

Integrated Device Technology, Inc.

1994 HIGH-PERFORMANCE SRAM DATA BOOK

2975 Stender Way, Santa Clara, California 95054-3090 Telephone: (800) 345-7015 • TWX: 910-338-2070 • FAX: (408) 492-8674

ANNOUNCING

IDT's New FAX-On-Demand Literature Request Service

Tired of waiting days or weeks for technical information you want *right now*?

Wait no longer—just access IDT's new FAX-On-Demand hotline to receive copies of current data sheets, application notes, and new product press releases within minutes of your phone call.

How does it work?

Call (408) 492-8391

For an index of current information: **Request document #1000**

Individual document request numbers, product families, IDT product part numbers, descriptive titles, and page counts for each document are provided on the indices for your convenience. You may request up to 3 documents per phone call.

Integrated Device Technology, Inc.

ALUE THROUGH PERFORMANCE

.

CONTENTS OVERVIEW

For ease of use for our customers, Integrated Device Technology provides four separate data books: High-Performance Logic, Specialized Memories and Modules, RISC and RISC SubSystems, and High-Performance Static RAM.

IDT's 1994 High-Performance SRAM Data Book is comprised of both new product data sheets and revised data sheets on existing products. The new products include high-speed, high-density BiCMOS devices, specialty SRAM products, and true 3.3V high-performance SRAMs. The existing product data sheet revisions upgrade and correct the existing specification to more accurately reflect device improvements that have been made over time. Also included is a current packaging section for the products included in this book.

The SRAM Data Book's Table of Contents is a listing of the products contained in this data book only (in the past, we have also included products that appeared in other IDT data books). The number at the bottom center of the page denotes the section number and the sequence of the data sheet within that section, (i.e., 5.5 would be the fifth data sheet in the fifth section). The number in the lower right-hand corner is the page number for that particular data sheet.

The data sheets are organized in eight sections (16K, 64K, 256K, 1M, 3.3V, CacheRAMs, Cache Tags, and Cache Controller Product). Each section is then ordered by total number of bits (low to high), device word width (narrow to wide), and performance (slow to fast).

Integrated Device Technology, Inc. is a recognized leader in high-speed CMOS and BiCMOS technology and produces a broad line of products. This enables us to provide complete CMOS and BiCMOS solutions to designers of high-performance digital systems. Not only do our product lines include industry standard devices, they also feature products with faster speeds, lower power, and package and/ or architectural benefits that allow designers to significantly improve system performance.

To find ordering information: Ordering Information for all products in this book appears in Section 1, along with the Product Selector Matrix, Package Marking Description, and Functional Cross Reference. Reference data on our Technology Capabilities, Quality Commitments, and Package Diagram Outlines is included in Sections 2, 3, and 4 respectively.

To find product data: Begin with the Table of Contents (page 1.2), Product Selector Matrix (page 1.6), or with the Numeric Table of Contents (page 1.3). The Product Selector Matrix will help you identify the device you are interested in, while the Table of Contents indexes will direct you to the page on which the complete technical data sheet can be found. Data sheets may be of the following type:

ADVANCE INFORMATION—contain initial descriptions (subject to change) for products that are in development, including features, block diagrams, and target specifications.

PRELIMINARY—contain descriptions for products soon to be or recently, released to production, including features, pinouts, and block diagrams. Timing data are based on simulation or initial characterization and are subject to change upon full characterization.

FINAL—contain minimum and maximum limits specified over the complete voltage supply and temperature range for full production devices.

New products, product performance enhancements, additional package types, and new product families are being introduced frequently. Please contact your local IDT sales representative to determine the latest device specifications, package types, and product availability.

LIFE SUPPORT POLICY

Integrated Device Technology's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the manufacturer and an officer of IDT.

- Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support
 or sustain life and whose failure to perform, when properly used in accordance with instructions for use provided in the
 labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Note: Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance and to supply the best possible product. IDT does not assume any responsibility for use of any circuitry described other than the circuitry embodied in an IDT product. The Company makes no representations that circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc.

The IDT logo is a registered trademark and BiCameral, BurstRAM, BUSMUX, CacheRAM, DECnet, Double-Density, FASTX, Four-Port, FLEXI-CACHE, Flexi-PAK, Flow-thruEDC, IDT/c, IDTenvY, IDT/sae, IDT/sim, IDT/ux, MacStation, MICROSLICE, Orion, PalatteDAC, REAL8, R3041, R3051, R3052, R3081, R3721, R4400, RISCompiler, RISController, RISCore, RISC Subsystem, RISC Windows, SARAM, SmartLogic, SyncFIFO, SyncBiFIFO, SPC, TargetSystem and WideBus are trademarks of Integrated Device Technology, Inc. MIPS is a registered trademark of MIPS Computer Systems, Inc

All others are trademarks of their respective companies..

1994 SRAM DATA BOOK TABLE OF CONTENTS

PAGE

GENERAL INFORMATION

Contents Overview	1.1
Table of Contents	1.2
Numeric Table of Contents	1.3
Ordering Information	1.4
IDT Package Marking Description	1.5
SRAM Product Selector Matrix	1.6
Functional Cross Reference	1.7

TECHNOLOGY AND CAPABILITIES

IDTLeading the CMOS Future	2.1
IDT Military and DESC-SMD Program	2.2
Radiation Hardened Technology	2.3
IDT Leading Edge CMOS Technology	2.4
Surface Mount Technology	2.5
State-of-the-Art Facilities and Capabilities	2.6
Superior Quality and Reliability	2.7

QUALITY AND RELIABILITY

Quality, Service and Performance	3.1
IDT Quality Conformance Program	3.2
Radiation Tolerant/Enhanced/Hardened Products for Radiation Environments	3.3

PACKAGE DIAGRAM OUTLINES

Thermal Performance Calculations for IDT's Packages	4.1
Package Diagram Outline Index	4.2
Monolithic Package Diagram Outlines	4.3

16K SRAM PRODUCTS

IDT6167	16K x 1 CMOS	5.1
IDT6168	4K x 4 CMOS	5.2
IDT71681	4K x 4 CMOS with Separate Input/Output	5.3
IDT71682	4K x 4 CMOS with Separate Input/Output	5.3
IDT6116	2K x 8 CMOS	5.4

64K SRAM PRODUCTS

IDT7187	64K x 1 CMOS	6.1
IDT7188	16K x 4 CMOS	6.2
IDT6198	16K x 4 CMOS with Output Enable	6.3
IDT7198	16K x 4 CMOS with Output Enable and $\overline{CS2}$	6.4
IDT7164	8K x 8 CMOS	6.5

256K SRAM PRODUCTS

IDT61298SA	64K x 4 CMOS	7.1
IDT71256	32K x 8 CMOS	7.2
IDT71256SA	32K x 8 CMOS	7.3

1994 SRAM DATA BOOK (Continued)

1M SRAM PRODUCTS

IDT71028	256K x 4 CMOS	8.1
IDT71024	128K x 8 CMOS	8.2
3.3V ASYNCHRONO	US SRAM PRODUCTS	
IDT71V256SA	32K x 8 CMOS 3.3V	9.1
IDT71V256SL	32K x 8 CMOS 3.3V	9.2
CashaRAMa		
ID1/1419	32K x 18 BICMOS CacheRAM for PowerPC Processors	10.1
IDT71420	32K x 18 BiCMOS CacheRAM for Pentium [™] Processors	10.2
IDT71V432	32K x 32 CMOS 3.3V Pipelined CacheRAM for Pentium Processors	10.3
Cache Tags		
IDT6178	4K x 4 CMOS Cache Tag	11.1
IDT71B74	8K x 8 BiCMOS Cache Tag	11.2
IDT71215	16K x 15 BiCMOS Cache Tag for Pentium Processors	11.3
IDT71216	16K x 15 BiCMOS Cache Tag for PowerPC and RISC Processors	11.4
Cache Controller PF	RODUCT	
IDT71V280	16K x 10 CMOS 3.3V Cache Controller with Tag for Pentium Processors	12.1

IDT SALES OFFICE, REPRESENTATIVE AND DISTRIBUTOR LOCATIONS

NUMERICAL TABLE OF CONTENTS

PART NO.

IDT6116	2K x 8 CMOS	5.4
IDT6167	16K x 1 CMOS	5.1
IDT6168	4K x 4 CMOS	5.2
IDT6178	4K x 4 CMOS Cache Tag	11.1
IDT6198	16K x 4 CMOS with Output Enable	6.3
IDT61298SA	64K x 4 CMOS	7.1
IDT7164	8K x 8 CMOS	6.5
IDT7187	64K x 1 CMOS	6.1
IDT7188	16K x 4 CMOS	6.2
IDT7198	16K x 4 CMOS with Output Enable and CS2	6.4
IDT71024	128K x 8 CMOS	8.2
IDT71028	256K x 4 CMOS	8.1
IDT71215	16K x 15 BiCMOS Cache Tag for Pentium Processors	11.3
IDT71216	16K x 15 BiCMOS Cache Tag for PowerPC and RISC Processors	11.4
IDT71256	32K x 8 CMOS	7.2
IDT71256SA	32K x 8 CMOS	7.3
IDT71419	32K x 18 BiCMOS CacheRAM for PowerPC Processors	10.1
IDT71420	32K x 18 BiCMOS CacheRAM for Pentium Processors	10.2
IDT71681	4K x 4 CMOS with Separate Input/Output	5.3
IDT71682	4K x 4 CMOS with Separate Input/Output	5.3
IDT71B74	8K x 8 BiCMOS Cache Tag	11.2
IDT71V256SA	32K x 8 CMOS 3.3V	9.2
IDT71V256SL	32K x 8 CMOS 3.3V	9.1
IDT71V280	16K x 10 CMOS 3.3V Cache Controller with Tag for Pentium Processors	12.1
IDT71V432	32K x 32 CMOS 3.3V Pipelined CacheRAM for Pentium Processors	10.3

ORDERING INFORMATION

When ordering by TWX or Telex, the following format must be used:

- A. Complete Bill To.
- B. Complete Ship To.
- C. Purchase Order Number.
- D. Certificate of Conformance. Y or N.
- E. Customer Source Inspection. Y or N.
- F. Government Source Inspection. Y or N
- G. Government Contract Number and Rating.
- H. Requested Routing.
- I. IDT Part Number -
 - Each item ordered must use the complete part number exactly as listed in the price book.
- J. SCD Number Specification Control Document (Internal Traveller).
- K. Customer Part Number/Drawing Number/Revision Level -
- Specify whether part number is for reference only, mark only, or if extended processing to customer specification is required.
- L. Customer General Specification Numbers/Other Referenced Drawing Numbers/Revision Levels.
- M. Request Date With Exact Quantity.
- N. Unit Price.
- O. Special Instructions, Including Q.A. Clauses, Special Processing.

Federal Supply Code Number/Cage Number — 61772 Dun & Bradstreet Number — 03-814-2600

Federal Tax I.D. — 94-2669985

TLX# — 887766

FAX# - 408-727-3468

PART NUMBER DESCRIPTION

A = Alpha Character N = Numeric Character

*Consult Factory

IDT PACKAGE MARKING DESCRIPTION

PART NUMBER DESCRIPTION

IDT's part number identifies the basic product, speed, power, package(s) available, operating temperature and processing grade. Each data sheet has a detailed description, using the part number, for ordering the proper product for the user's application. The part number is comprised of a series of alpha-numeric characters:

- 1. An "IDT" corporate identifier for Integrated Device Technology, Inc.
- 2. A basic device part number composed of alpha-numeric characters.
- 3. A device power identifier, composed of one or two alpha characters, is used to identify the power options. In most cases, the following alpha characters are used:

"S" or "SA" is used for the standard power product. "L" or "LA" is used for lower power than the standard power product.

- A device speed identifier, when applicable, is either alpha characters, such as "A" or "B", or numbers, such as 20 or 45. The speed units, depending on the product, are in nanoseconds or megahertz.
- A package identifier, composed of one or two characters. The data sheet should be consulted to determine the packages available and the package identifiers for that particular product.
- 6. A temperature/process identifier. The product is available in either the commercial or military temperature range, processed to a commercial specification, or the product is available in the military temperature range with full compliance to MIL-STD-883. Many of IDT's products have burn-in included as part of the standard commercial process flow.
- 7. A special process identifier, composed of alpha characters, is used for products which require radiation enhancement (RE) or radiation tolerance (RT).

Example for Monolithic Devices:

* Field Identifier Applicable To All Products

ASSEMBLY LOCATION DESIGNATOR

IDT uses various locations for assembly. These are identified by an alpha character in the last letter of the date code marked on the package. Presently, the assembly location alpha character is as follows:

- A = Anam, Korea
- I = USA
- P = Penang, Malaysia

MIL-STD-883C COMPLIANT DESIGNATOR

2507 drw 01

IDT ships military products which are compliant to the latest revision of MIL-STD-883C. Such products are identified by a "C" designation on the package. The location of this designator is specified by internal documentation at IDT.

Size/				Part		Speed	ts (ns)			Co	ommerc	ial				Militar	<u> </u>	11_
Function	Org.	Features	Process	Number	Power	Commercial	Military	PDIP	soj	SOIC	TSOP	TQFP	PLCC	SBRZ	CDIP	LCC	СРАК	
16K	16K x 1		CMOS	6167	SA/LA	15,20,25,35	15,20,25,35, 45,55,70,8 <u>5,</u> 100	20	20	-	_	-	-	—	20	20	20	grated
	4K x 4		CMOS	6168	SA/LA	15,20,25,35	15,20,25,35, 45,55,70,85,100	20	-	20	—	-	—	—	20	20	20	Devic
	4K x 4	Sep I/O	CMOS	71681	SA/LA	15,20,25,35,45	15,20,25,35, 45,55,70,85,100	24	-	-	—	-	1		24	28	24	
	4K x 4	Sep I/O	CMOS	71682	SA/LA	15,20,25,35,45	12,15,20,25,35, 45,55,70,85,100	24		-	-	-	1	—	24	28	24	inolog
	2K x 8		CMOS	6116	SA/LA	15,20,25,35,45	20,25,35,45, 55,70,90,120,150	24	24	24	-		—		24	28/32	24	y, Inc.
64K	64K x 1		CMOS	7187	S/L	15,20,25	20,25,35, 45,55,70,85	22		—	-		1		22	22/28	24	
	16K x 4		CMOS	7188	S/L	20,25	20,25,35, 45,55,70,85	22	-		_		-	-	22	-	24	
	16K x 4	ŌĒ	CMOS	6198	S/L	15,20,25,35	20,25,35, 45,55,70,85		24	-		_		_	24	28	-	L E
	16K x 4	OE, CS2	CMOS	7198	S/L	N/A	20,25,35, 45,55,70,85	-	_	_		-		—	24	28	24	l 3h-3
	8K x 8		CMOS	7164	S/L	15,20,25,30	20,25,30,35, 45,55,70,85	28	28	28	-	—	-	—	28	32	28	spe
256K	64K x 4		CMOS	61298	SA	12,15,17,20	20,25	28	28	—	_	_	-	28	—	28	—	l e
	32K x 8		CMOS	71256	S/L	20,25,35,45	25,30,35,45, 55,70,85, 100,120,150	28	28	_	_		—	28	28	28/32	28	d Sta
	32K x 8		CMOS	71256	SA	12,15,20,25	15,20,25	28	28	—	_	_	-	28	—	32	-	11 S
1M	256K x 4		CMOS	71028	S/L	12,15,17	15,17,20,25	28	28		-		1	_	28	28	-	l a
	128K x 8		CMOS	71024	S/L	12,15,17,20	15,17,20,25	32	32	-	_		-	-	32	32	—	<u> </u> <u>a</u>
3.3V	32K x 8	3.3V	3.3V CMOS	71V256	SA	20,25	N/A	1	28	—	—	—	—	_	—		—	<u> </u> <u>a</u>
SRAMs	32K x 8	3.3V	3.3V CMOS	71V256	SL	15	N/A	28	28		28		Ì				_	l Z
Cache SRAMs	32K x 18	PowerPC Burst	BICMOS	71419	s	9,10,12	N/A	_	-	. —		_	52	_	-	-		Sp
	32K x 18	Intel Burst	BICMOS	71420	S	9,10,12	N/A	—	_	—	_	—	52		-	-	—	eci
	32K x 32	3.3V Intel Pipelined Burst	3.3V CMOS	71V432	S	9,10,12	N/A		_	-	_	100	—		-	_	—	alty (
Cache	4K x 4	Tag	CMOS	6178	S	10,12,15,20,25	N/A	22	24	_		_		—	22_	_	_	ll Sta
Tags	8K x 8	Tag	BICMOS	71B74	S	8,10,12,15,20	N/A	28	28	_		_					—	II ati
	16K x 15	Intel Tag	BICMOS	71215	S	10,12	N/A	-	_		_	80	_		—		—	<u> </u>
	16K x 15	PwrPC Tag	BICMOS	71216	S	10,12	N/A	—	_			80	—					2
Cache Controller	16K x 10	3.3V Controller w/Tag	3.3V CMOS	71V280	S	66MHz	N/A	-	—	-	-	128	—		-		-	Ms
	1	L									L			L	1	L		11

SRAM FUNCTIONAL CROSS REFERENCE GUIDE

Note: This cross reference guide reflects Functional Correlation ONLY. Please refer to the individual data sheet specifications to ensure that the IDT device meets your parametric and packaging requirements.

ALLIANCE	IDT	DESCRIPTION				
AS7C256	IDT71256SA	32K x 8 🦕				
AS7C3256	IDT71V256SL	32K x 8 🕂 3.3V				
AS7C3256	IDT71V256SA	32K x 8 — 3.3V				
AT&T	IDT	DESCRIPTION				
ATT7C167	IDT6167	16K x 1				
ATT7C168	IDT6168	4K x 4				
ATT7C171	IDT71681	4K x 4 Sep I/O				
ATT7C172	IDT71682	4K x 4 Sep I/O				
ATT7C116	IDT6116	2K x 8				
ATT7C187	IDT7187	64K x 1				
ATT7C164	IDT7188	16K x 4				
ATT7C166	IDT6198	16K x 4 OE				
ATT7C165	IDT7198	16K x 4 OE/CS2				
ATT7C185	IDT7164	8K x 8				
ATT7C195	IDT61298SA	64K x 4 OE				
ATT7C199	IDT71256	32K x 8				
ATT7C199	IDT71256SA	32K x 8				
ATT7C106	IDT71028	256K x 4 OE				
ATT7C109	IDT71024	128K x 8				
ATT7C180	IDT6178	4K x 4 Cache Tag				
ATT7C174	IDT71B74	8K x 8 Cache Tag				
CYPRESS	IDT	DESCRIPTION				
CY7C167	IDT6167	16K x 1				
CY7C167A	IDT6167	16K x 1				
CY7C168	IDT6168	4K x 4				
CY7C168A	IDT6168	4K x 4				
CY7C169	IDT6168	4K x 4				
CY7C169A	IDT6168	4K x 4				
CY7C171	IDT71681	4K x 4 Sep I/O				
CY7C171A	IDT71681	4K x 4 Sep I/O				
CY7C172	IDT71682	4K x 4 Sep 1/O				
CY7C172A	IDT71682	4K x 4 Sep I/O				
CY7C128	IDT6116	2K x 8				
CY7C128A	IDT6116	2K x 8				
CY7C187	IDT7187	64K x 1				
CY7C187A	IDT7187	64K x 1				
CY7C164	IDT7188	16K x 4				
CY7C164A	IDT7188	16K x 4				
CY7C166	IDT6198	16K x 4 OE				

CYPRESS	IDT	DESCRIPTION						
CY7C166A	IDT6198	16K x 4 OE						
CY7C185	IDT7164	8K x 8						
CY7C185A	IDT7164	8K x 8						
CY7C186	IDT7164	8K x 8						
CY7C186A	IDT7164	8K x 8						
CY7C195	IDT61298SA	64K x 4 OE						
CY7B195	IDT61298SA	64K x 4 OE						
CY7C198	IDT71256	32K x 8						
CY7C198	IDT71256SA	32K x 8						
CY7C199	IDT71256	32K x 8						
CY7C199	IDT71256SA	32K x 8						
CY7B198	IDT71256SA	32K x 8						
CY7B199	IDT71256SA	32K x 8						
CYC1399	IDT71V256SL	32K x 8 — 3.3V						
CYC1399	IDT71V256SA	32K x 8 — 3.3V						
CY7C106	IDT71028	256K x 4 OE						
CY7C109	IDT71024	128K x 8						
CY7C178	IDT71420	32K x 18 — Burst Pent						
EDI	IDT	DESCRIPTION						
EDI8164	IDT7187	64K x 1						
EDI8416	IDT7188	16K x 4						
EDI8417	IDT6198	16K x 4 OE						
EDI8808CB	IDT7164	8K x 8						
EDI8466CA	IDT61298SA	64K x 4 OE						
EDI8466CB	IDT61298SA	64K x 4 OE						
ED18833C	IDT71256	32K x 8						
ED18833C	IDT71256SA	32K x 8						
EDI8833LP	IDT71256	32K x 8						
ED18833LP	IDT71256SA	32K x 8						
ED18833P	IDT71256	32K x 8						
ED18833P	IDT71256SA	32K x 8						
EDI8834C	IDT71256	32K x 8						
EDI8834C	IDT71256SA	32K x 8						
EDI8834CA	IDT71256	32K x 8						
EDI8834CA	IDT71256SA	32K x 8						
EDI84256CS	IDT71028	256K x 4 OE						
EDI84256LPS	IDT71028	256K x 4 OE						
EDI84256PS	IDT71028	256K x 4 OE						
EDI88130C	IDT71024	128K x 8						
EDI88130LP	IDT71024	128K x 8						
EDI88130P	IDT71024	128K x 8						
EDI88130CS	IDT71024	128K x 8						
EDI88130LPS	IDT71024	128K x 8						

EDI	IDT	DESCRIPTION	INMOS	IDT	DESCRIPTION
EDI88130PS	IDT71024	128K x 8	IMS1625	IDT7188	16K x 4
FUJITSU	IDT	DESCRIPTION	IMS1624	IDT6198	16K x 4 OE
MB81C67	IDT6167	16K x 1	IMS1629	IDT6198	16K x 4 OE
MB81C68A	IDT6168	4K x 4	IMS1630	IDT7164	8K x 8
MB81C69A	IDT6168	4K x 4	IMS1635	IDT7164	8K x 8
MB81C71	IDT7187	64K x 1	LOGIC	IDT	DESCRIPTION
MB81C71A	IDT7187	64K x 1	L7C167	IDT6167	16K x 1
MB81C74	IDT7188	16K x 4	L7C168	IDT6168	4K x 4
MB81C75	IDT6198	16K x 4 OE	L7C171	IDT71681	4K x 4 Sep I/O
MB81C78A	IDT7164	8K x 8	L7C172	IDT71682	4K x 4 Sep I/O
MB82B78	IDT7164	8K x 8	L6116	IDT6116	2K x 8
MB81C84A	IDT61298SA	64K x 4 OE	L6116L	IDT6116	2K x 8
MB82B85	IDT61298SA	64K x 4 OE	L7C187	IDT7187	64K x 1
MB8298	IDT71256	32K x 8	L7C164	IDT7188	16K x 4
MB8298	IDT71256SA	32K x 8	L7C166	IDT6198	16K x 4 OE
MB82B88	IDT71256SA	32K x 8	L7C165	IDT7198	16K x 4 OE/CS2
MB82B005	IDT71028	256K x 4 OE	L7C185	IDT7164	8K x 8
MB82B008	IDT71024	128K x 8	L7CL185	IDT7164	8K x 8
HITACHI	IDT	DESCRIPTION	L7C195	IDT61298SA	64K x 4 OE
HM6267	IDT6167	16K x 1	L7C199	IDT71256	32K x 8
HM6268	IDT6168	4K x 4	L7CL199	IDT71256	32K x 8
HM6716	IDT6116	2K x 8	L7C199	IDT71256SA	32K x 8
HM6287	IDT7187	64K x 1	L7CL199	IDT71256SA	32K x 8
HM6287H	IDT7187	64K x 1	L7C180	IDT6178	4K x 4 Cache Tag
HM6787	IDT7187	64K x 1	L7C174	IDT71B74	8K x 8 Cache Tag
HM6787H	IDT7187	64K x 1	MICRON	IDT	DESCRIPTION
HM6288	IDT7188	16K x 4	MT5C1601	IDT6167	16K x 1
HM6788	IDT7188	16K x 4	MT5C1604	IDT6168	4K x 4
HM6788H	IDT7188	16K x 4	MT5C1606	IDT71681	4K x 4 Sep I/O
HM6289	IDT6198	16K x 4 OE	MT5C1607	IDT71682	4K x 4 Sep I/O
HM6789	IDT6198	16K x 4 OE	MT5C1608	IDT6116	2K x 8
HM6789H	IDT6198	16K x 4 OE	MT5C6401	IDT7187	64K x 1
HM6709A	IDT61298SA	64K x 4 OE	MT5C6404	IDT7188	16K x 4
HM62832H	IDT71256	32K x 8	MT5C6405	IDT6198	16K x 4 OE
HM62832H	IDT71256SA	32K x 8	MT5C6408	IDT7164	8K x 8
HM62832UH	IDT71256SA	32K x 8	MT5C2565	IDT61298SA	64K x 4 OE
HM62832UHL	IDT71256SA	32K x 8	MT5C2568	IDT71256	32K x 8
HM624256A	IDT71028	256K x 4 OE	MT5C2568	IDT71256SA	32K x 8
HM628127H	IDT71024	128K x 8	MT5LC2568	IDT71V256SL	32K x 8 — 3.3V
IC WORKS	IDT	DESCRIPTION	MT5LC2568	IDT71V256SA	32K x 8 — 3.3V
ICW73B586A	IDT71420	32K x 18 — Burst Pent	MT5C1005	IDT71028	256K x 4 OE
ICW73B586B	IDT71420	32K x 18 — Burst Pent	MT5C1008	IDT71024	128K x 8
INMOS	IDT	DESCRIPTION	MITSUBISHI	IDT	DESCRIPTION
IMS1403	IDT6167	16K x 1	M5M21C67	IDT6167	16K x 1
IMS1423	IDT6168	4K x 4	M5M21C68	IDT6168	4K x 4
IMS1600	IDT7187	64K x 1	M5M5187A	IDT7187	64K x 1
IMS1605	IDT7187	64K x 1	M5M5187B	IDT7187	64K x 1
IMS1620	IDT7188	16K x 4	M5M5188A	IDT7188	16K x 4

MITSUBISHI	IDT	DESCRIPTION	NEC
M5M5188B	IDT7188	16K x 4	uPD4368
M5M5189A	IDT6198	16K x 4 OE	uPD43253
M5M5189B	IDT6198	16K x 4 OE	uPD43258
M5M5178	IDT7164	8K x 8	uPD43258
M5M5178A	IDT7164	8K x 8	uPD43258
M5M5178B	IDT7164	8K x 8	uPD43258
M5M5259B	IDT61298SA	64K x 4 OE	uPD43100
M5M5278	IDT71256	32K x 8	uPD43100
M5M5278	IDT71256SA	32K x 8	PARADIG
M5M51004	IDT71028	256K x 4 OE	PDM41298
MOTOROLA	דסו	DESCRIPTION	PDM41256
MCM6268	IDT6168	4K x 4	PDM41256
MCM6287B	IDT7187	64K x 1	PDM41028
MCM6288	IDT7188	16K x 4	PDM41024
MCM6288B	IDT7188	16K x 4	PDM44528
MCM6288C	IDT7188	16K x 4	PERFORMA
MCM6290	IDT6198	16K x 4 OE	P4C168
MCM6290C	IDT6198	16K x 4 OE	P4C1681
MCM6264C	IDT7164	8K x 8	P4C1682
MCM6209	IDT61298SA	64K x 4 OE	P4C116
MCM6209C	IDT61298SA	64K x 4 OE	P4C187
MCM6206	IDT71256	32K x 8	P4C188
MCM6206C	IDT71256	32K x 8	P4C198
MCM6206D	IDT71256	32K x 8	P4C198A
MCM6206	IDT71256SA	32K x 8	P4C164
MCM6206C	IDT71256SA	32K x 8	P4C1298
MCM6206D	IDT71256SA	32K x 8	P4C1256
MCM62V06	IDT71V256SL	32K x 8 — 3.3V	P4C1256
MCM62V06	IDT71V256SA	32K x 8 — 3.3V	QUALITY
MCM6306D	IDT71V256SL	32K x 8 — 3.3V	QS8768
MCM6360D	IDT71V256SA	32K x 8 — 3.3V	QS8761
MCM6229	IDT71028	256K x 4 OE	QS8762
MCM6229A	IDT71028	256K x 4 OE	QS8888
MCM6229B	IDT71028	256K x 4 OE	QS8888A
MCM6226	IDT71024	128K x 8	QS8886
MCM6226A	IDT71024	128K x 8	QS8885
MCM67B518	IDT71418	32K x 18 — Burst Pent	QS86446
MCM67M518	IDT71419	32K x 18 — Burst PwrPC	QS83280
MCM67H518	IDT71420	32K x 18 — Burst Pent	QS83280
NEC	IDT	DESCRIPTION	QS812880
uPD4311	IDT6167	16K x 1	QS8780
uPD4314C	IDT6168	4K x 4	QS83291
uPD4361	IDT7187	64K x 1	SAMSUNG
uPD4361B	IDT7187	64K x 1	KM6165
uPD4362	IDT7188	16K x 4	KM6465
uPD4362B	IDT7188	16K x 4	KM6465A
uPD4363	IDT6198	16K x 4 OE	KM6465B

NEC	IDT	DESCRIPTION
JPD4368	IDT7164	8K x 8
JPD43253	IDT61298SA	64K x 4 OE
JPD43258	IDT71256	32K x 8
JPD43258A	IDT71256	32K x 8
JPD43258	IDT71256SA	32K x 8
JPD43258A	IDT71256SA	32K x 8
JPD431004	IDT71028	256K x 4 OE
JPD431008	IDT71024	128K x 8
PARADIGM	IDT	DESCRIPTION
PDM41298	IDT61298SA	64K x 4 OE
PDM41256	IDT71256	32K x 8
PDM41256	IDT71256SA	32K x 8
PDM41028	IDT71028	256K x 4 OE
PDM41024	IDT71024	128K x 8
PDM44528	IDT71420	32K x 18 — Burst Pent
PERFORMANCE	IDT	DESCRIPTION
P4C168	IDT6168	4K x 4
P4C1681	IDT71681	4K x 4 Sep I/O
P4C1682	IDT71682	4K x 4 Sep I/O
P4C116	IDT6116	2K x 8
P4C187	IDT7187	64K x 1
P4C188	IDT7188	16K x 4
P4C198	IDT6198	16K x 4 OE
P4C198A	IDT7198	16K x 4 OE/CS2
P4C164	IDT7164	8K x 8
P4C1298	IDT61298SA	64K x 4 OE
P4C1256	IDT71256	32K x 8
P4C1256	IDT71256SA	32K x 8
QUALITY	IDT	DESCRIPTION
QS8768	IDT6168	4K x 4
QS8761	IDT71681	4K x 4 Sep I/O
QS8762	IDT71682	4K x 4 Sep I/O
QS8888	IDT7188	16K x 4
QS8888A	IDT7188	16K x 4
QS8886	IDT6198	16K x 4 OE
28885	IDT7198	16K x 4 OE/CS2
QS86446	IDT61298SA	64K x 4 OE
QS83280	IDT71256	32K x 8
QS83280	IDT71256SA	32K x 8
QS812880	IDT71024	128K x 8
QS8780	IDT6178	4K x 4 Cache Tag
QS83291	IDT71589	32K x 9 Burst 486
SAMSUNG	IDT	DESCRIPTION
KM6165	IDT7187	64K x 1
KM6465	IDT7188	16K x 4
KM6465A	IDT7188	16K x 4
KM6465B	IDT7188	16K x 4

SAMSUNG	IDT	DESCRIPTION
KM6466	IDT6198	16K x 4 OE
KM6466A	IDT6198	16K x 4 OE
KM6466B	IDT6198	16K x 4 OE
KM64B67	IDT7198	16K x 4 OE/CS2
KM6865	IDT7164	8K x 8
KM6865B	IDT7164	8K x 8
KM64258	IDT61298SA	64K x 4 OE
KM64258B	IDT61298SA	64K x 4 OE
KM68257	IDT71256	32K x 8
KM68257	IDT71256SA	32K x 8
KM68257B	IDT71256	32K x 8
KM68257B	IDT71256SA	32K x 8
KM688V257	IDT71V256SL	32K x 8 — 3.3V
KM688V257	IDT71V256SA	32K x 8 — 3.3V
KM641001	IDT71028	256K x 4 OE
KM681001	IDT71024	128K x 8
SGS	TDT	DESCRIPTION
MK41H67	IDT6167	16K x 1
MK41H68	IDT6168	4K x 4
MK41H87	IDT7187	64K x 1
MK41H80	IDT6178	4K x 4 Cache Tag
MK41S80	IDT6178	4K x 4 Cache Tag
MK48S74	IDT71B74	8K x 8 Cache Tag
SHARP	IDT	DESCRIPTION
LH5267A	IDT6198	16K x 4 OE
LH52253	IDT61298SA	64K x 4 OE
LH52258	IDT71256	32K x 8
LH52258	IDT71256SA	32K x 8
LH52258A	IDT71256	32K x 8
LH52258A	IDT71256SA	32K x 8
LH52258B	IDT71256	32K x 8
LH52258B	IDT71256SA	32K x 8
LH521002	IDT71028	256K x 4 OE
LH521007	IDT71024	128K x 8
SONY	IDT	DESCRIPTION
CXK5164	IDT7187	64K x 1
CXK5464A	IDT7188	16K x 4
CXK5466	IDT7188	16K x 4
CXK5465/7	IDT6198	16K x 4 OE
CXK5863	IDT7164	8K x 8
CXK5863A	IDT7164	8K x 8
CXK58258	IDT71256	32K x 8
CXK58258	IDT71256SA	32K x 8
CXK58258B	IDT71256	32K x 8
CXK58258B	IDT71256SA	32K x 8
CXK58258A	IDT71256SA	32K x 8
CXK541000	IDT71028	256K x 4 OE
OVVERIAND	10771024	128K x 8

т	IDT	DESCRIPTION
TM6716	IDT6116	2K x 8
TM6787	IDT7187	64K x 1
TM6788	IDT7188	16K x 4
TM6789	IDT6198	16K x 4 OE
TOSHIBA	IDT	DESCRIPTION
TMM2018	IDT6116	2K x 8
TC5561	IDT7187	64K x 1
TC5562	IDT7187	64K x 1
TC55416	IDT7188	16K x 4
TC55416-H	IDT7188	16K x 4
TC55417	IDT6198	16K x 4 OE
TC55417-H	IDT6198	16K x 4 OE
TC5588	IDT7164	8K x 8
TC55465	IDT61298SA	64K x 4 OE
TC55328	IDT71256	32K x 8
TC55328	IDT71256SA	32K x 8
TC55B328	IDT71256SA	32K x 8
TC55V328	IDT71V256SA	32K x 8 — 3.3V

IDT...LEADING THE CMOS FUTURE

A major revolution is taking place in the semiconductor industry today. A new technology is rapidly displacing older NMOS and bipolar technologies as the workhorse of the '80s and beyond. That technology is high-speed CMOS. Integrated Device Technology, a company totally predicated on and dedicated to implementing high-performance CMOS products, is on the leading edge of this dramatic change.

Beginning with the introduction of the industry's fastest CMOS 2K x 8 static RAM, IDT has grown into a company with multiple divisions producing a wide range of high-speed CMOS circuits that are, in almost every case, the fastest available. These advanced products are produced with IDT's proprietary CEMOS[™] technology, a twin-well, dry-etched, stepper-aligned process utilizing progressively smaller dimensions.

From inception, IDT's product strategy has been to apply the advantages of its extremely fast CEMOS technology to produce the integrated circuit elements required to implement high-performance digital systems. IDT's goal is to provide the circuits necessary to create systems which are far superior to previous generations in performance, reliability, cost, weight, and size. Many of the company's innovative product designs offer higher levels of integration, advanced architectures, higher density packaging and system enhancement features that are establishing tomorrow's industry standards. The company is committed to providing its customers with an everexpanding series of these high-speed, lower-power IC solutions to system design needs.

IDT's commitment, however, extends beyond state-of-theart technology and advanced products to providing the highest level of customer service and satisfaction in the industry. Manufacturing products to exacting quality standards that provide excellent, long-term reliability is given the same level of importance and priority as device performance. IDT is also dedicated to delivering these high-quality advanced products on time. The company would like to be known not only for its technological capabilities, but also for providing its customers with quick, responsive, and courteous service. IDT's product families are available in both commercial and military grades. As a bonus, commercial customers obtain the benefits of military processing disciplines, established to meet or exceed the stringent criteria of the applicable military specifications.

IDT is the leading U.S. supplier of high-speed CMOS circuits. The company's high-performance fast SRAM, FCT logic, high-density modules, FIFOs, multi-port memories, BiCMOS ECL I/O memories, RISC SubSystems, and the 32-and 64-bit RISC microprocessor families complement each other to provide high-speed CMOS solutions for a wide range of applications and systems.

In 1993, IDT introduced its newest RISC microprocessor based on the MIPS architecture for the desktop PC, and embedded control markets. The R4600 Orion microprocessor, is the first RISC processor offering Pentium performance at a cost lower than most of Intel's 486DX line.

The R4600 is a full 64-bit implementation of the MIPS III instruction set architecture found in the popular R4000PC and R4400PC, but uses a shorter pipeline resulting in fewer stalls and, therefore, higher performance.

When compared against other processors targeted at the Windows NT market, the R4600 possesses clear advantages. The R4600 has the best performance per dollar, the best performance per watt cfonsumed, and the most efficient use of silicon for the performance attained.

Dedicated to maintaining its leadership position as a stateof-the-art IC manufacturer, IDT will continue to focus on maintaining its technology edge as well as developing a broader range of innovative products. New products and speed enhancements are continuously being added to each of the existing product families, and additional product families are being introduced. Contact your IDT field representative or factory marketing engineer for information on the most current product offerings. If you're building state-of-the-art equipment, IDT wants to help you solve your design problems.

IDT MILITARY AND DESC-SMD PROGRAM

IDT is a leading supplier of military, high-speed CMOS circuits. The company's high-performance Static RAMs, FCT Logic Family, Complex Logic (CLP), FIFOs, Specialty Memories (SMP), ECL I/O BiCMOS Memories, 32-bit RISC Microprocessor, RISC Subsystems and high-density Subsystems Modules product lines complement each other to provide high-speed CMOS solutions to a wide range of military applications and systems. Most of these product lines offer Class B products which are fully compliant to the latest revision of MIL-STD-883, Paragraph 1.2.1. In addition, IDT offers Radiation Tolerant (RT), as well as Radiation Enhanced (RE), products.

IDT has an active program with the Defense Electronic Supply Center (DESC) to list all of IDT's military compliant devices on Standard Military Drawings (SMD). The SMD program allows standardization of militarized products and reduction of the proliferation of non-standard source control drawings. This program will go far toward reducing the need for each defense contractor to make separate specification control drawings for purchased parts. IDT plans to have SMDs for many of its product offerings. Presently, IDT has 88 devices which are listed or pending listing. The devices are from IDT's SRAM, FCT Logic family, Complex Logic (CLP), FIFOs and Specialty Memories (SMP) product families. IDT expects to add another 20 devices to the SMD program in the near future. Users should contact either IDT or DESC for current status of products in the SMD program.

SMD			SMD		SMD
SRAM	IDT	5962-93177	7206L	5962-88654	54FCT640/A
0.4000		5962-92069	72141L	5962-88655	54FCT534/A
5060 99740	6116	5962-92101	72215LB	5962-89767	54FCT540/A
5962-66740	6116Z	5962-93138	72220L	5962-89766	54FCT541/A
54132 5000 90015	5107	5962-92057	72225LB	5962-89733	54FCT191/A
5962-66015	/10/	5962-93189	72245LB	5962-89732	54FCT241/A
5962-66659	6190//190//100	5962-91757	72200L	5962-89652	54FCT399/A
5962-66/05	5155			5962-89513	54FCT574/A
5962-65525	7104	CLP	IDT	5962-89731	54FCT833A/B
5962-66552	71250L	5000 07700	200105 4 0	5962-89730	54FCT543/A
5962-66662	712505	5962-87708	390108 & 0	5962-90901	29FCT52A/B/C
5962-88611	71682L	5962-88533	49C460A/B/C	5962-92205	29FCT520AT/BT/CT
5962-89891	7198	5962-88613	39C60/A	5962-92157	49FCT805/A/806/A
5962-89892	6198	5962-88643	490410	5962-92233	54FCT138T/AT/CT
5962-89690	6116	5962-86873	7216L	5962-92208	54FCT157T/AT/CT
5962-38294	/164	5962-87686	7217L	5962-92209	54FCT161T/AT/CT
5962-89692	7188	5962-88733	7210	5962-92210	54FCT163T/AT/CT
5962-89712	71982	5962-92122	49C465/A	5962-90669	54FCT193/A
5962-89790	71682			5962-92213	54FCT240T/AT/CT
		LOGIC	IDT	5962-92232	54FCT241T/AT/CT
SMP	IDT	5962-87630	54FCT244/A	5962-92203	54FCT244T/AT/CT
5962-86875	7130/7140	5962-87629	54FCT245/A	5962-92214	54FCT245T/AT/CT
5962-87002	7132/7142	5962-86862	54FCT299/A	5962-92211	54FCT257T/AT/CT
5962-88610	7133SA/7143SA	5962-87644	54FCT373/A	5962-92215	54FCT273T/AT/CT
5962-88665	7133LA/7143LA	5962-87628	54FCT374/A	5962-92216	54FCT299T/AT/CT
5962-89764	7134	5962-87627	54FCT377/A	5962-92217	54FCT373T/AT/CT
5962-91508	7006	5962-87654	54FCT138/A	5962-92218	54FCT374T/AT/CT
5962-91617	7025	5962-87655	54FCT240/A	5962-92219	54FCT377T/AT/CT
5962-91662	7024	5962-87656	54FCT273/A	5962-92212	54FCT399T/AT/CT
5962-93153	7014S	5962-89533	54FCT861A/B	5962-92234	54FCT521T/AT/BT/CT
		5962-89506	54FCT827A/B	5962-92236	54FCT534T/AT/CT
FIFO	IDT	5962-88575	54FCT841A/B	5962-92220	54FCT540T/AT/CT
5000 07504	70041.4	5962-88608	54FCT821A/B	5962-92237	54FCT541T/AT/CT
5962-87531	7201LA 724041	5962-88543	54FCT521/A	5962-92221	54FCT543T/AT/CT
5962-86846	72404L	5962-88640	54FCT161/A	5962-92238	54FCT573T/AT/CT
5962-88669	72035	5962-88639	54FCT573/A	5962-92222	54FCT574T/AT/CT
5962-89568	7204L	5962-88656	54ECT823A/B	5962-92244	54FCT645T/AT/CT
5962-89536	7202LA	5962-88657	54ECT163/A	5962-92223	54FCT646T/AT/CT
5962-89863	7201SA	5962-88674	54FCT825A/B	5962-92246	54FCT652T/AT/CT
5962-89523	72403L	5962-88661	54FCT863A/B	5962-92225	54FCT821AT/BT/CT
5962-89666	7200L	5962-88736	29FCT520A/B	5962-92229	54FCT823AT/BT/CT
5962-89942	/2103L	5962-88775	54ECT646/A	5962-92230	54FCT825AT/BT/CT
5962-89943	/2104L	5962-89508	54FCT139/A	5962-92247	54FCT827AT/BT/CT
5962-89567	7203L	5962-89665	54FCT824A/B		
5962-90715	7204S	5962-88651	54FCT533/A		
5962-91677	7205L	5962-88653	54FCT645/A	1	1
		5502-00055	341 0 1045/A	1	

		1.0010	IDT	5962-92244	54ECT645T/AT/CT
CDAM		5060 97620	EAECT244/A	5962-92223	54FCT646T/AT/CT
30000	6116	5962-67630	54FC1244/A	5962-92246	54ECT652T/AT/CT
5000 00740		5962-87629	54FCT245/A	5962-92225	54FCT821AT/BT/CT
04100	6116LA 6167	5962-86862	54FC1299/A	5962-92229	54FCT823AT/BT/CT
5000 0001E	7197	5962-87644	54FC1373/A	5962-92230	54FCT825AT/BT/CT
5962-66015	/10/	5962-87628	54FC1374/A	5962-92247	54FCT827AT/BT/CT
5962-66659	6169	5962-8/62/	54FC1377/A	SSOL SELAT	
5962-66705	7164	5962-67654	54FCT136/A		1
5062-03525	71256	5962-67655	54FCT240/A		
5062-88662	712565	5062 90522	54ECT961A/P		
5962-88611	71682	5962-89506	54FCT827A/B		
5962-89891	7198	5062-88575	54FCT841A/B		
5962-89892	6198	5062-88608	54FCT821A/B		
5962-89690	6116	5962-88543	54FCT521/A		
5962-38294	7164	5962-88640	54FCT161/A		
5962-89692	7188	5962-88639	54ECT573/A		1
5962-89712	71982	5962-88656	54FCT823A/B		i
5962-89790	71682	5962-88657	54FCT163/A		
SND		5962-88674	54FCT825A/B		
5000 00075	7100/7140	5962-88661	54FCT863A/B		
5962-868/5	7130/7140	5962-88736	29FCT520A/B		
5962-87002	7132/7142	5962-88775	54FCT646/A		
5962-88610	71335A/71435A	5962-89508	54FCT139/A		1
5962-88665	7133LA/7143LA	5962-89665	54FCT824A/B		
5962-89764	7134	5962-88651	54FCT533/A		
5962-91508	7006	5962-88653	54FCT645/A		
5962-91617	7025	5962-88654	54FCT640/A		
5962-91002	7024	5962-88655	54FCT534/A		
5962-93155	70143	5962-89767	54FCT540/A		
FIFO	ועו	5962-89766	54FCT541/A		
5962-87531	7201LA	5962-89733	54FCT191/A		1
5962-86846	72404L	5962-89732	54FCT241/A		
5962-88669	7203S	5962-89652	54FCT399/A		1
5962-89568	7204L	5962-89513	54FCT574/A		
5962-89536	7202LA	5962-89731	54FCT833A/B		
5962-89863	7201SA	5962-89730	54FCT543/A		
5962-89523	72403L	5962-90901	29FCT52A/B/C		
5962-89666	7200L	5962-92205	29FCT520AT/BT/CT		
5962-89942	72103L	5962-92157	49FCT805/A/806/A		
5962-89943	72104L 70001	5962-92233	54FCT138T/AT/CT		
5962-89567	72031	5962-92208	54FCT157T/AT/CT		
5962-90715	72045	5962-92209	54FCT161T/AT/CT		
5962-916/7	7205L	5962-92210	54FCT163T/AT/CT		
5962-931//	72001	5962-90669	54FCT193/A		ľ
5062-92009	72141L 722151 B	5962-92213	54FCT240T/AT/CT		1
5962-92101	722201	5962-92232	54FCT241T/AT/CT		
5962-92057	72225LB	5962-92203	54FC1244 [/AT/C1		
5962-93189	72245LB	5962-92214	54FC12451/A1/C1		
5962-931757	722001	5962-92211	54FC12571/A1/C1		1
	IDT	5962-92215	54FC12/31/A1/C1		
		5962-92216	54FC12991/A1/C1		
5962-8//08	39C10B & C	5962-9221/	54FU13/31/A1/U1		
5962-88533	49C46UA/B/C	5962-92218	54FU13741/A1/U1		
5962-88613	39060/A	2902-92219	54FUIS//I/AI/UI		
5962-88643	490410	5962-92212	54FUI3991/A1/UI		
5962-868/3	7216L	5962-92234	54FUISZII/AI/BI/UI		
5962-87686	721/L	5962-92236	54FC15341/A1/C1		
5962-88/33	1210	5062-92220	54FC15401/A1/C1		
2902-92122	490400/A	5062-9223/	54FCT5411/A1/CT		
		5962-92221	54FCT573T/AT/CT		
		5962.92222	54FCT574T/AT/CT		
			511 510/41/(1)01		

RADIATION HARDENED TECHNOLOGY

IDT manufactures and supplies radiation hardened products for military/aerospace applications. Utilizing special processing and starting materials, IDT's radiation hardened devices survive in hostile radiation environments. In Total Dose, Dose Rate, and environments where single event upset is of concern, IDT products are designed to continue functioning without loss of performance. IDT can supply all its products on these processes. Total Dose radiation testing is performed in-house on an ARACOR X-Ray system. External facilities are utilized for device research on gamma cell, LINAC and other radiation equipment. IDT has an on-going research and development program for improving radiation handling capabilities (See "IDT Radiation Tolerant/Enhanced Products for Radiation Environments" in Section 3) of IDT products/processes.

IDT LEADING EDGE CEMOS TECHNOLOGY

HIGH-PERFORMANCE CEMOS

From IDT's beginnings in 1980, it has had a belief in and a commitment to CMOS. The company developed a high-performance version of CMOS, called enhanced CMOS (CEMOS), that allows the design and manufacture of leading-edge components. It incorporates the best characteristics of traditional CMOS, including low power, high noise immunity

and wide operating temperature range; it also achieves speed and output drive equal or superior to bipolar Schottky TTL. The last decade has seen development and production of four "generations" of IDT's CEMOS technology with process improvements which have reduced IDT's electrical effective (Leff) gate lengths by more than 60 percent from 1.3 microns (millionths of a meter) in 1981 to 0.45 microns in 1993.

	CEMOSI	CEM	os II	CEMOS III	CEMOS V	CEMOS VI	CEM	OS VII
Calendar Year	1981	1983	1985	1987	1989	1990	1992	1993
Drawn Feature Size	2.5µ	1.7μ	1.3µ	1.2μ	1.0μ	0.8μ	0.65μ	0.65µ
Leff	1.3μ	1.1µ	0.9µ	0.8µ	0.6µ	0.45µ	0.45µ	0.25µ
Basic Proces Enhancements	Dual-well, Wet Etch, Projection Aligned	Dry Etch, Stepper	Shrink, Spacer	Silicide, BPSG, BiCEMOS I	BICEMOS II	BICEMOS III	BiCEMOS IV Vcc = 5V	BiCEMOS IV Vcc = 3.3V

CEMOS IV = CEMOS III - scaled process optimized for high-speed logic.

Figure 1.

Continual advancement of CEMOS technology allows IDT to implement progressively higher levels of integration and achieve increasingly faster speeds maintaining the company's established position as the leader in high-speed CMOS integrated circuits. In addition, the fundamental process technology has been extended to add bipolar elements to the CEMOS platform. IDT's BiCEMOS process combines the ultra-high speeds of bipolar devices with the lower power and cost of CMOS, allowing us to build even faster components than straight CMOS at a slightly higher cost.

SEM photos (miniaturization)

2514 drw 02

Figure 2. Fifteen-Hundred-Power Magnification Scanning Electron Microscope (SEM) Photos of the Four Generations of IDT's CEMOS Technology

Figure 3. IDT CEMOS Device Cross Section

Figure 4. IDT CEMOS Built-In High Alpha Particle Immunity

ALPHA PARTICLES

Random alpha particles can cause memory cells to temporarily lose their contents or suffer a "soft error." Traveling with high energy levels, alpha particles penetrate deep into an integrated chip. As they burrow into the silicon, they leave a trail of free electron-hole pairs in their wake.

The cause of alpha particles is well documented and understood in the industry. IDT has considered various techniques to protect the cells from this hazardous occurrence. These techniques include dual-well structures (Figures 3 and 4) and a polymeric compound for die coating. Presently, a polymeric compound is used in many of IDT's SRAMs; however, the specific techniques used may vary and change from one device generation to the next as the industry and IDT improve the alpha particle protection technology.

LATCHUP IMMUNITY

A combination of careful design layout, selective use of guard rings and proprietary techniques have resulted in virtual elimination of latchup problems often associated with older CMOS processes (Figure 5). The use of NPN and N-channel I/O devices eliminates hole injection latchup. Double guard ring structures are utilized on all input and output circuits to absorb injected electrons. These effectively cut off the current paths into the internal circuits to essentially isolate I/O circuits. Compared to older CMOS processes which exhibit latchup characteristics with trigger currents from 10-20mA, IDT products inhibit latchup at trigger currents substantially greater than this.

Figure 5. IDT CEMOS Latchup Suppression

SURFACE MOUNT TECHNOLOGY AND IDT'S MODULE PRODUCTS

Requirements for circuit area reduction, utilizing the most efficient and compact component placement possible and the needs of production manufacturing for electronics assemblies are the driving forces behind the advancement of circuit-board assembly technologies. These needs are closely associated with the advances being made in surface mount devices (SMD) and surface mount technology (SMT) itself. Yet, there are two major issues with SMT in production manufacturing of electronic assemblies: high capital expenditures and complexity of testing.

The capital expenditure required to convert to efficient production using SMT is still too high for the majority of electronics companies, regardless of the 20-60% increase in the board densities which SMT can bring. Because of this high barrier to entry, we will continue to see a large market segment [large even compared to the exploding SMT market] using traditional through-hole packages (i.e. DIPs, PGAs, etc) and assembly techniques. How can these types of companies take advantage of SMD and SMT? Let someone else, such as IDT, do it for them by investing time and money in SMT and then in return offer through-hole products utilizing SMT processes. Products which fit this description are modules, consisting of SMT assembled SMDs on a through-hole type substrate. Modules enable companies to enjoy SMT density advantages and traditional package options without the expensive startup costs required to do SMT in-house.

Although subcontracting this type of work to an assembly house is an alternative, there still is the other issue of testing, an area where many contract assembly operations fall short of IDT's capability and experience. Prerequisites for adequate module testing sophisticated high performance parametric testers, customized test fixtures, and most importantly the experience to tests today's complex electronic devices. Companies can therefore take advantage of IDT's experience in testing and manufacturing high performance modules. At IDT, SMD components are electrically tested, environmentally screened, and performance selected for each IDT module. All modules are 100% tested as if they are a separate functional component and are guaranteed to meet all specified parameters at the module output.

IDT has recognized the problems of SMT and began offering CMOS modules as part of its standard product portfolio. IDT modules combine the advantages of:

- 1) the low power characteristics of IDT's CMOS and BiCMOS products,
- the density advantages of first class SMD components including those from IDT's components divisions, and
- 3) experience in system level design, manufacturing, and testing with its own in-house SMT operation.

IDT currently has two divisions (Subsystems and RISC Subsystems) dedicated to the development of module products ranging from simple memory modules to complex VME sized application specific modules to full system level CPU boards. These modules have surface mount devices assembled on both sides of either a multi-layer glass filled epoxy (FR-4) or a multi-layer co-fired ceramic substrate. Assembled modules come available in industry standard through-hole packages and other space-saving module packages. Industry proven vapor-phase or IR reflow techniques are used to solder the SMDs to the substrate during the assembly process. Because of our affiliation with IDT's experienced semiconductor manufacturing divisions, we thoroughly understand and therefore test all modules to the applicable datasheet specifications and customer requirements.

Thus, IDT is able to offer today's electronic design engineers a unique solution. These high speed, high performance products offer the density advantages of SMD and SMT, the added benefit of low power CMOS technology, and throughhole packaged electronics without the high cost of doing it inhouse.

STATE-OF-THE-ART FACILITIES AND CAPABILITIES

Integrated Device Technology is headquartered in Santa Clara, California—the heart of "Silicon Valley." The company's operations are housed in six facilities totaling over 500,000 square feet. These facilities house all aspects of business from research and development to design, wafer fabrication, assembly, environmental screening, test, and administration. In-house capabilities include scanning electron microscope (SEM) evaluation, particle impact noise detection (PIND), plastic and hermetic packaging, military and commercial testing, burn-in, life test, and a full complement of environmental screening equipment.

The over-200,000-square-foot corporate headquarters campus is composed of three buildings. The largest facility on this site is a 100,000 square foot, two-building complex. The first building, a 60,000-square-foot facility, is dedicated to the Standard Logic and RISC Microprocessor product lines, as well as hermetic and plastic package assembly, logic products' test, burn-in, mark, QA, and a reliability/failure analysis lab.

IDT's Packaging and Assembly Process Development teams are located here. To keep pace with the development of new products and to enhance the IDT philosophy of "innovation," these teams have ultra-modern, integrated and correspondingly sophisticated equipment and environments at their disposal. All manufacturing is completed in dedicated clean room areas (Class 10K minimum), with all preseal operations accomplished under Class 100 laminar flow hoods.

Development of assembly materials, processes and equipment is accomplished under a fully operational production environment to ensure reliability and repeatable product. The Hermetic Manufacturing and Process Development team is currently producing custom products to the strict requirements of MIL-STD-883. The fully automated plastic facility is currently producing high volumes of USA-manufactured product, while developing state-of-the-art surfac-mount technology patterned after MIL-STD-883.

The second building of the complex houses sales, marketing, finance, MIS, and Northwest Area Sales.

The RISC Subsystems Division is located across from the two-building complex in a 50,000-square-foot facility. Also located at this facility are Quality Assurance, wafer fabrication services, Administrative services, Human Resources, International Planning, and the Shipping and Receiving departments. IDT's largest and newest facility, opened in 1990 in San Jose, California, is a multi-purpose 150,000-square-foot, ultramodern technology development center. This facility houses a 25,000 square foot, combined Class 1 (a maximum of one particle-per-cubic-foot of 0.2 micron or larger), sub-half-micron R&D fabrication facility and a wafer fabrication area. This fab supports both production volumes of IDT products, including some next-generation SRAMs, and the R&D efforts of the technology development staff. Technology development efforts targeted for the center include advanced silicon processing and wafer fabrication ard research is located on-site. The building is also the home of the FIFO, ECL, and Subsystems product lines.

IDT's second largest facility is located in Salinas, California, about an hour south of Santa Clara. This 95,000-square-foot facility, located on 14 acres, houses the Static RAM Division and Specialty Memory product line. Constructed in 1985, this facility contains an ultra-modern 25,000-square-foot highvolume wafer fabrication area measured at Class 2-to-3 (a maximum of 2 to 3 particles-per-cubic-foot of 0.2 micron or larger) clean room conditions. Careful design and construction of this fabrication area created a clean room environment far beyond the 1985 average for U.S. fab areas. This made possible the production of large volumes of high-density submicron geometry, fast static RAMs. This facility also houses shipping areas for IDT's leadership family of CMOS static RAMs. This site can expand to accommodate a 250,000square-foot complex.

To extend our capabilities while maintaining strict control of our processes, IDT has an operational Assembly and Test facility located in Penang, Malaysia. This facility assembles product to U.S. standards, with all assemblies done under laminar flow conditions (Class 100) until the silicon is encased in its final packaging. All products in this facility are manufactured to the quality control requirements of MIL-STD-883.

All of IDT's facilities are aimed at increasing our manufacturing productivity to supply ever-larger volumes of high-performance, cost-effective, leadership CMOS products.

SUPERIOR QUALITY AND RELIABILITY

Maintaining the highest standards of quality in the industry on all products is the basis of Integrated Device Technology's manufacturing systems and procedures. From inception, quality and reliability are built into all of IDT's products. Quality is "designed in" at every stage of manufacturing – as opposed to being "tested-in" later – in order to ensure impeccable performance.

Dedicated commitment to fine workmanship, along with development of rigid controls throughout wafer fab, device assembly and electrical test, create inherently reliable products. Incoming materials are subjected to careful inspections. Quality monitors, or inspections, are performed throughout the manufacturing flow.

IDT military grade monolithic hermetic products are designed to meet or exceed the demanding Class B reliability levels of MIL-STD-883, paragraph 1.2.1.

Product flow and test procedures for all monolithic hermetic military grade products are in accordance with the latest revision and notice of MIL-STD-883. State-of-the-art production techniques and computer-based test procedures are coupled with tight controls and inspections to ensure that products meet the requirements for 100% screening. Routine quality conformance lot testing is performed as defined in MIL-STD-883, Methods 5004 and 5005.

For IDT module products, screening of the fully assembled substrates is performed, in addition to the monolithic level screening, to assure package integrity and mechanical reliability. All modules receive 100% electrical tests (DC, functional and dynamic switching) to ensure compliance with the "subsystem" specifications.

By maintaining these high standards and rigid controls throughout every step of the manufacturing process, IDT ensures that commercial, industrial and military grade products consistently meet customer requirements for quality, reliability and performance.

SPECIAL PROGRAMS

Class S. IDT also has all manufacturing, screening and test capabilities in-house (except X-ray and some Group D tests) to perform complete Class S processing per MIL-STD-883 on all IDT products and has supplied Class S products on several programs.

Radiation Hardened. IDT has developed and supplied several levels of radiation hardened products for military/ aerospace applications to perform at various levels of dose rate, total dose, single event upset (SEU), upset and latchup. IDT products maintain nearly their same high-performance levels built to these special process requirements. The company has in-house radiation testing capability used both in process development and testing of deliverable product. IDT also has a separate group within the company dedicated to supplying products for radiation hardened applications and to continue research and development of process and products to further improve radiation hardening capabilities.

QSP-QUALITY, SERVICE AND PERFORMANCE

Quality from the beginning, is the foundation for IDT's commitment to supply consistently high-quality products to our customers. IDT's quality commitment is embodied in its all pervasive Total Quality Commitment (TQC) process. Everyone who influences the quality of the product–from the designer to the shipping clerk–is committed to constantly improving the quality of their actions.

IDT QUALITY PHILOSOPHY

"To make quantitative constant improvement in the quality of our actions that result in the supply of leadership products in conformance to the requirements of our customers."

IDT'S ASSURANCE STRATEGY FOR TQC

Measurable standards are essential to the success of TQC. All the processes contributing to the final quality of the product need to be monitored, measured and improved upon through the use of statistical tools.

Our customers receive the benefit of our optimized systems. Installed to enhance quality and reliability, these systems provide accurate and timely reporting on the effectiveness of manufacturing controls and the reliability and quality performance of IDT products and services.

> ORDER ENTRY | PRODUCTION CONTROL | SHIPPING | CUSTOMER SUPPORT

These systems and controls concentrate on TQC by focusing on the following key elements:

Statistical Techniques

SERVICE FLOW

Using statistical techniques, including Statistical Process Control (SPC) to determine whether the product/ processes are under control.

Standardization

Implementing policies, procedures and measurement techniques that are common across different operational areas.

Documentation

Documenting and training in policies, procedures, measurement techniques and updating through characterization/ capability studies.

Productivity Improvement

Using constant improvement teams made up from employees at all levels of the organization.

Leadership

Focusing on quality as a key business parameter and strategic strength.

Total Employee Participation

Incorporating the TQC process into the IDT Corporate Culture.

Customer Service

Supporting the customer, as a partner, through performance review and pro-active problem solving.

People Excellence

Committing to growing, motivating and retaining people through training, goal setting, performance measurement and review.

PRODUCT FLOW

Product quality starts here. IDT has mechanisms and procedures in place that monitor and control the quality of our development activities. From the calibration of design capture libraries through process technology and product characterization that establish whether the performance, ratings and reliability criteria have been met. This includes failure analysis of parts that will improve the prototype product.

At the pre-production stage once again in-house qualification tests assure the quality and reliability of the product. All specifications and manufacturing flows are established and personnel trained before the product is placed into production.

Manufacturing

To accomplish continuous improvement during the manufacturing stage, control items are determined for major manufacturing conditions. Data is gathered and statistical techniques are used to control specific manufacturing processes that affect the quality of the product. In-process and final inspections are fed back to earlier processes to improve product quality. All product is burnedin (where applicable) before 100% inspection of electrical characteristics takes place.

Products which pass final inspection are then subject to Quality Assurance and Reliability Tests. This data is used to improve manufacturing processes and provide reliability predictions of field applications.

Inventory and Shipping

Controls in shipping focus on ensuring parts are identified and packaged correctly. Care is also taken to see that the correct paperwork is present and the product being shipped was processed correctly.

SERVICE FLOW

Quality not only applies to the product but to the quality -of -service we give our customers. Services is also constantly monitored for improvement.

Order Procedures

Checks are made at the order entry stage to ensure the correct processing of the Customer's product. After verification and data entry the Acknowledgements (sent to Customers) are again checked to ensure details are correct. As part of the TQC process, the results of these verifications are analyzed using statistical techniques and corrective actions are taken.

Production Control

Production Control (P.C.) is responsible for the flow and logistics of material as it moves through the manufacturing processes. The quality of the actions taken by P.C. greatly impinges on the quality of service the customer receives. Because many of our customers have implemented Just-in-Time (JIT) manufacturing practices, IDT as a supplier also has to adopt these same disciplines. As a result, employees receive extensive training and the performance level of key actions are kept under constant review. These key actions include:

Quotation response and accuracy. Scheduling response and accuracy. Response and accuracy of Expedites. Inventory, management, and effectiveness. On time delivery.

Customer Support

IDT has a worldwide network of sales offices and Technical Development Centers. These provide local customer support on business transactions, and in addition, support customers on applications information, technical services, benchmarking of hardware solutions, and demonstration of various Development Workstations.

The key to continuous improvement is the timely resolution of defects and implementation of the corrective actions. This is no more important than when product failures are found by a customer.When failures are found at the customer's incoming inspection, in the production line, or the field application, the Division Quality Assurance group is the focal point for the investigation of the cause of failure and implementation of the corrective action. IDT constantly improves the level of support we give our customers by monitoring the response time to customer with an analysis of the failure, including corrective actions and the statistical analysis of defects, brings CQI full circle–full support of our customers and their designs with high-quality products.

SUMMARY

In 1990, IDT made the commitment to "Leadership through Quality, Service, and Performance Products".

We believe by following that credo IDT and our cusotmers will be successful in the coming decade. With the implementation of the TQC strategy within the company, we will satisfy our goal...

"Leadership through Quality, Service and Performance Products".

IDT QUALITY CONFORMANCE PROGRAM

A COMMITMENT TO QUALITY

Integrated Device Technology's monolithic assembly products are designed, manufactured and tested in accordance with the strict controls and procedures required by Military Standards. The documentation, design and manufacturing criteria of the Quality and Reliability Assurance Program were developed and are being maintained to the most current revisions of MIL-38510 as defined by paragraph 1.2.1 of MIL-STD-883 and MIL-STD-883 requirements.

Product flow and test procedures for all Class B *monolithic* hermetic Military Grade microcircuits are in full compliance with paragraph 1.2.1 of MIL-STD-883. State-of-the-art production techniques and computer-based test procedures are coupled with stringent controls and inspections to ensure that products meet the requirements for 100% screening and quality conformance tests as defined in MIL-STD-883, Methods 5004 and 5005.

Product flow and test procedures for all *plastic* and *commercial hermetic* products are in accordance with industry practices for producing highly reliable microcircuits to ensure that products meet the IDT requirements for 100% screening and quality conformance tests.

By maintaining these high standards and rigid controls throughout every step of the manufacturing process, IDT ensures that our products consistently meet customer requirements for quality, reliability and performance.

SUMMARY

Monolithic Hermetic Package Processing Flow⁽¹⁾

Refer to the Monolithic Hermetic Package Processing Flow diagram. All test methods refer to MIL-STD-883 unless otherwise stated.

1. Wafer Fabrication: Humidity, temperature and particulate contamination levels are controlled and maintained according to criteria patterned after Federal Standard 209, Clean Room and Workstation Requirements. All critical workstations are maintained at Class 100 levels or better.

Wafers from each wafer fabrication area are subjected to Scanning Electron Microscope analysis on a periodic basis.

- 2. Die Visual Inspection: Wafers are cut and separated and the individual die are 100% visually inspected to strict IDT-defined internal criteria.
- 3. Die Shear Monitor: To ensure die attach integrity, product samples are routinely subjected to a shear strength test per Method 2019.

- 4. Wire Bond Monitor: Product samples are routinely subjected to a strength test per Method 2011, Condition D, to ensure the integrity of the lead bond process.
- 5. **Pre-Cap Visual:** Before the completed package is sealed, 100% of the product is visually inspected to Method 2010, Condition B criteria.
- Environmental Conditioning: 100% of the sealed product is subjected to environmental stress tests. These thermal and mechanical tests are designed to eliminate units with marginal seal, die attach or lead bond integrity.
- 7. Hermetic Testing: 100% of the hermetic packages are subjected to fine and gross leak seal tests to eliminate marginally sealed units or units whose seals may have become defective as a result of environmental conditioning tests.
- 8. Pre-Burn-In Electrical Test: Each product is 100% electrically tested at an ambient temperature of +25°C to IDT data sheet or the customer specification.
- Burn-In: 100% of the Military Grade product is burned-in under dynamic electrical conditions to the time and temperature requirements of Method 1015, Condition D. Except for the time, Commercial Grade product is burned-in as applicable to the same conditions as Military Grade devices.
- Post-Burn-In Electrical: After burn-in, 100% of the Class B Military Grade product is electrically tested to IDT data sheet or customer specifications over the – 55°C to +125°C temperature range. Commercial Grade products are sample tested to the applicable temperature extremes.
- 11. Mark: All product is marked with product type and lot code identifiers. MIL-STD-883 compliant Military Grade products are identified with the required compliant code letter.
- 12. Quality Conformance Tests: Samples of the Military Grade product which have been processed to the 100% screening tests of Method 5004 are routinely subjected to the quality conformance requirements of Method 5005.

NOTE:

^{1.} For quality requirements beyond Class B levels such as SEM analysis, X-Ray inspection, Particle Impact Noise Reduction (PIND) test, Class S screening or other customer specified screening flows, please contact your Integrated Device Technology sales representative.

SUMMARY

Monolithic Plastic Package Processing Flow

Refer to the Monolithic Plastic Package Processing Flow diagram. All test methods refer to MIL-STD-883 unless otherwise stated.

1. Wafer Fabrication: Humidity, temperature and particulate contamination levels are controlled and maintained according to criteria patterned after Federal Standard 209, Clean Room and Workstation Requirements. All critical workstations are maintained at Class 100 levels or better.

Topside silicon nitride passivation is all applied to all wafers for better moisture barrier characteristics.

Wafers from each wafer fabrication area are subjected to Scanning Electron Microscope analysis on a periodic basis.

- 2. Die Visual Inspection: Wafers are 100% visually inspected to strict IDT defined internal criteria.
- Die Push Test: To ensure die attach integrity, product samples are routinely subjected to die push tests, patterned after MIL-STD-883, Method 2019.
- 4. Wire Bond Monitor: Product samples are routinely subjected to wire bond pull and ball shear tests to ensure the integrity of the wire bond process, patterned after MIL-STD-883, Method 2011, Condition D.
- Pre-Cap Visual: Before encapsulation, all product lots are visually inspected (using LTPD 5 sampling plan) to criteria patterned after MIL-STD-883, Method 2010, Condition B.

- 6. Post Mold Cure: Plastic encapsulated devices are baked to ensure an optimum polymerization of the epoxy mold compound so as to enhance moisture resistance characteristics.
- 7. **Pre-Burn-In Electrical:** Each product is 100% electrically tested at an ambient temperature of +25°C to IDT data sheet or the customer specification.
- Burn-In: Except for MSI Logic family devices where it may be obtained as an option, all Commercial Grade plastic package products are burned-in for 16 hours at +125°C minimum (or equivalent), utilizing the same burn-in conditions as the Military Grade product.
- 9. Post-Burn-In Electrical: After burn-in, 100% of the plastic product is electrically tested to IDT data sheet or customer specifications at the maximum temperature extreme. The minimum temperature extreme is tested periodically on an audit basis.
- **10. Mark:** All product is marked with product type and lot code identifiers. Products are identified with the assembly and test locations.
- 11. Quality Conformance Inspection: Samples of the plastic product which have been processed to the 100% screening requirements are subjected to the Periodic Quality Conformance Inspection Program. Where indicated, the test methods are patterned after MIL-STD-883 criteria.

TABLE 1

This table defines the device class screening procedures for IDT's high reliability products in conformance with MIL-STD-883C.

Monolithic Hermetic Package Final Processing Flow

	CLASS-S		CLASS-B		CLASS-C ⁽¹⁾	
OPERATION	TEST METHOD	RQMT	TEST METHOD	RQMT	TEST METHOD	RQMT
BURN-IN	1015 Cond. D, 240 Hrs @ 125°C or equivalent	100%	1015 Cond. D, 160 Hrs. @ 125°C min. or equivalent	100%	Per applicable device specification	100%
PORT BURN-IN ELECTRICAL: Static (DC), Functional and Switching (AC)	Per applicable device specification +25, -55 and 125°C	100%	Per applicable device specification +25, –55 and 125°C	100%	Per applicable ⁽²⁾ device specification	100%
Group A ELECTRICAL: Static (DC, Functional and Switching (AC)	Per applicable device specification and 5005	Sample	Per applicable device specification and 5005	Sample	Per applicable ⁽²⁾ device specification	Sample
MARK/LEAD STRAIGHTENING	IDT Spec	100%	IDT Spec	100%	IDT Spec	100%
FINAL ELECTRICAL TEST	Per applicable device specification +25°C	100%	Per applicable device specification +25°C	100%	Per applicable device specification +25°C	100%
FINAL VISUAL/PACK	IDT Spec	100%	IDT Spec	100%	IDT Spec	100%
QUALITY CONFORMANCE INSPECTION	5005 Group B, C, D	Sample	5005 Group B, C, D	Sample	IDT Spec	Sampto
QUALITY SHIPPING INSPECTION (Visual/Plant Clearance)	IDT Spec	100%	IDT Spec	100%	IDT Spec	100%

NOTES:

1. Class-C = IDT commercial spec. for hermetic and plastic packages 2. Typical 0°C, 70°C, Extended -55°C +125°C
RADIATION TOLERANT/ENHANCED/HARDENED PRODUCTS FOR RADIATION ENVIRONMENTS

INTRODUCTION

The need for high-performance CMOS integrated circuits in military and space systems is more critical today than ever before. The low power dissipation that is achieved using CMOS technology, along with the high complexity and density levels, makes CMOS the nearly ideal component for all types of applications.

Systems designed for military or space applications are intended for environments where high levels of radiation may be encountered. The implication of a device failure within a military or space system clearly is critical. IDT has made a significant contribution toward providing reliable radiationtolerant systems by offering integrated circuits with enhanced radiation tolerance. Radiation environments, IDT process enhancements and device tolerance levels achieved are described below.

THE RADIATION ENVIRONMENT

There are four different types of radiation environments that are of concern to builders of military and space systems. These environments and their effects on the device operation, summarized in Figure 1, are as follows:

Total Dose Accumulation refers to the total amount of accumulated gamma rays experienced by the devices in the system, and is measured in RADS (SI) for radiation units experienced at the silicon level. The physical effect of gamma rays on semiconductor devices is to cause threshold shifts (Vt shifts) of both the active transistors as well as the parasitic field transistors. Threshold voltages decrease as total dose is accumulated; at some point, the device will begin to exhibit parametric failures as the input/output and supply currents increase. At higher radiation accumulation levels, functional failures occur. In memory circuits, however, functional failures due to memory cell failure often occur first.

Burst Radiation or Dose Rate refers to the amount of radiation, usually photons or electrons, experienced by the devices in the system due to a pulse event, and is measured in RADS (Si) per second. The effect of a high dose rate or burst of radiation on CMOS integrated circuits is to cause temporary upset of logic states and/or CMOS latch-up. Latchup can cause permanent damage to the device.

Single Event Upset (SEU) is a transient logic state change caused by high-energy ions, such as energetic cosmic rays, striking the integrated circuits. As the ion passes through the silicon, charge is either created through ionization or direct nuclear collision. If collected by a circuit node, this excess charge can cause a change in logic state of the circuit. Dynamic nodes that are not actively held at a particular logic state (dynamic RAM cells for example) are the most susceptible. These upsets are transient, but can cause system failures known as "soft errors."

Neutron Irradiation will cause structural damage to the silicon lattice which may lead to device leakage and, ultimately, functional failure.

DEVICE ENHANCEMENTS

Of the four radiation environments above, IDT has taken considerable data on the first two, Total Dose Accumulation and Dose Rate. IDT has developed a process that significantly

Radiation Category	Primary Particle	Source	Effect
Total Dose	Gamma	Space or Nuclear Event	Permanent
Dose Rate	Photons	Nuclear Event	Temporary Upset of Logic State or Latch-up
SEU	Cosmic Rays	Space	Temporary Upset of Logic State
Neutron	Neutrons	Nuclear Event	Device Leakage Due to Silicon Lattice Damage

Figure 1.

improves the radiation tolerance of its devices within these environments. Prevention of SEU failures is usually accomplished by system-level considerations, such as Error Detection and Correction (EDC) circuitry, since the occurrence of SEUs is not particularly dependent on process technology. Through IDT's customer contracts, SEU has been gathered on some devices. Little is yet known about the effects of neutron-induced damage. For more information on SEU testing, contact IDT's Radiation Hardened Product Group.

Enhancements to IDT's standard process are used to create radiation enhanced and tolerant processes. Field and gate oxides are "hardened" to make the device less susceptible to radiation damage by modifying the process architecture to allow lower temperature processing. Device implants and Vts adjustments allow more Vt margin. In addition to process changes, IDT's radiation enhanced process utilizes epitaxial substrate material. The use of epi substrate material provides a lower substrate resistance environment to create latch-up free CMOS structures.

RADIATION HARDNESS CATEGORIES

Radiation Enhanced (RE) or Radiation Tolerant ('RT) versions of IDT products follow IDT's military product data sheets whenever possible (consult factory). IDT's Total Dose Test plan exposes a sample of die on a wafer to a particular Total Dose level via ARACOR X-Ray radiation. This Total Dose Test plan qualifies each 'RE or 'RT wafer to a Total Dose level. Only wafers with sampled die that pass Total Dose level

tests are assembled and used for orders (consult factory for more details on Total Dose sample testing). With regard to Total Dose testing, clarifications/exceptions to MIL-STD-883, Methods 5005 and 1019 are required. Consult factory for more details.

The 'RE and 'RT process enhancements enable IDT to offer integrated circuits with varying grades of radiation tolerance or radiation "hardness".

- Radiation Enhanced process uses Epi wafers and is able to provide devices that can be Total Dose qualified to 10K RADs (Si) or greater by IDT's ARACOR X-Ray Total Dose sample die test plan (Total Dose levels require negotiation, consult factory for more details).
- Radiation Tolerant product uses standard wafer/process material that is qualified to 10K RADs (Si) Total Dose by IDT's ARACOR X-Ray Total Dose sample die test plan.

Integrated Device Technology can provide Radiation Tolerant/Enhanced versions of all product types (some speed grades may not be available as 'RE). Please contact your IDT sales representative or factory marketing to determine availability and price of any IDT product processed in accordance with one of these levels of radiation hardness.

CONCLUSION

There has been widespread interest within the military and space community in IDT's CMOS product line for its radiation hardness levels, as well as its high-performance and low power dissipation. To serve this growing need for CMOS circuits that must operate in a radiation environment, IDT has created a separate group within the company to concentrate on supplying products for these applications.Continuing research and development of process and products, including the use of in-house radiation testing capability, will allow Integrated Device Technology to offer continuously increasing levels of radiation-tolerant solutions.

.

·

CACHE CONTROLLER PRODUCT

CACHE TAGS

CacheRAMs

3.3V ASYNCHRONOUS SRAM PRODUCTS

1M SRAM PRODUCTS

256K SRAM PRODUCTS

64K SRAM PRODUCTS

16K SRAM PRODUCTS

PACKAGE DIAGRAM OUTLINES

QUALITY AND RELIABILITY

TECHNOLOGY AND CAPABILITIES

GENERAL INFORMATION

• .

ı

THERMAL PERFORMANCE CALCULATIONS FOR IDT'S PACKAGES

Since most of the electrical energy consumed by microelectronic devices eventually appears as heat, poor thermal performance of the device or lack of management of this thermal energy can cause a variety of deleterious effects. This device temperature increase can exhibit itself as one of the key variables in establishing device performance and long term reliability; on the other hand, effective dissipation of internally generated thermal energy can, if properly managed, reduce the deleterious effects and improve component reliability.

A few key benefits of IDT's enhanced CMOS process are: low power dissipation, high speed, increased levels of integration, wider operating temperature ranges and lower quiescent power dissipation. Because the reliability of an integrated circuit is largely dependent on the maximum temperature the device attains during operation, and as the junction stability declines with increases in junction temperature (TJ), it becomes increasingly important to maintain a low (TJ).

CMOS devices stabilize more quickly and at greatly lower temperature than bipolar devices under normal operation. The accelerated aging of an integrated circuit can be expressed as an exponential function of the junction temperature as:

tA = to exp
$$\left[\frac{Ea}{k} \left(\frac{1}{To} - \frac{1}{TJ} \right) \right]$$

where

- tA = lifetime at elevated junction (TJ) temperature
- to = normal lifetime at normal junction (To) temperature

Ea = activation energy (ev)

 $k = Boltzmann's constant (8.617 x 10^{-6} ev/k)$

i.e. the lifetime of a device could be decreased by a factor of 2 for every 10° C increase temperature.

To minimize the deleterious effects associated with this potential increase, IDT has:

- 1. Optimized our proprietary low-power CMOS fabrication process to ensure the active junction temperature rise is minimal.
- 2. Selected only packaging materials that optimize heat dissipation, which encourages a cooler running device.
- Physically designed all package components to enhance the inherent material properties and to take full advantage of heat transfer and radiation due to case geometries.

 Tightly controlled the assembly procedures to meet or exceed the stringent criteria of MIL-STD-883_to ensure maximum heat transfer between die and packaging materials.

The following figures graphically illustrate the thermal values of IDT's current package families. Each envelop (shaded area) depicts a typical spread of values due to the influence of a number of factors which include: circuit size, package materials and package geometry. The following range of values are to be used as a comprehensive characterization of the major variables rather than single point of reference.

When calculating junction temperature (TJ), it is necessary to know the thermal resistance of the package (θ JA) as measured in "degree celsius per watt". With the accompanying data, the following equation can be used to establish thermal performance, enhance device reliability and ultimately provide you, the user, with a continuing series of high-speed, lowpower CMOS solutions to your system design needs.

 $\theta_{JA} = [T_J - T_A]/P$ $T_J = T_A + P[\theta_{JA}] = T_A + P[\theta_{JC} + \theta_{CA}]$

where

$$\frac{\theta JC = TJ - TC}{P} \qquad \frac{\theta CA = TC - TA}{P}$$

 θ = Thermal resistance

J = Junction

- P = Operational power of device (dissipated)
- TA = Ambient temperature in degree celsius
- TJ = Temperature of the junction
- Tc = Temperature of case/package
- θCA = Case to Ambient, thermal resistance—usually a measure of the heat dissipation due to natural or forced convection, radiation and mounting techniques.
- θJc = Junction to Case, thermal resistance—usually measured with reference to the temperature at a specific point on the package (case) surface. (Dependent on the package material properties and package geometry.)
- θJA = Junction to Ambient, thermal resistance—usually measured with respect to the temperature of a specified volume of still air. (Dependent on θJC + θJA which includes the influence of area and environmental condition.)

Ref. MIL-STD-883C, Method 1012.1 JEDEC ENG. Bulletin No. 20, January 1975 1986 Semi. Std., Vol. 4, Test Methods G30–86, G32–86.

THETA JA vs. AIRFLOW 179 PIN PGA - R4000 PACKAGE INTEGRAL CuW HEATSINK - NO FIN ATTACHED

Measurements were done using Temp09 Delco Thermal Die (.250sq.)

Theta JA - Still Air 22-40 Ceramic Dips

PLASTIC SOICS: 16 & 20 PINS 100 θja P 90 mmmm Thermal Resistance (°C/W) 80 70 60 50 40 30 20 TITT 10 0 10 15 20 25 30 35 40 45 50 ά 5 Die Size (1000's sq. mils)

Theta JA vs. Airflow 48/56 lead (.150 body) SSOP THETA JA (°C/W) I Thete JA (*C/W) 48 1ead 56 lead ò AITTIOW (LFH)

PACKAGE DIAGRAM OUTLINE INDEX

SECTION PAGE

PKG.	DESCRIPTION	
D16-1	16-Pin CERDIP (300 mil)	1
D18-1	18-Pin CERDIP (300 mil)	1
D20-1	20-Pin CERDIP (300 mil)	1
D22-1	22-Pin CEBDIP (300 mil)	1
D24-1	24-Pin CEBDIP (300 mil)	1
D24-2	24-Pin CERDIP (600 mil)	2
D24-3	24-Pin CEBDIP (400 mil)	5
D29-1	28-Pin CERDIP (600 mil)	- ว
		- -
D20-3		1
D32-1		<u> </u>
D40-1	40-Pin CERDIP (600 mil)	2
C20-1	20-Pin Sidebraze DIP (300 mil)	3
C22-1	22-Pin Sidebraze DIP (300 mil)	3
C24-1	24-Pin Sidebraze DIP (300 mil)	3
C28-1	28-Pin Sidebraze DIP (300 mil)	3
C32-3	32-Pin Sidebraze DIP (300 mil)	3
F16-1	16-Lead CEBPACK	4
E20-1	20-lead CERPACK	Å
E24-1	24-lead CERPACK	Å
E28-1	28-Lead CERPACK	Ā
E20-1	29 Load CEDACK	т л
E20-2	20-Leau CERFACK	+
L20-1	20-Pin Leadless Chip Carrier (rectangular)	3
L20-2	20-Pin Leadless Chip Carrier (square)	5
L22-1	22-Pin Leadless Chip Carrier (rectangular)	3
L24-1	24-Pin Leadless Chip Carrier (rectangular)	3
L28-1	28-Pin Leadless Chip Carrier (square)	5
L28-2	28-Pin Leadless Chip Carrier (rectangular)	3
L32-1	32-Pin Leadless Chip Carrier (rectanoular)	3
L32-2	32-Pin Leadless Chip Carrier (rectangular)	7
L44-1	44-Pin Leadless Chip Carrier (square)	5
L48-1	48-Pin Leadless Chip Carrier (square)	5
P16-1	16-Pin Plastic DIP (300 mil)	R
P18-1	19 Pin Plastic DII (300 mil)	ך מ
D20 1	20 Pin Plastic DIP (300 mil)	2 2
F20-1	20 Pin Plastic DIP (300 mil)	1
		2
F24-1		1
P24-2		
P28-1	28-Pin Plastic DIP (600 mi)	11
P20-2		3
P28-3		10
P32-1	32-Pin Plastic DIP (600 mil)	11
P32-2	32-Pin Plastic DIP (300 mil)	3
P32-3	32-Pin Plastic DIP (400 mil)	10
P40-1	40-Pin Plastic DIP (600 mil)	11
P48-1	48-Pin Plastic DIP (600 mil)	11

SECTION PAGE

MONOLITHIC	PACKAGE DIAGRAM OUTLINES (Continued)	4.3
PKG.	DESCRIPTION	
SO16-1	16-Pin Small Outline IC (gull wing)	12
SO18-1	18-Pin Small Outline IC (gull wing)	12
SO20-1	20-Pin Small Outline IC (J-bend — 300 mil)	14
SO20-2	20-Pin Small Outline IC (gull wing)	12
SO24-2	24-Pin Small Outline IC (gull wing)	12
SO24-4	24-Pin Small Outline IC (J-bend — 300 mil)	14
SO24-8	24-Pin Small Outline IC (J-bend — 300 mil)	14
SO28-2	28-Pin Small Outline IC (gull wing)	13
SO28-3	28-Pin Small Outline IC (gull wing)	13
SO28-5	28-Pin Small Outline IC (J-bend — 300 mil)	14
SO28-6	28-Pin Small Outline IC (J-bend — 400 mil)	15
SO32-2	32-Pin Small Outline IC (J-bend — 300 mil)	14
SO32-3	32-Pin Small Outline IC (J-bend — 400 mil)	15
PZ28-1	28-Lead Thin Small Outline Package	16
J20-1	20-Pin Plastic Leaded Chip Carrier (square)	17
J28-1	28-Pin Plastic Leaded Chip Carrier (square)	17
J44-1	44-Pin Plastic Leaded Chip Carrier (square)	17
J52-1	52-Pin Plastic Leaded Chip Carrier (square)	17
J68-1	68-Pin Plastic Leaded Chip Carrier (square)	17
J84-1	84-Pin Plastic Leaded Chip Carrier (square)	17
PN80-1	80-Lead Plastic Quad Flatpack	18

PACKAGE DIAGRAM OUTLINES

Integrated Device Technology, Inc.

DUAL IN-LINE PACKAGES

NOTES:

- 1. ALL DIMENSIONS ARE IN INCHES, UNLESS OTHERWISE SPECIFIED.
- 2. BSC BASIC LEAD SPACING BETWEEN CENTERS.
- 3. THE MINIMUM LIMIT FOR DIMENSION b1 MAY BE .023 FOR CORNER LEADS.

16-28 LEAD CERDIP (300 MIL)

DWG #	D1	6-1	D1	8–1	D2	.0-1	D2	2-1	D2	4–1	D2	8–3
# OF LDS (N)	1	6	1	8	2	20	2	2	2	4	2	.8
SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
A	.140	.200	.140	.200	.140	.200	.140	.200	.140	.200	.140	.200
b	.015	.021	.015	.021	.015	.021	.015	.021	.015	.021	.015	.021
b1	.045	.060	.045	.060	.045	.060	.045	.060	.045	.065	.045	.065
С	.009	.012	.009	.012	.009	.012	.009	.012	.009	.014	.009	.014
D	.750	.830	.880	.930	.935	1.060	1.050	1.080	1.240	1.280	1.440	1.485
E	.285	.310	.285	.310	.285	.310	.285	.310	.285	.310	.285	.310
E1	.290	.320	.290	.320	.290	.320	.300	.320	.300	.320	.300	.320
е	.100	BSC	.100	BSC	.100	BSC	.100	BSC	.100	BSC	.100	BSC
L	.125	.175	.125	.175	.125	.175	.125	.175	.125	.175	.125	.175
L1	.150	_	.150	-	.150	-	.150	-	.150	—	.150	-
Q	.015	.055	.015	.055	.015	.060	.015	.060	.015	.060	.015	.060
S	.020	.080	.020	.080	.020	.080	.020	.080	.030	.080	.030	.080
S1	.005	-	.005	_	.005	-	.005	-	.005	_	.005	—
α	0.	15	0.	15'	0.	15*	0*	15*	0.	15°	0.	15*

DUAL IN-LINE PACKAGES (Continued)

24-40 LEAD CERDIP (400 & 600 MIL)

DWG #	D24-3		D2	D24-2		D28–1		D40-1	
# OF LDS (N)	2	24	2	24	28		. 4	-0	
SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
A	.130	.175	.090	.190	.090	.200	.160	.220	
b	.015	.021	.014	.023	.014	.023	.014	.023	
b1	.045	.065	.045	.060	.045	.065	.045	.065	
С	.009	.014	.008	.012	.008	.014	.008	.014	
D	1.180	1.250	1.230	1.290	1.440	1.490	2.020	2.070	
E	.350	.410	.500	.610	.510	.600	.510	.600	
E1	.380	.420	.590	.620	.590	.620	.590	.620	
е	.100	BSC	.100	.100 BSC		.100 BSC		.100 BSC	
L	.125	.175	.125	.200	.125	.200	.125	.200	
L1	.150	-	.150	-	.150	-	.150	-	
Q	.015	.060	.015	.060	.020	.060	.020	.060	
S	.030	.070	.030	.080	.030	.080	.030	.080	
S1	.005	-	.005	-	.005	-	.005	-	
α	0.	15	0.	15	0.	15	0.	15*	

32 LEAD CERDIP (WIDE BODY)

DWG #	D32	2-1
# OF LDS (N)	3	2
SYMBOL	MIN	MAX
A	.120	.210
b	.014	.023
b1	.045	.065
С	.008	.014
D	1.625	1.675
E	.570	.600
E1	.590	.620
е	.100	BSC
L	.125	.200
L1	.150	-
Q	.020	.060
S	.030	.080
S1	.005	-
α	0.	15*

DUAL IN-LINE PACKAGES (Continued)

20-32 LEAD SIDE BRAZE (300 MIL)

NOTES:

1. ALL DIMENSIONS ARE IN INCHES, UNLESS OTHERWISE SPECIFIED.

2. BSC - BASIC LEAD SPACING BETWEEN CENTERS.

DWG #	C20	0-1	C22-1		C24	4-1	C28-1		C32-3	
# OF LDS (N)	2	0	22		24		28		32	
SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
A	.090	.200	.100	.200	.090	.200	.090	.200	.090	.200
b	.014	.023	.014	.023	.015	.023	.014	.023	.014	.023
b1	.045	.060	.045	.060	.045	.060	.045	.060	.045	.060
C	.008	.015	.008	.015	.008	.015	.008	.015	.008	.014
D	.970	1.060	1.040	1.120	1.180	1.230	1.380	1.420	1.580	1.640
E	.260	.310	.260	.310	.220	.310	.220	.310	.280	.310
E1	.290	.320	.290	.320	.290	.320	.290	.320	.290	.320
е	.100	BSC	.100	BSC	.100 BSC		.100 BSC		.100 BSC	
L	.125	.200	.125	.200	.125	.200	.125	.200	.100	.175
L1	.150	-	.150	_	.150	-	.150	_	.150	-
Q	.015	.060	.015	.060	.015	.060	.015	.060	.030	.060
S	.030	.065	.030	.065	.030	.065	.030	.065	.030	.065
S1	.005	_	.005		.005		.005	-	.005	-
S2	.005	_	.005		.005	—	.005	-	.005	_

CERPACKS

NOTES:

2. BSC - BASIC LEAD SPACING BETWEEN CENTERS.

DWG_#	E16	5-1	E20-1		E24	E24-1		3—1	E28-2	
# OF LDS (N)	1	6	20		24		28		28	
SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	MĪN	MAX	MIN	MAX
A	.055	.085	.045	.092	.045	.090	.045	.115	.045	.090
b	.015	.019	.015	.019	.015	.019	.015	.019	.015	.019
С	.0045	.006	.0045	.006	.0045	.006	.0045	.006	.0045	.006
D	.370	.430	_	.540	-	.640	-	.740	-	.740
E	.245	.285	.245	.300	.300	.420	.460	.520	.340	.380
E1	-	.305	-	.305	-	.440	—	.550	-	.400
е	.050	BSC	.050	BSC	.050 BSC		.050 BSC		.050 BSC	
К	.008	.015	.008	.015	.008	.015	.008	.015	.008	.015
L	.250	.370	.250	.370	.250	.370	.250	.370	.250	.370
Q	.026	.040	.026	.040	.026	.040	.026	.045	.026	.045
S	-	.045	—	.045	-	.045	-	.045		.045
S1	.005	_	.005		.005	_	.000	_	.005	_

^{1.} ALL DIMENSION ARE IN INCHES, UNLESS OTHERWISE SPECIFIED.

LEADLESS CHIP CARRIERS

NOTES:

1. ALL DIMENSIONS ARE IN INCHES, UNLESS OTHERWISE SPECIFIED. 2. BSC - BASIC LEAD SPACING BETWEEN CENTERS.

2.

20-48	LEAD	LCC	(SQUARE)	

<u> .</u>	D30 -	DASIC	LEAU	SPACING	DEIWEEN	CENTERS.

EAD	LCC (SQUARE)

DWG #	L20	0-2	L2	8-1	L4	4-1	L4	8-1
# OF LDS (N)	2	20	2	28	4	4	4	18
SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
A	.064	.100	.064	.100	.064	.120	.055	.120
Ā1	.054	.066	.050	.088	.054	.088	.045	.090
B1	.022	.028	.022	.028	.022	.028	.017	.023
B2	.072	REF	.072	REF	.072	REF	.072	REF
B3	.006	.022	.006	.022	.006	.022	.006	.022
D/E	.342	.358	.442	.460	.640	.660	.554	.572
D1/E1	.200	BSC	.300	BSC	.500	BSC	.440	BSC
D2/E2	.100	BSC	.150	BSC	.250	BSC	.220	BSC
D3/E3	-	.358	-	.460	-	.560	.500	.535
е	.050	BSC	.050	BSC	.050	BSC	.040	BSC
e1	.015	-	.015	-	.015	-	.015	-
h	.040	REF	.040	REF	.040	REF	.012	RADIUS
J	.020	REF	.020	REF	.020	REF	.020	REF
L	.045	.055	.045	.055	.045	.055	.033	.047
L1	.045	.055	.045	.055	.045	.055	.033	.047
L2	.077	.093	.077	.093	.077	.093	.077	.093
L3	.003	.015	.003	.015	.003	.015	.003	.015
ND/NE		5		7		11	1	2

ВЗ -

LEADLESS CHIP CARRIERS (Continued)

NOTES:

1. ALL DIMENSIONS ARE IN INCHES, UNLESS OTHERWISE SPECIFIED.

2. BSC - BASIC LEAD SPACING BETWEEN CENTERS.

20-32 LEAD LCC (RECTANGULAR)

DWG #	L2	0-1	L2	2–1	L2	4-1	L2	3-2	L3.	2-1
# OF LDS (N)	2	20	2	22	2	24	2	28	3	52
SYMBOL	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
A	.060	.075	.064	.100	.064	.120	.060	.120	.060	.120
A1	.050	.065	.054	.063	.054	.066	.050	.088	.050	.088
B1	.022	.028	.022	.028	.022	.028	.022	.028	.022	.028
B2	.072	REF	.072	REF	.072	REF	.072	REF	.072	REF
B3	.006	.022	.006	.022	.006	.022	.006	.022	.006	.022
D	.284	.296	.284	.296	.292	.308	.342	.358	.442	.458
D1	.150	BSC	.150	BSC	.200	BSC	.200	BSC	.300	BSC
D2	.075	BSC	.075	BSC	.100	BSC	.100	BSC	.150	BSC
D3	-	.280	-	.280	-	.308	-	.358	-	.458
E	.420	.435	.480	.496	.392	.408	.540	.560	.540	.560
E1	.250	BSC	.300	BSC	.300	BSC	.400	BSC	.400	BSC
E2	.125	BSC	.150	BSC	.150	BSC	.200	BSC	.200	BSC
E3	-	.410	-	.480	-	.408	-	.558	-	.558
е	.050	BSC	.050	BSC	.050	BSC	.050	BSC	.050	BSC
_e1	.015	—	.015	-	.015	-	.015	_	.015	-
h	.040	REF	.012 F	RADIUS	.025	REF	.040	REF	.040	REF
J	.020	REF	.012 F	RADIUS	.015	REF	.020	REF	.020	REF
L	.045	.055	.039	.051	.040	.050	.045	.055	.045	.055
L1	.045	.055	.039	.051	.040	.050	.045	.055	.045	.055
L2	.080	.095	.083	.097	.077	.093	.077	.093	.077	.093
L3	.003	.015	.003	.015	.003	.015	.003	.015	.003	.015
ND		4	4	4		5	5		7	
NE		5		7		7		9		9

6

B3 -

LEADLESS CHIP CARRIERS (Continued)

BЗ

32 LD LCC (SMALL OUTLINE - RECTANGULAR)

L3

DWG #	L32-2				
# OF LDS (N)	32				
SYMBOL	MIN	MAX			
Ā	.080	.100			
Ā1	.060	.090			
B1	.022	.028			
B2	.072	REF			
B3	.006	.022			
D	.392	.408			
D3	-	.400			
E	.800	.840			
E1	.750	BSC			
E2	.375	BSC			
E3		.820			
e	.050	BSC			
h	.008F	REF			
L L	.040	.060			
L2	.075	.095			
L3	.003	.015			

NOTES:

1. ALL DIMENSIONS ARE IN INCHES.

2. BSC - BASIC LEAD SPACING BETWEEN CENTERS.

1. ALL DIMENSIONS ARE IN INCHES, UNLESS OTHERWISE SPECIFIED.

2.	D	&c	E1	DO	NOT	INCLUDE	MOLD	FLASH	OR	PROTRUSIONS.

DWG #	P1	6-1	P2	2–1	P28-2		P32-	-2
# OF LDS (N)	1	6	2	2	2	8	3	2
SYMBOLS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
Α	.140	.165	.145	.165	.145	.180	.145	.180
A1	.015	.035	015	.035	.015	.030	.015	.030
b	.015	.022	015	.022	015	.022	.016	.022
b1	.050	.070	.050	.065	.045	.060	.045	.060
C	.008	.012	.008	.012	.008	.015	.008	.015
D	.745	.760	1.050	1.060	1.345	1.385	1.545	1.585
Ē.	.300	.325	300 _	.320	.300	.325	.300	.325
E1	.247	.260	.240	.270	.270	.295	.275	.295
e	.090	.110	.090	.110	.090	.110	.090	.110
eA	.310	.370	.310	.370	.310	.400_	.310	.400
L	.120	.150	.120	.150	.120	.150	.120	.150
α	0.	15	0.	15	0.	15	0.	15'
S	.015	.035	.020	.040	.020	.042	.020	.060
Q1	.050	.070	.055	.075	.055	.065	.055	.065

PLASTIC DUAL IN-LINE PACKAGES (Continued)

18-24 LEAD PLASTIC DIP (300 MIL - FULL LEAD)

NOTES:

1. ALL DIMENSIONS ARE IN INCHES, UNLESS OTHERWISE SPECIFIED.

2. D & E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

DWG #	P1	8–1	P20-1		P24	4-1	
# OF LDS (N)	1	8	20)	2	24	
SYMBOLS	MIN	MAX	MIN	MAX	MIN	MAX	
A	.140	.165	.145	.165	.145	.165	
A1	.015	.035	.015	.035	.015	.035	
b	.015	.020	.015	.020	.015	.020	
b1	.050	.070	.050	.070	.050	.065	
С	.008	.012	.008	.012	.008	.012	
D	.885	.910	1.022	1.040	1.240	1.255	
E	.300	.325	.300	.325	.300	.320	
E1	.247	.260	.240	.280	.250	.275	
е	.090	.110	.090	.110	.090	.110	
eA	.310	.370	.310	.370	.310	.370	
L	.120	.150	.120	.150	.120	.150	
α	0.	15°	0.	15°	0.	15	
S	.040	.060	.025	.070	.055	.075	
Q1	.050	.070	.055	.075	.055	.070	

PLASTIC DUAL IN-LINE PACKAGES (Continued)

28 & 32 LEAD PLASTIC DIP (400 MIL)

NOTES:

- 1. ALL DIMENSIONS ARE IN INCHES, UNLESS OTHERWISE SPECIFIED.
- 2. D & E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.

DWG #	P2	8-3	<u>P32-3</u>		
# OF LEADS (N)	2	8	32		
SYMBOLS	MIN	MAX	MIN	MAX	
A		.210_	-	.200	
A1	.015		.015	_	
Ь	.014	.022	.014	.022	
b1	.045	.065	.045	.065	
С	.009	.015	.009	.015	
D	1.380	1.420	1.610	1.620	
E	.390	.425	.390	.425	
E1	.340	.390	.340	.390	
е	.100	BSC	.100	BSC	
eA	.400	BSC	.400	BSC	
L	.115	.160	.115	.160	
α	0.	15	0.	15*	
S	.040	.070	.040	.070	
Q1	.060	.090	.060	.090	

PLASTIC DUAL IN-LINE PACKAGES (Continued)

24-48 LEAD PLASTIC DIP (600 MIL)

NOTES:

1. ALL DIMENSIONS ARE IN INCHES, UNLESS OTHERWISE SPECIFIED.

2.	D	& E1	DO	NOT	INCLUDE	MOLD	FLASH	OR	PROTRUSIONS.
----	---	------	----	-----	---------	------	-------	----	--------------

DWG #	P2	4-2	P28	3-1	P3	2-1	P4	0-1	P48	3-1
# OF LEADS (N)	2	4	28	3	3	2	4	0	48	
SYMBOLS	MIN	MAX								
A	.160	185	160	.185	.170	.190	.160	.185	.170	.200
A1	.015	.035	.015	.035	.015	.050	.015	.035	015	.035
b	.015	.020	.015	.020	.016	.020	.015	.020	.015	.020
b1	.050	.065	.050	.065	.045	.055	.050	.065	.050	.065
С	.008	.012	.008	.012	.008	.012	.008	.012	.008	.012
D	1.240	1.260	1.420	1.460	1.645	1.655	2.050	2.070	2.420	2.450
E	.600	.620	.600	.620	.600	.625	.600	.620	.600	.620
E1	.530	.550	.530	.550	.530	.550	.530	.550	.530	.560
е	.090	.110	.090	.110	.090	.110	.090	.110	.090	.110
eA	.610	.670	.610	.670	.610	.670	.610	.670	.610	.670
L	.120	.150	.120	.150	.125	.135	.120	.150	.120	.150
α	0.	15	0	15°	0.	15*	0.	15	0.	15'
S	.060	.080	.055	.080	.070	.080	.070	.085	.060	.075
Q1	.060	.080	.060	.080	.065	.075	.060	.080	.060	.080

SMALL OUTLINE IC

16-24 LEAD SMALL OUTLINE (GULL WING - JEDEC)

DWG #	S01	6-1	S01	8—1	S02	0-2	_ S02	4-2	
# OF LDS (N)	16 (.300)		18 (.	18 (.300)		20 (.300")		24 (.300")	
SYMBOL	MIN	MAX	MIN	МАХ	MIN	MAX	MIN	MAX	
A	.095	.1043	.095	.1043	.095	.1043	.095	.1043	
A1	.005	.0118	.005	.0118	.005	.0118	.005	.0118	
В	.014	.020	.014	.020	.014	.020	.014	.020	
С	.0091	.0125	.0091	.0125	.0091	0125	.0091	.0125	
D	.403	.413	.447	.462	.497	.511	.600	.614	
е	.050	BSC	.050	BSC	.050	BSC	.050	BSC	
E	.292	.2992	.292	.2992	.292	.2992	.292	.2992	
h	.010	.020	.010	.020	.010	.020	.010	.020	
н	.400	.419	.400	.419	.400	.419	.400	.419	
L	.018	.045	.018	.045	.018	.045	.018	.045	
α	0.	8'	0"	8.	0.	8*	0.	8.	
S	.023	.035	.023	.035	.023	.035	.023	.035	

SMALL OUTLINE IC (Continued)

28 LEAD SMALL OUTLINE (GULL WING - JEDEC)

DWG #	S02	8-2	S028-3		
# OF LDS (N)	28 (.300")	28 (.330")		
SYMBOL	MIN	МАХ	MIN	МАХ	
Α	.095	.1043	.110	.120	
A1	.005	.0118	.005	.014	
В	.014	.020	.014	.019	
С	.0091	.0125	.006	.010	
D	.700	.712	.718	.728	
е	.050	BSC	.050	BSC	
E	.292	.2992	.340	.350	
h	.010	.020	.012	.020	
н	.400	.419	.462	.478	
L	.018	.045	.028	.045	
α	0.	8.	0.	8.	
S	.023	.035	.023	.035	

SMALL OUTLINE IC (Continued)

20-32 LEAD SMALL OUTLINE (J-BEND, 300 MIL)

DWG #	S02	20-1	S02	4-4	S02	4-8	S02	8–5	S03	2-2
# OF LDS (N)	2	0	2	4	2	4	2	28		2
SYMBOLS	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX
A	.120	.140	.130	.148	.120	.140	.120	.140	.130	.148
A1	.078	.095	.082	.095	.078	.091	.078	.095	.082	.095
В	-	-	.026	.032	-	-	-	-	.026	.032
B1	.014	.020	.015	.020	.014	.019	.014	.020	.016	.020
С	.008	.013	.007	.011	.0091	.0125	.008	.013	.008	.013
D1	.500	.512	.620	.630	.602	.612	.700	.712	.820	.830
E	.335	.347	.335	.345	.335	.347	.335	.347	.330	.340
E1	.292	.300	.295	.305	.292	.299	.292	.300	.295	.305
E2	.262	.272	.260	.280	.262	.272	.262	.272	.260	.275
е	.050	BSC	.050	BSC	.050	BSC	.050	BSC	.050	BSC
h	.010	.020	.010	.020	.010	.016	.012	.020	.012	.020
S	.023	.035	.032	.043	.032	.043	.023	.035	.032	.043

SMALL OUTLINE IC (Continued)

NOTES:

- 1. ALL DIMENSIONS ARE IN INCHES, UNLESS OTHERWISE SPECIFIED.
- 2. BSC BASIC LEAD SPACING BETWEEN CENTERS.
- 3. D1 & E1 DO NOT INCLUDE MOLD FLASH OR PROTRUSION AND TO BE MEASURED FROM THE BOTTOM OF THE PKG.
- FORMED LEADS SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITHIN .004" AT THE SEATING PLANE.

28-32 LEAD SMALL OUTLINE (J-BEND, 400 MIL)

DWG #	S02	8–6	S032-3		
# OF LDS (N)		28	32		
SYMBOLS	MIN	MAX	MIN	MAX	
A	.131	.145	.131	.145	
A1	.045	.055	.045	.055	
A2	.086	.090	.086	.090	
В	.026	.032	.026	.032	
B1	.015	.020	.015	.020	
С	.007	.0125	.007	.0125	
D1	.720	.730	.820	.830	
E	.435	.445	.435	.445	
E1	.395	.405	.395	.405	
E2	.360	.380	.360	.380	
e	.050	BSC	.050	BSC	
S	.032	.043	.032	.043	

TSOP

28 LEAD TSOP - TYPE I

DWG #	PZ28-1			
# OF LDS	28			
SYMBOL	MIN	MAX		
А	1.00	1.20		
A1	.05	.20		
A2	.91	1.02		
A3	.37	.47		
b	.18	.27		
С	.15	.20		
D	13.2	13.6		
D1	11.7	11.9		
E	7.9	8.1		
е	.55 BASIC			
α	0.	5°		
L	.3	.7		

NOTES: (UNLESS OTHERWISE SPECIFIED)

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. BOTH PKG LENGTH & WIDTH DO NOT INCLUDE MOLD FLASH.
- 3. FORMED LEAD SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITHIN .004".
- 4. MAX LEAD WIDTH WITH DAMBAR PROTRUSION: .30.

PLASTIC LEADED CHIP CARRIERS

20-84 LEAD PLCC (SQUARE)

NOTES:

ALL DIMENSIONS ARE IN INCHES, UNLESS OTHERWISE SPECIFIED. 1.

- BSC BASIC LEAD SPACING BETWEEN CENTERS 2.
- 3. D & E DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS.
- FORMED LEADS SHALL BE PLANAR WITH RESPECT TO ONE ANOTHER WITHIN .004" AT THE SEATING PLANE. 4.
- ND & NE REPRESENT NUMBER OF LEADS IN D & E DIRECTIONS 5. RESPECTIVELY.
- 6. D1 & E1 SHOULD BE MEASURED FROM THE BOTTOM OF THE PKG.

DWG #	J20)-1	J28	3-1	J42	F−1	J52	2-1	J68	3-1	J84	1-1
# OF LDS	20		28		44		52		68		84	
SYMBOL	MIN	MAX	MIN	MAX								
A	.165	.180	.165	.180	.165	.180	.165	.180	.165	.180	.165	.180
A1	.095	.115	.095	.115	.095	.115	.095	.115	.095	.115	.095	.115
В	.026	.032	.026	.032	.026	.032	.026	.032	.026	.032	.026	.032
b1	.013	.021	.013	.021	.013	.021	.013	.021	.013	.021	.013	.021
С	.020	.040	.020	.040	.020	.040	.020	.040	.020	.040	.020	.040
C1	.008	.012	.008	.012	.008	.012	.008	.012	.008	.012	.008	.012
D	.385	.395	.485	.495	.685	.695	.785	.795	.985	.995	1.185	1.195
D1	.350	.356	.450	.456	.650	.656	.750	.756	.950	.956	1.150	1.156
D2/E2	.290	.330	.390	.430	.590	.630	.690	.730	.890	.930	1.090	1.130
D3/E3	.200	REF	.300	REF	.500	REF	.600	REF	.800	REF	1.000) REF
E	.385	.395	.485	.495	.685	.695	.785	.795	.985	.995	1.185	1.195
E1	.350	.356	.450	.456	.650	.656	.750	.756	.950	.956	1.150	1.156
е	.050	BSC	.050	BSC								
ND/NE	5	5	-	7	1	1	1	3	1	7		21

PLASTIC QUAD FLATPACKS

TQFP

NOTES:

- 1. ALL DIMENSIONS ARE IN MELLIMETERS, UNLESS OTHERWISE SPECIFIED.
- 2. BSC BASIC LEAD SPACING BETWEEN CENTERS.
- 3. D1 & E1 DO NOT INCLUDE MOLD PROTRUSION AND TO BE MEASURED FROM THE BOTTOM OF THE PACKAGE. ALLOWABLE PROTRUSION TO BE .254 PER SIDE.

PLASTIC QUAD FLATPACKS (Continued)

80 LEAD TQFP

DWG #	PN 80-1				
SYMBOL	MIN	MAX			
A	-	1.60			
A1	.05	.15			
A2	1.35	1.45			
D	15.75	16.25			
D1	13.95	14.05			
E	15.75	16.25			
E1	13.95	14.05			
L	.45	.70			
N	80				
e	.65 BSC				
b	.25	.35			
ccc	-	.10			
ddd	-	.13			
R	.08	.20			
R1	.08	-			
Ð	0.	7'			
0 1	2'	10"			
0 2	11'	13'			
θ3	11*	13°			
с	.09	.16			

CACHE TAGS

CacheRAMs

3.3V ASYNCHRONOUS SRAM PRODUCTS

1M SRAM PRODUCTS

256K SRAM PRODUCTS

64K SRAM PRODUCTS

16K SRAM PRODUCTS

PACKAGE DIAGRAM OUTLINES

QUALITY AND RELIABILITY

TECHNOLOGY AND CAPABILITIES

GENERAL INFORMATION

16K SRAM PRODUCTS

IDT traces its heritage back to the first fast CMOS 2K x 8 SRAM in the industry, which was introduced at 70ns more than 10 years ago. Today, IDT's 16K family still includes many of the SRAM configurations offered during the early days of the company, now available at much higher speeds. After having been through numerous die shrinks and improvements, the 16K family is a testimonial to the long term commitments that IDT typically makes to support its customers. The 16K family is based exclusively on CMOS technology, and is now available in speeds as fast as 12ns for commercial applications and 15ns for military applications. It is offered in a wide variety of speeds and packages, and all parts have a low power version. These low power versions offer industryleading standby power characteristics, as well as a 2V data retention mode, which makes them ideal for portable batteryoperated equipment.

	Organization	Features	Process	Part Number	Power	Speeds		
Size						Commercial	Military	
16K	16K x 1		CMOS	6167	SA/LA	15,20,25,35	15,20,25,35,45,55, 70,85,100	
	4K x 4		CMOS	6168	SA/LA	15,20,25,35	15,20,25,35,45,55, 70,85,100	
	4K x 4	Sep I/O	CMOS	71681	SA/LA	15,20,25,35,45	15,20,25,35,45,55, 70,85,100	
	4K x 4	Sep I/O	CMOS	71682	SA/LA	15,20,25,35,45	12,15,20,25,35,45, 55,70,85,100	
1	2K x 8		CMOS	6116	SA/LA	15,20,25,35,45	20,25,35,45,55,70,90 120,150	

TABLE OF CONTENTS

PAGE

16K SRAM PRODUCTS

IDT6167	16K x 1 CMOS	5.1
IDT6168	4K x 4 CMOS	5.2
IDT71681	4K x 4 CMOS with Separate Input/Output	5.3
IDT71682	4K x 4 CMOS with Separate Input/Output	5.3
IDT6116	2K x 8 CMOS	5.4

CMOS STATIC RAM 16K (16K x 1-BIT)

IDT6167SA IDT6167LA

FEATURES:

- High-speed (equal access and cycle time)
 - Military: 15/20/25/35/45/55/70/85/100ns (max.)
- Commercial: 15/20/25/35ns (max.)
- Low power consumption
- Battery backup operation 2V data retention voltage (IDT6167LA only)
- Available in 20-pin CERDIP and Plastic DIP, 20-pin CERPACK, 20-pin SOJ and 20-pin leadless chip carrier
- Produced with advanced CMOS high-performance technology
- CMOS process virtually eliminates alpha particle softerror rates
- · Separate data input and output
- · Military product compliant to MIL-STD-883, Class B

DESCRIPTION:

The IDT6167 is a 16,384-bit high-speed static RAM organized as 16K x 1. The part is fabricated using IDT's high-performance, high reliability CMOS technology.

FUNCTIONAL BLOCK DIAGRAM

Access times as fast as 15ns are available. The circuit also offers a reduced power standby mode. When \overline{CS} goes HIGH, the circuit will automatically go to, and remain in, a standby mode as long as \overline{CS} remains HIGH. This capability provides significant system-level power and cooling savings. The low-power (LA) version also offers a battery backup data retention capability where the circuit typically consumes only 1 μ W operating off a 2V battery.

All inputs and the output of the IDT6167 are TTL-compatible and operate from a single 5V supply, thus simplifying system designs.

The IDT6167 is packaged in a space-saving 20-pin, 300 mil Plastic DIP or CERDIP, Plastic 20-pin SOJ, 20-pin CERPACK and 20-pin leadless chip carrier, providing high board-level packing densities.

Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

The IDT logo is a registered trademark of Integrated Device Technology, Inc

MILITARY AND COMMERCIAL TEMPERATURE RANGES

PIN CONFIGURATIONS

DIP/SOIC/CERPACK/SOJ TOP VIEW

PIN DESCRIPTIONS

A0-A13	Address Inputs
CS	Chip Select
WE	Write Enable
Vcc	Power
DIN	DATAIN
Dout	DATAOUT
GND	Ground
	2981 tbl

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
Vih	Input High Voltage	2.2	_	6.0	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	V

NOTE:

1. VIL (min.) = -3.0V for pulse width less than 20ns, once per cycle.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Temperature	GND	Vcc
Military	–55°C to +125°C	٥V	5V ± 10%
Commercial	0°C to +70°C	٥V	5V ± 10%
		•	2981 tbl 06

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	7	рF
COUT	Output Capacitance	Vout = 0V	7	рF

NOTE:

1. This parameter is determined by device characterization, but is not production tested.

TRUTH TABLE (1)

			1 Offici
н	Х	High-Z	Standby
L	Н	DATAOUT	Active
L	L	High-Z	Active
	H L L	H X L H L L	HXHigh-ZLHDATAoutLLHigh-Z

NOTE:

2981 tbl 02

1. H = VIH, L = VIL, X = Don't Care.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

erminal Voltage th Respect GND perating emperature emperature	-0.5 to +7.0 0 to +70	-0.5 to +7.0 -55 to +125	∨ °C
perating emperature emperature	0 to +70	-55 to +125	°C
emperature	-55 to +125		
nder Bias	-55 10 +125	-65 to +135	°C
orage emperature	-55 to +125	-65 to +150	°C
ower Dissipation	1.0	1.0	W
C Output	50	50	mA
	ower Dissipation C Output	wer Dissipation 1.0 C Output 50 urrent	wer Dissipation 1.0 1.0 C Output 50 50 urrent

NOTE:

2981 tbl 05

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $(Vcc = 5.0V \pm 10\%, VLc = 0.2V, VHc = Vcc - 0.2V)$

			6167SA/LA15		67SA/LA15 6167SA/LA20		6167SA/LA25			
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit	
ICC1	Operating Power Supply Current	SA	90	90	90	90	90	90	mA	
	$V_{CC} = Max., f = 0^{(3)}$	LA	55	60	55	60	55	60		
ICC2	Icc2 Dynamic Operating Current		120	130	100	110	100	100	mA	
	$V_{CC} = Max., f = f_{MAX}^{(3)}$	LA	100	110	80	85	70	75		
ISB	Standby Power Supply Current	SA	50	50	35	35	35	35	mA	
	$CS \ge V_{H}$, Outputs Open, Vcc = Max., f = fMAx ⁽³⁾	LA	35	35	30	30	25	25		
ISB1	ISB1 Full Standby Power Supply Current		5	10	5	10	5	10	mA	
	$\frac{(CNOS Lever)}{CS} \ge VHC, VCC = Max.$ VIN $\ge VHC$ or VIN $\le VLC, f = 0^{(3)}$	LA	0.9	2	0.05	2	0.05	0.9		

DC ELECTRICAL CHARACTERISTICS⁽¹⁾ (CONTINUED)

			6167S	A/LA35	6167SA	/LA45 ⁽²⁾	6167SA	/LA55 ⁽²⁾	6167SA	/LA70 ⁽²⁾	
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
ICC1	Operating Power Supply Current	SA	90	90		90		90	—	90	mA
	$CS \le VIL$, Outputs Open, VCC = Max., f = 0 ⁽³⁾	LA	55	60	_	60	-	60	—	60	
ICC2	Dynamic Operating Current	SA	100	100	—	100	—	100	—	100	mA
	$CS \le VIL$, Outputs Open, VCC = Max., f = fMAX ⁽³⁾	LA	65	70	_	65	_	60	—	60	
ISB	Standby Power Supply Current	SA	35	35	—	35	—	35	—	35	mA
	(TTL Level) CS≥ Viн, Outputs Open, Vcc = Max., f = fмах ⁽³⁾	LA	20	20	-	20	-	20	—	15	
ISB1	Full Standby Power Supply Current	SA	5	10	—	10	-	10		10	mA
	(CMOS Level) ĈS≥ VHc, Vcc = Max. ViN≥ VHc or ViN ≤ VLc, f = 0 ⁽³⁾	LA	0.05	0.9	—	0.9	—	0.9	—	0.9	

 $(Vcc = 5.0V \pm 10\%, VLc = 0.2V, VHc = Vcc - 0.2V)$

NOTES:

1. All values are maximum guaranteed values.

2. -55°C to +125°C temperature range only. Also available; 85ns and 100ns Military devices.

3. fMAX = 1/tRc, only address inputs cycling at fMAX. f = 0 means no Address inputs change.

DC ELECTRICAL CHARACTERISTICS

 $Vcc = 5.0V \pm 10\%$

				IDT6167SA		IDT61		
Symbol	Parameter	Test Condition		Min.	Max.	Min.	Max.	Unit
[lu]	Input Leakage Current	Vcc = Max.,	MIL	_	10	_	5	μA
		VIN = GND to Vcc	COM'L		5	—	2	[
ILO	Output Leakage Current	Vcc = Max., CS = VIH,	MIL	_	10	-	5	μA
		VOUT = GND to VCC	COM'L	—	5		2	
Vol	Output Low Voltage	IOL = 8mA, VCC = Min.			0.4		0.4	V
Vон	Output High Voltage	IOH =4mA, Vcc = Min.		2.4	-	2.4	—	V

DATA RETENTION CHARACTERISTICS OVER ALL TEMPERATURE RANGES

(LA Version Only) VLC = 0.2V, VHC = VCC - 0.2V

					Ty Vo	′p . ⁽¹⁾ cc @	N Vo	lax. xc@	
Symbol	Parameter	Test Cond	dition	Min.	2.0v	3.0V	2.0V	3.0V	Unit
VDR	Vcc for Data Retention			2.0	- 1		_	_	V
ICCDR	Data Retention Current		MIL.		0.5	1.0	200	300	μA
			COM'L.		0.5	1.0	20	30	
tCDR	Chip Deselect to Data Retention Time	CS≥VHC VIN≥VHCC	or ≤ VLC	0	-	-	_	-	ns
tR ⁽³⁾	Operation Recovery Time			tRC ⁽²⁾	_		_		ns
LI ⁽³⁾	Input Leakage Current					—	2	2	μA
NOTES:									2981 tbl 09

NOTES:

1. TA = +25°C.

2. tRc = Read Cycle Time.

3. This parameter is guaranteed by device characterization, but is not production tested.

LOW Vcc DATA RETENTION WAVEFORM

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2
	2979 tbl 0

Figure 2. AC Test Load (for tcLz, tcHz, twHz and tow)

*Includes scope and jig.

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

		6167SA15 6167LA15		6167SA15 6167SA20/25 6167LA15 6167LA20/25		6167SA35/45 ⁽¹⁾ 6167S 6167LA35/45 ⁽¹⁾ 6167L		6167SA 6167LA	55 ⁽¹⁾ /70 ⁽¹⁾ 55 ⁽¹⁾ /70 ⁽¹⁾	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cy	cle									
tRC	Read Cycle Time	15	—	20/25	-	35/45	—	55/70	_	ns
taa	Address Access Time	—	15		20/25	—	35/45	—	55/70	ns
tacs	Chip Select Access Time	-	15	—	20/25	-	35/45		55/70	ns
tCLZ ⁽²⁾	Chip Deselect to Output in Low-Z	3	—	5/5	-	5/5	—	5/5	_	ns
tCHZ ⁽²⁾	Chip Select to Output in High-Z	-	10	—	10/10	-	15/30		40/40	ns
tон	Output Hold from Address Change	3	_	5/5		5/5	—	5/5	-	ns
tPU ⁽²⁾	Chip Select to Power-Up Time	0	—	0/0	-	0/0	—	0/0	_	ns
tPD ⁽²⁾	Chip Deselect to Power-Down Time	_	15	_	20/25	_	35/45	-	55/70	ns
Write Cy	cle									
twc	Write Cycle Time	15		20/20	_	30/45	—	55/70		ns
tcw	Chip Select to End-of-Write	15	-	15/20	_	30/40	—	45/55		ns
taw	Address Valid to End-of-Write	15	—	15/20	—	30/40	_	45/55	_	ns
tas	Address Set-up Time	0	—	0/0	-	0/0	-	0/0	—	ns
twp	Write Pulse Width	13		15/20	-	30/30	-	35/40	-	ns
twR	Write Recovery Time	0		0/0	-	0/0	-	0/0	-	ns
tDW	Data Valid to End-of-Write	10	—	12/15	_	17/20		25/30	—	ns
tDH	Data Hold Time	0	—	0/0	-	0/0	—	0/0	-	ns
twHz ⁽²⁾	Write Enable to Output in High-Z		7	—	8/8	-	15/30	-	40/40	ns
tow ⁽²⁾	Output Active from End-of-Write	0	—	0/0	_	0/0	—	0/0		ns

NOTES:

1. -55°C to +125°C temperature range only. Also available: 85ns and 100ns Military devices.

2. This parameter is guaranteed with AC Load (Figure 2) by device characterization, but is not production tested.

TIMING WAVEFORM OF READ CYCLE NO. 1^(1, 2)

TIMING WAVEFORM OF READ CYCLE NO. 2^(1, 3)

NOTES:

1. WE is HIGH for Read cycle.

Device is continuously selected, CS is LOW.
 Address valid prior to or coincedent with CS transition LOW.

4. Transition is measured ±200mV from steady state.

TIMING WAVEFORM OF WRITE CYCLE NO. 1, (WE CONTROLLED TIMING)^(1, 2, 4)

TIMING WAVEFORM OF WRITE CYCLE NO. 2, (CS CONTROLLED TIMING)(1, 2, 4)

NOTES:

- 1. WE or CS must be inactive during all address transitions.
- 2. A write occurs during the overlap of a LOW CS and a LOW WE.
- two is measured from the earlier of CS or WE going HIGH to the end of the write cycle.
- 4. If the CS low transition occurs simultaneously with or after the WE LOW transition, the outputs remain in the high-impedance state.
- 5. Transition is measured ±200mV from steady state.
- 6. During this period, the I/O pins are in the output state and the input signals must not be applied.

ORDERING INFORMATION

CMOS STATIC RAM 16K (4K x 4-BIT)

IDT6168SA IDT6168LA

FEATURES:

- High-speed (equal access and cycle time)
 - Military: 15/20/25/35/45/55/70/85/100ns (max.)
- Commercial: 15/20/25/35ns (max.)
- Low power consumption
- Battery backup operation—2V data retention voltage (IDT6168LA only)
- Available in high-density 20-pin ceramic or plastic DIP, 20pin SOIC, 20-pin CERPACK and 20-pin leadless chip carrier
- Produced with advanced CMOS high-performance technology
- CMOS process virtually eliminates alpha particle soft-error rates
- · Bidirectional data input and output
- · Military product compliant to MIL-STD-883, Class B

DESCRIPTION:

The IDT6168 is a 16,384-bit high-speed static RAM organized as 4K x 4. It is fabricated using IDT's high-performance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective approach for high-speed memory applications.

Access times as fast 15ns are available. The circuit also offers a reduced power standby mode. When \overline{CS} goes HIGH, the circuit will automatically go to, and remain in, a standby mode as long as \overline{CS} remains HIGH. This capability provides significant system-level power and cooling savings. The low-power (LA) version also offers a battery backup data retention capability where the circuit typically consumes only 1 μ W operating off a 2V battery. All inputs and outputs of the IDT6168 are TTL-compatible and operate from a single 5V supply.

The IDT6168 is packaged in either a space saving 20-pin, 300-mil ceramic or plastic DIP, 20-pin CERPACK, 20-pin SOIC, or 20-pin leadless chip carrier, providing high boardlevel packing densities.

Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

MILITARY AND COMMERCIAL TEMPERATURE RANGE

PIN CONFIGURATIONS

LCC TOP VIEW

SS

PIN DESCRIPTIONS

Name	Description
A0-A11	Address Inputs
CS	Chip Select
WE	Write Enable
I/O0-3	Data Input/Output
Vcc	Power
GND	Ground

3090 tbl 01

TRUTH TABLE⁽¹⁾

Mode	CS	WE	Output	Power
Standby	н	Х	High-Z	Standby
Read	L	Н	Dout	Active
Write	L	L	DIN	Active
NOTE:				3090 tbl 03

1. H = VIH, L = VIL, X = Don't Care

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Com'l.	Mil.	Unit
VTERM	Terminal Voltage with Respect to GND	0.5 to +7.0	-0.5 to +7.0	V
TA	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	65 to +135	°C
Тѕтс	Storage Temperature	-55 to +125	-65 to +150	°C
Рт	Power Dissipation	1.0	1.0	W
lout	DC Output Current	50	50	mA
NOTE:				090 thi 04

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
Vін	Input High Voltage	2.2	—	6.0	V
VIL	Input Low Voltage	-0.5(1)		0.8	V
NOTE:				3	090 tbl 05

1. VIL (min.) = -3.0V for pulse width less than 20ns, once per cycle.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 0V	7	pF
CI/O	I/O Capacitance	VOUT = 0V	7	рF
NOTE				

1. This parameter is determined by device characterization, but is not production tested.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Temperature	GND	VCC
Military	–55°C to +125°C	0V	5V ± 10%
Commercial	0°C to +70°C	0V	5V ± 10%
			2000 #61.06

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $(Vcc = 5.0V \pm 10\%, VLc = 0.2V, VHc = Vcc - 0.2V)$

			6168	SA15	61689 61681	SA20 LA20	
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil.	Unit
ICC1	Operating Power Supply Current	SA	110	120	90	100	mA
	Vcc = Max., $f = 0^{(3)}$	LA	—	_	70	80	
ICC2	Dynamic Operating Current	SA	145	165	120	120	mA
	$Vcc = Max., f = fMax^{(3)}$	LA	_		100	110	
ISB	Standby Power Supply Current (TTL Level)	SA	55	60	45	45	mA
	$\overline{CS} \ge V_{IH}$, $V_{CC} = Max.,$ Outputs Open, f = fMAX ⁽³⁾	LA	—	<u>, </u>	30	35	
ISB1	Full Standby Power Supply Current (CMOS Level)	SA	20	20	20	20	mA
	$\overline{CS} \ge VHC, VCC = Max.,$ VIN $\ge VHC \text{ or VIN} \le VLC, f = 0^{(3)}$	LA	—	—	0.5	5	
							3090 tbl 07

DC ELECTRICAL CHARACTERISTICS (CONTINUED)⁽¹⁾

 $(VCC = 5.0V \pm 10\%, VLC = 0.2V, VHC = VCC - 0.2V)$

			6168 6168	168SA25 6168SA35 168LA25 6168LA35		6168SA35 6168LA35		A45/55 A45/55	61689 61681	SA70 ⁽²⁾ .A70 ⁽²⁾	
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
ICC1	Operating Power Supply Current	SA	90	100	90	100	-	100	-	100	mA
	$V_{CC} = Max., f = 0^{(3)}$	LA	70	80	70	80	-	80	—	80	
ICC2	Dynamic Operating Current $\overline{CS} \leq VIL$. Outputs Open.	SA	110	120	100	110		110	—	110	mA
	$VCC = Max., f = fMAX^{(3)}$	LA	90	100	80	90		80	—	80	
ISB	Standby Power Supply Current (TTL Level)	SA	35	45	30	35	—	35	-	35	mA
	ČS≥ VIH, Vcc = Max., Outputs Open, f = fMAx ⁽³⁾	LA	25	30	20	25	—	25/20	—	20	
ISB1	Full Standby Power Supply Current (CMOS Level)	SA	3	10	3	10	· —	10	—	10	mA
	CS ≥ VHc, Vcc = Max., VIN ≥ VHc or VIN ≤ VLc, f = 0 ⁽³⁾	LA	0.5	0.3	0.5	0.3	—	0.3	—	0.3	
NOTES:											3090 tbl 08

1. All values are maximum guaranteed values.

2. Also available 85 and 100ns military devices.

3. fMAX = 1/tRc, only address inputs are cycling at fMAX. f = 0 means no address inputs are changing.

DC ELECTRICAL CHARACTERISTICS Vcc = 5.0V ± 10%

				IDT6	168SA	IDT61	168LA	
Symbol	Parameter	Test Condition		Min.	Max.	Min.	Max.	Unit
lu	Input Leakage Current	Vcc = Max.,	MIL		10	-	5	μΑ
	1	VIN = GND to Vcc	COM'L		2		2	
[ILO]	Output Leakage Current	$Vcc = Max., \overline{CS} = VIH,$	MIL	—	10	—	5	μA
		Vout = GND to Vcc	COM'L		2	—	2	
Vol	Output LOW Voltage	IOL = 10mA, VCC = Min.			0.5	_	0.5	V
(IoL = 8mA, Vcc = Min.		—	0.4	_	0.4	
Vон	Output HIGH Voltage	IOL = -4mA, VCC = Min.		2.4	-	2.4	—	V

DATA RETENTION CHARACTERISTICS (LA Version Only)

VLC = 0.2V, VHC = VCC - 0.2V

					IDT6168LA		
Symbol	Parameter	Test Condition	on	Min.	Typ. ⁽¹⁾	Max.	Unit
VDR	Vcc for Data Retention			2.0	_	—	V
ICCDR	Data Retention Current		MIL.	_	0.5(2)	100 ⁽²⁾	μA
		CS≥VHC			1.0 ⁽³⁾	150 ⁽³⁾	
		VIN ≥ VHC	COM'L.		0.5 ⁽²⁾	20(2)	μΑ
		or ≤ VLC			1.0 ⁽³⁾	30 ⁽³⁾	
tCDR ⁽⁵⁾	Chip Deselect to Data			0	_	_	ns
	Retention Time						
tR ⁽⁵⁾	Operation Recovery Time]		tRC ⁽²⁾	—	-	ns
NOTES:							3090 tbl 10

1. TA = +25°C.

2. at Vcc = 2V

3. at Vcc = 3V

4. tRc = Read Cycle Time.

5. This parameter is guaranteed by device characterization, but is not production tested.

LOW Vcc DATA RETENTION WAVEFORM

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2
	3090 tbl 1

5.2

*Includes scope and jig capacitances

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

			6168SA15		6168SA20/25 6168LA20/25	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
Read C	Sycle					
tRC	Read Cycle Time	15	—	20/25		ns
tAA	Address Access Time	-	15		20/25	ns
tacs	Chip Select Access Time	—	15	—	20/25	ns
tCLZ ⁽²⁾	Chip Select to Output in Low-Z	3	_	5	—	ns
tCHZ ⁽²⁾	Chip Deselect to Output in High-Z		8		10	ns
tон	Output Hold from Address Change	3	—	3	—	ns
tPU ⁽²⁾	Chip Select to Power-Up Time	0		0	-	ns
tPD ⁽²⁾	Chip Deselect to Power-Down Time	- 15 - 20		20/25	ns	
	3090 dr					090 drw 12

AC ELECTRICAL CHARACTERISTICS (CONTINUED) (Vcc = 5.0V ± 10%, All Temperature Ranges)

		6168SA35 6168LA35		6168SA45 ⁽¹⁾ 6168LA45 ⁽¹⁾		6168SA55 ⁽¹⁾ 6168LA55 ⁽¹⁾		6168SA70 ⁽¹⁾ 6168LA70 ⁽¹⁾		
Symbol	Parameter	Min. Max.		Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read	Read Cycle									
tRC	Read Cycle Time	35		45	—	55	[—	70	—	ns
taa	Address Access Time	—	35	_	45		55	-	70	ns
tacs	Chip Select Access Time	-	35	—	45	-	55	-	70	ns
tCLZ ⁽²⁾	Chip Select to Output in Low-Z	5	—	5		5	—	5	-	ns
tCHZ ⁽²⁾	Chip Deselect to Output in High-Z	-	15	—	25	1	25	-	30	ns
toн	Output Hold from Address Change	3	—	3		3	—	3	—	ns
tPU ⁽²⁾	Chip Select to Power-Up Time	0	_	0		0	—	0	-	ns
tPD ⁽²⁾	Chip Deselect to Power-Down Time	—	35		40	-	50	—	60	ns

NOTES:

1. -55°C to +125°C temperature range only. Also available 85ns and 100ns devices.

2. This parameter is guaranteed with AC Test load (Figure 2) by device characterization, but is not production tested.

TIMING WAVEFORM OF READ CYCLE NO. 1^(1, 2)

3090 drw 07

TIMING WAVEFORM OF READ CYCLE NO. 2^(1, 3)

- CS is LOW for Read cycle.
 Device is continuously selected, CS is LOW.
- Address valid prior to or coincident with CS transition LOW.
- Address valid prior to or comoldent with oo transition
 Transition is measured ±200mV from steady state.

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

		6168SA1		6168SA20/25 15 6168LA20/25		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
Write Cycle						
twc	Write Cycle Time	15		20		ns
tcw	Chip Select to End-of-Write	15	—	20	_	ns
taw	Address Valid to End-of-Write	15	_	20	1	ns
tas	Address Set-up Time	0	—	0		ns
tWP	Write Pulse Width	15	-	20		ns
twr	Write Recovery Time	0	_	0		ns
tDW	Data Valid to End-of-Write	9	-	10		ns
tDH .	Data Hold Time	0	—	0		ns
twHZ ⁽³⁾	Write Enable to Output in High-Z		6		7	ns
tow ⁽³⁾	Output Active from End-of-Write	0		0		ns

AC ELECTRICAL CHARACTERISTICS (CONTINUED) (Vcc = 5.0V ± 10%, All Temperature Ranges)

		6168SA35 6168SA45 ⁽²⁾ 6168LA35 6168LA45 ⁽²⁾		6168SA55 ⁽²⁾ 6168LA55 ⁽²⁾		6168SA70 ⁽²⁾ 6168LA70 ⁽²⁾				
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write Cycle										
twc	Write Cycle Time	30	-	40	—	50		60	-	ns
tcw	Chip Select to End-of-Write	30	_	40	_	50	—	60	_	ns
taw	Address Valid to End-of-Write	30	_	40	-	50	—	60	-	ns
tas	Address Set-up Time	0	_	0		0	-	0	-	ns
tWP	Write Pulse Width	30		40	—	50	-	60	-	ns
twn	Write Recovery Time	0	_	0	—	0	—	0	—	ns
tow	DataValid to End-of-Write	15		20	-	20	-	25		ns
tDH .	Data Hold Time	0		3		3	—	3	—	ns
twhz ⁽³⁾	Write Enable to Output in High-Z	-	13	-	20	—	25	—	30	ns
tow ⁽³⁾	Output Active from End-of-Write	0		0		0	—	0		ns

NOTES:

1. 0° to +70°C temperature range only.

2. -55°C to +125°C temperature range only. Also available 85ns and 100ns devices.

3. This parameter is guaranteed with the AC Load (Figure 2) by device characterization, but is not production tested.

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED TIMING)^(1, 2, 5)

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS CONTROLLED TIMING)^(1, 2, 5)

NOTES:

- 1. WE or CS must be HIGH during all address transitions.
- 2. A write occurs during the overlap of <u>a LOW</u> \overline{CS} and a LOW \overline{WE} .
- 3. two is measured from the earlier of \overline{CS} or \overline{WE} going HIGH to the end of the write cycle.
- 4. During this period, the I/O pins are in the output state and input signals should not be applied.
- 5. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in the high impedance state.
- 6. Transition is measured ±200mV from steady state.

ORDERING INFORMATION

3090 drw 11

CMOS STATIC RAMS 16K (4K x 4-BIT) Separate Data Inputs and Outputs

IDT71681SA/LA IDT71682SA/LA

FEATURES:

- · Separate data inputs and outputs
- IDT71681SA/LA: outputs track inputs during write mode
- IDT71682SA/LA: high-impedance outputs during write mode
- High speed (equal access and cycle time)
 Military: 15/20/25/35/45/55/70/85/100ns (max.)
 Commercial: 15/20/25/35/45ns (max.)
- Low power consumption
- Battery backup operation—2V data retention (LA version only)
- High-density 24-pin 300-mil Ceramic or Plastic DIP, 24pin CERPACK, and 28-pin leadless chip carrier
- Produced with advanced CMOS high-performance technology
- CMOS process virtually eliminates alpha particle softerror rates
- · Military product compliant to MIL-STD-883, Class B

DESCRIPTION:

The IDT71681/IDT71682 are 16,384-bit high-speed static RAMs organized as 4K x 4. They are fabricated using IDT's high-performance, high-reliability technology—CMOS. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective approach for high-speed memory applications.

Access times as fast as 15ns are available. These circuits also offer a reduced power standby mode. When \overline{CS} goes HIGH, the circuit will automatically go to, and remain in, this standby mode as long as \overline{CS} remains HIGH. In the standby mode, the devices consume less than 10µW, typically. This capability provides significant system-level power and cooling savings. The low-power (LA) versions also offer a battery backup data retention capability where the circuit typically consumes only 1µW operating off a 2V battery.

All inputs and outputs of the IDT71681/IDT71682 are TTLcompatible and operate from a single 5V supply.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

©1994 Integrated Device Technology, Inc.

MAY 1994

DESCRIPTION (Continued):

The IDT71681/IDT71682 are packaged in either spacesaving 24-pin, 300-mil DIPs, CERPACKS, or 28-pin leadless chip carriers.

Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

PIN CONFIGURATIONS

DIP/SOIC/SOJ/CERPACK TOP VIEW

LCC TOP VIEW

PIN DESCRIPTIONS

Name	Description
A0 – A11	Address Inputs
CS	Chip Select
WE	Write Enable
D1 – D4	DATAIN
Y1 – Y4	DATAOUT
Vcc	Power
GND	Ground

2984 thi 01

2984 tb! 02

TRUTH TABLE⁽³⁾

Mode	CS	WE	Output	Power
Standby	н	X	High-Z	Standby
Read	L	н	DATAOUT	Active
Write ⁽¹⁾	L	L	DATAIN	Active
Write ⁽²⁾	L	L	High-Z	Active

NOTES:

1. For IDT71681 only.

2. For IDT71682 only.

3. H = VIH, L = VIL, \vec{X} = don't care.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Com'l.	Mil.	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
ΤΑ	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Тѕтс	Storage Temperature	-55 to +125	-65 to +150	°C
Рт	Power Dissipation	1.0	1.0	W
Ιουτ	DC Output Current	50	50	mĄ

NOTE:

2084 thi 02

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	ymbol Parameter ⁽¹⁾ Conditions		Max.	Unit
CIN	Input Capacitance	VIN = 0V	8	pF
Соит	Output Capacitance	Vout = 0V	8	pF
NOTE:			2	984 tbl 04

1. This parameter is determined by device characterization, but is not production tested.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
Vih	Input High Voltage	2.2	-	6.0	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	V

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Ambient Temperature	GND	Vcc
Military	–55°C to +125°C	oV	5V ± 10%
Commercial	0°C to +70°C	0V	5V ± 10%
	· _ · · · · · · · · · · · · · · · · · ·		2984 thi 06

NOTE:

2984 tbl 05 1. VIL (min.) = -3.0V for pulse width less than 20ns, once per cycle.

DATA RETENTION CHARACTERISTICS

(LA Version Only: VLC = 0.2V, VHC = VCC - 0.2V)

Symbol	Parameter	Test Condition		Min.	Typ. ⁽¹⁾	Max.	Unit
Vdr	Vcc for Data Retention			2.0	_	_	V
ICCDR	Data Retention Current	CS≥Vнc	MIL.	_	0.5 ⁽²⁾ 1.0 ⁽³⁾	100 ⁽²⁾ 150 ⁽³⁾	μA
		VIN ≥ VHC or ≤ VLC	COM'L.	_	0.5 ⁽²⁾ 1.0 ⁽³⁾	20 ⁽²⁾ 30 ⁽³⁾	μA
tCDR ⁽⁵⁾	Chip Deselect to Data Retention Time			0	-	—	ns
tR ⁽⁵⁾	Operation Recovery Time			tRC ⁽⁴⁾			ns

NOTES:

1. TA = +25°C.

2. At Vcc = 2V

3. At Vcc = 3V

4. tRc = Read Cycle Time.

5. This parameter is guaranteed by device characterization, but is not production tested.

LOW Vcc DATA RETENTION WAVEFORM

DC ELECTRICAL CHARACTERISTICS

 $Vcc = 5.0V \pm 10\%$

				IDT71681/2SA		IDT71681/2LA				
Symbol	Parameter	Test Condition		Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
u	Input Leakage Current	Vcc = Max., VIN = GND to Vcc	MIL. COM'L.			10 5			5 2	μA
llo	Output Leakage Current	Vcc = Max., \overline{CS} = VIH, Vout = GND to Vcc	MIL. COM'L.	-	_	10 5	_	_	5 2	μA
Vol	Output Low Voltage	IOL = 10mA, VCC = Min.			_	0.5		_	0.5	٧
		IOL = 8mA, VCC = Min.		1	—	0.4		_	0.4	
Vон	Output High Voltage	IOH = -4mA, Vcc = Min.		2.4		-	2.4	1	—	V

5.3

2984 tbl 08

DC ELECTRICAL CHARACTERISTICS^(1,5)

 $(VCC = 5.0V \pm 10\%, VLC = 0.2V, VHC = VCC - 0.2V)$

			71681x15 71682x15		7168 7168	71681x20 71682x20		71681x25 71682x25	
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
ICC1	Operating Power Supply Current	SA	110	120	90	100	90	100	mA
	Open, Vcc = Max., $f = 0^{(3)}$	LA	-	—	70	80	70	80	
Icc2 Dynamic Operating Current		SA	145	165	120	120	110	120	mA
	Open,Vcc = Max., $f = fMax^{(3)}$	LA	-	-	100	110	90	100	
ISB	Standby Power SupplyCurrent	SA	55	65	45	55	35	45	mA
	Vcc = Max., Outputs Open, f = fMax ⁽³⁾	LA	—	-	30	35	25	30	
ISB1	Full Standby Power Supply Current (CMOS Level)	SA	20	20	20	20	3	10	mA
	$\begin{array}{l} (SING LOGAL) \\ (SZ > VHC, VCC = Max., \\ VIN > VHC or \\ VIN \le VLC, f = 0^{(3)} \end{array}$	LA	—	_	0.5	0.3	0.5	0.3	

DC ELECTRICAL CHARACTERISTICS (Continued)^(1,5)

 $(Vcc = 5.0V \pm 10\%, VLc = 0.2V, VHc = Vcc - 0.2V)$

			7168 7168	1x35 2x35	71681x45 71682x45		71681x55 ⁽⁴⁾ 71682x55 ⁽⁴⁾		71681x70 ^(2,4) 71682x70 ^(2,4)		
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
ICC1 Operating Power		SA	90	100	90	100	—	100	-	100	mA
	CSSS VIL, Outputs Open, Vcc = Max., f = 0 ⁽³⁾	LA	70	80	70	80	-	80	-	80	
ICC2	Dynamic Operating Current	SA	100	110	100	110	—	110	—	110	mA
CS ≤ VIL, 0 Vcc = Max	$\overline{CS} \le VIL$, Outputs Open, Vcc = Max., f = fMAX ⁽³⁾	LA	80	90	70	80	—	80	—	80	
ISB	Standby Power Supply Current (TTL Level)	SA	30	35	30	35	—	35	-	35	mA
	CS ≥ VIH, Vcc = Max., Outputs Open, f = fMax ⁽³⁾	LA	20	25	20	25		20		20	
ISB1	Full Standby Power Supply Current (CMOS Level)	SA	3	10	3	10	-	10	—	10	mA
	$\label{eq:cs} \begin{array}{l} \overline{CS} \geq V \text{Hc}, V \text{cc} = Max., \\ V \text{IN} \geq V \text{Hc} \text{ or } V \text{IN} \leq V \text{Lc}, f = 0^{(3)} \end{array}$	LA	0.5	0.3	0.5	0.3	_	0.3		0.3	

NOTES:

1. All values are maximum guaranteed values.

2. Also available 85 and 100ns military devices.

3. fMAX = 1/tRC, only address inputs are cycling at fMAX. f = 0 means no address inputs are changing.

4. -55°C to +125°C temperature range only.

5. "x" in part numbers indicates power rating (SA or LA).

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2
	2984 tbl 11

Figure 2. AC Test Load (for tcLz, tcHz, twHz, and tow)

*Includes scope and jig capacitances

AC ELECTRICAL CHARACTERISTICS⁽³⁾ (Vcc = 5.0V ± 10%, All Temperature Ranges)

		71681x15 71682x15		71681x20 71682x20		71681x25 71682x25		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle								
tRC	Read Cycle Time	15	-	20	_	25	—	ns
taa	Address Access Time	-	15	_	20		25	ns
tacs	Chip Select Access Time	-	15		20		25	ns
toн	Output Hold from Address Change	3	-	3	-	3		ns
tCLZ ⁽²⁾	Chip Select to Output in Low-Z	5	—	5		5	_	ns
tCHZ ⁽²⁾	Chip Select to Output in High-Z	—	7	_	9		10	ns
tPU ⁽²⁾	Chip Select to Power Up Time	0	—	0	—	0		ns
tPD ⁽²⁾	Chip Select to Power Down Time		15		20	_	25	ns

AC ELECTRICAL CHARACTERISTICS⁽³⁾ (Continued) (Vcc = 5.0V ± 10%, All Temperature Ranges)

		7168 7168	71681x35 71681x45 71682x35 71682x45		71681x55 ⁽¹⁾ 71682x55 ⁽¹⁾		71681x70 ⁽¹⁾ 71682x70 ⁽¹⁾			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle										
tRC	Read Cycle Time	35	—	45	—	55	—	70	—	ns
tAA	Address Access Time	_	35	_	45		55	—	70	ns
tacs	Chip Select Access Time	-	35	—	45	_	55	-	70	ns
toн	Output Hold from Address Change	3	—	3	—	3	—	3	—	ns
tclz ⁽²⁾	Chip Select to Output in Low-Z	5	_	5	-	5	-	5		ns
tCHZ ⁽²⁾	Chip Select to Output in High-Z	1	15	—	20		25	—	30	ns
tPU ⁽²⁾	Chip Select to Power-Up Time	0	—	0	—	0	—	0	-	ns
tPD ⁽²⁾	Chip Select to Power-Down Time	_	35	_	40	_	50		60	ns

NOTES:

1. -55°C to +125°C temperature range only.

2. This parameter guaranteed with AC Load (Figure 2) by device characterization, but is not production tested.

3. "x" in part numbers indicates power rating (SA or LA).

TIMING WAVEFORM OF READ CYCLE NO. 1^(1, 2)

2984 drw 07

TIMING WAVEFORM OF READ CYCLE NO. 2^(1, 3)

NOTES:

- 1. WE is HIGH for Read cycle.
- 2. Device is continuously selected, CS is LOW.
- 3. Address valid prior to or coincident with \overline{CS} transition LOW.
- 4. Transition is measured $\pm 200 \text{mV}$ from steady state.
- 5. All read cycle timings are referenced from the last valid address to the first transmitting address.

AC ELECTRICAL CHARACTERISTICS⁽³⁾ (Vcc = 5.0V ± 10%, All Temperature Ranges)

		71681x15 71682x15		71681x20 71682x20		71681x25 71682x25		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write C	ycle				_			
twc	Write Cycle Time	15	—	20		20	—	ns
tcw	Chip Select to End of Write	15	-	20		20	—	ns
taw	Address Valid to End of Write	15	-	[.] 20	_	20	_	ns
tas	Address Set-up Time	0	—	0	_	0	_	ns
twp	Write Pulse Width	15	_	20	—	20	-	ns
twR	Write Recovery Time	0	-	0	_	0	_	ns
tDW	Data Valid to End of Write	9	_	10	_	10		ns
t DH	Data Hold Time	0	1	0	—	0		ns
tiy ⁽²⁾	Data Valid to Output Valid (71681 only)	-	15	-	20	—	25	ns
twy ⁽²⁾	Write Enable to Output Valid (71681 only)	-	15	—	20		25	ns
twnz ⁽²⁾	Write Enable to Output in High-Z (71682 only)	-	6	_	7	_	7	ns
tow ⁽²⁾	Output Active from End of Write (71682 only)	0	-	0	_	0		ns

AC ELECTRICAL CHARACTERISTICS (Continued) (Vcc = 5.0V ± 10%, All Temperature Ranges)

		7168 7168	1x35 2x35	71681x45 71682x45		71681x55 ⁽¹⁾ 71682x55 ⁽¹⁾		71681x70 ⁽¹⁾ 71682x70 ⁽¹⁾		
Symbol	bol Parameter		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write Cycle										
twc	Write Cycle Time	30	-	40	_	50		60	-	ns
tcw	Chip Select to End of Write	25		35	-	50	_	60		ns
taw	w Address Valid to End of Write		1	35	_	50	_	60	-	ns
tas	Address Set-up Time	0	—	0	—	0	—	0		ns
twp	IP Write Pulse Width			30	_	35	_	40		ns
twn	Write Recovery Time	0		0	-	0		0	-	ns
tow	Data Valid to End of Write	15	-	20		20	—	25		ns
tDH	Data Hold Time	3		3	_	3	_	3	-	ns
tiY ⁽²⁾	Data Valid to Output Valid (71681 only)	-	30	_	35	-	35		40	ns
twy ⁽²⁾	²⁾ Write Enable to Output Valid (71681 only)		30		35		35	_	40	ns
twnz ⁽²⁾	VHZ ⁽²⁾ Write Enable to Output in High-Z (71682 only)		13	_	20		25		30	ns
tow ⁽²⁾	Output Active from End of Write (71682 only)	0		0	-	0	—	0	-	ns

NOTES:

1. -55°C to +125°C temperature range only.

2. This parameter guaranteed with AC Load (Figure 2) by device characterization, but is not production tested.

3. "x" in part numbers indicates power rating (SA or LÁ).

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED)^(1,7)

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS CONTROLLED)^(1,6)

- 1. WE or CS must be HIGH during all address transitions.
- 2. If the CS goes HIGH simultaneously with WE HIGH, the outputs remain in a high-impedance state.
- 3. Transition is measured ±200mV from steady state.
- 4. For IDT71681 only.
- 5. For IDT71682 only.
- 6. A write occurs during the overlap of a LOW CS and a LOW WE.
- 7. twn is measured from the earlier of CS or WE going HIGH to the end of the write cycle.
- 8. All write cycle timings are referenced from the last valid address to the first transitioning address.

ORDERING INFORMATION

CMOS STATIC RAM 16K (2K x 8 BIT)

IDT6116SA IDT6116LA

FEATURES:

- High-speed access and chip select times

 Military: 20/25/35/45/55/70/90/120/150ns (max.)
 Commercial: 15/20/25/35/45ns (max.)
- Low-power consumption
- Battery backup operation
- 2V data retention voltage (LA version only)
- Produced with advanced CMOS high-performance technology
- CMOS process virtually eliminates alpha particle soft-error rates
- Input and output directly TTL-compatible

FUNCTIONAL BLOCK DIAGRAM

- · Static operation: no clocks or refresh required
- Available in standard 24-pin DIP, 24-pin Thin Dip and Plastic DIP, 28- and 32-pin LCC, 24-pin SOIC, 24-lead CERPACK and 24-pin SOJ
- · Military product compliant to MIL-STD-833, Class B

DESCRIPTION:

The IDT6116SA/LA is a 16,384-bit high-speed static RAM organized as 2K x 8. It is fabricated using IDT's high-performance, high-reliability CMOS technology.

Access times as fast as 15ns are available. The circuit also offers a reduced power standby mode. When \overline{CS} goes HIGH, the circuit will automatically go to, and remain in, a standby power mode, as long as \overline{CS} remains HIGH. This capability provides significant system level power and cooling savings. The low-power (LA) version also offers a battery backup data retention capability where the circuit typically consumes only 1 μ W to 4 μ W operating off a 2V battery.

All inputs and outputs of the IDT6116SA/LA are TTLcompatible. Fully static asynchronous circuitry is used, requiring no clocks or refreshing for operation.

The IDT6116SA/LA is packaged in 24-pin 600 and 300 mil plastic or ceramic DIP, 28- and 32-pin leadless chip carriers, 24-lead CERPACK, and a 24-lead gull-wing SOIC, providing high board-level packing densities.

Military grade product is manufactured in compliance to the latest version of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

Αo Vcc 128 X 128 ADDRESS MEMORY GND DECODER ARRAY A 10 I/O o Ž I/O CONTROL INPUT DATA CIRCUIT 1/07 CS OF CONTROL CIRCUIT WË 3089 drw 01

The IDT logo is aregistered trademark of Integrated Device Technology, Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

©1994 Integrated Device Technology, Inc.

5.4

MAY 1994

PIN DESCRIPTIONS

A0-A13	Address Inputs
1/00-1/07	Data Input/Output
CS	Chip Select
WE	Write Enable
OE	Output Enable
Vcc	Power
GND	Ground

3089 tbl 01

TRUTH TABLE⁽¹⁾

Mode	CS	ŌĒ	WE	I/O
Standby	н	X	X	High-Z
Read	Ĺ	L	н	DATAOUT
Read	L	н	н	High-Z
Write	L	X	L	DATAIN
NOTE				3089 tbl 02

1. H = VIH, L = VIL, X = Don't Care.

CAPACITANCE (TA = +25°C, F = 1.0 MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = OV	8	рF
Ci/O	I/O Capacitance	VOUT = 0V	8	рF
NOTE:				3089 tbl 03

1. This parameter is determined by device characterization, but is not production tested.

ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Rating	Commercial	Military	Unit				
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to + 7.0	-0.5 to +7.0	v				
Та	Operating Temperature	0 to + 70	–55 to +125	°C				
TBIAS	Temperature Under Bias	-55 to + 125	-65 to +135	°C				
Tstg	Storage Temperature	-55 to + 125	–65 to +150	°C				
Рт	Power Dissipation	1.0	1.0	w				
lout	DC Output Current	50	50	mΑ				
NOTES: 3089 tbl 0/								

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VTERM must not exceed Vcc +0.5V.

RECOMMENDED OPERATING **TEMPERATURE AND SUPPLY VOLTAGE**

Grade	Ambient Temperature	GND	vcc
Military	-55°C to +125°C	٥V	5.0V ± 10%
Commercial	0°C to +70°C	٥V	5.0V ± 10%
			3089 tbl 0

RECOMMENDED DC **OPERATING CONDITIONS**

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5 ⁽²⁾	V
GND	Supply Ground	0	0	0	v
ViH	Input High Voltage	2.2	3.5	VCC +0.5	V
VIL	Input Low Voltage	-0.5(1)		0.8	V
NOTES:				308	9 tbl 06

1. VIL (min.) = -3.0V for pulse width less than 20ns, once per cycle.

2. VIN must not exceed Vcc +0.5V.

DC ELECTRICAL CHARACTERISTICS

 $Vcc = 5.0V \pm 10\%$

			IDT61	16SA	IDT6			
Symbol	Parameter	Test Conditions		Min.	Max.	Min.	Max.	Unit
			MIL.	—	10	—	5	
lu	Input Leakage Current	Vcc = Max., ViN = GND to Vcc	COM'L.		5	—	2	μA
		Vcc = Max.	MIL.	—	10	—	5	
llo	Output Leakage Current	$\overline{CS} = VIH$, VOUT = GND to VCC	COM'L.		5		2	μA
Vol	Output Low Voltage	IOL = 8mA, VCC = Min.			0.4	_	0.4	V
Vон	Output High Voltage	IOH = -4mA, $VCC = Min$.		2.4	—	2.4	—	V
								3089 tbl 07

DC ELECTRICAL CHARACTERISTICS (1)

 $Vcc = 5.0V \pm 10\%$, VLc = 0.2V, VHc = Vcc - 0.2V

			61169 61161	6116SA15 ⁽²⁾ 6116LA15 ⁽²⁾		6116SA20 6116LA20		SA25 LA25	6116 6116		
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
ICC1	Operating Power Supply Current, $\overline{CS} \leq V_{IL}$,	SA	105		105	130	80	90	80	90	mA
	Outputs Open, Vcc = Max., f = 0	LA	95	-	95	120	75	85	75	85	
ICC2	Dynamic Operating $Current, \overline{CS} \leq V_{IL},$	SA	150		130	150	120	135	100	115	mA
	Vcc = Max., Outputs Open, f = fMAX ⁽⁴⁾	LA	140	-	120	140	110	125	95	105	
ISB	Standby Power Supply Current (TTL Level)	SA	40	—	40	50	40	45	25	35	mA
	$\overline{CS} \ge VIH$, $VCC = Max.$, Outputs Open, $f = fMAX^{(4)}$	LA	35	_	35	45	35	40	25	30	
ISB1	Full Standby Power Supply Current	SA	2	_	2	10	2	10	2	10	mA
	$\begin{array}{l} (CMOS \ Level), \ \overline{CS} \geq V_{HC}, \\ V_{CC} \ = Max., \ V_{IN} \ \geq V_{HC} \\ or \ V_{IN} \leq V_{LC}, \ f = 0 \end{array}$	LA	0.1	—	0.1	0.9	0.1	0.9	0.1	0.9	

NOTES:

1. All values are maximum guaranteed values.

2. 0°C to + 70°C temperature range only.

3. -55°C to + 125°C temperature range only.

4. fMAX = 1/tRc, only address inputs are cycling at fMAX, f = 0 means address inputs are not changing.

DC ELECTRICAL CHARACTERISTICS ⁽¹⁾ (Continued)

 $Vcc = 5.0V \pm 10\%$, VLc = 0.2V, VHc = Vcc - 0.2V

			61165 61161	SA45 .A45	6116SA55 ⁽³⁾ 6116LA55 ⁽³⁾		6116SA70 ⁽³⁾ 6116LA70 ⁽³⁾		6116SA90 ⁽³⁾ 6116LA90 ⁽³⁾		6116SA120 ⁽³⁾ 6116LA120 ⁽³⁾		6116SA150 ⁽³⁾ 6116LA150 ⁽³⁾		
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
	$\begin{array}{l} \text{Operating Power Supply}\\ \text{Current, } CS \leq \text{VIL,}\\ \text{Outputs Open,}\\ \text{Vcc} = \text{Max., } \text{f} = 0 \end{array}$	SA	80	90		90		90		90	—	90		90	mA
		LA	75	85	-	85	—	85		85	—	85	-	85	
ICC2	Dynamic Operating $Current, \overline{CS} \leq VIL,$	SA	100	100	—	100	—	100	—	100	—	100	—	90	mA
	Vcc = Max., Outputs Open, f = fMAX ⁽⁴⁾	LA	90	95	-	90	_	90	-	85		85		85	
ISB	Standby Power Supply Current (TTL Level)	SA	25	25	-	25	—	25	—	25	—	25	_	25	mΑ
	CS ≥ VIH, Vcc = Max., Outputs Open, f = fMAx ⁽⁴⁾	LA	20	20	—	20	-	20	-	25	-	15	—	15	
ISB1	Full Standby Power Supply Current	SA	2	10	_	10	—	10	—	10	—	10	—	10	mA
	$\begin{array}{l} (CMOS \ Level), \ \overline{CS} \geq V \ \text{Hc}, \\ Vcc \ = Max., \ V \ \text{N} \ \geq V \ \text{Hc} \\ \text{or} \ V \ \text{N} \leq V \ \text{Lc}, \ f = 0 \end{array}$	LA	0.1	0.9	—	0.9		0.9	-	0.9	—	0.9	_	0.9	

3089 tbl 09

NOTES:

1. All values are maximum guaranteed values.

2. 0°C to + 70°C temperature range only.

3. -55°C to + 125°C temperature range only.

4. fMAX = 1/tRc, only address inouts are toggling at fMAX, f = 0 means address inputs are not changing.

DATA RETENTION CHARACTERISTICS OVER ALL TEMPERATURE RANGES

(LA Version Only) VLC = 0.2V, VHC = VCC - 0.2V

				Т	yp. ⁽¹⁾	М			
						Vcc		Vcc	
Symbol	Parameter	Test Condit	Min.	2.0V	3.0V	2.0V	3.0V	Unit	
VDR	Vcc for Data Retention	_	2.0	_	_	_	_	V	
ICCDR	Data Retention Current		MIL.		0.5	1.5	200	300	μA
		CS≥VHC	COM'L.	_	0.5	1.5	20	30	
tCDR ⁽³⁾	Data Deselect to Data Retention Time	VIN \ge VHC or \le V	LC	-	0		-		ns
tR ⁽³⁾	Operation Recovery Time	1		tRC ⁽²⁾	-		—		ns
lu	Input Leakage Current			—			2	2	μΑ

NOTES:

1. TA = + 25°C

2. tRc = Read Cycle Time.

3. This parameter is guaranteed by device characterization, but is not production tested.

LOW Vcc DATA RETENTION WAVEFORM

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2
	3089 tbl 11

Figure 2. AC Test Load (for toLz, tcLz, toHz, twHz, tcHz & tow) 3089 drw 07

5.4

*Including scope and jig.

AC ELECTRICAL CHARACTERISTICS (Vcc = 5V ± 10%, All Temperature Ranges)

		6116SA15 ⁽¹⁾ 6116LA15 ⁽¹⁾		6110 611	6SA20 6LA20	6116 6116	SA25 LA25	6116 6116		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ	YCLE									
tRC	Read Cycle Time	15		20		25		35		ns
tAA	Address Access Time		15		19		25		35	ns
tacs	Chip Select Access Time		15	_	20		25		35	ns
tCLZ ⁽³⁾	Chip Select to Output in Low-Z	5	-	5	-	5	-	5	-	ns
tOE	Output Enable to Output Valid	-	10		10	-	13	—	20	ns
tolz ⁽³⁾	Output Enable to Output in Low-Z	. 0	—	0	-	5	—	5	-	ns
tCHZ ⁽³⁾	Chip Deselect to Output in High-Z		10	—	11	—	12		15	ns
tonz ⁽³⁾	Output Disable to Output in High-Z	-	8	—	8	-	10	-	13	ns
tон	Output Hold from Address Change	5	-	5	-	5	—	5	_	ns
tPU ⁽³⁾	Chip Select to Power-Up Time	0	—	0		0	_	0	-	ns
tPD ⁽³⁾	Chip Deselect to Power- Down Time		15		20	—	25	—	35	ns

3089 tbl 12

AC ELECTRICAL CHARACTERISTICS (Vcc = $5V \pm 10\%$, All Temperature Ranges) (Continued)

		6116 6116	6116SA45 6116LA45		6116SA55 ⁽²⁾ 6116LA55 ⁽²⁾		6116SA70 ⁽²⁾ 6116LA70 ⁽²⁾		6116SA90 ⁽²⁾ 6116LA90 ⁽²⁾		6116SA120 ⁽²⁾ 6116LA120 ⁽²⁾		6116SA150 ⁽²⁾ 6116LA150 ⁽²⁾	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
READ C	YCLE													_
tRC	Read Cycle Time	45		55		70		90		120	-	150	-	ns
taa	Address Access Time		45		55		70	—	90	—	120	—	150	ns
tacs	Chip Select Access Time	-	45	-	50	-	65		90	1	120	-	150	ns
tcLZ ⁽³⁾	Chip Select to Output in Low-Z	5	-	5	—	5	—	5	—	5	_	.5	—	ns
toe	Output Enable to Output Valid	_	25	—	40	-	50	—	60	1	80	—	100	ns
toLZ ⁽³⁾	Output Enable to Output in Low-Z	5	_	5	-	5	—	5	—	5	—	5	—	ns
tснz ⁽³⁾	Chip Deselect to Output in High-Z		20	-	30	-	35	-	40	_	40		40	ns
tonz ⁽³⁾	Output Disable to Output in High-Z	—	15		30	—	35	—	40		40	_	40	ns
tон	Output Hold from Address Change	5	-	5	_	5		5	-	5	-	5	-	ns

NOTES:

1. 0°C to + 70°C temperature range only.

2. -55°C to + 125°C temperature range only.

3. This parameter guaranteed with the AC Load (Figure 2) by device characterization, but is not production tested.

- 1. WE is HIGH for Read cycle.
- 2. Device is continously selected, \overline{CS} is LOW.
- 3. Address valid prior to or coincident with CS transition LOW.
- 4. OE is LOW.
- 5. Transition is measured ±500mV from steady state.

AC ELECTRICAL CHARACTERISTICS (Vcc = 5V ± 10%, All Temperature Ranges)

			A15 ⁽¹⁾ A15 ⁽¹⁾	611 611	6SA20 6LA20	611 611	6SA25 6LA25	611 611		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
WRITE	CYCLE									
twc	Write Cycle Time	15	—	20	-	25		35	-	ns
tcw	Chip Select to End-of- Write	13	-	15		17	-	25		ns
taw	Address Valid to End- of-Write	14	—	15	-	17	—	25	-	ns
tAS	Address Set-up Time	0	_	0	-	0		0		ns
tWP	Write Pulse Width	12	-	12		15	_	20		ns
twn	Write Recovery Time	0		0		0		0		ns
twnz ⁽³⁾	Write to Output in High-Z	-	7	-	8	-	16	-	20	ns
tDW	Data to Write Time Overlap	12	—	12	-	13	-	15	-	ns
tDH ⁽⁴⁾	Data Hold from Write Time	0	_	0		0	-	0	-	ns
tow ^(3,4)	Output Active from End-of-Write	0	_	0	_	0	—	0	-	ns

3089 tbl 14

5

AC ELECTRICAL CHARACTERISTICS (Vcc = 5V ± 10%, All Temperature Ranges)

		6116 6116	SA45 SLA45	6116S 6116L	A55 ⁽²⁾	61165 6116L	A70 ⁽²⁾	6116SA90 ⁽²⁾ 6116LA90 ⁽²⁾		6116SA120 ⁽²⁾ 6116LA120 ⁽²⁾		6116SA150 ⁽²⁾ 6116LA150 ⁽²⁾		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
WRITE	CYCLE													
twc	Write Cycle Time	45	-	55	-	70	_	90	-	120	-	150	-	ns
tcw	Chip Select to End of Write	30		40	-	40	—	55	-	70	-	90		ns
taw	Address Valid to End of Write	30	-	45	-	65	—	80	-	105	_	120	-	ns
tas	Address Set-up Time	0	—	5	—	15	—	15	-	20	_	20	_	ns
twp	Write Pulse Width	25	_	40	_	40	—	55		70	-	90	-	ns
twn	Write Recovery Time	0		5		5	—	5	-	5		10	-	ns
twHZ ⁽³⁾	Write to Output in High-Z		25	-	30	—	35	-	40	-	40	—	40	ns
tDW	Data to Write Time Overlap	20		25	-	30	-	30	-	35	-	40	-	ns
tDH ⁽⁴⁾	Data Hold from Write Time	0	-	5	-	5		5		5	-	10		ns
tow ^(3,4)	Output Active from End of Write	0	—	0	-	0	—	0	—	0	—	0	—	ns
NOTES:													308	39 tbl 15

NOTES:

1. 0°C to +70°C temperature range only.

2. -55°C to +125°C temperature range only.

4. The specification for toH must be met by the device supplying write data to the RAM under all operation conditions. Although toH and tow values will vary over voltage and temperature, the actual tDH will always be smaller than the actual tow.

^{3.} This parameter guaranteed with AC Load (Figure 2) by device characterization, but is not production tested.

TIMING WAVEFORM OF WRITE CYCLE NO. 1, (WE CONTROLLED TIMING) (1, 2, 5, 7)

TIMING WAVEFORM OF WRITE CYCLE NO. 2, (CS CONTROLLED TIMING) (1, 2, 3, 5, 7)

NOTES:

- 1. WE or CS must be HIGH during all address transitions.
- A write occurs during the overlap of a LOW CS and a LOW WE.
 tWR is measured from the earlier of CS or WE going HIGH to the end of the write cycle.
- 4. During this period, the I/O pins are in the output state and the input signals must not be applied.
- 5. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in the high-impedance state.
- Transition is measured ±500mV from steady state. 6.
- OE is continuously HIGH. If OE is LOW during a WE controlled write cycle, the write pulse width must be the larger of twP or (twHz + tow) to allow the 7. I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the write pulse is the specified twp. For a CS controlled write cycle, OE may be LOW with no degradation to tcw.

ORDERING INFORMATION

CACHE CONTROLLER PRODUCT

CACHE TAGS

CacheRAMs

3.3V ASYNCHRONOUS SRAM PRODUCTS

1M SRAM PRODUCTS

256K SRAM PRODUCTS

64K SRAM PRODUCTS

16K SRAM PRODUCTS

PACKAGE DIAGRAM OUTLINES

OUALITY AND RELIABILITY

TECHNOLOGY AND CAPABILITIES

GENERAL INFORMATION

64K SRAM PRODUCTS

The 64K devices, built with state-of-the-art CMOS processing, offer unmatched capabilities in terms of standby power consumption in their low power versions, while preserving the fast speed attributes typical of IDT SRAMs. Commercial parts are available in speeds as fast as 15ns, while military devices are as fast as 20ns, both in a wide variety of speeds and packages. The low power consumption characteristics of the "L" power versions makes them ideal for portable instruments and notebook computers, while the standard "S" power fast CMOS parts are well suited for high-performance workstations, PCs, communications, and industrial applications.

					Part	Sp	eeds
Size	Organization	Features	Process	Number	Power	Commercial	Military
64K	64K x 1		CMOS	7187	7187 S/L 15		20,25,35,45,55,70,85
	16K x 4		BiCMOS	7188 S/L 20,25 20,25			20,25,35,45,55,70,85
	16K x 4	ŌĒ	CMOS	6198	S/L	15,20,25,35	20,25,35,45,55,70,85
	16K x 4	OE, CS2	CMOS	7198 S/L N/A 20,2		20,25,35,45,55,70,85	
	8K x 8		CMOS	7164	S/L	15,20,25,30	20,25,30,35,45,55, 70,85

1

6.0

2

TABLE OF CONTENTS

PAGE

64K SRAM PRODUCTS

IDT7187S/L	64K x 1 CMOS	6.1
IDT7188S/L	16K x 4 CMOS	6.2
IDT6198S/L	16K x 4 CMOS with Output Enable	6.3
IDT7198S/L	16K x 4 CMOS with Output Enable and CS2	6.4
IDT7164S/L	8K x 8 CMOS	6.5

CMOS STATIC RAM 64K (64K x 1-BIT)

IDT7187S IDT7187L

FEATURES:

- High speed (equal access and cycle time)
 Military: 20/25/35/45/55/70/85ns (max.)
- -- Commercial: 15/20/25ns (max.)
- Low power consumption
- Battery backup operation—2V data retention (L version only)
- JEDEC standard high-density 22-pin plastic and ceramic DIP, 22-pin and 28-pin leadless chip carrier and 24-pin CERPACK
- Produced with advanced CMOS high-performance technology
- Separate data input and output
- · Input and output directly TTL-compatible
- · Military product compliant to MIL-STD-883, Class B

DESCRIPTION:

The IDT7187 is a 65,536-bit high-speed static RAM organized as 64K x 1. It is fabricated using IDT's high-performance, high-reliability CMOS technology. Access times as fast as 15ns are available.

Both the standard (S) and low-power (L) versions of the IDT7187 provide two standby modes—IsB and ISB1. IsB provides low-power operation; ISB1 provides ultra-low-power operation. The low-power (L) version also provides the capability for data retention using battery backup. When using a 2V battery, the circuit typically consumes only 30µW.

Ease of system design is achieved by the IDT7187 with full asynchronous operation, along with matching access and cycle times. The device is packaged in an industry standard 22-pin, 300 mil plastic or ceramic DIP, 22- and 28-pin leadless chip carriers, or 24-pin CERPACK.

Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

©1994 Integrated Device Technology, Inc.

PIN CONFIGURATIONS

PIN DESCRIPTIONS

Name	Description	
A0-A15	Address Inputs	
CS	Chip Select	
WE	Write Enable	
Vcc	Power	
DATAIN	Data Input	
DATAOUT	Data Output	
GND	Ground	
		2986 tbl 01

TRUTH TABLE⁽¹⁾

Mode	CS	WE	Output	Power					
Standby	н	Х	High-Z	Standby					
Read	L	Н	Dout	Active					
Write	L	L	High-Z	Active					
NOTE: 2986 tbl 02									
1. H = VIH, L = V	1. $H = V_{H}, L = V_{L}, X = don't care.$								

6

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Com'l.	Mil.	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
Ta	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Тѕтс	Storage Temperature	-55 to +125	65 to +150	°C
Рт	Power Dissipation	1.0	1.0	W
Ιουτ	DC Output Current	50	50	mA
NOTE				2086 16 0

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = $+25^{\circ}$ C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	8	pF
COUT	Output Capacitance	VOUT = 0V	8	pF
NOTE:				2986 tbl 04

1. This parameter is determined by device characterization, but is not production tested.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
Vін	Input High Voltage	2.2	—	6.0	V
VIL	Input Low Voltage	-0.5(1)	-	0.8	V
NOTE:				2	986 tbl 05

NOTE:

1. VIL (min.) = -3.0V for pulse width less than 20ns, once per cycle.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Temperature	GND	Vcc
Military	-55°C to +125°C	٥V	5V ± 10%
Commercial	0°C to +70°C	oV	5V ± 10%

2986 tbl 06

DC ELECTRICAL CHARACTERISTICS

 $(Vcc = 5.0V \pm 10\%)$

				IDT7	187S	IDT7		
Symbol	Parameter	Test Condition		Min.	Max.	Min.	Max.	Unit
14	Input Leakage Current	Vcc = Max., Vin = GND to Vcc	MIL. COM'L.	11	10 5	_	5 2	μΑ
ILO	Output Leakage Current	Vcc = Max., CS = ViH, Vout = GND to Vcc	MIL. COM'L.		10 5	_	5 2	μA
Vol	Output Low Voltage	<u>IoL = 10mA, Vcc = Min.</u> IoL = 8mA, Vcc = Min.		-	0.5 0.4		0.5 0.4	V
Vон	Output High Voltage	Iон = -4mA, Vcc = Min.		2.4	-	2.4	_	V

2986 tbl 07

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $(VCC = 5V \pm 10\%, VLC = 0.2V, VHC = VCC - 0.2V)$

			71879	S15 ⁽³⁾	718	7S20 7L20	7187 7187	7S25 7L25	718 718	7S35 7L35	7187 7187	7S45 7L45	7187S 7187L	55/70 55/70	7187 7187	S85 L85	
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil. ⁽³⁾	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
ICC1	Operating Power Supply Current	S	100	-	90	105	90	105	-	105	-	105	-	105	—	105	mA
	$\overline{CS} = V_{IL}$, Outputs Open Vcc = Max., f = 0 ⁽²⁾	Ĺ	—	-	70	85	70	85		85	-	85	—	85	-	85	
1002	Dynamic Operating Current	S	140		130	140	120	130	-	120	-	120	—	120	-	120	mA
	\overline{CS} = VIL, Outputs Open Vcc = Max., f = fMAX ⁽²⁾	-1	—	-	110	120	100	110	_	100	-	95		90	-	90	
ISB	Standby Power Supply Current (TTL Level)	S	60	-	55	65	50	55		50	-	50	—	50		50	mA
	$\overline{CS} \ge VIH$, $VCC = Max.$, Outputs Open, $f = fMAX^{(2)}$	L	-	-	40	60	35	50	—	40	-	35	1	30/28	-	28	
ISB1	Full Standby Power Supply Current (CMOS	s	20	—	15	20	15	20	—	20	—	20	1	20	—	20	mA
	Level) $\overline{CS} \ge VHC$, Vcc=Max., VIN \ge VHC or VIN \le VLC, f = 0 ⁽²⁾	L			0.3	1.5	0.3	1.5	-	1.5		1.5	_	1.5	_	1.5	

NOTES:

1. All values are maximum guaranteed values.

2. At f = fMAX address and data inputs are cycling at the maximum frequency of read cycles of 1/tRc. f = 0 means no input lines change.

3. These specs are preliminary.

DATA RETENTION CHARACTERISTICS OVER ALL TEMPERATURE RANGES

(L Version Only) VHC = VCC - 0.2V, VLC = 0.2V

					Ty Vo	′p. ⁽¹⁾ cc @	N Vo	lax. c @	
Symbol	Parameter	Test Con	dition	Min.	2.0v	3.0V	2.0V	3.0V	Unit
VDR	Vcc for Data Retention				-	-	—	-	V
ICCDR	Data Retention Current		MIL. COM'L.	_	10 10	15 15	600 150	900 225	μΑ
tCDR ⁽³⁾	Chip Deselect to Data Retention Time	CS≥VHC VIN≥VHC o	r ≤ VLC	0	_	-			ns
tR ⁽³⁾	Operation Recovery Time			tRC ⁽²⁾	<u> </u>		-		ns
L ⁽³⁾	Input Leakage Current			-	_	—	2	2	μA

NOTES:

1. TA = +25°C.

2. tRc = Read Cycle Time.

3. This parameter is guaranteed, but not tested.

LOW VCC DATA RETENTION WAVEFORM

2986 tbl 09

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2

2986 tbl 10

Figure 1. AC Test Load

Figure 2. AC Test Load (for tHz, tLz, twz and tow)

*Includes scope and jig capacitances

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

		7187S 718	15 ⁽¹⁾ /20 7L20	718 718	7S25 7L25	7187S3 7187L3	35/45 ⁽²⁾ 35/45 ⁽²⁾	7187 7187	S55 ⁽²⁾ L55 ⁽²⁾	71879 71871	570 ⁽²⁾ _70 ⁽²⁾	71873 7187	585 ⁽²⁾ L85 ⁽²⁾	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read C	Read Cycle													
tRC	Read Cycle Time	15/20	-	25		35/45	—	55	_	70	-	85	—	ns
taa	Address Access Time	—	15/20	-	25	-	35/45	—	55	-	70	-	85	ns
tacs	Chip Select Access Time	_	15/20	-	25	—	35/45	-	55	-	70	-	85	ns
tон	Output Hold from Address Change	5	-	5	-	5	_	5	—	5		5	-	ns
t∟z ⁽³⁾	Output Selection to Output in Low-Z	5	_	5	—	5	_	5	-	5		5	—	ns
tHZ ⁽³⁾	Chip Deselect to Output in High-Z	-	6	—	12	-	17/20		30	-	30	-	40	ns
tPU ⁽³⁾	Chip Select to Power-Up Time	0	-	0		0		0	—	0	—	0	_	ns
tPD ⁽³⁾	Chip Deselect to Power-Down Time	_	15/20		20	—	30/35	—	35	_	35	_	40	ns

NOTES:

1. 0° to +70°C temperature range only.

-55°C to +125°C temperature range only.
 This parameter guaranteed but not tested.

TIMING WAVEFORM OF READ CYCLE NO. 1^(1,2) trc (5) ADDRESS **TAA** ton PREVIOUS DATA VALID DATAOUT DATA VALID

2986 drw 10

TIMING WAVEFORM OF READ CYCLE NO. 2^(1,3)

NOTES:

- 1. WE is HIGH for Read cycle.
- 2. CS is LOW for Read cycle.
- 3. Address valid prior to or coincident with CS transition LOW.
- 4. Transition is measured ±200mV from steady state voltage with specified loading in Figure 2.
- All Read cycle timings are referenced from the last valid address to the first transitioning address.

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

		7187S	515 ⁽¹⁾ /20 7L20	718 718	7S25 7L25	7187S 7187L	35/45 ⁽²⁾ 35/45 ⁽²⁾	7187 7187	S55 ⁽²⁾ L55 ⁽²⁾	71879 71871	370 ⁽²⁾ L70 ⁽²⁾	7187 7187	585 ⁽²⁾ L85 ⁽²⁾	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write C	Write Cycle													
twc	Write Cycle Time	12/15	-	25	_	35/45	-	55	_	70	_	85	—	ns
tcw	Chip Select to End-of-Write	12/15	-	20	-	25/40	-	50		55	-	65	_	ns
taw	Address Valid to End-of-Write	12/15	-	20	-	25/40	-	50	-	55	-	65	—	ns
tas	Address Set-up Time	0	—	0	-	0	-	0	—	0	—	0	_	ns
twp	Write Pulse Width	12/15	—	20	-	20/25	-	35	-	40	—	45	-	ns
twR	Write Recovery Time	0	—	0	-	0	—	0	-	0	-	0	-	ns
tDW	Data Valid to End-of-Write	8/10	—	15	-	15/25	1	25	-	30	-	35	—	ns
tDH	Data Hold Time	0	-	5	-	5	—	5	-	5	-	5	-	ns
twz ⁽³⁾	Write Enable to Output in High-Z	-	6/8	-	12	_	15/30	_	30	-	30	-	40	ns
tow ⁽³⁾	Output Active from End-of-Write	0	_	0		0	-	0	—	0	—	0	-	ns
NOTES:	· · · · ·	•	•	•						-			2	986 tbl 12

NOTES:

1. 0° to +70°C temperature range only.

-55°C to +125°C temperature range only. 2.

3. This parameter guaranteed but not tested.

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED TIMING)^(1,2,3,4)

NOTES:

- 1. WE or CS must be HIGH during all address transitions.

- A write occurs during the overlap (twp) of a LOW CS and a LOW WE.
 two is measured from the earlier of CS or WE going HIGH to the end of the write cycle.
 If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in the high-impedance state.
- 5. Transition is measured ±200mV from steady state with a 5pF load (including scope and jig).

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS CONTROLLED TIMING)^(1,2,4)

NOTES:

- 1. WE or CS must be HIGH during all address transitions.
- 2. A write occurs during the overlap (twp) of a LOW CS and a LOW WE.
- 3. two is measured from the earlier of CS or WE going HIGH to the end of the write cycle.
- 4. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in the high-impedance state.
- 5. Transition is measured ±200mV from steady state with a 5pF load (including scope and jig).

ORDERING INFORMATION

CMOS STATIC RAM 64K (16K x 4-BIT)

IDT7188S IDT7188L

FEATURES:

- High-speed (equal access and cycle times)
 Military: 20/25/35/45/55/70/85ns (max.)
- Commercial: 20/25ns (max.)
- Low power consumption
- Battery backup operation 2V data retention (L version only)
- Available in high-density industry standard 22-pin, 300
 mil ceramic and plastic DIP, and CERPACK
- · Produced with advanced CMOS technology
- · Inputs/outputs TTL-compatible
- · Military product compliant to MIL-STD-883, Class B

DESCRIPTION:

The IDT7188 is a 65,536-bit high-speed static RAM organized as 16K x 4. It is fabricated using IDT's high-performance, high-reliability technology — CMOS. This state-

FUNCTIONAL BLOCK DIAGRAM

of-the-art technology, combined with innovative circuit design techniques, provides a cost effective approach for memory intensive applications.

Access times as fast as 20ns are available. The IDT7188 offers a reduced power standby mode, ISB1, which is activated when \overline{CS} goes HIGH. This capability significantly decreases power while enhancing system reliability. The low-power version (L) version also offers a battery backup data retention capability where the circuit typically consumes only $30\mu W$ operating from a 2V battery.

All inputs and outputs are TTL-compatible and operate from a single 5V supply. The IDT7188 is packaged in 22-pin, 300 mil ceramic and plastic DIPs, 24-pin CERPACKs, providing excellent board-level packing densities.

Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

6.2

PIN CONFIGURATIONS

CERPACK/SOJ TOP VIEW

PIN DESCRIPTIONS

Name	Description	Description						
A0-A13	Address Inputs							
CS	Chip Select							
WE	Write Enable							
I/O0-3	Data Input/Output	<u> </u>						
Vcc	Power							
GND	Ground							
•		2989 tbl 01						

TRUTH TABLE⁽¹⁾

Mode	CS	WE	I/O	Power
Standby	н	X	High Z	Standby
Read	L	н	Dout	Active
Write	L	L	Din	Active

NOTE:

1. H = VIH, L = VIL, X = don't care.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Com'l.	Míl.	Unit
VTERM	Terminal Voltage with Respect to GND	0.5 to +7.0	-0.5 to +7.0	v
ΤΑ	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Тѕтс	Storage Temperature	–55 to +125	65 to +150	°C
Рт	Power Dissipation	1.0	1.0	W
lout	DC Output Current	50	50	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, f = 1.0MHz, Vcc = 0v))

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	рF
C1/0	I/O Capacitance	Vout = 0V	6	рF
NOTE:			2	989 thi 04

NOTE:

1. This parameter is determined by device characterization, but is not production tested.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
Vih	Input High Voltage	2.2	-	6.0	V
Vil	Input Low Voltage	-0.5 ⁽¹⁾	—	0.8	V
NOTE					99 thi 05

1. VIL (min.) = -3.0V for pulse width less than 20ns,once per cycle.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Temperature	GND	Vcc
Military	–55°C to +125°C	٥٧	5V ± 10%
Commercial	0°C to +70°C	٥V	5V ± 10%

2989 tbl 06

2989 thi 02

2989 tbl 03

DC ELECTRICAL CHARACTERISTICS

 $Vcc = 5.0V \pm 10\%$

				IDT7	IDT7188S		IDT7188L			
Symbol	Parameter	Test Condition		Min.	Max.	Min.	Max.	Unit		
lu	Input Leakage Current	Vcc = Max., Vin = GND to Vcc	MIL. COM'L.	_	10 5		5 2	μA		
llo	Output Leakage Current	Vcc = Max., CS = VIH. Vout = GND to Vcc	MIL. COM'L.		10 5	—	5 2	μA		
Vol	Output Low Voltage	IOL = 10mA, VCC = Min.			0.5		0.5	V		
		IOL = 8mA, VCC = Min.		—	0.4	1	0.4			
Vон	Output High Voltage	юн = -4mA, Vcc = Min.		2.4	—	2.4		v		

2989 tbl 07

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $(Vcc = 5V \pm 10\%, VLc = 0.2V, VHc = Vcc - 0.2V)$

			718	3S20 8L20	7188 718	3S25 8L25	7188 7188	3S35 3L35	7188 7188	8S45 8L45	71885 7188L	55/70 .55/70	7188 7188	S85 L85	
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
ICC1	Operating Power Supply Current	S	100	105	100	105	1	105	1	105	-	105	-	105	mA
	$\overline{CS} = VIL$, Outputs Open Vcc = Max., f = 0 ⁽²⁾	L	70	80	70	80	-	80	—	80	—	80	-	80	
ICC2	Dynamic Operating	S	125	160	125	155		140		140	-	140	-	140	mA
	\overline{CS} = ViL, Outputs Open Vcc = Max., f = fMax ⁽²⁾	L	115	130	105	120	-	115	1	110	—	110	-	105	
ISB	Standby Power Supply	S	55	70	50	60	-	50	1	50		50	-	50	mA
	$\overline{CS} \ge VIH$, $Vcc = Max.$, Outputs Open, f = fMAX ⁽²⁾	L	40	50	35	40	-	40	-	35	—	35	-	35	
ISB1	Full Standby Power Supply Current (CMOS	S	15	25	15	20	-	20	-	20	-	20	—	20	mA
	Level) $CS \ge VHC$, VCC=Max., $VIN \ge VHC$ or VIN $\le VLC$, $f = 0^{(2)}$	L	0.5	1.5	0.5	1.5	l	1.5	I	1.5	-	1.5	-	1.5	
NOTES:															2989 tbl 0£

NOTES:

1. All values are maximum guaranteed values.

2. At f = fMAX address and data inputs are cycling at the maximum frequency of read cycles of 1/tRc. f = 0 means no input lines change.

3

DATA RETENTION CHARACTERISTICS OVER ALL TEMPERATURE RANGES

(L Version Only) VHC = VCC - 0.2V

			_		Ty Ve	/p. ⁽¹⁾ cc @	N Vo		
Symbol	Parameter	Test Con	dition	Min.	2.0v	3.0V	2.0V	3.0V	Unit
VDR	Vcc for Data Retention			2.0				_	V
ICCDR	Data Retention Current		MIL. COM'L.		10 10	15 15	600 150	900 225	μA
tCDR ⁽³⁾	Chip Deselect to Data Retention Time	CS≥VHC VIN≥VHC 0	r ≤ VLC	0		-	-	_	ns
tR ⁽³⁾	Operation Recovery Time	1		tRC ⁽²⁾	_			—	ns
lu ⁽³⁾	Input Leakage Current			_		_	2	2	μA
NOTES:	• · · · · · · · · · · · · · · · · · · ·					•	•	•	2989 tbl 09

NOTES: 1. TA = +25°C.

2. $t_{RC} = Read Cycle Time.$

3. This parameter is guaranteed by device characterization but is not production tested.

LOW VCC DATA RETENTION WAVEFORM

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2
	2989 tbl 10

5V 480Ω 255Ω 30pF*

Figure 1. AC Test Load

Figure 2. AC Test Load (for tнz, tLz, twz, tонz and tow)

*Includes scope and jig capacitances

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

		7188S20 7188L20		7188S25 7188L25		7188S35/45 ⁽¹⁾ 7188L35/45 ⁽¹⁾		7188S55/70 ⁽¹⁾ 7188L55/70 ⁽¹⁾		7188S85 ⁽¹⁾ 7188L85 ⁽¹⁾		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read C	ycle											
tRC	Read Cycle Time	20	-	25	Ι	35/45	—	55/70	_	85	-	ns
taa	Address Access Time	_	20	-	25	_	35/45	-	55/70		85	ns
tacs	Chip Select Access Time	_	20	-	25	-	35/45		55/70	1	85	ns
tон	Output Hold from Address Change	5	1	5	—	5	—	5	_	5		ns
tLZ ⁽²⁾	Output Selection to Output in Low-Z	5	_	5	-	5	—	5	-	5	—	ns
tHZ ⁽²⁾	Chip Deselect to Output in High-Z	-	8	—	10	—	14	_	20/25	1	30	ns
tPU ⁽²⁾	Chip Select to Power Up Time	0	_	0	-	0	—	0	—	0	—	ns
tPD ⁽²⁾	Chip Deselect to Power Down Time	—	20	-	25		35/45	—	55/70		85	ns
NOTES:											2	389 tbl 11

NOTES:

1. -55°C to +125°C temperature range only.

2. This parameter is guaranteed by device characterization but is not production tested.

TIMING WAVEFORM OF READ CYCLE NO. 1^(1, 2)

2989 drw 07

TIMING WAVEFORM OF READ CYCLE NO. 2^(1, 3)

NOTES:

- WE is HIGH for Read cycle. 1.
- 2. CS is LOW for Read cycle.
- 3. Address valid prior to or coincident with CS transition LOW
- 4. Transition is measured ±200mV from steady state voltage.

5. All Read cycle timings are referenced from the last valid address to the first transitioning address.

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

		718 718	8S20 8L20	7188S25 7188L25		7188S35/45 ⁽¹⁾ 7188L35/45 ⁽¹⁾		7188S55/70 ⁽¹⁾ 7188L55/70 ⁽¹⁾		7188S85 ⁽¹⁾ 7188L85 ⁽¹⁾		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write C	ycle	_										
twc	Write Cycle Time	17	-	20		30/40		50/60		75	—	ns
tcw	Chip Select to End-of-Write	17		20	—	25/35	1	50/60		75		ns
taw	Address Valid to End-of-Write	17		20	_	25/35		50/60	-	75		ns
tas	Address Set-up Time	0		0	1	0	1	0	-	0	—	ns
twp	Write Pulse Width	17	_	20	-	25/35	_	50/60	-	75	—	ns
twR	Write Recovery Time	0	-	0		0	-	0	Ι	0		ns
tDW	Data Valid to End-of-Write	10	1	13	1	15/20		25/30		35		ns
tDH	Data Hold Time	0	!	0	—	0	_	0	—	0		ns
twz ⁽²⁾	Write Enable to Output in High-Z	—	6	-	7	1	10/15		25/30	1	40	ns
tow ⁽²⁾	Output Active from End-of-Write	5	—	5		5		5		5	—	ns

NOTES:

1. -55°C to +125°C temperature range only.

2. This parameter is guaranteed by device characterization.

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED TIMING)^(1, 2, 3)

NOTES:

1. WE or CS must be HIGH during all address transitions.

2. A write occurs during the overlap (twp) of a LOW CS and a LOW WE.

3. two is measured from the earlier of \overline{CS} or \overline{WE} going HIGH to the end of the write cycle.

4. During this period, I/O pins are in the output state so that the input signals should not be applied.

5. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in the high-impedance state.

6. Transition is measured ±200mV from steady state.

6

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (\overline{CS} CONTROLLED TIMING)^(1,2,3,5)

NOTES:

- 1. WE or CS must be HIGH during all address transitions.
- 2. A write occurs during the overlap (twp) of a LOW CS and a LOW WE.
- 3. two is measured from the earlier of \overline{CS} or \overline{WE} going HIGH to the end of the write cycle.
- 4. During this period, I/O pins are in the output state so that the input signals should not be applied.
- 5. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in the high-impedance state.
- 6. Transition is measured ±200mV from steady state.

ORDERING INFORMATION

CMOS STATIC RAM 64K (16K x 4-BIT) with Output Control

IDT6198S IDT6198L

FEATURES:

- · High-speed (equal access and cycle times)
- Military: 20/25/35/45/55/70/85ns (max.)
- Commercial: 15/20/25/35ns (max.)
- Output Enable (OE) pin available for added system flexibility
- Low-power consumption
- JEDEC compatible pinout
- Battery back-up operation—2V data retention (L version only)
- 24-pin CERDIP, high-density 28-pin leadless chip carrier, and 24-pin SOJ
- · Produced with advanced CMOS technology
- · Bidirectional data inputs and outputs
- Military product compliant to MIL-STD-883, Class B

DESCRIPTION:

The IDT6198 is a 65,536-bit high-speed static RAM organized as 16K x 4. It is fabricated using IDT's high-performance, high-reliability technology—CMOS. This state-of-theart technology, combined with innovative circuit design tech-

FUNCTIONAL BLOCK DIAGRAM

niques, provides a cost-effective approach for memory intensive applications. Timing parameters have been specified to meet the speed demands of the IDT79R3000 RISC processors.

Access times as fast as 15ns are available. The IDT6198 offers a reduced power standby mode, ISB1, which is activated when \overline{CS} goes HIGH. This capability significantly decreases system, while enhancing system reliability. The low-power version (L) also offers a battery backup data retention capability where the circuit typically consumes only $30\mu W$ when operating from a 2V battery.

All inputs and outputs are TTL-compatible and operate from a single 5V supply.

The IDT6198 is packaged in eithera 24-pin 300 mil CERDIP, 28-pin leadless chip carrier or 24-pin J-bend small outline IC.

Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

PIN CONFIGURATIONS

PIN DESCRIPTIONS

Name	Description	
A0-A13	Address Inputs	
CS	Chip Select	
WE	Write Enable	
ŌĒ	Output Enable	
I/Oo–I/O3	Data Input/Output	
Vcc	Power	
GND	Ground	

2987 tbl 01

TRUTH TABLE⁽¹⁾

Mode	CS	WE	ŌĒ	I/O	Power
Standby	н	Х	Х	High-Z	Standby
Read	L	н	L	DATAOUT	Active
Write	L	L	Х	DATAIN	Active
Read	L	Н	Н	High-Z	Active
NOTE:					2987 tbl 02

NOTE:

1. H = VIH, L = VIL, X = Don't Care

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Com'l.	Mil.	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
ΤΑ	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	–55 to +125	65 to +135	°C
Тѕтс	Storage Temperature	-55 to +125	-65 to +150	°C
Рт	Power Dissipation	1.0	1.0	W
Ιουτ	DC Output Current	50	50	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	7	рF
Ci/o	I/O Capacitance	VOUT = 0V	7	pF
NOTE				987 16 0/

NOTE:

1. This parameter is determined by device characterization, but is not production tested.

2987 tbl 03

GND

٥٧

٥V

Vcc

5V ± 10%

5V ± 10% 2987 tbl 06

RECOMMENDED OPERATING

Grade

Commercial

Military

TEMPERATURE AND SUPPLY VOLTAGE

Temperature

-55°C to +125°C

0°C to +70°C

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	v
Vін	Input High Voltage	2.2	_	6.0	v
VIL	Input Low Voltage	-0.5 ⁽¹⁾	—	0.8	٧
NOTE:				29	987 tbl 05

NOTE:

1. VIL (min.) = -3.0V for pulse width less than 20ns, once per cycle.

			1	IDT6	198S	IDT6	198L	
Symbol	Parameter	Test Condition		Min.	Max.	Min.	Max.	Unit
LI	Input Leakage Current	Vcc = Max., VIN = GND to Vcc	MIL. COM'L.	_	10 5	_	5 2	μΑ
llo	Output Leakage Current	Vcc = Max., \overline{CS} = VIH, Vout = GND to Vcc	MIL. COM'L.	_	10 5	_	5 2	μΑ
Vol	Output Low Voltage	IOL = 10mA, VCC = Min.			0.5	_	0.5	V
		IOL = 8mA, VCC = Min.			0.4	_	0.4	1
Vон	Output High Voltage	юн = -4mA, Vcc = Min.		2.4	_	2.4	_	V

2987 tbl 07

6

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $(VCC = 5V \pm 10\%, VLC = 0.2V, VHC = VCC - 0.2V)$

			6198 6198	3S15 3L15	619 619	8S20 8L20	619 619	8S25 8L25	6198 6198	3S35 3L35	6198 6198	3S45 3L45	6198S5 6198L5	55/70/85 55/70/85	
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
ICC1	Operating Power Supply Current	s	100	-	100	105	100	105	100	105	-	105	_	105	mA
	\overline{CS} = VIL, Outputs Open Vcc = Max., f = 0 ⁽²⁾	L	75	-	70	80	70	80	70	80	-	80	-	80	
ICC2	Dynamic Operating Current	s	135	-	130	160	125	155	125	140	-	140		140	mA
	\overline{CS} = VIL, Outputs Open Vcc = Max., f = fMAX ⁽²⁾	L	125	-	115	130	105	120	105	115	-	110	—	110	
ISB	Standby Power Supply Current (TTL Level)	S	60	-	55	70	50	60	45	50	-	50		50	mA
	$\overline{CS} \ge VIH$, VCC = Max., Outputs Open, f = fMAX ⁽²⁾	L	45	-	40	50	35	40	30	35	-	35	-	35	
ISB1	Full Standby Power Supply Current (CMOS	s	20	—	15	25	15	20	15	20	—	20	—	20	mA
	Level) $\overline{CS} \ge VHC$, Vcc=Max., VIN \ge VHC or VIN \le VLC, f = 0 ⁽²⁾	L	1.5	—	0.5	1.5	0.5	1.5	0.5	1.5	—	1.5	-	1.5	

NOTES:

1. All values are maximum guaranteed values.

2. At f = fMAX address and data inputs are cycling at the maximum frequency of read cycles of 1/tRc. f = 0 means no input lines change.

2987 tbl 06

DATA RETENTION CHARACTERISTICS OVER ALL TEMPERATURE RANGES

(L Version Only) $V_{LC} = 0.2V$, $V_{HC} = V_{CC} - 0.2V$

					Ty Vo	γp. ⁽¹⁾ cc @	N Va		
Symbol	Parameter	Test Con	Test Condition		2.0v	3.0V	2.0V	3.0V	Unit
VDR	Vcc for Data Retention							_	V
ICCDR	Data Retention Current		MIL. COM'L.	_	10 10	15 15	600 150	900 225	μΑ
tCDR ⁽³⁾	Chip Deselect to Data Retention Time	<u>С</u> Ѕ≥ Vнс Vім ≥ Vнс о	r ≤ VLC	0	-	-	—	-	ns
tR ⁽³⁾	Operation Recovery Time]		tRC ⁽²⁾					ns
ILI ⁽³⁾	Input Leakage Current			-	_	—	2	2	μA
NOTES:									2987 tbl 05

NOTES:

1. TA = +25°C.

2. tRc = Read Cycle Time.

3. This parameter is guaranteed by device characterization but is not production tested.

LOW VCC DATA RETENTION WAVEFORM

2987 drw 04

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2

2987 tbl 10

Figure 2. AC Test Load (for tolz, tclz, tohz, twhz, tchz and tow)

*Includes scope and jig capacitances

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

		6198 6198	8S15 ⁽¹⁾ 8L15 ⁽¹⁾	619 619	8S20 8L20	619 619	8S25 8L25	619 619	8S35 8L35	6198S 6198L	45/55 ⁽²⁾ 45/55 ⁽²⁾	6198S 6198L	70/85 ⁽²⁾ 70/85 ⁽²⁾	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read C	ycle						_							
tRC	Read Cycle Time	15	—	20	1	25		35	—	45/55		70/85		ns
taa	Address Access Time	-	15	—	19	-	25		35	-	45/55	-	70/85	ns
tacs	Chip Select Access Time	-	15	—	20	-	25	-	35	—	45/55	—	70/85	ns
tcLZ ⁽³⁾	Chip Select to Output in Low-Z	5	_	5	I	5		5		5		5	_	ns
toe	Output Enable to Output Valid	-	8		9		11	—	18	-	25/35	—	45/55	ns
tolz ⁽³⁾	Output Enable to Output in Low-Z	5	—	5	I	5	_	5		5	—	5	—	ns
tcHz ⁽³⁾	Chip Select to Output in High-Z	2	7	2	8	2	10	2	14		15/20	—	25/30	ns
tonz ⁽³⁾	Output Disable to Output in High-Z	2	7	2	8	2	9	2	15	_	15/20	—	25/30	ns
toн	Output Hold from Address Change	5	-	5	1	2	I	5	1	5		5	-	ns
tpu ⁽³⁾	Chip Select to Power Up Time	0	-	0	_	0		0		0	_	0	—	ns
tPD ⁽³⁾	Chip Deselect to Power Down Time	—	15	—	20	-	25	—	35	—	45/55	—	70/85	ns

NOTES:

1. 0° to +70°C temperature range only.

2. -55°C to +125°C temperature range only.

3. This parameter is guaranteed by device characterization but is not production tested.

TIMING WAVEFORM OF READ CYCLE NO. 1⁽¹⁾

NOTES:

- 1. WE is HIGH for Read cycle.
- Device is continuously selected, CS is LOW.
 Address valid prior to or coincident with CS transition LOW.
- 4. OE is LOW.
- 5. Transition is measured ±200mV from steady state voltage.

5

TIMING WAVEFORM OF READ CYCLE NO. 2^(1, 2, 4)

TIMING WAVEFORM OF READ CYCLE NO. 3^(1, 3, 4)

NOTES:

- 1. WE is HIGH for Read cycle.
- 2. Device is continuously selected, \overline{CS} is LOW.
- 3. Address valid prior to or coincident with $\overline{\text{CS}}$ transition LOW.
- 4. OE is LOW.
- 5. Transition is measured ±200mV from steady state voltage.

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

		6198 6198	6198S15 ⁽¹⁾ 6198L15 ⁽¹⁾		8S20 8L20) 6198S25) 6198L25		6198S35 6198L35		6198S45/55 ⁽²⁾ 6198L45/55 ⁽²⁾		6198S70/85 ⁽²⁾ 6198L70/85 ⁽²⁾		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write C	Write Cycle													
twc	Write Cycle Time	14	-	17	_	20	-	30	—	40/50	1	60/75	<u> </u>	ns
tcw	Chip Select to End-of-Write	14	—	17	-	20		25	I	35/50	I	60/75	1	ns
taw	Address Valid to End-of-Write	14	-	17	· -	20	—	25	—	35/50		60/75	—	ns
tas	Address Set-up Time	0	-	0	_	0	—	0	—	0	1	0	—	ns
twp	Write Pulse Width	14	—	17		20		25	-	35/50	-	60/75	1	ns
twR	Write Recovery Time	0	<u> </u>	0	—	0	_	0	—	0	1	0	-	ns
twHz ⁽³⁾	Write Enable to Output in High-Z		5	1	6	-	7	-	10	_	15/25		30/40	ns
tow	Data Valid to End-of-Write	10	-	10	-	13	—	15	_	20/25	-	30/35	-	ns
tDH	Data Hold Time	0	-	0	—	0	<u> </u>	0	_	0	—	0	-	ns
tow ⁽³⁾	Output Active from End-of-Write	5	_	5	_	5		5	—	5	—	5		ns

NOTES:

1. 0° to +70°C temperature range only.

2. -55°C to +125°C temperature range only.

3. This parameter is guaranteed by device characterization, but is not production tested.

6.3

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED TIMING)^(1, 2, 3, 7)

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS CONTROLLED TIMING)^(1, 2, 3)

NOTES:

- 1. WE or CS must be HIGH during all address transitions.
- 2. A write occurs during the overlap (twp) of a LOW CS and a LOW WE.
- 3. twn is measured from the earlier of \overline{CS} or \overline{WE} going HIGH to the end of the write cycle.
- 4. During this period, I/O pins are in the output state so that the input signals must not be applied.
- 5. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 6. Transition is measured ±200mV from steady state.
- If OE is LOW during a WE controlled write cycle, the write pulse width must be the larger of twp or (twHz + tbw) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.

ORDERING INFORMATION

CMOS STATIC RAMs 64K (16K x 4-BIT) Added Chip Select and Output Controls

IDT7198S IDT7198L

FEATURES:

- Fast Output Enable ($\overline{\text{OE}})$ pin available for added system flexibility
- Multiple Chip Selects (CS1, CS2) simplify system design and operation
- High speed (equal access and cycle times)
 Military: 20/25/35/45/55/70/85ns (max.)
- · Low power consumption
- Battery back-up operation—2V data retention (L version only)
- 24-pin CERDIP, high-density 28-pin leadless chip carrier, and 24-pin CERPACK packaging available
- Produced with advanced CMOS technology
- Bidirectional data inputs and outputs
- · Inputs/outputs TTL-compatible
- · Military product compliant to MIL-STD-883, Class B

DESCRIPTION:

The IDT7198 is a 65,536 bit high-speed static RAM orga-

nized as 16K x 4. It is fabricated using IDT's high-performance, high-reliability technology—CMOS. This state-of-theart technology, combined with innovative circuit design techniques, provides a cost effective approach for memory intensive applications.

Access times as fast as 20ns are available. The IDT7198 offers a reduced power standby mode, ISB1, which is activated when $\overrightarrow{CS1}$ or $\overrightarrow{CS2}$ goes HIGH. This capability decreases power, while enhancing system reliability. The low-power version (L) also offers a battery backup data retention capability where the circuit typically consumes only $30\mu W$ when operating from a 2V battery.

All inputs and outputs are TTL-compatible and operate from a single 5V supply.

The IDT7198 is packaged in either a 24-pin ceramic DIP, 28-pin leadless chip carrier, and 24-pin CERPACK.

Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

MILITARY TEMPERATURE RANGE

MEMORY CONTROL

The IDT7198 64K high-speed CMOS static RAM incorporates two additional memory control features (an extra chip select and an output enable pin) which offer additional benefits in many system memory applications.

Both chip selects, Chip Select 1 (CS1) and Chip Select 2 (CS2), must be LOW to select the memory. If either chip select is pulled HIGH, the memory will be deselected and remain in the standby mode. This dual chip select feature ($\overline{CS}_{1}, \overline{CS}_{2}$) also brings the convenience of improved system speeds to the large memory designer by reducing the external logic required to perform decoding.

PIN DESCRIPTIONS

Name	Description
A0-A13	Address Inputs
CS 1	Chip Select 1
CS ₂	Chip Select 2
WE	Write Enable
ŌĒ	Output Enable
1/00-1/03	Data I/O
Vcc	Power
GND	Ground

2985 tbl 01

PIN CONFIGURATIONS

TRUTH TABLE⁽¹⁾

Mode	CS ₁	CS ₂	WE	ŌĒ	I/O	Power
Standby	н	х	х	х	High-Z	Standby
Standby	Х	н	х	Х	High-Z	Standby
Read	L	L	н	L	Dout	Active
Write	L	L	L	X	DIN	Active
Read	L	L	Н	Н	High-Z	Active

NOTE:

1. H = VIH, L = VIL, X = don't care.

2985 tbl 02

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Mil.	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
TA	Operating Temperature	-55 to +125	°C
TBIAS	Temperature Under Bias	-65 to +135	°C
Tstg	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.0	W
Ιουτ	DC Output Current	50	mA

NOTE:

2985 tbl 03 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Symbol Parameter		Тур.	Max.	Unit				
Vcc	Supply Voltage	4.5	5.0	5.5	V				
GND	Supply Voltage	0	0	0	V				
Vін	Input High Voltage	2.2	—	6.0	V				
Vit_ Input Low Voltage		-0.5 ⁽¹⁾	—	0.8	V				
NOTE: 2985 tbl (

NOTE:

1. VIL (min.) = -3.0V for pulse width less than 20ns, once per cycle.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Ambient Temperature	GND	Vcc
Military	–55°C to +125°C	٥V	5V ± 10%
			2985 tbl 06

CAPACITANCE (TA = +25°C, f = 1.0MHz, Vcc = 0V)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	7	рF
Ci/O	I/O Capacitance	Vout = 0V	7	pF
NOTE:			2	985 tbl 04

1. This parameter is determined by device characterization, but is not production tested.

DC ELECTRICAL CHARACTERISTICS

Vcc = 5.0V ± 10%, Military Temperature Range Only

			IDT7	IDT7198S		IDT7198L		
Symbol	Parameter	Test Condition	Min.	Max.	Min.	Max.	Unit	
LL	Input Leakage Current	Vcc = Max., Vin = GND to Vcc	—	10	—	5	μA	
llo	Output Leakage Current	Vcc = Max., \overline{CS} = VIH, Vout = GND to Vcc	—	10	-	5	μA	
Vol	Output Low Voltage	IOL = 10mA, VCC = Min.		0.5	_	0.5	V	
		IOL = 8mA, VCC = Min.	—	0.4	—	0.4		
Vон	Output High Voltage	IOH = —4mA, Vcc = Min.	2.4		2.4	-	V	

2985 tbl 07

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2

5V 480Ω DATAOUT 255Ω 5pF* 7 2985 drw 06

Figure 1. AC Test Load

*Includes scope and jig capacitances

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $(VCC = 5V \pm 10\%, VLC = 0.2V, VHC = VCC - 0.2V)$

			7198S20 7198L20	7198S25 7198L25	7198S35 7198L35	7198S45 7198L45	7198S55/70 7198L55/70	7198S85 7198L85	
Symbol	Parameter	Power	Military	Military	Military	Military	Military	Military	Unit
Icc1	Operating Power Supply Current, $\overline{CS_1}$ and $\overline{CS_2} \le V_{IL}$, Outputs Open Vcc = Max., f = $0^{(2)}$	S	105	105	105	105	105	105	mA
		L	80	80	80	80	80	80	
ICC2	Dynamic Operating Current, \overline{CS}_1 and $\overline{CS}_2 \le V_{IL}$, Outputs Open Vcc = Max., f = fMAX ⁽²⁾	S	160	155	140	140	140	140	mA
		L	130	120	115	110	110	105	
ISB	Standby Power Supply	S	70	60	50	50	50	50	mA
ISB S C O C	or $\overline{CS}_2 \ge VIH$, $Vcc = Max.$, Outputs Open, $f = fMax^{(2)}$	L	50	40	35	35	35	35	
ISB1	Full Standby Power Supply Current (CMOS Level) \overrightarrow{CS}_1 or $\overrightarrow{CS}_2 \ge VHC$, Vcc= Max., VIN $\ge VHC$ or VIN $\le VLC$, f = 0 ⁽²⁾	S	25	20	20	20	20	20	mA
		L	1.5	1.5	1.5	1.5	1.5	1.5	

NOTES:

1. All values are maximum guaranteed values.

2985 tbl 06

2. At f = fMAX address and data inputs are cycling at the maximum frequency of read cycles of 1/tRc. f = 0 means no input lines change.

DATA RETENTION CHARACTERISTICS OVER MILITARY TEMPERATURE RANGE

(L Version Only) VLC = 0.2V, VHC = VCC - 0.2V

				Ty Vo	p. ⁽¹⁾ xc @	M Vo		
Symbol	Parameter	Test Condition	Min.	2.0v	3.0V	2.0V	3.0V	Unit
VDR	Vcc for Data Retention	—	2.0					V
ICCDR	Data Retention Current			10	15	600	900	μA
tCDR ⁽³⁾	Chip Deselect to Data Retention Time	$\label{eq:constraint} \overline{CS}_1 \text{ or } \overline{CS}_2 \geq V \text{HC} \\ V \text{IN} \geq V \text{HC} \text{ or } \leq V \text{LC} \\ \end{array}$	0	_	_	_	-	ns
tR ⁽³⁾	Operation Recovery Time]	tRC ⁽²⁾			_	—	ns
ILI ⁽³⁾	Input Leakage Current		—	—	-	2	2	μΑ

NOTES:

1. TA = +25°C.

2. tRc = Read Cycle Time.

3. This parameter is guaranteed by device characterization but is not production tested.

LOW Vcc DATA RETENTION WAVEFORM

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, Military Temperature Range)

		719 719	7198S20 7198L20		8S25 8L25	7198S35/45 7198L35/45		7198S55 7198L55		7198S70 7198L70		7198S85 7198L85		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cy	Read Cycle													
tRC	Read Cycle Time	20		25	-	35/45		55	-	70	—	85		ns
taa	Address Access Time	—	19	—	25	-	35/45	—	55	-	70	—	85	ns
tACS1,2 ⁽¹⁾	Chip Select-1,2 Access Time		20		25	-	35/45	—	55	-	70	_	85	ns
tCLZ1,2 ⁽²⁾	Chip Select-1,2 to Output in Low-Z	5	-	5	—	5	—	5	_	5	-	5	—	ns
tOE	Output Enable to Output Valid	_	9	—	11	_	20/25	—	35	—	45		55	ns
tolz ⁽²⁾	Output Enable to Output in Low-Z	5		5	-	5	_	5		5	-	5	-	ns
tCHZ1,2 ⁽²⁾	Chip Select 1,2 to Output in High-Z	-	8		10	_	14	—	20	-	25	_	30	ns
tonz ⁽²⁾	Output Disable to Output in High-Z	-	8	—	9	-	15	—	20		25		30	ns
tон	Output Hold from Address Change	5	1	5		5	1	5		5		5	-	ns
tPU ⁽²⁾	Chip Select to Power Up Time	0	_	0	-	0		0	_	0		0		ns
tPD ⁽²⁾	Chip Deselect to Power Down Time	—	20	—	25	—	35/45	_	55	-	70	-	85	ns

NOTES:

1. Both chip selects must be active low for the device to be selected.

2. This parameter is guaranteed by device characterization but is not production tested.

TIMING WAVEFORM OF READ CYCLE NO. 1⁽¹⁾

NOTES:

- 1. WE is HIGH for Read cycle.
- 2. Device is continuously selected, CS1 is LOW, CS2 is LOW.
- 3. Address valid prior to or coincident with \overline{CS}_1 and or \overline{CS}_2 transition LOW.
- 4. OE is LOW.
- 5. Transition is measured $\pm 200 \text{mV}$ from steady state voltage.

2985 tbl 11

TIMING WAVEFORM OF READ CYCLE NO. 2^(1, 2, 4)

TIMING WAVEFORM OF READ CYCLE NO. 3^(1, 3, 4)

NOTES:

- 1. WE is HIGH for Read cycle.
- 2. Device is continuously selected, \overline{CS}_1 is LOW, \overline{CS}_2 is LOW.
- 3. Address valid prior to or coincident with \overline{CS}_1 and or \overline{CS}_2 transition LOW.
- 4. OE is LOW.
- 5. Transition is measured ±200mV from steady state voltage.

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

		7198S20 7198L20		7198S25 7198L25		7198S35/45 7198L35/45		7198S55 7198L55		7198S70 7198L70		7198S85 7198L85		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write Cycle														
twc	Write Cycle Time	17	—	20		30/40		50	-	60		75	-	ns
tCW1,2 ⁽¹⁾	Chip Select to End-of-Write	17	—	20	-	25/35	—	50	—	60	_	75	-	ns
taw	Address Valid to End-of-Write	17	—	20	-	25/35	_	50	—	60	-	75	-	ns
tas	Address Set-up Time	0	—	0	—	0	_	0		0	—	0	—	ns
twp	Write Pulse Width	17	—	20	-	25/35	—	50	-	60		75		ns
twR1,2	Write Recovery Time	0	—	0	—	0		0	- 1	0	-	0	-	ns
twHz ⁽²⁾	Write Enable to Output in High-Z	—	5/6		7	—	10/15	—	25		30	—	40	ns
tDW	Data Valid to End-of-Write	10	—	13		15/20	_	25	- 1	30	-	35	- 1	ns
tDH .	Data Hold Time	0	—	0	_	0	_	0	—	0	—	0	-	ns
tow ⁽²⁾	Output Active from End-of-Write	5		5	—	5		5	_	5		5		ns

NOTES:

1. Both chip selects must be active low for the device to be selected.

2. This parameter is guaranteed by device characterization but is not production tested.

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED TIMING)^(1, 2, 3, 7)

2985 drw 10

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS CONTROLLED TIMING)⁽¹⁾

NOTES:

- 1. WE, CS1 or CS2 must be HIGH during all address transitions.
- 2. A write occurs during the overlap (twp) of a LOW WE, a LOW CS1 and a LOW CS2.
- 3. twn is measured from the earlier of CS1, CS2 or WE going HIGH to the end of the write cycle.
- During this period, the I/O pins are in the output state, and input signals must not be applied.
 If the CS LOW transition occurs simultaneously with or after the WE LOW transition, outputs remain in the high-impedance state.
- 6. Transition is measured ±200mV from steady state.
- 7. If OE is LOW during a WE controlled write cycle, the write pulse width must be the larger of twp or (twhz + tow) to allow the I/O drivers to turn off and data to be placed on the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified twp.
ORDERING INFORMATION

CMOS STATIC RAM 64K (8K x 8-BIT)

IDT7164S IDT7164L

Integrated Device Technology, Inc.

FEATURES:

- High-speed address/chip select access time - Military: 20/25/30/35/45/55/70/85ns (max.)
- Commercial: 15/20/25/30/35ns (max.)
- Low power consumption
- Battery backup operation 2V data retention voltage (L Version only)
- · Produced with advanced CMOS high-performance technology
- · Inputs and outputs directly TTL-compatible
- · Three-state outputs
- · Available in:
 - 28-pin DIP, SOIC, SOJ, and CERPACK - 32-pin LCC
- Military product compliant to MIL-STD-883, Class B

DESCRIPTION:

The IDT7164 is a 65,536 bit high-speed static RAM organized as 8K x 8. It is fabricated using IDT's high-performance. high-reliability CMOS technology.

Address access times as fast as 15ns are available and the circuit offers a reduced power standby mode. When CS1 goes HIGH or CS2 goes LOW, the circuit will automatically go to. and remain in, a low-power stand by mode. The low-power (L) version also offers a battery backup data retention capability at power supply levels as low as 2V.

All inputs and outputs of the IDT7164 are TTL-compatible and operation is from a single 5V supply, simplifying system designs. Fully static asynchronous circuitry is used, requiring no clocks or refreshing for operation.

The IDT7164 is packaged in a 28-pin 300 mil DIP and SOJ: 28-pin 330 mil SOIC; 28-pin 600 mil DIP; 32-pin LCC; and 28pin CERPACK.

Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

PIN CONFIGURATIONS

NC	1 2 3 4 5 6 7 8 9 10 11 12 13 14	D28-1 D28-3 E28-2 P28-1 P28-2 SO28-3 SO28-5	28 27 26 25 24 23 22 21 20 19 18 17 16 15	V cc WE CS2 A8 A9 A11 OE A10 CS1 U/O 7 6 U/O 5 U/O 4 U/O 3
			296	7 drw 02

DIP/SOIC/SOJ/CERPACK TOP VIEW

PIN DESCRIPTIONS

Name	Description			
A0-A12	Address			
1/00-1/07	Data Input/Output			
CS1	Chip Select			
CS2	Chip Select			
WE	Write Enable			
ŌĒ	Output Enable			
GND	Ground			
VCC	Power			

2967 tbl 01

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Com'l.	Mil.	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
ТА	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
TSTG	Storage Temperature	-55 to +125	-65 to +150	°C
PT	Power Dissipation	1.0	1.0	W
IOUT	DC Output Current	50	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VTERM must not exceed VCC + 0.5V.

TRUTH TABLE^(1,2,3)

WE		CS2	ŌĒ	I/O	Function
Х	н	х	Х	High-Z	Deselected – Standby (ISB)
Х	х	L	Х	High-Z	Deselected – Standby (ISB)
Х	Vнс	VHC or VLC	х	High-Z	Deselected –Standby (ISB1)
Х	х	VLC	Х	High-Z	Deselected –Standby (ISB1)
Н	L	Н	н	High-Z	Output Disabled
Н	L	н	L	Dataout	Read Data
L	L	н	X	DataiN	Write Data

NOTES:

2967 tbl 02 1. CS2 will power-down CS1, but CS1 will not power-down CS2. 2. $H = V_{H}$, $L = V_{L}$, X = don't care.

3. VLC = 0.2V, VHC = VCC - 0.2V

RECOMMENDED OPERATING

TEMPERATURE AND SUPPLY VOLTAGE

Grade	Temperature	GND	VCC
Military	-55°C to +125°C	٥٧	5V ± 10%
Commercial	0°C to +70°C	٥٧	5V ± 10%
			00074-105

2967 tbl 05

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	۷
GND	Supply Voltage	0	0	0	v
VIH	Input HIGH Voltage	2.2	—	Vcc + 0.5	٧
VIL	Input LOW Voltage	-0.5(1)		0.8	V

NOTE:

1. VIL (min.) = -1.5V for pulse width less than 10ns, once per cycle.

2967 tbl 03

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	8	рF
CI/O	I/O Capacitance	VOUT = 0V	8	рF
NOTE:				2967 tbl 04

1. This parameter is determined by device characterization, but is not production tested.

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $(Vcc = 5.0V \pm 10\%, VLc = 0.2V, VHc = Vcc - 0.2V)$

			7164 7164	IS15 IL15	7164 7164	S20 L20	7164 7164	IS25 IL25	7164 7164	IS30 IL30	
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
ICC1	Operating Power Supply	S	110	—	100	110	90	110	90	100	mA
	Outputs Open, VCC = Max., $f = 0^{(3)}$	L	100		90	100	80	100	80	90	
ICC2	Dynamic Operating Current $\overline{CS_1} = VIL, CS_2 = VIH$	S	180	-	170	180	170	180	160	170	mA
	Outputs Open, VCC = Max., f = fMAX ⁽³⁾	L	150	_	150	160	150	160	140	150	
ISB	Standby Power Supply Current	S	20	-	20	20	20	20	20	20	mA
	VCC = Max., Outputs Open, $f = fMAX^{(3)}$	L	3	—	3	5	3	5	3	5	
ISB1	Full Standby Power Supply Current	S	15	—	15	20	15	20	15	20	mA
	1. $\overline{CS1} \ge VHC$ and $CS_2 \ge VHC$, or 2. $CS_2 \le VLC$	L	0.2	—	0.2	1	0.2	1	0.2	1	

DC ELECTRICAL CHARACTERISTICS⁽¹⁾ (Continued)

 $(Vcc = 5.0V \pm 10\%, VLc = 0.2V, VHc = Vcc - 0.2V)$

			7164S35 7164L35		7164S45 716 7164L45 716		7164 7164	7164S55 7164S 7164L55 7164L7		0/85 ⁽²⁾ 0/85 ⁽²⁾	
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
ICC1	Operating Power Supply	S	90	100	-	100	—	100	-	100	mA
	Outputs Open, Vcc = Max., $f = 0^{(3)}$	L	80	90		90		90		90	
ICC2	Dynamic Operating Current	s	150	160		160	-	160	-	160	mA
	Outputs Open, Vcc = Max., f = fMAX ⁽³⁾	L	130	140		130	-	125	—	120	
ISB	Standby Power Supply Current	S	20	20	_	20	-	20	-	20	mA
	Vcc = Max., Outputs Open, $f = fMAx^{(3)}$	L	3	5	—	5	-	5	—	5	
ISB1	Full Standby Power Supply Current (CMOS Level), $f = 0^{(3)}$, Vcc = Max.		15	20	-	20	—	20	—	20	mA
	1. $\overrightarrow{CS}_1 \ge V_{HC}$ and $\overrightarrow{CS}_2 \ge V_{HC}$, or 2. $\overrightarrow{CS}_2 \le V_{LC}$	L	0.2	1	—	1	—	1	—	1	

6.5

NOTES:

1. All values are maximum guaranteed values.

2. Also available: 100, 120, 150 and 200ns military devices.

3. fMAX = 1/tRC (all address inputs are cycling at fMAX); f = 0 means no address input lines are changing.

2967 tbl 07

6

3

DC ELECTRICAL CHARACTERISTICS

 $(Vcc = 5.0V \pm 10\%)$

				IDT7	IDT7164S		IDT7164L		
Symbol	Parameter	Test Condition		Min.	Max.	Min.	Max.	Unit	
lu	Input Leakage Current	Vcc = Max., Vin = GND to Vcc	MIL. COM'L.		10 5		5 2	μA	
llo	Output Leakage Current	Vcc = Max., CS1 = VIH, Vout = GND to Vcc	MIL. COM'L.		10 5	=	5 2	μA	
Vol	Output Low Voltage	IOL = 8mA, Vcc = Min.			0.4	-	0.4	V	
		IOL = 10mA, VCC = Min.			0.5		0.5	1	
Voн	Output High Voltage	IOH = -4mA, VCC = Min.		2.4	-	2.4	-	V	

DATA RETENTION CHARACTERISTICS OVER ALL TEMPERATURE RANGES

(L Version Only) (VLC = 0.2V, VHC = VCC - 0.2V)

					Тур. ⁽¹⁾ Vcc @		N Vo		
Symbol	Parameter	Test Cond	lition	Min.	2.0v	3.0V	2.0V	3.0V	Unit
VDR	Vcc for Data Retention	—		2.0	- 1	—	—	- 1	V
ICCDR	Data Retention Current		MIL. COM'L.		10 10	15 15	200 60	300 90	μA
tCDR ⁽³⁾	Chip Deselect to Data Retention Time	1. CS1 ≥ VH0 CS2 ≥ VH0	c c, or	0	-	-	—	-	ns
tR ⁽³⁾	Operation Recovery Time	2. CS2 ≤ VLC	; [tRC ⁽²⁾	- 1		_	-	ns
L ⁽³⁾	Input Leakage Current]			- 1	—	2	2	μA
NOTES:									2967 tbl 10

NOTES:

1. TA = +25°C. 2. tRc = Read Cycle Time.

3. This parameter is guaranteed by device characterization, but is not production tested.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2

2967 tbl 08

Figure 2. AC Test Load (for tCLZ1, tCLZ2, tOLZ, tCHZ1, tCHZ2, tOHZ, tow, and tWHZ)

*Includes scope and jig capacitances

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

		7164S15 ⁽¹⁾ 7164L15 ⁽¹⁾		7164 7164	IS20 IL20	7164S25 7164L25		7164S30 7164L30		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cy	cle									
tRC	Read Cycle Time	15	-	20	-	25	-	30	_	ns
taa	Address Access Time	-	15	-	19		25	_	29	ns
tACS1 ⁽³⁾	Chip Select-1 Access Tim	-	15	_	20	_	25	-	30	ns
tACS2 ⁽³⁾	Chip Select-2 Access Time	-	20	-	25	_	30		35	ns
tCLZ1,2 ⁽⁴⁾	Chip Select-1, 2 to Output in Low-Z	5		5	_	5		5	_	ns
tOE	Output Enable to Output Valid		7	_	8	_	12		15	ns
toLZ ⁽⁴⁾	Output Enable to Output in Low-Z	0	—	0	-	0		0	-	ns
tCHZ1,2 ⁽⁴⁾	Chip Select-1, 2 to Output in High-Z	-	8	-	9	_	13	-	13	ns
tonz ⁽⁴⁾	Output Disable to Output in High-Z		7	_	8	-	10		12	ns
tон	Output Hold from Address Change	5	-	5	_	5		5	—	ns
tPU ⁽⁴⁾	Chip Select to Power Up Time	0	_	0	_	0		0	_	ns
tPD ⁽⁴⁾	Chip Deselect to Power Down Time	-	15	-	20	-	25	-	30	ns
Write Cy	cle									
twc	Write Cycle Time	15	_	20	-	25		30	—	ns
tCW1, 2	Chip Select to End-of-Write	14	-	15	—	18	-	22		ns
taw	Address Valid to End-of-Write	14	-	15	_	18	—	22	_	ns
tAS	Address Set-up Time	0	—	0		0	-	0	-	ns
twp	Write Pulse Width	14	-	15	—	21	-	23	_	ns
tWR1	Write Recovery Time (CS1, WE)	0		0		0		0		ns
twR2	Write Recovery Time (CS2)	5	-	5	—	5	—	5	-	ns
twnz ⁽⁴⁾	Write Enable to Output in High-Z	-	6	-	8	_	10	-	12	ns
tDW	Data to Write Time Overlap	8	—	10		13		13	—	ns
tDH1	Data Hold from Write Time (CS1, WE)	0		0	_	0	_	0		ns
tDH2	Data Hold from Write Time (CS2)	5		5	—	5	_	5		ns
tow ⁽⁴⁾	Output Active from End-of-Write	4		4	—	4	—	4	_	ns
NOTES:										2967 tbl 11

NOTES:

0° to +70°C temperature range only.
 -55°C to +125°C temperature range only. Also available: 100, 120, 150 and 200ns military devices.
 Both chip selects must be active for the device to be selected.

4. This parameter is guaranteed by device characterization, but is not production tested.

AC ELECTRICAL CHARACTERISTICS (Continued) (Vcc = 5.0V ± 10%, All Temperature Ranges)

		7164S35 7164L35		7164S45 ⁽²⁾ 7164L45 ⁽²⁾		7164S55 ⁽²⁾ 7164L55 ⁽²⁾		7164S70 ⁽²⁾ /85 ⁽²⁾ 7164L70 ⁽²⁾ /85 ⁽²⁾		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cy	cle									
TRC	Read Cycle Time	35	—	45	1	55	-	70/85	_	ns
taa	Address Access Time	-	35	1	45	_	55	—	70/85	ns
tACS1 ⁽³⁾	Chip Select-1 Access Time	—	35	-	45		55		70/85	ns
tACS2 ⁽³⁾	Chip Select-2 Access Time		40		45	—	55		70/85	ns
tCLZ1,2 ⁽⁴⁾	Chip Select-1, 2 to Output in Low-Z	5	-	5		5	_	5		ns
tOE	Output Enable to Output Valid		18	_	25		30	-	35/40	ns
toLZ ⁽⁴⁾	Output Enable to Output in Low-Z	0	—	0		0	—	0		ns
tCHZ1,2 ⁽⁴⁾	Chip Select-1, 2 to Output in High-Z	—	15	-	20	_	25		30/35	ns
tonz ⁽⁴⁾	Output Disable to Output in High-Z	—	15	-	20	—	25		30/35	ns
toн	Output Hold from Address Change	5	—	5	-	5	—	5	—	ns
tPU ⁽⁴⁾	Chip Select to Power Up Time	0	—	0		0	-	0	—	ns
tPD ⁽⁴⁾	Chip Deselect to Power Down Time	l	35	1	45	—	55	—	70/85	ns
Write Cy	rcle									
twc	Write Cycle Time	35	—	45	—	55		70/85	—	ns
tCW1, 2	Chip Select to End-of-Write	25	—	33	—	50	—	60/75		ns
taw	Address Valid to End-of-Write	25		33	—	50		60/75	—	ns
tas	Address Set-up Time	0	_	0	—	0	—	0	-	ns
twp	Write Pulse Width	25		25		50	-	60/75	_	ns
tWR1	Write Recovery Time (CS1, WE)	0	—	0	—	0	-	0		ns
tWR2	Write Recovery Time (CS2)	5	—	5		5	—	5	—	ns
twHz ⁽⁴⁾	Write Enable to Output in High-Z	_	14		18	—	25	—	30/35	ns
tDW	Data to Write Time Overlap	15	—	20	-	25		30/35	1	ns
tDH1	Data Hold from Write Time (CS1, WE)	0	—	0		0	—	0		ns
tDH2	Data Hold from Write Time (CS2)	5		5		5	-	5	_	ns
tow ⁽⁴⁾	Output Active from End-of-Write	4		4	—	4		4		ns

NOTES:

1. 0° to +70°C temperature range only.

2. -55°C to +125°C temperature range only. Also available: 100, 120, 150, and 200ns military devices.

3. Both chip selects must be active for the device to be selected.

4. This parameter is guaranteed by device characterization, but is not production tested.

TIMING WAVEFORM OF READ CYCLE NO. 1⁽¹⁾

TIMING WAVEFORM OF READ CYCLE NO. 2(1, 2, 4)

2967 drw 09

TIMING WAVEFORM OF READ CYCLE NO. 3^(1, 3, 4)

2. Device is continuously selected, CS1 is LOW, CS2 is HIGH.

3. Address valid prior to or coincident with CS1 transition LOW and CS2 transition HIGH.

4. OE is LOW.

5. Transition is measured ±200mV from steady state.

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED TIMING)^(1, 2, 6)

2967 drw 11

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS CONTROLLED TIMING)^(1, 2)

NOTES:

- 1. WE, CS1 or CS2 must be inactive during all address transitions.
- 2. A write occurs during the overlap of a LOW WE, a LOW CS1 and a HIGH CS2.
- 3. twR1, 2 is measured from the earlier of CS1 or WE going HIGH or CS2 going LOW to the end of the write cycle.
- During this period, I/O pins are in the output state so that the input signals must not be applied.
- If the ČSi LOW transition or CS2 HIGH transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
 OE is continuously HIGH. If OE is LOW during a WE controlled write cycle, the write pulse width must be the larger of twp or (twnz +tow) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the minimum write pulse width is as short as the specified twp.
- 7. Transition is measured ±200mV from steady state.

ORDERING INFORMATION

-

9

6

CACHE CONTROLLER PRODUCT

CACHE TAGS

CacheRAMs

3.3V ASYNCHRONOUS SRAM PRODUCTS

1M SRAM PRODUCTS

256K SRAM PRODUCTS

64K SRAM PRODUCTS

16K SRAM PRODUCTS

PACKAGE DIAGRAM OUTLINES

QUALITY AND RELIABILITY

TECHNOLOGY AND CAPABILITIES

GENERAL INFORMATION

12

256K SRAM PRODUCTS

The flagship 256K family of IDT SRAMs offers some of the fastest speeds in the industry in 8-bit wide and 4-bit wide configurations. IDT's world-class CMOS technology provides high-performance (as fast as 12ns) at a minimal cost in a wide array of packaging options.

The 20ns 71256 offers the best standby power consumption in the industry in its "L" version, which makes it ideally suited for battery-operated equipment like notebook computers and portable instruments. The CMOS x8 parts are especially suitable for cache memory applications in the PC market, both as the asynchronous tag SRAM or data SRAM. The x4 parts are well suited for many workstation cache applications as well, such as R4000 cache implementations.

High-performance communications applications can also benefit from the fast speeds and surface-mount packaging options offered in this family.

			Part	1	S	peeds
Size	Organization	Process	Number	Power	Commercial	Military
256K	64K x 4	CMOS	61298	SA	12,15,17,20	20,25
	32K x 8	CMOS	71256	S/L	20,25,35,45	25,30,35,45,55,70, 85,100,120,150
	32K x 8	CMOS	71256	SA	12,15,20,25	15,20,25

7.0

TABLE OF CONTENTS

256K SRAM PRODUCTS

IDT61298SA	64K x 4 CMOS	7.1
IDT71256S/L	32K x 8 CMOS	7.2
IDT71256SA	32K x 8 CMOS	7.3

7

PAGE

CMOS STATIC RAM 256K (64K x 4-BIT)

FEATURES:

- 64K x 4 high-speed static RAM
- Fast Output Enable (OE) pin available for added system flexibility
- High speed (equal access and cycle times)
 Military: 20/25ns (max.)
 - -- Commercial: 12/15/17/20ns (max.)
- · JEDEC standard pinout
- 300 mil 28-pin DIP, 300 mil 28-pin SOJ, and 300 mil 28-pin LCC
- Produced with advanced CMOS technology
- · Bidirectional data inputs and outputs
- Inputs/Outputs TTL-compatible
- Three-state outputs
- · Military product compliant to MIL-STD-883, Class B

DESCRIPTION:

The IDT61298SA is a 262,144-bit high-speed static RAM organized as 64K x 4. It is fabricated using IDT's high-performance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective approach for memory intensive applications.

The IDT61298SA features two memory control functions: Chip Select (\overline{CS}) and Output Enable (\overline{OE}). These two functions greatly enhance the IDT61298SA's overall flexibility in high-speed memory applications.

Access times as fast as 12ns are available. The IDT61298SA offers a reduced power standby mode, ISB1, which enables the designer to considerably reduce device power requirements. This capability significantly decreases system power and cooling levels, while greatly enhancing system reliability.

All inputs and outputs are TTL-compatible and the device operates from a single 5 volt supply. Fully static asynchronous

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

DESCRIPTION (Continued)

circuitry, along with matching access and cycle times, favor the simplified system design approach.

The IDT61298SA is packaged in a 28-pin Sidebraze or Plastic 300 mil DIP, an SOJ, plus an LCC, providing improved board-level packing densities.

Military grade product is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

TRUTH TABLE^(1,2)

CS	ŌĒ	WE	1/0	Function
L	L	н	DATAOUT	Read Data
L	Х	L	DATAIN	Write Data
L	н	н	High-Z	Outputs Disabled
Н	Х	Х	High-Z	Deselected - Standby (ISB)
Vнс ⁽³⁾	Х	X	High-Z	Deselected - Standby (ISB1)
NOTES:				2971 tbl 01

1. H = VIH, L = VIL, x = Don't care. 2. $V_{LC} = 0.2V$. $V_{HC} = V_{CC} - 0.2V$.

3. Other inputs \geq VHc or \leq VLc.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Com'l.	Mil.	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	v
Та	Operating Temperature	0 to +70	–55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	65 to +135	°C
Тѕтс	Storage Temperature	–55 to +125	65 to +150	°C
Рт	Power Dissipation	1.0	1.0	w
Іоит	DC Output Current	50	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

VTERM must not exceed Vcc + 0.5V.

CAPACITANCE

 $(Ta = +25^{\circ}C, f = 1.0MHz, SOJ Package)$

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	5	рF
CI/O	I/O Capacitance	Vout = 3dV	7	рF

NOTE:

1. This parameter is determined by device characterization, but is not production tested.

PIN CONFIGURATION

2971 tbl 02

7.1

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Temperature	GND	Vcc
Military	-55°C to +125°C	٥V	5V ± 10%
Commercial	0°C to +70°C	٥V	5V ± 10%
			2971 tbl 04

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	eter Min. Typ.		Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
Viн	Input High Voltage	2.2		Vcc + 0.5V	v
VIL	Input Low Voltage	-0.5 ⁽¹⁾	-	0.8	V
NOTE:				2	971 16 05

1. VIL (min.) = -1.5V for pulse width less than 10ns, once per cycle.

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

		61298SA12		61298SA15		61298SA17		61298SA20		61298SA25		
Symbol	Parameter	Com'l.	Mil.	Unit								
lcc	Dynamic Operating Current $\overline{CS} = VIL$, Outputs Open Vcc = Max., f = fMax ⁽²⁾	160		140		135	-	130	140		120	mA
ISB	Standby Power Supply Current (TTL Level) $\overline{CS} \ge VIH$, Vcc = Max., Outputs Open, f = fMAX ⁽²⁾	50	_	45		40	_	40	45	_	40	mA
ISB1	Full Standby Power Supply Current (CMOS Level) $\overline{CS} \ge VHC$, $VCC = Max.$, $f = 0^{(2)}$, $VLC \ge VIN \ge VHC$	20	—	20	_	20		20	30	-	30	mA
NOTES:												971 tbl 06

NOTES:

1. All values are maximum guaranteed values.

2. fMAX = 1/tRc (all address inputs are cycling at fMAX); f = 0 means no address input lines are changing.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V				
Input Rise/Fall Times	3ns				
Input Timing Reference Levels	1.5V				
Output Reference Levels	1.5V				
AC Test Load	See Figures 1 and 2				

2971 tbl 07

Figure 1. AC Test Load

Figure 2. AC Test Load (for tCLZ, tOLZ, tCHZ, tOHZ, tOW, tWHZ)

*Includes scope and jig capacitances

DC ELECTRICAL CHARACTERISTICS

 $Vcc = 5.0V \pm 10\%$

			ID	T61298	SA	
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
lu	Input Leakage Current	Vcc = Max., Vin = GND to Vcc	-		5	μA
LO	Output Leakage Current	Vcc = Max., CS = Viн, Vouт = GND to Vcc	_	_	5	μA
Vol	Output Low Voltage	IOL = 8mA, VCC = Min. IOL = 10mA, VCC = Min.	_	-	0.4 0.5	V
Vон	Output High Voltage	Юн =4mA, Vcc = Min.	2.4			V

2971 tbl 09

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

		61298	SA12 ⁽¹⁾	61298	SA15 ⁽¹⁾	6129	8SA17 ⁽¹⁾	61298	SA20	612985	A25 ⁽²⁾	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cyc	cle											
tRC	Read Cycle Time	12	—	15	—	17	—	20	—	25		ns
tAA	Address Access Time	—	12	_	15	1	17		20		25	ns
tACS	Chip Select Access Time		12	_	15		17		_20	-	25	ns
tCLZ ⁽³⁾	Chip Select to Output in Low-Z	4	—	4		4		4		4		ns
tCHZ ⁽³⁾	Chip Deselect to Output in High-Z	—	6	_	7	-	8	—	8	—	9	ns
tOE	Output Enable to Output Valid	—	6	_	7	-	8	-	8	-	9	ns
tOLZ ⁽³⁾	Output Enable to Output in Low-Z	0	_	0		0	—	0	—	0	—	ns
tOHZ ⁽³⁾	Output Disable to Output in High-Z	—	6	—	6		7	—	8	—	9	ns
tOH	Output Hold from Address Change	3	—	3	—	3	_	3		3	—	ns
tPU ⁽³⁾	Chip Select to Power-Up Time	0	_	0	—	0	—	0	-	0		ns
tPD ⁽³⁾	Chip Deselect to Power-Down Time	1	12		15	_	17		20	—	25	ns
Write Cy	cle											
tWC	Write Cycle Time	12	_	15		17	—	20	—	25	—	ns
tCW	Chip Select to End-of-Write	9	-	10		11	—	12	—	15		ns
tAW	Address Valid to End-of-Write	9	—	10	—	11		12	—	15	—	ns
tAS	Address Set-up Time	0	—	0		0		0	—	0		ns
tWP	Write Pulse Width	9		10		11	_	12		15		ns
tWR	Write Recovery Time	0	—	0	—	0	—	0	—	0		ns
tDW	Data Valid to End-of-Write	6		7	—	8	—	8	_	10	—	ns
tDH	Data Hold Time	0	-	0		0		0	—	0	—	ns
tWHZ ⁽³⁾	Write Enable to Output in High-Z		6	—	6	—	7	—	8	_	9	ns
tOW ⁽³⁾	Output Active from End-of-Write	4		4		_ 4		4		4		ns

NOTES:

0° to +70°C temperature range only.
 -55°C to +125°C temperature range only.

3. This parameter is guaranteed with AC test load (Figure 2) by device characterization, but is not production tested.

TIMING WAVEFORM OF READ CYCLE NO. 1⁽¹⁾

TIMING WAVEFORM OF READ CYCLE NO. 2^(1,2,4)

TIMING WAVEFORM OF READ CYCLE NO. 3^(1,3,4)

1. WE is HIGH for Read cycle.

- Device is continuously selected, CS is LOW.
- 3. Address valid prior to or coincident with \overline{CS} transition LOW.

4. OE is LOW.

5. Transition is measured ±200mV from steady state.

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED TIMING)^(1,2,3,5)

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS CONTROLLED TIMING)(1,2,5)

NOTES:

- WE or CS must be HIGH during all address transitions.
 A write occurs during the overlap of a LOW CS and a LOW WE.
- The occurs of the second of the second of the second at th 3. not apply and the minimum write pulse is as short as the spectified twp.
- 4. During this period, I/O pins are in the output state so that the input signals must not be applied.
- 5. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 6. Transition is measured ±200mV from steady state.

ORDERING INFORMATION

CMOS STATIC RAM 256K (32K x 8-BIT)

IDT71256S IDT71256L

FEATURES:

- High-speed address/chip select time
 - Military: 25/30/35/45/55/70/85/100/120/150ns (max.)
 Commercial: 20/25/35/45ns (max.)
- Low-power operation
- Battery Backup operation 2V data retention
- Produced with advanced high-performance CMOS technology
- · Input and output directly TTL-compatible
- Available in standard 28-pin (600 mil) CERDIP, 28-pin (300 or 600 mil) plastic DIP, 28-pin (300 mil) ceramic sidebraze DIP, 28-pin and (300 mil) SOJ, 28-pin CERPACK, 32-pin LCC, 28-pin LCC
- Military product compliant to MIL-STD-883, Class B

DESCRIPTION:

The IDT71256 is a 262,144-bit high-speed static RAM organized as 32K x 8. It is fabricated using IDT's high-performance, high-reliability CMOS technology.

Address access times as fast as 20ns are available with power consumption of only 350mW (typ.). The circuit also offers a reduced power standby mode. When \overline{CS} goes HIGH, the circuit will automatically go to, and remain in, a low-power standby mode as long as \overline{CS} remains HIGH. In the full standby mode, the low-power device consumes less than 15 μ W, typically. This capability provides significant system level power and cooling savings. The low-power (L) version also offers a battery backup data retention capability where the circuit typically consumes only 5 μ W when operating off a 2V battery.

The IDT71256 is packaged in a 28-pin 300 mil J-bend SOIC, a 28-pin 600 mil CERDIP, 28-pin (300 or 600 mil) plastic DIP, 28-pin (300 mil) ceramic sidebraze DIP, 28-pin CERPACK, 32-pin LCC, 28-pin LCC, providing high board-level packing densities.

The IDT71256 military RAM is manufactured in compliance with the latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

A٥ Vcc GND 262.144 BIT ADDRESS ۰ . MEMORY ARRAY DECODER A14 • I/O 0 • I/O CONTROL INPUT DATA CIRCUIT I/O 7 CS o-CONTROL OFO CIRCUIT 2946 drw 01 WEO

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

MILITARY AND COMMERCIAL TEMPERATU	IRE RANGES	MAY 1994
kn1994 Integrated Device Technology, Inc.		DSC-1108/1
	7.2	4

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

28-Pin LCC TOP VIEW

PIN DESCRIPTIONS

Name	Description				
A0-A14	Addresses				
I/O ₀ -I/O7	Data Input/Output				
CS	Chip Select				
WE	Write Enable				
ŌĒ	Output Enable				
GND	Ground				
Vcc	Power				
	2946 tbl 01				

TRUTH TABLE⁽¹⁾

CS	ŌĒ	i/O	Function
Н	х	High-Z	Standby (IsB)
Vнс	х	High-Z	Standby (ISB1)
L	н	High-Z	Output Disabled
L	L	Dout	Read Data
L	х	DIN	Write Data
	CS H VHc L L L	CS DE H X VHc X L H L L L X	CS DE I/O H X High-Z VHc X High-Z L H High-Z L L Dout L X Din

NOTE:

2946 tbl 02

1. H = VIH, L = VIL, X = Don't Care

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Com'l.	Mil.	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
Та	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Тѕтс	Storage Temperature	–55 to +125	-65 to +150	°C
Рт	Power Dissipation	1.0	1.0	w
Ιουτ	DC Output Current	50	50	mA

NOTE:

2946 tbi 03

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 0V	11	рF
CI/O	I/O Capacitance	Vout = 0V	11	рF

NOTE:

 This parameter is determined by device characterization, but is not production tested.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Temperature	GND	Vcc
Military	–55°C to +125°C	0V	5.0V ± 10%
Commercial	0°C to +70°C	ov	5.0V ± 10%
		· · · · · · · · · · · · · · · · · · ·	2946 tbl 05

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	v
Vih	Input High Voltage	2.2	-	6.0	V
Vil	Input Low Voltage	-0.5 ⁽¹⁾	-	0.8	V
NOTE				20	

1. VIL (min.) = -3.0V for pulse width less than 20ns, once per cycle.

DC ELECTRICAL CHARACTERISTICS^(1, 2)

 $(Vcc = 5.0V \pm 10\%, VLc = 0.2V, VHc = Vcc - 0.2V)$

			71256	S/L20	71256	S/L25	71256	S/L30	71256	S/L35	
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
lcc	Dynamic Operating Current	S	155	—	145	150	—	145	135	140	mA
	$V_{CC} = Max., f = f_{MAX}^{(2)}$	L	135	-	115	130		125	105	120	
ISB	Standby Power Supply	S	20	-	20	20	_	20	20	20	mA
	$\overline{CS} \ge VIH, VCC = Max.,$ Outputs Open, f = fMAx ⁽²⁾	L	3		3	3	—	3	3	3	
ISB1	Full Standby Power Supply	S	15	—	15	20	-	20	15	20	mA
	$CS \ge VHC$, $VCC = Max., f = 0$	L	0.4	_	0.4	1.5		1.5	0.4	1.5	

			71256	S/L45	71256	S/L55	71256	S/L70	712565	5/L85 ⁽³⁾	712565	5/L100 ⁽³⁾	
Symbol	Parameter	Power	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
lcc	Dynamic Operating Current	s	130	135		135	—	135	-	135		135	mA
	$V_{CC} = Max., f = f_{MAX}^{(2)}$	Ľ	100	115	—	115	_	115	-	115	_	115	
ISB	Standby Power Supply Current (TTL Level)	S	20	20	_	20	-	20	—	20	-	20	mA
	$\overline{CS} \ge VIH$, VCC = Max., Outputs Open, f = fMAX ⁽²⁾	Ĺ	3	3		3		3	-	3	-	3	
ISB1	Full Standby Power Supply	S	15	20	-	20	—	20		20	—	20	mA
	$\overline{CS} \ge V_{HC}$, $V_{CC} = Max., f = 0$	L	0.4	1.5	_	1.5	-	1.5		1.5	—	1.5	

7.2

NOTES:

1. All values are maximum guaranteed values.

2. fMAX = 1/tRc, all address inputs cycling at fMAX; f = 0 means no address pins are cycling.

3. Also available: 120 and 150 ns military devices.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2

2946 tbl 08

Figure 1. AC Test Load

Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, twhz)

*Includes scope and jig capacitances

DC ELECTRICAL CHARACTERISTICS

 $Vcc = 5.0V \pm 10\%$

					IDT71256S			IDT71256L			
Symbol	Parameter	Test Condition		Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	
lui	Input Leakage Current	Vcc = Max., Vin = GND to Vcc	MIL. COM'L.	11	11	10 5	11	-	5 2	μA	
ILO	Output Leakage Current	Vcc = Max., CS = VIH, Vout = GND to Vcc	MIL. COM'L.	1		10 5	1 1	-	5 2	μA	
VOL	Output Low Voltage	IOL = 8mA, Vcc = Min.			-	0.4		1	0.4	V	
		IOL = 10mA, VCC = Min.		-	-	0.5	-	—	0.5		
Vон	Output High Voltage	1он = -4mA, Vcc = Min.		2.4	-	-	2.4		_	V	

2946 tbl 09

DATA RETENTION CHARACTERISTICS OVER ALL TEMPERATURE RANGES

(L Version Only) VLC = 0.2V, VHC = VCC - 0.2V

					Ty Vo	p. ⁽¹⁾ xc @	M Vo	lax. c @	
Symbol	Parameter	Test Con	dition	Min.	2.0v	3.0V	2.0V	3.0V	Unit
VDR	Vcc for Data Retention		-	2.0	—	-			V
ICCDR	Data Retention Current		MIL. COM'L.	-	_	-	500 120	800 200	μΑ
tCDR	Chip Deselect to Data Retention Time	CS≥Vнc		0		-	-	-	ns
tR ⁽³⁾	Operation Recovery Time]		tRC ⁽²⁾	-	-	_		ns

NOTES:

1. TA = +25°C.

2. tRc = Read Cycle Time.

3. This parameter is guaranteed, but not tested.

LOW Vcc DATA RETENTION WAVEFORM

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

		71256	71256S20 ⁽¹⁾ 71256L20 ⁽¹⁾		71256S25 71256L25		71256S30 ⁽³⁾ 71256L30 ⁽³⁾		71256S35 71256L35		71256S45 71256L45	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cy	rcle											
tRC	Read Cycle Time	20		25	_	30	-	35	—	45		ns
taa	Address Access Time	-	20	—	25		30		35		45	ns
tacs	Chip Select Access Time		20	-	25		30	_	35	—	45	ns
tcLz ⁽²⁾	Chip Select to Output in Low-Z	5		5	—	5	·	5	_	5	—	ns
tcHZ ⁽²⁾	Chip Deselect to Output in High-Z	_	10	—	11		15		15	1	20	ns
tOE	Output Enable to Output Valid		10		11		13	-	15		20	ns
tolz ⁽²⁾	Output Enable to Output in Low-Z	2	—	2	_	2	_	2		0	1	ns
tonz ⁽²⁾	Output Disable to Output in High-Z	2	8	2	10	2	12	2	15	-	20	ns
toн	Output Hold from Address Change	5	-	5	-	5	_	5	1	5	-	ns
Write Cy	cle											
twc	Write Cycle Time	20	—	25	-	30	Ι	35		45		ns
tcw	Chip Select to End-of-Write	15	_	20		25		30		40		ns
taw	Address Valid to End-of-Write	15		20		25		30	1	40	1	ns
tas	Address Set-up Time	0	—	0	1	0	Ι	0	-	0	-	ns
twp	Write Pulse Width	15	_	20		25	I	30	1	35		ns
twR	Write Recovery Time	0		0	-	0	_	0	_	0	1	ns
tDW	Data to Write Time Overlap	11		13	—	14	_	15	—	20	-	ns
twnz ⁽²⁾	Write Enable to Output in High-Z	_	10		11		15	_	15	1	20	ns
tDH	Data Hold from Write Time	0		0	-	0	—	0	—	0		ns
tow ⁽²⁾	Output Active from End-of-Write	5	—	5	—	5	_	5	_	5		ns
NOTES											2	946 tbl 11

NOTES:

1. 0° to +70°C temperature range only.

2. This parameter guaranteed by device characterization, but is not production tested.

3. -55° to +125°C temperature range only.

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

		7125 7125	6S55 ⁽¹⁾ 6L55 ⁽¹⁾	71256 71256	S70 ⁽¹⁾ L70 ⁽¹⁾	71256 71256	585 ⁽¹⁾ 5L85 ⁽¹⁾	71256S100 ^(1,3) 71256L100 ^(1,3)		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cy	cle		·							
tRC	Read Cycle Time	55		70	—	85	_	100	_	ns
taa	Address Access Time	—	55	—	70 ·	I	85	—	100	ns
tacs	Chip Select Access Time		55		70	-	85		100	ns
tcLZ ⁽²⁾	Chip Deselect to Output in Low-Z	5	—	5	—	5		5		ns
tCHZ ⁽²⁾	Output Enable to Output in Low-Z	—	25	—	30		35		40	ns
tOE	Output Enable to Output Valid	_	25	—	30	1	35		40	ns
tolz ⁽²⁾	Output Enable to Output in Low-Z	0	—	0	—	0	—	0	_	ns
tonz ⁽²⁾	Output Disable to Output in High-Z	0	25	0	30	_	35		40	ns
tон	Output Hold from Address Change	5	—	5	—	5		5	_	ns
Write Cy	cle									
twc	Write Cycle Time	55		70	—	85	—	100	—	ns
tcw	Chip Select to End-of-Write	50	—	60	—	70	—	80	—	ns
taw	Address Valid to End-of-Write	50		60	_	70		80		ns
tas	Address Set-up Time	0		0	—	0	-	0	-	ns
twp	Write Pulse Width	40	—	45	—	50		55	_	ns
twn	Write Recovery Time	0	—	0	—	0		0		ns
tDW	Data to Write Time Overlap	25	-	30	—	35	—	40	—	ns
tDH	Data Hold from Write Time (WE)	0	—	0	—	0		0	-	ns
twHz ⁽²⁾	Write Enable to Output in High-Z	_	25		30	_	35		40	ns
tow ⁽²⁾	Output Active from End-of-Write	5	_	5		5	-	5		ns

NOTES:

-55°C to +125°C temperature range only.
 This parameter guaranteed by device characterization, but is not production tested.
 Also available: 120 and 150 ns military devices.

TIMING WAVEFORM OF READ CYCLE NO. 1⁽¹⁾

TIMING WAVEFORM OF READ CYCLE NO. 2^(1, 2, 4)

TIMING WAVEFORM OF READ CYCLE NO. 3^(1, 3, 4)

NOTES:

- 1. WE is HIGH for Read cycle.
- Device is continuously selected, CS is LOW.
 Address valid prior to or coincident with CS transition LOW.
 OE is LOW.
- 5. Transition is measured ±200mV from steady state.

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED TIMING)^(1, 2, 3, 5, 7)

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS CONTROLLED TIMING)^(1, 2, 3, 5)

NOTES:

- 1. WE or CS must be HIGH during all address transitions.
- 2. A write occurs during the overlap of a LOW CS and a LOW WE.
- 3. twn is measured from the earlier of CS or WE going HIGH to the end of the write cycle.
- During this period, I/O pins are in the output state so that the input signals must not be applied.
 If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 6. Transition is measured ±200mV from steady state.
- 7. If OE is LOW during a WE controlled write cycle, the write pulse width must be the larger of twP or (twHz + tow) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the write pulse can be as short as the spectified twp. For a CS controlled write cycle, OE may be LOW with no degradation to tcw.

.

ORDERING INFORMATION

CMOS STATIC RAM 256K (32K x 8-BIT)

FEATURES:

- · 32K x 8 advanced high-speed CMOS static RAM
- Equal access and cycle times — Military: 15/20/25ns
 - Commercial: 12/15/20/25ns
- · One Chip Select plus one Output Enable pin
- Bidirectional data inputs and outputs directly
 TTL-compatible
- · Low power consumption via chip deselect
- Military product compliant to MIL-STD-883, Class B
- Available in 28-pin Sidebraze DIP, Plastic DIP, Plastic SOJ, and 32-pin LCC packages

DESCRIPTION:

The ID71256SA is a 262,144-bit high-speed Static RAM organized as 32K x 8. It is fabricated using IDT's high-perfomance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective solution for high-speed memory needs.

The IDT71256SA has an output enable pin which operates as fast as 6ns, with address access times as fast as 12ns. All bidirectional inputs and outputs of the IDT71256SA are TTLcompatible and operation is from a single 5V supply. Fully static asynchronous circuitry is used, requiring no clocks or refresh for operation.

The IDT71256SA is packaged in 28-pin 300 mil Sidebraze DIP, 28-pin 300 mil Plastic DIP, 28-pin 300 mil Plastic SOJ, and 32-pin Leadless Chip Carrier packages.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

PIN CONFIGURATIONS

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
Viн	Input High Voltage	2.2		Vcc+0.5	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾	_	0.8	v

NOTE:

1. VIL (min.) = -1.5V for pulse width less than 10ns, once per cycle.

DC ELECTRICAL CHARACTERISTICS

 $Vcc = 5.0V \pm 10\%$

			IDT71		
Symbol	Parameter	Test Condition	Min.	Max.	Unit
lu	Input Leakage Current	Vcc = Max., VIN = GND to Vcc		5	μA
llo	Output Leakage Current	Vcc = Max., CS = VIH, Vout = GND to Vcc	_	5	μΑ
Vol	Output Low Voltage	IOL = 8mA, Vcc = Min.	_	0.4	V
Vон	Output High Voltage	IOH = -4mA. Vcc = Min.	2.4	<u> </u>	V

2948 tbl 04

2948 tbl 05

ABSOLUTE MAXIMUM BATINGS⁽¹⁾

Symbol	Rating	Com'l.	Mil.	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	-0.5 to +7.0	V
ΤΑ	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Тѕтс	Storage Temperature	-55 to +125	-65 to +150	°C
Рт	Power Dissipation	1.0	1.0	W
lout	DC Output Current	50	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VTERM must not exceed Vcc + 0.5V.

CAPACITANCE

$(1A = +25^{\circ}C, t = 1.0MHz, SOJp$	package
--	---------

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	11	рF
Ci/O	I/O Capacitance	Vout = 3dV	11	рF
NOTE:			_	2948 tbl (

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

TRUTH TABLE^(1,2)

ĊS	ŌĒ	WE	1/0	Function
Г	L	Н	DATAOUT	Read Data
1	Х	L	DATAIN	Write Data
L	н	н	High-Z	Outputs Disabled
н	х	Х	High-Z	Deselected — Standby (IsB)
V _{HC} (3)	Х	Х	High-Z	Deselected — Standby (Ise1)
NOTES				2948 tbl 01

1. H = VIH, L = VIL, x = Don't care.

2. $V_{LC} = 0.2V$, $V_{HC} = V_{CC} - 0.2V$.

3. Other inputs ≥VHc or ≤VLc.

2

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $(Vcc = 5.0V \pm 10\%, VLc = 0.2V, VHc = Vcc-0.2V)$

		712565	71256SA12		71256SA15		SA20	71256SA25		
Symbol	Parameter	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
lcc	Dynamic Operating Current $\overline{CS} \leq VIL$, Outputs Open, Vcc = Max., f = fMAX ⁽²⁾	160	_	150	170	145	150	145	150	mA
ISB	Standby Power Supply Current (TTL Level) $\overline{CS} \ge VIH$, Outputs Open, Vcc = Max., f = fMax ⁽²⁾	50	_	40	50	40	45	40	45	mA
ISB1	Standby Power Supply Current (CMOS Level) $\overline{CS} \ge VHC$, Outputs Open, VCC = Max., f = 0 ⁽²⁾ VIN $\le VLC$ or VIN $\ge VHC$	15		15	30	15	30	15	30	mA

NOTES:

1. All values are maximum guaranteed values.

2. fMAX = 1/tRc (all address inputs are cycling at fMAX); f = 0 means no address input lines are changing .

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2
	2948 tb

*Including jig and scope capacitance.

Figure 1. AC Test Load

Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

IDT71256SA CMOS STATIC RAM 256K (32K x 8-BIT)

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)										
		71256SA12 ⁽¹⁾		71256SA15		71256SA20		71256SA25		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Read Cycle										
tRC	Read Cycle Time	12	—	15	_	20	—	25	_	ns
taa	Address Access Time	—	12	—	15		20		25	ns
tacs	Chip Select Access Time		12	_	15	_	20		25	ns
tclz ⁽²⁾	Chip Select to Output in Low-Z	4		4	—	4		4		ns
tcHZ ⁽²⁾	Chip Deselect to Output in High-Z	0	6	0	7	0	10	0	11	ns
tOE	Output Enable to Output Valid		6		7		10	_	11	ns
toLZ ⁽²⁾	Output Enable to Output in Low-Z	0		0	-	0		0	_	ns
tonz ⁽²⁾	Output Disable to Output in High-Z	0	6	0	6	0	8	0	10	ns
tон	Output Hold from Address Change	3	_	3		3	—	3	_	ns
tPU ⁽²⁾	Chip Select to Power Up Time	0	_	0		0	-	0	—	ns
tPD ⁽²⁾	Chip Deselect to Power Down Time	—	12	—	15		20		25	ns
Write Cy	sle									
twc	Write Cycle Time	12		15	_	20	_	25		ns
taw	Address Valid to End of Write	9		10	_	15	_	20	—	ns
tcw	Chip Select to End of Write	9	—	10	—	15	_	20	—	ns
tas	Address Set-up Time	0		0		0		0		ns
twp	Write Pulse Width	9	_	10		15		20		ns
twn	Write Recovery Time	0		0	_	0	_	0		ns
tDW	Data Valid to End of Write	6	—	7		11	_	13	—	ns
tDH .	Data Hold Time	0	_	0		0	_	0	_	ns
tow ⁽²⁾	Output Active from End of Write	4		4	_	4	—	4	_	ns
twHz ⁽²⁾	Write Enable to Output in High-Z	0	6	0	6	0	10	0	11	ns

NOTES:

1. 0° to +70°C temperature range only.

2. This parameter is guaranteed with the AC Load (Figure 2) by device characterization, but is not production tested.

TIMING WAVEFORM OF READ CYCLE NO. 1⁽¹⁾

TIMING WAVEFORM OF READ CYCLE NO. 2(1,2,4)

Address must be valid prior to or coincident with the later of CS transition LOW; otherwise tak is the limiting parameter. З.

4. OE is LOW.

Transition is measured ±200mV from steady state. 5

TIMING WAVEFORM OF WRITE CYCLE NO.1 (WE CONTROLLED TIMING)^(1,2,3,5)

TIMING WAVEFORM OF WRITE CYCLE NO.2 (CS CONTROLLED TIMING)^(1,2,5)

NOTES:

- 1. WE or CS must be HIGH during all address transitions.
- 2. A write occurs during the overlap of a LOW CS and a LOW WE
- OE is continuously HIGH. If during a WE controlled write cycle OE is LOW, two must be greater than or equal to two z + tow to allow the I/O drivers to turn З. off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the minimum write pulse is as short as the specified twp.
- During this period, I/O pins are in the output state, and input signals must not be applied. 4.
- If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state. 5.
- 6. Transition is measured ±200mV from steady state.

ORDERING INFORMATION

CACHE CONTROLLER PRODUCT

CACHE TAGS

CacheRAMs

3.3V ASYNCHRONOUS SRAM PRODUCTS

1M SRAM PRODUCTS

256K SRAM PRODUCTS

64K SRAM PRODUCTS

16K SRAM PRODUCTS

PACKAGE DIAGRAM OUTLINES

QUALITY AND RELIABILITY

TECHNOLOGY AND CAPABILITIES

GENERAL INFORMATION

1M SRAM PRODUCTS

The IDT 1M SRAM family consists of very fast, corner Power/Ground CMOS devices. IDT's state-of-the-art CMOS technology provides high-performance, affordable 1M SRAMs in multiple packaging options, including a high-density 300mil surface mount SOJ package for optimum space utilization. Speeds as fast as 12ns are available in the CMOS commercial versions, with 15ns available in military offerings. The x8 version of these products is especially well suited for the next generation size of caches in high-end PC applications, while the x4 device is well matched to communications and workstation implementations.

			Part		Sj	peeds
Size	Organization	Process	Number	Power	Commercial	Military
1M	256K x 4	CMOS	71028	S/L	12,15,17	15,17,20,25
	128K x 8	CMOS	71024	S/L	12,15,17,20	15,17,20,25

8.0

TABLE OF CONTENTS

1M SRAM PRODUCTS

IDT71028	256K x 4 CMOS	8.1
IDT71024	128K x 8 CMOS	8.2

PAGE

CMOS STATIC RAM 1 MEG (256K x 4-BIT)

FEATURES:

- · 256K x 4 advanced high-speed CMOS static RAM
- Equal access and cycle times

 Military: 15/17/20/25ns
 Commercial: 12/15/17ns
- One Chip Select plus one Output Enable pin
- One only select plus one output Enable plut
 Bidirectional data Inputs and outputs directly
- TTL-compatible
- · Low power consumption via chip deselect
- Available in 28-pin Ceramic DIP, Plastic DIP, 300 mil and 400 mil Plastic SOJ, and LCC packages
- · Military product compliant to MIL-STD-883, Class B

DESCRIPTION:

The IDT71028 is a 1,024,576-bit high-speed static RAM organized as $256K \times 4$. It is fabricated using IDT's high-perfomance, high-reliability CMOS technology. This state-of-the-art technology, combined with innovative circuit design techniques, provides a cost-effective solution for high-speed memory needs.

The IDT71028 has an output enable pin which operates as fast as 6ns, with address access times as fast as 12ns. All bidirectional inputs and outputs of the IDT71028 are TTL-compatible and operation is from a single 5V supply. Fully static asynchronous circuitry is used, requiring no clocks or refresh for operation.

The IDT71028 is packaged in 28-pin 400 mil Ceramic DIP, 28-pin 400 mil Plastic DIP, 28-pin 300 mil Plastic SOJ, 28-pin 400 mil Plastic SOJ, and 28-pin Leadless Chip Carrier packages.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

PIN CONFIGURATION

DIP/SOJ/LCC TOP VIEW

TRUTH TABLE^(1,2)

CS	ŌĒ	WE	I/O	Function
L	L	н	DATAOUT	Read Data
L	х	L	DATAIN	Write Data
L	н	н	High-Z	Output Disabled
н	х	х	High-Z	Deselected - Standby (Ise)
Vнс ⁽³⁾	Х	Х	High-Z	Deselected - Standby (IsB1)
NOTES:				2966 tbl 01

NOTES:

1. H = VIH, L = VIL, X = Don't care.

2. VLC = 0.2V, VHC = VCC -0.2V.

3. Other inputs ≥VHC or ≤VLC.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Com'l.	Mil.	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	0.5 to +7.0	v
Та	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Tstg	Storage Temperature	-55 to +125	65 to +150	°C
Рт	Power Dissipation	1.25	1.25	w
lout	DC Output Current	50	50	mA
NOTES				2966 10 02

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VTERM must not exceed Vcc + 0.5V.

CAPACITANCE

(TA = +25°C, f = 1.0MHz, SOJ package)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	8	рF
C I/O	I/O Capacitance	Vout = 3dV	8	рF
NOTE				2966 tbl 03

NOTE:

1. This parameter is guaranteed by device characterization, but not production tested.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	۷
GND	Supply Voltage	0	0	0	٧
Viн	Input High Voltage	2.2	1	Vcc+0.5	٧
VIL	Input Low Voltage	-0.5 ⁽¹⁾	—	0.8	٧
NOTE:				2	966 tbl 04

NOTE:

1. VIL (min.) = -1.5V for pulse width less than 10ns, once per cycle.

DC ELECTRICAL CHARACTERISTICS

 $Vcc = 5.0V \pm 10\%$

			IDT	71028	
Symbol	Parameter	Test Condition	Min.	Max.	Unit
	Input Leakage Current	Vcc = Max., VIN = GND to Vcc	_	5	μA
ILO]	Output Leakage Current	Vcc = Max., CS = VIH, VOUT = GND to Vcc		5	μΑ
VOL	Output Low Voltage	IOL = 8mA, Vcc = Min.	_	0.4	v
Voн	Output High Voltage	IOH = -4mA, Vcc = Min.	2.4		V

2966 tbl 05

8.1

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $(Vcc = 5.0V \pm 10\%, V_{LC} = 0.2V, V_{HC} = V_{CC} - 0.2V)$

		71028	512 ⁽³⁾	71028	S15	71028	S17	71028	S20	71028	S25	
Symbol	Parameter	Com'l.	Mil.	Com'i.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
lcc	Dynamic Operating Current, $\overline{CS} \le V_{IL}$, Outputs Open, $V_{CC} = Max., f = f_{MAX}^{(2)}$	155	—	150	175	145	165	1	155		140	mA
lsв	Standby Power Supply Current (TTL Level), CS ≥ VIH, Outputs Open, Vcc = Max., f = fMax ⁽²⁾	35	—	35	45	35	40	_	40		35	mA
ISB1	Full Standby Power Supply Current (CMOS Level), $\overrightarrow{CS} \ge VHC$, Outputs Open, $Vcc = Max., f = 0^{(2)}$, $VIN \le VLc$ or $VIN \ge VHc$	10		10	15	10	15	-	15		15	mA
NOTES:											-	2966 tbl 06

NOTES:

1.All values are maximum guaranteed values.

2.fMAX = 1/tRc (all address inputs are cycling at fMAX); f = 0 means no address input lines are changing.

3. 12ns specification is preliminary.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2
	0066 **10

*Including jig and scope capacitance.

Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, and twhz)

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

[71028	3S12 ⁽¹⁾	7102	28S15	7102	28517	71028	S20 ⁽²⁾	7102	8S25 ⁽²⁾	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cy	cle											
tRC	Read Cycle Time	12	—	15	_	17	—	20		25		ns
taa	Address Access Time	—	12	—	15	—	17	—	20		25	ns
tacs	Chip Select Access Time	—	12	-	15	_	17	_	20	_	25	ns
tcLZ ⁽³⁾	Chip Select to Output in Low-Z	3	-	3	—	3	—	3	-	3	—	ns
tснz ⁽³⁾	Chip Deselect to Output in High-Z	0	6	0	7	0	8	0	8	0	10	ns
tOE	Output Enable to Output Valid	-	6	-	7	—	8	—	8	—	10	ns
tolz ⁽³⁾	Output Enable to Output in Low-Z	0	—	0	-	0	-	0	_	0	-	ns
tонz ⁽³⁾	Output Disable to Output in High-Z	0	5	0	5	0	6	0	7	0	10	ns
tон	Output Hold from Address Change	2	-	2	-	2	1	2	—	2	—	ns
tPU ⁽³⁾	Chip Select to Power Up Time	0	-	0	—	0	-	0		0	-	ns
tPD ⁽³⁾	Chip Deselect to Power Down Time	_	12	_	15	_	17	-	20		25	ns
Write Cy	cle											
twc	Write Cycle Time	12	—	15	—	17	1	20		25	-	ns
taw	Address Valid to End of Write	10	-	12	-	13	1	15	_	15	-	ns
tcw	Chip Select to End of Write	10	—	12	-	13		15	-	15	1	ns
tAS	Address Set-up Time	0	1	0	—	0	—	0	-	0		ns
twp	Write Pulse Width	10	-	12	-	13	_	15	—	15	—	ns
twn	Write Recovery Time	0	-	0	-	0	-	0	-	0	—	ns
tDW	Data Valid to End of Write	7	—	8	—	9	—	9	—	10		ns
tDH	Data Hold Time	0	_	0		0	—	0	—	0	_	ns
tow ⁽³⁾	Output Active from End of Write	3		3	_	3	-	4	-	4	_	ns
twнz ⁽³⁾	Write Enable to Output in High-Z	0	5	0	5	0	7	0	8	0	9	ns

NOTES:

0° to +70°C temperature range only. 12ns specification is preliminary.
 -55°C to +125°C temperature range only.
 This parameter guaranteed with the AC load (Figure 2) by device characterization, but is not production tested.

2966 tbl 08

TIMING WAVEFORM OF READ CYCLE NO. 1⁽¹⁾

TIMING WAVEFORM OF READ CYCLE NO. 2^(1,2,4)

NOTES:

- 1. WE is HIGH for Read Cycle.
- 2. Device is continuously selected, \overline{CS} is LOW.
- Address must be valid prior to or coincident with the later of CS transition LOW; otherwise taa is the limiting parameter.
 OE is LOW.
- 5. Transition is measured ±200mV from steady state.

TIMING WAVEFORM OF WRITE CYCLE NO.1 (WE CONTROLLED TIMING)^(1,2,3,5)

TIMING WAVEFORM OF WRITE CYCLE NO.2 (CS CONTROLLED TIMING)^(1,2,5)

NOTES:

- 1. WE or CS must be HIGH during all address transitions.
- 2. A write occurs during the overlap of a LOW CS and a LOW WE.
- OE is continuously HIGH. If during a WE controlled write cycle OE is LOW, two must be greater than or equal to twHz + tow to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the minimum write pulse is as short as the specified two.
- 4. During this period, I/O pins are in the output state, and input signals must not be applied.
- 5. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 6. Transition is measured ±200mV from steady state.

ORDERING INFORMATION

CMOS STATIC RAM 1 MEG (128K x 8-BIT)

IDT71024

FEATURES:

- 128K x 8 advanced high-speed CMOS static RAM
- · Equal access and cycle times - Military: 15/17/20/25ns
 - Commercial: 12/15/17/20ns
- Two Chip Selects plus one Output Enable pin
- Bidirectional inputs and outputs directly TTL-compatible
- · Low power consumption via chip deselect
- Available in 32-pin Ceramic DIP, Plastic DIP, 300 and 400 mil Plastic SOJ, and LCC packages
- Military product compliant to MIL-STD-883, Class B

DESCRIPTION:

The IDT71024 is a 1,048,576-bit high-speed static RAM organized as 128K x 8. It is fabricated using IDT's highperformance, high-reliability CMOS technology. This stateof-the-art technology, combined with innovative circuit design techniques, provides a cost-effective solution for high-speed memory needs.

The IDT71024 has an output enable pin which operates as fast as 6ns, with address access times as fast as 12ns available. All bidirectional inputs and outputs of the IDT71024 are TTL-compatible and operation is from a single 5V supply. Fully static asynchronous circuitry is used; no clocks or refreshes are required for operation.

The IDT71024 is packaged in 32-pin 400 mil Ceramic DIP, 32-pin 400 mil Plastic DIP, 32-pin 300 mil Plastic SOJ, 32-pin 400 mil Plastic SOJ, and 32-pin 400 x 820 mil LCC packages.

FUNCTIONAL BLOCK DIAGRAM

The IDT Logo is a registered trademark of Integrated Device Technology, Inc.

MILITARY AND COMMERCIAL TEMPERATURE RANGES

PIN CONFIGURATION

DIP/SOJ/LCC TOP VIEW

TRUTH TABLE^(1,2)

	INP	UTS			
WE	CSI	CS2	Œ	I/O	FUNCTION
Х	н	Х	Х	High-Z	Deselected-Standby (ISB)
х	Vнс ⁽³⁾	х	Х	High-Z	Deselected-Standby (ISB1)
х	Х	L	Х	High-Z	Deselected–Standby (ISB)
Х	Х	VLC ⁽³⁾	Х	High-Z	Deselected-Standby (ISB1)
н	L	н	н	High-Z	Outputs Disabled
н	L	н	L	DATAOUT	Read Data
L	L	Н	Х	DATAIN	Write Data
NOTES	5:	1 at 1			2964 tbl 01

NOTES:

1. H = VIH, L = VIL, X = Don't care. 2. $V_{LC} = 0.2V$, $V_{HC} = V_{CC} - 0.2V$,

3. Other inputs ≥VHC or ≤VLC.

DC ELECTRICAL CHARACTERISTICS

 $Vcc = 5.0V \pm 10\%$

			IDT7	1024	
Symbol	Parameter	Test Condition	Min.	Max.	Unit
11	Input Leakage Current	Vcc = Max., VIN = GND to Vcc	_	5	μΑ
llo	Output Leakage Current	Vcc = Max., CS1 = ViH, CS2 = ViL, VOUT = GND to Vcc	<u> </u>	5	μΑ
Vol	Output LOW Voltage	IOL = 8mA, VCC = Min.		0.4	V
Voн	Output HIGH Voltage	IOH = -4mA, VCC = Min.	2.4		V
				<u> </u>	

2964 tbl 05

2

2964 tbl 02

ABSOLUTE MAXIMUM BATINGS(1)

Symbol	Rating	Com'l.	Mil.	Unit
Vterm ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	0.5 to +7.0	V
Та	Operating Temperature	0 to +70	-55 to +125	°C
TBIAS	Temperature Under Bias	-55 to +125	-65 to +135	°C
Ts⊤g	Storage Temperature	-55 to +125	-65 to +150	°C
Рт	Power Dissipation	1.25	1.25	W
IOUT	DC Output Current	50	50	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VTERM must not exceed Vcc + 0.5V.

CAPACITANCE

(TA = +25°C, f = 1.0MHz, SOJ package)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	8	рF
Ci/O	I/O Capacitance	Vout = 3dV	8	рF
NOTE:			_	2964 tbl 03

NOTE:

1. This parameter is guaranteed by device characterization, but is not production tested.

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
Vін	Input High Voltage	2.2	_	Vcc+0.5	V
VIL	Input Low Voltage	-0.5 ⁽¹⁾	-	0.8	V
NOTE:				2	964 tbl 04

NOTE:

1. VIL (min.) = -1.5V for pulse width less than 10ns, once per cycle.

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $(Vcc = 5.0V \pm 10\%, V_{LC} = 0.2V, V_{HC} = Vcc - 0.2V)$

		710249	S12 ⁽³⁾	71024	S15	71024	S17	7102	4S20	71024	S25	
Symbol	Parameter	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Com'l.	Mil.	Unit
Icc	Dynamic Operating Current, $CS2 \ge V_{IH}$ and $CS2 \ge V_{IH}$ and $CS1 \le V_{IL}$, Outputs Open, $V_{CC} = Max., f = f_{MAX}^{(2)}$	160	—	155	180	150	170	140	160	-	145	mA
ISB	$ \begin{array}{l} \mbox{Standby Power Supply Current (TTL Level)} \\ \hline CS1 \geq V_{1H} \mbox{ or } CS2 \leq V_{1L}, \mbox{ Outputs Open,} \\ V_{CC} = Max., \mbox{ f} = \mbox{fmax}^{(2)} \\ \end{array} $	35	-	35	40	35	40	35	40	—	35	mA
ISB1	Full Standby Power Supply Current (CMOS Level) $\overline{CS1} \ge VHc$, or CS2 $\le VLc$ Outputs Open, Vcc = Max., f = 0 ⁽²⁾ , VIN $\le VLc$ or VIN $\ge VHc$	15	—	10	15	10	15	10	15	-	15	mA

NOTES:

1.All values are maximum guaranteed values.

Max = 1/the (all address input are cycling at fMAX); f = 0 means no address input lines are changing.
 12ns specification is preliminary.

2964 tbl 06

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2

2964 tbl 07

Figure 1. AC Test Load

*Including jig and scope capacitance.

Figure 2. AC Test Load (for tclz, tolz, tcHz, toHz, toW, and tWHz)

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

		71024	S12 ⁽¹⁾	7102	4S15	71024	1S17	7102	4S20	71024	S25 ⁽²⁾	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cy	cle											
tRC	Read Cycle Time	12	_	15	—	17	-	20		25	-	ns
taa	Address Access Time	-	12	_	15	—	17	—	20	-	25	ns
tacs	Chip Select Access Time	_	12	-	15	—	17	-	20	-	25	ns
tCLZ ⁽³⁾	Chip Select to Output in Low-Z	3	- 1	3	-	3	-	3	-	3	-	ns
tснz ⁽³⁾	Chip Deselect to Output in High-Z	0	6	0	7	0	8	0	8	0	10	ns
toe	Output Enable to Output Valid	1	6	-	7	—	8	-	8	-	10	ns
toLZ ⁽³⁾	Output Enable to Output in Low-Z	0	-	0	—	0		0		0	-	ns
tонz ⁽³⁾	Output Disable to Output in High-Z	0	5	0	5	0	6	0	7	0	10	ns
toн	Output Hold from Address Change	4	-	4	_	4	—	4	-	4	-	ns
tPU ⁽³⁾	Chip Select to Power-Up Time	0	-	0	-	0	-	0		0	-	ns
tPD ⁽³⁾	Chip Deselect to Power-Down Time	_	12	-	15	_	17	-	20	1	25	ns
Write Cy	cle											
twc	Write Cycle Time	12	-	15		17	_	20	-	25	-	ns
taw	Address Valid to End-of-Write	10	-	12	_	13	_	15	-	15	-	ns
tcw	Chip Select to End-of-Write	10	-	12	_	13	_	15	-	15	-	ns
tAS	Address Set-up Time	0	-	0	-	0	—	0	-	0	_	ns
tWP	Write Pulse Width	10	-	12	1	13	—	15	-	15	-	ns
twR	Write Recovery Time	0	—	0		0	—	0	-	0	-	ns
tow	Data Valid to End-of-Write	7	-	8	_	9	_	9	_	10	—	ns
tDH	Data Hold Time	0	-	0	_	0		0	_	0	-	ns
tow ⁽³⁾	Output Active from End-of-Write	3	-	3	_	3	_	4	-	4		ns
twnz ⁽³⁾	Write Enable to Output in High-Z	0	5	0	5	0	7	0	8	0	9	ns

NOTES:

0°C to +70°C temperature range only. 12ns specification is preliminary.
 -55°C to +125°C temperature range only.

3. This parameter guaranteed with the AC load (Figure 2) by device characterization, but is not production tested.

4

2964 tbl 08

TIMING WAVEFORM OF READ CYCLE NO. 1⁽¹⁾

TIMING WAVEFORM OF READ CYCLE NO. 2^(1, 2, 4)

NOTES:

- 1. WE is HIGH for Read Cycle.
- 2. Device is continuously selected, CS1 is LOW, CS2 is HIGH.
- Address must be valid prior to or coincident with the later of CS1 transition LOW and CS2 transition HIGH; otherwise tA is the limiting parameter. З. 4. OE is LOW.

5. Transition is measured ±200mV from steady state.

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED TIMING)^(1, 2, 5, 7)

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS1 AND CS2 CONTROLLED TIMING)^(1, 2, 5)

NOTES:

- 1. WE must be HIGH, CS1 must be HIGH, or CS2 must be LOW during all address transitions.
- A write occurs during the overlap of a LOW CST, HIGH CS2, and a LOW WE.
 twn is measured from the earlier of either CS1 or WE going HIGH or CS2 going LOW to the end of the write cycle.
- During this period, I/O pins are in the output state, and input signals must not be applied. 4.
- If the ČST LOW transition or the CS2 HIGH transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high impedance 5. state. CS1 and CS2 must both be active during the tow write period.
- Transition is measured ±200mV from steady state. 6.
- OE is continuously HIGH. During a WE controlled write cycle with OE LOW, twp must be greater than or equal to twHz + tow to allow the I/O drivers to 7 turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the minimum write pulse is the specified twp.

ORDERING INFORMATION

IDT 71024

Device

Туре

.

CacheRAMs

3.3V ASYNCHRONOUS SRAM PRODUCTS

1N SRAN PRODUCTS

256K SRAM PRODUCTS

64K SRAM PRODUCTS

16K SRAW PRODUCTS

PACKAGE DIAGRAM OUTLINES

OUALITY AND RELIABILITY

TECHNOLOGY AND CAPABILITIES

GENERAL INFORMATION

3.3V SRAM PRODUCTS

IDT introduced the first true fast 3.3V SRAM in the world in 1992, the IDT713256SL, and we have continued to optimize our processes and designs to better perform in the emerging 3.3V marketplace. By developing 3.3V-specific designs and processes, IDT's 3.3V SRAMs exhibit excellent parametric characteristics both in speed and power consumption, as well as full compliance with the JEDEC LVTTL standard.

The IDT71V256SL (32K x 8) has an access time as fast as 15ns to provide the ultimate asynchronous SRAM perfor-

mance in both desktop and notebook PC's, while the IDT71V256SA provides more cost effective 20ns performance for less demanding applications.

These parts are ideal for portable equipment where both battery-life extension is essential and high-performance is necessary (<25ns speeds). The small SOJ and TSOP packages available help alleviate the typical space constraint in portable equipment.

		Part				Spee	eds
Function	Organization	Features	Process	Number	Power	Commercial	Military
3.3V SRAMs	32K x 8	3.3V	3.3V CMOS	71V256	SA	20,25	N/A
	32K x 8	3.3V	3.3V CMOS	71V256	SL	15	N/A

9.0

TABLE OF CONTENTS

3.3V SRAM PRODUCTS

IDT71V256SA	32K x 8 CMOS 3.3V	. 9.1
IDT71V256SL	32K x 8 CMOS 3.3V	. 9.2

PAGE

LOW POWER 3.3V CMOS FAST SRAM 256K (32K x 8-BIT)

PRELIMINARY IDT71V256SA

FEATURES

- · Ideal for high-performance processor secondary cache
- Fast access times:
 20/25ns
- · Low standby current (maximums):
 - 15mA standby
 - 500uA full standby
- Small packages for space-efficient layouts:
- 28-pin 300 mil SOJ
- Ideal configuration for large cache sizes, with minimum space and minimum power:
 - 32K x 8
- Produced with advanced high-performance CMOS technology
- Inputs and outputs are LVTTL-compatible
- Single 3.3V(±0.3V) power supply

DESCRIPTION

The IDT71V256SA is a 262,144-bit high-speed static RAM organized as 32K x 8. It is fabricated using IDT's high-performance, high-reliability CMOS technology.

The IDT71V256SA has outstanding low power characteristics while at the same time maintaining very high performance. Address access times of 20 and 25ns are ideal for 3.3V secondary cache in 3.3V desktop designs.

When power management logic puts the IDT71V256SA in standby mode, its very low power characteristics contribute to extended battery life. By taking \overline{CS} HIGH, the SRAM will automatically go to a low power standby mode and will remain in standby as long as \overline{CS} remains HIGH. Furthermore, under full standby mode (\overline{CS} at CMOS level, f=0), power consumption is guaranteed to always be less than 1.65mW and typically will be much smaller.

The IDT71V256SA is packaged in 28-pin 300 mil SOJ packaging.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc

COMMERCIAL TEMPERATURE RANGES

PIN CONFIGURATIONS

TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Com'l.	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	v
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to VCC+0.5	V
ΤΑ	Operating Temperature	0 to +70	°C
TBIAS	Temperature Under Bias	-55 to +125	°C
Tstg	Storage Temperature	-55 to +125	°C
Рт	Power Dissipation	1.0	W
lout	DC Output Current	50	mA

NOTES:

3101 tbl 03

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals only.

3. Input, Output, and I/O terminals; 4.6V maximum.

PIN DESCRIPTIONS

Name	Description			
A0-A14	Addresses			
I/O0I/O7	Data Input/Output			
CS	Chip Select			
WE	Write Enable			
ŌE	Output Enable			
GND	Ground			
Vcc	Power			
	3101 tbl 01			

CAPACITANCE

(TA = +25°C, f = 1.0MHz, SOJ package)

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	6	рF
Соит	Output Capacitance	VOUT = 3dV	7	рF
NOTE				101 101 0/

1. This parameter is determined by device characterization, but is not production tested.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Temperature	GND	Vcc
Commercial	0°C to +70°C	٥٧	$3.3V \pm 0.3V$

3101 tbl 05

TRUTH TABLE⁽¹⁾

WE	CS	ŌĒ	I/O	Function
Х	Н	Х	High-Z	Standby (ISB)
X	Vнс	Х	High-Z	Standby (ISB1)
н	L	Н	High-Z	Output Disable
Н	L	L	Dout	Read
L	L	Х	Din	Write
NOTE:				3101 tbl 02

1, H = VIH, L = VIL, X = Don't Care

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	3.0	3.3	3.6	٧
GND	Supply Voltage	0	0	0	۷
Viн	Input High Voltage	2.0	—	Vcc+0.3	٧
ViL	Input Low Voltage	-0.5 ⁽¹⁾	1	0.8	۷
NOTE					04 41-1 0.0

1. VIL (min.) = -1.0V for pulse width less than 5ns, once per cycle.

DC ELECTRICAL CHARACTERISTICS^(1, 2)

 $(VCC = 3.3V \pm 0.3V, VLC = 0.2V, VHC = VCC - 0.2V)$

		71V256SA20	71V256SA25	
Symbol	Parameter	Com'l.	Com'l.	Unit
lcc	Dynamic Operating Current $\overline{CS} \le V_{IL}$, Outputs Open, Vcc = Max., f = fMAX ⁽²⁾	105	100	mA
ISB	Standby Power Supply Current (TTL Level) $\overline{CS} = V_{IH}$, Vcc = Max., Outputs Open, f = fMax ⁽²⁾	20	20	mA
ISB1	Full Standby Power Supply Current (CMOS Level) $\overline{CS} \ge VHC$, Vcc = Max., f = 0	0.5	0.5	mA
NOTES:				3101 tbl 07

1. All values are maximum guaranteed values.

2. fMAX = 1/tRc, only address inputs cycling at fmax; f = 0 means that no inputs are cycling.

DC ELECTRICAL CHARACTERISTICS

 $Vcc = 3.3V \pm 0.3V$

			ID	T71V256S	A	
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
lu	Input Leakage Current	Vcc = Max., VIN = GND to Vcc			2	μА
ILO]	Output Leakage Current	$Vcc = Max., \overline{CS} = VIH, VOUT = GND to Vcc$	—		2	μA
Vol	Output Low Voltage	IOL = 8mA, VCC = Min.			0.4	V
Voн	Output High Voltage	IOH = -4mA, Vcc = Min.	2.4		_	V

3101 tbl 09

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2
	3101 tbl 08

3.3V 320Ω DATAOUT. 350Ω 30pF* 3101 drw 03

Figure 1. AC Test Load

Figure 2. AC Test Load (for tclz, tolz, tchz, tohz, tow, twhz)

*Includes scope and jig capacitances

AC ELECTRICAL CHARACTERISTICS (Vcc = 3.3V ± 0.3V, Commercial Temperature Range)

		71V25	SA20	71V2	56SA25	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
Read C	ycle					
tRC	Read Cycle Time	20	_	25	-	ns
tAA	Address Access Time	_	20		25	ns
tACS	Chip Select Access Time		20		25	ns
tcLz ⁽¹⁾	Chip Select to Output in Low-Z	5	_	5		ns
tCHZ ⁽¹⁾	Chip Select to Output in High-Z	0	10	0	11	ns
_toe	Output Enable to Output Valid		8	_	10	ns
tolz ⁽¹⁾	Output Enable to Output in Low-Z	3	_	3		ns
tonz ⁽¹⁾	Output Disable to Output in High-Z	2	8	2	10	ns
tон	Output Hold from Address Change	3		3		ns
Write C	ycle					
twc	Write Cycle Time	20		25		ns
tAW	Address Valid to End-of-Write	15		20		ns
tcw	Chip Select to End-of-Write	15	_	20	—	ns
tas	Address Set-up Time	· 0	—	0	—	ns
tWP	Write Pulse Width	15		15		ns
twn	Write Recovery Time	0		0		ns
tDW	Data to Write Time Overlap	8	_	10	_	ns
t DH	Data Hold from Write Time	0		0	_	ns
tow ⁽¹⁾	Output Active from End-of-Write	4		4		ns
twHz ⁽¹⁾	Write Enable to Output in High-Z	1	10	1	11	ns

NOTE:

1. This parameter guaranteed with the AC test load (Figure 2) by device characterization, but is not production tested.

3101 tbl 11

TIMING WAVEFORM OF READ CYCLE NO. 1⁽¹⁾

NOTES:

1. WE is HIGH for Read cycle.

2. Transition is measured ±200mV from steady state.

TIMING WAVEFORM OF READ CYCLE NO. 2^(1, 2, 4)

3101 drw 06

TIMING WAVEFORM OF READ CYCLE NO. 3^(1, 3, 4)

NOTES:

- 1. WE is HIGH for Read cycle.
- 2. Device is continuously selected, CS is LOW.
- 3. Address valid prior to or coincident with $\overline{\text{CS}}$ transition LOW.
- 4. OE is LOW.
- 5. Transition is measured ±200mV from steady state.

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED TIMING)^(1, 2, 3, 5, 7)

NOTES:

- 1. WE or CS must be HIGH during all address transitions.
- 2. A write occurs during the overlap of a LOW CS and a LOW WE.
- 3. two is measured from the earlier of \overline{CS} or \overline{WE} going HIGH to the end of the write cycle.
- 4. During this period, I/O pins are in the output state so that the input signals must not be applied.
- 5. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 6. Transition is measured ±200mV from steady state.
- 7. If OE is LOW during a WE controlled write cycle, the write pulse width must be the larger of twp or (twHz + tow) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the write pulse can be as short as the spectified twp.

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS CONTROLLED TIMING)^(1, 2, 3, 4)

NOTES:

- 1. $\overline{\text{WE}}$ or $\overline{\text{CS}}$ must be HIGH during all address transitions.
- 2. A write occurs during the overlap of a LOW CS and a LOW WE.
- 3. two is measured from the earlier of CS or WE going HIGH to the end of the write cycle.
- 4. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 5. If OE is LOW during a WE controlled write cycle, the write pulse width must be the larger of twp or (twHz + tbw) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the write pulse can be as short as the spectified twp.

ORDERING INFORMATION

3101 drw 10

VERY LOW POWER 3.3V CMOS FAST SRAM 256K (32K x 8-BIT)

FEATURES

- Ideal for high-performance processor secondary cache, notebook/sub-notebook cache, and other battery-operated applications
- Fast access times: — 15ns
- Very low standby current (maximums):
 - 3.0mA standby
 - 500uA full standby
- · Small packages for space-efficient layouts:
- 28-pin 300 mil SOJ
- 28-pin 300 mil plastic DIP
- 28-pin TSOP Type I
- Ideal configuration for large cache sizes, with minimum space and minimum power:
 - 32K x 8
- Produced with advanced high-performance CMOS technology
- · Inputs and outputs are LVTTL-compatible

FUNCTIONAL BLOCK DIAGRAM

• Single 3.3V(±0.3V) power supply

DESCRIPTION

The IDT71V256SL is a 262,144-bit high-speed static RAM organized as 32K x 8. It is fabricated using IDT's high-performance, high-reliability CMOS technology.

The IDT71V256SL has outstanding low power characteristics while at the same time maintaining very high performance. Address access time of 15ns is ideal for 3.3V secondary cache designs in both 3.3V desktop and notebook designs. Portable communications and test equipment also benefit from these fast speeds and low power.

When power management logic puts the IDT71V256SL in standby mode, its very low power characteristics contribute to extended battery life. By taking \overline{CS} HIGH, the SRAM will automatically go to a low power standby mode and will remain in standby as long as \overline{CS} remains HIGH. Furthermore, under full standby mode (\overline{CS} at CMOS level, f=0), power consumption is guaranteed to always be less-than 1.65mW and typically will be much smaller.

The IDT71V256SL is packaged in 28-pin 300 mil SOJ, 28-pin 300 mil plastic DIP, and 28-pin 300mil TSOP Type I packaging which helps the designer attain the stringent space goals typical of notebooks, sub-notebooks, and battery-operated portable equipment.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

COMMERCIAL TEMPERATURE RANGES

PIN CONFIGURATIONS

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Com'l.	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +4.6	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to VCC+0.5	V
TA	Operating Temperature	0 to +70	°C
TBIAS	Temperature Under Bias	-55 to +125	°C
Tstg	Storage Temperature	-55 to +125	°C
Рт	Power Dissipation	1.0	W
lout	DC Output Current	50	mA
NOTES:		:	3012 tbl 03

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals only.

3. Input, Output, and I/O terminals; 4.6V maximum.

CAPACITANCE

(TA = +25°C.	.f=	1.0MHz	. SOJ	package
--------------	-----	--------	-------	---------

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	5	рF
Соит	Output Capacitance	VOUT = 3dV	7	рF
NOTE				3012 tbl 04

1. This parameter is determined by device characterization, but is not production tested.

RECOMMENDED OPERATING **TEMPERATURE AND SUPPLY VOLTAGE**

Grade	Temperature	GND	Vcc
Commercial	0°C to +70°C	٥V	$3.3V\pm0.3V$

3012 tbl 05

TSOP TOP VIEW

PIN DESCRIPTIONS

Name	Name Description A0-A14 Addresses			
A0-A14				
1/00-1/07	Data Input/Output			
CS	Chip Select			
WE	Write Enable			
ŌE	Output Enable			
GND	Ground		GND Ground	
Vcc	Power	Power		

3012 tbl 01

TRUTH TABLE⁽¹⁾

WE	CS	OE	1/O	Function
Х	н	Х	High-Z	Standby (ISB)
x	Vнс	х	High-Z	Standby (ISB1)
н	L	H	High-Z	Output Disable
н	L	L	DOUT	Read
L	L	Х	DIN	Write

1. H = VIH, L = VIL, X = Don't Care

3012 tbl 02

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	3.0	3.3	3.6	V
GND	Supply Voltage	0	0	0	V
ViH	Input High Voltage	2.0	_	Vcc+0.3	V
VIL	Input Low Voltage	0.5 ⁽¹⁾	_	0.8	V
NOTE: 3012 tb					12 tbl 06

1. VIL (min.) = -1.0V for pulse width less than 5ns, once per cycle.
DC ELECTRICAL CHARACTERISTICS^(1, 2)

 $(VCC = 3.3V \pm 0.3V, VLC = 0.2V, VHC = VCC - 0.2V)$

Symbol	Parameter	71V256SL15 Com'l.	Unit
Icc	Dynamic Operating Current $\overline{CS} \le VIL$, Outputs Open, Vcc = Max., f = fMax ⁽²⁾	80	mA
ISB	Standby Power Supply Current (TTL Level) $\overline{CS} = V_{IH}$, Vcc = Max., Outputs Open, f = fMax ⁽²⁾	3	mA
ISB1	Full Standby Power Supply Current (CMOS Level) CS ≥ VHc, Vcc = Max., f = 0	0.5	mA
NOTES:			3012 tbl 07

NOTES:

1. All values are maximum guaranteed values.

2. fMAX = 1/tRc, only address inputs cycling at fmax; f = 0 means that no inputs are cycling.

DC ELECTRICAL CHARACTERISTICS

 $Vcc = 3.3V \pm 0.3V$

			IDT71V256SL			
Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
11	Input Leakage Current	Vcc = Max., VIN = GND to Vcc	-	-	2	μΑ
llo]	Output Leakage Current	Vcc = Max., CS = VIH, VouT = GND to Vcc			_2	μA
Vol	Output Low Voltage	IOL = 8mA, VCC = Min.	—		0.4	V
Vон	Output High Voltage	IOH = -4mA, Vcc = Min.	2.4			V

3012 tbl 09

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1 and 2
	3012 tbl 08

3.3V **320Ω** DATAOUT -350Ω 30pF* 3012 drw 04

Figure 1. AC Test Load

Figure 2. AC Test Load (for tCLZ, tOLZ, tCHZ, tOHZ, tOW, tWHZ)

*Includes scope and jig capacitances

AC ELECTRICAL CHARACTERISTICS (Vcc = 3.3V ± 0.3V, Commercial Ranges)

		71V256SL15		
Symbol	Parameter	Min.	Max.	Unit
Read C	ycle			
tRC	Read Cycle Time	15	—	ns
taa 🔤	Address Access Time		15	ns
tacs	Chip Select Access Time	_	15	ns
tc∟z ⁽¹⁾	Chip Select to Output in Low-Z	5	-	ns
tcHz ⁽¹⁾	Chip Select to Output in High-Z	0	9	ns
tOE	Output Enable to Output Valid	-	7	ns
toLZ ⁽¹⁾	Output Enable to Output in Low-Z	3	_	ns
tonz ⁽¹⁾	Output Disable to Output in High-Z	2	7	ns
toн	Output Hold from Address Change	3	-	ns
Write C	ycle			
twc	Write Cycle Time	15	—	ns
taw	Address Valid to End-of-Write	10		ns
tcw	Chip Select to End-of-Write	10		ns
tas	Address Set-up Time	0		ns
twp	Write Pulse Width	10	-	ns
twn_	Write Recovery Time	00		ns
tow	Data to Write Time Overlap	7		ns
tDH	Data Hold from Write Time	00		ns
tow ⁽¹⁾	Output Active from End-of-Write	4		ns
twнz ⁽¹⁾	Write Enable to Output in High-Z	1	9	ns

NOTE:

1. This parameter guaranteed with the AC test load (Figure 2) by device characterization, but is not production tested.

3012 tbl 11

TIMING WAVEFORM OF READ CYCLE NO. 1⁽¹⁾

NOTES:

1. WE is HIGH for Read cycle.

2. Transition is measured ±200mV from steady state.

TIMING WAVEFORM OF READ CYCLE NO. 2^(1, 2, 4)

3012 drw 07

TIMING WAVEFORM OF READ CYCLE NO. 3^(1, 3, 4)

NOTES:

- 1. WE is HIGH for Read cycle.
- 2. Device is continuously selected, CS is LOW.
- 3. Address valid prior to or coincident with \overline{CS} transition LOW.
- 4. OE is LOW.
- 5. Transition is measured ±200mV from steady state.

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE CONTROLLED TIMING)^(1, 2, 3, 5, 7)

NOTES:

- 1. WE or CS must be HIGH during all address transitions.
- 2. A write occurs during the overlap of a LOW CS and a LOW WE.
- 3. twn is measured from the earlier of CS or WE going HIGH to the end of the write cycle.
- 4. During this period, I/O pins are in the output state so that the input signals must not be applied.
- 5. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 6. Transition is measured ±200mV from steady state.
- 7. If OE is LOW during a WE controlled write cycle, the write pulse width must be the larger of twp or (twHZ + tow) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the write pulse can be as short as the spectified twp.

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (\overline{CS} CONTROLLED TIMING)^(1, 2, 3, 4)

NOTES:

- 1. WE or CS must be HIGH during all address transitions.
- 2. A write occurs during the overlap of a LOW $\overline{\text{CS}}$ and a LOW $\overline{\text{WE}}$.
- 3. two is measured from the earlier of CS or WE going HIGH to the end of the write cycle.
- 4. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 5. If OE is LOW during a WE controlled write cycle, the write pulse width must be the larger of twp or (twHZ + tbw) to allow the I/O drivers to turn off and data to be placed on the bus for the required tbw. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the write pulse can be as short as the spectified twp.

ORDERING INFORMATION

3012 drw 11

CACHE TAGS

CacheRAMs

3.3V ASYNCHRONOUS SRAM PRODUCTS

1M SRAM PRODUCTS

256K SRAM PRODUCTS

64K SRAM PRODUCTS

16K SRAM PRODUCTS

PACKAGE DIAGRAM OUTLINES

TECHNOLOGY AND CAPABILITIES

GENERAL INFORMATION

QUALITY AND RELIABILITY

CACHE SRAM PRODUCTS

IDT has been a pioneer in the area of processor specific CacheRAMs, defined and designed to meet processor secondary cache performance and configuration requirements. From the $32K \times 9$ Burst IDT71589 and $16K \times 9 \times 2$ IDT71B229 to the wider configurations offered today, IDT has used technology to provide cost-effective cache data SRAMs.

secondary cache performance at bus speeds up to 66MHz. With 3.3V bus compatibility, these devices serve the high end PC marketplace where the ultimate performance is required.

In development is a wider (x 32) device, the IDT71V432, which will provide 3.3V pipelined burst SRAM performance at an affordable cost through the use of IDT's state-of-the-art 3.3V CMOS technology.

Current offerings include the IDT71419 and IDT71420, which utilize BiCMOS technology to enable zero-wait state

Part		Spee	Speed				
Function	Organization	Features	Process	Number	Power	Commercial	Military
Cache SRAMs	32K x 18	PowerPC Burst	BiCMOS	71419	S	9,10,12	N/A
	32K x 18	Intel Burst	BICMOS	71420	S	9,10,12	N/A
	32K x 32	3.3V Intel Pipelined Burst	3.3V CMOS	71V432	S	9,10,12	N/A

10

TABLE OF CONTENTS

PAGE

CacheRAMs		
IDT71419	32K x 18 BiCMOS CacheRAM for PowerPC [™] Processors	10.1
IDT71420	32K x 18 BiCMOS CacheRAM for Pentium [™] Processors	10.2
IDT71V432	32K x 32 CMOS Pipelined CacheRAM for Pentium Processors	10.3

32K x 18 CacheRAM[™] BURST COUNTER & SELF-TIMED WRITE — FOR THE PowerPC[™] PROCESSOR

PRELIMINARY IDT71419

FEATURES:

- · 32K x 18 architecture
- Fast clock-to-data access times: 9, 10, 12 ns
- Internal burst read and write address counter
- · Internal input registers (data and control)
- Internal address registers
- Self-timed write cycle
- Single 5V power supply
- Regulated I/Os are 3.3V LVTTL Compatible
- Complies with all timing and signals of the 68040/60 and PowerPC processor
- Packaged in a JEDEC Standard 52-pin plastic leaded chip carrier (PLCC)

DESCRIPTION:

The IDT71419 is a very high-speed 32K x 18-bit static RAM with full on-chip hardware support of the PowerPC processor interface. This part is designed to facilitate the implementation of the highest performance secondary caches while using either available cache-tag SRAMs and PALs or chipsets for the PowerPC processor.

The IDT71419 CacheRAM contains a full set of write, data, address and control registers. Internal logic allows the processor to generate a self-timed write based upon a decision which can be left until the extreme end of the write cycle.

An internal burst address counter accepts the first cycle address from the processor, then cycles through the adjacent three locations using the PowerPC burst refill sequence, on appropriate rising edges of the system clock.

Fabricated using IDT's BiCMOS high-performance submicron technology, this device offers a maximum clock-todata access time as fast as 9ns, while requiring an address setup of only 2.5ns.

The IDT logo is a registered trademark and CacheRAM is a trademark of Integrated Device Technology, Inc. PowerPC is a trademark of International Business Machines, Inc.

COMMERCIAL TEMPERATURE RANGE

DESCRIPTION (CONTINUED)

The IDT71419 CacheRAM is packaged in a JEDEC Standard 52-pin plastic leaded chip carrier (PLCC).

FUNCTIONALITY

The IDT71419 differs from a standard SRAM in that it's synchronous and has an internal burst counter. The synchronous functionality eases cache controller design, while the internal burst counter simplifies implementation of burst accesses.

The registered address, data-in, and write control inputs of the IDT71419 provide for synchronous write operation. All that is needed to complete a write is that the inputs be valid at rising edge of clock while meeting specified setup and hold times. This write critieria simplifies cache controller design by not requiring the write control pulse needed by asynchronous SRAMs.

A two-bit internal burst counter is used to generate the appropriate internal addresses for A0 and A1 needed for burst accesses. The burst counter starts at the base address defined by the external addresses A0 and A1. Once loaded. the internal addresses are cycled through by keeping ADV LOW at the rising edge of clock. ADV HIGH at the rising edge of clock stops the advance of the burst counter and suspends the burst sequence.

Powering up the IDT71419 is accomplished by keeping \overline{AP} or AC LOW with CS LOW at the rising edge of clock. Powering down the IDT71419 is accomplished by keeping AC LOW with CS HIGH at the rising edge of clock.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Ambient Temperature	GND	Vcc
Commercial	0°C to +70°C	٥V	5.0V ± 5%
			2933 tbl 05

PLCC TOP VIEW

PIN NAMES

A0 - A14	Address Inputs
CLK	Clock
ŪW, LW	Upper, Lower Byte Write Enables
ŌĒ	Output Enable
CS	Chip Select
ADV	Burst Address Advance
AP, AC	Burst Transfer Start (Processor & Cache Controller)
I/O0 - I/O17	Data Input/Output
Vcc	+5V Power
Vss	Ground

2933 tbl 01

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit	1
Vcc	Supply Voltage	4.75	5.0	5.25	V	
Vss	Supply Ground	0	0	0	V	
Viн	Input High Voltage	2.2	3.0	Vcc+0.5	V	
VIL	Input Low Voltage	-0.5 ⁽¹⁾		0.8	v	
OTE:					2933 tbl 06	6

NOTE:

1. VIL (min.) = -1.5V for pulse width of less than 10ns, once per cycle, for I< 20mA

SYNCHRONOUS TRUTH TABLE^(1, 2, 3)

CS	AP	ĀČ	ADV	UW + LW	CLK	Address	Operation
н	L	Н	Х	X	Ŷ	N/A	Deselected, Power Down
Н	X	L	X	Х	↑	N/A	Deselected, Power Down
L	L	Х	Х	Х	î (External Address	Read Cycle, Begin Burst ⁽⁵⁾
L	н	L	X	L	↑	External Address	Write Cycle, Begin Burst ⁽⁵⁾
L	н	L	Х	Н	↑	External Address	Read Cycle, Begin Burst ⁽⁵⁾
Х	н	н	L	L	↑ ·	Next Address	Write Cycle, Continue Burst ⁽⁴⁾
Х	н	н	L	Н	↑ I	Next Address	Read Cycle, Continue Burst ⁽⁴⁾
Х	Н	Н	Н	L	1	Current Address	Rewrite Cycle, Suspend Burst ⁽⁴⁾
X	Н	Н	Н	Н		Current Address	Read Cycle, Suspend Burst ⁽⁴⁾

NOTES:

1. L = VIL, H = VIH, \uparrow = CLK LOW-to-HIGH transition,X = Don't Care.

2. All inputs except OE must meet setup and hold times for the LOW-to-HIGH transition of CLK; OE operates asynchronously.

3. Wait states can be inserted by suspending a burst sequence, ie. ADV = HIGH clocked in by a CLK LOW-to-HIGH transition.

4. If the device is already powered down it will remain powered down.

5. If the device is powered down it will power up.

ASYNCHRONOUS TRUTH TABLE^(1, 2)

Operation OE		I/O Status
Read	L	Data Out (1/00 - 1/017)
Read	Н	High-Z
Write	Х	High-Z — Data In (I/O0 – I/O17)
Deselected	X	High-Z

NOTES:

1. L = VIL, H = VIH, X = Don't Care.

2. For a write operation following a read operation, OE must be HIGH before the input data required setup time and held HIGH throughout the input

CAPACITANCE

 $(TA = +25^{\circ}C, f = 1.0 \text{ MHz})$

Symbol	Parameter ⁽¹⁾	Condition	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	5	рF
CI/O	Input/Output Capacitance	VI/O = 3dV	7	рF
NOTE:				2933 tbl 09

NOTE:

1. This parameter is determined by device characterization, but is not production tested.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0 ⁽²⁾	V
Ta	Operating Temperature	-0 to +70	°C
TBIAS	Temperature Under Bias	-65 to +135	°C
Ts⊺g	Storage Temperature	65 to +150	°C
PT	Power Dissipation	1.7	Ŵ
Ιουτ	DC Output Current	30	mA

NOTES:

2933 tbl 03

2933 tbl 04

2933 tbl 02

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VIN should not exceed Vcc+0.5V. All pins should not exceed 7.0V.

DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING **TEMPERATURE AND SUPPLY VOLTAGE RANGE** (Vcc = $5.0V \pm 5\%$)

Symbol	Parameter	Test Condition	Min.	Max.	Unit
lu	Input Leakage Current	Vcc= Max., VIN = 0V to Vcc	_	5	μΑ
luo]	Output Leakage Current	CS ≥ ViH, OE ≥ ViH,	-	5	μA
		VOUT = 0V to VCC, VCC = Max.			
VOL	Output Low Voltage (I/O0-I/O17)	IOL = 8mA, VCC = Min.		0.4	V
Vон	Output High Voltage	Iон = -4mA, Vcc = Min.	2.4	-	V

2933 tbl 07

DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE^(1, 4) (Vcc = $5.0V \pm 5\%$)

			71419S9	71419S10	71419512	
Symbol	Parameter	Test Condition	Commercial	Commercial	Commercial	Unit
lcc	Operating Power Supply Current	$\overline{CS} \le VIL, \overline{OE} \le VIL, Outputs Open,$ Vcc = Max., f = fMAX ⁽²⁾	320	310	300	mA
ISB	Standby Power Supply Current	$\overline{CS} \ge VIH$, All Inputs $\ge VIH$ or $\le VIL$, VCC = Max., f = fMAX ⁽³⁾	50	50	50	mA
ISB1	Full Standby Power Supply Current	$\overline{CS} \ge V_{HC}$, All Inputs $\ge V_{HC}$ or $\le V_{LC}$. Vcc = Max., f = 0 ⁽³⁾	30	30	30	mA

NOTES:

1. All values are maximum guaranteed values.

2. At f = fMAX, address inputs are cycling at the maximum frequency of read cycles of 1/tcyc while \overline{AP} or \overline{AC} = LOW.

2. At $f = fixe_x$, address inputs are cycling at the maximum frequency of read cycles of 1/tcyc while \overline{AP} , \overline{AC} , and $\overline{ADV} = HIGH$. f = 0 means no address input lines change, \overline{AP} , \overline{AC} , and $\overline{ADV} = V_{HC}$.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Timing Reference Levels	1.5V
AC Test Load	See Figures 1 and 2

2933 tbl 10

AC TEST LOADS

Figure 1. AC Test Load

2933 drw 05

2933 tbl 08

Figure 2. AC Test Load (for toHz, tCHz, toLz, and tDC1)

* Including scope and jig

10.1

AC ELECTRICAL CHARACTERISTICS (1, 2, 3, 6)

 $(Vcc = 5.0V \pm 5\%, Ta = 0 \text{ to } 70^{\circ}C)$

		IDT71419S9		IDT714	119510	IDT714	IDT71419S12	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tcyc ⁽⁴⁾	Cycle Time	15	_	16.6		20		ns
tCD	Clock Access Time	_	9		10	_	12	ns
tOE	Output Enable Access		5		6		7	ns
tDC1 ⁽⁵⁾	Clock High to Output Active	3		3	_	3	_	ns
tDC2	Clock High to Data Change	3		3	—	3	—	ns
tolz ⁽⁵⁾	Output Enable to Data Active	0	_	0		0		ns
tonz ⁽⁵⁾	Output Disable to Data High-Z	2	6	_2	6	2	7	ns
tcHz ⁽⁵⁾	Clock High to Data High-Z		6		6		6	ns
tcH ⁽⁷⁾	Clock High Pulse Width	5	_	5.5		6		ns
tcL ⁽⁷⁾	Clock Low Pulse Width	5	_	5.5		6	1	ns
tsa ⁽⁶⁾	Address Setup Time	2.5		2.5		3	-	ns
tss ⁽⁶⁾	Address Status Setup Time	2.5		2.5		3		ns
tsD ⁽⁶⁾	Data In Setup Time	2.5	_	2.5		3	_	ns
tsw ⁽⁶⁾	Write Setup Time	2.5	_	2.5	_	3	_	ns
tsav ⁽⁶⁾	Address Advance Setup Time	2.5		2.5		3		ns
tsc ⁽⁶⁾	Chip Select Setup Time	2.5		2.5	_	3	_	ns
tHA ⁽⁶⁾	Address Hold Time	2		2		2		ns
tHS ⁽⁶⁾	Address Status Hold Time	2		2	—	2		ns
tHD ⁽⁶⁾	Data In Hold Time	2	—	_2	_	2	-	ns
tHW ⁽⁶⁾	Write Hold Time	2		2		2		ns
tHAV ⁽⁶⁾	Address Advance Hold Time	2	_	2	_	2	_	ns
tHC ⁽⁶⁾	Chip Select Hold Time	2	_	2		2	_	ns
NOTES						L		2022 tbl 11

NOTES:

1. A read cycle is defined by both \overline{UW} and \overline{LW} = HIGH or \overline{AP} = LOW. A write cycle is defined by either \overline{UW} or \overline{LW} = LOW and \overline{AP} = HIGH.

2. All read and write cycle timings are referenced from CLK, or OE as it applies.

3. \overline{OE} is a don't care when \overline{UW} or \overline{LW} = LOW is clocked in.

4. Maximum access times are guaranteed from all possible PowerPC external bus cycles.

5. Transition is measured ±200mV from steady-state. This parameter is guaranteed by device characterization with the AC Load (Figure 2), but is not production tested.

6. This is a synchronous device. All synchronous inputs must meet the specified setup and hold times for ALL rising edges of CLK when the chip is selected. Chip Select must be active (CS = LOW) at each rising edge of clock when AC or AP is LOW for the device to remain enabled.

7. This parameter is measured HIGH above 2.2V and LOW below 0.8V.

10.1

NOTES:

- 1. When AP and CS are LOW, the device is put into read mode. An AP and CS initiated write must include one extra clock cycle between AP sampled LOW and the first write operation. AC can initiate either a read or a write cycle without requiring an additional clock cycle between AC being sampled LOW and the first read or write operation.
- 2. O1 (Ax) represents the first output from the external address Ax. O1 (Ay) represents the first output from the external address Ay; O2 (Ay) represents the next output data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing sub-locally for the four word burst.

NOTES:

- 1. When AP and CS are LOW, the device is put into read mode. An AP and CS intiated write must include one extra clock cycle between AP sampled LOW and the first write operation. AC can initiate either a read cycle or a write cycle without requiring an additional clock cycle between AC being sampled LOW and the first read or write operation.
- 2. O3 (Aw) represents the third output from the external address Aw previously loaded, and O4 (Aw) represents the fourth and last of the Burst outputs from the external address Aw. I1 (Ax) represents the first input to the external address Ax. I1 (Ay) represents the first input from the external address Ay, I2 (Ay) represents the next input data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing sub-locally for the four word burst.
- ADV = HIGH on rising edge of CLK suspends the count advance which allows wait states to be added. During the wait state the previously written data may be modified (rewritten with new data).

COMBINATION READ/WRITE CYCLE (1,3)

NOTES:.

I1 (Ay) represents the first input to the external address Ay. O1 (Az) represents the first output from the external address Az, O2 (Az) represents the next
output data in the burst sequence of the base address Az.

2. AP and AC are active LOW signals which allow registering of the address bits. AP blocks the write (when either UW or UW is LOW) whereas AC does not. The first burst cycle of the back-to-back cycles requires the standard 2:1:1:1 clocking, the subsequent burst cycles may realize a 1:1:1:1 clock count using the last clock of the first burst cycle for the address status of the next burst cycle. Back-to-back read cycles may be initiated by either AP or AC. Backto-back writes may only be initiated by AC.

3. CS = LOW, AC = HIGH.

ORDERING INFORMATION

2933 drw 10

32K x 18 CacheRAM[™] **BURST COUNTER & SELF-TIMED WRITE**

PRELIMINARY IDT71420

FOR THE PENTIUM[™] PROCESSOR

FEATURES:

- 32K x 18 architecture
- Fast clock-to-data access times: 9, 10, 12 ns
- · Internal burst read and write address counter
- · Processor Burst Pipelining is permitted via Chip Select gating ADSP
- Internal input registers (data and control)
- · Internal address registers
- · Self-timed write cycle
- Single 5V power supply
- Regulated I/Os are 3.3V LVTTL Compatible

FUNCTIONAL BLOCK DIAGRAM

- · Complies with all timing and signals of the Pentium processor
- Packaged in a JEDEC Standard 52-pin plastic leaded chip carrier (PLCC)

DESCRIPTION:

The IDT71420 is a high-speed 32K x 18-bit static RAM with full on-chip hardware support of the Pentium processor interface. This part is designed to facilitate the implementation of the highest-performance secondary caches while using either available cache-tag SRAMs and PALs or chipsets for the Pentium processor.

The IDT71420 CacheRAM contains a full set of write, data. address, and control registers. Internal logic allows the processor to generate a self-timed write based upon a decision which can be left until the extreme end of the write cycle.

An internal burst address counter accepts the first cycle address from the processor, then cycles through the adjacent three locations using the Pentium burst refill sequence, on appropriate rising edges of the system clock.

Fabricated using IDT's BiCMOS high-performance submicron technology, this device offers a maximum clock-todata access time as fast as 9ns, while requiring an address setup of only 2.5ns.

The IDT logo is a registered trademark and CacheRAM is a trademark of Integrated Device Technology Pentium is a trademark of Intel Corp.

COMMERCIAL TEMPERATURE RANGE

DESCRIPTION (CONTINUED)

The IDT71420 CacheRAM is packaged in a JEDEC Standard 52-pin plastic leaded chip carrier (PLCC).

FUNCTIONALITY

The IDT71420 is synchronous and has an internal burst counter. The synchronous functionality eases cache controller design, while the internal burst counter simplifies implementation of burst accesses.

The registered address, data-in, and write control inputs of the IDT71420 allow for synchronous write operation. To perform a write the inputs must be valid at the rising edge of clock while meeting specified setup and hold times. This write requirement simplifies cache controller design by not requiring the write control pulse needed by asynchronous SRAMs.

A two-bit internal burst counter is used to generate the appropriate internal addresses for A0 and A1 needed for burst accesses. The burst counter starts at the base address defined by the external addresses A0 and A1. Once loaded, the internal addresses are cycled through by keeping ADV LOW at the rising edge of clock. ADV HIGH at the rising edge of clock stops the advance of the burst counter and suspends the burst sequence.

Address pipelining can be achieved by using \overline{CS} (a controller input to the IDT71420) to block premature assertions of \overline{ADSP} (a CPU input to the IDT71420). The cache controller can request a new address from the CPU and block \overline{ADSP} to the IDT71420 using \overline{CS} HIGH so the new address is not loaded immediately. The controller can assert \overline{ADSC} later to load in the new address at the appropriate time.

Powering up the IDT71420 is accomplished by keeping $\overline{\text{ADSP}}$ or $\overline{\text{ADSC}}$ LOW with $\overline{\text{CS}}$ LOW at rising edge of clock. Powering down the IDT71420 is accomplished by keeping $\overline{\text{ADSC}}$ LOW with $\overline{\text{CS}}$ HIGH at rising edge of clock.

Burst Sequence for Internal Burst Counter

2934 drw 02

PLCC TOP VIEW

PIN NAMES

A0 - A14	Address Inputs
CLK	Clock
ŪŴ, ĽŴ	Upper, Lower Byte Write Enables
ŌĒ	Output Enable
CS	Chip Select
ADV	Burst Address Advance
ADSP, ADSC	Address Status (Processor & Cache Controller)
1/O0 - 1/O17	Data Input/Output
Vcc	+5V Power
Vss	Ground
	2034 tbl 01

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.75	5.0	5.25	V
Vss	Supply Ground	0	0	0	V
Viн	Input High Voltage	2.2	3.0	Vcc+0.5	V
VIL	Input Low Voltage	-0.5(1)		0,8	V
NOTE					

NOTE:

10.2

 VIL (min.) = −1.5V for pulse width of less than 10ns, once per cycle, for I≤ 20mA.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Ambient Temperature	GND	Vcc
Commercial	0°C to +70°C	ov	5.0V ± 5%
			2934 tbl 05

2934 tbl 02

2934 tbl 04

SYNCHRONOUS TRUTH TABLE^(1, 2, 3)

ČS	ADSP	ADSC	ADV		CLK	Address	Operation
Н	Х	L	Х	X	\uparrow	N/A	Deselected, Power Down
Н	L	Н	X ⁽⁴⁾	X ⁽⁴⁾	\uparrow	N/A	Address Input Ignored ^(4,5)
L	L	X	X	X	↑	External Address	Read Cycle, Begin Burst ⁽⁶⁾
L	Н	L	X	L	Î	External Address	Write Cycle, Begin Burst ⁽⁶⁾
L	Н	L	Х	Н	↑	External Address	Read Cycle, Begin Burst ⁽⁶⁾
Х	н	Н	L	L	↑	Next Address	Write Cycle, Continue Burst ⁽⁵⁾
Х	Н	Н	L	н	Ŷ	Next Address	Read Cycle, Continue Burst ⁽⁵⁾
Х	Н	Н	Н	L	\uparrow	Current Address	Rewrite Cycle, Suspend Burst ⁽⁵⁾
Х	Н	Н	Н	Н	\uparrow	Current Address	Read Cycle, Suspend Burst ⁽⁵⁾

NOTES:

1. L = VIL, H = VIH, \uparrow = CLK LOW-to-HIGH transition, X = Don't Care.

2. All inputs except OE must meet setup and hold times for the LOW-to-HIGH transition of CLK; OE operates asynchronously.

3. Wait states can be inserted by suspending a burst sequence, ie. ADV = HIGH clocked in by a CLK LOW-to-HIGH transition.

4. CS gates ADSP when CS = HIGH. Mode is used for address pipelining. Address input registers remain unchanged until either ADSC and CS or ADSP and CS are sampled LOW simultaneously. Other functionality of the device remains unchanged, i.e. ADV advances the burst counter, UW + LW determines Read or Write status.

5. If the device is already powered down, it will remain powered down.

6. If the device is powered down, it will power up.

ASYNCHRONOUS TRUTH TABLE^(1, 2)

Operation	ŌĒ	I/O Status
Read	L	Data Out (1/00 – 1/017)
Read	Н	High-Z
Write	Х	High-Z — Data In (I/O0 – I/O17)
Deselected	х	– High-Z

NOTES:

2. For a write operation following a read operation, OE must be HIGH before the input data required setup time and held HIGH throughout the input data hold time.

CAPACITANCE

 $(TA = +25^{\circ}C, f = 1.0 \text{ MHz})$

Symbol	Parameter ⁽¹⁾	Condition	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	5	рF
CI/O	Input/Output Capacitance	VI/O = 3dV	7	рF
NOTE:	• · · · · · · · · · · · · · · · · · · ·		-l	2934 tbl 09

NOTE:

1. This parameter is determined by device characterization, but is not production tested.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0 ⁽²⁾	V
TA	Operating Temperature	0 to +70	°C
TBIAS	Temperature Under Bias	-65 to +135	°C
Tstg	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.7	W
Ιουτ	DC Output Current	30	mA

NOTES:

2934 tbl 03

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. VIN and VI/O should not exceed Vcc+0.5V. All other pins should not exceed 7.0V.

DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE (Vcc = 5.0V ± 5%)

Symbol	Parameter	Test Condition	Min.	Max.	Unit
L	Input Leakage Current	Vcc= Max., VIN = 0V to Vcc	_	5	μA
llo	Output Leakage Current	CS≥VIH, OE≥VIH,	-	5	μA
		VOUT = 0V to VCC, VCC = Max.			
Vol	Output Low Voltage (I/Oo-I/O17)	IOL = 8mA, VCC = Min.	-	0.4	V
Vон	Output High Voltage(I/O0 – I/O17)	Iон = –4mA, Vcc = Min.	2.4	3.3	V

^{1.} L = VIL, H = VIH, X = Don't Care.

DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE^(1, 4) ($V_{CC} = 5.0V \pm 5\%$)

			71420S9	71420S10	71420S12			
Symbol	Parameter	Test Condition	Commercial	Commercial	Commercial	Unit		
lcc	Operating Power Supply Current	CS ≤ VIL, OE ≤ VIL, Outputs Open, Vcc = Max., f = fMAX ⁽²⁾	320	310	300	mA		
ISB	Standby Power Supply Current	$\overline{CS} \ge V_{IH}$, All Inputs $\ge V_{IH}$ or $\le V_{IL}$, Vcc = Max., f = fMax ⁽³⁾	50	50	50	mA		
ISB1	Full Standby Power Supply Current	$\overline{CS} \ge V_{HC}$, All Inputs $\ge V_{HC}$ or $\le V_{LC}$, $V_{CC} = Max., f = 0^{(3)}$	30	30	30	mA		
NOTES:	IOTES: 2934 tbi 08							

1. All values are maximum guaranteed values.

2. At f = fMAX address inputs are cycling at the maximum frequency of read cycles of 1/tcyc while ADSC = LOW.

4. VHC = VCC - 0.2V, VLC = 0.2V.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Timing Reference Levels	1.5V
AC Test Load	See Figures 1 and 2

2934 tbl 10

AC TEST LOADS

Figure 1. AC Test Load

2934 drw 05

Figure 2. AC Test Load (for toHz, tCHz, toLz, and tDC1)

* Including scope and jig

Figure 3, Lumped Capacitive Load, Typical Derating

AC ELECTRICAL CHARACTERISTICS (1, 2, 3, 6)

 $(Vcc = 5.0V \pm 5\%, Ta = 0 \text{ to } 70^{\circ}C)$

		IDT71420S9 IDT71420S		20510	IDT71420S12			
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tcyc ⁽⁴⁾	Cycle Time	15		16.6		20		ns
tcD	Clock Access Time		9		10		12	ns
toe	Output Enable Access		5		6	_	7	ns
tDC1 ⁽⁵⁾	Clock High to Output Active	3		3		3		ns _
tDC2	Clock High to Data Change	3		3		3	_	ns
tolz ⁽⁵⁾	Output Enable to Data Active	0	_	0		0	_	ns
tонz ⁽⁵⁾	Output Disable to Data High-Z	2	6	2	6	2	7	ns
tcHz ⁽⁵⁾	Clock High to Data High-Z		6	_	6		6	ns
tcH ⁽⁷⁾	Clock High Pulse Width	5	_	5.5		6		ns
tcL ⁽⁷⁾	Clock Low Pulse Width	5		5.5		6		ns
tSA	Address Setup Time	2.5	_	2.5		3	_	ns
tss	Address Status Setup Time	2.5	_	2.5		3		ns
tsp	Data In Setup Time	2.5		2.5		3	_	ns
tsw	Write Setup Time	2.5		2.5	_	3	_	ns
tSAV	Address Advance Setup Time	2.5	_	2.5		3	_	ns
tsc	Chip Select Setup Time	2.5		2.5		3		ns
tha	Address Hold Time	0.5		0.5		0.5		ns
tHS	Address Status Hold Time	0.5		0.5		0.5		ns
tHD	Data In Hold Time	0.5	_	0.5		0.5		ns
tHW	Write Hold Time	0.5	_	0.5	_	0.5	_	ns
thav	Address Advance Hold Time	0.5	_	0.5	_	0.5	_	ns
tHC	Chip Select Hold Time	0.5	—	0.5	_	0.5	—	ns

NOTES:

2934 tbl 11 1. A read cycle is defined by either UW or LW = HIGH or ADSP and CS = LOW. A write cycle is defined by CS and either UW or LW = LOW and ADSP = HIGH.

2. All read and write cycle timings are referenced from CLK, or OE as it applies.

3. \overline{OE} is a don't care when \overline{UW} or \overline{LW} = LOW is clocked in.

4. Maximum access times are guaranteed from all possible Pentium Processor external bus cycles.

5. Transition is measured ±200mV from steady-state. This parameter is guaranteed by device characterization with the AC Load (Figure 2), but is not production tested.

This is a synchronous device. All synchronous inputs must meet the specified setup and hold times for ALL rising edges of CLK. To enable the device, 6. chip select must be active ($\overline{CS} = LOW$) when either \overline{ADSP} or \overline{ADSC} is LOW at rising edge of CLK. The device remains enabled until chip select is inactive ($\overline{CS} = HIGH$) and \overline{ADSC} is LOW at rising edge of CLK. \overline{ADSP} cannot disable the device because $\overline{CS} = HIGH$ blocks $\overline{ADSP} = LOW$.

7. This parameter is measured as HIGH above 2.2V and LOW below 0.8V.

- 1. When ADSP and CS are LOW, the device is put into read cycle. An ADSP and CS initiated write must include one extra clock cycle between ADSP sampled LOW and the first write operation. ADSC can initiate either a read or a write cycle without requiring an additional clock cycle between ADSC being sampled LOW and the first read or write operation.
- 2. O1 (Ax) represents the first output from the external address Ax. O1 (Ay) represents the first output from the external address Ay; O2 (Ay) represents the next output data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing sub-locally for the four word burst.
- 3. An ADSP initiated cycle requires that both ADSP and CS be LOW during the rising edge of the clock. ADSP gated by CS allows the cache controller to block an ADSP cycle using CS and assert its own ADSC cycle.

COMMERCIAL TEMPERATURE RANGE

NOTES:

- 1. When ADSP and CS are LOW, the device is put into read mode. An ADSP and CS intiated write must include one extra clock cycle between ADSP sampled LOW and the first write operation. ADSC can initiate either a read cycle or a write cycle without requiring an additional clock cycle between ADSC being sampled LOW and the first read or write operation.
- 2. O3 (Aw) represents the third output from the external address Aw previously loaded, and O4 (Aw) represents the fourth and last of the Burst outputs from the external address Aw. I1 (Ax) represents the first input to the external address Ax. I1 (Ay) represents the first input from the external address Ay; I2 (Ay) represents the next input data in the burst sequence of the base address Ay, etc. where A0 and A1 are advancing sub-locally for the four word burst.
- 3. ADV = HIGH on rising edge of CLK suspends the count advance which allows wait states to be added. During the wait state the previously written data may be modified (rewritten with new data).

COMBINATION READ/WRITE CYCLE (1,3)

NOTES:.

1. I1 (Ay) represents the first input to the external address Ay. O1 (Az) represents the first output from the external address Az, O2 (Az) represents the next output data in the burst sequence of the base address Az.

2. ADSP and ADSC are active LOW signals which allow registering of the address bits. ADSP blocks the write (when either UW or LW is LOW) whereas ADSC does not. The first burst cycle of the back-to-back cycles requires the standard 2:1:1:1 clocking, the subsequent burst cycles may realize a 1:1:1:1 clock count by using the last clock of the first burst cycle for the address status of the next burst cycle. Back-to-back read cycles may be initiated by either ADSP or ADSC. Back-to-back writes may only be initiated by ADSC.

3. $\overline{CS} = LOW$, $\overline{ADSC} = HIGH$.

ORDERING INFORMATION

2934 drw 10

32K x 32 CacheRAM™ADVANCEPIPELINED/FLOW THROUGH OUTPUTSINFORMATIONBURST COUNTER, & SELF-TIMED WRITEIDT71V432— FOR PENTIUM™/POWERPC™ PROCESSORS

FEATURES:

- 32K x 32 memory configuration
- Pipelined or Flow Through output architecture selected by FT input
- Complies with all Pentium and PowerPC timing and interface requirements
- Pentium or PowerPC burst address sequence selected by MODE input
- Self-timed write cycle with byte write, byte write enable and global write controls
- · Power down controlled by ZZ input
- Single 3.3V power supply
- Packaged in a JEDEC Standard 100-pin plastic thin quad flatpack (TQFP)

DESCRIPTION:

The IDT71V432 is a 3.3V high-speed 32K x 32-bit static RAM with full on-chip hardware support of the Pentium and PowerPC processor interfaces. The pipelined burst architecture provides cost-effective 3-1-1-1 secondary cache performance for processors up to 66MHz. The optional flow-through burst architecture provides 2-1-1-1 secondary cache performance for processors up to 50 MHz.

The IDT71V432 CacheRAM contains a full set of write, data, address, and control registers. Internal logic allows the processor to generate a self-timed write based upon a decision which can be left until the extreme end of the write cycle.

An internal burst address counter accepts the first cycle address from the processor, initiating the access sequence. The IDT71V432 provides the first cycle address data and then cycles through the next three address locations.

FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark and CacheRAM is a trademark of Integrated Device Technology Pentium is a trademark of Intel Corp. PowerPC is a trademark of International Business Machines, Inc.

COMMERCIAL TEMPERATURE RANGE

MAY 1994

DESCRIPTION (CONTINUED)

The IDT71V432 CacheRAM utilizes IDT's 3.3V CMOS process to optimize performance in 3.3V applications, and is packaged in a JEDEC Standard 100-pin thin plastic quad flatpack (TQFP) for optimum board density in both desktop and notebook applications.

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Ambient Temperature	GND	Vcc
Commercial	0°C to +70°C	٥V	$3.3V \pm 5\%$

3104 tbl 01

PIN CONFIGURATION

10

3104 drw 03

.

CACHE TAGS

CacheRANs

3.3V ASYNCHRONOUS SRAM PRODUCTS

1M SRAM PRODUCTS

256K SRAM PRODUCTS

64K SRAM PRODUCTS

16K SRAM PRODUCTS

PACKAGE DIAGRAM OUTLINES

QUALITY AND RELIABILITY

TECHNOLOGY AND CAPABILITIES

GENERAL INFORMATION

CACHE TAG SRAM PRODUCTS

IDT has been a leader in Cache Tag SRAMs from the beginning, utilizing high-performance technology to perform the comparison function on chip to minimize the cache hit/ miss decision time. Both the IDT6178, in CMOS technology, and the IDT71B74, in BiCMOS technology, have been the highest speed cache tags in the industry for their respective densities.

Continuing on with the legacy, new cache tag offerings are introducing features to make the designing of a high-speed secondary cache subsystem even easier. The IDT71215 and IDT71216 both include additional logic and features on chip to offer the designer a straight forward path to zero-wait state cache performance at bus speeds up to 66MHz.

				Part		Speeds	
Function	Organization	Features	Process	Number	Power	Commercial	Military
Cache	4K x 4	Tag	CMOS	6178	S	10,12,15,20,25	N/A
Tag	8K x 8	Tag	BICMOS	71B74	S	8,10,12,15,20	N/A
SRAMs	16K x 15	Intel Tag	BICMOS	71215	S	10,12	N/A
[[16K x 15	PowerPC Tag	BiCMOS	71216	S	10,12	N/A

TABLE OF CONTENTS

CACHE TAG SRAM PRODUCTS

IDT6178	4K x 4 CMOS CacheTag	11.1
IDT71B74	8K x 8 BiCMOS Cache Tag	11.2
IDT71215	16K x 15 BiCMOS Cache Tag for Pentium [™] Processors	11.3
IDT71216	16K x 15 BiCMOS Cache Tag for PowerPC [™] and RISC Processors	11.4

PAGE

CMOS StaticRAM 16K (4K x 4-BIT) CACHE-TAG RAM

FEATURES:

- · High-speed Address to MATCH Valid time
 - Military: 12/15/20/25ns
- Commercial: 10/12/15/20/25ns (max.)
- High-speed Address Access time
 - Military: 12/15/20/25ns
 - Commercial: 10/12/15/20/25ns (max.)
- Low-power consumption
 - IDT6178S
 - Active: 300mW (typ.)
- Produced with advanced CMOS high-performance technology
- Input and output TTL-compatible
- Standard 22-pin Plastic or Ceramic DIP. 24-pin SOJ
- Military product 100% compliant to MIL-STD-883, Class B

DESCRIPTION:

The IDT6178 is a high-speed cache address comparator sub-system consisting of a 16,384-bit StaticRAM organized as 4K x 4. Cycle Time and Address to MATCH Valid are equal. The IDT6178 features an onboard 4-bit comparator that compares RAM contents and current input data. The result is an active HIGH on the MATCH pin. The MATCH pins of several IDT6178s can be handed together to provide enabling or acknowledging signals to the data cache or processor.

The IDT6178 is fabricated using IDT's high-performance, high-reliability CMOS technology. Address to MATCH and Data to MATCH times are as fast as 10ns.

All inputs and outputs of the IDT6178 are TTL-compatible and the device operates from a single 5V supply.

The IDT6178 is packaged in either a 22-pin, 300-mil Plastic or Ceramic DIP package or 24-pin SOJ. Military grade product is manufactured in compliance with latest revision of MIL-STD-883, Class B, making it ideally suited to military temperature applications demanding the highest level of performance and reliability.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATIONS

PIN DESCRIPTIONS

A0-A11	Address Inputs	
1/00-1/03	I/O3 Data Input/Output	
МАТСН	Match	
WE	Write Enable	_
ŌĒ	Output Enable	
CLR	Clear	_
Vcc	Power	
GND	Ground	

2953 tbl 01

2953 drw 02

RECOMMENDED OPERATING TEMPERATURE AND SUPPLY VOLTAGE

Grade	Ambient Temperature	GND	Vcc	
Commercial	0°C to +70°C	OV	5.0V ± 10%	
Military	–55°C to +125°C	٥V	5.0V ± 10%	
winitary	-55 0 10 +125 0	1.01	5.0V <u>1</u>	

2953 tbl 02

TRUTH TABLES⁽¹⁾

WE	ŌĒ	CLR	МАТСН	Mode
н	н	Н	Valid ⁽²⁾	Match Cycle
L	Х	Н	Invalid	Write Cycle
н	L	Н	Invalid	Read Cycle
X	Х	L	Invalid	Clear Cycle
NOTE:				2953 tbl 03

NOTE:

1. H = VIH, L = VIL, X = Don't care.

2. Valid Match = VOH, Valid Non-Match = VOL,

TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Value	Unit
VTERM	Terminal Voltage with respect to GND	-0.5 to +7.0	V
TA	Operating Temperature	-55 to +125	°C
TBIAS	Temperature Under Bias	-65 to +135	°C
Tstg	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.0	W
lout	DC Output Current	50	mA
NOTE		2	953 tbl 04

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC **OPERATING CONDITIONS**

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.5	5.0	5.5	٧
GND	Supply Voltage	0	0	0	V
Viн	Input High Voltage	2.2(2)	-	6.0	٧
VIL	Input Low Voltage	-0.5(1)	-	0.8	V
NOTES:					2953 tbl 05

NOTES:

1. VIL = -3.0V for pulse width less than 20ns, once per cycle.

2. VIH = 2.5V for clear pin.

CAPACITANCE (TA = 25°C, f = 1MHz)

Symbol	Parameter	Condition	Max	Units
CIN	Input Capacitance	VIN = OV	8	pF
C1/0	I/O Capacitance	Vout = 0V	8	pF
NOTE				2953 tbl 0/

1. This parameter is determined by device characterization, but is not production tested.
DC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

			61	78S		
Symbol	Parameter	Test Condition	Min.	Max.	Unit	
L	Input Leakage Current	Vcc = 5.5V, VIN = 0V to Vcc	-	10	μΑ	
llo	Output Leakage Current	OE = VIH, VOUT = 0V to Vcc		10	μΑ	
Vol	Output Low Voltage	$IOL = 8mA (I/O_0 - I/O_3)$	-	0.4	V	
		$IOL = 10mA (I/O_0 - I/O_3)$		0.5	V	
		IOL = 16mA (Match)	_	0.4	V	
		IOL = 20mA (Match)		0.5	V	
Vон	Output High Voltage	$IOH = -4mA (I/O_0 - I/O_3)$	2.4	—	V	
		Iон = -8mA (Match)	2.4	_	V	

DC ELECTRICAL CHARACTERISTICS (Vcc = $5.0V \pm 10\%$, All Temperature Ranges)

Symbol	Parameter		6178S10 Max.	6178S12 ⁽¹⁾ Max.	6178S15 ⁽¹⁾ Max.	6178S20/25 Max.	Unit
ICC1	Operating Power Supply Current Outputs Open, Vcc= Max., f = 0 ⁽²⁾	COM'L. MIL.	90	90 110	90 110	90 110	mA mA
ICC2	Dynamic Operating Current Outputs Open, Vcc = Max., f = f _{MAX} ⁽²⁾	COM'L. MIL.	180	160 180	140 160	140 160	mA mA

NOTES:

1. Military values are preliminary only.

2. fMAX = 1/tRc, only address inputs are cycling at fMAX. f = 0 means no address inputs change.

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	5ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 2 and 3
AC Test Load for Match Cycle	See Figure 1

2953 tbl 09

Figure 1. AC Test Load for MATCH

Figure 2. AC Test Load

Figure 3. AC Test Load (for toLz, toHz, tWHz, toW)

* Including scope and jig.

2953 tbl 08

CYCLE DESCRIPTION

Match Cycle: A match cycle occurs when all control signals $(\overline{OE}, \overline{WE}, \overline{CLR})$ are HIGH. At that time, data supplied to the RAM on the I/O pins is compared with the data stored at the specified address. The totem-pole match output is HIGH when there is a match at all data bits, and drives LOW if there is not a match.

Write Cycle: The write cycle is conventional, occuring when \overline{WE} is LOW and \overline{CLR} is HIGH. \overline{OE} may be either HIGH or LOW, since it is overridden by \overline{WE} . The state of the Match pin is not guaranteed, but in the current implementation it continues to reflect the output of the comparator. The Match pin goes HIGH during write cycles since the data at the specified address is the same as the data (being written) at the I/Os of the RAM.

Read Cycle: When \overline{WE} and \overline{CLR} are HIGH and \overline{OE} is LOW, the RAM is in a read cycle. The state of the Match pin is not guaranteed, but in the current implementation it continues to reflect the output of the comparator. The Match pin goes HIGH during read cycles since the data at the specified address is the same as the data (being read) at the I/Os of the RAM.

Clear Cycle: When $\overline{\text{CLR}}$ is asserted, every bit in the RAM is cleared to zero. If $\overline{\text{OE}}$ is LOW during a clear cycle, the RAM I/Os will be driven. However, this data is not necessarily zeros, even after a considerable time. The Match pin is enabled, but its state is not predicable.

AC ELECTRICAL CHARACTERISTICS	(Vcc = $5.0V \pm 10\%$, All Temperat	ure Ranges)
-------------------------------	---------------------------------------	-------------

		6178S10 ⁽¹⁾		617	8S12	6178S15		6178S20		6178S25		
Symbol	Parameter	Min.	Min. Max.		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Match Cy	le											
tadm	Address to Match Valid	-	10		12		15		20	-	25	ns
tDAM	Data Input to Match Valid	-	8	—	11		13		15	—	15	ns
tмно	Match Valid Hold from OE	0		0	—	0	—	0	—	0	1	ns
tOEM	OE HIGH to Match Valid	_	10		12	—	15	—	20		20	ns
tмнw	Match Valid Hold from \overline{WE}	0	-	0	—	0	—	0	—	0		ns
tWEM	WE HIGH to Match Valid	—	10		12	_	15	_	20	_	20	ns
tMHCLR	Match Valid Hold from CLR	0	-	0	—	0	—	0	-	0	-	ns
tмна	Match Valid Hold from Address	3	-	3	—	3	_	3		3		ns
tMHD	Match Valid Hold from Data	3		3	_	3		3		3	_	ns

NOTE:

1. 0°C to +70°C temperature range only.

TIMING WAVEFORM OF MATCH CYCLE⁽¹⁾

11 ,

NOTE:

1. It is not recommended to let address and data input pins float while MATCH pin is active.

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

		6178S10 ⁽¹⁾		6178	6178S12		6178S15		6178S20/25	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cy	/cle									
tRC	Read Cycle Time	10	—	12		15	—	20/25	—	ns
tAA	Address Access Time		10	-	12		15	—	20/25	ns
tOE	Output Enable Access Time		7	—	8	—	10		15	ns
tон	Output Hold from Address Change	3	—	3		3	—	3		ns
toLZ ⁽²⁾	Output Enable to Output in Low-Z Time	2		2		2	_	2		ns
toHZ ⁽²⁾	Output Disable to Output in High-Z Time	_	6	_	7		9	_	12	ns

NOTES:

1. 0°C to +70°C temperature range only.

2. This parameter guaranteed with AC load (Figure 3) by device characterization, but is not production tested.

TIMING WAVEFORM OF READ CYCLE NO. 1⁽¹⁾

TIMING WAVEFORM OF READ CYCLE NO. 2(1,2)

1. WE is HIGH for Read Cycle.

2. Output enable is continuously active, OE is LOW.

3. Transition is measured ±200V from steady state.

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

		6178	6178S10 ⁽¹⁾		6178S12		3S15	6178S20/25		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write Cyc	le			•						
twc	Write Cycle Time		-	12	- 1	15	—	20	—	ns
taw	Address Valid to End-of-Write	8	—	10	-	12		14	—	ns
tas	Address Set-up Time	0	-	0	-	0		0		ns
twp	Write Pulse Width	8		10	—	12	-	14		ns
twR	Write Recovery Time	0		0	-	0	—	0	—	ns
tDW	Data Valid to End-of-Write	6	-	8	-	10	—	12	—	ns
tDH	Data Hold from Write Time	0	—	0	—	0	-	0		ns
twhz(2)	Write Enable to Output in High-Z	-	5	-	6	-	7		9	ns
tow ⁽²⁾	Output Active from End-of-Write	0	-	0	-	0	—	0	-	ns
NOTES	· · · · · · · · · · · · · · · · · · ·		•							2953 tbl 13

NOTES:

1. 0°C to +70°C temperature range only.

2. This parameter guaranteed with AC load (Figure 3) by device characterization, but is not production tested.

TIMING WAVEFORM OF WRITE CYCLE^(1,3)

NOTES:

- 1. WE must be HIGH during all address transitions.
- 2. During this period, I/O pins are in the output state and the input signals must not be applied.
- 3. OE is HIGH. If OE is LOW during a WE controlled write cycle, the write pulse width must be the greater of twp or (twHz + tow) to allow the I/O drivers to turn off and data to be placed on the bus for the required tow. If OE is HIGH during a WE controlled write cycle, this requirement does not apply and the write pulse is the specified twp.

4. Transition is measured ±200mV from steady state.

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%, All Temperature Ranges)

		6178	6178S10 ⁽¹⁾ Min. Max.		6178S12 6		BS15	6178S20/25		
Symbol	Parameter	Min.			Max.	Min.	Max.	Min.	Max.	Unit
Clear Cyc	le									
tCLPW ⁽²⁾	CLR Pulse Width	12	-	15	-	20	—	25	—	ns
t CLRC	CLR HIGH to WE LOW	5	-	5	-	5	—	5	—	ns
tPOCL ⁽³⁾	Power on Reset	50	-	60	-	80		100	—	ns
tWECL	WE HIGH to Clear HIGH	5	-	5	-	5		5	—	ns

NOTES:

1. 0°C to +70°C temperature range only.

2. Recommended duty cycle of 10% maximum.

3. This parameter guaranteed with AC load (Figure 3) by device characterization, but is not production tested.

POWER ON RESET TIMING

ORDERING INFORMATION

BICMOS STATIC RAM 64K (8K x 8-BIT) CACHE-TAG RAM

IDT71B74

FEATURES:

- High-speed address to MATCH comparison time
 Commercial: 8/10/12/15/20ns (max.)
- High-speed address access time
 Commercial: 8/10/12/15/20ns (max.)
- High-speed chip select access time
 Commercial: 6/7/8/10ns (max.)
- Power-ON Reset Capability
- Low power consumption
 - 830mW (typ.) for 12ns parts
 - 880mW (typ.) for 10ns parts
 - 920mW (typ.) for 8ns parts
- Produced with advanced BiCMOS high-performance technology
- · Input and output directly TTL-compatible
- · Standard 28-pin plastic DIP and 28-pin SOJ (300 mil)

DESCRIPTION:

The IDT71B74 is a high-speed cache address comparator subsystem consisting of a 65,536-bit static RAM organized as 8K x 8 and an 8-bit comparator. A single IDT71B74 can map 8K cache words into a 2 megabyte address space by using the 21 bits of address organized with the 13 LSBs for the cache address bits and the 8 higher bits for cache data bits. Two IDT71B74s can be combined to provide 29 bits of address comparison, etc. The IDT71B74 also provides a single RAM clear control, which clears all words in the internal RAM to zero when activated. This allows the tag bits for all locations to be cleared at power-on or system-reset, a requirement for cache comparator systems. The IDT71B74 can also be used as a resettable 8K x 8 high-speed static RAM.

The IDT71B74 is fabricated using IDT's high-performance, high-reliability BiCMOS technology. Address access times as fast as 8ns, chip select times of 6ns and address-to-match times of 8ns are available.

The MATCH pin of several IDT71B74s can be wired-ORed together to provide enabling or acknowledging signals to the data cache or processor, thus eliminating logic delays and increasing system throughput.

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

COMMERCIAL TEMPERATURE RANGE

PIN CONFIGURATION

TOP VIEW

TRUTH TABLE^(1, 2)

WE	ĊŚ	ŌĒ	RESET	МАТСН	1/0	Function
х	Х	х	L	HIGH	-	Reset all bits to LOW
х	Н	х	н	HIGH	Hi-Z	Deselect chip
н	L	н	н	LOW	Din	No MATCH
н	L	н	н	HIGH	Din	MATCH
н	L	L	Н	HIGH	Dout	Read
L	L	х	н	HIGH	Din	Write

NOTES:

1. H = ViH, L = VIL, X = DON'T CARE

2. HIGH = High-Z (pulled up by an external resistor), and LOW = VoL.

PIN DESCRIPTIONS

Pin Names	Description
A0-12	Address
I/O0-7	Data Input/Output
CS	Chip Select
RESET	Memory Reset
МАТСН	Data/Memory Match (Open Drain)
WE	Write Enable
ŌĒ	Output Enable
GND	Ground
Vcc	Power

3013 tbl 02

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Com'l.	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
Та	Operating Temperature	0 to +70	°C
TBIAS	Temperature Under Bias	55 to +125	°C
Tstg	Storage Temperature	-55 to +125	°C
Рт	Power Dissipation	1.0	w
Ιουτ	DC Output Current	50	mA

NOTES:

3013 tbl 01

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VTERM must not exceed Vcc + 0.5V.

CAPACITANCE

ĺ	TA =	= +25°C.	f =	1.0MHz	, SOJ	Package)
---	------	----------	-----	--------	-------	---------	---

Symbol	Parameter ⁽¹⁾	Conditions	Max.	Unit
CIN	Input Capacitance	VIN = 3dV	6	рF
COUT	Output Capacitance	VOUT = 3dV	7	рF

NOTE:

1. This parameter is determined by device characterization, but is not production tested.

3013 tbl 04

GND

٥V

Vcc

5V ± 10% 3013 tbl 06

RECOMMENDED OPERATING

Grade

Commercial

TEMPERATURE AND SUPPLY VOLTAGE Ambient Temperature

 $0^{\circ}C$ to $+70^{\circ}C$

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc ⁽¹⁾	Supply Voltage	4.5	5.0	5.5	V
GND	Supply Voltage	0	0	0	V
Vін	Input HIGH Voltage ⁽²⁾	put HIGH Voltage ⁽²⁾ 2.2		6.0 ⁽⁵⁾	V
Vihr	RESET Input Voltage	2.5 ⁽³⁾		6.0	V
VIL	Input LOW Voltage	-0.5 ⁽⁴⁾	—	0.8	V

NOTES:

1. All speed grades except 8ns. Supply Voltage range for 8ns product is 4.75V min, 5.25V max (±5%).

2. All inputs except RESET.

3. When using bipolar devices to drive the RESET input, a pullup resistor of $1k\Omega$ -10k Ω is usually required to assure this voltage.

4. VIL (min.) = -1.5V for pulse width less than 10ns, once per cycle.

5. VTERM must not exceed Vcc + 0.5V.

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

 $(Vcc = 5.0V \pm 10\%, VLc = 0.2V, VHc = Vcc - 0.2V)$

Symbol	Parameter		71B74S8	71B74S10	71B74S12	71B74S15	71B74S20	Unit
lcc	Dynamic Operating Current	$\overline{WE} = VLC$	230	210	200	190	180	mA
	Outputs Open, Vcc = Max., f = fMAX ⁽²⁾	$\overline{WE} = VHC$	210	200	170	160	150	mA

3013 tbl 05

NOTES:

1. All values are maximum guaranteed values.

2. fMAX = 1/tRc, only input addresses are cycling at fMAX.

DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE

AND SUPPLY VOLTAGE (Vcc = 5.0V ± 10%)

			IDT71B74S		
Symbol	Parameter	Test Condition	Min.	Max.	Unit
L	Input Leakage Current	Vcc = Max., VIN = GND to Vcc		5	μA
llo	Output Leakage Current	Vcc = Max., CS = VIH, Vout = GND to Vcc	—	5	μA
Vol	Output LOW Voltage	IOL = 22mA MATCH	_	0.5	V
		IOL = 18mA MATCH		0.4	
		IOL = 10mA, Vcc = Min. (Except MATCH)	—	0.5	
		IOL = 8mA, VCC = Min. (Except MATCH)		0.4	
Vон	Output HIGH Voltage	IOH = -4mA, Vcc = Min. (Except MATCH)	2.4		V

3013 tbl 08

AC TEST CONDITIONS

Input Pulse Levels	GND to 3.0V
Input Rise/Fall Times	3ns
Input Timing Reference Levels	1.5V
Output Reference Levels	1.5V
AC Test Load	See Figures 1, 2, and 3

3013 tbl 09

3013 drw 03

NOTES:

1. For more information refer to IDT Application Notes AN-07 and AN-78 and Technical Notes TN-11 and TN-13.

2. $R_L = 200\Omega$.

Figure 4. Example of Cache Memory System Block Diagram

AC ELECTRICAL CHARACTERISTICS (Vcc = $5.0V \pm 10\%$)

		71B7	4S8 ⁽²⁾	71B7	4S10	71B7	4S12	71B7	4S15	71B74S20		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cyc	le											
tRC	Read Cycle Time	8	_	10	-	12	-	15	_	20	-	ns
tAA	Address Access Time	-	8	-	10	-	12	_	15	_	20	ns
tacs	Chip Select Access Time	-	6		7	-	8	_	8	—	10	ns
tclz ⁽¹⁾	Chip Select to Output in Low-Z	2	—	2	—	2	—	3	—	3		ns
tOE	Output Enable to Output Valid	-	5	_	6	-	6	_	8	_	9	ns
toLZ ⁽¹⁾	Output Enable to Output in Low-Z	2	-	2	-	2	-	2		2		ns
tснz ⁽¹⁾	Chip Select to Output in High-Z		4		5	—	5	-	7	—	8	ns
toHz ⁽¹⁾	Output Disable to Output in High-Z	-	4	_	4	_	5	_	5		8	ns
tон	Output Hold from Address Change	3	_	3	_	3	—	3	_	3	_	ns
NOTES												3013 tbl 1

NOTES:

1. This parameter is guaranteed with the AC Load (Figure 2) by device characterization, but is not production tested.

2. $Vcc = 5.0V \pm 5\%$ for 8ns product.

TIMING WAVEFORM OF READ CYCLE NO. 1⁽¹⁾

3013 drw 09

TIMING WAVEFORM OF READ CYCLE NO. 2 (1, 2, 4)

NOTES:

- 1. WE is HIGH for Read cycle.
- 2. Device is continuously selected, CS is LOW.
- Address valid prior to or coincident with CS transition LOW; otherwise tAA is the limiting parameter. З.
- 4. OE is continuously active, OE is LOW.
- 5. Transition is measured ±200mV from steady state.

5

3013 drw 10

		71B7	4S8 ⁽²⁾	71B7	74S10	71B7	'4S12	71B74S15		71B74S20		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Write Cyc	le											
twc	Write Cycle Time	8	—	10	-	12	_	15	_	20	_	ns
tcw	Chip Select to End of Write	7	-	8	-	9	-	10	—	15	-	ns
tAW	Address Valid to End of Write	7	—	8	—	9	—	10		15		ns
tAS	Address Set-up Time	0		0	—	0		0		0	_	ns
tWP	Write Pulse Width	7	—	8	—	9		10	—	15	—	ns
twR	Write Recovery Time (CS, WE)	0	—	0	-	0	-	0		0	_	ns
twHZ ⁽¹⁾	Write Enable to Output in High-Z		5		5		5		5	_	5	ns
tDW	Data Valid to End of Write	5	_	5	—	6	—	8	-	10		ns
tDH	Data Hold from Write Time	0	—	0	—	0	—	0		0	-	ns
tow ⁽¹⁾	Output Active from End of Write	2	_	2	—	2	—	2	—	2	-	ns
NOTES:												3013 tbl 11

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%)

NOTES:

1. This parameter is guaranteed with the AC Load (Figure 2) by device characterization, but is not production tested.

2. Vcc = $5.0V \pm 5\%$ for 8ns product.

TIMING WAVEFORM OF WRITE CYCLE NO. 1 (WE Controlled Timing, DE HIGH During Write)^(1, 6)

6

TIMING WAVEFORM OF WRITE CYCLE NO. 2 (CS Controlled Timing)^(1, 6)

NOTES:

- 1. WE, CS must be inactive during all address transitions.
- 2. A write occurs during the overlap of a LOW \overline{WE} and a LOW \overline{CS} .
- 3. twn is measured from the earlier of CS or WE going HIGH to the end of the write cycle.
- 4. During this period, I/O pins are in the output state and input signals must not be applied.
- 5. If the CS LOW transition occurs simultaneously with or after the WE LOW transition, the outputs remain in a high-impedance state.
- 6. OE is continuously HIGH, OE ≥ VIH. If during the WE controlled write cycle the OE is LOW, twP must be greater or equal to twHz + tow to allow the I/O drivers to turn off and the data to be placed on the bus for the required tow. If OE is HIGH during the WE controlled write cycle, this requirement does not apply and the minimum write pulse is the specified twP. For a CS controlled write cycle, OE may be LOW with no degradation to tow timing.
- 7. DATAOUT is never enabled, therefore the output is in High-Z state during the entire write cycle.
- 8. twHz is not included if OE remains HIGH during the write cycle. If OE is LOW during the Write Enabled write cycle then twHz must be added to twP and tcw.
- 9. Transition is measured ±200mV from steady state.

		71B7	4S8 ⁽²⁾	71B7	4S10	71B7	'4S12	71B7	4S15	71B7	4S20	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Match Cy												
tadm	Address to MATCH Valid		8	—	10		12		15	_	20	ns
tcsM	Chip Select to MATCH Valid	_	7	_	7	—	8	_	10	-	10	ns
tcsмнi ⁽¹⁾	Chip Select to MATCH HIGH	-	7	_	8	_	8		8	_	8	ns
tdam	Data Input to MATCH Valid	_	7	_	8	_	10	_	12	_	12	ns
toemhi(1)	OE LOW to MATCH HIGH	—	7	_	8	_	10		10	_	10	ns
twemhi ⁽¹⁾	WE LOW to MATCH HIGH	_	7	—	8	_	10		10		10	ns
trsmHi ⁽¹⁾	RESET LOW to MATCH HIGH	-	8	—	10	_	10	_	12	-	15	ns
tмна	MATCH Valid Hold From Address	2	·	2	_	2	—	2	_	2	-	ns
tMHD .	MATCH Valid Hold From Data	2		2	_	2		2	-	2	-	ns

AC ELECTRICAL CHARACTERISTICS (Vcc = $5.0V \pm 10\%$)

NOTES:

1. This parameter is guaranteed with the AC Load (Figure 3) by device characterization, but is not production tested.

2. Vcc = $5.0V \pm 5\%$ for 8ns product.

MATCH TIMING⁽¹⁾

NOTES:

1. It is not recommended to float data and address input pins while the MATCH pin is active.

2. Transition is measured at ±200mV from steady state.

AC ELECTRICAL CHARACTERISTICS (Vcc = 5.0V ± 10%)

		71B74S8 ⁽³⁾		71B7	71B74S10 71		71B74S12		71B74S15		71B74S20	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle												
trspw ⁽¹⁾	Reset Pulse Width	30		35	-	35	—	40	_	45	-	ns
twers	WE HIGH to Reset HIGH	5	-	5	-	5		5	-	5	-	ns
tRSRC	Reset HIGH to WE LOW	25	-	25	-	25	_	30	-	30	-	ns
tPORS ⁽²⁾	Power On Reset	100	-	100	-	100	_	120	-	120	—	ns
NOTES:												3001 tbl 13

NOTES:

1. Recommended duty cycle = 10% maximum.

2. This parameter is guaranteed with the AC Load (Figure 1) by device characterization, but is not production tested.

3. Vcc = $5.0V \pm 5\%$ for 8ns product.

RESET TIMING

POWER ON RESET TIMING

Figure 5.

ORDERING INFORMATION

BiCMOS StaticRAM 240K (16K x 15-BIT) CACHE-TAG RAM For the Pentium[™] Processor

FEATURES:

- 16K x 15 Configuration
 - 12 TAG Bits
 - 3 Separate I/O Status Bits (Valid, Dirty, Write Through)
- · Match output uses Valid bit to qualify MATCH output
- High-Speed Address-to-Match comparison times
 10/12ns over commercial temperature range
- BRDY circuitry included inside the Cache-Tag for highest speed operation
- Asynchronous Read/Match operation with Synchronous Write and Reset operation
- · Separate WE for the TAG bits and the Status bits
- Separate OE for the TAG bits, the Status bits, and BRDY
- Synchronous RESET pin for invalidation of all Tag entries
- Dual Chip selects for easy depth expansion with no performance degredation
- I/O pins both 5V TTL and 3.3V LVTTL compatible with Vcco pins
- PWRDN pin to place device in low-power mode
- Packaged in a 80-pin Thin Plastic Quad Flat Pack (TQFP)

DESCRIPTION:

The IDT71215 is a 245,760-bit Cache Tag StaticRAM, organized 16K x 15 and designed to support the Pentium and other Intel processors at bus speeds up to 66MHz. There are twelve common I/O TAG bits, with the remaining three bits used as status bits. A 12-bit comparator is on-chip to allow fast comparison of the twelve stored TAG bits and the current Tag input data. An active HIGH MATCH output is generated when these two groups of data are the same for a given address.

This high-speed MATCH signal, with tADM times as fast as 10ns, provides the fastest possible enabling of secondary cache accesses.

The three separate I/O status bits (VLD, DTY, and WT) can be configured for either dedicated or generic functionality, depending on the SFUNC input pin. With SFUNC LOW, the status bits are defined and used internally by the device, allowing easier determination of the validity and use of the given Tag data. SFUNC HIGH releases the defined internal status bit usage and control, allowing the user to configure the status bit information to fit his system needs. A synchronous RESET pin, when held LOW at a rising clock edge, will reset all status bits in the array for easy invalidation of all Tag addresses.

The IDT71215 also provides the option for Burst Ready (BRDY) generation within the cache tag itself, based upon MATCH, VLD bit, WT bit, and other external inputs provided by the user. This can significantly simplify cache controller logic and minimize cache decision time. Match and Read operations are both asynchronous in order to provide the fastest access times possible, while Write operations are synchronous for ease of system timing.

The IDT71215 uses a 5V power supply on Vcc and Vss, with separate Vccq pins provided for the outputs to offer compliance with both 5.0V TTL and 3.3V LVTTL Logic levels. The PWRDN pin offers a low-power standby mode to reduce power consumption by 80%, providing significant system power savings.

The IDT71215 is fabricated using IDT's high-performance, high-reliability BiCMOS technology and is offered in a spacesaving 80-pin Thin Plastic Quad Flat Pack (TQFP) package.

A0 - A13	Address Inputs	Input		
CS1, CS2	Chip Selects	Input		
WET	WET Write Enable - Tag Bits			
WES	Write Enable - Status Bits	Input		
OET	Output Enable - Tag Bits	Input		
OES	Output Enable - Status Bits	Input		
RESET	Status Bit Reset	Input		
PWRDN	Powerdown Mode Control Pin	Input		
SFUNC	Status Bit Function Control Pin	Input		
₩/R	Write/Read Input from Processor	Input		
VLDIN/ S1 IN	Valid Bit / S1 Bit Input	Input		
DTYIN/ S2IN	Dirty Bit / S2 Bit Input	Input		
WTIN / S3IN	Write Through Bit / S3 Bit Input	Input		

PIN	DES	CRIF	ντιο	NS

CLK	System Clock	Input
BRDYH	BRDY Force High	Input
BRDYOE	BRDY Output Enable	Input
BRDYIN	Additional BRDY Input	Input
BRDY	Burst Ready	Output
TAG0 – TAG11	Tag Data Input/Outputs	I/O
VLDout / S10UT	Valid Bit / S1 Bit Output	Output
DTYOUT / S2OUT	Dirty Bit / S2 Bit Output	Output
WTout / Stout	Write Through Bit / S3 Bit Output	Output
MATCH	Match	Output
Vcc	+5V Power	Pwr
Vccq	Output Buffer Power	QPwr
Vss	Ground	Gnd
		3075 tbl 01

The IDT logo is a registered trademark of Integrated Device Technology, Inc. Pentium is a trademark of Intel Corporation

COMMERCIAL TEMPERATURE RANGE

PIN CONFIGURATION

TQFP TOP VIEW

TRUTH TABLES

CHIP SELECT, RESET, AND POWER-DOWN FUNCTIONS^(1, 2)

CS1 CS2 RESET PWRDN CLK WET WES BRDYOE TAG VLDOUT DTYOUT WTOUT MATCH BRDY OPERATION POWER

CHIP SELECT FUNCTION

н	х	х	Н	х	х	х	х	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Deselected	Active
x	L	х	н	х	х	х	х	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Deselected	Active
L	Н	х	Н	х	х	Х	х	-	-	-	-	-	-	Selected	Active

RESET FUNCTION

L	н	L	н	1	н	н	L	Hi-Z	L ⁽³⁾	L ⁽³⁾	L ⁽³⁾	L ⁽³⁾	Н	Reset Status	Active
L	н	L	Н	↑	н	н	н	Hi-Z	L ⁽³⁾	L ⁽³⁾	L ⁽³⁾	L ⁽³⁾	Hi-Z	Reset Status	Active
н	х	L	н	Î	н	н	x	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Reset Status	Active
X	L	L	н	↑	н	н	х	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Reset Status	Active
X	х	L	н	↑	L	х	х	-	_	-	-	_	-	Not Allowed	-
X	Х	L	н	Ŷ	х	L	х	-	-	-	-	-	-	Not Allowed	-

POWER-DOWN FUNCTION

x	Х	Х	L	Х	н	Н	х	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Power-down	Standby
NOT	ES:														3075 tbl 02

1. "H" = V_IH, "L" = V_IL, "X" = don't care, "--" = unrelated. 2. \overline{OET} , \overline{OES} , W/R, BRDYH, BRDYIN and SFUNC are "X" for this table.

3. OES is LOW.

READ AND WRITE FUNCTIONS^(1, 2)

OET	OES	WET	WES	CLK	W∕R	TAG	VLDIN	DTYIN	WTIN	VLDout	DTYout	WTout	МАТСН	OPERATION
REA	D FU	NCT	ION											
L	х	н	х	х	x	Dout	-	-	-	-	-	-	Dout	Read TAG I/O
х	L	х	х	х	х	-	-	-	-	Dout	Dout	Dout	Dout	Read Status Bits
н	х	х	х	х	х	Hi-Z	-	-	_	-	-	-	_	TAG I/O Disable
Х	Н	х	х	х	х	-	-	-	-	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Status Disabled
WRI	TE FU	JNCI	TION											

Х î Write TAG I/O Н L Х Х DIN DOUT DOUT DOUT L _ _ ---î L Х L Х Х _ Not Allowed _ _ _ _ ----_ _ î Х L Х L Х _ DIN DIN DIN DOUT⁽³⁾ DOUT⁽³⁾ DOUT⁽³⁾ L Write Status Bits Î Х Н Х L Х DIN _ DIN Din Hi-Z Hi-Z Hi-Z L Write Status Bits

NOTES:

1. "H" = VIH, "L" = VIL, "X" = don't care, "--" = unrelated. 2. This table applies when CS1 is LOW and CS2, RESET, and PWRDN are HIGH. BRDYOE, BRDYH, BRDYIN and SFUNC are "X" for this table.

3. DOUT in this case is the same as DIN; that is, the input data is written through to the outputs during the write operation.

TRUTH TABLES (CONT.)

MATCH FUNCTION^(1, 2, 3)

CSI	CS2	SFUNC	OET	WET	WES	TAG	VLD ⁽⁴⁾	DTY ⁽⁴⁾	WT(4)	МАТСН	OPERATION		
н	х	х	х	х	х	Hi-Z	-	-	1	Hi-Z	Deselected		
Х	L	х	х	х	х	Hi-Z	-	-	-	Hi-Z	Deselected		
L	н	Х	х	х	Х	-	-	-	-	Dout	Selected		
L	Н	х	L	н	х	Dout	-	-	-	L	Read Tag I/O		
L	н	х	н	L	х	Din	1	-	-	L	Write Tag I/O		
L	н	Х	х	х	L	-	Din	Din	Din	L	Write Status Bits		
L	н	L	н	н	н	TAGIN	L	-	-	L	Invalid Data - Dedicated Status Bits		
L	Н	L	н	н	н	TAGIN	Н	1	-	м	Match - Dedicated Status Bits		
L	н	Н	н	н	н	TAGIN	х	-	_	м	Match - Generic Status Bits		

NOTES:

1. "H" = VIH, "L" = VIL, "X" = don't care, "-" = unrelated.

M = HiGH if TAGIN equals the memory contents at that address; M = LOW if TAGIN does not equal the memory contents at that address.
 PWRDN and RESET are HIGH for this table. W/R, BRDYH, BRDYOE, BRDYIN, OES, and CLK are "X".

4. This column represents the stored memory cell data for the given Status bit at the selected address.

BRDY FUNCTION(1, 2, 3, 5)

BRDYOE		OET	WET	WES	BRDYH	W/R	SFUNC	VLD ⁽⁴⁾	DTY ⁽⁴⁾	WT(4)	TAG	MATCH	BRDY	OPERATION
н	х	х	х	x	Х	х	х	X	-	X	. –	-	Hi-Z	BRDY Disabled
L	L	х	х	х	Х	х	х	x	-	х	-	Х	L	Ext BRDY Input (7)
L	н	L	х	х	х	х	х	x	-	х	Dout	L	Н	Read TAG
L	н	х	Ł	Х	х	Х	Х	X	-	Х	Din	L	Н	Write TAG
L	н	х	х	L	х	Х	х	DIN	DIN	Din	-	L	Н	Write Status
L	н	х	х	x	н	Х	Х	X	-	х	-	Х	н	Force BRDY HIGH
L	н	х	Х	x	Х	х	L	L	_	Х	-	L	Н	Invalid TAG
L	н	х	х	х	х	Н	L	x	_	н	-	х	н	Write Through
L	н	н	Н	н	L	х	L	н	-	L	TAGIN	М	M	Compare
L	н	н	н	н	L	L	L	н	-	х	TAGIN	м	M	Compare
L	н	н	н	н	L	х	L	н	-	х	TAGIN	М	M	Compare
L	н	н	н	н	L	х	н	X	-	х	TAGIN	М	M	Compare

NOTES:

1. "H" = VIH, "L" = VIL, "X" = don't care, "--" = unrelated.

2. M = HIGH if TAGIN equals the memory contents at that address; M = LOW if TAGIN does not equal the memory contents at that address.

3. PWRDN and RESET are HIGH for this table. CLK and OES are "X".

4. This column represents the stored memory cell data for the given Status bit at the selected address.

5. CS1 is LOW, CS2 is HIGH for this table.

6. BRDYIN is a synchronous input; thus the inputs noted in the table must be applied during a rising CLK edge.

7. BRDYIN will be a factor in determining the BRDY output in all cases except when BRDYH is HIGH and there is a valid MATCH. In that case, BRDY will be LOW(Valid).

RECOMMENDED DC **OPERATING CONDITIONS**

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.75	5.0	5.25	V
Vcca	5V Output Buffers	4.75	5.0	5.25	V
Vcca	3.3V Output Buffers	3.0	3.3	3.6	٧
Vss	Supply Ground	0	0	0	v
Vін	Input High Voltage	2.2	3.0	Vcc+0.3	V
Viha	I/O High Voltage	2.2	3.0	Vccq+0.3	٧
VIL	Input Low Voltage	-0.5 ⁽¹⁾		0.8	٧
NOTE:				3	075 tbl 06

NOTE:

1. VIL (min.) = -1.5V for pulse width of less than 10ns, once per cycle.

CAPACITANCE

 $(TA = +25^{\circ}C, f = 1.0 \text{ MHz})$

Symbol	Parameter ⁽¹⁾	Condition	Max.	Unit
CIN	Input Capacitance	VIN = 0V	5	рF
CTAG	TAG Input/Output Capacitance	VI/O = 0V	7	pF
Соит	Output Capacitance	Vout = 0V	7	pF
NOTE:				3075 tbl 0

NOTE:

1. This parameter is determined by device characterization but is not production tested.

DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE

 $(Vcc = 5.0V \pm 5\%, Vccq = 5.0V \pm 5\% \text{ OR } 3.3V \pm 0.3V)$

Symbol	Parameter	Test Condition	Min.	Max.	Unit
lu	Input Leakage Current	Vcc = Max., VIN = 0V to Vcc		5	μΑ
llo	Output Leakage Current	$\label{eq:cs1} \begin{array}{l} \overline{CS1} \geq V \text{IH}, \ CS2 \leq V \text{IL}, \ \overline{OE} \geq V \text{IH}, \ Vcc = Max. \\ Vout = 0V \ to \ Vccq, \ Vccq = Max. \end{array}$	—	5	μΑ
Vol	Output Low Voltage	IOL = 4mA, $VCC = Min$.	—	0.4	V
Vон	Output High Voltage	IOH =4mA, VCC = Min.	2.4		V

3075 tbl 09

DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING

TEMPERATURE AND SUPPLY VOLTAGE RANGE^(1, 2) (Vcc = $5.0V \pm 5\%$)

			7121	5S10	71215	S12	
Symbol	Parameter	Test Condition	Com'l.	Mil.	Com'l.	Mil.	Unit
lcc	Operating Power Supply Current	$\overline{PWRDN} \ge V_{H}$ Outputs Open, Vcc = Max., f = fMAX ⁽³⁾	320	1	310	1	mA
ISB	Standby Power Supply Current	$\label{eq:product} \begin{split} \overline{PWRDN} &\leq V \text{IL}, \ V \text{IN} \geq V \text{IH} \ \text{or} \leq V \text{IL} \\ V \text{CC} &= Max., \ f = f \text{Max}^{(3)} \end{split}$	50		50	-	mA
ISB1	Full Standby Power Supply Current	$\label{eq:product} \begin{split} \overline{PWRDN} &\leq VIL, \ VIN \geq VHC \ \text{or} \leq VLC^{(4)} \\ VCc &= Max., \ f = 0^{(3)} \end{split}$	30	_	30	_	mA

NOTES:

1. All values are maximum guaranteed values.

2. $\overline{CS1} \leq VIL, CS2 \geq VIH.$

3. fMAX =1/tCYC (all address inputs are cycling at fMAX). f = 0 means no address input lines are changing.

4. VHC = VCC - 0.2V, VLC = 0.2V

3075 tbl 10

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0 ⁽²⁾	۷
TA	Operating Temperature	0 to +70	°C
TBIAS	Temperature Under Bias	65 to +135	°C
Tstg	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.7	W
lout	DC Output Current	20	mA

NOTES:

3075 tbl 08

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VIN should not exceed Vcc+0.5V. All pins should not exceed 7.0V. Vcco should never exceed Vcc, and Vcc should never exceed Vccq + 4.0V.

AC ELECTRICAL CHARACTERISTICS

 $(Vcc = 5.0V \pm 5\%, Vccq = 5.0V \pm 5\% \text{ OR } 3.3V \pm 0.3V, TA = 0 \text{ to } 70^{\circ}\text{C})$

		IDT71	215S10	IDT712	215S12	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
Read Cycle						
taat	Address Access Time Tag Bits	-	12	—	14	ns
tACST	Chip Select Access Time Tag Bits	—	10	—	12	ns
tCLZ ⁽¹⁾	Chip Select to Tag and Status Bits in Low-Z	1		1	-	ns
tcHZ ⁽¹⁾	Chip Select to Tag and Status Bits in High-Z	1	6	1	7	ns
tOET	Output Enable to Tag Bits Valid	—	8	—	9	ns
totlz ⁽¹⁾	Output Enable to Tag Bits in Low-Z	0	—	0	_	ns
tOTHZ ⁽¹⁾	Output Enable to Tag Bits in High-Z	1	6	1	7	ns
t тон	Tag Bit Hold from Address Change	3	—	3	_	ns
toes	Output Enable to Status Bits Valid	-	8	_	9	ns
tOSLZ ⁽¹⁾	Output Enable to Status Bits in Low-Z	0		0		ns
toshz ⁽¹⁾	Output Enable to Status Bits in High-Z	1	6	1	7	ns
taas	Address Access Time Status Bits		10	—	12	ns
tacss	Chip Select Access Time Status Bits	-	9		11	ns
tsoh	Status Bit Hold from Address Change	3	—	3	—	ns

NOTE:

1. This parameter is guaranteed with the AC Load (Figure 3) by device characterization, but is not production tested.

3075 tbl 11

AC ELECTRICAL CHARACTERISTICS ⁽¹⁾

 $(Vcc = 5.0V \pm 5\%, Vccq = 5.0V \pm 5\% \text{ or } 3.3V \pm 0.3V, TA = 0 \text{ to } 70^{\circ}\text{C})$

		IDT712	215510	IDT712	215512	1
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
Reset and	Power Down Cycles					
tsR	RESET Set-up Time	4	—	4	—	ns
tHR	RESET Hold Time	1	_	1		ns
tSRST	Status Bit Reset Time		60	—	70	ns
tSHRS	Status Bit Hold from RESET LOW	2	—	2		ns
t RSMI	RESET LOW to MATCH and BRDY Invalid		10		12	ns
trsmv	RESET HIGH to MATCH and BRDY Valid		100		110	ns
tRSHZ ⁽²⁾	RESET LOW to TAG High-Z		10	_	12	ns
tRSLZ ⁽²⁾	RESET HIGH to TAG Low-Z	—	100	_	110	ns
tPDSR	PWRDN Set-up to RESET LOW	30		30	—	ns
tRHWL	RESET HIGH to WET and WES LOW	80	—	90	—	ns
tPD ⁽²⁾	PWRDN LOW to Low Power Mode		50	—	50	ns
tPU ⁽²⁾	PWRDN HIGH to Active Power Mode	0		0		ns
tPDHZ ⁽²⁾	PWRDN LOW to Outputs in High-Z	T —	10	_	12	ns
tPDLZ ⁽²⁾	PWRDN HIGH to Outputs in Low-Z	0	_	0		ns
tPUV	PWRDN HIGH to Outputs Valid	_	50	_	50	ns
twhpl ⁽²⁾	WET and WES HIGH to PWRDN LOW	5	_	5	_	ns
t PUWL	PWRDN HIGH to WET and WES Active	50	_	50	_	ns

NOTES:

1. Power-down mode is intended to be used during extended time periods of device inactivity.

2. This parameter is guaranteed with the AC Load (Figure 3) by device characterization, but is not production tested.

AC ELECTRICAL CHARACTERISTICS (1)

 $(Vcc = 5.0V \pm 5\%, Vccq = 5.0V \pm 5\% \text{ OR } 3.3V \pm 0.3V, TA = 0 \text{ to } 70^{\circ}\text{C})$

		IDT712	15S10	IDT71		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
Write Cycle	and Clock Parameters					
tcyc	Clock Cycle Time	15	—	16.6		ns
tCH ^(2, 3)	Clock Pulse HIGH	4.5	_	5	_	ns
tCL ^(2, 3)	Clock Pulse LOW	4.5	-	5	-	ns
ts	WET, WES, Chip Select, and Input Data Set-up Time	3	-	3	_	ns
tн	WET, WES, Chip Select, and Input Data Hold Time	1.5	-	1.5	-	ns
tSA	Address Set-up Time	3	—	3	_	ns
tHA	Address Hold Time	1.5	—	1.5		ns
twмi	CLK HIGH Write to MATCH and BRDY Invalid		7		8	ns
tcklz ⁽³⁾	CLK HIGH Read to Outputs in Low-Z	1.5	—	1.5	—	ns
tCTV ⁽⁴⁾	CLK HIGH Read to Tag Bits Valid	—	10	—	12	ns
tCSV ⁽⁴⁾	CLK HIGH Write to Status Outputs Valid		9		10	ns
tCSH ⁽³⁾	Status Output Hold from CLK HIGH Write	0		0	-	ns
tWHPL	WET and WES HIGH to PWRDN LOW	5	-	5	_	ns
t PUWL	PWRDN HIGH to WET and WES Active	50		50	_	ns

NOTES:

All Write cycles are synchronous and referenced from rising CLK.
 This parameter is measured as a HIGH time above 2.0V and a LOW time below 0.8V.

This parameter is guaranteed with the AC Load (Figure 3) by device characterization, but is not production tested.
 Addresses are stable prior to CLK transition HIGH.

AC ELECTRICAL CHARACTERISTICS

 $(Vcc = 5.0V \pm 5\%, Vccq = 5.0V \pm 5\% \text{ OR } 3.3V \pm 0.3V, TA = 0 \text{ to } 70^{\circ}\text{C})$

		IDT71	215S10	IDT71215S12		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
MATCH and	BRDY Cycles					
tADM	Address to MATCH Valid	—	10		12	ns
tDAM	Data Input to MATCH Valid		10	1	12	ns
tcsm	Chip Select to MATCH Valid	—	10	I	12	ns
tCMLZ ⁽¹⁾	Chip Select to MATCH in Low-Z	1	_	1	—	ns
tCMHZ ⁽¹⁾	Chip Select to MATCH in High-Z	1	6	1	7	ns
tмна	MATCH Valid Hold from Address	2		2	—	ns
tмнD	MATCH Valid Hold from Data	2		2	_	ns
tBHA	BRDY Valid Hold from Address	2	—	2	-	ns
tBHD	BRDY Valid Hold from Data	2	—	2	—	ns
tADB	Address to BRDY Valid	-	11		13	ns
tdab	Data Input to BRDY Valid		11	-	13	ns
tCSB	Chip Select LOW to BRDY Valid	_	11	-	13	ns
toebv	BRDYOE LOW to BRDY Valid	-	7		8	ns
toblz ⁽¹⁾	BRDYOE LOW to BRDY in Low-Z	0		0		ns
tobhz ⁽¹⁾	BRDYOE HIGH to BRDY in High-Z	1	6	1	7	ns
t BYFH	BRDYH HIGH to Force BRDY HIGH	—	5	—	6	ns
tbyhv	BRDYH LOW to BRDY Valid		5		6	ns
tsB	BRDYIN Set-up Time	4		4		ns
tнв	BRDYIN Hold Time	1.5	1	1.5		ns
tBIBL	CLK HIGH BRDYIN LOW to BRDY LOW		7	1	8	ns
tBIBV	CLK HIGH BRDYIN HIGH to BRDY Valid		7	—	8	ns
toeмi	OET LOW to MATCH and BRDY Invalid	—	7	—	8	ns
tOEMV	OET HIGH to MATCH and BRDY Valid		8	-	10	ns
twrbh ⁽²⁾	W/R HIGH to BRDY HIGH	—	7	-	8	ns
tWRBV ⁽²⁾	W/R LOW to BRDY Valid		7		8	ns
twm	CLK HIGH Write to MATCH and BRDY Invalid	_	7	—	8	ns
twmv ⁽³⁾	CLK HIGH Read to MATCH and BRDY Valid	_	10		12	ns

NOTES:

3075 tbl 15

9

This parameter is guaranteed with the AC Load (Figure 3) by device characterization, but is not production tested.
 These parameters only apply when SFUNC is LOW and the internal WT bit is HIGH.

3. tADM, tDAM, tCSM and tADB, tDAB, tCSB must also be satisfied.

AC TEST CONDITIONS

GND to 3.0V
3ns
1.5V
1.5V
See Figs. 1, 2, 3, & 4

3075 tbl 16

AC TEST LOADS

3075 drw 04

* Including scope and jig capacitance

3075 drw 03

Figure 4. Lumped Capacitance Load, Typical Derating

11

TIMING WAVEFORMS OF WRITE AND READ CYCLES

1. Transition is measured ±200mV from steady state.

=

11.3

COMMERCIAL TEMPERATURE RANGE

12

1. Transition is measured ±200mV from steady state.

TIMING WAVEFORMS OF RESET FUNCTION

NOTE:

1. Transition is measured ±200mV from steady state.

TIMING WAVEFORMS OF BRDY AND W/R SIGNAL

Applies when SFUNC is LOW, and the internal WT bit is HIGH

TIMING WAVEFORMS OF DES FUNCTION

NOTE:

1. Transition is measured ±200mV from steady state.

TIMING WAVEFORMS OF POWER DOWN FUNCTION

NOTE:

1. Transition is measured ±200mV from steady state.

ORDERING INFORMATION

BiCMOS StaticRAM 240K (16Kx15-BIT) CACHE-TAG RAM For PowerPC[™] and RISC Processors

PRELIMINARY IDT71216

FEATURES:

- 16K x 15 Configuration
 - 12 TAG Bits
 - 3 Separate I/O Status Bits (Valid, Dirty, Write Through)
- Match output uses Valid bit to qualify MATCH output
 High-Speed Address-to-Match comparison times
- -10/12ns over commercial temperature range
- TA circuitry included inside the Cache-Tag for highest speed operation
- Asynchronous Read/Match operation with Synchronous Write and Reset operation
- Separate WE for the TAG bits and the Status bits
- Separate \overline{OE} for the TAG bits, the Status bits, and \overline{TA}
- Synchronous RESET pin for invalidation of all Tag entries
- Dual Chip selects for easy depth expansion with no performance degredation
- I/O pins both 5V TTL and 3.3V LVTTL compatible with Vcco pins
- PWRDN pin to place device in low-power mode
- Packaged in a 80-pin Thin Plastic Quad Flat Pack (TQFP)

DESCRIPTION:

PIN DESCRIPTIONS

The IDT71216 is a 245,760-bit Cache Tag StaticRAM, organized 16K x 15 and designed to support PowerPC and other RISC processors at bus speeds up to 66MHz. There are twelve common I/O TAG bits, with the remaining three bits used as status bits. A 12-bit comparator is on-chip to allow fast comparison of the twelve stored TAG bits and the current Tag input data. An active HIGH MATCH output is generated when these two groups of data are the same for a given address.

This high-speed MATCH signal, with tADM times as fast as 10ns, provides the fastest possible enabling of secondary cache accesses.

The three separate I/O status bits (VLD, DTY, and WT) can be configured for either dedicated or generic functionality, depending on the SFUNC input pin. With SFUNC LOW, the status bits are defined and used internally by the device, allowing easier determination of the validity and use of the given Tag data. SFUNC HIGH releases the defined internal status bit usage and control, allowing the user to configure the status bit information to fit his system needs. A synchronous RESET pin, when held LOW at a rising clock edge, will reset all status bits in the array for easy invalidation of all Tag addresses.

The IDT71216 also provides the option for Transfer Acknowledge (TA) generation within the cache tag itself, based upon MATCH, VLD bit, WT bit, and other external inputs provided by the user. This can significantly simplify cache controller logic and minimize cache decision time. Match and Read operations are both asynchronous in order to provide the fastest access times possible, while Write operations are synchronous for ease of system timing.

The IDT71216 uses a 5V power supply on Vcc and Vss, with separate Vccq pins provided for the outputs to offer compliance with both 5.0V TTL and 3.3V LVTTL Logic levels. The PWRDN pin offers a low-power standby mode to reduce power consumption by 80%, providing significant system power savings.

The IDT71216 is fabricated using IDT's high-performance, high-reliability BiCMOS technology and is offered in a spacesaving 80-pin Thin Plastic Quad Flat Pack (TQFP) package.

A0 – A13	Address Inputs	Input
CS1, CS2	Chip Selects	Input
WET	Write Enable - Tag Bits	Input
WES	Write Enable - Status Bits	Input
OET	Output Enable - Tag Bits	Input
OES	Output Enable - Status Bits	Input
RESET	Status Bit Reset	input
PWRDN	Powerdown Mode Control Pin	Input
SFUNC	Status Bit Function Control Pin	Input
Π1	Read/Write Input from Processor	Input
VLDIN/ S11N	Valid Bit / S1 Bit Input	Input
DTYIN/ S2IN	Dirty Bit / S2 Bit Input	Input
WTIN/ S3IN	Write Through Bit / S3 Bit Input	Input

CLK	System Clock	Input
ТАН	TA Force High	Input
TAOE	TA Output Enable	Input
TAIN	Additional TA Input	Input
TA	Transfer Acknowledge	Output
TAG0 - TAG11	Tag Data Input/Outputs	I/O
VLDout / S10UT	Valid Bit / S1 Bit Output	Output
DTYOUT / S2OUT	Dirty Bit / S2 Bit Output	Output
WTOUT / S3OUT	Write Through Bit / S3 Bit Output	Output
MATCH	Match	Output
Vcc	+5V Power	Pwr
Vccq	Output Buffer Power	QPwr
Vss	Ground	Gnd
		2067 #10

The IDT logo is a registered trademark and CacheRAM is a trademark of Integrated Device Technology, Inc. PowerPC is a trademark of International Business Machines, Inc.

COMMERCIAL TEMPERATURE RANGE

PIN CONFIGURATION

TQFP TOP VIEW

FUNCTIONAL BLOCK DIAGRAM

3067 drw 02

TRUTH TABLES

CHIP SELECT, RESET, AND POWER-DOWN FUNCTIONS^(1, 2)

				<u> </u>												
CS1	CS2	RESET	PWRDN	CLK	WET	WES	TAOE	т	'AG	VLDout	DTYOUT	WTout	MATCH	TA	OPERATION	POWER
СН	IP S	ELEC	T FUN	СТІС	N											
н	x	x	н	x	x	х	х	ŀ	li-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Deselected	Active
x	L	x	н	x	х	х	x	H	li-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Deselected	Active
L	н	x	н	X	x	х	Х		-	-		-	-	_	Selected	Active
RES	SET	FUNC	TION		_											
L	н	L	н	1	н	н	L	∐⊦	li-Z	L(3)	L ⁽³⁾	L ⁽³⁾	L ⁽³⁾	н	Reset Status	Active
L	н_	L	н	↑	н	н	Н	۱	li-Z	L(3)	L ⁽³⁾	L ⁽³⁾	L ⁽³⁾	Hi-Z	Reset Status	Active
н	x	L	н	↑	н	н	Х	ŀ	li∙Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Reset Status	Active
x	L	L	н	↑	н	н	X	ŀ	li-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Reset Status	Active
x	х	L	н	<u>↑</u>	L	х	Х			-	-	-	-		Not Allowed	-
х	х	L	н	1	х	L	х		-	-	-	-			Not Allowed	
PO	WEF	R-DOV	VN FUI	ICTI	ON	·									·	
l x	l x	x I		l x	н	ŀнĺ	x	Цн	4i-7	Hi-7	Hi-7	Hi-7	Hi-7	Hi-7	Power-down	Standby

NOTES:

1. "H" = VIH, "L" = VIL, "X" = don't care, "--" = unrelated. 2. \overline{OET} , \overline{OES} , TT1, TAH, TAIN and SFUNC are "X" for this table. 3. \overline{OES} is LOW.

READ AND WRITE FUNCTIONS^(1, 2)

OET	OES	WET	WES	CLK	ττ1	TAG	VLDIN	DTYIN	WTIN	VLDout	DTYout	WTout	МАТСН	OPERATION
REA	READ FUNCTION													
L	х	н	x	х	х	Dout	-	-	-	-	-	-	Dout	Read TAG I/O
х	L	х	х	х	х	-	-	-	-	Dout	DOUT	DOUT	Dout	Read Status Bits
н	х	х	х	х	х	Hi-Z	-	-	-	-	-	-	-	TAG I/O Disable
x	н	х	X	х	х	-	-	-	-	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Status Disabled
WRI	TE FI	JNCI	ΓΙΟΝ											
н	х	L	х	1	х	DIN	-	-	-	Dout	Dout	Dout	L	Write TAG I/O
	v				V									Net Allowed

Н	X	L	X	1	X	Din	_	-	-	DOUT	Dout	DOUT	L	Write TAG I/O
L	х	L	х	↑	x	-	-	-	-	-	-	-	-	Not Allowed
Х	L	x	L	Ŷ	х	-	DIN	Din	DIN	Dout ⁽³⁾	Dout ⁽³⁾	Dout ⁽³⁾	L	Write Status Bits
х	н	x	L	Ŷ	х	-	DIN	Din	Din	Hi-Z	Hi-Z	Hi-Z	L	Write Status Bits
NOTES	S:													3067 tbl 03

NOTES:

1. "H" = VIH, "L" = VIL, "X" = don't care, "-" = unrelated.

2. This table applies when CST is LOW and CS2, RESET, and PWRDN are HIGH. TAOE, TAH, TAIN and SFUNC are "X" for this table.

3. Dout in this case is the same as DIN; that is, the input data is written through to the outputs during the write operation.

TRUTH TABLES (CONT.)

MATCH FUNCTION^(1, 2, 3)

CS1	CS2	SFUNC	OET	WET	WES	TAG	VLD ⁽⁴⁾	DTY ⁽⁴⁾	WT ⁽⁴⁾	МАТСН	OPERATION
Н	Х	Х	х	x	х	Hi∙Z	-	-	-	Hi-Z	Deselected
х	L	x	х	х	х	Hi-Z	-	-	-	Hi-Z	Deselected
L	Н	Х	Х	x	х	-	-	-	-	Dout	Selected
L	Н	х	L	н	х	Dout	-	-	-	L	Read Tag I/O
L	Н	х	Н	L	х	Din	-	-	1	L	Write Tag I/O
L	Н	Х	х	Х	L		Din	Din	Din	L	Write Status Bits
L	н	L	н	н	н	TAGIN	L	-	_	L	Invalid Data - Dedicated Status Bits
L	Н	L	н	н	н	TAGIN	Н	-	-	м	Match - Dedicated Status Bits
L	Н	Н	н	н	н	TAGIN	Х	-	-	м	Match - Generic Status Bits

NOTES:

1. "H" = VIH, "L" = VIL, "X" = don't care, "-" = unrelated.

2. M = HIGH if TAGIN equals the memory contents at that address; M = LOW if TAGIN does not equal the memory contents at that address.

3. PWRDN and RESET are HIGH for this table. TT1, TAH, TAOE, TAIN, OES, and CLK are "X".

4. This column represents the stored memory cell data for the given Status bit at the selected address.

TA FUNCTION^(1, 2, 3, 5)

TAOE	TAIN ⁽⁶⁾	OET	WET	WES	ТАН	TT1	SFUNC	VLD ⁽⁴⁾	DTY ⁽⁴⁾	WT ⁽⁴⁾	TAG	МАТСН	TA	OPERATION
н	x	х	х	Х	X	х	х	x	-	Х	-	-	Hi-Z	TA Disabled
L	L	x	х	х	Х	х	Х	x	-	Х	-	Х	L	External TA Input (7)
L	н	L	х	х	х	х	х	Х	-	х	Dout	L	н	Read TAG
L	н	х	L	Х	Х	Х	Х	X	-	Х	Din	L	Н	Write TAG
L	н	x	х	Ŀ	Х	х	Х	Din	Din	Din	-	Ĺ	н	Write Status
L	н	х	х	Х	Н	Х	х	Х	-	х	-	Х	н	Force TA HIGH
L	н	х	Х	х	Х	х	L	L	_	Х	-	L	H	Invalid TAG
L	н	x	х	х	х	L	L	x	_	н	_	х	Н	Write Through
L	н	н	н	н	L	х	L	н	-	L	TAGIN	М	M	Compare
L	н	н	н	н	L	Н	L	н	-	х	TAGIN	М	M	Compare
L	н	н	Н	Н	L	х	L	н	_	х	TAGIN	М	M	Compare
L	н	н	н	Н	L	х	н	Х	-	х	TAGIN	М	M	Compare

NOTES:

1. "H" = VIH, "L" = VIL, "X" = don't care, "-" = unrelated.

2. M = HIGH if TAGIN equals the memory contents at that address; M = LOW if TAGIN does not equal the memory contents at that address.

3. PWRDN and RESET are HIGH for this table. CLK and OES are "X".

4. This column represents the stored memory cell data for the given Status bit at the selected address.

5. CS1 is LOW, CS2 is HIGH for this table.

6. TAIN is a synchronous input; thus the inputs noted in the table must be applied during a rising CLK edge.

7. TAIN will be a factor in determining the TA output in all cases except when TAH is HIGH and there is a valid MATCH. In that case, TA will be LOW(Valid).

3067 tbl 04

3067 tbi 05

RECOMMENDED DC OPERATING CONDITIONS

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	4.75	5.0	5.25	V
Vccq	5V Output Buffers	4.75	5.0	5.25	V
Vcca	3.3V Output Buffers	3.0	3.3	3.6	V
Vss	Supply Ground	0	0	0	٧
VIH	Input High Voltage	2.2	3.0	VCC+0.3	V
Vіна	I/O High Voltage	2.2	3.0	VCCQ+0.3	V
VIL	Input Low Voltage	0.5 ⁽¹⁾	—	0.8	V
NOTE:				3	067 tbl 06

1. VIL (min.) = -1.5V for pulse width of less than 10ns, once per cycle.

CAPACITANCE

 $(TA = +25^{\circ}C, f = 1.0 \text{ MHz})$

Symbol	Parameter ⁽¹⁾	Condition	Max.	Unit
CIN	Input Capacitance	VIN = 0V	5	рF
CTAG	TAG Input/Output Capacitance	VI/O = 0V	7	pF
COUT	Output Capacitance	Vout = 0V	7	pF
NOTE	••••••••••••••••••••••••••••••••••••••		- 1	3067 tbl 0

NOTE:

1. This parameter is determined by device characterization but is not production tested

DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE

 $(VCC = 5.0V \pm 5\%, VCCQ = 5.0V \pm 5\% \text{ OR } 3.3V \pm 0.3V)$

Symbol	Parameter	Test Condition	Min.	Max.	Unit
11	Input Leakage Current	Vcc = Max., VIN = 0V to Vcc		5	μA
[ILO]	Output Leakage Current	$\label{eq:constraint} \begin{array}{l} \overline{CS1} \geq V \text{IH}, \ CS2 \leq V \text{IL}, \ \overline{OE} \geq V \text{IH}, \ Vcc = Max. \\ Vout = 0V \ to \ Vccq, \ Vccq = Max. \end{array}$	-	5	μA
Vol	Output Low Voltage	IOL = 4mA, VCC = Min.	—	0.4	V
Vон	Output High Voltage	Юн = —4mA, Vcc = Min.	2.4		V

3067 tbl 09

DC ELECTRICAL CHARACTERISTICS OVER THE OPERATING TEMPERATURE AND SUPPLY VOLTAGE RANGE^(1, 2) ($Vcc = 5.0V \pm 5\%$)

			7121	6 <u>S10</u>	71216	S12	
Symbol	Parameter	Test Condition	Com'l.	Mil.	Com'l.	Mil.	Unit
lcc	Operating Power Supply Current	PWRDN ≥ VtH Outputs Open, Vcc = Max., f = fмax ⁽³⁾	320	-	310	-	mA
ISB	Standby Power Supply Current	$\label{eq:product} \begin{split} \overline{PWRDN} &\leq V \texttt{IL}, \ V\texttt{IN} \geq V \texttt{IH} \ \textbf{or} \leq V \texttt{IL} \\ Vcc &= Max., \ \texttt{f} = \texttt{fmax}^{(3)} \end{split}$	50	—	50	—	mA
ISB1	Full Standby Power Supply Current	$\label{eq:pwrDN} \begin{split} & \overline{PWRDN} \leq V_{IL}, \ V_{IN} \geq V_{HC} \ \text{or} \leq V_{LC}{}^{(4)} \\ & V_{CC} = Max., \ f = 0^{(3)} \end{split}$	30	_	30	-	mA

NOTES:

1. All values are maximum guaranteed values.

2. $\overline{CS1} \leq VIL, CS2 \geq VIH.$

3. fMAX = 1/tcyc (all address inputs are cycling at fMAX). f = 0 means no address input lines are changing.

4. VHC = VCC - 0.2V, VLC = 0.2V

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0 ⁽²⁾	۷
TA	Operating Temperature	-0 to +70	°C
TBIAS	Temperature Under Bias	65 to +135	°C
Tstg	Storage Temperature	65 to +150	°C
Рт	Power Dissipation	1.7	W
lout	DC Output Current	20	mΑ
NOTES:		3	067 tbl 08

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. VIN should not exceed Vcc+0.5V. All pins should not exceed 7.0V. Vcco should never exceed Vcc, and Vcc should never exceed Vccq + 4.0V.

3067 tbi

6

AC ELECTRICAL CHARACTERISTICS

 $(Vcc = 5.0V \pm 5\%, Vccq = 5.0V \pm 5\% \text{ OR } 3.3V \pm 0.3V, TA = 0 \text{ to } 70^{\circ}\text{C})$

		IDTTACKORA		IDTTIOLOGIC		1
		ID171216S10		<u> ID171216S12</u>		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
Read Cycle						
t AAT	Address Access Time Tag Bits	└ –	12	_	14	ns
tACST	Chip Select Access Time Tag Bits		10	—	12	ns
tCLZ ⁽¹⁾	Chip Select to Tag and Status Bits in Low-Z	1	-	1	—	ns
tCHZ ⁽¹⁾	Chip Select to Tag and Status Bits in High-Z	1	6	1	7	ns
t OET	Output Enable to Tag Bits Valid	- 1	8	_	9	ns
totlz ⁽¹⁾	Output Enable to Tag Bits in Low-Z	0	_	0		ns
tothz ⁽¹⁾	Output Enable to Tag Bits in High-Z	1	6	1	7	ns
tтон	Tag Bit Hold from Address Change	3		3		ns
tOES	Output Enable to Status Bits Valid	- 1	8		9	ns
tOSLZ ⁽¹⁾	Output Enable to Status Bits in Low-Z	0	_	0		ns
tosHZ ⁽¹⁾	Output Enable to Status Bits in High-Z	1	6	1	7	ns
taas	Address Access Time Status Bits		10		12	ns
tacss	Chip Select Access Time Status Bits		9	_	11	ns
tson	Status Bit Hold from Address Change	3	—	3	—	ns

NOTE:

1. This parameter is guaranteed with the AC Load (Figure 3) by device characterization, but is not production tested.

3067 tbl 11

AC ELECTRICAL CHARACTERISTICS (1)

 $(Vcc = 5.0V \pm 5\%, Vccq = 5.0V \pm 5\% \text{ or } 3.3V \pm 0.3V, TA = 0 \text{ to } 70^{\circ}\text{C})$

		IDT71216S10		IDT71216S12		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
Reset and	Power Down Cycles					
tsR	RESET Set-up Time	4	—	4	—	ns
tHR	RESET Hold Time	1	-	1	-	ns
tSRST	Status Bit Reset Time		60	—	70	ns
tSHRS	Status Bit Hold from RESET LOW	2		2	—	ns
t RSMI	RESET LOW to MATCH and TA Invalid	-	10	—	12	ns
trsmv	RESET HIGH to MATCH and TA Valid	_	100	_	110	ns
tRSHZ ⁽²⁾	RESET LOW to TAG High-Z	—	10	—	12	ns
tRSLZ ⁽²⁾	RESET HIGH to TAG Low-Z		100		110	ns
t PDSR	PWRDN Set-up to RESET LOW	30	-	30		ns
tRHWL	RESET HIGH to WET and WES LOW	80	—	90	-	ns
tPD ⁽²⁾	PWRDN LOW to Low Power Mode	_	50	—	50	ns
tPU ⁽²⁾	PWRDN HIGH to Active Power Mode	0	—	0		ns
tPDHZ ⁽²⁾	PWRDN LOW to Outputs in High-Z	—	10	—	12	ns
tPDLZ ⁽²⁾	PWRDN HIGH to Outputs in Low-Z	0	_	0	_	ns
tpuv	PWRDN HIGH to Outputs Valid		50	-	50	ns
tWHPL ⁽²⁾	WET and WES HIGH to PWRDN LOW	5		5	—	ns
t PUWL	PWRDN HIGH to WET and WES Active	50	-	50	—	ns

NOTES:

Power-down mode is intended to be used during extended time periods of device inactivity.
 This parameter is guaranteed with the AC Load (Figure 3) by device characterization, but is not production tested.

AC ELECTRICAL CHARACTERISTICS (1)

 $(Vcc = 5.0V \pm 5\%, Vccq = 5.0V \pm 5\% \text{ OR } 3.3V \pm 0.3V, TA = 0 \text{ to } 70^{\circ}\text{C})$

		IDT712	IDT71216S10		IDT71216S12	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
Write Cycle	and Clock Parameters					
tcyc	Clock Cycle Time	15	-	16.6	-	ns
tCH ^(2, 3)	Clock Pulse HIGH	4.5		5	—	ns
tcL ^(2, 3)	Clock Pulse LOW	4.5		5	—	ns
ts	WET, WES, Chip Select, and Input Data Set-up Time	3	-	3	—	ns
tH	WET, WES, Chip Select, and Input Data Hold Time	1.5		1.5	_	ns
tSA	Address Set-up Time	3	—	3	-	ns
tha	Address Hold Time	1.5		1.5	-	ns
twмi	CLK HIGH Write to MATCH and TA Invalid	—	7		8	ns
tCKLZ ⁽³⁾	CLK HIGH Read to Outputs in Low-Z	1.5	—	1.5	-	ns
tCTV ⁽⁴⁾	CLK HIGH Read to Tag Bits Valid	_	10	-	12	ns
tCSV ⁽⁴⁾	CLK HIGH Write to Status Outputs Valid	—	9	-	10	ns
tCSH ⁽³⁾	Status Output Hold from CLK HIGH Write	0	_	0	_	ns
tWHPL	WET and WES HIGH to PWRDN LOW	5	-	5		ns
tPUWL	PWRDN HIGH to WET and WES Active	50		50	_	ns
NOTES:						3067 tbl 14

1. All Write cycles are synchronous and referenced from rising CLK.

2. This parameter is measured as a HIGH time above 2.0V and a LOW time below 0.8V.

This parameter is guaranteed with the AC Load (Figure 3) by device characterization, but is not production tested.
 Addresses are stable prior to CLK transition HIGH.
AC ELECTRICAL CHARACTERISTICS

 $(VCC = 5.0V \pm 5\%, VCCQ = 5.0V \pm 5\% \text{ OR } 3.3V \pm 0.3V, TA = 0 \text{ to } 70^{\circ}\text{C})$

		IDT71	216S10	IDT712		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
MATCH and	TA Cycles					
tadm	Address to MATCH Valid	_	10		12	ns
tDAM	Data Input to MATCH Valid	—	10	1	12	ns
tCSM	Chip Select to MATCH Valid		10	1	12	ns
tCMLZ ⁽¹⁾	Chip Select to MATCH in Low-Z	1	_	1	—	ns
tCMHZ ⁽¹⁾	Chip Select to MATCH in High-Z	1	6	1	7	ns
tmha 🛛	MATCH Valid Hold from Address	2	_	2	—	ns
tмнD	MATCH Valid Hold from Data	2	—	2		ns
tTHA .	TA Valid Hold from Address	2		2	—	ns
tthd	TA Valid Hold from Data	2		2	—	ns
tadt	Address to TA Valid		11	-	13	ns
tDAT.	Data Input to TA Valid	—	11	_	13	ns
tcst	Chip Select LOW to TA Valid	—	11	_	13	ns
t OETV	TAOE LOW to TA Valid	_	7	_	8	ns
totlz ⁽¹⁾	TAOE LOW to TA in Low-Z	0		0	-	ns
tOTHZ ⁽¹⁾	TAOE HIGH to TA in High-Z	1	6	1	7	ns
TAFH	TAH HIGH to Force TA HIGH		5	_	6	ns
t tahv	TAH LOW to TA Valid	—	5	_	6	ns
tsti	TAIN Set-up Time	4	—	4	_	ns
tHTI	TAIN Hold Time	1.5	_	1.5		ns
ttitL	CLK HIGH TAIN LOW to TA LOW	_	7		8	ns
ttitv	CLK HIGH TAIN HIGH to TA Valid		7	_	8	ns
toemi	OET LOW to MATCH and TA Invalid	_	7	_	8	ns
t OEMV	OET HIGH to MATCH and TA Valid		8	-	10	ns
tthtl ⁽²⁾	TT1 LOW to TA HIGH	—	7	-	8	ns
tthtv ⁽²⁾	TT1 HIGH to TA Valid	_	7	_	8	ns
twмi	CLK HIGH Write to MATCH and TA Invalid	7	_	8	ns	
twmv ⁽³⁾	CLK HIGH Read to MATCH and TA Valid	_	10	_	12	ns
NOTES:						3067 tbl 15

NOTES:

This parameter is guaranteed with the AC Load (Figure 3) by device characterization, but is not production tested.
These parameters only apply when SFUNC is LOW and the internal WT bit is HIGH.
tADM, tDAM, tCSM and tADB, tDAB, tDAB must also be satisfied.

.

AC TEST CONDITIONS

GND to 3.0V
3ns
1.5V
1.5V
See Figs. 1, 2, 3, & 4

3067 tbl 16

AC TEST LOADS

3067 drw 04

* Including scope and jig capacitance

Figure 4. Lumped Capacitance Load, Typical Derating

=

1. Transition is measured ±200mV from steady state.

1. Transition is measured ±200mV from steady state.

11.4

TIMING WAVEFORMS OF RESET FUNCTION

NOTE:

1. Transition is measured ±200mV from steady state.

TIMING WAVEFORMS OF TA AND TT1 SIGNAL

Applies when SFUNC is LOW, and the internal WT bit is HIGH

TIMING WAVEFORMS OF DES FUNCTION

NOTE:

1. Transition is measured ±200mV from steady state.

TIMING WAVEFORMS OF POWER DOWN FUNCTION

NOTE:

1. Transition is measured $\pm 200 \text{mV}$ from steady state.

ORDERING INFORMATION

CACHE CONTROLLER PRODUCT

CACHE TAGS

CacheRAMs

3.3V ASYNCHRONOUS SRAM PRODUCTS

1M SRAM PRODUCTS

256K SRAM PRODUCTS

64K SRAM PRODUCTS

16K SRAW PRODUCTS

PACKAGE DIAGRAM OUTLINES

QUALITY AND RELIABILITY

TECHNOLOGY AND CAPABILITIES

GENERAL INFORMATION

12

CACHE CONTROLLER PRODUCTS

Expanding further on its cache tag and cache design experience, IDT is developing products that will offer improved secondary cache performance at a lower cost to the user. The product concept will combine both the cache tag SRAM and all of the cache controller logic on a single chip to minimize on-and-off chip delays in this critical path. The first device, the IDT71V280, utilizes IDT's state-of-theart 3.3V CMOS technology to provide superior cache performance with either burst or asynchronous SRAMs. This device, when utilized with application specific core logic, will provide all control signals for the secondary cache data SRAMs as well as the hit/miss decision back to the processor itself.

				Part		Spee	eds
Function	Organization	Features	Process	Number	Power	Commercial	Military
Cache Controller	16K x 10	3.3V Controller with Tag	3.3V CMOS	71V280	S	66MHz	N/A

TABLE OF CONTENTS

		PAGE
CACHE CONTROLLI	ER PRODUCT	
IDT71V280	16K x 10 CMOS 3.3V Cache Controller with Tag for Pentium [™] Processors	12.1

CMOS CACHE CONTROLLER WITH TAG FOR INTEL[®] PENTIUM[™] PROCESSORS

ADVANCE INFORMATION IDT71V280

FEATURES

- Provides the Cache Tag, Status Bits, CPU interface control and Data SRAM control for Pentium CPU-based systems
- Supports 2-1-1-1 zero-wait state reads and writes for 50MHz Pentium CPU-based systems
- Offers 3-1-1-1 burst performance for 66MHz Pentium CPU-based systems
- · Supports a write-back, look aside cache architecture
- 10-bit tag field for up to 512MB cacheable address space using four words per line
- Provides Pentium address pipelining support for optimum burst performance
- Supports cache sizes of 256KB, 512KB, and 1MB
- · 2 status bits offer four encoded combinations:
 - Invalid
- Shared (valid clean, write-through)
- Exclusive (valid clean, write-back)
- Modified (valid dirty)
- · Supports asynchronous and burst data SRAMs
- 3.3V (±5%) power supply voltage
- · Packaged in a 128-lead TQFP for optimum board density

DESCRIPTION

The IDT71V280 provides the Cache Tag SRAM, Status Bits, CPU interface control, and Data SRAM control for a Pentium secondary cache implementation. Combining these elements in a single, cost-effective CMOS chip provides the system designer with greatly enhanced cache performance by reducing cache-subsystem delays. The IDT71V280 provides 2-1-1-1 zero-wait state secondary cache performance at frequencies up to 50MHz and 3-1-1-1 performance at 60 and 66MHz in Pentium applications.

The IDT71V280 supports a number of different system configurations and performance levels. Cache size, cache wait-state performance, Data SRAM type, and Data SRAM size offer the system designer a wide range of cache choices to optimize the cache configuration to his exact system needs. Four mode pins determine the cache subsystem configuration and performance levels, with both asynchronous and burst data SRAM support options offered.

The IDT71V280 uses a single 3.3V power supply to provide full JEDEC LVTTL compatibility in 3.3V applications. Multiple GND pins provide excellent noise immunity at high frequencies, and the space saving 14mm x 20mm 128-pin Thin Quad Flat Pack offers a small board footprint and profile for maximum packing density.

TYPICAL CACHE SUBSYSTEM CONFIGURATIONS

FUNCTIONAL BLOCK DIAGRAM

1. Aynchronous SRAM—Interleaved

FUNCTIONAL DESCRIPTION

When used with two interleaved banks of asynchronous data SRAMs, the IDT71V280 supports zero wait-state bursts on read and write cycles for 50MHz systems and one wait-state bursts at 66MHz. All control for the SRAMs, including separate least significant address bits, are provided by the IDT71V280 to support this configuration.

The IDT logo is a registered trademark and CacheRAM is a trademark of Integrated Device Technology, Inc. All others are trademarks of their respective companies.

COMMERCIAL TEMPERATURE RANGE

FUNCTIONAL BLOCK DIAGRAM

2. Burst SRAM

3. Asynchronous SRAM—Single Bank

The IDT71V280 will support a single bank of asynchronous SRAMs, allowing a minimum cost cache solution. With 15ns SRAMs this configuration provides 2-2-2-2 performance at 50MHz and 3-2-2-2 performance at 66MHz. This configuration will be especially useful for systems requring a minimum part count solution based on power and space constraints.

The IDT71V280 can also be used with Burst CacheRAMs. The IDT71V280 provides all control signals necessary for up

to 128K depth of data SRAM, using either one or two banks of

data SRAMs. Therefore, all standard burst SRAM configura-

tions may be used including 32K x 18, 32K x 36 and 64K x 18. For 50MHz, 2-1-1-1 zero wait-state operation can be achieved with 12ns burst SRAMs; for 66MHz, the IDT71V280 will

operate with Pipelined Burst RAMs providing 3-1-1-1 perfor-

RECOMMENDED DC **OPERATING CONDITIONS**

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vcc	Supply Voltage	3.15	3.3	3.45	v
GND	Supply Ground	0	0	0	V
Vih	Input High Voltage	2.2	3.0	Vcc+0.3	V
Vi∟	Input Low Voltage	-0.5(1)		0.8	V
NOTE:				3	100 tbl 01

1. VIL (min.) = -1.5V for pulse width of less than 10ns, once per cycle.

CAPACITANCE⁽¹⁾ (TA = $+25^{\circ}$ C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Condition	IDT71V280	Unit
CIN	Input Capacitance (Address, Control)	VIN = OV	5	рF
CIN	Input Capacitance (CLK)	$V_{1N} = 0V$	5	рF
Соит	Output Capacitance (Control)	VIN = 0V	7	pF
Ci/O	Data I/O Capacitance	Vout = 0V	7	pF
NOTE:	•		3	100 tbl 02

1. These parameters are maximum values and guaranteed but not tested.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

FUNCTIONAL DESCRIPTION

Symbol	Rating	Value	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	0.5 to +4.5	V
Vterm ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to +Vcc+0.5	V
ΤΑ	Operating Temperature	0 to +70	°C
TBIAS	Temperature Under Bias	65 to +135	°C
Tstg	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.0	W
ЮИТ	DC Output Current	20	mΑ
NOTES:		310	0 thl 03

NOTES:

mance.

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RAT-INGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminal only.

3. Input, Output, and I/O terminals; 4.5V maximum.

PIN CONFIGURATION

MODE AND CONFIGURATION TABLE

м	м	М	м		Performance		Cache	SRAM	Number	
3	2	1	0	Read Hit	Write/BurstWrite	Line Fill	Size (B)	Type ⁽¹⁾	of Banks	Notes
0	0	0	0	2-2-2-2	2/2-2-2-2	4-2-2-2	256K	32K x 8 A	1	
0	0	0	1	3-2-2-2	3/3-2-2-2	4-2-2-2	256K	32K x 8 A	1	
0	0	1	0	2-1-1-1	2/2-1-1-1	4-1-1-1	512K	32K x 8 A	2	Interleaved
0	0	1	1	3-2-2-2	3/3-2-2-2	4-2-2-2	512K	32K x 8 A	2	Interleaved
0	1	0	0	2-1-1-1	2/2-1-1-1	4-1-1-1	256K	Burst	1	32K deep Burst SRAMs
0	1	0	1	3-1-1-1	3/3-1-1-1	4-1-1-1	256K	Pipe-Burst	1	32K deep Pipelined Burst SRAMs
0	1	1	0	2-1-1-1	2/2-1-1-1	4-1-1-1	512K	Burst	1	64K deep Burst SRAMs
0	1	1	1	3-1-1-1	3/3-1-1-1	4-1-1-1	512K	Pipe-Burst	1	64K deep Pipelined Burst SRAMs
1	0	0	0	2-2-2-2	2/2-2-2-2	4-2-2-2	1M	128K x 8 A	1	
1	0	0	1	3-2-2-2	3/3-2-2-2	4-2-2-2	1M	128K x 8 A	1	
1	0	1	0	2-1-1-1	2/2-1-1-1	4-1-1-1	1M	Burst	2	2 banks of 64K deep Burst SRAMs
1	0	1	1	3-1-1-1	3/3-1-1-1	4-1-1-1	1M	Burst	2	2 banks of 64K deep Pipelined Burst SRAMs
1	1	0	0		_	_	_		-	Reserved
1	1	0	1	_		-	-	_	-	Reserved
1	1	1	0	-		—	_			Reserved
1	1	1	1			_	_			Reserved

NOTE:

1. A = Asynchronous.

PIN DEFINITION

Symbol	Pin Function	I/O	Level	Description
CLK	Clock	1	N/A	This is the clock input to the IDT71V280. All timing references for the cache are made with respect to this input. If the clock input is to be disabled, PWRDN# must first be asserted.
PLL	PLL Output	0	N/A	This pin is a free running output that should be loaded the same as the WE# pins and is used to adjust the phase of the internal clock.
RESET	Reset	I	HIGH	If RESET is sampled HIGH by the IDT71V280, the control logic is reset to a known state. In addition, when RESET is sampled HIGH, the resettable status bits are forced to INVALID.
FLUSH#	Flush	I	LOW	When the FLUSH# input is sampled LOW, the IDT71V280 control logic is placed into a flush pending state. While the IDT71V280 is in a flush pending state, it does not alter how it handles CPU bus cycles. The IDT71V280 initiates a cache flush when it detects a CPU Flush Acknowledge special bus cycle.
SBOFF#	System Backoff	1	LOW	This input forces the IDT71V280 off of the CPU address and data buses. When SBOFF# is asserted, the IDT71V280 will only recognize invalidation and snoop cycles; however, the cache will not provide the data and address for an invalidation/snoop hit to a dirty line until SBOFF# is deasserted. When SBOFF# is sampled asserted, it causes the IDT71V280 to assert CBOFF# synchronously.
CBOFF#	Cache Backoff	0	LOW	This output is asserted by the cache to force the CPU off the bus when the IDT71V280 detects that a dirty line must be evicted from the IDT71V280. The IDT71V280 also asserts CBOFF# when its SBOFF# input is sampled asserted.
EADS#	External Address Strobe	1	LOW	This input is used by external devices to perform a snoop to a cache line in the IDT71V280. The IDT71V280 recognizes the initiation of a snoop access when EADS# is sampled LOW. The IDT71V280 ignores ADS# if it is sampled LOW concurrent with sampling EADS# LOW.
INV	Invalidate	1	HIGH	This input is used in conjunction with EADS# to snoop, or invalidate, a cache line. If INV is HIGH, the IDT71V280 will consider the access as an invalidation. If INV is LOW when EADS# is asserted the IDT71V280 will consider the access as a snoop.

3100 tbl 04

4

PIN DEFINITION (CONTINUED)

.

Symbol	Pin Function	I/O	Level	Description
ADS#	Address Strobe	1/0	LOW	This pin is used by external devices to inform the IDT71V280 that a valid address is present on the input of the cache. This pin is driven by the IDT71V280, while the IDT71V280 is asserting CBOFF#, to evict a dirty line from the cache or to supply dirty data for a snoop hit.
NA#	Next Address	1/0	LOW	This pin is driven LOW for one clock cycle by the IDT71V280 during burst read hits to pipeline the next CPU bus cycle into the current one. This pin is an input when the memory controller is servicing the memory cycle.
M/IO#	Memory/I/O	1/0	N/A	This pin is used by external devices to inform the IDT71V280 that a memory access is being made when this pin is HIGH, or that an I/O access is being made when this pin is LOW. I/O cycles are not considered cacheable. This pin is driven HIGH by the IDT71V280, while the IDT71V280 is asserting CBOFF#, to evict a dirty line from the cache or to supply dirty data for a snoop hit.
W/R#	Write/Read	1/0	N/A	This pin is used by external devices to inform the cache that either a write is being performed when this pin is HIGH, or that a read is being performed if this pin is LOW. This pin is driven HIGH by the IDT71V280, while the IDT71V280 is asserting CBOFF#, to evict a dirty line from the cache, or to supply dirty data for a snoop hit.
WRPT#	Write Pass Through	I	LOW	This input from the system is sampled concurrent with the beginning of a CPU bus cycle. If it is sampled LOW, the IDT71V280 passes control of servicing the write cycle to the system controller.
D/C#	Data/Control	I/O	N/A	This pin is used by the IDT71V280 in conjunction with the M/IO#. W/R#, BE7#-BE0# to determine when a special bus cycle is being executed, and the type of special bus cycle being executed. This pin is driven HIGH by the IDT71V280, while the IDT71V280 is asserting CBOFF#. to evict a dirty line from the cache or to supply dirty data for a snoop hit.
START#	Memory Start	0	LOW	This output is driven LOW by the IDT71V280 to inform the system that it must service the current memory cycle. START# is also driven LOW when the IDT71V280 is writing back a dirty line from the cache.
CBRDY#	Burst Ready Output	0	LOW	The IDT71V280 drives this signal to the CPU BRDY# at all times. It is driven LOW to indicate the successful transfer of data. CBRDY# is a combination of the internally generated logic (for read hits, and write hits that are not write through), and the SBRDY# input (all cache misses, non-cacheable and write through cycles). There is a register delay in the SBRDY# to CBRDY# path.
SBRDY#	Burst Ready Input	I	LOW	The system drives this signal into the IDT71V280 at all times. It is driven LOW to indicate the successful transfer of data to or from the system. CBRDY# is driven LOW in response to SBRDY# being sampled LOW. The IDT71V280 delays SBRDY# (through CBRDY#) to the CPU by one cycle.
CACHE#	Cacheability	1/0	LOW	This pin is sampled by the IDT71V280 at the beginning of a bus cycle to determine the length and cacheability of the cycle. If CACHE# is LOW at the beginning of a read cycle, the read is cacheable and contains four data words. If CACHE# is HIGH at the beginning of a read cycle, the cycle consists of a single data word. If CACHE# is LOW at the beginning of a write cycle, the CPU will execute a four word write back. If CACHE# is HIGH at the beginning of a write cycle, the CPU will execute a four word write back. If CACHE# is HIGH at the beginning of a write cycle, the CPU will write out a single word. When the IDT71V280 executes a write back to evict a dirty line this pin is driven LOW at the same time that CBOFF# is asserted. This pin is driven LOW when the IDT71V280 is performing a write cycle for either a line eviction, or to supply dirty data for a snoop hit.
Аз1-Аз	Address	I/O	N/A	These are the CPU address bus lines. They are inputs to the IDT71V280, except when the IDT71V280 is performing a write cycle for either a line eviction or to supply dirty data for a snoop hit.
BE7#- BEo#	Byte Enable	1/0	LOW	These are the byte enable inputs to the IDT71V280. These inputs are sampled during write cycles to control byte writes, and they are used in conjunction with M/IO#, W/R#, and D/C# to determine when a special bus cycle is being executed. These pins are driven LOW when the IDT71V280 is performing a write cycle for either a line eviction, or to supply dirty data for a snoop hit.

Symbol	Pin Function	I/O	Level	Description
CS#	Cache Select	1	LOW	This input is used to disable the IDT71V280 from responding to any memory or snoop cycles. The IDT71V280 will not respond to a memory, or snoop, cycle unless it samples CS# LOW the clock cycle prior to and the clock concurrent with sampling either ADS# or EADS# LOW.
CWB/WT#	Write Back/Write Write Cache	0	N/A	Output from the IDT71V280 to the CPU. It is driven to reflect whether data being accessed during a cache hit is write back or write through in nature. CWB/ WT# is also driven LOW when SWB/WT# is sampled LOW.
SWB/WT#	Write Back/Write Through System		N/A	Input to the IDT71V280 when a line of data is loaded into the cache. If PWT is sampled HIGH at the beginning of a read cycle that results in a cache miss, the value of this pin is ignored and the line returned is considered write through. If PWT is sampled LOW at the beginning of a read cycle, and SWB/WT# is sampled HIGH during the first work transfer of a line fill, the line is marked as write back. If PWT is sampled LOW at the beginning of a read cycle, and SWB/WT# is sampled LOW during the first work transfer of a line fill, the line is marked as write through. If the line is marked as write back, the cache will update its memory contents without passing the cycle on to other devices during a memory write cycle. If the line is marked as write through, the cache will update its memory contents when the write cycle is serviced by the system. When SWB/WT# is sampled LOW, it forces CWB/WT# LOW synchronously.
HITM#	Hit-Modified Input	Ι	LOW	This input is used to indicate to the IDT71V280 that a dirty line is hit in the CPU level 1 cache during inquire (snoop or invalidate) cycles. When HITM# is sampled asserted, it causes the IDT71V280 to assert CHITM# synchronously.
CHITM#	Hiţ-Modified Output	0	LOW	IDT71V280 asserted output to indicate that an inquire (snoop or invalidate) cycle hits a dirty line in the cache. The IDT71V280 also asserts CHITM# when its HITM# input is asserted.
MOD#	Modified Line	0	LOW	Output asserted by the IDT71V280 to indicate that a dirty line is being accessed during a memory read or write bus cycle. MOD# does not depend on hit or miss status.
SKEN#	Cacheable Data Input	I	LOW	This pin is sampled by the IDT71V280 to determine whether the data being returned during a read miss is cacheable. SKEN# must be sampled LOW at least one cycle before the first word is transferred to the cache. During Reset, SKEN# is used to indicate to the IDT71V280 whether write allocation is enabled or disabled. If asserted, write allocation is enabled.
PWT	Page Write Through	I/O	HIGH	This input is sampled by the IDT71V280 at the initiation of memory read and write cycles. If PWT is sampled HIGH at the initiation of a memory read that results in a cache miss, the line returned is automatically considered write through. If PWT is sampled HIGH at the initiation of memory write cycle, the cache ignores the value of its internal write back/write through flag, and it is forced to treat the write cycle as write through. The IDT71V280 drives this pin LOW, while CBOFF# is asserted, when the IDT71V280 executes a write cycle to evict a dirty line from the cache or to supply dirty data for a snoop hit.
HLDA	Bus Hold Acknowledge	Ι	HIGH	Connects to the HLDA output pin from the CPU, which is used to acknowledge a bus hold request from HOLD. Except when the IDT71V280 is performing a write back operation, HLDA will propagate through to CHLDA with a one cycle delay. When the IDT71V280 is performing a write back operation, it will block the propagation of HLDA until it has released control of the bus.
CHLDA	Bus Hold Acknowledge	0	HIGH	Typically reflects HLDA input delayed by one clock cycle. However, the IDT71V280 will force CHLDA LOW while it is performing a write back operation. Once the IDT71V280 has released SBOFF#, it will allow CHLDA to be asserted.
LOCK#	Lock	I/O	LOW	If LOCK# is sampled LOW at the beginning of a read cycle and the data in the cache is not dirty, the read cycle is treated as a non-cacheable read miss. If the cache contains dirty data at the address location requested by the locked read cycle, the IDT71V280 first evicts the dirty line, then the read cycle is treated as a non-cacheable read miss. If LOCK# is sampled LOW at the beginning of a write cycle, the IDT71V280 ignores its internal write back/write through flag, and treats the write cycle as write through. The IDT71V280 drives

PIN DEFINITION (CONTINUED)

Symbol	Pin Function	1/0	Level	Description
				this pin HIGH, while CBOFF# is asserted, when it executes a write cycle to evict a dirty line from the cache or to supply dirty data for a snoop hit.
OEA#(0:1), OEB#(0:1)	Data RAM Output Enable	0	LOW	These pins are used to assert output enable of the data SRAMs, two for each bank of SRAMs.
WE7#- WE0#	Data RAM Write Enable	0	LOW	These pins are used to assert Write Enable of the data SRAMs, one for each byte.
CEA#(0:1), CEB#(0:1)	Data RAM Chip Enable	0	LOW	These pins are used to assert Chip Enable of the data SRAMs, one for each bank of SRAMs.
ADV#	Data RAM Adv	0	LOW	This pin is used with burst SRAMs to advance the internal address counter
AD3/4A(0:1), AD4/4B(0:1)	Data RAM Address	Ο	N/A	These pins are the least significant two address lines of the data AD4/4B(0:1) SRAMs when asynchronous SRAMs are used. When one bank of SRAMs is used these pins are AD3 and AD4. If two banks of interleaved SRAM are used these pins are AD4A and AD4B; that is, the least significant address of the odd bank and the even bank.
ALE/ ADSC#	Address LE/ Controller ADS#	0	LOW	This pin is used to latch the CPU address into external latch(es) for the asynchronous data SRAMs, and is ADSC# when a burst SRAM implementation is used.
MODE (0:3)	Mode Select	1	N/A	These pins are used to select the mode in which the IDT71V280 operates and are not allowed to change once the IDT71V280 is powered up.
PWRDN#	Power Down	1	LOW	This pin is used to force the IDT71V280 into a Low Power Mode while retaining data. As long as this input is asserted the IDT71V280 will not initiate any new activity. After this input is negated, the IDT71V280 will respond normally within 1ms.
Vcc	Power	N/A	N/A	Power supply inputs for the IDT71V280.
GND	Ground	N/A	N/A	Ground pins of the IDT71V280.

3100 tbl 05

ORDERING INFORMATION

One 800# does it all!

Dial 1-800-345-7015 to contact either your local sales office or corporate headquarters. Dial the 800 number above, then follow the instructions to be routed to your local sales office or corporate headquarters, and an operator will assist you in contacting technical support or customer service.

DOMESTIC SALES REPRESENTATIVES

ALABAMA

IDT 555 Sparkman Drive Suite1238 Huntsville, AL 35816

ALASKA

Thorson Co. Northwest 12340 NE 8th St., #201 Bellevue, WA 98005

ARIZONA

Western High Tech Mktg. 9414 E. San Salvador Suite 206 Scottsdale, AZ 85258

ARKANSAS

IDT (S. Cen. Regional Office) 14285 Midway Rd., Suite 100 Dallas, TX 75244

CALIFORNIA

IDT (Corporate Headquarters) 2975 Stender Way P.O. Box 58015 Santa Clara, CA 95052 IDT (Western Headquarters) 2975 Stender Way Santa Clara, CA 95052 IDT (SW Regional Office) 6 Jenner Drive Suite 100 Irvine, CA 92718 IDT (SW Regional Office) 16130 Ventura Blvd. Suite 370 Encino, CA 91436 Quest-Rep 6494 Weathers Place

Suite 200 San Diego, CA 92121

CANADA (EASTERN)

Dynasty Components 110-1140 Morrison Drive Ottawa, Ontario Canada K2H 8S9 Dynasty Components 2339 Otami Trail Mississauga, Ontario Canada L5H 3N2

Dynasty Components 1870 Sources Boulevard Suite 202 Pointe Claire, Quebec Canada H9R 5N4

CANADA (WESTERN)

Thorson Co. Northwest 4170 Still Creek Drive Ste. 200 Burnaby, British Columbia Canada V5C 6C6

COLORADO

IDT (NW Regional Office) 1616 17th Street Suite 370 Denver, CO 80202

Thorson Rocky Mountain 7108 "D" S. Alton Way Suite A Englewood, CO 80112

CONNECTICUT

SJ New England 10 Copper Ridge Circle Guilford , CT 06437

SJ New England 15 Coventry Lane Naugatuck, CT 06770

DELAWARE

IDT (SE Regional Office) Horn Point Harbor 105 Eastern Avenue Suite 201 Annapolis, MD 21403

S-J Mid Atlantic, Inc. 131-D Gaither Drive Mt. Laurel, NJ 08054

FLORIDA

IDT (SE Headquarters) 1413 S. Patrick Drive Suite10 Indian Harbor Beach, FL 32937 IDT 18167 U.S. 19 North Suite 455 Clearwater, FL 34624 IDT 1500 N.W. 49th Street Suite 500 Ft. Lauderdale, FL 33309

GEORGIA

IDT (SE Regional Office) 18167 U.S. 19 North Suite 455 Clearwater, FL 34624

HAWAII

IDT (Western Headquarters) 2975 Stender Way Santa Clara, CA 95052

IDAHO (NORTHERN)

Anderson Associates 270 S. Main Street Suite 108 Bountiful, UT 84010

IDAHO (SOUTHERN)

Thorson Rocky Mountain 1831 E. Fort Union Blvd. Suite 103 Salt Lake City, UT 84121

ILLINOIS

IDT (Central Regional Office) 1375 E. Woodfield Road Suite 380 Schaumburg, IL 60173

Synmark Sales 1440 N. Northwest Hwy. Suite 300 Park Ridge, IL 60068

INDIANA

Arete Sales 2260 Lake Avenue Suite 250 Ft. Wayne, IN 46805

Arete Sales P.O. Box 24796 Indianapolis, IN 46224

IOWA

Rep Associates 4905 Lakeside Drive N.E Suite 107 Cedar Rapids, IA 52402

KANSAS

Rush & West Associates 333 E. Poplar Street Olathe, KS 66061

KENTUCKY (EASTERN)

Norm Case Associates 21010 Center Ridge Road Rocky River, OH 44116

KENTUCKY (WESTERN)

Arete Sales P.O. Box 24796 Indianapolis, IN 46224

LOUISIANA

IDT (S. Cen. Regional Office) 14285 Midway Road Suite100 Dallas, TX 75244

MAINE

IDT (NE Headquarters) #2 Westboro Business Pk. 200 Friberg Pkwy, Suite 4002 Westboro, MA 01581

MARYLAND

IDT (SE Regional Office) Horn Point Harbor 105 Eastern Avenue Suite201 Annapolis, MD 21403

MASSACHUSETTS

IDT (NE Headquarters) #2 Westboro Business Pk. 200 Friberg PkWay, Suite 4002 Westboro, MA 01581

SJ New England 11 Waterman Street Worchester, MA 01603

MICHIGAN

Bergin-Milan Group, Ltd. 33900 W. Eight Mile Rd. Suite 181 Farmington Hills, MI 48335

MINNESOTA

IDT (N. Cen. Regional Office) 1650 W. 82nd Street Suite 1040 Minneapolis, MN 55431

OHMS Technology Inc. 5780 Lincoln Drive Suite 400 Edina. MN 55436

MISSISSIPPI

IDT 555 Sparkman Drive Suite1238 Huntsville, AL 35816

MISSOURI

Rush & West Associates 2170 Mason Road St. Louis, MO 63131

MONTANA

Thorson Rocky Mountain 7108 "D" S. Alton Way Suite A Englewood, CO 80112

NEBRASKA

Rush & West Associates 333 E. Poplar Street Ste.C-3 Olathe, KS 66061

NEVADA (NORTHERN)

IDT (Western Headquarters) 2975 Stender Way Santa Clara, CA 95052

NEVADA (SOUTHERN)

Western High Tech Mktg. 9414 E. San Salvador, Suite 206 Scottsdale, AZ 85258

NEW HAMPSHIRE

IDT (NE Headquarters) #2 Westboro Business Pk. 200 Friberg Pkwy, Suite 4002 Westboro, MA 01581

NEW JERSEY

IDT (SE Regional Office) One Greentree Centre, Suite 202 Marlton, NJ 08053

SJ Mid-Atlantic, Inc. 1331-D Gaither Drive Mt. Laurel, NJ 08054

NEW JERSEY (NORTHERN)

SJ Associates 265 Sunrise HWay, #20 Rockville Centre, NY 11570

NEW MEXICO

Western High Tech Mktg. 9414 E. San Salvador Suite 206 Scottsdale, AZ 85258

NEW YORK

IDT (NE Regional Office) 1160 Pittsford Victor Rd. Bldg. E Pittsford, NY 14534

OKLAHOMA

IDT

Quality Components

3343 Harlem Road

Buffalo, NY 14225

Quality Components

Manlius, NY 13104

Quality Components

Rochester, NY 14622

Quality Components

RD #2. Box 31E

SJ Associates

11570

Glassfactory Road

Holland Patent, NY 13354

265 Sunrise HWay, #20

NORTH CAROLINA

Tingen Technical Sales

304A W. Millbrook Road

Raleigh, NC 27609

NORTH DAKOTA

OHMS Technology Inc.

Norm Case Associates

21010 Center Ridge Road

Rocky River, OH 44116

5780 Lincoln Drive

Edina, MN 55436

Suite 400

OHIO

Rockville Centre, NY

2318 Titus Avenue

116 E. Fayette Street

(S. Cen. Regional Office) 14285 Midway Road Suite 100 Dallas, TX 75244

OREGON

IDT (NW RegionalOffice) 15455 NW Greenbriar PkWay Suite 210 Beaverton, OR 97006 Thorson Co. Northwest

9600 S.W. Oak Street Suite 320 Portland, OR 97223

PENNSYLVANIA (WESTERN)

Norm Case Associates 21010 Center Ridge Road Rocky River, OH 44116

PENNSYLVANIA (EASTERN)

S-J Mid-Atlantic 131-D Gaither Drive Mt. Laurel, NJ 08054

RHODE ISLAND

IDT (NE Headquarters) #2 Westboro Business Pk. 200 Friberg PkWay, Suite 4002 Westboro, MA 01581

SOUTH CAROLINA

Tingen Technical Sales 304A W. Millbrook Road Raleigh, NC 27609

SOUTH DAKOTA

OHMS Technology Inc. 5780 Lincoln Drive Suite 400 Edina, MN 55436

TENNESSEE

IDT 555 Sparkman Drive Suite 1200-D Huntsville, AL 35816

TEXAS

IDT (S. Cen. Regional Office) 14285 Midway Road Suite 100 Dallas, TX 75244

IDT 6034 W. Courtyard Dr. Ste. 305-60 Austin, TX 78730

UTAH

Anderson Associates 270 S. Main Street Suite 108 Bountiful, UT 84010

Thorson Rocky Mountain 1831 E. Fort Union Blvd. Suite 103 Salt Lake City, UT 84121

VERMONT

IDT (NE Headquarters) #2 Westboro Business Pk. 200 Friberg Pkwy, Suite 4002 Westboro, MA 01581

VIRGINIA

IDT (SE Regional Office) Horn Point Harbor 105 Eastern Avenue Suite201 Annapolis, MD 21403

WASHINGTON

Thorson Co. Northwest 12340 N.E. 8th St., #201 Bellevue, WA 98005

WEST VIRGINIA

Norm Case Associates 21010 Center Ridge Road Rocky River, OH 44116

WISCONSIN

Synmark Sales 21005 W. Watertown Rd. Waukesha, WI 53186-1822

WYOMING

Thorson Rocky Mountain 7108 "D" S. Alton Way Suite A Englewood, CO 80112

AUTHORIZED DISTRIBUTORS (U.S. and Canada)

Future Electronics Hamilton Hallmark

Insight Electronics Port Electronics Vantage Components WYLE

Contact your local office.

INTERNATIONAL SALES REPRESENTATIVES

AFRICA

Prime Source (PTY) Ltd. Oraange Grove, So. Africa Tel.: 444-7237

AUSTRALIA

GEC Electronics Division Rydalmere, NSW Australia Tel · 612-638-1999/1888

GEC Electronics Division Adelaide, SA, Australia Tel: 618-223-1222

GEC Electronics Division Burwood, Australia Tel.: 613-245-3230

GEC Electronics Division Perth, WA, Australia Tel.: 613-381-4040

GEC Electronics Division Bowen Hills, Australia Tel 619-252-5801

AUSTRIA

Elbatex GmbH Vienna, Austria Tel.: 43-186-32110

BELGIUM

ACAL N.V. Betea Components Zaventem, Belgium Tel : 322-725-1080

CHINA

Lestina International, Ltd. Beijing, China Tel.: 86-1-849-9430

Lestina International, Ltd. Guang Zhou Tel.: 86-20-885-0613

DENMARK

Exatec A/S Skovlunde, Denmark Tel.: 45-44-927-000

AVNET Nortec A/S Herlev, Denmark Tel.: 45-42-842-000

FINLAND

AVNET Nortec OY Helsinki, Finland Tel.: 358-0670-277

FRANCE

IDT

(So, Europe Reg. Office) 15 Rue du Buisson aux Fraises 91300 Massy, France Tel.: 33-1-69-30-89-00

A2M Brignolles, France Tel.: 33-1-94-59-2293

A2M Bron, France Tel.: 33-1-72-37-0414

A2M Buc, France Tel.: 33-1-39-56-8181

Cesson-Sevigne, France Tel.: 33-1-99-63-3232

A2M

A2M Le Chesnav Cedex. France

Tel.: 33-1-39-54-9113 A2M Merionac, France

Tel.: 33-1-56-34-1097 COMPRESS

Rungis Cedex, France Tel.: 331-4687-8020 AVNET Composants

Cesson-Sevigne, France Tel.: 33-99-83-9898

AVNET Composants Chantillon, France Tel.: 33-149-652-2750

AVNET Composants Rognes, France Tel.: 33-42-50-1805

AVNET Composants Saint-Etienne, France Tel.: 33-77-79-7970

AVNET Composants Schwerwiller, France Tel.: 33-88-82-5514

GERMANY

IDT (Cen. Europe Reg. Office) GottfriedVonCramm-Str.1 8056 Neufahrn, Germany Tel.: 49-8165-5024 AVNET E2000

Munich, Germany Tel.: 089-45110-01

AVNET E2000 Berlin, Germany Tel.: 030-2110761/0764

AVNET E2000 Dusseldorf, Germany

Tel.: 0211-92003-0 Jermyn GmbH Limburg, Germany

Tel.: 49-6431/508-0 Jermyn GmbH Berlin, Germanv Tel.: 49-30/2142056

Jermyn GmbH Dusseldorf, Germany Tel.: 49-211/25001-0

Jermyn GmbH Heimstetten, Germany 49-89/909903-0

Jermyn GmbH Herrenberg, Germany Tel.: 49-7032/203-01

Jermyn GmbH Pinneberg, Germany Tel.: 49-40/5282041

Scantec GmbH Planegg, Germany Tel.: 49-859-8021

Scantec GmbH Kirchheim, Germany Tel.: 49-70-215-4027

Scontoc GmbH Ruckersdorf, Germany Tel . 49-91-157-9529

> Topas Electronic GmbH Hannover, Germany Tel.: 49-51-113-1217

Topas Electronic GmbH Quickborn, Germany Tel.: 49-4106-73097

GREECE

Digital Electronics Athens, Greece Tel: 30-1-576-5754

HONG KONG

IDT ASIA LTD. Unit 1102 China Hong Kong City Tower 3, 33 Canton Road Tsimshatsui, Hong Kong Tel.: 852-736-0122

Lestina International Ltd. Kowloon, Hong Kong Tel.: 852-735-1736

ΙΝΠΙΔ

Techno Trends San José, CA Tel.: (408) 294-2833

Sritech Information Technology, Inc Javanagar, Bangalore 0812-643608

ISRAEL

Active Technologies New Hyde Park, NY Tel.: (516) 488-1226

Vectronics, Ltd. Herzlia, Israel Tel.: 972-9-55-60-70

ITALY

IDT (IDT Italia S.r.L.) Central Direzionale Colleoni Palazzo Andromeda Scala N.3 Via Paracelso 20 20041 Agrate Brianza, Milan, Italy Tel.: 39-39-68-99-987

For shipments:

IDT Srl c/o Agenzia Servizi Colleoni Via Cardano 2 20041 Agrate Brianza (MI)

AVNET De Mico Cassina De Pecchi (MI) Tel.: 02-95-34-36-00

AVNET De Mico Torino, Italy

Tel.: 011-31-81-481/500 AVNET De Mico

3

Rome, Italy Tel.: 06-33-32-283/284 AVNET DeMico Bologna, Italy Tel.: 051-55-56-14/00-64

AVNET De Mico Rubano (Padova), Italy Tel.: 049-63-35-55/36-00

AVNET De Mico Florence, Italy Tel.: 055-89-41-05/15

Lasi Electronica Bologna, Italy Tel.: 3951-353815/374556

Lasi Electronica Firenze, Italy Tel: 3955-582627

Lasi Electronica Milano, Italy Tel.: 39-266-101370

Lasi Electronica Roma, Italy Tel.: 19396-5405301/ 5409614

Lasi Electronica Torino, Italy Tel.: 3911-328588/359277

JAPAN

IDT KK (Japan Headquarters) Sumitomo Fudosan Sanbacho Bldg. 6-26 Sanbacho Chivoda-Ku Tokyo 102, Japan Tel.: 813-3221-9821

Dia Semicon Systems Yokohama, Japan Tel.: 045-476-7410

Kanematsu Semiconductor Corp. Tokvo, Japan Tel.: 813-3551-7791

Tachibana Tectron Co. Ltd Tokyo, Japan Tel., 813-3793-1171

KOREA

Uniquest Korea Seoul, Korea Tel.: 822-562-8805

Uniquest Corporation San José, CA Tel.: 408-432-8805

NETHERI ANDS

ACAL Auriema Eindhoven, Netherlands Tel.: 040-502-602

NEW ZEALAND

GEC Electronics Division Auckland, New Zealand Tel: 649-526-0107

NORTHERN IRELAND

Bloomer Electronics, Ltd. Craigavon, County Armagh Tel.: 762-339818

NORWAY

AVNET Nortec A/S Hvalstad, Norway Tel.: 47-66-84-62-10

SINGAPORE/ FAR EAST

Serial System PTE LTD Singapore Tel.: 65-280-0200

SPAIN

Anatronic, S.A. Madrid, Spain Tel.: 34-1-542-5566

Anatronic, S.A.

SWEDEN

IDT (IDT AB)

Veddestavagen 13

Tel. :468-761-1130

AVNET Nortec AB

Tel.: 468-629-1400

SWITZERLAND

Wettingen, Switzerland

Tel.: 011-41-56275-777

Johnson Trading &

Tel.: 886-273-31211

Synnex Technology

Tel.: 886-2-506-3320

World Peace Industrial

Tel: 886-2-788-5200

Nankang, Taipei, Taiwan

UNITED KINGDOM

(European Headquarters/

No. Europe Reg. Office)

Surrey, UK KT228DY

Tel.: 44-372-363-339/734

Letchworth, Herfordshire,

21 The Crescent

Avnet Access, Ltd.

Tel.: 0462-480888

Thame Oxon, UK

Tel.: 44-844-261-939

MicroCall, Ltd.

Leatherhead

International Corp.

Taipei, Taiwan

Co., Ltd.

INT

UК

Engineering Co.

Taipei, Taiwan

Solna. Sweden

Eljapex

TAIWAN

S-175 62 Jartalla, Sweden

Barcelona, Spain

Tel.: 34-3-458-1906/7

Integrated Device Technology, Inc.

2975 Stender Way Santa Clara, CA 95054-3090 (800) 345-7015 FAX: (408) 492-8674

