
L ·

L

INTEGR A T E D

Hardware
user's Manual

DEVICE T E C H NOLOGY ' I N .-. C
·~

IDT79R304 l TM

Integrated RISController™ for
Low-Cost Systems

Hardware User's Manual

September 14, 1992

Revision 1.00

Integrated Device Technology, Inc.

l ©1992 by Integrated Device Technology, Inc.

ABOUT THIS MANUAL

This manual provides a qualitative description of the functional operation of
the IDTR304 l integrated RISController.

A quantitative description of the processor electrical interface is provided in
the data sheet for this product. Also included in the data sheet is the
mechanical description of the part, including packaging and pin-out.

Additional information on development tools, complementary support chips,
and the use of these products in various applications, are provided in separate
data sheets and applications notes.

Any of this information is readily available from your local IDT sales
representative.

Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice,
in order to improve design or perfonnance and to supply the best possible product. IDT does not assume any responsibility for
use of any circuitry described other than the circuitry embodied in an IDT product. The Company makes no representations that
circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license
is granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc.

LIFE SUPPORT POLICY
Integrated Device Technology's products are not authorized for use as critical components in life support
devices or systems unless a specific written agreement pertaining to such intended use is executed
between the manufacturer and an officer of IDT.
1. Life support devices or systems are devices or systems which (a) are Intended for surgical implant into

the body or (b) support or sustain life and whose failure to perform, when properly used in accordance
with Instructions for use provided In the labeling, can be reasonably expected to result In a significant
injury to the user.

2. A critical component is any components of a life support device or system whose failure to perform can
be reasonably expected to cause the failure of the life support device or system, or to affect its safety
or effectiveness.

The IDT logo is a registered trademark and RISController, R3041, R3051, R3081, and RISChipset are trademarks of Integrated Device Technology, Inc.
MIPS is a registered trademark of MIPS Computer Systems, Inc.
UNIX is a registered trademark of AT&T.
MC680x0 and iAPXx86 are registered trademarks of Motorola Corporation and Intel Corporation, respectively.

(;) TABLE OF CONTENTS

Integrated Device Technology, Inc.

Family Overview ... 1-1
Introduction .. 1-1
Features .. 1- 1
Device Overview .. 1-2

CPU Core ... 1-2
System Control Co-Processor ... 1-2
Clock Generator Unit ... 1-2
Instruction Cache .. 1-3
Data Cache .. 1-4
Bus Interface Unit .. 1-4

System Usage .. 1-5
Development Support .. 1-6
Performance Overview ... 1-7

Instruction Set Architecture ... 2-1
Introduction .. 2-1
R305 l Family Processor Features Overview ... 2- 1
R3051 Family CPU Registers Overview .. 2-2
Instruction Set Overview .. 2-2
R305 l Family Programming Model .. 2-4

Data Formats and Addressing .. 2-5
R305 l Family CPU General Registers ... 2-6
R305 l Family CPO Special Registers .. 2-6
R305 l Family Operating Modes .. 2-7
R305 l Family Pipeline Architecture .. 2-7
Pipeline Hazards .. 2-8

R305 l Family Instruction Set Summary .. 2- 11
Instruction Formats ... 2- 11
Instruction Notational Conventions .. 2-11
Load and Store Instructions ... 2-12
Computational Instructions ... 2-15
Jump and Branch Instructions .. 2-17
Special Instructions ... 2-19
Co-processor Instructions .. 2-19
System Control Co-processor (CPO) Instructions 2-20

R305 l Family Opcode Encoding .. 2-20
Cache Architecture ... 3-1

Introduction .. 3- 1
Fundamentals of Cache Operation ... 3- 1
R304 l Family Cache Organization ... 3-2

Basic Cache Operation ... 3-2
Memory Address to Cache Location Mapping 3-2
Cache Addressing .. 3-3
Write Policy .. 3-3
Partial Word Writes .. 3-3
Instruction Cache Line Size .. 3-3
Data Cache line Size .. 3-4
Summary ... 3-4

Cache Operation ... 3-5
Basic Cache Fetch Operation ... 3-5
Cache Miss Processing ... 3-6
Instruction Streaming .. 3-6

Cacheable References .. 3-7

©1992 Integrated Device Technology, Inc.

Software directed Cache Operations .. 3-7
Cache Sizing .. 3-7
Cache Flushing .. 3-8
Forcing Data into the Caches ... 3-9

Summary .. 3-9
Memory Management .. 4-1

Introduction .. 4-1
Virtual Memory in the R305 l Family .. .4-1
Privilege States .. 4-2

User Mode Virtual Addressing .. 4-2
Kernel Mode Virtual Addressing ... 4-2

R304 l Address Translation ... 4-3
Summary .. 4-10

System Interface Control .. 5-1
Introduction .. 5-1
Co-processor 0 Bus Interface Control .. 5-1
Bus Control Register ... 5-2

Lock ... 5-2
Reserved-High (' l ') .. 5-2
MemStrobe Control .. 5-3
ExtDataEn Control ... 5-3
IOStrobe Control .. 5-3
BE 16 Control ... 5-4
BE Control ... 5-4
Bus Tum Around ... 5-4
DMA Protocol Control ... 5-4
TC Control ... 5-5
BR Control ... 5-5

Cache Configuration Register .. 5-6
Lock .. ,.. 5-6
Reserved-High (' l ') .. 5-6
Reserved-Low ('O') ... 5-6
DBlockRefill ('DBR') .. 5-6
ForceDCacheMiss ('FDM') ... 5-6

Count Register .. 5-7
Compare Register .. 5-7
Portsize Control Register .. 5-8

Lock ... 5-9
Reserved .. 5-9
KSeg2(b:a) .. 5-9
KUseg(d:a) .. 5-9
Ksegl/O(h:a) .. 5-9

Exception Handling ... 6-1
Introduction .. 6-1
R305 l Family Exception Model .. 6-1

Precise vs. Imprecise Exceptions .. 6-2
Exception Processing ... 6-3
Exception Handling Registers .. 6-3

The Cause Register .. 6-4
The EPC (Exception Program Counter) Register 6-5
Bad VAddr Register .. 6-5
Context Register ... 6-5
The Status Register .. 6-5
Prid Register .. 6-7

Exception Vector Locations .. 6-8
Exception Prioritization ... 6-8
Exception Latency ... 6-10
Interrupts in the R305 l Family ... 6-11

ii

Using fue BrCond Inputs ... 6-12
Interrupt Handling .. 6-13
Interrupt Servicing .. 6-13
Basic Software Techniques for Handling Interrupts 6-14
Preserving Context .. 6-15
Determining fue Cause of fue Exception .. 6-16
Returning from Exceptions .. 6-1 7
Special Techniques for Interrupt Handling ... 6-18

Interrupt Masking .. 6-18
Using BrCond for Fast Response .. 6-18
Nested Interrupts ... 6-20
Catastrophic Exceptions .. 6-20

Handling Specific Exceptions ... 6-21
Address Error Exception .. 6-21

Cause ... 6-21
Handling ... 6-21
Servicing ... 6-21

Breakpoint Exception ... 6-22
Cause ... 6-22
Handling ... 6-22
Servicing ... 6-22

Bus Error Exception ... 6-23
Cause ... 6-23
Handling ... 6-23
Servicing ... 6-23

Co-processor Unusable Exception .. 6-24
Cause ... 6-24
Handling ... 6-24
Servicing ... 6-24

Interrupt Exception .. 6-25
Cause ... 6-25
Handling ... 6-25
Servicing ... 6-25

Overflow Exception .. 6-26
Cause ... 6-26
Handling ... 6-26

Reserved Instruction Exception .. 6-27
Cause ... 6-27
Handling ... 6-27
Servicing ... 6-27

Reset Exception ... 6-28
Cause ... 6-28
Handling ... 6-28
Servicing ... 6-28

System Call Exception .. 6-29
Cause ... 6-29
Handling ... 6-29
Servicing ... 6-29

Interface Overview .. 7 -1
Read Operations .. 7-1
Burst Reads ... 7 -1
Single Datum Reads ... 7 -1
Mini-burst Reads ... 7-2
Write Operations .. 7-2
Single Datum Writes .. 7 -2
OMA Operations ... 7-2

Multiple Operations ... 7-3

iii

Execution Engine Fundamentals ... 7 -4
Execution Core Cycles .. 7-4
Cycles .. 7-4
Run Cycles ... 7 -4
Stall Cycles .. 7 -4

Wait Stall Cycles ... 7-4
Refill Stall Cycles .. 7 -4
Fixup Stall Cycles ... 7-4
Read Busy Stalls .. 7-5
Write Busy Stalls .. 7-5
Multiply /Divide Busy Stalls .. 7-5
Micro-TLB Fill Stalls ... 7-5

Multiple Stalls .. 7-5
Pin Description .. 7-6

System Bus Interface Signals ... 7-6
Address and Data Path .. 7 -6
Multiplexed Address and Data Bus ... 7-6

Address(31:4) ... 7-6
BE(3:0) ... 7-6
Data(31:0) .. 7-6

Dedicated Address Bus .. 7-7
Primary Read and Write Control Signals .. 7 -7

Address Latch Enable .. 7 -7
Data Input Enable .. 7-7
Burst Transfer ... 7-8
Write Near .. 7 -8
Read .. 7-8
Write .. 7-8
Acknowledge .. 7-8
Read Buffer Clock Enable ... 7-8
Bus Error ... 7-8

Secondary Read and Write Control Signals .. 7-9
Byte Enable Strobes for 16-Bit Ports .. 7-9
Last Datem in Mini-Burst ... 7-9
Memory Strobe ... 7-9
Input/Output Strobe .. 7-10
Branch Condition Port 3 .. 7 -10
Extended Data Enable .. 7 -10
Branch Condition Port 2 .. 7 -10

Status Information and Diagnostics ... 7 -11
Diagnostic Pin .. 7 -11
Trial State Outputs .. 7-11

DMA Arbiter Interface .. 7-11
DMA Arbiter Bus Request ... 7-11
DMA Arbiter Bus Grant .. 7-11

Interrupt Interface ... 7-12
Processor Interrupt .. 7-12

Reset, Clocking and Power ... 7-12
Master Clock Input .. 7-12
System Reference Clock ... 7-12
Terminal Count .. 7-12
Master Processor Reset .. 7 -12

Read Interface .. 8-1
Introduction .. 8-1
Types of Read 1'ransactions ... 8-1
Read Interface Signals ... 8-2

Read 1'ransaction ... 8-2

iv

Multiplexed Address/Data Bus .. 8-2
Address Latch Enable .. 8-2
Dedicated Address Bus .. 8-3
Data Enable ... 8-3
Burst Read ... 8-3
Read Buffer Clock Enable ... 8-3
Acknowledge .. 8-4
Bus Error ... 8-4
Byte Enable Strobes for 16-bit Ports ... 8-4
Last Datum in Mini-Burst .. 8-4
Memory Strobe ... 8-5
Input/Output Strobe .. 8-5
Extended Data Enable .. 8-5
Diagnostic Pin .. 8-5

Read Interface Timing OveIView ... 8-6
Initiation of Read Request .. 8-6
Memory Addressing .. 8-7
Initiation of Data Phase .. 8-8
Bringing Data into the Processor .. 8-10
Terminating the Read ... 8-11
Latency Between Processor Operations ... 8-13
Processor Internal Activity .. 8-14

Refill ... 8- 14
Fixup .. 8-14
Stream ... 8- 14

32-Bit Read Timing Diagrams .. 8-16
Single Word Reads ... 8-16
Block Reads ... 8-19
Bus Error Operation .. 8-24

16-Bit Read Timing Diagrams .. 8-26
Single Halfwurd Reads .. 8-26
Mini-Burst Halfword Reads .. 8-29
16-Bit Clock Reads .. 8-30
Bus Error Operation .. 8-31

8-Bit Read Timing Diagrams .. 8-32
Single Halfword Reads .. 8-32
Mini-Burst Byte Reads ... 8-35
8-Bit Quad Word Reads ... 8-38
Bus Error Operation .. 8-39

Write Interface .. 9-1
Introduction .. 9-1
Importance of Writes in R304 l Family Systems ... 9-1
Types of Write 1'ransactions ... 9-2

Types of 32-Bit Write 1'ransactions ... 9-2
Types of 16-Bit 1'ransactions .. 9-2
Types of 8-Bit 1'ransactions .. 9-3
Partial Word Writes .. 9-3

Write Interface Signals ... 9-4
Write .. 9-4
Multiplexed Address/Data Bus .. 9-4
Address Latch Enable .. 9-4
Dedicated Address Bus .. 9-5
Data Enable ... 9-5
Acknowledge .. 9-5
Bus Error ... 9-5
Byte Enable Strobes for 16-Bit Ports .. 9-6
Last Datem in Mini Burst ... 9-6

v

Memory Strobe ... 9-6
Input/ Output Strobe .. 9-6
Extended Data Enable .. 9-7

Write Interface Timing Overview .. 9-8
Initiating the Write ... 9-8
Memory Addressing .. 9-9
Data Phase .. 9-10
Terminating the Write .. 9-11
Latency Between Processor Operations ... 9-13
Write Buffer In Full Operation .. 9-13

Write Timing Diagrams .. 9-14
32-Bit Basic Write .. 9-14
Bus Error Operation .. 9-16
16-Bit Timing Diagrams ... 9-17
16-Bit Basic Write .. 9-17
8-Bit Timing Diagrams ... 9-1 7
8-Bit Basic Write .. 9-1 7

DMA Arbiter Interface ... 10-1
Introduction .. 10-1
Interface Overview ... 10-1
DMA Arbiter Interface Signals .. 10-3
DMA Arbiter Timing Diagrams ... 10-3

Initiation of DMA Mastership .. 10-3
Relinquishing Mastership Back to the CPU .. 10-4
Bus Grant Protocol CPU Initiated Bus Grant De-assertion 10-4

Reset Initialization and Input Clocking ... 11-1
Introduction .. 11-1
Reset 1'iming ... 11-1
Reset Configuration Mode Features ... 11-1

Internal Reset Pull-ups ... 11-2
Reset Configuration Mode Pin Descriptions ... 11-3

Reserved .. 11-3
BigEndian .. 11-3
AddrDisplayAndForceCacheMiss .. 11-3
ExtAddrHold .. 11-3
ReservedHigh ... 11-3
BootProm8 ... 11-3
BootProm 16 ... 11-3
R3000A Equivalent Modes .. 11-3

Reset Behavior .. 11-3
Boot Software Requirements .. 11-3

ReservedHigh ... 11-3
BootProm8 ... 11-3

Reset Behavior .. 11-4
Boot Software Requirements .. 11-4
Detailed Reset 1'iming Diagrams .. 11-5

Reset Pulse Width .. 11-5
Mode Initialization 1'iming Requirements .. 11-6
Reset Setup 1'ime Requirements ... 11-6
Clk2xln Requirements .. 11-7

Debug Mode Features .. 12-1
Introduction .. 12-1
Overview of Features ... 12-1
Address Display .. 12-1
Forcing Instruction and Data Cache Misses ... 12-2

Tri-Stating All Outputs ... 12-2
Initializing SysClk for Test .. 12-3

vi

Use Diagnostic For Instruction Disassembly 12-3
Diagnostic Pin .. 12-3
Breakpoint Instruction ... 12-3

Compatibility Among R305 l Family Devices (Appendix A) 13-1
Introduction .. 13-1
Software Considerations .. 13-1
Hardware Considerations .. 13-2

R304 l Unique Features .. 13-2
R3081 Unique Features .. 13-3
Pin Description Differences .. 13-3
Reset Mode Selection .. 13-4
Reserved No-Connect Pins .. 13-5
DIAG Pins .. 13-5
BrCond(l:O), SBrCond(3:2) ... 13-5
Slow Bus Tum Around Mode .. 13-6
The R3081 FPA Interrupt ... 13-6
Half-Frequency Bus Mode .. 13-6
Reduced Frequency /Halt Capability ... 13-6
DMA Issues .. 13-6
Debug Features .. 13-7
WrNear Page Size ... 13-7
Hardware Compatibility Summary .. 13-7

Summary .. 13-8

List of Figures
1.1. Block Diagram ... 1-3
1.2. System Diagram ... 1-5
1.3. Development Support ... 1-6
2.1. CPU Registers .. 2-2
2.2. Instruction Encoding ... 2-3
2.3. Byte Ordering Conventions .. 2-5
2.4. Unaligned Words .. 2-5
2.5. 5-Stage Pipeline ... 2-7
2.6. 5-Instructions per Clock Cycle ... 2-8
2. 7. Load Delay ... 2-9
2.8. Branch Delay ... 2-9
3.1. Cache Line Selection .. 3-2
3.2. R3041 Family Execution Core and Cache Interface .. 3-5
3.3. Phased Access of Instruction and Data Caches ... 3-6
4 .1. Virtual Address Format .. 4- 1
4.2. Virtual to Physical Address Translation in Base Versions4-4
5.1. R304 l Bus Interface Control Registers ... 5-1
5.2. R3041 Bus Control Register ... 5-2
5.3. R304 l TC Output .. 5-5
5.4. R3041 Cache Configuration Register .. 5-6
5.5. R3041 Count Register .. 5-7
5.6. R3041 Compare Register .. 5-7
5. 7. R304 l PortSize Register ... 5-8
6.1. The CPO Exception Handling Registers .. 6-3
6.2. The Cause Register .. 6-4
6.3. The Status Register .. 6-5
6.4. Format of Prid Register ... 6-7
6.5. Pipelining in t:h.e R305 l Family ... 6-9
6.6. Synchronized Interrupt Operation .. 6-11
6. 7. Direct Interrupt Operation ... 6-11
6.8. Synchronized BrCond Inputs ... 6-12

vii

6.9. Kernel and Interrupt Status Being Saved on Interrupts 6-13
6.10. Code Sequence to Initialize Exception Vectors .. 6-14
6.11. Preserving Processor Context ... 6-15
6.12. Exception Cause Decoding ... 6-16
6.13. Exception Service Branch Table ... 6-16
6.14. Returning from Exception .. 6-17
6.15. Polling System Using BrCond ... 6-19
6.16. Using BrCond for Fast Interrupt Decoding ... 6-19
8.1. CPU Latency to Start of Read ... 8-6
8.2. Start of Bus Read Operation ... 8-7
8.3. Start of Bus Read Operation with Extended Address Hold 8-9
8.4. Data Sampling on R3041 ... 8-10
8.5. Read Cycle Termination ... 8-12
8.6. Use of Data.En as Output Enable Control : 8-13
8. 7. Internal Processor States on Burst Read .. 8-14
8.8. Instruction Strea.Illing Example .. 8-15
8.9. Single Word Read Without Bus Wait Cycles .. 8-17
8.10. Single Word Read With Bus Wait Cycles ... 8-18
8.11. Burst Read With No Wait Cycles ... 8-19
8.12a. Start of Burst Read With Initial Wait Cycles .. 8-20
8. l 2b. End of Burst Read .. 8-21
8.13a. First Two Words of "Throttled" Quad Word Read ... 8-22
8.13b. End ofThrottled Quad Word Read .. 8-23
8.14. Single Word Read Terminated by Bus Error .. 8-24
8.15. Block Read Terminated by Bus Error ... 8-25
8.16. Single Halfword Read without Bus Wait Cycles ... 8-27
8.17. Single Halfword Read with Bus Wait Cycles .. 8-28
8.18. Mini-Burst Halfword Read without Bus Wait Cycles 8-29
8. l 9a. Start of Burst Block Halfword Read without Bus Wait Cycles 8-30
8. l 9b. End of Burst Block Halfword Read without Bus Wait Cycles 8-31
8.20. Single Byte Read without Bus Wait Cycles .. 8-33
8.21. Single Byte Read with Bus Wait Cycles ... 8-34
8.22. Double Byte Read without Bus Wait Cycles .. 8-35
8.23. Triple Byte Read without Bus Wait Cycles .. 8-36
8.24. Quad-Byte Read without Bus Wait Cycles .. 8-37
8.25a. Start of 16-Bit Burst Read without Bus Wait Cycles 8-38
8.25b. End of Burst Block Halfword Read without Bus Wait Cycles 8-39
9.1. Start of Write Operation-BID Arbitration .. 9-8
9.2. Memory Addressing and Start of Write for Non-ExtAddrHold Mode 9-9
9.3. Memory Addressing and Start of Write for ExtAddrHold Mode 9-10
9.4. End ofWrite ... 9-12
9.5. Write Buffer Full Operation .. 9-13
9.6. Bus Write With No Wait Cycles ... 9-14
9. 7. Write With Bus Wait Cycles .. 9-15
9.8. Basic Write Terminated by Bus Error ... 9-16
9.9. Single Datem 16-Bit Port Write with No Wait Cycles 9-17
9.10. Single Datem 16-Bit Port Write with Wait Cycles .. 9-18
9.11. Mini-Burst 16-Bit Port Write .. 9-19
9.12. 16-Bit Write Terminated by Bus Error .. 9-20
9.13. Single Byte 8-Bit Port Write with No Wait Cycles .. 9-21
9.14. Single Byte 8-Bit Port Write with Wait Cycles ... 9-22
9.15. Two Byte 8-Bit Port Write with Wait Cycles .. 9-23
9.16. Three Byte Mini-Burst 8-Bit Port Write ... 9-24
9.17. Four Byte Mini-Burst 8-Bit Port Write .. 9-25
10.1. Example DMA Arbiter PLA Equations Using the DMA Protocol Mode 10-2
10.2. Bus Grant and Start of DMA Transaction ... 10-4
10.3. Regaining Bus Mastership .. 10-5

viii

10.4. DMA Protocol BusGnt De-assertion .. 10-5
11.1. Cold Start .. 11-5
11.2. Warm Reset ... 11-5
11.3. Mode Vector Logic .. 11-5
11.4. Mode Vector Timing ... 11-6
11.5. Reset Timing .. 11-7
11.6. R305 l Family Clocking .. 11-7
12.1. R304 l Debug Mode Instruction Address Display .. 12-2
12.2. R304 l SysClk Phase Initialization Case A .. 12-3
12.3. R304 l SysClk Phase Initialization Case B .. 12-3

List of Tables
1. 1. Compatible R305 l Family .. 1-2
2.1. Instruction Set Mnemonics .. 2-4
2.2. R3041 CPO Registers ... 2-6
2.3a. Byte Addressing in Load/Store Operations in 32-Bit Memory 2-12
2.3b. Byte Addressing in Load/Store Operations in 16-Bit Memory 2-13
2.4. Load and Store Instructions ... 2-14
2.5a. ALU Immediate Operations ... 2-15
2.5b. Three Operand Register-Type Operations ... 2-16
2.5c. Shift Operations in the R3051 Family ... 2-16
2.5d. Multiply and Divide Operations .. 2-17
2.6a. Jump Instructions ... 2-18
2.6b. Branch Instructions ... 2-18
2. 7. Special Instructions ... 2- 19
2.8. Co-Processor Operations .. 2-19
2.9. System Control Co-Processor (CPO) Operations .. 2-20
2.10. Opcode Encoding ... 2-21
4.1. Virtual and Physical Address Relationships in Base Versions4-4
5.1. R304 l MemStrobe Configuration Field ... 5-3
5.2. R3041 ExtDataEn Configuration .. 5-3
5.3. R304 l IOStrobe Configuration Field ... 5-3
5.4. R3041 Bus Tum-Around Configuration Field ... 5-4
5.5. R3041 Port Width Encoding for Port Size Register .. 5-8
5.6. R3041 PortSize Memory Subregions ... 5-9
6.1. R3051 Family Exceptions ... 6-2
6.2. Co-processor 0 Register Addressing .. 6-4
6.3. Cause Register Exception Codes ... 6-4
6.4. Exception Vectors when BEV= 0 ... 6-8
6.5. Exception Vectors when BEV= 0 ... 6-8
6.6. R3051 Family Exception Priority .. 6-9
11.1. R304 l Reset Configuration Mode Features ... 11-1
A. l. CPO Registers in the R305 l Family .. 13-1
A.2. Pin Considerations Among R305 l Family Members .. 13-3
A.3. Reset Mode Vectors of R3041, R3051/52, and R3081 13-4
A.4. Ravd Pins ofR3041, R3051/52, and R3081 ... 13-5
A.5. Summary of Hardware Design Considerations .. 13-7

ix

Integrated Device Technology, Inc.

FAMILY OVERVIEW CHAPTER 1

INTRODUCTION
The IDTR305 l family is a series ofhigh-perf ormance 32-bit microprocessors

featuring a high-level of integration, and targeted to high-performance yet cost
sensitive embedded processing applications. The R305 l family is designed to
bring the high-performance inherent in the MIPS RISC architecture into low
cost, simplified, power sensitive applications.

Thus, functional units have been integrated onto the CPU core in order to
reduce the total system cost, rather than to increase the inherent performance
of the integer engine. Nevertheless, the R305 l family is able to offer 35 MIPS
of integer performance at 40 MHz without requiring external SRAM or caches.

Further, the R3051 family brings dramatic power reduction to these
embedded applications, allowing the use of low-cost packaging. Thus, the
R305 l family allows customer applications to bring maximum performance at
minimum cost.

The R304 l extends the range of price/performance achievable with the
R305 l family, by dramatically lowering the cost of using the MIPS architecture.
The R304 l has been designed to achieve minimal system and components
cost, yet maintain the high-performance inherent in the MIPS architecture.
The R3041 also maintains pin and software compatibility with the R3051 and
R3081.

FEATURES
• Instruction set compatible with IDT 79R3000A and R305 l Family RISC

CPUs
• High level of integration minimizes system cost

-RISC CPU
- Multiply I divide unit
- Instruction Cache
-Data Cache
- Programmable bus interface
- Programmable port width support

• 14 MIPS at 20 MHz
• On-chip 24-bit Timer
• Low cost 84-pin PLCC packaging
• On-chip instruction and data caches

- 2kB of Instruction Cache
- 5 l 2B of Data Cache

• Flexible bus interface allows simple, low cost designs
- Superset Pin compatible with R305 l
-Adds programmable port width interface

(8-, 16-, or 32-bit memory sub-regions)
-Adds programmable bus interface timing support

(Extended address hold, Bus turn around time, read/write masks)
• Single, double-frequency clock input
• 16 and 20 MHz operation
• On-chip 4-deep write buffer eliminates memory write stalls
• On-chip 4-deep read buffer supports burst or simple block reads
• On-chip DMA arbiter
• Pin and Software Compatible family includes R304 l, R305 l, R3052, and

R3081

1-1

CHAPTER 1

DEVICE OVERVIEW
The R3051 family offers a variety of price/performance features in a pin

compatible, software compatible family. Table 1.1 provides an overview of the
current members oftheR3051 family. NotethattheR3051, R3052, andR3081
are also available in pin-compatible versions that include a full-function
memory management unit, including 64-entryTLB. The R3051/2 and R3081

Device Instruction Data Floating Bus
Name Cache Cache Point Options
R3051 4kB 2kB Software Emulation Mux'edA/D

R3052 8kB 2kB Software Emulation Mux'edA/D
R3081 16kB 4kB On-chip Hardware I /2 frequency bus option

or8kB or8kB
R3041 2kB 512B Software Emulation 8-, 16-, and 32-bit port widths support

Programmable timing support

Table 1.1. Pin compatible R3051 Family

are described in separate manuals and data sheets.
Figure 1.1 shows a block level representation of the functional units within

the R304 l. The R304 l could be viewed as the embodiment of a discrete
solution built around the R3000A. However, by integrating this functionality
on a single chip, dramatic cost and power reductions are achieved.

An overview of these blocks is presented here, with detailed information on
each block found in subsequent chapters.

CPU Core
The CPU core is a full 32-bit RISC integer execution engine, capable of

sustaining close to single cycle execution rate. The CPU core contains a five
stage pipeline, and 32 orthogonal 32-bitregisters. The R305 l family implements
the MIPS-I ISA. In fact, the execution engine of the R3041 is the same as the
execution engine of the R3000A. Thus, the R304 l is binary compatible with
those CPU engines, as well as compatible with other members of the R305 l
family.

System Control Co-Processor
The R3041 also integrates on-chip a System Control Co-processor, CPO.

CPO manages the exception handling capability of the R3041, the virtual to
physical address mapping of the R304 l, and the programmable bus interface
capabilities of the R304 l. These topics are discussed in subsequent chapters.

The R304 l does not include the optional TLB found in other members of the
R3051 family, but instead performs the same virtual to physical address
mapping of the base versions of the R305 l family. These devices still support
distinct kernel and user mode operation, but do not require page management
software or an on-chip TLB, leading to a simpler software model and a lower
cost processor.

Clock Generator Unit
The R304 l is driven from a single, double frequency input clock. On-chip,

the clock generator unit is responsible for managing the interaction of the CPU
core, caches, and bus interface. The clock generator unit replaces the external
delay line required in R3000A based applications.

1-2

FAMILY OVERVIEW

FAMILY OVERVIEW

Cl kin Clock
---• Generator

Unit

lnt(5:0)

TC

Instruction Cache

CHAPTER 1

BrCond(3:2)

Master Pipeline Control

System Control
Coprocessor

Integer
CPU Core

Exception/Control
Registers

General Registers
(32 x 32}

32

Bus Interface
Registers

PortSize
Register

Counter
Registers

ALU

Shifter

MulVDiv Unit

Address Adder

PC Control

Virtual Address

Ph sical Address Bus

Instruction Data
Cache Cache

2kB 512B

Data Bus

R3051 Superset
Bus Interface Unit

4-deep 4-deep DMA BIU Write Read Arbiter Control Buffer Buffer

Address/
Data

DMA Rd/Wr SysClk
Ctrl Ctrl

Figure 1.1. Block Diagram

32

The R304 l integrates 2kB of on-chip Instruction Cache, organized with a
line size of 16 bytes (four 32-bit entries). This relatively large cache substantially
contributes to the performance inherent in the R304 l, and allows systems
based on the R304 l to achieve high-performance even from low-cost memory
systems. The cache is implemented as a direct mapped cache, and is capable
of caching instructions from anywhere within the 4GB physical address space.
The cache is implemented using physical addresses and physical tags (rather
than virtual addresses or tags), and thus does not require flushing on context
switch.

1-3

CHAPTER 1

Data Cache
The R304 l incorporates an on-chip data cache of 512B, organized as a line

size of 4 bytes (one word). This relatively large data cache contributes
substantially to the performance inherent in the R3051 family. As with the
instruction cache, the data cache is implemented as a direct mapped physical
address cache. The cache is capable of mapping any word within the 4GB
physical address space.

The data cache is implemented as a write through cache, to insure that main
memory is always consistent with the internal cache. In order to minimize
processor stalls due to data write operations, the bus interface unit incorporates
a 4-deep write buffer which captures address and data at the processor
execution rate, allowing it to be retired to main memory at a much slower rate
without impacting system performance.

Bus Interface Unit
The R305 l family uses its large internal caches to provide the maj ortty of the

bandwidth requirements of the execution engine, and thus can utilize a simple
bus interface connected to slow memory devices.

The R305 l family bus interface utilizes a 32-bit address and data bus
multiplexed onto a single set of pins. The bus interface unit also provides an
ALE (Address Latch Enable) output signal to de-multiplex the A/D bus, and
simple handshake signals to process CPU read and write requests. In addition
to the read and write interface, the R304 l incorporates a OMA arbiter, to allow
an external master to control the external bus.

The R304 l augments the basic R305 l bus interface capability by adding the
ability to directly interface with varying memory port widths, for instructions
or data. Thus, the R3041 can be used in a system with an 8-bit boot PROM,
16-bit font cartridges, and 32-bit page buffer, transparently to software, and
without requiring external data packing, rotation, or unpacking.

In addition, the R304 l incorporates the ability to change some of the
interface timing of the bus. These features can be used to eliminate external
data buffers, and take advantage of lower speed (lower cost) interface
components.

The R304 l incorporates a 4-deep write buff er to decouple the speed of the
execution engine from the speed of the memory system. The write buffers
capture and FIFO processor address and data information in store operations,
and present it to the bus interface as write transactions at the rate the memory
system can accommodate. During main memory writes, the R304 l can break
a large datum (e.g. 32-bit word) into a series of smaller transactions (e.g. bytes),
according to the width of the memory port being written. This operation is
transparent to the software which initiated the store, insuring that the same
software can run in true 32-bit memory systems.

The R305 l family read interface performs both single word reads and quad
word reads. Single word reads work with a simple handshake, and quad word
reads can either utilize the simple handshake (in lower performance, simple
systems) or utilize a tighter timing mode when the memory system can burst
data at the processor clock rate. Thus, the system designer can choose to
utilize page, static or nibble mode DRAMs (and possibly use interleaving, if
desired, in high-performance systems), or use simpler techniques to reduce
complexity.

In order to accommodate slower quad word reads, the R305 l family
incorporates a 4-deep read buffer FIFO, so that the external interface can
queue up data within the processor before releasing it to perform a burst fill of
the internal caches.

1-4

FAMILY OVERVIEW

FAMILY OVERVIEW CHAPTER 1

In addition, the R304 l can perform on-chip data packing when performing
large datum reads (e.g. quad words) from narrower memory systems (e.g. 16-
bits). Once again, this operation is transparent to the actual software,
simplifying migration of software to higher performance (true 32-bit) systems,
and simplifying field upgrades to wider memory. Since this capability works
for either instruction or data reads, using 8-, 16-, or 32-bit boot PRO Ms is easily
supported by the R304 l.

SYSTEM USAGE
The IDT R305 l family has been specifically designed to easily connect to low

cost memory systems. Typical low-cost memory systems utilize slow EPROMs,
DRAMs, and application specific peripherals. Embedded systems may also
optionally contain static RAMs.

Figure 1.2 shows some of the flexibility inherent in the R3041. In this
example system, which is typical of a laser printer, a 32-bit PROM interface is
used due to the size of the PDL interpreter. Other embedded systems could
optionally use an 8-bit or a 16-bit PROM interface. A 16-bit font cartridge
interface is provided for add in cards and a 16-bit page buffer is used for low
cost. In this example, a field or manufacturing upgrade to a 32-bit page buffer
is supported by the boot software and DRAM controller. Such a system
features a very low entry price, with a range of field upgrade options including
the ability to upgrade to a more powerful member of the R3051 family.

Clkln

32-bit
EPROM

16-bit
Font

Cartridge

IDT R3041
RISController

Address/
Data

R3051
Local Bus

1/0

Control

16-bit
DRAM

Figure 1.2. Typical R3041 System

1-6

;:::::::::::::::;.;.;.;:;:~:ff~~~~~~~~~~

CHAPTER 1

DEVELOPMENT SUPPORT
Tue IDT R305 l family is supported by a rich set of development tools,

ranging from system simulation tools through PROM monitor and debug
support, applications software and utility libraries, logic analysis tools, and
sub-system modules.

Figure 1.3 is an overview of the system development process typically used
when developing R3041 applications. Tue R3051 family is supported in all
phases of project development. These tools allow timely, parallel development
of hardware and software for R305 l family based applications, and include
tools such as:

• A program, Cache-3041, which allows the performance of an R304 l based
system to be modeled and understood without requiring actual hardware.

• Sable, an instruction set simulator.
• Optimizing compilers from MIPS Technology, the acknowledged leader in

optimizing compiler technology.
• Cross development tools, available in a variety of development

environments.
• Tue high-performance IDT floating point library software.
• Tue IDT Evaluation Board, which includes RAM, EPROM, I/O, and the

IDT PROM Monitor.
• Tue IDT Laser Printer System board, which directly drives a low-cost print

engine, and runs Microsoft Trueimage™ Page Description Language on
top of PeerlessPage™ Advanced Printer Controller BIOS.

• Adobe PostScript™ Page Description Language running on the IDT R305 l
family.

• Tue IDT/sim PROM Monitor, which implements a full PROM monitor
(diagnostics, remote debug support, peek/poke, etc.).

• IDT /kit (Kernel Integration Toolkit), providing library support and a frame
work for the system run time environment.

System
Architecture
Evaluation

System
Development

Phase

SABLE Simulator
DBG Debugger
PIXIE Profiler

MIPS Compiler Suite
Stand-Alone Libraries
Floating Point Library

Cross Development Tools
Adobe Postscript POL

Microsoft Truelmage POL
PeerlessPaf;!e BIOS

IDT/kit

Figure 1.3. Development Support

System
Integration

and Verfification

1-6

FAMILY OVERVIEW

FAMILY OVERVIEW CHAPTER 1

PERFORMANCE OVERVIEW
The R305 l family achieves a very high-level of performance. This performance

is based on:
• An efficient execution engine. The CPU performs ALU operations and

store operations in a single cycle, and has an effective load time of 1.3
cycles, and branch execution rate of 1.5 cycles (based on the ability of the
compilers to avoid software interlocks). Thus, the R304 l achieves over 16
MIPS performance when operating out of cache.

• Large on-chip caches. The R3051 family contains caches which are
substantially larger than those on the majority of embedded
microprocessors. These large caches minimize the number of bus
transactions required, and allow the R305 l family to achieve actual
sustained performance very close to its peak execution rate, even with low
cost memory systems.

• Autonomous multiply and divide operations. The R3051 family features
an on-chip integer multiplier I divide unit which is separate from the other
ALU. This allows the R304 l to perform multiply or divide operations in
parallel with other integer operations, using a single multiply or divide
instruction rather than with "step" operations.

• Integrated write buffer. The R3041 features a four deep write buffer,
which captures store target addresses and data at the processor execution
rate and retires it to main memory at the slower main memory access rate.
Use of on-chip write buffers eliminates the need for the processor to stall
when performing store operations.

• Burst read support. The R3041 enables the system designer to utilize
page, static or nibble mode RAMs when performing read operations to
minimize the main memory read penalty and increase the effective cache
hit rates.

The performance differences among the various R305 l family members
depends on the application software and the design of the memory system.
Different family members feature different cache sizes, and the R308 l features
a hardware floating point accelerator. Since all these devices can be used in
a pin and software compatible fashion, the system designer has maximum
freedom in trading between performance and cost. The memory simulation
tools (e.g. Cache-3041) allows the system designer to analyze and understand
the performance differences among these devices in his application.

1-7

CHAPTER 1 FAMILY OVERVIEW

1-8

G
Integrated Device Technology, Inc.

INSTRUCTION SET CHAPTER2

ARCHITECTURE

INTRODUCTION
The IDT R3051 family contains the same basic execution core as the IDT

MIPS R3000 and the IDT R3001. In addition to being able to run software
written for either of these processors, this enables the R305 l family to achieve
dramatic levels of performance, based on the efficiency of the execution engine.

This chapter gives an overview of the MIPS-I architecture implemented in the
R3051 family, and discusses the programmers' model for this device. Further
detail is available in the book "mips RISC Architecture'', available from IDT.

The R304 l is software compatible with the base versions of the R305 l
family. However, to reduce system cost, the TLB functions present in the "E"
versions are not available in the R304 l; instead, the R304 l features increased
control of the system interface, including the ability to control timing
relationships of the bus interface. and the ability to directly interface with
memory systems of varying widths.

PROCESSOR FEATURES OVERVIEW
The R305 l family has many of the same attributes of the IDT R3000/R3001,

at a higher level of integration geared to lower system cost. These features
include:

• Full 32-bit Operation. The R3051 family contains thirty-two 32-bit
registers, and all instructions and addresses are 32 bits.

• Efficient Pipelining. The CPU utilizes a 5-stage pipeline design to
achieve an execution rate approaching one instruction per cycle. Pipeline
stalls. hazards, and exceptional events are handled precisely and efficiently.

• Large On-Chip Instruction and Data Caches. The R305 l family utilizes
large on-chip caches to provide high-bandwidth to the execution engine.
The large size of the caches insures high hit rates, minimizing stalls due
to cache miss processing and dramatically contributing to overall
performance. Both the instruction and data cache can be accessed during
a single CPU cycle.

• On-chip Memory Management. The R304 l is compatible with the base
versions oftheIDTR3051 family, which do not utilize a 1LB, but perform
fixed segment-based mapping of the virtual space to physical addresses.
In addition, the R304 l allows kernel software to configure the "width" of
regions of the memory space, to allow direct interface to memory systems
of 8, 16, or 32-bits of data width.

2-1

CHAPTER2

CPU REGISTERS OVERVIEW
The IDT R3051 family provides 32 general purpose 32-bit registers, an

internal 32-bit Program Counter, and two dedicated 32-bit registers which
hold the result of an integer multiply or divide operation. The CPU registers,
illustrated in Figure 2.1, are discussed later in this chapter.

Note that the MIPS-I architecture does not use a traditional Program Status
Word (PSW) register. The functions normally provided by such a register are
instead provided through the use of "Set" instructions and conditional branches.
By avoiding the use of traditional condition codes, the architecture can be more
finely pipelined. This, coupled with the fme granularity of the instruction set,
allows the compilers to achieve dramatically higher levels of optimizations than
for traditional architectures.

Overflow and exceptional conditions are then handled through the use of the
on-chip Status and Cause registers, which reside on-chip as part of the System
Control Co-Processor (Co-Processor 0). These registers contain information
about the run-time state of the machine, and any exceptional conditions it has
encountered.

General Purpose
Registers

31 0
0
r1
[2_ . .

r29
r30
r31

Multiply/Divide Result
Registers

31 0
I HI I
31 0
I LO I

Program Counter
31 0
I PC I

4000 drw 01
Figure 2.1. CPU Registers

INSTRUCTION SET OVERVIEW
All R305 l family instructions are 32-bits long, and there are only three basic

instruction formats. This approach dramatically simplifies instruction decoding,
permitting higher frequency operation. More complicated (but less frequently
used) operations and addressing modes are synthesized by the assembler,
using sequences of the basic instruction set. This approach enables object
code optimizations at a finer level of resolution than achievable in micro-coded
CPU architectures.

Figure 2.2 shows the instruction set encoding used by the MIPS architecture.
This approach simplifies instruction decoding in the CPU.

The R305 l family instruction set can be divided into the following basic
groups:

• Load/Store instructions move data between memory and the general
registers. They are all encoded as "I-Type" instructions, and the only
addressing mode implemented is base register plus signed, immediate
offset. This directly enables the use of three distinct addressing modes:
register plus offset; register direct; and immediate.

• Computational instructions perform arithmetic, logical, and shift
operations on values in registers. They are encoded as either "R-Type"
instructions, when both source operands as well as the result are general
registers, and "I-Type", when one of the source operands is a 16-bit
immediate value. Computational instructions use a three address
format, so that operations don't needlessly interfere with the contents of
source registers.

• Jump and Branch instructions change the control flow of a program. A
Jump instruction can be encoded as a "J-Type" instruction, in which case
the Jump target address is a paged absolute address formed by combining

2-2

INSTRUCTION SET ARCHITECTURE

INSTRUCTION SET ARCIIlTECTURE CHAPTER2

the 26-bit immediate value with four bits of the Program Counter. This
form is used for subroutine calls.

Alternately, Jumps can be encoded using the "R-Type" format, in which
case the target address is a 32-bit value contained in one of the general
registers. This form is typically used for returns and dispatches.

Branch operations are encoded as "I-Type" instructions. The target
address is formed from a 16-bit displacement relative to the Program
Counter.

The Jump and Link instructions save a return address in Register r31.
These are typically used as subroutine calls, where the subroutine return
address is stored into r3 l during the call operation.

• Co-Processor instructions perform operations on the co-processor set.
Co-Processor Loads and Stores are always encoded as "I-Type" instructions;
co-processor operational instructions have co-processor dependent
formats.

In the R3051 family, the System Control Co-Processor (CPO) contains
registers which are used in memory management, system interface
control, cache control, and exception handling.

Additionally, the R305 l family implements BrCond inputs. Software can
use the Branch on Co-Processor Condition instructions to test the state
of these external inputs, and thus they may be used like general purpose
input ports.

• Special instructions perform a variety of tasks, including movement of
data between special and general registers, system calls, and breakpoint
operations. They are always encoded as "R-Type" instructions.

where:
op

rs

rt

I-Type (Immediate)

31 26 25 21 20 16 15

J-Type (Jump)

31 26 25

I op I
R-Type (Register)

31 26 25 21

I op I rs

target

20 16 15 11

I rt I rd

is a 6-bit operation code

0

immediate

0

10 6 5 0

I shamt I funct I

is a 5-bit source register specifier

is a 5-bit target register or branch condition

immediate is a 16-bit immediate, or branch or address displacement

target is a 26-bit jump target address

rd is a 5-bit destination register specifier

shamt is a 5-bit shift amount

fun ct is a 6-bit function field

Figure 2.2. Instruction Encoding 4000 drw 02

2-3

CHAPTER2

OP Description OP Description
Load/Store Instructions Multiply /Divide Instructions

LB Load Byte MULT Multiply
LBU Load Byte Unsigned MULTU Multiply Unsigned
LH Load Halfword DN Divide
LHU Load Halfword Unsigned DNU Divide Unsigned
LW Load Word
LWL Load Word Left MFHI Move From HI
LWR Load Word Right MTHI Move To HI
SB Store Byte MFLO Move From LO
SH Store Halfword MTLO Move To LO
SW Store Word
SWL Store Word Left Jump and Branch Instructions
SWR Store Word Right J Jump

JAL Jump and Link
Arithmetic Instructions JR Jump to Register
(ALU Immediate) JALR Jump and Link Register

ADDI Add Immediate BEQ Branch on Equal
ADDIU Add Immediate Unsigned BNE Branch on Not Equal
SLTI Set on Less Than Immediate BLEZ Branch on Less than or Equal
SL TIU Set on Less Than Immediate to Zero

Unsigned BGTZ Branch on Greater Than Zero
ANDI AND Immediate BLTZ Branch on Less Than Zero
ORI OR Immediate BGEZ Branch on Greater Than or
XORI Exclusive OR Immediate Equal to Zero
LUI Load Upper Immediate BLTZAL Branch on Less Than Zero and

Link
BGEZAL Branch on Greater Than or Equal

Arithmetic Instructions to Zero and Link
(3-operand, register-type)

ADD Add Special Instructions
ADDU Add Unsigned SYSCALL System Call
SUB Subtract BREAK Break
SUBU Subtract Unsigned
SLT Set on Less Than Coprocessor Instructions
SLTU Set on Less Than Unsigned LWCz Load Word from Coprocessor
AND AND SWCz Store Word to Coprocessor
OR OR MTCz Move To Coprocessor
XOR Exclusive OR MFCz Move From Coprocessor
NOR NOR CTCz Move Control To Coprocessor

CFCz Move Control From Coprocessor
Shift Instructions COPz Coprocessor Operation

SLL Shift Left Logical BCzT Branch on Coprocessor z True
SRL Shift Right Logical BCzF Branch on Coprocessor z False
SRA Shift Right Arithmetic
SLLV Shift Left Logical Variable System Control Coprocessor
SRLV Shift Right Logical Variable (CPO) Instructions
SRAV Shift Right Arithmetic Variable MTCO Move To CPO

MFCO Move From CPO
TLBRt Read indexed TLB entry
TLBWJ! Write indexed TLB entry
TLBWRt Write Random TLB entry
TLBPt Probe TLB for matching entry
RFE Restore From Exception

4000 tbl 01
tTuese instructions are not valid with the R3041, which does not include the TLB.

Table 2.1. Instruction Set Mnemonics

Table 2.1 lists the instruction set mnemonics of the R305 l family. More
detail on these operations is presented later in this chapter. For further detail,
consult "mips RISC Architecture", or one of the language programming guides,
available from IDT.

PROGRAMMING MODEL
This section describes the organization of data in the general registers and

in memory, and discusses the set of general registers available. A summary
description of all of the CPU registers is presented.

2-4

INSTRUCTION SET ARCHITECTURE

INSTRUCTION SET ARCHITECTURE CHAPTER2

Data Formats and Addressing
The MIPS-I architecture defines a word as 32-bits, a half-word as 16-bits,

and a byte as 8-bits. The byte ordering convention is configurable during
hardware reset (Chapter 11) into either a big-endi.an or ltttle-endi.an convention.

When configured as a big-endian system, byte 0 is always the most
significant Oeftmost) byte in a word. This is the order used in MC680x0®
microprocessors, and systems from MIPS.

When configured as a little-endian system, byte 0 is always the least
significant (rightmost) byte in a word. This is compatible with the iAPX® x86
microprocessors and systems from Digital Equipment Corporation.

Figure 2.3 shows the ordering of bytes within words and the ordering of
words within multiple word structures for the big-endian and little-endian
conventions.

Higher Big-Endian Byte Ordering Word
Address r-3~1 -,,-2=-4~2"'"3--,---1~6'-,-'-1 ~5 ~""""8,.-'-7-=-____,o Address

lII I-~g--+I ~~~t-1 ~i--+l~~---11 g
Lower ~__,.___.___,__-'-_.._...._-=3___.

Address • Most significant byte is at lowest address

• Word is addressed by byte address of
most significant byte

Higher Little-Endian Byte Ordering Word

Address r-3~1 -=-'2=-4;..,.=2-"-3--,---1'"""'6~15'--__;;;8~7'----',0 Address

lI 1-1 -?"'---+I ~i~t-1 --=-~ --+1----':'---i1 g Lower ~___,,,____._-= _ _.___,_1 _ _.__o,.___.

Address • Least significant byte is at lowest address

• Word is addressed by byte address of
least significant byte

Figure 2.3. Byte Ordering Conventions 4000 drw 03

The R305 l family uses byte addressing for all accesses, including half-word
and word. The MIPS architecture has alignment constraints that require half
word access to be aligned on an even byte boundary, and word access to be
aligned on a modulo-4 byte boundary. Thus, in big-endian systems, the
address of a multiple-byte data item is the address of the most-significant byte,
while in little-endian systems it is the address of the least-significant byte of
the structure.

For compatibility with older programs written for 8- or 16-bit machines, the
MIPS instruction set provides special instructions for addressing 32-bit words
which are not aligned on 4-byte boundaries. These instructions, which are
Load/Store Left/Right, are used in pairs to provide addressing of misaligned
words. This effectively means that these types of data movements require only
one-additional instruction cycle over that required for properly aligned words,
and provides a much more efficient way of dealing with this case than is
possible using sequences of loads/stores and shift operations. Figure 2.4
shows the bytes accessed when addressing a mis-aligned word with a byte
address of 3, for each of the two byte ordering conventions.

Higher
Address 31 24 23 16 15 8 7 O U l):::::1::~:f:::nt::l::::::~::::::iI@~m'l::::::::::t~:::::::::::::,l::?::::::~::=:::::::::::::I

31 24 23 16 15 8 7 0

1w~:::::~:::m:n\::::::=:n::~:n:::::::::t:::::r:::::f:::::::::t:t:t:::tf::n:n:::I
Lower

Address
Figure 2.4. Unaligned Words

2-5

Big
Endian

Little
Endian

4000drw04

CHAPTER2

CPU General Registers
The R305 l family contains 32-general registers, each containing a single 32-

bit word. The 32 general registers are treated symmetrically (orthogonally),
with two notable exceptions: general register rO is hardwired to a zero value,
and r3 l is used as the link register in Jump and Link instructions

Register rO maintains the value zero under all conditions when used as a
source register, and discards data written to it. Thus, instructions which
attempt to write to it may be used as No-Op Instructions. The use of a register
wired to the zero value allows the simple synthesis of different addressing
modes, no-ops, register or memory clear operations, etc., without requiring
expansion of the basic instruction set.

Register r3 l is used as the link register in jump and link instructions. These
instructions are used in subroutine calls, and the subroutine return address
is placed in register r3 l. This register can be written to or read as a normal
register in other operations.

In addition to the general registers, the CPU contains two registers (HI and
LO) which store the double-word, 64-bit result of integer multiply operations,
and the quotient and remainder of integer divide operations.

CPO Special Registers
In addition to the general CPU registers, the R305 l family contains a number

of special registers on-chip. These registers logically reside in the on-chip
System Control Co-processor CPO, and are used in memory management and
exception handling.

Table 2.2 shows the logical CPO address of each of the registers. The format
of each of these registers, and their use, is discussed in Chapter 4 (Memory
Management), and Chapter 5 (System Control), and Chapter 6 (Exception
Handling). Note that the MIPS architecture allows CPO to vary byimplementation;
the R304 l contains some new CPO registers not found in other R305 l family
members; however, their definition is such that it still remains possible to use
a single binary program across all family members.

Number Mnemonic Descri_R..tion

0 ReservedOl

1 Reserved(1>

2 BusCtrlm Bus Tim1ng and Interface Control

3 Config13> Cache Usage Configuration

4 Reserved(1>

5-7 Reserved

8 BadVAddr Bad Virtual Address

9 Count(2> Timer Counter Register

10 PortSizeO> Memo:ry Sub-Region Port Width Control

11 Compare(2> Timer Com..E_are R~ster

12 SR Status R~ter

13 Cause Cause of Last Exc~tion

14 EPC Exc~tion Pro~ Counter

15 PRid Processor Revision Identifier

16-31 Reserved
4000 tbl02

Notes:
1: This register is used 1n Extended Architecture CPUs to control the 1LB and virtual memory

system.
2: This register is reserved 1n other family members.
3: This register has a different meaning in other family members.

Table 2.2. R304 l CPO Registers

2-6

INSTRUCTION SET ARCmTECTURE

INSTRUCTION SET ARCHITECTURE CHAPTER2

Operating Modes
The R305 l family supports two different operating modes: User and Kernel

modes. The R305 l /52 normally operates in User mode until an exception is
detected, forcing it into kernel mode. It remains in Kernel mode until a Return
From Exception (RFE) instruction is executed, returning it to its previous
operation mode.

The processor supports these levels of protection by segmenting the 4GB
virtual address space into 4 distinct segments. One segment is accessible from
either the User state or the Kernel mode, and the other three segments are only
accessible from kernel mode.

In addition to providing memory address protection, the kernel can protect
the co-processors (in the case of the R304 l, CPO) from access or modification
by the user task.

Finally, the R305 l family supports the execution of user programs with the
opposite byte ordering (Reverse Endianness) of the kernel, facilitating the
exchange of programs and data between dissimilar machines.

Chapter 4 discusses the memory management facilities of the processor.

Pipeline Architecture
The IDT R305 l family uses the same basic pipeline structure as that

implemented in the R3000A. Thus, the execution of a single instruction is
performed in five distinct steps.

• Instruction Fetch (IF). In this stage, the instruction virtual address is
translated to a physical address and the instruction is read from the
internal Instruction Cache.

• Read (RD). During this stage, the instruction is decoded and required
operands are read from the on-chip register file.

• ALU. The required operation is performed on the instruction operands.

• Memory Access (MEM). If the instruction was a load or store, the Data
Cache is accessed. Note that there is a skew between the instruction cycle
which fetches the instruction and the one in which the required data
transfer occurs. This skew is a result of the intervening pipestages.

• Write Back (WB). During the write back pipestage, the results of the ALU
stage operation are updated into the on-chip register file.

Each of these pipestages requires approximately one CPU cycle, as shown
in Figure 2.5. Parts of some operations lap into the next cycle, while other
operations require only 1/2 cycle.

IF RD ALU MEM WB

ID OP D-Cache WB

PAddr

"--y--J
One Cycle

4000 drw 05

Figure 2.5. 5-Stage Pipeline

2-7

CHAPTER2

The net effect of the pipeline structure is that a new instruction can be
initiated every clock cycle. Thus, the execution of five instructions at a time is
overlapped, as shown in Figure 2.6.

1#1 IF

1#2

RD ALU MEM

IF RD ALU

1#3 IF RD

1#4 IF

1#5

WB

~~~~~~~~~~~~~~~*~~~~ 
MEM 

~~mttt~~~~~~~ 
ALU 

:::::::::::::::::::~:::: 

~~~~~~~~~~~~~~~~~~~~~~~~~ 

RD
~Il~~~~~II~

IF

Current
CPU
Cycle

WB

MEM

ALU

RD

WB

MEM WB

ALU MEM WB

4000drw 06

Figure 2.6. 5-lnstructions per Clock Cycle

The pipeline operates efficiently, because different CPU resources such as
address and data bus access, ALU operations, and the register file, are utilized
on a non-interfering basis.

Pipeline Hazards
In a pipelined machine such as the R304 l, there are certain instructions

which, based on the pipeline structure, can potentially disrupt the smooth
operation of the pipeline. The basic problem is that the current pipestage of
an instruction may require the result of a previous instruction, still in the
pipeline, whose result is not yet available. This class of problems is referred
to as pipeline hazards.

An example of a potential pipeline hazard occurs when a computational
instruction n+ 1) requires the result of the immediately prior instruction
(instruction n). Instruction n+ 1 wants to access the register file during the RF
pipestage. However, instruction n has not yet completed its register writeback
operation, and thus the current value is not available directly from the register
file. In this case, special logic within the execution engine forwards the result
of instruction n's ALU operation to instruction n+ 1, prior to the true writeback
operation. The pipeline is undisturbed, and no pipeline stalls need to occur.

Another example of a pipeline hazard handled in hardware is the integer
multiply and divide operations. If an instruction attempts to access the HI or
W registers prior to the completion of the multiply or divide, that instruction
will be interlocked (held off) until the multiply or divide operation completes.
Thus, the programmer is isolated from the actual execution time of this
operation. The optimizing compilers attempt to schedule as many instructions
as possible between the start of the multiply I divide and the access of its result,
to minimize stalls.

However, not all pipeline hazards are handled in hardware. There are two
categories of instructions which require software intervention to insure logical
operation. The optimizing compilers (and peephole scheduler of the assembler)
are capable of insuring proper execution. These two instruction classes are:

• Load instructions have a delay, or latency, of one cycle before the data

2-8

INSTRUCTION SET ARCHITECTURE

INSTRUCTION SET ARCHITECTURE CHAPTER2

loaded from memory is available another instruction. This is because the
ALU stage of the immediately subsequent instruction is processed
simultaneously with the Data Cache access of the load operation. Figure
2. 7 illustrates the cause of this delay slot.

• Jump and Branch instructions have a delay of one cycle before the
IF RD ALU MEM WB

1#1 ID OP D-Cache WB
(Load)

1#2 I-Cache ID OP
(Delay Slot)

Data
Available

1#3 I-Cache ID OP

"---y---'
One Cycle

4000 drw 07

Figure 2.7. Load Delay

program flow change can occur. This is due to the fact that the next
instruction is fetched prior to the decode and ALU stage of the jump/
branch operation. Figure 2.8 illustrates the cause of this delay slot.

The R304 l continues execution, despite the delay in the operation. Thus,

IF

1#1

ranch)

RD ALU MEM WB

I-Cache ID OP D-Cache WB

I-Address

1#2 I-Cache OP
(Delay Slot) ~-~-_._,_--+-------<

1#3
Address I-Cache ID OP
Av~ilable

'--y--J
One Cycle

4000 drw OB

Figure 2.8. Branch Delay

loads.jumps and branches do not disrupt the pipeline flow of instructions, and
the processor always executes the instruction immediately following one of
these "delayed" instructions.

Note that there may also be latencies associated with changes to various of
the CPO registers; for example, changing the bus interface control register may
require multiple cycles before the change is actually reflected in the chip
interface.

Rather than include extensive pipeline control logic, the MIPS-I instruction

2-9

CHAPTER2

set gives responsibility for dealing with "delay slots" to software. Thus,
peephole optimizations (which can be performed as part of compilation or
assembly) can re-order the code to insure that the instruction in the delay slot
does not require the logical result of the "delayed" instruction. In the worst
case, a NOP can be inserted to guarantee proper software execution.

Chapter 6 discusses the impact of pipelining on exception handling. In
general, when an instruction causes an exception, it is desirable for all
instructions initiated prior to that instruction to complete, and all subsequent
instructions to abort. This insures that the machine state presented to the
exception handler reflects the logical state that existed at the time the exception
was detected. In addition, it is desirable to avoid requiring software to explicitly
manage the pipeline when handling or returning from exceptions. The IDT
R304 l pipeline is designed to properly manage exceptional events.

2-10

INSTRUCTION SET ARCHITECTURE

INSTRUCTION SET ARCIDTECTURE CHAPTER2

INSTRUCTION SET SUMMARY
This section provides an overview of the R305 l family instruction set by

presenting each category of instructions in a tabular summary form. Refer to
the "mips RISC Architecture" reference for a detailed description of each
instruction.

Instruction Formats
Every instruction consists of a single word (32 bits) aligned on a word

boundary. There are only three instruction formats as shown in Figure 2.2.
This approach simplifies instruction decoding. More complicated Oess frequently
used) operations and addressing modes are synthesized by the compilers.

Instruction Notational Conventions
In this manual, all variable sub-fields in an instruction format (such as rs,

rt, immediate, and so on) are shown in lower-case names.
For the sake of clarity, an alias is sometimes used for a variable sub-field in

the formats of specific instructions. For example, "base" rather than "rs" is
used in the format for Load and Store instructions. Such an alias is always
lower case, since it refers to a variable sub-field.

Instruction opcodes are shown in all upper case.
The actual bit encoding for all the mnemonics is specified at the end of this

chapter.

2-11

CHAPTER2

Load and Store Instructions
Load/Store instructions move data between memory and general registers.

They are all I-type instructions. The only addressing mode directly supported
is base register pl us 16-bit signed immediate offset. This can be used to directly
implement immediate addressing (using the rO register) or register direct
(using an immediate offset value of zero).

All load operations have a latency of one instruction. That is, the data being
loaded from memory into a register is not available to the instruction that
immediately follows the load instruction: the data is available to the second
instruction after the load instruction. An exception to this rule is that for the
target register for the "load word left" and "load word right" instructions may
be specified as the same register used as the destination of a load instruction
that immediately precedes it.

The Load/Store instruction opcode determines the size of the data item to
be loaded or stored as shown in Table 2 .1. Regardless of access type or byte
numbering order (endian-ness), the address specifies the byte which has the
smallest byte address of all bytes in the addressed field. For a big-endian
access, this is the most significant byte; for a little-endian access, this is the
least significant byte. Note that in an R305 l/52 based system, the endianness
of a given access is dynamic, in that the RE (Reverse Endianness) bit of the
Status Register can be used to force user space accesses of the opposite byte
convention of the kernel.

Big-Endian (32-bit memory system)
CPU Core CPU Core BE(3) BE(2) BE(l) BE(O)

Size VAdrLo(l) VAdrLo(O) Data(31:24) Data(23:16) Data(l5:8) Data(7:0)

Word 0 0 Yes Yes Yes Yes

Tri-Byte 0 0 Yes Yes Yes No
Tri-Byte 0 1 No Yes Yes Yes

16-Bit 0 0 Yes Yes No No
16-Bit 1 0 No No Yes Yes

Byte 0 0 Yes No No No
Byte 0 1 No Yes No No
Byte 1 0 No No Yes No
Byte 1 1 No No No Yes

Little-Endian (32-bit memory system)
BE(3) BE(2) BE(l) BE(O)

Size AdrLo(l) AdrLo(O) Data(31:24) Data(23: 16) Data(l5:8) Data(7:0)

Word 0 0 Yes Yes Yes Yes

Tri-Byte 0 0 No Yes Yes Yes

Tri-Byte 0 1 Yes Yes Yes No
16-Bit 0 0 No No Yes Yes

16-Bit I 0 Yes Yes No No
Byte 0 0 No No No Yes

Byte 0 I No No Yes No
Byte I 0 No Yes No No
Byte I 1 Yes No No No

Table 2.3 (a). Byte Addressing in Load/Store Operations (32-bit memory)

2-12

INSTRUCTION SET ARCWTECTURE

INSTRUCTION SET ARCIIlTECTURE CHAPTER2

Big-Endian (16-bit memory system)
First Transfer Second Transfer

CPU Core CPU Core BE16(1) BE16(0) BE16(1) BE16(0)

Size VAdrLo(l) VAdrLo(O) Data(31:24) Data(23:16) Data(31:24) Data(23:16

Word 0 0 Yes Yes Yes Yes

Tri-Byte 0 0 Yes Yes Yes No
Tri-Byte 0 1 No Yes Yes Yes

16-Bit 0 0 Yes Yes NIA NIA
16-Bit 1 0 Yes Yes NIA NIA
Byte 0 0 Yes No NIA NIA
Byte 0 1 No Yes NIA NIA
Byte 1 0 Yes No NIA NIA
Byte 1 1 No Yes NIA NIA

Little-Endian (16-bit memory system)
First Transfer Second Transfer

CPU Core CPU Core BE16(1) BE16(0) BE16(1) BE16(0)

Size VAdrLo(l) VAdrLo(O) Data(15:8) Data(7:0) Data(15:8) Data(7:0)

Word 0 0 Yes Yes Yes Yes

Tri-Byte 0 0 Yes Yes No Yes

Tri-Byte 0 1 Yes No Yes Yes

16-Bit 0 0 Yes Yes NIA NIA
16-Bit 1 0 Yes Yes NIA NIA
Byte 0 0 No Yes NIA NIA
Byte 0 1 Yes No NIA NIA
Byte 1 0 No Yes NIA NIA
Byte 1 1 Yes No NIA NIA

Table 2.3 (b). Byte Addressing in Load/Store Operations (16-bit memory)

Note that the size of the operand requested by the load instruction is
independent of the memory width of the addressed memory. Thus, if the actual
size of the datum is 32-bits, software can safely use a load or store word
instruction, even if the addressed memory is actually only 8- or 16-bits wide.
The bus interface unit will interact with CPO to determine the width of the
addressed memory, and will, if necessary, perform multiple datum transfers to
satisfy a single load or store instruction.

The bytes within the addressed word that are used can be determined
directly from the access size and the two low-order bits of the address, as shown
in Table 2.3 (a, b). Note that certain combinations of access type and low-order
address bits can never occur: only the combinations shown in Table 2.3(a, bl
are permissible. The R305 l family indicates which bytes are being accessed
by the byte-enable (BE) bus; the R3041 adds the BE16 bus to simplify the
interface to 16-bit wide memory subsystems.

Table 2.4 shows the load/store instructions supported by the MIPS ISA.

2-13

CHAPTER2 INSTRUCTION SET ARCHITECTURE

Instruction Format and Description

Load Byte LB rt. off set (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Sign-extend contents of addressed byte and load into rt

Load Byte Unsigned LBU rt. offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Zero-extend contents of addressed byte and load into rt

Load Halfword LH rt. offset (base)
Sign-extend 16-btt offset and add to contents of register base to
form address.
Sign-extend contents of addressed byte and load into rt.

Load Halfword Unsigned LHU rt. offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Zero-extend contents of addressed byte and load into rt

Load Word LW rt, offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Load contents of addressed word into register rt

Load Word Left LWL rt, offset (base)
Sign-extend 16-btt offset and add to contents of register base to
form address.
Shift addressed word left so that addressed byte is leftmost byte
ofa word.
Merge bytes from memory with contents of register rt and load
result into register rt.

Load Word Right LWR rt, offset (base)
Sign-extend 16-btt offset and add to contents of register base to
form address.
Shift addressed word right so that addressed byte is rightmost
byte of a word.
Merge bytes from memory with contents of register rt and load
result into register rt.

Store Byte SB rt. offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Store least signlflcant byte of register rt at addressed location.

Store Halfword SH rt. off set (base)
Sign-extend 16-btt offset and add to contents of register base to
form address.
Store least slgnlficanthalfword of register rt at addressed location.

Store Word SW rt. offset (base)
Sign-extend 16-bit offset and add to contents ofregister base to
form address.
Store least signlflcant word of register rt at addressed location.

Store Word Left SWL rt. offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Shift contents ofregister rt right so thatleftmost byte of the word
is in position of addressed byte. Store bytes containing original
data into corresponding bytes at addressed byte.

Store Word Right SWR rt. offset (base)
Sign-extend 16-bit offset and add to contents of register base to
form address.
Shift contents of register rt left so that rightmost byte of the word
is in position of addressed byte. Store bytes containing original
data into corresponding bytes at addressed byte.

4000tbl04

Table 2.4. Load and Store Instructions

2-14

INSTRUCTION SET ARCmTECTURE CHAPTER2

Computational Instructions
Computational instructions perform arithmetic, logical and shift operations

on values in registers. They occur in both R-type (both operands are registers)
and I-type (one operand is a 16-bit immediate) formats. There are four
categories of computational instructions:

• ALU Immediate instructions are summarized in Table 2.5a.

• 3-0perand Register-Type instructions are summarized in Table 2.5b.

• Shift instructions are summarized in Table 2.5c.

• Multiply /Divide instructions are summarized in Table 2.5d.

Instruction Format and Description

ADD Immediate ADDI rt, rs, immediate
Add 16-bit sign-extended immediateto register rs and place 32-
bit result in register rt . Trap on two's complement overflow.

ADD Immediate ADDIU rt. rs, immediate
Unsigned Add 16-bit sign-extended immediateto register rs and place 32-

bit result in register rt . Do not trap on overflow.

Set on Less Than SLTI rt, rs, immediate
Immediate Compare 16-bit sign-extended immediate with register rs as

signed 32-bit integers. Result = 1 if rs is less than immediate;
otherwise result = 0.
Place result in register rt.

Set on Less Than SLTIU rt. rs. immediate
Unsigned Immediate Compare 16-bit sign-extended immediate with register rs as

unsigned 32-bit integers. Result = 1 if rs is less than immediate;
otherwise result = 0. Place result in register rt. Do not trap on
overflow.

AND Immediate ANDI rt. rs, immediate
Zero-extend 16-bit immediate, AND with contents of register rs
and place result in register rt.

OR Immediate ORI rt. rs, immediate
Zero-extend 16-bit immediate, OR with contents of register rs
and place result in register rt.

Exclusive OR Immediate XORI rt, rs, immediate
Zero-extend 16-bit immediate, exclusive OR with contents of
register rs and place result in register rt.

Load Upper Immediate LUI rt. immediate
Shift 16-bit immediate left 16 bits. Set least significant 16 bits
of word to zeroes. Store result in register rt.

4000 tbl 05

Table 2.5a. ALU Im.mediate Operations

2-15

CHAPTER2 INSTRUCTION SET ARCHITECTURE

Instruction Format and Description

Add ADD rd, rs, rt
Add contents of registers rs and rt and place 32-bit result in
register rd. Trap on two's complement overflow.

ADD Unsigned ADDU rd, rs, rt
Add contents of registers rs and rt and place 32-bit result in
register rd. Do not trap on overflow.

Subtract SUB rd, rs, rt
Subtract contents of registers rt and rs and place 32-bit result
in register rd. Trap on two's complement overflow.

Subtract Unsigned SUBU rd, rs, rt
Subtract contents of registers rt and rs and place 32-bit result
in register rd. Do not trap on overflow.

Set on Less Than SLT rd, rs, rt
Compare contents of register rt to register rs (as signed 32-bit
integers).
If register rs is less than rt. result = 1; otherwise, result = 0.

Set on Less Than SLTU rd, rs, rt
Unsigned Compare contents of register rt to register rs (as unsigned 32-

bit integers). If register rs is less than rt, result= l; otherwise,
result= 0.

AND AND rd, rs, rt
Bit-wise AND contents of registers rs and rt and place result in
register rd.

OR OR rd, rs, rt
Bit-wise OR contents of registers rs and rt and place result in
register rd.

Exclusive OR XOR rd, rs, rt
Bit-wise Exclusive OR contents of registers rs and rt and place
result in register rd.

NOR NOR rd, rs, rt
Bit-wise NOR contents of registers rs and rt and place result in
register rd.

4000 tbl 06

Table 2.5b. Three Operand Register-Type Operations

Instruction Format and Description

Shift Left Logical SLL rd, rt, shamt
Shift contents of register rt left by shamt bits, inserting zeroes
into low order bits. Place 32-bit result in register rd.

Shift Right Logical SRL rd, rt, shamt
Shift contents ofregister rtrtght by shamtbits, inserting zeroes
into high order bits. Place 32-bit result in register rd.

Shift Right Arithmetic SRA rd, rt, shamt
Shift contents of register rt right by shamt bits, sign -extending
the high order bits. Place 32-bit result in register rd.

Shift Left Logical SLLV rd, rt. rs
Variable Shift contents of register rt left. Low-order 5 bits of register rs

specify number of bits to shift. Insert zeroes into low order bits
of rt and place 32-bit result in register rd.

Shift Right Logical SRLV rd, rt, rs
Variable Shift contents of register rt right. Low-order 5 bits of register rs

specify number of bits to shift. Insert zeroes into high order bits
of rt and place 32-bit result in register rd.

Shift Right Arithmetic SRAV rd. rt, rs
Variable Shift contents of register rt right. Low-order 5 bits of register rs

specify number of bits to shift. Sign-extend the high order bits
of rt and place 32-bit result in register rd.

4000 tbl 07

Table 2.5c. Shift Operations

2-16

INSTRUCTION SET ARCmTECTURE CHAPTER2

Instruction Format and Description

Multiply MULT rs, rt
Multiply contents of registers rs and rt as twos complement
values .. Place 64-bit result in special registers HI/LO

Multiply Unsigned MULTU rs, rt
Multiply contents ofregisters rs and rtas unsigned values. Place
64-bit result in special registers HI/LO

Divide DN rs, rt
Divide contents of register rs by rt treating operands as twos
complements values. Place 32-bit quotient in special register
LO, and 32-bit remainder in HI.

Divide Unsigned DNU rs, rt
Divide contents of register rs by rt treating operands as unsigned
values. Place 32-bit quotient in special register LO, and 32-bit
remainder in HI.

Move From HI MFHI rd
Move contents of special register HI to register rd.

Move From LO MFLOrd
Move contents of special register LO to register rd.

Move To HI MTHI rd
Move contents of special register rd to special register HI.

Move To LO M1LO rd
Move contents of register rd to special register LO.

4000 th! 08

Table 2.5d. Multiply and Divide Operations

Jump and Branch Instructions
Jump and Branch instructions change the control flow of a program. All

Jump and Branch instructions occur with a one instruction delay: that is, the
instruction immediately following the jump or branch is always executed while
the target instruction is being fetched, regardless of whether the branch is to
be taken.

An assembler has several possibilities for utilizing the branch delay slot
productively:

• It can insert an instruction that logically precedes the branch instruction
in the delay slot since the instruction immediately following the jump/
branch effectively belongs to the block preceding the transfer instruction.

• It can replicate the instruction that is the target of the branch/jump into
the delay slot provided that no side-effects occur if the branch falls
through.

• It can move an instruction up from below the branch into the delay slot,
provided that no side-effects occur if the branch is taken.

• If no other instruction is available, it can insert a NOP instruction in the
delay slot.

TheJ-typeinstruction format is used for both jumps-and-links for subroutine
calls. In this format, the 26-bit target address is shifted left two bits, and
combined with high-order 4 bits of the current program counter to form a 32-
bit absolute address.

The R-type instruction format which takes a 32-bit byte address contained
in a register is used for returns, dispatches, and cross-page jumps.

Branches have 16-bit offsets relative to the program counter (I-type). Jump
and-Link and Branch-and-Link instructions save a return address in register
r31.

2-17

CHAPTER2

Table 2. 6a summarizes the R305 l family Jump instructions and Table 2. 6b
summarizes the Branch instructions.

Instruction Format and Description

Jump J target
Shift 26-bit target address left two bits, combine with high-
order 4 bits of PC and jump to address with a one instruction
delay.

Jump and Link JAL target
Shift 26-bit target address left two bits, combine with high-
order 4 bits of PC and jump to address with a one instruction
delay. Place address of instruction following delay slot in r31
(link register).

Jump Register JR rs
Jump to address contained in register rs with a one instruction
delay.

Jump and Link Register JALR rs, rd
Jump to address contained in register rs with a one instruction
delay. Place address of instruction following delay slot in rd.

4000 tbl 09

Table 2.6a. Jump Instructions

Instruction Format and Description

Branch Target: All Branch instruction target addresses are
computed as follows: Add address of instruction in delay slot
and the 16-bit offset (shifted left two bits and sign-extended to
32 bits). All branches occur with a delay of one instruction.

Branch on Equal BEQ rs, rt, offset
Branch to target address if register rs equal to rt

Branch on Not Equal BNE rs, rt, off set
Branch to target address if register rs not equal to rt

Branch on Less than or BLEZ rs.offset
Equal Zero Branch to target address if register rs less than or equal to 0.

Branch on Greater Than BGTZ rs.offset
Zero Branch to target address if register rs greater than 0.

Branch on Less Than BLTZ rs.offset
Zero Branch to target address if register rs less than 0.

Branch on Greater than BGEZ rs.offset
or Equal Zero Branch to target address if register rs greater than or equal to

0.

Branch on Less Than BL TZAL rs, off set
Zero And Link Place address of instruction following delay slot in register r3 l

(link register). Branch to target address if register rs less than
0.

Branch on greater than BGEZAL rs, offset
or Equal Zero And Link Place address of instruction following delay slot in register r3 l

(link register). Branch to target address if register rs is greater
than or equal to 0.

4000 tbl JO

Table 2.6b. Branch Instructions

2-18

INSTRUCTION SET ARCHITECTURE

INSTRUCTION SET ARCHITECTURE

]

,,
j

J

CHAPTER2

Special Instructions
The two Special instructions let software initiate traps. They are always R

type. Table 2. 7 summarizes the Special instructions.

Instruction Fonnat and Description

System Call SY SC AIL
Initiates system call trap, immediately transferring control to
exception handler.

Breakpoint BREAK
Initiates breakpoint trap, immediately transferring control to
exception handler.

4000 tbl 11

Table 2.7. Special Instructions

Co-processor Instructions
Co-processor instructions perform operations in the co-processors. Co

processor Loads and Stores are I-type. Co-processor computational instructions
have co-processor-dependent formats (see co-processor manuals). For the
R305 l family, the BCzT /F instructions are used to test the state of the BrCond
inputs. Outside of these operations, the only co-processor operations of
relevance for the R304 l are those targeted at the on-chip CPO.

Table 2.8 summarizes the Co-processor Instruction Set of the MIPS ISA.

Instruction Fonnat and Description

Load Word to LWCz rt. offset (base)
Co-processor Sign-extend 16-bit offset and add to base to form address. Load

contents of addressed word into co-processor register rt of co-
processor unit z.

Store Word from SWCz rt, off set (base)
Co-processor Sign-extend 16-bit offset and add to base to form address. Store

contents of co-processor register rt from co-processor unit z at
addressed memory word.

Move To Co-processor MTCz rt. rd
Move contents of CPU register rtinto co-processor register rd of
co-processor unit z.

Move from Co-processor MFCz rt.rd
Move contents of co-processorregister rdfrom co-processor unit
z to CPU register rt

Move Control To CTCz rt.rd
Co-processor Move contents of CPU register rtinto co-processor control register

rd of co-processor unit z.

Move Control From CFCz rt.rd
Co-processor Move contents of control register rd of co-processor unit z into

CPU register rt
Co-processor Operation COPz co.fun

Co-processor z performs an operation. The state of the R305 l I
52 is not modified by a co-processor operation.

Branch on Co-processor BCzT offset
zTrue Compute a branch target address by adding address of

instruction in the 16-bit offset (shifted left two bits and sign-
extended to 32-bits). Branch to the target address (with a delay
of one instruction) if co-processor z's condition line is true.

Branch on Co-processor BCzF offset
z False Compute a branch target address by adding address of

instruction in the 16-bit offset (shifted left two bits and sign-
extended to 32-bits). Branch to the target address (with a delay
of one instruction) if co-processor z's condition line is false.

4000 tbl 12

Table 2.8. Co-Processor Operations

2-19

CHAPTER2

System Control Co-processor (CPO) Instructions
Co-processor 0 instructions perform operations on the System Control Co

processor (CPO) registers to manipulate the memory management, bus
programmability, timer, and exception handling facilities of the processor.
Memory management is discussed in Chapter 4; bus programmability and
timer features are described in Chapter 5; and exception handling is covered
in detail in Chapter 6.

Table 2.9 summarizes the instructions available to work with CPO.

Instruction Format and Description
Move To CPO MTCO rt, rd

Store contents of CPU register rt into register rd of CPO. This
follows the convention of store operations.

Move From CPO MFCO rt, rd
Load CPU register rt with contents of CPO register rd.

Read Indexed TLB Entry TLBRI
Load EntryHiandEntryI..o registers with TLB entry pointed at by
Index register.

Write Indexed TLB Entry TLBWII
Load TLB entry pointed at by Index register with contents of
EntryHi and EntryI..o registers.

Write Random TLB Entry TLBWRt
Load TLB entry pointed at by Random register with contents of
EntryHi and EntryI..o registers.

Probe TLB for Matching TLBPI
Entry Load Index register with address of TLB entry whose contents

match EntryHi and EntryI..o. If no TLB entry matches, set high-
order bit of Index register.

Restore From Exception RFE
Restore previous interrupt mask and mode bits of status register
into current status bits. Restore old status bits into previous
status bits.

4000 tbl 13
'These operations are undefined/ reserved in the R304 L which does not include an on-chip TLB.

Table 2.9. System Control Co-Processor (CPO) Operations

R3051 FAMILY OPCODE ENCODING
Table 2.10 shows the opcode encoding for the MIPS architecture.

2-20

INSTRUCTION SET ARCHITECTURE

INSTRUCTION SET ARCHITECTURE

31..29

0

1

2

3

4

5

6

7

5 .. 3

0

1

2

3

4

5

6

7

20 .. 19

0

1

2

3

4

25 .. 24

0

1

2

3

20 .. 19

0

1

2

3

4 .. 3

0

1

2

3

28 .. 26

0

SPECIAL

ADDI

COPO

t
LB

SB

LWCO

swco

2 .. 0

0

SLL

JR

MFHI

MULT

ADD

t
t
t

18 .. 16

0

BLTZ

BL'IZAL

23 .. 21

0

MF

BC

18 .. 16

0

2 .. 0

1

BCOND

ADDIU

COPl

t
LH

SH

LWCl

SWCl

1

t
JALR

MTI-11

MULTU

ADDU

t
t
t

1

BGEZ

BGEZAL

1

t

1

OPCODE

2 3

J

SLTI

COP2

t
LWL

SWL

LWC2

SWC2

2

SRL

t
MFLO

DIV

SUB

SLT

t
t

2

2

CF

t

JAL

SLTIU

COP3

t
LW

SW

LWC3

SWC3

SPECIAL

3

SRA

t
M'ILO

DIVU

SUBU

SLTU

t
t

BCOND

3

COPz

3

t

4

BEQ

ANDI

t
t

LBU

t
t
t

4

SLLV

SY SC ALL

t
t

AND

t
t
t

4

4

MT

t
Co-Processor Specific

Operations

2 3 4

CPO

CHAPTER2

5 6 7

BNE BLEZ BGTZ

ORI XORI LUI

t t t
t t t

LHU LWR t
t SWR t
t t t
t t t

5 6 7

t SRLV SRAV

BREAK t t
t t t
t t t

OR XOR NOR

t t t
t t t
t t t

5 6 7

5 6 7

CT

t t t

5 6 7

0 1 2 3 4 5 6 7

4000 tbl 14

Table 2.10. Opcode Encoding

2-21

CHAPTER2 INSTRUCTION SET ARCHITECTURE

2-22

Integrated Device Technology, Inc.

©1992 Integrated Device Technology, Inc.

CACHE ARCHITECTURE CHAPTERS

INTRODUCTION
The R305 l family achieves its high standard of performance by combining

a fast, efficient execution engine (that of the R3000A) with high-memory
bandwidth, supplied from its large internal instruction and data caches. These
caches insure that the majority of processor execution occurs at the rate of one
instruction per clock cycle, and serve to decouple the high-speed execution
engine from slower, external memory resources.

Portions of this chapter review the fundamentals of general cache operation,
and may be skipped by readers already familiar with these concepts. This
chapter also discusses the particular organization of the on-chip caches of the
R304 l. However, as these caches are managed by the R304 l itself, the system
designer does not typically need to be explicitly aware of this structure.

FUNDAMENTALS OF CACHE OPERATION
High-performance microprocessor-based systems frequently borrow from

computer architecture principles long used in mini-computers and mainframes.
These principles include instruction execution pipelining (discussed in Chapter
2) and instruction and data caching.

A cache is a high-speed memory store which contains the instructions and
data most likely to be needed by the processor. That is, rather than implement
the entire memory system with zero wait-state memory devices, a small zero
wait-state memory is implemented. This memory, called a cache, then
contains the instructions/ data most likely to be referenced by the processor.
If indeed the processor issues a reference to an item contained in the cache,
then a zero wait-state access is made; if the reference is not contained in the
cache, then the longer latency associated with the true processor memory is
incurred. The processor will achieve its maximum performance as long as its
references "hit" (are resident) in the cache.

Caches rely on the principles of locality of software. These principles state
that when a data/instruction element is used by a processor, it and its close
neighbors are likely to be used again soon. The cache is then constructed to
keep a copy of instructions and data referenced by the processor, so that
subsequent references occur with zero wait-states.

Since the cache is typically many orders of magnitude smaller than main
memory or virtual address space, each cache element must contain both the
data (or instruction) required by the processor, as well as information which
can be used to determine whether a cache "hit" occurs. This information, called
the cache "TAG", is typically some or all of the address in main memory of the
data item contained in that cache element as well as a "Valid" flag for that cache
element. Thus, when the processor issues an address for a reference, the cache
controller compares the TAG with the processor address to determine whether
a hit occurs.

To minimize cost while maintaining high-performance, the R305 l family,
including the R304 l, integrate a reasonable amount of cache internal to the
chip, eliminating the cost and complexity of external caches.

3-1

CHAPTERS

R3041 CACHE ORGANIZATION
There are a number of algorithms possible for managing a processor cache.

This section describes the cache organization of the R304 l.

Basic Cache Operation
When the processor makes a reference, its 32-bit internal physical address

bus contains the address it desires. The processor address bus is split into two
parts; the low-order address bits specify a location in the cache to access, and
the remaining high-order address bits contain the value expected from the
cache TAG. Thus, both the instruction/ data element and the cache TAG are
fetched simultaneously from the cache memory. If the value read from the TAG
memories is the same as the high-order address bits, a cache hit occurs and
the processor is allowed to operate on the instruction/ data element retrieved.
Otherwise, a cache miss is processed. This operation is illustrated in Figure
3.1.

PIO Virtual Address

Execution 32
Core .--......... _____ ___. __,

Virtual ~ Physical
Address Translation

Physical
32 Address Present?

PIO Match?
Valid?

TLB Miss
Compare?

Cache Hit ----------1

Cache
Index

Tag

Cache
Tag

Valid

Cache
Data

Data .-----------------'--'>-------~

Figure 3.1. Cache Line Selection

To maximize performance, the R304 l implements a Harvard Architecture
caching strategy. That is, there are two separate caches: one contains
instructions (operations), and the other contains data (operands). By separating
the caches, higher overall bandwidth to the execution core is achieved, and
thus higher performance is realized.

Memory Address to Cache Location Mapping
The R3041 caches are direct-mapped. That is, each main memory address

can be mapped to (contained in) only one particular cache location. This is
different from set-associative mappings, where each main memory location
has multiple candidates for address mapping.

This organization, coupled with the relatively large cache sizes resident on
the R304 l, achieve extremely high hit rates while maximizing speed and
minimizing complexity and power consumption.

3-2

CACHE ARCHITECTURE

CACHE ARCHITECTURE CHAPTERS

Cache Addressing
nie address presented to the cache and cache controller is that of the

physical (main) memory element to be accessed. niat is, the virtual address
to physical address translation is performed by the memory management unit
prior to the processor issuing its reference address.

Some microprocessors utilize virtual indexing in the cache, where the
processor virtual address is used to specify the cache element to be retrieved.
iliis type of cache structure complicates software and slows embedded
applications:

• When the processor performs a context switch, a virtually indexed cache
must be flushed. iliis is because two different tasks can use the same
virtual address but mean totally different physical addresses. iliis cache
flushing for a large cache dramatically slows context switch performance.

• Software must be aware of and specifically manage against "alias"
problems. An alias occurs when two different virtual addresses correspond
to the same physical address. If that occurs in a virtually indexed cache,
then the same data element may be present in two different cache
locations. If one virtual address is used to change the value of that
memory location, and a different address used to read it later, then the
second reference will not get the current value of that data item.

By providing for the virtual to physical address translation in the processor
pipeline, physical cache addressing is used with no inherent speed penalty.

Write Policy
nie R304 l utilizes a write through cache. niat is, whenever the processor

performs a write operation to memory, then both the cache (data and TAG
fields) and main memory are written. If the reference is uncacheable, then only
main memory is written.

To minimize the delays associated with updating main memory, the R3041
contains a 4 element write buffer. nie write buffer captures the target address
and data value in a single processor clock cycle, and subsequently performs the
main memory write at its own, slower rate. nie write buffer can FIFO up to 4
pending writes, as described in a later chapter.

Partial Word Writes
In the case of partial word writes, the R304 l operates by performing a read

modify-write sequence in the cache: the store target address is used to perform
a cache fetch: if the cache "hits", then the partial word data is merged with the
cache and the cache is updated. If the cache read results in a hit, the memory
interface will see the full word write, rather than the partial word. iliis allows
the designer to observe the actual activity in the eon-chip caches.

If the cache lookup of a partial word write "misses" in the cache, then only
main memory is updated.

Instruction Cache Line Size
nie "line size" of a cache refers to the number of cache elements mapped by

a single TAG element. In the R304 l, the instruction cache line size is 16 bytes,
or four words.

iliis means that each cache line contains four adjacent words from main
memory. In order to accommodate this, an instruction cache miss is processed
by performing a quad word (block) read from the main memory, as discussed
in a later chapter. iliis insures that a cache line contains four adjacent
memory locations. Note that since the instruction cache is typically never
written into directly by user software, the larger line size is permissible. If

3-3

CHAPTERS

software does explicitly store into the instruction cache (perform store operations
with the caches "swapped"), the programmer must insure that either the
written lines are left invalidated, or that they contain four adjacent instructions.

Block refill uses the principle of locality of reference. Since instructions
typically execute sequentially, there is a high probability that the instruction
address immediately after the current instruction will be the next instruction.
Block refill then brings into the cache those instructions immediately near the
current instruction, resulting in a higher instruction cache hit rate.

Block refill also takes advantage of the difference between memory latency
and memory bandwidth. Memory latency refers to the amount of time required
to perform a processor request, while bandwidth refers to the rate at which
subsequent transfers can occur. Factors that affect memory latency include
address decoding, bus arbitration, and memory pre-charge requirements;
factors which maximize bandwidth include the use of page mode or nibble
mode accesses, memory interleaving, and burst memory devices.

The processing of a quad word read is discussed in a later chapter; however,
it is worth noting that the R304 l can support either true burst accesses or can
utilize a simpler, slower memory protocol for quad word reads. Also note that
the variable bus sizing capability of the R304 l means that block reads can
occur from 8- or 16-bit memory systems. This includes the case of instruction
fetches; the bus interface unit will automatically translate the block read
protocol into a larger number of sub-word reads, depending on the memory
width programmed for the target memory location.

Finally, note that the R304 l performs "streaming" during instruction cache
refill. That is, the processor will simultaneously refill the instruction cache and
execute the incoming instructions. Streaming contributes an average of 5% of
performance.

Data Cache Line Size
The data cache line size is different from that of the instruction cache, based

on differences in their use. The data cache is organized as a line size of one word
(four bytes).

This is optimal for the write policy of the data cache: since an individual
cache word may be written by a software store instruction, the cache controller
cannot guarantee that four adjacent words in the cache are from adjacent
memory locations. Thus each word is individually tagged. The partial word
writes Oess than 4 bytes) are handled as a read-modify-write sequence, as
described above.

Although the data cache line size is one word, the system may elect to
perform data cache updates using quad word reads (block refill). The
performance of the data cache update options can be simulated using
Cache-3041: some systems may achieve higher performance through the use
of data cache burst refill. No "streaming" occurs on data cache refills.

Summary
The on-chip caches of the R305 l family can be thought of as constructed

from discrete devices around the R3000A. Figure 3.2 shows the block diagram
of the cache interface for the R304 l.

3-4

CACHE ARCHITECTURE

CACHE ARCHITECTURE CHAPTERS

' Data .)
I'

Execution
Core TAG(31 :9) I/

Valid 11\,----------. ..
i5Wr Tlici' IClk

AddrLo DClk DRd IWr

I I
AdrLo Bus ,5]J

Latch
-..-......... Dclk

1Ad(10:2)~...---~..., JIAd(10:4)

.------'J l DAd(8:2)

J_ ~
D-Cache D-Cache

Tags Data
128x24 128x32

~ -1"c
L

I...

....
~

DWr

l5Rd

IWr _.i I-Cache
Data

___ 512x32

Data Bus

Tag Bus (Plus Valid)

I-Cache
Tags

128x22

Figure 3.2. R3041 Execution Core and Cache Interface

CACHE OPERATION

4000drw13

The operation of the on-chip caches is very straightforward, and is
automatically handled by the processor.
Basic Cache Fetch Operation

As with the R3000A/R3500, the R305 l family can access both the instruction
and data caches in a single clock cycle, resulting in high bandwidth to the
execution core. It does this by time multiplexing the cycle in the cache
interface:

• During the first phase, a data cache address is presented, and a previous
instruction cache read is completed.

• During the second phase, the data cache is read into the processor (or
written by the processor). Also, the instruction cache is addressed with
the next desired instruction.

• During the first phase of the next cycle, the instruction fetch begun in the
previous phase is completed and a new data transaction is initiated.

This operation is illustrated in Figure 3.3. As long as the processor hits in
the cache, and no internal stall conditions are encountered, it will continue to
execute run cycles. A run cycle is defined to be a clock cycle in which forward
progress in the processor pipeline occurs. Note that data in the cache is
organized into 32-bit words, regardless of the width associated with main
memory from which the datum was taken. Thus, cache hits can retrieve a full
32-bits in a single cycle, minimizing the performance impact of the narrower
memory system.

3-5

CHAPTERS

Instruction
Cache

\.

Phase 1

Execution
Core

Data
Cache

Data, TAG, Valid

.l.
~f

Instruction
Cache

Phase2

Execution
Core Data

Cache

·:: :·:
·.· ____ ,_._.l· ·· •.•....

···:·.~·-··:·.-.... ;;,.y:.···

Data, TAG, Valid

4000dlW 14

Figure 3.3. Phased Access of Instruction and Data Caches

Cache Miss Processing
In the case of a cache miss (due to either a failed tag comparison or because

the processor issued an uncacheable reference), the main memory interface
(discussed in a later chapter) is invoked. If, during a given clock cycle, both the
instruction and data cache miss, the data reference will be resolved before the
instruction cache miss is processed.

While the processor is waiting for a cache miss to be processed, it will enter
stall cycles until the bus interface unit indicates that it has obtained the
necessary data.

When the bus interface unit returns the data from main memory, it is
simultaneously brought to the execution unit and written into the on-chip
caches. This is performed in a processor .ftxup cycle.

During a fixup cycle, the processor re-issues the cache access that failed;
this occurs by having the processor re-address the instruction and data
caches, so that the data may be written into the caches. If the cache miss was
due to an uncacheable reference, the write is not performed, although a fixup
cycle does occur.

Instruction Streaming
A special feature of the R305 l family is utilized when performing block reads

for instruction cache misses. This process is called instruction streaming.
Instruction streaming is simultaneous instruction execution and cache refill.

As the block is brought in, the processor refills the instruction cache.
Execution of the instructions within the block begins when the instruction
corresponding to the cache miss is returned by the bus interface unit to the
execution core. Execution continues until the end of the block is reached (in
which case normal execution is resumed), or until some event forces the
processor core to discontinue execution of that stream. These events include:

• Taken branches
• Data cache miss
• Internal stalls (TLB miss, multiply I divide interlock)
• Exceptions
When one of these events occur, the processor re-enters simple cache refill

until the rest of the block has been written into the cache.

3-6

CACHE ARCHITECTURE

CACHE ARCHITECTURE CHAPTERS

CACHEABLE REFERENCES
Chapter 4 on memory management explains how the processor determines

whether a particular reference (either instruction or data) is to a memory
location that may reside in the cache. The fundamental mechanism is that
certain virtual addresses are considered to be "cacheable". If the processor
attempts to make a reference to a cacheable address, then it will employ its
cache management protocol through that reference. Otherwise, the cache will
be bypassed, and the execution engine core will directly communicate with the
bus interface unit to process the reference.

Whether a given reference should be cacheable or not depends very much
on the application, and on the target of the reference. Generally, I/O devices
should be referenced as uncacheable data; for example, if software was polling
a status register, and that register was cached, then it would never see the
I/O device update the status (note that the compiler suite supports the
"volatile" data type to insure that the I/O device status register data in this case
never gets allocated into an internal register).

There may be other instances where the uncacheable attribute is appropriate.
For example, software which directly manipulates or flushes the caches can
not be cached; similarly, boot software can not rely on the state of the caches,
and thus must operate uncached at least until the caches are initialized.

SOFTWARE DIRECTED CACHE OPERATIONS
In order to support certain system requirements, the R305 l family provides

mechanisms for software to explicitly manipulate the caches. These mechanisms
support diagnostics, cache and memory sizing, and cache flushing. In general,
these mechanisms are enabled/ disabled through the use of the Status Register
in CPO.

The primary mechanisms for supporting these operations are cache swapping
and cache isolation. Cache swapping forces the processor to use the data cache
as an instruction cache, and vice versa. It is useful for allowing the processor
to issue store instructions which cause the instruction cache to be written.
Cache isolation causes the current data cache to be "isolated" from main
memory; store operations do not cause main memory to be written, and all load
operations "hit" in the data cache.

These mechanisms are enabled through the use of the "IsC" (Isolate Cache)
and "SwC" (Swap Cache) bits of the status register, which resides in the on-chip
System Control Co-Processor (CPO). The 5 instructions which immediately
precede and succeed these operations must not be cacheable, so that the
actual swapping/isolation of the cache does not disrupt operation.

Cache Sizing
It is possible for software to determine the amount of cache resident on any

given R305 l family chip (note that the R304 l, R305 l, R3052, and R308 l each
feature differing amounts of cache on chip). Having software determine the size
of the cache at boot time, rather than building static values into the software,
allows for maximum flexibility in interchanging various members of the R305 l
family, including future devices.

Cache sizing in an R305 l family CPU is performed much like traditional
memory sizing algorithms, but with the cache isolated. This avoids side-effects
in memory from the sizing algorithm, and allows the software to use the "Cache
Miss" bit of the status register in the sizing algorithm.

3-7

CHAPTERS

To determine the size of the instruction cache, software should:

1: Swap Caches (not needed for D-Cache sizing)
2: Isolate Caches
3: Write a value at location 8000_0000
4: Write a value at location 8000_0200 (8000_0000 + 512B)

Read location 8000_0000.
Examine the CM (Cache_Miss) bit of the status register; if it indicates a
cache miss, then the cache is 5 l 2B; otherwise, the cache is lkB or larger.

5: Write a value at location 8000_0400 (8000_0000 + lkB)
Read location 8000_0000.
Examine the CM (Cache_Miss) bit of the status register; if it indicates a
cache miss, then the cache is lkB; otherwise, the cache is 2kB or larger.

6. etc ...

Of course a more generalized algorithm could be developed to determine the
cache size; this may be desirable for compatibility with discrete R3000A/
R3500 systems or otherR3051 family members. However, any algorithm will
probably include the Swap and Isolate of the Instruction Cache, and the use
of the Cache Miss bit. Sizing the data cache is done with a similar algorithm,
although the caches need not be swapped, and smaller cache sizes need to be
considered.

Note that this software should operate as uncached. Once this algorithm is
done, software should return the caches to their normal state by performing
either a complete cache flush or an invalidate of those cache lines modified by
the sizing algorithm.

Cache Flushing
Cache flushing refers to the act of invalidating (indicating a line does not

have valid contents) lines within either the instruction or data caches.
Flushing must be performed before the caches are first used as real caches, and
might also be performed during main memory page swapping or at certain
context switches (note that the R305 l family implements physically addressed
caches, so that cache flushing at context switch time is not generally required).

Tue basic concept behind cache flushing is to have the "Valid" bit of each
cache line set to indicate invalid. This is done in the R305 l family by having
the cache isolated, and then writing a partial word quantity into the current
data cache. Under these conditions, the CPU will negate the "Valid" bit of the
target cache line.

Again, this software should operate as uncached. To flush the data cache:

1: Isolate Caches
2: Perform a byte write every 4 bytes, starting at location 0, until 128 such

writes have been performed (128 in the R3041, more for other R3051
family members).

3: Return the data cache to its normal state by clearing the IsC bit.

3-8

CACHE ARCmTECTURE

CACHE ARCHITECTURE

To flush the instruction cache:

1: Swap Caches
2: Isolate Caches

CHAPTER3

3: Perform a byte write every 16 bytes (based on the instruction cache line
size of 16 bytes). This should be done until each line (128 lines in the
R3041, more for other R3051 family members) have been invalidated.
Note that treating the R3041 as if it had larger on-chip caches, and
flushing/invalidating more than 128 lines is acceptable though less
efficient.

4: Return the caches to their normal state (unswapped and not isolated).

To minimize the execution time of the cache flush, this software should
probably use an "unrolled" loop. That is, rather than have one iteration of the
loop invalidate only one cache line, each iteration should invalidate multiple
lines. This spreads the overhead of the loop flow control over more cache line
invalidates, thus reducing execution time.

Also, of course it is preferable to use the cache sizing algorithm described
earlier to determine the number of lines to be flushed.

Forcing Data into the Caches
Using these basic tools, it is possible to have software directly place values

into the caches. When combined with appropriate memory management
techniques, this could be used to "lock" values into the on-chip caches, by
insuring that software does not issue other cacheable address references
which may displace these locked values.

In order to force values into a cache, the cache should be Isolated. If software
is trying to write instructions into the instruction cache, then the caches
should also be swapped.

When forcing values into the instruction cache, software must take care with
regards to the line size of the instruction cache. Specifically, a single TAG and
Valid field describe four words in the instruction cache; software must then
insure that any instruction cache line tagged as Valid actually contains valid
data from all four words of the block.

SUMMARY
The on-chip caches of the R305 l family are key to the inherent performance

of the processor. The R305 l family design, however. does not require the
system designer (either software or hardware) to explicitly manage this
important resource, other than to correctly choose virtual addresses which
may or may not be cached, and to flush the caches at system boot. This
contributes to both the simplicity and performance of an R304 l based system.

3-9

CHAPTERS CACHE ARCHITECTURE

3-10

Integrated Device Technology, Inc.

MEMORY MANAGEMENT CHAPTER4

INTRODUCTION
The R304 l provides the same basic virtual to physical address translation

as the rest of the R3051 family base versions (the R3051, R3052, and R3081).
These devices provide segment-based virtual to physical address translation,
and support the segregation of kernel and user tasks without requiring
extensive virtual page management.

The extended versions of the R305 l family (the R3051E, R3052E, and
R3081E) provide a full featured memory management unit (MMU) identical to
the MMU structure of the R3000Aand R3500. The extended MMU uses an on
chip translation lookaside buffer (TLB) and dedicated registers in CPO to
provide for software management of page tables. There is no Extended
Architecture version of the R304 l.

This chapter describes the operating states of the processor (kernel and
user), and describes the virtual to physical address translation mechanisms
provided in the R304 l.

VIRTUAL MEMORY IN THE R3051 FAMILY
There are two primary purposes of the memory management capabilities of

the R3051 family.
• Various areas of main memory can have individual sets of attributes

associated with them. For example, some segments may be indicated as
requiring kernel status to be accessed; others may have cacheable or
uncacheable attributes. The virtual to physical address translation
establishes the rules appropriate for a given virtual address. The R304 l
memory manager provides for these mechanisms, without requiring the
use of a TLB.

• The virtual memory system can be used to logically expand the physical
memory space of the processor, by translating addresses composed in a
large virtual address space into the physical address space of the system.
This is particularly important in applications where software may not be
explicitly aware of the hardware resources of the processor system, and
includes applications such as X-Window display systems. These types of
applications are better served by the "E" (extended architecture) versions
of the R3051 family.

Figure 4.1 shows the format of an R305 l family virtual address. The most
significant 20 bits of the 32-bit virtual address are called the virtual page
number, or VPN. In the extended architecture versions, the VPN allows
mapping of virtual addresses based on 4kB pages; in the base versions (and
thus in the R304 l), only the three highest bits (segment number) are involved
in the virtual to physical address translation.

31 12 11 0

I I I I VPN I Offset I
31 30 29 20 12

I
0 x x kuseg
1 0 0 ksegO
1 0 1 kseg1
1 1 x kseg2

4000drw15

Figure 4.1. Virtual Address Format

4-1

CHAPTER4

The three most significant bits of the virtual address identify which virtual
address segment the processor is currently referencing; these segments have
associated with them the mapping algorithm to be employed, and whether
virtual addresses in that segment may reside in the cache. The translation of
the virtual address to an equivalent privilege level/ segment is the same for the
base and extended versions of the architecture. In addition. the R304 l uses the
high-order address bits of the physical address to determine which memory
region is being accessed; this information, along with the contents of the CPO
PortSize register, determine the width of the memory system being addressed
in a given memory transfer.

PRIVILEGE STATES
The R304 l provides for two unique privilege states: the "Kernel" mode, which

is analogous to the "supervisory" mode provided in many systems, and the
"User" mode, where non-supervisory programs are executed. Kernel mode is
entered whenever the processor detects an exception; when a Restore From
Exception (RFE) instruction is executed, the processor will return either to its
previous privilege mode or to User mode, depending on the state of the machine
and when the exception was detected.

User Mode Virtual Addressing
While the processor is operating in User mode, a single, uniform virtual

address space (kuseg) of 2GB is available for Users. All valid user-mode virtual
addresses have the most significant bit of the virtual address cleared to 0. An
attempt to reference a Kernel address (most significant bit of the virtual
address set to I) while in User mode will cause an Address Error Exception (see
chapter 6). Kuseg begins at virtual address 0 and extends linearly for 2GB.
This segment is typically used to hold user code and data, and the current user
processes.

Also note that the physical address space corresponding to kuseg is
independent of the physical address spaces of the various kernel only
segments. Thus, systems can be constructed which preclude user tasks from
affecting kernel memory. On the other hand, simple systems can, by virtue of
the address decode, compress the mapping into a single address region.

Kemel Mode Virtual Addressing
When the processor is operating in Kernel mode, four distinct virtual

address segments are simultaneously available. The segments are:
• kuseg. The kernel may assert the same virtual address as a user process,

and have the same virtual to physical address translation performed for
it as the translation for the user task. This facilitates the kernel having
direct access to user memory regions. The virtual to physical address
translation, including the Port Size attributes, is identical with User mode
addressing to this segment.

• ksegO. KsegO is a 512MB segment, beginning at virtual address
Ox8000_0000. This segment is always translated to a linear 512MB
region of the physical address space starting at physical address 0. All
references through this segment are cacheable.
When the most significant three bits of the virtual address are "I 00", the
virtual address resides in ksegO. The physical address is constructed by
replacing these three bits of the virtual address with the value "000". As
these references are cacheable, ksegOis typically used for kernel executable
code and some kernel data.

• ksegl. Ksegl is also a 512MB segment, beginning at virtual address
OxaOOO_OOOO. This segment is also translated directly to the 512MB
physical address space starting at address 0. All references through this
segment are uncacheable.

4-2

MEMORY MANAGEMENT

MEMORY MANAGEMENT CHAPTER4

When the most significant three bits of the virtual address are "l 0 l", the
virtual address resides in ksegl. The physical address is constructed by
replacing these three bits of the virtual address with the value "000".
Unlike ksegO, references through ksegl are not cacheable. This segment
is typically used for 1/0 registers, boot ROM code, and operating system
data areas such as disk buffers.

• kseg2. This segment is analogous to kuseg, but is accessible only from
kernel mode. 11lis segment contains lGB of linear addresses, beginning
at virtual address OxcOOO_OOOO. As with kuseg, the virtual to physical
address translation depends on whether the processor is a base or
extended architecture version.
When the two most significant bits of the virtual address are "11", the
virtual address resides in the 1024MB segment kseg2. The virtual to
physical translation is done either through the TLB (extended versions of
the processor) or through a direct segment mapping (base versions). An
operating system would typically use this segment for stacks, per-process
data that must be re-mapped at context switch, user page tables, and for
some dynamically allocated data areas.

Base versions of the R305 l family (including the R304 l) are distinguishable
from extended versions in software by examining the TS (TLB Shutdown) bit of
the Status Register after reset, before the TLB is used. If the TS bit is set (1)
immediately after reset, indicating that the TLB is non-functional, then the
current processor is a base version of the architecture. If the TS bit is cleared
after reset, then the software is executing on an extended architecture version
of the processor.

The PRid register (described in chapter 6) can be used to distinguish the
R304 l (with its variable bus sizing features, among others) from other
members of the R305 l family.

R3041 ADDRESS TRANSLATION
Processors which only implement the base versions of memory management

perform direct segment mapping of virtual to physical addresses, as illustrated
in Figure 4.2. Thus, the mapping of kuseg and kseg2 is performed as follows:

• Kuseg is always translated to a contiguous 2GB region of the physical
address space, beginning at location Ox4000_0000. That is, the value
"00" in the two highest order bits of the virtual address space are
translated to the value "01", and "01" is translated to "10", with the
remaining 30 bits of the virtual address unchanged.
Kuseg is broken into 4 equal sub-regions to support the variable width
bus interface capability of the R304 l. The 2GB of Kuseg is divided into
4 equal 512MB regions (Kuseg[a:d]), whose port widths are indicated in
the CPO Port Size register. Thus, Kuseg can be composed of a mix of
memory spaces, of varying widths, independent from the widths of the
kernel address space.

• Virtual addresses in kseg2 are directly output as physical addresses; that
is, references to kseg2 occur with the physical address unchanged from
the virtual address. The 1 MB kseg2 physical address space is divided into
two equally sized 512MB subregions, whose memory width attributes are
controlled by the CPO PortSize register.

• Virtual addresses in ksegO and kseg 1 are both translated identically to the
same physical address region. This 512MB region is subdivided into 8
equal 64MB sub-spaces, whose memory widths are independently
selectable in the CPO Port Size register. This allows the various kernel
regions to have varying port widths, independent of kuseg.

4-3

CHAPTER4

Oxffffffff

OxcOOOOOOO

OxaOOOOOOO

OxBOOOOOOO

OxOOOOOOOO

Kernel Cached

(kseg2)

Kernel Uncached

(kseg1)

Kernel Cached

(ksegO)

Kernel/User
Cached

(kuseg)

_

1--

~--

I-t--+

Kernel Cached
Tasks

Kernel/User
Cached
Tasks

Inaccessible

Kernel Boot
and 1/0

1024 MB

2048 MB

512 MB

512 MB

4000 drw 16

Figure 4.2. Virtual to Physical Address Translation in Base Versions

The base versions of the architecture allow kernel software to be protected
from user mode accesses, withoutrequiringvirtual page management software.
User references to kernel virtual address will result in an address error
exception.

Note that the reserved areas of the virtual address space shown in figure 4.2
are translated to physical addresses identically with the remainder of their
virtual segment; they are indicated as reserved to insure compatibility with
future family members which may incorporate on-chip resources in these
address spaces.

Some systems may elect to protect external physical memory as well. That
is, the system may include distinct memory devices which can only be accessed
from kernel mode. The physical address output determines whether the
reference occurred from kernel or user mode, according to Table 4.1.

Physical Address (31:29) Virtual Address Segment

'000' KsegO or Ksegl

'001' Inaccessible

'Olx' Kuseg

'IOx' Kuseg

'llx' Kseg2
4000 tbl 15

Table 4.1. Virtual and Physical Address Relationships in Base Versions

Thus, some systems may wish to limit accesses to some memory or 1/0
devices to those physical address bits which correspond to kernel mode virtual
addresses.

Alternately, some systems maywish to have the kernel and user tasks share
common areas of memory. Those systems could choose to have their address
decoder ignore the high-order physical address bits, and compress all of
memory into the lower region of physical memory. The high-order physical
address bits may be useful as privilege mode status outputs in these systems.

4-4

MEMORY MANAGEMENT

MEMORY MANAGEMENT CHAPTER4

SUMMARY
The R305 l family provides two models of memory management: a very

simple, segment based mapping, found in the base versions of the architecture,
and a more sophisticated, TLB-based page mapping scheme, present in the
extended versions of the architecture. Each scheme has advantages to
different applications. The R304 l only implements the base version address
translation, but in addition, subdivides each segment into sub-regions. Each
sub-region may be declared, via the CPO Port Size register, as having either an
8-, 16-, or 32-bit memory interface. The Bus Interface Unit of the R3041
dynamically translates processor core references to the appropriate port width,
making the actual software independent of the port width. Both instruction
and data fetches can be transferred between memory and the CPU, regardless
of the memory port width.

4-5

CHAPTER4 MEMORY MANAGEMENT

4-6

Integrated Device Technology, Inc.

SYSTEM INTERFACE
CONTROL

INTRODUCTION

CHAPTER5

The R304 l bus interface has been designed to minimize system cost by
providing a simple, flexible bus interface. In addition, the bus interface has
been designed to allow the R304 l, R305 l, R3052, and R308 l to be easily
interchanged in a given design.

To allow the system designer to enjoy maximum flexibility, the bus interface
of the R304 l features a number of programmable options. These options are
controlled by various registers of the on-chip Co-Processor 0. This chapter
describes those registers and their impact on the bus interface.

CO-PROCESSOR 0 BUS INTERFACE CONTROL
Figure 5. 1 illustrates the co-processor 0 registers used to control various

actions of the bus interface. Note that the MIPS architecture allows the register
set of CPO to vary by implementation; software can easily identify the R304 l
(and its CPO registers) from the R305 l and R308 l by reading the PRid from
CPO.

The fields of these registers, and their impact on the bus interface, are
described below. Note that software should allow a minimum of 10 instruction
cycles for changes to these registers to be reflected in subsequent bus
transactions.

Used for CPU Identification Used for Interface Control Used with Exception Processing

PRID $15 Iii ~ll~i~~lililll STATUS $12

CAUSE$13

1111::1111111111111:11
EPC$14

BADVA$8

Figure 5.1. R3041 Bus Interface Control Registers

5-1

CHAPTERS

BUS CONTROL REGISTER
The Bus Control register allows the kernel to configure various aspects of the

bus interface, simplifying the 1/0 interface in many systems.
This register controls the use of the BE(3:0), BE16(1:0), TC, andSBrCond(3:2)

signals, and also controls the time between back to back transactions.
Figure 5.2 illustrates the various fields of the Bus Control register. The reset

defaults for this register have been selected to insure R305 l compatible
operation.

The Bus Control register is both readable and writeable.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16

ED 10

2 2 2 2 3

15 14 13 12 11 10 9 8 7 0

2 2 2 8

Lock: Register Write Lock
'1 ': Reserved: Must be written as '1'
'O': Reserved: Must be written as 'O'
MEM: MemStrobe Control
ED: ExtDataEn Control
10: IOStrobe Control
BE16: BE16 Read Control
BE: BE(3:0) Read Control
BTA: Bus Turn Around Time
OMA: OMA Protocol Control
TC: TC Negation Control
BR: SBrCond(3:2) Control

Figure 5.2. RS041 Bus Control Register

Lock
The lock bit can be used by the kernel to inhibit subsequent write operations

to this register. It is useful in ensuring that operating systems written for other
R3000A-based applications, including applications which may run on other
R3051 family members, do not inadvertently change the fields of the Bus
Control register.

At reset, the register is unlocked (Lock bit is 'O'). Thus, the BusCtrl register
can be written and re-written as the operating system chooses. Once the Lock
bit is written with a 'l', subsequent writes to the BusCtrl register will be
ignored.
Reserved-High r 1')

This bit is reserved for testing of the R304 l. At reset, the bit will be set high
(' l '). Writes to the BusCtrl register must maintain these bit fields as high(' l ').
Reserved-Low ('O')

These fields are reserved for testing and for future variants of the R304 l. At
reset, these bit fields are reset ('O'). Writes to the BusCtrl register must
maintain these bit fields as low ('O').

5-2

SYSTEM INTERFACE CONTROL

SYSTEM INTERFACE CONTROL CHAPTERS

MemStrobe Control
These bits control the use of the MemStrobe pin, according to Table 5.1.
Reset initializes this field to 'O l'. which allows the use of MemStrobe on

writes.

Value Action

'00' MemStrobe remains high on both reads and writes

'01' Use MemStrobe on write cycles on]y (default)

'10' Use MemStrobe on read cycles only

'11' Use MemStrobe on both read and write cycles

Table 5.1. R3041 MemStrobe Configuration Field

ExtDataEn Control
These bits control the use of the ExtDataEn pin, according to Table 5.2.
These bits depend on the settings of the SBRCond control bit; if the bit is

programmed to allow SBrCond(3:2) to be used as outputs, the settings of the
table apply. Otherwise, SBrCond(3:2) will be used as inputs, and the value of
the ExtDataEn Control field is ignored.

Value Action

'00' ExtDataEn remains high on both reads and writes

'01' Use as ExtDataEn on write cycles only

'10' Use as ExtDataEn on read cycles only

'11' Use as ExtDataEn on both read and write cycles (default)

Table 5.2. RS04 l ExtDataEn Configuration Field

IOStrobe Control
These bits control the use of the BrCond(3) pin, according to Table 5.3.
These bits depend on the settings of the SBRCond control bit; if the bit is

programmed to allow SBrCond(3:2) to be used as outputs, the settings of the
table apply. Otherwise, SBrCond(3:2) will be used as inputs, and the value of
the IOStrobe Control field is ignored.

Value Action

'00' IOStrobe remains high on both reads and writes

'01' Use as IOStrobe on write cycles only

'10' Use as IOStrobe on read cycles only

'11' Use as IOStrobe on both read and write cycles (default)

Table 5.S. R3041 IOstrobe Configuration Field

5-S

CHAPTERS

BE16 Control
When set high ('l'), the BE16(1:0) outputswillassertaccordingto the datum

size in both read and write transfers. When reset low ('O'), both BE16(1:0)
outputs will be negated during read transactions; on write transactions,
BE16(1 :0) will assert accordin to the size of the datum to be transferred.

This feature allows the BE16 1 :0) outputs to be used as Write Strobes to 16-
bit DRAM systems, by directly connecting BE16(1 :0) to the Write Enables of the
memories, and using the RAS and CAS lines to perform memory selects.
BE16(l:O) can also be connected to SRAMs and other memories iftheir chip
selects are registered instead of transparently latched.

Reset initializes this field to high ('l'), consistent with R3051 BE(3:0).
BE Control

When set high (' l '), the BE(3:0) outputs will assert according to the datum
size in both read and write transfers. When reset low ('O'), the BE(3:0) outputs
will benegated during read transactions; on write transactions, BE(3:0)willassert
according to the size of the datum to be transferred.

This feature allows the BE(3:0) outputs to be used as Write Strobes to 32-bit
DRAM systems, by directly connecting BE(3:0) to the Write Enables of the
memories, and using the RAS and CAS lines to perform memory selects. IfRAS
before CAS refreshing is used, then the DRAMs must be lMb or less since many
4Mb DRAMs must de-assert their WE pin during refreshing. BE(3:0) can also
be connected to SRAMs and other memories if their chip selects are registered
instead of transparently latched.

Reset initializes this field to high ('l'), consistent with R3051 BE(3:0).
Bus Turn Around

This two-bit field controls the minimum number of clock cycles required
between sampling data on a read cycle, and asserting an address for a
subsequent transfer. Read response data is provided by memory or 1/0
devices, which drive the A/D bus for sampling by the processor; during the
address phase of a subsequent transfer, the processor drives the A/D bus with
a target address. This change in mastership is referred to as "Bus Tum
Around". Extending the minimum amount of time for bus turnaround allows
relatively slow memory devices to be used without data buffers.

Value Action

'00' No additional delay; 0.5 cycles minimum

'01' One additional delay cycle; 1.5 cycles minimum

'10' Two additional delay cycles: 2.5 cycles minimum

'11' Three additional delay cycles; 3.5 cycles minimum (default)

Table 5.4. R304 l Bus Tum Around Configuration Field

Table 5.4 shows the values supported by the R304 l for this field. At reset,
the default value of this field is '11', corresponding to the maximum value of
3.5 cycles.
DMA Protocol Control

This bit enables the DMA pulse protocol of the R304 l, described in Chapter
10. If this bit is set(' l '), the R304 l may request that an external DMA master
relinquish bus mastership back to the CPU during a DMA cycle by negating its
BusGnt output, and waiting for the external master to negate the BusReq
input.

If this bit is cleared ('O'), R305 l compatible operation will result, and BusGnt
will remain asserted throughout the DMA mastership cycle.

The default is 'O' on reset

5-4

SYSTEM INTERFACE CONTROL

SYSTEM INTERFACE CONTROL CHAPTERS

TC Control
This bit controls the waveform seen on the TC (Terminal Count) output pin

of the R3041 and defaults to 'O' on reset.
Regardless of the bit setting, TC asserts (active low) on the rising edge of

SysClk, two clock cycles after the Count register equals the Compare register.
If this bit value is cleared low ('O'), TC will then negate on the falling edge of

SysClk that is 1.5 clock cycles after the assertion ofTC, as shown in Figure 5.4.
This mode of operation may typically be used for DRAM refresh requests; no
software intervention is required to de-assert TC.

If this bit value is set high ('I'), TC will remain asserted until software re
writes the Compare register. This mode of operation corresponds to the use of
the timer as an interrupt generator; TC may be tied to one of the CPU interrupt
inputs, and the interrupt handler will clear TC by re-writing the Compare
register. Note that for this mode of operation, the AC parameter propagation
delays associated with the assertion and negation of TC use the same values
as shown in Figure 5.3; however, the number of clock cycles between the
assertion and negation of TC will be longer.

Figure 5.3. R304 l TC Output

BR Control
This bit controls the usage of the SBrCond(3:2) pins. If high (the default on

reset), the SBrCond(3:2) pins will function as the SBrCond(3:2) inputs. If set
low, the SBrCond(3) and SBrCond(2) pins will function as the IOStrobe and
ExtDataEn outputs, respectively.

5-5

CHAPTERS

CACHE CONFIGURATION REGISTER
The cache configuration register allows the kernel to control various

operational aspects of the on-chip caches of the R304 l. These features can be
used to improve performance and/ or implement debug capability for the
R3041. The Config register is both readable and writeable.

Figure 5.4 illustrates the various fields of the cache configuration register.
The reset defaults for this register insure R305 l compatible operation.

31 30 29 28 20 19 18

9 19

SYSTEM INTERFACE CONTROL

0

Lock: Register Write Lock 'O': Reserved: Must be written as 'O'
'1': Reserved: Must be written as '1' FDM: Force Data-Cache Miss
DBR: Data Cache Block Refill Enable

Figure 5.4. R3041 Cache Configuration Register

Lock
The lock bit can be used by the kernel to inhibit subsequent write operations

to this register. It is useful in ensuring that operating systems written for other
R3000A-based applications do not inadvertently change the fields of the Cache
Configuration register.

At reset, the register is unlocked (Lock bit is 'O'). Thus, the Config register
can be written and re-written as the operating system chooses. Once the Lock
bit is written with a 'I', subsequent writes to the Config register will be ignored.
Reserved-High (' l ')

This bit is reserved for testing of the R304 l. At reset, the bit will be set high
('I'). Writes to the Config register must maintain this bit as high ('I').
Reserved-Low ('O')

These fields are reserved for testing and for future variants of the R304 l. At
reset, these bit fields are reset ('O'). Writes to the Config register must maintain
these bit fields as low ('O').
DBlockRefi.11 ('DBR')

If this bit is set high ('I'), data cache misses will be processed as a quad (four
word) read, as described in Chapter 7. If this bit is reset low ('O'), data cache
misses will be processed as a single word read, as described in Chapter 7. At
reset, this bit is reset low ('O').
ForceDCacheMiss fFDM')

If this bit is set high ('I'), all cacheable data load references will be forced to
miss in the data cache. The data references will then be supplied using the
Data Cache miss protocol (including DBlockRefill). Store operations will
continue to update the cache, and the cache miss processing will update the
cache. Thus, this bit provides a quick method of initializing the cache or
reloading the cache from an external device.

At reset, this bit is reset low ('O'), allowing normal operation of the data cache.

5-6

SYSTEM INTERFACE CONTROL

31

Reserved 'O'

8

31

Reserved 'O'

8

24 23

CHAPTERS

COUNT REGISTER
The Count register implements a 24-bit, free running timer as part of the

R3041 CPO. Figure 5.5 illustrates the count register.
Reset initializes the Count register to 'O'. The count register is then

incremented on each SysClk cycle, regardless of processor activity.
The Count register is reset to 'O' by the assertion of TC, when the Count

register equals the value of the Compare register.
The Count register is readable and writeable.

0

Count

24

Figure 5.5. R3041 Count Register

COMPARE REGISTER
The Compare register is used in conjunction with the Count register to

implement a 24-bit timer. When the value of the Count register reaches the
value programmed into the Compare register, the TC output pin is asserted.
Note that the negation of the TC output is controlled by the TC Control bit of
the Bus Control register, described above.

At reset, the Compare register is initialized to the value OxOOff _ftlI. The
Compare register is both readable and writeable. Writing the Compare register
has no effect on the value of the Count register.

24 23 0

Compare

24

Figure 5.6. R304 l Compare Register

5-7

CHAPTERS

PORTSIZE CONTROL REGISTER
The PortSize control register is used to interface the R304 l to varying width

memory regions. The PortSize register divides the physical address space into
sub-regions; the data path width of each sub-region is independently
programmed into the PortSize register by the operating system at boot time.

The software is then free to presume that all memory has a 32-bit data path;
each off-chip reference is looked up in the PortSize register to determine the
actual width of memory. The R3041 bus interface unit will then perform the
appropriate sequence of transfers between the CPU and memory, depending on
the actual size of the datum, and the actual width of the memory.

Figure 5. 7 shows the format of the PortSize register. At reset, the initial port
width of each memory region is initialized according to the width indicated for
the boot PROM; that is, the PortSize register will assume that all memory is the
same port width as the boot PROM. The kernel can then later re-program
individual memory sub-regions, according to their actual port width.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Lock ::::::~::::::: Kseg2b Kseg2a Kusegd Kusegc Kusegb Kusega ::::::::::::::;~:::::::::::::::
2 2 2 2 2 2 2

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Kseg1/0h Kseg1/0g Kseg1/0f Kseg1/0e Kseg1/0d Kseg1/0c Kseg1/0b Kseg1/0a

2 2

Lock:
'O':
'X':

2

Kseg2(b:a):
Kuseg(d:a):
Kseg1/0(h:a):

2 2 2

Register Write Lock
Reserved: Must be written as 'O'
Reserved for future use
Subregions of Kseg2
Subregions of Kuseg
Subregions of Kseg1 and Ksego

Figure 5. 7. R304 l PortSize Register

2 2

This allows systems to be constructed from a mix of memory widths: for
example, an 8-bit boot prom, with 32-bit DRAM memory and 16-bit Font
cartridge cards. This maximizes the number of price/performance trade-offs
available to the system designer.

In addition, itis possible to construct a system such thatits base configuration
assumes a narrow memory width (e.g. a 16-bitDRAM system). However, field
upgrades to larger memory systems can increase both the width and total
amount of memory, increasing the performance of the system, and thus
increasing the value of the field upgrade option.

Table 5.5 shows the bit encodings of memory width for each of the memory
sub-regions.

Value Port Width

'00' 32-bit

'01' 8-bit

'10' 16-bits

'11' Resenred

Table 5.5. R3041 Port Width Encoding for PortSize Register

5-8

SYSTEM INTERFACE CONTROL

SYSTEM INTERFACE CONTROL CHAPTERS

Table 5.5 shows the correspondence between memory sub-regions, physical
addresses, and kernel/user segments of the R3041. From this, a system
designer can construct varying memory widths available exclusively to the
kernel or also available to the user, and can allow either cacheable or
uncacheable references to these regions.

Physical PortSize Description
Address Register
Bits(31:26) Bits
lllx xx 29:28 Kseg2(b) 512MB sub-region

l lOx xx 27:26 Kseg2(a) 512MB sub-region

lOlx xx 25:24 Kuseg(d) 512MB sub-region

lOOx xx 23:22 Kuseg(c) 512MB sub-region

Ollx xx 21:20 Kuseg(b) 512MB sub-region

OlOx xx 19:18 Kuseg(a) 512MB sub-region

OOlx xx 17:16 Resenred; inaccessible 512MB

0001 11 15:14 Ksegl/O(h) 64MB sub-region

0001 10 13:12 Ksegl/O(g) 64MB sub-region

0001 01 11:10 Ksegl/O(f) 64MB sub-region

0001 00 9:8 Ksegl/O(e) 64MB sub-region

0000 11 7:6 Ksegl/O(d) 64MB sub-region

0000 10 5:4 Ksegl/O(c) 64MB sub-region

0000 01 3:2 Ksegl/O(b) 64MB sub-region

0000 00 1:0 Ksegl/O(a) 64MB sub-region

Table 5.5. R3041 PortSize Memory Subregions

Lock
The lock bit can be used by the kernel to inhibit subsequent write operations

to this register. It is useful in ensuring that operating systems written for other
R3000A-based applications do not inadvertently change the fields of the
PortSize register.

At reset, the register is unlocked (Lock bit is 'O'). Thus, the PortSize register
can be written and re-written as the operating system chooses. Once the Lock
bit is written with a 'l', subsequent writes to the PortSize register will be
ignored.
Reserved

These fields are reserved for future variants of the R304 l. At reset, these bit
fields are set to a default value. Writes to the PortSize register should maintain
these values, however, it is not mandatory to do so.
KSeg2(b:a)

These are independent 512MB sub-regions of the kseg2 virtual address
space.
KUseg(d:a)

These are independent 512MB sub-regions of the kuseg virtual address
space.
Ksegl/O(h:a)

These are independent 64MB sub-regions of both the ksegl and ksegO
virtual address spaces. In the MIPS architecture, both ksegO and kseg 1 virtual
address spaces are translated to the same area of physical memory; the
difference between the spaces lies in the fact that references through one space
are cacheable, while references through the other are not.

5-9

CHAPTERS SYSTEM INTERFACE CONTROL

5-10

~
Integrated Device Technology, Inc.

EXCEPTION HANDLING CHAPTER6

INTRODUCTION
Processors in general execute code in a highly-directed fashion. The

instruction immediately subsequent to the current instruction is fetched and
then executed; if that instruction is a branch instruction, the program
execution is diverted to the specified location. Thus, program execution is
relatively straightforward and predictable.

Exceptions are a mechanism used to break into this execution stream and
to force the processor to begin handling another task, typically related to either
the system state or to the erroneous or undesirable execution of the program
stream. Thus, exceptions typically are viewed by programmers as asynchronous
interruptions of their program. (Note that exceptions are not necessarily
unpredictable or asynchronous, in that the events which cause the exception
may be exactly repeatable by the same software executing on the same data;
however, the programmer does not typically "expect" an exception to occur
when and where it does, and thus will view exceptions as asynchronous
events).

The R305 l family architecture provides for extremely fast, flexible interrupt
and exception handling. The processor makes no assumptions about interrupt
causes or handling techniques, and allows the system designer to build his own
model of the best response to exception conditions. However, the processor
provides enough information and resources to minimize both the amount of
time required to begin handling the specific cause of the exception, and to
minimize the amount of software required to preserve processor state information
so that the normal instruction stream may be resumed.

This chapter discusses exception handling issues in R304 l-based systems.
The topics examined are: the exception model, the machine state to be saved
on an exception, and nested exceptions. Representative software examples of
exception handlers are also provided, as are techniques and issues appropriate
to specific classes of exceptions.

R3051 FAMILY EXCEPTION MODEL
The exception processing capability of the R305 l family is provided to assure

an orderly transfer of control from an executing program to the kernel.
Exceptions may be broadly divided into two categories: they can be caused by
an instruction or instruction sequence, including an unusual condition arising
during its execution; or can be caused by external events such as interrupts.
When an R304 l detects an exception, the normal sequence of instruction flow
is suspended; the processor is forced to kernel mode where it can respond to
the abnormal or asynchronous event. Table 6.1 lists the exceptions recognized
by the R305 l family.

6-1

CHAPTERS

Exception Mnemonic Cause

Reset Reset Assertlonof the Reset signal causes an exception
that transfers control to the special vector at
virtual address OxbfcO_OOOO.

UTLB Misst UTLB User TLB Miss. A reference is made (in either
kernel or user mode) to a page in kuseg that has
no matching TLB entry. This can occur only in
extended architecture versions of the processor.

TLB Misst TLBL (Load) A referenced TLB entry's Valid bit isn't set, or
TLBS (Store) there is a reference to a kseg2 page that has no

matching TLB entry. This can occur only in
extended architecture versions of the processor.

TLB Modifiedt Mod During a store instruction, the Valid bit is set
but the dirty bit is not set in a matching TLB
entry. This can occur only in extended
architecture versions of the processor.

Bus Error IBE Unstruction) Assertion of the Bus Error input during
DBE (Data) a read operation, due to such external events as

bus timeout, backplane memoiy errors, invalid
physical address, or invalid access types.

Address Error AdEL (Load) Attempt to load, fetch, or store an unaligned
AdES (Store) word; that is, a word or halfword at an address

not evenly divisible by four or two, respectively.
Also caused by reference to a virtual address
with most significant bit set while in User Mode.

Overflow Ovf Twos complement overflow during add or
subtract.

System Call Sys Execution of the SYS CALL Trap Instruction

Breakpoint Bp Execution of the break instruction

Reserved RI Execution of an instruction with an undefined
Instruction or reserved major operation code (bits 31 :26), or

a special instruction whose minor opcode (bits
5:0) is undefined.

Co-processor CpU Execution of a co-processor instruction when
Unusable the CU (Co-processor Usable) bit is not set for

the target co-processor.

Interrupt Int Assertion of one of the six hardware interrupt
inputs or setting of one of the two software
interrupt bits in the Cause register.

4000 tbl 17
t'Jhese exceptions will not occur in a R3041, or in any base member of the R3051 family.

Table 6.1. R3051 Family Exceptions

Precise vs. Imprecise Exceptions
One classification of exceptions refers to the precision with which the

exception cause and processor context can be detennined. That is, some
exceptions are precise in their nature, while others are "imprecise."

In a precise exception, much is known about the system state at the exact
instance the exception is caused. Specifically, the exact processor context and
the exact cause of the exception are known. The processor thus maintains its
exact state before the exception was generated, and can accurately handle the
exception, allowing the instruction stream to resume when the situation is
corrected. Additionally, in a precise exception model, the processor can not
advance state; that is, subsequent instructions, which may already be in the
processor pipeline, are not allowed to change the state of the machine.

6-2

EXCEPTION HANDLING

EXCEPTION HANDLING CHAPTERS

Many real-time applications greatly benefit from a processor model which
guarantees precise exception context and cause information. The MIPS
architecture, including the R3051 family, implements a precise exception
model for all exceptional events.

EXCEPTION PROCESSING
The R305 l family's exception handling system efficiently handles machine

exceptions, including Translation Lookaside Buffer (TLB) misses, arithmetic
overflows, 1/0 interrupts, system calls, breakpoints, reset, and co-processor
unusable conditions. Any of these events interrupt the normal execution flow;
the R304 l aborts the instruction causing the exception and also aborts all
those following in the exception pipeline which have already begun, thus not
modifying processor context. The CPU then performs a direct jump into a
designated exception handler routine. This insures that the R304 l is always
consistent with the precise exception model.

EXCEPTION HANDLING REGISTERS
The system co-processor (CPO) registers contain information pertinent to

exception processing. Software can examine these registers during exception
processing to determine the cause of the exception and the state of the
processor when it occurred There are four registers handling exception
processing, shown in shaded boxes in Figure 6 .1. These are the Cause register,
the EPC register, the Status register, and the BadVAddr register. A brief
description of each follows.

Used for CPU Identification Used for Interface Control Used with Exception Processing

PRID $15

PORTSIZE $10 111111111~111~1 Ill
I BUSCTRL$2

'
•, •. • .•. •.]~P:Qi1~ :,•,•,1,•,1,i,1,•,1,i,•,•,1

- ::::::::::::::::::::ff~{:~:~:::-: -

COUNT$9

COMPARE$11

Figure 6.1. The CPO Exception Handling Registers

6-3

CHAPTERS

Table 6.2 lists the register address of each of the CPO registers (as used in
CPO operations); the register number is used by software when issuing co
processor load and store instructions.

Register Name Register Number (Decimal)

Status $12
Cause $13
Exception PC $14
Count $9
Compare $11
Bus Control $2
Cache Configuration $3
PortSize $10
Bad Virtual Address $8

PRid $15

Reserved $0-$2, $4-$6, $16-$31
4000 tbl 18

Table 6.2. Co-processor 0 Register Addressing

The Cause Register
The contents of the Cause register describe the last exception. A 5-bit

exception code indicates the cause of the current exception; the remaining
fields contain detailed information specific to certain exceptions.

All bits in this register, with the exception of the SW bits, are read-only. The
SW bits can be written to set or reset software interrupts. Figure 6.2 illustrates
the format of the Cause register. Table 6.3 details the meaning of the various
exception codes.

31 0

Sw ExcCode

2 12 6 2 5 2

BD: BRANCH DELAY
CE: COPROCESSOR ERROR
IP: INTERRUPTS PENDING

ExcCode: EXCEPTION CODE FIELD

l5il] : RESERVED
lil£l Must Be Written as O

Returns O when Read
Sw: SOFTWARE INTERRUPTS*

*READ AND WRITE. THE REST ARE READ-ONLY.
4000 drw 26

Figure 6.2. The Cause Register

Number Mnemonic Description

0 Int External Interrupt
1 MODt TLB Modification Exception
2 TLBU TLB miss Exception (Load or instruction fetch)
3 TLBSt TLB miss exception (Store)
4 AdEL Address Error Exception (Load or instruction fetch)
5 Ad ES Address Error Exception (Store)
6 IBE Bus Error Exception (for Instruction Fetch)
7 DBE Bus Error Exception (for data Load or Store)
8 Sys SYSCALL Exception
9 Bp Breakpoint Exception
10 RI Reserved Instruction Exception
11 CpU Co-Processor Unusable Exception
12 Ovf Arithmetic Overflow Exception

13-31 - Reserved
4000 tbl 19

t'fhese exceptions will not occur in a R3041

Table 6.3. Cause Register Exception Codes

6-4

EXCEPTION HANDLING

EXCEPTION HANDLING CHAPTERS

The meaning of the other bits of the cause register is as follows:

BD The Branch Delay bit is set (1) ifthe last exception was taken while the
processor was executing in the branch delay slot. If so. then the EPC
will be rolled back to point to the branch instruction, so that it can be
re-executed and the branch direction re-determined.

CE The Co-processor Error field captures the co-processor unit number
referenced when a Co-processor Unusable exception is detected.

IP The Interrupt Pending field indicates which interrupts are pending.
Regardless of which interrupts are masked, the IP field can be used
to determine which interrupts are pending.

SW The Software interrupt bits can be thought of as the logical extension
of the IP field. The SW interrupts can be written to force an interrupt
to be pending to the processor, and are useful in the prioritization of
exceptions. To set a software interrupt, a "l" is written to the
appropriate SW bit, and a "O" will clear the pending interrupt. There
are corresponding interrupt mask bits in the status register for these
interrupts.

ExcCode The exception code field indicates the reason for the last
exception. Its values are listed in Table 6.3.

The EPC (Exception Program Counter) Register
The 32-bit EPC register contains the virtual address of the instruction which

took the exception, from which point processing resumes after the exception
has been serviced. When the virtual address of the instruction resides in a
branch delay slot, the EPC contains the virtual address of the instruction
immediately preceding the exception (that is, the EPC points to the Branch or
Jump instruction).

Bad VAddr Register
The Bad VAddr register saves the entire bad virtual address for any

addressing exception.

The Status Register
The Status register contains all the major status bits; any exception puts the

system in Kernel mode. All bits in the status register, with the exception of the
TS (TLB Shutdown) bit, are readable and writable; the TS bit is read-only.
Figure 6.3 shows the functionality of the various bits in the status register.

4 2 2

CU: COPROCESSOR USABILITY
BEV: BOOTSTRAP EXCEPTION VECTOR
TS: TLB SHUTDOWN
PE: PARITY ERROR
CM: CACHE MISS
PZ: PARITY ZERO
SwC: SWAP CACHES
lsC: ISOLATE CACHE
RE: REVERSE ENDIANNESS

8 2

lntMASK: INTERRUPT MASK
KUo: KERNEUUSER MODE, OLD
IEo: INTERRUPT ENABLE, OLD
KUp: KERNEUUSER MODE, PREVIOUS
IEp: INTERRUPT ENABLE, PREVIOUS
KUc: KERNEUUSER MODE, CURRENT
IEc: INTERRUPT ENABLE, CURRENT
O: RESERVED: READ AS ZERO

MUST BE WRITTEN AS ZERO

4000 drw 28

Figure 6.3. The Status Register

6-5

CHAPTER6

The status register contains a three level stack (current, previous, and old)
of the kernel/user mode bit (KU) and the interrupt enable (IE) bit. The stack
is pushed when each exception is taken, and popped by the Restore From
Exception instruction. These bits may also be directly read or written.

At reset, the SWc, KUc, and IEc bits are set to zero; BEV is set to one; and
the value of the TS bit is set to "l". The rest of the bit fields are undefined after
reset.

The various bits of the status register are defined as follows:

CU Co-processor Usability. These bits individually control user level
access to co-processor operations, including the polling of the BrCond
input pins and the manipulation of the System Control Co-processor
(CPO).

RE Reverse Endianness. The R305 l family allows the system to determine
the byte ordering convention for the Kernel mode, and the default
setting for user mode, at reset time. If this bit is cleared, the
endianness defined at reset is used for the current user task. If this
bit is set, then the user task will operate with the opposite byte
ordering convention from that determined at reset. This bit has no
effect on kernel mode. Also note that the setting of this bit does not
affect the byte lanes used in 16- and 8-bit memory ports; thus,
external byte lane shift logic is not required.

BEV Bootstrap Exception Vector. The value of this bit determines the
locations of the exception vectors of the processor. If BEV = 1, then
the processor is in "Bootstrap" mode, and the exception vectors reside
in uncacheable space. If BEV = 0, then the processor is in normal
mode, and the exception vectors reside in cacheable space.

TS TLB Shutdown. This bit reflects whether the TLB is functioning. At
reset, this bit can be used to determine whether the current processor
is a base or extended architecture version. For the R304 l, this bit is
frozen at "l".

PE Parity Error. This field should be written with a" l" at boot time. Once
initialized, this field will always be read as "O'.

CM Cache Miss. This bit is set if a cache miss occurred while the cache
was isolated. It is useful in determining the size and operation of the
internal cache subsystem.

PZ Parity Zero. This field should always be written with a "O".

SwC Swap Caches. Setting this bit causes the execution core to use the on
chip instruction cache as a data cache and vice-versa. Resetting the
bit to zero un-swaps the caches. This is useful for certain operations
such as instruction cache flushing. This feature is not intended for
normal operation with the caches swapped.

IsC Isolate Cache. If this bit is set, the data cache is "isolated" from main
memory; that is, store operations modify the data cache but do not
cause a main memory write to occur, and load operations return the
data value from the cache whether or not a cache hit occurred. This
bit is also useful in various operations such as flushing, as described
in Chapter 3.

6-6

EXCEPTION HANDLING

EXCEPTION HANDLING CHAPTER 6

IM Interrupt Mask. This 8-bit field can be used to mask the hardware and
software interrupts to the execution engine (that is, not allow them to
cause an exception). IM(1 :0) are used to mask the software interrupts,
and IM (7:2) mask the 6 external interrupts. A value of 'O' disables a
particular interrupt, and a 'l' enables it. Note that the IE bit is a global
interrupt enable; that is, if the IE is used to disable interrupts, the
value of particular mask bits is irrelevant; if IE enables interrupts,
then a particular interrupt is selectively masked by this field.

KUo Kernel/User old. This is the privilege state two exceptions previously.
A 'O' indicates kernel mode.

IEo Interrupt Enable old. lbis is the global interrupt enable state two
exceptions previously. A 'l' indicates that interrupts were enabled,
subject to the IM mask.

KUp Kernel/User previous. lbis is the privilege state prior to the current
exception A 'O' indicates kernel mode.

IEp Interrupt Enable old. This is the global interrupt enable state prior to
the current exception. A 'l' indicates that interrupts were enabled,
subject to the IM mask.

KUc Kernel/User current. This is the current privilege state. A 'O' indicates
kernel mode.

IEc Interrupt Enable current. lbis is the current global interrupt enable
state. A 'l' indicates that interrupts are enabled, subject to the IM
mask.

'O' Fields indicated as 'O' are reserved; they must be written as 'O', and will
return 'O' when read.

PRid Register
lbis register is useful to software in determining which revision of the

processor is executing the code. The format of this register is illustrated in
Figure 6.4; for the R3041, the value currently returned is Ox0000_0700. lbis
value is different from other members of the R305 l family, so that software can
easily determine the CPU type. lbis facilitates the development of one binary
working with all R305 l family members.

0 Implementation Revision

16 8 8

O: READ AS 0, MUST BE WRITTEN AS 0

Implementation: EXECUTION ENGINE IMPLEMENTATION CODE

Revision: REVISION LEVEL FOR THIS IMPLEMENTATION

4000 drw 29

Figure 6.4. Format of Prid Register

6-7

CHAPTER6

EXCEPTION VECTOR LOCATIONS
The R305 l family separates exceptions into three vector spaces. The value

of each vector depends on the BEV (Boot Exception Vector) bit of the status
register, which allows two alternate sets of vectors (and thus two different
pieces of code) to be used. Typically, this is used to allow diagnostic tests to
occur before the functionality of the cache is validated; processor reset forces
the value of the BEV bit to a 'I'. Tables 6.4 and 6.5 list the exception vectors
for the R305 l family for the two different modes.

Exception Virtual Address Physical Address

Reset Oxbfc0_ 0000 Oxlfc0 _ 0000

UTLB Miss Ox8000_0000 OxOOOO_OOOO

General Ox8000_0080 Ox0000_0080
4000 tbl 20

Table 6.4. Exception Vectors When BEV = O

Exception Virtual Address Physical Address

Reset OxbfcO_OOOO OxlfcO_OOOO

UTLB Miss OxbfcO_Ol 00 OxlfcO_OlOO

General OxbfcO 0180 OxlfcO 0180
4000 tbl21

Table 6.5. Exception Vectors When BEV = 1

EXCEPTION PRIORITIZATION
It is important to understand the structure of the R305 l family instruction

execution unit in order to understand the exception priority model of the
processor. The R3051 family runs instructions through a five stage pipeline,
illustrated in Figure 6.5. The pipeline stages are:

• IF: Instruction Fetch. This cycle contains two parts: the IV A (Instruction
Virtual Address) phase, which generates the virtual instruction
address of the next instruction to be fetched, and the ITLB phase,
which performs the virtual to physical translation of the address.

• RD: Read and Decode. This phase obtains the required .data from the
internal registers and also decodes the instruction.

• ALU: This phase either performs the desired arithmetic or logical operation,
or generates the address for the upcoming data operation. For data
operations, this phase contains both the data virtual address stage,
which generates the desired virtual address, and the data TLB stage,
which performs the virtual to physical translation.

• MEM: Memory. This phase performs the data load or store transaction.

• WB: Write Back. This stage updates the registers with the result data.

High performance is achieved because five instructions are operating
concurrently, each in a different stage of the pipeline. However, since multiple
instructions are operating concurrently, it is possible that multiple exceptions
are generated concurrently. If so, the processor must decide which exception
to process, basing this decision on the stage of the pipeline that detected the
exception. The processor will then flush all preceding pipeline stages to avoid
altering processor context, thus implementing precise exceptions. This
determines the relative priority of the exceptions.

6-8

EXCEPTION HANDLING

EXCEPTION HANDLING

IF

IVA I
TLB

RD

ID

DVA

ALU

OP

D
TLB

MEM

D-FETCH

Figure 6.5. Pipelining in the R3051 Family

CHAPTER6

WB

WB

4000 drw 30

For example, an illegal instruction exception can only be detected in the
instruction decode stage of the R304 l; an Instruction Bus Error can only be
determined in the I-Fetch pipe stage. Since the illegal instruction was fetched
before the instruction which generated the bus error was fetched, and since it
is conceivable that handling this exception might have avoided the second
exception, it is important that the processor handle the illegal instruction
before the bus error. Therefore the exception detected in the latest pipeline
stage has priority over exceptions detected in earlier pipeline stages. All
instructions fetched subsequent to this (all preceding pipeline stages) are
flushed to avoid altering state information, maintaining the precise exception
model.

Table 6.6 lists the priority of exceptions from highest first to lowest.

Mnemonic Pipestage

Reset Any

AdEL Memory (Load instruction)

AdES Memory (Store instruction)

DBE Memory (Load or store)

MODI ALU (Data TLB)

TLBV ALU (DTLB Miss)

TLBSt ALU (DTLB Miss)

Ovf ALU

Int ALU

Sys RD (Instruction Decode)

Bp RD (Instruction Decode)

RI RD (Instruction Decode)

CpU RD (Instruction Decode)

TLBV I-Fetch (ITLB Miss)

AdEL NA (Instruction Virtual Address)

IBE RD (end of I-Fetch)
4000 tbl 22

'1hese exceptions will not occur in an R304 l, which does not include a 1LB.

Table 6.6. R3051 Family Exception Priority

6-9

CHAPTERS

EXCEPTION LATENCY
A critical measurement of a processor's throughput in interrupt driven

systems is the interrupt "latency" of the system. Interrupt latency is a
measurement of the amount time from the assertion of an interrupt until
software begins handling that interrupt. Often included when discussing
latency is the amount of overhead associated with restoring context once the
exception is handled, although this is typically less critical than the initial
latency.

In systems where the processor is responsible for managing a number of
time-critical operations in real time, it is important that the processor minimize
interrupt latency. That is, it is more important that every interrupt be handled
at a rate above some given value, rather than occasionally handle an interrupt
at very high speed.

Factors which affect the interrupt latency of a system include the types of
operations it performs (that is, systems which have long sequences of operations
during which interrupts can not be accepted have long latency). how much
information must be stored and restored to preserve and restore processor
context, and the priority scheme of the system.

Table 6.6 illustrates which pipestage recognizes which exceptions. As
mentioned above, all instructions less advanced in the pipeline are flushed
from the pipeline to avoid altering state execution. Those instructions will be
restarted when the exception handler completes.

Once the exception is recognized, the address of the appropriate exception
vector will be the next instruction to be fetched. In general, the latency to the
exception handler is one instruction cycle, and at worst the longest stall cycle
in that system.

6-10

EXCEPTION HANDLING

EXCEPTION HANDLING CHAPTER6

INTERRUPTS IN THE R3051 FAMILY
The R3051 family features two types of interrupt inputs: synchronized

internally and non-synchronized, or direct.
The Sint(2:0) bus (Synchronized Interrupts) allow the system designer to

connect unsynchronized interrupt sources to the processor. The processor
includes special logic on these inputs to avoid meta-stable states associated
with switching inputs right at the processor sampling point. Because of this
logic, these interrupt sources have slightly longer latency from the Sint(n) -pin
to the exception vector than the non-synchronized inputs. The operation of the
synchronized interrupts is illustrated in Figure 6.6.

Run Cycle Exception Vector

Phi

t28 t 29

Figure 6.6. Synchronized Interrupt Operation 4000 drw31

The other interrupts, Int(5:3), do not contain this synchronization logic, and
thus have slightly better latency to the exception vector. However, the
interruptingagentmustguaranteethatitalwaysmeetstheinterruptinputset
up and hold time requirements of the processor. These inputs are useful for
interrupting agents which operate off of the SysClk output of the R304 l. The
operation of these interrupts is illustrated in Figure 6. 7.

Run Cycle Exception Vector

Phi

tao ta1
4000drw32

Figure 6.7. Direct Interrupt Operation

Since the interrupt exception is detected during the ALU stage of the
instruction currently in the processor pipeline, at least one run cycle must
occur between (or at) the assertion of the external interrupt input and the fetch
of the exception vector. Thus, if the processor is in a stall cycle when an
external agent sends an interrupt, it will execute at least one run cycle before
beginning exception processing. In this instance, there would be no difference
in the latency of synchronized and direct interrupt inputs.

All of the interrupts are level-sensitive and active low. They continue to be
sampled after an interrupt exception has occurred, and are not latched within
the processor when an interrupt exception occurs. It is important that the
external interrupting agent maintain the interrupt line until software
acknowledges the interrupt.

6-11

CHAPTERS

Note that the R308 l incorporates a hardware floating point accelerator on
chip. The MIPS architecture recommends that Int(3) be used to handle the
floating point interrupt; thus, the R308 l defaults to this interrupt assignment.
However, the R3081 Config register (which differs from the R3041 Config
register) can be used to change the assignment. In any case, it is recommended
that the system designer reserve one interrupt for the FPA.

Each of the eight interrupts (6 hardware and 2 software) can be individually
masked by clearing the corresponding bit in the Interrupt Mask field of the
Status Register. All eight interrupts can be masked at once by clearing the IEc
bit in the Status Register.

On the synchronized interrupts, care should be taken to allow at least two
clock cycles between the negation of the interrupt input and the re-enabling of
the interrupt mask for that bit.

The value shown in the interrupt pending bits of the Cause register reflects
the current state of the interrupt pins of the processor. These bits are not
latched (except for sampling from the data bus to guarantee that they are stable
when examined), and the masking of specific interrupt inputs does not mask
the bits from being read.

USING THE BrCond INPUTS
In addition to the interrupt pins themselves, many systems can use the

BrCond input port pins in their exception model. These pins can be directly
tested by software, and can be used for polling or fast interrupt decoding.

The R304 l provides two synchronized BrCond inputs: SBrCond(3:2). Note
thatBrCond(O), corresponding to the on-chip CPO, and BrCond(l), corresponding
to Co-Processor 1 (the FPA, present on the R3081), are not available to the
R304 l as user inputs. Instructions that use BrCond(l :0) will always see a' l'
on the R304 l. Also note that the SBrCond(3:2) on the R304 l may be
programmed as output functions for the bus interface, as described in Chapter
5, in which case the SBrCond(3:2) input values are undefined. When
programmed to be inputs, the timing requirements of the SBrCond inputs are
illustrated in Figure 6.8. Since these inputs are synchronized by the R3041,
they do not need to be driven synchronously to the processor.

Similar to the interrupt inputs, at least one instruction must be executed (in
the ALU stage) of the instruction pipeline prior to software being able to detect
a change in one of these inputs. This is because the processor actually
captures the value of these flags one instruction prior to the branch on co
processor instruction.

Run Cycle Capture BrCond BCzT /F Instruction

Phi V , __ _,V '---~V '----

SySClk ~---./

SBrCond{n) 1-----+--*-r--+--+---+------+------+-------1
R-

.I.

128 129 4000drw33

Figure 6.8. Synchronized BrCond Inputs

6-12

EXCEPTION HANDLING

EXCEPTION HANDLING CHAPTERS

INTERRUPT HANDLING
nie assertion of an unmasked interrupt input causes the R305 l family to

branch to the general exception vector at virtual address Ox8000_0080, and
write the 'Int' code in the Cause register. nie IP field of the Cause register shows
which of the six hardware interrupts are pending and the SW field in the Cause
register show which of the two software interrupts are pending. Multiple
interrupts can be pending at the same time, with no priority assumed by the
processor.

When an interrupt occurs, the KUp, IEp, KUc and IEc bits of the Status
register are saved in the KUo, IEo, KUp, IEp bit fields in the Status register,
respectively, as illustrated in Figure 6. 9. nie current kernel status bit KUc and
the interrupt bit IEc are cleared. 'nlis masks all the interrupts and places the
processor in kernel mode. 'nlis sequence will be reversed by the execution of
an rje (restore from exception) instruction.

Exception Recognition

RFE Instruction
4000 drw 35

Figure 6.9. K.emel and Interrupt Status Being Saved on Interrupts

INTERRUPT SERVICING
In case of an hardware interrupt, the interrupt must be cleared by de

asserting the interrupt line, which has to be done by alleviating the external
conditions that caused the interrupt. Software interrupts have to be cleared
by clearing the corresponding bits, SW(1 :0), in the Cause register to zero.

6-18

CHAPTER6

BASIC SOFTWARE TECHNIQUES FOR HANDLING
INTERRUPTS

Once an exception is detected the processor suspends the current task,
enters kernel mode, disables interrupts, and begins processing at the exception
vector location. The EPC is loaded with the address the processor will return
to once the exception event is handled.

The specific actions of the processor depend on the cause of the exception
being handled. The R3051 family classifies exceptions into three distinct
classes: RESET, U1LB Miss, and General.

Coming out of reset, the processor initializes the state of the machine. In
addition to initializing system peripherals, page tables, the 1LB, and the
caches, software clears both STATUS and CAUSE registers, and initializes the
exception vectors.

The code located at the exception vector may be just a branch to the actual
exception code; however, in more time critical systems the instructions located
at the exception vector may perform the actual exception processing. In order
to cause the exception vector location to branch to the appropriate exception
handler (presuming that such a jump is appropriate), a short code sequence
such as that illustrated in Figure 6.10 may be used.

It should be noted the contents of register kO are not preserved. This is not
a problem for software, since MIPS compiler and assembler conventions
reserve kO for kernel processes, and do not use it for user programs. For the
system developer it is advised that the use of kO be reserved for use by the
exception handling code exclusively. This will make debugging and development
much easier.

/*

*/

/*
••
*I

.set no reorder #tells the assembler not to reorder the code

code sequence copied to UTLB exception vector

la
j
nop

kO,excep_utlb
kO

#address of utlb excp. handler
jump via reg kO

code sequence copied to general exception vector

la
j
nop

kO,excep_general
kO

#address of general excp. handler
jump via reg kO

Figure 6.10. Code Sequence to Initialize Exception Vectors

6-14

4000 drw 36

EXCEPTION HANDLING

EXCEPTION HANDLING CHAPTER6

PRESERVING CONTEXT
The R304 l has the following four registers related to exception processing:

1. The Cause register
2. The EPC (exception program counter) register
3. The Status register
4. The BadVAddr (bad virtual address) register

Typical exception handlers preserve the status, cause, and EPC registers in
general registers (or on the system stack). If the exception cause is due to an
address error, software may also preserve the bad virtual address register for
later processing.

Note that not all systems need to preserve this information. Since the R305 l
family disables subsequent interrupts, it is possible for software to directly
process the exception while leaving the processor context in the CPO registers.
Care must be taken to insure that the execution of the exception handler does
not generate subsequent exceptions.

Preserving the context in general registers (and on the stack) does have the
advantage that interrupts can be re-enabled while the original exception is
handled, thus allowing a priority interrupt model to be built.

A typical code sequence to preserve processor context is shown in Figure
6.11. This code sequence preserves the context into an area of memory pointed
to by the kO kernel register. This register points to a block of memory capable
of storing processor context. Constants identified by name (such as R_EPC) are
used to indicate the offset of a particular register from the start of that memory
area.

It should be noted that this sequence for fetching the co-processor zero
registers is required because there is a one clock delay in the register value
actually being loaded into the general registers after the execution of the mfcO
instruction.

la
SW
SW
SW
mfcO
mfcO
SW
mfcO
SW

kO,except_regs
AT,R_AT*4(k0)
v0,R_ V0*4(k0)
v1 ,R_ V1 *4(k0)
vo,co_EPC
v1,CO_SR
v0,R_EPC*4(k0)
vO,CO_CAUSE
v1 ,R_SR*4(k0)

#fetch address of reg save array
save register AT
save register vo
save register v1
fetch the epc register
#fetch the status register
save the epc
fetch the cause register
save status register

/* The above code is about the minimum required
The user specific code would follow

*/

Figure 6.11. Preserving Processor Context

6-15

4000 drw 37

CHAPTERS

DETERMINING THE CAUSE OF THE EXCEPTION
The cause register indicates the reason the exception handler was invoked.

Thus, to invoke the appropriate exception service routine, software merely
needs to examine the cause register, and use its contents to direct a branch to
the appropriate handler.

One method of decoding the jump to an appropriate software routine to
handle the exception and cause is shown in Figure 6.12. RegistervO contains
the cause register, and register kO still points to the register save array .

. set noreorder
SW

and
lw
SW

j
SW

.set

a0,R_A0*4(k0)
v1 ,vO,EXCMASK
ao ,cause_ table(v1)
a1 ,R_A1*4(k0)
aO
k1 ,R_K1 *4(sp)
reorder

save register ao
isolate exception code
get address of interrupt routine.
#use delay slot to save register a1

save k1 register
re-enable pipeline scheduling

Figure 6.12. Exception Cause Decoding

4000 drw38

The above sequence of instructions extracts the exception code from the
cause register and uses that code to index into the table of pointers to functions
(the cause_table). The cause_table data structure is shown in Figure 6.13.

Each of the entries in this table point to a function for processing the
particular type of interrupt detected. The specifics of the code contained in
each of these functions is unique for a given application; all registers used in
these functions must be saved and restored.

int (*cause_table[16])() = {
int_ extern, I* External interrupts */
int_tlbmod, I* TLB modification error */
int_tlbmiss, I* load or instruction fetch */
int_tlbmiss, I* write miss */
int_addrerr, I* load or instruction fetch *I
int_addrerr, I* write address error *I
int_ibe, I* Bus error - Instruction fetch *I
int_dbe, I* Bus error - load or store data *I
int_syscall, I* SYSCALL exception *I
int_ breakpoint, !* breakpoint instruction */
int_ trap, !* Reserved instruction *I
int_cpunuse, I* coprocessor unusable *I
int_ trap, I* Arithmetic overflow */
int_unexp, I* Reserved *I
int_unexp, I* Reserved */
int_unexp I* Reserved *I
};

4000drw39

Figure 6.13. Exception Service Branch Table

6-16

EXCEPTION HANDLING

EXCEPTION HANDLING CHAPTERS

RETURNING FROM EXCEPTIONS
Returning from the exception routine is made through the rfe instruction.

When the exception first occurs the R3041 automatically saves some of the
processor context, the current value of the interrupt enable bit is saved into the
field for the previous interrupt enable bit, and the kernel/user mode context
is preserved.

The IE interrupt enable bit must be asserted (a one) for external interrupts
to be recognized. The KUkernel mode bit must be a zero in kernel mode. When
an exception occurs, external interrupts are disabled and the processor is
forced into kernel mode. When the rfe instruction is executed at completion of
exception handling, the state of the mode bits is restored to what it was when
the exception was recognized (presuming the programmer restored the status
register to its value when the exception occurred). This is done by "popping"
the old/previous/current KU and IE bits of the status register.

The code sequence in Figure 6.14 is an example of exiting an interrupt
handler. The assumption is that registers and context were saved as outlined
above.

This code sequence must either be replicated in each of the cause handling
functions, or each of them must branch to this code sequence to properly exit
from exception handling.

Note that this code sequence must be executed with interrupts disabled. If
the exception handler routine re-enables interrupts they must be disabled
when the CPO registers are being restored.

gen_excp_exit:
.set noreorder

lw
lw
mtcO
lw
lw
j
rfe

k0,CO_SR*4(AT)
v0,R_ V0*4(A T)
kO,CO_SR
k0,R_EPC*4(AT)
AT,R_AT*4(AT)
kO

.set reorder

#by the time we have gotten here
all general registers have been
#restored (except of kO and vO)
#reg. AT points to the reg save array
fetch status reg. contents
#restore reg. vo
restore the status reg. contents
Get the return address
restore AT in load delay
#return from int. via jump reg.
#the rfe instr. is executed in the
branch delay slot

Figure 6.14. Returning from Exception

6-17

4000 drw 40

CHAPTERS

SPECIAL TECHNIQUES FOR INTERRUPT HANDLING
There are a number of techniques which take advantage of the R305 l family

architecture to minimize exception latency and maximize throughput in
interrupt driven systems. This section discusses a number of those techniques.

Interrupt Masking
Only the six external and two software interrupts are maskable exceptions.

The mask for these interrupts are in the status register.
To enable a given external interrupt, the corresponding bit in the status

register must be set. The IEc bit in the status register must also be set. It
follows that by setting and clearing these bits within the interrupt handler that
interrupt priorities can be established. The general mechanism for doing this
is performed within the external interrupt-handler portion of the exception
handler.

The interrupt handler preserves the current mask value when the status
register is preserved. The interrupt handler then calculates which (if any)
external interrupts have priority, and sets the interrupt mask bit field of the
status register accordingly. Once this is done, the IEc bit is changed to allow
higher priority interrupts. Note that all interrupts must again be disabled
when the return from exception is processed.

Using BrCond For Fast Response
The R305 l family instruction set contains mechanisms to allow external or

internal co-processors to operate as an extension of the main CPU. Some of
these features may also be used in an interrupt-driven system to provide the
highest levels of response.

Specifically, the R304 l has external input port signals, the BrCond(3:2)
signals. These signals are used by external agents to report status back to the
processor. The instruction set contains instructions which allow the external
bits to be tested, and branches to be executed depending on the value of
BrCond.

An interrupt-driven system can use these BrCond signals, and the
corresponding instructions, to implement an input port for time-critical
interrupts. Rather than mapping an input port in memory (which requires
external logic), the BrCond signals can be examined by software to control
interrupt handling.

There are actually two methods of advantageously using this. One method
uses these signals to perform interrupt polling; in this method, the processor
continually examines these signals, waiting for an appropriate value before
handling the interrupt. A sample code sequence is shown in Figure 6.15.

The software in this system is veiy compact, and easily resides in the on-chip
cache of the processor. Thus, the latency to the interrupt service routine in this
system is minimized, allowing the fastest interrupt service capabilities.

A second method utilizes external interrupts combined with the BrCond
signals. In this method, both the BrCond signal and one of the external
interrupt lines are asserted when an external event occurs. This configuration
allows the CPU to perform normal tasks while waiting for the external event.

For example, assume that that a valve must be closed and then normal
processing continued when BrCond(2) is asserted 1RUE. The valve is
controlled by a register that is memory-mapped to address Oxaffe_0020 and
writing a one to this location closes the valve. The software in Figure 6.16
accomplishes this, using BrCond(2) to aid in cause decoding.

The number of cycles for a deterministic system is five cycles between the
time the interrupt occurred and it was serviced. Interrupts were re-enabled in
four additional cycles. Note that none of the processor context needs to be
preserved and restored for this routine.

6-18

EXCEPTION HANDLING

EXCEPTION HANDLING CHAPTERS

.set

polling_loop:
bc2f
nop

noreorder

polling_ loop

fast_response _ cp2:

b polling_ loop

prevents the assembler from
reordering the code below

branch to yourself until
BrCond(2} is asserted

Once BrCond(2) is asserted, fall through
and begin processing the external event

code sequence that would do the
#event processing

return to polling

Figure 6.15. Polling System Using BrCond

.set noreorder # prevents the assembler from reordering
the code sequences below

/* This section of code is placed at the general exception
••vector location OxBOOO_OOBO. When an external interrupt is
•• asserted execution begins here.
*/

bc2t
Ii
la
j
nop

close_valve
k0,1
kO,gen_exp_hand
kO

#test for emergency condition and
jump to close valve if TRUE
otherwise,
#jump to general exc. handler
and process less critical excepts.

/* This is the close valve routine - its sole purpose is to close the
•• valve as quickly as possible. The registers 'kO' and 'k1' are reserved
•• for kernel use and therefore need not be saved when a client or
** user program is interrupted. It should be noted that the value to
** write to the valve close register was put in reg 'kO' in the
•• branch delay slot above - so by the time we get here it is
•• ready to output to the close register.
*/
close_valve:

la # the address of the close register
write the value to the close register

4000 drw 41

SW
mfcO
nop

k1 ,Oxaffe0020
k0,0(k1)
kO,CO_EPC #get the return address to cont processing

j
rfe

kO

. set reorder

return to normal processing
restore previous interrupt mask
and kernel/user mode bits of the
#status register .

Figure 6.16. Using BrCond for Fast Interrupt Decoding

6-19

4000 drw42

CHAPTERS

Nested Interrupts
Note that the processor does not automatically stack processor context

when an exception occurs; thus, to allow nested exceptions it is important that
software perform this stacking.

Most of the software illustrated above also applies to a nested exception
system. However, rather than using just one register (pointed to by kO) as a
save area, a stacking area must be implemented and managed by software.
Also, since interrupts are automatically disabled once an exception is detected,
the interrupt handling routine must mask the interrupt it is currently
servicing, and re-enable other interrupts (once context is preserved) through
the IEc bit.

The use of Interrupt Mask bits of the status register to implement an
interrupt prioritization scheme was discussed earlier. An analogous technique
can be performed by using an external interrupt encoder to allow more
interrupt sources to be presented to the processor.

Software interrupts can also be used as part of the prioritization of
interrupts. If the interrupt service routine desires to service the interrupting
agent, but not completely perform the interrupt service, it can cause the
external agent to negate the interrupt input but leave interrupt service pending
through the use of the SW bits of the Cause register.

Catastrophic Exceptions
There are certain types of exceptions that indicate fundamental problems

with the system. Although there is little the software can do to handle such
events, they are worth discussing. Exceptions such as these are typically
associated with faulty systems, such as in the initial debugging or development
of the system.

Potential problems can arise because the processor does not automatically
stack context information when an exception is detected. If the processor
context has not been preserved when another exception is recognized, the
value of the status, cause, and EPC registers are lost and thus the original task
can not be resumed.

An example of this occurring is an exception handler performing a memory
reference that results in a bus error (for example, when attempting to preserve
context). The bus error forces execution to the exception vector location,
overwriting the status, cause, and context registers. Proper operation cannot
be resumed.

6-20

EXCEPTION HANDLING

EXCEPTION HANDLING CHAPTER6

HANDLING SPECIFIC EXCEPTIONS
This section documents some specific issues and techniques for handling

particular R304 l exceptions.

Address Error Exception

Cause
This exception occurs when an attempt is made to load, fetch, or store a word

that is not aligned on a word boundary. Attempting to load or store a half-word
that is not aligned on a half-word boundary will also cause this exception. The
exception also occurs in User mode if a reference is made to a virtual address
whose most significant bit is set (a kernel address). This exception is not
maskable.

Handling
The R305 l family branches to the General Exception vector for this

exception. When the exception occurs, the R304 l sets the ADEL or ADES code
in the Cause register ExcCode field to indicate whether the address error
occurred during an instruction fetch or a load operation (ADEL) or a store
operation (ADES).

The EPC register points at the instruction that caused the exception, unless
the instruction is in a branch delay slot: in that case, the EPC register points
at the branch instruction that preceded the exception-causing instruction and
sets the BD bit of the Cause register.

The R304 l saves the KUp, IEp, KUc, and IEc bits of the Status register in the
KUo, IEo, KUp, and IEp bits, respectively and clears the KUc and IEc bits.

When this exception occurs, the BadVAddr register contains the virtual
address that was not properly aligned or that improperly addressed kernel data
while in User mode. The contents of the VPN field of the Context and EntryHi
registers are undefined.

Servicing
A kernel should hand the executing process a segmentation violation signal.

Such an error is usually fatal although an alignment error might be handled
by simulating the instruction that caused the error.

6-21

CHAPTER6

Breakpoint Exception

Cause
This exception occurs when the R304 l executes the BREAK instruction.

This exception is not maskable.

Handling
The R304 l branches to the General Exception vector for the exception and

sets the BP code in the CAUSE register ExcCode field.
The R304 l saves the KUp, IEp, KUc, and IEc bits of the Status register in the

KUo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.
The EPC register points at the BREAK instruction that caused the exception,

unless the instruction is in a branch delay slot: in that case, the EPC register
points at the BRANCH instruction that preceded the BREAK instruction and
sets the BD bit of the Cause register.

Service
The breakpoint exception is typically handled by a dedicated system routine.

Unused bits of the BREAK instruction (bits 25 .. 6) can be used pass additional
information. To examine these bits, load the contents of the instruction
pointed at by the EPC register. NOTE: If the instruction resides in the branch
delay slot, add four to the contents of the EPC register to find the instruction.

To resume execution, change the EPC register so that the R304 l does not
execute the BREAK instruction again. To do this, add four to the EPC register
before returning. NOTE: If a BREAK instruction is in the branch delay slot,
the BRANCH instruction must be interpreted in order to resume execution.

6-22

EXCEPTION HANDLING

EXCEPTION HANDLING CHAPTER6

Bus Error Exception

Cause
This exception occurs when the Bus Error input to the CPU is asserted by

external logic during a read operation. For example, events like bus time-outs,
backplane bus parity errors, and invalid physical memory addresses or access
types can signal exception. This exception is not maskable.

This exception is used for synchronously occurring events such as cache
miss refills. The general interrupt mechanism must be used to report a bus
error that results from asynchronous events such as a buffered write transaction.

Handling
The R304 l branches to the General Exception vector for this exception.

When exception occurs, the R304 l sets the IBE or DBE code in the CAUSE
register ExcCode field to indicate whether the error occurred during an
instruction fetch reference (IBE) or during a data load or store reference (DBE).

The EPC register points at the instruction that caused the exception, unless
the instruction is in a branch delay slot: in that case, the EPC register points
at the BRANCH instruction that preceded the exception-causing instruction
and sets the BD bit of the cause register.

The R304 l saves the KUp, IEp, KUc, and IEc bits of the Status register in the
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing
The physical address where the fault occurred can be computed from the

information in the CPO registers:

• If the Cause register's IBE code is set (showing an instruction fetch
reference). the virtual address resides in the EPC register.

• If the Cause register's DBE exception code is set (specifying a load or store
reference), the instruction that caused the exception is at the virtual
address contained in the EPC register (if the BD bit of the cause register
is set, add four to the contents of the EPC register). Interpret the
instruction to get the virtual address of the load or store reference and
then use the TLBProbe (tlbp) instruction and read Entry Lo to compute the
physical page number.

A kernel should hand the executing process a bus error when this exception
occurs. Such an error is usually fatal.

6-23

CHAPTER6

Co-processor Unusable Exception

Cause
This exception occurs due to an attempt to execute a co-processor instruction

when the corresponding co-processor unit has not been marked usable (the
appropriate CU bit in the status register has not been set). For CPO
instructions. this exception occurs when the unit has not been marked usable
and the process is executing in User mode: CPO is always usable from Kernel
mode regardless of the setting of the CPO bit in the status register. This
exception is not maskable.

Handling
The R304 l branches to the General Exception vector for this exception. It

sets the CPU code in the CAUSE register ExcCode field. Only one co-processor
can fail at a time.

The contents of the cause register's CE (Co-processor Error) field show which
of the four co-processors (3,2, l, or O) the R304 l referenced when the exception
occurred.

The EPC register points at the co-processor instruction that caused the
exception, unless the instruction is in a branch delay slot: in that case, the EPC
register points at the branch instruction that preceded the co-processor
instruction and sets the BD bit of the Cause register.

The R304 l saves the KUp, IEp. KUc, and IEc bits of the status register in the
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing
To identify the co-processor unit that was referenced, examine the contents

of the Cause register's CE field. If the process is entitled to access, mark the
co-processor usable and restore the corresponding user state to the co
processor.

If the process is entitled to access to the co-processor, but the co-processor
is known not to exist or to have failed, the system could interpret the co
processor instruction. If the BD bit is set in the Cause register, the BRANCH
instruction must be interpreted; then, the co-processor instruction could be
emulated with the EPC register advanced past the co-processor instruction.

If the process is not entitled to access to the co-processor, the process
executing at the time should be handed an illegal instruction/privileged
instruction fault signal. Such an error is usually fatal.

6-24

EXCEPTION HANDLING

EXCEPTION HANDLING CHAPTER6

Interrupt Exception

Cause
This exception occurs when one of eight interrupt conditions (software

generates two, hardware generates six) occurs.
Each of the eight external interrupts can be individually masked by clearing

the corresponding bit in the IntMask field of the status register. All eight of the
interrupts can be masked at once by clearing the IEc bit in the status register.

Handling
The R304 l branches to the General Exception vector for this exception. The

R304 l sets the INT code in the Cause register's ExcCode field.
The IP field in the Cause register show which of six external interrupts are

pending, and the SW field in the cause register shows which two software
interrupts are pending. More than one interrupt can be pending at a time.

The R3041 saves theKUp, IEp, KUc, and IEcbits of the status register in the
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing
If software generates the interrupt, clear the interrupt condition by setting

the corresponding Cause register bit (SWl:O) to zero.
If external hardware generated the interrupt, clear the interrupt condition

by alleviating the conditions that assert the interrupt signal.

6-25

CHAPTER6

Overflow Exception

Cause
This exception occurs when an ADD ADDI, SUB, or SUBI instruction results

in two's complement overflow. This exception is not maskable.

Handling
The R304 l branches to the General Exception vector for this exception. The

R3041 sets the OV code in the CAUSE register.
The EPC register points at the instruction that caused the exception, unless

the instruction is in a branch delay slot: in that case, the EPC register points
at the Branch instruction that preceded the exception-causing instruction and
sets the BD bit of the CAUSE register.

The R304 l saves the KUp, IEp, KUc, and IEc bits of the status register in the
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing
A kernel should hand the executing process a floating point exception or

integer overflow error when this exception occurs. Such an error is usually
fatal.

6-26

EXCEPTION HANDLING

EXCEPTION HANDLING CHAPTERS

Reserved Instruction Exception

Cause
This exception occurs when the R304 l executes an instruction whose major

opcode (bits 31..26) is undefined or a Special instruction whose minor opcode
(bits 5 .. 0) is undefined.

This exception provides a way to interpret instructions that might be added
to or removed from the R304 l processor architecture.

Handling
The R304 l branches to the General Exception vector for this exception. It

sets the RI code of the Cause register's ExcCode field.
The EPC register points at the instruction that caused the exception, unless

the instruction is in a branch delay slot: in that case, the EPC register points
at the Branch instruction that preceded the reserved instruction and sets the
BD bit of the CAUSE register.

The R304 l saves the KUp, IEp, KUc, and IEc bits of the status register in the
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing
If instruction interpretation is not implemented, the kernel should hand the

executing process an illegal instruction/reserved operand fault signal. Such
an error is usually fatal.

An operating system can interpret the undefined instruction and pass
control to a routine that implements the instruction in software. If the
undefined instruction is in the branch delay slot, the routine that implements
the instruction is responsible for simulating the branch instruction after the
undefined instruction has been "executed". Simulation of the branch instruction
includes determining if the conditions of the branch were met and transferring
control to the branch target address (if required) or to the instruction following
the delay slot if the branch is not taken. If the branch is not taken, the next
instruction's address is [EPC] + 8. If the branch is taken, the branch target
address is calculated as [EPC] + 4 + (Branch Offset * 4).

Note that the target address is relative to the address of the instruction in
the delay slot, not the address of the branch instruction. Ref er to the
description of branch instruction for details on how branch target addresses
are calculated.

6-27

CHAPTERS

Reset Exception

Cause
This exception occurs when the R304 l RESET signal is asserted and then

de-asserted.

Handling
The R304 l provides a special exception vector for this exception. The Reset

vector resides in the R304l's un-mapped and un-cached address space;
Therefore the hardware need not initialize the Translation Lookaside Buffer
(TLB) or the cache to handle this exception. The processor can fetch and
execute instructions while the caches and virtual memory are in an undefined
state.

The contents of all registers in the R304 l are undefined when this exception
occurs except for the following:

• The SWc, KUc, and IEc bits of the Status register are cleared to zero.
• The BEV bit of the Status register is set to one.
• The TS bit of the Status register is frozen at one.
• The Config register is unlocked and initialized as described in Chapter 5.
• The PortSize register is unlocked and initialized according to the Reset

width of Boot Prom selected at Reset, as described in Chapter 5.
• The BusCtrl is configured for R305 l compatible operation, as described

in Chapter 5.
• The Count register is initialized to 0.
• The Compare register is initialized to Oxffff_ffff.

Servicing
The reset exception is serviced by initializing all processor registers, co

processorregisters, the caches, and the memory system. Typically, diagnostics
would then be executed and the operating system bootstrapped, including
setting of the PortSize, Config, and BusCtrl registers. The reset exception
vector is selected to appear in the uncached, un-mapped memory space of the
machine so that instructions can be fetched and executed while the cache and
virtual memory system are still in an undefined state.

6-28

EXCEPTION HANDLING

EXCEPTION HANDLING CHAPTERS

System Call Exception

Cause
This exception occurs when the R304 l executes a SYSCALL instruction.

Handling
The R304 l branches to the General Exception vector for this exception and

sets the SYS code in the CAUSE register's ExcCode field.
The EPC register points at the SYSCALL instruction that caused the

exception, unless the SYSCALL instruction is in a branch delay slot: in that
case, the EPC register points at the branch instruction that preceded the
SYSCALL instruction and the BD bit of the CAUSEregister is set.

The R304 l saves the KUp, IEp, KUc, and IEc bits of the status register in the
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits.

Servicing
The operating system transfers control to the applicable system routine. To

resume execution, alter the EPC register so that the SYSCALL instruction does
not execute again. To do this, add four to the EPC register before returning.
NOTE: If a SYSCALL instruction is in a branch delay slot, the branch
instruction must be interpreted in order to resume execution.

6-29

CHAPTER6 EXCEPTION HANDLING

6-30

Integrated Device Technology, Inc.

INTERFACE OVERVIEW CHAPTER7

The IDT R305 l family utilizes a simple, flexible bus interface to its external
memory and 1/0 resources. The interface uses a single, multiplexed 32-bit
address and data bus and a simple set of control signals to manage read and
write operations. The R304 l bus interface is superset compatible with the
R305 l family. Thus the R304 l can use the same interface chips, state
machines, and board designs as the rest of the R305 l family. In addition, to
the R305 l family bus, the R304 l adds interface options which are capable of
reducing system costs. The R304 l adds new control signals and timing options
which can simplify memory and 1/0 controllers. In addition, the memory sub
region CPO Port Size register allows preassigned memory blocks the capability
of handling 16-bit and 8-bit interfaces as well as the R305 l family compatible
32-bit interface. Complementing the basic read and write interface is a DMA
Arbiter interface which allows an external agent to gain control of the memory
interface to transfer data.

The R304 l supports the following types of operations on its interface:

• Read Operations: The processor executes an instruction fetch or a data
load operation as the result of either a cache miss or an uncacheable
reference. The read interface is designed to accommodate a wide variety
of memory system strategies. There are two primary types of reads
performed by the processor, bursts and single datum reads. An additional
type for 16-bit and 8-bit interfaces is also defined, called mini-bursts:

Burst reads (quad word, octi halfword, or 16 (sexdeci) byte reads
corresponding to 32-bit, 16-bit, and 8-bit interfaces, respectively) occur
when the processor requests a contiguous block of four words from
memory. Bursts occur in response to instruction cache misses, and will
occur in response to a data cache miss if the DBlockRefill option in the CPO
Cache Configuration register is enabled. The processor incorporates an
on-chip 4-word deep read buffer which may be used to "queue up" the read
response before passing it through to the high-bandwidth cache and
execution core. Read buffering is appropriate in systems which require
wait states between adjacent datums of a block read or in interfacing to
memory systems narrower than 32-bitswide. On the other hand, systems
which use high-bandwidth memory techniques (such as page mode,
static column, nibble mode, or memory interleaving) can effectively
bypass the read buffer by providing words of the block at the processor
clock rate. Note that the choice of burst vs. read buffering is independent
of the initial latency of the memory; that is, burst mode can be used even
if multiple wait states are required to access the first datum of the block.

Single datum reads (Single word, halfword, or byte reads corresponding
to 32-bit, 16-bit, and 8-bitinterfaces, respectively) are used foruncacheable
references (such as for 1/0 or boot code) and will be used in response to
a 32-bit interface data cache miss if the DBlockRefill option in the CPO
Cache Configuration register is disabled. A single datum reads returns
one unit of data per read transaction. The processor is capable of retiring
a single datum read in as few as two clock cycles.

7-1

CHAPTER7

Mini-burst reads are a type of read that is in addition to the two primary
read types of burst and single datum reads. Only the memory sub-regions
using 16-bit and 8-bit interfaces are capable of mini-burst reads. For a
16-bit interface, a mini-burst consists of two halfwords returned within
the same read transaction. For an 8-bit interface, a mini-burst consists
of two, three, or four bytes returned within the same read transaction.

The read interface of the R304 l is described in detail in Chapter 8.

• Write Operations: The R304 l utilizes an on-chip write buffer to isolate
the execution core from the speed of external memory during write
operations. The write interface of the R304 l is designed to allow a variety
of write strategies, from fast 2-cycle write operations through multiple
wait-state writes to 32-bit, 16-bit, and 8-bit memory sub-regions. There
is a single primary type of write:

Single datum writes (word, halfword, or byte writes corresponding to 32-
bit, 16-bit and 8-bit interfaces, respectively) are used in response to a data
cache miss on the 32-bit interface or possibly for an uncacheable data
reference on any of the interface sizes. The processor is capable of retiring
a single datum write in as few as two clock cycles.

Mini-burst writes are a type of write that is in addition to the primary
write type of single datum writes. Only the memory sub-regions using 16-
bit and 8-bit interfaces are capable of mini-burst writes. For a 16-bit
interface, a mini-burst consists of two halfwords sent within the same
write transaction. For an 8-bit interface, a mini-burst consists of two,
three, or four bytes sent within the same write transaction.

The R304 l supports the use of fast page mode writes by providing an
outputindicator, WrNear, toindicatethatthecurrentwritemayberetired
using a page mode access. This facilitates the rapid "flushing" of the on
chip write buffer to main memory, since the majority of processor writes
will occur within a localized area of memory.

The write interface is described in detail in Chapter 9.

• DMA Operations: The R304 l includes a DMA arbiter which allows an
external agent to gain full control of the processor read and write interface.
DMA is useful in systems which need to move significant amounts of data
within memory (e.g. BitBLT operations) or move data between memory
and 1/0 channels.

The R304 l utilizes a very simple handshake to transfer control of its
interface bus. This handshake is described in detail in Chapter 10.

7-2

INTERFACE OVERVIEW

INTERFACE OVERVIEW CHAPTER 7

MULTIPLE OPERATIONS
It is possible for the R305 l family interface to have multiple activities

pending. Specifically, there may be data in the write buffer, a read request (e.g.
due to a cache miss). a DMA mastership request, and an ongoing transaction
all occurring simultaneously.

In establishing the order in which the requests are processed, the R304 l is
sensitive to possible conflicts and data coherency issues as well as to
performance issues. For example, if the on-chip write buffer contains data
which has not yet been written to memory, and the processor issues a read
request to the target address of one of the write buffer entries, then the
processor strategy must insure that the read request is satisfied by the new,
current value of the data.

There are two levels of priority: that performed by the CPU engine internal
to the R304 l, and that performed by the bus interface unit. The internal
execution engine can be viewed as making requests to the bus interface unit.
In the case of multiple requests in the same clock cycle, the CPU core will:

1: Perform the data request first. That is, if both the data cache and
instruction cache miss in the same clock cycle, the processor core will
request a read to satisfy the data cache first. Similarly, a write buffer full
stall will be processed before an instruction cache miss.

2: Perform a read due to an instruction cache miss.

This prioritization is important in maintaining the precise exception model
of the MIPS architecture. Since data references are the result of instructions
which entered the pipeline earlier, they must be processed (and any exceptions
serviced) before subsequent instructions (and their exceptions) are serviced.

Once the processor core internally decides which type of request to make to
the bus interface unit, it then presents that request to the bus interface unit.

Thus, in the R304 l Bus Interface Unit, multiple operations are serviced in
the following order:

1: Ongoing transactions are completed without interruption.
2: DMA requests are serviced.
3: Instruction cache misses are processed.
4: Pending writes are processed.
5: Data cache misses or uncacheable reads are processed.

This service order has been designed to achieve maximum performance,
minimize complexity, and solve the data coherency problem possible in write
buffer systems.

This order assumes that thewrite buffer does not contain instructions which
the processor may wish to execute. The processor does not write directly into
the instruction cache: store instructions generate data writes which may
change only the data cache and main memory. The only way in which an
instruction reference may reside in the write buffer is in the case of self
modifying code, generated with the caches swapped. However, in order to
unswap the caches, an uncacheable instruction which modifies CPO must be
executed; the fetch of this instruction would cause the write buffer to be flushed
to memory. Thus, this ordering enforces strong ordering of operations in
hardware, even for self modifying code. Of course, software could perform an
uncacheable reference to flush the write buffer at any time, thus achieving
memory synchronization with software.

7-3

CHAPTER7

EXECUTION ENGINE FUNDAMENTALS
This section describes the fundamentals of the processor interface and its

interaction with the execution core. These fundamentals will help to explain
the relationship between design trade-offs in the system interface and the
performance achieved in R305 l family systems.
Execution Core Cycles

The R3051 family execution core utilizes many of the same operation
fundamentals as does the R3000A processor. Thus, much of the terminology
used to describe the activity of the R305 l family is derived from the terminology
used to describe the R3000A. In many instances, the activity of the execution
core is independent of that of the bus interface unit.

Cycles
A cycle is the basic timing reference of the R305 l family execution core.

Cycles in which forward progress is made (the processor pipeline advances) are
called Run cycles. Cycles in which no forward progress occurs are called Stall
cycles. Stall cycles are used for resolving exigencies such as cache misses,
write stalls, and other types of events. All cycles can be classified as either run
or stall cycles.

Run Cycles
Run cycles are characterized by the transfer of an instruction into the

processor execution core, and the optional transfer of data into or out of the
execution core. Thus, each run cycle can bethoughtofashavtnganinstruction
and data, or ID, pair.

There are actually two types of run cycles: cache run cycles, and refill run
cycles. cache run cycles (typically referred to as just run cycles) occur while
the execution core is executing out of its on chip cache; these are the principal
execution mechanism.

Refill run cycles, referred to as streaming cycles, occur when the execution
core is executing instructions as they are brought into the on-chip cache. For
the R3051 family, streaming cycles are defined as cycles in which data is
brought out of the on-chip read buffer into the execution core (rather than
defining them as cycles in which data is brought from the memory interface to
the read buffer).

Stall Cycles
There are three types of stall cycles:
Wait Stall Cycles. These are commonly referred to simply as stall cycles.

During wait stall cycles, the execution core maintains a state consistent
with resolving a stall causing event. No cache activity will occur during
wait stalls.

Refill Stall Cycles. These occur only during memory reads, and are used
to transfer data from the on-chip read buffer into the caches.

Fixup Stall Cycles. Fixup cycles occur during the final cycle of a stall; that
is, one cycle before entering a run cycle or entering another stall. During
the final fixup cycle (the one which occurs before finally re-entering run
operation), the Instruction/Data (ID) pair which should have been
processed during the last run cycle is handled by the processor. The fixup
cycle is used to restart the processor and co-processor pipelines, and in
general to fixup conditions which caused the stall.

7-4

INTERFACE OVERVIEW

INTERFACE OVERVIEW CHAPTER 7

The basic causes of stalls include:
Read Busy Stalls: If the processor is utilizing its read interface, either to

process a cache miss or an uncacheable reference, then it will be stalled
until the read data is brought back to the execution core.

Write Busy Stalls: If the processor attempts to perform a store operation
while the on-chip write buffer is already full, then the processor will stall
until a write transaction is begun on the interface to free up room in the
write buffer for the new address and data.

Multiply /Divide Busy Stalls: If software attempts to read the result
registers of the integer multiply I divide unit (the HI and LO registers) while
a multiply or divide operation is underway, the processor execution core
will stall until the results are available.

Micro-TLB Fill Stallst: These stalls can occur when an instruction translation
misses in the instruction TLB cache (the micro-TLB, which is a two-entry
cache of the main TLB used to translate instruction references). When
such an event occurs, the execution core will stall for one cycle, in order
to refill the micro-TLB from the main TLB. Since this is a single-cycle stall,
it is of necessity a fixup cycle.

Multiple Stalls
Multiple stalls are possible whenever more than one stall initiating event

occurs within a single run cycle. An example of such activity is when a single
cycle results in both an instruction cache miss and a data cache miss.

The most important characteristic of any multiple stall cycle is the validity
of the Instruction/Data (ID) pair processed in the final fixup cycle. The R304 l
execution core keeps track of nested stalls to insure that orderly operation is
resumed once all of the stall causing events are processed.

For the general case of multiple stalls, the service order is:
1: Micro-TLB Misst and Partial Word Store
2: Data Cache Miss or Write Busy Stall
3: Instruction Cache Miss
4: Multiply /Divide Unit Busy

tMicro-TLB stalls will not occur in the R3041, which does not include an on-chip
TLB.

7-5

CHAPTER7

PIN DESCRIPTION
This section describes the signals used in the above interfaces. More detail

on the actual use of these pins is found in other chapters. Note that many of
the signals have multiple definitions which are de-multiplexed either by the
ALE signal or the Rd and Wr control signals. Also note that signals indicated
with an overbar are active low.

System Bus Interface Signals

These signals are used by the bus interface to perform read and write
operations.

Address and Data Path

A/D (31:0) I/O

Multiplexed Address/Data Bus: A 32-bit, time multiplexed bus which
indicates the desired address for a bus transaction in one cycle, and which
is used to transmit data between this device and external memory
resources on other cycles.
Bus transactions on this bus are logically separated into two phases:
during the first phase, information about the transfer is presented to the
memory system to be captured using the ALE output. This information
consists of:

Address(31:4):

BE(3:0):

Data(3I:O):

The high-order address for the transfer is presented.

These strobes indicate which bytes of the 32-bit bus will
beinvolvedinthetransfer. BE(3)indicatesthatAD(31:24)
is used; BE(2) indicates that AD(23: 16) is used; BE(1)
indicates thatAD(l5:8) is used; and BE(O) indicates that
AD(7:0) is used. They are valid for the 32-bit port size.
For 16-bit or 8-bit port sizes, BE(3:0) are not valid,
however, they do indicate which bytes will be used
sometime during the (multi-datum) transaction. BE(3:0)
can also be masked (held in-active) during reads by
disabling the BE Control read mask bit in the CPO Bus
Control register.

During write cycles, the bus contains the data to be
stored and is driven from the internal write buffer. On
read cycles, the bus receives the data from the external
resource, in either a single datum transaction, mini
burst, or burst and places the data into the on-chip read
buffer.
Operations using less than 32-bits of data use the data
lines as described in Chapter 2 Table 2.3 describing
Byte Addressing. The byte addressing in summary
requires that 16-bit interfaces use the bytes associated
with address offsets 0 and 1, i.e., D(3l:16) for big endian
and D(l5:0) for little endian. 8-bit interfaces use the
byte associated with address offset 0, i.e., D(31:24) for
big endian and D(7:0) for little endian. These byte lane
assignments are independent of the Reverse Endianess
control bit in the CPO Status register.

7-6

INTERFACE OVERVIEW

INTERFACE OVERVIEW CHAPTER7

Addr(S:O) 0

Dedicated Address Bus. The remaining least significant bits of the
transfer address are presented directly on these outputs and indicate
which word, halfword, or byte is currently expected by the processor.

Specifically, for 32-bit interfaces, Addr(3:2) presents either the address
bits for the single word to be transferred (single word reads or writes) or
functions as a two bit counter starting at '00' for burst (quad word) read
operations. Addr(l:O) are undefmed for accesses to 32-bit memory sub
regions.

For 16-bit interfaces, Addr(3: 1) presents either the address bits for the
single halfword to be transferred (single halfword reads or writes), or
functions as a three bit counter starting at '000' for burst (octi halfword)
read, and mini-burst (double halfword) read or write operations. Addr(O)
is undefined for accesses to 16-bit memory sub-regions.

For 8-bit interfaces, Addr(3:0) presents either the address bits for the
single byte to be transferred (single byte reads or writes), or functions as
a four bit counter for burst (16 byte) read, and mini-burst (double, tri, or
quad byte) read or write operations.

The R3041 Addr(1 :0) output pins are designated in the R3051 as the no
connect Rsvd(l:O) pins respectively.

Primary Read and Write Control Signals

ALE 0

Address Latch Enable: This active high output signal is used to indicate
that theA/D bus contains valid address information forthe bus transaction.
Typically it is connected directly to the latch enable of transparent latches.
Latches are typically used to de-multiplex the address and Byte Enable
information from the A/D bus.

DataEn 0

Data Input Enable: Tilis active low output signal indicates that the A/
D bus is no longer being driven by the processor during read cycles, and
thus the external memory system may enable the drivers of the memory
system onto this bus without having a bus conflict occur. During write
cycles, or when no bus transaction is occurring, this signal is negated.

7-7

CHAPTER7

Burst/
WrNear 0

Wr

Burst Transfer: On read transactions, this active low output signal
indicates that the current bus read is requesting a block of four contiguous
words (or eight halfwords, or sixteen bytes) from memocy (a burst read).
This signal is asserted only in read cycles due to cache misses; it is
asserted for all I-Cache miss read cycles, and for D-Cache miss read cycles
if selected with the CPO cache Configuration register.
Write Near: On write transactions, this active low output signal tells the
external memocy system that the bus interface unit is performing back
to-back write transactions to an address within the same 256 entcy
memocy "page" as the prior write transaction. This signal is useful in
memocy systems which employ page mode or static column DRAMs.

0

Read: An active low output signal which indicates that the current bus
transaction is a read.

0

Write: An active low output signal which indicates that the current bus
transaction is a write.

I

Acknowledge: On read transactions, this active low input indicates the
internal R304 l execution core can begin to process the data in the read
buffer and that the read transaction is near completion.
On write transactions, this active low input indicates to the R304 l that
thememocy system has sufficiently processed thewrite data, and that the
processor may either advance to the next write data in a mini-burst write
and/ or that the processor may advance to the next bus transaction.

RdCEn I

Read Buffer Clock Enable: An active low input which indicates to the
R304 l that the memocy system has placed valid data on the A/D bus, and
that the processor may move the data into the on-chip Read Buffer.

Bus Error I

Bus Error: An active low input which terminates a bus transaction due
to an external bus error. Th.is signal is only sampled during read and write
operations. If the bus transaction is a read operation, then the CPU will
also take a bus error exception.

7-8

INTERFACE OVERVIEW

INTERFACE OVERVIEW CHAPTER7

Secondary Read and Write Control Signals

BE16(1:0) 0

Byte Enable Strobes for 16-Bit Ports: 1bese active low outputs are the
byte enable strobes for 16-bit ports. IfBE16(1) is asserted then the most
significant byte (0(31:24) for big endian or 0(15:8) for little endian) is
going to be used in this transaction by the R3041. IfBE16(0) is asserted
then the least significant byte (0(23: 16) for big endian or 0(7:0) for little
endian) is going to be used in this transaction by the R3041. BE16(1:0)
can also be masked (held in-active) during reads by disabling the BE16
Control read mask in the CPO Bus Control register. BE16(1:0) is not
necessarily valid for 32-bit or 8-bit ports.

1be R3041 BE16(1:0) output pins are designated in the R3051 as the no
connect Rsvd(3:2) pins, respectively.

Last 0

Last Datum in Mini-Burst. 'Ibis active low output indicates that the
last datum of a single datum, mini-burst or burst is being read or that
the last datum of a single datum or mini-burst is being written. It
goes active with Rd or Wr for single datum reads or writes, after the
next to last RdCEn is sampled for multiple datum reads, and after the
next to last Ack is sampled for mini-burst writes. Last de-asserts
when Rd or Wr de-asserts.

1be R3041 Last output pin is designated in the R3051 as the Diag(O)
output pin.

MemStrobe 0

Memory Strobe: 'Ibis active low output pulses low for each datum read
or written. It can be used either as a read strobe, write strobe, data strobe
for single datum (non-burst) I/ 0 ports or for a write strobe (burst and non
burst) for SRAM. It can be active for reads, writes, or both depending on
the settings in MemStrobe Control bits in the CPO Bus Control register as
described in Chapter 5. After reset, MemStrobe is only active for writes.

1be R3041 MemStrobe output pin is designated in the R3051 as the
BrCond(O) input pin.

7-9

CHAPTER7

IOStrobe/
SBrCond(3)

0
I

The SBrCond(3) pin is used as an input when the SBrCond(3:2) In control
bit in the CPO Bus Control register is asserted. When de-asserted, the pin
becomes the IOStrobe output.

Input/Output Strobe: This active low output asserts on the first falling
edge of SysClk (1 clock) after ALE de-asserts. It asserts relatively late in
the cycle so that addresses and control lines are properly setup. It can be
active for reads, writes, or both depending on the setting of the IOStrobe
Control bits in the CPO Bus Control register.
Note that since this signal pin can only become an output after boot PROM
initialization has taken place, it cannot be used to control the boot PROM
itself. Typical uses include 1/0 chip select gating, an address mux select
for DRAMs, or a data strobe for 1/0.
Branch Condition Port 3: This input port to the processor can use the
Branch on Co-Processor Condition instructions to test its polarity. The
SBrCond(3) input is synchronized by the R304 l, and thus may be driven
by an asynchronous source.

Ex:WataEn/ O
SBrCond(2) I

The SBrCond(2) pin is used as an input when the SBrCond(3:2) In Control
bit in the CPO Bus Control register is asserted. When de-asserted, the pin
becomes the ExtDataEn output.

Extended Data Enable: This active low output asserts active low on the
first rising edge of SysClk after ALE de-asserts (1/2 clock later). It is
extended in that it de-asserts 1/2 clock after Rd de-asserts. ExtDataEn
provides extra hold time for data sampling (especially on writes) or for the
IOStrobe (if ExtDataEn is used as an extended read/write line. It can be
active for reads, writes, or both depending on the setting of the ExtDataEn
Control bits in the CPO Bus Control register.
Note that since this signal pin can only become an output after boot PROM
initialization has taken place, it cannot be used to control the boot PROM
itself. Typical uses include a write enable control line for data transceivers,
a write line for 1/0, or an address mux select for DRAMs.
Branch Condition Port 2: This input port to the processor can use the
Branch on Co-Processor Condition instructions to test its polarity. The
SBrCond(2) input is synchronized by the R304 l, and thus may be driven
by an asynchronous source.

7-10

INTERFACE OVERVIEW

INTERFACE OVERVIEW CHAPTER7

Status Information and Diagnostics

Diag 0

Diagnostic Pin: This pin is useful in the initial debug of R304 l based
systems. During the address phase of the read transaction, this output
indicates whether the read is a result of a cache miss (high) or an
uncacheable reference (low).
During the remainder of the transfer, this output indicates whether the
read is an instruction (high) or a data reference (low).
The Diag pin is undefined during write transactions.

The R3041 Diag output pin is designated in the R3051 as the Diag(l)
output pin.

Tristate I

Tri-State All Outputs: An active low input to the device which requests
that the processor tri-state all of its outputs. In addition to the outputs
which are tri-stated during a DMA operation, SysClk, TC, and BusGnt are
also tri-stated. TriState can be used for in-circuit testing and emulation
during board production manufacture.

The R3041 TriState input pin is designated in the R3051 as the no
connect Rsvd(4) pin.

DMA Arbiter Interface

These signals are involved when the processor exchanges bus mastership
with an external agent.

BusReq I

DMA Arbiter Bus Request: An active low input to the device which
requests that the processor tri-state its bus interface signals so that they
may be driven by an external master. The negation of this input releases
the bus back to the R304 l.

BusGnt 0

DMA Arbiter Bus Grant: An active low output from the R304 l used to
acknowledge that a BusReq has been granted, and that the bus is
relinquished to the external master. When the DMAProtocol bit in the CPO
Bus Control register is not selected, the DMA device has the highest
priority. When the DMAProtocol option is selected, a handshake is
invoked that allows the CPU to have an equal priority with the DMAdevice.

7-11

CHAPTER7

Interrupt Interface

Chapter 5 discusses the exception model of the R3041.

Slnt(2:0)
Int(5:3) I

Processor Interrupt: These signals are functionally the same as the
Int(5:0) signals of the R3000. The Synchronized interrupt inputs are
internally synchronized by the R304 l, and thus may be generated by an
asynchronous interrupt agent; the direct interrupts must be externally
synchronized by the interrupt agent.

Reset, Clocking, and Timer

Chapter 4 discusses the internal timer supplied by the R304 l. Chapter 11
discusses the Reset and Clock Interface.

Clkln I

Master clock Input: This is a double frequency input used to control the
timing of the processor.

SysClk 0

TC

System Reference Clock: An output from the processor which reflects
the clock used to perform bus interface functions. This clock is used to
control state transitions in theread buffer, write buffer, memory controller,
and bus interface unit. It should be used as a timing reference by the
external memory system. There is no specific guaranteed AC timing
relationship between the Clkin input clock and the output clock SysClk.

0

Terminal Count: An active low output from the processor which pulses
low for a minimum of 1.5 clocks whenever the CPO Timer register equals
the CPO Compare register. Thus TC can be used to initiate a DRAM
refresh. If the TC_Ack option is selected in the CPO Bus Control register,
then TC remains low until the CPO Compare register is written. Thus with
the TC_Ack option selected, TC can be used to implement areal-time clock
by connecting it to an interrupt pin.

The R3041 TC output pin is designated in the R3051 as the BrCond(l)
input pin.

Reset I

Master Processor Reset: This active low input signal initializes the
processor. Optional features of the processor are established during the
last cycle of reset using the reset configuration mode inputs.

7-12

INTERFACE OVERVIEW

Integrated Device Technology, Inc.

READ INTERFACE CHAPTERS

INTRODUCTION
The R304 l read protocol has been designed to interface to a wide variety of

memory and 1/0 devices. Particular care has been taken in the defmition of
the control signals available to the system designer. These signals allow the
system designer to implement a memory interface appropriate to the cost and
performance goals of the end application.

This chapter includes both an overview of the read interface and provides
detailed timing diagrams of the read interface.

TYPES OF READ TRANSACTIONS
The majority of the execution engine read requests are never seen at the

memory interface, but rather are satisfied by the internal cache resources of
the processor. Only in the cases of uncacheable references or cache misses do
read transactions occur on the bus.

Quad word reads occur only in response to cache misses. All instruction
cache misses are processed as quad word reads; data cache misses may be
processed as quad word reads or single word reads, depending on the
programming selection madein the CPO Cache Configuration register. Uncached
instruction fetches or data references are processed as a single word or partial
word read.

In processing multiple item reads, there are two parameters of interest. The
first parameter is the initial latency to the first data item of the read. This
latency is influenced by the overall system architecture and the type of memo:ry
system addressed: time required for address decoding, and perform bus
arbitration, memory pre-charge requirements, and memory control
requirements, as well as memory access time. The initial latency is the only
parameter of interest in single datum reads when the memory port is
sufficiently wide.

The second parameter of interest in burst and mini-burst transfers is the
repeat rate of data; that is, time required for subsequent data items to be
processed back to the processor. Factors which influence the repeat rate
include the memory system architecture, the types and speeds of devices used,
and the sophistication of the memo:ry controller: memo:ry interleaving, the use
of page or static column mode, and faster devices all serve to increase the repeat
rate (minimize the amount of time between adjacent words).

The R304 l has been designed to accommodate a wide variety of memory
system designs, including no wait state operations (first word available in two
cycles) and true burst operation (ac:ljacent words eve:ry clock cycle), through
simpler, slower systems incorporating many bus wait states to the first data
item and multiple clock cycles between adjacent data items, including the
ability to process quad word reads as multiple data item reads of a narrow
memory subsystem.

The R3041 has a memory sub-region Port Size configuration CPO register,
which allows individual memo:ry blocks to be configured to different size ports.
When using a memo:ry block that is configured as a 32-bit port, the R304 l uses
single word reads or quad block reads as described above. When using a
memory block that is configured as a 16-bit port, the R3041 uses single
halfword reads, dual halfword mini-burst reads, or octi halfword burst reads.
When using a memo:ry block that is configured as an 8-bit port, the R304 l uses
single byte reads, dual, tri or quad byte mini-burst reads, or 16 (sexdeci) byte
long burst block reads.

8-1

CHAPTERS

READ INTERFACE SIGNALS
Tue read interface uses the signals listed below. Signal names indicated with

an overbar are active low.

0

Read Transaction: This active low output indicates that a read operation
is occurring. It will assert when the R304 l initiates a read transaction.
It will de-assert automatically after all the data has been returned.

A/D (31:0) 1/0

ALE

Multiplexed Ad.dress/Data Bus: Duringread operations, this bus is used
to transmit the read target address to the memory system, and is used by
the memory system to return the required data back to the processor. Its
function is de-multiplexed by using other control signals. Tue address
phase is at the beginning of the bus transaction and is 1/2 clock long if
the ExtAddrHold reset configuration mode is not selected. If the ExtAddr
Hold mode is selected, then the address portion is 1 clock long. Tue data
phase occurs during the remaining portion of the read.

During the address portion of the read transaction, this bus contains the
following:

Address(31:4) Tue upper 28 bits of the read address are presented
on A/D (31:4).

BE(3:0) Tue bytestrobesfortheread transaction are presented
on A/D(3:0). Tuey are only valid for the 32-bit port
size. Tuey are not valid for 16-bit or 8-bit port sizes,
however, they do indicate which bytes are used
sometime during the (multi-datum) transaction.
BE(3:0) can also be masked (held in-active) during
reads by disabling the read mask, BE Control field of
the CPO Bus Control register.

During the data portion of the read transaction, this bus contains the
following:

Data(31:0)

0

Tue data lines are tri-stated. Operations using less
than 32-bits of data use the data lines as described in
Table 2.3 describing Byte Addressing. In summary,
the byte addressing requires that 16-bit ports use the
halfword associated with address offsets 0 and 1, i.e.,
D(31: 16) for big endian and D(l5:0) for little endian.
8-bit ports use the byte associated with address offset
0, i.e., D(31:24) for big endian and D(7:0) for little
endian. These byte lane assignments are independent
of the Reverse Endianess control bit in the CPO Status
register.

Ad.dress Latch Enable: This active high output signal is typically
connected directly to the latch enable of transparent latches. Latches are
typically used to de-multiplex the address and Byte Enable information
from the A/D bus.

8-2

READ INTERFACE

READ INTERFACE CHAPTERS

Addr(3:0) 0

Dedicated Address Bus: The remaining least significant bits of the
transfer address are presented directly on these outputs. In the case of
32-bit quad word reads, the Addr(3:2) pins function as a two bit counter
starting at '00', and are used to perform the quad word transfer. In the
case of single datum reads, these pins contain Address (3:2) of the transfer
address. Similarly, 16-bit ports use Addr(3: 1) and 8-bit ports use
Addr(3:0).

Note that Addr(1 :O) in the R304 l correspond to the no-connect Rsvd(1 :0)
pins of the R305 l.

DataEn 0

Data Enable: This active low output indicates that the A/D bus is no
longer being driven by the processor, and thus the output drivers of the
memory system may be enabled.

Special logic on the R304 l guarantees the following:

• The A/D bus is driven to guarantee hold time from the negation of
ALE.

• The R304 l A/D bus output drivers will be disabled on reads before
the assertion of DataEn.

If the ExtAddrHold reset configuration mode is not active, DataEn will be
asserted immediately after ALE de-asserts and as soon as the A/D bus is
tri-stated.

If the ExtAddrHold reset configuration mode is active, DataEn will be
asserted as soon as the A/D bus is tri-stated on the next rising edge of
SysClk after ALE de-asserts.

Thus, the system designer is assured that ALE can be used to directly
control the latch enable of a transparent latch. Similarly, DataEn can be
used to directly control the output enable of memory system drivers.

Burst 0

Burst Read (multiplexed with Write Near): On read cycles, this active
low output distinguishes between 32-bit quad word block and single
datum reads. Similarly, on 16-bit reads, this output distinguishes
between 16-bit octi halfword block and all other halfword reads. On 8-bit
ports this output distinguishes between 8-bit 16 byte long block reads and
all other byte reads.

RdCEn I

Read Buffer Clock Enable: This active low input is used by the external
memory system to cause the processor to capture the contents of the
A/D bus. In the case of single datum reads, this causes the processor to
capture the read data and also terminates the read operation. In the case
of multiple data reads, this causes the contents of the A/D bus to be
strobed into the on-chip read buffer. When the final datum is captured,
it also terminates the read operation.

8-3

CHAPTERS

I

Acknowledge: This active low input is used by the memory system to
indicate that it has sufficiently processed the read transaction, and that
the internal execution core may begin processing the read data. Thus,
ACk can be used by the external memory system to cause the execution
core to begin processing the read data simultaneously with the memory
system bringing in additional words of the burst refill. The timing of the
assertion of Ack by the memory system must be constructed to insure that
data items not yet retrieved from the memory will be brought in before they
are required by the execution core.

In general, the highest level of performance is achieved by asserting Ack
concurrent with the final RdCEn for single datum and mini-burst block
reads and by asserting ACk three clocks before the final RdCEn on burst
block reads.

Other systems, which utilize simpler memory system strategies, may
ignore the use of Ack in read transactions. The processor will recognize
the implicit termination of a read operation by the assertion of the
appropriate number of RdCEn. While this approach is simpler to design,
a loss of performance will result for both single datum and burst reads.

Bus Error I

Bus Error: This active low input can be used to terminate aread operation
ifasserted before or concurrentlywithAck. It will also cause the processor
to take a Bus Error exception. Read transactions terminated by BusError
do not require the assertion of ACk or RdCEn.

BE16(1:0) 0

Byte Enable Strobes for 16-bit ports: These active low outputs are the
byte enable strobes for 16-bit ports. If BE 16(1) is asserted then the most
significant byte (D(31:24) for big endian or D(l5:8) for little endian) is
going to be sampled by the R3041. IfBE16(0) is asserted then the least
significant byte (D(23: 16) for big endian or D(7:0) for little endian) is going
to be sampled by the R3041. BE16 can also be masked (held in-active)
during reads by disabling the read mask, BE 16 Control field of the CPO
Bus Control register for direct connection to the write enables in DRAM
systems or other systems with gated chip selects. BE16 is not valid for
32-bit or 8-bit ports.

The R3041 BE16(1:0) output pins are designated in the R3051 as no
connect Rsvd(3:2) pins, respectively.

Last 0

Last Datum in Mini-Burst: This active low output indicates that the
last datum of a single datum, mini-burst or burst is being read. It
goes active with Rd for single datum reads and after the next to last
RdCEn is sampled for multiple datum reads. Last de-asserts when Rd
de-asserts.

8-4

READ INTERFACE

READ INTERFACE CHAPTER 8

MemStrobe 0

Memory Strobe: This active low output pulses low for each datum read.
It can be used either as a read strobe or a data strobe. It can be active for
reads, writes, or both depending on the setting of the MemStrobe control
field of the CPO Bus Control Register. After reset, MemStrobe is only
active for writes.

The R3041 MemStrobe output pin is designated in the R3051 as the
BrCond(O) input pin.

IOStrobe 0

Input/Output Strobe: This active low output asserts on the first falling
edge of SysClk (1 clock) after ALE de-asserts. It asserts relatively late in
the cycle so that addresses and control lines are properly setup. IOStrobe
requires a total of least 3 clocks during a transaction in order to assert.
Thus IOStrobe can be used as an 1/0 data strobe ifExtDataEn is used as
a read/write line or IOStrobe can be used for gating 1/0 chip selects. It
can be active for reads, writes, or both depending on the setting of the
IOStrobe Control field of the CPO Bus Control Register. IOStrobe requires
the transaction be at least 3 clocks long in order to assert. Since IOStrobe
is an input on reset after which it can be configured with the SBrCond(3:2)
Control bit to be an output, it cannot be used to control the Boot PROM.

ExWataEn 0

Extended Data Enable: This active low output asserts active low on the
first rising edge of SysClk after ALE de-asserts (1/2 clock later). It is
extended in that it de-asserts 1 /2 clock after Rd de-asserts. ExtDataEn
provides extra hold time for data sampling (especially on writes). It can
also be configured as an extended read/write line for I/ 0 interfaces. It can
be active for reads, writes, or both depending on the setting of the
ExtDataEn control field of the CPO Bus Control Register. Since
ExtDataEn is an input on reset after which it can be configured with the
SBrCond(3:2) Control bit to be an output, it cannot be used to control the
Boot PROM.

Diag 0

Diagnostic Pin: This pin is useful in the initial debug of R304 l based
systems. During the address phase of the read transaction, this output
indicates whether the read is a result of a cache miss (high) or an
uncacheable reference (low).
During the remainder of the transfer, this output indicates whether the
read is an instruction (high) or a data reference (low).

8-5

CHAPTERS

READ INTERFACE TIMING OVERVIEW
The read interface is designed to allow a variety of memory strategies. An

overview of how data is transmitted from memory and 1/0 devices to the
processor is discussed below. Note that multiplexing the address and data bus
does not slow down read transactions: the address is on the A/D bus for only
one-half to one clock cycle, so that the system's data drivers can be enabled
quickly; memory and 1/0 devices initiate their transfers based on addressing
and chip enable, not on the availability of the bus. Thus, memory does not need
to "wait" for the bus, and no performance penalty occurs.

Initiation of Read Request
A read transaction occurs when the processor internally performs a run

cycle which is not satisfied by the internal caches. Immediately after the run
cycle, the processor enters a stall cycle and asserts the internal control signal
MemRd. This signals to the internal bus interface unit arbiter that a read
transaction is pending.

Assuming that the read transaction can be immediately processed (that is,
there are no ongoing bus operations, and no higher priority operations
pending), the processor will initiate a bus read transaction on the rising edge
of SysClk which occurs during phase 2 of the processor stall cycle. Higher
priority operations would have the effect of delaying the start of the read by
inserting additional processor stall cycles.

Figure 8.1 illustrates the initiation of a read transaction, based on the
internal assertion of the MemRd control signal. This figure is useful in
determining the overall latency of cache misses on processor operation.

PhiClk

SysClk

MemRd

ALE

A/0(31 :0)

Run

Stall
(Arbitration)

Address
Mem.

Stall

Addr/
Data

Figure 8.1. CPU Latency to Start of Read

8-6

READ INTERFACE

READ INTERFACE CHAPTERS

Memory Addressing
A read transaction begins when the processor asserts its Rd control output,

and also drives the address and other control information onto the A/D and
memory interface bus. Figure 8.2 illustrates the start of a processor read
transaction, when using the non-Extended Address Hold reset configuration
mode option, including the addressing of memory and the intra-transaction
bus turn around.

nie addressing occurs in a half-cycle of the SysClk output. At the rising edge
of SysClk, the processor will drive the read target address onto the A/D bus.
At this time, ALE will also be asserted, to allow an external transparent latch
to capture the address. Depending on the system design, address decoding
could occur in parallel with address de-multiplexing (that is, the decoder could
start on the assertion of ALE, and the output of the decoder captured by ALE),
or could occur on the output side of the transparentlatches. During this phase,
DataEn will be held high indicating that memory drivers should not be enabled
onto the A/D bus.

114

Addr(3:2)

ALE

ExtDataEn

MemStrobe

• 117

Diag

Address
Memory

111

Turn
Bus

l/D

Sample
Data?

Figure 8.2. Start of Bus Read Operation Without Extended Address Hold

8-7

CHAPTERS

Concurrent with driving addresses on the A/D bus, the processor will
indicate whether the read transaction is a burst block read or not, by driving
Burst to the appropriate polarity Oow for a burst block read). If a quad word
read is indicated the Addr bus will drive to the start of the block. If a single
datum or mini-burst is indicated, the Addr lines will indicate the address for
the transfer. The functioning of the counter during mini-burst and burst reads
is also described later.

Figure 8.2 illustrates the initiation of a read transaction when the Extended
Address Hold reset configuration mode option, ExtAddrHold is turned on.
ExtAddrHold delays the address to data bus tum around for an additional 1/
2 clock. Thus the address is held for an extra 1/2 clock and the assertion of
DataEn is delayed for 1/2 clock. Since the de-assertion of ALE is unchanged,
1/2 extra clock of address hold time is provided for easier use with ASICs,
FPGAs, and other low-cost interfaces.

The remaining figures and examples in this chapter will always be given
using the ExtAddrHold reset configuration mode, although either mode is
always applicable.

Initiation of Data Phase
Once the A/D bus has presented the address for the transfer, it is "turned

around" by the processor to accept the incoming data. If the ExtAddrHold reset
configuration mode is turned off, this occurs in the second phase of the first
clock cycle of the read transaction as illustrated in Figure 8.2. If the
ExtAddrHold reset mode is turned on, address to data bus tum around occurs
in the first phase of the second clock cycle of the read transaction as illustrated
in Figure 8.3.

The processor turns the bus around by carefully performing the following
sequence of events:

• It negates ALE, causing the transparent address latches to capture the
contents of the A/D bus.

• It disables its output drivers on the A/D bus, allowing it to be driven by
an external agent. The processor design guarantees that the ALE is
negated prior to tri-stating theA/D bus. The exact timing of this depends
on the reset setting of the Extended Address Hold feature, as described
above.

• The processor then asserts DataEn, to indicate that the bus may be now
driven by the external memory resource. The processor design insures
that the A/D bus is released prior to DataEn being asserted. DataEn may
be directly connected to the output enable of external memory, and no bus
conflicts will occur.

Thus, the processor A/D bus is ready to be driven by the end of the second
phase of the read transaction if the ExtAddrHold reset configuration mode is
turned off and by the end of the first phase of the second clock if the
ExtAddrHold mode is turned on. At this time, it begins to look for data to
sample.

8-8

READ INTERFACE

READ INTERFACE

SysClk

Rd

A/0(31 :0)

Addr(3:2}

ALE

DataEn

ExtDataEn

Burst

Last

MemStrobe

IOStrobe

RdCEn

Ack

Diag

114

Address
Memory

Extend
Address

Sample
Data?

112

CHAPTERS

Figure 8.S. Start of Bus Read Operation with Extended Address Hold

8-9

CHAPTERS

Bringing Data into the Processor
Regardless of whether the transfer is a burst read or a single datum transfer,

the basic mechanism for transferring data presented on the A/D bus into the
processor is the same.

Although there are two control signals involved in terminating read operations,
only the RdCEn signal is used to cause data to be captured from the bus.

The memory system asserts RdCEn to indicate to the processor that it has
(or will have) data on theA/D bus to be sampled. The earliest that RdCEn can
be detected by the processor is the rising edge of SysClk after it has asserted
ALE (start of phase 1 of the second clock cycle of the read).

IfRdCEn is detected as asserted (with adequate setup and hold time to the
rising edge of SysClk), the processor will capture (with proper setup and hold
time) the contents of the A/D bus on the immediately subsequent falling edge
of SysClk. This captures the data in the internal read buffer for later processing
by the execution core/cache subsystem.

The R3041 integrates on-chip a 4-word read buffer, capable of acting as a
speed-matching FIFO between the system interface and the execution core.
This bus interface then perf onns byte or half-word gathering, and assembles
them into 32-bit words for the read buffer. Thus, the bus interface supports
8-, 16-, and 32-bit memory subsystems, even for quad word reads, with no real
system impact.

Figure 8.4 illustrates the sampling of data by the R304 l.

ND(31 :O)

Addr(3:2) Current Word Address

Ack or
RdCEn?

Ack/ Sample Ack or
RdCEn Data RdCEn?

Figure 8.4. Data Sampling on R3041

During the data phase, these three control signals may also assert:

•When programmed via the ExtDataEn and SBrCond(3:2) Control bits in
the CPO Bus Control register, ExtDataEn asserts one clock cycle after Rd
asserts and remains asserted 1/2 clock cycle after Rd de-asserts.
Although primarily intended for being programmed to assert on Wr
cycles, ExtDataEn can also be used as a DRAM address multiplexor select
if configured to assert on both reads and writes.

• When programmed via the MemStrobe Control bits in the CPO Bus
Control register, MemStrobe asserts one clock after Rd asserts. It de
asserts 1/2 clock after every RdCEn is sampled. If more datum are being
read within the same transaction (i.e., on a mini-burst or burst read),
MemStrobe asserts again 1/2 clock after the last de-assertion and
remains asserted until the next RdCEn occurs. The (de)-assertions
continue until all datum are sampled. See Figure 8.13 for an example.

8-10

READ INTERFACE

READ INTERFACE CHAPTERS

•When programmed via the IOStrobe and SBrCond(3:2) Control bits in the
CPO Bus Control register, IOStrobe asserts 1.5 clock cycles after Rd
asserts and remains asserted until Rd de-asserts. It will only assert if
there are at least three clocks in the transaction. Thus this signal is useful
for 1/0 reads if disabled during writes. IOStrobe can be used as an 1/0
data strobe if ExtDataEn is configured as a read/write signal. IOStrobe
can also be used as a DRAM address multiplexor select if configured to
assert on both reads and writes.

Terminating the Read
There are actually three methods for the external memory system to

terminate an ongoing read operation:

• It can supply an Ack (acknowledge) to the processor, to indicate that it has
sufficiently processed the read request and has or will supply the
requested data in a timely fashion. Note that Ack may be signalled to the
processor "early", to enable it to begin processing the read data even while
additional data is brought from the A/D bus. This is applicable only in
quad-word and mini-burst read operations.

• It can supply a BusError to the processor, to indicate that the requested
data transfer has "failed" on the bus, and force the processor to take a bus
error exception. Although the system interface behavior of the processor
when BusError is presented is similar to the behavior when Ack is
presented, no data will actually be written into the on-chip cache. Rather,
the cache line will either remain unchanged, or will be invalidated by the
processor, depending on how much of the read has already been processed.

• The external memory system can supply the requested data, using RdCEn
to enable the processor to capture data from the bus. The processor will
"count" the number of times RdCEn is sampled as asserted; once the
processor counts that the memory system has returned the desired
amount of data (one byte to four words), it will implicitly "acknowledge"
the read after it samples the last required RdCEn. This approach leads
to a simpler memory design at the cost of lower performance.

Throughout this chapter, method one will be illustrated. The other cases can
easily be extrapolated from these diagrams (for example, the system designer
can assume that Ack is asserted simultaneous with the last RdCEn of a single
word read transfer and 3 clocks before the last RdCEn of a burst read transfer).

There are actually two phases of terminating the read: there is the phase
where the memory system indicates to the processor that it has sufficiently
processed the read request, and the internal read buffer can be released to
begin refilling the internal caches; and there is the phase in which the read
control signals are negated by the processor bus interface unit. The difference
between these phases is due to block refill: it is possible for the memory system
to "release" the execution core even though additional words of the block are
still required; in that case, the processor will continue to assert the external
read control signals until all four words are brought into the read buffer, while
simultaneously refilling/ executing based on the data already brought on
board.

8-11

CHAPTERS

To determine the end of the read transaction one of these methods may be
used:

Systems that only use 32-bit memory sub-region ports as with the rest of the
R305 l family only have single datum reads or burst reads and can either
count the number of wait-cycles or use the de-asserting edge of Rd to end
the transaction.

Systems that use 16 or 8-bit ports must in general support mini-burst reads.
Memory controllers for such systems can use the de-asserting edge of Rd to
reset the controller. The memory controller can also look for Last to assert.
When Last asserts, the controller knows that it is handling the final datum
of the transaction. It is also possible to decode BE(3:0) to determine how
many datum are to be returned.

Figure 8.5 shows the timing of the control signals when the read cycle is
being terminated.

SysClk

Ack

RdCEn

A/0(31 :0)

Addr(3:2)

Rd

Data En

Burst

Last
t49

ExtDataEn

MemStrobe

IOS!robe

ALE
t17

Diag

Figure 8.5. Read Cycle Termination

8-12

READ INTERFACE

READ INTERFACE CHAPTERS

Latency Between Processor Operations
In general, the processor may begin a new bus activity as soon as the phase

immediately after the termination of the read cycle. Although this operation
may logically be either a read, write, or bus grant, there are no cases where a
read operation can be signalled by the internal execution core at this time.

Since a new operation may begin one-half clock cycle after the data is
sampled from the bus, it is important that the external memory system cease
to drive the bus prior to this clock edge. To simplify design, the processor
provides the DataEn output, which can be used to control either the Output
Enable of the memory device (presuming its tri-state time is fast enough), or
to control the Output Enable of a buffer or transceiver between the memory
device data bus and the processor A/D bus, as illustrated in Figure 8.6.

The R304 l also adds a new feature to the R305 l family to enable the system
designer to lengthen the amount of time available for bus turn-around. The
Bus Tum Around control field of the CPO Bus Control register enables the
system designer to extend the minimum guaranteed amount of time available
for bus turn-around. This enables the system designer to eliminate some
transceiver devices and/ or use slower system components, without worrying
about bus conflicts.

R3051 RISController

AID ALE DataEn

Addr .---+-_..cs OE
1---1--1

Address
Decode

Figure 8.6. Use ofDataEn as Output Enable Control

8-13

CHAPTERS

Processor Intemal Activity
In general, the processor will execute stall cycles until Ack is detected. It will

then begin the process of refilling the internal caches from the read buffer.
The system designer should consider the difference between the time when

the memory interface has completed the read, and when the processor core has
completed the read. The bus interface may have successfully returned all of
the required data, but the processor core may still require additional clock
cycles to bring the data out of the read buffer and into the caches. Figure 8. 7
illustrates the relationship between ACk and the internal activity for a block

Stall

PhiClk

read.

Stall

Rd Busy
negated

RefilV
Fix up

Wordo

RefilV
Stream/
Fixup

Word1

RefilV
Stream/
Fix up

Word2

Figure 8.7. Intemal Processor States on Burst Read

RefilV
Stream/
Fix up

Word3

This figure illustrates that the processor may perform either a stream, fi.xup,
or refill cycle in cycles in which data is brought from the read buffer. The
difference between these cycles is defined as:

• Refill. A refill cycle is a clock cycle in which data is brought out of the read
buffer and placed into the internal processor cache. The processor does
not execute on this data.

• Fixup. A fi.xup cycle is a cycle in which the processor transitions into
executing the incoming data. It can be thought of as a "retry" of the cache
cycle which resulted in a miss.

• Stream. A stream cycle is a cycle in which the processor simultaneously
refills the internal instruction cache and executes the instruction brought
out of the read buffer.

8-14

READ INTERFACE

READ INTERFACE CHAPTERS

When reading the block from the read buffer, the processor will use the
following rules:

For uncacheable references, the processor will bring the single word out
of the read buffer using a fixup cycle.

For data cache refill, it will execute either one or four refill cycles, followed
by a fixup cycle.

For instruction cache refill, it will execute refill cycles starting at word zero
until it encounters the miss address, and then transition to a fixup cycle.
It will then execute stream cycles until either the entire block is processed,
or an event stops execution. If something causes execution to stop, the
processor will process the remainder of the block using simple refill cycles.
For example, Figure 8.8 illustrates the refill/fixup/stream sequence
appropriate for a miss which occurs on the second word of the block (word
address 1).

Although this operation is transparent to the external memory system, it is
important to understand this operation to gauge the impact of design trade-offs
on performance.

Stall

PhiClk

Ack

Stall

Rd Busy
negated

Refill
Wordo

Fixup
Word1

Stream
Word 2

Figure 8.8. Instruction Streaming Example

8-15

Stream
Word3

CHAPTERS

32-BIT READ TIMING DIAGRAMS
This section illustrates a number of timing diagrams applicable to R304 l 32-

bit read transactions. These diagrams reference AC parameters whose values
are contained in the R3041 data sheet. Note that these timing diagrams
assume MemStrobe, IOStrobe, and ExtDataEn are all enabled for read
operations and that the ExtAddrHold reset configuration mode is enabled.

Single Word Reads
Figure8.9illustratesthecaseofasinglewordreadwhichdidnotrequirewait

states. Thus, RdCEn and Ack were detected at the rising edge of SysClk which
occurred exactly one clock cycle after the rising edge of SysClk which asserted
Rd. Data was sampled one phase later, and Rd and DataEn disabled from that
falling edge of SysClk. Thus, the execution core required three stall cycles and
a fixup to process the internal data.

8-16

READ INTERFACE

READ INTERFACE CHAPTERS

Run/ Stall Stall Stall Stall Fixup

PhiClk

SysClk

Rd

A/D(31 :O)

Addr(3:2)

ALE

Data En

Ext Data En

Burst

Last

MemStrobe

IQ Strobe

Start Extended Ack/ Sample New
Read Address RdCEn Data Transaction

Figure 8.9. Single Word Read Without Bus Wait Cycles

8-17

CHAPTERS

Figure 8.10 also illustrates the case of a single word read. However, in this
figure, two bus wait cycles were required before the data was returned. Thus,
two rising edges of SysClk occurred where neither RdCEn nor Ack were
asserted. On the third rising edge of SysClk, RdCEn was asserted. Ack should
also be asserted at this time to optimally restart the pipeline.

Run/
Stall

ExtDataEn

MemStrobe

Stall Stall

Start Extended Ack/
Read Address RdCEn

?

Stall

Ack/
RdCEn

?

Stall Stall

149

Ack/ Sam pie End
RdCEn Data Read

Figure 8.10. Single Word Read With Bus Wait Cycles

8-18

Fixup

1..------

READ INTERFACE

READ INTERFACE CHAPTERS

Block Reads
Figure 8.11 illustrates the absolute fastest 4 word block read. nie first word

of the block is returned in the second cycle of the read; each additional word
is returned in the immediately subsequent clock cycle. In this example, Ack
can be returned simultaneously with the first RdCEn, to minimize the number
of processor stall cycles.

Although Ack is brought in 3 clocks before the last RdCEn, a number of clock
cycles are required before the processor negates the Rd control output. nius,
the system designer is assured that Rd remains active as long as the processor
continues to expect data.

Run/
Stall Stall Stall

t48

Stall

Refill/
Fix up

WordO

Refill/
Stream/
Fix up

Word 1

Refill/
Stream/
Fix up

Word2

t49

Start Extended Ack/ Sample RdCEn Sample RdCEn Sample RdCEn Sample New
Read Address RdCEn Data Data Data Data Transaction

Figure 8.11. Burst Read With No Wait Cycles

8-19

Refill/
Stream/

Fix up

Word3

CHAPTERS

Figure 8.12(a, b) illustrates a block read in which bus wait cycles are required
before the first word is brought to the processor, but in which additional words
can be brought in at the processor clock rate. Thus, as with the no wait cycle
operation, Ack is returned 3 clocks before the last RdCEn. Figure 8.12(a)
illustrates the start of the block read, including initial wait cycles to the first
word; Figure 8.12(b) illustrates the activity which occurs as data is brought
onto the chip and the read is terminated.

Run/
Stall

PhiClk

SysClk

Rd

A/0(31 :0)

Addr(3:2)

ALE

DataEn

ExtDataEn

Burst

Last

MemStrobe

IOStrobe

RdCEn

Ack

Diag

Stall Stall

Start Extended Ack or
Read Address RdCEn

?

t12

Stall

l/D

Ack or
RdCEn

?

Stall

Ack or
RdCEn

?

Figure 8.12(a). Start of Burst Read With Initial Wait Cycles

8-20

I Stall

READ INTERFACE

READ INTERFACE

PhiClk

A/D(31 :O)

Addr(3:2)

ALE

ExtDataEn

MemStrobe

IOStrobe

Diag

Stall Stall

Refill/
Fixup

WordO

l/D

Refill/
Stream/
Fixup

Word 1

Refill/
Stream/
Fixup

Word2

CHAPTERS

Refill/
Stream/
Fixup

Word3

t15 Ir'--+---

Ack/ Sample RdCEn Sample RdCEn Sample RdCEn Sample New
RdCEn Data Data Data Data Transaction

Figure 8.12(b). End of Burst Read

8-21

CHAPTERS

Figure 8.13(a,b) illustrates a block read in which bus wait cycles are required
before the first word is returned, and in which wait cycles are required between
subsequent words: Figure 8.13(a) illustrates the first two words of the block
being brought on chip; Figure 8.13(b) illustrates the last two words of the read,
including the optimum timing of Ack, and the negation of the read control
signals.

Stall Stall Stall Stall

PhiClk

A/D(31 :O)

Addr(3:2) '00' '01'

ALE

Data En

Ext Data En

MemStrobe

IOStrobe

RdCEn Sample RdCEn Sample RdCEn Sample
D•a D•a D•a

Figure 8.13(a). First Two Words of Throttled Quad Word Read

8-22

READ INTERFACE

READ INTERFACE CHAPTERS

In this diagram, the memory system returns Ack according to when the
processor will empty the read buff er. In order to determine the optimum time
to return Ack, the system designer must look at when the processor would read
the fourth word from the read buffer. Align this cycle with one clock cycle after
the memory system will return the fourth word to the processor. As shown in
Figure 8.13(b). the memory system should return Ack five cycles prior to when
the execution core requires the fourth word, which is the equivalent of three
cycles prior to the last RdCEn. The system designer should also insure that
the third, second, etc. words of the read cycle are available to the read buff er
before the execution core removes them to the caches.

PhiClk

SysClk

Rd

AID(31 :O)

Addr(3:2)

ALE

DataEn

ExtDataEn

Burst

Last

MemStrobe

IOStrobe

Refill/
Fix up

Stall
Word O

RdCEn Sample
Data

Refill/ Refill/
Stream/ Stream/
Fixup Fixup

Word 1 Word 2

t49

ts1

RdCEn Sample New
Data Transaction

Figure 8.13(b). End of Throttled Quad Word Read

8-23

Refill/
Stream/

Fixup

Word 3

CHAPTERS

Bus Error Operation
Figure 8.14 is a modified version of Figure 8.10 (single word read with wait

cycles), in which BusError is used to terminate the read cycle. In this diagram,
note that RdCEn does not need to be asserted, since the processor will insure
that the contents of the A/D bus do not get written into the cache or executed.
In single word reads, BusError can be asserted anytime up until A.Ck is
asserted. IfBusError and Ack are asserted simultaneously, the BusError will
be processed; if BusError is asserted after Ack is sampled, it will be ignored.

Run/ I Stall

PhiClk

SysClk

Rd

A/0(31 :O)

Addr(3:2)

ALE

DataEn

ExtDataEn

Burst

Last

MemStrobe

IOStrobe

RdCEn

Ack

Bus Error

Stall Stall

Start Extended Ack?
Read Address ·

Stall Stall

Ack?

Stall Fixup

1491,..------

Bus Null End
Error Data Read

Figure 8.14. Single Word Read Terminated by Bus Error

8-24

READ INTERFACE

READ INTERFACE CHAPTERS

Figure 8.15 shows the impact ofBusError on block reads. The assertion of
BusError is allowed up until the assertion of Ack. Once BusError is asserted
(sampled on a rising edge of SysClk), the read cycle will be terminated
immediately, regardless of how many words have been written into the read
buffer. Note that this means that the external memory system should stop
cycling RdCEn at this time, since a late RdCEn may be erroneously detected
as part of a subsequent read. Note that if BusError and Ack are asserted
simultaneously, BusError processing will occur. If BusError is asserted after
Ack, the BusError will be ignored.

Stall Stall

PhiClk

SysClk

Rd

A/0(31 :0)

Addr(3:2)
'00' xx

ALE

t15 ~---
Data En

ExtDataEn

Burst

Last

MemStrobe

IOStrobe

BusError

Figure 8.15. Block Read Terminated by Bus Error

8-25

CHAPTERS

16-BIT READ TIMING DIAGRAMS
This section illustrates a number of timing diagrams applicable to R304 l

read transactions when a 16-bit port has been selected via the CPO Port Size
register. These diagrams reference AC parameters whose values are contained
in the R304 l data sheet.

These timing diagrams assume that MemStrobe, IOStrobe, and ExtDataEn
are enabled for read transactions and that the ExtAddrHold reset configuration
mode is enabled.

Also, regardless of the Address 1 value, the half of the A/D bus used during
the data phase (A/D(31: 16) for big endian or A/D(l5:0) for little endian) is
constant, according to the system byte ordering (endianness) selected at reset.

Single Halfword Reads
Figure 8.16 illustrates the case of a single halfword read which did not

require wait states. Thus, RdCEn and Ack were detected at the rising edge of
SysClk which occurred exactly one clock cycle after the rising edge SysClk
which asserted Rd. Data was sampled one phase later, and Rd and DataEn
disabled from that falling edge of SysClk. Thus, the execution core required
three stall cycles and a fixup to process the internal data. In the cases where
only one byte of data is needed, the 16-bit byte enables, BE16(1:0) indicate
which bytes are being used in this transaction.

8-26

READ INTERFACE

READ INTERFACE

Run/
Stall

PhiClk

SysClk

Rd

A/D(31 :O)

Addr(3:1)

ALE

BE16(1 :O)

Data En

Ext Data En

Burst

Last

MemStrobe

IOStrobe

Stall Stall

Halfword Byte
Enables

Stall

Start Extended Ack/ Sample New
Read Address RdCEn Data Transaction

Figure 8.16. Single Halfword Read Without Bus Wait Cycles

8-27

CHAPTERS

Fixup

CHAPTERS

Figure 8.17 also illustrates the case of a single halfword read. However, in
this figure, one bus wait cycle is required before the data is returned. Thus,
one rising edge of SysCikoccurred where neither RdCEn or ACK were asserted.
On the second rising edge of SysClk, RdCEn was asserted. The timing of Ack
in a single datum read should occur with the final RdCEn in order to optimally
restart the internal pipeline.

Run/
Stall

PhiClk

SysClk

Rd

A/D(31:0)

Addr(3:1)

ALE

BE16(1:0)

DataEn

ExtDataEn

Burst

Last

MemStrobe

IOStrobe

RdCEn

Ack

Diag

Stall Stall Stall

Halfword
Address

Halfword
Byte Enables

Stall

Start Extended RdCEn/ Sample RdCEn/ Sample New
Read Address Ack Data Ack Data Transaction

?

Figure 8.17. Single Halfword Read With Bus Wait Cycle

8-28

Fixup

READ INTERFACE

READ INTERFACE CHAPTERS

Mini-Burst Halfword Reads
Mini-burst halfword reads require two halfwords to be returned within the

same read cycle as in Figure 8.18. After the second halfword is read, Rd will
de-assert. Alternatively, external wait state machine controllers can find the
start of the final halfword of the mini-burst as indicated by the assertion of Last.
In a mini-burst, the Burst line remains de-asserted, since Burst is only used
to indicate an octi (8) halfword read corresponding to a four word block. Note
that during either of the halfwords in a mini-burst may have both or just one
of its byte enable, BE 16(1 :0) signals asserted. These three cases correspond
to instructions which generate tri-byte (addresses 0, 1,2 or 1,2,3) and word
(addresses 0, 1,2,3) loads or fetches.

The timing of Ack in a mini-burst read should occur with the final RdCEn
in order to optimally restart the internal pipeline.

Run/
Stall

PhiClk

A/D(31:0)

ExtDataEn

MemStrobe

Stall Stall Stall Stall

Start Extended RdCEn Sample Ack/ Sample New
Read Address Data RdCEn Data Transaction

Figure 8.18. Mini-Burst Halfword Read Without Bus Wait Cycles

8-29

Fixup

CHAPTERS

16-Bit Block Reads
16-bit block reads involve a total of 8 halfwords of data. Figure 8.19(a)

illustrates the beginning of the absolute fastest halfword block read. Figure
8. l 9(b) illustrates the ending of the absolute fastest halfword block read. The
first halfword of the block is returned in the second cycle of the read; each
additional halfword is returned in the immediately subsequent clock cycles.
Thus, Ack can be returned on the 3rd clock prior to the last RdCEn, to minimize
the number of processor stall cycles.

Run/ Stall Stall Stall Stall Stall Stall Stall Stall

PhiClk

SysClk

Rd

AID(31:0)

Addr(3:1)

ALE

BE16(1:0)

DataEn

ExtDataEn

Burst

Last

MemStrobe

IOStrobe

RdCEn

Ack

Diag

Start Extended RdCEn Sample RdCEn Sample RdCEn Sample RdCEn Sample RdCEn
Read Address Data Data Data Data

Figure 8.19(a). Start of Burst Block Halfword Read Without Bus Wait Cycles

Note that although Ack is brought low in the 3rd clock from the end clock
cycle, a number of clock cycles are required before the processor negates the
Rd control output. Thus, the system designer is assured thatRd remains active
as long as the processor continues to expect data.

Halfword block reads can insert bus wait cycles just like the 32-bit block
reads. Thus bus wait cycles can be inserted before the first halfword and/ or

8-30

READ INTERFACE

READ INTERFACE CHAPTERS

between subsequent halfwords simply by delaying the assertion ofRdCEn until
the data is ready. In these cases, Ack must be timed so that the pipeline restarts
in time to read the last halfword. Thus the optimal placement of ACk is no
sooner than the 3rd clock from the last RdCEn.

PhiClk

A/D(31:0)

Addr(3:1)

ALE

BE16(1:0)

ExtDataEn

Diag

Stall Stall

Refill/
Fix up

WordO

l/D

Refill/
Stream/

Fix up

Word1

Refill/
Stream/

Fix up

Word2

Ack/ Sample RdCEn Sample RdCEn Sample RdCEn Sample New
RdCEn Data Data Data Data Transaction

Figure 8.19(b). End of Burst mock Halfword Read Without Bus Wait Cycles

Bus Error Operation

Refill/
Stream/

Fix up

Word3

Bus errors for 16-bithalfword ports operate the same as 32-bit bus errors.
In single halfword reads, BusError can be asserted anytime up until ACk is
asserted. If BusError and Ack are asserted simultaneously, the BusError will
be processed; if BusError is asserted after Ack is sampled, it will be ignored.

On block reads, the assertion of BusError is allowed up until the assertion
of Ack. Once BusError is asserted (sampled on arising edge of SysClk), the read
cycle will be terminated immediately, regardless of how many halfwords have
been written into the read buffer. Note that this means that the external
memory system should stop cycling RdCEn at this time, since a late RdCEn
may be erroneously detected as part of a subsequent read. Note that if
BusError and ACk are asserted simultaneously, BusError processing will
occur. If BusError is asserted after Ack, the BusError will be ignored.

8-Sl

CHAPTERS

8-BIT READ TIMING DIAGRAMS
This section illustrates a number of timing diagrams applicable to R304 l

read transactions when an 8-bit port has been selected via the CPO Port Size
register. These diagrams reference AC parameters whose values are contained
in the R304 l data sheet.

These diagrams assume that MemStrobe, IOStrobe, and ExtDataEn are
enabled for reads and that the ExtAddrHold reset configuration mode is
enabled.

The byte lane used for a transfer is not dependent on the address bit 0, but
rather on the system byte ordering (endianness) selected at reset. A/D(3 l :24)
ts used for big endian systems, and A/D(7:0) is used for little endian systems.

Single Halfword Reads
Figure 8.20 illustrates the case of a single byte read which did not require

wait states. Thus, Ack was detected at the rising edge of SysClk which occurred
exactly one clock cycle after the rising edge SysClk which asserted Rd. Data
was sampled one phase later, and Rd and DataEn disabled from that falling
edge of SysClk. Thus, the execution core required three stall cycles and a fixup
to process the internal data.

8-32

READ INTERFACE

READ INTERFACE CHAPTERS

Run/ Stall Stall Stall Fixup Stall

PhiClk

SysClk

Rd

t14

A/0(31 :O)

Addr(3:0)

ALE

Data En

ExtDataEn

Burst

Last

MemStrobe

IOStrobe

Start Extended Ack/ Sample New
Read Address RdCEn Data Transaction

Figure 8.20. Single Byte Read Without Bus Wait Cycles

8-33

CHAPTERS

Figure 8.21 also illustrates the case of a single byte read. However, in this
figure, two bus wait cycles were required before the data was returned. Thus,
two rising edges of SysClk occurred where neither RdCEn or ACk were asserted.
On the third rising edge of SysClk, RdCEn was asserted. The timing of Ack in
a single datum read should occur with the final RdCEn in order to optimally
restart the internal pipeline.

Run/
Stall

PhiClk

A/D(31 :0)

Addr(3:0)

ALE

ExtDataEn

MemStrobe

IOStrobe

Diag

Stall Stall Stall Stall Fixup

Jl rL - Lil r_ J rL u-
'-------1 ~

....-----.. '....-----..
-:~ r -: ... ~

r J ... "'t - -
~ 1(_ • t15

f
t14:1

t7a .. t1a 14 ., f4t14
ltZj

Addr ' * Datalnputt
'I

[K~ .J I\.

~ t1~~
:) t2a

I Byte Address I ., ta~ t9 .it1~~

:l \ L I
~t1f.. ., t15 ~

t] .,
tr .:t ., t7~ • t48,.

I
~ t Jr

-l18• i.r'4 ., t12 t51

.:t :l • tsoa.t

• t47 ., t15

~ :l
• t1 14 • t1 14

.: r J
• t2 14 ~ t2 14

-r jr ,__,, i--

~ t17 14 • t17 14 ~ t17 14
·H· Cached? ·:E· VD jr-

T I T T T
Start Extended RdCEn? Sample Ack/ Sample New
Read Address Data RdCEn Data Transaction

Figure 8.21. Single Byte Read With Bus Wait Cycles

8-34

READ INTERFACE

READ INTERFACE CHAPTERS

Mini-Burst Byte Reads
Mini-burst byte reads require two, three, or four bytes to be returned within

the same read cycle as illustrated in Figures 8.22, 8.23, and 8.24. After the last
byte is read, Rd will de-assert. Alternatively, external wait state machine
controllers can find the start of the final byte of the mini-burst as indicated by
the assertion of Last. In a mini-burst, the Burst line remains de-asserted, since
Burst is only used to indicate a 16 byte block read corresponding to a four word
block. Note that the starting address of a mini-burst is not necessarily 0. For
example, it could be a' l' if the load or fetch corresponds to a tri-byte operation.

The timing of Ack in a mini-burst read should occur with the final RdCEn
in order to optimally restart the internal pipeline.

Run/ Stall Stall Stall Stall Stall Fixup

PhiClk

SysClk

Rd

A/D(31 :O)

Addr(3:0)

ALE

t12
t15 Ir--+----

DataEn

ExtDataEn

Burst

Last

MemStrobe

IOStrobe

RdCEn

Ack

Diag l/D

Start Extended RdCEn Sample Ack/ Sample New
Read Address Data RdCEn Data Transaction

Figure 8.22. Double Byte Read Without Bus Wait Cycles

8-35

CHAPTERS

Run/
Stall

PhiClk

AfD(31:0)

READ INTERFACE

Stall Stall Stall Stall Stall Fixup

Start Extended RdCEn Sample RdCEn Sample Acit./ Sample New
Read Address Data Data RdCEn Data Transaction

Figure 8.23. Tri-Byte Read Without Bus Wait Cycles

8-36

READ INTERFACE

Run/
Stall

CHAPTERS

Stall Stall Stall Stall Stall Stall Fix up

Start Extended RdCEn Sample RdCEn Sample RdCEn Sample Ack/ Sample New
Read Address Data Data Data RdCEn Data Transaction

4000 drw70

Figure 8.24. Quad-Byte Read Without Bus Wait Cycles

8-37

CHAPTERS

8-Bit Quad Word Reads
8-bit block reads involve a total of 16 bytes of data. Figure 8.25(a) illustrates

the beginning of the absolute fastest byte block read. Figure 8.25(b) illustrates
the ending of the absolute fastest byte block read. Intervening bytes 5 through
11 are similar. The first byte of the block is returned in the second cycle of the
read; each additional byte is returned in the immediately subsequent clock
cycles. Thus, Ack can be returned on the 3rd clock prior to the last RdCEn,
to minimize the number of processor stall cycles.

Note that although Ack is brought low in the 3rd clock from the end clock
cycle, a number of clock cycles are required before the processor negates the
Rd control output. Thus, the system designer is assured thatRd remains active
as long as the processor continues to expect data.

Byte block reads can insert bus wait cycles just like the 32-bit block reads.
Thus bus wait cycles can be inserted before the first byte and/ or between
subsequent bytes simply by delaying the assertion ofRdCEn until the data is
ready. In these cases, Ack must be timed so that the pipeline restarts in time
to read the last byte. Thus the optimal placement of Ack is no sooner than the
3rd clock from the last RdCEn. Note that if Aek is not given at all, an implicit
Ack will be generated one clock after the last RdCEn.

Run/
Stall Stall Stall Stall Stall Stall Stall

Start Extended RdCEn Sample RdCEn Sample RdCEn Sample RdCEn Sample RdCEn
Read Address Data Data Data Data

Figure 8.25 (a). Start of 16 Byte Burst Read Without Bus Wait Cycles

8-38

Stall

READ INTERFACE

READ INTERFACE

Stall Stall Stall Stall

PhiClk

SysClk

Rd

A/D(31:0)

Addr(3:0)

ALE

DataEn

ExtDataEn

Burst

Last

Refillf
Fix up

WordO

Refillf
Streanv
Fix up

Word1

CHAPTERS

Refillf
Streanv
Fix up

Word2

117

Refillf
Streanv
Fix up

Word3

Diag --------..--.,......-....---.--vo ___ .,..... _________,.._,1 .. _

Ack/ Sa!lllle RdCEn Sample RdCEn Sa!lllle RdCEn Sample New
RdCEn Data Data Data Data Transaction

4000 drw72

Figure 8.25 (b). End of 16 Byte Burst Read Without Bus Wait Cycles

Bus Error Operation
Bus errors for 8-bit byte ports operate the same as 32-bit bus errors. In

single halfword reads, BusError can be asserted anytime up until ACk is
asserted. If BusError and Ack are asserted simultaneously, the BusError will
be processed; if BusError is asserted after Ack is sampled, it will be ignored.
On block reads, the assertion of BusError is allowed up until the assertion of
Ack. Once BusError is asserted (sampled on a rising edge of SysClk), the read
cycle will be terminated immediately, regardless of how many bytes have been
written into the read buffer. Note that this means that the external memory
system should stop cycling RdCEn at this time, since a late RdCEn may be
erroneously detected as part of a subsequent read. Note that if BusError and
Ack are asserted simultaneously, BusErrorprocessingwill occur. IfBusError
is asserted after Ack, the BusError will be ignored.

8-39

CHAPTERS READ INTERFACE

8-40

G
Integrated Device Technology, Inc.

©1992 Integrated Device Technology, Inc.

WRITE INTERFACE CHAPTER9

INTRODUCTION
The write protocol of the R304 l has been designed to complement the read

interface of the processor. Many of the same signals are used for both reads
and writes, simplifying the design of the memory system control logic.

This chapter includes both an overview of the write interface as well as
provides detailed timing diagrams of the write interface.

IMPORTANCE OF WRITES IN R3041 SYSTEMS
The design goal of the write interface was to achieve two things:

Insure that a relatively slow write cycle does not degrade the performance
of the processor. To this end, a four deep write buffer has been
incorporated on chip. The role of the write buffer is to decouple the speed
of the memory interface from the speed of the execution engine. The write
buffer captures store information (data, address, and transaction size)
from the processor at its clock rate, and later presents it to the memory
interface at the rate it can perform the writes. Four such buffer entries
are incorporated, thus allowing the processor to continue execution even
when performing a quick succession of writes. Only when the write buffer
is already filled will the processor stall; simulations have shown that
significantly less than 1 % of processor clock cycles are lost to write buff er
full stalls.

Allow the memory system to optimize for fast writes. Thus, a number of
design decisions were made: the WrNear signal is provided to allow page
mode writes to be used even in simple memory systems; the A/D bus
presents the store data as early as the second phase of the first clock cycle
of a write; and writes can be performed in as few as two clock cycles.

Although it may be counter-intuitive, a significant percentage of the bus
traffic will in fact be processor writes to memory. This can be demonstrated if
one assumes the following:

Instruction Mix:
ALU Operations 55%
Branch Operations 15%
Load Operations 20%
Store Operations 10%

Cache Performance
Instruction Hit Rate 95%
Data Hit Rate 90%

For these assumptions, in 100 instructions, the bus would see:

5 Reads to process instruction cache misses on instruction fetches
10% x 20 = 2 reads to process data cache misses on loads
10 store operations to the write through cache
Total: 7 reads and 10 writes

Thus, in this example, about 60% of the bus transactions are write
operations, even though only 10 instructions were store operations, vs. 100
instruction fetches and 20 data fetches.

9-1

CHAPTER9

TYPES OF WRITE TRANSACTIONS
The R304 l has two basic types of write transactions depending on the port

size selected in the CPO Port Size Configuration register for each memory sub
region. 32-bit ports only use the single word write type. 16-bit ports can use
the single halfword write or the mini-burst (double halfword) write type. 8-bit
ports can use the single byte write or the mini-burst (double, tri, or quad byte)
write type.

Types of 32-Bit Write Transactions
Unlike instruction fetches and data loads, which are usually satisfied by the

on-chip caches and thus are not seen at the bus interface, all 32-bit write
activity is seen at the bus interface as single write transactions. There is no
such thing as a "four word block burst write"; the processor performs a word
or sub-word write as a single autonomous bus transaction; however, the
WrNear output does allow successive write transactions to be processed using
page mode writes. This is particularly important when "flushing" the write
buffer before performing a data read.

Uncached writes which contain only 1, 2, or 3 bytes of data assert the
appropriate byte enables, BE(3:0) during the address phase. Thus, there really
is only one type of 32-bit write transaction. However, the memory system may
elect to take advantage of the assertion of WrNear during a write to perform
quicker write operations than would otherwise be performed. Alternately, a
high-performanceDRAMcontrollermayutilizeadifferentstrategyforperforming
page mode transactions (read or write) to the DRAM.

In processing 32-bit writes, there is only one parameter of interest: the
latency of the write. This latency is influenced by the overall system
architecture as well as the type of memory system being addressed: time
required to perform address decoding and bus arbitration, memory pre-charge
requirements, and memory control requirements, as well as memory access
time. WrNear may be used to reduce the latency of successive write operations.

The R304 l has been designed to accommodate a wide variety of memory
system designs, including no wait cycle operations (write completed in two
cycles) through simpler, slower systems incorporating many bus wait cycles.

Types of 16-Bit Transactions
When the R3041 uses a 16-bit port, it does its writes in halfword size

increments. Thus if the data contains 8 or 16 bits (1 or 2 bytes). it will be
handled with a single halfword write with the appropriate byte enables,
BE16(1:0) asserted. If the data contains 24 or 32 bits (3 or 4 bytes), it will
handled with a double halfword write mini-burst with the appropriate byte
enables, BE16(1:0) for each halfword asserted. A mini-burst puts both
halfwords out in the same write transaction. The memory system simply
returns an Ack for each halfword datum which will automatically increment
Addr(3: 1) and change BE16(1:0) if appropriate. Similar to a read mini-burst,
a write mini-burst can be detected using the Last signal to determine when the
final halfword datum is being returned or by using the de-assertion of the Wr
line. The R304 l is designed to accommodate a wide variety of different memory
bandwidths, including DRAM systems that need precharge wait cycles for the
first halfword and then use a fast page mode access for bursting the second
halfword.

The data lines used in 16-bit ports are always A/D(31: 16) for big endian
systems and A/D(l5:0) for little endian systems. This is regardless of the
Reverse Endianess bit in the CPO Status register. For big endian systems,
BE 16(1) corresponds to the byte lane in A/D(3 l :24) and BE 16(O) corresponds
to A/D(23: 16). Similarly, for little endian systems, BE 16(1) corresponds to the
byte lane in A/D(l5:8) and BE16(0) corresponds to A/D(7:0).

9-2

WRITE INTERFACE

WRITE INTERFACE CHAPTER9

Types of 8-Bit Transactions
When the R304 l uses an 8-bit port, it does its writes in byte size increments.

Thus if the data contains I byte, it will be handled with a single byte write. If
the data contains 2, 3, or 4 bytes, itwill handled with a double, tri, or quad byte
write mini-burst, respectively. A mini-burst puts 2, 3, or 4 bytes out in the
same write transaction. The memory system simply returns an Ack for each
byte datum which will automatically increment Addr(3:0). Similar to a read
mini-burst, a write mini-burst can be detected using the Last signal to
determine when the final byte datum is being returned or by using the de
assertion of the Wr line. The R304 l is designed to accommodate a wide variety
of different memory bandwidths, including DRAM systems thatneed precharge
wait cycles for the first byte and then use a fast page mode access for bursting
subsequent bytes.

The data lines used in 8-bit ports are always A/D(31:24) for big endian
systems and A/D(7:0) for little endian systems. This is regardless of the
Reverse Endianess bit in the CPO Status register. There is no "BES" signal since
bytes written are always valid and should always be enabled.

Partial Word Writes
When the processor issues a store instruction which stores less than a 32-

bit quantity, a partial word store occurs. The R3041 processes partial word
stores using a two clock cycle sequence:

It attempts a cache read to see if the store address is cache resident. If
it is and the store is cacheable, it will merge the partial word with the word
read from the cache, and write the resulting word back into the cache.

It will use a second clock cycle to allow the write buffer to capture the data
and target address. Cacheable stores update or invalidate the cache as
appropriate.

9-3

CHAPTER9

WRITE INTERFACE SIGNALS
The write interface uses the following signals:

0

Write: This active low output indicates that a write operation is occurring.
It will assert when the R304 l write buffer initiates a write transaction. It
will de-assert automatically after all the data has been acknowledged.

A/D (31:0) 0

Multiplexed Address/Data Bus: During write operations, this bus is
used to transmit the write target address to the memory system, and is
also used to transmit the store data to the memory system. Its function
is de-multiplexed using other control signals.

During the addressing portion of the write transaction, this bus contains
the following:

Address(31:4) The upper 28 bits of the write address are presented
on A/D (31:4).

BE(3:0) The byte strobes for the 32-bit write transaction are
presented onA/D(3:0). BE(3) indicates thatAD(3 l :24)
is used; BE(2) indicates thatAD(23: 16) is used; BE(I)
indicates that AD(l5:8) is used; and BE(O) indicates
that AD(7:0) is used. BE(3:0) can be held inactive
during reads by using the BE(3: O) Control read mask
in the CPO Bus Control register as might be done for
direct connection from the address latch to the WE
pins in systems using IM bit or smaller DRAMs.
These byte strobes are only valid for 32-bit ports.
They are not valid for 16 or 8-bit ports, however, they
do indicate which bytes are used sometime during the
(multi-datum) transaction.

During the data portion of the write transaction, the A/D bus contains:

Data(31:0) The R3041 drives the store data on the appropriate
data lines, as indicated by the byte enable strobes
during the addressing phase. Operations using less
than 32-bits of data use the data lines as described in
Chapter 2 Table 2.3 describing Byte Addressing. In
summary, the byte addressing requires that 16-bit
ports use the halfword associated with address offsets
0 and I, i.e., D(31:16) for big endian and D(l5:0) for
little endian. 8-bit ports use byte associated with
address offset 0, i.e., D(31:24) for big endian and
D(7:0) for little endian. These byte lane assignments
are independent of the Reverse Endianess control bit
in the CPO Status register.

ALE 0

Address Latch Enable: This active high output signal is typically
connected directly to the latch enable of transparent latches. Latches are
typically used to de-multiplex the address and Byte Enable information
from the A/D bus.

9-4

WRITE INTERFACE

WRITE INTERFACE CHAPTER9

Addr(S:O) 0

Dedicated Address Bus: The remaining bits of the transfer address are
presented directly on these outputs. During 32-bit write transactions,
these pins contain Address (3:2) of the transfer address. During 16-bit
transactions, these pins contain Address(3: 1) of the transfer address
which act as a counter during halfword mini-bursts. During 8-bit
transactions, these pins contain Address(3:0) of the transfer address
which act as a counter during byte mini-bursts.

The R3041 Addr(l:O) output pins are designated in theR3051 as the no
connect Rsvd(l:O) pins respectively.

DataEn 0

Data Enable: This active low output will remain high throughout thewrite
transaction. It is typically used by the memory- system to enable read-side
output drivers; the CPU will maintain this output as high throughout
write transactions, thus disabling memory- system output drivers.

WrNear 0

Write Near (multiplexed with Burst): This active low output is driven
valid during the address phase of the write transaction. It is asserted if:

1: The store target address of this write operation has the same
Addr(31:8) as the previous write transaction, and

2: No read or DMA transaction has occurred since the last write.

If one or both of these conditions are not met, the WrNear output will not
be asserted during the write transaction. Note that for 16-bit and 8-bit
ports, WrNear only asserts if the entire mini-burst meets the above
conditions.

I

Acknowledge: This active low input is used by the memory- system to
indicate that it has sufficiently processed the write transaction, and that
if it was a single datum write, the CPU may terminate the write transaction
(and cease driving the write data). If the transaction was a mini-burst
write, Addr(3:0) and BE16(1:0) will be changed appropriately for the next
datum.

Bus Error I

Bus Error: This active low input can also be used to terminate a write
operation. BusError asserted during a write will not cause the processor
to take a BusError exception. If the system designer would like the
occurrence of a BusError to cause a processor exception, it must be used
to externally generate an interrupt to the processor. Write transactions
terminated by BusError do not require the assertion of Ack. BusError can
be asserted at any time the processor is looking for Ack to be asserted, up
to and including the cycle in which the memory- system does signal Ack.

9-5

CHAPTER9

BE16(1:0) 0

Byte Enable Strobes for 16-bit ports: These active low outputs are the
byte enable strobes for 16-bitports. IfBE16(1) is asserted then the most
significant byte (D(31:24) for big endian or D(l5:8) for little endian) is
going to contain valid data. If BE 16(0) is asserted then the least significant
byte (D(23: 16) for big endian or D(7:0) for little endian) is going to contain
valid data. BE16 can also be masked (held in-active) during reads by
disabling the read mask, BE 16 Control bit in the CPO Bus Control register.
Using the read mask is useful for direct connection of BE 16 to the WE pins
of DRAM systems or other systems with gated chip selects. BE16 is not
necessarily valid for 32-bit or 8-bit ports.

The R304 l BE 16(1 :0) outputs pins are designated in the R305 l as the no
connect Rsvd(3:2) pins, respectively.

Last 0

Last Datum in Mini-Burst: This active low output indicates that the
last datum of a single datum or mini-burst is being written. It goes
active with Wr for single datum writes and after the next to last Ack is
sampled for multiple datum writes. Last de-asserts when Wr de
asserts.

The R3041 Last output pin is designated in the R3051 as the Diag(O)
output pin.

MemStrobe 0

Memory Strobe: This active low output pulses low for each datum
written. It first goes low 1 clock after the beginning of a write. It then de
asserts 1/2 clock after anAck is received. If there are more datum to be
written (as in a mini-burst write) then MemStrobe will assert again 1/2
clock after the previous de-assertion. MemStrobe will continue to (de)
assert until all datum have been written. See Figure 9-18 for an example.
It can be used either as a write strobe or a data strobe for single datum
(non-burst) I/ 0 ports or for a write strobe (single or mini-burst) for SRAM.
It can be active for reads, writes, or both depending on the settings in the
MemStrobe Control bits in the CPO Bus Control register. After reset,
MemStrobe is only active for writes.

The R3041 MemStrobe output pin is designated in the R3051 as the
BrCond(O) input pin.

IOStrobe 0

Input/Output Strobe: This active low output asserts on the first falling
edge of SysClk (I clock) after ALE de-asserts. It asserts relatively late in
the cycle so that addresses and control lines are properly setup. It de
asserts with at the end of the write alongwith Wr. Itcanbeactiveforreads,
writes, or both depending if the read and write masks are enabled in the
IOStrobe Control bit field in the CPO Bus Control register. Note that
IOStrobe requires that the transaction contain at least 3 clock cycles in
order for it to assert.

The IOStrobe pin is software configurable as an input by using the
SBrCond(3:2) Control bit in the CPO Bus Control register. The pin defaults
to an input after reset.

9-6

WRITE INTERFACE

WRITE INTERFACE CHAPTER 9

ExtDataEn 0

Extended Data Enable: This active low output asserts active low on the
first rising edge of SysClk after ALE de-asserts (1/2 clock later). It is
extended in that it de-asserts 1/2 clock after Wr de-asserts. ExtDataEn
provides extra hold time for data sampling (especially on writes) or for the
IOStrobe (if ExtDataEn is used as an extended read/write line). It can be
active for reads, writes, or both depending if the read and write masks are
enabled in the ExtDataEn Control bit field of the CPO Bus Control register.

The ExtDataEn pin is software configurable as an input by using the
SBrCond(3:2) Control bitin the CPO Bus Control register. The pin defaults
to an input after reset.

9-7

CHAPTER9

WRITE INTERFACE TIMING OVERVIEW
The protocol for transmitting data from the processor to memory and 1/0

devices is discussed below. Throughout this chapter it is assumed that
ExtDataEn and IOStrobe are configured as output pins and that they and
MemStrobe are enabled for writes.

Initiating the Write
A write transaction occurs when the processor has placed data into the write

buffer, and the bus interface is either free, or write has the highest priority.
Internally, the processor bus arbiter uses the NotEmpty indicator from the
write buffer to indicate that a write is being requested.

Assuming that the write transaction can be processed (that is, there are no
ongoing bus operations, and no higher priority operations pending), the
processor will initiate a bus write transaction on the next rising edge ofSysClk.
Higher priority operations would have the effect of delaying the start of the
write.

Figure 9.1 illustrates the initiation of a write transaction, based on the
internal negation of the WbEmpty control signal. This figure applies when the
processor is performing a write, and the write buffer is otherwise empty. If the
write buffer already had data in it, the buffer would continually request the use
of the bus until it was emptied; it would be up to the bus interface unit arbiter
to decide the priority of the request relative to other pending requests.
Additional stores would be captured by other write buffer entries, until the
write buffer was filled.

Store
Run

(Arbitration) Run

PhiClk

SysClk

MemWr

WbEmpty

Wr

WrNear

ALE

ND(31 :0) Addr/Data

Figure 9.1. Start of Write Operation - BIU Arbitration

9-8

WRITE INTERFACE

WRITE INTERFACE CHAPTER9

Memory Addressing
A write transaction begins when the processor asserts its Wr control output,

and also drives the address and other control information onto the A/D and
memocy interface bus. The R304 l has two types of address phases. If the
ExtAddrHold reset configuration mode is not selected, the address is driven
with ALE. The data is driven as soon as ALE de-asserts. Figure 9 .2 illustrates
the start of this type of processor write transaction, including the addressing
of memocy and presenting the store data on the A/D bus. If the ExtAddrHold
reset configuration mode is selected, the address is driven for 1 /2 clock past the
de-assertion of ALE. Figure 9.3 illustrates the start of this type of processor
write transaction. The remaining timing diagrams in this section will only be
shown with the ExtAddrHold option asserted even though either mode is always
applicable to evecy type of write transaction.

In either addressing mode, at the rising edge of SysClk, the processor will
drive the write target address onto the A/D bus. At this time, ALE will also be
asserted, to allow an external transparent latch to capture the address.
Depending on the system design, address decoding could occur in parallel with
address de-multiplexing (that is, the decoder could start on the assertion of
ALE, and the output of the decoder captured by ALE), or could occur on the
output side of the transparent latches. During this phase, WrNear will also be
determined and driven out by the processor.

Addr(3:2)

ALE

ExtDataEn

MemStrobe

IOStrobe

t14

18

- t7

- t7

Address
Memory

Data
Phase

End
Write?

ata
Out

Figure 9.2. Memory Addressing and Start of Write for non ExtAddrHold Mode

9-9

CHAPTER9

114

Addr(3:2)

18

ALE

ExtDataEn

- 17

- 17

MemStrobe

IOStrobe

Address
Memory

Extended
Address

Addr
BE

End
Write?

ISO

Data
Out

Figure 9.3. Memory Addressing and Start of Write for ExtAddrHold Mode

Data Phase
Once the A/D bus has presented the address for the transfer, the address

is replaced on the A/D bus by the store data. This occurs in the second phase
of the first clock cycle of the write transaction, as illustrated in Figure 9 .2 for
the non-ExtAddrHold reset configuration mode, or in the first phase of the
second clock cycle for the ExtAddrHold mode, as illustrated in Figure 9.3.

The processor enters the data phase by performing the following sequence
of events:

• It negates ALE, causing the transparent address latches to capture the
contents of the A/D bus.

• It internally captures the data in a register in the bus interface unit, and
enables this register onto its output drivers on the A/D bus. The
processor design guarantees that the ALE is negated prior to the address
being removed from the A/D bus.

Thus, the processor A/D bus is driving the store data by the end of the
second phase of the write transaction. At this time, it begins to look for the end
of the write cycle.

9-10

WRITE INTERFACE

WRITE INTERFACE CHAPTER9

During the data phase, these three control signals may also assert:

When programmed via the ExtDataEn and SBrCond(3:2) Control bits in
the CPO Bus Control register, ExtDataEn asserts one clock cycle after Wr
asserts and remains asserted 1/2 clock cycle after Wr de-asserts. ntus
this signal is useful for enabling write data transceivers to allow extra hold
time or for acting as an I/O read/write signal with extra hold time.

When programmed via the MemStrobe Control bits in the CPO Bus
Control register, MemStrobe asserts one clock after Wr asserts. It de
asserts for 1I2 clock after every Ack is sampled. After 1 clock past an .Aek,
if more datum are being written within the same transaction, MemStrobe
asserts again and so on until all datum are acknowledged.

When programmed via the IOStrobe and SBrCond(3:2) Control bits in the
CPO Bus Control register, IOStrobe asserts 1.5 clock cycles after Wr
asserts and remains asserted until Wr de-asserts. It will only assert when
the write cycle is at least 3 clocks long. nius this signal is useful for I/
0 writes if disabled during reads. IOStrobe can be used as an 1/0 data
strobe if ExtDataEn is configured as a read/write signal. IOStrobe can
also be used as a DRAM address multiplexor select if configured to assert
on both reads and writes.

Terminating the Write
niere are only two methods for the external memory system to terminate a

write operation:

• It can supply the appropriate number of Acks (acknowledges) to the
processor, to indicate that it has sufficiently processed the write request,
and that the processor may terminate the write.

• It can supply a BusError to the processor, to indicate that the requested
data transfer has "failed" on the bus. nie system interface behavior of the
processor when BusError is presented is identical to the behavior when
the last Ack is asserted. In the case of writes terminated by BusError, no
exception is taken, and the data transfer cannot be retried.

9-11

CHAPTER9

Figure 9.4 shows the timing of the control signals when the write cycle is
being terminated.

To determine the end of the write cycle one of these methods may be used:

Systems that only use 32-bit memory sub-region ports as with the rest of
the R305 l family only have single datum writes and either count the
number of wait-cycles or use the de-asserting edge of Wr to end the
transaction.

Systems that use 16 or 8-bit ports must in general support mini-burst
writes. Memory controllers for such systems can use the de-asserting
edge ofWr to reset the controller. The memory controller can also look for
Last to assert. When Last asserts, the controller knows that it is handling
the final datum of the transaction. It is also possible to decode BE(3:0) to
determine how many datum are to be returned.

A/0(31 :0)

Addr(3:2)

ExtDataEn

MemStrobe

IOStrobe

ALE

t14 Driven by CPU
~~~~--'~~~...,,..,,..... ....... ~~~~ ....... ~, 

Ack Negate 
Write 

t49 

Start New 
Transaction 

Figure 9.4. End of Write 

9-12 

WRITE INTERFACE 



WRITE INTERFACE CHAPTER9 

Latency Between Processor Operations 
In general, the processor may begin a new bus activity in the phase 

immediately after the termination of the write cycle. This operation may be 
either a read, write, or bus grant. A new operation may begin as soon as one 
clock cycle after the fmal Ack is sampled from the interface. 

Also note that bus turn around after a write transaction does not occur. That 
is, the processor continues to drive the A/D bus throughout the write 
transaction (both address and data phases) , and will also drive the A/D bus 
during the start of either a subsequent read or write transaction. Since no 
change in bus ownership occurs, the Bus Tum Around field of the CPO Bus 
Control register does not apply after write transactions. 

Write Buffer Full Operation 
It is possible that the execution core on occasion may be able to fill the on

chip write buffer. If the processor core attempts to perform a store to the write 
buffer while the buffer is full, the execution core will be stalled by the write 
buffer until a space is available. Once space is made available, the execution 
core will use an internal fixup cycle to "retry" the store, allowing the data to be 
captured by the write buffer. It will then resume execution. 

The write buffer can actually be thought of as "four and one-half' entries: it 
contains a special data buffer which captures the data being presented by an 
ongoing bus write transaction. Thus, when the bus interface unit begins a 
write transaction, the write buffer slot containing the data for that write is freed 
up in the second phase of the write transaction. If the processor was in a write 
busy stall, it will be released to write into the now available slot at this time, 
regardless of how long it takes the memory system to retire the ongoing write. 

Note that each entry of the write buffer is one internal 32-bit word wide, but 
each entry can only hold the result of one store operation. Thus a 32-bit port 
can store 4 words while a 16-bit port can store up to 8 halfwords when using 
store word operands. However, if for example, four slore byte operations are 
done, each byte takes a full entry. 

The write buffer full operation is illustrated in Figure 9.5. 

ALE 

Write 
Busy 
Stall 

Start 
Write 

(Arbitration) 

A/0(31 :O) ---------" 

Stall Stall 

Data 

Figure 9.5. Write Buffer Full Operation 

9-13 

Fixup Run 



CHAPTER9 

WRITE TIMING DIAGRAMS 
This section illustrates a number of timing diagrams applicable to R304 l 

writes. The values for the AC parameters referenced are contained in the 
R304 l data sheet. Throughout this chapter it is assumed that ExtDataEn and 
IOStrobe are configured as output pins and that they and MemStrobe are 
enabled for writes. Although using the non-ExtAddrHold reset configuration 
mode option is always applicable, these timing diagrams are all shown using 
the ExtAddrHold mode. 

32-Bit Basic Write 
Figure 9. 6 illustrates the case of a write operation which did not require wait 

states. Thus, Ack was detected at the rising edge of SysClk which occurred 
exactly one clock cycle after the rising edge of SysClk which asserted Wr. 

SysClk 

A/D(31 :O) 

t49 

Ext Data En 
t48 

WrNear 

MemStrobe 
t50 

IOStrobe 

t2 

Start Extended Data Out/ Negate New 
Write Address Ack Write Transaction 

Figure 9.6. Basic 32-mt Port Write with No Wait Cycles 

9-14 

WRITE INTERFACE 



WRITE INTERFACE CHAPTER9 

Figure 9. 7 also illustrates the case of a 32-bit memory sub-region basic 
write. However, in this figure, two bus wait cycles were required before the data 
was retired. Thus, two rising edges of SysClk occurred where Ack was not 
asserted. On the third rising edge of SysClk, Ack was asserted, and the write 
operation was terminated. 

ExtDataEn 

MemStrobe 
tso 

147 

Start Extended Data Out! 
Write Address Ack? 

Ack? Negate New 
Write Transfer 

Figure 9.7. Basic 32-Bit Port Write with Wait Cycles 

9-15 



CHAPTER9 

Bus Error Operation 
Figure 9.8 is a modified version of Figure 9. 7 (basic write with wait cycles), 

in which BusError is used to terminate the write cycle. If BusError and Ack 
are asserted simultaneously, the BusError will be processed. 

No exception is taken because such an exception would violate the precise 
exception model of the processor. Since writes are buffered, the processor 
program counter will no longer be pointing to the address of the store 
instruction which requested the write, and other state information of the 
processor may have been changed. Thus, if the system designerwould like the 
processor core to take an exception as a result of the bus error, he should 
externally latch the BusError signal, and use the output of the latch to cause 
an interrupt to the processor. 

SysClk 

Wr 

A/D(31:0) 

Addr(3:2) 

ALE 

ExtbataEn 

WrNear 

Last 

151 

MemStrobe 

IOStrobe 

Ack 

Bus Error 

Start Extended DataOuV 
Write Address Ack? 

Ack? Bus Negate New 
Error Write Transfer 

Figure 9.8. Basic Write Terminated by Bus Error 

9-16 

WRITE INTERFACE 



WRITE INTERFACE CHAPTER9 

SysClk 

Wr 

A/0(31 :0) 

tg 

ALE ------+--' 

Halfword Byte 

BE16(1 :0) ------+--' '--....---....-En_a_bl_es---.-----.,.....-1 

ExtDataEn 
t48 

WrNear 

Last 

MemStrobe 

IOStrobe 

t2 

Start Extended DataOuV Negate New 
Write Address Ack Write Transaction 

Figure 9.9. Single Datum 16-llit Port Write with No Wait Cycles 

16-Bit Write Timing Diagrams 
1bis section illustrates a number of timing diagrams applicable to R304 l 

write transactions when a 16-bit port has been selected via the memory sub
region configuration Port Size CPO Control register. 1bese diagrams reference 
AC parameters whose values are contained in the R304 l data sheet. It is 
assumed that ExtDataEn and IOStrobe are configured as output pins and that 
they and MemStrobe are enabled for writes. Although using the non
ExtAddrHold reset configuration mode option is always applicable, these 
timing diagrams are all shown using the ExtAddrHold mode. 

16-Bit Basic Write 
Figure 9.9 illustrates the case of a byte or halfword write operation to a 16-

bit port which did not require wait states. Thus, Ack was detected at the rising 
edge of SysClk which occurred exactly one clock cycle after the rising edge of 
SysClkwhich asserted Wr. 1be 16-bit byte enables, BE16(1:0) indicate which 
bytes are being used in this transaction. 

9-17 



CHAPTER9 

A/0(31 :0) 
Data Out 

Halfword 
Addr(3:1) -------l"""""---.-----....-__;A..;.;d..;.,dr,...es;.;;s _ __,...-----....----..,......ll'---

Halfword 
BE 16(1 :O) -----ll-'l'---,...----,...-..;;.B.;:..;yte.;..;;.,En,.;.;a.;..;.ble;.;;s_....,... __ ....,...-1 '--+-----

Ext Data En 
t48 

WrNear 

t50 

MemStrobe 

t15 •...------
IOStrobe 

Ack 

Start Extended Data Out/ Negate New 
Write Address Ack? Write Transaction 

Figure 9.10. Single Datum 16-Bit Port Write with Wait Cycles 

Figure 9.10 also illustrates the case of a basic halfword write. However, in 
this figure, two bus wait cycles were required before the data was retired. Thus, 
two rising edges of SysClk occurred where Ack was not asserted. On the third 
rising edge ofSysClk, Ack was asserted, and the write operation was terminated. 

9-18 

WRITE INTERFACE 



WRITE INTERFACE 

Wr 

A/0(31 :O} 

ExtDataEn 

MemStrobe 

IOStrobe 

CHAPTER9 

Ack Negate New Start Extended Ack 
Write Address Write Transaction 

Figure 9.11. Mini-Burst 16-Bit Port Write 

Figure 9.11 illustrates the case of a double halfword write operation which 
did not require wait states. After the first Ack is sampled, Last asserts to 
indicate that the second datum is the final datum. Also Addr(3: 1) increments 
and the BE 16( 1 :0) change if appropriate. As with the single halfword write, bus 
wait cycles can be inserted for either the first of second datum simply by 
delaying the assertion of the corresponding Ack. 

9-19 



CHAPTER9 

SysClk 

Wr 

A/0(31 :O) 
Data Out xx 

ALE 

WrNear 

ExtDataEn 

WrNear 

Last 

MemStrobe 

IOStrobe 

Ack 

BusError 

Figure 9.12. 16-llit Write Terminated by Bus Error 

Bus Errors for 16-bit writes are handled similar to 32-bit writes. The 
BusError input is sampled whenever Ack is sampled. Bus errors which occur 
before the end of a mini-burst will abandon any unsent datum. A case where 
BusError is used to signal the end of a write transaction is illustrated in Figure 
9.12. 

9-20 

WRITE INTERFACE 



WRITE INTERFACE CHAPTER9 

8-Bit Write Timing Diagrams 
This section illustrates a number of timing diagrams applicable to R304 l 

write transactions when a 8-bit port has been selected via the memory sub
region configuration Port Size CPO Control register. These diagrams reference 
AC parameters whose values are contained in the R304 l data sheet. It is 
assumed that ExtDataEn and IOStrobe are configured as output pins and that 
they and MemStrobe are enabled for writes. Although using the non
ExtAddrHold reset configuration mode option is always applicable. these 
timing diagrams are all shown using the ExtAddrHold mode. 

8-Bit Basic Write 
Figure 9.13 illustrates the case of a single byte write operation to an 8-bit 

port which did not require wait states. Thus, Ack was detected at the rising 
edge of SysClk which occurred exactly one clock cycle after the rising edge of 
SysClk which asserted Wr. 

SysClk 

Wr 

t14 

A/0(31 :0) 

ALE -------

ExtDataEn 
t48 

WrNear 

Last 

MemStrobe 

IOStrobe 

Ack 
2 

Start Extended DataOut/ Negate New 
Write Address Ack Write Transaction 

Figure 9.13. Single Byte 8-Bit Port Write with No Wait Cycles 

9-21 



CHAPTER9 

Figure 9.14 also illustrates the case of a basic single byte write. However, 
in this figure, two bus wait cycles were required before the data was retired. 
Thus, two rising edges ofSysClk occurred where Ack was not asserted. On the 
third rising edge of SysClk, Ack was asserted, and the write operation was 
terminated. 

Wr 

t14 

A/0(31 :0) Data Out 

Byte 

Addr(3:0) ----~...._,•'----r----r-_..;,;A:;;;dd;;.;re;.;;s;;..s ---r----r----r-'I'----

ExtDataEn 

WrNear 

t15 1.r:--J-----

MemStrobe 

IOStrobe 

Ack 

Start Extended Data OuV Negate New 
Write Address Ack? Write Transaction 

Figure 9.14. Single Byte 8-Bit Port Write with Wait Cycles 

9-22 

WRITE INTERFACE 



WRITE INTERFACE CHAPTER9 

Figures 9.15, 9.16, and 9.17 illustrate the cases of a double, tri, and quad 
byte write operation respectively. These cases did not require wait states. After 
the second to last Ack is sampled, Last asserts to indicate that the next datum 
is the final datum. Also Addr(3:0) increments. As with the single halfword 
write, bus wait cycles can be inserted for any of the datum simply by delaying 
the assertion of the corresponding Ack. 

Bus Errors for 8-bit writes are handled similar to 32-bit writes. The 
BusError input is sampled whenever Ack is sampled. Bus errors which occur 
before the end of a mini-burst will abandon any unsent datum. 

A/0(31 :0) 

ExtDataEn 

MemStrobe 

IOStrobe 

Start Extended 
Write Address 

t2 
Ack Negate New 

Write Transaction 

Figure 9.15. Two Byte 8-mt Port Write with Wait Cycles 

9-23 



CHAPTER9 

Wr 

A/0(31:0) 

ExtDataEn 

MemStrobe 

Start Extended 
Write Address 

Ack Negate New 
Write Transaction 

Figure 9.16. Three Byte Mini-Burst 8-Bit Port Write 

9-24 

WRITE INTERFACE 



WRITE INTERFACE 

Start Extended Ack 
Wr~e Address 

Ack Ack 

CHAPTER9 

Ack Negate New 
Write Transaction 

Figure 9.17. Four Byte Mini-Burst 8-Bit Port Write 

9-25 



CHAPTER9 WRITE INTERFACE 

9-26 



~ 
Integrated Device Technology, Inc. 

©1992 Integrated Device Technology, Inc. 

DMA ARBITER INTERFACE CHAPTER 10 

INTRODUCTION 
The R305 l family contains provisions to allow an external agent to remove 

the processor from its memory bus, and thus perform transfers on its own by 
a direct memory access (OMA). These provisions use the internal OMA arbiter 
interface to coordinate the external request for mastership with the CPU read 
and write interface. 

The OMA arbiter interface uses a simple two signal protocol to allow an 
external agent to obtain mastership of the external system bus. Logic internal 
to the CPU synchronizes the external interface to the internal arbiter unit to 
insure that no conflicts between the internal synchronous requesters (read and 
write engines) and external asynchronous (OMA) requester occurs. 

The R304 l expands on the basic capability of the R305 l family OMA Arbiter 
by supporting an optional mode whereby the CPU can ask an external OMA 
master to relinquish the bus. On the other hand, the R304 l can use the default 
OMA mode in an R305 l compatible fashion. 

INTERFACE OVERVIEW 
An external agent indicates the desire to perform OMA requests by asserting 

the BusReq input to the processor. OMA requests have the highest priority, 
and thus, once therequestis detected, is guaranteed to gain mastership at the 
next arbitration. 

The CPU indicates that the external OMA cycle may begin by asserting its 
BusGnt output on the rising edge of SysClk after BusReq is detected with 
appropriate set-up time to the external rising edge of SysClk. During OMA 
cycles, the processor holds the following memory interface signals in tri-state: 

• A/D Bus 
• Addr(3:0) 

--~~~ 

• Interface control signals: Rd, Wr, DataEn, Burst/WrNear, and ALE 
• Other control signals: Last, BE16(1:0), and MemStrobe 
• If enabled as outputs: ExtDataEn and IOStrobe 
• Diag 

The extended data enable signal, ExtDataEn is slightly different from the 
other tri-statable signals in that it tri-states 1/2 clock period after the other 
signals. This allows it to do its primary function of staying asserted 1/2 clock 
longer than the other signals and yet de-assert before tri-stating. 

In addition to tri-stating these signals, the CPU will ignore transitions on 
RdCEn, Ack, and BusError during OMA cycles. 

During OMA cycles, the processor does not tri-state the following memory 
interface signals: 

• BusGnt 
• SysClk 
• TC 

Thus, the OMA master can use the same memory control logic as that used 
by the CPU; it may use Burst, for example, to obtain a burst of data from the 
memory; it may use RdCEn to detect whether the memory has satisfied its 
request, etc. Since SysClk and TC do not tri-state, they can be used to continue 
to clock the main memory state machine and to initiate DRAM refreshes during 

10- 1 



CHAPTER 10 

DMA, respectively. Thus, DMAcan occur at the same speed at which the R304 l 
allows data transfers on its bus (a peak of one word per clock cycle). During 
DMA cycles, the processor will continue to operate out of cache until it requires 
the bus. 

The R304 l has two protocols for de-asserting BusGnt. The protocol must 
be selected using the DMA Protocol bit in the CPO Bus Control register. If DMA 
Protocol is not selected then this default R305 l family equivalent mode causes 
BusGnt during DMA to remain asserted until BusReq is removed. If the DMA 
Protocol is selected, then during DMA, BusGnt will return high if the CPU 
makes an internal request for the bus. In order to de-assert, BusGnt must have 
first been asserted for at least 1.5 clocks. In both protocols, the CPU does not 
begin driving the bus until it is given control of the bus back. As detailed below 
in Figure 10.1, the bus control is returned to the CPU when the external DMA 
agent de-asserts BusReq. 

I* BusGntn and BusReqn are for the CPU BusGntn line. 
BusGntn1 is for the highest priority device (DRAM refresher). 
BusGntn2 is for the lowest priority device (OMA controller). 

*/ 

I* BusGntn1 has the highest priority, even over the CPU. 

*/ 

Line 3 state feedback gives BusGntn1 the default style 
BusGntn priority by ignoring the !BusGntn signal after 
it gets the bus. 

IBusGntn1 := Resetn and BusGntn1 and ( 
(!BusReqn1 and !BusGntn 
or (!BusReqn1 and !BusGntn1) 

); 

I* BusGnt2n has the lowest priority, equal to that of the CPU. 

I* 1 */ 
I* 2 */ 
I* 3 */ 

Line 2 puts it request below the priority of the Device 1 request. 
Line 3 allows the CPU to take back the bus. 

*/ 

This assumes that Device 2 will disconnect from the bus 
immediately after the current OMA cycle is done and that it 
will later restart gracefully. 

!BusGntn2 := Resetn and BusGntn1 and ( I* 1 */ 
(!BusReqn2 and BusReqn1 and !BusGntn) I* 2 */ 

or (!BusReqn2 and IBusGntn2 and !BusGntn) I* 3 */ 
); 

I* In this example, Device 2 and the CPU will alternate bus 
mastership back and forth until done. 

*/ 

Line 3 allows the CPU to get the bus back after BusGntn1 
is removed and Device 2 acknowledges by removing its 
BusReqn2. 
Device 2 should remove BusReqn2 for at least 2 clocks 
when it loses its BusGntn2. If it can't then the 
BusGntn term is needed. 

!BusReqn := Resetn and ( 
(!BusReqn1) 
or (IBusReqn2 I* and BusGntn */ 

); 

/* 1 */ 
I* 2 */ 
I* 3 */ 4000 drw:x>i 

Figure 10.1. Example DMA Arbiter PIA Equations using the DMA Protocol Mode 

10-2 

DMA ARBITER INTERFACE 



DMA ARBITER INTERFACE CHAPTER 10 

The external agent indicates that the DMA transfer has terminated by 
negating the BusReq input to the processor, which is sampled on the rising 
edge of SysClk. In the default mode with DMA Protocol turned off, BusGnt is 
negated on a falling edge of SysClk, so that it will be negated before the 
assertion of Rd or Wr for a subsequent transfer. In the DMA Protocol mode, 
BusGnt will be de-asserted on a falling edge of SysClk if it has not already done 
so. In either mode, on the next rising edge of SysClk after BusReq has been 
sampled as de-asserted, the processor will resume driving tri-stated signals. 

Thus the DMA system can operate with the highest bus priority or it can use 
the DMA Protocol to give DMA and the CPU equal priority. See Figure 10.1 for 
example PLA equations that implement a typical external DMA arbitration 
unit. 

Note that there is no hardware coherency mechanism defmed for DMA 
transfers relative to either the internal caches or the write buffer. Software 
must explicitly manage DMA transfers to insure that data conflicts are avoided. 
This is an appropriate trade-off for the vast majority of embedded applications. 

DMA ARBITER INTERFACE SIGNALS 

BusReq I 

Bus Request: This active low signal is an input to the processor, used to 
request mastership of the external interface bus. Mastership is granted 
according to the assertion of this input, and taken back based on its negation. 

BusGnt 0 

Bus Grant: This active low signal is an output from the processor and has 
two modes. In the default mode where the DMA Protocol bit in the CPO Bus 
Control register is not selected, BusGnt is used to indicate that the CPU has 
relinquished mastership of the external interface bus. When the DMA Protocol 
is selected, BusGnt goes low initially for at least 1.5 clocks to indicate that the 
CPU has relinquished mastership of the external interface bus. After going low, 
BusGnt returns high either when the CPU makes an internal request for the 
bus or after BusReq is de-asserted. 

DMA ARBITER TIMING DIAGRAMS 
These figures reference AC timing parameters whose values are contained 

in the R3041 data sheet. These figures assume that ExtDataEn and IOStrobe 
are enabled as outputs instead of as SBrCond(3:2) inputs. 

Initiation of DMA Mastership 
Figure 10.2 shows the beginning of a DMA cycle. Note that if BusReq were 

asserted while the processor was performing a read or write operation, BusGnt 
would be delayed until the next bus slot after the read or write operation is 
completed. 

To initiate DMA, the processor must detect the assertion of BusReq with 
proper set-up time to SysClk. Once BusReq is detected, and the bus is free, 
the processor will grant control to the requesting agent by asserting its BusGnt 
output, and tri-statingits output drivers, from arising edge ofSysClk. Tue bus 
will remain under the control of the external master until it negates BusReq, 
indicating that the processor is once again the bus master. 

10-S 



CHAPTER 10 

A/0(31 :0) 

Addr(3:0) 

Diag 

Wr 

ALE 

L.aSt, 
BE161i:O). 

MemStrobe 

IOStrobe 

ExtDataEn 

1£ _/ 
~ I\.. 

_=i. l3 
t1~ T 

./ ~ ~ I\.. 

{ 
t3 ...... 

~ 
J 

~ 
J 

~ 
J 

/ '\I 

_/ '\I 

_/I 

7 '\I 

7 '\I 

/ ~ 

_/ 

Figure 10.2. Bus Grant and Start of DMA Transaction 

Relinquishing Mastership Back to the CPU 

t45 

~r-

4000 drw68 

Figure 10.3 shows the end of a DMA cycle when not using the DMA Protocol 
mode. The next rising edge of SysClk after the negation of BusReq is sampled 
may actually be the beginning of a processor read or write operation. 

~~-

To terminate DMA, the external master must negate the processor BusReq 
input. Once this is detected (with proper setup and hold time), the processor 
will negate its BusGnt output on the next falling edge of SysClk if it hasn't 
already done so. It will also re-enable its output drivers. Thus, the external 
agent must disable its output drivers by this clock edge, to avoid bus conflicts. 

Bus Grant Protocol CPU Initiated Bus Grant De-assertion 
Figure 10.4 shows the middle of a DMA cycle when using the DMA Protocol 

mode. If BusGnt has been low for at least 1.5 clock periods and the CPU has 
a pending external bus request due to either a cache miss oruncached memory 
reference, then on the next rising edge of SysClk, BusGnt will be de-asserted. 
Even when this occurs, the mastership is not given back to the CPU until the 
DMA terminates the present transaction by releasing BusReq. 

10-4 

DMA ARBITER INTERFACE 



DMA ARBITER INTERFACE 

A/0(31 :O) 

Addr(3:0) 

Oiag 

ALE 

cast. 
BE16 1 :O 
emStrobe 

IOStrobe 

ExtDataEn 

A/0(31 :0) 

CHAPTER 10 

I" ./i ~ 

" 
It' ./ 

~ I\.. 

____{j M 
7 ts 

t4 
~ :s: ' 
/ ~ ' 
/ ~ ' 
!.(" 

' It" 

" 
"" L 
!.(" 

" !.(" 
~ 

!.(" 

" t46 l 

" I 

I I I 

4000 drw69 

Figure 10.3. Regaining Bus Mastership 

4000 drw 69xx 

Figure 10.4. DMA Protocol BusGnt De-assertion 

10-5 



CHAPTER 10 DMA ARBITER INTERFACE 

10-6 



G 
Integrated Device Technology, Inc. 

©1992 Integrated Device Technology, Inc. 

RESET INITIALIZATION CHAPTER 11 

AND INPUT CLOCKING 

INTRODUCTION 
This chapter discusses the reset initialization sequence required by the 

R304 l. Also included is a discussion of the configuration mode selectable 
features of the processor, and of the software requirements of the boot 
program. 

There are a number of selectable features in the R304 l. These mode 
selectable features are determined by the polarity of the appropriate reset 
configuration mode inputs when the rising edge of Reset occurs. 

RESET TIMING 
Unlike the R3000, which requires the use of a state machine during the last 

four cycles of reset to initialize the device and perform mode selection, the 
R304 l requires a very simple reset sequence. There are only two concerns for 
the system designer: 

• That the set-up time and hold requirements of the reset configuration 
mode feature inputs with respect to the rising edge of Reset are met. 

• That the minimum Reset pulse width is satisfied. 

RESET CONFIGURATION MODE FEATURES 
The R304 l has features which are determined at reset time. This is done 

using a latch internal to the CPU: this latch samples the contents of the reset 
mode feature bus at the negating edge of Reset. The encoding of the mode 
selectable features on the reset mode feature bus is described in Table 11.1. 
Note that the R304 l uses both input pins and output pins which are tri-stated 
during Reset as inputs for the reset configuration mode features. Thus external 
state machines should not depend on the value of these pins until after Reset 
is negated. 

Pin Mode Feature 

Slnt(O) BigEndian 

Slnt(l) Reserved 

Slnt(2) Reserved 

Int(3) AaarDisplayAnaForceCaclieMiss 

Int(4) Reserved 

Int(5) Reserved 

Addr(O) ExtAaarHoia: 

Addr(l) Reserved High 

Addr(2) BootProm8 

Addr(3) BootProml6 

BE16(0) ReservedHigh 

BE16(1) ReservedHigh 
4000 tbl 23 

Table 11.1. R3041 Reset Configuration Mode Features 

11-1 



CHAPTER 11 RESET INITIALIZATION AND INPUT CLOCKING 

lntemal Reset Pull-ups 
The R304 l contains internal pull-up resistors on the following pins: 

• reset configuration mode inputs: Addr(l:O), BE16(1:0) 
• tri-state input: TriState 

Addr(l:O), BE16(l:O), and TriStatearedesignatedastheno-connect Reserved 
pins in the R3051 family. Thus ifleft rm-connected on the R3041, these pins 
have internal pull-ups to set them to their default values during reset. When 
using the internal pull-up resistors, warm resets require the same amount of 
reset time as power-up resets. If these pins are connected to an external device, 
then external pull-up/pull-down resistors or a tri-stateable device are required 
to initialize the reset configuration modes. 

The other reset configuration inputs including Slnt(O), lnt(3) and Addr(3:2) 
do not have internal pull-up resistors and must pull-up or down these inputs 
externally. 

A special case occurs when one of the Addr(3:0) or BE 16( 1 :0) pins is pulled
down and is connected to a bipolar TIL input. Since BE16(l:O) are always 
pulled high, they will be excluded from the remainder of this section. In such 
a case, the external pull-down value would have to very low in order to supply 
the bipolar input enough current which conflicts with the CPU's ability to drive 
the signal high during normal operation after reset. This is in accordance with 
the following equations (where R is the pull-down resistance, V oH and 10 H are 
relative to the CPU and IIL and 11H are relative to the chip being driven): 

~ULLoOWN :?: V oH I (IoH - Im) where IoH :?: 11H 
~ULLDOWN :::;; V1/I1L 

Using CMOS interfaces and/ or memories will typically allow pull-up or pull
down values in the 3K to lOKn range. However, if bipolar interfaces and/or 
memories are used then assuming that the Addr(3:0) lines are attached to 
inputs which are on a bipolar buffer chip, solutions include: 

Using a transceiver thatis enabled to drive the Addr(3:0) pins during reset 
instead of using a buffer. External pull-downs (or pull-ups) are placed 
on the other side of the transceiver, since transceivers usually have a very 
large 10 L output current capability. 

Using a transceiver instead of a buffer, since bipolar 1/0 pins typically 
have lower 11L than dedicated bipolar input pins. The Addr(3:0) side of the 
transceiver is always disabled and external resistors are placed on the 
Addr(3:0) lines. 

Choosing a buffer chip with a relatively low IIL(of less than 600uA) and 
using external pull-down (or pull-up) resistors. 

11-2 



RESET INITIALIZATION AND INPUT CLOCKING CHAPTER 11 

Reset Configuration Mode Pin Descriptions 

Reserved 
Reserved mode bits should be driven high if future compatibility is to be 

maintained with the R3041 family. Note that it is not mandatory that these 
pins be driven high. 

BigEndian 
Use Big Endian Addressing: if asserted (active high), the processor will 

operate as a big-endian machine, and the RE bit of the status register would 
then allow little-endian tasks to operate in a big-endian system. If negated 
(inactive low), the processor will operate as a little-endian machine, and the RE 
bit will allow big-endian tasks to operate on a little-endian machine. 

MdrDisplayAndForceCacheMiss 
If asserted (active low), two diagnostic functions are enabled: 
Address Trace Display Mode: this mode (active low) will put the internally 

latched cached address out onto the A/D bus during unused bus cycles. 
Force Cache Miss Mode: this mode (active low) causes all cacheable 

instruction and data references to do external bus accesses as if a cache miss 
occurred. 

ExtAd.drHold 
Extended Address Hold Time Mode: if asserted (active low) the address is 

held for an additional half clock past ALE qe-asserting. DataEn is also delayed 
by one half clock. When not asserted (inactive low), the address is held only 
until ALE is de-asserted. 

ReservedHigh 
ReservedHigh mode bits are reserved for internal testing and must be driven 

high or if the pin is internally pulled-up, left un-connected. 

BootPromS 
8-bit Boot PROM Mode. Ifasserted (active low), this mode will cause the port 

size mapping register to initialize all memory sub-regions to 8-bit ports instead 
of 32-bit ports. Thus an 8-bit boot PROM can be used to initialize the R3041. 
This mode can only be asserted ifBootFroml6 is de-asserted. 

BootProml6 
16-bit Boot PROM Mode: if asserted (active low), this mode will cause the 

port size mapping register to initialize all memory sub-regions to 16-bit ports 
instead of 32-bit ports. Thus a 16-bit boot PROM can be used to initialize the 
R304 l. This mode can only be asserted if BootFrom8 is de-asserted. 

RSOOOA Equivalent Modes 
The R3000A features a number of modes, which are selected at Reset time. 

Although most of those modes are irrelevant, a number of equivalences can be 
made: 

• IBlkSize = 4 word refill. 
• DBlkSize = 1 or 4 word refill, depending on the DBlockRefill mode as 

selected in the CPO Cache Configuration register. 
• Reverse Endianness capability enabled. 
• Instruction Streaming enabled. 
• Partial Word Stores enabled. 

Other modes of the R3000A primarily pertain to its cache interface, which 
is incorporated within the R304 l and thus transparent to users of this 
processor. 

11-S 



CHAPTER 11 RESET INITIALIZATION AND INPUT CLOCKING 

RESET BEHAVIOR 
While Reset is asserted, the processor maintains its interface in a state 

which allows the rest of the system to also be reset. Specifically: 
• SysClk operates at one-half the Clkln frequency. 
• A/Dis tri-stated 
• ALE is driven negated Oow). 
• DataEn, Burst/WrNear, RO, and Wr are driven negated {high). 
• MemStrobe, Last, and TC are driven negated {high). 
• Diag is driven (value undefined). 
• Addr(3:0), and BE16(l:O) are tri-stated. 
• SBrCond(3:2) are configured as inputs and therefore tri-stated, i.e., 

ExtDataEn and IOStrobe are tri-stated. 

The R304 l samples for the negation of Reset relative to a falling edge of 
SysClk. The processor will initiate a read request for the instruction located 
at the Reset Exception Address Vector at the 6th rising edge of SysClk after the 
negation of Reset is detected. These cycles are a result of: 

• Reset input synchronization performed by the CPU. The Reset input uses 
special synchronization logic, thus allowing Reset to be negated 
asynchronously to the processor. This synchronization logic introduces 
a two cycle delay between the external negation of Reset and the negation 
of Reset to the execution core. 

• Internal clock cycles in which the execution core flushes its pipeline, 
before it attempts to read the exception vector. 

• One additional cycle for the read request to propagate from the internal 
execution core to the read interface, as described in Chapter 8. 

BOOT SOFTWARE REQUIREMENTS 
Basic mode selection is performed using hardware during the reset sequence, 

as discussed in the mode initialization section. However, there are certain 
aspects of the boot sequence that must be performed by software. 

The assertion and subsequent negation of reset forces the CPU to begin 
execution at the reset vector, which is address OxlFCO_OOOO. This address 
resides in uncached, un-mapped memory, and thus does not require that the 
caches be initialized for the processor to execute boot code. 

The processor needs to perform the following activities during boot: 

• Initialize the CPO Status Register 
The processor must be assured of having the kernel enabled to perform 
the boot sequence. Specifically, co-processor usable bits, and cache 
control bits, must be set to the desired value before any data references, 
diagnostics or initialization occurs. 

• Initialize the CPO Configuration Registers 
The software should decide on the Cache Configuration, Port Sizes, and 
Bus Control during initialization. 

• initialize the caches 
The processor needs to determine the sizes of the on-chip caches, and 
flush each entry, as discussed in Chapter 3. This must be done before the 
processor attempts to execute cacheable code. 

11-4 



RESET INITIALIZATION AND INPUT CLOCKING CHAPTER 11 

• Initialize CPO Registers 
The processor should establish appropriatevalues in various CPO registers, 
including: 

The IM bits of the status register. 

The BEV bit. 

Initialize KUp/IEp so that user state can be entered using a RFE 
instruction 

• Enter User State 

Branch to the first user task, and perform an RFE to enter the user mode. 

DETAILED RESET TIMING DIAGRAMS 
The timing requirements of the processor reset sequence are illustrated 

below. The timing diagrams reference AC parameters whose values are 
contained in the R304 l data sheet. 

Reset Pulse Width 
There are two parameters to be concerned with: the power on reset pulse 

width, and the warm reset pulse width. 

Vee -----

Clkln -------------! 
t23 

4000drw70 

Figure 11.1. Cold Start 

Figure 11. l illustrates the power on reset requirements of the R305 l family. 
Figure 11.2 illustrates the warm reset requirements of the processor when 

the reset configuration mode bits are driven. 

Clkln 

Res~ -1. ·-------t-24-++-----------·r= ·- l'.f 
4000 drw71 

Figure 11.2. Warm Reset 

Figure 11.3 illustrates the warm reset requirements of the processor when 
the reset configuration mode bits use the internal pull-ups. 

Clkln 

Reset -----,J"-________ t2_3--+'+'-----------'·C ~ )) 
4000 drw7lb 

Figure ll.3. Warm Reset when using Internal Pull-Ups 

ll-5 



CHAPTER 11 RESET INITIALIZATION AND INPUT CLOCKING 

Mode Initialization Timing Requirements 
The mode initialization vectors are sampled by an internal transparentlatch, 

whose output enable is directly controlled by the Reset input of the processor. 
The internal structure of the processor is illustrated in Figure 11.4. 

Slnt(O) 

Slnt(1) 

Slnt(2) 

lnt(3) 

lnt(4) 

lnt(5) 

Addr(O) 

Addr(1) 

Addr(2) 

Addr(3) 

~ 

R3041 Configuration Mode Initialization Logic 

SE"f6[f) --l;;;;;;~~lii;il 

Figure 11.4. Configuration Mode Initialization Logic 
4000 drw72 

Thus, the mode vectors have a set-up and hold timewith respect to the rising 
edge of Reset, as illustrated in Figure 11.5. 

Mode vect~r '(p~s: 
Sliif(2:0), nt 5:3 -----------...• 

14 
4000 drw73 

Figure 11.5. Mode Vector Timing 

Reset Setup Time Requirements 
The reset signal incorporates special synchronization logic which allows it 

to be driven from an asynchronous source. This is done to allow the processor 
Reset signal to be derived from a simple circuit, such as an RC network with 
a time constant long enough to guarantee the reset pulse width requirement 
is met. Such a system should buffer the RC circuit such that a sufficiently fast 
monotonic rise time is generated which is capable of synchronously resetting 
any external state machines and logic at the same time as of resetting the CPU. 

The Reset set-up time parameter can then be thought of as the amount of 
time Reset must be negated before the rising edge of SysClk for it to be 
guaranteed to be recognized; failure to meet this requirement will not result in 

11-6 



RESET INITIALIZATION AND INPUT CLOCKING CHAPTER 11 

improper operation, but rather will have the effect of delaying the internal 
recognition of the end of reset by one clock cycle. 1his does not affect the timing 
of the sampling of the mode initialimtion vectors. 

Figure 11.6 illustrates the set-up time parameter of the R3041. 

SysClk 

4000 drw74 
Figure 11.6. Reset Timing 

Clkln Requirements 
1he input clock timing requirements are illustrated in Figure 11. 7. 1he 

system designer does not need to be explicitly aware of the timing relationship 
between Clkln and SysClk. Note that SysClk is driven even during the Reset 
period as long as Clkln is provided. 

122 

Clkln { J ~ " / " 
121 

120 

--1 ~ r 132 
133 

!sys 
4000 drw75 

Figure 11. 7. R3041 Clocking 

11-7 



CHAPTER 11 RESET INITIALIZATION AND INPUT CLOCKING 

11-8 



Integrated Device Technology, Inc. 

©1992 Integrated Device Technology, Inc. 

DEBUG MODE FEATURES CHAPTER 12 

INTRODUCTION 
This chapter discusses particular features of the R304 l included to facilitate 

debugging ofR304 l-based systems. These features are intended to be used by 
an in-circuit emulator, in-circuit tester, board level tester, logic analyzer, 
hardware modeler, or similar tool. 

OVERVIEW OF FEATURES 
The features described in this chapter include: 
• The ability of the processor to display internal instruction addresses on 

its A/D bus during idle bus cycles. This mode facilitates the trace of 
instruction streams operating out of the internal cache. 

• The ability of the processor to have instruction and data cache misses 
forced, thus allowing all internal cache accesses to be displayed on the 
bus interface. 

• The ability to tri-state all output pins including SysClk, thus allowing an 
in-circuit emulator or tester to drive and control the output pins directly. 

• The ability to deterministically set the phase relationship of the SysClk 
output relative to the Clkin input. This feature allows board level testers 
and hardware modelers to control the SysClk output. 

• The ability to distinguish data and instruction accesses via the Diag pin, 
allowing logic analyzers to do instruction disassembly (see Chapter 6). 

• A software breakpoint instruction. 
Note that the features described in this chapter are intended for initial debug 

or production testing rather than for functional use in a fielded end-user 
system. 

ADDRESS DISPLAY 
Activating the AddrDisplay mode with its reset configuration mode forces the 

CPU to display Instruction stream addresses on its A/D bus during idle bus 
cycles. Note that activating the AddrDisplay mode also activates the 
ForceCacheMiss mode described below. Refer to Figure 12.1 regarding the 
timing relationship between instruction initiation in the on-chip cache and the 
output address. Note that the address is driven out, but ALE is not asserted. 
This is to reduce the impact of this mode on system designs which may use the 
initiation of ALE to start a state machine to process the bus cycle. Instead of 
ALE, external logic should use the rising edge of SysClk to latch the current 
contents of the address bus. 

The address displayed is determined by capturing the low order address bits 
used to address the instruction cache, and then capturing the TAG response 
from the cache one-half clock cycle later. These address lines are concatenated, 
and presented as follows (NoteAddrLo(l:O) will be '00' in all Instruction Cache 
cycles): 

• A/D(31:9) displays TAG(31:9) 
• A/D(8:4) displays AddrLo(8:4) 
• A/D(3:2) displays AddrLo(l0:9) 
• A/D(l:O) is reserved for future use. 
• Addr(3:2) displays AddrLo(3:2) 

12-1 



CHAPTER 12 

This mode is intended to allow gross, rather than fine, instruction trace. 
Specifically, branches taken while a write or DMA operation occurs may not be 
displayed, and there is no indication that an exception has occurred (and thus 
that initiated instructions have been aborted). Additionally, erroneous addresses 
may be presented in cycles where internal processor stalls occur, such as those 
for integer multiply I divide interlocks. 

Finally, note that the cycle immediately before a read may contain an 
erroneous address, and the cycle immediately after a read or write may not 
produce the address with appropriate timing. It is recommended that these 
cycles be ignored when tracing execution. 

PhiClk 

Addrlo 

TAG 

AID, 
Addr 

Run o Run 1 Run 2 Run3 Run4 Run 5 

xx Run OAddr Run 1 Addr Run 2 Addr Run 3 Addr 

Figure 12.1. R3041 Debug Mode Instruction Address Display 

FORCING INSTRUCTION AND DATA CACHE MISSES 
Another feature for debugging is the ability to force an instruction and data 

cache miss. As with the AddrDisplay mode, this mode is not intended for use 
in a fielded production system. 

The ForceCacheMiss mode is invoked with the same reset configuration 
mode bit as the AddrDisplay mode. Activating ForceCacheMiss forces all 
instruction and data cache accesses to be treated like cache misses. Thus 
cache accesses will be put onto the external A/D bus. Note that instruction 
cache misses and 4-word data block refills are still done in burst mode. 

Tri-Stating All Outputs 
The R304 l has a dedicated TriState input pin, which when asserted, 

disables all its outputs. This mode is useful for in-circuit emulators and testers 
which can then drive those pins to simulate the functions of the chip. Exiting 
this mode requires that a Reset be given before normal operation can take 
place. The pin description is as follows: 

Tristate 0 

Tri-State All Outputs: An active low input to the device which requests 
that the processor tri-state all ofits outputs. In addition to the outputs 
which are tri-stated during a DMA operation, SysClk, TC, and BusGnt 
are also trt-stated. TriState can be used for in-circuit testing and 
emulation during board production manufacture. 

The R304 l TriState input pin is designated in the R305 l as the no
connect Rsvd(4) pin. 

12-2 

DEBUG MODE FEATURES 



DEBUG MODE FEATURES CHAPTER 12 

Internal_ Reset 
33 

Figure 12.2. R3041 SysClk Phase Initialization Case A 

Internal_ Reset 

Figure 12.3. R3041 SysClk Phase Initialization Case B 

Initializing SysClk for Test 
Another feature for board level testing is the ability to initialize the phase of 

SysClk to its high phase. A high to low transition on Reset will cause the 
internally synchronized (delay ofless than or equal to 2 clocks) version of Reset 
to always set SysClk high during its next phase. Thus the state of SysClk can 
be deterministically controlled within a known number of Clkln transitions. 
The two cases are shown in Figures 12.2 and 12.3. 

Using Diag for Instruction Disassembly 
The R3041 provides a Diagnosis pin which during its data phase outputs 

whether a read transaction is the result of an instruction fetch or the result of 
a data fetch. This information is independent of the information given during 
the address phase of whether or not the read was a result of a cached or 
uncached read. Note that this pin is undefined on writes, however, all writes 
by necessity must be data writes. The pin description is as follows: 

Diag 0 

Diagnostic Pin: During the address phase of the read transaction, this 
output indicates whether the read is a result of a cache miss (high) or an 
uncacheable reference (low). 

During the remainder of the transfer, this output indicates whether the 
read is an instruction (high) or a data reference (low). 

The Diag pin is undefined during write transactions. 

This pin is useful in the initial debug of R3041 based systems. 

The R3041 Diag output pin is designated in the R3051 family as the 
Diag(l) output pin. 

Breakpoint Instruction 
The R3051 family defines as described in Chapter 2, the breakpoint 

instruction, BREAK, that invokes an exception when executed. Thus debug 
kernel software can set breakpoints and single step through RAM based 
software. 

12-3 



CHAPTER 12 DEBUG MODE FEATURES 

12-4 



Integrated Device Technology, Inc. 

COMPATIBILITY AMONG R3051 
FAMILY DEVICES 

INTRODUCTION 

APPENDIX A 

One of the unique advantages of the IDT R305 l family is the high level of pin, 
socket, and software compatibility across a very wide price-performance range. 
Although some devices do offer features not found in other family members, in 
general it is very straightforward to design a single system and set of software 
capable of using either the R3041, R3051, R3052, or R3081; the decision as 
to which processor to use can be made at board manufacturing time (as 
opposed to at design time) or as a program of field upgrades. 

This appendix discusses compatibility issues among the various R305 l 
family members. The goal of this chapter is to provide the system designer with 
the understanding necessary to be able to interchange various R305 l family 
members in a single design environment, and with a single set of software tools. 

SOFTWARE CONSIDERATIONS 
In general, software considerations among the various family members can 

be summarized into the following areas; 
• Cache Size differences. One of the obvious differences among the devices 

is the amount of instruction and data cache integrated on chip. Although 
the cache size is typically transparent to the applications software, the 
kernel must typically know how much cache to flush, etc. during system 
boot up. This manual presents an algorithm for determining the amount 
of cache on the executing processor; to insure compatibility, software 
should be written to dynamically determine the amount of cache on-chip. 

• Differences in CPO registers. Another area where the various family 
members differ slightly is in their implementation of CPO registers. Table 
A. l summarizes the CPO registers of the various family members. 
In general, these differences are only relevant at system start-up. The 
start-up code should determine which device is running, and branch to 
a CPU specific CPO initialization routine. Determining which CPU is 
executing is straightforward, and can be accomplished by reading the 
PrID register (to determine the presence of an R304 l) and/ or performing 
floating point diagnostics (to determine the presence of a R308 l). 

Register R3041 R3051/52 R3081 

$0 rsvd Index Index 

$1 rsvd Random Random 

$2 BusCtrl Entry Lo EntryLo 

$3 CacheConfig rsvd Config 

$4 rsvd Context Context 

$5-$7 rsvd rsvd rsvd 

$8 BadVA BadVA BadVA 

$9 Count rsvd rsvd 

$10 PortSize EntryHi Entry Hi 

$11 Compare rsvd rsvd 

$12 Status Status Status 

$13 Cause Cause Cause 

$14 EPC EPC EPC 

$15 PrID Pr ID PrID 

Table A.1. CPO Registers in the R3051 Family 

13- 1 



APPENDIX A 

• "E" vs. "non-E" parts. In general, few applications will freely interchange 
devices with TI.B's with those that do not. However, a given kernel source 
tree may be used across multiple applications; in this case, the start-up 
code should examine the "TS" bit of the status register after reset to 
determine the presence of an on-chip TLB, and initialize the TLB if needed. 

• Hardware vs. Software Floating Point. The R3081 offers a ve:ry high
performance floating point accelerator on-chip, while the R3041 and 
R305 I /52 do not. In this case, it may be advantageous to generate two 
distinct binaries from the same source tree (one for hardware floating 
point and one for software). However, the R305I architecture does 
support the ability to trap on floating point instructions (for later 
emulation), by negating the CPI usable bit. Thus, initialization software 
may wish to determine the presence of an on-chip FPA, and initialize the 
CPI usable bit accordingly. 

HARDWARE CONSIDERATIONS 
In general, the R304I, R305I/52, and R308I offer the same system 

interface and pin-out, simplifying the interchange of the various family 
members. However, both the R304 I and the R308 I offer some device specific 
features, which should be considered when designing a common board. The 
differences among the devices are summarized below. 

R3041 Unique Features 
The R304 I includes features targeting reduced system cost. Systems may 

wish to take full advantage of these features, in which case they may sacrifice 
the ability to readily interchange various CPUs in the design. Specifically, the 
R304I can be interchanged with an R305I or R308I only in systems which 
implement a full 32-bit wide memory interface to the CPU, since the R305 I and 
R308 I do not offer the variable port width interface found in the R304 I. 

In general, the areas of differences between the R304 I and the R305 I are 
summarized below: 

• The R304I has a unique processor ID (PRid) of Ox0000_0700. 
• The R304 I has the base address translation memory map only (w Io TLB). 
• Different Instruction and Data Cache sizes. 
• The R304 I software selects the DBlockRefill mode, rather than as a reset 

mode. 
• The R304I does not externally connect the BrCond(I:O) input pins. 
• Diag( I :O) are not available on the R304 I. Similar information is available 

with the Diag pin. 
• The R304 I WrNear page size is decreased. 
• The R304 I has additional/ different reset modes. 
• The R304 I includes new Co-processor 0 Config Registers. 
• The R304 I can configure SBrCond(3:2) as outputs. 
• The R304I uses pins that are Reserved as no-connects on the R305I/ 

R3081. 
• The R304 I has an Extended Address Hold mode. 
• The R304 I has a Slow Bus Turnaround mode with programmable bus 

wait timing. 
• The R304 I has 8-bit and I6-bit ports with appropriately sized bus cycles. 

The R304I can boot directly from an 8- or I6-bit wide PROM. 
• The R304I has additional outputs for BEI6(1:0), Last, ~M~e-m~S~tr-o~b-e, 

ExtDataEn, and IOStrobe, and TC. 
• The R304 I has a read/write mask for BE(3:0). 
• The R304 I has an on-chip Timer with Count and Compare registers in 

CPO. 
• The R304I has a DMA protocol option. 

13-2 

R3051 FAMILY COMPATimLITY 



R3051 FAMILY COMPATIBILITY APPENDIX A 

R3081 Unique Features 
The R308 l includes features targeted to simplifying its use in high

frequency, high-performance systems. Systems may wish to take advantage 
of these features, in which case they may sacrifice some level of interchangeability 
with other CPUs. Key differences between the R3081 and the R3051 are 
summarized below: 

• The R3081 includes an on-chip FPA. 
• The R308 l features larger caches, which are configurable. 
• The R3081 on-chip FPA uses one of the six CPU interrupts; the 

corresponding input pin is logically not connected. 
• The R3081 implements Half-frequency bus mode. 
• The R308 l features Hardware cache coherency capability during DMA. 
• The R3081 can use an optional Ix (rather than 2x) clock input. 
• The R3081 WrNear page size is increased. 
• The R3081 implements an additional CPO Config register. 
• The R3081 implements a power down (reduced frequency, halt) option. 
• The R308 l features a dynamic data cache miss refill option. 
• The R308 l BrCond( I) input is not available externally. It may be used as 

a "Run" output indicator. 
• The R3081 implements additional reset mode vectors. 
• The R308 l differs slightly in its use of the reserved pins. 
In general, the similarities in features allow the R304 l to use the same 

DRAM, 1/0, and peripheral controllers that the R3051/81 use. It is possible 
by only using a subset of the interface features of the R304 l to also use the 
same system board socket as the R305 l /81. However, many of these features, 
for instance the Extended Address Hold mode and the BootProm8 mode, allow 
inexpensive interface alternatives that often will justify a dedicated system 
board design. 

Pin Description Differences 
Table A.2 lists the significant R3051, R3081, and R3081 pin differences. 

These differences can easily be accommodated in a single board design, as 
described in this chapter. 

R3051 R3081 R3041 
Rsvd(O) CohReq Addr(O) 
Rsvd(l) Rsvd(l) Addr(l) 
Rsvd(2) Rsvd(2) BE16(0) 
Rsvd(3) Rsvd(3) BE16(1) 
Rsvd(4) Rsvd(4) Tri State 
BrCond(O) BrCond(O) MemStrobe 
BrCond(l) unused/Run TC 
Diag(O) Diag(O) Last 
Diag(l) Diag(I) Diag 

Table A.2. Pin Considerations Among R3051 Family Members 

13-3 



APPENDIX A 

Reset Mode Selection 
Table A.3 shows the various reset mode vectors available in the various 

family members. As can be seen from the table, there are differences in the 
mode vector options available in the different devices. 

Designing a board which accommodates these differences is vecy 
straightfoiward: 

• Use pull-up resistors on Addr(3:2). These pull-ups will have no effect 
on the R305 l or R308 l; in the R304 l, they will cause the device to boot from 
a 32-bit wide EPROM, which is compatible with the R305 l and R308 l. 

• Do not connect anything to the R305 l reserved pins. This will insure 
that the R3051 and R3081 function properly. In the R3041, this will negate 
the Extended Address Hold feature, causing the address to data transition of 
the processor A/D bus to be compatible with the R3051 and R3081. 

• Use dip-switches with a MUX or 3-state buffer to select the reset 
initialization presented on the interrupt pins. Thus, selecting different reset 
mode vectors merely involves setting the dip switches. 

Note that may systems may not need to do this either. For example, using 
pull-ups on the interrupt inputs will result in a BigEndian system for all 
devices, and in general disable the various device specific modes of the R308 l 
and R3041. 

Pin R3041 

Int(5) Rsvd 

Int(4) Rsvd 

lnt(3) ACIClrDisplay 

Slnt(2) Rsvd 

Slnt(l) Rsvd 

Slnt(O) BigEndian 

Addr(3) BootProml6 

Addr(2) BootProm8 

Rsvd(4) Tri-State(*} 

Rsvd(3) Rsvd(*) 

Rsvd(2) Rsvd(*} 

Rsvd(l) Rsvd(*} 

Rsvd(O) ExtACIClrHold(*} 

NOTES: 
Rsvd: 
N/A: 
NC: .. 

Must be driven high 
Must not be drtven 
Must not be connected 
Contains an internal pull-up 

R3051/52 R3081 

Rsvd ColierentDMA 

Rsvd lxClkEn 

Rsvd I72FreqBus 

DBlockRefill DBlkReftll 

Trt-State Tri-State 

BigEndian BigEndian 

NIA NIA 
NIA NIA 
NC NC 

NC NC 

NC NC 

NC NC 

NC NC 

Table A.3. Reset Mode Vectors of RS041, R3051/52, and R3081 

13-4 

RS051 FAMILY COMPATIBILITY 



R3051 FAMILY COMPATIBILITY APPENDIX A 

Reserved No-Connect Pins 
The R3051/81 contain not-to-be-connected reserved pins that R3041 

systems may use. Table A.4 illustrates the different uses of the reserved pins. 
To insure compatibility in systems using the same physical socket, various 

options exist: 
• Use the internal pull-ups of the R3041 by extending the length of warm 

resets to be the same as that of power-up resets. 
• Use external pull-ups which can be removed when an R305 l/8 l is used. 

This is so the R3051/81 Reserved pins have no chance of being driven. 
• Use a tri-statable device to drive the reset configuration mode pins during 

reset and which then tri-state after reset when the R304 l is used, but 
which can be removed when the R3051/81 is used. 

Of these options, the first is obviously the simplest; by not connecting the 
reserved pins, the R305 l and R308 l specifications will be met, and the 
extended features of the R304 l will not be accessed. 

Pin R3041 R3051/52 R3081 

Rsvd(4) Trt-State Rsvd Rsvd 

Rsvd(3) BE16{1J Rsvd Rsvd 

Rsvd(2) BE16(0) Rsvd Rsvd 

Rsvdl) Addr(l) Rsvd Rsvd 

Rsvd(O) Addr(O) Ravd ConReq 

Table A.4. Rsvd Pins of R3041, R3051/52, and R3081 

DIAGPins 
The R3051 features a pair of DIAG output pins which can be used during 

system debug. There are subtle differences in these pins in the various family 
members: 

• The R308 l indicates the cacheability of data on writes, to simplify 
cache coherency. Since the R304 l and R305 l do not feature cache coherency, 
this feature would not be used in systems which wish to interchange the 
various family members. 

• The R304 l uses a single DIAG pin (on the same physical pin as DIAG( 1), 
to report the cacheability of an access. The other pin is used as the "Last" 
output of the R304 l. Since the "Last" output is not available on the R305 l or 
R3081, systems designed to interchange CPUs will not use this output. 

In general, the DIAG pins will only be used in system debug, rather than used 
to control some aspect of board operation. Thus, the differences in these pins 
will not impact the interchangeability of various CPUs. 

BrCond(l:O), SBrCond(3:2) 
There are also some differences among the devices in their treatment of the 

BrCond input pins. Specifically: 
• The R3051 allows software to access all of BrCond(3:0). 
• The R3081 uses BrCond(l) internally for the FPA. Software can access 

the BrCond(3:2) and BrCond(O) inputs. 
• The R3041 does not provide access to the BrCond(l:O) pins, which 

instead are used for other functions. Additionally, the R304 l defaults to using 
the SBrCond(3:2) pins as inputs on reset, although they can be used to provide 
other functions. 

Thus, to insure CPU interchangeability, the system designer should provide 
pull-ups onBrCond(l:O), and onlyuseBrCond(3:2). Ofcourse, if these are also 
not used, pull-ups should be provided. 

13-5 



APPENDIX A 

Slow Bus Turn Around Mode 
Slow bus tum around on the R304 l allows extra cycles between changes in 

AID bus direction. The R308 l also has a bus tum around feature, but the 
maximum number of extra cycles is fewer. Note that with the bus turnaround 
slowed, the R304 l continues to operate in a 100% compatible fashion with the 
R305 l (there is no R305 l transaction that guarantees a "quick" bus turnaround). 

Note that there is a hardware solution to bus turnaround in the R3051, 
which will also work with the R304 l I 81. This involves using the DMA arbiter 
to prevent the R3041/51/81 from issuing a bus cycle, and is explained in an 
applications note available from IDT. 

Most systems that are using an R304 l and R305 l in the same socket may 
want to immediately reprogram the Bus Tum Around Control bits in the Bus 
Control CPO register to '00' to match up exactly with the R3051 (and thus 
increase performance), instead of the default '11' which is used at reset, 
although it is not strictly necessary. 

The R3081 FPA Interrupt 
The on-chip FPA of the R308 l reports exceptions to the CPU using one of the 

general purpose interrupts. The corresponding input pin is ignored. Systems 
desiring to interchange an R304 l with an R308 l must reserve an interrupt pin 
for the FPA, and provide a pull-up for that signal. The R3081 Config register 
allows software to select any of the 6 interrupts; at reset, the default used is 
interrupt 3. 

Half-Frequency Bus Mode 
The R3081 allows the bus to operate at one-half the CPU frequency. When 

enabled, the bus will operate as for an R3041/51 operating at half the 
frequency of the R308 l CPU. Thus, this mode is entirely compatible with an 
R3041/51 at one-half the R3081 frequency. 

In the R308 l, this feature is enabled as a reset option. Systems may choose 
to employ a jumper on this value, so that this feature may be selectively enabled 
when a R308 l is used, but the pin may be pulled-high or pulled-low when an 
R304 l is used. 

Reduced Frequency /Halt Capability 
This R308 l mode is incorporated to reduce power consumption when 

waiting for an interrupt or other external event. This mode is unavailable in 
an R3041/51. 

Note that reduced frequency mode will appear to merely reduce the bus 
frequency of the R3081; most R3041/51 systems should operate correctly 
under this circumstance. However, the DRAM refresh timer, and other real
time timers, should either use a clock source other than the SysClk output, or 
reprogram their time constants, when this feature is used. 

The R3041/51 does not offer the software stall capability of the R3081. 
Software executing on an R304 l /51 which attempts to halt the processor will 
product no effect, and thus may result in erroneous software operation. 

DMAissues 
Each of the CPUs can operate using R3051 compatible DMA. In these 

systems, the processor will attempt to continue execution out of on-chip cache 
during bus DMA; however, once the CPU core needs the bus, it will wait for the 
external master to relinquish the bus. 

The R3081 allows hardware cache coherency during DMA writes. This 
capability may be disabled using the Coherent DMA Enable feature of the 
processor. 

13-6 

R3051 FAMILY COMPATIBILITY 



R3051 FAMILY COMPATIBILITY APPENDIX A 

The R304 l implements a DMA Pulse Protocol, whereby the R304 l may 
negate BusGnt during an external DMAcycle to indicate that it wishes to regain 
bus mastership. This feature is not available on the other family members, and 
can be enabled or disabled via the R304 l CPO registers. 

To insure CPU compatibility, systems should disable both the R3081 cache 
coherency mode, and the R304 l Pulse Protocol, so that all devices will operate 
in R305 l compatible fashion. 

Debug Features 
Debug and in-circuit emulator features are not compatible between the 

R3041 and the R3051/81. These debug features are intended for initial 
development and manufacturing tests and are not recommended for functional 
use on fielded end-user systems. These features include the Diag pin(s), Tri
state mode, AddrDisplay mode, and ForceCacheMiss mode. 

WrNear Page Size 
The various processors implement different choices for the size of the 

address compared for WrNear output assertion: 
• The R305 l compares Address(3 l: 1 O), compatible with 64k x 4 and larger 

DRAMs. 
• The R308 l comparesAddress(3l:11), compatible with 256kx4 and larger 

DRAMS. 
• The R304 l compares Address(3 l :8). compatible with 64kx4 and larger 

DRAMs in an 8-bit wide memory port. 
To insure proper operation, the system designer can make one of two 

choices: 
• Ignore the WrNear output, which simplifies system design but sacrifices 

performance. 
• Always use 256k x 4 or larger DRAMs. 

Hardware Compatibility Summary 
It is very simple to design a board capable of using any of the 4 CPUs 

described above. Table A.5 provides a summary of the design considerations 
to insure CPU interchangeability. In general, any board designed around the 
R305 l can easily be migrated up in performance to the R308 l, or down in cost 
to the R304 l. 

Design Consideration Compatible Solution 

WrN ear page size Use 256kx4 or larger DRAM 

Rsvd Pins Leave unconnected 

BrCond pins Use onlyBrCond(3:2); Pullups on BrCond(l:O) 

R3081 FPA Interrupt Reserve one CPU interrupt for FPA; 

Use external Pull-up 

DIAGpins Use only for system debug; not a production function 

Reset Logic Pull-ups onAddr(3:2); no connects on reserved lines 

Dip switches and mux on Interrupt lines 

DMAoptions Use R3051 compatible DMA 

Bus Turn-around Meet R3051 timing or use DMA to add time 

Table A.5. Summary of Hardware Design Considerations 

13-7 



APPENDIX A 

SUMMARY 
The R305 l family offers a unique level of compatibility among various CPUs, 

offering a wide range of price performance options for a single design. This 
capability extends not only to the signal interface, but to the actual footprint 
of the device itself. Using advanced packaging techniques, the 84-pin PLCC 
footprint is available across the entire family, including the entire frequency 
range of the family. 

Some systems will find it advantageo~s to use the features particular to a 
given CPU; others will find advantage in the ability to offer a single design, with 
real value added manufacturing and field upgrade capability. This choice is 
unique among high-performance embedded processors. 

13-8 

R3051 FAMILY COMPATIBILITY 



,' 

rw ® 

dt, 
Integrated 
Device Technology, Inc. 

2975 Stender Wp.y 
P.O. Box 58015 
Santa Clara, CA 95052-8015 
(408) 727-6116 
FAX 408-492-867 4 

© 1992 Integrated Device Technology, Inc. 
Printed in U.S.A. 

..... 

...... 


