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% About This Manual

s

Integrated De;/ice Technology, inc.

This manual describes the operation of the IDT79R4640"/
IDT79R4650™, part of the Orion family of processors.

Note: Throughout this manual, references to the IDT79R4650 or
R4650 also refer to the IDT79R4640 or R4640. The R4640 supports only
the 32-bit bus width; otherwise, the R4640 and the R4650 are identical.

Summary of Contents

Chapter 1, “Overview,” contains an overview of the R4650 micropro-
cessor, including a detailed feature-by-feature comparison between the
R4000 and the R4650.

Chapter 2, “CPU Instruction Set Overview,” contains an overview of
the central processing unit (CPU) instruction set. For a description of an
individual CPU instruction refer to Appendlx A, “CPU Instruction Set
Details.”

Chapter 3, “The CPU Pipeline,” describes the basic operation of the
CPU pipeline, including descriptions of the delay instructions (instruc-
tions that follow a branch or load instruction in the pipeline), interrup-
tions to the pipeline flow caused by interlocks and exceptions, and R4650
implementation of an uncached store buffer.

Chapter 4, “Memory Management,” describes the simple base-
bounds mechanism used by R4650 for virtual-to-physical address trans-
lation.

Chapter 5, “CPU Exception Processing,” describes the CPU exception
processing, including a discussion of the format and use of each CPU
exception register. Also included is a description of each exception’s
cause, together with the manner in which the CPU processes and services
these exceptions.

Chapter 6, “The Floating-Point Unit,” describes the R4650 ﬂoating—
point unit (FPU) features, including the programming model, instruction
set and formats, and the pipeline.

Chapter 7, “Floating-Point Exceptions,” describes floating point unit
(FPU) floating-point exceptions, including FPU exception types, exception
trap processing, exception flags, saving and restoring state when
handling an exception, and trap handlers for IEEE Standard 754 excep-
tions.

Chaptexf 8, “Processor Signal Descriptions,” describes the signals
used by and in conjunction with the R4650 processor. These signals
include the System interface, the Clock/Control interface, the Interrupt
interface, and the Initialization interface.

Chapter 9, “The Initialization Interface,” describes the R4650 Initial-
ization Interface, including the reset signal descriptions and types, initial-
ization sequence, signals and timing dependenmes and boot modes,
which are set at initialization time.

Chapter 10, “The Clock Interface,” describes the clock signals
(clocks) used in the R4650 processor, as well as information on basic
system clocks and system timing parameters.

Chapter 11, “Cache Organization, Operation and Coherency,”
describes the on-chip cache memory, its place in the R4650 memory orga-
nization, and individual operations of the primary cache.
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Chapter 12, “System Interface Overview,” describes the system
interface from both the processor and the external agent's point of view.

Chapter 13, “The Read Interface,” discusses specifics of the ‘rea
interface and read operations. :

Chapter 14, “The Write Interface,” discusses the Write protocol and
associated operations.

Chapter 15, “The External Request Interface,” discusses the
External Request protocol and associated operations.

Chapter 16, “R4650 Processor Interrupts,” describes the six hard-
ware and single nonmaskable interrupts.

Chapter 17, “R4650 Error Checking,” describes the Error Checking
mechanism used in the R4650 processor.

Appendix A, “CPU Instruction Set Details,” provides a detailed
description on the operation of each R4650 instruction, listed alphabeti-
cally.

Appendix B, “FPU Instruction Set Details,” provides a detailed
description of each floating-point unit (FPU) instruction, listed alphabeti-
cally. Following each description is a discussion of exceptions that may
result from executing the instruction. _

Appendix C, “Cache Operations Timing,” lists cycle operation counts
and caveats for R4650 cache operations timing.

Appendix D, “Standby Mode Operation,” describes the Standby Mode
operation. »

Appendix E, “Coprocessor 0 Hazards,” identifies the R4650 Copro-
cessor O hazards.

Appendix F, “Integer Multiply Scheduling,” describes the R4650
Integer Multiply Scheduling.

Where To Find More Product Information

Details about the R4640 or R4650 electrical interface can be found in
the product’s data sheet. Data sheets also include packaging and pin-out
information.

For information about development tools, complementary support
chips, and how to use this product in various applications, refer to IDT’s
online library of data sheets, applications notes, software reference
manuals, and the IDT Advantage Program Guides.

Your local IDT sales representative can help you identify and use these
Tesources.
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Introduction

The IDT79R4640"/IDT79R4650™ is a low-cost member of the IDT
Orion family that is targeted to a variety of performance-hungry
embedded applications. The R4650 continues the Orion tradition of high-
performance through high-speed pipelines, high-bandwidth caches and
bus interface, 64-bit architecture, and careful attention to efficient
control. The R4650 reduces the cost of this performance—relative to the
R4600—by removing functional units frequently not required for many
embedded applications, such as double-precision floating point arith-
metic and the Transition Lookaside Buffer (TLB).

Note: Throughout this manual, references to the IDT79R4650 or
R4650 also refer to the IDT79R4640 or R4640. The R4640 is a device
that only supports the 32-bit bus width; otherwise, the R4640 and the
R4650 are identical.

The R4650 adds features relative to the R4600, reflective of its target
applications. These features enable system cost reduction (e.g. optional
32-bit system interface) as well as higher performance for certain types of
systems (such as cache locking, improved real-time support, and integer
digital signal processing (DSP) capability).

The R4650 supports a wide variety of embedded processor-based appli-
cations, such as games systems, multi-media functions, internetworking/
data communications equipment, and office networking systems.
Upwardly software-compatible with the R30xx RISController family and
bus and upwardly software-compatible with the IDT Orion family, the
R4650 will serve in many of the same applications. In addition, the R4650
will support applications that require DSP functions.

Performance

The R4650 brings Orion performance levels to lower cost systems.
Orion performance is preserved by retaining large on-chip caches that are
two-way set associative, a streamlined high-speed pipeline, high-band-
width, 64-bit execution, and facilities such as early restart for data cache
misses. These techniques combine to allow the system designer over
2GB/sec aggregate internal bandwidth, 533 MB/sec bus bandwidth, 175
Dhrystone MIPS, 44MFlops, and 66.7 M multiply-add/second (all at 133
MHz).

Upward Compatibility

The R4650 provides complete upward application-software compati-
bility with the IDT79R3000™ family of microprocessors, including the IDT
RISController 79R3041™,79R3051™/79R3052",79R3071"" /79R3081"",
79R4600™, and the 79R4700™ families of microprocessors. An array of
tools facilitates the rapid development of R4650-based systems, allowing
a wide variety of customers to take advantage of the processor’s high-
performance capabilities while maintaining short time-to-market goals.

The 64-bit computing capability of the R4650 permits access to perfor-
mance levels that were previously limited by the lower bandwidth and bit-
manipulation rates inherent in 32-bit architectures. :
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For example, the R4650 can perform loads and stores from cached
memory at the rates of 8-bytes every clock cycle, doubling the bandwidth
of an equivalent 32-bit processor. This ability—coupled with the high
clock rate for the R4650 pipeline—obtains new levels of performance from
embedded systems.

A summary of features for the R4650 follows. For a detailed feature-by-
feature comparison between the R4000 and the R4650, refer to
Table 1.14.

Features
¢ High-performance embedded 64-bit microprocessor
- 64-bit integer operations
- 64-bit registers
- 80MHz, 100MHz, 133MHz operation frequency
- 5V and 3.3V versions
* High-performance DSP capability
- 66.7 Million Integer Multiply-Accumulate Operations/sec @ 133
MHz
. - 44 MFlops floating point operations @133MHz
¢ High-performance microprocessor
- 66.7 M Mul-Add/second at 133MHz
- 44 MFLOP/s at 133MHz
- >300,000 dhrystone (2.1)/sec capability at 133MHz
(175 dhrystone MIPS)
¢ High level of integration
- 64-bit, 175 MIPS integer CPU
- 44MFlops Single precision floating-point unit
- 8KB instruction cache; 8KB data cache
- Integer DSP/multiply unit with 66.7M Mul-Add/sec
¢ Low-power operation
- Less than 2W peak internal power at 100MHz
- Active power management powers-down inactive units
- Standby mode power consumption <200mW
e Upward software compatible with IDT RISController" Family
¢ Large, efficient on-chip caches
- Separate 8kB Instruction and 8kB Data caches
- Over 1500MB/sec bandwidth from internal caches
- 2-set associative
- Write-back and write-through support
- Cache locking to facilitate deterministic response
¢ Bus compatible with R4600/R4700 Orion family
- System interfaces to 67 MHz, provides bandwidth up to 533 MB/S
- Direct interface to 32-bit wide or 64-bit wide systems
- Synchronized to external reference clock for multi-master opera-
tion -
¢ Improved real-time support
- Fast interrupt decode
- Optional cache locking
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Device Overview

The R4650 has a level of integration designed for high-performance and
high-bandwidth computing. Key elements of the R4650 are illustrated
below, with an overview of these features following. More detailed infor-
mation will be presented in subsequent chapters.

Figure 1.1 presents a block level representation of the R4650’s func-
tional units.

133 MIPS 64-bit Orion CPU System Control Coprocessor 44MFLOPS Single-Precision FPA
Address Translation/
Register file Cache Attribute Control FP register file
Adder _ _g' Pack/Unpack
o c
Load aligner € Exception Management 8
8 Functions 2 | FpAdd/sub/cvy
Store Aligner E B Div/Sqrt
2 o
Logic Unit T
High-Performance
Integer Multiply/DSP FP Multiply
\ A
Control Bus
Data Bus
Instruction Bus
Instruction Cache
SetA Data Cache
(Lockable) v Set A
(Lockable)
Instruction Cache 32-/64-bit
t
SetB Synchronized Da sae(;:chhe
System Interface

Figure 1.1 R4650 Block Diagram

Pipeline Overview

The R4650 implements a 5-stage pipeline similar to the IDT79R3000
and the IDT79R4600/R4700. The simplicity of this pipeline allows the
R4650 te be a lower cost, lower powered processor than super-scalar or
super-pipelined processors. Unlike superscalar processors, applications
that have large data dependencies or require a great deal of load/stores
can still achieve levels close to the peak performance of the processor.

Refer to Chapter 3 for a detailed discussion of the CPU pipeline opera-
tion, including descriptions of the instruction latencies, interruptions to
the pipeline flow caused by interlocks and exceptions, and the R4650
implementation of a store buffer. For a detailed discussion of the FPU
pipeline, refer to Chapter 6.
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CPU Register Overview

The R4650 has thirty-two general-purpose 64-bit registers. These
registers are used for scalar integer operations and address calculation.
The register file consists of two read ports and one write port and is fully
bypassed to minimize operation latency in the pipeline. Figure 1.2 shows
the R4650 CPU registers. '

General Purpose Registers

63 . 0 Multiply and Divide Registers
r 63 0
r1 | HI I
r2 63 0

Figure 1.2 R4650 CPU Registers

Two of the CPU general purpose registers have the following assigned
functions: .

* 10 is hardwired to a value of zero, and can be used as the target
register for any instruction whose result is to be discarded. rO can
also be used as a source when a zero value is needed.

¢ r31 is used as an implicit return destination address register by the
JAL and BAL series of instructions.

The CPU also has these three special purpose registers:
PC — Program Counter register
HI — Multiply and Divide register higher result

* LO— Multiply and Divide register lower result

Also, the two Multiply and Divide registers (HI, LO) will store 1) the
product of integer multiply operations, or 2) the quotient (in LO) and
remainder (in H) of integer divide operations.

‘The R4650 processor does not have a Program Status Word (PSW)
register as such. The PSW function is covered by the Status and Cause
registers incorporated within the System Control Coprocessor (CP0). CPO
registers are described later in this chapter.
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CPU Instruction Set Overview
- Each CPU instruction is 32 bits long. As shown in Figure 1.3, there are
~three instruction formats:

immediate (I-type)
jump (J-type)
register (R-type)

I-Type (Immediate) immediate

J-Type (Jump)

R-Type (Register)

31 2625 2120 16 15 0

31 26 25 0

31 2625 2120 1615 11 10 6 5 0

Figure 1.3 CPU Instruction Formats

~Each format contains a number of different instructions, which are
described further in this chapter. Fields of the instruction formats are
described in Chapter 2.

By limiting the number of formats to these three, instruction decoding
is simplified. Through this limitation, more complicated (and less
frequently used) operations and addressing modes can be synthesized by
the compiler; using sequences of these same simple instructions.

The instruction set can be further divided into the following groups:

Load and Store instructions move data between memory and general
registers. They are all immediate (I-type) instructions, since the only
addressing mode supported is base register plus 16-bit, signed imme-
diate offset.

Computational instructions perform arithmetic, logical, shift,
multiply, and divide operations on values in registers. They include
register (R-type, in which both the operands and the result are stored
in registers) and immediate (I-type, in whxch one operand is a 16-bit
immediate value) formats.

Jump and Branch instructions change the control flow of a program.
Jumps are always made to a paged, absolute address formed by
combining a 26-bit target address with the high-order bits of the
Program Counter (J-type format) or register address (R-type format).
Branches have 16-bit offsets relative to the program counter (I-type).
Jump And Link instructions save their return address in register 31.
Coprocessor instructions perform operations in the coprocessors.
Coprocessor load and store instructions are I-type.

Coprocessor O (system coprocessor) instructions perform operations
on CPO registers to control the memory management and exception
handling facilities of the processor and the standby mode for power
management.

Special instructions perform system calls and breakpoint operations.
These instructions are always R-type.

Exception instructions cause a branch to the general exception-
handling vector based upon the result of a comparison. These
instructions occur in both R-type (both the operands and the result
are registers) and I-type {one operand is a 16-bit immediate value)
formats.
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Chapter 2 provides more detailed information on these instructions.

And a complete description of each is located in Appendix A.

CPU Instruction Tables

Tables 1.1 through 1.13 lists CPU instructions common to MIPS
R-Series processors, along with the level in which they first appeared. The
last column of each table refers to the MIPS ISA level in which the

instruction first appeared. Table 1.10 shows CPO instructions.

OpCode Description MIPS ISA Levelt
LB Load Byte I
LBU Load Byte Unsigned I
LH Load Halfword I
LHU Load Halfword Unsigned I
Lw Load Word I
LWL Load Word Left I
LWR Load Word Right I
SB Store Byte 1
SH Store Halfword 1
SwW Store Word I
SWL Store Word Left I
SWR Store Word Right I
LD Load Doubleword 11
LDL Load Doubleword Left m
LDR Load Doubleword Right I
LL Load Linked 11
LLD Load Linked Doubleword I
LWu Load Word Unsigned 11
SC Store Conditional I
SCD Store Conditional Doubleword I
SD Store Doubleword I
SDL Store Doubleword Left 11
SDR Store Doubleword Right 11
SYNC Sync II
Note: 'For Tables 1.1 through 1.17 this column refers to the level in which the
instruction first appeared.

Table 1.1 Instruction Set: MIPS 1 /MIPS 2/MIPS 3 Load and Store Instructions

t
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OpCode Description MIPS ISA Level
ADDI Add Immediate I
ADDIU Add Immediate Unsigned I
SLTI Set on Less Than Immediate I
SLTIU Set on Less Than Immediate I
Unsigned
ANDI AND Immediate I
ORI OR Immediate I
XORI Exclusive OR Immediate I
LUI Load Upper Immediate 1
DADDI Doubleword Add Immediate 111
DADDIU Doubleword Add Immediate I
Unsigned

Table 1.2 CPU Instruction Set: MIPS 1 /MIPS 2/ MIPS 3 Arithmetic Instructions (ALU

Immediate)

OpCode Description MIPS ISA Level
ADD Add I
ADDU Add Unsigned I
SUB Subtract I
SUBU Subtract Unsigned I
SLT Set on Less Than I
SLTU Set on Less Than Unsigned I
AND AND I
OR OR I
XOR Exclusive OR I
NOR NOR I
DADD Doubleword Add III
DADDU Doubleword Add Unsigned 11
DSUB Doubleword Subtract I
DSUBU Doubleword Subtract Unsigned 11

Table 1.3 CPU Instruction Set: Arithmetic (3-Operand, R-Type)
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OpCode Description MIPS ISA Level

MAD Multiply-Add t

MADU Multiply-Add Unsigned t

MUL 3-Operand Multiply t

MULT Multiply (result in HI/LO) I
MULTU Multiply Unsigned I

(result in HI/LO)

DIV Divide I

DIVU Divide Unsigned I

MFHI Move From HI I

MTHI Move To HI I

MFLO Move From LO I

MTLO Move To LO I
DMULT Doubleword Multiply I
DMULTU Doubleword Multiply Unsigned I

DDIV Doubleword Divide - I
DDIVU Doubleword Divide Unsigned II

Note:

'These are IDT-proprietary extensions to the MIPS instruction set.

tions

Table 1.4 CPU Instruction Set: MIPS 1, MIPS 2, MIPS 3 Multiply and Divide Instruc-
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OpCode Description MIPS ISA Level
J Jump I
JAL Jump And Link I
JR Jump Register I
JALR Jump And Link Register I
BEQ Branch on Equal I
BNE Branch on Not Equal 1
BLEZ Branch on Less Than or Equal to Zero I
BGTZ Branch on Greater Than Zero I
BLTZ Branch on Less Than Zero I
BGEZ Branch on Greater Than or Equal to Zero 1
BLTZAL | Branch on Less Than Zero And Link I
BGEZAL | Branch on Greater Than or Equal to Zero I
And Link
BEQL Branch on Equal Likely I
BNEL Branch on Not Equal Likely 11
BLEZL Branch on Less Than or Equal to Zero II
Likely
BGTZL Branch on Greater Than Zero Likely I
BLTZL Branch on Less Than Zero Likely I
BGEZL Branch on Greater Than or Equal to Zero II
Likely
BLTZALL | Branch on Less Than Zero And Link Likely I
BGEZALL | Branch on Greater Than or Equal to Zero 11
And Link Likely
BCZTL Branch on Coprocessor z True Likely 11
BCzFL Branch on Coprocessor z False Likely I

Table 1.5 CPU Instruction Set: Jump and Branch Instruction
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OpCode Description MIPS ISA Level
SLL Shift Left Logical I
SRL Shift Right Logical I
SRA Shift Right Arithmetic I
SLLV Shift Left Logical Variable I
SRLV Shift Right Logical Variable I
SRAV Shift Right Arithmetic Variable I
DSLL . Doubleword Shift Left Logical 1M1
DSRL Doubleword Shift Right Ldgical 111
DSRA Doubleword Shift Right Arithmetic 111
DSLLV Doubleword Shift Left Logical Vari- 11
able '
DSRLV Doubleword Shift Right Logical Vari- I
able
DSRAV Doubleword Shift Right Arithmetic 11
Variable
DSLL32 Doubleword Shift Left Logical + 32 I
DSRL32 Doubleword Shift Right Logical + 32 I
DSRA32 ngubleword Shift Right Arithmetic + 111
Table 1.6 CPU Instruction Set: Shift Instructions
OpCode Description MIPS ISA Level
LWCz Load Word to Coprocessor z I
SWCz Store Word from Coprocessor z I
MTCz Move To Coprocessor z I
MFCz Move From Coprocessor z I
CTCz Move Control to Coprocessor z I
CFCz Move Control From Coprocessor z 1
COPz Coprocessor Operation z I
BCzT Branch on Coprocessor z True I
BCzF Branch on Coprocessor z False I
DMFCz Doubleword Move From Coprocessor z II
DMTCz Doubleword Move To Coprocessor z Il
LDCz Load Double Coprocessor z II
SDCz Store Double Coprocessor z II

Table 1.7 Instruction Set: Coprocessor Instructions
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OpCode Description , MIPS ISA Level
SYSCALL System Call I
BREAK Break I

Table 1.8 CPU Instruction Set: Special Instructions
OpCode | Description MIPS ISA Level
TGE Trap if Greater Than or Equal II
TGEU Trap if Greater Than or Equal Unsigned I
TLT Trap if Less Than II
TLTU Trap if Less Than Unsigned Il
TEQ Trap if Equal 11
TNE Trap if Not Equal I
TGEI Trap if Greater Than or Equal Immediate 11
TGEIU Trap if Greater Than or Equal Immediate I

Unsigned
TLTI Trap if Less Than Immediate II
TLTIU Trap if Less Than Immediate Unsigned I
TEQI Trap if Equal Immediate 11
TNEI Trap if Not Equal Immediate 11

Table 1.9 MIPS 2/MIPS 3 Exception Instructions

OpCode Description MIPS ISA Level
DMFCO Doubleword Move From CPO III
DMTCO Doubleword Move To CPO I
MTCO Move to CPO I
MFCO Move from CPO I
TLBR Read Indexed TLB Entry I
TLBWI Write Indexed TLB Entry I
TLBWR Write Random TLB Entry I
TLBP Probe TLB for Matching Entry I
CACHE Cache Operation R4xxx only
ERET Exception Return R4xxx only
WAIT Enter Standby mode Orion family

Table 1.10 R4650 CPO Instructions
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Data Formats and Addressing

The R4650 processor uses four data formats: a 64-bit doubleword, a
32-bit word, a 16-bit halfword, and an 8-bit byte. Byte ordering within
each of the larger data formats—halfword, word, doubleword—can be
configured in either big-endian or little-endian order. Endianness refers to
the location of byte O within the multi-byte data structure. Figures 1.4
and 1.5 show the ordering of bytes within words and the ordering of
words within multiple-word structures for the big-endian and little-
endian conventions.

When the R4650 processor is configured as a big-endian system, byte O
is the most-significant (leftmost) byte, thereby providing compatibility
with MC 68000 and IBM 370 conventions. Figure 1.4 illustrates this
configuration.

Higher Word Bit #

Address Address [31 24 23 1615 8 7 ol
12 12 13 | 14 | 15 |
8 8 9 | 10 | 11 |
4 4 | s 6 7

L N

pdess 0 Lo | 1 2 3

Figure 1.4 Big-Endian Byte Ordering

When configured as a little-endian system, byte O is always the least-
significant (rightmost) byte, which is compatible with iAPX x86 and DEC
VAX conventions. Figure 1.5 illustrates this configuration.

Higher Word Bit #

Address Address |31 24 23 1615 8 7 ol
o [ | @ ] B ] |
8 1 10 | 9 | 8
4 7 6 | 5 | 4

Address © .3 2 |+ ] o |

Figure 1.5 Little-Endian Byte Ordering

In this text, bit O is always the least-significant (rightmost) bit; thus, bit
designations are always little-endian (although no instructions explicitly
designate bit positions within words).
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Figures 1.6 and 1.7 show little-endian and big-endian byte ordering in
doublewords.

Most-significant byte Least-significant byte
Word
|

Bit# 63 \5655 48 47 4039 3231 2423 1615 87 \ 0
Byte# L7 || 6 || 5 J[ 4 J 38 | 2 || 1 || o |

= =
Halfword Byte

[
Bit#/7 6 5 4 32 1 ol

IR EEEE

Bits in a Byte

Figure 1.6 Little-Endian Data in a Doubleword

Most-significant byte Least-significant byte
Word
]

Bit# 63 | 5655 48 47 4039 3231 2423 1615 87 \ o0l
Be# O |l v 2 ] 3 J 4 ][5 Jle |7 ]

Halfword Byte ﬁ

|
Bit#l7 6 5 4 3 2 1 ol

EEEENEE N

Bits in a Byte

Figure 1.7 Big-Endian Data in a Doubleword

The CPU uses byte addressing for halfword, word, and doubleword
accesses with the following alignment constraints:
* Halfword accesses must be aligned on an even byte boundary
0, 2, 4...).
¢ Word accesses must be aligned on a byte boundary divisible by four
(0, 4, 8...).
* Doubleword accesses must be aligned on a byte boundary divisible by
eight (O, 8, 16...).
The following special instructions load and store words that are not
aligned on 4-byte (word) or 8-word (doubleword) boundaries:

LWL LWR SWL SWR
LDL LDR SDL SDR

These instructions are used in pairs to provide addressing of
misaligned words. Addressing misaligned data incurs one additional
instruction cycle over that required for addressing aligned data. This
extra cycle is because of an extra instruction for the “pair” (e.g., LWL and
LWR form a pair). Also note that the CPU moves the unaligned data at the
same rate as a hardware mechanism.
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Figures 1.8 and 1.9 show the access of a misaligned word that has byte
address 3.

Higher
Address Bit #
|
[ 31 24 23 1615 8 7 ol
4 s )l 8 | |
l I L3 |
Lower
Address

Figure 1.8 Big-Endian Misaligned Word Addressing

Higher

Address Bit'#
131 24 23 1615 8 7 ol
I 6 | s J[ 4 ]
L3 | I I |

Lower

Address

Figure 1.9 Little-Endian Misaligned Word Addressing

Coprocessors (CP0-CP2)
The MIPS ISA (MIPS III Instruction Set with IDT extensions) of the
R4650 defines three coprocessors, designated CPO through CP2:

* Coprocessor 0 (CPO) is incorporated on the CPU chip and supports
the virtual memory system and exception handling. CPO is also
referred to as the System Control Coprocessor.

e Coprocessor 1 (CP1) is incorporated on the R4650, and implements
the MIPS single-precision floating-point instruction set.

e Coprocessor 2 (CP2) is reserved for future use.

CPO and CP1 of the R4650 are described in the sections that follow.

System Control Coprocessor, CPO

CPO translates virtual addresses into physical addresses and manages
exceptions and transitions between kernel and user states. CPO also
controls the cache subsystem, as well as providing diagnostic control and
error recovery facilities.

CPO is also used to control the power management for the R4650. This
is the standby mode and it can be used to reduce the power consumption
of the internal core of the CPU. The standby mode is entered by executing
the WAIT instruction with the SysAD bus idle and is exited by any inter-
rupt. This feature is discussed in Appendix D.

The CPO registers shown in Figure 1.10 and described in Table 1.11
manipulate the memory management and exception handling capabilities
of the CPU.

Note: Access toreserved or undefined CPO register results are unde-
fined. An exception may or may not result.

1-14
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Register Name Reg. # Register Name Reg. #

[ IBase | 0 | Config | 16

| [Bound | 1 | CAlg | 17

| DBase | 2 i 18

[ DBound | 3 19

4 20

BREERIERKRIEKKKKK 5 21

[XKRRRHRRRARIRRRNRKL 6 22

7 23

8 24

9 25

SRRRRKIKKLKKLRRKAIKL 10 26

' 1 27

12 28

13 BRI 29

14 30

| PRId 15 31
Exception Processing [] Memory Management [X3 Reserved

Figure 1.10 R4650 CPO Registers




Overview Chapter 1

Number | Register Description

0 IBase Provides the User Instruction address space Base

1 IBound Provides the User Instruction address space Bound

2 DBase Provides the User Data address space Base

3 DBound Provides the User Data address space Bound

4 — Reserved

5 — Reserved

6 — Reserved

7 — Reserved

8 BadVAddr Bad virtual address

9 Count Timer Count

10 — Reserved

11 Compare Timer Compare

12 SR Status register

13 Cause Cause of last exception

14 EPC Exception Program Counter

15 PRId Processor Revision [dentifier

16 Config Configuration register

17 CAlg Cache attributes control

18 IWatch A read/write register that specifies an Instruction
virtual address that causes a Watch exception.

19 DWatch A read/write register that specifies a Data virtual
address that causes a Watch exception.

20 — Reserved

21-25 |— Reserved

26 ECC ' Secondary-cache error checking and correcting (ECC)
and Primary parity

27 CacheErr Cache Error and Status register

28 TagLo Cache Tag register

29 — Reserved

30 ErrorEPC Error Exception Program Counter

31 |— Reserved

Table 1.11 System Control Coproéessor (CPO) Register Definitions

Floating-Point Co-Processor

The R4650 incorporates an entire smgle precision floating-point co-
processor on chip, including a floating-point register file and execution
units. The floating-point co-processor forms a “seamless” interface with
the integer unit, decoding and executing instructions in parallel with the
integer unit.
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Floating-Point Units :

The R4650 floating-point execution units perform single-precision
arithmetic, as specified in the IEEE Standard 754. The execution unit is
broken into a separate multiply unit and a combined add/convert/
divide/square root unit. Overlap of multiplies and add/subtract is
supported. The multiplier is partially pipelined, allowing a new multiply to
begin every 6 cycles.

As in the IDT79R4600, the R4650 maintains fully precise floating-point
exceptions while allowing both overlapped and pipelined operations.
Precise exceptions are extremely important in mission-critical environ-
ments, and highly desirable for debugging in any environment.

The floating-point unit’s operation set includes floating-point add,
subtract, multiply, divide, square root, conversion between fixed-point
and floating-point format, and floating-point compare. These operations
comply with IEEE Standard 754. Double-precision operations are not
directly supported; attempts to execute double-precision floating point
operations, or refer directly to double-precision registers, result in the
R4650 signalling a “trap” to the CPU, enabling emulation of the requested
function.

Table 1.12 gives the latencies of some of the floating-point instructions
in internal processor cycles.

Operation In:;:u:;ﬁi;n
ADD 4
SUB 4
MUL 8
DIV 32
SQRT 31
CMP 3

FIX 4
FLOAT 6
ABS 1
MOV 1
NEG 1
LWC1 2
SWC1 1

Table 1.12 Floating-Point Operation

Virtual to Physical Address Mapping

The R4650 provides two modes of operation:

* user mode

¢ kernel mode

Kernel mode operation is typically used for exception handling and
operating system kernel functions, including CPO management and
access to IO devices. In kernel mode, software has access to the entire
address space and all of the co-processor O registers and can select
whether to enable co-processor 1 accesses. The processor enters kernel
mode at reset, or whenever an exception is recognized.
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User mode operation is typically used for applications programs. User
mode accesses are limited to a subset of the virtual address space, and
can be inhibited from accessing CPO functions. The 4 GB address space,
which is shown in Table 1.13, is divided into addresses accessible in
either kernel or user mode (kuseg), and addresses only accessible in
kernel mode (kseg2:0).

OxFFFFFFFF
Kernel virtual address space
(kseg2)
Unmapped, 1.0 GB
0xxC0000000
OXBFFFFFFF
Uncached kernel physical address space
(kseg1)
Unmapped, 0.5GB
030000000
0x9FFFFFFF
Cached kernel physical address space
(kseg0)
Unmapped, 0.5GB
0:80000000
0x7FFFFFF
User virtual address space
(useg)
Mapped, 2.0GB
01200000000

Table 1.13 Mode Virtual Addressing (32-bit mode)

Sharing common virtual addresses but mapped to separate physical
addresses, the R4650 supports the use of multiple user tasks. This
facility is implemented via the “base-bounds” registers contained in CPO.

When a user virtual address is asserted (load, store, or instruction
fetch), the R4650 compares the virtual address with the contents of the
appropriate “bounds” register (instruction or data). If the virtual address
is “in bounds,” the value of the corresponding “base” register is added to
the virtual address to form the physical address for that reference. If the
address is not within bounds, an exception is signalled.

This facility enables multiple user processes in a single physical
memory without the use of a TLB. This type of operation is further
supported by a number of development tools for the R4650, including
real-time operating systems and “position independent” code.

Kernel mode addresses do not use the base-bounds registers, but
rather undergo a fixed virtual to physical address translation.

A detailed explanation of this addressing mechanism is given in
Chapter 4.
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Base Bounds Registers

The R4650 implements a simple mechanism to support the mapping of
virtual to physical addresses. In the R4650, the TLB structure found in
the IDT79R4600 has been replaced by a base-bounds mechanism. When
an address is translated, its page number is first compared against the
Bounds register. If the address is “in range,” the base register is added to
the virtual address to form the physical address.

The R4650 contains two sets of base-bounds registers, one set for
instruction address translation (IBase and IBounds registers} and one for
data (DBase and DBounds registers). An operating system can support
task protection by writing appropriate values to these registers at context
switch time.

Finally, to allow a mix of cache attributes in a single system, the R4650
also implements a Cache Algorithm (CAlg) register in CPO. This register
allows the operating system to define the cache management attributes of
different portions of the address space. By using appropriate virtual
addresses, memory can be treated as uncached, write-back, or write-
through, with separate attributes for each of eight memory regions. In
conjunction with the external system address decoder, software can then
alias the same physical memory with different management algorithms,
depending upon the data or program that is running.

Cache Memory

To keep the R4650’s high-performance pipeline full and operating effi-
ciently, the R4650 incorporates on-chip instruction and data caches that
can be accessed in a single processor cycle. Each cache has its own 64-bit
data path and can be accessed in parallel. The cache subsystem provides
the integer and floating-point units with an aggregate bandwidth of over
1.5GB per second.

Instruction Cache

The R4650 incorporates a two-way set associative on-chip instruction
cache. This virtually indexed, physically tagged cache is 8KB in size and
is protected with word parity.

Because the cache is virtually indexed, the virtual-to-physical address
translation occurs in parallel with the cache acceéss, thus further
increasing performance by allowing these two operations to occur simul-
taneously. The tag holds a 24-bit physical address and valid bit and is
parity protected.

The instruction cache is 64-bits wide and can be refilled or accessed in
a single processor cycle. Instruction fetches require only 32 bits per cycle,
for a peak instruction bandwidth of 532 MB/sec at 133MHz. Sequential
accesses take advantage of the 64-bit fetch to reduce power dissipation,
and cache miss refill writes 64 bits per cycle to minimize the cache miss
penalty.. To maximize performance, the line size is eight instructions (32
bytes).

In addition, the contents of one set of the instruction cache (set “A”) can
be “locked” by setting a bit in a CPO register. Locking the set prevents its
contents from being overwritten by a subsequent cache miss; refill occurs
then only into “set A”.

This operation effectively “locks” time critical code into one 4KB set,
while allowing the other set to service other instruction streams in a
normal fashion. Thus, the benefits of cached performance are achieved,
while deterministic real-time response is preserved.
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Data Cache

For fast, single cycle data access, the R4650 includes an 8KB on-chip
data cache that is two-way set associative with a fixed 32-byte (eight
word) line size. Both the D-cache and the I-cache can be accessed each
pipeline cycle; thus, the data bandwidth is over 1 MB/sec at 133 MHz, in
addition to the 532 MB/sec instruction bandwidth.

The data cache is protected with byte parity and its tag is protected
with a single parity bit. It is virtually indexed and physically tagged to
allow simultaneous address translation and data cache access

The D-cache allows write-back and write-through operation functions
of the address space to be individually controlled through a field in the
CAlg register. Once initialized, software need only assert the desired
virtual address to get the desired effect.

Associated with the data cache is the store buffer. When the R4650
executes a store instruction, this single-entry buffer gets written with the
store data while the tag comparison is performed. If the tag matches, then
the data is written into the data cache in the next cycle that the data
cache is not accessed (the next non-load cycle). The store buffer allows
the R4650 to execute a store every processor cycle and to perform back-
to-back stores without penalty.

Write buffer

Writes to external memory, whether cache miss write-backs or stores to
uncached or write-through addresses use the on-chip write buffer. The
write buffer holds up to four 64-bit address and data pairs or 1 cache line
to be written back. The entire buffer is used for a data cache write-back
and allows the processor to proceed in parallel with memory update. For
uncached and write-through stores, the write buffer has significantly
increased performance over other R4000-family processors.

R4650 Clocks

The R4650 uses the system interface clock as its input clock. The pipe-
line speed is derived from this clock using a PLL to multiply up the input
reference. It is assumed that the system designer manages the system
clock distribution to fit the needs of the system. Thus, the R4650 does not
output a system reference clock, but rather operates in synchronization
with the input clock.

The R4650 does output one low frequency reference clock: the Mode
clock. This clock operates at 1/256 the rate of the input clock, and it is
used to clock in the serial initialization stream during reset.

System Interface

The R4650 supports a 64-bit system interface that is compatible with
the R4400PC system interface. This interface operates from the input
Reference clock.

The interface consists of a 64-bit address/data bus with 8 check bits
and a 9-bit command bus. There are also 8 handshake signals and 6
interrupt inputs. The interface has a simple timing specification and is
capable of transferring data between the processor and memory at a peak
rate of 400MB/sec at 50MHz.

In addition, the R4650 supports a boot-time option to run the system
interface as 32 bits wide, using basically the same protocols as a 64-bit
system. This feature allows the system designer to reduce the costs of the
overall memory system without sacrificing computational performance.
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Figure 1.11 shows a typical system using the R4650. In this example
there is DRAM, a boot EPROM, and an optional secondary cache.

< ,_Address
Boot DRAM '
‘ROM (80ns)
< < Control
SCSi ENET
332 or 64
g # P '
320/[64 Memory I/O < >
R4650 << '9 > Controller
A >
Control
) 7
Control

Figure 1.11 Typical System Block Diagram




Overview

Chapter 1

Comparison of R4650 and R4600/R4700

Table 1.14 compares R4650 features with those of the R4600/R4700.
This list is not exhaustive.

Attribute R4600/R4700 R4650
I-Cache size 16KB 8KB
D-Cache size 16KB 8KB
Cacheability control TLB, KO field CAlg
Memory translation TLB Base-Bounds

Floating point accelerator

Single- and double-precision

Single-precision only

Integer multiply

MIPS standard only
12 cycles

MIPS standard + 3 operand Mul (2-3 cycles)

Integer multiply-add

No

Yes
2-3 cycle repeat rate

Clock interface

Input clock at 1/2 pipeline; System
clock derived from pipeline clock
multiple output reference clocks.

Input clock is system clock; pipeline clock
derived from there; no system output clock

Bus interface width 64-bit 32-bit or 64-bit
Watch registers None I-Watch and D-Watch
Cache locking No Yes (per set)
Separate Interrupt vector No Yes (optional)

Table 1.14 System Interface Comparison Between R4600 /R4700 PC and R4650
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Introduction

This chapter is an overview of the central processing unit (CPU)
instruction set. TFor a description of an individual CPU instruction refer to
Appendix A, “CPU Instruction Set Details.” '

For an overview of the floating-point unit (FPU) instruction set refer to
Chapter 6, “The Floating Point Unit.” For a description of an individual
FPU instruction refer to Appendix B, “FPU Instruction Set Details.”

CPU Instruction Formats _

Each CPU instruction consists of a single 32-bit word, aligned on a
word boundary. There are three instruction formats, as shown in
Figure 2.1:

* Immediate ([-type)

e Jump (J-type)

o Register (R-type)

The use of a small number of instruction formats simplifies instruction
decoding (thus higher frequency operations) and allowing the compiler to
synthesize more complicated (and less frequently used) operations and
addressing modes from these three formats as needed.

I-Type (Immediate)
31 2625 2120 1615 0

31 26 25

R-Type (Register)

31 2625 2120 1615 1110 65 0

Key to Figure:
op 6-bit operation code
IS 5-bit source register specifier
rt 5-bit target (source/destination) register or branch condition
immediate 16-bit immediate value, branch displacement or address
displacement
target 26-bit jump target address
rd 5-bit destination register specifier
sa 5-bit shift amount
funct 6-bit function field

Figure 2.1 CPU Instruction Formats
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In the MIPS architecture, coprocessor instructions are implementation-
dependent; refer to Appendix A for details of individual Coprocessor O
instructions.

Load and Store Instructions

Load and store are immediate (I-type) instructions that move data
between memory and the general registers. The only addressing mode
that load and store instructions directly support is base register plus 16-
bit signed immediate offset.

Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the
instruction immediately following is called a delayed load instruction. The
instruction slot immediately following this delayed load instruction is
referred to as the load delay slot.

In the R4650 processor, the instruction immediately following a load
instruction can request the contents of the loaded register, however, in
such cases, hardware interlocks insert additional real cycles. Conse-
quently, scheduling load delay slots can be desirable, both for perfor-
mance and R-Series {e.g., R3051) processor compatibility. However, the
scheduling of load delay slots is not absolutely required.

Defining Access Types

Access type indicates the size of an R4650 processor data item to be
loaded or stored, set by the load or store instruction opcode. Access types
are defined in Appendix A. '

Regardless of access type or byte ordering (endianness), the address
given specifies the low-order byte in the addressed field. For a big-endian
configuration, the low-order byte is the most-significant byte; for a little-
endian configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address,
define the bytes accessed within the addressed doubleword, which is
shown in Table 2.1. Only the combinations shown in this table are
permissible. Other combinations will cause address error exceptions.
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Bytes Accessed

Low Order

Address
Access Type | Bits Big Endian Little Endian
Mnemonic (63 31 0) | (63 31 0)

(Value) 2 /110 Byte Byte

Doubleword (7} |0 |0 [0 1[2]3]a[5]6[7|7]6[5[4][3]2]1
Septibyte (6) o |o o 1](2]3]a]5 i 1e|5(a|3]|2]1

oo |1 pq1|2(3|a|5|6|7|7]|6|5]4|3]|2]1
Sextibyte (5) |0 |0 |0 |0|1]|2|3]4]5 s |a|3|2|1]o0

0|1 |0 i 2|3la|5]|6|7|7|6|5|4|3|2F
Quintibyte (4) [0 [0 [0 [0|1]|2{3|4} 14({3|2|1}0

011".?“,‘34567'76543:”3
Word (3) 0 |0 |0 ]O|1(|2]3 L 3]2]1]0

1 {0 |0 : a|5(6|7|7]6|5]|4 [FEF
Triplebyte (2) of|o|o|o|1|2k & 1{0

0 [0 |1 1|2(3f i 3l2]1

1 o |0 e} 14 440

1 [0 |1 677
Halfword () |0 |0 |0 |01 = o

o1 |o¢f 2|3 s

1 oo 4|5 . | |5]4

1 (1 |0 6|7]7]|6
Byte (0) 0 [0 |0 |0} ; L 0

o o [1 1 o L

o |1 (o [ Fafl o p

o1 |1} 3f 0 s

1 [0 |0 sl o

1 (o |1} 5 B0

1 (110 6 : 16 '{

1|1 |1 =77

Table 2.1 Byte Access within a Doubleword
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Computational Instructions

Computational instructions can be in either of the following formats:

» - register (R-type) format, in which both operands are registers.

¢ immediate (I-type) format, in which one operand is a 16-bit imme-

diate. v

Computational instructions perform the following operations on register
values:

o arithmetic

¢ logical

¢ shift

e multiply

o divide

These operations fit in the following four categories of computational
instructions: : '

* ALU Immediate instructions

o three-Operand Register-Type instructions

o shift instructions

¢ multiply and divide instructions

Operations With 32-bit Operands

Operands to 32-bit operand opcodes must be in sign-extended form.
32-bit operand opcodes include all non-doubleword operations, such as:
ADD, ADDU, SUB, SUBU, ADDI, SLL, SRL, SRA, SLLV, etc. The result of
operations that use incorrect sign-extended 32-bit values is unpredict-
able.

Cycle Timing for Multiply and Divide Instructions

R4650 hardware interlocks if necessary in order to allow complete
execution of the multiply and divide instructions. Latency is the number
of clock cycles until the result is available. Repeat is the number of clock
cycles until the instruction can be repeated. Stall is the number of clock
cycles the CPU will automatically stall.

MFHI and MFLO instructions (which are described in more detail in
Appendix A) are interlocked so that any attempt to read them before prior
multiply or divide instructions complete delays the execution of these
instructions until the prior instructions finish.

Table 2.2 gives the number of processor cycles (PCycles) required to

‘resolve an interlock or stall between various multiply or divide instruc-
tions, and a subsequent MFHI or MFLO instruction.

Operand *

Opcode Size Latency Repeat Stall
MULT/U, 16 bit 3 2 0
MAD/U

32 bit 4 3 0
MUL 16 bit 3 2 1

32 bit 4 3 2
DMULT, any 6 5
DMULTU
DIV, DIVU any 36 36
DDIV, DDIVU any 68 68
* The R4650 automatically detects operand size.
Note: For more information about these computational
instructions, refer to Appendix A.

Table 2.2 R4650 Integer Multiply Operation

2-4
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Introduction

This chapter describes the basic operation of the CPU pipeline,
including descriptions of the delay instructions (instructions that follow a
branch or load instruction in the pipeline), interruptions to the pipeline
flow caused by interlocks and exceptions, and R4650 implementation of
an uncached store buffer. The FPU pipeline is described in a later chapter.

CPU Pipeline Operation

The R4650 uses a 5-stage pipeline similar to the R3000. The simplicity
of this pipeline allows the R4650 to be lower cost and lower power than
super-scalar or super-pipelined processors. Unlike the R3000, the R4650
does virtual to physical translation in parallel with cache access. This
allows the R4650 to operate at over twice the frequency of the R3000 and
to support a “base-bounds” register for address translation.

Compared to the 8-stage R4000 pipeline, the R4650 is more efficient
because fewer stalls are required.

Once the pipeline has been filled, five instructions are executed simul-
taneously. Figure 3.1 shows the five stages of the instruction pipeline; the
next section describes the pipeline stages.

'°U 21

|1R 2RuA|2A'| 1D|2D

I1I|2II1R|2R|1A|2A

I1|12II1R]2R

I3 2A 1D | oeee
|4 2R 1A Ll
| one cycle
-~

Key to Figure:

11-1R  Instruction cache access 2R Instruction decode

1121 Instruction virtual to physical address translation 1A-2A  Integer add, logical, shift
2A-2D Data cache access and load align 1A Data virtual address calculation
1D-2D Data virtual to physical address translation 2A  Store align

2R  Register file read 1A Branch decision

2R Bypass calculation 2W  Register file write

Figure 3.1 Instruction Pipeline Stages
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CPU Pipeline Stages

This section describes each of the phases of the five pipeline stages.
Each stage has 2 phases:

¢ 1I - Instruction Fetch, Phase one
2I - Instruction Fetch, Phase two
1R - Register Fetch, Phase one
2R - Register Fetch, Phase two
1A - Execution, Phase one
2A - Execution, Phase two
1D - Data Fetch, Phase one
2D - Data Fetch, Phase two
1W - Write Back, Phase one
2W - Write Back, Phase two

1I - Instruction Fetch, phase one
The instruction address translation begins during the 1I phase.

2] - Instruction Fetch, phase two
During the 2I phase, the instruction cache fetch begins and the
instruction address translation continues.

1R - Register Fetch, phase one
During the 1R phase, the following occurs:
¢ The instruction cache fetch finishes.
¢ The instruction cache tag is checked against the physical page frame
number obtained from the address translation.

2R - Register Fetch, phase two
During the 2R phase, the following occurs:
¢ The instruction decoder decodes the instruction.
* Any required operands are fetched from the register file.
* Make a decision to either issue or slip (for an interlock condition).
¢ For a branch, the branch address is calculated.

1A - Execution, phase one
During the 1A phase, one of the following occurs:
¢ Any result from the A or D stages are bypassed.

* The arithmetic logic unit (ALU) starts the integer arithmetic, logical or
shift operation.

o The ALU calculates the data virtual address for load and store
instructions.

e The ALU determines whether the branch condition is true.

2A - Execution, phase two
During the 2A phase, one of the following occurs:
e The integer arithmetic, logical or shift operation will complete.
A data cache access will start. ,
Store data is shifted to the specified byte position(s).
The data virtual to physical address translation will start.

1D - Data Fetch, phase one
During the 1D phase, one of the following occurs:
e The data cache access will continue.
¢ The data address translation completes.

2D - Data Fetch, phase two

During the 2D phase the data cache access will finish and the data is
shifted down and extended. The data cache tag is checked against the
physical address for any data cache access.
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1W - Write Back, phase one
This phase is used internally by the processor to resolve all exceptions,

in preparation for the register file write.

2W - Write Back, phase two
For register-to-register and load instructions, the result is written back

to the register file during the 2W stage. Branch instructions perform no
operation during this stage.

Figure 3.2 shows the activities occurring during each ALU pipeline
stage, for load, store, and branch instructions.

clock —\___/—_\__/_\__/—_\__/_\__/

stage [ 11 | 21 | 1R] 2R | 1a] 2a ] ]| 20| 1w | ow |
| 1cp | 1ca
1Fetch I IT™M ITC
and
Decode RF
IDEC

' Ldéd/ Store

l—DVA DCAD | DCAA | DCLA

DTC [ ws
DCW
Key to Figure: , o
ICD Instruction cache address decode ICA Instruction cache array access
ITM Instruction translation match RF - - Register operand fetch
ITC Instruction tag check EX1 -Operation stage 1
IDEC Instruction decode wB Write back to register file
EX2 Operation stage 2 DCAD Data cache address decode
DVA Data virtual address calculation DCLA  Data cache load align
DCAA  Data cache array access DTM Data translation match
DTC Data tag check SA Store align
DCW Data cache write BAC Branch address calculation

Figure 3.2 CPU Pipeline Activities
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Branch Delay

The CPU pipeline has a branch delay of one cycle and a load delay of
one cycle. The one-cycle branch delay is a result of the branch decision
logic operating during the 1A pipeline phase of the branch instruction.
This allows the branch target address calculated in the previous phase to
be used for the instruction access in the following 11 phase. The pipeline
will begin the fetch of the branch path as well as the fall-through path in
the cycle following the delay slot. After the branch decision is made, the
processor will continue with the fetch of either the branch path (for a
taken branch) or the fall-through path (for the non-taken branch).

Figure 3.3 illustrates the branch delay.

I One Cycle

One Cycle

One Cycle One Cycle One Cycle

[ [or JiIR]2R] 1a]2a] D[ 20 [ 1w ] 2w |
*

[ 2t | iIR[2r]1a]2a] D] 20 ] 1w] 2w |

[ ]2t [iIR[2r] 1a]2a]| D] 2D | 1w] 2w |
\
[ 1 |2t |1IR[2rR|1a]2a]| 1D 2D | 1W] 2w |

Branch

Delay *Branch and fall-through address calculated
**Address selection made

Figure 3.3 CPU Pipeline Branch Delay

Load Delay
The completion of a load at the end of the 2D pipeline phase produces

an operand that is available for the 1A pipeline phase of the instruction
following the load delay slot.

Figure 3.4 shows the load delay of one pipeline cycle.

| One Cycle

One Cycle

One Cycle | One Cycle

One Cycle

[ u 21 [1IR|]2r|1a]2a]| D] 2D | 1w] 2w |

(11]21|1R|2R|1A|2A D | 2D | 1w | 2w |

Y
| o [1IR|2rR| 1a[2a| D] 2D [ 1w] 2w |

l Load Delay I

Figure 3.4 CPU Pipeline Load Delay

Interlock and Exception Handling

Smooth pipeline flow is interrupted when cache misses or exceptions
occur, or when data dependencies are detected. Interruptions handled
using hardware, such as cache misses, are referred to as interlocks, while
those that are handled using software are called exceptions.
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There are two types of interlocks:

o stalls, which are resolved by halting the pipeline
¢ slips, which require the back end of the pipeline to advance while the

front end of the pipeline is held static

At each cycle, exception and interlock conditions are checked for all

active instructions.

Because each exception or interlock condition corresponds to a partic-
ular pipeline stage, a condition can be traced back to the particular
instruction in the exception/interlock stage, as shown in Table 3.1. For
instance, a Reserved Instruction (RI) exception is raised in the execution

(A) stage.
Pipeline Stage
State ;
I R A D
Stall ICM DCM
CPE
I R A D
Slip LDI
MDSt
FCBsy
I R A D
Exceptions IT™M IBE RI DBE
[Watch IPErr CUn NMI
BP Reset
SC DPErr
DTM OVF
Intr Trap
FPE
DWatch

Table 3.1 Correspondence of Pipeline Stage to Interlock Condition
For a description of the pipeline interlocks and exceptions listed in

Table 3.1, refer to Table 3.2 and Table 3.3.
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Exception Description
ITM Instruction Translation Bound/Address Exception
Intr External Interrupt
IBE , Instruction Bus Error
RI Reserved Instruction
BP Breakpoint
SC System Call
CUn Coprocessor Unusable
IPErr Instruction Parity Error
OVF Integer Overflow
FPE FP Interrupt
ExTrap EX Stage Traps
DTM Data Trahslation Bound/Address Exception
DBE Data Bus Error
DPErr Data Parity Error
NMI Non-maskable Interrupt (or Soft Reset)
Reset Reset

Table 3.2 Pipeline Exceptions

Table 3.2 and Table 3.3 describe the pipeline interlocks and exceptions
shown in Table 3.1 on page 5.

Interlock Description
ICM Instruction Cache Miss
CPE Coprocessor Possible Exception
DCM Data Cache Miss
LDI Load Interlock
MDSt Multiply/Divide Start
FCBsy FP Coprocessor Busy

Table 3.3 Pipeline Interlocks

Exception Conditions

When an exception condition occurs, the relevant instruction and all
those that follow it into the pipeline are cancelled. Accordingly, any stall
conditions and any later exception conditions that may have referenced
this instruction are inhibited; there is no benefit in servicing stalls for a
cancelled instruction.

When an exceptional condition is detected for an instruction, the
R4650 will kill it and all following instructions. When this instruction
reaches the W stage, the exception flag causes it to write various CPO
registers with the exception state, change the current PC to the appro-
priate exception vector address and clear the exception bits of earlier
pipeline stages.
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This implementation allows all preceding instructions to complete
execution and prevents all subsequent instructions from completing.
Thus the value in the EPC is sufficient to restart execution. It also
ensures that exceptions are taken in the order of execution; an instruc-
tion taking an exception may itself be killed by an instruction further

down the pipeline that takes an exception in a later cycle.

Figure 3.5 shows the exception detection procedure (e.g., a reserved

instruction exception).

Exc| 1] 21| IR

1 1

12

13 Kill

Exception Vector 11 | 21| IR| 2R| 1A| 24| 1D| 2D| 1W| 2w

Exception Vector Address

Figure 3.5 Exception Detection

Stall Conditions

Stalls are used to stop the pipeline for conditions detected after the R
pipe-stage. When a stall occurs, the processor will resolve the condition
and then the pipeline will continue. Figure 3.6 shows a data cache miss

stall.
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0 Detect Cache Miss

9 Start moving dirty cache line data to write buffer
e Get first doubleword into cache and restart pipeline
a Load remainder of cache line into cache

Figure 3.6 Data Cache Miss

The data cache miss is detected in the D pipe stage. If the cache line to
be replaced is dirty — the W bit is set — the data is moved to the internal
write buffer in the next cycle. The first doubleword of data is returned to
the cache in 3 and the pipeline will then restart. The remainder of the
cache line is returned in the subsequent cycles. The data to be written
back will be returned to memory some time after the entire new cache line
is returned.

Slip Conditions

During the 2R and 1A pipe-stages, internal logic will determine
whether it is possible to start the current instruction in this cycle. If all of
the source operands are available (either from the register file or via the
internal bypass logic) and all the hardware resources necessary to
complete the instruction will be available at the necessary time(s), then
the instruction “issues”; otherwise, the instruction will “slip”. Slipped
instructions are retried on subsequent cycles until they issue. The
backend of the pipeline (stages D and W) will advance normally during
slips in an attempt to resolve the conflict. “NOPS” will be inserted into the
bubble in the pipeline. Instructions killed by branch likely instructions,
ERET or exceptions will not cause slips. Figure 3.7 shows an instruction
cache miss.
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CYCLE Issue Issue Slip Slip Slip Slip Issue Issue Issue

12}

¢ 0o

2]

E [ W]

=

w [A]D[W]

e [R[Aa[D]W]

=¥
Nop [T [ R A[D W]
*NOP [ T [ R A]D] W]
*NOP [T ] R A]D]J]W]
*NOP [T JRI A]D]| W]

[ 1 D [ w |

I%IRIRIR!RIé)I
[ L IR |

Detect Cache Miss
Get entire cache line into cache

Continue pipeline
*NOP - Inserted NOP instructions

A|D|W|

Figure 3.7 Instruction Cache Miss

As shown in Figure 3.7, instruction cache misses are detected in R
and the pipeline slips in its A stage. There can never be a write-back
required for an instruction cache miss since dirty data can not exist in
the I cache. Writes are not allowed to the I cache. Note that early restart is
not employed for instruction cache misses, the requested cache line will
be loaded into the cache in its entirety and, after that, the pipeline will
restart.

R4650 Write Buffer ‘

The R4650 contains a write buffer to improve the performance of writes
to the external memory. Writes to external memory, whether cache miss
write-backs or stores to uncached or write-through addresses, use this
on-chip write buffer. The write buffer holds up to four 64-bit address and
data pairs.

For a cache miss write-back, the entire buffer is used for the write-back
data and allows the processor to proceed in parallel with the memory
update. For uncached and write-through stores, the write buffer uncou-
ples the CPU from the write to memory allowing increased performance
over the R4000 family of processors. If the write buffer is full, additional
stores will stall until there is room for them in the write buffer.
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Introduction

The R4650 features a simple base-bounds mechanism for virtual-to-
physical address translation. This mechanism supports multitasking
without the overhead of Translation Lookaside Buffer (TLB) management.
A companion mechanism that is implemented through the Cache Algo-
rithm register allows control over the cache attributes of areas of the
address space.

Base Bounds Registers

The R4650 implements a simple mechanism to support the mapping of
virtual to physical addresses. The Translation Lookaside Buffer (TLB)
structure found in the IDT79R4600 and IDT79R4700 is replaced by a
base-bounds mechanism. When an address is translated, its page
number is first compared against the Bounds register. If the address is
“in range,” the base register is added to the virtual address to form the
physical address.

The R4650 contains two sets of base-bounds registers, one set for
instruction address translation (IBase and IBounds registers) and one for
data (DBase and DBounds registers). An operating system can support
task protection by writing appropriate values to these registers at context
switch time.

Finally, to allow a mix of cache attributes in a single system, the R4650
also implements a Cache Algorithm (CAlg) register in CPO. This register
allows the operating system to define the cache management attributes of
different portions of the address space. By merely using appropriate

/ virtual addresses memory can be treated as uncached, write-back, or
write-through, with separate attributes for each of eight memory regions.
In conjunction with the external system address decoder, software can
then alias the same physical memory with different management algo-
rithms, depending upon the data or program that is running.

Address Spaces

This section describes the virtual and physical address spaces and the
manner in which virtual addresses are converted or “translated” into
physical addresses by the base-bounds unit.

Virtual Address Space
The processor virtual address is 32-bits wide. The R4650 truncates

addresses at 32 bits, and ignores the upper 32 bits of 64-bit registers
during address translation.
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Figure 4.1 illustrates how the R4650 translates a virtual address into a
physical address.

Virtual Address Physical Address
Space Space

Kseg 2
unmapped

Kseg 1, Uncached*
Unmapped .5 GBytes

3.5 GBytes

Kseg 0 Unmapped,
Cached* .5 GBytes

Useg

Through
Mapped, Cached I:> Base/Bound |T¢o A"SZ>

2.0 GBytes Conversion

— 0.5 GBytes

*Default values may be changed by CAlg Register.

Figure 4.1 Overview of R4650 Virtual-to-Physical Address Translation

Physical Address Space

Using a 32-bit address, the processor physical address space encom-
passes 4 Gigabytes. The section following describes the translation of a
virtual address to a physical address.

Virtual-to-Physical Address Translation

The R4650 converts a virtual address to a physical address as shown in
the following steps. The same procedure applies for either IBase/IBound
or DBase/DBound, but the I and D registers are separate.

1.

2.

4.
5.

If bits 63:32 are generated by a load/store base+offset addition, they
are discarded.

If VAddr(31) equals 1 and the CPU is in User mode, an address error
exception is generated. However, if in Kernel mode, then the upper
3 bits of VAddr (bits 31:29) are removed and replaced by 000 to form
the physical address.

If not a kernel address (VAddr(31)=0}, then VAddr(30:12) is compared
to Bound(30:12).

If VAddr is greater than the Bound address, then a Bound exception
results.

Otherwise, the physical address equals (VAddr(31:12) + Base(31:12)),
concatenated with VAddr(11:0). This is shown in Figure 4.2. -

In parallel with the above operation, the cache access rules are obtained
from the CAlg register, using VAddr(31:29) to select the appropriate CAlg

field.
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Virtual Address Base-Bounds

Figure 4.2 shows the virtual-to-physical-address translation of a 32-bit

virtual address.

32-Bit Virtual Address
31 12 11

0

VPN

Offset j

J

== (plus)

Base Register Value

Offset passed
unchanged to
physical
memory

31 12 11

0

Offset I

= (equals)

Offset passed
unchanged to
physical
memory

Physical Address Ve

Virtual Address with 256 (25)16-Mbyte pages

Figure 4.2 32-bit Virtual Address Translation

Operating Modes
The processor has two operating modes:
o User mode
s Kernel mode

These modes are described in the following subsections.
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User Mode Operations
In User mode, a single, uniform virtual address space—labelled User

segment—is available; its size is 2 Gigabytes. Figure 4.3 shows the User
mode virtual address space.

Ox FFFF FFFF

Address
Error

Ox 8000 0000

ox 0000 0000 §

Note: Failure (i.e., bit 31 = 1) results in an Address Error exception.

Figure 4.3 User Mode Virtual Address Space

The User segment starts at address O and the current active user
process resides in useg. The address translator identically maps all refer-
ences to useg from both modes. The CAlg register controls cache accessi-
bility.

The processor operates in User mode when the Status register contains
all of the following bit-values:

s UM=1
e EXL=0
e ERL=0

Table 4.1 lists the characteristics of the user mode segment useg.

Status Register Bit Values
Address Bit Segment Name | Address Range | Segment Size
Values UM EXL | ERL
32-bit 1 0 0 useg 0x0000 0000 2 Gbyte
through (231 bytes)
Ox7FFF FFFF

Table 4.1 User Mode Addressing

All valid User Mode virtual addresses have VAddr(31) cleared to O; any
attempt to reference an address with VAddr(31) set to 1 while in User
mode causes an Address Error exception. The system maps all references
to useg through the base-bound register, and bit settings within the CAlg
register for the virtual address determine the cacheability of a reference.

Kernel Mode Operations
The processor operates in Kernel mode when the Status register

contains one of the following values:

« UM=0
e EXL=1
e ERL=1
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The processor enters Kernel mode whenever an exception is detected
and it remains in Kernel mode until an Exception Return (ERET) instruc-
tion is executed. That ERET instruction restores the processor to the
mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated
by VAddr(31:29), as shown in Figure 4.4.

Ox FFFF FFFF]

Unmapped

0x C000 0000

0.5GB

Unmapped M kseg1

ox 2000 o000 |_Uncached’
0.5GB
Unmapped i kseg0
0x 8000 oooo| _Cached?

o SRS L NN TR T R S L N et B BB R e

2GB

LTINS AR S

il kuseg

0x 0000 0000

Note: TDefault value; may be changed in CAlg register.

Figure 4.4 Kernel Mode Address Space
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Table 4.2 lists the characteristics of the 32-bit kernel mode segments.

Status Register Is
One Of These Values
Segment
Address Bit Values | UM EXL |ERL Name | Virtual Address Range Segment Size
AB1)=0 kuseg 0x0000 0000 2 Gbytes (2°! bytes)
through
0x7FFF FFFF
UM =0
A(31:29) = 100, ksegO 0x8000 0000 512 Mbytes (229 bytes)
or ‘ through
Ox9FFF FFFF
A(31:29) = 101 EXL=1 kse . 29
:29) = 2 g1 0xA000 0000 512 Mbytes (2 bytes)
through ,
or OxBFFF FFFF
A(31:30) = 11, ERL =1 kseg2 0xC000 0000 1 Gbyte (232 bytes)
through
OxFFFF FFFF

Table 4.2 u32-bit Kernel Mode Segments

32-bit Kernel Mode, User Space (lkuseg)

In Kernel mode, when the most-significant bit of the virtual address,
VAddr(31), is cleared, the 32-bit kuseg virtual address space is selected.
It covers the full 23! bytes (2 Gbytes) of the current user address space.
The base-bounds mechanism will translate addresses in this region, and
the CAlg register controls cacheability.

32-bit Kernel Mode, Kernel Space O (Icseg0)

In Kernel mode, when the most-significant three bits of the virtual
address are 100,, 32-bit ksegO virtual address space is selected; it is the
current 229-byte (512-Mbyte) kernel physical space.

References to ksegO are not mapped through the base-bounds registers.
The physical address selected is defined by subtracting 0x8000 0000
from the virtual address (physical address = 000 | | VA[28:0]).

The CAlg register controls cacheability. At Reset ksegO is cacheable and
ksegl is not.

32-bit Kernel Mode, Kernel Space 1 (Iksegl)

In Kernel mode, when the most-significant three bits of the 32-bit
virtual address are 1015, 32-bit ksegl virtual address space is selected.
It is the current 22°-byte (512Mbyte) kernel physical space.

References to ksegl are not mapped through the base-bounds register.
The physical address selected is defined by subtracting 0xAOO0 0000
from the virtual address (physical address = 000| | VA[28:0]).

By default, caches are disabled for accesses to these addresses, and
physical memory (or memory-mapped I/O device registers) are accessed
directly. However, CAlg allows this to be changed. At Reset ksegO is
cacheable and ksegl is not.

32-bit Kernel Mode (kseg2)

In Kernel mode, when the most-significant two bits of the 32-bit virtual
address are 11, the kseg2 virtual address space is selected. The corre-
sponding physical address is found by replacing the 3 most significant
address bits with 000 (PAddr (31:0) = 000|| VAddr (28:0)). The CAlg
register controls cacheability.
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System Control Coprocessor

The System Control Coprocessor (CPO) is implemented as an integral
part of the CPU, and supports memory management, address translation,
exception handling, and other privileged operations. CPO contains the
base-bounds address in addition to the registers shown in Table 4.3. The
following subsections describe how the processor uses the memory
management-related registers.

Each CPO register has a register number, which is a unique number that
identifies it.

Number Name Function
0 IBase Instruction address space base
1 IBound Instruction address space bound
2 DBase Data address space base
3 DBound | Data address space bound
4 - not used
5 - not used
6 - not used
7 - not used
8 BadVAddr | Virtual address on address exceptions
9 Count Counts every other cycle
10 - not used
11 Compare | Generate interrupt when Count = Compare
12 Status Miscellaneous control/status
13 Cause Exception/Interrupt information
14 EPC Exception PC
15 PRId Processor ID
16 Config Device configuration info
17 CAlg Cache attributes for the 8 512MB regions of the virtual address space
18 [Watch Instruction breakpoint virtual address
19 DWatch | Data breakpoint virtual address
20 - not used
21 - not used
22 - not used
23 - not used
24 - not used
25 - not used
26 ECC Error checking control
27 CacheErr | Error diagnostic info
28 TagLo Cache addressing
29 - not used
30 ErrorEPC | Cache Error exception PC
31 - not used

Table 4.3 CPO Registers
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CPO Registers

The following sections describe the CPO registers (shown in Figure 4.5)
that are assigned specifically as a software interface with memory
management. The register number appears in parentheses after each
register name in the following list:

e IBase (CPO register 0)

e [Bound (1)

e DBase (2)
DBound (3)
PRId (15)
CAlg (17)
TagLo (28)

IBase Register (0)

The IBase register provides the User Instruction address space Base
address. Figure 4.5 shows the format of the IBase register; Table 4.4,
which follows the figure, describes the IBase register fields.

IBase Register

31 12 11 0
UlBase 0 !

20 12

Figure 4.5 IBase Register

Field Description
UlBase Added to vAddrs, 1, for user space to get physical
address
0 Reserved. Reads as 0, should be written as 0.

Table 4.4 IBase Register Field Descriptions

IBound Register (1)

The IBound register provides the User Instruction address space Bound
address. Virtual addresses greater than this value cause address error
exceptions. Figure 4.6 shows the format of the IBound register; Table 4.5,
which follows the figure, describes the IBound register fields.

IBound Register

31 30 12 11 0
0 UiBound 0 E
1 20 12

Figure 4.6 IBound Register

Field Description
UlBound Compared to vAddrs; ;5 for user space to validate
address
0 Reserved. Reads as 0, should be written as 0.

Table 4.5 IBound Register Field Descriptions
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DBase Register (2)

The DBase register provides the User Data address space Base address.
Figure 4.7 shows the format of the DBase register; Table 4.6, which
follows the figure, describes the DBase register fields.

DBase Register
31 ' 12 11 0
UDBase 0

20 12

Figure 4.7 DBase Register

Field Description
UDBase Added to vAddrs; 1, for user space to get physical
address
0 Reserved. Reads as 0, should be written as 0.

Table 4.6 DBase Register Field Descriptions

DBound Register (3)

The DBound register provides the User Data address space Bound.
Figure 4.8 shows the format of the DBound register; Table 4.7, which
follows the figure, describes the DBound register fields.

DBound Register
31 30 1211 0
0 UDBound 0 I

20 12

Figure 4.8 DBound Register

Field Description
UDBound Compared to vAddrs;_ 3, for user space to validate
address
0 Reserved. Reads as 0, should be written as 0.

Table 4.7 DBound Register Field Descriptions

Processor Revision Identifier (PRId) Register (15)

The 32-bit, read-only Processor Revision Identifier (PRId) register
contains information identifying the implementation and revision level of
the CPU and CPO. Figure 4.9 shows the format of the PRId register; Table
4.8 describes the PRId register fields.

PRId Register
3 1615 87 0
I 0 Imp Rev
16 I T 8

Figure 4.9 Processor Revision Identifier Register Format

4-9
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Field Description

Imp | Implementation number R4650 Imp = 0x22

Rev Revision number

0 Reserved. Returns zeroes when read.

Table 4.8 PRId Register Fields

The low-order byte (bits 7:0) of the PRId register is interpreted as a revi-
sion number, and the high-order byte (bits 15:8) is interpreted as an
implementation number. The implementation number of the R4650
processor is 0x22. The content of the high-order halfword (bits 31:16) of
the register are reserved.

The revision number is stored as a value in the form y.x, where y is a
major revision number in bits 7:4 and x is a minor revision number in
bits 3:0.

The revision number can distinguish some chip revisions, however
there is no guarantee that changes to the chip will necessarily be reflected
in the PRId register, or that changes to the revision number necessarily
reflect real chip changes. For this reason, these values are not listed and
software should not rely on the revision number in the PRId register to
characterize the chip. Certain attributes, such as cache size, are indepen-
dent of implementation number.

Config Register (16)

The Config register specifies various configuration options selected on
R4650 processors; Table 4.9 lists these options.

Some configuration options, as defined by Config bits 31:3, are set by
the hardware during reset and are included in the Config register as read-
only status bits for the software to access.

Figure 4.10 shows the format of the Config register; Table 4.9, which
follows the figure, describes the Config register fields.

31

Config Register
30 28 27 24 2322 2120191817 16 1514 13 1211 9 8 6 54 3 2 0

Figure 4.10 Config Register Format
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Field Description
Pipeline clock ratio:
0 — processor input clock frequency multiplied by 2
1 — processor input clock frequency multiplied by 3
2 — processor input clock frequency multiplied by 4
EC 3 — processor input clock frequency multiplied by 5
4 — processor input clock frequency multiplied by 6
5 — processor input clock frequency multiplied by 7
6 — processor input clock frequency multiplied by 8
7  Reserved
Write-back data rate:
0 > WWWWWWWW 1 word every cycle
1 - WWxWWxWWxWW 2 words every 3 cycles
2 - WWxxWWxxWWxxWWxx 2 words every 4 cycles
EP 3 = WxWxWxWxWxWxWxWx 2 words every 4 cycles
(Ew=1) 4 - WWxxxWWxxx WWxxxWWxxx 2 words every 5cycles
~ 5 = WWxxxx WWxxx WWxxxx WWxxxx 2 words every 6 cycles
6 — WxxWxxWxxWxxWxxWxxWxxWxx 2 words every 6 cycles
7 = WWxxaaxxx WWOooooxW Wxxxxoxx W W xxxx 2 words every 7 cycles
8 = WxxxWxxxWxxxWxxxWxxxWxxxWxxxWxxx 2 words every 8 cycles
Write-back data rate:
0—DDDD 1 double word every cycle
1 — DDxDDx 2 double words every 3 cycles
2 — DDxxDDxx 2 double words every 4 cycles
EP 3 — DxDxDxDx 2 double words every 4 cycles
(EW=0) 4 — DDxxxDDxxx 2 double words every 5 cycles
5 — DDxxxxDDxxxx 2 double words every 6 cycles
6 — DxxDxxDxxDxx 2 double words every 6 cycles
7 = DDxxxxxDDxxxx 2 double words every 7 cycles
8 — DxxxDxxxDxxxDxxx 2 double words every 8 cycles
EW SysAD bus size; 0 — 64 bits, 1 — 32 bits (from serial mode bits)
BigEndianMem
BE 0 — Little Endian
‘ 1 = Big Endian
IC Primary I-cache Size (I-cache size = 212+IC bytes). In the R4650 processor this is
set to 8 Kbytes (IC = 001).
DC Primary D-cache Size (D-cache size = 212+DC bytes). In the R4650 processor this
is set to 8 Kbytes (DC = 001).
B Primary I-cache line size
1 — 32 bytes (8 Words)
DB Primary D-cache line size
1 — 32 bytes (8 Words)
Others Reserved. Returns indicated values when read.

Table 4.9 Config Register Fields
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. CAlg Register (17)

The CAlg register is a read-write register that specifies the cache algo-
rithm for each 512MB region of the virtual address space.

CAlg is initialized to 0x22233333 on Reset. Bits 31, 27, 23, 19, 15, 11,
7, and 3 are not implemented, and are reserved for future use. They read
as zero and are ignored on write.

Figure 4.11 shows the format of the CAlg register; Table 4.10, which
follows the figure, describes the CAlg register fields.

CAlg Register
31 28 27 2 23 2019 16 15 1211 8 7 4 3
Cc7 C6 C5 Cc4 C3 c2 C1 Cco
4 4 4 4 4 4 4 4

Figure 4.11 CAlg Register

The Cache algorithms are as follows:

0 Cached, non-coherent, write-through, no write-allocate
1 Cached, non-coherent, write-through, write-allocate

2 Uncached

3 Cached, non-coherent, write-back, write-allocate

4-15 Reserved

Field Description

Cache algorithm for 0x00000000 to Ox1FFFFFFF

Co
(part of useg/kuseg)

Cache algorithm for 0x20000000 to Ox3FFFFFFF

C1
(part of useg/kuseg)

Cache algorithm for 0x40000000 to Ox5SFFFFFFF
C2

(part of useg/kuseg)
C Cache algorithm for 0x60000000 to Ox7FFFFFFF

3

(part of useg/kuseg)
C4 Cache algorithm for 0x80000000 to 0x9FFFFFFF (k seg0)
c5 Cache algorithm for 0xA00000000 to OxBFFFFFFF (k seg 1)

Cache algorithm for 0xC0000000 to OXDFFFFFFF
Ceé

(part of kseg2)

Cache algorithm for 0xE0000000 to OxFFFFFFFF
c7

(part of kseg2)

Table 4.10 CAlg Register Field Descriptions

Cache Tag Registers [TagLo (28)

The TagLo register is a 32-bit read/write register that holds the primary
cache tag and parity during cache initialization, cache diagnostics, and
cache error processing. The Tag register is written by the CACHE and
MTCO instructions.

The P field is ignored on Index Store Tag operations. Parity is computed
by the store operation.
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Figure 4.12 shows the register format for primary cache operations.

Table 4.11 lists the field definitions of the TagLo register.

31 8 7 6 5 0
TaglLo PTaglo PState | Rsvd 0| P
24 2 3 11
Figure 4.12 TagLo Register (P-cache) Format
Field Description

PTaglLo Specifies the physical address bits 35:12

PState Specifies the primary cache state

P Specifies the primary tag even parity bit

E The FIFO bit (used internally to implement FIFO refill of the .

cache)
Rsvd Reserved. Must be written as zeroes.
0 Reserved. Must be written as zeroes; returns zeroes when read

Table 4.11 Cache Tag Register Fields
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Virtual-to-Physical Address Translation Process

Figure 4.13 illustrates the Base-Bounds address translation process.

Virtual Address (Input)

No Yes
VAddr(31
=0
VPN>

No

Exception

Exception

PAddr=000 Il VAddr (28:0)

PAddr = (VPN+Base) |l offset

Cacheability <— CAlg (VAddr (31:29))

o

Cache Main Memory

Figure 4.13 Base-Bounds Address Translation




Integrated Device Technology, Inc.

HH

dt

CPU Exception Processing Chapter 5

This chapter describes the CPU exception processing, including a
discussion of the format and use of each CPU exception register.

The chapter concludes with a description of each exception's cause,
together with the manner in which the CPU processes and services these
exceptions. For information about Floating-Point Unit exceptions, refer to
Chapter 7.

How Exception Processing Works

The processor receives exceptions from a number of sources, including
address translation errors, arithmetic overflows, I/O interrupts, and
system calls. When the CPU detects one of these exceptions, the normal
sequence of instruction execution is suspended and the processor enters
Kernel mode. Refer to Chapter 4 for a description of system operating
modes.

The processor then disables interrupts and forces execution of a soft-
ware exception processor (called a handler) located at a fixed address. The
handler may save the context of the processor, including the contents of
the program counter, the current operating mode (User or Kernel), and
the status of the interrupts (enabled or disabled). This context would be
saved so it can be restored when the exception has been serviced.

When an exception occurs, the CPU loads the Exception Program
Counter (EPC) register with a location where execution can restart after
the exception has been serviced. The restart location in the EPC register is
the address of the instruction that caused the exception or, if the instruc-
tion was executing in a branch delay slot, the address of the branch
instruction immediately preceding the delay slot.

The registers described later in the chapter assist in this exception
processing by retaining address, cause and status information.

For a description of the exception handling process, refer to the flow-
charts at the end of this chapter.

The Exception Processing Registers

This section describes the CPO registers that are used in exception
processing. Table 5.1 on page 5-2 lists these registers, along with their
number. Each register has a unique identification number called a register
number. For example, the ECC register is register number 26. The
remaining CPO registers are used in memory management, as described in
Chapter 4.
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Software examines the CPO registers during exception processing to
determine the cause of the exception and the state of the CPU at the time
the exception occurred. Table 5.1 lists the register used in exception
processing. A description of each register follows the table.

IWatch

Register Name Reg. No.
IWatch 18
DWatch 19
BadVAddr (Bad Virtual Address) 8
Count 9
Compare register 11
Status 12
Cause 13
EPC (Exception Program Counter) 14
ECC 26
CacheErr (Cache Error and Status) 27
ErrorEPC (Error Exception Program Counter) 30

Table 5.1 CPO Exception Processing Registers

Register (18)

The IWatch register is a read/write register that specifies an Instruc-
tion virtual address that causes a Watch exception. When VADDR3; 5
of an instruction fetch ‘matches IVAddr of this register, and the I bit is
set, a Watch exception is taken. Matches that occur when EXL = 1 or
ERL = 1 do not take the exception immediately, but are instead post-
poned until both EXL and ERL are cleared. The priority of IWatch
exceptions is just below Instruction Address Error exceptions. Figure
5.1 shows the format of the IWatch register; Table 5.2, which follows the

figure, de

scribes the IWatch register fields.

31

IWatch Register

3 2

10

30

IvAddr ol I

11

Figure 5.1 IWatch Register Format

Field

Description

IvAddr

tion (bits 31:2).

Instruction virtual address that causes a watch excep-

I

0 ---> IWatch disabled, 1 ---> [Watch enabled.

0

reserved for future use.

Note:

IWatch.l is cleared on Reset.

Table 5.2 IWatch Register Fields
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DWatch Register (19) ,

DWatch is a read/write register that specifies a Data virtual address
that causes a Watch exception. Data Watch exception is taken when
VAddr 3; 3 of a load matches DVAddr of this register and the R bit is set,
or when VAddr 57 g of a store matches DvAddr of this register and the W
bit is set. Matches that occur when EXL = 1 or ERL = 1 do not take the
exception immediately, but are instead postponed until both EXL and
ERL are cleared. The priority of DWatch exceptions is just below Data
Address Error exceptions. DWatch exceptions do not occur on CACHE
ops. Figure 5.2 shows the format of the DWatch register; Table 5.3, which
follows the figure, describes the DWatch register fields.

DWatch Register

DvAddr

Figure 5.2 DWatch Register Format

Field Description

DvAddr Data virtual address that causes a watch exception.

R 0 ---> DWatch disabled for loads, 1 ---> DWatch enabled
for loads.

w 0 ---> DWatch disabled for stores, 1---> DWatch enabled
for stores.

0 reserved for future use.

Note: DWatch.R and DWatch.W are cleared on Reset.

Table 5.3 DWatch Register Fields

Bad Virtual Address Register (BadVAddr) (8) v
The Bad Virtual Address register (BadVAddr is a read-only register that
displays the most recent virtual address that caused one of the exceptions
in the following list. The processor does not write to the BadVAddr
register when the EXL bit in the Status register is set to a 1.
¢ Address Error (e.g., unaligned access)
* Bounds
e Virtual Coherency Data Access
¢ Virtual Coherency Instruction Fetch
Figure 5.3 shows the format of the BadVAddr register. The BadVAddr
register does not save any information for bus errors, since bus errors are
not addressing errors.

‘ BadVAddr Register
31 0
Bad Virtual Address
32

Figure 5.3 BadVAddr Register Format
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Count Register (9)

The Count register acts as a timer, incrementing at a constant rate—half
the maximum instruction issue rate—whether or not an instruction is
executed, retired, or any forward progress is made through the pipeline.

This register can be read or written. It can be written for diagnostic
purposes or system initialization; for example, to synchronize processors.

Figure 5.4 shows the format of the Count register.

Count Register

31 0
l ‘ Count I
32

Figure 5.4 Count Register Format

Compare Register (11)

The Compare register acts as a timer, and (see also the Count register)
maintains a stable value that does not change on its own. When the
value of the Count register equals the value of the Compare register, inter-
rupt bit IP(7) in the Cause register is set. If the timer interrupt was
enabled at boot time, an interrupt will occur as soon as the interrupt is
enabled. Writing a value to the Compare register, as a side effect, clears
the timer interrupt. ' ‘

For diagnostic purposes, the Compare register is a read/write register.
However, in normal use the Compare register is write-only. Figure 5.5
shows the format of the Compare register.

Compare Register
31 : 0

I ' ‘Compare

32

Figure 5.5 Compare Register Format

Status Register (12) -

The Status register (SR) is a read/write register that contains the oper-
ating mode, interrupt enabling, and the diagnostic states of the processor.
The following list describes the more important Status register fields.

Figure 5.6 shows the format of the Status register. Table 5.4, which

follows the figure, describes the Status register fields.

3t 28 2726 25(24.23 22 21 20 19 18 17 16|15 - 87 6 5 4 3 2 1 0

DS >

Ccu

s G

Figure 5.6 Status Register
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Field Description

CuU Controls the usability of each of the four coprocessor unit numbers. CPO is always usable
when in Kernel mode, regardless of the setting of the CUj bit.

1 — usable 0 — unusable
Note: In the MIPS 3 ISA, CP3 is no longer defined as a valid coprocessor unit.
FR Enables additional floating-point registers
0 — 16 registers 1 — 32 registers

RE Reverse-Endian bit, valid in User mode.

DL Data cache lock, a new bit in R4650. Does not prevent refills into set A when set A is invalid.
Does not inhibit update of the D-cache on store operations.

0 — normal operation 1- refill into set A disabled
L Instruction cache lock, a new bit in R4650. Does not prevent refills into set A when set A is
invalid.

0 — normal operation 1- refill into set A disabled
BEV Controls the location of exception vectors.

0 — normal 1- bootstrap
SR 1- Indicates a soft reset or NMI has occurred.
CH Hit (tag match and valid state) or miss indication for last CACHE Hit Invalidate, Hit Write

) Back Invalidate, Hit Write Back, or Hit Set Virtual for a primary cache.

0 — miss 1 — hit

CE Contents of the ECC register set or modify the check bits of the caches when CE = 1; see
description of the ECC register.

DE Specifies that cache parity errors cannot cause exceptions.

0 — parity remains enabled 1 — disables parity

0 Reserved. Read as 0, ignored on writes.

M Interrupt Maslc controls the enabling of each of the external, internal, and software inter-
rupts. An interrupt is taken if interrupts are enabled, and the corresponding bits are set in
both the Interrupt Mask field of the Status register and the Interrupt Pending field of the Cause
register. IM[7:2] correspond to interrupts Int[5:0] and IM[1:0] to the software interrupts.

0 — disabled 1- enabled
Ux Controls whether the 64-bit MIPS-3 instructions can be used in user mode.
0 — 32-bit only 1 — 64-bit enabled
UM User Mode bit, a new bit in R4650.
0 — User 1 — Kernel
(Simplification of KSU, remains subject to EXL and ERL, as on R4xxx.
ERL Error Level
0 — normal 1 — error
EXL Exception Level
‘ 0 — normal 1 — exception
Note: When going from O to 1, IE should be disabled (0) first. This would be done when
preparing to return from the exception handler, such as before executing the ERET instruc-
tion.
IE Interrupt Enable
0 — disable interrupts 1 — enables interrupts

Table 5.4 Status Register Fields
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Status Register Modes and Access States

Fields of the Status register set the modes and access states described
in the sections that follow.

Interrupt Enable: Interrupts are enabled when all of the following
conditions are true:

e JE=1

e EXL=0

e ERL=0

If these conditions are met, the settings of the IM bits identify the inter-
rupt.

Note: Setting the IE bit may be delayed by up to 3 cycles. If performing

nested interrupts, re-enable the IE bit first.

Operating Modes: The following CPU Status register bit settings are
required for User, Kernel, and Supervisor modes (see Chapter 4 for more
information about operating modes).

* The processor is in User mode when all of these bits are set as follows:

- UM=0

- EXL=0
- ERL=0

e The processor is in Kernel mode when any of these bits are set

as follows:
- UM=1

- EXL=1
- ERL=1

32-bit Virtual Addressing: The R4650 only supports 32-bit virtual
addresses. It ignores bits 63:32 of memory addresses.

Kernel Address Space Accesses: Access to the kernel address space is
allowed when the processor is in Kernel mode.

User Address Space Accesses: Access to the user address space is
allowed in either Kernel or User mode.

Status Register Reset

The contents of the Status register are undefined at reset, except for bits
ERL and BEV, which are set to 1. The SR bit distinguishes between Reset
and Soft Reset (Nonmaskable Interrupt [NMI]).
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Cause Register (13)

The 32-bit read/write Cause register describes the cause of the most
recent exception.

Figure 5.7 shows the fields of this register; Table 5.5, which follows the
figure, describes the Cause register fields. A 5-bit exception code
(ExcCode) indicates the cause of the most recent exception, as listed in
Table 5.6 on page 5-8.

All bits in the Cause register, with the exception of the IP(1:0) bits, are
read-only. IP(1:0) bits are used for software interrupts. The Cause.IV bit is
set to zero by a Reset.

Cause Register

31 3029 2827 2625 24 28 22 16 15 8 76 210

Figure 5.7 Cause Register Format

Field

Description

BD

Indicates whether the last exception taken occurred in a branch delay slot.
1 — delay slot
0 — normal

Reserved. Currently read as O and must be written as ‘0.

CE

Coprocessor unit number referenced when a Coprocessor Unusable excep-
tion is taken..

DwW

On a Watch exception, indicates that the DWatch register matched. On
other exceptions this field is undefined.

w

On a Watch exception, indicates that the IWatch register matched. On
other exceptions this field is undefined.

Enables the new dedicated interrupt vector.
1 — interrupts use new exception vector (200}
0 — interrupts use common exception vector (180)

1P

Indicates an interrupt is pending.
1 — interrupt pending
0 — no interrupt

ExcCode

Exception code field (see Table 5.6 on page 5-8)

Table 5.5 Cause Register Fields
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Exception
Code Value | Mnemonic | Description
0 Int Interrupt
— Reserved
2 IBound | Instruction bound exception (replaces TLB
exception on load)
3 DBound | Data bound exception (replaces TLB exception on
store)

4 AdEL Address error exception (load or instruction fetch)
5 AdES Address error exception (store)
6 IBE Bus error exception (instruction fetch)
7 DBE Bus error exception (data reference: load or store)
8 Sys Syscall exception
9 Bp Breakpoint exception
10 RI Reserved instruction exception
11 CpU Coprocessor Unusable exception
12 Ov Arithmetic Overflow exception
13 Tr Trap exception
14 —_ Reserved
15 FPE Floating-Point exception

1622 — Reserved
23 Watch Watch exception

24-31 — Reserved

Table 5.6 Cause Register ExcCode Field
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Exception Program Counter (EPC) Register (14)

The Exception Program Counter (EPC) is a read/write register that
contains the address at which processing resumes after an exception has
been serviced. :

For synchronous exceptions, the EPC register contains either:

¢ the virtual address of the instruction that was the direct cause of the
exception, or

¢ the virtual address of the immediately preceding branch or jump in-
struction (which occurs when the instruction is in a branch delay slot,
and the Branch Delay bit in the Cause register is set).

The processor does not write to the EPC register when the EXL bit in the
Status register is set toa 1.

Figure 5.8 shows the format of the EPC register.

EPC Register

EPC

Figure 5.8 EPC Register Format

Error Checking and Correcting (ECC) Register (26)

The 8-bit Error Checking and Correcting (ECC) register reads or writes
primary-cache data parity bits for cache initialization, cache diagnostics,
or cache error processing. Tag parity is loaded from and stored to the
TagLo register.

The ECC register is loaded by the Index Load Tag CACHE operation.
Content of the ECC register are:

¢ written into the primary data cache on store instructions (instead of
the computed parity) when the CE bit of the Status register is set, and

¢ substituted for the computed instruction parity for the CACHE oper-
ation Fill

To force a cache parity value use the Status CE bit and the ECC register.

Figure 5.9 shows the format of the ECC register; Table 5.7, which
follows the figure, describes the register fields.

ECC Register

Figure 5.9 ECC Register Format

Field Description

An 8-bit field specifying the parity bits read from or
written to a primary cache.

ECC

Reserved. Must be written as zeroes, and returns
zeroes when read.

Table 5.7 ECC Register Fields
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Cache Error (CacheErr) Register (27)

The 32-bit read-only CacheErr register processes parity errors in the
primary cache. Parity errors cannot be corrected.

The CacheErr register holds cache index and status bits that indicate
the source and nature of the error. It is loaded when a Cache Error excep-
tion is asserted. When a read response returns with bad parity, this
exception is also asserted. _

Figure 5.10 shows the format of the CacheErr register. Table 5.8, which

follows the figure, describes the CacheErr register fields.

CacheErr Register

31 30 29 28 27 26 25 24 23 22 2 3 2

ER|EC|ED|ET|ES|EE{EB| 0| 0| O Sldx Pldx
t1 1 11111 1 19 0 2

Figure 5.10 CacheErr Register Format

Field

Description

ER

Type of reference
0 — instruction
1 — data

EC

Cache level of the error
0 — primary
1 — reserved

ED

Indicates if a data field error occurred
0 — no error
1 — error

ET

Indicates if a tag field error occurred
0 — no error
1 —error

ES

Indicates the error occurred accessing processor-managed resources, in response to an external
request.

0 — internal reference

1 — external reference

Since the R4650 doesn’t have any external events that would look in a cache (which is the only
processor-managed resource), this bit would not be set under normal operating conditions.

EE

Set if the error occurred on the SysAD bus.
Taking a cache error exception sets/clears this bit.

EB

Set if a data error occurred in addition to the instruction error (indicated by the remainder of
the bits). If so, this requires flushing the data cache after fixing the instruction error.

SIdx

Physical address 21:3 of the reference that encountered the error.

PIdx

Virtual address 13:12 of the double word in error. .

To be used with SIdx to construct a virtual index for the primary caches. Only the lower two
bits (bits 1 and 0) are vAddr; the high bit (bit 2) is zero.

Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5.8 CacheErr Register Fields
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Error Exception Program Counter (Error EPC)
Register (30)

The ErrorEPC register is similar to the EPC register, except that
ErrorEPC is used on parity error exceptions. It is also used to store the
program counter (PC) on Reset, Soft Reset, and nonmaskable interrupt
(NMI) exceptions. v

The read/write ErrorEPC register contains the virtual address at which
instruction processing can resume after servicing an error. This address
can be either:

* the virtual address of the instruction that caused the exception
¢ the virtual address of the immediately preceding branch or jump
instruction, when this address is in a branch delay slot.

There is no branch delay slot indication for the ErrorEPC register.

Figure 5.11 shows the format of the ErrorEPC register.

ErrorEPC Register
31 0
ErrorEPC I
64

Figure 5.11 ErrorEPC Register Format

Processor Exceptions

This section describes the processor exceptions, their causes,
processing by the hardware, and servicing by a handler (software). Excep-
tion types are described in the next section.

Processor Exception Examples

This section gives sample exception handler operations for the following
exception types:

e reset

* soft reset

e nonmaskable interrupt (NMI)

e cache error

e interrupts

¢ remaining processor exceptions

When the EXL bit in the Status register is 0, either User or Supervisor
operating mode is specified by the KSU bits in the Status register. When
the EXL bit or the ERL bit is set to 1, the processor is in Kernel mode.

When the processor takes an exception, the EXL bit is set to 1, which
means the system is in Kernel mode. After saving the appropriate state,
the exception handler typically resets the EXL bit back to 0. When
restoring the state and restarting, the handler sets the EXL bit back to 1.
Returning from an exception also resets the EXL bit to O (see the ERET
instruction in Appendix A).

The following sections show sample hardware processes for various
exceptions, together with the servicing required by the handler (software).
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Reset Exception Process Example ‘
Figure 5.12 shows the Reset exception process.

T: undefined
Config<-Ol|ECHEP I 00000000 il BE 1110 II 001 |l 001 ll 1 1 Y ll undeflned3
ErrorEPC « PC
SR(—SR31 23 htioinol SR193 “ 11l SR1 0
PC « 0x BFCO0 0000

Figure 5.12 Reset Exception Processing -

Cache Error Exception Process Example
Figure 5.13 shows the Cache Error exception process.

T: ErrorEPC « PC
CacheErr « ERIIECIIED I ET Il ES I EE HEB I 025
SR — SR31 -3 ” 1 ”SR1 :0

if SRy, = 1 then ‘ : r* What is the BEV bit setting */
PC « 0x BFCO 0200 + 0x100 . -I* access boot-PROM area */
else , :
PC « 0x A000 0000 + 0x100 /* access main memory area*/
endif

Figure 5.13 Cache Error Exception Processing

Soft Reset and NMI Exception Process Example
Figure 5.14 shows the Soft Reset and NMI exception process.

T: ErrorEPC « PC ‘
SR « SRjq.53 Il 1Hon1l SR193II1 il SR10
PC « 0x BFC0 0000 )

Figure 5.14 Soft Reset and NMI Exception Processing
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intermpt Exception Process Example
Figure 5.15 shows the process used for exceptions other than Reset,

Soft Reset, NMI, and Cache Error.

T: Cause « BD 11011 CE Il 02 Il Cause;z.g Il 0 Il ExcCode i o2

it SRy = 0then " r system in User or Supervisor mode with no current exception */
. EPC«PC , o
endif

SR « SR3y.0 Il 1 1 SRO
if Cause.lV then
+vector=200
- else
vector=180 o
if SRas =1 then /* What is the BEV bit setting */
PC « Ox BFCO0 0200 + vector /* access to uncached space */
else :
PC « 0x 8000 0000 + vector - /* access to cached space */
endif

' Figure 5.15 Ihtertupt Exception Processing

General Exception Process Example
Figure 5.16 shows the process used for exceptions other than Reset,

Soft Reset, NMI, and Cache Error.

T: Cause « BD 101l CE 1021 Causeys.g Il 0 Il ExcCode Il 02

if SRy = 0 then /* system in User or Supervisor mode with no current exception */
EPC « PC ' ' :
endif

. SR « SRl 111 SRO
~if SRys =1 then /* What is the BEV bit setting */

PC « 0x BFCO 0200 + vector /* access to uncached space */
else - .

PC « 0x 8000 0000 + vector ~[* access to cached space */
endif -

Figure 5.16 “General Exception Processing (Except Reset, Soft
Reset, NMI, and Cache Error)
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Processor Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to loca-
tion OxBFCO00O0O (virtual address), corresponding to ksegO.

Addresses for all other exceptions are a combination of a vector offset
and a base address. The base address is determlned by the BEV bit of the
Status register, as shown in Table 5.9.

BEV | R4650 Processor Vector Base Cache Error Base
0 0x 8000 0000 0x A000 0000
1 0x BFCO0 0200 0x BFCO0 0200

Table 5.9 Exception Vector Base Addresses
Table 5.10 shows the vector offset that is added to the base address to

create the exception address.

As shown in Figure 5.13, when BEV = 0, the vector base for the Cache

Error exception changes

from ksegO

(0x80000000) to ksegl

(0xA0000000). When BEV=1, the vector base for the Cache Error excep-
tion is OxBFC00200. This is an uncached and unmapped space, allowing
the exception to bypass the cache and TLB.

Exception R4650 Processor
Vector Offset
Cache Error 0x100
Interrup ¢t 0x200
Others - 0x180
Note If cause .IV=1, otherwise interrupts use general vector offset.

Table 5.10 Exception Vector Offsets

Priority of Exceptions

The remainder of this chapter describes exceptions in the order of their
priority, as shown in Table 5.11. While more than one exception can
occur for a single instruction, only the exception with the highest priority

is reported.
Priority Exception Priority Exception
1 Reset (highest priority) 9 Integer overflow, Trap, System Call,
, Breakpoint, Reserved Instruction,

Coprocessor Unusable, or Floating-Point
Exception

2 Soft Reset 10 Bound error — Data access

3 Nonmaskable Interrupt (NMI) 11 Address Error — Data access

4 Bound — Instruction fetch 12 Cache Error — Data access

5 Address — Instruction fetch 13 Watch — Data access

6 Watch — Instruction fetch 14 Bus error — Data access

7 Cache error — Instruction fetch 15 Interrupt (lowest priority)

8 Bus error — Instruction fetch

Table 5.11 Exception Priority Order
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Processor Exception Descriptions
In general, the exceptions described in the following sections are
handled (“processed”) by hardware, then serviced by software.

Reset Exception
This section explains the Reset exception.

Cause
The Reset exception occurs when the ColdReset* signall is asserted and
then deasserted. This exception is not maskable.

Processing
The CPU provides the special exception vector OxBFCO 0000 for this

exception.

The Reset vector resides in unmapped and uncached CPU address
space, so the hardware does not need to initialize the cache to process
this exception. In addition, the processor can fetch and execute instruc-
tions while the caches and virtual memory are in an undefined state. The
contents of all registers in the CPU are undefined when this exception
occurs, except as follows:

¢ In the Status register, SR is cleared to 0, and ERL and BEV are set to
1. All other bits are undefined.

¢ Some of the Config Register bits are initialized from the boot-time
mode stream.

¢ Cause register IV = 0.

. CAlg = 0x22233333

e IWatch.I=0

* DWatch.R=0, DWatch.W =0

Reset exception processing is shown in Figure 5.12 on page 5-12.

Servicing
The Reset exception is serviced by:
* initializing all processor registers, coprocessor registers, caches, and
the memory system
¢ performing diagnostic tests

¢ bootstrapping the operating system

Soft Reset Exception
This section explains the Soft Reset exception.

Cause

The Soft Reset exception occurs in response to the Reset* input signal,
and execution begins at the Reset vector when Reset* is deasserted. This
exception is not maskable.

Processing
The Reset exception vector is used for this exception, located within

unmapped and uncached address space so that the cache need not be
initialized to process this exception. When a Soft Reset occurs, the SR bit
of the Status register is set to distinguish this exception from a Reset
exception. -

I In the following sections (and throughout this manual) a signal name followed
by an asterisk, such as Reset*, is low active.

5-156
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The primary purpose of the Soft Reset exception is to reinitialize the
processor after a fatal error that occurs during normal operations. Unlike
an NMI, all cache and bus state machines are reset by this exception. Like
Reset, it can be used on the processor in any state; the caches and
normal exception vectors need not be properly initialized. Soft Reset
preserves the state of the caches and memory system, while resetting the
bus state and cache state machine.

When this exception occurs, the contents of all registers are preservedA
exceptas follows:

* ErrorEPC register, which contains the restart PC
e ERL bit of the Status register, which is set to 1

* SRbit of the Status register, which is set to 1

e BEV bit of the Status register, which is set to 1

Because the Soft Reset can abort cache and bus operations, cache and
memory state is undefined when this exception occurs.

Soft reset exception processing is shown in Figure 5.14.

Servicing
The Soft Reset exception is serviced by saving the current processor
state for diagnostic purposes, and reinitializing for the Reset exception.

Nonmaskable Interrupt (NMI) Exception

This section explains the Nonmaskable Interrupt exception.

Cause

The Nonmaskable Interrupt (NMI) exception occurs in response to the
falling edge of the NMI pin, or an external write to the Int*[6] bit of the
Interrupt register.

Unlike all other interrupts, this interrupt is not maskable; it occurs
regardless of the settings of the EXL, ERL, and the IE bits in the Status
register.

Processing

The Reset exception vector is used for this exception. This vector is
located within unmapped and uncached address space so that the cache
does not need to be initialized to process an NMI interrupt. When an NMI
exception occurs, the SR bit of the Status register is set to differentiate
_this exception from a Reset exception.

Because an NMI can occur in the midst of another exception, it is not

-normally possible to continue program execution after servicing an NMI.

Unlike Reset and Soft Reset, but like other exceptions, NMI is taken
only at instruction boundaries. The state of the caches and memory
system are preserved by this exception.

To terminate a pending read that has hung the best approach is to
return a bus error. However, if you wish to use a CPU exception to indi-
cate a hung read, Soft Reset is preferable to NMI.

‘When this exception occurs, the contents of all registers are preserved
except for:

e ErmorEPC reglster which contains the restart PC

e ERL bit of the Status register, which is set to 1

* SR bit of the Status register, which is set to 1

» BEV bit of the Status register, which is set to 1

NMI exception processing is shown in Figure 5.14 on page 5-12.

Servicing
"The NMI exception is serviced by saving the current processor state for
diagnostic purposes, and reinitializing the system for the Reset exception.

5~16
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Address Error Exception
This section explains the Address Error exception.

Cause
The Address Error exception occurs when an attempt is made to
execute one of the following operations: »
¢ Joad or store a doubleword that is not aligned on a doubleword
boundary (except for use of special instruction)
o load, fetch, or store a word that is not aligned on a word boundary
(except for use of special instruction)
¢ load or store a halfword that is not aligned on a halfword boundary
¢ reference the kernel address space from User mode (STATUS UM =1
and VADDR(31) = 1)
This exception is not maskable.

Processing

The common exception vector is used for this exception. The AdEL or
AdES code in the Cause register is set, indicating how the instruction
(shown by the EPC register and BD bit in the Cause register) caused the
exception, with either an instruction reference, a load operation, or a
store operation.

When this exception occurs, the BadVAddr register retains the virtual
address that was not properly aligned or the referenced protected address
space. The contents of the VPN field of the Context and EntryHi registers
are undefined, as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the
exception, unless this instruction is in a branch delay slot. If it is in a
branch delay slot, the EPC register contains the address of the preceding
branch instruction, and the BD bit of the Cause register is set to indicate
this. Address Error exception processing is shown in Figure 5.15.

Servicing

Typically, the process that is executing at the time is handed a
segmentation violation signal. This error is usually fatal to the process that
“incurs the exception.

To resume execution, the EPC register must be altered so that the
unaligned reference instruction does not re-execute. This is accomplished
by adding a value of 4 to the EPC register (EPC register + 4) before
returning.

If an unaligned reference instruction is in a branch delay slot,
interpretation of the branch instruction is required to resume execution.

Cache Error Exception
This section explains the Cache Error exception.

Cause
The Cache Error exception occurs when a primary cache parity error is
detected. This exception is maskable by the DE bit of the Status register.

Processing
The processor sets the ERL bit in the Status register, saves the excep-
tion restart address in ErrorEPC register, and then transfers to a special
vector in uncached space, as follows: '
¢ If the BEV bit = O, the vector is 0xA0O00 0100.
* If the BEV bit = 1, the vector is 0xBFCO 0300.
No other registers are changed. Cache Error exception processing is
shown in Figure 5.13.
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Servicing :

All errors should be logged. To correct cache parity errors the system
uses the CACHE instruction to invalidate the cache block, overwrites the
old data through a cache miss, and resumes execution with an ERET.

Other errors are not correctable and are likely to be fatal to the current
process.

Bus Error Exception
This section explains the Bus Error exception.

Cause :
A Bus Error exception is raised by board-level circuitry for events such

as bus time-out, backplane bus parity errors, and invalid physical

memory addresses or access types. This exception is not maskable.

A Bus Error exception occurs only when a cache miss refill, uncached
reference, or unbuffered write occurs synchronously. A Bus Error excep-
tion resulting from a buffered write transaction must be reported using
the general interrupt mechanism.

Processing ‘

The common interrupt vector is used for a Bus Error exception. The IBE
or DBE code in the ExcCode field of the Cause register is set, signifying
indicating how the instruction (as indicated by the EPC register and BD
bit in the Cause register) caused the exception, with either an instruction
reference, a load operation, or-a store operation.

The EPC register contains the address of the instruction that caused the
exception, unless it is in a branch delay slot, in which case the EPC
register contains the address of the preceding branch instruction and the
BD bit of the Cause register is set. Bus Error processing is shown in
Figure 5.16 on page 5-13.

Servicing
The physical address at which the fault occurred can be computed from
information available in the CPO registers, as follows:
¢ If the IBE code in the Cause register is set (indicating an instruction
fetch reference), the virtual address is contained in the EPC register.
» If the DBE code is set (indicating a load or store reference), the
instruction that caused the exception is located at the virtual address
contained in the EPC register (or 4+ the contents of the EPC register
if the BD bit of the Cause register is set).

The virtual address of the load and store reference can then be obtained
by interpreting the instruction. The physical address can simply be calcu-
lated from the virtual address and the base.

The process executing at the time of this exception is handed a bus
error signal, which is usually fatal.

. Integer Overflow Exception

‘This section explains the Integer Overflow exception.

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD,
DADDI or DSUB instruction! results in a.2's complement overflow. This
exception is not maskable.

L See Appendix A for instruction description. -
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Processing

The common exception vector is used for this exception, and the OV code
in the Cause register is set. '

The EPC register contains the address of the instruction that caused the
exception unless the instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Integer Overflow exception processing is shown in Figure 5.16 on
page 5-13.

Servicing

The process executing at the time of the exception is handed a floating-
point exception/integer overflow signal. This error is usually fatal to the
current process.

Trap Exception
This section discusses the Trap exception.

Cause
The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE,
TGEI, TGEUI, TLTI, TLTUI, TEQI, or TNEI instruction! results in a TRUE

condition. This exception is not maskable.

Processing :
The common exception vector is used for this exception, and the Tr code

in the Cause register is set.

The EPC register contains the address of the instruction causing the
exception unless the instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Trap exception processing is shown in Figure 5.16 on page 5-13.

Servicing
The process executing at the time of a Trap exception is handed a
floating-point exception/integer overflow signal. This error is usually fatal.

System Call Exception
This section explains the System Call exception.

Cause
A System Call exception occurs during an attempt to execute the
SYSCALL instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Sys
code in the Cause register is set.

The EPCregister contains the address of the SYSCALL instruction unless

- it is in a branch delay slot, in which case the EPC register contains the

address of the preceding branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the
Status register is set; otherwise this bit is cleared.

System Call exception processing is shown in Figure 5.16 on page 5-13.

1. See Appendix A for instruction description.
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Servicing ,

When this exception occurs, control is transferred to the applicable
system routine. '

To resume execution, the EPC register must be altered so that the
SYSCALL instruction does not re-execute. This is accomplished by adding
a value of 4 to the EPC register (EPC register + 4) before returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated
algorithm, beyond the scope of this description, may be required.
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Breakpoint Exception
This section explains the Breakpoint exception.

Cause
A Breakpoint exception occurs when an attempt is made to execute the
BREAK instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the BP code
in the Cause register is set.

The EPC register contains the address of the BREAK instruction unless
it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

If the BREAK instruction is in a branch delay slot, the BD bit of the
Status register is set, otherwise the bit is cleared.

Breakpoint exception processing is shown in Figure 5.16 on page 5-13.

Servicing

When the Breakpoint exception occurs, control is transferred to the
applicable system routine. Additional distinctions can be made by
analyzing the unused bits of the BREAK instruction (bits 25:6), and
loading the contents of the instruction whose address the EPC register
contains. A value of 4 must be added to the contents of the EPC register
(EPC register + 4) to locate the instruction if it resides in a branch delay
slot.

To resume execution, the EPC register must be altered so that the
BREAK instruction does not re-execute; this is accomplished by adding a
value of 4 to the EPC register (EPC register + 4) before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the
branch instruction is required to resume execution.

Reserved Instruction Exception
This section explains the Reserved Instruction exception.

Cause
The Reserved Instruction exception occurs when one of the following
conditions occurs:
¢ an attempt is made to execute an instruction with an undefined major
opcode (bits 31:26)
o an attempt is made to execute a SPECIAL instruction with an unde-
fined minor opcode (bits 5:0)
e an attempt is made to execute a REGIMM instruction with an unde-
fined minor opcode (bits 20:16)
* an attempt is made to execute 64-bit operations in 32-bit virtual
addressing when in User or Supervisor modes
64-bit operations are always valid in Kernel mode regardless of the
value of the KX bit in the Status register.
This exception is not maskable.
Reserved Instruction exception processing is shown in Figure 5.16 on
page 5-13. '

Processing

The common exception vector is used for this exception, and the RI code
in the Cause register is set.

The EPC register contains the address of the reserved instruction unless
it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.
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Servicing

No instructions in the R4650 ISA are currently interpreted. The process
executing at the time of this exception is handed an illegal instruction/
reserved operand fault signal. This error is usually fatal.

Coprocessor Unusable Exception
This section explains the Coprocessor Unusable exception.

Cause
The Coprocessor Unusable exception occurs when an attempt is made
to execute a coprocessor instruction for either:
¢ a corresponding coprocessor unit that has not been marked usable,
or
o CPO instructions, when the unit has not been marked usable and the
process executes in User mode.

This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CPU
code in the Cause register is set. The contents of the Coprocessor Usage
Error field of the coprocessor Control register indicate which of the four
coprocessors was referenced. The EPC register contains the address of the
unusable coprocessor instruction unless it is in a branch delay slot, in
which case the EPC register contains the address of the preceding branch
instruction.

Coprocessor Unusable exception processing is shown in Figure 5.16 on
page 5-13.

Servicing

The coprocessor unit to which an attempted reference was made is
identified by the Coprocessor Usage Error field, which results in one of
the following situations:

* [f the process is entitled access to the coprocessor, the coprocessor is
marked usable and the corresponding user state is restored to the
COPIOCESSOT.

» If the process is entitled access to the coprocessor, but the copro-
cessor does not exist or has failed, interpretation of the coprocessor
instruction is possible.

¢ If the BD bit is set in the Cause register, the branch instruction must
be interpreted; then the coprocessor instruction can be emulated and
execution resumed with the EPC register advanced past the copro-
cessor instruction.

¢ If the process is not entitled access to the coprocessor, the process
executing at the time is handed an illegal instruction/privileged
instruction fault signal. This error is usually fatal.
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Floating-Point Exception
This section discusses the Floating-Point exception.

Cause
The Floating-Point exception is used by the floating-point coprocessor.
This exception is not maskable.

Processing

The common exception vector is used for this exception, and the FPE
code in the Cause register is set.

The contents of the Floating-Point Control/Status register indicate the
cause of this exception.

Floating-Point exception processing is shown in Figure 5.16 on
page 5-13.

Servicing

This exception is cleared by clearing the approprlate bit in the Floating-
Point Control/Status register.

For an unimplemented instruction exception, the kernel should
emulate the instruction; for other exceptions, the kernel should pass the
exception to the user program that caused the exception.

Interrupt Exception
This section discusses the Interrupt exception.

Cause

The Interrupt exception occurs when one of the eight interrupt condi-
tions is asserted. The significance of these interrupts is dependent upon
the specific system implementation.

Each of the eight interrupts can be masked by clearing the corre-
sponding bit in the Int-Mask field of the Status register, and all of the eight
interrupts can be masked at once by clearing the IE bit of the Status
register.

Processing
The R4650 may use the common exception vector or a dedicated vector

for this exception, determined by the Cause register IV bit. The Int code in
the Cause register is set.

The IP field of the Cause register indicates current interrupt requests. It
is possible that more than one of the bits can be simultaneously set (or
even no bits may be set if the interrupt is asserted and then deasserted
before this register is read).

Interrupt exception processing is shown in Figure 5.16 on page 5-13.

Servicing

If the interrupt is caused by one of the two software-generated excep-
tions (SW1 or SWO), the interrupt condition is cleared by setting the corre-
sponding Cause register bit to O.

If the interrupt is hardware-generated, the interrupt condition is cleared
by correcting the condition causing the interrupt pin to be asserted.

Note: Due to the write buffer, a store to an external device miay not
occur until after other instructions in the pipeline finish. The
user must ensure that the store will occur before the return from
exception instruction (ERET) is executed, otherwise the interrupt
may be serviced again even though there should be no interrupt
pending.
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IWatch Exception
This section explalns the IWatch exceptlon

Cause

IWatch is a read-write register that specifies an instruction virtual
address that causes a Watch exception. The exception occurs when the
program address matches the IWatch Register, and IWatch.I is set.

Processing
The common exceptlon vector is used for thls exception. The Watch
code of the Cause register is set with the IW bit set.

Servicing
This exception is typically used durmg system debug. Servicing is
system-specific.

DWatch Exception
This section explains the DWatch exception.

Cause

DWatch is a read-write register that specifies a data virtual address that
causes a Watch exception. The exception occurs either when the program
does a load and the target address matches DWatch and DWatch.R is set,
or when the program does a store and the target address matches
DWatch and DWatch.W is set.

Processing

The common exceptlon vector is used for this exception. The Watch"

code of the Cause register is set with the DW bit set.

Servicing
This exception is typically used during system debug. Servicing is
system-specific.

IBound Exception
This section explains the IBound exception.

Cause

A virtual address in kuseg exceeded the value set for IBound. The
IBound register provides the User Instruction address space Bound. User
virtual addresses greater than this value cause IBound exceptions.

Processing
The common exception vector is used for this exception. The UlBound
code of the Cause register is set.

Servicing
This exception indicates that the user is trying to access memory
outside the allowed page. Servicing is system-specific.

DBound Exception

This section explains the DBound exception.

Cause

A virtual address in kuseg exceeded the value set for DBound. The
DBound register provides the User Data address space Bound. User
virtual addresses greater than this value cause DBound exceptions.
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Procéssing

The common exception vector is used for this exception. The UDBound
code of the Cause register is set.

Servicing
This exception indicates that the user is trying to access memory
outside the allowed page. Servicing is system-specific.

Exception Handling and Servicing Flowcharts
This section contains process flowcharts for the exceptions described in
Table 5.12, as well as guidelines for the exception handlers.

Figure Description

Figure 5.17, | General exceptions and their exception handler
Figure 5.18

Figure 5.19 | Cache error exception and its handler

Figure 5.20 | Reset, soft reset and NMI exceptions, and a guideline to
their handler.

Table 5.12 List of Exception Flowcharts

In general, the exceptions are handled by hardware (HW), and then
the exceptions are serviced by software (SW).




CPU Exception Processing

Chapter 5

Comments

Set FP Control Status Register
Enhi « VPN2, ASID

Context «- VPN2

Set Cause Register
EXCCode, CE

*FP Control Status Register is only set
if the respective exception occurs.
EnHi, X/Context are set only for

TLB- Invalid, Modified,

& Refill exceptions

Instr. in
Br.Dly. Slot?

Yes

Y
Cause 31 (BD) « 1

Cause 31 (BD) « 0

Check if exception within
another exception

Y

EXL

BadVA is set only for Bounds and
VCED!/I exceptions

Note: Not set if Bus Error Exception

=0 (normal) =1

(Base is sign extended for 64

(SR1) ’
=0
Set BadVA Set BadVA
EPC « (PC - 4) EPC « PC
Y
EXL 1

Processor forced to Kernel Mode
& interrupt disabled

(bootstrap)

bits)

PC « Ox FFFF 8000 0000
+180**
(unmapped, cached)

PC « 0x FFFF BFCO 0200
+1801T
(unmapped, uncached)

-

-
-

Figure Notes:
Interrupts can be masked by IE or IMs

To General Exception Servicing Guidelinest

Exceptions other than Reset, Soft Reset, NMI, or CacheErr

t 200 if cause.exc code ="Int"and cause.lV=1

Figure 5.17 General Exception Handler (HW)

5-26
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MFCO -
EPC

Status
Cause

MTCO -
(Set Status Bits:)
MM=0
EXL« 0
& IE=

R

Check CAUSE REG. & Jump to
appropriate Service Code

MTCO -
EPC
STATUS

'

ERET

Comments

* EXL=1 so Interrupt exceptions disabled
* OS/System to avoid all other exceptions

*Only CacheErr, Reset, Soft Reset, NMI
exceptions possible.

(optional - only to enable Interrupts while keeping Kernel Mode)

* After EXL=0, all exceptions allowed.
(except interrupt if masked by |E or IM
and CacheErr if masked by DE)

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which is
in the ERET'’s branch delay slot

*PC«—EPC,EXL«0
*LLbit 0

Figure 5.18 General Exception Servicing Guidelines (SW)
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Cache Error Excéption Handling (HW)

Note: Can be masked/disabled by DE (SR16) bit =1

Set CacheErr Reg.

Y

Yes

i

ErrfEPC « (PC - 4)

ErEPC « PC

=0 (normal)

=1 (bootstrap)

(unmapped, uncached)

Y (Base is sign extended for 64 bits) Y
PC « 0xA000 0000 PC « 0xBFCO0 0200
+100 +100

(unmapped, uncached)

l
|
|

. |

Service Code 1
]
]
]
]

Comments

* Unmapped Uncached vector so TLB-related
and Cache Error Exceptions not possible

* ERL=1 so Interrupt exceptions disabled
* OS/System to avoid all other exceptions

*Only Reset, Soft Reset, NMI
exceptions possible.

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which is
in the ERET'’s branch delay slot

* PC « ErrorEPC; ERL « 0
*LLbit< 0

Figure 5.19 Cache Error Exception Handling (HW)

and Servicing Guidelines (SW)
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- Soft Reset or NMI Exception Reset Exception
=

z Status:

2 Wired « 0

= BEV « 1 y

5 Config « Update(31:6)!l Undef(5:0)
c SR ¢ 1

© Status:

T ERL « 1

g BEV « 1
._g. SR«0
o ERL « 1
Q

X

L

=

= >t

o3

1]

@ Y

@ ErrorEPC « PC

5

(77} Y

-

3 PC « 0x BFCO 0000

1)

@

Yes .
E = Note: There is no indication from the
= @, rocessor to differentiate between
» No Ml & Soft Reset; o
:3 g there must be a system level indication.
Q.=
0
g2 ____ Y _____
-5 I ! =
""é O I NMI! Service Code ', Status bit 20
So (SR)
- | :
‘6 .g L L o L~ 4 = 1
ac
T o
n p T T T Tt T T LTI i
. . : Soft Reset Service Code | : Reset Service Code :
ERET 1 U X
(Optional) - ‘L ! 1

Figure 5.20 Reset, Soft Reset & NMI Exception Handling (HW) and
Servicing Guidelines (SW)
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Introduction

This chapter describes the R4650 floating-point unit (FPU) features,
including the programming model, instruction set and formats, and the
pipeline.

The FPU, with associated system software, conforms to the single-preci-
sion requirements of ANSI/IEEE Standard 754-1985, IEEE Standard for
Binary Floating-Point Arithmetic. In addition, the MIPS architecture fully
supports the recommendations of the standard and precise exceptions.

The FPU operates as a coprocessor for the CPU. It is assigned copro-
cessor label CP1, and extends the CPU instruction set to perform arith-
metic operations on floating-point values.

The R4650 Floating-Point Coprocessor
The R4650 incorporates a single-precision floating-point coprocessor on
chip, including a floating-point register file and execution units. The
floating-point coprocessor forms a seamless interface with the integer
unit, decoding and executing instructions in parallel with the integer unit.
Figure 6.1 illustrates the functional organization of the FPU.

Data Cache

FCU

,32 Control

VY
N
@
[§]

FP Bypass |
Pipeline Chain

| FP Reg File i

Figure 6.1 FPU Functional Block Diagram
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FPU Features

This section briefly describes the operating model, the load/store
instruction set, and the coprocessor interface in the FPU. A more detailed
description is given in the sections that follow.

¢ Single-Precision Operation. The floating-point incorporates an
adder, a multiplier, and a 32-entry, 32-bit register file for floating
point operations. It also has a 32-bit control register. Overlap of
multiply and add is supported.

e Load and Store Instruction Set. Like the CPU, the FPU uses a load-
and store-oriented instruction set, with single-cycle load and store
operations.

* Tightly Coupled Coprocessor Interface. The FPU resides on-chip to
form a tightly coupled unit with a seamless integration of floating-
point and fixed-point instruction sets.

FPU Programming Model

This section describes the set of FPU registers and their data organiza-
tion. The FPU registers include Floating-Point General Purpose registers
(FGRs) and two control registers: Control/Status and Implementation/
Revision.

Floating-Point General Registers (FGRs)

The FPU has a set of Floating-Point General Purpose registers (FGRs) that

can be accessed in the following ways:

e As 32 general-purpose registers (32 FGRs), each of which is 32-bits
wide. The CPU accesses these registers through move, load, and store
instructions.

. As 16 floating-point registers (see the next section for a discussion of
floating point registers), each of which is 32-bits wide, when the FR
bit in the CPU Status register equals 0. The floating point registers
hold values in single-precision floating-point format. Each floating
point registers corresponds to adjacently numbered FGRs, as shown
in Figure 6.2, when status FR=0. Attempts to access odd-numbered
floating-point registers result in an unimplemented trap.

e As 32 floating-point registers (see the next section for a description of
floating point registers), each of which is 32-bits wide, when the FR
bit in the CPU Status register equals 1. The floating point registers
hold values in single-precision floating-point format.
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Each FPR corresponds to an FGR, as shown in Figure 6.2.

Floating-Point Floating-Point Floating-Point Floating-Point
Registers (FPR) General Purpose Registers Registers (FPR) General Purpose Registers
(FR=0) (FGR) 0 (FR=1) 4 (FGR) 0
FPRO FGRO FPRO FGRO
NA FGR1 FPR1 FGR1
FPR2 FGR2 FPR2 FGR2
NA FGR3 FPR3 | FGR3

FPR28 FGR28 FPR28
NA FGR29 FPR29
FPR30 FGR30 FPR30
NA FGR31 FPR31

Floating-Paint
Control Registers

FCR
Control/Status Register ( ) Implementation/Revision Register

31 FCR31 0 31 FCRo 0

Figure 6.2 FPU Registers

Floating-Point Registers
The FPU provides:
¢ 16 Floating-Point registers (FPRs) for Status.FR = 0, or
¢ 32 Floating-Point registers (FPRs) for Status.FR = 1.

These 32-bit registers hold floating-point values during floating-point
operations and are physically formed from the General Purpose registers
(FGRs). When the FR bit in the Status register equals 1, the FPR refer-
ences a single 32-bit FGR.

The FPRs hold values in single-precision floating-point format. If the FR
bit equals O, only even numbers (as shown in Figure 6.2) can be used to
address FPRs. When the FR bit is set to 1 all FPR register numbers are
valid.

Floating-Point Control Registers
The FPU has 32 control registers (FCRs) that can only be accessed by
move operations. The FCRs are described below:
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e The Implementation/Revision register (FCRO) holds revision informa-
tion about the FPU. ﬁ

e The Control/Status register (FCR31) controls and monitors excep-
tions, holds the result of compare operations, and establishes round-
ing modes.

e FCRI to FCR30 are reserved.

Table 6.1 lists the assignments of the FCR registers.

FCR Number Use

FCRO Coprocessor implementation and revision register
FCRI1 to FCR30 Reserved

FCR31 Rounding mode, cause, trap enables, and flags

Table 6.1 Floating-Point Control Register Assignments

Implementation and Revision Register, (FCRO)

The read-only Implementation and Revision register (FCR0) specifies the
implementation and revision number of the FPU. This information can
determine the coprocessor revision and performance level, and can also
be used by diagnostic software.

Figure 6.3 shows the layout of the register; Table 6.2, which follows the
figure, describes the Implementation and Revision register (FCRO) fields.

Implementation/Revision Register (FCRO0)
31 16 15 87 0
0 Imp ' Rev
16 8 8

Figure 6.3 Implementation/Revision Register

Field Description

Imp Implementation number (0x22 in R4650)
Rev Revision number in the form of y.x

0 Reserved.

Table 6.2 FCRO Fields

The revision number is a value of the form y.x, where:
¢ yis a major revision number held in bits 7:4.
* xis a minor revision number held in bits 3:0.

The revision number distinguishes some chip revisions; however, there
is no guarantee that changes to the chip are necessarily reflected by the
revision number, or that changes to the revision number necessarily
reflect real chip changes. For this reason revision number values are not
listed, and software should not rely on the revision number to charac-
terize the chip.
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Control/Status Register (FCR31)

The Control/Status register (FCR31) contains control and status infor-
mation that can be accessed by instructions in either Kernel or User
mode. FCR31 also controls the arithmetic rounding mode and enables
User mode traps, as well as identifying any exceptions that may have
occurred in the most recently executed instruction, along with any excep-
tions that may have occurred without being trapped.

Figure 6.4 shows the format of the Control/Status register, and Table
6.3, which follows the figure, describes the Control/Status register fields.

31

25 24 23 22 18 17 12 11 7 6 21 0

Control/Status Register (FCR31)

Cause Enables
EVZOUI| VZOUI

Figure 6.4 FP Control/Status Register Bit Assignments

Description

Field

FS When set, denormalized results are flushed to O instead of causing
an unimplemented operation exception.

C Condition bit. See description of Control/Status register Condition
bit.

Cause Cause bits. See Figure 6.5 and the description of Control/Status
register Cause, Flag, and Enable bits.

Enables Enable bits. See Figure 6.5 and the description of Control/Status
register Cause, Flag, and Enable bits.

Flags Flag bits. See Figure 6.5 and the description of Control/Status reg-
ister Cause, Flag, and Enable bits.
Rounding mode bits. See Table 6.4, found on page 8, and the

RM

description of Control/Status register Rounding Mode Control bits.

Table 6.3 Control/Status Register Fields
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Figure 6.5 shows the Control/Status register Cause, Flag, and Enable
fields.

Bit# 17 16 15 14 13 12
Cause
lelv]izlol ul 1] G
[ | | | |
Bit # 11 10 9 8 7
Enable
\ Z O U ! Bits
| I [ l !
Bit # 6 5 4 3 2
Flag
Vv Z O U [ Bits
Inexact Operation
Underflow
Overflow
Division by Zero
Invalid Operation
Unimplemented Operation

Figure 6.5 Control/Status Register Cause, Flag, and Enable Fields

Accessing the Control/Status Register
When the Control/Status register is read by a Move Control From

Coprocessor 1 (CFC1) instruction, all unfinished instructions in the pipe-
line are completed before the contents of the register are moved to the
main processor. If a floating-point exception occurs as the pipeline
empties, the FP exception is taken and the CFCI1 instruction is re-
executed after the exception is serviced.

The bits in the Control/Status register can be set or cleared by writing to
the register using a Move Control To Coprocessor 1 (CTC1) instruction.
CTC1 is not issued until all previous floating-point operations are
complete.

IEEE Standard 754
IEEE Standard 754 specifies that floating-point operations detect

certain exceptional cases, raise flags, and can invoke an exception
handler when an exception occurs. These features are implemented in the
MIPS architecture with the Cause, Enable, and Flag fields of the Control/
Status register. The Flag bits implement IEEE 754 exception status flags,
and the Cause and Enable bits implement exception handling.

Control/Status Register FS Bit

When the FS bit is set, denormalized results are flushed to O instead of

causing an unimplemented operation exception.

Control/Status Register Condition Bit

When a floating-point Compare operation takes place, the result is
stored at bit 23, the Condition bit, to save or restore the state of the condi-
tion line. The C bit is set to 1 if the condition is true; the bit is cleared to O
if the condition is false. Bit 23 is affected only by compare and Move
Control To FPU instructions.
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Control/Status Register Cause, Flag, and Enable Fields
Figure 6.5 illustrates the Cause, Flag, and Enable fields of the Control/

Status register.

Cause Bits
Bits 17:12 in the Control/Status register contain Cause bits, which

reflect the results of the most recently executed instruction. These bits
are illustrated in Figure 6.5. The Cause bits are a logical extension of the
CPO Cause register; they identify the exceptions raised by the last
floating-point operation and raise an interrupt or exception if the corre-
sponding enable bit is set. If more than one exception occurs on a single
instruction, each appropriate bit is set.

The Cause bits are written by each floating-point operation (but not by
load, store, or move operations). The Unimplemented Operation (E) bit is
set to a 1 if software emulation is required, otherwise it remains 0. The
other bits are set to O or 1 to indicate the occurrence or non-occurrence
(respectively) of an IEEE 754 exception.

When a floating-point exception is taken, no results are stored, and the
only state affected is the Cause bits. Exceptions caused by an immedi-
ately previous floating-point operation can be determined by reading the
Cause field.

Enable Bits

A floating-point operation that sets an enabled Cause bit forces an
immediate exception, as does setting both Cause and Enable bits with
CTC1. The floating-point exception or interrupt is enabled when the
corresponding enable be is set.

There is no enable for Unimplemented Operation (E). Setting Unimple-
mented Operation always generates a floating-point exception.

Before returning from a floating-point exception, or doing a CTC1, soft-
ware must first clear the enabled Cause bits to prevent a repeat of the
interrupt. Thus, User mode programs can never observe enabled Cause
bits set; if this information is required in a User mode handler, it must be
passed somewhere other than the Status register.

For a floating-point operation that sets only unenabled Cause bits, no
exception occurs and the default result defined by IEEE 754 is stored. In
this case, the exceptions that were caused by the immediately previous
floating-point operation can be determined by reading the Cause field.

Flag Bits

When an exception case is detected and the Enable exception is not set,
then the corresponding flag bit is set. If an exception is taken, then none
of the flag bits are modified. However, note that system software may set
the flag bits before invoking a user exception handler.

The Flag bits are cumulative and indicate that an exception was raised
by an operation that was executed since they were explicitly reset. Flag
bits are set to 1 if an IEEE 754 exception is raised, otherwise they remain
unchanged. The Flag bits are never cleared as a side effect of floating-
point operations; however, they can be set or cleared by writing a new
value into the Status register, using a Move To Coprocessor Control
instruction.

Control/Status Register Rounding Mode Control Bits
Bits 1 and O in the Control/Status register constitute the Rounding

Mode (RM) field.
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As shown in Table 6.4, these bits specify the rounding mode that the
FPU uses for all floating-point operations.

Rounding
Mode RM(1:0) Mnemonic Description

0 RN Round result to nearest representable value;
round to value with least-significant bit 0 when
the two nearest representable values are equally
near.

1 RZ Round toward O: round to value closest to and not
greater in magnitude than the infinitely precise
result.

2 RP Round toward +e: round to value closest to and
not less than the infinitely precise result.

3 RM Round toward - e: round to value closest to and
not greater than the infinitely precise result.

Table 6.4 Rounding Mode Bit Decoding

Floating-Point Formats

The FPU performs 32-bit (single-precision) IEEE standard floating-point
operations. The 32-bit single-precision format has a 24-bit signed-magni-
tude fraction field (f+s) and an 8-bit exponent (e), as shown in Figure 6.6.

The floating-point accelerator (FPA) does not perform 64-bit (double-
precision) operations. Thus, instructions requiring 64-bit data support in
the FPA cause the unimplemented exception to be signaled, allowing soft-
ware emulation if desired.

31 30 23 22 0
S e f

Sign Exponent Fraction
1 8 23

Figure 6.6 Single-Precision Floating-Point Format
As shown in the preceding figure, numbers in floating-point format are
composed of three fields:

¢ sign field, s

¢ biased exponent, e = E + bias

* fraction, f=.b;by....b,

The range of the unbiased exponent E includes every integer between
the two values E,;;, and E;,, inclusive, together with two other reserved

values:

~® Enin -1 (to encode 0 and denormalized numbers)
¢ E.x +1 (to encode + and NaNs [Not a Number])

Each representable nonzero numerical value has just one encoding,.
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The value of a number, v, is determined by the equations shown in
Table 6.5.

No. | Equation

(1) |ifE=Empaxt1 and fz 0, then vis NaN, regardless of s
(2) |ifE=Epaxt1andf=0,then v=(-1)%c

(3) | if Emin < E < Egax then v=(—1)525(1.1)

(4) |if E=Epj—1and =0, then v=(~1)52EMin(0 f)

(5) |if E=Emin~1and f=0, then v=(-1)%0

Table 6.5 Equations for Calculating Values in Single-Precision Floating-Point Format

For all floating-point formats, if v is NaN, the most-significant bit of f
determines whether the value is a signaling or quiet NaN: v is a signaling
NaN if the most-significant bit of fis set, otherwise, v is a quiet NaN.

Table 6.6 defines the values for the format parameters.

Single

Precision
Parameter Format
f 24
Emax +127
Emin -126
Exponent bias +127
Exponent width in bits 8
Integer bit hidden
Fraction width in bits 24
Format width in bits 32

Table 6.6 Floating-Point Format Parameter Values
Table 6.7 shows minimum and maximum floating-point values.

Type Value

Float Minimum 1.40129846e-45
Float Minimum Norm | 1.17549435e-38
Float Maximum 3.40282347¢+38

Table 6.7 Minimum and Maximum Floating-Point Values

Binary Fixed-Point Format

Binary fixed-point values are held in 2's complement format. Unsigned
fixed-point values are not directly provided by the floating-point instruc-
tion set. Figure 6.7 illustrates binary fixed-point format. Table 6.8, which
follows the figure, lists the binary fixed-point format fields.
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31 30 ' ) 0

Sign I : Integer I

1 31
Figure 6.7 Binary Fixed-Point Format

Field Description
sign sign bit
integer 2 integer value

Table 6.8 Binary Fixed-Point Format Fields

Floating-Point Instruction Set Overview
All FPU instructions are 32-bits long, aligned on a word boundary. They
can be divided into the following groups:
¢ Load, Store, and Move instructions move data between memory, the
main processor, and the FPU General Purpose registers.
e Conversion instructions perform conversion operations between the
various data formats.
e Computational instructions perform arithmetic operations on
floating-point values in the FPU registers.
e Compare instructions perform comparisons of the contents of regis-
ters and set a conditional bit based on the results.
e Branch on FPU Condition instructions perform a branch to the
specified target if the specified coprocessor condition is met.
Table 6.9 through Table 6.12 list the instruction set of the FPU. A
complete description of each instruction is provided in Appendix B.

Key to Formats in Table 6.9 through Table 6.12

In the instruction formats shown in Table 6.9 through Table 6.12, the
Jmt appended to the instruction opcode specifies the data format: s speci-
fies single-precision binary floating-point, d specifies double-precision
binary floating-point, w specifies 32-bit binary fixed-point, and L specifies
64-bit binary fixed-point.

OpCode ‘ Description

LWC1 Load Word to FPU

SWC1 _ | Store Word from FPU

LDC1 ( Load Doubleword to FPU!
SDC1 Store Doubleword from FPU!
MTC1 ‘Move Word To FPU

MFC1 Move Word From FPU

CTC1 Move Control Word To FPU
CFC1 Move Control Word From FPU
DMTC1 Doubleword Move to FPU!
DMFC1 Doubleword Move from FPU!
Note:

1 This opcode causes an unimplemented exception in the R4650.

Table 6.9 FPU Instruction Summary: Load, Move and Store Instructions
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OpCode3

Description

CVT.S.fimt

Floating-point Convert to Single FP?

CVT.D.fmt

Floating-point Convert to Double FP!

CVT.W.fmt

Floating-point Convert to Single Fixed Point?

ROUND.w.fmt

Floating-point Round

ROUND.L.fmt!

Floating-point Round

TRUNC.w.fmt

Floating-point Truncate

TRUNC.L.fmt!

CEIL.w.fmt

Floating-point Ceiling

CEIL.L.fmt!

FLOOR.w.fmt

Floating-point Floor

FLOOR.L.fmt!

Notes:

R4650.

Table 6.9.

! This opcode causes an unimplemented exception in the R4650.
2 The CVT.fmt.D opcode also causes an unimplemented exception in the

3 For definitions of the abbreviations.fmt, s, d, and w refer to the text preceding

An unimplemented exception is signalled when fmt = “D” or fmt = “L".

Table 6.10 FPU Instruction Summary: Conversion Instructions

OpCode!2

Description

ADD.fmt

Floating-point Add

SUB.fmt

Floating-point Subtract

MUL.fmt

Floating-point Multiply

DIV.fmt

Floating-point Divide

ABS.fmt

Floating-point Absolute Value

MOV.fmt

Floating-point Move

NEG.fmt

Floating-point Negate -

SQRT.fmt

Floating-point Square Root

Notes:
Table 6.9.

signaled.

I For definitions of the abbreviations.fmt, s, d, and w refer to the text preceding

2For all entries in the OPCODE column .fmt must be set to .S or a trap will be

Table 6.11 FPU Instruction Summary: Computational Instructions
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OpCode!? Description
C.cond.fmt Floating-point Compare
BCIT Branch on FPU True
BC1F Branch on FPU False
BCI1TL Branch on FPU True Likely
BCI1FL Branch on FPU False Likely
Notes:
For definitions of the abbreviations.fmt, s, d, and w refer to the text preceding
zgﬁrlsnsé?{tﬁes in the OPCODE column, if .fmt is set to .D a trap will be signaled.

Table 6.12 FPU Instruction Summary: Compare and Branch Instructions

Floating-Point Load, Store, and Move Instructions

This section discusses the manner in which the FPU uses the load,
store and move instructions listed in Table 6.9. Appendix B provides a
detailed description of each instruction.

Transfers Between FPU and Memory

All data movement between the FPU and memory is accomplished by
using the instructions Load Word To Coprocessor 1 (LWC1) or Store Word
To Coprocessor 1 (SWC1), which reference a single 32-bit word of the FPU
general registers.

These load and store operations are unformatted. Since no format
conversions are performed, no floating-point exceptions can result from
these operations.

Transfers Between FPU and CPU

Data can also be moved directly between the FPU and the CPU by using
one of the following instructions:

¢ Move To Coprocessor 1 (MTC1)

e Move From Coprocessor 1 (MFC1)

Like the floating-point load and store operations, these operations
perform no format conversions and never cause floating-point exceptions.

Load Delay and Hardware Interlocks

The instruction immediately following a load may reference the contents
of the loaded register. In such cases the hardware interlocks, requiring
additional real cycles; for this reason, scheduling load delay slots is desir-
able, although it is not required for functional code.

Data Alignment
All coprocessor loads and stores reference the following aligned data
items:
e For word loads and stores, the access type is always WORD, and the
low-order 2 bits of the address must always be O.
* For doubleword loads and stores, the access type is always DOUBLE-
WORD, and the low-order 3 bits of the address must always be O.

Endianness

Regardless of byte-numbering order (endianness) of the data, the
address specifies the byte that has the smallest byte address in the
addressed field. For a big-endian system it is the leftmost byte, and for a
little-endian system, the rightmost byte.
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Floating-Point Conversion Instructions

Conversion instructions perform conversions between the various data
formats such as single-precision, fixed- or floating-point formats. Table
6.10 lists conversion instructions. Appendix B, “FPU Instruction Set
Details,” describes each instruction. :

Floating-Point Computational Instructions
Computational instructions perform arithmetic operations on floating-
point values, in registers. Table 6.11 lists the computational instructions
and Appendix B provides a detailed description of each instruction. There
are two categories of computational instructions:
o 3-Operand Register-Type instructions, which perform floating-point
addition, subtraction, multiplication, division, and square root.
o 2-Operand Register-Type instructions, which perform floating-point
absolute value, move, and negate.

Branch on FPU Condition Instructions

Table 6.12 lists the Branch on FPU (coprocessor unit 1) condition
instructions that can test the result of the, FPU compare (C.cond) instruc-
tions. Appendix B gives a detailed description of each instruction.

Floating-Point Compare Operations

The floating-point compare (C.fmt.cond) instructions interpret the
contents of two FPU registers (fs, f) in the specified format (fmt} and arith-
metically compare them. A result is determined based on the comparison
and conditions (cond) specified in the instruction.

Table 6.12, found on page 12, lists the compare instructions. Table
6.13 lists the mnemonics for the compare instruction conditions. The. W
and.S formats are allowed for in the R4650. The.D format causes a trap to
be signaled. For detailed descriptions of these instructions, refer to
Appendix B, “FPU Instruction Set Details.”

Mnemonic | Definition Mnemonic | Definition

F False T True

UN Unordered - OR - | Ordered

EQ Equal NEQ Not Equal

UEQ Unordered or Equal OLG Ordered or Less Than or Greater Than
OLT Ordered Less Than UGE Unordered or Greater Than or Equal
ULT Unordered or Less Than OGE Ordered Greater Than

OLE Ordered Less Than or Equél UGT Unordered or Greater Than

ULE Unordered or Less Than or Equal OGT Ordered Greater Than

SF Signaling False ST Signaling True

NGLE Not Greater Than or Less Than or Equal | GLE _ | Greater Than, or Less Than or Equal
SEQ Signaling Equal SNE Signaling Not Equal

NGL Not Greater Than or Less Than GL Greater Than or Less Than

LT Less Than NLT Not Less Than

NGE Not Greater Than or Equal GE Greater Than or Equal

LE Less Than or Equal NLE Not Less Than or Equal

NGT Not Greater Than ‘ GT Greater Than

Table 6.13 Mnemonics and Definitions of Compare Instruction Conditions

6-13
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FPU Instruction Pipeline Overview

The FPU provides an instruction pipeline that parallels the CPU instruc-
tion pipeline. It shares the same five-stage pipeline architecture with the
CPU. Refer to Chapter 3 for details about the pipeline architecture.

Instruction Execution

Figure 6.8 illustrates the 5-stage FPU pipeline. This is the same as that
of the integer pipeline but allows for the longer execution times of the
floating-point instructions.

[ 11 ] 21| 1R| 2R] 1A] 2A] 1D[ 2D| 1W| 2W

[ 11| 21] 1R 2R| 1A] 2A[ 1D[ 2D[ 1wW[ 2w]|

[ 11] 21| 1R] 2R| 1A| 2A] 1D| 2b| 1W] 2wW|

[ 11 ] 21| 1R] 2R] 1A] 2A] 1D| 2D{ 1W| 2w]

11 | 21 | 1IR] 2R] 1A] 2A] 1D[ 2D[ 1w| 2w]|

IOne Cyclel

Figure 6.8 FPU Instruction Pipeline
Figure 6.8 assumes that one instruction is completed every PCycle, but
most FPU instructions require more than one cycle in the EX stage.
Therefore, the FPU must stall the pipeline if an instruction execution
cannot proceed because of register or resource conflicts.

Floating-point operations proceed in parallel with non-floating-point
operations. Floating-point operations are not allowed to overlap each
other, with two exceptions:

* An add operation may start 2 cycles after the start of a multiply and
thus will be completely overlapped by the multiply.

* A multiply operation may overlap for up to 2 cycles, and start 6 cycles
after another multiply. ,

Non-floating-point operations as well as other integer operations may be
executed in parallel with the floating-point operations. All of this is
handled automatically by internal hardware in the R4650.

Instruction Execution Cycle Time

Unlike the CPU, which executes almost all instructions in a single cycle,
more time may be required to execute FPU instructions.

Table 6.14 gives the minimum latency of each floating-point operation.
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Operation Pipeline Cycles | Operation Pipeline Cycles

Single | Double Single ‘ Double

ADD.fmt 4 ®F  IBCIT 1
SUB.fmt 4 ) BCIF 1
MUL.fmt 8 ®) BCITL 1
DIV.fmt 32 ®) BCIFL 1
SQRT.fmt 31 ®) LWC1, LDC1 2
ABS.fmt 1 ®) SWC1, SDC1 1
MOV.fmt 1 ®) TRUNC.W.fmt 4 )
NEG.fmt 1 ®) MTC1, DMTC1 2
ROUND.W.fmt 4 ®) MFC1, DMFC1 2
CEIL.W.fmt 4 ®) CTC1 3
FLOOR.W.fmt 4 ®) CFC1 2
CVT.S.fmt (@) ®) CMP 3 (b)
CVT.D.fmt ®) ®) FIX 4 (b)
CVT.W.fmt 4@ ) FLOAT 6 )
C.fmt.cond 3 ®)
Notes:

21f .fmt = .D or.fmt = .L, a trap will occur.

b These operations cause a trap.

Table 6.14 Floating-Point Operation Latencies

Instruction Scheduling Constraints

The FPU resource scheduler only issues instructions to the FPU op
units (adder and multiplier) when no hardware use conflicts will occur. In
addition, some overlap possibilities are disallowed to keep the scheduler
simple (and/or increase performance).

FPU Multiplier Constraints
The FPU multiplier is partially pipelined in the R4650, allowing a new
multiply to begin every 6 cycles.

FPU Adder Constraints ,
The FPU scheduler may issue an add operation (ADD.S or SUB.S) 2

cycles after a multiply (MUL.S).

Resource Scheduling Rules

The FPU Resource Scheduler issues instructions while adhering to the
rules described below. These scheduling rules optimize functional unit
executions. If the rules are not followed, the hardware interlocks to guar-
antee correct operation.

DIV.[S] can start only when all of the following conditions are met in the
1A phase.

e The adder is idle (division is performed in the adder).

¢ The multiplier is idle.
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MUL.[S] can start only when all of the following COl’ldlthl’lS are met in
the 1A phase. ‘ ,

¢ The multiplier is one of the following:
- idle.
- Started execution at least 6 cycles earlier on the current multiply
* The adder is idle. ‘
S@RT.[S] can start when the following condmons are met in the 1A
phase.
¢ The adder is idle.
e The muitiplier must be idle.

CVT.fmt instructions can only start when all of the following conditions
are met in the 1A phase.
_* The adderis idle.
e The multiplier is idle.
'ADD.[S] or SUB.[S] can start only when all of the following conditions
are met in the 1A phase.
¢ The adder is idle
¢ The multiplier is either:
- idle.
- started execution of the current multiply at least 2 cycles earlier.
NEG.[S] or ABS.[S] can start only when all of the following conditions

‘are met in the 1A phase.

e The adder is idle.

¢ The multiplier is idle.

C.COND.[S] can start only when all of the followmg conditions are met
in the 1A phase.

e The adder is idle.

e The multiplier is idle.
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Integrated Device Technology, Inc.

Introduction

This chapter describes floating point unit (FPU) floating-point excep-
tions, including FPU exception types, exception trap processing, excep-
tion flags, saving and restoring state when handling an exception, and
trap handlers for IEEE Standard 754 exceptions.

A floating-point exception occurs whenever the FPU cannot handle
either the operands or the results of a floating-point operation in its
normal way. The FPU responds by generating an exception to initiate a
software trap or by setting a status flag. In particular, the R4650 will trap
on 64-bit floating point accelerator (FPA) operations, signalling an unim-
plemented exception.

Exception Types

The FP Control/Status register described in Chapter 6 contains an
Enable bit for each exception type. Exception Enable bits determine
whether an exception will cause the FPU to initiate a trap or set a status
flag. -

e Ifa trap is taken, the FPU remains in the state found at the beginning

of the operation and a software exception handling routine executes.
¢ Ifno trap is taken, an appropriate value is written into the FPU desti-
nation register and execution continues.

The FPU supports the five IEEE Standard 754 exceptions, which are
shown in the following list. Cause bits, Enables, and Flag bits (status
flags) are used.

¢ Inexact ()

¢ Underflow (U)

e Overflow (O)

e Division by Zero (Z)

e Invalid Operation (V)

The FPU adds a sixth exception type, the Unimplemented Operation (E).
This exception indicates the use of a software implementation. The Unim-
plemented Operation exception has no Enable or Flag bit. Whenever this
exception occurs, an unimplemented exception trap is taken.




Floating-Point Exceptions Chapter 7

Figure 7.1 illustrates the Control/Status register bits that support

exceptions.
Bit# 17 16 15 14 13 12
Cause
I E \' Y4 0] U I Bits
| | | I |
Bit # 11 10 9 8 7
I v - o U | Enable
. Bits
I | { [ |
Bit # 6 5 4 3 2
Flag
\' Y4 O U ! Bits
Inexact Operation
Underflow
Overflow
Division by Zero
Invalid Operation
Unimplemented Operation

Figure 7.1 Control/Status Register Exception/Flag/Trap/Enable Bits

Each of the five IEEE Standard 754 exceptions (V, Z, O, U, I} is associ-
ated with a trap under user control, and is enabled by setting one of the
five Enable bits. When an exception occurs and its corresponding Enable
bit is not set, both the corresponding Cause and Flag bits are set. When
an exception occurs and its corresponding Enable bit is set, the corre-
sponding Cause bit is set and the subsequent exception processing allows
a trap to be taken.

Exception Trap Processing

When a floating-point exception trap is taken, the Cause register indi-
cates the floating-point coprocessor is the cause of the exception trap.
The Floating-Point Exception (FPE) code is used, and the Cause bits of the
floating-point Control/Status register indicate the reason for the floating-
point exception. In effect, these bits are an extension of the system copro-
cessor Cause register.

Flags

A glag bit is provided for each IEEE exception. This Flag bit is settoa 1
on the assertion of its corresponding exception, with no corresponding
exception trap signaled. The Flag bit is reset by writing a new value into
the Status register; flags can be saved and restored by software either
individually or as a group.

When no exception trap is signaled, the floating-point coprocessor takes
a default action, providing a substitute value for the exception-causing
result of the floating-point operation. The particular default action taken
depends upon the type of exception.
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Table 7.1 lists the default action taken by the FPU for each of the IEEE

exceptions.
Field Description Rounding Default action
Mode
I Inexact exception Any Supply a rounded result
U Underflow exception | Any Take unimplemented unless FCSR.FS bit is set.
O Overflow exception RN Modify overflow values to e with the sign of the
‘ intermediate result
RZ Modify overflow values to the format’s largest finite
number with the sign of the intermediate result
RP Modify negative overflows to the format’s most nega-
tive finite number; modify positive overflows to + oo
RM Modify positive overflows to the format’s largest
finite number; modify negative overflows to — oo
Z Division by zero Any Supply a properly signed o
v Invalid operation Any Supply a quiet Not a Number (NaN)
Table 7.1 Default FPU Exception Actions
The FPU detects the eight exception causes internally. When the FPU
“encounters one of these unusual situations, it causes either an IEEE
exception or an Unimplemented Operation exception (E).
Table 7.2 lists the exception-causing conditions of the IEEE
Standard 754.
FPA Internal IEEE Trap Trap Notes
Result Standard 754 | Enable | Disable
Inexact result I I I Loss of accuracy
Exponent overflow 0,2 0.l O.1 Normalized exponent > E o«
Division by zero V/ Z Z Zero is (exponent = E;;,-1, mantissa = 0)
Overflow on convert A% E E Source out of integer range
Signaling NaN source |V v A% Signaling NaN source produces quiet NaN
result
Invalid operation Vv Vv \'4 0/0, etc.
Exponent underflow 8] E E Normalized exponent < E;;,
Denormalized source | None E E Exponent = E-1 and mantissa <> 0

Note: ?The IEEE Standard 754 specifies an inexact exception on overflow only if the overflow trap is disabled.

Table 7.2 FPU Exception-Causing Conditions

FPU Exceptions

The following sections describe the conditions that cause the FPU to

generate each of its exceptions, and details the FPU response to each
exception-causing condition.
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Inexact Exception (I)

The FPU generates the Inexact exceptlon if the rounded result of an
operation is not exact or if it overflows. The FPU usually examines the
operands of floating-point operations before execution actually begins, to
determine (based on the exponent values of the operands) if the operation
can possibly cause an exception. If there is a possibility of an instruction
causing an exception trap, the FPU uses a coprocessor stall to execute the
instruction. ' ‘

It is impossible, however, for the FPU to predetermine if an instruction
will produce an inexact result. If Inexact exception traps are enabled, the
FPU uses the coprocessor stall mechanism to execute all floating-point
operations that require more than two cycles. Since this mode of execu-
tion can impact performance, Inexact exception traps should be enabled
only when necessary.

Trap Enabled Results: If Inexact exception traps are enabled, the
result register is not modified and the source registers are preserved.

Trap Disabled Results: The rounded or overflowed result is delivered to
the destination register if no other software trap occurs.

Invalid Operation Exception (V)

The Invalid Operation exception is signaled if one or both of the oper-
ands are invalid for an implemented operation. When the exception
occurs without a trap, the MIPS ISA defines the result as a quiet Not a
Number (NaN). The invalid operations are:

¢ Addition or subtraction: magnitude subtraction of infinities, such as:
(+ o9 + (= o) or (= o) — (= o)

e Multiplication: O times «, with any signs

e Division: 0/0, or «/~, with any signs

e Comparison of predicates involving < or > without?, when the oper-
ands are unordered

¢ Any arithmetic operation on a signaling NaN. A move (MOV) operation
is not considered to be an arithmetic operation, but absolute value
(ABS) and negate (NEG) are considered to be arithmetic operations
and cause this exception if one or both operands is a signaling NaN.

e Square root: Vx, where x is less than zero

Software can simulate the Invalid Operation' exception for other opera-
tions that are invalid for the given source operands. Examples of these
operations include IEEE Standard ‘754-specified functions implemented
in software, such as Remainder: x REM y, where y is O or x is infinite;
conversion of a floating-point number to a decimal format whose value
causes an overflow, is infinity, or is NaN; and transcendental functions,
such as In (-5) or cos-1(3). Refer to Appendix B for examples or routines
to handle these cases.

Trap Enabled Results: The original operand values are undisturbed.

. Trap Disabled Results: The FPU sets the Invalid Operation Exception
flag and a quiet NaN is delivered to the destination register.

Division-by-Zero Exception (Z)

The Division-by-Zero exception is signaled on an implemented divide
operation if the divisor is zero and the dividend is a finite nonzero
number. Software can simulate this exception for other operations that
produce a signed infinity, such as In(0), sec(rn/2), csc(0), or 0!

Trap Enabled Results: The result register is not modified, and the
source registers are preserved.

Trap Disabled Results: The result, when no trap occurs, is a correctly
signed infinity.
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Overflow Exception (O)
~ The Overflow exception is signaled when the magnitude of the rounded

floating-point result, with an unbounded exponent range, is larger than
the largest finite number of the destination format. This exception also
sets the Inexact exception and Flag bits.

Trap Enabled Results: The result register is not modified, and the
source registers are preserved.

Trap Disabled Results: The result, when no trap occurs, is determined
by the rounding mode and the sign of the intermediate result.

Underflow Exception (U)

Two related events contribute to the Underflow exception. IEEE Stan-
dard 754 allows detection of these events in a variety of ways. The events
are: ,

e creation of a tiny nonzero result between +2F™% which can cause
later exception because it is so tiny

* extraordinary loss of accuracy during the approximation of such tiny
numbers by denormalized numbers

The MIPS architecture requires tiny numbers to be detected after

rounding. Tiny numbers can be detected by one of the following methods:

e after rounding (with a nonzero result, computed as thou%l the
exponent range were unbounded, would lie strictly between +25M1)

» before rounding (with a nonzero result, computed as though the expo-
nent range and the precision were unbounded, would lie strictly
between +2F™in)

The MIPS architecture requires that loss of accuracy be detected as an
inexact result. Loss of accuracy can be detected by one of the following
two methods:

.o denormalization loss (when the delivered result differs from what

would have been computed if the exponent range were unbounded)

¢ inexact result (when the delivered result differs from what would have
been computed if the exponent range and precision were both
unbounded)

Trap Enabled Results: When an underflow trap is enabled, underflow
is signaled when tininess is detected regardless of loss of accuracy. If
underflow traps are enabled, the result register is not modified, and the
source registers are preserved.

Trap Disabled Results: When an underflow trap is not enabled and
FCSR.FS is clear, then take an unimplemented exception. When an
underflow trap is not enabled and FCSR.FS is set, raise Inexact and
return either O or +25™1, as appropriate for the current rounding mode.

Unimplemented Instruction Exception (E)

Any attempt to execute an instruction with an unsupported operation
code or format code sets the Unimplemented bit in the Cause field in the
FPU Control/Status register and traps. The operand and destination

_registers remain undisturbed and the instruction may be emulated in
software. Any of the IEEE Standard 754 exceptions can arise from the
emulated operation, and these exceptions in turn are simulated. In the
case of the R4650, 64-bit FPA operations, including Compare, Cvt, Arith-
-metic, Load/Store, and Move will cause this exception to be signaled.
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The Unimplemented Instruction exception can also be signaled when
unusual operands or result conditions are detected that the implemented
hardware cannot handle properly. These include:

Denormalized operand

Quiet NaN operand

Underflow

Reserved opcodes

Unimplemented formats

Conversion of a floating-point number to a fixed point format when an

overflow occurs or when the source operand value is Infinity or a NaN.
¢ Operations that are invalid for their format (for instance, CVT.S.S)

Denormalized and NaN operands are only trapped if the instruction is a
convert or computational operation. Moves and compares do not trap if
their operands are either denormalized or NaNs.

The use of this exception for such conditions is optional. Most of these
conditions are new, and are not expected to be widely used in early
implementations. Loopholes are provided in the architecture so that these
conditions can be implemented with assistance provided by software,
maintaining full compatibility with the IEEE Standard 754.

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results:This trap cannot be disabled.

Saving and Restoring State

Sixteen or thirty-two coprocessor Load or Store operations save or
restore the coprocessor floating-point register state in memory. The
remainder of control and status information can be saved or restored
through Move To/From Coprocessor Control Register instructions, and
saving and restoring the processor registers. Normally, the Control/
Status register is saved first and restored last. ’

When the coprocessor Control/Status register (FCR31) is read, and the
coprocessor is executing one or more floating-point instructions, the
instruction(s) in progress are either completed or reported as exceptions.
The architecture requires that no more than one of these pending instruc-
tions can cause an exception. Information indicating the type of exception
is placed in the Control/Status register. When state is restored, state
information in the status word indicates that exceptions are pending.

Writing a zero value to the Cause field of Control/Status register clears
all pending exceptions, permitting normal processing to restart after the
floating-point register state is restored.

The Cause field of the Control/Status register holds the results of only
one instruction. The FPU examines source operands before an operation
is initiated to determine if this instruction can possibly cause an excep-
tion. If an exception is possible, the FPU executes the instruction in stall
mode to ensure that no more than one instruction that might cause an
exception is executed at a time.

Trap Handlers for IEEE Standard 754 Exceptions

The IEEE Standard 754 strongly recommends that users be allowed to
specify a trap handler for any of the five standard exceptions that can
compute. The trap handler can either compute or specify a substitute
result to be placed in the destination register of the operation.
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By retrieving an instruction using the processor Exception Program
Counter (EPC) register, the trap handler determines:

¢ exceptions occurring during the operation

¢ the operation being performed

e the destination format

On Overflow or Underflow exceptions (except for conversions), and on
Inexact exceptions, the trap handler gains access to the correctly rounded
result by examining source registers and simulating the operation in soft-
ware.

On Overflow or Underflow exceptions encountered on floating-point
conversions, and on Invalid Operation and Divide-by-Zero exceptions, the
trap handler gains access to the operand values by examining the source
registers of the instruction.

The IEEE Standard 754 recommends that, if enabled, the overflow and
underflow traps take precedence over a separate inexact trap. This priori-
tization is accomplished in software; hardware sets the bits for both the
Inexact exception and the Overflow or Underflow exception.
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Introduction

This chapter describes the signals used by and in conjunction with the
R4650 processor. The signals include the System interface, the Clock/
Control interface, the Interrupt interface, and the Initialization interface.

Signals are listed in bold, and low active signals have a trailing
asterisk. For example, the low-active Read Ready signal is RARdy*. The
signal description also tells if the signal is an input (the processor receives
it) or output (the processor sends it out).

Figure 8.1 illustrates the functional groupings of the processor signals.

SysAD(63:32)
SysAD(31:0)
SysADC(7:4)
SysADC(3:0)
, SysCmd(8:0)
MasterClock ——
8 SysCmdP 9
g Validin* B
e [}
£ ValidOut* k=
g ExtRost' | £
c -
8 Release* 2
2 ) )
g RdRdy
'S WrRdy*
VecP _
VggP —_ ModeClock -
Modeln 29
3 &
Vccok E g
ColdReset* =
Reset* |
_— =0
Int(5:0)* g%
NMI* | EE

Figure 8.1 R4650 Processor Signals
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System Interface Signals

System interface signals provide the connection between the R4650
processor and the other components in the system. Table 8.1 lists the
system interface signals that apply when the CPU is in 64-bit system
interface mode.

Name Definition Direction | Description

ExtRgst* External request Input An external agent asserts ExtRqst* to request use of
the System interface. The processor grants the request
by asserting Release*.

Release* Release interface Output In response to the assertion of ExtRqst* or a CPU
read request, the processor asserts Release*, signal-
ling to the requesting device that the System interface
is available.

RdRdy* Read ready Input The external agent asserts RARdy* to indicate that it
can accept a processor read request.

SysAD{63:32) | System address/ Input/ A 64-bit address and data bus for communication

SysAD(31:0) | data bus Output between the processor and an external agent. During
address phases only SysAd(31:0) contains valid
address information.

SysADC(7:4) | System address/ Input/ An 8-bit bus containing check bits for the SysAD bus.

SysADC(3:0) | data check bus Output

SysCmd(8:0) | System command/ | Input/ A 9-bit bus for command and data identifier transmis-

data identifier Output sion between the processor and an external agent.

SysCmdP System command/ | Input/ A single, even-parity bit for the SysCmd bus, always

data identifier bus Output driven low.
parity

ValidIn* Valid input Input The external agent asserts ValidIn* when it is driving
a valid address or data on the SysAD bus and a valid
command or data identifier on the SysCmd bus.

ValidOut* Valid output Output The processor asserts ValidOut* when it is driving a
valid address or data on the SysAD bus and a valid
command or data identifier on the SysCmd bus.

WrRdy* Write ready Input An external agent asserts WrRdy* when it can accept

a processor write request.

Table 8.1 System Interface Signals in 64-Bit Mode
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Table 8.2 lists the system interface signals that apply when the CPU is

in 32-bit system interface mode.

In this mode SysAD (63:32) and

SysADC (7:6) are not used, regardless of Endianness.

Name Definition Direction | Description

ExtRqst* External request Input An external agent asserts ExtRqst* to request use of
the System interface. The processor grants the request
by asserting Release*.

Release* Release interface | Output In response to the assertion of ExtRgst* or a CPU read
request, the processor asserts Release*, signalling to
the requesting device that the System interface is avail-
able.

RdRdy* Read ready Input The external agent asserts RARdy* to indicate that it
can accept a processor read request.

SysAD(31:0) | System address/ |Input/ A 64-bit address and data bus for communication

data bus Output. | between the processor and an external agent. SysAD
, (63:32) is not used in 32-bit mode, regardless of Endi-
anness.

SysADC(3:0) | System address/ Input/ A 4-bit bus containing check bits for the SysAD bus.

data check bus Output

SysCmd(8:0) | System command/ | Input/ A 9-bit bus for command and data identifier transmis-

data identifier Output sion between the processor and an external agent.

SysCmdP System command/ | Input/ A single, even-parity bit for the SysCmd bus, always

data identifier bus | Output driven low.
parity

ValidIn* Valid input Input The external agent asserts ValidIn* when it is driving a
valid address or data on the SysAD bus and a valid
command or data identifier on the SysCmd bus.

ValidOut* Valid output Output The processor asserts ValidOut* when it is driving a
valid address or data on the SysAD bus and a valid
command or data identifier on the SysCmd bus.

WrRdy* Write ready Input An external agent asserts WrRdy* when it can accept a
processor write request.

Table 8.2 System Interface Signals in 32-Bit System Interface Mode
Clock/Control Interface Signals
The Clock/Control interface signals make up the interface for clocking
and maintenance.
Table 8.3 lists the Clock/Control interface signals. The same clock
signals are used for both 32-bit and 64-bit system interface modes.
Name Definition Direction | Description
MasterClock | Master clock Input Master clock input that establishes the processor
operating frequency. It is multiplied internally by 2, 3, 4,
5, 6, 7, or 8 to generate the pipeline clock (PClock)

VeeP Quiet Ve for PLL | Input Quiet V¢ for the internal phase locked loop.

VgsP Quiet Vgg for PLL | Input Quiet Vgg for the internal phase locked loop.

Table 8.3 Clock/Control Interface Signals
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Interrupt Interface Signals

The Interrupt interface signals make up the interface that is used by
external agents to interrupt the R4650 processor. Six hardware interrupts
(Int*(5:0)) and one NMI are available on the R4650. Table 8.4 lists the
Interrupt interface signals. The same signals are used for 32-bit and 64-
bit system interface modes.

Name Definition Direction | Description
Int*(5:0) | Interrupt Input Six general processor interrupts, bit-wise OR’'d
with bits 5:0 of the interrupt register.
NMI* Nonmaskable Input Nonmaskable interrupt, OR'd with bit 6 of the
interrupt interrupt register.

Table 8.4 Interrupt Interface Signals

Initialization Interface Signals

The Initialization interface signals make up the interface by which an
external agent initializes the processor operating parameters. Table 8.5
lists the Initialization interface signals. The same signals are used for 32-
bit and 64-bit system interface modes.

Name Definition Direction | Description

ColdReset* Cold reset Input This signal must be asserted for a
power on reset or a cold reset.
ColdReset* must be deasserted syn-
chronously with MasterClock.

ModeClock Boot mode clock Output Serial boot-mode data clock output;
runs at the Master Clock frequency
divided by 256: (MasterClock/256).

ModelIn Boot mode data in | Input Serial boot-mode data input.

Reset* Reset Input This signal must be asserted for any
reset sequence. It can be asserted
synchronously or asynchronously for
a cold reset, or synchronously to ini-
tiate a warm reset. Reset* must be
deasserted synchronously with
MasterClock.

VCCOk Vec is OK Input When asserted, this signal indicates
' to the processor that V¢ > Voemin
for more than 100 milliseconds and
will remain stable. The assertion of
VCCOKkK initiates the initialization
sequence.

Table 8.5 Initialization Interface Signals
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Table 8.6 lists the R4650 processor signals and their possible states in
64-bit system interface mode.

Asserted Reset
Description Name 1/0 State 3-State State

System address/data bus SysAD(63:0) | I/0O High Yes a
System address/data check bus SysADC(7:0) | I/O High Yes

System command/data identifier bus SysCmd(8:0) | I/O High Yes a
System command/data identifier bus parity | SysCmdP 1I/0 High Yes a
Valid input ValidIn* I Low No NA
Valid output ValidOut* (0] Low Yes b
External request ExtRgst* I Low No NA
Release interface Release* o Low Yes b
Read ready RARdy* I Low No NA
Write ready WrRdy* I Low No NA
Interrupts Int*(5:0) I Low No NA
Nonmaskable interrupt NMI* I Low No NA
Boot mode data in Modeln I High No NA
Boot mode clock ModeClock (0] High No c
Master clock MasterClock | I High No NA
Ve is OK VCCOk I High No NA
Cold reset ColdReset* I Low No NA
Reset Reset* I Low No NA

Key to Reset State Column:

serts.
¢ ModeClock is always driven.
NANot applicable to input pins.

a All I/0 pins (SysAD|[63:0], SysADC[7:0], etc.) remain 3-stated until the Reset* signal deasserts.
b All output only pins (ValidOut*, Release*, etc.), except the clocks, are 3-stated until the ColdReset* signal deas-

Table 8.6 R4650 Processor Signal Summary
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Table 8.7 lists the R4650 processor signals and their possible states in
In this mode SysADC(63:32) and

32-bit system interface mode.
SysADC(7:4) are not defined.

Asserted o Reset
Description Name I1/0 State 3-State State
System address/data bus SysAD(31:0) | 1/O High Yes a
System address/data check bus SysADC(3:0) | I/0O High Yes a
System command/data identifier bus SysCmd(8:0) | 1/0 High Yes a
System command/data identifier bus parity | SysCmdP I/0 ‘High Yes a
Valid input ValidIn* I Low No NA
Valid output ValidOut* o Low Yes b
External request ExtRqst* I Low No NA
Release interface Release* O Low Yes b
Read ready RdRdy* I Low No NA
Write ready WrRdy* I Low No NA
Interrupts Int*(5:0) I Low No NA
Nonmaskable interrupt NMI* I Low No NA
Boot mode data in ModelIn I High No NA
Boot mode clock ModeClock o High No c
Master clock MasterClock | | High No NA
Ve is OK VCCOk I High No NA
Cold reset ColdReset* I Low No NA
Reset Reset* I Low No NA

Key to Reset State Column:

serts.’
f ModeClock is always driven.
NANot applicable to input pins.

d All 1/0 pins (SysAD[63:0], SysADC[7:0], etc.) remain 3-stated until the Reset* signal deasserts.
e All output only pins (ValidOut*, Release*, etc.}, except the clocks, are 3-stated until the ColdReset* signal deas-

Table 8.7 R4650 Processor Signal Summary
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Introduction

This chapter describes the R4650 Initialization Interface,including the
reset signal descriptions and types, initialization sequence, signals and
timing dependencies, and boot modes, which are set at initialization time.

Signal names are listed in bold letters—for instance the signal VCCOk
indicates the Vcc voltage is stable. Low-active signals are mdlcated by an
asterisk at the end of the name, as in ColdReset*.

Functional Overview

The R4650 processor has the following three types of resets. Refer to
Figure 9.1 on page 4, Figure 9.2 on page 5, and Figure 9.3 on page 5 for
timing diagrams of these resets.

* Power-on reset:Starts when the power supply is turned on and
completely reinitializes the internal state machine of the processor
without saving any state information.

* Cold reset:Restarts all clocks, but the power supply remains stable.
A cold reset completely reinitializes the internal state machine of the
processor without saving any state information.

* Warm reset:Restarts processor, but does not affect clocks. A warm
reset preserves the processor internal state.

These resets use the VCCOk, ColdReset*, and Reset* input signals,
which are summarized in the next subsection. Descriptions of each type
of reset operation is described.

The Initialization interface is a serial interface that operates at the
frequency of the MasterClock divided by 256 (i.e. MasterClock/256).
This low-frequency operation allows the initialization information to be
stored in a low-cost Serial EEPROM.

Reset and Initialization Signal Descriptions ,

‘This section describes the three reset signals, VCCOk, ColdReset*,
and Reset*, and the two initialization signals, ModeIn and ModeClock.

VCCOk: When asserted!, VCCOKk indicates to the processor that Vcc has been
above the minimum Vec for more than 100 milliseconds (ms) and is expected to
remain stable. The assertion of VCCOKk initiates the reading of the bcot-time mode
control serial stream. This is described in the subsection “Initialization Sequence”
on page 3.

ColdReset*: The ColdReset* signal must be asserted (low) for either a
power-on reset or a cold reset. ColdReset* must be de-asserted synchro-
nously with MasterClock.

Reset*: The Reset* signal must be asserted for any reset sequence. It
can be asserted synchronously or asynchronously for a cold reset, or
synchronously to initiate a warm reset. Reset*must be de-asserted
synchronously with MasterClock

ModeIn: Serial boot mode data in.

ModeClock: Serial boot mode data out, at the MasterClock frequency
divided by 256 (MasterClock/256).

Table 9.1 lists the processor signals and their possible states.

I Asserted means the signal is true, or in its valid state. For example, the low-
active Reset* signal is said to be asserted when it is in a low (true) state; the high-
active VCCOK signal is true when it is asserted high.

9-1
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Description Name 1/0 | Asserted State | 3-State | Reset State

System address/data bus SysAD(63:0) | I/O High Yes a
System address/data check bus SysADC(7:0) | I/O High Yes a
System command/data identifier bus SysCmd(8:0) | I/O High Yes a
System command/data identifier bus parity | SysCmdP 1/0 High Yes a
Valid input ValidIn* I Low No NA
Valid output ValidOut* (0] Low Yes b
External request ExtRgst* I Low No NA
Release interface Release* o Low Yes b
Read ready : RdRdy* I Low No NA
Write ready WrRdy* I Low No NA
Interrupts Int*(5:0) I Low No NA
Nonmaskable interrupt NMI* I Low No NA
Boot mode data in ModeIn I High No NA
Boot mode clock ModeClock (0] High No d
Master clock MasterClock | I High No NA
Vcc is within specified range VCCOk I High No NA
Cold reset ColdReset* I Low No NA
Reset Reset* I Low No NA

Key to Reset State Column:

a All 1/0 pins (SysAD[63:0], SysADC[7:0], etc.) remain 3-stated until the Reset* signal deasserts.

b All output only pins (ValidOut*, Release*, etc.), except the clocks, are 3-stated until the ColdReset* signal

c ?&lela:lieclit(:: except ModeClock, are 3-stated until VCCOk asserts.

d ModeClock is always driven.

NA Not applicable to input pins.

Table 9.1 R4650 Processor Signal Summary
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Power-on Reset
Figure 9.1, Figure 9.2, and Figure 9.3 illustrate the power-on, cold,
and warm resets. ,

The sequence for a power-on reset is as follows:

1. Power-on reset applies a stable Vcc of at least the Vec minimum
value to the processor. During this time, VCCOKk is deasserted, Cold-
Reset* and Reset* are asserted and the MasterClock input oscil-
lates.

2. After at least 100 ms of stable Vcc and MasterClock, the VCCOk
signal is asserted to the processor. The assertion of VCCOk begins the
initialization of the processor. After the mode bits have been read in,
the processor allows its internal phase locked loop to lock, stabilizing
the processor internal clock, PClock.

3. ColdReset* is asserted for at least 64K (or 216) clock cycles after the
assertion of VCCOk. Once the processor reads the boot-time mode
control serial data stream, ColdReset* can be deasserted. Cold-
Reset* must be deasserted synchronously with MasterClock.

4. After ColdReset* is deasserted synchronously, Reset* is deasserted
to allow the processor to begin running. Reset* must be held asserted
for at least 64 MasterClock cycles after the deassertion of Cold-
Reset*. Reset* must be deasserted synchronously with Master-
Clock.

Note: ColdReset* must be asserted when VCCOk asserts. The
behavior of the processor is undefined if VCCOk asserts while Cold-
Reset* is deasserted.

Cold Reset

A cold reset can begin anytime after the processor has read the initial-
ization data stream, causing the processor to start with the Reset excep-
tion.

A cold reset requires the same sequence as a power-on reset except
that the power is presumed to be stable before the assertion of the reset
inputs and the deassertion of VCCOk.

To begin the reset sequence, VCCOk must be deasserted for a
minimum of 100 ms before reassertion.

Warm Reset

To execute a warm reset, the Reset* input is asserted synchronously
with MasterClock. It is then held asserted for at least 64 MasterClock
cycles before being deasserted synchronously with MasterClock. The
processor internal clock, PClock, is not affected by a warm reset. The
boot-time mode control serial data stream is not read by the processor on
a warm reset. A warm reset forces the processor to start with a Soft
Reset exception.

MasterClock generates any reset-related signals for the processor that
must be synchronous with MasterClock.

After a power-on reset, cold reset, or warm reset, all processor internal
state machines are reset, and the processor begins execution at the reset
vector. All processor internal states are preserved during a warm reset,
although the precise state of the caches depends on whether or not a
cache miss sequence has been interrupted by resetting the processor
state machines.

Initialization Sequence

The boot-mode initialization sequence begins immediately after VCCOk
is asserted. As the processor reads the serial stream of 256 bits through
the Modeln pin, the boot-mode bits initialize all fundamental processor
modes. (The signals used are described in Chapter 8).
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The initialization sequence is as follows:

1. The system deasserts the VCCOk signal. The ModeClock output is

held asserted.

2.

clock cycles.

initialization bits from the Modeln input.

The processor synchronizes the ModeClock output at the time
VCCOk is asserted. The first rising edge of ModeClock occurs at least
256 MasterClock cycles after VCCOKk is asserted. There could be
more clock cycles due to internal delays on the VecOK signal. After
the first rising edge, each additional rising edge will be 256 master

Each bit of the initialization stream is presented at the ModelIn pin
after each rising edge of the ModeClock. The processor samples 256

5.5V (3.6V)
4.5

4
V (3.0V)
Vce __/

MasterClock -
(MCIKk)

VCCOK __

> 100ms

-DJQDS
< ————P

ModeClock_

256
256 MClk cycles |MCIk
cycles

Modeln

Reset*

TMDS»|
TMDH
Bit 0 Bitl\-

_ :\l -4TDS <
ColdReset*__

> 64K MCIk cycles

-§1TDS

> 64 MClIk cycles
E

Ll TDS

Figure 9.1 Power-on Reset
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Boot-Mode Settings
A number of processor operational parameters are determined stati-
cally at boot time. These include:
e Output driver slew rate -
e Data writeback pattern
e System byte ordering
¢ MasterClock to PClock ratio
¢ Bus interface width.

Table 9.2 lists the processor boot-mode settings. The following rules
apply to the settings in the table:
Bit O of the stream is presented to the processor when VCCOK is first
asserted.
* Selecting a reserved value results in undefined processor behavior.
¢ Bits 15 to 255 are reserved bits.
¢ Zeros must be scanned in for all reserved bits.
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Serial Bit Description Value Mode Setting
0 Reserved (must be zero) 0
1:4 Writeback data rate 0 64-bit mode: DDDD
System interface data rate for | 32-bit mode: WWWWWWWW -
bl;)ick writes only; bit 4 is most sig- 1 64-bit mode: . DDxDDx
nificant. 32-bit mode: WWxWWxWWxWWx
2 64-bit mode: DDxxDDxx
32-bit mode: WWxxWWxxWWxxWWxx
3 64-bit mode: DxDxDxDx
32-bit mode: WxWxWxWxWxWxWxWx
4 64-bit mode: DDxxxDDxxx
32-bit mode: WWxxxWWxxxWWxxxWWxxx
5 64-bit mode: DDxxxxDDxxxx
32-bit mode: WWxoxWWxxxxWWxxxxWWxxxx
6 64-bit mode: DxxDxxDxxDxx
32-bit mode: WxxWxxWxxWxxWxxWxxWxxWxx
7 64-bit mode: DDxxxxaxxxDDxoooak
32-bit mode: WWiooaaax WW ook WWoaoakx WWXXRRRK
8 64-bit mode: DxxxDxxxDxxxDxxx
32-bit mode: WxxxWxxxWxxxWxxxWxxxWxxxWxxxWxxx
9-15 | Reserved
5:7 Clock Multiplier 0 Multiply by 2
MasterClock is multiplied inter-
1 Multiply by 3
nally to generate PClock whPy by
2 Multiply by 4
3 Muttiply by 5
4 Multiply by 6
5 Multiply by 7
6 Multiply by 8
7 Reserved
8 EndBit 0 Little-endian ordering
Specifies byte ordering 1 Big-endian ordering
9:10 Non-block write 0 R4x00 compatible
Selects the manner in which non-
block writes are handled; bit 10 is 1 Reserved
most significant 2 Pipelined Writes
K] Write re-issue
11 TmrintEn 0 Enabled Timer Interrupt
Disables the timer interrupt on 1 Disabled Timer Interrupt
Int*{5]
12 System interface bus width 0 64-bit system interface
32-bit system interface
13:14 | Drv_Out _ 10 | 100% strength (fastest}
Output driver slew rate control; bit
' 11 83% strength
14 is most significant; affects only o streng
outputs that are not clocks. 00 | 67% strength
01 | 50% strength (slowest)
15:255 | Reserved (must be zero) 0
Key to Table:
D= Doubleword (64-bit data)
W= Word (32-bit data)

Table 9.2 Boot-Mode Settings
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Introduction

This chapter describes the clock signals (“clocks”) used in the R4650
processor. The subject matter includes basic system clocks and system
timing parameters.

Signal Terminology
The following terminology is used in this chapter (and throughout the
book) when describing signals:
- Rising edge indicates a low-to-high transition.
e Falling edge indicates a high-to-low transition.
¢ Clock-to-Q delay is the amount of time it takes for a signal to move
from the input of a device (clock) to the output of the device (Q).

Figure 10.1 and Figure 10.2 illustrate these terms.

single clock cycle
—————————————— P~

I N N N B
high-to-low \
transition low-to-high

transition

Figure 10.1 Signal Transitions

data out

data in

o L

clock input

Clock-to-Q
delay
-

Figure 10.2 Clock-to-Q Delay
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Basic System Clocks
The R4650 processor has a single input clock, MasterClock, and no
output clocks.

MasterClock

The processor bases all internal and external clocking on the single
MasterClock input signal. The R4650 uses MasterClock to sample data
at the system interface and to clock data into the processor system inter-
face output register. The external agent should use MasterClock for the
global system clock and for clocking the output registers of an external
agent.

PClock

The processor multiplies MasterClock by 2,3,4,5,6,7, or 8 to generate
PClock. All internal registers and latches (except for ModeClock, which
is part of the initialization interface) use PClock, which is the pipeline
clock rate.

Figure 10.3 shows the clocks for a MasterClock-to-PClock multiply
by 2.

Cycle

MasterClock \___/—\__/_—— \ / \

PClock

SysAD Driven ]CX

[
1
I
I
I
SysAD Received :X !
T
|
|
|
[
[

L
T 03

—
=)
o

-

L
E:- <

LU
lg

Figure 10.3 Processor Clocks, MasterClock- to-PClock Multiply by 2
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System Timing Parameters

As shown in Figure 10.3, data provided to the processor must be stable
a minimum of tpg nanoseconds (ns) before the rising edge of MasterClock
and be held valid for a minimum of tpy ns after the rising edge of Master-
Clock.

Alignment to MasterClock

Processor data becomes stable a minimum of tpy ns and a maximum of
tpo ns after the rising edge of MasterClock. This drive-time is the sum of
the maximum delay through the processor output drivers together with
the maximum clock-to-Q delay of the processor output registers.
Processor data is held constant for a minimum of tpgy ns after the rising
edge of MasterClock. All processor inputs (including VCCOk, Cold-
Reset*, and Reset*) are sampled based on MasterClock, and all outputs
are based on MasterClock.

Phase-Locked Loop (PLL)

The processor aligns and generates PClock with internal phase-locked
loop (PLL) circuits. By their nature, PLL circuits are only capable of gener-
ating aligned clocks for MasterClock frequencies within a limited range.

Clocks generated using PLL circuits contain some inherent inaccuracy,
or jitter; a clock aligned with MasterClock by the PLL can lead or trail
MasterClock by as much as the related maximum jitter specified in the
data sheet.

PLL Components and Operation

The storage capacitor required for the Phase Locked Loop circuit is
contained in the R4650. However, it is recommended that the system
designer provide a filter network of passive components for the PLL power

supply.

Passive Components

The Phase Locked Loop circuit requires several passive components for
proper operation, which are connected to Vee, Vss, VecP, and VssP, as
illustrated in Figure 10.4.
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R4650

Note: Ci, C2, C3,andRs
are on the PCB

Figure 10.4 PLL Passive Components
It is essential to isolate the analog power and ground for the PLL circuit
(VecP/VssP) from the regular power and ground (Vec/Vss). Initial
evaluations have yielded good results with the following values:

R = 5 ohms
Cl = 1 nF
C2 = 82 nF
C3 = 10 uF

Cp = 470 pF

Since the optimum values for the filter components depend upon the
application and the system noise environment, these values should be
considered as starting points for further experimentation within your
specific application.

Connecting the R4650 to an External Agent
MasterClock is used to drive both the processor and the external agent.
The R4650 uses MasterClock to drive its output buffer and to sample the
input buffer. Similarly, the external agent should use MasterClock to
sample its input buffers, drive its output buffer, and as the system clock.
In such a system, the delivery of data and data sampling have common
characteristics, even if the processor and external agent have different
delay values. For example, transmission time (the amount of time a signal
takes to move from the processor to external agent to another along a
trace on the board) can be calculated from the following equation:
Transmission Time = (MasterClock period)
— (tpo for processor or external agent)
- (tps for external agent or processor)

10-4
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Figure 10.5 shows a block-level diagram of a system using the R4650

Processor.
MasterClock
R4650 External Agent
MasterClock MasterClock
SysCmd SysCmd
SysAD SysAD

Figure 10.5 R4650 Processor System
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Cache Organization, Chapter 11
Operation and Coherency

Introduction
This chapter describes the on-chip cache memory, its place in the
R4650 memory organization, and individual operations of the primary
cache.
This chapter uses the following terminology:
¢ The primary cache may also be referred to as the P-cache.
e The primary data cache may also be referred to as the D-cache.
e The primary instruction cache may also be referred to as the I-cache.

These terms are used interchangeably throughout this book.

Memory Organization

Figure 11.1 shows the R4650 system memory hierarchy. In the logical
memory hierarchy, caches lie between the CPU and main memory. They
are designed to make the speedup of memory accesses transparent to the
user.

Each functional block in Figure 11.1 has the capacity to hold more data
than the block above it. For instance, physical main memory has a larger
capacity than the primary cache.

At the same time, each functional block takes longer to access than any
block above it. For instance, it takes longer to access data in main
memory than in the CPU on-chip registers.

+ R4650 CPU D e
' .5 A
* || Registers Registers : ;:3’
' N v
! i-cache D-cache e
. N
, (8
. Primary Cache ’ Y
e e e e e e e e e e e e e e e g Faster Access Increasing Data
Optional Time Capacity
External
Secondary e A
Cache - 5
) =

Disk, CD-ROM,

Tape, setc.

Peripherals

Figure 11.1 Logical Hierarchy of Memory
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The R4650 processor has two on-chip primary caches. One holds
instructions (the instruction cache), while the other holds data (the data
cache). v

Overview of Cache Operations

Caches provide fast temporary data storage, and they make the
speedup of memory accesses transparent to the user. In general, the
processor accesses cache- res1dent instructions or data through the
following procedure:

1. The processor, through the on-chip cache controller, attempts to
access the next instruction or data in the primary cache.

2. The cache controller checks to see if this instruction or data is present
in the primary cache.

e If the instruction/data is present, the processor retrieves it. This is
called a primary-cache hit.

e If the instruction/data is not present in the primary cache, it is
retrieved as a cache line from memory and is written into the primary
cache.

3. The processor retrieves the instruction/data from the primary cache
and operation continues. For a data cache miss, the processor can
restart the pipeline after the first doubleword (the one at the miss
address) is retrieved and continues the cache line refill in parallel.

It is possible for the same data to be in two places simultaneously: main
memory and the primary cache. This data is kept consistent through the
use of either a write-back or a write-through methodology. For a write-
back cache, the modified data is not written back to memory until the
cache line is replaced. In a write-through cache, the data is written to
memory as the cached data is modified (with a possible delay due to the
write buffer).

R4650 Cache Description

This section describes the organization of on-chip primary caches. As
Figure 11.1 illustrates, the R4650 contains separate primary instruction
and data caches. :

Figure 11.2 provides a block diagram of the R4650 memory model.

R4650 ‘
Cache Controller - - Main Memory
l-cache :
Primary
Caches
D-cache

Figure 11.2 Cache Support in the R4650
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Cache Line Size

A cache line is the smallest unit of information that can be fetched from
memory to be filled into the cache. A primary cache line is 8 words in
length and is represented by a single tag.

Upon a cache miss in the primary cache, the missing cache line is
loaded from memory into the primary cache.

Cache Organization and Accessibility

This section describes the organization of the primary cache, including
the manner in which it is mapped, the addressing used to index the
cache, and composition of the cache lines. The primary instruction and
data caches are indexed with a virtual address (VA).!

Organization of the Primary Instruction Cache (I-Cache)

Each line of primary I-cache data (although it is actually an instruction,
it is referred to as data to distinguish it from its tag) has an associated
24-bit tag that contains a 20-bit physical address, a single valid bit, a
reserved bit, a single parity bit and the FIFO replacement bit. Word parity
is used on I-cache data. v

The R4650 processor primary I-cache has the following characteristics:

* two-way set associative '
indexed with a virtual address
checked with a physical tag
organized with 8-word (32-byte) cache line
lockable on a per-set basis

Figure 11.3 shows the format of a primary I-cache line.

23 22 21 20 19 0

1

PTag
\%

F

P
DataP
Data

|F POIV PTag ' I

20

© 65 64 63 0
Physical tag (bits 31:12 of the physical address) DataP Data
Valid bit DataP Data
FIFO Replacement Bit. Complemented on refill. DataP Data
Even parity for the PTag and V fields DtaP N _ Data

Even parity; 1 parity bit per word of data
Cache data

64

Figure 11.3 R4650 Primary I-Cache Line Format

I Since the size of one set of primary caches is 4KB, the virtual offset equals the
physical offset. Logically, however, the cache index is pre-translation, and thus

considered virtual.
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Organization of the Primary Data Cache (D-Cache)

Each line of primary D-cache data has an associated 26-bit tag that
contains a 20-bit physical address, 2-bit cache line state, a write-back
bit, a parity bit for the physical address and cache state fields, a parity bit
for the write-back bit, and the FIFO replacement bit.

The R4650 processor primary D-cache has the following characteristics:

o write-back or write-through on a per-page basis
two-way set associative
indexed with a virtual address
checked with a physical tag
organized with 8-word (32-byte) cache line
Lockable on a per-set basis

Figure 11.4 shows the format of a primary D-cache line.

25 24 23 22 21 20 19 0
F|{W|{W| P CS PTag
1 1 1 1 2 24
71 64 63 0
Key to Figure:
F FIFO Replacement Bit
w Even parity for the write-back bit
w Write-back bit (set if cache line has been written)
P Even parity for the PTag and CS fields
CS Primary cache state:
0 =Invalid, 1 = Shared,
2 = Clean Exclusive, 3 = Dirty Exclusive
PTag  Physical tag (bits 35:12 of the physical address)
DataP Even parity for the data; 1-bit per byte
Data  Cache data

Figure 11.4 R4650 8-Word Primary Data Cache Line Format

In the R4650, the W (write-back) bit, not the cache state, indicates
whether or not the primary cache contains modified data that must be
written back to memory

Note: There is no hardware support for cache coherency. The only
cache states used are Dirty Exclusive and Invalid.
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Accessing the Primary Caches
Figure .5 shows the virtual address (VA) index into the primary caches.
Each instruction and data cache size is 8 Kbytes.

y

A

Data

Tags

Tag line VA(1 1 :5)

Data line

Y

VA(11:5)

B e R

<SR PMETEL

W W State Tag P SR e A

Data

Figure 11.5 Primary Cache Data and Tag Organization

Cache States

The terms below are used to describe the state of a cache line:

* Exclusive: a cache line that is present in exactly one cache in the
system is exclusive. This is always the case for the R4650. All cache
lines are in an exclusive state.

* Dirty: a cache line that contains data that has changed since it was
loaded from memory is dirty.

¢ Clean: a cache line that contains data that has not changed since it
was loaded from memory is clean.

* Shared: a cache line that is present in more than one cache in the
system. The R4650 does not provide for hardware cache coherency.
This state will never happen in normal operations.

The R4650 only supports the four cache states as shown in Table 11.1
on page 11-6. The only states that will occur in the R4650, under normal
operations are the Dirty Exclusive and Invalid states.

Note: Even though valid data is in the Dirty Exclusive state, it may still
be consistent with memory. One must look at the dirty bit, W, to
determine if the cache line is to be written back to memory when
it is replaced.
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Each primary cache line in the R4650 system is in one of the states
described in Table 11.1.

Cache Line
State ’ Description
Invalid A cache line that does not contain valid information must be marked invalid, and cannot
be used. A cache line in any other state than invalid is assumed to contain valid informa-
tion.
Shared A cache line that is present in more than one cache in the system is shared. This state will

not occur for normal operations.

Clean Exclusive

A clean exclusive cache line contains valid information and this cache line is not present
in any other cache. The cache line is consistent with memory and is not owned by the pro-
cessor {see “Cache Line Ownership” on page 6 in this chapter). This state will not occur
for normal operations.

Dirty Exclusive

A dirty exclusive cache line contains valid information and is not present in any other
cache. The cache line may or may not be consistent with memory and is owned by the pro-
cessor (see “Cache Line Ownership” on page 6 in this chapter). Use the W bit to determine
if the line must be written back on replacement.

Table 11.1 Cache States

Primary Cache States
Each primary data cache line is normally in one of the following states:
e invalid
e dirty exclusive
Each primary instruction cache line is in one of the following states:
e invalid
¢ valid

Cache Line Ownership

The processor is the owner of a cache line when it is in the dirty exclu-
sive state, and is responsible for the contents of that line. There can only
be one owner for each cache line.

The ownership of a cache line is set and maintained through the rules

described below.
e A processor assumes ownership of the cache line if the state of the
primary cache line is dirty exclusive.

.» A processor that owns a cache line is responsible for writing the cache
line back to memory if the line is replaced during the execution of a
Write-back or Write-back Invalidate cache instruction if the line is in
a write-back page. The Cache instruction is explained in Appendix A.

* Memory always owns clean cache lines
* The processor gives up ownership of a cache line when the state of the
cache line changes to invalid.

Therefore, based on these rules and that any valid data cache line is in

the Dirty Exclusive state (under normal operating conditions), the
processor is considered to be the owner of the cache line.
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Cache Write Policy

The R4650 processor manages its primary data cache by using either a
write-back or a write-through policy, determined by settings in the CPO
CAlg register. In a write-back cache, the data is not written back to
memory until the cache line is replaced. A write-through policy means the
store data is written to the cache and to memory. The write of the data to
memory may not occur at the same time as the write to cache due to the
write buffer.

For a write-back entry, if the cache line is valid and has been modified
(the W bit is set), the processor writes this cache line back to memory
when the line is replaced, either in the course of satisfying a cache miss
or during the execution of a Write-back or Write-back Invalidate CACHE
instruction.

For a write-through entry, whenever a store hits in the cache line, the
data is also written to memory via the write buffer. The store will not set
or clear the W bit for a write-through cache line. This allows a different
virtual address that maps to the same physical address and with a write-
back policy to set the W bit. For a miss to a write-through line, the action
taken is determined by the write-allocation policy. For a write-allocate
entry, the cache line is first retrieved from memory and the store
continues. A no write-allocate entry posts the write to the system inter-
face via the write buffer, in the same manner as an uncached write.

When the processor writes a cache line back to memory, it does not
ordinarily retain a copy of the cache line, and the state of the cache line is
changed to invalid. However, there are exceptions. For example, the
processor retains a copy of the cache line if a cache line is written back by
the Hit Write-back cache instruction. If the W bit is set, the cache line is
written back and the W bit is cleared. The processor signals this line
retention during a write by setting SysCmd(2) to a 1, as described in
Chapters 12 and 14.

Cache State Transition Diagrams

The following sections describe the cache state diagrams that illustrate
the cache state transitions for the primary cache. Figure .6 shows the
state diagram of the primary cache.

When an external agent supplies a cache line, it need not return the
initial state of the cache line, for normal operations (refer to Chapter 12
for a definition of an external agent). This is because the only read request
the R4650 should issue are for non-coherent data and the lower three
bits for the data identifier are reserved. The initial state will automatically
be set to DE by the R4650. Otherwise, the processor changes the state of
the cache line during one of the following events:

* A store to a dirty exclusive line remains in a dirty exclusive state.
¢ The state is changed to invalid for:

- for a Cache invalidate operation

- if the line is replaced
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Write hit
Read hit
S —

Index Invalidate -
Hit Invalidate

Invalid < Dirty Exclusive

Figure 11.6 Primary Data Cache State Diagram

Cache Coherency Overview

Systems using more than one master must have a mechanism to main-
tain data consistency throughout the system. This mechanism is called a
cache coherency protocol. The R4650 does not provide any hardware
cache coherency. Cache coherency must be handled with software.

Cache Coherency Attributes

Cache coherency attributes are necessary to ensure the consistency of.
data throughout the system.

Bits in the CAlg register control coherency according to the virtual
address. Specifically, the CAlg register contains 3 bits per entry that
provide two possible coherency attribute types; they are listed below and
described more fully in the following sections.

* uncached

¢ noncoherent (includes 3 attribute values)

Table 11.2 summarizes the behavior of the processor on load misses
and store misses for each of the coherency attribute types listed above.
The following sections describe in detail these coherency attribute types.

Attribute Type Load Miss Store Miss

Uncached Main memory read Main memory write

Noncoherent Noncoherent read Noncoherent read (write-allocate page)
Main memory write (no write-allocate page)

Table 11.2 Coherency Attributes and Processor Behavior

Uncached

Lines within an uncached page are never in a cache. When a virtual
address has the uncached coherency attribute, the processor issues a
doubleword, partial-doubleword, word, or partial-word read or write
request directly to main memory (bypassing the cache) for any load or
store to a location within that page.

Noncoherent

Lines with a noncoherent attribute type can reside in a cache; a load
miss causes the processor to issue a noncoherent block read request to a
location within the cached page. For a store miss to a write-allocate page,
the processor issues a noncoherent block read request to a location
within the cached page and then does the write-through. If the virtual
address has the no write-allocate attribute, a store miss will generate a
write to the memory as in the uncached case.
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Cache Operation Modes

The R4650 processor only supports the no-secondary-cache mode (only
uncached and noncoherent coherency attributes are applicable} of R4400
operation.

Cache Locking
- The R4650 implements a feature referred to as “cache locking.” That is,
the kernel may set status register control bits that inhibit the cache refill
process from displacing valid contents in set “A” of either cache. Note that
these bits do not inhibit caches from being changed by any of the
following operations or conditions:.

* cache operations

e store operations to D-cache

e if they are invalid

Caches in the IDTR4650 RISC CPU are two-way set associative, just as
they are in the Orion (R4600). Unlike the original R4600, they also
support a cache-locking feature, which can be used to lock critical
sections of code and/or data into on-chip caches for very fast access.

A cache is said to be locked when a particular piece of code or data is
loaded into the cache and that cache location will not be selected later for
refill by other data.

When To Use Cache Locking
Cache locking is useful in the following cases:
¢ a portion of code has to reside in cache permanently (e.g. time critical
. exception vectors) for real-time performance

* a given section of code is executed frequently and can fit inside the

instruction cache

s a given section of data is accessed frequently and can fit inside the

data cache (e.g. tables containing routing information in an
embedded network application)

In the R4650, both Instruction cache and Data cache are 8KB. Each
cache is two-way set associative with set A and set B. The size of each set
is 4KB. On reset, both sets A and B are unlocked. By setting the DL or IL
bit in the Status register of CPO, set A of the appropriate cache can be
prevented from being chosen for refill on a cache miss, thus effectively
locking the contents of the cache. The restriction on only set A being
lockable is only for deterministic performance.

If both sets are invalid, the CPU always chooses set A. Similarly, data
store operations to locked data update the D-cache contents; as above,
locking merely prevents the cache line contents from being replaced by
the contents of a different physical location. Otherwise, if a set is locked,
its contents will not be changed.

An invalid line in a locked set will still be chosen for refill on a cache
miss. Once refilled (and thus valid), this line will not be selected for refill
until the appropriate lock bit is reset. This understanding, along with
knowledge of Coprocessor O (CP0O) hazards, can be used to develop a small
and efficient algorithm for cache locking in the R4650.

The basic algorithm presented here consists of the following steps. Two
examples follow the steps.

1. Invalidate the cache(s).
2. Set the appropriate cache lock bit(s).
3. Load the critical code/data into the cache(s).
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Example of Data Cache Locking

Assume an example application in which there is a table that must
always be kept in cache. In the startup code, after initialization of data
structures, flushing of caches, etc., is done, the user can perform reads
through cached addresses to load the data into the data cache, and then
set the DL bit in the Status register to lock set A of the data cache.

Here is a sample code fragment for this example:

.set noreorder

jal flush_cache /* Flush caches */
nop
la 10, critical_table = /* This table should always be in cache */
i t1, table_size /* Size of table in bytes */
i t2, 0 /* Number of bytes read into cache */
1. Iw a0, 0(t0)
addiu 12, 4
bneq t2,tl, 1b /* Loop back till done */
addiu t0, 4 /* bump read address */
mfcO a0, CO_SR /* Get old SR value */
li al, SR_DL /* SR_DL = 0x00100000 */
or a0, a0, al
mtcO a0, CO_SR /* Set the Lock bit for data cache */
nop
nop
nop /* 3 nops: safety against CPO hazard */

Example of Instruction Cache Locking

Assume an example application in which there is a critical function that
must always be kept in cache. Also assume that the size of the function is
known. (If not known, you can find out the size by generating a disas-
sembly of the object file.)

In the startup code, after initializing data structures, flushing of caches,
etc., is done, you can perform the FILL operation in the CACHE instruc-
tion to fill the instruction cache with the critical function, and then set
the IL bit in the Status register to lock set A of the instruction cache.
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Here is a sample code fragment for this example:

.set noreorder

la to, 1f /* Get address of label ‘1’ */
li t1, OxA0000000
or to, tO, t0
jr to /* Uncached execution from now onwards */
nop
1: jal flush_cache
nop
la t0, func_start_addr /* Start address of critical code */
li tl, func_size /* Critical code size */
li t2,0 /* Number of words read into cache */
2: cache Fill_l, O(t0) /* Fill Operation */
addiu t2,4
bneq t2,tl, 1b /* Loop back till done */
addiu t0, 4 /* bump read address */
mfcO a0, CO_SR /* Get old SR value */
li al, SR_IL /* SR_IL = 0x00080000 */
or ~ a0, a0, al
mtcO a0, CO_SR /* Set Lock bit for instruction cache */
nop
nop
nop
nop
nop /* 5 nops: safety against CPO hazard */
la v0, 3f
jr vO
nop
3: /* Resume execution in mode as linked */

R4650 Processor Synchronization Support

In a multiprocessor system, it is essential that two or more processors
working on a common task can execute without corrupting each other’s
subtasks. Synchronization, an operation that guarantees an orderly
access to shared memory, must be implemented for a properly func-
tioning multiprocessor system. Two of the more widely used methods are
discussed in this section: test-and-set, and counter. Even though the
R4650 does not support symmetric multi-processing (SMP), these are
useful for multi-master and heterogenous multi-processing,.

Test-and-Set

Test-and-set uses a variable called the semaphore, which protects data
from being simultaneously modified by more than one processor. In other
words, a processor can lock out other processors from accessing shared
data when the processor is in a critical section, a part of program in which
no more than a fixed number of processors is allowed to execute. In the
case of test-and-set, only one processor can enter the critical section.
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Figure 11.7 illustrates a test-and-set synchronization procedure that
uses a semaphore; when the semaphore is set to O, the shared data is
unlocked, and when the semaphore is set to 1, the shared data is locked.

3 |

1. Load semaphore

2. Unlocked?
(=07)

Yes

3. Try locking
semaphore

Yes

5. Execute critical section
(Access shared data)

Y

6. Unlock semaphore

Y
Continue processing

Figure 11.7 Synchronization with Test-and-Set

The processor begins by loading the semaphore and checking to see if it
is unlocked (set to 0) in steps 1 and 2. If the semaphore is not O, the
processor loops back to step 1. If the semaphore is O, indicating the
shared data is not locked, the processor next tries to lock out any other
access to the shared data (step 3). If not successful, the processor loops
back to step 1, and reloads the semaphore.

If the processor is successful at setting the semaphore (step 4), it
executes the critical section of code (step 5) and gains access to the
shared data, completes its task, unlocks the semaphore (step 6), and
continues processing.

Counter

Another common synchronization technique uses a counter. A counter
is a designated memory location that can be incremented or decremented.

In the test-and-set method, only one processor at a time is permitted to.
enter the critical section. Using a counter, up to N processors are allowed
to concurrently execute the critical section. All processors after the Nth
processor must wait until one of the N processors exits the critical section
and a space becomes available.

The counter works by not allowing more than one processor to modify it
at any given time. Conceptually, the counter can be viewed as a variable
that counts the number of limited resources (for example, the number of
processes, or software licenses, etc.).

Figure 11.8 shows this process.
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| |

Load counter

\ /

Execute critical section

= @ B y

Yes Load counter
Try decrementing &
counter
Try incrementing

counter

No NO

Yes

Continue processing

Figure 11.8 Synchronization Using a Counter

Load Linked and Store Conditional
The R4650 instructions Load Linked (LL) and Store Conditional (SC)
provide support for processor synchronization. These two instructions
work very much like their simpler counterparts, load and store. The LL
instruction, in addition to doing a simple load, has the side effect of
setting a bit called the link bit. This link bit forms a breakable link
between the LL instruction and the subsequent SC instruction. The SC
performs a simple store if the link bit is set when the store executes. If
the link bit is not set, then the store fails to execute. The success or
failure of the SC is indicated in the target register of the store.
The link is broken upon completion of an ERET (return from exception)
instruction.
The most important features of LL and SC are that:
¢ they provide a mechanism for generating all of the common synchro-
nization primitives including test-and-set, counters, sequencers, etc.,
with no additional overhead
° when they operate, bus traffic is generated only if the state of the
cache line changes; lock words stay in the cache until some other
processor takes ownership of that cache line
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Examples Using LL and SC
Figure 11.9 shows how to implement test-and-set using LL and SC

instructions.
Load semaphore Loop: LL r2,(r1)
ORI r3,r2,1
Unlocked? BEQ r3,r2,Loop
=07?) NOP
Yes
Try locking SC r3;(r.1)
semaphore
No - BEQ r3,0,Loop
NOP
Yes '
Execute critical section
(Access shared data)
Unlock semaphore SWr2,(r1)

Figure 11.9 Test-and-Set using LL and SC

11-14




Cache Organization, Operation and Coherency , Chapter 11

Figure 11.10 shows synchronization using a counter.

Y 1
Load counter Loop1: LLr2,(r1)
No BLEZ r2,Loop1
NOP
Yes .
Try decrementing ’ SUB r3,r2,1
counter SC r3,(r1)
No
, BEQ r3,0,Loop1
NOP
Yes
Execute critical section i
*
. *
% A ;
Load counter Loop2: LL r2,(r1)
Try incrementing ADDr3,r2,1
counter sC r3,(r)
No BEQ 13,0,Loop2
NOP
Yes

Continue processing

Figure 11.10 Counter Using LL and SC
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The System interface allows the processor to access external resources
that are needed to satisfy cache misses and uncached operations, while
permitting an external agent access to some of the processor internal
resources. This chapter describes the system interface from the point of
view of both the processor and the external agent.

Terminology

The following terms are used in this chapter:

An external agent is any logic device connected to the processor over
the system interface that allows the processor to issue requests.

A system event is an event that occurs within the processor and
requires access to external system resources.

Sequence refers to the precise series of requests that a processor gener-
ates to service a system event.

Protocol refers to the cycle-by-cycle signal transitions that occur on the
system interface pins to assert a processor or external request.

Syntax refers to the precise definition of bit patterns on encoded buses,
such as the command bus.

System Interface Description
The R4650 processor supports a 64-bit address/data interface that can
construct a simple uniprocessor with main memory. The R4650 can be
configured for a 32-bit external address/data interface as well.
The System interface consists of the following buses and signals:
* 64-bit address and data bus, SysAD
¢ 8-bit SysAD check bus, SysADC (even parity only)
¢ 9-bit command bus, SysCmd
¢ Six handshake signals:
RdRdy*, WrRdy*
ExtRgst*, Release*
ValidIn*, ValidOut*
The processor uses the system interface to access external resources in
order to service processor requests such as cache misses, cache line
write-backs, write-through stores and uncached operations.

Interface Buses
Figure 12.1 shows the primary communication paths for the system

interface: a 64-bit address and data bus, SysAD(63:0), and a 9-bit
command bus, SysCmd(8:0). These SysAD and the SysCmd buses are
bidirectional; that is, they are driven by the processor to issue a processor
request, and by the external agent to issue an external request.
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A request through the system interface consists of:

¢ an address

* a System interface command that specifies the precise nature of the
request

¢ a series of data elements if the request is for a write or read response.

External Agentv v o

SysAD(63:0)

SysCmd(8:0)

Figure 12.1 System Interface Buses

Address and Data Cycles

Cycles in which the SysAD bus contains a valid address are called
address cycles. Cycles in which the SysAD bus contains valid data are
called data cycles. Validity is determined by the state of the ValidIn* and
ValidOut* signals.

The SysCmd bus identifies the contents of the SysAD bus during any
cycle in which it is valid. The most significant bit of the SysCmd bus is
always used to indicate whether the current cycle is an address cycle or a
data cycle.

¢ During address cycles [SysCmd(8) = 0], the remainder of the SysCmd

bus, SysCmd(7:0), contains a System interface command.

e During data cycles [SysCmd(8) = 1], the remainder of the SysCmd

bus, SysCmd(7:0), contains a data identifier .

Issue Cycles

The issue cycle is defined as the cycle when the external agent can
accept the address issued from the processor. There are two types of
processor issue cycles:

* processor read request issue cycles

* processor write request issue cycles.

The processor samples the signal RARdy* to determine the issue cycle
for a processor read request; the processor samples the signal WrRdy* to
determine the issue cycle of a processor write request.

As shown in Figure 12.2, RARdy* must be asserted for one clock cycle,
two cycles prior to the address cycle of the processor read request to
define the address cycle as the issue cycle (cycle 5 in Figure 12.2).
RdRdy* does not need to be asserted during the issue cycle.
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Issue

MasterClock Cycle H 1 | 2 | 3t | 4 | 5 I 6 I
SysAD Bus | >< Addr X

RdRdy" | \ /
ValidOut* | \ /

Note: RdRdy* must be sampled LOW at the end of cycle 3,
which is marked with the { symbol.

Figure 12.2 State of RARdy* Signal for Read Requests

As shown in Figure 12.3, WrRdy* must be asserted for one clock cycle,
two cycles prior to the first address cycle of the processor write request to
define the address cycle as the issue cycle (cycle 5 in Figure 12.3).
WrRdy* does not need to be asserted during the issue cycle.

Issue
MasterClockCycle || 1 | 2 |3t | 4 | 5 | & |

masterciock |\ [\ S\ S\

SysAD Bus | Addr | Data

WrRdy* | \ /
validout |\

Note: WrRdy* must be sampled LOW at the end of cycle 3,
which is marked with the 1 symbol.

Figure 12.3 State of WrRdy* Signal for Write Requests

The processor repeats the address cycle for the request (that is, asserts
the valid address and the ValidOut* signal) until the conditions for a valid
issue cycle are met. After the issue cycle, if the processor request
requires data to be sent, the data transmission begins. There is only one
issue cycle for any processor request.

The processor accepts external requests, even while attempting to issue
a processor request, by releasing the system interface to slave state in
respomnse to an assertion of ExtRgst* by the external agent.

Note that the rules governing the issue cycle of a processor request are
strictly applied to determine the action the processor takes. The
processor either:

e completes the issuance of the processor request in its entirety before

the external request is accepted, or

¢ releases the system interface to slave state without completing the

issuance of the processor request.

In the latter case, the processor issues the processor request (provided
the processor request is still necessary) after the external request is
complete. The rules governing an issue cycle again apply to the processor
request.
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Handshake Signals

The processor manages the flow of requests through the following six

control signals:

¢ RdRdy*, WrRdy* are used by the external agent to indicate when it
can accept a new read (RdRdy*) or write (WrRdy*) transaction.

* ExtRqgst*, Release* are used to transfer control of the SysAD and
SysCmd buses. ExtRgst* is used by an external agent to indicate a
need to control the interface. Release* is asserted by the processor
when it transfers the mastership of the system interface to the
external agent.

e The R4650 processor uses ValidOut* and the external agent uses
ValidIn* to indicate valid command and data on the SysCmd and
SysAD buses.

System Interface Protocols

Figure 12.4 shows the system interface operates from register to
register. That is, processor outputs come directly from output registers
and begin to change with the rising edge of MasterClock.!

Processor inputs are fed directly to input registers that latch these
input signals with the rising edge of MasterClock. This allows the system
interface to run at the highest possible clock frequency.

R4650

Outputdata

Input data

A
A

MasterClock

Figure 12.4 System Interface Register-to-Register Operation

Master and Slave States
When the R4650 processor is driving the SysAD and SysCmd buses,

the system interface is in master state. When the external agent is driving
the SysAD and SysCmd buses, the system interface is in slave state.

In master state, the processor drives the SysAD and SysCmd buses
and will assert the signal ValidOut* whenever the information on these
buses is valid. ‘

In slave state, the external agent drives the SysAD and SysCmd buses
and asserts the signal ValidIn* whenever the information on these buses
is valid.

1. MasterClock is the input clock to the processor.
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Moving from Master to Slave State
The system interface remains in master state unless one of the
following occurs:
e The external agent requests and is granted the system interface
(external arbitration).
* The processor issues a read request and performs an uncompelled
change to slave state.

External Arbitration

For the external agent to issue an external request through the system
interface, the system interface must be in slave state. The transition from
master state to slave state is arbitrated by the processor using the system
interface handshake signals ExtRgst* and Release*.

This transition is described by the following procedure:

1. An external agent signals that it wishes to issue an external request
by asserting ExtRqgst*.

2. When the processor is ready to release bus mastership and accept an
external request it asserts Release* for one cycle, which releases the
system interface from master to slave state.

3. The system interface returns to master state as soon as the external
request issue is complete.

This procedure is described in Chapter 15, “The External Request

Interface.”

Uncompelled Change to Slave State

An uncompelled change to slave state is the transition of the system
interface from master state to slave state, initiated by the processor when
a processor read request is pending. Release* is asserted automatically
after a read request. An uncompelled change to slave state occurs during
the issue cycle of a read request.

After an uncompelled change to slave state, the processor returns to
master state at the end of the next external request. This can be a read
response, or some other type of external request.

An external agent must note that the processor has performed an
uncompelled change to slave state and begin driving the SysAD bus along
with the SysCmd bus. As long as the system interface is in slave state,
the external agent can begin a single external request without arbitrating
for the system interface; that is, without asserting ExtRqst*.

After the external request, the system interface returns to master state.

Whenever a processor read request is pending, after the issue of a read
request, the processor automatically switches the system interface to
slave state, even though the external agent is not arbitrating to issue an
external request. This transition to slave state allows the external agent
to quickly return read response data.

Processor and External Requests

There are two broad categories of requests: processor requests and
external requests. These two categories are described in this section.

When a system event occurs, the processor issues either a single
request or a series of requests—called processor requests—through the
system interface, to access an external resource and service the event.
For this to work, the processor system interface must be connected to an
external agent that is compatible with the system interface protocol, and
can coordinate access to system resources.
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An external agent requesting access to a processor status register
generates an external request. This access request passes through the
system interface. System events and request cycles are shown in

Figure 12.5.
R4650 ¥ External Agent
B
Processor Requests ;
s Read ,
» Write External Requests
* Read
) » Writer
< b o Null-

/

&
¥ AT

System Events
¢ Load Miss
* Store Miss - L
» Store Hit on write-through
» Uncached Load/Store
¢ CACHE operations

Figure 12.5 Requests and System Events

Rules for Processor Requests

The following rules app