» NGRS RA T E D DEVICE TECHNOLOGY,

IDT79R4600 and
IDT79R4700

RISC Processor

Hardware User’s Manual

Revision 2.0
April 1995

:;w

Integrated Device Technology, Inc.

Vit Table of Contents
H 5 w

Integrated Device Technology, Inc.

Overview Chapter 1

Introduction

Features
Device Overview
Pipeline Overview
CPU Register Overview
CPU Instruction Set Overview
Data Formats and Addressing
Coprocessors (CPO-CP2)
System Control Coprocessor, CPO
Floating-Point Co-Processor
Floating-Point Units
Virtual to Physical Address Mapping
Joint TLB
Instruction TLB
Data TLB
Cache Memory
Instruction Cache
Data Cache
Write buffer
R4600/R4700 Clocks
System Interface
Comparison of R4600/R4700 and R4400

CPU Instruction Set Summary Chapte

Introduction
CPU Instruction Formats
Load and Store Instructions
Scheduling a Load Delay Slot
Defining Access Types
Computational Instructions
64-bit Virtual Address Operations with 32-bit operands
Cycle Timing for Multiply and Divide Instructions
Jump and Branch Instructions
Overview of Jump Instructions
Overview of Branch Instructions
Special Instructions
Exception Instructions
Coprocessor Instructions

e
S 0O0PENNW® N b h W

L I D R | Vol ek ot e pod fued
| LU |

DO RO DO RO O RO RO RO RO e e i e e

NANATNNEA AP PONN- - N O~~~

Pt bt et e ot ot ot ok o ot ot ok ot o ok
'

Lo

NNNNMM?N’MN’MMNN

iii

Table of Contents Table of Contents

The CPU Pipeline Chapter 3
Introduction 3-1
CPU Pipeline Operation 3-1
CPU Pipeline Stages 3-2

1I - Instruction Fetch, Phase one 3-2
21 - Instruction Fetch, Phase two 3-2
1R - Register Fetch, Phase one 3-2
2R - Register Fetch, Phase two 3-2
1A - Execution, Phase one 3-2
2A - Execution, Phase two 3-2
1D - Data Fetch, Phase one 3-2
2D - Data Fetch, Phase two 3-3
1W - Write Back, Phase one 3-3
2W - Write Back, Phase two 3-3
Branch Delay 3-4
Load Delay 3-4
Interlock and Exception Handling 3-5
Exception Conditions 3-6
Stall Conditions 3-7
Slip Conditions 3-8
R4600/R4700 Write Buffer 3-9

Memory Management Chapter 4

Translation Lookaside Buffer (TLB) 4-1
Hits and Misses 4-1
Multiple Matches 4-1

Address Spaces 4-1
Virtual Address Space 4-1
Physical Address Space 4-2
Virtual-to-Physical Address Translation 4-2
32-bit Virtual Address Translation 4-3
64-bit Virtual Address Translation 4-3
Operating Modes 4-4

User Mode Operations 4-4
32-bit User Mode (useg) 4-5
64-bit User Mode (xuseg) 4-6
Supervisor Mode Operations 4-6
32-bit Supervisor Mode, User Space (suseg) 4-7
32-bit Supervisor Mode, Supervisor Space (sseg) 4-7
64-bit Supervisor Mode, User Space (xsuseg) 4-7
64-bit Supervisor Mode, Current Supervisor Space (xsseg) 4-7
64-bit Supervisor Mode, Separate Supervisor Space (csseg) 4-8
Kernel Mode Operations 4-8
32-bit Kernel Mode, User Space (kuseg) 4-10
32-bit Kernel Mode, Kernel Space O (ksegO) 4-10
32-bit Kernel Mode, Kernel Space 1 (ksegl) 4-10
32-bit Kernel Mode, Supervisor Space (ksseg) 4-10
32-bit Kernel Mode, Kernel Space 3 (kseg3) 4-11
64-bit Kernel Mode, User Space (xkuseg) 4-11
64-bit Kernel Mode, Current Supervisor Space (xksseg) 4-11
64-bit Kernel Mode, Physical Spaces (xkphys) 4-12
64-bit Kernel Mode, Kernel Space (xkseg) 4-12
64-bit Kernel Mode, Compatibility Spaces

(ckseg1:0, cksseg, ckseg3) 4-12

Table of Contents Table of Contents

System Control Coprocessor 4-12
Format of a TLB Entry 4-13
CPO Registers 4-15
Index Register (0) 4-16
Random Register (1) 4-16
EntryLoO (2), and EntryLol (3) Registers 4-17
PageMask Register (5) 4-17
Wired Register (6) 4-18
EntryHi Register (CPO Register 10) 4-18
Processor Revision Identifier (PRId) Register (15) 4-19
Config Register (16) 4-19
Load Linked Address (LLAddr) Register (17) 4-20
Cache Tag Registers [TagLo (28) and TagHi (29)] 4-21
Virtual-to-Physical Address Translation Process 4-22
TLB Misses 4-23
TLB Instructions 4-23

CPU Exception Processing Chapter 5

How Exception Processing Works 5-1

Exception Processing Registers 5-1
Context Register (4) 5-2
Bad Virtual Address Register (BadVAddr) (8) 5-3
Count Register (9) 5-3
Compare Register (11) 5-3
Status Register (12) 5-4
Status Register Format 5-4
Status Register Modes and Access States 5-6
Status Register Reset 5-6
Cause Register (13) 5-7
Exception Program Counter (EPC) Register (14) 5-8
XContext Register (20) 5-9
Error Checking and Correcting (ECC) Register (26) 5-9
Cache Error (CacheErr) Register (27) 5-10
Error Exception Program Counter (Error EPC) Register (30) 5-11

Processor Exceptions 5-12
Exception Types 5-12
Reset Exception Process 5-12
Cache Error Exception Process 5-13
Soft Reset and NMI Exception Process 5-13
General Exception Process 5-13
Exception Vector Locations 5-13
Priority of Exceptions 5-14

Reset Exception 5-15

Soft Reset Exception 5-16

Nonmaskable Interrupt (NMI) Exception 5-17

Address Error Exception 5-18

TLB Exceptions 5-19

TLB Refill Exception 5-19

TLB Invalid Exception 5-20

TLB Modified Exception 5-21

Cache Error Exception 5-22

Bus Error Exception 5-23

Integer Overflow Exception 5-24

Trap Exception 5-25

Table of Contents Table of Contents

System Call Exception 5-26
Breakpoint Exception 5-27
Reserved Instruction Exception 5-28
Coprocessor Unusable Exception 5-29
Floating-Point Exception 5-30
Interrupt Exception 5-31
Exception Handling and Servicing Flowcharts 5-32
Floating-Point Unit Chapter 6
Overview ' 6-1
The R4600/R4700 Floating-Point Coprocessor 6-1
FPU Features 6-2
FPU Programming Model 6-2
Floating-Point General Registers (FGRs) 6-2
Floating-Point Registers 6-3
Floating-Point Control Registers 6-3
Implementation and Revision Register, (FCRO) 6-4
Control/Status Register (FCR31) 6-4
Accessing the Control/Status Register 6-6
IEEE Standard 754 6-6
Control/Status Register FS Bit 6-6
Control/Status Register Condition Bit 6-6
Control/Status Register Cause, Flag, and Enable Fields 6-6
Cause Bits 6-6
Enable Bits 6-6
Flag Bits 6-7
Control/Status Register Rounding Mode Control Bits 6-7
Floating-Point Formats 6-7
Binary Fixed-Point Format 6-9
Floating-Point Instruction Set Overview 6-10
Floating-Point Load, Store, and Move Instructions 6-11
Transfers Between FPU and Memory 6-11
Transfers Between FPU and CPU 6-11
Load Delay and Hardware Interlocks 6-12
Data Alignment 6-12
Endianness 6-12
Floating-Point Conversion Instructions 6-12
Floating-Point Computational Instructions 6-12
Branch on FPU Condition Instructions 6-12
Floating-Point Compare Operations 6-12
FPU Instruction Pipeline Overview 6-13
Instruction Execution 6-13
Instruction Execution Cycle Time 6-14
Instruction Scheduling Constraints 6-15
FPU Multiplier Constraints 6-15
FPU Adder Constraints 6-15
Resource Scheduling Rules 6-15

vi

Table of Contents

Table of Contents

Floating-Point Exceptions

Exception Types

Exception Trap Processing

Flags

FPU Exceptions

Inexact Exception (I)

Invalid Operation Exception (V)
Division-by-Zero Exception (Z)

Overflow Exception (O)

Underflow Exception (U)

Unimplemented Instruction Exception (E)
Saving and Restoring State

Trap Handlers for IEEE Standard 754 Exceptions

Processor Signal Descriptions

Introduction

System Interface Signals
Clock/Control Interface Signals
Interrupt Interface Signals
JTAG Interface Signals
Initialization Interface Signals

Initialization Interface

Introduction
Functional Overview
Reset and Initialization Signal Descriptions
Power-on Reset
Cold Reset
Warm Reset
Initialization Sequence
Boot-Mode Settings

Clock Interface

Introduction
Signal Terminology
Basic System Clocks
MasterClock
MasterOut
SyncIn/SyncOut
PClock
SClock
TClock
RClock
System Timing Parameters
Alignment to SClock
Alignment to MasterClock
Phase-Locked Loop (PLL)
PLL Components and Operation
Passive Components
Connecting Clocks to a Phase-Locked System

Connecting Clocks to a System without Phase Locking

Connecting to a Gate-Array Device
Connecting to a CMOS Logic System

Chapter 7
7-1
7-2
7-2
7-3
7-3
7-3
7-4
7-4
7-4
7-5
7-5
7-6
Chapter 8
8-1
8-2
8-3
8-4
8-4
8-5

Chapter 9

9-1
9-1
9-1
9-3
9-3
9-3
9-4
9-6
Chapter 10
10-1
10-1
10-1
10-1
10-2
10-2
10-2
10-2
10-2
10-2
10-3
10-3
10-3
10-3
10-4
10-4
10-5
10-6
10-6
10-8

vii

Table of Contents Table of Contents

Cache Organization, Operation and Coherency Chapter 11
Introduction 11-1
Memory Organization 11-1
Overview of Cache Operations 11-2
R4600/R4700 Cache Description 11-2

Cache Line Size 11-2
Cache Organization and Accessibility 11-2
Organization of the Primary Instruction Cache (I-Cache) 11-3
Organization of the Primary Data Cache (D-Cache) 11-3
Accessing the Primary Caches 11-5
Cache States 11-5
Primary Cache States 11-6
Cache Line Ownership 11-6
Cache Write Policy 11-6
Cache State Transition Diagrams 11-7
Cache Coherency Overview 11-7
Cache Coherency Attributes 11-7
Uncached 11-8
Noncoherent 11-8
Cache Operation Modes 11-8
R4600/R4700 Processor Synchronization Support 11-8
Test-and-Set 11-8
Counter 11-9
Load Linked and Store Conditional 11-10
Examples Using LL and SC 11-11

System Interface Chapter 12
Introduction 12-1
Terminology 12-1
System Interface Description 12-1

Interface Buses 12-2
Address and Data Cycles 12-2
Issue Cycles 12-3
Handshake Signals 12-4
System Interface Protocols 12-4
Master and Slave States 12-5
Moving from Master to Slave State 12-5
External Arbitration 12-5
Uncompelled Change to Slave State 12-5
Processor and External Requests 12-6
Rules for Processor Requests 12-6
Processor Requests 12-7
Processor Read Request 12-8
Processor Write Request 12-8
External Requests 12-9
External Read Request 12-10
External Write Request 12-10
Read Response 12-10

Table of Contents Table of Contents

Handling Requests 12-11
Load Miss 12-11
No-Secondary-Cache Mode — Load Miss 12-12
Store Miss 12-12
No-Secondary-Cache Mode — Store Miss 12-12
Store Hit 12-13
No-Secondary-Cache Mode — Store Hit 12-13
Uncached Loads or Stores 12-13
CACHE Operations 12-13
Load Linked/Store Conditional Operation 12-14
Processor and External Request Protocols 12-14
Processor Request Protocols 12-14
Processor Read Request Protocol Steps 12-15
External Instruction Read Response Time 12-16
Instruction Read Latency Steps for System Clock 12-17
Notes on the Instruction Read Latency Steps: 12-17
Example of Instruction Block Read With Zero Wait State 12-17
External Data Read Response Time 12-17
Data Read Latency Steps for System Clock 12-18
Notes on the Data Read Latency Steps: 12-18
Example of Data Single Read With Zero Wait State 12-18
External Cycles for Read Latency 12-18

Processor Write Request Protocol 12-19

Processor Request and Flow Control 12-22

External Request Protocols 12-23
External Arbitration Protocol 12-24
External Read Request Protocol 12-24
External Null Request Protocol 12-25
External Write Request Protocol 12-26

Read Response Protocol 12-27

Data Rate Control 12-29
Read Data Pattern 12-29
Write Data Transfer Patterns 12-30
Independent Transmissions on the SysAD Bus 12-31
System Interface Endianness 12-31

System Interface Cycle Time 12-31
Release Latency 12-32

System Interface Commands and Data Identifiers 12-32
Command and Data Identifier Syntax 12-32
System Interface Command Syntax 12-33
Read Requests 12-33
Write Requests 12-34
Null Requests 12-36
System Interface Data Identifier Syntax 12-36
Noncoherent Data 12-36
Data Identifier Bit Definitions 12-37

System Interface Addresses 12-38
Addressing Conventions 12-38

Subblock Ordering 12-38
Example of Sequential Ordering 12-39
Example of Subblock Ordering 12-39

Processor Internal Address Map 12-42

Table of Contents

Table of Contents

R4600/R4700 Processor Interrupts

Introduction

Hardware Interrupts
Nonmaskable Interrupt (NMI)
Asserting Interrupts

R4600/R4700 Error Checking

Introduction
Error Checking in the Processor

Types of Error Checking

Parity Error Detection

Error Checking Operation

System Interface

System Interface Command Bus
Summary of Error Checking Operations

CPU Instruction Set Details

Introduction
Instruction Classes
Instruction Formats
Instruction Notation Conventions
Instruction Notation Examples
Load and Store Instructions
Jump and Branch Instructions
Coprocessor Instructions
System Control Coprocessor (CPO) Instructions
CPU Instruction Opcode Bit Encoding

FPU Instruction Set Details

Introduction

Instruction Formats
Floating-Point Loads, Stores, and Moves
Floating-Point Operations

Instruction Notation Conventions
Instruction Notation Examples

Load and Store Instructions

Computational Instructions

FPU Instruction Opcode Bit Encoding

Cache Operations Timing

Introduction
Caveats About Cache Operations
Cache Operations Tables
Details on the Fill_I Equation

Standby Mode Operation
Entering Standby Mode

Coprocessor O Hazards

Chapter 13
13-1
13-1
13-1
13-1

Chapter 14

14-1
14-1
14-1
14-1
14-2
14-2
14-2
14-3
Appendix A
A-1
A-1
A-2
A-2
A-4
A-4
A-5
A-6
A-6
A-151
Appendix B
B-1
B-1
B-3
B-4
B-4
B-4
B-5
B-6
B-45

Appendix C
C-1
C-1
C-1
C-3
Appendix D
D-1

Appendix E

{ &

N
Integrated Device Technology, Inc.

List of Tables

Number

Table 1.

1

Table 1.2

Table 1.3

Table 1.4

Table 1.5
Table 1.6
Table 1.7
Table 1.8
Table 1.9

Table 1.

Table 1.

Table 1.
Table 1.

Table 1.
Table 1.

Table 1.

Table 1.
Table 1.

Table 1.

10

11

12
13

14
15

16

17
18

19

Table 1.20

Table 1.21

Table 1.22

Table 1.23

Table 1.24

Table 1.25

Table 2.

1

Table 2.2

Table 3.

1

Table 3.2

Table Title

CPU Instruction Set: Load and Store Instructions

CPU Instruction Set: Arithmetic Instructions
(ALU Immediate)

CPU Instruction Set: Arithmetic
(3-Operand, R-Type)

CPU Instruction Set: Multiply and Divide
Instructions

CPU Instruction Set: Jump and Branch Instruction

CPU Instruction Set: Shift Instructions

Instruction Set: Coprocessor Instructions

CPU Instruction Set: Special Instructions

MIPS 2/MIPS 3 Additional: Load and Store
Instructions

MIPS 2/MIPS 3 Additional: Arithmetic
Instructions (ALU Immediate)

MIPS 2/MIPS 3 Additional: Multiply and
Divide Instructions

MIPS 2/MIPS 3 Additional: Branch Instructions

MIPS 2/MIPS 3 Additional: Arithmetic
Instructions (3-operand, R-type)

MIPS 2/MIPS 3 Additional: Shift Instructions

MIPS 2/MIPS 3 Additional: Exception
Instructions

MIPS 2/MIPS 3 Additional: Coprocessor
Instructions

CPO Instructions

System Control Coprocessor (CPO) Register
Definitions

Floating-Point Latency Cycles

System Interface Comparison Between R4400 PC
and R4600/R4700

Cache Comparison Between R4400 PC and
R4600/R4700

TLB Comparison Between R4400 PC and
R4600/R4700

Pipeline Comparison Between R4400 PC and
R4600/R4700

Coprocessor O Comparison Between R4400 PC
and R4600/R4700

Coprocessor 1 Comparison Between R4400 PC
and R4600/R4700

Byte Access within a Doubleword

Multiply/Divide Instruction Cycle Timing

Pipeline Exceptions

Pipeline Interlocks

Page

1-7

List of Tables List of Tables
Number Table Title Page
Table 4.1 32-bit and 64-bit User Mode Segments 4-5
Table 4.2 32-bit and 64-bit Supervisor Mode Segments 4-7
Table 4.3 32-bit Kernel Mode Segments 4-10
Table 4.4 64-bit Kernel Mode Segments 4-11
Table 4.5 Cacheability and Coherency Attributes 4-12
Table 4.6 TLB Page Coherency (C) Bit Values 4-15
Table 4.7 Index Register Field Descriptions 4-16
Table 4.8 Random Register Field Descriptions 4-17
Table 4.9 Mask Field Values for Page Sizes 4-17
Table 4.10 Wired Register Field Descriptions 4-18
Table 4.11 PRId Register Fields 4-19
Table 4.12 Config Register Fields 4-20
Table 4.13 Cache Tag Register Fields 4-21
Table 4.14 TLB Instructions 4-23
Table 5.1 CPO Exception Processing Registers 5-2
Table 5.2 Context Register Fields 5-2
Table 5.3 Status Register Fields 5-5
Table 5.4 Cause Register Fields 5-7
Table 5.5 Cause Register ExcCode Field 5-8
Table 5.6 XContext Register Fields 5-9
Table 5.7 ECC Register Fields 5-10
Table 5.8 CacheErr Register Fields 5-11
Table 5.9 Exception Vector Base Addresses 5-14
Table 5.10 Exception Vector Offsets 5-14
Table 5.11 Exception Priority Order 5-14
Table 5.12 List of Exception Flowcharts 5-32
Table 6.1 Floating-Point Control Register Assignments 6-4
Table 6.2 FCRO Fields 6-4
Table 6.3 Control/Status Register Fields 6-5
Table 6.4 Rounding Mode Bit Decoding 6-7
Table 6.5 Equations for Calculating Values in Single and

Double-Precision Floating-Point Format 6-8
Table 6.6 Floating-Point Format Parameter Values 6-9
Table 6.7 Minimum and Maximum Floating-Point Values 6-9
Table 6.8 Binary Fixed-Point Format Fields 6-9
Table 6.9 FPU Instruction Summary: Load, Move and

Store Instructions 6-10
Table 6.10 FPU Instruction Summary: Conversion Instruc-

tions 6-10
Table 6.11 FPU Instruction Summary: Computational

Instructions 6-11

Table 6.12 FPU Instruction Summary: Compare and Branch

Instructions 6-11
Table 6.13 Mnemonics and Definitions of Compare

Instruction Conditions 6-13
Table 6.14 Floating-Point Operation Latencies 6-14
Table 7.1 Default FPU Exception Actions 7-2
Table 7.2 FPU Exception-Causing Conditions 7-3
Table 8.1 System Interface Signals 8-2
Table 8.2 Clock/Control Interface Signals 8-3
Table 8.3 Interrupt Interface Signals 8-4
Table 8.4 JTAG Interface Signals 8-4
Table 8.5 Initialization Interface Signals 8-5
Table 8.6 R4600/R4700 Processor Signal Summary 8-6

List of Tables

List of Tables

Number

Table 9.1

Table 9.2

Table 11.1
Table 11.2
Table 12.1
Table 12.2
Table 12.3
Table 12.4
Table 12.5
Table 12.6

Table 12.7
Table 12.8

Table 12.9

Table 12.10
Table 12.11
Table 12.12
Table 12.13
Table 12.14
Table 12.15
Table 12.16
Table 12.17

Table 12.18

Table 12.19
Table 14.1

Table 14.2

Table A.1
Table A.2
Table A.3
Table B.1
Table B.2

Table B.3
Table B.4
Table B.5
Table C.1
Table C.2
Table E.3

Table Title

R4600/R4700 Processor Signal Summary

Boot-Mode Settings

Cache States

Coherency Attributes and Processor Behavior

Load Miss to Primary Cache

Store Miss to Primary Cache

System Interface Requests

Transmit Data Rates and Patterns

Release Latency for External Requests

Encoding of SysCmd(7:5) for System Interface
Commands 12-33

Encoding of SysCmd(4:3) for Read Requests

Encoding of SysCmd(2:0) for Block Read
Request

Doubleword, Word, or Partial-word Read Re-
quest Data Size Encoding of SysCmd(2:0)

Write Request Encoding of SysCmd(4:3)

Block Write Request Encoding of SysCmd(2:0)

Doubleword, Word, or Partial-word Write
Request Data Size Encoding of SysCmd(2:0)

External Null Request Encoding of
SysCmd(4:3)

Processor Data Identifier Encoding of
SysCmd(7:3)

External Data Identifier Encoding of
SysCmd(7:3)

Sequence of Doublewords Transferred Using
Subblock Ordering: Address 102

Sequence of Doublewords Transferred Using
Subblock Ordering: Address 112

Sequence of Doublewords Transferred Using
Subblock Ordering: Address 012

Partial Word Transfer Byte Lane Usage

Error Checking and Correcting Summary for
Internal Transactions

Error Checking and Correcting Summary for
External Transactions

CPU Instruction Operation Notations

Load and Store Common Functions

Access Type Specifications for Loads/Stores

Valid FPU Instruction Formats

Logical Negation of Predicates by Condition
True/False

Load and Store Common Functions

Format Field Decoding

Floating-Point Instructions and Operations

Primary Data Cache Operations

Primary Instruction Cache Operations

Coprocessor 0 Hazards

Page
9-2
9-7

11-6

11-8
12-11
12-12
12-14
12-30
12-32

12-34
12-34
12-34
12-35
12-35
12-35
12-36
12-37
12-38
12-40
12-40

12-40
12-41

14-3

14-3
A-3
A-4
A-5
B-2

B-3

B-6
B-7

C-3
E-1

xiii

List of Tables List of Tables

i -- dt

Integrated Device Technology, Inc.

List of Figures

Number

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure 1.7
Figure 1.8
Figure 1.9
Figure 1.10
Figure 1.11
Figure 2.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5

Figure 3.6
Figure 3.7
Figure 3.8
Figure 4.1

Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

Figure 4.10

Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15

Figure 4.16
Figure 4.17
Figure 4.18

Figure 4.19

Figure Title

R4600/R4700 Block Diagram

R4600/R4700 CPU Registers

CPU Instruction Formats

Big-Endian Byte Ordering

Little-Endian Byte Ordering

Little-Endian Data in a Doubleword

Big-Endian Data in a Doubleword

Big-Endian Misaligned Word Addressing

Little-Endian Misaligned Word Addressing

R4600/R4700 CPO Registers

Typical System Block Diagram

CPU Instruction Formats

Instruction Pipeline Stages

CPU Pipeline Activities

CPU Pipeline Branch Delay

CPU Pipeline Load Delay

Correspondence of Pipeline Stage to Interlock
Condition

Exception Detection

Data Cache Miss

Instruction cache miss

Overview of a Virtual-to-Physical Address
Translation

32-bit Virtual Address Translation

64-bit Virtual Address Translation

User Mode Virtual Address Space

Supervisor Mode Virtual Address Space

Kernel Mode Address Space

CPO Registers and the TLB

Format of a TLB Entry

Fields of the PageMask and EntryHi
Registers

Fields of the EntryLoO and EntryLo
Registers

Index Register

Random Register

Wired Register Boundary

Wired Register

Processor Revision Identifier Register
Format

Config Register Format

LLAddr Register Format

TagLo and TagHi Register (P-cache)
Formats

TLB Address Translation

""’.'".'"."g
()

v—lv—dr—d»l-a'—u—w—-»—l
DO bt pd et e et e
AR W =N AR PR WWO OLHA

OO?DODW CI»)CA‘)WWK’
© oG

BRSSO S
OCOn b LN

4-13
4-14

4-14

4-15
4-16
4-16
4-18
4-18

4-19
4-19
4-21

4-21
4-22

List of Figures

List of Figures

Number

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14

Figure 5.15

Figure 5.16
Figure 5.17

Figure 5.18
Figure 5.19

Figure 5.20
Figure 5.21

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5

Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 7.1

Figure 8.1
Figure 9.1
Figure 9.2
Figure 9.3

Figure Title

Context Register Format

BadVAddr Register Format

Count Register Format

Compare Register Format

Status Register

Cause Register Format

EPC Register Format

XContext Register Format

ECC Register Format

CacheErr Register Format

ErrorEPC Register Format

Reset Exception Processing

Cache Error Exception Processing

Soft Reset and NMI Exception
Processing

General Exception Processing (Except Reset,
Soft Reset, NMI, and Cache Error)

General Exception Handler (HW)

General Exception Servicing Guide-
lines (SW)

TLB/XTLB Miss Exception Handler (HW)

TLB/XTLB Exception Servicing Guide-
lines (SW)

Cache Error Exception Handling (HW)
and Servicing Guidelines (SW)

Reset, Soft Reset & NMI Exception Handling
(HW) and Servicing Guidelines (SW)

FPU Functional Block Diagram

FPU Registers

Implementation/Revision Register

FP Control/Status Register Bit Assignments

Control/Status Register Cause, Flag, and
Enable Fields

Single-Precision Floating-Point Format

Double-Precision Floating-Point Format

Binary Fixed-Point Format

FPU Instruction Pipeline

Control/Status Register Exception/Flag/Trap/

Enable Bits
R4600/R4700 Processor Signals
Power-on Reset
Cold Reset
Warm Reset

Page

5-2
5-3
5-3
5-3
5-4
5-7
5-8
5-9
5-10
5-10
5-12
5-12
5-13

5-13

5-13
5-33

5-34
5-35

5-36
5-37

5-38
6-1
6-3
6-4
6-5

6-5
6-7
6-8
6-9
6-13

7-1
8-1
9-4
9-5
9-6

List of Figures

List of Figures

Number

Figure 10.1
Figure 10.2
Figure 10.3

Figure 10.4
Figure 10.5
Figure 10.6

Figure 10.7

Figure 10.8

Figure 11.1
Figure 11.2
Figure 11.3

Figure 11.4

Figure 11.5
Figure 11.6
Figure 11.7
Figure 11.8
Figure 11.9
Figure 11.10
Figure 12.1
Figure 12.2
Figure 12.3
Figure 12.4

Figure 12.5
Figure 12.6

Figure 12.7
Figure 12.8
Figure 12.9
Figure 12.10
Figure 12.11
Figure 12.12
Figure 12.13
Figure 12.14
Figure 12.15

Figure 12.16
Figure 12.17
Figure 12.18

Figure 12.19

Figure Title

Signal Transitions

Clock-to-Q Delay

Processor Clocks, PClock-to-SClock
Division by 2

PLL Passive Components

R4600/R4700 PLL Network

R4600/R4700Processor Phase-Locked
System

Gate-Array System Without Phase Lock,
Using the R4600/R4700 Processor

Gate Array and CMOS System Without
Phase Lock, Using the R4600/R4700
Processor

Logical Hierarchy of Memory

Cache Support in the R4600/R4700

R4600/R4700 Primary I-Cache Line
Format

R4600/R4700 8-Word Primary Data Cache

Line Format
Primary Cache Data and Tag Organization
Primary Data Cache State Diagram
Synchronization with Test-and-Set
Synchronization Using a Counter
Test-and-Set using LL and SC
Counter Using LL and SC
System Interface Buses
State of RdRdy* Signal for Read Requests
State of WrRdy* Signal for Write Requests
System Interface Register-to-Register
Operation
Requests and System Events
Back-to-Back Write Cycle Timing
(R4000 compatible mode)
Processor Requests
Processor Request
External Requests
External Request
Read Response
Processor Read Request Protocol
Uncached Read—External Cycles
Processor Read Cycle
Processor Noncoherent Word Write
Request Protocol
Write re-issue
Pipelined Writes
Processor Noncoherent Block Write
Request Protocol
Delayed for the Assertion of WrRdy*

Page

10-1
10-1

10-3
10-4
10-5

10-6

10-7

10-9
11-1
11-2

11-3

11-4
11-5
11-7
11-9
11-10
11-11
11-12
12-2
12-3
12-3

12-4
12-6

12-7
12-7
12-8
12-9
12-9
12-11
12-16
12-18
12-19

12-20
12-20
12-21

12-22
12-23

List of Figures

Figure Title Page

Two Processor Write Requests, Second Write
Arbitration Protocol for External Requests 1 2-24

List of Figures

Number
Figure 12.20

Figure 12.21 External Read Request, System Interface in

Master State 12-25
Figure 12.22 System Interface Release External Null

Request 12-26
Figure 12.23 External Write Request, with System

Interface initially Master State 12-27
Figure 12.24 Processor Word Read Request, followed by a

Word Read Response 12-28
Figure 12.25 Block Read Response With Zero Wait

State 12-29
Figure 12.26 Block Read Transaction With One Wait

State 12-29
Figure 12.27 Read Response, Reduced Data Rate, System

Interface in Slave State 12-30
Figure 12.28 System Interface Command Syntax Bit

Definition 12-33
Figure 12.29 Read Request SysCmd Bus Bit Definition 12-33
Figure 12.30 Write Request SysCmd Bus Bit Definition 12-34
Figure 12.31 Null Request SysCmd Bus Bit Definition 12-36
Figure 12.32 Data Identifier SysCmd Bus Bit Definition 12-36
Figure 12.33 Retrieving a Data Block in Sequential

Order 12-39
Figure 12.34 Retrieving Data in a Subblock Order 12-39
Figure 13.1 Interrupt Register Bits and Enables 13-1
Figure 13.2 R4600/R4700 Interrupt Signals 13-2
Figure 13.3 R4600/R4700 Nonmaskable Interrupt

Signal 13-2
Figure 13.4 Masking of the R4600/R4700 Interrupts 13-3
Figure A.1 CPU Instruction Formats A-2
Figure B.1 Load and Store Instruction Format B-5
Figure B.2 Computational Instruction Format B-6
Figure B.3 Bit Encoding for FPU Instructions B-45

xviii

Overview Chapter 1

Integrated Device Technology, Inc.

Introduction

The IDT79R4600 (R4600) and IDT79R4700 (R4700) support a wide
variety of processor-based applications. Because of their low power
consumption, coupled with high performance, they are well suited for a
wide variety of embedded applications, including laser printers,
X-terminals, internetworking equipment, imaging equipment, and high-
end video games. The R4600 and R4700 are also well-suited to high-
performance desktop applications such as Windows™ NT desktop and
notebook systems, and 3-D workstations.

Compatible with the IDT79R4400PC family for both hardware and
software, the R4600 and R4700 will serve in many of the same
applications, but in addition support low-power operation for applications
such as notebook computers.

Floating Point

The R4700 has improved FPA multiply operations. All other features of
the R4700 are the same as those in the R4600. In this manual, these two
products are referred to collectively as the R4600/R4700, except when
information pertains only to one of them. In that situation they are
referred to individually.

Secondary Cache

The R4600/R4700 does not provide integrated secondary cache and
multiprocessor support as found in the R4000SC and R4000MC, but it is
simple to build an external secondary cache. For most embedded
applications, however, the large on-chip, two-way set associative caches
make this unnecessary.

Performance

The R4600/R4700 brings R4000SC performance levels to the R4000PC
package, while at the same time providing lower cost and lower power. It
does this by providing larger on-chip caches that are two-way set
associative, fewer pipeline stalls, and early restart for data cache misses.
The result is higher performmance than for an R4000 at the same frequency
and for the same system latencies (exact figures are system dependent).

Upward Compatibility

The R4600/R4700 provides complete upward application-software
compatibility with the IDT79R3000 family of microprocessors, including
the IDT79R3000A and the IDT RISController™ family (IDT79R30xx family)
as well the IDT79R4000 family of microprocessors. Microsoft
Windows™NT and UNISOFT Unix™ V.4 operating systems insure the
availability of thousands of applications programs, geared to provide a
complete solution to a large number of processing needs. An array of
development tools facilitates the rapid development of R4600/R4700-
based systems, enabling a wide variety of customers to take advantage of
the MIPS Open Architecture philosophy.

Together with the R4400, the R4600/R4700 provides a compatible,
timely, and necessary evolution path from 32-bit to true, 64-bit
computing. The original design objectives of the R4000 clearly mandated
this evolution path; the result is a true 64-bit processor fully compatible
with 32-bit operating systems and applications.

The R4600/R4700 enables 32-bit applications to access 64-bit compute
power painlessly. The software tools support a wide variety of models,
including 32-bit address and data, 64-bit address and data, and 32-bit
address/64-bit data. 32-bit address/data enables applications to be
migrated without “cleaning up” some software.

Overview

Chapter 1

The R4600/R4700 offers high-performance, large caches, and MMU and
FPA functions to these systems. For desktop systems, the R4600/R4700
supports a full migration to 64-bit, allowing 64-bit systems to execute true
64-bit or older 32-bit applications. For embedded applications, the power
and bandwidth of 64-bit data types can be used without the memory
expansion of 64-bit addressing.

The list on the following page summarizes the R4600/R4700 features.
For a feature-by-feature comparison with the R4000, refer to the tables
beginning on page 1-23.

Overview

Chapter 1

Features

True 64-bit microprocessor

- 64-bit integer operations

- 64-bit floating-point operations
- 64-bit registers

- 64-bit virtual address space

High-performance microprocessor
- For R4600: 133 peak MIPS at 133MHz
For R4700: 175 peak MIPS at 175MHz
- For R4600: 44 peak MFLOP/s at 133MHz
For R4700: 87 peak MFLOP/s at 175MH
- For R4600: 109 SPECint92 and 83 SPEC{p92 at 150Mz
For R4700: 132 SPECint92 and 94 SPECfp92 at 1756Mz
- Large two-way set associative caches on-chip

Improved FPA multiply performance (R4700 only)
- 1 mul, 1 add every 4 clock cycles

High level of integration

- 64-bit integer CPU

- 64-bit floating-point unit

- 16KB instruction cache; 16KB data cache
- Flexible MMU with large TLB

Low-power operation
- 8.3V or 5V power supply options
- For R4600: 25mW/MHz internal power dissipation
(2.5W @ 100MHz, 3.3V)
For R4700: 24mW/MHz internal power dissipation
(2.4W @ 100MHz, 3.3V)
- Standby mode reduces internal power to 400mwW

Fully software compatible with R4000 Processor Family

Standard operating system support includes:
- Microsoft Windows NT

- UNISOFT Unix™ System V.4

- JMI C-executive

- VX Works

Available in 179-pin PGA or 208-pin MQUAD

Input and output clock frequency:

- Input clock at one-half pipeline frequency

- Output clock is a programmable divisor of the pipeline frequency
- Selectable bus frequency

- Ratios of 1/2...1/8 of pipeline rate

64GB physical address space

Processor family for a wide variety of applications
- Desktop workstations and PCs

Deskside or departmental servers

Routers

High-performance embedded applications
Notebooks

Large number of development tools, including:

- Cross compilers
- Logic models
- Logic analyzer support

1

Overview

Chapter 1

Device Overview

The R4600/R4700 family brings a high-level of integration designed for
high-performance and high-bandwidth computing. The key elements of
the R4600/R4700 are briefly described below. An overview of these blocks
is found here, with more detailed information on each block presented in
subsequent chapters.

Figure 1.1 shows a block level representation of the functional units
within the R4600/R4700.

DataTag A
Data Set A Instruction Set A
DTLB Physical
Store Buffer Data Tag B
i m— S —
SysAD T -
1
Instruction Select
Write Buffer Address Buffer Instruction Register
Read Buffer Instruction Tag A]
ITLB Physical
Data Set B Instruction Set B
Instruction Tag B
DBus
1Bus
Control
Ta; AuxTag \|
Floating-point 5 Load Aligner
Register File =
9 JointTLB & Integer Register File
Unpacker/Packer 3 [
.‘é— 8 Integer/Address Adder
<] 3
o =4 Data TLB Virtual
Floating-point E Coprocessor 0 pva| & T
Add/Sub/Cvt/Div/Sqrt 3 Shifter/Store Aligner
Integer Divide o
£ Logic Unit
®
3 PC Incrementer
Floating-pointinteger | | System/Memory
Multiply Control Branch Adder
IVA Instruction TLB Virtual
Phase Lock Loop, Clocks Programl Counter

Figure 1.1 R4600/R4700 Block Diagram

Pipeline Overview

The R4600/R4700 uses a 5-stage pipeline similar to the IDT79R3000.
The simplicity of this pipeline allows the R4600/R4700 to be lower-cost
and lower-power than super-scalar or super-pipelined processors. Unlike
the R3000, the R4600/R4700 does virtual-to-physical translation in
parallel with cache access. This allows the R4600/R4700 to operate at over
twice the frequency of the R3000 and to support a larger TLB for address
translation.

Compared to the 8-stage R4000 pipeline, the R4600/R4700 is more
efficient (requires fewer stalls). This is because the branch and load latency
for the R4600/R4700 is shorter than for the R4000 (both are 2 cycles for
the R4600/R4700 but are 3 and 4 cycles respectively for the R4000).

Overview

Chapter 1

The internal pipeline of the R4600/R4700 processor operates at twice
the frequency of the master clock, as discussed in Chapter 3. The
processor achieves high throughput by pipelining cache accesses,
shortening register access times, implementing virtual-indexed primary
caches, and allowing the latency of certain functional units to span more
than one pipeline clock cycles.

Refer to Chapter 3 for a detailed discussion of the CPU pipeline
operation, including descriptions of the delay instructions, interruptions
to the pipeline flow caused by interlocks and exceptions, and the R4600/
R4700 implementation of a store buffer. Refer to Chapter 6 for a detailed
discussion of the FPU pipeline.

CPU Register Overview

The R4600/R4700 has thirty-two general purpose registers. These
registers are used for scalar integer operations and address calculation.
The register file consists of two read ports and one write port, and is fully
bypassed to minimize operation latency in the pipeline.

Figure 1.2 shows the R4600/R4700 CPU registers.

General Purpose Registers

Multiply and Divide Registers

63 0
i HI I
63 0

Figure 1.2 R4600/R4700 CPU Registers

Two of the CPU general purpose registers have assigned functions:
¢ r0is hardwired to a value of zero, and can be used as the target reg-
ister for any instruction whose result is to be discarded. rO can also
be used as a source when a zero value is needed.
¢ r31 is used as an implicit return destination address register by the
JAL and BAL series of instructions.
The CPU has three special purpose registers:
e PC— Program Counter register
e HI — Multiply and Divide register higher result
¢ LO — Multiply and Divide register lower result
The two Multiply and Divide registers (HI, LO) store:
¢ the product of integer multiply operations, or
¢ the quotient (in LO) and remainder (in HI) of integer divide operations.
The R4600/R4700 processor has no Program Status Word (PSW) register
as such; this is covered by the Status and Cause registers incorporated
within the System Control Coprocessor (CP0). CPO registers are described
later in this chapter.

Overview

Chapter 1

CPU Instruction Set Overview
Each CPU instruction is 32 bits long. As shown in Figure 1.3, there are
three instruction formats:

immediate (I-type)

* jump (J-type)

¢ register (R-type)

31 2625 2120 1615 0
I-Type (Immediate) op rs rt immediate

31 2625 0
J-Type (Jump) op target

31 2625 2120 1615 11 10 65 0
R-Type (Register) op rs rt rd sa | funct

Figure 1.3 CPU Instruction Formats

Each format contains a number of different instructions, which are
described further in this chapter. Fields of the instruction formats are
described in Chapter 2.

Instruction decoding is simplified by limiting the number of formats to
these three. This limitation means that the more complicated (and less
frequently used) operations and addressing modes can be synthesized by
the compiler, using sequences of these same simple instructions.

The instruction set can be further divided into the following groupings:

Load and Store instructions move data between memory and general
registers. They are all immediate (I-type) instructions, since the only
addressing mode supported is base register plus 16-bit, signed imme-
diate offset.

Computational instructions perform arithmetic, logical, shift, multi-
ply, and divide operations on values in registers. They include register
(R-type, in which both the operands and the result are stored in reg-
isters) and immediate (I-type, in which one operand is a 16-bit imme-
diate value) formats.

Jump and Branch instructions change the control flow of a program.
Jumps are always made to a paged, absolute address formed by com-
bining a 26-bit target address with the high-order bits of the Program
Counter (J-type format) or register address (R-type format). Branches
have 16-bit offsets relative to the program counter (I-type). Jump And
Link instructions save their return address in register 31.
Coprocessor instructions perform operations in the coprocessors.
Coprocessor load and store instructions are I-type.

Coprocessor 0 (system coprocessor) instructions perform operations
on CPO registers to control the memory management and exception
handling facilities of the processor and the standby mode for power
management. These are listed in Table 1.17.

Special instructions perform system calls and breakpoint operations.
These instructions are always R-type.

Exception instructions cause a branch to the general exception-han-
dling vector based upon the result of a comparison. These instruc-
tions occur in both R-type (both the operands and the result are
registers) and I-type (one operand is a 16-bit immediate value) for-
mats.

Chapter 1

Chapter 2 provides more detail about these instructions, and Appendix
A gives a complete description of each.
Table 1.1 through Table 1.16 list CPU instructions common to MIPS
R-Series processors, along with the level in which they first appeared. The
last column in each table refers to the MIPS ISA level in which the
instruction first appeared. Table 1.17 lists CPO instructions.

OpCode Description MIPS ISA Level!
LB Load Byte I
LBU Load Byte Unsigned 1
LH Load Halfword 1
LHU Load Halfword Unsigned I
Lw Load Word I
LWL Load Word Left I
LWR Load Word Right 1
SB Store Byte I
SH Store Halfword I
SW Store Word I
SWL Store Word Left I
SWR Store Word Right 1
Note: For Tables 1.1 through 1.17 this column refers to the level in which the
instruction first appeared.

Table 1.1 CPU Instruction Set: Load and Store Instructions

OpCode Description MIPS ISA Level
ADDI Add Immediate I
ADDIU Add Immediate Unsigned I
SLTI Set on Less Than Immediate I
SLTIU Set on Less Than Immediate I
Unsigned
ANDI AND Immediate 1
ORI OR Immediate I
XORI Exclusive OR Immediate I
LUI Load Upper Immediate 1

Table 1.2 CPU Instruction Set: Arithmetic Instructions (ALU Immediate)

Overview Chapter 1
OpCode Description MIPS ISA Level
ADD Add I
ADDU Add Unsigned I
SUB Subtract I
SUBU Subtract Unsigned I
SLT Set on Less Than I
SLTU Set on Less Than Unsigned I
AND AND I
OR OR I
XOR Exclusive OR I
NOR NOR I

Table 1.3 CPU Instruction Set: Arithmetic (3-Operand, R-Type)

OpCode Description MIPS ISA Level
MULT Multiply I
MULTU Multiply Unsigned I
DIV Divide I
DIVU Divide Unsigned I
MFHI Move From HI I
MTHI Move To HI I
MFLO Move From LO I
MTLO Move To LO I

Table 1.4 CPU Instruction Set: Multiply and Divide Instructions

OpCode | Description MIPS ISA Level
J Jump |
JAL Jump And Link I

Table 1.5 CPU Imstruction Set: Jump and Branch Instruction

Overview

Chapter 1

OpCode | Description MIPS ISA Level
JR Jump Register I
JALR Jump And Link Register I
BEQ Branch on Equal I
BNE Branch on Not Equal 1
BLEZ Branch on Less Than or Equal to Zero I
BGTZ Branch on Greater Than Zero I
BLTZ Branch on Less Than Zero I
BGEZ Branch on Greater Than or Equal to Zero I
BLTZAL | Branch on Less Than Zero And Link 1
BGEZAL | Branch on Greater Than or Equal to Zero I
And Link

Table 1.5 CPU Instruction Set: Jump and Branch Instruction

OpCode Description MIPS ISA Level
SLL Shift Left Logical I
SRL Shift Right Logical I
SRA Shift Right Arithmetic I
SLLV Shift Left Logical Variable I
SRLV Shift Right Logical Variable I
SRAV Shift Right Arithmetic Variable I
Table 1.6 CPU Instruction Set: Shift Instructions
OpCode Description MIPS ISA Level
LWCz Load Word to Coprocessor z I
SWCz Store Word from Coprocessor z I
MTCz Move To Coprocessor z I
MFCz Move From Coprocessor z I
CTCz Move Control to Coprocessor z I
CFCz Move Control From Coprocessor z I
COPz Coprocessor Operation z I
BCzT Branch on Coprocessor z True I
BCzF Branch on Coprocessor z False 1
Table 1.7 Instruction Set: Coprocessor Instructions
OpCode Description MIPS ISA Level
SYSCALL System Call I
BREAK Break I

Table 1.8 CPU Instruction Set: Special Instructions

Overview Chapter 1
OpCode Description MIPS ISA Level
LD Load Doubleword 11
LDL Load Doubleword Left I
LDR Load Doubleword Right I
LL Load Linked I
LLD Load Linked Doubleword 11
LwWU Load Word Unsigned I
SC Store Conditional I
SCD Store Conditional Doubleword 11
SD Store Doubleword 111
SDL Store Doubleword Left I
SDR Store Doubleword Right 11
SYNC Sync II

Table 1.9 MIPS 2/MIPS 3 Additional: Load and Store Instructions

OpCode Description MIPS ISA Level

DADDI Doubleword Add Immediate III

DADDIU Doubleword Add Immediate I
Unsigned

Table 1.10 MIPS 2/MIPS 3 Additional: Arithmetic Instructions (ALU Immediate)

OpCode Description MIPS ISA Level
DMULT Doubleword Multiply I
DMULTU | Doubleword Multiply Unsigned I
DDIV Doubleword Divide I
DDIVU Doubleword Divide Unsigned I

Table 1.11 MIPS 2/MIPS 3 Additional: Multiply and Divide Instructions

Chapter 1

MIPS ISA Level
OpCode | Description
BEQL Branch on Equal Likely I
BNEL Branch on Not Equal Likely II
BLEZL Branch on Less Than or Equal to Zero I
Likely
BGTZL Branch on Greater Than Zero Likely 11
BLTZL Branch on Less Than Zero Likely 1
BGEZL Branch on Greater Than or Equal to Zero 11
Likely
BLTZALL | Branch on Less Than Zero And Link I
Likely
BGEZALL | Branch on Greater Than or Equal to Zero II
And Link Likely
BCzTL Branch on Coprocessor z True Likely II
BCzFL Branch on Coprocessor z False Likely II

Table 1.12 MIPS 2/MIPS 3 Additional: Branch Instructions

OpCode Description MIPS ISA Level
DADD Doubleword Add I
DADDU Doubleword Add Unsigned 1
DSUB Doubleword Subtract I
DSUBU Doubleword Subtract Unsigned 111

Table 1.13 MIPS 2/MIPS 3 Additional: Arithmetic Instructions

(3-operand, R-type)

OpCode | Description MIPS ISA Level
DSLL Doubleword Shift Left Logical I
DSRL Doubleword Shift Right Logical I
DSRA Doubleword Shift Right Arithmetic I
DSLLV | Doubleword Shift Left Logical Variable I
DSRLV | Doubleword Shift Right Logical Variable 11
DSRAV | Doubleword Shift Right Arithmetic Variable I
DSLL32 | Doubleword Shift Left Logical + 32 I
DSRL32 | Doubleword Shift Right Logical + 32 I
DSRA32 | Doubleword Shift Right Arithmetic + 32 1

Table 1.14 MIPS 2/MIPS 3 Additional: Shift Instructions

Overview Chapter 1
OpCode | Description MIPS ISA Level
TGE Trap if Greater Than or Equal I
TGEU Trap if Greater Than or Equal Unsigned II
TLT Trap if Less Than I
TLTU Trap if Less Than Unsigned I
TEQ Trap if Equal II
TNE Trap if Not Equal II
TGEI Trap if Greater Than or Equal Immediate II
TGEIU Trap if Greater Than or Equal Immediate II

Unsigned
TLTI Trap if Less Than Immediate II
TLTIU Trap if Less Than Immediate Unsigned I
TEQI Trap if Equal Immediate 1I
TNEI Trap if Not Equal Immediate II

Table 1.15 MIPS 2/MIPS 3 Additional: Exception Instructions

OpCode | Description MIPS ISA Level
DMFCz Doubleword Move From Coprocessor z II
DMTCz Doubleword Move To Coprocessor z I
LDCz Load Double Coprocessor z II
SDCz Store Double Coprocessor z II

Table 1.16 MIPS 2/MIPS 3 Additional: Coprocessor Instructions

OpCode Description MIPS ISA Level
DMFCO Doubleword Move From CPO I
DMTCO Doubleword Move To CPO I
MTCO Move to CPO I
MFCO Move from CPO I
TLBR Read Indexed TLB Entry I
TLBWI Write Indexed TLB Entry I
TLBWR Write Random TLB Entry I
TLBP Probe TLB for Matching Entry I
CACHE Cache Operation R4xxx only
ERET Exception Return R4xxx only
WAIT Enter Standby mode R4600 only

Table 1.17 CPO Instructions

Chapter 1

Data Formats and Addressing

The R4600/R4700 processor uses four data formats: a 64-bit
doubleword, a 32-bit word, a 16-bit halfword, and an 8-bit byte. Byte
ordering within each of the larger data formats—halfword, word,
doubleword—can be configured in either big-endian or little-endian order.
Endianness refers to the location of byte O within the multi-byte data
structure. Figures 1.4 and 1.5 show the ordering of bytes within words and
the ordering of words within multiple-word structures for the big-endian
and little-endian conventions.

When the R4000 processor is configured as a big-endian system, byte O
is the most-significant (leftmost) byte, thereby providing compatibility with
MC 68000’ and IBM 370’ conventions. Figure 1.4 shows this configuration.

Higher Word Bit #

Address Address [31 24 23 1615 8 7 ol
12 12 13 f 14 | 15]
8 .8 g | 10 | 1 |
4 | 4 5 | & | 7

Lower T -

ddress © L0 LN I

Figure 1.4 Big-Endian Byte Ordering

When configured as a little-endian system, byte O is always the least-
significant (rightmost) byte, which is compatible with iAPX' x86 and DEC
VAX' conventions. Figure 1.5 shows this configuration.

Higher Word B"n#

Address Address |31 24 23 1615 8 7 ol
2 [% [@ |]]
s [Ln [® F s] 8 |
4 7 [s .5] 4]

Address © 3 [2 gt foo-]

Figure 1.5 Little-Endian Byte Ordering

In this text, bit O is always the least-significant (rightmost) bit; thus, bit
designations are always little-endian (although no instructions explicitly
designate bit positions within words).

Figures 1.6 and 1.7 show little-endian and big-endian byte ordering in
doublewords.

Overview Chapter 1

Most-significant byte Least-significant byte
Word
|

Bit# 63 \5655 48 47 4039 32|31 2423 16 15

By | 7 6.8 || 4 |3 fe2 [Yo
I___r___ll__,__l

Halfword Byte

Bit#|76543210|

EREEEE AN
Bits in a Byte
Figure 1.6 Little-Endian Data in a Doubleword
Most-significant byte Least-significant byte

Word

Bit# 63 \ 5655 4847 4039 32[31 2423 16 15 87\ ol
3 |\ 56¢

Bye#| O Jp Tl 2 || 3 ﬂ """""" s e]

T |—|—‘
Halfword Byte

|
Bit#!7 6 5 4 3 2 1 0l

AREEENED

Bits in a Byte

Figure 1.7 Big-Endian Data in a Doubleword

The CPU uses byte addressing for halfword, word, and doubleword
accesses with the following alignment constraints:
¢ Halfword accesses must be aligned on an even byte boundary
0, 2,4..).
¢ Word accesses must be aligned on a byte boundary divisible by four
(0, 4, 8...).
* Doubleword accesses must be aligned on a byte boundary divisible by
eight (0, 8, 16...).
The following special instructions load and store words that are not
aligned on 4-byte (word) or 8-word (doubleword) boundaries:

LWL LWR SWL SWR
LDL LDR SDL SDR

These instructions are used in pairs to provide addressing of misaligned
words. Addressing misaligned data incurs one additional instruction cycle
over that required for addressing aligned data. This extra cycle is because
of an extra instruction for the “pair” (e.g., LWL and LWR form a pair). Also
note that the CPU moves the unaligned data at the same rate as a
hardware mechanism.

Chapter 1

Figures 1.8 and 1.9 show the access of a misaligned word that has byte
address 3.

Higher

Address Bitl#
[31 24 23 1615 8 7 ol
L 4 | 5 4 8 | |
[I | s]

Lower

Address

Figure 1.8 Big-Endian Misaligned Word Addressing

Higher

Address Bitli#
[31 24 23 1615 8 7 vol
& | & &]
L3 | I |]

Lower

Address

Figure 1.9 Little-Endian Misaligned Word Addressing

Coprocessors (CPO-CP2)
The MIPS ISA (MIPS III) for the R4600/R4700 (and R4000/R4400)
defines three coprocessors (designated CPO through CP2):

e Coprocessor 0 (CPO) is incorporated on the CPU chip and supports
the virtual memory system and exception handling. CPO is also re-
ferred to as the System Control Coprocessor.

e Coprocessor 1 (CP1) is incorporated on the R4600/R4700, and imple-
ments the MIPS floating-point instruction set.

¢ Coprocessor 2 (CP2) is reserved for future use.
CPO and CP1 are described in the sections that follow.

System Control Coprocessor, CPO

CPO translates virtual addresses into physical addresses and manages
exceptions and transitions between kernel, supervisor, and user states.
CPO also controls the cache subsystem, as well as providing diagnostic
control and error recovery facilities.

CPO is also used to control the power management for the R4600/
R4700. This is the standby mode and it can be used to reduce the power
consumption of the internal core of the CPU. The standby mode is entered
by executing the WAIT instruction with the SysAD bus idle and is exited by
any interrupt. This feature is discussed in Appendix G.

Overview Chapter 1

The CPO registers shown in Figure 1.10 and described in Table 1.18 on
page 1.17 manipulate the memory management and exception handling
capabilities of the CPU.

Note: Access to reserved or undefined CPO register results are unde-

fined. An exception may or may not result.

Register Name Reg. # Register Name Reg. #

| Index | 0 | Config | 16

[Random | 1 [LLAddr | 17

[EntryLo0 | 2 18

[Entryloi | 3 020202020 202020202020 20202, 19

4 : 20

[Pagemask] 5 - R, 21

[Wired 6 DVIDIINVNNNDNNNNND, 22

RRHXRRKIRRHKKK 7 PRRRRIRRRRIERKKN] 23

8 [ORXRX XXX 24

9 25

[EntryHi 10 26

1 27

12 28

13 29

14 30

[PR 15 31
Exception Processing [] Memory Management Reserved

Figure 1.10 R4600/R4700 CPO Registers

Chapter 1

Number | Register Description
0 Index Programmable pointer into TLB array
1 Random Pseudorandom pointer into TLB array (read only)
2 EntryLoO Low half of TLB entry for even virtual page (VPN)
3 EntryLol Low half of TLB entry for odd virtual page (VPN)
4 Context Pointer to kernel virtual page table entry (PTE) for 32-
bit address spaces
5 PageMask TLB Page Mask
6 Wired Number of wired TLB entries
7 — Reserved
8 BadVAddr Bad virtual address
9 Count Timer Count
10 EntryHi High half of TLB entry
11 Compare Timer Compare
12 SR Status register
13 Cause Cause of last exception
14 EPC Exception Program Counter
15 PRId Processor Revision Identifier
16 Config Configuration register
17 LLAddr Load Linked Address
18-19 | — Reserved
20 XContext Pointer to kernel virtual PTE table for 64-bit address
spaces
21-25 |— Reserved
26 ECC Secondary-cache error checking and correcting (ECC)
and Primary parity
27 CacheErr Cache Error and Status register
28 TagLo Cache Tag register
29 TagHi Cache Tag register
30 ErrorEPC Error Exception Program Counter
31 — Reserved

Table 1.18 System Control Coprocessor (CPO) Register Definitions

Overview

Chapter 1

Floating-Point Co-Processor

The R4600/R4700 incorporates an entire floating-point co-processor on
chip, including a floating-point register file and execution units. The
floating-point co-processor forms a “seamless” interface with the integer
unit, decoding and executing instructions in parallel with the integer unit.
The R4700 enhances the FPA implemented in the original R4600, resulting
in an improved peak MFLOP rate.

Floating-Point Units

The R4600/R4700 floating-point execution units supports single and
double precision arithmetic, as specified in the IEEE Standard 754. The
execution unit is broken into a separate multiply unit and a combined
add/convert/divide/square root unit. Overlap of multiplies and add/
subtract is supported. The multiplier is partially pipelined, allowing a new
multiply to begin every 6 cycles for the R4600, and every 4 cycles for the
R4700.

As in the R3010 and R4000, the R4600/R4700 maintains fully precise
floating-point exceptions while allowing both overlapped and pipelined
operations. Precise exceptions are extremely important in mission-critical
environments, such as ADA, and highly desirable for debugging in any
environment.

The floating-point unit's operation set includes floating-point add,
subtract, multiply, divide, square root, conversion between fixed-point and
floating-point format, conversion among floating-point formats, and
floating-point compare. These operations comply with the IEEE Standard
754.

Table 1.19 shows the latencies of some of the floating-point instructions
in internal processor cycles. Due to pipelining, repeat rates may be higher.
Also note that many operations are autonomous and can go in parallel.

Operation Single Precision Double Precision
ADD 4 4
SUB 4 4
MUL R4600: 8 R4600: 8

R4700: 4 R4700: 5
DIV .32 61
SQRT 31 60
CMP 3 3
FIX 4 4
FLOAT 6 6
ABS 1 1
MOV 1 1
NEG 1 1
LWC1, LDC1 2 2
SWC1, SDC1 1 1

Table 1.19 Floating-Point Latency Cycles

Overview

Chapter 1

Virtual to Physical Address Mapping
The R4600/R4700 provides three modes of operation:
e user mode

¢ supervisor mode
¢ kernel mode

This mechanism is available to system software to provide a secure
environment for user processes. Bits in a status register determine the
mode of operation. In the user mode, the R4600/R4700 provides a single,
uniform virtual address space of 256GB (2GB when Status.UX = 0).

When operating in the kernel mode, four distinct virtual address spaces,
totalling 1024GB (4GB when Status.KX = 0), are simultaneously available
and are differentiated by the high-order bits of the virtual address.

The R4600/R4700 processors also support a supervisor mode in which
the virtual address space is 256.5GB (2.5GB when Stauts.SX = 0), divided
into three regions based on the high-order bits of the virtual address.

When the R4600/R4700 uses 64-bit virtual addresses, the address
space layouts are an upward compatible extension of the 32-bit virtual
address space layout. A detailed description of the addressing is given in
Chapter 4.

Joint TLB

For fast virtual-to-physical address decoding, the R4600/R4700 uses a
large, fully associative TLB which maps 96 Virtual pages to their
corresponding physical addresses. The TLB is organized as 48 pairs of
even-odd entries, and maps a virtual address and address space identifier
into the large, 64GB physical address space.

Two mechanisms are provided to assist in controlling the amount of
mapped space, and the replacement characteristics of various memory
regions. First, the page size can be configured, on a per-entry basis, to map
a page size of 4KB to 16MB (in multiples of 4). A CPO register is loaded with
the page size of a mapping, and that size is entered into the TLB when a
new entry is written. Thus, operating systems can provide special purpose
maps; for example, a typical frame buffer can be memory mapped using
only one TLB entry.

The second mechanism controls the replacement algorithm when a TLB
miss occurs. The R4600/R4700 provides a random replacement algorithm
to select a TLB entry to be written with a new mapping; however, the
processor provides a mechanism whereby a system specific number of
mappings can be locked into the TLB, and thus avoid being randomly
replaced. This facilitates the design of real-time systems, by allowing
deterministic access to critical software.)

The joint TLB also contains information to control the cache coherency
protocol for each page. Specifically, each page has attribute bits to
determine whether the coherency algorithm is: uncached, non-coherent
write-back, non-coherent write-through write-allocate, non-coherent
write-through no write-allocate, sharable, exclusive, or update. Non-
coherent write-back is typically used for both code and data on the R4600/
R4700; the write-through modes support more efficient frame buffer
accesses than the R4000 family. The coherent modes are supported for
R4000 compatibility and generate different transaction types on the
system interface; cache coherency is not supported however.

Overview

Chapter 1

Instruction TLB

The R4600/R4700 also incorporates a 2-entry instruction TLB. Each
entry maps a 4KB page. The instruction TLB improves performance by
allowing instruction address translation to occur in parallel with data
address translation. When a miss occurs on an instruction address
translation, the least-recently used ITLB entry is filled from the JTLB. The
operation of the ITLB is invisible to the user.

Data TLB

The R4600/R4700 also incorporates a 4-entry data TLB. Each entry
maps a 4KB page. The data TLB improves performance by allowing data
address translation to occur in parallel with data address translation.
When a miss occurs on an data address translation, the DTLB is filled from
the JTLB. The DTLB refill is pseudo-LRU: the least recently used entry of
the least recently used half is filled. The operation of the DTLB is invisible
to the user.

Cache Memory

In order to keep the R4600/R4700’s high-performmance pipeline full and
operating efficiently, the R4600/R4700 incorporates on-chip instruction
and data caches that can be accessed in a single processor cycle. Each
cache has its own 64-bit data path and can be accessed in parallel. The
cache subsystem provides the integer and floating-point units with an
aggregate bandwidth of 1.6GB per second at a system clock frequency of
50MHz.

Furthermore, the large, Two-way set associative caches increase
emulation performance of DOS and Windows 3.1 applications when
running under Windows NT.

Instruction Cache

The R4600/R4700 incorporates a two-way set associative on-chip
instruction cache. This virtually indexed, physically tagged cache is 16KB
in size and is protected with word parity.

Because the cache is virtually indexed, the virtual-to-physical address
translation occurs in parallel with the cache access, thus further
increasing performance by allowing these two operations to occur
simultaneously. The tag holds a 24-bit physical address and valid bit, and
is parity protected.

The instruction cache is 64-bits wide, and can be refilled or accessed in
a single processor cycle. Instruction fetches require only 32 bits per cycle,
for a peak instruction bandwidth of 700 MB/sec @ 175MHz. Sequential
accesses take advantage of the 64-bit fetch to reduce power dissipation,
and cache miss refill writes 64 bits per cycle to minimize the cache miss
penalty. The line size is eight instructions (32 bytes) to maximize
performance.

Data Cache

For fast, single cycle data access, the R4600/R4700 includes a 16KB on-
chip data cache that is two-way set associative with a fixed 32-byte (eight
words) line size. Both the D-cache and the I-cache can be accessed each
pipeline cycle; thus, the data bandwidth is 1400 MB/sec @ 175 MHz, in
addition to the 700 MB/sec instruction bandwidth.

The data cache is protected with byte parity and its tag is protected with
a single parity bit. It is virtually indexed and physically tagged to allow
simultaneous address translation and data cache access

Overview

Chapter 1

The normal write policy is writeback, which means that a store to a cache
line does not immediately cause memory to be updated. This increases
system performance by reducing bus traffic and eliminating the bottleneck
of waiting for each store operation to finish before issuing a subsequent
memory operation. Software can however select write-through on a per-
page basis when it is appropriate, such as for frame buffers.

Associated with the Data Cache is the store buffer. When the R4600/
R4700 executes a Store instruction, this single-entry buffer gets written
with the store data while the tag comparison is performed. If the tag
matches, then the data is written into the Data Cache in the next cycle that
the Data Cache is not accessed (the next non-load cycle). The store buffer
allows the R4600/R4700 to execute a store every processor cycle and to
perform back-to-back stores without penalty.

Write buffer

Writes to external memory, whether cache miss writebacks or stores to
uncached or write-through addresses, use the on-chip write buffer. The
write buffer holds up to four 64-bit address and data pairs or 1 cache line
to be written back. The entire buffer is used for a data cache writeback and
allows the processor to proceed in parallel with memory update. For
uncached and write-through stores, the write buffer significantly increases
performance over the R4000 family of processors.

R4600/R4700 Clocks

The R4600/R4700 has a number of clocks for the user. First, there is
the pipeline clock, PClock. This clock is used for the pipeline and pipeline
related functions internal to the R4600/R4700. It is two times the
MasterClock frequency. The next clock is the system interface clock,
SClock. This is also an internal clock and is used to sample data at the
system interface and to clock data into the processor system interface
output registers. The SClock is a divided version of the PClock. The divisor
is selected at boot time.

There are three external clocks. (Some outputs are replicated to minimize
loading.) The MasterOut is at the same frequency as MasterClock and can
be used to clock certain external logic. The other clocks are used by the
external agent. These are the TClock, Transmit clock, and the RClock,
Receive clock. The TClock is used to clock the output registers (signals
transmitted to the R4600/R4700) of the external agent and is at the same
frequency as SClock. The RClock is used to clock the input register (signals
received from the R4600/R4700) of the external agent. It is also at the
same frequency as the SClock but its phase leads the SClock and TClock
by 25%. The R4600/R4700 implements an on-chip PLL to eliminate the
effects of clock skew.

Overview

Chapter 1

System Interface

The R4600/R4700 supports a 64-bit system interface that is compatible
with the R4000PC system interface. This interface operates from two
clocks provided by the R4600/R4700, TClock[1:0] and RClock[1:0], at a
division of the pipeline clock.

The interface consists of a 64-bit Address/Data bus with 8 check bits
and a 9-bit command bus. In addition, there are 8 handshake signals and
6 interrupt inputs. The interface has a simple timing ‘specification and is
capable of transferring data between the processor and memory at a peak
rate of 400MB/sec at 50MHz.

Figure 1.11 shows a typical system using the R4600/R4700. In this
example there is DRAM, a boot EPROM and an optional secondary cache.

R4600

—1] Address
Boot DRAM
ROM (80ns) { Control
‘-—4
scsl| ENET
r
64 64 16 32
< Y ” ’Memory I/q
614 Controller¢ i L
9
- »-
2
3 #
11

Figure 1.11 Typical System Block Diagram

Overview Chapter 1
Comparison of R4600/R4700 and R4400
This section compares features of the R4600/R4700 to the earlier R4400
PC. Table 1.20 to Table 1.26 highlight some of the differences between the
R4600/R4700 and the R4400 PC. This list is not exhaustive.
Item R4400 PC R4600/R4700
1/0 R4400: TTL compatible R4600/R4700: TTL-compatible (5V +0.5%)
RV4400: LV CMOS RV4600/RV4700: LVCMOS (3.3V+0.3V)
Package 179-pin ceramic PGA same and 208-pin MQUAD
JTAG yes no (serial out connected directly to serial in)
Block transfer sizes 16B or 32B 32B
Sclock divisor 2,3,4.6,8 2,3,4,5,6,7,8

Non-block writes

max throughput of 4 sclock cycles

two new system interface protocol options
that support 2 sclock cycle throughput
(remains 4 in compatibility mode)

Serial configuration

as described in R4000 User’s Guide

different, as described in Table 9.2 on
page 9-7

Address bits 63..56 on reads and
writes

zero

bits 19..12 of virtual address

Uncached and write-through
stores

uncached stores are buffered in 1-
entry uncached store buffer (write
through not possible)

uncached and write-though stores buffered
in 4-entry write buffer

SysADC parity only same
SysADC for non-data cycles parity zero
SysCmdP parity Zero

Parity error during writeback

use Cache Error exception

output bad parity

Error bit in data identifier of
read responses

Bus Error if error bit set for any dou-
bleword

only check error bit of first doubleword; all
other error bits ignored

Parity error on read data

Bus Error if parity error in any dou-
bleword

bad parity written to cache; take Cache
Error exception if bad parity occurs on dou-
blewords that the processor is waiting for

Block writes

1-2 null cycles between address and
data

0 cycles between address and data

Release after Read Request

variable latency

0 latency

SysAD value for x cycles of write-
back data pattern

data bus undefined

data bus maintains last D cycle value

SysAD bus use after last D cycle
of writeback

data bus undefined

trailing x cycles (e.g. DDxxDDxx, not
DDxxDD) follow rule in entry immediately
preceding

Output slew rate

dynamic feedback control

simple CMOS output buffers with 2-bit
static strength control

IOOut output

output slew rate control feedback
loop output

driven HIGH, do not connect
(reserved for future output)

I0In input output slew rate control input should be driven high

(reserved for future input)
GrpRunB output do not connect same

(reserved for future output)
GrpStallB input should be connected to VCC same

(reserved for future input)
FaultB output pin indicates compare mismatch driven HIGH, do not connect

(reserved for future output)

Table 1.20 System Interface Comparison Between R4400 PC and R4600/R4700

Overview

Chapter 1

Item R4400 PC R4600/R4700

Cache Sizes 16KB Instruction cache, 16KB Data 16KB Instruction cache, 16KB Data
cache cache

Cache Line Sizes ggféware selectable between 16B and fixed at 32B

Cache Index vAddr; 3. o vAddrys o

Cache Tag pAddrsg 19 same

Cache Organization direct mapped 2-way set associative

Data cache write policy

write-allocate and write-back

write-allocate or not based on TLB
entry, write-through or not based on
TLB entry

Data cache miss

stall, output address, copy dirty data to
writeback buffer, refill cache, output
writeback data

same, with FIFO to select the set to
refill

Data order for block sub-block ordering same
reads
Data order for block sequential same
writes
Instruction cache miss | restart after all data received and writ- | same

restart

ten to cache

Data cache miss restart

restart after all data received and writ-
ten to cache

restart on first doubleword, send sub-
sequent doublewords to response
buffer

Instruction Tag 2-bit cache state 1-bit cache state

Cache miss overhead 5-8 cycles 3 cycles

Instruction cache parity | 1 parity bit per 8 data bits 1 parity bit per 32 data bits
Data cache parity 1 parity bit per 8 data bits same

Table 1.21 Cache Comparison Between R4400 PC and R4600/R4700

Overview Chapter 1
Item R4400 PC R4600/R4700
Instruction virtual 2-entry ITLB same
address translation
ITLB miss 1 cycle penalty, refilled from JTLB, 1 cycle on branch, jump, and ERET, 2
LRU replacement cycles otherwise, refilled from JTLB,
LRU replacement
Data virtual address done directly in JTLB 4-entry DTLB
translation
DTLB miss n.a. 1 cycle penalty, refilled from JTLB,
pseudo-LRU replacement
JTLB 48 entries of even/odd page pairs, fully | same
associative
Page size 4KB, 16KB, ..., 16MB same
Multiple entry match sets TS in Status and disables TLB no damage for multiple match; no
in JTLB until Reset to prevent damage detection or shutdown implemented
Virtual address size VSIZE = 40 same
Physical address size PSIZE = 36 same

Table 1.22 TLB Comparison Between R4400 PC and R4600/R4700

Item R4400 PC R4600/R4700
ALU latency 1 cycle 1 cycle
Load latency 3 cycles 2 cycles

Branch latency

4 cycles (2 cycle penalty for taken
branches)

2 cycles (no penalty for taken
branches)

Store buffer (not write 2 doublewords 1 doubleword

buffer)

Integer multiply integer multiply hardware, 1 cycle to done in floating-point multiplier, 4
issue cycles to issue

Integer divide done in integer datapath adder, slips done in floating-point adder, 4 cycles to
until done issue

Integer multiply HIGH and LOW available at the same LOW avalilable one cycle before HIGH
time

Integer divide HIGH and LOW available at the same HIGH available one cycle before LOW
time

HIGH and LOW hazards | yes, HIGH and LOW written early in no, HIGH and LOW written after W
pipeline

MFHI/MFLO latency 1 cycle 2 cycles

SLLV, SRLV, SRAV

2 cycles to issue

1 cycle to issue

DSLL, DSRL, DSRA,
DSLL32, DSRL32,
DSRA32, DSLLV,
DSRLV, DSRAV

2 cycles to issue

1 cycle to issue

Table 1.23 Pipeline Comparison Between R4400 PC and R4600/R4700

Overview Chapter 1
Item R4400 PC R4600/R4700
WatchLo, WatchHi implemented unimplemented (no watch registers)
Config as described in R4000 User’s Guide subset
Status as described in R4000 User’s Guide, no TS or RP
but RP not functional
Low-power standby no WAIT instruction disables internal

mode

clock, freezing pipeline and other state;
resume on interrupt

MFCO0/MTCO hazard

only hazardous for certain cpO register
combinations

always hazardous -- detected and 1-
cycle slip inserted

EntryLoO, EntryLol

as described in R4000 User’s Guide

two new cache algorithms added to C
field for non-coherent write-through

TagLo, TagHi, ECC,

R4400SC bits implemented but mean-

Only bits meaningful on R4400 PC

I Fill CACHE op

CacheErr ingless implemented
TagLo as described in R4000 User’s Guide bits 5..3 read/writeable but otherwise
unused, bit 2 used for F bit
Exceptions as described in R4000 User’s Guide VCEI, VCED, and WATCH exceptions
(VCEI and VCED not possible) not implemented
Index CACHE ops use vAddr, 3 4 to select line use VAddr, 5 to select set, vAddr;, g to

select line of set

Index Store Tag CACHE | Status.CE ignored TagLo.P stored if Status.CE set
op
PRId Imp = 0x04 R4600: Imp = 0x20

R4700: Imp = 0x21

Table 1.24 Coprocessor 0 Comparison Between R4400 PC and R4600/R4700

Item

R4400 PC

R4600/R4700

Possible exception stall

only for operands that can cause
exceptions

some simplifications in detection hard-
ware

Floating-point divide

separate divide unit

done in floating-point adder

root

Floating-point square

done in floating-point adder

same

integer

Converts to/from 64-bit

uses unimplemented for integer oper-
ands/results with more than 53 bits of
precision

handles full 64-bit operands and
results

Floating-point registers

Status.FR enables all 32 floating point
registers

same

FCRO

Imp = 0x05

R4600: Imp = 0x20
R4700: Imp = 0x21

Table 1.25 Coprocessor 1 Comparison Between R4400 PC and R4600/R4700

CPU Instruction Set Chapter 2
i Sum
Ha e
Integrated D.e'vloe Technology, Inc.
Introduction

This chapter is an overview of the central processing unit (CPU)
instruction set; refer to Appendix A for detailed descriptions of individual
CPU instructions.

An overview of the floating-point unit (FPU) instruction set is in
Chapter 6; refer to Appendix B for detailed descriptions of individual FPU
instructions.

CPU Instruction Formats

Each CPU instruction consists of a single 32-bit word, aligned on a word
boundary. There are three instruction formats—immediate (I-type), jump
(J-type), and register (R-type)}—as shown in Figure 2.1. The use of a small
number of instruction formats simplifies instruction decoding (thus higher
frequency operations) and allowing the compiler to synthesize more
complicated (and less frequently used) operations and addressing modes
from these three formats as needed.

I-Type (Immediate)
31 2625 2120 1615 0
0 rs rt immediate

J-Type (Jump)
31 26 25 0

| OE target .

R-Type (Register)

31 2625 2120 16 15 1110 65 0
0 rs rt rd sa | funct
Figure Legend:
op 6-bit operation code
rs 5-bit source register specifier
rt 5-bit target (source/destination) register or branch condition
immediate 16-bit immediate value, branch displacement or address
displacement
target 26-bit jump target address
rd 5-bit destination register specifier
sa 5-bit shift amount
funct 6-bit function field

Figure 2.1 CPU Instruction Formats

In the MIPS architecture, coprocessor instructions are implementation-
dependent; refer to Appendix A for details of individual Coprocessor O
instructions.

CPU Instruction Set Summary Chapter 2

Load and Store Instructions

Load and store are immediate (I-type) instructions that move data
between memory and the general registers. The only addressing mode that
load and store instructions directly support is base register plus 16-bit
signed immediate offset.

Scheduling a Load Delay Slot

A load instruction that does not allow its result to be used by the
instruction immediately following is called a delayed load instruction. The
instruction slot immediately following this delayed load instruction is
referred to as the load delay slot.

In the R4600/R4700 processor, the instruction immediately following a
load instruction can request the contents of the loaded register, however,
in such cases, hardware interlocks insert additional real cycles.
Consequently, scheduling load delay slots can be desirable, both for
performance and R-Series (e.g., R3051) processor compatibility. However,
the scheduling of load delay slots is not absolutely required.

Defining Access Types

Access type indicates the size of an R4600/R4700 processor data item
to be loaded or stored, set by the load or store instruction opcode. Access
types are defined in Appendix A.

Regardless of access type or byte ordering (endianness), the address
given specifies the low-order byte in the addressed field. For a big-endian
configuration, the low-order byte is the most-significant byte; for a little-
endian configuration, the low-order byte is the least-significant byte.

The access type, together with the three low-order bits of the address,
define the bytes accessed within the addressed doubleword, which is
shown in Table 2.1 on page 2-3.

CPU Instruction Set Summary Chapter 2

Only the combinations shown in Table 2.1 are permissible; other
combinations cause address error exceptions. See Appendix A for
individual descriptions of CPU load and store instructions.

Access Type Low Order | Bytes Accessed
Mnemonic Address
(Value) Bits Big endian Little endian
‘ (63 31 0) | (63 31 0)
2 |1 |0 Byte Byte
Doubleword (7) |0 |0 |O 1{2|3|4|5|6|7|7 5 3|21
Septibyte (6) 0 (0 |0 112|3|4|5|6 514|321
0|0 |1 1/2|13)|4|5|6|7|7 5/4(3|2]1
Sextibyte (5) O |0 |0 |0|1]|2]|3|4]|5 514|3|2|1{0
O (1 |0 2(3(4(5(6(7|7|6|5|4|3(2
Quintibyte (4 0|0 |0 |O]1|2]|3|4 413(2]|1(0
o |1 |1 3/4|5|6|7|7|6|5(4|3
Word (3) 0O {0 |O |Of1]|2]3 312]110
1 {0 |O 41516771654
Triplebyte (2) o|o |o [of1 1|0
0 (0 |1 11213 3 1
1 [0]O 4 4
1]0 |1 717
Halfword (1) 0O (0 |0 |01 1|0
o |1 |0 2|3 3|2
1 10 |O 415 5|4
1 |1 |0 6|7|7|6
Byte (0) 0O |0 |0 |O 0
0 (0 |1 1 1
0|1 1|0 2 2
0|1]1 3 3
1 (0 |O 4 4
1 |0 |1 5 5
1 |1 (O 6 6
1 |1 |1 717

Table 2.1 Byte Access within a Doubleword

CPU Instruction Set Summary Chapter 2

Computational Instructions

Computational instructions can be either: 1) in register (R-type) format,
in which both operands are registers, or 2) in immediate (I-type) format, in
which one operand is a 16-bit immediate.

Computational instructions perform the following operations on register
values:
arithmetic
logical
shift
multiply
divide

These operations fit in the following four categories of computational
instructions:

¢ ALU Immediate instructions

¢ three-Operand Register-Type instructions

¢ shift instructions

¢ multiply and divide instructions

e & o o o

64-bit Virtual Address Operations with 32-bit operands

Operands to 32-bit operand opcodes must be in sign-extended form. 32-
bit operand opcodes include all non-doubleword operations, such as: ADD,
ADDU, SUB, SUBU, ADDI, SLL, SRL, SRA, SLLV, etc. The result of
operations that use incorrect sign-extended 32-bit values is unpredictable.

Cycle Timing for Multiply and Divide Instructions

MFHI and MFLO instructions (described in Appendix A) are interlocked
so that any attempt to read them before prior multiply or divide
instructions complete delays the execution of these instructions until the
prior instructions finish.

Table 2.2 gives the number of processor cycles (PCycles) required to
resolve an interlock or stall between various multiply or divide
instructions, and a subsequent MFHI or MFLO instruction.

Instruction R4600 R4700

MULT 10 8
MULTU 10 8
DIV 42 42
DIVU 42 42
DMULT 12 10
DMULTU 12 10
DDIV 74 74
DDIVU 74 74

Table 2.2 Multiply/Divide Instruction Cycle Timing

For more information about computational instructions, refer to the
individual instruction as described in Appendix A.

CPU Instruction Set Summary Chapter 2

Jump and Branch Instructions

Jump and branch instructions change the control flow of a program. All
jump and branch instructions occur with a delay of one instruction: that
is, the instruction immediately following the jump or branch (this is known
as the instruction in the delay slot) always executes while the target
instruction is being fetched from storage.

Overview of Jump Instructions

Subroutine calls in high-level languages are usually implemented with
Jump or Jump and Link instructions, both of which are J-type
instructions. In J-type format, the 26-bit target address shifts left 2 bits
and combines with the high-order 4 bits of the current program counter to
form an absolute address.

Returns, dispatches, and large cross-page jumps are usually
implemented with the Jump Register or Jump and Link Register
instructions. Both are R-type instructions that take the 32-bit or 64-bit
byte address contained in one of the general purpose registers.

For more information about jump instructions, refer to the individual
instruction as described in Appendix A.

Overview of Branch Instructions

All branch instruction target addresses are computed by adding the
address of the instruction in the delay slot to the 16-bit offset (shifts left
2 bits and is sign-extended to 32 bits). All branches occur with a delay of
one instruction.

If a conditional branch likely is not taken, the instruction in the delay
slot is nullified. For regular conditional branches, the delay slot is always
executed.

For more information about branch instructions, refer to the individual
instruction as described in Appendix A.

Special Instructions

Special instructions allow the software to initiate traps; they are always
R-type. For more information about special instructions, refer to the
individual instruction as described in Appendix A.

Exception Instructions

Exception instructions are extensions to the MIPS ISA. For more
information about exception instructions, refer to the individual
instruction as described in Appendix A.

Coprocessor Instructions

Coprocessor instructions perform operations in their respective
coprocessors. Coprocessor loads and stores are I-type, and coprocessor
computational instructions have coprocessor-dependent formats.

Individual coprocessor instructions are described in Appendices A (for
CPO) and B (for the FPU, CP1).

CPO instructions perform operations specifically on the System Control
Coprocessor registers to manipulate the memory management and
exception handling facilities of the processor. Appendix A contains details
of the CPO instructions.

CPU Instruction Set Summary Chapter 2

e

<

Integrated Device Technology, Inc.

The CPU Pipeline Chapter 3

Introduction

This chapter describes the basic operation of the CPU pipeline, which
includes descriptions of the delay instructions (instructions that follow a
branch or load instruction in the pipeline), interruptions to the pipeline
flow caused by interlocks and exceptions, and R4600/R4700
implementation of an uncached store buffer. The FPU pipeline is described
in a later chapter.

CPU Pipeline Operation

The R4600/R4700 uses a 5-stage pipeline similar to the R3000. The
simplicity of this pipeline allows the R4600/R4700 to be lower cost and
lower power than super-scalar or super-pipelined processors. Unlike the
R3000, the R4600/R4700 does virtual to physical translation in parallel
with cache access. This allows the R4600/R4700 to operate at over twice
the frequency of the R3000 and to support a larger TLB for address
translation.

Compared to the 8-stage R4000 pipeline, the R4600/R4700 is more
efficient (requires fewer stalls).

Once the pipeline has been filled, five instructions are executed
simultaneously. Figure 3.1 shows the five stages of the instruction
pipeline; the next section describes the pipeline stages.

o fn 2l | 1R | 2R | 1A
4 11 2 1R 2W
I3 2A | 1D | oo
lg 2R | 1A] oo
I one cycle
B
Figure Legend
11-1R Instruction cache access 2R Instruction decode
2| Instruction virtual to physical address translation in ITLB 1A-2A Integer add, logical, shift
2A-2D Data cache access and load align 1A Data virtual address calculation
1D Data virtual to physical address translation in DTLB 2A Store align
1D-2D Virtual to physical address translation in JTLB 1A Branch decision
2R Register file read 2W Register file write
2R Bypass calculation

Figure 3.1 Instruction Pipeline Stages

The CPU Pipeline

Chapter 3

CPU Pipeline Stages

This section describes each of the phases of the five pipeline stages.
Each stage has 2 phases:

¢ 1I - Instruction Fetch, Phase one
21 - Instruction Fetch, Phase two
1R - Register Fetch, Phase one
2R - Register Fetch, Phase two
1A - Execution, Phase one
2A - Execution, Phase two
1D - Data Fetch, Phase one
2D - Data Fetch, Phase two
1W - Write Back, Phase one
2W - Write Back, Phase two

® © & ¢ o o o o o

1I - Instruction Fetch, Phase one

During the 11 phase the instruction address translation begins in the
ITLB.

21 - Instruction Fetch, Phase two
During the 2I phase, the instruction cache fetch begins and the
instruction address translation in the ITLB continues.

1R - Register Fetch, Phase one
During the 1R phase, the following occurs:
¢ The instruction cache fetch finishes.

¢ The instruction cache tag is checked against the page frame number
obtained from the ITLB.

2R - Register Fetch, Phase two
During the 2R phase, the following occurs:
¢ The instruction decoder decodes the instruction.
¢ Any required operands are fetched from the register file.
e Make a decision to either issue or slip (for an interlock condition).
¢ For a branch, the branch address is calculated.

1A - Execution, Phase one

During the 1A phase, one of the following occurs:
¢ Any result from the A or D stages are bypassed.

¢ The arithmetic logic unit (ALU) starts the integer arithmetic, logical or
shift operation.

e The ALU calculates the data virtual address for load and store in-
structions.

¢ The ALU determines whether the branch condition is true.

2A - Execution, Phase two
During the 2A phase, one of the following occurs:
The integer arithmetic, logical or shift operation will complete.
A data cache access will start.
Store data is shifted to the specified byte position(s).
The data virtual to physical address translation in the DTLB will start.

o o o

1D - Data Fetch, Phase one
During the 1D phase, one of the following occurs:
¢ The data cache access will continue.
¢ The data address translation in the DTLB completes.
¢ The virtual to physical address translation in the JTLB will start.

The CPU Pipeline

Chapter 3

2D - Data Fetch, Phase two
During the 2D phase, one of the following occurs:
¢ The data cache access will finish and the data is shifted down and ex-
tended.
¢ The virtual to physical address translation in the JTLB will finish.
The data cache tag is checked against the PFN from the DTLB or JTLB
for any data cache access.

1W - Write Back, Phase one
This phase is used internally by the processor to resolve all exceptions,
in preparation for the register file write.

2W - Write Back, Phase two
For register-to-register and load instructions, the result is written back
to the register file during the 2W stage. Branch instructions perform no
operation during this stage.
Figure 3.2 shows the activities occurring during each ALU pipeline
stage, for load, store, and branch instructions.

Clock —__/—__/_—_/——_/_—_/

IR | 2R | 1A| 2a| D] 20 | 1w | aw |

ICA h

ICD Instruction cache address decode ICA Instruction cache array access

ITLBM | Instruction address translation ITLBR | Instrustion address translation read
match

ITC Instruction tag check RF Register operand fetch

IDEC Instruction decode EX1 Operation stage 1

EX2 Operation stage 2 WB Write back to register file

DVA Data virtual address calculation DCAD | Data cache address decode

DCAA | Data cache array access DCLA | Data cache load align

JTLB1 | Address translation in JTLB stage 1 JTLB2 | Address translation in JTLB stage 2

DTLBM | Data address translation match DTLMR | Data address translation read

DTC Data tag check SA Store align

DCW Data cache write BAC Branch address calculation

Figure 3.2 CPU Pipeline Activities

The CPU Pipeline Chapter 3

Branch Delay

The CPU pipeline has a branch delay of one cycle and a load delay of one
cycle. The one-cycle branch delay is a result of the branch decision logic
operating during the 1A pipeline phase of the branch instruction. This
allows the branch target address calculated in the previous phase to be
used for the instruction access in the following 11 phase. The pipeline will
begin the fetch of the branch path as well as the fall-through path in the
cycle following the delay slot. After the branch decision is made, the
processor will continue with the fetch of either the branch path (for a taken
branch) or the fall-through path (for the non-taken branch).

Figure 3.3 illustrates the branch delay.

| One Cycle One Cycle One Cycle One Cycle

One Cycle

| u | 2 | 2a| D[2D [1w] ow |

2R | 1a[2a | 1D 20 | 1w aw |
*%
21 | IR|2rR | 1A 28| 1D| 20 | 1w | 2w |

2l |IR[2rR]| 1a][2a] D] 2D | 1w] 2w |

*Branch and fall-through address calculated
**Address selection made

Figure 3.3 CPU Pipeline Branch Delay

Load Delay

The completion of a load at the end of the 2D pipeline phase produces
an operand that is available for the 1A pipeline phase of the instruction
following the load delay slot.

Figure 3.4 shows the load delay of one pipeline cycle.

I One Cycle | One Cycle | One Cycle | One Cycle | One Cycle

| u |2 [IR[2rR|1a[2a] 1D 2D | W] 2w |

| u 21 [1IR[2R|1a[2a] ID| 2D | 1w | 2w |

| u 2 [1IR[2r]|1a[2a]| D] 2D [1w [2w |

Load Delay l

Figure 3.4 CPU Pipeline Load Delay

The CPU Pipeline

Chapter 3

Interlock and Exception Handling

Smooth pipeline flow is interrupted when cache misses or exceptions
occur, or when data dependencies are detected. Interruptions handled
using hardware, such as cache misses, are referred to as interlocks, while
those that are handled using software are called exceptions.

There are two types of interlocks:

¢ stalls, which are resolved by halting the pipeline

¢ slips, which require the back end of the pipeline to advance while the

front end of the pipeline is held static

At each cycle, exception and interlock conditions are checked for all
active instructions.

Because each exception or interlock condition corresponds to a
particular pipeline stage, a condition can be traced back to the particular
instruction in the exception/interlock stage, as shown in Figure 3.5. For
instance, a Reserved Instruction (RI) exception is raised in the execution
(A) stage.

Pipeline Stage
State
I R A D w
Stall IT™M ICM DCM
CPE
| R A D w
Slip LDI
MDSt
FCBsy
I R A D w
Exceptions ITLB IBE RI DBE
IPErr CUn NMI
BP Reset
SC DPErr
DTLB OVF
TLBMod Trap
Intr

Figure 3.5 Correspondence of Pipeline Stage to Interlock Condition

For a description of the pipeline interlocks and exceptions listed in
Figure 3.5, refer to Table 3.1 and Table 3.2, which follow.

The CPU Pipeline Chapter 3

Table 3.1 and Table 3.2 describe the pipeline interlocks and exceptions
listed in Figure 3.5.

Exception Description
ITLB Instruction Translation or Address Exception
Intr External Interrupt
IBE Instruction Bus Error
RI Reserved Instruction
BP Breakpoint
SC System Call
CUn Coprocessor Unusable
IPErr Instruction Parity Error
OVF Integer Overflow
FPE FP Interrupt
ExTrap EX Stage Traps
DTLB Data Translation or Address Exception
TLBMod TLB Modified
DBE Data Bus Error
DPErr Data Parity Error
NMI Non-maskable Interrupt (or Soft Reset)
Reset Reset

Table 3.1 Pipeline Exceptions

Interlock Description
IT™™ Instruction TLB Miss
ICM Instruction Cache Miss
CPE Coprocessor Possible Exception
DCM Data Cache Miss
LDI Load Interlock
MDSt Multiply/Divide Start
FCBsy FP Coprocessor Busy

Table 3.2 Pipeline Interlocks

Exception Conditions

When an exception condition occurs, the relevant instruction and all
those that follow it in the pipeline are cancelled. Accordingly, any stall
conditions and any later exception conditions that may have referenced
this instruction are inhibited; there is no benefit in servicing stalls for a
cancelled instruction.

The CPU Pipeline

Chapter 3

When an exceptional condition is detected for an instruction, the
R4600/R4700 will kill it and all following instructions. When this
instruction reaches the W stage, the exception flag causes it to write
various CPO registers with the exception state, change the current PC to
the appropriate exception vector address and clear the exception bits of
earlier pipeline stages.

This implementation allows all preceding instructions to complete
execution and prevents all subsequent instructions from completing. Thus
the value in the EPC is sufficient to restart execution. It also ensures that
exceptions are taken in the order of execution; an instruction taking an
exception may itself be killed by an instruction further down the pipeline
that takes an exception in a later cycle.

Figure 3.6 shows the exception detection procedure (e.g., a reserved
instruction exception).

Exc

11

12

13

Exception Vector

11

11| 2I{ IR| 2R| 1A| 2A| 1D| 2D | 1W}| 2W

Exception Vector Address

Figure 3.6 Exception Detection

Stall Conditions

Stalls are used to stop the pipeline for conditions detected after the R
pipe-stage. When a stall occurs, the processor will resolve the condition
and then the pipeline will continue.

The CPU Pipeline

Chapter 3

Figure 3.7 shows a data cache miss stall.

O @ ® @
v Y Y Y

[RIAa[D[W]W e [W][W]wW]

LI

DD [D|W]

Ala]a|[D][w]
R[R[R[A|D[W]

Detect Cache Miss

Start moving dirty cache line data to write buffer
Get first doubleword into cache and restart pipeline
Load remainder of cache line into cache

[T IR [AT4a]-

LI N}

Lt [R|R

Figure 3.7 Data Cache Miss

The data cache miss is detected in the D pipe stage. If the cache line to
be replaced is dirty — the W bit is set — the data is moved to the internal
write buffer in the next cycle. The first doubleword of data is returned to
the cache in 3 and the pipeline will then restart. The remainder of the
cache line is returned in the subsequent cycles. The data to be written
back will be returned to memory some time after the entire new cache line
is returned.

Slip Conditions

During the 2R and 1A pipe-stages, internal logic will determine whether
it is possible to start the current instruction in this cycle. If all of the source
operands are available (either from the register file or via the internal
bypass logic) and all the hardware resources necessary to complete the
instruction will be available at the necessary time(s), then the instruction
“issues”; otherwise, the instruction will “slip”. Slipped instructions are
retried on subsequent cycles until they issue. The backend of the pipeline
(stages D and W) will advance normally during slips in an attempt to
resolve the conflict. “NOPS” will be inserted into the bubble in the pipeline.
Instructions killed by branch likely instructions, ERET or exceptions will
not cause slips.

The CPU Pipeline

Chapter 3

Figure 3.8 shows an instruction cache miss.

CYCLE Issue Issue Slip Slip Slip Slip Issue Issue Issue

R|]A[D]|W]

[t [R]A[JD]W]

z 2
-Ou % Previous Instructions

1 [R]A[D]W]

*NOP [T] R]A][D] W]

*NOP [T TR[A[D W]

[t IR|R[RJRJR|A[D]JW]

® & &

[t |R[A[D W]

Detect Cache Miss
Get entire cache line into cache
Continue pipeline

*NOP - Inserted NOP instructions

Figure 3.8 Instruction cache miss

Instruction cache misses are detected in R as shown in Figure 3.8 and
the pipeline slips in its A stage. There can never be a writeback required
for an instruction cache miss since dirty data can never exist in the I
cache. Writes are not allowed to the I cache. Note that early restart is not
employed for instruction cache misses, the requested cache line will be
loaded into the cache in its entirety and, after that, the pipeline will restart.

R4600/R4700 Write Buffer

The R4600/R4700 contains a write buffer to improve the performance
of writes to the external memory. Writes to external memory, whether
cache miss writebacks or stores to uncached or write-through addresses,
use this on-chip write buffer. The write buffer holds up to four 64-bit
address and data pairs.

For a cache miss write-back, the entire buffer is used for the write-back
data and allows the processor to proceed in parallel with the memory
update. For uncached and write-through stores, the write buffer
uncouples the CPU from the write to memory allowing increased
performance over the R4000 family of processors. If the write buffer is full,
additional stores will stall until there is room for them in the write buffer.

The CPU Pipeline Chapter 3

it R Memory Management Chapter 4
dt

Integrated Device Technology, Inc.

The R4600/R4700 processor provides a full-featured memory
management unit (MMU) which uses an on-chip Translation Lookaside
Buffer (TLB) to translate virtual addresses into physical addresses.

This chapter describes the processor virtual and physical address
spaces, the virtual-to-physical address translation, the operation of the
TLB in making these translations, and those System Control Coprocessor
(CPO) registers that provide the software interface to the TLB.

Translation Lookaside Buffer (TLB)

Mapped virtual addresses are translated into physical addresses using
an on-chip TLB.! The TLB is a fully associative memory that holds 48
entries, which provide mapping to 48 odd/even page pairs (96 pages).
When address mapping is indicated, each TLB entry is checked
simultaneously for a match with the virtual address that is extended with
an ASID stored in the EntryHi register.

The address mapped to a page ranges in size from 4Kbytes to 16Mbytes,
in multiples of 4—that is, 4K, 16K, 64K, 256K, 1M, 4M, 16M.

Hits and Misses

If there is a virtual address match, or hit, in the TLB, the physical page
number is extracted from the TLB and concatenated with the offset to form
the physical address (see Figure 4.1).

If no match occurs (TLB miss), an exception is taken and software refills
the TLB from the page table resident in memory. Software can write over
a selected TLB entry or use a hardware mechanism to write into a random

entry.

Multiple Matches

The R4600/R4700 does not provide any detection or shutdown
mechanism for multiple matches in the TLB. There is no damage possible
from this condition. The result is undefined for this condition. Software is
expected never to allow this to occur.

Address Spaces

This section describes the virtual and physical address spaces and the
manner in which virtual addresses are converted or “translated” into
physical addresses in the TLB.

Virtual Address Space

The processor virtual address can be either 32- or 64-bits wide,
depending on mode of operation (user, supervisor or kernel) and the
setting of the corresponding extended address bit in the Status register
(UX, SX and KX).

¢ For the extended address bit = 0, addresses are 32-bits wide.

¢ For the extended address bit = 1, addresses are 64-bits wide.

Both 32-bit and 64-bit address wrap in the same way. For example, in
64-bit mode OxfTffffffffff will wrap to 0x0000000000000000. While the
R4400 slipped on shift of >32-bit or other shift variables, the R4600/
R4700 does not.

1-There are virtual-to-physical address translations that occur outside of the TLB.
For example, addresses in kseg0 and ksegl spaces are unmapped translations. In
these spaces the physical address is 0x0000 0000 O Il VA[28:0]

4-1

Memory Management

Chapter 4

Figure 4.1 shows the translation of a virtual address into a physical
address.

1. Virtual address (VA) represented by the

virtual page number (VPN) is compared G ASID VPN Offset ‘
with tag in TLB.

2. If there is a match, the page frame
number (PFN) representing the upper
bits of the physical address (PA) is
output from the TLB.

3. The Offset, which does not pass through

the TLB, is then concatenated to the PFN. PFN I Offset I

Virtual address

Physical address

Figure 4.1 Overview of a Virtual-to-Physical Address Translation

As shown in Figure 4.2 and Figure 4.3, the virtual address is extended
with an 8-bit address space identifier (ASID), which reduces the frequency
of TLB flushing when switching contexts. This 8-bit ASID is in the CPO
EntryHi register, described later in this chapter. The Globalbit (G) is in the
EntryLoO and EntryLol registers, described later in this chapter.

Physical Address Space

Using a 36-bit address, the processor physical address space
encompasses 64Gigabytes. The section following describes the translation
of a virtual address to a physical address.

Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing
the virtual address from the processor with the virtual address in the TLB;
there is a match when the virtual page number (VPN) of the address is the
same as the VPN field of the entry, and either:

¢ the Global (G) bit of the TLB entry is set, or

e the ASID field of the virtual address is the same as the ASID field of

the TLB entry.

This match is referred to as a TLB hit. If there is no match, a TLB Miss
exception is taken by the processor and software is allowed to refill the TLB
from a page table of virtual/physical addresses in memory.

If there is a virtual address match in the TLB, the physical address is
output from the TLB and concatenated with the Offset, which represents
an address within the page frame space. The Offset does not pass through
the TLB.

Virtual-to-physical translation is described in greater detail throughout
the remainder of this chapter; Figure 4.19 on page 22 is a flow diagram of
the process.

The next two sections describe the 32-bit and 64-bit address
translations.

Chapter 4

Memory Management

32-bit Virtual Address Translation
Figure 4.2 shows the virtual-to-physical-address translation of a 32-bit

virtual address.
¢ The top portion of Figure 4.2 shows a virtual address with a 12-bit, or
4Kbyte, page size, labelled Offset. The remaining 20 bits of the ad-
dress represent the VPN, and index the 1M-entry page table.
¢ The bottom portion of Figure 4.2 shows a virtual address with a 24-
bit, or 16Mbyte, page size, labelled Offset. The remaining 8 bits of the
address represent the VPN, and index the 256-entry page table.

Virtual Address with 1M (22°) 4-Kbyte pages
39 3231 29 28 20 bits = 1M pages 1211 0
‘VEN‘ S Offset

ASID

AN J
Yo

Virtual-to-physical Offset passed

translation in TLB unchanged to

Bits 31, 30 and 29 of the virtual physical
address select user, supervisor, 36-bit Physical Address emory
or kernel address spaces. - Rageess g e -
35 ¢ N . 0 |
3 PFN Offset I
Virtual-to-physical
translation in TLB uo;f:ha;npgaes: ?g
TLR: physical
= AL memory
'\ ™
39 3231 2928 24 23 0

8 24
8 bits = 256 pages

Virtual Address with 256 (28)16-Mbyte pages

Figure 4.2 32-bit Virtual Address Translation

64-bit Virtual Address Translation
Figure 4.3 on page 4 shows the virtual-to-physical-address translation

of a 64-bit virtual address. This figure illustrates the two extremes in the
range of possible page sizes: a 4Kbyte page (12 bits) and a 16Mbyte page
(24 bits).
¢ The top portion of Figure 4.3 shows a virtual address with a
12-bit, or 4Kbyte, page size, labelled Offset. The remaining 28 bits of
the address represent the VPN, and index the 256M-entry page table.
* The bottom portion of Figure 4.3 shows a virtual address with a 24-
bit, or 16Mbyte, page size, labelled Offset. The remaining 16 bits of
the address represent the VPN, and index the 64K-entry page table.

Chapter 4

Memory Management

Virtual Address with 256M (22%) 4-Kbyte pages
40 39 28 bits = 2_5_6M pages 12 11 0
v | o

71 64 63626_1
ASID || lgg

24 N Y
/
] “Y Offset passed
Virtual-to-physical unchanged to
translation in TLB : physical
36-bit Physical Address memory

Bits 62 and 63 of the virtual

address select user, supsrvisor, T - T

or kernel address spaces. — O e e
PFN Offset

unchanged to
physical
memory

Virtual-to-physical
translation in TLB

~
f(—}‘—\ 24 23 \O

71 64 6362 61 4039

16 bits = 64K pages

Figure 4.3 64-bit Virtual Address Translation

Operating Modes

The processor has three operating modes that function in both 32- and
64-bit operations:

e User mode

¢ Supervisor mode

¢ Kernel mode
These modes are described in the next three sections.

User Mode Operations
In User mode, a single, uniform virtual address space—labelled User

segment—is available; its size is:
2 Gbytes (23! bytes) for Status.UX = O (useg)

o 1 Thyte (240 bytes) for Status.UX = 1 (xuseg)

Memory Management Chapter 4
Figure 4.4 shows the User mode virtual address space.
32-bit* 64-bit
Ox FFFF FFFF 0x FFFF FFFF FFFF FFFF
Address Address
Error Error
0x 8000 0000 0x 0000 0100 0000 0000
useg Xuseqg
0x 0000 0000 0x 0000 0000 0000 0000
Note: *For 32-bit virtual addresses, bit 31 is sign-extended through bits 63:32.
Failure (i.e., bit 31 = 1) results in an Address Error exception.
Figure 4.4 User Mode Virtual Address Space
The User segment starts at address O and the current active user
process resides in either useg (32-bit virtual addressing) or xuseg (in 64-
bit virtual addressing). The TLB identically maps all references to useg/
xuseg from all modes, and controls cache accessibility.
The processor operates in User mode when the Status register contains
the following bit-values:
¢ KSU bits = 104
e EXL=0
e ERL=0
In conjunction with these bits, the UX bit in the Status register selects
between 32- or 64-bit User virtual addressing as follows:
¢ when UX = 0, 32-bit useg space is selected
¢ when UX = 1, 64-bit xuseg space is selected
Table 4.1 lists the characteristics of the two user mode segments, useg
and xuseg.
Address Bit Status Register Segment Address Range Segment Size
Values Name
Bit Values
KSU | EXL | ERL | UX
32-bit 109 [O 0 0 useg 0x0000 0000 2 Gbyte
A@B1) =0 through (23! bytes)
Ox7FFF FFFF
64-bit 105 | O 0 1 xuseg 0x0000 0000 0000 0000 | 1 Tbyte
A(63:40) = 0 through (240 bytes)
0x0000 OOFF FFFF FFFF

Table 4.1 32-bit and 64-bit User Mode Segments

32-bit User Mode (useg)

In User mode, when Status.UX = 0, User mode virtual addressing is
compatible with the 32-bit addressing model shown in Figure 4.4, and a 2-
Gbyte user address space is available, labelled useg.

Memory Management

Chapter 4

All valid User mode virtual addresses have their most-significant bit
cleared to O; any attempt to reference an address with the most-significant
bit set while in User mode causes an Address Error exception.

In 32-bit User mode virtual addressing, the TLB refill exception vector is
used for TLB misses.

The system maps all references to useg through the TLB, and bit
settings within the TLB entry for the page determine the cacheability of a
reference.

64-bit User Mode (xuseg)

In User mode, when Status.UX =1, User mode virtual addressing is
extended to the 64-bit model shown in Figure 4.4, and a 1-Tbyte user
address space is available, labelled xuseg.

All valid User mode virtual addresses have bits 63:40 equal to O; an
attempt to reference an address with bits 63:40 not equal to O causes an
Address Error exception.

The extended addressing TLB refill exception vector is used for TLB
misses.

Supervisor Mode Operations

Supervisor mode is designed for layered operating systems in which a
true kernel runs in R4600/R4700 Kernel mode, and the rest of the
operating system runs in Supervisor mode.

The processor operates in Supervisor mode when the Status register
contains the following bit-values:

e KSU=01,

e EXL=0

e ERL=0

In conjunction with these bits, the SX bit in the Status register selects
between 32- or 64-bit Supervisor mode virtual addressing:

¢ when SX = 0, 32-bit supervisor space virtual addressing is selected

e when SX = 1, 64-bit supervisor space virtual addressing is selected

Figure 4.5 shows Supervisor mode address mapping. Table 4.2, which
follows the figure, lists the characteristics of the supervisor mode
segments; descriptions of the address spaces follow.

32-bit* 64-bit
zmm Address Ox FFFF FFFF FFFF FFFF [Address
oe;r (();IB Ox FFFF FFFF ED00 0000 Oe;fg;
Ma ed Sseg ’ CSSCg
(e 000 00 Addlz'gss (x FFFF FFEF Coo0 oooo|_Mapped
ADOO error Address
>) Address Qx 4000 0100 0000 0000 error
0x 8000 Ooo0| _ €TTOT M%q};?ed oseg
Qx 4000 0000 0000 0000
Address
suseg 0Ox 0000 0100 0000 0000 error
1 TB csuseg
Mapped e
G 0000 0000 (Ox 0000 0000 0000 0000 bp

Note: *In 32-bit virtual addressing, bit 31 is sign-extended through bits
63:32. Failure results in an Address Error exception.

Figure 4.5 Supervisor Mode Virtual Address Space

Memory Management

Chapter 4

Status Register
Bit Values
Address Bit Segment Segment
Values KSU | EXL | ERL | SX Name Address Range Size
32-bit 01, |0 (] 0 suseg 0x0000 0000 2 Gbytes
ABD =0 through (23! bytes)
0x7FFF FFFF
32-bit 0l, [0 |0 |0 [sseg 0xC000 0000 512 Mbytes
A(31:29) = 110, through (22° bytes)
0xDFFF FFFF
64-bit 01, [0 |0 1 xsuseg | 0x0000 0000 0000 0000 | 1 Tbyte
A(63:62) = 00, through 240 bytes)
0x0000 OOFF FFFF FFFF
64-bit 01, |0 |0 1 xsseg 0x4000 0000 0000 0000 | 1 Tbyte
A(63:62) = 01, through (240 bytes)
0x4000 OOFF FFFF FFFF
64-bit 01, |0 |0 1 csseg OxFFFF FFFF C000 0000 | 512 Mbytes
A(63:62) = 114 through (22° bytes)
OxFFFF FFFF DFFF FFFF

Table 4.2 32-bit and 64-bit Supervisor Mode Segments

32-bit Supervisor Mode, User Space (suseg)

In Supervisor mode, when Status.SX = 0 and the most-significant bit of
the 32-bit virtual address is set to 0, the suseg virtual address space is
selected; it covers the full 23! bytes (2Gbytes) of the current user address
space. The virtual address is extended with the contents of the 8-bit ASID
field to form a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 and runs
through Ox7FFF FFFF.

32-bit Supervisor Mode, Supervisor Space (sseg)

In Supervisor mode, when Status.SX = 0 and the three most-significant
bits of the 32-bit virtual address are 1104, the sseg virtual address space
is selected; it covers 22°-bytes (512Mbytes) of the current supervisor
address space. The virtual address is extended with the contents of the 8-
bit ASID field to form a unique virtual address.

This mapped space begins at virtual address 0xC0O00 0000 and runs
through OxDFFF FFFF.

64-bit Supervisor Mode, User Space (xsuseg)

In Supervisor mode, when Status.SX = 1 and bits 63:62 of the virtual
address are set to 005, the xsuseg virtual address space is selected; it
covers the full 240 bytes (1Tbyte) of the current user address space. The
virtual address is extended with the contents of the 8-bit ASID field to form
a unique virtual address.

This mapped space starts at virtual address 0x0000 0000 0000 0000
and runs through 0x0000 OOFF FFFF FFFF.

64-bit Supervisor Mode, Current Supervisor Space (xsseg)

In Supervisor mode, when Status.SX = 1 and bits 63:62 of the virtual
address are set to 01, the xsseg current supervisor virtual address space
is selected. The virtual address is extended with the contents of the 8-bit
ASID field to form a unique virtual address.

This mapped space begins at virtual address 0x4000 0000 0000 0000
and runs through 0x4000 OOFF FFFF FFFF.

Memory Management

Chapter 4

64-bit Supervisor Mode, Separate Supervisor Space (csseg)

In Supervisor mode, when Status.SX = 1 and bits 63:62 of the virtual
address are set to 115, the csseg separate supervisor virtual address space
is selected. Addressing of the csseg is compatible with addressing sseg in
32-bit mode. The virtual address is extended with the contents of the 8-
bit ASID field to form a unique virtual address.

This mapped space begins at virtual address OxFFFF FFFF C000 0000
and runs through OxFFFF FFFF DFFF FFFF.

Kernel Mode Operations
The processor operates in Kernel mode when the Status register
contains one of the following values:

e KSU =004
e EXL=1
* ERL=1

In conjunction with these bits, the KX bit in the Status register selects
between 32- or 64-bit Kernel mode addressing;:

e when KX = 0, 32-bit kernel space virtual addressing is selected

e when KX = 1, 64-bit kernel space virtual addressing is selected

The processor enters Kernel mode whenever an exception is detected
and it remains in Kernel mode until an Exception Return (ERET)
instruction is executed. The ERET instruction restores the processor to
the mode existing prior to the exception.

Kernel mode virtual address space is divided into regions differentiated
by the high-order bits of the virtual address, as shown in Figure 4.6.

Memory Management

Chapter 4

0x FFFF FFFF

0x E000 0000

Ox C000 0000

Ox A0O00 0000 |

Ox 8000 0000

O0x 0000 0000

32-bit*

0.5GB
Unmapped
Uncached

0.5GB
Unmapped
Cached

kseg3

ksseg

ksegl

kseg0

kuseg

Ox FFFF FFFF FFFF

Ox FFFF FFFF E000

Ox FFFF FFFF C000

Ox FFFF FFFF AOOO

Ox FFFF FFFF 8000

Ox CO00 OOFF 8000

Ox CO00 0000 0000

Ox 8000 0000 0000

0x 4000 0100 0000

Ox 4000 0000 0000

0x 0000 0100 0000

0x 0000 0000 0000

FFFF

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

0000

64-bit

0.5 GB
Unmapped
Uncached

Unmapped
Cached

Address
eror

Address
error

ckseg3

cksseg

cksegl

ckseg0

xkseg

xkphys

xksseqg

xkuseg

Note: *In 32-bit virtual addressing, bit 31 is sign-extended through bits 63:32. Failure
results in an Address Error exception.

Figure 4.6 Kernel Mode Address Space

Memory Management

Chapter 4

Table 4.3 lists the characteristics of the 32-bit kernel mode segments,
and Table 4.4 lists the characteristics of the 64-bit kernel mode segments

Address Bit Status Register Is Segment | Address Range Segment
Values One Of These Values | Name Size
KSU | EXL | ERL | KX

A(31)=0 0 [kuseg 0x0000 0000 2 Gbytes
through (23! bytes)
Ox7FFF FFFF

KSU = 00,
A(31:29) = 100, 0 |kseg0 0x8000 0000 512
or through Mbytes
2!

Ox9FFF FFFF (22° bytes)

A(31:29) = 101, EXL=1 0 |ksegl | OXxA000 0000 512
through Mbytes

or OxBFFF FFFF (229 bytes)

A(31:29) = 110, ERL =1 0 |ksseg 0xC000 0000 512
through Mbytes
OxDFFF FFFF (22° bytes)

A(31:29) = 111, 0 |kseg3 0xE000 0000 512
through Mbytes
OxFFFF FFFF (229 bytes)

Table 4.3 32-bit Kernel Mode Segments

32-bit Kernel Mode, User Space (kuseg)

In Kernel mode, when Status.KX = 0, and the most-significant bit of the
virtual address, A31, is cleared, the 32-bit kuseg virtual address space is
selected; it covers the full 23! bytes (2 Gbytes) of the current user address
space. The virtual address is extended with the contents of the 8-bit ASID
field to form a unique virtual address.

32-bit Kernel Mode, Kernel Space 0 (kseg0)

In Kernel mode, when Status.KX = 0 and the most-significant three bits
of the virtual address are 1005, 32-bit ksegO virtual address space is
selected; it is the current 229-byte (512-Mbyte) kernel physical space.

References to ksegO are not mapped through the TLB; the physical
address selected is defined by subtracting 0x8000 0000 from the virtual
address (physical address = 0x0000 0000 O | | VA[28:0]).

The KO field of the Config register, described in this chapter, controls
cacheability and coherency.

32-bit Kernel Mode, Kernel Space 1 (ksegl)

In Kernel mode, when Status.KX = 0 and the most-significant three bits
of the 32-bit virtual address are 1014, 32-bit ksegl virtual address space
is selected; it is the current 22°-byte (512Mbyte) kernel physical space.

References to ksegl are not mapped through the TLB; the physical
address selected is defined by subtracting 0xAOOO 0000 from the virtual
address (physical address = 0x0000 0000 O | | VA[28:0]).

Caches are disabled for accesses to these addresses, and physical
memory (or memory-mapped I/O device registers) are accessed directly.

32-bit Kernel Mode, Supervisor Space (ksseg)

In Kernel mode, when Status.KX = 0 and the most-significant three bits
of the 32-bit virtual address are 1105, the ksseg virtual address space is
selected; it is the current 22°-byte (512Mbyte) supervisor virtual space.
The virtual address is extended with the contents of the 8-bit ASID field to
form a unique virtual address.

Memory Management Chapter 4
32-bit Kernel Mode, Kernel Space 3 (kseg3)

In Kernel mode, when Status.KX = 0 and the most-significant three bits
of the 32-bit virtual address are 111,, the kseg3 virtual address space is
selected; it is the current 22°-byte (512Mbyte) kernel virtual space. The
virtual address is extended with the contents of the 8-bit ASID field to form
a unique virtual address.

Address Bit Status Register Is | Segment Address Range Segment
Values One Of These Values Name Size
KSU | EXL | ERL | KX
A(63:62) = 00, 1 xkuseg 0x0000 0000 0000 0000 | 1 Tbyte
through (240 bytes)
0x0000 OOFF FFFF FFFF
A(63:62) = 01, 1 xksseg 0x4000 0000 0000 0000 | 1 Thbyte
through (240 bytes)
0x4000 OOFF FFFF FFFF
A(63:62) = 10, KSU =00, '} Txkphys | 0x8000 0000 0000 0000 |8 236 byte
through spaces
or OXBFFF FFFF FFFF FFFF
A(63:62) = 11, EXL =1 1 xkseg 0xC000 0000 0000 0000 | 244 bytes
through
or 0xCO000 OOFF 7FFF FFFF
A(63:62) = 11, ERL =1 1 |cksegd0 | OXFFFF FFFF 8000 0000 | 512
A61:31) =-1 through Mbytes
OXFFFF FFFF OFFF FFFF | (22° bytes)
A(63:62) =11, 1 cksegl OxFFFF FFFF A000 0000 | 512
A(61:31) = -1 through Mbytes
OXFFFF FFFF BFFF FFFF | (22° bytes)
A(63:62) = 115 1 cksseg OxFFFF FFFF C000 0000 | 512
A(61:31) = - through Mbytes
OxFFFF FFFF DFFF FFFF | (22° bytes)
A(63:62) = 11, 1 ckseg3 OxFFFF FFFF E000 0000 | 512
A(61:31) = - through Mbytes
OxFFFF FFFF FFFF FFFF | (22 bytes)

Table 4.4 64-bit Kernel Mode Segments

64-bit Kernel Mode, User Space (xkuseg)

In Kernel mode, when Status.KX = 1 and bits 63:62 of the 64-bit virtual
address are 005, the xkuseg virtual address space is selected; it covers the
current user address space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

As a special feature for the ECC handler, if the ERL bit of the Status
register is set, the user address region becomes a 23!-byte unmapped,
uncached space. This allows the ECC exception code to operate uncached
using rO as a base register.

64-bit Kernel Mode, Current Supervisor Space (xksseg)

In Kernel mode, when Status.KX = 1 and bits 63:62 of the 64-bit virtual
address are 01,, the xksseg virtual address space is selected; it is the
current supervisor virtual space. The virtual address is extended with the
contents of the 8-bit ASID field to form a unique virtual address.

Memory Management

Chapter 4

64-bit Kernel Mode, Physical Spaces (xkphys)

In Kernel mode, when Status.KX = 1 and bits 63:62 of the 64-bit virtual
address are 10,, the xkphys virtual address space is selected; it is a set of
eight 236_byte kernel physical spaces. Accesses with address bits 58:36
not equal to O cause an address error.

References to this space are not mapped; the physical address selected
is taken from bits 35:0 of the virtual address. Bits 61:59 of the virtual
address specify the cacheability and coherency attributes, as shown in
Table 4.5.

Value Cacheability and Coherency Attributes Starting Address

(61:59)

0 Cacheable, noncoherent, write-through, no 0x8000 0000 0000 0000
write allocate

1 Cacheable, noncoherent, write-through, write | 0x8800 0000 0000 0000
allocate

2 Uncached 0x9000 0000 0000 0000

3 Cacheable, noncoherent 0x9800 0000 0000 0000

4-7 Reserved 0xA000 0000 0000 0000

Table 4.5 Cacheability and Coherency Attributes

64-bit Kernel Mode, Kernel Space (xkseg)
In Kernel mode, when Status.KX = 1 and bits 63:62 of the 64-bit virtual
address are 11,, the address space selected is one of the following:
¢ kernel virtual space, xkseg, the current supervisor virtual space; the
virtual address is extended with the contents of the 8-bit ASID field to
form a unique virtual address
¢ one of the four 32-bit kernel compatibility spaces, as described in the
next section.

64-bit Kernel Mode, Compatibility Spaces (ckseg1:0, cksseg, ckseg3)

In Kernel mode, when Status.KX = 1, bits 63:62 of the 64-bit virtual
address are 115, and bits 61:31 of the virtual address equal “~1”, the lower
two bytes of address, as shown in Figure 4.6, select one of the following
512-Mbyte compatibility spaces.

* ckseg0. This 64-bit virtual address space is an unmapped region,
compatible with the 32-bit address model kseg0. The KO field of the
Config register, described in this chapter, controls cacheability and
coherency.

¢ cksegl. This 64-bit virtual address space is an unmapped and un-
cached region, compatible with the 32-bit address model ksegl.

e cksseg. This 64-bit virtual address space is the current supervisor
virtual space, compatible with the 32-bit address model ksseg.

e ckseg3. This 64-bit virtual address space is kernel virtual space,
compatible with the 32-bit address model kseg3.

System Control Coprocessor

The System Control Coprocessor (CPO) is implemented as an integral
part of the CPU, and supports memory management, address translation,
exception handling, and other privileged operations. CPO contains the
registers shown in Figure 4.7 plus a 48-entry TLB. The sections that follow
describe how the processor uses each of the memory management-related
registers.

Each CPO register has a unique number that identifies it; this number
is referred to as the register number. For instance, the Page Mask register
is register number 5.

Memory Management

Chapter 4

47

EntryLo0
2*
EntryLo1
3*

TLB

(“Safe” entries)
(See Random Register,
contents of TLB Wired)

127

Index

o
*

Random

-—h
*

Page Mask
5*

Wired

PRIid
15*

Config
16*

LLAddr TagLo
17* 28*

TagHi
29*

Wl

Used with memory
management system.

Note: *Register number

Used with exception
processing. See
Chapter 5 for details.

Figure 4.7 CPO Registers and the TLB

Format of a TLB Entry

Figure 4.8 shows the TLB entry formats for both 32- and 64-bit virtual
addressing. Each field of an entry has a corresponding field in the EntryHi,
EntryLoO, EntryLol, or PageMask registers, as shown in Figure 4.9 and
Figure 4.10; for example the Mask field of the TLB entry is also held in the

PageMask register.

Memory Management Chapter 4
(64-bit Virtual Addressing
255 217 216 205 204 96
0 MASK 0 J
39 12 13
191 190 189 168 167 141 140139 136 135 128
256-bit TLB R 0 VPN2 G| © ASID I
entry in 64-bit < 2 22 27 T 4 8
vitual addressing | 17 94 93 70 69 67 66 65 64
0] PFN D|V OI
24 3 111
63 30 29 6 5 32 1 0
0 PFN C |D|V (;I
K 54 24 38 111
Figure 4.8 Format of a TLB Entry
The format of the EntryHi, EntryLoO, EntryLol, and PageMask registers
are nearly the same as the TLB entry. The one exception is the Global field
(G bit), which is used in the TLB, but is reserved in the EntryHi register.
Figure 4.9 and Figure 4.10 describe the TLB entry fields that are shown in
Figure 4.8.
PageMask Register
31 25 24 9 9 3 12 0
0 MASK 0 |
7 12 13
Mask.... Page comparison mask.
(1 S Reserved. Must be written as zeroes, and returns zeroes when read.
EntryHi Register
63 62 61 40 39 13 12 8 7 0
sabit R FILL VPN2 ASID |
2 22 27 5 8
VPNZ2.... Virtual page number divided by two (maps to two pages).
ASID..... Address space ID field. An 8-bit field that lets multiple processes share the TLB; each
process has a distinct mapping of otherwise identical virtual page numbers.
R...... Region. (00 — user, 01 — supervisor, 11 — kernel) used to match vAddrgs_g>
Fill Reserved. Returns zero when read, ignored on writes.
0.covunneee Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 4.9 Fields of the PageMask and EntryHi Registers

Memory Management Chapter 4

EntryLo0 and EntryLo1 Registers
63 30 29 6 5 3210
64-bit
o 0 PFN c |ojvie |
34 24 3 111
63 30 29 6 5 3210
64 bt 0 PFN c_|ojvia |
34 24 3 111
PFN......Page frame number; the upper bits of the physical address.
C.eene Specifies the TLB page coherency attribute; see Table 4.6.
D...... Dirty. If this bit is set, the page is marked as dirty and, therefore, writable. This bit is
actually a write-protect bit that software can use to prevent alteration of data.
|V, Valid. If this bit is set, it indicates that the TLB entry is valid; otherwise, a TLBL or TLBS
miss occurs.
G Global. If this bit is set in both Lo0 and Lo1, then the processor ignores the ASID during
TLB lookup.
[0 S Reserved. Must be written as zeroes, and returns zeroes when read.

Figure 4.10 Fields of the EntryLoO and EntryLol Registers

The TLB page coherency attribute (C) bits specify whether references to
the page should be cached; if cached, the algorithm selects between several
coherency attributes. Table 4.6 shows the coherency attributes selected

by the C bits.
C(5:3) Value | Page Coherency Attribute
0 Cacheable, noncoherent, write-through, no write allocate
Cacheable, noncoherent, write-through, write allocate
2 Uncached
3 Cacheable, noncoherent, write-back
4-7 Reserved

Table 4.6 TLB Page Coherency (C) Bit Values

CPO Registers
The following sections describe the CPO registers (shown in Figure 4.7
on page 13) that are assigned specifically as a software interface with
memory management (each register is followed by its register number in
parentheses).
Index register (CPO register number 0)
Random register (1)
EntryLoO (2) and EntryLol (3) registers
PageMask register (5)
Wired register (6)
EntryHi register (10)
PRId register (15)
Config register (16)
LLAddr register (17)
TagLo (28) and TagHi (29) registers

® &6 & & o o 0 0o o o

Memory Management

Chapter 4

Index Register (0)

The Index register is a 32-bit, read/write register containing six bits to
index an entry in the TLB. The high-order bit of the register shows the
success or failure of a TLB Probe (TLBP) instruction.

The Index register also specifies the TLB entry affected by TLB Read
(TLBR) or TLB Write Index (TLBWI) instructions.

Figure 4.11 shows the format of the Index register; Table 4.7, which
follows the figure, describes the Index register fields.

Index Register

31 30 6 5 0
P 0 Index I
1 25 6)

Figure 4.11 Index Register

Field Description

P Probe failure. Set to 1 when the previous TLBProbe
(TLBP) instruction was unsuccessful.

Index to the TLB entry affected by the TLBRead and

Index TLBWrite instructions
0 Reserved. Must be written as zeroes, and returns
zeroes when read.

Table 4.7 Index Register Field Descriptions

Random Register (1)

The Random register is a read-only register of which six bits index an
entry in the TLB. This register decrements as each instruction executes,
and its values range between an upper and a lower bound, as follows:

¢ Alower bound is set by the number of TLB entries reserved for exclu-

sive use by the operating system (the contents of the Wired register).
¢ An upper bound is set by the total number of TLB entries. Thus the
upper bound is 47 (The TLB entries are number from O to 47).

The R4600/R4700 implements this register differently from the
R4000: The R4000 counts both valid and invalid instructions, while the
R4600/R4700 counts only valid instructions.

The Random register specifies the entry in the TLB that is affected by the
TLB Write Random instruction. The register does not need to be read for
this purpose; however, the register is readable to verify proper operation of
the processor.

To simplify testing, the Random register is set to the value of the upper
bound upon system reset. This register is also set to the upper bound
when the Wired register is written.

Figure 4.12 shows the format of the Random register; Table 4.8 on
page 17 describes the Random register fields.

Random Register
31 65 0
0 Random I
26 6

Figure 4.12 Random Register

Memory Management Chapter 4
Field Description
Random | TLB random index
0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 4.8 Random Register Field Descriptions

EntryLoO (2), and EntryLol (3) Registers

The EntryLo register consists of two registers that have identical
formats:

¢ EntryLoO is used for even virtual pages.

e EntryLol is used for odd virtual pages.

The EntryLoO and EntryLol registers are read/write registers. They
hold the physical page frame number (PFN) of the TLB entry for even and
odd pages, respectively, when performing TLB read and write operations.
Figure 4.10 on page 15 shows the format of these registers.

PageMask Register (5)

The PageMask register is a read/write register used for reading from or
writing to the TLB; it holds a comparison mask that sets the variable page
size for each TLB entry, as shown in Table 4.9.

TLB read and write operations use this register as either a source or a
destination; when virtual addresses are presented for translation into
physical address, the corresponding bits in the TLB identify which virtual
address bits among bits 24:183 are used in the comparison.

When the Mask field is not one of the values shown in Table 4.9, the
operation of the TLB is undefined.

Bit
PageSize [y 222211111 |1]1
a|3(2|1]0|9|8|7|6|5|4|3
4 Kbytes [9]. 01 0 0040706 0
16 Kbytes : {l 00 B -:; Q .1‘ 1
Gikbywes [0 G[0] o0l o] 8] 1 1] 1] 1
256 Kbytes .0/ 0} 0| O 00 1] 1] 1] 1] 1] 1
iMbyte | 0] 0} 6] 0] 1] 1] 1| 1] 1| 1] 1] 1
4Mbytes | O0{ 0| 1| 1| 1| 1| 1| 1] 1| 1| 1] 1
16Mbytes | 1| 1| 1| 1] 1| 1] 1| 1| 1| 1| 1| 1

Table 4.9 Mask Field Values for Page Sizes

Memory Management Chapter 4

Wired Register (6)

The Wired register is a read/write register that specifies the boundary
between the wired and random entries of the TLB, as shown in Figure 4.13.
Wired entries are nonreplaceable entries, which cannot be overwritten by
a TLB write random operation. Random entries can be overwritten.

TLB

g 47

!

Range of Random entries

<«—— Wired l

Register

Range of \Mredtntries

N

Figure 4.13 Wired Register Boundary

The Wired register is set to O upon system reset. Writing this register
also sets the Random register to the value of its upper bound (see Random
register, above). Figure 4.14 shows the format of the Wired register;
Table 4.10, which follows the figure, describes the register fields.

Wired Register
31 65 0

0 Wired l
26 6

Figure 4.14 Wired Register

Field Description
Wired TLB Wired boundary (the number of wired TLB entries)
0 Reserved. Must be written as zeroes, and returns zeroes
when read.

Table 4.10 Wired Register Field Descriptions

EntryHi Register (CPO Register 10)

The EntryHi register holds the high-order bits of a TLB entry for TLB
read and write operations.

The EntryHi register is accessed by the TLB Probe, TLB Write Random,
TLB Write Indexed, and TLB Read Indexed instructions.

Figure 4.9 shows the format of this register.

When either a TLB refill, TLB invalid, or TLB modified exception occurs,
the EntryHiregister is loaded with the virtual page number (VPN2) and the
ASID of the virtual address that did not have a matching TLB entry. (See
Chapter 5 for more information about these exceptions.)

Memory Management

Chapter 4

Processor Revision Identifier (PRId) Register (15)

The 32-bit, read-only Processor Revision Identifier (PRId) register
contains information identifying the implementation and revision level of
the CPU and CPO. Figure 4.15 shows the format of the PRId register;
Table 4.11 describes the PRId register fields.

PRId Register

31

16 15

Imp

Rev

-

16

8

8

Figure 4.15 Processor Revision Identifier Register Format

Field Description
Tmp Implementation number giggg imp = 0x20
: Imp = 0x21
Rev | Revision number
0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 4.11 PRId Register Fields

The low-order byte (bits 7:0) of the PRId register is interpreted as a
revision number, and the high-order byte (bits 15:8) is interpreted as an
implementation number. The implementation number of the R4600/
R4700 processor is 0x20. The content of the high-order halfword (bits
31:16) of the register are reserved.

The revision number is stored as a value in the form y.x, where y is a
major revision number in bits 7:4 and x is a minor revision number in bits
3:0.

The revision number can distinguish some chip revisions, however there
is no guarantee that changes to the chip will necessarily be reflected in the
PRId register, or that changes to the revision number necessarily reflect
real chip changes. For this reason, these values are not listed and software
should not rely on the revision number in the PRId register to characterize
the chip. Certain attributes, such as cache size, are independent of
implementation number.

Config Register (16)

The Config register specifies various configuration options selected on
R4600/R4700 processors; Table 4.12 lists these options.

Some configuration options, as defined by Config bits 31:3, are set by
the hardware during reset and are included in the Config register as read-
only status bits for the software to access. The KO field is the only read/
write field (as indicated by Config register bits 2:0) and controlled by
software; on reset these fields are undefined.

Figure 4.16 shows the format of the Config register; Table 4.12, which
follows the figure, describes the Config register fields.

Config Register

31 30 28 27 24 2322 212019181716 1514 13 1211 9 8 6 54 3 2 0
0| EC EP 0 |0JO0] 0 |1|0|BE1]|1[0| IC DC |IB|DB| 0| KO
1 3 4 2 11 2 111111 3 3 111 3

Figure 4.16 Config Register Format

Memory Management

Chapter 4

Field Description
System clock ratio:
0 — processor clock frequency divided by 2
1 — processor clock frequency divided by 3
2 — processor clock frequency divided by 4
EC 3 — processor clock frequency divided by 5
4 — processor clock frequency divided by 6
5 — processor clock frequency divided by 7
6 — processor clock frequency divided by 8
7 Reserved
Writeback data rate:
0—-DDDD Doubleword every cycle
1 - DDxDDx 2 Doublewords every 3 cycles
2 - DDxxDDxx 2 Doublewords every 4 cycles
3 — DxDxDxDx 2 Doublewords every 4 cycles
EP 4 — DDxxxDDxxx 2 Doublewords every 5 cycles
5 — DDxxxxDDxxxx 2 Doublewords every 6 cycles
6 — DxxDxxDxxDxx 2 Doublewords every 6 cycles
7 — DDxoxxDDxxxxx 2 Doublewords every 7 cycles
8 — DxxxDxxxDxxxDxxx 2 Doublewords every 8 cycles
9-15 Reserved
BigEndianMem
BE 0 — Little endian
1 — Big endian
IC Primary I-cache Size (I-cache size = 212*I€ bytes). In the R4600/R4700
processor, this is set to 16 Kbytes (IC = 010)
DC Primary D-cache Size (D-cache size = 212*P¢ bytes). In the R4600/R4700
processor, this is set to 16 Kbytes (DC = 010)
B Primary I-cache line size
1 — 32 bytes (8 Words)
DB Primary D-cache line size
1 — 32 bytes (8 Words)
KO kseg0 coherency algorithm (see EntryLo0 and EntryLol registers)
Others Reserved. Returns indicated values when read.

Table 4.12 Config Register Fields

Load Linked Address (LLAddr) Register (17)

The read/write Load Linked Address (LLAddr) register contains the

physical address read by the most recent Load Linked instruction.

This register is for diagnostic purposes only, and serves no function

during normal operation.

Figure 4.17 shows the format of the LLAddr register; PAddr represents

bits of the physical address, PA(35:4).

Memory Management Chapter 4

LLAddr Register
3 0
l PAddr(35:4) l
32

Figure 4.17 LLAddr Register Format

Cache Tag Registers [TagLo (28) and TagHi (29)]

The TagLo and TagHi registers are 32-bit read/write registers that hold
the primary cache tag and parity during cache initialization, cache
diagnostics, or cache error processing. The Tag registers are written by the
CACHE and MTCO instructions.

The P field of these registers is ignored on Index Store Tag operations.
Parity is computed by the store operation.

The Windows NT Operating System uses the TagLo cpO register to save/
restore gp registers in the TLB refill exception handler. Thus, all 32 bits
must be present, even though they have no use for the primary purpose of
TagLo..

Figure 4.18 shows the format of these registers for primary cache
operations. Table 4.13 lists the field definitions of the TagLo and TagHi

registers.
31 8 7 6 5 3 2 1 0
TaglLo PTagLo PState | RWNT | F|{ O P
24 2 3 1 1 1
31 0
TagHi l 0 I
32
Figure 4.18 TagLo and TagHi Register (P-cache) Formats
Field Description
PTagLo Specifies the physical address bits 35:12
PState Specifies the primary cache state
P Specifies the primary tag even parity bit
F The FIFO bit used to implement FIFO refill of the cache
RWNT Read /Write bits required for Windows NT
0 Reserved. Must be written as zeroes; returns zeroes when read

Table 4.13 Cache Tag Register Fields

Memory Management

Chapter 4

Virtual-to-Physical Address Translation Process

During virtual-to-physical address translation, the CPU compares the
8-bit ASID (if the Global bit, G, is not set) of the virtual address to the ASID
of the TLB entry to see if there is a match.

The following comparison is also made:

¢ For the 64-bit virtual addresses, the highest 15-to-27 bits (depending

upon the page size) of the virtual address are compared to the con-
tents of the TLB virtual page number.

If a TLB entry matches, the physical address and access control bits (C,
D, and V) are retrieved from the matching TLB entry. While the Vbit of the
entry must be set for a valid translation to take place, it is not involved in
the determination of a matching TLB entry.

Figure 4.19 illustrates the TLB address translation process.

Virtual Address (Input) Note: For valid address space
see the section in this chapter

that describes Operating Modes.

y

Y

\

XTLB
Refill

Exception

Physical Address (Output)

Figure 4.19 TLB Address Translation

Memory Management

Chapter 4

TLB Misses

If there is no TLB entry that matches the virtual address, a TLB miss
exception occurs. If the access control bits (D and V) indicate that the
access is not valid, a TLB modification or TLB invalid exception occurs. If

the Cbits equal 0105, the physical address that is retrieved accesses main
memory, bypassing the cache.

TLB Instructions
Table 4.14 lists the instructions that the CPU provides for working with
the TLB. See Appendix A for a detailed description of these instructions.

Op Code | Description of Instruction

TLBP Translation Lookaside Buffer Probe
TLBR Translation Lookaside Buffer Read
TLBWI Translation Lookaside Buffer Write Index

TLBWR Translation Lookaside Buffer Write Random

Table 4.14 TLB Instructions

Memory Management Chapter 4

Wit CPU Exception Chapter 5
dt Processing

Integrated Device Technology, Inc.

This chapter describes the CPU exception processing, including an
explanation of exception processing, followed by the format and use of
each CPU exception register.

The chapter concludes with a description of each exception’s cause,
together with the manner in which the CPU processes and services these
exceptions. For information about Floating-Point Unit exceptions, see
Chapter 7.

How Exception Processing Works

The processor receives exceptions from a number of sources, including
translation lookaside buffer (TLB) misses, arithmetic overflows, 1/O
interrupts, and system calls. When the CPU detects one of these
exceptions, the normal sequence of instruction execution is suspended
and the processor enters Kernel mode (see Chapter 4 for a description of
system operating modes).

The processor then disables interrupts and forces execution of a
software exception processor (called a handler) located at a fixed address.
The handler may save the context of the processor, including the contents
of the program counter, the current operating mode (User or Supervisor),
and the status of the interrupts (enabled or disabled). This context would
be saved so it can be restored when the exception has been serviced.

When an exception occurs, the CPU loads the Exception Program
Counter (EPC) register with a location where execution can restart after the
exception has been serviced. The restart location in the EPC register is the
address of the instruction that caused the exception or, if the instruction
was executing in a branch delay slot, the address of the branch instruction
immediately preceding the delay slot.

The registers described later in the chapter assist in this exception
processing by retaining address, cause and status information.

For a description of the exception handling process, see the description
of the individual exception contained in this chapter, or the flowcharts at
the end of this chapter.

Exception Processing Registers

This section describes the CPO registers that are used in exception
processing. Table 5.1 on page 5-2 lists these registers, along with their
number—each register has a unique identification number that is referred
to as its register number. For instance, the ECC register is register number
26. The remaining CPO registers are used in memory management, as
described in Chapter 4.

Software examines the CPO registers during exception processing to
determine the cause of the exception and the state of the CPU at the time
the exception occurred. The registers in Table 5.1 are used in exception
processing, and are described in the sections that follow.

CPU Exception Processing Chapter 5
Register Name Reg. No.
Context 4
BadVAddr (Bad Virtual Address) 8
Count 9
Compare register 11
Status 12
Cause 13
EPC (Exception Program Counter) 14
XContext 20
ECC 26
CacheErr (Cache Error and Status) 27
ErrorEPC (Error Exception Program Counter) 30

Table 5.1 CPO Exception Processing Registers

Context Register (4)

The Context register is a read/write register containing the pointer to an
entry in the page table entry (PTE) array; this array is an operating system
data structure that stores virtual-to-physical address translations. When
there is a TLB miss, the CPU loads the TLB with the missing translation
from the PTE array. Normally, the operating system uses the Context
register to address the current page map which resides in the kernel-
mapped segment, kseg3. The Context register duplicates some of the
information provided in the BadVAddr register, but the information is
arranged in a form that is more useful for a software TLB exception
handler. Figure 5.1 shows the format of the Context register; Table 5.2,
which follows the figure, describes the Context register fields.

Context Register

63 23 22 3

PTEBase 0

41

BadVPN2
19

Figure 5.1 Context Register Format
Description

Field

BadVPN2 This field is written by hardware on a miss. It contains
the virtual page number (VPN) of the most recent virtual

address that did not have a valid translation.

This field is a read/write field for use by the operating
system. It is normally written with a value that allows
the operating system to use the Context register as a
pointer into the current PTE array in memory.

PTEBase

Table 5.2 Context Register Ficlds

The 19-bit BadVPN2 field contains-bits 31:13 of the virtual address that
caused the TLB miss; bit 12 is excluded because a single TLB entry maps
to an even-odd page pair. For a 4-Kbyte page size, this format can directly
address the pair-table of 8-byte PTEs. For other page and PTE sizes,
shifting and masking this value produces the appropriate address.

CPU Exception Processing Chapter 5

Bad Virtual Address Register (BadVAddr) (8)

The Bad Virtual Address register (BadVAddr) is a read-only register that
displays the most recent virtual address that caused one of the following
exceptions: Address Error (e.g., unaligned access), TLB Invalid, TLB
Modified, TLB Refill, Virtual Coherency Data Access, or Virtual Coherency
Instruction Fetch.

The processor does not write to the BadVAddr register when the EXL bit
in the Status register is set to a 1.

Figure 5.2 shows the format of the BadVAddr register.

BadVAddr Register
63 0
| Bad Virtual Address I
64

Figure 5.2 BadVAddr Register Format
Note: The BadVAddr register does not save any information for bus
errors, since bus errors are not addressing errors.

Count Register (9)

The Count register acts as a timer, incrementing at a constant rate—half
the maximum instruction issue rate—whether or not an instruction is
executed, retired, or any forward progress is made through the pipeline.

This register can be read or written. It can be written for diagnostic
purposes or system initialization; for example, to synchronize processors.

Figure 5.3 shows the format of the Count register.

Count Register

31 0
l Count '
32

Figure 5.3 Count Register Format

Compare Register (11)

The Compare register acts as a timer (see also the Count register); it
maintains a stable value that does not change on its own.

When the value of the Count register equals the value of the Compare
register, interrupt bit IP(7) in the Cause register is set. This causes an
interrupt as soon as the interrupt is enabled.

Writing a value to the Compare register, as a side effect, clears the timer
interrupt.

For diagnostic purposes, the Compare register is a read/write register.
In normal use however, the Compare register is write-only. Figure 5.4
shows the format of the Compare register.

Compare Register

31 0
| Compare I
32

Figure 5.4 Compare Register Format

CPU Exception Processing

Chapter 5

Status Register (12)

The Status register (SR) is a read/write register that contains the
operating mode, interrupt enabling, and the diagnostic states of the
processor. The following list describes the more important Status register
fields; Figure 5.5 show the format of the entire register, including
descriptions of the fields. Some of the important fields include:

The 8-bit Interrupt Mask (IM) field controls the enabling of eight inter-
rupt conditions. Interrupts must be enabled before they can cause the
exception, and the corresponding bits are set in both the Interrupt
Mask field of the Status register and the Interrupt Pending field of the
Cause register. For more information, refer to the Interrupt Pending
(IP) field of the Cause register. IM[1:0] are the masks for the two soft-
ware interrupts while IM[7:2] correspond to Int[5:0].

The 4-bit Coprocessor Usability (CU) field controls the usability of 4
possible coprocessors. Regardless of the CUO bit setting, CPO is al-
ways usable in Kernel mode. For all other cases, an instruction for or
access to an unusable coprocessor causes an exception.

The 9-bit Diagnostic Status (DS) field (Status[24:16]) is used for self-
testing, and checks the cache and virtual memory system.

The Reverse-Endian (RE) bit, bit 25, reverses the endianness of the
machine. The processor can be configured as either little-endian or
big-endian at system reset. This selection is always used in Kernel
and Supervisor modes, and also in User mode when the RE bit is O.
Setting the RE bit to 1 inverts the User mode endianness.

Status Register Format
Figure 5.5 shows the format of the Status register. Table 5.3, which
follows the figure, describes the Status register fields.

31

28 2726 25

DS —— >

2423 22 21 20 19 18 17 16|15 87 65432 1 0

4

1

1

1

l (Cusqéuo)l OlFR| RE| 0 l BEV| 0 | SRl 0 l CHl CEi DE IM lelSj UX|KSU‘ERHEXLl IEI

2

Tt 1 1t 1t 1 1 1 8 Tt 11 2 1 1 1

Figure 5.5 Status Register

CPU Exception Processing Chapter 5

Field Description

CU Controls the usability of each of the four coprocessor unit numbers. CPO is always usable
when in Kernel mode, regardless of the setting of the CUj bit.

1 — usable 0 - unusable

FR Enables additional floating-point registers
0 — 16 registers 1 — 32 registers

RE Reverse-Endian bit, valid in User mode.

BEV Controls the location of TLB refill and general exception vectors.
0 — normal 1- bootstrap

SR 1- Indicates a soft reset or NMI has occurred.

CH Hit (tag match and valid state) or miss indication for last CACHE Hit Invalidate, Hit Write
Back Invalidate, Hit Write Back, or Hit Set Virtual for a primary cache.

0 — miss 1 - hit

CE Contents of the ECC register set or modify the check bits of the caches when CE = 1; see
description of the ECC register.

DE Specifies that cache parity errors cannot cause exceptions.

0 — parity remains enabled 1 — disables parity

0 Reserved. Must be written as zeroes, and returns zeroes when read.

IM Interrupt Mask: controls the enabling of each of the external, internal, and software inter-
rupts. An interrupt is taken if interrupts are enabled, and the corresponding bits are set in
both the Interrupt Mask field of the Status register and the Interrupt Pending field of the Cause
register. IM[7:2] correspond to interrupts Int[5:0] and IM[1:0] to the software interrupts.

0 — disabled 1- enabled

KX KX controls whether the TLB Refill Vector or the XTLB Refill Vector address is used for TLB

misses on kernel addresses
0 — TLB Refill Vector 1 — XTLB Refill Vector

SX Enables 64-bit virtual addressing and operations in Supervisor mode. The extended-address-

ing TLB refill exception is used for TLB misses on supervisor addresses.
0 — 32-bit 1 - 64-bit
Ux Enables 64-bit virtual addressing and operations in User mode. The extended-addressing TLB
refill exception is used for TLB misses on user addresses.
0 — 32-bit 1 - 64-bit
KSU Mode bits
105 — User 015 — Supervisor 005 — Kernel
ERL Error Level
0 — normal 1 — error
EXL Exception Level
0 — normal 1 — exception
Note: When going from O to 1, IE should be disabled (0) first. This would be done when pre-
paring to return from the exception handler, such as before executing the ERET instruction.
IE Interrupt Enable
0 — disable interrupts 1 — enables interrupts

Table 5.3 Status Register Fields

CPU Exception Processing

Chapter 5

Status Register Modes and Access States
Fields of the Status register set the modes and access states described
in the sections that follow.

Interrupt Enable: Interrupts are enabled when all of the following
conditions are true:

e JE=1

e EXL=0

e ERL=0

If these conditions are met, the settings of the IM bits identify the
interrupt.

Note: Setting the IE bit may be delayed by up to 3 cycles. If performing

nested interrupts, re-enable the IE bit first.

Operating Modes: The following CPU Status register bit settings are
required for User, Kernel, and Supervisor modes (see Chapter 4 for more
information about operating modes).

¢ The processor is in User mode when KSU = 10,, EXL =0, and ERL = 0.

¢ The processor is in Supervisor mode when KSU = 01,5, EXL = 0, and

ERL = 0.
* The processor is in Kernel mode when KSU = 005, or EXL = 1, or ERL
=1.

32- and 64-bit Virtual Addressing: The following CPU Status register
bit settings select 32- or 64-bit virtual addressing for User and Supervisor
operating modes. Enabling 64-bit virtual addressing permits the execution
of 64-bit opcodes and translation of 64-bit virtual addresses. 64-bit virtual
addressing for User and Supervisor modes can be set independently but is
always used for Kernel mode.

¢ The KX field controls whether the TLB Refill Vector or the XTLB Refill

Vector address is used for TLB misses on Kernel addresses. 64-bit op-
codes are always valid in Kernel mode.

* 64-bit addressing and operations are enabled for Supervisor mode

when SX = 1.
* 64-bit addressing and operations are enabled for User mode when UX
=1,

Kernel Address Space Accesses: Access to the kernel address space is
allowed when the processor is in Kernel mode.

Supervisor Address Space Accesses: Access to the supervisor address
space is allowed when the processor is in Kernel or Supervisor mode, as
described above in the paragraph titled Operating Modes.

User Address Space Accesses: Access to the user address space is
allowed in any of the three operating modes.

Status Register Reset

The contents of the Status register are undefined at reset, except for the
following bits — ERL and BEV = 1.

The SR bit distinguishes between Reset and Soft Reset (Nonmaskable
Interrupt [NMI]).

CPU Exception Processing

Chapter 5

Cause Register (13)
The 32-bit read/write Cause register describes the cause of the most
recent exception.
Figure 5.6 shows the fields of this register; Table 5.4, which follows the
figure, describes the Cause register fields. A 5-bit exception code (ExcCode)
indicates the cause of the most recent exception, as listed in Table 5.5 on
age 5-8.
All bits in the Cause register, with the exception of the IP(1:0) bits, are
read-only; IP(1:0) are used for software interrupts.

Cause Register

31 30 29 28 27 16 15 87 6 21 0
B o| cE 0 > IP 0| Code | ©
112 12 8 15 2

Figure 5.6 Cause Register Format

Field

Description

BD

Indicates whether the last exception taken occurred in a branch delay slot.
1 — delay slot
0 — normal

CE

Coprocessor unit number referenced when a Coprocessor Unusable excep-
tion is taken.

1P

Indicates an interrupt is pending.
1 — interrupt pending
0 — no interrupt

ExcCode

Exception code field (see Table 5.5 on page 5-8)

Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5.4 Cause Register Fields

CPU Exception Processing Chapter 5
Exception | Mnemonic | Description
Code
Value
0 Int Interrupt
1 Mod TLB modification exception
2 TLBL TLB exception (load or instruction fetch)
3 TLBS TLB exception (store)
4 AdEL Address error exception (load or instruction fetch)
5 AdES Address error exception (store)
6 IBE Bus error exception (instruction fetch)
7 DBE Bus error exception (data reference: load or store)
8 Sys Syscall exception
9 Bp Breakpoint exception
10 RI Reserved instruction exception
11 CpU Coprocessor Unusable exception
12 Ov Arithmetic Overflow exception
13 Tr Trap exception
14 — Reserved
15 FPE Floating-Point exception
16-31 — Reserved

Table 5.5 Cause Register ExcCode Field

Exception Program Counter (EPC) Register (14)

The Exception Program Counter (EPC) is a read/write register that
contains the address at which processing resumes after an exception has
been serviced.

For synchronous exceptions, the EPC register contains either:

¢ the virtual address of the instruction that was the direct cause of the

exception, or

¢ the virtual address of the immediately preceding branch or jump in-

struction (when the instruction is in a branch delay slot, and the
Branch Delay bit in the Cause register is set).

The processor does not write to the EPC register when the EXL bit in the
Status register is set to a 1.

Figure 5.7 shows the format of the EPC register.

EPC Register
63 0

EPC

64

Figure 5.7 EPC Register Format

CPU Exception Processing Chapter 5

XContext Register (20)

The read/write XContext register contains a pointer to an entry in the
page table entry (PTE) array, an operating system data structure that
stores virtual-to-physical address translations. When there is a TLB miss,
the operating system software loads the TLB with the missing translation
from the PTE array. The XContext register duplicates some of the
information provided in the BadVAddr register, and puts it in a form useful
for a software TLB exception handler.

The XContext register is for use with the XTLB refill handler, which loads
TLB entries for references to a 64-bit address space, and is included solely
for operating system use. The operating system sets the PTE base field in
the register, as needed. Normally, the operating system uses the XContext
register to address the current page map, which resides in the kernel-
mapped segment kseg3.

Figure 5.8 shows the format of the XContext register; Table 5.6, which
follows the figure, describes the XContext register fields.

XContext Register
63 33 32 3130 4 3 0
PTEBase R BadVPN2 0
31 2 27 4

Figure 5.8 XContext Register Format

The 27-bit BadVPN2 field has bits 39:13 of the virtual address that
caused the TLB miss; bit 12 is excluded because a single TLB entry maps
to an even-odd page pair. For a 4-Kbyte page size, this format may be used
directly to address the pair-table of 8-byte PTEs. For other page and PTE
sizes, shifting and masking this value produces the appropriate address.

Field Description

BadVPN2 | The Bad Virtual Page Number/2 field is written by hardware on a
miss. It contains the VPN of the most recent invalidly translated vir-
tual address.

R The Region field contains bits 63:62 of the virtual address.
00, = user

01, = supervisor

11, =Kkernel.

PTEBase | The Page Table Entry Base read/write field is normally written with
a value that allows the operating system to use the Context register
as a pointer into the current PTE array in memory.

Table 5.6 XContext Register Fieclds

Error Checking and Correcting (ECC) Register (26)

The 8-bit Error Checking and Correcting (ECC) register reads or writes
primary-cache data parity bits for cache initialization, cache diagnostics,
or cache error processing. (Tag parity is loaded from and stored to the
TagLo register.)

The ECC register is loaded by the Index Load Tag CACHE operation.
Content of the ECC register is:

e written into the primary data cache on store instructions (instead of

the computed parity) when the CE bit of the Status register is set

¢ substituted for the computed instruction parity for the CACHE oper-

ation Fill

To force a cache parity value use the Status CE bit and the ECC register.

5-9

CPU Exception Processing Chapter 5

Figure 5.9 shows the format of the ECC register; Table 5.7, which follows
the figure, describes the register fields.

ECC Register
31 8 7 0
0 ECC
24 8
Figure 5.9 ECC Register Format
Field Description
ECC An 8-bit field specifying the parity bits read from or
written to a primary cache.
0 Reserved. Must be written as zeroes, and returns
zeroes when read.

Table 5.7 ECC Register Fields

Cache Error (CacheErr) Register (27)

The 32-bit read-only CacheErr register processes parity errors in the
primary cache. Parity errors cannot be corrected.

The CacheErr register holds cache index and status bits that indicate
the source and nature of the error; it is loaded when a Cache Error
exception is asserted. When a read response returns with bad parity this
exception is also asserted.

Figure 5.10 shows the format of the CacheErr register; , which follows
the figure, describes the CacheErr register fields.

CacheErr Register
31 30 29 28 27 26 25 24 23 22 21 3 2 0
ERIEC ED|ET|ES EE|EB[O0 | 0| O Sldx Pldx
1111111111 19 0 2

(] ac. ormat

CPU Exception Processing Chapter 5

Field Description
Type of reference
ER 0 — instruction
1 — data

Cache level of the error

EC 0 — primary
1 — reserved

Indicates if a data field error occurred
ED 0 — no error
1 — error

Indicates if a tag field error occurred
ET 0 — no error
1 — error

Indicates the error occurred accessing processor-managed resources, in response to an external
request.

0 — internal reference
ES 1 — external reference

Since the R4600/R4700 doesn’t have any external events that would look in a cache (which is
the only processor-managed resource), this bit would not be set under normal operating

conditions.
- Set if the error occurred on the SysAD bus.
Taking a cache error exception sets/clears this bit.
EB Set if a data error occurred in addition to the instruction error (indicated by the remainder of

the bits). If so, this requires flushing the data cache after fixing the instruction error.

Physical address 21:3 of the reference that encountered the error.

SIdx | The address may not be the same as the address of the double word in error, but it is sufficient
to locate that double word in the secondary cache.

Virtual address 13:12 of the double word in error.

PIdx | To be used with SIdx to construct a virtual index for the primary caches. Only the lower two
bits (bits 1 and 0) are vAddr; the high bit (bit 2) is zero.

0 Reserved. Must be written as zeroes, and returns zeroes when read.

Table 5.8 CacheErr Register Fields

Error Exception Program Counter (Error EPC) Register (30)

The ErrorEPC register is similar to the EPC register, except that ErrorEPC
is used on parity error exceptions. It is also used to store the program
counter (PC) on Reset, Soft Reset, and nonmaskable interrupt (NMI)
exceptions.

The read/write ErrorEPC register contains the virtual address at which
instruction processing can resume after servicing an error. This address
can be:

e the virtual address of the instruction that caused the exception

* the virtual address of the immediately preceding branch or jump in-

struction, when this address is in a branch delay slot.

There is no branch delay slot indication for the ErrorEPC register.

CPU Exception Processing Chapter 5
Figure 5.11 shows the format of the ErrorEPC register.
ErrorEPC Register
63 0
I ErrorEPC I
64

Figure 5.11 ErrorEPC Register Format

Processor Exceptions

This section describes the processor exceptions—it describes the cause
of each exception, its processing by the hardware, and servicing by a
handler (software). The types of exception, with exception processing
operations, are described in the next section.

Exception Types

This section gives sample exception handler operations for the following
exception types:
reset
soft reset
nonmaskable interrupt (NMI)
cache error
remaining processor exceptions

When the EXL bit in the Status register is O, either User or Supervisor
operating mode is specified by the KSU bits in the Status register. When
the EXL bit or the ERL bit is a 1, the processor is in Kernel mode.

When the processor takes an exception, the EXL bit is set to 1, which
means the system is in Kernel mode. After saving the appropriate state, the
exception handler typically resets the EXL bit back to 0. When restoring
the state and restarting, the handler sets the EXL bit back to 1.

Returning from an exception, also resets the EXL bit to O (see the ERET
instruction in Appendix A).

In the following sections, sample hardware processes for various
exceptions are shown, together with the servicing required by the handler
(software).

Reset Exception Process
Figure 5.12 shows the Reset exception process.

”ered

T ‘undefined . . .
_ j_Randomt—-— TLBENTR!ESJ

(-—-0

Figure 5.12 Reset Exception Processing

CPU Exception Processing

Chapter 5

Cache Error Exception Process
Figure 5.13 shows the Cache Error exception process.

o elsa

" ‘&ﬁdlf

PC - !}xFFFF FFFF BFCO 0200 + 0x100 Fod access boét-PROM area o oL

PG BxFFFF F’FFF AOOO 0000 + 0x100 f* access main memory area */ .

Figure 5.13 Cache Error Exception Processing

Soft Reset and NMI Exception Process
Figure 5.14 shows the Soft Reset and NMI exception process.

SR sas,.za Aol 1 39,93 i sm o
PG« OXFFFF FFFF BFC0 0000 -

Figure 5.14 Soft Reset and NMI Exception Processing

General Exception Process

Figure 5.15 shows the process used for exceptions other than Reset, Soft
Reset, NMI, and Cache Error.

Figure 5.15 General Exception Processing (Except Reset, Soft Reset, NMI,

and Cache Error)

Exception Vector Locations

The Reset, Soft Reset, and NMI exceptions are always vectored to

location OxFFFF FFFF BFCO 0000 (virtual address), corresponding to
ksegO.

Addresses for all other exceptions are a combination of a vector offset

and a base address. The base address is determined by the BEV bit of the
Status register, as shown in Table 5.9.

CPU Exception Processing Chapter 5

Table 5.10 shows the vector offset that is added to the base address to
create the exception address.

BEV | R4600/R4700 Processor Vector Base | Cache Error Base
0 OxFFFF FFFF 8000 0000 O0xFFFF FFFF A000 0000
1 OxFFFF FFFF BFCO0 0200 OxFFFF FFFF BFC0 0200

Table 5.9 Exception Vector Base Addresses

As shown in Table 5.9, when BEV = 0O, the vector base for the Cache
Error exception changes from ksegO (OxFFFF FFFF 8000 0000) to ksegl
(OXFFFF FFFF AO0OO 0000).

When BEV = 1, the vector base for the Cache Error exception is OXFFFF
FFFF BFCO 0200. This is an uncached and unmapped space, allowing the
exception to bypass the cache and TLB.

Exception R4603/ R4700 Processor
ector Offset
TLB refill, EXL = 0 —
XTLB refill, EXL = 0 (X = 64-bit TLB) 0x080
Cache Error 0x100
Others 0x180

Table 5.10 Exception Vector Offsets

Priority of Exceptions

The remainder of this chapter describes exceptions in the order of their
priority, as shown in Table 5.11. While more than one exception can occur
for a single instruction, only the exception with the highest priority is

reported.
Exception Priority

1 | Reset (highest priority) 9 | Integer overflow, Trap, System Call, Break-
point, Reserved Instruction, Coprocessor
Unusable, or Floating-Point Exception

2 | Soft Reset 10 | Address error — Data access

3 | Nonmaskable Interrupt (NMI) 11 | TLB refill — Data access

4 | Address error — Instruction fetch 12 | TLB invalid — Data access

5 | TLB refill — Instruction fetch 13 | TLB modified — Data write

6 | TLB invalid — Instruction fetch 14 | Cache error — Data access

7 | Cache error — Instruction fetch 15 | Bus error — Data access

8 | Bus error — Instruction fetch 16 | Interrupt (lowest priority)

Table 5.11 Exception Priority Order

Generally speaking, the exceptions described in the following sections
are handled (“processed”) by hardware; these exceptions are then serviced
by software.

CPU Exception Processing Chapter 5

Reset Exception

This section explains the Reset exception.
Cause

The Reset exception occurs when the ColdReset*! signal is asserted and
then deasserted. This exception is not maskable.

Processing
The CPU provides a special exception vector for this exception of:
OxFFFF FFFF BFCO 0000
The Reset vector resides in unmapped and uncached CPU address
space, so the hardware need not initialize the TLB or the cache to process
this exception. It also means the processor can fetch and execute
instructions while the caches and virtual memory are in an undefined
state.
The contents of all registers in the CPU are undefined when this
exception occurs, except for the following register fields:
¢ In the Status register, SR is cleared to O, and ERL and BEV are set to
1. All other bits are undefined.
¢ The Random register is initialized to the value of its upper bound.
¢ The Wired register is initialized to O.
e Some of the Config Register bits are initialized from the boot-time
mode stream.
Reset exception processing is shown in Figure 5.12 on page 12.

Servicing
The Reset exception is serviced by:
e initializing all processor registers, coprocessor registers, caches, and
the memory system
e performing diagnostic tests
* bootstrapping the operating system

L In the following sections (and throughout this manual) a signal followed by an
asterisk, such as Reset*, is low active.

5-15

CPU Exception Processing Chapter 5

Soft Reset Exception
This section explains the Soft Reset exception.

Cause

The Soft Reset exception occurs in response to the Reset* input signal,
and execution begins at the Reset vector when Reset* is deasserted. This
exception is not maskable.

Processing

The Reset exception vector is used for this exception, located within
unmapped and uncached address space so that the cache and TLB need
not be initialized to process this exception. When a Soft Reset occurs, the
SR bit of the Status register is set to distinguish this exception from a Reset
exception.

The primary purpose of the Soft Reset exception is to reinitialize the
processor after a fatal error during normal operations. Unlike an NMI, all
cache and bus state machines are reset by this exception. Like Reset, it
can be used on the processor in any state; the caches, TLB, and normal
exception vectors need not be properly initialized. Soft Reset preserves the
state of the caches and memory system, while resetting the bus state and
cache state machine.

When this exception occurs, the contents of all registers are preserved
except for:

* ErrorEPC register, which contains the restart PC

e ERL bit of the Status register, which is set to 1

¢ SR bit of the Status register, which is set to 1

e BEYV bit of the Status register, which is set to 1

Because the Soft Reset can abort cache and bus operations, cache and
memmory state is undefined when this exception occurs.

Soft reset exception processing is shown in Figure 5.14 on page 13.

Servicing
The Soft Reset exception is serviced by saving the current processor
state for diagnostic purposes, and reinitializing for the Reset exception.

CPU Exception Processing Chapter 5

Nonmaskable Interrupt (NMI) Exception
This section explains the Nonmaskable Interrupt exception.

Cause

The Nonmaskable Interrupt (NMI) exception occurs in response to the
falling edge of the NMI pin, or an external write to the Int*[6] bit of the
Interrupt register.

Unlike all other interrupts, this interrupt is not maskable; it occurs
regardless of the settings of the EXL, ERL, and the IE bits in the Status
register.

Processing

The Reset exception vector is used for this exception. This vector is
located within unmapped and uncached address space so that the cache
and TLB need not be initialized to process an NMI interrupt. When an NMI
exception occurs, the SR bit of the Status register is set to differentiate this
exception from a Reset exception.

Because an NMI can occur in the midst of another exception, it is not
normally possible to continue program execution after servicing an NMI.

Unlike Reset and Soft Reset, but like other exceptions, NMI is taken only
at instruction boundaries. The state of the caches and memory system are
preserved by this exception.

To terminate a pending read that has hung the best approach is to
return a bus error. However, if you wish to use a CPU exception to indicate
a hung read, Soft Reset is preferable to NMI.

When this exception occurs, the contents of all registers are preserved
except for:

e ErrorEPC register, which contains the restart PC

¢ ERL bit of the Status register, which is set to 1

* SR bit of the Status register, which is set to 1

e BEV bit of the Status register, which is set to 1

NMI exception processing is shown in Figure 5.14 on page 13.

Servicing
The NMI exception is serviced by saving the current processor state for
diagnostic purposes, and reinitializing the system for the Reset exception.

CPU Exception Processing

Chapter 5

Address Error Exception
This section explains the Address Error exception.

Cause
The Address Error exception occurs when an attempt is made to execute
one of the following:
¢ load or store a doubleword that is not aligned on a doubleword
boundary (except for use of special instruction)
¢ load, fetch, or store a word that is not aligned on a word boundary
(except for use of special instruction)
¢ load or store a halfword that is not aligned on a halfword boundary
¢ reference the kernel address space from User or Supervisor mode
¢ reference the supervisor address space from User mode
This exception is not maskable.

Processing

The common exception vector is used for this exception. The AdEL or
AdES code in the Cause register is set, indicating whether the instruction
(shown by the EPC register and BD bit in the Cause register) caused the
exception with an instruction reference, load operation, or store operation.

When this exception occurs, the BadVAddr register retains the virtual
address that was not properly aligned or referenced protected address
space. The contents of the VPN field of the Context and EntryHi registers
are undefined, as are the contents of the EntryLo register.

The EPC register contains the address of the instruction that caused the
exception, unless this instruction is in a branch delay slot. If it is in a
branch delay slot, the EPC register contains the address of the preceding
branch instruction and the BD bit of the Cause register is set as indication.

Address Error exception processing is shown in Figure 5.15 on page 13.

Servicing

Typically the process executing at the time is handed a segmentation
violation signal. This error is usually fatal to the process incurring the
exception.

To resume execution, the EPC register must be altered so that the
unaligned reference instruction does not re-execute; this is accomplished
by adding a value of 4 to the EPC register (EPC register + 4) before
returning.

If an unaligned reference instruction is in a branch delay slot,
interpretation of the branch instruction is required to resume execution.

CPU Exception Processing Chapter 5

TLB Exceptions

This section explains the TLB Exceptions. For specifics on the

exceptions listed here, refer to the following three subsections.

Three types of TLB exceptions can occur:

e TLB Refill occurs when there is no TLB entry that matches an at-
tempted reference to a mapped address space.

¢ TLB Invalid occurs when a virtual address reference matches a TLB
entry that is marked invalid.

e TLB Modified occurs when a store operation virtual address reference
to memory matches a TLB entry which is marked valid but is not dirty
(the entry is not writable).

The following three subsections describe the TLB exceptions.

TLB Refill Exception
This subsection explains the TLB refill exception.

Cause
The TLB refill exception occurs when there is no TLB entry to match a
reference to a mapped address space. This exception is not maskable.

Processing

There are two special exception vectors for this exception; one for
references to 32-bit virtual address spaces, and one for references to 64-
bit virtual address spaces. The UX, SX, and KX bits of the Status register
determine whether the user, supervisor or kernel address spaces
referenced are 32-bit or 64-bit spaces. All references use these vectors
when the EXL bit is set to O in the Status register. This exception sets the
TLBL or TLBS code in the ExcCode field of the Cause register. This code
indicates whether the instruction, as shown by the EPC register and the
BD bit in the Cause register, caused the miss by an instruction reference,
load operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and
EntryHi registers hold the virtual address that failed address translation.
The EntryHi register also contains the ASID from which the translation
fault occurred. The Random register normally suggests a valid location in
which to place the replacement TLB entry. The contents of the EntryLo
register are undefined. The EPC register contains the address of the
instruction that caused the exception, unless this instruction is in a
branch delay slot, in which case the EPC register contains the address of
the preceding branch instruction and the BD bit of the Cause register is
set.

TLB Refill exception processing is shown in Figure 5.15 on page 13.

Servicing

To service this exception, the contents of the Context or XContext register
are used as a virtual address to fetch memory locations containing the
physical page frame and access control bits for a pair of TLB entries. The
two entries are placed into the EntryLoO/EntryLol register; the EntryHi
and EntryLo registers are written into the TLB.

It is possible that the virtual address used to obtain the physical address
and access control information is on a page that is not resident in the TLB.
This condition is processed by allowing a TLB refill exception in the TLB
refill handler. This second exception goes to the common exception vector
because the EXL bit of the Status register is set.

CPU Exception Processing Chapter 5

TLB Invalid Exception
This subsection explains the TLB invalid exception.

Cause

The TLB invalid exception occurs when a virtual address reference
matches a TLB entry that is marked invalid (TLB valid bit cleared). This
exception is not maskable.

Processing

The common exception vector is used for this exception. The TLBL or
TLBS code in the ExcCode field of the Cause register is set. This indicates
whether the instruction, as shown by the EPC register and BD bit in the
Cause register, caused the miss by an instruction reference, load
operation, or store operation.

When this exception occurs, the BadVAddr, Context, XContext and
EntryHi registers contain the virtual address that failed address
translation. The EntryHi register also contains the ASID from which the
translation fault occurred. The Random register normally contains a valid
location in which to put the replacement TLB entry. The contents of the
EntryLo registers are undefined.

The EPC register contains the address of the instruction that caused the
exception unless this instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

TLB Invalid exception processing is shown in Figure 5.15 on page 13.

Servicing

ATLB entry is typically marked invalid when one of the following is true:

¢ avirtual address does not exist

e the virtual address exists, but is not in main memory (a page fault)

e a trap is desired on any reference to the page (for example, to main-

tain a reference bit or during debug)

After servicing the cause of a TLB Invalid exception, the TLB entry is
located with TLBP (TLB Probe), and replaced by an entry with that entry’s
Valid bit set.

CPU Exception Processing Chapter 5

TLB Modified Exception
This subsection explains the TLB modified exception.

Cause

The TLB modified exception occurs when a store operation virtual
address reference to memory matches a TLB entry that is marked valid but
is not dirty and therefore is not writable. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Mod
code in the Cause register is set.

When this exception occurs, the BadVAddr, Context, XContext and
EntryHi registers contain the virtual address that failed address
translation. The EntryHi register also contains the ASID from which the
translation fault occurred. The contents of the EntryLo registers are
undefined.

The EPC register contains the address of the instruction that caused the
exception unless that instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

TLB Modified exception processing is shown in Figure 5.15 on page 13.

Servicing

The kernel uses the failed virtual address or virtual page number to
identify the corresponding access control information. The page identified
may or may not permit write accesses; if writes are not permitted, a write
protection violation occurs.

If write accesses are permitted, the page frame is marked dirty/writable
by the kernel in its own data structures. The TLBP instruction places the
index of the TLB entry that must be altered into the Index register. The
EntryLo register is loaded with a word containing the physical page frame
and access control bits (with the D bit set), and the EntryHi and EntryLo
registers are written into the TLB.

CPU Exception Processing Chapter 5

Cache Error Exception
This section explains the Cache Error exception.

Cause
The Cache Error exception occurs when a primary cache parity error is
detected. This exception is maskable by the DE bit of the Status register.

Processing
The processor sets the ERL bit in the Status register, saves the exception
restart address in ErrorEPC register, and then transfers to a special vector
in uncached space:
If the BEV bit = 0, the vector is OXFFFF FFFF A0O00 0100.
If the BEV bit = 1, the vector is OXFFFF FFFF BFCO 0300.
No other registers are changed.

Cache Error exception processing is shown in Figure 5.13 on page 13.

Servicing
All errors should be logged. To correct cache parity errors the system
uses the CACHE instruction to invalidate the cache block, overwrites the
old data through a cache miss, and resumes execution with an ERET.
Other errors are not correctable and are likely to be fatal to the current
process.

CPU Exception Processing Chapter 5

Bus Error Exception
This section explains the Bus Error exception.

Cause

A Bus Error exception is raised by board-level circuitry for events such
as bus time-out, backplane bus parity errors, and invalid physical memory
addresses or access types. This exception is not maskable.

A Bus Error exception occurs only when a cache miss refill, uncached
reference, or unbuffered write occurs synchronously; a Bus Error
exception resulting from a buffered write transaction must be reported
using the general interrupt mechanism.

Processing

The common interrupt vector is used for a Bus Error exception. The IBE
or DBE code in the ExcCode field of the Cause register is set, signifying
whether the instruction (as indicated by the EPC register and BD bit in the
Cause register) caused the exception by an instruction reference, load
operation, or store operation.

The EPC register contains the address of the instruction that caused the
exception, unless it is in a branch delay slot, in which case the EPC register
contains the address of the preceding branch instruction and the BD bit of
the Cause register is set. Bus Error processing is shown in Figure 5.15 on

page 13.

Servicing

The physical address at which the fault occurred can be computed from
information available in the CPO registers.

¢ If the IBE code in the Cause register is set (indicating an instruction

fetch reference), the virtual address is contained in the EPC register.

e If the DBE code is set (indicating a load or store reference), the in-

struction that caused the exception is located at the virtual address
contained in the EPC register (or 4+ the contents of the EPC register
if the BD bit of the Cause register is set).

The virtual address of the load and store reference can then be obtained
by interpreting the instruction. The physical address can be obtained by
using the TLBP instruction and reading the EntryLo register to compute
the physical page number.

The process executing at the time of this exception is handed a bus error
signal, which is usually fatal.

CPU Exception Processing Chapter 5

Integer Overflow Exception
This section explains the Integer Overflow exception.

Cause

An Integer Overflow exception occurs when an ADD, ADDI, SUB, DADD,
DADDI or DSUB! instruction results in a 2's complement overflow. This
exception is not maskable.

Processing

The common exception vector is used for this exception, and the OV
code in the Cause register is set.

The EPC register contains the address of the instruction that caused the
exception unless the instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Integer Overflow exception processing is shown in Figure 5.15 on

page 13.

Servicing

The process executing at the time of the exception is handed a floating-
point exception/integer overflow signal. This error is usually fatal to the
current process.

1. See Appendix A for instruction description.

5-24

CPU Exception Processing Chapter 5

Trap Exception
This section explains the Trap exception.

Cause
The Trap exception occurs when a TGE, TGEU, TLT, TLTU, TEQ, TNE,

TGEI, TGEUI, TLTI, TLTUI, TEQ]I, or TNEI! instruction results in a TRUE
condition. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Tr code
in the Cause register is set.

The EPC register contains the address of the instruction causing the
exception unless the instruction is in a branch delay slot, in which case
the EPC register contains the address of the preceding branch instruction
and the BD bit of the Cause register is set.

Trap exception processing is shown in Figure 5.15 on page 13.

Servicing
The process executing at the time of a Trap exception is handed a
floating-point exception/integer overflow signal. This error is usually fatal.

1-See Appendix A for instruction description.

5-25

CPU Exception Processing Chapter 5

System Call Exception
This section explains the System Call exception.

Cause
A System Call exception occurs during an attempt to execute the
SYSCALL instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the Sys
code in the Cause register is set.

The EPC register contains the address of the SYSCALL instruction
unless it is in a branch delay slot, in which case the EPC register contains
the address of the preceding branch instruction.

If the SYSCALL instruction is in a branch delay slot, the BD bit of the
Status register is set; otherwise this bit is cleared.

System Call exception processing is shown in Figure 5.15 on page 13.

Servicing

When this exception occurs, control is transferred to the applicable
system routine.

To resume execution, the EPC register must be altered so that the
SYSCALL instruction does not re-execute; this is accomplished by adding
a value of 4 to the EPC register (EPC register + 4) before returning.

If a SYSCALL instruction is in a branch delay slot, a more complicated
algorithm, beyond the scope of this description, may be required.

CPU Exception Processing Chapter 5

Breakpoint Exception
This section explains the Breakpoint exception.

Cause
A Breakpoint exception occurs when an attempt is made to execute the
BREAK instruction. This exception is not maskable.

Processing

The common exception vector is used for this exception, and the BP code
in the Cause register is set.

The EPC register contains the address of the BREAK instruction unless
it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

If the BREAK instruction is in a branch delay slot, the BD bit of the
Status register is set, otherwise the bit is cleared.

Breakpoint exception processing is shown in Figure 5.15 on page 13.

Servicing

When the Breakpoint exception occurs, control is transferred to the
applicable system routine. Additional distinctions can be made by
analyzing the unused bits of the BREAK instruction (bits 25:6), and
loading the contents of the instruction whose address the EPC register
contains. A value of 4 must be added to the contents of the EPC register
(EPC register + 4) to locate the instruction if it resides in a branch delay
slot.

To resume execution, the EPC register must be altered so that the
BREAK instruction does not re-execute; this is accomplished by adding a
value of 4 to the EPC register (EPC register + 4) before returning.

If a BREAK instruction is in a branch delay slot, interpretation of the
branch instruction is required to resume execution.

CPU Exception Processing Chapter 5

Reserved Instruction Exception
This section explains the Reserved Instruction exception.

Cause
The Reserved Instruction exception occurs when one of the following
conditions occurs:
e an attempt is made to execute an instruction with an undefined major
opcode (bits 31:26)
¢ an attempt is made to execute a SPECIAL instruction with an unde-
fined minor opcode (bits 5:0)
¢ an attempt is made to execute a REGIMM instruction with an unde-
fined minor opcode (bits 20:16)
¢ an attempt is made to execute 64-bit operations in 32-bit virtual ad-
dressing when in User or Supervisor modes
64-bit operations are always valid in Kernel mode regardless of the value
of the KX bit in the Status register.
This exception is not maskable.
Reserved Instruction exception processing is shown in Figure 5.15 on

page 13.

Processing

The common exception vector is used for this exception, and the RI code
in the Cause register is set.

The EPC register contains the address of the reserved instruction unless
it is in a branch delay slot, in which case the EPC register contains the
address of the preceding branch instruction.

Servicing

No instructions in the MIPS ISA are currently interpreted. The process
executing at the time of this exception is handed an illegal instruction/
reserved operand fault signal. This error is usually fatal.

CPU Exception Processing Chapter 5

Coprocessor Unusable Exception
This sections explains the Coprocessor Unusable exception.

Cause
The Coprocessor Unusable exception occurs when an attempt is made
to execute a coprocessor instruction for either:
¢ a corresponding coprocessor unit that has not been marked usable,
or
¢ CPO instructions, when the unit has not been marked usable and the
process executes in User mode.
This exception is not maskable.

Processing

The common exception vector is used for this exception, and the CPU
code in the Cause register is set. The contents of the Coprocessor Usage
Error field of the coprocessor Control register indicate which of the four
coprocessors was referenced. The EPCregister contains the address of the
unusable coprocessor instruction unless it is in a branch delay slot, in
which case the EPC register contains the address of the preceding branch
instruction.

Coprocessor Unusable exception processing is shown in Figure 5.15 on

page 13.

Servicing
The coprocessor unit to which an attempted reference was made is
identified by the Coprocessor Usage Error field, which results in one of the
following situations:
¢ If the process is entitled access to the coprocessor, the coprocessor is
marked usable and the corresponding user state is restored to the co-
processor.
¢ If the process is entitled access to the coprocessor, but the coproces-
sor does not exist or has failed, interpretation of the coprocessor in-
struction is possible.
¢ If the BD bit is set in the Cause register, the branch instruction must
be interpreted; then the coprocessor instruction can be emulated and
execution resumed with the EPC register advanced past the coproces-
sor instruction.
¢ If the process is not entitled access to the coprocessor, the process ex-
ecuting at the time is handed an illegal instruction/privileged instruc-
tion fault signal. This error is usually fatal.

CPU Exception Processing

Chapter 5

Floating-Point Exception
This sections explains the Floating-Point exception.

Cause
The Floating-Point exception is used by the floating-point coprocessor.
This exception is not maskable.

Processing

The common exception vector is used for this exception, and the FPE
code in the Cause register is set.

The contents of the Floating-Point Control/Status register indicate the
cause of this exception.

Floating-Point exception processing is shown in Figure 5.15 on page 13.

Servicing

This exception is cleared by clearing the appropriate bit in the Floating-
Point Control/Status register.

For an unimplemented instruction exception, the kernel should emulate
the instruction; for other exceptions, the kernel should pass the exception
to the user program that caused the exception.

CPU Exception Processing

Chapter 5

Interrupt Exception
This sections explains the Interrupt exception.

Cause

The Interrupt exception occurs when one of the eight interrupt
conditions is asserted. The significance of these interrupts is dependent
upon the specific system implementation.

Each of the eight interrupts can be masked by clearing the
corresponding bit in the Int-Mask field of the Status register, and all of the
eight interrupts can be masked at once by clearing the IE bit of the Status
register.

Processing

The common exception vector is used for this exception, and the Intcode
in the Cause register is set.

The IP field of the Cause register indicates current interrupt requests. It
is possible that more than one of the bits can be simultaneously set (or
even no bits may be set if the interrupt is asserted and then deasserted
before this register is read).

Interrupt exception processing is shown in Figure 5.15 on page 13.

Servicing

If the interrupt is caused by one of the two software-generated
exceptions (SW1 or SWO0), the interrupt condition is cleared by setting the
corresponding Cause register bit to O.

If the interrupt is hardware-generated, the interrupt condition is cleared
by correcting the condition causing the interrupt pin to be asserted.

NOTE: due to the write buffer, a store to an external device will not
necessarily occur until after other instructions in the pipeline finish. Thus,
the user must ensure that the store will occur before the return from
exception instruction (ERET) is executed otherwise the interrupt may be
serviced again even though there should be no interrupt pending.

CPU Exception Processing Chapter 5

Exception Handling and Servicing Flowcharts

The remainder of this chapter contains figures of flowcharts for the
exceptions described in Table 5.12, and guidelines for their handlers.

Figure Description

Figure 5.16, | General exceptions and their exception handler
Figure 5.17

Figure 5.18, | TLB/XTLB miss exception and their exception handler
Figure 5.19

Figure 5.20 | Cache error exception and its handler

Figure 5.21 | Reset, soft reset and NMI exceptions, and a guideline to
their handler.

Table 5.12 List of Exception Flowcharts

Generally speaking, the exceptions are handled by hardware (HW), and
then the exceptions are serviced by software (SW).

CPU Exception Processing Chapter 5

Comments

Set FP Control Status Register| «Ep control Status Register is only set
Enhi « VPN2, ASID if the respective exception occurs.
Context « VPN2 EnHi, X/Context are set only for

Set Cause Register TLB- Invalid, Modified,

EXCCode, CE & Refill exceptions

Instr. in
Br.Dly. Slot?

Yes

Y Y
Cause 31 (BD) « 1 Cause 31 (BD) <0

Check if exception within
another exception

BadVA is set only for

Set BadVA Set BadVA TLB- Invalid, Modified,
croco-y | | eocro| | Rl meiCRpLncpens
[_ Exception
/
EXL < | X intorupt cioablod T o

=0 (normal) =1 (bootstrap)

(Base is sign extended for 64 bits)

PC « OxFFFF FFFF 8000 0000 PC « OxFFFF FFFF BFCO0 0200
+180 +180
(unmapped, cached) (unmapped, uncached)

L - |
-

To General Exception Servicing Guidelines

Exceptions other than Reset, Soft Reset, NMI, CacheErr or first-level TLB miss
Note: Interrupts can be masked by IE or IMs

Figure 5.16 General Exception Handler (HW)

CPU Exception Processing

Chapter 5

MFCo -
X/Context
EPC
Status
Cause

|

MTCO -
(Set Status Bits:)
KSU « 00

EXL <0
& |[E=1

Y

Check CAUSE REG. & Jump to
appropriate Service Code

Comments

* Unmapped vector so TLBMod, TLBInv,
TLB Reéfill exceptions not possible

{ * EXL=1 so Interrupt exceptions disabled
* OS/System to avoid all other exceptions

*Only CacheErr, Reset, Soft Reset, NM|
exceptions possible.

(optional - only to enable Interrupts while keeping Kemel Mode)

* After EXL=0, all exceptions allowed.
(except interrupt if masked by IE or IM
and CacheErr if masked by DE)

MTCO -
EPC
STATUS
¢ * ERET is not allowed in the branch delay slot of
another Jump Instruction
* Processor does not execute the instruction which is
ERET in the ERET's branch delay slot
*PC« EPC,EXL« 0
* LLbit < 0
Figure 5.17 General Exception Servicing Guidelines (SW)

CPU Exception Processing

Chapter 5

i

Enhi « VPN2, ASID

Context < VPN2

Set Cause Reg.
EXCCode, CE and
Causs bit 31 (BD) « 1

Enhi « VPN2, ASID

Context «— VPN2

Set Cause Reg.
EXCCode, CE and
Cause bit 31 (BD) <0

Check if exception within
A another exception

(SR bit 1)

=0

Set BadVA
EPC « (PC- 4)

Set BadVA
EPC « PC

T

/

\

XTLB
Instruction?

i

Vec. Off. = 0x080

[-l

Vec. Off. = 0x000

Vec. Off. = 0x180

e

J

Points to Refill Exception 1‘

Points to General Exception

EXL &1

Processor forced to Kernel Mode &
interrupt disabled

BE
(SR bit 22)

=0 (normal)

PC « OxFFFF FFFF 8000 0000
+ Vec.Off.
(unmapped, cached)
L

(Base is sign extended for 64 bits)]

PC « OxFFFF FFFF BFCO 0200
+ Vec.Off.
(unmapped, uncached)
|

To TLB/XTLB Exception Servicing Guidelines

Figure 5.18 TLB/XTLB Miss Exception Handler (HW)

CPU Exception Processing Chapter 5

Comments

* Unmapped vector so TLBMod, TLBInv,
TLB Refill or VCEP exceptions
not possible

MFCo -
* EXL=1 so Interrupt exceptions disabled

CONTEXT % . .
* OS/System to avoid all other exceptions

*Only CacheErr, Reset, Soft Reset, NMI
exceptions possible.

* Load the mapping of the virtual address in Context Reg.
Move it to ENLO and Writs into the TLB

* There could be a TLB miss again during the mapping
< of the data or instruction address. The processor will

jump to the general exception vector since the EXL is 1.
(Option to complete the first level refill in the general
exception handler or ERET to the original instruction
and take the exception again)

Service Code

* ERET is not allowed in the branch delay slot of
another Jump Instruction

* Processor does not execute the instruction which is
ERET < in the ERET's branch delay slot
*PC« EPC,EXL <0

* LLbit <0

Figure 5.19 TLB/XTLB Exception Servicing Guidelines (SW)

CPU Exception Processing Chapter 5

Note: Can be masked/disabled by DE (SR16) bit = 1

Set CacheErr Reg.

Y

ErEPC « (PC - 4) ErEPC « PC

ERL « 1

=0 (normmal) =1 (bootstrap)

Cache Error Exception Handling (HW)

(Base is sign extended for 64 bits) Y

PC « OxFFFF FFFF A00O 0000 PC « OxFFFF FFFF BFCO 0200
+ 100 + 100

(unmapped, uncached) (unmapped, uncached)

J Comments

______ * Unmapped Uncached vector so

TLB related & Cache Error Exception not possible
* ERL=1 so Interrupt exceptions disabled
* OS/System to avoid all other exceptions

*Only Reset, Soft Reset, NMI|
exceptions possible.

| |
| |
| |
| I
\ Service Code \
|]
| |
I 1
| |

another Jump Instruction

* Processor does not execute the instruction which is
in the ERET’s branch delay slot

* PC « EmorEPC; ERL « 0
* LLbit« 0

Servicing Guidelines (SW)

Lo l ______) * ERET is not allowed in the branch delay slot of

€ 5. € Error Exception
and Servicing Guidelines (SW)

CPU Exception Processing Chapter 5

S Soft Reset or NMI Exception Reset Exception
< Status: Random « TLBENTRIES - 1
4 Wired « 0

= BEV « 1

] Config « Update(31:6)Il Undef(5:0)
c SR« 1 .

® Status:

T ERL « 1

c BEV « 1

-3 SR«0

] ERL 1

X

w

=

4 -

o3

2

o

e ErrorEPC « PC

F]

o

(7] \

° PC « OXFFFF FFFF BFCO 0000

@

o

Yes
E ; Note: There is no indication from the
Se rocessor to differentiate between
» No Mi & Soft Reset; o
o3 g there must be a system level indication.
ot
2%
L < .
m '5 : |
g0 I NMI Service Code ' Status bit 20
noe I ! (SR)
J.E | :
§.¢E' I, =1
o
(77 Pmmmm -t - mmm P |
\]
! Soft Reset Service Code ' Reset Service Code :
ERET : : : \
|
(Optional) L R F |

Figure 5.21 Reset, Soft Reset & NMI Exception Handling (HW) and Servicing
Guidelines (SW)

A Floating-Point Unit Chapter 6

!:E

Integrated Device Technology, Inc.

This chapter describes the R4600 and R4700 floating-point unit (FPU)
features, including the programming model, instruction set and formats,
and the pipeline.

The FPU, with associated system software, fully conforms to the
requirements of ANSI/IEEE Standard 754-1985, IEEE Standard for Binary
Floating-Point Arithmetic. In addition, the MIPS architecture fully supports
the recommendations of the standard and precise exceptions.

Overview

The FPU operates as a coprocessor for the CPU (it is assigned
coprocessor label CPI1), and extends the CPU instruction set to perform
arithmetic operations on floating-point values.

The R4600/R4700 Floating-Point Coprocessor

The R4600/R4700 incorporates an entire floating-point coprocessor on
chip, including a floating-point register file and execution units. The
floating-point coprocessor forms a seamless interface with the integer unit,
decoding and executing instructions in parallel with the integer unit. In
comparison to the R4600, the floating point coprocessor of the R4700 has
improved floating multiply operations.

The R4600/R4700 uses the floating-point unit to perform integer
multiply and divide, and results are placed in the HI and LO registers. The
values can then be transferred to the general purpose register file using the
MFHI/MFLO instructions. The R4700 performs an integer multiply faster
than the R4600 by 2 clock cycles, but it takes the same number of clock
cycles for integer division. The R4700 improves the multiply compared to
the R4600 by performing a single-precision multiply in 4 clock cycles, and
a double-precision multiply in 5 clock cycles.

Figure 6.1 illustrates the functional organization of the FPU.

Data Cache FCU
64 Control
> 17 64 -

FP Bypass

Pipeline Chain R
FP Add/Sub
Cvit/Div/Sqrt FP/Int Mul
Int Div

64

64 |64 64 |64

" FP Reg File .

Figure 6.1 FPU Functional Block Diagram

Floating-Point Unit Chapter 6

FPU Features

This section briefly describes the operating model, the load/store
instruction set, and the coprocessor interface in the FPU. A more detailed
description is given in the sections that follow.

¢ Full 64-bit Operation. When the FR bit in the CPU Status register
equals O, the FPU is configured for sixteen 64-bit registers for double-
precision values or thirty-two 32-bit registers for single-precision val-
ues. When the FR bit in the CPU Status register equals 1, the FPU is
configured for thirty-two 64-bit registers. Each register can hold sin-
gle- or double-precision values. The FPU also includes a 32-bit Con-
trol/Status register that provides access to all IEEE-Standard
exception handling capabilities.

¢ Load and Store Instruction Set. Like the CPU, the FPU uses a load-

and store-oriented instruction set, with single-cycle load and store
operations. Overlap of multiply and add is supported.

» Tightly Coupled Coprocessor Interface. The FPU resides on-chip to

form a tightly coupled unit with a seamless integration of floating-
point and fixed-point instruction sets.

FPU Programming Model

This section describes the set of FPU registers and their data
organization. The FPU registers include Floating-Point General Purpose
registers (FGRs) and two control registers: Control/Status and
Implementation/Revision.

Floating-Point General Registers (FGRs)

The FPU has a set of Floating-Point General Purpose registers (FGRs) that
can be accessed in the following ways:

¢ As 32 general-purpose registers (32 FGRs), each of which is 32-bits
wide when the FR bit in the CPU Status register equals O; or as 32 gen-
eral-purpose registers (32 FGRs), each of which is 64-bits wide when
FR equals 1. The CPU accesses these registers through move, load,
and store instructions.

¢ As 16 floating-point registers (see the next section for a description of
FPRs), each of which is 64-bits wide, when the FR bit in the CPU Sta-
tus register equals 0. The FPRs hold values in either single- or double-
precision floating-point format. Each FPR corresponds to adjacently
numbered FGRs as shown in Figure 6.2 on page 6-3.

¢ As 32 floating-point registers (see the next section for a description of
FPRs), each of which is 64-bits wide, when the FR bit in the CPU Sta-
tus register equals 1. The FPRs hold values in either single- or double-
precision floating-point format. Each FPR corresponds to an FGR as
shown in Figure 6.2.

Floating-Point Unit Chapter 6

Floating-Point Floating-Point Floating-Point Floating-Point
Registers (FPR) General Purpose Registers Registers (FPR) General Purpose Registers
(FR=0) 31 (FGR) 0 (FR=1) 63 (FGR) 0
EPRO {(least) EGRO FPRo FGRo
(most) FGR1 FPR1 FGR1
i {(.eas,) FGR2 FPR2 FGR2
(most) FGR3 FPR3 FGR3

° LJ

° L]

L]

FPR28

FPR29
FPR30

FPR31

(least)
FPR28 %
(most)

FPR3o { (east)
(most)

Floating-Point
Control Registers
(FCR)

Control/Status Register
31 FCR31 0 31 FCRo 0

Implementation/Revision Register

E—

Figure 6.2 FPU Registers

Floating-Point Registers

The FPU provides:

¢ 16 Floating-Point registers (FPRs) for Status.FR =0, or

¢ 32 Floating-Point registers (FPRs) for Status.FR = 1.

These 64-bit registers hold floating-point values during floating-point
operations and are physically formed from the General Purpose registers
(FGRs). When the FR bit in the Status register equals 1, the FPR references
a single 64-bit FGR.

The FPRs hold values in either single- or double-precision floating-point
format. If the FR bit equals O, only even numbers (the least register, as
shown in Figure 6.2) can be used to address FPRs. When the FR bit is set
to a 1, all FPR register numbers are valid.

If the FRbit equals O during a double-precision floating-point operation,
the general registers are accessed in double pairs. Thus, in a double-
precision operation, selecting Floating-Point Register O (FPRO) actually
addresses adjacent Floating-Point General Purpose registers FGRO and
FGRI1.

Floating-Point Control Registers

The FPU has 32 control registers (FCRs) that can only be accessed by

move operations. The FCRs are described below:

¢ The Implementation/Revision register (FCRO) holds revision informa-
tion about the FPU.

* The Control/Status register (FCR31) controls and monitors excep-
tions, holds the result of compare operations, and establishes round-
ing modes.

¢ FCRI1 to FCR30 are reserved.

Floating-Point Unit Chapter 6
Table 6.1 lists the assignments of the FCRs.
FCR Number Use
FCRO Coprocessor implementation and revision register
FCR1 to FCR30 Reserved
FCR31 Rounding mode, cause, trap enables, and flags

Table 6.1 Floating-Point Control Register Assignments

Implementation and Revision Register, (FCRO)

The read-only Implementation and Revision register (FCRO) specifies the
implementation and revision number of the FPU. This information can
determine the coprocessor revision and performance level, and can also be
used by diagnostic software.

Figure 6.3 shows the layout of the register; Table 6.2, which follows the
figure, describes the Implementation and Revision register (FCRO) fields.

Implementation/Revision Register (FCRO0)
31 16 15 87 0

0 Imp ‘ Rev
16 8 8

Figure 6.3 Implementation/Revision Register

Field Description
Imp Implementation number R4600: 0x20
R4700: 0x21
Rev Revision number in the form of y.x
Reserved.

Table 6.2 FCRO Fields

The revision number is a value of the form y.x, where:

* yis a major revision number held in bits 7:4.
¢ xis a minor revision number held in bits 3:0.

The revision number distinguishes some chip revisions; however, there
is no guarantee that changes to the chip are necessarily reflected by the
revision number, or that changes to the revision number necessarily reflect
real chip changes. For this reason revision number values are not listed,
and software should not rely on the revision number to characterize the
chip.

Control/Status Register (FCR31)

The Control/Status register (FCR31) contains control and status
information that can be accessed by instructions in either Kernel or User
mode. FCR31 also controls the arithmetic rounding mode and enables
User mode traps, as well as identifying any exceptions that may have
occurred in the most recently executed instruction, along with any
exceptions that may have occurred without being trapped.

Floating-Point Unit Chapter 6

Figure 6.4 on page 6-5 shows the format of the Control/Status register,
and Table 6.3, which follows the figure, describes the Control/Status
register fields. Figure 6.5 on page 6-5 shows the Control/Status register
Cause, Flag, and Enable fields.

Control/Status Register (FCR31)

31 25 24 23722 18717 12 11 7 6 21 0
Cause Enables Flags AM
0 FS| C 0 EVZOUI|l VZOUI | VZOUlI
7 1 1 5 6 5 5 2

Figure 6.4 FP Control/Status Register Bit Assignments

Field Description

FS When set, denormalized results are flushed to O instead of causing
an unimplemented operation exception.

C Condition bit. See description of Control/Status register Condition
bit.

Cause Cause bits. See Figure 6.5 and the description of Control/Status

register Cause, Flag, and Enable bits.

Enables Enable bits. See Figure 6.5 and the description of Control/Status
register Cause, Flag, and Enable bits.

Flags Flag bits. See Figure 6.5 and the description of Control/Status reg-
ister Cause, Flag, and Enable bits.
RM Rounding mode bits. See Table 6.4 on page 7 and the description

of Control/Status register Rounding Mode Control bits.

Table 6.3 Control/Status Register Fields

Bit#17 16 15 14 13 12
Cause
E Vv Z (®) U | Bits
! | I I I
Bit # 11 10 9 8 7
Enable
\' Z 0 U | Bits
| | | I I
Bit# 6 5 4 3
viz[olul 1] 5
I Bits
Inexact Operation
Underflow
Overflow
Division by Zero
Invalid Operation
Unimplemented Operation

Figure 6.5 Control/Status Register Cause, Flag, and Enable Fields

Floating-Point Unit

Chapter 6

Accessing the Control/Status Register

When the Control/Status register is read by a Move Control From
Coprocessor 1 (CFC1) instruction, all unfinished instructions in the
pipeline are completed before the contents of the register are moved to the
main processor. If a floating-point exception occurs as the pipeline
empties, the FP exception is taken and the CFC1 instruction is re-executed
after the exception is serviced.

The bits in the Control/Status register can be set or cleared by writing to
the register using a Move Control To Coprocessor 1 (CTC1) instruction.
CTC1 is not issued until all previous floating-point operations are
complete.

IEEE Standard 754

IEEE Standard 754 specifies that floating-point operations detect
certain exceptional cases, raise flags, and can invoke an exception handler
when an exception occurs. These features are implemented in the MIPS
architecture with the Cause, Enable, and Flag fields of the Control/Status
register. The Flag bits implement IEEE 754 exception status flags, and the
Cause and Enable bits implement exception handling.

Control/Status Register FS Bit

When the FS bit is set, denormalized results are flushed to O instead of
causing an unimplemented operation exception.

Control/Status Register Condition Bit

When a floating-point Compare operation takes place, the result is
stored at bit 23, the Condition bit, to save or restore the state of the
condition line. The C bit is set to 1 if the condition is true; the bit is cleared
to O if the condition is false. Bit 23 is affected only by compare and Move
Control To FPU instructions.

Control/Status Register Cause, Flag, and Enable Fields

Figure 6.5 on page 6-5 illustrates the Cause, Flag, and Enable fields of
the Control/ Status register.

Cause Bits

Bits 17:12 in the Control/Status register contain Cause bits, as shown
in Figure 6.5 on page 6-5, which reflect the results of the most recently
executed instruction. The Cause bits are a logical extension of the CPO
Cause register; they identify the exceptions raised by the last floating-point
operation and raise an interrupt or exception if the corresponding enable
bit is set. If more than one exception occurs on a single instruction, each
appropriate bit is set.

The Cause bits are written by each floating-point operation (but not by
load, store, or move operations). The Unimplemented Operation (E) bit is
set to a 1 if software emulation is required, otherwise it remains 0. The
other bits are set to O or 1 to indicate the occurrence or non-occurrence
(respectively) of an IEEE 754 exception.

When a floating-point exception is taken, no results are stored, and the
only state affected is the Cause bits. Exceptions caused by an immediately
previous floating-point operation can be determined by reading the Cause
field.

Enable Bits

A floating-point operation that sets an enabled Cause bit forces an
immediate exception, as does setting both Cause and Enable bits with
CTC1. The floating-point exception or interrupt is enabled when the
corresponding enable be is set.

There is no enable for Unimplemented Operation (E). Setting
Unimplemented Operation always generates a floating-point exception.

6-6

Floating-Point Unit

Chapter 6

Before returning from a floating-point exception, or doing a CTCI,
software must first clear the enabled Cause bits to prevent a repeat of the
interrupt. Thus, User mode programs can never observe enabled Cause
bits set; if this information is required in a User mode handler, it must be
passed somewhere other than the Status register.

For a floating-point operation that sets only unenabled Cause bits, no
exception occurs and the default result defined by IEEE 754 is stored. In
this case, the exceptions that were caused by the immediately previous
floating-point operation can be determined by reading the Cause field.

Flag Bits

When an exception case is detected and the exception Enable is not set,
the corresponding flag bit is set. If an exception is taken, none of the flag
bits are modified. Note however that system software may set the flag bits
before invoking a user exception handler.

The Flag bits are cumulative and indicate that an exception was raised
by an operation that was executed since they were explicitly reset. Flag bits
are set to 1 if an IEEE 754 exception is raised, otherwise they remain
unchanged. The Flag bits are never cleared as a side effect of floating-point
operations; however, they can be set or cleared by writing a new value into
the Status register, using a Move To Coprocessor Control instruction.

Control/Status Register Rounding Mode Control Bits
Bits 1 and O in the Control/Status register constitute the Rounding Mode

(RM) field.
As shown in Table 6.4, these bits specify the rounding mode that the
FPU uses for all floating-point operations.

Rounding Mnemonic Description

Mode RM(1:0)

(0] RN Round result to nearest representable value;
round to value with least-significant bit 0 when
the two nearest representable values are equally
near.

1 RZ Round toward O: round to value closest to and not
greater in magnitude than the infinitely precise
result.

2 RP Round toward +: round to value closest to and
not less than the infinitely precise result.

3 RM Round toward - «: round to value closest to and
not greater than the infinitely precise result.

Table 6.4 Rounding Mode Bit Decoding

Floating-Point Formats

The FPU performs both 32-bit (single-precision) and 64-bit (double-
precision) IEEE standard floating-point operations. The 32-bit single-
precision format has a 24-bit signed-magnitude fraction field (f+s) and an
8-bit exponent (e), as shown in Figure 6.6.

31 30 23 22 0

f
Fraction

s e
Sign Exponent
1 8 23

Figure 6.6 Single-Precision Floating-Point Format

Floating-Point Unit Chapter 6

The 64-bit double-precision format has a 53-bit signed-magnitude
fraction field (f+s) and an 11-bit exponent, as shown in Figure 6.7.

63 62 52 51 0
S e f
Sign Exponent Fraction
1 11 52

Figure 6.7 Double-Precision Floating-Point Format

As shown in the above figures, numbers in floating-point format are
composed of three fields:

e sign field, s

¢ biased exponent, e = E + bias

4 fraction,f=.b1b2....bp_1

The range of the unbiased exponent E includes every integer between
the two values E,;;, and E_ . inclusive, together with two other reserved
values:

* Enin -1 (to encode 0 and denormalized numbers)

¢ Eax +1 (to encode +* and NaNs [Not a Number])

For single- and double-precision formats, each representable nonzero
numerical value has just one encoding.

For single- and double-precision formats, the value of a number, v, is
determined by the equations shown in Table 6.5.

No. | Equation

(1) |if E=Eqaxt1 and f 0, then vis NaN, regardiess of s
(2) | if E=Empaxt+1 andf=0,then v=(-1)%

3) | if Emin < E < Epay then v= (=1)%2E(1.1)

(@) |if E=Ep,—1andf =0, then v=(-1)32EMn(0 1)

(5) |if E=Eppy—1andf=0,then v=(-1)%

Table 6.5 Equations for Calculating Values in Single and
Double-Precision Floating-Point Format

For all floating-point formats, if v is NaN, the most-significant bit of f
determines whether the value is a signaling or quiet NaN: v is a signaling
NaN if the most-significant bit of fis set, otherwise, v is a quiet NaN.

Floating-Point Unit

Chapter 6

defines the values for the format parameters. Minimum and maximum
floating-point values are given in Table 6.7.

Format

Parameter Single Double
f 24 53
Emax +127 +1023
Emin -126 -1022
Exponent bias +127 +1023
Exponent width in bits 8 11
Integer bit hidden hidden
Fraction width in bits 24 53
Format width in bits 32 64

Table 6.6 Floating-Point Format Parameter Values

Type Value

Float Minimum 1.40129846e-45

Float Minimum Norm 1.17549435e-38

Float Maximum 3.40282347¢+38

Double Minimum 4.9406564584124654e-324
Double Minimum Norm | 2.2250738585072014e-308
Double Maximum 1.7976931348623157e+308

Table 6.7 Minimum and Maximum Floating-Point Values

Binary Fixed-Point Format

Binary fixed-point values are held in 2’s complement format. Unsigned
fixed-point values are not directly provided by the floating-point
instruction set. Figure 6.8 illustrates binary fixed-point format; Table 6.8,
which follows the figure, lists the binary fixed-point format fields.

31 30 0

l Sign { Integer I

1 31

Figure 6.8 Binary Fixed-Point Format

Field Description
sign sign bit
integer integer value

Table 6.8 Binary Fixed-Point Format Fields

Floating-Point Unit

Chapter 6

Floating-Point Instruction Set Overview

All FPU instructions are 32-bits long, aligned on a word boundary. They
can be divided into the following groups:

¢ Load, Store, and Move instructions move data between memory, the

main processor, and the FPU General Purpose registers.

¢ Conversion instructions perform conversion operations between the

various data formats.

¢ Computational instructions perform arithmetic operations on float-

ing-point values in the FPU registers.

e Compare instructions perform comparisons of the contents of regis-

ters and set a conditional bit based on the results.

¢ Branch on FPU Condition instructions perform a branch to the spec-

ified target if the specified coprocessor condition is met.

Table 6.9 through Table 6.12 list the instruction set of the FPU. A
complete description of each instruction is provided in Appendix B.

In the instruction formats shown in Table 6.9 through Table 6.12, the
Sfmt appended to the instruction opcode specifies the data format: s
specifies single-precision binary floating-point, d specifies double-
precision binary floating-point, and w specifies binary fixed-point.

OpCode Description

LWC1 Load Word to FPU

SWCl1 Store Word from FPU

LDC1 Load Doubleword to FPU
SDC1 Store Doubleword From FPU
MTC1 Move Word To FPU

MFC1 Move Word From FPU

CTC1 Move Control Word To FPU
CFC1 Move Control Word From FPU
DMTC1 Doubleword Move To FPU
DMFC1 Doubleword Move From FPU

Table 6.9 FPU Instruction Summary: Load, Move and Store Instructions

OpCode Description

CVT.S.fmt Floating-point Convert to Single FP
CVT.D.fmt Floating-point Convert to Double FP
CVT.W.fmt Floating-point Convert to Single Fixed Point
ROUND.w.fmt Floating-point Round

TRUNC.w.fmt Floating-point Truncate

CEIL.w.fmt Floating-point Ceiling

FLOOR.w.fmt Floating-point Floor

Table 6.10 FPU Instruction Summary: Conversion Instructions

Floating-Point Unit

Chapter 6

OpCode Description

ADD.fmt Floating-point Add

SUB.fmt Floating-point Subtract
MUL.fmt Floating-point Multiply
DIV.fmt Floating-point Divide
ABS.fmt Floating-point Absolute Value
MOV .fmt Floating-point Move

NEG.fmt Floating-point Negate
SQRT.fint Floating-point Square Root

Table 6.11 FPU Instruction Summary: Computational Instructions

OpCode Description

C.cond.fmt Floating-point Compare
BCIT Branch on FPU True

BCI1F Branch on FPU False
BCI1TL Branch on FPU True Likely
BCI1FL Branch on FPU False Likely

Table 6.12 FPU Instruction Summary: Compare and Branch Instructions

Floating-Point Load, Store, and Move Instructions

This section discusses the manner in which the FPU uses the load, store
and move instructions listed in Table 6.9 on page 10; Appendix B provides
a detailed description of each instruction.

Transfers Between FPU and Memory

All data movement between the FPU and memory is accomplished by
using one of the following instructions:

¢ Load Word To Coprocessor 1 (LWC1) or Store Word To Coprocessor 1

(SWC1) instructions, which reference a single 32-bit word of the FPU
general registers

¢ Load Doubleword (LDC1) or Store Doubleword (SDC1) instructions,

which reference a 64-bit doubleword.

These load and store operations are unformatted; no format conversions
are performed and therefore no floating-point exceptions can occur due to
these operations.

With the LDC1 and SDC1 instructions the R4600/R4700 floating-point
unit can take advantage of the 64-bit wide data cache and issue a
coprocessor load or store double-word instruction with every cycle.

Transfers Between FPU and CPU

Data can also be moved directly between the FPU and the CPU by using
one of the following instructions:

¢ Move To Coprocessor 1 (MTC1)

¢ Move From Coprocessor 1 (MFC1)

¢ Doubleword Move To Coprocessor 1 (DMTC1)

¢ Doubleword Move From Coprocessor 1 (DMFC1)

Like the floating-point load and store operations, these operations
perform no format conversions and never cause floating-point exceptions.

Floating-Point Unit

Chapter 6

Load Delay and Hardware Interlocks

The instruction immediately following a load can use the contents of the
loaded register. In such cases the hardware interlocks, requiring
additional real cycles; for this reason, scheduling load delay slots is
desirable, although it is not required for functional code.

Data Alignment
All coprocessor loads and stores reference the following aligned data
items:
¢ For word loads and stores, the access type is always WORD, and the
low-order 2 bits of the address must always be O.
e For doubleword loads and stores, the access type is always DOUBLE-
WORD, and the low-order 3 bits of the address must always be O.

Endianness

Regardless of byte-numbering order (endianness) of the data, the
address specifies the byte that has the smallest byte address in the
addressed field. For a big-endian system, it is the leftmost byte; for a little-
endian system, it is the rightmost byte.

Floating-Point Conversion Instructions

Conversion instructions perform conversions between the various data
formats such as single- or double-precision, fixed- or floating-point
formats. Table 6.10 on page 10 lists conversion instructions; Appendix B
gives a detailed description of each instruction.

Floating-Point Computational Instructions
Computational instructions perform arithmetic operations on floating-
point values, in registers. Table 6.11 on page 11 lists the computational
instructions and Appendix B provides a detailed description of each
instruction. There are two categories of computational instructions:
¢ 3-Operand Register-Type instructions, which perform floating-point
addition, subtraction, multiplication, division, and square root.
e 2-Operand Register-Type instructions, which perform floating-point
absolute value, move, and negate.

Branch on FPU Condition Instructions

Table 6.12 on page 11 lists the Branch on FPU (coprocessor unit 1)
condition instructions that can test the result of the FPU compare (C.cond)
instructions. Appendix B gives a detailed description of each instruction.

Floating-Point Compare Operations

The floating-point compare (C.fmt.cond) instructions interpret the
contents of two FPU registers (fs, fi in the specified format (fmf) and
arithmetically compare them. A result is determined based on the
comparison and conditions (cond) specified in the instruction.

Table 6.12 on page 11 lists the compare instructions; Appendix B gives
a detailed description of each instruction. Table 6.13 on page 13 lists the
mmnemonics for the compare instruction conditions.

Floating-Point Unit Chapter 6
Mnemonic | Definition Mnemonic | Definition
F False T True
UN Unordered OR Ordered
EQ Equal NEQ Not Equal
UEQ Unordered or Equal OLG Ordered or Less Than or Greater Than
OLT Ordered Less Than UGE Unordered or Greater Than or Equal
ULT Unordered or Less Than OGE Ordered Greater Than
OLE Ordered Less Than or Equal UGT Unordered or Greater Than
ULE Unordered or Less Than or Equal OGT Ordered Greater Than
SF Signaling False ST Signaling True
NGLE Not Greater Than or Less Than or Equal | GLE Greater Than, or Less Than or Equal
SEQ Signaling Equal SNE Signaling Not Equal
NGL Not Greater Than or Less Than GL Greater Than or Less Than
LT Less Than NLT Not Less Than
NGE Not Greater Than or Equal GE Greater Than or Equal
LE Less Than or Equal NLE Not Less Than or Equal
NGT Not Greater Than GT Greater Than

Table 6.13 Mnemonics and Definitions of Compare Instruction Conditions

FPU Instruction Pipeline Overview

The FPU provides an instruction pipeline that parallels the CPU
instruction pipeline. It shares the same five-stage pipeline architecture
with the CPU (see Chapter 3).

Instruction Execution

Figure 6.9 illustrates the 5-stage FPU pipeline. This is the same as that
of the integer pipeline but allows for the longer execution times of the
floating-point instructions.

LUJ 2111RT2RI lAl 2AI IDI 2D :

(11 [21 [IR] 2R] 1A] 2A[1

1W| 2W|

[11| 21] IR| 2R ;;;

1D| 2D| 1W| 2W|

[11| 21

1A[2A] 1D| 2D| 1W| 2wW|

IR| 2R| 1A] 2A] 1D| 2D[1W] 2w]

Figure 6.9 FPU Instruction Pipeline

Floating-Point Unit

Chapter 6

Figure 6.9 on page 6-13 assumes that one instruction is completed
every PCycle. Most FPU instructions, however, require more than one cycle
in the EX stage. This means the FPU must stall the pipeline if an
instruction execution cannot proceed because of register or resource
conflicts.

Floating-point operations proceed in parallel with non-floating-point
operations. Floating-point operations are not allowed to overlap each
other, with two exceptions:

¢ An add operation may start 2 cycles after the start of a multiply and
thus will be completely overlapped by the multiply.
¢ A multiply operation may overlap for up to 2 cycles, as follows:
R4600: A new multiply may start 6 cycles after another multiply.
R4700: A new multiply may start 4 cycles after another multiply
(for both single and double precision).

Non-floating-point operations as well as other integer operations may be
executed in parallel with the floating-point operations. All of this is
handled automatically by internal hardware in the R4600/R4700.

Instruction Execution Cycle Time

Unlike the CPU, which executes almost all instructions in a single cycle,
more time may be required to execute FPU instructions.
Table 6.14 gives the minimum latency of each floating-point operation.

Operation Pipeline Cycles | Operation Pipeline Cycles
Single | Double Single | Double

ADD.fmt 4 4 BC1T 1
SUB.fmt 4 4 BC1F 1
MUL.fmt BC1TL 1

R4600 8 8

R4700 4 5
DIV.fmt 32 61 BC1FL
SQRT.fmt 31 60 LWC1, LDC1 2
ABS.fmt 1 1 SWC1, SDC1 1
MOV.fmt 1 1 TRUNC.W.fmt 4 4
NEG.fmt 1 1 MTC1, DMTC1 2
ROUND.W.fmt 4 4 MFC1, DMFC1 2
CEIL.W.fmt 4 4 CTC1 3
FLOOR.W.fmt 4 4 CFC1 2
CVT.S.fmt (@) 4 CMP
CVT.D.fmt 2 @ |FIx
CVT.W.fmt 4 FLOAT
C.fmt.cond 3

Note: @ These operations are illegal.

Table 6.14 Floating-Point Operation Latencies

Floating-Point Unit

Chapter 6

Instruction Scheduling Constraints

The FPU resource scheduler only issues instructions to the FPU op units
(adder and multiplier) when no hardware use conflicts will occur. In
addition, some overlap possibilities are disallowed to keep the scheduler
simple (and/or increase performance).

FPU Multiplier Constraints

The FPU multiplier is partially pipelined in the R4600, allowing a new
multiply to begin every 6 cycles. It is more fully pipelined in the R4700,
allowing a new multiply to begin every 4 cycles.

FPU Adder Constraints

The FPU scheduler may issue an add operation (ADD.fmt or SUB.fmt) 2
cycles after a multiply (MUL.fmt).

Resource Scheduling Rules

The FPU Resource Scheduler issues instructions while adhering to the
rules described below. These scheduling rules optimize op unit executions;
if the rules are not followed, the hardware interlocks to guarantee correct
operation.

DIV.[S,D] can start only when all of the following conditions are met in
the 1A phase.

¢ The adder is idle (division is performed in the adder).

¢ The multiplier is idle.

MUL.[S,D] can start only when all of the following conditions are met in
the 1A phase.
e The multiplier is one of the following:
- idle.
- Started execution at least 6 cycles earlier on the current multiply
¢ The adder is idle.

SQRT.[S,D] can start when the following conditions are met in the 1A
phase.

¢ The adder is idle.

¢ The multiplier must be idle.

CVT.fmt instructions can only start when all of the following conditions
are met in the 1A phase.
e The adder is idle.
¢ The multiplier is idle.
ADD.[S,D] or SUB.[S,D] can start only when all of the following
conditions are met in the 1A phase.
¢ The adder is idle
e The multiplier is either:
- idle.
- started execution of the current multiply at least 2 cycles earlier.

NEG.[S,D] or ABS.[S,D] can start only when all of the following
conditions are met in the 1A phase.

e The adder is idle.

¢ The multiplier is idle.

C.COND.[S,D] can start only when all of the following conditions are met
in the 1A phase.

¢ The adder is idle.

¢ The multiplier is idle.

Floating-Point Unit Chapter 6

Floating-Point Exceptions Chapter 7

<y

Integrated Device Technology, Inc.

This chapter describes FPU floating-point exceptions, including FPU
exception types, exception trap processing, exception flags, saving and
restoring state when handling an exception, and trap handlers for IEEE
Standard 754 exceptions.

A floating-point exception occurs whenever the FPU cannot handle
either the operands or the results of a floating-point operation in its normal
way. The FPU responds by generating an exception to initiate a software
trap or by setting a status flag.

Exception Types

The FP Control/Status register described in Chapter 6 contains an
Enable bit for each exception type; exception Enable bits determine
avhether an exception will cause the FPU to initiate a trap or set a status

ag.
¢ If a trap is taken, the FPU remains in the state found at the beginning
of the operation and a software exception handling routine executes.
¢ If no trap is taken, an appropriate value is written into the FPU des-
tination register and execution continues.
The FPU supports the five IEEE Standard 754 exceptions:
¢ Inexact (I)
¢ Underflow (U)
¢ Qverflow (O)
¢ Division by Zero (Z)
Invalid Operation (V)

Cause bits, Enables, and Flag bits (status flags) are used.

The FPU adds a sixth exception type, Unimplemented Operation (E).
This exception indicates the use of a software implementation. The
Unimplemented Operation exception has no Enable or Flag bit; whenever
this exception occurs, an unimplemented exception trap is taken.

Figure 7.1 illustrates the Control/Status register bits that support
exceptions.

Bit#17 16 15 14 13 12

Cause
Elv]z|lolul 1] B
T |
Bit # 11 10 9 8 7
Enable
vlzlolul 1] &
L |
Bit# 6 5 4 3 2 Fi
a
wvlzlolul 1] g

|
‘ Inexact Operation
Underflow
Overflow
Division by Zero
Invalid Operation
Unimplemented Operation

Figure 7.1 Control/Status Register Exception/Flag/Trap/Enabie Bits

Floating-Point Exceptions

Chapter 7

Each of the five IEEE Standard 754 exceptions (V, Z, O, U,]) is
associated with a trap under user control, and is enabled by setting one of
the five Enable bits. When an exception occurs and its corresponding
Enable bit is not set, both the corresponding Cause and Flag bits are set.
When an exception occurs and its corresponding Enable bit is set, the
corresponding Cause bit is set and the subsequent exception processing
allows a trap to be taken.

Exception Trap Processing

When a floating-point exception trap is taken, the Cause register
indicates the floating-point coprocessor is the cause of the exception trap.
The Floating-Point Exception (FPE) code is used, and the Cause bits of the
floating-point Control/Status register indicate the reason for the floating-
point exception. These bits are, in effect, an extension of the system
coprocessor Cause register.

Flags

A Flag bit is provided for each IEEE exception. This Flag bit is set to a
1 on the assertion of its corresponding exception, with no corresponding
exception trap signaled.

The Flag bit is reset by writing a new value into the Status register; flags
can be saved and restored by software either individually or as a group.

When no exception trap is signaled, the floating-point coprocessor takes
a default action, providing a substitute value for the exception-causing
result of the floating-point operation. The particular default action taken
depends upon the type of exception. Table 7.1 lists the default action
taken by the FPU for each of the IEEE exceptions.

Field Description Rounding Default action
Mode
1 Inexact exception Any Supply a rounded result
U Underflow exception | Any Take unimplemented unless FCSR.FS bit is set.
(o) Overflow exception RN Modify overflow values to oo with the sign of the

intermediate result

RZ Modify overflow values to the format's largest finite
number with the sign of the intermediate result

RP Modify negative overflows to the format’'s most nega-
tive finite number; modify positive overflows to + oo
RM Modify positive overflows to the format's largest
finite number; modify negative overflows to — oo
VA Division by zero Any Supply a properly signed oo
A% Invalid operation Any Supply a quiet Not a Number (NaN)

Table 7.1 Default FPU Exception Actions

The FPU detects the eight exception causes internally. When the FPU
encounters one of these unusual situations, it causes either an IEEE
exception or an Unimplemented Operation exception (E).

Floating-Point Exceptions Chapter 7
lists the exception-causing conditions of the IEEE Standard 754.
FPA Internal IEEE Trap Trap Notes
Result Standard 754 | Enable | Disable

Inexact result

Pt

Loss of accuracy

Exponent overflow

la

R Normalized exponent > E .,

Division by zero

Zero is (exponent = E;;,-1, mantissa = 0)

Overflow on convert

Source out of integer range

Signaling NaN source

Signaling NaN source produces quiet NaN result

I
o,
z
v
v
v
U

ml < <|\#8 N|O|—
O < <|® N O

Invalid operation 0/0, etc.
Exponent underflow Normalized exponent < E.,;,,
Denormalized source | None E E Exponent = E-1 and mantissa <> 0

Note: 2The IEEE Standard 754 specifies an inexact exception on overflow only if the overflow trap is disabled.

Table 7.2 FPU Exception-Causing Conditions

FPU Exceptions

The following sections describe the conditions that cause the FPU to
generate each of its exceptions, and details the FPU response to each
exception-causing condition.

Inexact Exception (I)

The FPU generates the Inexact exception if the rounded result of an
operation is not exact or if it overflows. The FPU usually examines the
operands of floating-point operations before execution actually begins, to
determine (based on the exponent values of the operands) if the operation
can possibly cause an exception. If there is a possibility of an instruction
causing an exception trap, the FPU uses a coprocessor stall to execute the
instruction.

It is impossible, however, for the FPU to predetermine if an instruction
will produce an inexact result. If Inexact exception traps are enabled, the
FPU uses the coprocessor stall mechanism to execute all floating-point
operations that require more than two cycles. Since this mode of execution
can impact performance, Inexact exception traps should be enabled only
when necessary.

Trap Enabled Results: If Inexact exception traps are enabled, the result
register is not modified and the source registers are preserved.

Trap Disabled Results: The rounded or overflowed result is delivered to
the destination register if no other software trap occurs.

Invalid Operation Exception (V)

The Invalid Operation exception is signaled if one or both of the
operands are invalid for an implemented operation. When the exception
occurs without a trap, the MIPS ISA defines the result as a quiet Not a
Number (NaN). The invalid operations are:

¢ Addition or subtraction: magnitude subtraction of infinities, such as:

(+ o) + (=) Or (= o) = (=)

¢ Multiplication: O times o, with any signs

¢ Division: 0/0, or «/e, with any signs

¢ Comparison of predicates involving < or > without?, when the oper-

ands are unordered

¢ Any arithmetic operation on a signaling NaN. A move (MOV) operation

is not considered to be an arithmetic operation, but absolute value
(ABS) and negate (NEG) are considered to be arithmetic operations
and cause this exception if one or both operands is a signaling NaN.

e Square root: Vx, where x is less than zero

Floating-Point Exceptions

Chapter 7

Software can simulate the Invalid Operation exception for other
operations that are invalid for the given source operands. Examples of
these operations include IEEE Standard 754-specified functions
implemented in software, such as Remainder: x REM y, where y is O or x
is infinite; conversion of a floating-point number to a decimal format whose
value causes an overflow, is infinity, or is NaN; and transcendental
functions, such as In (-5) or cos-1(3). Refer to Appendix B for examples or
for routines to handle these cases.

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results: The FPU sets the Invalid Operation Exception
flag and a quiet NaN is delivered to the destination register.

Division-by-Zero Exception (Z)

The Division-by-Zero exception is signaled on an implemented divide
operation if the divisor is zero and the dividend is a finite nonzero number.
Software can simulate this exception for other operations that produce a
signed infinity, such as In(0), sec(r/2), csc(0), or 07

Trap Enabled Results: The result register is not modified, and the
source registers are preserved.

Trap Disabled Results: The result, when no trap occurs, is a correctly
signed infinity.

Overflow Exception (O)

The Overflow exception is signaled when the magnitude of the rounded
floating-point result, with an unbounded exponent range, is larger than
the largest finite number of the destination format. (This exception also
sets the Inexact exception and Flag bits.)

Trap Enabled Results: The result register is not modified, and the
source registers are preserved.

Trap Disabled Results: The result, when no trap occurs, is determined
by the rounding mode and the sign of the intermediate result.

Underflow Exception (U)

Two related events contribute to the Underflow exception:

e creation of a tiny nonzero result between +2F™" which can cause
some later exception because it is so tiny

¢ extraordinary loss of accuracy during the approximation of such tiny
numbers by denormalized numbers.

IEEE Standard 754 allows a variety of ways to detect these events, but

requires they be detected the same way for all operations.
Tinniness can be detected by one of the following methods:
¢ after rounding (when a nonzero result, computed as though the expo-

nent range were unbounded, would lie strictly between +2Emin)
¢ before rounding (when a nonzero result, computed as though the ex-
ponent range and the precision were unbounded, would lie strictly be-

tween +2Emin)

The MIPS architecture requires that tininess be detected after rounding.

Loss of accuracy can be detected by one of the following methods:

¢ denormalization loss (when the delivered result differs from what

would have been computed if the exponent range were unbounded)

¢ inexact result (when the delivered result differs from what would have

been computed if the exponent range and precision were both un-
bounded).

The MIPS architecture requires that loss of accuracy be detected as an
inexact result.

Trap Enabled Results: When an underflow trap is enabled, underflow
is signaled when tininess is detected regardless of loss of accuracy. If
underflow traps are enabled, the result register is not modified, and the
source registers are preserved.

Floating-Point Exceptions ' Chapter 7

Trap Disabled Results: When an underflow trap is not enabled and
FCSR.FS is clear, then take an unimplemented exception. When an
underflow trag is not enabled and FCSR.FS is set, raise Inexact and return
either O or +2°™", a5 appropriate for the current rounding mode.

Unimplemented Instruction Exception (E)

Any attempt to execute an instruction with an operation code or format
code that has been reserved for future definition sets the Unimplemented
bit in the Cause field in the FPU Control/Status register and traps. The
operand and destination registers remain undisturbed and the instruction
is emulated in software. Any of the IEEE Standard 754 exceptions can
arise from the emulated operation, and these exceptions in turn are
simulated.

The Unimplemented Instruction exception can also be signaled when
unusual operands or result conditions are detected that the implemented
hardware cannot handle properly. These include:

¢ Denormalized operand
Quiet NaN operand
Underflow
Reserved opcodes
Unimplemented formats
Conversion of a floating-point number to a fixed point format when an
overflow occurs or the source operand value is Infinity or a NaN.

¢ Operations which are invalid for their format (for instance, CVT.S.S)

Denormalized and NaN operands are only trapped if the instruction is a
convert or computational operation. Moves and compares do not trap if
their operands are either denormalized or NaNs.

The use of this exception for such conditions is optional; most of these
conditions are newly developed and are not expected to be widely used in
early implementations. Loopholes are provided in the architecture so that
these conditions can be implemented with assistance provided by
software, maintaining full compatibility with the IEEE Standard 754.

Trap Enabled Results: The original operand values are undisturbed.

Trap Disabled Results: This trap cannot be disabled.

Saving and Restoring State

Sixteen or thirty-two doubleword coprocessor load or store operations
save or restore the coprocessor floating-point register state in memory.
The remainder of control and status information can be saved or restored
through Move To/From Coprocessor Control Register instructions, and
saving and restoring the processor registers. Normally, the Control/ Status
register is saved first and restored last.

When the coprocessor Control/Status register (FCR31) is read, and the
coprocessor is executing one or more floating-point instructions, the
instruction(s) in progress are either completed or reported as exceptions.
The architecture requires that no more than one of these pending
instructions can cause an exception. Information indicating the type of
exception is placed in the Control/Status register. When state is restored,
state information in the status word indicates that exceptions are pending.

Writing a zero value to the Cause field of Control/Status register clears
all pending exceptions, permitting normal processing to restart after the
floating-point register state is restored.

The Cause field of the Control/Status register holds the results of only
one instruction; the FPU examines source operands before an operation is
initiated to determine if this instruction can possibly cause an exception.
If an exception is possible, the FPU executes the instruction in stall mode
to ensure that no more than one instruction (that might cause an
exception) is executed at a time.

e o ¢ o o

Floating-Point Exceptions

Chapter 7

Trap Handlers for IEEE Standard 754 Exceptions

The IEEE Standard 754 strongly recommends that users be allowed to
specify a trap handler for any of the five standard exceptions that can
compute; the trap handler can either compute or specify a substitute
result to be placed in the destination register of the operation.

By retrieving an instruction using the processor Exception Program
Counter (EPC) register, the trap handler determines:

¢ exceptions occurring during the operation

¢ the operation being performed

¢ the destination format

On Overflow or Underflow exceptions (except for conversions), and on
Inexact exceptions, the trap handler gains access to the correctly rounded
result by examining source registers and simulating the operation in
software.

On Overflow or Underflow exceptions encountered on floating-point
conversions, and on Invalid Operation and Divide-by-Zero exceptions, the
trap handler gains access to the operand values by examining the source
registers of the instruction.

The IEEE Standard 754 recommends that, if enabled, the overflow and
underflow traps take precedence over a separate inexact trap. This
prioritization is accomplished in software; hardware sets the bits for both
the Inexact exception and the Overflow or Underflow exception.

Y Processor Signal Chapter 8
Descriptions
)t P
Integrated De:nce Technology, Inc.
Introduction

This chapter describes the signals used by and in conjunction with the
R4600/R4700 processor. The signals include the System interface, the
Clock/Control interface, the Interrupt interface, the Joint Test Action
Group (JTAG) interface, and the Initialization interface.

Signals are listed in bold, and low active signals have a trailing asterisk
— for instance, the low-active Read Ready signal is RARdy*. The signal
description also tells if the signal is an input (the processor receives it) or
output (the processor sends it out).

Figure 8.1 illustrates the functional groupings of the processor signals.

SysAD(63:0)
TClock(1:0) SysADC(7:0)
RClock(1:0) SysCmd(8:0)
° MasterClock SysCmdP o
é MasterOut Validin* 8
©
g SyncOut ValidOut* 2
g Syncin ExtRgst* £
5 IOOut Release* 13
(®) n
X| lon R4600/ RdRdy"
8 Fault* R4700 WrRdy*
VceP Logic
VssP Symbol ModeClock -
— ModelN |2 g
. N 8
.§ o DO ColdReset* £
gE JTMS Reset”__|
_ —_— =0
| JTCK G0 | 28
NMI* | E E

Figure 8.1 R4600/R4700 Processor Signals

Processor Signal Descriptions

Chapter 8

System Interface Signals

System interface signals provide the connection between the R4600/
R4700 processor and the other components in the system. Table 8.1 lists
the system interface signals.

Name Definition Direction Description

ExtRqgst* External request | Input An external agent asserts ExtRgst* to
request use of the System interface. The pro-
cessor grants the request by asserting
Release*.

Release* Release interface | Output In response to the assertion of ExtRqst* or a
CPU read request, the processor asserts
Release*, signalling to the requesting device
that the System interface is available.

RdRdy* Read ready Input The external agent asserts RARdy* to indi-
cate that it can accept a processor read
request.

SysAD(63:0) | System address/ | Input/ A 64-bit address and data bus for communi-

data bus Output cation between the processor and an external
agent.

SysADC(7:0) | System address/ | Input/ An 8-bit bus containing check bits for the
data check bus Output SysAD bus.

SysCmd(8:0) | System com- Input/ A 9-bit bus for command and data identifier
mand/data identi- | Output transmission between the processor and an
fier external agent.

SysCmdP System com- Input/ A single, even-parity bit for the SysCmd bus.
mand/data identi- | Output
fier bus parity

ValidIn* Valid input Input The external agent asserts ValidIn* when it
is driving a valid address or data on the
SysAD bus and a valid command or data
identifier on the SysCmd bus.

ValidOut* Valid output Output The processor asserts ValidOut* when it is
driving a valid address or data on the SysAD
bus and a valid command or data identifier
on the SysCmd bus.

WrRdy* Write ready Input An external agent asserts WrRdy* when it

can accept a processor write request.

Table 8.1 System Interface Signals

Processor Signal Descriptions

Chapter 8

Clock/Control Interface Signals
The Clock/Control interface signals make up the interface for clocking
and maintenance.
Table 8.2 lists the Clock/Control interface signals.

Name Definition Direction Description

IOOut 1/0 output Output Reserved for future output.
Always High.

I0In 1/0 input Input Reserved for future input.
Should be driven High.

MasterClock | Master clock Input Master clock input that estab-
lishes the processor operating
frequency. It is 1/2 the pipeline
frequency.

MasterOut Master clock out Output Master clock output aligned with
MasterClock.

RClock(1:0) Receive clocks Output Two identical receive clocks that
establish the System interface
frequency.

SyncOut Synchronization Output SyncOut must be connected to

clock out Syncln through an interconnect
that models the interconnect
between MasterOut, TClock,
RClock, and the external agent.

Syncin Synchronization Input Synchronization clock input.

clock in

TClock(1:0) Transmit clocks Output Two identical transmit clocks
that establish the System inter-
face frequency.

Fault* Fault Output Reserved for future output.
Always High.

VeeP Quiet Vcc for PLL Input Quiet Vcc for the internal phase
locked loop.

VssP Quiet Vss for PLL Input Quiet Vss for the internal phase

locked loop.

Table 8.2 Clock/Control Interface Signals

Processor Signal Descriptions

Chapter 8

Interrupt Interface Signals

The Interrupt interface signals make up the interface used by external
agents to interrupt the R4600/R4700 processor. Six hardware interrupts
(Int*(5:0)) and one NMI are available on the R4600/R4700. Table 8.3 lists
the Interrupt interface signals.

Name Definition

Direction

Description

Int*(5:0) | Interrupt

Input

Six general processor interrupts, bit-wise ORed
with bits 5:0 of the interrupt register.

NMI*

Nonmaskable
interrupt

Input

Nonmaskable interrupt, ORed with bit 6 of the
interrupt register.

Table 8.3 Interrupt Interface Signals

JTAG Interface Signals
The R4600/R4700 does not implement JTAG. The signals are provided
for compatibility with existing R4x00PC designs.
Table 8.4 lists the JTAG interface signals.

Name Definition Direction Description
JTDI JTAG data in Input Connected directly to JTDO. No JTAG imple-
mented. Should be pulled High.
JTCK TAG clock input Input Unused input. Should be pulled High.
JTDO JTAG data out Output Connected directly to JTDI. If no external
scan used, this is a no connect.
JTMS JTAG command Input Unused input. Should be pulled High.

Table 8.4 JTAG Interface Signals

Processor Signal Descriptions Chapter 8

Initialization Interface Signals

The Initialization interface signals make up the interface by which an
external agent initializes the processor operating parameters. Table 8.5
lists the Initialization interface signals.

Name Definition Direction Description

ColdReset* Cold reset Input This signal must be asserted for a
power on reset or a cold reset. The
clocks SClock, TClock, and
RClock begin to cycle and are syn-
chronized with the deasserted edge
of ColdReset*. ColdReset* must
be deasserted synchronously with
MasterClock.

ModeClock Boot mode clock Output Serial boot-mode data clock output;
runs at the Master Clock frequency
divided by 256: (MasterClock/

256).
Modeln Boot mode data in | Input | Serial boot-mode data input.
Reset* Reset Input This signal must be asserted for any

reset sequence. It can be asserted
synchronously or asynchronously
for a cold reset, or synchronously to
initiate a warm reset. Reset* must
be deasserted synchronously with
MasterClock.

VCCOk Vee is OK Input When asserted, this signal indicates
to the processor that Ve > Vecmin
for more than 100 milliseconds and
will remain stable. The assertion of
VCCOK initiates the initialization
sequence.

Table 8.5 Initialization Interface Signals

Processor Signal Descriptions Chapter 8

Table 8.6 lists the R4600/R4700 processor signals and their possible

states.
Asserted Reset
Description Name I/0 State 3-State State

System address/data bus SysAD(63:0) | 1/O High Yes a
System address/data check bus SysADC(7:0) | I/O High Yes a
System command/data identifier bus SysCmd(8:0) | 1/0 High Yes a
System command/data identifier bus parity | SysCmdP 1/0 High Yes a
Valid input ValidIn* I Low No NA
Valid output ValidOut* (o} Low Yes b
External request ExtRqgst* I Low No NA
Release interface Release* o Low Yes b
Read ready RdARdy* I Low No NA
Write ready WrRdy* I Low No NA
Interrupts Int*(5:0) I Low No NA
Nonmaskable interrupt NMI* 1 Low No NA
Boot mode data in Modeln I High No NA
Boot mode clock ModeClock (o] High No d
JTAG data in JTDI 1 High No NA
JTAG data out JTDO O High Yes b
JTAG command JTMS I High No NA
JTAG clock input JTCK I High No NA
Transmit clocks TClock(1:0) (o] High Yes c
Receive clocks RClock(1:0) o High Yes c
Master clock MasterClock | High No NA
Master clock out MasterOut o High Yes c
Synchronization clock out SyncOut (o] High Yes c
Synchronization clock in SyncIn I High No NA
I/0 output IOOut o High Yes b
I/0 input IOIn I High No NA
Vee is OK VCCOk I High No NA
Cold reset ColdReset* | Low No NA
Reset Reset* I Low No NA
Fault Fault* (o) Low Yes b

Key to Reset State Column:

a All 1/0 pins (SysADI[63:0], SysADC]7:0], etc.) remain 3-stated until the Reset* signal deasserts.

b All output only pins (ValidOut*, Release*, etc.), except the clocks, are 3-stated until the ColdReset*

signal deasserts.

c All clocks, except ModeClock, are 3-stated until VCCOKk asserts.

d ModeClock is always driven.

NA Not applicable to input pins.

Table 8.6 R4600/R4700 Processor Signal Summary

8-6

1;1

Integrated Device Technology, Inc.

Initialization Interface Chapter 9

Introduction

This chapter describes the R4600/R4700 Initialization interface. This
includes the reset signal description and types, initialization sequence,
with signals and timing dependencies, and boot modes, which are set at
initialization time.

Signal names are listed in bold letters—for instance the signal VCCOk
indicates the Vcc voltage is stable. Low-active signals are indicated by an
asterisk at the end of the name, as in ColdReset*.

Functional Overview

The R4600/R4700 processor has the following three types of resets.
Refer to Figure 9.1 on page 9-4, Figure 9.2 on page 9-5, and Figure 9.3 on
page 9-6 for timing diagrams of these resets.

¢ Power-on reset: Starts when the power supply is turned on and
completely reinitializes the internal state machine of
the processor without saving any state information.

¢ Cold reset: Restarts all clocks, but the power supply remains
stable. A cold reset completely reinitializes the
internal state machine of the processor without
saving any state information.

e Warm reset: Restarts processor, but does not affect clocks. A
warm reset preserves the processor internal state.

These resets use the VCCOk, ColdReset*, and Reset* input signals,
which are summarized in the next subsection. Descriptions of each type
of reset operation is described

The Initialization interface is a serial interface that operates at the
frequency of the MasterClock divided by 256 (i.e. MasterClock/256). This
low-frequency operation allows the initialization information to be stored
in a low-cost EPROM or PLD.

Reset and Initialization Signal Descriptions
This section describes the three reset signals, VCCOk, ColdReset*, and
Reset*, and the two initialization signals, ModeIn and ModeClock.

VCCOk: When asserted!, VCCOKk indicates to the processor that the 5.0
(3.3) volt power supply (Vcc) has been above 4.75 (3.0) volts for
more than 100 milliseconds (ms) and is expected to remain
stable. The assertion of VCCOk initiates the reading of the
boot-time mode control serial stream. This is described in the
subsection “Initialization Sequence” on page 9-4.

ColdReset*: The ColdReset* signal must be asserted (low) for either a
power-on reset or a cold reset. The clocks SClock, TClock, and
RClock begin to cycle and are synchronized with the
de-asserted edge (high) of ColdReset*. ColdReset* must be
de-asserted synchronously with MasterClock.

Reset*: The Reset* signal must be asserted for any reset sequence. It
can be asserted synchronously or asynchronously for a cold
reset, or synchronously to initiate a warm reset. Reset* must
be de-asserted synchronously with MasterClock.

Modeln: Serial boot mode data in.

ModeClock: Serial boot mode data out, at the MasterClock frequency
divided by 256 (MasterClock/256).

L. Asserted means the signal is true, or in its valid state. For example, the low-
active Reset* signal is said to be asserted when it is in a low (true) state; the
high-active VCCOKk signal is true when it is asserted high.

9-1

Initialization Interface Chapter 9

Table 9.1 lists the processor signals and their possible states.

Description Name I/0 | Asserted State | 3-State | Reset State

System address/data bus SysAD(63:0) | I/O High Yes a
System address/data check bus SysADC(7:0) | I/O High Yes a
System command/data identifier bus SysCmd(8:0) | I/O High Yes a
System command/data identifier bus parity | SysCmdP I/0 High Yes a
Valid input ValidIn* I Low No NA
Valid output ValidOut* o Low Yes b
External request ExtRqgst* I Low No NA
Release interface Release* o Low Yes b
Read ready RdRdy* I Low No NA
Write ready WrRdy* I Low No NA
Interrupts Int*(5:0) I Low No NA
Nonmaskable interrupt NMI* I Low No NA
Boot mode data in Modeln I High No NA
Boot mode clock ModeClock (0] High No d
JTAG data in JIDI I High No NA
JTAG data out JTDO (o) High Yes b
JTAG command JTMS I High No NA
JTAG clock input JTCK I High No NA
Transmit clocks TClock(1:0) 0] High Yes c
Receive clocks RClock(1:0) o High Yes c
Master clock MasterClock | I High No NA
Master clock out MasterOut o High Yes c
Synchronization clock out SyncOut o High Yes c
Synchronization clock in Syncln I High No NA
I/0 output IOOut (o) High Yes b
I/0 input I10In I High No NA
Vee is OK VCCOk I High No NA
Cold reset ColdReset* 1 Low No NA
Reset Reset* I Low No NA
Fault Fault* o Low Yes b

Key to Reset State Column:

All I/0 pins (SysAD|63:0], SysADC|7:0], etc.) remain 3-stated until the Reset* signal deasserts.

b All output only pins (ValidOut*, Release*, etc.), except the clocks, are 3-stated until the ColdReset* signal

c :Tla csli)irliz except ModeClock, are 3-stated until VCCOk asserts.

d ModeClock is always driven.

NA Not applicable to input pins.

Table 9.1 R4600/R4700 Processor Signal Summary

Initialization Interface

Chapter 9

Power-on Reset

Figure 9.1, Figure 9.2, and Figure 9.3 illustrate the power-on, warm,
and cold resets.

This is the sequence for a power-on reset:

1. Power-on reset applies a stable Vcc of at least 4.5 (3.0) volts from the
5.0 (3.3) volt power supply to the processor. During this time, VCCOKk is
deasserted, ColdReset* and Reset* are asserted and the MasterClock
input oscillates.

2. After at least 100 ms of stable Vcc and MasterClock, the VCCOk
signal is asserted to the processor. The assertion of VCCOk begins the
initialization of the processor. After the mode bits have been read in, the
processor allows its internal phase locked loops to lock, stabilizing the
processor internal clock, PClock, the SyncOut-SyncIn clock path
(described in Chapter 10), and the master clock output, MasterOut.

3. ColdReset* is asserted for at least 64K (or 21¢) MasterClock cycles
after the assertion of VCCOk. Once the processor reads the boot-time
mode control serial data streamn, ColdReset* can be deasserted.
ColdReset* must be deasserted synchronously with MasterClock.

4. The deasserted edge of ColdReset* synchronizes the edges of SClock,
TClock, and RClock (to all processors, if in a multiprocessor system).

5. After ColdReset* is deasserted synchronously and SClock, TClock,
and RClock have stabilized, Reset* is deasserted to allow the processor to
begin running. (Reset* must be held asserted for at least 64 MasterClock
cycles after the deassertion of ColdReset*.) Reset* must be deasserted
synchronously with MasterClock.

Note: ColdReset* must be asserted when VCCOKk asserts. The behavior of the
processor is undefined if VCCOKk asserts while ColdReset* is deasserted.

Cold Reset

A cold reset can begin anytime after the processor has read the
initialization data stream, causing the processor to start with the Reset
exception.

A cold reset requires the same sequence as a power-on reset except that
the power is presumed to be stable before the assertion of the reset inputs
and the deassertion of VCCOKk.

To begin the reset sequence, VCCOk must be deasserted for a minimum
of 100 ms before reassertion.

Warm Reset

To execute a warm reset, the Reset* input is asserted synchronously
with MasterClock. It is then held asserted for at least 64 MasterClock
cycles before being deasserted synchronously with MasterClock. The
processor internal clocks, PClock and SClock, and the System interface
clocks, TClock and RClock, are not affected by a warm reset. The boot-
time mode control serial data stream is not read by the processor on a
warm reset. A warm reset forces the processor to start with a Soft Reset
exception.

The master clock output, MasterOut, generates any reset-related
signals for the processor that must be synchronous with MasterClock.

After a power-on reset, cold reset, or warm reset, all processor internal
state machines are reset, and the processor begins execution at the reset
vector. All processor internal states are preserved during a warm reset,
although the precise state of the caches depends on whether or not a cache
miss sequence has been interrupted by resetting the processor state
machines.

Initialization Interface Chapter 9

Initialization Sequence

The boot-mode initialization sequence begins immediately after VCCOk
is asserted. As the processor reads the serial stream of 256 bits through
the ModeIn pin, the boot-mode bits initialize all fundamental processor
modes. (The signals used are described in Chapter 8).

This is the initialization sequence:

1. The system deasserts the VCCOk signal. The ModeClock output
is held asserted.

2. The processor synchronizes the ModeClock output at the time
VCCOKk is asserted. The first rising edge of ModeClock occurs at least 256
MasterClock cycles after VCCOKk is asserted. There could be more clock
cycles due to internal delays on the VecOK signal. After the first rising
edge, each additional rising edge will be 256 master clock cycles.

3. Each bit of the initialization stream is presented at the ModelIn pin
after each rising edge of the ModeClock. The processor samples 256
initialization bits from the Modeln input.

L. 1By
MasterClock RQ -------- AV AN ACEVAVARS
(MClk) > DS

- g ————— P

2100ms™ |/ 256
VCCOK _) 256 MCIk cycles MClk
cyc es|

ModeClocl; \ ' /;__, A R S

TMDS
Modeln _ kBito)EBi 1)- %

_ _*\l -ms |
ColdReset*_ 2 64K MCIk cycles

g TDS

Reset*

TClock _ Undefined

RClock _ ~~ Unadtined ™~ ===/ \ S\ -

Figure 9.1 Power-on Reset

Initialization Interface

Chapter 9

f_--

ﬁ <4 TDS
2|64 MCIk cyqles

@ TDS

Vce -
MasterClock ~ ~ \ F\' Y R U :/_\‘ J—\- T
(MCIK) > TDS

- ID ——

> [100ms
VCCOK 256 MCIk cycles
ModeCl / ____
odeClock_ TMDS b [«
| - TMDH

- % _<Bit><
Modeln 1 255

- 64K MCIk cycl
ColdReset*_ 2 cyees

TDSPp| |-

Reset*
MasterOut_ /—_ Undefined .,
SyncOut _ /__ “Undefined ./

T\ o ___ S
TClock _ /\ Undefined

I /
RClock _ /_\ Undefined

VA AvaR.

Figure 9.2 Cold Reset

Initialization Interface Chapter 9

Vce -
%\f\lf(sﬁilicm;j“/—\"/‘\‘jr\: ----- _ /_\"/—\-‘/—\--- /______/__/_____
VCCOK _ 256 MCIK cycles
ModeClock___ —__, D et TR
Modeln :

-q >| g TDS

ColdReset*_

TDS
Reset* : j\ <2 64 MCIk cyclesE/Ir
MasterOuC “““““““““““ -/ m— --- _/—_/—_ _____________
SYIICOUt: /_\ -------------- _//—_/__‘“‘_/__/__ -------------
TClock _ / \"=========-=--se- AV A A WA T T L L LTS

RClock _/—\ --------------- _/__/__ -——-f\f_ _____________

Figure 9.3 Warm Reset

Boot-Mode Settings
Unlike the R4000, the speed of the R4600/R4700 output drivers is
statically controlled at boot time.
Table 9.2 lists the processor boot-mode settings. The following rules
apply to the boot-mode settings listed in the table:
e Bit O of the stream is presented to the processor when VCCOk
is first asserted.
¢ Selecting a reserved value results in undefined processor behav-
ior.
¢ Bits 19 to 255 are reserved bits.
e Zeros must be scanned in for all reserved bits.

Initialization Interface Chapter 9

Serial Value Mode Setting Serial Value Mode Setting
Bit Bit
0 Reserved (must be zero) 9:10 | Non-block Write: Selects the manner in

which non-block writes are handled, bit 10
is most significant

1:4 | XmitDatPat: System interface data rate for 0 R4x00 compatible

block writes only (bit 4 most significant)

(0] DDDD 1 Reserved

1 DDxDDx 2 Pipelined Writes

2 DDxxDDxx 3 Write re-issue

3 DxDxDxDx 11 TmrIntEn: Disables the timer interrupt on
Int*[5]

4 DDxxxDDxxx 0 Enabled Timer Interrupt

5 DDxxoxDDxoxcxx 1 Disabled Timer Interrupt

6 DxxDxxDxxDxx 12 Reserved (must be zero)

7 DDxxoocoxDDxoooxxx || 13:14 | Drv_Out: Output driver slew rate control.
Bit 14 is most significant. Affects only out-
puts that are not clocks.

8 DxoxxDxxxDxxxDxxx 10 100% strength (fastest)

9-15 Reserved 11 83% strength

5:7 | SysCkRatio: PClock to SClock divisor, fre- 00 67% strength

quency relationship between SClock, RClock,

and TClock and PClock, bit 7 most significant.

0 Divide by 2 01 50% strength (slowest)

1 Divide by 3 15 Tclock[0]:

2 Divide by 4 [0] Enabled. [1] Disabled.

3 Divide by 5 16 Tclock([1]:

4 Divide by 6 [0] Enabled. [1] Disabled.

5 Divide by 7 17 | Rclock[O]:

6 Divide by 8 [0] Enabled. [1] Disabled.

7 Reserved 18 | Rclock(1]:

8 EndBIt: Specifies byte ordering [0] Enabled. [1] Disabled.

0 Little-endian 19:255 | Reserved (must be zero)

ordering
1 Big-endian
ordering

Table 9.2 Boot-Mode Settings

Initialization Interface Chapter 9

dt

¢H

Integrated Device Technology, Inc.

Clock Interface Chapter 10

Introduction

This chapter describes the clock signals (“clocks”) used in the R4600/
R4700 processor and the processor status reporting mechanism.

The subject matter includes basic system clocks, system timing
parameters, connecting clocks to a phase-locked system, connecting
clocks to a system without phase locking, and processor status outputs.

Signal Terminology
The following terminology is used in this chapter (and book) when
describing signals:
¢ Rising edge indicates a low-to-high transition.
¢ Fualling edge indicates a high-to-low transition.
¢ Clock-to-Q delay is the amount of time it takes for a signal to move
from the input of a device (clock) to the output of the device (Q).

Figure 10.1 and Figure 10.2 illustrate these terms.

single clock cycle

e e

I L R T
high-to-low \

transition low-to-high

transition

Figure 10.1 Signal Transitions

data out
Q
data in -
[L))
clock input

Clock-to-Q

delay

P

Figure 10.2 Clock-to-Q Delay

Basic System Clocks

The various clock signals used in the R4600/R4700 processor are
described below, starting with MasterClock, upon which the processor
bases all internal and external clocking. Note: All output clocks will have
approximately a 50% duty cycle * the jitter and any difference in rise and/
or fall times.

MasterClock

The processor bases all internal and external clocking on the single
MasterClock input signal. The processor generates the clock output
signal, MasterOut, at the same frequency as MasterClock and aligns
MasterOut with MasterClock, if SyncIn is properly connected to
SyncOut.

10-1

Clock Interface

Chapter 10

MasterOut

The processor generates the clock output signal, MasterOut, at the
same frequency as MasterClock and aligns MasterOut with MasterClock,
if SyncIn is properly connected to SyncOut. MasterOut clocks certain
external logic, such as the reset logic.

SyncIn/SyncOut

The processor generates SyncOut at the same frequency as
MasterClock and aligns SyncIn with MasterClock.

SyncOut must be connected to SyncIn either directly, or through an
external buffer. The processor can compensate for both output driver and
input buffer delays (and, when necessary, delay caused by an external
buffer according to the connections of TClock and RClock to the rest of
the system) when aligning SyncIn with MasterClock. Figure 10.8 on
page 10-9 gives an illustration of SyncOut connected to SyncIn through
an external buffer.

PClock

The processor generates an internal clock, PClock, at twice the
frequency of MasterClock and precisely aligns every other rising edge of
PClock with the rising edge of MasterClock.

All internal registers and latches use PClock, which is the pipeline clock
rate.

SClock

The R4600/R4700 processor divides PClock by 2, 3, 4, 5, 6, 7 or 8,
programmed at boot-mode initialization to generate the internal clock
signal, SClock. The processor uses SClock to sample data at the system
interface and to clock data into the processor system interface output
registers.

The first rising edge of SClock, after ColdReset* is deasserted, is
aligned with the first rising edge of MasterClock.

TClock
TClock (transmit clock) clocks the output registers of an external agent,
and can be a global system clock for any other logic in the external agent.
TClock is identical to SClock. The edges of TClock align precisely with
the edges of SClock and TClock can also be aligned with MasterClock,
when Syncln is properly connected to SyncOut.

RClock

The external agent uses RClock (receive clock) to clock its input
registers. The processor generates RClock at the same frequency as
SClock, although RClock leads TClock and SClock by 25 percent of
SClock cycle time.

Clock Interface

Chapter 10

Figure 10.3 shows the clocks for a PClock-to-SClock division by 2.

Cycle

" |
MasterClock \ / ;__/—_\‘ / \

|
MasterOut W

PClock
SClock
TClock
RClock

SysAD Driven ﬂ

SysAD Received :X

| [
| l moiigh !

|

: 1 Moiow l
|

|

|

T
—
2

= 1O - — — — —
=
o
2

T

<
(w)
<

—_——eem e e, A e - - - - =

Figure 10.3 Processor Clocks, PClock-to-SClock Division by 2

System Timing Parameters

As shown in Figure 10.3, data provided to the processor must be stable
a minimum of tpg nanoseconds (ns) before the rising edge of SClock and
be held valid for a minimum of tpy ns after the rising edge of SClock.

Alignment to SClock
Processor data becomes stable a minimum of tpy ns and a maximum of
tpo ns after the rising edge of SClock. This drive-time is the sum of the

maximum delay through the processor output drivers together with the
maximum clock-to-Q delay of the processor output registers.

Alignment to MasterClock

Certain processor inputs (specifically VCCOk, ColdReset*, and Reset*)
are sampled based on MasterClock, while others are output based on
MasterClock. The same setup, hold, and drive-off parameters, tpgs, tpy,

tpm, and tpg, shown in Figure 10.3, apply to these inputs and outputs, but
they are measured relative to MasterClock instead of SClock.

Phase-Locked Loop (PLL)

The processor aligns SyncOut, PClock, SClock, TClock, and RClock
with internal phase-locked loop (PLL) circuits that generate aligned clocks
based on SyncOut/SyncIn. By their nature, PLL circuits are only capable
of generating aligned clocks for MasterClock frequencies within a limited
range.

10-3

Clock Interface

Chapter 10

Clocks generated using PLL circuits contain some inherent inaccuracy,
or jitter; a clock aligned with MasterClock by the PLL can lead or trail
MasterClock by as much as the related maximum jitter specified in the
data sheet.

PLL Components and Operation

The passive components required for the Phase Locked Loop circuit are
contained in the packages for the R4600 and R4700. There are no required
external passive components.

Passive Components

The Phase Locked Loop circuit requires several passive components for
proper operation, which are connected to PLLCap0, PLLCapl, VccP, and
VssP, as illustrated in Figure 10.4.

R4600/R4700

Cc3 C2

Note: C1, C2, C3, Rs
and Ls are Board Caps

Figure 10.4 PLL Passive Components

It is essential to isolate the analog power and ground for the PLL circuit
(VccP/VssP) from the regular power and ground (Vec/Vss). Initial
evaluations have yielded good results with the following values:

R = 5 ohms
Cl = 1 nF
C2 = 82 nF
C3 = 10 uF
Cp = 470 pF

Since the optimum values for the filter components depend upon the
application and the system noise environment, these values should be
considered as starting points for further experimentation within your
specific application.

10-4

Clock Interface

Chapter 10

Figure 10.5 shows the internal PLL and clock distribution network of the
R4600/R4700.

ColdResetB |X|_l>°

F

Syncin |X| > PLL1/ | 2F
Clock

o -
Doubler 2F+90

Masterln EZ' l:
F

PClock (2F)
Clock —
PLL2/ -
Clock | 2F — }—* Distribution —
Doubler | op, 902 Tree

PLLoff———

Figure 10.5 R4600/R4700 PLL Network

Connecting Clocks to a Phase-Locked System

When the processor is used in a phase-locked system, the external agent
must phase lock its operation to a common MasterClock. In such a
system, the delivery of data and data sampling have common
characteristics, even if the components have different delay values. For
example, transmission time (the amount of time a signal takes to move from
one component to another along a trace on the board) between any two
components A and B of a phase-locked system can be calculated from the
following equation:

Transmission Time = (SClock period) — (tpo for A) — (tpg for B) —
(Clock Jitter for A Max) — (Clock Jitter for B Max)

°10-5

Clock Interface

Chapter 10

Figure 10.6 shows a block-level diagram of a phase-locked system using
the R4600/R4700 processor.

MasterClock
R4600/R4700 External Agent
MasterClock MasterClock
SysCmd SysCmd
SysAD SysAD
SyncOut
Syncin
RClock
TClock

Figure 10.6 R4600/R4700Processor Phase-Locked System

Connecting Clocks to a System without Phase Locking
When the R4600/R4700 processor is used in a system in which the
external agent cannot lock its phase to a common MasterClock, the
output clocks RClock and TClock can clock the remainder of the system.
Two clocking methodologies are described in this section: connecting to a
gate-array device or connecting to discrete CMOS logic devices.

Connecting to a Gate-Array Device

When connecting to a gate-array device, both RClock and TClock are
used within the gate-array. The gate array internally buffers RClock and
uses this buffered version to clock registers that sample processor
outputs.

These sampling registers should be immediately followed by staging
registers clocked by an internally buffered version of TClock. This buffered
version of TClock should be the global system clock for the logic inside the
gate array and the clock for all registers that drive processor inputs.
Figure 10.7 on page 7 is a block diagram of this circuit.

Staging registers place a constraint on the sum of the clock-to-Q delay
of the sample registers and the setup time of the synchronizing registers
inside the gate arrays, as shown in the following equation:

Clock-to-Q Delay + Setup of Synch Register < 0.25 (RClock period)
- (Max Clock Jitter for RClock)
- (Max Delay Mismatch for Clock Buffers on RClock and TClock)

Clock Interface

Chapter 10

Figure 10.7 is a block diagram of a system without phase lock, using the
R4600/R4700 processor with an external agent implemented as a gate

array.
'TT 7T 7T 777 " Sampling” ~ Staging !
MasterClock | Gate Register Register :
! Array !
|
R4600/R4700 ! |
MasterClock ! :
| —-—-—‘> \
SysCmd : :
! [
!]
SysAD : |
|
\ <7 '
SyncOut \ ~ !
Syncin \ :
! |
| |
. P~
RClock \ K :
TClock : L |
: !
! |
! |
| |
! l
! |
! |
| l— |
! 1
| L \
: CE !
! l
! |
! \
: —> | —D :
l Sampling Staging :
| Register Register \
: CE !
\ A :
| ‘\d \
! |
| |
| ___________________________ 4

Figure 10.7 Gate-Array System Without Phase Lock, Using the
R4600/R4700 Processor

In a system without phase lock, the transmission time for a signal from
the processor to an external agent composed of gate arrays can be
calculated from the following equation:

Transmission Time = (75 percent of TClock period) — (tpo for R4600/R4700)
+ (Min External Clock Buffer Delay)
- (External Sample Register Setup Time)
- (Max Clock Jitter for R4600/R4700 Internal Clocks)
- (Max Clock Jitter for RClock)

10-7

Clock Interface

Chapter 10

The transmission time for a signal from an external agent composed of
gate arrays to the processor in a system without phase lock can be
calculated from the following equation:

Transmission Time = (TClock period) — (tpg for R4600/R4700)
— (Max External Clock Buffer Delay)
— (Max External Output Register Clock-to-Q Delay)
— (Max Clock Jitter for TClock)
— (Max Clock Jitter for R4600/R4700 Internal Clocks)

Connecting to a CMOS Logic System

The processor uses matched delay clock buffers to generate aligned
clocks to external CMOS logic. A matched delay clock buffer is inserted in
the SyncOut/SynclIn alignment path of the processor, skewing SyncOut,
MasterOut, RClock, and TClock to lead MasterClock by the buffer delay
amount, while leaving PClock aligned with MasterClock.

The remaining matched delay clock buffers are available to generate a
buffered version of TClock aligned with MasterClock. Alignment error of
this buffered TClock is the sum of the maximum delay mismatch of the
matched delay clock buffers, and the maximum clock jitter of TClock.

As the global system clock for the discrete logic that forms the external
agent, the buffered version of TClock clocks registers that sample
processor outputs, as well as clocking the registers that drive the processor
inputs.

The transmission time for a signal from the processor to an external
agent composed of discrete CMOS logic devices can be calculated from the
following equation:

Transmission Time = (TClock period) - (tpo for R4600/R4700)
- (External Sample Register Setup Time)
— (Max External Clock Buffer Delay Mismatch)
— (Max Clock Jitter for R4600/R4700 Internal Clocks)
— (Max Clock Jitter for TClock)

Clock Interface

Chapter 10

Figure 10.8 is a block diagram of a system without phase lock,
employing the R4600/R4700 processor and an external agent composed of
both a gate array and discrete CMOS logic devices.

MasterClock

R4600/R4700
MasterClock

SysCmd

SysAD Control

SyncOut
Syncin

RClock
TClock

Sample L
Regigters ,_L ce] |

Memory I

Figure 10.8 Gate Array and CMOS System Without Phase Lock, Us-
ing the R4600/R4700 Processor

The transmission time for a signal from an external agent composed of
discrete CMOS logic devices can be calculated from the following equation:

Transmission Time = (TClock period) - (tpg for R4600/R4700)
— (Max External Output Register Clock-to-Q Delay)
— (Max External Clock Buffer Delay Mismatch)
— (Max Clock Jitter for R4600/R4700 Internal Clocks)
— (Max Clock Jitter for TClock)

In this clocking methodology, the hold time of data driven from the
processor to an external sampling register is a critical parameter. To
guarantee hold time, the minimum output delay of the processor, tpy.

must be greater than the sum of the following:

Min hold time for the external sampling register
+ max clock jitter for R4600/R4700 internal clocks
+ max clock jitter for TClock
+ max delay mismatch of the external clock buffers

10-9

Clock Interface Chapter 10

it A Cache Organization, Chapter 11
: dt Operation and Coherency

G
:

Integrated Device Technology, Inc.

Introduction

This chapter describes in detail the cache memory: its place in the
R4600/R4700 memory organization and individual operations of the
primary cache.

This chapter uses the following terminology:

¢ The primary cache may also be referred to as the P-cache.

¢ The primary data cache may also be referred to as the D-cache.

¢ The primary instruction cache may also be referred to as the I-cache.

These terms are used interchangeably throughout this book.

Memory Organization

Figure 11.1 shows the R4600/R4700 system memory hierarchy. In the
logical memory hierarchy, caches lie between the CPU and main memory.
They are designed to make the speedup of memory accesses transparent
to the user. Each functional block in Figure 11.1 has the capacity to hold
more data than the block above it. For instance, physical main memory
has a larger capacity than the primary cache. At the same time, each
functional block takes longer to access than any block above it. For
instance, it takes longer to access data in main memory than in the CPU
on-chip registers.

. R4600/R4700 L

. . 8 A
’ ’ ‘Q
|| Registers Registers . é’
I-cache D-cache . §
-
O

Y

Faster Access Increasing Data
Time Capacity

A

Disk, CO-ROM,
" Tape, etc.

Figure 11.1 Logical Hierarchy of Memory

The R4600/R4700 processor has two on-chip primary caches: one holds
instructions (the instruction cache), the other holds data (the data cache).

11-1

Cache Organization, Operation and Coherency Chapter 11

Overview of Cache Operations

As described earlier, caches provide fast temporary data storage, and
they make the speedup of memory accesses transparent to the user. In
general, the processor accesses cache-resident instructions or data
through the following procedure:

1. The processor, through the on-chip cache controller, attempts to
access the next instruction or data in the primary cache.

2. The cache controller checks to see if this instruction or data is present
in the primary cache.

¢ If the instruction/data is present, the processor retrieves it. This is

called a primary-cache hit.

¢ If the instruction/data is not present in the primary cache, it is re-

trieved as a cache line from memory and is written into the primary
cache.

3. The processor retrieves the instruction/data from the primary cache
and operation continues. For a data cache miss, the processor can restart
the pipeline after the first doubleword (the one at the miss address) is
retrieved and continues the cache line refill in parallel.

It is possible for the same data to be in two places simultaneously: main
memory and the primary cache. This data is kept consistent through the
use of either a write-back or a write-through methodology. For a write-back
cache, the modified data is not written back to memory until the cache line
is replaced. In a write-through cache, the data is written to memory as the
cached data is modified (with a possible delay due to the write buffer).

R4600/R4700 Cache Description

This section describes the organization of on-chip primary caches. As
Figure 11.1 on page 1 shows, the R4600/R4700 contains separate primary
instruction and data caches.

Figure 11.2 provides block diagrams of the R4600/R4700 memory
model.

Main Memory | -

Figure 11.2 Cache Support in the R4600/R4700

Cache Line Size

A cache line is the smallest unit of information that can be fetched from
memory to be filled into the cache. A primary cache line is 8 words in
length, and is represented by a single tag.

Upon a cache miss in the primary cache, the missing cache line is
loaded from memory into the primary cache.

Cache Organization and Accessibility

This section describes the organization of the primary cache, including
the manner in which it is mapped, the addressing used to index the cache,
and composition of the cache lines. The primary instruction and data
caches are indexed with a virtual address (VA).

11-2

Cache Organization, Operation and Coherency Chapter 11

Organization of the Primary Instruction Cache (I-Cache)

Each line of primary I-cache data (although it is actually an instruction,
it is referred to as data to distinguish it from its tag) has an associated 28-
bit tag that contains a 24-bit physical address, a single valid bit, a reserved
bit, a single parity bit and the FIFO replacement bit. Word parity is used
on I-cache data.

The R4600/R4700 processor primary I-cache has the following
characteristics:

¢ two-way set associative

¢ indexed with a virtual address

¢ checked with a physical tag

¢ organized with 8-word (32-byte) cache line.

Figure 11.3 shows the format of a primary I-cache line.

27 26 25 24 23 0
F|P|O ‘ Vv PTag I
1 T 24 65 64 63 0
PTag Physical tag (bits35:12 of the physical address) DataP Data
v Valid bit DataP Data
F FIFO Replacement Bit. Complemented on refill. DataP Data
P Even parity for the PTag and V fields DataP Data
DataP ~ Even parity; 1 parity bit per word of data 2 64
Data Cache data

Figure 11.3 R4600/R4700 Primary I-Cache Line Format

Organization of the Primary Data Cache (D-Cache)

Each line of primary D-cache data has an associated 30-bit tag that
contains a 24-bit physical address, 2-bit cache line state, a write-back bit,
a parity bit for the physical address and cache state fields, a parity bit for
the write-back bit and the FIFO replacement bit.

The R4600/R4700 processor primary D-cache has the following
characteristics:
write-back or write-through on a per-page basis
two-way set associative
indexed with a virtual address
checked with a physical tag
organized with 8-word (32-byte) cache line.

e e o o o

11-3

Cache Organization, Operation and Coherency Chapter 11

Figure 11.4shows the format of a primary D-cache line.

gmv g™

PTag
DataP
Data

29 28 27 26 25 24 23 0
Flw|w|P| cs PTag
1 1 1 1 2 24

71 64 63 0

FIFO Replacement Bit

Even parity for the write-back bit

Write-back bit (set if cache line has been written)
Even parity for the PTag and CS fields

Primary cache state:
0 =Invalid, 1 = Shared,
2 = Clean Exclusive, 3 = Dirty Exclusive

Physical tag (bits 35:12 of the physical address)
Even parity for the data; 1-bit per byte
Cache data

Figure 11.4 R4600/R4700 8-Word Primary Data Cache Line Format

In the R4600/R4700, the W (write-back) bit, not the cache state,
indicates whether or not the primary cache contains modified data that
must be written back to memory.

Note: There is no hardware support for cache coherency. Thus the only
cache states used are Dirty Exclusive and Invalid.

Cache Organization, Operation and Coherency Chapter 11

Accessing the Primary Caches
Figure 11.5 shows the virtual address (VA) index into the primary
caches. Each instruction and data cache size is 16 Kbytes.

A

\J

Data

Tags

Tag line VA(1215)

Data line

Y

VA(12:5)

w W State Tag P

Data

Figure 11.5 Primary Cache Data and Tag Organization

Cache States

The terms below are used to describe the state of a cache line:

e Exclusive: a cache line that is present in exactly one cache in the sys-
tem is exclusive. This is always the case for the R4600/R4700. All
cache lines are in an exclusive state.

e Dirty: a cache line that contains data that has changed since it was
loaded from memory is dirty.

¢ Clean: a cache line that contains data that has not changed since it
was loaded from memory is clean.

e Shared: a cache line that is present in more than one cache in the
system. The R4600/R4700 does not provide for hardware cache co-
herency. This state should never happen in normal operations.

The R4600/R4700 only supports the four cache states as shown in
Table 11.1 on page 6. The only states that will occur in the R4600/R4700,
under normal operations are the Dirty Exclusive and Invalid states.

Note: Even though valid data is in the Dirty Exclusive state, it may still
be consistent with memory. One must look at the dirty bit, W, to determine
if the cache line is to be written back to memory when it is replaced.

11-5

Cache Organization, Operation and Coherency Chapter 11

Each primary cache line in the R4600/R4700 system is in one of the
states described in Table 11.1.

Cache Line
State Description
Invalid A cache line that does not contain valid information must be marked invalid, and cannot
be used. A cache line in any other state than invalid is assumed to contain valid informa-
tion.
Shared A cache line that is present in more than one cache in the system is shared. This state will

not occur for normal operations.

Clean Exclusive

A clean exclusive cache line contains valid information and this cache line is not present
in any other cache. The cache line is consistent with memory and is not owned by the pro-
cessor (see “Cache Line Ownership” on page 6 in this chapter). This state will not occur
for normal operations.

Dirty Exclusive

A dirty exclusive cache line contains valid information and is not present in any other
cache. The cache line may or may not be consistent with memory and is owned by the
processor (see “Cache Line Ownership” on page 6 in this chapter). Use the W bit to deter-

mine if the line must be written back on replacement.

Table 11.1 Cache States

Primary Cache States
Each primary data cache line is normally in one of the following states:
e invalid
¢ dirty exclusive
Each primary instruction cache line is in one of the following states:
¢ invalid
e valid

Cache Line Ownership
The processor is the owner of a cache line when it is in the dirty
exclusive state and is responsible for the contents of that line. There can
only be one owner for each cache line.
The ownership of a cache line is set and maintained through the rules
described below.
* A processor assumes ownership of the cache line if the state of the
primary cache line is dirty exclusive.
¢ A processor that owns a cache line is responsible for writing the cache
line back to memory if the line is replaced during the execution of a
Write-back or Write-back Invalidate cache instruction if the line is in
a write-back page. The Cache instruction is explained in Appendix A.
¢ Memory always owns clean cache lines
¢ The processor gives up ownership of a cache line when the state of the
cache line changes to invalid.
Therefore, based on these rules and that any valid data cache line is in
the Dirty Exclusive state (under normal operating conditions), the
processor is considered to be the owner of the cache line.

Cache Write Policy

The R4600/R4700 processor manages its primary data cache by using
either a write-back or a write-through policy on a per-page basis. In a
write-back cache, the data is not written back to memory until the cache
line is replaced. A write-through policy means the store data is written to
the cache and to memory. The write of the data to memory may not occur
at the same time as the write to cache due to the write buffer.

For a write-back entry, if the cache line is valid and has been modified
(the Whit is set), the processor writes this cache line back to memory when
the line is replaced, either in the course of satisfying a cache miss or during
the execution of a Write-back or Write-back Invalidate CACHE instruction.

11-6

Cache Organization, Operation and Coherency Chapter 11

For a write-through entry, whenever a store hits in the cache line, the
data is also written to memory via the write buffer. The store will not set or
clear the W bit for a write-through cache line. This is to allow a different
virtual address that maps to the same physical address and with a write-
back policy to still set the W bit. For a miss to a write-through line, the
action taken will be determined by the write-allocation policy. For a write-
allocate entry, the cache line is first retrieved from memory and the store
will then continue. A no write-allocate entry will just post the write to the
system interface, via the write buffer, in the same manner as an uncached
write.

When the processor writes a cache line back to memory, it does not
ordinarily retain a copy of the cache line, and the state of the cache line is
changed to invalid. However, there are exceptions. For example, the
processor retains a copy of the cache line if a cache line is written back by
the Hit Write-back cache instruction. If the W bit is set, the cache line is
written back and the W bit is cleared. The processor signals this line
retention during a write by setting SysCmd(2) to a 1, as described in
Chapter 12. :

Cache State Transition Diagrams

The following sections describe the cache state diagrams that illustrate
the cache state transitions for the primary cache. Figure 11.6 shows the
state diagram of the primary cache.

When an external agent supplies a cache line, it need not return the
initial state of the cache line, for normal operations (see Chapter 12 for a
definition of an external agent). This is because the only read request the
R4600/R4700 should issue are for non-coherent data and the lower three
bits for the data identifier are reserved. The initial state will automatically
be set to DE by the R4600/R4700. Otherwise, the processor changes the
state of the cache line during one of the following events:

e A store to a dirty exclusive line remains in a dirty exclusive state.
¢ The state is changed to invalid for:

- A Cache invalidate operation.

- If the line is replaced

Wirite hit
Read hit

Index Invalidate
Hit Invalidate

Dirty Exclusive

Figure 11.6 Primary Data Cache State Diagram

Cache Coherency Overview

Systems using more than one master must have a mechanism to
maintain data consistency throughout the system. This mechanism is
called a cache coherency protocol. The R4600/R4700 does not provide
anf3t'v$1ardware cache coherency. Cache coherency must be handled with
software.

Cache Coherency Attributes
Cache coherency attributes are necessary to ensure the consistency of
data throughout the system.

11-7

Cache Organization, Operation and Coherency Chapter 11

Bits in the translation look-aside buffer (TLB) control coherency on a
per-page basis. Specifically, the TLB contains 3 bits per entry that provide
two possible coherency attribute types; they are listed below and described
more fully in the following sections.

¢ uncached
e noncoherent (includes 3 attribute values)
Table 11.2 summarizes the behavior of the processor on load misses and

store misses for each of the coherency attribute types listed above. The
following sections describe in detail these coherency attribute types

Attribute Type Load Miss Store Miss

Uncached Main memory read Main memory write

Noncoherent Noncoherent read Noncoherent read (write-allocate page)
Main memory write (no write-allocate page)

Table 11.2 Coherency Attributes and Processor Behavior

Uncached

Lines within an uncached page are never in a cache. When a page has
the uncached coherency attribute, the processor issues a doubleword,
partial-doubleword, word, or partial-word read or write request directly to
main memory (bypassing the cache) for any load or store to a location
within that page.

Noncoherent

Lines with a noncoherent attribute type can reside in a cache; a load
miss causes the processor to issue a noncoherent block read request to a
location within the cached page. For a store miss to a write-allocate page,
the processor issues a noncoherent block read request to a location within
the cached page and then does the write-through. If the page has the no
write-allocate attribute, a store miss will generate a write to the memory as
in the uncached case.

Cache Operation Modes

The R4600/R4700 processor only supports the no-secondary-cache
mode (only uncached and noncoherent coherency attributes are
applicable) of R4x00 operation.

R4600/R4700 Processor Synchronization Support

In a multiprocessor system, it is essential that two or more processors
working on a common task execute without corrupting each other’s
subtasks. Synchronization, an operation that guarantees an orderly
access to shared memory, must be implemented for a properly functioning
multiprocessor system. Two of the more widely used methods are
discussed in this section: test-and-set, and counter. Even though the
R4600/R4700 does not support symmetric multi-processing (SMP), these
are useful for multi-master and heterogenous multi-processing.

Test-and-Set

Test-and-set uses a variable called the semaphore, which protects data
from being simultaneously modified by more than one processor. In other
words, a processor can lock out other processors from accessing shared
data when the processor is in a critical section, a part of program in which
no more than a fixed number of processors is allowed to execute. In the
case of test-and-set, only one processor can enter the critical section.

Cache Organization, Operation and Coherency Chapter 11

Figure 11.7 illustrates a test-and-set synchronization procedure that
uses a semaphore; when the semaphore is set to 0, the shared data is
unlocked, and when the semaphore is set to 1, the shared data is locked.

3

1. Load semaphore

2. Unlocked?
(=07)

Yes

3. Try locking
semaphore

4. Successful?

Yes

5. Execute critical section
(Access shared data)

Y

6. Unlock ssmaphore

Y

Continue processing

Figure 11.7 Synchronization with Test-and-Set

The processor begins by loading the semaphore and checking to see if it
is unlocked (set to O) in steps 1 and 2. If the semaphore is not O, the
processor loops back to step 1. If the semaphore is 0, indicating the shared
data is not locked, the processor next tries to lock out any other access to
the shared data (step 3). If not successful, the processor loops back to step
1, and reloads the semaphore.

If the processor is successful at setting the semaphore (step 4), it
executes the critical section of code (step 5) and gains access to the shared
data, completes its task, unlocks the semaphore (step 6), and continues
processing.

Counter

Another common synchronization technique uses a counter. A counter
is a designated memory location that can be incremented or decremented.

In the test-and-set method, only one processor at a time is permitted to
enter the critical section. Using a counter, up to N processors are allowed
to concurrently execute the critical section. All processors after the Nth
processor must wait until one of the N processors exits the critical section
and a space becomes available.

The counter works by not allowing more than one processor to modify it
at any given time. Conceptually, the counter can be viewed as a variable
that counts the number of limited resources (for example, the number of
processes, or software licenses, etc.).

11-9

Cache Organization, Operation and Coherency Chapter 11

Figure 11.8 shows this process.

|

Load counter

Y
Execute critical section

—]
Yes Load counter
Try decrementin
cgmter 9 +
Try incrementing
counter
No
No
Yes

Continue processing

Figure 11.8 Synchronization Using a Counter

Load Linked and Store Conditional
The R4600/R4700 instructions Load Linked (LL) and Store Conditional
(SC) provide support for processor synchronization. These two
instructions work very much like their simpler counterparts, load and
store. The LL instruction, in addition to doing a simple load, has the side
effect of setting a bit called the link bit. This link bit forms a breakable link
between the LL instruction and the subsequent SC instruction. The SC
performs a simple store if the link bit is set when the store executes. If the
link bit is not set, then the store fails to execute. The success or failure of
the SC is indicated in the target register of the store.
The link is broken upon completion of an ERET (return from exception)
instruction.
The most important features of LL and SC are:
¢ They provide a mechanism for generating all of the common synchro-
nization primitives including test-and-set, counters, sequencers, etc.,
with no additional overhead.
e When they operate, bus traffic is generated only if the state of the
cache line changes; lock words stay in the cache until some other pro-
cessor takes ownership of that cache line.

Cache Organization, Operation and Coherency

Chapter 11

Examples Using LL and SC
Figure 11.9 shows how to implement test-and-set using LL and SC

instructions.

L

Load semaphore

nlocked?

Try locking
semaphore

uccessful?
(r3=07?)

Yes

Execute critical section
(Access shared data)

y

Unlock semaphore

EQ

scram) -

NOP

'"asa‘rs O,Loop .

Figure 11.9 Test-and-Set using LL and SC

11-11

Cache Organization, Operation and Coherency

Chapter 11

Figure 11.10 shows synchronization using a counter.

!

Load counter

Yes

Try decrementing
counter

Successful?
(r3=07?)
Yes

Execute critical section

‘ \

Load counter

Try incrementing
counter

No
Yes

Continue processing

Figure 11.10 Counter Using LL and SC

11-12

System Interface Chapter 12

iE
Integrated Device Technology, inc.

Introduction
The System interface allows the processor to access external resources
needed to satisfy cache misses and uncached operations, while permit-
ting an external agent access to some of the processor internal resources.
This chapter describes the system interface from the point of view of
both the processor and the external agent.

Terminology

The following terms are used in this chapter:

An external agent is any logic device connected to the processor, over
the system interface, that allows the processor to issue<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>