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ABOUT THIS MANUAL 

This manual provides a qualitative description of the functional operation of 
the IDTR304 l integrated RISController. 

A quantitative description of the processor electrical interface is provided in 
the data sheet for this product. Also included in the data sheet is the 
mechanical description of the part, including packaging and pin-out. 

Additional information on development tools, complementary support chips, 
and the use of these products in various applications, are provided in separate 
data sheets and applications notes. 

Any of this information is readily available from your local IDT sales 
representative. 



Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, 
in order to improve design or perfonnance and to supply the best possible product. IDT does not assume any responsibility for 
use of any circuitry described other than the circuitry embodied in an IDT product. The Company makes no representations that 
circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license 
is granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc. 

LIFE SUPPORT POLICY 
Integrated Device Technology's products are not authorized for use as critical components in life support 
devices or systems unless a specific written agreement pertaining to such intended use is executed 
between the manufacturer and an officer of IDT. 
1. Life support devices or systems are devices or systems which (a) are Intended for surgical implant into 

the body or (b) support or sustain life and whose failure to perform, when properly used in accordance 
with Instructions for use provided In the labeling, can be reasonably expected to result In a significant 
injury to the user. 

2. A critical component is any components of a life support device or system whose failure to perform can 
be reasonably expected to cause the failure of the life support device or system, or to affect its safety 
or effectiveness. 

The IDT logo is a registered trademark and RISController, R3041, R3051, R3081, and RISChipset are trademarks of Integrated Device Technology, Inc. 
MIPS is a registered trademark of MIPS Computer Systems, Inc. 
UNIX is a registered trademark of AT&T. 
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FAMILY OVERVIEW CHAPTER 1 

INTRODUCTION 
The IDTR305 l family is a series ofhigh-perf ormance 32-bit microprocessors 

featuring a high-level of integration, and targeted to high-performance yet cost 
sensitive embedded processing applications. The R305 l family is designed to 
bring the high-performance inherent in the MIPS RISC architecture into low
cost, simplified, power sensitive applications. 

Thus, functional units have been integrated onto the CPU core in order to 
reduce the total system cost, rather than to increase the inherent performance 
of the integer engine. Nevertheless, the R305 l family is able to offer 35 MIPS 
of integer performance at 40 MHz without requiring external SRAM or caches. 

Further, the R3051 family brings dramatic power reduction to these 
embedded applications, allowing the use of low-cost packaging. Thus, the 
R305 l family allows customer applications to bring maximum performance at 
minimum cost. 

The R304 l extends the range of price/performance achievable with the 
R305 l family, by dramatically lowering the cost of using the MIPS architecture. 
The R304 l has been designed to achieve minimal system and components 
cost, yet maintain the high-performance inherent in the MIPS architecture. 
The R3041 also maintains pin and software compatibility with the R3051 and 
R3081. 

FEATURES 
• Instruction set compatible with IDT 79R3000A and R305 l Family RISC 

CPUs 
• High level of integration minimizes system cost 

-RISC CPU 
- Multiply I divide unit 
- Instruction Cache 
-Data Cache 
- Programmable bus interface 
- Programmable port width support 

• 14 MIPS at 20 MHz 
• On-chip 24-bit Timer 
• Low cost 84-pin PLCC packaging 
• On-chip instruction and data caches 

- 2kB of Instruction Cache 
- 5 l 2B of Data Cache 

• Flexible bus interface allows simple, low cost designs 
- Superset Pin compatible with R305 l 
-Adds programmable port width interface 

(8-, 16-, or 32-bit memory sub-regions) 
-Adds programmable bus interface timing support 

(Extended address hold, Bus turn around time, read/write masks) 
• Single, double-frequency clock input 
• 16 and 20 MHz operation 
• On-chip 4-deep write buffer eliminates memory write stalls 
• On-chip 4-deep read buffer supports burst or simple block reads 
• On-chip DMA arbiter 
• Pin and Software Compatible family includes R304 l, R305 l, R3052, and 

R3081 
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CHAPTER 1 

DEVICE OVERVIEW 
The R3051 family offers a variety of price/performance features in a pin

compatible, software compatible family. Table 1.1 provides an overview of the 
current members oftheR3051 family. NotethattheR3051, R3052, andR3081 
are also available in pin-compatible versions that include a full-function 
memory management unit, including 64-entryTLB. The R3051/2 and R3081 

Device Instruction Data Floating Bus 
Name Cache Cache Point Options 
R3051 4kB 2kB Software Emulation Mux'edA/D 

R3052 8kB 2kB Software Emulation Mux'edA/D 
R3081 16kB 4kB On-chip Hardware I /2 frequency bus option 

or8kB or8kB 
R3041 2kB 512B Software Emulation 8-, 16-, and 32-bit port widths support 

Programmable timing support 

Table 1.1. Pin compatible R3051 Family 

are described in separate manuals and data sheets. 
Figure 1.1 shows a block level representation of the functional units within 

the R304 l. The R304 l could be viewed as the embodiment of a discrete 
solution built around the R3000A. However, by integrating this functionality 
on a single chip, dramatic cost and power reductions are achieved. 

An overview of these blocks is presented here, with detailed information on 
each block found in subsequent chapters. 

CPU Core 
The CPU core is a full 32-bit RISC integer execution engine, capable of 

sustaining close to single cycle execution rate. The CPU core contains a five 
stage pipeline, and 32 orthogonal 32-bitregisters. The R305 l family implements 
the MIPS-I ISA. In fact, the execution engine of the R3041 is the same as the 
execution engine of the R3000A. Thus, the R304 l is binary compatible with 
those CPU engines, as well as compatible with other members of the R305 l 
family. 

System Control Co-Processor 
The R3041 also integrates on-chip a System Control Co-processor, CPO. 

CPO manages the exception handling capability of the R3041, the virtual to 
physical address mapping of the R304 l, and the programmable bus interface 
capabilities of the R304 l. These topics are discussed in subsequent chapters. 

The R304 l does not include the optional TLB found in other members of the 
R3051 family, but instead performs the same virtual to physical address 
mapping of the base versions of the R305 l family. These devices still support 
distinct kernel and user mode operation, but do not require page management 
software or an on-chip TLB, leading to a simpler software model and a lower
cost processor. 

Clock Generator Unit 
The R304 l is driven from a single, double frequency input clock. On-chip, 

the clock generator unit is responsible for managing the interaction of the CPU 
core, caches, and bus interface. The clock generator unit replaces the external 
delay line required in R3000A based applications. 
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Figure 1.1. Block Diagram 

32 

The R304 l integrates 2kB of on-chip Instruction Cache, organized with a 
line size of 16 bytes (four 32-bit entries). This relatively large cache substantially 
contributes to the performance inherent in the R304 l, and allows systems 
based on the R304 l to achieve high-performance even from low-cost memory 
systems. The cache is implemented as a direct mapped cache, and is capable 
of caching instructions from anywhere within the 4GB physical address space. 
The cache is implemented using physical addresses and physical tags (rather 
than virtual addresses or tags), and thus does not require flushing on context 
switch. 
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Data Cache 
The R304 l incorporates an on-chip data cache of 512B, organized as a line 

size of 4 bytes (one word). This relatively large data cache contributes 
substantially to the performance inherent in the R3051 family. As with the 
instruction cache, the data cache is implemented as a direct mapped physical 
address cache. The cache is capable of mapping any word within the 4GB 
physical address space. 

The data cache is implemented as a write through cache, to insure that main 
memory is always consistent with the internal cache. In order to minimize 
processor stalls due to data write operations, the bus interface unit incorporates 
a 4-deep write buffer which captures address and data at the processor 
execution rate, allowing it to be retired to main memory at a much slower rate 
without impacting system performance. 

Bus Interface Unit 
The R305 l family uses its large internal caches to provide the maj ortty of the 

bandwidth requirements of the execution engine, and thus can utilize a simple 
bus interface connected to slow memory devices. 

The R305 l family bus interface utilizes a 32-bit address and data bus 
multiplexed onto a single set of pins. The bus interface unit also provides an 
ALE (Address Latch Enable) output signal to de-multiplex the A/D bus, and 
simple handshake signals to process CPU read and write requests. In addition 
to the read and write interface, the R304 l incorporates a OMA arbiter, to allow 
an external master to control the external bus. 

The R304 l augments the basic R305 l bus interface capability by adding the 
ability to directly interface with varying memory port widths, for instructions 
or data. Thus, the R3041 can be used in a system with an 8-bit boot PROM, 
16-bit font cartridges, and 32-bit page buffer, transparently to software, and 
without requiring external data packing, rotation, or unpacking. 

In addition, the R304 l incorporates the ability to change some of the 
interface timing of the bus. These features can be used to eliminate external 
data buffers, and take advantage of lower speed (lower cost) interface 
components. 

The R304 l incorporates a 4-deep write buff er to decouple the speed of the 
execution engine from the speed of the memory system. The write buffers 
capture and FIFO processor address and data information in store operations, 
and present it to the bus interface as write transactions at the rate the memory 
system can accommodate. During main memory writes, the R304 l can break 
a large datum (e.g. 32-bit word) into a series of smaller transactions (e.g. bytes), 
according to the width of the memory port being written. This operation is 
transparent to the software which initiated the store, insuring that the same 
software can run in true 32-bit memory systems. 

The R305 l family read interface performs both single word reads and quad 
word reads. Single word reads work with a simple handshake, and quad word 
reads can either utilize the simple handshake (in lower performance, simple 
systems) or utilize a tighter timing mode when the memory system can burst 
data at the processor clock rate. Thus, the system designer can choose to 
utilize page, static or nibble mode DRAMs (and possibly use interleaving, if 
desired, in high-performance systems), or use simpler techniques to reduce 
complexity. 

In order to accommodate slower quad word reads, the R305 l family 
incorporates a 4-deep read buffer FIFO, so that the external interface can 
queue up data within the processor before releasing it to perform a burst fill of 
the internal caches. 
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In addition, the R304 l can perform on-chip data packing when performing 
large datum reads (e.g. quad words) from narrower memory systems (e.g. 16-
bits). Once again, this operation is transparent to the actual software, 
simplifying migration of software to higher performance (true 32-bit) systems, 
and simplifying field upgrades to wider memory. Since this capability works 
for either instruction or data reads, using 8-, 16-, or 32-bit boot PRO Ms is easily 
supported by the R304 l. 

SYSTEM USAGE 
The IDT R305 l family has been specifically designed to easily connect to low

cost memory systems. Typical low-cost memory systems utilize slow EPROMs, 
DRAMs, and application specific peripherals. Embedded systems may also 
optionally contain static RAMs. 

Figure 1.2 shows some of the flexibility inherent in the R3041. In this 
example system, which is typical of a laser printer, a 32-bit PROM interface is 
used due to the size of the PDL interpreter. Other embedded systems could 
optionally use an 8-bit or a 16-bit PROM interface. A 16-bit font cartridge 
interface is provided for add in cards and a 16-bit page buffer is used for low 
cost. In this example, a field or manufacturing upgrade to a 32-bit page buffer 
is supported by the boot software and DRAM controller. Such a system 
features a very low entry price, with a range of field upgrade options including 
the ability to upgrade to a more powerful member of the R3051 family. 

Clkln 

32-bit 
EPROM 

16-bit 
Font 

Cartridge 

IDT R3041 
RISController 

Address/ 
Data 

R3051 
Local Bus 

1/0 

Control 

16-bit 
DRAM 

Figure 1.2. Typical R3041 System 
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DEVELOPMENT SUPPORT 
Tue IDT R305 l family is supported by a rich set of development tools, 

ranging from system simulation tools through PROM monitor and debug 
support, applications software and utility libraries, logic analysis tools, and 
sub-system modules. 

Figure 1.3 is an overview of the system development process typically used 
when developing R3041 applications. Tue R3051 family is supported in all 
phases of project development. These tools allow timely, parallel development 
of hardware and software for R305 l family based applications, and include 
tools such as: 

• A program, Cache-3041, which allows the performance of an R304 l based 
system to be modeled and understood without requiring actual hardware. 

• Sable, an instruction set simulator. 
• Optimizing compilers from MIPS Technology, the acknowledged leader in 

optimizing compiler technology. 
• Cross development tools, available in a variety of development 

environments. 
• Tue high-performance IDT floating point library software. 
• Tue IDT Evaluation Board, which includes RAM, EPROM, I/O, and the 

IDT PROM Monitor. 
• Tue IDT Laser Printer System board, which directly drives a low-cost print 

engine, and runs Microsoft Trueimage™ Page Description Language on 
top of PeerlessPage™ Advanced Printer Controller BIOS. 

• Adobe PostScript™ Page Description Language running on the IDT R305 l 
family. 

• Tue IDT/sim PROM Monitor, which implements a full PROM monitor 
(diagnostics, remote debug support, peek/poke, etc.). 

• IDT /kit (Kernel Integration Toolkit), providing library support and a frame 
work for the system run time environment. 

System 
Architecture 
Evaluation 

System 
Development 

Phase 

SABLE Simulator 
DBG Debugger 
PIXIE Profiler 

MIPS Compiler Suite 
Stand-Alone Libraries 
Floating Point Library 

Cross Development Tools 
Adobe Postscript POL 

Microsoft Truelmage POL 
PeerlessPaf;!e BIOS 

IDT/kit 

Figure 1.3. Development Support 

System 
Integration 

and Verfification 
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PERFORMANCE OVERVIEW 
The R305 l family achieves a very high-level of performance. This performance 

is based on: 
• An efficient execution engine. The CPU performs ALU operations and 

store operations in a single cycle, and has an effective load time of 1.3 
cycles, and branch execution rate of 1.5 cycles (based on the ability of the 
compilers to avoid software interlocks). Thus, the R304 l achieves over 16 
MIPS performance when operating out of cache. 

• Large on-chip caches. The R3051 family contains caches which are 
substantially larger than those on the majority of embedded 
microprocessors. These large caches minimize the number of bus 
transactions required, and allow the R305 l family to achieve actual 
sustained performance very close to its peak execution rate, even with low 
cost memory systems. 

• Autonomous multiply and divide operations. The R3051 family features 
an on-chip integer multiplier I divide unit which is separate from the other 
ALU. This allows the R304 l to perform multiply or divide operations in 
parallel with other integer operations, using a single multiply or divide 
instruction rather than with "step" operations. 

• Integrated write buffer. The R3041 features a four deep write buffer, 
which captures store target addresses and data at the processor execution 
rate and retires it to main memory at the slower main memory access rate. 
Use of on-chip write buffers eliminates the need for the processor to stall 
when performing store operations. 

• Burst read support. The R3041 enables the system designer to utilize 
page, static or nibble mode RAMs when performing read operations to 
minimize the main memory read penalty and increase the effective cache 
hit rates. 

The performance differences among the various R305 l family members 
depends on the application software and the design of the memory system. 
Different family members feature different cache sizes, and the R308 l features 
a hardware floating point accelerator. Since all these devices can be used in 
a pin and software compatible fashion, the system designer has maximum 
freedom in trading between performance and cost. The memory simulation 
tools (e.g. Cache-3041) allows the system designer to analyze and understand 
the performance differences among these devices in his application. 
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INSTRUCTION SET CHAPTER2 

ARCHITECTURE 

INTRODUCTION 
The IDT R3051 family contains the same basic execution core as the IDT 

MIPS R3000 and the IDT R3001. In addition to being able to run software 
written for either of these processors, this enables the R305 l family to achieve 
dramatic levels of performance, based on the efficiency of the execution engine. 

This chapter gives an overview of the MIPS-I architecture implemented in the 
R3051 family, and discusses the programmers' model for this device. Further 
detail is available in the book "mips RISC Architecture'', available from IDT. 

The R304 l is software compatible with the base versions of the R305 l 
family. However, to reduce system cost, the TLB functions present in the "E" 
versions are not available in the R304 l; instead, the R304 l features increased 
control of the system interface, including the ability to control timing 
relationships of the bus interface. and the ability to directly interface with 
memory systems of varying widths. 

PROCESSOR FEATURES OVERVIEW 
The R305 l family has many of the same attributes of the IDT R3000/R3001, 

at a higher level of integration geared to lower system cost. These features 
include: 

• Full 32-bit Operation. The R3051 family contains thirty-two 32-bit 
registers, and all instructions and addresses are 32 bits. 

• Efficient Pipelining. The CPU utilizes a 5-stage pipeline design to 
achieve an execution rate approaching one instruction per cycle. Pipeline 
stalls. hazards, and exceptional events are handled precisely and efficiently. 

• Large On-Chip Instruction and Data Caches. The R305 l family utilizes 
large on-chip caches to provide high-bandwidth to the execution engine. 
The large size of the caches insures high hit rates, minimizing stalls due 
to cache miss processing and dramatically contributing to overall 
performance. Both the instruction and data cache can be accessed during 
a single CPU cycle. 

• On-chip Memory Management. The R304 l is compatible with the base 
versions oftheIDTR3051 family, which do not utilize a 1LB, but perform 
fixed segment-based mapping of the virtual space to physical addresses. 
In addition, the R304 l allows kernel software to configure the "width" of 
regions of the memory space, to allow direct interface to memory systems 
of 8, 16, or 32-bits of data width. 
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CPU REGISTERS OVERVIEW 
The IDT R3051 family provides 32 general purpose 32-bit registers, an 

internal 32-bit Program Counter, and two dedicated 32-bit registers which 
hold the result of an integer multiply or divide operation. The CPU registers, 
illustrated in Figure 2.1, are discussed later in this chapter. 

Note that the MIPS-I architecture does not use a traditional Program Status 
Word (PSW) register. The functions normally provided by such a register are 
instead provided through the use of "Set" instructions and conditional branches. 
By avoiding the use of traditional condition codes, the architecture can be more 
finely pipelined. This, coupled with the fme granularity of the instruction set, 
allows the compilers to achieve dramatically higher levels of optimizations than 
for traditional architectures. 

Overflow and exceptional conditions are then handled through the use of the 
on-chip Status and Cause registers, which reside on-chip as part of the System 
Control Co-Processor (Co-Processor 0). These registers contain information 
about the run-time state of the machine, and any exceptional conditions it has 
encountered. 

General Purpose 
Registers 

31 0 
0 
r1 
[2_ . . 

r29 
r30 
r31 

Multiply/Divide Result 
Registers 

31 0 
I HI I 
31 0 
I LO I 

Program Counter 
31 0 
I PC I 

4000 drw 01 
Figure 2.1. CPU Registers 

INSTRUCTION SET OVERVIEW 
All R305 l family instructions are 32-bits long, and there are only three basic 

instruction formats. This approach dramatically simplifies instruction decoding, 
permitting higher frequency operation. More complicated (but less frequently 
used) operations and addressing modes are synthesized by the assembler, 
using sequences of the basic instruction set. This approach enables object 
code optimizations at a finer level of resolution than achievable in micro-coded 
CPU architectures. 

Figure 2.2 shows the instruction set encoding used by the MIPS architecture. 
This approach simplifies instruction decoding in the CPU. 

The R305 l family instruction set can be divided into the following basic 
groups: 

• Load/Store instructions move data between memory and the general 
registers. They are all encoded as "I-Type" instructions, and the only 
addressing mode implemented is base register plus signed, immediate 
offset. This directly enables the use of three distinct addressing modes: 
register plus offset; register direct; and immediate. 

• Computational instructions perform arithmetic, logical, and shift 
operations on values in registers. They are encoded as either "R-Type" 
instructions, when both source operands as well as the result are general 
registers, and "I-Type", when one of the source operands is a 16-bit 
immediate value. Computational instructions use a three address 
format, so that operations don't needlessly interfere with the contents of 
source registers. 

• Jump and Branch instructions change the control flow of a program. A 
Jump instruction can be encoded as a "J-Type" instruction, in which case 
the Jump target address is a paged absolute address formed by combining 
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the 26-bit immediate value with four bits of the Program Counter. This 
form is used for subroutine calls. 

Alternately, Jumps can be encoded using the "R-Type" format, in which 
case the target address is a 32-bit value contained in one of the general 
registers. This form is typically used for returns and dispatches. 

Branch operations are encoded as "I-Type" instructions. The target 
address is formed from a 16-bit displacement relative to the Program 
Counter. 

The Jump and Link instructions save a return address in Register r31. 
These are typically used as subroutine calls, where the subroutine return 
address is stored into r3 l during the call operation. 

• Co-Processor instructions perform operations on the co-processor set. 
Co-Processor Loads and Stores are always encoded as "I-Type" instructions; 
co-processor operational instructions have co-processor dependent 
formats. 

In the R3051 family, the System Control Co-Processor (CPO) contains 
registers which are used in memory management, system interface 
control, cache control, and exception handling. 

Additionally, the R305 l family implements BrCond inputs. Software can 
use the Branch on Co-Processor Condition instructions to test the state 
of these external inputs, and thus they may be used like general purpose 
input ports. 

• Special instructions perform a variety of tasks, including movement of 
data between special and general registers, system calls, and breakpoint 
operations. They are always encoded as "R-Type" instructions. 

where: 
op 

rs 

rt 

I-Type (Immediate) 

31 26 25 21 20 16 15 

J-Type (Jump) 

31 26 25 

I op I 
R-Type (Register) 

31 26 25 21 

I op I rs 

target 

20 16 15 11 

I rt I rd 

is a 6-bit operation code 

0 

immediate 

0 

10 6 5 0 

I shamt I funct I 

is a 5-bit source register specifier 

is a 5-bit target register or branch condition 

immediate is a 16-bit immediate, or branch or address displacement 

target is a 26-bit jump target address 

rd is a 5-bit destination register specifier 

shamt is a 5-bit shift amount 

fun ct is a 6-bit function field 

Figure 2.2. Instruction Encoding 4000 drw 02 
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OP Description OP Description 
Load/Store Instructions Multiply /Divide Instructions 

LB Load Byte MULT Multiply 
LBU Load Byte Unsigned MULTU Multiply Unsigned 
LH Load Halfword DN Divide 
LHU Load Halfword Unsigned DNU Divide Unsigned 
LW Load Word 
LWL Load Word Left MFHI Move From HI 
LWR Load Word Right MTHI Move To HI 
SB Store Byte MFLO Move From LO 
SH Store Halfword MTLO Move To LO 
SW Store Word 
SWL Store Word Left Jump and Branch Instructions 
SWR Store Word Right J Jump 

JAL Jump and Link 
Arithmetic Instructions JR Jump to Register 
(ALU Immediate) JALR Jump and Link Register 

ADDI Add Immediate BEQ Branch on Equal 
ADDIU Add Immediate Unsigned BNE Branch on Not Equal 
SLTI Set on Less Than Immediate BLEZ Branch on Less than or Equal 
SL TIU Set on Less Than Immediate to Zero 

Unsigned BGTZ Branch on Greater Than Zero 
ANDI AND Immediate BLTZ Branch on Less Than Zero 
ORI OR Immediate BGEZ Branch on Greater Than or 
XORI Exclusive OR Immediate Equal to Zero 
LUI Load Upper Immediate BLTZAL Branch on Less Than Zero and 

Link 
BGEZAL Branch on Greater Than or Equal 

Arithmetic Instructions to Zero and Link 
(3-operand, register-type) 

ADD Add Special Instructions 
ADDU Add Unsigned SYSCALL System Call 
SUB Subtract BREAK Break 
SUBU Subtract Unsigned 
SLT Set on Less Than Coprocessor Instructions 
SLTU Set on Less Than Unsigned LWCz Load Word from Coprocessor 
AND AND SWCz Store Word to Coprocessor 
OR OR MTCz Move To Coprocessor 
XOR Exclusive OR MFCz Move From Coprocessor 
NOR NOR CTCz Move Control To Coprocessor 

CFCz Move Control From Coprocessor 
Shift Instructions COPz Coprocessor Operation 

SLL Shift Left Logical BCzT Branch on Coprocessor z True 
SRL Shift Right Logical BCzF Branch on Coprocessor z False 
SRA Shift Right Arithmetic 
SLLV Shift Left Logical Variable System Control Coprocessor 
SRLV Shift Right Logical Variable (CPO) Instructions 
SRAV Shift Right Arithmetic Variable MTCO Move To CPO 

MFCO Move From CPO 
TLBRt Read indexed TLB entry 
TLBWJ! Write indexed TLB entry 
TLBWRt Write Random TLB entry 
TLBPt Probe TLB for matching entry 
RFE Restore From Exception 

4000 tbl 01 
tTuese instructions are not valid with the R3041, which does not include the TLB. 

Table 2.1. Instruction Set Mnemonics 

Table 2.1 lists the instruction set mnemonics of the R305 l family. More 
detail on these operations is presented later in this chapter. For further detail, 
consult "mips RISC Architecture", or one of the language programming guides, 
available from IDT. 

PROGRAMMING MODEL 
This section describes the organization of data in the general registers and 

in memory, and discusses the set of general registers available. A summary 
description of all of the CPU registers is presented. 
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Data Formats and Addressing 
The MIPS-I architecture defines a word as 32-bits, a half-word as 16-bits, 

and a byte as 8-bits. The byte ordering convention is configurable during 
hardware reset (Chapter 11) into either a big-endi.an or ltttle-endi.an convention. 

When configured as a big-endian system, byte 0 is always the most 
significant Oeftmost) byte in a word. This is the order used in MC680x0® 
microprocessors, and systems from MIPS. 

When configured as a little-endian system, byte 0 is always the least 
significant (rightmost) byte in a word. This is compatible with the iAPX® x86 
microprocessors and systems from Digital Equipment Corporation. 

Figure 2.3 shows the ordering of bytes within words and the ordering of 
words within multiple word structures for the big-endian and little-endian 
conventions. 

Higher Big-Endian Byte Ordering Word 
Address r-3~1 -,,-2=-4~2"'"3--,---1~6'-,-'-1 ~5 ~""""8,.-'-7-=-____,o Address 

lII I-~g--+I ~~~t-1 ~i--+l~~---11 g 
Lower ~__,.___.___,__-'-_.._...._-=3___. 

Address • Most significant byte is at lowest address 

• Word is addressed by byte address of 
most significant byte 

Higher Little-Endian Byte Ordering Word 

Address r-3~1 -=-'2=-4;..,.=2-"-3--,---1'"""'6~15'--__;;;8~7'----',0 Address 

lI 1-1 -?"'---+I ~i~t-1 --=-~ --+1----':'---i1 g Lower ~___,,,____._-= _ _.___,_1 _ _.__o,.___. 

Address • Least significant byte is at lowest address 

• Word is addressed by byte address of 
least significant byte 

Figure 2.3. Byte Ordering Conventions 4000 drw 03 

The R305 l family uses byte addressing for all accesses, including half-word 
and word. The MIPS architecture has alignment constraints that require half
word access to be aligned on an even byte boundary, and word access to be 
aligned on a modulo-4 byte boundary. Thus, in big-endian systems, the 
address of a multiple-byte data item is the address of the most-significant byte, 
while in little-endian systems it is the address of the least-significant byte of 
the structure. 

For compatibility with older programs written for 8- or 16-bit machines, the 
MIPS instruction set provides special instructions for addressing 32-bit words 
which are not aligned on 4-byte boundaries. These instructions, which are 
Load/Store Left/Right, are used in pairs to provide addressing of misaligned 
words. This effectively means that these types of data movements require only 
one-additional instruction cycle over that required for properly aligned words, 
and provides a much more efficient way of dealing with this case than is 
possible using sequences of loads/stores and shift operations. Figure 2.4 
shows the bytes accessed when addressing a mis-aligned word with a byte 
address of 3, for each of the two byte ordering conventions. 

Higher 
Address 31 24 23 16 15 8 7 O U l):::::1::~:f:::nt::l::::::~::::::iI@~m'l::::::::::t~:::::::::::::,l::?::::::~::=:::::::::::::I 

31 24 23 16 15 8 7 0 

1w~:::::~:::m:n\::::::=:n::~:n:::::::::t:::::r:::::f:::::::::t:t:t:::tf::n:n:::I 
Lower 

Address 
Figure 2.4. Unaligned Words 
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CPU General Registers 
The R305 l family contains 32-general registers, each containing a single 32-

bit word. The 32 general registers are treated symmetrically (orthogonally), 
with two notable exceptions: general register rO is hardwired to a zero value, 
and r3 l is used as the link register in Jump and Link instructions 

Register rO maintains the value zero under all conditions when used as a 
source register, and discards data written to it. Thus, instructions which 
attempt to write to it may be used as No-Op Instructions. The use of a register 
wired to the zero value allows the simple synthesis of different addressing 
modes, no-ops, register or memory clear operations, etc., without requiring 
expansion of the basic instruction set. 

Register r3 l is used as the link register in jump and link instructions. These 
instructions are used in subroutine calls, and the subroutine return address 
is placed in register r3 l. This register can be written to or read as a normal 
register in other operations. 

In addition to the general registers, the CPU contains two registers (HI and 
LO) which store the double-word, 64-bit result of integer multiply operations, 
and the quotient and remainder of integer divide operations. 

CPO Special Registers 
In addition to the general CPU registers, the R305 l family contains a number 

of special registers on-chip. These registers logically reside in the on-chip 
System Control Co-processor CPO, and are used in memory management and 
exception handling. 

Table 2.2 shows the logical CPO address of each of the registers. The format 
of each of these registers, and their use, is discussed in Chapter 4 (Memory 
Management), and Chapter 5 (System Control), and Chapter 6 (Exception 
Handling). Note that the MIPS architecture allows CPO to vary byimplementation; 
the R304 l contains some new CPO registers not found in other R305 l family 
members; however, their definition is such that it still remains possible to use 
a single binary program across all family members. 

Number Mnemonic Descri_R..tion 

0 ReservedOl 

1 Reserved(1> 

2 BusCtrlm Bus Tim1ng and Interface Control 

3 Config13> Cache Usage Configuration 

4 Reserved(1> 

5-7 Reserved 

8 BadVAddr Bad Virtual Address 

9 Count(2> Timer Counter Register 

10 PortSizeO> Memo:ry Sub-Region Port Width Control 

11 Compare(2> Timer Com..E_are R~ster 

12 SR Status R~ter 

13 Cause Cause of Last Exc~tion 

14 EPC Exc~tion Pro~ Counter 

15 PRid Processor Revision Identifier 

16-31 Reserved 
4000 tbl02 

Notes: 
1: This register is used 1n Extended Architecture CPUs to control the 1LB and virtual memory 

system. 
2: This register is reserved 1n other family members. 
3: This register has a different meaning in other family members. 

Table 2.2. R304 l CPO Registers 
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Operating Modes 
The R305 l family supports two different operating modes: User and Kernel 

modes. The R305 l /52 normally operates in User mode until an exception is 
detected, forcing it into kernel mode. It remains in Kernel mode until a Return 
From Exception (RFE) instruction is executed, returning it to its previous 
operation mode. 

The processor supports these levels of protection by segmenting the 4GB 
virtual address space into 4 distinct segments. One segment is accessible from 
either the User state or the Kernel mode, and the other three segments are only 
accessible from kernel mode. 

In addition to providing memory address protection, the kernel can protect 
the co-processors (in the case of the R304 l, CPO) from access or modification 
by the user task. 

Finally, the R305 l family supports the execution of user programs with the 
opposite byte ordering (Reverse Endianness) of the kernel, facilitating the 
exchange of programs and data between dissimilar machines. 

Chapter 4 discusses the memory management facilities of the processor. 

Pipeline Architecture 
The IDT R305 l family uses the same basic pipeline structure as that 

implemented in the R3000A. Thus, the execution of a single instruction is 
performed in five distinct steps. 

• Instruction Fetch (IF). In this stage, the instruction virtual address is 
translated to a physical address and the instruction is read from the 
internal Instruction Cache. 

• Read (RD). During this stage, the instruction is decoded and required 
operands are read from the on-chip register file. 

• ALU. The required operation is performed on the instruction operands. 

• Memory Access (MEM). If the instruction was a load or store, the Data 
Cache is accessed. Note that there is a skew between the instruction cycle 
which fetches the instruction and the one in which the required data 
transfer occurs. This skew is a result of the intervening pipestages. 

• Write Back (WB). During the write back pipestage, the results of the ALU 
stage operation are updated into the on-chip register file. 

Each of these pipestages requires approximately one CPU cycle, as shown 
in Figure 2.5. Parts of some operations lap into the next cycle, while other 
operations require only 1/2 cycle. 

IF RD ALU MEM WB 

ID OP D-Cache WB 

PAddr 

"--y--J 
One Cycle 

4000 drw 05 

Figure 2.5. 5-Stage Pipeline 
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The net effect of the pipeline structure is that a new instruction can be 
initiated every clock cycle. Thus, the execution of five instructions at a time is 
overlapped, as shown in Figure 2.6. 

1#1 IF 

1#2 

RD ALU MEM 

IF RD ALU 

1#3 IF RD 

1#4 IF 

1#5 

WB 

~~~~~~~~~~~~~~~*~~~~ 
MEM 

~~mttt~~~~~~~ 
ALU 

:::::::::::::::::::~:::: 

~~~~~~~~~~~~~~~~~~~~~~~~~ 

RD 
~Il~~~~~II~ 

IF 

Current 
CPU 
Cycle 

WB 

MEM 

ALU 

RD 

WB 

MEM WB 

ALU MEM WB 

4000drw 06 

Figure 2.6. 5-lnstructions per Clock Cycle 

The pipeline operates efficiently, because different CPU resources such as 
address and data bus access, ALU operations, and the register file, are utilized 
on a non-interfering basis. 

Pipeline Hazards 
In a pipelined machine such as the R304 l, there are certain instructions 

which, based on the pipeline structure, can potentially disrupt the smooth 
operation of the pipeline. The basic problem is that the current pipestage of 
an instruction may require the result of a previous instruction, still in the 
pipeline, whose result is not yet available. This class of problems is referred 
to as pipeline hazards. 

An example of a potential pipeline hazard occurs when a computational 
instruction n+ 1) requires the result of the immediately prior instruction 
(instruction n). Instruction n+ 1 wants to access the register file during the RF 
pipestage. However, instruction n has not yet completed its register writeback 
operation, and thus the current value is not available directly from the register 
file. In this case, special logic within the execution engine forwards the result 
of instruction n's ALU operation to instruction n+ 1, prior to the true writeback 
operation. The pipeline is undisturbed, and no pipeline stalls need to occur. 

Another example of a pipeline hazard handled in hardware is the integer 
multiply and divide operations. If an instruction attempts to access the HI or 
W registers prior to the completion of the multiply or divide, that instruction 
will be interlocked (held off) until the multiply or divide operation completes. 
Thus, the programmer is isolated from the actual execution time of this 
operation. The optimizing compilers attempt to schedule as many instructions 
as possible between the start of the multiply I divide and the access of its result, 
to minimize stalls. 

However, not all pipeline hazards are handled in hardware. There are two 
categories of instructions which require software intervention to insure logical 
operation. The optimizing compilers (and peephole scheduler of the assembler) 
are capable of insuring proper execution. These two instruction classes are: 

• Load instructions have a delay, or latency, of one cycle before the data 
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loaded from memory is available another instruction. This is because the 
ALU stage of the immediately subsequent instruction is processed 
simultaneously with the Data Cache access of the load operation. Figure 
2. 7 illustrates the cause of this delay slot. 

• Jump and Branch instructions have a delay of one cycle before the 
IF RD ALU MEM WB 

1#1 ID OP D-Cache WB 
(Load) 

1#2 I-Cache ID OP 
(Delay Slot) 

Data 
Available 

1#3 I-Cache ID OP 

"---y---' 
One Cycle 

4000 drw 07 

Figure 2.7. Load Delay 

program flow change can occur. This is due to the fact that the next 
instruction is fetched prior to the decode and ALU stage of the jump/ 
branch operation. Figure 2.8 illustrates the cause of this delay slot. 

The R304 l continues execution, despite the delay in the operation. Thus, 

IF 

1#1 

ranch) 

RD ALU MEM WB 

I-Cache ID OP D-Cache WB 

I-Address 

1#2 I-Cache OP 
(Delay Slot) ~-~-_._,_--+-------< 

1#3 
Address I-Cache ID OP 
Av~ilable 

'--y--J 
One Cycle 

4000 drw OB 

Figure 2.8. Branch Delay 

loads.jumps and branches do not disrupt the pipeline flow of instructions, and 
the processor always executes the instruction immediately following one of 
these "delayed" instructions. 

Note that there may also be latencies associated with changes to various of 
the CPO registers; for example, changing the bus interface control register may 
require multiple cycles before the change is actually reflected in the chip 
interface. 

Rather than include extensive pipeline control logic, the MIPS-I instruction 
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set gives responsibility for dealing with "delay slots" to software. Thus, 
peephole optimizations (which can be performed as part of compilation or 
assembly) can re-order the code to insure that the instruction in the delay slot 
does not require the logical result of the "delayed" instruction. In the worst 
case, a NOP can be inserted to guarantee proper software execution. 

Chapter 6 discusses the impact of pipelining on exception handling. In 
general, when an instruction causes an exception, it is desirable for all 
instructions initiated prior to that instruction to complete, and all subsequent 
instructions to abort. This insures that the machine state presented to the 
exception handler reflects the logical state that existed at the time the exception 
was detected. In addition, it is desirable to avoid requiring software to explicitly 
manage the pipeline when handling or returning from exceptions. The IDT 
R304 l pipeline is designed to properly manage exceptional events. 
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INSTRUCTION SET SUMMARY 
This section provides an overview of the R305 l family instruction set by 

presenting each category of instructions in a tabular summary form. Refer to 
the "mips RISC Architecture" reference for a detailed description of each 
instruction. 

Instruction Formats 
Every instruction consists of a single word (32 bits) aligned on a word 

boundary. There are only three instruction formats as shown in Figure 2.2. 
This approach simplifies instruction decoding. More complicated Oess frequently 
used) operations and addressing modes are synthesized by the compilers. 

Instruction Notational Conventions 
In this manual, all variable sub-fields in an instruction format (such as rs, 

rt, immediate, and so on) are shown in lower-case names. 
For the sake of clarity, an alias is sometimes used for a variable sub-field in 

the formats of specific instructions. For example, "base" rather than "rs" is 
used in the format for Load and Store instructions. Such an alias is always 
lower case, since it refers to a variable sub-field. 

Instruction opcodes are shown in all upper case. 
The actual bit encoding for all the mnemonics is specified at the end of this 

chapter. 
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Load and Store Instructions 
Load/Store instructions move data between memory and general registers. 

They are all I-type instructions. The only addressing mode directly supported 
is base register pl us 16-bit signed immediate offset. This can be used to directly 
implement immediate addressing (using the rO register) or register direct 
(using an immediate offset value of zero). 

All load operations have a latency of one instruction. That is, the data being 
loaded from memory into a register is not available to the instruction that 
immediately follows the load instruction: the data is available to the second 
instruction after the load instruction. An exception to this rule is that for the 
target register for the "load word left" and "load word right" instructions may 
be specified as the same register used as the destination of a load instruction 
that immediately precedes it. 

The Load/Store instruction opcode determines the size of the data item to 
be loaded or stored as shown in Table 2 .1. Regardless of access type or byte
numbering order (endian-ness), the address specifies the byte which has the 
smallest byte address of all bytes in the addressed field. For a big-endian 
access, this is the most significant byte; for a little-endian access, this is the 
least significant byte. Note that in an R305 l/52 based system, the endianness 
of a given access is dynamic, in that the RE (Reverse Endianness) bit of the 
Status Register can be used to force user space accesses of the opposite byte 
convention of the kernel. 

Big-Endian (32-bit memory system) 
CPU Core CPU Core BE(3) BE(2) BE(l) BE(O) 

Size VAdrLo(l) VAdrLo(O) Data(31:24) Data(23:16) Data(l5:8) Data(7:0) 

Word 0 0 Yes Yes Yes Yes 

Tri-Byte 0 0 Yes Yes Yes No 
Tri-Byte 0 1 No Yes Yes Yes 

16-Bit 0 0 Yes Yes No No 
16-Bit 1 0 No No Yes Yes 

Byte 0 0 Yes No No No 
Byte 0 1 No Yes No No 
Byte 1 0 No No Yes No 
Byte 1 1 No No No Yes 

Little-Endian (32-bit memory system) 
BE(3) BE(2) BE(l) BE(O) 

Size AdrLo(l) AdrLo(O) Data(31:24) Data(23: 16) Data(l5:8) Data(7:0) 

Word 0 0 Yes Yes Yes Yes 

Tri-Byte 0 0 No Yes Yes Yes 

Tri-Byte 0 1 Yes Yes Yes No 
16-Bit 0 0 No No Yes Yes 

16-Bit I 0 Yes Yes No No 
Byte 0 0 No No No Yes 

Byte 0 I No No Yes No 
Byte I 0 No Yes No No 
Byte I 1 Yes No No No 

Table 2.3 (a). Byte Addressing in Load/Store Operations (32-bit memory) 
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Big-Endian (16-bit memory system) 
First Transfer Second Transfer 

CPU Core CPU Core BE16(1) BE16(0) BE16(1) BE16(0) 

Size VAdrLo(l) VAdrLo(O) Data(31:24) Data(23:16) Data(31:24) Data(23:16 

Word 0 0 Yes Yes Yes Yes 

Tri-Byte 0 0 Yes Yes Yes No 
Tri-Byte 0 1 No Yes Yes Yes 

16-Bit 0 0 Yes Yes NIA NIA 
16-Bit 1 0 Yes Yes NIA NIA 
Byte 0 0 Yes No NIA NIA 
Byte 0 1 No Yes NIA NIA 
Byte 1 0 Yes No NIA NIA 
Byte 1 1 No Yes NIA NIA 

Little-Endian (16-bit memory system) 
First Transfer Second Transfer 

CPU Core CPU Core BE16(1) BE16(0) BE16(1) BE16(0) 

Size VAdrLo(l) VAdrLo(O) Data(15:8) Data(7:0) Data(15:8) Data(7:0) 

Word 0 0 Yes Yes Yes Yes 

Tri-Byte 0 0 Yes Yes No Yes 

Tri-Byte 0 1 Yes No Yes Yes 

16-Bit 0 0 Yes Yes NIA NIA 
16-Bit 1 0 Yes Yes NIA NIA 
Byte 0 0 No Yes NIA NIA 
Byte 0 1 Yes No NIA NIA 
Byte 1 0 No Yes NIA NIA 
Byte 1 1 Yes No NIA NIA 

Table 2.3 (b). Byte Addressing in Load/Store Operations (16-bit memory) 

Note that the size of the operand requested by the load instruction is 
independent of the memory width of the addressed memory. Thus, if the actual 
size of the datum is 32-bits, software can safely use a load or store word 
instruction, even if the addressed memory is actually only 8- or 16-bits wide. 
The bus interface unit will interact with CPO to determine the width of the 
addressed memory, and will, if necessary, perform multiple datum transfers to 
satisfy a single load or store instruction. 

The bytes within the addressed word that are used can be determined 
directly from the access size and the two low-order bits of the address, as shown 
in Table 2.3 (a, b). Note that certain combinations of access type and low-order 
address bits can never occur: only the combinations shown in Table 2.3(a, bl 
are permissible. The R305 l family indicates which bytes are being accessed 
by the byte-enable (BE) bus; the R3041 adds the BE16 bus to simplify the 
interface to 16-bit wide memory subsystems. 

Table 2.4 shows the load/store instructions supported by the MIPS ISA. 
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Instruction Format and Description 

Load Byte LB rt. off set (base) 
Sign-extend 16-bit offset and add to contents of register base to 
form address. 
Sign-extend contents of addressed byte and load into rt 

Load Byte Unsigned LBU rt. offset (base) 
Sign-extend 16-bit offset and add to contents of register base to 
form address. 
Zero-extend contents of addressed byte and load into rt 

Load Halfword LH rt. offset (base) 
Sign-extend 16-btt offset and add to contents of register base to 
form address. 
Sign-extend contents of addressed byte and load into rt. 

Load Halfword Unsigned LHU rt. offset (base) 
Sign-extend 16-bit offset and add to contents of register base to 
form address. 
Zero-extend contents of addressed byte and load into rt 

Load Word LW rt, offset (base) 
Sign-extend 16-bit offset and add to contents of register base to 
form address. 
Load contents of addressed word into register rt 

Load Word Left LWL rt, offset (base) 
Sign-extend 16-btt offset and add to contents of register base to 
form address. 
Shift addressed word left so that addressed byte is leftmost byte 
ofa word. 
Merge bytes from memory with contents of register rt and load 
result into register rt. 

Load Word Right LWR rt, offset (base) 
Sign-extend 16-btt offset and add to contents of register base to 
form address. 
Shift addressed word right so that addressed byte is rightmost 
byte of a word. 
Merge bytes from memory with contents of register rt and load 
result into register rt. 

Store Byte SB rt. offset (base) 
Sign-extend 16-bit offset and add to contents of register base to 
form address. 
Store least signlflcant byte of register rt at addressed location. 

Store Halfword SH rt. off set (base) 
Sign-extend 16-btt offset and add to contents of register base to 
form address. 
Store least slgnlficanthalfword of register rt at addressed location. 

Store Word SW rt. offset (base) 
Sign-extend 16-bit offset and add to contents ofregister base to 
form address. 
Store least signlflcant word of register rt at addressed location. 

Store Word Left SWL rt. offset (base) 
Sign-extend 16-bit offset and add to contents of register base to 
form address. 
Shift contents ofregister rt right so thatleftmost byte of the word 
is in position of addressed byte. Store bytes containing original 
data into corresponding bytes at addressed byte. 

Store Word Right SWR rt. offset (base) 
Sign-extend 16-bit offset and add to contents of register base to 
form address. 
Shift contents of register rt left so that rightmost byte of the word 
is in position of addressed byte. Store bytes containing original 
data into corresponding bytes at addressed byte. 

4000tbl04 

Table 2.4. Load and Store Instructions 
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Computational Instructions 
Computational instructions perform arithmetic, logical and shift operations 

on values in registers. They occur in both R-type (both operands are registers) 
and I-type (one operand is a 16-bit immediate) formats. There are four 
categories of computational instructions: 

• ALU Immediate instructions are summarized in Table 2.5a. 

• 3-0perand Register-Type instructions are summarized in Table 2.5b. 

• Shift instructions are summarized in Table 2.5c. 

• Multiply /Divide instructions are summarized in Table 2.5d. 

Instruction Format and Description 

ADD Immediate ADDI rt, rs, immediate 
Add 16-bit sign-extended immediateto register rs and place 32-
bit result in register rt . Trap on two's complement overflow. 

ADD Immediate ADDIU rt. rs, immediate 
Unsigned Add 16-bit sign-extended immediateto register rs and place 32-

bit result in register rt . Do not trap on overflow. 

Set on Less Than SLTI rt, rs, immediate 
Immediate Compare 16-bit sign-extended immediate with register rs as 

signed 32-bit integers. Result = 1 if rs is less than immediate; 
otherwise result = 0. 
Place result in register rt. 

Set on Less Than SLTIU rt. rs. immediate 
Unsigned Immediate Compare 16-bit sign-extended immediate with register rs as 

unsigned 32-bit integers. Result = 1 if rs is less than immediate; 
otherwise result = 0. Place result in register rt. Do not trap on 
overflow. 

AND Immediate ANDI rt. rs, immediate 
Zero-extend 16-bit immediate, AND with contents of register rs 
and place result in register rt. 

OR Immediate ORI rt. rs, immediate 
Zero-extend 16-bit immediate, OR with contents of register rs 
and place result in register rt. 

Exclusive OR Immediate XORI rt, rs, immediate 
Zero-extend 16-bit immediate, exclusive OR with contents of 
register rs and place result in register rt. 

Load Upper Immediate LUI rt. immediate 
Shift 16-bit immediate left 16 bits. Set least significant 16 bits 
of word to zeroes. Store result in register rt. 

4000 tbl 05 

Table 2.5a. ALU Im.mediate Operations 
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Instruction Format and Description 

Add ADD rd, rs, rt 
Add contents of registers rs and rt and place 32-bit result in 
register rd. Trap on two's complement overflow. 

ADD Unsigned ADDU rd, rs, rt 
Add contents of registers rs and rt and place 32-bit result in 
register rd. Do not trap on overflow. 

Subtract SUB rd, rs, rt 
Subtract contents of registers rt and rs and place 32-bit result 
in register rd. Trap on two's complement overflow. 

Subtract Unsigned SUBU rd, rs, rt 
Subtract contents of registers rt and rs and place 32-bit result 
in register rd. Do not trap on overflow. 

Set on Less Than SLT rd, rs, rt 
Compare contents of register rt to register rs (as signed 32-bit 
integers). 
If register rs is less than rt. result = 1; otherwise, result = 0. 

Set on Less Than SLTU rd, rs, rt 
Unsigned Compare contents of register rt to register rs (as unsigned 32-

bit integers). If register rs is less than rt, result= l; otherwise, 
result= 0. 

AND AND rd, rs, rt 
Bit-wise AND contents of registers rs and rt and place result in 
register rd. 

OR OR rd, rs, rt 
Bit-wise OR contents of registers rs and rt and place result in 
register rd. 

Exclusive OR XOR rd, rs, rt 
Bit-wise Exclusive OR contents of registers rs and rt and place 
result in register rd. 

NOR NOR rd, rs, rt 
Bit-wise NOR contents of registers rs and rt and place result in 
register rd. 

4000 tbl 06 

Table 2.5b. Three Operand Register-Type Operations 

Instruction Format and Description 

Shift Left Logical SLL rd, rt, shamt 
Shift contents of register rt left by shamt bits, inserting zeroes 
into low order bits. Place 32-bit result in register rd. 

Shift Right Logical SRL rd, rt, shamt 
Shift contents ofregister rtrtght by shamtbits, inserting zeroes 
into high order bits. Place 32-bit result in register rd. 

Shift Right Arithmetic SRA rd, rt, shamt 
Shift contents of register rt right by shamt bits, sign -extending 
the high order bits. Place 32-bit result in register rd. 

Shift Left Logical SLLV rd, rt. rs 
Variable Shift contents of register rt left. Low-order 5 bits of register rs 

specify number of bits to shift. Insert zeroes into low order bits 
of rt and place 32-bit result in register rd. 

Shift Right Logical SRLV rd, rt, rs 
Variable Shift contents of register rt right. Low-order 5 bits of register rs 

specify number of bits to shift. Insert zeroes into high order bits 
of rt and place 32-bit result in register rd. 

Shift Right Arithmetic SRAV rd. rt, rs 
Variable Shift contents of register rt right. Low-order 5 bits of register rs 

specify number of bits to shift. Sign-extend the high order bits 
of rt and place 32-bit result in register rd. 

4000 tbl 07 

Table 2.5c. Shift Operations 
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Instruction Format and Description 

Multiply MULT rs, rt 
Multiply contents of registers rs and rt as twos complement 
values .. Place 64-bit result in special registers HI/LO 

Multiply Unsigned MULTU rs, rt 
Multiply contents ofregisters rs and rtas unsigned values. Place 
64-bit result in special registers HI/LO 

Divide DN rs, rt 
Divide contents of register rs by rt treating operands as twos 
complements values. Place 32-bit quotient in special register 
LO, and 32-bit remainder in HI. 

Divide Unsigned DNU rs, rt 
Divide contents of register rs by rt treating operands as unsigned 
values. Place 32-bit quotient in special register LO, and 32-bit 
remainder in HI. 

Move From HI MFHI rd 
Move contents of special register HI to register rd. 

Move From LO MFLOrd 
Move contents of special register LO to register rd. 

Move To HI MTHI rd 
Move contents of special register rd to special register HI. 

Move To LO M1LO rd 
Move contents of register rd to special register LO. 

4000 th! 08 

Table 2.5d. Multiply and Divide Operations 

Jump and Branch Instructions 
Jump and Branch instructions change the control flow of a program. All 

Jump and Branch instructions occur with a one instruction delay: that is, the 
instruction immediately following the jump or branch is always executed while 
the target instruction is being fetched, regardless of whether the branch is to 
be taken. 

An assembler has several possibilities for utilizing the branch delay slot 
productively: 

• It can insert an instruction that logically precedes the branch instruction 
in the delay slot since the instruction immediately following the jump/ 
branch effectively belongs to the block preceding the transfer instruction. 

• It can replicate the instruction that is the target of the branch/jump into 
the delay slot provided that no side-effects occur if the branch falls 
through. 

• It can move an instruction up from below the branch into the delay slot, 
provided that no side-effects occur if the branch is taken. 

• If no other instruction is available, it can insert a NOP instruction in the 
delay slot. 

TheJ-typeinstruction format is used for both jumps-and-links for subroutine 
calls. In this format, the 26-bit target address is shifted left two bits, and 
combined with high-order 4 bits of the current program counter to form a 32-
bit absolute address. 

The R-type instruction format which takes a 32-bit byte address contained 
in a register is used for returns, dispatches, and cross-page jumps. 

Branches have 16-bit offsets relative to the program counter (I-type). Jump
and-Link and Branch-and-Link instructions save a return address in register 
r31. 
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Table 2. 6a summarizes the R305 l family Jump instructions and Table 2. 6b 
summarizes the Branch instructions. 

Instruction Format and Description 

Jump J target 
Shift 26-bit target address left two bits, combine with high-
order 4 bits of PC and jump to address with a one instruction 
delay. 

Jump and Link JAL target 
Shift 26-bit target address left two bits, combine with high-
order 4 bits of PC and jump to address with a one instruction 
delay. Place address of instruction following delay slot in r31 
(link register). 

Jump Register JR rs 
Jump to address contained in register rs with a one instruction 
delay. 

Jump and Link Register JALR rs, rd 
Jump to address contained in register rs with a one instruction 
delay. Place address of instruction following delay slot in rd. 

4000 tbl 09 

Table 2.6a. Jump Instructions 

Instruction Format and Description 

Branch Target: All Branch instruction target addresses are 
computed as follows: Add address of instruction in delay slot 
and the 16-bit offset (shifted left two bits and sign-extended to 
32 bits). All branches occur with a delay of one instruction. 

Branch on Equal BEQ rs, rt, offset 
Branch to target address if register rs equal to rt 

Branch on Not Equal BNE rs, rt, off set 
Branch to target address if register rs not equal to rt 

Branch on Less than or BLEZ rs.offset 
Equal Zero Branch to target address if register rs less than or equal to 0. 

Branch on Greater Than BGTZ rs.offset 
Zero Branch to target address if register rs greater than 0. 

Branch on Less Than BLTZ rs.offset 
Zero Branch to target address if register rs less than 0. 

Branch on Greater than BGEZ rs.offset 
or Equal Zero Branch to target address if register rs greater than or equal to 

0. 

Branch on Less Than BL TZAL rs, off set 
Zero And Link Place address of instruction following delay slot in register r3 l 

(link register). Branch to target address if register rs less than 
0. 

Branch on greater than BGEZAL rs, offset 
or Equal Zero And Link Place address of instruction following delay slot in register r3 l 

(link register). Branch to target address if register rs is greater 
than or equal to 0. 

4000 tbl JO 

Table 2.6b. Branch Instructions 
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Special Instructions 
The two Special instructions let software initiate traps. They are always R

type. Table 2. 7 summarizes the Special instructions. 

Instruction Fonnat and Description 

System Call SY SC AIL 
Initiates system call trap, immediately transferring control to 
exception handler. 

Breakpoint BREAK 
Initiates breakpoint trap, immediately transferring control to 
exception handler. 

4000 tbl 11 

Table 2.7. Special Instructions 

Co-processor Instructions 
Co-processor instructions perform operations in the co-processors. Co

processor Loads and Stores are I-type. Co-processor computational instructions 
have co-processor-dependent formats (see co-processor manuals). For the 
R305 l family, the BCzT /F instructions are used to test the state of the BrCond 
inputs. Outside of these operations, the only co-processor operations of 
relevance for the R304 l are those targeted at the on-chip CPO. 

Table 2.8 summarizes the Co-processor Instruction Set of the MIPS ISA. 

Instruction Fonnat and Description 

Load Word to LWCz rt. offset (base) 
Co-processor Sign-extend 16-bit offset and add to base to form address. Load 

contents of addressed word into co-processor register rt of co-
processor unit z. 

Store Word from SWCz rt, off set (base) 
Co-processor Sign-extend 16-bit offset and add to base to form address. Store 

contents of co-processor register rt from co-processor unit z at 
addressed memory word. 

Move To Co-processor MTCz rt. rd 
Move contents of CPU register rtinto co-processor register rd of 
co-processor unit z. 

Move from Co-processor MFCz rt.rd 
Move contents of co-processorregister rdfrom co-processor unit 
z to CPU register rt 

Move Control To CTCz rt.rd 
Co-processor Move contents of CPU register rtinto co-processor control register 

rd of co-processor unit z. 

Move Control From CFCz rt.rd 
Co-processor Move contents of control register rd of co-processor unit z into 

CPU register rt 
Co-processor Operation COPz co.fun 

Co-processor z performs an operation. The state of the R305 l I 
52 is not modified by a co-processor operation. 

Branch on Co-processor BCzT offset 
zTrue Compute a branch target address by adding address of 

instruction in the 16-bit offset (shifted left two bits and sign-
extended to 32-bits). Branch to the target address (with a delay 
of one instruction) if co-processor z's condition line is true. 

Branch on Co-processor BCzF offset 
z False Compute a branch target address by adding address of 

instruction in the 16-bit offset (shifted left two bits and sign-
extended to 32-bits). Branch to the target address (with a delay 
of one instruction) if co-processor z's condition line is false. 

4000 tbl 12 

Table 2.8. Co-Processor Operations 
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System Control Co-processor (CPO) Instructions 
Co-processor 0 instructions perform operations on the System Control Co

processor (CPO) registers to manipulate the memory management, bus 
programmability, timer, and exception handling facilities of the processor. 
Memory management is discussed in Chapter 4; bus programmability and 
timer features are described in Chapter 5; and exception handling is covered 
in detail in Chapter 6. 

Table 2.9 summarizes the instructions available to work with CPO. 

Instruction Format and Description 
Move To CPO MTCO rt, rd 

Store contents of CPU register rt into register rd of CPO. This 
follows the convention of store operations. 

Move From CPO MFCO rt, rd 
Load CPU register rt with contents of CPO register rd. 

Read Indexed TLB Entry TLBRI 
Load EntryHiandEntryI..o registers with TLB entry pointed at by 
Index register. 

Write Indexed TLB Entry TLBWII 
Load TLB entry pointed at by Index register with contents of 
EntryHi and EntryI..o registers. 

Write Random TLB Entry TLBWRt 
Load TLB entry pointed at by Random register with contents of 
EntryHi and EntryI..o registers. 

Probe TLB for Matching TLBPI 
Entry Load Index register with address of TLB entry whose contents 

match EntryHi and EntryI..o. If no TLB entry matches, set high-
order bit of Index register. 

Restore From Exception RFE 
Restore previous interrupt mask and mode bits of status register 
into current status bits. Restore old status bits into previous 
status bits. 

4000 tbl 13 
'These operations are undefined/ reserved in the R304 L which does not include an on-chip TLB. 

Table 2.9. System Control Co-Processor (CPO) Operations 

R3051 FAMILY OPCODE ENCODING 
Table 2.10 shows the opcode encoding for the MIPS architecture. 

2-20 

INSTRUCTION SET ARCHITECTURE 



INSTRUCTION SET ARCHITECTURE 

31..29 

0 

1 

2 

3 

4 

5 

6 

7 

5 .. 3 

0 

1 

2 

3 

4 

5 

6 

7 

20 .. 19 

0 

1 

2 

3 

4 

25 .. 24 

0 

1 

2 

3 

20 .. 19 

0 

1 

2 

3 

4 .. 3 

0 

1 

2 

3 

28 .. 26 

0 

SPECIAL 

ADDI 

COPO 

t 
LB 

SB 

LWCO 

swco 

2 .. 0 

0 

SLL 

JR 

MFHI 

MULT 

ADD 

t 
t 
t 

18 .. 16 

0 

BLTZ 

BL'IZAL 

23 .. 21 

0 

MF 

BC 

18 .. 16 

0 

2 .. 0 

1 

BCOND 

ADDIU 

COPl 

t 
LH 

SH 

LWCl 

SWCl 

1 

t 
JALR 

MTI-11 

MULTU 

ADDU 

t 
t 
t 

1 

BGEZ 

BGEZAL 

1 

t 

1 

OPCODE 

2 3 

J 

SLTI 

COP2 

t 
LWL 

SWL 

LWC2 

SWC2 

2 

SRL 

t 
MFLO 

DIV 

SUB 

SLT 

t 
t 

2 

2 

CF 

t 

JAL 

SLTIU 

COP3 

t 
LW 

SW 

LWC3 

SWC3 

SPECIAL 

3 

SRA 

t 
M'ILO 

DIVU 

SUBU 

SLTU 

t 
t 

BCOND 

3 

COPz 

3 

t 

4 

BEQ 

ANDI 

t 
t 

LBU 

t 
t 
t 

4 

SLLV 

SY SC ALL 

t 
t 

AND 

t 
t 
t 

4 

4 

MT 

t 
Co-Processor Specific 

Operations 

2 3 4 

CPO 

CHAPTER2 

5 6 7 

BNE BLEZ BGTZ 

ORI XORI LUI 

t t t 
t t t 

LHU LWR t 
t SWR t 
t t t 
t t t 

5 6 7 

t SRLV SRAV 

BREAK t t 
t t t 
t t t 

OR XOR NOR 

t t t 
t t t 
t t t 

5 6 7 

5 6 7 

CT 

t t t 

5 6 7 

0 1 2 3 4 5 6 7 

4000 tbl 14 

Table 2.10. Opcode Encoding 
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INTRODUCTION 
The R305 l family achieves its high standard of performance by combining 

a fast, efficient execution engine (that of the R3000A) with high-memory 
bandwidth, supplied from its large internal instruction and data caches. These 
caches insure that the majority of processor execution occurs at the rate of one 
instruction per clock cycle, and serve to decouple the high-speed execution 
engine from slower, external memory resources. 

Portions of this chapter review the fundamentals of general cache operation, 
and may be skipped by readers already familiar with these concepts. This 
chapter also discusses the particular organization of the on-chip caches of the 
R304 l. However, as these caches are managed by the R304 l itself, the system 
designer does not typically need to be explicitly aware of this structure. 

FUNDAMENTALS OF CACHE OPERATION 
High-performance microprocessor-based systems frequently borrow from 

computer architecture principles long used in mini-computers and mainframes. 
These principles include instruction execution pipelining (discussed in Chapter 
2) and instruction and data caching. 

A cache is a high-speed memory store which contains the instructions and 
data most likely to be needed by the processor. That is, rather than implement 
the entire memory system with zero wait-state memory devices, a small zero 
wait-state memory is implemented. This memory, called a cache, then 
contains the instructions/ data most likely to be referenced by the processor. 
If indeed the processor issues a reference to an item contained in the cache, 
then a zero wait-state access is made; if the reference is not contained in the 
cache, then the longer latency associated with the true processor memory is 
incurred. The processor will achieve its maximum performance as long as its 
references "hit" (are resident) in the cache. 

Caches rely on the principles of locality of software. These principles state 
that when a data/instruction element is used by a processor, it and its close 
neighbors are likely to be used again soon. The cache is then constructed to 
keep a copy of instructions and data referenced by the processor, so that 
subsequent references occur with zero wait-states. 

Since the cache is typically many orders of magnitude smaller than main 
memory or virtual address space, each cache element must contain both the 
data (or instruction) required by the processor, as well as information which 
can be used to determine whether a cache "hit" occurs. This information, called 
the cache "TAG", is typically some or all of the address in main memory of the 
data item contained in that cache element as well as a "Valid" flag for that cache 
element. Thus, when the processor issues an address for a reference, the cache 
controller compares the TAG with the processor address to determine whether 
a hit occurs. 

To minimize cost while maintaining high-performance, the R305 l family, 
including the R304 l, integrate a reasonable amount of cache internal to the 
chip, eliminating the cost and complexity of external caches. 
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R3041 CACHE ORGANIZATION 
There are a number of algorithms possible for managing a processor cache. 

This section describes the cache organization of the R304 l. 

Basic Cache Operation 
When the processor makes a reference, its 32-bit internal physical address 

bus contains the address it desires. The processor address bus is split into two 
parts; the low-order address bits specify a location in the cache to access, and 
the remaining high-order address bits contain the value expected from the 
cache TAG. Thus, both the instruction/ data element and the cache TAG are 
fetched simultaneously from the cache memory. If the value read from the TAG 
memories is the same as the high-order address bits, a cache hit occurs and 
the processor is allowed to operate on the instruction/ data element retrieved. 
Otherwise, a cache miss is processed. This operation is illustrated in Figure 
3.1. 

PIO Virtual Address 

Execution 32 
Core .--......... _____ ___. __ ....., 

Virtual ~ Physical 
Address Translation 

Physical 
32 Address Present? 

PIO Match? 
Valid? 

TLB Miss 
Compare? 

Cache Hit ----------1 

Cache 
Index 

Tag 

Cache 
Tag 

Valid 

Cache 
Data 

Data .-----------------'--'>-------~ 

Figure 3.1. Cache Line Selection 

To maximize performance, the R304 l implements a Harvard Architecture 
caching strategy. That is, there are two separate caches: one contains 
instructions (operations), and the other contains data (operands). By separating 
the caches, higher overall bandwidth to the execution core is achieved, and 
thus higher performance is realized. 

Memory Address to Cache Location Mapping 
The R3041 caches are direct-mapped. That is, each main memory address 

can be mapped to (contained in) only one particular cache location. This is 
different from set-associative mappings, where each main memory location 
has multiple candidates for address mapping. 

This organization, coupled with the relatively large cache sizes resident on 
the R304 l, achieve extremely high hit rates while maximizing speed and 
minimizing complexity and power consumption. 
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Cache Addressing 
nie address presented to the cache and cache controller is that of the 

physical (main) memory element to be accessed. niat is, the virtual address 
to physical address translation is performed by the memory management unit 
prior to the processor issuing its reference address. 

Some microprocessors utilize virtual indexing in the cache, where the 
processor virtual address is used to specify the cache element to be retrieved. 
iliis type of cache structure complicates software and slows embedded 
applications: 

• When the processor performs a context switch, a virtually indexed cache 
must be flushed. iliis is because two different tasks can use the same 
virtual address but mean totally different physical addresses. iliis cache 
flushing for a large cache dramatically slows context switch performance. 

• Software must be aware of and specifically manage against "alias" 
problems. An alias occurs when two different virtual addresses correspond 
to the same physical address. If that occurs in a virtually indexed cache, 
then the same data element may be present in two different cache 
locations. If one virtual address is used to change the value of that 
memory location, and a different address used to read it later, then the 
second reference will not get the current value of that data item. 

By providing for the virtual to physical address translation in the processor 
pipeline, physical cache addressing is used with no inherent speed penalty. 

Write Policy 
nie R304 l utilizes a write through cache. niat is, whenever the processor 

performs a write operation to memory, then both the cache (data and TAG 
fields) and main memory are written. If the reference is uncacheable, then only 
main memory is written. 

To minimize the delays associated with updating main memory, the R3041 
contains a 4 element write buffer. nie write buffer captures the target address 
and data value in a single processor clock cycle, and subsequently performs the 
main memory write at its own, slower rate. nie write buffer can FIFO up to 4 
pending writes, as described in a later chapter. 

Partial Word Writes 
In the case of partial word writes, the R304 l operates by performing a read

modify-write sequence in the cache: the store target address is used to perform 
a cache fetch: if the cache "hits", then the partial word data is merged with the 
cache and the cache is updated. If the cache read results in a hit, the memory 
interface will see the full word write, rather than the partial word. iliis allows 
the designer to observe the actual activity in the eon-chip caches. 

If the cache lookup of a partial word write "misses" in the cache, then only 
main memory is updated. 

Instruction Cache Line Size 
nie "line size" of a cache refers to the number of cache elements mapped by 

a single TAG element. In the R304 l, the instruction cache line size is 16 bytes, 
or four words. 

iliis means that each cache line contains four adjacent words from main 
memory. In order to accommodate this, an instruction cache miss is processed 
by performing a quad word (block) read from the main memory, as discussed 
in a later chapter. iliis insures that a cache line contains four adjacent 
memory locations. Note that since the instruction cache is typically never 
written into directly by user software, the larger line size is permissible. If 
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software does explicitly store into the instruction cache (perform store operations 
with the caches "swapped"), the programmer must insure that either the 
written lines are left invalidated, or that they contain four adjacent instructions. 

Block refill uses the principle of locality of reference. Since instructions 
typically execute sequentially, there is a high probability that the instruction 
address immediately after the current instruction will be the next instruction. 
Block refill then brings into the cache those instructions immediately near the 
current instruction, resulting in a higher instruction cache hit rate. 

Block refill also takes advantage of the difference between memory latency 
and memory bandwidth. Memory latency refers to the amount of time required 
to perform a processor request, while bandwidth refers to the rate at which 
subsequent transfers can occur. Factors that affect memory latency include 
address decoding, bus arbitration, and memory pre-charge requirements; 
factors which maximize bandwidth include the use of page mode or nibble 
mode accesses, memory interleaving, and burst memory devices. 

The processing of a quad word read is discussed in a later chapter; however, 
it is worth noting that the R304 l can support either true burst accesses or can 
utilize a simpler, slower memory protocol for quad word reads. Also note that 
the variable bus sizing capability of the R304 l means that block reads can 
occur from 8- or 16-bit memory systems. This includes the case of instruction 
fetches; the bus interface unit will automatically translate the block read 
protocol into a larger number of sub-word reads, depending on the memory 
width programmed for the target memory location. 

Finally, note that the R304 l performs "streaming" during instruction cache 
refill. That is, the processor will simultaneously refill the instruction cache and 
execute the incoming instructions. Streaming contributes an average of 5% of 
performance. 

Data Cache Line Size 
The data cache line size is different from that of the instruction cache, based 

on differences in their use. The data cache is organized as a line size of one word 
(four bytes). 

This is optimal for the write policy of the data cache: since an individual 
cache word may be written by a software store instruction, the cache controller 
cannot guarantee that four adjacent words in the cache are from adjacent 
memory locations. Thus each word is individually tagged. The partial word 
writes Oess than 4 bytes) are handled as a read-modify-write sequence, as 
described above. 

Although the data cache line size is one word, the system may elect to 
perform data cache updates using quad word reads (block refill). The 
performance of the data cache update options can be simulated using 
Cache-3041: some systems may achieve higher performance through the use 
of data cache burst refill. No "streaming" occurs on data cache refills. 

Summary 
The on-chip caches of the R305 l family can be thought of as constructed 

from discrete devices around the R3000A. Figure 3.2 shows the block diagram 
of the cache interface for the R304 l. 
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Figure 3.2. R3041 Execution Core and Cache Interface 

CACHE OPERATION 

4000drw13 

The operation of the on-chip caches is very straightforward, and is 
automatically handled by the processor. 
Basic Cache Fetch Operation 

As with the R3000A/R3500, the R305 l family can access both the instruction 
and data caches in a single clock cycle, resulting in high bandwidth to the 
execution core. It does this by time multiplexing the cycle in the cache 
interface: 

• During the first phase, a data cache address is presented, and a previous 
instruction cache read is completed. 

• During the second phase, the data cache is read into the processor (or 
written by the processor). Also, the instruction cache is addressed with 
the next desired instruction. 

• During the first phase of the next cycle, the instruction fetch begun in the 
previous phase is completed and a new data transaction is initiated. 

This operation is illustrated in Figure 3.3. As long as the processor hits in 
the cache, and no internal stall conditions are encountered, it will continue to 
execute run cycles. A run cycle is defined to be a clock cycle in which forward 
progress in the processor pipeline occurs. Note that data in the cache is 
organized into 32-bit words, regardless of the width associated with main
memory from which the datum was taken. Thus, cache hits can retrieve a full 
32-bits in a single cycle, minimizing the performance impact of the narrower 
memory system. 
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Figure 3.3. Phased Access of Instruction and Data Caches 

Cache Miss Processing 
In the case of a cache miss (due to either a failed tag comparison or because 

the processor issued an uncacheable reference), the main memory interface 
(discussed in a later chapter) is invoked. If, during a given clock cycle, both the 
instruction and data cache miss, the data reference will be resolved before the 
instruction cache miss is processed. 

While the processor is waiting for a cache miss to be processed, it will enter 
stall cycles until the bus interface unit indicates that it has obtained the 
necessary data. 

When the bus interface unit returns the data from main memory, it is 
simultaneously brought to the execution unit and written into the on-chip 
caches. This is performed in a processor .ftxup cycle. 

During a fixup cycle, the processor re-issues the cache access that failed; 
this occurs by having the processor re-address the instruction and data 
caches, so that the data may be written into the caches. If the cache miss was 
due to an uncacheable reference, the write is not performed, although a fixup 
cycle does occur. 

Instruction Streaming 
A special feature of the R305 l family is utilized when performing block reads 

for instruction cache misses. This process is called instruction streaming. 
Instruction streaming is simultaneous instruction execution and cache refill. 

As the block is brought in, the processor refills the instruction cache. 
Execution of the instructions within the block begins when the instruction 
corresponding to the cache miss is returned by the bus interface unit to the 
execution core. Execution continues until the end of the block is reached (in 
which case normal execution is resumed), or until some event forces the 
processor core to discontinue execution of that stream. These events include: 

• Taken branches 
• Data cache miss 
• Internal stalls (TLB miss, multiply I divide interlock) 
• Exceptions 
When one of these events occur, the processor re-enters simple cache refill 

until the rest of the block has been written into the cache. 
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CACHEABLE REFERENCES 
Chapter 4 on memory management explains how the processor determines 

whether a particular reference (either instruction or data) is to a memory 
location that may reside in the cache. The fundamental mechanism is that 
certain virtual addresses are considered to be "cacheable". If the processor 
attempts to make a reference to a cacheable address, then it will employ its 
cache management protocol through that reference. Otherwise, the cache will 
be bypassed, and the execution engine core will directly communicate with the 
bus interface unit to process the reference. 

Whether a given reference should be cacheable or not depends very much 
on the application, and on the target of the reference. Generally, I/O devices 
should be referenced as uncacheable data; for example, if software was polling 
a status register, and that register was cached, then it would never see the 
I/O device update the status (note that the compiler suite supports the 
"volatile" data type to insure that the I/O device status register data in this case 
never gets allocated into an internal register). 

There may be other instances where the uncacheable attribute is appropriate. 
For example, software which directly manipulates or flushes the caches can 
not be cached; similarly, boot software can not rely on the state of the caches, 
and thus must operate uncached at least until the caches are initialized. 

SOFTWARE DIRECTED CACHE OPERATIONS 
In order to support certain system requirements, the R305 l family provides 

mechanisms for software to explicitly manipulate the caches. These mechanisms 
support diagnostics, cache and memory sizing, and cache flushing. In general, 
these mechanisms are enabled/ disabled through the use of the Status Register 
in CPO. 

The primary mechanisms for supporting these operations are cache swapping 
and cache isolation. Cache swapping forces the processor to use the data cache 
as an instruction cache, and vice versa. It is useful for allowing the processor 
to issue store instructions which cause the instruction cache to be written. 
Cache isolation causes the current data cache to be "isolated" from main 
memory; store operations do not cause main memory to be written, and all load 
operations "hit" in the data cache. 

These mechanisms are enabled through the use of the "IsC" (Isolate Cache) 
and "SwC" (Swap Cache) bits of the status register, which resides in the on-chip 
System Control Co-Processor (CPO). The 5 instructions which immediately 
precede and succeed these operations must not be cacheable, so that the 
actual swapping/isolation of the cache does not disrupt operation. 

Cache Sizing 
It is possible for software to determine the amount of cache resident on any 

given R305 l family chip (note that the R304 l, R305 l, R3052, and R308 l each 
feature differing amounts of cache on chip). Having software determine the size 
of the cache at boot time, rather than building static values into the software, 
allows for maximum flexibility in interchanging various members of the R305 l 
family, including future devices. 

Cache sizing in an R305 l family CPU is performed much like traditional 
memory sizing algorithms, but with the cache isolated. This avoids side-effects 
in memory from the sizing algorithm, and allows the software to use the "Cache 
Miss" bit of the status register in the sizing algorithm. 
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To determine the size of the instruction cache, software should: 

1: Swap Caches (not needed for D-Cache sizing) 
2: Isolate Caches 
3: Write a value at location 8000_0000 
4: Write a value at location 8000_0200 (8000_0000 + 512B) 

Read location 8000_0000. 
Examine the CM (Cache_Miss) bit of the status register; if it indicates a 
cache miss, then the cache is 5 l 2B; otherwise, the cache is lkB or larger. 

5: Write a value at location 8000_0400 (8000_0000 + lkB) 
Read location 8000_0000. 
Examine the CM (Cache_Miss) bit of the status register; if it indicates a 
cache miss, then the cache is lkB; otherwise, the cache is 2kB or larger. 

6. etc ... 

Of course a more generalized algorithm could be developed to determine the 
cache size; this may be desirable for compatibility with discrete R3000A/ 
R3500 systems or otherR3051 family members. However, any algorithm will 
probably include the Swap and Isolate of the Instruction Cache, and the use 
of the Cache Miss bit. Sizing the data cache is done with a similar algorithm, 
although the caches need not be swapped, and smaller cache sizes need to be 
considered. 

Note that this software should operate as uncached. Once this algorithm is 
done, software should return the caches to their normal state by performing 
either a complete cache flush or an invalidate of those cache lines modified by 
the sizing algorithm. 

Cache Flushing 
Cache flushing refers to the act of invalidating (indicating a line does not 

have valid contents) lines within either the instruction or data caches. 
Flushing must be performed before the caches are first used as real caches, and 
might also be performed during main memory page swapping or at certain 
context switches (note that the R305 l family implements physically addressed 
caches, so that cache flushing at context switch time is not generally required). 

Tue basic concept behind cache flushing is to have the "Valid" bit of each 
cache line set to indicate invalid. This is done in the R305 l family by having 
the cache isolated, and then writing a partial word quantity into the current 
data cache. Under these conditions, the CPU will negate the "Valid" bit of the 
target cache line. 

Again, this software should operate as uncached. To flush the data cache: 

1: Isolate Caches 
2: Perform a byte write every 4 bytes, starting at location 0, until 128 such 

writes have been performed (128 in the R3041, more for other R3051 
family members). 

3: Return the data cache to its normal state by clearing the IsC bit. 
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To flush the instruction cache: 

1: Swap Caches 
2: Isolate Caches 

CHAPTER3 

3: Perform a byte write every 16 bytes (based on the instruction cache line 
size of 16 bytes). This should be done until each line (128 lines in the 
R3041, more for other R3051 family members) have been invalidated. 
Note that treating the R3041 as if it had larger on-chip caches, and 
flushing/invalidating more than 128 lines is acceptable though less 
efficient. 

4: Return the caches to their normal state (unswapped and not isolated). 

To minimize the execution time of the cache flush, this software should 
probably use an "unrolled" loop. That is, rather than have one iteration of the 
loop invalidate only one cache line, each iteration should invalidate multiple 
lines. This spreads the overhead of the loop flow control over more cache line 
invalidates, thus reducing execution time. 

Also, of course it is preferable to use the cache sizing algorithm described 
earlier to determine the number of lines to be flushed. 

Forcing Data into the Caches 
Using these basic tools, it is possible to have software directly place values 

into the caches. When combined with appropriate memory management 
techniques, this could be used to "lock" values into the on-chip caches, by 
insuring that software does not issue other cacheable address references 
which may displace these locked values. 

In order to force values into a cache, the cache should be Isolated. If software 
is trying to write instructions into the instruction cache, then the caches 
should also be swapped. 

When forcing values into the instruction cache, software must take care with 
regards to the line size of the instruction cache. Specifically, a single TAG and 
Valid field describe four words in the instruction cache; software must then 
insure that any instruction cache line tagged as Valid actually contains valid 
data from all four words of the block. 

SUMMARY 
The on-chip caches of the R305 l family are key to the inherent performance 

of the processor. The R305 l family design, however. does not require the 
system designer (either software or hardware) to explicitly manage this 
important resource, other than to correctly choose virtual addresses which 
may or may not be cached, and to flush the caches at system boot. This 
contributes to both the simplicity and performance of an R304 l based system. 
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INTRODUCTION 
The R304 l provides the same basic virtual to physical address translation 

as the rest of the R3051 family base versions (the R3051, R3052, and R3081). 
These devices provide segment-based virtual to physical address translation, 
and support the segregation of kernel and user tasks without requiring 
extensive virtual page management. 

The extended versions of the R305 l family (the R3051E, R3052E, and 
R3081E) provide a full featured memory management unit (MMU) identical to 
the MMU structure of the R3000Aand R3500. The extended MMU uses an on
chip translation lookaside buffer (TLB) and dedicated registers in CPO to 
provide for software management of page tables. There is no Extended 
Architecture version of the R304 l. 

This chapter describes the operating states of the processor (kernel and 
user), and describes the virtual to physical address translation mechanisms 
provided in the R304 l. 

VIRTUAL MEMORY IN THE R3051 FAMILY 
There are two primary purposes of the memory management capabilities of 

the R3051 family. 
• Various areas of main memory can have individual sets of attributes 

associated with them. For example, some segments may be indicated as 
requiring kernel status to be accessed; others may have cacheable or 
uncacheable attributes. The virtual to physical address translation 
establishes the rules appropriate for a given virtual address. The R304 l 
memory manager provides for these mechanisms, without requiring the 
use of a TLB. 

• The virtual memory system can be used to logically expand the physical 
memory space of the processor, by translating addresses composed in a 
large virtual address space into the physical address space of the system. 
This is particularly important in applications where software may not be 
explicitly aware of the hardware resources of the processor system, and 
includes applications such as X-Window display systems. These types of 
applications are better served by the "E" (extended architecture) versions 
of the R3051 family. 

Figure 4.1 shows the format of an R305 l family virtual address. The most 
significant 20 bits of the 32-bit virtual address are called the virtual page 
number, or VPN. In the extended architecture versions, the VPN allows 
mapping of virtual addresses based on 4kB pages; in the base versions (and 
thus in the R304 l), only the three highest bits (segment number) are involved 
in the virtual to physical address translation. 

31 12 11 0 

I I I I VPN I Offset I 
31 30 29 20 12 

I 
0 x x kuseg 
1 0 0 ksegO 
1 0 1 kseg1 
1 1 x kseg2 

4000drw15 

Figure 4.1. Virtual Address Format 
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The three most significant bits of the virtual address identify which virtual 
address segment the processor is currently referencing; these segments have 
associated with them the mapping algorithm to be employed, and whether 
virtual addresses in that segment may reside in the cache. The translation of 
the virtual address to an equivalent privilege level/ segment is the same for the 
base and extended versions of the architecture. In addition. the R304 l uses the 
high-order address bits of the physical address to determine which memory 
region is being accessed; this information, along with the contents of the CPO 
PortSize register, determine the width of the memory system being addressed 
in a given memory transfer. 

PRIVILEGE STATES 
The R304 l provides for two unique privilege states: the "Kernel" mode, which 

is analogous to the "supervisory" mode provided in many systems, and the 
"User" mode, where non-supervisory programs are executed. Kernel mode is 
entered whenever the processor detects an exception; when a Restore From 
Exception (RFE) instruction is executed, the processor will return either to its 
previous privilege mode or to User mode, depending on the state of the machine 
and when the exception was detected. 

User Mode Virtual Addressing 
While the processor is operating in User mode, a single, uniform virtual 

address space (kuseg) of 2GB is available for Users. All valid user-mode virtual 
addresses have the most significant bit of the virtual address cleared to 0. An 
attempt to reference a Kernel address (most significant bit of the virtual 
address set to I) while in User mode will cause an Address Error Exception (see 
chapter 6). Kuseg begins at virtual address 0 and extends linearly for 2GB. 
This segment is typically used to hold user code and data, and the current user 
processes. 

Also note that the physical address space corresponding to kuseg is 
independent of the physical address spaces of the various kernel only 
segments. Thus, systems can be constructed which preclude user tasks from 
affecting kernel memory. On the other hand, simple systems can, by virtue of 
the address decode, compress the mapping into a single address region. 

Kemel Mode Virtual Addressing 
When the processor is operating in Kernel mode, four distinct virtual 

address segments are simultaneously available. The segments are: 
• kuseg. The kernel may assert the same virtual address as a user process, 

and have the same virtual to physical address translation performed for 
it as the translation for the user task. This facilitates the kernel having 
direct access to user memory regions. The virtual to physical address 
translation, including the Port Size attributes, is identical with User mode 
addressing to this segment. 

• ksegO. KsegO is a 512MB segment, beginning at virtual address 
Ox8000_0000. This segment is always translated to a linear 512MB 
region of the physical address space starting at physical address 0. All 
references through this segment are cacheable. 
When the most significant three bits of the virtual address are "I 00", the 
virtual address resides in ksegO. The physical address is constructed by 
replacing these three bits of the virtual address with the value "000". As 
these references are cacheable, ksegOis typically used for kernel executable 
code and some kernel data. 

• ksegl. Ksegl is also a 512MB segment, beginning at virtual address 
OxaOOO_OOOO. This segment is also translated directly to the 512MB 
physical address space starting at address 0. All references through this 
segment are uncacheable. 
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When the most significant three bits of the virtual address are "l 0 l", the 
virtual address resides in ksegl. The physical address is constructed by 
replacing these three bits of the virtual address with the value "000". 
Unlike ksegO, references through ksegl are not cacheable. This segment 
is typically used for 1/0 registers, boot ROM code, and operating system 
data areas such as disk buffers. 

• kseg2. This segment is analogous to kuseg, but is accessible only from 
kernel mode. 11lis segment contains lGB of linear addresses, beginning 
at virtual address OxcOOO_OOOO. As with kuseg, the virtual to physical 
address translation depends on whether the processor is a base or 
extended architecture version. 
When the two most significant bits of the virtual address are "11", the 
virtual address resides in the 1024MB segment kseg2. The virtual to 
physical translation is done either through the TLB (extended versions of 
the processor) or through a direct segment mapping (base versions). An 
operating system would typically use this segment for stacks, per-process 
data that must be re-mapped at context switch, user page tables, and for 
some dynamically allocated data areas. 

Base versions of the R305 l family (including the R304 l) are distinguishable 
from extended versions in software by examining the TS (TLB Shutdown) bit of 
the Status Register after reset, before the TLB is used. If the TS bit is set (1) 
immediately after reset, indicating that the TLB is non-functional, then the 
current processor is a base version of the architecture. If the TS bit is cleared 
after reset, then the software is executing on an extended architecture version 
of the processor. 

The PRid register (described in chapter 6) can be used to distinguish the 
R304 l (with its variable bus sizing features, among others) from other 
members of the R305 l family. 

R3041 ADDRESS TRANSLATION 
Processors which only implement the base versions of memory management 

perform direct segment mapping of virtual to physical addresses, as illustrated 
in Figure 4.2. Thus, the mapping of kuseg and kseg2 is performed as follows: 

• Kuseg is always translated to a contiguous 2GB region of the physical 
address space, beginning at location Ox4000_0000. That is, the value 
"00" in the two highest order bits of the virtual address space are 
translated to the value "01", and "01" is translated to "10", with the 
remaining 30 bits of the virtual address unchanged. 
Kuseg is broken into 4 equal sub-regions to support the variable width 
bus interface capability of the R304 l. The 2GB of Kuseg is divided into 
4 equal 512MB regions (Kuseg[a:d]), whose port widths are indicated in 
the CPO Port Size register. Thus, Kuseg can be composed of a mix of 
memory spaces, of varying widths, independent from the widths of the 
kernel address space. 

• Virtual addresses in kseg2 are directly output as physical addresses; that 
is, references to kseg2 occur with the physical address unchanged from 
the virtual address. The 1 MB kseg2 physical address space is divided into 
two equally sized 512MB subregions, whose memory width attributes are 
controlled by the CPO PortSize register. 

• Virtual addresses in ksegO and kseg 1 are both translated identically to the 
same physical address region. This 512MB region is subdivided into 8 
equal 64MB sub-spaces, whose memory widths are independently 
selectable in the CPO Port Size register. This allows the various kernel 
regions to have varying port widths, independent of kuseg. 
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Oxffffffff 

OxcOOOOOOO 

OxaOOOOOOO 

OxBOOOOOOO 

OxOOOOOOOO 

Kernel Cached 

(kseg2) 

Kernel Uncached 

(kseg1) 

Kernel Cached 

(ksegO) 

Kernel/User 
Cached 

(kuseg) 

_ .. ... 

1--

~ ....--

I-t--+ 

Kernel Cached 
Tasks 

Kernel/User 
Cached 
Tasks 

Inaccessible 

Kernel Boot 
and 1/0 

1024 MB 

2048 MB 

512 MB 

512 MB 

4000 drw 16 

Figure 4.2. Virtual to Physical Address Translation in Base Versions 

The base versions of the architecture allow kernel software to be protected 
from user mode accesses, withoutrequiringvirtual page management software. 
User references to kernel virtual address will result in an address error 
exception. 

Note that the reserved areas of the virtual address space shown in figure 4.2 
are translated to physical addresses identically with the remainder of their 
virtual segment; they are indicated as reserved to insure compatibility with 
future family members which may incorporate on-chip resources in these 
address spaces. 

Some systems may elect to protect external physical memory as well. That 
is, the system may include distinct memory devices which can only be accessed 
from kernel mode. The physical address output determines whether the 
reference occurred from kernel or user mode, according to Table 4.1. 

Physical Address (31:29) Virtual Address Segment 

'000' KsegO or Ksegl 

'001' Inaccessible 

'Olx' Kuseg 

'IOx' Kuseg 

'llx' Kseg2 
4000 tbl 15 

Table 4.1. Virtual and Physical Address Relationships in Base Versions 

Thus, some systems may wish to limit accesses to some memory or 1/0 
devices to those physical address bits which correspond to kernel mode virtual 
addresses. 

Alternately, some systems maywish to have the kernel and user tasks share 
common areas of memory. Those systems could choose to have their address 
decoder ignore the high-order physical address bits, and compress all of 
memory into the lower region of physical memory. The high-order physical 
address bits may be useful as privilege mode status outputs in these systems. 
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SUMMARY 
The R305 l family provides two models of memory management: a very 

simple, segment based mapping, found in the base versions of the architecture, 
and a more sophisticated, TLB-based page mapping scheme, present in the 
extended versions of the architecture. Each scheme has advantages to 
different applications. The R304 l only implements the base version address 
translation, but in addition, subdivides each segment into sub-regions. Each 
sub-region may be declared, via the CPO Port Size register, as having either an 
8-, 16-, or 32-bit memory interface. The Bus Interface Unit of the R3041 
dynamically translates processor core references to the appropriate port width, 
making the actual software independent of the port width. Both instruction 
and data fetches can be transferred between memory and the CPU, regardless 
of the memory port width. 
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CHAPTER5 

The R304 l bus interface has been designed to minimize system cost by 
providing a simple, flexible bus interface. In addition, the bus interface has 
been designed to allow the R304 l, R305 l, R3052, and R308 l to be easily 
interchanged in a given design. 

To allow the system designer to enjoy maximum flexibility, the bus interface 
of the R304 l features a number of programmable options. These options are 
controlled by various registers of the on-chip Co-Processor 0. This chapter 
describes those registers and their impact on the bus interface. 

CO-PROCESSOR 0 BUS INTERFACE CONTROL 
Figure 5. 1 illustrates the co-processor 0 registers used to control various 

actions of the bus interface. Note that the MIPS architecture allows the register 
set of CPO to vary by implementation; software can easily identify the R304 l 
(and its CPO registers) from the R305 l and R308 l by reading the PRid from 
CPO. 

The fields of these registers, and their impact on the bus interface, are 
described below. Note that software should allow a minimum of 10 instruction 
cycles for changes to these registers to be reflected in subsequent bus 
transactions. 

Used for CPU Identification Used for Interface Control Used with Exception Processing 

PRID $15 Iii ~ll~i~~lililll STATUS $12 

CAUSE$13 

1111::1111111111111:11 
EPC$14 

BADVA$8 

Figure 5.1. R3041 Bus Interface Control Registers 
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BUS CONTROL REGISTER 
The Bus Control register allows the kernel to configure various aspects of the 

bus interface, simplifying the 1/0 interface in many systems. 
This register controls the use of the BE(3:0), BE16(1:0), TC, andSBrCond(3:2) 

signals, and also controls the time between back to back transactions. 
Figure 5.2 illustrates the various fields of the Bus Control register. The reset 

defaults for this register have been selected to insure R305 l compatible 
operation. 

The Bus Control register is both readable and writeable. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 16 

ED 10 

2 2 2 2 3 

15 14 13 12 11 10 9 8 7 0 

2 2 2 8 

Lock: Register Write Lock 
'1 ': Reserved: Must be written as '1' 
'O': Reserved: Must be written as 'O' 
MEM: MemStrobe Control 
ED: ExtDataEn Control 
10: IOStrobe Control 
BE16: BE16 Read Control 
BE: BE(3:0) Read Control 
BTA: Bus Turn Around Time 
OMA: OMA Protocol Control 
TC: TC Negation Control 
BR: SBrCond(3:2) Control 

Figure 5.2. RS041 Bus Control Register 

Lock 
The lock bit can be used by the kernel to inhibit subsequent write operations 

to this register. It is useful in ensuring that operating systems written for other 
R3000A-based applications, including applications which may run on other 
R3051 family members, do not inadvertently change the fields of the Bus 
Control register. 

At reset, the register is unlocked (Lock bit is 'O'). Thus, the BusCtrl register 
can be written and re-written as the operating system chooses. Once the Lock 
bit is written with a 'l', subsequent writes to the BusCtrl register will be 
ignored. 
Reserved-High r 1') 

This bit is reserved for testing of the R304 l. At reset, the bit will be set high 
(' l '). Writes to the BusCtrl register must maintain these bit fields as high(' l '). 
Reserved-Low ('O') 

These fields are reserved for testing and for future variants of the R304 l. At 
reset, these bit fields are reset ('O'). Writes to the BusCtrl register must 
maintain these bit fields as low ('O'). 
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MemStrobe Control 
These bits control the use of the MemStrobe pin, according to Table 5.1. 
Reset initializes this field to 'O l'. which allows the use of MemStrobe on 

writes. 

Value Action 

'00' MemStrobe remains high on both reads and writes 

'01' Use MemStrobe on write cycles on]y (default) 

'10' Use MemStrobe on read cycles only 

'11' Use MemStrobe on both read and write cycles 

Table 5.1. R3041 MemStrobe Configuration Field 

ExtDataEn Control 
These bits control the use of the ExtDataEn pin, according to Table 5.2. 
These bits depend on the settings of the SBRCond control bit; if the bit is 

programmed to allow SBrCond(3:2) to be used as outputs, the settings of the 
table apply. Otherwise, SBrCond(3:2) will be used as inputs, and the value of 
the ExtDataEn Control field is ignored. 

Value Action 

'00' ExtDataEn remains high on both reads and writes 

'01' Use as ExtDataEn on write cycles only 

'10' Use as ExtDataEn on read cycles only 

'11' Use as ExtDataEn on both read and write cycles (default) 

Table 5.2. RS04 l ExtDataEn Configuration Field 

IOStrobe Control 
These bits control the use of the BrCond(3) pin, according to Table 5.3. 
These bits depend on the settings of the SBRCond control bit; if the bit is 

programmed to allow SBrCond(3:2) to be used as outputs, the settings of the 
table apply. Otherwise, SBrCond(3:2) will be used as inputs, and the value of 
the IOStrobe Control field is ignored. 

Value Action 

'00' IOStrobe remains high on both reads and writes 

'01' Use as IOStrobe on write cycles only 

'10' Use as IOStrobe on read cycles only 

'11' Use as IOStrobe on both read and write cycles (default) 

Table 5.S. R3041 IOstrobe Configuration Field 
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BE16 Control 
When set high ('l'), the BE16(1:0) outputswillassertaccordingto the datum 

size in both read and write transfers. When reset low ('O'), both BE16(1:0) 
outputs will be negated during read transactions; on write transactions, 
BE16(1 :0) will assert accordin to the size of the datum to be transferred. 

This feature allows the BE16 1 :0) outputs to be used as Write Strobes to 16-
bit DRAM systems, by directly connecting BE16(1 :0) to the Write Enables of the 
memories, and using the RAS and CAS lines to perform memory selects. 
BE16(l:O) can also be connected to SRAMs and other memories iftheir chip 
selects are registered instead of transparently latched. 

Reset initializes this field to high ('l'), consistent with R3051 BE(3:0). 
BE Control 

When set high (' l '), the BE(3:0) outputs will assert according to the datum 
size in both read and write transfers. When reset low ('O'), the BE(3:0) outputs 
will benegated during read transactions; on write transactions, BE(3:0)willassert 
according to the size of the datum to be transferred. 

This feature allows the BE(3:0) outputs to be used as Write Strobes to 32-bit 
DRAM systems, by directly connecting BE(3:0) to the Write Enables of the 
memories, and using the RAS and CAS lines to perform memory selects. IfRAS 
before CAS refreshing is used, then the DRAMs must be lMb or less since many 
4Mb DRAMs must de-assert their WE pin during refreshing. BE(3:0) can also 
be connected to SRAMs and other memories if their chip selects are registered 
instead of transparently latched. 

Reset initializes this field to high ('l'), consistent with R3051 BE(3:0). 
Bus Turn Around 

This two-bit field controls the minimum number of clock cycles required 
between sampling data on a read cycle, and asserting an address for a 
subsequent transfer. Read response data is provided by memory or 1/0 
devices, which drive the A/D bus for sampling by the processor; during the 
address phase of a subsequent transfer, the processor drives the A/D bus with 
a target address. This change in mastership is referred to as "Bus Tum 
Around". Extending the minimum amount of time for bus turnaround allows 
relatively slow memory devices to be used without data buffers. 

Value Action 

'00' No additional delay; 0.5 cycles minimum 

'01' One additional delay cycle; 1.5 cycles minimum 

'10' Two additional delay cycles: 2.5 cycles minimum 

'11' Three additional delay cycles; 3.5 cycles minimum (default) 

Table 5.4. R304 l Bus Tum Around Configuration Field 

Table 5.4 shows the values supported by the R304 l for this field. At reset, 
the default value of this field is '11', corresponding to the maximum value of 
3.5 cycles. 
DMA Protocol Control 

This bit enables the DMA pulse protocol of the R304 l, described in Chapter 
10. If this bit is set(' l '), the R304 l may request that an external DMA master 
relinquish bus mastership back to the CPU during a DMA cycle by negating its 
BusGnt output, and waiting for the external master to negate the BusReq 
input. 

If this bit is cleared ('O'), R305 l compatible operation will result, and BusGnt 
will remain asserted throughout the DMA mastership cycle. 

The default is 'O' on reset 
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TC Control 
This bit controls the waveform seen on the TC (Terminal Count) output pin 

of the R3041 and defaults to 'O' on reset. 
Regardless of the bit setting, TC asserts (active low) on the rising edge of 

SysClk, two clock cycles after the Count register equals the Compare register. 
If this bit value is cleared low ('O'), TC will then negate on the falling edge of 

SysClk that is 1.5 clock cycles after the assertion ofTC, as shown in Figure 5.4. 
This mode of operation may typically be used for DRAM refresh requests; no 
software intervention is required to de-assert TC. 

If this bit value is set high ('I'), TC will remain asserted until software re
writes the Compare register. This mode of operation corresponds to the use of 
the timer as an interrupt generator; TC may be tied to one of the CPU interrupt 
inputs, and the interrupt handler will clear TC by re-writing the Compare 
register. Note that for this mode of operation, the AC parameter propagation 
delays associated with the assertion and negation of TC use the same values 
as shown in Figure 5.3; however, the number of clock cycles between the 
assertion and negation of TC will be longer. 

Figure 5.3. R304 l TC Output 

BR Control 
This bit controls the usage of the SBrCond(3:2) pins. If high (the default on 

reset), the SBrCond(3:2) pins will function as the SBrCond(3:2) inputs. If set 
low, the SBrCond(3) and SBrCond(2) pins will function as the IOStrobe and 
ExtDataEn outputs, respectively. 
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CACHE CONFIGURATION REGISTER 
The cache configuration register allows the kernel to control various 

operational aspects of the on-chip caches of the R304 l. These features can be 
used to improve performance and/ or implement debug capability for the 
R3041. The Config register is both readable and writeable. 

Figure 5.4 illustrates the various fields of the cache configuration register. 
The reset defaults for this register insure R305 l compatible operation. 

31 30 29 28 20 19 18 

9 19 

SYSTEM INTERFACE CONTROL 

0 

Lock: Register Write Lock 'O': Reserved: Must be written as 'O' 
'1': Reserved: Must be written as '1' FDM: Force Data-Cache Miss 
DBR: Data Cache Block Refill Enable 

Figure 5.4. R3041 Cache Configuration Register 

Lock 
The lock bit can be used by the kernel to inhibit subsequent write operations 

to this register. It is useful in ensuring that operating systems written for other 
R3000A-based applications do not inadvertently change the fields of the Cache 
Configuration register. 

At reset, the register is unlocked (Lock bit is 'O'). Thus, the Config register 
can be written and re-written as the operating system chooses. Once the Lock 
bit is written with a 'I', subsequent writes to the Config register will be ignored. 
Reserved-High (' l ') 

This bit is reserved for testing of the R304 l. At reset, the bit will be set high 
('I'). Writes to the Config register must maintain this bit as high ('I'). 
Reserved-Low ('O') 

These fields are reserved for testing and for future variants of the R304 l. At 
reset, these bit fields are reset ('O'). Writes to the Config register must maintain 
these bit fields as low ('O'). 
DBlockRefi.11 ('DBR') 

If this bit is set high ('I'), data cache misses will be processed as a quad (four
word) read, as described in Chapter 7. If this bit is reset low ('O'), data cache 
misses will be processed as a single word read, as described in Chapter 7. At 
reset, this bit is reset low ('O'). 
ForceDCacheMiss fFDM') 

If this bit is set high ('I'), all cacheable data load references will be forced to 
miss in the data cache. The data references will then be supplied using the 
Data Cache miss protocol (including DBlockRefill). Store operations will 
continue to update the cache, and the cache miss processing will update the 
cache. Thus, this bit provides a quick method of initializing the cache or 
reloading the cache from an external device. 

At reset, this bit is reset low ('O'), allowing normal operation of the data cache. 
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31 

Reserved 'O' 

8 

31 

Reserved 'O' 

8 

24 23 
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COUNT REGISTER 
The Count register implements a 24-bit, free running timer as part of the 

R3041 CPO. Figure 5.5 illustrates the count register. 
Reset initializes the Count register to 'O'. The count register is then 

incremented on each SysClk cycle, regardless of processor activity. 
The Count register is reset to 'O' by the assertion of TC, when the Count 

register equals the value of the Compare register. 
The Count register is readable and writeable. 

0 

Count 

24 

Figure 5.5. R3041 Count Register 

COMPARE REGISTER 
The Compare register is used in conjunction with the Count register to 

implement a 24-bit timer. When the value of the Count register reaches the 
value programmed into the Compare register, the TC output pin is asserted. 
Note that the negation of the TC output is controlled by the TC Control bit of 
the Bus Control register, described above. 

At reset, the Compare register is initialized to the value OxOOff _ftlI. The 
Compare register is both readable and writeable. Writing the Compare register 
has no effect on the value of the Count register. 

24 23 0 

Compare 

24 

Figure 5.6. R304 l Compare Register 
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PORTSIZE CONTROL REGISTER 
The PortSize control register is used to interface the R304 l to varying width 

memory regions. The PortSize register divides the physical address space into 
sub-regions; the data path width of each sub-region is independently 
programmed into the PortSize register by the operating system at boot time. 

The software is then free to presume that all memory has a 32-bit data path; 
each off-chip reference is looked up in the PortSize register to determine the 
actual width of memory. The R3041 bus interface unit will then perform the 
appropriate sequence of transfers between the CPU and memory, depending on 
the actual size of the datum, and the actual width of the memory. 

Figure 5. 7 shows the format of the PortSize register. At reset, the initial port 
width of each memory region is initialized according to the width indicated for 
the boot PROM; that is, the PortSize register will assume that all memory is the 
same port width as the boot PROM. The kernel can then later re-program 
individual memory sub-regions, according to their actual port width. 

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 

Lock ::::::~::::::: Kseg2b Kseg2a Kusegd Kusegc Kusegb Kusega ::::::::::::::;~::::::::::::::: 
2 2 2 2 2 2 2 

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

Kseg1/0h Kseg1/0g Kseg1/0f Kseg1/0e Kseg1/0d Kseg1/0c Kseg1/0b Kseg1/0a 

2 2 

Lock: 
'O': 
'X': 

2 

Kseg2(b:a): 
Kuseg(d:a): 
Kseg1/0(h:a): 

2 2 2 

Register Write Lock 
Reserved: Must be written as 'O' 
Reserved for future use 
Subregions of Kseg2 
Subregions of Kuseg 
Subregions of Kseg1 and Ksego 

Figure 5. 7. R304 l PortSize Register 

2 2 

This allows systems to be constructed from a mix of memory widths: for 
example, an 8-bit boot prom, with 32-bit DRAM memory and 16-bit Font 
cartridge cards. This maximizes the number of price/performance trade-offs 
available to the system designer. 

In addition, itis possible to construct a system such thatits base configuration 
assumes a narrow memory width (e.g. a 16-bitDRAM system). However, field 
upgrades to larger memory systems can increase both the width and total 
amount of memory, increasing the performance of the system, and thus 
increasing the value of the field upgrade option. 

Table 5.5 shows the bit encodings of memory width for each of the memory 
sub-regions. 

Value Port Width 

'00' 32-bit 

'01' 8-bit 

'10' 16-bits 

'11' Resenred 

Table 5.5. R3041 Port Width Encoding for PortSize Register 
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Table 5.5 shows the correspondence between memory sub-regions, physical 
addresses, and kernel/user segments of the R3041. From this, a system 
designer can construct varying memory widths available exclusively to the 
kernel or also available to the user, and can allow either cacheable or 
uncacheable references to these regions. 

Physical PortSize Description 
Address Register 
Bits(31:26) Bits 
lllx xx 29:28 Kseg2(b) 512MB sub-region 

l lOx xx 27:26 Kseg2(a) 512MB sub-region 

lOlx xx 25:24 Kuseg(d) 512MB sub-region 

lOOx xx 23:22 Kuseg(c) 512MB sub-region 

Ollx xx 21:20 Kuseg(b) 512MB sub-region 

OlOx xx 19:18 Kuseg(a) 512MB sub-region 

OOlx xx 17:16 Resenred; inaccessible 512MB 

0001 11 15:14 Ksegl/O(h) 64MB sub-region 

0001 10 13:12 Ksegl/O(g) 64MB sub-region 

0001 01 11:10 Ksegl/O(f) 64MB sub-region 

0001 00 9:8 Ksegl/O(e) 64MB sub-region 

0000 11 7:6 Ksegl/O(d) 64MB sub-region 

0000 10 5:4 Ksegl/O(c) 64MB sub-region 

0000 01 3:2 Ksegl/O(b) 64MB sub-region 

0000 00 1:0 Ksegl/O(a) 64MB sub-region 

Table 5.5. R3041 PortSize Memory Subregions 

Lock 
The lock bit can be used by the kernel to inhibit subsequent write operations 

to this register. It is useful in ensuring that operating systems written for other 
R3000A-based applications do not inadvertently change the fields of the 
PortSize register. 

At reset, the register is unlocked (Lock bit is 'O'). Thus, the PortSize register 
can be written and re-written as the operating system chooses. Once the Lock 
bit is written with a 'l', subsequent writes to the PortSize register will be 
ignored. 
Reserved 

These fields are reserved for future variants of the R304 l. At reset, these bit 
fields are set to a default value. Writes to the PortSize register should maintain 
these values, however, it is not mandatory to do so. 
KSeg2(b:a) 

These are independent 512MB sub-regions of the kseg2 virtual address 
space. 
KUseg(d:a) 

These are independent 512MB sub-regions of the kuseg virtual address 
space. 
Ksegl/O(h:a) 

These are independent 64MB sub-regions of both the ksegl and ksegO 
virtual address spaces. In the MIPS architecture, both ksegO and kseg 1 virtual 
address spaces are translated to the same area of physical memory; the 
difference between the spaces lies in the fact that references through one space 
are cacheable, while references through the other are not. 
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EXCEPTION HANDLING CHAPTER6 

INTRODUCTION 
Processors in general execute code in a highly-directed fashion. The 

instruction immediately subsequent to the current instruction is fetched and 
then executed; if that instruction is a branch instruction, the program 
execution is diverted to the specified location. Thus, program execution is 
relatively straightforward and predictable. 

Exceptions are a mechanism used to break into this execution stream and 
to force the processor to begin handling another task, typically related to either 
the system state or to the erroneous or undesirable execution of the program 
stream. Thus, exceptions typically are viewed by programmers as asynchronous 
interruptions of their program. (Note that exceptions are not necessarily 
unpredictable or asynchronous, in that the events which cause the exception 
may be exactly repeatable by the same software executing on the same data; 
however, the programmer does not typically "expect" an exception to occur 
when and where it does, and thus will view exceptions as asynchronous 
events). 

The R305 l family architecture provides for extremely fast, flexible interrupt 
and exception handling. The processor makes no assumptions about interrupt 
causes or handling techniques, and allows the system designer to build his own 
model of the best response to exception conditions. However, the processor 
provides enough information and resources to minimize both the amount of 
time required to begin handling the specific cause of the exception, and to 
minimize the amount of software required to preserve processor state information 
so that the normal instruction stream may be resumed. 

This chapter discusses exception handling issues in R304 l-based systems. 
The topics examined are: the exception model, the machine state to be saved 
on an exception, and nested exceptions. Representative software examples of 
exception handlers are also provided, as are techniques and issues appropriate 
to specific classes of exceptions. 

R3051 FAMILY EXCEPTION MODEL 
The exception processing capability of the R305 l family is provided to assure 

an orderly transfer of control from an executing program to the kernel. 
Exceptions may be broadly divided into two categories: they can be caused by 
an instruction or instruction sequence, including an unusual condition arising 
during its execution; or can be caused by external events such as interrupts. 
When an R304 l detects an exception, the normal sequence of instruction flow 
is suspended; the processor is forced to kernel mode where it can respond to 
the abnormal or asynchronous event. Table 6.1 lists the exceptions recognized 
by the R305 l family. 

6-1 



CHAPTERS 

Exception Mnemonic Cause 

Reset Reset Assertlonof the Reset signal causes an exception 
that transfers control to the special vector at 
virtual address OxbfcO_OOOO. 

UTLB Misst UTLB User TLB Miss. A reference is made (in either 
kernel or user mode) to a page in kuseg that has 
no matching TLB entry. This can occur only in 
extended architecture versions of the processor. 

TLB Misst TLBL (Load) A referenced TLB entry's Valid bit isn't set, or 
TLBS (Store) there is a reference to a kseg2 page that has no 

matching TLB entry. This can occur only in 
extended architecture versions of the processor. 

TLB Modifiedt Mod During a store instruction, the Valid bit is set 
but the dirty bit is not set in a matching TLB 
entry. This can occur only in extended 
architecture versions of the processor. 

Bus Error IBE Unstruction) Assertion of the Bus Error input during 
DBE (Data) a read operation, due to such external events as 

bus timeout, backplane memoiy errors, invalid 
physical address, or invalid access types. 

Address Error AdEL (Load) Attempt to load, fetch, or store an unaligned 
AdES (Store) word; that is, a word or halfword at an address 

not evenly divisible by four or two, respectively. 
Also caused by reference to a virtual address 
with most significant bit set while in User Mode. 

Overflow Ovf Twos complement overflow during add or 
subtract. 

System Call Sys Execution of the SYS CALL Trap Instruction 

Breakpoint Bp Execution of the break instruction 

Reserved RI Execution of an instruction with an undefined 
Instruction or reserved major operation code (bits 31 :26), or 

a special instruction whose minor opcode (bits 
5:0) is undefined. 

Co-processor CpU Execution of a co-processor instruction when 
Unusable the CU (Co-processor Usable) bit is not set for 

the target co-processor. 

Interrupt Int Assertion of one of the six hardware interrupt 
inputs or setting of one of the two software 
interrupt bits in the Cause register. 

4000 tbl 17 
t'Jhese exceptions will not occur in a R3041, or in any base member of the R3051 family. 

Table 6.1. R3051 Family Exceptions 

Precise vs. Imprecise Exceptions 
One classification of exceptions refers to the precision with which the 

exception cause and processor context can be detennined. That is, some 
exceptions are precise in their nature, while others are "imprecise." 

In a precise exception, much is known about the system state at the exact 
instance the exception is caused. Specifically, the exact processor context and 
the exact cause of the exception are known. The processor thus maintains its 
exact state before the exception was generated, and can accurately handle the 
exception, allowing the instruction stream to resume when the situation is 
corrected. Additionally, in a precise exception model, the processor can not 
advance state; that is, subsequent instructions, which may already be in the 
processor pipeline, are not allowed to change the state of the machine. 
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Many real-time applications greatly benefit from a processor model which 
guarantees precise exception context and cause information. The MIPS 
architecture, including the R3051 family, implements a precise exception 
model for all exceptional events. 

EXCEPTION PROCESSING 
The R305 l family's exception handling system efficiently handles machine 

exceptions, including Translation Lookaside Buffer (TLB) misses, arithmetic 
overflows, 1/0 interrupts, system calls, breakpoints, reset, and co-processor 
unusable conditions. Any of these events interrupt the normal execution flow; 
the R304 l aborts the instruction causing the exception and also aborts all 
those following in the exception pipeline which have already begun, thus not 
modifying processor context. The CPU then performs a direct jump into a 
designated exception handler routine. This insures that the R304 l is always 
consistent with the precise exception model. 

EXCEPTION HANDLING REGISTERS 
The system co-processor (CPO) registers contain information pertinent to 

exception processing. Software can examine these registers during exception 
processing to determine the cause of the exception and the state of the 
processor when it occurred There are four registers handling exception 
processing, shown in shaded boxes in Figure 6 .1. These are the Cause register, 
the EPC register, the Status register, and the BadVAddr register. A brief 
description of each follows. 

Used for CPU Identification Used for Interface Control Used with Exception Processing 

PRID $15 

PORTSIZE $10 111111111~111~1 Ill 
I BUSCTRL$2 

'
•, •. • .•. •. ]~P:Qi1~ :,•,•,1,•,1,i,1,•,1,i,•,•,1 

- ::::::::::::::::::::ff~{:~:~:::-: -

COUNT$9 

COMPARE$11 

Figure 6.1. The CPO Exception Handling Registers 
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Table 6.2 lists the register address of each of the CPO registers (as used in 
CPO operations); the register number is used by software when issuing co
processor load and store instructions. 

Register Name Register Number (Decimal) 

Status $12 
Cause $13 
Exception PC $14 
Count $9 
Compare $11 
Bus Control $2 
Cache Configuration $3 
PortSize $10 
Bad Virtual Address $8 

PRid $15 

Reserved $0-$2, $4-$6, $16-$31 
4000 tbl 18 

Table 6.2. Co-processor 0 Register Addressing 

The Cause Register 
The contents of the Cause register describe the last exception. A 5-bit 

exception code indicates the cause of the current exception; the remaining 
fields contain detailed information specific to certain exceptions. 

All bits in this register, with the exception of the SW bits, are read-only. The 
SW bits can be written to set or reset software interrupts. Figure 6.2 illustrates 
the format of the Cause register. Table 6.3 details the meaning of the various 
exception codes. 

31 0 

Sw ExcCode 

2 12 6 2 5 2 

BD: BRANCH DELAY 
CE: COPROCESSOR ERROR 
IP: INTERRUPTS PENDING 

ExcCode: EXCEPTION CODE FIELD 

l5il] : RESERVED 
lil£l Must Be Written as O 

Returns O when Read 
Sw: SOFTWARE INTERRUPTS* 

*READ AND WRITE. THE REST ARE READ-ONLY. 
4000 drw 26 

Figure 6.2. The Cause Register 

Number Mnemonic Description 

0 Int External Interrupt 
1 MODt TLB Modification Exception 
2 TLBU TLB miss Exception (Load or instruction fetch) 
3 TLBSt TLB miss exception (Store) 
4 AdEL Address Error Exception (Load or instruction fetch) 
5 Ad ES Address Error Exception (Store) 
6 IBE Bus Error Exception (for Instruction Fetch) 
7 DBE Bus Error Exception (for data Load or Store) 
8 Sys SYSCALL Exception 
9 Bp Breakpoint Exception 
10 RI Reserved Instruction Exception 
11 CpU Co-Processor Unusable Exception 
12 Ovf Arithmetic Overflow Exception 

13-31 - Reserved 
4000 tbl 19 

t'fhese exceptions will not occur in a R3041 

Table 6.3. Cause Register Exception Codes 
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The meaning of the other bits of the cause register is as follows: 

BD The Branch Delay bit is set (1) ifthe last exception was taken while the 
processor was executing in the branch delay slot. If so. then the EPC 
will be rolled back to point to the branch instruction, so that it can be 
re-executed and the branch direction re-determined. 

CE The Co-processor Error field captures the co-processor unit number 
referenced when a Co-processor Unusable exception is detected. 

IP The Interrupt Pending field indicates which interrupts are pending. 
Regardless of which interrupts are masked, the IP field can be used 
to determine which interrupts are pending. 

SW The Software interrupt bits can be thought of as the logical extension 
of the IP field. The SW interrupts can be written to force an interrupt 
to be pending to the processor, and are useful in the prioritization of 
exceptions. To set a software interrupt, a "l" is written to the 
appropriate SW bit, and a "O" will clear the pending interrupt. There 
are corresponding interrupt mask bits in the status register for these 
interrupts. 

ExcCode The exception code field indicates the reason for the last 
exception. Its values are listed in Table 6.3. 

The EPC (Exception Program Counter) Register 
The 32-bit EPC register contains the virtual address of the instruction which 

took the exception, from which point processing resumes after the exception 
has been serviced. When the virtual address of the instruction resides in a 
branch delay slot, the EPC contains the virtual address of the instruction 
immediately preceding the exception (that is, the EPC points to the Branch or 
Jump instruction). 

Bad VAddr Register 
The Bad VAddr register saves the entire bad virtual address for any 

addressing exception. 

The Status Register 
The Status register contains all the major status bits; any exception puts the 

system in Kernel mode. All bits in the status register, with the exception of the 
TS (TLB Shutdown) bit, are readable and writable; the TS bit is read-only. 
Figure 6.3 shows the functionality of the various bits in the status register. 

4 2 2 

CU: COPROCESSOR USABILITY 
BEV: BOOTSTRAP EXCEPTION VECTOR 
TS: TLB SHUTDOWN 
PE: PARITY ERROR 
CM: CACHE MISS 
PZ: PARITY ZERO 
SwC: SWAP CACHES 
lsC: ISOLATE CACHE 
RE: REVERSE ENDIANNESS 

8 2 

lntMASK: INTERRUPT MASK 
KUo: KERNEUUSER MODE, OLD 
IEo: INTERRUPT ENABLE, OLD 
KUp: KERNEUUSER MODE, PREVIOUS 
IEp: INTERRUPT ENABLE, PREVIOUS 
KUc: KERNEUUSER MODE, CURRENT 
IEc: INTERRUPT ENABLE, CURRENT 
O: RESERVED: READ AS ZERO 

MUST BE WRITTEN AS ZERO 

4000 drw 28 

Figure 6.3. The Status Register 
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The status register contains a three level stack (current, previous, and old) 
of the kernel/user mode bit (KU) and the interrupt enable (IE) bit. The stack 
is pushed when each exception is taken, and popped by the Restore From 
Exception instruction. These bits may also be directly read or written. 

At reset, the SWc, KUc, and IEc bits are set to zero; BEV is set to one; and 
the value of the TS bit is set to "l". The rest of the bit fields are undefined after 
reset. 

The various bits of the status register are defined as follows: 

CU Co-processor Usability. These bits individually control user level 
access to co-processor operations, including the polling of the BrCond 
input pins and the manipulation of the System Control Co-processor 
(CPO). 

RE Reverse Endianness. The R305 l family allows the system to determine 
the byte ordering convention for the Kernel mode, and the default 
setting for user mode, at reset time. If this bit is cleared, the 
endianness defined at reset is used for the current user task. If this 
bit is set, then the user task will operate with the opposite byte 
ordering convention from that determined at reset. This bit has no 
effect on kernel mode. Also note that the setting of this bit does not 
affect the byte lanes used in 16- and 8-bit memory ports; thus, 
external byte lane shift logic is not required. 

BEV Bootstrap Exception Vector. The value of this bit determines the 
locations of the exception vectors of the processor. If BEV = 1, then 
the processor is in "Bootstrap" mode, and the exception vectors reside 
in uncacheable space. If BEV = 0, then the processor is in normal 
mode, and the exception vectors reside in cacheable space. 

TS TLB Shutdown. This bit reflects whether the TLB is functioning. At 
reset, this bit can be used to determine whether the current processor 
is a base or extended architecture version. For the R304 l, this bit is 
frozen at "l". 

PE Parity Error. This field should be written with a" l" at boot time. Once 
initialized, this field will always be read as "O'. 

CM Cache Miss. This bit is set if a cache miss occurred while the cache 
was isolated. It is useful in determining the size and operation of the 
internal cache subsystem. 

PZ Parity Zero. This field should always be written with a "O". 

SwC Swap Caches. Setting this bit causes the execution core to use the on
chip instruction cache as a data cache and vice-versa. Resetting the 
bit to zero un-swaps the caches. This is useful for certain operations 
such as instruction cache flushing. This feature is not intended for 
normal operation with the caches swapped. 

IsC Isolate Cache. If this bit is set, the data cache is "isolated" from main 
memory; that is, store operations modify the data cache but do not 
cause a main memory write to occur, and load operations return the 
data value from the cache whether or not a cache hit occurred. This 
bit is also useful in various operations such as flushing, as described 
in Chapter 3. 
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IM Interrupt Mask. This 8-bit field can be used to mask the hardware and 
software interrupts to the execution engine (that is, not allow them to 
cause an exception). IM( 1 :0) are used to mask the software interrupts, 
and IM (7:2) mask the 6 external interrupts. A value of 'O' disables a 
particular interrupt, and a 'l' enables it. Note that the IE bit is a global 
interrupt enable; that is, if the IE is used to disable interrupts, the 
value of particular mask bits is irrelevant; if IE enables interrupts, 
then a particular interrupt is selectively masked by this field. 

KUo Kernel/User old. This is the privilege state two exceptions previously. 
A 'O' indicates kernel mode. 

IEo Interrupt Enable old. lbis is the global interrupt enable state two 
exceptions previously. A 'l' indicates that interrupts were enabled, 
subject to the IM mask. 

KUp Kernel/User previous. lbis is the privilege state prior to the current 
exception A 'O' indicates kernel mode. 

IEp Interrupt Enable old. This is the global interrupt enable state prior to 
the current exception. A 'l' indicates that interrupts were enabled, 
subject to the IM mask. 

KUc Kernel/User current. This is the current privilege state. A 'O' indicates 
kernel mode. 

IEc Interrupt Enable current. lbis is the current global interrupt enable 
state. A 'l' indicates that interrupts are enabled, subject to the IM 
mask. 

'O' Fields indicated as 'O' are reserved; they must be written as 'O', and will 
return 'O' when read. 

PRid Register 
lbis register is useful to software in determining which revision of the 

processor is executing the code. The format of this register is illustrated in 
Figure 6.4; for the R3041, the value currently returned is Ox0000_0700. lbis 
value is different from other members of the R305 l family, so that software can 
easily determine the CPU type. lbis facilitates the development of one binary 
working with all R305 l family members. 

0 Implementation Revision 

16 8 8 

O: READ AS 0, MUST BE WRITTEN AS 0 

Implementation: EXECUTION ENGINE IMPLEMENTATION CODE 

Revision: REVISION LEVEL FOR THIS IMPLEMENTATION 

4000 drw 29 

Figure 6.4. Format of Prid Register 
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EXCEPTION VECTOR LOCATIONS 
The R305 l family separates exceptions into three vector spaces. The value 

of each vector depends on the BEV (Boot Exception Vector) bit of the status 
register, which allows two alternate sets of vectors (and thus two different 
pieces of code) to be used. Typically, this is used to allow diagnostic tests to 
occur before the functionality of the cache is validated; processor reset forces 
the value of the BEV bit to a 'I'. Tables 6.4 and 6.5 list the exception vectors 
for the R305 l family for the two different modes. 

Exception Virtual Address Physical Address 

Reset Oxbfc0_ 0000 Oxlfc0 _ 0000 

UTLB Miss Ox8000_0000 OxOOOO_OOOO 

General Ox8000_0080 Ox0000_0080 
4000 tbl 20 

Table 6.4. Exception Vectors When BEV = O 

Exception Virtual Address Physical Address 

Reset OxbfcO_OOOO OxlfcO_OOOO 

UTLB Miss OxbfcO_Ol 00 OxlfcO_OlOO 

General OxbfcO 0180 OxlfcO 0180 
4000 tbl21 

Table 6.5. Exception Vectors When BEV = 1 

EXCEPTION PRIORITIZATION 
It is important to understand the structure of the R305 l family instruction 

execution unit in order to understand the exception priority model of the 
processor. The R3051 family runs instructions through a five stage pipeline, 
illustrated in Figure 6.5. The pipeline stages are: 

• IF: Instruction Fetch. This cycle contains two parts: the IV A (Instruction 
Virtual Address) phase, which generates the virtual instruction 
address of the next instruction to be fetched, and the ITLB phase, 
which performs the virtual to physical translation of the address. 

• RD: Read and Decode. This phase obtains the required .data from the 
internal registers and also decodes the instruction. 

• ALU: This phase either performs the desired arithmetic or logical operation, 
or generates the address for the upcoming data operation. For data 
operations, this phase contains both the data virtual address stage, 
which generates the desired virtual address, and the data TLB stage, 
which performs the virtual to physical translation. 

• MEM: Memory. This phase performs the data load or store transaction. 

• WB: Write Back. This stage updates the registers with the result data. 

High performance is achieved because five instructions are operating 
concurrently, each in a different stage of the pipeline. However, since multiple 
instructions are operating concurrently, it is possible that multiple exceptions 
are generated concurrently. If so, the processor must decide which exception 
to process, basing this decision on the stage of the pipeline that detected the 
exception. The processor will then flush all preceding pipeline stages to avoid 
altering processor context, thus implementing precise exceptions. This 
determines the relative priority of the exceptions. 
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IF 
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TLB 

RD 
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ALU 
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MEM 

D-FETCH 

Figure 6.5. Pipelining in the R3051 Family 

CHAPTER6 

WB 

WB 

4000 drw 30 

For example, an illegal instruction exception can only be detected in the 
instruction decode stage of the R304 l; an Instruction Bus Error can only be 
determined in the I-Fetch pipe stage. Since the illegal instruction was fetched 
before the instruction which generated the bus error was fetched, and since it 
is conceivable that handling this exception might have avoided the second 
exception, it is important that the processor handle the illegal instruction 
before the bus error. Therefore the exception detected in the latest pipeline 
stage has priority over exceptions detected in earlier pipeline stages. All 
instructions fetched subsequent to this (all preceding pipeline stages) are 
flushed to avoid altering state information, maintaining the precise exception 
model. 

Table 6.6 lists the priority of exceptions from highest first to lowest. 

Mnemonic Pipestage 

Reset Any 

AdEL Memory (Load instruction) 

AdES Memory (Store instruction) 

DBE Memory (Load or store) 

MODI ALU (Data TLB) 

TLBV ALU (DTLB Miss) 

TLBSt ALU (DTLB Miss) 

Ovf ALU 

Int ALU 

Sys RD (Instruction Decode) 

Bp RD (Instruction Decode) 

RI RD (Instruction Decode) 

CpU RD (Instruction Decode) 

TLBV I-Fetch (ITLB Miss) 

AdEL NA (Instruction Virtual Address) 

IBE RD (end of I-Fetch) 
4000 tbl 22 

'1hese exceptions will not occur in an R304 l, which does not include a 1LB. 

Table 6.6. R3051 Family Exception Priority 
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EXCEPTION LATENCY 
A critical measurement of a processor's throughput in interrupt driven 

systems is the interrupt "latency" of the system. Interrupt latency is a 
measurement of the amount time from the assertion of an interrupt until 
software begins handling that interrupt. Often included when discussing 
latency is the amount of overhead associated with restoring context once the 
exception is handled, although this is typically less critical than the initial 
latency. 

In systems where the processor is responsible for managing a number of 
time-critical operations in real time, it is important that the processor minimize 
interrupt latency. That is, it is more important that every interrupt be handled 
at a rate above some given value, rather than occasionally handle an interrupt 
at very high speed. 

Factors which affect the interrupt latency of a system include the types of 
operations it performs (that is, systems which have long sequences of operations 
during which interrupts can not be accepted have long latency). how much 
information must be stored and restored to preserve and restore processor 
context, and the priority scheme of the system. 

Table 6.6 illustrates which pipestage recognizes which exceptions. As 
mentioned above, all instructions less advanced in the pipeline are flushed 
from the pipeline to avoid altering state execution. Those instructions will be 
restarted when the exception handler completes. 

Once the exception is recognized, the address of the appropriate exception 
vector will be the next instruction to be fetched. In general, the latency to the 
exception handler is one instruction cycle, and at worst the longest stall cycle 
in that system. 
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INTERRUPTS IN THE R3051 FAMILY 
The R3051 family features two types of interrupt inputs: synchronized 

internally and non-synchronized, or direct. 
The Sint(2:0) bus (Synchronized Interrupts) allow the system designer to 

connect unsynchronized interrupt sources to the processor. The processor 
includes special logic on these inputs to avoid meta-stable states associated 
with switching inputs right at the processor sampling point. Because of this 
logic, these interrupt sources have slightly longer latency from the Sint(n) -pin 
to the exception vector than the non-synchronized inputs. The operation of the 
synchronized interrupts is illustrated in Figure 6.6. 

Run Cycle Exception Vector 

Phi 

t28 t 29 

Figure 6.6. Synchronized Interrupt Operation 4000 drw31 

The other interrupts, Int(5:3), do not contain this synchronization logic, and 
thus have slightly better latency to the exception vector. However, the 
interruptingagentmustguaranteethatitalwaysmeetstheinterruptinputset
up and hold time requirements of the processor. These inputs are useful for 
interrupting agents which operate off of the SysClk output of the R304 l. The 
operation of these interrupts is illustrated in Figure 6. 7. 

Run Cycle Exception Vector 

Phi 

tao ta1 
4000drw32 

Figure 6.7. Direct Interrupt Operation 

Since the interrupt exception is detected during the ALU stage of the 
instruction currently in the processor pipeline, at least one run cycle must 
occur between (or at) the assertion of the external interrupt input and the fetch 
of the exception vector. Thus, if the processor is in a stall cycle when an 
external agent sends an interrupt, it will execute at least one run cycle before 
beginning exception processing. In this instance, there would be no difference 
in the latency of synchronized and direct interrupt inputs. 

All of the interrupts are level-sensitive and active low. They continue to be 
sampled after an interrupt exception has occurred, and are not latched within 
the processor when an interrupt exception occurs. It is important that the 
external interrupting agent maintain the interrupt line until software 
acknowledges the interrupt. 
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Note that the R308 l incorporates a hardware floating point accelerator on
chip. The MIPS architecture recommends that Int(3) be used to handle the 
floating point interrupt; thus, the R308 l defaults to this interrupt assignment. 
However, the R3081 Config register (which differs from the R3041 Config 
register) can be used to change the assignment. In any case, it is recommended 
that the system designer reserve one interrupt for the FPA. 

Each of the eight interrupts (6 hardware and 2 software) can be individually 
masked by clearing the corresponding bit in the Interrupt Mask field of the 
Status Register. All eight interrupts can be masked at once by clearing the IEc 
bit in the Status Register. 

On the synchronized interrupts, care should be taken to allow at least two 
clock cycles between the negation of the interrupt input and the re-enabling of 
the interrupt mask for that bit. 

The value shown in the interrupt pending bits of the Cause register reflects 
the current state of the interrupt pins of the processor. These bits are not 
latched (except for sampling from the data bus to guarantee that they are stable 
when examined), and the masking of specific interrupt inputs does not mask 
the bits from being read. 

USING THE BrCond INPUTS 
In addition to the interrupt pins themselves, many systems can use the 

BrCond input port pins in their exception model. These pins can be directly 
tested by software, and can be used for polling or fast interrupt decoding. 

The R304 l provides two synchronized BrCond inputs: SBrCond(3:2). Note 
thatBrCond(O), corresponding to the on-chip CPO, and BrCond(l), corresponding 
to Co-Processor 1 (the FPA, present on the R3081), are not available to the 
R304 l as user inputs. Instructions that use BrCond(l :0) will always see a' l' 
on the R304 l. Also note that the SBrCond(3:2) on the R304 l may be 
programmed as output functions for the bus interface, as described in Chapter 
5, in which case the SBrCond(3:2) input values are undefined. When 
programmed to be inputs, the timing requirements of the SBrCond inputs are 
illustrated in Figure 6.8. Since these inputs are synchronized by the R3041, 
they do not need to be driven synchronously to the processor. 

Similar to the interrupt inputs, at least one instruction must be executed (in 
the ALU stage) of the instruction pipeline prior to software being able to detect 
a change in one of these inputs. This is because the processor actually 
captures the value of these flags one instruction prior to the branch on co
processor instruction. 

Run Cycle Capture BrCond BCzT /F Instruction 

Phi V , __ _,V '---~V '----

SySClk ~---./ 

SBrCond{n) 1-----+--*-r--+--+---+------+------+-------1 
R-

.I. 

128 129 4000drw33 

Figure 6.8. Synchronized BrCond Inputs 
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INTERRUPT HANDLING 
nie assertion of an unmasked interrupt input causes the R305 l family to 

branch to the general exception vector at virtual address Ox8000_0080, and 
write the 'Int' code in the Cause register. nie IP field of the Cause register shows 
which of the six hardware interrupts are pending and the SW field in the Cause 
register show which of the two software interrupts are pending. Multiple 
interrupts can be pending at the same time, with no priority assumed by the 
processor. 

When an interrupt occurs, the KUp, IEp, KUc and IEc bits of the Status 
register are saved in the KUo, IEo, KUp, IEp bit fields in the Status register, 
respectively, as illustrated in Figure 6. 9. nie current kernel status bit KUc and 
the interrupt bit IEc are cleared. 'nlis masks all the interrupts and places the 
processor in kernel mode. 'nlis sequence will be reversed by the execution of 
an rje (restore from exception) instruction. 

Exception Recognition 

RFE Instruction 
4000 drw 35 

Figure 6.9. K.emel and Interrupt Status Being Saved on Interrupts 

INTERRUPT SERVICING 
In case of an hardware interrupt, the interrupt must be cleared by de

asserting the interrupt line, which has to be done by alleviating the external 
conditions that caused the interrupt. Software interrupts have to be cleared 
by clearing the corresponding bits, SW( 1 :0), in the Cause register to zero. 
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BASIC SOFTWARE TECHNIQUES FOR HANDLING 
INTERRUPTS 

Once an exception is detected the processor suspends the current task, 
enters kernel mode, disables interrupts, and begins processing at the exception 
vector location. The EPC is loaded with the address the processor will return 
to once the exception event is handled. 

The specific actions of the processor depend on the cause of the exception 
being handled. The R3051 family classifies exceptions into three distinct 
classes: RESET, U1LB Miss, and General. 

Coming out of reset, the processor initializes the state of the machine. In 
addition to initializing system peripherals, page tables, the 1LB, and the 
caches, software clears both STATUS and CAUSE registers, and initializes the 
exception vectors. 

The code located at the exception vector may be just a branch to the actual 
exception code; however, in more time critical systems the instructions located 
at the exception vector may perform the actual exception processing. In order 
to cause the exception vector location to branch to the appropriate exception 
handler (presuming that such a jump is appropriate), a short code sequence 
such as that illustrated in Figure 6.10 may be used. 

It should be noted the contents of register kO are not preserved. This is not 
a problem for software, since MIPS compiler and assembler conventions 
reserve kO for kernel processes, and do not use it for user programs. For the 
system developer it is advised that the use of kO be reserved for use by the 
exception handling code exclusively. This will make debugging and development 
much easier. 

/* 

*/ 

/* 
•• 
*I 

.set no reorder #tells the assembler not to reorder the code 

code sequence copied to UTLB exception vector 

la 
j 
nop 

kO,excep_utlb 
kO 

#address of utlb excp. handler 
# jump via reg kO 

code sequence copied to general exception vector 

la 
j 
nop 

kO,excep_general 
kO 

#address of general excp. handler 
# jump via reg kO 

Figure 6.10. Code Sequence to Initialize Exception Vectors 
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PRESERVING CONTEXT 
The R304 l has the following four registers related to exception processing: 

1. The Cause register 
2. The EPC (exception program counter) register 
3. The Status register 
4. The BadVAddr (bad virtual address) register 

Typical exception handlers preserve the status, cause, and EPC registers in 
general registers (or on the system stack). If the exception cause is due to an 
address error, software may also preserve the bad virtual address register for 
later processing. 

Note that not all systems need to preserve this information. Since the R305 l 
family disables subsequent interrupts, it is possible for software to directly 
process the exception while leaving the processor context in the CPO registers. 
Care must be taken to insure that the execution of the exception handler does 
not generate subsequent exceptions. 

Preserving the context in general registers (and on the stack) does have the 
advantage that interrupts can be re-enabled while the original exception is 
handled, thus allowing a priority interrupt model to be built. 

A typical code sequence to preserve processor context is shown in Figure 
6.11. This code sequence preserves the context into an area of memory pointed 
to by the kO kernel register. This register points to a block of memory capable 
of storing processor context. Constants identified by name (such as R_EPC) are 
used to indicate the offset of a particular register from the start of that memory 
area. 

It should be noted that this sequence for fetching the co-processor zero 
registers is required because there is a one clock delay in the register value 
actually being loaded into the general registers after the execution of the mfcO 
instruction. 

la 
SW 
SW 
SW 
mfcO 
mfcO 
SW 
mfcO 
SW 

kO,except_regs 
AT,R_AT*4(k0) 
v0,R_ V0*4(k0) 
v1 ,R_ V1 *4(k0) 
vo,co_EPC 
v1,CO_SR 
v0,R_EPC*4(k0) 
vO,CO_CAUSE 
v1 ,R_SR*4(k0) 

#fetch address of reg save array 
# save register AT 
# save register vo 
# save register v1 
# fetch the epc register 
#fetch the status register 
# save the epc 
# fetch the cause register 
# save status register 

/* The above code is about the minimum required 
The user specific code would follow 

*/ 

Figure 6.11. Preserving Processor Context 
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DETERMINING THE CAUSE OF THE EXCEPTION 
The cause register indicates the reason the exception handler was invoked. 

Thus, to invoke the appropriate exception service routine, software merely 
needs to examine the cause register, and use its contents to direct a branch to 
the appropriate handler. 

One method of decoding the jump to an appropriate software routine to 
handle the exception and cause is shown in Figure 6.12. RegistervO contains 
the cause register, and register kO still points to the register save array . 

. set noreorder 
SW 

and 
lw 
SW 

j 
SW 

.set 

a0,R_A0*4(k0) 
v1 ,vO,EXCMASK 
ao ,cause_ table(v1) 
a1 ,R_A1*4(k0) 
aO 
k1 ,R_K1 *4(sp) 
reorder 

# save register ao 
# isolate exception code 
# get address of interrupt routine. 
#use delay slot to save register a1 

# save k1 register 
# re-enable pipeline scheduling 

Figure 6.12. Exception Cause Decoding 
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The above sequence of instructions extracts the exception code from the 
cause register and uses that code to index into the table of pointers to functions 
(the cause_table). The cause_table data structure is shown in Figure 6.13. 

Each of the entries in this table point to a function for processing the 
particular type of interrupt detected. The specifics of the code contained in 
each of these functions is unique for a given application; all registers used in 
these functions must be saved and restored. 

int (*cause_table[16])() = { 
int_ extern, I* External interrupts */ 
int_tlbmod, I* TLB modification error */ 
int_tlbmiss, I* load or instruction fetch */ 
int_tlbmiss, I* write miss */ 
int_addrerr, I* load or instruction fetch *I 
int_addrerr, I* write address error *I 
int_ibe, I* Bus error - Instruction fetch *I 
int_dbe, I* Bus error - load or store data *I 
int_syscall, I* SYSCALL exception *I 
int_ breakpoint, !* breakpoint instruction */ 
int_ trap, !* Reserved instruction *I 
int_cpunuse, I* coprocessor unusable *I 
int_ trap, I* Arithmetic overflow */ 
int_unexp, I* Reserved *I 
int_unexp, I* Reserved */ 
int_unexp I* Reserved *I 
}; 
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Figure 6.13. Exception Service Branch Table 
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RETURNING FROM EXCEPTIONS 
Returning from the exception routine is made through the rfe instruction. 

When the exception first occurs the R3041 automatically saves some of the 
processor context, the current value of the interrupt enable bit is saved into the 
field for the previous interrupt enable bit, and the kernel/user mode context 
is preserved. 

The IE interrupt enable bit must be asserted (a one) for external interrupts 
to be recognized. The KUkernel mode bit must be a zero in kernel mode. When 
an exception occurs, external interrupts are disabled and the processor is 
forced into kernel mode. When the rfe instruction is executed at completion of 
exception handling, the state of the mode bits is restored to what it was when 
the exception was recognized (presuming the programmer restored the status 
register to its value when the exception occurred). This is done by "popping" 
the old/previous/current KU and IE bits of the status register. 

The code sequence in Figure 6.14 is an example of exiting an interrupt 
handler. The assumption is that registers and context were saved as outlined 
above. 

This code sequence must either be replicated in each of the cause handling 
functions, or each of them must branch to this code sequence to properly exit 
from exception handling. 

Note that this code sequence must be executed with interrupts disabled. If 
the exception handler routine re-enables interrupts they must be disabled 
when the CPO registers are being restored. 

gen_excp_exit: 
.set noreorder 

lw 
lw 
mtcO 
lw 
lw 
j 
rfe 

k0,CO_SR*4(AT) 
v0,R_ V0*4(A T) 
kO,CO_SR 
k0,R_EPC*4(AT) 
AT,R_AT*4(AT) 
kO 

.set reorder 

#by the time we have gotten here 
# all general registers have been 
#restored (except of kO and vO) 
#reg. AT points to the reg save array 
# fetch status reg. contents 
#restore reg. vo 
# restore the status reg. contents 
# Get the return address 
# restore AT in load delay 
#return from int. via jump reg. 
#the rfe instr. is executed in the 
# branch delay slot 

Figure 6.14. Returning from Exception 
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SPECIAL TECHNIQUES FOR INTERRUPT HANDLING 
There are a number of techniques which take advantage of the R305 l family 

architecture to minimize exception latency and maximize throughput in 
interrupt driven systems. This section discusses a number of those techniques. 

Interrupt Masking 
Only the six external and two software interrupts are maskable exceptions. 

The mask for these interrupts are in the status register. 
To enable a given external interrupt, the corresponding bit in the status 

register must be set. The IEc bit in the status register must also be set. It 
follows that by setting and clearing these bits within the interrupt handler that 
interrupt priorities can be established. The general mechanism for doing this 
is performed within the external interrupt-handler portion of the exception 
handler. 

The interrupt handler preserves the current mask value when the status 
register is preserved. The interrupt handler then calculates which (if any) 
external interrupts have priority, and sets the interrupt mask bit field of the 
status register accordingly. Once this is done, the IEc bit is changed to allow 
higher priority interrupts. Note that all interrupts must again be disabled 
when the return from exception is processed. 

Using BrCond For Fast Response 
The R305 l family instruction set contains mechanisms to allow external or 

internal co-processors to operate as an extension of the main CPU. Some of 
these features may also be used in an interrupt-driven system to provide the 
highest levels of response. 

Specifically, the R304 l has external input port signals, the BrCond(3:2) 
signals. These signals are used by external agents to report status back to the 
processor. The instruction set contains instructions which allow the external 
bits to be tested, and branches to be executed depending on the value of 
BrCond. 

An interrupt-driven system can use these BrCond signals, and the 
corresponding instructions, to implement an input port for time-critical 
interrupts. Rather than mapping an input port in memory (which requires 
external logic), the BrCond signals can be examined by software to control 
interrupt handling. 

There are actually two methods of advantageously using this. One method 
uses these signals to perform interrupt polling; in this method, the processor 
continually examines these signals, waiting for an appropriate value before 
handling the interrupt. A sample code sequence is shown in Figure 6.15. 

The software in this system is veiy compact, and easily resides in the on-chip 
cache of the processor. Thus, the latency to the interrupt service routine in this 
system is minimized, allowing the fastest interrupt service capabilities. 

A second method utilizes external interrupts combined with the BrCond 
signals. In this method, both the BrCond signal and one of the external 
interrupt lines are asserted when an external event occurs. This configuration 
allows the CPU to perform normal tasks while waiting for the external event. 

For example, assume that that a valve must be closed and then normal 
processing continued when BrCond(2) is asserted 1RUE. The valve is 
controlled by a register that is memory-mapped to address Oxaffe_0020 and 
writing a one to this location closes the valve. The software in Figure 6.16 
accomplishes this, using BrCond(2) to aid in cause decoding. 

The number of cycles for a deterministic system is five cycles between the 
time the interrupt occurred and it was serviced. Interrupts were re-enabled in 
four additional cycles. Note that none of the processor context needs to be 
preserved and restored for this routine. 
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.set 

polling_loop: 
bc2f 
nop 

noreorder 

polling_ loop 

fast_response _ cp2: 

b polling_ loop 

# prevents the assembler from 
# reordering the code below 

# branch to yourself until 
# BrCond(2} is asserted 

# Once BrCond(2) is asserted, fall through 
# and begin processing the external event 

# code sequence that would do the 
#event processing 

# return to polling 

Figure 6.15. Polling System Using BrCond 

.set noreorder # prevents the assembler from reordering 
# the code sequences below 

/* This section of code is placed at the general exception 
••vector location OxBOOO_OOBO. When an external interrupt is 
•• asserted execution begins here. 
*/ 

bc2t 
Ii 
la 
j 
nop 

close_valve 
k0,1 
kO,gen_exp_hand 
kO 

#test for emergency condition and 
# jump to close valve if TRUE 
# otherwise, 
#jump to general exc. handler 
# and process less critical excepts. 

/* This is the close valve routine - its sole purpose is to close the 
•• valve as quickly as possible. The registers 'kO' and 'k1' are reserved 
•• for kernel use and therefore need not be saved when a client or 
** user program is interrupted. It should be noted that the value to 
** write to the valve close register was put in reg 'kO' in the 
•• branch delay slot above - so by the time we get here it is 
•• ready to output to the close register. 
*/ 
close_valve: 

la # the address of the close register 
# write the value to the close register 

4000 drw 41 

SW 
mfcO 
nop 

k1 ,Oxaffe0020 
k0,0(k1) 
kO,CO_EPC #get the return address to cont processing 

j 
rfe 

kO 

. set reorder 

# return to normal processing 
# restore previous interrupt mask 
# and kernel/user mode bits of the 
#status register . 

Figure 6.16. Using BrCond for Fast Interrupt Decoding 
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Nested Interrupts 
Note that the processor does not automatically stack processor context 

when an exception occurs; thus, to allow nested exceptions it is important that 
software perform this stacking. 

Most of the software illustrated above also applies to a nested exception 
system. However, rather than using just one register (pointed to by kO) as a 
save area, a stacking area must be implemented and managed by software. 
Also, since interrupts are automatically disabled once an exception is detected, 
the interrupt handling routine must mask the interrupt it is currently 
servicing, and re-enable other interrupts (once context is preserved) through 
the IEc bit. 

The use of Interrupt Mask bits of the status register to implement an 
interrupt prioritization scheme was discussed earlier. An analogous technique 
can be performed by using an external interrupt encoder to allow more 
interrupt sources to be presented to the processor. 

Software interrupts can also be used as part of the prioritization of 
interrupts. If the interrupt service routine desires to service the interrupting 
agent, but not completely perform the interrupt service, it can cause the 
external agent to negate the interrupt input but leave interrupt service pending 
through the use of the SW bits of the Cause register. 

Catastrophic Exceptions 
There are certain types of exceptions that indicate fundamental problems 

with the system. Although there is little the software can do to handle such 
events, they are worth discussing. Exceptions such as these are typically 
associated with faulty systems, such as in the initial debugging or development 
of the system. 

Potential problems can arise because the processor does not automatically 
stack context information when an exception is detected. If the processor 
context has not been preserved when another exception is recognized, the 
value of the status, cause, and EPC registers are lost and thus the original task 
can not be resumed. 

An example of this occurring is an exception handler performing a memory 
reference that results in a bus error (for example, when attempting to preserve 
context). The bus error forces execution to the exception vector location, 
overwriting the status, cause, and context registers. Proper operation cannot 
be resumed. 
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HANDLING SPECIFIC EXCEPTIONS 
This section documents some specific issues and techniques for handling 

particular R304 l exceptions. 

Address Error Exception 

Cause 
This exception occurs when an attempt is made to load, fetch, or store a word 

that is not aligned on a word boundary. Attempting to load or store a half-word 
that is not aligned on a half-word boundary will also cause this exception. The 
exception also occurs in User mode if a reference is made to a virtual address 
whose most significant bit is set (a kernel address). This exception is not 
maskable. 

Handling 
The R305 l family branches to the General Exception vector for this 

exception. When the exception occurs, the R304 l sets the ADEL or ADES code 
in the Cause register ExcCode field to indicate whether the address error 
occurred during an instruction fetch or a load operation (ADEL) or a store 
operation (ADES). 

The EPC register points at the instruction that caused the exception, unless 
the instruction is in a branch delay slot: in that case, the EPC register points 
at the branch instruction that preceded the exception-causing instruction and 
sets the BD bit of the Cause register. 

The R304 l saves the KUp, IEp, KUc, and IEc bits of the Status register in the 
KUo, IEo, KUp, and IEp bits, respectively and clears the KUc and IEc bits. 

When this exception occurs, the BadVAddr register contains the virtual 
address that was not properly aligned or that improperly addressed kernel data 
while in User mode. The contents of the VPN field of the Context and EntryHi 
registers are undefined. 

Servicing 
A kernel should hand the executing process a segmentation violation signal. 

Such an error is usually fatal although an alignment error might be handled 
by simulating the instruction that caused the error. 
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Breakpoint Exception 

Cause 
This exception occurs when the R304 l executes the BREAK instruction. 

This exception is not maskable. 

Handling 
The R304 l branches to the General Exception vector for the exception and 

sets the BP code in the CAUSE register ExcCode field. 
The R304 l saves the KUp, IEp, KUc, and IEc bits of the Status register in the 

KUo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits. 
The EPC register points at the BREAK instruction that caused the exception, 

unless the instruction is in a branch delay slot: in that case, the EPC register 
points at the BRANCH instruction that preceded the BREAK instruction and 
sets the BD bit of the Cause register. 

Service 
The breakpoint exception is typically handled by a dedicated system routine. 

Unused bits of the BREAK instruction (bits 25 .. 6) can be used pass additional 
information. To examine these bits, load the contents of the instruction 
pointed at by the EPC register. NOTE: If the instruction resides in the branch 
delay slot, add four to the contents of the EPC register to find the instruction. 

To resume execution, change the EPC register so that the R304 l does not 
execute the BREAK instruction again. To do this, add four to the EPC register 
before returning. NOTE: If a BREAK instruction is in the branch delay slot, 
the BRANCH instruction must be interpreted in order to resume execution. 
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Bus Error Exception 

Cause 
This exception occurs when the Bus Error input to the CPU is asserted by 

external logic during a read operation. For example, events like bus time-outs, 
backplane bus parity errors, and invalid physical memory addresses or access 
types can signal exception. This exception is not maskable. 

This exception is used for synchronously occurring events such as cache 
miss refills. The general interrupt mechanism must be used to report a bus 
error that results from asynchronous events such as a buffered write transaction. 

Handling 
The R304 l branches to the General Exception vector for this exception. 

When exception occurs, the R304 l sets the IBE or DBE code in the CAUSE 
register ExcCode field to indicate whether the error occurred during an 
instruction fetch reference (IBE) or during a data load or store reference (DBE). 

The EPC register points at the instruction that caused the exception, unless 
the instruction is in a branch delay slot: in that case, the EPC register points 
at the BRANCH instruction that preceded the exception-causing instruction 
and sets the BD bit of the cause register. 

The R304 l saves the KUp, IEp, KUc, and IEc bits of the Status register in the 
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits. 

Servicing 
The physical address where the fault occurred can be computed from the 

information in the CPO registers: 

• If the Cause register's IBE code is set (showing an instruction fetch 
reference). the virtual address resides in the EPC register. 

• If the Cause register's DBE exception code is set (specifying a load or store 
reference), the instruction that caused the exception is at the virtual 
address contained in the EPC register (if the BD bit of the cause register 
is set, add four to the contents of the EPC register). Interpret the 
instruction to get the virtual address of the load or store reference and 
then use the TLBProbe (tlbp) instruction and read Entry Lo to compute the 
physical page number. 

A kernel should hand the executing process a bus error when this exception 
occurs. Such an error is usually fatal. 
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Co-processor Unusable Exception 

Cause 
This exception occurs due to an attempt to execute a co-processor instruction 

when the corresponding co-processor unit has not been marked usable (the 
appropriate CU bit in the status register has not been set). For CPO 
instructions. this exception occurs when the unit has not been marked usable 
and the process is executing in User mode: CPO is always usable from Kernel 
mode regardless of the setting of the CPO bit in the status register. This 
exception is not maskable. 

Handling 
The R304 l branches to the General Exception vector for this exception. It 

sets the CPU code in the CAUSE register ExcCode field. Only one co-processor 
can fail at a time. 

The contents of the cause register's CE (Co-processor Error) field show which 
of the four co-processors (3,2, l, or O) the R304 l referenced when the exception 
occurred. 

The EPC register points at the co-processor instruction that caused the 
exception, unless the instruction is in a branch delay slot: in that case, the EPC 
register points at the branch instruction that preceded the co-processor 
instruction and sets the BD bit of the Cause register. 

The R304 l saves the KUp, IEp. KUc, and IEc bits of the status register in the 
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits. 

Servicing 
To identify the co-processor unit that was referenced, examine the contents 

of the Cause register's CE field. If the process is entitled to access, mark the 
co-processor usable and restore the corresponding user state to the co
processor. 

If the process is entitled to access to the co-processor, but the co-processor 
is known not to exist or to have failed, the system could interpret the co
processor instruction. If the BD bit is set in the Cause register, the BRANCH 
instruction must be interpreted; then, the co-processor instruction could be 
emulated with the EPC register advanced past the co-processor instruction. 

If the process is not entitled to access to the co-processor, the process 
executing at the time should be handed an illegal instruction/privileged 
instruction fault signal. Such an error is usually fatal. 
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Interrupt Exception 

Cause 
This exception occurs when one of eight interrupt conditions (software 

generates two, hardware generates six) occurs. 
Each of the eight external interrupts can be individually masked by clearing 

the corresponding bit in the IntMask field of the status register. All eight of the 
interrupts can be masked at once by clearing the IEc bit in the status register. 

Handling 
The R304 l branches to the General Exception vector for this exception. The 

R304 l sets the INT code in the Cause register's ExcCode field. 
The IP field in the Cause register show which of six external interrupts are 

pending, and the SW field in the cause register shows which two software 
interrupts are pending. More than one interrupt can be pending at a time. 

The R3041 saves theKUp, IEp, KUc, and IEcbits of the status register in the 
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits. 

Servicing 
If software generates the interrupt, clear the interrupt condition by setting 

the corresponding Cause register bit (SWl:O) to zero. 
If external hardware generated the interrupt, clear the interrupt condition 

by alleviating the conditions that assert the interrupt signal. 
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Overflow Exception 

Cause 
This exception occurs when an ADD ADDI, SUB, or SUBI instruction results 

in two's complement overflow. This exception is not maskable. 

Handling 
The R304 l branches to the General Exception vector for this exception. The 

R3041 sets the OV code in the CAUSE register. 
The EPC register points at the instruction that caused the exception, unless 

the instruction is in a branch delay slot: in that case, the EPC register points 
at the Branch instruction that preceded the exception-causing instruction and 
sets the BD bit of the CAUSE register. 

The R304 l saves the KUp, IEp, KUc, and IEc bits of the status register in the 
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits. 

Servicing 
A kernel should hand the executing process a floating point exception or 

integer overflow error when this exception occurs. Such an error is usually 
fatal. 
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Reserved Instruction Exception 

Cause 
This exception occurs when the R304 l executes an instruction whose major 

opcode (bits 31..26) is undefined or a Special instruction whose minor opcode 
(bits 5 .. 0) is undefined. 

This exception provides a way to interpret instructions that might be added 
to or removed from the R304 l processor architecture. 

Handling 
The R304 l branches to the General Exception vector for this exception. It 

sets the RI code of the Cause register's ExcCode field. 
The EPC register points at the instruction that caused the exception, unless 

the instruction is in a branch delay slot: in that case, the EPC register points 
at the Branch instruction that preceded the reserved instruction and sets the 
BD bit of the CAUSE register. 

The R304 l saves the KUp, IEp, KUc, and IEc bits of the status register in the 
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits. 

Servicing 
If instruction interpretation is not implemented, the kernel should hand the 

executing process an illegal instruction/reserved operand fault signal. Such 
an error is usually fatal. 

An operating system can interpret the undefined instruction and pass 
control to a routine that implements the instruction in software. If the 
undefined instruction is in the branch delay slot, the routine that implements 
the instruction is responsible for simulating the branch instruction after the 
undefined instruction has been "executed". Simulation of the branch instruction 
includes determining if the conditions of the branch were met and transferring 
control to the branch target address (if required) or to the instruction following 
the delay slot if the branch is not taken. If the branch is not taken, the next 
instruction's address is [EPC] + 8. If the branch is taken, the branch target 
address is calculated as [EPC] + 4 + (Branch Offset * 4). 

Note that the target address is relative to the address of the instruction in 
the delay slot, not the address of the branch instruction. Ref er to the 
description of branch instruction for details on how branch target addresses 
are calculated. 
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Reset Exception 

Cause 
This exception occurs when the R304 l RESET signal is asserted and then 

de-asserted. 

Handling 
The R304 l provides a special exception vector for this exception. The Reset 

vector resides in the R304l's un-mapped and un-cached address space; 
Therefore the hardware need not initialize the Translation Lookaside Buffer 
(TLB) or the cache to handle this exception. The processor can fetch and 
execute instructions while the caches and virtual memory are in an undefined 
state. 

The contents of all registers in the R304 l are undefined when this exception 
occurs except for the following: 

• The SWc, KUc, and IEc bits of the Status register are cleared to zero. 
• The BEV bit of the Status register is set to one. 
• The TS bit of the Status register is frozen at one. 
• The Config register is unlocked and initialized as described in Chapter 5. 
• The PortSize register is unlocked and initialized according to the Reset 

width of Boot Prom selected at Reset, as described in Chapter 5. 
• The BusCtrl is configured for R305 l compatible operation, as described 

in Chapter 5. 
• The Count register is initialized to 0. 
• The Compare register is initialized to Oxffff_ffff. 

Servicing 
The reset exception is serviced by initializing all processor registers, co

processorregisters, the caches, and the memory system. Typically, diagnostics 
would then be executed and the operating system bootstrapped, including 
setting of the PortSize, Config, and BusCtrl registers. The reset exception 
vector is selected to appear in the uncached, un-mapped memory space of the 
machine so that instructions can be fetched and executed while the cache and 
virtual memory system are still in an undefined state. 
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System Call Exception 

Cause 
This exception occurs when the R304 l executes a SYSCALL instruction. 

Handling 
The R304 l branches to the General Exception vector for this exception and 

sets the SYS code in the CAUSE register's ExcCode field. 
The EPC register points at the SYSCALL instruction that caused the 

exception, unless the SYSCALL instruction is in a branch delay slot: in that 
case, the EPC register points at the branch instruction that preceded the 
SYSCALL instruction and the BD bit of the CAUSEregister is set. 

The R304 l saves the KUp, IEp, KUc, and IEc bits of the status register in the 
KUo, IEo, KUp, and IEp bits, respectively, and clears the KUc and IEc bits. 

Servicing 
The operating system transfers control to the applicable system routine. To 

resume execution, alter the EPC register so that the SYSCALL instruction does 
not execute again. To do this, add four to the EPC register before returning. 
NOTE: If a SYSCALL instruction is in a branch delay slot, the branch 
instruction must be interpreted in order to resume execution. 
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The IDT R305 l family utilizes a simple, flexible bus interface to its external 
memory and 1/0 resources. The interface uses a single, multiplexed 32-bit 
address and data bus and a simple set of control signals to manage read and 
write operations. The R304 l bus interface is superset compatible with the 
R305 l family. Thus the R304 l can use the same interface chips, state 
machines, and board designs as the rest of the R305 l family. In addition, to 
the R305 l family bus, the R304 l adds interface options which are capable of 
reducing system costs. The R304 l adds new control signals and timing options 
which can simplify memory and 1/0 controllers. In addition, the memory sub
region CPO Port Size register allows preassigned memory blocks the capability 
of handling 16-bit and 8-bit interfaces as well as the R305 l family compatible 
32-bit interface. Complementing the basic read and write interface is a DMA 
Arbiter interface which allows an external agent to gain control of the memory 
interface to transfer data. 

The R304 l supports the following types of operations on its interface: 

• Read Operations: The processor executes an instruction fetch or a data 
load operation as the result of either a cache miss or an uncacheable 
reference. The read interface is designed to accommodate a wide variety 
of memory system strategies. There are two primary types of reads 
performed by the processor, bursts and single datum reads. An additional 
type for 16-bit and 8-bit interfaces is also defined, called mini-bursts: 

Burst reads (quad word, octi halfword, or 16 (sexdeci) byte reads 
corresponding to 32-bit, 16-bit, and 8-bit interfaces, respectively) occur 
when the processor requests a contiguous block of four words from 
memory. Bursts occur in response to instruction cache misses, and will 
occur in response to a data cache miss if the DBlockRefill option in the CPO 
Cache Configuration register is enabled. The processor incorporates an 
on-chip 4-word deep read buffer which may be used to "queue up" the read 
response before passing it through to the high-bandwidth cache and 
execution core. Read buffering is appropriate in systems which require 
wait states between adjacent datums of a block read or in interfacing to 
memory systems narrower than 32-bitswide. On the other hand, systems 
which use high-bandwidth memory techniques (such as page mode, 
static column, nibble mode, or memory interleaving) can effectively 
bypass the read buffer by providing words of the block at the processor 
clock rate. Note that the choice of burst vs. read buffering is independent 
of the initial latency of the memory; that is, burst mode can be used even 
if multiple wait states are required to access the first datum of the block. 

Single datum reads (Single word, halfword, or byte reads corresponding 
to 32-bit, 16-bit, and 8-bitinterfaces, respectively) are used foruncacheable 
references (such as for 1/0 or boot code) and will be used in response to 
a 32-bit interface data cache miss if the DBlockRefill option in the CPO 
Cache Configuration register is disabled. A single datum reads returns 
one unit of data per read transaction. The processor is capable of retiring 
a single datum read in as few as two clock cycles. 
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Mini-burst reads are a type of read that is in addition to the two primary 
read types of burst and single datum reads. Only the memory sub-regions 
using 16-bit and 8-bit interfaces are capable of mini-burst reads. For a 
16-bit interface, a mini-burst consists of two halfwords returned within 
the same read transaction. For an 8-bit interface, a mini-burst consists 
of two, three, or four bytes returned within the same read transaction. 

The read interface of the R304 l is described in detail in Chapter 8. 

• Write Operations: The R304 l utilizes an on-chip write buffer to isolate 
the execution core from the speed of external memory during write 
operations. The write interface of the R304 l is designed to allow a variety 
of write strategies, from fast 2-cycle write operations through multiple 
wait-state writes to 32-bit, 16-bit, and 8-bit memory sub-regions. There 
is a single primary type of write: 

Single datum writes (word, halfword, or byte writes corresponding to 32-
bit, 16-bit and 8-bit interfaces, respectively) are used in response to a data 
cache miss on the 32-bit interface or possibly for an uncacheable data 
reference on any of the interface sizes. The processor is capable of retiring 
a single datum write in as few as two clock cycles. 

Mini-burst writes are a type of write that is in addition to the primary 
write type of single datum writes. Only the memory sub-regions using 16-
bit and 8-bit interfaces are capable of mini-burst writes. For a 16-bit 
interface, a mini-burst consists of two halfwords sent within the same 
write transaction. For an 8-bit interface, a mini-burst consists of two, 
three, or four bytes sent within the same write transaction. 

The R304 l supports the use of fast page mode writes by providing an 
outputindicator, WrNear, toindicatethatthecurrentwritemayberetired 
using a page mode access. This facilitates the rapid "flushing" of the on
chip write buffer to main memory, since the majority of processor writes 
will occur within a localized area of memory. 

The write interface is described in detail in Chapter 9. 

• DMA Operations: The R304 l includes a DMA arbiter which allows an 
external agent to gain full control of the processor read and write interface. 
DMA is useful in systems which need to move significant amounts of data 
within memory (e.g. BitBLT operations) or move data between memory 
and 1/0 channels. 

The R304 l utilizes a very simple handshake to transfer control of its 
interface bus. This handshake is described in detail in Chapter 10. 
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MULTIPLE OPERATIONS 
It is possible for the R305 l family interface to have multiple activities 

pending. Specifically, there may be data in the write buffer, a read request (e.g. 
due to a cache miss). a DMA mastership request, and an ongoing transaction 
all occurring simultaneously. 

In establishing the order in which the requests are processed, the R304 l is 
sensitive to possible conflicts and data coherency issues as well as to 
performance issues. For example, if the on-chip write buffer contains data 
which has not yet been written to memory, and the processor issues a read 
request to the target address of one of the write buffer entries, then the 
processor strategy must insure that the read request is satisfied by the new, 
current value of the data. 

There are two levels of priority: that performed by the CPU engine internal 
to the R304 l, and that performed by the bus interface unit. The internal 
execution engine can be viewed as making requests to the bus interface unit. 
In the case of multiple requests in the same clock cycle, the CPU core will: 

1: Perform the data request first. That is, if both the data cache and 
instruction cache miss in the same clock cycle, the processor core will 
request a read to satisfy the data cache first. Similarly, a write buffer full 
stall will be processed before an instruction cache miss. 

2: Perform a read due to an instruction cache miss. 

This prioritization is important in maintaining the precise exception model 
of the MIPS architecture. Since data references are the result of instructions 
which entered the pipeline earlier, they must be processed (and any exceptions 
serviced) before subsequent instructions (and their exceptions) are serviced. 

Once the processor core internally decides which type of request to make to 
the bus interface unit, it then presents that request to the bus interface unit. 

Thus, in the R304 l Bus Interface Unit, multiple operations are serviced in 
the following order: 

1: Ongoing transactions are completed without interruption. 
2: DMA requests are serviced. 
3: Instruction cache misses are processed. 
4: Pending writes are processed. 
5: Data cache misses or uncacheable reads are processed. 

This service order has been designed to achieve maximum performance, 
minimize complexity, and solve the data coherency problem possible in write 
buffer systems. 

This order assumes that thewrite buffer does not contain instructions which 
the processor may wish to execute. The processor does not write directly into 
the instruction cache: store instructions generate data writes which may 
change only the data cache and main memory. The only way in which an 
instruction reference may reside in the write buffer is in the case of self 
modifying code, generated with the caches swapped. However, in order to 
unswap the caches, an uncacheable instruction which modifies CPO must be 
executed; the fetch of this instruction would cause the write buffer to be flushed 
to memory. Thus, this ordering enforces strong ordering of operations in 
hardware, even for self modifying code. Of course, software could perform an 
uncacheable reference to flush the write buffer at any time, thus achieving 
memory synchronization with software. 
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EXECUTION ENGINE FUNDAMENTALS 
This section describes the fundamentals of the processor interface and its 

interaction with the execution core. These fundamentals will help to explain 
the relationship between design trade-offs in the system interface and the 
performance achieved in R305 l family systems. 
Execution Core Cycles 

The R3051 family execution core utilizes many of the same operation 
fundamentals as does the R3000A processor. Thus, much of the terminology 
used to describe the activity of the R305 l family is derived from the terminology 
used to describe the R3000A. In many instances, the activity of the execution 
core is independent of that of the bus interface unit. 

Cycles 
A cycle is the basic timing reference of the R305 l family execution core. 

Cycles in which forward progress is made (the processor pipeline advances) are 
called Run cycles. Cycles in which no forward progress occurs are called Stall 
cycles. Stall cycles are used for resolving exigencies such as cache misses, 
write stalls, and other types of events. All cycles can be classified as either run 
or stall cycles. 

Run Cycles 
Run cycles are characterized by the transfer of an instruction into the 

processor execution core, and the optional transfer of data into or out of the 
execution core. Thus, each run cycle can bethoughtofashavtnganinstruction 
and data, or ID, pair. 

There are actually two types of run cycles: cache run cycles, and refill run 
cycles. cache run cycles (typically referred to as just run cycles) occur while 
the execution core is executing out of its on chip cache; these are the principal 
execution mechanism. 

Refill run cycles, referred to as streaming cycles, occur when the execution 
core is executing instructions as they are brought into the on-chip cache. For 
the R3051 family, streaming cycles are defined as cycles in which data is 
brought out of the on-chip read buffer into the execution core (rather than 
defining them as cycles in which data is brought from the memory interface to 
the read buffer). 

Stall Cycles 
There are three types of stall cycles: 
Wait Stall Cycles. These are commonly referred to simply as stall cycles. 

During wait stall cycles, the execution core maintains a state consistent 
with resolving a stall causing event. No cache activity will occur during 
wait stalls. 

Refill Stall Cycles. These occur only during memory reads, and are used 
to transfer data from the on-chip read buffer into the caches. 

Fixup Stall Cycles. Fixup cycles occur during the final cycle of a stall; that 
is, one cycle before entering a run cycle or entering another stall. During 
the final fixup cycle (the one which occurs before finally re-entering run 
operation), the Instruction/Data (ID) pair which should have been 
processed during the last run cycle is handled by the processor. The fixup 
cycle is used to restart the processor and co-processor pipelines, and in 
general to fixup conditions which caused the stall. 
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The basic causes of stalls include: 
Read Busy Stalls: If the processor is utilizing its read interface, either to 

process a cache miss or an uncacheable reference, then it will be stalled 
until the read data is brought back to the execution core. 

Write Busy Stalls: If the processor attempts to perform a store operation 
while the on-chip write buffer is already full, then the processor will stall 
until a write transaction is begun on the interface to free up room in the 
write buffer for the new address and data. 

Multiply /Divide Busy Stalls: If software attempts to read the result 
registers of the integer multiply I divide unit (the HI and LO registers) while 
a multiply or divide operation is underway, the processor execution core 
will stall until the results are available. 

Micro-TLB Fill Stallst: These stalls can occur when an instruction translation 
misses in the instruction TLB cache (the micro-TLB, which is a two-entry 
cache of the main TLB used to translate instruction references). When 
such an event occurs, the execution core will stall for one cycle, in order 
to refill the micro-TLB from the main TLB. Since this is a single-cycle stall, 
it is of necessity a fixup cycle. 

Multiple Stalls 
Multiple stalls are possible whenever more than one stall initiating event 

occurs within a single run cycle. An example of such activity is when a single 
cycle results in both an instruction cache miss and a data cache miss. 

The most important characteristic of any multiple stall cycle is the validity 
of the Instruction/Data (ID) pair processed in the final fixup cycle. The R304 l 
execution core keeps track of nested stalls to insure that orderly operation is 
resumed once all of the stall causing events are processed. 

For the general case of multiple stalls, the service order is: 
1: Micro-TLB Misst and Partial Word Store 
2: Data Cache Miss or Write Busy Stall 
3: Instruction Cache Miss 
4: Multiply /Divide Unit Busy 

tMicro-TLB stalls will not occur in the R3041, which does not include an on-chip 
TLB. 
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PIN DESCRIPTION 
This section describes the signals used in the above interfaces. More detail 

on the actual use of these pins is found in other chapters. Note that many of 
the signals have multiple definitions which are de-multiplexed either by the 
ALE signal or the Rd and Wr control signals. Also note that signals indicated 
with an overbar are active low. 

System Bus Interface Signals 

These signals are used by the bus interface to perform read and write 
operations. 

Address and Data Path 

A/D (31:0) I/O 

Multiplexed Address/Data Bus: A 32-bit, time multiplexed bus which 
indicates the desired address for a bus transaction in one cycle, and which 
is used to transmit data between this device and external memory 
resources on other cycles. 
Bus transactions on this bus are logically separated into two phases: 
during the first phase, information about the transfer is presented to the 
memory system to be captured using the ALE output. This information 
consists of: 

Address(31:4): 

BE(3:0): 

Data(3I:O): 

The high-order address for the transfer is presented. 

These strobes indicate which bytes of the 32-bit bus will 
beinvolvedinthetransfer. BE(3)indicatesthatAD(31:24) 
is used; BE(2) indicates that AD(23: 16) is used; BE( 1) 
indicates thatAD(l5:8) is used; and BE(O) indicates that 
AD(7:0) is used. They are valid for the 32-bit port size. 
For 16-bit or 8-bit port sizes, BE(3:0) are not valid, 
however, they do indicate which bytes will be used 
sometime during the (multi-datum) transaction. BE(3:0) 
can also be masked (held in-active) during reads by 
disabling the BE Control read mask bit in the CPO Bus 
Control register. 

During write cycles, the bus contains the data to be 
stored and is driven from the internal write buffer. On 
read cycles, the bus receives the data from the external 
resource, in either a single datum transaction, mini
burst, or burst and places the data into the on-chip read 
buffer. 
Operations using less than 32-bits of data use the data 
lines as described in Chapter 2 Table 2.3 describing 
Byte Addressing. The byte addressing in summary 
requires that 16-bit interfaces use the bytes associated 
with address offsets 0 and 1, i.e., D(3l:16) for big endian 
and D(l5:0) for little endian. 8-bit interfaces use the 
byte associated with address offset 0, i.e., D(31:24) for 
big endian and D(7:0) for little endian. These byte lane 
assignments are independent of the Reverse Endianess 
control bit in the CPO Status register. 
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Addr(S:O) 0 

Dedicated Address Bus. The remaining least significant bits of the 
transfer address are presented directly on these outputs and indicate 
which word, halfword, or byte is currently expected by the processor. 

Specifically, for 32-bit interfaces, Addr(3:2) presents either the address 
bits for the single word to be transferred (single word reads or writes) or 
functions as a two bit counter starting at '00' for burst (quad word) read 
operations. Addr(l:O) are undefmed for accesses to 32-bit memory sub
regions. 

For 16-bit interfaces, Addr(3: 1) presents either the address bits for the 
single halfword to be transferred (single halfword reads or writes), or 
functions as a three bit counter starting at '000' for burst (octi halfword) 
read, and mini-burst (double halfword) read or write operations. Addr(O) 
is undefined for accesses to 16-bit memory sub-regions. 

For 8-bit interfaces, Addr(3:0) presents either the address bits for the 
single byte to be transferred (single byte reads or writes), or functions as 
a four bit counter for burst (16 byte) read, and mini-burst (double, tri, or 
quad byte) read or write operations. 

The R3041 Addr( 1 :0) output pins are designated in the R3051 as the no
connect Rsvd(l:O) pins respectively. 

Primary Read and Write Control Signals 

ALE 0 

Address Latch Enable: This active high output signal is used to indicate 
that theA/D bus contains valid address information forthe bus transaction. 
Typically it is connected directly to the latch enable of transparent latches. 
Latches are typically used to de-multiplex the address and Byte Enable 
information from the A/D bus. 

DataEn 0 

Data Input Enable: Tilis active low output signal indicates that the A/ 
D bus is no longer being driven by the processor during read cycles, and 
thus the external memory system may enable the drivers of the memory 
system onto this bus without having a bus conflict occur. During write 
cycles, or when no bus transaction is occurring, this signal is negated. 
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Burst/ 
WrNear 0 

Wr 

Burst Transfer: On read transactions, this active low output signal 
indicates that the current bus read is requesting a block of four contiguous 
words (or eight halfwords, or sixteen bytes) from memocy (a burst read). 
This signal is asserted only in read cycles due to cache misses; it is 
asserted for all I-Cache miss read cycles, and for D-Cache miss read cycles 
if selected with the CPO cache Configuration register. 
Write Near: On write transactions, this active low output signal tells the 
external memocy system that the bus interface unit is performing back
to-back write transactions to an address within the same 256 entcy 
memocy "page" as the prior write transaction. This signal is useful in 
memocy systems which employ page mode or static column DRAMs. 

0 

Read: An active low output signal which indicates that the current bus 
transaction is a read. 

0 

Write: An active low output signal which indicates that the current bus 
transaction is a write. 

I 

Acknowledge: On read transactions, this active low input indicates the 
internal R304 l execution core can begin to process the data in the read 
buffer and that the read transaction is near completion. 
On write transactions, this active low input indicates to the R304 l that 
thememocy system has sufficiently processed thewrite data, and that the 
processor may either advance to the next write data in a mini-burst write 
and/ or that the processor may advance to the next bus transaction. 

RdCEn I 

Read Buffer Clock Enable: An active low input which indicates to the 
R304 l that the memocy system has placed valid data on the A/D bus, and 
that the processor may move the data into the on-chip Read Buffer. 

Bus Error I 

Bus Error: An active low input which terminates a bus transaction due 
to an external bus error. Th.is signal is only sampled during read and write 
operations. If the bus transaction is a read operation, then the CPU will 
also take a bus error exception. 
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Secondary Read and Write Control Signals 

BE16(1:0) 0 

Byte Enable Strobes for 16-Bit Ports: 1bese active low outputs are the 
byte enable strobes for 16-bit ports. IfBE16(1) is asserted then the most 
significant byte (0(31:24) for big endian or 0(15:8) for little endian) is 
going to be used in this transaction by the R3041. IfBE16(0) is asserted 
then the least significant byte (0(23: 16) for big endian or 0(7:0) for little 
endian) is going to be used in this transaction by the R3041. BE16(1:0) 
can also be masked (held in-active) during reads by disabling the BE16 
Control read mask in the CPO Bus Control register. BE16(1:0) is not 
necessarily valid for 32-bit or 8-bit ports. 

1be R3041 BE16(1:0) output pins are designated in the R3051 as the no
connect Rsvd(3:2) pins, respectively. 

Last 0 

Last Datum in Mini-Burst. 'Ibis active low output indicates that the 
last datum of a single datum, mini-burst or burst is being read or that 
the last datum of a single datum or mini-burst is being written. It 
goes active with Rd or Wr for single datum reads or writes, after the 
next to last RdCEn is sampled for multiple datum reads, and after the 
next to last Ack is sampled for mini-burst writes. Last de-asserts 
when Rd or Wr de-asserts. 

1be R3041 Last output pin is designated in the R3051 as the Diag(O) 
output pin. 

MemStrobe 0 

Memory Strobe: 'Ibis active low output pulses low for each datum read 
or written. It can be used either as a read strobe, write strobe, data strobe 
for single datum (non-burst) I/ 0 ports or for a write strobe (burst and non
burst) for SRAM. It can be active for reads, writes, or both depending on 
the settings in MemStrobe Control bits in the CPO Bus Control register as 
described in Chapter 5. After reset, MemStrobe is only active for writes. 

1be R3041 MemStrobe output pin is designated in the R3051 as the 
BrCond(O) input pin. 
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IOStrobe/ 
SBrCond(3) 

0 
I 

The SBrCond(3) pin is used as an input when the SBrCond(3:2) In control 
bit in the CPO Bus Control register is asserted. When de-asserted, the pin 
becomes the IOStrobe output. 

Input/Output Strobe: This active low output asserts on the first falling 
edge of SysClk ( 1 clock) after ALE de-asserts. It asserts relatively late in 
the cycle so that addresses and control lines are properly setup. It can be 
active for reads, writes, or both depending on the setting of the IOStrobe 
Control bits in the CPO Bus Control register. 
Note that since this signal pin can only become an output after boot PROM 
initialization has taken place, it cannot be used to control the boot PROM 
itself. Typical uses include 1/0 chip select gating, an address mux select 
for DRAMs, or a data strobe for 1/0. 
Branch Condition Port 3: This input port to the processor can use the 
Branch on Co-Processor Condition instructions to test its polarity. The 
SBrCond(3) input is synchronized by the R304 l, and thus may be driven 
by an asynchronous source. 

Ex:WataEn/ O 
SBrCond(2) I 

The SBrCond(2) pin is used as an input when the SBrCond(3:2) In Control 
bit in the CPO Bus Control register is asserted. When de-asserted, the pin 
becomes the ExtDataEn output. 

Extended Data Enable: This active low output asserts active low on the 
first rising edge of SysClk after ALE de-asserts (1/2 clock later). It is 
extended in that it de-asserts 1/2 clock after Rd de-asserts. ExtDataEn 
provides extra hold time for data sampling (especially on writes) or for the 
IOStrobe (if ExtDataEn is used as an extended read/write line. It can be 
active for reads, writes, or both depending on the setting of the ExtDataEn 
Control bits in the CPO Bus Control register. 
Note that since this signal pin can only become an output after boot PROM 
initialization has taken place, it cannot be used to control the boot PROM 
itself. Typical uses include a write enable control line for data transceivers, 
a write line for 1/0, or an address mux select for DRAMs. 
Branch Condition Port 2: This input port to the processor can use the 
Branch on Co-Processor Condition instructions to test its polarity. The 
SBrCond(2) input is synchronized by the R304 l, and thus may be driven 
by an asynchronous source. 
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Status Information and Diagnostics 

Diag 0 

Diagnostic Pin: This pin is useful in the initial debug of R304 l based 
systems. During the address phase of the read transaction, this output 
indicates whether the read is a result of a cache miss (high) or an 
uncacheable reference (low). 
During the remainder of the transfer, this output indicates whether the 
read is an instruction (high) or a data reference (low). 
The Diag pin is undefined during write transactions. 

The R3041 Diag output pin is designated in the R3051 as the Diag(l) 
output pin. 

Tristate I 

Tri-State All Outputs: An active low input to the device which requests 
that the processor tri-state all of its outputs. In addition to the outputs 
which are tri-stated during a DMA operation, SysClk, TC, and BusGnt are 
also tri-stated. TriState can be used for in-circuit testing and emulation 
during board production manufacture. 

The R3041 TriState input pin is designated in the R3051 as the no
connect Rsvd(4) pin. 

DMA Arbiter Interface 

These signals are involved when the processor exchanges bus mastership 
with an external agent. 

BusReq I 

DMA Arbiter Bus Request: An active low input to the device which 
requests that the processor tri-state its bus interface signals so that they 
may be driven by an external master. The negation of this input releases 
the bus back to the R304 l. 

BusGnt 0 

DMA Arbiter Bus Grant: An active low output from the R304 l used to 
acknowledge that a BusReq has been granted, and that the bus is 
relinquished to the external master. When the DMAProtocol bit in the CPO 
Bus Control register is not selected, the DMA device has the highest 
priority. When the DMAProtocol option is selected, a handshake is 
invoked that allows the CPU to have an equal priority with the DMAdevice. 
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Interrupt Interface 

Chapter 5 discusses the exception model of the R3041. 

Slnt(2:0) 
Int(5:3) I 

Processor Interrupt: These signals are functionally the same as the 
Int(5:0) signals of the R3000. The Synchronized interrupt inputs are 
internally synchronized by the R304 l, and thus may be generated by an 
asynchronous interrupt agent; the direct interrupts must be externally 
synchronized by the interrupt agent. 

Reset, Clocking, and Timer 

Chapter 4 discusses the internal timer supplied by the R304 l. Chapter 11 
discusses the Reset and Clock Interface. 

Clkln I 

Master clock Input: This is a double frequency input used to control the 
timing of the processor. 

SysClk 0 

TC 

System Reference Clock: An output from the processor which reflects 
the clock used to perform bus interface functions. This clock is used to 
control state transitions in theread buffer, write buffer, memory controller, 
and bus interface unit. It should be used as a timing reference by the 
external memory system. There is no specific guaranteed AC timing 
relationship between the Clkin input clock and the output clock SysClk. 

0 

Terminal Count: An active low output from the processor which pulses 
low for a minimum of 1.5 clocks whenever the CPO Timer register equals 
the CPO Compare register. Thus TC can be used to initiate a DRAM 
refresh. If the TC_Ack option is selected in the CPO Bus Control register, 
then TC remains low until the CPO Compare register is written. Thus with 
the TC_Ack option selected, TC can be used to implement areal-time clock 
by connecting it to an interrupt pin. 

The R3041 TC output pin is designated in the R3051 as the BrCond(l) 
input pin. 

Reset I 

Master Processor Reset: This active low input signal initializes the 
processor. Optional features of the processor are established during the 
last cycle of reset using the reset configuration mode inputs. 
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INTRODUCTION 
The R304 l read protocol has been designed to interface to a wide variety of 

memory and 1/0 devices. Particular care has been taken in the defmition of 
the control signals available to the system designer. These signals allow the 
system designer to implement a memory interface appropriate to the cost and 
performance goals of the end application. 

This chapter includes both an overview of the read interface and provides 
detailed timing diagrams of the read interface. 

TYPES OF READ TRANSACTIONS 
The majority of the execution engine read requests are never seen at the 

memory interface, but rather are satisfied by the internal cache resources of 
the processor. Only in the cases of uncacheable references or cache misses do 
read transactions occur on the bus. 

Quad word reads occur only in response to cache misses. All instruction 
cache misses are processed as quad word reads; data cache misses may be 
processed as quad word reads or single word reads, depending on the 
programming selection madein the CPO Cache Configuration register. Uncached 
instruction fetches or data references are processed as a single word or partial 
word read. 

In processing multiple item reads, there are two parameters of interest. The 
first parameter is the initial latency to the first data item of the read. This 
latency is influenced by the overall system architecture and the type of memo:ry 
system addressed: time required for address decoding, and perform bus 
arbitration, memory pre-charge requirements, and memory control 
requirements, as well as memory access time. The initial latency is the only 
parameter of interest in single datum reads when the memory port is 
sufficiently wide. 

The second parameter of interest in burst and mini-burst transfers is the 
repeat rate of data; that is, time required for subsequent data items to be 
processed back to the processor. Factors which influence the repeat rate 
include the memory system architecture, the types and speeds of devices used, 
and the sophistication of the memo:ry controller: memo:ry interleaving, the use 
of page or static column mode, and faster devices all serve to increase the repeat 
rate (minimize the amount of time between adjacent words). 

The R304 l has been designed to accommodate a wide variety of memory 
system designs, including no wait state operations (first word available in two 
cycles) and true burst operation (ac:ljacent words eve:ry clock cycle), through 
simpler, slower systems incorporating many bus wait states to the first data 
item and multiple clock cycles between adjacent data items, including the 
ability to process quad word reads as multiple data item reads of a narrow 
memory subsystem. 

The R3041 has a memory sub-region Port Size configuration CPO register, 
which allows individual memo:ry blocks to be configured to different size ports. 
When using a memo:ry block that is configured as a 32-bit port, the R304 l uses 
single word reads or quad block reads as described above. When using a 
memory block that is configured as a 16-bit port, the R3041 uses single 
halfword reads, dual halfword mini-burst reads, or octi halfword burst reads. 
When using a memo:ry block that is configured as an 8-bit port, the R304 l uses 
single byte reads, dual, tri or quad byte mini-burst reads, or 16 (sexdeci) byte 
long burst block reads. 
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READ INTERFACE SIGNALS 
Tue read interface uses the signals listed below. Signal names indicated with 

an overbar are active low. 

0 

Read Transaction: This active low output indicates that a read operation 
is occurring. It will assert when the R304 l initiates a read transaction. 
It will de-assert automatically after all the data has been returned. 

A/D (31:0) 1/0 

ALE 

Multiplexed Ad.dress/Data Bus: Duringread operations, this bus is used 
to transmit the read target address to the memory system, and is used by 
the memory system to return the required data back to the processor. Its 
function is de-multiplexed by using other control signals. Tue address 
phase is at the beginning of the bus transaction and is 1/2 clock long if 
the ExtAddrHold reset configuration mode is not selected. If the ExtAddr 
Hold mode is selected, then the address portion is 1 clock long. Tue data 
phase occurs during the remaining portion of the read. 

During the address portion of the read transaction, this bus contains the 
following: 

Address(31:4) Tue upper 28 bits of the read address are presented 
on A/D (31:4). 

BE(3:0) Tue bytestrobesfortheread transaction are presented 
on A/D(3:0). Tuey are only valid for the 32-bit port 
size. Tuey are not valid for 16-bit or 8-bit port sizes, 
however, they do indicate which bytes are used 
sometime during the (multi-datum) transaction. 
BE(3:0) can also be masked (held in-active) during 
reads by disabling the read mask, BE Control field of 
the CPO Bus Control register. 

During the data portion of the read transaction, this bus contains the 
following: 

Data(31:0) 

0 

Tue data lines are tri-stated. Operations using less 
than 32-bits of data use the data lines as described in 
Table 2.3 describing Byte Addressing. In summary, 
the byte addressing requires that 16-bit ports use the 
halfword associated with address offsets 0 and 1, i.e., 
D(31: 16) for big endian and D(l5:0) for little endian. 
8-bit ports use the byte associated with address offset 
0, i.e., D(31:24) for big endian and D(7:0) for little 
endian. These byte lane assignments are independent 
of the Reverse Endianess control bit in the CPO Status 
register. 

Ad.dress Latch Enable: This active high output signal is typically 
connected directly to the latch enable of transparent latches. Latches are 
typically used to de-multiplex the address and Byte Enable information 
from the A/D bus. 
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Addr(3:0) 0 

Dedicated Address Bus: The remaining least significant bits of the 
transfer address are presented directly on these outputs. In the case of 
32-bit quad word reads, the Addr(3:2) pins function as a two bit counter 
starting at '00', and are used to perform the quad word transfer. In the 
case of single datum reads, these pins contain Address (3:2) of the transfer 
address. Similarly, 16-bit ports use Addr(3: 1) and 8-bit ports use 
Addr(3:0). 

Note that Addr( 1 :O) in the R304 l correspond to the no-connect Rsvd( 1 :0) 
pins of the R305 l. 

DataEn 0 

Data Enable: This active low output indicates that the A/D bus is no 
longer being driven by the processor, and thus the output drivers of the 
memory system may be enabled. 

Special logic on the R304 l guarantees the following: 

• The A/D bus is driven to guarantee hold time from the negation of 
ALE. 

• The R304 l A/D bus output drivers will be disabled on reads before 
the assertion of DataEn. 

If the ExtAddrHold reset configuration mode is not active, DataEn will be 
asserted immediately after ALE de-asserts and as soon as the A/D bus is 
tri-stated. 

If the ExtAddrHold reset configuration mode is active, DataEn will be 
asserted as soon as the A/D bus is tri-stated on the next rising edge of 
SysClk after ALE de-asserts. 

Thus, the system designer is assured that ALE can be used to directly 
control the latch enable of a transparent latch. Similarly, DataEn can be 
used to directly control the output enable of memory system drivers. 

Burst 0 

Burst Read (multiplexed with Write Near): On read cycles, this active 
low output distinguishes between 32-bit quad word block and single 
datum reads. Similarly, on 16-bit reads, this output distinguishes 
between 16-bit octi halfword block and all other halfword reads. On 8-bit 
ports this output distinguishes between 8-bit 16 byte long block reads and 
all other byte reads. 

RdCEn I 

Read Buffer Clock Enable: This active low input is used by the external 
memory system to cause the processor to capture the contents of the 
A/D bus. In the case of single datum reads, this causes the processor to 
capture the read data and also terminates the read operation. In the case 
of multiple data reads, this causes the contents of the A/D bus to be 
strobed into the on-chip read buffer. When the final datum is captured, 
it also terminates the read operation. 
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I 

Acknowledge: This active low input is used by the memory system to 
indicate that it has sufficiently processed the read transaction, and that 
the internal execution core may begin processing the read data. Thus, 
ACk can be used by the external memory system to cause the execution 
core to begin processing the read data simultaneously with the memory 
system bringing in additional words of the burst refill. The timing of the 
assertion of Ack by the memory system must be constructed to insure that 
data items not yet retrieved from the memory will be brought in before they 
are required by the execution core. 

In general, the highest level of performance is achieved by asserting Ack 
concurrent with the final RdCEn for single datum and mini-burst block 
reads and by asserting ACk three clocks before the final RdCEn on burst 
block reads. 

Other systems, which utilize simpler memory system strategies, may 
ignore the use of Ack in read transactions. The processor will recognize 
the implicit termination of a read operation by the assertion of the 
appropriate number of RdCEn. While this approach is simpler to design, 
a loss of performance will result for both single datum and burst reads. 

Bus Error I 

Bus Error: This active low input can be used to terminate aread operation 
ifasserted before or concurrentlywithAck. It will also cause the processor 
to take a Bus Error exception. Read transactions terminated by BusError 
do not require the assertion of ACk or RdCEn. 

BE16(1:0) 0 

Byte Enable Strobes for 16-bit ports: These active low outputs are the 
byte enable strobes for 16-bit ports. If BE 16( 1) is asserted then the most 
significant byte (D(31:24) for big endian or D(l5:8) for little endian) is 
going to be sampled by the R3041. IfBE16(0) is asserted then the least 
significant byte (D(23: 16) for big endian or D(7:0) for little endian) is going 
to be sampled by the R3041. BE16 can also be masked (held in-active) 
during reads by disabling the read mask, BE 16 Control field of the CPO 
Bus Control register for direct connection to the write enables in DRAM 
systems or other systems with gated chip selects. BE16 is not valid for 
32-bit or 8-bit ports. 

The R3041 BE16(1:0) output pins are designated in the R3051 as no
connect Rsvd(3:2) pins, respectively. 

Last 0 

Last Datum in Mini-Burst: This active low output indicates that the 
last datum of a single datum, mini-burst or burst is being read. It 
goes active with Rd for single datum reads and after the next to last 
RdCEn is sampled for multiple datum reads. Last de-asserts when Rd 
de-asserts. 
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MemStrobe 0 

Memory Strobe: This active low output pulses low for each datum read. 
It can be used either as a read strobe or a data strobe. It can be active for 
reads, writes, or both depending on the setting of the MemStrobe control 
field of the CPO Bus Control Register. After reset, MemStrobe is only 
active for writes. 

The R3041 MemStrobe output pin is designated in the R3051 as the 
BrCond(O) input pin. 

IOStrobe 0 

Input/Output Strobe: This active low output asserts on the first falling 
edge of SysClk ( 1 clock) after ALE de-asserts. It asserts relatively late in 
the cycle so that addresses and control lines are properly setup. IOStrobe 
requires a total of least 3 clocks during a transaction in order to assert. 
Thus IOStrobe can be used as an 1/0 data strobe ifExtDataEn is used as 
a read/write line or IOStrobe can be used for gating 1/0 chip selects. It 
can be active for reads, writes, or both depending on the setting of the 
IOStrobe Control field of the CPO Bus Control Register. IOStrobe requires 
the transaction be at least 3 clocks long in order to assert. Since IOStrobe 
is an input on reset after which it can be configured with the SBrCond(3:2) 
Control bit to be an output, it cannot be used to control the Boot PROM. 

ExWataEn 0 

Extended Data Enable: This active low output asserts active low on the 
first rising edge of SysClk after ALE de-asserts (1/2 clock later). It is 
extended in that it de-asserts 1 /2 clock after Rd de-asserts. ExtDataEn 
provides extra hold time for data sampling (especially on writes). It can 
also be configured as an extended read/write line for I/ 0 interfaces. It can 
be active for reads, writes, or both depending on the setting of the 
ExtDataEn control field of the CPO Bus Control Register. Since 
ExtDataEn is an input on reset after which it can be configured with the 
SBrCond(3:2) Control bit to be an output, it cannot be used to control the 
Boot PROM. 

Diag 0 

Diagnostic Pin: This pin is useful in the initial debug of R304 l based 
systems. During the address phase of the read transaction, this output 
indicates whether the read is a result of a cache miss (high) or an 
uncacheable reference (low). 
During the remainder of the transfer, this output indicates whether the 
read is an instruction (high) or a data reference (low). 
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READ INTERFACE TIMING OVERVIEW 
The read interface is designed to allow a variety of memory strategies. An 

overview of how data is transmitted from memory and 1/0 devices to the 
processor is discussed below. Note that multiplexing the address and data bus 
does not slow down read transactions: the address is on the A/D bus for only 
one-half to one clock cycle, so that the system's data drivers can be enabled 
quickly; memory and 1/0 devices initiate their transfers based on addressing 
and chip enable, not on the availability of the bus. Thus, memory does not need 
to "wait" for the bus, and no performance penalty occurs. 

Initiation of Read Request 
A read transaction occurs when the processor internally performs a run 

cycle which is not satisfied by the internal caches. Immediately after the run 
cycle, the processor enters a stall cycle and asserts the internal control signal 
MemRd. This signals to the internal bus interface unit arbiter that a read 
transaction is pending. 

Assuming that the read transaction can be immediately processed (that is, 
there are no ongoing bus operations, and no higher priority operations 
pending), the processor will initiate a bus read transaction on the rising edge 
of SysClk which occurs during phase 2 of the processor stall cycle. Higher 
priority operations would have the effect of delaying the start of the read by 
inserting additional processor stall cycles. 

Figure 8.1 illustrates the initiation of a read transaction, based on the 
internal assertion of the MemRd control signal. This figure is useful in 
determining the overall latency of cache misses on processor operation. 

PhiClk 

SysClk 

MemRd 

ALE 

A/0(31 :0) 

Run 

Stall 
(Arbitration) 

Address 
Mem. 

Stall 

Addr/ 
Data 

Figure 8.1. CPU Latency to Start of Read 
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Memory Addressing 
A read transaction begins when the processor asserts its Rd control output, 

and also drives the address and other control information onto the A/D and 
memory interface bus. Figure 8.2 illustrates the start of a processor read 
transaction, when using the non-Extended Address Hold reset configuration 
mode option, including the addressing of memory and the intra-transaction 
bus turn around. 

nie addressing occurs in a half-cycle of the SysClk output. At the rising edge 
of SysClk, the processor will drive the read target address onto the A/D bus. 
At this time, ALE will also be asserted, to allow an external transparent latch 
to capture the address. Depending on the system design, address decoding 
could occur in parallel with address de-multiplexing (that is, the decoder could 
start on the assertion of ALE, and the output of the decoder captured by ALE), 
or could occur on the output side of the transparentlatches. During this phase, 
DataEn will be held high indicating that memory drivers should not be enabled 
onto the A/D bus. 

114 

Addr(3:2) 

ALE 

ExtDataEn 

MemStrobe 

• 117 

Diag 

Address 
Memory 

111 

Turn 
Bus 

l/D 

Sample 
Data? 

Figure 8.2. Start of Bus Read Operation Without Extended Address Hold 
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Concurrent with driving addresses on the A/D bus, the processor will 
indicate whether the read transaction is a burst block read or not, by driving 
Burst to the appropriate polarity Oow for a burst block read). If a quad word 
read is indicated the Addr bus will drive to the start of the block. If a single 
datum or mini-burst is indicated, the Addr lines will indicate the address for 
the transfer. The functioning of the counter during mini-burst and burst reads 
is also described later. 

Figure 8.2 illustrates the initiation of a read transaction when the Extended 
Address Hold reset configuration mode option, ExtAddrHold is turned on. 
ExtAddrHold delays the address to data bus tum around for an additional 1/ 
2 clock. Thus the address is held for an extra 1/2 clock and the assertion of 
DataEn is delayed for 1/2 clock. Since the de-assertion of ALE is unchanged, 
1/2 extra clock of address hold time is provided for easier use with ASICs, 
FPGAs, and other low-cost interfaces. 

The remaining figures and examples in this chapter will always be given 
using the ExtAddrHold reset configuration mode, although either mode is 
always applicable. 

Initiation of Data Phase 
Once the A/D bus has presented the address for the transfer, it is "turned 

around" by the processor to accept the incoming data. If the ExtAddrHold reset 
configuration mode is turned off, this occurs in the second phase of the first 
clock cycle of the read transaction as illustrated in Figure 8.2. If the 
ExtAddrHold reset mode is turned on, address to data bus tum around occurs 
in the first phase of the second clock cycle of the read transaction as illustrated 
in Figure 8.3. 

The processor turns the bus around by carefully performing the following 
sequence of events: 

• It negates ALE, causing the transparent address latches to capture the 
contents of the A/D bus. 

• It disables its output drivers on the A/D bus, allowing it to be driven by 
an external agent. The processor design guarantees that the ALE is 
negated prior to tri-stating theA/D bus. The exact timing of this depends 
on the reset setting of the Extended Address Hold feature, as described 
above. 

• The processor then asserts DataEn, to indicate that the bus may be now 
driven by the external memory resource. The processor design insures 
that the A/D bus is released prior to DataEn being asserted. DataEn may 
be directly connected to the output enable of external memory, and no bus 
conflicts will occur. 

Thus, the processor A/D bus is ready to be driven by the end of the second 
phase of the read transaction if the ExtAddrHold reset configuration mode is 
turned off and by the end of the first phase of the second clock if the 
ExtAddrHold mode is turned on. At this time, it begins to look for data to 
sample. 
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Figure 8.S. Start of Bus Read Operation with Extended Address Hold 
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Bringing Data into the Processor 
Regardless of whether the transfer is a burst read or a single datum transfer, 

the basic mechanism for transferring data presented on the A/D bus into the 
processor is the same. 

Although there are two control signals involved in terminating read operations, 
only the RdCEn signal is used to cause data to be captured from the bus. 

The memory system asserts RdCEn to indicate to the processor that it has 
(or will have) data on theA/D bus to be sampled. The earliest that RdCEn can 
be detected by the processor is the rising edge of SysClk after it has asserted 
ALE (start of phase 1 of the second clock cycle of the read). 

IfRdCEn is detected as asserted (with adequate setup and hold time to the 
rising edge of SysClk), the processor will capture (with proper setup and hold 
time) the contents of the A/D bus on the immediately subsequent falling edge 
of SysClk. This captures the data in the internal read buffer for later processing 
by the execution core/cache subsystem. 

The R3041 integrates on-chip a 4-word read buffer, capable of acting as a 
speed-matching FIFO between the system interface and the execution core. 
This bus interface then perf onns byte or half-word gathering, and assembles 
them into 32-bit words for the read buffer. Thus, the bus interface supports 
8-, 16-, and 32-bit memory subsystems, even for quad word reads, with no real 
system impact. 

Figure 8.4 illustrates the sampling of data by the R304 l. 

ND(31 :O) 

Addr(3:2) Current Word Address 

Ack or 
RdCEn? 

Ack/ Sample Ack or 
RdCEn Data RdCEn? 

Figure 8.4. Data Sampling on R3041 

During the data phase, these three control signals may also assert: 

•When programmed via the ExtDataEn and SBrCond(3:2) Control bits in 
the CPO Bus Control register, ExtDataEn asserts one clock cycle after Rd 
asserts and remains asserted 1/2 clock cycle after Rd de-asserts. 
Although primarily intended for being programmed to assert on Wr 
cycles, ExtDataEn can also be used as a DRAM address multiplexor select 
if configured to assert on both reads and writes. 

• When programmed via the MemStrobe Control bits in the CPO Bus 
Control register, MemStrobe asserts one clock after Rd asserts. It de
asserts 1/2 clock after every RdCEn is sampled. If more datum are being 
read within the same transaction (i.e., on a mini-burst or burst read), 
MemStrobe asserts again 1/2 clock after the last de-assertion and 
remains asserted until the next RdCEn occurs. The (de)-assertions 
continue until all datum are sampled. See Figure 8.13 for an example. 
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•When programmed via the IOStrobe and SBrCond(3:2) Control bits in the 
CPO Bus Control register, IOStrobe asserts 1.5 clock cycles after Rd 
asserts and remains asserted until Rd de-asserts. It will only assert if 
there are at least three clocks in the transaction. Thus this signal is useful 
for 1/0 reads if disabled during writes. IOStrobe can be used as an 1/0 
data strobe if ExtDataEn is configured as a read/write signal. IOStrobe 
can also be used as a DRAM address multiplexor select if configured to 
assert on both reads and writes. 

Terminating the Read 
There are actually three methods for the external memory system to 

terminate an ongoing read operation: 

• It can supply an Ack (acknowledge) to the processor, to indicate that it has 
sufficiently processed the read request and has or will supply the 
requested data in a timely fashion. Note that Ack may be signalled to the 
processor "early", to enable it to begin processing the read data even while 
additional data is brought from the A/D bus. This is applicable only in 
quad-word and mini-burst read operations. 

• It can supply a BusError to the processor, to indicate that the requested 
data transfer has "failed" on the bus, and force the processor to take a bus 
error exception. Although the system interface behavior of the processor 
when BusError is presented is similar to the behavior when Ack is 
presented, no data will actually be written into the on-chip cache. Rather, 
the cache line will either remain unchanged, or will be invalidated by the 
processor, depending on how much of the read has already been processed. 

• The external memory system can supply the requested data, using RdCEn 
to enable the processor to capture data from the bus. The processor will 
"count" the number of times RdCEn is sampled as asserted; once the 
processor counts that the memory system has returned the desired 
amount of data (one byte to four words), it will implicitly "acknowledge" 
the read after it samples the last required RdCEn. This approach leads 
to a simpler memory design at the cost of lower performance. 

Throughout this chapter, method one will be illustrated. The other cases can 
easily be extrapolated from these diagrams (for example, the system designer 
can assume that Ack is asserted simultaneous with the last RdCEn of a single 
word read transfer and 3 clocks before the last RdCEn of a burst read transfer). 

There are actually two phases of terminating the read: there is the phase 
where the memory system indicates to the processor that it has sufficiently 
processed the read request, and the internal read buffer can be released to 
begin refilling the internal caches; and there is the phase in which the read 
control signals are negated by the processor bus interface unit. The difference 
between these phases is due to block refill: it is possible for the memory system 
to "release" the execution core even though additional words of the block are 
still required; in that case, the processor will continue to assert the external 
read control signals until all four words are brought into the read buffer, while 
simultaneously refilling/ executing based on the data already brought on 
board. 
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To determine the end of the read transaction one of these methods may be 
used: 

Systems that only use 32-bit memory sub-region ports as with the rest of the 
R305 l family only have single datum reads or burst reads and can either 
count the number of wait-cycles or use the de-asserting edge of Rd to end 
the transaction. 

Systems that use 16 or 8-bit ports must in general support mini-burst reads. 
Memory controllers for such systems can use the de-asserting edge of Rd to 
reset the controller. The memory controller can also look for Last to assert. 
When Last asserts, the controller knows that it is handling the final datum 
of the transaction. It is also possible to decode BE(3:0) to determine how 
many datum are to be returned. 

Figure 8.5 shows the timing of the control signals when the read cycle is 
being terminated. 

SysClk 

Ack 

RdCEn 

A/0(31 :0) 

Addr(3:2) 

Rd 

Data En 

Burst 

Last 
t49 

ExtDataEn 

MemStrobe 

IOS!robe 

ALE 
t17 

Diag 

Figure 8.5. Read Cycle Termination 
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Latency Between Processor Operations 
In general, the processor may begin a new bus activity as soon as the phase 

immediately after the termination of the read cycle. Although this operation 
may logically be either a read, write, or bus grant, there are no cases where a 
read operation can be signalled by the internal execution core at this time. 

Since a new operation may begin one-half clock cycle after the data is 
sampled from the bus, it is important that the external memory system cease 
to drive the bus prior to this clock edge. To simplify design, the processor 
provides the DataEn output, which can be used to control either the Output 
Enable of the memory device (presuming its tri-state time is fast enough), or 
to control the Output Enable of a buffer or transceiver between the memory 
device data bus and the processor A/D bus, as illustrated in Figure 8.6. 

The R304 l also adds a new feature to the R305 l family to enable the system 
designer to lengthen the amount of time available for bus turn-around. The 
Bus Tum Around control field of the CPO Bus Control register enables the 
system designer to extend the minimum guaranteed amount of time available 
for bus turn-around. This enables the system designer to eliminate some 
transceiver devices and/ or use slower system components, without worrying 
about bus conflicts. 

R3051 RISController 

AID ALE DataEn 

Addr .---+-_..cs OE 
1---1--1 

Address 
Decode 

Figure 8.6. Use ofDataEn as Output Enable Control 
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Processor Intemal Activity 
In general, the processor will execute stall cycles until Ack is detected. It will 

then begin the process of refilling the internal caches from the read buffer. 
The system designer should consider the difference between the time when 

the memory interface has completed the read, and when the processor core has 
completed the read. The bus interface may have successfully returned all of 
the required data, but the processor core may still require additional clock 
cycles to bring the data out of the read buffer and into the caches. Figure 8. 7 
illustrates the relationship between ACk and the internal activity for a block 
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read. 

Stall 

Rd Busy 
negated 

RefilV 
Fix up 

Wordo 

RefilV 
Stream/ 
Fixup 

Word1 

RefilV 
Stream/ 
Fix up 
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Figure 8.7. Intemal Processor States on Burst Read 
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This figure illustrates that the processor may perform either a stream, fi.xup, 
or refill cycle in cycles in which data is brought from the read buffer. The 
difference between these cycles is defined as: 

• Refill. A refill cycle is a clock cycle in which data is brought out of the read 
buffer and placed into the internal processor cache. The processor does 
not execute on this data. 

• Fixup. A fi.xup cycle is a cycle in which the processor transitions into 
executing the incoming data. It can be thought of as a "retry" of the cache 
cycle which resulted in a miss. 

• Stream. A stream cycle is a cycle in which the processor simultaneously 
refills the internal instruction cache and executes the instruction brought 
out of the read buffer. 
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When reading the block from the read buffer, the processor will use the 
following rules: 

For uncacheable references, the processor will bring the single word out 
of the read buffer using a fixup cycle. 

For data cache refill, it will execute either one or four refill cycles, followed 
by a fixup cycle. 

For instruction cache refill, it will execute refill cycles starting at word zero 
until it encounters the miss address, and then transition to a fixup cycle. 
It will then execute stream cycles until either the entire block is processed, 
or an event stops execution. If something causes execution to stop, the 
processor will process the remainder of the block using simple refill cycles. 
For example, Figure 8.8 illustrates the refill/fixup/stream sequence 
appropriate for a miss which occurs on the second word of the block (word 
address 1). 

Although this operation is transparent to the external memory system, it is 
important to understand this operation to gauge the impact of design trade-offs 
on performance. 
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Figure 8.8. Instruction Streaming Example 
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32-BIT READ TIMING DIAGRAMS 
This section illustrates a number of timing diagrams applicable to R304 l 32-

bit read transactions. These diagrams reference AC parameters whose values 
are contained in the R3041 data sheet. Note that these timing diagrams 
assume MemStrobe, IOStrobe, and ExtDataEn are all enabled for read 
operations and that the ExtAddrHold reset configuration mode is enabled. 

Single Word Reads 
Figure8.9illustratesthecaseofasinglewordreadwhichdidnotrequirewait 

states. Thus, RdCEn and Ack were detected at the rising edge of SysClk which 
occurred exactly one clock cycle after the rising edge of SysClk which asserted 
Rd. Data was sampled one phase later, and Rd and DataEn disabled from that 
falling edge of SysClk. Thus, the execution core required three stall cycles and 
a fixup to process the internal data. 
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Figure 8.9. Single Word Read Without Bus Wait Cycles 
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Figure 8.10 also illustrates the case of a single word read. However, in this 
figure, two bus wait cycles were required before the data was returned. Thus, 
two rising edges of SysClk occurred where neither RdCEn nor Ack were 
asserted. On the third rising edge of SysClk, RdCEn was asserted. Ack should 
also be asserted at this time to optimally restart the pipeline. 
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Figure 8.10. Single Word Read With Bus Wait Cycles 
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Block Reads 
Figure 8.11 illustrates the absolute fastest 4 word block read. nie first word 

of the block is returned in the second cycle of the read; each additional word 
is returned in the immediately subsequent clock cycle. In this example, Ack 
can be returned simultaneously with the first RdCEn, to minimize the number 
of processor stall cycles. 

Although Ack is brought in 3 clocks before the last RdCEn, a number of clock 
cycles are required before the processor negates the Rd control output. nius, 
the system designer is assured that Rd remains active as long as the processor 
continues to expect data. 
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Figure 8.11. Burst Read With No Wait Cycles 
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Figure 8.12(a, b) illustrates a block read in which bus wait cycles are required 
before the first word is brought to the processor, but in which additional words 
can be brought in at the processor clock rate. Thus, as with the no wait cycle 
operation, Ack is returned 3 clocks before the last RdCEn. Figure 8.12(a) 
illustrates the start of the block read, including initial wait cycles to the first 
word; Figure 8.12(b) illustrates the activity which occurs as data is brought 
onto the chip and the read is terminated. 
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Figure 8.12(a). Start of Burst Read With Initial Wait Cycles 
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Figure 8.12(b). End of Burst Read 
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Figure 8.13(a,b) illustrates a block read in which bus wait cycles are required 
before the first word is returned, and in which wait cycles are required between 
subsequent words: Figure 8.13(a) illustrates the first two words of the block 
being brought on chip; Figure 8.13(b) illustrates the last two words of the read, 
including the optimum timing of Ack, and the negation of the read control 
signals. 
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Figure 8.13(a). First Two Words of Throttled Quad Word Read 
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In this diagram, the memory system returns Ack according to when the 
processor will empty the read buff er. In order to determine the optimum time 
to return Ack, the system designer must look at when the processor would read 
the fourth word from the read buffer. Align this cycle with one clock cycle after 
the memory system will return the fourth word to the processor. As shown in 
Figure 8.13(b). the memory system should return Ack five cycles prior to when 
the execution core requires the fourth word, which is the equivalent of three 
cycles prior to the last RdCEn. The system designer should also insure that 
the third, second, etc. words of the read cycle are available to the read buff er 
before the execution core removes them to the caches. 
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Figure 8.13(b). End of Throttled Quad Word Read 
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Bus Error Operation 
Figure 8.14 is a modified version of Figure 8.10 (single word read with wait 

cycles), in which BusError is used to terminate the read cycle. In this diagram, 
note that RdCEn does not need to be asserted, since the processor will insure 
that the contents of the A/D bus do not get written into the cache or executed. 
In single word reads, BusError can be asserted anytime up until A.Ck is 
asserted. IfBusError and Ack are asserted simultaneously, the BusError will 
be processed; if BusError is asserted after Ack is sampled, it will be ignored. 
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Figure 8.14. Single Word Read Terminated by Bus Error 
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Figure 8.15 shows the impact ofBusError on block reads. The assertion of 
BusError is allowed up until the assertion of Ack. Once BusError is asserted 
(sampled on a rising edge of SysClk), the read cycle will be terminated 
immediately, regardless of how many words have been written into the read 
buffer. Note that this means that the external memory system should stop 
cycling RdCEn at this time, since a late RdCEn may be erroneously detected 
as part of a subsequent read. Note that if BusError and Ack are asserted 
simultaneously, BusError processing will occur. If BusError is asserted after 
Ack, the BusError will be ignored. 
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Figure 8.15. Block Read Terminated by Bus Error 
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16-BIT READ TIMING DIAGRAMS 
This section illustrates a number of timing diagrams applicable to R304 l 

read transactions when a 16-bit port has been selected via the CPO Port Size 
register. These diagrams reference AC parameters whose values are contained 
in the R304 l data sheet. 

These timing diagrams assume that MemStrobe, IOStrobe, and ExtDataEn 
are enabled for read transactions and that the ExtAddrHold reset configuration 
mode is enabled. 

Also, regardless of the Address 1 value, the half of the A/D bus used during 
the data phase (A/D(31: 16) for big endian or A/D(l5:0) for little endian) is 
constant, according to the system byte ordering (endianness) selected at reset. 

Single Halfword Reads 
Figure 8.16 illustrates the case of a single halfword read which did not 

require wait states. Thus, RdCEn and Ack were detected at the rising edge of 
SysClk which occurred exactly one clock cycle after the rising edge SysClk 
which asserted Rd. Data was sampled one phase later, and Rd and DataEn 
disabled from that falling edge of SysClk. Thus, the execution core required 
three stall cycles and a fixup to process the internal data. In the cases where 
only one byte of data is needed, the 16-bit byte enables, BE16(1:0) indicate 
which bytes are being used in this transaction. 
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Figure 8.16. Single Halfword Read Without Bus Wait Cycles 
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Figure 8.17 also illustrates the case of a single halfword read. However, in 
this figure, one bus wait cycle is required before the data is returned. Thus, 
one rising edge of SysCikoccurred where neither RdCEn or ACK were asserted. 
On the second rising edge of SysClk, RdCEn was asserted. The timing of Ack 
in a single datum read should occur with the final RdCEn in order to optimally 
restart the internal pipeline. 
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Figure 8.17. Single Halfword Read With Bus Wait Cycle 
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Mini-Burst Halfword Reads 
Mini-burst halfword reads require two halfwords to be returned within the 

same read cycle as in Figure 8.18. After the second halfword is read, Rd will 
de-assert. Alternatively, external wait state machine controllers can find the 
start of the final halfword of the mini-burst as indicated by the assertion of Last. 
In a mini-burst, the Burst line remains de-asserted, since Burst is only used 
to indicate an octi (8) halfword read corresponding to a four word block. Note 
that during either of the halfwords in a mini-burst may have both or just one 
of its byte enable, BE 16( 1 :0) signals asserted. These three cases correspond 
to instructions which generate tri-byte (addresses 0, 1,2 or 1,2,3) and word 
(addresses 0, 1,2,3) loads or fetches. 

The timing of Ack in a mini-burst read should occur with the final RdCEn 
in order to optimally restart the internal pipeline. 
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Figure 8.18. Mini-Burst Halfword Read Without Bus Wait Cycles 
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16-Bit Block Reads 
16-bit block reads involve a total of 8 halfwords of data. Figure 8.19(a) 

illustrates the beginning of the absolute fastest halfword block read. Figure 
8. l 9(b) illustrates the ending of the absolute fastest halfword block read. The 
first halfword of the block is returned in the second cycle of the read; each 
additional halfword is returned in the immediately subsequent clock cycles. 
Thus, Ack can be returned on the 3rd clock prior to the last RdCEn, to minimize 
the number of processor stall cycles. 

Run/ Stall Stall Stall Stall Stall Stall Stall Stall 

PhiClk 

SysClk 

Rd 

AID(31:0) 

Addr(3:1) 

ALE 

BE16(1:0) 

DataEn 

ExtDataEn 

Burst 

Last 

MemStrobe 

IOStrobe 

RdCEn 

Ack 

Diag 

Start Extended RdCEn Sample RdCEn Sample RdCEn Sample RdCEn Sample RdCEn 
Read Address Data Data Data Data 

Figure 8.19(a). Start of Burst Block Halfword Read Without Bus Wait Cycles 

Note that although Ack is brought low in the 3rd clock from the end clock 
cycle, a number of clock cycles are required before the processor negates the 
Rd control output. Thus, the system designer is assured thatRd remains active 
as long as the processor continues to expect data. 

Halfword block reads can insert bus wait cycles just like the 32-bit block 
reads. Thus bus wait cycles can be inserted before the first halfword and/ or 
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between subsequent halfwords simply by delaying the assertion ofRdCEn until 
the data is ready. In these cases, Ack must be timed so that the pipeline restarts 
in time to read the last halfword. Thus the optimal placement of ACk is no 
sooner than the 3rd clock from the last RdCEn. 
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Figure 8.19(b). End of Burst mock Halfword Read Without Bus Wait Cycles 

Bus Error Operation 
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Stream/ 
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Bus errors for 16-bithalfword ports operate the same as 32-bit bus errors. 
In single halfword reads, BusError can be asserted anytime up until ACk is 
asserted. If BusError and Ack are asserted simultaneously, the BusError will 
be processed; if BusError is asserted after Ack is sampled, it will be ignored. 

On block reads, the assertion of BusError is allowed up until the assertion 
of Ack. Once BusError is asserted (sampled on arising edge of SysClk), the read 
cycle will be terminated immediately, regardless of how many halfwords have 
been written into the read buffer. Note that this means that the external 
memory system should stop cycling RdCEn at this time, since a late RdCEn 
may be erroneously detected as part of a subsequent read. Note that if 
BusError and ACk are asserted simultaneously, BusError processing will 
occur. If BusError is asserted after Ack, the BusError will be ignored. 
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8-BIT READ TIMING DIAGRAMS 
This section illustrates a number of timing diagrams applicable to R304 l 

read transactions when an 8-bit port has been selected via the CPO Port Size 
register. These diagrams reference AC parameters whose values are contained 
in the R304 l data sheet. 

These diagrams assume that MemStrobe, IOStrobe, and ExtDataEn are 
enabled for reads and that the ExtAddrHold reset configuration mode is 
enabled. 

The byte lane used for a transfer is not dependent on the address bit 0, but 
rather on the system byte ordering (endianness) selected at reset. A/D(3 l :24) 
ts used for big endian systems, and A/D(7:0) is used for little endian systems. 

Single Halfword Reads 
Figure 8.20 illustrates the case of a single byte read which did not require 

wait states. Thus, Ack was detected at the rising edge of SysClk which occurred 
exactly one clock cycle after the rising edge SysClk which asserted Rd. Data 
was sampled one phase later, and Rd and DataEn disabled from that falling 
edge of SysClk. Thus, the execution core required three stall cycles and a fixup 
to process the internal data. 
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Figure 8.20. Single Byte Read Without Bus Wait Cycles 
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Figure 8.21 also illustrates the case of a single byte read. However, in this 
figure, two bus wait cycles were required before the data was returned. Thus, 
two rising edges of SysClk occurred where neither RdCEn or ACk were asserted. 
On the third rising edge of SysClk, RdCEn was asserted. The timing of Ack in 
a single datum read should occur with the final RdCEn in order to optimally 
restart the internal pipeline. 
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Figure 8.21. Single Byte Read With Bus Wait Cycles 
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Mini-Burst Byte Reads 
Mini-burst byte reads require two, three, or four bytes to be returned within 

the same read cycle as illustrated in Figures 8.22, 8.23, and 8.24. After the last 
byte is read, Rd will de-assert. Alternatively, external wait state machine 
controllers can find the start of the final byte of the mini-burst as indicated by 
the assertion of Last. In a mini-burst, the Burst line remains de-asserted, since 
Burst is only used to indicate a 16 byte block read corresponding to a four word 
block. Note that the starting address of a mini-burst is not necessarily 0. For 
example, it could be a' l' if the load or fetch corresponds to a tri-byte operation. 

The timing of Ack in a mini-burst read should occur with the final RdCEn 
in order to optimally restart the internal pipeline. 
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Figure 8.22. Double Byte Read Without Bus Wait Cycles 
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Figure 8.23. Tri-Byte Read Without Bus Wait Cycles 
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Figure 8.24. Quad-Byte Read Without Bus Wait Cycles 
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8-Bit Quad Word Reads 
8-bit block reads involve a total of 16 bytes of data. Figure 8.25(a) illustrates 

the beginning of the absolute fastest byte block read. Figure 8.25(b) illustrates 
the ending of the absolute fastest byte block read. Intervening bytes 5 through 
11 are similar. The first byte of the block is returned in the second cycle of the 
read; each additional byte is returned in the immediately subsequent clock 
cycles. Thus, Ack can be returned on the 3rd clock prior to the last RdCEn, 
to minimize the number of processor stall cycles. 

Note that although Ack is brought low in the 3rd clock from the end clock 
cycle, a number of clock cycles are required before the processor negates the 
Rd control output. Thus, the system designer is assured thatRd remains active 
as long as the processor continues to expect data. 

Byte block reads can insert bus wait cycles just like the 32-bit block reads. 
Thus bus wait cycles can be inserted before the first byte and/ or between 
subsequent bytes simply by delaying the assertion ofRdCEn until the data is 
ready. In these cases, Ack must be timed so that the pipeline restarts in time 
to read the last byte. Thus the optimal placement of Ack is no sooner than the 
3rd clock from the last RdCEn. Note that if Aek is not given at all, an implicit 
Ack will be generated one clock after the last RdCEn. 
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Figure 8.25 (a). Start of 16 Byte Burst Read Without Bus Wait Cycles 
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Figure 8.25 (b). End of 16 Byte Burst Read Without Bus Wait Cycles 

Bus Error Operation 
Bus errors for 8-bit byte ports operate the same as 32-bit bus errors. In 

single halfword reads, BusError can be asserted anytime up until ACk is 
asserted. If BusError and Ack are asserted simultaneously, the BusError will 
be processed; if BusError is asserted after Ack is sampled, it will be ignored. 
On block reads, the assertion of BusError is allowed up until the assertion of 
Ack. Once BusError is asserted (sampled on a rising edge of SysClk), the read 
cycle will be terminated immediately, regardless of how many bytes have been 
written into the read buffer. Note that this means that the external memory 
system should stop cycling RdCEn at this time, since a late RdCEn may be 
erroneously detected as part of a subsequent read. Note that if BusError and 
Ack are asserted simultaneously, BusErrorprocessingwill occur. IfBusError 
is asserted after Ack, the BusError will be ignored. 
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WRITE INTERFACE CHAPTER9 

INTRODUCTION 
The write protocol of the R304 l has been designed to complement the read 

interface of the processor. Many of the same signals are used for both reads 
and writes, simplifying the design of the memory system control logic. 

This chapter includes both an overview of the write interface as well as 
provides detailed timing diagrams of the write interface. 

IMPORTANCE OF WRITES IN R3041 SYSTEMS 
The design goal of the write interface was to achieve two things: 

Insure that a relatively slow write cycle does not degrade the performance 
of the processor. To this end, a four deep write buffer has been 
incorporated on chip. The role of the write buffer is to decouple the speed 
of the memory interface from the speed of the execution engine. The write 
buffer captures store information (data, address, and transaction size) 
from the processor at its clock rate, and later presents it to the memory 
interface at the rate it can perform the writes. Four such buffer entries 
are incorporated, thus allowing the processor to continue execution even 
when performing a quick succession of writes. Only when the write buffer 
is already filled will the processor stall; simulations have shown that 
significantly less than 1 % of processor clock cycles are lost to write buff er 
full stalls. 

Allow the memory system to optimize for fast writes. Thus, a number of 
design decisions were made: the WrNear signal is provided to allow page 
mode writes to be used even in simple memory systems; the A/D bus 
presents the store data as early as the second phase of the first clock cycle 
of a write; and writes can be performed in as few as two clock cycles. 

Although it may be counter-intuitive, a significant percentage of the bus 
traffic will in fact be processor writes to memory. This can be demonstrated if 
one assumes the following: 

Instruction Mix: 
ALU Operations 55% 
Branch Operations 15% 
Load Operations 20% 
Store Operations 10% 

Cache Performance 
Instruction Hit Rate 95% 
Data Hit Rate 90% 

For these assumptions, in 100 instructions, the bus would see: 

5 Reads to process instruction cache misses on instruction fetches 
10% x 20 = 2 reads to process data cache misses on loads 
10 store operations to the write through cache 
Total: 7 reads and 10 writes 

Thus, in this example, about 60% of the bus transactions are write 
operations, even though only 10 instructions were store operations, vs. 100 
instruction fetches and 20 data fetches. 

9-1 



CHAPTER9 

TYPES OF WRITE TRANSACTIONS 
The R304 l has two basic types of write transactions depending on the port 

size selected in the CPO Port Size Configuration register for each memory sub
region. 32-bit ports only use the single word write type. 16-bit ports can use 
the single halfword write or the mini-burst (double halfword) write type. 8-bit 
ports can use the single byte write or the mini-burst (double, tri, or quad byte) 
write type. 

Types of 32-Bit Write Transactions 
Unlike instruction fetches and data loads, which are usually satisfied by the 

on-chip caches and thus are not seen at the bus interface, all 32-bit write 
activity is seen at the bus interface as single write transactions. There is no 
such thing as a "four word block burst write"; the processor performs a word 
or sub-word write as a single autonomous bus transaction; however, the 
WrNear output does allow successive write transactions to be processed using 
page mode writes. This is particularly important when "flushing" the write 
buffer before performing a data read. 

Uncached writes which contain only 1, 2, or 3 bytes of data assert the 
appropriate byte enables, BE(3:0) during the address phase. Thus, there really 
is only one type of 32-bit write transaction. However, the memory system may 
elect to take advantage of the assertion of WrNear during a write to perform 
quicker write operations than would otherwise be performed. Alternately, a 
high-performanceDRAMcontrollermayutilizeadifferentstrategyforperforming 
page mode transactions (read or write) to the DRAM. 

In processing 32-bit writes, there is only one parameter of interest: the 
latency of the write. This latency is influenced by the overall system 
architecture as well as the type of memory system being addressed: time 
required to perform address decoding and bus arbitration, memory pre-charge 
requirements, and memory control requirements, as well as memory access 
time. WrNear may be used to reduce the latency of successive write operations. 

The R304 l has been designed to accommodate a wide variety of memory 
system designs, including no wait cycle operations (write completed in two 
cycles) through simpler, slower systems incorporating many bus wait cycles. 

Types of 16-Bit Transactions 
When the R3041 uses a 16-bit port, it does its writes in halfword size 

increments. Thus if the data contains 8 or 16 bits (1 or 2 bytes). it will be 
handled with a single halfword write with the appropriate byte enables, 
BE16(1:0) asserted. If the data contains 24 or 32 bits (3 or 4 bytes), it will 
handled with a double halfword write mini-burst with the appropriate byte 
enables, BE16(1:0) for each halfword asserted. A mini-burst puts both 
halfwords out in the same write transaction. The memory system simply 
returns an Ack for each halfword datum which will automatically increment 
Addr(3: 1) and change BE16(1:0) if appropriate. Similar to a read mini-burst, 
a write mini-burst can be detected using the Last signal to determine when the 
final halfword datum is being returned or by using the de-assertion of the Wr 
line. The R304 l is designed to accommodate a wide variety of different memory 
bandwidths, including DRAM systems that need precharge wait cycles for the 
first halfword and then use a fast page mode access for bursting the second 
halfword. 

The data lines used in 16-bit ports are always A/D(31: 16) for big endian 
systems and A/D(l5:0) for little endian systems. This is regardless of the 
Reverse Endianess bit in the CPO Status register. For big endian systems, 
BE 16(1) corresponds to the byte lane in A/D(3 l :24) and BE 16( O) corresponds 
to A/D(23: 16). Similarly, for little endian systems, BE 16( 1) corresponds to the 
byte lane in A/D(l5:8) and BE16(0) corresponds to A/D(7:0). 
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Types of 8-Bit Transactions 
When the R304 l uses an 8-bit port, it does its writes in byte size increments. 

Thus if the data contains I byte, it will be handled with a single byte write. If 
the data contains 2, 3, or 4 bytes, itwill handled with a double, tri, or quad byte 
write mini-burst, respectively. A mini-burst puts 2, 3, or 4 bytes out in the 
same write transaction. The memory system simply returns an Ack for each 
byte datum which will automatically increment Addr(3:0). Similar to a read 
mini-burst, a write mini-burst can be detected using the Last signal to 
determine when the final byte datum is being returned or by using the de
assertion of the Wr line. The R304 l is designed to accommodate a wide variety 
of different memory bandwidths, including DRAM systems thatneed precharge 
wait cycles for the first byte and then use a fast page mode access for bursting 
subsequent bytes. 

The data lines used in 8-bit ports are always A/D(31:24) for big endian 
systems and A/D(7:0) for little endian systems. This is regardless of the 
Reverse Endianess bit in the CPO Status register. There is no "BES" signal since 
bytes written are always valid and should always be enabled. 

Partial Word Writes 
When the processor issues a store instruction which stores less than a 32-

bit quantity, a partial word store occurs. The R3041 processes partial word 
stores using a two clock cycle sequence: 

It attempts a cache read to see if the store address is cache resident. If 
it is and the store is cacheable, it will merge the partial word with the word 
read from the cache, and write the resulting word back into the cache. 

It will use a second clock cycle to allow the write buffer to capture the data 
and target address. Cacheable stores update or invalidate the cache as 
appropriate. 
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WRITE INTERFACE SIGNALS 
The write interface uses the following signals: 

0 

Write: This active low output indicates that a write operation is occurring. 
It will assert when the R304 l write buffer initiates a write transaction. It 
will de-assert automatically after all the data has been acknowledged. 

A/D (31:0) 0 

Multiplexed Address/Data Bus: During write operations, this bus is 
used to transmit the write target address to the memory system, and is 
also used to transmit the store data to the memory system. Its function 
is de-multiplexed using other control signals. 

During the addressing portion of the write transaction, this bus contains 
the following: 

Address(31:4) The upper 28 bits of the write address are presented 
on A/D (31:4). 

BE(3:0) The byte strobes for the 32-bit write transaction are 
presented onA/D(3:0). BE(3) indicates thatAD(3 l :24) 
is used; BE(2) indicates thatAD(23: 16) is used; BE( I) 
indicates that AD(l5:8) is used; and BE(O) indicates 
that AD(7:0) is used. BE(3:0) can be held inactive 
during reads by using the BE(3: O) Control read mask 
in the CPO Bus Control register as might be done for 
direct connection from the address latch to the WE 
pins in systems using IM bit or smaller DRAMs. 
These byte strobes are only valid for 32-bit ports. 
They are not valid for 16 or 8-bit ports, however, they 
do indicate which bytes are used sometime during the 
(multi-datum) transaction. 

During the data portion of the write transaction, the A/D bus contains: 

Data(31:0) The R3041 drives the store data on the appropriate 
data lines, as indicated by the byte enable strobes 
during the addressing phase. Operations using less 
than 32-bits of data use the data lines as described in 
Chapter 2 Table 2.3 describing Byte Addressing. In 
summary, the byte addressing requires that 16-bit 
ports use the halfword associated with address offsets 
0 and I, i.e., D(31:16) for big endian and D(l5:0) for 
little endian. 8-bit ports use byte associated with 
address offset 0, i.e., D(31:24) for big endian and 
D(7:0) for little endian. These byte lane assignments 
are independent of the Reverse Endianess control bit 
in the CPO Status register. 

ALE 0 

Address Latch Enable: This active high output signal is typically 
connected directly to the latch enable of transparent latches. Latches are 
typically used to de-multiplex the address and Byte Enable information 
from the A/D bus. 
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Addr(S:O) 0 

Dedicated Address Bus: The remaining bits of the transfer address are 
presented directly on these outputs. During 32-bit write transactions, 
these pins contain Address (3:2) of the transfer address. During 16-bit 
transactions, these pins contain Address(3: 1) of the transfer address 
which act as a counter during halfword mini-bursts. During 8-bit 
transactions, these pins contain Address(3:0) of the transfer address 
which act as a counter during byte mini-bursts. 

The R3041 Addr(l:O) output pins are designated in theR3051 as the no
connect Rsvd(l:O) pins respectively. 

DataEn 0 

Data Enable: This active low output will remain high throughout thewrite 
transaction. It is typically used by the memory- system to enable read-side 
output drivers; the CPU will maintain this output as high throughout 
write transactions, thus disabling memory- system output drivers. 

WrNear 0 

Write Near (multiplexed with Burst): This active low output is driven 
valid during the address phase of the write transaction. It is asserted if: 

1: The store target address of this write operation has the same 
Addr(31:8) as the previous write transaction, and 

2: No read or DMA transaction has occurred since the last write. 

If one or both of these conditions are not met, the WrNear output will not 
be asserted during the write transaction. Note that for 16-bit and 8-bit 
ports, WrNear only asserts if the entire mini-burst meets the above 
conditions. 

I 

Acknowledge: This active low input is used by the memory- system to 
indicate that it has sufficiently processed the write transaction, and that 
if it was a single datum write, the CPU may terminate the write transaction 
(and cease driving the write data). If the transaction was a mini-burst 
write, Addr(3:0) and BE16(1:0) will be changed appropriately for the next 
datum. 

Bus Error I 

Bus Error: This active low input can also be used to terminate a write 
operation. BusError asserted during a write will not cause the processor 
to take a BusError exception. If the system designer would like the 
occurrence of a BusError to cause a processor exception, it must be used 
to externally generate an interrupt to the processor. Write transactions 
terminated by BusError do not require the assertion of Ack. BusError can 
be asserted at any time the processor is looking for Ack to be asserted, up 
to and including the cycle in which the memory- system does signal Ack. 
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BE16(1:0) 0 

Byte Enable Strobes for 16-bit ports: These active low outputs are the 
byte enable strobes for 16-bitports. IfBE16(1) is asserted then the most 
significant byte (D(31:24) for big endian or D(l5:8) for little endian) is 
going to contain valid data. If BE 16(0) is asserted then the least significant 
byte (D(23: 16) for big endian or D(7:0) for little endian) is going to contain 
valid data. BE16 can also be masked (held in-active) during reads by 
disabling the read mask, BE 16 Control bit in the CPO Bus Control register. 
Using the read mask is useful for direct connection of BE 16 to the WE pins 
of DRAM systems or other systems with gated chip selects. BE16 is not 
necessarily valid for 32-bit or 8-bit ports. 

The R304 l BE 16( 1 :0) outputs pins are designated in the R305 l as the no
connect Rsvd(3:2) pins, respectively. 

Last 0 

Last Datum in Mini-Burst: This active low output indicates that the 
last datum of a single datum or mini-burst is being written. It goes 
active with Wr for single datum writes and after the next to last Ack is 
sampled for multiple datum writes. Last de-asserts when Wr de
asserts. 

The R3041 Last output pin is designated in the R3051 as the Diag(O) 
output pin. 

MemStrobe 0 

Memory Strobe: This active low output pulses low for each datum 
written. It first goes low 1 clock after the beginning of a write. It then de
asserts 1/2 clock after anAck is received. If there are more datum to be 
written (as in a mini-burst write) then MemStrobe will assert again 1/2 
clock after the previous de-assertion. MemStrobe will continue to (de)
assert until all datum have been written. See Figure 9-18 for an example. 
It can be used either as a write strobe or a data strobe for single datum 
(non-burst) I/ 0 ports or for a write strobe (single or mini-burst) for SRAM. 
It can be active for reads, writes, or both depending on the settings in the 
MemStrobe Control bits in the CPO Bus Control register. After reset, 
MemStrobe is only active for writes. 

The R3041 MemStrobe output pin is designated in the R3051 as the 
BrCond(O) input pin. 

IOStrobe 0 

Input/Output Strobe: This active low output asserts on the first falling 
edge of SysClk (I clock) after ALE de-asserts. It asserts relatively late in 
the cycle so that addresses and control lines are properly setup. It de
asserts with at the end of the write alongwith Wr. Itcanbeactiveforreads, 
writes, or both depending if the read and write masks are enabled in the 
IOStrobe Control bit field in the CPO Bus Control register. Note that 
IOStrobe requires that the transaction contain at least 3 clock cycles in 
order for it to assert. 

The IOStrobe pin is software configurable as an input by using the 
SBrCond(3:2) Control bit in the CPO Bus Control register. The pin defaults 
to an input after reset. 
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ExtDataEn 0 

Extended Data Enable: This active low output asserts active low on the 
first rising edge of SysClk after ALE de-asserts (1/2 clock later). It is 
extended in that it de-asserts 1/2 clock after Wr de-asserts. ExtDataEn 
provides extra hold time for data sampling (especially on writes) or for the 
IOStrobe (if ExtDataEn is used as an extended read/write line). It can be 
active for reads, writes, or both depending if the read and write masks are 
enabled in the ExtDataEn Control bit field of the CPO Bus Control register. 

The ExtDataEn pin is software configurable as an input by using the 
SBrCond(3:2) Control bitin the CPO Bus Control register. The pin defaults 
to an input after reset. 
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WRITE INTERFACE TIMING OVERVIEW 
The protocol for transmitting data from the processor to memory and 1/0 

devices is discussed below. Throughout this chapter it is assumed that 
ExtDataEn and IOStrobe are configured as output pins and that they and 
MemStrobe are enabled for writes. 

Initiating the Write 
A write transaction occurs when the processor has placed data into the write 

buffer, and the bus interface is either free, or write has the highest priority. 
Internally, the processor bus arbiter uses the NotEmpty indicator from the 
write buffer to indicate that a write is being requested. 

Assuming that the write transaction can be processed (that is, there are no 
ongoing bus operations, and no higher priority operations pending), the 
processor will initiate a bus write transaction on the next rising edge ofSysClk. 
Higher priority operations would have the effect of delaying the start of the 
write. 

Figure 9.1 illustrates the initiation of a write transaction, based on the 
internal negation of the WbEmpty control signal. This figure applies when the 
processor is performing a write, and the write buffer is otherwise empty. If the 
write buffer already had data in it, the buffer would continually request the use 
of the bus until it was emptied; it would be up to the bus interface unit arbiter 
to decide the priority of the request relative to other pending requests. 
Additional stores would be captured by other write buffer entries, until the 
write buffer was filled. 

Store 
Run 

(Arbitration) Run 

PhiClk 

SysClk 

MemWr 

WbEmpty 

Wr 

WrNear 

ALE 

ND(31 :0) Addr/Data 

Figure 9.1. Start of Write Operation - BIU Arbitration 
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Memory Addressing 
A write transaction begins when the processor asserts its Wr control output, 

and also drives the address and other control information onto the A/D and 
memocy interface bus. The R304 l has two types of address phases. If the 
ExtAddrHold reset configuration mode is not selected, the address is driven 
with ALE. The data is driven as soon as ALE de-asserts. Figure 9 .2 illustrates 
the start of this type of processor write transaction, including the addressing 
of memocy and presenting the store data on the A/D bus. If the ExtAddrHold 
reset configuration mode is selected, the address is driven for 1 /2 clock past the 
de-assertion of ALE. Figure 9.3 illustrates the start of this type of processor 
write transaction. The remaining timing diagrams in this section will only be 
shown with the ExtAddrHold option asserted even though either mode is always 
applicable to evecy type of write transaction. 

In either addressing mode, at the rising edge of SysClk, the processor will 
drive the write target address onto the A/D bus. At this time, ALE will also be 
asserted, to allow an external transparent latch to capture the address. 
Depending on the system design, address decoding could occur in parallel with 
address de-multiplexing (that is, the decoder could start on the assertion of 
ALE, and the output of the decoder captured by ALE), or could occur on the 
output side of the transparent latches. During this phase, WrNear will also be 
determined and driven out by the processor. 

Addr(3:2) 

ALE 

ExtDataEn 

MemStrobe 

IOStrobe 

t14 

18 

- t7 

- t7 

Address 
Memory 

Data 
Phase 

End 
Write? 

ata 
Out 

Figure 9.2. Memory Addressing and Start of Write for non ExtAddrHold Mode 
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114 

Addr(3:2) 

18 

ALE 

ExtDataEn 

- 17 

- 17 

MemStrobe 

IOStrobe 

Address 
Memory 

Extended 
Address 

Addr 
BE 

End 
Write? 

ISO 

Data 
Out 

Figure 9.3. Memory Addressing and Start of Write for ExtAddrHold Mode 

Data Phase 
Once the A/D bus has presented the address for the transfer, the address 

is replaced on the A/D bus by the store data. This occurs in the second phase 
of the first clock cycle of the write transaction, as illustrated in Figure 9 .2 for 
the non-ExtAddrHold reset configuration mode, or in the first phase of the 
second clock cycle for the ExtAddrHold mode, as illustrated in Figure 9.3. 

The processor enters the data phase by performing the following sequence 
of events: 

• It negates ALE, causing the transparent address latches to capture the 
contents of the A/D bus. 

• It internally captures the data in a register in the bus interface unit, and 
enables this register onto its output drivers on the A/D bus. The 
processor design guarantees that the ALE is negated prior to the address 
being removed from the A/D bus. 

Thus, the processor A/D bus is driving the store data by the end of the 
second phase of the write transaction. At this time, it begins to look for the end 
of the write cycle. 
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During the data phase, these three control signals may also assert: 

When programmed via the ExtDataEn and SBrCond(3:2) Control bits in 
the CPO Bus Control register, ExtDataEn asserts one clock cycle after Wr 
asserts and remains asserted 1/2 clock cycle after Wr de-asserts. ntus 
this signal is useful for enabling write data transceivers to allow extra hold 
time or for acting as an I/O read/write signal with extra hold time. 

When programmed via the MemStrobe Control bits in the CPO Bus 
Control register, MemStrobe asserts one clock after Wr asserts. It de
asserts for 1I2 clock after every Ack is sampled. After 1 clock past an .Aek, 
if more datum are being written within the same transaction, MemStrobe 
asserts again and so on until all datum are acknowledged. 

When programmed via the IOStrobe and SBrCond(3:2) Control bits in the 
CPO Bus Control register, IOStrobe asserts 1.5 clock cycles after Wr 
asserts and remains asserted until Wr de-asserts. It will only assert when 
the write cycle is at least 3 clocks long. nius this signal is useful for I/ 
0 writes if disabled during reads. IOStrobe can be used as an 1/0 data 
strobe if ExtDataEn is configured as a read/write signal. IOStrobe can 
also be used as a DRAM address multiplexor select if configured to assert 
on both reads and writes. 

Terminating the Write 
niere are only two methods for the external memory system to terminate a 

write operation: 

• It can supply the appropriate number of Acks (acknowledges) to the 
processor, to indicate that it has sufficiently processed the write request, 
and that the processor may terminate the write. 

• It can supply a BusError to the processor, to indicate that the requested 
data transfer has "failed" on the bus. nie system interface behavior of the 
processor when BusError is presented is identical to the behavior when 
the last Ack is asserted. In the case of writes terminated by BusError, no 
exception is taken, and the data transfer cannot be retried. 
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Figure 9.4 shows the timing of the control signals when the write cycle is 
being terminated. 

To determine the end of the write cycle one of these methods may be used: 

Systems that only use 32-bit memory sub-region ports as with the rest of 
the R305 l family only have single datum writes and either count the 
number of wait-cycles or use the de-asserting edge of Wr to end the 
transaction. 

Systems that use 16 or 8-bit ports must in general support mini-burst 
writes. Memory controllers for such systems can use the de-asserting 
edge ofWr to reset the controller. The memory controller can also look for 
Last to assert. When Last asserts, the controller knows that it is handling 
the final datum of the transaction. It is also possible to decode BE(3:0) to 
determine how many datum are to be returned. 

A/0(31 :0) 

Addr(3:2) 

ExtDataEn 

MemStrobe 

IOStrobe 

ALE 

t14 Driven by CPU 
~~~~--'~~~...,,..,,..... ....... ~~~~ ....... ~, 

Ack Negate 
Write 

t49 

Start New 
Transaction 

Figure 9.4. End of Write 
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Latency Between Processor Operations 
In general, the processor may begin a new bus activity in the phase 

immediately after the termination of the write cycle. This operation may be 
either a read, write, or bus grant. A new operation may begin as soon as one 
clock cycle after the fmal Ack is sampled from the interface. 

Also note that bus turn around after a write transaction does not occur. That 
is, the processor continues to drive the A/D bus throughout the write 
transaction (both address and data phases) , and will also drive the A/D bus 
during the start of either a subsequent read or write transaction. Since no 
change in bus ownership occurs, the Bus Tum Around field of the CPO Bus 
Control register does not apply after write transactions. 

Write Buffer Full Operation 
It is possible that the execution core on occasion may be able to fill the on

chip write buffer. If the processor core attempts to perform a store to the write 
buffer while the buffer is full, the execution core will be stalled by the write 
buffer until a space is available. Once space is made available, the execution 
core will use an internal fixup cycle to "retry" the store, allowing the data to be 
captured by the write buffer. It will then resume execution. 

The write buffer can actually be thought of as "four and one-half' entries: it 
contains a special data buffer which captures the data being presented by an 
ongoing bus write transaction. Thus, when the bus interface unit begins a 
write transaction, the write buffer slot containing the data for that write is freed 
up in the second phase of the write transaction. If the processor was in a write 
busy stall, it will be released to write into the now available slot at this time, 
regardless of how long it takes the memory system to retire the ongoing write. 

Note that each entry of the write buffer is one internal 32-bit word wide, but 
each entry can only hold the result of one store operation. Thus a 32-bit port 
can store 4 words while a 16-bit port can store up to 8 halfwords when using 
store word operands. However, if for example, four slore byte operations are 
done, each byte takes a full entry. 

The write buffer full operation is illustrated in Figure 9.5. 

ALE 

Write 
Busy 
Stall 

Start 
Write 

(Arbitration) 

A/0(31 :O) ---------" 

Stall Stall 

Data 

Figure 9.5. Write Buffer Full Operation 
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WRITE TIMING DIAGRAMS 
This section illustrates a number of timing diagrams applicable to R304 l 

writes. The values for the AC parameters referenced are contained in the 
R304 l data sheet. Throughout this chapter it is assumed that ExtDataEn and 
IOStrobe are configured as output pins and that they and MemStrobe are 
enabled for writes. Although using the non-ExtAddrHold reset configuration 
mode option is always applicable, these timing diagrams are all shown using 
the ExtAddrHold mode. 

32-Bit Basic Write 
Figure 9. 6 illustrates the case of a write operation which did not require wait 

states. Thus, Ack was detected at the rising edge of SysClk which occurred 
exactly one clock cycle after the rising edge of SysClk which asserted Wr. 

SysClk 

A/D(31 :O) 

t49 

Ext Data En 
t48 

WrNear 

MemStrobe 
t50 

IOStrobe 

t2 

Start Extended Data Out/ Negate New 
Write Address Ack Write Transaction 

Figure 9.6. Basic 32-mt Port Write with No Wait Cycles 
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Figure 9. 7 also illustrates the case of a 32-bit memory sub-region basic 
write. However, in this figure, two bus wait cycles were required before the data 
was retired. Thus, two rising edges of SysClk occurred where Ack was not 
asserted. On the third rising edge of SysClk, Ack was asserted, and the write 
operation was terminated. 

ExtDataEn 

MemStrobe 
tso 

147 

Start Extended Data Out! 
Write Address Ack? 

Ack? Negate New 
Write Transfer 

Figure 9.7. Basic 32-Bit Port Write with Wait Cycles 
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Bus Error Operation 
Figure 9.8 is a modified version of Figure 9. 7 (basic write with wait cycles), 

in which BusError is used to terminate the write cycle. If BusError and Ack 
are asserted simultaneously, the BusError will be processed. 

No exception is taken because such an exception would violate the precise 
exception model of the processor. Since writes are buffered, the processor 
program counter will no longer be pointing to the address of the store 
instruction which requested the write, and other state information of the 
processor may have been changed. Thus, if the system designerwould like the 
processor core to take an exception as a result of the bus error, he should 
externally latch the BusError signal, and use the output of the latch to cause 
an interrupt to the processor. 

SysClk 

Wr 

A/D(31:0) 

Addr(3:2) 

ALE 

ExtbataEn 

WrNear 

Last 

151 

MemStrobe 

IOStrobe 

Ack 

Bus Error 

Start Extended DataOuV 
Write Address Ack? 

Ack? Bus Negate New 
Error Write Transfer 

Figure 9.8. Basic Write Terminated by Bus Error 
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SysClk 

Wr 

A/0(31 :0) 

tg 

ALE ------+--' 

Halfword Byte 

BE16(1 :0) ------+--' '--....---....-En_a_bl_es---.-----.,.....-1 

ExtDataEn 
t48 

WrNear 

Last 

MemStrobe 

IOStrobe 

t2 

Start Extended DataOuV Negate New 
Write Address Ack Write Transaction 

Figure 9.9. Single Datum 16-llit Port Write with No Wait Cycles 

16-Bit Write Timing Diagrams 
1bis section illustrates a number of timing diagrams applicable to R304 l 

write transactions when a 16-bit port has been selected via the memory sub
region configuration Port Size CPO Control register. 1bese diagrams reference 
AC parameters whose values are contained in the R304 l data sheet. It is 
assumed that ExtDataEn and IOStrobe are configured as output pins and that 
they and MemStrobe are enabled for writes. Although using the non
ExtAddrHold reset configuration mode option is always applicable, these 
timing diagrams are all shown using the ExtAddrHold mode. 

16-Bit Basic Write 
Figure 9.9 illustrates the case of a byte or halfword write operation to a 16-

bit port which did not require wait states. Thus, Ack was detected at the rising 
edge of SysClk which occurred exactly one clock cycle after the rising edge of 
SysClkwhich asserted Wr. 1be 16-bit byte enables, BE16(1:0) indicate which 
bytes are being used in this transaction. 
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Halfword 
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Ext Data En 
t48 

WrNear 

t50 

MemStrobe 

t15 •...------
IOStrobe 

Ack 

Start Extended Data Out/ Negate New 
Write Address Ack? Write Transaction 

Figure 9.10. Single Datum 16-Bit Port Write with Wait Cycles 

Figure 9.10 also illustrates the case of a basic halfword write. However, in 
this figure, two bus wait cycles were required before the data was retired. Thus, 
two rising edges of SysClk occurred where Ack was not asserted. On the third 
rising edge ofSysClk, Ack was asserted, and the write operation was terminated. 
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Wr 

A/0(31 :O} 

ExtDataEn 

MemStrobe 

IOStrobe 

CHAPTER9 

Ack Negate New Start Extended Ack 
Write Address Write Transaction 

Figure 9.11. Mini-Burst 16-Bit Port Write 

Figure 9.11 illustrates the case of a double halfword write operation which 
did not require wait states. After the first Ack is sampled, Last asserts to 
indicate that the second datum is the final datum. Also Addr(3: 1) increments 
and the BE 16( 1 :0) change if appropriate. As with the single halfword write, bus 
wait cycles can be inserted for either the first of second datum simply by 
delaying the assertion of the corresponding Ack. 
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SysClk 

Wr 

A/0(31 :O) 
Data Out xx 

ALE 

WrNear 

ExtDataEn 

WrNear 
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MemStrobe 

IOStrobe 

Ack 

BusError 

Figure 9.12. 16-llit Write Terminated by Bus Error 

Bus Errors for 16-bit writes are handled similar to 32-bit writes. The 
BusError input is sampled whenever Ack is sampled. Bus errors which occur 
before the end of a mini-burst will abandon any unsent datum. A case where 
BusError is used to signal the end of a write transaction is illustrated in Figure 
9.12. 
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8-Bit Write Timing Diagrams 
This section illustrates a number of timing diagrams applicable to R304 l 

write transactions when a 8-bit port has been selected via the memory sub
region configuration Port Size CPO Control register. These diagrams reference 
AC parameters whose values are contained in the R304 l data sheet. It is 
assumed that ExtDataEn and IOStrobe are configured as output pins and that 
they and MemStrobe are enabled for writes. Although using the non
ExtAddrHold reset configuration mode option is always applicable. these 
timing diagrams are all shown using the ExtAddrHold mode. 

8-Bit Basic Write 
Figure 9.13 illustrates the case of a single byte write operation to an 8-bit 

port which did not require wait states. Thus, Ack was detected at the rising 
edge of SysClk which occurred exactly one clock cycle after the rising edge of 
SysClk which asserted Wr. 

SysClk 

Wr 

t14 

A/0(31 :0) 

ALE -------

ExtDataEn 
t48 

WrNear 

Last 

MemStrobe 

IOStrobe 

Ack 
2 

Start Extended DataOut/ Negate New 
Write Address Ack Write Transaction 

Figure 9.13. Single Byte 8-Bit Port Write with No Wait Cycles 
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Figure 9.14 also illustrates the case of a basic single byte write. However, 
in this figure, two bus wait cycles were required before the data was retired. 
Thus, two rising edges ofSysClk occurred where Ack was not asserted. On the 
third rising edge of SysClk, Ack was asserted, and the write operation was 
terminated. 

Wr 

t14 

A/0(31 :0) Data Out 

Byte 

Addr(3:0) ----~...._,•'----r----r-_..;,;A:;;;dd;;.;re;.;;s;;..s ---r----r----r-'I'----

ExtDataEn 

WrNear 

t15 1.r:--J-----

MemStrobe 

IOStrobe 

Ack 

Start Extended Data OuV Negate New 
Write Address Ack? Write Transaction 

Figure 9.14. Single Byte 8-Bit Port Write with Wait Cycles 
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Figures 9.15, 9.16, and 9.17 illustrate the cases of a double, tri, and quad 
byte write operation respectively. These cases did not require wait states. After 
the second to last Ack is sampled, Last asserts to indicate that the next datum 
is the final datum. Also Addr(3:0) increments. As with the single halfword 
write, bus wait cycles can be inserted for any of the datum simply by delaying 
the assertion of the corresponding Ack. 

Bus Errors for 8-bit writes are handled similar to 32-bit writes. The 
BusError input is sampled whenever Ack is sampled. Bus errors which occur 
before the end of a mini-burst will abandon any unsent datum. 

A/0(31 :0) 

ExtDataEn 

MemStrobe 

IOStrobe 

Start Extended 
Write Address 

t2 
Ack Negate New 

Write Transaction 

Figure 9.15. Two Byte 8-mt Port Write with Wait Cycles 
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Figure 9.16. Three Byte Mini-Burst 8-Bit Port Write 
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Figure 9.17. Four Byte Mini-Burst 8-Bit Port Write 
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DMA ARBITER INTERFACE CHAPTER 10 

INTRODUCTION 
The R305 l family contains provisions to allow an external agent to remove 

the processor from its memory bus, and thus perform transfers on its own by 
a direct memory access (OMA). These provisions use the internal OMA arbiter 
interface to coordinate the external request for mastership with the CPU read 
and write interface. 

The OMA arbiter interface uses a simple two signal protocol to allow an 
external agent to obtain mastership of the external system bus. Logic internal 
to the CPU synchronizes the external interface to the internal arbiter unit to 
insure that no conflicts between the internal synchronous requesters (read and 
write engines) and external asynchronous (OMA) requester occurs. 

The R304 l expands on the basic capability of the R305 l family OMA Arbiter 
by supporting an optional mode whereby the CPU can ask an external OMA 
master to relinquish the bus. On the other hand, the R304 l can use the default 
OMA mode in an R305 l compatible fashion. 

INTERFACE OVERVIEW 
An external agent indicates the desire to perform OMA requests by asserting 

the BusReq input to the processor. OMA requests have the highest priority, 
and thus, once therequestis detected, is guaranteed to gain mastership at the 
next arbitration. 

The CPU indicates that the external OMA cycle may begin by asserting its 
BusGnt output on the rising edge of SysClk after BusReq is detected with 
appropriate set-up time to the external rising edge of SysClk. During OMA 
cycles, the processor holds the following memory interface signals in tri-state: 

• A/D Bus 
• Addr(3:0) 

--~~~ 

• Interface control signals: Rd, Wr, DataEn, Burst/WrNear, and ALE 
• Other control signals: Last, BE16(1:0), and MemStrobe 
• If enabled as outputs: ExtDataEn and IOStrobe 
• Diag 

The extended data enable signal, ExtDataEn is slightly different from the 
other tri-statable signals in that it tri-states 1/2 clock period after the other 
signals. This allows it to do its primary function of staying asserted 1/2 clock 
longer than the other signals and yet de-assert before tri-stating. 

In addition to tri-stating these signals, the CPU will ignore transitions on 
RdCEn, Ack, and BusError during OMA cycles. 

During OMA cycles, the processor does not tri-state the following memory 
interface signals: 

• BusGnt 
• SysClk 
• TC 

Thus, the OMA master can use the same memory control logic as that used 
by the CPU; it may use Burst, for example, to obtain a burst of data from the 
memory; it may use RdCEn to detect whether the memory has satisfied its 
request, etc. Since SysClk and TC do not tri-state, they can be used to continue 
to clock the main memory state machine and to initiate DRAM refreshes during 
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DMA, respectively. Thus, DMAcan occur at the same speed at which the R304 l 
allows data transfers on its bus (a peak of one word per clock cycle). During 
DMA cycles, the processor will continue to operate out of cache until it requires 
the bus. 

The R304 l has two protocols for de-asserting BusGnt. The protocol must 
be selected using the DMA Protocol bit in the CPO Bus Control register. If DMA 
Protocol is not selected then this default R305 l family equivalent mode causes 
BusGnt during DMA to remain asserted until BusReq is removed. If the DMA 
Protocol is selected, then during DMA, BusGnt will return high if the CPU 
makes an internal request for the bus. In order to de-assert, BusGnt must have 
first been asserted for at least 1.5 clocks. In both protocols, the CPU does not 
begin driving the bus until it is given control of the bus back. As detailed below 
in Figure 10.1, the bus control is returned to the CPU when the external DMA 
agent de-asserts BusReq. 

I* BusGntn and BusReqn are for the CPU BusGntn line. 
BusGntn1 is for the highest priority device (DRAM refresher). 
BusGntn2 is for the lowest priority device (OMA controller). 

*/ 

I* BusGntn1 has the highest priority, even over the CPU. 

*/ 

Line 3 state feedback gives BusGntn1 the default style 
BusGntn priority by ignoring the !BusGntn signal after 
it gets the bus. 

IBusGntn1 := Resetn and BusGntn1 and ( 
(!BusReqn1 and !BusGntn 
or (!BusReqn1 and !BusGntn1) 

); 

I* BusGnt2n has the lowest priority, equal to that of the CPU. 

I* 1 */ 
I* 2 */ 
I* 3 */ 

Line 2 puts it request below the priority of the Device 1 request. 
Line 3 allows the CPU to take back the bus. 

*/ 

This assumes that Device 2 will disconnect from the bus 
immediately after the current OMA cycle is done and that it 
will later restart gracefully. 

!BusGntn2 := Resetn and BusGntn1 and ( I* 1 */ 
(!BusReqn2 and BusReqn1 and !BusGntn) I* 2 */ 

or (!BusReqn2 and IBusGntn2 and !BusGntn) I* 3 */ 
); 

I* In this example, Device 2 and the CPU will alternate bus 
mastership back and forth until done. 

*/ 

Line 3 allows the CPU to get the bus back after BusGntn1 
is removed and Device 2 acknowledges by removing its 
BusReqn2. 
Device 2 should remove BusReqn2 for at least 2 clocks 
when it loses its BusGntn2. If it can't then the 
BusGntn term is needed. 

!BusReqn := Resetn and ( 
(!BusReqn1) 
or (IBusReqn2 I* and BusGntn */ 

); 

/* 1 */ 
I* 2 */ 
I* 3 */ 4000 drw:x>i 

Figure 10.1. Example DMA Arbiter PIA Equations using the DMA Protocol Mode 
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The external agent indicates that the DMA transfer has terminated by 
negating the BusReq input to the processor, which is sampled on the rising 
edge of SysClk. In the default mode with DMA Protocol turned off, BusGnt is 
negated on a falling edge of SysClk, so that it will be negated before the 
assertion of Rd or Wr for a subsequent transfer. In the DMA Protocol mode, 
BusGnt will be de-asserted on a falling edge of SysClk if it has not already done 
so. In either mode, on the next rising edge of SysClk after BusReq has been 
sampled as de-asserted, the processor will resume driving tri-stated signals. 

Thus the DMA system can operate with the highest bus priority or it can use 
the DMA Protocol to give DMA and the CPU equal priority. See Figure 10.1 for 
example PLA equations that implement a typical external DMA arbitration 
unit. 

Note that there is no hardware coherency mechanism defmed for DMA 
transfers relative to either the internal caches or the write buffer. Software 
must explicitly manage DMA transfers to insure that data conflicts are avoided. 
This is an appropriate trade-off for the vast majority of embedded applications. 

DMA ARBITER INTERFACE SIGNALS 

BusReq I 

Bus Request: This active low signal is an input to the processor, used to 
request mastership of the external interface bus. Mastership is granted 
according to the assertion of this input, and taken back based on its negation. 

BusGnt 0 

Bus Grant: This active low signal is an output from the processor and has 
two modes. In the default mode where the DMA Protocol bit in the CPO Bus 
Control register is not selected, BusGnt is used to indicate that the CPU has 
relinquished mastership of the external interface bus. When the DMA Protocol 
is selected, BusGnt goes low initially for at least 1.5 clocks to indicate that the 
CPU has relinquished mastership of the external interface bus. After going low, 
BusGnt returns high either when the CPU makes an internal request for the 
bus or after BusReq is de-asserted. 

DMA ARBITER TIMING DIAGRAMS 
These figures reference AC timing parameters whose values are contained 

in the R3041 data sheet. These figures assume that ExtDataEn and IOStrobe 
are enabled as outputs instead of as SBrCond(3:2) inputs. 

Initiation of DMA Mastership 
Figure 10.2 shows the beginning of a DMA cycle. Note that if BusReq were 

asserted while the processor was performing a read or write operation, BusGnt 
would be delayed until the next bus slot after the read or write operation is 
completed. 

To initiate DMA, the processor must detect the assertion of BusReq with 
proper set-up time to SysClk. Once BusReq is detected, and the bus is free, 
the processor will grant control to the requesting agent by asserting its BusGnt 
output, and tri-statingits output drivers, from arising edge ofSysClk. Tue bus 
will remain under the control of the external master until it negates BusReq, 
indicating that the processor is once again the bus master. 
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Figure 10.2. Bus Grant and Start of DMA Transaction 
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Figure 10.3 shows the end of a DMA cycle when not using the DMA Protocol 
mode. The next rising edge of SysClk after the negation of BusReq is sampled 
may actually be the beginning of a processor read or write operation. 

~~-

To terminate DMA, the external master must negate the processor BusReq 
input. Once this is detected (with proper setup and hold time), the processor 
will negate its BusGnt output on the next falling edge of SysClk if it hasn't 
already done so. It will also re-enable its output drivers. Thus, the external 
agent must disable its output drivers by this clock edge, to avoid bus conflicts. 

Bus Grant Protocol CPU Initiated Bus Grant De-assertion 
Figure 10.4 shows the middle of a DMA cycle when using the DMA Protocol 

mode. If BusGnt has been low for at least 1.5 clock periods and the CPU has 
a pending external bus request due to either a cache miss oruncached memory 
reference, then on the next rising edge of SysClk, BusGnt will be de-asserted. 
Even when this occurs, the mastership is not given back to the CPU until the 
DMA terminates the present transaction by releasing BusReq. 
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Figure 10.3. Regaining Bus Mastership 

4000 drw 69xx 

Figure 10.4. DMA Protocol BusGnt De-assertion 
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RESET INITIALIZATION CHAPTER 11 

AND INPUT CLOCKING 

INTRODUCTION 
This chapter discusses the reset initialization sequence required by the 

R304 l. Also included is a discussion of the configuration mode selectable 
features of the processor, and of the software requirements of the boot 
program. 

There are a number of selectable features in the R304 l. These mode 
selectable features are determined by the polarity of the appropriate reset 
configuration mode inputs when the rising edge of Reset occurs. 

RESET TIMING 
Unlike the R3000, which requires the use of a state machine during the last 

four cycles of reset to initialize the device and perform mode selection, the 
R304 l requires a very simple reset sequence. There are only two concerns for 
the system designer: 

• That the set-up time and hold requirements of the reset configuration 
mode feature inputs with respect to the rising edge of Reset are met. 

• That the minimum Reset pulse width is satisfied. 

RESET CONFIGURATION MODE FEATURES 
The R304 l has features which are determined at reset time. This is done 

using a latch internal to the CPU: this latch samples the contents of the reset 
mode feature bus at the negating edge of Reset. The encoding of the mode 
selectable features on the reset mode feature bus is described in Table 11.1. 
Note that the R304 l uses both input pins and output pins which are tri-stated 
during Reset as inputs for the reset configuration mode features. Thus external 
state machines should not depend on the value of these pins until after Reset 
is negated. 

Pin Mode Feature 

Slnt(O) BigEndian 

Slnt(l) Reserved 

Slnt(2) Reserved 

Int(3) AaarDisplayAnaForceCaclieMiss 

Int(4) Reserved 

Int(5) Reserved 

Addr(O) ExtAaarHoia: 

Addr(l) Reserved High 

Addr(2) BootProm8 

Addr(3) BootProml6 

BE16(0) ReservedHigh 

BE16(1) ReservedHigh 
4000 tbl 23 

Table 11.1. R3041 Reset Configuration Mode Features 
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lntemal Reset Pull-ups 
The R304 l contains internal pull-up resistors on the following pins: 

• reset configuration mode inputs: Addr(l:O), BE16(1:0) 
• tri-state input: TriState 

Addr(l:O), BE16(l:O), and TriStatearedesignatedastheno-connect Reserved 
pins in the R3051 family. Thus ifleft rm-connected on the R3041, these pins 
have internal pull-ups to set them to their default values during reset. When 
using the internal pull-up resistors, warm resets require the same amount of 
reset time as power-up resets. If these pins are connected to an external device, 
then external pull-up/pull-down resistors or a tri-stateable device are required 
to initialize the reset configuration modes. 

The other reset configuration inputs including Slnt(O), lnt(3) and Addr(3:2) 
do not have internal pull-up resistors and must pull-up or down these inputs 
externally. 

A special case occurs when one of the Addr(3:0) or BE 16( 1 :0) pins is pulled
down and is connected to a bipolar TIL input. Since BE16(l:O) are always 
pulled high, they will be excluded from the remainder of this section. In such 
a case, the external pull-down value would have to very low in order to supply 
the bipolar input enough current which conflicts with the CPU's ability to drive 
the signal high during normal operation after reset. This is in accordance with 
the following equations (where R is the pull-down resistance, V oH and 10 H are 
relative to the CPU and IIL and 11H are relative to the chip being driven): 

~ULLoOWN :?: V oH I (IoH - Im) where IoH :?: 11H 
~ULLDOWN :::;; V1/I1L 

Using CMOS interfaces and/ or memories will typically allow pull-up or pull
down values in the 3K to lOKn range. However, if bipolar interfaces and/or 
memories are used then assuming that the Addr(3:0) lines are attached to 
inputs which are on a bipolar buffer chip, solutions include: 

Using a transceiver thatis enabled to drive the Addr(3:0) pins during reset 
instead of using a buffer. External pull-downs (or pull-ups) are placed 
on the other side of the transceiver, since transceivers usually have a very 
large 10 L output current capability. 

Using a transceiver instead of a buffer, since bipolar 1/0 pins typically 
have lower 11L than dedicated bipolar input pins. The Addr(3:0) side of the 
transceiver is always disabled and external resistors are placed on the 
Addr(3:0) lines. 

Choosing a buffer chip with a relatively low IIL(of less than 600uA) and 
using external pull-down (or pull-up) resistors. 
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Reset Configuration Mode Pin Descriptions 

Reserved 
Reserved mode bits should be driven high if future compatibility is to be 

maintained with the R3041 family. Note that it is not mandatory that these 
pins be driven high. 

BigEndian 
Use Big Endian Addressing: if asserted (active high), the processor will 

operate as a big-endian machine, and the RE bit of the status register would 
then allow little-endian tasks to operate in a big-endian system. If negated 
(inactive low), the processor will operate as a little-endian machine, and the RE 
bit will allow big-endian tasks to operate on a little-endian machine. 

MdrDisplayAndForceCacheMiss 
If asserted (active low), two diagnostic functions are enabled: 
Address Trace Display Mode: this mode (active low) will put the internally 

latched cached address out onto the A/D bus during unused bus cycles. 
Force Cache Miss Mode: this mode (active low) causes all cacheable 

instruction and data references to do external bus accesses as if a cache miss 
occurred. 

ExtAd.drHold 
Extended Address Hold Time Mode: if asserted (active low) the address is 

held for an additional half clock past ALE qe-asserting. DataEn is also delayed 
by one half clock. When not asserted (inactive low), the address is held only 
until ALE is de-asserted. 

ReservedHigh 
ReservedHigh mode bits are reserved for internal testing and must be driven 

high or if the pin is internally pulled-up, left un-connected. 

BootPromS 
8-bit Boot PROM Mode. Ifasserted (active low), this mode will cause the port 

size mapping register to initialize all memory sub-regions to 8-bit ports instead 
of 32-bit ports. Thus an 8-bit boot PROM can be used to initialize the R3041. 
This mode can only be asserted ifBootFroml6 is de-asserted. 

BootProml6 
16-bit Boot PROM Mode: if asserted (active low), this mode will cause the 

port size mapping register to initialize all memory sub-regions to 16-bit ports 
instead of 32-bit ports. Thus a 16-bit boot PROM can be used to initialize the 
R304 l. This mode can only be asserted if BootFrom8 is de-asserted. 

RSOOOA Equivalent Modes 
The R3000A features a number of modes, which are selected at Reset time. 

Although most of those modes are irrelevant, a number of equivalences can be 
made: 

• IBlkSize = 4 word refill. 
• DBlkSize = 1 or 4 word refill, depending on the DBlockRefill mode as 

selected in the CPO Cache Configuration register. 
• Reverse Endianness capability enabled. 
• Instruction Streaming enabled. 
• Partial Word Stores enabled. 

Other modes of the R3000A primarily pertain to its cache interface, which 
is incorporated within the R304 l and thus transparent to users of this 
processor. 
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RESET BEHAVIOR 
While Reset is asserted, the processor maintains its interface in a state 

which allows the rest of the system to also be reset. Specifically: 
• SysClk operates at one-half the Clkln frequency. 
• A/Dis tri-stated 
• ALE is driven negated Oow). 
• DataEn, Burst/WrNear, RO, and Wr are driven negated {high). 
• MemStrobe, Last, and TC are driven negated {high). 
• Diag is driven (value undefined). 
• Addr(3:0), and BE16(l:O) are tri-stated. 
• SBrCond(3:2) are configured as inputs and therefore tri-stated, i.e., 

ExtDataEn and IOStrobe are tri-stated. 

The R304 l samples for the negation of Reset relative to a falling edge of 
SysClk. The processor will initiate a read request for the instruction located 
at the Reset Exception Address Vector at the 6th rising edge of SysClk after the 
negation of Reset is detected. These cycles are a result of: 

• Reset input synchronization performed by the CPU. The Reset input uses 
special synchronization logic, thus allowing Reset to be negated 
asynchronously to the processor. This synchronization logic introduces 
a two cycle delay between the external negation of Reset and the negation 
of Reset to the execution core. 

• Internal clock cycles in which the execution core flushes its pipeline, 
before it attempts to read the exception vector. 

• One additional cycle for the read request to propagate from the internal 
execution core to the read interface, as described in Chapter 8. 

BOOT SOFTWARE REQUIREMENTS 
Basic mode selection is performed using hardware during the reset sequence, 

as discussed in the mode initialization section. However, there are certain 
aspects of the boot sequence that must be performed by software. 

The assertion and subsequent negation of reset forces the CPU to begin 
execution at the reset vector, which is address OxlFCO_OOOO. This address 
resides in uncached, un-mapped memory, and thus does not require that the 
caches be initialized for the processor to execute boot code. 

The processor needs to perform the following activities during boot: 

• Initialize the CPO Status Register 
The processor must be assured of having the kernel enabled to perform 
the boot sequence. Specifically, co-processor usable bits, and cache 
control bits, must be set to the desired value before any data references, 
diagnostics or initialization occurs. 

• Initialize the CPO Configuration Registers 
The software should decide on the Cache Configuration, Port Sizes, and 
Bus Control during initialization. 

• initialize the caches 
The processor needs to determine the sizes of the on-chip caches, and 
flush each entry, as discussed in Chapter 3. This must be done before the 
processor attempts to execute cacheable code. 
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• Initialize CPO Registers 
The processor should establish appropriatevalues in various CPO registers, 
including: 

The IM bits of the status register. 

The BEV bit. 

Initialize KUp/IEp so that user state can be entered using a RFE 
instruction 

• Enter User State 

Branch to the first user task, and perform an RFE to enter the user mode. 

DETAILED RESET TIMING DIAGRAMS 
The timing requirements of the processor reset sequence are illustrated 

below. The timing diagrams reference AC parameters whose values are 
contained in the R304 l data sheet. 

Reset Pulse Width 
There are two parameters to be concerned with: the power on reset pulse 

width, and the warm reset pulse width. 

Vee -----

Clkln -------------! 
t23 

4000drw70 

Figure 11.1. Cold Start 

Figure 11. l illustrates the power on reset requirements of the R305 l family. 
Figure 11.2 illustrates the warm reset requirements of the processor when 

the reset configuration mode bits are driven. 

Clkln 

Res~ -1. ·-------t-24-++-----------·r= ·- l'.f 
4000 drw71 

Figure 11.2. Warm Reset 

Figure 11.3 illustrates the warm reset requirements of the processor when 
the reset configuration mode bits use the internal pull-ups. 

Clkln 

Reset -----,J"-________ t2_3--+'+'-----------'·C ~ )) 
4000 drw7lb 

Figure ll.3. Warm Reset when using Internal Pull-Ups 
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Mode Initialization Timing Requirements 
The mode initialization vectors are sampled by an internal transparentlatch, 

whose output enable is directly controlled by the Reset input of the processor. 
The internal structure of the processor is illustrated in Figure 11.4. 

Slnt(O) 

Slnt(1) 

Slnt(2) 

lnt(3) 

lnt(4) 

lnt(5) 

Addr(O) 

Addr(1) 

Addr(2) 

Addr(3) 

~ 

R3041 Configuration Mode Initialization Logic 

SE"f6[f) --l;;;;;;~~lii;il 

Figure 11.4. Configuration Mode Initialization Logic 
4000 drw72 

Thus, the mode vectors have a set-up and hold timewith respect to the rising 
edge of Reset, as illustrated in Figure 11.5. 

Mode vect~r '(p~s: 
Sliif(2:0), nt 5:3 -----------...• 

14 
4000 drw73 

Figure 11.5. Mode Vector Timing 

Reset Setup Time Requirements 
The reset signal incorporates special synchronization logic which allows it 

to be driven from an asynchronous source. This is done to allow the processor 
Reset signal to be derived from a simple circuit, such as an RC network with 
a time constant long enough to guarantee the reset pulse width requirement 
is met. Such a system should buffer the RC circuit such that a sufficiently fast 
monotonic rise time is generated which is capable of synchronously resetting 
any external state machines and logic at the same time as of resetting the CPU. 

The Reset set-up time parameter can then be thought of as the amount of 
time Reset must be negated before the rising edge of SysClk for it to be 
guaranteed to be recognized; failure to meet this requirement will not result in 
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improper operation, but rather will have the effect of delaying the internal 
recognition of the end of reset by one clock cycle. 1his does not affect the timing 
of the sampling of the mode initialimtion vectors. 

Figure 11.6 illustrates the set-up time parameter of the R3041. 

SysClk 

4000 drw74 
Figure 11.6. Reset Timing 

Clkln Requirements 
1he input clock timing requirements are illustrated in Figure 11. 7. 1he 

system designer does not need to be explicitly aware of the timing relationship 
between Clkln and SysClk. Note that SysClk is driven even during the Reset 
period as long as Clkln is provided. 

122 

Clkln { J ~ " / " 
121 

120 

--1 ~ r 132 
133 

!sys 
4000 drw75 

Figure 11. 7. R3041 Clocking 
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DEBUG MODE FEATURES CHAPTER 12 

INTRODUCTION 
This chapter discusses particular features of the R304 l included to facilitate 

debugging ofR304 l-based systems. These features are intended to be used by 
an in-circuit emulator, in-circuit tester, board level tester, logic analyzer, 
hardware modeler, or similar tool. 

OVERVIEW OF FEATURES 
The features described in this chapter include: 
• The ability of the processor to display internal instruction addresses on 

its A/D bus during idle bus cycles. This mode facilitates the trace of 
instruction streams operating out of the internal cache. 

• The ability of the processor to have instruction and data cache misses 
forced, thus allowing all internal cache accesses to be displayed on the 
bus interface. 

• The ability to tri-state all output pins including SysClk, thus allowing an 
in-circuit emulator or tester to drive and control the output pins directly. 

• The ability to deterministically set the phase relationship of the SysClk 
output relative to the Clkin input. This feature allows board level testers 
and hardware modelers to control the SysClk output. 

• The ability to distinguish data and instruction accesses via the Diag pin, 
allowing logic analyzers to do instruction disassembly (see Chapter 6). 

• A software breakpoint instruction. 
Note that the features described in this chapter are intended for initial debug 

or production testing rather than for functional use in a fielded end-user 
system. 

ADDRESS DISPLAY 
Activating the AddrDisplay mode with its reset configuration mode forces the 

CPU to display Instruction stream addresses on its A/D bus during idle bus 
cycles. Note that activating the AddrDisplay mode also activates the 
ForceCacheMiss mode described below. Refer to Figure 12.1 regarding the 
timing relationship between instruction initiation in the on-chip cache and the 
output address. Note that the address is driven out, but ALE is not asserted. 
This is to reduce the impact of this mode on system designs which may use the 
initiation of ALE to start a state machine to process the bus cycle. Instead of 
ALE, external logic should use the rising edge of SysClk to latch the current 
contents of the address bus. 

The address displayed is determined by capturing the low order address bits 
used to address the instruction cache, and then capturing the TAG response 
from the cache one-half clock cycle later. These address lines are concatenated, 
and presented as follows (NoteAddrLo(l:O) will be '00' in all Instruction Cache 
cycles): 

• A/D(31:9) displays TAG(31:9) 
• A/D(8:4) displays AddrLo(8:4) 
• A/D(3:2) displays AddrLo(l0:9) 
• A/D(l:O) is reserved for future use. 
• Addr(3:2) displays AddrLo(3:2) 
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This mode is intended to allow gross, rather than fine, instruction trace. 
Specifically, branches taken while a write or DMA operation occurs may not be 
displayed, and there is no indication that an exception has occurred (and thus 
that initiated instructions have been aborted). Additionally, erroneous addresses 
may be presented in cycles where internal processor stalls occur, such as those 
for integer multiply I divide interlocks. 

Finally, note that the cycle immediately before a read may contain an 
erroneous address, and the cycle immediately after a read or write may not 
produce the address with appropriate timing. It is recommended that these 
cycles be ignored when tracing execution. 

PhiClk 

Addrlo 

TAG 

AID, 
Addr 

Run o Run 1 Run 2 Run3 Run4 Run 5 

xx Run OAddr Run 1 Addr Run 2 Addr Run 3 Addr 

Figure 12.1. R3041 Debug Mode Instruction Address Display 

FORCING INSTRUCTION AND DATA CACHE MISSES 
Another feature for debugging is the ability to force an instruction and data 

cache miss. As with the AddrDisplay mode, this mode is not intended for use 
in a fielded production system. 

The ForceCacheMiss mode is invoked with the same reset configuration 
mode bit as the AddrDisplay mode. Activating ForceCacheMiss forces all 
instruction and data cache accesses to be treated like cache misses. Thus 
cache accesses will be put onto the external A/D bus. Note that instruction 
cache misses and 4-word data block refills are still done in burst mode. 

Tri-Stating All Outputs 
The R304 l has a dedicated TriState input pin, which when asserted, 

disables all its outputs. This mode is useful for in-circuit emulators and testers 
which can then drive those pins to simulate the functions of the chip. Exiting 
this mode requires that a Reset be given before normal operation can take 
place. The pin description is as follows: 

Tristate 0 

Tri-State All Outputs: An active low input to the device which requests 
that the processor tri-state all ofits outputs. In addition to the outputs 
which are tri-stated during a DMA operation, SysClk, TC, and BusGnt 
are also trt-stated. TriState can be used for in-circuit testing and 
emulation during board production manufacture. 

The R304 l TriState input pin is designated in the R305 l as the no
connect Rsvd(4) pin. 
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Internal_ Reset 
33 

Figure 12.2. R3041 SysClk Phase Initialization Case A 

Internal_ Reset 

Figure 12.3. R3041 SysClk Phase Initialization Case B 

Initializing SysClk for Test 
Another feature for board level testing is the ability to initialize the phase of 

SysClk to its high phase. A high to low transition on Reset will cause the 
internally synchronized (delay ofless than or equal to 2 clocks) version of Reset 
to always set SysClk high during its next phase. Thus the state of SysClk can 
be deterministically controlled within a known number of Clkln transitions. 
The two cases are shown in Figures 12.2 and 12.3. 

Using Diag for Instruction Disassembly 
The R3041 provides a Diagnosis pin which during its data phase outputs 

whether a read transaction is the result of an instruction fetch or the result of 
a data fetch. This information is independent of the information given during 
the address phase of whether or not the read was a result of a cached or 
uncached read. Note that this pin is undefined on writes, however, all writes 
by necessity must be data writes. The pin description is as follows: 

Diag 0 

Diagnostic Pin: During the address phase of the read transaction, this 
output indicates whether the read is a result of a cache miss (high) or an 
uncacheable reference (low). 

During the remainder of the transfer, this output indicates whether the 
read is an instruction (high) or a data reference (low). 

The Diag pin is undefined during write transactions. 

This pin is useful in the initial debug of R3041 based systems. 

The R3041 Diag output pin is designated in the R3051 family as the 
Diag(l) output pin. 

Breakpoint Instruction 
The R3051 family defines as described in Chapter 2, the breakpoint 

instruction, BREAK, that invokes an exception when executed. Thus debug 
kernel software can set breakpoints and single step through RAM based 
software. 
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FAMILY DEVICES 
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APPENDIX A 

One of the unique advantages of the IDT R305 l family is the high level of pin, 
socket, and software compatibility across a very wide price-performance range. 
Although some devices do offer features not found in other family members, in 
general it is very straightforward to design a single system and set of software 
capable of using either the R3041, R3051, R3052, or R3081; the decision as 
to which processor to use can be made at board manufacturing time (as 
opposed to at design time) or as a program of field upgrades. 

This appendix discusses compatibility issues among the various R305 l 
family members. The goal of this chapter is to provide the system designer with 
the understanding necessary to be able to interchange various R305 l family 
members in a single design environment, and with a single set of software tools. 

SOFTWARE CONSIDERATIONS 
In general, software considerations among the various family members can 

be summarized into the following areas; 
• Cache Size differences. One of the obvious differences among the devices 

is the amount of instruction and data cache integrated on chip. Although 
the cache size is typically transparent to the applications software, the 
kernel must typically know how much cache to flush, etc. during system 
boot up. This manual presents an algorithm for determining the amount 
of cache on the executing processor; to insure compatibility, software 
should be written to dynamically determine the amount of cache on-chip. 

• Differences in CPO registers. Another area where the various family 
members differ slightly is in their implementation of CPO registers. Table 
A. l summarizes the CPO registers of the various family members. 
In general, these differences are only relevant at system start-up. The 
start-up code should determine which device is running, and branch to 
a CPU specific CPO initialization routine. Determining which CPU is 
executing is straightforward, and can be accomplished by reading the 
PrID register (to determine the presence of an R304 l) and/ or performing 
floating point diagnostics (to determine the presence of a R308 l). 

Register R3041 R3051/52 R3081 

$0 rsvd Index Index 

$1 rsvd Random Random 

$2 BusCtrl Entry Lo EntryLo 

$3 CacheConfig rsvd Config 

$4 rsvd Context Context 

$5-$7 rsvd rsvd rsvd 

$8 BadVA BadVA BadVA 

$9 Count rsvd rsvd 

$10 PortSize EntryHi Entry Hi 

$11 Compare rsvd rsvd 

$12 Status Status Status 

$13 Cause Cause Cause 

$14 EPC EPC EPC 

$15 PrID Pr ID PrID 

Table A.1. CPO Registers in the R3051 Family 
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• "E" vs. "non-E" parts. In general, few applications will freely interchange 
devices with TI.B's with those that do not. However, a given kernel source 
tree may be used across multiple applications; in this case, the start-up 
code should examine the "TS" bit of the status register after reset to 
determine the presence of an on-chip TLB, and initialize the TLB if needed. 

• Hardware vs. Software Floating Point. The R3081 offers a ve:ry high
performance floating point accelerator on-chip, while the R3041 and 
R305 I /52 do not. In this case, it may be advantageous to generate two 
distinct binaries from the same source tree (one for hardware floating 
point and one for software). However, the R305I architecture does 
support the ability to trap on floating point instructions (for later 
emulation), by negating the CPI usable bit. Thus, initialization software 
may wish to determine the presence of an on-chip FPA, and initialize the 
CPI usable bit accordingly. 

HARDWARE CONSIDERATIONS 
In general, the R304I, R305I/52, and R308I offer the same system 

interface and pin-out, simplifying the interchange of the various family 
members. However, both the R304 I and the R308 I offer some device specific 
features, which should be considered when designing a common board. The 
differences among the devices are summarized below. 

R3041 Unique Features 
The R304 I includes features targeting reduced system cost. Systems may 

wish to take full advantage of these features, in which case they may sacrifice 
the ability to readily interchange various CPUs in the design. Specifically, the 
R304I can be interchanged with an R305I or R308I only in systems which 
implement a full 32-bit wide memory interface to the CPU, since the R305 I and 
R308 I do not offer the variable port width interface found in the R304 I. 

In general, the areas of differences between the R304 I and the R305 I are 
summarized below: 

• The R304I has a unique processor ID (PRid) of Ox0000_0700. 
• The R304 I has the base address translation memory map only (w Io TLB). 
• Different Instruction and Data Cache sizes. 
• The R304 I software selects the DBlockRefill mode, rather than as a reset 

mode. 
• The R304I does not externally connect the BrCond(I:O) input pins. 
• Diag( I :O) are not available on the R304 I. Similar information is available 

with the Diag pin. 
• The R304 I WrNear page size is decreased. 
• The R304 I has additional/ different reset modes. 
• The R304 I includes new Co-processor 0 Config Registers. 
• The R304 I can configure SBrCond(3:2) as outputs. 
• The R304I uses pins that are Reserved as no-connects on the R305I/ 

R3081. 
• The R304 I has an Extended Address Hold mode. 
• The R304 I has a Slow Bus Turnaround mode with programmable bus 

wait timing. 
• The R304 I has 8-bit and I6-bit ports with appropriately sized bus cycles. 

The R304I can boot directly from an 8- or I6-bit wide PROM. 
• The R304I has additional outputs for BEI6(1:0), Last, ~M~e-m~S~tr-o~b-e, 

ExtDataEn, and IOStrobe, and TC. 
• The R304 I has a read/write mask for BE(3:0). 
• The R304 I has an on-chip Timer with Count and Compare registers in 

CPO. 
• The R304I has a DMA protocol option. 
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R3081 Unique Features 
The R308 l includes features targeted to simplifying its use in high

frequency, high-performance systems. Systems may wish to take advantage 
of these features, in which case they may sacrifice some level of interchangeability 
with other CPUs. Key differences between the R3081 and the R3051 are 
summarized below: 

• The R3081 includes an on-chip FPA. 
• The R308 l features larger caches, which are configurable. 
• The R3081 on-chip FPA uses one of the six CPU interrupts; the 

corresponding input pin is logically not connected. 
• The R3081 implements Half-frequency bus mode. 
• The R308 l features Hardware cache coherency capability during DMA. 
• The R3081 can use an optional Ix (rather than 2x) clock input. 
• The R3081 WrNear page size is increased. 
• The R3081 implements an additional CPO Config register. 
• The R3081 implements a power down (reduced frequency, halt) option. 
• The R308 l features a dynamic data cache miss refill option. 
• The R308 l BrCond( I) input is not available externally. It may be used as 

a "Run" output indicator. 
• The R3081 implements additional reset mode vectors. 
• The R308 l differs slightly in its use of the reserved pins. 
In general, the similarities in features allow the R304 l to use the same 

DRAM, 1/0, and peripheral controllers that the R3051/81 use. It is possible 
by only using a subset of the interface features of the R304 l to also use the 
same system board socket as the R305 l /81. However, many of these features, 
for instance the Extended Address Hold mode and the BootProm8 mode, allow 
inexpensive interface alternatives that often will justify a dedicated system 
board design. 

Pin Description Differences 
Table A.2 lists the significant R3051, R3081, and R3081 pin differences. 

These differences can easily be accommodated in a single board design, as 
described in this chapter. 

R3051 R3081 R3041 
Rsvd(O) CohReq Addr(O) 
Rsvd(l) Rsvd(l) Addr(l) 
Rsvd(2) Rsvd(2) BE16(0) 
Rsvd(3) Rsvd(3) BE16(1) 
Rsvd(4) Rsvd(4) Tri State 
BrCond(O) BrCond(O) MemStrobe 
BrCond(l) unused/Run TC 
Diag(O) Diag(O) Last 
Diag(l) Diag(I) Diag 

Table A.2. Pin Considerations Among R3051 Family Members 
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Reset Mode Selection 
Table A.3 shows the various reset mode vectors available in the various 

family members. As can be seen from the table, there are differences in the 
mode vector options available in the different devices. 

Designing a board which accommodates these differences is vecy 
straightfoiward: 

• Use pull-up resistors on Addr(3:2). These pull-ups will have no effect 
on the R305 l or R308 l; in the R304 l, they will cause the device to boot from 
a 32-bit wide EPROM, which is compatible with the R305 l and R308 l. 

• Do not connect anything to the R305 l reserved pins. This will insure 
that the R3051 and R3081 function properly. In the R3041, this will negate 
the Extended Address Hold feature, causing the address to data transition of 
the processor A/D bus to be compatible with the R3051 and R3081. 

• Use dip-switches with a MUX or 3-state buffer to select the reset 
initialization presented on the interrupt pins. Thus, selecting different reset 
mode vectors merely involves setting the dip switches. 

Note that may systems may not need to do this either. For example, using 
pull-ups on the interrupt inputs will result in a BigEndian system for all 
devices, and in general disable the various device specific modes of the R308 l 
and R3041. 

Pin R3041 

Int(5) Rsvd 

Int(4) Rsvd 

lnt(3) ACIClrDisplay 

Slnt(2) Rsvd 

Slnt(l) Rsvd 

Slnt(O) BigEndian 

Addr(3) BootProml6 

Addr(2) BootProm8 

Rsvd(4) Tri-State(*} 

Rsvd(3) Rsvd(*) 

Rsvd(2) Rsvd(*} 

Rsvd(l) Rsvd(*} 

Rsvd(O) ExtACIClrHold(*} 

NOTES: 
Rsvd: 
N/A: 
NC: .. 

Must be driven high 
Must not be drtven 
Must not be connected 
Contains an internal pull-up 

R3051/52 R3081 

Rsvd ColierentDMA 

Rsvd lxClkEn 

Rsvd I72FreqBus 

DBlockRefill DBlkReftll 

Trt-State Tri-State 

BigEndian BigEndian 

NIA NIA 
NIA NIA 
NC NC 

NC NC 

NC NC 

NC NC 

NC NC 

Table A.3. Reset Mode Vectors of RS041, R3051/52, and R3081 
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Reserved No-Connect Pins 
The R3051/81 contain not-to-be-connected reserved pins that R3041 

systems may use. Table A.4 illustrates the different uses of the reserved pins. 
To insure compatibility in systems using the same physical socket, various 

options exist: 
• Use the internal pull-ups of the R3041 by extending the length of warm 

resets to be the same as that of power-up resets. 
• Use external pull-ups which can be removed when an R305 l/8 l is used. 

This is so the R3051/81 Reserved pins have no chance of being driven. 
• Use a tri-statable device to drive the reset configuration mode pins during 

reset and which then tri-state after reset when the R304 l is used, but 
which can be removed when the R3051/81 is used. 

Of these options, the first is obviously the simplest; by not connecting the 
reserved pins, the R305 l and R308 l specifications will be met, and the 
extended features of the R304 l will not be accessed. 

Pin R3041 R3051/52 R3081 

Rsvd(4) Trt-State Rsvd Rsvd 

Rsvd(3) BE16{1J Rsvd Rsvd 

Rsvd(2) BE16(0) Rsvd Rsvd 

Rsvdl) Addr(l) Rsvd Rsvd 

Rsvd(O) Addr(O) Ravd ConReq 

Table A.4. Rsvd Pins of R3041, R3051/52, and R3081 

DIAGPins 
The R3051 features a pair of DIAG output pins which can be used during 

system debug. There are subtle differences in these pins in the various family 
members: 

• The R308 l indicates the cacheability of data on writes, to simplify 
cache coherency. Since the R304 l and R305 l do not feature cache coherency, 
this feature would not be used in systems which wish to interchange the 
various family members. 

• The R304 l uses a single DIAG pin (on the same physical pin as DIAG( 1), 
to report the cacheability of an access. The other pin is used as the "Last" 
output of the R304 l. Since the "Last" output is not available on the R305 l or 
R3081, systems designed to interchange CPUs will not use this output. 

In general, the DIAG pins will only be used in system debug, rather than used 
to control some aspect of board operation. Thus, the differences in these pins 
will not impact the interchangeability of various CPUs. 

BrCond(l:O), SBrCond(3:2) 
There are also some differences among the devices in their treatment of the 

BrCond input pins. Specifically: 
• The R3051 allows software to access all of BrCond(3:0). 
• The R3081 uses BrCond(l) internally for the FPA. Software can access 

the BrCond(3:2) and BrCond(O) inputs. 
• The R3041 does not provide access to the BrCond(l:O) pins, which 

instead are used for other functions. Additionally, the R304 l defaults to using 
the SBrCond(3:2) pins as inputs on reset, although they can be used to provide 
other functions. 

Thus, to insure CPU interchangeability, the system designer should provide 
pull-ups onBrCond(l:O), and onlyuseBrCond(3:2). Ofcourse, if these are also 
not used, pull-ups should be provided. 
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Slow Bus Turn Around Mode 
Slow bus tum around on the R304 l allows extra cycles between changes in 

AID bus direction. The R308 l also has a bus tum around feature, but the 
maximum number of extra cycles is fewer. Note that with the bus turnaround 
slowed, the R304 l continues to operate in a 100% compatible fashion with the 
R305 l (there is no R305 l transaction that guarantees a "quick" bus turnaround). 

Note that there is a hardware solution to bus turnaround in the R3051, 
which will also work with the R304 l I 81. This involves using the DMA arbiter 
to prevent the R3041/51/81 from issuing a bus cycle, and is explained in an 
applications note available from IDT. 

Most systems that are using an R304 l and R305 l in the same socket may 
want to immediately reprogram the Bus Tum Around Control bits in the Bus 
Control CPO register to '00' to match up exactly with the R3051 (and thus 
increase performance), instead of the default '11' which is used at reset, 
although it is not strictly necessary. 

The R3081 FPA Interrupt 
The on-chip FPA of the R308 l reports exceptions to the CPU using one of the 

general purpose interrupts. The corresponding input pin is ignored. Systems 
desiring to interchange an R304 l with an R308 l must reserve an interrupt pin 
for the FPA, and provide a pull-up for that signal. The R3081 Config register 
allows software to select any of the 6 interrupts; at reset, the default used is 
interrupt 3. 

Half-Frequency Bus Mode 
The R3081 allows the bus to operate at one-half the CPU frequency. When 

enabled, the bus will operate as for an R3041/51 operating at half the 
frequency of the R308 l CPU. Thus, this mode is entirely compatible with an 
R3041/51 at one-half the R3081 frequency. 

In the R308 l, this feature is enabled as a reset option. Systems may choose 
to employ a jumper on this value, so that this feature may be selectively enabled 
when a R308 l is used, but the pin may be pulled-high or pulled-low when an 
R304 l is used. 

Reduced Frequency /Halt Capability 
This R308 l mode is incorporated to reduce power consumption when 

waiting for an interrupt or other external event. This mode is unavailable in 
an R3041/51. 

Note that reduced frequency mode will appear to merely reduce the bus 
frequency of the R3081; most R3041/51 systems should operate correctly 
under this circumstance. However, the DRAM refresh timer, and other real
time timers, should either use a clock source other than the SysClk output, or 
reprogram their time constants, when this feature is used. 

The R3041/51 does not offer the software stall capability of the R3081. 
Software executing on an R304 l /51 which attempts to halt the processor will 
product no effect, and thus may result in erroneous software operation. 

DMAissues 
Each of the CPUs can operate using R3051 compatible DMA. In these 

systems, the processor will attempt to continue execution out of on-chip cache 
during bus DMA; however, once the CPU core needs the bus, it will wait for the 
external master to relinquish the bus. 

The R3081 allows hardware cache coherency during DMA writes. This 
capability may be disabled using the Coherent DMA Enable feature of the 
processor. 
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The R304 l implements a DMA Pulse Protocol, whereby the R304 l may 
negate BusGnt during an external DMAcycle to indicate that it wishes to regain 
bus mastership. This feature is not available on the other family members, and 
can be enabled or disabled via the R304 l CPO registers. 

To insure CPU compatibility, systems should disable both the R3081 cache 
coherency mode, and the R304 l Pulse Protocol, so that all devices will operate 
in R305 l compatible fashion. 

Debug Features 
Debug and in-circuit emulator features are not compatible between the 

R3041 and the R3051/81. These debug features are intended for initial 
development and manufacturing tests and are not recommended for functional 
use on fielded end-user systems. These features include the Diag pin(s), Tri
state mode, AddrDisplay mode, and ForceCacheMiss mode. 

WrNear Page Size 
The various processors implement different choices for the size of the 

address compared for WrNear output assertion: 
• The R305 l compares Address(3 l: 1 O), compatible with 64k x 4 and larger 

DRAMs. 
• The R308 l comparesAddress(3l:11), compatible with 256kx4 and larger 

DRAMS. 
• The R304 l compares Address(3 l :8). compatible with 64kx4 and larger 

DRAMs in an 8-bit wide memory port. 
To insure proper operation, the system designer can make one of two 

choices: 
• Ignore the WrNear output, which simplifies system design but sacrifices 

performance. 
• Always use 256k x 4 or larger DRAMs. 

Hardware Compatibility Summary 
It is very simple to design a board capable of using any of the 4 CPUs 

described above. Table A.5 provides a summary of the design considerations 
to insure CPU interchangeability. In general, any board designed around the 
R305 l can easily be migrated up in performance to the R308 l, or down in cost 
to the R304 l. 

Design Consideration Compatible Solution 

WrN ear page size Use 256kx4 or larger DRAM 

Rsvd Pins Leave unconnected 

BrCond pins Use onlyBrCond(3:2); Pullups on BrCond(l:O) 

R3081 FPA Interrupt Reserve one CPU interrupt for FPA; 

Use external Pull-up 

DIAGpins Use only for system debug; not a production function 

Reset Logic Pull-ups onAddr(3:2); no connects on reserved lines 

Dip switches and mux on Interrupt lines 

DMAoptions Use R3051 compatible DMA 

Bus Turn-around Meet R3051 timing or use DMA to add time 

Table A.5. Summary of Hardware Design Considerations 
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SUMMARY 
The R305 l family offers a unique level of compatibility among various CPUs, 

offering a wide range of price performance options for a single design. This 
capability extends not only to the signal interface, but to the actual footprint 
of the device itself. Using advanced packaging techniques, the 84-pin PLCC 
footprint is available across the entire family, including the entire frequency 
range of the family. 

Some systems will find it advantageo~s to use the features particular to a 
given CPU; others will find advantage in the ability to offer a single design, with 
real value added manufacturing and field upgrade capability. This choice is 
unique among high-performance embedded processors. 
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