
I N T E

IDT79R4640 and
IDT79R4650

_ -.....~C processor

G RAT E D

Hardware
User's Manual

D E V ICE TEe H N a L a G Y , INC

IDT79R4640™ jIDT79R4650™
RIse Processor

Hardware User's Manual

© 1995 by Integrated Device Technology

Version 1.1

November 1995

Integrated Device Technology
2975 Stender Way

Santa Clara, CA 95054

Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without
notice, in order to improve design or performance and to supply the best possible product. lOT does not assume any respon­
sibility for use of any circuitry described other than the circuitry embodied in an lOT product. ITO makes no representations
that circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent, patent rights, or other rights of Integrated Device Technology,
Inc.

LIFE SUPPORT POLICY
Integrated Device Technology's products are not authorized for use as critical components in life sup­
port devices or systems unless a specific written agreement pertaining to such intended use is executed
between the manufacturer and an officer of lOT.
1. Life support devices or systems are devices or systems that {a} are intended for surgical implant into

the body, or (b) support or sustain life, and whose failure to perform, when properly used in accor­
dance with instructions for use provided in the labeling, can be reasonably expected to result in a sig­
nificant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform
,..o!'!ti" h.o rft~~""'~h.", ftvftft,..fft'" +ft. "ftl .~ft +hft fftn ••• " "f. +h " ~ A #11.,.: '" +"'''''''' +~ u :
... u. •• ..,""" ''-',"",~VI'U''''J t..ift.t''''''''.'''W loW "'UW~1iii '.I'tiii IUIIU.", VI "II~ III" Ii;;JWt't'''''f. Y~VI"G VI QJ-=-LtWII., VI LV Dllt::O'" .,"

safety or effectiveness.

The lOT logo is a registered trademark, and, DEenet, Double-Density, IDT/c, IDT/sim, IDT/ux, Orion, R3041 , R3051 , R3052,
R3081 , R3721 , R4400, R4600, R4640, R4650, R4700, RISCore, RISC SubSystems, and RISC Windows are trademarks of
Integrated Device Technology, Inc. MIPS is a registered trademark, and R3000, R3010, RISComputer, RISCompiler, and
RISController are trademarks of MIPS Computer Systems, Inc.

About This Manual

Integrated Device Technology, Inc.

This manual describes the operation of the IDT79R4640™ /
IDT79R4650 TM, part of the Orion family of processors.

Note: Throughout this manual, references to the IDT79R4650 or
R4650 also refer to the IDT79R4640 or R4640. The R4640 supports only
the 32-bit bus width; otherwise, the R4640 and the R4650 are identical.

Summary of Contents
Chapter 1, "Overview," contains an overview of the R4650 micropro­

cessor, including a detailed feature-by-feature comparison between the
R4000 and the R4650.

Chapter 2, "C~U Instruction Set Overview," contains an overview of
the central processing unit (CPU) instruction set. For a description of an
individual CPU instruction refer to Appendix A, "CPU Instruction Set
Details."

Chapter 3, "The CPU Pipeline," describes the basic operation of the
CPU pipeline, including descriptions of the delay instructions (instruc­
tions that follow a branch or load instruction in the pipeline), interrup­
tions to the pipeline flow caused by interlocks and exceptions, and R4650
implementation of an uncached store buffer.

Chapter 4, "Memory Management," describes the simple base­
bounds mechanism used by R4650 for virtual-to-physical address trans­
lation.

Chapter 5, "CPU Exception Processing," describes the CPU exception
processing, including a discussion of the format and use of each CPU
exception register. Also included is a description of each exception's
cause, together with the manner in which the CPU processes and services
these exceptions.

Chapter 6, "The Floating-Point Unit," describes the R4650 floating­
point unit (FPU) features, including the programming model, instruction
set and formats, and the pipeline.

Chapter 7, "Floating-Point Exceptions," describes floating point unit
(FPU) floating-point exceptions, including FPU exception types, exception
trap processing, exception flags, saving and restoring state when
handling an exception, and trap handlers for IEEE Standard 754 excep­
tions.

Chapter 8, "Processor Signal Descriptions," describes the signals
used by and in conjunction with the R4650 processor. These signals
include the System interface, the Clock/Control interface, the Interrupt
interface, and the Initialization interface.

Chapter 9, "The Initialization Interface," describes the R4650 Initial­
ization Interface, incltiding the reset signal descriptions and types, initial­
ization sequence, signals and timing dependencies, and boot modes,
which are set at initialization time.

Chapter 10, "The' Clock Interface, " 'describes the clock signals
(clocks) used in the R4650 processor, as well. as information on basic
system clocks and system timing parameters.

Chapter 11, "Cache Organization, Operation and Coherency,"
describes the on-chip cache memory, its place in the R4650 memory orga­
nization, and individual operations of the primary cache.

iii

Chapter 12, "System Interface Overview," describes the system
interface from both the processor and the external agent's point of view.

Chapter 13, "The Read Interface," discusses specifics of the · read
interface and read operations~

Chapter 14, "The Write Interface," discusses the Write protocol and
associated operations.

Chapter 15, "The External Request Interface, " discusses the
External Request protocol and associated operations.

Chapter 16, "R4650 Processor Interrupts," describes the six hard­
ware and single nonmaskable interrupts.

Chapter 17, "R4650 Error Checking," describes the Error Checking
mechanism used in the R4650 processor.

Appendix A, "CPU Instruction Set Details, " provides a detailed
deSCription on the operation of each R4650 instruction, listed alphabeti­
cally.

Appendix B, "FPU Instruction Set Details," provides a detailed
description of each floating-point unit (FPU) instruction, listed alphabeti­
cally. Following each description is a discussion of exceptions that may
result from executing the instruction.

Appendix C, "Cache Operations Timing," lists cycle operation counts
and caveats for R4650 cache operations timing.

Appendix D, "Standby Mode Operation," describes the Standby Mode
operation.

Appendix E, "Coprocessor 0 Hazards," identifies the R4650 Copro­
cessor 0 hazards.

Appendix F, "Integer Multiply Scheduling," describes the R4650
Integer Multiply Scheduling.

Where To Find More Product Information
Details about the R4640 or R4650 electrical interface can be found in

the product's data sheet. Data sheets also include packaging and pin-out
information.

For information about development tools, complementary support
chips, and how to use this product in various applications, refer to lOT's
online library of data sheets, applications notes, software reference
manuals, and the lOT Advantage Program Guides.

Your local lOT sales representative can help you identify and use these
resources.

iv

g '-

~
TABLE OF CONTENTS

Integrated Device Technology, Inc.

Overview Chapter 1
Introduction .. 1-1

Performance ... 1-1
Upward Compatibility" .. 1-1

Features .. 1-2
Device Overview .. 1-3
Pipeline Overview .. , 1-3
CPU Register Overview .. 1-4
CPU Instruction Set Overview .. 1-5

CPU Instruction Tables .. 1-6
Data Formats and Addressing .. 1-12

Coprocessors (CPO-CP2) .. 1-14
System Control Coprocessor, CPO .. 1-14

Floating-Point Coprocessor .. 1-16
Floating-Point Units ... 1-17

Virtual to Physical Address Mapping ... 1-1 7
Base Bounds Registers ... 1-19
Cache Memory ... 1-19
Instruction Cache .. 1-19
Data Cache .. 1-20

Write Buffer .. 1-20
R4650 Clocks .. 1-20
System Interface ... 1-20
Comparison ofR4650 and R4600/4700 .. 1-22

CPU Instruction Set Overview ... Chapter 2
Introduction .. 2-1
CPU Instruction Formats ... 2-1
Load and Store Instructions .. 2-2

Scheduling a Load Delay Slot ... 2-2
Defining Access 1',ypes .. 2-2

Computational Instructions ... 2-4
Operations With 32-bit Operands ... 2-4
Cycle Timing for Multiply and Divide Instructions 2-4

Jump and Branch Instructions ... 2-5
Overview of Jump Instructions ... 2-5
Overview of Branch Instructions .. 2-5

Special Instructions .. 2-5
Exception Instructions .. 2-5
Coprocessor Instructions ... 2-5

The CPU Pipeline .. Chapter 3
Introduction .. 3-1
CPU Pipeline Operation ... 3-1
CPU Pipeline Stages .. 3-2

11 - Instruction Fetch, phase one ... 3-2
21 - Instruction,Fetch, phase two ... 3-2
lR - Register Fetch, phase one ... 3-2
2R - Register Fetch, phase two ... 3-2
lA - Execution, phase one .. 3-2
2A - Execution, phase two .. 3-2
ID - Data Fetch, phase one .. 3-2
2D - Data Fetch, phase two .. 3-2
1 W - Write Back, phase one ... 3-3

)1995 Integrated Device Technology, Inc.

2W - Write Back, phase two ... 3-3
Branch Delay .. 3-4
Load Delay .. 3-4
Interlock and Exception Handling ; :.' 3-4

Exception Conditions ... 3-6
Stall Conditions ... 3-7
Slip Conditions .. 3-8

R4650 Write Buffer ... 3-9
Memory Management .. ~ Chapter 4

Introduction .. 4-1
Base Bounds Register ... 4-1
Address Spaces ; .. 4-1

Virtual Address Space .. 4-1
Physical Address Space .. 4-2
Virtual-to-Physical Address Translation ... 4-2
Virtual Address Base-Bounds .. 4-3
Operating Modes .. 4-3
User Mode Operations .. 4-4
Kernel Mode Operations ... 4-4
32-bit Kernel Mode, User Space (kuseg) ... 4-6
32-bit Kernel Mode, Kernel Space 0 (ksegO) .. 4-6
32-bit Kernel Mode, Kernel Space 1 (kseg 1) .. 4-6
32-bit Kernel Mode (kseg 2) .. 4-6

System Control Coprocessor ~ ... 4-7
CPO Registers ... 4-8
IBase Register (0) ... 4-8
IBound Register (1) .. 4-8
DBase Register (2) .. 4-9
DBound Register .. 4-9
Processor Revision Identifier (PRId) Register (15) 4-9
Config Register (16) .. 4-10
CAlg Register (17) ... 4-12
Cache Tag Registers [TagLo (28) ... 4-12
Virtual-to-Physical Address Translation Process 4-14

CPU Exception Processing Chapter 5
How Exception Processing Works .. 5-1
The Exception Processing Registers ... 5-1
IWatch Register (18) .. 5-2
DWatch Register (19) ... 5-3
Bad Virtual Address Register (BadVAddr) (8) ... 5-3
Count Register (9) .. 5-4
Compare Register (11) ... 5-4
Status Register (12) ... 5-4

Status Register Modes and Access States ... 5-6
Status Register Reset' .. 5-6

Cause Register (13) ... ; ; 5-7
Exception Program Counter (EPC) Register (14) ... 5-9
Error Checking and Correcting (ECC) Register (26)' ~ 5-9
Cache Error (CacheErr) Register (27) ; 5-10
Error Exception Program Counter (Error EPC) ... 5-11
Processor Excepti.ons .. 5-11
Processor Exception Examples ... ; 5-11

Reset Exception Process Example : ... 5-12
Cache Error Exception Process Example .. 5-12
Soft Reset and NMI Exception Process Example 5-12
Interrupt Exception Process Example .. 5-13
General Exception Process Example ; 5-13

ii

Processor Exception Vector Locations .. 5-14
Priority" of Exceptions .. 5.14
Processor Exception Descriptions .. 5-15
Reset Exception .. 5-15
Soft Reset Exception ... 5-15
Nonmaskable Interrupt (NMI) Exception .. 5-16
Address Error Exception ... 5-17
Cache Error Exception .. 5-17
Bus Error Exception .. 5-18
Integer Overflow Exception .. 5-18
Trap Exception .. 5-19
System Call Exception ... 5-19
Breakpoint Exception .. 5-21
Reserved Instruction Exception .. 5-21
Coprocessor Unusable Exception .. 5-22
Floating-Point Exception ... 5-23
Interrupt Exception ... 5-23
IWatch Exception .. 0 ••••••••••••••• 5-24
DWatch Exception ... 5-24
IBound Exception .. 5-24
DBound Exception .. 5-24
Exception Handling and Servicing Flowchart ... 5-25

The. Floating-Point Unit .. Chapter 6
Introduction .. 6-1

The R4650 Floating-Point Coprocessor ... 6-1
FPU Features .. 6-2
FPU Programming Model ... 6-2
Floating-Point General Registers (FGRs) .. 6-2
Floating-Point Registers .. 6-3
Floating-Point Control Registers .. 6-3

Implementation and Revision Register, (FCRO) 6-4
Control/Status Register (FCR31) .. 6-5
Accessing the Control/Status Register ... 6-6
IEEE Standard 754 .. 6-6
Control/Status Register FS Bit ... 6-6
Control/Status Register Condition Bit .. 6-6
Contol/Status Register Cause, Flag and Enable Fields 6-7
Cause Bits ... 6-7
Enable Bits .. 6-7
Flag Bits .. 6-7
Control/Status Register Rounding Mode Control Bits 6-7

Floating-Point Formats .. 6-8
Binary Fixed-Point Format .. 6-9
Floating-Point Instruction Set Overview ... 6-10

Key to Formats in Table 6.9 through Table 6.12 6-10
Floating-Point Load, Store and Move Instructions 6-12
Transfers Between FPU and Memory .. 6-12
Transfers Between FPU and CPU ... 6-12
Load Delay and Hardware Interlocks .. 6-12
Data Alignment .. 6-12
Endianness .. 6-12
Floating-Point Conversion Instructions .. 6-13
Floating-Point Computational Instructions ... 6-13
Branch on FPU Condition Instructions ... 6-13
Floating-Point Compare Operations .. 6-13

FPU Instruction Pipeline Overview ... 6-14
Instruction Execution .. 6-14

iii

Instruction' Execution Cycle Time ... 6-14
Instruction Scheduling Constraints .. 6-15
FPU Multiplier Constraints .. 6-15
FPU Adder Constraints .. ' .. ' 6-15
Resource Scheduling Rules .. 6-15

Floating-Point Exceptions .. Chapter 7
Introduction .. 7-1
Exception 1',ypes .. 7-1
Exception Trap Processing .. 7-2
Flags .~ ... 7-2
FPU Exceptions ... 7-:3
Inexact Exception (I) .. 7-4
Invalid Operation Exception (V) ... 7-4
Division-by-Zero (Z) ... 7-4
Overflow Exception (0) .. 7-5
Underflow Exception (U) .. 7-5
Unimplemented Instruction Exception ... 7-5
Saving and Restoring State .. 7-6
Trap Handlers for IEEE Standard 754 Exceptions ... 7-6

Processor Signal Descriptions ... Chapter 8
Introduction .. 8-1
System Interface Signals ... 8-2
Clock/Control Interface Signals ... 8-3
Interrupt Interface Signals .. 8-4
Initialization Interface Signals ... 8-4

The Initialization Interface Chapter 9
Introduction .. 9-1
Functional Overview .. 9-1
Reset and Initialization Signal Descriptions ... 9-1
Power-On Reset ... 9-3

Cold Reset ... 9-3
Warm Reset ... 9-3

Initialization Sequence .. 9-3
Boot-Mode Settings ... 9-6

The Clock Interface Chapter 10
Introduction .. 10-1
Signal Terminology .. 10-1
Basic System Clocks ... 10-2

MasterClock ... 10-2
PClock ... 10-2

System Timing Parameters .. 10-3
Alignment to MasterClock .. 10-3
Phase-Locked Loop (PLL) .. 10-3

PLL Components and Operation .. 10-3
Passive Components .. 10-3

Connecting the R4650 to an External Agent .. 10-4
Cache Organization, Operation and Coherency ... Chapter 11

Introduction .. : 11-1
Memory Organization .. 11-1
Overview of Cache Operations ... 11-2
R4650 Cache Description .. 11-2

Cache Line Size ... 11-2
Cache Organization and Accessibility ... 11-3
Organization of the Primary Instruction Cache (I-Cache) 11-3
Organization of the Primary Data Cache (D-Cache) 11-4
Accessing Primary Caches .. 11-5

Cache States ... 11-5
Primary Cache States ... 11-6

iv

Cache Line Ownership .. 11-6
Cache Write Policy .. 11-7
Cache State Transition Diagrams .. 11-7
Cache Coherency Overview .. 11-8

Cache Coherency Attributes ... 11-8
Uncached .. 11-8
Noncoherent .. 11-8
Cache Operation Modes ... 11-9

Cache Locking ... 11-9
When to use Cache Locking ... 11-9
Example of Data Cache Locking ... 11-10
Example of Instruction Cache Locking ... 11-10

R4650 Processor Synchronization Support .. 11-11
Test-and-Set .. 11-11
Counter ... 11-12
Load Linked and Store Conditional .. 11-13
Example Using LL and SC .. 11-14

System Interface Overview 00 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0 0 0 0 0 Chapter 12
Introduction .. 12-1
Terminology- .. 12-1
System Interface DeSCription ... 12-1

Interface Buses .. 12-1
Address and Data Cycles ... 12-2
Issue Cycles ... 12-2
Handshake Signals .. 12-4

System Interface Protocols .. 12-4
Master and Slave States ... 12-4
Moving from Master to Slave States .. 12-5
External Arbitration ... 12-5
Uncompelled Change to Slave States .. 12-5

Processor and External Requests ... 12-5
Rules for Processor Requests ... 12-6
Processor Requests .. 12-7
Processor Read Requests ... 12-8
Processor Write Requests ... 12-8

External Requests ... 12-9
External Read Request ... 12-10
External Write Requests ... 12-10

System Interface Endianness .. 12-10
System Interface Cycle Time .. 12-10

Release Latency ... 12-11
64-Bit System Interface Addresses .. 12-11

Addressing Conventions for 64-Bit Wide Interface 12-11
32-Bit System Interface Addresses .. 12-12

Addressing Conventions for 32-Bit Wide Interface 12-12
The Read Interface 00 0 0 0 0 o. 0 0 0 0 00 0 00000000000000000000.00000 Chapter 13

Introduction .. 13-1
Read Response .. 13-1
Handling Requests .. 13-2

Load Miss .. 13-2
Store Miss .. 13-2
Store Hit .. 13-3
Uncached Loads .. 13-3
CACHE Operations .. ~ 13-4
Load Linked/ Store Conditional Operations ... 13-4

Processor Read Protocols ... 13-5
Processor Read Requests ... 13..:.5

v

Processor Read Request Protocol Steps .. 13-6
External Instruction Read Response Time ... 13-7

Instruction Read Latency Steps for System Clock 13-7
Note that: ... ' 13-8
Example of Instruction Block Read With Zero Wait State 13-8

External Data Read Response Time ... 13-8
Data Read Latency Steps for System Clock ... 13-9
Note the Following: .. 13-9
Example of Data Single Read With Zero Wait State 13-9
External Cycles for Read Latency ... 13-10

Read Response Protocol .. 13-11
Data Read Control ... 13-13

Read Data Pattern .. 13-13
64-Bit and 32-Bit Bus Modes .. 13-14
64-Bit Bus Mode ; ... 13-14

64-Bit Bus Mode Block read Operation .. 13-15
64-Bit Bus Mode Single (Uncached) Read Operation 13-15

32-Bit Bus Mode ... 13-16
32-Bit Bus Mode Block Read Operation ... 13-16
32-Bit Bus Mode Single (Uncached) Read Operation 13-17

Subblock Ordering .. 13-17
Example of Sequential Ordering ... 13-18
Examples of Subblock Ordering ... 13-18
Generating Subblock Order of Words ... 13-20

System Interface Commands and Data Identifiers .. 13-21
Command and Data Identifier Syntax .. 13-21
System Interface Command Syntax .. 13-21
Read Requests ... 13-22
System Interface Data Identifier Syntax .. 13-23
Noncoherent Data .. 13-24
Data Identifier Bit Definitions ... 13-24

The Write Interface Chapter 14
Introduction .. 14-1
Processor Write Protocols .. 14-1
Processor Write Request Protocol ... 14-2
Processor Single Write Requests .. 14-2

R4000-Compatible Write Mode ... 14-3
Write Reissue ... 14-4
Pipelined Write ... 14-4

Processor Block Write Request .. 14-5
Write Data Transfer Patterns ' .. 14-5

Processor Request and Flow Control ... ; 14-6
64-Bit and 32-Bit Bus Modes .. 14-7
64-Bit Bus Mode ... 14-7

64-Bit Bus Mode Block Write Operation ... 14-7
64-Bit Bus Mode Single (Uncached) Write Operation ; 14-8
R4000-Compatible Write Mode ... 14-8
Write Reissue ... 14-9
Pipelined Write ... 14-9

32-Bit Bus Mode ... 14-10
32-Bit Bus Mode Block Write Operation ... 14-10
32-Bit Bus Mode Single (Uncached) Operation 14-11
R4000-Compatible Write Mode ... 14-11
Write Reissue ... 14-12
Pipelined Write ... 14-13

Sequential Ordering .. 14-13
Example of Sequential Ordering ... 14-14

vi

System Interface Commands and Data Identifiers .. 14-16
Command and Data Identifier Syntax .. 14-17
System Interface Command Syntax .. 14-17

Write Requests ... 14-18
The External Request Interface .. Chapter 15

Introduction ... 15-1
External Read Request .. 15-2
External Write Request .. 15-2
Read Response ... 15-2

Processor and External Request Protocols ... 15-3
External Request Protocols ... 15-3

External Arbitration Protocol .. 15-4
External Read Request Protocol ~ .. 15-5
External Null Request Protocol ... 15-6
External Write Request Protocol ... 15-7

Read Response Protocol .. 15-8
System Interface Commands and Data Identifiers .. 15-8

Command and Data Identifier Syntax .. 15-8
System Interface Command Syntax .. 15-9
Null Requests .. 15-9
System Interface Data Identifier Syntax .. 15-10
Noncoherent Data .. 15-10
Data Identifier Bit Definitions ... 15-10

System Interface Addresses ... 15-12
Addressing Conventions ... 15-12

Processor Internal Address Map .. 15-12
R4650 Processor Interrupts .. Chapter 16

Introduction .. 16-1
Hardware Interrupts ... 16-1
Nonmaskable Interrupt (NMI) .. 16-1
Asserting Interrupts .. 16-1

R4650 Error Checking .. Chapter 17
Introduction .. 17-1
Error Checking in the Processor .. 17-1

1YPes of Error Checking ... 17-1
Pari1:)r Error Detection .. 17-1
Error Checking Operation ; .. 17-2
System Interface .. 17-2
System Interface Command Bus .. 17-2

Summary of Error Checking Operations .. 17-3
CPU Instruction Set Details .. Appendix A

Introduction .. A-I
Instruction Classes ... A-I
Instruction Formats .. A-2
Instruction Notation Conventions .. A-2

Instruction Notation Examples ... A-4
Load and Store Instruction .. A-4
Jump and Branch Instructions ... A-5
Coprocessor Instructions ... A-5
System Control Coprocessor (CPO) Instructions .. A-6
CPU Instruction Opcode Bit Encoding ... A-154

FPU Instruction Set Details ... Appendix B
Introduction .. B-1
Instruction Formats .. B-1

Floating-Point Loads. Stores. and Moves .. B-3
Floating-Point Operations .. B-4

Instruction Notation Conventions .. B-4
Instruction Notation Examples ... B-4

vii

Load and Store Instructions .. B-5
Computational Instructions ... B-6
FPU Instruction Opcode Bit Encoding ... B-46

Cache Operations Timing ... Appendix C
Introduction .. C-1

Caveats about Cache Operations .. C-l
Cache Operations Table ... C-1
Fill_I Equation Definitions .. C-3

Standby Mode Operation .. Appendix D
Entering Standby Mode ... D-1

Coprocessor 0 Hazards 0 •• 000 •••••••••••• 0 ••••••••••••••••••• 0 ••••••••••••••••••• 0 •••• 00 •• 0 •••• 0 ••••• Appendix E
Introduction .. E-1
List of Hazards .. E-1

Integer Multiply Scheduling ... 0 •• 0 ••••••••••••• 0 ••••••••••• 0 •••• 0 •••••••••••••• 0.0 ••••••• 0 •••• 00 •••••••• Appendix: F
Integer Multiply Scheduling ... F-1

viii

i'
J

\ tit LIST OF TABLES
-

Integrated Device Technology. Inc.

Table No.
Table 1.1
Table 1.2

Table 1.3
Table 1.4
Table 1.5
Table 1.6
Table 1.7
Table I.S
Table 1.9
Table 1.10
Table 1.11
Table 1.12
Table 1.13
Table 1.14
Table 2.1
Table 2.2
Table 3.1
Table 3.2
Table 3.3
Table 4.1
Table 4.2
Table 4.3
Table 4.4
Table 4.5
Table 4.6
Table 4.7
Table 4.S
Table 4.9
Table 4.10
Table 4.11
Table 5.1
Table 5.2
Table 5.3
Table 5.4
Table 5.5
Table 5.6
Table 5.7
Table 5.S
Table 5.9
Table 5.10
Table 5.11
Table 5.12
Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5
Table 6.6
Table 6.7

Table Title Page
Instruction Set: MIPS I/MIPS 2/ MIPS 3 Load and Store Instructions 1-6
CPU instruction Set: MIPS I/MIPS 2/MIPS 3 Arithmetic Instructions
(ALU Intermediate) .. 1-7
CPU Instruction Set: Arithmetic (3-0perand, R-Type) .. 1-7
CPU Instruction Set: MIPS 1, MIPS 2, MIPS 3 Multiply and Divide Instructions ... I-S
CPU Instruction Set: Jump and Branch Instruction .. 1-9
CPU Instruction Set: Shift Instructions ... 1-10
Instruction Set: Coprocessor Instructions ... 1-10
CPU Instruction Set: Special Instructions .. 1-11
MIPS 2/MIPS 3 Exception Instructions ... 1-11
R4650 CPO Instructions .. 1-11
System Control Coprocessor (CPO) Register Definitions 1-16
Floating-Point Operation ... 1-17
Mode Virtual Addressing (32-bit mode) .. I-IS
System Interface Comparison Between R4600/R4700 PC and R4650 1-22
Byte Access within a Doubleword .. 2-3
R4650 Integer Multiply Operation ... 2-4
Correspondence of a Pipeline Stage to Interlock Condition 3-5
Pipeline Exceptions ... 3-6
Pipeline Interlocks .. 3-6
User Mode Addressing .. 4-4
u32-Bit Kernel Mode Segments ... 4-6
CPO Registers .. 4-7
IBase Register Field Descriptions .. 4-S
IBound Register Field Descriptions ... 4-S
DBase Register Field Descriptions ... 4-9
DBound Register Field Descriptions .. ~.4-9
PRId Register Fields .. 4-10
Config Register Fields .. 4-11
CAlg Register Field Descriptions .. 4-12
Cache Tag register Fields .. 4-13
CPO Exception Processing Registers .. 5-2
IW atch Register Fields ... 5-2
DWatch Register Fields ... 5-3
Status Register Fields ... 5-5
Cause Register Fields .. 5-7
Cause Register· ExcCode Field ... 5-S
ECC Register Fields .. 5-9
CacheErr Register Fields ... 5-10
Exception Vector Base Addresses .. 5-14
Exception Vector Offsets ... 5-14
Exception Priority" Order .. 5-14
List of Exception Flowcharts ... 5-25
Floating-Point Control Register ASSignments ... 6-4
FCRO Fields .. 6-4
Contol/Status Register Fields ... 6-5
Rounding Mode Bit Decoding .. 6-S
Equations for Calculating Values in Single-Precision Floating-Point Format 6-9
Floating-Point Format Parameter Values ... 6-9
Minimum and Maximum Floating-Point Values ... 6-9

ix

Table 6.8
Table 6.9
Table 6.10
Table 6.11
Table 6.12
Table 6.13
Table 6.14
Table 7.1
Table 7.2
Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5
Table 8.6
Table 8.7
Table 9.1
Table 9.2
Table 11.1
Table 11.2
Table 12.1
Table 13.1
Table 13.2
Table 13.3
Table 13.4
Table 13.5
Table 13.6
Table 13.7
Table 13.8
Table 13.9
Table 13.10
Table 13.11
Table 13.12
Table 13.13
Table 13.14

Table 13.15
Table 13.16
Table 13.17
Table 13.18
Table 14.1
Table 14.2
Table 14.3
Table 14.4
Table 14.5
Table 14.6
Table 14.7
Table 14.8
Table 14.9

Table 15.1
Table 15.2
Table 15.3
Table 15.4
Table 15.5
Table 17.1
Table 17.2
Table A.l

Binaty Fixed-Point Value Fields ... 6-10
FPU Instruction Summaty: Load, Move and Store Instructions 6-10
FPU Instruction Summaty: Conversion Instructions .. 6-11
FPU. Instruction Summaty: Computational Instructions , ..•................................... 6-11
FPU Instruction Summary: Compare' and Branch instructions 6-12
Mnemonics and Definitions of Compare Instruction Conditions 6-13
Floating-Point Operation Latencies .. 6-15
Default FPU Exception Actions .. 7-3
FPU Exception-Causing Conditions ... 7-3
System Interface Signals in 64-Bit Mode ... 8-2
System Interface Signals in 32-Bit System interface Mode 8-3
Clock/Control Interface Signals .. 8-3
Interrupt Interface Signals .. 8-4
Initialization Interface Signals .. ~ 8-4
R4650 Processor Signal Summaty ... 8-5
R4650 Processor Signal Summary ... 8-6
R4650 Processor Signal Summary ... 9-2
Boot-Mode Settings ... 9-7
Cache States ... 11-6
Coherency Attributes and Processor Behavior ... 11-8
Release Latency for External Requests .. 12-11
Load Miss to Primary Cache .. 13-2
Store Miss to Primary Cache ... 13-3
System Interface Requests .. 13-5
Steps for Single Read with Zero Wait States .. 13-8
Steps for Data Block Read with Zero Wait States ... 13-9
Sequence of Doublewords Transferred Using Subblock Ordering: Address 102 13-19
Sequence of Doublewords Transferred Using Subblock Ordering: Address 112 13-20
Sequence of Doublewords Transferred Using Subblock Ordering: Address 012 13-20
Sequence of Words Transferred Using Subblock Ordering: Address 0102 13-20
Sequence of Words Transferred Using Subblock Ordering: Address 0112 13-21
Encoding of SysCmd (7:5) for System Interface Commands 13-22
Encoding of SysCmd (4:3) for Read Requests ... 13-23
Encoding of SysCmd (2:0) for Block Read Requests ... 13-23
Doubleword, Word, or Partial-Word Read Request Data Size Encoding of

SysCmd (2:0) .. 13-23
Processor Data Identifier Encoding of SysCmd (7:3) ... 13-24
External Data Identifier Encoding of SysCmd (7:3) .. 13-25
Partial Word Transfer Byte Lane Usage - 64-Bit Mode ... 13-26
Partial Word Transfer Byte Lane Usage - 32-Bit Mode ... 13-27
System Interface Requests .. 14-1
Transmit Data Rates and Patterns in 64-Bit Mode ... 14-6
Transmit Data Rates and Patterns in 32-Bit Mode ... 14-6
Partial Word Transfer Byte Lane Usage ... 14-15
Partial Word Transfer Byte Lane Usage - 32-Bit Mode ... 14-16
Encoding of SysCmd (7:5) for System Interface Commands 14-17
Write Request Encoding of SysCmd (4.3) ... 14-18
Block Write Request Encoding of SysCmd (2:0) ... 14-18
Doubleword, Word, or Partial-Word Write Request Data Size Encoding of

SysCmd (2:0) .. 14-19
System Interface Requests .. 15-3
Encoding of SysCmd (7:5) for System Interface Commands 15-9
External Null Request Encoding of SysCmd (4:3) ... 15-9
Processor Data Identifier Encoding of SysCmd (7:3) ... 15-11
External Identifier Encoding of SysCmd (7:3) ... 15-11
Error Checking and Correcting Summary for Internal Transactions 17-3
Error Checking and Correcting Summaty for External Transactions 17-3
CPU Instruction Operation Notations .. A-3

x

TableA.2
TableA.3
TableA.4
Table B.l
Table B.2
Table B.3
Table B.4
Table B.5
Table C.l
Table C.2
Table F.l

Load and Store Common Functions .. A-4
Access Type·Specifications for Load/Stores ... A-5
R4600/R4700 Opcode Bit Encoding .. A-l54
Valid FPU Instruction· Formats .. B-2
logical Negation of Predicates by Condition True/False .. B-3
Load and Store Common Functions .. B-5
Format Field Decoding .. B-7
Floating-Point Instructions and Operations ... B-8
Primary Data Cache Operations .. C-2
Primary Instruction Cache Operations .. C-3
Integer Multiply and Divide Performance ... F-2

xi

xii

LIST OF FIGURES

Integrated Device Technology. Inc.

Figure No.
Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8
Figure 1.9
Figure 1.10
Figure 1.11
Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16

Figure Title Page
R4650 Block Diagram ... 1-3
R4650 CPU Register .. 1-4
CPU Instruction Formats .. 1-5
Big-Endian Byte Ordering ... 1-12
Little-Endian Byte Ordering .. 1-12
Little-Endian Data in a Doubleword .. 1-13
Big-Endian Data in a Doubleword ... 1-13
Big-Endian Misaligned Word Addressing ... 1-14
Little-Endian Misaligned Word Addressing .. 1-14
R4650 CPO Registers ... 1-15
'Typical System Block Diagram .. 1-21
CPU Instruction Formats .. 2-1
Instruction Pipeline Stages .. r ••••••••••••••••••••••••••••••••••• 3-1
CPU Pipeline Activities .. 3-3
CPU Pipeline Branch Delay ... 3-4
CPU Pipeline Load Delay ... 3-4
Exception Detection .. 3-7
Data Cache Miss ... 3-8
Instruction Cache Miss ... 3-9
Overview of R4650 Virtual-to-Physical Address Translation 4-2
32-Bit Virtual Address Translation .. 4-3
User Mode Virtual Address Space .. 4-4
Kernel Mode Address Space .. 4-5
IBase Register ... 4-8
IBound Register .. 4-8
DBase Register ... 4-9
DBound Register ... 4-9
Processor Revision Identifier Register Format .. 4-9
Config Register Format .. 4-10
CAlg Register .. 4-12
TagLo Register (P-cache) Format ... 4-13
Base-Bounds Address Translation .. 4-14
!Watch Register Format ... 5-2
DWatch Register Format ... 5-3
BadVAddr Register Format .. 5-3
Count Register Format .. 5-4
Compare Register Format .. 5-4
Status Register' ... 5-4
Cause Register Format .. 5-7
EPC Register Format ... 5-9
ECC Register Format .. 5-9
CacheErr Register Format ... 5-10
ErrorEPC Register Format ... 5-11
Reset Error Exception ... 5-12
Cache Error Exception Processing ... 5-12
Soft Reset and NMI Exception Processing .. 5-12
Interrupt Exception Processing ... 5-13
General Exception Processing (Except Reset, Soft Reset, NMI and Cache Error) ... 5-13

xiii

Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 7.1
Figure 8.1
Figure 9.1
Figure 9.2
Figure 9.3
Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 11.1
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Figure 11.8
Figure 11.9
Figure 11. 10
Figure 12.1
Figure 12.2
Figure 12.3
Figure 12.4
Figure 12.5
Figure 12.6
Figure 12.7
Figure 12.8
Figure 12.9
Figure 12.10
Figure 13.1
Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5

Figure 13.6
Figure 13.7
Figure 13.8

Figure 13.9
Figure 13.10
Figure 13.11
Figure 13.12

General exception Handler (HW) .. 5-26
General Exception Servicing Guidelines (SW) .. 5-27
Cache Error Exception Handling (HW) and Servicing Guideline (SW) 5-28
Reset, Soft Reset and NMI Exception Handling (HW) arid ServiCing

Guidelines (SW) .. 5-29
FPU Functional Block Diagram ... 6-1
FPU Registers ... 6-3
Implementation/ReviSion Register ... 6-4
FP Control/Status Register Bit ASSignments ... 6-5
Control/Status Register Cause, Flag and Enable Fields 6-6
Single-Precision Floating-Point Format .. 6-8
BinaIY Fixed-Point Format .. 6-10
FPU Instruction Pipeline ' .. 6-14
Control/Status Register Exception/Flag/Trap/Enable Bits 7-2
R4650 Processor Signals ... 8-1
Power-On Reset ... 9-4
Cold Reset .. 9-5
Warm Reset .. : 9-5
Signal Transitions ... 10-1
Clock -to-Q Delay ... 10-1
Processor Clocks, MasterClock-to-PClock Multiply by 2 10-2
PLL Passive Components .. 10-4
R4650 Processor Sytem .. 10-5
Logical Hierarchy of Memory ... 11-1
Cache Support in the R4650 ... 11-2
R4650 Primary I-Cache Line Format ... 11-4
R4650 8-Word Primary Data Cache Line Format ... 11-5
Primary Cache Data and Tag Organization .. 11-5
Primary Data Cache State Diagram ... 11-8
Sychronization with Test-and-Set .. 11-12
Sychronization Using a Counter .. 11-13
Test-and-Set using LL and SC ... 11-14
Counter using LL and SC .. 11-15
System Interface Buses ... 12-2
State of RdRdy* Signal for Read Requests ... 12-3
State of WrRdy* Signal for Write Requests ... 12-3
System Interface Register-to-Register Operation .. 12-4
Requests and System Events .. 12-6
Back-to-Back Write Cycle Timing (R4000-compatible mode) 12-7
Processor Requests .. 12-7
Processor Request ... 12-8
External Requests .. : .. 12-9
External Request .. 12-9
Read Response .. 13-1
Processor Read Request Protocol ... 13-7
Uncached Read - External Cycles .. 13-10
Processor Read Cycle .. 13-10
Processor Word Read Request Followed by a Word Read Response

(64-bit bus interface) ... 13-12
Block Read Response With Zero Wait State (64-bit bus interface) 13-12
Block Read Transaction With One Wait State (64-bit bus interface) 13-13
Read Response, Reduced Data Rate, System Interface in Slave State

(64-bit bus interface) ... 13-14
Block Read Transaction With One Wait State .. 13-15
64-Bit Uncached Read - External Cycles ... 13-15
Block Read Transaction With One Wait State .. 13-16
32-Bit Bus Mode Uncached Read for Single Word .. 13-17

xiv

Figure 13.13
Figure 13.14
Figure 13.15
Figure 13.16
Figure 13.17
Figure 13.18
Figure 13.19
Figure 14.1
Figure 14.2
Figure 14.3
Figure 14.4
Figure 14.5
Figure 14.6

Figure 14.7
Figure 14.8
Figure 14.9
Figure 14.10
Figure 14.11
Figure 14.12
Figure 14.13
Figure 14.14
Figure 14.15
Figure 14.16
Figure 14. 17
Figure 14.18
Figure 15.1
Figure 15.2
Figure 15.3
Figure 15.4
Figure 15.5
Figure 15.6
Figure 15.7
Figure 15.8
Figure 15.9
Figure 15.10
Figure 16.1
Figure 16.2
Figure 16.3
Figure 16.4
Figure A.1
Figure B.1
Figure B.2
Figure B.3
Figure D.1

32-Bit Bus Mode Uncached Read for Double Word .. 13-17
Retrieving a Data Block in Sequential Order .. 13-18
Retrieving Data in a Subblock Order ... 13-18
Retrieving Data in a Subblock Order ... 13-19
System Interface Command Syntax Bit Definition ... 13-22
Read Request SysCmd Bus Bit Definition .. 13-22
Data Identifier SysCmd Bus Bit Definition ... 13-23
Processor Noncoherent Word Write Request Protocol ... 14-2
R4000 Compatible Write Mode .. 14-3
Write Reissue .. 14-4
Pipelined Writes .. 14-4
Processor Noncoherent Block Write Request Protocol .. 14-5
Two Processor Write Requests. Second Write Delayed for the Assertion

ofWrRdy* : .. 14-7
Processor Noncoherent Block Write Request Protocol .. 14-8
R4000 Compatible Write Mode .. 14-8
Write Reissue .. 14-9
Pipelined Notes ... ~ ... 14-10
Processor Noncoherent Block Write Request Protocol .. 14-11
R4000 Compatible Write Protocol .. 14-12
Write Reissue .. 14-12
Pipelined Writes .. 14-13
Transferring a Data Block in Sequential Order .. 14-14
Transferring Data in a Subblock Order .. 14-14
System Interface Command Syntax Bit Definition ... 14-17
Write Request SysCmd Bus Bit Definition ... 14-18
External Requests ... 15-1
External Request .. 15-1
Read Response ... 15-3
Arbitration Protocol for External Requests ... 15-4
External Read Request. System Interface in Master State 15-6
System Interface Release External Null Request .. 15-7
External Write Request. with System Interface Initially in Master State 15-8
System Interface Command Syntax Bit Definition ... 15-9
Null Request SysCmd Bus Bit Definition ... 15-9
Data Identifier SysCmd Bus Bit Definition ... 15-10
Interrupt Register Bits and Enables .. 16-1
R4650 Interrupt Signals .. 16-2
R4650 Monmaskable Interrupt Signals .. 16-2
Masking of the R4650 Interrupts ... 16-3
CPU Instruction Formats .. A-2
Load and Store Instruction Format ... B-5
Computational Instruction Format .. B-6
Bit Encoding for FPU Instructions ... B-46
Standby Mode Operation ... D-2

xv

Overview Chapter 1

Integrated Device Technology, Inc.

Introduction
The IOT79R4640™ /IOT79R4650™ is a low-cost member of the lOT

Orion family that is targeted to a variety of performance-hungry
embedded applications. The R4650 continues the Orion tradition of high­
performance through high-speed pipelines, high-bandwidth caches and
bus interface, 64-bit architecture, and careful attention to efficient
control. The R4650 reduces the cost of this performance-relative to the
R4600-by removing functional units frequently not required for many
embedded applications, such as double-precision floating point arith­
metic and the Transition Lookaside Buffer (TLB).

Note: Throughout this manual, references to the IOT79R4650 or
R4650 also refer to the IOT79R4640 or R4640. The R4640 is a device
that only supports the 32-bit bus width; otherwise, the R4640 and the
R4650 are identical.

The R4650 adds features relative to the R4600, reflective of its target
applications. These features enable system cost reduction (e.g. optional
32-bit system interface) as well as higher performance for certain types of
systems (such as cache locking, improved real-time support, and integer
digital signal processing (DSP) capability).

The R4650 supports a wide variety of embedded processor-based appli­
cations, such as games systems, multi-media functions, internetworking/
data communications eqUipment, and office networking systems.
Upwardly software-compatible with the R30xx RISController family and
bus and upwardly software-compatible with the lOT Orion family, the
R4650 will serve in many of the same applications. In addition, the R4650
will support applications that reqUire DSP functions.

Performance
The R4650 brings Orion performance levels to lower cost systems.

Orion performance is preserved by retaining large on-chip caches that are
two-way set associative, a streamlined high-speed pipeline, high-band­
width, 64-bit execution. and facilities such as early restart for data cache
misses. These techniques combine to allow the system designer over
2GB/sec aggregate internal bandwidth. 533 MB/sec bus bandwidth, 175
Ohrystone MIPS. 44MFlops .. and 66.7 M multiply-add/second (all at 133
MHz).

Upward Compatibility
The R4650 provides complete upward application-software compati­

bility with the IOT79R3000™ family of microprocessors, including the lOT
RISController™79R3041 TM, 79R3051 ™ /79R3052 TM, 79R3071 ™ /79R3081 TM.

79R4600 TM. and the 79R4 700 ™ families of microprocessors. An array of
tools facilitates the rapid development of R4650-based systems, allowing
a wide variety of customers to take advantage of the processor's high­
performance capabilities while maintaining short time-to-market goals.

The 64-bit computing capability of the R4650 permits access to perfor­
mance levels that were previously limited by the lower bandwidth and bit­
manipulation rates inherent in 32-bit architectures.

1 - 1

Overview Chapter 1

For example, the R4650 can perform loads and stores from cached
memory at the rates of 8-bytes every clock cycle, doubling the bandwidth
of an equivalent 32-bit processor. This ability-coupled with the high
clock. rate for the R4650 pipeline-obtains new levels of performance from
embedded systems.

A summary of features for the R4650 follows. For a detailed feature-by­
feature comparison between the R4000 and the R4650, refer to
Table 1.14.

Features
• High-performance embedded 64-bit microprocessor

- 64-bit integer operations
- 64-bit registers
- 80MHz, 100MHz, 133MHz operation frequency
- 5V and 3.3V versions

• High-performance DSP capability
- 66.7 Million Integer Multiply-Accumulate Operations/sec @ 133

MHz
_ - 44 MFlops floating point operations @ 133MHz

• High-performance microprocessor
- 66.7 M Mul-Add/second at 133MHz
- 44 MFLOP/s at 133MHz
- >300,000 dhrystone (2.1)/sec capability at 133MHz

(175 dhrystone MIPS)
• High level of integration

- 64-bit, 175 MIPS integer CPU
- 44MFlops Single precision floating-point unit
- 8KB instruction cache; 8KB data cache
- Integer DSP/multiply unit with 66.7M Mul-Add/sec

• Low-power operation
- Less than 2W peak internal power at 100MHz
- Active power management powers-down inactive units
- Standby mode power consumption <200mW

• Upward software compatible with IDT RISController™ Family
• Large, efficient on-chip caches

- Separate 8kB Instruction and 8kB Data caches
- Over 1500MB/sec bandwidth from internal caches
- 2-set associative
- Write-back and write-through support
- Cache locking to facilitate deterministic response

• Bus compatible with R4600 /R4 700 Orion family
- System interfaces to 67 MHz, provides bandwidth up to 533 MB/S
- Direct interface to 32-bit wide or 64-bit wide systems
- Synchronized to external reference clock for multi-master opera-

tion
• Improved real-time support

- Fast interrupt decode
- Optional cache locking

1-2

Overview Chapter 1

Device Overview
The R4650 has a level of integration designed for high-performance and

high-bandwidth computing. Key elements of the R4650 are illustrated
below. with an overview of these features following. More detailed infor­
mation will be presented in subsequent chapters.

Figure 1.1 presents a block level representation of the R4650's func­
tional units.

133 MIPS 64-bit Orion CPU System Control Coprocessor 44MFLOPS Single-Precision FPA

Address Translation!
Register file Cache Attribute Control FP register file

Adder e Pack/Unpack e c
Load aligner C Exception Management 0

0
0 Functions CD 0 .: FP AddlSub/Cvt/

Store Aligner CD Ci Div/Sqrt .E Co
Ci

~~ a: Co
Logic Unit a:

High-Perfonnance
FP Multiply

Integer MultiplylDSP

a J~ ~ ~ Jl
Control Bus "

17 Ji , r
Data Bus

Instruction Bus n , ..

+
Instruction Cache

Set A
(Lockable)

Instruction Cache
Set B

Jl
H - ... -- -

Data Cache

" " " SetA
(Lockable)

32-/64-bit
Synchronized

Data Cache
Set B

System Interface

Figure 1.1 R4650 Block Diagram

Pipeline Overview
The R4650 implements a 5-stage pipeline similar to the ID179R3000

and the IDT79R4600 /R4 700. The simplicity of this pipeline allows the
R4650 to be a lower cost. lower powered processor than super-scalar or
super-pipelined processors. Unlike superscalar processors. applications
that have large data dependencies or require a great deal of load/ stores
can still achieve levels close to the peak performance of the processor.

Refer to Chapter 3 for a detailed discussion of the CPU pipeline opera­
tion. including deSCriptions of the instruction latencies. interruptions to
the pipeline flow caused by interlocks and exceptions. and the R4650
implementation of a store buffer .. For a detailed discussion of the FPU
pipeline. refer to Chapter 6.

1-3

Overview

63

Chapter 1

CPU Register Overview
The R4650 has thirty-two general-purpose 64-bit registers. These

registers are used for scalar integer operations and address calculation.
The register file consists of two read ports and one write port and is fully
bypassed to minimize operation latency in the pipeline. Figure 1.2 shows
the R4650 CPU registers.

General Purpose Registers
o Multiply and Divide Registers

63 0
rO

I HI I
63 0

r1

r2

I LO I •
•
•
•

Program Counter
r29 63 0

r30 I PC I
r31

Figure 1.2 R4650 CPU Registers

1\vo of the CPU general purpose registers have the following assigned
functions:

• rO is hardwired to a value of zero, and can be used as the target
register for any instruction whose result is to be discarded. rO can
also be used as a source when a zero value is needed.

• r31 is used as an impliCit return destination address register by the
JAL and BAL series of instructions.

• The CPU also has these three special purpose registers:
• PC - Program Counter register
• HI - Multiply and Divide register higher result
• W - Multiply and Divide register lower result
Also, the two Multiply and Divide registers (HI, LO) will store 1) the

product of integer multiply operations, or 2) the quotient (in W) and
remainder (in HI) of integer divide operations.

The R4650 processor does not have a Program Status Word (PSW)
register as' such. The PSW function is covered by the Status and Cause
registers incorporated within the System Control Coprocessor (CPO). CPO
registers' are described later irithis chapter.

1-4

Overview Chapter 1

CPU Instruction Set Overview
Each CPU instruction is 32 bits long. As shown in Figure 1.3, there are

three instruction formats:
• immediate (I-type)
• jump (J-type)
• register (R-type)

31 26 25 21 20 16 15 0

I-Type (Immediate) I Op I rs I rt I immediate I
31 26 25 0

J-Type (Jump) I op target I
31 26 25 21 20 16 15 11 1 0 6 5 0

R-Type (Register) I Op I rs rt I rd I sa funCI.

Figure 1.3 CPU Instruction Formats

Each format contains a number of different instructions, which are
described further in this chapter. Fields of the instruction formats are
described in Chapter 2.

By limiting the number of formats to these three, instruction decoding
is simplified. Through this limitation, more complicated (and less
frequently used) operations and addressing modes can be synthesized by
the compiler; using sequences of these same simple instructions.

The instruction set can be further divided into the following groups:
• Load and Store instructions move data between memory and general

registers. They are all immediate (I-type) instructions, since the only
addressing mode supported is base register plus I6-bit, signed imme­
diate offset.

• Computational instructions perform arithmetic, logical, shift,
multiply, and divide operations on values in registers. They include
register (R-type, in which both the operands and the result are stored
in registers) and immediate (I-type, in which one operand is a I6-bit
immediate value) formats.

• Jump and Branch instructions change the control flow of a program.
Jumps are always made to a paged, absolute address formed by
combining a 26-bit target address with the high-order bits of the
Program Counter (J-type format) or register address (R-type format).
Branches have I6-bit offsets relative to the program counter (I-type).
Jurpp And Link instructions save their return address in register 31.

• Coprocessor instructions perform operations in the coprocessors.
Coprocessor load and store instructions are I-type.

• Coprocessor 0 (system coprocessor) instructions perform operations
on CPO registers to control the memory management and exception
handling facilities of the processor and the standby mode for power
management.

• Special instructions perform system calls and breakpoint operations.
These instructions are always R-type.

• Exception instructions cause a branch to the general exception­
handling vector based upon the result of a comparison. These
instructions occur in both R-type (both the operands and the result
are registers) and I-type (one operand is a I6-bit immediate value)
formats.

1-5

Overview Chapter 1

Chapter 2 provides more detailed information on these instructions.
And a complete description of each is located in Appendix A.

CPU Instruction Tables
Tables 1.1 through 1.13 lists CPU instructions common to MIPS

R-Series processors, along with the level in which they first appeared. The
last column of each table refers to the MIPS ISA level in which the
instruction first appeared. Table 1.10 shows CPO instructions.

OpCode Description MIPS ISA Levelt

LB Load Byte I

LBU Load Byte Unsigned I

LH Load Halfword I

LHU Load Halfword Unsigned I

LW Load Word I

LWL Load Word Left I

LWR Load Word Right I

SB Store Byte I

SH Store Halfword I

SW Store Word I

SWL Store Word Left I

SWR Store Word Right I

LD Load Doubleword III

LDL Load Doubleword Left III

LDR Load Doubleword Right III

LL Load Linked II

LLD Load Linked Doubleword III

LWU Load Word Unsigned III

SC Store Conditional II

SCD Store Conditional Doubleword III

SD Store Doubleword III

SDL Store Doubleword Left III

SDR Store Doubleword Right III

SYNC Sync II

Note: tFor Tables 1.1 through 1.17 this column refers to the level in which the
instruction first appeared.

Table 1.1 Instruction Set: MIPS 1 /MIPS 2/MIPS 3 Load and Store Instructions

1-6

Overview Chapter 1

OpCode Description MIPS ISA Level

ADDI Add Immediate I

ADDIU Add Immediate Unsigned I

SLTI Set on Less Than Immediate I

SLTIU Set on Less Than Immediate I
Unsigned

ANDI AND Immediate I

ORI OR Immediate I

XORI Exclusive OR Immediate I

LUI Load Upper Immediate I

DADDI Doubleword Add Immediate III

DADDIU Doubleword Add Immediate III
Unsigned

Table 1.2 CPU Instruction Set: MIPS 1 IMIPS 21 MIPS 3 Arithmetic Instructions (ALU
Immediate)

OpCode Description MIPS ISA Level

ADD Add I

ADDU Add Unsigned I

SUB Subtract I

SUBU Subtract Unsigned I

SLT Set on Less Than I

SLTU Set on Less Than Unsigned I

AND AND I

OR OR I

XOR Exclusive OR I

NOR NOR I

DADD Doubleword Add III

DADDU DoublewordAdd Unsigned III

DSUB Doubleword Subtract III

DSUBU Doubleword Subtract Unsigned III

Table l.3 CPU Instruction Set: Arithmetic (3-0perand, R-Type)

1-7

Overview Chapter 1

OpCode Description MIPS ISA Level

MAD Multiply-Add t
MADU Multiply-Add Unsigned t

MUL 3-0perand Multiply t

MULT Multiply (result in HI/LO) I

MULTU Multiply Unsigned I
(result in HI/LO)

DIV Divide I

DlVU Divide Unsigned I

MFHI Move From HI I

MTHI Move To HI I

MFLO Move From LO I

MTLO Move To LO I

DMULT Doubleword Multiply III

DMULTU Doubleword Multiply Unsigned III

DDIV Doubleword Divide III

DDlVU Doubleword Divide Unsigned III

Note:
hllese are IDT-proprietary extensions to the MIPS instruction set.

Table 1.4 CPU Instruction Set: MIPS I, MIPS 2, MIPS 3 Multiply and Divide Instruc­
tions

1-8

Overview Chapter 1

OpCode Description MIPS ISA Level

J Jump I

JAL Jump And Link I

JR Jump Register I

JALR Jump And Link Register I

BEg Branch on Equal I

BNE Branch on Not Equal I

BLEZ Branch on Less Than or Equal to Zero I

BGTZ Branch on Greater Than Zero I

BLTZ Branch on Less Than Zero I

BGEZ Branch on Greater Than or Equal to Zero I

BLTZAL Branch on Less Than 'Zero And Link I

BGEZAL Branch on Greater Than or Equal to Zero I
And Link

BEgL Branch on Equal Likely II

BNEL Branch on Not Equal Likely II

BLEZL Branch on Less Than or Equal to Zero II
Likely

BGTZL Branch on Greater Than Zero Likely II

BLTZL Branch on Less Than Zero Likely II

BGEZL Branch on Greater Than or Equal to Zero II
Likely

BLTZALL Branch on Less Than Zero And Link Likely II

BGEZALL Branch on Greater Than or Equal to Zero II
And Link Likely

BCzTL Branch on Coprocessor z True Likely II

BCzFL Branch on Coprocessor z False Likely II

Table 1.5 CPU Instruction Set: Jump and Branch Instruction

1-9

Overview Chapter 1

OpCode Description MIPS ISA Level

SLL Shift Left Logical I

SRL Shift Right Logical I

SRA Shift Right Arithmetic I

SLLV Shift Left Logical Variable I

SRLV Shift Right Logical Variable I

SRAV Shift Right Arithmetic Variable I

DSLL Doubleword Shift Left Logical III

DSRL Doubleword Shift Right Logical III

DSRA Doubleword Shift Right Arithmetic III

DSLLV Doubleword Shift Left Logical Vari- III
able

DSRLV Doubleword Shift Right Logical Vari- III
able

DSRAV Doubleword Shift Right Arithmetic III
Variable

DSLL32 Doubleword Shift Left Logical + 32 III

DSRL32 Doubleword Shift Right Logical + 32 III

DSRA32 Doubleword Shift Right Arithmetic + III
32

Table 1.6 CPU Instruction Set: Shift Instructions

OpCode Description MIPS ISA Level

LWCz Load Word to Coprocessor z I

SWCz Store Word from Coprocessor z I

MTCz Move To Coprocessor z I

MFCz Move From Coprocessor z I

CTCz Move Control to Coprocessor z I

CFCz Move Control From Coprocessor z I

COPz Coprocessor Operation z I

BCzT Branch on Coprocessor z True I

BCzF Branch· on Coprocessor z False I

DMFCz Doubleword Move From Coprocessor z II

DMTCz Doubleword Move To Coprocessor z II

LDCz Load Double Coprocessor z II

SDCz Store Double Coprocessor z II

Table 1.7 Instruction Set: Coprocessor Instructions

1-10

Overview Chapter 1

OpCode Description MIPS ISA Level

SYSCALL System Call I

BREAK Break I

Table 1.8 CPU Instruction Set: Special Instructions

OpCode Description MIPS ISA Level

TGE Trap if Greater Than or Equal II

TGEU Trap if Greater Than or Equal Unsigned II

TLT Trap if Less Than II

TLTU Trap if Less Than Unsigned II

TEg Trap if Equal II

TNE Trap if Not Equal II

TGEI Trap if Greater Than or Equal Immediate II

TGEIU Trap if Greater Than or Equal Immediate II
Unsigned

TLTI Trap if Less Than Immediate II

TLTIU Trap if Less Than Immediate Unsigned II

TEgI Trap if Equal Immediate II

TNEI Trap if Not Equal Immediate II

Table 1.9 MIPS 2/MIPS 3 Exception Instructions

OpCode Description MIPS ISA Level

DMFCO Doubleword Move From CPO III

DMTCO Doubleword Move To CPO III

MTCO Move to CPO I

MFCO Move from CPO I

TLBR Read Indexed TLB Entry I

TLBWI Write Indexed TLB Entry I

TLBWR Write Random TLB Entry I

TLBP Probe TLB for Matching Entry I

CACHE Cache Operation R4xxx only

ERET Exception Return R4xxx only

WAIT Enter Standby mode Orion family

Table 1.10 R4650 CPO Instructions

1-11

Overview Chapter 1

Data Formats and Addressing
The R4650 processor uses four data formats: a 64-bit doubleword, a

32-bit word, a 16-bit halfword, and an 8-bit byte. Byte ordering within
each of the larger data formats-halfword, word, doubleword-can be
configured in either big-endian or little-endian order. Endianness refers to
the location of byte 0 within the multi-byte data structure. Figures 1.4
and 1.5 show the ordering of bytes within words and the ordering of
words within multiple-word structures for the big-endian and l1ttIe­
endian conventions.

When the R4650 processor is configured as a big-endian system, byte 0
is the most-Significant (leftmost) byte, thereby providing compatibility
with MC 68000 and IBM 370 conventions. Figure 1.4 illustrates this
configuration.

Higher Word Bit,#
Address Address 131 24 23 1615 8 7 01

[j 12 I 12 II 13 II 14 II 15 I
8 I 8 II 9 II 10

II
11 I

4 I 4 II 5 II 6 II 7 I
Lower 0 I 0 II 1 II 2 II 3 I Address

Figure 1.4 Blg-Endlan Byte Ordering

When configured as a little-endian system, byte 0 is always the least­
Significant (rightmost) byte, which is compatible with iAPX x86 and DEC
VAX. conventions. Figure 1.5 illustrates this configuration.

Higher Word
Bit # ,

01 Address Address 131 24 23 1615 8 7

~
12 15 14 13 II 12 I
8 11 10 9 II 8 I
4 7 6 5 II 4 I

Lower 0 3 2 1 II 0 I Address

Figure 1.5 Lfttle-Endlan Byte Ordering

In this text, bit 0 is always the least-significant (rightmost) bit; thus, bit
designations are always little-endian (although no instructions explicitly
deSignate bit pOSitions within words).

1-12

Overview Chapter 1

Figures 1.6 and 1.7 show little-endian and big-endian byte ordering in
doublewords.

Most-significant byte

Bit # i~ 5y5 48 47 4039
Byte # 7 I 6 II 5 II

I
I

Halfword

3231

4 II 3

I

Least-significant byte

2423 16 15 8 7
II 2· II 1 I
I I

I
Byte o

Bit # 17 6 5 4 3 2 1 0 I
DDDDDDDD

Bits in a Byte

Figure 1.6 Little-Endian Data in a Doubleword

Most-significant byte

Bit # 63\ 5655 4847 4039

Byte#ml 1 II 2 II 3

1
I

Halfword

Least-significant byte

3231 2423 8 7

II 4 II 5 I
1 1 0 I

Byte

B~#17 6 543 2 1 01

DDDDDDDD
Bits in a Byte

Figure 1.7 Big-Endian Data in a Doubleword

The CPU uses byte addressing for halfword, word, and doubleword
accesses with the following alignment constraints:

• Halfword accesses must be aligned on an even byte boundary
(0,2,4 ...).

• Word accesses must be aligned on a byte boundary divisible by four
(0,4, B ...).

• Doubleword accesses must be aligned on a byte boundary divisible by
eigl1t (0, B, 16 ...).

The following special instructions load and store words that are not
aligned on 4-byte (word) or B-word (doubleword) boundaries:

LWL LWR SWL SWR
LDL LDR SDL SDR

These instructions are used in pairs to provide addressing of
misaligned words. Addressing misaligned data incurs one additional
instruction cycle over that required for addressing aligned data. This
extra cycle is because of an extra instruction for the "pair" (e.g., LWL and
LWR form a pair). Also note that the CPU moves the unaligned data at the
same rate as a hardware mechanism.

1-13

Overview Chapter 1

Figures 1.8 and 1.9 show the access of a misaligned word that has byte
address 3.

Higher
Address Bit #

I

[j /31 24 23 1615 8 7 01
I 4 II 5 II 6 II I
I II II II 3 I

Lower
Address

Figure 1.8 Blg-Endian Misaligned Word Addressing

Higher
Address Bit #

I

Q
/31 24 23 1615 8 7 01
I II 6 II 5 II 4 I
I 3 II II II I

Lower
Address

Figure 1.9 L1ttle-Endian Misaligned Word Addressing

Coprocessors (CPO-CP2)
The MIPS ISA (MIPS III Instruction Set with IDT extensions) of the

R4650 defines three coprocessors, designated CPO through CP2:
• Coprocessor a (CPO) is incorporated on the CPU chip and supports

the virtual memory system and exception handling. CPO is also
referred to as the System Control Coprocessor.

• Coprocessor 1 (CPl) is incorporated on the R4650, and implements
the MIPS single-precision floating-point instruction set.

• Coprocessor 2 (CP2) is reserved for future use.
CPO and CP 1 of the R4650 are described in the sections that follow.

System Control Coprocessor, CPO
CPO translates virtual addresses into physical addresses and manages

exceptions and transitions between kernel and user states. CPO also
controls the cache subsystem, as well as providing diagnostic control and
error recovery facilities.

CPO is also used to control the power management for the R4650. This
is the standby mode and it can be used to reduce the power consumption
of the internal core of the CPU. The standby mode is entered by executing
the WAIT instruction with the SysAD bus idle and is exited by any inter­
rupt. This feature is discussed in Appendix D.

The CPO registers shown in Figure 1. 10 and described in Table 1.11
manipulate the memory management and exception handling capabilities
of the CPU.

Note: Access to reserved or undefined CPO register results are unde­
fined. An exception mayor may not result.

1-14

Overview

Register Name

IBase

IBound

DBase

DBound I

= =
~
~
'tlllfliiiilMlgguEtfti~~¥i@t(ij*11t~tt{t~lw(~tj:iia

=
lr&i1t1~t;lgm21i10tr&t.i}ifji~i~gi41;;\:%1f~¥(;i~~tI;1~;;;1

• Exception Processing

Reg. #

o
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Register Name

Config

CAlg

h~l~it~~~il~~\uW:~.gn~~j;itt)11ti:~;i!Jj¥~~}$i;J;1i~$t~i,j·~jt;~;;t,;1

tt;t,~t);\i\jl\1;gW' m~§':1;f;il]+i~lr1~imtf;:iJ;'~;~l;t(%f,,~fi:ii~l;;ii;1

= = = = = = t1!;~;~lli!titt1;J;Ji~t~lt~fii;1Jfjj;~l~~1;~ii[f;~tfJf.f£~!~;;1i~~j~i(~i~~fJt;\i;JI

Chapter 1

Reg. #

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

D Memory Management ~ Reserved

Figure 1.10 R4650 CPO Registers

1-15

Overview Chapter 1

Number Register Description

0 IBase Provides the User Instruction address space Base

1 IBound Provides the User Instruction address space Bound

2 DBase Provides the User Data address space Base

3 DBound Provides the User Data address space Bound

4 - Reserved

5 - Reserved

6 - Reserved

7 - Reserved

8 BadVAddr Bad virtual address

9 Count Timer Count

10 - Reserved

11 Compare Timer Compare

12 SR Status register

13 Cause Cause of last exception

14 EPC Exception Program Counter

15 PRId Processor Revision Identifier

16 Config Configuration register

17 CAlg Cache attributes control

18 IWatch A read/write register that specifies an Instruction
virtual address that causes a Watch exception.

19 DWatch A read/write register that specifies a Data virtual
address that causes a Watch exception.

20 - Reserved

21-25 - Reserved

26 ECC Secondary-cache error checking and correcting (ECC)
and Primary parity

27 CacheErr Cache Error and Status register

28 TagLo Cache Tag register

29 - Reserved

30 ErrorEPC Error Exception Program Counter

31 - Reserved

Table 1.11 System Control Coprocessor (CPO) Register Definitions

Floating-Point Co-Processor
The R4650 incorporates an entire single-precision floating-point co­

processor on chip, including a floating-point register file and execution
units. The floating-point co-processor forms a "seamless" interface with
the integer unit, decoding and executing instructions in parallel with the
integer unit.

1- 16

Overview Chapter 1

Floating-Point Units
The R4650 floating-point execution units perform single-precision

arithmetic, as specified in the IEEE Standard 754. The execution unit is
broken into a separate multiply unit and a combined add/ convert/
divide/square root unit. Overlap of multiplies and add/subtract is
supported. The multiplier is partially pipelined, allowing a new multiply to
begin every 6 cycles.

As in the IDT79R4600, the R4650 maintains fully precise floating-point
exceptions while allowing both overlapped and pipelined operations.
Precise exceptions are extremely important in mission-critical environ­
ments, and highly desirable for debugging in any environment.

The floating-point unit's operation set includes floating-point add,
subtract, multiply, divide, square root, conversion between fixed-point
and floating-point format, and floating-point compare. These operations
comply with IEEE Standard 754. Double-precision operations are not
directly supported; attempts to execute double-precision floating point
operations, or refer directly to double-precision registers, result in the
R4650 signalling a "trap" to the CPU, enabling emulation of the requested
function.

Table 1.12 gives the latencies of some of the floating-point instructions
in internal processor cycles.

Operation
Instruction

Latency

ADD 4

SUB 4

MUL 8

DIV 32

SQRT 31

CMP 3

FIX 4

FLOAT 6

ABS 1

MOV 1

NEG 1

LWCI 2

SWCI 1

Table 1.12 Floating-Point Operation

Virtual to Physical Address Mapping
The R4650 provides two modes of operation:
• user mode
• kernel mode
Kernel mode operation is typically used for exception handling and

operating system kernel functions, including CPO management and
access to 10 devices. In kernel mode, software has access to the entire
address space and all of the co-processor 0 registers and can select
whether to enable co-processor 1 accesses. The processor enters kernel
mode at reset, or whenever an exception is recognized.

1-17

Overview Chapter 1

User mode operation is typically used for applications programs. User
mode accesses are limited to a subset of the virtual address space, and
can be inhibited from accessing CPO functions. The 4 GB address space,
which is shown in Table 1.13, is divided into addresses accessible in
either kernel or user mode (kuseg), and addresses only accessible in
kernel mode (kseg2:0).

OxFFFFFFFF

Kernel virtual address space
(kseg2)

Unmapped, 1.0 GB

OxCOOOOOOO

OxBFFFFFFF
Uncached kernel physical address space

(kseg1)
Unmapped, 0.5GB

OxAOOOOOOO

Ox9FFFFFFF
Cached kernel physical address space

(ksegO)
Unmapped, 0.5GB

Ox80000000

Ox7FFFFFF

User virtual address space
(useg)

Mapped, 2.0GB

OxOOOOOOOO

Table 1.13 Mode Virtual Addressing (32-blt mode)

Sharing common virtual addresses but mapped to separate physical
addresses, the R4650 supports the use of multiple user tasks. This
facility is implemented via the "base-bounds" registers contained in CPO.

When a user virtual address is asserted (load, store, or instruction
fetch), the R4650 compares the virtual address with the contents of the
appropriate "bounds" register (instruction or data). If the virtual address
is "in bounds," the value of the corresponding "base" register is added to
the virtual address to form the physical address for that reference. If the
address is not within bounds, an exception is signalled.

This facility enables multiple user processes in a single physical
memory without the use of a TLB. This type of operation is further
supported by a number of development tools for the R4650, including
real-time operating systems and "position independent" code.

Kernel mode addresses do not use the base-bounds registers, but
rather undergo a fixed virtual to physical address translation.

A detailed explanation of this addressing mechanism is given in
Chapter 4.

1-18

Overview Chapter 1

Base Bounds Registers
The R4650 implements a simple mechanism to support the mapping of

virtual to physical addresses. In the R4650. the TLB structure found in
the IDT79R4600 has been replaced by a base-bounds mechanism. When
an address is translated. its page number is first compared against the
Bounds register. If the address is "in range." the base register is added to
the virtual address to form the physical address.

The R4650 contains two sets of base-bounds registers. one set for
instruction address translation (lBase and IBounds registers) and one for
data (DBase and DBounds registers). An operating system can support
task protection by writing appropriate values to these registers at context
switch time.

Finally. to allow a mix of cache attributes in a single system. the R4650
also implements a Cache Algorithm (CAlg) register in CPO. This register
allows the operating system to define the cache management attributes of
different portions of the address space. By using appropriate virtual
addresses. memory can be treated as uncached. write-back. or write­
through. with separate attributes for each of eight memory regions. In
conjunction with the external system address decoder. software can then
alias the same physical memory with different management algOrithms.
depending upon the data or program that is running.

Cache Memory
To keep the R4650's high-performance pipeline full and operating effi­

ciently. the R4650 incorporates on-chip instruction and data caches that
can be accessed in a single processor cycle. Each cache has its own 64-bit
data path and can be accessed in parallel. The cache subsystem provides
the integer and floating-point units with an aggregate bandwidth of over
1.5GB per second.

Instruction Cache
The R4650 incorporates a two-way set associative on-chip instruction

cache. This virtually indexed. physically tagged cache is 8KB in size and
is protected with word parity.

Because the cache is virtually indexed. the virtual-to-physical address
translation occurs in parallel with the cache access. thus further
increasing performance by allowing these two operations to occur simul­
taneously. The tag holds a 24-bit physical address and valid bit and is
parity protected.

The instruction cache is 64-bits wide and can be refilled or accessed in
a single processor cycle. Instruction fetches require only 32 bits per cycle.
for a peak instruction bandwidth of 532 MB/sec at 133MHz. Sequential
accesses take advantage of the 64-bit fetch to reduce power dissipation.
and cache miss refill writes 64 bits per cycle to minimize the cache miss
penalty .. To maximize performance. the line size is eight instructions (32
bytes).

In addition. the contents of one set of the instruction cache (set "A") can
be "locked" by setting a bit in a CPO register. Locking the set prevents its
contents from being overwritten by a subsequent cache miss; refill occurs
then only into "set A".

This operation effectively "locks" time critical code into one 4KB set.
while allowing the other set to service other instruction streams in a
normal fashion. Thus. the benefits of cached performance are achieved.
while deterministic real-time response is preserved.

1-19

Chapter 1

Data Cache
For fast, single cycle data access, the R4650 includes an 8KB on-chip

data cache that is two-way set associative with a fixed 32-byte (eight
word) line size. Both the D-cache and the I -cache can be accessed each
pipeline cycle; thus, the data bandwidth is over 1 MB/sec at 133 MHz, in
addition to the 532 MB/sec instruction bandwidth.

The data cache is protected with byte parity and its tag is protected
with a single parity bit. It is virtually indexed and physically tagged to
allow simultaneous address translation and data cache access

The D-cache allows write-back and write-through operation functions
of the address space to be individually controlled through a field in the
CAIg register. Once initialized, software need only assert the desired
virtual address to get the desired effect.

Associated with the data cache is the store buffer. When the R4650
executes a store instruction, this single-entry buffer gets written with the
store data while the tag comparison is performed. If the tag matches, then
the data is written into the data cache in the next cycle that the data
cache is not accessed (the next non-load cycle). The store buffer allows
the R4650 to execute a store every processor cycle and to perform back­
to·back stores without penalty.

Write buffer
Writes to external memory, whether cache miss write-backs or stores to

uncached or write-through addresses use the on-chip write buffer. The
write buffer holds up to four 64-bit address and data pairs or 1 cache line
to be written back. The entire buffer is used for a data cache write-back
and allows the processor to proceed in parallel with memory update. For
uncached and write-through stores, the write buffer has significantly
increased performance over other R4000-family processors.

R4650 Clocks
The R4650 uses the system interface clock as its input clock. The pipe­

line speed is derived from this clock using a PLL to multiply up the input
reference. It is assumed that the system designer manages the system
clock distribution to fit the needs of the system. Thus, the R4650 does not
output a system reference clock, but rather operates in synchronization
with the input clock.

The R4650 does output one low frequency reference clock: the Mode
clock. This clock operates at 1/256 the rate of the input clock, and it is
used to clock in the serial initialization stream during reset.

System Interface
The R4650 supports a 64-bit system interface that is compatible with

the R4400PC system interface. This interface operates from the input
Referenc"e clock.

The interface consists of a 64-bit address/data bus with 8 check bits
and a 9-bit command bus. There are also 8 handshake signals and 6
interrupt inputs. The interface has a simple timing speCification and is
capable of transferring data between.the processor and memory at a peak
rate of 400MB/sec at 50MHz.

In addition, the R4650 supports a boot-time option to run the system
interface as 32 bits wide, using basically the same protocols as a 64-bit
system. This feature allows the system designer to reduce the costs of the
overall memory system without sacrificing computational performance.

1-20

Overview

--
.""

R4650 -

Chapter 1

Figure 1.11 shows a typical system using the R4650. In this example
there is DRAM, a boot EPROM, and an optional secondary cache.

~
Address

~

Boot DRAM
ROM (80ns)

~
Control

J~_ ~J
" - - SCSI ENET

H ~~

~~32 or 64

" " 'r / -
32 ~r 64 - - -Memory I/O -- ,.

/ ,.. - Controller 9
/ .. , -Con}rol

,
Control

Figure 1.11 Typical System Block Diagram

1- 21

Overview Chapter 1

Comparison of R4650 and R4600/R4700
Table-l.14 compares R4650 features with those of the R4600/R4700.

This list is not exhaustive.

Attribute R4600/R4700 R4650

I-Cache size 16KB 8KB

D-Cache size 16KB 8KB

Cacheability control TLB. KO field CAlg

Memory translation TLB Base-Bounds

Floating point accelerator Single- and double-precision Single-precision only

Integer multiply MIPS standard only MIPS standard + 3 operand Mul (2-3 cycles)
12 cycles

Integer multiply-add No Yes
2-3 cycle repeat rate

Clock interface Input clock at 1/2 pipeline; System Input clock is system clock; pipeline clock
clock derived from pipeline clock derived from there; no system output clock
multiple output reference clocks.

Bus interface width 64-bit 32-bit or 64-bit

Watch registers None I-Watch and D-Watch

Cache locking No Yes (per set)

Separate Interrupt vector No Yes (optional)

Table 1.14 System Interface Comparison Between R4600 /R4700 PC and R4650

1- 22

t;J CPU Instruction Set
Overview

Chapter 2

Integrated Device Technology, Inc.

Introduction
This chapter is an overview of the central processing unit (CPU)

instruction set. For a description of an individual CPU instruction refer to
Appendix A. "CPU Instruction Set Details."

For an overview of the floating-point unit (FPU) instruction set refer to
Chapter 6. ''The Floating Point Unit." For a description of an individual
FPU instruction refer to Appendix B. "FPU Instruction Set Details."

CPU Instruction Formats
Each CPU instruction consists of a single 32-bit word. aligned on a

word boundary. There are three instruction formats. as shown in
Figure 2.1:

• Immediate (I-type)
lit Jump (J-type)
III Register (R-type)
The use of a small number of instruction formats simplifies instruction

decoding (thus higher frequency operations) and allowing the compiler to
synthesize more complicated (and less frequently used) operations and
addressing modes from these three formats as needed.

I-Type (Immediate)
31 26 25 21 20 16 15 0

L~/?-e"""'::"" . .::...,...:..I.=-=--rs,-=-.:):,...::l,,=-=-qrt----..:.....::.g ... ~!,,-=--.•. m-!rn-h,rn-.. ,e-!!!S9-ia-te-p -. --',1
J-Type (Jump)

~3~1---=2o~n~2~5--------------------------~0

L:iah4 1; . ''''W't " .H;:~g~! . 9tfl'MH H'; ::t,m
R-Type (Register)

31 262521201615 1110 65 0

t , .. ogt..l . r,sp": t~!!~L!.iiJ'1~!~' ilt!~~9.!l

Key to Figure:
op 6-bit operation code
rs 5-bit source register speCifier
rt 5-bit target (source/destination) register or branch condition
immediate I6-bit immediate value. branch displacement or address

displacement
target 26-bit jump target address
rd 5-bit destination register speCifier
sa 5-bit shift amount
funct 6-bit function field

Figure 2.1 CPU Instruction Formats

2-1

CPU Instruction Set Overview Chapter 2

In the MIPS architecture, coprocessor instructions are implementatlon­
dependent; refer to Appendix A for details of individual Coprocessor 0
instructions.

Load and Store Instructions
Load and store are immediate (I-type) instructions that move data

between memory and the general registers. The only addressing mode
that load and store instructions directly support is base register plus 16-
bit signed immediate offset.

Scheduling a Load Delay Slot
A load instruction that does not allow its result to be used by the

instruction immedIately following is called a delayed load instructiOTL The
instruction slot immedIately following this delayed load instruction is
referred to as the load delay slot.

In the R4650 processor, the instruction immediately following a load
instruction can request the contents of the loaded register, however, in
such cases, hardware interlocks insert additional real cycles. Conse­
quently, scheduling load delay slots can be desirable, both for perfor­
mance and R-Series (e.g., R3051) processor compatibility. However, the
scheduling of load delay slots is not absolutely required.

Defining Access Types
Access type indicates the size of an R4650 processor data item to be

loaded or stored, set by the load or store instruction opcode. Access types
are defined in Appendix A.

Regardless of access type or byte ordering (endianness), the address
given specifies the low-order byte in the addressed field. For a big-endian
configuration, the low-order byte is the most-Significant byte; for a little­
endian configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address,
define the bytes accessed within the addressed doubleword, which is
shown in Table 2.1. Only the combinations shown in this table are
permissible. Other combinations will cause address error exceptions.

2-2

CPU Instruction Set Overview

Access Type
Mnemonic

(Value)

Chapter 2

Bytes Accessed
LowOrder~----------------~------------------~
Address
Bits

210

Big Endian
(63----------31----------0)

Byte

Little Endian
(63----------31----------0)

Byte

Doubleword (7) 0 0 0

SepUbyte (6) 0 0 0

001

SexUbyte (5)

Quintibyte (4)

Word (3)

Triplebyte (2)

Halfword (1)

Byte (0)

000

010

000

011

000

100

000

001

1 0 O'

101

000

010

100

110

000

001

o 0

011

100

101

110

1 1 1

Table 2.1 Byte Access within a Doubleword

2-3

CPU Instruction Set Overview Chapter 2

Computational Instructions
Computational instructions can be in either of the following formats:
.. register (R-type) format, in which both operands are registers.
• immediate (I-type) format, in which one operand is a I6-bit imme­

diate.
Computational instructions perform the following operations on register

values:
• arithmetic
• logical
• shift
• multiply
o divide
These operations fit in the following four categories of computational

instructions:
• ALU Immediate instructions
o three-Operand Register-Type instructions
• shift instructions
• multiply and divide instructions

Operations With 32-bit Operands
Operands to 32-bit operand opcodes must be in sign-extended form.

32-bit operand opcodes include all non-doubleword operations, such as:
ADD, ADDU, SUB, SUBU, ADDI, SLL, SRL, SRA, SLLV, etc. The result of
operations that use incorrect sign-extended 32-bit values is unpredict­
able.

Cycle Timing for Multiply and Divide Instructions
R4650 hardware interlocks if necessary in order to allow complete

execution of the multiply and divide instructions. Latency is the number
of clock cycles until the result is available. Repeat is. the number of clock
cycles until the instruction can be repeated. Stall is the number of clock
cycles the CPU will automatically stall.

MFHI and MFLO instructions (which are described in more detail in
Appendix A) are interlocked so that any attempt to read them before prior
multiply or divide instructions complete delays the execution of these
instructions until the prior instructions finish.

Table 2.2 gives the number of processor cycles (PCycles) required to
resolve an interlock or stall between various multiply or divide instruc­
tions, and a subsequent MFHI or MFLO instruction.

Opcode
Operand *

Size Latency Repeat Stall

MUL T/U, 16 bit 3 2 0
MAD/U

32 bit 4 3 0

MUL 16 bit 3 2 1

32 bit 4 3 2

DMUL T,
DMULTU

any 6 5 0

DIV,DIVU any 36 36 0

DDIV,DDIVU any 68 68 0

* The R4650 automatically detects operand size.
Note: For more information about these computational
instructions, refer to Appendix A.

Table 2.2 R4650 Integer Multiply Operation

2-4

The CPU Pipeline Chapter 3

Integrated Device Technology, Inc.

Introduction
This chapter describes the basic operation of the CPU pipeline,

including descriptions of the delay instructions (instructions that follow a
branch or load instruction in the pipeline), interruptions to the pipeline
flow caused by interlocks and exceptions, and R4650 implementation of
an uncached store buffer. The FPU pipeline is described in a later chapter.

CPU Pipeline Operation
The R4650 uses a 5-stage pipeline similar to the R3000. The simplicity

of this pipeline allows the R4650 to be lower cost and lower power than
super-scalar or super-pipelined processors. Unlike the R3000, the R4650
does virtual to physical translation in parallel with cache access. This
allows the R4650 to operate at over twice the frequency of the R3000 and
to support a "base-bounds" register for address translation.

Compared to the 8-stage R4000 pipeline, the R4650 is more efficient
because fewer stalls are required.

Once the pipeline has been filled, five instructions are executed simul­
taneously. Figure 3.1 shows the five stages of the instruction pipeline; the
next section describes the pipeline stages.

10 11 21 1 R 2R 1A 2A 'I 10 20 1W 2W

.-

.-

2R 1A •••

one cycle

Key to Figure:

11-1 R Instruction cache access 2R Instruction decode

11-21 Instruction virtual to physical address translation 1A-2A Integer add, logical, shift

2A-2D Data cache access and load align 1 A Data virtual address calculation

1 D-2D Data virtual to physical address translation 2A Store align

2R Register file read 1 A Branch decision
2R Bypass calculation 2W Register file write

Figure 3.1 Instruction Pipeline Stages

3-1

The CPU Pipeline Chapter 3

CPU Pipeline Stages
This section describes each of the phases of the five pipeline stages.

Each stage has 2 phases:
• 1 I - Instruction Fetch, Phase one
• 21 - Instruction Fetch, Phase two
• 1 R - Register Fetch, Phase one
• 2R - Register Fetch, Phase two
• IA - Execution, Phase one
• 2A - Execution, Phase two
• 10 - Data Fetch, Phase one
• 20 - Data Fetch, Phase two
• IW - Write Back, Phase one
• 2W - Write Back, Phase two

II - Instruction Fetch, phase one
The instruction address translation begins during the 11 phase.

21 - Instruction Fetch, phase two
During the 21 phase, the instruction cache fetch begins and the

instruction address translation continues.

IR - Register Fetch, phase one
During the IR phase, the following occurs:
• The instruction cache fetch finishes.
• The instruction cache tag is checked against the physical page frame

number obtained from the address translation.

2R - Register Fetch, phase two
During the 2R phase, the following occurs:
• The instruction decoder decodes the instruction.
• Any required operands are fetched from the register file.
• Make a decision to either issue or slip (for an interlock condition).
• For a branch, the branch address is calculated.

IA - Execution, phase one
During the IA phase, one of the following occurs:
• Any result from the A or 0 stages are bypassed.
• The arithmetic logic unit (ALU) starts the integer arithmetic, logical or

shift operation.
• The ALU calculates the data virtual address for load and store

instructions.
• The ALU determines whether the branch condition is true.

2A - Execution, phase two
During the 2A phase, one of the following occurs:
• The integer arithmetic, logical or shift operation will complete.
• A data cache access will start.
• Store data is shifted to the specified byte position(s).
• The data virtual to physical address translation will start.

ID - Data Fetch, phase one
During the 10 phase, one of the following occurs:
• The data cache access will continue.
• The data address translation completes.

2D - Data Fetch, phase two
During the 20 phase the data cache access will finish and the data is

shifted down and extended. The data cache tag is checked against the
physical address for any data cache access.

3-2

The CPU Pipeline

Clock

Stage 11

IFetch
and

Decode

Chapter 3

1 W - Write Back, phase one
This phase is used internally by the processor to resolve all exceptions,

in preparation for the register file write.

2W - Write Back, phase two
For register-to-register and load instructions, the result is written back

to the register file during the 2W stage. Branch instructions perform no
operation during this stage.

Figure 3.2 shows the activities occurring during each ALU pipeline
stage, for load, store, and branch instructions.

21 1R 2R 1A 2A 1D 2D 1W 2W

ICA

ITC

RF

IDEC

EXt EX2

DVA

SA

.• ···J3AC

Key to Figure:
ICD Instruction cache address decode ICA Instruction cache array access
ITM Instruction translation match RF Register operand fetch
ITC Instruction tag check EX1 Operation stage 1
IDEC Instruction decode WB Write back to register file

EX2 Operation stage 2 DCAD Data cache address decode
DVA Data virtual address calculation DCLA Data cache load align

DCAA Data cache array access DTM Data translation match
DTC Data tag check SA Store align

DCW Data cache write BAC Branch address calculation

Figure 3.2 CPU Pipeline Activities

3-3

The CPU Pipeline Chapter 3

Branch Delay
The CPU pipeline has a branch delay of one cycle and a load delay of

one cycle. The one-cycle branch delay is a result of the branch decision
logic operating during the lA pipeline phase of the branch instruction.
This allows the branch target address calculated in the previous phase to
be used for the instruction access in the following 11 phase. The pipeline
will begin the fetch of the branch path as well as the fall-through path in
the cycle following the delay slot. Mter the branch decision is made, the
processor will continue with the fetch of either the branch path (for a
taken branch) or the fall-through path (for the non-taken branch).

Figure 3.3 illustrates the branch delay.

One Cycle One Cycle lone Cycle One Cycle

rBranCh---1
Delay

Load Delay

*Branch and fall-through address calculated
** Address selection made

Figure 3.3 CPU Pipeline Branch Delay

The completion of a load at the end of the 20 pipeline phase produces
an operand that is available for the lA pipeline phase of the instruction
following the load delay slot.

Figure 3.4 shows the load delay of one pipeline cycle.

One Cycle lone Cycle lone Cycle lone Cycle lone Cycle I

I~'d Del.; I
Figure 3.4 CPU Pipeline Load Delay

Interlock and Exception Handling
Smooth pipeline flow is interrupted when cache misses or exceptions

occur, or when data dependencies are detected. Interruptions handled
using hardware, such as cache misses, are referred to as interlocks, while
those that are handled using software are called exceptions.

3-4

The. CPU Pipeline Chapter 3

There are two types of interlocks:
o stalls, which are resolved by halting the pipeline
• slips, which require the back end of the pipeline to advance while the

front end of the pipeline is held static
At each cycle, exception and interlock conditions are checked for all

active instructions.
Because each exception or interlock condition corresponds to a partic­

ular pipeline stage, a condition can be traced back to the particular
instruction in the exception/interlock stage, as shown in Table 3.1. For
instance, a Reserved Instruction (RI) exception is raised in the execution
(A) stage.

Pipeline Stage
State

I R A D W

Stall ICM DCM

CPE

I R A D W

Slip LDI

MDSt

FCBsy

I R A D W

Exceptions ITM IBE RI DBE

IWatch IPErr CUn NMI

BP Reset

SC DPErr

DTM OVF

Intr Trap

FPE

DWatch

Table 3.1 Correspondence of Pipeline Stage to Interlock Condition

For a description of the pipeline interlocks and exceptions listed in
Table 3.1, refer to Table 3.2 and Table 3.3.

3-5

The CpU Pipeline Chapter 3

Exception Description

ITM Instruction Translation Bound/ Address Exception

Intr External Interrupt

IBE Instruction Bus Error

RI Resenred Instruction

BP Breakpoint

SC System Call

CUn Coprocessor Unusable

IPErr Instruction Parity Error

OVF Integer Overflow

FPE FP Interrupt

ExTrap EX Stage Traps

DTM Data Translation Bound/Address Exception

DBE Data Bus Error

DPErr Data Parity Error

NMI Non-maskable Interrupt (or Soft Reset)

Reset Reset

Table 3.2 Pipeline Exceptions

Table 3.2 and Table 3.3 describe the pipeline interlocks and exceptions
shown in Table 3.1 on page 5.

Interlock Description

ICM Instruction Cache Miss

CPE Coprocessor Possible Exception

DCM Data Cache Miss

LDI Load Interlock

MDSt Multiply /Divide Start

FCBsy FP Coprocessor Busy

Table 3.3 Pipeline Interlocks

Exception Conditions
When an exception condition occurs, the relevant instruction and all

those that follow it into the pipeline are cancelled. Accordingly, any stall
conditions and any later exception conditions that may have referenced
this instruction are inhibited; there is no benefit in servicing stalls for a
cancelled instruction.

When an exceptional condition is detected for an instruction, the
R4650 will kill it and all following instructions. When this instruction
reaches the W stage, the exception flag causes it to write various CPO
registers with the exception state, change the current PC to the appro­
priate exception vector address and clear the exception bits of earlier
pipeline stages.

3-6

· The CPU Pipeline

Exc

11

12

Chapter 3

This implementation allows all preceding instructions to complete
execution and prevents all subsequent instructions from completing.
Thus the value in the EPe is sufficient to restart execution. It also
ensures that exceptions are taken in the order of execution; an instruc­
tion taking an exception may itself be killed by an instruction further
down the pipeline that takes an exception in a later cycle.

Figure 3.5 shows the exception detection procedure (e.g., a reserved
instruction exception).

13 Kill

Exception Vector

Exception Vector Address

Figure 3.5 Exception Detection

Stall Conditions
Stalls are used to stop the pipeline for conditions detected after the R

pipe-stage. When a stall occurs, the processor will resolve the condition
and then the pipeline will continue. Figure 3.6 shows a data cache miss
stall.

3-7

The CPU Pipeline

R

Chapter 3

CD G) G) G)
t t i t

A D W w I ---I w w W

R A D D I" -I D D D W

R A A I ---I A A A D W

R R I ---I R R R A D W

m
Detect Cache Miss

Start moving dirty cache line data to write buffer

Get first doubleword into cache and restart pipeline

Load remainder of cache line into cache

Figure 3.6 Data Cache Miss

The data cache miss is detected in the 0 pipe stage. If the cache line to
be replaced is dirty - the W bit is set - the data is moved to the internal
write buffer in the next cycle. The first doubleword of data is returned to
the cache in 3 and the pipeline will then restart. The remainder of the
cache line is returned in the subsequent cycles. The data to be written
back will be returned to memory some time after the entire new cache line
is returned.

Slip Conditions
During the 2R and IA pipe-stages, internal logic will determine

whether it is possible to start the current instruction in this cycle. If all of
the source operands are available (either from the register file or via the
internal bypass logic) and all the hardware resources necessary to
complete the instruction will be available at the necessary time(s), then
the instruction "issues"; otherwise, the instruction will "slip". Slipped
instructions are retried on subsequent cycles until they issue. The
backend of the pipeline (stages 0 and W) will advance normally during
slips in an attemptto resolve the conflict. "NOPS" will be inserted into the
bubble in the pipeline. Instructions killed by branch likely instructions,
ERET or exceptions will not cause slips. Figure 3.7 shows an instruction
cache miss.

3-8

The CPU Pipeline

CYCLE
rJ)

I=:
0
:0
C,)

E
rJ)

.E
rJ)

;::3
0

"S:
il.)
1-0
0..

*NOP

*NOP

*NOP

*NOP

Issue Issue Slip Slip Slip Slip Issue Issue Issue

~

D

A

R

W

D W

A D W

R A D W

R A D W

R A D W

R A I D

R R R R R I A

d) cD ®
I R

~
Detect Cache Miss

2 Get entire cache line into cache

3 Continue pipeline

*NOP - Inserted NOP instructions

Figure 3.7 Instruction Cache Miss

W

D W

A D

Chapter 3

W

As shown in Figure 3.7, instruction cache misses are detected in R
and the pipeline slips in its A stage. There can never be a write-back
required for an instruction cache miss since dirty data can not exist in
the I cache. Writes are not allowed to the I cache. Note that early restart is
not employed for instruction cache misses, the requested cache line will
be loaded into the cache in its entirety and, after that, the pipeline will
restart.

R4650 Write Buffer
The R4650 contains a write buffer to' improve the performance of writes

to the external memory. Writes to external memory, whether cache miss
write-backs or stores to uncached or write-through addresses, use this
on-chip write buffer. The write buffer holds up to four 64-bit address and
data pairs.

For a cache miss write-back, the entire buffer is used for the write-back
data and allows the processor to proceed in parallel with the memory
update. For uncached and write-through stores, the write buffer uncou­
ples the CPU from the write to memory allowing increased performance
over the R4000 family of processors. If the write buffer is full, additional
stores will stall until there is room for them in the write buffer.

3-9

Memory Management Chapter 4

Integrated Device Technology, Inc.

Introduction
The R4650 features a simple base-bounds mechanism for virtual-to­

physical address translation. This mechanism supports multitasking
without the overhead of Translation Lookaside Buffer (TLB) management.
A companion mechanism that is implemented through the Cache Algo­
rithm register allows control over the cache attributes of areas of the
address space.

Base Bounds Registers
The R4650 implements a simple mechanism to support the mapping of

virtual to physical addresses. The Translation Lookaside Buffer (TLB)
structure found in the IDT79R4600 and IDT79R4700 is replaced by a
base-bounds mechanism. When an address is translated, its page
number is first compared against the Bounds register. If the address is
"in range," the base register is added to the virtual address to form the
physical address.

The R4650 contains two sets of base-bounds registers, one set for
instruction address translation (lBase and IBounds registers) and one for
data (DBase and DBounds registers). An operating system can support
task protection by writing appropriate values to these registers at context
switch time.

Finally, to allow a mix of cache attributes in a single system, the R4650
also implements a Cache Algorithm (CAlg) register in CPO. This register
allows the operating system to define the cache management attributes of
different portions of the address space. By merely using appropriate
virtual addresses memory can be treated as uncached, write-back, or
write-through, with separate attributes for each of eight memory regions.
In conjunction with the external system address decoder, software can
then alias the same physical memory with different management algo­
rithms, depending upon the data or program that is running.

Address Spaces
This section describes the virtual and physical address spaces and the

manner in which virtual addresses are converted or "translated" into
physical addresses by the base-bounds unit.

Virtual Address Space
The processor virtual address is 32-bits wide. The R4650 truncates

addresses at 32 bits, and ignores the upper 32 bits of 64-bit registers
during address translation.

4-1

~emory Management Chapter 4

Figure 4. 1 illustrates how the R4650 translates a virtual address into a
physical address.

Virtual Address
Spa'ce

Kseg 2

Physical Address
Space

------~~-~~pp:~-------
1.0 GBytes

Kseg 1, Uncached*
Unmapped .. 5 GBytes 3.5 GBytes

Kseg 0 Unmapped,
Cached* .5 GBytes

Useg
¢

Through

~ Mapped, Cached Base/Bound
2.0 GBytes Conversion

~ 0.5 GBytes ~

*Oefault values may be changed by CAlg Register.

Figure 4.1 Overview of R4650 Virtual-to-Physical Address Translation

Physical Address Space
Using a 32-bit address, the processor physical address space encom­

passes 4 Gigabytes. The section following describes the translation of a
virtual address to a physical address.

Virtual-to-Physical Address Translation
The R4650 cohverts a virtual address to a physical address as shown in

the following steps. The same procedure applies for either IBase/IBound
or DBase/DBound, but the I and D registers are separate.

1. If bits 63:32 are generated by a load/ store base+offset addition, they
are discarded.

~., IfVAddr(31) equals 1 and the CPU is in User mode, an address error
exception is generated. However, if in Kernel mode, then the upper
3 bits ofVAddr (bits 31:29) are removed and replaced by 000 to form
the physical address.

3. If not a kernel address (VAddr(31)=O), then VAddr(30: 12) is compared
to Bound(30: 12).

4. IfVAddr is greater than the Bound address, then a Bound exception
results.

5. Otherwise, the physical address equals (VAddr(31: 12) + Base(31: 12)),
concatenated with VAddr(l1:0). This is shown in Figure 4.2.

In parallel with the above operation, the cache access rules are obtained
from the CAlg'register, using VAddr(31:29) to select the appropriate CAlg
field.

4-2

Memory Management

31

Chapter 4

Virtual Address Base-Bounds
Figure 4.2 shows the virtual-to-physical-address translation of a 32-bit

virtual address.

32-Bit Virtual Address

VPN

+ (plus)

Base Register Value

12 11 o
Offset

\.---------..)

Y

I
Offset passed
unchanged to
physical
memory

[11 12111 Offset j I

~------------------~~--------------~------------~l--OffsetPassed

unchanged to
= (equals) physical

memory

Physical Address __ -----A --___
('\

31 12 11 0

I PFN
'i {. "". 5J·.:t:U:"ji. M*il' {P;Uzt# ,'gift g-4~ q.c.!Pij·¥PN •

I Offset I
Virtual Address with 256 (28)16-Mbyte pages

Figure 4.2 52-bit Virtual Address Translation

Operating Modes
The processor has two operating modes:
• User mode
• Kernel mode
These modes are described in the following subsections.

4-3

Memory Management

Address Bit
Values

32-bit

Chapter 4

User Mode Operations
In User mode, a single, uniform virtual address space-labelled User

segment-is available; its size is 2 Gigabytes. Figure 4.3 shows the User
mode virtual address space.

Ox FFFF FFFF

Address
Error

Ox 8000 0000

2GB

Mapped
useg

Ox 0000 0000

Note: Failure (i.e., bit 31 = 1) results in an Address Error exception.

Figure 4.3 User Mode Virtual Address Space

The User segment starts at address 0 and the current active user
process resides in useg. The address translator identically maps all refer­
ences to useg from both modes. The CAlg register controls cache accessi­
bility.

The processor operates in User mode when the Status register contains
all of the following bit-values:

• UM= 1
• EXL= 0
• ERL= 0
Table 4.1 lists the characteristics of the user mode segment useg.

Status Register Bit Values
Segment Name Address Range Segment Size

UM EXL ERL

1 0 0 useg OxOOOO 0000 2 Gbyte
through (231 bytes)
Ox7FFFFFFF

Table 4.1 User Mode Addressing

All valid User Mode virtual addresses have VAddr(31) cleared to 0; any
attempt to reference an address with VAddr(31) set to 1 while in User
mode causes an Address Error exception. The system maps all references
to useg through the base-bound register, and bit settings within the CAlg
register for the virtual address determine the cacheability of a reference.

Kernel Mode Operations
The processor operates in Kernel mode when the Status register

contains one of the following values:
• UM=O
• EXL= 1
• ERL= 1

4-4

Memory Management Chapter 4

The processor enters Kernel mode whenever an exception is detected
and it remains in Kernel mode until an Exception Return (ERET) instruc­
tion is executed. That ERET instruction restores the processor to the
mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated
by VAddr(31:29), as shown in Figure 4.4.

Ox FFFF FFFF

Unmapped kseg2

Ox cooo 0000
O.5GB

ksegl Unmapped
Uncachedt

Ox ACOO 0000
O.5GB

Unmapped
Cachedt

ksegO

Ox 8000 0000

2GB
kuseg

Mapped

Ox 0000 0000

Note: t Default value; may be changed in eAlg register.

Figure 4.4 Kernel Mode Address Space

4-5

Memory Management

Address Bit Values

A(31) = 0

A(31:29) = 1002

A(31:29) = 1012

A(31:30) = 112

Chapter 4

Table 4.2 lists the characteristics of the 32-bit kernel mode segments.

Status Register Is
One Of These Values

Segment
UM EXL ERL Name Virtual Address Range Segment Size

kuseg OxOOOO 0000 2 Gbytes (2° 1 bytes)
through

Ox7FFFFFFF
UM=O

ksegO OxBOOO 0000 512 Mbytes (229 bytes)
or through

Ox9FFF FFFF

EXL= 1 ksegl OxAOOO 0000 512 Mbytes (229 bytes)

or
through

OxBFFFFFFF

ERL=1 kseg2 oxeooo 0000 1 Gbyte (232 bytes)
through

OxFFFFFFFF

Table 4.2 u32-bit Kernel Mode Segments

32-bit Kernel Mode, User Space (kuseg)
In Kernel mode. when the most-significant bit of the virtual address.

VAddr(31), is cleared, the 32-bit kuseg virtual address space is selected.
It covers the full 231 bytes (2 Gbytes) of the current user address space.
The base-bounds mechanism will translate addresses in this region. and
the CAlg register controls cacheability.

32-bit Kernel Mode, Kernel Space 0 (1csegO)
In Kernel mode. when the most-significant three bits of the virtual

address are 1002. 32-bit ksegO virtual address space is selected; it is the
current 229-byte (512-Mbyte) kernel physical space.

References to ksegO are not mapped through the base-bounds registers.
The physical address selected is defined by subtracting Ox8000 0000
from the virtual address (physical address = 000 II VA[28:0)).

The CAlg register controls cacheability. At Reset ksegO is cacheable and
kseg 1 is not.

32-bit Kernel Mode, Kernel Space 1 (ksegl)
In Kernel mode, when the most-significant three bits of the 32-bit

virtual address are 1012, 32-bit ksegl virtual address space is selected.
It is the current 229-byte (512Mbyte) kernel physical space.

References to kseg 1 are not mapped through the base-bounds register.
The physical address selected is defined by subtracting OxAOOO 0000
from the virtual address (physical address = 000 II VA[28:0]).

By default. caches are disabled for accesses to these addresses. and
physical memory (or memory-mapped I/O device registers) are accessed
directly. However. CAlg allows this to be changed. At Reset ksegO is
cacheable and kseg 1 is not.

32-bit Kernel Mode (kseg2)
In Kernel mode. when the most-significant two bits of the 32-bit virtual

address are 11. the kseg2 virtual address space is selected. The corre­
sponding physical address is found by replacing the 3 most significant
address bits with 000 (PAddr (31:0) = 000 II VAddr (28:0)). The CAlg
register controls cacheability.

4-6

Memory Management Chapter 4

System Control Coprocessor
The System Control Coprocessor (CPO) is implemented as an integral

part of the CPU, and supports memory management, address translation,
exception handling, and other privileged operations. CPO contains the
base-bounds address in addition to the registers shown in Table 4.3. The
following subsections describe how the processor uses the memory
management-related registers.

Each CPO register has a register number, which is a unique number that
identifies it.

Number Name Function

0 IBase Instruction address space base

1 IBound Instruction address space bound

2 DBase Data address space base

3 DBound Data address space bound

4 - not used

5 - not used

6 - not used

7 - not used

8 BadVAddr Virtual address on address exceptions

9 Count Counts every other cycle

10 - not used

11 Compare Generate interrupt when Count = Compare

12 Status Miscellaneous con troll status

13 Cause Exception/Interrupt information

14 EPC Exception PC

15 PRId Processor ID

16 Config Device configuration info

17 CAlg Cache attributes for the 8512MB regions of the virtual address space

18 IWatch Instruction breakpoint virtual address

19 DWatch Data breakpoint virtual address

20 - not used

21 - not used

22 - not used

23 - not used

24 - not used

25 - not used

26 ECC Error checking control

27 CacheErr Error diagnostic info

28 TagLo Cache addressing

29 - not used

30 ErrorEPC Cache Error exception PC

31 - not used

Table 4.3 CPO Registers

4-7

Mem,ory Management Chapter 4

CPO Registers
The following sections describe the CPO registers (shown in Figure 4.5)

that are assigned specifically as a software interface with memory
management. The register number appears in parentheses after each
register name in the following list:

• lBase (CPO register 0)
• lBound (1)
• DBase (2)
• DBound (3)
• PRId (15)
• CAlg (17)
• TagLo (28)

mase Register (0)
The lBase register provides the User Instruction address space Base

address. Figure 4.5 shows the format of the lBase register; Table 4.4,
which follows the figure, describes the lBase register fields.

IBase Register

31 12 11 0

I
UIBase

I
0 I

20 12

Figure 4.5 IBase Register

Field Description

UIBase
Added to vAddr31..12 for user space to get physical
address

0 Reserved. Reads as 0, should be written as O.

Table 4.4 IBase Register Field Descriptions

mound Register (1)
The lBound register provides the User Instruction address space Bound

address. Virtual addresses greater than this value cause address error
exceptions. Figure 4.6 shows the format of the IBound register; Table 4.5,
which follows the figure, describes the lBound register fields.

IBound Register

31 30 12 11 0

1

0
I

UIBound
I

0 I
20 12

Figure 4.6 IBound Register

Field Description

UIBound Compared to v Addr30 .. 12 for user space to validate
address

0 Reserved. Reads as 0, should be written as O.

Table 4.5 IBound Register Field Descriptions

4-8

Memory Management Chapter 4

DBase Register (2)
The DBase register provides the User Data "address space Base address.

Figure 4.7 shows the format of the DBase register; Table 4.6, which
follows the figure, describes the DBase register fields.

DBase Register

31 12 11 0

I
UDBase

I
0 I

20 12

Figure 4.7 DBase Register

Field Description

UDBase
Added to v Addr31..12 for user space to get physical
address

0 Reserved. Reads as 0, should be written as O.

Table 4.6 DBase Register Field Descriptions

DBound Register (3)
The DBound register provides the User Data address space Bound.

Figure 4.8 shows the format of the DBound register; Table 4.7, which
follows the figure, describes the DBound register fields.

DBound Register

31 30 12 11 0

I 0 I UDBound
I 0 I

20 12

Figure 4.8 DBound Register

Field Description

UDBound
Compared to v Addr31..12 for user space to validate
address

0 Reserved. Reads as 0, should be written as O.

Table 4.7 DBound Register Field Descriptions

Processor Revision Identifier (PRId) Register (15)
The 32-bit, read-only Processor Revision Identifier (PRId) register

contains information identifying the implementation and revision level of
the CPU and CPO. Figure 4.9 shows the format of the PRId register; Table
4.8 describes the PRId register fields.

31

o
16

PRld Register

1615

I Imp

8

87

I Rev

8

Figure 4.9 Processor Revision Identifier Register Format

4-9

o

I

Memory Management Chapter 4

Field Description

Imp Implementation number R4650 Imp = Ox22

Rev Revision number

0 Reserved. Returns zeroes when read.

Table 4.8 PRld Register Fields

The low-order byte (bits 7:0) of the PRId register is interpreted as a revi­
sion number, and the high-order byte (bits 15:8) is interpreted as an
implementation number. The implementation number of the R4650
processor is Ox22. The content of the high-order halfword (bits 31: 16) of
the register are reserved.

The revision number is stored as a value in the form y.x, where y is a
major revision number in bits 7:4 and x is a minor revision number in
bits 3:0.

The revision number can distinguish some chip revisions, however
there is no guarantee that changes to the chip will necessarily be reflected
in the PRId register, or that changes to the revision number necessarily
reflect real chip changes. For this reason, these values are not listed and
software should not rely on the revision number in the PRId register to
characterize the chip. Certain attributes, such as cache size, are indepen­
dent of implementation number.

Config Register (16)
The ConflfJ register specifies various configuration options selected on

R4650 processors; Table 4.9 lists these options.
Some configuration options, as defined by Config bits 31:3, are set by

the hardware during reset and are included in the Conftg register as read­
only status bits for the software to access.

Figure 4.10 shows the format of the Conftg register; Table 4.9, which
follows the figure, describes the ConflfJ register fields.

Config Register
31 30 28 27 24 2322 21 20 19 18 17 16 15 14 13 12 11 9 8 6 5 4 3 2 0

3 4 2 2 1 1 1 1 1 3 3 1 1 1 3

Figure 4.10 Config Register Format

4-10

Memory Management

Field

EC

EP
(EW=l)

EP
(EW=O)

EW

BE

IC

DC

IB

DB

Others

Chapter 4

Description

Pipeline clock ratio:
a ~ processor input clock frequency multiplied by 2
1 ~ processor input clock frequency multiplied by 3
2 ~ processor input clock frequency multiplied by 4
3 ~ processor input clock frequency multiplied by 5
4 ~ processor input clock frequency multiplied by 6
5 ~ processor input clock frequency multiplied by 7
6 ~ processor input clock frequency multiplied by 8
7 Reserved

Write-back data rate:
O~WWWWWWWW

1 ~ WWxWWxWWxWW
2 ~ WWxxWWxxWWxxWWxx
3 ~ WxWxWxWxWxWxWxWx
4 ~ WWxxxWWxxxWWxxxWWxxx
5 ~ WWxxxxWWxxxxWWxxxxWWxxxx
6 ~ WxxWxxWxxWxxWxxWxxWxxWxx
7 ~ WWxxxxxWWxxxxxWWxxxxxWWxxxx
8 ~ WxxxWxxxWxxxWxxxWxxxWxxxWxxxWxxx

Write-back data rate:

1 word every cycle
2 words every 3 cycles
2 words every 4 cycles
2 words every 4 cycles
2 words every 5 cycles
2 words every 6 cycles
2 words every 6 cycles
2 words every 7 cycles
2 words every 8 cycles

a ~ DDDD 1 double word every cycle
1 ~ DDxDDx 2 double words every 3 cycles
2 ~ DDxxDDxx 2 double words every 4 cycles
3 ~ DxDxDxDx 2 double words every 4 cycles
4 ~ DDxxxDDxxx 2 double words every 5 cycles
5 ~ DDxxxxDDxxxx 2 double words every 6 cycles
6 ~ DxxDxxDxxDxx 2 double words every 6 cycles
7 ~ DDxxxxxDDxxxx 2 double words every 7 cycles
8 ~ DxxxDxxxDxxxDxxx 2 double words every 8 cycles

SysAD bus size; 0 ~ 64 bits, 1 ~ 32 bits (from serial mode bits)

BigEndianMem
a ~. Little Endian
1 ~ Big Endian

Primary I-cache Size (I-cache size = 212+IC bytes). In the R4650 processor this is
set to 8 Kbytes (IC = 001).

Primary D-cache Size (D-cache size = 212+DC bytes). In the R4650 processor this
is set to 8 Kbytes (DC = 001).

Primary I-cache line size
1 ~ 32 bytes (8 Words)

Primary D-cache line size
1 ~ 32 bytes (8 Words)

Reserved. Returns indicated values when read.

Table 4.9 Config Register Fields

4-11

Memory Management

31 28 27

I
C7

I
C6

4 4

Chapter 4

CAlg Register (17) 1

. The CAlg register is a read-write register 'that specifies the cache algo-
rithm for each 512MB region of the virtual address space.

CAlg is initialized to Ox22233333 on Reset. Bits 31, 27, 23, 19, 15, 11,
7, and 3 are not implemented, and are reserved for future use. They read
as zero and are ignored on write.

Figure 4.11 shows the format of the CAlg register; Table 4.10, which
follows the figure, describes the CAlg register fields.

CAlg Register

24 23 20 19 16 15 12 11 8 7 4 3 0

I
C5

I
C4

I
C3

I
C2

I
C1

I
CO I

4 4 4 4 4 4

Figure 4.11 CAlg Register

The Cache algorithms are as follows:
o Cached, non-coherent, write-through, no write-allocate
1 Cached, non-coherent, write-through, write-allocate
2 Uncached
3 Cached, non-coherent, write-back, write-allocate
4-15 Reserved

Field Description

CO Cache algorithm for OxOOOOOOOO to OxlFFFFFFF
(part of useg/kuseg)

Cl
Cache algorithm for Ox20000000 to Ox3FFFFFFF

(part of useg/kuseg)

C2
Cache algorithm for Ox40000000 to Ox5FFFFFFF
(part of useg/kuseg)

C3
Cache algorithm for Ox60000000 to Ox7FFFFFFF
(part of useg/kuseg)

C4 Cache algorithm for Ox80000000 to Ox9FFFFFFF (k segO)

C5 Cache algorithm for OxAOOOOOOOO to OxBFFFFFFF (k seg 1)

C6
Cache algorithm for OxCOOOOOOO to OxDFFFFFFF
(part of kseg2)

C7
Cache algorithm for OxEOOOOOOO to OxFFFFFFFF
(part of kseg2)

Table 4.10 CAlg Register Field Descriptions

Cache Tag Registers [TagLo (28)
The TagLo register is a 32-bit read/write register that holds the primary

cache tag and parity during cache initialization, cache diagnostics, and
cache error processing. The Tag register is written by the CACHE and
MTCO instructions.

The P field is ignored on Index Store Tag operations. Parity is computed
by the store operation.

4-12

Memory Management Chapter 4

Figure 4.12 shows the register format for primary cache operations.
Table 4.11 lists the field definitions of the TagLo register.

31 8 7 6 5 320

TagLo PTagLo I PState I Rsvd

24 2 3

Figure 4.12 TagLo Register (P-cache) Format

Field Description

PTagLo Specifies the physical address bits 35:12

PState Specifies the primary cache state

P Specifies the primary tag even parity bit

F
The FIFO bit (used internally to implement FIFO refill of the
cache)

Rsvd Reserved. Must be written as zeroes.

0 Reserved. Must be written as zeroes; returns zeroes when read

Table 4.11 Cache Tag Register Fields

4-13

Memory Management Chapter 4

Virtual-to-Physical Address Translation Process
Figure 4.13 illustrates the Base-Bounds address translation process.

Virtual Address {Input}

1- -1
Exception

Yes
Exception

Cacheability ~ CAlg (VAddr (31 :29))

t
Cache Main Memory

Figure 4.13 Base-Bounds Address Translation

4-14

CPU Exception Processing Chapter 5

Integrated Device Technology. Inc.

This chapter describes the CPU exception processing, including a
discussion of the format and use of each CPU exception register.

The chapter concludes with a description of each exception's cause,
together with the manner in which the CPU processes and services these
exceptions. For information about Floating-Point Unit exceptions, refer to
Chapter 7.

How Exception Processing Works
The processor receives exceptions from a number of sources, including

address translation errors, arithmetic overflows, 110 interrupts, and
system calls. When the CPU detects one of these exceptions, the normal
sequence of instruction execution is suspended and the processor enters
Kernel mode. Refer to Chapter 4 for a description of system operating
modes.

The processor then disables interrupts and forces execution of a soft­
ware exception processor (called a handler) located at a fixed address. The
handler may save the context of the processor, including the contents of
the program counter, the current operating mode (User or Kernel), and
the status of the interrupts (enabled or disabled). This context would be
saved so it can be restored when the exception has been serviced.

When an exception occurs, the CPU loads the Exception Program
Counter (EPC) register with a location where execution can restart after
the exception has been serviced. The restart location in the EPC register is
the address of the instruction that caused the exception or, if the instruc­
tion was executing in a branch delay slot, the address of the branch
instruction immediately preceding the delay slot.

The registers described later in the chapter assist in this exception
processing by retaining address, cause and status information.

For a deSCription of the exception handling process, refer to the flow­
charts at the end of this chapter.

The Exception Processing Registers
This section describes the CPO registers that are used in exception

processing. Table 5.1 on page 5-2 lists these registers, along with their
number. Each register has a unique identification number called a register
number. For example, the ECC register is register number 26. The
remaining CPO registers are used in memory management, as described in
Chapter 4.

5-1

CPU Exception Processing Chapter 5

Software examines the CPO registers during exception processing to
determine the cause of the exception and the state of the CPU at the time
the exception occurred. Table 5.1 lists the register used in exception
processing. A description of each register follows the table.

Register Name Reg. No.

IWatch 18

DWatch 19

BadVAddr (Bad Virtual Address) 8

Count 9

Compare register 11

Status 12

Cause 13

EPC (Exception Program Counter) 14

ECC 26

CacheErr (Cache Error and Status) 27

ErrorEPC (Error Exception Program Counter) 30

Table 5.1 CPO Exception Processing Registers

IWatch Register (18)
The !Watch register is a read/write register that specifies an Instruc­

tion virtual address that causes a Watch exception. When VADDR3 1..2
of an instruction fetch 'matches IVAddr of this register, and the I bit is
set, a Watch exception is taken. Matches that occur when EXL = 1 or
ERL = 1 do not take the exception immediately, but are instead post­
poned until both EXL and ERL are cleared. The priority of IWatch
exceptions is just below Instruction Address Error exceptions. Figure
5.1 shows the format of the !Watch register; Table 5.2, which follows the
figure, describes the !Watch register fields.

IWatch Register
31 3 2 1 0

IvAddr I 0111
30

Figure 5.1 IWatch Register Format

Field Description

IvAddr Instruction virtual address that causes a watch excep-
tion (bits 31 :2).

I o ---> !Watch disabled, 1 ---> !Watch enabled.

0 reserved for future use.

Note: IWatch.I is cleared on Reset.

Table 5.2 IWatch Register Fields

5-2

CPU Exception Processing Chapter 5

DWatch Register (19) .
DWatch is a read/write register that specifies a Data virtual address

that causes a Watch exception. Data Watch exception is taken when
VAddr 31..3 of a load matches DVAddr of this register and the R bit is set,
or when VAddr 31..3 of a store matches DvAddr of this register and the W
bit is set. Matches that occur when EXL = 1 or ERL = 1 do not take the
exception immediately, but are instead postponed until both EXL and
ERL are cleared. The priority of DWatch exceptions is just below Data
Address Error exceptions. DWatch exceptions do not occur on CACHE
ops. Figure 5.2 shows the format of the DWatch register; Table 5.3, which
follows the figure, describes the DWatch register fields.

DWatch Register
31 3 210

DvAddr

29 1 1 1

Figure 5.2 DWatch Register Format

Field Description

DvAddr Data virtual address that causes a watch exception.

R o ---> DWatch disabled for loads, 1 ---> DWatch enabled
for loads.

W 0---> DWatch disabled for stores, 1---> DWatch enabled
for stores.

0 reserved for future use.

Note: DWatch.R and DWatch.W are cleared on Reset.

Table 5.3 DWatch Register Fields

Bad Virtual Address Register (BadVAddr) (8)
The Bad Virtual Address register (BadVAddr) is a read-only register that

displays the most recent virtual address that caused one of the exceptions
in the following list. The processor does not write to the BadVAddr
register when the EXL bit in the Status register is set to a 1.

• Address Error (e.g., unaligned access)
• Bounds
• Virtual Coherency Data Access
• Virtual Coherency Instruction Fetch

Figure 5.3 shows the format of the BadVAddr register. The BadVAddr
register does not save any information for bus errors, since bus errors are
not addressing errors.

BadVAddr Register
31 o

Bad Virtual Address

32

Figure 5.3 BadVAddr Register Format

5-3

CPU Exception Processing Chapter 5

Count Register (9)
The Count register acts as a timer, incrementing at a constant rate-half

the maximum instruction issue rate-whether or not an instruction is
executed, retired, or any forward progress is made through the pipeline.

This register can be read or written. It can be written for diagnostic
purposes or system initialization; for example, to synchronize processors.

Figure 5.4 shows the format of the Count register.

Count Register
31 o

Count I
32

Figure 5.4 Count Register Format

Compare Register (11)
The Compare register acts as a timer, and (see also the Count register)

maintains a stable value that does not change on its own. When the
value of the Count register equals the value of the Compare register, inter­
rupt bit IP(7) in the Cause register is set. If the timer interrupt was
enabled at boot time, an interrupt will occur as soon as the interrupt is
enabled. Writing a value to the Compare register, as a side effect, clears
the timer interrupt. .

For diagnostic purposes, the Compare register is a read/write register.
However, in normal use the Compare register is write-only. Figure 5.5
shows the format of the Compare register.

Compare Register
31 0
I~--------------------c-o-m-p-a-r-e---------------------'I

32

Figure 5.5 Compare Register Format

Status Register (12) .
The Status register (SR) is a read/write register that contains the oper­

ating mode, interrupt enabling, and the diagnostic states of the processor.
The following list describes the more important Status register fields.

Figure 5.6 shows the format of the Status register. Table 5.4, which
follows the figure, describes the Status register fields.

OS ---------I~~I

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8765432 o

1M

8

Figure 5.6 Status Register

5-4

CPU Exception Processing Chapter 5

Field Description

CU Controls the usability of each of the four coprocessor unit numbers. CPO is always usable
when in Kernel mode, regardless of the setting of the CUo bit.

1 -7 usable a -7 unusable
Note: In the MIPS 3 ISA, CP3 is no longer defined as a valid coprocessor unit.

FR Enables additional floating-point registers
o -7 16 registers 1 -7 32 registers

RE Reverse-Endian bit, valid in User mode.

DL Data cache lock, a new bit in R4650. Does not prevent refills into set A when set A is invalid.
Does not inhibit update of the D-cache on store operations.

0-7 normal operation 1-7 refill into set A disabled

IL Instruction cache lock, a new bit in R4650. Does not prevent refills into set A when set A is
invalid.

a -7 normal operation 1-7 refill into set A disabled

BEV Controls the location of exception vectors.
a -7 normal 1-7 bootstrap

SR 1-7 Indicates a soft reset or NMI has occurred.

CH Hit (tag match and valid state) or miss indication for last CACHE Hit Invalidate, Hit Write
Back Invalidate, Hit Write Back, or Hit Set Virtual for a primary cache.

a -7 miss 1 -7 hit

CE Contents of the ECC register set or modify the check bits of the caches when CE = 1; see
description of the ECC register.

DE Specifies that cache parity errors cannot cause exceptions.
a -7 parity remains enabled 1 -7 disables parity

0 Reserved. Read as 0, ignored on writes.

1M Interrupt Mask controls the enabling of each of the external, internal, and software inter-
rupts. An interrupt is taken if interrupts are enabled, and the corresponding bits are set in
both the Interrupt Mask field of the Status register and the Interrupt Pending field of the Cause
register. IM[7:2] correspond to interrupts Int[5:0] and IM[I:0] to the software interrupts.

a -7 disabled 1-7 enabled

UX Controls whether the 64-bit MIPS-3 instructions can be used in user mode.
a -7 32-bit only 1 -7 64-bit enabled

UM User Mode bit, a new bit in R4650.
a -7 User 1 -7 Kernel

(Simplification of KSU, remains subject to EXL and ERL, as on R4xxx.

ERL Error Level
o -7 normal 1 -7 error

EXL Exception Level
a -7 normal 1 -7 exception

Note: When going from a to 1, IE should be disabled (0) first. This would be done when
preparing to return from the exception handler, such as before executing the ERET instruc-
tion.

IE Interrupt Enable
a -7 disable interrupts 1 -7 enables interrupts

Table 5.4 Status Register Fields

5-5

CPU Exception Processing Chapter 5

Status Register Modes and Access States
Fields of the Status register set the modes and access states described

in the sections that follow.
Interrupt Enable: Interrupts are enabled when all of the following

conditions are true:
• IE= 1

• EXL= 0
• ERL= 0

If these conditions are met, the settings of the 1M bits identify the inter­
rupt.

Note: Setting the IE bit may be delayed by up to 3 cycles. Ifperforming
nested interrupts, re-enable the IE bit first.

Operating Modes: The following CPU Status register bit settings are
required for User, Kernel, and Supervisor modes (see Chapter 4 for more
information about operating modes).

• The processor is in User mode when all of these bits are set as follows:
- UM=O
- EXL= 0
- ERL= 0

• The processor is in Kernel mode when any of these bits are set
as follows:
- UM = 1
- EXL= 1
- ERL= 1

32-bit Virtual Addressing: The R4650 only supports 32-bit virtual
addresses. It ignores bits 63:32 of memory addresses.

Kernel Address Space Accesses: Access to the kernel address space is
allowed when the processor is in Kernel mode.

User Address Space Accesses: Access to the user address space is
allowed in either Kernel or User mode.

Status Register Reset
The contents of the Status register are undefined at reset, except for bits

ERL and BEV, which are set to 1. The SR bit distinguishes between Reset
and Soft Reset (Nonmaskable Interrupt [NMI)).

5-6

CPU Exception Processing Chapter 5

Cause Register (13)
The 32-bit read/write Cause register describes the cause of the most

recent exception.
Figure 5.7 shows the fields of this register; Table 5.5, which follows the

figure, describes the Cause register fields. A 5-bit exception code
(ExcCode) indicates the cause of the most recent exception, as listed in
Table 5.6 on page 5-8.

All bits in the Cause register, with the exception of the IP(1 :0) bits, are
read-only. IP(1:0) bits are used for software interrupts. The Cause. IV bit is
set to zero by a Reset.

Cause Register

31 30 29 28 27 26 25 24 23 22 16 15 876 210

o IP

2 2 7 8 1 5 2

Figure 5.7 Cause Register Format

Field Description

BD Indicates whether the last exception taken occurred in a branch delay slot.
1 -7 delay slot
0-7 normal

0 Reserved. Currently read as 0 and must be written as '0',

CE Coprocessor unit number referenced when a Coprocessor Unusable excep-
tion is taken ..

DW On a Watch exception, indicates that the DWatch register matched. On
other exceptions this field is undefined.

IW On a Watch exception, indicates that the IWatch register matched. On
other exceptions this field is undefined.

IV Enables the new dedicated interrupt vector.
1 -7 interrupts use new exception vector (200)
0-7 interrupts use common exception vector (180)

IP Indicates an interrupt is pending.
1 -7 interrupt pending
o -7 no interrupt

ExcCode Exception code field (see Table 5.6 on page 5-8)

Table 5.5 Cause Register Fields

5-7

CPU Exception Processing Chapter 5

Exception
Code Value Mnemonic Description

0 Int Interrupt

1 - Reserved

2 IBound Instruction bound exception (replaces TLB
exception on load)

3 DBound Data bound exception (replaces TLB exception on
store)

4 AdEL Address error exception (load or instruction fetch)

5 AdES Address error exception (store)

6 IBE Bus error exception (instruction fetch)

7 DBE Bus error exception (data reference: load or store)

8 Sys Syscall exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Coprocessor Unusable exception

12 Ov Arithmetic Overflow exception

13 Tr Trap exception

14 - Reserved

15 FPE Floating-Point exception

16-22 - Reserved

23 Watch Watch exception

24-31 - Reserved

Table 5.6 Cause Register ExcCode Field

5-8

CPU Exception Processing Chapter 5

Exception Program. Counter (EPC) Register (14)
The Exception Program Counter (EPC) is a read/write register that

contains the address at which processing resumes after an exception has
been serviced.

For synchronous exceptions, the EPC register contains either:
• the virtual address of the instruction that was the direct cause of the

exception, or
• the virtual address of the immediately preceding branch or jump in­

struction (which occurs when the instruction is in a branch delay slot,
and the Branch Delay bit in the Cause register is set).

The processor does not write to the EPC register when the EXL bit in the
Status register is set to a 1.

Figure 5.8 shows the format of the EPC register.

EPC Register
31 o

EPe I
64

Figure 5.S EPC Register Format

Error Checking and Correcting (ECC) Register (26)
The 8-bit Error Checking and Correcting (ECC) register reads or writes

primary-cache data parity bits for cache initialization, cache diagnostics,
or cache error processing. Tag parity is loaded from and stored to the
TagLo register.

The ECC register is loaded by the Index Load Tag CACHE operation.
Content of the ECC register are:

• written into the primary data cache on store instructions (instead of
the computed parity) when the CE bit of the Status register is set, and

• substituted for the computed instruction parity for the CACHE oper­
ation Fill

To force a cache parity value use the Status CE bit and the ECC register.
Figure 5.9 shows the format of the ECC register; Table 5.7, which

follows the figure, describes the register fields.

ECC Register

31 8 7 0

I D I ECC }
24 8

Figure 5.9 ECC Register Format

Field Description

ECC
An 8-bit field specifying the parity bits read from or
written to a primary cache.

D
Reserved. Must be written as zeroes, and returns
zeroes when read.

Table 5.7 ECC Register Fields

5-9

CPU Exception Processing Chapter 5

Field

ER

EC

ED

ET

ES

EE

EB

SIdx

PIdx

0

Cache Error (CacheErr) Register (27)
The 32-bit read-only CacheErr register processes parity errors in the

primary cache. Parity errors cannot be corrected.
The CacheErr register holds cache index and status bits that indicate

the source and nature of the error. It is loaded when a Cache Error excep­
tion is asserted. When a read response returns with bad parity, this
exception is also asserted.

Figure 5.10 shows the format of the CacheErr register. Table 5.8, which
follows the figure, describes the CacheErr register fields.

CacheErr Register

31 30 29 28 27 26 25 24 23 22 21 3 2 o
Sldx I I Pld. ~

11 111111 19 o 2

Figure 5.10 CacheErr Register Format

Description

Type of reference
o ~ instruction
1 ~ data

Cache level of the error
o ~ primary
1 ~ reserved

Indicates if a data field error occurred
o ~no error
1 ~ error

Indicates if a tag field error occurred
O~noerror

1 ~ error

Indicates the error occurred accessing processor-managed resources, in response to an external
request.

o ~ internal reference
1 ~ external reference

Since the R4650 doesn't have any external events that would look in a cache (which is the only
processor-managed resource), this bit would not be set under normal operating conditions.

Set if the error occurred on the SysAD bus.

Taking a cache error exception sets/ clears this bit.

Set if a data error occurred in,addition to the instruction error (indicated by the remainder of
the bits). If so, this requires flushing the data cache after fixing the instruction error.

Physical address 21:3 of the reference that encountered the error.

Virtual address 13:12 of the double word in error.

To be used with SIdx to construct a virtual index for the primary caches. Only the lower two
bits (bits 1 and 0) are v Addr; the high bit (bit 2) is zero.

Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5.S CacheErr Register Fields

5-10

CPU Exception Processing

Error Exception Program Counter (Error EPC)
Register (30)

Chapter 5

The ErrorEPC register is similar to the EPC register, except that
ErrorEPC is used on parity error exceptions. It is also used to store the
program counter (PC) on Reset, Soft Reset, and nonmaskable interrupt
(NMI) exceptions.

The read/write ErrorEPC register contains the virtual address at which
instruction processing can resume after servicing an error. This address
can be either:

• the virtual address of the instruction that caused the exception
• the virtual address of the immediately preceding branch or jump

instruction, when this address is in a branch delay slot.
There is no branch delay slot indication for the ErrorEPC register.
Figure 5.11 shows the format of the ErrorEPC register.

ErrorEPC Register

31 o
ErrorEPC

64

Figure 5.11 ErrorEPC Register Format

Processor Exceptions
This section describes the processor exceptions, their causes,

processing by the hardware, and servicing by a handler (software). Excep­
tion types are described in the next section.

Processor Exception Examples
This section gives sample exception handler operations for the following

exception types:
• reset
• soft reset
• nonmaskable interrupt (NMI)
• cache error
• interrupts
• remaining processor exceptions

When the EXL bit in the Status register is 0, either User or Supervisor
operating mode is specified by the KSU bits in the Status register. When
the EXL bit or the ERL bit is set to 1, the processor is in Kernel mode.

When the processor takes an exception, the EXL bit is . set to 1, which
means the system is in Kernel mode. After saving the appropriate state,
the exception handler typically resets the EXL bit back to O. When
restoring the state and restarting, the handler sets the EXL bit back to 1.
Returning from an exception also resets the· EXL bit to 0 (see the ERET
instruction in Appendix A).

The following sections show sample hardware processes for various
exceptions, together with the servicing required by the handler (software).

5 -11

CPU Exception Processing Chapter 5

Reset Exception Process Example
Figure 5.12 shows the Reset exception process.

T: undefined
Config <- 0 1/ EC II EP " 00000000 " BE " 110 II 001 " 001 " 1 II 1 II 0 II undefined3

ErrorEPC f- PC
SR f- SR31 :23 II 1 II 0 II 0 II SR19:3 111 /I SR1:0
PC f- Ox BFCO 0000

Figure 5.12 Reset Exception Processing

Cache Error Exception Process Example
Figure 5.13 shows the Cache Error exception process.

T: ErrorEPC f- PC
CacheErrf- ER /I EC /I ED II ET II ES" EE /I EB II 025

SR f- SR31 :3 111 IISR1:o
if SR22 = 1 then

PC f- Ox BFCO 0200 + Ox100
else

PC f- Ox AOOO 0000 + Ox100
endif

/* What is the BEV bit setting */
/* access boot-PROM area */

/* access main memory area * /

Figure 5.13 Cache Error Exception Processing

Soft Reset and NMI Exception Process Example
Figure 5.14 shows the Soft Reset and NMI exception process.

T: ErrorEPC f- PC
SR f- SR31 :23 II 1 /I 0 111 II SR19:3 111 II SR1:0
PC f- Ox BFCO 0000

Figure 5.14 Soft Reset and NMI Exception Processing

5-12

CPU Exception Processing Chapter 5

Interrupt Exception Process Example
Figure 5. 15 shows the process used for exceptions other than Reset,

Soft Reset, NMI, and Cache Error.

T: Cause ~ BD II 0 II CE 11012 11 Cause15:811 0 II ExcCode II 02

if SR1 = 0 then 1* system in User or Supervisor mode with no current exception */
EPC~·PC

endif
SR f- SR31 :2 111 II SRO
if Cause.IV then

vector=200
else

vector=180
if SR22 = 1 then 1* What is the B~V bit setting */

PC ~ Ox BFCO 0200 + vector· 1* access to uncached space */
else
PC~ Ox 8000 0000+ vector

endif
/* access to cached space */

. FigUre 5.15 Interrupt Exception Processing

General Exception Process Example
Figure 5.16 shows the process used for exceptions other than Reset,

Soft Reset, NMI, and Cache Error.

T: Cause ~ BD II 0 II CE II 012 II Cause15:8 II 0 II ExcCode II 02

if SR1 = 0 then 1* system in User or Supervisor mode with no current exception */
EPC~ PC

endif
SR ~ SR31:2111 \I SRO
if SR22 = 1 then 1* What is the BEV bit setting */

PC ~ Ox BFCO 0200 + vector 1* access to uncached space */
else

PC ~ Ox 8000 0000 + vector
endif

1* access to cached space * /

Figure 5.16 General Exception Processing (Except Reset, Soft
Reset, NMI, and Cache Error)

5 -13

CPU Exception Processing Chapter 5

Priority

1

2

3

4

5

6

7

8

Processor Exception Vector Locations
The Reset, ·Soft Reset, and NMI exceptions are always vectored to loca­

tion OxBFCOOOOO (virtual address), corresponding to ksegO.
Addresses for all other exceptions are a combination of a vector offset

and a base address. The base address is determined by the BEV bit of the
Status register, as shown in Table 5.9.

BEV R4650 Processor Vector Base Cache Error Base

0 Ox 8000 0000 Ox AOOO 0000

I Ox BFCO 0200 Ox BFC00200

Table 5.9 Exception Vector Base Addresses

Table 5.10 shows the vector offset that is added to the base address to
create the exception address.

As shown in Figure 5.13, when BEV = 0, the vector base for the Cache
Error exception changes from ksegO (Ox80000000) to kseg 1
(OxAOOOOOOO). When BEV=l, the vector base for the Cache Error excep­
tion is OxBFC00200. This is an uncached and unmapped space, allowing
the exception to bypass the cache and TLB.

Exception
R4650 Processor

Vector Offset

Cache Error OxlOO

Interruptt Ox200

Others OxI80

Note: t If cause .IV= 1. otherwise interrupts use general vector offset.

Table 5.10 Exception Vector Offsets

Priority of Exceptions
The remainder of this chapter describes exceptions in the order of their

priority, as shown in Table 5.11. While more than one exception can
occur for a single instruction, only the exception with the highest priority
is reported.

Exception Priority Exception

Reset (highest priority) 9 Integer overflow, Trap, System Call,
Breakpoint, Reserved Instruction,
Coprocessor Unusable, or Floating-Point
Exception

Soft Reset 10 Bound error - Data access

Nonmaskable Interrupt (NMI) 11 Address Error - Data access

Bound - Instruction fetch 12 Cache Error - Data access

Address - Instruction fetch 13 Watch - Data access

Watch - Instruction fetch 14 Bus error - Data access

Cache error - Instruction fetch 15 Interrupt (lowest priority)

Bus error - Instruction fetch

Table 5.11 Exception Priority Order

5-14

CPU Exception Processing Chapter 5

Processor Exception Descriptions
In general, the exceptions described in the following sections are

handled ("processed") by hardware, then serviced by software.

Reset Exception
This section explains the Reset exception.

Cause
The Reset exception occurs when the ColdReset* signal! is asserted and

then deasserted. This exception is not maskable.
Processing

The CPU provides the special exception vector OxBFCO 0000 for this
exception.

The Reset vector resides in unmapped and uncached CPU address
space, so the hardware does not need to initialize the cache to process
this exception. In addition, the processor can fetch and execute instruc­
tions while the caches and virtual memory are in an undefined state. The
contents of all registers in the CPU are undefined when this exception
occurs, except as follows:

• In the -Status register, SR is cleared to 0, and ERL and BEVare set to
1. All other bits are undefined.

• Some of the Config Register bits are initialized from the boot-time
mode stream.

• Cause register IV = O.
• CAlg = Ox22233333
• IWatch.I = 0
• DWatch.R=O, DWatch.W = 0

Reset exception processing is shown in Figure 5.12 on page 5-12.

Servicing
The Reset exception is serviced by:
• initializing all processor registers, coprocessor registers, caches, and

the memory system
• performing diagnostic tests
• bootstrapping the operating system

Soft Reset Exception
This section explains the Soft Reset exception.

Cause
The Soft Reset exception occurs in response to the Reset* input signal,

and execution begins at the Reset vector when Reset* is deasserted. This
exception is not maskable.

Processing
The Reset exception vector is used for this exception, located within

unmapped and uncached address space so that the cache need not be
initialized to process this exception. When a Soft Reset occurs, the SR bit
of the Status register is set to distinguish this exception from a Reset
exception.

1. In the following sections (and throughout this manual) a signal name followed
by an asterisk, such as Reset*, is low active.

5 -15

CPU Exception Processing Chapter 5

The primary purpose of the Soft Reset exception is to reinitialize the
processor after a fatal error that occurs during normal operations. Unlike
an NMI, all cache and bus state machines are reset by this exception. Like
Reset, it can be used on the processor in any state; the caches and
normal exception vectors need not be properly initialized. Soft Reset
preserves the state of the caches and memory system, while resetting the
bus state and cache state machine.

When this exception occurs, the contents of all registers are preserved.
exceptas follows:

• ErrorEPC register, which contains the restart PC
• ERL bit of the Status register, which is set to 1
• SR bit of the Status register, which is set to 1
• BEV bit of the Status register, which is set to 1

Because the Soft Reset can abort cache and bus operations, cache and
memory state is undefined when this exception occurs.

Soft reset exception processing is shown in Figure 5. 14.

Servicing
The Soft Reset exception is serviced by saving the current processor

state for diagnostic purposes, and reinitializing for the Reset exception.

Nonmaskable Interrupt (NMI) Exception
This section explains the Nonmaskable Interrupt exception.

Cause
The Nonmaskable Interrupt (NMI) exception occurs in response to the

falling edge of theNMI pin, or an external write to the Int*[6] bit of the
Interrupt register.

Unlike all other interrupts, this interrupt is not maskable; it occurs
regardless of the settings of the EXL, ERL, and the IE bits in the Status
register.

Processing
The Reset exception vector is used for this exception. This vector is

located within unmapped and uncached address space so that the cache
does not need to be initialized to process an NMI interrupt. When an NMI
exception occurs, the SR bit of the Status register is set to differentiate
this exception from a Reset exception.

Because an NMI can occur in the midst of another exception, it is not
normally possible to continue program execution after servicing an NMI.

Unlike Reset and Soft Reset, but like other exceptions, NMI is taken
only at instruction boundaries. The state of the caches and memory
system are preserved by this exception.

To terminate a pending read that has hung the best approach is to
return a bus error. However, if you wish to use a CPU exception to indi­
cate a hung read, Soft Reset is preferable to NMI.

When this exception occurs, the contents of all registers are preserved
except for:

• ErrorEPC register, which contains the restart PC
• ERL bit of the Status register, which is set to 1
• SR bit of the Status register, which is set to 1
• BEV bit of the Status register, which is set to 1

NMI exception processing is shown in Figure 5.14 on page 5-12.

Servicing
The NMI exception is serviced by saving the current processor state for

diagnostic purposes, and reinitializing the system for the Reset exception.

5-16

CPU Exception Processing Chapter 5

Address Error Exception
This section explains the Address Error exception.

Cause
The Address Error exception occurs when an attempt is made to

execute one of the following operations:
• load or store a doubleword that is not aligned on a doubleword

boundary (except for use of special instruction)
o load. fetch. or store a word that is not aligned on a word boundary

(except for use of special instruction)
• load or store a halfword that is not aligned on a halfword boundary
• reference the kernel address space from User mode (STATUS UM =1

and VADDR(31) = 1)
This exception is not maskable.

Processing
The common exception vector is used for this exception. The AdEL or

AdES code in the Cause register is set. indicating how the instruction
(shown by the EPC register and BD bit in the Cause register) caused the
exception, with either an instruction reference, a load operation, or a
store operation.

When this exception occurs. the BadVAddr register retains the virtual
address that was not properly aligned or the referenced protected address
space. The contents of the VPN field of the Context and EntryHi registers
are undefined. as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the
exception. unless this instruction is in a branch delay slot. If it is in a
branch delay slot. the EPC register contains the address of the preceding
branch instruction. and the BD bit of the Cause register is set to indicate
this. Address Error exception processing is shown in Figure 5.15.

Servicing
Typically, the process that is executing at the time is handed a

segmentation violation Signal. This error is usually fatal to the process that
incurs the exception.

To resume execution. the EPC register must be altered so that the
unaligned reference instruction does not re-execute. This is accomplished
by adding a value" of 4 to the EPC register (EPC register + 4) before
returning.

If an unaligned reference instruction is in a branch delay slot,
interpretation of the branch instruction is required to resume execution.

Cache Error Exception
This section explains the Cache Error exception.

Cause
The Cache Error exception occurs when a primary cache parity error is

detected. This exception is maskable by the DE bit of the Status register.

Processing
The processor sets the ERL bit in the Status register. saves the excep­

tion restart address in ErrorEPC register. and then transfers to a special
vector in uncached space. as follows:

• If the BEV bit = O. the vector is OxAOOO 0100.
• If the BEV bit = 1. the vector is OxBFCO 0300.

"No other registers are changed. Cache Error exception processing is
shown in Figure 5.13.

5-17

CPU Exception Processing Chapter 5

Servicing ,
All errors should be logged. To correct cache parity errors the sy~tem

uses the CACHE instruction to invalidate the cache block, overwrites the
old data through a cache miss, and resumes execution with an ERET.

Other errors are not correctable and are likely to be fatal to the current
process.

Bus Error Exception
This section explains the Bus Error exception.

Cause
A Bus Error exception is raised by board-level circuitry for events such

as bus time-out, backplane bus parity errors, and invalid physical
memory addresses or access types. This exception is not maskable.

A Bus Error exception occurs only when a cache miss refill, uncached
reference, or unbuffered write occurs synchronously. A Bus Error excep­
tion resulting from a buffered write transaction must be reported using
the general interrupt mechanism.

Processing ,
The common interrupt vector is used for a Bus Error exception. The lBE

or DBE code in the ExcCode field of the Cause register is set, signifying
indicating how the instruction (as indicated by the EPC register and BD
bit in the Cause register) caused the exception, with either an instruction
reference, a load operation, ora store operation.

The EPC register contains the address of the instruction that caused the
exception, unless it is in a branch delay slot, in which case the EPC
register contains the address of the preceding branch instruction and the
BD bit of the Cause register is set. Bus Error processing is shown in
Figure 5.16 on page 5-13.

Servicing
The physical address at which the fault occurred can be computed from

information available in the CPO registers, as follows:
• If the lBE code in the Cause register is set (indicating an instruction

fetch reference), the virtual address is contained in the EPC register.
• If the DBE code is set (indicating a load or store reference), the

instruction that caused the exception is located at the virtual address
contained in the EPC register (or 4+ the contents of the EPC register
if the BD bit of the Cause register is set).

The virtual address of the load and store reference can then be obtained
by interpreting the instruction. The physical address can simply be calcu­
lated from the virtual address and the base.

The process executing at the time of this exception is handed a bus
error signal, which is usually fatal.

Integer Overflow Exception
This section explains the Integer Overflow exception.

Cause
An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADO,

DADDI or DSUB instruction 1 results in a ,2's complement overflow. This
exception is not maskable.

l. See Appendix A for instruction description.

5 -18

CPU Exception Processing Chapter 5

Processing
The common exception vector is used for this exception, and the OV code

in the Cause register is set.
The EPC register contains the address of the instruction that caused the

exception unless the instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Integer Overflow exception processing is shown in Figure 5.16 on
page 5~13.

Servicing
The process executing at the time of the exception is handed a floating­

point exception/integer overflow signal. This error is usually fatal to the
current process.

Trap Exception
This section discusses the Trap exception.

Cause
The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE,

TGEI, TGEUI, TLTI, TLTUI, TEQI, or TNEI instruction l results in a TRUE
condition. This exception is not maskable.

Processing
The common exception vector is used for this exception, and the Tr code

in the Cause register is set.
The EPC register contains the address of the instruction causing the

exception unless the instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Trap exception processing is shown in Figure 5.16 on page 5-13.

Servicing
The process executing at the time of a Trap exception is handed a

floating-point exception/integer overflow signal. This error is usually fatal.

System Call Exception
This section explains the System Call exception.

Cause
A System Call exception occurs during an attempt to execute the

SYSCALL instruction. This exception is not maskable.

Processing
The common exception vector is used for this exception, and the Sys

code in the Cause register is set.
The EPC register contains the address of the SYSCALL instruction unless

it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

If the SYSCALL instruction is in a. branch delay slot, the BD bit of the
Status register is set; otherwise this bit is cleared.

System Call exception processing is shown in Figure 5.16 on page 5-13.

1. See Appendix A for instruction description.

5-19

CPU Exception Processing Chapter 5

Servicing
When this exception occurs, control is transferred to the applicable

system routine.
To resume execution, the EPC register must be altered so that the

SYSCALL instruction does not re-execute. This is accomplished by adding
a value of 4 to the EPC register (EPC register + 4) before returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated
algorithm, beyond the scope of this description, may be required.

5-20

CPU Exception Processing Chapter·5

Breakpoint Exception
This section explains the Breakpoint exception.

Cause
A Breakpoint exception occurs when an attempt is made to execute the

BREAK instruction. This exception is notmaskable.

Processing
The common exception vector is used for this exception, and the BP code

in the Cause register is set.
The EPC register contains the address of the BREAK instruction unless

it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

If the BREAK instruction is in a branch delay slot, the BD bit of the
Status register is set, otherwise the bit is cleared.

Breakpoint exception processing is shown in Figure 5.16 on page 5-13.

Servicing
When the Breakpoint exception occurs, control is transferred to the

applicable system routine. Additional distinctions can be made by
analyzing the unused bits of the BREAK instruction (bits 25:6), and
loading the contents of the instruction whose address the EPC register
contains. A value of 4 must be added to the contents of the EPC register
(EPC register + 4) to locate the instruction if it resides in a branch delay
slot.

To resume execution, the EPC register must be altered so that the
BREAK instruction does not re-execute; this is accomplished by adding a
value of 4 to the EPC register (EPC register + 4) before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the
branch instruction is required to resume execution.

Reserved Instruction Exception
This section explains the Reserved Instruction exception.

Cause
The Reserved Instruction exception occurs when one of the following

conditions occurs:
o an attempt is made to execute an instruction with an undefined major

opcode (bits 31: 26)
o an attempt is made to execute a SPECIAL instruction with an unde­

fined minor opcode (bits 5:0)
o an attempt is made to execute a REGIMM instruction with an unde­

fined minor opcode (bits 20: 16)
• an attempt is made to execute 64-bit operations in 32-bit virtual

addressing when in User or Supervisor modes
64-bit operations are always valid in Kernel mode regardless of the

value of the KX bit in the Status register.
This exception is not maskable.
Reserved Instruction exception processing is shown in Figure 5.16 on

page 5-13. .

Processing
The common exception vector is used for this exception, and the RI code

in the Cause register is set.
The EPC register contains the address of the reserved instruction unless

it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

5 - 21

CPU Exception Processing Chapter 5

Servicing
No instructions in the R4650 ISA are currently interpreted. The process

executing at the time of this exception is handed an illegal instruction/
reserved operand fault signal. This error is usually fatal.

Coprocessor Unusable Exception
This section explains the Coprocessor Unusable exception.

Cause
The Coprocessor Unusable exception occurs when an attempt is made

to execute a coprocessor instruction for either:
• a corresponding coprocessor unit that has not been marked usable,

or
• CPO instructions, when the unit has not been marked usable and the

process executes in User mode.
This exception is not maskable.

Processing
The common exception vector is used for this exception, and the CPU

code in the Cause register is set. The contents of the Coprocessor Usage
Error field of the coprocessor Control register indicate which of the four
coprocessors was referenced. The EPC register contains the address of the
unusable coprocessor instruction unless it is in a branch delay slot, in
which case the EPC register contains the address of the preceding branch
instruction.

Coprocessor Unusable exception processing is shown in Figure 5.16 on
page 5-13.

Servicing
The coprocessor unit to which an attempted reference was made is

identified by the Coprocessor Usage Error field, which results in one of
the following situations:

• If the process is entitled access to the coprocessor, the coprocessor is
marked usable and the corresponding user state is restored to the
coprocessor.

• If the process is entitled access to the coprocessor, but the copro­
cessor does not exist or has failed, interpretation of the coprocessor
instruction is possible.

• If the BD bit is set in the Cause register, the branch instruction must
be interpreted; then the coprocessor instruction can be emulated and
execution resumed with the EPC register advanced past the copro­
cessor instruction.

• If the process is not entitled access to the coprocessor, the process
executing at the time is handed an illegal instruction/privileged
instruction fault signal. This error is usually fatal.

5-22

CPU Exception Processing Chapter 5

Floating-Point Exception
This section discusses the Floating-Point exception.

Cause
The Floating-Point exception is used by the floating-point coprocessor.

This exception is not maskable.

Processing
The common exception vector is used for this exception, and the FPE

code in the Cause register is set.
The contents of the Floating-Point Control/Status register indicate the

cause of this exception.
Floating-Point exception processing is shown in Figure 5.16 on

page 5-13.

Servicing
This exception is cleared by clearing the appropriate bit in the Floating­

Point Control! Status register.
For an unimplemented instruction exception, the kernel should

emulate the instruction; for other exceptions, the kernel should pass the
exception to the user program that caused the exception.

Interrupt Exception
This section discusses the Interrupt exception.

Cause·
The Interrupt exception occurs when one of the eight interrupt condi­

tions is asserted. The significance of these interrupts is dependent upon
the specific system implementation.

Each of the eight interrupts can be masked by clearing the corre­
sponding bit in the Int-Mask field of the Status register, and all of the eight
interrupts can be masked at once by clearing the IE bit of the Status
register.

Processing
The R4650 may use the common exception vector or a dedicated vector

for this exception, determined by the Cause register Wbit. The Int code in
the Cause register is set.

The IP field of the Cause register indicates current interrupt requests. It
is possible that more than one of the bits can be simultaneously set (or
even no bits may be set if the interrupt is asserted and then deasserted
before this register is read).

Interrupt exception processing is shown in Figure 5.16 on page 5-13.

Servicing
If the interrupt is caused by one of the two software-generated excep­

tions (SWl or SWO), the interrupt condition is cleared by setting the corre­
sponding Cause register bit to O.

If the interrupt is hardware-generated, the interrupt condition is cleared
by correcting the condition causing the interrupt pin to be asserted.

Note: Due to the write buffer, a store to an external device may not
occur until after other instructions in the pipeline finish. The
user must ensure that the store will occur before the return from
exception instruction (ERET) is executed, otherWise the interrupt
may be serviced again even though there should be no interrupt
pending.

·5-23

CPU Exception Processing Chapter 5

IWatch Exception
This section explains the IWatch exception.

Cause
IWatch is a read-write register that specifies an instruction virtual

address that causes a Watch exception. The exception occurs when the
program address matches the IWatch Register, and IWatch.I is set.

Processing. .
The common exception vector is used for this exception. The Watch

code ()f the Cause register is set with the IW bit set.

Servicing
This exception is typically used during system debug. Servicing is

system-specific.

DWatch Exception
This section explains the DWatch exception.

Cause
DWatch is a read-write register that specifies a data virtual address that

causes a Watch exception. The exception occurs either when the program
does a load and the target address matches DWatch and DWatch. R is set,
or when the program does a store and the target address matches
DWatch and DWatch.W is set.

Processing
The common exception vector is used for this exception. The Watch

code of the Cause register is set with the DW bit set.

Servicing
This exception is typically used during system debug. Servicing is

system -specific.

IBound Exception
This section explains the IBound exception.

Cause
A virtual address in kuseg exceeded the value set for IBound. The

IBound register provides the User Instruction address space Bound. User
virtual addresses greater than this value cause IBound exceptions.

Processing
The common exception vector is used for this exception. The UIBound

code of the Cause register is set.

Servicing
This exception indicates that the user is trying to access memory

outside the allowed page. Servicing is system-specific.

DBound Exception
This section explains the DBound exception.

Cause
A virtual address in kuseg exceeded the value set for DBound. The

DBound register provides the User Data address space Bound. User
virtual addresses greater than this value cause DBound exceptions.

5-24

CPU Exception Processing Chapter 5

Processing
The common exception vector is used for this exception. The UDBound

code of the Cause register is set.

Servicing
This exception indicates that the user is trying to access memory

outside the allowed page. Servicing is system-specific.

Exception Handling and Servicing Flowcharts
This section contains process flowcharts for the exceptions described in

Table 5. 12, as well as gUidelines for the exception handlers.

Figure Description

Figure 5.17, General exceptions and their exception handler
Figure 5.18

Figure 5.19 Cache error exception and its handler

Figure 5.20 Reset, soft reset and NMI exceptions, and a gUideline to
their handler.

Table 5.12 List of Exception Flowcharts

In 'general, the exceptions are handled by hardware (HW), and then
the exceptions are serviced by software (SW).

5-25

CPU Exception Processing

Comments

Set FP Control Status Register *FP Control Status Register is only set
Enhi f- VPN2, ASID if the respective exception occurs.
Context f- VPN2 EnHi, XlContext are set only for

Set Cause Register
EXCCode, CE

Yes

TLB- Invalid, Modified,
& Refill exceptions

=1

Check if exception within
another exception

BadVA is set only for Bounds and
VCED/I exceptions

Chapter 5

Note: Not set if Bus Error Exception

=0 (normal)

Processor forced to Kernel Mode
& interrupt disabled

=1 (bootstrap)

r-___ --IC--__:..(B_a_s--.,e is sign ex ended for .-64_bi_ts..:.,.) ___ ..1.-___ ---,

PC f- Ox FFFF 8000 0000 PC f- Ox FFFF BFCO 0200
+ 180** + 180 tt

(unmapped, cached) (unmapped, uncached)

To General Exception Servicing Guidelines t

Exceptions other than Reset, Soft Reset, NMI, or CacheErr

Figure Notes:
tlnterrupts can be masked by IE or IMs

tt 200 if cause.exc code ="Int"and cause.lV=1

Figure 5.17 General Exception Handler (HW)

5-26

CPU Exception Processing

MFCO­
EPC
Status
Cause

!
MTCO-

(Set Status Bits:)
MM=O
EXL f- 0
& IE=1

Check CAUSE REG. & Jump to
appropriate Service Code

Service Code

EXL= 1

MTCO-
EPC
STATUS

ERET

Comments

i
* EXL=1 so Interrupt exceptions disabled

* OS/System to avoid all other exceptions

*Only Cache Err, Reset, Soft Reset, NMI
exceptions possible.

Chapter 5

(optional- only to enable Interrupts while keeping Kernel Mode)

* After EXL=O, all exceptions allowed.
(except interrupt if masked by IE or 1M
and Cache Err if masked by DE)

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which is
in the ERET's branch delay slot

* PC f- EPC; EXL f- 0

* LLbit f- 0

Figure 5.18 General Exception Servicing Guidelines (SW)

5-27

CPU Exception Processing

~
:t: -tn
.5
i3
c
ca
:t:
c
o
:;::
c.
CI)
u
><
W
"-o
"­
"-w
CI)
.c
u ca o

~ en -tn
CI)

.5
Q)
'C ·S
CJ
tn
C
'u
.~

CI)

en

Note: Can be masked/disabled by DE (SR16) bit = 1

Yes

=0 (normal) = 1 (bootstrap)

(Base is sign extended for 64 bits)
~ ________ L-________ ~ r---------~--------~

PC ~ OxAOOO 0000 PC ~ OxBFCO 0200
+ 100 + 100

Service Code
I
I
I
I

(unmapped, uncached)

Comments

* Unmapped Uncached vector so TLB-related
and Cache Error Exceptions not possible

* ERL=1 so Interrupt exceptions disabled
* OS/System to avoid all other exceptions

*Only Reset, Soft Reset, NMI
exceptions possible.

c-----r-----' * ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which is
in the ERET's branch delay slot ~ * PC ~ ErrorEPC; ERL ~ 0

* LLbit ~ 0

Figure 5.19 Cache Error Exception Handling (HW)
and Servicing Guidelines (SW)

5-28

Chapter 5

CPU Exception Processing Chapter 5

C)

:§
"C
C
co
J:
c
o
;:
c.
CI)
(,)
>< w
:E
z
~ -CI)
U)
CI)

II:

= o
en
...:
CI)
U)
CI)

II:

Soft Reset or NMI Exception Reset Exception

Status:

BEV f-1

SR f-1

ERL f-1

,----- -----
I
I NMI Service Code
I

:-- ~ -:1 -~ -- ~
(Optional)

Yes

Wired f- 0

Config f- Update(31 :6)11 Undef(5:0)

Status:

PC f- Ox BFCO 0000

BEV f-1

SR f-O

ERL f-1

Note: There is no indication from the
processor to differentiate between
NMI & Soft Reset;
there must be a system level indication.

=0

Soft Reset Service Code I I
I I

I

Reset Service Code :

I I I
~ _______________ J L ____________ _

Figure 5.20 Reset, Soft Reset & NMI Exception Handling (HW) and
Servicing Guidelines (SW)

5-29

The Floating-Point Unit Chapter 6

Integrated Device Technology, Inc.

Introduction
This chapter describes the R4650 floating-point unit (FPU) features,

including the programming model, instruction set and formats. and the
pipeline.

The FPU. with associated system software. conforms to the single-preci­
sion requirements of ANSI/IEEE Standard 754-1985. IEEE Standardfor
Binary Floating-Point Arithmetic. In addition, the MIPS architecture fully
supports the recommendations of the standard and precise exceptions.

The FPU operates as a coprocessor for the CPU. It is assigned copro­
cessor label CPl, and extends the CPU instruction set to perform arith­
metic operations on floating-point values.

The R4650 Floating-Point Coprocessor
The R4650 incorporates a single-precision floating-point coprocessor on

chip. including a floating-point register file and execution units. The
floating-point coprocessor forms a seamless interface with the integer
unit. decoding and executing instructions in parallel with the integer unit.

Figure 6. 1 illustrates the functional organization of the FPU.

Data Cache
FCU

.. /32
, Control

/ / 32
/

FP Bypass
Pipeline Chain r r

FP Add/Sub,
CvtlDiv/Sqrt F

3 1 /32,
/

/32
/

1212
32 32

// ,,/

FP Reg File ..
Figure 6.1 FPU Functional Block Diagram

6-1

The Floating-Point Unit Chapter 6

FPU Features
This section briefly describes the operating model, the load/store

instruction set, and the coprocessor interface in the FPU. A more detailed
description is given in the sections that follow.

• Single-Precision Operation. The floating-point incorporates an
adder, a multiplier, and a 32-entry, 32-bit register file for floating
point operations. It also has a 32-bit control register. Overlap of
multiply and add is supported.

• Load and Store Instruction Set. Like the CPU, the FPU uses a load ~
and store-oriented instruction set, with single-cycle load and store
operations.

• Tightly Coupled Coprocessor Interface. The FPU resides on-chip to
form a tightly coupled unit with a seamless integration of floating­
point and fixed-point instruction sets.

FPU Programming Model
This section describes the set of FPU registers and their data organiza­

tion. The FPU registers include Floating-Point General Purpose registers
(FGRs) and two control registers: Control! Status and Implementation/
Revision.

Floating-Point General Registers (FGRs)
The FPU has a set of Floating-Point General Purpose registers (FGRs) that

can be accessed in the following ways:
• As 32 general-purpose registers (32 FGRs), each of which is 32-bits

wide. The CPU accesses these registers through move, load, and store
instructions.

• As 16 floating-point registers (see the next section for a discussion of
floating point registers), each of which is 32-bits wide, when the FR
bit in the CPU Status register equals o. The floating point registers
hold values in single-precision floating-point format. Each floating
point registers corresponds to adjacently numbered FGRs, as shown
in Figure 6.2, when status FR=O. Attempts to access odd-numbered
floating-point registers result in an unimplemented trap.

• As 32 floating-point registers (see the next section for a description of
floating point registers), each of which is 32-bits wide, when the FR
bit in the CPU Status register equals 1. The floating point registers
hold values in single-precision floating-point format.

6-2

The Floating-Point Unit Chapter 6

Each FPR corresponds to an FGR, as shown in Figl:lre 6.2.

Floating-Point Floating-Point Floating-Point Floating-Point
Registers (FPR) General Purpose Registers Registers (FPR) General Purpose Registers

•
•
•

(FR = 0) 31 (FGR) 0 (FR = 1) 31 (FGR) 0

FPRO FGRO
NA FGR1

FPR2 FGR2
NA FGR3

•
•
·

FPR28 FGR28

NA FGR29

FPR30 FGR30

NA FGR31

I," '. • .. Y,!I~/ ~\ ... '~~ t! ~""~1 ~~! ~ :~(: ~;Ji ~ .. ~ ~ "t.

FPRO

FPR1

FPR2

FPR3

FPR28

FPR29

FPR30

FPR31

Floating-Point
Control Registers

FGRO

FGR1

FGR2

FGR3

• •
•

FGR28

FGR29

FGR30

FGR31

Control/Status Register
FCR31

(FCR)
Implementation/Revision Register

31 o 31 FCRO 0

J I

Figure 6.2 FPU Registers

Floating-Point Registers
The FPU provides:

*9

• 16 Floating-Point registers (FPRs) for Status.FR = 0, or
• 32 Floating-Point registers (FPRs) for Status.FR = 1.

J

These 32-bit registers hold floating-point values during floating-point
operations and are physically formed from the General Purpose registers
(FGRs). When the FR bit in the Status register equals 1, the FPR refer­
ences a single 32-bit FGR.

The FPRs hold values in single-precision floating-point format. If the FR
bit equals 0, only even numbers (as shown in Figure 6.2) can be used to
address FPRs. When the FR bit is set to 1 all FPR register numbers are
valid.

Floating-Point Control Registers
The FPU has 32 control registers (FCRs) that can only be accessed by

move operations. The FCRs are described below:

6-3

The Floating-Point Unit Chapter 6

• The Implementation/Revision register (FCROj holds revision informa­
tion about the FPU.

• The Control! Status register (FCR31j controls and monitors excep­
tions, holds the result of compare operations, and establishes round­
ing modes.

• FCRl to FCR30 are reserved.
Table 6. 1 lists the assignments of the FCR registers.

FCRNumber Use

FCRO Coprocessor implementation and revision register

FCR1 to FCR30 Reserved

FCR31 Rounding mode, cause, trap enables, and flags

Table 6.1 Floating-Point Control Register Assignments

Implementation and Revision Register, (FeRO)
The read-only Implementation and Revision register (FCRO) specifies the

implementation and revision number of the FPU. This information can
determine the coprocessor revision and performance level, and can also
be used by diagnostic software.

Figure 6.3 shows the layout of the register; Table 6.2, which follows the
figure, describes the Implementation and Revision register (FCRO) fields.

Implementation/Revision Register (FCRO)

31 1615 87 o
o Imp Rev

16 8 8

Figure 6.3 Implementation/Revision Register

Field Description

Imp Implementation number (0x22 in R4650)

Rev Revision number in the form of y.x

0 Reserved.

Table 6.2 FCRO Fields

The revision number is a value of the form y.x, where:
• y is a major revision number held in bits 7:4.
• x is a minor revision number held in bits 3:0.

The revision number distinguishes some chip revisions; however, there
is no guarantee that changes to the chip are necessarily reflected by the
revision number, or that changes to the revision number necessarily
reflect real chip changes. For this reason revision number values are not
listed, and software should not rely on the revision number to charac­
terize the chip.

6-4

The Floating-Point Unit

31

Chapter 6

Control/Status Register (FCR31)
The Control! Status register (FCR31) contains control and status infor­

mation that can be accessed by instructions in either Kernel or User
mode. FCR31 also controls the arithmetic rounding mode and enables
User mode traps, as well as identifying any exceptions that may have
occurred in the most recently executed instruction, along with any excep­
tions that may have occurred without being trapped.

Figure 6.4 shows the format of the Control/Status register, and Table
6.3, which follows the figure, describes the Control/Status register fields.

Control/Status Register (FCR31)

25 24 23 22 18 17 12 11 7 6 2 o

o

7

Field

FS

C

Cause

Enables

Flags

RM

5

Cause
EVZOUI

6

Enables
VZOU I

5

Flags
VZOUI

5

Figure 6.4 FP Control/Status Register Bit Assignments

Description

2

When set, denormalized results are flushed to a instead of causing
an unimplemented operation exception.

Condition bit. See description of Control/Status register Condition
bit.

Cause bits. See Figure 6.5 and the description of Control/Status
register Cause, Flag, and Enable bits.

Enable bits. See Figure 6.5 and the deSCription of Control/Status
register Cause, Flag, and Enable bits.

Flag bits. See Figure 6.5 and the description of Control/Status reg-
ister Cause, Flag, and Enable bits.

Rounding mode bits. See Table 6.4, found on page 8, and the
deSCription of Control/Status register Rounding Mode Control bits.

Table 6.3 Control/Status Register Fields

6-5

The Floating-Point Unit Chapter 6

Figure 6.5 shows the Control/Status register Cause, Flag, and Enable
fields.

Bit # 17 16 15 14 13 12

IE I
Cause

V Z 0 U Bits
I I I I I

Bit # 11 10 9 8 7

I I
Enable

V Z 0 U I Bits
I I I I I

Bit # 6 5 4 3 2

I V I z 0 U I
Flag
Bits

Inexact Operation
Underflow

Overflow
Division by Zero

Invalid Operation

Unimplemented Operation

Figure 6.5 Control/Status Register Cause. Flag. and Enable Fields

Accessing the Control/Status Register
When the Control/ Status register is read by a Move Control From

Coprocessor 1 (CFC 1) instruction, all unfinished instructions in the pipe­
line are completed before the contents of the register are moved to the
main processor. If a floating-point exception occurs as the pipeline
empties. the FP exception is taken and the CFC 1 instruction is re­
executed after the exception is serviced.

The bits in the Control! Status register can be set or cleared by writing to
the register using a Move Control To Coprocessor 1 (CTCl) instruction.
CTC 1 is not issued until all previous floating-point operations are
complete.

IEEE Standard 754
IEEE Standard 754 specifies that floating-point operations detect

certain exceptional cases, raise flags, and can invoke an exception
handler when an exception occurs. These features are implemented in the
MIPS architecture with the Cause, Enable, and Flag fields of the Control!
Status register. The Flag bits implement IEEE 754 exception status flags,
and the Cause and Enable bits implement exception handling.

Control/Status Register FS Bit
When the FS bit is set, denormalized results are flushed to 0 instead of

causing an unimplemented operation exception.

Control/Status Register Condition Bit
When a floating-point Compare operation takes place, the result is

stored at bit 23, the Condition bit, to save or restore the state of the condi­
tion line. The C bit is set to 1 if the condition is true; the bit is cleared to 0
if the condition is false. Bit 23 is affected only by compare and Move
Control To FPU instructions.

6-6

The Floating-Point Unit Chapter 6

Control/Status Register Cause, Flag, and Enable Fields
Figure 6.5 illustrates the Cause, Flag, and Enable fields of the Control/

Status register.

Cause Bits
Bits 17: 12 in the Control/Status register contain Cause bits, which

reflect the results of the most recently executed instruction. These bits
are illustrated in Figure 6.5. The Cause bits are a logical extension of the
CPO Cause register; they identify the exceptions raised by the last
floating-point operation and raise an interrupt or exception if the corre­
sponding enable bit is set. If more than one exception occurs on a single
instruction, each appropriate bit is set.

The Cause bits are written by each floating-point operation (but not by
load, store, or move operations). The Unimplemented Operation (E) bit is
set to a 1 if software emulation is required, otherwise it remains O. The
other bits are set to 0 or 1 to indicate the occurrence or non-occurrence
(respectively) of an IEEE 754 exception.

When a floating-point exception is taken, no results are stored, and the
only state affected is the Cause bits. Exceptions caused by an immedi­
ately previous floating-point operation can be determined by reading the
Cause field.

Enable Bits
A floating-point operation that sets an enabled Cause bit forces an

immediate exception, as does setting both Cause and Enable bits with
CTC 1. The floating-point exception or interrupt is enabled when the
corresponding enable be is set.

There is no enable for Unimplemented Operation (E). Setting Unimple­
mented Operation always generates a floating-point exception.

Before returning from a floating-point exception, or doing a CTCl, soft­
ware must first clear the enabled Cause bits to prevent a repeat of the
interrupt. Thus, User mode programs can never observe enabled Cause
bits set; if this information is required in a User mode handler, it must be
passed somewhere other than the Status register.

For a floating-point operation that sets only unenabled Cause bits, no
exception occurs and the default result defined by IEEE 754 is stored. In
this case, the exceptions that were caused by the immediately previous
floating-point operation can be determined by reading the Cause field.

Flag Bits
When an exception case is detected and the Enable exception is not set,

then the corresponding flag bit is set. If an exception is taken, then none
of the flag bits are modified. However, note that system software may set
the flag bits before invoking a user exception handler.

The Flag bits are cumulative and indicate that an exception was raised
by an operation that was executed since they were explicitly reset. Flag
bits are set to 1 if an IEEE 754 exception is raised, otherwise they remain
unchanged. The Flag bits are never cleared as a side effect of floating­
point operations; however, they can be set or cleared by writing a new
value into the Status register, using a Move To Coprocessor Control
instruction.

Control/Status Register Rounding Mode Control Bits
Bits 1 and 0 in the Control/Status register constitute the Rounding

Mode (RM) field.

6-7

The Floating-Point Unit Chapter 6

As shown in Table 6.4, these bits specify the rounding mode that the
FPU uses for all floating-point operations.

Rounding
Mode RM{1:0) Mnemonic Description

0 RN Round result to nearest representable value;
round to value with least-significant bit 0 when
the two nearest representable values are equally
near.

1 RZ Round toward 0: round to value closest to and not
greater in magnitude than the infinitely precise
result.

2 RP Round toward +00: round to value closest to and
not less than the infinitely precise result.

3 RM Round toward - 00: round to value closest to and
not greater than the infinitely precise result.

Table 6.4 Rounding Mode Bit Decoding

Floating-Point Formats
The FPU performs 32-bit (single-precision) IEEE standard floating-point

operations. The 32-bit single-precision format has a 24-bit signed-magni­
tude fraction field (f+s) and an 8-bit exponent (e), as shown in Figure 6.6.

The floating-point accelerator (FPA) does not perform 64-bit (double­
precision) operations. Thus, instructions requiring 64-bit data support in
the FPA cause the unimplemented exception to be signaled, allowing soft­
ware emulation if desired.

31 30

e
Exponent

8

23 22

f
Fraction

23

Figure 6.6 Single-Precision Floating-Point Format

o

As shown in the preceding figure, numbers in floating-point format are
composed of three fields:

• sign field, s
• biased exponent, e = E + bias
• fraction,j=.b1b2····bp-l

The range of the unbiased exponent E includes every integer between
the two values Emin and Emax inclusive, together with two other reserved
values:

• Emin -1 (to encode ±O and denormalized numbers)
• Emax + 1 (to encode ± and NaNs [Not a Number))
Each representable nonzero numerical value has just one encoding.

6-8

The Floating-Point Unit Chapter 6

The value of a number, v, is determined by the equations shown in
Table 6.5.

No. Equation

(1) if E = Emax+1 and fi 0, then v is NaN, regardless of s

(2) if E = Emax+1 and f = 0, then v= (-1)S 00

(3) if Emin :S E :S Emax, then v = (-1)S2E(1 . f)

(4) if E = Emin-1 and f'# 0, then v= (_1)s2Emin(0.f)

(5) if E = Emin-1 and f = 0, then v= (-1)SO

Table 6.5 Equations for Calculating Values in Single-Precision Floating-Point Format

For all floating-point formats, if v is NaN, the most-significant bit of j
determines whether the value is a signaling or quiet NaN: v is a signaling
NaN if the most-significant bit ofjis set, otherwise, v is a quiet NaN.

Table 6.6 defines the values for the format parameters.

Single
Precision

Parameter Format

f 24

Emax +127

Emin -126

Exponent bias +127

Exponent width in bits 8

Integer bit hidden

Fraction width in bits 24

Format width in bits 32

Table 6.6 Floating-Point Format Parameter Values

Table 6.7 shows minimum and maximum floating-point values.

Type Value

Float Minimum 1.40129846e-45

Float Minimum Norm 1.17549435e-38

Float Maximum 3.40282347e+38

Table 6.7 Minimum and Maximum Floating-Point Values

Binary Fixed-Point Format
Binary fixed-point values are held in 2's complement format. Unsigned

fixed-point values are not directly provided by the floating-point instruc­
tion set. Figure 6.7 illustrates binary fixed-point format. Table 6.8, which
follows the figure, lists the binary fixed-point format fields.

6-9

The Floating-Point Unit Chapter 6

31 30 o

Integer

31

Figure 6.7 Binary Fixed-Point Format

Field Description

sign sign bit

integer integer value

Table 6.8 Binary Fixed-Point Format Fields.

Floating-Point Instruction Set Overview
All FPU instructions are 32-bits long. aligned on a word boundary. They

can be divided into the following groups:
• Load, Store, and Move instructions move data between memory. the

main processor. and the FPU General Purpose registers.
• Conversion instructions perform conversion operations between the

various data formats.
• Computational instructions perform arithmetic operations on

floating-point values in the FPU registers.
• Compare instructions perform comparisons of the contents of regis­

ters and set a conditional bit based on the results.
• Branch on FPU Condition instructions perform a branch to the

specified target if the specified coprocessor condition is met.
Table 6.9 through Table 6.12 list the instruction set of the FPU. A

complete description of each instruction is provided in Appendix B.

Key to Formats in Table 6.9 through Table 6.12
In the instruction formats shown in Table 6.9 through Table 6.12. the

jmt appended to the instruction opcode specifies the data format: s speci­
fies single-precision binary floating-point. d specifies double-precision
binary floating-point. w specifies 32-bit binary fixed-point. and L specifies
64-bit binary fixed-point.

OpCode Description

LWCI Load Word to FPU

SWCI Store Word from FPU

LDCI Load Doubleword to FPUI

SDCI Store Doubleword from FPU1

MTCI Move Word To FPU

MFCI Move Word From FPU

CTCI Move Control Word To FPU

CFCI Move Control Word From FPU

DMTCI Doubleword Move to FPUI

DMFCI Doubleword Move from FPU1

Note:
1 This opcode causes an unimplemented exception in the R4650.

Table 6.9 FPU Instruction Summary: Load, Move and Store Instructions

6-10

The Floating-Point Unit Chapter 6

OpCode3 .4 Description

CVf.S.fmt Floating-point Convert to Single Fp2

CVf.D.fmt Floating-point Convert to Double Fpl

CVf.W.fmt Floating-point Convert to Single Fixed Point.2

ROUND.w.fmt Floating-point Round

ROUND.L.fmt l Floating-point Round

TRUNC.w.fmt Floating-point Truncate

TRUNC.L.fmt l

CEIL.w.fmt Floating-point Ceiling

CEIL.L.fmtl

FLOOR.w.fmt Floating-point Floor

FLOOR.L.fmtl

Notes:
1 This opcode causes an unimplemented exception in the R4650.
2 The CVT.fmt.D opcode also causes an unimplemented exception in the

R4650.
3 For definitions of the abbreviationsJmt, s, d, and w refer to the text preceding

Table 6.9.
4 An unimplemented exception is signalled when fmt = "D" or fmt = "L".

Table 6.10 FPU Instruction Summary: Conversion Instructions

OpCode1.2 Description

ADD.fmt Floating-point Add

SUB.fmt Floating-point Subtract

MUL.fmt Floating-point Multiply

DIV.fmt Floating-point Divide

ABS.fmt Floating-point Absolute Value

MOV.fmt Floating-point Move

NEG.fmt Floating-point Negate ..

SQRT.fmt Floating-point Square Root

Notes:
1 For definitions of the abbreviationsJmt, s, d, and w refer to the text preceding
Table 6.9.

2For all entries in the apcaDE column Jmt must be set to .S or a trap will be
Signaled.

Table 6.11 FPU Instruction Summary: Computational Instructions

6 - 11

The Floating-Point Unit Chapter 6

OpCode1•2 Description

C.cond.fmt Floating-point Compare

BClT Branch on FPU True

BClF Branch on FPU False

BClTL Branch on FPU True Likely

BClFL Branch on FPU False Likely

Notes:
1 For definitions of the abbreviationsJmt, s, d, and w refer to the text preceding
Table 6.9.

2 For all entries in the OPCODE column, if Jmt is set to .D a trap will be signaled.

Table 6.12 FPU Instruction Summary: Compare and Branch Instructions

Floating-Point Load, Store, and Move Instructions
This section discusses the manner in which the FPU uses the load,

store and move instructions listed in Table 6.9. Appendix B provides a
detailed description of each instruction.

Transfers Between FPU and Memory
All data movement between the FPU and memory is accomplished by

using the instructions Load Word To Coprocessor 1 (LWC 1) or Store Word
To Coprocessor 1 (SWC 1). which reference a single 32-bit word of the FPU
general registers.

These load and store operations are unformatted. Since no format
conversions are performed, no floating-point exceptions can result from
these operations.

Transfers Between FPU and CPU
Data can also be moved directly between the FPU and the CPU by using

one of the following instructions:
• Move To Coprocessor 1 (MTC 1)
• Move From Coprocessor 1 (MFC 1)

Like the floating-point load and store operations, these operations
perform no format conversions and never cause floating-point exceptions.

Load Delay and Hardware Interlocks
The instruction immediately following a load may reference the contents

of the loaded register. In such cases the hardware interlocks, requiring
additional real cycles; for this reason, scheduling load delay slots is desir­
able, although it is not required for functional code.

Data Alignment
All coprocessor loads. and stores reference the following aligned data

items:
• For word loads and stores, the access type is always WORD, and the

low-order 2 bits of the address must always be O.
• For doubleword loads and stores, the access type is always DOUBLE­

WORD, and the low-ord~r 3 bits of the address must always be O.

Endianness
Regardless of byte-numbering order (endianness) of the data, the

address specifies the byte that has the smallest byte address in the
addressed field. For a big-endian system it is the leftmost byte, and for a
little-endian system, the rightmost byte.

6-12

The Floating-Point Unit Chapter 6

Mnemonic

F

UN

EQ

UEQ

OLT

ULT

OLE

ULE

SF

NGLE

SEQ

NGL

LT

NGE

LE

NGT

Definition

False

Unordered

Equal

Floating-Point Conversion Instructions
Conversion instructions perform conversions between the various data

formats such as single-precision, fixed- or floating-point formats. Table
6.10 lists conversion instructions. Appendix B, "FPU Instruction Set
Details," describes each instruction.

Floating-Point Computational Instructions
Computational instructions perform arithmetic operations on floating­

point values, in registers. Table 6.11 lists the computational instructions
and Appendix B provides a detailed deSCription of each instruction. There
are two categories of computational instructions:

• 3-0perand Register-Type instructions, which perform floating-point
addition, subtraction, multiplication, division, and square root.

• 2-0perand Register-Type instruction,s, which perform floating-point
absolute value, move, and negate.

Branch on FPU Condition Instructions
Table 6.12 lists the Branch on FPU (coprocessor unit 1) condition

instructions that can test the result of the FPU compare (C.cond) instruc­
tions. Appendix B gives a detailed description of each instruction.

Floating-Point Compare Operations
The floating-point compare (C. fmt. cond) instructions interpret the

contents of two FPU registers ([s,ft) in the specified format (ftnt) and arith­
metically compare them. A result is determined based on the comparison
and conditions (cond) specified in the instruction.

Table 6.12, found on page 12, lists the compare instructions. Table
6.13 lists the mnemonics for the compare instruction conditions. The.W
and.S formats are allowed for in the R4650. The.D format causes a trap to
be signaled. For detailed descriptions of these instructions, refer to
Appendix B, "FPU Instruction Set Details."

Mnemonic Definition

T True

OR Ordered

NEQ Not Equal

Unordered or Equal OLG Ordered or Less Than or Greater Than

Ordered Less Than UGE Unordered or Greater Than or Equal

Unordered or Less Than OGE Ordered Greater Than

Ordered Less Than or Equal UGT Unordered or Greater Than

Unordered or Less Than or Equal OGT Ordered Greater Than

Signaling False ST Signaling True

Not Greater Than or Less Than or Equal GLE Greater Than, or Less Than or Equal

Signaling Equal SNE Signaling Not Equal

Not Greater Than or Less Than GL Greater Than or Less Than

Less Than NLT Not Less Than

Not Greater Than or Equal GE Greater Than or Equal

Less Than or Equal NLE Not L:ess Than or Equal

Not Greater Than GT Greater Than

Table 6.13 Mnemonics and Definitions of Compare Instruction Conditions

6-13

The Floating-Point Unit Chapter 6

FPU Instruction Pipeline Overview
The FPU provides an instruction pipeline that parallels the CPU instruc­

tion pipeline. It shares the same five-stage pipeline architecture with the
CPU. Refer to Chapter 3 for details about the pipeline architecture.

Instruction Execution
Figure 6.8 illustrates the 5-stage FPU pipeline. This is the same as that

of the integer pipeline but allows for the longer execution times of the
floating-point instructions.

I 11 I 21 I IR I 2R I IA I 2A I ID I 2D I w l2W

I 11 I 21 I I R I 2R I IA I 2A IDI2D Iwl2Wl

I 11 I 21 I I R I 2R IAI2A IDI 2DIIWI 2wl

I 11 I 21 IRI2R IA I 2A I IDI 2DI IWI 2wl

11 I 21 IRI 2RI IAI 2AI IDI 2DIIWI 2wl

lone CycI~

Figure 6.8 FPU Instruction Pipeline
Figure 6.8 assumes that one instruction is completed every PCycle, but

most FPU instructions require more than one cycle in the EX stage.
Therefore, the FPU must stall the pipeline if an instruction execution
cannot proceed because of register or resource conflicts.

Floating-point operations proceed in parallel with non-floating-point
operations. Floating-point operations are not allowed to overlap each
other, with two exceptions:

• An add operation may start 2 cycles after the start of a multiply and
thus will be completely overlapped by the multiply.

• A multiply operation may overlap for up to 2 cycles, and start 6 cycles
after another multiply.

Non-floating-point operations as well as other integer operations may be
executed in parallel with the floating-point operations. All of this is
handled automatically by internal hardware in the R4650.

Instruction Execution Cycle Time
Unlike the CPU, which executes almost all instructions in a single cycle,

more time may be required to execute FPU instructions.
Table 6.14 gives the minimum latency of each floating-point operation.

6-14

The Floating-Point Unit Chapter 6

Operation Pipeline Cycles Operation Pipeline Cycles

Single Double Single Double

ADD.fmt 4 lbJ BClT 1

SUB.fmt 4 (b) BClF 1

MUL.fmt 8 (b) BClTL 1

DIV.fmt 32 (b) BClFL 1

SQRT.fmt 31 (b) LWCI, LDCI 2

ABS.fmt 1 (b) SWCl, SDCI 1

MOV.fmt 1 (b) TRUNC.W.fmt 4 (b)

NEG.fmt 1 (b) MTCI, DMTCI 2

ROUND.W.fmt 4 (b) MFCl, DMFCI 2

CEIL.W.fmt 4 (b) CTCI 3

FLOOR.W.fmt 4 (b) CFCI 2

Cvr.S.fmt (a) (b) CMP 3 (b)

Cvr.D.fmt (b) (b) FIX 4 (b)

Cvr.W.fmt 4(a) (b) FLOAT 6 (b)

C.fmt.cond 3 (b)

Notes:
a If .fmt = .D or.fmt = .L, a trap will occur.
b These operations cause a trap.

Table 6.14 Floating-Point Operation Latencies

Instruction Scheduling Constraints
The FPU resource scheduler only issues instructions to the FPU op

units (adder and multiplier) when no hardware use conflicts will occur. In
addition, some overlap possibilities are disallowed to keep the scheduler
simple (and/or increase performance).

FPU Multiplier Constraints
The FPU multiplier is partially pipelined in the R4650, allowing a new

multiply to begin every 6 cycles.

FPU Adder Constraints
The FPU scheduler may issue· an add operation (ADD.S or SUB.S) 2

cycles after a multiply (MUL.S).

Resource Scheduling Rules
The FPU Resource Scheduler issues instructions while adhering to the

rules described below. These scheduling rules optimize functional unit
executions. If the rules are not followed, the hardware interlocks to guar­
antee correct operation.

DIV.[S] can start only when all of the following conditions are met in the
lA phase.

• The adder is idle (division is performed in the adder).
• The multiplier is idle.

6-15

The Floating-Point Unit Chapter 6

MUL.[S] can start only when all of the following conditions are met in
the lA phase.

• The multiplier is one of the following:
- idle.
- Started execution at least 6 cycles earlier on the current multiply

• The adder is idle.
SQRT.[S] can start when the following conditions are met in the lA

phase.
• The adder is idle.
• The multiplier must be idle.

CVT.fmt instructions can only start when all of the following conditions
are met in the lA phase.

• The adder is idle.
• The multiplier is idle.

ADD.[S] or SUB.[S] can start only when all of the following conditions
are met in the lA phase.

• The adder is idle
• The multiplier is either:

- idle.
- started execution of the current multiply at least 2 cycles earlier.

NEG.[S), or ABS.[S] can start only when ail of the following conditions
are met in the lA phase. .

• The adder is idle.
• The multiplier is idle.

C.COND.[S] can start only when all of the following conditions are met
in the lA phase.

• The adder is idle.
• The multiplier is idle.

6-16

Floating-Point Exceptions Chapter 7

Integrated Device Technology. Inc.

Introduction
This chapter describes floating point unit (FPU) floating-point excep­

tions, including FPU exception types, exception trap processing, excep­
tion flags, saving and restoring state when handling an exception, and
trap handlers for IEEE Standard 754 exceptions.

A floating-point exception occurs whenever the FPU cannot handle
either the operands or the results of a floating-point operation in its
normal way. The FPU responds by generating an exception to initiate a
software trap or by setting a status flag. In particular, the R4650 will trap
on 64-bit floating point accelerator (FPA) operations, signalling an unim­
plemented exception.

Exception Types
The FP Control/Status register described in Chapter 6 contains an

Enable bit for each exception type. Exception Enable bits determine
whether an exception will cause the FPU to initiate a trap or set a status
flag ..

• If a trap is taken, the FPU remains in the state found at the beginning
of the operation and a software exception handling routine executes.

• If no trap is taken, an appropriate value is written into the FPU desti­
nation register and execution continues.

The FPU supports the five IEEE Standard 754 exceptions, which are
shown in the following list. Cause bits, Enables, and Flag bits (status
flags) are used.

• Inexact (I)
• Underflow (U)
• Overflow (0)
• Division by Zero (Z)
• Invalid Operation (V)

The FPU adds a sixth exception type, the Unimplemented Operation (E).
This exception indicates the use of a software implementation. The Unim­
plemented Operation exception has no Enable or Flag bit. Whenever this
exception occurs, an unimplemented exception trap is taken.

7-1

Floating-Point Exceptions Chapter 7

Figure 7.1 illustrates the Control/Status register bits that support
exceptions.

Bit # 17 16 15 14 13 12

I E I
Cause

V Z 0 U Bits
I I I I I

Bit # 11 10 9 8 7

I I
Enable

V Z 0 U I Bits
I I I I I

Bit # 6 5 4 3 2

I V I z 0 U
Flag
Bits

Inexact Operation
Underflow

Overflow
Division by Zero

Invalid Operation

Unimplemented Operation

Figure 7.1 Control/Status Register Ex:ception/Flag/Trap/Enable Bits

Each of the five IEEE Standard 754 exceptions (V, Z, 0, U, I) is associ­
ated with a trap under user control, and is enabled by setting one of the
five Enable bits. When an exception occurs and its corresponding Enable
bit is not set, both the corresponding Cause and Flag bits are set. When
an exception occurs and its corresponding Enable bit is set, the corre­
sponding Cause bit is set and the subsequent exception processing allows
a trap to be taken.

Exception Trap Processing
When a floating-point exception trap is taken, the Cause register indi­

cates the floating-point coprocessor is the cause of the exception trap.
The Floating-Point Exception (FPE) code is used, and the Cause bits of the
floating-point Control/Status register indicate the reason for the floating­
point exception. In effect, these bits are an extension of the system copro­
cessor Cause register.

Flags
A Flag bit is provided for each IEEE exception. This Flag bit is set to a 1

on the assertion of its corresponding exception, with no corresponding
exception trap signaled. The Flag bit is reset by writing a new value into
the Status register; flags can be saved and restored by software either
indiVidually or as a group.

When no exception trap is signaled, the floating-point coprocessor takes
a default action, providing a substitute value for the exception-causing
result of the floating-point operation. The particular default action taken
depends upon the type of exception.

7-2

Floating-Point Exceptions Chapter 7

Table 7. 1 lists the default action taken by the FPU for each of the IEEE
exceptions.

Field Description Rounding Default action
Mode

I Inexact exception Any Supply a rounded result

U Underflow exception Any Take unimplemented unless FCSR.FS bit is set.

a Overflow exception RN Modify overflow values to 00 with the sign of the
intermediate result

RZ Modify overflow values to the format's largest finite
number with the sign of the intermediate result

RP Modify negative overflows to the format's most nega-
tive finite number; modify positive overflows to + 00

RM Modify positive overflows to the format's largest
finite number; modify negative overflows to - 00

Z Division by zero Any Supply a properly signed 00

V Invalid operation Any Supply a quiet Not a Number (NaN)

FPA Internal
Result

Inexact result

Exponent overflow

Division by zero

Overflow on convert

Table 7.1 Default FPU Exception Actions

The FPU detects the eight exception causes internally. When the FPU
encounters one of these unusual situations, it causes either an IEEE
exception or an Unimplemented Operation exception (E).

Table 7.2 lists the exception-causing conditions of the IEEE
Standard 754.

IEEE Trap Trap Notes
Standard 754 Enable Disable

I I I Loss of accuracy

a,Ia 0,1 0,1 Normalized exponent> Emax
Z Z Z Zero is (exponent = Emtn-1, mantissa = 0)

V E E Source out of integer range

Signaling NaN source V V V Signaling NaN source produces quiet NaN
result

Invalid operation V V V 0/0, etc.

Exponent underflow U E E Normalized exponent < Emin

Denormalized source None E E Exponent = E-l and mantissa <> 0

Note: aThe IEEE Standard 754 specifies an inexact exception on overflow only if the overflow trap is disabled.

Table 7.2 FPU Exception-Causing Conditions

FPU Exceptions
The following sections describe the conditions that cause the FPU to

generate each of its exceptions, and details the FPU response to each
exception -causing condition.

7-3

Floating-Point Exceptions Chapter 7

Inexact Exception (I)
The FPU generates the Inexact exception if the rounded result of an

operation is not exact or if it overflows. The FPU usually examines the
operands of floating-point operations before execution actually begins, to
determine (based on the exponent values of the operands) if the operation
can possibly cause an exception. If there is a possibility of an instruction
causing an exception trap, the FPU uses a coprocessor stall to execute the
instruction.

It is impossible, however, for the FPU to predetermine if an instruction
will produce an inexact result. If Inexact exception traps are enabled, the
FPU uses the coprocessor stall mechanism to execute all floating-point
operations that require more than two cycles. Since this mode of execu­
tion . can impact performance, Inexact exception traps should be enabled
only when necessary.

Trap Enabled Results: If Inexact exception traps are enabled, the
result register is not modified and the source registers are preserved.

Trap Disabled Results: The rounded or overflowed result is delivered to
the destination register if no other software trap occurs.

Invalid Operation Exception (V)
The Invalid Operation exception is signaled if one or both of the oper­

ands are invalid for an implemented operation. When the exception
occurs without a trap, the MIPS ISA defines the result as a quiet Not a
Number (NaN). The invalid operations are:

• Addition or subtraction: magnitude subtraction of infinities, such as:
(+ 00) + (- 00) or (- 00) - (- 00)

• Multiplication: a times 00, with any signs
• Division: 0/0, or 00/00, with any signs
• Comparison of predicates involving < or > without?, when the oper­

ands are unordered
• Any arithmetic operation on a Signaling NaN. A move (MOV) operation

is not considered to be an arithmetic operation, but absolute value
(ABS) and negate (NEG) are considered to be arithmetic operations
and cause this exception if one or both operands is a signaling NaN.

• Square root: -Yx, where x is less than zero
Software can simulate the Invalid Operation exception for other opera­

tions that are invalid for the given source operands. Examples of these
operations include IEEE Standard 754~specified functions implemented
in software, such as Remainder: x REM y, where y is a or x is infinite;
conversion of a floating-point number to a decimal format whose value
causes an overflow, is infinity, or is NaN; and transcendental functions,
such as In (-5) or cos-1(3). Refer to Appendix B for examples or routines
to handle these cases.

Trap Enabled Results: The original operand values are undisturbed.
Trap Disabled Results: The FPU sets the. Invalid Operation Exception

flag and a quiet NaN is delivered to the destination register.

Division-by-Zero Exception (Z)
The Division-by-Zero exception· is signaled on an implemented divide

operation if the divisor is zero and the dividend is a finite nonzero
number. Software can simulate this exception for other operations that
produce a signed infinity, such as In(O), sec(1t/2), csc(O), or 0-1.

Trap Enabled Results: The result register is not modified, and the
source registers are preserved.

Trap Disabled Results: The result, when no trap occurs, is a correctly
signed infinity.

7-4

Floating-Point Exceptions Chapter 7

Overflow Exception (0)
, The Overflow exception is signaled when the magnitude of the rounded

floating-point result, with an unbounded exponent range, is larger than
the largest finite number of the destination format. This exception also
sets the Inexact exception and Flag bits.

Trap Enabled Results: The result register is not modified, and the
source registers are preserved.

Trap Disabled Results: The result, when no trap occurs, is determined
by the rounding mode and the sign of the intermediate result.

Underflow Exception (U)
1\vo related events contribute to the Underflow exception. IEEE Stan­

dard 754 allows detection of these events in a variety of ways. The events
are:

• creation of a tiny nonzero result between ±2Emin,which can cause
later exception because it is so tiny

• extraordinary loss of accuracy during the approximation of such tiny
numbers by denormalized numbers

The MIPS architecture requires tiny numbers to be detected after
rounding. Tiny numbers can be detected by one of the following methods:

• after rounding (with a nonzero result, computed as thou~ ,the
exponent range were unbounded, would lie strictly between ±2 mm)

• before rounding (with a nonzero result, computed as though the expo­
nent range ~d the precision were unbounded, would lie strictly
between ±2Emm)

The MIPS architecture requires that loss of accuracy be detected as an
inexact result. Loss of accuracy can be detected by one of the following
two methods:

• denormalization loss (when the delivered result differs from what
would have been computed if the exponent range were unbounded)

• inexact result (when the delivered result differs from what would have
been computed if the exponent range and precision were both
unbounded)

Trap Enabled Results: When an underflow trap is enabled, underflow
is signaled when tininess is detected regardless of loss of accuracy. If
underflow traps are enabled, the result register is not modified, and the
source registers are preserved.

Trap Disabled Results: When an underflow trap is not enabled and
FCSR.FS is clear, then take an unimplemented exception. When an
underflow trap is not enabled and FCSR.FS is set, raise Inexact and
return either 0 or ±2Emin, as appropriate for the current rounding mode.

Unimplemented Instruction Exception (E)
Any attempt to execute an instruction with an unsupported operation

code or format code sets the Unimplemented bit in the Cause field in the
FPU Control! Status register and traps. The operand and destination
registers remain undisturbed and the instruction may be emulated in
software. Any of the IEEE Standard 754 exceptions can arise from the
emulated operation, and these exceptions in turn are simulated. In the
case of the R4650, 64-bit FPA operations, including Compare, Cvt, Arith­
metic, Load/Store, and Move will cause this exception to be signaled.

7-5

Floating-Point Exceptions Chapter 7

The Unimplemented Instruction exception can also be signaled when
unusual operands or result conditions are detected that the implemented
hardware cannot handle properly. These include:

• Denormalized operand
• Quiet NaN operand
• Underflow
• Reserved opcodes
• Unimplemented formats
• Conversion of a floating-point number to a fixed point format when an

overflow occurs or when the source operand value is Infinity or a NaN.
• Operations that are invalid for their format (for instance, CVT.S.S)

Denormalized and NaN operands are only trapped if the instruction is a
convert or computational operation. Moves and compares do not trap if
their operands are either denormalized or NaNs.

The use of this exception for such conditions is optional. Most of these
conditions are new, and are not expected to be widely used in early
implementations. Loopholes are provided in the architecture so that these
conditions can be implemented with assistance provided by software,
maintaining full compatibility with the IEEE Standard 754.

Trap Enabled Results: The original operand values are undisturbed.
Trap Disabled Results:This trap cannot be disabled.

Saving and Restoring State
Sixteen or thirty-two coprocessor Load or Store operations save or

restore the coprocessor floating-point register state in memory. The
remainder of control and status information can be saved or restored
through Move To/From Coprocessor Control Register instructions, and
saving and restoring the processor registers. Normally, the Control!
Status register is saved first and restored last.

When the coprocessor Control/Status register (FCR31) is read, and the
coprocessor is executing one or more floating-point instructions, the
instruction(s) in progress are either completed or reported as exceptions.
The architecture requires that no more than one of these pending instruc­
tions can cause an exception. Information indicating the type of exception
is placed in the Control/Status register. When state is restored, state
information in the status word indicates that exceptions are pending.

Writing a zero value to the Cause field of Control/Status register clears
all pending exceptions, permitting normal processing to restart after the
floating-point register state is restored.

The Cause field of the Control/Status register holds the results of only
one instruction. The FPU examines source operands before an operation
is initiated to determine if this instruction can possibly cause an excep­
tion. If an exception is possible, the FPU executes the instruction in stall
mode to ensure that no more than one instruction that might cause an
exception is executed at a time.

Trap Handlers for IEEE Standard 754 Exceptions
The IEEE Standard 754 strongly recommends that users be allowed to

specify a trap handler for any of the five standard exceptions that can
compute. The trap handler can either compute or specify a substitute
result to be placed in the destination register of the operation.

7-6

Floating-Point Exceptions Chapter 7

By retrieving an instruction using the processor Exception Program
Counter (EPe) register, the trap handler determines:

• exceptions occurring during the operation
• the operation being performed
• the destination format

On Overflow or Underflow exceptions (except for conversions), and on
Inexact exceptions, the trap handler gains access to the correctly rounded
result by examining source registers and simulating the operation in soft­
ware.

On Overflow or Underflow exceptions encountered on floating-point
conversions, and on Invalid Operation and Divide-by-Zero exceptions, the
trap handler gains access to the operand values by examining the source
registers of the instruction.

The IEEE Standard 754 recommends that, if enabled, the overflow and
underflow traps take precedence over a separate inexact trap. This priori­
tization is accomplished in software; hardware sets the bits for both the
Inexact exception and the Overflow or Underflow exception.

7-7

Processor Signal
Descriptions

Chapter 8

Integrated Device Technology. Inc.

0>
0 ca
't:
0> -.E:
e -c::
0
()
~
0
0
(3

Introduction
This chapter describes the signals used by and in conjunction with the

R4650 processor. The signals include the System interface, the Clock/
Control interface, the Interrupt interface, and the Initialization interface.

Signals are listed in bold, and low active signals have a trailing
asterisk. For example, the low-active Read Ready signal is RdRdy*. The
signal description also tells if the signal is an input (the processor receives
it) or output (the processor sends it out).

Figure 8. 1 illustrates the functional groupings of the processor signals.

SysAD(63:32)
SysAD(31 :0)
SysADC(7:4)
SysADC(3:0)

MasterClock
SysCmd(8:0)

~

SysCmdP 0>
0

Validln* ca
't:
0>

R4650 ValidOut* :s
ExtRqst* E Logic 0>

en Release* >-
Symbol C/)

RdRdy*

WrRdy*
VeeP ~

VssP .. ModeClock
c::

Modeln .Q 0>

- 0

VccOk
~ ca
='t:
.~ 2

ColdReset* ;t: c:
c::-

Reset*

6 Ja~ Int(5:0)* E ~
NMI* 22 c::c::

Figure 8.1 R4650 Processor Signals

8-1

Processor Signal Descriptions Chapter 8

Name

ExtRqst*

Release*

RdRdy*

SysAD(63:32)
SysAD(31 :0)

SysADC(7:4)
SysADC(3:0)

SysCmd(8:0)

SysCmdP

ValidIn*

ValidOut*

WrRdy*

System Interface Signals
System interface signals provide the. connection between the R4650

processor and the other components in the system. Table 8. 1 lists the
system interface signals that apply when the CPU is in 64-bit system
interface mode.

Definition Direction Description

External request Input An external agent asserts ExtRqst* to request use of
the System interface. The processor grants the request
by asserting Release* .

Release interface Output In response to the assertion ofExtRqst* or a CPU
read request, the processor asserts Release*, signal-
ling to the requesting device that the System interface
is available.

Read ready Input The external agent asserts RdRdy* to indicate that it
can accept a processor read request.

System address/ Input/ A 64-bit address and data bus for communication
data bus Output between the processor and an external agent. During

address phases only SysAd(31:0) contains valid
address information.

System address/ Input/ An 8-bit bus containing check bits for the SysAD bus.
data check bus Output

System command/ Input/ A 9-bit bus for command and data identifier transmis-
data identifier Output sion between the processor and an external agent.

System command/ Input/ A single, even-parity bit for the SysCmd bus, always
data identifier bus Output driven low.
parity

Valid input Input The external agent asserts ValidIn* when it is driving
a valid address or data on the SysAD bus and a valid
command or data identifier on the SysCmd bus.

Valid output Output The processor asserts ValidOut* when it is driving a
valid address or data on the SysAD bus and a valid
command or data identifier on the SysCmd bus.

Write ready Input An external agent asserts WrRdy* when it can accept
a processor write request.

Table 8.1 System Interface Signals in 64-Bit Mode

8-2

Processor Signal Descriptions Chapter 8

Name

ExtRqst*

Release*

RdRdy*

SysAD(31 :0)

SysADC(3:0)

SysCmd(8:0)

SysCmdP

ValidIn*

ValidOut*

WrRdy*

Name

MasterClock

VeeP

VssP

Table 8.2 lists the system interface signals that apply when the CPU is
in 32-bit system interface mode. In this mode SysAD (63:32) and
SysADC (7:6) are not used, regardless of Endianness.

Definition Direction Description

External request Input An external agent asserts ExtRqst* to request use of
the System interface. The processor grantsthe request
by asserting Release*.

Release interface Output In response to the assertion ofExtRqst* or a CPU read
request, the processor asserts Release*, signalling to
the requesting device that the System interface is avail-
able.

Read ready Input The external agent asserts RdRdy* to indicate that it
can accept a processor read request.

System address/ Input/ A 64-bit address and data bus for communication
data bus Output between the processor and an external agent. SysAD

(63:32) is not used in 32-bit mode, regardless of Endi-
anness.

System address/ Input/ A 4-bit bus containing check bits for the SysAD bus.
data check bus Output

System command/ Input/ A 9-bit bus for command and data identifier transmis-
data identifier Output sion between the processor and an external agent.

System command/ Input/ A single, even-parity bit for the SysCmd bus, always
data identifier bus Output driven low.
parity

Valid input Input The external agent asserts ValidIn* when it is driving a
valid address or data on the SysAD bus and a valid
command or data identifier on the SysCmd bus.

Valid output Output The processor asserts ValidOut* when it is driving a
valid address or data on the SysAD bus and a valid
command or data identifier on the SysCmd bus.

Write ready Input An exterpal agent asserts WrRdy* when it can accept a
processor write request.

Table 8.2 System Interface Signals in ~2-Bit System Interface Mode

Clock/Control Interface Signals
The Clock/Control interface signals make up the interface for clocking

and maintenance.
Table 8.3 lists the Clock/Control interface signals. The same clock

signals are used for both 32-bit and 64-bit system interface modes.

Definition Direction Description

Master clock Input Master clock input that establishes the processor
operating frequency. It is multiplied internally by 2, 3, 4,
5, 6, 7, or 8 to generate the pipeline clock (PClock)

Quiet Vee for PLL Input Quiet Vee for the internal phase locked loop.

Quiet V ss for PLL Input Quiet Vss for the internal phase locked loop.

Table 8.3 Clock/Control Interface Signals

8-3

Processor Signal Descriptions Chapter 8

Name

Interrupt Interface Signals
The Interrupt interface signals make up the interface that is used by

external agents to interrupt the R4650 processor. Six hardware interrupts
(Int*(5:0») and one NMI are available on the R4650. Table 8.4 lists the
Interrupt interface signals. The same signals are used for 32-bit and 64-
bit system interface modes.

Definition Direction Description

Int*(5:0) Interrupt Input Six general processor interrupts, bit-wise OR'd

NMI*

Name

with bits 5:0 of the interrupt register.

Nonmaskable Input Nonmaskable interrupt, OR'd with bit 6 of the
interrupt interrupt register.

Table 8.4 Interrupt Interface Signals

Initialization Interface Signals
The Initialization interface signals make up the interface by which an

external agent initializes the processor operating parameters. Table 8.5
lists the Initialization interface signals. The same signals are used for 32-
bit and 64-bit system interface modes.

Definition Direction Description

ColdReset* Cold reset Input This signal must be asserted for a
power on reset or a cold reset.
ColdReset* must be deasserted syn-
chronously with MasterClock.

ModeClock Boot mode clock Output Serial boot-mode data clock output;
runs at the Master Clock frequency
divided by 256: (MasterClock/256).

ModeIn Boot mode data in Input Serial boot-mode data input.

Reset* Reset Input This signal must be asserted for any
reset sequence. It can be asserted
synchronously or asynchronously for
a cold reset, or synchronously to ini-
tiate a warm reset. Reset* must be
deasserted synchronously with
MasterClock.

VCCOk Vee is OK Input When asserted, this signal indicates
to the processor that Vee> Veemin
for more than 100 milliseconds and
will remain stable. The assertion of
VCCOk initiates the initialization
sequence.

Table 8.5 Initialization Interface Signals

8-4

Processor Signal Descriptions Chapter 8

Table 8.6 lists the R4650 processor signals and their possible states in
64-bit system interface mode.

Asserted Reset
Description Name I/O State 3-State State

System address/data bus SysAD(63:0) I/O High Yes a

System address/data check bus SysADC(7:0) I/O High Yes a

System command/ data identifier bus SysCmd(8:0) I/O High Yes a

System command/data identifier bus parity SysCmdP I/O High Yes a

Valid input Valldln* I Low No NA

Valid output ValldOut* a Low Yes b

External request ExtRqst* I Low No NA

Release interface Release* a Low Yes b

Read ready RdRdy* I Low No NA

Write ready WrRdy* I Low No NA

Interrupts Int*(5:0) I Low No NA

Nonmaskable interrupt NMI* I Low No NA

Boot mode data in ModeIn I High No NA

Boot mode clock ModeClock a High No c

Master clock MasterClock I High No NA

Vee is OK VCCOk I High No NA

Cold reset ColdReset* I Low No NA

Reset Reset* I Low No NA

Key to Reset State Column:
a All I/O pins (SysAD[63:0J. SysADC[7:0), etc.) remain 3-stated until the Reset'" signal deasserts.
b All output only pins (ValidOut"'. Release"'. etc.), except the clocks. are 3-stated until the Cold Reset'" signal deas-

sects.
c ModeClock is always driven.
NANot applicable to input pins.

Table 8.6 R4650 Processor Signal Summary

8-5

Processor Signal Descriptions Chapter 8

Table 8.7 lists the R4650 processor signals and their possible states in
32-bit system interface mode. In this mode SysADC(63:32) and
SysADC(7:4) are not defined.

Asserted Reset
Description Name I/O State 3-State State

System address/data bus SysAD(31:0) I/O High Yes a

System address/data check bus SysADC(3:0) I/O High Yes a

System command/data identifier bus SysCmd(8:0) I/O High Yes a

System command/data identifier bus parity SysCmdP I/O High Yes a

Valid input Validln* I Low No NA

Valid output ValidOut* 0 Low Yes b

External request ExtRqst* I Low No NA

Release interface Release* 0 Low Yes b

Read ready RdRdy* I Low No NA

Write ready WrRdy* I Low No NA

Interrupts Int*(5:0) I Low No NA

Nonmaskable interrupt NMI* I Low No NA

Boot mode data in Modeln I High No NA

Boot mode clock ModeClock 0 High No c

Master clock MasterClock I High No NA

Vee is OK VCCOk I High No NA

Cold reset ColdReset* I Low No NA

Reset Reset* I Low No NA

Key to Reset State Column:
d All I/O pins (SysAD[63:01, SysADC[7:01, etc.) remain 3-stated until the Reset* signal deasserts.
e All output only pins (ValidOut*, Release*, etc.), except the clocks, are 3-stated until the ColdReset* signal deas-

serts.
f ModeClock is always driven.
NANot applicable to input pins.

Table 8.7 R4650 Processor Signal Summary

8-6

t;J The Initialization
Interface

Chapter 9

Integrated Device Technology. Inc.

Introduction
This chapter describes the R4650 Initialization Interface , including the

reset signal descriptions and types, initialization sequence, signals and
timing dependencies, and boot modes, which are set at initialization time.

Signal names are listed in bold letters-for instance the signal VCCOk
indicates the V cc voltage is stable. Low-active signals are indicated by an
asterisk at the end of the name, as in ColdReset*.

Functional Overview
The R4650 processor has the following three types of resets. Refer to

Figure 9.1 on page 4, Figure 9.2 on page 5, and Figure 9.3 on page 5 for
timing diagrams of these resets.

• Power-on reset:Starts when the power supply is turned on and
completely reinitializes the internal state machine of the processor
without saving any state information.

• Cold reset:Restarts all clocks, but the power supply remains stable.
A cold reset completely reinitializes the internal state machine of the
processor without saving any state information.

• Warm reset:Restarts processor, but does not affect clocks. A warm
reset preserves the processor internal state.

These resets use the VCCOk, ColdReset*, and Reset* input signals,
which are summarized in the next subsection. Descriptions of each type
of reset operation is described.

The Initialization interface is a serial interface that operates at the
frequency of the MasterClock divided by 256 (Le. MasterClock/256).
This low-frequency operation allows the initialization information to be
stored in a low-cost Serial EEPROM.

Reset and Initialization Signal Descriptions
This section describes the three reset signals, VCCOk, ColdReset*,

and Reset*, and the two initialization signals, ModeIn and ModeClock.
VeeOk: When asserted 1, VeeOk indicates to the processor that V cc has been

above the minimum Vcc for more than 100 milliseconds (ms) and is expected to
remain stable. The assertion of vee Ok initiates the reading of the beot-time mode
control serial stream. This is described in the subsection "Initialization Sequence"
on page 3.

ColdReset*: The ColdReset* signal must be asserted (low) for either a
power-on reset or a cold reset. ColdReset* must be de-asserted synchro­
nously with MasterClock.

Reset*: The Reset* signal must be asserted fo~ any reset sequence. It
can be asserted synchronously or asynchronously for a cold reset, or
synchronously to initiate a warm reset. Reset*must be de-asserted
synchronously with MasterClock

Modeln: Serial boot mode data in.
ModeClock: Serial boot mode data out, at the MasterClock frequency

divided by 256 (MasterClock/256).
Table 9.1 lists the processor signals and their possible states.

1. Asserted means the signal is true, or in its valid state. For example, the low­
active Reset* signal is said to be asserted when it is in a low (true) state; the high­
active VCCOk signal is true when it is asserted high.

9-1

The Initialization Interface Chapter 9

Description Name I/O Asserted State 3-State Reset State

System address/data bus SysAD(63:0) I/O High Yes a

System address/data check bus SysADC(7:0) I/O High Yes a

System command/data identifier bus SysCmd(8:0) I/O High Yes a

System command/data identifier bus parity SysCmdP I/O High Yes a

Valid input Validln* I Low No NA

Valid output ValldOut* 0 Low Yes b

External request ExtRqst* I Low No NA

Release interface Release* 0 Low Yes b

Read ready RdRdy* I Low No NA

Write ready WrRdy* I Low No NA

Interrupts Int*(5:0) I Low No NA

Nonmaskable interrupt NMI* I Low No NA

Boot mode data in ModeIn I High No NA

Boot mode clock ModeClock 0 High No d

Master clock MasterClock I High No NA

Vcc is within specified range VCCOk I High No NA

Cold reset ColdReset* I Low No NA

Reset Reset* I Low No NA

Key to Reset State Column:
a All I/O pins (SysAD[63:0), SysADC[7:0), etc.) remain 3-stated until the Reset* signal deasserts.
b All output only pins (ValidOut*. Release*. etc.), except the clocks. are 3-stated until the ColdReset* signal

deasserts.
c All clocks. except ModeClock. are 3-stated until VCCOk asserts.
d ModeClock is always driven.
NA Not applicable to input pins.

Table 9.1 R4650 Processor Signal Summary

9-2

The Initialization Interface Chapter 9

Power-on Reset
Figure 9.1, Figure 9.2, and Figure 9.3 illustrate the power-on, cold,

and warm resets.
The sequence for a power-on reset is as follows:
1. Power-on reset applies a stable Vcc of at least the Vcc minimum

value to the processor. During this time, VCCOk is deasserted, Cold­
Reset* and Reset* are asserted and the MasterClock input oscil­
lates.

2. Mter at least 100 ms of stable Vce and MasterClock, the VCCOk
signal is asserted to the processor. The assertion ofVCCOk begins the
initialization of the processor. Mter the mode bits have been read in,
the processor allows its internal phase locked loop to lock, stabilizing
the processor internal clock, PClock.

3. ColdReset* is asserted for at least 64K (or 216) clock cycles after the
assertion of vee Ok. Once the processor reads the boot-time mode
control serial data stream, ColdReset* can be deasserted. Cold­
Reset* must be deasserted synchronously with MasterClock.

4. Mter ColdReset* is deasserted synchronously, Reset* is deasserted
to allow the processor to begin running. Reset* must be held asserted
for at least 64 MasterClock cycles after the de assertion of Cold­
Reset*. Reset* must be deasserted synchronously with Master­
Clock.

Note: ColdReset* must be asserted when VCCOk asserts. The
behavior of the processor is undefined if VCCOk asserts while Cold­
Reset* is deasserted.

Cold Reset
A cold reset can begin anytime after the processor has read the initial­

ization data stream, causing the processor to start with the Reset excep­
tion.

A cold reset requires the same sequence as a power-on reset except
that the power is presumed to be stable before the assertion of the reset
inputs and the deassertion of VCCOk.

To begin the reset sequence, VCCOk must be deasserted for a
minimum of 100 ms before reassertion.

Warm Reset
To execute a warm reset, the Reset* input is asserted synchronously

with MasterClock. It is then held asserted for at least 64 MasterClock
cycles before being deasserted synchronously with MasterClock. The
processor internal clock, PClock, is not affected by a warm reset. The
boot-time mode control serial data stream is not read by the processor on
a warm reset. A warm reset forces the processor to start with a Soft
Reset exception.

MasterClock generates any reset-related signals for the processor that
must be synchronous with MasterClock.

Mter a power-on reset, cold reset, or warm reset, all processor internal
state machines are reset, and the processor begins execution at the reset
vector. All processor internal states are preserved during a warm reset,
although the precise state of the caches depends on whether or not a
cache miss sequence has been interrupted by resetting the processor
state machines.

Initialization Sequence
The boot-mode initialization sequence begins immediately after VCCOk

is asserted. As the processor reads the serial stream of 256 bits through
the Modeln pin, the boot-mode bits initialize all fundamental processor
modes. (The signals used are described in Chapter 8).

9-3

The Initialization Interface

Vcc

MasterClock
(MClk) -

Chapter 9

The initialization sequence is as· follows:
1. The system deasserts the VCCOk signal. The ModeClock output is

held asserted.
2. The processor synchronizes the ModeClock output at the time

VCCOk is asserted. The first rising edge of Mode Clock occurs at least
256 MasterClock cycles after VCCOk is asserted. There could be
more clock cycles due to internal delays on the VccOK signal. Mter
the first rising edge, each additional rising edge will be 256 master
clock cycles.

3. Each bit of the initialization stream is presented at the Modeln pin
after each rising edge of the ModeClock. The processor samples 256
initialization bits from the ModeIn input.

~ lOOms
VCCOK 256 MClk cycles

ModeCloclL

ModeIn

.TDS TDS
ColdReset*_

~ 64K MClk cycles

.... TDS TDS

Reset*

Figure 9.1 Power-on Reset

9-4

The Initialization Interface

Vee

VCCOK

ModeCloclL

ModeIn

--r\------
256

256 MClk cycles MClk

\ 1\-------------

Chapter 9

TDS ... • .TDS
~--------------------------~~I~------~----~-----

ColdReset*_

Reset*

Vee

~ 64K MClk cycles

Figure 9.2 Cold Reset

~ 64 MClk cy les ... TDS

---J\-{\- ----fr\- ------~f\- (\- -{\- ---/(\ -- -JV\----MasterClocK
(MClk) -

VCCOK
2~6 MClk cy~e~

ModeClock.. ~
Ir-

~ --------- ------------- -------------_.

ModeIn

ColdReset~
TDS-t> ... • 4TDS - ..

Reset* 1\ -~ 64 MClk cycler/

Figure 9.3 Warm Reset

9-5

The InitiaHzation Interface Chapter 9

Boot-Mode Settings
A number of processor operational parameters are determined stati-

cally at boot time. These inc1ude~ ,
• Output driver slew rate,
• Data wrtteback pattern
• System byte ordering
• MasterClock to PClock ratio
• Bus interface width.
Table 9.2 lists the processor boot-mode settings. The following rules

apply to the settings in the table:
• Bit 0 of the stream is, presented to the processor when VCCOk is first

asserted.
• Selecting a reserved value results in undefined processor behavior.
• Bits 15 to 255 are reserved bits.
• Zeros must be scanned in for all reserved bits.

9-6

The Initialization Interface Chapter 9

Serial Bit Description Value Mode Setting

0 Reserved (must be zero) 0

1:4 Writeback data rate 0 64-bit mode: DODD
System interface data rate for 32-bit mode: wwwwwwww·
block writes only; bit 4 is most sig- 1 64-bit mode: DDxDDx
nificant. 32-bit mode: WWxWWxWWxWWx

2 64-bit mode: DDxxDDxx
32-bit mode: WWxxWWxxWWxxWWxx

3 64-bit mode: DxDxDxDx
32-bit mode: WxWxWxWxWxWxWxWx

4 64-bit mode: DDxxxDDxxx
32-bit mode: WWxxxWWxxxWWxxxWWxxx

5 64-bit mode: o DxxxxD Dxxxx
32-bit mode: WWxxxxWWxxxxWWxxxxWWxxxx

6 64-bit mode: DxxDxxDxxDxx
32-bit mode: WxxWxxWxxWxxWxxWxxWxxWxx

7 64-bit mode: DDxxxxxxDDxxxxxx
32-bit mode: WWxxxxxxWWxxxxxxWWxxxxxxWWxxxxxx

8 64-bit mode: DxxxDxxxDxxxDxxx
32-bit mode: WxxxWxxxWxxxWxxxWxxxWxxxWxxxWxxx

9-15 Reserved

5:7 Clock Multiplier 0 MUltiply by 2
MasterClock is multiplied inter- 1 Multiply by 3
na1ly to generate PCloc::k

2 Multiply by 4

3 Multiply by 5

4 Multiply by 6

5 Multiply by 7

6 Multiply by 8

7 Reserved

8 EndBit 0 Little-endian ordering
Specifies byte ordering 1 Big-endian ordering

9:10 Non-block write 0 R4xOO compatible
Selects the manner in which non- 1 Reserved
block writes are handled; bit lOis
most significant 2 Pipelined Writes

3 Write re-issue

11 TmrIntEn 0 Enabled Timer Interrupt
Disables the timer interrupt on 1 Disabled Timer Interrupt
Int*[5]

12 System interface bus width 0 64-bit system interface

1 32-bit system interface

13:14 Drv_Out 10 100% strength (fastest)
Output driver slew rate controi; bit 11 83% strength
14 is most significant; affects only
outputs that are not clocks. 00 67% strength

01 50% strength (slowest)

15:255 Reserved (must be zero) 0

Key to Table:
0= Doubleword (64-bit data)
W= Word (32-bit data)

Table 9.2 Boot-Mode Settings

9-7

The Clock Interface Chapter 10

Integrated Device Technology, Inc.

Introduction
This chapter describes the clock signals ("clocks") used in the R4650

processor. The subject matter includes basic system clocks and system
timing parameters.

Signal Terminology
The following terminology is used in this chapter (and throughout the

book) when describing signals:
e. Rising edge indicates a low-to-high transition.
e Falling edge indicates a high-to-Iow transition.
e Clock-to-Q delay is the amount of time it takes for a signal to move

from the input of a device (clock) to the output of the device (Q).
Figure 10.1 and Figure 10.2 illustrate these terms.

single clock cycle

," ~, 2 , 3 4

/' I, \~I
high-to-Iow ~

\~--,I \'-----
transition low-to-high

transition

Figure 10.1 Signal Transitions

data out
O ___ ----J~

data in

!

Clock-to-O !

delay
II(..

Figure 10.2 Clock-to-Q Delay

10 - 1

The Clock Interface

Cycle

Chapter 10

Basic System Clocks
The R4650 processor has a single input clock, MasterClock, and no

output clocks.

MasterClock
The processor bases all internal and external clocking on the single

MasterClock input signal. The R4650 uses MasterClock to sample data
at the system interface and to clock data into the processor system inter­
face output register. The external agent should use MasterClock for the
global system clock and for clocking the output registers of an external
agent.

PClock
The processor multiplies MasterClock by 2,3,4,5,6,7, or 8 to generate

PClock. All internal registers and latches (except for ModeClock, which
is part of the initialization interface) use PClock, which is the pipeline
clock rate.

Figure 10.3 shows the clocks for a MasterClock-to-PClock multiply
by 2.

1 2 3 4

MasterClock
V / ~ I ~ I \ ~

IE tMCkHigh ~I
I
I
I

:Ie tMCkLow ~I
I
I

I I

: IE
tMekP ~I

I
I

PClock
I
I
I

I I

I I

I I
I

I I
I

I I

SysAD Driven ~ D '0 : D m D m D

--J ~M: --J ~OH
I
I
I

~
I I
I I

I

SysAD Received ~ '0 '0 ~~
I --J ~s I
I

--J ~H

Figure 10.3 Processor Clocks, MasterClock- to-PClock Multiply by 2

10-2

The Clock Interface Chapter 10

System Timing :parameters
As shown in Figure 10.3, data provided to the processor must be stable

a minimum of tDS nanoseconds (ns) before the rising edge of MasterCloek
and be held valid for a minimum of tDH ns after the rising edge of Master­
Clock.

Alignment to MasterCloek
Processor data becomes stable a minimum of tDM ns and a maximum of

tDO ns after the rising edge of MasterCloek. This drive-time is the sum of
the maximum delay through the processor output drivers together with
the maximum clock-to-Q delay of the processor output registers.
Processor data is held constant for a minimum of tDOH ns after the rising
edge of MasterCloek. All processor inputs (including VCCOk, Cold­
Reset*, and Reset*) are sampled based on MasterCloek, and all outputs
are based on MasterCloek.

Phase-Locked Loop (PLL)
The processor aligns and generates PCloek with internal phase-locked

loop (PLL) circuits. By their nature, PLL circuits are only capable of gener­
ating aligned clocks for MasterCloek frequencies within a limited range.

Clocks generated using PLL circuits contain some inherent inaccuracy,
or jitter, a clock aligned with MasterCloek by the PLL can lead or trail
MasterCloek by as much as the related maximum jitter specified in the
data sheet.

PLL Components and Operation
The storage capacitor required for the Phase Locked Loop Circuit is

contained in the R4650. However, it is recommended that the system
designer provide a filter network of passive components for the PLL power
supply.

Passive Components
The Phase Locked Loop circuit requires several passive components for

proper operation, which are connected to Vee, Vss, VeeP, and VssP, as
illustrated in Figure 10.4.

10-3

The Clock Interface

R4650

C3

Chapter 10

C2

Note: C1, C2, C3, and Rs
are on the PCB

Figure 10.4 PLL Passive Components

It is essential to isolate the analog power and ground for the PLL circuit
(VeeP /VssP) from the regular power and ground (Vee/Vss). Initial
evaluations have yielded good results with the following values:

R 5 ohms
Cl 1 nF
C2 82 nF
C3 10 JlF
Cp 470 pF

Since the optimum values for the filter components depend upon the
application and the system noise environment, these values should be
considered as starting pOints for further experimentation within your
specific application.

Connecting the R4650 to an External Agent
MasterCloek is used to drive both the processor and the external agent.

The R4650 uses MasterCloek to drive its output buffer and to sample the
input buffer. Similarly, the external agent should use MasterCloek to
sample its input buffers, drive its output buffer, and as the system clock.

In such a system, the delivery of data and data sampling have common
characteristics, even if the processor and external agent have different
delay values. For example, transmission time (the amount of time a signal
takes to move from the processor to external agent to another along a
trace on the board) can be calculated from the following equation:

Transmission Time = (MasterClock period)
- (tno for processor or external agent)
- (tns for external agent or processor)

10-4

The Clock Interface Chapter 10

Figure 10.5 shows a block-level diagram of a system using the R4650
processor.

MasterClock

R4650 External Agent

MasterClock I- MasterClock

SysCmd
"

SysCmd

SysAD SysAD

Figure 10.5 R4650 Processor System

10- 5

Integrated Device Technology, Inc,

Cache Organization,
Operation and Coherency

Introduction

Chapter 11

This chapter describes the on-chip cache memory, its place in the
R4650 memory organization, and individual operations of the primary
cache.

This chapter uses the following terminology:
• The primary cache may also be referred to as the P-cache.
• The primary data cache may also be referred to as the D-cache.
• The primary instruction cache may also be referred to as the I -cache.

These terms are used interchangeably throughout this book.

Memory Organization
Figure 11.1 shows the R4650 system memory hierarchy. In the logical

memory hierarchy, caches lie between the CPU and main memory. They
are designed to make the speedup of memory accesses transparent to the
user.

Each functional block in Figure 11.1 has the capacity to hold more data
than the block above it. For instance, physical main memory has a larger
capacity than the primary cache.

At the same time, each functional block takes longer to access than any
block above it. For instance, it takes longer to access data in main
memory than in the CPU on-chip registers.

R4650 CPU

I-cache D-cache

Primary Cache

~ .s en
'0,
CD
a:

en
CD
.c
~
()

~
o
E
CD
:2

en e
CD
.c
0-

'fii
a..

Figure 11.1 Logical Hierarchy of Memory

11 - 1

Faster Access Increasing Data
Time Capacity

Cache Organization, Operation and Coherency Chapter 11

The R4650 processor has two on-chip primary caches. One holds
instructions (the instruction cache), while the other holds data (the data
cache).

Overview of Cache Operations
Caches provide fast temporaty data storage, and they make the

speedup of memory accesses transparent to the user. In general, the
processor accesses cache-resident instructions or data through the
following procedure:

1. The processor, through the on-chip cache controller, attempts to
access the next instruction or data in the primaty cache.

2. The cache controller checks to see if this instruction or data is present
in the primary cache.

• If the instruction/data is present, the processor retrieves it. This is
called a primaty-cachehit.

• If the instruction/data is not present in the primaty cache, it is
retrieved as a cache line from memoty and is written into the primaty
cache.

3. The processor retrieves the instruction/data from the primaty cache
and operation continues. For a data cache miss, the processor can
restart the pipeline after the first doubleword (the one at the miss
address) is retrieved and continues the cache line refill in parallel.

It is possible for the same data to be in two places simultaneously: main
memoty and the primaty cache. This data is kept consistent through the
use of either a write-back or ~ write-.through methodology. For a write­
back cache, the modified data is not written back to memoty until the
cache line is replaced. In a write-through cache, the data is written to
memoty as the cached data fs modified (with a possible delay due to the
write buffer).

R4650 Cache Description
This section describes the organization of on-chip primary caches. As

Figure 11. 1 illustrates, the R4650 contains separate primaty instruction
and data caches.

Figure 11.2 provides a block diagram of the R4650 memoty model.

R4650

I Cache Controller /
I Main Memory I -,

I J-c!che I! } Primary
. . Caches I D-cache I

Figure 11.2 Cache Support in the R4650

11- 2

Cache Organization, Operation and Coherency Chapter 11

Cache Line Size
A cache line is the smallest unit of information that can be fetched from

memory to be filled into the cache. A primary cache line is 8 words in
length and is represented by a single tag.

Upon a cache miss in the primary cache, the missing cache line is
loaded from memory into the primary cache.

Cache Organization and Accessibility
This section describes the organization of the primary cache, including

the manner in which it' is mapped, the addressing used to index the
cache, and composition of the cache lines. The primary instruction and
data caches are indexed with a virtual address (VA).l

Organization of the Primary Instruction Cache (I-Cache)
Each line of primary I-cache data (although it is actually an instruction,

it is referred to as data to distinguish it from its tag) has an associated
24-bit tag that contains a 20-bit physical address, a single valid bit, a
reserved bit, a single parity bit and the FIFO replacement bit. Word parity
is used on I-cache data.

The R4650 processor primary I-cache has the following characteristics:
• two-way set associative '
• indexed with a virtual address
• checked with a physical tag
• organized with 8-word (32-byte) cache line
• lockable on a per -set basis

Figure 11.3 shows the format of a primary I-cache line.

23 22 21 20 19 o
PTag

20
65 64 63 o

PTag Physical tag (bits 31:12 of the physical address)
DataP Data

V Valid bit
DataP Data

F FIFO Replacement Bit. Complemented on refill. DataP Data

P Even parity for the PTag and V fields DataP Data

DataP Even parity; 1 parity bit per word of data 2 64

Data Cache data

Figure 11.3 R4650 Primary I-Cache Line Format

l. Since the size of one set of primary caches is 4KB, the virtual offset equals the
physical offset. Logically, however, the cache index is pre-translation, and thus
considered virtual.

11- 3

Cache Organization, Operation and Coherency Chapter 11

Organization of the Primary Data Cache (D-Cache)
Each line of primary D-cache data has an associated 26-bit tag that

contains a 20-bit physical address, 2-bit cache line state, a write-back
bit, a parity bit for the physical address and cache state fields, a parity bit
for the write-back bit, and the FIFO replacement bit.

The R4650 processor primary D-cache has the following characteristics:
o write-back or write-through on a per-page basis
• two-way set associative
• indexed with a virtual address
• checked with a physical tag
• organized with 8-word (32-byte) cache line
• Lockable on a per-set basis
Figure 11.4 shows the format of a primary D-cache line.

25 24 23 22 21 20 19

2

Key to Figure:
F FIFO Replacement Bit

W' Even parity for the write-back bit

71

DataP

DataP

DataP

DataP

8

PTag

24
6463

W Write-back bit (set if cache line has been written)

P Even parity for the PTag and CS fields

CS Primary cache state:
0= Invalid, 1 = Shared,
2 = Clean Exclusive, 3 = Dirty Exclusive

PTag Physical tag (bits 35: 12 of the physical address)

DataP Even parity for the data; I-bit per byte

Data Cache data

Data

Data

Data

Data

64

Figure 11.4 R4650 8-Word Primary Data Cache Line Format

o

o

In the R4650, the W (write-back) bit, not the cache state, indicates
whether or not the primary cache contains modified data that must be
written back to memory

Note: There is no hardware support for cache coherency. The only
cache states used are Dirty Exclusive and Invalid.

11-4

Cache' Organization, Operation and Coherency Chapter 11

Accessing the Primary Caches
Figure .5 shows the virtual address (VA) index into the primary caches.

Each instruction and data cache size is 8 Kbytes.

Data

Tags .
"

Tag line VA(11 :5)

I I Data line

I VA(11 :5)

It lit I
W W' State Tag P

/
, 64

Data

Figure 11.5 Primary Cache Data and Tag Organization

Cache States
The terms below are used to describe the state of a cache line:
• Exclusive: a cache line that is present in exactly one cache in the

system is exclusive. This is always the case for the R4650. All cache
lines are in an exclusive state.

• Dirty: a cache line that contains data that has changed since it was
loaded from memory is dirty.

• Clean: a cache line that contains data that has not changed since it
was loaded from memory is clean.

• Shared: a cache line that is present in more than one cache in the
system. The R4650 does not provide for hardware cache coherency.
This state will never happen in normal operations.

The R4650 only supports the four cache states as shown in Table 11.1
on page 11-6. The only states that will occur in the R4650, under normal
operations are the Dirty Exclusive and Invalid states.

Note: Even though valid data is in the Dirty Exclusive state, it may still
be consistent with memory. One must look at the dirty bit, W, to
determine if the cache line is to be written back to memory when
it is replaced.

11- 5

Cache Organization, Operation and Coherency Chapter 11

Cache Line
State

Invalid

Shared

Clean Exclusive

Dirty Exclusive

Each primary cache line in the R4650 system is in one of the states
described in Table 11.1.

Description

A cache line that does not contain valid information must be marked invalid, and cannot
be used. A cache line in any other state than invalid is assumed to contain valid informa-
tion.

A cache line that is present in more than one cache in the system is shared. This state will
not occur for normal operations.

A clean exclusive cache line contains valid information and this cache line is not present
in any other cache. The cache line is consistent with memory and is not owned by the pro-
cessor (see "Cache Line Ownership" on page 6 in this chapter). This state will not occur
for normal operations.

A dirty exclusive cache line contains valid information and is not present in any other
cache. The cache line mayor may not be consistent with memory and is owned by the pro-
cessor (see "Cache Line Ownership" on page 6 in this chapter). Use the W bit to determine
if the line must be written back on replacement.

Table 11.1 Cache States

Primary Cache States
Each primary data cache line is normally in one of the follOwing states:
• invalid
• dirty exclusive

Each primary instruction cache line is in one of the following states:
• invalid
• valid

Cache Line Ownership
The processor is the owner of a cache line when it is in the dirty exclu­

sive state, and is responsible for the contents of that line. There can only
be one owner for each cache line.

The ownership of a cache line is set and maintained through the rules
described below.

• A processor 'assumes ownership of the cache line if the state of the
primary cache line is dirty exclusive.

• A processor that owns a cache line is responsible for writing the cache
line back to memory if the line is replaced during the execution of a
Write-back or Write-back Invalidate cache instruction if the line is in
a write-back page. The Cache instruction is explained in Appendix A.

• Memory always owns clean cache lines
• The processor gives up ownership of a cache line when the state of the

cache line changes to invalid.
Therefore, based on these rules and that any valid data cache line is in

the Dirty Exclusive state (under normal operating conditions), the
processor is considered to be the owner of the cache line.

11- 6

Cache Organization, Operation and Coherency Chapter 11

Cache Write Policy
The R4650 processor manages its primary data cache by using either a

write-back or a write-through policy, determined by settings in the CPO
eAlg register. In a write-back cache, the data is not written back to
memory until the cache line is replaced. A write-through policy means the
store data is written to the cache and to memory. The write of the data to
memory may not occur at the same time as the write to cache due to the
write buffer.

For a write-back entry, if the cache line is valid and has been modified
(the W bit is set), the processor writes this cache line back to memory
when the line is replaced, either in the course of satisfying a cache miss
or during the execution of a Write-back or Write-back Invalidate CACHE
instruction.

For a write-through entry, whenever a store hits in the cache line, the
data is also written to memory via the write buffer. The store will not set
or clear the W bit for a write-through cache line. This allows a different
virtual address that maps to the same physical address and with a write­
back policy to set the Wbit. For a miss to a write-through line, the action
taken is determined by the write-allocation policy. For a write-allocate
entry, the cache line is first retrieved from memory and the store
continues. A no write-allocate entry posts the write to the system inter­
face via the write buffer, in the same manner as an uncached write.

When the processor writes a cache line back to memory, it does not
ordinarily retain a copy of the cache line, and the state of the cache line is
changed to invalid. However, there are exceptions. For example, the
processor retains a copy of the cache line if a cache line is written back by
the Hit Write-back cache instruction. If the W bit is set, the cache line is
written back and the W bit is cleared. The processor signals this line
retention during a write by setting SysCmd(2) to aI, as described in
Chapters 12 and 14.

Cache State Transition Diagrams
The following sections describe the cache state diagrams that illustrate

the cache state transitions for the primary cache. Figure .6 shows the
state diagram of the primary cache.

When an external agent supplies a cache line, it need not return the
initial state of the cache line, for normal operations (refer to Chapter 12
for a definition of an external agent). This is because the only read request
the R4650 should issue are for non-coherent data and the lower three
bits for the data identifier are reserved. The initial state will automatically
be set to DE by the R4650. Otherwise, the processor changes the state of
the cache line during one of the following events:

• A store to a dirty exclusive line remains in a dirty exclusive state.
o The state is changed to invalid for:

- for a Cache invalidate operation
- if the line is replaced

11-7

Cache Organization, Operation and Coherency

Index Invalidate
Hit Invalidate

Figure 11.6 Primary Data Cache State Diagram

Cache Coherency Overview

Chapter 11

Systems using more than one master must have a mechanism to main­
tain data consistency throughout the system. This mechanism is called a
cache coherency protocol. The R4650 does not provide any hardware
cache coherency. Cache coherency must be handled with software.

Cache Coherency Attributes
Cache coherency attributes are necessary to ensure the consistency of

data throughout the system.
Bits in the CAlg register control coherency according to the virtual

address. Specifically, the CAlg register contains 3 bits per entry that
provide two possible coherency attribute types; they are listed below and
described more fully in the following sections.

• uncached
• noncoherent (includes 3 attribute values)

Table 11.2 summarizes the behavior of the processor on load misses
and store misses for each of the coherency attribute types listed above.
The following sections describe in detail these coherency attribute types.

Attribute Type Load Miss Store Miss

Uncached Main memory read Main memory write

Noncoherent Noncoherent read Noncoherent read (write-allocate page)
Main memory write (no write-allocate page)

Table 11.2 Coherency Attributes and Processor Behavior

Uncached
Lines within an uncached page are never in a cache. When a virtual

address has the uncached coherency attribute, the processor issues a
doubleword, partial-doubleword, word, or partial-word read or write
request directly to main memory (bypassing the cache) for any load or
store to a location within that page.

Noncoherent
Lines with a noncoherent attribute type can reside in a cache; a load

miss causes the processor to issue a noncoherent block read request to a
location within the cached page. For a store miss to a write-allocate page,
the processor issues a noncoherent block read request to a location
within the cached page and then does the write-through. If the virtual
address has the no write-allocate attribute, a store miss will generate a
write to the memory as in the uncached case.

11- 8

Cache Organization, Operation and Coherency Chapter 11

Cache Operation Modes
The R4650 processor only supports the no-secondary-cache mode (only

uncached and noncoherent coherency attributes are applicable) of R4400
operation.

Cache Locking
The R4650 implements a feature referred to as "cache locking." That is,

the kernel may set status register control bits that inhibit the cache refill
process from displacing valid contents in set "A" of either cache. Note that
these bits do not inhibit caches from being changed by any of the
following operations or conditions:

• cache operations
• store operations to D-cache
• if they are invalid

Caches in the IDTR4650 RISC CPU are two-way set associative, just as
they are in the Orion (R4600). Unlike the original R4600, they also
support a cache-locking feature, which can be used to lock critical
sections of code and/or data into on-chip caches for very fast access.

A cache is said to be locked when a particular piece of code or data is
loaded into the cache and that cache location will not be selected later for
refill by other data.

When To Use Cache Locking
Cache locking is useful in the following cases:
• a portion of code has to reside in cache permanently (e.g. time critical

exception vectors) for real-time performance
• a given section of code is executed frequently and can fit inside the

instruction cache
• a given section of data is accessed frequently and can fit inside the

data cache (e.g. tables containing routing information in an
embedded network application)

In the R4650, both Instruction cache and Data cache are BKB. Each
cache is two-way set associative with set A and set B. The size of each set
is 4KB. On reset, both sets A and B are unlocked. By setting the DL or IL
bit in the Status register of CPO, set A of the appropriate cache can be
prevented from being chosen for refill on a cache miss, thus effectively
locking the contents of the cache. The restriction on only set A being
lockable is only for deterministic performance.

If both sets are invalid, the CPU always chooses set A. Similarly, data
store operations to locked data update the D-cache contents; as above,
locking merely. prevents the cache line contents from being replaced by
the contents of a different physical location. Otherwise, if a set is locked,
its contents will not be changed.

An invalid line in a locked set will still be chosen for refill on a cache
miss. Once refilled (and thus valid), this line will not be selected for refill
until the appropriate lock bit is reset. This understanding, along with
knowledge of Coprocessor ° (CPO) hazards, can be used to develop a small
and effiCient algorithm for cache locking in the R4650.

The basic algorithm presented here consists of the follOwing steps. Two
examples follow the steps.

1. Invalidate the cache(s).
2. Set the appropriate cache lock bit(s).
3. Load the critical code/data into the cachets).

11- 9

Cache Organization. Operation and Coherency Chapter 11

Example of Data Cache Locking
Assume an example application in which there is a table that must

always be kept in cache. In the startup code, after initialization of data
structures, flushing of caches, etc., is done, the user can perform reads
through cached addresses to load the data into the data cache, and then
set the DL bit in the Status register to lock set A of the data cache.

Here is a sample code fragment for this example:

.set noreorder
jal flush_cache 1* Flush caches * /
nop
la to, criticaCtable 1* This table should always be in cache * /
Ii t 1, table_size 1* Size of table in bytes * /
Ii t2, ° 1* Number of bytes read into cache * /

1: lw aO,O(tO)
addiu t2,4
bneq t2, tl, Ib 1* Loop back till done * /
addiu to,4 1* bump read address * /

mfcO aO, CO_SR /* Get old SR value * /
Ii aI, SR_DL 1* SR_DL = OxOO 1 00000 * /
or aO,aO,aI
mtcO aO, CO_SR 1* Set the Lock bit for data cache * /
nop
nop
nop 1* 3 nops: safety against CPO hazard * /

Example of Instruction Cache Locking ,
Assume an example application in which there is a critical function that

must always be kept in cache. Also assume that the size of the function is
known. (If not known, you can find out the size by generating a disas­
sembly of the object file.)

In the startup code, after initializing data structures, flushing of caches,
etc., is done, you can perform the FILL operation in the CACHE instruc­
tion to fill the instruction cache with the critical function, and then set
the IL bit in the Status register to lock set A of the instruction cache.

11-10

Cache Organization, Operation and Coherency Chapter 11

Here is a sample code fragment for this example:

1:

2:

la
jr
nop

3:

.set noreorder
la to, If
Ii tI, OxAOOOOOOO
or to, to, to
jr to
nop
jal flush_cache
nop
la to, func_starCaddr
li t 1, func_size
li t2, °
cache Fill_I, O(tO)
addiu t2,4
bneq t2,tl,Ib
addiu to,4

mfcO aO, CO_SR
li aI, SR_IL
or aO,aO,aI
mtcO aO, CO_SR
nop
nop
nop
nop
nop

vO,3f
vO

1* Get address of label '1' * /

/* Uncached execution from now onwards * /

1* Start address of critical code * /
1* Critical code size * /
1* Number of words read into cache * /
1* Fill Operation * /

1* Loop back till done * /
/* bump read address * /

1* Get old SR value * /
1* SR_IL = Ox00080000 * /

1* Set Lock bit for instruction cache * /

1* 5 nops: safety against CPO hazard * /

1* Resume execution in mode as linked * /

R4650 Processor Synchronization Support
In a multiprocessor system, it is essential that two or more processors

working on a common task can execute without corrupting each other's
subtasks. Synchronization, an operation that guarantees an orderly
access to shared memory, must be implemented for a properly func­
tioning multiprocessor system. Two of the more widely used methods are
discussed in this section: test-and-set, and counter. Even though the
R4650 does not support symmetric multi-processing (SMP) , these are
useful for multi-master and heterogenous multi-processing.

Test-and-Set
Test-and-set uses a variable called the semaphore, which protects data

from being simultaneously modified by more than one processor. In other
words, a processor can lock out other processors from accessing shared
data when the processor is in a critical section, a part of program in which
no more than a fixed number of processors is allowed to execute. In the
case of test-and-set, only one processor can enter the critical section.

11- 11

Cache Organization, Operation and Coherency Chapter 11

Figure 11.7 illustrates a test-and-set synchronization procedure that
uses a semaphore: when the semaphore is set to 0, the shared data is
unlocked, and when the semaphore is set to 1, the shared data is locked.

No

No

5. Execute critical section
(Access shared data)

Figure 11.7 Synchronization with Test-and-Set

The processor begins by loading the semaphore and checking to see if it
is unlocked (set to 0) in steps 1 and 2. If the semaphore is not 0, the
processor loops back to step 1. If the semaphore is 0, indicating the
shared data is not locked, the processor next tries to lock out any other
access to the shared data (step 3). If not s.uccessful. the processor loops
back to step 1, and reloads the semaphore.

If the processor is successful at setting the semaphore (step 4), it
executes the critical section of code (step 5) and gains access to the
shared data, completes its task, unlocks the semaphore (step 6), and
continues processing.

Counter
Another common synchronization technique uses a counter. A counter

is a designated memory location that can be incremented or decremented.
In the test-and-set method, only one processor at a time is permitted to,

enter the critical section. Using a counter, up to Nprocessors are allowed
to concurrently execute the critical section. All processors after the Nth
processor must wait until one of the N processors exits the critical section
and a space becomes available.

The counter works by not allowing more than one processor to modify it
at any given time. Conceptually, the counter can be viewed as a variable
that counts the number of limited resources (for example, the number of
processes, or software licenses, etc.).

Figure 11.8 shows this process.

11-12

Cache Organization, Operation and Coherency Chapter 11

Figure 11.8 Synchronization Using a Counter

Load Linked and Store Conditional
The R4650 instructions Load Linked (LL) and Store Conditional (SC)

provide support for processor synchronization. These two instructions
work very much like their simpler counterparts, load and store. The LL
instruction, in addition to doing a simple load, has the side effect of
setting a bit called the link bit. This link bit forms a breakable link
between the LL instruction and the subsequent SC instruction. The SC
performs a simple store if the link bit is set when the store executes. If
the link bit is not set, then the store fails to execute. The success or
failure of the SC is indicated in the target register of the store.

The link is broken upon completion of an ERET (return from exception)
instruction.

The most important features of LL and SC are that:
• they provide a mechanism for generating all of the common synchro­

nization primitives including test-and-set, counters, sequencers, etc.,
with no additional overhead

• when they operate, bus traffic is generated only if the state of the
cache line changes; lock words stay in the cache until some other
processor takes ownership of that cache line

11-13

Cache Organization, Operation and Coherency Chapter 11

Examples Using LL and SC
Figure 11.9 shows how to implement test-and-set using LL and SC

instructions.

Loop: LL r2,{r1)

ORI r3 r2 1
SEQ r3,r2,Loop
NOP

SC r3,(r1)

SEQ r3,O,Loop
NOP

SW r2,{r1)

Figure 11.9 Test-and-Set using LL and SC

11-14

Cache Organization, Operation and Coherency

Figure 11.10 shows synchronization using a counter.

Loop1: LL r2,(r1)

BLEZ r2,Loop1
NOP

SUB r3,r2,1
SC r3,(r1)

BEQ r3,O,Loop1
NOP

•
•
•
•

Loop2: LL r2,(r1)

ADDr3(r2,1
SC r3, r1)

BEQ r3,O,Loop2
NOP

Figure 11.10 Counter Using LL and SC

11-15

Chapter 11

Integrated Device Technology. Inc.

System Interface
Overview

Introduction

Chapter 12

The System interface allows the processor to access external resources
that are needed to satisfy cache misses and uncached operations, while
permitting an external agent access to some of the processor internal
resources. This chapter describes the system interface from the point of
view of both the processor and the external agent.

Terminology
The following terms are used in this chapter:
An external agent is any logic device connected to the processor over

the system interface that allows the processor to issue requests.
A system event is an event that occurs within the processor and

requires access to external system resources.
Sequence refers to the preCise series of requests that a processor gener­

ates to service a system event.
Protocol refers to the cyc1e-by-cyc1e signal transitions that occur on the

system interface pins to assert a processor or external request.
Syntax refers to the precise definition of bit patterns on encoded buses,

such as the command bus.

System Interface Description
The R4550 processor supports a 54-bit address/data interface that can

construct a simple uniprocessor with main memory. The R4550 can be
configured for a 32-bit external address/data interface as well.

The System interface consists of the following buses and signals:
• 54-bit address and data bus, SysAD
• 8-bit SysAD check bus, SysADC (even parity only)
• 9-bit command bus, SysCmd
• Six handshake signals:

RdRdy*, WrRdy*
ExtRqst*, Release*
ValidIn*, ValidOut*

The processor uses the system interface to access external resources in
order to service processor requests such as cache misses, cache line
write-backs, write-through stores and uncached operations.

Interface Buses
Figure 12.1 shows the primary communication paths for the system

interface: a 54-bit address and data bus, SysAD(63:0), and a 9-bit
command bus, SysCmd(8:0). These SysAD and the SysCmd buses are
bidirectional; that is, they are driven by the processor to issue a processor
request, and by the external agent to issue an external request.

12 - 1

System Interface Overview Chapter 12

A request through the system interface consists of:
• an address
• a System interface command that specifies the precise nature of the

request
• a series of data elements if the request is for a write or read response.

External Agent
R4650

SysAO(63:0)

SysCmd(8:0)

I;

Figure 12.1 System Interface Buses

Address and Data Cycles
Cycles in which the SysAD bus contains a valid address are called

address cycles. Cycles in which the SysAD bus contains valid data are
called data cycles. Validity is determined by the state of the Validln* and
ValidOut* Signals.

The SysCmd bus identifies the contents of the SysAD bus during any
cycle in which it is valid. The most significant bit of the SysCmd bus is
always used to indicate whether the current cycle is an address cycle or a
data cycle.

• During address cycles [SysCmd(8) = 0], the remainder of the SysCmd
bus, SysCmd(7:0), contains a System inteiface command.

• During data cycles [SysCmd(8) = 1], the remainder of the SysCmd
bus, SysCmd(7:0), contains a data identifier.

Issue Cycles
The issue cycle is defined as the cycle when the external agent can

accept the address issued from the processor. There are two types of
processor issue cycles:

• processor read request issue cycles
• processor write request issue cycles.
The processor samples the signal RdRdy* to determine the issue cycle

for a processor read request; the processor samples the signal WrRdy* to
determine the issue cycle of a processor write request.

As shown in Figure 12.2, RdRdy* must be asserted for one clock cycle,
two cycles prior to the address cycle of the processor read request to
define the address cycle as the issue cycle (cycle 5 in Figure 12.2).
RdRdy* does not need to be asserted during the issue cycle.

12-2

System Interface Overview

Issue

MasterClock Cycle I 2 I 3t I 4 I 5 I 6 I
MasterClock

SysAD Bus Addr

RdRdy* \ L
ValidOut* ;-
Note: RdRdy· must be sampled LOW at the end of cycle 3,

which is marked with the t symbol.

Figure 12.2 State of RdRdy* Signal for Read Requests

Chapter 12

As shown in Figure 12.3, WrRdy* must be asserted for one clock cycle,
two cycles prior to the first address cycle of the processor write request to
define the address cycle as the issue cycle (cycle 5 in Figure 12.3).
WrRdy* does not need to be asserted during the issue cycle.

Issue

MasterClock Cycle II 1 I 2 I 3t I 4 I 5 I 6 I
MasterClock I
SysAD Bus I Addr

WrRdy* I \ L
ValidOut* 1\
Note: WrRdy* must be sampled LOW at the end of cycle 3,

which is marked with the t symbol.

Figure 12.3 State of WrRdy* Signal for Write Requests

The processor repeats the address cycle for the request (that is, asserts
the valid address and the ValidOut* signal) until the conditions for a valid
issue cycle are met. Mter the issue cycle, if the processor request
requires data to be sent, the data transmission begins. There is only one
issue cycle for any processor request.

The processor accepts external requests, even while attempting to issue
a processor request, by releasing the system interface to slave state in
response to an assertion of ExtRqst* by the external agent.

Note that the rules governing the issue cycle of a processor request are
strictly applied to determine the action the processor takes. The
processor either:

• completes the issuance of the processor request in its entirety before
the external request is accepted, or

• releases the system interface to slave state without completing the
issuance of the processor request.

In the latter case, the processor issues the processor request (provided
the processor request is still necessary) after the external request is
complete. The rules governing an issue cycle again apply to the processor
request.

12-3

System Interface Overview Chapter 12

Handshake Signals
The processor manages the flow of requests through the following six

control signals:
• RdRdy*, WrRdy* are used by the external agent to indicate when it

can accept a new read (RdRdy*) or write (WrRdy*) transaction.
• ExtRqst*, Release* are used to transfer control of the SysAD and

SysCmd buses. ExtRqst* is used by an external agent to indicate a
need to control the interface. Release* is asserted by the processor
when it transfers the mastership of the system interface to the
external agent.

• The R4650 processor uses ValidOut* and the external agent uses
Validln* to indicate valid command and data on the SysCmd and
SysAD buses.

System Interface Protocols
Figure 12.4 shows the system interface operates from register to

register. That is, processor outputs come directly from output registers
and begin to change with the rising edge of MasterClock. 1

Processor inputs are fed directly to input registers that latch these
input signals with the rising edge of MasterClock. This allows the system
interface to run at the highest possible clock frequency.

R4650
r--

• Output data

-~ ---
-

Input data

-~
MasterClock

Figure 12.4 System Interface Register-to-Register Operation

Master and Slave States
When the R4650 processor is driving the SysAD and SysCmd buses,

the system interface is in master state. When the external agent is driving
the SysAD and SysCmd buses, the system interface is in slave state.

In master state, the processor drives the SysAD and SysCmd buses
and will assert the signal ValidOut* whenever the information on these
buses is valid.

In slave state, the external agent drives the SysAD and SysCmd buses
and asserts the signal Validln * whenever the information on these buses
is valid.

1. MasterClock is the input clock to the processor.

12-4

System Interface Overview Chapter 12

Moving from Master to Slave State
The system interface remains in master state unless one of the

following occurs:
• The external . agent requests and is granted the system interface

(external arbitration).
• The processor issues a read request and performs an uncompelled

change to slave state.

External Arbitration
For the external agent to issue an external request through the system

interface, the system interface must be in slave state. The transition from
master state to slave state is arbitrated by the processor using the system
interface handshake signals ExtRqst* and Release*.

This transition is described by the following procedure:
1. An external agent signals that it wishes to issue an external request

by asserting ExtRqst* .
2. When the processor is ready to release bus mastership and accept an

external request it asserts Release* for one cycle, which releases the
system interface from master to slave state.

3. The system interface returns to master state as soon as the external
request issue is complete.

This procedure is described in Chapter 15, "The External Request
Interface. "

Uncompelled Change to Slave State
An uncompelled change to slave state is the transition of the system

interface from master state to slave state, initiated by the processor when
a processor read request is pending. Release* is asserted automatically
after a read request. An uncompelled change to slave state occurs during
the issue cycle of a read request.

Mter an uncompelled change to slave state, the processor returns to
master state at the end of the next external request. This can be a read
response, or some other type of external request.

An external agent must note that the processor has performed an
uncompelled change to slave state and begin driving the SysAD bus along
with the SysCmd bus. As long as the system interface is in slave state,
the external agent can begin a single external request without arbitrating
for the system interface; that is, without asserting ExtRqst*.

Mter the external request, the system interface returns to master state.
Whenever a processor read request is pending, after the issue of a read

request, the processor automatically switches the system interface to
slave state, even though the external agent is not arbitrating to issue an
external request. This transition to slave state allows the external agent
to quickly return read response data.

Processor and External Requests
There are two .broad categories of requests: processor requests and

external requests. These two categories are described in this section.
When a system event occurs, the processor issues either a single

request or a series of requests-called processor requests-through the
system interface, to access an external resource and service the event.
For this to work, the processor system interface must be connected to an
external agent that is compatible with the system interface protocol, and
can coordinate access to system resources.

12-5

System Interface OVerview Chapter 12

/

An external agent requesting access to a processor status register
generates an external request. This access request passes through the
system interface. System events and request cycles are shown in
Figure 12.5.

R4650 External Agent

Processor Requests

• Read
• Write External Requests

• Read
• Write
• Null

, >~

System Events
• Load Miss
• Store Miss
• Store Hit on write·through
• Uncached Load/Store
• CACHE operations

Figure 12.5 Requests and System Events

Rules for Processor Requests
The following rules apply to processor requests:
• Mter issuing a processor read request, the processor cannot issue a

subsequent read request until it has received a read response.
• Mter the processor has issued a write request in R4xOO compatible

write mode (set at boot time), the processor cannot issue a subse­
quent request until at least four cycles after the issue cycle of the
write request. This means back-to-back write requests with a single
data cycle are separated by two unused system cycles, as shown in
Figure 12.6.

Mter the processor has issued a write request in either of the two new
write modes, write reissue and pipelined writes, the processor can issue a
subsequent write immediately provided the WrRdy* requirement is met.
In Chapter 14, this is discussed in more detail.

12-6

System Interface Overview Chapter 12

MasterClock Cycle II 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I
MasterClock

Cycles 2 3 4

SysAD Bus I~ Data ~Data

Writi#1
----v
Write #2

WrRdy* 1\ L \ L
ValidOut* I \ \ / \ /

Figure 12.6 Back-to-Back Write Cycle Timing (R4000 compatible mode)

Processor Requests
A processor request is a request or a series of requests, through the

system interface, to access some external resource. As shown in
Figure 12.7, processor requests include only reads and writes.

R4650 ~
~~ External Agent p

Processor Requests ~ ;';.
'"ll

• Read
, g

• Write ~
~

Figure 12.7 Processor Requests

Read request asks for a block, doubleword, partial doubleword, word,
or partial word of data either from main memory or from another system
resource.

Write request provides a block, doubleword, partial doubleword, \vord,
or partial word of data to be written either to main memory or to another
system resource.

Processor requests are managed by the processor in the equivalent of
the R4400 no-secondary-cache mode.

The processor issues requests in a strict sequential fashion; that is, the
processor is only allowed to have one request pending at any time. For
example, the processor issues a read request and waits for a read
response before issuing any subsequent requests. The processor submits
a write request only if there are no read requests pending.

The processor has the input signals RdRdy* and WrRdy* to allow an
external agent to manage the flow of processor requests. RdRdy*
controls the flow of processor read requests, while WrRdy* controls the
flow of processor write requests.

12-7

System IDterface Overview Chapter 12

The processor request cycle sequence is shown in Figure 12.8.

R4650 External Agent

1. Processor issues read or
write request

2. External system controls
acceptance of requests by
asserting RdRdy* or WrRdy*

Figure 12.8 Processor Request

Processor Read Request
When a processor issues a read request, the external agent must

access the specified resource and return the requested data.
A processor read request can be split from the external agent's return

of the requested data; in other words, the external agent can initiate an
unrelated external request before it returns the response data for a
processor read. A processor read request is completed after the last word
of response data has been received from the external agent.

Note that the data identifier associated with the response data can
signal that the returned data is erroneous, causing the processor to take
a bus error.

Processor read requests that have been issued, but for which data has
not yet been returned, are said to be pending. A read remains pending
until the requested read data is returned.

The external agent must be capable of accepting a processor read
request any time the following two conditions are met:

• There is no processor read request pending.
• The signal RdRdy* has been asserted for one clock cycle, two cycles

before the issue cycle.

Processor Write Request
When a processor issues a write request, the specified resource is

accessed and the data is written to it.
A processor write request is complete after the last word of data has

been transmitted to the external agent.
The external agent must be capable of accepting a processor write

request any time the following two conditions are met:
• No processor read request is pending.
• The signal WrRdy* has been asserted for one clock cycle, two cycles

before the issue cycle.
The R4650 has added two new modes to enhance the throughput of

non-block writes. These modes allow for 2 cycle throughput on back-to­
back non-block writes. The actual protocol is discussed in Chapter 14,
''The Write Interface." The external agent must be capable of accepting a
processor write request in these modes under the same conditions as for
the R4xOO compatibility mode (except as explained in Chapter 14, ''The
Write Interface").

12- 8

System Interface Overview ~hapter 12

External Requests
External requests include read, write and null requests, as shown in

Figure 12.9. This section also includes a description of read response, a
special case of an external request.

R4650 External Agent

External· Requests
• Read
"·Write
• Null

Figure 12.9 External Requests

Read request asks for a word of data from the processor's internal
resource.

Write request provides a word of data to be written to the processor's
internal resource.

Null request requires no action by the processor; it provides a mecha­
nism for the external agent to return control of the system interface to the
master state without affecting the processor.

The processor controls the flow of external requests through the arbi­
tration signals ExtRqst* and Release*, as shown in Fig\lre 12.10. The
external agent must acquire mastership of the system interface before it
is allowed to issue an external request; the external agent arbitrates for
mastership of the system interface by asserting ExtRqst* and then
waiting for the processor to assert Release* for one cycle.

R4650 External Agent

1. External system requests bus
mastership by asserting ExtRqst*

2. Processor grants mastership
by asserting Release*

3. External system issues an
External Request

4. Processor regains bus mastership

Figure 12.10 External Request

Mastership of the system interface always returns to the processor
after an external request is issued. The processor does not accept a
subsequent external request until it has completed the current request.

If there are no processor requests pending, the processor deCides,
based on its internal state, whether to accept the external request, or to
issue a new processor request. The processor can issue a new processor
request even if the external agent is requesting access to the system inter­
face.

12 -9

System Interface Overview Chapter 12

The external agent asserts ExtRqst* indicating that it wishes to begin
an external request. The external agent then waits for the processor to
signal that it is ready to accept this request by asserting Release*. The

, processor signals that it is ready to accept an external request based on
the criteria listed below.

• The processor completes any processor request that is in progress.
• While waiting for the assertion of RdRdy* to issue a processor read

request, the processor can accept an external request if the request is
delivered to the processor one or more cycles before RdRdy* is
asserted.

• While waiting for the assertion of WrRdy* to issue a processor write
request, the processor can accept an external request provided the
request is delivered to the processor one or more cycles -before
WrRdy* is asserted.

• If waiting for the response to a read request after the processor has
made an uncompelled change to a slave state, the external agent can
issue an external request before providing the read response data.

External Read Request
In contrast to a processor read request, data is returned directly in

response to an external read request; no other requests can be issued
until the processor returns the requested data. An external read request
is complete after the processor returns the requested word of data.

The data identifier associated with the response data can signal that
the returned data is erroneous, causing the processor to take a bus error.

Note: The R4650 does not contain any resources that are readable by
an external read request; in response to an external read request
the processor returns undefined data and a data identifier with
its Erroneous Data bit, SysCmd(5), set. Thus, the R4650 will
take a bus error at the completion of the external read request.

External Write Request
When an external agent issues a write request, the specified resource is

accessed and the data is written to it. An external write request is
complete after the word of data has been transmitted to the processor.

The only processor resource available to an external write request is
the IP field of the Cause register.

System Interface Endianness
The endianness of the system interface is programmed at boot time

through the boot-time mode control interface (see Chapter 9, "Initializa­
tion Interface" for specifics), and remains fixed until the next time the
processor boot-time mode bits are read. Software cannot change the endi­
anness of the system interface and the external system; software can set
the reverse endian bit to reverse the interpretation of endianness inside
the processor, but the endianness of the system interface remains
unchanged.

System Interface Cycle Time
The processor specifies minimum and maximum cycle counts for

various processor transactions and for the processor response time to
external requests. Processor requests themselves are constrained by the
system interface request protocol. and request cycle counts can be deter­
mined by examining the protocol.

12-10

System Interface Overview Chapter 12

The following system interface interactions can vary within minimum
and maximum cycle counts:

• waiting period for the processor to release the system interface to
slave state in response to an external request (release latency)

• response tirne for an external request that requires a response
(external response latency).

The remainder of this section describes and tabulates the minimum
and maximum cycle counts for these system interface interactions.

Release Latency
Release latency is generally defined as the number of cycles the

processor can wait to release the system interface to slave state for an
external request. When no processor requests are in progress, internal
activity can cause the processor to wait some number of cycles before
releasing the system interface. Release latency is therefore more specifi­
cally defined as the number of cycles that occur between the assertion of
ExtRqst* and the assertion of Release*.

There are three categories of release latency:
• Category 1: When the external request signal is asserted two cycles

before the last cycle of a processor request.
• Category 2: When the external request signal is not asserted during

a processor request, or is asserted during the last cycle of a processor
request.

• Category 3: When the processor makes an uncompelled change to
slave state.

Table 12.1 summarizes the minimum and maximum release latencies
for requests that fall into categories 1, 2 and 3. Note that the maximum
and minimum cycle count values are subject to change.

Category Minimum PCycles Maximum PCycles

1 4 6

2 4 24

3 0 0

Table 12.1 Release Latency for External Requests

The differences in the minimum and maximum times are due to
internal conditions not readily observable externally. The relationship
between PClock and MasterClock will dictate when the Release* signal
is seen externally.

64-Bit System Interface Addresses
System interface addresses are full 32-bit physical addresses presented

on the least-Significant 32 bits (bits 31 through 0) of the SysAD bus
during address cycles; the remaining bits of the SysAD bus are unused
during address cycles.

12-11

System Interface Overview Chapter 12

Addressing Conventions for 64-Bit Wide Interface
Addresses associated with doubleword, partial doubleword, word, or

partial word transactions, are aligned for the size of the data element.
The system uses the following address conventions:

• Addresses associated with block requests are aligned to double-word
. boundaries; that is, the low-order 3 bits of address are O. .

• Doubleword requests set the low-order 3 bits of address to O.
• Word requests set the low-order 2 bits of address to O.
• Halfword requests set the low-order bit of address to O.
• Byte, tribyte, quintibyte, sextibyte, and septibyte requests use the

byte address.

32-Bit System Interface Addresses
System interface addresses are 32-bit physical addresses presented on

the least-significant 32 bits (bits 31 through 0) of the SysAD bus during
address cycles; the remaining bits of the SysAD bus are unused during
address cycles.

Addressing Conventions for 32-Bit Wide Interface
Addresses associated with doubleword, partial doubleword, word, or

partial word transactions, are aligned for the size of the data element.
The system uses the following address conventions:

• Addresses associated with block requests are aligned to word bound-
aries; that is, the low-order 2 bits of address are O.

• Word requests set the low-order 2 bits of address to O.
• Halfword requests set the low-order bit of address to O.
• Byte and tribyte requests use the byte address.

12-12

The Read Interface Chapter 13

Integrated Device Technology. Inc.

Introduction
This chapter discusses specifics of the read interface and read opera­

tions.
When a processor issues a read request, the external agent must

access the specified resource and return the requested data. A processor
read request can be split from the external agent's return of the requested
data; in other words, the external agent can initiate an unrelated external
request before it returns the response data for a processor read. A
processor read request is completed after the last word of response data
has been received from the external agent.

Note that the data identifier associated with the response data can
signal that the returned data is erroneous, causing the processor to take

. a bus error.
Processor read requests that have been issued, but for which data has

not yet been returned, are said to be pending. A read remains pending
until the requested read data is returned.

The external agent must be capable of accepting a processor read
request any time the following two conditions are met:

• There is no processor read request pending.
• The signal RdRdy· has been asserted for one clock cycle, two cycles

before the issue cycle.

Read Response
A read response returns data in response to a processor read request,

as shown in Figure 13.1. While a read response is technically an external
request, it has one characteristic that differentiates it from all other
external requests-it does not perform system interface arbitration. For
this reason, read responses are handled separately from all other external
requests, and are simply called read responses. When a read response
comes back with bad parity for the first data, a cache error exception
results.

R4650 External Agent

1. Read request

2. Read response

Figure IS.1 Read Response

13 - 1

The Read Interface Chapter 13

Handling Requests
This section details the sequence, protocol, and syntax of both

processor and external requests. The following system events are
discussed:

o load miss
• store miss
• store hit
• uncached loads/stores
o CACHE operations
• load linked store conditional.

Load Miss
When a processor load misses in the primary cache, before the

processor can proceed it must obtain the cache line that contains the
data element to be loaded from the external agent.

If the new cache line replaces a current cache line with a W bit set, the
current cache line must be written back.

The processor examines the coherency attribute in the CAlg register for
the memory region that contains the requested cache line, and executes a
noncoherent read request: the coherency attribute is noncoherent

shows the actions taken on a load miss to primary cache.

Page Attribute State of Data Cache Line Being Replaced

Clean/Invalid Dirty (W=l)

Noncoherent NCR NCR/W

NCR Processor noncoherent block read request
NCR/W Processor noncoherent block read request followed by processor

block write request

Table 13.1 Load Miss to Primary Cache

If the cache line must be written back on a load miss, the read request
is issued and completed before the write request is handled. The
processor takes the following steps:

1. The processor issues a noncoherent read request for the cache line that
contains the data element to be loaded.

2. The processor then waits for an external agent to provide the read
response.

3. The processor will restart the pipeline after the first doubleword (the
data that missed is fetched first). The rest of the data cache line will be
placed into the cache in parallel.

If the current cache line must be written back, the processor issues a
write request to save the dirty cache line in memory.

In 64-bit bus mode a block transfer (read or write) is equivalent to 4
data transfer to/from the memory. In 32-bit mode a block transfer (read
or write) is equivalent to 8 data transfer to/from the memory.

Store Miss
When a processor store misses in the primary cache, the processor

may request, from the external agent, the cache line that contains the
target location of the store for pages that are either write-back or write­
through with write-allocate only. The processor examines the coherency
attribute in the CAlg register for the memory region that contains the
requested cache line to see if the line is write-allocate or no-write-allocate.

13 - 2

The Read Interface Chapter 13

The processor then executes one of the following requests:
• If the coherency attribute is noncoherent, write-back or noncoherent,

write-through with write-allocate, a noncoherent block read request
is issued.

• If the coherency attribute is noncoherent, write-through with no
write-allocate, the processor issues a non-block write request.

shows the actions taken on a store miss to the primary cache.

Page Attribute State of Data Cache Line Being Replaced

Clean/Invalid Dirty (W=I)

Noncoherent, write-back or NCR NCR/W
Noncoherent, write-through with
write-allocate

Noncoherent, write-through with NCW NA
no write-allocate

Table Legend:
NCR Processor non coherent block read request
NCR/W Processor non coherent block read request followed by processor

block write request
NCW Processor non coherent write request

Table 13.2 Store Miss to Primary Cache

If the coherency attribute is write-back or write-through with write­
allocate, the processor issues a read request for the cache line that
contains the data element to be loaded, then waits for the external agent
to provide read data in response to the read request. Then, if the current
cache line must be written back, the processor issues a write request for
the current cache line. For a write-through, no write-allocate store miss,
the processor issues a write request only.

If the new cache line replaces a current cache line whose Write back (\V)
bit is set, the current cache line moves to an internal write buffer before
the new cache line is loaded in the primary cache.

In 54-bit bus mode a block transfer (read or write) is equivalent to 4
data transfer to/from the memory. In 32-bit mode a block transfer (read
or write) is equivalent to 8 data transfer to/from the memory.

Store Hit
This section describes store hits in no-secondary-cache mode for both

write-back and write-through lines.
The action on the system interface will be determined by whether the

line is write-back or write-through. All lines that use a write-back policy
are set to the dirty exclusive cache state and there is no bus transaction
generated. For lines with a write-through policy, the store will also
generate a processor write request for the store data.

In 54-bit bus mode this is equivalent to 4 data transfer to the memory.
In 32-bit mode this is equivalent to 8 data transfer to the memory.

Uncached Loads
When the processor performs an uncached load, it issues a nonco­

he rent word read request (the actual access can be for a doubleword,
word, partial word or byte, but the request is called a word read request
to differentiate it from the block read request).

In 54-bit mode the CPU expects valid parity and data in the full SysAD
bus (all 64 bits), even if it is looking for less than a double word. If a
partial word is returned the correct parity for the full 54-bit must be
returned, or the CPU must be informed not to check parity.

13-3

The Read Interface Chapter 13

In 32-bit bus mode the CPU expects valid parity and data in the full
SysAD bus (all 32 bits), even if it is looking for less than a word. If a
partial word is returned the correct parity for the full 32-bit must be
returned, or the CPU must be informed not to check parity.

All writes by the processor will be buffered from the system interface by
the 4-deep write buffer. The write requests are sent to the system inter­
face when there are no other requests in progress. If the write buffer
contains any entries when a block request is needed, the write buffer is
first flushed before any read request will occur (cache miss or uncached
load).

Both a data cache miss and an uncached data load will flush the write
buffer.

CACHE Operations
The processor provides a variety of CACHE operations to maintain the

state and contents of the primary cache. During the execution of the
CACHE operation instructions, the processor can issue write or read
requests.

Load Linked/Store Conditional Operation
Generally, the execution of a Load Linked/Store Conditional instruc­

tion sequence is not visible at the system interface; that is, no special
requests are generated due to the execution of this instruction sequence.

However, there is one situation in which the execution of a Load
Linked/Store Conditional instruction sequence is visible, as indicated by
the link address retained bit during a processor read request, as
programmed by the SysCmd(2) bit. This occurs when the data location
targeted by a Load-Linked-Store-Conditional instruction sequence maps
to the same cache line to which the instruction area containing the Load
Linked/Store Conditional code sequence is mapped. In this case, imme­
diately after executing the Load Linked instruction, the cache line that
contains the link location is replaced by the instruction line containing
the code. The link address is kept in a register separate from the cache,
and remains active as long as the link bit, set by the Load Linked instruc­
tion, is set.

The link bit, which is set by the load linked instruction, is cleared by a
change of cache state for the line containing the link address, or by a
Return From Exception. .

For more information, refer to Chapter 11, or see the specific Load
Linked and Store Conditional instructions described in Appendix A.

13-4

The Read Interface Chapter 13

Processor Read Protocols
The following sections contain a cycle-by-cycle description of the bus

arbitration protocols for the processor read request. Table 13.3 lists the
abbreviations and definitions for each of the buses used in the timing
diagrams that follow.

Scope Abbreviation Meaning

Global Unsd Unused

SysADbus Addr PhYSical address

Data<n> Data element number n of a block of data

SysCmd bus Cmd An unspecified system interface command

Read A processor or external read request command

\Vrite A processor or external write request command

SINull A system interface release external null request
command

NData A noncoherent data identifier for a data element
other than the last data element

NEOD A noncoherent data identifier for the last data
element

Table 13.3 System Interface Requests

Processor Read Request
In the timing diagrams in this section note that the two closely spaced,

wavy vertical lines (for example, MasterClock Cycle 2 in Figure 13.5 on
page 13-12) indicate one or more identical cycles.

13 - 5

The Read Interface Chapter 13

Processor Read Request Protocol Steps
The following sequence describes the protocol for a processor read

request. This protocol is the same for either 32-bit bus mode or 64-bit
bus mode. The numbered steps in this list correspond to the numbers in
Figure 13.2.

1. RdRdy* is asserted low, indicating the external agent is ready to accept
a read request.

2. With the system interface in master state, a processor read request is
issued by driving a read command on the SysCmd bus and a read
address on the SysAD bus.

3. At the same time, the processor asserts ValldOut'" for one cycle,
indicating valid data is present on the SysCmd and the SysAD buses.
Note: Only one processor read request can be pending at a time.
ValldOut'" is asserted every time the CPU is driving valid information
on SysAD and SysCmd bus. In the case of read request, this means
as long as the address is driven and will be deasserted at the end of
the bus cycle.

4. The processor makes an uncompelled change to slave state at the issue
cycle of the read request by asserting the Release'" signal for one cycle.
Note:The external agent must not assert the Signal ExtRqst'" for the
purposes of returning a read response, but rather must wait for the
uncompelled change to slave state. The signal ExtRqst* can be
asserted before or during a read response to perform an external
request other than a read response.

5. The processor releases the SysCmd and the SysAD buses one
MasterClock cycle after the assertion of Release*.

6. The external agent drives the SysCmd and the SysAD buses within two
cycles after the assertion of Release* .

Once in slave state (starting at cycle 5 in Figure 13.2), the external
agent can return the requested data through a read response. The read
response can return the requested data or, if the requested data could not
be successfully retrieved, an indication that the returned data is erro­
neous. If the returned data is erroneous, the processor takes a bus error
exception.

Note: For read response data the R4650 only checks the error bits for
the first doubleword in 64-bit bus mode, and the first word in 32-
bit bus mode. All other error bits are ignored. WrRdy'" is not
checked during processor read requests.

13-6

The Read Interface

MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

ValidOut*

Validln*

RdRdy*

WrRdy*

Release*

Chapter 13

Figure 13.2 illustrates a processor read request, coupled with an
uncompelled change to slave state.

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.

.. Master~ I .. Slave It

II I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12

I

I
I
1\ I
I
I~
I
I ~

Note: Numbers in boxes correspond to numbered steps in preceding text.

Figure 13.2 Processor Read Request Protocol

The assertion of Release* indicates either an uncompelled change to
slave state, or a response to the assertion of ExtRqst*, whereupon the
processor accepts either a read response, or any other external request.
If any external request other than a read response is issued, the
processor performs another uncompelled change to slave state after
processing the external request by asserting release for one clock cycle.

The actual read response, where the external agent returns the
requested data, is shown later in this chapter.

External Instruction Read Response Time
The R4650 accesses the external bus due to instruction cache miss or

an uncached reference. The length of time for an external read is based
on the overhead at the beginning and end of the read along with the time
to drive the address and get the response data.

Instruction Read Latency Steps for System Clock
The read latency for a system clock in the multiply-by-two mode is as

follows:
1. The startup overhead is one to two pipeline cycles (PCycle) for the

CPU to transfer the address to the pads to be output. The second
PCycle is needed if the miss is detected on a PCycle not aligned with
the rising edge of MasterClock.

13-7

The Read Interface Chapter 13

2. The CPU drives the address on the SysAD bus for two PCycles.
3. The CPU tri-states the SysAD bus for two PCycles.
4. The CPU waits for the main memory to return the data. This is

expressed as n x 2 PCycles.
5. The first double word is driven in the SysAD from the main memory

for two PCycles.
6. The remaining three double words of instruction are driven on

SysAD for 3*2 PCycles.

Note that:
- For instruction misses, the pipeline starts after all the instructions

are returned.
- n is the total number of idle cycles (even between double word

instruction). For zero wait state systems, n = O.

Example of Instruction Block Read With Zero Wait State
shows an instruction block read with a zero wait state (n=O):

Step Description PCycles

1 CPU overhead for cache miss detection 1-2

2 Address driven on SysAD bus 2

3 SysAD bus tri-stated 2

4 Memory latency to return the data (nx2) 0*2

5 First double word driven on SysAD bus 2

6 Remaining three instructions returned 2*3=6

Total PCycles: 13-14

Table 13.4 Steps for Single Read With Zero Walt State

External Data Read Response Time
The R4650 accesses the external bus due to data cache miss or an

uncached reference. The length of time for an external read is based on
the overhead at the beginning and end of the read along with the time to
drive the address and get the response data.

13-8

The Read Interface Chapter 13

Data Read Latency Steps for System Clock
The read latency for a system clock that is in the multiply-by-two mode

is as follows:
1. The startup overhead is one to two pipeline cycles (PCycle) for the

CPU to generate the parity for the address to be output. The second
PCycle is needed if the miss is detected or a PCycle not aligned with
the rising edge of SClock.

2. The CPU drives the address on the SysAD bus for two PCycles.
3. The CPU tri-states the SysAD bus for two PCycles.
4. The CPU waits for the main memory to return the data. This is

expressed as n x 2 PCycles where n is the number of MasterClock
cycles for the first data to be returned in a block read, or the latency
for the Single read. For zero wait state memory system n should be
zero.

5. The first double word is driven in the SysAD from the main memory
for two PCycles.

;6. The end of the overhead is two PCycles: one to transfer the data from
the pads and generate the parity, and one to write to the register (or
cache, if it is cacheable data).

Note the following:
• If n=O and the line being replaced is dirty, the CPU takes one to two

additional PCycles of overhead to move the dirty data into the write
buffer.

• The additional latency for returning the remaining three data
elements should be added in a manner similar to the instruction read
latency.

• If cache line needs to be written back, the read request is posted first
and then the write is completed.

Example of Data Single Read With Zero Wait State
Table 13.5 shows a data block read with a zero wait state (n=O):

Step Description PCycles

1 CPU overhead for cache miss detection 1-2

2 Address driven on SysAD bus 2

3 SysAD bus tri-stated 2

4 Memory latency to return the data (nx2) 0*2

5 First double word driven on SysAD bus 2

6 CPU overhead to write the data cache, do the 2
fixup. and then restart

Total PCyc1es: 9-10

Table 13.5 Steps for Data Block Read With Zero Wait State

13-9

The Read Interface

MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

ValidOut*

Validln*

ExtRqst*

Release*

RdRdy*

Chapter 13

External Cycles for Read Latency
The external cycles to get the response data will look similar to Figure

13.3. For a larger "multiply-by" it will take longer to get the response
data.

PClk I
MasterClock I
SysAD Bus 1](Addr) (Data >-

Figure 13.3 Un cached Read-External Cycles

The same operation is shown in greater detail in Figure 13.4. These
figures assume the following:

~ Data is returned immediately after Release* is asserted, and after the
bus turnaround cycle (when the CPU tri-states the bus to allow the
external agent to drive it).

• The data meets the setup and hold requirements for the rising edge of
MasterClock that is identified in the.preceding and following figures
with an asterisk .

...... I----Master ----l .. ~ I ... Slave .. 11<ICIC(r----- Master ..

II I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I
I *

I--------~~~(~---------------
I ~~(~ ____________ __

1\ \ I
LJ

LJ I
I~~/-------------------

Figure 13.4 Processor Read Cycle

13 -10

The Read Interface Chapter 13

Read Response Protocol
An external agent must return data to the processor in response to a

processor read request by using a read response protocol. A read
response protocol consists of the following steps:

1. The external agent waits for the processor to perform an uncompelled
change to slave state.

2. The external agent returns the data through a single data cycle or a
series of data cycles.

3. Mter the last data cycle is issued. the read response is complete and the
external agent sets the SysCmd and SysAD buses to a tri-state.

4. The system interface returns to master state.
Note: The processor always performs an uncompelled change to slave

state in the same cycle that it issues a read request.
5. The data identifier for data cycles must indicate the fact that this data

is response data.
6. The data identifier associated with the last data cycle must contain a

last data cycle indication.
For read responses to non-coherent block read requests (which is the

only read request for normal operations of the R4650.) the response data
will not need to identify an initial cache state. The cache state will auto­
matically be assigned as dirty exclusive by the R4650.

The data identifier associated with a data cycle can indicate that the
data transmitted during that cycle is erroneous; however. an external
agent must return a data block of the correct size regardless of the fact
that the data may be in error. The R4650 only checks the error bit for the
first data of a block. while the other error bits for the block of data are
ignored. If an initial erroneous data cycle is detected. the processor takes
a bus error at the completion of the data transfer.

Read response data must only be delivered to the processor when a
processor read request is pending. The behavior of the processor is unde­
fined when a read response is presented to it and there is no processor
read pending.

13-11

The Read Interface

MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

ValidOut*

Validln*

ExtRqst*

Release*

RdRdy*

MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

ValidOut*

Validln*

ExtRqst*

Release*

RdRdy*

Chapter 13

Figure 13.5 illustrates a processor word read request followed by a
word read response. Figure 13.6 illustrates a read response for a
processor block read with the system interface already in slave state.
Figure 13.7 illustrates a block read transaction with one wait state.

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively .

• Master ... 1 .. Slave ~ ~ Master--..

"
I 2 1 3 1

4 1 5 1 6 1 7 1
8

1
9 1 10 1 11 1 12 1

1

I
I
I
1

1

I
I

Figure 13.5 Processor Word Read Request Followed by a Word Read
Response (64-bit bus interface)

...... I----Master Jir 1 C[Slave ----i ... ~j.. Master--..

II I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I

:---------~-------­
I~ 1\
1 \ I

I

I~ I
LJ

Figure 13.6 Block Read Response With Zero Wait State (64-bit bus interface)

13 - 12

The Read Interface

MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

ValidOut*

Validln*

ExtRqst*

Release*

RdRdy*

Chapter 13

III(
Master Slave I Master

~------------~~~I~C(~------------------------------~~~'~

1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1

1 IL
1 ______ ~'fiiiiJ-~~ Data2

1 ---------"~~~~=
1\ \ I
1

1

1

1\ /

Figure 13.7 Block Read Transaction With One Wait State (64-bit bus
interface)

Data Rate Control
The system interface supports a maximum data rate of one doubleword

per cycle in 64-bit bus mode and one word per cycle in 32-bit bus mode.
The data rate the proces~or can support is directly related to the rate at
which the external agent can return data.

Read Data Pattern
The rate at which data is delivered to the processor can be determined

by the external agent-for example, the external agent can drive data and
assert ValidIn* every n cycles, instead of every cycle. An external agent
can deliver data at any rate it chooses, but must not deliver data to the
processor any faster than the processor is capable of receiving it.

The processor only accepts cycles as valid when ValidIn * is asserted
and the SysCmd bus contains a data identifier. If the external agent
sends more data items then requested (e.g., a fifth doubleword of read
response data with ValldIn* asserted in 64-bit bus mode) or the last data
(i.e., the fourth doubleword in 64-bit bus mode) of a block read is not
tagged as the last data item, it is an error and the resulting actions of the
processor for these cases will be undefined.

13-13

The Read Interface

. MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

ValidOut*

Validln*

ExtRqst*

Release*

Chapter 13

Figure 13.8 shows a read response with reduced data rate and with the
system interface in slave state.

"
1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I

I
I
I
I
I \\--_--JIl'-----'J
I
I

Figure 13.8 Read Response, Reduced Data Rate, System Interface
in Slave State (64-bit bus interface)

64-Bit and 32-Bit Bus Modes
The bus interface of the R4550 can be configured· during reset to be

either 54-bit wide or 32-bit wide. The same bus protocol explained earlier
in this chapter applies for both modes. In 32-bit bus mode, the internal
execution core is still a full 54-bit engine. Only the bus interface unit can
be configured as either 54-bit or 32-bit interface.

The bus width mode is a static feature of the device. This means that
the bus width has to be configured once during reset. This feature should
not be thought of as dynamic bus width interface where the bus width is
54.:.bit in one access and 32-bit wide in the other access.

64-Bit Bus Mode
IIi 64-bit bus mode, the R4650 supports 64-bit address/data system

interface that consists of:
• 64-bit address and data, SysAD(63:0)
• 8-bit SysAD check bus, SysADC(7:0) (even parity)
• 9-bit command bus, SysCmd(8:0)
• Six handshake signals:

RdRdy*, WrRdy*
ExtReq*, Release*
Validln*, ValidOut*

13 -14

The Read Interface

MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

ValidOut*

Validln*

ExtRqst*

Release*

RdRdy*

Chapter 13

64-Bit Bus Mode Block Read Operation
In 64-bit bus mode, the R4650 issues a single block read request for

the entire cache line (4 double words). The external agent should return
all four double words as explained in the read protocol section earlier.

Figure 13.9 illustrates the timing diagram for a block read operation in
64-bit bus mode. The address issued by the R4650 is double word (64-bit)
aligned.

Master Slave 1 Master
~·~------------~~~I~·~-------------------------------~~·~

1 I 2 I 3 I 4 1 5 I 6 1 7 1 8 1 9 1 10 1 11 1 12 1 13 1

1

1

I

IL

1 \ \ I
I
1

1 LJ
1\ /

Figure 13.9 Block Read Transaction With One Wait State

64-Bit Bus Mode Single (Uncacbed) Read Operation
In 64-bit bus mode, the R4650 issues a single uncached read request

using a doubleword (64-bit) aligned address. The actual access can be for
a doubleword, word, partial word, or byte, but the request is called a word
read request to differentiate it from the block read request.

Figure 13.10 illustrates the timing for an uncached read operation.

PClk 1

MasterClock
1

SysAD Bus
1=X Addr) < Data >-

Figure 13.10 64-Bit Uncached Read-External Cycles

13-15

The Read Interface Chapter 13

32-Bit Bus Mode
In 32-bit bus mode, the R4650 supports a 32-bit address/data system

interface that consists of the following:
• The 32-bit address & data (SysAD (31 :0)) and the 4-bit SysAD check

bus (SysADC (3:0), even parity). SysAD (63:32) and SysADC (7:4) are
undefined.

• 9-bit command bus, SysCmd(8:0)
• Six handshake signals:

RdRdy*, WrRdy*
ExtReq*, Release*
Valldln*, ValldOut*

It is important to note that in the 32-bit bus mode SysAd(31:0) and
SysADC(3:0) are always used regardless of the Endianness of the system.

It is also important to note that the encoding of SysCmd(8:0) is the
same for both 64-bit and 32-bit bus modes. This means that the R4650
does not inform the external agent about the bus width mode. It is
expected that this mode is programmed during reset and that the external
agent is configured to interface to the R4650 in either 64-bit or 32-bit bus
mode.

32-Bit Bus Mode Block Read Operation
In 32-bit bus mode, the R4650 issues a single block read request for

the entire cache line (4 double words). since the bus interface is config­
ured to be 32-bit wide, the R4650 issues a single address that is word
(32-bit) aligned. The external agent should return 8 single words to the
R4650 as explained in the read protocol section earlier.

Figure 13.11 illustrates the timing diagram for a block read operation
in 32-bit bus mode. This means that a block read request is not divided
into two requests. The external agent is responsible for returning all 8
single word to the R4650. .

Master Slave Master

04 "I 04 "I~
MasterClockCycle 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 110 111 1 12 113 114 115 /16 /17 /18 /19 / 20 / 21 /
~~/ ~
SysAD Bus

/

. SysCmd Bus 1
ValidOut* /\

Validln* 1
ExtRqst* 1
Release* 1

RdRdy* /\ /
U

Figure 13.11 Block Read Transaction With One Wait State

The R4650 combines the word internally to generate a double word
data to be used by the execution core. This implies that the order of the

. words in a double word data will be endian-dependent. On little-endian
machines bits 31:0 will be transferred first and bits 63:32 transferred
second; on a big- endian machine the order will be reversed.

13-16

The Read Interface

PClk

·Chapter 13

32-Bit Bus Mode Single (Uncacbed) Read Operation
In 32-bit bus mode. the R4650 issues a single uncached read request

using a word (32-bit) aligned address (the actual access could be for a
word. partial word or a byte).

If the internal core requests an uncached data that is larger than a
word. the external request is then broken into two external requests. The
first request will transfer 4 bytes and the second will transfer up to 4
bytes.

Figure 13.12 illustrates the timing for an uncached read operation of
one word.

PClk 1
MasterClock 1
SysAD Bus 1](Addr) (Word >-
Figure 13.12 32-Bit Bus Mode Uncached Read for Single Word

Figure 13.13 illustrates the timing diagram for an uncached read opera­
tion of a double word value.

SysAD Bus I""] Addr)>----{(Word 0)~----« Addr)r----{(Word 1 >-
Figure 13.13 32-Bit Bus Mode Uncached Read for Double Word

The R4650 combines the word internally to generate a double word
data to be used by the execution core. This implies that the order of the
words in a double word data will be endian dependent. On little-endian
machines. bits 31:0 will be transferred first. with bits 63:32 transferred
second. On a big-endian machine. the order will be reversed.

Subblock Ordering
The order in which data is returned in response to a processor block

read request is subblock ordering. In subblock ordering. the processor
delivers the address of the requested doubleword (in 64-bit bus mode) or
word (in 32-bit bus mode) within the block. An external agent must
return the block of data using subblock ordering. starting with the
addressed doubleword or word.

In general. a block of data elements (whether bytes. halfwords. words.
or doublewords) can be retrieved from storage in two ways: in sequential
order. or using a subblock order. This section describes these retrieval
methods. with an emphasis on subblock ordering. Note that the R4650
uses only subblock ordering for block reads.

13-17

The Read Interface Chapter 13

Example of Sequential Ordering
Sequential ordering retrieves the data elements of a block in serial, or

sequential, order.
Figure 13.14 shows a sequential order in which doubleword 0 (DWO) is

taken first and doubleword 3 (DW3) is taken last.

I DWO I DW1 DW2 DW3

taken fourth
DW1

taken second DW2
taken third

Figure 13.14 Retrieving a Data Block in Sequential Order

Examples of Subblock Ordering
Subblock ordering allows the system to define the order in which the

data elements are retrieved. In 64-bit bus mode the smallest data
element of a block transfer for the R4650 is a doubleword, and in 32-bit
bus mode, a single word.

Figure 13.15 shows the retrieval of a block of data that consists of four
doublewords in 64-bit bus mode, with doubleword 2 taken first. Cache
line size is 8 words.

Using the subblock ordering shown in Figure 13.15, the doubleword at
the target address is retrieved first (doubleword 2), followed by the
remaining doubleword (doubleword 3) in this quadword. Next, the quad­
word that fills out the octalword are retrieved in the same order as the
prior quadword (in this case doubleword 0 is followed by doubleword 1).

octalword

~-------~ ,

Order of retrieval 2

I DWO I

quadword
~

301

DW1 DW2 DW3

II \ DWO
taken third DW3

taken second
DW1

taken fourth DW2
taken first

Figure 13.15 Retrieving Data in a Subblock Order

13-18

The Read Interface Chapter 13

Figure 13.16 shows the retrieval of a block of data that consists of 8
words in 32-bit bus mode. with word 2 taken first. Cache line size is 8
words.

Order of retrieval 2. 3

we W1

W~/ taken third

W1
taken fourth

W

e

W2

6 7 4 5

W3 W4 W5 W6 I W7 I

taken fifth

taken eighth

taken second W4

taken seventh

Figure 13.16 Retrieving Data in a Subblock Order

Using the subblock ordering shown in Figure 13.16. the word at the
target address. in this case word 2. is retrieved first. followed by word 3.
Next. word 6 is followed by word 7. then word 4. followed by word 5. Word
o is then followed by word 1.

A simpler way to understand subblock ordering would be to take a look
at the method used for generating the address of each doubleword or
word as it is retrieved. The subblock ordering logic generates this address
by executing a bit-wise exclusive-OR (XOR) of the starting block address
with the output of a binary counter that increments with each double­
word or word. starting at doubleword 0 (002) or word 0 (0002),

Generating Subblock Order of Doublewords
Using this scheme. Table 13.6. Table 13.7. and Table 13.8 list the

subblock ordering of doublewords for an 8-word block. based on three
different starting-block addresses: 102 • 112 • and 01 2 , The subblock
ordering is generated by an XOR of the subblock address (either 102 • 112 •

or 012) with the binary count of the doubleword (002 through 112),

Thus. the third doubleword retrieved from a block of data with a
starting address of 102 is determined by taking the XOR of address 102
with the binary count of doubleword 2. 102 , The result is 002 • or double­
word O. as shown in Table 13.6).

Cycle Starting Block Binary Count Double Word

1

2

3

4

Address Retrieved

10 00 10

10 01 11

10 10 00

10 11 01

Table 13.6 Sequence of Doublewords Transferred Using
Subblock Ordering: Address 102

13-19

The Read Interface

Cycle Starting Block Binary Count Double Word

1

2

3

4

Address Retrieved

11 00 11

11 01 10

11 10 01

11 11 00

Table 13.7 Sequence of Doublewords Transferred Using
Subblock Ordering: Address 112

Cycle Starting Block Binary Count Double Word

1

2

3

4

Address Retrieved

01 00 01

01 01 00

01 10 11

01 11 10

Table 13.8 Sequence of Doublewords Transferred Using
Subblock Ordering: Address 012

Generating Subblock Order of Words

Chapter 13

Using the same scheme, Table 13.9 and Table 13.10 list the subblock
ordering of words for an 8-word block, based on two different starting­
block addresses: 0102 and 0112. The subblock ordering is generated by
an XOR of the subblock address (either 0102 or 0112) with the binary
count of the word (0002 through 1112).

Therefore, the third word retrieved from a block of data with a starting
address of 0102 is determined by taking the XOR of address 0102 with the
binary count of word 2,01°2. The result is 0002, or word 0, as shown in
Table 13.9.

Cycle Starting Bloclt Binary Count Word
Address Retrieved

1 010 000 010

2 010 001 all

3 010 010 000

4 010 all 001

5 010 100 110

6 010 101 III

7 010 110 100

8 010 III 101

Table 13.9 Sequence of Words Transferred Using Subblock
Ordering: Address 0102

13-20

The Read Interface

Cycle Starting BlocIt Binary COWlt Word
Address Retrieved

1 all 000 all

2 all 001 010

3 all 010 001

4 all all 000

5 all 100 III

6 all 101 110

7 all 110 101

8 all 111 100

Table 13.10 Sequence of Words Transferred Using Subblock
Ordering: Address 0112

Chapter 13

System Interface Commands and Data Identifiers
System interface commands specifY the nature and attributes of any

system interface request; this specification is made during the address
cycle for the request. System interface data identifiers specify the
attributes of data transmitted during a system interface data cycle.

The following sections describe the syntax. that is. the bitwise
encoding. of system interface commands and data identifiers. The same
SysCmd encoding is used for both 32-bit and 64-bit bus mode. The
selection of 64-bit versus 32-bit is not dynamic and should be done only
once during Reset. The R4650 does not indicate externally whether the
bus is configured as 32-bit or 64-bit.

Reserved bits and reserved fields in the command or data identifier
should be set to 1 for system interface commands and data identifiers
associated with external requests. For system interface commands and
data identifiers associated with processor requests. reserved bits and
reserved fields in the command and data identifier are undefined.

Command and Data Identifier Syntax:
System interface commands and data identifiers are encoded in 9 bits

and are transmitted on the SysCmd bus from the processor to an
external agent. or from an external agent to the processor. during address
and data cycles. Bit 8 (the most-significant bit) of the SysCmd bus deter­
mines whether the current content of the SysCmd bus is a command or a
data identifier and. therefore. whether the current cycle is an address
cycle or a data cycle. For system interface commands. SysCmd(8) must
be set to O. For system interface data identifiers. SysCmd(8) must be set
to 1.

System Interface Command Syntax
This section describes the SysCmd bus encoding for system interface

commands. Figure 13.17 shows a common encoding used for all system
interface commands.

13 - 21

The Read Interface Chapter 13

8 7 5 4 o

o Request Type Request Specific

Figure 13.17 System Interface Command Syntax Bit Definition

SysCmd(8) must be set to 0 for all system interface commands.
SysCmd(7:5) specifY the system interface request type which may be

read, write or null; Table 13.11 illustrates the types of requests encoded
by the SysCmd(7:5) bits.

SysCmd(7:5) Command

0

1

2

3

4-7

Read Request

Reserved

Write Request

Null Request

Reserved

Table 13.11 Encoding of SysCmd(7:5) for System Interface
Commands

SysCmd(4:0) are specific to each type of request and are defined in
each of the following sections.

Read Requests
Figure 13.18 shows the format of a SysCmd read request.

8 7 5 4 3 2 1 o

0 000 Read Req~est sheCifiC
(see tables)

I I

Figure 13.18 Read Request SysCmd Bus Bit Definition

13-22

The Read Interface Chapter 13

Table 13.12, Table 13.13, and Table 13.14 list the encoding of
SysCmd(4:0) for read requests.

SysCmd(4:3) Read Attributes

0- 1 Reserved

2 Noncoherent block read

3 54-bit mode: Doubleword, partial doubleword,
word, or partial word

32-bit bus mode: Word or partial word.

Table 13.12 Encoding of SysCmd(4:3) for Read Requests

SysCmd(2) Link Address Retained Indication

0 Link address not retained

1 Link address retained

SysCmd(I:0) Read Block Size

0 Reserved

1 8 words (54-bit or 32-bit bus modes)

2-3 Reserved

Table 13.13 Encoding of SysCmd(2:0) for Block Read Request

SysCmd(2:0) Read Data Size

54-bit or 32-bit bus mode:

0 1 byte valid (Byte)
1 2 bytes valid (Halfword)
2 3 bytes valid (Tribyte)
3 4 bytes valid (Word)

54-bit mode only:

4 5 bytes valid (Quintibyte)
5 5 bytes valid (Sextibyte)
5 7 bytes valid (Septibyte)
7 8 bytes valid (Doubleword)

Table 13.14 Doubleword, Word, or Partial-Word Read Request Data Size Encoding of
SysCmd(2:0)

System Interface Data Identifier Syntax
This section defines the encoding of the SysCmd bus for system inter­

face data identifiers. Figure 13.19 shows a common encoding scheme
used for all system interface data identifiers.

8 7 6 5 4 3 2 o

1 Last Resp Good Data Reserved Data Data Data Check

Figure 13.19 Data Identifier SysCmd Bus Bit Definition

13-23

The Read Interface

,- .

Chapter 13

SysCmd(8) must be set to 1 for all system interface data identifiers.
system interface data identifiers use the format for noncoherent data.

Noncoherent Data
Noncoherent data is defined as follows:
• data that is associated with processor block write requests and

processor doubleword, partial doubleword, word, or partial word
write requests

• data that is returned in response to a processor noncoherent block
read request or a processor doubleword, partial doubleword, word, or
partial word read request

• data that is associated with external write requests
• data that is returned in response to an external read request

Data Identifier Bit Definitions
SysCmd(7) marks the last data element and SysCmd(6) indicates

whether or not the data is response data, for both processor and external
coherent and noncoherent data identifiers. Response data is data
returned in response to a read request.

SysCmd(5) indicates whether or not the data element is error free.
Erroneous data contains an uncorrectable error and is returned to the
processor, forcing a bus error. The processor delivers data with the good
data bit deasserted if a primary parity error is detected for a transmitted
data item.

SysCmd(4) indicates to the processor whether to check the data and
check bits for this data element.

SysCmd(3) is reserved for external data identifiers.
SysCmd(4:3) are reserved for noncoherent processor data identifiers.
SysCmd(2:0) are reserved for noncoherent data identifiers.
Table 13.15 lists the encoding of SysCmd(7:3) for processor data iden­

tifiers.

SysCmd(7) Last Data Element Indication

0 Last data element

1 Not the last data element

SysCmd(6) Response Data Indication

0 Data is response data

1 Data is not response data

SysCmd(5) Good Data Indication

0 Data is error free \

1 Data is erroneous

SysCmd(4:3) Reserved

Table 13.15 Processor Data Identifier Encoding of SysCmd(7:3)

Table 13.16 lists the encoding of SysCmd(7:3) for external data identi-
fiers. '

13-24

The Read Interface Chapter 13

SysCmd(7) Last Data Element Indication

0 Last data element

1 Not the last data element

SysCmd(6) Response Data Indication

0 Data is response data

1 Data is not response data

SysCmd(5) Good Data Indication

0 Data is error free

1 Data is erroneous

SysCmd(4) Data Checking Enable

0 Check the data and check bits

1 Do not check the data and check bits

SysCmd(3) Reserved

Table 13.16 External Data Identifier Encoding of SysCmd(7:3)

During data cycles in 64-bit bus mode, the valid byte lanes depend
upon the position of the data with respect to the aligned doubleword (this
may be a byte, halfword, tribyte, quadbyte/word, quintibyte, sextlbyte,
septibyte, or an octalbyte/doubleword). For example, in little-endian
mode, on a byte request where the address modulo 8 is 0, SysAD(7:0) are
valid during the data cycles.

13-25

The Read Interface Chapter 13

Table 13. 17 shows the byte lanes used for partial word transfers for
both little and big endian in 64-bit bus mode.

Bytes Address SysAD Byte Lanes Used (Big Endian)

SysCmd(2:0) Mod8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

0 e

1 •
2 •

1 3 e

(000) 4 •
5 •
6 •
7 •
0 • •

2 2 • •
(001) 4 0 •

6 • •
0 • 0 0

3 1 • • •
(010) 4 • CD •

5 e • •
4 0 • • • •

(011) 4 • • • •

5 0 0 • • • •
(100) 3 • • • • •

6 0 • • • • e •
(101) 2 • • • • • •

7 0 • • e • • • •
(110) 1 • • • • • • •

8 (111) 0 • CD • • • • • •
7:0 15:8 23:16 31:24 39:32 47:40 55:48 63:56

SysAD Byte Lanes Used (Little Endian)

Table 13.17 Partial Word Transfer Byte Lane Usage-64-Bit Mode

During data cycles in 32-bit bus mode, the valid byte lanes depend
upon the position of the data with respect to the aligned word, which may
be a byte, halfword, tribyte, or word. For example, in little-endian mode,
on a byte request where the address modulo 4 is 0, SysAD(7:0) are valid
during the data cycles.

13-26

The Read Interface Chapter 13

Table 13.18 shows the byte lanes used for partial word transfers for
both little and big endian in 32-bit bus mode.

Bytes Address
SysAD Byte Lanes Used

(Big Endian)

SysCmd(2:0) Mod4 31:24 23:16 15:8 7:0

1
0 • (000)

1 •
2 •
3 •

2
(001) 0 • •

2 • •
3

(010) 0 • • •

1 • • 0

4
(011) 0 • • • •

0:7 8:15 16:23 24:31

SysAD Byte Lanes Used
(Little Endian)

Table 13.18 Partial Word Transfer Byte Lane Usage-32-Bit Mode

13-27

The Write Interface Chapter 14

Integrated Device Technology. Inc.

Introduction
This chapter discusses the Write protocol and associated operations.

When a processor issues a write request, the specified resource is
accessed and the data is written to it. A processor write request is
complete after the last word of data has been transmitted to the external
agent. In no-secondary-cache mode, the external agent must be capable
of accepting a processor write request any time WrRdy* has been
asserted for one clock cycle, two cycles before the issue cycle.

The R4650 has added two new modes to enhance the throughput of
non-block writes. These modes allow for 2 cycle throughput on back-to­
back non-block writes. The external agent must be capable of accepting a
processor write request in these modes under the same conditions as for
the R4xOO compatibility mode (except as noted later in this chapter).

Processor Write Protocols
The following sections contain a cycle-by-cycle description of the bus

arbitration protocols for the processor write request. Table 14.1 describes
the buses that appear in the timing diagrams that follow.

Scope Abbreviation Description

Global Unsd Unused

SysAD bus Addr Physical address

Data<n> Data element number n of a block of data

SysCmd bus Cmd An unspecified system interface command

Read A processor or external read request command

Write A processor or external write request command

SINull A system interface release external null request
command

NData A non coherent data identifier for a data element
other than the last data element

NEOD A non coherent data identifier for the last data
element

Table 14.1 System Interface Requests

The R4650 has three write protocols:
• R4xxx compatible
• Pipeline write
• Write reissue
These protocols apply to both single and block write and to 32-bit and

64-bit interface mode. This means, for example, that for pipeline write a
single write can be followed immediately by a block write that the external
agent must accept.

The write protocol is selected through the reset vector, along with the
bus width interface. The selection of the write protocol is static, which
means that it should be selected once during reset.

14 - 1

The Write Interface

MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

ValidOut*

Validln*

RdRdy*

WrRdy*

Release*

Chapter 14

In R4xxx-compatible write a single write access takes four clock cycles,
while in pipeline write or write reissue a single write access takes two
clock cycles.

Processor Write Request Protocol
Processor write requests are issued using one of two protocols:
• Doubleword, partial doubleword, word, or partial word writes use a

word 1 write request protocol.
• Block writes use a block write request protocol.
Processor word write requests are issued with the system interface in

master state, as described in the following steps. These steps apply to
both 64-bit and 32-bit bus interface modes.

1. A processor single word write request is issued by driving a write
command on the SysCmd bus and a write address on the SysAD bus.

2. The processor asserts ValidOut"'.
3. The processor drives a data identifier on the SysCmd bus and data

on the SysAD bus.
4. The data identifier associated with the data cycle must contain a last

data cycle indication. At the end of the cycle, ValidOut'" is
deasserted.

Timings for the SysADC and SysCmdP buses are the same as those of
the SysAD and SysCmd buses, respectively. Figure 14.1 shows a
processor noncoherent word write request cycle.

/

III(Master

"
1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12 1

1

1 ~
/~ 1

1\
[!J ~~

@ l1/
1

I=>< ~ ______________ >C
I~
1

Figure 14.1 Processor Noncoherent Word Write Request Protocol

Processor Single Write Request
There are three types of processor single write requests, as follows:
• R4000-compatible writes
• Write reissue
• Pipelined writes

In this section, each one is discussed in detail.

1. Called word to distinguish it from block request protocol. Data transferred can
actually be doubleword, partial doubleword, word, or partial word.

14-2

The Write Interface Chapter 14

R4000-Compatible Write Mode
In R4000-compatible write mode a single write operation takes four

clock cycles. The address is asserted for one clock cycle, followed by one
clock cycle of data and then two unused clock cycles. This applies to both
64-bit and 32-bit bus modes, and is illustrated in Figure 14.2

MasterClock Cycle II 1 I 2 I 3 I 4' I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I
MasterClock I
SysAD Bus I DataO Data1

SysCmd Bus I ~ NEOD X Write X NEOD ~
ValidOut* I \ / \ I

Validln* I
RdRdy* I=>< >C
WrRdy* I-\g] L ~ / ~

Release* I

Figure 14.2 R4000 Compatible Write Mode

The R4650 interface requires that WrRdy* be asserted two system
cycles prior to the issue of a write, for one clock cycle. An external agent
that deasserts WrRdy* immediately upon receiving the write that fills its
buffer will stop a subsequent write for four system cycles in R4000 non­
block write compatible mode. This leaves two null systenl cycles after a
write address/data pair to give the external agent time to stop the next
write.

An Address/data pair every four system cycles is not sufficiently high
performance for all applications. For this reason, the R4650 provides two
new protocol options that modify the R4000 back-to-back write protocol
to allow an address/data pair every two system cycles. The first protocol,
called write reissue, allows WrRdy* to be deasserted during the address
cycle and forces a write to be reissued. The second, called pipelined
writes, leaves the sample point of WrRdy* unchanged and requires that
the external agent accept one more write than the R4000 protocol.

14-3

The Write Interface

MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

WrRdy*

MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

WrRdy*

Chapter 14

Write Reissue
In Write Reissue mode, writes issue when WrRdy* is asserted both for

1 clock cycle, two cycles prior to the address cycle and during the address
cycle. The write reissue protocol is shown in Figure 14.3. For this figure,
note the following:

• For AddrO/DataO the write will issue because WrRdy* is sampled
LOW at *0 and at * 1, which is the issue cycle.

• Addrl/Datal will not issue because WrRdy* is sampled HIGH at *2,
which is the possible issue cycle.

• This address/data pair will then be reissued to the system interface,
and will issue as indicated in Figure 12.3 because WrRdy* is sampled
LOW at *3 and at *4.

til MID •

"
I

III
I Issue I

am
Ils~8el Ils~8e Ils~8e Ils~8e I Issue I

* * * * *
I

I ----------------~
I ______ ~Write ~

I ----------~/ \~-------------

Figure 14.3 Write Reissue

Pipelined Write
The pipelined write protocol maintains the R4000 write issue rule

(which is, issue if WrRdy* is asserted two cycles prior to the address
cycle, for one clock cycle), and eliminates the two null cycles between
writes. The external agent may be required to accept one more write after
it deasserts WrRdy*.

This protocol is shown in Figure 14.4. For this figure note the follOwing:
• AddrO /DataO issues because WrRdy* was asserted at *0.
• Addr 1 /Data 1 will be issued because WrRdy* was asserted at * 1.
• Addr2/Data2 will not issue at first because WrRdy* is sampled HIGH

at *2. It will issue as indicated in the figure because WrRdy* was
sampled LOW at *3.

R lin

"
I

g
Ilssuel • Ilssuel Ils~8e Ils~8e Ils~8e I Issue I

* * * * *
I

I

I _____ ~Write ~

I ----------~I \~ ____________ __
Figure 14.4 Pipelined Writes

All three write protocols apply for both Single write and block writes.
This means that in pipeline write, for example, a single write can be
followed immediately by a block write that the external agent must
accept.

14-4

The Write Interface

MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

ValidOut*

Validln*

RdRdy*

WrRdy*

Release*

Chapter 14

Processor Block Write Request
Processor block write requests are issued with the system interface in

master state, as described below. The protocol is the same for either
64-bit or 32-bit bus mode. A processor noncoherent block request for
eight words of data in 64-bit bus mode is illustrated in Figure 14.5.

1. The processor issues a write command on the SysCmd bus and a
write address on the SysAD bus

2. The processor asserts ValidOut*.
3. The processor drives a data identifier on the SysCmd bus and data

on the SysAD bus.
4. The processor asserts ValidOut* for a number of cycles sufficient to

transmit the block of data.
5. The data identifier associated with the last data cycle must contain a

last data cycle indication.
Figure 14.5 illustrates a processor noncoherent block request for eight

words of data with a data pattern of DODD in 64-bit bus mode.

II1II Master ~

II I 2 I 3 I 4 151 6 I 7 I 8 I 9 I 10 I 11 I 12

I
I
I
1\
I
I=>< ><=
I\~
I

Figure 14.5 Processor Noncoherent Block Write Request Protocol

Write Data Transfer Patterns
The write data pattern specifies the pattern the R4650 uses when

writing a block to the external agent. This pattern is specified once
through the mode bits during reset.

A data pattern is a sequence of letters indicating the data and unused
cycles that repeat to provide the appropriate data rate. For example, the
data pattern DDxx specifies a repeatable data rate of two doublewords
every four cycles, with the last two cycles unused.

Table 14.2 lists the maximum processor data rate and the data pattern
for each data rate in 64-bit mode. Data patterns are specified using the
characters D and x; D indicates a doubleword data cycle and x indicates
an unused cycle. During the unused cycles, the data bus will maintain
the last doubleword data value (D).

14- 5

The Write Interface Chapter 14

Maximum Data Transmit
Rate Block Writes Data Pattern

1 Double/l MasterClock Cycle DDDD

2 Doubles/3 MasterClock Cycles DDxDDx

1 Double/2 MasterClock Cycles DDxxDDxx

1 Double/2 MasterClock Cycles DxDxDxDx

2 Doubles/5 MasterClock Cycles DDxxxDDxxx

1 Double/3 MasterClock Cycles DDxxxxDDxxxx

1 Double/3 MasterClock Cycles DxxDxxDxxDxx

1 Double/4 MasterClock Cycles DDxxxxxxDDxxxxxx

1 Double/4 MasterClock Cycles DxxxDxxxDxxxDxxx

Table 14.2 Transmit Data Rates and Patterns in 64-Bit Mode

Table 14.3 lists the maximum processor data rate and the data pattern
for each data rate in 32-bit mode. Data patterns are specified using the
characters Wand X; W indicates a word data cycle and x indicates an
unused cycle. During the unused cycles, the data bus will maintain the
last word data value (D).

Maximum Data Transmit
Rate Block Writes Data Pattern

1 Double/l MasterClock Cycle WWWWWWWW

2 Doubles/3 MasterClock Cycles WWxWWxWWxWWx

1 Double/2 MasterClock Cycles WWxxWWxxWWxxWWxx

1 Double/2 MasterClock Cycles WxWxWxWxWxWxWxWx

2 Doubles/5 MasterClock Cycles WWxx:x.WWxx:x.WWxx:x.WWxx:x.

1 Double/3 MasterClock Cycles WWxxxxWWxxx:x.WWxxx:x.WWxxx:x.

1 Double/3 MasterClock Cycles WxxWxxWxxWxxWxxWxxWxxWxx

1 Double/4 MasterClock Cycles WWxx:x.xx:x.WWxx:x.xx:x.WWxxxxxxWWxxxxxx

1 Double/4 MasterClock Cycles Wxx:x.Wxx:x.Wxx:x.Wxx:x.Wxx:x.Wxx:x.Wxx:x.Wxx:x.

Table 14.3 Transmit Data Rates and Patterns in 32-Bit Mode

Processor Request and Flow Control
To control the flow of processor write requests, the external agent uses

WrRdy*. These are the steps that occur:
1. The processor samples the signal WrRdy* to determine if the external

agent is capable of accepting a read request.
2. The processor does not complete the issue of a read request, until it

issues an address cycle in response to the request for which the
signal RdRdy* was asserted two cycles earlier.

3. The processor does not complete the issue of a write request until it
issues an address cycle in response to the write request for which the
signal WrRdy* was asserted two cycles earlier.

14-6

.1

The Write Interface Chapter 14

Figure 14.6 illustrates two processor write requests in which the issue
of the second is delayed for the assertion of WrRdy*. These steps apply for
both 64-bit and 32-bit bus modes.

Note: Timings for the SysADC and SysCmdP buses are the same as for
the SysAD and SysCmd buses, respectively.

MasterClock Cycle II 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 1 11 1 12 1

MasterClock

SysAD Bus

SysCmd Bus

ValidOut*

Validln*

RdRdy*

WrRdy*

Release*

1

Addr 1 X \.
-~

1 ~ ~ tc Write

1\

1 ~~

IY Z >C
I\V ~ I
1

Figure 14.6 Two Processor Write Requests, Second Write Delayed for the Assertion of
WrRdy·

64-Bit and 32-Bit Bus Modes
The bus interface of the R4650 can be configured during reset to be

either 64-bit wide or 32-bit wide. The same bus protocol explained earlier
in this chapter applies for both modes. In 32-bit bus mode, the internal
execution core is still a full 64-bit engine. Only the bus interface unit can
be configured as either 64-bit or 32-bit interface.

The bus width mode is a static feature of the device. This means that
the bus width has to be configured once during reset. This feature should
not be thought of as dynamic bus width interface where the bus width is
64-bit in one access and 32-bit wide in the other access.

64-Bit Bus Mode
In 64-bit bus mode, the R4650 supports 64-bit address/data system

interface that consist of:
• 64-bit address and data, SysAD(63:0)
• 8-bit SysAD check bus, SysADC(7:0) (even parity)
• 9-bit command bus, SysCmd(8:0)
• Six handshake Signals:

RdRdy*, WrRdy*
ExtReq*, Release*
ValidIn *, ValidOut*

64-Bit Bus Mode Block Write Operation
In 64-bit bus mode, the R4650 issues a single block write request for

the entire cache line (4 double words). The external agent should return
all four double words as explained in the write protocol section earlier.
Figure 14.7 illustrates the timing diagram for a block write operation in
64-bit bus mode. The address issued by the R4650 is double word (64-bit)
aligned.

14-7

The Write Interface

MasterCIock Cycle

MasterCIock

SysAD Bus

SysCmd Bus

VaiidOut*

Validln*

RdRdy*

WrRdy*

Release*

MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

ValidOut*

Validln*

RdRdy*

WrRdy*

Release*

Chapter 14

0lil Master ..
II I 2 I 3 I 4 151 6 I 7 I 8 I 9 I 10 I 11 I 12

I
I
I
I .. ~

I Q]

IY >C
I\~
I

Figure 14.7 Processor Noncoherent Block Write Request Protocol

64-Bit Bus Mode Single (Uncached) Write Operation
In 64-bit bus mode, the R4650 issues a single uncached write request

using a doubleword (64-bit) aligned address. The actual access can be for
a doubleword, word, partial word, or byte, but the request is called a word
write request to differentiate it from the block write request.

R4000-Compatible Write Mode
In R4000-compatible write mode, a single write operation takes four

clock cycles. The address is asserted for one clock cycle, followed by one
clock cycle of data and then two unused clock cycles. This is illustrated in
Figure 14.8.

"
1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I

I
I DataO Data1

I-~ NEOD ~ NEOD ~
I \ I \ I
I
IY >C
I-\g] L ~ L ~
I

Figure 14.8 R4000 Compatible Write Mode

14-8

The Write Interface

MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

WrRdy*

Chapter 14

The R4650 interface requires that WrRdy* be asserted two system
cycles prior to the issue of a write, for one clock cycle. An external agent
that deasserts WrRdy* immediately upon receiving the write that fills its
buffer will stop a subsequent write for four system cycles in R4000 non­
block write compatible mode. This leaves two null system cycles after a
write address/data pair to give the external agent time to stop the next
write.

Write Reissue
Writes issue when WrRdy:l< is asserted both for 1 clock cycle. two cycles

prior to the address cycle and during the address cycle. The write reissue
protocol is shown in Figure 14.9. For this figure note the following:

• For AddrO /DataO the write will issue because WrRdy* is sampled
LOW at *0 and at * 1, which is the issue cycle.

• Addrl/Datal will not issue because WrRdy* is sampled HIGH at *2.
which is the possible issue cycle.

• This address/data pair will then be reissued to the system interface,
and will issue as indicated in Figure 14.9 because WrRdy* is sampled
LOW at *3 and at *4.

• r. rg
II I

•
I Issue I

II]

Ils~8el Ils~8e 11~8e 11~8e I Issue I
* * :I< * *

I

I

I ____ ~Write ~

I ------~I \~ ________ _

Figure 14.9 Write Reissue

Pipelined Write
The pipelined write protocol maintains the R4000 write issue rule

(which is, issue if WrRdy* is asserted two cycles prior to the address
cycle, for one clock cycle), and eliminates the two null cycles between
writes. The external agent may be required to accept one more write after
it deasserts WrRdy*.

14-9

The Write Interface

MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

WrRdy*

Chapter 14

This protocol is shown in Figure 14.10. For this figure note the
following:

• AddrO /DataO issues because WrRdy* was asserted at *0.
o Addr1/Data1 will be issued because WrRdy* was asserted at *1.
• Addr2/Data2 will not issue at first because WrRdy* is sampled HIGH

at *2. It will issue as indicated in the figure because WrRdy* was
sampled LOW at *3.

• •
II I Iissuel

R
Iissuel Ils~8e Ils~8e Ils~8e Iissuel

l-v----Ln *
* * *

1 ______ ~~~A_dd_~ ____________ _

I ______ ~~_w_r_ite ____________ _

I--------~I \~ _________ ___

Figure 14.10 Pipelined Writes

All three write protocols apply for both single write and block writes.
For example,this means that in pipeline write a single write can be
followed immediately by a block write that the external agent must
accept.

32-Bit Bus Mode
In 32-bit bus mode, the R4650 supports a 32-bit address/data system

interface that consists of the following:
• The 32-bit address & data (SysAD (31:0)) and the 4-bit SysAD check

bus (SysADC(3:0), even parity). SysAD(63:31) and SysADC(7:4) are
undefined.

• 9-bit command bus, SysCmd(8:0)
• Six handshake signals:

RdRdy*, WrRdy*
ExtReq*, Release*
ValidIn*, ValidOut*

It is important to note that in the 32-bit bus mode SysAd(31:0) and
SysADC(3:0) are always used regardless of the Endianness of the system.

It is also important to note that the encoding of SysCmd(8:0) is the
same for both 64-bit and 32-bit bus modes. This means that the R4650
does not inform the external agent about the bus width mode. It is
expected that this mode is programmed during reset and that the external
agent is configured to interface to the R4650 in either 64-bit or 32-bit bus
mode.

32-Bit Bus Mode Block Write Operation
In 32-bit bus mode, the R4650 issues a single block write request for

the entire cache line (4 double words). since the bus interface is config­
ured to be 32-bit wide, the R4650 issues a single address that is word
(32-bit) aligned, followed by 8 single words to the R4650.

Figure 14.11 illustrates the timing diagram for a block write operation
in 32-bit bus mode. This means that a block write request is not divided
into two requests. The external agent is responsible for accepting all 8
single word from the R4650.

14-10

The Write Interface Chapter 14

III(Master ..
MasterClock Cycle II I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12

MasterClock

SysAD Bus

SysCmd Bus

ValidOut*

Validln*

RdRdy*

WrRdy*

Release*

I
I
I
I CI ~ ...

I ~

I=>< >C
I""L/
I

Figure 14.11 Processor Noncoherent Block Write Request Protocol

The order of the words in a double word datum will be endian­
dependent. On little-endian machines bits 31:0 will be transferred first
and bits 63:32 transferred second, while on a big-endian machine the
order will be reversed.

32-Bit Bus Mode Single (Uncached) Write Operation
In 32-bit bus mode, the R4650 issues a single uncached write request

using a word (32-bit) aligned address (the actual access could be for a
word, partial word or a byte).

If the internal core writes an uncached datum that is larger than a
word, the external request is then broken into two external requests. The
first request will transfer 4 bytes and the second will transfer up to 4
bytes.

The order of the words in a double word datum will be endian depen­
dent. On little-endian machines, bits 31:0 will be transferred first, with
bits 63:32 transferred second. On a big-endian machine, the order will be
reversed.

R4000-Compatible Write Mode
In R4000-compatible write mode, a single write operation takes four

clock cycles. The address is asserted for one clock cycle, followed by one
clock cycle of data and then two unused clock cycles. This is illustrated in
Figure 14. 12.

14- 11

The Write Interface Chapter 14

MasterClock Cycle II 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I
MasterClock I
SysAD Bus ,- WordO Word1 ~
SysCmd Bus I ~ NEOD '@\ NEOD ~
ValidOut* I \ J \" / \
Validln* ,

RdRdy* I =>< >C.
WrRdy* I \ IxxXXxxxxxX\ /XXXXXXXXXX\ /XXXXXX>O
Release* ,

MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

WrRdy*

Figure 14.12 R4000 Compatible Write Protocol

The R4650 interface requires that WrRdy* be asserted two system
cycles prior to the issue of a write, for one clock cycle. An external agent
that deasserts WrRdy* immediately upon receiving the write that fills its
buffer will stop a subsequent write for four system cycles in R4000 non­
block write compatible mode. This leaves two null system cycles after a
write address/data pair to give the external agent time to stop the next
write.

Write Reissue
Writes issue when WrRdy* is asserted both for 1 clock cycle, two cycles

prior to the address cycle andduring the address cycle. A 64-bit transfer
is broken into 2 word transfers. The write reissue protocol is shown in
Figure 14. 13. For this figure, note the following:

• For AddrO /WordO the write will issue because WrRdy* is sampled
LOW at *0 and at* 1, which is the issue cycle.

• Addrl/Wordl will not issue because WrRdy* is sampled HIGH at *2,
which is the possible issue cycle.

• This address/word pairwill then be reissued to the system interface,
and will issue as indicated in Figure 14.13 because WrRdy* is
sampled LOW at *3 and at *4.

II • Bill EM
II I I Issue I

II]

Ils~3el Ils~3e Ils~3e Ils~3e Iissuel

* * * * *
I

I ________ ~ __ A_d_dr_1 __________ ~

I ________ ~ __ w_r_ite __________ ~

I _____ ----'1 \'---------

Figure 14.13 Write Reissue

14-12

The Write Interface

MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

WrRdy*

Chapter 14

PipeUned Write
The pipelined write protocol maintains the R4000 write issue rule

(which is, issue if WrRdy* is asserted two cycles prior to the address
cycle, for one clock cycle), and eliminates the two null cycles between
writes. The external agent may be required to accept one more write after
it deasserts WrRdy*.

The pipeline write protocol is shown in Figure 14.14. For this figure,
note the following:

• AddrO /WordO issues because WrRdy* was asserted at *0.
• Addr 1 /Word 1 will be issued because WrRdy* was asserted at *1.
• Addr2/Word2 will not issue at first because WrRdy* is sampled HIGH

at *2. It will issue as indicated in the figure because WrRdy* was
sampled LOW at *3.

II
II I

*
I

I

• I Issue I

*

•
I Issue I

*

• 11~8e 11~8e Ils~8e I Issue I
* *

I ________ ~~W_r_ite ____________ ~

I _____ ---J! \~--------
Figure 14.14 Pipellned Writes

All three write protocols apply for both single write and block writes.
This means that in pipeline write, for example, a single write can be
followed immediately by a block write that the external agent must
accept.

Note: In 32-bit bus mode and pipeline write mode a single write can be
followed by a block write of eight words. This means that the
external agent must be capable of accepting all nine words both:
a) in a sequential fashion, and b) at the speed of the data trans­
mission pattern selected during reset.

Sequential Ordering
For 'block write requests in 64-bit bus mode, the processor always

delivers the address of the doubleword at the beginning of the block. The
processor delivers data beginning with the doubleword at the beginning of
the block and progresses sequentially through the doublewords that form
the block.

For block write requests in 32-bit bus mode, the processor always
delivers the address of the word at the beginning of the block. The
processor delivers data beginning with the word at the beginning of the
block and progresses sequentially through the words that form the block.

14-13

The Write .Interface Chapter 14

Example of Sequential Ordering
Sequential ordering transfers the data elements of a block in serial, or

sequential, order.
Figure 14.15 shows a sequential order in which doubleword 0 (OWO) is

transferred first and doubleword 3 (OW3) is transferred last.

I DWO I DW1

DW1
transferred second

DW2 DW31

\
DW3

transferred fourth

DW2
transferred third

Figure 14.15 Transferring a Data Block in Sequential Order

Figure 14. 16 shows a sequential order in which WordO (WO) is trans­
ferred first and Word 7 (W7) is transferred last.

Order of transfer o

WO W1

WO//
transferred third

W1
transferred fourth

W2
transferred first

2

W2

W3
transferred second

3 4 5 6 7

W3 W4 W5 W6 W7

\ tran~e~:d simh

W6
transferred fifth

W5
transferred eighth

W4
transferred seventh

Figure 14.16 Transferring Data in a Subblock Order

14-14

The Write Interface Chapter 14

Table 14.4 shows the byte lanes used for 64-bit bus mode partial word
transfers for both little and big endian.

Bytes Address SysAD byte lanes used (big endian)

SysCmd(2:0) Mod8 63:56 55:48 47:40 39:32 31:24 23:16 15:8 7:0

0 •
1 •
2 •

1 3 •
(000) 4 •

5 •
6 •
7 •
0 • •

2 2 • •
(001) 4 • •

6 • •
0 • • •

3 1 • • •
(010) 4 • • •

5 • • •

4 0 • • • •
(011) 4 • • • •

5 0 • • • • •
(100) 3 • • • • •

6 0 • • • • • •
(101) 2 • • • • • •

7 0 • • • • • • •
(110) 1 • • • • • • •

8 (111) 0 • • • • • • • •
7:0 15:8 23:16 31:24 39:32 47:40 55:48 63:56

SysAD byte lanes used (little endian)

Table 14.4 Partial Word Transfer Byte Lane Usage

14-15

The Write Interface Chapter 14

Table 14.5 shows the byte lanes used for 32-bit bus mode partial word
transfers for both little and big endian.

Bytes Address
SysAD Byte Lanes Used

(Big Endian)

SysCmd(2:0) Mod 4 31:24 23:16 15:8 7:0

1
0 • (000)

1 •
2 It

3 •
2

(001) a • •

2 0 •
3

(010) 0 • • •

1 • • •
4

(011) 0 • • • •

0:7 8:15 16:23 24:31

SysAD Byte Lanes Used
(Little Endian)

Table 14.5 Partial Word Transfer Byte Lane Usage-32-Bit Mode

During data cycles, the valid byte lines depend upon the position of the
data with respect to the aligned doubleword (this may be a byte, halfword,
tribyte, quadbyte/word, quintibyte, sextibyte, septibyte, or an octalbyte/
doubleword). For example, in little-endian mode, on a byte request where
the address modulo 8 is 0, SysAD(7:0) are valid during the data cycles.

System Interface Commands and Data Identifiers
System interface commands specifY the nature and attributes of any

system interface request; this specification is made during the address
cycle for the request. System interface data identifiers specifY the
attributes of data transmitted during a system interface data cycle.

The following sections describe the syntax, that is, the bitwise
encoding, of system interface commands and data identifiers. The same
SysCmd encoding is used for both 32-bit and 64-bit bus mode. The
selection of 64-bit versus 32-bit is not dynamic and should be done only
once during Reset. The R4650 does not indicate externally whether the
bus is configured as 32-bit or 64-bit.

14 - 16

The Write Interface Chapter 14

Reserved bits and reserved fields in the command or data identifier
should be set' to 1 for system interface commands and data identifiers
associated with external requests. For system interface commands and
data identifiers associated with processor requests, reserved bits and
reserved fields in the command and data identifier are undefined.

Command and Data Identifier Syntax
System interface commands and data identifiers are encoded in 9 bits

and are transmitted on the SysCmd bus from the processor to an
external agent, or from an external agent to the processor, during address
and data cycles. Bit 8 (the most-significant bit) of the SysCmd bus deter­
mines whether the current content of the SysCmd bus is a command or a
data identifier and. therefore. whether the current cycle is an address
cycle or a data cycle. For system interface commands. SysCmd(8) must
be set to O. For system interface data identifiers. SysCmd(8) must be set
to 1.

System Interface Command Syntax
This section describes the SysCmd bus encoding for system interface

commands. Figure 14.1 7 shows a common encoding used for all system
interface commands.

8 7 5 4 o

o Request Type Request Specific

Figure 14.17 System Interface Command Syntax Bit Definition

SysCmd(8) must be set to 0 for all system interface commands.
SysCmd(7:5) specify the system interface request type which may be
read. write or null.

Table 14.6 shows the types of requests encoded by the SysCmd(7:5)
bits. SysCmd(4:0) are specific to each type of request.

SysCmd(7:5) Command

0 Read Request

1 Reserved

2 Write Request

3 Null Request

4-7 Reserved

Table 14.6 Encoding of SysCmd(7:S) for System Interface Commands

14-17

The Write Interface Chapter 14

Write . Requests
Figure 14.18 shows the format of a SysCmd write request.

8 7 5 4 3 2 o

0 010 Write ReqJest sbeCifiC
(see tables)

I I

Figure 14.18 Write Request SysCmd Bus Bit Definition

Table 14.7 lists the write attributes encoded in bits SysCmd(4:3).

SysCmd(4:3) Write Attributes

0 Reserved

1 Reserved

2 Block write

3 64-bit mode: Doubleword, partial doubleword,
word, or partial word

32-bit bus mode: Word or partial word.

Table 14.7 Write Request Encoding of SysCmd(4:3)

Table 14.8 lists the block write replacement attributes encoded in bits
SysCmd(2:0).

SysCmd(2) Cache Line Replacement Attributes

0 Cache line replaced

1 Cache line retained

SysCmd(I:0) Write Block Size

0 Reserved

1 8 words

2-3 Reserved

Table 14.8 Block Write Request Encoding of SysCmd(2:0)

14-18

The Write Interface Chapter 14

Table 14.9 lists the write request bit encoding in SysCmd(2:0).

SysCmd(2:0) Read Data Size

64-bit or 32-bit bus mode:

0 1 byte valid (Byte)
1 2 bytes valid (Halfword)
2 3 bytes valid (Tribyte)
3 4 bytes valid (Word)

64-bit mode only:

4 5 bytes valid (Quintibyte)
5 6 bytes valid (Sextibyte)
6 7 bytes valid (Septibyte)
7 8 bytes valid (Doubleword)

Table 14.9 Doubleword, Word, or Partial-Word Write Request Data Size Encoding of
SysCmd(2:0)

14-19

Integrated Device Technology, Inc.

The External Request
Interface

Chapter 15

Introduction
This chapter discusses the External Request protocol and associated

operations.
External requests include read, write and null requests, as shown in

Figure 15.1. This section also includes a description of processor read
response, a special case of an external request.

R4650 External Agent

External Requests
• Read
• Write
• Null

Figure 15.1 External Requests

Read request asks for a word of data from the processor's internal
resource.

Write request provides a word of data to be written to the processor's
internal resource.

Null request requires no action by the processor; it provides a mecha­
nism for the external agent to return control of the system interface to the
master state without affecting the processor.

The processor controls the flow of external requests through the arbi­
tration signals ExtRqst* and Release*, as shown in Figure 15.2. The
external agent must acquire mastership of the system interface before it
is allowed to issue an external request; the external agent arbitrates for
mastership of the system interface by asserting ExtRqst* and then
waiting for the processor to assert Release* for one cycle.

R4650 External Agent

1. External system requests bus
mastership by asserting ExtRqst*

2. Processor grants mastership
by asserting Release*

3. External system issues an
External Request

4. Processor regains bus mastership

Figure 15.2 External Request

15 - 1

The External Request Interface Chapter 15

Mastership of the system interface always returns to the processor
after an external request is issued. The processor does not accept a
subsequent external request until it has completed the current request.

If there are no processor requests pending, the processor decides,
based on its internal state, whether to accept the external request, or to
issue a new processor request. The processor can issue a new processor
request even if the external agent is requesting access to the system inter­
face.

The external agent asserts ExtRqst* indicating that it wishes to begin
an external request. The external agent then waits for the processor to
signal that it is ready to accept this request by asserting Release*. The
processor signals that it is ready to accept an external request based on
the following criteria:

• The processor completes any processor request that is in progress.
• While waiting for the assertion of RdRdy* to issue a processor read

request, the processor can accept an external request if the request is
delivered to the processor one or more cycles before RdRdy* is
asserted.

• While waiting for the assertion of WrRdy* to issue a processor write
request, the processor can accept an external request provided the
request is delivered to the processor one or more cycles before
WrRdy* is asserted.

• If waiting for the response to a read request after the processor has
made an uncompelled change to a slave state, the external agent can
issue an external request before providing the read response data.

External Read Request
In contrast to a processor read request, data is returned directly in

response to an external read request; no other requests can be issued
until the processor returns the requested data. An external read request
is complete after the processor returns the requested word of data.

The data identifier associated with the response data can signal that
the returned data is erroneous, causing the processor to take a bus error.

Note: The R4650 does not contain any resources that are readable by
an external read request; in response to an external read request the
processor returns undefined data and a data identifier with its Erro­
neous Data hit, SysCmd(5), set.

External Write Request
When an external agent issues a write request, the specified resource is

accessed and the data is written to it. An external write request is
complete after the word of data has been transmitted to the processor.

The only processor resource available to an external write request is
the IP field of the Cause register.

Read Response
A read response returns data in response to a processor read request,

as shown in Figure 15.3. While a read response is technically an external
request, it has one characteristic that differentiates it from all other
external requests-it does not perform system interface arbitration. For
this reason, read responses are handled separately from all other external
requests, and are simply called read responses. When a read response
comes back with bad parity for the first datum, a cache error exception
results.

15- 2

The External Request Interface

R4650 ~
;~
'i

1. Read request -~JH--~
'~

External Agent

~'
~--t H---- 2. Read response

Figure 15.3 Read Response

Chapter 15

Processor and External Request Protocols
The following sections contain a cyc1e-by-cyc1e description of the bus

arbitration protocols for each type of processor and external request.
lists the abbreviations and definitions for each of the buses that are used
in the timing diagrams that follow.

Scope Abbreviation Meaning

Global Unsd Unused

SysAD bus Addr Physical address

Data<n> Data element number n of a block of data

SysCmd bus Cmd An unspecified system interface command

Read A processor or external read request command

Write A processor or external write request command

SINull A system interface release external null request
command

NData A noncoherent data identifier for a data element
other than the last data element

NEOD A noncoherent data identifier for the last data
element

Table 15.1 System Interface Requests

External Request Protocols
This section describes the following external request protocols:
" read
o null
• write
o read response
External requests can only be issued with the system interface in slave

state. An external agent asserts ExtRqst* to arbitrate (see the "External
Arbitration Protocol" subsection) for the system interface, then waits for
the processor to release the system interface to slave state by asserting
Release* before the external agent issues an external request. If the
system interface is already in slave state (that is, the processor has previ­
ously performed an uncompelled change to slave state due to a read oper­
ation) the external agent can begin an external request immediately.

15-3

The External Request Interface Chapter 15

Mter issuing an external request, the external agent must return the
system interface to master state. If the external agent does not have any
additional external requests to perform, ExtRqst* must be deasserted
two cycles after the cycle in which Release* was asserted. For a string of
external requests, the ExtRqst* signal is asserted until the last request
cycle, whereupon it is deasserted two cycles after the cycle in which
Release* was asserted.

The processor continues to handle external requests as long as
ExtRqst* is asserted; however, the processor cannot release the system
interface to slave state for a subsequent external request until it has
completed the current request. As long as ExtRqst* is asserted, the
string of external requests is not interrupted by a processor request. The
protocol is the same for either 64-bit or 32-bit bus interface mode.

External Arbitration Protocol
System interface arbitration uses the signals ExtRqst* and Release*

as described above. Figure 15.4 is a timing diagram of the arbitration
protocol, in which slave and master states are shown.

The arbitration cycle consists of the following steps:
1. The external agent asserts ExtRqst* when it wishes to SUblllit an

external request.
2. The processor waits until it is ready to handle an external request,

whereupon it asserts Release* for one cycle.
3. The processor sets the SysAD and SysCmd buses to tri-state.
4. The external agent must begin driving the SysAD bus and the

SysCmd bus two cycles after the assertion of Release*.
5. The external agent deasserts ExtRqst* two cycles after the assertion

of Release*, unless the external agent wishes to perform an addi­
tional external request.

6. The external agent sets the SysAD and the SysCmd buses to tri­
state at the completion of an external request.

The processor can start issuing a processor request one cycle after the
external agent sets the bus to tri-state.

Note: Timings for the SysADC and SysCmdP buses are the same as
those for the SysAD and SysCmd buses, respectively. The protocol is
the same for 64-bit and 32-bit bus interface mode.

CI Master ... I--cl- Slave ~1""'lilClI--- Master ...

MasterClock Cycle II I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 10 I 11 I 12 I
MasterClock I

SysAD Bus 1----1 /--___ ---1

SysCmd Bus 1----1 }--___ ---'
Validln* I

ExtRqst* I
Release* I

RdRdy* I ,'---.1.. _______________ _
Figure 15.4 Arbitration Protocol for External Requests

15-4

The External Request Interface Chapter 15

External Read Request Protocol
External reads are requests for a word of data from a processor

internal resource, such as a register. External read requests cannot be
split; that is, no other request can occur between the external read
request and its read response.

Figure 15.5 shows a timing diagram of an external read request, which
consists of the following steps:

1. An external agent asserts ExtRqst* to arbitrate for the system inter­
face.

2. The processor releases the system interface to slave state by
asserting Release* for one cycle and then deasserting Release*.

3. Mter Release* is deasserted, the SysAD and SysCmd buses are set
to a tri-state for one cycle.

4. The external agent drives a read request command on the SysCmd
bus and a read request address on the SysAD bus and asserts
ValidIn* for one cycle.

5. Mter the address and command are sent, the external agent releases
the SysCmd and SysA;D buses by setting them to tri-state and
allowing the processor to drive them. The processor, having accessed
the data that is the target of the read, returns this data to the external
agent. The processor accomplishes this by driving a data identifier on
the SysCmd bus, the response data on the SysAD bus, and asserting
ValidOut* for one cycle. The data identifier indicates that this is last­
data-cycle response data.

6. The system interface is in master state. The processor continues
driving the SysCmd and SysAD buses after the read response is
returned.

Note: Timings for the SysADC and SysCmdP buses are the same as
those of the SysAD and SysCmd buses, respectively.
External read requests are only allowed to read a (32-bit) word of data

from the processor. The processor response to external read requests is
undefined for any data element other than a word. In 64-bit or 32-bit bus
mode this operation is only a single external read request to the
processor. In both modes SysAD(31:0) provides the address of the
internal resource that is to be read.

Note: The processor does not contain any resources that are readable
by an external read request. In response to an external read request the
processor returns undefined data and a data identifier that has its
erroneous data bit, SysCmd(5), set. This will also cause the CPU to take
an error data exception.

15-5

The External Request Interface Chapter 15

MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

ValidOut*

Validln*

ExtReq*

Release*

OIl(Master .I~ Slave -./ ... Master •
II I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I
I
I
I rn

I
I
I
I

Figure 15.5 External Read Request. System Interface in Master State

External Null Request Protocol
The R4650 only supports one external null request. A system inteiface

release external null request returns the system interface to master state
from slave state without otherwise affecting the processor.

External null requests require no action from the processor other than
to return the system interface to master state.

Figure 15.6 show timing diagram of the external null request cycle,
which consist of the following steps:

1. The external agent asserts ExtRqst* to arbitrate for the system
interface.

2. The processor releases the system interface to slave state by
asserting Release * .

3. The external agent drives a system interface release external null
request command on the SysCmd bus, and asserts ValidIn * for one
cycle to return the system interface back to master state.

4. The SysAD bus is unused (does not contain valid data) during the
address cycle associated with an external null request.

5. Mter the address cycle is issued, the null request is complete.
For a system inteiface release external null request, the external agent

releases the SysCmd and SysAD buses, and expects the system interface
to return to master state. This protocol is the same for both 64-bit and
32-bit bus modes.

15-6

The External Request Interface Chapter 15

MasterClock Cycle

MasterClock

SysAD Bus

SysCmd Bus

ValidOut*

Validln*

ExtReq*

Release*

~--------- Slave .. I ... Master. <III(

II I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 I 10 I 11 I 12 I
I
I
I
I
I
I
I

Figure 15.6 System Interface Release External Null Request

External Write Request Protocol
External write requests us~ a protocol identical to the processor single

word write protocol except the ValidIn* signal is asserted instead of
ValidOut*. Figure 15.7 on page 8 shows a timing diagram of an external
write request, which consists of the following steps:

1. The external agent asserts ExtRqst* to arbitrate for the system
interface.

2. The processor releases the system interface to slave state by
asserting Release * .

3. The external agent drives a write command on the SysCmd bus, a
write address on the SysAD bus, and asserts Validln*.

4. The external agent drives a data identifier on the SysCmd bus, data
on the SysAD bus, and assertsValidln*.

5. The data identifier associated with the data cycle must contain a
coherent or noncoherent last data cycle indication.

6. Mter the data cycle is issued, the write request is complete and the
external agent sets the SysCmd and SysAD buses to a tri-state,
allowing the system interface to return to master state. Timings for
the SysADC and SysCmdP buses are the same as those of the SysAD
and SysCmd buses, respectively.

External write requests are only allowed to write a (32-bit) word of data
to the processor. Processor behavior in response to an external write
request for any data element other than a word is undefined. In 64-bit
and 32-bit bus mode SysAD(31:0) is used for both the address and the
data portions of the external write request, regardless of the "endianness"
of the system.

Note: The interrupt register is the only processor internal resource
available for write access by an external request.

15-7

The External Request Interface Chapter 15

.. Master .. 1..-- Slave ---.I i-- Master ...

MasterClock Cycle II I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9 10 I 11 I 12 I
MasterClock

SysAD Bus

SysCmd Bus

ValidOut*

Validln*

ExtReq*

Release*

I
I
I
I
I \ ~ I
II[] I
I ~

Figure 15.7 External Write Request. with System Interface Initially
in Master State .

Read Response Protocol
An external agent must return data to the processor in response to a

processor read request by using a read response protocol. The read
response protocol is discussed in detail in Chapter 13, "The Read Inter­
face."

System Interface Commands and Data Identifiers
System interface commands specify the nature and attributes of any

system interface request; this speCification is made during the address
cycle for the request. System interface data identifiers specify the
attributes of data transmitted during a system interface data cycle.

The following sections describe the syntax, that is, the bitwise
encoding, of system interface commands and data identifiers. The same
SysCmd encoding is used for both 32-bit and 64-bit bus mode. The
selection of 64-bit versus 32-bit is not dynamic and should be done only
once during Reset. The R4650 does not indicate externally whether the
bus is configured as 32-bit or.64-bit.

Reserved bits and reserved fields in the command or data identifier
should be set to 1 for system interface commands and data identifiers
associated with external requests. For system interface commands and
data identifiers associated with processor requests, reserved bits and
reserved fields in the command and data identifier are undefined.

Command and Data Identifier Syntax
System interface commands and data· identifiers are encoded in 9 bits

and are transmitted on the SysCmd bus from the processor to an
external agent, or from an external agent to the processor, during address
and data cycles. Bit 8 (the most-significant bit) of the SysCmd bus deter­
mines whether the current content of the SysCmd bus is a command or a
data identifier and, therefore, whether the current cycle is an address
cycle or a data cycle. For system interface commands, SysCmd(8) must
be set to O. For system interface data identifiers, SysCmd(8) must be set
to 1.

15-8

The External Request Interface Chapter 15

System Interface Command Syntax
This section describes the SysCmd bus encoding for system interface

commands. Figure 15.8 shows a common encoding used for all system
interface commands.

8 7 5 4 o

o Request Type Request Specific

Figure 15.8 System Interface Command Syntax Bit Definition

SysCmd(8) must be set to 0 for all system interface commands.
SysCmd(7:5) specify the system interface request type which may be

read, write or null; lists the encoding of SysCmd(7:5).
shows the types of requests encoded by the SysCmd(7:5) bits.

SysCmd(7:5) Command

0 Read Request

1 Reserved

2 Write Request

3 Null Request

4-7 Reserved

Table 15.2 Encoding of SysCmd(7:5) for System Interface Commands

SysCmd(4:0) are specific to each type of request and are defined in
each of the following sections.

Null Requests
Figure 15.9 shows the format of a SysCmd null request.

8 7 5 4 3 2 1 o

0 011 Null ReqJest sJecific
(see table)

I I

Figure 15.9 Null Request SysCmd Bus Bit Definition

System interface release external null requests use the null request
command. lists the encoding of SysCmd(4:3) for external null requests.
SysCmd(2:0) are reserved for both instances of null requests.

SysCmd(4:3) Null Attributes

0 System Interface release

1 - 3 Reserved

Table 15.3 External Null Request Encoding of SysCmd(4:3)

15-9

The External Request Interface Chapter 15

System Interface Data Identifier Syntax:
This section defines the encoding of the SysCmd bus for system inter­

face data identifiers. Figure 15.10 shows a common encoding scheme
used for all system interface data identifiers.

8 7 6 5 4 3 2 o

1 Last Resp Good Data Reserved Data Data Data Check

Figure 15.10 Data Identifier SysCmd Bus Bit Definition

SysCmd(8) must be set to 1 for all system interface data identifiers.
system interface data identifiers use the format for noncoherent data.

Noncoherent Data
Noncoherent data is defined as follows:
.. data that is associated with processor block write requests and

processor doubleword, partial doubleword, word, or partial word
write requests

• data that is returned in response to a processor noncoherent block
read request or a processor doubleword, partial doubleword, word, or
partial word read request

o data that is associated with external write requests
• data that is returned in response to an external read request

Data Identifier Bit Definitions
SysCmd(7) marks the last data element and SysCmd(6) indicates

whether or not the data is response data, for both processor and external
coherent and noncoherent data identifiers. Response data is data
returned in response to a read request.

SysCmd(5) indicates whether or not the data element is error free.
Erroneous data contains an uncorrectable error and is returned to the
processor, forcing a bus error. The processor delivers data with the good
data bit deasserted if a primary parity error is detected for a transmitted
data item.

SysCmd(4) indicates to the processor whether to check the data and
check bits for this data element.

SysCmd(3) is reserved for external data identifiers.
SysCmd(4:3) are reserved for noncoherent processor data identifiers.
SysCmd(2:0) are reserved for noncoherent data identifiers.

15 -10

The External Request Interface Chapter 15

Table 15.4 lists the encoding of SysCmd(7:3) for processor data identi­
fiers.

SysCmd(7) Last Data Element Indication

0 Last data element

1 Not the last data element

SysCmd(6) Response Data Indication

0 Data is response data

1 Data is not response data

SysCmd(5) Good Data Indication

0 Data is error free

1 Data is erroneous

SysCmd(4:3) Reserved

Table 15.4 Processor Data Identifier Encoding of SysCmd(7:3)

lists the encoding of SysCmd(7:3) for external data identifiers.

SysCmd(7) Last Data Element Indication

0 Last data element

1 Not the last data element

SysCmd(6) Response Data Indication

0 Data is response data

1 Data is not response data

SysCmd(5) Good Data Indication

0 Data is error free

1 Data is erroneous

SysCmd(4) Data Checking Enable

0 Check the data and check bits

1 Do not check the data and check bits

SysCmd(3) Reserved

Table 15.5 External Data Identifier Encoding of SysCmd(7:3)

15 -11

The External Request Interface Chapter 15

System Interface Addresses
System interface addresses are full 32-bit physical addresses presented

on the least-significant 32 bits (bits 31 through 0) of the SysAD bus
during address cycles; the remaining bits of the SysAD bus are unused
during" address cycles.

Addressing Conventions
Addresses associated with doubleword, partial doubleword, word, or

partial word transactions, are aligned for the size of the data element.
The system uses the following address conventions:

• Addresses associated with block requests are aligned to double-word
boundaries; that is, the low-order 3 bits of address are O.

o Doubleword requests set the low-order 3 bits of address to O.
• Word requests set the low-order 2 bits of address to O.
• Halfword requests set the low-order bit of address to O.
• Byte, tribyte, quintibyte, sextibyte, and septibyte requests use the

byte address.

Processor Internal Address Map
External reads and writes provide access to processor internal

resources that may be of interest to an external agent. The processor
decodes bits SysAD(6:0) of the address associated with an external read
or write request to determine which processor internal resource is the
target.

However, the R4650 does not contain any resources that are readable
through an external read request. In response to an external read
request the processor returns 1) undefined data, 2) a data identifier that
has its Erroneous Data bit, SysCmd(5), set, and then 3) takes an excep­
tion.

The Interrupt register is the only processor internal resource available
for write access by an external request. The Interrupt register is accessed
by an external write request with an address of 0002 on bits 6:4 of the
SysAD bus.

The interrupt register is described in detail in Chapter 16,
"R4650 Processor Interrupts."

15-12

Integrated Device Technology. Inc.

R4650 Processor
Interrupts

Introduction

Chapter 16

The R4650 processor supports the following interrupts: six hardware
interrupts. one internal "timer interrupt." two software interrupts, and
one unmasked/ nonmaskable enabled interrupt. The processor takes an
exception on any interrupt.

This chapter describes the six hardware and single nonmaskable inter­
rupts. A description of the software and the timer interrupts can be found
in Chapter 5. CPU exception processing is also described in Chapter 5.
Floating-point exception processing is described in Chapter 6.

Hardware Interrupts
The six CPU hardware interrupts can be caused by external write

requests to the R4650. or can be caused through dedicated interrupt
pins. These pins are latched into an internal register by the rising edge of
MasterClock.

Nonmaskable Interrupt (NMI)
The nonmaskable interrupt is caused either by an external write

request to the R4650 or by a dedicated pin in the R4650. This pin is
latched into an internal register by the rising edge of MasterClock.

Asserting Interrupts
External writes to the CPU are directed to various internal resources.

based on an internal address map of the processor. When SysAD[6:0] = 0
during an ADDR cycle of external write request. an external write to any
address writes to an architecturally transparent register called the Inter­
rupt register; this register is available for external write cycles, but not for
external reads.

During a data cycle. SysAD[22: 16] are the write enables for the seven
individual Interrupt register bits (0 = disabled. 1 = enabled) and
SysAD[6:0] are the values to be written into these bits (0 = no interrupt. 1
= interrupt). This allows any subset of the Interrupt register to be set or
cleared with a single write request. Figure 16.1 shows the mechaniCS of
an external write to the Interrupt register.

SysAD(6:0) Interrupt Value

SysAD(22:16) Write Enables

o Interrupt register

2 See Figure 16.2
--.- and Figure 16.3.

3

4

5

6

Figure 16.1 Interrupt Register Bits and Ena les

16 - 1

R4650 Processor Interrupts Chapter 16

Figure 16.2 shows how the R4650 interrupts are readable through the
Cause register. The interrupt bits, Int*(5:0), are latched into the internal
register by the rising edge of MasterClock.

• Bit 5 of the Interrupt register in the R4650 is ORed with the Int*(5)
pin and then multiplexed with the internal TimerInterrupt signal.
This result is directly readable as bit 15 of the Cause register.

• Bits 4:0 of the Interrupt register are bit-wise ORed with the current
value of the interrupt pins Int*[4:0] and the result is directly readable
as bits 14: 10 of the Cause register.

.......... .-., ... Interrupt register (5:0)

}------l IP2 ~

)---t---------l IP3 ;::::

IP4 ~ See
r-t--r------t--I---.. ~ Figure 16.4

H----.,f----+---------i IP5 ~

~-+--+____+_----__I IP6 ~

I--f-+--+-~I___+_----__I IP7 ~

Timer
Interrupt

MasterCloCk--CQ= =--II .4

Int*(5)

(Internal
register)

Cause
register

OR gate D
multiplexer =f>-

Figure 16.2 R4650 Interrupt Signals

Figure 16.3 shows the internal derivation of the nonmaskable (NMI)
signal, for the R4650 processor.

The NMI* pin is latched into an internal register by the rising edge of
MasterClock. Bit 6 of the Interrupt register is then ORed with the
inverted value of NMI* to form the nonmaskable interrupt. Only the one
falling edge of the latched signal will cause the NMI.

(Internal
register)

MasterClock

6 Interrupt register (6)

NMI

[> D
Inverter OR gate

Figure 16.3 R4650 Nonmaskable Interrupt Signal

16-2

R4650 Processor Interrupts Chapter 16

Figure 16.4 shows the masking of the R4650 interrupt signal.
• Cause register bits 15:8 (IP7-IPO) are AND-ORed with Status register

interrupt mask bits 15:8 (IM7-IMO) to mask individual interrupts.
o Status register bit 0 is a global Interrupt Enable (IE). It is ANDed with

the output of the AND-OR logic to produce the R4650 interrupt signal.

Status register SR(O)

l!}-------,
Status register SR(15:8)

IMO

1 /

Cause register (15:8)

Figure 16.4 Masking of the R4650 Interrupts

16-3

R4650
Interrupt

R4650 Error Checking Chapter 17

Integrated Device Technology. Inc.

Introduction
This chapter describes the Error Checking mechanism used in the

R4650 processor.

Error Checking in the Processor
Error checking codes allow the processor to detect and sometimes

correct errors made when moving data from one place to another.
Two major types of data errors can occur in data transmission:
• hard errors, which are permanent, arise from broken interconnects,

internal shorts, or open leads
• soft errors, which are transient, are caused by system noise, power

surges, and alpha particles.
Hard errors must be corrected by physical repair of the damaged equip­

ment and restoration of data from backup. Soft errors can be corrected
by using error checking and correcting codes.

Types of Error Checking
The R4650 uses even parity (error detection only).

Parity Error Detection
Parity is the simplest error detection scheme. By appending a bit to the

end of an item of data-called a parity bit-single bit errors can be
detected; however, these errors cannot be corrected.

There are two types of parity:
• Odd Parity adds 1 to any even number of Is in the data, making the

total number of Is odd (including the parity bit).
• Even Parity adds 1 to any odd number of Is in the data, making the

total number of Is even (including the parity bit).
Odd and even parity are shown in the example below:

Data(3:0) Odd Parity Bit Even Parity Bit
0010 0 1

This example shows a single bit in Data(3:0) with a value of 1; this bit is
Data(l).

• In even parity, the parity bit is set to 1. This makes 2 (an even num­
ber) the total number of bits with a value of 1.

• Odd parity makes the parity bit a 0 to keep the total number of I-val­
ue bits an odd number-in the case shown above, the single bit
Data(l).

The example below shows odd and even parity bits for various data
values:

Data(3:0)
o 1 1 0
o 0 0 0
1 1 1 1
110 1

Odd Parity Bit
1
1
1
o

Even Parity Bit
o
o
o
1

Parity allows single-bit error detection, but it does not indicate which bit
is in error-for example, suppose an odd-parity value of 00011 arrives.
The last bit is the parity bit, and since odd parity demands an odd
number (1,3,5) of Is, this data is in error: it has an even number of Is.
However it is impossible to tell which bit is in error.

17 - 1

R4650 Error Checking Chapter 17

Error Checking Operation
The processor verifies data correctness by using even parity as it passes

data from/to the system interface to/from the primary caches.

System Interface
The processor generates correct check bits for doubleword, word, or

partial-word data transmitted to the system interface. As it checks for
data correctness, the processor passes data check bits from the primary
cache, directly without changing the bits, to the system interface.

The processor does not check data received from the system interface
for external writes. By setting the NChck bit in the data identifier, it is
possible to prevent the processor from checking read response data from
the system interface.

For cache refill, if the NChck bit is set, the CPU will generate correct
parity before placing data into the cache. The R4650 only checks parity
for the first double word returned on a block instruction fetch, that is, for
the double word that contains the instruction that was missed on in the
cache. This double word is checked just as if it had been read out of the
cache. This parity check is done as a byte parity check. For single read,
and with the NChck bit set, the CPU will check parity for all 64-bit, even if
the transfer size is less than that.

When the R4650 is checking parity it does not actually regenerate the
word parity, but rather turns the byte parity supplied by the system into
word parity. It XORS the bits in groups of four. As a result, if bad byte
parity is supplied by the system, bad word parity will get written into the
cache. This is done to be consistent with what happens in the DCache.

The processor does not check addresses received from the system inter­
face and does not generate correct check bits for addresses transmitted to
the system interface.

The processor does not contain a data corrector; instead, the processor
takes a cache error exception when it detects an error based on data
check bits. Software is responsible for error handling.

System Interface Command Bus
In the R4650 processor, the system interface command bus has no

parity. SysCmdP always drives zero out for CPU valid cycles and is not
checked when the system interface is in slave state.

17- 2

R4650 Error Checking Chapter 17

Summary of Error Checking Operations
Error Checking operations are summarized in Table 17.1 and

Table 17.2.

Primary Cache Primary Cache
Uncached Uncached Load from System Write to System Cache

Bus Load Store Interface Interface Instruction

Processor Data From System Not From System Inter- Checked; Trap Check on
Interface Checked face unchanged on Error cache write-

back; Trap on
Error

System Interface Not Not Not Generated Not Generated Not Generated
Address/Com- Generated Generated
mand and Check
Bits: Transmit

System Interface Not Checked NA Not Checked NA NA
Address/Com-
mand and Check
Bits: Receive

System Interface Checked; From Pro- Checked; Trap on From Primary From Primary
Data Trap on Error cessor Error Cache Cache

System Interface Checked; Generated Checked; Trap on From Primary From Primary
Data Check Bits Trap on Error Error Cache Cache

Table 17.1 Error Checking and Correcting Summary for Internal Transactions

Read
Bus Request Write Request

Processor Data NA NA

System Interface Address, Command, and Check Bits: Trans- Generated NA
mit

System Interface Address, Command, and Check Bits: Receive Not Checked Not Checked

System Interface Data From Processor Checked; Trap on Error

System Interface Data Check Bits Generated Checked; Trap on Error

Table 17.2 Error Checking and Correcting Summary for External Transactions

17-3

Integrated Device Technology. Inc.

CPU Instruction Set
Details

Appendix A

Introduction
This appendix provides a detailed description of the operation of each

R4650 instruction. The instructions are listed in alphabetical order.
Exceptions that may occur due to the execution of each instruction are

listed after the description of each instruction. Descriptions of the
immediate cause and manner of handling exceptions are omitted from the
instruction descriptions in this appendix.

Figures at the end of this appendix list the bit encoding for the constant
fields of each instruction, and the bit encoding for each individual
instruction is included with that instruction.

Instruction Classes
CPU instructions are divided into the following classes:

• Load and Store instructions move data between memory and general
registers. They are all I-type instructions, since the only addressing
mode supported is base register + 16-bit immediate offset.

• Computational instructions perform arithmetic, logical and shift op­
erations on values in registers. They occur in both R-type (both oper­
ands are registers) and I-type (one operand is a 16-bit immediate)
formats.

• Jump and Branch instructions change the control flow of a program.
Jumps are always made to absolute 26-bit word addresses (J-type
format), or register addresses (R-type) , for returns and dispatches.
Branches have 16-bit offsets relative to the program counter (I-type).
Jump and Link instructions save their return address in register 31.

• Coprocessor instructions perform operations in the coprocessors.
Coprocessor loads and stores are I-type. Coprocessor computational
instructions have coprocessor-dependent formats (see the FPU in­
structions in Appendix B). Coprocessor zero (CPO) instructions ma­
nipulate the memory management and exception handling facilities of
the processor.

• Special instructions perform a variety of tasks, including movement
of data between special and general registers, trap, and breakpOint.
They are always R-type.

A- 1

CPU Instruction Set Details Appendix A

Instruction Formats
Every CPU instruction consists of a single word (32 bits) aligned on a

word boundary and the major instruction formats are shown in Figure A. 1.

I-Type (Immediate)
31 26 25 21 20 16 15 0
~I --oP--~I--rs--~I--rt--l~i-m-m-e-di-at-e------~1

J-Type (Jump)
3r1 ____ =2~6r2=5 __________________________ ~0

I op I target I
R-Type (Register)

31 26 25 21 20 16 15 1110 65 0

op I ffi rt I rd I shamt I funct I
op 6-btt operation code

rs 5-bit source register specifier

rt 5-bit target (source/destination) or branch condition

immediate I6-bit immediate, branch displacement or address
displacement

target 26-bit jump target address

rd 5-bit destination register specifier

shamt 5-bit shift amount

funct 6-bit function field

Figure A.I CPU Instruction Formats

Instruction Notation Conventions
In this appendix, all variable subfields in an instruction format (such

as rs, rt, immediate, etc.) are shown in lowercase names.
For the sake of clarity, we sometimes use an alias for a variable subfield

in the formats of specific instructions. For example, we use rs = base in
the format for load and store instructions. Such an alias is always lower
case, since it refers to a variable subfield.

Figures with the actual bit encoding for all the mnemonics are located
at the end of this Appendix, and the bit encoding also accompanies each
instruction.

In the instruction descriptions that follow, the Operation section
describes the operation performed by each instruction using a high-level
language notation.

A-2

CPU Instruction Set Details Appendix A

Special symbols used in the notation are described in Table A. 1

Symbol Meaning

f- Assignment.

II Bit string concatenation.

xy Replication of bit value x into a y-bit string. Note: x is always a single-bit

xy:z Selection of bits y through z of bit string x. Little-endian bit notation is always
used. If y is less than z, this expression is an empty (zero length) bit string.

+ 2's complement or floating-point addition.

- 2's complement or floating-point subtraction.

*
2's complement or floating-point multiplication.

div 2's complement integer division.

mod 2's complement modulo.

I Floating-point division.

< 2's complement less than comparison.

and Bit-wise logical AND.

or Bit-wise logical OR.

xor Bit-wise logical XOR.

nor Bit-wise logical NOR.

GPR[x] General-Register x. The content of GPR[O] is always zero. Attempts to alter the
content of GPR[O] have no effect.

CPR[z,x] Coprocessor unit z, general register x.

CCR[z,x] Coprocessor unit z, control register x.

COC[z] Coprocessor unit z condition signal.
BigEndianMem Big-endian mode as configured at reset (0 -7 Little, 1 -7 Big). Specifies the endi-

anness of the memory interface (see LoadMemory and StoreMemory), and the en-
dianness of Kernel and Supervisor mode execution.

ReverseEndian Signal to reverse the endianness of load and store instructions in User mode;
effected by setting the RE bit of the Status register. Thus, ReverseEndian may be
computed as (SR25 and User mode).

BigEndianCPU The endianness for load and store instructions (0 -7 Little, 1 -7 Big). In User
mode, this endianness may be reversed by setting SR25. Thus, BigEndianCPU
may be computed as BigEndianMem XOR ReverseEndian.

LLbit Bit of state to specify synchronization instructions. Set by LL, cleared by ERET and
Invalidate and read by sc.

T+f. Indicates the time steps between operations. Each of the statements within a time
step are defined to be executed in sequential order (as modified by conditional and
loop constructs). Operations which are marked T+i: are executed at instruction cy-
cle i relative to the start of execution of the instruction. Thus, an instruction which
starts at time j executes operations marked T +i: at time
i + j. The interpretation of the order of execution between two instructions or two
operations which execute at the same time should be pessimistic; the order is not
defined.

Table A.I CPU Instruction Operation Notations

A-3

CPU Instruction Set Details Appendix A

Instruction Notation Examples
The following examples illustrate the application of some of the

instruction notation conventions:

Example #1:
GPR[rt] ~ immediate I I 016

Sixteen zero bits are concatenated with an immediate value
(typically 16 bits), and the 32-bit string (with the lower 16 bits
set to zero) is assigned to General-Purpose Register rt.

Example #2:

(immediatelS)16 II immediatelS .. O

Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to form a 32-bit sign
extended value.

Load and Store Instructions
In the R4650, as in the case of processors, the instruction immediately

following a load may use the loaded contents of the register. In such cases,
the hardware interlocks, requiring additional real cycles, so scheduling
load delay slots is still desirable, although not required for functional code.

1\vo special instructions are provided in the MIPS ISA, Load Linked,
and Store Conditional. These instructions are used in carefully coded
sequences to provide one of several synchronization primitives, including
test-and-set, bit-level locks, semaphores, and sequencers/event counts.

In the load and store descriptions, the functions listed in Table A.2 are
used to summarize the handling of virtual addresses and physical
memory.

Function Meaning

AddressTranslation Uses the CPO to find the physical address given the virtual
address. The function fails and an exception is taken if the
required translation is not present/allowed .

LoadMemory .uses the cache and main memory to find the contents of
the word containing the specified physical address. The
low-order two bits of the address and the Access Type field
indicates which of each of the four bytes within the data
word need to be returned. If the cache is enabled for this
access, the entire word is returned and loaded into the
cache.

StoreMemory Uses the cache, write buffer, and main memory to store
the word or part of word specified as data in the word con-
taining the specified physical address. The low-order two
bits of the address and the Access Type field indicates
which of each of the four bytes within the data word
should be stored.

Table A.2 Load and Store Common Functions

As shown in Table A.2, the Access Type field indicates the size of the
data item to be loaded or stored. Regardless of access type or byte­
numbering order (endianness), the address specifies the byte which has
the smallest byte address in the addressed field. For a big-endian
machine, this is the leftmost byte and contains the sign for a 2's
complement number; for a little-endian machine, this is the rightmost
byte.

A-4

CPU Instruction Set Details Appendix A

Access Type Mnemonic Value Meaning

DOUBLEWORD 7 8 bytes (64 bits)

SEPTIBYTE 6 7 bytes (56 bits)

SEXTIBYTE 5 6 bytes (48 bits)

gUINTIBYTE 4 5 bytes (40 bits)

WORD 3 4 bytes (32 bits)

TRIPLEBYTE 2 3 bytes (24 bits)

HALFWORD 1 2 bytes (16 bits)

BYTE 0 1 byte (8 bits)

Table A.3 Access Type Specifications for Loads/Stores

The bytes within the addressed doubleword which are used can be
determined directly from the access type and the three low-order bits of the
address.

Jump and Branch Instructions
All jump and branch instructions have an architectural delay of exactly

one instruction. That is, the instruction immediately following a jump or
branch (that is, occupying the delay slot) is always executed while the
target instruction is being fetched from storage. A delay slot may not itself
be occupied by a jump or branch instruction; however, this error is not
detected and the results of such an operation are undefined.

If an exception or interrupt prevents the completion of a legal
instruction during a delay slot, the hardware sets the EPC register to point
at the jump or branch instruction that precedes it. When the code is
restarted, both the jump or branch instructions and the instruction in the
delay slot are reexecuted.

Because jump and branch instructions may be restarted after
exceptions or interrupts, they must be restartable. Therefore, when a
jump or branch instruction stores a return link value, register 31 (the
register in which the link is stored) may not be used as a source register.

Since instructions must be word-aligned, a Jump Register or Jump
and Link Register instruction must use a register whose two low-order
bits are zero. If these low-order bits are not zero, an address exception will
occur when the jump target instruction is subsequently fetched.

Coprocessor Instructions
Coprocessors are alternate execution units, which have register files

separate from the CPU. The R4650 architecture (MIPS III) provides three
coprocessor units, or classes, and these coprocessors have two register
spaces, each space containing thirty-two registers. These registers may be
either 32-bits or 64-bits wide.

• The first space, coprocessor general registers, may be directly loaded
from memory and stored into memory, and their contents may be
transferred between the coprocessor and processor.

• The second space, coprocessor control registers, may only have their
contents transferred directly between the coprocessor and the proces­
sor. Coprocessor instructions may alter registers in either space.

A-5

CPU Instruction Set Details ,Appendix A

System Control Coprocessor (CPO) Instructions
There are some special limitations imposed on operations involving

CPO that is incorporated within the CPU. The move to/from coprocessor
instructions are the only valid mechanism for writing to and reading from
the CPO registers.

Several CPO instructions are defined to directly read, write, and modify
the operating modes in preparation for returning to User mode or
interru pt -enabled states.

A-6

...

CPU Instruction Set Details Appendix A

ADD Add ADD
31 26 25 21 20 16 15 11 10 6 5 a

SPECIAL rs rt rd a ADD

000000 00000 100000
6 5 5 5 5 6

Format:
ADD rd, rs, rt

Description:
The contents of general register rs and the contents of general register

rt are added to form the result. The result is placed into general register
rd. The operands must be valid sign-extended, 32-bit values.

An overflow exception occurs if the carries out of bits 30 and 31 differ
(2's complement overflow). The destination register rd is not modified when
an integer overflow exception occurs.

Operation:

Exceptions:

T: temp f- GPR[rs] + GPR[rt]

GPR[rd] f- (temp31)32II temP31 .. 0

Integer overflow exception

A-7

CPU Instruction Set Details Appendix A

ADDI Add Immediate ADDI
31 26 25 21 20 16 15 0

rs
I

rt
I

immediate

I
ADDI I

001000
6 5 5 16

Format:
ADDI rt, rs, immediate

Description:
The 16-bit immediate is sign-extended and added to the contents of

general register rs to form the result. The result is placed into general
register rt. The rs operand must be valid sign-extended, 32-bit values.

An overflow exception occurs if carries out of bits 30 and 31 differ (2's
complement overflow). The destination register rt is not modified when an
integer overflow exception occurs.

Operation:

T: temp (- GPR[rs] + (immediate1S)48 I I immediate1S .. 0

GPR[rt] (- (temp31)32 II temP31 .. 0

Exceptions:
Integer overflow exception

A-8
,.

CPU Instruction Set Details Appendix A

ADDIU Add Immediate Unsigned ADDIU
31 26 25

ADDIU

001001
6

Format:

21 20

rs rt

5 5

ADDIU rt, rs, immediate

Description:

16 15 o

immediate

16

The I6-bit immediate is sign-extended and added to the contents of
general register rs to form the result. The result is placed into general
register rt. No integer overflow exception occurs under any circumstances.
The rs operand must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADDI instruction
is that ADDIU never causes an overflow exception.

Operation:

T: temp ~ GPR[rs] + (immediate15)48 I I immediate15 .. 0

GPR[rt] ~ (temp31)32 II temP31 .. 0

Exceptions:
None

A-9

CPU Instruction Set Details Appendix A

ADDU Add Unsigned ADDU
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 ADDU
000000 00000 100001

6 5 5 5 5 6

Format:
ADDU rd, rs, rt

Description:
The contents of general register rs and the contents of general register

rt are added to form the result. The result is placed into general register rd.
No overflow exception occurs under any circumstances. The source
operands must be valid sign-extended, 32-bit values.

The only difference between this instruction and the ADD instruction
is that ADDU never causes an overflow exception.

Operation:

T: temp ~ GPR[rs] + GPR[rt]

GPR[rd] ~ (temp31)32 " temP31 .. 0

Exceptions:
None

A-lO

CPU Instruction Set Details Appendix·A

AND And AND
31 26 25 21 20 16 15 6 5 o

SPECIAL rs rt rd 0 AND
000000 00000 100100

6 5 5 5 5 6

Format:
AND rd, rs, rt

Description:
The contents of general register rs are combined with the contents of

general register rt in a bit-wise logical AND operation. The result is placed
into general register rd.

Operation:

T: GPR[rd] ~ GPR[rs] and GPR[rt]

Exceptions:
None

A-II

CPU Instruction Set Details Appendix A

ANDI And Immediate ANDI
31

I

26 25 21 20 16 15 o

ANDI
I

rs

I

rt
I

001100
immediate

6 5 5 16

Format:
ANDI rt, rs, immediate

Description:
The 16-bit immediate is zero-extended and combined with the contents

of general register rs in a bit-wise logical AND operation. The result is
placed into general register rt.

Operation:

T: GPR[rt] f- 048 11 (immediate and GPR[rs]15 .. 0)

Exceptions:
None

A-12

CPU Instruction Set Details Appendix A

BCzF Branch On Coprocessor z False BCzF
31 26 25 21 20 1615

COPz
o 1 00 x x*

6

Format:

BC
01000

5

BCzF offset

Description:

BCF
00000

5

o

offset

16

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If coprocessor z's condition signal (CpCond), as
sampled during the previous instruction. is false, then the program
branches to the target address with a delay of one instruction.

Because the internal condition signal is sampled during the previous
instruction, there must be at least one instruction between this instruction
and a coprocessor instruction that changes the internal condition signal.

Operation:

T -1: condition ~ not COC[z]
T: target ~ (offset15)46 II offset II 02

T + 1 : if condition then
PC ~ PC + target

endif

Note: *See the table "Opcode Bit Encoding" on next page. or "CPU
Instruction Opcode Bit Encoding" at the end of Appendix A.

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

BCzF Bit # 31 30 29 28 27 26 25 24 2322 21 20 1918 17 16

BCOF 1 0 11 1 0 1 0 1 0 1 0 1 0 11 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

o

I
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 o

BC 1 F 1 0 1 1 1 0 1 0 1 0 11 1 0 11 1 0 1 0 I 0 1 0 1 0 1 0 1 0 1 0 1 I
Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 o

BC2F 1 0 11 1 0 1 0 11 1 0 1 0 11 I 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

Opcode I

Coprocessor Unit Number--.l
BC sub-opcode Branch condition

A-13

CPU Instruction Set Details Appendix A

BCzFL Branch On Coprocessor z
False likely BCzFL

31 26 25 21 20 1615 o

COPz BC BCFL offset
01 00 x x* 01000 00010

6 5 5 16

Format:
BCzFL offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the contents of coprocessor z's condition signal, as
sampled during the previous instruction, is false, the target address is
branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch
delay slot is nullified.

Because the internal condition signal is sampled during the previous
instruction, there must be at least one instruction between this instruction
and a coprocessor instruction that changes the internal condition signal.

Note: *See the table "Opcode Bit Encoding" on next page, or "CPU Instruction
Opcode Bit Encoding" at the end of Appendix A.

Operation:

T -1 : condition ~ not COC[z]
T: target ~ (offset1S)46 II offset II 02

T + 1: if condition then
PC ~ PC + target

else
NullifyCurrentinstruction

endif

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

BCzFL Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BCOFL I 0 11 1 0 1 0 1 0' 1 0 1 0 11 1 0 1 0 1 0 1 0 1 0 1 0 11 1 0 I

o
I

Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 o
BC1 FLI 0 11 1 0 1 0 1 0 11 1 0 11 1 0 1 0 1 0 1 0 1 0 1 0 11 1 0 I 1

Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 o
BC2FL I

Opcode ~ BC sub-opcode Branch condition
Coprocessor Unit Number

A-14

CPU Instruction Set Details Appendix A

BCzT Branch On Coprocessor z True BCzT
31 2625 21 20 1615 o

COPz I BC I BCT I o 1 0 0 x x* 0 1 0 0 0 0 0 0 0 1
offset

655 16

Note: *See "Opcode Bit Encoding" on this page, or "CPU Instruction Opcode
Bit Encoding" at the end of Appendix A.

Format:
BCzT offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset. shifted left two bits
and Sign-extended. If the coprocessor z's condition signal (CpCond) is
true. then the program branches to the target address. with a delay of one
instruction.

Because the internal condition signal is sampled during the previous
instruction. there must be at least one instruction between this instruction
and a coprocessor instruction that changes the internal condition signal.

Operation:

T -1: condition f- COC[zt
T: target f- (offset1S)4 II offset II 02

T+ 1: if condition then
PC ~ PC + target

endif

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

BCzT Bit # 31 30 29 28 27 26 2524 2322 21 20 19 18 17 16

BCOT 1 0 11 1 0 1 0 1 0 1 0 1 0 111 0 1 0 1 0 1 0 1 0 1 0 1 0 11 1

o

1

Bit# 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BC1 T 1 0 11 1 0 1 0 1 0 11 1 0 11 1 0 1 0 1 0 1 0 1 0 1 0 1 0 11 1

Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BC2T

Opcode I BC sub-opcode Branch condition
Coprocessor Unit Number---1

A-I5

o
1

o

I

CPU Instruction Set Details Appendix A

BCzTl Branch On Coprocessor z
True Likely BCzTL

31 26 25 21 20 1615 o

COPz BC BCTL offset
01 00 x x* 01000 0001 1

6 5 5 16

Note: *See "Opcode Bit Encoding" on this page, or "CPU Instruction Opcode
Bit Encoding" at the end of Appendix A.

Format:
BCzTL offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the contents of coprocessor z's condition signal, as
sampled during the previous instruction, is true, the target address is
branched to with a delay of one instruction.

If the conditional branch is not taken, the instruction in the branch
delay slot is nullified.

Because the internal condition signal is sampled during the previous
instruction, there must be at least one instruction between this instruction
and a coprocessor instruction that changes the internal condition signal.

Operation:
T -1 : condition f- COC[Zl
T: target f- (offset15)4 II offset" 02

T + 1 : if condition then
PC f- PC + target

else
NullifyCurrentinstruction

endif

Exceptions:
Coprocessor unusable exception

Opcode Bit Encoding:

BCzTL Bit # 31 30 29 28 27 26 25 24 2322 21 20 19 18 17 16 o
BCOTL 1 0 11 1 0 1 0 1 0 1 0 1 0 11 1 0 \ 0 1 0 I 0 1 0 1 0 11 \1 1 \

Bit# 31 30 2928 27 262524 2322 21 20 1918 17 16 o
BC1TLI 0 111 0 \ 0 10 \1 10 11 \ 010 \ 0 1 0 101 0 11 \1 1 1

Bit # 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 o

BC2TL~1 I
Opcode . I BC sub-opcode Branch condition

Coprocessor Unit Number~

A-16

CPU Instruction Set Details Appendix A

BEQ Branch On Equal BEQ
31 26 25 21 20 16 15 o

SEQ rs rt offset
000100

6 ·5 5 16

Format:
BEQ rs. rt, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the I6-bit offset. shifted left two bits
and Sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are equal. then the
program branches to the target address. with a delay of one instruction.

Operation:

Exceptions:
None

T: target ~ (offset15)46 II offset II 02

condition ~ (GPR[rs] = GPR[rt])
T + 1 : if condition then

PC ~ PC + target
endif

A-17

CPU Instruction Set Details Appendix A

BEQl Branch On Equal Likely BEQl
31

I

26 25 21 20 16 15 o

BEQl
I

rs

I
rt

I
offset

010100
6 5 5 16

Format:
BEQL rs, rt, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are equal, the target
address is branched to, with a delay of one instruction. If the conditional
branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

T: target f- (offset1s)46 II offset II 02

condition f- (GPR[rs] = GPR[rt]) .
T + 1 : if condition then

PC f- PC + target
else

NullifyCurrentlnstruction
endif

Exceptions:
None

A-IS

CPU Instruction Set Details Appendix A

BGEZ Branch On Greater Than
Or Equal To Zero BGEZ

31 26 25

REGIMM
000001

6

Format:

rs

5

21 20

BGEZ
00001

5

BGEZ rs, offset

Description:

16 15 o

offset

16

A branch target address is computed from the sum of the address of
the instruction in thedelay slot and the 16-bit offset, shifted left two bits
and Sign-extended. If the contents of general register rs have the sign bit
cleared, then the program branches ~o the target address, with a delay of
one instruction. .

Operation:

Exceptions:
None

T: target ~ (offset1S)46II offset II 02

condition ~ (GPR[rs]63 = 0)
T + 1 : if condition then

PC ~ PC + target
endif

A-19

CPU Instruction Set Details Appendix A

BGEZAL Branch On Greater Than
Or Equal To Zero And Link BGEZAL

31 26 25 21 20 16 15 o

REGIMM
000001

rs BGEZAL
10001

offset

6 5 5 16

Format:
BGEZAL rs, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the I6-bit offset, shifted left two bits
, and Sign-extended. Unconditionally, the address of the instruction after
the delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit cleared, then the' program branches to the
target address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction is not
trapped, however. '

Operation:

T: target ~ (offset1S)46II offset II 02

condition ~ (GPR[rs]63 = 0)
GPR[31] ~ PC + 8

T + 1: if condition then
PC ~ PC + target
endif

Exceptions:
None

A-20

CPU Instruction Set Details Appendix A

BGEZAlL Branch On Greater Than
Or Equal To Zero
And Link Likely

BGEZALL

31

I

26 25 21 20 16 15 0

REGIMM rs BGEZALL offset

I 000001 1001 1

6 5 5 16

Format:
BGEZALL rs, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended.· Unconditionally,the address of the instruction after
the delay' slot is placed in the link register, r31. If the contents of general
register rs have the sign bit cleared, then the program branches to the
target address, with a delay of one instruction. General register rs may not
be general register 31, because such an instruction is not restartable. An
attempt to execute this instIuction is not trapped, however. If the
conditional branch is not taken, the instruction in the branch delay slot is
nullified.

Operation:

T: target f- (offset1S)46 II offset II 02

condition f- (GPR[rs]63 = 0)
GPR[31] f- PC + 8

T + 1: if condition then
PC f- PC + target
else
NullifyCurrentlnstruction
endif

Exceptions:
None

A-21

CPU Instruction Set Details Appendix A

BGEZL Branch On Greater
Than Or Equal To Zero Likely BGEZL

31 26 25 21 20 16 15 o

'··REGIMM
000001

rs BGEZL
00011

offset

6 5 5 16

Format:
BGEZL rs, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and Sign-extended. If the contents of general register rs have the sign bit
cleared, then the program branches to the target address, with a delay of
one instruction. If the conditional branch is not taken, the instruction in
the branch delay slot is nullified.

Operation:

Exceptions:
None

T: target ~ (offset1S)46 II offset II 02

condition ~ (GPR[rs]63 = 0)
T + 1: if condition then

PC ~ PC + target
else

NullifyCurrentlnstruction
endif

A-22

CPU Instruction Set Details Appendix A

BGTZ Branch On Greater Than Zero BGTZ
31 26 25

BGTZ
000111

6

Format:

rs

5

21 20

o
00000

5

BGTZ rs, offset

Description:

16 15 o

offset

16

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and Sign-extended. The contents of general register rs are compared to
zero. If the contents of general register rs have the sign bit cleared and are
not equal to zero, then the program branches to the target address, with a
delay of one instruction.

Operation:

Exceptions:
None

T: target ~ (offset1S)46 II offset II 02

condition ~ (GPR[rs]63 = 0) and (GPR[rs] -:t 064)
T + 1: if condition then

PC ~ PC + target
endif

A-23

CPU Instruction Set Details Appendix A

BGTZL Branch On Greater
Than Zero Likely BGTZL

31 26 25 21 20 16 15 o

BGTZl I
010111

rs offset

6 5 5 16

Format:
BGTZL rs, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. The contents of general register rs are compared to
zero. If the contents of general register rs have the sign bit cleared and are
not equal to zero, then the program branches to the target address, with a
delay of one instruction. If the conditional branch is not taken, the
instruction in the branch delay slot is nullified.

Operation:

T: target ~ (offset15)46 II offset II 02

condition ~ (GPR[rs]63 = 0) and (GPR[rs];t= 064)
T + 1: if condition then

PC ~ PC + target
else

NullifyCurrentl nstruction
endif

Exceptions:
None

A-24

CPU Instruction Set Details Appendix A

BLEZ Branch on Less Than
Or Equal To Zero BLEZ

31 26 25

BLEZ
000110

6

Format:

rs

5

21 20

o
00000

5

BLEZ rs, offset

Description:

16 15 o

offset

16

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. The contents of general register rs are compared to
zero. If the contents of general register rs have the sign bit set, or are equal
to zero, then the program branches to the target address, with a delay of
one instruction.

Operation:

T: target ~ (offset1S)46II offset II 02

condition ~ (GPR[rs]63 = 1) and (GPR[rs] = 064)
T + 1: if condition then

PC ~ PC + target
endif

Exceptions:
None

A-25

CPU Instruction Set Details Appendix A

BLEZL Branch on Less Than
Or Equal To Zero Likely BLEZL

31 26 25

BLEZL
010110

6

Format:

rs

5

21 20

o
00000

5

BLEZL rs, offset

Description:

16 15 o

offset

16

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the I6-bit offset, shifted left two bits
and sign-extended. The contents of general register rs is compared to zero.
If the contents of general register rs have the sign bit set, or are equal to
zero, then the program branches to the target address, with a delay of one
instruction.

If the conditional branch is not taken, the instruction in the branch
delay slot is nullified.

Operation:

T: target ~ (offset15)46 " offset" 02

condition ~ (GPR[rs]63 = 1) and (GPR[rs] = 064)
T + 1: if condition then

PC ~ PC + target
else

NullifyCurrentlnstruction
endif

Exceptions:
None

A-26

CPU Instruction Set Details Appendix A

BLTZ Branch On less Than Zero BLTZ
31 26 25

REGIMM
000001

6

Format:

rs

5

21 20

BLTZ
00000

5

BLTZ rs, offset

Description:

16 15 o

offset

16

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. If the contents of general register rs have the sign bit
set, then the program branches to the target address, with a delay of one
instruction.

Operation:

Exceptions:
None

T: target f- (offset1S)46II offset II 02

condition f- (GPR[rs]63 = 1)
T + 1: if condition then

PC f- PC + target
enctif

A-27

CPU Instmction Set Details Appendix A

BLTZAL Branch On Less
Than Zero And Link BLTZAL

31 26 25 21 20 16 15 o

REGIMM I'
000001 .

rs BLTZAL
10000

offset

6 5 5 16

Format:
BL TZAL rs. offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and Sign-extended. Unconditionally. the address of the instruction after
the delay slot is placed in the link register. r31. If the contents of general
register rs have the sign bit set. then the program branches to the target
address. with a delay of one instruction.

General register rs may not be general register 31. because such an
instruction is not restartable. An attempt to execute this instruction with
register 31 specified as rs is not trapped. however.

Operation:

Exceptions:
None

T: target ~ (offset1S)46 II offset II 02

condition ~ (GPR[rs]63 = 1)
GPR[31] ~ PC + 8

T + 1 : if condition then
PC ~ PC + target

endif

A-28

CPU Instruction Set Details Appendix A

BLTZALl Branch On Less
Than Zero And Link Likely BlTZALl

31

REGIMM
000001

6

26 25

Format:

rs

5

21 20 16 15

BLTZALL
10010

5

BL TZALL rs, offset

Description:

o

offset

16

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. Unconditionally, the address of the instruction after
the delay slot is placed in the link register, r31. If the contents of general
register rs have the sign bit set, then the program branches to the target
address, with a delay of one instruction.

General register rs may not be general register 31, because such an
instruction is not restartable. An attempt to execute this instruction with
register 31 specified as rs is not trapped, however. If the conditional
branch is not taken, the instruction in the branch delay slot is nullified.

Operation:

Exceptions:
None

T: target f- (offset15)46 II offset II 02

condition f- (GPR[rs]63 = 1)
GPR[31] f- PC + 8

T + 1: if condition then
PC f- PC + target

else
NullifyCurrentlnstruction

endif

A-29

CPU Instruction Set Details Appendix A

B L TZ L . . Branch On Less Than Zero Likely BLTZL
31 26 25 21 20 16 15 o

REGIMM
000001

rs BLTZL
00010

offset

6 5 5 16

Format:
BLlZ rs, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign -extended. If the contents of general register rs have the sign bit
set, then the program branches to the target address, with a delay of one
instruction. If the conditional branch is not taken, the instruction in the
branch delay slot is nullified.

Operation:

Exceptions:
None

T: target ~ (offset15)46 II offset II 02

condition ~ (GPR[rs]63 = 1)
T + 1: if condition then

PC ~ PC + target
else

N ullifyCu rrentl nstruction
endif

A-30

CPU Instruction Set Details Appendix A

BNE Branch On Not Equal BNE
31 26 25

BNE
000101

6

Format:

21 20

rs

5

BNE rs, rt, offset

Description:

16 15 o

rt offset

5 16

A branch target address is computed from the sum of the address of
the instruction in the delay slot and the 16-bit offset, shifted left two bits
and Sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are not equal, then
the program branches to the target address, with a delay of one
instruction.

Operation:

Exceptions:
None

T: target ~ (offset1S)46 II offset II 02

condition ~ (GPR[rs] -:I; GPR[rt])
T + 1: if condition then

PC ~ PC + target
endif

A-31

CPU Instruction Set Details Appendix A

BNEl Branch On Not Equal Likely BNEl
31 26 25 21 20 16 15 o

BNEL
010101

rs rt offset

6 5 5 16

Format:
BNEL rs, rt, offset

Description:
A branch target address is computed from the sum of the address of

the instruction in the delay slot and the 16-bit offset, shifted left two bits
and sign-extended. The contents of general register rs and the contents of
general register rt are compared. If the two registers are not equal, then
the program branches to the target address, with a delay of one
instruction.

If the conditional branch is not taken, the instruction in the branch
delay slot is nullified.

Operation:

T: target ~ (offset1S)46 " offset II 02

condition ~ (GPR[rs] ~ GPR[rt])
T + 1: if condition then

PC ~ PC + target
else

N ullifyCu rrentl nstruction
endif

Exceptions:
None

A-32

CPU Instruction Set Details Appendix A

BREAK Breakpoint BREAK
31

SPECIAL
000000

6

Format:

26 25

BREAK

Description:

65

code

20

BREAK
001101

6

o

A breakpoint trap occurs, immediately and unconditionally
transferring control to the exception handler.

The. code field is available for use as software parameters, but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: BreakpointException

Exceptions:
Breakpoint exception

A-33

CPU Instruction Set Details Appendix A

CACHE Cache CACHE
31 26 25 21 20 16 15 o

CACHE
101111

base op offset

6 5 5 16

Format:
CACHE op, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The virtual address is translated
to a physical address, and the 5-bit sub-opcode specifies a cache operation
for that address.

If CPO is not usable (User or Supervisor mode) the CPO enable bit in the
Status register is clear, and a coprocessor unusable exception is taken.
The operation of this instruction on any operation/cache combination not
listed below is undefined. The operation of this instruction on uncached
addresses is also undefined.

The R4650 uses only the tag comparisons, not the valid bits~ to choose
which data it supplies to the instruction unit. This makes it important
that the tags of the A and B sets are never the same.

The Index operation uses part of the virtual address to specify a cache
block, with vAddr13 selecting the set to access.

For a primary cache of 8KB with 32 bytes per tag, vAddru .. 5 specifies
the block.

Index Load Tag also uses vAddr4 .. 3 to select the doubleword for reading
parity. When the CE bit of the Status register is set, Hit WriteBack, Hit
WriteBack Invalidate, Index WriteBack Invalidate, and Fill also use
vAddr4 .. 3 to select the doubleword that has its parity modified. This
operation is performed unconditionally.

The Hit operation accesses the specified cache as normal data
references, and performs the specified operation if the cache block
contains valid data with the specified physical address (a hit). If both sets
are invalid or contain different addresses (a miss), no operation is
performed.

Write back from a primary cache goes to memory. The address to be
written is specified by the cache tag and not the translated physical
address.

For Index operations (where the physical address is used to index the
cache but need not match the cache tag), unmapped addresses may be
used to avoid exceptions. This operation will never cause Virtual
Coherency exceptions.

Bits 17 .. 16 of the instruction specify the cache as follows:

Code Name Cache

0 I primary instruction

1 D primary data

2-3 NA Undefined

A-34

CPU Instruction Set Details Appendix A

Code

0

0

1

2

3

4

5

5

6

6

Bits 20 .. 18 (this value is listed under the Code column) of the
instruction specify the operation as follows:

Caches Name Operation

I Index Invalidate Set the cache state of the cache block to Invalid.
Index_Invalidate_I writes the physical address of the
cache op into the tag when it clears the valid bit, which
is different from the R4000.

D Index Write- Examine the cache state and W bit of the primary data
Back Invalidate cache block at the index specified by the virtual

address. If the state is not Invalid and the W bit is set,
then write back the block to memory. The address to
write is taken from the primary cache tag. Set cache
state of primary cache block to Invalid.

I, D Index Load Tag Read the tag for the cache block at the specified index
and place it into the TagLo CPO registers, ignoring par-
ity errors. Also load the data parity bits into the ECC
register.

I, D Index Store Tag Write the tag for the cache block at the specified index
from the TagLo and TagHi CPO registers.

D Create Dirty This operation is used to avoid loading data needlessly
Exclusive from memory when writing new contents into an entire

cache block. If the cache block does not contain the
specified address, and the block is dirty, write it back
to the memory. In all cases, set the cache block tag to
the specified physical address, set the cache state to
Dirty Exclusive.

I, D Hit Invalidate If the cache block contains the speCified address, mark
the cache block invalid.

D Hit WriteBack If the cache block contains the speCified address, write
Invalidate back the data if it is dirty, and mark the cache block

invalid.

I Fill Fill the primary instruction cache block from memory.
If the CE bit of the Status register is set, the contents of
the ECC register is used instead of the computed parity
bits for addressed doubleword when written to the
instruction cache. Uses bit 13 to pick the set.

D Hit WriteBack If the cache block contains the specified address, and
the W bit is set, write back the data to memory and
clear the W bit.

I Hit WriteBack If the cache block contains the specified address, write
back the data unconditionally.

Operation:

T: vAddr f- ((offset1S)48 II offset1S .. 0) + GPR[base]

Exceptions:

(pAddr, uncached) f- AddressTranslation (vAddr, DATA)

CacheOp (op, vAddr, pAddr)

Coprocessor unusable exception

A-35

CPU Instruction Set Details , AppendixA

CFCz Move Control From
Coprocessor ·CFCz

31 26 25 21 20 16 15 11 10 o

rt
I COPz I

01 00 x x~
rd o

00000

6 5 5 5 11

Format:
CFCz rt, rd

Description:
The contents of coprocessor control register rd of coprocessor unit z are

loaded into general register rt.
This instruction is not valid for CPO.

Operation:

T: data f- (CCR[z,rdb1)32 II CCR[z,rd]
T + 1: GPR[rt] f- data

Exceptions:
Coprocessor unusable exception

*Opcode Bit Encoding:

CFCz Bit #31 30 29 28 27 26 25 24 23 22 21 0

CFC1 I 0 I 1 I 0 I 0 I 0 I 1 I 0 I 0 I 0 I 1 I 0 I I
Bit #31 30 29 28 27 26 25 24 23 22 21 0

CFC2V 11~0 I 0lQllO I 0 1~11 I oj I
Opcode I Coprocessor Suboperation

Coprocessor Unit Number

A-36

CPU Instruction Set Details Appendix A

COPz Coprocessor Operation COPz
31 26 25 24 o

COPz I co I o 1 00 x x* 1
cofun

6 1 25

Note: *See "Opcode Bit Encoding" on this page, or "CPU Instruction Opcode
Bit Encoding" at the end of Appendix A.

Format:
COPz cofun

Description:
A coprocessor operation is performed. The operation may specify and

reference internal coprocessor registers, and may change the state of the
coprocessor condition line, but does not modify state within the processor
or the cache/memory system. Details of coprocessor operations are
contained in Appendix B.

Operation:

T: CoprocessorOperation (z, cofun)

Exceptions:
Coprocessor unusable exception
Coprocessor interrupt or Floating-Point Exception

Opcode Bit Encoding:

COpz· Bit # 31 30 29 28 27 2625

COPO / 0 / 1 1 0 1 0 1 0 I 0 11
Bit # 31 30 29 28 27 26 25

o
1

o
COP1 1 0 1 1 1 0 1 0 1 0 11 11 1

Bit # 31 30 29 28 27 26 25 0

COP2/ 0 1 1 1 0 1 0 11 1 0 11 1

~L CO sub-?pcode (see end of Appendix A)
Coprocessor Unit Number

A-37

CPU Instruction Set Details Appendix A

CTCz Move Control to Coprocessor CTCz
31 26 25 21 20 16 15 11 10 a

COPZ
0100xx*

6

CT rt rd a
a 01 1 a 000 0000 0000

5 5 5 11

Note: *See "CPU Instruction Opcode Bit Encoding" at the end of Appendix A.

Format:
CTCz rtf rd

Description:
The contents of general register rt are loaded into control register rd of

coprocessor unit z.
This instruction is not valid for cpo.

Operation:

T: data ~ GPR[rt]
T + 1: CCR[z,rd] ~ data

Exceptions:
Coprocessor unusable

A-3S

CPU Instruction Set Details Appendix A

DADD Doubleword Add DADD
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 DADO

000000 00000 101100

6 5 5 5 5 6

Format:
DADD rd, rs, rt

Description:
The contents of general register rs and the contents of general register

rt are added to form the result. The result is placed into general register rd.
An overflow exception occurs if the carries out of bits 62 and 63 differ

(2's complement overflow). The destination register rd is not modified
when an integer overflow exception occurs.

Operation:

T: GPR[rd] ~GPR[rs] + GPR[rt]

Exceptions:
Integer overflow exception

A-39

CPU Instruction Set Details Appendix A

DADDI Doubleword Add Immediate DADDI
31 26 25 21 20 16 15 o

DADDI I
011000 ffi I rt immediate

6 5 5 16

Format:
DADDI rt, rs, immediate

Description:
The 16-bit immediate is sign-extended and added to the contents of

general register rs to form the result. The result is placed into general
register rt.

An overflow exception occurs if carries out of bits 62 and 63 differ (2's
complement overflow). The destination register rt is not modified when an
integer overflow exception occurs.

Operation:

T: GPR [rt] ~ GPR[rs] + (immediate1S)48II immediate1S .. 0

Exceptions:
Integer overflow exception

A-40

CPU Instruction Set Details Appendix A

DADDIU Doubleword Add
Immediate Unsigned DADDIU

31 26 25

DADDIU

011001

6

Format:

rs

5

21 20 16 15

rt

5

DADDIU rt, rs, immediate

Description:

o

immediate

16

The 16-bit immediate is sign-extended and added to the contents of
general register rs to form the result. The result is placed into general
register rt. No integer overflow exception occurs under any circumstances.

The only difference between this instruction and the DADDI
instruction is that DADDIU never causes an overflow exception.

Operation:

T: GPR [rt] ~ GPR[rs] + (immediate1S)48 II immediate1S .. 0

Exceptions:
None

A-41

CPU Instruction Set Details Appendix A

DADDU Doubleword Add Unsigned DADDU
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd a DADDU
000000 00000 101101

6 5 5 5 5 6

Format:
DADDU rd, rs, rt

Description:
The contents of general register rs and the contents of general register

rt are added to form the result. The result is placed into general register rd.
No overflow exception occurs under any circumstances.
The only difference between this instruction and the DADD instruction

is that DADDU never causes an overflow exception.

Operation:

T: GPR[rd] f-GPR[rs] + GPR[rt]

Exceptions:
None

A-42

CPU Instruction Set Details Appendix A

DDIV Doubleword Divide DDIV
31 26 25 21 20 16 15 6 5 o

SPECIAL rs rt 0 DDIV
000000 00 0000 0000 011110

6 5 5 10 6

Format:
DDIV rs, rt

Description:
The contents of general register rs are divided by the contents of

general register rt, treating both operands as 2's complement values. No
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to
check for a zero divisor and for overflow.

When the operation completes, the quotient word of the double result
is loaded into special register W, and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of those instructions are undefined. Correct operation requires separating
reads of HI or W from writes by two or more instructions.

Operation:

T-2: LO
HI

T-1: LO
HI

T: LO
HI

Exceptions:
None

~ undefined
~ undefined
~ undefined
~ undefined
~ GPR[rs] div GPR[rt]
~ GPR[rs] mod GPR[rt]

A-43

CPU Instruction Set Details Appendix A

DDIVU Doubleword Divide Unsigned DDIVU
31 26 25 21 20 16 15 6 5 o

SPECIAL rs rt 0 DDIVU
000000 000000 0000 011111

6 5 5 10 6

Format:
DDIVU rs, rt

Description:
The contents of general register rs are divided by the contents of

general register rt, treating both operands as unsigned values. No integer
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

This instruction is typically followed by additional instructions to
check for a zero divisor.

When the operation completes, the quotient word of the double result
is loaded into special register W, and the remainder word of the' double
result is loaded into special register HI.

If either of the two preceding instructions.is MFHI or MFLO, the results
of those instructions are undefined. Correct operation requires separating
reads of HI or W from writes by two or more instructions.

Operation:

T-2: LO
HI

T-1: LO
HI

T: LO
HI

Exceptions:
None

f- undefined
f- undefined
f- undefined
f- undefined
f- (0 II GPR[rs]) div (0 II GPR[rt])
f- (0 II GPR[rs]) mod (0 II GPR[rt])

A-44

CPU Instruction Set Details Appendix A

DIV Divide DIV
31

I

26 25 21 20 16 15 6 5 0

SPECIAL
I rs rt 0 DIV

I 000000 00 0000 0000 011010
6 5 5 10 6

Format:
DIV rs, rt

Description:
The contents of general register rs are divided by the contents of

general register rt, treating both operands as 2's complement values. No
overflow exception occurs under any circumstances, and the result of this
operation is undefined when the divisor is zero.

The operands must be valid sign-extended, 32-bit values.
This instruction is. typically followed by additional instructions to.

check for a zero divisor and for overflow.
When the operation completes, the quotient word of the double result

is loaded into special register W, . and the remainder word of the double
result is loaded into special register HI.
, . If either of the two preceding instructions is MFHI or MFLO, the results
of those instructions are undefined. Correct operation requires separating
reads of HI or W from writes by two or more instructions.

Operation:

T-2: LO
HI

T-1: LO
HI

T: q
r
LO
HI

Exceptions:
None

~ undefined
~ undefined
~ undefined
~ undefined
~ GPR[rsb1..o div GPR[rtb1..o
~ GPR~~sb1..0 mod GPR[rtb1 .. 0
~ (q31~2 II Q31..0
~ (r31) II r31..0

A-45

CPU Instruction Set Details Appendix A

DIVU Divide Unsigned DIVU
31 26 25 21 20 16 15 6 5 o

SPECIAL rs rt 0 DIVU
000000 000000 0000 011011

6 5 5 10 6

Format:
DIVU rs, rt

Description:
The contents of general register rs are divided by the contents of

general register rtf treating both operands as unsigned values. No integer
overflow exception occurs under any circumstances. and the result of this
operation is undefined when the divisor is zero.

The operands must be valid sign-extended. 32-bit values.
This instruction is typically followed by additional instructions to

check for a zero divisor.
When the operation completes. the quotient word of the double result

is loaded into special register W. and the remainder word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of those instructions are undefined. Correct operation requires separating
reads of HI or W from writes by two or more instructions.

Operation:

T-2: La
HI

T-1: La
HI

T: q
r
La
HI

Exceptions:
None

f- undefined
f- undefined
f- undefined
f- undefined
f- (0 II GPR[rsh1 .. 0) div (0 II GPR[rth1 .. 0)
f- (0 II ~fR[rsb1 .. 0) mod (0 II GPR[rtb1 .. 0)
f- (q31~2 II Q31 .. 0
f- (r31) II r31 .. 0

A-46

CPU Instruction Set Details Appendix A

DMFCO Doubleword Move From
System Control Coprocessor DMFCO

31 26 25 21 20 16 15 11 10 o

COPO DMF rt rd 0
010000 00001 o 0 0 0 0 0 0 0 0 00

6 5 5 5 11

Format:
DMFCO rt, rd

Description:
The contents of coprocessor register rd of the CPO are loaded into

general register rt.
This operation is defined in kernel mode regardless of the setting of the

Status.KX bit. Execution of this instruction with in supervisor mode with
Status.SX = 0 or in user mode with UX = 0, causes a reserved instruction
exception. All 64-bits of the general register destination are written from
the coprocessor register source. The operation of DMFCO on a 32-bit
coprocessor 0 register is undefined.

Operation:

T: data ~CPR[O,rd]

T + 1: GPR[rt] ~ data

Exceptions:
Coprocessor unusable exception
Reserved instruction exception for supervisor mode with Status.SX = 0

or user mode with Status. UX = o.

A-47

CPU Instruction Set Details Appendix A

DMTCO Doubleword Move To
System Control Coprocessor DMTCO

31 26 25 21 20 16 15 11 10 o

COPO DMT rt rd 0
010000 00101 000 0000 0000

6 5 5 5 11

Format:
DMTCO rt, rd

Description:
The contents of general register rt are loaded into coprocessor register

rd of the CPO.
This operation is defined in kernel mode regardless of the setting of the

Status.KX bit. Execution of this instruction with in supervisor mode with
Status.SX = 0 or in user mode with UX = 0, causes a reserved instruction
exception.

All 64-bits of the coprocessor 0 register are written from the general
register source. The operation of DMTCO on a 32-bit coprocessor 0 register
is undefined.

Because the state of the virtual address translation system may be
altered by this instruction, the operation of load instructions and store
instructions immediately prior to and after this instruction are undefined.

Operation:

T: data ~ GPR[rt]

T +1: CPR[O,rd] ~ data

Exceptions:
Reserved instruction exception for supervisor mode with Status.SX = 0

or user mode with Status. UX = o.

A-48

CPU Instruction Set Details AppendlxA

DMULT Doubleword Multiply DMULT
31 26 25 21 20 16 15 6 5 a

SPECIAL rs rt a DMULT
000000 00 0000 0000 011100

6 5 5 10 6

Format:
DMULTrs, rt

Description:
The contents of general registers rs and rt are multiplied, treating both

operands as 2's complement values. No integer overflow exception occurs
under any circumstances.

When the operation completes, the low-order word of the double result
is loaded into special register W, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of these instructions are undefined. Correct operation requires separating
reads of HI or W from writes by a minimum of two other instructions.

Operation:

Exceptions:
None

T-2: LO
HI

T-1: LO
HI

T: t
LO
HI

~ undefined
~ undefined
~ undefined
~ undefined
~ GPR[rs] * GPR[rt]
~ t63 .. 0
~ t127 .. 64

A-49

CPU Instruction Set Details Appendix A

DMULTU Doubleword Multiply
Unsigned DMULTU

31 26 25 21 20 16 15 6 5 a

SPECIAL rs rt a DMULTU
000000 00 0000 0000 011101

6 5 5 10 6

Format:
DMULTU rs, rt

Description:
The contents of general register rs and the contents of general register

rt are multiplied, treating both operands as unsigned values. No overflow
exception occurs under any circumstances.

When the operation completes, the low-order word of the double result
is loaded into special register W,and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of these instructions are undefined. Correct operation requires separating
reads of HI or W from writes by a minimum of two instructions.

Operation:

Exceptions:
None

T -2: LO f- undefined
HI f- undefined

T -1: LO f- undefined
HI f- undefined

T: t f- (0 II GPR[rs]) * (0 II GPR[rt])
LO f- t63 .. 0
HI f-t127 .. 64

A-50

CPU Instruction Set Details Appendix A

DSLL Doubleword Shift Left Logical DSLL
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL 0 rt rd sa DSLL
000000 00000 111000

6 5 5 5 5 6

Format:
DSLL rd, rt, sa

Description:
The contents of general register rt are shifted left by sa bits, inserting

zeros into the low-order bits. The result is placed in register rd.

Operation:

T: Sf- 0 II sa

GPR[rd] f- GPR[rt](63-S) .. O II OS

Exceptions:
None

A-51

CPU Instruction Set Details Appendix A

DSLLV Doubleword Shift Left
Logical Variable DSLLV

31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 DSLLV
000000 00000 010100

6 5 5 5 5 6

Format:
DSLLV rd, rt, rs

Description:
The contents of general register rt are shifted left by the number of bits

specified by the low-order six bits contained in general register rs, inserting
zeros into the low-order bits. The result is placed in register rd.

Operation:

T: s ~ GPR[rs]s .. o

GPR[rd]~ GPR[rt]{63-S) .. O II OS

Exceptions:
None

A-52

CPU Instruction Set Details

DSLL32
31 26 25

SPECIAL 0

Doubleword Shift Left
Logical + 32

21 20 16 15 11 10

rt rd
000000 00000

6 5 5 5

Format:
DSLL32 rd, rt, sa

Description:

Appendix A

DSLL32
6 5 o

sa DSLL32
111100

5 6

The contents of general register rt are shifted left by 32+sa bits,
inserting zeros into the low-order bits. The result is placed in register rd.

Operation:

T:s~ 111 sa

GPR[rd]~ GPR[rt](63-S) .. O II OS

Exceptions:
None

A-53

CPU Instruction 'Set Details Appendix A

DSRA Doubleword
Shift Right Arithmetic DSRA

31 26 25 21 20 16 15 11 10 6 5 a

SPECIAL a rt rd sa DSRA
000000 00000 111011

6 5 5 5 5 6

Format:
DSRA rd, rt, sa

Description:
The contents pf general register rt are shifted right by sa bits, sign­

extending the high-order bits. The result is placed in register rd.

Operation:

T: Sf-a II sa

GPR[rd]f- (GPR[rt]63)$ II GPR[rt] 63 .. $

Exceptions:
None

A-54

CPU Instruction Set Details Appendix A

DSRAV Doubleword Shift Right
Arithmetic Variable DSRAV

31 26 25 21 20 16 15 11 10 6 5 a

SPECIAL rs rt rd a DSRAV
000000 00000 010111

6 5 5 5 5 6

Format:
DSRAV rd. rtf rs

Description:
The contents of general register rt are shifted right by the number of

bits specified by the low-order six bits of general register rs. sign-extending
the high-order bits. The result is placed in register rd.

Operation:

T: 5 ~ GPR[rs]s .. o

GPR[rd] ~ (GPR[rt]63)S II GPR[rt]63 .. s

Exceptions:
None

A-55

CPU Instruction Set Details Appendix A

DSRA32 Doubleword Shift Right
Arithmetic + 32 DSRA32

31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL 0 rt rd sa DSRA32
000000 00000 1 1 1 111

6 5 '. 5 5 5 6

Format:
DSRA32 rd, rt, sa

Description:
The contents of general register rt are shifted right by 32+sa bits, sign­

extending the high-order bits. The result is placed in register rd.

Operation:

T: s ~1 II sa

GPR[rd] ~ (GPR[rt]63)S II GPR[rt] 63 .. 5

Exceptions:
None

A-56

CPU. Instruction Set Details

DSRL
31 26 25

SPECIAL a

Doubleword
Shift Right Logical

21 20 16 15 11 10

rt rd
000000 00000

6 5 5 5

Format:
DSRL rd. rt. sa

Description:

Appendix A

DSRL
6 5 a

sa DSRL
111010

5 6

The contents of general register rt are shifted right by sa bits. inserting
zeros into the high-order bits. The result is placed in register rd.

Operation:

T: s ~ a II sa

GPR[rd] ~ as II GPR[rt]63 .. s

Exceptions:
None

A-57

CPU Instruction Set Details Appendix A

DSRLV ~oubleword Shift Right
Logical Variable DSRLV

31 26 25 21 20 16 15 11 10 6 5 a

SPECIAL rs rt rd a DSRLV
000000 00000 010110

6 5 5 5 5 6

Format:
DSRLV rd, rt, rs

Description:
The contents of general register rt are shifted right by the number of

bits specified by the low-order six bits of general register rs, inserting zeros
into the high-order bits. The result is placed in register rd.

Operation:

T: s ~ GPR[rs]s .. o

GPR[rd] ~ OS II GPR[rt]63 .. s

Exceptions:
None

A-58

CPU Instruction Set Details

DSRl32 Doubleword Shift Right
Logical + 32

31 26 25 21 20 16 15 11 10

SPECIAL 0 rt rd
000000 00000

6 5 5 5

Format:
DSRL32 rd, rt, sa

Description:

Appendix A

DSRl32
6 5 o

sa DSRL32
111110

5 6

The contents of general register rt are shifted right by 32+sa bits,
inserting zeros into the high-order bits. The result is placed in register rd.

Operation:

T: s ~ 1 "sa
GPR[rd] ~ OS II GPR[rt]63 .. s

Exceptions:
None

A-59

CPU Instruction Set Details Appendix A

DSUB Doubleword Subtract DSUB
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 DSUB
000000 00000 101110

6 5 5 5 5 6

Format:
DSUB rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of

general register rs to form a result. The result is placed into general
register rd.

The only difference between this instruction and the DSUBU
instruction is that DSUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 62
and 63 differ (2's complement overflow). The destination register rd is not
modified when an integer overflow exception occurs.

Operation:

T: GPR[rd] ~ GPR[rs] - GPR[rt]

Exceptions:
Integer overflow exception

A-60

CPU Instruction Set Details Appendix A

D SUB U Doubleword Subtract Unsigned DSUBU
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 DSUBU
000000 00000 10111 1

6 5 5 5 5 6

Format:
DSUBU rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of

general register rs to form a result. The result is placed into general
register rd. .

The only difference between this instruction and the DSUB instruction
is that DSUBU never traps on overflow. No integer overflow exception
occurs under any circumstances.

Operation:

T: GPR[rd] ~ GPR[rs] - GPR[rt]

Exceptions:
None

A-61

CPU Instruction Set Details . Appendix A

ERET Exception Return ERET
31 26 2524 6 5 a

COPO co a ERET
010000 1 000 0000 0000 0000 0000 011000

6 1 19 6

Format:
ERET

Description:
ERET is the R4650 instruction for returning from an interrupt,

exception, or error trap. Unlike a branch or jump instruction, ERET does
not execute the next instruction.

ERET must not itself be placed in a branch delay slot.
If the processor is servicing an error trap (SR2 = 1), then load the PC

from the ErrorEPC and clear the ERL bit of the Status register (SR~.
Otherwise (SR2 = 0), load the PC from the EPC, and clear the EXL bit of the
Status register (SRI).

An ERET executed between a LL and SC also causes the SC to fail.

Operation:

Exceptions:

T: if SR2 = 1 then
PC f- ErrorEPC
SR f- SR31 .. 3 II a II SR1 .. 0

else
PC f- EPC
SR f- SR31 .. 2 II a II SRo

endif
LLbit f- a

Coprocessor unusable exception

A-62

CPU Instruction Set Details Appendix A

J
31

Jump J
26 25 o

J
000010

target

6 26

Format:
J target

Description:
The 26-bit target address is shifted left two bits and combined with the

high-order bits of the address of the delay slot. The program
unconditionally jumps to this calculated address with a delay of one
instruction.

Operation:

T: temp f- target
T +1: PC f- PC63 .. 28 II temp 1102

Exceptions:
None

A-63

CPU Instruction Set Details

JAL Jump And Link

31 26 25

JAL
000011

6

Format:
JAL target

Description:

target

26

Appendix A

JAL
o

The 26-bit target address is shifted left two bits and combined with the
high-order bits of the address of the delay slot. The program
unconditionally jumps to this calculated address with a delay of one
instruction. The address of the instruction after the delay slot is placed in
the link register, r31.

Operation:

T: temp ~ target
GPR[31] ~ PC + 8

T+1: PC ~ PC 63 .. 2811 temp II 02

Exceptions:
None

A-64

CPU Instruction Set Details Appendix·A

JALR Jump And Link Register JALR
31 26 25 21 20 16 15 11 10 6 5 a

SPECIAL rs a rd a JALR
000000 00000 00000 001001

6 5

Format:
JALRrs
JALRrd, rs

Description:

5 5 5 6

The program unconditionally jumps to the address contained in
general register rs, with a delay of one instruction. The address of the
instruction after the delay slot is placed in general register rd. The default
value of rd, if omitted in the assembly language instruction, is 31.

Register specifiers rs and rd may not be equal, because such an
instruction does not have the same effect when re-executed. However, an
attempt to execute this instruction is not trapped, and the result of
executing such an instruction is undefined.

Since instructions must be word-aligned, a Jump and Link Register
instruction must specify a target register (rs) whose two low-order bits are
zero. If these low-order bits are not zero, an address exception will occur
when the jump target instruction is subsequently fetched.

Operation:

T: temp f- GPR [rs]
GPR[rd] f- PC + 8

T + 1 : PC f- temp

Exceptions:
None

A-65

CPU Instruction Set Details Appendix A

JR Jump Register JR
31 26 25 2120 65 a

SPECIAL rs a JR
000000 000 0000 0000 0000 001000

6 5 15 6

Format:
JR rs

Description:
The program unconditionally jumps to the address contained in

general register rs, with a delay of one instruction.
Since instructions must be word-aligned, a Jump Register instruction

must specify a target register (rs) whose two low-order bits are zero. If these
low-order bits are not zero, an address exception will occur when the jump
target instruction is subsequently fetched.

Operation:

T: temp f- GPR[rs]
T + 1 : PC f- temp

Exceptions:
None

A-66

CPU Instruction Set Details Appendix A

LB Load Byte LB
31 26 25 21 20 16 15 o

LB
100000

base rt offset

6 5 5 16

Format:
LB rt. offset(base)

Description:
The I6-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of the byte at the
memory location specified by the effective address are sign -extended and
loaded into general register rt.

Operation:

T: vAddr ~ «(offset1S)48 II offset1s .. 0) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr ~ pAddrpSIZE _ 1 .. 3 II (pAddr2 .. 0 xor ReverseEndian3)

mem ~ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)
byte ~ vAddr2 .. 0 xor BigEndianCPU3

GPR[rt] ~ (mem7+8*byte)S6 II mem7+8*byte .. 8*byte

Exceptions:
Bus error exception
Address error exception

A-67

CPU Instruction Set Details Appendix. A

LBU Load Byte Unsigned LBU
31 26 25 21 20 16 15 o

LBU base rt offset
100100

655 16

Format:
LBU rt, offset(base)

Description:
The 16-bit oIfsetis sign-extended and added to the contents of general

register base to form a virtual address. The contents of the byte at the
memory location specified by the effective address are zero-extended and
loaded into general register rt.

Operation:

T: vAddr ~ ((offset15)48 II offset15 .. 0) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr ~ pAddrpSIZE -1 .. 3 II (pAddr2 .. 0 xor ReverseEndian3)

mem ~ LoadMemory (uncached, BYTE, pAddr, vAddr, DATA)

byte ~ vAddr2 .. 0 xor BigEndianCPU3

GPR[rt] ~ 056
II mem7+8* byte .. 8* byte

Exceptions:
Bus error exception
Address error exception

A-68

CPU Instruction Set Details Appendix A

LD Load Doubleword LD
31 26 25 21 20 16 15 o

LD
110111

base rt offset

6 5 5 16

Format:
LD rt, offset(base)

Description:
The I6-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of the 64-bit
doubleword at the memory location specified by the effective address are
loaded into general register ri.

If any of the three least-significant bits of the effective address are non­
zero, an address error exception occurs.

Operation:

T: vAddr ~ ((offset15)48 II offset15 .. 0) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)

GPR[rt] ~ mem

Exceptions:
Bus error exception
Address error exception

A-69

CPU Instruction Set Details Appendix A

LDCz Load DoublewordTo Coprocessor LDCz
31 26 25 21 20 16 15 0

LDCz I base rt offset

I 1 1 0 1 x x* .
6 5 5 16

Note: *See "Opcode Bit Encoding" on this page, or "CPU Instruction Opcode
Bit Encoding" at the end of Appendix A.

Format:
LDCz rt, offset(base}

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The processor reads a doubleword
from the addressed memory location and makes the data available to
coprocessor unit z. The manner in which each coprocessor uses the data
is defined by the individual coprocessor specifications.

If any of the three least-significant bits of the effective address are non­
zero, an address error exception takes place.

This instruction is not valid for use with CPO.
This instruction is undefined when the least-significant bit of the

rt field is non-zero.
Execution of the instruction referencing coprocessor 3 causes a

reserved instruction exception, not a coprocessor unusable exception.

Operation:

T: vAddr ~ ((offset15)48 II offset15 .. 0) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
mem ~ LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
COPzLD (rt, mem)

Exceptions:
Bus error exception
Address error exception
Coprocessor unusable exception
Reserved instruction exception (coprocessor 3)

Opcode Bit Encoding:

LDCz Bit #31 30 29 28 27 26

LDC 11 1 I 1 1 0 1 1 I 0 1 1 I
o
I

Bit # 31 30 29

LDC21 1 1 1 1 0 1 1

Opcode

A-70

o
1

Coprocessor Unit Number

CPU Instruction Set Details Appendix A

LDL Load Doubleword Left LDL
31 26 25 21 20 1615 o

LDL
011010

base rt offset

6

address 8

address 0

5 5 16

Format:
LDL rtf offset(base)

Description:
This instruction can be used in combination with the LDR instruction

to load a register with eight consecutive bytes from memory. when the
bytes cross a doubleword boundary. LDL loads the left portion of the
register with the appropriate part of the high-order doubleword; LDR loads
the right portion of the register with the appropriate part of the low-order
doubleword.

The LDL instruction adds its Sign-extended 16-bit offset to the contents
of general register base to form a virtual address which can specify an
arbitrary byte. It reads bytes only from the doubleword in memory which
contains the specified starting byte. From one to eight bytes will be loaded.
depending on the starting byte specified.

Conceptually. it starts at the specified byte in memory and loads that
byte into the high-order (left-most) byte of the register; then it loads bytes
from memory into the register until it reaches the low-order byte of the
doubleword in memory. The least-significant (right-most) byte(s) of the
register will not be changed.

register

before 1 AlB 1 C 1 DIE I FIG 1 H 1 $24

LDL $24,3($0)

after 13 I 4 I 5 I 6 I 7 I FIG I H I $24

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an. immediately preceding
load instruction which specifies register rt and a following LDL (or LDR)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.

A-71

CPU Instruction Set Details Appendix A

vAddr2 .. o

0
1
2
3

4

5
6
7

Operation:

T: vAddr ~ ((offset15)48II offset15 .. 0) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr ~ pAddrpSIZE-1 .. 3 II (pAddr2 .. 0 xor ReverseEndian3)

if BigEndianMem = 0 then
pAddr ~ pAddrpsIZE-1 .. 3 11 03

endif
byte ~ vAddr2 .. 0 xor BigEndianCPU3

mem ~ LoadMemory (uncached, byte, pAddr, vAddr, DATA)

GPR[rt] ~ mem7+8*byte .. o II GPR[rt]55-8*byte .. o

Given a doubleword in a register and a doubleword in memory. the
operation of LDL is as follows:

LDL

Register A B C D E F G H

Memory J K L M N o P

BigEndianCPU = 0 BigEndianCPU = 1

destination type offset destination
LEM BEM

P BCDEFGH 0 0 7 I J KLMNOP

OPCDEFGH 1 0 6 JKLMNOPH

NOPDEFGH 2 0 5 KLMNOPGH

MNOPEFGP 3 0 4 LMNOPFGH

L MNOPFGH 4 0 3 MNOPEFGH

KLMNOPGH 5 0 2 NOPDEFGH

J KL MNOPH 6 0 1 OPCDEFGH

I J KLMNOP 7 0 0 PBCDEFGH

Key to Table
LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see on page 2-3) sent to memory
Offset pAddr2 .. 0 sent to memory

Exceptions:
Bus error exception
Address error exception

A-72

type offset

LEM BEM

7 0 0

6 0 1
5 0 2
4 0 3

3 0 4
2 0 5
1 0 6
0 0 7

CPU Instruction Set Details Appendix A

LOR Load Doubleword Right lDR
31 26 25 21 20 16 15 o

LOR
011011

base rt offset

6 5 5 16

Format:
LOR rt, offset(base)

Description:
This instruction can be used in combination with the LOL instruction

to load a register with eight consecutive bytes from memory, when the
bytes cross a doubleword boundary. LOR loads the right portion of the
register with the appropriate part of the low-order doubleword; LOL loads
the left portion of the register with the appropriate part of the high-order
doubleword.

The LOR instruction adds its sign-extended 16-bit offset to the
contents of general register base to form a virtual address which can
specify an arbitrary byte. It reads bytes only from the doubleword in
memory which contains the specified starting byte. From one to eight
bytes will be loaded, depending on the starting byte specified.

Conceptually, it starts at the specified byte in memory and loads that
byte into the low-order (right-most) byte of the register; then it loads bytes
from memory into the register until it reaches the high-order byte of the
doubleword in memory. The most significant (left-most) byte(s) of the
register will not be changed.

register
address 8
address 0 before I A I B I c I 0 I ElF I G I H I $24

LOR $24,4($0)
register

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LOR (or LOL)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.

A-73

CPU Instruction Set Details Appendix A

vAddr2 .. o

0
1

2

3
4
5
6
7

Operation:

T: vAddr f- ((offset15)48II offset15 .. 0) + GPR[base]

(pAddr, uncached) f- AddressTranslation (vAddr, DATA)

pAddr f- pAddrpSIZE-1 .. 3 II (pAddr2 .. 0 xor ReverseEndian3)

if BigEndianMem = 1 then
pAddr f- pAddr31 .. 311 03

endif
byte f- vAddr2 .. 0 xor BigEndianCPU3

mem f- LoadMemory (uncached, byte, pAddr, vAddr, DATA)

GPR[rt] f- GPR[rt]63 .. 64-8*byte II mem63 .. 8*byte

Given a doubleword in a register and a doubleword in memory. the
operation of LOR is as follows:

LOR
Register A B C D E F G H

Memory J K L M N o P

BigEndianCPU = 0 BigEndianCPU = 1

destination type offset destination
LEM BEM

I J KLMNOP 7 0 0 ABCDEFGI

AI J K L M N 0 6 1 0 ABCDEFI J
A B I JKLMN 5 2 a ABCDEI J K

A

A

A

A

A

BCI J KLM 4 3 a ABCDI JKL

BCD I J K L 3 4 a ABC I J K L M

BCDEI JK 2 5 a A B I J K L M N

BCDEFI J 1 6 a AI JKLMNO

BCDEFGI 0 7 a I J KL MNOP

Key to Table
LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see on page 2-3) sent to memory
Offset pAddr2 .. 0 sent to memory

Exceptions:
Bus error exception
Address error exception

A-74

type offset

LEM BEM

0 7 0
1 6 a
2 5 a
3 4 a
4 3 a
5 2 a
6 1 a
7 a a

CPU Instruction Set Details Appendix A

LH Load Halfword LH
31 26 25 21 20 16 15 o

LH
100001

base rt offset

6 5 5 16

Format:
LH rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of the halfword at the
memory location specified by the effective address are sign-extended and
loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an
address error exception occurs.

Operation:

T: vAddr f- ((offset1S)48 II offset1S .. 0) + GPR[base]
(pAddr, uncached) f- AddressTranslation (vAddr, DATA)
pAddr f- pAddrpSIZE -1 .. 311 (pAddr2 .. 0 xor (ReverseEndian II 0))
mem f- LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte f- vAddr2 .. 0 xor (BigEndianCPU2 II 0)
GPR[rt] f- (mem1S+8*byte) 16 II mem1S+8*byte .. 8* byte

Exceptions:
Bus error exception
Address error exception

A-75

CPU Instruction Set Details Appendix A

LHU Load Halfword Unsigned LHU
31 26 25 21 20 16 15 o

LHU
100101

base rt offset

6 5 5 16

Format:
LHU rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of the halfword at the
memory location specified by the effective address are zero-extended and
loaded into general register rt.

If the least-significant bit of the effective address is non-zero, an
address error exception· occurs.

Operation:

T: vAddr ~ «offset15)48 II offset15 .. 0) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr ~ pAddrpSIZE _ 1 .. 3 II (pAddr2 .. 0 xor (ReverseEndian2 II 0»
mem ~ LoadMemory (uncached, HALFWORD, pAddr, vAddr, DATA)
byte ~ vAddr2 .. 0 xor (BigEndianCPU2 II 0)
GPR[rt] ~ 048 II mem15+8*byte .. 8*byte

Exceptions:
Bus Error exception
Address error exception

A-76

CPU Instruction Set Details Appendix A

LL Load Linked LL
31 26 25 21 20 16 15 o

LL
110000

base rt offset

6 5 5 16

Format:
LL rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of the word at the
memory location specified by the effective address are loaded into general
register rt. The loaded word is sign -extended.

This instruction implicitly performs a SYNC operation; all loads and
stores to shared memory fetched prior to the LL must access memory
before the LL, and loads and stores to shared memory fetched subsequent
to the LL must access memory after the LL. The processor begins checking
the accessed word for modification by other processors and devices.

Load Linked and Store Conditional can be used to atomically update
memory locations as shown:

LI:
LL TI, (TO)
ADD T2, TI, I
SC T2, (TO)
BEQ T2, 0, LI
NOP

This atomically increments the word addressed by TO. Changing the
ADD to an OR changes this to an atomic bit set.

This instruction is available in User mode, and it is not necessary for
CPO to be enabled.

The operation of LL is undefined if the addressed location is uncached
and, for synchronization between multiple processors, the operation of LL
is undefined if the addressed location is noncoherent. A cache miss that
occurs between LL and SC may cause SC to fail, so no load or store,
operation should occur between LL and SC, otherwise the SC may never
be successful. Exceptions also cause SC to fail, so persistent exceptions
must be avoided.

If either of the two least-significant bits of the effective address are non­
zero, an address error exception takes place.

A-77

CPU Instruction Set Details Appendix A

Operation:

T: vAddr ~ ((offset15)48 II offset15 .. 0) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr ~ pAddrpSIZE-1 .. 3 II (pAddr2 .. 0 xor (ReverseEndian II 02))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ~ vAddr2 0 xor (BigEndianCPU 1102) .. 32
GPR[rt] ~ (mem31+8*byte) II mem31+8*byte .. 8*byte
LLbit ~ 1
SyncOperationO

Exceptions:
Bus error exception
Address error exception

A-78

CPU Instruction Set Details Appendix A

LLD Load Linked Doubleword lLD
31 26 25 21 20 16 15 o

LLD
110100

base rt offset

6 5 5 16

Format:
LLD rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of the doubleword at
the memory location specified by the effective address are loaded into
general register rt.

This instruction impliCitly performs a SYNC operation; all loads and
stores to shared memory fetched prior to the LLD must access memory
before the LLD, and loads and stores to shared memory fetched
subsequent to the LLD must access memory after the LLD. The processor
begins checking the accessed doubleword for modification by other
processors and devices.

Load Linked Doubleword and Store Conditional Doubleword can be
used to atomically update memory locations:

LI:
LLD TI, (TO)
ADD T2, TI, 1
SCD T2, (TO)
BEQ T2, 0, Ll
NOP

This atomically increments the word addressed by TO. Changing the
ADD to an OR changes this to an atomic bit set.

The operation of LLD is undefined if the addressed location is
uncached and, for synchronization between multiple processors, the
operation of LLD is undefined if the addressed location is noncoherent. A
cache miss that occurs between LLD and SCD may cause SCD to fail, so
no load or store operation should occur between LLD and SCD, otherwise
the SCD may never be successful. Exceptions also cause SCD to fail, so
perSistent exceptions must be avoided.

This instruction is available in User mode, and it is not necessary for
CPO to be enabled.

If any of the three least-significant bits of the effective address are non­
zero, an address error exception takes place.

A-79

CPU Instruction Set Details Appendix A

Operation:

T: vAddr f- ((offset15)4tl " offset15 .. 0) + GPR[base]
(pAddr, uncached) f- AddressTranslation (vAddr, DATA)

mem f- LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
GPR[rt] f- mem
LLbit f- 1
SyncOperationO

Exceptions:
Bus error exception
Address error exception

A-SO

CPU Instruction Set Details Appendix A

LUI . Load Upper Immediate LUI
31 26 25 21 20 16 15 a

LUI rt immediate
a a 1 1 1 1

a
00000

6 5 5 16

Format:
LUI ct, immediate

Description:
The 16-bit immediate is shifted left 16 bits and concatenated to 16 bits

of zeros. The result is placed into general register rt. The loaded word is
sign-extended.

Operation:

T: GPR[rt] f- (immediate1S)32 II immediate II 016

Exceptions:
None

A-S1

CPU Instruction Set Details Appendix A

LW Load Word LW
31 26 25 21 20 16 15 o

LW
100011

base rt offset

6 5 5 16

Format:
LW rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of the word at the
memory location specified by the effective address are loaded into general
register rt. The loaded word is sign-extended.

If'either of the two least-significant bits of the effective address is non­
zero, an address error exception occurs.

Operation:

T: vAddr ~ ((offset1S)48 II offset1S .. 0) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr ~ pAddrpSIZE-1 .. 311 (pAddr2 .. 0 xor (ReverseEndian II 02))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)
byte ~ vAddr2 .. 0 xor (BigEndianCPU II 02)
GPR[rt] ~ (mem31+8*byte)32 II ·mem31+8*byte .. 8*byte

Exceptions:
Bus error exception
Address error exception

A-82

CPU Instruction Set Details Appendix A

lWCz Load Word To Coprocessor -LWCz
31 26 25 21 20 16 15 o

LWCz I
1 1 00 x x*

base rt offset

6 5 5 16

Note: *See "Opcode Bit Encoding" on this page, or "CPU Instruction Opcode
Bit Encoding" at the end of Appendix A.

Format:
LWCz rt, offset(base)

Description:
The 16-bit oifsetis sign-extended and added to the contents of general

register base to form a virtual address. The processor reads a word from
the addressed memory location, and makes the data available to
coprocessor unit z.

The manner in which each coprocessor uses the data is defined by the
individual coprocessor specifications.

If either of the two least-significant bits of the effective address is non­
zero, an address error exception occurs.

This instruction is not valid for use with CPO.

Operation:

T: vAddr f- «offset1S)48 II offset1S .. 0) + GPR[base}
(pAddr, uncached)f- AddressTranslation (vAddr, DATA)
pAddr f- pAddrps,ZE-1 .. 3 II (pAddr2 .. 0 xor (ReverseEndian II 02»
mem (- LoadMemory (uncached, DOUBLEWORD, pAddr, vAddr, DATA)
byte f- vAddr2 .. 0 xor (BigEndianCPU II 02)
COPzLW (byte, rt, mem)

Exceptions:
Bus error exception
Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

lWCz Bit #31 30 29 28 27 26

LWC11 1 I 1 I 0 I 0 I 0 I 1 I
o
I

Bit #31 30 29 28 27 26 o
LWC21 1 I 1 I 0 I 0 I 1 I 0 I I

'----- --_/'--- ~ V ~
Opcode Coprocessor Unit Number

A-S3

CPU Instruction Set Details Appendix A

lWL Load Word Left LWL
31 26 25 21 20 16 15 o

offset

655 16

Format:
LWL rtf offset(base)

Description:
This instruction can be used in combination with the LWR instruction

to load a register with four consecutive bytes from memory. when the bytes
cross a word boundary. LWL loads the left portion of the register with the
appropriate part of the high-order word; LWR loads the right portion of the
register with the appropriate part of the low-order word.

The LWL instruction adds its sign-extended 16-bit offset to the
contents of general register base to form a virtual address which can
specify an arbitrary byte. It reads bytes only from the word in memory
which contains the specified starting byte. From one to four bytes will be
loaded. depending on the starting byte specified. The loaded word is sign­
extended.

Conceptually. it starts at the specified byte in memory and loads that
byte into the high-order (left-most) byte of the register; then it loads bytes
from memory into the register until it reaches the low-order byte of the
word in memory. The least-significant (right-most) byte(s) of the register
will not be changed.

memo~
(big-en Ian) register

address 41 ~I ~I ~I 7
before I AI 81 cl 01 $24 3 address 0

~($O)
after I 1 2 3 0 1 $24

The contents of general register rt are internally bypassed within the
processor so. that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LWL (or LWR)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.

A-84

CPU Instruction Set Details Appendix A

Operation:

T: vAddr ~ «offset1S)48II offset1S .. 0) + GPR[base]

vAddr2 .. 0

0
1
2
3

4
5
6

7

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr ~pAddrpSIZE-1 .. 3 " (pAddr2 .. 0 xor ReverseEndian3)
if BigEndianMem = 0 then

pAddr ~ pAddrpSlzE-1 .. 3" 03

end if
byte ~ vAddr1..o xor BigEndianCPU2

word ~ vAddr2 xor BigEndianCPU
mem ~ LoadMemory (uncached, 0 " byte, pAddr, vAddr, DATA)
temp ~ mem31+32*word-8*byte .. 32*word II GPR[rt]23-8*byte .. o
GPR[rt] ~ (temp31)32 II temp

Given a doubleword in a register and a doubleword in memory. the
operation of LWL is as follows:

LWL
Register A B C D E F G H

Memory J K L M N o p

BigEndianCPU = 0 BigEndianCPU = 1

destination type offset destination
LEM BEM

SSSSPFGH 0 0 7 SSSSI JKL
SSSSOPGH 1 0 6 SSSSJKLH
SSSSNOPH 2 0 5 SSSSKLGH
SSSSMNOP 3 0 4 SSSSLFGH
SSSSLFGH 0 4 3 SSSSMNOP
SSSSKLGH 1 4 2 SSSSNOPH
SSSSJKLH 2 4 1 SSSSOPGH
S S S S I J K L 3 4 0 SSSSPFGH

Key to Table
LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see on page 2-3) sent to memory
Offset pAddr2 .. 0 sent to memory
S sign-extend of destination31

Exceptions:
Bus error exception
Address error exception

A-85

type offset

LEM BEM

3 4 0
2 4 1
1 4 2
0 4 3

3 0 4
2 0 5
1 0 6

0 0 7

CPU Instruction Set Details Appendix A

LWR Load Word Right LWR
31 26 25 21 20 o

LWR base rt offset
100110
655 16

address 4
address 0

Format:
LWR rtf offset(base)

Description:
This instruction can be used in combination with the LWL instruction

to load a register with four consecutive bytes from memory. when the bytes
cross a word boundary. LWR loads the right portion of the register with
the appropriate part of the low-order word; LWL loads the left portion of
the register with the appropriate part of the high-order word.

The LWR instruction adds its Sign-extended 16-bit offset to the
contents of gerieral register base to form a virtual address which can
specify an arbitrary byte. It reads bytes only from the word in memory
which contains the specified starting byte. From one to four bytes will be
loaded. depending on the starting byte specified. The loaded word is sign­
extended.

Conceptually. it starts at the specified byte in memory and loads that
byte into the low-order (right-most) byte of the register; then it loads bytes
from memory into the register until it reaches the high-order byte of the
word in memory. The most significant (left-most) byte(s) of the register will
not be changed.

register

A B c D $24
~--~--~--~--~

A 8 c 4

The contents of general register rt are internally bypassed within the
processor so that no NOP is needed between an immediately preceding
load instruction which specifies register rt and a following LWR (or LWL)
instruction which also specifies register rt.

No address exceptions due to alignment are possible.

A-S6

CPU Instruction Set Details Appendix A

vAddr2 .. 0

0

1
2
3
4

5
6

7

Operation:

T: vAddr f- ((offset1S)48 II offset15 .. 0) + GPR[base]
(pAddr, uncached) f- AddressTranslation (vAddr, DATA)
pAddr f- pAddrpSIZE-1 .. 3 " (pAddr2 .. O xor ReverseEndian3)
if BigEndianMem = 1 then

pAddr f- pAddrpSIZE-31 .. 3" 03

endif
byte f- vAddr1 .. 0 xor BigEndianCPU2

word f- vAddr2 xor BigEndianCPU
mem f- LoadMemory (uncached, 0 " byte, pAddr, vAddr, DATA)
temp f- GPR[rtb1 .. &28*byte .. o II mem31+32*word-32*word+8*byte
GPR[rt] f- (temP31) . "temp

Given a word in a register and a word in memory. the operation ofLWR
is as follows:

LWR
Register I A B I C 0 E F G H

Memory I J I· K L M N o P

BigEndianCPU = 0 BigEndianCPU = 1

destination type
offset destination

LEM BEM

SSSSMNOP 0 0 4 S S S. S E F G I

SSSSEMNO 1 1 4 SSSSEFI J
SSSSEFMN 2 2 4 SSSSEI J K
S SSSEFGM 3 3 4 SSSSI JKL
S S S S I J K L 0 4 0 SSSSEFGM
SSSSEI JK 1 5 0 SSSSEFMN

S SSSEFI J 2 6 0 SSSSEMNO
SSSSEFGI 3 7 0 SSSSMNOP

Key to Table
LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see on page 2-3) sent to memory
Offset pAddr2 .. 0 sent to memory
S sign-extend of destination31

Exceptions:
Bus error exception
Address error exception

A-87

type offset

LEM BEM

0 7 0
1 6 0
2 5 0

3 4 0
0 3 4
1 2 4

2 1 4
3 0 4

CPU Instruction Set Details Appendix A

I \

LWU Load Word Unsigned LWU
31 26 25 21 20 16 15 o

LWU
101111

base rt offset

6 5 5 16

Format:
LWU rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of the word at the
memory location specified by the effective address are loaded into general
register rt. The loaded word is zero-extended.

If either of the two least-significant bits of the effective address is non­
zero, an address error exception occurs.

Operation:

T: vAddr~ ((offset15)48II offset15 .. 0) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr ~ pAddrpSIZE-1 .. 311 (pAddr2 .. 0 xor (ReverseEndian II 02))
mem ~ LoadMemory (uncached, WORD, pAddr, vAddr, DATA)

byte ~ vAddr2 .. 0 xor (BigEndianCPU II 02)

GPR[rt] ~ 032 II mem31+8*byte .. 8*byte

Exceptions:
Bus error exception
Address error exception

A-SS

CPU Instruction Set Details Appendix A

MAD Multiply/Add MAD
31 26 25 21 20 16 15 11 10 65 o

Special 2
rt 0 0 MAD

00000
rs

011100
6 5 5 5 5 6

Format:
MAD rs, rt

Description:
The R4650 adds a MAD instruction (multiply-accumulate, with HI and

LO as the accumulator) to the base MIPS-III ISA. The MAD instruction is
defined as:

HI,LO f-: HI,LO + rs*rt

The lower 32-bits of the accumulator are stored in the lower 32 bits of
LO, while the upper 32 bits of the result are stored in the lower 32 bits of
HI. This is done to allow this instruction to operate compatibly in 32-bit
processors.

The actual repeat rate and latency of this operation are dependent on
the size of the operands, as explained in Appendix F, "Integer Multiply
Scheduling. "

Operation:

T: tempf-(HI 31 .. 0 II LO 31 .. 0) + ((rs 31)32 II rS31 .. 0) x ((rt31)32 11 rt31 .. 0)

Hi f- (temp 63)32 II temp 63 .. 32

LO f- (temp 31) 32 11 temp 31 .. 0

Exceptions:
None

Note: This is an IDT proprietary extension.

A-89

CPU Instruction Set Details Appendix A

MADU Multiply/Add Unsigned MADU
31

I

26 25 21 20 16 15 11 10 65 o
Special2

rs
I

rt 0 0 MAD
00001 011100

6 5 5 5 5 6

Format:
MADU rs, rt

Description:
The R4650 adds a MAD instruction (multiply-accumulate, with HI and

La as the accumulator) to the base MIPS-III ISA. The MAD instruction is
defined as:

HI,LO f- HI,LO + rs*rt

The lower 32-bits of the accumulator are stored in the lower 32 bits of
La, while the upper 32 bits of the result are stored in the lower 32 bits of
HI. This is done to allow this instruction to operate compatibly in 32-bit
processors.

The actual repeat rate and latency of this operation are dependent on
the size of the operands, as explained in Appendix F, "Integer Multiply
Scheduling."

Operation:

T: temp f- (HI 31 .. 0 II LO 31 .. 0) + (032 II rS31 .. 0) x (032 11 rt31 .. 0)

Hi f- (temp 63)32 II temp 63 .. 32

LO f- (temp 31) 32 11 temp 31 .. 0

Exceptions:
None

Note: This is an IDT proprietary extension.

A-90

CPU Instruction Set Details Appendix A

MFCO Move From
System Control Coprocessor MFCO

31 26 25 21 20 16 15 11 10 a

COPO MF rt rd a
010000 00000 000 0000 0000

6 5 5 5 11

Format:
MFCO rt, rd

Description:
The contents of coprocessor register rd of the CPO are loaded into

general register ri. May be used on both 32-bit and 64-bit CPO registers.

Operation:

T: data ~ CPR[O,rd]

T +1: GPR[rt] ~ (data31)32II data31 .. 0

Exceptions:
Coprocessor unusable exception

A-91

CPU Instruction Set Details Appendix A

MFCz Move From Coprocessor MFCz
31 26 25 21 20 16 15 11 10 o

COPz MF rt rd 0
o 1 00 x x* 00000 000 0000 0000

6 5 5 5 11

Note: *See "Opcode Bit Encoding" on this page, or "CPU Instruction
Opcode Bit Encoding" at the end of Appendix A.

Format:
MFCz rt, rd

Description: .
The contents of coprocessor register rd of coprocessor z are loaded into

general register rt. .
Execution of the instruction referencing coprocessor 3 causes a

reserved instruction exception, not a coprocessor unusable exception.

Operation:

T: if rdo = 0 then
data ~ CPR[z,rd4 .. 1 110131 .. 0

else
data ~ CPR[z,rd4 .. 1 II 0]63 .. 32

endif
T +1: GPR[rt] ~ (data31)32 II data

Exceptions:
Coprocessor unusable exception
Reserved instruction exception (coprocessor 3)

Opcode Bit Encoding:

MFCz Bit#31 30 29 28 27 26 25 24 23 22 21

MFcol 0 I I o I 0 I I I I 0 I o I 0 I o I
o

1 0 0 0

Bit # 31 30 29 28 27 26 25 24 23 22 21 o

MFC11 0 I 1 I 0 I o I 0 I 1 I 0 I 0 I o I 0 I o I
28 27 26 25 24 23 22 21 o

I coprocessXuboperation

Coprocessor Unit Number

A-92

CPU Instruction Set Details Appendix A

MFHI Move From HI MFHI
31 26 25 16 15 11 10 6 5 o

SPECIAL 0 rd 0 MFHI
000000 00 0000 0000 00000 010000

6 10 5 5 6

Format:
MFHI rd

Description:
The contents of special register HI are loaded into general register rd.
To ensure proper operation in the event of interruptions, the two

instructions which follow a MFHI instruction may not be any of the
instructions which modify the HI register: MULT, MULTU, DIY, DIVU,
MTHI, DMULT, DMULTU, DDIY; DDIVU.

Operation:

T: GPR[rd] f- HI

Exceptions:
None

A-93

CPU Instruction Set Details Appendix A

MFLO Move From Lo MFLO
31 26 25 16 15 11 10 6 5 a

SPECIAL a rd a MFLO
000000 00 0000 0000 00000 010010

6 10 5 5 6

Format:
MFLO rd

Description:
The contents of special register W are loaded into general register rd.
To ensure proper operation in the event of interruptions, the two

instructions which follow a MFLO instruction may not be any of the
instructions which modify the W register: MULT, MULTU, DIV, DIVU,
MTLO, DMULT, DMULTU, DDIV, DDIVU.

Operation:

T: GPR[rd] f- LO

Exceptions:
None

A-94

CPU Instruction Set Details Appendix A

MTCO Move To
System Control Coprocessor MTCO

31 26 25 21 20 16 15 11 10 o

COPO
010000

MT
00100

rt rd o
o 0 0 0 0 0 0 0 0 00

6 5 5 5 11

Format:
MTCO rt, rd

Description:
The contents of general register rt are loaded into coprocessor register

rd of CPO.
Because the state of the virtual address translation system may be

altered by this instruction, the operation of load instructions and store
instructions immediately prior to and after this instruction are undefined.

Operation:

T: data ~ GPR[rt]
T +1: CPR[O,rd] ~ data

Exceptions:
Coprocessor unusable exception

A-95

CPU Instruction Set Details Appendix A

MTCz Move To Coprocessor MTCz
31 26 25 21 20 16 15 11 10 o

COPZ MT rt rd 0
o 1 00 x x* 00100 000 0000 0000

6 5 5 5 11

Note: *See "Opcode Bit Encoding" on this page, or "CPU Instruction Opcode
Bit Encoding" at the end of Appendix A.
Format:

MTCz rt, rd

Description:
The contents of general register rt are loaded into coprocessor register

rd of coprocessor z. Execution of the instruction referencing coprocessor
3 causes a resenred instruction exception, not a coprocessor unusable
exception.

Operation:

T: data +-- GPR[rtb1 .. 0
T + 1: if rdo = 0

Exceptions:

CPR[z,rd4 .. 1 " 0] +-- CPR[z, rd4 .. 1 " 0]63 .. 32 " data
else

CPR[z,rd4 .. 1 " 0] +-- data" CPR[z,rd4 .. 1 " 0131..0
endif

Coprocessor unusable exception
Resenred instruction exception (coprocessor 3)

Opcode Bit Encoding:

27 MTCz Bit # 31 30 29 28

copol 0 1 1 1 0 1 0 1 0

26 25 24 23 22 21

o 101011101 01

o

1

Bit # 31 30 29 28 27

COP1 1 0 I 1 1 0 1 0 I 0

Bit # 31 30 29 28 27

COP21 0 I 1 1 0 1 0 1 1

26

1

26

o

25 24 23 22 21 o
o 1 0 1 1 1 0 1 0 1 I

25 24 23 22 21 o
0101110\ 01 I

Opcode Coprocessor Unit Number Coprocessor Suboperation

A-96

CPU Instruction Set Details AppendixA.

MTHI Move To HI MTHI
31 26 25 21 20 65 o

SPECIAL rs 0 MTHI
000000 000 000000000000 010001

6 5 15 6

Format:
MTHI rs

Description:
The contents of general register rs are loaded into special register HI.
If a MTHI operation is executed following a MULT, MULTU, DIV, or

DIVU instruction, but before any MFLO, MFHI, MTLO, or MTHI
instructions, the contents of special register Ware undefined.

Operation:

Exceptions:
None

T -2: HI ~ undefined

T -1: HI ~ undefined

T: HI ~ GPR[rs]

A-97

CPU Instruction Set Details Appendix A

MTLO Move To LO MTLO
31 26 25 21 20 65 o

SPECIAL rs 0 MTLO
000000 000000000000000 010011

6 5 15 6

Format:
MTLO rs

Description:
The contents of general register rs are loaded into special register W.
If a MTLO operation is executed following a MULT, MULTU, o IV, or

DIVU instruction, but before any MFLO, MFHI, MTLO, or MTHI
instructions, the contents of special register HI are undefined.

Operation:

Exceptions:
None

T -2: LO f- undefined

T -1: LO f- undefined

T: LO f- GPR[rs]

A-98

CPU Instruction Set Details Appendix A

MUl Multiply MUL
31

I

26 25 21 20 16 15 11 10 6 5 0

SPECIAL2

I
rs

I
rt

I
rd

I
0

I
MUL

I 011100 00010
6 5 5 5 5 6

Format:
MUL rd, rs, rt

Description:
The R4650 adds a true 3-operand 32x32->32 multiply instruction to

the MIPS-III ISA, where by rd = rs*rt. This instruction eliminates the need
to explicitly move the multiply result from the La register back to a general
register.

The execution time of this operation is operand size dependent, as
explained in Appendix F, "Integer Multiply Scheduling."

The HI and La registers are undefined after executing this instruction.
For 16-bit operands, the latency of MUL is 3 cycles, with a repeat rate of 2
cycles. In addition, the MUL instruction will unconditionally slip or stall for
all but 2 cycles of its latency.
Operation:

T: Temp f- rs 31. 0 x rt 31 .. 0
rd f- (temp31r~211 temp 31 ... 0
HI f- undefined
La f- undefined

Exceptions:
None

Note: This instruction is an lOT proprietary extension.

A-99

CPU Instruction Set Details Appendix A

MULT Multiply MULT
31

I

26 25 21 20 16 15 6 5 o

SPECIAL

I
rs

I
rt

I
MULT

011000 000000
6 5 5 10 6

Format:
MULTrs, rt

Description:
The contents of general registers rs and rt are multiplied, treating both

operands as 32-bit 2's complement values. No integer overflow exception
occurs under any circumstances. The operands must be valid 32-bit, sign­
extended values.

When the operation completes, the low-order word of the double result
is loaded into special register La, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of these instruct~qps are undefined. Correct operation requires separating
reads of HI or La from writes by a minimum of two other instructions

Operation:

Exceptions:
None

T-2: La
HI

T-1: LO
HI

T: t
LO
HI

A-IOO

~ undefined
~ undefined
(- undefined
(- undefined

. (- GP~Sb1..0 * GPR[rtb1..0
(- (t31) 32 II t31..0
(- (t63) II t63 .. 32

CPU Instruction Set Details Appendix A

MULTU Multiply Unsigned MULTU
31 26 25 21 20 16 15 6 5 o

SPECIAL rs rt 0 MULTU
000000 00 0000 0000 011001

6 5 5 10 6

Format:
MULTU rs, rt

Description:
The contents of general register rs and the contents of general register

rt are multiplied, treating both operands as unsigned values. No overflow
exception occurs under any circumstances. The operands must be valid
32-bit, sign-extended values.

When the operation completes, the low-order word of the double result
is loaded into special register W, and the high-order word of the double
result is loaded into special register HI.

If either of the two preceding instructions is MFHI or MFLO, the results
of these instructions are undefined. Correct operation requires separating
reads of HI or W from writes by a minimum of two instructions.

Operation:

Exceptions:
None

T-2: LO
HI

T-1: LO
HI

T: t
LO
HI

A-IOI

~ undefined
~ undefined
~ undefined
~ undefined
~ (0 II ~PR[rsb1 .. 0) * (0 II GPR[rtb1 .. 0)
~ (t31)32 II t31 .. 0
~ (t63) II t63 .. 32

CPU Instruction Set Details Appendix A

NOR Nor NOR
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 NOR
000000 00000 100111

6 5 5 5 5 6

Format:
NOR rd, rs, rt

Description:
The contents of general register rs are combined with the contents of

general register rtin abit-wise logical NOR operation. The result is placed
into general register rd.

Operation:

T: GPR[rd] ~ GPR[rs] nor GPR[rt]

Exceptions:
None

A-I02

CPU Instruction Set Details Appendix A

OR Or OR
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL
000000

rs rt rd o
00000

OR
100101

6 5 5 5 5 6

Format:
OR rd, rs, rt

Description:
The contents of general register rs are combined with the contents of

general register rt in a bit-wise logical OR operation. The result is placed
into general register rd.

Operation:

T: GPR[rd] ~ GPR[rs] or GPR[rt]

Exceptions:
None

A-I03

CPU Instruction Set Details Appendix A

ORI Or Immediate ORI
31 26 25 21 20 16 15 o

ORI I
001101

rs rt immediate

6 5 5 16

Format:
OR! rt, rs, immediate

Description:
The 16-bit immediate is zero-extended and combined with the contents

of general register rs in a bit-wise logical OR operation. The result is placed
into general register rt.

Operation:

T: GPR[rt] ~ GPR[rs]63 .. 16 II (immediate or GPR[rs]15 .. 0)

Exceptions:
None

A-I04

CPU Instruction Set Details Appendix A

S8 Store Byte S8
31 26 25 21 20 16 15 a

SB
101000

base rt offset

6 5 5 16

Format:
SB rt, offset(base)

Description:
The 16-bit ojfsetis sign-extended and added to the contents of general

register base to form a virtual address. The least-significant byte of
register rt is stored at the effective address.

Operation:

T: vAddr ~ ((offset15)48 II offset15 .. 0) + GPR[base]

Exceptions:

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr ~ pAddrpSIZE-1..3 II (pAddr2 .. 0 xor ReverseEndian3)
byte ~ vAddr2 0 xor BigEndianCPU3

data ~ GPR[rt]63-8*bYte .. o II 08*byte
StoreMemory (uncached, BYTE, data, pAddr, vAddr, DATA)

Bus error exception
Address error exception

A-I05

CPU Instruction Set Details Appendix A

sc Store Conditional sc
31 26 25 21 20 16 15 o

SC base rt offset
111000

6 5 5 16

Format:
SC rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of general register rt
are conditionally stored at the memory location specified by the effective
address.

This instruction impliCitly performs a SYNC operation; loads and
stores to shared memory fetched prior to the SC must access memory
before the SC; loads and stores to shared memory fetched subsequent to
the SC must access memory after the SC.

lf any other processor or device has modified the physical address
since the time of the previous Load Linked instruction, or if an ERET
instruction occurs between the Load Linked instruction and this store
instruction, the store fails and is inhibited from taking place.

The success or failure of the store operation (as defined above) is
indicated by the contents of general register rt after execution of the
instruction. A successful store sets the contents of general register rt to 1;
an unsuccessful store sets it to O.

The operation of Store Conditional" is undefined when the address is
different from the address used in the last Load Linked.

This instruction is available in User mode; it is not necessary for CPO
to be enabled.

If either of the two least-Significant bits of the effective address is non­
zero, an address error exception takes place.

If this instruction should both fail and take an exception, the exception
takes precedence.

Operation:

T: vAddr ~ ((offset15)48II offset15 .. 0) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr ~ pAddrpSIZE-1..3 II (p19~r~ .. o xor (ReverseEndian II 02

))
data ~ GPR[rt]63-8*byte .. o II 0 yt .
if LLbit then

StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] ~ 063 11 LLbit
SyncOperationO

Exceptions:
Bus error exception
Address error exception

A-lOS

CPU Instruction Set Details Appendix A

SCD Store Conditional Doubleword SCD
31 26 25 21 20 16 15 o

seD
111100

base rt offset

6 5 5 16

Format:
SCD rt, offset(base)

Description:
The I6-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of general register rt
are conditionally stored at the memory location specified by the effective
address.

This instruction implicitly performs a SYNC operation; loads and
stores to shared memory fetched prior to the SCD must access memory
before the SCD; loads and stores to shared memory fetched subsequent to
the SCD must access memory after the SCD.

If any other processor or device has modified the physical address
since the time of the previous Load Linked Doubleword instruction, or if
an ERET instruction occurs between the Load Linked Doubleword
instruction and this store instruction, the store fails and is inhibited from
taking place.

The success or failure of the store operation (as defined above) is
indicated by the contents of general register rt after execution of the
instruction. A successful store sets the contents of general register rt to I;
an unsuccessful store sets it to O.

The operation of Store Conditional Doubleword is undefined when the
address is different from the address used in the last Load Linked
Doubleword.

This instruction is available in User mode; it is not necessary for CPO
to be enabled.

If either of the three least-significant bits of the effective address is
non-zero, an address error exception takes place.

If this instruction should both fail and take an exception, the exception
takes precedence.

Operation:

T: vAddr f- ((offset15)48/1 offset15 .. 0) + GPR[base]
(pAddr, uncached) f- AddressTranslation (vAddr, DATA)
data f- GPR[rt]
if LLbit then

StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)
endif
GPR[rt] f- 063 11 LLbit
SyncOperation()

Exceptions:
Bus error exception
Address error exception

A-I07

CPU Instruction Set Details Appendix A

so Store Doubleword so
31 26 25 21 20 16 15 o

SD
11111 1

base rt offset

6 5 5 16

Format:
SO rt, offset(base)

Description:
The 16-bit offsetis sign-extended and added to the contents of general

register base to form a virtual address. The contents of general register rt
are stored at the· memory location specified by the effective address.

If either of the three'least -significant bits of the effective address are
non-zero, an address error exception occurs.

Operation:

T: vAddr f- ((offset15)48 II offset15 .. 0) + GPR[base]

(pAddr, uncached) f- AddressTranslation (vAddr, DATA)

data f- GPR[rt]
StoreMemory (uncached, DOUBLEWORD, data, pAddr, vAddr, DATA)

Exceptions:
Bus error exception
Address error exception

A-lOS

CPU Instruction Set Details Appendix A

SDCz Store Doubleword
From Coprocessor

SDCz
31 26 25 21 20 16 15 o

SDCz base rt offset
1 1 1 1 x x*

6 5 5 16

Format:
SDCz rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. Coprocessor unit z sources a
doubleword, which the processor writes to the addressed memory location.
The data to be stored is defined by individual coprocessor specifications.

If any of the three least-significant bits of the effective address are non­
zero, an address error exception takes place.

This instruction is not valid for use with CPO.
This instruction is undefined when the least-significant bit of the rt

field is non-zero.

Operation:

T: vAddr f- ((offset15)48 II offset15 .. 0) + GPR[base]
(pAddr, uncached) f- AddressTranslation (vAddr, DATA)
data f- COPzSD(rt),
StoreMemory (uncached, DOUBLEWORD, data, pAddr,
vAddr, DATA)

Note: *See the table in this section under "Opcode Bit Encoding."
Also see "CPU Instruction Opcode Bit Encoding" at the end of Appendix A.

Exceptions:
Bus error exception
Address error exception
Coprocessor unusable exception

Opcode Bit Encoding:

SDCz Bit #31 30 29 28 27 26 o
SDC11 1 I 1 I 1 I 1 I 0 I 1 I I

Bit #31 30 29 28 27 26 o

SDC2L 1 I 1! 1 I 1 EbD I

SD opcode Coprocessor Unit Number

A-lOg

CPU Instruction Set Details Appen~ixA

SOL Store Doubleword Left SOL
31 26 25 21 20 16 15 o

SDL I
101100

rt offset base

6 5 5 16

Format:
SDL rtf offset(base)

Description:
This instruction can be used with the SDR instruction to store the

contents of a register into eight consecutive bytes of memory. when the
bytes cross a doubleword boundary. SDL stores the left portion of the
register into the appropriate part of the high-order doubleword of memory;
SDR stores the right portion of the register into the appropriate part of the
low-order doubleword.

The SDL instruction adds its sign-extended 16-bit offset to the
contents of general register base to form a virtual address which may
specify an arbitrary byte. It alters only the word in memory which contains
that byte. From one to four bytes will be stored. depending on the starting
byte specified.

Conceptually. it starts at the most-significant byte of the register and
copies it to the specified byte in memory; then it copies bytes from register
to memory until it reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

memory
(big-endian)

register
address 8 8 9 10 11 12 13 14 15

IAlslclDI EIFIGIHI$24 before
address 0 0 1 2 3 4 5 6 7

SOL $24,1($0)

address 8 8 9 10 11 12 13 14 15
after

address 0 0 S C D E F G H

Operation:

T: vAddr ~ ((offset15)48II offset 15 .. 0) + GPR[base]

(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr ~ pAddrpSIZE -1 .. 3 II (pAddr2 .. 0 xor ReverseEndian3)

If SigEndianMem = 0 then

endif
pAddr ~ pAddr31 .. 3 II 03

byte ~ vAddr2 .. 0 xor SigEndianCPU3

data ~ 056-8*byte II GPR[rt]63 .. 56-8*byte

Storememory (uncached, byte, data, pAddr, vAddr, DATA)

A-110

CPU Instruction Set Details Appendix A

vAddr2 .. 0

0
1
2

3
4
5
6
7

Given a doubleword in a register and a doubleword in memory. the
operation of SOL is as follows:

SOL

Register A B C D E F G H

Memory J K L M N o p

BigEndianCPU = 0 BigEndianCPU = 1
offset

destination type LEM BEM destination type

I J KLMNOA 0 0 7 ABCDEFGH
I J KLMNAB 1 0 6 I ABCDEFG
I J KLMABC 2 0 5 I J ABC D E F
I J KLABCD 3 0 4 I J KABCDE
I J KABCDE 4 0 3 I J KLABCD
I J ABCDEF 5 0 2 I J KLMABC
I ABCDEFG 6 0 1 I J KLMNAB
ABCDEFGH 7 0 0 I J KLMNOA

LEM Little-endian memory (BigEndianMem = 0)
BEM BigEndianMem = 1
Type AccessType (see on page 2-3) sent to memory
Offset pAddr2 .. 0 sent to memory

Exceptions:
Bus error exception
Address error exception

A-Ill

7
6
5
4
3
2
1
0

offset

LEM BEM

0 0
0 1
0 2

0 3
0 4
0 5
0 6

0 7

CPU Instruction Set Details Appendix A

SDR Store Doubleword Right SDR
31 26 25 21 20 16 15 o

SDR
101101

base rt offset

6 5 5 16

Format:
SOR rt, offset(base)

Description:
This instruction can be used with the SOL instruction to store the

contents of a register into eight consecutive bytes of memory, when the
bytes cross a boundary between two doublewords. SOR stores the right
portion of the register into the appropriate part of the low-order
doubleword; SOL stores the left portion of the register into the appropriate
part of the low-order doubleword of memory.

The SOR instruction adds its sign-extended 16-bit offset to the
contents of general register base to form a virtual address which may
specify an arbitrary byte. It alters only the word in memory which contains
that byte. From one to eight bytes will be stored, depending on the starting
byte speCified.

Conceptually, it starts at the least-significant (rightmost) byte of the
register and copies it to the specified byte in memory; then it copies bytes
from register to memory until it reaches the high-order byte of the word in
memory. No address exceptions due to alignment are possible.

address 8
register

add ress 0 t---t--t--t--t-t--t--t---l

SOR $24,4($0)

address 8
add ress 0 t---t--t--t--t-t--t--t---l after

Operation:

T: vAddr ~ ((offset15)48II offset 15 .. 0) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

ReverseEndian3)
pAddr ~ pAddrpSIZE _ 1 .. 3 II (pAddr2 .. 0 xor

If BigEndianMem = 0 then
pAddr ~ pAddrpSIZE _ 31 .. 3 II 03

endif
byte ~ vAddr1 0 xor BigEndianCPU3

.. 8*byte
data ~ GPR[rt]63-8*byte II 0

Given a doubleword in a register and a doubleword in memory, the
operation of SOR is as follows:

A-112

CPU Instruction Set Details Appendix A

SOR

Register A B C D E F G H

Memory J K L M N o P

BigEndianCPU = 0 BigEndianCPU = 1

vAddr2 .. 0

0
1
2
3
4
5

6
7

offset
destination type

LEM BEM
destination

ABCDEFGH 7 0 0 H J KLMNOP
BCDEFGHP 6 1 0 GHKLMNOP
CDEFGHOP 5 2 0 FGHLMNOP
DEFGHNOP 4 3 0 EFGHMNOP
EFGHMNOP 3 4 0 DEFGHNOP
FGHLMNOP 2 5 0 CDEFGHOP
GHKLMNOP 1 6 0 BCDEFGHP
HJ KLMNOP 0 7 0 ABCDEFGH

Little-endian memory (BigEndianMem = 0)
BigEndianMem = 1

type

0
1
2
3
4
5
6

7

LEM
BEM
Type
Offset

AccessType (see on page 2-3) sent to memory
pAddr2 .. 0 sent to memory

Exceptions:
Bus error exception
Address error exception

A-113

offset

LEM BEM

7 0
6 0
5 0
4 0

3 0
2 0

1 0
0 0

CPU Instruction Set Details Appendix A

SH Store Halfword SH
31 26 25 21 20 16 15 o

SH base rt offset

I 101001 I I
6 5 5 16

Format:
SH rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form an unsigned effective address. The least-significant
halfword of register rt is stored at the effective address. If the least­
significant bit of the effective address is non-zero, an address error
exception occurs.

Operation:

T: vAddr ~ «offset1S)48 II offset1S .. 0) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)

pAddr ~ pAddrpSIZE-1 .. 3 " (pAddr2 .. 0 xor (ReverseEndian2 " 0»
byte ~ vAddr2 .. 0 xor (BigEndianCPU2 11 0)

8*byte data ~ GPR[rt]63-8*byte .. o II 0
StoreMemory (uncached, HALFWORD, data, pAddr, vAddr, DATA)

Exceptions:
Bus error exception
Address error exception

A-114

CPU Instruction Set Details Appendix A

SLL Shift Left Logical SLL
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL 0 rt rd sa SLL
000000 00000 000000

6 5 5 5 5 6

Format:
SLL rd, rt, sa

Description: .
The contents of general register rt are shifted left by sa bits, inserting

zeros into the low-order bits.
The result is placed in register rd.
The operand must be a valid sign-extended, 32-bit value.

Operation:

Exceptions:
None

T: Sf- 0 II sa

temp f-GPR[rtb1-s .. 0 II OS

GPR[rd] f- (temp31)32 II temp

A-115

CPU Instruction Set Details Appendix A

SLLV Shift Left Logical Variable SLLV
31 26 25 21 20 16 15 11 10 6 5 a

SPECIAL rs rt rd a SLLV
000000 00000 000100

6 5 5 5 5 6

Format:
SLLV rd, rt, rs

Description:
The contents of general register rt are shifted left the number of bits

specified by the low-order five bits contained in general register rs,
inserting zeros into the low-order bits.

The result is placed in register rd.
The operand must be a valid sign-extended, 32-bit value.

Operation:

T: Sf-a II GP[rs]4 .. 0

Exceptions:
None

temp f- GPR[rt](31-s) .. O II as

GPR[rd] f- (temp31)32 II temp

A-116

CPU Instruction Set Details Appendix A

SLT Set On Less Than SLT
31 26 25 21 20 16 15 11 10 6 5 a

SPECIAL rs rt rd a SLT
000000 00000 101010

6 5 5 5 5 6

Format:
SLT rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of

general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the contents of general register
rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.
No integer overflow exception occurs under any circumstances. The

comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

T: if GPR[rs] < GPR[rt] then
GPR[rd] ~ 063 II 1

else

Exceptions:
None

GPR[rd] ~ 064

endif

A-117

CPU Instruction Set Details Appendix A

SLTI Set On Less Than Immediate SLTI
31 26 25 21 20 16 15 o

SLTI I
001010

rs rt immediate

6 5 5 16

Format:
SLTI rt, rs, immediate

Description:
The 16-bit immediate is sign-extended and subtracted from the

contents of general register rs. Considering both quantities as signed
integers, if rs is less than the sign-extended immediate, the result is set to
one; otherwise the result is set to zero.

The result is placed into general register rt.
No integer overflow exception occurs under any circumstances. The

comparison is valid even if the subtraction used during the comparison
overflows ..

Operation:

T: if GPR[rs] < (immediate1S)48I1immediate1s .. 0 then
GPR[rd] ~ 063 111

else
GPR[rd] ~ 064

endif

Exceptions:
None

A-lIS

CPU Instruction Set Details AppendixA·

SLTIU Set On Less Than
Immediate Unsigned SLTIU

31 26 25 21 20 16 15 o

SLTIU
001011

rs rt immediate

6 5 5 16

Format:
SLTIU rt, rs, immediate

Description:
The 16~bit immediate is sign-extended and subtracted from the

contents of general register rs.Considering both quantities as unsigned
integers, if rs is less than the sign-extended immediate, the result is set to
one; otherwise the result is set to zero.

The result is placed into general register rt.
No integer overflow exception occurs under any circumstances. The

comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

T: if (0 II GPR[rsJ) < 0 II (immediatelS)48 II immediatelS .. O then
GPR[rd] ~ 0 3 I I 1

else
GPR[rd] ~ 064

endif

Exceptions:
None

A-119

CPU Instruction Set Details Appendix A

SLTU Set On Less Than Unsigned SLTU
31 26 25 21 20 16 15 11 10 6 5 a

SPECIAL rs rt rd a SLTU
000000 00000 101011

6 5 5 5 5 6

Format:
SLTU rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of

general register rs. Considering both quantities as unsigned integers, if
the contents of general register rs are less than the contents of general
register rt, the result is set to one; otherwise the result is set to zero.

The result is placed into general register rd.
No integer overflow exception occurs under any circumstances. The

comparison is valid even if the subtraction used during the comparison
overflows.

Operation:

T: if (0 I I GPR[rs~ < 0 I I GPR[rt] then
GPR[rd] (- 0 3 II 1

Exceptions:
None

else
GPR[rd] (- 064

endif

A-120

CPU Instruction Set Details Appendix A

SRA Shift Right Arithmetic SRA
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL 0 rt rd sa SRA
000000 00000 000011

6 5 5 5 5 6

Format:
SRA rd, rt, sa

Description:
The contents of general register rt are shifted right by sa bits, sign­

extending the high-order bits.
The result is placed in register rd.
The operand must be a valid Sign-extended, 32-bit value.

Operation:

T: Sf- 0 II sa

temp f- (GPR[rth1)5 II GPR[rt] 31 .. 5

GPR[rd] f- (temp31)32 II temp

Exceptions:
None

A-121

CPU Instruction Set Details Appendix A

SRAV' Shift Ri ht
Arithmetic ~ariable SRAV

31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 SRAV
000000 00000 000111

6 5 5 5 5 6

Format:
SRAV rd, rt, rs

Description:
The contents of general register rt are shifted right by the number of

bits specified by the low-order five bits of general register rs, sign­
extending the high-order bits.

The result is placed in register rd.
The operand must be a valid sign-extended, 32-bit value.

Operation:

T: s ~ GPR[rs]4 .. 0

Exceptions:
None

temp ~ (GPR[rtb1)S II GPR[rtb1 .. s

GPR[rd] ~ (temp31)32 II temp

A-122

CPU Instruction Set Details Appendix A

SRL Shift Right Logical SRL
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL 0 rt rd sa SRL
000000 00000 000010

6 5 5 5 5 6

Format:
SRL rd, rt, sa

Description:
The contents of general register rt are shifted right by sa bits, inserting

zeros into the high-order bits.
The result is placed in register rd.
The operand must be a valid sign-extended, 32-bit value.

Operation:

T: s ~ 0 II sa

Exceptions:
None

temp ~ OS II GPR[rtb1..S

GPR[rd] ~ (temp31)32II temp

A-123

CPU Instruction Set Details Appendix A

SRLV Shift Right Logical Variable SRLV
31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 SRLV
000000 00000 000110

6 5 5 5 5 6

Format:
SRLV rd, rt, rs

Description:
The contents of general register rt are shifted right by the number of

bits specified by the low-order five bits of general register rs, inserting zeros
into the high-order bits.

The result is placed in register rd.
The operand must be a valid Sign-extended, 32-bit value.

. Operation:

Exceptions:
None

T: s f-- GPR[rs]4 .. 0

temp f-- OS II GPR[rtb1..s

GPR[rd] f-- (temp31)32 II temp

A-124

CPU Instruction Set Details Appendix A

SUB Subtract SUB
31 26 25 21 20 16 15 11 10 6 5 a

SPECIAL rs rt rd a SUB
000000 00000 100010

6 5 5 5 5 6

Format:
SUB rd. rs. rt

Description:
The contents of general register rt are subtracted from the contents of

general register rs to form a result. The result is placed into general
register rd. The operands must be valid sign-extended. 32-bit values.

The only difference between this instruction and the SUBU instruction
is that SUBU never traps on overflow.

An integer overflow exception takes place if the carries out of bits 30
and 31 differ (2·s complement overflow). The destination register rd is not
modified when an integer overflow exception occurs.

Operation:

Exceptions:

T: temp f- GPR[rs] - GPR[rt]

GPR[rd] f- (temp31)32II temP31 .. 0

Integer overflow exception

A-125

CPU Instruction Set Details Appendix A

SUBU Subtract Unsigned SUBU

31 26 25 21 20 16 15 11 10 6 5 o

SPECIAL rs rt rd 0 SUBU
000000 00000 100011

6 5 5 5 5 6

Format:
SUBU rd, rs, rt

Description:
The contents of general register rt are subtracted from the contents of

general register rs to form a result.
The result is placed into general register rd.
The operands must be valid sign-extended, 32-bit values.
The only difference between this instruction and the SUB instruction

is that SUBU never traps on overflow. No integer overflow exception occurs
under any circumstances.

Operation:

T: temp ~ GPR[rs] - GPR[rt]

GPR[rd] ~ (temp31)32 II temP31 .. 0

Exceptions:
None

A-126

CPU Instruction Set Details Appendix A

sw Store Word sw
31 26 25 21 20 16 15 o

SW
101011

base rt offset

6 5 5 16

Format:
SW rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. The contents of general register rt
are stored at the memory location specified by the effective address.

If either of the two least-significant bits of the effective address are non­
zero, an address error exception occurs.

Operation:

T: vAddr f- ((offset15)48 II offset15 .. 0) + GPR[base]
(pAddr, uncached) f- AddressTranslation (vAddr, DATA)

pAddr f- pAddrpSIZE-1 .. 3 II (pAddr2 .. 0 xor (ReverseEndian II 02)
byte f- vAddr2 .. 0 xor (BigEndianCPU II 02)
data f- GPR[rt]63-8*byte II 08*byte
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:
Bus error exception
Address error exception

A-127

CPU Instruction Set Details Appendix ,A

SWCz Store Word From Coprocessor SWCz
31

I

26 25 21 20 16 15 o

SWCz

I
base

I
rt

I
offset

1 1 1 0 x x*
6 5 5 16

Format:
SWCz rt, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form a virtual address. Coprocessor unit z sources a word,
which the processor writes to the addressed memory location.

The data to be stored is defined by individual coprocessor
specifications.

This instruction is not valid for use with CPO.
If either of the two least-significant bits of the effective address is non­

zero, an address error exception occurs.
Execution of the instruction referencing coprocessor 3 causes a

reserved instruction exception, not a coprocessor unusable exception.

Operation:

T: vAddr ~ ((offset1S)48 II offset15 .. 0) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr ~ pAddrpSIZE-1 .. 3 II (pAddr2 .. 0 xor (ReverseEndian 1102)
byte ~ vAddr2 .. 0 xor (BigEndianCPU II 02)
data ~ COPzSW (byte,rt)
StoreMemory (uncached, WORD, data, pAddr, vAddr DATA)

Note: *See the table in this section under "Opcode Bit Encoding."
Also see "CPU Instruction Opcode Bit Encoding" at the end of Appendix A.

Exceptions:
Bus error exception
Address error exception
Coprocessor unusable exception
Reserved instruction exception (coprocessor 3)

Opcode Bit Encoding:

SWCz Bit #31 30 29 28 27 26

swc11 1 I 1 I 1 I 0 I 0 I 1 I
o

I
Bit #31 30 29 28 27 26 o

SWC2l1 I 1 [1 I 0 liJ)J I
SW opcode Coprocessor Unit Number

A-128

CPU Instruction Set Details Appendix A

SWL Store Word Left SWL
31 26 25 21 20 16 15 o

SWL
101010

base rt offset

6 5 5 16

Format:
SWL rt. offset(base)

Description:
This instruction can be used with the SWR instruction to store the

contents of a register into four consecutive bytes of memory. when the
bytes cross a word boundary. SWL stores the left portion of the register
into the appropriate part of the high-order word of memory; SWRstores the
right portion of the register into the appropriate part of the low-order word.

The SWL instruction adds its sign-extended 16-bit offset to the
contents of general register base to form a virtual address which may
specify an arbitrary byte. It alters only the word in memory which contains
that byte. From one to four bytes will be stored. depending on the starting
byte specified.

Conceptually. it starts at the most-significant byte of the register and
copies it to the specified byte in memory; then it copies bytes from register
to memory until it reaches the low-order byte of the word in memory.

No address exceptions due to alignment are possible.

memory
(big-endian) register

address 4
address 0

4 51 I 6
2

I 7 I f---o-l---+-: ----+:-3----1 before A B cl D $24

address 4

address 0 I ~ I ! I ~ I ~ I
SWL $24,1($0)

after

Operation:

T: vAddr ~ «offset15)48II offset 15 .. 0) + GPR[base]
(pAddr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr ~ pAddrpSIZE _ 1 .. 3 II (pAddr2 .. 0 xor ReverseEndian3)
If BigEfldianMem = 0 then

pAddr ~ pAddr31..2 II 02

endif
byte ~ vAddr1 .. 0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data ~ 032 II 024-8*byte II GPR[rtb1..24-8*byte

else
data ~ 024-8*byte II G PR[rtb1 .. 24-8*byte II 032

endif
StoreMemory(uncached, byte, data, pAddr, vAddr, DATA)

A-129

CPU Instruction Set Details Appendix A

vAddr2 .. o

0
1
2
3
4
5
6
7

Given a doubleword in a register and a doubleword in memory. the
operation of SWL is as follows:

SWL
Register A B c D E F G H

Memory J K L M N o P

BigEndianCPU = 0 BigEndianCPU = 1
offset

destination type
LEM BEM destination

I J KLMNOE 0 0 7 E F GHMNOP
I J KLMNEF 1 0 6 I EFGMNOP
I J KLMEFG 2 0 5 I J EFMNOP
I J KLEFGH 3 0 4 I J KEMNOP
I J KEMNOP 0 4 3 I J K L E F G H
I J EFMNOP 1 4 2 I J KLMEFG
I EFGMNOP 2 4 1 I J KLMNEF
EFGHMNOP 3 4 0 I J KLMNOE

Little-endian memory (BigEndianMem = OJ
BigEndianMem = 1

type

3
2
1
0
3
2
1
0

LEM
BEM
Type
Offset

AccessType (see on page 2-3) sent to memory
pAddr2 .. 0 sent to memory

Exceptions:
Bus error exception
Address error exception

A-130

offset

LEM BEM

4 0
4 1
4 2
4 3
0 4
0 5
0 6
0 7

CPU Instruction Set Details Appendix A

SWR Store Word Right SWR
31 26 25 21 20 16 15 o

SWR
101110

base rt offset

address 4

address 0

address 4

address 0

6 5 5 16

Format:
SWR rt, offset(base)

Description:
This instruction can be used with the SWL instruction to store the

contents of a register into four consecutive bytes of memory, when the
bytes cross a boundary between two words. SWR stores the right portion
of the register into the appropriate part of the low-order word; SWL stores
the left portion of the register into the appropriate part of the low-order
word of memory.

The SWR instruction adds its sign-extended 16-bit offset to the
contents of general register base to form a virtual address which may
specify an arbitrary byte. It alters only the word in memory which contains
that byte. From one to four bytes will be stored, depending on the starting
byte specified.

Conceptually, it starts at the least-significant (rightmost) byte of the
register and copies it to the. specified byte in memory; then copies bytes
from register to memory until it reaches the high-order byte of the word in
memory.

No address exceptions due to alignment are possible.

memory
(big-endian)

I ~ I ~ I : I ~ I before

after

A-131

register

A B C

SWR $24,1($0)

o $24

CPU Instruction Set Details Appendix A

vAddr2 .. 0

0

1
2
3
4
5
6
7

Operation:

T: vAddr +- ((offset15)48II offset 15 .. 0) + GPR[base]
(pAddr, uncached) +- AddressTranslation (vAddr, DATA)

pAddr +- pAddrpSIZE -1 .. 3 II (pAddr2 .. 0 xor ReverseEndian3)
If BigEndianMem = 0 then

pAddr +- pAddr31..2 II 02

endif
byte +- vAddr1..0 xor BigEndianCPU2

if (vAddr2 xor BigEndianCPU) = 0 then
data +- 032 II GPR[rtb1-8*byte .. 0 II 08*byte

else
data +- GPR[rtb1-8*byte .. 0 II 08*byte II 032

endif
StoreMemory(uncached, WORD-byte, data, pAddr, vAddr, DATA)

Given a doubleword in a register and a doubleword in memory. the
operation of SWR is as follows:

SWR

Register A B C D E F G H

Memory J K L M N o P

BigEndianCPU = 0 BigEndianCPU = 1
offset

destination type
LEM BEM

destination type

I J KLEFGH 3 0 4 HJ KLMNOP

I J KLFGHP 2 1 4 GHKLMNOP

I J KLGHOP 1 2 4 FGHLMNOP

I J KLHNOP 0 3 4 EFGHMNOP

EFGHMNOP 3 4 0 I J K L H N 0 P

FGHLMNOP 2 5 0 I J KLGHOP

GHKLMNOP 1 6 0 I J KLFGHP

HJ KLMNOP 0 7 0 I J KLEFGH

LEM
BEM
Type
Offset

Little-endian memory (BigEndianMem = OJ
BlgEndlanMem = 1

Exceptions:

AccessType (see on page 2-3) sent to memory
pAddr2 .. 0 sent to memory

Bus error exception
Address error exception

A-132

0

1
2
3
0

1
2
3

onset

LEM BEM

7 0

6 0

5 0

4 0

3 4
2 4
1 4
0 4

CPU Instruction Set Details Appendix A

SYNC Synchronize SYNC
31 26 25 6 5 o

SPECIAL 0 SYNC
000000 0000 0000 0000 0000 0000 001111

6 20 6

Format:
SYNC

Description:
The SYNC instruction ensures that any loads and stores fetched prior

to the present instruction are completed before any loads or stores after
this instruction are allowed to start. Use of the SYNC instruction to
serialize certain memory references may be required in a multiprocessor
environment for proper synchronization. For example:

Processor A Processor B

SW R1,DATA 1 : LW R2, FLAG
LI R2,1 BEQ R2, RO, 1B
SYNC NOP
SW R2, FLAG SYNC

LW R1, DATA

The SYNC in processor A prevents DATA being written after FLAG,
which could cause processor B to read stale data. The SYNC in processor
B prevents DATA from being read before FLAG, which could likewise result
in reading stale data. For processors which only execute loads and stores
in order, with respect to shared memory, this instruction is a NOP.

LL and SC instructions impliCitly perform a SYNC.
This instruction is allowed in User mode.

Operation:

T: SyncOperationO

Exceptions:
None

A-133

· CPU Instruction Set Details Appendix A

.;'
SVSCALL System Call SVSCALL

31 26 25 6 5 o

SPECIAL
000000

Code SYSCALL
001 1 00

6 20 6

Format:
SYSCALL

Description:
A system call exception occurs, immediately and unconditionally

transferring control to the exception handler.
The code field is available for use as software parameters, but is

retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: SystemCallException

Exceptions:
System Call exception

A-134

CPU Instruction Set Details Appendix A

TEQ Trap If Equal

31 26 25 . 21 20 16 15 6 5 o

SPECIAL
000000

rs rt code TEO
110100

6 5 5 10 6

Format:
TEQ rs. rt

Description:
The contents of general register rt are compared to general register rs.

If the contents of general register rs are equal to the contents of general
register rtf a trap exception occurs.

The code field is available for use as software parameters. but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

Exceptions:
Trap exception

T: if GPR[rs] = GPR[rt] then

TrapException

endif

A-135

CPU Instruction Set Details Appendix A

TEQI Trap If Equal Immediate TEQI
31 26 25 21 20 16 15 o

REGIMM
000001

rs TEal
01100

immediate

6 5 5 16

Format:
TEQI rs, immediate

Description:
The 16-bit immediate is sign-extended and compared to the contents

of general register rs. If the contents of general register rs are equal to the
sign-extended immediate, a trap exception occurs.

Operation:

T: if GPR[rs] = (immediate15)48 " immediate15 .. 0 then

TrapException

endif

Exceptions:
Trap exception

A-136

CPU Instruction Set Details Appendix A

TGE Trap If Greater Than Or Equal TGE
31 26 25 21 20 16 15 6 5 o

SPECIAL
000000

rs rt code TGE
110000

6 5 5 10 6

Format:
TGE rs, rt

Description:
The contents of general register rt are compared to the contents of

general register rs. Considering both quantities as signed integers, if the
contents of general register rs are greater than or equal to the contents of
general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: if GPR[rs] ~ GPR[rt] then
TrapException

endif

Exceptions:
Trap exception

A-137

CPU Instruction Set Details

TGEI Trap If Greater Than Or Equal Immediate

31 26 25

I
~EGIMM

. 000001
6

Format:

21 20 16 15

rs TGEI I
01000

5 5

TGEI rs, immediate

Description:

immediate

16

Appendix A

TGEI
o

The 16-bitimmediate is sign-extended and compared to the contents
of general register rs. Considering both quantities as signed integers, if
the contents of general register rs are greater than or equal to the sign­
extended immediate, a trap exception occurs.

Operation:

T: if GPR[rs] ~ (immediate15)48II immediate15 .. 0 then
TrapException

endif

Exceptions:
Trap exception

A-13S

CPU Instruction Set Details Appendix A

TGEIU Trap If Greater Than Or Equal
Immediate Unsigned TGEIU

31 26 25 21 20 16 15 o

REGIMM rs TGEIU immediate
000001 01001

6 5 5 16

Format:
TGEIU rs, immediate

Description:
The 16-bit immediate is sign-extended and compared to the contents

of general register rs. Considering both quantities as unsigned integers, if
the contents of general register rs are greater than or equal to the sign­
extended immediate, a trap exception occurs.

Operation:

T: if (0 " GPR[rs]) ~ (0 II (immediate1S)48 " immediate1S .. 0) then
TrapException

end if

Exceptions:
Trap exception

A-139

CPU Instruction Set Details Appendix A

T G E U Trap If Greater Than Or Equal Unsigned TGEU
31

I

26 25 21 20 16 15 6 5 0

SPECIAL

I
rs

I
rt

I
code

I
TGEU

I 000000 110001
6 5 5 10 6

Format:
TGEU rs, rt

Description:
The contents of general register rt are compared to the contents of

general register rs. Considering both quantities as unSigned integers, if
the contents of general register rs are greater than or equal to the contents
of general register rt, a trap exception occurs.

The code field is available for use as software parameters, but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: if (0 II GPR[rs]) ~ (0 II GPR[rt]) then
TrapException

endif

Exceptions:
Trap exception

A-140

CPU Instruction Set Details Appendix A

TLBP Probe TLB For Matching Entry TLBP
·31 26 25 24 6 5 o

COPO co 0 TLBP
010000 1 000 0000 0000 000,0 0000 001000

6 '1 19 6

This instruction is not supported in R4650. Not guaranteed to trap.

A.;.. 141

CPU Instruction Set Details Appendix A

TLBR Read Indexed TLB Entry TLBR
31 26 25 24 6 5 a

capo co a TLBR
010000 1 000 0000 0000 0000 0000 000001

6 1 19 6

This instruction is not supported in R4650. Not guaranteed to trap.

A-142

CPU Instruction Set Details Appendix A

TLBWI Write Indexed TLB Entry TLBWI
31 26 25 24 6 5 o

co PO co 0 TLBWI
010000 1 000 0000 0000 0000 0000 000010

6 1 19 6

This instruction is not supported in R4650. Not guaranteed to trap.

A-143

CPU Instruction Set Details Appendix A

TLBWR Write Random TLB Entry TLBWR
31 26 25 24 6 5 o

capo co 0 TLBWR
010000 1 000 0000 0000 0000 0000 000110

6 1 19 6

This instruction is not supported in R4650. Not guaranteed to trap.

A-144

CPU Instruction Set Details Appendix A

TlT Trap If Less Than TLT
31 26 25 21 20 16 15 6 5 a

SPECIAL
000000

rs rt code TLT
110010

6 5 5 10 6

Format:
TLT rs, rt

Description:
The contents of general register rt are compared to general register rs.

Considering both quantities as signed integers, if the contents of general
register rs are less than the contents of general register rt, a trap exception
occurs.

The code field is available for use as software parameters, but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: if GPR[rs] < GPR[rt] then
TrapException

endif

Exceptions:
Trap exception

A-145

CPU Instruction Set Details Appendix A

TLTI Trap If Less Than Immediate TLTI
31 26 25 21 20 16 15 o

I
REGIMM I

. 000001
rs TLTI

0101 0
immediate

6 5 5 16

Format:
TLTI rs, immediate

Description:
The 16-bit immediate is sign-extended and compared to the contents

of general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the sign-extended immediate,
a trap exception occurs.

Operation:

T: . if GPR[rs] < (immediate1S)48 II immediate1S .. 0 then
TrapException

endif

Exceptions:
Trap exception

A-146

CPU Instruction Set Details Appendix A

TL TI U Trap If Less Than Immediate Unsigned TL TI U
31 26 25 21 20 16 15 o

REGIMM rs TLTIU immediate
000001 o 1 0 1 1

6 5 5 16

Format:
TLTIU rs, immediate

Description:
The 16-bit immediate is sign-extended and compared to the contents

of general register rs. Considering both quantities as signed integers, if the
contents of general register rs are less than the sign-extended immediate,
a trap exception occurs.

Operation:

T: if (0 II GPR[rs)) < (0 II (immediate15)48 II immediate15 .. 0) then
TrapException

endif

Exceptions:
Trap exception

A-147

CPU Instruction Set Details Appendix A

TLTU Trap If Less Than Unsigned TLTU
31

I

26 25 21 20 16 15 6 5 0

SPECIAL

I
rs

I
rt

I
code TLTU I

000000 11001~

6 5 5 10 6

Format:
TLTU rs, rt

Description:
The contents of general register rt are compared to general register rs.

Considering both quantities as unsigned integers, if the contents of general
register rs are less than the contents of general register rt, a trap exception
occurs.

The code field is available for use as software parameters, but is
retrieved by the exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: if (0 " GPR[rs]) < (0 " GPR[rt]) then

TrapException

endif

Exceptions:
Trap exception

A-148

CPU Instruction Set Detalls Appendix A

TNE Trap If Not Equal TNE
31 26 25 21 20 16 15 6 5 a

SPECIAL
000000

rs rt code TNE
110110

6 5 5 10 6

Format:
TNE rs, rt

Description:
The contents of general register rt are compared to general register rs.

If the contents of general register rs are not equal to the contents of general
register rt, a trap exception occurs.

The code field is available for use as software parameters, but is
retrieved by the·exception handler only by loading the contents of the
memory word containing the instruction.

Operation:

T: if GPR[rs] -:;:. GPR[rt] then

TrapException

endif

Exceptions:
Trap exception

A-149

CPU Instruction Set Details Appendix A

TNEI Trap If Not Equal Immediate TNEI
31 26 25 21 20 16 15 o

I
REGIMM I

. 000001 .
rs I TNEI

~ 1 1 1 0
immediate

6 5 5 16

Format:
TNEI rs, immediate

Description:
The 16-bit immediate is sign-extended and compared to the contents

of general register rs. If the contents of general register rs are not equal to
the sign-extended immediate, a trap exception occurs.

Operation:

T: if GPR[rs] -::f:. (immediate1S)48 II immediate1S .. 0 then
TrapException

endif

Exceptions:
Trap exception

A-150

CPU Instruction Set Details Appendix A

WAIT Wait WAIT
31 26 25 24 6 5 o

COPO co 0 WAIT
010000 1 000 0000 0000 0000 0000 100000

6 19 6

Format:
WAIT

Description:
The WAIT instruction is used to halt the internal pipeline and thus

reduce the power consumption of the CPU. See Appendix G for more
details.

Operation:

T: if SysAD bus is idle then
StopPipeline

endif

Exceptions:
Coprocessor unusable exception

A-151

CPU Instruction Set Details Appendix A

XOR Exclusive Or XOR
31 26 25 21 20 16 15 11 10 6 5 a

SPECIAL rs rt rd a XOR
000000 00000 100110

6 5 5 5 5 6

Format:
XOR rd, rs, rt

Description:
The contents of general register rs are combined with the contents of

general register rt in a bit-wise logical exclusive OR operation.
The result is placed into general register rd.

Operation:

T: GPR[rd] ~ GPR[rs] xor GPR[rt]

Exceptions:
None

A-152

CPU Instruction Set Details

XORI Exclusive OR Immediate

31 26 25

XORI
001110

6

Format:

21 20

rs rt

5 5

XORI rt, rs, immediate

Description:

16 15

immediate

16

Appendix A

XORI
o

The 16-bit immediate is zero-extended and combined with the contents
of general register rs in a bit-wise logical exclusive OR operation.

The result is placed into general register rt.

Operation:

T: GPR[rt] f- GPR[rs] xor (048 II immediate)

Exceptions:
None

A-153

CPU Instruction Set Details Appendix A

31 .. 29 o
1
2
3
4
5
6
7

5 .. 3
o
1
2
3
4
5
6
7

5 .. 3
o

2

3

4

5

6

7

CPU Instruction Opcode Bit Encoding
The remainder of this Appendix presents the opcode bit encoding for

the CPU instruction set (lSA and extensions). as implemented by the
R4600/R4700.

Table A.4. lists the R4600/R4700 Opcode Bit Encoding.

28 .. 26
o

SPECIAL
ADDI
COPO
DADDI

LB
SB
LL
SC

2 .. 0
o

SLL
JR

MFHI
MULT
ADD

*
TGE
DSLL

2 .. 0
o

MAD

*

*

*

*

*

*

*

REGIMM
ADDIU
COP1

DADDIU
LH
SH

LWC1
SWC1

*
JALR
MTHI

MULTU
ADDU

*
TGEU

*

MADU

*

*

*

*

*

*

*

Key to Table

2
J

SLTI
COP2
LDL
LWL
SWL

LWC2
SWC2

2
SRL

*
MFLO

DIV
SUB
SLT
TLT

DSRL

2
MUL

*

*

*

*

*

*

*

Opcode
3 4 5 6 7

JAL BEa BNE BLEZ BGTZ
SLTIU ANDI ORI XORI LUI

* BEaL BNEL BLEZL BGTZL
LOR Soecial2 * * *
LW LBU LHU LWR LWU
SW SOL SDR SWR CACHEB

* LLD LDC1 LDC2 LD
* SCD SDC1 SDC2 SO

SPECIAL function
3 4 5 6 7

SRA SLLV * SRLV SRAV

* SYSCALL BREAK * SYNC
MTLO DSLLV * DSRLV DSRAV
DIVU DMULT DMULTU DDIV DDIVU
SUBU AND OR XOR NOR
SLTU DADO DADDU DSUB DSUBU
TLTU TEa * TNE *

DSRA DSLL32 * DSRL32 DSRA32

SPECIAL function2
3 4 5 6 7

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *

* * * * *
*

* * * *

* * * * *

* Operation codes marked with an asterisk cause reserved instruction excep­
tions in all current implementations and are reserved for future versions of
the architecture.

'Y Operation codes marked with a gamma cause a reserved instruction excep­
tion. They are reserved for future versions of the architecture.

5 Operation codes marked with a delta are valid only for R4600 processors with
CPO enabled. and cause a reserved instruction exception on other proces­
sors.

cj> Operation codes marked with a phi are invalid but do not cause reserved
instruction exceptions in R4600 implementations.

Table A.4. R4600/R4700 Opcode Bit Encoding
(Page 1 of 2)

A-154

CPU Instruction Set Details Appendix A

20 .. 19
o

2

3

25,24
o
1
2

3

23 .. 21
o

MF

BC

18 .. 16
20 .. 19 0

2

DMF I CF I
Y Y

2

COPz rs

345
y I MT I DMT I
Y Y Y

CO

COPz rt

3 4 5

o BCF I BCT I BCFL I BCTL I y y

2

3

y

y

y

y y

y y

y y

y y y

y y y

y y y

CPO Function

6 7
CT I y

Y Y

6 7
y y

y y

y y

y y

5 .. 3 .------=---r--=:-=-=--r=~~_,__--=----4-=--------=-_r=_='7:~--=---___,
O~~-+~~~~~~-L ___ ~ ____ ~~~~~~~
1 ~=r~~+--~----+---~--~---~--~~
2r=~~ __ ~_~ ___ ~ ___ ~ ___ ~ __ ~ ___ ~~
3~~~_7-__ ~ ___ ~ ____ ~ ___ ~ __ ~~ __ ~~
4~~~ __ ~_~ ___ ~ __ ~ ____ ~ ___ ~ __ ~~
5~~ ___ ~ __ ~ __ ~ ___ ~ ___ ~ ____ ~ __ ~~
6r-~---~ __ ~ __ -~ __ -~ ____ ~ __ ~ ____ ~~
7~ ___________________________ ~

18 .. 16
o

BLTZ

TGEI

BLTZAL

*

REGIMM rt

2 3 4 5

BGEZ BLTZL BGEZL * *

TGEIU TLTI TLTIU TEal TNEI

BGEZAL BLTZALL BGEZALL * *

* * * * *

Table A.4 R4600/R4700 Opcode Bit Encoding
(Page 2 of 2)

A-lSS

6 7

* *

* *

* *

* *

Integrated Device Technology, Inc.

FPU Instruction Set
Details

Introduction

AppendixB

This appendix provides a detailed description of each floating-point unit
(FPU) instruction. Refer to Appendix A for details of the CPU instructions.

The instructions are listed alphabetically. Following each description is
a discussion of exceptions that may result from executing the instruction.
Refer to Chapter 7, "Floating Point Exceptions," for specifics about excep­
tion handling and their immediate causes.

Figure B.3 on page B-46 lists the entire bit encoding for the constant
fields of the floating-point instruction set. For bit encoding for an indi­
vidual instruction, refer to that instruction's description.

Instruction Formats
There are three basic instruction format types:
• I-Type, or Immediate instructions, which include load and store oper­

ations
• M-Type, or Move instructions
• R-Type, or Register instructions, which include the two- and three­

register floating-point operations.
The instruction description subsections that follow show how these

three basic instruction formats are used by:
• Load and store instructions
• Move instructions
• Floating-Point computational instructions
• Floating-Point branch instructions

Floating-point instructions are mapped onto the MIPS coprocessor
instructions, defining coprocessor unit number one (CPl) as the floating­
point unit.

Table B.1 shows the valid FPU instruction formats. Each operation is
valid for certain formats only. Implementations may support some of
these formats and operations through emulation, but they only need to
support combinations that are valid.

Valid combinations are marked with a V. The combinations marked
with an R are not currently specified for the R4650, and they will cause
an unimplemented instruction trap. They will be available for future
extensions to the architecture.

B-1

FPU Instruction Set Details Appendix: B

Source Format
Operation

Single Double Word Longword

ADD V R R R

SUB V R R R

MUL V R R R

DIV V R R R

SQRT V R R R

ABS V R R R

MOV V R

NEG V R R R

TRUNC.L V R

ROUND.L V R

CEIL.L V R

FLOOR.L V R

TRUNC.W V R

ROUND.W V R

CEIL.W V R

FLOOR.W V R

cvr.S R V V

Cvr.D R R R R

cvr.W V R

Cvr.L V R

C V R R R

Key to Table:
V Valid combination.
R Not currently specified for the R4650; causes an unimplemented instruc-

tion trap.

Table B.1 Valid FPU Instruction Formats

The coprocessor branch on condition true/false instructions can be
used to logically negate any predicate. Thus, the 32 possible conditions
require only 16 distinct comparisons, as shown in Table B.2.

B-2

FPU Instruction Set Details Appendix B

Condition Relations Invalid
Operation

Mnemonic Code Greater Less Equal Unordered Exception If

True

F

UN

EQ

UEQ

OLT

ULT

OLE

ULE

SF

NGLE

SEQ

NGL

LT

NGE

LE

NGT

Than Than Unordered
False

T 0 F F F F No

OR 1 F F F T No

NEQ 2 F F T F No

OGL 3 F F T T No

UGE 4 F T F F No

OGE 5 F T F T No

UGT 6 F T T F No

OGT 7 F T T T No

ST 8 F F F F Yes

GLE 9 F F F T Yes

SNE 10 F F T F Yes

GL 11 F F T T Yes

NLT 12 F T F F Yes

GE 13 F T F T Yes

NLE 14 F T T F Yes

GT 15 F T T T Yes

Table B.2 Logical Negation of Predicates by Condition True/False

Floating-Point Loads, Stores, and Moves
All movement of data between the floating-point coprocessor and

memory is accomplished by coprocessor load and store operations, which
reference the floating-point coprocessor General Purpose registers. These
operations are unformatted; no format conversions are performed and,
therefore, no floating-point exceptions can occur due to these operations.

Data may also be directly moved between the floating-point coprocessor
and the processor by move to coprocessor and move from coprocessor
instructions. Like the floating-point load and store operations, move to/
from operations perform no format conversions and never cause floating­
point exceptions. Note, however, that doubleword moves do cause an
unimplemented exception.

An additional pair of coprocessor registers are available, called Floating­
Point Control registers for which the only data movement operations
supported are moves to and from processor General Purpose registers.

B-3

FPU Instruction Set Details Appendix B

Floating-Point Operations
The floating-point unit operation set includes:
• floating-point add
• floating-point subtract
• floating-point multiply
• floating-point divide
• floating-point square root
• convert between fixed-point and floating-point formats
• convert between floating-point formats
• floating-point compare

These operations satisfY the requirements of IEEE Standard 754
requirements for accuracy. Specifically, these operations obtain a result
which is identical to an infinite-precision result rounded to the specified
format, using the current rounding mode.

Instructions must specify- the format of their operands. Except for
conversion functions, mixed-format operations are not provided.

Instruction Notation Conventions
In this appendix, all variable subfields in an instruction format (such as

fs, ft, immediate, and so on) are shown in lower-case. The instruction
name (such as ADD, SUB, and so on) is shown in upper-case.

For clarity, an alias is sometimes used for a variable subfield in the
formats of specific instructions. For example, rs = base in the format for
load and store instructions. Such an alias is always lower case, since it
refers to a variable subfield.

In some instructions, the instruction subfields op and function can have
constant 6-bit values. When reference is made to these instructions,
upper-case mnemonics are used. For instance, in the floating-point ADD
instruction we use op = COPl and junction = FADD. In other cases, a
single field has both fixed and variable subfields, so the name contains
both upper and lower case characters. Bit encoding for mnemonics are
shown in Figure B.3 at the end of this appendix, and are also included
with each individual instruction.

In the instruction description examples that follow, the Operation
section describes the operation performed by each instruction using a
high-level language notation.

Instruction Notation Examples
The following examples illustrate the application of some of the instruc­

tion notation conventions:

Example #1:

GPR[rt] ~ immediate II 016

Sixteen zero bits are concatenated with an immediate
value (typically 16 bits), and the 32-bit string (with the lower
16 bits set to zero) is assigned to General Purpose Register rt.

Example #2:

(immediate15) 16 II immediate15 .. 0

Bit 15 (the sign bit) of an immediate value is extended for
16 bit positions, and the result is concatenated with bits 15
through 0 of the immediate value to form a 32-bit sign
extended value.

B-4

FPU Instruction Set Details Appendix B

I

Load and Store Instructions
In the R4650 implementation, the instruction immediately following a

load may use the contents of the register being loaded. In such cases, the
hardware interlocks, requiring additional real cycles, so scheduling load
delay slots is still desirable, although not required for functional code.

The behavior of the load store instructions is dependent on the width of
the FGRs.

• When the FR bit in the Status register equals zero, there are 16
Floating-Point General registers (FGRs), each 32-bits wide.

• When the FR bit in the Status register equals one, there are 32 32-bit
Floating-Point General registers (FGRs).

In the load and store operation descriptions, the functions listed in
Table B.3 are used to summarize the handling of virtual addresses and
physical memory.

Function Meaning

AddressTranslation Uses the CPO to find the physical address given the virtual
address. The function fails and an exception is taken if the
required translation is not present/allowed.

Load Memory Uses the cache and main memory to find the contents of
the word containing the specified physical address. The
low-order two bits of the address and the Access Type field
indicates which of each of the four bytes within the data
word need to be returned. If the cache is enabled for this
access, the entire word is returned and loaded into the
cache.

StoreMemory Uses the cache, write buffer. and main memory to store
the word or part of word specified as data in the word con-
taining the specified physical address. The low-order two
bits of the address and the Access Type field indicates
which of each of the four bytes within the data word
should be stored.

Table B.3 Load and Store Common Functions

Figure B.1 shows the I -Type instruction format used by load and store
operations.

I-Type (Immediate)

31 26 25 21 20 16 15 0

op

I
base

I
ft

I
offset I

6 5 5 16

op is a 6-bit operation code

base is the 5-bit base register specifier

ft is a 5-bit source (for stores) or destination (for loads) FPA register speCifier

offset is the 16-bit signed immediate offset

Figure B.I Load and Store Instruction Format

B-5

FPU Instruction Set Details AppendixB

I

All coprocessor loads and stores reference aligned-word data items.
Thus, for word loads and stores, the access type field is always WORD,
and the low-order two bits of the address must always be zero.

For doubleword loads and stores, the access type field is always
DOUBLEWORD, and the low-order three bits of the address must always
be zero.l

Regardless of byte-numbering order (Endianness), the address specifies
that byte which has the smallest byte-address in the addressed field. For
a big-Endian machine, this is the leftmost byte; for a little-endian
machine, this is the rightmost byte.

Computational Instructions
Computational instructions include all of the arithmetic floating-point

operations performed by the FPU.
Figure B.2 shows the R-Type instruction format used for computational

operations.

R-Type (Register)

31 26 25 21 20 16 15 11 10 6 5 0

COP1
I

fmt

I
ft

I
fs

I
fd

I
function I

6 5 5 5 5 6

COPl is a 6-bit operation code

fmt is a 5-bit format specifier

fs is a 5-bit sourcel register

ft is a 5-bit source2 register

fd is a 5-bit destination register

function is a 6-bit function field

Figure B.2 Computational Instruction Format

The junction field indicates the floating-point operation to be performed.
Each floating-point instruction can be applied to a number of operand

formats. The operand format for an instruction is specified by the 5-bit
format field; decoding for this field is shown in Table B.4.

l. Causes an unimplemented trap.

B-6

FPU Instruction Set Details Appendix B

Code Mnemonic Size Format

16 S single Binary floating-point

17 Dt double Binary floating-point

18 Reserved

19 Reserved

20 W single 32-bit binary fixed-point

21 L longword 64-bit binary fixed-point

22-31 Reserved

Note: Causes an unimplemented trap.

Table B.4 Format Field Decoding

B-7

FPU Instruction Set Details Appendix B

Table B.5 lists all floating-point instructions.

Code Mnemonic Operation
(5: 0)

0 ADD Add

1 SUB Subtract

2 MUL Multiply

3 DIV Divide

4 SQRT Square root

5 ABS Absolute value

6 MOV Move

7 NEG Negate

8 ROUND.Lt Convert to single fixed-point, rounded to nearest/even

9 TRUNC.Lt Convert to single fixed-point, rounded toward zero

10 CEIL.Lt Convert to single fixed-point, rounded to +00

11 FLOOR.Lt Convert to single fixed-point, rounded to -00

12 ROUND.W Convert to single fixed-point, rounded to nearest/even

13 TRUNC.W Convert to single fixed-point, rounded toward zero

14 CEIL.W Convert to single fixed-point, rounded to + 00

15 FLOOR.W Convert to single fixed-point, rounded to-oo

16-31 - Reserved

32 cvr.S Convert to single floating-point

33 Cvr.D Convert to double floating-pointt

34 - Reserved

35 - Reserved

36 cvr.W Convert to 32-bit binary fixed-point

37 Cvr.Lt Convert to 64-bit binary fixed-point

38-47 - Reserved

48-63 C Floating-point compare

Note: t Causes an unimplemented trap.

Table B.G Floating-Point Instructions and Operations

In the follOwing. pages, the notation FGR refers to the 32 General
Purpose registers FGRO through FGR31 of the FPU, and FPR refers to the
floating-point registers of the FPU.

• When the FR bit in the Status register (SR(26)) equals zero, only the
even floating-point registers are valid and the 32 General Purpose
registers of the FPU are 32-bits wide.

• When the FR bit in the Status register (SR(26)) equals one, both odd
and even floating-point registers may be used and the 32 General
Purpose registers of the FPU are 32-bits wide.

The following routines are used in the deSCription of the floating-point
operations to retrieve the value of an FPR or to change the value of an
FGR:

8-8

FPU Instruction Set Detatls

FR=O

value ~ ValueFPR(fpr, fmt)
case fmt of
S,W:
ifFGRo = 0
value ~ FGR[fpr]
else
value ~ FGR[fpr - 1]
endif
0:
/* undefined for fpr not even * /
value ~ FGR[fpr]
end

StoreFPR(fpr, fmt, value):
case fmt of
S,W:
ifFGRo = 0
FGR[fpr] ~ FGR[fpr]63 .. 32 II value
else
FGR[fpr - 1] ~ value II FGR[fpr - 1b1..o
endif
0:
/* undefined for fpr not even * /
FGR[fpr] ~ value
end

FR= 1

value ~ ValueFPR(fpr, fmt)
case fmtof
S:
value ~ FGR[fprb1..0
0, L:
value ~ FGR[fpr]
W:
value ~ FGR[fpr]
end

StoreFPR(fpr, fmt, value):
case fmt of
S,W:
FGR[fpr] ~ undefined32 I I value
D,L:
FGR[fpr] ~ value
end

B-9

Appendix B

FPU Instruction Set Details AppendixB

ABS.fmt Floating-Point ABS.fmt Absolute Value

31

I

26 25 21 20 16 15 11 10 6 5 0

COP1

I
fmt

I
0

I
fs

I
fd

I
ASS

I 010001 00000 000101
6 5 5 5 5 6

Format:
ABS.fmt fd, fs

Description:
The contents of the FPU register specified by fs are interpreted in the

specified format and the arithmetic absolute value is taken. The result is
placed in the floating-point register specified by fd.

The absolute value operation is arithmetic; a NaN operand signals
. invalid ·operation.

This instruction is valid only for single- and double-precision floating­
point formats. The operation is not defined if bit 0 of any register specifi­
cation is set and the FR bit in the Staf:(Ls register equals zero, since the
register numbers specify an even-odd pair of adjacent coprocessor general
registers. When the FR bit in the Status register equals one, both even
and odd register numbers are valid.

Operation:

T: StoreFPR(fd, fmt, AbsoluteValue(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor unusable exception
Coprocessor exception trap
Unimplemented (.fmt = .D)

Coprocessor Exceptions:
Unimplemented operation exception (e.g . . D)
Invalid operation exception .

B-I0

FPU Instruction Set Details Appendix B

ADD.fmt Floati ng-Poi nt Add ADD.fmt
31

I

26 25 21 20 16 15 11 10 6 5 0

COP1

I
fmt

I
ft

I
fs

I
fd

I
ADD

I 010001 000000

6 5

Format:
ADO.fmt fd, fs, ft

Description:

5 5 5 6

The contents of the FPU registers specified by fs andft are interpreted
in the specified format and arithmetically added. The result is rounded as
if calculated to infinite precision and then rounded to the specified format
(fint), according to the current rounding mode. The result is placed in the
floating-point register (FPR) specified by fd.

This instruction is valid only for single- and double-precision floating­
point formats. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor

, general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) + ValueFPR(ft, fmt))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception (e.g .. 0)
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception

B- 11

FPU Instruction Set Details Appendix B

BC1F Branch On FPA False
(Coprocessor 1) BC1F

31

I

26 25 21 20 1615 o

COP1 BC
I o~g~o I

offset
010001 01000

6 5 5 16

Format:
BCIF offset

Description:
A branch target address is computed from the sum of the address of the

instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is false, the
program branches to the target address, with a delay of one instruction.

Operation:

T -1 : condition f- not COC[1]
T: target f- (offset15)46 II offset II 02

T + 1 : if condition then
PC f- PC + target

endif

Exceptions:
Coprocessor unusable exception

B-12

FPU Instruction Set Details Appendix B

BC1FL Branch On FPU False Likely
(Coprocessor 1) BC1FL

31 26 25 21 20 16 15 o

COP1
010001

Be
01000

offset

6 5 5 16

Format:
BC 1 FL offset

Description:
A branch target address is computed from the sum of the address of the

instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended.

If the result of the last floating-point compare is false, the program
branches to the target address, with a delay of one instruction. If the
conditional branch is not taken, the instruction in the branch delay slot is
nullified.

Operation:

T -1 : condition f- not COC[1]
T: target f- (offset1S)46 II offset II 02

T + 1: if condition then

Exceptions:

PC f- PC + target
else

NullifyCurrentinstruction
endif

Coprocessor unusable exception

B-13

FPU Instruction Set Details -Appendix: B

BC1T Branch On FPU True
(Coprocessor 1) BC1T

31 26 25 21 20 16 15 o

I
COP1

010001
BC

01000
I BeT

00001
offset

6 5 5 16

Format:
BCIToffset

Description:
A branch target address is computed from the sum of the address of the

instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended. If the result of the last floating-point compare is true, the
program branches to the target address, with a delay of one instruction.

Operation:

Exceptions:

T -1 : condition ~ COC[1]
T: target ~ (offset1S)46 II offset II 02

T + 1: if condition then
PC ~ PC + target

endif

Coprocessor unusable exception

8-14

FPU'Instruction Set Details Appendix B

BC1Tl Branch On FPU True Likely
(Coprocessor 1) BC1TL

31 26 25

COP1
010001

6

Format:

BC
01000

5

BC 1 TL offset

Description:

21 20 1615

I Bell
00011

5

o

offset

16

A branch target address is computed from the sum of the address of the
instruction in the delay slot and the 16-bit offset, shifted left two bits and
sign-extended.

If the result of the last floating-point compare is true, the program
branches to the target address, with a delay of one instruction. If the
conditional branch is not taken, the instruction in the branch delay slot is
nullified.

Operation:

T -1: condition f- COC[1]
T: target f- (offset15)46 II offset II 02

T + 1: if condition then
PC f- PC + target

else
NullifyCurrentl nstruction

endif

Exceptions:
Coprocessor unusable exception

B-15

FPU Instruction Set Details Appendix B

C.cond.fmt Floati ng-Poi nt
Compare C.cond.fmt

31 26 25 21 20 16 15 11 10 6 5 43 o

I
COP1

010001
fmt ft fs condO I

6 5 5 5 5 2 4

Format:
C.cond.fmt fs, ft

Description:
The contents of the floating-point registers specified by fs and ft are

interpreted in the specified format and arithmetically compared.
A result is determined based on the comparison and the conditions

specified in the instruction. If one of the values is a Not a Number (NaN),
and the high-order bit of the condition field is set, an invalid operation
exception is taken. After a one-instruction delay, the condition is avail­
able for testing with branch on floating-point coprocessor condition
instructions.

Comparisons are exact and can neither overflow nor underflow. Four
mutually-exclusive relations are possible as results: less than, equal,
greater than, and unordered. The last case arises when one or both of the
operands are NaN; every NaN compares unordered with everything,
including itself.

Comparisons ignore the sign of zero, so +0 = -0.
This instruction is valid only for single- and double-precision floating­

point formats. The operation is not defined if bit 0 of any register specifi­
cation is set and the FR bit in the Status register equals zero, since the
register numbers specify an even-odd pair of adjacent coprocessor general
registers. When the FR bit in the Status register equals one, both even
and odd register numbers are valid.

Note: *See "FPU Instruction Opcode Bit Encoding" at the end of
AppendixB.

B-16

FPU Instruction Set Details

Operation:

T: if NaN(Va:lueFPR(fs, fmt» or NaN(ValueFPR(ft, fmt» then

else

endif

less ~ false
equal ~ false
unordered ~ true
if cond3 then .

signallnvalidOperationExceptlon
endif

less ~ ValueFPR(fs, fmt) < ValueFPR(ft, fmt)
equal ~ ValueFPR(fs, fmt) = ValueFPR(ft, fmt)
unordered ~ false

condition ~ (cond2 and less) or (cond1 and equal) or
(condo and unordered)

FCR[31]23 ~ condition
COC[1] ~ condition

Exceptions:
Coprocessor unusable
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception (e.g .. 0)
Invalid operation exception

8-17

Appeiullx B

FPU Instruction Set Details Appendix B

CEIL.L.fmt Floati ng-Poi nt
Ceiling to Long

Fixed-Point Format
CEIL.L.fmt

31 26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 fs fd CEIL.L
010001 00000 001010

6 5 5 5 5 6

Format:
CEIL.L.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted

in the specified source format, jmt, and arithmetically converted to the
single fixed-point format. The result is placed in the floating-point
register specified by fd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round to +00 (2).

This instruction is valid only for conversion from single- or double­
precision floating-point formats. When the FR bit in the Status register
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of _263 to 263_ 1, the Invalid operation exception
is raised. If the Invalid operation is not enabled then no exception is taken
and 263_1 is returned.

This instruction traps on the R4650, which does not support the.L
format.

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L»

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception (e.g . . D)
Inexact exception
Overflow exception

8-18

FPU Instruction Set Details Appendix B

CEIL.W.fmt Floati ng-Poi nt
Ceiling to Single

Fixed-Point Format
CEIL.W.fmt

31 26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 fs fd CEIL.W
010001 00000 001110

6 5 5 5 5 6

Format:
CEIL.W.fmt fd, fs

Description:
The contents of the floating-point register specified by js are interpreted

in the specified source format, jmt, and arithmetically converted to the
single fixed-point format. The result is placed in the floating-point
register specified by jd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round to +00 (2).

This instruction is valid only for conversion from a single- or double­
precision floating-point formats. The operation is not defined if bit 0 of
any register speCification is set and the FR bit in the Status register
equals zero, since the register numbers specify an even-odd pair of adja­
cent coprocessor general registers. When the FR bit in the Status register
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of _231 to 231_ 1, the Invalid operation exception
is raised. If the Invalid operation is not enabled then no exception is taken
and 231_1 is returned.

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception (e.g . . D)
Inexact exception
Overflow exception

B-19

FPU Instruction Set Details Appendix B

CFC1 Move Control Word From FPU
(Coprocessor 1) CFC1

31 26 25 21 20 16 15 11 10 o

COP1
010001

CF
00010

rt fs o
000 0000 0000

6 5 5 5 11

Format:
CFC1 rt, fs

Description:
The contents of the FPU control register Is are loaded into general

register rt.
This operation is only defined when Is equals 0 or 31.
The contents of general register rt are undefined for time T of the

instruction immediately following this load instruction.

Operation:

T: temp ~ FCR[fs]
T + 1: GPR[rt] ~ (temP31)32 II temp

Exceptions:
Coprocessor unusable exception

B-20

FPU Instruction Set Details Appendiz 8

CTC1 Move Control Word To FPU
(Coprocessor 1) CTC1

31 26 25 21 20 16 15 11 10 a

COP1
010001

CT
001 1 a

rt fs a
000 0000 0000

6 5 5 5 11

Format:
CTC1 rtf fs

Description:
The contents of general register rt are loaded into FPU control register

js. This operation is only defined whenjs equals 31.
Writing to Control Register 31. the floating-point Control/Status register,

causes an interrupt or exception if any cause bit and its corresponding
enable bit are both set. The register will be written before the exception
occurs. The contents of floating-point control register js are undefined for
time T of the instruction immediately following this load instruction.

Operation:

Exceptions:

T: temp f- GPR[rth1 .. 0

T + 1: FCR[fs] f- temp
COC[1] f- FCR[31]23

Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception (e.g . . D)
Invalid operation exception
Division by zero exception
Inexact exception
Overflow exception
Underflow exception

8-21

FPU Instruction Set Details Appendix B

CVT.D.fmt Floating-Point CVT D fmt
Convert to Double ••

31

Floating-Point Format

26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 fs fd CVT.D
010001 00000 100001

6 5 5 5 5 6

Format:
CVT.D.fmt fd, fs

Description:
The contents of the floating-point register specified by fs is interpreted

in the 'specified source format, jmt, and arithmetically converted to the
double binary floating-point format. The result is placed in the floating­
point register specified by fd.

This instruction is valid only for conversions from single floating-point
format, 32-bit or 64-bit fixed-point format.

If the single floating-point or single fixed-point format is specified, the
operation is exact. The operation is not defined if bit 0 of any register
specification is set and the FR bit in the Status register equals zero, since
the register numbers specify an even-odd pair of adjacent coprocessor
general registers. When the FR bit in the Status register equals one, both
even and odd register numbers are valid.

This instruction traps on the R4650, which does not support the.D
format.

Operation:

T: StoreFPR (fd, D, ConvertFmt(ValueFPR(fs, fmt), fmt, D))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception
Underflow exception

8-22

FPU· Instruction Set Details Appendix B

CVT.L.fmt Floating-Point
Convert to Long

Fixed-Point Format
CVT.L.fmt

31 26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 f5 fd CVT.L
010001 00000 100101

6 5 5 5 5

Format:
CVf.L.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted

in the specified source format, jmt, and arithmetically converted to the
long fixed-point format. The result is placed in the floating-point register
specified by fd.

This instruction is valid only for conversions from single- or double­
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of _263 to 263_1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 263_1 is returned.

This instruction traps on the R4650, which does not support the .L
format.

Operation:

T: StoreFPR (fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

B-23

FPU Instruction Set Details AppendixB

CVT.S.fmt
Floating-Point

Convert to Single
Floating-Point Format

CVT.S.fmt

31 26 25 21 20 16 15 11 10 6 5 o

fmt fs fd

I

COP1
010001 I oo~oo I

CVT.S
100000

6 5 5 5 5 6

Format:
CVT.S.fmt fd, fs

Description:
The contents of the floating-point register specified by Js are interpreted

in the specified source format, jmt, and arithmetically converted to the
single binary floating-point format. The result is placed in the floating­
point register specified by Jd. Rounding occurs according to the currently
specified rounding mode.

This instruction is valid only for conversions from double floating-point
format, or from 32-bit or 64-bit fixed-point format. The operation is not
defined if bit 0 of any register speCification is set and the FR bit in the
Status register equals zero, since the register numbers specify an even­
odd pair of adjacent coprocessor general registers. When the FR bit in the
Status register equals one, both even and odd register numbers are valid.

Operation:

T: StoreFPR(fd, S, ConvertFmt(ValueFPR(fs, fmt), fmt, S))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception (e.g . . D)
Inexact exception
Overflow exception
Underflow exception

B-24

FPU Instruction Set Details Appendix B

CVT.W.fmt
Floating-Point

Convert to
Fixed-Point Format

CVT.W.fmt

31

I

26 25 21 20 16 15 11 10 6 5 0

COP1 fmt 0 fs fd CVT.W
010001 I I 00000 I I I 100100 I

6 5 5 5 5 6

Format:
CVT.W.fmt fd, fs

Description:
The contents of the floating-point register specified by Is are interpreted

in the specified source format, jmt, and arithmetically converted to the
single fiXed-point format. The result is placed in the floating-point
register specified by fd. This instruction is valid only for conversion from
a single- or double-precision floating-point formats. The operation is not
defined if bit 0 of any register specification is set and the FR bit in the
Status register equals zero, since the register numbers specify an even­
odd pair of adjacent coprocessor general registers. When the FR bit in the
Status register equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of _231 to 231_1. an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
231 -1 is returned.

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception (e.g . . D)
Inexact exception
Overflow exception

B-25

FPU Instruction Set Details Appendix B

I

DIV.fmt Floating-Point Divide DIV.fmt
31 26 25 21 20 16 15 11 10 6 5 0

COP1 fmt ft fs fd DIV
010001 I I I I I 000011 I

6 5 5 5 5 6

Format:
DIV.fmt fd, fs, ft

Description:
The contents of the floating-point registers specified by fs and ft are

interpreted in the specified format and arithmetically divided. The result
is rounded as if calculated to infinite precision and then rounded to the
specified format, according to the current rounding mode. The result is
placed in the floating-point register specified by fd.

This instruction is valid for only single or double precision floating-point
formats.

The operation is not defined if bit 0 of any register specification is set
and the FR bit in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general regiS­
ters. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt)NalueFPR(ft, fmt))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception (e.g .. 0)
Invalid operation exception
Division -by-zero exception
Inexact exception
Overflow exception
Underflow exception

B-26

FPU Instruction Set Details AppendizB

DMFC1 Doubleword Move From
Floating-Point Coprocessor DMFC1

31 26 25 21 20 16 15 11 10 o

COP1 DMF rt fs 0
010001 00001 000 0000 0000

6 5 5 5 11

Format:
DMFCI rt. fs

Description:
The contents of register Is from the floating-point coprocessor is stored

into processor register rt.
The contents of general register rt are undefined for time T of the

instruction immediately following this load instruction.
The FR bit in the Status register specifies whether all 32 registers of the

R4650 are addressable. When FR equals zero, this instruction is not
defined when the least significant bit of Js is non-zero. When FR is set, Is
may specifY either odd or even registers.

DMFCI will always trap on the R4650.

Operation:

Exceptions:

T: if SR26 = 1 then
data ~ CPR[l,fs]

else
data ~ CPR[1 ,fS4 .. 1 110]

endif

T + 1: GPR[rt] ~ data

Coprocessor unusable exception.
Unimplemented operation exception.

B-27

FPU Instruction Set Details Appendix B

DMTC1 Doubleword Move To
Floating-Point Coprocessor DMTC1

31 26 25 21 20 16 15 11 10 o

COP1 DMT rt fs 0
.010001 00101 000 0000 0000

6 5 5 5 11

Format:
DMTCI ct, fs

Description:
The contents of general register rt are loaded into coprocessor register Is

of the CPl.
The contents of floating-point register Is are undefined for time T of the

instruction immediately following this load instruction.
The FR bit in the Status register specifies whether all 32 registers of the

R4650 are addressable. When FR equals zero, this instruction is not
defined when the least significant bit of Is is non-zero. When FR equals
one, Is may specify either odd or even registers.

DMTCI will always trap on the R4650.

Operation:

T: data ~ GPR[rt]

T+1: if SR26 = 1 then

Exceptions:

CPR[1, fs] ~ data
else

CPR[1, fS4 .. 1 " 0] ~ data
endif

Coprocessor unusable exception.
Unimplemented operation exception.

B-28

FPU Instruction Set Details AppendixB

FlOOR.L.fmt Floating-Point
Floor to Long

Fixed-Point Format

FLOOR.L.fmt

31 26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 fs fd FLOOR.L
010001 00000 001011

6 5 5 5 5 6

Format:
FLOOR.L.fmt fd, fs

Description:
The contents of the floating-point register specified by Js are interpreted

in the specified source format, jmt, and arithmetically converted to the
single fixed-point format. The result is placed in the floating-point
register specified by Jd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round to -00 (3).

This instruction is valid only for conversion from single- or double­
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of _263 to 263_ 1, the Invalid operation exception
is raised. If the Invalid operation is not enabled then no exception is
taken and 263_1 is returned.

This instruction traps on the R4650, which does not support the .L
format.

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

B-29

FPU: Instruction Set Details AppendixB

FLOOR.W.fmt Floating-Point FLOOR.W.fmt
Floor to Single

Fixed-Point Format

31 26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 fs fd FLOOR.W
010001 00000 001111

6 5 5 5 5 6

Format:
FLOOR.W.fmt fd, fs

Description:
The contents of the floating-point register specified by Js are interpreted

in the specified source format, jmt, and arithmetically converted to the
single fixed-point format. The result is placed in the floating-point
register specified by Jd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round to -00 (RM = 3).

This instruction is valid only for conversion from a single- or double­
preCision floating-point formats. The operation is not defined if bit 0 of'
any register speCification is set and the FR bit in the Status register
equals zero, since the register numbers specify an even-odd pair of adja­
cent coprocessor general registers. When the FR bit in the Status register
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of _231 to 231_1, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
231_1 is returned.

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W»

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception (e.g . . D)
Inexact exception
Overflow exception

B-30

FPU Instruction Set Details

LDC1
31

LDC1
110101

6

26 25

Load Doubleword to FPU
(Coprocessor 1)

21 20 16 15

base ft

5 5

Format:
LDC 1 ft, offset(base)

Description:
LDC 1 will always trap.

B-31

Appendii B

LDC1
o

offset

16

FPU Instruction Set Details Appendix B

LWC1 Load Word to FPU
(Coprocessor 1) LWC1

31 26 25 21 20 16 15 o

LWC1
110001

base ft offset

6 5 5 16

Format:
LWCI ft, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form an unsigned effective address. The contents of the
word at the memory location specified by the effective address is loaded
into register ft of the floating-point coprocessor.

The FR bit of the Status register specifies whether all 64-bit Floating­
Point registers are addressable. If FR equals zero, LWC I loads either the
high or low half of the 16 even Floating-Point registers. If FR equals one,
LWC 1 loads the low 32-bits of both even and odd floating-Point registers.

If either of the two least-significant bits of the effective address is non­
zero, an address error exception occurs.

Operation:

T: vAddr ~ ((offset15)48 II offset15 .. 0) + GPR[base]
(pAd dr, uncached) ~ AddressTranslation (vAddr, DATA)
pAddr ~ pAddrpSIZE-l .. 3 II (pAddr2 .. 0 xor (ReverseEndian II 02))
mem ~ LoadMemory(uncached, WORD, pAd dr, vAddr, DATA)
byte ~ vAddr2 .. o xor (BigEndianCPU II 02)
if SR26 = I then
CPR[I, ft] ~ undefined32 II mem31+8"'byte .. 8"'byte
else if f1o=O then
CPR[I, ft4 .. 1 'II 0] ~ CPR[I, ft4 .. 1 II 0]64 .. 32 II mem31+8"'byte .. 8"'byte
else
CPR[l, ft4 .. 1 II 0] ~ mem31+8*byte .. 8"'byte II CPR[l, ft4 .. 1 II 0131..0
endif

Exceptions:
Coprocessor unusable
TLB refill exception
TLB invalid exception
Bus error exception
Address error exception

B-32

FPU Instruction Set Details AppendixB

MFC1 Move From FPU
(Coprocessor 1) MFC1

31 26 25 21 20 16 15 11 10 a

COP1 MF rt fs a
010001 00000 000 0000 0000

6 5 5 5 11

Format:
MFC1 rt, fs

Description:
The contents of register Js from the floating-point coprocessor are

loaded into processor register rt.
The contents of register rt are undefined for time T of the instruction

immediately following this load instruction.
The FR bit of the Status register specifies whether all 32 registers of the

R4650 are addressable. If FR equals zero, MFC 1 loads either the high or
low half of the 16 even Floating-Point registers. If FR equals one, MFC1
stores the low 32-bits of both even and odd Floating-Point registers.

Operation:

T: if SR26 = 1 then
data f- CPR[1, fs]

else if fso = a then
data f- CPR[1 , fS4 .. 1 II 0131..0

else

data f- CPR[1 , fS4 .. 1 II 0]63 .. 32
endif

T+1: GPR[rt] f- (data31)32II data

Exceptions:
Coprocessor unusable exception

B- 33

FPU Instruction Set Details AppendixB

MOV.fmt Floating-Point Move MOV.fmt
31 26 25 21 20 16 15 11 10 6 5 o

I
COP1

010001
fmt

I OO~OO I fs fd MOV
000110

6 5 5 5 5 6

Format:
MOV.fmt fd, fs

Description:
The contents of the FPU register specified by fs are interpreted in the

specified format and are copied into the' FPU register specified by fd.
The move operation is rion-arithmetic; no IEEE 754 exceptions occur as

a result of the instruction.
This instruction is valid only for single- or double-precision floating­

point formats.
The operation is not defined if bit 0 of any register specification is set

and the FR bit· in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general regis­
ters. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:

T: StoreFPR(fd, fmt, ValueFPR(fs, fmt))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception (e.g . . D)

8-34

FPU Instruction Set Details Appendix B

MTC1 Move To FPU
(Coprocessor 1) MTC1

31 26 25 21 20 16 15 11 10 o

COP1
010001

MT
00100

rt fs o
000 0000 0000

6 5

Format:
MTCI rt, fs

Description:

5 5 11

The contents of registerrt are loaded into the FPU general register at
location Is.

The contents of floating-point register Is is undefined for time T of the
instruction immediately following this load instruction.

The .FR bit of the Status register specifies whether all 32 registers of the
R4650 are addressable. If FR equals zero, MTC 1 loads either the high or
low half of the 16 even Floating-Point registers. If FR equals one, MTC 1
loads the low 32-bits of both even and odd Floating-Point registers.

Operation:

T: data f- GPR[rtb1..o
T + 1 : if SR26 = 1 then

Exceptions:

CPR[1, fs] f- undefined32 II data
else if fso=O then

CPR[1, fS4 .. 1 110] f- CPR[1, fS4 .. 1 II 0]63 .. 32 II data
else

CPR[1 , fS4 .. 1 II 0] f- data II CPR[1, fS4 .. 1 II 0131..0
end if

Coprocessor unusable exception

B-35

FPU Instruction Set Details Appendix: B

MUL.fmt Floating-Point Multiply MUL.fmt
31

I

26 25 21 20 16 15 11 10 6 5 0

COP1 fmt ft fs fd MUL
010001 I I I I I 000010 I

6 5 5 5 5 6

Format:
MUL.fmt fd, fs, ft

Description:
The contents of the floating-point registers specified by fs and jt are

interpreted in the specified format and arithmetically multiplied. The
result is rounded as if calculated to infinite preCision and then rounded to
the specified format, according to the current rounding mode. The result
is placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating­
point formats.

The operation is not defined if bit 0 of any register specification is set
and the FR bit in the Status register equals zero, since the register
numbers specifY an even-odd pair of adjacent coprocessor general regis­
ters. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) * ValueFPR(ft, fmt))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception (e.g .. 0)
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception

B-36

FPU Instruction Set Details Appendix B

NEG.fmt Floating-Point Negate NEG.fmt
31 26 25 21 20 16 15 11 10 6 5 o

fmt fs fd

I

COP1
010001 I oo~oo I

NEG
000111

6 5

Format:
NEG .fmt fd, fs

Description:

5 5 5 6

The contents of the FPU register specified by Is are interpreted in the
specified format and the arithmetic negation is taken (polarity of the sign­
bit is changed). The result is placed in the FPU register specified by fd.

The negate operation is arithmetic; an NaN operand signals invalid
operation.

This instruction is valid only for single- or double-precision floating­
point formats. The operation is not defined if bit 0 of any register specifi­
cation is set and the FR bit in the Status register equals zero, since the
register numbers specify an even-odd pair of adjacent coprocessor general
registers. When the FR bit in the Status register equals one, both even
and odd register numbers are valid.

Operation:

T: StoreFPR(fd, fmt, Negate(ValueFPR(fs, fmt)))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception (e.g . . D)
Invalid operation exception

B-37

FPU Instruction Set Details Appendix B

ROUND.L.fmt Floating-Point
Round to Long" ROUND.L.fmt

31

Fixed-Point Format

26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 fs fd ROUND.L
010001 00000 001000

6 5 5 5 5 6

Format:
ROUND.L.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted

in the specified source format, jmt, and arithmetically converted to the
long fixed-point format. The result is placed in the floating-point register
specified by fd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round to nearest/even (0).

This instruction is valid only for conversion from single- or double­
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of _263 to 263_ 1, the Invalid operation exception
is raised. If the Invalid operation is not enabled then no exception is
taken and 263 -1 is returned.

This instruction traps on the R4650, which does not support the .L
format.

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

B-38

FPU IIistruction Set Details Appendix B

ROUND.W.fmt Floating-Point ROUND.W.fmt

31

Round to Single
Fixed-Point Format

26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 fs fd ROUND.W
010001 00000 001100

6 5 5 5 5 6

Format:
ROUND.W.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted

in the specified source format, jmt, and arithmetically converted to the
single fixed-point format. The result is placed in the floating-point
register specified by fd.

Regardless of the setting of the current rounding mode, the conversion
is· rounded as if the current rounding mode is round to the nearest/even
(RM = 0).

This instruction is valid only for conversion from a single- or double­
precision floating-point formats. The operation is not defined if bit 0 of
any register specification is set and the FR bit in the Status register
equals zero, since the register numbers specify an even-odd pair of adja­
cent coprocessor general registers. When the FR bit in the Status register
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of _231 to 231 -1, an Invalid operation exception is
raised. If invalid operation is not enabled, then no exception is taken and
231 -1 is returned.

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception (e.g .. 0)
Inexact exception
Overflow exception

B-39

FPU Instruction Set Details

SDC1 Store Doubleword from FPU
(Coprocessor 1)

31 26 25 21 20 16 15

SDC1
111101

base ft

6 5 5

Format:
SDC 1 ft, offset(base)

Description:
SDC 1 will always trap on the R4650.
Coprocessor exceptions
Unimplemented operation exception

B-40

offset

16

Appendix B

SDC1
o

FPU Instruction Set Details Appendix B

SQRT.fmt Floati ng-Poi nt
Square Root SQRT.fmt

31 26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 f5 fd SQRT
010001 00000 000100

6 5 5 5 5 6

Format:
SQRT.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted

in the specified format and the. positive arithmetic square root is taken.
The result is rounded as if calculated to infinite precision and then
rounded to the specified format, according to the current rounding mode.
If the value of fs corresponds to -0, the result will be -0. The result is
placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating­
point formats.

The operation is not defined if bit 0 of any register specification is set
and the FR bit in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general regiS­
ters. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:

T: StoreFPR(fd, fmt, SquareRoot(ValueFPR(f5, fmt)))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception (e.g . . D)
Invalid operation exception
Inexact exception

B-41

FPU Instruction Set Details Appendix B

SUB.fmt Floating-Point Subtract SUB.fmt
31

I

26 25 21 20 16 15 11 10 6 5 0

COP1 fmt ft fs fd SUB
010001 I I I I I 000001 I

6 5 5 5 5 6

Format:
SUB.fmt fd, fs, ft

Description:
The contents of the floating-point registers specified by fs and ft are

interpreted in the specified format and arithmetically subtracted. The
result is rounded as if calculated to infinite· precision and then rounded to
the specified format, according to the current rounding mode. The result
is placed in the floating-point register specified by fd.

This instruction is valid only for single- or double-precision floating­
point formats.

The operation is not defined if bit 0 of any register specification is set
and the FR bit in the Status register equals zero, since the register
numbers specify an even-odd pair of adjacent coprocessor general regis­
ters. When the FR bit in the Status register equals one, both even and
odd register numbers are valid.

Operation:

T: StoreFPR (fd, fmt, ValueFPR(fs, fmt) - ValueFPR(ft, fmt))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Unimplemented operation exception (e.g . . D)
Invalid operation exception
Inexact exception
Overflow exception
Underflow exception

8-42

FPU Instruction Set Details Appendix B

SWC1 Store Word from FPU
(Coprocessor 1) SWC1

31 26 25 21 20 16 15 o

SWC1
111001

base ft offset

6 5 5 16

Format:
SWC 1 ft, offset(base)

Description:
The 16-bit offset is sign-extended and added to the contents of general

register base to form an unsigned effective address. The contents of
register ft from the floating-point coprocessor are stored at the memory
location specified by the effective address.

The FR bit of the Status register specifies whether all 64-bit floating­
point registers are addressable.

If FR = 0, SWC 1 stores either the high or low half of the 16 even floating­
point 'registers.

If FR = 1, SWC 1 stores the low 32-bits of both even and odd floating­
point registers.

If either of the two least-significant bits of the effective address are non­
zero, an address error exception occurs.

Operation: .

T: vAddr f-- ((offset15)48 II offset15 .. 0) + GPR[base]
(pAddr, uncached) f-- AddressTranslation (vAddr, DATA)
pAddr f-- pAddrpSIZE-1 .. 3 I I (pAddr2 .. 0 xor (ReverseEndian 1102))
byte ~ vAddr2 .. 0 xor (BigEndianCPU 1102)
if SR26 = 1 then

8*byte data f-- CPR[1 , ft]63-8*byte .. o II 0
else if fto=O then .

else

8*byte data f-- CPR[1 , ft4 .. 1 II 0]63-8*byte .. O II 0

data f-- 032-8*byte II CPR[1, ft4 .. 1 II 0] 63 .. 32-8*byte
endif
StoreMemory (uncached, WORD, data, pAddr, vAddr, DATA)

Exceptions:
Coprocessor unusable
TLB refill exception
TLB invalid exception
TLB modification exception
Bus error exception
Address error exception

B-43

FPU Instruction Set Details Appendix B

TRUNCal.fmt Floating-Point
Truncate to Long
Fixed-Point Format

TRUNC.l.fmt

31 26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 fs fd TRUNC.L
010001 00000 001 001

6 5 5 5 5 6

Format:
TRUNC.L.fmt fd, fs

Description:
The contents of the floating-point register specified by fs are interpreted

in the specified source format, jmt, and arithmetically converted to the
single fixed-point format. The result is placed in the floating-point
register specified by fd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round toward zero (1).

This instruction is valid only for conversion from single- or double­
precision floating-point formats.

When the source operand is an Infinity, NaN, or the correctly rounded
integer result is outside of _263 to 263_1, the Invalid operation exception is
raised. If the Invalid operation is not enabled then no exception is taken
and 263_1 is returned.

This instruction always traps on the R4650, which does not support the
.L format.

Operation:

T: StoreFPR(fd, L, ConvertFmt(ValueFPR(fs, fmt), fmt, L))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception
Inexact exception
Overflow exception

B-44

FPU Instruction Set Details Appendix B

TRUNC.W.fmt Floating-Point TRUNC W fmt
Truncate to Single • •

31

Fixed-Point Format

26 25 21 20 16 15 11 10 6 5 o

COP1 fmt 0 f5 fd TRUNC.W
010001 00000 001101

6 5 5 5 5 6

Format:
TRUNC.W.fmt fd, fs

Description:
The contents of the FPU register specified by Js are interpreted in the

specified source format ftnt and arithmetically converted to the single
fixed-point format. The result is placed in the FPU register specified by
Jd.

Regardless of the setting of the current rounding mode, the conversion
is rounded as if the current rounding mode is round toward zero (RM = 1).

This instruction is valid only for conversion from a single- or double­
precision floating-point formats. The operation is not defined if bit a of
any register specification is set and the FR bit in the Status register
equals zero, since the register numbers specify an even-odd pair of adja­
cent coprocessor general registers. When the FR bit in the Status register
equals one, both even and odd register numbers are valid.

When the source operand is an Infinity or NaN, or the correctly rounded
integer result is outside of _231 to 231_1, an Invalid operation exception is
raised. If Invalid operation is not enabled, then no exception is taken and
231 -1 is returned.

Operation:

T: StoreFPR(fd, W, ConvertFmt(ValueFPR(fs, fmt), fmt, W))

Exceptions:
Coprocessor unusable exception
Floating-Point exception

Coprocessor Exceptions:
Invalid operation exception
Unimplemented operation exception (e.g . . D)
Inexact exception
Overflow exception

B-45

FPU Instruction Set Details

FPU Instruction Opcode Bit Encoding

28 .. 26
31 .. 29 0

o
1
2

3
4

5
6
7

25 .. 24
o
1

2

3

23 .. 21
o
MF

BC

S

0

18 .. 16
20 .. 19 0

o
1

2

3

BCF

'Y
'Y
'Y

2 .. 0
o

ADD

Figure B.3 shows the bit encoding for FPU instructions.

Opcode

1 2 3 4 5 6 7

COP1

LWC1 LDC1

SWC1 SDC1

sub

1 2 3 4 5 6 7

DMF 110 CF 'Y MT DMT 110 CT 'Y
'Y 'Y 'Y 'Y 'Y 'Y 'Y
D 0 0 W Ln 0 0

0 0 0 0 0 0 0

br
1 2 3 4 5 6 7

BCT BCFL BCTL 'Y 'Y 'Y 'Y
'Y 'Y 'Y 'Y 'Y 'Y 'Y
'Y 'Y 'Y 'Y 'Y 'Y 'Y
'Y 'Y 'Y 'Y 'Y 'Y 'Y

function

1 2 3 4 5 6 7
SUB MUL DIV SQRT ABS MOV NEG

Appendix B

5 .. 3
o
1
2

3

4
5
6

7

ROUND.L 11 ITRUNC.L 11 CEIL.L 11 FLOOR.L 11 ROUND.W TRUNC.W CEIL.W FLOOR.W

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
CVT.S CVT.D 0 0 0 CVT.W CVT.L11 0 0

0 0 0 0 0 0 0 0

C.F C.UN C.EQ C.UEQ C.OLT C.ULT C.OLE C.ULE

C.SF C.NGLE C.SEQ C.NGL C.LT C.NGE C.LE C.NGT

Key to Table
"(Operation codes marked with a gamma cause a reserved instruction exception.

They are reserved for future versions of the architecture.
o Operation codes marked with a delta cause unimplemented operation exceptions

in the R4650.
11 Valid when 64-bit operand opcodes are enabled.

Figure B.3 Bit Encoding for FPU Instmctions

B-46

Cache Operations Timing Appendix C

Integrated Device Technology, Inc.

Introduction
This appendix lists cycle operation counts and caveats for R4650 cache

operations timing.

Caveats About Cache Operations
• All cycle counts are in processor cycles.
• All cache ops have lower priority than cache misses, write backs and

external requests. If the write back buffer contains unwritten data
when a cache op is executed, the write back buffer will be retired before
the cache op is begun.

If an instruction cache miss occurs at the same time as a cache op is
executed, the instruction cache miss will be handled first. Cache ops are
mutually exclusive with respect to data cache misses. External requests
will be completed before beginning a cache op.

• For all data cache ops the cache op machine waits for the store buffer
and response buffer to empty before beginning the cache op. This can
add 3 cycles to any data cache op if there is data in the response buffer
or store buffer. The response buffer contains data from the last data
cache miss that has not yet been written to the data cache. The store
buffer contains delayed store data waiting to be written to the data
cache.

• Cache ops of the form X)OOc Writeback_xxxx may perform a write back
which will fill the write back buffer. Write backs can affect subsequent
cache ops, since they will stall until the write back buffer is written
back to memory. Cache ops which fill the write back buffer are noted
as (writeback) in the following tables.

• All cycle counts are best case assuming no interference from the mech­
anisms described above.

Cache Operations Tables
Table C.l and Table C.2 show data cache and instruction cache opera­

tions information. A detailed explanation of the FilCI equation follows
Table C.2.·

c - 1

Cache Operations Timing Appendix C

Codel Name Number of Cycles

0 Index_ Writeback_Invalidate_D 10 cycles if the cache line is clean.
12 cycles if the cache line is dirty
(Writeback).

1 Index_Load_Ta~D 7 cycles.

2 Index_Store_ Ta~D 8 cycles.

3 Create_Dirty _Exclusive_D 10 cycles for a cache hit.
13 cycles for a cache miss if the cache
line is clean.
15 cycles for a cache miss if the cache
line is dirty (Writeback).

4 HiClnvalida te_D 7 cycles for a cache miss.
9 cycles for a cache hit.

5 Hit_ Writeback_Invalidate_D 7 cycles for a cache miss.
12 cycles for a cache hit if the cache
line is clean.
14 cycles for a cache hit if the cache
line is dirty (Writeback).

7 HiC Writeback_D 7 cycles for a cache miss.
10 cycles for a cache hit if the cache
line is clean.
14 cycles for a cache hit if the cache
line is dirty (Writeback).

Note:
lCode number corresponds to the code column of the CACHE instruction in Appendix A.

Table C.I Primary Data Cache Operations

C-2

Cache Operations Timing Appendix C

Codel Name Number of Cycles

0 Index_Invalidate_1 7 cycles.

1 Index_Load_ Ta~1 7 cycles.

2 Index_Store_ Ta~1 8 cycles.

3 n/a n/a

4 Hit_Invalid ate_1 7 cycles for a cache miss.
9 cycles for a cache hit.

5 FilCI Cycle number must be calculated based on the sys-
tem response to a memory access, because FilCI
causes an instruction cache refill from memory.

This equation yields the number of processor cycles
for a FilCI cache Op:2

NumbecoCcycles_for_a_FilCCCacheOp = 10 + {O
- (SYSDIV - In + (2 x SYSDIV) +
(ML x SYSDIV) + (D x SYSDIV) 3

6 Hie Writeback_1 7 cycles for a cache miss.
20 cycles for a cache hit (Writeback).

Note:
lCode number corresponds to the code column of the CACHE instruction in Appendix A.
2For definitions and discussion of the FilC! equation variables refer to the subsection

"Details of the FilCI Equation." which follows this table.
3nte term {O - (SYSDIV - 1) has a value between 0 and (SYSDIV - 1). depending on the

alignment of the execution of the cache op with the system clock.

Table C.2 Primary Instruction Cache Operations

Fill_I Equation Definitions
TheseJire the definitions for the Hit_Writeback_I equation in Table C.2:

SYSDIV: Number of processor cycles per system cycle; ranges from
2 - 8.

ML: Number of system cycles of memory latency, defined as
the number of cycles the SysAD bus is driven by the
external agent before the first double word of data
appears.

D: Number of system cycles required to return the block of
data, defined as the number of cycles beginning when the
first double word of data appears on the SysAD bus and
ending when the last double word of data appears on the
SysAD bus, inclusive.

C-3

Standby Mode Operation AppendixD

Integrated Device Technology. Inc.

The Standby Mode operation is a means of reducing the internal core's
power consumption when the CPU is in a "standby" state. In this section,
the Standby Mode operation is discussed.
Entering Standby Mode

To enter standby mode, first execute the WAIT instruction. When the
WAIT instruction finishes the W pipe-stage, if the SysAD bus is currently
idle, the internal clocks will shut down, thus freezing the pipeline. The
PLL, internal timer, some of the input pin clocks (Int[5:0] * , NMI*,
ExtRqst*, Reset* and ColdReset*), and the output clock (ModeClock)
will continue to run. If the conditions are not correct when the WAIT
instruction finishes the W pipe-stage (I.e., the SysAD bus is not idle), the
WAIT is treated as a NOP.

Once the CPU is in standby mode, any interrupt, including ExtRqst* or
Reset*, will cause the CPU to exit standby mode. Figure 0.1, located on
page 2, illustrates the Standy Mode Operation.

D - 1

Standby Mode Operation Appendix D

R4600I/F~--~
4600 capture control/SysAD/Cmd bus samples system integers on every
rising edge of TClock.

SysAD If bus activity I When "WAIl instructions finish the W-stage, the R4650 core willi

Cmd bus

ExtRqst'"
Int(5:0)'"
NMI'"
Reset*
ColdReset*

Release*

WrRdy'"

RdRdy*

ValidIn*

ValidOut*

detected
check for BUS ACTIVI1Y. I

If bus activita- not
detecte I "Wait" instruction is treated

as a"NOP" instruction

" Once in Standby Mode, the PClock will shutdown, freezing
the pipeline; however, these signals and internal blocks will
remain active:

PLL
ExtR~t* ModeClock

Internal Timer Int(5:)'" MasterOut
NMI'"
Reset'"
ColdReset'"

,r
If Int(5:0)"', NMI'" ,ExtRqst'" ,Reset"', or an internal timer

interrupt signal occurs, R4650 will exit Standby Mode.

+
After exitint Standby Mode, R4650 does not sample an{; control/
SysAd/Cmd us signals on first rising edge. Also, DUs ac ivity and
other internal processes will resume by using the latched information
that existed before entering standby mode.

Note: During standby mode, all control signals for the CPU must be deasserted or put into the appro­
priate state, and all input signals, except Int(5:0)*, NMI*,Reset*, Cold Reset* , and ExtRqst*, must
remain unchanged. If a change occurs, the signal will be unaffected.

Figure D.I Standby Mode Operation

D-2

I

Coprocessor 0 Hazards AppendixE

Integrated Device Technology. Inc.

Introduction
This appendix identifies the R4650 Coprocessor 0 hazards. Certain

combinations of instructions are not permitted because the results of
executing such combinations are unpredictable in combination with some
events, such as pipeline delays, cache misses, interrupts, and exceptions.

Most hazards result from instructions modifying and reading state in
different pipeline stages.· Such hazards are defined between pairs of
instructions, not on a single instruction in isolation. Other hazards are
associated with restartability of instructions in the presence of excep­
tions.

List of Hazards
These are the CPO hazards:
• An mtcO CAlg must not change the field corresponding to the address

space that is currently active. The result is undefined.
• An mtcO that changes any base or bounds register must be done in

unmapped space. Mapped space cannot be entered for five instruc­
tions following a change to these registers.

• An mtcO followed by an mfcO is undefined. One instruction delay
between mtcO and mfcO is needed for proper operation.

• When DWatch is enabled, the two instruction immediately following
may not be checked for a match with the watch value.

• When IWatch is enabled, the five instructions following may not be
checked for a match with the I match value.

• When bit 23 of the Status register is changed, refills to set A may not
be disabled until five instructions later.

• When bit 24 of the Status register is changed, refills to set A may not
be disabled until three instructions later.

E - 1

Integer Multiply
Scheduling

Appendix: F

Integrated Device Technology. Inc.

MAD rs, rt

Integer Multiply Scheduling
Integer multiply performance is substantially enhanced in the R4650.

The R4650 adds a MAD instruction (multiply-accumulate, with HI and LO
as the accumulator). Multiply performance is 2 cycles repeat, 3 cycles of
latency for 16-bit operands (_2 15 to 2 15_1). Multiply-accumulate and
multiplication (DMULT and DMULTU) for 64-bit operands are also
supported.

The MAD (multiply / add) and MADU (multiply/add unsigned) are
defined as follows, where HI and LO act as a 64-bit accumulator. These
instructions do not trap on addition overflow.

temp f- (HI 31.
3

:[> II LO 31. .0) + Hrs 31)32 II rS31.. 0) x Hrt31)32 I I rt31. .0)
HI f- (temp 63) 32 11 temp 63 .. 32
W f- (temp 31) II temp 31 .. 0

MADUrs, rt temp f- (HI 31.
3

:[> II LO 31. .0) + (032 II rS31. .0) x (032 II rt31. .0)
HI f- (temp 63) 32 11 temp 63 .. 32

MUL rd, rs, rt

LO f- (temp 31) II temp 31 .. 0

In addition, the R4650 implements another new multiply opcode
that allows the multiply result to be returned directly to the integer
register file:

temp f- rs 31 "32. 0 x rt 31 .. 0
rd f- (temp31) II temp 31. .. 0
HI f- undefined
LO f- undefined

Mter executing this instruction, the HI and LO registers are undefined.
For 16-bit operands, the latency of MUL is 3 cycles, with a repeat rate of 2
cycles. The MUL instruction will also unconditionally slip or stall for all
but 2 cycles of its latency.

F-l

Integer Multiply Scheduling Appendix F

Opcodes

MULT, MAD

MULTU, MADU

MULT, MAD

MULTU, MADU

MUL

DMULT,
DMULTU

DIV, DIVU

DDIV, DDIVU

The performance of integer multiply and divide is summarized in
Table F.l.

Condition Latency Repeat Stall

_215 < rt < 2 15_1 3 2 0

O<rt<215_ 1 3 2 0

rt < _2 15 or rt > 2 15_1 4 3 0

rt>215_1 4 3 0

_2 15 < rt < 2 15_1 3 2 1

rt < _2 15 or rt > 2 15_1 4 3 2

any 6 5 0

any 36 36 0

any 68 68 0

Table F.l Integer Multiply and Divide Performance

As a special case, a MAD or MADU that is followed by a MUL instruction
has one additional cycle of repeat above the value specified in the table.

In the R4600, the MFLO and MFHI instructions do not make their
results available immediately. If the R4600 instruction references the
MFLO /MFHI destination, then a I-cycle slip occurs. On the R4650,
however, the result is available immediately and there is no slip.

F-2

Integrated
Device Technology, Inc.

2975 Stender Way

P.O. Box 58015

Santa Clara, CA 95052-8015

800-345-7015

FAX 408-492-8674

ELECTRONIC ACCESS

Internet: www.idt.com

E-Mail : info@idt.com

FAX-On-Demand: 800-9-IDT-FAX (in U.S.)

408-492-8391 (outside U.S.)

• •

• www.ldt.com

© 1995 1nlegraled Device Technology, Inc.
Prinled in U.SA

MAN-Rlse·OOllS

