transfer back to the host is
minimised, as data comparisons can be performed by the on-chip processor.

PAO-7

PBO-7

not Index

notWriteGate

Early
Late

notWriteData

Sel
write

PhaseUp
PhaseDn

Vln
ReadData

WriteClock

~ PIA

~
logic .;,

r>- Databus

I II

l l Jl Code bus

..
Timeout CRC/ECC -e. logic logic f--

~r-

I Channel I If Channel I
To Disk From Disk

I~
r-

-
-

~) ~~
Bus interface

logic

Overrunl ~
Underrun Bus

timi
CRC/ECC
error

10 field

I/F
ng

Start I Timeout error 4~ ~

l-
I- =il, ...
f0-

r r ,

~ Write Data Parallell ~ ~ Read/Write

-.- Precomp.
Serial :: control logic

Read
~ ~ ?'~

r
Mode ~ tJt: -.J~ l-

I ected I.-

clock I I I III I I l',
""L,.ocI~iJ ocI7~~W ~~

!=
::: Data sep.

ReadData .. Seriall ID/Data
Parallel AMfound Compare ReadClock ..

-e.

Figure 2.1 Disk controller interface

4

IDI Data
mpare
or

co
err

3 Applications

Error -----;63
Analyse 66
Reset 68
Vcc 67

Gnd

Gnd

r-- 62

.----t---I 64 ut
L...----!1---I65

...--4--152
1----1---1 6 1

n/..£ 53

54

LinkSpeed ----1---155
LinklnO 58
LinkOutO 59
Linkln1 56
LinkOut 1 57

Gnd
Gnd

n/c - 10
n/c - 11
n/c - 12
n/c - 60

----1---113
---4--123

VCC GND

1
43

14
33

469

Vcc

notDS1 --35~~+4-r-~~7--~26
notDS2

36 28
notDS3

37 notDS4 30
PortA 38 notHSO 32

39 14

PortS

M212

EMI pins

15
to
22

2
to
9

n/c n/c

XO-430P

notHS1 40 18
41 notHS2 4
4 2 1-+-+-++-+- nl c
44 notRWC 2
45 nntS.tp.D 24
46 notDlr 34
47 notSeekComplete 8
48 notTrackO 10
49 notReady 22
50 notlJllntefal!lt 12
51 Vcc

notWriteGate 6
~~ noll ndex

][)} 3 0 S N ~ 5 1 79 E ~
Gnd rtt > 14

28 1-""-- 17
29~-----+-<~r--~

31 ~
32 :::::::-

II

Data

34 way
St 506
Winchester
Control
Connector

20 way
St 506
Winchester
Data
Connector

310
J 150nl 31~

15 II separation
3n3 II

.11 34~---~--~6In8'~I1~

24 r-- 22k 330 II

27 II

2 6 ~-+-----' 10 n

and
precompensation
filters

5MHz I Xtal I 20MHz
I oscillator I

M212 Pin Numbers
as for J -be nd package

Figure 3.1 Winchester disk controller

470 11 IMS M212 preview

The IMS M212 can interface to a floppy or winchester disk with very little external circuitry when used in
Mode 1 or if a program is bootstrapped from a link. A typical arrangement is shown in figure 3.1. Note the
absence of any control port buffers; this is possible provided the drive characteristics are not infringed.

Additional external memory can easily be added to the IMS M212. In both Modes 1 and 2, external RAM can
be added for extra sector storage, whilst in Mode 2 extra RAM or ROM can be provided for program storage.

With the addition of control buffers and suitable clocks, a single IMS M212 can interface to both floppy and
winchester drives. Link adaptors provide a means of interfacing to conventional microprocessors.

The IMS B005 evaluation board is an example of an application with control for both types of drive. The
board also has a fully populated memory interface.

Host
interface (s)

Alternative
host

interface

5 MHz

M212

r,O~p;::t:i o:n~al;l--~~ S y s te m
link ~----1 Services

Disc
Interface

ada pte rs and
Links

Links

Services .~--t~
EMI interface

External memory
and

memory mapped peripherals

Figure 3.2 Enhanced disk controller interface

MHz
MHz

ST506
and

SA400
compatible

disk
drives

Data separation
and

precompensation
filters

The IMS M212 can interface with both floppy and winchester disk drives, and the data rate to and from the
disk can be selected by software. As a result the device is suitable for interfacing to the new generation of
floppy disk drives which use vertical recording. These drives have an increased data rate of 1 Mbitisec, and
quadruple the capacity of existing floppy disk drives to 4 Mbytes. A single IMS M212 can be used to control
a mixture of standard floppy drives, winchester drives and the new high speed high capacity drives. This
eases compatibility and portability problems, and provides a simple upgrade path from standard floppies to
high capacity floppies to winch esters.

3 Applications 471

The IMS M212 provides a very simple and compact disk controller solution, making it very easy to replace
a single large disk drive with an array of IMS M212's, each controlling a single smaller disk drive. This
has several advantages: cheaper drives can be used; overall available disk bandwidth is increased; local
processing is provided by a high performance processor at each disk node; fault tolerant operation. The
latter can be achieved by holding duplicated data on several drives. This prevents the whole system from
stopping, as would be the case if the single large drive failed.

These advantages are particularly applicable when transputers are connected in arrays to provide high per­
formance concurrent systems (figure 3.3). The IMS M212's can be directly connected to the array via INMOS
links and the spare link used to communicate with the adjacent IMS M212 to provide the fault tolerant oper­
ation.

Figure 3.3 Transputer network with disk processors

A high performance processor allows many operations to be performed locally to the disk. This not only
frees the host processor for other work but also removes the need for large amounts of data to be needlessly
transferred to the host. Operations which can be performed by the IMS M212 include: file management
with directory management and pre-reading; data manipulation such as compression/de-compression and
encryption/de-cryption; data search such as database key searching; performance optimisation such as head
scheduling and cacheing.

The IMS M212 external memory interface can be used to connect to memory mapped peripherals. One
application of this is interfacing to a SCSI bus controller, permitting direct connection to the SCSI bus in a
low part count system. The processor is used to control the SCSI bus controller and implements the required
command interface, as well as controlling the disk or other peripheral.

This arrangement allows floppy and winchester disks to be simply connected to a SCSI bus. Because the
command interface is controlled by a process running in the IMS M212, any future command upgrades can
easily be incorporated.

472 11 IMS M212 preview

The design can be used both as a target and an initiator interface, again controlled by the process running
in the IMS M212. It provides a means of implementing a link to SCSI interface, as well as a SCSI controlled
disk.

UpperMemAddr
M212 LowerMemAddr ..

lOR

Wait lOW ..
ProcClockOut ... PAL ... IRQ .. (22V10) .. DReQ NCR

~ notDAck ... 5380 r ,

notEOP ... Ir , , 132K x 8
switches bus

32K x 8 AM
r-- notCS ... or ~ ... RAM

~ ~ OM
E244 notiDRead 4

4 ~ 4 ~
or

r-I-- ROM 14~.4 l ~--- A 10-15 AO-3
notCE ... -

*.4 ~" RnotW ...
245 " " - DO-7

ADO-7
.... 1 ... = ---,

~ 373 ALE

" _ .. - AO-15
AO-7 ...

Figure 3.4 SCSI interface

473

4 Package specifications

4.1 68 pin grid array package

1 2 3 4 5 6 7 8 9 10

Cap
Hold

Link Link Link A Clockln To Plus
GND OutO InO Speed

Cap Proc Link Hold
B Error Clock To

Minus
Out

Out1 GND

C Reset PB6

D ~ndex

E
IMS M212

68 Pin Grid Array
Top View

F

A1 Dislnt Late ROM

Write not
A4 A2 AO Clock Write

Gate

Figure 4.1 IMS M212 68 pin grid array package pinout

474 11 IMS M212 preview

,M ~ E r 10 9 8 7 6 S 4 3 2 1

=iFf@@@@@@@@@@A
@@@@@@@@@@ B

@@@ @@@ C

@ @ @ @ D

@ @ @ @ E
K k @@ @@ F

@ @ @ @ G

@@@ @@@ H

141"--~ ___ "_'---i .. ~lltJ1 f ;~::: :K::: :.~ ~

index

rr
AB

~
I ..

~

!---

I I

Figure 4.2 68 pin grid array package dimensions

Table 4.1 68 pin grid array package dimensions

Millimetres Inches
DIM NOM TOl NOM TOl Notes

A 26.924 ±0.2S4 1.060 ±0.010
B 17.019 ±0.127 0.670 ±0.008
C 2.466 ±0.279 0.097 ±0.011
D 4.S72 ±0.127 0.180 ±O.OOS
E 3.302 ±0.127 0.130 ±O.OOS
F 0.4S7 ±0.OS1 0.018 ±0.002 Pin diameter
G 1.270 ±0.127 O.OSO ±O.OOS Flange diameter
K 22.860 ±0.127 0.900 ±O.OOS
L 2.S40 ±0.127 0.100 ±O.OOS
M 0.S08 0.020 Chamfer

Package weight is approximately 6.8 grams

Table 4.2 68 pin grid array package junction to ambient thermal resistance

PARAMETER
At 400 linear ftlmin transverse air flow

4 Package specifications

4.2 68 pin PLCC J-bend package

VCC 1
AD7 2
AD6 3
ADS 4
AD4 5
AD3 6
AD2 7
AD1 8
ADO 9
notCE 10
ALE 11
RnotW 12
Wait 13
GND 14
A7 15
A6 16
AS 17

~~~~vMN~om=~W~vMN 
w~wwwwwww~~~~~~~~ 

IMS M212 
68 pin J lead 
chip carrier 
Top view 

~~NNNNNNNNNNWW~~W 
~WO~N~~~~~~WO~N~~ 

51 PB7 
50 PB6 
49 PBS 
48 PB4 
47 PB3 
46 PB2 
45 PB1 
44 PBO 
43 vce 
42 PA7 
41 PA6 
40 PAS 
39 PA4 
38 PA3 
37 PA2 
36 PA1 
35 PAO 

Figure 4.3 IMS M212 68 pin PLCC J-bend package pinout 

475 



476 11 IMS M212 preview 

index 

m 
nn n n 

ill ! I '-I ."u,."urrurt:, urTurTurTun:, un:, un:, uT"TuT"TuT1uT"Tu'-'uCT1. uCT1, uIT"""""""'11 

.: ~ :. 

Figure 4.4 68 pin PLCC J-bend package dimensions 

Table 4.3 68 pin PLCC J-bend package dimensions 

Millimetres Inches 
DIM NOM TOL NOM TOL Notes 

A 25.146 ±0.127 0.990 ±0.005 
B 24.232 ±0.127 0.954 ±0.005 
C 3.810 ±0.127 0.150 ±0.005 
D 0.508 ±0.127 0.020 ±0.005 
F 1.270 ±0.127 0.050 ±0.005 
G 0.457 ±0.127 0.018 ±0.005 
J 0.000 ±0.051 0.000 ±0.002 
K 0.457 ±0.127 0.018 ±0.005 
L 0.762 ±0.127 0.030 ±0.005 

Package weight is approximately 5.0 grams 

Table 4.4 68 pin PLCC J-bend package junction to ambient thermal resistance 

PARAMETER 
At 400 linear ftlmin transverse air flow 



477 

5 Ordering 

This section indicates the designation of speed and package selections for the various devices. Speed of 
Clockln is 5 MHz for all parts. Transputer processor cycle time is nominal; it can be calculated more exactly 
using the phase lock loop factor PLLx, as detailed in the external memory section. 

For availability contact local INMOS sales office or authorised distributor. 

Table 5.1 IMS M212 ordering details 

INMOS Processor Processor 
designation clock speed cycle time PLLx Package 

IMS M212-G1SS 15 MHz 67 ns 3.0 Ceramic Pin Grid 
IMS M212-G20S 20 MHz 50 ns 4.0 Ceramic Pin Grid 

IMS M212-J1SS 15 MHz 67 ns 3.0 Plastic PLCC J-8end 
IMS M212-J20S 20 MHz 50 ns 4.0 Plastic PLCC J-8end 



478 11 IMS M212 preview 



c O[fi)mos 
FEATURES 

Standard INMOS serial links 
32 way crossbar switch 
Regenerates input signal 
Cascadable to any depth 
No loss of signal integrity 
10 or 20 Mbits/sec operating speed 
Separate INMOS configuration link 
Single +5V ±5% power supply 
TIL and CMOS compatibility 
1 W power dissipation 
Standard 84 pin ceramic PGA 
MIL-STD-883C device is available 

APPLICATIONS 

Programmable crossbar switch 
Component of larger switch 
Reconfigurable supercomputers 
Message routing system 
High speed multiprocessor systems 
Telecommunications 
Robotics 
Fault tolerant systems 
Additional links for transputers 

42140902 

479 

IMS C004 
programmable 
link switch 

Engineering Data 

LinklnO - - LinkOutO 

Crossbar 
Switch 

Linkln31 - - LinkOut31 

1 r 
ConfigLinkln -. Control 
ConfigLinkOut- Logic 

System 
Services 

May 1989 



480 

1 Introduction 

The INMOS communication link is a high speed system interconnect which provides full duplex communication 
between members of the INMOS transputer family, according to the INMOS serial link protocol. The IMS C004, 
a member of this family, is a transparent programmable link switch designed to provide a full crossbar switch 
between 32 link inputs and 32 link outputs. 

The IMS C004 will switch links running at either the standard speed of 10 Mbitslsec or at the higher speed 
of 20 Mbits/sec. It introduces, on average, only a 1.75 bit time delay on the signal. Link switches can be 
cascaded to any depth without loss of signal integrity and can be used to construct reconfigurable networks 
of arbitrary size. The switch is programmed via a separate serial link called the configuration link. 

All INMOS products which use communication links, regardless of device type, support a standard commu­
nications frequency of 10 Mbits/sec; most products also support 20 Mbits/sec. Products of different type 
or performance can, therefore, be interconnected directly and future systems will be able to communicate 
directly with those of today. 

VCC 
GND 

Clockln 
Reset 

LinklnO·31 

Control 
Logic 

synchronisation 

synchronisation 

~ System 

------~=1~ _____ s_e_rv_ic_e_s ____ ~------------------

Figure 1.1 IMS C004 block diagram 

LinkOutO 

LinkOut31 

Config LinkOut 
ConfigLinkln 
LinkSpeed 

CapPlus 
CapMinus 



2 Pin designations 

Table 2.1 IMS C004 system services 

Pin In/Out Function 
VCC,GND Power supply and return 
CapPlus, CapMinus External capacitor for internal clock power supply 
Clockln in Input clock 
Reset in System reset 
DoNotWire Must not be wired 

Table 2.2 IMS C004 configuration 

Pin In/Out Function 
ConfigLinkln in INMOS configuration link input 
ConfigLinkOut out INMOS configuration link output 

Table 2.3 IMS C004 link 

Pin In/Out Function 
Llnkln0-31 in INMOS link inputs to the switch 
LinkOutO-31 out INMOS link outputs from the switch 
LinkSpeed in Link speed selection 

Signal names are prefixed by not if they are active low, otherwise they are active high. 
Pinout details for various packages are given on page 498. 

481 



482 

3 System services 

System services include all the necessary logic to start up and maintain the IMS C004. 

3.1 Power 

Power is supplied to the device via the VCC and GND pins. Several of each are provided to minimise 
inductance within the package. All supply pins must be connected. The supply must be decoupled close to 
the chip by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer 
boards are recommended; if two layer boards are used, extra care should be taken in decoupling. 

Input voltages must not exceed specification with respect to VCC and GND, even during power-up and power­
down ramping, otherwise latchup can occur. CMOS devices can be permanently damaged by excessive 
periods of latch up. 

3.2 CapPlus, Cap Minus 

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1 J.lF 
capacitor to be connected between CapPlus and CapMinus. A ceramic capacitor is preferred, with an 
impedance less than 3 Ohms between 100 KHz and 10 MHz. If a polarised capacitor is used the negative 
terminal should be connected to CapMlnus. Total PCB track length should be less than 50 mm. The 
connections must not touch power supplies or other noise sources. 

CapPlus P.C.B. track 

CapMinus P.C.B. track 

Figure 3.1 Recommended PLL decoupling 

3.3 Clockln 

Decoupling 
capacitor 

1J.1F 

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input. 
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type, 
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln, 
simplifying system design and avoiding problems of distributing high speed clocks externally. 

A number of transputer family devices may be connected to a common clock, or may have individual clocks 
providing each one meets the specified stability criteria. In a multi-clock system the relative phasing of 
Clockln clocks is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant 
provided the specified limits of Clockln pulse widths are met. 

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not 
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be 
monotonic and remain within the specified voltage and time limits. 



3 System services 

Table 3.1 Input clock 

SYMBOL PARAMETER MIN 
TDCLDCH Clockln pulse width low 40 
TDCHDCL Clockln pulse width high 40 
TDCLDCL Clockln period 
TDCerror Clockln timing error 
TDC1DC2 Difference in Clockln for 2 linked devices 
TDCr Clockln rise time 
TDCf Clockln fall time 

Notes 

These paramters are not tested. 

2 Measured between corresponding points on consecutive falling edges. 

3 Variation of individual falling edges from their nominal times. 

NOM MAX UNITS 
ns 
ns 

200 ns 
±O.S ns 
400 ppm 
10 ns 
8 ns 

4 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link. 

5 Clock transitions must be monotonic within the range VIH to VIL (table 7.3). 

TDCerror 

2.0v- - -
1 .Sv - - - - - - -

0.8v- - - -

TDCerror 

TDCLDCH TDCHDCL 

TDCLDCL 

90% ~---

10%- - - - - --TOC!-

90%- - - - -;1-
10%- - - -J -tTDc~ -

Figure 3.2 Clockln timing 

483 

NOTE 
1 
1 

1,2,4 
1,3 
1,4 
1,S 
1,S 



484 12 IMS e004 engineering data 

3.4 Reset 

The Reset pin can go high with vee, but must at no time exceed the maximum specified voltage for VIH. 
After vee is valid elockln should be running for a minimum period TOeVRL before the end of Reset. 

Reset initialises the IMS C004 to a state where all link outputs from the switch are disconnected and held 
low; the control link is then ready to receive a configuration message. 

Table 3.2 Reset 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TPVRH Power valid before Reset 10 ms 
TRHRL Reset pulse width high 8 Clockln 1 
TDCVRL Clockln running before Reset end 10 ms 2 

Notes 

Full periods of Clockln TOCLDCL required. 

2 At power-on reset. 

Clockln 

vee 

Reset 

Figure 3.3 Reset Timing 



485 

4 Links 

INMOS bi-directional serial links provide synchronized communication between INMOS products and with 
the outside world. Each link comprises an input channel and output channel. A link between two devices is 
implemented by connecting a link interface on one device to a link interface on the other device. Every byte 
of data sent on a link is acknowledged on the input of the same link, thus each signal line carries both data 
and control information. 

A receiver can transmit an acknowledge as soon as it starts to receive a data byte. In this way the transmission 
of an acknowledge can be overlapped with receipt of a data byte to provide continuous transmission of data. 
This technique is fully compatible with all other INMOS transputer family links. 

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a one 
bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted first. 
After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit followed 
by a zero bit. The acknowledge signifies that the receiving link is able to receive another byte. 

Links are not synchronised with Clockln and are insenSitive to its phase. Thus links from independently 
clocked systems may communicate, providing only that the clocks are nominally identical and within specifi­
cation. 

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a 
single printed circuit board or between two boards via a backplane. Direct connection may be made between 
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 ohm 
transmission line should be used with series matching resistors RM. When this is done the line delay should 
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent. 

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within 
the skew tolerance of the link, although the absolute value of the delay is immaterial. 

The IMS C004 links support the standard INMOS communication speed of 10 Mbits/sec. In addition they 
can be used at 20 Mbits/sec. When the LinkSpeed pin is low, all links operate at the standard 10 Mbits/sec; 
when high they operate at 20 Mbits/sec. 

A single IMS C004 inserted between two transputers which fully implement overlapped acknowledges will 
cause some reduction in data bandwidth, see table 4.2 and figure 4.7. 

~HIHI011121314151617IL, 
I Data I 

JHlL::.L-!-1 _ 
I Ack I 

Figure 4.1 IMS C004 link data and acknowledge packets 



486 12 IMS C004 engineering data 

Table 4.1 Link 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TJQr LinkOut rise time 20 ns 1 
TJQf LinkOut fall time 10 ns 1 
TJDr Linkln rise time 20 ns 1 
TJDf Linkln fall time 20 ns 1 
TJQJD Buffered edge delay 0 ns 
TJBskew Variation in T JQJD 20 Mbits/s 3 ns 2 

10 Mbits/s 10 ns 2 
eLiz Linkln capacitance @ f=1MHz 7 pF 1 
ell LinkOut load capacitance 50 pF 
RM Series resistor for 1000 transmission line 56 ohms 

Notes 

These paramters are sampled, but are not 100% tested. 

2 This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by 
such things as short term variation in supply voltages and differences in delays for rising and falling edges. 

90% 
linkOut 

10% - - --
TJQf 

90% 
Linkln 

10% - - - - -

Figure 4.2 IMS e004 link timing 

Link"':at~s~~ ~ - ~ - - -

Earliest TJQJD ~ 

Linkln 1.5V- - - - ~ ~ ~-- -

TJBskew- I--

Figure 4.3 IMS e004 buffered link timing 



4 Links 

Transputer family device A 

LlnkOut I 
Linkln 

I Unkln 

LinkOut 

Transputer family device B 

Figure 4.4 IMS C004 Links directly connected 

Transputer family device A Zo=100ohms 

LlnkOut ~ll-i Unkln 

Linkln ~ LinkOut 
______ ...J Zo=100ohms RM Transputer family device B 

Figure 4.5 IMS C004 Links connected by transmission line 

Transputer family device A 

LinkOut r---r> Linkln 
buffers 

Linkln <J-- LinkOut 
Transputer family device B 

Figure 4.6 IMS C004 Links connected by buffers 

487 



488 12 IMS C004 engineering data 

Table 4.2 T800 links data transfer rate at 20 Mbits/sec 

Without C004 With COO4 Degradation 

Unidirectional 1.7 1.3 25% 

Bidirectional 2.3 2.1 10% 

Link Out 

Link In 
--' 50 

330 

550 600 

Without IMS C004 channel 

Link Out 

Link In 

750 750 750 

With IMS CO04 channel 

Figure 4.7 IMS C004 link timing 
Notes 

1 All values are in ns. 

2 Timing values shown are for links at 20 Mbits/sec. 



489 

5 Switch implementation 

The IMS C004 is internally organised as a set of thirty two 32-to-1 multiplexors. Each multiplexor has asso­
ciated with it a six bit latch, five bits of which select one input as the source of data for the corresponding 
output. The sixth bit is used to connect and disconnect the output. These latches can be read and written 
by messages sent on the configuration link via ConfigLinkln and ConfigLinkOut. 

The output of each multiplexor is synchronised with an internal high speed clock and regenerated at the 
output pad. This synchronisation introduces, on average, a 1.75 bit time delay on the signal. As the signal is 
not electrically degraded in passing through the switch, it is possible to form links through an arbitrary number 
of link switches. 

Each input and output is identified by a number in the range 0 to 31. A configuration message consisting 
of one, two or three bytes is transmitted on the configuration link. The configuration messages sent to the 
switch on this link are shown in table 5.1. If an unspecified configuration message is used, the effect of it is 
undefined. 

Table 5.1 IMS C004 configuration messages 

Configuration Message Function 
[0] [input] [output] Connects input to output. 

[1] [link1] [link2] Connects Iink1 to Iink2 by connecting the input of Iink1 to the output of 
Iink2 and the input of Iink2 to the output of Iink1. 

[2] [output] Enquires which input the output is connected to. The IMS C004 responds 
with the input. The most signifigant bit of this byte indicates whether the 
output is connected (bit set high) or disconnected (bit set low). 

[3] This command byte must be sent at the end of every configuration 
sequence which sets up a connection. The IMS C004 is then ready to 
accept data on the connected inputs. 

[4] Resets the switch. All outputs are disconnected and held low. This also 
happens when Reset is applied to the IMS C004. 

[5] [output] Output output is disconnected and held low. 

[6] [link1] [link2] Disconnects the output of Iink1 and the output of Iink2. 



490 

6 Applications 

6.1 Link switching 

The IMS C004 provides full switching capabilities between 32 INMOS links. It can also be used as a compo­
nent of a larger link switch. For example, three IMS C004's can be connected together to produce a 48 way 
switch, as shown in figure 6.1. This technique can be extended to the switch shown in figure 6.2. 

A fully connected network of 32 INMOS transputers (one in which all four links are used on every transputer) 
can be completely configured using just four IMS C004's. Figure 6.5 shows the connected transputer network. 

In these diagrams each link line shown represents a unidirectional link; I.e. one output to one input. Where 
a number is also given, that denotes the r.umber of lines. 

6.2 Multiple IMS C004 control 

Many systems require a number of IMS C004's, each configured via its own configuration link. A simple 
method of implementing this uses a master IMS C004, as shown in figure 6.3. One of the transputer links is 
used to configure the master link switch, whilst another transputer link is multiplexed via the master to send 
configuration messages to any of the other 31 IMS C004 links. 

6.3 Bidirectional exchange 

Use of the IMS C004 is not restricted to computer configuration applications. The ability to change the switch 
setting dynamically enables it to be used as a general purpose message router. This may, of course, also 
find applications in computing with the emergence of the new generation of supercomputers, but a more 
widespread use may be found as a communication exchange. 

In the application shown in figure 6.4, a message into the exchange must be preceded by a destination 
token dest. When this message is passed, the destination token is replaced with a source token so that 
the receiver knows where the message has come from. The in.out device in the diagram and the controller 
can be implemented easily with a transputer, and the link protocol for establishing communication with these 
devices can be interfaced with INMOS link adaptors. All messages from rx[il are preceded by the destination 
output dest. On receipt of such a message the in.out device requests the controller to connect a bidirectional 
link path to dest. The controller determines what is currently connected to each end of the proposed link. 
When both ends are free it sets up the IMS C004 and informs both ends of the new link. Note that in this 
network two channels are placed on each IMS C004 link, one for each direction. 

6.4 Bus systems 

The IMS C004 can be used in conjunction with the INMOS IMS C011/C012 link adaptors to provide a flexible 
means of connecting conventional bus based microprocessor systems. 



6 Applications 491 

8 
C004 

24 

C004 
8 

24 
C004 

8 

Figure 6.1 48 way link switch 

32 32 
C004 C004 

32 32 
C004 C004 

32 
C004 C004 

32 
C004 

Figure 6.2 Generalised link switch 



492 12 IMS C004 engineering data 

LinklnO ConfigLinkOut Linkln1 ConfigLinkOut 
C004[1 ] 

LinkOutO ConfigLinkln LinkOut1 ConfigLinkln 

Transputer COO4 

Linkln1 LinkOutO Linkln31 ConfigLinkOut 
LinkOut1 LinklnO LinkOut31 ConfigLinkln C004[31 ] 

Figure 6.3 Multiple IMS C004 controller 

up[32] 

... c.out 
Control c.in 

l 

, 
up[O] 

rx [a] .. cross.in[O] .. 

tx [a] 
in.out 

.... croSS.outrO] .... 
a 

up[1] 

rx f11 .. crosS.inf11 .. 

... tx fl1 in.out ... croSS.outrl1 
1 

f up[2] COO4 

I 

I 

rx f311 
I up[31] 

crosS.inf311 .. 
tx [311 in.out .. crosS.outf311 

31 

t 

Figure 6.4 32 way bidirectional exchange 



6 Applications 493 

.---- ~ 

· · • · • a • 0 

• 0 · .... · · · • 
... 

. 0 
~ "--

-l 

~ r--- :§ 

~+ .0 .. 
c.:> ..=:! N 

~ ... 
~+ 

iJ '-- L::: ~ -
• • • · · · · · · · a • · a · 0 • 0 

• 0 • · 0 · .... .... • • • · • · • · · 
I 

.- • - ~ 

.0 
c:; -l 

~ N 

~ ... 
~+ 

~ I---.. 
• · · a · 0 • 0 · · .... • 
• · · • 
.. ... 

Figure 6.5 Complete connectivity of a transputer network using four IMS C004's 



494 

7 Electrical specifications 

7.1 DC electrical characteristics 

Table 7.1 Absolute maximum ratings 

SYMBOL PARAMETER MIN MAX UNITS NOTE 
VCC DC supply voltage 0 7.0 V 1,2,3 
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3 
II Input current ±25 mA 4 
OSCT Output short circuit time (one pin) 1 s 2 
TS Storage temperature -65 150 °C 2 
TA Ambient temperature under bias -55 125 °C 2 
PDmax Maximum allowable dissipation 2 W 

Notes 

1 All voltages are with respect to GND. 

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those 
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may 
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods 
may affect reliability. 

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical 
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the 
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate 
logic level such as VCC or GND. 

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND 
and vee. 

Table 7.2 Operating conditions 

SYMBOL PARAMETER MIN MAX UNITS NOTE 
VCC DC supply voltage 4.75 5.25 V 1 
VI, VO Input or output voltage 0 VCC V 1,2 
CL Load capacitance on any pin 60 pF 
TA Operating temperature range IMS C004-S 0 70 °C 3 
TA Operating temperature range IMS C004-M -55 125 °C 3 

Notes 

1 All voltages are with respect to GND. 

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics. 

3 Air flow rate 400 linear ft/min transverse air flow. 



7 Electrical specifications 495 

Table 7.3 DC characteristics 

SYMBOL PARAMETER MIN MAX UNITS NOTE 
VIH High level input voltage 2.0 VCC+0.5 V 1,2 
VIL Low level input voltage' -0.5 0.8 V 1,2 
II Input current @ GND<VkVCC ±10 fLA 1,2 
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2 
VOL Output low voltage @ IOL=4mA 0.4 V 1,2 
lOS Output short circuit current @ GND<VO<VCC 36 65 mA 1,2,3,6 

65 100 mA 1,2,4,6 
PO Power dissipation 1.5 W 2,5 
CIN Input capacitance @ f=1MHz 7 pF 6 
COZ Output capacitance @ f=1MHz 10 pF 6 

Notes 

1 All voltages are with respect to GND. 

2 Parameters for IMS C004-S measured at 4.75V<VCC<5.25V and 0°C<TA<70°C. 
Input clock frequency = 5 MHz. 

3 Current sourced from non-link outputs. 

4 Current sourced from link outputs. 

5 Power dissipation varies with output loading and with the number of links active. 

6 This parameter is sampled and not 100% tested. 

7.2 Equivalent circuits 

VCC-~ 

R1 Load for: R1 R2 Equivalent load: 

Output I~ Link outputs 1K96 47K 1 Schottky TTL input 
I ...... 

" 
Other outputs 970R 24K 2 Schottky TTL inputs 

-
]R2 50pF = 1= U Diodes are 1 N916 

I ,~ 
GND 

c.. 

Figure 7.1 Load circuit for AC measurements 



496 12 IMS C004 engineering data 

Vdd-1 

~ Inputs 
OV 

Vdd-1 / Inputs VIL 
OV --./ 

tpHL 

Vdd ~.5V Outputs 
OV 

tpLH 

Vdd 
Y,.5V Outputs 

OV 

Figure 7.2 AC measurements timing waveforms 

7.3 AC timing characteristics 

30 
Time 

ns 
20 

10 

Rise time 

Fall time 

406080100 

Load Capacitance pF 

Figure 7.3 Typical link rise/fall times 



7 Electrical specifications 497 

7.4 Power rating 

Internal power dissipation PINT of transputer and peripheral chips depends on vee, as shown in figure 7.4. 
PINT is substantially independent of temperature. 

Total power dissipation PD of the chip is 

where PIO is the power dissipation in the input and output pins; this is application dependent. 

Internal working temperature TJ of the chip is 

where TA is the external ambient temperature in °C and eJA is the junction-to-ambient thermal resistance in 
°CIW. eJA for each package is given in the Packaging Specifications section. 

800 

Power 700 
PINT 
mW 600 

500 

4.4 4.6 4.8 5.0 5.2 5.4 5.6 
vee Volts 

Figure 7.4 IMS C004 internal power dissipation vs VCC 



498 

8 Package specifications 

8.1 84 pin grid array package 

1 2 3 4 5 6 7 8 9 10 

A 
- --- ---

;,~~ flockln 

- - ---
[ Link Link 

GND 
Link Link Link Link Link 

In2 In4 In6 In14 In11 In10 Out10 

[ Link Link Link Link Cap I Unk Link Link Link 
vee Out5 InO In1 In5 Minus In15 In13 In9 Out8 

"- "-

B 

Link Y Link 
/' '" /' /' , 

[ Link Link Link (vee Link Link Link Link I 
Out4 Out6 Out7.A In3 In7 In12 In8 Out9 Out12 

"- ./ ~ / 

GNO) 

,,- --
( Link ( Link k Unk 

Out3 
vee ,\ndex Out11 GND 

Out13 

c 

o 

[ Link Link) Link ( Link Link Link 
OutO Out2 Out1 IMS e004 Out14 Out15 Out16 

84 Pin Grid Array , 
Top View '" [ Link Link Link Link Link Link 

Out31 Out30 Out29 Out18 Out19 Out17 
./ 

E 

F 

G ( Link J Out28 vee 
Link) 

Out26 [ ) Link 1 GND vee Out20 

- --
[ Link Link) eonflg unk) Link I Link I Link) OONO'[ Link Link 
Out27 Out24 Linkln In28 In24 In22 In17 Wire Out23 Out21 

H 

( GNO lonfl~ Link unk) Link Link unk) k Link J Link 
LmkOut In31 In27 In25 In23 In19 Reset Speed Out22 J 

Link unk) Unk unk) GND vee I Link) Unk I Link I Unk 
Out25 In30 In29 In26 In21 In20 In18 In16 

- -- -- -----
K 

Figure 8.1 IMS C004 84 pin grid array package pinout 



8 Package specifications 499 

D 

r-
I 

I 

..... M ~ E r r 1 I 10 9 8 7 6 5 4 3 2 1 

=iFr@@@@@@@@@@A 
@@@@@@@@@@ B 

@@@@@@@@@@ C 

@@@ @@@ D 

@@@ @@@ E 
K k@@@ @@@ F 

@@@ @@@ G 

@@@@@@@@@@ H 

"""11(f----! ___ ._I_~.1 JtJi f ~;::: :K::: :.~ ~ 

index 

rr 
AB 

~ 
I" 

Figure 8.2 84 pin grid array package dimensions 

Table 8.1 84 pin grid array package dimensions 

Millimetres Inches 
DIM NOM TOl NOM TOl Notes 

A 26.924 ±0.254 1.060 ±0.010 
B 17.019 ±0.127 0.670 ±0.005 
C 2.456 ±0.278 0.097 ±0.011 
D 4.572 ±0.127 0.180 ±0.005 
E 3.302 ±0.127 0.130 ±0.005 
F 0.457 ±0.025 0.018 ±0.002 Pin diameter 
G 1.143 ±0.127 0.045 ±0.005 Flange diameter 
K 22.860 ±0.127 0.900 ±0.005 
l 2.540 ±0.127 0.100 ±0.005 
M 0.508 0.020 Chamfer 

Package weight is approximately 7.2 grams 

Table 8.2 84 pin grid array package junction to ambient thermal resistance 

PARAMETER 
At 400 linear fVmin transverse air flow 



500 12 IMS e004 engineering data 

8.2 84 lead quad cerpack package 

The leads are unformed to allow the user to form them to specific requirements. 

LinkOut775 
LinkOut676 
LinkOut577 
LinkOut478 

vee 79 
GND 80 

LinkOut381 
LinkOut282 
LinkOut1 83 
LinkOutO 84 

LinkOut31 1 
LinkOut30 2 
LinkOut29 3 
LinkOut28 4 
LinkOut27 5 

vee 6 
GND 7 

LinkOut26 8 
LinkOut25 9 
LinkOut24 10 

eonfigLinkOut 11 

• IMS e004 
84 lead 

quad cerpack 

Figure 8.3 IMS C004 84 lead quad cerpack package pinout 

53 LinkOut8 
52 LinkOut9 
51 LinkOut10 
50 LinkOut11 
49 vee 
48 GND 
47 LinkOut12 
46 LinkOut13 
45 LinkOut14 
44 LinkOut15 
43 LinkOut16 
42 LinkOut17 
41 LinkOut18 
40 LinkOut19 
39 LinkOut20 
38 vee 
37 GND 
36 LinkOut21 
35 LinkOut22 
34 LinkOut23 
33 DoNotWire 



8 Package specifications 

L 

D 

Ie C ~I 

Figure 8.4 84 lead quad cerpack package dimensions 

Millimetres Inches 
DIM NOM TOl NOM TOl Notes 

A 38.100 ±0.508 1.500 ±0.020 
B 26.924 ±0.305 1.060 ±0.012 

C 20.574 ±0.203 0.810 ±D.008 
D 19.558 ±0.254 0.770 ±0.010 
E 0.508 0.020 

F 1.270 ±0.051 0.050 ±0.002 

G 2.489 ±0.305 0.098 ±0.012 

H 0.635 ±0.076 0.025 ±0.003 

J 1.143 ±0.102 0.045 ±0.004 

K 3.099 0.122 Max. 

L 27.940 1.100 Max. 
M 0.178 ±0.025 0.007 ±0.001 

Table 8.3 84 lead quad cerpack package dimensions 

Section through 
package 

501 



502 

9 Ordering 

This section indicates the designation of package selections for the IMS C004. Speed of Clockln is 5 MHz 
for all parts. 

For availability contact local INMOS sales office or authorised distributor. 

Table 9.1 IMS C004 ordering details 

INMOS designation Package 
IMS COO4-G20S Ceramic Pin Grid Array 

IMS COO4-G20M Ceramic Pin Grid Array MIL Spec 
IMS COO4-Q20M Quad Cerpack MIL Spec 



c o[tl)mos 
FEATURES 

Standard INMOS link protocol 
10 or 20 Mbits/sec operating speed 
Communicates with INMOS transputers 
Converts between serial link and parallel bus 
Converts between serial link and parallel device 

Two modes of parallel operation: 
Mode 1: Peripheral interface 

Eight bit parallel input interface 
Eight bit parallel output interface 
Full handshake on input and output 

Mode 2: Bus interface 
Tristate bidirectional bus interface 
Memory mapped registers 
Interrupt capability 

Single +5V ±5% power supply 
TTL and CMOS compatibility 
120mW power dissipation 
Standard 28 pin 0.6" plastic package 
MIL-STD-883C device is available 

APPLICATIONS 

Programmable I/O pins for transputer 
Connecting microprocessors to transputers 
High speed links between microprocessors 
Inter-family microprocessor interfacing 
Interconnecting different speed links 

42141202 

503 

IMS C011 
link adaptor 

Engineering Data 

System 
Services 

System 
Services 

Mode 1 

Mode 2 

Input 
Interface 

Output 
Interface 

Interrupt 
Control 

May 1989 



504 

1 Introduction 

The INMOS communication link is a high speed system interconnect which provides full duplex communication 
between members of the INMOS transputer family, according to the INMOS serial link protocol. The IMS C011, 
a member of this family, provides for full duplex transputer link communication with standard microprocessor 
and sUb-system architectures, by converting bi-directional serial link data into parallel data streams. The 
extended temperature version of the device complies with MIL-STD-883C. 

All INMOS products which use communication links, regardless of device type, support a standard commu­
nications frequency of 10 Mbits/sec; most products also support 20 Mbits/sec. Products of different type 
or performance can, therefore, be interconnected directly and future systems will be able to communicate 
directly with those of today. The IMS C011 link will run at either the standard speed of 10 Mbits/sec or at the 
higher speed of 20 Mbits/sec. Data reception is asynchronous, allowing communication to be independent 
of clock phase. 

The link adaptor can be operated in one of two modes. In Mode 1 the IMS C011 converts between a link 
and two independent fully handshaken byte-wide interfaces, one input and one output. It can be used by a 
peripheral device to communicate with a transputer, an INMOS peripheral processor or another link adaptor, 
or it can provide programmable input and output pins for a transputer. Two IMS C011 devices in this mode 
can be connected back to back via the parallel ports and used as a frequency changer between different 
speed links. 

In Mode 2 the IMS C011 provides an interface between an INMOS serial link and a microprocessor system 
bus. Status and data registers for both input and output ports can be accessed across the byte-wide bi­
directional interface. Two interrupt outputs are provided, one to indicate input data available and one for 
output buffer empty. 

VCC 
GNO 

CapMinus 
Clockln 

Reset 
SeparatelQ 

LinkOut 
Linkln 

VCC 
GNO 

CapMinus 
Clockln 

Reset 
SeparatelQ 
LinkSpeed 

System 
Services 

Figure 1.1 IMS C011 Mode 1 block diagram 

System 
Services 

LinkOut -------1 
Linkln ---.jL. __ L_in_k_.J------L--=~ _ __1 

Figure 1.2 IMS C011 Mode 2 block diagram 

10-7 
lAck 
IVaiid 

QO-7 
Qack 
QVaiid 

Inputlnt 
Outputlnt 

RSO 
RS1 
RnotW 
notCS 

00-7 



2 Pin designations 

Table 2.1 IMS C011 services and link 

Pin In/Out Function 
VCC,GNO Power supply and return 
CapMinus External capacitor for internal clock power supply 
Clockln in Input clock 
Reset in System reset 

SeparatelO in Select mode and Mode 1 link speed 
Linkln in Serial data input channel 
LinkOut out Serial data output channel 

Table 2.2 IMS C011 Mode 1 parallel interface 

Pin In/Out Function 
10·7 in Parallel input bus 
IVaiid in Data on 10·7 is valid 
lAck out Acknowledge 10·7 data received by other link 

00·7 out Parallel output bus 
OVaiid out Data on 00·7 is valid 
OAck in Acknowledge from device: data 00·7 was read 

Table 2.3 IMS C011 Mode 2 parallel interface 

Pin In/Out Function 
00·7 in/out Bi-directional data bus 
noteS in Chip select 
RSO·1 in Register select 
RnotW in Read/write control signal 

Inputlnt out Interrupt on link receive buffer full 
Outputlnt out Interrupt on link transmit buffer empty 
LinkSpeed in Select link speed as 10 or 20 Mbits/sec 

HoldToGNO Must be connected to GNO 
OoNotWire Must not be wired 

Signal names are prefixed by not if they are active low, otherwise they are active high. 
Pinout details for various packages are given on page 524. 

505 



506 

3 System services 

System services include all the necessary logic to start up and maintain the IMS C011. 

3.1 Power 

Power is supplied to the device via the VCC and GND pins. The supply must be decoupled close to the chip 
by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer boards 
are recommended; if two layer boards are used, extra care should be taken in decoupling. 

AC noise between VCC and GND must be kept below 200 mV peak to peak at all frequencies above 100 KHz. 
AC noise between VCC and the ground reference of load capacitances must be kept below 200 mV peak to 
peak at all frequencies above 30 MHz. Input voltages must not exceed specification with respect to VCC and 
GND, even during power-up and power-down ramping, otherwise latchup can occur. CMOS devices can be 
permanently damaged by excessive periods of latchup. 

3.2 CapMinus 

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1 J.!F 
capacitor to be connected between VCC and CapMinus. A ceramic capacitor is preferred, with an impedance 
less than 3 Ohms between 100 KHz and 10 MHz. If a polarised capacitor is used the negative terminal should 
be connected to CapMinus. Total PCB track length should be less than 50 mm. The positive connection of 
the capacitor must be connected directly to VCC. Connections must not otherwise touch power supplies or 
other noise sources. 

VCC 

P.C.B. track 

CapMinus P.C.B. track 

Figure 3.1 Recommended PLL decoupling 

3.3 Clockln 

Decoupling 
capacitor 

1J.!F 

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input. 
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type, 
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln, 
simplifying system design and avoiding problems of distributing high speed clocks externally. 

A number of transputer family devices may be connected to a common clock, or may have individual clocks 
providing each one meets the specified stability criteria. In a multi-clock system the relative phasing of 
Clockln clocks is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant 
provided the specified limits of Clockln pulse widths are met. 

Oscillator stability is Important. Clockln must be derived from a crystal oscillator; RC oscillators are not 
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be 
monotonic and remain within the specified voltage and time limits. 



3 System services 

Table 3.1 Input clock 

SYMBOL PARAMETER MIN NOM MAX UNITS 
TDCLDCH Clockln pulse width low 40 ns 
TDCHDCL Clockln pulse width high 40 ns 
TDCLDCL Clockln period 200 400 ns 
TDCerror Clockln timing error ±0.5 ns 
TDC1DC2 Difference in Clockln for 2 linked devices 400 ppm 
TDCr Clockln rise time 10 ns 
TDCf Clockln fall time 8 ns 

Notes 

These paramters are not tested. 

2 Measured between corresponding points on consecutive falling edges. 

3 Variation of individual falling edges from their nominal times. 

4 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link. 

5 Clock transitions must be monotonic within the range VIH to VIL (table 7.3). 

TDCerror 

2.0v- - -
1.5vO.8v= = = = -

TDCLDCH TDCHDCL 

TDCLDCL 

TDCerror 

90% K---
10%---- -

TDCf 

9O%----A 
10% - - - --

TDCr 

Figure 3.2 Clockln timing 

3.4 SeparatelQ 

507 

NOTE 
1 
1 

1,2,4 
1,3 
1,4 
1,5 
1,5 

The IMS C011 link adaptor has two different modes of operation. Mode 1 is basically a link to peripheral 
adaptor, whilst Mode 2 interfaces between a link and a microprocessor bus system. 

Mode 1 can be selected for one of two link speeds by connecting SeparatelQ to VCC (10 Mbits/sec) or to 
Clockln (20 Mbits/sec). 

Mode 2 is selected by connecting SeparatelQ to GND; in this mode 10 Mbits/sec or 20 Mbits/sec is selected 
by LinkSpeed. Link speeds are specified for a Clockln frequency of 5 MHz. 

In order to select the link speed, SeparatelQ may be changed dynamically providing the link is in a quiescent 
state and no input or output is required. Reset must be applied subsequent to the selection to initialise 
the device. If Clockln is gated to achieve this, its skew must be limited to the value TDCHSIQH shown in 
table 3.3. The mode of operation (Mode 1, Mode 2) must not be changed dynamically. 



508 13 IMS C011 engineering data 

Table 3.2 SeparatelQ mode selection 

SeparatelQ Mode Link Speed Mbits/sec 
VCC 1 10 
Clockln 1 20 
GNO 2 10 or 20 

Table 3.3 SeparatelQ 

PARAMETER 
Skew from Clockln to Clockln 

Notes 

Skew between Clockln arriving on the Clockln pin and on the SeparatelQ pin. 

3.5 Reset 

The Reset pin can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. 
After VCC is valid Clockln should be running for a minimum period TOCVRL before the end of Reset. Linkln 
must be held low during Reset. 

Reset initialises the IMS C011 to the following state: LinkOut is held low; the control outputs (lAck and 
QValid in Mode 1, Inputlnt and Outputlnt in Mode 2) are held low; interrupts (Mode 2) are disabled; the 
states of QO·7 in Mode 1 are unspecified; 00·7 in Mode 2 are high impedance. 

Table 3.4 Reset 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TPVRH Power valid before Reset 10 ms 
TRHRL Reset pulse width high 8 Clockln 1 
TDCVRL Clockln running before Reset end 10 ms 2 

Notes 

Full periods of Clockln TOCLDCL required. 

2 At power-on reset. 

Clockln 

vce 

Reset 

Figure 3.3 Reset Timing 



509 

4 Links 

INMOS bi-directional serial links provide synchronized communication between INMOS products and with 
the outside world. Each link comprises an input channel and output channel. A link between two devices is 
implemented by connecting a link interface on one device to a link interface on the other device. Every byte 
of data sent on a link is acknowledged on the input of the same link, thus each signal line carries both data 
and control information. 

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a 
one bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted 
first. After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit 
followed by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged 
data byte and that the receiving link is able to receive another byte. 

Links are not synchronised with Clockln and are insensitive to its phase. Thus links from independently 
clocked systems may communicate, providing only that the clocks are nominally identical and within specifi­
cation. 

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a 
single printed circuit board or between two boards via a backplane. Direct connection may be made between 
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 ohm 
transmission line should be used with series matching resistors RM. When this is done the line delay should 
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent. 

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within 
the skew tolerance of the link, although the absolute value of the delay is immaterial. 

The IMS C011 link supports the standard INMOS communication speed of 10 Mbits/sec. In addition it can be 
used at 20 Mbits/sec. Link speed can be selected in one of two ways. In Mode 1 it is altered by SeparatelQ 
(page 507). In Mode 2 it is selected by LinkSpeed; when the LinkSpeed pin is low, the link operates at the 
standard 10 Mbits/sec; when high it operates at 20 Mbits/sec . 

.-lH'H10111213141516171L, 
I Data I 

JHlL, 
~--

I Ack I 

Figure 4.1 IMS C011 link data and acknowledge packets 



510 13 IMS C011 engineering data 

Table 4.1 Link 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TJQr LinkOut rise time 20 ns 1 
TJQf LinkOut fall time 10 ns 1 
TJDr Linkln rise time 20 ns 1 
TJDf Linkln fall time 20 ns 1 
TJQJD Buffered edge delay 0 ns 
TJBskew Variation in T JQJD 20 Mbits/s 3 ns 2 

10 Mbits/s 10 ns 2 
eLiz Linkln capacitance @ f=1MHz 7 pF 1 
ell LinkOut load capacitance 50 pF 
RM Series resistor for 100n transmission line 56 ohms 

Notes 

These paramters are sampled, but are not 100% tested. 

2 This is the variation in the total delay through buffers, transmission lines, differential receivers etc., caused by 
such things as short term variation in supply voltages and differences in delays for rising and falling edges. 

90% 
LinkOut 

10% - - --
TJQf 

90% 
Linkln 

10% 

Figure 4.2 IMS e011 link timing 

Llnk~at~s~~~ - ; - - -

Earliest T JQJD ~ 

Linkln 1.5V- - - - ~ X ~-- -X 
TJBskew-- ... 

Figure 4.3 IMS e011 buffered link timing 



4 Links 

Transputer family device A 

UnkOut I 
Linkln 

I Unkln 

LinkOut 

Transputer family device B 

Figure 4.4 IMS C011 Links directly connected 

Transputer family device A 20=1000hms 

LlnkOut ~)}-j Llnkln 

Linkln ~ LinkOut 
___ ---'=-:..:c--'---'-'---' 20=1000hms RM Transputer family device B 

Figure 4.5 IMS C011 Links connected by transmission line 

Transputer family device A 

LinkOut f----{) Linkln 
buffers 

Linkln <J------ LinkOut 
Transputer family device B 

Figure 4.6 IMS C011 Links connected by buffers 

511 



512 

5 Mode 1 parallel interface 

In Mode 1 the IMS C011 link adaptor is configured as a parallel peripheral interface with handshake lines. 
Communication with a transputer family device is via the serial link. The parallel interface comprises an input 
port and an output port, both with handshake. 

5.1 Input port 

The eight bit parallel input port 10-7 can be read by a transputer family device via the serial link. IVaiid and 
lAck provide a simple two-wire handshake for this port. When data is valid on 10-7, IVaiid is taken high by 
the peripheral device to commence the handshake. The link adaptor transmits data presented on 10-7 out 
through the serial link. When the acknowledge packet is received on the input link, the IMS C011 sets lAck 
high. To complete the handshake, the peripheral device must return IVaiid low. The link adaptor will then 
set lAck low. New data should not be put onto 10-7 until lAck is returned low. 

Table 5.1 Mode 1 parallel data input 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TldVlvH Data setup 5 ns 
TlvHLdV IVaiid high to link data output 0.8 2 bits 1,2 
TLaVlaH Link acknowledge start to lAck high 3 bits 1 
TlaHldX Data hold after lAck high 0 ns 
TlaHlvL IVaiid hold after lAck high 0 ns 
TlvLlaL lAck hold after IValid low 1 4 bits 1 
TlaLlvH Delay before next IVaiid high 0 ns 

Notes 

1 Unit of measurement is one link data bit time; at 10 Mbits/s data link speed, one bit time is nominally 100 ns. 

2 Maximum time assumes there is no acknowledge packet already on the link. Maximum time with acknowledge 
on the link is extended by 2 bits. 

10-7 

"'TldVlvH 

IVaiid ___ J 

TlvLlaL TlaLlvH 

lAck ----1----------' 
TlvHLdV ~---1~ 

LinkOut 
------~---~-+---------------

~--~ TLaVlaH 

Linkln 
-------~-~-------------------

Figure 5.1 IMS C011 Mode 1 parallel data input to link adaptor 



5 Mode 1 parallel inter1ace 513 

5.2 Output port 

The eight bit parallel output port 00-7 can be controlled by a transputer family device via the serial link. 
OVaiid and OAck provide a simple two-wire handshake for this port. 

A data packet received on the input link is presented on 00-7; the link adaptor then takes OVaiid high to 
initiate the handshake. After reading data from 00-7, the peripheral device sets OAck high. The IMS C011 
will then send an acknowledge packet out of the serial link to indicate a completed transaction and set OVaiid 
low to complete the handshake. 

Table 5.2 Mode 1 parallel data output 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TLdVQvH Start of link data to QValid 11.5 bits 1 
TQdVQvH Data setup 15 ns 2 
TQvHQaH QAck setup time from QVaiid high 0 ns 
TQaHQvL QAck high to QVaiid low 1.8 bits 1 
TQaHLaV QAck high to Ack on link 0.8 2 bits 1,3 
TQvLQaL QAck hold after QVaiid low 0 ns 
TQvLQdX Data hold 11 bits 1,4 

Notes 

1 Unit of measurement is one link data bit time; at 10 Mbits/s data link speed, one bit time is nominally 100 ns. 

2 Where an existing data output bit is re-written with the same level there will be no glitch in the output level. 

3 Maximum time assumes there is no data packet already on the link. Maximum time with data on the link is 
extended by 11 bits. 

4 Data output remains valid until overwritten by new data. 

Data Data Linkln 
----+-----~----------------~----~--------

00-7 ----+---------
TLdVQvH TQvLQdX 

OVaiid --------------------' 
TQvLQaL 

OAck ____________________ --' 

~--_il~TQaHLaV 

LinkOut __________________________ ~IA_C_k~I ______________ __ 

Figure 5.2 IMS C011 Mode 1 parallel data output from link adaptor 



514 

6 Mode 2 Parallel interface 

The IMS C011 provides an interface between a link and a microprocessor style bus. Operation of the link 
adaptor is controlled through the parallel interface bus lines 00-7 by reading and writing various registers in 
the link adaptor. Registers are selected by RSO-1 and RnotW, and the chip enabled with noteS. 

For convenience of description, the device connected to the parallel side of the link adaptor is presumed to 
be a microprocessor, although this will not always be the case. 

6.1 00-7 

Data is communicated between a microprocessor bus and the link adaptor via the bidirectional bus lines 00-7. 
The bus is high impedance unless the link adaptor chip is selected and the RnotW line is high. The bus is 
used by the microprocessor to access status and data registers. 

6.2 noteS 

The link adaptor chip is selected when noteS is low. Register selectors RSO-1 and RnotW must be valid 
before noteS goes low; 00-7 must also be valid if writing to the chip (RnotW low). Data is read by the link 
adaptor on the rising edge of noteS. 

6.3 RnotW 

RnotW, in conjunction with noteS, selects the link adaptor registers for read or write mode. When RnotW 
is high, the contents of an addressed register appear on the data bus 00-7; when RnotW is low the data 
on 00-7 is written into the addressed register. The state of RnotW is latched into the link adaptor by noteS 
going low; it may be changed before noteS returns high, within the timing restrictions given. 

6.4 RSO-1 

One of four registers is selected by RSO-1. A register is addressed by setting up RSO-1 and then taking 
noteS low; the state of RnotW when noteS goes low determines whether the register will be read or written. 
The state of RSO-1 is latched into the link adaptor by noteS going low; it may be changed before noteS 
returns high, within the timing restrictions given. The register set comprises a read-only data input register, 
a write-only data output register and a read/write status register for each. 

Table 6.1 IMS C011 Mode 2 register selection 

RS1 RSO RnotW Register 
0 0 1 Read data 
0 0 0 Invalid 
0 1 1 Invalid 
0 1 0 Write data 
1 0 1 Read input status 
1 0 0 Write input status 
1 1 1 Read output status 
1 1 0 Write output status 

6.4.1 Input Oata Register 

This register holds the last data packet received from the serial link. It never contains acknowledge packets. 
It contains valid data only whilst the data present flag is set in the input status register. It cannot be assumed 
to contain valid data after it has been read; a double read mayor may not return valid data on the second 
read. If data present is valid on a subsequent read it indicates new data is in the buffer. Writing to this register 
will have no effect. 



6 Mode 2 Parallel interface 515 

Table 6.2 IMS C011 Mode 2 parallel interface control 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TRSVCSL Register select setup 5 ns 
TCSLRSX Register select hold 5 ns 
TRWVCSL Read/write strobe setup 5 ns 
TCSLRWX Read/write strobe hold 5 ns 
TCSLCSH Chip select active 50 ns 
TCSHCSL Delay before re-assertion of chip select 50 ns 

Table 6.3 IMS C011 Mode 2 parallel interface read 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TLdVIIH Start of link data to Inputlnt high 13 bits 1 
TCSLlIL Chip select to Inputlnt low 30 ns 
TCSLDrX Chip select to bus active 5 ns 
TCSLDrV Chip select to data valid 40 ns 
TCSHDrZ Chip select high to bus tristate 25 ns 
TCSHDrX Data hold after chip select high 5 ns 
TCSHLaV Chip de-select to start of Ack 0.8 2 bits 1,2 

Notes 

1 Unit of measurement is one link data bit time; at 10 Mbits/s data link speed, one bit time is nominally 100 ns. 

2 Maximum time assumes there is no data packet already on the link. Maximum time with data on the link is 
extended by 11 bits. 

Linkln Data Data ~ ______ ~ __________________________ ~ ________ L-___ 

TLdVllH 

In putl nt ________ -f 

RSO·1 

RnotW 

notCS 

00·7 

LinkOut 

TCSLlIL t..---.t 

TRSVCSL~--~~TCSLRSX 

-------------' 
TRWVCSLt..-~~-.tTCSLRWX 

TCSLCSH~----~~~-~~TCSHCSL 

TCSLDrV t..----.t 
TCS LDrX t4-~ r7t?---~~ 

__________________________________ ~ __ L_ ________ ___ 

Figure 6.1 IMS C011 Mode 2 read parallel data from link adaptor 



516 13 IMS C011 engineering data 

Table 6.4 IMS C011 Mode 2 parallel interface write 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TCSHDwV Data setup 15 ns 
TCSHDwX Data hold 5 ns 
TCSLOIL Chip select to Outputlnt low 30 ns 
TCSHLdV Chip select high to start of link data 0.8 2 bits 1,2 
TLaVOIH Start of link Ack to Outputlnt high 3 bits 1,3 
TLdVOIH Start of link data to Outputlnt high 13 bits 1,3 

Notes 

Unit of measurement is one link data bit time; at 10 Mbits/s data link speed, one bit time is nominally 100 ns. 

2 Maximum time assumes there is no acknowledge packet already on the link. Maximum time with acknowledge 
on the link is extended by 2 bits. 

3 Both data transmission and the returned acknowledge must be completed before Outpullnt can go high. 

RSO-1 

TRSVCSL 14-~~~ TCSLRSX 

TRWVCSL 1 ..... I4-~ 

notCS 

........... -.t TCSHDwX 

00-7 

Outputlnt 

.... ------I~TLdVOI H 

LinkOut 

r-.----1~ TLa val H 

Linkln 

Figure 6.2 IMS C011 Mode 2 write parallel data to link adaptor 



6 Mode 2 Parallel interface 517 

6.4.2 Input Status Register 

This register contains the data present flag and the interrupt enable control bit for Inputlnt. The data present 
flag is set to indicate that data in the data input buffer is valid. It is reset low only when the data input buffer 
is read, or by Reset. When writing to this register, the data present bit must be written as zero. 

The interrupt enable bit can be set and reset by writing to the status register with this bit high or low re­
spectively. When the interrupt enable and data present flags are both high, the Inputlnt output will be high 
(page 517). Resetting interrupt enable will take Inputlnt low; setting it again before reading the data input 
register will set Inputlnt high again. The interrupt enable bit can be read to determine its status. 

When writing to this register, bits 2-7 must be written as zero; this ensures that they will be zero when the 
register is read. Failure to write zeroes to these bits may result in undefined data being returned by these 
bits during a status register read. 

7 6 5 4 3 2 o 

Figure 6.3 IMS C011 input status register 

6.4.3 Output Data Register 

Data written to this link adaptor register is transmitted out of the serial link as a data packet. Data should 
only be written to this register when the output ready bit in the output status register is high, otherwise data 
already being transmitted may be corrupted. Reading this register will result in undefined data being read. 

6.4.4 Output Status Register 

This register contains the output ready flag and the interrupt enable control bit for Outputlnt. The output 
ready flag is set to indicate that the data output buffer is empty. It is reset low only when data is written to the 
data output buffer; it is set high by Reset. When writing to this register, the output ready bit must be written 
as zero. 

The interrupt enable bit can be set and reset by writing to the status register with this bit high or low respec­
tively. When the interrupt enable and output ready flags are both high, the Outputlnt output will be high 
(page 518). Resetting interrupt enable will take Outputlnt low; setting it again whilst the data output register 
is empty will set Outputlnt high again. The interrupt enable bit can be read to determine it's status. 

When writing to this register, bits 2-7 must be written as zero; this ensures that they will be zero when the 
register is read. Failure to write zeroes to these bits may result in undefined data being returned by these 
bits during a status register read. 

6.5 Inputlnt 

The Inputlnt output is set high to indicate that a data packet has been received from the serial link. It is 
inhibited from going high when the interrupt enable bit in the input status register is low (page 517). Inputlnt 
is reset low when data is read from the input data register (page 514) and by Reset (page 508). 



518 13 IMS C011 engineering data 

7 6 5 4 3 2 o 

Figure 6.4 IMS C011 output status register 

6.6 Outputlnt 

The Outputlnt output is set high to indicate that the link is free to receive data from the microprocessor for 
transmission as a data packet out of the serial link. It is inhibited from going high when the interrupt enable 
bit in the output status register is low (page 517). Outputlnt is reset low when data is written to the data 
output register (page 517); it is set low by Reset (page 508). 

6.7 Data read 

A data packet received on the input link sets the data present flag in the input status register. If the interrupt 
enable bit in the status register is set, the Inputlnt output pin will be set high. The microprocessor will either 
respond to the interrupt (if the interrupt enable bit is set) or will periodically read the input status register until 
the data present bit is high. 

When data is available from the link, the microprocessor reads the data packet from the data input register. 
This will reset the data present flag and cause the link adaptor to transmit an acknowledge packet out of the 
serial link output. Inputlnt is automatically reset by reading the data input register; it is not necessary to read 
or write the input status register. 

6.8 Data write 

When the data output buffer is empty the output ready flag in the output status register is set high. If 
the interrupt enable bit in the status register is set, the Outputlnt output pin will also be set high. The 
microprocessor will either respond to the interrupt (if the interrupt enable bit is set) or will periodically read 
the output status register until the output ready bit is high. 

When the output ready flag is high, the microprocessor can write data to the data output buffer. This will 
result in the link adaptor resetting the output ready flag and commencing transmission of the data packet out 
of the serial link. The output ready status bit will remain low until an acknowledge packet is received by the 
input link. This will set the output ready flag high; if the interrupt enable bit is set, Outputlnt will also be set 
high. 



519 

7 Electrical specifications 

7.1 DC electrical characteristics 

Table 7.1 Absolute maximum ratings 

SYMBOL PARAMETER ~ MIN MAX UNITS NOTE 
VCC DC supply voltage 0 7.0 V 1,2,3 
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3 
II Input current ±25 mA 4 
OSCT Output short circuit time (one pin) 1 s 2 
TS Storage temperature -65 150 °C 2 
TA Ambient temperature under bias -55 125 °C 2 
PDmax Maximum allowable dissipation 600 mW 

Notes 

All voltages are with respect to GND. 

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those 
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may 
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods 
may affect reliability. 

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical 
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the 
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate 
logic level such as VCC or GND. 

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND 
and VCC. 

Table 7.2 Operating conditions 

SYMBOL PARAMETER MIN MAX UNITS NOTE 
VCC DC supply voltage 4.75 5.25 V 
VI, VO Input or output voltage 0 VCC V 
CL Load capacitance on any pin 60 pF 
TA Operating temperature range 0 70 °C 

Notes 

All voltages are with respect to GND. 

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics. 

3 Air flow rate 400 linear It/min transverse air flow. 

1 
1,2 

3 



520 13 IMS e011 engineering data 

Table 7.3 DC characteristics 

SYMBOL PARAMETER MIN MAX UNITS NOTE 
VIH High level input voltage 2.0 VCC+0.5 V 1,2 
VIL Low level input voltage -0.5 0.8 V 1,2 
II I nput current @GND<VkVCC ±10 p.A 1,2,7 

±200 p.A 1,2,8 
VOH Output high voltage @ IOH=2mA VCC-1 V 1,2 
VOL Output low voltage @ IOL=4mA 0.4 V 1,2 
lOS Output short circuit current @ GND<VO<Vee 36 65 mA 1,2,3,6 

65 100 mA 1,2,4,6 
10Z Tristate output current @ GND<VO<VCC ±10 p.A 1,2 
PD Power dissipation 120 mW 2,5 
CIN Input capacitance @ f=1MHz 7 pF 6 
COZ Output capacitance @ f=1MHz 10 pF 6 

Notes 

All voltages are with respect to GND. 

2 Parameters for IMS COll-S measured at 4.75V<VCC<5.25V and 0°C<TA<70°C. 
Input clock frequency = 5 MHz. 

3 Current sourced from non-link outputs. 

4 Current sourced from link outputs. 

5 Power dissipation varies with output loading. 

6 This parameter is sampled and not 100% tested. 

7 For inputs other than those in Note 8. 

8 For pins 2, 3, 5, 6, 7, 9, 11, 13, 15, 16, 25. 

7.2 Equivalent circuits 

vee 
Load for: 

Link outputs 
Other outputs Output 

R1 

1K96 
970R 

50pF Diodes are 1 N91 6 

GND 

R2 

47K 
24K 

Figure 7.1 Load circuit for AC measurements 

Equivalent load: 

1 Schottky TTL input 
2 Schottky TTL inputs 



7 Electrical specifications 

Vdd-1 

~ Inputs 
OV 

Vdd-1 V Inputs VIL 
OV ~ 

tpHL 

Vdd ~.5V Outputs 
OV 

tpLH 

Vdd 
Y,.5V Outputs 

OV 

Figure 7.2 AC measurements timing waveforms 

Test point 
Output under test 

510R 

GND --------~----------.!--

VCC 

Figure 7.3 Tristate load circuit for AC measurements 

7.3 AC timing characteristics 

Table 7.4 Input, output edges 

SYMBOL PARAMETER MIN MAX 
TOr Input rising edges 2 20 
TDf Input falling edges 2 20 
Tar Output rising edges 25 
TOf Output falling edges 15 
CSLaHZ Chip select high to tristate 25 
CSLaLZ Chip select low to tristate 25 

Notes 

Non-link pins; see section on links. 

2 All inputs except Clockln; see section on Clockln. 

521 

UNITS NOTE 
ns 1,2 
ns 1,2 
ns 1 
ns 1 
ns 
ns 



522 

Notes 

13 IMS C011 engineering data 

90% 90% -----;zr---------- -- ------
TOr 

-----h------
----- -- ------
TOt 

10% 10% 

-----X-c----
----- -- ------
Tar 

-----h ------
----- -- ------
Tat 

90% 90% 

10% 10% 

Figure 7.4 IMS COll input and output edge timing 

15:.:.:: __ ~ ,~ ____ _ 
90% _____ .:~ __ ~--

15:.:.::n}~n ___ 
10% ------~--V--

30 
Time 

ns 
20 

10 

Figure 7.5 IMS COll tristate timing relative to noteS 

Rise time 

Fall time 

40 6080100 

Load Capacitance pF 

Link 

30 
Time 

ns 
20 

10 

Figure 7.6 Typical rise/fall times 

40 60 80100 

Load Capacitance pF 

Interface 

Skew is measured between notCS with a standard load (2 Schottky TIL inputs and 30pF) and 
notCS with a load of 2 Schottky TIL inputs and varying capacitance. 



7 Electrical specifications 523 

7.4 Power rating 

Internal power dissipation PINT of transputer and peripheral chips depends on vee, as shown in figure 7.7. 
PINT is substantially independent of temperature. 

Total power dissipation PD of the chip is 

where PlO is the power dissipation in the input and output pins; this is application dependent. 

Internal working temperature TJ of the chip is 

where TA is the external ambient temperature in °C and OJA is the junction-to-ambient thermal resistance in 
°CIW. OJA for each package is given in the Packaging Specifications section. 

200 

Power 150 
PINT 
mW 

100 

50 

4.4 4.6 4.8 5.0 5.2 5.4 5.6 
vee Volts 

Figure 7.7 IMS COll internal power dissipation vs VCC 



524 

8 Package specifications 

8.1 28 pin plastic dual·in·line package 

IT 1 
o J 

II J 

Figure 8.1 28 pin plastic dual-in-line package dimensions 

Table 8.1 28 pin plastic dual-in-line package dimensions 

Millimetres Inches 
DIM NOM TOl NOM TOl Notes 

A 36.830 ±0.254 1.450 ±0.010 
B 13.970 ±0.254 0.550 ±0.010 
C 4.445 ±0.635 0.175 ±0.025 
0 15.240 ±0.076 0.600 ±0.003 
E 1.905 0.075 
F 2.540 0.100 
G 1.397 ±0.254 0.055 ±0.010 
H 0.457 0.018 

J 16.256 ±0.508 0.640 ±0.020 
L 0.508 0.020 Minimum 

M 3.429 0.135 Maximum 

Package weight is approximately 4 grams 

Table 8.2 28 pin plastic dual-in-line package junction to ambient thermal resistance 

I SYMBOL I PARAMETER MAX I UNITS I NOTE I MIN NOM 
110 I °C/W I I I 8JA I At 400 linear ftlmln transverse air flow 



8 Package specifications 

8.2 28 pin ceramic dual-in-line package 

Figure 8.2 28 pin ceramic dual-in-line package dimensions 

Millimetres Inches 
DIM NOM TOl NOM TOl Notes 
A 35.560 ±0.356 1.400 ±0.014 
B 15.494 ±0.254 0.610 ±0.010 

C 14.681 +0.813 0.578 +0.032 
D 2.466 ±0.229 0.097 ±0.009 
E 1.270 ±0.254 0.051 ±0.010 

F 3.048 0.120 Minimum 

G 2.540 0.100 

H 0.457 ±0.051 0.018 ±0.002 

J 1.016 +0.508 0.040 +0.020 

Table 8.3 28 pin ceramic dual-in-line package dimensions 

Package weight is approximately 5 grams 

c 

Table 8.4 28 pin ceramic dual-in-line package junction to ambient thermal resistance 

PARAMETER 
At 400 linear fUmin transverse air flow 

525 



526 13 IMS C011 engineering data 

8.3 28 pin SOIC package 

New product - for availability contact INMOS. 

rr 
I-*---IC -A-~·I 

BC 

~L--n---n---TO ~~ 
K 

Figure 8.3 28 pin SOIC package dimensions 

. Table 8.5 28 pin SOIC package dimensions 

Millimetres Inches 

DIM MIN MAX MIN MAX Notes 

A 

B 

C 

D 

E 

F 

G 
H 
J 
K 
L 

Ct 

Notes 

17.526 18.491 0.697 0.728 1 

11.506 12.700 0.453 0.500 

8.230 8.890 0.324 0.350 1 

2.337 2.692 0.092 0.106 

0.356 0.508 0.014 0.020 

0.356 0.610 0.014 0.024 3 

1.270 0.050 basic 

3.048 0.120 

0.051 0.356 0.002 0.014 

0.152 0.317 0.006 0.012 

0.406 1.270 0.016 0.050 

0 0 8 0 

Overall length and width dimensions do not include mold flash or protrusions. Mold flash or protrusions shall 
not exceed 0.006 inches per side. 

2 Formed leads shall be planar with respect to one another within 0.004 inches at seating plane. 

3 F is to allow for positive dambar protrusion. 



8 Package specifications 527 

8.4 Pinout 

LinkOut 1 [ V P 28 VCC 
Linkln 2 [ P 27 Cap Minus 
IVa lid 3 I P 26 OVaiid 

lAck 4 [ ~ 25 OAck 
10 5 [ ~ 24 00 
11 6 [ P 23 01 
12 7 [ P 22 02 
13 8 [ P 21 03 
14 9 [ P 20 04 
15 10 I ~ 19 05 
16 11 [ P 18 06 
17 12 [ ~17 07 

Reset 13 I P 16 SeparatelO 
GNO 14 [ P 15 Clockln 

Figure 8.4 IMS C011 Mode 1 pinout 

LinkOut 1 [ V 28 VCC 
Linkln 2 27 Cap Minus 
RnotW 3 26 Inputlnt 

Outputlnt 4 25 notCS 
RSO 5 24 00 
RS1 6 23 01 

OoNotWire 7 [ 22 02 
03 8 21 OoNotWire 

OoNotWire 9 20 04 
05 10 I 19 OoNotWire 

HoldToGNO 11 18 06 
07 12 17 LinkSpeed 

Reset 13 I 16 SeparatelO 
GNO 14 [ 15 Clockln 

Figure 8.5 IMS C011 Mode 2 pinout 



528 

9 Ordering 

This section indicates the designation of package selections for the IMS C011. Speed of Clockln is 5 MHz 
for all parts. 

For availability contact local INMOS sales office or authorised distributor. 

Table 9.1 IMS C011 ordering details 

INMOS designation Package 
IMS C011·P20S 28 pin plastic dual-in-line 
IMS C011·S20S 28 pin ceramic sidebraze 

IMS C011·S20M 28 pin ceramic sidebraze MIL Spec 



c 

DITTImOS 
FEATURES 

Standard INMOS link protocol 
10 or 20 Mbits/sec operating speed 
Communicates with INMOS transputers 
Converts between serial link and parallel bus 
Tristate bidirectional bus interface 
Memory mapped registers 
Interrupt capability 
Single +5V ±5% power supply 
TTL and CMOS compatibility 
120mW power dissipation 
Standard 24 pin 0.3" plastic package 

APPLICATIONS 

Connecting microprocessors to transputers 
High speed links between microprocessors 
Inter-family microprocessor interfacing 

42141302 

529 

IMS C012 
link adaptor 

Engineering Data 

System 
Services 

Interrupt 
Control 

Register 
Select 

Data and 
Status 

Registers 

May 1989 



530 

1 Introduction 

The INMOS communication link is a high speed system interconnect which provides full duplex communication 
between members of the INMOS transputer family, according to the INMOS serial link protocol. The IMS C012, 
a member of this family, provides for full duplex transputer link communication with standard microprocessor 
and sub-system architectures, by converting bi-directional serial link data into parallel data streams. 

All INMOS products which use communication links, regardless of device type, support a standard commu­
nications frequency of 10 Mbits/sec; most products also support 20 Mbits/sec. Products of different type 
or performance can, therefore, be interconnected directly and future systems will be able to communicate 
directly with those of today. The IMS C012 link will run at either the standard speed of 10 Mbits/sec or at the 
higher speed of 20 Mbits/sec. Data reception is asynchronous, allowing communication to be independent 
of clock phase. 

The IMS C012 provides an interface between an INMOS serial link and a microprocessor system bus. Status 
and data registers for both input and output ports can be accessed across the byte-wide bi-directional interface. 
Two interrupt outputs are provided, one to indicate input data available and one for output buffer empty. 

VCC 
GNO 

CapMinus 
Clockln 

Reset 
LinkSpeed 

LinkOut 
Linkln 

System 
Services 

Data and 
Status 

Registers 

Figure 1.1 IMS C012 block diagram 

Inputlnt 
Outputlnt 

RSO 
RS1 
RnotW 
notCS 

00-7 



2 Pin designations 

Table 2.1 IMS C012 services and link 

Pin In/Out Function 
VCC, GNO Power supply and return 
CapMinus External capacitor for internal clock power supply 
Clockln in Input clock 
Reset in System reset 

Linkln in Serial data input channel 
LinkOut out Serial data output channel 

Table 2.2 IMS C012 parallel interface 

Pin In/Out Function 
00-7 in/out Bi-directional data bus 
notCS in Chip select 
RSO-1 in Register select 
RnotW in Read/write control signal 

Inputlnt out Interrupt on link receive buffer full 
Outputlnt out Interrupt on link transmit buffer empty 
LinkSpeed in Select link speed as 10 or 20 Mbits/sec 

HoldToGNO Must be connected to GNO 

Signal names are prefixed by not if they are active low, otherwise they are active high. 
Pinout details for various packages are given on page 548. 

531 



532 

3 System services 

System services include all the necessary logic to start up and maintain the IMS C012. 

3.1 Power 

Power is supplied to the device via the VCC and GND pins. The supply must be decoupled close to the chip 
by at least one 100 nF low inductance (e.g. ceramic) capacitor between VCC and GND. Four layer boards 
are recommended; if two layer boards are used, extra care should be taken in decoupling. 

AC noise between VCC and GND must be kept below 200 mV peak to peak at all frequencies above 100 KHz. 
AC noise between VCC and the ground reference of load capacitances must be kept below 200 mV peak to 
peak at all frequencies above 30 MHz. Input voltages must not exceed specification with respect to VCC and 
GND, even during power-up and power-down ramping, otherwise latchup can occur. CMOS devices can be 
permanently damaged by excessive periods of latch up. 

3.2 CapMinus 

The internally derived power supply for internal clocks requires an external low leakage, low inductance 1 J,'F 
capacitor to be connected between VCC and CapMinus. A ceramic capacitor is preferred, with an impedance 
less than 3 Ohms between 100 KHz and 10 MHz. If a polarised capacitor is used the negative terminal should 
be connected to CapMinus. Total PCB track length should be less than 50 mm. The positive connection of 
the capacitor must be connected directly to VCC. Connections must not otherwise touch power supplies or 
other noise sources. 

VCC 

P.C.B. track 

CapMinus P.C.B. track 

Figure 3.1 Recommended PLL decoupling 

3.3 Clockln 

Decoupling 
capacitor 

1J,'F 

Transputer family components use a standard clock frequency, supplied by the user on the Clockln input. 
The nominal frequency of this clock for all transputer family components is 5 MHz, regardless of device type, 
transputer word length or processor cycle time. High frequency internal clocks are derived from Clockln, 
simplifying system design and avoiding problems of distributing high speed clocks externally. 

A number of transputer family devices may be connected to a common clock, or may have individual clocks 
providing each one meets the specified stability criteria. In a multi-clock system the relative phasing of 
Clockln clocks is not important, due to the asynchronous nature of the links. Mark/space ratio is unimportant 
provided the specified limits of Clockln pulse widths are met. 

Oscillator stability is important. Clockln must be derived from a crystal oscillator; RC oscillators are not 
sufficiently stable. Clockln must not be distributed through a long chain of buffers. Clock edges must be 
monotonic and remain within the specified voltage and time limits. 



3 System services 

Table 3.1 Input clock 

SYMBOL PARAMETER MIN NOM MAX UNITS 
TDGLDGH Glockln pulse width low 40 ns 
TDGHDCL Clockln pulse width high 40 ns 
TDGLDCL Glockln period 200 400 ns 
TDGerror Clockln timing error ±0.5 ns 
TDC1DC2 Difference in Glockln for 2 linked devices 400 ppm 
TOCr Clockln rise time 10 ns 
TDCf Clockln fall time 8 ns 

Notes 

These paramters are not tested. 

2 Measured between corresponding points on consecutive falling edges. 

3 Variation of individual falling edges from their nominal times. 

4 This value allows the use of 200ppm crystal oscillators for two devices connected together by a link. 

5 Clock transitions must be monotonic within the range VIH to VIL (table 6.3). 

TDCerror 

2.0v- - -

1.5vO.8v= = = = -
TDCLOGH 

TOGerror 

TDCHOGL 

TDCLDCL 

90% h---
10%- - - - - --TDGI-

90%----A 

10%- - - -- - -TDC~ -

Figure 3.2 Glockln timing 

533 

NOTE 
1 
1 

1,2,4 
1,3 
1,4 
1,5 
1,5 



534 14 IMS C012 engineering data 

3.4 Reset 

The Reset pin can go high with VCC, but must at no time exceed the maximum specified voltage for VIH. 
After VCC is valid Clockln should be running for a minimum period TOCVRL before the end of Reset. Linkln 
must be held low during Reset. 

Reset initialises the IMS C012 to the following state: LinkOut is held low; the interrupt outputs Inputlnt and 
Outputlnt are held low; interrupts are disabled; 00·7 are high impedance. 

Table 3.2 Reset 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TPVRH Power valid before Reset 10 ms 
TRHRL Reset pulse width high 8 Clockln 1 
TDCVRL Clockln running before Reset end 10 ms 2 

Notes 

1 Full periods of Clockln TOCLDCL required. 

2 At power-on reset. 

Clockln 

VCC 

Reset 

Figure 3.3 Reset Timing 



535 

4 Links 

INMOS bi-directional serial links provide synchronized communication between INMOS products and with 
the outside world. Each link comprises an input channel and output channel. A link between two devices is 
implemented by connecting a link interface on one device to a link interface on the other device. Every byte 
of data sent on a link is acknowledged on the input of the same link, thus each signal line carries both data 
and control information. 

The quiescent state of a link output is low. Each data byte is transmitted as a high start bit followed by a 
one bit followed by eight data bits followed by a low stop bit. The least significant bit of data is transmitted 
first. After transmitting a data byte the sender waits for the acknowledge, which consists of a high start bit 
followed by a zero bit. The acknowledge signifies both that a process was able to receive the acknowledged 
data byte and that the receiving link is able to receive another byte. 

Links are not synchronised with Clockln and are insensitive to its phase. Thus links from independently 
clocked systems may communicate, providing only that the clocks are nominally identical and within specifi­
cation. 

Links are TTL compatible and intended to be used in electrically quiet environments, between devices on a 
single printed circuit board or between two boards via a backplane. Direct connection may be made between 
devices separated by a distance of less than 300 millimetres. For longer distances a matched 100 ohm 
transmission line should be used with series matching resistors RM. When this is done the line delay should 
be less than 0.4 bit time to ensure that the reflection returns before the next data bit is sent. 

Buffers may be used for very long transmissions. If so, their overall propagation delay should be stable within 
the skew tolerance of the link, although the absolute value of the delay is immaterial. 

The IMS C012 link supports the standard INMOS communication speed of 10 Mbits/sec. In addition it can 
be used at 20 Mbits/sec. Link speed is selected by LinkSpeed; when the LinkSpeed pin is low, the link 
operates at the standard 10 Mbits/sec; when high it operates at 20 Mbits/sec. 

~HIHloI1121314151617IL, 
I Data I 

JHlL-L--7I __ 

I Ack I 

Figure 4.1 IMS C012 link data and acknowledge packets 



536 14 IMS C012 engineering data 

Table 4.1 Link 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TJQr LinkOut rise time 20 ns 1 
TJQf LinkOut fall time 10 ns 1 
TJDr Linkln rise time 20 ns 1 
TJDf Linkln fall time 20 ns 1 
TJQJD Buffered edge delay 0 ns 
TJBskew Variation in T JQJD 20 Mbits/s 3 ns 2 

10 Mbits/s 10 ns 2 
CLiZ Linkln capacitance @ f=1MHz 7 pF 1 
Cll LinkOut load capacitance 50 pF 
RM Series resistor for 1000 transmission line 56 ohms 

Notes 

These paramters are sampled, but are not 100% tested. 

2 This is the variation in the total delay through buffers, transmission Jines, differential receivers etc., caused by 
such things as short term variation in supply voltages and differences in delays for rising and falling edges. 

90% ------
LinkOut 

10% 
TJQf 

90% 
Linkln 

10% 

Figure 4.2 IMS C012 link timing 

Llnk"':at~'~~ ~ - ; - - -
Earliest TJQJD ~ 

Linkln 1.5V- - - - ~ ~ ~-- -

TJBskew .... k-

Figure 4.3 IMS C012 buffered link timing 



4 Links 537 

Transputer family device A 

LinkOut I · I Linkln 

________ L_i_nk_l_nJr. --------~c~---------L_L_in_k_O_u_t ____ __ 
Transputer family device B 

Figure 4.4 IMS C012 Links directly connected 

Transputer family device A Zo=1000hms 

LlnkOut ~ Unkln 

Linkln ~ LinkOut 
--------==.:..:..:::..::..:..:'--' Zo=1000hms RM Transputer family device B 

Figure 4.5 IMS C012 Links connected by transmission line 

Transputer family device A 

LinkOut -() Linkln 
buffers 

Linkln <}-- LinkOut 
Transputer family device B 

Figure 4.6 IMS C012 Links connected by buffers 



538 

5 Parallel interface 

The IMS C012 provides an interface between a link and a microprocessor style bus. Operation of the link 
adaptor is controlled through the parallel interface bus lines 00-7 by reading and writing various registers in 
the link adaptor. Registers are selected by RS0-1 and RnotW, and the chip enabled with noteS. 

For convenience of description, the device connected to the parallel side of the link adaptor is presumed to 
be a microprocessor, although this will not always be the case. 

5.1 00-7 

Data is communicated between a microprocessor bus and the link adaptor via the bidirectional bus lines 00-7. 
The bus is high impedance unless the link adaptor chip is selected and the RnotW line is high. The bus is 
used by the microprocessor to access status and data registers. 

5.2 notCS 

The link adaptor chip is selected when noteS is low. Register selectors RS0-1 and RnotW must be valid 
before noteS goes low; 00-7 must also be valid if writing to the chip (RnotW low). Data is read by the link 
adaptor on the rising edge of noteS. 

5.3 RnotW 

RnotW, in conjunction with noteS, selects the link adaptor registers for read or write mode. When RnotW 
is high, the contents of an addressed register appear on the data bus 00-7; when RnotW is low the data 
on 00-7 is written into the addressed register. The state of RnotW is latched into the link adaptor by noteS 
going low; it may be changed before noteS returns high, within the timing restrictions given. 

5.4 RSO-1 

One of four registers is selected by RSO-1. A register is addressed by setting up RSO-1 and then taking 
noteS low; the state of RnotW when noteS goes low determines whether the register will be read or written. 
The state of RSO-1 is latched into the link adaptor by noteS going low; it may be changed before noteS 
returns high, within the timing restrictions given. The register set comprises a read-only data input register, 
a write-only data output register and a read/write status register for each. 

Table 5.1 IMS C012 register selection 

RS1 RSO RnotW Register 
0 0 1 Read data 
0 0 0 Invalid 
0 1 1 Invalid 
0 1 0 Write data 
1 0 1 Read input status 
1 0 0 Write input status 
1 1 1 Read output status 
1 1 0 Write output status 

5.4.1 Input Oata Register 

This register holds the last data packet received from the serial link. It never contains acknowledge packets. 
It contains valid data only whilst the data present flag is set in the input status register. It cannot be assumed 
to contain valid data after it has been read; a double read mayor may not return valid data on the second 
read. If data present is valid on a subsequent read it indicates new data is in the buffer. Writing to this register 
will have no effect. 



5 Parallel interface 539 

Table 5.2 IMSC012 parallel interface control 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TRSVCSL Register select setup 5 ns 
TCSLRSX Register select hold 5 ns 
TRWVCSL Read/write strobe setup 5 ns 
TCSLRWX Read/write strobe hold 5 ns 
TCSLCSH Chip select active 50 ns 
TCSHCSL Delay before re-assertion of chip select 50 ns 

Table 5.3 IMS C012 parallel interface read 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TLdVIIH Start of link data to Inputlnt high 13 bits 1 
TCSLlIL Chip select to Inputlnt low 30 ns 
TCSLDrX Chip select to bus active 5 ns 
TCSLDrV Chip select to data valid 40 ns 
TCSHDrZ Chip select high to bus tristate 25 ns 
TCSHDrX Data hold after chip select high 5 ns 
TCSHLaV Chip de-select to start of Ack 0.8 2 bits 1,2 

Notes 

Unit of measurement is one link data bit time; at 10 Mbits/s data link speed, one bit time is nominally 100 ns. 

2 Maximum time assumes there is no data packet already on the link. Maximum time with data on the link is 
extended by 11 bits. 

Linkln Data Data 

TLdVllH 

Inputlnt 
TCSLIIL 

RSO-1 

TRSVCSL TCSLRSX 

RnotW 

TRWVCSL TCSLRWX 

TCSLCSH TCSHCSL 

noteS 

TCSLDrV 

TCSLDrX 

00-7 

LinkOut 

Figure 5.1 IMS C012 read parallel data from link adaptor 



540 14 IMS C012 engineering data 

Table 5.4 IMS C012 parallel interface write 

SYMBOL PARAMETER MIN NOM MAX UNITS NOTE 
TCSHDwV Data setup 15 ns 
TCSHDwX Data hold 5 ns 
TCSLOIL Chip select to Outputlnt low 30 ns 
TCSHLdV Chip select high to start of link data 0.8 2 bits 1,2 
TLaVOIH Start of link Ack to Outputlnt high 3 bits 1,3 
TLdVOIH Start of link data to Outputlnt high 13 bits 1,3 

Notes 

Unit of measurement is one link data bit time; at 10 Mbits/s data link speed, one bit time is nominally 100 ns. 

2 Maximum time assumes there is no acknowledge packet already on the link. Maximum time with acknowledge 
on the link is extended by 2 bits. 

3 Both data transmission and the returned acknowledge must be completed before Outputlnt can go high. 

RSO-1 

TRSVCSL~~~~TCSLRSX 

TRWVCSL I .... I+~ 

notCS 

"--II~~ TCSHDwX 

00-7 

Outpullnt 

TCSHLdV ~"----~TLdVOIH 

LinkOut 

1-4----t~ TLa VO I H 

Linkln 

Figure 5.2 IMS C012 write parallel data to link adaptor 



5 Parallel interface 541 

5.4.2 Input Status Register 

This register contains the data present flag and the interrupt enable control bit for Inputlnt. The data present 
flag is set to indicate that data in the data input buffer is valid. It is reset low only when the data input buffer 
is read, or by Reset. When writing to this register, the data present bit must be written as zero. 

The interrupt enable bit can be set and reset by writing to the status register with this bit high or low re­
spectively. When the interrupt enable and data present flags are both high, the Inputlnt output will be high 
(page 541). Resetting interrupt enable will take Inputlnt low; setting it again before reading the data input 
register will set Inputlnt high again. The interrupt enable bit can be read to determine its status. 

When writing to this register, bits 2-7 must be written as zero; this ensures that they will be zero when the 
register is read. Failure to write zeroes to these bits may result in undefined data being returned by these 
bits during a status register read. 

7 6 5 4 3 2 o 

Figure 5.3 IMS C012 input status register 

5.4.3 Output Data Register 

Data written to this link adaptor register is transmitted out of the serial link as a data packet. Data should 
only be written to this register when the output ready bit in the output status register is high, otherwise data 
already being transmitted may be corrupted. Reading this register will result in undefined data being read. 

5.4.4 Output Status Register 

This register contains the output ready flag and the interrupt enable control bit for Outputlnt. The output 
ready flag is set to indicate that the data output buffer is empty. It is reset low only when data is written to the 
data output buffer; it is set high by Reset. When writing to this register, the output ready bit must be written 
as zero. 

The interrupt enable bit can be set and reset by writing to the status register with this bit high or low respec­
tively. When the interrupt enable and output ready flags are both high, the Outputlnt output will be high 
(page 542). Resetting interrupt enable will take Outputlnt low; setting it again whilst the data output register 
is empty will set Outputlnt high again. The interrupt enable bit can be read to determine it's status. 

When writing to this register, bits 2-7 must be written as zero; this ensures that they will be zero when the 
register is read. Failure to write zeroes to these bits may result in undefined data being returned by these 
bits during a status register read. 

5.5 Inputlnt 

The Inputlnt output is set high to indicate that a data packet has been received from the serial link. It is 
inhibited from going high when the interrupt enable bit in the input status register is low (page 541). Inputlnt 
is reset low when data is read from the input data register (page 538) and by Reset (page 534). 



542 14 IMS C012 engineering data 

7 6 5 4 3 2 o 

Figure 5.4 IMS C012 output status register 

5.6 Outputlnt 

The Outputlnt output is set high to indicate that the link is free to receive data from the microprocessor for 
transmission as a data packet out of the serial link. It is inhibited from going high when the interrupt enable 
bit in the output status register is low (page 541). Outputlnt is reset low when data is written to the data 
output register (page 541); it is set low by Reset (page 534). 

5.7 Data read 

A data packet received on the input link sets the data present flag in the input status register. If the interrupt 
enable bit in the status register is set, the Inputlnt output pin will be set high. The microprocessor will either 
respond to the interrupt (if the interrupt enable bit is set) or will periodically read the input status register until 
the data present bit is high. 

When data is available from the link, the microprocessor reads the data packet from the data input register. 
This will reset the data present flag and cause the link adaptor to transmit an acknowledge packet out of the 
serial link output. Inputlnt is automatically reset by reading the data input register; it is not necessary to read 
or write the input status register. 

5.8 Data write 

When the data output buffer is empty the output ready flag in the output status register is set high. If 
the interrupt enable bit in the status register is set, the Outputlnt output pin will also be set high. The 
microprocessor will either respond to the interrupt (if the interrupt enable bit is set) or will periodically read 
the output status register until the output ready bit is high. 

When the output ready flag is high, the microprocessor can write data to the data output buffer. This will 
result in the link adaptor resetting the output ready flag and commencing transmission of the data packet out 
of the serial link. The output ready status bit will remain low until an acknowledge packet is received by the 
input link. This will set the output ready flag high; if the interrupt enable bit is set, Outputlnt will also be set 
high. 



543 

6 Electrical specifications 

6.1 DC electrical characteristics 

Table 6.1 Absolute maximum ratings 

SYMBOL PARAMETER MIN MAX UNITS NOTE 
VCC DC supply voltage 0 7.0 V 1,2,3 
VI, VO Voltage on input and output pins -0.5 VCC+0.5 V 1,2,3 
II Input current ±25 mA 4 
OSCT Output short circuit time (one pin) 1 s 2 
TS Storage temperature -65 150 °C 2 
TA Ambient temperature under bias -55 125 °C 2 
PDmax Maximum allowable dissipation 600 mW 

Notes 

1 All voltages are with respect to GND. 

2 This is a stress rating only and functional operation of the device at these or any other conditions beyond those 
indicated in the operating sections of this specification is not implied. Stresses greater than those listed may 
cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods 
may affect reliability. 

3 This device contains circuitry to protect the inputs against damage caused by high static voltages or electrical 
fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than the 
absolute maximum rated voltages to this high impedance circuit. Unused inputs should be tied to an appropriate 
logic level such as vec or GND. 

4 The input current applies to any input or output pin and applies when the voltage on the pin is between GND 
and vec. 

Table 6.2 Operating conditions 

SYMBOL PARAMETER MIN MAX UNITS NOTE 
VCC DC supply voltage 4.75 5.25 V 
VI, VO Input or output voltage 0 vcc V 
CL Load capacitance on any pin 60 pF 
TA Operating temperature range 0 70 °C 

Notes 

All voltages are with respect to GND. 

2 Excursions beyond the supplies are permitted but not recommended; see DC characteristics. 

3 Air flow rate 400 linear It/min transverse air flow. 

1 
1,2 

3 



544 14 IMS C012 engineering data 

Table 6.3 DC characteristics 

SYMBOL PARAMETER MIN MAX UNITS 
VIH High level input voltage 2.0 VCC+0.5 V 
VIL Low level input voltage -0.5 0.8 V 
II Input current @ GND<VI<VCC ±10 p.A 

±200 p.A 
VOH Output high voltage @ IOH=2mA VCC-1 V 
VOL Output low voltage @ IOL=4mA 0.4 V 
lOS Output short circuit current @ GND<VO<VCC 36 65 mA 

65 100 mA 
10Z Tristate output current @ GND<VO<VCC ±10 J.l.A 
PD Power dissipation 120 mW 
CIN Input capacitance @ f=1MHz 7 pF 
COZ Output capacitance @ f=1MHz 10 pF 

Notes 

All voltages are with respect to GND. 

2 Parameters for IMS C012-S measured at 4.75V<VCC<5.25V and 0°C<TA<70°C. 
Input clock frequency = 5 MHz. 

3 Current sourced from non-link outputs. 

4 Current sourced from link outputs. 

5 Power dissipation varies with output loading. 

6 This parameter is sampled and not 100% tested. 

7 For inputs other than those in Note 8. 

8 For pins 2, 3, 5, 6, 7, 9, 11, 13, 14, 21. 

6.2 Equivalent circuits 

VCC -r-

R1[) 
, .... 

Load for: R1 

Link outputs 1 K96 

R2 Equivalent load: 

47K 1 Schottky TTL input 

NOTE 
1,2 
1,2 

1,2,7 
1,2,8 
1,2 
1,2 

1,2,3,6 
1,2,4,6 

1,2 
2,5 
6 
6 

Output 
I"'" ." Other outputs 970R 24K 2 Schottky TTL inputs 

50pF == r R2 ~~ 
1 ." 

Diodes are 1 N916 

GND _~--+ ___ -+--'f-_ 

Figure 6.1 Load circuit for AC measurements 



6 Electrical specifications 

Vdd-1 

~ Inputs 
OV 

Vdd-1 
Inputs VIL V 

OV --./ 

tpHL 

Vdd 
Outputs 1.5V 

OV 

tpLH 

Vdd I 
Outputs Y,.5V 

OV 

Figure 6.2 AC measurements timing waveforms 

Test point 

Output under test 
510R 

GND -------+----------~t~ 

VCC 

Figure 6.3 Tristate load circuit tor AC measurements 

6.3 AC timing characteristics 

Table 6.4 Input, output edges 

SYMBOL PARAMETER MIN MAX 
TOr Input rising edges 2 20 
TOt Input falling edges 2 20 
Tar Output rising edges 25 
Tat Output falling edges 15 
CSLaHZ Chip select high to tristate 25 
CSLaLZ Chip select low to tristate 25 

Notes 

1 Non-link pins; see section on links. 

2 All inputs except Clockln; see section on Clockln. 

545 

UNITS NOTE 
ns 1,2 
ns 1,2 
ns 1 
ns 1 
ns 
ns 



546 

Notes 

90% 

10% 

90% 

10% 

30 
Time 

ns 
20 

10 

14 IMS C012 engineering data 

90% 

-----K----------- -- ------
TOt 

-----It----------- -- ------
TOr 

10% 

---nKnnn 
----- -- ------
TOf 

-----lr-nn 
----- -- ------
Tar 

90% 

10% 

Figure 6.4 IMS C012 input and output edge timing 

15:S~:--Y~-----
10% ------~--k--

Figure 6.5 IMS C012 tristate timing relative to notCS 

Rise time 

Fall time 

406080100 
Load Capacitance pF 

Link 

30 
Time 

ns 
20 

10 

Figure 6.6 Typical rise/fall times 

406080100 
Load Capacitance pF 

Interface 

Skew is measured between notCS with a standard load (2 Schottky TIL inputs and 30pF) and 
notCS with a load of 2 Schottky TIL inputs and varying capacitance. 



6 Electrical specifications 547 

6.4 Power rating 

Internal power dissipation PINT of transputer and peripheral chips depends on vee, as shown in figure 6.7. 
PINT is substantially independent of temperature. 

Total power dissipation PD of the chip is 

where PIO is the power dissipation in the input and output pins; this is application dependent. 

Internal working temperature TJ of the chip is 

where TA is the external ambient temperature in °C and ()JA is the junction-to-ambient thermal resistance in 
°C/W. OJA for each package is given in the Packaging Specifications section. 

200 

Power 150 
PINT 
mW 

100 

50 

4.4 4.6 4.8 5.0 5.2 5.4 5.6 
vee Volts 

Figure 6.7 IMS C012 internal power dissipation vs VCC 



548 

7 Package specifications 

7.1 24 pin plastic dual-in-line package 

Figure 7.1 24 pin plastic dual-in-line package dimensions 

Table 7.1 24 pin plastic dual-in-line packagedimensions 

Millimetres Inches 
DIM NOM TOl NOM TOl Notes 

A 31.242 +0.508 1.230 +0.020 
-0.254 -0.010 

B 6.604 ±0.127 0.260 ±0.005 
C 3.302 ±0.381 0.130 ±0.015 
D 7.620 ±0.127 0.300 ±0.005 
E 1.651 ±0.127 0.06S ±O.OOS 
F 2.S40 ±0.127 0.100 ±O.OOS 
G 1.S24 ±0.127 0.060 ±O.OOS 
H 0.4S7 ±0.127 0.018 ±O.OOS 
J 8.382 ±0.S08 0.330 ±0.020 
K 0.254 ±0.025 0.010 ±0.001 
L 0.S08 ±0.127 0.020 ±O.OOS 
M 3.048 0.120 Minimum 

Package weight is approximately 2 grams 

Table 7.2 24 pin plastic dual-in-line package junction to ambient thermal resistance 

PARAMETER 
At 400 linear ft/min transverse air flow 



7 Package specifications 549 

7.2 Pinout 

LinkOut 1 V 24 VCC 
Linkln 2 23 CapMinus 
RnotW 3 22 Inputlnt 

Outputlnt 4 21 notCS 
RSO 5 20 00 
RS1 6 19 01 

03 7 18 02 
05 8 17 04 

HoldToGNO 9 16 06 
07 10 15 LinkSpeed 

Reset 11 14 HoldToGNO 
GNO 12 13 Clockln 

Figure 7.2 IMS C012 pinout 



550 

8 Ordering 

This section indicates the designation of package selections for the IMS C012. Speed of Clockln is 5 MHz 
for all parts. 

For availability contact local INMOS sales office or authorised distributor. 

Table 8.1 IMS C012 ordering details 

INMOS designation Package 
IMS C012·P20S 24 pin plastic dual-in-line 



!I:romos Appendix A 

_ quality and 
reliability 

551 



552 

A Quality and Reliability 

The INMOS quality programme is set up to be attentive to every phase of the semiconductor product life 
cycle. This includes specific programmes in each of the following areas: 

• Total Quality Control (TQC) 

• Quality and Reliability in Design 

• Document Control 

• New Product Qualification 

• Product Monitoring Programme 

• Production Testing and Quality Monitoring Procedure 

A.1 Total quality control (TQC) and reliability programme 

Our objective to continuously build improved quality and reliability into every INMOS part has resulted in a 
comprehensive Quality/Reliability Programme of which we are proud. This programme demonstrates INMOS' 
serious commitment to supporting the quality and reliability needs of the electronics marketplace. 

INMOS is systematically shifting away from a traditional screening approach to quality control and towards 
one of building in Experimental Design quality through Statistical Process Control (SPC). This new direction 
was initiated with a vigorous programme of education and scientific method training. 

In the first year of the programme approximately 80 INMOS employees worldwide received thorough SPC 
training. This training has been extended to cover advanced SPC and experimental design. Some of the 
courses taught are listed below: 

• Experimental DeSign Techniques 

• Statistical Process Control Methods 

• Quality Concepts 

• Problem Solving Techniques 

• Statistical Software Analysis Techniques 

Today INMOS utilizes experimental design techniques and process control/monitoring throughout its devel­
opment and manufacturing cycles. The following TQC tools are currently supported by extensive databases 
and analysis software. 

1. Pareto charts 6. Correlation Plots 
2. Cause/Effect Diagrams 7. Control Charts 
3. Process Flow Charts 8. Experimental Design 
4. Run Charts 9. Process Capability Studies 
5. Histograms 

A.2 Quality and reliability in design 

The INMOS quality programme begins with the design of new INMOS products. The following procedures 
are examples from the iNMOS programme to design quality and reilability into every product. 

Innovative design techniques are employed to achieve product performance using, whenever possible, state 
of the art techniques. For example, INMOS uses 300 nm gate oxides on its high performance graphics, 
SRAM and MICRO products to obtain the reliability inherent in the thicker gate oxide. In addition, circuit 
design engineers work hand in hand with process engineers to optimise the design for the process and the 



A Quality and Reliability 553 

process for the product family. The result is a highly reliable design implemented in a process technology 
achievable within manufacturing. 

INMOS products are designed to have parametric margins beyond the product target specifications. The 
design performance is verified using simulations of circuit performance over voltage and temperature values 
beyond those of specified product operation, including verification beyond the military performance range. In 
addition, the device models are chosen to ensure tolerance to wide variations in process parameters beyond 
those expected in manufacture. 

The design process includes consideration of quality issues such as signal levels available for sensing, 
reduction of internal noise levels, stored data integrity and testability of all device functions. Electro-static 
damage protection techniques are included in the design with input protection goals of 2K volts for MIL-STD-
883 testing methods. Specific customer requirements can be met by matching their detailed specifications 
against INMOS designed in margins. 

The completion of the design includes the use of INMOS computer aided design software to fully check and 
verify the design and layout. This improves quality as well as ensuring the timely introduction of new products. 

A.3 Document control 

The Document Control Department maintains control over all manufacturing specifications, lot travellers, 
procurement specifications and drawings, reticle tapes and test programmes. New specifications and changes 
are subject to approval by the Engineering and Manufacturing managers or their delegates. Change is 
rigorously controlled through an Engineering Change Notice procedure, and QA department managers screen 
and approve all such changes. 

An extensive archiving system ensures that the history of any Change Notice is readily available. 

Document Control also has responsibility for controlling in-line documentation in all manufacturing areas which 
includes distribution of specifications, control of changes and liaison with production control and manufacturing 
in introducing changed procedures into the line. 

Extensive use is made of computer systems to control documentation on an international basis. 

A.4 New product qualification 

INMOS performs a thorough internal product qualification prior to the delivery of any new product, other than 
engineering samples of prototypes to customers. 

Care is taken to select a representative sample from the final prototype material. This typically consists of 
three different production lots. Testing is then done to assure the initial product reliability levels are achieved. 
Product qualifications are done in accordance with MIL-STD-883, methods 5004 and 5005, or CECC/BS9000. 

The initiallNMOS qualification data, and the ongoing monitor data can be very useful in the user qualification 
decision process. INMOS also has a very successful history of performing customer qualification testing 
in-house and performing joint qualification programmes with customers. INMOS remains committed to joint 
customerlvendor programmes. 

A.S Product monitoring programme 

At the levels of quality and reliability performance required today (lOW PPM and FIT levels), it is essential that 
a large statistically significant, current product database be maintained. One of the programmes that INMOS 
uses to accomplish this is the Product Monitoring Programme (PMP). 

The PMP is a comprehensive ongoing programme of reliability testing. A small sample is pulled from pro­
duction lots of a particular part type. This population is then used to create the specific samples to put on 
the various operating and environmental tests. Tests run in this programme include extended temperature 



554 A quality and reliability 

operating life, THB and temperature cycle. Efforts are continuing to identify and correlate more accelerated 
tests to be used in the PMP. 

A.6 Production testing and quality monitoring procedure 

A.6.1 Reliability testing 

INMOS' primary reliability test method is to bias devices at their maximum rated operating power supply level 
in a 140° C ambient temperature. A scheme of time varying input signals is used to simulate the complete 
functional operation of the device. The failure rate is then computed from the results of the operating life 
test using Arrhenius modelling for each specific failure mechanism known. The failure rate is reported at a 
temperature that is a typical worst case application environment and is expressed in units of FITs where 1 
FIT = 1 Fail in 10E9 device hours, (100 FIT = 0.01 %/1 000 Hrs). The current database enables the failure 
rate to be valid over various environmental conditions. 

The failure rate goal for INMOS products is 100 FITs or less at product introduction with a 50 FIT level to be 
attained within one year. 

For plastic packaged product, additional testing methods and reliability indices become important. Humidity 
testing is used to evaluate the relative hermeticity of the package, and thermal cycling tests are used principally 
to evaluate the durability of the assembly (e.g. die/bond attach). 

The Humidity Test comprises of temperature, humidity, bias (THB) at 85°C, 85% Relative Humidity, and a 
5V static bias configuration selected to maintain the component in a state of minimum power dissipation and 
enhance the formation of galvanic corrosion. INMOS reliability goals have always been to meet or better 
the current 'industry standards' and a target of less than 1 % failures through 1000 hours of THB at 90% 
confidence has been set. 

The Thermal Cycling tests are performed from -65°C to + 150°C for 500-1000 cycles, with no bias applied. 
Thermal Shock tests using a liquid to liquid (Freon) method are cycled between -55°C and + 125°C. 
The INMOS Reliability qualification and monitoring goal for the above tests is less than 1% failures at 90% 
confidence. 

A.6.2 Production testing 

Electrical testing at INMOS begins while the devices are still in wafer form before being divided into individual 
die. While in this form, two different types of electrical test are performed. 

The Parametric Probe test is to verify that the individual component parameters are within their design limits. 
This is accomplished by testing special components on the wafer. The results of these tests provide feedback 
to our wafer fab manufacturing facilities which allows them to ensure that the components used in the actual 
devices perform within their design limits. This testing is performed on all lots which are processed, and any 
substandard wafers discarded. These components are placed in the scribe streets of the wafer so they are 
destroyed in the dicing operation when they are not of any further use. By placing them there, valuable chip 
real estate is saved, thereby holding down cost while still providing the necessary data. 

The Electrical Probe test performed on all wafers is the test of each individual circuit or chip on every wafer. 
The defective dice are identified so they may be later discarded after the wafer has been separated into 
individual die. This test fully exercises the Circuits for all AC and DC datasheet parameters in addition to 
verifying functionality. 

After the dice have been assembled into packages they are again tested in our Final Test operation. In a 
mature product the typical flow is: 

• Preburn-in test 

• Burn-in at 140°C 

• Final test 



A Quality and Reliability 555 

• PDA (Percent Defect Allowed) 

• Device Symbolisation 

• QA Final Acceptance 

The temperature setting used for hot testing is selected so that the junction temperature is the same as it 
would be after thermal stabilisation occurred in the specified environment. This is calculated using the hot 
temperature power dissipation along with the thermal resistance of the package used. AIlINMOS product is 
electrically tested and burned-in prior to shipment. Historically, the industry has selected burn-in times using 
the MIL Standards as a guide (when the market would support the cost) or on a 'best guess' basis dominated 
by cost considerations. Whereas INMOS invoke a burn-in reduction exercise to ensure the reduced time has 
no reliability impact. 

A.6.3 Quality monitoring procedure 

In the Outgoing Quality Monitoring programme, random samples are pulled from lots, that have been suc­
cessfully tested to data sheet criteria. Rejected lots are 100% retested and more importantly, failures are 
analysed and corrective actions identified to prevent the recurrence of specific problems. 

The extensive series of electrical tests with the associated Burn-in PDA limits and Quality Assurance tests 
ensure we will be able to continue to improve our high quality and reliability standards. 



556 A quality and reliability 

INMOS MIL-STD-883C/MIL-I-4S208 

MATERIAL PROCUREMENT & PRODUCT FLOW 

Wafer Fab Mat'I Procurement [2] 

Wafer Fab Process [2] 

Wafer Level Elect. Test [2] 

Internal Visual QA Sample [2] 

Assembly Mat'I Procurement 

Assembly Mat'I QA Inspect 

Assembly Process [1] 

Electrical Testing 

Burn-in 

[Solder Dip] [3] 

QCI Group A,B 

QCI Group C,D 

Certificate of Conformance 

[CSI, GSI, PVT] [4] 

Notes: 

[1] Anam, Korea or GTE, Taiwan 

[2] Newport Fab. Product: 
All NMOS, CMOS SRAM 
All Transputer 
All G17x (CLUT) 

[3] Hot Solder Dip as req'd at 
Colo. Spgs. Subcontractor 

[4] As required by Customer 

INMOS 
NEWPORT 

U.K. 

[5] 

OFFSHORE 
ASSEMBLY 

[5] 600 mil Package Parts, 
All MICRO & G17x Parts 

[6] 300 mil DIP, LCC & FLAT PACK 
SRAM Parts 

V Raw Materia! Procurement 

o Manufacturing Process 

D QA Gate 

INMOS 
COL. SPGS. 

USA 

[6] 



Ilrimos Appendix B e index 

557 



558 B index 



B Index 

! 13 
" 19 
o 18 
* 18, 114, 117, 180, 183, 250, 253, 321, 388, 

443 
+ 18,114,117,180,183,250,253,321,323, 

388,390,443,445 
- 18, 114, 180, 250, 321, 323, 388, 390, 443, 

445 
/ 1~ 114, 11~ 180, 183,250,253,321,388, 

443 
/\ 18,114,180,250,321,388,443 
:= 13 
< 18,114,117,180,183,250,253,321,323, 

388,390,443,445 
« 18,114,180,250,321,388,443 
<= 18,114,117,180,183,250,253,321,323, 

388,390,443,445 
<> 18,114,117,180,183,250,253,321,323, 

388,390,443,445 
= 18,114,117,180,183,250,253,321,323, 

388,390,443,445 
> 18, 114, 117, 180, 183, 250, 253, 321, 323, 

388,390,443,445 
>< 18,114,180,250,321,388,443 
>= 18,114,117,180,183,250,253,321,323, 

388,390,443,445 
» 18,114,180,250,321,388,443 
? 13 
\I 18, 114, 180, 250, 321, 388, 443 
- 18,114,180,250,321,388,443 

ABS 117,183,253 
Absolute maximum ratings 

IMS C004 494 
IMS C011 519 
IMS C012 543 
IMS T222 437 
IMS T414 382 
IMST425315 
IMS T800 244 
IMS T801 174 
IMS T805 108 

Access 
byte-wide IMS C011 504 
byte-wide IMS C012 530 

Acknowledge 
link 39 
link IMS C004 485 
link IMS C011 509 
link IMS C012 535 
link IMS T222 434 
link IMS T414 379 
link IMS T425 312 
link IMS T800 241 

link IMS T801 171 
link IMS T805 105 

Address 
bus IMS T222 423 
bus IMS T414 359 
bus IMS T425 290 
bus IMS T800 221 
bus IMS T801 160 
bus IMS T805 80 
byte IMS T222 420 
byte IMS T414 355 
byte IMS T425 286 
byte IMS T800 217 
byte IMS T801 157 
byte IMS T805 77 
mark IMS M212 465 
refresh IMS T414 373 
refresh IMS T425 305 
refresh IMS T800 235 
refresh IMS T805 91 
space IMS T222 400,403 
space IMS T225 454 
space IMS T414 335,337 
space IMS T425 262,265 
space IMS T800 191, 193 
space IMS T801 129, 132 
space IMS T805 49, 52 

AFTER 18,19,40,115,181,251,322,389, 
444 

559 

ALT 15,16,22,29,115,119,181,184,251, 
255,322,325,389,391,444,446 

Alternation construction 14, 15, 16, 29, 40 
Analyse 

IMS T222 418,419 
IMS T414 353,354 
IMS T425 284, 285 
IMS T800 215,216 
IMS T801 155, 156 
IMS T805 75, 76 

AND 18, 114, 180, 250, 321, 388, 443 
ANSI-IEEE 754-1985 17 

IMS T800 190, 209 
IMS T801 128, 149 
IMS T805 48, 69 

Application 
bidirectional exchange IMS C004 490 
bus systems IMS C004 490 
drawing coloured text 43 
enhanced controller IMS M212 470 
IMS T222 426 
IMS T414 365 
IMS T425 296 
IMS T800 227 
IMS T805 81 
link switching IMS C004 490 



560 

multiple control IMS C004 490 
winchester controller IMS M212 469,470 

Architecture 28, 29 
internal 31 
rationale 9 

Arithmetic 
multiple length 116,182,252,322,389,444 
operation IMS T222 403 
operation IMS T414 337 
operation IMS T425 265 
operation IMS T800 193 
operation IMS T801 132 
operation IMS T805 52 
operator 114,117,180,183,250,253,321, 

388, 443 
Array 17 

assignment 119,184,255,325,391,446 
byte 19 
of disk controllers IMS M212 471 
of processes 16 
of transputers IMS M212 471 
type 17 
variable 114, 180, 250, 321, 388, 443 

ASCII 19 
ASBIFTLEFT 116,182,252 
ASHIFTRIGBT 116, 182, 252 
Assignment 13,29,114,117,180,183,250, 

253,321,388,443 
array 119, 184, 255, 325, 391, 446 
process 12, 13 

Bandwidth 
memory 43 
memory IMS T222 405 
memory IMS T414 339 
memory IMS T425 267 
memory IMS T800 195 
memory IMS T801 134 
memory IMS T805 54 

Barrel shifter 42 
Behaviour 

logical 7, 20, 22 
physical 7 

Benchmark 
LlNPACK 42 
speed 41 
Whetstone 41 

Bit 
counting performance 118, 184, 254, 324 
data 39 
operator 114, 180, 250, 321, 388, 443 
reversal performance 118, 184, 254, 324 
start 39 
stop 39 

Bit-bit 43 
BITCOUNT 118,184,254,324 
BITREVNBIT 118,184,254,324 
BITREVWORD 118, 184, 254, 324 
Block move 43 

conditional 43 

IMS T425 262,270 
IMS T800 190, 198 
IMS T801 128, 137 
IMS T805 48, 57 
performance 118, 184, 254, 324 
two-dimensional 43 

BOOL 17 
Boolean 

B index 

expression 119, 184, 255, 325, 391, 446 
operator 114, 180, 250, 321, 388, 443 

BootFromRom 
IMS T222 416,418 
IMS T414 351,353 
IMS T425 282, 284 
IMS T800 213,215 
IMS T801 153, 155 
IMS T805 73, 75 

Bootstrap 24, 25 
address IMS T222 418 
address IMS T 414 353 
address IMS T 425 284 
address IMS T800 215 
address IMS T801 155 
address IMS T805 75 
code IMS T222 420 
code IMS T414 355 
code IMS T425 286 
code IMS T800 217 
code IMS T801 157 
code IMS T805 77 
IMS M212 467 
IMS T222 416, 418 
IMS T414 351,353,376 
IMS T425 282, 284, 308 
IMS T800 213,215,238 
IMS T801 153, 155 
IMS T805 73, 75, 94 
program IMS T222 432 
program IMS T801 167 

Bootstrapping 
IMS T425 286 
IMS T805 77 

Brackets 18 
Break point 

IMS T425 286 
IMS T805 71 

Buffer 
input IMS C011 517 
input IMS C012 541 
link 24 
output IMS C011 517 
output IMS C012 541 

Bus 31 
IMS C011 514 
IMS C012 538 

Byte 
access IMS C011 504 
access IMS C012 530 
access IMS T222 423, 428 
access IMS T801 160 



address IMS T222 420, 423 
address IMS T414 355 
address IMS T425 286 
address IMS T800 217 
address IMS T801 157, 160 
address IMS T805 77 

BYTE 17 

C 23 
Capacitive load 9 
CapMinus 

IMS C004 482 
IMS C011 506 
IMS C012 532 
IMS T222 415 
IMS T414 349 
IMS T425 280 
IMS T800 211 
IMS T801 151 
IMS T805 71 

CapPlus 
IMS C004 482 
IMS T222 415 
IMS T414 349 
IMS T425 280 
IMS T800 211 
IMS T801 151 
IMS T805 71 

CASE 16 
CHAN OF 17 

protocol 114,180,250,321,388,443 
Channel 8,12,13,15,17,20,23,29,114,180, 

250,321,388,443 
communication 36, 38 
disk hardware IMS M212 466 
empty 36 
event IMS T222 433 
event IMS T414 378 
event IMS T425 310 
event IMS T800 240 
event IMS T801 169 
event IMS T805 103 
external 36 
external IMS T222 408 
externallMS T414 342 
external IMS T425 270 
external IMS T800 198 
externallMS T801 137 
external IMS T805 57 
IMS T222 407 
IMS T414 341 
IMS T425 269 
IMS T800 197 
IMS T801 136 
IMS T805 56 
input 29 
internal 36 
internal IMS T222 408 
internallMS T414 342 
internal IMS T425 270 

internal IMS T800 198 
internal IMS T801 137 
internal IMS T805 57 
link 23 
link IMS C004 485 
link IMS C011 509 
link IMS C012 535 
link IMS T222 434 
link IMS T414 379 
link IMS T425 312 
link IMS T800 241 
link IMS T801 171 
link IMS T805 105 
memory 23 
occam 23 
output 29 
process 29 

Characteristics 
AC timing IMS C004 496 
AC timing IMS C011 521 
AC timing IMS C012 545 
AC timing IMS T222 439 
AC timing IMS T414 384 
AC timing IMS T425 317 
AC timing IMS T800 246 
AC timing IMS T801 176 
AC timing IMS T805 110 
DC electrical IMS C004 494,495 
DC electricallMS C011 519,520 
DC electrical IMS C012 543,544 
DC electrical IMS T222 437, 438 
DC electricallMS T414 382,383 
DC electricallMS T425 315,316 
DC electrical IMS T800 244, 245 
DC electrical IMS T801 174, 175 
DC electrical IMS T805 108, 109 

CLIP2D 43,118,184,254,324 
Clock 17,25 

input 24,25 
input, internal IMS C004 482 
input, internal IMS C011 506 
input, internal IMS C012 532 
input, internal IMS T222 415 
input, internal IMS T414 349 
input, internal IMS T425 280 
input, internal IMS T800 211 
input, internal IMS T801 151 
input, internal IMS T805 71 
internal 24 
link 25 
link IMS C004 485 
link IMS C011 509 
link IMS C012 535 
link IMS T222 434 
link IMS T414 379 
link IMS T425 312 
link IMS T800 241 
link IMS T801 171 
link IMS T805 105 
multiple IMS C004 482 

561 



562 

multiple IMS C011 506 
multiple IMS C012 532 
multiple IMS T222 415 
multiple IMS T414 349 
multiple IMS T425 280 
multiple IMS T800 211 
multiple IMS T801 151 
multiple IMS T805 71 
phase 11 
processor 40 
processor IMS T222 408 
processor IMS T414 342 
processor IMS T425 270 
processor IMS T800 198 
processor IMS T801 137 
processor IMS T805 57 
stability IMS C004 482 
stability IMS C011 506 
stability IMS C012 532 
stability IMS T222 415 
stability IMS T414 349 
stability IMS T425 280 
stability IMS T800 211 
stability IMS T801 151 
stability IMS T805 71 
timer 19 
timer IMS T222 408 
timer IMS T414 342 
timer IMS T425 270 
timer IMS T800 198 
timer IMS T801 137 
timer IMS T805 57 
transputer 11 

Clockln 
IMS C004 482 
IMS C011 506 
IMS C012 532 
IMS T222 415 
IMS T414 349 
IMS T425 280 
IMS T800 211 
IMS T801 151 
IMS T805 71 
period IMS T222 422 
period IMS T414 357 
period IMS T425 288 
period IMS T800 219 
period IMS T801 162 
period IMS T805 82 
skew IMS C011 507 

Code 
function/operation IMS T222 409 
function/operation IMS T414 343 
function/operation IMS T425 272 
function/oeeration IMS T800 200 
function/operation IMS T801 139 
function/operation IMS T805 59 

Coding efficiency 
IMS T222 405 
IMS T414 339 

IMS T425 267 
IMS T800 195 
IMS T801 134 
IMS T805 54 

Colour 
display 43 
graphics 34 
text example 43 

Communication 8, 9, 10, 28, 31,36 
bandwidth 9 
channel 12, 36, 38 
construction 12, 15 
contention 9 
external 38 
frequency 11, 24 
IMS T222 407 
IMS T414 341 
IMS T425 269 
IMS T800 197 
IMS T801 136 
IMS T805 56 
interface 10 
internal 36 
language 23 
link 9,39 
parallel IMS C011 504 
parallel IMS C012 530 
process IMS T222 407 
process IMS T414 341 
process IMS T425 269 
process IMS T800 197 
process IMS T801 136 
process IMS T805 56 
speed 30 

B index 

Comparison operator 114, 117, 180, 183, 250, 
253,321,388,443 

Compatibility 
IMS T425 263 
IMS T805 49 

Concept 29 
Concurrency 7, 12, 28 

IMS T222 406 
IMS T414 340 
IMS T425 268 
IMS T800 196 
IMS T801 135 
IMS T805 55 
internal 12 
support 34 

Concurrent 
FPU/CPU operation 41 
process 12,14,15,22,29 
systems 12 

Conditional construction 14, 15 
Configuration 

coding IMS T414 371 
coding IMS T425 302 
coding IMS T800 233 
coding IMS T805 101 
memory IMS T222 418 



memory IMS T414 353,357,366 
memory IMS T425 284,288,297 
memory IMS T800 215,219,228 
memory IMS T801 155 
memory IMS T805 75, 79, 81, 96 
memory, externallMS T414 366,368,369, 

370,372 
memory, external IMS T425 297,299, 300, 

301,303 
memory, external IMS T800 228,230,231, 

232,234 
memory, external IMS T805 98, 99, 100, 102 
memory, internallMS T414 366 
memory, internal IMS T425 297 
memory, internal IMS T800 228 
memory, internal IMS T805 96 
program 20 

Connection 
link IMS C004 485 
link IMS C011 509 
link IMS C012 535 
link IMS T222 434 
link IMS T414 379 
link IMS T425 312 
link IMS T800 241 
link IMS T801 171 
link IMS T805 105 

Constant 115, 181, 251, 322, 389, 444 
subscript 114, 180, 250, 321, 388, 443 
value 33 

Construction 14,29,115,181,251,322,389, 
444 

alternation 14,15,16,29,40 
communication 15 
conditional 14, 15 
parallel 12, 14, 20, 29, 35 
parallel IMS T222 407 
paraliellMS T414 341 
parallel IMS T425 269 
paraliellMS T800 197 
paraliellMS T801 136 
parallel IMS T805 56 
performance 118, 184, 254, 325, 391,446 
repetition 16 
replication 16 
selection 16 
sequential 12,14,15,29 

Context switch 
IMS T425 286 
IMS T805 77 

Control 
byte IMS T222 418 
byte1MST414351,353 
byte IMS T425 284 
byte IMS T800 215 
byte IMS T801 155 
byte IMS T805 75 
link IMS C004 484 
logic IMS M212 466 

Conversion 
INT, REAL 117, 183,253 
REAL, INT 117, 183,253 

CPU 31 
concurrent operation 41 
register 31, 32 

CRC 
IMS M212 465,467 
IMS T425 262 
IMS T800 191 
IMS T801 129 
IMS T805 49 
performance 118, 184, 254, 324 

CRCBYTE 118, 184, 254, 324 
CRCWORD 118, 184, 254, 324 
Cyclic redundancy 

IMS M212 465,467 
IMS T425 262 
IMS T800 191 
IMS T801 129 
IMS T805 49 
performance 118, 184, 254, 324 

00-7 
IMS C011 508,514 
IMS C012 534, 538 

DABS 117,183,253 
Data 

bit 39 
bus IMS T222 422,423 
bus IMS T414 359 
bus IMS T425 290 
bus IMS T800 221 
bus IMS T801 159, 160 
bus IMS T805 80 
link 39 
link IMS C004 485 
link IMS C011 509 
link IMS C012 535 
link IMS T222 434 
link IMS T414 379 
link IMS T425 312 
link IMS T800 241 
link IMS T801 171 
link IMS T805 105 
rate 24,39 
rate IMS T222 400 
rate IMS T225 454 
rate IMS T414 335 
rate IMS T425 262 
rate IMS T800 191 
rate IMS T801 129 
rate IMS T805 49 
rate link IMS T222 434 
rate link IMS T414 379 
rate link IMS T425 312 
rate link IMS T800 241 
rate link IMS T801 171 
rate link IMS T805 105 
read IMS C011 518 

563 



564 

read IMS C012 542 
separation IMS M212 465 
serial 39 
structu re 33 
structure IMS T222 404 
structure IMS T414 338 
structure IMS T425 266 
structure IMS T800 194 
structure IMS T801 133 
structure IMS T805 53 
transfer 15 
value 32 
value IMS T222 404 
value IMS T414 338 
value IMS T425 266 
value IMS T800 194 
value IMS T801 133 
value IMS T805 53 
write IMS C011 518 
write IM$ C012 542 

Data Present 
IMSC011 514,517,518 
IMS C012 538,541,542 

Declaration 17, 114, 180, 250, 321, 388, 443 
Decoupling 

IMS C004 482 
IMS C011 506 
IMS C012 532 
IMS T222 415 
IMS T414 349 
IMS T425 280 
IMST800 211 
IMS T801 151 
IMS T805 71 

Delay 
input 19 
timer 19 

Deschedule 35,37,38 
IMS T222 406,407,408 
IMST414340,341,342 
IMS T425 268, 269, 270 
IMS T800 196,197,198 
IMS T801 135,136,137 
IMS T805 55, 56, 57 
point IMS T222 407,410,418 
point IMS T414 341,344,353 
point IMS T425 269, 273, 284 
point IMS T800 197,201,215 
point IMS T801 136,140,155 
point IMS T805 56, 60, 75 

Device 29 
Direct function 33 

IMS T222 404 
IMS T414 338 
IMS T425 266 
IMS T800 194 
IMS T801 133 
IMS T805 53 

Direct memory access 
IMS T222 423 

IMS T414 358 
IMS T425 289 
IMS T800 220 
IMS T801 159 
IMS T805 79 

DisablelntRAM 
IMS T222 420 
IMS T414 355 
IMS T425 286 
IMS T800 217 
IMS T805 77 

Disk 

B index 

command IMS M212 467, 468 
compression/decompression IMS M212 471 
controller IMS M212 464, 465 
cylinder IMS M212 467 
drive selection IMS M212 464 
encryption/decryption IMS M212 471 
floppy IMS M212 464, 467 
format IMS M212 467 
head IMS M212 467 
head position IMS M212 464 
interleave IMS M212 468 
management IMS M212 471 
parameter IMS M212 467 
port IMS M212 465 
programming interface IMS M212 467 
SA400/450 IMS M212 465,467 
sector IMS M212 467 
ST506/412 IMS M212 465, 467 
status IMS M212 464 
winchester IMS M212 464, 467 

DMA 
at reset IMS T222 431, 432 
at reset IMS T414 377 
at reset IMS T425 309 
at reset IMS T800 239 
at reset IMS T801 167 
at reset IMS T805 95 
IMS T222 423, 424, 431 
IMS T414 358,376 
IMS T425 289,308 
IMS T800 220, 238 
IMS T801 159,161,167 
IMS T805 79, 94 
operation IMS T222 431 
operation IMS T414 377 
operation IMS T425 309 
operation IMS T800 239 
operation IMS T801 167 
operation IMS T805 95 

DRAW2D 43, 118, 184, 254, 324 
DSQRT 117,183,253 

ECC 
IMS M212 465, 467 

Efficiency 34 
Electrical 

AC timing characteristics IMS C004 496 
AC timing characteristics IMS C011 521 



AC timing characteristics IMS C012 545 
AC timing characteristics IMS T222 439 
AC timing characteristics IMS T414 384 
AC timing characteristics IMS T425 317 
AC timing characteristics IMS T800 246 
AC timing characteristics IMS T801 176 
AC timing characteristics IMS T805 110 
DC characteristics IMS C004 494,495 
DC characteristics IMS C011 519, 520 
DC characteristics IMS C012 543,544 
DC characteristics IMS T222 437, 438 
DC characteristics IMS T414 382,383 
DC characteristics IMS T425 315, 316 
DC characteristics IMS T800 244, 245 
DC characteristics IMS T801 174, 175 
DC characteristics IMS T805 108, 109 
operating conditions IMS C004 494 
operating conditions IMS C011 519 
operating conditions IMS C012 543 
operating conditions IMS T222 437 
operating conditions IMS T414 382 
operating conditions IMS T425 315 
operating conditions IMS T800 244 
operating conditions IMS T801 174 
operating conditions IMS T805 108 
specification 24 

EMI 
IMS T222 422 
IMS T414 357 
IMS T425 288 
IMS T800 219 
IMS T801 159 
IMS T805 79 

EnableJOBreak 
IMS T425 284 
IMS T805 75 

Equivalent circuit 
IMS C004 495 
IMS C011 520 
IMS C012 544 
IMS T222 438 
IMS T414 383 
IMS T425 316 
IMS T800 245 
IMS T801 175 
IMS T805 109 

Erastosthenes 119, 184, 255, 325, 391, 446 
Error 25 

IMS T222 418,419 
IMS T414 353,354 
IMS T425 284, 285 
IMS T800 215,216 
IMS T805 75,76 

Error 25 
IMS T222 419 
IMS T414 354 
IMS T425 285 
IMS T800 216 
IMS T801 155,156 
IMS T805 76 

power up IMS T222 419 
power up IMS T414 354 
power up IMS T425 285 
power up IMS T800 216 
power up IMS T801 156 
power up IMS T805 76 

Error 25 
analysis 21 
analysis IMS T222 419 
analysis IMS T414 354 
analysis IMS T425 285 
analysis IMS T800 216 
analysis IMS T801 156 
analysis IMS T805 76 
circuit IMS T222 419 
circuit IMS T414 354 
circuit IMS T425 285 
circuit IMS T800 216 
circuit IMS T801 156 
circuit IMS T805 76 
correcting code 34 

565 

correcting code IMS M212 465,467 
expression check 115,181,251,322,389, 

444 
floating pOint IMS T800 210 
floating pOint IMS T801 150 
floating point IMS T805 70 
handling 21 
IMS M212 467 
languages 21 
reset IMS T222 419 
reset IMS T414 354 
reset IMS T425 285 
reset IMS T800 216 
reset IMS T801 156 
reset IMS T805 76 

Errorln 
IMS T425 285 
IMS T800 216 
IMS T805 76 

ErrorOut 
IMS T801 156 

Evaluation 
expression IMS T222 403, 405 
expression IMS T 414 337, 339 
expression IMS T425 265,267 
expression IMS T800 193,195 
expression IMS T801 132,134 
expression IMS T805 52, 54 
stack 31, 32, 36 
stack IMS T222 403,407,408 
stack IMS T414 337,341,342 
stack IMS T425 265, 269, 270 
stack IMS T800 193,197,198 
stack IMS T801 132,136,137 
stack IMS T805 52, 56, 57 

Event 16,26 
IMS T222 433 
IMS T414 378 
IMS T425 310 



566 

IMS T800 240 
IMS T801 169 
IMS T805 103 

EventAck 
IMS T222 433 
IMS T414 378 
IMS T425 310 
IMS T800 240 
IMS T801 169 
IMS T805 103 

EventReq 
IMS T222 419, 433 
IMS T414 354,378 
IMS T425 285,310 
IMS T800 216, 240 
IMS T801 156,169 
IMS T805 76, 103 

EventWaiting 
IMS T425 310 
IMS T801 169 
IMS T805 103 

Example 
drawing coloured text 43 
instruction set IMS T222 409 
instruction set IMS T414 343 
instruction set IMS T425 272 
instruction set IMS T800 200 
instruction set IMS T801 139 
instruction set IMS T805 59 

Execution 
instruction IMS T222 404 
instruction IMS T414 338 
instruction IMS T425 266 
instruction IMS T800 194 
instruction IMS T801 133 
instruction IMS T805 53 

Expression 12,18,29,114, 115, 117, 180, 181, 
183,250,251,253,321,322,388,389, 
443,444 

evaluation IMS T222 403, 405 
evaluation IMS T414 337,339 
evaluation IMS T425 265,267 
evaluation IMS T800 193,195 
evaluation IMS T801 132, 134 
evaluation IMS T805 52, 54 
subscript 114, 180, 250, 321, 388, 443 

External 
memory interface IMS T222 422 
memory interface IMS T414 357 
memory interface IMS T425 288 
memory interface IMS T800 219 
memory interface IMS T801 159 
memory interface IMS T805 79 
memory performance 118,184,254,324, 

391,446 
registers 19 

Factorial 18 
FALSE 18 
Flash multiplier 42 

Floating point 28, 40 
address 41 
co-processor 42 
comparison 42 
concurrency IMS T800 209 
concurrency IMS T801 149 
concurrency IMS T805 69 
concurrent operation 41 
datapath 42 
design 40, 42 
division 42 
double length IMS T800 209 
double length IMS T801 149 
double length IMS T805 69 
error IMS T800 210 
error IMS T801 150 
error IMS T805 70 
functions 117,183,253 
instruction 34, 40 
microcode 42 
multiplication 41, 42 
normalise IMS T800 209 
normalise IMS T801 149 
normalise IMS T805 69 
operand 41 

B index 

performance 113, 117, 179, 183, 249, 253, 
323, 390, 445 

processor 31, 40 
processor IMS T800 190,209 
processor IMS T801 128,149 
processor IMS T805 48,69 
register 31 
rounding IMS T800 209 
rounding IMS T801 149 
rounding IMS T805 69 
selector sequence IMS T800 200, 209 
selector sequence IMS T801 139, 149 
selector sequence IMS T805 59, 69 
single length IMS T800 209 
single length IMS T801 149 
single length IMS T805 69 
stack IMS T800 209 
stack IMS T801 149 
stack IMS T805 69 

Floating point numbers 1 7 
FM 

IMS M212 465 
FOR 16 
Fortran 23 
FPU (see Floating point) 31, 69, 149, 209 
FP"Error 

IMS T800 210 
IMS T801 150 
IMS T805 70 

FRACMUL 116, 182, 252 
Frequency 

changer IMS C011 504 
Clockln IMS C004 482 
Clockln IMS C011 506 
Clockln IMS C012 532 



Clockln IMS T222 415 
Clockln IMS T414 349 
Clockln IMS T425 280 
Clockln IMS T800 211 
Clockln IMS T801 151 
Clockln IMS T805 71 
link 24 
modulation IMS M212 465 

Function 18,115,181,251,322,389,444 
code 32 
code IMS T222 404,409 
code IMS T414 338,343 
code IMS T425 266,272 
code IMS T800 194, 200 
code IMS T801 133, 139 
code IMS T805 53, 59 
direct 33 
direct IMS T222 404 
direct IMS T414 338 
direct IMS T425 266 
direct IMS T800 194 
direct IMS T801 133 
direct IMS T805 53 
indirect 34 
indirect IMS T222 405 
indirect IMS T414 339 
indirect IMS T425 267 
indirect IMS T800 195 
indirect IMS T801 134 
indirect IMS T805 54 
prefix 33, 34 
prefix IMS T222 404 
prefix IMS T414 338 
prefix IMS T425 266 
prefix IMS T800 194 
prefix IMS T801 133 
prefix IMS T805 53 

FUNCTION 18,114,117,180,183,250,253, 
321,388,443 

GND 24 
IMS C004 482 
IMS C011 506 
IMS C012 532 
IMS T222 415 
IMS T414 349 
IMS T425 280 
IMS T800 211 
IMS T801 151 
IMS T805 71 

Graphics 43 
support IMS T425 262 
support IMS T800 190 
support IMS T801 128 
support IMS T805 48 

Halt 21 
IMS T222 418,419 
IMS T414 353,354 
IMS T425 284, 285 

IMS T800 215, 216 
IMS T801 155, 156 
IMS T805 75, 76 

HaltOnError 
IMS T222 418 
IMS T414 353 
IMS T425 284 
IMS T800 215 
IMS T805 75 

HaltOnError 
IMS T222 419 
IMS T414 354 
IMS T425 285 
IMS T800 216 
IMS T801 155,156 
IMS T805 76 

Handshake 12 
event IMS T222 433 
event IMS T414 378 
event IMS T425 310 
event IMS T800 240 
event IMS T801 169 
event IMS T805 103 
parallel IMS C011 504, 512, 513 

Hardware 9 
channel IMS M212 466 
IMS M212 465,468 

Harness 12, 23 

10-7 
IMSC011 512 

lAck 
IMS C011 508, 512 

567 

IF 15,16,29,115,119,181,184,251,255, 
322,325,389,391,444,446 

Implementation 
hard-wired 9 
hardware 9 
link 10 
occam 9 
program 12 

IMS B005 470 
IMS C004 480 
IMS C011 504 
IMS C012 530 
IMS M212 464 
IMS T222 400, 454 
IMS T225 454 
IMS T414 335 
IMS T425 262 
IMS T800 190 
IMS T805 48 
Indirect function 34 

IMS T222 405 
IMS T414 339 
IMS T425 267 
IMS T800 195 
IMS T801 134 
IMS T805 54 



568 

Indirection code 
instruction IMS T800 209 
instruction IMS T801 149 
instruction IMS T805 69 

Input 12,13,19,25,29,114,117,180,183, 
250,253,321,388,443 

buffer IMS C011 517 
bufferiMSC012 541 
channel 29 
clock 24,25 
clock IMS C004 482 
clock IMS C011 506 
clock IMS C012 532 
clock IMS T222 415 
clock IMS T414 349 
clock IMS T425 280 
clock IMS T800 211 
clock IMS T801 151 
clock IMS T805 71 
link 1M'S C004 485 
link IMS C011 509 
link IMS C012 535 
link IMS T222 418, 434 
link IMS T414 353,379 
link IMS T425 284, 312 
link IMS T800 215,241 
link IMS T801 155, 171 
link IMS T805 75, 105 
pins 24 
port IMS C011 512 
process 12,13,15 
process IMS T222 408 
process IMS T414 342 
process IMS T425 270 
process IMS T800 198 
process IMS T801 137 
process IMS T805 57 
register IMS con 514, 517 
register IMS C012 538, 541 
timer 115, 181, 251, 322, 389, 444 
voltage 24 

Inputlnt 
IMS C011 508,517,518 
IMS C012 534,541,542 

Instruction 
arithmetic IMS T222 405 
arithmetic IMS T414 339 
arithmetic IMS T425 267 
arithmetic IMS T800 195 
arithmetic IMS T801 134 
arithmetic IMS T805 54 
comparison IMS T222 405 
comparison IMS T 414 339 
comparison IMS T425 267 
comparison IMS T800 195 
comparison IMS T801 134 
comparison IMS T805 54 
debugging IMS T225 457 
debugging IMS T425 274 
debugging IMS T801 141 

debugging IMS T805 61 
descheduling IMS T222 410 
descheduling IMS T414 344 
descheduling IMS T425 273 
descheduling IMS T800 201 
descheduling IMS T801 140 
descheduling IMS T805 60 
description 32, 33, 34, 35, 36, 40 

8 index 

description IMS T222 403, 404, 405, 407, 408 
description IMS T414 337,338,339,341,342 
description IMS T425 265,266,267,269,270 
description IMS T800 193,194,195,197, 

198,200,209,210 
description IMS T801 132,133,134,136, 

137,139,149,150 
description IMS T805 52, 53,54,56,57,59, 

69, 70 
error IMS T222 410 
error IMS T414 344 
error IMS T425 274 
error IMS T800 202 
error IMS T801 141 
error IMS T805 61 
execution IMS T222 404 
execution IMS T 414 338 
execution IMS T 425 266 
execution IMS T800 194 
execution IMS T801 133 
execution IMS T805 53 
floating point 40 
floating point error IMS T800 202 
floating point error IMS T801 141 
floating point error IMS T805 61 
format IMS T222 404 
format IMS T414 338 
format IMS T 425 266 
format IMS T800 194 
format IMS T801 133 
format IMS T805 53 
IMS T222 403 
IMS T414 337 
IMS T425 265 
IMS T800 193 
IMS T801 132 
IMS T805 52 
indirection code IMS T800 209 
indirection code IMS T801 149 
indirection code IMS T805 69 
logical IMS T222 405 
logicallMS T414 339 
logical IMS T425 267 
logicallMS T800 195 
logicallMS T801 134 
logicallMS T805 54 
memory relative IMS T222 404 
memory relative IMS T 414 338 
memory relative IMS T425 266 
memory relative IMS T800 194 
memory relative IMS T801 133 
memory relative IMS T805 53 



operation 33 
pointer 35 
pointer IMS T222 407 
pointer IMS T414 341 
pointer IMS T425 269 
pOinter IMS TSOO 197 
pointer IMS TSOl 136 
pointer IMS TS05 56 
prefetch 34 
single byte IMS T222 404 
single byte IMS T414 338 
single byte IMS T425 266 
single byte IMS TSOO 194 
single byte IMS TSOl 133 
single byte IMS TS05 53 
workspace IMS T222 407 
workspace IMS T414 341 
workspace IMS T425 269 
workspace IMS TSOO 197 
workspace IMS TSOl 136 
workspace IMS TS05 56 

Instruction set 12,32,411 
design 32 
example IMS T222 409 
example IMS T414 343 
example IMS T425 272 
example IMS TSOO 200 
example IMS TSOl 139 
example IMS TS05 59 
IMS T222 403,404,405,409 
IMS T225 457 
IMS T414 337, 33S, 339, 343, 345 
IMS T425 265, 266, 267, 272, 275 
IMS TSOO 193, 194, 195,200,203 
IMS T801 132,133,134,139,142 
IMS T805 52, 53, 54, 59, 62 

INT 17,114,180,250,321,388,443 
INT16 17 
INT32 17 

conversion 117, 183, 253 
INT64 17 

conversion 117, 183,253 
Integer performance 113, 179, 249, 320, 387, 

442 
Integrated memory 29 
Interface 

application specific 25 
communication 10 
disk controller IMS M212 468 
disk programming IMS M212 467 
link 11, 39 
link IMS C004 485 
link IMS COll 509 
link IMS C012 535 
link IMS T222 434 
link IMS T414 379 
link IMS T425 312 
link IMS ;:rSOO 241 
link IMS TSOl 171 
link IMS T805 105 

memory 1 0, 24 
memory IMS T222 403,418,422 
memory IMS T414 337,353,357 
memory IMS T425 265, 284, 288 
memory IMS T800 193,215,219 
memory IMS T801 132,155,159 
memory IMS T805 52, 75, 79 
parallel IMS COll 514 
parallel IMS C012 538 
peripherallMS M212 465 
SCSI IMS M212 472 
serial data IMS M212 464 

Interrupt 12, 16, 31 
IMS C011 504, 508 
IMS C012 530 
latency IMS T222 407 
latency IMS T414 341 
latency IMS T425 269 
latency IMS T800 197 
latency IMS T801 136 
latency IMS T805 56 

569 

latency performance 119,185,255,325,392, 
447 

Interrupt Enable 
IMS C011 517,518 
IMS C012 541,542 

IntSaveLoc 
IMS T222 420 
IMS T414 355 
IMS T425 286 
IMS T800 217 
IMS T801 157 
IMS T805 77 

IPtr 
IMS T425 286 
IMS T805 77 

IS 18 
IVaiid 

IMS C011 512 

Language 7, 12,22,23 
communication 23 
error 21 
IMS T222 404, 405 
IMS T414 338,339 
IMS T425 266,267 
IMS T800 194, 195 
IMS T801 133, 134 
IMS T805 53, 54 

Latency 119,185,255,325,392,447 
interrupt IMS T222 407 
interrupt IMS T414 341 
interrupt IMS T425 269 
interrupt IMS TSOO 197 
interrupt IMS T801 136 
interrupt IMS T805 56 
process IMS T222 407 
process IMS T414 341 
process IMS T425 269 
process IMS T800 197 



570 

process IMS T801 136 
process IMS T805 56 

Link 10, 24, 25 
acknowledge 10, 39 
acknowledge IMS C011 513, 518 
acknowledge IMS C012 542 
acknowlege overlap 39 
adaptor 11, 25 
adaptor IMS C011 504 
adaptor IMS C012 530 
bootstrap 10 IMS T222 418 
bootstrap 10 IMS T414 353 
bootstrap 10 IMS T425 284 
bootstrap 10 IMS T800 215 
bootstrap 10 IMS T801 155 
bootstrap 10 IMS T805 75 
bootstrap IMS T222 416, 418 
bootstrap IMS T414 351 
bootstrap IMS T425 282, 284 
bootstrap IMS T800 213, 215 
bootstrap IMS T801 153, 155 
bootstrap IMS T805 73, 75 
buffer 24 
buffer delays 24 
buffer IMS T222 418 
buffer IMS T414 353 
buffer IMS T425 284 
buffer IMS T800 215 
buffer IMS T801 155 
buffer IMS T805 75 
channel 23 
clock 25 
communication 9, 39 
control IMS C004 484 
crossbar switch IMS C004 480 
data 10,39 
data IMS C011 513,514,517,518 
data IMS C012 538,541,542 
disk IMS M212 466 
frequency 24 
implementation 10 
IMS C004 485 
IMS C011 504, 509 
IMS C012 530,535 
IMS T222 407,418,434 
IMS T414 341,353,379 
IMS T425 269,284,312 
IMS T800 197,215,241 
IMS T801 136, 155, 171 
IMS T805 56, 75, 105 
input IMS C011 518 
input IMS C012 542 
input IMS T222 418 
input IMS T414 353 
input IMS T425 284 
input IMS T800 215 
input IMS T801 155 
input IMS T805 75 
interface 38, 39 
interface register 38 

message 10 
Mode 1 IMS C011 507, 512 
Mode 2 IMS C011 507, 514 
mode select IMS C011 507 
output IMS T222 418 
output IMS T414 353 
output IMS T425 284 
output IMS T800 215 
output IMS T801 155 
output IMS T805 75 
packet 39 
parallel adaptor IMS C011 504 
parallel adaptor IMS C012 530 
peek IMS T222 418 
peek IMS T414 353 
peek IMS T425 284 
peek IMS T800 215 
peek IMS T801 155 
peek IMS T805 75 
performance 391 
poke IMS T222 418 
poke IMS T414 353 
poke IMS T425 284 
poke IMS T800 215 
poke IMS T801 155 
poke IMS T805 75 

B index 

programmable switch IMS C004 480 
protocol 10, 11, 39 
signal 24 
speed 39 
speed IMS C011 504 
speed IMS C012 530 
speed select IMS C011 507 
standard 20, 24 
start bit 10 
static IMS T222 404 
static IMS T414 338 
static IMS T425 266 
static IMS T800 194 
static IMS T801 133 
static IMS T805 53 
stop bit 10 
transfer IMS T222 418 
transfer IMS T414 353 
transfer IMS T425 284 
transfer IMS T800 215 
transfer IMS T801 155 
transfer IMS T805 75 
transmission 39 
transputer 12 
wiring 30 

Link switch 
bit time delay IMS C004 489 
configuration IMS C004 480, 489 
configuration message IMS C004 489 
implementation IMS C004 489 
multiplexors IMS C004 489 

Linked list 35 
IMS T222 406 
IMS T414 340 



IMS T425 268 
IMS T800 196 
IMS T801 135 
IMS T805 55 

Linkln 
IMS C004 485 
IMS C011 508, 509 
IMS C012 534,535 
IMS T222 434 
IMS T414 379 
IMS T425 312 
IMS T800 241 
IMS T801 171 
IMS T805 105 

LinkOut 
IMS C004 485 
IMS C011 508,509 
IMS C012 534,535 
IMS T222 434 
IMS T414 379 
IMS T425 312 
IMS T800 241 
IMS T801 171 
IMS T805 105 

LinkSpecial 
IMS T222 434 
IMS T414 379 
IMS T425 312 
IMS T800 241 
IMS T801 171 
IMS T805 105 

UNPACK benchmark 42 
List 

linked IMS T222 406 
linked IMS T414 340 
linked IMS T425 268 
linked IMS T800 196 
linked IMS T801 135 
linked IMS T805 55 
process IMS T222 406, 407 
process IMS T414 340,341 
process IMS T425 268,269 
process IMS T800 196, 197 
process IMS T801 135,136 
process IMS T805 55, 56 

Literal value 33 
IMS T222 404 
IMS T414 338 
IMS T425 266 
IMS T800 194 
IMS T801 133 
IMS T805 53 

Livermore loop 41 
Load 

capacitive 9 
instruction IMS T222 404 
instruction IMS T414 338 
instruction IMS T425 266 
instruction IMS T800 194 
instruction IMS T801 133 

instruction IMS T805 53 
Logical 

address IMS M212 467 
behaviour 22 
operation IMS T222 403 
operation IMS T 414 337 
operation IMS T 425 265 
operation IMS T800 193 
operation IMS T801 132 
operation IMS T805 52 

LONGADD 116, 182, 252 
LONGDIFF 116, 182, 252 
LONGDIV 116, 182,252 
LONGPROD 116, 182, 252 
LONGSUB 116, 182, 252 
LONGSUM 116, 182, 252 
Loop 16 

Map 
memory 23, 25 
process 12 

MemAO·15 
IMS T222 423, 431 

MemA2·31 
IMS T801 159,160,164, 167 

MemAD2·31 
IMS T414 358,359,366,373 
IMS T425 289, 290,297, 305 
IMS T800 220, 221, 228, 235 
IMS T805 79, 80, 91, 96 

MemBAcc 
IMS T222 428 

MemConfig 
IMS T414 366,368 
IMS T425 297, 299 
IMS T800 228,230 
IMS T805 81, 96, 98 

MemDO·15 
IMS T222 423, 428, 431 

MemDO·31 
IMS T801 159,160,163 

MemGranted 
IMS T222 431 
IMS T414 376 
IMS T425 308 
IMS T800 238 
IMS T801 161,167 
IMS T805 81, 94 

MemnotRfD1 
IMS T414 358,359,366, 373 
IMS T425 289, 290, 297, 305 
IMS T800 220, 221, 228, 235 
IMS T805 79, 80, 91, 96 

MemnotWrDO 
IMS T414 358,359,366,368,373 
IMS T425 289, 290, 297, 299, 305 
IMS T800 220, 221, 228, 230, 235 
IMS T805 79, 80, 91, 96, 98 

Memory 31 
access IMS T222 403 

571 



572 

access IMS T414 337 
access IMS T425 265 
access IMS T800 193 
access IMS T801 132 
access IMS T805 52 
address IMS T414 359 
address IMS T425 290 
address IMS T800 221 
address IMS T805 80 
bandwidth 10, 43 
bandwidth IMS T222 405 
bandwidth IMS T414 339 
bandwidth IMS T425 267 
bandwidth IMS T800 195 
bandwidth IMS T801 134 
bandwidth IMS T805 54 
channel 23 
configuration IMS T222 418 
configuration IMS T414 353,357,366 
configuration IMS T425 284,288,297 
configuration IMS T800 215, 219, 228 
configuration IMS T801 155 
configuration IMS T805 75, 79, 81, 96 
configuration, external IMS T414 366, 368 
configuration, external IMS T425 297, 299 
configuration, external IMS T800 228, 230 
configuration, external IMS T805 98 
configuration, internallMS T414 366 
configuration, internal IMS T425 297 
configuration, internal IMS T800 228 
configuration, internal IMS T805 96 
data IMS T414 359 
data IMS T425 290 
data IMS T800 221 
data IMS T805 80 
direct access IMS T414 376 
direct access IMS T425 308 
direct access IMS T800 238 
direct access IMS T805 94 
dynamic IMS T414 357 
dynamic IMS T 425 288 
dynamic IMS T800 219 
dynamic IMS T805 79 
external IMS T222 420, 423 
externallMS T414 355 
externallMS T425 286 
external IMS T800 217 
external IMS T801 157, 159 
external IMS T805 77 
global 10 
IMS M212 466,471 
IMS T222 420 
IMS T414 355 
IMS T425 286 
IMS T800 217 
IMS T801 157 
IMS T805 77 
integrated 29 
interface 10, 24 
interface IMS T222 403,418,422 

interface IMS T414 337,353,357 
interface IMS T425 265, 284, 288 
interface IMS T800 193, 215, 219 
interface IMS T801 132,155,159 
interface IMS T805 52, 75, 79 
internal IMS T222 420, 423 
internal IMS T414 355,358 
internal IMS T425 286, 289 
internal IMS T800 217,220 
internal IMS T801 157, 159 
internal IMS T805 77, 79 
local 10 
map 23,25 
map IMS T222 421 
map IMS T414 356 
map IMS T 425 287 
map IMS T800 218 
map IMS T801 158 
on-Chip IMS T222 403 
on-Chip IMS T414 337 
on-Chip IMS T425 265 
on-Chip IMS T800 193 
on-Chip IMS T801 132 
on-chip IMS T805 52 

B index 

performance 118, 184, 254, 324, 391, 446 
read IMS T414 361 
read IMS T425 292 
read IMS T800 223 
read IMS T805 86 
refresh IMS T414 353,358,368,373,374, 

376 
refresh IMS T425 284, 289, 299, 305, 306, 

308 
refresh IMS T800 215,220,230,235,236, 

238 
refresh IMS T801 155 
refresh IMS T805 75, 79, 80, 89, 91, 94, 98 
strobe IMS T222 422 
strobe IMS T414 357,359,362,374,376 
strobe IMS T425 288,290,293,306,308 
strobe IMS T800 219, 221, 224, 236, 238 
strobe IMS T801 162 
strobe IMS T805 80, 82, 89, 94 
wait IMS T222 423,429 
wait IMS T414 357,362,374,375 
wait IMS T425 288,293,306, 307 
wait IMS T800 219, 224, 236, 237 
wait IMS T801 159,165 
wait IMS T805 79, 89, 90 

MemReq 
IMS T222 431 
IMS T414 376 
IMS T425 308 
IMS T800 238 
IMST801 161,167 
IMS T805 81, 94 

MemStart 25 
IMS T222 416,418,420 
IMST414 351,353,355 
IMS T425 282, 284, 286 



IMS T800 213,215,217 
IMS T801 153, 155, 157 
IMS T805 73, 75, 77 

MemWait 
IMS T222 429 
IMS T414 374 
IMS T425 306 
IMS T800 236 
IMS T801 161,165 
IMS T805 80 

Message 10, 12 
IMS T222 407 
IMS T414 341 
IMS T425 269 
IMS T800 197 
IMS T801 136 
IMS T805 56 
pointer 36 
transfer 38 

Microcode 32 
computing engine IMS T800 209 
computing engine IMS T801 149 
computing engine IMS T805 69 
cycle IMS T222 422 
cycle IMS T 414 357 
cycle IMS T425 288 
cycle IMS T800 219 
cycle IMS T801 162 
cycle IMS T805 82 
scheduler 30, 34 
scheduler IMS T222 406 
scheduler IMS T414 340 
scheduler IMS T425 268 
scheduler IMS T800 196 
scheduler IMS T801 135 
scheduler IMS T805 55 

Microprocessor 
bus IMS e011 504 
bus IMS e012 530 
IMSe011 514 
IMS e012 538 

MINOS 18,114,180,250,321,388,443 
Mode 1 

IMS e011 504,512 
IMS M212 467 
link IMS e011 507, 512 

Mode 2 
IMS e011 504,514 
IMS M212 467,468 
link IMS e011 507,514 

Modulo operator 114, 180, 250, 321, 388, 443 
MOVE2D 43, 118, 184, 254, 324 
Multiple length arithmetic 116, 182,252,322, 

389,444 
Multiple processor 22 
Multiplication performance 115,181,251,322, 

389,444 

Name 117, 183, 253 

NaN 
IMS T800 210 
IMS T801 150 
IMS T805 70 

Network 7,9, 12,20,22,25 
disk processor IMS M212 471 

Node 8 
NORMALISE 116,182,252 
NOT 18,114,180,250,321,388,443 
noteS 

IMS e011 514 
IMS e012 538 

notMemCE 
IMS T222 423,424,426,429,431 
IMS T801 159,160,164,165,167 

notMemRd 
IMS T414 359 
IMS T425 290 
IMS T800 221 
IMS T805 80 

notMemRf 
IMS T414 373 
IMS T425 305 
IMS T800 235 
IMS T805 80 

notMemSO-4 
IMS T414 359,368,373,374 
IMS T425 290, 299, 305, 306 
IMS T800 221,230,235,236 
IMS T805 80, 89, 91, 98 

notMemWrBO-1 
IMS T222 423,424,426,428,431 

notMemWrBO-3 
IMS T414 363,373 
IMS T425 294, 305 
IMS T800 225, 235 
IMS T801 159,160,161,164,167 
IMS T805 80, 91 

occam 7, 8, 12, 28, 29 
channel 10,23 
communication 12 
concurrency 12 
model 12,30 
process 7, 21, 22, 23 
program 7, 12, 20, 22 
synchronism 22 

Operand 32 
IMS T222 403,404,409 
IMS T414 337,338,343 
IMS T425 265, 266, 272 
IMS T800 193, 194, 200 
IMS T801 132, 133,139 
IMS T805 52, 53, 59 
register 33 
types 18 

Operating conditions 
IMS e004 494 
IMS e011 519 
IMS e012 543 

573 



574 

IMS T222 437 
IMS T414 382 
IMS T425 315 
IMS T800 244 
IMS T801 174 
IMS T805 108 

Operation 
arithmetic IMS T222 403 
arithmetic IMS T414 337 
arithmetic IMS T425 265 
arithmetic IMS T800 193 
arithmetic IMS T801 132 
arithmetic IMS T805 52 
code IMS T222 409 
code IMS T414 343 
code IMS T425 272 
code IMS T800 200 
code IMS T801 139 
code IMS T805 59 
logical IMS T222 403 
logical IMS T414 337 
logical IMS T425 265 
logical IMS T800 193 
logical IMS T801 132 
logical IMS T805 52 

Operator 18 
arithmetic 18,114,117,180,183,250,253, 

321,388,443 
bit 18,114,180,250,321,388,443 
boolean 1S, 114, 180, 250, 321, 388, 443 
comparison 114,117,180,183,250,253, 

321,388,443 
modulo 1S, 114, 1S0, 250, 321, 388, 443 
relational 18 
shift 18 

Optimisation 
IMS T222 419 
IMS T414 354 
IMS T425 285 
IMS T800 216 
IMS T801 156 
IMS T805 76 
program 21 

OR 18,114,180,250,321,388,443 
Ordering details 126, 188,260,332,397,452, 

461,477,502,528,550 
Output 12, 13, 19, 25, 29, 114, 180, 250, 321, 

388,443 
buffer IMS C011 517 
buffer IMS C012 541 
channel 29 
link IMS C004 485 
link IMS C011 509 
link IMS C012 535 
link IMS T222 418.434 
link IMS T414 353,379 
link IMS T425 284, 312 
link IMS T800 215, 241 
link IMS T801 155, 171 
link IMS T805 75, 105 

pins 24 
port IMS C011 513 
process 12,13, 15 
process IMS T222 408 
process IMS T414 342 
process IMS T425 270 
process IMS T800 198 
process IMS T801 137 
process IMS T805 57 
register IMS C011 517 
register IMS C012 541 

Output Ready 
IMS C011 517, 518 
IMSC012541,542 

Outputlnt 
IMS C011 508,517,518 
IMS C012 534, 541, 542 

Overflow 
stack IMS T222 403 
stack IMS T414 337 
stack IMS T425 265 
stack IMS T800 193 
stack IMS T801 132 
stack IMS T805 52 

Packet 
link 39 

B index 

PAR 14,16,29,115,119,181,184,251,255, 
322,325,389,391,444,446 

Parallel 
communication IMS C011 504 
communication IMS C012 530 
construction 12,14,20,29,35 
construction IMS T222 407 
construction IMS T414 341 
construction IMS T425 269 
construction IMS T800 197 
construction IMS T801 136 
construction IMS T805 56 
interface IMS C011 514 
interface IMS C012 538 
port IMS C011 512 
process IMS T222 406 
process IMS T414 340 
process IMS T425 268 
process IMS T800 196 
process IMS T801 135 
process IMS TS05 55 

Part program 22 
Pascal 23 
Pattern recognition 34 
Peek 

IMS T222 418 
IMS T414 353 
IMS T425 284 
IMS TSOO 215 
IMS TS01 155 
IMS TS05 75 

Performance 12, 2S, 34,113,179,249,320, 
3S7, 442 



bit counting 118, 184, 254, 324 
bit reversal 118, 184,254,324 
block move 118, 184, 254, 324 
construction 118, 184, 254, 325, 391, 446 
CRC 118, 184, 254, 324 
Cyclic Redundancy Checking 118, 184, 254, 

324 
estimation 113, 179, 249, 320, 387, 442 
external memory 118,119,184,254,255, 

324,325,391,446 
external RAM 118, 184, 254, 324, 391, 446 
floating point 113,117,179,183,249,253, 

323, 390, 445 
Floating point processor 41 
IMS T222 405 
IMS T414 339 
IMS T425 267 
IMS T800 195 
IMS T801 134 
IMS T805 54 
integer 113, 179, 249, 320, 387, 442 
interrupt latency 119,185,255,325,392,447 
link 391 
link IMS C004 485 
link IMS C011 509 
link IMS C012 535 
link IMS T222 434 
link IMS T414 379 
link IMS T425 312 
link IMS T800 241 
link IMS T801 171 
link IMS T805 105 
measurement 22 
multiple length arithmetic 116,182,252,322, 

389, 444 
multiplication 115,181,251,322,389,444 
predefined maths 116, 182, 252, 322, 389, 

444 
priority 119,185,255,325,392,447 
product 115,181,251,322,389,444 
special purpose functions 118, 184, 254, 324 
square root 117,119,183,184,253,255, 

325,391,446 
TIMES 115,181,251,322,389,444 
wait states 118, 184, 254, 324, 391, 446 

Peripheral 25 
access 19 
control transputer 25 
device 29 
interface IMS M212 465 
memory mapping 25 

Phase lock loop 
IMS C004 482 
IMS C011 506 
IMS C012 532 
IMS T222 415 
IMS T414 349 
IMS T425 280 
IMS T800 211 
IMS T801 151 

IMS T805 71 
Pipe lined vector processor 42 
PLACE 20 
PLACED PAR 20 
Placement 20, 23 

575 

PLLx 126, 188,260,332,397,452,461,477, 
502,528,550 

IMS T222 422 
IMS T414 357 
IMS T425 288 
IMS T800 219 
IMS T801 162 
IMS T805 82 

PLUS 18, 114, 180,250,321,388,443 
Pointer 

IMS T222 403 
IMS T414 337 
IMS T425 265 
IMS T800 193 
IMS T801 132 
IMS T805 52 
instruction 35 
instruction IMS T222 407 
instruction I MS T 414 341 
instruction IMS T425 269 
instruction IMS T800 197 
instruction IMS T801 136 
instruction IMS T805 56 
message 36 
workspace 33 

Poke 
IMS T222 418 
IMS T414 353 
IMS T425 284 
IMS T800 215 
IMS T801 155 
IMS T805 75 

Port 19 
asynchronism 19 
disk IMS M212 465 
input IMS C011 512 
output IMS C011 513 
parallel IMS C011 512 
synchronism 19 

PORT 25 
Power 24 

IMS C004 482 
IMS C011 506 
IMS C012 532 
IMS T222 415 
IMS T414 349 
IMS T425 280 
IMS T800 211 
IMS T801 151 
IMS T805 71 
rating IMS C004 497 
rating IMS C011 523 
rating IMS C012 547 
rating IMS T222 441 
rating IMS T414 386 



576 

rating IMS T425 319 
rating IMS T800 248 
rating IMS T801 177 
rating IMS T805 112 

Prefetch 34 
Prefix function 33, 34 

IMS T222 404 
IMS T414 338 
IMS T425 266 
IMS T800 194 
IMS T801 133 
IMS T805 53 

PRI PAR 20 
Primitive 114, 180, 250, 321, 388, 443 
Primitive type 17 
Priority 20 

bootstrap IMS T222 418 
bootstrap IMS T414 351 
bootstrap IMS T425 284 
bootstrap IMS T800 215 
bootstrap IMS T801 155 
bootstrap IMS T805 75 
floating point IMS T800 209 
floating point IMS T801 149 
floating point IMS T805 69 
IMS T222 406, 407, 418 
IMS T414 340,341,353 
IMS T425 268, 269, 284 
IMS T800 196,197,215 
IMS T801 135,136,155 
IMS T805 55, 56, 75 
level 30,31 
performance 119,185,255,325,392,447 
timer IMS T222 408 
timer IMS T414 342 
timer IMS T425 270 
timer IMS T800 198 
timer IMS T801 137 
timer IMS T805 57 

PROC 18,22,23,114,117,180,183,250,253, 
321,388,443 

ProcClockOut 
IMS T222 422 
IMS T414 357 
IMS T425 288 
IMS T800 219 
IMS T801 162 
IMS T805 82 

Procedure 115,181,251,322,389,444 
Procedures 18 
Process 8, 9, 12, 13, 14, 18 

active/inactive 35 
active/inactive IMS T222 406,407 
active/inactive IMS T414 340, 341 
active/inactive IMS T425 268,269 
active/inactive IMS T800 196, 197 
active/inactive IMS T801 135, 136 
active/inactive IMS T805 55, 56 
assignment 12, 13 
channel 29 

communication IMS T222 407 
communication IMS T414 341 
communication IMS T425 269 
communication IMS T800 197 
communication IMS T801 136 
communication IMS T805 56 
concurrent 14, 22, 29 
deschedule 38 
execution 35, 36, 37 
hardware 9 
high priority IMS T222 419 
high priority IMS T414 354 
high priority IMS T425 285 
high priority IMS T800 216 
high priority IMS T801 156 
high priority IMS T805 76 
IMS T222 406, 419 
IMS T414 340,354 
IMS T425 268, 285 
IMS T800 196, 216 
IMS T801 135, 156 
IMS T805 55,76 
input 12, 13, 15 
input IMS T222 408 
input IMS T414 342 
input IMS T425 270 
input IMS T800 198 
input IMS T801 137 
input IMS T805 57 
latency IMS T222 407 
latency IMS T414 341 
latency IMS T425 269 
latency IMS T800 197 
latency IMS T801 136 
latency IMS T805 56 
list 35 
list IMS T222 406, 407 
list IMS T414 340,341 
list IMS T425 268,269 
list IMS T800 196,197 
list IMS T801 135,136 
list IMS T805 55,56 
low priority IMS T222 419 
low priority IMS T414 354 
low priority IMS T425 285 
low priority IMS T800 216 
low priority IMS T801 156 
low priority IMS T805 76 
mapping 12 
monitor 22 
new 35 
occam 22,23 
output 12,13,15 
output IMS T222 408 
output IMS T414 342 
output IMS T425 270 
output IMS T800 198 
output IMS T801 137 
output IMS T805 57 
parallel IMS T222 406 

B index 



parallellMS T414 340 
parallel IMS T425 268 
parallel IMS T800 196 
parallel IMS T801 135 
parallel IMS T805 55 
primitive 29 
queue IMS T222 406 
queue IMS T414 340 
queue IMS T425 268 
queue IMS T800 196 
queue IMS T801 135 
queue IMS T805 55 
reschedule 38 
sequential IMS T222 403 
sequential IMS T414 337 
sequential IMS T425 265 
sequential IMS T800 193 
sequential IMS T801 132 
sequential IMS T805 52 
simulation 22 
software 8 
switch time 35 
switch time IMS T222 407 
switch time IMS T414 341 
switch time IMS T425 269 
switch time IMS T800 197 
switch time IMS T801 136 
switch time IMS T805 56 
timing IMS T222 408 
timing IMS T414 342 
timing IMS T425 270 
timing IMS T800 198 
timing IMS T801 137 
timing IMS T805 57 

Processor 24, 31 
clock IMS T222 408 
clock IMS T414 342 
clock IMS T425 270 
clock IMS T800 198 
clock IMS T801 137 
clock IMS T805 57 
flags IMS T222 418 
flags IMS T414 353 
flags IMS T425 284 
flags IMS T800 215 
flags IMS T801 155 
flags IMS T805 75 
IMS M212 465,467 
IMS T222 403 
IMS T414 337 
IMS T425 265 
IMS T800 193 
IMS T801 132 
IMS T805 52 
multiple 22 
speed IMS T425 262 
speed IMS T800 190 
speed IMS T801 128 
speed IMS T805 48 
speed select IMS T425 281 

speed select IMS T800 212 
speed select IMS T801 152 
speed select IMS T805 72 

ProcSpeedSelectO·2 
IMS T425 281 
IMS T800 212 
IMS T801 152 
IMS T805 72 

577 

Product performance 115,181,251,322,389, 
444 

Program 
bootstrap IMS T222 432 
bootstrap IMS T801 167 
configuration 20 
development 22 
occam 22 
optimisation 21 
part 22 

Programmable 
components 9 
device 29 
ilo IMS C011 504 

Programming 8 
model 12 
structure 33 

protocol 
CHAN OF 114, 180, 250, 321, 388, 443 

Protocol 
link 39 

QO·7 
IMS C011 508, 513 

QAck 
IMS C011 513 

Queue 36 
priority IMS T222 406 
priority IMS T 414 340 
priority IMS T 425 268 
priority IMS T800 196 
priority IMS T801 135 
priority IMS T805 55 
process IMS T222 407 
process IMS T414 341 
process IMS T425 269 
process IMS T800 197 
process IMS T801 136 
process IMS T805 56 
timer IMS T222 408 
timer IMS T414 342 
timer IMS T425 270 
timer IMS T800 198 
timer IMS T801 138 
timer IMS T805 58 

QVaiid 
IMS C011 508, 513 

RAM 118, 184, 254, 324, 391, 446 
IMS T222 420 
IMS T414 351,355 
IMS T425 282,286 



578 

IMS T800 213, 217 
IMS T801 157 
IMS T805 73, 77 

Read 
cycle IMS T222 423 
cycle IMS T414 359,360 
cycle IMS T425 290,291 
cycle IMS T800 221, 222 
cycle IMS T801 163 
cycle IMS T805 83, 84 
data IMS C011 518 
data IMS C012 542 
dynamic memory cycle IMS T414 361 
dynamic memory cycle IMS T425 292 
dynamic memory cycle IMS T800 223 
dynamic memory cycle IMS T805 86 
external cycle IMS T414 360,361 
external cycle IMS T425 291, 292 
external cycle IMS T800 222, 223 
external cycle IMS T805 84, 86 

REAL 117, 183, 253 
Real time 22 
REAL32 17,117,183,253,323,390,445 

conversion 117, 183, 253 
REAL64 17,117,183,253,323,390,445 

conversion 117, 183, 253 
Refresh 

memory IMS T414 353,358,368,373,374, 
376 

memory IMS T425 284,289,299,305,306, 
308 

memory IMS T800 215,220,230,235,236, 
238 

memory IMS T801 155 
memory IMS T805 75,79,80,89,91,92,94, 

98 
RefreshPending 

IMS T425 304 
IMS T805 80, 91 

Register 
A 1MB T222 403, 404, 419 
A 1MB T414 337,338,354 
A 1MB T425 265, 266, 285 
A 1MB T800 193,194,216 
A 1MB T801 132,133,156 
A 1MB T805 52, 53, 76 
a 1MB T222 403 
a 1MB T414 337 
a 1MB T425 265 
a 1MB T800 193 
a 1MB T801 132 
a 1MB T805 52 
C 1MB T222 403 
C 1MB T414 337 
C 1MB T425 265 
C 1MB T800 193 
C 1MB T801 132 
C 1MB T805 52 
CPU 31,32 
data input IMS C011 514 

data input IMS C012 538 
FA 1MB T800 209 
FA 1MB T801 149 
FA 1MB T805 69 
Fa IMS T800 209 
Fa 1MB T801 149 
Fa 1MB T805 69 
FC 1MB T800 209 
FC 1MB T801 149 
FC 1MB T805 69 
Floating point 31 
11MB T222 419 
11MB T414 354 
11MB T425 285 
11MB T800 216 
11MB T801 156 
11MB T805 76 
IMS C011 514 
IMS C012 538 
IMS M212 465 
IMS T222 403, 406, 418 
IMS T414 337,340,353 
IMS T425 265, 268, 284 
IMS T800 193, 196,215 
IMS T801 132,135,155 
IMS T805 52, 55, 75 
input data IMS C011 514, 518 
input data IMS C012 538, 542 

B index 

input status IMS C011 514, 517, 518 
input status IMS C012 538, 541, 542 
link interface 38 
operand 33 
operand IMS T222 404 
operand IMS T414 338 
operand IMS T425 266 
operand IMS T800 194 
operand IMS T801 133 
operand IMS T805 53 
output data IMS C011 514,517,518 
output data IMS C012 538,541,542 
output status IMS C011 514,517,518 
output status IMS C012 538,541,542 
process list 35 
timer IMS T222 408 
timer IMS T414 342 
timer IMS T425 270 
timer IMS T800 198 
timer IMS T801 137, 138 
timer IMS T805 57, 58 
W 1MB T222 416 
W 1MB T414 351 
W 1MB T425 282 
W 1MB T800 213 
W 1MB T801 153 
WIMS T805 73 
workspace IMS T222 404 
workspace IMS T414 338 
workspace IMS T425 266 
workspace IMS T800 194 
workspace IMS T801 133 



workspace IMS T805 53 
REM 18,114,117,180,183,250,253,321, 

388,443 
Repetition construction 16 
Replication construction 16 
Replication performance 115,119,181,184, 

251,255,322,325,389,391,444,446 
Reschedule 35, 38, 40 
Reset 24 

IMS C004 484 
IMS C011 508 
IMS C012 534 
IMS T222 416,418,419 
IMS T414 351,353,354 
IMS T425 282, 284, 285 
IMS T800 213, 215, 216 
IMS T801 153, 155,156 
IMS T805 73, 75, 76 

RnotW 
IMS C011 514 
IMS C012 538 

ROM 25 
bootstrap code IMS T222 420 
bootstrap code IMS T414 355 
bootstrap code IMS T425 286 
bootstrap code IMS T800 217 
bootstrap code IMS T801 157 
bootstrap code IMS T805 77 
IMS M212 466 
IMST222 416 
IMS T414 351 
IMS T425 282 
IMS T800 213 
IMS T801 153 
IMS T805 73 

ROTATELEFT 116, 182, 252 
ROTATERIGHT 116,182,252 
RSO-1 

IMS C011 514 
IMS C012 538 

Run time 23 

SA400/450 
IMS M212 465,467 

Scheduler 30, 34, 35 
IMS T222 406, 407, 408 
IMS T414 340,341,342 
IMS T425 268, 269, 270 
IMS T800 196,197,198 
IMS T801 135,136,137 
IMS T805 55, 56, 57 
list 36 
operation 35 

SCSI 
bus IMS M212 471 
interface IMS M212 472 

Selection construction 16 
Selector sequence 

floating point IMS T800 200, 209 
floating point IMS T801 139, 149 

floating point IMS T805 59, 69 
SeparatelQ 

IMS C011 507 

579 

SEQ 14,15,16,29,115,119,181,184,251, 
255,322,325,389,391,444,446 

Sequential 
construction 12, 14, 15, 29 
process IMS T222 403 
process IMS T414 337 
process IMS T425 265 
process IMS T800 193 
process IMS T801 132 
process IMS T805 52 
processing 32 

Serial 
data 39 
protocol 39 

SHIFTLEFT 116,182,252 
SHIFTRIGHT 116, 182, 252 
Sieve of Erastosthenes 119, 184, 255, 325, 

391,446 
Silicon 31, 45 
Single byte instruction 

IMS T222 404 
IMS T414 338 
IMS T425 266 
IMS T800 194 
IMS T801 133 
IMS T805 53 

Skew 
strobe IMS T414 357,363 
strobe IMS T425 288, 294 
strobe IMS T800 219, 225 
strobe IMS T805 82, 87 

SKIP 114, 180, 250, 321, 388, 443 
Software 

IMS M212 468 
kernel 34 
kernel IMS T222 406 
kernel IMS T414 340 
kernel IMS T425 268 
kernel IMS T800 196 
kernel IMS T801 135 
kernel IMS T805 55 

Special purpose functions 118,184,254,324 
Speed 

benchmark 41 
communication 30 
link 39 
processor 41 
processor IMS T425 262 
processor IMS T800 190 
processor IMS T801 128 
processor IMS T805 48 
select IMS T425 281 
select IMS T800 212 
select IMS T801 152 
select IMS T805 72 

SQRT 117, 183,253 
Square 18 



580 

Square root 117, 183, 253 
performance 119, 184, 255, 325, 391, 446 

ST506/412 
IMS M212 465, 467 

Stability 
clock IMS C004 482 
clock IMS C011 506 
clock IMS C012 532 
clock IMS T222 415 
clock IMS T414 349 
clock IMS T425 280 
clock IMS T800 211 
clock IMS T801 151 
clock IMS T805 71 

Stack 
evaluation 31, 32, 36 
evaluation IMS T222 403, 407, 408 
evaluation IMS T414 337,341,342 
evaluation IMS T425 265,269,270 
evaluation IMS T800 193,197, 198 
evaluation IMS T801 132,136, 137 
evaluation IMS T805 52, 56, 57 
floating point IMS T800 209 
floating point IMS T801 149 
floating point IMS T805 69 
optimise 41 
overflow 32, 41 
overflow IMS T222 403 
overflow IMS T414 337 
overflow IMS T425 265 
overflow IMS T800 193 
overflow IMS T801 132 
overflow IMS T805 52 

Start 
bit 39 

Status 
IMS T222 418 
IMS T414 353 
IMS T425 284 
IMS T800 215 
IMS T801 155 
IMS T805 75 
register IMS C011 514 
register IMS C012 538 

Stop 
bit 39 

STOP 21,114,180,250,321,388,443 
Store 

instruction IMS T222 404 
instruction I MS T 414 338 
instruction IMS T425 266 
instruction IMS T800 194 
instruction IMS T801 133 
instruction IMS T805 53 

String 19 
Strobe 

memory IMS T222 422 
memory IMS T414 357,359,362,374,376 
memory IMS T425 288, 290, 293, 306, 308 
memory IMS T800 219, 221, 224, 236, 238 

memory IMS T801 162 
memory IMS T805 80, 82, 89, 94 
skew IMS T414 357,363 
skew IMS T425 288, 294 
skew IMS T800 219, 225 
skew IMS T805 82, 87 
timing IMS T414 362 
timing IMS T425 293 
timing IMS T800 224 
timing IMS T805 85 
write IMS T414 363 
write IMS T425 294 
write IMS T800 225 
write IMS T805 80 

Structure 
data IMS T222 404 
data IMS T414 338 
data IMS T425 266 
data IMS T800 194 
data IMS T801 133 
data IMS T805 53 

Subscript 17 

8 index 

constant 114, 180, 250, 321, 388, 443 
expression 114, 180,250,321,388,443 
variable 114, 180, 250, 321,388,443 

Synchronisation 
link IMS C004 485 
link IMS C011 509 
link IMS C012 535 
link IMS T222 434 
link IMS T414 379 
link IMS T425 312 
link IMS T800 241 
link IMS T801 171 
link IMS T805 105 
point IMS T800 209 
point IMS T801 149 
point IMS T805 69 

System services 24 
IMS C004 482 
IMS C011 506 
IMS C012 532 
IMS T222 415 
IMS T414 349 
IMS T42S 280 
IMS T800 211 
IMS T801 151 
IMS T80S 71 

testerr 
IMS T222 419 
IMS T414 3S4 
IMS T425 28S 
IMS T800 216 
IMS T801 156 
IMS T80S 76 

tim 19 
Time 19 

delay IMS T222 406 
delay IMS T414 340 



delay IMS T425 26S 
delay IMS TSOO 196 
delay IMS TS01 135 
delay IMS TS05 55 
process switch IMS T222 407 
process switch IMS T414 341 
process switch IMS T425 269 
process switch IMS TSOO 197 
process switch IMS TS01 136 
process switch IMS TS05 56 
real 22 
slice IMS T222 406, 407 
slice IMS T414 340,341 
slice IMS T425 268,269 
slice IMS TSOO 196,197 
slice IMS TS01 135,136 
slice IMS TS05 55, 56 
slice period IMS T222 407 
slice period IMS T414 341 
slice period IMS T425 269 
slice period IMS TSOO 197 
slice period IMS TS01 136 
slice period IMS TS05 56 

Timeout 21 
Timer 17,19,22,40,115, 1S1,251, 322, 3S9, 

444 
AFTER 115, 1S1, 251, 322, 3S9, 444 
clock 19 
clock IMS T222 408 
clock IMS T414 342 
clock IMS T425 270 
clock IMS TSOO 198 
clock IMS TS01 137 
clock IMS TS05 57 
delay 19 
IMS T222 407 
IMS T414 341 
IMS T425 269 
IMS TSOO 197 
IMS TS01 136 
IMS TS05 56 
input 115, 1S1,251, 322,3S9,444 
processor 40 
queue IMS T222 408 
queue IMS T 414 342 
queue IMS T 425 270 
queue IMS TSOO 198 
queue IMS TS01 138 
queue IMS TS05 58 
register IMS T222 408 
register IMS T414 342 
register IMS T425 270 
register IMS T800 198 
register IMS TS01 137, 13S 
register IMS T805 57, 5S 

TIMER 17 
TIMES 18, 114, 1S0, 250, 321, 3SS, 443 

performance 115,181,251,322,389,444 
Timing 12 

strobe IMS T414 362 

strobe IMS T425 293 
strobe IMS TSOO 224 
strobe IMS TS05 85 

Tm 
IMS T414 357 
IMS T425 288 
IMS T800 219 
IMS T805 79, 82 

TPtrLoc1, TPtrLoc2 
IMS T222 420 
IMS T414 355 
IMS T425 286 
IMS TSOO 217 
IMS TS01 157 
IMS TS05 77 

Transfer message 3S 
Transmission link 39 
Transputer 

array IMS M212 471 
clock 11 
development system 12,20, 21, 25 
development system IMS T414 357 
development system IMS T425 2S8 
development system IMS TSOO 219 
development system IMS TS05 79 
interconnection 31 

TRUE 18 
Tstate 

IMS T222 423 
IMS T414 357,359,368 
IMS T425 288, 290, 299 
IMS TSOO 219, 221, 230 
IMS TS01 159 
IMS T805 79, S2, 9S 

TIL compatibility 
link IMS C004 4S5 
link IMS C011 509 
link IMS C012 535 
link IMS T222 434 
link IMS T414 379 
link IMS T425 312 
link IMS TSOO 241 
link IMS TS01 171 
link IMS TS05 105 

Type 17 
array 17 
BOOL 17 
BYTE 17 
CHAN OF 17 
floating point 17 
INT 17 
INT16 17 
INT32 17 
INT64 17 
primitive 17 
REAL32 17 
REAL64 17 
record 17 
TIMER 17 
variant 17 

5S1 



582 

Value 
constant 33 
data 32 
literal 33 

Variable 12,13,17,18,29,114,117,180,183, 
250,253,321,388,443 

array 114,180,250,321,388,443 
IMS T222 404 
IMS T414 338 
IMS T425 266 
IMS T800 194 
IMS T801 133 
IMS T805 53 
subscript 114,180,250,321,388,443 
temporary IMS T222 405 
temporary IMS T414 339 
temporary IMS T425 267 
temporary IMS T800 195 
temporary IMS T801 134 
temporary IMS T805 54 

vee 24 
IMS C004 482 
IMS C011 506 
IMS C012 532 
IMS T222 415 
IMS T414 349 
IMS T425 280 
IMS T800 211 
IMS T801 151 
IMS T805 71 

VLSI 29,45 

Wait 
IMS T222 429 
IMS T414 357,362,369,374,375 
IMS T425 288, 293, 300, 306, 307 
IMS T800 219,224,231,236,237 
IMS T801 165 
IMS T805 79, 89, 90, 99 
state generator IMS T222 429 
state generator IMS T801 165 
state IMS T222 423 
state IMS T801 159 

Whetstone benchmark 41 
WHILE 16,29, 115, 181,251,322,389,444 
Word 

access IMS T222 428 
length 31, 32, 34 

Workspace 35, 37 
disk IMS M212 467 
IMS T222 403,407,418 
IMST414337,341,351 
IMS T425 265, 269, 284 
IMS T800 193, 197,215 
IMS T801 132,136,155 
IMS T805 52,56,75 
instruction IMS T222 407 
instruction IMS T414 341 
instruction IMS T425 269 

instruction IMS T800 197 
instruction I MS T801 136 
instruction IMS T805 56 
pOinter 33 
register IMS T222 404 
register IMS T414 338 
register IMS T425 266 
register IMS T800 194 
register IMS T801 133 
register IMS T805 53 

WPtr 
IMS T425 286 
IMS T805 77 

Write 
cycle IMS T222 423, 424 
cycle IMS T414 359,363 
cycle IMS T425 290,294 
cycle IMS T800 221, 225 
cycle IMS T801 164 
cycle IMS T805 88 
data IMS C011 518 
data IMS C012 542 
early IMS T414 368 
early IMS T425 299 
early IMS T800 230 
early IMS T805 98 
late IMS T414 368 
late IMS T425 299 
late IMS T800 230 
late IMS T805 98 
strobe IMS T222 424 
strobe IMS T414 363 
strobe IMS T425 294 
strobe IMS T800 225 
strobe IMS T805 80 

B index 




