SuperH RISC engine SH-1/SH-2 Programming Manual

SuperH RISC engine SH-1/SH-2 Programming Manual

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.
2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

Revised Sections and Contents

Page	Section	Revision Contents
All	-	Changed SH7000/SH7600 Series into SH-1/SH-2
27	Table 5.7 Branch Instructions	Table modified
30-32	Table 5.9 Instruction Set	Table modified
47	$6.7 \mathrm{BF} / \mathrm{S}$	Description added
49	6.8 BRA	Description added
50	6.9 BRAF	Description modified
51		Description added
53	6.10 BSR	Description added
54	6.11 BSRF	Description modified
57	6.13 BT/S	Description added
63	6.16 CMP/cond	Description modified
78	6.25 JMP	Description added and modified
79	6.26 JSR	Description modified
80		Description added
107	6.38 MUL.L	Description modified
120	6.50 RTE	Description added
121	6.51 RTS	Description added
131	6.59 SLEEP	Description modified
139	6.65 SWAP	Description modified
155	7.6 Programming Guide	Description modified
175	Multiply/Accumulate Instruction (SH-1 CPU)	Description modified
181	Multiply/Accumulate Instruction (SH-2 CPU)	Description modified
194	Double-Length Multiply/Accumulate Instruction (SH-2 CPU)	Description modified
202	Multiplication Instructions (SH-1 CPU)	Description modified
208	Multiplication Instructions (SH-2 CPU)	Description modified
215	Figure 7.67 DMULS.L Instruction Immediately After Another DMULS.L Instruction	Description modified
220	Double-Length Multiplication Instructions	Description modified
229	Unconditional Branch Instructions	Description modified
235	Register-MAC Transfer Instructions	Description modified
236	Memory-MAC Transfer Instructions	Description modified
237	MAC-Register Transfer Instructions	Description modified
238	MAC-Memory Transfer Instructions	Description modified
243	Address Error Exception Processing	Description modified
246	Table A. 1 Instrustion Set by Addressing Mode	Table modified
251	Table A. 6 Destination Operand Only	Table modified
255	Table A. 18 PC Relative Addressing with Rm	Table modified

Page	Section		Revision Contents
257	Table A. 22	Instruction Sets by Format	Table modified
260	Table A. 26	Indirect Register Addressing	Table modified
261	Table A. 29	Indirect Register	Table modified
	Table A. 31	PC Relative Addressing with Rm	
$\begin{aligned} & 269,272, \\ & 273 \\ & \hline \end{aligned}$	Table A. 50	Instruction Set by Instruction Code	Table modified
276, 277	Table A. 51	Operation Code Map	Table modified

Introduction

The SuperH RISC engine family incorporates a RISC (Reduced Instruction Set Computer) type CPU. A basic instruction can be executed in one clock cycle, realizing high performance operation. A built-in multiplier can execute multiplication and addition as quickly as DSP.

The SuperH RISC engine has SH-I CPU, SH-2 CPU, and SH-3 CPU cores.
The SH-1 CPU, SH-2 CPU and SH-3 CPU have an instruction system with upward compatibility at the binary level.

SH-3 CPU	MMU support SH-2 CPU Operation instruction enhancement	
SH-1 CPU	68 instructions	
56 basic instructions		62 instructions

Refer to the programming manual for the method of executing the instructions or for the architecture. You can also refer to this programming manual to know the operation of the pipe line, which is one of the features of the RISC CPU.

This programming manual describes in detail the instructions for the SH-1 CPU and SH-2 CPU instructions. For the SH-3 CPU, refer to the separate volume of SH-3 CPU programming manual.

For the hardware, refer to individual hardware manuals for each unit.

Organization of This Manual

Table 1 describes how this manual is organized. Table 2 lists the relationships between the items and the sections listed within this manual that cover those items.

Table 1 Manual Organization

Category	Section Title	Contents
Introduction	1. Features	CPU features
Architecture (1)	2. Register Configuration	Types and configuration of general registers, control registers and system registers
	3. Data Formats	Data formats for registers and memory
Introduction to instructions	4. Instruction Features	Instruction features, addressing modes, and instruction formats
	5. Instruction Sets	Summary of instructions by category and list in alphabetic order
Detailed information on instructions	6. Instruction Descriptions	Operation of each instruction in alphabetical order
Architecture (2)	7. Pipeline Operation	Pipeline flow, and pipeline flows with operation for each instruction
Instruction code	Appendixes: Instruction Code	Operation code map

Table 2 Subjects and Corresponding Sections

Category	Topic	Section Title
Introduction and features	CPU features	1. Features
	Instruction features	4.1 RISC-Type Instruction Set
	Pipelines	7.1 Basic Configuration of Pipelines
		7.2 Slot and Pipeline Flow
Architecture	Register configuration	2. Register Configuration
	Data formats	3. Data Formats
	Pipeline operation	7. Pipeline Operation
Introduction to instructions	Instruction features	4. Instruction Features
	Addressing modes	4.2 Addressing Modes
	Instruction formats	4.3 Instruction Formats
List of instructions	Instruction sets	5.1 Instruction Set by Classification
		5.2 Instruction Set in Alphabetical Order
		Appendix A. 1 Instruction Set by Addressing Mode
		Appendix A. 2 Instruction Set by Instruction Format
	Instruction code	Appendix A. 3 Instruction Set in Order by Instruction Code
		Appendix A. 4 Operation Code Map
Detailed information on instructions	Detailed information on instruction operation	6. Instruction Description 7.7 Instruction Pipeline Operations
	Number of instruction execution states	7.3 Number of Instruction Execution States

Functions Listed by CPU Type

This manual is common for both the SH-1 and SH-2 CPU. However, not all CPUs can use all the instructions and functions. Table 3 lists the usable functions by CPU type.

Table 3 Functions by CPU Type

Item		SH-1 CPU	SH-2 CPU
Instructions	BF/S	No	Yes
	BRAF	No	Yes
	BSRF	No	Yes
	BT/S	No	Yes
	DMULS.L	No	Yes
	DMULU.L	No	Yes
	DT	No	Yes
	MAC.L	No	Yes
	MAC.W*1 ${ }^{\text {(MAC) }}{ }^{* 2}$	$\begin{aligned} & 16 \times 16+42 \rightarrow \\ & 42 \end{aligned}$	$16 \times 16+64 \rightarrow 64$
	MUL.L	No	Yes
	All others	Yes	Yes
States for multiplication operation	$\begin{aligned} & 16 \times 16 \rightarrow 32 \\ & \text { (MULS.W, MULU.W)*2 } \end{aligned}$	Executed in 1-3*3 states	Executed in 1-3*3 states
	$32 \times 32 \rightarrow 32$ (MUL.L)	No	Executed in 2-4*3states
	$\begin{aligned} & 32 \times 32 \rightarrow 64 \\ & \text { (DMULS.L, DMULU.L) } \end{aligned}$	No	Executed in 2-4*3states
States for multiply and accumulate operation	$\begin{aligned} & 16 \times 16+42 \rightarrow 42 \\ & (S H-1, \text { MAC.W) } \end{aligned}$	Executed in $3 /(2) * 3$ states	No
	$\begin{aligned} & 16 \times 16+64 \rightarrow 64 \\ & (S H-2, \text { MAC.W) } \end{aligned}$	No	Executed in states 3/(2)*3
	$\begin{aligned} & 32 \times 32+64 \rightarrow 64 \\ & \text { (MAC.L) } \end{aligned}$	No	Executed in 2-4 states $3 /(2 \sim 4)^{* 3}$

Notes: 1. MAC.W works differently on different LSIs.
2. MAC and MAC.W are the same. MULS is also the same as MULS.W and MULU the same as MULU.W.
3. The normal minimum number of execution cycles (The number in parentheses in the number in contention with preceding/following instructions).

Contents

Section 1 Features 1
Section 2 Register Configuration 2
2.1 General Registers 2
2.2 Control Registers 2
2.3 System Registers 3
2.4 Initial Values of Registers 4
Section 3 Data Formats 5
3.1 Data Format in Registers 5
3.2 Data Format in Memory 5
3.3 Immediate Data Format. 6
Section 4 Instruction Features 7
4.1 RISC-Type Instruction Set 7
4.1.1 16-Bit Fixed Length 7
4.1.2 One Instruction/Cycle 7
4.1.3 Data Length 7
4.1.4 Load-Store Architecture. 7
4.1.5 Delayed Branch Instructions. 7
4.1.6 Multiplication/Accumulation Operation. 8
4.1.7 T Bit 8
4.1.8 Immediate Data 8
4.1.9 Absolute Address 9
4.1.10 16-Bit/32-Bit Displacement 9
4.2 Addressing Modes 10
4.3 Instruction Format 13
Section 5 Instruction Set 16
5.1 Instruction Set by Classification 16
5.5.1 Data Transfer Instructions 21
5.1.2 Arithmetic Instructions 23
5.1.3 Logic Operation Instructions 25
5.1.4 Shift Instructions 26
5.1.5 Branch Instructions 27
5.1.6 System Control Instructions 28
5.2 Instruction Set in Alphabetical Order 29
Section 6 Instruction Descriptions 37
6.1 Sample Description (Name): Classification 37
6.2 ADD (ADD Binary): Arithmetic Instruction 40
6.3 ADDC (ADD with Carry): Arithmetic Instruction 41
6.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction 42
6.5 AND (AND Logical): Logic Operation Instruction 43
6.6 BF (Branch if False): Branch Instruction 45
6.7 BF/S (Branch if False with Delay Slot): Branch Instruction (SH-2 CPU) 46
6.8 BRA (Branch): Branch Instruction 48
6.9 BRAF (Branch Far): Branch Instruction (SH-2 CPU) 50
6.10 BSR (Branch to Subroutine): Branch Instruction 52
6.11 BSRF (Branch to Subroutine Far): Branch Instruction (SH-2 CPU) 54
6.12 BT (Branch if True): Branch Instruction. 55
6.13 BT/S (Branch if True with Delay Slot): Branch Instruction (SH-2 CPU) 56
6.14 CLRMAC (Clear MAC Register): System Control Instruction 58
6.15 CLRT (Clear T Bit): System Control Instruction 59
6.16 CMP/cond (Compare Conditionally): Arithmetic Instruction 60
6.17 DIVOS (Divide Step 0 as Signed): Arithmetic Instruction 64
6.18 DIVOU (Divide Step 0 as Unsigned): Arithmetic Instruction. 65
6.19 DIV1 (Divide Step 1): Arithmetic Instruction 66
6.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction (SH-2 CPU) 71
6.21 DMULU.L (Double-Length Multiply as Unsigned) : Arithmetic Instruction (SH-2 CPU). 73
6.22 DT (Decrement and Test): Arithmetic Instruction (SH-2 CPU) 75
6.23 EXTS (Extend as Signed): Arithmetic Instruction 76
6.24 EXTU (Extend as Unsigned): Arithmetic Instruction 77
6.25 JMP (Jump): Branch Instruction 78
6.26 JSR (Jump to Subroutine): Branch Instruction 79
6.27 LDC (Load to Control Register): System Control Instruction 81
6.28 LDS (Load to System Register): System Control Instruction 83
6.29 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction (SH-2 CPU) 85
6.30 MAC (Multiply and Accumulate): Arithmetic Instruction (SH-1 CPU) 88
6.31 MAC.W (Multiply and Accumulate Word): Arithmetic Instruction. 89
6.32 MOV (Move Data): Data Transfer Instruction 92
6.33 MOV (Move Immediate Data): Data Transfer Instruction 97
6.34 MOV (Move Peripheral Data): Data Transfer Instruction 99
6.35 MOV (Move Structure Data): Data Transfer Instruction 102
6.36 MOVA (Move Effective Address): Data Transfer Instruction. 105
6.37 MOVT (Move T Bit): Data Transfer Instruction 106
6.38 MUL.L (Multiply Long): Arithmetic Instruction (SH-2 CPU) 107
6.39 MULS.W (Multiply as Signed Word): Arithmetic Instruction 108
6.40 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction 109
6.41 NEG (Negate): Arithmetic Instruction 110
6.42 NEGC (Negate with Carry): Arithmetic Instruction 111
6.43 NOP (No Operation): System Control Instruction 112
6.44 NOT (NOT-Logical Complement): Logic Operation Instruction 113
6.45 OR (OR Logical) Logic Operation Instruction 114
6.46 ROTCL (Rotate with Carry Left): Shift Instruction 116
6.47 ROTCR (Rotate with Carry Right): Shift Instruction 117
6.48 ROTL (Rotate Left): Shift Instruction 118
6.49 ROTR (Rotate Right): Shift Instruction 119
6.50 RTE (Return from Exception): System Control Instruction 120
6.51 RTS (Return from Subroutine): Branch Instruction 121
6.52 SETT (Set T Bit): System Control Instruction 122
6.53 SHAL (Shift Arithmetic Left): Shift Instruction 123
6.54 SHAR (Shift Arithmetic Right): Shift Instruction. 124
6.55 SHLL (Shift Logical Left): Shift Instruction. 125
6.56 SHLLn (Shift Logical Left n Bits): Shift Instruction 126
6.57 SHLR (Shift Logical Right): Shift Instruction 128
6.58 SHLRn (Shift Logical Right n Bits): Shift Instruction 129
6.59 SLEEP (Sleep): System Control Instruction 131
6.60 STC (Store Control Register): System Control Instruction 132
6.61 STS (Store System Register): System Control Instruction 134
6.62 SUB (Subtract Binary): Arithmetic Instruction. 136
6.63 SUBC (Subtract with Carry): Arithmetic Instruction 137
6.64 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction 138
6.65 SWAP (Swap Register Halves): Data Transfer Instruction 139
6.66 TAS (Test and Set): Logic Operation Instruction 140
6.67 TRAPA (Trap Always): System Control Instruction 141
6.68 TST (Test Logical): Logic Operation Instruction 142
6.69 XOR (Exclusive OR Logical): Logic Operation Instruction 144
6.70 XTRCT (Extract): Data Transfer Instruction 146
Section 7 Pipeline Operation 147
7.1 Basic Configuration of Pipelines. 147
7.2 Slot and Pipeline Flow 148
7.2.1 Instruction Execution 148
7.2.2 Slot Sharing 148
7.2.3 Slot Length 149
7.3 Number of Instruction Execution States 150
7.4 Contention Between Instruction Fetch (IF) and Memory Access (MA) 151
7.4.1 Basic Operation When IF and MA are in Contention 151
7.4.2 The Relationship Between IF and the Location of Instructions in On-Chip ROM/RAM or On-Chip Memory 152
7.4.3 Relationship Between Position of Instructions Located in On-Chip ROM/RAM or On-Chip Memory and Contention Between IF and MA 153
7.5 Effects of Memory Load Instructions on Pipelines 154
7.6 Programming Guide 155
7.7 Operation of Instruction Pipelines 156
7.7.1 Data Transfer Instructions 163
7.7.2 Arithmetic Instructions 166
7.7.3 Logic Operation Instructions 221
7.7.4 Shift Instructions 224
7.7.5 Branch Instructions 225
7.7.6 System Control Instructions 230
7.7.7 Exception Processing 242
Appendix A Instruction Code 245
A. 1 Instruction Set by Addressing Mode 245
A.1.1 No Operand 247
A.1.2 Direct Register Addressing 248
A.1.3 Indirect Register Addressing 251
A.1.4 Post Increment Indirect Register Addressing 251
A.1.5 Pre Decrement Indirect Register Addressing 252
A.1.6 Indirect Register Addressing with Displacement 253
A.1.7 Indirect Indexed Register Addressing 253
A.1.8 Indirect GBR Addressing with Displacement 254
A.1.9 Indirect Indexed GBR Addressing 254
A.1.10 PC Relative Addressing with Displacement 254
A.1.11 PC Relative Addressing with Rn 255
A.1.12 PC Relative Addressing 255
A.1.13 Immediate 256
A. 2 Instruction Sets by Instruction Format 256
A.2.1 0 Format 258
A.2.2 n Format 259
A.2.3 m Format 261
A.2.4 nm Format 262
A.2.5 md Format 265
A.2.6 nd4 Format 265
A.2.7 nmd Format 265
A.2.8 d Format 266
A.2.9 d12 Format 267
A.2.10 nd8 Format 267
A.2.11 i Format 267
A.2.12 ni Format 268
A. 3 Instruction Set in Order by Instruction Code 268
A. 4 Operation Code Map 276
Appendix B Pipeline Operation and Contention 279

Section 1 Features

The SH-1 and SH-2 CPU have RISC-type instruction sets. Basic instructions are executed in one clock cycle, which dramatically improves instruction execution speed. The CPU also has an internal 32-bit architecture for enhanced data processing ability. Table 1.1 lists the SH-1 and SH-2 CPU features.

Table 1.1 SH-1 and SH-2 CPU Features

Item	Feature
Architecture	- Original Hitachi architecture - 32-bit internal data paths
General-register machine	- Sixteen 32-bit general registers - Three 32-bit control registers - Four 32-bit system registers
Instruction set	- Instruction length: 16-bit fixed length for improved code efficiency - Load-store architecture (basic arithmetic and logic operations are executed between registers) - Delayed branch system used for reduced pipeline disruption - Instruction set optimized for C language
Instruction execution time	- One instruction/cycle for basic instructions
Address space	- Architecture makes 4 Gbytes available
On-chip multiplier (SH-1 CPU)	- Multiplication operations (16 bits $\times 16$ bits $\rightarrow 32$ bits) executed in 1 to 3 cycles, and multiplication/accumulation operations (16 bits $\times 16$ bits +42 bits $\rightarrow 42$ bits) executed in $3 /(2)^{*}$ cycles
On-chip multiplier (SH-2 CPU)	Multiplication operations executed in 1 to 2 cycles (16 bits $\times 16$ bits $\rightarrow 32$ bits) or 2 to 4 cycles (32 bits $\times 32$ bits $\rightarrow 64$ bits), and multiplication/accumulation operations executed in $3 /(2)^{*}$ cycles (16 bits $\times 16$ bits +64 bits $\rightarrow 64$ bits) or $3 /(2 \text { to } 4)^{*}$ cycles (32 bits $\times 32$ bits +64 bits $\rightarrow 64$ bits)
Pipeline	- Five-stage pipeline
Processing states	- Reset state - Exception processing state - Program execution state - Power-down state - Bus release state
Power-down states	- Sleep mode - Standby mode

Note: The normal minimum number of execution cycles (The number in parentheses in the mumber in contention with preceding/following instructions).

Section 2 Register Configuration

The register set consists of sixteen 32-bit general registers, three 32-bit control registers and four 32-bit system registers.

2.1 General Registers

There are 16 general registers (Rn) numbered $\mathrm{R} 0-\mathrm{R} 15$, which are 32 bits in length (figure 2.1). General registers are used for data processing and address calculation. R0 is also used as an index register. Several instructions use R0 as a fixed source or destination register. R15 is used as the hardware stack pointer (SP). Saving and recovering the status register (SR) and program counter (PC) in exception processing is accomplished by referencing the stack using R15.

Figure 2.1 General Registers

2.2 Control Registers

The 32-bit control registers consist of the 32-bit status register (SR), global base register (GBR), and vector base register (VBR) (figure 2.2). The status register indicates processing states. The global base register functions as a base address for the indirect GBR addressing mode to transfer
data to the registers of on-chip peripheral modules. The vector base register functions as the base address of the exception processing vector area (including interrupts).

Figure 2.2 Control Registers

2.3 System Registers

The system registers consist of four 32-bit registers: high and low multiply and accumulate registers (MACH and MACL), the procedure register (PR), and the program counter (PC) (figure 2.3). The multiply and accumulate registers store the results of multiply and accumulate operations. The procedure register stores the return address from the subroutine procedure. The program counter stores program addresses to control the flow of the processing.

31			Multiply and accumulate (MAC) registers high and low (MACH/L): Store the results of multiply and accumulate operations. In the SH-1 CPU, MACH is sign-extended to 32 bits when read because only the lowest 10 bits are valid. In the SH-2 CPU, all 32 bits of MACH are valid. Procedure register (PR): Stores a return address from a subroutine procedure. Program counter (PC): Indicates the fourth byte (second instruction) after the current instruction.	
(SH-1 CPU)	(sign extended)	MACH		
	MACL			
31 0				
(SH-2 CPU)	MACH			
	MACL			
	PR			
	PC			

Figure 2.3 System Registers

2.4 Initial Values of Registers

Table 2.1 lists the values of the registers after reset.
Table 2.1 Initial Values of Registers

Classification	Register	Initial Value
General register	R0-R14	Undefined
	R15 (SP)	Value of the stack pointer in the vector address table
Control register	SR	Bits I3-I0 are 1111 (H'F), reserved bits are 0, and other bits are undefined
	GBR	Undefined
	VBR	H'00000000
System register	MACH, MACL, PR	Undefined
	PC	Value of the program counter in the vector address table

Section 3 Data Formats

3.1 Data Format in Registers

Register operands are always longwords (32 bits) (figure 3.1). When the memory operand is only a byte (8 bits) or a word (16 bits), it is sign-extended into a longword when loaded into a register.

Figure 3.1 Longword Operand

3.2 Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Byte data can be accessed from any address, but an address error will occur if you try to access word data starting from an address other than 2 n or longword data starting from an address other than 4 n . In such cases, the data accessed cannot be guaranteed (figure 3.2). The hardware stack area, which is referred to by the hardware stack pointer (SP, R15), uses only longword data starting from address 4 n because this area holds the program counter and status register. See the SH Hardware Manual for more information on address errors.

Figure 3.2 Byte, Word, and Longword Alignment

SH7604 has a function that allows access of CS2 space (area 2) in little endian format, which enables memory to be shared with processors that access memory in little endian format (figure 3.3). Byte data is arranged differently for little endian and the usual big endian.

Figure 3.3 Byte, Word, and Longword Alignment in little endian format (SH7604 only)

3.3 Immediate Data Format

Byte immediate data is located in an instruction code. Immediate data accessed by the MOV, ADD, and CMP/EQ instructions is sign-extended and calculated with registers and longword data. Immediate data accessed by the TST, AND, OR, and XOR instructions is zero-extended and calculated with longword data. Consequently, AND instructions with immediate data always clear the upper 24 bits of the destination register.

Word or longword immediate data is not located in the instruction code. Rather, it is stored in a memory table. The memory table is accessed by an immediate data transfer instruction (MOV) using the PC relative addressing mode with displacement. Specific examples are given in section 4.1.8, Immediate Data.

Section 4 Instruction Features

4.1 RISC-Type Instruction Set

All instructions are RISC type. Their features are detailed in this section.

4.1.1 16-Bit Fixed Length

All instructions are 16 bits long, increasing program coding efficiency.

4.1.2 One Instruction/Cycle

Basic instructions can be executed in one cycle using the pipeline system. Instructions are executed in 50 ns at 20 MHz , in 35 ns at 28.7 MHz .

4.1.3 Data Length

Longword is the standard data length for all operations. Memory can be accessed in bytes, words, or longwords. Byte or word data accessed from memory is sign-extended and calculated with longword data (table 4.1). Immediate data is sign-extended for arithmetic operations or zeroextended for logic operations. It also is calculated with longword data.

Table 4.1 Sign Extension of Word Data

SH-1/SH-2 CPU		Description	Example for Other CPU	
MOV.W	@(disp, PC) , R1	Data is sign-extended to 32	ADD.W	\#H'1234,R0
ADD	R1,R0	bits, and R1 becomes		
AD		$\mathrm{H}^{\prime} 00001234$. It is next operated upon by an ADD		
. DATA.W	H'1234	instruction.		

Note: The address of the immediate data is accessed by @(disp, PC).

4.1.4 Load-Store Architecture

Basic operations are executed between registers. For operations that involve memory access, data is loaded to the registers and executed (load-store architecture). Instructions such as AND that manipulate bits, however, are executed directly in memory.

4.1.5 Delayed Branch Instructions

Unconditional branch instructions are delayed. Pipeline disruption during branching is reduced by first executing the instruction that follows the branch instruction, and then branching (table 4.2). With delayed branching, branching occurs after execution of the slot instruction. However, instructions such as register changes etc. are executed in the order of delayed branch instruction, then delay slot instruction. For example, even if the register in which the branch destination address has been loaded is changed by the delay slot instruction, the branch will still be made using the value of the register prior to the change as the branch destination address.

Table 4.2 Delayed Branch Instructions

SH-1/SH-2 CPU	Description	Example for Other CPU		
BRA	TRGET	Executes an ADD before	ADD.W	R1,R0
ADD	R1, R0	branching to TRGET.	BRA	TRGET

4.1.6 Multiplication/Accumulation Operation

SH-1 CPU: 16bit \times 16bit \rightarrow 32-bit multiplication operations are executed in one to three cycles. 16 bit $\times 16$ bit +42 bit $\rightarrow 42$-bit multiplication/accumulation operations are executed in two to three cycles.

SH-2 CPU: 16bit \times 16bit \rightarrow 32-bit multiplication operations are executed in one to two cycles. $16 \mathrm{bit} \times 16 \mathrm{bit}+64 \mathrm{bit} \rightarrow 64$-bit multiplication/accumulation operations are executed in two to three cycles. 32bit $\times 32$ bit $\rightarrow 64$-bit multiplication and 32 bit $\times 32$ bit +64 bit $\rightarrow 64$-bit multiplication/accumulation operations are executed in two to four cycles.

4.1.7 T Bit

The T bit in the status register changes according to the result of the comparison, and in turn is the condition (true/false) that determines if the program will branch (table 4.3). The number of instructions after T bit in the status register is kept to a minimum to improve the processing speed.

Table 4.3 T Bit

SH-1/SH-2 CPU	Description	Example for Other CPU		
CMP/GE	R1,R0	T bit is set when R0 \geq R1. The	CMP.W	R1,R0
BT	TRGET0	program branches to TRGETO when RO \geq R1 and to TRGET1	BGE	TRGET0
BF	TRGET1	when RO $<$ R1.	BLT	TRGET1
ADD	\#-1,R0	T bit is not changed by ADD. T	SUB.W	\#1,R0
CMP/EQ	$\# 0$, R0	bit is set when R0 $=0$. The	BEQ	TRGET
BT	TRGET			

4.1.8 Immediate Data

Byte immediate data is located in instruction code. Word or longword immediate data is not input via instruction codes but is stored in a memory table. The memory table is accessed by an immediate data transfer instruction (MOV) using the PC relative addressing mode with displacement (table 4.4).

Table 4.4 Immediate Data Accessing

Note: The address of the immediate data is accessed by @ (disp, PC).

4.1.9 Absolute Address

When data is accessed by absolute address, the value already in the absolute address is placed in the memory table. Loading the immediate data when the instruction is executed transfers that value to the register and the data is accessed in the indirect register addressing mode.

Table 4.5 Absolute Address

Classification	SH-1/SH-2 CPU		Example for Other CPU	
Absolute address	MOV.L	@(disp, PC) , R1	MOV.B	@H'12345678, R0
	MOV.B	@R1,R0		
	. DATA.	H'12345678		

4.1.10 16-Bit/32-Bit Displacement

When data is accessed by 16 -bit or 32 -bit displacement, the pre-existing displacement value is placed in the memory table. Loading the immediate data when the instruction is executed transfers that value to the register and the data is accessed in the indirect indexed register addressing mode.

Table 4.6 Displacement Accessing

Classification	SH-1/SH-2 CPU		Example for Other CPU	
16-bit displacement	MOV.W	@(disp, PC) , R0	MOV.W	@ ($\left.\mathrm{H}^{\prime} 1234, \mathrm{R} 1\right), \mathrm{R} 2$
	Mov.w	@ (R0, R1) , R2		
	. DATA.	H'1234		

4.2 Addressing Modes

Addressing modes and effective address calculation are described in table 4.7.
Table 4.7 Addressing Modes and Effective Addresses

| Addressing
 Mode | Instruction
 Format | Effective Addresses Calculation | Formula |
| :--- | :--- | :--- | :--- | :--- |
| Direct
 register
 addressing | Rn | The effective address is register Rn. (The operand is
 the contents of register Rn.) | |
| Indirect
 register
 addressing | QRn | The effective address is the content of register Rn. | |

Table 4.7 Addressing Modes and Effective Addresses (cont)

Table 4.7 Addressing Modes and Effective Addresses (cont)

PC relative addressing
$\begin{array}{lll}\text { disp: } 8 & \text { The effective address is the } \mathrm{PC} \text { value sign-extended } & \mathrm{PC}+\text { disp } \times 2\end{array}$ with an 8-bit displacement (disp), doubled, and added to the PC.

disp:12 The effective address is the PC value sign-extended $\quad \mathrm{PC}+$ disp $\times 2$ with a 12-bit displacement (disp), doubled, and added to the PC.

Table 4.7 Addressing Modes and Effective Addresses (cont)

4.3 Instruction Format

The instruction format table, table 4.8, refers to the source operand and the destination operand. The meaning of the operand depends on the instruction code. The symbols are used as follows:

- xxxx: Instruction code
- mmmm: Source register
- nnnn: Destination register
- iiii: Immediate data
- dddd: Displacement

Table 4.8 Instruction Formats

Instruction Formats				Source Operand	Destination Operand	Example	
0 format					-	NOP	
15							
xxxx	xxxx	xxxx	xxxx				
n format				-	nnnn: Direct register	MOVT	Rn
15			0	Control register or system register	nnnn: Direct register	STS	MACH, Rn
xxxx	nnnn	xxxx	xxxx				

Table 4.8 Instruction Formats (cont)

Note: In multiply/accumulate instructions, nnnn is the source register.

Table 4.8 Instruction Formats (cont)

Instruction Formats				Source Operand mmmm: Direct register	Destination Operand nnnndddd: Indirect register with displacement	Example	
nmd format15						MOV.L Rm, @(disp,Rn)	
				mmmmdddd: Indirect register with displacement	nnnn: Direct register	MOV.L @(disp, Rm), Rn	
d format 15 xxxx	xxxx	dddd	$\overbrace{\text { dddd }}{ }^{0}$	dddddddd: Indirect GBR with displacement	R0 (Direct register)	MOV.L @(disp,GBR), R0	
				R0(Direct register)	dddddddd: Indirect GBR with displacement	MOV.L R0, @(disp,GBR)	
				dddddddd: PC relative with displacement	R0 (Direct register)	MOVA @(disp, PC), R0	
				dddddddd: PC relative	-	BF	label
d12 format 15 xxxx	dddd	dddd	${ }_{\text {dddd }}$	dddddddddddd: PC relative	-	$\begin{aligned} & \text { (label = disp + } \\ & \text { PC) } \end{aligned}$	
nd8 format 15 xxxx	nnnn	dddd	${ }_{\text {dddd }}^{0}$	dddddddd: PC relative with displacement	nnnn: Direct register	MOV.L @(disp, PC), Rn	
i format				iiiiiiiii: Immediate	Indirect indexed GBR	$\begin{aligned} & \text { AND.B } \\ & \text { \#imm, ©(R0,GBR) } \\ & \hline \end{aligned}$	
15 Xxxx	xxxx	iiii	iiii^{0}	iiiiiiiii: Immediate	R0 (Direct register)	AND	\#imm, R0
				iiiiiiiii: Immediate	-	TRAPA	\#imm
ni format 15 XXXX	nnnn	iiii	$\begin{array}{r} 0 \\ \hline i \mathrm{iii} \\ \hline \end{array}$	iiiiiiiii: Immediate	nnnn: Direct register	ADD	\#imm, Rn

Section 5 Instruction Set

5.1 Instruction Set by Classification

Table 5.1 lists instructions by classification.

Table 5.1 Classification of Instructions

Classification	Types	Operation Code	Function	Applicable Instructions		No. of Instructions
				SH-2	SH-1	
Data transfer	5	MOV	Data transfer Immediate data transfer Peripheral module data transfer Structure data transfer	\checkmark	\checkmark	39
		MOVA	Effective address transfer	\checkmark	\checkmark	
		MOVT	T-bit transfer	\checkmark	\checkmark	
		SWAP	Swap of upper and lower bytes	\checkmark	\checkmark	
		XTRCT	Extraction of the middle of registers connected	\checkmark	\checkmark	
Arithmetic operations	21	ADD	Binary addition	\checkmark	\checkmark	33
		ADDC	Binary addition with carry	\checkmark	\checkmark	
		ADDV	Binary addition with overflow check	\checkmark	\checkmark	
		CMP/cond	Comparison	\checkmark	\checkmark	
		DIV1	Division	\checkmark	\checkmark	
		DIVOS	Initialization of signed division	\checkmark	\checkmark	
		DIVOU	Initialization of unsigned division	\checkmark	\checkmark	
		DMULS	Signed double-length multiplication	\checkmark		
		DMULU	Unsigned double-length multiplication	\checkmark		
		DT	Decrement and test	\checkmark		
		EXTS	Sign extension	\checkmark	\checkmark	
		EXTU	Zero extension	\checkmark	\checkmark	
		MAC	Multiply/accumulate, doublelength multiply/accumulate operation*1	\checkmark	\checkmark	
		MUL	Double-length multiplication	\checkmark		
		MULS	Signed multiplication	\checkmark	\checkmark	
		MULU	Unsigned multiplication	\checkmark	\checkmark	
		NEG	Negation	\checkmark	\checkmark	
		NEGC	Negation with borrow	\checkmark	\checkmark	
		SUB	Binary subtraction	\checkmark	\checkmark	
		SUBC	Binary subtraction with borrow	\checkmark	\checkmark	
		SUBV	Binary subtraction with underflow check	\checkmark	\checkmark	

Notes 1. Double-length multiply/accumulate is an $\mathrm{SH}-2$ function.

Table 5.1 Classification of Instructions (cont)

Classification	Types	Operation Code	Function	Applicable Instructions		No. of Instructions
				SH-2	SH-1	
Logic operations	6	AND	Logical AND	\checkmark	\checkmark	14
		NOT	Bit inversion	\checkmark	\checkmark	
		OR	Logical OR	\checkmark	\checkmark	
		TAS	Memory test and bit set	\checkmark	\checkmark	
		TST	Logical AND and T-bit set	\checkmark	\checkmark	
		XOR	Exclusive OR	\checkmark	\checkmark	
Shift	10	ROTL	One-bit left rotation	\checkmark	\checkmark	14
		ROTR	One-bit right rotation	\checkmark	\checkmark	
		ROTCL	One-bit left rotation with T bit	\checkmark	\checkmark	
		ROTCR	One-bit right rotation with T bit	\checkmark	\checkmark	
		SHAL	One-bit arithmetic left shift	\checkmark	\checkmark	
		SHAR	One-bit arithmetic right shift	\checkmark	\checkmark	
		SHLL	One-bit logical left shift	\checkmark	\checkmark	
		SHLLn	n-bit logical left shift	\checkmark	\checkmark	
		SHLR	One-bit logical right shift	\checkmark	\checkmark	
		SHLRn	n-bit logical right shift	\checkmark	\checkmark	
Branch	9	BF	Conditional branch, conditional branch with delay ${ }^{* 2}$ ($T=0$)	\checkmark	\checkmark	11
		BT	Conditional branch, conditional branch with delay ${ }^{* 2}(\mathrm{~T}=1)$	\checkmark	\checkmark	
		BRA	Unconditional branch	\checkmark	\checkmark	
		BRAF	Unconditional branch	\checkmark		
		BSR	Branch to subroutine procedure	\checkmark	\checkmark	
		BSRF	Branch to subroutine procedure	\checkmark		
		JMP	Unconditional branch	\checkmark	\checkmark	
		JSR	Branch to subroutine procedure	\checkmark	\checkmark	
		RTS	Return from subroutine procedure	\checkmark	\checkmark	

[^0]Table 5.1 Classification of Instructions (cont)

Classification	Types	Operation Code	Function	Applicable Instructions		No. of Instructions
				SH-2	SH-1	
System control	11	CLRT	T-bit clear	\checkmark	\checkmark	31
		CLRMAC	MAC register clear	\checkmark	\checkmark	
		LDC	Load to control register	\checkmark	\checkmark	
		LDS	Load to system register	\checkmark	\checkmark	
		NOP	No operation	\checkmark	\checkmark	
		RTE	Return from exception processing	\checkmark	\checkmark	
		SETT	T-bit set	\checkmark	\checkmark	
		SLEEP	Shift into power-down mode	\checkmark	\checkmark	
		STC	Storing control register data	\checkmark	\checkmark	
		STS	Storing system register data	\checkmark	\checkmark	
		TRAPA	Trap exception processing	\checkmark	\checkmark	
Total:	62					142

Instruction codes, operation, and execution states are listed in table 5.2 in order by classification.
Table 5.2 Instruction Code Format

Item	Format	Explanation
Instruction mnemonic	OP.Sz SRC,DEST	OP: Operation code Sz: Size SRC: Source DEST: Destination Rm: Source register Rn : Destination register imm: Immediate data disp: Displacement*
Instruction code	MSB \leftrightarrow LSB	mmmm: Source register nnnn: Destination register 0000: R0 0001: R1 \qquad 1111: R15 iiii: Immediate data dddd: Displacement
Operation summary	$\begin{aligned} & \overrightarrow{(x \times)} \leftarrow \\ & M / Q / T \\ & \& \\ & 1 \\ & \wedge \\ & \sim \\ & \sim \\ & \ll n, \gg n \end{aligned}$	Direction of transfer Memory operand Flag bits in the SR Logical AND of each bit Logical OR of each bit Exclusive OR of each bit Logical NOT of each bit n-bit left/right shift
Execution cycle		Value when no wait states are inserted
Instruction execution cycles		The execution cycles shown in the table are minimums. The actual number of cycles may be increased: 1. When contention occurs between instruction fetches and data access, or 2. When the destination register of the load instruction (memory \rightarrow register) and the register used by the next instruction are the same.
T bit		Value of T bit after instruction is executed
-		No change

Note: Scaling ($\mathrm{x} 1, \mathrm{x} 2, \mathrm{x} 4$) is performed according to the instruction operand size. See "6. Instruction Descriptions" for details.

5.1.1 Data Transfer Instructions

Tables 5.3 to 5.8 list the minimum number of clock states required for execution.
Table 5.3 Data Transfer Instructions

Instruction		Instruction Code 1110nnnniiiiiiii	$\begin{aligned} & \text { Operation } \\ & \hline \text { imm } \rightarrow \text { Sign extension } \rightarrow \\ & \text { Rn } \end{aligned}$	Execution State 1	T Bit -
MOV	\#inm, Rn				
MOV.W	@(disp, PC) , Rn	1001nnnndddddddd	$\begin{aligned} & \text { (disp } \times 2+\mathrm{PC}) \rightarrow \text { Sign } \\ & \text { extension } \rightarrow \mathrm{Rn} \end{aligned}$	1	-
MOV.L	@(disp, PC), Rn	1101nnnndddddddd	$($ disp $\times 4+\mathrm{PC}) \rightarrow \mathrm{Rn}$	1	-
MOV	Rm, Rn	$0110 n n n n n^{\prime} m m m 0011$	$\mathrm{Rm} \rightarrow \mathrm{Rn}$	1	-
MOV.B	$\mathrm{Rm}, @ \mathrm{Rn}$	0010 nn nnımmm0000	$\mathrm{Rm} \rightarrow(\mathrm{Rn})$	1	-
MOV.W	$\mathrm{Rm}, @ \mathrm{Rn}$	0010 nnnn mmmm0001	$\mathrm{Rm} \rightarrow(\mathrm{Rn})$	1	-
MOV.L	Rm , @Rn	$0010 \mathrm{nnnnmmmm0010}$	$\mathrm{Rm} \rightarrow$ (Rn)	1	-
MOV.B	@Rm, Rn	0110 nn nnmmmm0000	$\begin{aligned} & (\mathrm{Rm}) \rightarrow \text { Sign extension } \rightarrow \\ & \mathrm{Rn} \end{aligned}$	1	-
MOV.W	@Rm, Rn	0110nnnnmmmm0001	$\begin{aligned} & (\text { Rm }) \rightarrow \text { Sign extension } \rightarrow \\ & \text { Rn } \end{aligned}$	1	-
MOV.L	@Rm, Rn	$0110 \mathrm{nnnnnmmm0010}$	$(\mathrm{Rm}) \rightarrow \mathrm{Rn}$	1	-
MOV.B	$\mathrm{Rm}, \mathrm{Q}-\mathrm{Rn}$	0010 nn nnmmmm0100	$\mathrm{Rn}-1 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow(\mathrm{Rn})$	1	-
MOV.W	$\mathrm{Rm}, \mathrm{Q}-\mathrm{Rn}$	$0010 \mathrm{nnnnnmmm0101}$	$\mathrm{Rn}-2 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow(\mathrm{Rn})$	1	-
MOV.L	$\mathrm{Rm}, \mathrm{Q}-\mathrm{Rn}$	0010 nn nnımmm0110	$\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow(\mathrm{Rn})$	1	-
MOV.B	@Rm+, Rn	$0110 n n n n m m m m 0100$	$\begin{aligned} & (\mathrm{Rm}) \rightarrow \text { Sign extension } \rightarrow \\ & \mathrm{Rn}, \mathrm{Rm}+1 \rightarrow \mathrm{Rm} \end{aligned}$	1	-
MOV.W	@Rm+, Rn	0110nnnnımmm0101	$\begin{aligned} & (\mathrm{Rm}) \rightarrow \text { Sign extension } \rightarrow \\ & \mathrm{Rn}, \mathrm{Rm}+2 \rightarrow \mathrm{Rm} \end{aligned}$	1	-
MOV.L	@Rm+, Rn	$0110 \mathrm{nnnnnmmm0110}$	$(\mathrm{Rm}) \rightarrow \mathrm{Rn}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$	1	-
MOV.B	R0,@(disp, Rn)	10000000 nnnndddd	$\mathrm{RO} \rightarrow($ disp +Rn$)$	1	-
MOV.W	R0, © (disp, Rn)	10000001nnnndddd	$\mathrm{RO} \rightarrow(\mathrm{disp} \times 2+\mathrm{Rn})$	1	-
MOV.L	Rm, @ (disp, Rn)	0001nnnnmmmmdddd	$\mathrm{Rm} \rightarrow(\mathrm{disp} \times 4+\mathrm{Rn})$	1	-
MOV.B	@(disp, Rm) , R0	10000100 mmmmdddd	$\begin{aligned} & \text { (disp +Rm) } \rightarrow \text { Sign } \\ & \text { extension } \rightarrow \text { R } 0 \end{aligned}$	1	-
MOV.W	@(disp,Rm) , R0	10000101mmmmddda	$\begin{aligned} & \text { (disp } \times 2+\mathrm{Rm}) \rightarrow \text { Sign } \\ & \text { extension } \rightarrow \mathrm{RO} \end{aligned}$	1	-
MOV.L	@(disp, Rm), Rn	0101nnnnmmmmdddd	$($ disp $\times 4+\mathrm{Rm}) \rightarrow \mathrm{Rn}$	1	-
MOV.B	Rm, Q (R0, Rn)	0000 nnnnmmmm0100	$\mathrm{Rm} \rightarrow(\mathrm{RO}+\mathrm{Rn})$	1	-
MOV.W	Rm, Q (R0, Rn)	0000 nnnnmmmm0101	$\mathrm{Rm} \rightarrow(\mathrm{RO}+\mathrm{Rn})$	1	-

Table 5.3 Data Transfer Instructions (cont)
$\left.\begin{array}{llllll} & & & \begin{array}{l}\text { Execu- } \\ \text { tion } \\ \text { State }\end{array} & \begin{array}{l}\text { T }\end{array} \\ \text { Instruction } & \text { Instruction Code }\end{array}\right)$

5. 1.2 Arithmetic Instructions

Table 5.4 Arithmetic Instructions

Instruction		Instruction Code	Operation	Execution State	T Bit
ADD	Rm, Rn	$0011 n n n n m m m m 1100$	$\mathrm{Rn}+\mathrm{Rm} \rightarrow \mathrm{Rn}$	1	-
ADD	\#imm, Rn		$\mathrm{Rn}+\mathrm{imm} \rightarrow \mathrm{Rn}$	1	-
ADDC	Rm, Rn	0011 nnnnnmmm1110	$\begin{aligned} & \mathrm{Rn}+\mathrm{Rm}+\mathrm{T} \rightarrow \mathrm{Rn}, \\ & \text { Carry } \rightarrow \mathrm{T} \end{aligned}$	1	Carry
ADDV	Rm, Rn	0011 nnnnnmmm1111	$\begin{aligned} & R n+R m \rightarrow R n, \\ & \text { Overflow } \rightarrow T \end{aligned}$	1	Overflow
CMP/EQ	\#imm, R0	10001000iiiiiiii	If $\mathrm{RO}=\mathrm{imm}, 1 \rightarrow \mathrm{~T}$	1	Compariso n result
CMP/EQ	Rm, Rn	0011nnnnmmmm0000	If $\mathrm{Rn}=\mathrm{Rm}, 1 \rightarrow \mathrm{~T}$	1	Compariso n result
CMP/HS	Rm, Rn	0011nnnnımmm0010	If $\mathrm{Rn} \geq \mathrm{Rm}$ with unsigned data, $1 \rightarrow T$	1	Compariso n result
CMP/GE	Rm, Rn	0011nnnnmmmm0011	If $\mathrm{Rn} \geq \mathrm{Rm}$ with signed data, $1 \rightarrow T$	1	Compariso n result
CMP/HI	Rm, Rn	0011nnnnmmmm0110	If $\mathrm{Rn}>\mathrm{Rm}$ with unsigned data, $1 \rightarrow T$	1	Compariso n result
CMP/GT	Rm, Rn	0011nnnnmmmm0111	If $\mathrm{Rn}>\mathrm{Rm}$ with signed data, $1 \rightarrow T$	1	Compariso n result
CMP/PL	Rn	0100 nnnn 00010101	If $\mathrm{Rn}>0,1 \rightarrow \mathrm{~T}$	1	Compariso n result
CMP/PZ	Rn	0100 nnnn 00010001	If $\mathrm{Rn} \geq 0,1 \rightarrow \mathrm{~T}$	1	Compariso n result
CMP/STR	Rm, Rn	0010nnnnmmmm1100	If Rn and Rm have an equivalent byte, $1 \rightarrow$ T	1	Compariso n result
DIV1	Rm, Rn	0011nnnnnmmm0100	Single-step division (Rn/Rm)	1	Calculation result
DIV0S	Rm, Rn	0010nnnnmmmm0111	$\begin{aligned} & \text { MSB of } \mathrm{Rn} \rightarrow \mathrm{Q}, \\ & \mathrm{MSB} \text { of } \mathrm{Rm} \rightarrow \mathrm{M}, \mathrm{M}^{\wedge} \\ & \mathrm{Q} \rightarrow \mathrm{~T} \end{aligned}$	1	Calculation result
DIVOU		0000000000011001	$0 \rightarrow \mathrm{M} / \mathrm{Q} /$ T	1	0

Table 5.4 Arithmetic Instructions (cont)

Instruction		Instruction Code	Operation	Execution State	T Bit
DMULS.L	$\mathrm{Rm}, \mathrm{Rn} *^{2}$	$0011 \mathrm{nnnnmmmm1101}$	Signed operation of Rn \times Rm \rightarrow MACH, MACL	2 to 4*1	-
			$32 \times 32 \rightarrow 64$ bits		
DMULU.L	$\mathrm{Rm}, \mathrm{Rn} *^{2}$	0011nnnnmmmm0101	Unsigned operation of $\mathrm{Rn} \times \mathrm{Rm} \rightarrow \mathrm{MACH}$, MACL	2 to ${ }^{\text {* }}$	-
			$32 \times 32 \rightarrow 64$ bits		
DT	$\mathrm{Rn} *^{2}$	0100nnnn00010000	$\mathrm{Rn}-1 \rightarrow \mathrm{Rn}$, when Rn is $0,1 \rightarrow \mathrm{~T}$. When Rn is nonzero, $0 \rightarrow \mathrm{~T}$	1	Compariso n result
EXTS.B	Rm, Rn	0110nnnnmmmm1110	A byte in Rm is signextended $\rightarrow \mathrm{Rn}$	1	-
ExTS.W	Rm, Rn	$0110 \mathrm{nnnnmmmm1111}$	A word in Rm is signextended $\rightarrow \mathrm{Rn}$	1	-
Extu.b	Rm, Rn	$0110 \mathrm{nnnnmmmm1100}$	A byte in Rm is zeroextended $\rightarrow \mathrm{Rn}$	1	-
ExTU.W	Rm, Rn	0110nnnnmmmm1101	A word in Rm is zeroextended $\rightarrow \mathrm{Rn}$	1	-
MAC.L	$\begin{array}{r} \text { @Rm+, @Rn+ } \\ *^{2} \end{array}$	0000nnnnmmmm1111	Signed operation of $(R n) \times(R m)+M A C$ \rightarrow MAC	3/(2 to 4)*1	-
			$32 \times 32+64 \rightarrow 64$ bits		
MAC.W	@Rm+, @Rn+	0100nnnnmmmm1111	Signed operation of $(R n) \times(R m)+M A C$ \rightarrow MAC	$3 /(2)^{* 1}$	-
			$\begin{aligned} & \text { (SH-2 CPU) } 16 \times 16+ \\ & 64 \rightarrow 64 \text { bits } \end{aligned}$		
			$\begin{aligned} & \text { (SH-1 CPU) } 16 \times 16+ \\ & 42 \rightarrow 42 \text { bits } \end{aligned}$		
MUL.L	$\mathrm{Rm}, \mathrm{Rn} *^{2}$	0000nnnnmmmm0111	Rn \times Rm \rightarrow MACL, $32 \times 32 \rightarrow 32$ bits	2 to 4*	-
MULS.W	Rm, Rn	$0010 n n n n m m m$ 1111	Signed operation of $\operatorname{Rn} \times \operatorname{Rm} \rightarrow \mathrm{MAC}$	1 to $3^{* 1}$	-
			$16 \times 16 \rightarrow 32$ bits		

Notes: 1. The normal minimum number of execution states (The number in parentheses is the number of states when there is contention with preceding/following instructions)
2. SH-2 CPU instructions

Table 5.4 Arithmetic Instructions (cont)

Instruction	Instruction Code	Operation	Execution State	T Bit	
MULU.W	Rm, Rn	$0010 \mathrm{nnnnmmmm1110}$	Unsigned operation of $\mathrm{Rn} \times \mathrm{Rm} \rightarrow \mathrm{MAC}$ $16 \times 16 \rightarrow 32$ bits	1 to $\mathbf{3}^{* 1}$	-
NEG	Rm, Rn	$0110 \mathrm{nnnnmmmm1011}$	$0-\mathrm{Rm} \rightarrow \mathrm{Rn}$	1	-
NEGC	Rm, Rn	$0110 \mathrm{nnnnmmmm1010}$	$0-\mathrm{Rm}-\mathrm{T} \rightarrow \mathrm{Rn}$, Borrow $\rightarrow \mathrm{T}$	1	Borrow
SUB	Rm, Rn	$0011 \mathrm{nnnnmmmm1000}$	$\mathrm{Rn}-\mathrm{Rm} \rightarrow \mathrm{Rn}$	1	-
SUBC	Rm, Rn	$0011 \mathrm{nnnnmmm1010}$	$\mathrm{Rn}-\mathrm{Rm}-\mathrm{T} \rightarrow \mathrm{Rn}$, Borrow $\rightarrow \mathrm{T}$	1	Borrow
SUBV	Rm, Rn	$0011 \mathrm{nnnnmmmm1011}$	$\mathrm{Rn}-\mathrm{Rm} \rightarrow \mathrm{Rn}$, Underflow $\rightarrow \mathrm{T}$	1	Underflow

Notes: 1. The normal minimum number of execution states (The number in parentheses is the number of states when there is contention with preceding/following instructions)

5.1.3 Logic Operation Instructions

Table 5.5 Logic Operation Instructions

Instruction		Instruction Code	Operation	Execution State	T Bit
AND	Rm, Rn	$0010 \mathrm{nn} n \mathrm{nmmmm1001}$	$\mathrm{Rn} \& \mathrm{Rm} \rightarrow \mathrm{Rn}$	1	-
AND	\#inm, R0	11001001iiiiiiii	RO \& imm \rightarrow Ro	1	-
AND. ${ }^{\text {B }}$	\#imm, @ (R0, GBR)	11001101iiiiiiii	$\begin{aligned} & (\mathrm{RO}+\mathrm{GBR}) \& \mathrm{imm} \rightarrow \\ & (\mathrm{RO} 0+\mathrm{GBR}) \end{aligned}$	3	-
NOT	Rm, Rn	0110 nn nnmmmm0111	$\sim \mathrm{Rm} \rightarrow \mathrm{Rn}$	1	-
OR	Rm, Rn	0010 nn nnmmmm1011	Rn I Rm \rightarrow Rn	1	-
OR	\#imm, R0	11001011iiiiiiii	RO $\operatorname{limm} \rightarrow$ R0	1	-
OR.B	\#imm, @ (R0, GBR)	11001111iiiiiiii	$\begin{aligned} & \text { (RO + GBR) } \mid \mathrm{imm} \rightarrow \\ & (\mathrm{RO}+\mathrm{GBR}) \end{aligned}$	3	-
TAS.B	@Rn	0100 nnnn 00011011	$\begin{aligned} & \text { If }(\mathrm{Rn}) \text { is } 0,1 \rightarrow \mathrm{~T} ; 1 \rightarrow \\ & \mathrm{MSB} \text { of }(\mathrm{Rn}) \end{aligned}$	4	Test result
TST	Rm, Rn	0010 nnnn mmmm1000	$\mathrm{Rn} \& \mathrm{Rm}$; if the result is $0,1 \rightarrow T$	1	Test result
TST	\#imm, R0	11001000iiiiiiii	RO \& imm; if the result is $0,1 \rightarrow T$	1	Test result

Table 5.5 Logic Operation Instructions (cont)

Instruction		Instruction Code	Operation	Execution State	T Bit
TST.B	\#imm, @(R0, GBR)	11001100 iiiiiiii	(R0 + GBR) \& imm; if the result is $0,1 \rightarrow T$	3	Test result
XOR	Rm, Rn	$0010 \mathrm{nnnnmmmm1010}$	$\mathrm{Rn} \wedge \mathrm{Rm} \rightarrow \mathrm{Rn}$	1	-
XOR	\#imm, R0	11001010iiiiiiii	RO^ imm \rightarrow RO	1	-
XOR.B	\#imm, @(R0,GBR)	11001110iiiiiiii	$\begin{aligned} & (\mathrm{RO}+\mathrm{GBR})^{\wedge} \mathrm{imm} \rightarrow \\ & (\mathrm{RO}+\mathrm{GBR}) \end{aligned}$	3	-

5.1.4 Shift Instructions

Table 5.6 Shift Instructions

Instruction	Instruction Code	Operation	Execution State	T Bit	
ROTL	Rn	$0100 \mathrm{nnnn00000100}$	$\mathrm{~T} \leftarrow \mathrm{Rn} \leftarrow \mathrm{MSB}$	1	MSB
ROTR	Rn	0100 nnnn 00000101	$\mathrm{LSB} \rightarrow \mathrm{Rn} \rightarrow \mathrm{T}$	1	LSB
ROTCL	Rn	0100 nnnn 00100100	$\mathrm{~T} \leftarrow \mathrm{Rn} \leftarrow \mathrm{T}$	1	MSB
ROTCR	Rn	$0100 \mathrm{nnnn00100101}$	$\mathrm{~T} \rightarrow \mathrm{Rn} \rightarrow \mathrm{T}$	1	LSB
SHAL	Rn	$0100 \mathrm{nnnn00100000}$	$\mathrm{~T} \leftarrow \mathrm{Rn} \leftarrow 0$	1	MSB
SHAR	Rn	$0100 \mathrm{nnnn00100001}$	$\mathrm{MSB} \rightarrow \mathrm{Rn} \rightarrow \mathrm{T}$	1	LSB
SHLL	Rn	0100 nnnn 00000000	$\mathrm{~T} \leftarrow \mathrm{Rn} \leftarrow 0$	1	MSB
SHLR	Rn	0100 nnnn 00000001	$0 \rightarrow \mathrm{Rn} \rightarrow \mathrm{T}$	1	LSB
SHLL2	Rn	0100 nnnn 00001000	$\mathrm{Rn} \ll 2 \rightarrow \mathrm{Rn}$	1	-
SHLR2	Rn	0100 nnnn 00001001	$\mathrm{Rn} \gg 2 \rightarrow \mathrm{Rn}$	1	-
SHLL8	Rn	0100 nnnn 00011000	$\mathrm{Rn} \ll 8 \rightarrow \mathrm{Rn}$	1	-
SHLR8	Rn	0100 nnnn 00011001	$\mathrm{Rn} \gg 8 \rightarrow \mathrm{Rn}$	1	-
SHLL16	Rn	0100 nnnn 00101000	$\mathrm{Rn} \ll 16 \rightarrow \mathrm{Rn}$	1	-
SHLR16	Rn	0100 nnnn 00101001	$\mathrm{Rn} \gg 16 \rightarrow \mathrm{Rn}$	1	-

5.1.5 Branch Instructions

Table 5.7 Branch Instructions

Instruction		Instruction Code 10001011 dddddddd	Operation If $\mathrm{T}=0$, disp $\times 2+\mathrm{PC} \rightarrow \mathrm{PC}$; if $\mathrm{T}=$ 1 , nop (where label is disp $\times 2+$ PC)	Execution State $3 / 1^{* 3}$	$\frac{\text { T Bit }}{-}$
BF	label				
BF/S	label*2	10001111dddddddd	Delayed branch, if $\mathrm{T}=0$, disp $\times 2+$ $P C \rightarrow P C$; if $T=1$, nop	2/1*3	-
BT	label	10001001dddddddd	If $\mathrm{T}=1$, disp $\times 2+\mathrm{PC} \rightarrow \mathrm{PC}$; if $\mathrm{T}=$ 0, nop (where label is disp +PC)	3/1*3	-
BT/S	label*2	10001101dddddddd	Delayed branch, if $\mathrm{T}=1$, disp $\times 2+$ $P C \rightarrow P C$; if $T=0$, nop	2/1*3	-
BRA	label	1010dddddddddddd	Delayed branch, disp $\times 2+\mathrm{PC} \rightarrow$ PC	2	-
BRAF	Rm*2	0000mmmm00100011	Delayed branch, Rm + PC \rightarrow PC	2	-
BSR	label	1011dddddddddddd	$\begin{aligned} & \text { Delayed branch, } \mathrm{PC} \rightarrow \mathrm{PR} \text {, disp } \times 2 \\ & +\mathrm{PC} \rightarrow \mathrm{PC} \end{aligned}$	2	-
BSRF	$\mathrm{Rm} *^{2}$	$0000 \mathrm{mmmm00000011}$	Delayed branch, PC \rightarrow PR, Rm + PC \rightarrow PC	2	-
JMP	@Rm	$0100 \mathrm{mmmm00101011}$	Delayed branch, Rm \rightarrow PC	2	-
JSR	@Rm	$0100 \mathrm{mmmm00001011}$	Delayed branch, PC $\rightarrow \mathrm{PR}, \mathrm{Rm} \rightarrow$ PC	2	-
RTS		0000000000001011	Delayed branch, PR \rightarrow PC	2	-

Notes: 2. SH-2 CPU instruction
3. One state when it does not branch

5.1.6 System Control Instructions

Table 5.8 System Control Instructions

Instruction		Instruction Code	Operation	Execution State	T Bit
CLRT		0000000000001000	$0 \rightarrow$ T	1	0
CLRMAC		0000000000101000	$0 \rightarrow$ MACH, MACL	1	-
LDC	Rm, SR	$0100 \mathrm{mmmm00001110}$	$\mathrm{Rm} \rightarrow \mathrm{SR}$	1	LSB
LDC	Rm, GBR	$0100 \mathrm{mmmm00011110}$	$\mathrm{Rm} \rightarrow$ GBR	1	-
LDC	Rm, VBR	$0100 \mathrm{mmmm00101110}$	$\mathrm{Rm} \rightarrow \mathrm{VBR}$	1	-
LDC.L	@Rm+, SR	0100mmmm00000111	$(\mathrm{Rm}) \rightarrow \mathrm{SR}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$	3	LSB
LDC.L	@Rm+, GBR	$0100 \mathrm{mmmm00010111}$	$(\mathrm{Rm}) \rightarrow \mathrm{GBR}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$	3	-
LDC.L	$@ \mathrm{Rm}+$, VBR	$0100 \mathrm{mmmm00100111}$	$(\mathrm{Rm}) \rightarrow \mathrm{VBR}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$	3	-
LDS	Rm, MACH	0100 mmmm 00001010	$\mathrm{Rm} \rightarrow \mathrm{MACH}$	1	-
LDS	Rm, MACL	$0100 \mathrm{mmmm00011010}$	$\mathrm{Rm} \rightarrow \mathrm{MACL}$	1	-
LDS	Rm, PR	$0100 \mathrm{mmmm00101010}$	$\mathrm{Rm} \rightarrow \mathrm{PR}$	1	-
LDS.L	@Rm+, MACH	0100 mmmm 00000110	$\begin{aligned} & (\mathrm{Rm}) \rightarrow \mathrm{MACH}, \mathrm{Rm}+4 \rightarrow \\ & \mathrm{Rm} \end{aligned}$	1	-
LDS.L	@Rm+, MACL	$0100 \mathrm{mmmm00010110}$	$\begin{aligned} & (\mathrm{Rm}) \rightarrow \mathrm{MACL}, \mathrm{Rm}+4 \rightarrow \\ & \mathrm{Rm} \end{aligned}$	1	-
LDS.L	@Rm+, PR	$0100 \mathrm{mmmm00100110}$	$(\mathrm{Rm}) \rightarrow \mathrm{PR}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$	1	-
NOP		0000000000001001	No operation	1	-
RTE		0000000000101011	Delayed branch, stack area \rightarrow PC/SR	4	LSB
SETT		0000000000011000	$1 \rightarrow T$	1	1
SLEEP		0000000000011011	Sleep	3*4	-
STC	SR, Rn	0000 nnnn00000010	$\mathrm{SR} \rightarrow \mathrm{Rn}$	1	-
STC	GBR, Rn	0000 nnnn00010010	GBR \rightarrow Rn	1	-
STC	VBR, Rn	$0000 \mathrm{nnnn00100010}$	$\mathrm{VBR} \rightarrow \mathrm{Rn}$	1	-
STC.L	SR, @-Rn	$0100 \mathrm{nnnn00000011}$	$\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{SR} \rightarrow(\mathrm{Rn})$	2	-
STC.L	GBR, @-Rn	0100 nnnn00010011	$\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{GBR} \rightarrow(\mathrm{Rn})$	2	-
STC.L	VBR, ©-Rn	0100 nnnn00100011	$\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{VBR} \rightarrow(\mathrm{Rn})$	2	-
STS	MACH, Rn	0000nnnn00001010	$\mathrm{MACH} \rightarrow \mathrm{Rn}$	1	-
STS	MACL, Rn	$0000 \mathrm{nnnn00011010}$	$\mathrm{MACL} \rightarrow \mathrm{Rn}$	1	-
STS	PR, Rn	0000 nnnn00101010	PR \rightarrow Rn	1	-

Table 5.8 System Control Instructions (cont)

Instruction	Instruction Code	Operation	Executio nState	T Bit	
STS.L	MACH, Q-Rn	0100 nnnn 00000010	$\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{MACH} \rightarrow(\mathrm{Rn})$	$\mathbf{1}$	-
STS.L	MACL, Q-Rn	0100 nnnn 00010010	$\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{MACL} \rightarrow(\mathrm{Rn})$	$\mathbf{1}$	-
STS.L	PR, Q-Rn	0100 nnnn 00100010	$\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{PR} \rightarrow(\mathrm{Rn})$	$\mathbf{1}$	-
TRAPA	\#inm	11000011 iiiiiiii	$\mathrm{PC} / \mathrm{SR} \rightarrow$ stack area, (imm \times $4+\mathrm{VBR}) \rightarrow \mathrm{PC}$	$\mathbf{8}$	-

Notes: 4. The number of execution states before the chip enters the sleep state
The above table lists the minimum execution cycles. In practice, the number of execution cycles increases when the instruction fetch is in contention with data access or when the destination register of a load instruction (memory \rightarrow register) is the same as the register used by the next instruction.

5.2 Instruction Set in Alphabetical Order

Table 5.9 alphabetically lists instruction codes and number of execution cycles for each instruction.

Table 5.9 Instruction Set

Instruction		Instruction Code	Operation	Execution State	T Bit
ADD	\#imm, Rn	$0111 n n n n i i i i i i i i ~$	$\mathrm{Rn}+\mathrm{imm} \rightarrow \mathrm{Rn}$	1	-
ADD	Rm, Rn	0011 nnnnnmmm1100	$\mathrm{Rn}+\mathrm{Rm} \rightarrow \mathrm{Rn}$	1	-
ADDC	Rm, Rn	0011 nnnnnmmmil10	$\begin{aligned} & \mathrm{Rn}+\mathrm{Rm}+\mathrm{T} \rightarrow \mathrm{Rn}, \\ & \text { Carry } \rightarrow \mathrm{T} \end{aligned}$	1	Carry
ADDV	Rm, Rn	0011 nnnnımmm1111	$\begin{aligned} & \mathrm{Rn}+\mathrm{Rm} \rightarrow \mathrm{Rn}, \\ & \text { Overflow } \rightarrow \mathrm{T} \end{aligned}$	1	Overflow
AND	\#imm, R0	11001001iiiiiiii	RO \& imm \rightarrow R0	1	-
AND	Rm, Rn	0010 nn nnmmmm1001	$\mathrm{Rn} \& \mathrm{Rm} \rightarrow \mathrm{Rn}$	1	-
AND. ${ }^{\text {B }}$	\#imm, @ (R0, GBR)	11001101iiiiiiii	$\begin{aligned} & \text { (R0 + GBR) \& imm } \\ & \rightarrow(\mathrm{RO} 0+\mathrm{GBR}) \end{aligned}$	3	-
BF	label	10001011dddddddd	$\begin{aligned} & \text { If } T=0, \text { disp } \times 2+ \\ & P C \rightarrow P C \text { if } T=1, \\ & \text { nop } \end{aligned}$	3/1*3	-
BF/S	label*2	10001111dddddddd	$\begin{aligned} & \text { If } \mathrm{T}=0 \text {, disp } \times 2+ \\ & \mathrm{PC} \rightarrow P C \text {; if } T=1 \text {, } \\ & \text { nop } \end{aligned}$	2/1*3	-

Table 5.9 Instruction Set (cont)

Instruction		Instruction Code	Operation	Execu- tion State	T Bit
BRA	label	1010dddddddddddd	Delayed branch, disp $\times 2+\mathrm{PC} \rightarrow$ PC	2	-
BRAF	$\mathrm{Rm} *^{2}$	0000 mmmm 00100011	Delayed branch, $R m+P C \rightarrow P C$	2	-
BSR	label	1011ddddddddddddd	Delayed branch, PC \rightarrow PR, disp $\times 2$ $+P C \rightarrow P C$	2	-
BSRF	$\mathrm{Rm} *^{2}$	0000 mmmm 00000011	Delayed branch, $\mathrm{PC} \rightarrow \mathrm{PR}, \mathrm{Rm}+$ $\mathrm{PC} \rightarrow \mathrm{PC}$	2	-
BT	label	10001001dddddddd	$\begin{aligned} & \text { If } T=1 \text {, disp } \times 2+ \\ & \text { PC } \rightarrow P C \text {; if } T=0 \text {, } \\ & \text { nop } \end{aligned}$	$3 / 1 * 3$	-
BT/S	label* ${ }^{2}$	10001101dddddddd	$\begin{aligned} & \text { If } T=1, \operatorname{disp} \times 2+ \\ & P C \rightarrow P C \text {; if } T=0 \text {, } \\ & \text { nop } \end{aligned}$	$2 / 1 * 3$	-
CLRMAC		0000000000101000	$0 \rightarrow \mathrm{MACH}, \mathrm{MACL}$	1	-
CLRT		0000000000001000	$0 \rightarrow$ T	1	0
CMP/EQ	\#imm, R0	10001000iiiiiiiii	If $\mathrm{RO}=\mathrm{imm}, 1 \rightarrow \mathrm{~T}$	1	Comparison result
CMP/EQ	Rm, Rn	0011 nnnnmmmm0000	If $\mathrm{Rn}=\mathrm{Rm}, 1 \rightarrow \mathrm{~T}$	1	Comparison result
CMP/GE	Rm, Rn	0011 nnnnmmmm0011	If $R n \geq R m$ with signed data, $1 \rightarrow T$	1	Comparison result
CMP/GT	Rm, Rn	0011 nnnnmmmm0111	If $R n>R m$ with signed data, $1 \rightarrow T$	1	Comparison result
CMP/HI	Rm, Rn	0011 nnnnmmmm0110	If $R n>R m$ with unsigned data, $1 \rightarrow T$	1	Comparison result
CMP/HS	Rm, Rn	0011 nnnnmmmm0010	If $R n \geq R m$ with unsigned data, $1 \rightarrow T$	1	Comparison result
CMP/PL	Rn	0100 nnnn 00010101	If $\mathrm{Rn}>0,1 \rightarrow \mathrm{~T}$	1	Comparison result
CMP/PZ	Rn	0100 nnnn 00010001	If $\mathrm{Rn} \geq 0,1 \rightarrow T$	1	Comparison result

Notes: 2. SH-2 CPU instructions
3. One state when it does not branch

Table 5.9 Instruction Set (cont)

Instruction		Instruction Code 0010nnnnmmmm1100	Operation If Rn and Rm have an equivalent byte, $1 \rightarrow T$	Execution State1	$\begin{aligned} & \text { T Bit } \\ & \hline \begin{array}{l} \text { Comparison } \\ \text { result } \end{array} \end{aligned}$
CMP/STR	Rm, Rn				
DIV0S	Rm, Rn	0010nnnnmmmm0111	$\begin{aligned} & \text { MSB of } R n \rightarrow Q, \\ & \text { MSB of } R m \rightarrow M, \\ & M^{\wedge} Q \rightarrow T \end{aligned}$	1	Calculation result
DIV0U		0000000000011001	$0 \rightarrow M / Q / T$	1	0
DIV1	Rm, Rn	0011 nnnnmmmm0100	Single-step division (Rn/Rm)	1	Calculation result
DMULS.L	$\mathrm{Rm}, \mathrm{Rn} *^{2}$	0011nnnnmmmm1101	Signed operation of $\mathrm{Rn} \times \mathrm{Rm} \rightarrow \mathrm{MACH}$, MACL	2 to 4*1	-
DMULU.L	$\mathrm{Rm}, \mathrm{Rn} *^{2}$	$0011 \mathrm{nnnnnmmmm0101}$	Unsigned operation of $\mathrm{Rn} \times \mathrm{Rm} \rightarrow$ MACH, MACL	2 to $4^{* 1}$	-
DT	$\mathrm{Rn} *^{2}$	0100nnnn00010000	$\mathrm{Rn}-1 \rightarrow \mathrm{Rn}$, when $R n$ is $0,1 \rightarrow T$. When Rn is nonzero, $0 \rightarrow T$	1	Comparison result
EXTS.B	Rm, Rn	0110nnnnmmmm1110	A byte in Rm is sign-extended \rightarrow Rn	1	-
EXTS.W	Rm, Rn	0110nnnnmmmm1111	A word in Rm is sign-extended \rightarrow Rn	1	-
EXTU.B	Rm, Rn	0110nnnnmmmm1100	A byte in Rm is zero-extended \rightarrow Rn	1	-
EXTU.W	Rm, Rn	$0110 \mathrm{nnnnmmmm1101}$	A word in Rm is zero-extended \rightarrow Rn	1	-
JMP	@Rm	0100mmmm00101011	Delayed branch, $\mathrm{Rm} \rightarrow \mathrm{PC}$	2	-

Notes: 1. The normal minimum number of execution states
2. SH-2 CPU instructions

Table 5.9 Instruction Set (cont)

Instruction		Instruction Code 0100 mmmm00001011	Operation Delayed branch, $\mathrm{PC} \rightarrow \mathrm{PR}, \mathrm{Rm} \rightarrow$ PC	Execution State2	$\frac{\text { T Bit }}{-}$
JSR	@Rm				
LDC	Rm, GBR	0100 mmmm 00011110	$\mathrm{Rm} \rightarrow$ GBR	1	-
LDC	Rm, SR	0100 mmmm 00001110	$\mathrm{Rm} \rightarrow$ SR	1	LSB
LDC	Rm, VBR	$0100 \mathrm{mmmm00101110}$	$\mathrm{Rm} \rightarrow$ VBR	1	-
LDC.L	@Rm+, GBR	0100mmmm00010111	$(\mathrm{Rm}) \rightarrow \mathrm{GBR}, \mathrm{Rm}$ $+4 \rightarrow \mathrm{Rm}$	3	-
LDC.L	@Rm+, SR	0100 mmmm 00000111	$\begin{aligned} & (\mathrm{Rm}) \rightarrow \mathrm{SR}, \mathrm{Rm}+ \\ & 4 \rightarrow \mathrm{Rm} \end{aligned}$	3	LSB
LDC.L	@Rm+, VBR	0100mmmm00100111	$(\mathrm{Rm}) \rightarrow$ VBR, Rm $+4 \rightarrow \mathrm{Rm}$	3	-
LDS	Rm, MACH	0100 mmmm 00001010	$\mathrm{Rm} \rightarrow \mathrm{MACH}$	1	-
LDS	Rm, MACL	0100 mmmm 00011010	$\mathrm{Rm} \rightarrow \mathrm{MACL}$	1	-
LDS	Rm, PR	$0100 \mathrm{mmmm00101010}$	$\mathrm{Rm} \rightarrow \mathrm{PR}$	1	-
LDS.L	@Rm+, MACH	0100mmmm00000110	$\begin{aligned} & (\mathrm{Rm}) \rightarrow \mathrm{MACH}, \\ & \mathrm{Rm}+4 \rightarrow \mathrm{Rm} \end{aligned}$	1	-
LDS.L	@Rm+, MACL	0100mmmm00010110	$\begin{aligned} & (\mathrm{Rm}) \rightarrow \mathrm{MACL} \\ & \mathrm{Rm}+4 \rightarrow \mathrm{Rm} \end{aligned}$	1	-
LDS.L	@Rm+, PR	$0100 \mathrm{mmmm00100110}$	$\underset{4 \rightarrow \mathrm{Rm}}{(\mathrm{Rm})} \underset{\mathrm{R}}{\rightarrow \mathrm{PR}, \mathrm{Rm}+}$	1	-
MAC.L	@Rm+, @Rn+*2	0000nnnnmmmm1111	Signed operation of $(R n) \times(R m)+$ MAC \rightarrow MAC	$\begin{aligned} & 3 /(2 \text { to } \\ & 4)^{\star 1} \end{aligned}$	-
MAC.W	@Rm+, @Rn+	$0100 \mathrm{nnnn} m \mathrm{mmm} 1111$	Signed operation of $(R n) \times(R m)+M A C$ \rightarrow MAC	$3 /(2)^{* 1}$	-
MOV	\#imm, Rn	1110nnnniiiiiiii	$\begin{aligned} & \mathrm{imm} \rightarrow \text { Sign } \\ & \text { extension } \rightarrow \text { Rn } \end{aligned}$	1	-
MOV	Rm, Rn	0110nnnnmmmm0011	$\mathrm{Rm} \rightarrow \mathrm{Rn}$	1	-

Notes: 1. The normal minimum number of execution states (the number in parentheses is the number of states when there is contention with preceding/following instructions)
2. SH-2 instructions

Table 5.9 Instruction Set (cont)

Instruction		Instruction Code	Operation	Execu- tion State	T Bit
MOV.B	@(disp, GBR), R0	11000100dddddddd	$\begin{aligned} & (\text { disp }+ \text { GBR }) \rightarrow \\ & \text { Sign extension } \rightarrow \\ & \text { RO } \end{aligned}$	1	-
MOV.B	@(disp, Rm), R0	10000100 mmmmdddd	$\begin{aligned} & (\text { disp }+ \text { Rm }) \rightarrow \text { Sign } \\ & \text { extension } \rightarrow \text { RO } \end{aligned}$	1	-
MOV.B	@(R0,Rm), Rn	$0000 \mathrm{nnnnmmmm1100}$	$\begin{aligned} & (R O+R m) \rightarrow \text { Sign } \\ & \text { extension } \rightarrow R n \end{aligned}$	1	-
MOV. B	@Rm+, Rn	0110nnnnmmmm0100	$\begin{aligned} & (R m) \rightarrow \text { Sign } \\ & \text { extension } \rightarrow R n, \\ & R m+1 \rightarrow R m \end{aligned}$	1	-
MOV.B	@Rm, Rn	0110nnnnmmmm0000	$(\mathrm{Rm}) \rightarrow \text { Sign }$ extension $\rightarrow \mathrm{Rn}$	1	-
MOV. B	R0, @ (disp, GBR)	11000000 dddddddd	$\mathrm{RO} \rightarrow$ (disp + GBR)	1	-
MOV.B	R0, @(disp, Rn)	10000000 nnnndddd	$\mathrm{RO} \rightarrow($ disp +Rn$)$	1	-
MOV.B	Rm, @ (R0, Rn)	0000 nnnnmmmm0100	$R m \rightarrow(R 0+R n)$	1	-
MOV.B	Rm, @-Rn	0010nnnnmmmm0100	$\mathrm{Rn}-1 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow$ (Rn)	1	-
MOV.B	Rm, @Rn	0010nnnnmmmm0000	$\mathrm{Rm} \rightarrow(\mathrm{Rn})$	1	-
MOV.L	@(disp, GBR) , R0	11000110 dddddddd	$\begin{aligned} & (\text { disp } \times 4+\text { GBR }) \rightarrow \\ & \text { RO } \end{aligned}$	1	-
MOV.L	@(disp, PC), Rn	1101nnnndddddddd	$\begin{aligned} & (\operatorname{disp} \times 4+\mathrm{PC}) \rightarrow \\ & \mathrm{Rn} \end{aligned}$	1	-
MOV.L	@(disp, Rm), Rn	0101 nnnnmmmmdddd	$\begin{aligned} & (\operatorname{disp} \times 4+\mathrm{Rm}) \rightarrow \\ & \mathrm{Rn} \end{aligned}$	1	-
MOV.L	@(R0,Rm), Rn	$0000 \mathrm{nnnnmmmm1110}$	$(\mathrm{RO}+\mathrm{Rm}) \rightarrow \mathrm{Rn}$	1	-
MOV.L	@Rm+, Rn	0110nnnnmmmm0110	$\underset{\rightarrow R m}{(R m)} \rightarrow R n, R m+4$	1	-
MOV.L	@Rm, Rn	0110nnnnmmmm0010	$(\mathrm{Rm}) \rightarrow \mathrm{Rn}$	1	-
MOV.L	R0, @(disp, GBR)	11000010 dddddddd	$\begin{aligned} & \mathrm{RO} \rightarrow \text { (disp } \times 4+ \\ & \mathrm{GBR}) \end{aligned}$	1	-
MOV.L	Rm, @ (disp, Rn)	0001nnnnmmmmdddd	$\begin{aligned} & \mathrm{Rm} \\ & \mathrm{Rn}) \end{aligned} \rightarrow(\text { disp } \times 4+$	1	-
MOV.L	$\mathrm{Rm}, @(\mathrm{RO}, \mathrm{Rn})$	0000nnnnmmmmm0110	$R m \rightarrow(R 0+R n)$	1	-
MOV.L	Rm, @-Rn	0010nnnnmmmm0110	$\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow$ (Rn)	1	-
MOV.L	$\mathrm{Rm}, @ \mathrm{Rn}$	0010nnnnmmmm0010	$R \mathrm{~m} \rightarrow$ (Rn)	1	-
MOV.W	@(disp, GBR) , R0	11000101dddddddd	$\begin{aligned} & (\text { disp } \times 2+\text { GBR }) \rightarrow \\ & \text { Sign extension } \rightarrow \\ & \text { R0 } \end{aligned}$	1	-

Table 5.9 Instruction Set (cont)

Instruction		Instruction Code 1001nnnndddddddd	Operation $(\text { disp } \times 2+\mathrm{PC}) \rightarrow$ Sign extension \rightarrow Rn	Execu- tion State 1	$\frac{\text { T Bit }}{-}$
MOV.W	@(disp, PC), Rn				
MOV.W	@(disp, Rm) , R0	10000101mmmmdddd	$(\text { disp } \times 2+\mathrm{Rm}) \rightarrow$ Sign extension \rightarrow RO	1	-
MOV.W	$@(\mathrm{R} 0, \mathrm{Rm}), \mathrm{Rn}$	$0000 \mathrm{nnnnmmmm1101}$	$\begin{aligned} & (R 0+R m) \rightarrow S i g n \\ & \text { extension } \rightarrow R n \end{aligned}$	1	-
MOV.W	$@ \mathrm{~mm}+\mathrm{Rn}$	0110nnnnmmmm0101	(Rm) \rightarrow Sign extension \rightarrow Rn, $\mathrm{Rm}+2 \rightarrow \mathrm{Rm}$	1	-
MOV.W	@Rm, Rn	0110nnnnmmmm0001	(Rm) \rightarrow Sign extension \rightarrow Rn	1	-
MOV.W	R0, @(disp, GBR)	11000001dddddddd	$\begin{aligned} & R 0 \rightarrow(\text { disp } \times 2+ \\ & G B R) \end{aligned}$	1	-
MOV.W	R0, @(disp,Rn)	10000001nnnndddd	$\begin{aligned} & \mathrm{RO} \rightarrow \text { (disp } \times 2+ \\ & \mathrm{Rn}) \end{aligned}$	1	-
MOV.W	$\mathrm{Rm}, \mathrm{@}(\mathrm{RO}, \mathrm{Rn})$	0000nnnnmmmm0101	$R m \rightarrow(R 0+R n)$	1	-
MOV.W	Rm, @-Rn	0010nnnnmmmm0101	$\mathrm{Rn}-2 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow$ (Rn)	1	-
MOV.W	Rm, @Rn	0010nnnnmmmm0001	$\mathrm{Rm} \rightarrow$ (Rn)	1	-
MOVA	@(disp, PC), R0	$11000111 d d d d d d d d$	$\operatorname{disp} \times 4+\mathrm{PC} \rightarrow \mathrm{RO}$	1	-
MOVT	Rn	$0000 \mathrm{nnnn00101001}$	$\mathrm{T} \rightarrow \mathrm{Rn}$	1	-
MUL.L	$\mathrm{Rm}, \mathrm{Rn} *^{2}$	0000 nnnnmmmm0111	$\mathrm{Rn} \times \mathrm{Rm} \rightarrow \mathrm{MACL}$	2 to 4*1	-
MULS.W	Rm, Rn	$0010 \mathrm{nnnnmmmm1111}$	Signed operation of $\mathrm{Rn} \times \mathrm{Rm} \rightarrow$ MAC	1 to 3*1	-
MULU.W	Rm, Rn	0010nnnnmmmm1110	Unsigned operation of $\mathrm{Rn} \times \mathrm{Rm} \rightarrow \mathrm{MAC}$	1 to 3*1	-
NEG	Rm, Rn	0110nnnnmmmm1011	$0-R m \rightarrow R n$	1	-
NEGC	Rm , Rn	0110nnnnmmmm1010	$\begin{aligned} & 0-R m-T \rightarrow R n, \\ & \text { Borrow } \rightarrow T \end{aligned}$	1	Borrow
NOP		0000000000001001	No operation	1	-
NOT	Rm, Rn	0110nnnnmmmm0111	$\sim \mathrm{Rm} \rightarrow \mathrm{Rn}$	1	-
OR	\#imm, R0	11001011iiiiiiii	RO I imm \rightarrow RO	1	-
OR	Rm, Rn	$0010 \mathrm{nnnnmmmm1011}$	Rn I Rm \rightarrow Rn	1	-

Notes: 1. The normal minimum number of execution states
2. SH-2 CPU instructions

Table 5.9 Instruction Set (cont)

Instruction		$\begin{aligned} & \text { Instruction Code } \\ & \hline 11001111 \mathrm{iiiiiiii} \end{aligned}$	$\begin{aligned} & \text { Operation } \\ & \hline(R 0+G B R) \mid \text { imm } \\ & \rightarrow(R 0+G B R) \end{aligned}$	Execu- tion State 3	$\frac{\mathrm{T} \text { Bit }}{-}$
OR.B	\# imm, @ (R0, GBR)				
ROTCL	Rn	0100nnnn00100100	$\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow \mathrm{T}$	1	MSB
ROTCR	Rn	$0100 \mathrm{nnnn00100101}$	$T \rightarrow R n \rightarrow T$	1	LSB
ROTL	Rn	0100 nnnn 00000100	$\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow \mathrm{MSB}$	1	MSB
ROTR	Rn	$0100 \mathrm{nnnn00000101}$	LSB $\rightarrow \mathrm{Rn} \rightarrow \mathrm{T}$	1	LSB
RTE		0000000000101011	Delayed branch, stack area \rightarrow PC/SR	4	LSB
RTS		0000000000001011	Delayed branch, $P R \rightarrow P C$	2	-
SETT		0000000000011000	$1 \rightarrow T$	1	1
SHAL	Rn	0100 nnnn 00100000	$\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow 0$	1	MSB
SHAR	Rn	0100 nnnn 00100001	MSB $\rightarrow \mathrm{Rn} \rightarrow \mathrm{T}$	1	LSB
SHLL	Rn	0100 nnnn 00000000	$\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow 0$	1	MSB
SHLL2	Rn	0100 nnnn 00001000	$\mathrm{Rn} \ll 2 \rightarrow \mathrm{Rn}$	1	-
SHLL8	Rn	0100 nnnn 00011000	$\mathrm{Rn} \ll 8 \rightarrow \mathrm{Rn}$	1	-
SHLL16	Rn	0100 nnnn 00101000	$\mathrm{Rn} \ll 16 \rightarrow \mathrm{Rn}$	1	-
SHLR	Rn	0100 nnnn 00000001	$0 \rightarrow R n \rightarrow T$	1	LSB
SHLR2	Rn	0100 nnnn 00001001	$\mathrm{Rn} \gg 2 \rightarrow \mathrm{Rn}$	1	-
SHLR8	Rn	$0100 \mathrm{nnnn00011001}$	$\mathrm{Rn} \gg 8 \rightarrow \mathrm{Rn}$	1	-
SHLR16	Rn	0100 nnnn 00101001	$\mathrm{Rn} \gg 16 \rightarrow \mathrm{Rn}$	1	-
SLEEP		0000000000011011	Sleep	3	-
STC	GBR, Rn	0000 nnnn 00010010	GBR \rightarrow Rn	1	-
STC	SR, Rn	0000 nnnn 00000010	$\mathrm{SR} \rightarrow \mathrm{Rn}$	1	-
STC	VBR, Rn	0000 nnnn 00100010	$\mathrm{VBR} \rightarrow \mathrm{Rn}$	1	-
STC.L	GBR, ©-Rn	0100nnnn00010011	$\begin{aligned} & \mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{GBR} \\ & \rightarrow(\mathrm{Rn}) \end{aligned}$	2	-
STC.L	SR, ©-Rn	0100nnnn00000011	$\begin{aligned} & \mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{SR} \rightarrow \\ & (\mathrm{Rn}) \end{aligned}$	2	-
STC.L	VBR, @-Rn	$0100 \mathrm{nnnn00100011}$	$\begin{aligned} & \mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \text { VBR } \\ & \rightarrow(\mathrm{Rn}) \end{aligned}$	2	-
STS	MACH, Rn	0000nnnn00001010	$\mathrm{MACH} \rightarrow \mathrm{Rn}$	1	-

Table 5.9 Instruction Set (cont)

Instruction		Instruction Code 0000 nnnn 00011010	$\begin{aligned} & \text { Operation } \\ & \hline \text { MACL } \rightarrow \mathrm{Rn} \end{aligned}$	Execution State 1	$\begin{aligned} & \text { T Bit } \\ & \hline- \\ & \hline \end{aligned}$
STS	MACL, Rn				
STS	PR,Rn	0000 nnnn 00101010	$\mathrm{PR} \rightarrow \mathrm{Rn}$	1	-
STS.L	MACH, @-Rn	0100nnnn00000010	$\begin{aligned} & \mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \\ & \text { MACH } \rightarrow(\mathrm{Rn}) \end{aligned}$	1	-
STS.L	MACL, @-Rn	0100nnnn00010010	$\begin{aligned} & \mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \\ & \mathrm{MACL} \rightarrow(\mathrm{Rn}) \end{aligned}$	1	-
STS.L	PR, @-Rn	0100nnnn00100010	$\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{PR} \rightarrow$ (Rn)	1	-
SUB	Rm, Rn	0011 nnnnmmmm1000	$\mathrm{Rn}-\mathrm{Rm} \rightarrow \mathrm{Rn}$	1	-
SUBC	Rm, Rn	0011nnnnmmmm1010	$\begin{aligned} & \mathrm{Rn}-\mathrm{Rm}-\mathrm{T} \rightarrow \mathrm{Rn}, \\ & \text { Borrow } \rightarrow \mathrm{T} \end{aligned}$	1	Borrow
SuBv	Rm, Rn	0011nnnnmmmm1011	$\begin{aligned} & \mathrm{Rn}-\mathrm{Rm} \rightarrow \mathrm{Rn} \text {, } \\ & \text { Underflow } \rightarrow T \end{aligned}$	1	Underflow
SWAP.B	Rm, Rn	0110nnnnmmmm1000	Rm \rightarrow Swap upper and lower 2 bytes \rightarrow Rn	1	-
SWAP.W	Rm, Rn	0110nnnnmmmm1001	$\mathrm{Rm} \rightarrow$ Swap upper and lower word \rightarrow Rn	1	-
TAS.B	@Rn	0100nnnn00011011	$\begin{aligned} & \text { If }(\mathrm{Rn}) \text { is } 0,1 \rightarrow \mathrm{~T} \text {; } \\ & 1 \rightarrow \mathrm{MSB} \text { of }(\mathrm{Rn}) \end{aligned}$	4	Test result
TRAPA	\#imm	11000011iiiiiiii	PC/SR \rightarrow stack area, (imm $\times 4+$ VBR) \rightarrow PC	8	-
TST	\#imm, R0	11001000 iiiiiiiii	R0 \& imm; if the result is $0,1 \rightarrow T$	1	Test result
TST	Rm, Rn	0010nnnnmmmm1000	Rn \& Rm; if the result is $0,1 \rightarrow T$	1	Test result
TST.B	\#imm, @(R0, GBR)	11001100iiiiiiii	$\begin{aligned} & (\mathrm{RO}+\mathrm{GBR}) \& \text { imm; } \\ & \text { if the result is } 0,1 \\ & \rightarrow T \end{aligned}$	3	Test result
XOR	\#imm, R0	11001010iiiiiiii	RO ^ imm $\rightarrow \mathrm{RO}$	1	-
XOR	Rm, Rn	0010nnnnmmmm1010	$\mathrm{Rn} \wedge \mathrm{Rm} \rightarrow \mathrm{Rn}$	1	-
XOR.B	\#imm, @(R0, GBR)	11001110iiiiiiii	$\begin{aligned} & (\mathrm{RO}+\mathrm{GBR})^{\wedge} \mathrm{imm} \\ & \rightarrow(\mathrm{RO} 0+\mathrm{GBR}) \end{aligned}$	3	-
XTRCT	Rm, Rn	0010nnnnmmmm1101	Center 32 bits of Rm and $\mathrm{Rn} \rightarrow \mathrm{Rn}$	1	-

Section 6 Instruction Descriptions

This section describes instructions in alphabetical order using the format shown below in section 6.1. The actual descriptions begin at section 6.2

6.1 Sample Description (Name): Classification

Class: Indicates if the instruction is a delayed branch instruction or interrupt disabled instruction

Format	Abstract	Code	State	TBit
Assembler input format;	A brief description of	Displayed in	Number of imm and disp are	The value of
operation	order MSB	states when numbers, expressions,		LSB bit after the
or symbols		the is no instruction is		

Description: Description of operation
Notes: Notes on using the instruction
Operation: Operation written in C language. This part is just a reference to help understanding of an operation. The following resources should be used.

- Reads data of each length from address Addr. An address error will occur if word data is read from an address other than 2 n or if longword data is read from an address other than 4 n :

```
unsigned char Read_Byte(unsigned long Addr);
unsigned short Read_Word(unsigned long Addr);
unsigned long Read_Long(unsigned long Addr);
```

- Writes data of each length to address Addr. An address error will occur if word data is written to an address other than 2 n or if longword data is written to an address other than 4 n :

```
unsigned char Write_Byte(unsigned long Addr, unsigned long Data);
unsigned short Write_Word(unsigned long Addr, unsigned long Data);
unsigned long Write_Long(unsigned long Addr, unsigned long Data);
```

- Starts execution from the slot instruction located at an address (Addr - 4). For Delay_Slot (4);, execution starts from an instruction at address 0 rather than address 4 . The following instructions are detected before execution as illegal slot instruction (they become illegal slot instructions when used as delay slot instructions):

```
BF, BT, BRA, BSR, JMP, JSR, RTS, RTE, TRAPA, BF/S, BT/S, BRAF, BSRF
Delay_Slot(unsigned long Addr);
```


- List registers:

```
unsigned long R[16];
unsigned long SR,GBR,VBR;
unsigned long MACH,MACL,PR;
unsigned long PC;
```

- Definition of SR structures:

```
struct SRO {
    unsigned long dummy0:22;
    unsigned long M0:1;
    unsigned long Q0:1;
    unsigned long I0:4;
    unsigned long dummy1:2;
    unsigned long s0:1;
    unsigned long T0:1;
};
```

- Definition of bits in SR:

```
#define M ((*(struct SR0 *) (&SR)).MO)
#define Q ((*(struct SRO *) (&SR)).QO)
#define S ((*(struct SR0 *)(&SR)).SO)
#define T ((*(struct SR0 *) (&SR)).T0)
```

- Error display function:

```
Error( char *er );
```

The PC should point to the location four bytes (the second instruction) after the current instruction. Therefore, $P C=4$; means the instruction starts execution from address 0 , not address 4 .

Examples: Examples are written in assembler mnemonics and describe state before and after executing the instruction. Characters in italics such as align are assembler control instructions (listed below). For more information, see the Cross Assembler User's Manual.

.org	Location counter set
.data.w	Securing integer word data
.data.1	Securing integer longword data
.sdata	Securing string data
.align 2	2-byte boundary alignment
.align 4	2-byte boundary alignment
.arepeat 16	16-repeat expansion
.arepeat 32	32-repeat expansion
.aendr	End of repeat expansion of specified number

Note: The SH-series cross assembler version 1.0 does not support the conditional assembler functions.

Notes: 1. In the assembler descriptions in this manual for addressing modes that involve the following displacements (disp), the value prior to scaling (x1, x2, x4) according to the operand size is written. This is done to show clearly the operation of the LSI; see the assembler notation rules for the actural assembler descriptions.

$$
\begin{array}{ll}
@(\operatorname{disp}: 4, \mathrm{Rn}): & \text { Register indirect with displacement } \\
\text { @(disp:8, GBR): } & \text { GBR indirect with displacement } \\
\text { @(disp 8, PC): } & \text { PC relative with displacement } \\
\text { disp:8, disp:12: } & \text { PC relative }
\end{array}
$$

2. Among the 16 bits of the instruction code, a code not assigned as an instruction is treated as a general illegal instruction, and will result in illegal instruction exception processing, This includes the case where an instruction code for the SH-2 CPU only is executed on the SH-1 CPU.

Example 1: H'FFF [General illegal instruction in both SH-1 and SH-2 CPU]
Example 2: H'3105 (=DMUL.L R0, R1)[Illegal instruction in SH-1 CPU]
3. If the instruction following a delayed branch instruction such as BRA, BT/S, etc., is a general illegal instruction or a branch instruction (known as a slot illegal instruction), illegal instruction exception processing will be performed.

Example 1
BRA Label
. data. W H'FFFF \leftarrow Slot illegal instruction
[H'FFF is fundamentally a general illegal instruction]

Example 2 RTE
BT / S Label \leftarrow Slot illegal instruction

6.2 ADD (ADD Binary): Arithmetic Instruction

Format	Abstract	Code	State	T Bit	
$A D D$	$R m, R n$	$R m+R n \rightarrow R n$	$0011 n n n n m m m 1100$	1	-
$A D D$	$\# i m m, R n$	$R n+i m m \rightarrow R n$	$0111 n n n n i i i i i i i i$	1	-

Description: Adds general register Rn data to Rm data, and stores the result in Rn . The contents of Rn can also be added to 8 -bit immediate data. Since the 8 -bit immediate data is sign-extended to 32 bits, this instruction can add and subtract immediate data.

Operation:

```
ADD(long m,long n) /* ADD Rm,Rn */
{
    R[n] +=R[m];
    PC+=2;
}
ADDI(long i,long n) /* ADD #imm,Rn */
{
    if ((i&0x80)==0) R[n]+=(0x000000FF & (long)i);
    else R[n]+=(0xFFFFFF00 | (long)i);
    PC+=2;
}
```


Examples:

ADD	R0, R1	Before execution	$\mathrm{R} 0=\mathrm{H}^{\prime} 7 \mathrm{FFFFFFFF}, \mathrm{R} 1=\mathrm{H}^{\prime} 00000001$
		After execution	$\mathrm{R} 1=\mathrm{H}^{\prime} 80000000$
ADD	\#H'01, R2	Before execution	$\mathrm{R} 2=\mathrm{H}^{\prime} 00000000$
		After execution	$\mathrm{R} 2=\mathrm{H}^{\prime} 00000001$
ADD	\# ${ }^{\prime}$ 'FE, R3	Before execution	$\mathrm{R} 3=\mathrm{H}^{\prime} 00000001$
		After execution	R3 $=$ H'FFFFFFFF

6.3 ADDC (ADD with Carry): Arithmetic Instruction

Format	Abstract	Code	State	T Bit	
$A D D C$	$R m, R n$	$R n+R m+T \rightarrow R n$, carry $\rightarrow T$	$0011 n n n n m m m 1110$	1	Carry

Description: Adds general register Rm data and the T bit to Rn data, and stores the result in Rn. The T bit changes according to the result. This instruction can add data that has more than 32 bits.

Operation:

```
ADDC (long m,long n) /* ADDC Rm,Rn */
{
    unsigned long tmp0,tmp1;
        tmp1=R[n] +R[m];
        tmp0=R[n] ;
        R[n]=tmp1+T;
        if (tmp0>tmp1) T=1;
        else T=0;
        if (tmp1>R[n]) T=1;
        PC+=2;
}
```


Examples:

CLRT		R0:R1 (64 bits) $+\mathrm{R} 2: \mathrm{R} 3(64 \mathrm{bits})=\mathrm{R} 0: \mathrm{R} 1(64 \mathrm{bits})$	
ADDC	$\mathrm{R} 3, \mathrm{R} 1$	Before execution	$\mathrm{T}=0, \mathrm{R} 1=\mathrm{H}^{\prime} 00000001, \mathrm{R} 3=\mathrm{H}^{\prime} \mathrm{FFFFFFFF}$
		After execution	$\mathrm{T}=1, \mathrm{R} 1=\mathrm{H}^{\prime} 0000000$
ADDC	$\mathrm{R} 2, \mathrm{R} 0$	Before execution	$\mathrm{T}=1, \mathrm{R} 0=\mathrm{H}^{\prime} 00000000, \mathrm{R} 2=\mathrm{H}^{\prime} 00000000$
		After execution	$\mathrm{T}=0, \mathrm{R} 0=\mathrm{H}^{\prime} 00000001$

6.4 ADDV (ADD with V Flag Overflow Check): Arithmetic Instruction

Format	Abstract	Code	State	T Bit	
$A D D V$	Rm, Rn	$\mathrm{Rn}+\mathrm{Rm} \rightarrow \mathrm{Rn}$, overflow $\rightarrow \mathrm{T}$	$0011 \mathrm{nnnnmmmm1111}$	1	Overflow

Description: Adds general register Rn data to Rm data, and stores the result in Rn . If an overflow occurs, the T bit is set to 1 .

Operation:

```
ADDV(long m,long n) /*ADDV Rm,Rn */
{
    long dest,src,ans;
    if ((long)R[n]>=0) dest=0;
    else dest=1;
    if ((long)R[m]>=0) src=0;
    else src=1;
    src+=dest;
    R[n]+=R[m];
    if ((long)R[n]>=0) ans=0;
    else ans=1;
    ans+=dest;
    if (src==0 || src==2) {
        if (ans==1) T=1;
        else T=0;
    }
    else T=0;
    PC+=2;
}
```


Examples:

ADDV	R0, R1	Before execution	$\mathrm{R} 0=\mathrm{H}^{\prime} 00000001, \mathrm{R} 1=\mathrm{H}^{\prime} 7 \mathrm{FFFFFFFE}, \mathrm{T}=0$
		After execution	R1 = H'7FFFFFFF, $\mathrm{T}=0$
ADDV	R0, R1	Before execution	$\mathrm{R} 0=\mathrm{H}^{\prime} 00000002, \mathrm{R} 1=\mathrm{H}^{\prime} 7 \mathrm{FFFFFFFE}, \mathrm{T}=0$
		After execution	$\mathrm{R} 1=\mathrm{H}^{\prime} 80000000, \mathrm{~T}=1$

6.5 AND (AND Logical): Logic Operation Instruction

Format		Abstract	Code	State	T Bit
AND	Rm, Rn	$\mathrm{Rn} \& \mathrm{Rm} \rightarrow \mathrm{Rn}$	0010 nnnnmmmm1001	1	-
AND	\#imm, R0	RO \& imm \rightarrow R0	11001001iiiiiiii	1	-
AND.B	\#imm, @ (R0, GBR)	$\begin{aligned} & (\mathrm{RO}+\mathrm{GBR}) \& \mathrm{imm} \rightarrow(\mathrm{RO}+ \\ & \mathrm{GBR}) \end{aligned}$	11001101iiiiiiii	3	-

Description: Logically ANDs the contents of general registers Rn and Rm , and stores the result in Rn . The contents of general register R0 can be ANDed with zero-extended 8-bit immediate data. 8 -bit memory data pointed to by GBR relative addressing can be ANDed with 8 -bit immediate data.

Note: After AND \#imm, R0 is executed and the upper 24 bits of R0 are always cleared to 0 .

Operation:

```
AND(long m,long n) /* AND Rm,Rn */
{
        R[n]&=R[m]
        PC+=2;
}
ANDI(long i) /* AND #imm,R0 */
{
        R[0]&=(0x000000FF & (long)i);
        PC+=2;
}
ANDM(long i) /* AND.B #imm,@(RO,GBR) */
{
        long temp;
        temp=(long) Read_Byte (GBR+R[0]);
        temp&=(0x000000FF & (long)i);
        Write_Byte(GBR+R[0], temp);
        PC+=2;
}
```


Examples:

AND	R0, R1	Before execution	$\mathrm{R} 0=\mathrm{H}^{\prime} \mathrm{AAAAAAAA}, \mathrm{R} 1=\mathrm{H}^{\prime} 55555555$
		After execution	$\mathrm{R} 1=\mathrm{H}^{\prime} 00000000$
AND	\#H' OF, R 0	Before execution	$\mathrm{R} 0=\mathrm{H}^{\prime}$ FFFFFFFFF
		After execution	$\mathrm{R} 0=\mathrm{H}^{\prime} 0000000 \mathrm{~F}$
AND. B	\#H' $80, \mathrm{C}(\mathrm{RO}, \mathrm{GBR})$	Before execution	$@(\mathrm{R} 0, \mathrm{GBR})=\mathrm{H}^{\prime} \mathrm{A} 5$
		After execution	$@($ R0,GBR $)=$ H'80

Format	Abstract	Code	State	T Bit
BF label	When $\mathrm{T}=0$, disp $\times 2+\mathrm{PC} \rightarrow \mathrm{PC}$; When $T=1$, nop	10001011dddddddd	3/1	-

Description: Reads the T bit, and conditionally branches. If $\mathrm{T}=1, \mathrm{BF}$ executes the next instruction. If $\mathrm{T}=0$, it branches. The branch destination is an address specified by PC + displacement. The PC points to the starting address of the second instruction after the branch instruction. The 8 -bit displacement is sign-extended and doubled. Consequently, the relative interval from the branch destination is -256 to +254 bytes. If the displacement is too short to reach the branch destination, use BF with the BRA instruction or the like.

Note: When branching, three cycles; when not branching, one cycle.

Operation:

```
    BF(long d) /* BF disp */
    {
            long disp;
            if ((d&0x80)==0) disp=(0x000000FF & (long)d);
            else disp=(0xFFFFFF00 | (long)d);
            if (T==0) PC=PC+ (disp<<1)+4;
            else PC+=2;
}
```


Example:

CLRT \quad T is always cleared to 0

BT TRGET_T Does not branch, because $T=0$
BF TRGET_F Branches to TRGET_F, because T = 0
NOP
NOP $\quad \leftarrow$ The PC location is used to calculate the branch destination address of the BF instruction
TRGET_F: $\quad \leftarrow$ Branch destination of the BF instruction

6.7 BF/S (Branch if False with Delay Slot): Branch Instruction (SH-2 CPU)

Class: Delayed branch instruction

Format	Abstract	Code	State	T Bit
BF/S label	When $T=0$, disp $\times 2+\mathrm{PC} \rightarrow \mathrm{PC} ;$ When $T=1$, nop	10001111dddddddd	$2 / 1$	-

Description: Reads the T bit, and conditionally branches with delay slot. If $\mathrm{T}=1, \mathrm{BF}$ executes the next instruction. If $T=0$, it branches after executing the next instruction. The branch destination is an address specified by PC + displacement. The PC points to the starting address of the second instruction after the branch instruction. The 8 -bit displacement is sign-extended and doubled. Consequently, the relative interval from the branch destination is -256 to +254 bytes. If the displacement is too short to reach the branch destination, use BF / S with the BRA instruction or the like.

Note: Since this is a delayed branch instruction, the instruction immediately after is executed before the branch. Between the time this instruction and the instruction immediately after are executed, address errors or interrupts are not accepted. When the instruction immediately after is a branch instruction, it is recognized as an illegal slot instruction.

When branching, this is a two-cycle instruction; when not branching, one cycle.

Operation:

```
BFS(long d) /* BFS disp */
{
    long disp;
    unsigned long temp;
    temp=PC;
    if ((d&0x80)==0) disp=(0x000000FF & (long)d);
    else disp=(0xFFFFFFOO | (long)d);
    if (T==0) {
        PC=PC+(disp<<1)+4;
        Delay_Slot(temp+2);
    }
    else PC+=2;
}
```


Example:

CLRT		T is always 0
BT/S	TRGET_T	Does not branch, because $\mathrm{T}=0$
NOP		
BF/S	TRGET_F	Branches to TRGET, because T $=0$
ADD	R0, R1	Executed before branch
NOP		\leftarrow The PC location is used to calculate the branch destination address of the BF / S instruction
TRGET_F:		\leftarrow Branch destination of the BF/S instruction

Note: With delayed branching, branching occurs after execution of the slot instruction. However, instructions such as register changes etc. are executed in the order of delayed branch instruction, then delay slot instruction. For example, even if the register in which the branch destination address has been loaded is changed by the delay slot instruction, the branch will still be made using the value of the register prior to the change as the branch destination address.

6.8 BRA (Branch): Branch Instruction

Class: Delayed branch instruction

Format	Abstract	Code	State	T Bit	
BRA	label	disp $\times 2+\mathrm{PC} \rightarrow \mathrm{PC}$	1010dddddddddddd	2	-

Description: Branches unconditionally after executing the instruction following this BRA instruction. The branch destination is an address specified by PC + displacement. The PC points to the starting address of the second instruction after this BRA instruction. The 12-bit displacement is sign-extended and doubled. Consequently, the relative interval from the branch destination is 4096 to +4094 bytes. If the displacement is too short to reach the branch destination, this instruction must be changed to the JMP instruction. Here, a MOV instruction must be used to transfer the destination address to a register.

Note: Since this is a delayed branch instruction, the instruction after BRA is executed before branching. No interrupts or address errors are accepted between this instruction and the next instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot instruction.

Operation:

```
BRA(long d) /* BRA disp */
{
    unsigned long temp;
    long disp;
    if ((d&0x800)==0) disp=(0x00000FFF & d);
    else disp=(0xFFFFFO00 | d);
    temp=PC;
    PC=PC+(disp<<1)+4;
    Delay_Slot(temp+2);
}
```


Example:

BRA TRGET Branches to TRGET

ADD R0,R1 Executes ADD before branching
NOP $\quad \leftarrow$ The PC location is used to calculate the branch destination address of the BRA instruction

TRGET: $\quad \leftarrow$ Branch destination of the BRA instruction

Note: With delayed branching, branching occurs after execution of the slot instruction. However, instructions such as register changes etc. are executed in the order of delayed branch instruction, then delay slot instruction. For example, even if the register in which the branch destination address has been loaded is changed by the delay slot instruction, the branch will still be made using the value of the register prior to the change as the branch destination address.

6.9 BRAF (Branch Far): Branch Instruction (SH-2 CPU)

Class: Delayed branch instruction

Format	Abstract	Code	State	T Bit	
BRAF	Rm	$\mathrm{Rm}+\mathrm{PC} \rightarrow \mathrm{PC}$	$0000 \mathrm{mmmm00100011}$	2	-

Description: Branches unconditionally. The branch destination is PC + the 32-bit contents of the general register Rm . PC is the start address of the second instruction after this instruction.

Note: Since this is a delayed branch instruction, the instruction after BRAF is executed before branching. No interrupts or address errors are accepted between this instruction and the next instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot instruction.

Operation:

```
BRAF(long m) /* BRAF Rm */
{
        unsigned long temp;
        temp=PC;
        PC+=R[m];
        Delay_Slot(temp+2);
}
```


Example:

MOV.L	\#(TRGET-BSRF_PC), RO	Sets displacement
BRAF	@RO	Branches to TRGET
ADD	RO,R1	Executes ADD before branching BRAF_PC:
	\leftarrow The PC location is used to calculate the branch destination address of the BRAF instruction	
NOP		\leftarrow Branch destination of the BRAF instruction

Note: With delayed branching, branching occurs after execution of the slot instruction. However, instructions such as register changes etc. are executed in the order of delayed branch instruction, then delay slot instruction. For example, even if the register in which the branch destination address has been loaded is changed by the delay slot instruction, the branch will still be made using the value of the register prior to the change as the branch destination address.

6.10 BSR (Branch to Subroutine): Branch Instruction

Class: Delayed branch instruction

| Format | Abstract | Code | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| BSR | label | $\mathrm{PC} \rightarrow \mathrm{PR}$, disp $\times 2+\mathrm{PC} \rightarrow \mathrm{PC}$ | 1011dddddddddddd | 2 | - |

Description: Branches to the subroutine procedure at a specified address after executing the instruction following this BSR instruction. The PC value is stored in the PR, and the program branches to an address specified by PC + displacement. The PC points to the starting address of the second instruction after this BSR instruction. The 12-bit displacement is sign-extended and doubled. Consequently, the relative interval from the branch destination is -4096 to +4094 bytes. If the displacement is too short to reach the branch destination, the JSR instruction must be used instead. With JSR, the destination address must be transferred to a register by using the MOV instruction. This BSR instruction and the RTS instruction are used for a subroutine procedure call.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before branching. No interrupts or address errors are accepted between this instruction and the next instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot instruction.

Operation:

```
BSR(long d) /* BSR disp */
{
    long disp;
    if ((d&0x800)==0) disp=(0x00000FFF & d);
    else disp=(0xFFFFF000 | d);
    PR=PC;
    PC=PC+(disp<<1)+4;
    Delay_Slot(PR+2);
}
```


Example:

$\left.\begin{array}{lll}\begin{array}{ll}\text { BSR } & \text { TRGET }\end{array} & \begin{array}{l}\text { Branches to TRGET } \\ \text { MOV }\end{array} & \mathrm{R} 3, \mathrm{R} 4\end{array} \begin{array}{l}\text { Executes the MOV instruction before branching } \\ \text { ADD } \\ \text { R0,R1 } \\ \text { the PC location is used to calculate the branch destination } \\ \text { address of the BSR instruction (return address for when the } \\ \text { subroutine procedure is completed (PR data)) }\end{array}\right\}$

Note: With delayed branching, branching occurs after execution of the slot instruction. However, instructions such as register changes etc. are executed in the order of delayed branch instruction, then delay slot instruction. For example, even if the register in which the branch destination address has been loaded is changed by the delay slot instruction, the branch will still be made using the value of the register prior to the change as the branch destination address.

6.11 BSRF (Branch to Subroutine Far): Branch Instruction (SH-2 CPU)

Class: Delayed branch instruction

Format	Abstract	Code	State	T Bit	
BSRF	Rm	$\mathrm{PC} \rightarrow \mathrm{PR}, \mathrm{Rm}+\mathrm{PC} \rightarrow \mathrm{PC}$	$0000 \mathrm{mmmm00000011}$	2	-

Description: Branches to the subroutine procedure at a specified address after executing the instruction following this BSRF instruction. The PC value is stored in the PR. The branch destination is PC + the 32-bit contents of the general register Rm. PC is the start address of the second instruction after this instruction. Used as a subroutine procedure call in combination with RTS.
Note: Since this is a delayed branch instruction, the instruction after BSR is executed before branching. No interrupts or address errors are accepted between this instruction and the next instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot instruction.

Operation:

```
    BSRF(long m) /* BSRF Rm */
    {
        PR=PC;
        PC+=R[m];
        Delay_Slot(PR+2);
    }
```

Example:
MOV.L \#(TRGET-BSRF_PC),RO Sets displacement
BRSF @R0 Branches to TRGET
MOV R3,R4 Executes the MOV instruction before
branching
\leftarrow The PC location is used to
calculate the branch destination
with BSRF
ADD R0,R1
TRGET:
\leftarrow Procedure entrance
Returns to the above ADD instruction
RTS
MOV \#1,R0 Executes MOV before branching

Note: With delayed branching, branching occurs after execution of the slot instruction. However, instructions such as register changes etc. are executed in the order of delayed branch instruction, then delay slot instruction. For example, even if the register in which the branch destination address has been loaded is changed by the delay slot instruction, the branch will still be made using the value of the register prior to the change as the branch destination address.

6.12 BT (Branch if True): Branch Instruction

Format	Abstract	Code	State	T Bit	
BT	label	When $T=1$, disp $\times 2+\mathrm{PC} \rightarrow$	10001001 dddddddd	$3 / 1$	-
		$\mathrm{PC} ;$			
	When $\mathrm{T}=0$, nop				

Description: Reads the T bit, and conditionally branches. If $\mathrm{T}=1, \mathrm{BT}$ branches. If $\mathrm{T}=0, \mathrm{BT}$ executes the next instruction. The branch destination is an address specified by PC + displacement. The PC points to the starting address of the second instruction after the branch instruction. The 8 -bit displacement is sign-extended and doubled. Consequently, the relative interval from the branch destination is $\mathbf{- 2 5 6}$ to +254 bytes. If the displacement is too short to reach the branch destination, use BT with the BRA instruction or the like.

Note: When branching, requires three cycles; when not branching, one cycle.

Operation:

```
    BT(long d) /* BT disp */
    {
        long disp;
        if ((d&0x80)==0) disp=(0x000000FF & (long)d);
        else disp=(0xFFFFFFO0 | (long)d);
        if (T==1) PC=PC+(disp}<<1)+4
        else PC+=2;
    }
```


Example:

SETT		T is always 1
BF	TRGET_F	Does not branch, because $\mathrm{T}=1$
BT	TRGET_T	Branches to TRGET_T, because $\mathrm{T}=1$
NOP		
NOP		\leftarrow The PC location is used to calculate the branch destination
		address of the BT instruction
TRGET_T:		\leftarrow Branch destination of the BT instruction

6.13 BT/S (Branch if True with Delay Slot): Branch Instruction (SH-2 CPU)

Format	Abstract	Code	State	T Bit	
BT/S	label	When $\mathrm{T}=1$, disp $\times 2+\mathrm{PC} \rightarrow$ Wh; $\mathrm{T}=0$, nop	10001101dddddddd	$2 / 1$	-

Description: Reads the T bit, and conditionally branches with delay slot. If $\mathrm{T}=1, \mathrm{BT} / \mathrm{S}$ branches after the following instruction executes. If $T=0, B T / S$ executes the next instruction. The branch destination is an address specified by PC + displacement. The PC points to the starting address of the second instruction after the branch instruction. The 8 -bit displacement is sign-extended and doubled. Consequently, the relative interval from the branch destination is -256 to +254 bytes. If the displacement is too short to reach the branch destination, use BT/S with the BRA instruction or the like.

Note: Since this is a delay branch instruction, the instruction immediately after is executed before the branch. Between the time this instruction and the immediately after instruction are executed, address errors or interrupts are not accepted. When the immediately after instruction is a branch instruction, it is recognized as an illegal slot instruction. When branching, requires two cycles; when not branching, one cycle.

Operation:

```
BTS(long d) /* BTS disp */
{
    long disp;
    unsigned long temp;
    temp=PC;
    if ((d&0x80)==0) disp=(0x000000FF & (long)d);
    else disp=(0xFFFFFF00 | (long)d);
    if (T==1) {
        PC=PC+(disp<<1) +4;
        Delay_Slot(temp+2);
    }
    else PC+=2;
}
```


Example:

SETT	T is always 1	
BF/S	TRGET_F	Does not branch, because $T=1$
NOP		
BT/S	TRGET_T	Branches to TRGET, because $T=1$
ADD	RO,R1	Executes before branching.
NOP	\leftarrow The PC location is used to calculate the branch destination	
		address of the BT/S instruction
TRGET_T:	\leftarrow Branch destination of the BT/S instruction	

Note: With delayed branching, branching occurs after execution of the slot instruction. However, instructions such as register changes etc. are executed in the order of delayed branch instruction, then delay slot instruction. For example, even if the register in which the branch destination address has been loaded is changed by the delay slot instruction, the branch will still be made using the value of the register prior to the change as the branch destination address.

6.14 CLRMAC (Clear MAC Register): System Control Instruction

Format	Abstract	Code	State	T Bit
CLRMAC	$0 \rightarrow$ MACH, MACL	0000000000101000	1	-

Description: Clears the MACH and MACL registers.

Operation:

```
    CLRMAC() /* CLRMAC */
    {
        MACH=0;
        MACL=0;
        PC+=2;
}
```


Example:

CLRMAC		Initializes the MAC register
MAC.W	@R0+, @R1+	Multiply and accumulate operation
MAC.W	@R0+, @R1+	

6.15 CLRT (Clear T Bit): System Control Instruction

Format	Abstract	Code	State	T Bit
CLRT	$0 \rightarrow T$	0000000000001000	1	0

Description: Clears the T bit.
Operation:

```
    CLRT() /* CLRT */
    {
        T=0;
        PC+=2;
    }
```


Example:

CLRT	Before execution	$\mathrm{T}=1$
	After execution	$\mathrm{T}=0$

6.16 CMP/cond (Compare Conditionally): Arithmetic Instruction

Format		Abstract	Code	State	T Bit
CMP/EQ	Rm, Rn	When $\mathrm{Rn}=\mathrm{Rm}, 1 \rightarrow \mathrm{~T}$	0011 nnnnmmmm0000	1	Comparison result
CMP/GE	Rm, Rn	When signed and $\mathrm{Rn} \geq$ Rm, $1 \rightarrow T$	0011 nnnnmmmm0011	1	Comparison result
CMP/GT	Rm, Rn	When signed and $R n>$ $R m, 1 \rightarrow T$	0011 nnnnmmmm0111	1	Comparison result
CMP/HI	Rm, Rn	When unsigned and $\mathrm{Rn}>$ $R \mathrm{~m}, 1 \rightarrow \mathrm{~T}$	0011nnnnmmmm0110	1	Comparison result
CMP/HS	Rm, Rn	When unsigned and $\mathrm{Rn} \geq$ $R m, 1 \rightarrow T$	0011 nnnnmmmm0010	1	Comparison result
CMP/PL	Rn	When $\mathrm{Rn}>0,1 \rightarrow T$	$0100 \mathrm{nnnn00010101}$	1	Comparison result
CMP/PZ	Rn	When $\mathrm{Rn} \geq 0,1 \rightarrow T$	0100 nnnn 00010001	1	Comparison result
CMP/STR	Rm, Rn	When a byte in Rn equals a byte in $\mathrm{Rm}, 1 \rightarrow \mathrm{~T}$	$0010 \mathrm{nnnnmmmm1100}$	1	Comparison result
CMP/EQ	\#imm,R0	When RO = imm, $1 \rightarrow T$	10001000iiiiiiii	1	Comparison result

Description: Compares general register Rn data with Rm data, and sets the T bit to 1 if a specified condition (cond) is satisfied. The T bit is cleared to 0 if the condition is not satisfied. The Rn data does not change. The following eight conditions can be specified. Conditions PZ and PL are the results of comparisons between Rn and 0 . Sign-extended 8 -bit immediate data can also be compared with R0 by using condition EQ. Here, R0 data does not change. Table 6.1 shows the mnemonics for the conditions.

Table 6.1 CMP Mnemonics

Mnemonics	Condition
CMP/EQ Rm, Rn	If $\mathrm{Rn}=\mathrm{Rm}, \mathrm{T}=1$
CMP/GE Rm,Rn	If $R \mathrm{n} \geq \mathrm{Rm}$ with signed data, $\mathrm{T}=1$
CMP/GT Rm,Rn	If $\mathrm{Rn}>\mathrm{Rm}$ with signed data, $\mathrm{T}=1$
CMP/HI Rm,Rn	If $\mathrm{Rn}>\mathrm{Rm}$ with unsigned data, $\mathrm{T}=1$
CMP/HS Rm,Rn	If $R \mathrm{n} \geq \mathrm{Rm}$ with unsigned data, $\mathrm{T}=1$
CMP/PL Rn	If $\mathrm{Rn}>0, \mathrm{~T}=1$
CMP/PZ Rn	If $R \mathrm{n} \geq 0, \mathrm{~T}=1$
CMP/STR Rm, Rn	If a byte in Rn equals a byte in $\mathrm{Rm}, \mathrm{T}=1$
CMP/EQ \#imm,R0	If $\mathrm{RO}=\mathrm{imm}, \mathrm{T}=1$

Operation:

```
CMPEQ(long m,long n) /* CMP_EQ Rm,Rn */
{
        if (R[n]==R[m]) T=1;
        else T=0;
        PC+=2;
}
CMPGE(long m,long n) /* CMP_GE Rm,Rn */
{
    if ((long)R[n]>=(long)R[m]) T=1;
    else T=0;
    PC+=2;
}
CMPGT(long m,long n) /* CMP_GT Rm,Rn */
{
    if ((long)R[n]>(long)R[m]) T=1;
    else T=0;
    PC+=2;
}
```

```
CMPHI(long m,long n) /* CMP_HI Rm,Rn */
{
    if ((unsigned long)R[n]>(unsigned long)R[m]) T=1;
    else T=0;
    PC+=2;
}
CMPHS(long m,long n) /* CMP_HS Rm,Rn */
{
    if ((unsigned long)R[n]>=(unsigned long)R[m]) T=1;
    else T=0;
    PC+=2;
}
CMPPL(long n) /* CMP_PL Rn */
{
    if ((long)R[n]>0) T=1;
    else T=0;
    PC+=2;
}
CMPPZ(long n) /* CMP_PZ Rn */
{
    if ((long)R[n]>=0) T=1;
    else T=0;
    PC}+=2
}
```

```
CMPSTR(long m,long n) /* CMP_STR Rm,Rn */
{
        unsigned long temp;
        long HH,HL,LH,LL;
        temp=R[n]^R[m];
        HH=(temp>>12)&0x000000FF;
        HH=(temp>>8) &0x000000FF;
        HH=(temp>>4) &0x000000FF;
        LL=temp&0x000000FF;
        HH=HH&&HL&&LH&&LL;
        if ( }\textrm{HH}==0\mathrm{ ) T=1;
        else T=0;
        PC+=2;
}
CMPIM(long i) /* CMP_EQ #imm,RO */
{
        long imm;
    if ((i&0x80)==0) imm=(0x000000FF & (long i));
    else imm=(0xFFFFFF00 | (long i));
    if (R[0]==imm) T=1;
    else T=0;
    PC}+=2
}
```


Example:

CMP/GE	R0,R1	R0 = H'7FFFFFFF, R1 = H'800000000
BT	TRGET_T	Does not branch because T = 0
CMP/HS	R0,R1	R0 = H'7FFFFFFF, R1 = H'80000000
BT	TRGET_T	Branches because T =1
CMP/STR	R2,R3	R2 ="ABCD",R3 = "XYCZ"
BT	TRGET_T	Branches because T =1

6.17 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction

Format	Abstract	Code	State	T Bit		
DIV0S	Rm, Rn	MSB of $\mathrm{Rn} \rightarrow \mathrm{Q}, \mathrm{MSB}$ of $\mathrm{Rm} \rightarrow$ $\mathrm{M}, \mathrm{M}^{\wedge} \mathrm{Q} \rightarrow \mathrm{T}$	0010 nnnnmmmm0111	1		Calculation
:---						
result						

Description: DIVOS is an initialization instruction for signed division. It finds the quotient by repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit after this instruction. See the description given with DIV1 for more information.

Operation:

```
    DIVOS(long m,long n) /* DIVOS Rm,Rn */
    {
        if ((R[n]&0x80000000)==0) Q=0;
        else Q=1;
        if ((R[m]&0x80000000)==0) M=0;
        else M=1;
        T=! (M==Q);
        PC+=2;
}
```

Example: See DIV1.

6.18 DIVOU (Divide Step 0 as Unsigned):	Arithmetic Instruction			
Format	Abstract	Code	State	T Bit
DIVOU	$0 \rightarrow M / Q / T$	0000000000011001	1	0

Description: DIVOU is an initialization instruction for unsigned division. It finds the quotient by repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit after this instruction. See the description given with DIV1 for more information.

```
Operation:
    DIVOU()/* DIVOU */
    [
        M=Q=T=0;
        PC+=2;
    }
```

Example: See DIV1.

6.19 DIV1 (Divide Step 1): Arithmetic Instruction

Format	Abstract	Code	State	T Bit		
DIV1	Rm, Rn	1-step division $(\mathrm{Rn} \div \mathrm{Rm})$	0011 nnnnmmmm0100	1		Calculation
:---						
result						

Description: Uses single-step division to divide one bit of the 32-bit data in general register Rn (dividend) by Rm data (divisor). It finds a quotient through repetition either independently or used in combination with other instructions. During this repetition, do not rewrite the specified register or the M, Q, and T bits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the quotient bit reflected in the Q bit according to the status (positive or negative). To find the remainder in a division, first find the quotient using a DIV1 instruction, then find the remainder as follows:
(Dividend) $-($ divisor $) \times($ quotient $)=($ remainder $)$
with the SH-2 CPU in which a divider is installed as a peripheral function, the remainder can be found as a function of the divider.

Zero division, overflow detection, and remainder operation are not supported. Check for zero division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then subtracting it from the dividend. That is, first initialize with DIV0S or DIV0U. Repeat DIV1 for each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits, place ROTCL before DIV1. For the division sequence, see the following examples.

Operation:

```
    DIV1(long m,long n) /* DIV1 Rm,Rn */
{
        unsigned long tmp0;
        unsigned char old_q,tmp1;
        old_q=Q;
        Q=(unsigned char)((0x80000000 & R[n])!=0);
        R[n]<<=1;
        R[n]|=(unsigned long)T;
            switch(old_q) {
            case 0:switch(M){
                case 0:tmp0=R[n];
                R[n]-=R[m];
                tmp1=(R[n]>tmp0);
                switch(Q){
                case 0:Q=tmp1;
                break;
                case 1:Q=(unsigned char)(tmp1==0);
                break;
                }
                break;
                case 1:tmp0=R[n];
                R[n]+=R[m];
                tmp1=(R[n]<tmp0);
                switch(Q){
                case 0:Q=(unsigned char)(tmp1==0);
                    break;
                case 1:Q=tmp1;
                break;
                }
                break;
            }
            break;
```

```
    case 1:switch(M){
        case 0:tmp0=R[n];
            R[n]+=R[m];
            tmp1=(R[n]<tmp0);
            switch(Q){
            case 0:Q=tmp1;
            break;
            case 1:Q=(unsigned char)(tmp1==0);
                break;
                }
                break;
    case 1:tmp0=R[n];
            R[n]-=R[m];
            tmpl=(R[n]>tmp0);
            switch(Q){
            case 0:Q=(unsigned char)(tmp1==0);
                break;
    case 1:Q=tmp1;
            break;
            }
            break;
    }
    break;
}
T=(Q==M);
PC}+=2
}
```


Example 1:

		R1 (32 bits) / R0 (16 bits) $=$ R1 (16 bits):Unsigned
SHLL16	R0	Upper 16 bits $=$ divisor, lower 16 bits $=0$
TST	R0,RO	Zero division check
BT	ZERO_DIV	
CMP/HS	R0,R1	Overflow check
BT	OVER_DIV	
DIVOU		Flag initialization
.arepeat	16	
DIV1	R0,R1	Repeat 16 times
.aendr		
ROTCL	R1	
EXTU.W	R1,R2	R1 = Quotient

Example 2:

TST	R0,RO	Zero division check
BT	ZERO_DIV	
CMP/HS	RO,R1	Overflow check
BT	OVER_DIV	
DIV0U		Flag initialization
.arepeat	32	
ROTCL	R2	Repeat 32 times
DIV1	R0,R1	
. aendr		
ROTCL	R2	R2 $=$ Quotient

Example 3:

		R1 (16 bits)/R0 (16 bits) = R1 (16 bits):Signed
SHLL16	R0	Upper 16 bits = divisor, lower 16 bits $=0$
EXTS.W	R1, R1	Sign-extends the dividend to 32 bits
XOR	R2, R2	$\mathrm{R} 2=0$
MOV	R1, R3	
ROTCL	R3	
SUBC	R2, R1	Decrements if the dividend is negative
DIVOS	R0, R1	Flag initialization
.arepeat	16	
DIV1	R0, R1	Repeat 16 times
. aendr		
EXTS.W	R1, R1	
ROTCL	R1	R1 = quotient (one's complement)
ADDC	R2, R1	Increments and takes the two's complement if the MSB of the quotient is 1
EXTS.W	R1, R1	R1 = quotient (two's complement)

Example 4:

MOV	R2,R3	
ROTCL	R3	
SUBC	R1,R1	Sign-extends the dividend to 64 bits (R1:R2)
XOR	R3, R3	R3 $=0$
SUBC	R3,R2	Decrements and takes the one's complement if the dividend is negative
divos	R0,R1	Flag initialization
. arepeat	32	
ROTCL	R2	Repeat 32 times
DIV1	R0,R1	
. aendr		
ROTCL	R2	$\mathrm{R} 2=$ Quotient (one's complement)
ADDC	R3, R2	Increments and takes the two's complement if the MSB of the quotient is $1 . \mathrm{R} 2=$ Quotient (two's complement)

6.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction (SH-2 CPU)

Format	Abstract	Code	State	T Bit
DMULS.L	Rm, Rn	With signed, $\mathrm{Rn} \times \mathrm{Rm} \rightarrow$ MACH, MACL	$0011 n n n n m m m m 1101$	2 to 4

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm , and stores the 64 -bit results in the MACL and MACH registers. The operation is a signed arithmetic operation.

Operation:

```
    DMULS(long m,long n) /* DMULS.L Rm,Rn */
    {
        unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;
        unsigned long temp0,temp1,temp2,temp3;
        long tempm,tempn,fnLmL;
        tempn=(long)R[n];
        tempm=(long)R[m];
        if (tempn<0) tempn=0-tempn;
        if (tempm<0) tempm=0-tempm;
        if ((long)(R[n]^R[m])<0) fnLmL=-1;
        else fnLmL=0;
            temp1=(unsigned long)tempn;
            temp2=(unsigned long)tempm;
            RnL=temp1&0x0000FFFF;
            RnH=(temp1>>16)&0x0000FFFF;
            RmL=temp2&0x0000FFFF;
            RmH=(temp2>>16)&0x0000FFFF;
            temp0=RmL*RnL;
            templ=RmH*RnL;
            temp2=RmL*RnH;
            temp3=RmH*RnH;
```

```
    Res2=0
    Res1=temp1+temp2;
    if (Res1<temp1) Res2+=0x00010000;
    temp1=(Res1<<16)&0xFFFF0000;
    Res0=temp0+temp1;
    if (Res0<temp0) Res2++;
    Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;
    if (fnLmL<0) {
        Res2=~Res2;
        if (Res0==0)
            Res2++;
        else
            Res0=(~Res0) +1;
        }
        MACH=Res2;
        MACL=Res0;
        PC+=2;
    }
```


Example:

DMULS	R0,R1	Before execution \quad R0 $=H^{\prime}$ FFFFFFFE, R1 $=H^{\prime} 00005555$ After execution $\quad M A C H=H^{\prime} F F F F F F F F, ~ M A C L ~=~ H ' F F F F 5556 ~$
STS	MACH,R0	Operation result (top)
STS	MACL,R0	Operation result (bottom)

6.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction (SH-2 CPU)

Format		Abstract	Code	State	T Bit
DMULU.L	Rm, Rn	Without signed, $\mathrm{Rn} \times \mathbf{R m} \rightarrow$ MACH, MACL	0011 nnnnmmmm0101	2 to 4	-

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and stores the 64 -bit results in the MACL and MACH registers. The operation is an unsigned arithmetic operation.

Operation:

```
DMULU(long m,long n) /* DMULU.L Rm,Rn */
[
    unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;
    unsigned long temp0,temp1,temp2,temp3;
    RnL=R[n]&0x0000FFFFF;
    RnH=(R[n]>>16)&0x0000FFFF;
    RmL=R[m] &0x0000FFFFF;
    RmH=(R[m]>>16)&0x0000FFFF;
    temp0=RmL*RnL;
    templ=RmH*RnL;
    temp2=RmL*RnH;
    temp3=RmH*RnH;
    Res2=0
    Res1=temp1+temp2;
    if (Res1<temp1) Res2+=0x00010000;
    temp1=(Res1<<16)&0xFFFF0000;
    Res0=temp0+temp1;
    if (Res0<temp0) Res2++;
```

 Res2=Res2+((Res1>>16)\&0x0000FFFF)+temp3;
    ```
            MACH=Res2;
            MACL=Res0;
            PC+=2;
}
```


Example:

| DMULU | R0,R1 | Before execution $\mathrm{R} 0=\mathrm{H}^{\prime} \mathrm{FFFFFFFE}, \mathrm{R} 1=\mathrm{H}^{\prime} 00005555$ |
| :--- | :--- | :--- |
| | | After execution $\quad \mathrm{MACH}=\mathrm{H}^{\prime} 00005554, \mathrm{MACL}=\mathrm{H}^{\prime} \mathrm{FFFF} 5556$ |

6.22 DT (Decrement and Test): Arithmetic Instruction (SH-2 CPU)

| Format | Abstract | Code | State | T Bit | | |
|---|---|---|---|---|---|---|
| DT | Rn | $\mathrm{Rn}-1 \rightarrow \mathrm{Rn} ;$ | $0100 \mathrm{nnnn00010000}$ | 1 | | Comparison |
| :--- |
| |

Description: The contents of general register Rn is decremented by 1 and the result is compared to 0 (zero). When the result is 0 , the T bit is set to 1 . When the result is not zero, the T bit is set to 0.

Operation:

```
    DT(long n) /* DT Rn */
    {
            R[n]--;
            if (R[n]==0) T=1;
            else T=0;
            PC+=2;
}
```

Example:

MOV \#4,R5 Sets the number of loops.
LOOP:

ADD R0,R1
DT RS Decrements the R5 value and checks whether it has become 0 .
BF LOOP Branches to LOOP if $\mathrm{T}=0$. (In this example, loops 4 times.)

6.23 EXTS (Extend as Signed): Arithmetic Instruction

| Format | Abstract | Code | State | TBit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| EXIS.B | Rn,Rn | Sign-extended Rm from byte \rightarrow
 Rn | 0110 nnnnmmm1110 | 1 | - |
| EXIS.W | Rm,Rn | Sign-extended Rm from word \rightarrow
 Rn | 0110 nnnnmmmm1111 | 1 | - |

Description: Sign-extends general register Rm data, and stores the result in Rn. If byte length is specified, the bit 7 value of Rm is transferred to bits 8 to 31 of Rn . If word length is specified, the bit 15 value of Rm is transferred to bits 16 to 31 of Rn .

Operation:

```
EXTSB(long m,long n) /* EXTS.B Rm,Rn */
{
    R[n]=R[m];
    if ((R[m]&0x00000080)==0) R[n]&=0x000000FF;
    else R[n]|=0xFFFFFF00;
    PC+=2;
}
EXTSW(long m,long n) /* EXTS.W Rm,Rn */
{
    R[n]=R[m];
    if ((R[m]&0x00008000)==0) R[n]&=0x0000FFFF;
    else R[n]|=0xFFFF0000;
    PC+=2;
}
```


Examples:

| EXIS.B | $\mathrm{R} 0, \mathrm{R} 1$ | Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime} 00000080$ |
| :---: | :--- | :--- | :--- |
| | | After execution | $\mathrm{R} 1=\mathrm{H}^{\prime} \mathrm{FFFFFF} 80$ |
| EXIS.W | $\mathrm{R} 0, \mathrm{R} 1$ | Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime} 00008000$ |
| | | After execution | $\mathrm{R} 1=\mathrm{H}^{\prime} \mathrm{FFFF} 8000$ |

6.24 EXTU (Extend as Unsigned): Arithmetic Instruction

| Format | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| EXTU.B Rm, Rn | Zero-extend Rm from byte $\rightarrow \mathrm{Rn}$ | $0110 \mathrm{nnnnmmmm1100}$ | 1 | - |
| EXTU.W Rm, Rn | Zero-extend Rm from word $\rightarrow \mathrm{Rn}$ | $0110 \mathrm{nnnnmmmm1101}$ | 1 | - |

Description: Zero-extends general register Rm data, and stores the result in Rn . If byte length is specified, 0 is transferred to bits 8 to 31 of Rn . If word length is specified, 0 is transferred to bits 16 to 31 of Rn .

Operation:

```
EXTUB(long m,long n) /* EXTU.B Rm,Rn */
{
        R[n]=R[m];
        R[n]&=0x000000FF;
        PC+=2;
}
ExTUW(long m,long n) /* EXTU.W Rm,Rn */
{
            R[n]=R[m];
            R[n]&=0x0000FFFF;
            PC+=2;
}
```


Examples:

| EXIU.B | $\mathrm{R} 0, \mathrm{R} 1$ | Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime}$ FFFFFF80 |
| :--- | :--- | :--- | :--- |
| | | After execution | $\mathrm{R} 1=\mathrm{H}^{\prime} 00000080$ |
| EXIU.W | $\mathrm{R} 0, \mathrm{R} 1$ | Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime} \mathrm{FFFF} 8000$ |
| | | After execution | $\mathrm{R} 1=\mathrm{H}^{\prime} 00008000$ |

6.25 JMP (Jump): Branch Instruction

Class: Delayed branch instruction

| Format | Abstract | Code | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| JMP | @Rm | $\mathrm{Rm} \rightarrow \mathrm{PC}$ | 0100 mmmm 00101011 | 2 | - |

Description: Delayed-branches unconditionally to the address specified with register indirect. The branch destination is an address specified by the 32-bit data in general register Rm .

Note: Since this is a delayed branch instruction, the instruction after JMP is executed before branching. No interrupts or address errors are accepted between this instruction and the next instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot instruction.

Operation:

```
    JMP(long m) /* JMP @Rm */
    {
            unsigned long temp;
            temp=PC;
            PC=R[m]+4;
            Delay_Slot(temp+2);
}
```


Example:

| | MOV.L | JMP_TABLE, R0 | Address of R0=TRGET |
| :--- | :--- | :--- | :--- |
| | JMP | @R0 | Branches to TRGET |
| | MOV | R0,R1 | Executes MOV before branching |
| | .align | 4 | |
| JMP_TABLE: | .data.1 | TRGET | Jump table |
| | $\ldots \ldots \ldots \ldots \ldots \ldots$ | | |
| TRGET: | ADD | \#1,R1 | \leftarrow Branch destination |

Note: With delayed branching, branching occurs after execution of the slot instruction. However, instructions such as register changes etc. are executed in the order of delayed branch instruction, then delay slot instruction. For example, even if the register in which the branch destination address has been loaded is changed by the delay slot instruction, the branch will still be made using the value of the register prior to the change as the branch destination address.

6.26 JSR (Jump to Subroutine): Branch Instruction

Class: Delayed branch instruction

| Format | Abstract | Code | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| JSR | @Rm | $\mathrm{PC} \rightarrow \mathrm{PR}, \mathrm{Rm} \rightarrow \mathrm{PC}$ | 0100 mmmm00001011 | 2 | - |

Description: Delayed-branches to the subroutine procedure at a specified address after executing the instruction following this JSR instruction. The PC value is stored in the PR. The jump destination is an address specified by the 32 -bit data in general register Rm . The PC points to the starting address of the second instruction after JSR. The JSR instruction and RTS instruction are used for subroutine procedure calls.

Note: Since this is a delayed branch instruction, the instruction after JSR is executed before branching. No interrupts and address errors are accepted between this instruction and the next instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot instruction.

Operation:

```
JSR(long m) /* JSR @Rm */
{
    PR=PC;
    PC=R[m]+4;
    Delay_Slot(PR+2);
}
```


Example:

| | MOV.L | JSR_TABLE, R0 | R0 = Address of TRGET |
| :---: | :---: | :---: | :---: |
| | JSR | @R0 | Branches to TRGET |
| | XOR | R1, R1 | Executes XOR before branching |
| | ADD | R0, R1 | \leftarrow Return address for when the subroutine procedure is completed (PR data) |
| | .align | 4 | |
| JSR_TABLE: | .data. 1 | trget | Jump table |
| TRGET: | NOP | | \leftarrow Procedure entrance |
| | MOV | R2, R3 | |
| | RTS | | Returns to the above ADD instruction |
| | MOV | \#70,R1 | Executes MOV before RTS |

Note: With delayed branching, branching occurs after execution of the slot instruction. However, instructions such as register changes etc. are executed in the order of delayed branch instruction, then delay slot instruction. For example, even if the register in which the branch destination address has been loaded is changed by the delay slot instruction, the branch will still be made using the value of the register prior to the change as the branch destination address.

6.27 LDC (Load to Control Register): System Control Instruction

Class: Interrupt disabled instruction

| Format | | Abstract | Code | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LDC | Rm, SR | $\mathrm{Rm} \rightarrow$ SR | 0100mmmm00001110 | 1 | LSB |
| LDC | Rm, GBR | $\mathrm{Rm} \rightarrow \mathrm{GBR}$ | $0100 \mathrm{mmmm00011110}$ | 1 | - |
| LDC | Rm, VBR | $\mathrm{Rm} \rightarrow \mathrm{VBR}$ | 0100mmmm00101110 | 1 | - |
| LDC.L | @Rm+, SR | $(\mathrm{Rm}) \rightarrow \mathrm{SR}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | 0100mmmm00000111 | 3 | LSB |
| LDC.L | @Rm+, GBR | $(\mathrm{Rm}) \rightarrow \mathrm{GBR}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | $0100 \mathrm{mmmm00010111}$ | 3 | - |
| LDC.L | @Rm+,VBR | $(\mathrm{Rm}) \rightarrow \mathrm{VBR}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | $0100 \mathrm{mmmm00100111}$ | 3 | - |

Description: Stores the source operand into control registers SR, GBR, or VBR.
Note: No interrupts are accepted between this instruction and the next instruction. Address errors are accepted.

Operation:

```
LDCSR(long m) /* LDC Rm,SR */
{
        SR=R[m]&0x000003F3;
        PC+=2;
}
LDCGBR(long m) /* LDC Rm,GBR */
{
        GBR=R[m];
        PC+=2;
}
LDCVBR(long m) /* LDC Rm,VBR */
{
        VBR=R[m];
        PC+=2;
}
```

```
LDCMSR(long m) /* LDC.L @Rm+,SR */
{
    SR=Read_Long(R[m])&0x000003F3;
    R[m]+=4;
    PC+=2;
}
LDCMGBR(long m) /* LDC.L @Rm+,GBR */
{
    GBR=Read_Long(R[m]);
    R[m]+=4;
    PC+=2;
}
LDCMVBR(long m) /* LDC.L @Rm+,VBR */
{
            VBR=Read_Long(R[m]);
    R[m]+=4;
    PC+=2;
}
```


Examples:

| LDC | RO, SR | Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime} \mathrm{FFFFFFFF}, \mathrm{SR}=\mathrm{H}^{\prime} 00000000$ |
| :--- | :--- | :--- | :--- |
| | | After execution | $\mathrm{SR}=\mathrm{H}^{\prime} 000003 \mathrm{~F} 3$ |

6.28 LDS (Load to System Register): System Control Instruction

Class: Interrupt disabled instruction

| Format | | Abstract | Code | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LDS | Rm, MACH | $\mathrm{Rm} \rightarrow \mathrm{MACH}$ | $0100 \mathrm{mmmm00001010}$ | 1 | - |
| LDS | Rm, MACL | $\mathrm{Rm} \rightarrow \mathrm{MACL}$ | 0100 mmmm 00011010 | 1 | - |
| LDS | Rm, PR | $\mathrm{Rm} \rightarrow \mathrm{PR}$ | 0100mmmm00101010 | 1 | - |
| LDS.L | @Rm+, MACH | $(\mathrm{Rm}) \rightarrow \mathrm{MACH}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | 0100 mmmm 00000110 | 1 | - |
| LDS.L | @Rm+, MACL | $(\mathrm{Rm}) \rightarrow \mathrm{MACL}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | 0100 mmmm 00010110 | 1 | - |
| LDS.L | @Rm+, PR | $(\mathrm{Rm}) \rightarrow \mathrm{PR}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | $0100 \mathrm{mmmm00100110}$ | 1 | - |

Description: Stores the source operand into the system registers MACH, MACL, or PR.
Note: No interrupts are accepted between this instruction and the next instruction. Address errors are accepted.

For the SH-1 CPU, the lower 10 bits are stored in MACH. For the SH-2 CPU, 32 bits are stored in MACH.

Operation:

```
LDSMACH(long m) /* LDS Rm,MACH */
{
        MACH=R[m];
        if ((MACH&0x00000200)==0) MACH &=0x000003FF; For SH-1 CPU(these 2 lines
        else MACH|=0xFFFFFC00;
                                not needed for SH-2 CPU)
        PC+=2;
}
LDSMACL(long m) /* LDS Rm,MACL */
{
    MACL=R[m];
    PC+=2;
}
LDSPR(long m) /* LDS Rm,PR */
{
    PR=R[m];
    PC+=2;
}
```

```
LDSMMACH(long m)
/* LDS.L @Rm+,MACH */
{
    MACH=Read_Long(R[m]);
    if ((MACH&0x00000200)==0) MACH&=0x000003FF;
    else MACH|=0xFFFFFC00;
```

For SH-1 CPU (these 2 lines not needed for SH-2 CPU)

```
    R[m]+=4;
    PC+=2;
}
LDSMMACL(long m) /* LDS.L @Rm+,MACL */
{
        MACL=Read_Long(R[m]);
        R[m]+=4;
        PC+=2;
}
LDSMPR(long m) /* LDS.L @Rm+,PR */
{
    PR=Read_Long(R[m]);
    R[m]+=4;
    PC+=2;
}
```


Examples:

| LDS | $\mathrm{RO} 0, \mathrm{PR}$ | Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime} 12345678, \mathrm{PR}=\mathrm{H}^{\prime} 00000000$ |
| :--- | :--- | :--- | :--- |
| | | After execution | $\mathrm{PR}=\mathrm{H}^{\prime} 12345678$ |
| LDS.L \quad @R15 + ,MACL | Before execution | $\mathrm{R} 15=\mathrm{H}^{\prime} 10000000$ | |
| | | After execution | $\mathrm{R} 15=\mathrm{H}^{\prime} 10000004, \mathrm{MACL}=@ \mathrm{H}^{\prime} 10000000$ |

6.29 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction (SH-2 CPU)

| Format | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| MAC.L | @Rm+, @Rn + | Signed operation, $(R n) \times(R m)+$ | 0000 nnnnmmmm1111 | $3 /(2$ to |
| | | MAC \rightarrow MAC | $4)$ | |

Description: Signed-multiplicates 32-bit operands obtained using the contents of general registers Rm and Rn as addresses. The 64-bit result is added to contents of the MAC register, and the final result is stored in the MAC register. Every time an operand is read, they increment Rm and Rn by four.

When the S bit is cleared to 0 , the 64 -bit result is stored in the coupled MACH and MACL registers. When bit S is set to 1 , addition to the MAC register is a saturation operation at the 48th bit starting from the LSB. For the saturation operation, only the lower 48 bits of the MACL registers are enabled and the result is limited to a range of H'FFFF800000000000 (minimum) to H'00007FFFFFFFFFFF (maximum).

Operation:

```
MACL(long m,long n) /* MAC.L @Rm+,@Rn+*/
{
    unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;
    unsigned long temp0,templ,temp2,temp3;
    long tempm,tempn,fnLmL;
    tempn=(long)Read_Long(R[n]);
    R[n]+=4;
    tempm=(long)Read_Long(R[m]);
    R[m]+=4;
    if ((long)(tempn^tempm)<0) fnLmL=-1;
    else fnLmL=0;
    if (tempn<0) tempn=0-tempn;
    if (tempm<0) tempm=0-tempm;
    temp1=(unsigned long)tempn;
    temp2=(unsigned long)tempm;
```

```
RnL=temp1&0x0000FFFF;
RnH=(temp1>>16)&0x0000FFFF;
RmL=temp2&0x0000FFFF;
RmH=(temp2>>16)&0x0000FFFF;
temp0=RmL*RnL;
templ=RmH*RnL;
temp2=RmL*RnH;
temp3=RmH*RnH;
Res2=0;
Res1=temp1+temp2;
if (Res1<temp1) Res2+=0x00010000;
temp1=(Res1<<<16)&0xFFFF0000;
Res0=temp0+temp1;
if (Res0<temp0) Res2++;
Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;
if(fnLm<0){
    Res2=~Res2;
    if (Res0==0) Res2++;
    else Res0=(~Res0)+1;
}
if(S==1) {
    Res0=MACL+Res0;
    if (MACL>Res0) Res2++;
    Res2+=(MACH&0x0000FFFF);
    if(((long)Res2<0)&&(Res2<0xFFFF8000)) {
        Res2=0x00008000;
        Res0=0x00000000;
    }
    if(((long)Res2>0)&&(Res2>0x00007FFF)) {
        Res2=0x00007FFF;
        Res0=0xFFFFFFFF;
    };
```

```
            MACH=Res2;
            MACL=Res0;
        }
        else {
        Res0=MACL+Res0;
        if (MACL>Res0) Res2++;
        Res2+=MACH
            MACH=Res2;
            MACL=Res0;
        }
        PC+=2;
}
```


Example:

| MOVA | TBLM, R0 | Table address |
| :--- | :--- | :--- |
| MOV | R0,R1 | |
| MOVA | TBLN, R0 | Table address |
| CLRMAC | | MAC register initialization |
| MAC.L | @R0+, @R1+ | |
| MAC.L | @R0+, @R1+ | |
| STS | MACL, R0 | Store result into R0 |
| | | |
| .align | 2 | |
| .data.1 | H'1234ABCD | |
| .data.1 | H' $^{\prime} 5678 \mathrm{EF} 01$ | |
| .data.1 | H' $^{\prime} 0123 A B C D$ | |
| .data.1 | H' $^{\prime} 4567 \mathrm{DEF} 0$ | |

6.30 MAC (Multiply and Accumulate): Arithmetic Instruction (SH-1 CPU)

| Format | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| MAC.W | @Rm+, @Rn + | With signed, $(R n) \times(R m)+$ MAC
 \rightarrow MAC | $0100 n n n n m m m m 1111$ | $3 /(2)$ |

Description: Multiplies 16-bit operands obtained using the contents of general registers Rm and Rn as addresses. The 32-bit result is added to contents of the MAC register, and the final result is stored in the MAC register. Everytime an operand is read, they increment Rm and Rn by two.

When the S bit is cleared to 0 , the 42-bit result is stored in the coupled MACH and MACL registers. Bit 9 data is transferred to the upper 22 bits (bits 31 to 10) of the MACH register.

When the S bit is set to 1 , addition to the MAC register is a saturation operation. For the saturation operation, only the MACL register is enabled and the result is limited to a range of $\mathrm{H}^{\prime} 80000000$ (minimum) to H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1 . The result is stored in the MACL register, and the result is limited to a value between $\mathrm{H}^{\prime} 80000000$ (minimum) for overflows in the negative direction and H'7FFFFFFF (maximum) for overflows in the positive direction.

Note: The normal number of cycles for execution is 3 ; however, this instruction can be executed in two cycles according to the succeeding instruction.

| 6.31 | MAC.W (Multiply and Accumulate Word): | Arithmetic | Instruction | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Format | Abstract | Code | State | T Bit | |
| MAC. W | $@ R m+, @ R n+$ | Signed operation, | $0100 \mathrm{nnnnmmmm1111}$ | $3 /(2)$ | - |
| MAC | $@ R m+, @ R n+$ | $(R n) \times(R \mathrm{Rm})+$ MAC \rightarrow MAC | | | |

Description: Signed-multiplicates 16-bit operands obtained using the contents of general registers Rm and Rn as addresses. The 32-bit result is added to contents of the MAC register, and the final result is stored in the MAC register. Everytime an operand is read, they increment Rm and Rn by two.

When the S bit is cleared to 0 , the operation is $16 \times 16+64 \rightarrow 64$-bit multiply and accumulate and the 64 -bit result is stored in the coupled MACH and MACL registers.

When the S bit is set to 1 , the operation is $16 \times 16+32 \rightarrow 32$-bit multiply and accumulate and addition to the MAC register is a saturation operation. For the saturation operation, only the MACL register is enabled and the result is limited to a range of $\mathrm{H}^{\prime} 80000000$ (minimum) to H'7FFFFFFF (maximum).

If an overflow occurs, the LSB of the MACH register is set to 1 . The result is stored in the MACL register, and the result is limited to a value between $\mathrm{H}^{\prime} 80000000$ (minimum) for overflows in the negative direction and $\mathrm{H}^{\prime} 7 \mathrm{FFFFFFF}$ (maximum) for overflows in the positive direction.

Note: When the S bit is 0 , the SH-2 CPU performs a $16 \times 16+64 \rightarrow 64$ bit multiply and accumulate operation and the SH-1 CPU performs a $16 \times 16+42 \rightarrow 42$ bit multiply and accumulate operation.

Operation:

```
MACW(long m,long n) /* MAC.W @Rm+,@Rn+*/
{
    long tempm,tempn,dest,src,ans;
    unsigned long templ;
    tempn=(long)Read_Word(R[n]);
    R[n]+=2;
    tempm=(long)Read_Word(R[m]);
    R[m]+=2;
    templ=MACL;
    tempm=((long)(short)tempn*(long)(short) tempm);
```

```
    if ((long)MACL>=0) dest=0;
    else dest=1;
    if ((long)tempm>=0 {
        src=0;
    tempn=0;
    }
    else {
        src=1;
        tempn=0xFFFFFFFF;
    }
    src+=dest;
    MACL+=tempm;
    if ((long)MACL>=0) ans=0;
    else ans=1;
    ans+=dest;
    if (S==1) {
        if (ans==1) {
            if (src==0 || src==2)
                MACH|=0x00000001;
            if (src==0) MACL=0x7FFFFFFF;
            if (src==2) MACL=0x80000000;
        }
    }
    else {
        MACH+=tempn;
        if (templ>MACL) MACH+=1;
        if ((MACH&0x000000200)==0)
            MACH&}=0\times000003\textrm{FF}
        else MACH|=0xFFFFFFC00;
    }
    PC+=2;
}
For SH-1 CPU (these 2 lines not needed for SH-2 CPU)
For SH-1 CPU (these 3 lines not needed for SH-2 CPU)
```


Example:

MOVA TBLM,RO Table address
MOV R0,R1
MOVA TBLN,R0
CLRMAC
MAC.W @R0+,@R1+
MAC.W @RO+, @R1+
STS MACL RO
Store result into R0

| | .dign | 2 |
| :--- | :--- | :--- |
| TBLM | .data.w | H'1234 |
| | .data.w | H'5678 |
| TBLN | .data.w | H' $^{\prime} 0123$ |
| | .data.w | H' $^{\prime} 4567$ |

6.32 MOV (Move Data): Data Transfer Instruction

| Format | | Abstract | Code | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MOV | Rm, Rn | $\mathrm{Rm} \rightarrow \mathrm{Rn}$ | $0110 \mathrm{nnnnmmmm0011}$ | 1 | - |
| MOV.B | Rm, @Rn | $R \mathrm{~m} \rightarrow(\mathrm{Rn})$ | 0010nnnnmmmm0000 | 1 | - |
| MOV.W | $\mathrm{Rm}, @ \mathrm{Rn}$ | $R m \rightarrow(R n)$ | 0010nnnnmmmm0001 | 1 | - |
| MOV.L | Rm, @Rn | $R m \rightarrow(R n)$ | 0010nnnnmmmm0010 | 1 | - |
| MOV.B | @Rm,Rn | $(\mathrm{Rm}) \rightarrow$ sign extension $\rightarrow R n$ | 0110nnnnmmmm0000 | 1 | - |
| MOV.W | $@ R m, R n$ | $(\mathrm{Rm}) \rightarrow$ sign extension $\rightarrow \mathrm{Rn}$ | 0110nnnnmmmm0001 | 1 | - |
| MOV.L | @Rm, Rn | $(\mathrm{Rm}) \rightarrow \mathrm{Rn}$ | 0110nnnnmmmm0010 | 1 | - |
| MOV.B | Rm, @-Rn | $\mathrm{Rn}-1 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow(\mathrm{Rn})$ | $0010 \mathrm{nnnnmmmm0100}$ | 1 | - |
| MOV.W | Rm , @-Rn | $\mathrm{Rn}-2 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow(\mathrm{Rn})$ | $0010 \mathrm{nnnnmmmm0101}$ | 1 | - |
| MOV.L | $\mathrm{Rm}, \mathrm{@}-\mathrm{Rn}$ | $\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow(\mathrm{Rn})$ | 0010nnnnmmmm0110 | 1 | - |
| MOV. $\mathrm{B}^{\text {I }}$ | @Rm+, Rn | $\begin{aligned} & (R m) \rightarrow \text { sign extension } \rightarrow R n, R m \\ & +1 \rightarrow R m \end{aligned}$ | 0110nnnnmmmm0100 | 1 | - |
| MOV.W | @Rm+, Rn | $(\mathrm{Rm}) \rightarrow$ sign extension $\rightarrow \mathrm{Rn}, \mathrm{Rm}$ $+2 \rightarrow R m$ | 0110nnnnmmmm0101 | 1 | - |
| MOV.L | @Rm+, Rn | $(R m) \rightarrow R n, R m+4 \rightarrow R m$ | 0110nnnnmmmm0110 | 1 | - |
| MOV.B | Rm, @ (R0, Rn) | $R m \rightarrow(R 0+R n)$ | 0000nnnnmmmm0100 | 1 | - |
| MOV.W | Rm , @ (R0, Rn) | $R m \rightarrow(R 0+R n)$ | $0000 \mathrm{nnnnmmmm0101}$ | 1 | - |
| MOV.L | $\mathrm{Rm}, @(\mathrm{RO}, \mathrm{Rn})$ | $R m \rightarrow(R 0+R n)$ | $0000 \mathrm{nnnnmmmm0110}$ | 1 | - |
| MOV.B | @(R0,Rm), Rn | $(R 0+R m) \rightarrow \text { sign extension } \rightarrow$ | $0000 \mathrm{nnnnmmmm1100}$ | 1 | - |
| | | | $0000 \mathrm{nnnnmmmm1101}$ | 1 | - |
| MOV.W | $@(R 0, R m), R n$ | $\begin{aligned} & (R 0+R m) \rightarrow \text { sign extension } \rightarrow \\ & \text { Rn } \end{aligned}$ | $0000 \mathrm{nnnnmmmm1110}$ | 1 | - |
| MOV.L | @ (R0,Rm), Rn | $(\mathrm{RO}+\mathrm{Rm}) \rightarrow \mathrm{Rn}$ | | | |

Description: Transfers the source operand to the destination. When the operand is stored in memory, the transferred data can be a byte, word, or longword. When the source operand is in memory, loaded data from memory is stored in a register after it is sign-extended to a longword.

Operation:

```
MOV(long m,long n) /* MOV Rm,Rn */
{
    R[n]=R[m];
    PC+=2;
}
```

```
MOVBS(long m,long n) /* MOV.B Rm,@Rn */
{
    Write_Byte(R[n],R[m]);
    PC+=2;
}
MOVWS(long m,long n) /* MOV.W Rm,@Rn */
{
    Write_Word(R[n],R[m]);
    PC+=2;
}
MOVLS(long m,long n) /* MOV.L Rm,@Rn */
{
    Write_Long(R[n],R[m]);
    PC+=2;
}
MOVBL(long m,long n) /* MOV.B @Rm,Rn */
{
    R[n]=(long)Read_Byte(R[m]);
    if ((R[n]&0x80)==0) R[n]&0x000000FF;
    else R[n]|=0xFFFFFFF00;
    PC+=2;
}
MOVWL(long m,long n) /* MOV.W @Rm,Rn */
{
    R[n]=(long)Read_Word(R[m]);
    if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;
    else R[n]|=0xFFFF0000;
    PC+=2;
}
MOVLL(long m,long n) /* MOV.L @Rm,Rn */
{
    R[n]=Read_Long(R[m]);
    PC+=2;
}
```

```
MOVBM(long m,long n) /* MOV.B Rm,@-Rn */
{
    Write_Byte(R[n]-1,R[m]);
    R[n]-=1;
    PC+=2;
}
MOVWM(long m,long n) /* MOV.W Rm,@-Rn */
{
    Write_Word(R[n]-2,R[m]);
    R[n]-=2;
    PC+=2;
}
MOVLM(long m,long n) /* MOV.L Rm,@-Rn */
{
    Write_Long(R[n]-4,R[m]);
    R[n]-=4;
    PC+=2;
}
MOVBP(long m,long n) /* MOV.B @Rm+,Rn */
{
    R[n]=(long)Read_Byte(R[m]);
    if ((R[n]&0x80)==0) R[n]&0x000000FF;
    else R[n]|=0xFFFFFFO0;
    if (n!=m) R[m]+=1;
    PC+=2;
}
MOVWP(long m,long n) /* MOV.W @Rm+,Rn */
{
    R[n]=(long)Read_Word(R[m]);
    if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;
    else R[n]|=0xFFFF0000;
    if (n!=m) R[m]+=2;
    PC+=2;
}
```

```
MOVLP(long m,long n) /* MOV.L @Rm+,Rn */
{
    R[n]=Read_Long(R[m]);
    if (n!=m) R[m]+=4;
    PC+=2;
}
MOVBSO(long m,long n) /* MOV.B Rm,@(RO,Rn) */
{
    Write_Byte(R[n]+R[0],R[m]);
    PC+=2;
}
MOVWSO(long m,long n) /* MOV.W Rm,@(RO,Rn) */
{
    Write_Word(R[n]+R[0],R[m]);
    PC+=2;
}
MOVLSO(long m,long n) /* MOV.L Rm,@(RO,Rn) */
{
        Write_Long(R[n]+R[0],R[m]);
        PC+=2;
}
MOVBLO(long m,long n) /* MOV.B @(RO,Rm),Rn */
{
        R[n]=(long)Read_Byte(R[m]+R[0]);
        if ((R[n]&0x80)==0) R[n]&0x000000FF;
        else R[n]|=0xFFFFFF00;
        PC+=2;
}
MOVWLO(long m,long n) /* MOV.W @(RO,Rm),Rn */
{
        R[n]=(long)Read_Word(R[m]+R[0]);
        if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;
        else R[n]|=0xFFFF0000;
        PC+=2;
}
```

```
MOVLLO(long m,long n) /* MOV.L @(RO,Rm),Rn */
{
    R[n]=Read_Long(R[m]+R[0]);
    PC+=2;
}
```


Example:

| MOV | R0, R1 | Before execution After execution | $\begin{aligned} & \mathrm{R} 0=\mathrm{H}^{\prime} \mathrm{FFFFFFFF}, \mathrm{R} 1=\mathrm{H}^{\prime} 00000000 \\ & \mathrm{R} 1=\mathrm{H}^{\prime} \mathrm{FFFFFFFF} \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| MOV.W | R0, @R1 | Before execution After execution | $\begin{aligned} & \text { R0 = H'FFFF7F80 } \\ & @ R 1=H^{\prime} 7 F 80 \end{aligned}$ |
| MOV.B | @R0,R1 | Before execution
 After execution | $@ R 0=H^{\prime} 80, R 1=H^{\prime} 00000000$
 R1 $=$ H'FFFFFF80 |
| MOV.W | R0, @-R1 | Before execution
 After execution | |
| MOV.L | @R0+,R1 | Before execution
 After execution | $\begin{aligned} & \mathrm{R} 0=\mathrm{H}^{\prime} 12345670 \\ & \mathrm{R} 0=\mathrm{H}^{\prime} 12345674, \mathrm{R} 1=@ \mathrm{H}^{\prime} 12345670 \end{aligned}$ |
| MOV.B | R1,@(R0,R2) | Before execution
 After execution | $\begin{aligned} & \mathrm{R} 2=\mathrm{H}^{\prime} 00000004, \mathrm{R} 0=\mathrm{H}^{\prime} 10000000 \\ & \mathrm{R} 1=@ \mathrm{H}^{\prime} 10000004 \end{aligned}$ |
| MOV.W | @(R0,R2), R1 | Before execution
 After execution | $\begin{aligned} & \mathrm{R} 2=\mathrm{H}^{\prime} 00000004, \mathrm{R} 0=\mathrm{H}^{\prime} 10000000 \\ & \mathrm{R} 1=@ \mathrm{H}^{\prime} 10000004 \end{aligned}$ |

6.33 MOV (Move Immediate Data): Data Transfer Instruction

| Format | Abstract | Code | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MOV | \#imm, Rn | imm \rightarrow sign extension $\rightarrow \mathrm{Rn}$ | 1110nnnniiiiiiii | 1 | - |
| MOV.W | @(disp, PC), Rn | $($ disp $\times 2+\mathrm{PC}) \rightarrow$ sign
 extension $\rightarrow \mathrm{Rn}$ | 1001nnnndddddddd | 1 | - |
| MOV.L | @(disp, PC), Rn | $($ disp $\times 4+\mathrm{PC}) \rightarrow \mathrm{Rn}$ | 1101nnnndddddddd | 1 | - |

Description: Stores immediate data, which has been sign-extended to a longword, into general register Rn.

If the data is a word or longword, table data stored in the address specified by PC + displacement is accessed. If the data is a word, the 8 -bit displacement is zero-extended and doubled. Consequently, the relative interval from the table is up to PC +510 bytes. The PC points to the starting address of the second instruction after this MOV instruction. If the data is a longword, the 8 -bit displacement is zero-extended and quadrupled. Consequently, the relative interval from the table is up to PC +1020 bytes. The PC points to the starting address of the second instruction after this MOV instruction, but the lowest two bits of the PC are corrected to B'00.

Note: The end address of the program area (module) or the second address after an unconditional branch instruction are suitable for the start address of the table. If suitable table assignment is impossible (for example, if there are no unconditional branch instructions within the area specified by PC +510 bytes or PC +1020 bytes), the BRA instruction must be used to jump past the table. When this MOV instruction is placed immediately after a delayed branch instruction, the PC points to an address specified by (the starting address of the branch destination) +2 .

Operation:

```
MOVI(long i,long n) /* MOV #imm,Rn */
{
    if ((i&0x80)==0) R[n]=(0x000000FF & (long)i);
    else R[n]=(0xFFFFFF00 | (long)i);
    PC+=2;
}
MOVWI(long d,long n) /* MOV.W @(disp,PC),Rn */
{
            long disp;
```

```
    disp=(0x000000FF & (long)d);
    R[n]=(long)Read_Word(PC+(disp<<1));
    if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;
    else R[n]|=0xFFFF0000;
    PC+=2;
}
    MOVLI(long d,long n) /* MOV.L @(disp,PC),Rn */
    {
        long disp;
        disp=(0x000000FF & (long)d);
        R[n]=Read_Long((PC&0xFFFFFFFFC)+(disp<<2));
        PC+=2;
    }
```


Example:

| 1000 | | MOV | \#H'80,R1 | R1 $=$ H'FFFFFF80 |
| :---: | :---: | :---: | :---: | :---: |
| 1002 | | MOV.W | IMM, R2 | R2 = H'FFFF9ABC, IMM means @(H'08,PC) |
| 1004 | | ADD | \#-1, R0 | |
| 1006 | | TST | R0, R0 | \leftarrow PC location used for address calculation for the MOV.W instruction |
| 1008 | | MOVT | R13 | |
| 100A | | BRA | NEXT | Delayed branch instruction |
| 100C | | MOV.L | @ (4, PC) , R3 | $\mathrm{R} 3=\mathrm{H}^{\prime} 12345678$ |
| 100E | IMM | .data.w | H'9ABC | |
| 1010 | | .data.w | H'1234 | |
| 1012 | NEXT | JMP | @R3 | Branch destination of the BRA instruction |
| 1014 | | CMP/EQ | \#0,R0 | $\leftarrow \mathrm{PC}$ location used for address calculation for the MOV.L instruction |
| | | .align | 4 | |
| 1018 | | .data. 1 | H'12345678 | |

6.34 MOV (Move Peripheral Data): Data Transfer Instruction

| Format | | Abstract | Code | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MOV.B | @(disp, GBR), R0 | $(\text { disp }+ \text { GBR }) \rightarrow \text { sign }$ $\text { extension } \rightarrow R 0$ | 11000100dddddddd | 1 | - |
| MOV.W | @(disp,GBR) , R0 | $\begin{aligned} & (\operatorname{disp} \times 2+G B R) \rightarrow \\ & \text { sign extension } \rightarrow R 0 \end{aligned}$ | 11000101 dddddddd | 1 | - |
| MOV.L | @(disp, GBR) , R0 | $($ disp $\times 4+\mathrm{GBR}) \rightarrow \mathrm{R} 0$ | 11000110 dddddddd | 1 | - |
| MOV.B | R0, @(disp, GBR) | $\mathrm{RO} \rightarrow(\mathrm{disp}+\mathrm{GBR})$ | $11000000 d d d d d d d d$ | 1 | - |
| MOV.W | R0, @(disp, GBR) | $\mathrm{RO} \rightarrow($ disp $\times 2+\mathrm{GBR})$ | 11000001 dddddddd | 1 | - |
| MOV.L | R0, @(disp, GBR) | $\mathrm{RO} \rightarrow(\mathrm{disp} \times 4+\mathrm{GBR})$ | 11000010dddddddd | 1 | - |

Description: Transfers the source operand to the destination. This instruction is suitable for accessing data in the peripheral module area. The data can be a byte, word, or longword, but the register is fixed to R 0 .

A peripheral module base address is set to the GBR. When the peripheral module data is a byte, the 8 -bit displacement is zero-extended. Consequently, an address within +255 bytes can be specified. When the peripheral module data is a word, the 8 -bit displacement is zero-extended and doubled. Consequently, an address within +510 bytes can be specified. When the peripheral module data is a longword, the 8 -bit displacement is zero-extended and is quadrupled. Consequently, an address within +1020 bytes can be specified. If the displacement is too short to reach the memory operand, the above @(R0,Rn) mode must be used after the GBR data is transferred to a general register. When the source operand is in memory, the loaded data is stored in the register after it is sign-extended to a longword.

Note: The destination register of a data load is always R0. R0 cannot be accessed by the next instruction until the load instruction is finished. Changing the instruction order shown in figure 6.1 will give better results.

Figure 6.1 Using R0 after MOV

```
Operation:
MOVBLG(long d) /* MOV.B @(disp,GBR),RO */
{
    long disp;
    disp=(0x000000FF & (long)d);
    R[0]=(long)Read_Byte(GBR+disp);
    if ((R[0]&0x80)==0) R[0]&=0x000000FF;
    else R[0]|=0xFFFFFFO0;
    PC+=2;
}
MOVWLG(long d) /* MOV.W @(disp,GBR),RO */
{
    long disp;
    disp=(0x000000FF & (long)d);
    R[0]=(long)Read_Word(GBR+(disp<<1));
    if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;
    else R[0]|=0xFFFF0000;
    PC+=2;
}
MOVLLG(long d) /* MOV.L @(disp,GBR),RO */
{
    long disp;
    disp=(0x000000FF & (long)d);
    R[0]=Read_Long(GBR+(disp<<2));
    PC+=2;
}
MOVBSG(long d) /* MOV.B R0,@(disp,GBR) */
{
    long disp;
```

```
    disp=(0x000000FF & (long)d);
    Write_Byte(GBR+disp,R[0]);
    PC+=2;
    }
    MOVWSG(long d) /* MOV.W RO,@(disp,GBR) */
    {
        long disp;
        disp=(0x000000FF & (long)d);
        Write_Word(GBR+(disp<<1),R[0]);
        PC+=2;
    }
    MOVLSG(long d) /* MOV.L RO,@(disp,GBR) */
    {
        long disp;
        disp=(0x000000FF & (long)d);
        Write_Long(GBR+(disp<<2),R[0]);
        PC+=2;
    }
```


Examples:

| MOV.L $@(2, G B R), R 0$ | Before execution | $@(G B R+8)=H^{\prime} 12345670$ | |
| :--- | :--- | :--- | :--- |
| | | After execution | $\mathrm{R} 0=@ \mathrm{H}^{\prime} 12345670$ |
| MOV.B | R0, @(1,GBR) | Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime} \mathrm{FFFF} 7 \mathrm{~F} 80$ |
| | | After execution | $@(\mathrm{GBR}+1)=\mathrm{H}^{\prime}$ FFFF7F80 |

6.35 MOV (Move Structure Data): Data Transfer Instruction

| Format | | Abstract | Code | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MOV.B | R0, @ (disp, Rn) | $\mathrm{RO} \rightarrow$ (disp + Rn) | 10000000 nnnndddd | 1 | - |
| MOV.W | R0, @ (disp, Rn) | $\mathrm{RO} \rightarrow(\mathrm{disp} \times 2+\mathrm{Rn})$ | 10000001nnnndddd | 1 | - |
| MOV.L | Rm, @ (disp, Rn) | $R \mathrm{~m} \rightarrow(\mathrm{disp} \times 4+\mathrm{Rn})$ | 0001nnnnmmmmdddd | 1 | - |
| MOV.B | @(disp, Rm), R0 | (disp + Rm) \rightarrow sign extension \rightarrow RO | 10000100 mmmmdddd | 1 | - |
| MOV.W | @(disp, Rm), R0 | (disp $\times 2+\mathrm{Rm}$) \rightarrow sign extension \rightarrow RO | 10000101 mmmmdddd | 1 | - |
| MOV.L | @(disp, Rm) , Rn | $($ disp $\times 4+\mathrm{Rm}) \rightarrow \mathrm{Rn}$ | 0101nnnnmmmmdddd | 1 | - |

Description: Transfers the source operand to the destination. This instruction is suitable for accessing data in a structure or a stack. The data can be a byte, word, or longword, but when a byte or word is selected, only the R0 register is fixed. When the data is a byte, the 4-bit displacement is zero-extend. Consequently, an address within +15 bytes can be specified. When the data is a word, the 4 -bit displacement is zero-extended and doubled. Consequently, an address within +30 bytes can be specified. When the data is a longword, the 4-bit displacement is zero-extended and quadrupled. Consequently, an address within +60 bytes can be specified. If the displacement is too short to reach the memory operand, the aforementioned @(R0,Rn) mode must be used. When the source operand is in memory, the loaded data is stored in the register after it is sign-extended to a longword.

Note: When byte or word data is loaded, the destination register is always R0. R0 cannot be accessed by the next instruction until the load instruction is finished. Changing the instruction order in figure 6.2 will give better results.

Figure 6.2 Using R0 after MOV

Operation:

```
MOVBS4(long d,long n) /* MOV.B R0,@(disp,Rn) */
{
        long disp;
    disp=(0x0000000F & (long)d);
    Write_Byte(R[n]+disp,R[0]);
    PC+=2;
}
MOVWS4(long d,long n) /* MOV.W R0,@(disp,Rn) */
{
    long disp;
    disp=(0x0000000F & (long)d);
    Write_Word(R[n]+(disp<<1),R[0]);
    PC+=2;
}
MOVLS4(long m,long d,long n)
        /* MOV.L Rm,@(disp,Rn) */
{
        long disp;
        disp=(0x0000000F & (long)d);
        Write_Long(R[n]+(disp<<2),R[m]);
        PC+=2;
}
MOVBL4(long m,long d) /* MOV.B @(disp,Rm),R0 */
{
    long disp;
    disp=(0x0000000F & (long)d);
    R[0]=Read_Byte(R[m]+disp);
    if ((R[0]&0x80)==0) R[0]&=0x000000FF;
    else R[0]|=0xFFFFFFF00;
    PC+=2;
}
```

```
MOVWL4(long m,long d) /* MOV.W @(disp,Rm),RO */
{
            long disp;
    disp=(0x0000000F & (long)d);
    R[0]=Read_Word(R[m]+(disp<<1));
    if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;
    else R[0]|=0xFFFF0000;
    PC+=2;
}
MOVLL4(long m,long d,long n)
    /* MOV.L @(disp,Rm),Rn */
{
            long disp;
            disp=(0x0000000F & (long)d);
    R[n]=Read_Long(R[m]+(disp<<2));
    PC+=2;
}
```


Examples:

| MOV.L | $@(2, \mathrm{RO}), \mathrm{R} 1$ | Before execution @(R0 + 8) $=\mathrm{H}^{\prime} 12345670$ |
| :--- | :--- | :--- |
| | | After execution R1 $=@ H^{\prime} 12345670$ |
| MOV.L \quad RO,@(H'F,R1) | Before execution R0 = H'FFFF7F80 | |
| | | After execution @(R1 + 60) = H'FFFF7F80 |

6.36 MOVA (Move Effective Address): Data Transfer Instruction

| Format | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MOVA $@($ disp, PC$), \mathrm{R} 0$ | disp $\times 4+\mathrm{PC} \rightarrow \mathrm{RO}$ | 11000111 dddddddd | 1 | - |

Description: Stores the effective address of the source operand into general register R0. The 8-bit displacement is zero-extended and quadrupled. Consequently, the relative interval from the operand is PC +1020 bytes. The PC points to the starting address of the second instruction after this MOVA instruction, but the lowest two bits of the PC are corrected to B'00.

Note: If this instruction is placed immediately after a delayed branch instruction, the PC must point to an address specified by (the starting address of the branch destination) +2 .

Operation:

```
MOVA(long d) /* MOVA @(disp,PC),RO */
{
            long disp;
            disp=(0x000000FF & (long)d);
            R[0]=(PC&0xFFFFFFFF)+(disp<<2);
            PC+=2;
}
```


Example:

| Address | . org | H'1006 | |
| :---: | :---: | :---: | :---: |
| 1006 | MOVA | STR,R0 | Address of STR \rightarrow R0 |
| 1008 | MOV.B | @R0,R1 | $\mathrm{R} 1=$ " X " $\leftarrow \mathrm{PC}$ location after correcting the lowest two bits |
| 100A | ADD | R4,R5 | \leftarrow Original PC location for address calculation for the MOVA instruction |
| | .align | 4 | |
| 100 C STR: | .sdata | "XYZP12" | |
| | . | | |
| 2002 | BRA | TRGET | Delayed branch instruction |
| 2004 | MOVA | @ (0, PC) , R0 | Address of TRGET $+2 \rightarrow$ R0 |
| 2006 | NOP | | |

6.37 MOVT (Move T Bit): Data Transfer Instruction

| Format | Abstract | Code | State | TBit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MOVT | Rn | $\mathrm{T} \rightarrow \mathrm{Rn}$ | $0000 \mathrm{nnnn00101001}$ | 1 | - |

Description: Stores the T bit value into general register Rn . When $\mathrm{T}=1,1$ is stored in Rn , and when $\mathrm{T}=0,0$ is stored in Rn .

Operation:

```
MOVT(long n) /* MOVT Rn */
{
        R[n]=(0x00000001 & SR);
        PC+=2;
}
```


Example:

| XOR | R2,R2 | $\mathrm{R} 2=0$ |
| :--- | :--- | :--- |
| CMP/PZ | R2 | $\mathrm{T}=1$ |
| MOVT | R0 | $\mathrm{R} 0=1$ |
| CLRT | | $\mathrm{T}=0$ |
| MOVT | R1 | $\mathrm{R} 1=0$ |

6.38 MUL.L (Multiply Long): Arithmetic Instruction (SH-2 CPU)

| Format | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| MUL.L | Rm, Rn | $\mathrm{Rn} \times \mathrm{Rm} \rightarrow \mathrm{MACL}$ | 0000 nnnnmmmm0111 | 2 to 4 |

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and stores the lower 32 bits of the result in the MACL register. The MACH register data does not change.

Operation:

```
MULL(long m,long n) /* MUL.L Rm,Rn */
{
        MACL=R[n]*R[m];
        PC+=2;
    }
```


Example:

| MUL.L | R0,R1 | Before execution |
| :--- | :--- | :--- |
| | After execution | $\mathrm{MACL}=\mathrm{H}^{\prime} \mathrm{FFFFFFFF}, \mathrm{R} 1=\mathrm{H}^{\prime} \mathrm{FFFF} 5556$ |

STS MACL, RO Operation result

6.39 MULS.W (Multiply as Signed Word): Arithmetic Instruction

| Format | | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MULS.W | Rm, Rn | Signed operation, $\mathrm{Rn} \times \mathrm{Rm} \rightarrow$ | 0010 nnnnmmmm1111 | 1 to 3 | - |
| MULS | Rm, Rn | MACL | | | |

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm , and stores the 32-bit result in the MACL register. The operation is signed and the MACH register data does not change.

Operation:

```
MULS(long m,long n) /* MULS Rm,Rn */
{
        MACL=((long)(short)R[n]*(long)(short)R[m]);
        PC+=2;
}
```


Example:

| MULS R0,R1 | Before execution

 STS | After execution $=H^{\prime}$ 'FFFFFFFE, R1 $=H^{\prime} 00005555$ |
| :--- | :--- | :--- |
| MACL,RO | Operation result | |

6.40 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction

| Format | Abstract | Code | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MULU.W | Rm, Rn | Unsigned, Rn $\times \mathrm{Rm} \rightarrow \mathrm{MAC}$ | 0010 nnnnmmmm1110 | 1 to 3 | - |
| MULU | Rm, Rn | | | | |

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm , and stores the 32-bit result in the MACL register. The operation is unsigned and the MACH register data does not change.

Operation:

```
MULU(long m,long n) /* MULU Rm,Rn */
    {
        MACL=((unsigned long)(unsigned short)R[n]
            *(unsigned long)(unsigned short)R[m]);
        PC+=2;
}
```


Example:

| MULU | RO, R1 | Before execution | R0 $=H^{\prime} 00000002, \mathrm{R} 1=$ H $^{\prime}$ FFFFAAAA |
| :--- | :--- | :--- | :--- |

6.41 NEG (Negate): Arithmetic Instruction

| Format | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| NEG | Rm, Rn | $0-\mathrm{Rm} \rightarrow \mathrm{Rn}$ | 0110 nnnnmmmm1011 | 1 |

Description: Takes the two's complement of data in general register Rm, and stores the result in Rn . This effectively subtracts Rm data from 0 , and stores the result in Rn .

Operation:

```
NEG(long m,long n) /* NEG Rm,Rn */
    {
        R[n]=0-R[m];
        PC+=2;
    }
```


Example:

NEG R0,R1 Before execution $\quad \mathrm{R} 0=\mathrm{H}^{\prime} 00000001$
After execution R1 $=\mathrm{H}^{\prime}$ FFFFFFFF

6.42 NEGC (Negate with Carry): Arithmetic Instruction

| Format | Abstract | Code | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| NEGC | Rm, Rn | $0-\mathrm{Rm}-\mathrm{T} \rightarrow \mathrm{Rn}$, Borrow $\rightarrow \mathrm{T}$ | 0110 nnnnmmmm1010 | 1 | Borrow |

Description: Subtracts general register Rm data and the T bit from 0 , and stores the result in Rn . If a borrow is generated, T bit changes accordingly. This instruction is used for inverting the sign of a value that has more than 32 bits.

Operation:

```
NEGC(long m,long n) /* NEGC Rm,Rn */
{
        unsigned long temp;
        temp=0-R[m];
        R[n]=temp-T;
        if (0<temp) T=1;
        else T=0;
        if (temp<R[n]) T=1;
        PC+=2;
    }
```


Examples:

CLRT \quad Sign inversion of R1 and R0 (64 bits)
NEGC R1,R1 Before execution $\mathrm{R} 1=\mathrm{H}^{\prime} 00000001, \mathrm{~T}=0$
After execution \quad R1 $=\mathrm{H}^{\prime}$ FFFFFFFF, $\mathrm{T}=1$
NEGC R0,R0 Before execution $\mathrm{R} 0=\mathrm{H}^{\prime} 00000000, \mathrm{~T}=1$
After execution \quad R0 $=H^{\prime}$ FFFFFFFFF, $\mathrm{T}=1$

6.43 NOP (No Operation): System Control Instruction

| Format | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| NOP | No operation | 0000000000001001 | 1 | - |

Description: Increments the PC to execute the next instruction.

Operation:

```
    NOP() /* NOP */
```

 [
 \(\mathrm{PC}+=2\);
 \}

Example:

NOP Executes in one cycle

6.44 NOT (NOT-Logical Complement): Logic Operation Instruction

| Format | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| NOT Rm, Rn | $\sim R m \rightarrow \mathrm{Rn}$ | 0110 nnnnmmmm0111 | 1 | - |

Description: Takes the one's complement of general register Rm data, and stores the result in Rn . This effectively inverts each bit of Rm data and stores the result in Rn .

Operation:

```
    NOT(long m,long n) /* NOT Rm,Rn */
    {
        R[n]=~R[m];
        PC+=2;
    }
```


Example:

NOT RO,R1 Before execution $\mathrm{R} 0=$ H'AAAAAAAA $^{\prime}$
After execution R1 $=$ H'55555555

Description: Logically ORs the contents of general registers Rn and Rm , and stores the result in Rn . The contents of general register R0 can also be ORed with zero-extended 8-bit immediate data, or 8-bit memory data accessed by using indirect indexed GBR addressing can be ORed with 8 -bit immediate data.

Operation:

```
OR(long m,long n) /* OR Rm,Rn */
{
    R[n]|=R[m];
    PC+=2;
}
ORI(long i) /* OR #imm,RO */
{
    R[0]|=(0x000000FF & (long)i);
    PC+=2;
}
ORM(long i) /* OR.B #imm,@(RO,GBR) */
[
    long temp;
    temp=(long)Read_Byte(GBR+R[0]);
    templ=(0x000000FF & (long)i);
    Write_Byte(GBR+R[0],temp);
    PC+=2;
}
```


Examples:

| OR | R0, R1 | Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime} \mathrm{AAAA} 5555, \mathrm{R} 1=\mathrm{H}^{\prime} 55550000$ |
| :---: | :---: | :---: | :---: |
| | | After execution | R1 = H'FFFF5555 |
| OR | \#H'F0,R0 | Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime} 00000008$ |
| | | After execution | $\mathrm{R} 0=\mathrm{H}^{\prime} 000000 \mathrm{~F} 8$ |
| OR.B | \#H'50, @(R0, GBR) | Before execution | $@(\mathrm{R} 0, \mathrm{GBR})=\mathrm{H}^{\prime} \mathrm{A} 5$ |
| | | After execution | $@(\mathrm{R} 0, \mathrm{GBR})=\mathrm{H}^{\prime} \mathrm{F} 5$ |

6.46 ROTCL (Rotate with Carry Left): Shift Instruction

| Format | Abstract | Code | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ROTCL | Rn | $\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow \mathrm{T}$ | $0100 \mathrm{nnnn00100100}$ | 1 | MSB |

Description: Rotates the contents of general register Rn and the T bit to the left by one bit, and stores the result in Rn . The bit that is shifted out of the operand is transferred to the T bit (figure 6.3).

Figure 6.3 Rotate with Carry Left

Operation:

```
ROTCL(long n) /* ROTCL Rn */
{
        long temp;
        if ((R[n]&0x80000000)==0) temp=0;
        else temp=1;
        R[n]<<=1;
        if (T==1) R[n]|=0x00000001;
        else R[n]&=0xFFFFFFFFE;
        if (temp==1) T=1;
        else T=0;
        PC+=2;
}
```


Example:

ROTCL RO
Before execution
$\mathrm{R} 0=\mathrm{H}^{\prime} 80000000, \mathrm{~T}=0$
After execution

$$
\mathrm{R} 0=\mathrm{H}^{\prime} 00000000, \mathrm{~T}=1
$$

6.47 ROTCR (Rotate with Carry Right): Shift Instruction

| Format | Abstract | Code | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ROTCR | Rn | $\mathrm{T} \rightarrow \mathrm{Rn} \rightarrow \mathrm{T}$ | 0100 nnnn 00100101 | 1 | LSB |

Description: Rotates the contents of general register Rn and the T bit to the right by one bit, and stores the result in Rn . The bit that is shifted out of the operand is transferred to the T bit (figure 6.4).

Figure 6.4 Rotate with Carry Right

Operation:

```
    ROTCR(long n) /* ROTCR Rn */
    {
        long temp;
        if ((R[n]&0x00000001)==0) temp=0;
        else temp=1;
        R[n]>>=1;
        if (T==1) R[n]|=0x80000000;
        else R[n]&=0x7FFFFFFF;
        if (temp==1) T=1;
        else T=0;
        PC+=2;
    }
```


Examples:

$\begin{array}{lll}\text { ROTCR } & \text { RO } & \begin{array}{l}\text { Before execution } \\ \text { After execution }\end{array}\end{array}$
$\mathrm{R} 0=\mathrm{H}^{\prime} 00000001, \mathrm{~T}=1$
$\mathrm{R} 0=\mathrm{H}^{\prime} 80000000, \mathrm{~T}=1$

6.48 ROTL (Rotate Left): Shift Instruction

| Format | Abstract | Code | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ROTL | Rn | $\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow \mathrm{MSB}$ | $0100 \mathrm{nnnn00000100}$ | 1 | MSB |

Description: Rotates the contents of general register Rn to the left by one bit, and stores the result in Rn (figure 6.5). The bit that is shifted out of the operand is transferred to the T bit.

Figure 6.5 Rotate Left

Operation:

```
ROTL(long n) /* ROTL Rn */
{
            if ((R[n]&0x80000000)==0) T=0;
            else T=1;
            R[n]<<=1;
            if (T==1) R[n]|=0x00000001;
            else R[n]&=0xFFFFFFFE;
            PC+=2;
}
```


Examples:

ROTL R0 Before execution $\quad \mathrm{R} 0=\mathrm{H}^{\prime} 80000000, \mathrm{~T}=0$
After execution $\quad \mathrm{R} 0=\mathrm{H}^{\prime} 00000001, \mathrm{~T}=1$

6.49 ROTR (Rotate Right): Shift Instruction

| Format | Abstract | Code | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ROTR | Rn | $\mathrm{LSB} \rightarrow \mathrm{Rn} \rightarrow \mathrm{T}$ | $0100 \mathrm{nnnn00000101}$ | 1 | LSB |

Description: Rotates the contents of general register Rn to the right by one bit, and stores the result in Rn (figure 6.6). The bit that is shifted out of the operand is transferred to the T bit.

Figure 6.6 Rotate Right

Operation:

```
    ROTR(long n) /* ROTR Rn */
    {
        if ((R[n]&0x00000001)==0) T=0;
        else T=1;
        R[n]>>=1;
        if (T==1) R[n]|=0x80000000;
        else R[n]&=0x7FFFFFFFF;
        PC+=2;
    }
```


Examples:

$$
\text { ROTR R0 Before execution } \quad \mathrm{R} 0=\mathrm{H}^{\prime} 00000001, \mathrm{~T}=0
$$

After execution $\mathrm{R} 0=\mathrm{H}^{\prime} 80000000, \mathrm{~T}=1$

6.50 RTE (Return from Exception): System Control Instruction

Class: Delayed branch instruction

| Format | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| RTE | Stack area \rightarrow PC/SR | 0000000000101011 | 4 | LSB |

Description: Returns from an interrupt routine. The PC and SR values are restored from the stack, and the program continues from the address specified by the restored PC value.

Note: Since this is a delayed branch instruction, the instruction after this RTE is executed before branching. No address errors and interrupts are accepted between this instruction and the next instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot instruction.

Operation:

```
RTE() /* RTE */
{
        unsigned long temp;
        temp=PC;
        PC=Read_Long(R[15])+4;
        R[15]+=4;
        SR=Read_Long(R[15])&0x000003F3;
        R[15]+=4;
        Delay_Slot(temp+2);
}
```


Example:

RTE Returns to the original routine
ADD \#8, R14 Executes ADD before branching

Note: With delayed branching, branching occurs after execution of the slot instruction. However, instructions such as register changes etc. are executed in the order of delayed branch instruction, then delay slot instruction. For example, even if the register in which the branch destination address has been loaded is changed by the delay slot instruction, the branch will still be made using the value of the register prior to the change as the branch destination address.

6.51 RTS (Return from Subroutine): Branch Instruction

Class: Delayed branch instruction

| Format | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| RTS | $\mathrm{PR} \rightarrow \mathrm{PC}$ | 0000000000001011 | 2 | - |

Description: Returns from a subroutine procedure. The PC values are restored from the PR, and the program continues from the address specified by the restored PC value. This instruction is used to return to the program from a subroutine program called by a BSR or JSR instruction.

Note: Since this is a delayed branch instruction, the instruction after this RTS is executed before branching. No address errors and interrupts are accepted between this instruction and the next instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot instruction.

Operation:

```
RTS() /* RTS */
{
        unsigned long temp;
        temp=PC;
        PC=PR+4;
        Delay_Slot(temp+2);
}
```


Example:

| MOV.L | TABLE, R3 | R3 = Address of TRGET |
| :---: | :---: | :---: |
| JSR | @R3 | Branches to TRGET |
| NOP | | Executes NOP before JSR |
| ADD | R0, R1 | \leftarrow Return address for when the subroutine procedure is completed (PR data) |
| .data. 1 | TRGET | Jump table |
| MOV | R1, R0 | \leftarrow Procedure entrance |
| RTS | | PR data \rightarrow PC |
| MOV | \#12,R0 | Executes MOV before branching |

Note: With delayed branching, branching occurs after execution of the slot instruction. However, instructions such as register changes etc. are executed in the order of delayed branch instruction, then delay slot instruction. For example, even if the register in which the branch destination address has been loaded is changed by the delay slot instruction, the branch will still be made using the value of the register prior to the change as the branch destination address.
6.52 SETT (Set T Bit): System Control Instruction

| Format | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SETT | $1 \rightarrow T$ | 0000000000011000 | 1 | 1 |

Description: Sets the T bit to 1 .

Operation:

```
    SETT() /* SETT */
    {
        T=1;
        PC+=2;
    }
```

Example:
SETT Before execution $T=0$
After execution $T=1$

6.53 SHAL (Shift Arithmetic Left): Shift Instruction

| Format | Abstract | Code | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SHAL | Rn | $\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow 0$ | $0100 \mathrm{nnnn00100000}$ | 1 | MSB |

Description: Arithmetically shifts the contents of general register Rn to the left by one bit, and stores the result in Rn . The bit that is shifted out of the operand is transferred to the T bit (figure 6.7).

Figure 6.7 Shift Arithmetic Left

Operation:

```
    SHAL(long n) /* SHAL Rn (Same as SHLL) */
    [
        if ((R[n]&0x80000000)==0) T=0;
        else T=1;
        R[n]<<=1;
        PC+=2;
    }
```


Example:

SHAL RO Before execution $\mathrm{R} 0=\mathrm{H}^{\prime} 80000001, \mathrm{~T}=0$
After execution $\quad \mathrm{R} 0=\mathrm{H}^{\prime} \mathbf{0} 0000002, \mathrm{~T}=1$

6.54 SHAR (Shift Arithmetic Right): Shift Instruction

| Format | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| SHAR | Rn | MSB $\rightarrow \mathrm{Rn} \rightarrow \mathrm{T}$ | 0100 nnnn 00100001 | 1 |

Description: Arithmetically shifts the contents of general register Rn to the right by one bit, and stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 6.8).

Figure 6.8 Shift Arithmetic Right

Operation:

```
SHAR(long n) /* SHAR Rn */
[
    long temp;
    if ((R[n]&0x00000001)==0) T=0;
    else T=1;
    if ((R[n]&0x80000000)==0) temp=0;
    else temp=1;
    R[n]>>=1;
    if (temp==1) R[n]|=0x80000000;
    else R[n]&=0x7FFFFFFF;
    PC+=2;
}
```

Example:
SHAR RO

| Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime} 80000001, \mathrm{~T}=0$ |
| :--- | :--- |
| After execution | $\mathrm{R} 0=\mathrm{H}^{\prime} \mathrm{C} 0000000, \mathrm{~T}=1$ |

6.55 SHLL (Shift Logical Left): Shift Instruction

| Format | Abstract | Code | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SHLL | Rn | $\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow 0$ | $0100 \mathrm{nnnn00000000}$ | 1 | MSB |

Description: Logically shifts the contents of general register Rn to the left by one bit, and stores the result in Rn . The bit that is shifted out of the operand is transferred to the T bit (figure 6.9).

Figure 6.9 Shift Logical Left

Operation:

```
    SHLL(long n) /* SHLL Rn (Same as SHAL) */
    {
        if ((R[n]&0x80000000)==0) T=0;
        else T=1;
        R[n]<<=1;
        PC+=2;
}
```


Examples:

SHLL R0 Before execution $\quad \mathrm{R} 0=\mathrm{H}^{\prime} 80000001, \mathrm{~T}=0$
After execution $\quad \mathrm{R} 0=\mathrm{H}^{\prime} 00000002, \mathrm{~T}=1$

6.56 SHLLn (Shift Logical Left n Bits): Shift Instruction

| Format | | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SHLL2 | Rn | $\mathrm{Rn} \ll 2 \rightarrow \mathrm{Rn}$ | $0100 \mathrm{nnnn00001000}$ | 1 | - |
| SHLL8 | Rn | $\mathrm{Rn} \ll 8 \rightarrow \mathrm{Rn}$ | $0100 \mathrm{nnnn00011000}$ | 1 | - |
| SHLL16 | Rn | $\mathrm{Rn} \ll 16 \rightarrow \mathrm{Rn}$ | $0100 \mathrm{nnnn00101000}$ | 1 | - |

Description: Logically shifts the contents of general register Rn to the left by 2,8 , or 16 bits, and stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 6.10).

Figure 6.10 Shift Logical Left n Bits

Operation:

```
    SHLL2(long n) /* SHLL2 Rn */
{
    R[n]<<=2;
    PC+=2;
}
```

```
SHLL8(long n) /* SHLL8 Rn */
{
        R[n]<<=8;
    PC+=2;
}
SHLL16(long n) /* SHLL16 Rn */
{
    R[n]<<=16;
    PC+=2;
}
```


Examples:

| SHLL2 | R0 | Before execution
 After execution | $\mathrm{R} 0=\mathrm{H}^{\prime} 12345678$
 RO$=\mathrm{H}^{\prime} 48 \mathrm{D} 159 \mathrm{E} 0$ |
| :--- | :--- | :--- | :--- |

6.57 SHLR (Shift Logical Right): Shift Instruction

| Format | Abstract | Code | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SHLR | Rn | $0 \rightarrow \mathrm{Rn} \rightarrow \mathrm{T}$ | $0100 \mathrm{nnnn00000001}$ | 1 | LSB |

Description: Logically shifts the contents of general register Rn to the right by one bit, and stores the result in Rn . The bit that is shifted out of the operand is transferred to the T bit (figure 6.11).

Figure 6.11 Shift Logical Right

Operation:

```
SHLR(long n) /* SHLR Rn */
{
            if ((R[n]&0x00000001)==0) T=0;
            else T=1;
            R[n]>>=1;
            R[n]&=0x7FFFFFFF;
            PC+=2;
}
```


Examples

SHLR RO
Before execution R0 $=\mathrm{H}^{\prime} 80000001, \mathrm{~T}=0$
After execution $\quad \mathrm{R} 0=\mathrm{H}^{\prime} 40000000, \mathrm{~T}=1$

6.58 SHLRn (Shift Logical Right n Bits): Shift Instruction

| Format | | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SHLR2 | $R n$ | $R n \gg 2 \rightarrow R n$ | $0100 n n n n 00001001$ | 1 | - |
| SHLR8 | $R n$ | $R n \gg 8 \rightarrow R n$ | $0100 n n n n 00011001$ | 1 | - |
| SHLR16 | $R n$ | $R n \gg 16 \rightarrow R n$ | $0100 n n n n 00101001$ | 1 | - |

Description: Logically shifts the contents of general register Rn to the right by 2,8 , or 16 bits, and stores the result in Rn . Bits that are shifted out of the operand are not stored (figure 6.12).

Figure 6.12 Shift Logical Right n Bits

Operation:

```
SHLR2(long n) /* SHLR2 Rn */
{
        R[n]>>=2;
        R[n]&=0x3FFFFFFF;
        PC+=2;
}
```

```
SHLR8(long n) /* SHLR8 Rn */
{
    R[n]>>=8;
    R[n]&=0x00FFFFFFF;
    PC+=2;
}
SHLR16(long n) /* SHLR16 Rn */
{
    R[n]>>=16;
    R[n]&=0x0000FFFF;
    PC+=2;
}
```


Examples:

| SHLR2 | R0 | Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime} 12345678$ |
| :--- | :--- | :--- | :--- |
| | | After execution | $\mathrm{R} 0=\mathrm{H}^{\prime} 048 \mathrm{D} 159 \mathrm{E}$ |
| SHLR8 | R0 | Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime} 12345678$ |
| | | After execution | $\mathrm{RO}=\mathrm{H}^{\prime} 00123456$ |
| SHLR16 | R0 | Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime} 12345678$ |
| | | After execution | $\mathrm{R} 0=\mathrm{H}^{\prime} 00001234$ |

6.59 SLEEP (Sleep): System Control Instruction

| Format | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| SLEEP | Sleep | 0000000000011011 | 3 | - |

Description: Sets the CPU into power-down mode. In power-down mode, instruction execution stops, but the CPU module state is maintained, and the CPU waits for an interrupt request. If an interrupt is requested, the CPU exits the power-down mode and begins exception processing.

Note: The number of cycles given is for the transition to sleep mode.

Operation:

```
SLEEP()/* SLEEP */
{
            PC-=2;
        Wait_for_exception;
}
```

Example:
SLEEP Transits power-down mode

6.60 STC (Store Control Register): System Control Instruction

Class: Interrupt disabled instruction

| Format | | Abstract | Code | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STC | SR,Rn | $\mathrm{SR} \rightarrow \mathrm{Rn}$ | $0000 \mathrm{nnnn00000010}$ | 1 | - |
| STC | GBR, Rn | GBR \rightarrow Rn | 0000 nnnn 00010010 | 1 | - |
| STC | VBR, Rn | VBR \rightarrow Rn | 0000 nnnn 00100010 | 1 | - |
| STC.L | SR, @-Rn | $\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{SR} \rightarrow(\mathrm{Rn})$ | 0100 nnnn 00000011 | 2 | - |
| STC.L | GBR, ©-Rn | $\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{GBR} \rightarrow(\mathrm{Rn})$ | 0100 nnnn 00010011 | 2 | - |
| STC.L | VBR, ©-Rn | $\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{VBR} \rightarrow(\mathrm{Rn})$ | 0100 nnnn 00100011 | 2 | - |

Description: Stores control registers SR, GBR, or VBR data into a specified destination.
Note: No interrupts are accepted between this instruction and the next instruction. Address errors are accepted.

Operation:

```
STCSR(long n) /* STC SR,Rn */
{
        R[n]=SR;
        PC+=2;
}
STCGBR(long n) /* STC GBR,Rn */
{
        R[n]=GBR;
        PC+=2;
}
STCVBR(long n) /* STC VBR,Rn */
{
        R[n]=VBR;
        PC+=2;
}
```

```
STCMSR(long n) /* STC.L SR,@-Rn */
{
        R[n]-=4;
        Write_Long(R[n],SR);
        PC+=2;
}
STCMGBR(long n) /* STC.L GBR,@-Rn */
{
        R[n]-=4;
        Write_Long(R[n],GBR);
        PC+=2;
}
STCMVBR(long n) /* STC.L VBR,@-Rn */
{
        R[n]-=4;
        Write_Long(R[n],VBR);
        PC+=2;
}
```


Examples

| STC | SR,R0 | Before execution | R0 $=H^{\prime}$ FFFFFFFF, SR $=H^{\prime} 00000000$ |
| :--- | :--- | :--- | :--- |
| | | After execution | R0 $=H^{\prime} 00000000$ |
| STC.L | GBR, @-R15 | Before execution | R15 $=H^{\prime} 10000004$ |
| | | After execution | R15 $=H^{\prime} 10000000, @ R 15=$ GBR |

6.61 STS (Store System Register): System Control Instruction

Class: Interrupt disabled instruction

| Format | | Abstract | Code | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| STS | MACH, Rn | $\mathrm{MACH} \rightarrow \mathrm{Rn}$ | 0000nnnn00001010 | 1 | - |
| STS | MACL, Rn | $\mathrm{MACL} \rightarrow \mathrm{Rn}$ | $0000 \mathrm{nnnn00011010}$ | 1 | - |
| STS | PR,Rn | $\mathrm{PR} \rightarrow \mathrm{Rn}$ | 0000 nnnn 00101010 | 1 | - |
| STS.L | MACH, @-Rn | $\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{MACH} \rightarrow(\mathrm{Rn})$ | 0100nnnn00000010 | 1 | - |
| STS.L | MACL, @-Rn | $\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{MACL} \rightarrow(\mathrm{Rn})$ | 0100 nnnn 00010010 | 1 | - |
| STS.L | PR, @-Rn | $\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{PR} \rightarrow(\mathrm{Rn})$ | 0100nnnn00100010 | 1 | - |

Description: Stores system registers MACH, MACL and PR data into a specified destination.
Note: No interrupts are accepted between this instruction and the next instruction. Address errors are accepted.

If the system register is MACH in the $\mathrm{SH}-1$ series, the value of bit 9 is transferred to and stored in the higher 22 bits (bits 31 to 10) of the destination. With the SH-2 series, the 32 bits of MACH are stored directly.

Operation:

```
    STSMACH(long n) /* STS MACH,Rn */
    [
        R[n]=MACH;
    if ((R[n]&0x00000200)==0)
    R[n]&=0x000003FF;
    else R[n]|=0xFFFFFC00;
        PC+=2;
    }
    STSMACL(long n) /* STS MACL,Rn */
    {
        R[n]=MACL;
        PC+=2;
    }
```

For SH-1 CPU (these 2 lines not needed for SH-2 CPU)

```
STSPR(long n) /* STS PR,Rn */
{
    R[n]=PR;
    PC+=2;
}
STSMMACH(long n) /* STS.L MACH,@-Rn */
{
    R[n]-=4;
```

if $(($ MACH $\& 0 \times 00000200)==0)$
Write_Long (R[n],MACH\&0x000003FF);
For SH-1 CPU
else Write_Long
($\mathrm{R}[\mathrm{n}]$, MACH|0xFFFFFC00)

```
Write_Long(R[n], MACH);
```

```
    PC+=2;
}
```

STSMMACL(long n) /* STS.L MACL, @-Rn */
[
R[n]-=4;
Write_Long(R[n],MACL);
PC+=2;
\}
STSMPR(long n) /* STS.L PR,@-Rn */
[
R[n]-=4;
Write_Long(R[n], PR);
PC+=2;
\}

Example:

| STS | MACH,R0 | Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime} \mathrm{FFFFFFFF}, \mathrm{MACH}=\mathrm{H}^{\prime} 00000000$ |
| :--- | :--- | :--- | :--- |
| | | After execution | $\mathrm{R} 0=\mathrm{H}^{\prime} 00000000$ |
| STS.L | PR, @-R15 | Before execution | $\mathrm{R} 15=\mathrm{H}^{\prime} 10000004$ |
| | | After execution | R15 $=\mathrm{H}^{\prime} 10000000, @ \mathrm{R} 15=\mathrm{PR}$ |

6.62 SUB (Subtract Binary): Arithmetic Instruction

| Format | Abstract | Code | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SUB | Rm, Rn | $\mathrm{Rn}-\mathrm{Rm} \rightarrow \mathrm{Rn}$ | 0011nnnnmmmm1000 | 1 | - |

Description: Subtracts general register Rm data from Rn data, and stores the result in Rn . To subtract immediate data, use ADD \#imm,Rn.

Operation:

```
    SUB(long m,long n) /* SUB Rm,Rn */
    {
        R[n]-=R[m];
        PC+=2;
    }
```

Example:

| SUB | $R 0, R 1$ | Before execution |
| :--- | :--- | :--- |
| | After execution | $\mathrm{H}^{\prime} \mathrm{H}^{\prime} 00000001, \mathrm{R} 1=\mathrm{H}^{\prime} 80000000$ |
| $\mathrm{R} 1=\mathrm{H}^{\prime} 7 \mathrm{FFFFFFF}$ | | |

6.63 SUBC (Subtract with Carry): Arithmetic Instruction

| Format | Abstract | Code | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SUBC | Rm, Rn | $\mathrm{Rn}-\mathrm{Rm}-\mathrm{T} \rightarrow \mathrm{Rn}$, Borrow $\rightarrow \mathrm{T}$ | 0011 nnnnmmmm1010 | 1 | Borrow |

Description: Subtracts Rm data and the T bit value from general register Rn , and stores the result in Rn. The T bit changes according to the result. This instruction is used for subtraction of data that has more than 32 bits.

Operation:

```
SUBC(long m,long n) /* SUBC Rm,Rn */
{
    unsigned long tmp0,tmp1;
    tmp1=R[n]-R[m];
    tmp0=R[n];
    R[n]=tmp1-T;
    if (tmp0<tmp1) T=1;
    else T=0;
    if (tmp1<R[n]) T=1;
    PC+=2;
}
```


Examples:

| CLRT | | R0:R1(64 bits) $-\mathrm{R} 2: \mathrm{R} 3(64$ bits $)=\mathrm{R} 0: \mathrm{R} 1(64$ bits) | |
| :--- | :--- | :--- | :--- |
| SUBC | R3, R1 | Before execution | $\mathrm{T}=0, \mathrm{R} 1=\mathrm{H}^{\prime} 00000000, \mathrm{R} 3=\mathrm{H}^{\prime} 00000001$ |
| | | After execution | $\mathrm{T}=1, \mathrm{R} 1=\mathrm{H}^{\prime} \mathrm{FFFFFFFF}$ |
| SUBC | R2, R0 | Before execution | $\mathrm{T}=1, \mathrm{R} 0=\mathrm{H}^{\prime} 00000000, \mathrm{R} 2=\mathrm{H}^{\prime} 00000000$ |
| | | After execution | $\mathrm{T}=1, \mathrm{R} 0=\mathrm{H}^{\prime} \mathrm{FFFFFFFF}$ |

6.64 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction

| Format | Abstract | Code | State | TBit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SUBV | Rm, Rn | $\mathrm{Rn}-\mathrm{Rm} \rightarrow \mathrm{Rn}$, Underflow $\rightarrow \mathrm{T}$ | $0011 \mathrm{nnnnnmmmm1011}$ | 1 | Underflow |

Description: Subtracts Rm data from general register Rn data, and stores the result in Rn . If an underflow occurs, the T bit is set to 1 .

Operation:

```
SUBV(long m,long n) /* SUBV Rm,Rn */
{
    long dest,src,ans;
    if ((long)R[n]>=0) dest=0;
    else dest=1;
    if ((long)R[m]>=0) src=0;
    else src=1;
    src+=dest;
    R[n]-=R[m];
    if ((long)R[n]>=0) ans=0;
    else ans=1;
    ans+=dest;
    if (src==1) {
        if (ans==1) T=1;
        else T=0;
        }
        else T=0;
        PC+=2;
}
```


Examples:

| SUBV | R0, R1 | Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime} 00000002, \mathrm{R} 1=\mathrm{H}^{\prime} 80000001$ |
| :--- | :--- | :--- | :--- |
| | | After execution | $\mathrm{R} 1=\mathrm{H}^{\prime} 7 \mathrm{FFFFFFF}, \mathrm{T}=1$ |

| Format | | Abstract | Code | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SWAP.B | Rm, Rn | $\mathrm{Rm} \rightarrow$ Swap upper and lower halves of lower 2 bytes $\rightarrow \mathrm{Rn}$ | 0110nnnnmmmm1000 | 1 | - |
| SWAP.W | Rm, Rn | $\mathrm{Rm} \rightarrow$ Swap upper and lower word \rightarrow Rn | 0110 nnnnmmmm1001 | 1 | - |

Description: Swaps the upper and lower bytes of the general register Rm data, and stores the result in Rn. If a byte is specified, bits 0 to 7 of Rm are swapped for bits 8 to 15 . The upper 16 bits of Rm are transferred to the upper 16 bits of Rn . If a word is specified, bits 0 to 15 of Rm are swapped for bits 16 to 31 .

Operation:

```
SWAPB(long m,long n) /* SWAP.B Rm,Rn */
[
        unsigned long temp0,temp1;
        temp0=R[m]&0xfffff0000;
        temp1=(R[m]&0x000000ff)<<8;
        R[n]=(R[m]>>8)&0x000000ff;
        R[n]=R[n]|temp1|temp0;
        PC+=2;
}
SWAPW(long m,long n) /* SWAP.W Rm,Rn */
{
        unsigned long temp;
        temp=(R[m]>>16)&0x0000FFFF;
        R[n]=R[m]<<16;
        R[n]|=temp;
        PC+=2;
}
```


Examples

| SWAP.B | $\mathrm{R} 0, \mathrm{R} 1$ | Before execution

 SWAP.W | $\mathrm{R} 0=\mathrm{H}=\mathrm{H}^{\prime} 12345678$ |
| :--- | :--- | :--- | :--- |
| | | Before execution | $\mathrm{R} 1=\mathrm{H}^{\prime} 12347856$ |
| | | After execution | $\mathrm{R} 0=\mathrm{H}^{\prime} 12345678$ |
| $\mathrm{R} 1=\mathrm{H}^{\prime} 56781234$ | | | |

6.66 TAS (Test and Set): Logic Operation Instruction

| Format | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| TAS.B | @Rn | When $(R n)$ is $0,1 \rightarrow \mathrm{~T}, 1 \rightarrow \mathrm{MSB}$ of $(R n)$ | $0100 \mathrm{nnnn00011011}$ | 4 |

Description: Reads byte data from the address specified by general register Rn, and sets the T bit to 1 if the data is 0 , or clears the T bit to 0 if the data is not 0 . Then, data bit 7 is set to 1 , and the data is written to the address specified by Rn. During this operation, the bus is not released.

Operation:

```
TAS(long n) /* TAS.B @Rn */
{
    long temp;
    temp=(long)Read_Byte(R[n]); /* Bus Lock enable */
    if (temp==0) T=1;
    else T=0;
    temp|=0x00000080;
    Write_Byte(R[n],temp); /* Bus Lock disable */
    PC+=2;
}
```

Example:

| _LOOP | TAS.B | @R7 | R7 $=1000$ |
| :--- | :--- | :--- | :--- |
| | BF | _LOOP | Loops until data in address 1000 is 0 |

6.67 TRAPA (Trap Always): System Control Instruction

| Format | Abstract | Code | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| TRAPA | \#imm | PC/SR \rightarrow Stack area, (imm $\times 4+$
 VBR $) \rightarrow$ PC | 11000011 iiiiiiii | 8 | - |

Description: Starts the trap exception processing. The PC and SR values are stored on the stack, and the program branches to an address specified by the vector. The vector is a memory address obtained by zero-extending the 8 -bit immediate data and then quadrupling it. The PC points the starting address of the next instruction. TRAPA and RTE are both used for system calls.

Operation:

```
TRAPA(long i) /* TRAPA #imm */
{
        long imm;
        imm=(0x000000FF & i);
        R[15]-=4;
        Write_Long(R[15],SR);
        R[15]-=4;
        Write_Long(R[15],PC-2);
        PC=Read_Long(VBR+(imm<<2)) +4;
}
```

Example:

```
Address
```

VBR+H'80 .data. 1
TRAPA \#H'20 Branches to an address specified by data in address VBR +
H'80
TST \#0,R0 \leftarrow Return address from the trap routine (stacked PC value)

| 100000000 | XOR | R0,R0 | \leftarrow Trap routine entrance |
| :--- | :--- | :--- | :--- |
| 100000002 | RTE | | Returns to the TST instruction |
| 100000004 | NOP | | Executes NOP before RTE |

6.68 TST (Test Logical): Logic Operation Instruction

| Format | Abstract | Code | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| TST | Rm, Rn | Rn \& Rm, when result is | 0010 nnnnmmm1000 | 1 | Test |
| | | $0,1 \rightarrow T$ | | | |

Description: Logically ANDs the contents of general registers Rn and Rm , and sets the T bit to 1 if the result is 0 or clears the T bit to 0 if the result is not 0 . The Rn data does not change. The contents of general register R0 can also be ANDed with zero-extended 8 -bit immediate data, or the contents of 8 -bit memory accessed by indirect indexed GBR addressing can be ANDed with 8-bit immediate data. The R0 and memory data do not change.

Operation:

```
TST(long m,long n) /* TST Rm,Rn */
{
        if ((R[n]&R[m])==0) T=1;
        else T=0;
        PC+=2;
}
TSTI(long i) /* TEST #imm,RO */
{
        long temp;
        temp=R[0]&(0x000000FF & (long)i);
        if (temp==0) T=1;
        else T=0;
        PC+=2;
    }
    TSTM(long i) /* TST.B #imm,@(R0,GBR) */
{
        long temp;
```

```
            temp=(long)Read_Byte(GBR+R[0]);
            temp&=(0x000000FF & (long)i);
            if (temp==0) T=1;
            else T=0;
            PC+=2;
}
```


Examples:

| TST | R0,R0 | Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime} 00000000$ |
| :--- | :--- | :--- | :--- |
| | | After execution | $\mathrm{T}=1$ |
| TST | \# $\mathrm{H}^{\prime} 80, \mathrm{R} 0$ | Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime} \mathrm{FFFFFF} 7 \mathrm{~F}$ |
| | | After execution | $\mathrm{T}=1$ |
| TST.B \#H'A5,@(R0,GBR) | Before execution | @(R0,GBR) = H'A5 | |
| | | After execution | $\mathrm{T}=0$ |

6.69 XOR (Exclusive OR Logical): Logic Operation Instruction

| Format | | Abstract | Code | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| XOR | Rm, Rn | $\mathrm{Rn} \wedge \mathrm{Rm} \rightarrow \mathrm{Rn}$ | 0010nnnnmmmm1010 | 1 | - |
| XOR | \#imm, R0 | $\mathrm{RO} \wedge \mathrm{imm} \rightarrow \mathrm{RO}$ | 11001010iiiiiiii | 1 | - |
| XOR.B | \#imm, @(R0, GBR) | $\begin{aligned} & (R 0+G B R)^{\wedge} \mathrm{imm} \rightarrow(\mathrm{RO} \\ & +G B R) \end{aligned}$ | 11001110iiiiiiii | 3 | - |

Description: Exclusive ORs the contents of general registers Rn and Rm , and stores the result in Rn . The contents of general register R0 can also be exclusive ORed with zero-extended 8-bit immediate data, or 8-bit memory accessed by indirect indexed GBR addressing can be exclusive ORed with 8-bit immediate data.

Operation:

```
XOR(long m,long n)/* XOR Rm,Rn */
{
    R[n]^=R[m];
    PC+=2;
}
XORI(long i) /* XOR #imm,RO */
{
    R[0]^=(0x000000FF & (long)i);
    PC+=2;
}
XORM(long i) /* XOR.B #imm,@(RO,GBR) */
[
    long temp;
    temp=(long)Read_Byte(GBR+R[0]);
    temp^=(0x000000FF & (long)i);
    Write_Byte(GBR+R[0],temp);
    PC+=2;
}
```


Examples:

| XOR | R0, R1 | Before execution | $\mathrm{R} 0=\mathrm{H}^{\prime} \mathrm{AAAAAAAA}, \mathrm{R} 1=\mathrm{H}^{\prime} 55555555$ |
| :---: | :---: | :---: | :---: |
| | | After execution | $\mathrm{R} 1=\mathrm{H}^{\prime} \mathrm{FFFFFFFFF}$ |
| XOR | \#H'F0,R0 | Before execution | R0 $=\mathrm{H}^{\prime}$ 'FFFFFFFF |
| | | After execution | $\mathrm{R} 0=\mathrm{H}^{\prime} \mathrm{FFFFFFF} 0 \mathrm{~F}$ |
| XOR.B | \#H'A5, @(R0, GBR) | Before execution | @ (R0,GBR) = H'A5 |
| | | After execution | $@(R 0, G B R)=H^{\prime} 00$ |

6.70 XTRCT (Extract): Data Transfer Instruction

| Format | Abstract | Code | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| XTRCT | Rm, Rn | Center 32 bits of Rm and $\mathrm{Rn} \rightarrow$
 Rn | 0010 nnnnmmmm1101 | 1 |

Description: Extracts the middle 32 bits from the 64 bits of general registers Rm and Rn, and stores the 32 bits in Rn (figure 6.13).

Figure 6.13 Extract

Operation:

```
    XTRCT(long m,long n) /* XTRCT Rm,Rn */
    {
        unsigned long temp;
    temp=(R[m]<<16)&0xFFFF0000;
        R[n]=(R[n]>>16)&0x0000FFFF;
        R[n]|=temp;
        PC+=2;
}
```

Example:
XTRCT. R0,R1 Before execution $\mathrm{R} 0=\mathrm{H}^{\prime} 01234567, \mathrm{R} 1=\mathrm{H}^{\prime} 89 \mathrm{ABCDEF}$
After execution $\quad \mathrm{R} 1=\mathrm{H}^{\prime} 456789 \mathrm{AB}$

Section 7 Pipeline Operation

This section describes the operation of the pipelines for each instruction. This information is provided to allow calculation of the required number of CPU instruction execution states (system clock cycles).

7.1 Basic Configuration of Pipelines

Pipelines are composed of the following five stages:

- IF (Instruction fetch) Fetches an instruction from the memory in which the program is stored.
- ID (Instruction decode)

Decodes the instruction fetched.

- EX (Instruction execution)
- MA (Memory access)
- WB (Write back)

Performs data operations and address calculations according to the results of decoding.

Accesses data in memory. Generated by instructions that involve memory access, with some exceptions.
Returns the results of the memory access (data) to a register.
Generated by instructions that involve memory loads, with some exceptions.
As shown in figure 7.1, these stages flow with the execution of the instructions and thereby constitute a pipeline. At a given instant, five instructions are being executed simultaneously. All instructions have at least 3 stages: IF, ID, and EX. Most, but not all, have stages MA and WB as well. The way the pipeline flows also varies with the type of instruction. The basic pipeline flow is as shown in figure 7.1; some pipelines differ, however, because of contention between IF and MA. In figure 7.1, the period in which a single stage is operating is called a slot.

Figure 7.1 Basic Structure of Pipeline Flow

7.2 Slot and Pipeline Flow

The time period in which a single stage operates is called a slot. Slots must follow the rules described below.

7.2.1 Instruction Execution

Each stage (IF, ID, EX, MA, and WB) of an instruction must be executed in one slot. Two or more stages cannot be executed within one slot (figure 7.2), with exception of WB and MA. Since WB is executed immediately after MA, however, some instructions may execute MA and WB within the same slot.

Figure 7.2 Impossible Pipeline Flow 1

7.2.2 Slot Sharing

A maximum of one stage from another instruction may be set per slot, and that stage must be different from the stage of the first instruction. Identical stages from two different instructions may never be executed within the same slot (figure 7.3).

Figure 7.3 Impossible Pipeline Flow 2

7.2.3 Slot Length

The number of states (system clock cycles) S for the execution of one slot is calculated with the following conditions:

- $S=$ (the cycles of the stage with the highest number of cycles of all instruction stages contained in the slot)

This means that the instruction with the longest stage stalls others with shorter stages.

- The number of execution cycles for each stage:
- IF The number of memory access cycles for instruction fetch
- ID Always one cycle
- EX Always one cycle
- MA The number of memory access cycles for data access
- WB Always one cycle

As an example, figure 7.4 shows the flow of a pipeline in which the IF (memory access for instruction fetch) of instructions 1 and 2 are two cycles, the MA (memory access for data access) of instruction 1 is three cycles and all others are one cycle. The dashes indicate the instruction is being stalled.

Figure 7.4 Slots Requiring Multiple Cycles

7.3 Number of Instruction Execution States

The number of instruction execution states is counted as the interval between execution of EX stages. The number of states between the start of the EX stage for instruction 1 and the start of the EX stage for the following instruction (instruction 2) is the execution time for instruction 1.

For example, in a pipeline flow like that shown in figure 7.5, the EX stage interval between instructions 1 and 2 is five cycles, so the execution time for instruction 1 is five cycles. Since the interval between EX stages for instructions 2 and 3 is one state, the execution time of instruction 2 is one state.

If a program ends with instruction 3, the execution time for instruction 3 should be calculated as the interval between the EX stage of instruction 3 and the EX stage of a hypothetical instruction 4, using an MOV Rm, Rn that follows instruction 3. (In the case of figure 7.5, the execution time of instruction 3 would thus be one cycle.) In this example, the MA of instruction 1 and the IF of instruction 4 are in contention. For operation during the contention between the MA and IF, see section 7.4, Contention Between Instruction Fetch (IF) and Memory Access (MA). The execution time between instructions 1 and 3 in figure 7.5 is seven states $(5+1+1)$.

Figure 7.5 How Instruction Execution States Are Counted

7.4 Contention Between Instruction Fetch (IF) and Memory Access (MA)

7.4.1 Basic Operation When IF and MA are in Contention

The IF and MA stages both access memory, so they cannot operate simultaneously. When the IF and MA stages both try to access memory within the same slot, the slot splits as shown in figure 7.6. When there is a WB, it is executed immediately after the MA ends.

Figure 7.6 Operation When IF and MA Are in Contention
The slots in which MA and IF contend are split. MA is given priority to execute in the first half (when there is a WB, it immediately follows the MA), and the EX, ID, and IF are executed simultaneously in the latter half. For example, in figure 7.6 the MA of instruction 1 is executed in slot D while the EX of instruction 2, the ID of instruction 3 and IF of instruction 4 are executed simultaneously thereafter. In slot E, the MA of instruction 2 is given priority and the EX of instruction 3, the ID of instruction 4 and the IF of instruction 5 executed thereafter.

The number of states for a slot in which MA and IF are in contention is the sum of the number of memory access cycles for the MA and the number of memory access cycles for the IF.

7.4.2 The Relationship Between IF and the Location of Instructions in On-Chip ROM/RAM or On-Chip Memory

When the instruction is located in the on-chip memory (ROM or RAM) or on-chip cache of the SH microcomputer, the SH microcomputer accesses the on-chip memory in 32-bit units. The SH microcomputer instructions are all fixed at 16 bits, so basically 2 instructions can be fetched in a single IF stage access.

If an instruction is located on a longword boundary, an IF can get two instructions at each instruction fetch. The IF of the next instruction does not generate a bus cycle to fetch an instruction from memory. Since the next instruction IF also fetches two instructions, the instruction IFs after that do not generate a bus cycle either.

This means that IFs of instructions that are located so they start from the longword boundaries within instructions located in on-chip memory (the position when the bottom two bits of the instruction address are 00 is $\mathrm{A} 1=0$ and $\mathrm{A} 0=0$) also fetch two instructions. The IF of the next instruction does not generate a bus cycle. IFs that do not generate bus cycles are written in lower case as 'if'. These 'if's always take one state.

When branching results in a fetch from an instruction located so it starts from the word boundaries (the position when the bottom two bits of the instruction address are 10 is $\mathrm{A} 1=1, \mathrm{~A} 0=0$), the bus cycle of the IF fetches only the specified instruction more than one of said instructions. The IF of the next instruction thus generates a bus cycle, and fetches two instructions. Figure 7.7 illustrates these operations.

Figure 7.7 Relationship Between IF and Location of Instructions in On-Chip Memory

7.4.3 Relationship Between Position of Instructions Located in On-Chip ROM/RAM or On-Chip Memory and Contention Between IF and MA

When an instruction is located in on-chip memory (ROM/RAM) or on-chip cache, there are instruction fetch stages ('if' written in lower case) that do not generate bus cycles as explained in section 7.4.2 above. When an if is in contention with an MA, the slot will not split, as it does when an IF and an MA are in contention, because ifs and MAs can be executed simultaneously. Such slots execute in the number of states the MA requires for memory access, as illustrated in figure 7.8.

When programming, avoid contention of MA and IF whenever possible and pair MAs with ifs to increase the instruction execution speed. Instructions that have 4 (5)-stage pipelines of IF, ID, EX, MA, (WB) prevent stalls when they start from the longword boundaries in on-chip memory (the
position when the bottom 2 bits of instruction address are 00 is $\mathrm{A} 1=0$ and $\mathrm{A} 0=0$) because the MA of the instruction falls in the same slot as ifs that follow.

Figure 7.8 Relationship Between the Location of Instructions in On-Chip Memory and Contention Between IF and MA

7.5 Effects of Memory Load Instructions on Pipelines

Instructions that involve loading from memory return data to the destination register during the WB stage that comes at the end of the pipeline. The WB stage of such a load instruction (load instruction 1) will thus come after the EX stage of the instruction that immediately follows it (instruction 2).

When instruction 2 uses the same destination register as load instruction 1 , the contents of that register will not be ready, so any slot containing the MA of instruction 1 and EX of instruction 2 will split. The destination register of load instruction 1 is the same as the destination (not the source) of instruction 2 , so it splits.

When the destination of load instruction 1 is the status register (SR) and the flag in it is fetched by instruction 2 (as ADDC does), a split occurs. No split occurs, however, in the following cases:

- When instruction 2 is a load instruction and its destination is the same as that of load instruction 1.
- When instruction 2 is Mac @Rm+, @Rn+, and the destination of load instruction 1 are the same.

The number of states in the slot generated by the split is the number of MA cycles plus the number of IF (or if) cycles, as illustrated in figure 7.9. This means the execution speed will be lowered if the instruction that will use the results of the load instruction is placed immediately after the load instruction. The instruction that uses the result of the load instruction will not slow down the program if placed one or more instructions after the load instruction.

Figure 7.9 Effects of Memory Load Instructions on the Pipeline

7.6 Programming Guide

To improve instruction execution speed, consider the following when programming:

- To prevent contention between MA and IF, locate instructions that have MA stages so they start from the longword boundaries of on-chip memory (the position when the bottom two bits of the instruction address are 00 is $\mathrm{A} 1=0$ and $\mathrm{A} 0=0$) wherever possible.
- The instruction that immediately follows an instruction that loads from memory should not use the same destination register as the load instruction.
- Locate instructions that use the multiplier nonconsecutively. Also locate nonconsecutively an access to the MACH or MACL register for fetching the results from the multiplier and an instruction that uses the multiplier.

7.7 Operation of Instruction Pipelines

This section describes the operation of the instruction pipelines. By combining these with the rules described so far, the way pipelines flow in a program and the number of instruction execution states can be calculated.

In the following figures, "Instruction A" refers to the instruction being described. When "IF" is written in the instruction fetch stage, it may refer to either "IF" or "if". When there is contention between IF and MA, the slot will split, but the manner of the split is not described in the tables, with a few exceptions. When a slot has split, see section 7.4, Contention Between Instruction Fetch (IF) and Memory Access (MA). Base your response on the rules for pipeline operation given there.

Table 7.1 lists the format for number of instruction stages and execution states:
Table 7.1 Format for the Number of Stages and Execution States for Instructions

| Type | Category | Stage | State | Contention | Instruction |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Functional | Instruction | Number | Number | Contention that | Corresponding instructions |
| types | s are | of | of | occurs | represented by mnemonic |
| | catego- | stages | execu- | | |
| | rized | in an | tion | | |
| | based on | instruc- | states | | |
| | operations | tion | when | | |
| | | | no | | |
| | | | conten- | | |
| | | | tion | | |
| | | | | | |
| | | | | | |

Table 7.2 Number of Instruction Stages and Execution States

| Type | Category | Stage | State | Contention | Instruction | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Data | Register- | 3 | 1 | - | MOV | \#imm,Rn |
| transfer | register | | | | MOV | Rm, Rn |
| instructions | transfer | | | | | |
| | instructions | | | | MOVA | @(disp, PC), RO |
| | | | | | MOVT | Rn |
| | | | | SWAP.B | Rm, Rn | |
| | | | | SWAP.W | Rm, Rn | |
| | | | | XTRCT | Rm, Rn | |

Table 7.2 Number of Instruction Stages and Execution States (cont)

| Type | Category | Stage | State | Contention | Instruc | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Data transfer instructions (cont) | Memory load instructions | 5 | 1 | - Contention occurs if the instruction placed immediately after this one uses the same destination register
 - MA contends with IF | MOV.W | @(disp, PC), Rn |
| | | | | | MOV.L | @(disp, PC), Rn |
| | | | | | MOV.B | @Rm, Rn |
| | | | | | MOV.W | @Rm, Rn |
| | | | | | MOV.L | @Rm, Rn |
| | | | | | MOV.B | @Rm+, Rn |
| | | | | | MOV.W | @Rm+, Rn |
| | | | | | MOV.L | @Rm+, Rn |
| | | | | | MOV.B | @(disp, Rm), R0 |
| | | | | | MOV.w | @(disp, Rm), R0 |
| | | | | | MOV.L | @(disp, Rm), Rn |
| | | | | | MOV.B | @(R0, Rm) , Rn |
| | | | | | MOV.W | @(R0,Rm), Rn |
| | | | | | MOV.L | @(R0, Rm), Rn |
| | | | | | MOV.B | @(disp, GBR), R0 |
| | | | | | MOV.W | @(disp, GBR) , R0 |
| | | | | | MOV.L | @(disp, GBR), R0 |
| | Memory store instructions | 4 | 1 | - MA contends with IF | MOV.B | $\mathrm{Rm}, @ \mathrm{Rn}$ |
| | | | | | MOV.W | $\mathrm{Rm}, @ \mathrm{Rn}$ |
| | | | | | MOV.L | $\mathrm{Rm}, @ \mathrm{Rn}$ |
| | | | | | MOV.B | Rm, ©-Rn |
| | | | | | MOV.W | Rm, ©-Rn |
| | | | | | MOV.L | Rm, @-Rn |
| | | | | | MOV.B | R0, @(disp, Rn) |
| | | | | | MOV.w | R0,@(disp,Rn) |
| | | | | | MOV.L | Rm, @(disp, Rn) |
| | | | | | MOV.B | $\mathrm{Rm}, @(\mathrm{RO}, \mathrm{Rn})$ |
| | | | | | MOV.w | $\mathrm{Rm}, @(\mathrm{RO}, \mathrm{Rn})$ |
| | | | | | MOV.L | $\mathrm{Rm}, @(\mathrm{RO}, \mathrm{Rn})$ |
| | | | | | MOV.B | RO, @(disp, GBR) |
| | | | | | MOV.W | R0, @(disp, GBR) |
| | | | | | MOV.L | R0, @(disp, GBR) |

Table 7.2 Number of Instruction Stages and Execution States (cont)

| Type | Category | Stage | State | Contention | Instructio | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Arithmetic instructions | Arithmetic instructions between registers (except multiplication instructions) | 3 | 1 | - | ADD | Rm, Rn |
| | | | | | ADD | \#imm, Rn |
| | | | | | ADDC | Rm, Rn |
| | | | | | ADDV | Rm, Rn |
| | | | | | CMP/EQ | \#imm,R0 |
| | | | | | CMP/EQ | Rm, Rn |
| | | | | | CMP/HS | Rm, Rn |
| | | | | | CMP/GE | Rm, Rn |
| | | | | | CMP/HI | Rm, Rn |
| | | | | | CMP/GT | Rm, Rn |
| | | | | | CMP/PZ | Rn |
| | | | | | CMP/PL | Rn |
| | | | | | CMP/STR | Rm, Rn |
| | | | | | DIV1 | Rm, Rn |
| | | | | | DIVOS | Rm, Rn |
| | | | | | divou | |
| | | | | | DT | $\mathrm{Rn} *^{3}$ |
| | | | | | Exts.b | Rm, Rn |
| | | | | | Exts.w | Rm, Rn |
| | | | | | Extu.b | Rm, Rn |
| | | | | | EXTU.W | Rm, Rn |
| | | | | | NEG | Rm, Rn |
| | | | | | NEGC | Rm, Rn |
| | | | | | SUB | Rm, Rn |
| | | | | | SUBC | Rm, Rn |
| | | | | | SUBV | Rm, Rn |
| | Multiply/ accumulate instructions | 7/8*1 | 3/(2)*2 | - Multiplier contention occurs when an instruction that uses the multiplier follows a MAC instruction | MAC.W | @Rm+, @Rn+ |
| | | | | - MA contends with IF | | |

Notes 1. In the SH-2 CPU, multiply/accumulate instructions are 7 stages, multiply instructions 6 stages; in the SH-1 CPU, multiply/accumulate instructions are 8 stages, multiply instructions 7 stages
2. The normal minimum number of execution states (The number in parentheses is the number of states when there is contention with preceding/following instructions)
3. SH-2 CPU instructions

Table 7.2 Number of Instruction Stages and Execution States (cont)

| Type | Category | Stage | State | Contention | Instructio | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Arithmetic instructions (cont) | Doublelength multiply/ accumulate instruction (SH-2 CPU only) | 9 | $\begin{aligned} & 3 /(2 \text { to } \\ & 4)^{\star 2} \end{aligned}$ | - Multiplier contention occurs when an instruction that uses the multiplier follows a MAC instruction
 - MA contends with IF | MAC.L | @Rm+, @Rn+*3 |
| | Multiplication instructions | $6 / 7^{* 1}$ | 1 to 3*2 | - Multiplier contention occurs when an instruction that uses the multiplier follows a MUL instruction
 - MA contends with IF | MULS.W
 MULU.W | Rm, Rn Rm, Rn |
| | Doublelength multiply/ accumulate instruction (SH-2 CPU only) | 9 | 2 to 4*2 | - Multiplier contention occurs when an instruction that uses the multiplier follows a MAC instruction
 - MA contends with IF | DMULS.L
 DMULU.L
 MUL.L | $\begin{aligned} & \mathrm{Rm}, \mathrm{Rn} \star^{3} \\ & \mathrm{Rm}, \mathrm{Rn} \star^{3} \\ & \mathrm{Rm}, \mathrm{Rn} \star^{3} \end{aligned}$ |
| Logic operation instructions | Register- | 3 | 1 | - | AND | Rm, Rn |
| | register logic | | | | AND | \#imm, R0 |
| | operation | | | | NOT | Rm, Rn |
| | instructions | | | | OR | Rm, Rn |
| | | | | | OR | |
| | | | | | TST | Rm, Rn |
| | | | | | TST | \#imm, R0 |
| | | | | | XOR | Rm, Rn |
| | | | | | XOR | \#imm, R0 |

Notes 1. In the SH-2 CPU, multiply/accumulate instructions are 7 stages, multiply instructions 6 stages; in the SH-1 CPU, multiply/accumulate instructions are 8 stages, multiply instructions 7 stages
2. The normal minimum number of execution states (The number in parentheses is the number of cycles when there is contention with following instructions)
3. SH-2 CPU instructions

Table 7.2 Number of Instruction Stages and Execution States (cont)

| Type | Category | Stage | State | Contention | Instructi | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Logic operation instructions (cont) | Memory logic operations instructions | 6 | 3 | - MA contends with IF | AND. B
 OR.B
 TST.B
 XOR.B | \#imm, @(R0,GBR)
 \#imm, @(R0,GBR)
 \#imm, @(R0,GBR)
 \#imm, @(RO,GBR) |
| | TAS instruction | 6 | 4 | - MA contends with IF | TAS.B | @Rn |
| Shift instructions | Shift instructions | 3 | 1 | - | ROTL | Rn |
| | | | | | ROTR | Rn |
| | | | | | ROTCL | Rn |
| | | | | | ROTCR | Rn |
| | | | | | SHAL | Rn |
| | | | | | SHAR | Rn |
| | | | | | SHLL | Rn |
| | | | | | SHLR | Rn |
| | | | | | SHLL2 | Rn |
| | | | | | SHLR2 | Rn |
| | | | | | SHLL8 | Rn |
| | | | | | SHLR8 | Rn |
| | | | | | SHLL16 | Rn |
| | | | | | SHLR16 | Rn |
| Branch instructions | Conditional branch instructions | 3 | $3 / 1 * 4$ | - | BF BT | label label |
| | Delayed conditional branch instructions (SH-2 CPU only) | 3 | $2 / 1^{* 4}$ | - | BF / S BT / S | $\begin{aligned} & \text { label*3 } \\ & \text { label*3 } \end{aligned}$ |
| | Unconditional branch instructions | 3 | 2 | - | BRA
 BRAF | $\begin{aligned} & \text { label } \\ & \text { Rm* }{ }^{3} \end{aligned}$ |
| | | | | | BSR | label |
| | | | | | BSRF | Rm* ${ }^{3}$ |
| | | | | | JMP | @Rm |
| | | | | | JSR | @Rm |
| | | | | | RTS | |

Notes 3. SH-2 CPU instruction

4. One state when there is no branch

Table 7.2 Number of Instruction Stages and Execution States (cont)

| Type | Category | Stage | State | Contention | Instru | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| System control instructions | System control ALU instructions | 3 | 1 | - | CLRT | |
| | | | | | LDC | Rm, SR |
| | | | | | LDC | Rm, GBR |
| | | | | | LDC | Rm, VBR |
| | | | | | LDS | Rm, PR |
| | | | | | NOP | |
| | | | | | SETT | |
| | | | | | STC | SR, Rn |
| | | | | | STC | GBR,Rn |
| | | | | | STC | VBR, Rn |
| | | | | | STS | PR,Rn |
| | LDC.L instruction | 5 | 3 | - Contention occurs when an instruction that uses the same destination register is placed immediately after this instruction
 - MA contends with IF | LDC. 1
 LDC. L
 LDC. L | $\begin{aligned} & \text { @Rm+, SR } \\ & \text { @Rm+, GBR } \\ & \text { @Rm+, VBR } \end{aligned}$ |
| | STC.L instructions | 4 | 2 | - MA contends with IF | STC.L
 STC.L
 STC. | SR, @-Rn
 GBR, @-Rn
 VBR, ©-Rn |
| | LDS.L
 instructions
 (PR) | 5 | 1 | - Contention occurs when an instruction that uses the same destination register is placed immediately after this instruction
 - MA contends with IF | LDS.L | @Rm+, PR |
| | STS.L
 instruction
 (PR) | 4 | 1 | - MA contends with IF | STS.L | PR, @-Rn |

Table 7.2 Number of Instruction Stages and Execution States (cont)

| Type | Category | Stage | State | Contention | Instructi | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| System control instructions (cont) | Register \rightarrow MAC transfer instruction | 4 | 1 | - Contention occurs with multiplier
 - MA contends with IF | CLRMAC
 LDS
 LDS | Rm, MACH
 Rm,MACL |
| | Memory \rightarrow MAC transfer instructions | 4 | 1 | - Contention occurs with multiplier
 - MA contends with IF | $\begin{aligned} & \text { LDS.L } \\ & \text { LDS.L } \end{aligned}$ | $\begin{aligned} & \text { @Rm+, MACH } \\ & \text { @Rm+, MACL } \end{aligned}$ |
| | MAC \rightarrow register transfer instruction | 5 | 1 | - Contention occurs with multiplier
 - Contention occurs when an instruction that uses the same destination register is placed immediately after this instruction
 - MA contends with IF | $\begin{aligned} & \text { STS } \\ & \text { STS } \end{aligned}$ | MACH, Rn MACL, Rn |
| | MAC \rightarrow
 memory
 transfer instruction | 4 | 1 | - Contention occurs with multiplier
 - MA contends with IF | $\begin{aligned} & \text { STS.L } \\ & \text { STS.L } \end{aligned}$ | $\begin{aligned} & \text { MACH, @-Rn } \\ & \text { MACL, ©-Rn } \end{aligned}$ |
| | RTE instruction | 5 | 4 | - | RTE | |
| | TRAP instruction | 9 | 8 | - | TRAPA | \#imm |
| | SLEEP instruction | 3 | 3 | - | SLEEP | |

7.7.1 Data Transfer Instructions

Register-Register Transfer Instructions: Include the following instruction types:

- MOV \#imm, Rn
- MOV Rm, Rn
- MOVA @(disp, PC), R0
- MOVT Rn
- SWAP.B Rm, Rn
- SWAP.W Rm, Rn
- XTRCT Rm,Rn

Figure 7.10 Register-Register Transfer Instruction Pipeline
Operation: The pipeline ends after three stages: IF, ID, and EX. Data is transferred in the EX stage via the ALU.

Memory Load Instructions: Include the following instruction types:

- MOV.W @(disp, PC), Rn
- MOV.L @(disp, PC), Rn
- MOV.B @Rm,Rn
- MOV.W @Rm,Rn
- MOV.L @Rm,Rn
- MOV.B @Rm+,Rn
- MOV.W @Rm+,Rn
- MOV.L @Rm+,Rn
- MOV.B @(disp, Rm),R0
- MOV.W @(disp,Rm),R0
- MOV.L @(disp,Rm),Rn
- MOV.B @(R0,Rm),Rn
- MOV.W @(R0,Rm), Rn
- MOV.L @(R0,Rm),Rn
- MOV.B @(disp, GBR), R0
- MOV.W @(disp, GBR), R0
- MOV.L @(disp, GBR), R0

Figure 7.11 Memory Load Instruction Pipeline
Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.11). If an instruction that uses the same destination register as this instruction is placed immediately after it, contention will occur. (See Section 7.5, Effects of Memory Load Instructions on Pipelines.)

Memory Store Instructions: Include the following instruction types:

- MOV.B Rm,@Rn
- MOV.W Rm,@Rn
- MOV.L Rm, @Rn
- MOV.B Rm, @-Rn
- MOV.W Rm, @-Rn
- MOV.L Rm, @-Rn
- MOV.B R0, @(disp, Rn)
- MOV.W R0, @(disp,Rn)
- MOV.L Rm, @(disp, Rn)
- MOV.B Rm, @(R0,Rn)
- MOV.W Rm, @(R0,Rn)
- MOV.L Rm, @(R0,Rn)
- MOV.B R0, @(disp, GBR)
- MOV.W R0, @(disp, GBR)
- MOV.L R0, @(disp, GBR)

Figure 7.12 Memory Store Instruction Pipeline
Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.12). Data is not returned to the register so there is no WB stage.

7.7.2 Arithmetic Instructions

Arithmetic Instructions between Registers (Except Multiplication Instructions): Include the following instruction types:

- ADD Rm, Rn
- ADD \#imm, Rn
- ADDC Rm, Rn
- ADDV Rm,Rn
- CMP/EQ \#imm, R0
- CMP/EQ Rm,Rn
- CMP/HS Rm,Rn
- CMP/GE Rm,Rn
- CMP/HI Rm, Rn
- CMP/GT Rm,Rn
- CMP/PZ Rn
- CMP/PL Rn
- CMP/STR Rm, Rn
- DIV1 Rm, Rn
- DIVOS Rm, Rn
- DIVOU
- DT Rn (SH-2 CPU only)
- EXTS.B Rm,Rn
- EXTS.W Rm, Rn
- EXTU.B Rm, Rn
- EXTU.W Rm, Rn
- NEG Rm, Rn
- NEGC Rm, Rn
- SUB Rm, Rn
- SUBC Rm, Rn
- SUBV Rm, Rn

Figure 7.13 Pipeline for Arithmetic Instructions between Registers Except Multiplication Instructions

Operation: The pipeline has three stages: IF, ID, and EX (figure 8.13). The data operation is completed in the EX stage via the ALU.

Multiply/Accumulate Instruction (SH-1 CPU): Includes the following instruction type:

- MAC.W @Rm+,@Rn+

Figure 7.14 Multiply/Accumulate Instruction Pipeline
Operation: The pipeline has eight stages: IF, ID, EX, MA, MA, mm, mm, and mm (figure 8.14). The second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for three cycles after the final MA ends, regardless of slot. The ID of the instruction after the MAC.W instruction is stalled for one slot. The two MAs of the MAC.W instruction, when they contend with IF, split the slots as described in section 7.4, Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the MAC.W instruction may be considered to be five-stage pipeline instructions of IF, ID, EX, MA, and MA. In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline operates normally. When an instruction that uses the multiplier comes after the MAC.W instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the following cases:

1. When a MAC.W instruction is located immediately after another MAC.W instruction
2. When a MULS.W instruction is located immediately after a MAC.W instruction
3. When an STS (register) instruction is located immediately after a MAC.W instruction
4. When an STS.L (memory) instruction is located immediately after a MAC.W instruction
5. When an LDS (register) instruction is located immediately after a MAC.W instruction
6. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction
7. When a MAC.W instruction is located immediately after another MAC.W instruction

When the second MA of a MAC.W instruction contends with an mm generated by a preceding multiplier-type instruction, the bus cycle of that MA is extended until the mm ends (the M-A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instruction not related to the multiplier is located between the MAC.W instructions, multiplier contention between MAC instructions does not cause stalls (figure 7.15).

Figure 7.15 Unrelated Instructions between MAC.W Instructions
Sometimes consecutive MAC.Ws may not have multiplier contention even when MA and IF contention causes misalignment of instruction execution. Figure 7.16 illustrates a case of this type. This figure assumes MA and IF contention.

Figure 7.16 Consecutive MAC.Ws without Misalignment

When the second MA of the MAC.W instruction is extended until the mm ends, contention between MA and IF will split the slot, as usual. Figure 7.17 illustrates a case of this type. This figure assumes MA and IF contention.

Figure 7.17 MA and IF Contention
2. When a MULS.W instructions is located immediately after a MAC.W instruction

A MULS.W instruction has an MA stage for accessing the multiplier. When the MA of the MULS.W instruction contends with an operating MAC instruction multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.18) to create a single slot. When two or more instructions not related to the multiplier come between the MAC.W and MULS.W instructions, MAC.W and MULS.W contention does not cause stalling. When the MULS.W MA and IF contend, the slot is split.

Figure 7.18 MULS.W Instruction Immediately After a MAC.W Instruction
3. When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS instruction, an MA stage for accessing the multiplier is added to the STS instruction, as described later. When the MA of the STS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.19) to create a single slot. The MA of the STS contends with the IF. Figure 7.19 illustrates how this occurs, assuming MA and IF contention.

Figure 7.19 STS (Register) Instruction Immediately After a MAC.W Instruction
4. When an STS.L (memory) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA stage for accessing the multiplier and writing to memory is added to the STS instruction, as described later. When the MA of the STS instruction contends with the operating multiplier (mm), the MA is extended until one state after the mm ends (the M-A shown in the dotted line box in figure 7.20) to create a single slot. The MA of the STS contends with the IF. Figure 7.20 illustrates how this occurs, assuming MA and IF contention.

Figure 7.20 STS.L (Memory) Instruction Immediately After a MAC.W Instruction
5. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as described later. When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.21) to create a single slot. The MA of this LDS contends with IF. Figure 7.21 illustrates how this occurs, assuming MA and IF contention.

Figure 7.21 LDS (Register) Instruction Immediately After a MAC.W Instruction
6. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction When the contents of a MAC register are loaded from memory using an LDS instruction, an MA stage for accessing the memory and the multiplier is added to the LDS instruction, as described later. When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.22) to create a single slot. The MA of the LDS contends with IF. Figure 7.22 illustrates how this occurs, assuming MA and IF contention.

Figure 7.22 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

Multiply/Accumulate Instruction (SH-2 CPU): Includes the following instruction type:

- MAC.W @Rm+,@Rn+

Figure 7.23 Multiply/Accumulate Instruction Pipeline
Operation: The pipeline has seven stages: IF, ID, EX, MA, MA, mm and mm (figure 7.23). The second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for two cycles after the final MA ends, regardless of slot. The ID of the instruction after the MAC.W instruction is stalled for one slot. The two MAs of the MAC.W instruction, when they contend with IF, split the slots as described in Section 7.4, Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the MAC.W instruction may be considered to be a five-stage pipeline instructions of IF, ID, EX, MA, and MA. In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline operates normally. When an instruction that uses the multiplier comes after the MAC.W instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the following cases:

1. When a MAC.W instruction is located immediately after another MAC.W instruction
2. When a MAC.L instruction is located immediately after a MAC.W instruction
3. When a MULS.W instruction is located immediately after a MAC.W instruction
4. When a DMULS.L instruction is located immediately after a MAC.W instruction
5. When an STS (register) instruction is located immediately after a MAC.W instruction
6. When an STS.L (memory) instruction is located immediately after a MAC.W instruction
7. When an LDS (register) instruction is located immediately after a MAC.W instruction
8. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction
9. When a MAC.W instruction is located immediately after another MAC.W instruction The second MA of a MAC.W instruction does not contend with an mm generated by a preceding multiplication instruction.

Figure 7.24 MAC.W Instruction That Immediately Follows Another MAC.W instruction
Sometimes consecutive MAC.Ws may have misalignment of instruction execution caused by MA and IF contention. Figure 7.25 illustrates a case of this type. This figure assumes MA and IF contention.

Figure 7.25 Consecutive MAC.Ws with Misalignment

When the second MA of the MAC.W instruction contends with IF, the slot will split as usual. Figure 7.26 illustrates a case of this type. This figure assumes MA and IF contention.

Figure 7.26 MA and IF Contention
2. When a MAC.L instruction is located immediately after a MAC.W instruction

The second MA of a MAC.W instruction does not contend with an mm generated by a preceding multiplication instruction (figure 7.27).

Figure 7.27 MAC.L Instructions Immediately After a MAC.W Instruction
3. When a MULS.W instruction is located immediately after a MAC.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the MULS.W instruction contends with an operating MAC.W instruction multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.28) to create a single slot. When one or more instructions not related to the multiplier come between the MAC.W and MULS.W instructions, MAC.W and MULS.W contention does not cause stalling. There is no MULS.W MA contention while the MAC.W instruction multiplier is operating (mm). When the MULS.W MA and IF contend, the slot is split.

Figure 7.28 MULS.W Instruction Immediately After a MAC.W Instruction
4. When a DMULS.L instruction is located immediately after a MAC.W instruction

DMULS.L instructions have an MA stage for accessing the multiplier, but there is no DMULS.L MA contention while the MAC.W instruction multiplier is operating (mm). When the DMULS.L MA and IF contend, the slot is split (figure 7.29).

Figure 7.29 DMULS.L Instructions Immediately After a MAC.W Instruction
5. When an STS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are stored in a general-purpose register using an STS instruction, an MA stage for accessing the multiplier is added to the STS instruction, as described later. When the MA of the STS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.30) to create a single slot. The MA of the STS contends with the IF. Figure 7.30 illustrates how this occurs, assuming MA and IF contention.

Figure 7.30 STS (Register) Instruction Immediately After a MAC.W Instruction
6. When an STS.L (memory) instruction is located immediately after a MAC.W instruction When the contents of a MAC register are stored in memory using an STS instruction, an MA stage for accessing the memory and the multiplier and writing to memory is added to the STS instruction, as described later. Figure 7.31 illustrates how this occurs, assuming MA and IF contention.

Figure 7.31 STS.L (Memory) Instruction Immediately After a MAC.W Instruction
7. When an LDS (register) instruction is located immediately after a MAC.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as described later. When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.32) to create a single slot. The MA of this LDS contends with IF. Figure 7.32 illustrates how this occurs, assuming MA and IF contention.

Figure 7.32 LDS (Register) Instruction Immediately After a MAC.W Instruction
8. When an LDS.L (memory) instruction is located immediately after a MAC.W instruction When the contents of a MAC register are loaded from memory using an LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as described later. When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.33) to create a single slot. The MA of the LDS contends with IF. Figure 7.33 illustrates how this occurs, assuming MA and IF contention.

Figure 7.33 LDS.L (Memory) Instruction Immediately After a MAC.W Instruction

Double-Length Multiply/Accumulate Instruction (SH-2 CPU): Includes the following instruction type:

- MAC.L @Rm+, @Rn+(SH-2 CPU only)

Figure 7.34 Multiply/Accumulate Instruction Pipeline
Operation: The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 7.34). The second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for four cycles after the final MA ends, regardless of a slot. The ID of the instruction after the MAC.L instruction is stalled for one slot. The two MAs of the MAC.L instruction, when they contend with IF, split the slots as described in Section 7.4, Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the MAC.L instruction may be considered to be five-stage pipeline instructions of IF, ID, EX, MA, and MA. In such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline operates normally. When an instruction that uses the multiplier comes after the MAC.L instruction, contention occurs with the multiplier, so operation is not as normal. This occurs in the following cases:

1. When a MAC.L instruction is located immediately after another MAC.L instruction
2. When a MAC.W instruction is located immediately after a MAC.L instruction
3. When a DMULS.L instruction is located immediately after a MAC.L instruction
4. When a MULS.W instruction is located immediately after a MAC.L instruction
5. When an STS (register) instruction is located immediately after a MAC.L instruction
6. When an STS.L (memory) instruction is located immediately after a MAC.L instruction
7. When an LDS (register) instruction is located immediately after a MAC.L instruction
8. When an LDS.L (memory) instruction is located immediately after a MAC.L instruction
9. When a MAC.L instruction is located immediately after another MAC.L instruction

When the second MA of the MAC.L instruction contends with the mm produced by the previous multiplication instruction, the MA bus cycle is extended until the mm ends (the MA shown in the dotted line box in figure 7.35) to create a single slot. When two or more instructions that do not use the multiplier occur between two MAC.L instructions, the stall caused by multiplier contention between MAC.L instructions is eliminated.

Figure 7.35 MAC.L Instruction Immediately After Another MAC.L Instruction
Sometimes consecutive MAC.Ls may have less multiplier contention even when there is misalignment of instruction execution caused by MA and IF contention. Figure 7.36 illustrates a case of this type, assuming MA and IF contention.

Figure 7.36 Consecutive MAC.Ls with Misalignment

When the second MA of the MAC.L instruction is extended to the end of the mm, contention between the MA and IF will split the slot in the usual way. Figure 7.37 illustrates a case of this type, assuming MA and IF contention.

Figure 7.37 MA and IF Contention
2. When a MAC.W instruction is located immediately after a MAC.L instruction

When the second MA of the MAC.W instruction contends with the mm produced by the previous multiplication instruction, the MA bus cycle is extended until the mm ends (the MA shown in the dotted line box in figure 7.38) to create a single slot. When two or more instructions that do not use the multiplier occur between the MAC.L and MAC.W instructions, the stall caused by multiplier contention between MAC.L instructions is eliminated.

Figure 7.38 MAC.W Instruction Immediately After a MAC.L Instruction
3. When a DMULS.L instruction is located immediately after a MAC.L instruction

DMULS.L instructions have an MA stage for accessing the multiplier. When the second MA of the DMULS.L instruction contends with an operating MAC.L instruction multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.39) to create a single slot. When two or more instructions not related to the multiplier come between the MAC.L and DMULS.L instructions, MAC.L and DMULS.L contention does not cause stalling. When the DMULS.L MA and IF contend, the slot is split.

Figure 7.39 DMULS.L Instruction Immediately After a MAC.L Instruction
4. When a MULS.W instruction is located immediately after a MAC.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the MULS.W instruction contends with an operating MAC.L instruction multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.40) to create a single slot. When three or more instructions not related to the multiplier come between the MAC.L and MULS.W instructions, MAC.L and MULS.W contention does not cause stalling. When the MULS.W MA and IF contend, the slot is split.

Figure 7.40 MULS.W Instruction Immediately After a MAC.L Instruction
5. When an STS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are stored in a general-purpose register using an STS instruction, an MA stage for accessing the multiplier is added to the STS instruction, as described later. When the MA of the STS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.41) to create a single slot. The MA of the STS contends with the IF. Figure 7.41 illustrates how this occurs, assuming MA and IF contention.

Figure 7.41 STS (Register) Instruction Immediately After a MAC.L Instruction
6. When an STS.L (memory) instruction is located immediately after a MAC.L instruction When the contents of a MAC register are stored in memory using an STS instruction, an MA stage for accessing the multiplier and writing to memory is added to the STS instruction, as described later. The MA of the STS contends with the IF. Figure 7.42 illustrates how this occurs, assuming MA and IF contention.

Figure 7.42 STS.L (Memory) Instruction Immediately After a MAC.L Instruction
7. When an LDS (register) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from a general-purpose register using an LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as described later. When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.43) to create a single slot. The MA of this LDS contends with IF. Figure 7.43 illustrates how this occurs, assuming MA and IF contention.

Figure 7.43 LDS (Register) Instruction Immediately After a MAC.L Instruction
8. When an LDS.L (memory) instruction is located immediately after a MAC.L instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an MA stage for accessing the memory and the memory and the multiplier is added to the LDS instruction, as described later. When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.44) to create a single slot. The MA of the LDS contends with IF. Figure 7.44 illustrates how this occurs, assuming MA and IF contention.

Figure 7.44 LDS.L (Memory) Instruction Immediately After a MAC.L Instruction

Multiplication Instructions (SH-1 CPU): Include the following instruction types:

- MULS.W Rm,Rn
- MULU.W Rm, Rn

Figure 7.45 Multiplication Instruction Pipeline
Operation: The pipeline has seven stages: IF, ID, EX, MA, mm, mm, and mm (figure 8.45). The MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for three cycles after the MA ends, regardless of a slot. The MA of the MULS.W instruction, when it contends with IF, splits the slot as described in Section 7.4, Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX, and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier comes after the MULS.W instruction, however, contention occurs with the multiplier, so operation is not as normal. This occurs in the following cases:

1. When a MAC.W instruction is located immediately after a MULS.W instruction
2. When a MULS.W instruction is located immediately after another MULS.W instruction
3. When an STS (register) instruction is located immediately after a MULS.W instruction
4. When an STS.L (memory) instruction is located immediately after a MULS.W instruction
5. When an LDS (register) instruction is located immediately after a MULS.W instruction
6. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction
7. When a MAC.W instruction is located immediately after a MULS.W instruction

When the second MA of a MAC.W instruction contends with the mm generated by a preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends (the M-A shown in the dotted line box below) and that extended MA occupies one slot.

If one or more instructions not related to the multiplier comes between the MULS.W and MAC.W instructions, multiplier contention between the MULS.W and MAC.W instructions does not cause stalls (figure 7.46).

Figure 7.46 MAC.W Instruction Immediately After a MULS.W Instruction
2. When a MULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the MULS.W instruction contends with the operating multiplier (mm) of another MULS.W instruction, the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.47) to create a single slot. When two or more instructions not related to the multiplier are located between the two MULS.W instructions, contention between the MULS.Ws does not cause stalling. When the MULS.W MA and IF contend, the slot is split.

Figure 7.47 MULS.W Instruction Immediately After Another MULS.W Instruction

When the MA of the MULS.W instruction is extended until the mm ends, contention between MA and IF will split the slot, as is normal. Figure 7.48 illustrates a case of this type, assuming MA and IF contention.

Figure 7.48 MULS.W Instruction Immediately After Another MULS.W Instruction (IF and MA Contention)
3. When an STS (register) instruction is located immediately after a MULS.W instruction When the contents of a MAC register are stored in a general-purpose register using an STS instruction, an MA stage for accessing the multiplier is added to the STS instruction, as described later. When the MA of the STS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.49) to create a single slot. The MA of the STS contends with the IF. Figure 7.49 illustrates how this occurs, assuming MA and IF contention.

Figure 7.49 STS (Register) Instruction Immediately After a MULS.W Instruction
4. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an STS instruction, an MA stage for accessing the multiplier and writing to memory is added to the STS instruction, as described later. When the MA of the STS instruction contends with the operating multiplier (mm), the MA is extended until one cycle after the mm ends (the M-A shown in the dotted line box in figure 7.50) to create a single slot. The MA of the STS contends with the IF. Figure 7.50 illustrates how this occurs, assuming MA and IF contention.

Figure 7.50 STS.L (Memory) Instruction Immediately After a MULS.W Instruction
5. When an LDS (register) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from a general-purpose register using an LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as described later. When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box below) to create a single slot. The MA of this LDS contends with IF. Figure 7.51 illustrates how this occurs, assuming MA and IF contention.

Figure 7.51 LDS (Register) Instruction Immediately After a MULS.W Instruction
6. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction When the contents of a MAC register are loaded from memory using an LDS instruction, an MA stage for accessing the memory and the multiplier is added to the LDS instruction, as described later. When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.52) to create a single slot. The MA of the LDS contends with IF. Figure 7.52 illustrates how this occurs, assuming MA and IF contention.

Figure 7.52 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

Multiplication Instructions (SH-2 CPU): Include the following instruction types:

- MULS.W Rm, Rn
- MULU.W Rm, Rn

Figure 7.53 Multiplication Instruction Pipeline
Operation: The pipeline has six stages: IF, ID, EX, MA, mm, and mm (figure 8.53). The MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for two cycles after the MA ends, regardless of the slot. The MA of the MULS.W instruction, when it contends with IF, splits the slot as described in Section 7.4, Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the MULS.W instruction may be considered to be four-stage pipeline instructions of IF, ID, EX, and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier is located after the MULS.W instruction, however, contention occurs with the multiplier, so operation is not as normal. This occurs in the following cases:

1. When a MAC.W instruction is located immediately after a MULS.W instruction
2. When a MAC.L instruction is located immediately after a MULS.W instruction
3. When a MULS.W instruction is located immediately after another MULS.W instruction
4. When a DMULS.L instruction is located immediately after a MULS.W instruction
5. When an STS (register) instruction is located immediately after a MULS.W instruction
6. When an STS.L (memory) instruction is located immediately after a MULS.W instruction
7. When an LDS (register) instruction is located immediately after a MULS.W instruction
8. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction
9. When a MAC.W instruction is located immediately after a MULS.W instruction The second MA of a MAC.W instruction does not contend with the mm generated by a preceding multiplication instruction.

Figure 7.54 MAC.W Instruction Immediately After a MULS.W Instruction
2. When a MAC.L instruction is located immediately after a MULS.W instruction The second MA of a MAC.W instruction does not contend with the mm generated by a preceding multiplication instruction.

Figure 7.55 MAC.L Instruction Immediately After a MULS.W Instruction
3. When a MULS.W instruction is located immediately after another MULS.W instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the MULS.W instruction contends with the operating multiplier (mm) of another MULS.W instruction, the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.56) to create a single slot. When one or more instructions not related to the multiplier is located between the two MULS.W instructions, contention between the MULS.Ws does not cause stalling. When the MULS.W MA and IF contend, the slot is split.

Figure 7.56 MULS.W Instruction Immediately After Another MULS.W Instruction
When the MA of the MULS.W instruction is extended until the mm ends, contention between the MA and IF will split the slot in the usual way. Figure 7.57 illustrates a case of this type, assuming MA and IF contention.

Figure 7.57 MULS.W Instruction Immediately After Another MULS.W Instruction (IF and MA contention)
4. When a DMULS.L instruction is located immediately after a MULS.W instruction

Though the second MA in the DMULS.L instruction makes an access to the multiplier, it does not contend with the operating multiplier (mm) generated by the MULS.W instruction.

Figure 7.58 DMULS.L Instruction Immediately After a MULS.W Instruction
5. When an STS (register) instruction is located immediately after a MULS.W instruction When the contents of a MAC register are stored in a general-purpose register using an STS instruction, an MA stage for accessing the multiplier is added to the STS instruction, as described later. When the MA of the STS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.59) to create a single slot. The MA of the STS contends with the IF. Figure 7.59 illustrates how this occurs, assuming MA and IF contention.

Figure 7.59 STS (Register) Instruction Immediately After a MULS.W Instruction
6. When an STS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA stage for accessing the multiplier and writing to memory is added to the STS instruction, as described later. The MA of the STS contends with the IF. Figure 7.60 illustrates how this occurs, assuming MA and IF contention.

Figure 7.60 STS.L (Memory) Instruction Immediately After a MULS.W Instruction
7. When an LDS (register) instruction is located immediately after a MULS.W instruction When the contents of a MAC register are loaded from a general-purpose register using an LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as described later. When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box below) to create a single slot. The MA of this LDS contends with IF. The following figures illustrates how this occurs, assuming MA and IF contention.

Figure 7.61 LDS (Register) Instruction Immediately After a MULS.W Instruction
8. When an LDS.L (memory) instruction is located immediately after a MULS.W instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as described later. When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.62) to create a single slot. The MA of the LDS contends with IF. Figure 7.62 illustrates how this occurs, assuming MA and IF contention.

Figure 7.62 LDS.L (Memory) Instruction Immediately After a MULS.W Instruction

Double-Length Multiplication Instructions (SH-2 CPU): Include the following instruction types:

- DMULS.L Rm, Rn (SH-2 CPU only)
- DMULU.L Rm,Rn (SH-2 CPU only)
- MUL.L Rm, Rn (SH-2 CPU only)

Figure 7.63 Multiplication Instruction Pipeline
The pipeline has nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm (figure 7.63). The MA accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for four cycles after the MA ends, regardless of a slot. The ID of the instruction following the DMULS.L instruction is stalled for 1 slot (see the description of the multiply/accumulate instruction). The two MA stages of the DMULS.L instruction, when they contend with IF, split the slot as described in section 7.4, Contention Between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier comes after the DMULS.L instruction, the DMULS.L instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX, MA, and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier comes after the DMULS.L instruction, however, contention occurs with the multiplier, so operation is not as normal. This occurs in the following cases:

1. When a MAC.L instruction is located immediately after a DMULS.L instruction
2. When a MAC.W instruction is located immediately after a DMULS.L instruction
3. When a DMULS.L instruction is located immediately after another DMULS.L instruction
4. When a MULS.W instruction is located immediately after a DMULS.L instruction
5. When an STS (register) instruction is located immediately after a DMULS.L instruction
6. When an STS.L (memory) instruction is located immediately after a DMULS.L instruction
7. When an LDS (register) instruction is located immediately after a DMULS.L instruction
8. When an LDS.L (memory) instruction is located immediately after a DMULS.L instruction
9. When a MAC.L instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.L instruction contends with the mm generated by a preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends (the M-A shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS.L and MAC.L instructions, multiplier contention between the DMULS.L and MAC.L instructions does not cause stalls (figure 7.64).

Figure 7.64 MAC.L Instruction Immediately After a DMULS.L Instruction
2. When a MAC.W instruction is located immediately after a DMULS.L instruction

When the second MA of a MAC.W instruction contends with the mm generated by a preceding multiplication instruction, the bus cycle of that MA is extended until the mm ends (the M-A shown in the dotted line box below) and that extended MA occupies one slot.

If two or more instructions not related to the multiplier are located between the DMULS.L and MAC.W instructions, multiplier contention between the DMULS.L and MAC.W instructions does not cause stalls (figure 7.65).

Figure 7.65 MAC.W Instruction Immediately After a DMULS.L Instruction
3. When a DMULS.L instruction is located immediately after another DMULS.L instruction DMULS.L instructions have an MA stage for accessing the multiplier. When the MA of the DMULS.L instruction contends with the operating multiplier (mm) of another DMULS.L instruction, the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.66) to create a single slot. When two or more instructions not related to the multiplier are located between two DMULS.L instructions, contention between the DMULS.Ls does not cause stalling. When the DMULS.L MA and IF contend, the slot is split.

Figure 7.66 DMULS.L Instruction Immediately After Another DMULS.L Instruction

When the MA of the DMULS.L instruction is extended until the mm ends, contention between the MA and IF will split the slot in the usual way. Figure 7.67 illustrates a case of this type, assuming MA and IF contention.

Figure 7.67 DMULS.L Instruction Immediately After Another DMULS.L Instruction (IF and MA Contention)
4. When a MULS.W instruction is located immediately after a DMULS.L instruction

MULS.W instructions have an MA stage for accessing the multiplier. When the MA of the MULS.W instruction contends with the operating multiplier (mm) of a DMULS.L instruction, the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.68) to create a single slot. When three or more instructions not related to the multiplier are located between the DMULS.L instruction and the MULS.W instruction, contention between the DMULS.L and MULS.W does not cause stalling. When the MULS.W MA and IF contend, the slot is split..

Figure 7.68 MULS.W Instruction Immediately After a DMULS.L Instruction
When the MA of the DMULS.L instruction is extended until the mm ends, contention between the MA and IF will split the slot in the usual way. Figure 7.69 illustrates a case of this type, assuming MA and IF contention.

Figure 7.69 MULS.W Instruction Immediately After a DMULS.L Instruction (IF and MA Contention)
5. When an STS (register) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are stored in a general-purpose register using an STS instruction, an MA stage for accessing the multiplier is added to the STS instruction, as described later. When the MA of the STS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.70) to create a single slot. The MA of the STS contends with the IF. Figure 7.70 illustrates how this occurs, assuming MA and IF contention.

Figure 7.70 STS (Register) Instruction Immediately After a DMULS.L Instruction
6. When an STS.L (memory) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are stored in memory using an STS instruction, an MA stage for accessing the multiplier and writing to memory is added to the STS instruction, as described later. The MA of the STS contends with the IF. Figure 7.71 illustrates how this occurs, assuming MA and IF contention.

Figure 7.71 STS.L (Memory) Instruction Immediately After a DMULS.L Instruction
7. When an LDS (register) instruction is located immediately after a DMULS.L instruction When the contents of a MAC register are loaded from a general-purpose register using an LDS instruction, an MA stage for accessing the multiplier is added to the LDS instruction, as described later. When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box below) to create a single slot. The MA of this LDS contends with IF. The following figure illustrates how this occurs, assuming MA and IF contention.

Figure 7.72 LDS (Register) Instruction Immediately After a DMULS.L Instruction
8. When an LDS.L (memory) instruction is located immediately after a DMULS.L instruction

When the contents of a MAC register are loaded from memory using an LDS instruction, an MA stage for accessing the memory and the multiplier is added to the LDS instruction, as described later. When the MA of the LDS instruction contends with the operating multiplier (mm), the MA is extended until the mm ends (the M-A shown in the dotted line box in figure 7.73) to create a single slot. The MA of the LDS contends with IF. Figure 7.73 illustrates how this occurs, assuming MA and IF contention.

Figure 7.73 LDS.L (Memory) Instruction Immediately After a DMULS.L Instruction

7.7.3 Logic Operation Instructions

Register-Register Logic Operation Instructions: Include the following instruction types:

- AND Rm,Rn
- AND \#imm, R0
- NOT Rm, Rn
- OR Rm, Rn
- OR \#imm, R0
- TST Rm, Rn
- TST \#imm, R0
- XOR Rm, Rn
- XOR \#imm, R0

Figure 7.74 Register-Register Logic Operation Instruction Pipeline
Operation: The pipeline has three stages: IF, ID, and EX (figure 8.74). The data operation is completed in the EX stage via the ALU.

Memory Logic Operation Instructions: Include the following instruction types:

- AND.B \#imm, @(R0, GBR)
- OR.B \#imm, @(R0, GBR)
- TST.B \#imm, @(R0, GBR)
- XOR.B \#imm, @(R0, GBR)

Figure 7.75 Memory Logic Operation Instruction Pipeline
Operation: Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 7.75). The ID of the next instruction stalls for 2 slots. The MAs of these instructions contend with IF.

TAS Instruction: Includes the following instruction type:

- TAS.B @Rn

Figure 7.76 TAS Instruction Pipeline
Operation: The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 7.76). The ID of the next instruction stalls for 3 slots. The MA of the TAS instruction contends with IF.

7.7.4 Shift Instructions

Shift Instructions: Include the following instruction types:

- ROTL Rn
- ROTR Rn
- ROTCL Rn
- ROTCR Rn
- SHAL Rn
- SHAR Rn
- SHLL Rn
- SHLR Rn
- SHLL2 Rn
- SHLR2 Rn
- SHLL8 Rn
- SHLR8 Rn
- SHLL16 Rn
- SHLR16 Rn

Figure 7.77 Shift Instruction Pipeline
Operation: The pipeline has three stages: IF, ID, and EX (figure 7.77). The data operation is completed in the EX stage via the ALU.

7.7.5 Branch Instructions

Conditional Branch Instructions: Include the following instruction types:

- BF label
- BT label

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is performed in the ID stage. Conditional branch instructions are not delayed branch.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The two instructions after the conditional branch instruction (instruction A) are fetched but discarded. The branch destination instruction begins its fetch from the slot following the slot which has the EX stage of instruction A (figure 7.78).

Figure 7.78 Branch Instruction When Condition is Satisfied
2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds without doing anything. The next instruction also executes a fetch (figure 7.79).

Figure 7.79 Branch Instruction When Condition is Not Satisfied

Note: SH-2 always fetches instructions with a long word. Therefore, "1. When condition is satisfied", 2 instructions are overrun when fetched, if that address is at the boundary of the 4 n address.

Delayed Conditional Branch Instructions (SH-2 CPU): Include the following instruction types:

- BF/S label (SH-2 CPU only)
- BT/S label (SH-2 CPU only)

Operation: The pipeline has three stages: IF, ID, and EX. Condition verification is performed in the ID stage.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The instruction after the conditional branch instruction (instruction A) is fetched and executed, but the instruction after that is fetched and discarded. The branch destination instruction begins its fetch from the slot following the slot which has the EX stage of instruction A (figure 7.80).

Figure 7.80 Branch Instruction When Condition is Satisfied
2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds without doing anything. The next instruction also executes a fetch (figure 7.81).

Figure 7.81 Branch Instruction When Condition is Not Satisfied

Note: SH-2 always fetches instructions with a long word. Therefore, " 1 . When condition is satisfied", 2 instructions are overrun when fetched, if that address is at the boundary of the $4 n$ address.

Unconditional Branch Instructions: Include the following instruction types:

- BRA label
- BRAF Rm (SH-2 CPU only)
- BSR label
- BSRF Rm (SH-2 CPU only)
- JMP @Rm
- JSR @Rm
- RTS

Figure 7.82 Unconditional Branch Instruction Pipeline
Operation: The pipeline has three stages: IF, ID, and EX (figure 7.82). Unconditional branch instructions are delayed branch. The branch destination address is calculated in the EX stage. The instruction following the unconditional branch instruction (instruction A), that is, the delay slot instruction is fetched and not discarded as the conditional branch instructions are, but is then executed. Note that the ID slot of the delay slot instruction does stall for one cycle. The branch destination instruction starts its fetch from the slot after the slot that has the EX stage of instruction A.

7.7.6 System Control Instructions

System Control ALU Instructions: Include the following instruction types:

- CLRT
- LDC Rm, SR
- LDC Rm, GBR
- LDC Rm, VBR
- LDS Rm, PR
- NOP
- SETT
- STC SR, Rn
- STC GBR, Rn
- STC VBR,Rn
- STS PR,Rn

Figure 7.83 System Control ALU Instruction Pipeline
Operation: The pipeline has three stages: IF, ID, and EX (figure 7.83). The data operation is completed in the EX stage via the ALU.

LDC.L Instructions: Include the following instruction types:

- LDC.L @Rm+,SR
- LDC.L @Rm+, GBR
- LDC.L @Rm+,VBR

Figure 7.84 LDC.L Instruction Pipeline
Operation: The pipeline has five stages: IF, ID, EX, MA, and EX (figure 7.84). The ID of the following instruction is stalled for two slots.

STC.L Instructions: Include the following instruction types:

- STC.L SR, @-Rn
- STC.L GBR, @-Rn
- STC.L VBR, @-Rn

Figure 7.85 STC.L Instruction Pipeline
Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.85). The ID of the next instruction is stalled for one slot.

LDS.L Instruction (PR): Includes the following instruction type:

- LDS.L @Rm+, PR

Figure 7.86 LDS.L Instruction (PR) Pipeline
Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.86). It is the same as an ordinary load instruction.

STS.L Instruction (PR): Includes the following instruction type:

- STS.LPR, @-Rn

Figure 7.87 STS.L Instruction (PR) Pipeline
Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.87). It is the same as an ordinary store instruction.

Register \rightarrow MAC Transfer Instructions: Include the following instruction types:

- CLRMAC
- LDS Rm, MACH
- LDS Rm, MACL

Figure 7.88 Register \rightarrow MAC Transfer Instruction Pipeline
Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.88). The MA is a stage for accessing the multiplier. The MA contends with the IF. This makes it the same as ordinary store instructions. Since the multiplier contends with the MA, see the section for the SOP instruction, multiply instruction, and double precision multiply instruction.

Memory \rightarrow MAC Transfer Instructions: Include the following instruction types:

- LDS.L @Rm+, MACH
- LDS.L @Rm+, MACL

Figure 7.89 Memory \rightarrow MAC Transfer Instruction Pipeline
Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.89). The MA contends with the IF. The MA is a stage for memory access and multiplier access. This makes it the same as ordinary load instructions. Since the multiplier contends with the MA, see the section for the SOP instruction, multiply instruction, and double precision multiply instruction.

MAC \rightarrow Register Transfer Instructions: Include the following instruction types:

- STS MACH, Rn
- STS MACL, Rn

Figure 7.90 MAC \rightarrow Register Transfer Instruction Pipeline
Operation: The pipeline has five stages: IF, ID, EX, MA, and WB (figure 7.90). The MA is a stage for accessing the multiplier. The MA contends with the IF. This makes it the same as ordinary load instructions. Since the multiplier contends with the MA, see the section for the SOP instruction, multiply instruction, and double precision multiply instruction.

MAC \rightarrow Memory Transfer Instructions: Include the following instruction types:

- STS.L MACH, @-Rn
- STS.L MACL, @-Rn

Figure 7.91 MAC \rightarrow Memory Transfer Instruction Pipeline
Operation: The pipeline has four stages: IF, ID, EX, and MA (figure 7.91). The MA is a stage for accessing the memory and the multiplier. The MA contends with IF. This makes it the same as ordinary store instructions. Since the multiplier contends with the MA, see the section for the SOP instruction, multiply instruction, and double precision multiply instruction.

RTE Instruction: Includes the following instruction type:

- RTE

Figure 7.92 RTE Instruction Pipeline
The pipeline has five stages: IF, ID, EX, MA, and MA (figure 7.92). The MAs contend with the IF. The RTE is a delayed branch instruction. The ID of the delay slot instruction is stalled for 3 slots. The IF of the branch destination instruction starts from the slot following the MA of the RTE.

TRAP Instruction: Includes the following instruction type:

- TRAPA \#imm

Figure 7.93 TRAP Instruction Pipeline
The pipeline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 7.93). The MAs contend with the IF. The TRAP is not a delayed branch instruction. The two instructions after the TRAP instruction are fetched, but they are discarded without being executed. The IF of the branch destination instruction starts from the slot of the EX in the ninth stage of the TRAP instruction.

SLEEP Instruction: Includes the following instruction type:

- SLEEP

Figure 7.94 SLEEP Instruction Pipeline
Operation: The pipeline has three stages: IF, ID and EX (figure 7.94). It is issued until the IF of the next instruction. After the SLEEP instruction is executed, the CPU enters sleep mode or standby mode.

7.7.7 Exception Processing

Interrupt Exception Processing: Includes the following instruction type:

- Interrupt exception processing

Figure 7.95 Interrupt Exception Processing Pipeline
Operation: The interrupt is received during the ID stage of the instruction and everything after the ID stage is replaced by the interrupt exception processing sequence. The pipeline has ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 7.95). Interrupt exception processing is not a delayed branch. In interrupt exception processing, an overrun fetch (IF) occurs. In branch destination instructions, the IF starts from the slot that has the final EX in the interrupt exception processing.

Interrupt sources are external interrupt request pins such as NMI, user breaks, and on-chip peripheral module interrupts.

Address Error Exception Processing: Includes the following instruction type:

- Address error exception processing

Figure 7.96 Address Error Exception Processing Pipeline
Operation: The address error is received during the ID stage of the instruction and everything after the ID stage is replaced by the address error exception processing sequence. The pipeline has ten stages: IF, ID, EX, EX, MA, MA, EX, MA, EX, and EX (figure 7.96). Address error exception processing is not a delayed branch. In address error exception processing, an overrun fetch (IF) occurs. In branch destination instructions, the IF starts from the slot that has the final EX in the address error exception processing.

Address errors are caused by instruction fetches and by data reads or writes. For details of the error cause, refer to the appropriate hardware manual.

Illegal Instruction Exception Processing: Includes the following instruction type:

- Illegal instruction exception processing

Figure 7.97 Illegal Instruction Exception Processing Pipeline
Operation: The illegal instruction is received during the ID stage of the instruction and everything after the ID stage is replaced by the illegal instruction exception processing sequence. The pipeline has nine stages: IF, ID, EX, EX, MA, MA, MA, EX, and EX (figure 7.97). Illegal instruction exception processing is not a delayed branch. In illegal instruction exception processing, an overrun fetch (IF) occurs. Whether there is an IF only in the next instruction or in the one after that as well depends on the instruction that was to be executed. In branch destination instructions, the IF starts from the slot that has the final EX in the illegal instruction exception processing.

Illegal instruction exception processing is caused by ordinary illegal instructions and by illegal slot instructions. When undefined code placed somewhere other than the slot directly after the delayed branch instruction (called the delay slot) is decoded, ordinary illegal instruction exception processing occurs. When undefined code placed in the delay slot is decoded or when an instruction placed in the delay slot to rewrite the program counter is decoded, an illegal slot instruction exception handling occurs.

Appendix A Instruction Code

See "6. Instruction Descriptions" for details.

A. 1 Instruction Set by Addressing Mode

Table A. 1 lists instruction codes and execution states by addressing modes.

Table A. 1 Instruction Set by Addressing Mode

| Addressing Mode | Category | Sample Instruction | | Types | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | SH-2 | SH-1 |
| No operand | - | NOP | | 8 | 8 |
| Direct register addressing | Destination operand only | MOVT | Rn | 18 | 17 |
| | Source and destination operand | ADD | Rm, Rn | 34 | 31 |
| | Load and store with control register or system register | $\begin{aligned} & \text { LDC } \\ & \text { STS } \end{aligned}$ | Rm, SR
 MACH, Rn | 12 | 12 |
| Indirect register addressing | Source operand only | JMP | @Rm | 2 | 2 |
| | Destination operand only | TAS. ${ }^{\text {a }}$ | @Rn | 1 | 1 |
| | Data transfer with direct register addressing | MOV.L | Rm, @Rn | 6 | 6 |
| Post increment indirect register addressing | Multiply/accumulate operation | MAC. W | @Rm+, @Rn+ | 2 | 1 |
| | Data transfer from direct register addressing | MOV.L | @Rm+, Rn | 3 | 3 |
| | Load to control register or system register | LDC. L | @Rm+, SR | 6 | 6 |
| Pre decrement indirect register addressing | Data transfer from direct register addressing | MOV.L | Rm, @-Rn | 3 | 3 |
| | Store from control register or system register | STC.L | SR, @-Rn | 6 | 6 |
| Indirect register addressing with displacement | Data transfer with direct register addressing | MOV.L | Rm, @ (disp, Rn) | 6 | 6 |
| Indirect indexed register addressing | Data transfer with direct register addressing | MOV.L | $\mathrm{Rm}, \mathrm{@}(\mathrm{RO}, \mathrm{Rn})$ | 6 | 6 |
| Indirect GBR addressing with displacement | Data transfer with direct register addressing | MOV.L | R, @ (disp, GBR) | 6 | 6 |
| Indirect indexed GBR addressing | Immediate data transfer | AND.B | \#imm, @(R0, GBR) | 4 | 4 |
| PC relative addressing with displacement | Data transfer to direct register addressing | MOV.L | @(disp, PC), Rn | 3 | 3 |
| PC relative addressing with Rm | Branch instruction | BRAF | Rm | 2 | 0 |
| PC relative addressing | Branch instruction | BRA | label | 6 | 4 |
| Immediate addressing | Arithmetic logical operations with direct register addressing | ADD | \# imm, Rn | 7 | 7 |
| | Specify exception processing vector | TRAPA | \# imm | 1 | 1 |
| | | | Total: | 142 | 133 |

A.1.1 No Operand

Table A. 2 No Operand

| Instruction | Code | Operation | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| CLRT | 0000000000001000 | $0 \rightarrow T$ | 1 | 0 |
| CLRMAC | 0000000000101000 | $0 \rightarrow$ MACH, MACL | 1 | - |
| DIV0U | 0000000000011001 | $0 \rightarrow$ M/Q/T | 1 | 0 |
| NOP | 0000000000001001 | No operation | 1 | - |
| RTE | 0000000000101011 | Delayed branch, Stack area
 \rightarrow PC/SR | 4 | LSB |
| RTS | 0000000000001011 | Delayed branch, PR \rightarrow PC | 2 | - |
| SETT | 0000000000011000 | $1 \rightarrow T$ | 1 | 1 |
| SLEEP | 0000000000011011 | Sleep | 3 | - |

A.1.2 Direct Register Addressing

Table A. 3 Destination Operand Only

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CMP/PL | Rn | 0100 nnnn 00010101 | $R \mathrm{P}>0,1 \rightarrow \mathrm{~T}$ | 1 | Comparison result |
| CMP/PZ | Rn | 0100 nnnn 00010001 | $\mathrm{Rn} \geq 0,1 \rightarrow \mathrm{~T}$ | 1 | Comparison result |
| DT | Rn * | 0100 nnnn 00010000 | $\mathrm{Rn}-1 \rightarrow \mathrm{Rn}$ When $R n$ is $0,1 \rightarrow T$, when $R n$ is nonzero, $0 \rightarrow T$ | 1 | Comparison result |
| MOVT | Rn | 0000 nnnn 00101001 | $\mathrm{T} \rightarrow \mathrm{Rn}$ | 1 | - |
| ROTL | Rn | 0100 nnnn 00000100 | $\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow \mathrm{MSB}$ | 1 | MSB |
| ROTR | Rn | $0100 \mathrm{nnnn00000101}$ | LSB \rightarrow Rn \rightarrow T | 1 | LSB |
| ROTCL | Rn | 0100 nnnn 00100100 | $\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow \mathrm{T}$ | 1 | MSB |
| ROTCR | Rn | 0100 nnnn 00100101 | $\mathrm{T} \rightarrow \mathrm{Rn} \rightarrow \mathrm{T}$ | 1 | LSB |
| SHAL | Rn | $0100 \mathrm{nnnn00100000}$ | $\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow 0$ | 1 | MSB |
| SHAR | Rn | 0100 nnnn 00100001 | MSB $\rightarrow \mathrm{Rn} \rightarrow \mathrm{T}$ | 1 | LSB |
| SHLL | Rn | 0100 nnnn 00000000 | $\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow 0$ | 1 | MSB |
| SHLR | Rn | $0100 \mathrm{nnnn00000001}$ | $0 \rightarrow R n \rightarrow T$ | 1 | LSB |
| SHLL2 | Rn | 0100 nnnn 00001000 | $\mathrm{Rn} \ll 2 \rightarrow \mathrm{Rn}$ | 1 | - |
| SHLR2 | Rn | 0100 nnnn 00001001 | $\mathrm{Rn} \gg 2 \rightarrow \mathrm{Rn}$ | 1 | - |
| SHLL8 | Rn | $0100 \mathrm{nnnn00011000}$ | $\mathrm{Rn} \ll 8 \rightarrow \mathrm{Rn}$ | 1 | - |
| SHLR8 | Rn | 0100 nnnn 00011001 | $\mathrm{Rn} \gg 8 \rightarrow \mathrm{Rn}$ | 1 | - |
| SHLL16 | Rn | $0100 \mathrm{nnnn00101000}$ | $\mathrm{Rn} \ll 16 \rightarrow \mathrm{Rn}$ | 1 | - |
| SHLR16 | Rn | $0100 \mathrm{nnnn00101001}$ | $\mathrm{Rn} \gg 16 \rightarrow \mathrm{Rn}$ | 1 | - |

Note: SH-2 CPU instruction

Table A. 4 Source and Destination Operand

| Instruction | | Code | Operation | State | T Bit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ADD | Rm, Rn | $0011 \mathrm{nnnnmmmm1100}$ | $\mathrm{Rn}+\mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |
| ADDC | Rm, Rn | $0011 \mathrm{nnnnmmmm1110}$ | $\mathrm{Rn}+\mathrm{Rm}+\mathrm{T} \rightarrow \mathrm{Rn}$,
 carry $\rightarrow \mathrm{T}$ | 1 | Carry |
| ADDV | Rm, Rn | 0011nnnnmmmm1111 | $\mathrm{Rn}+\mathrm{Rm} \rightarrow \mathrm{Rn}$,
 overflow $\rightarrow \mathrm{T}$ | 1 | Overflow |
| AND | Rm, Rn | 0010nnnnmmmm1001 | Rn \& Rm $\rightarrow \mathrm{Rn}$ | 1 | - |

Table A. 4 Source and Destination Operand (cont)

| Instruction | | Code0011nnnnmmmm0000 | Operation
 When Rn = Rm, $1 \rightarrow T$ | $\begin{aligned} & \text { State } \\ & \hline 1 \end{aligned}$ | TBit
 Comparison result |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CMP/EQ | Rm, Rn | | | | |
| CMP/HS | Rm, Rn | 0011nnnnmmmm0010 | When unsigned and Rn $\geq \mathrm{Rm}, 1 \rightarrow \mathrm{~T}$ | 1 | Comparison result |
| CMP/GE | Rm, Rn | 0011 nnnnmmmm0011 | When signed and $\mathrm{Rn} \geq$ Rm, $1 \rightarrow T$ | 1 | Comparison result |
| CMP/HI | Rm, Rn | 0011 nnnnmmmm0110 | When unsigned and Rn $>R m, 1 \rightarrow T$ | 1 | Comparison result |
| CMP/GT | Rm, Rn | 0011 nnnnmmmm0111 | When signed and $\mathrm{Rn}>$ $R m, 1 \rightarrow T$ | 1 | Comparison result |
| CMP/STR | Rm, Rn | $0010 \mathrm{nnnnmmmm1100}$ | When a byte in Rn equals bytes in Rm, 1 $\rightarrow T$ | 1 | Comparison result |
| DIV1 | Rm, Rn | 0011 nnnnmmmm0100 | 1-step division ($\mathrm{Rn} \div$ Rm) | 1 | Calculation result |
| DIV0S | Rm, Rn | 0010nnnnmmmm0111 | MSB of $\mathrm{Rn} \rightarrow \mathrm{Q}$, MSB of $\mathrm{Rm} \rightarrow \mathrm{M}, \mathrm{M}^{\wedge} \mathrm{Q} \rightarrow \mathrm{T}$ | 1 | Calculation result |
| DMULS.L | $\mathrm{Rm}, \mathrm{Rn} *^{2}$ | 0011 nnnnmmmm1101 | Signed, $\mathrm{Rn} \times \mathrm{Rm} \rightarrow$ MACH, MACL | 2 to 4*1 | - |
| DMULU.L | $\mathrm{Rm}, \mathrm{Rn} *^{2}$ | 0011 nnnnmmmm0101 | Unsigned, Rn \times Rm \rightarrow MACH, MACL | 2 to 4*1 | - |
| EXTS.B | Rm, Rn | 0110nnnnmmmm1110 | Sign - extends Rm from byte \rightarrow Rn | 1 | - |
| EXTS.W | Rm, Rn | $0110 \mathrm{nnnnmmmm1111}$ | Sign - extends Rm from word \rightarrow Rn | 1 | - |
| EXTU.B | Rm, Rn | 0110nnnnmmmm1100 | Zero - extends Rm from byte \rightarrow Rn | 1 | - |
| EXTU.W | Rm , Rn | 0110nnnnmmmm1101 | Zero - extends Rm from word \rightarrow Rn | 1 | - |
| MOV | Rm, Rn | 0110nnnnmmmm0011 | $\mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |
| MUL.L | $\mathrm{Rm}, \mathrm{Rn} *^{2}$ | 0000nnnnmmmmm0111 | $\mathrm{Rn} \times \mathrm{Rm} \rightarrow \mathrm{MACL}$ | 2 to 4*1 | - |
| MULS.W | Rm, Rn | 0010 nnnnmmmm1111 | Signed, Rn \times Rm \rightarrow MAC | 1 to 3*1 | - |
| MULU.W | Rm, Rn | 0010nnnnmmmm1110 | Unsigned, $\mathrm{Rn} \times \mathrm{Rm} \rightarrow$ MAC | 1 to 3*1 | - |
| NEG | Rm, Rn | 0110 nnnnmmmm1011 | $0-\mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |
| NEGC | Rm, Rn | 0110nnnnmmmm1010 | $\begin{aligned} & 0-\mathrm{Rm}-\mathrm{T} \rightarrow \mathrm{Rn}, \\ & \text { Borrow } \rightarrow \mathrm{T} \end{aligned}$ | 1 | Borrow |

Notes: 1. The normal minimum number of execution states
2. $\mathrm{SH}-2 \mathrm{CPU}$ instruction

Table A. 4 Source and Destination Operand (cont)

| Instruction | | Code
 0110nnnnnmmmm0111 | $\frac{\text { Operation }}{\sim R m \rightarrow R n}$ | $\frac{\text { State }}{1}$ | $\frac{\text { T Bit }}{-}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NOT | Rm, Rn | | | | |
| OR | Rm, Rn | $0010 \mathrm{nnnnmmmm1011}$ | $\mathrm{Rn} 1 \mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |
| SUB | Rm, Rn | 0011 nnnnmmmm1000 | $\mathrm{Rn}-\mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |
| SUBC | Rm, Rn | 0011nnnnmmmm1010 | $\begin{aligned} & R n-R m-T \rightarrow R n, \\ & \text { Borrow } \rightarrow T \end{aligned}$ | 1 | Borrow |
| SuBv | Rm, Rn | $0011 \mathrm{nnnnmmmm1011}$ | $\begin{aligned} & \mathrm{Rn}-\mathrm{Rm} \rightarrow \mathrm{Rn}, \\ & \text { Underflow } \rightarrow T \end{aligned}$ | 1 | Underflow |
| SWAP.B | Rm, Rn | 0110nnnnmmmm1000 | $\mathrm{Rm} \rightarrow$ Swap upper and lower halves of lower 2 bytes $\rightarrow \mathrm{Rn}$ | 1 | - |
| SWAP.W | Rm, Rn | 0110nnnnmmm1001 | $\mathrm{Rm} \rightarrow$ Swap upper and lower word \rightarrow Rn | 1 | - |
| TST | Rm, Rn | 0010nnnnmmmm1000 | Rn \& Rm, when result is $0,1 \rightarrow T$ | 1 | Test results |
| XOR | Rm, Rn | 0010nnnnmmmm1010 | Rn ^ $\mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |
| XTRCT | Rm, Rn | $0010 \mathrm{nnnnmmmm1101}$ | Center 32 bits of Rm and $\mathrm{Rn} \rightarrow \mathrm{Rn}$ | 1 | - |

Table A. 5 Load and Store with Control Register or System Register

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LDC | Rm, SR | 0100 mmmm 00001110 | $\mathrm{Rm} \rightarrow \mathrm{SR}$ | 1 | LSB |
| LDC | Rm, GBR | 0100 mmmm 00011110 | $\mathrm{Rm} \rightarrow$ GBR | 1 | - |
| LDC | Rm, vBR | 0100 mmmm 00101110 | $\mathrm{Rm} \rightarrow$ VBR | 1 | - |
| LDS | Rm, MACH | 0100 mmmm 00001010 | $\mathrm{Rm} \rightarrow \mathrm{MACH}$ | 1 | - |
| LDS | Rm, MACL | $0100 \mathrm{mmmm00011010}$ | $\mathrm{Rm} \rightarrow \mathrm{MACL}$ | 1 | - |
| LDS | Rm, PR | $0100 \mathrm{mmmm00101010}$ | $\mathrm{Rm} \rightarrow \mathrm{PR}$ | 1 | - |
| STC | SR,Rn | 0000 nnnn 00000010 | $\mathrm{SR} \rightarrow \mathrm{Rn}$ | 1 | - |
| STC | GBR, Rn | 0000 nnnn 00010010 | GBR \rightarrow Rn | 1 | - |
| STC | VBR, Rn | 0000 nnnn 00100010 | $\mathrm{VBR} \rightarrow \mathrm{Rn}$ | 1 | - |
| STS | MACH, Rn | $0000 \mathrm{nnnn00001010}$ | $\mathrm{MACH} \rightarrow \mathrm{Rn}$ | 1 | - |
| STS | MACL, Rn | $0000 \mathrm{nnnn00011010}$ | $\mathrm{MACL} \rightarrow \mathrm{Rn}$ | 1 | - |
| STS | PR, Rn | $0000 \mathrm{nnnn00101010}$ | $\mathrm{PR} \rightarrow \mathrm{Rn}$ | 1 | - |

A.1.3 Indirect Register Addressing

Table A. 6 Destination Operand Only

| Instruction | | Code | Operation | State | T Bit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| JMP | @Rm | 0100 mmmm00101011 | Delayed branch, Rm $\rightarrow \mathrm{PC}$ | 2 | - |
| JSR | @Rm | 0100 mmmm00001011 | Delayed branch, PC $\rightarrow \mathrm{PR}$,
 $\mathrm{Rm} \rightarrow \mathrm{PC}$ | 2 | - |
| TAS.B @Rn | 0100 nnnn00011011 | When (Rn) is $0,1 \rightarrow \mathrm{~T}, 1 \rightarrow$
 MSB of (Rn) | 4 | Test results | |

Table A. 7 Data Transfer with Direct Register Addressing

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MOV.B | Rm, @Rn | 0010nnnnmmmm0000 | $\mathrm{Rm} \rightarrow(\mathrm{Rn})$ | 1 | - |
| MOV.W | Rm, @Rn | $0010 \mathrm{nnnnmmmm0001}$ | $\mathrm{Rm} \rightarrow(\mathrm{Rn})$ | 1 | - |
| MOV.L | Rm, @Rn | 0010nnnnmmmm0010 | $\mathrm{Rm} \rightarrow(\mathrm{Rn})$ | 1 | - |
| MOV.B | @Rm, Rn | $0110 \mathrm{nnnnmmmm0000}$ | $(\mathrm{Rm}) \rightarrow$ sign extension \rightarrow Rn | 1 | - |
| MOV.W | $@ \mathrm{Rm}, \mathrm{Rn}$ | $0110 \mathrm{nnnnmmmm0001}$ | $(\mathrm{Rm}) \rightarrow$ sign extension \rightarrow Rn | 1 | - |
| MOV.L | $@ \mathrm{Rm}, \mathrm{Rn}$ | $0110 \mathrm{nnnnmmmm0010}$ | $(\mathrm{Rm}) \rightarrow \mathrm{Rn}$ | 1 | - |

A.1.4 Post Increment Indirect Register Addressing

Table A. 8 Multiply/Accumulate Operation

| Instruction | Code | Operation | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MAC.L | @Rm+, @Rn $+\star^{2}$ | 0000nnnnmmmm1111 | Signed, $(R n) \times(R m)+$ MAC
 \rightarrow MAC | $3(2 \text { to } 4)^{\star 1}$ | - |
| MAC.W | @Rm+, @Rn + | 0100 nnnnmmmm1111 | Signed, $(R n) \times(R m)+$ MAC
 \rightarrow MAC | $3 /(2)^{\star 1}$ | - |

Notes: 1. The normal minimum number of execution states (The number in parentheses is the number of states when there is contention with preceding/following instructions).
2. SH-2 CPU instruction

Table A. 9 Data Transfer from Direct Register Addressing

| Instruction | Code | Operation | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MOV.B | @Rm+, Rn | 0110 nnnnmmmm0100 | $(\mathrm{Rm}) \rightarrow$ sign extension \rightarrow
 $\mathrm{Rn}, \mathrm{Rm}+1 \rightarrow \mathrm{Rm}$ | 1 | - |
| MOV.W | @Rm+,Rn | 0110 nnnnmmmm0101 | $(\mathrm{Rm}) \rightarrow$ sign extension \rightarrow
 $\mathrm{Rn}, \mathrm{Rm}+2 \rightarrow \mathrm{Rm}$ | 1 | - |
| MOV.L | @Rm+,Rn | 0110 nnnnmmmm0110 | $(\mathrm{Rm}) \rightarrow \mathrm{Rn}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | 1 | - |

Table A.10 Load to Control Register or System Register

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LDC.L | @Rm+, SR | 0100mmmm00000111 | $(\mathrm{Rm}) \rightarrow \mathrm{SR}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | 3 | LSB |
| LDC.L | @Rm+, GBR | 0100 mmmm 00010111 | $(\mathrm{Rm}) \rightarrow \mathrm{GBR}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | 3 | - |
| LDC.L | @Rm+, VBR | $0100 \mathrm{mmmm00100111}$ | $(\mathrm{Rm}) \rightarrow \mathrm{VBR}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | 3 | - |
| LDS.L | @Rm+, MACH | 0100mmmm00000110 | $(\mathrm{Rm}) \rightarrow \mathrm{MACH}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | 1 | - |
| LDS.L | @Rm+, MACL | $0100 \mathrm{mmmm00010110}$ | $(\mathrm{Rm}) \rightarrow \mathrm{MACL}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | 1 | - |
| LDS.L | @Rm+, PR | 0100mmmm00100110 | $(\mathrm{Rm}) \rightarrow \mathrm{PR}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | 1 | - |

A.1.5 Pre Decrement Indirect Register Addressing

Table A. 11 Data Transfer from Direct Register Addressing

| Instruction | | Code | Operation | State | T Bit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MOV.B | Rm, @-Rn | 0010nnnnmmmm0100 | $\mathrm{Rn}-1 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow(\mathrm{Rn})$ | 1 | - |
| MOV.W | $\mathrm{Rm}, @-\mathrm{Rn}$ | 0010nnnnmmmm0101 | $\mathrm{Rn}-2 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow(\mathrm{Rn})$ | 1 | - |
| MOV.L | Rm, @-Rn | 0010nnnnmmmm0110 | $\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow(\mathrm{Rn})$ | 1 | - |

Table A. 12 Store from Control Register or System Register

| Instruction | Code | Operation | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :---: |
| STC.L | SR, @-Rn | $0100 \mathrm{nnnn00000011}$ | $R n-4 \rightarrow R n, S R \rightarrow(R n)$ | 2 | - |
| STC.L | GBR, @-Rn | $0100 n n n n 00010011$ | $R n-4 \rightarrow R n, G B R \rightarrow(R n)$ | 2 | - |
| STC.L | VBR, @-Rn | $0100 n n n n 00100011$ | $R n-4 \rightarrow R n, V B R \rightarrow(R n)$ | 2 | - |
| STS.L | MACH, @-Rn | $0100 n n n n 00000010$ | $R n-4 \rightarrow R n, M A C H \rightarrow(R n)$ | 1 | - |
| STS.L | MACL, @-Rn | $0100 n n n n 00010010$ | $R n-4 \rightarrow R n, M A C L \rightarrow(R n)$ | 1 | - |
| STS.L | PR, @-Rn | $0100 n n n n 00100010$ | $R n-4 \rightarrow R n, P R \rightarrow(R n)$ | 1 | - |

A.1.6 Indirect Register Addressing with Displacement

Table A. 13 Indirect Register Addressing with Displacement

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MOV. ${ }^{\text {B }}$ | R0, @(disp,Rn) | 10000000 nnnndddd | $\mathrm{RO} \rightarrow(\mathrm{disp}+\mathrm{Rn})$ | 1 | - |
| MOV.W | R0, @(disp,Rn) | 10000001nnnndddd | $\mathrm{RO} \rightarrow($ disp $\times 2+\mathrm{Rn})$ | 1 | - |
| MOV.L | Rm, @(disp,Rn) | 0001 nnnnmmmmdddd | $R m \rightarrow($ disp $\times 4+\mathrm{Rn})$ | 1 | - |
| MOV.B | @(disp, Rm) , R0 | 10000100 mmmmdddd | (disp + Rm) \rightarrow sign extension \rightarrow RO | 1 | - |
| MOV.W | @(disp, Rm) , R0 | 10000101 mmmmdddd | (disp $\times 2+\mathrm{Rm}$) \rightarrow sign extension \rightarrow RO | 1 | - |
| MOV.L | @(disp, Rm), Rn | 0101 nnnnmmmmdddd | $($ disp $\times 4+\mathrm{Rm}) \rightarrow \mathrm{Rn}$ | 1 | - |

A.1.7 Indirect Indexed Register Addressing

Table A. 14 Indirect Indexed Register Addressing

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MOV.B | $\mathrm{Rm}, @(\mathrm{RO}, \mathrm{Rn})$ | $0000 \mathrm{nnnnmmmm0100}$ | $\mathrm{Rm} \rightarrow(\mathrm{RO}+\mathrm{Rn})$ | 1 | - |
| MOV.W | Rm, @(R0,Rn) | $0000 \mathrm{nnnnmmmm0101}$ | $\mathrm{Rm} \rightarrow(\mathrm{RO}+\mathrm{Rn})$ | 1 | - |
| MOV.L | Rm, @(R0,Rn) | $0000 \mathrm{nnnnmmmm0110}$ | $\mathrm{Rm} \rightarrow(\mathrm{RO}+\mathrm{Rn})$ | 1 | - |
| MOV.B | @(R0,Rm), Rn | $0000 \mathrm{nnnnmmmm1100}$ | $\begin{aligned} & (R 0+R m) \rightarrow \text { sign } \\ & \text { extension } \rightarrow R n \end{aligned}$ | 1 | - |
| MOV.W | $@(\mathrm{RO}, \mathrm{Rm}), \mathrm{Rn}$ | $0000 \mathrm{nnnnmmmm1101}$ | $\begin{aligned} & (R 0+R m) \rightarrow \text { sign } \\ & \text { extension } \rightarrow R n \end{aligned}$ | 1 | - |
| MOV.L | $@(\mathrm{RO}, \mathrm{Rm}), \mathrm{Rn}$ | $0000 \mathrm{nnnnmmmm1110}$ | $(\mathrm{RO}+\mathrm{Rm}) \rightarrow \mathrm{Rn}$ | 1 | - |

A.1.8 Indirect GBR Addressing with Displacement

Table A. 15 Indirect GBR Addressing with Displacement

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MOV. B | R0, @(disp, GBR) | 11000000 dddddddd | R0 \rightarrow (disp + GBR) | 1 | - |
| MOV.W | R0, @(disp, GBR) | 11000001 dddddddd | $\mathrm{RO} \rightarrow \text { (disp } \times 2+$
 GBR) | 1 | - |
| MOV.L | R0, @(disp, GBR) | 11000010 dddddddd | $\begin{aligned} & \mathrm{RO} \rightarrow \text { (disp } \times 4+ \\ & \mathrm{GBR}) \end{aligned}$ | 1 | - |
| MOV.B | @(disp, GBR), R0 | $11000100 d d d d d d d d$ | $\begin{aligned} & \text { (disp + GBR) } \rightarrow \text { sign } \\ & \text { extension } \rightarrow \text { RO } \end{aligned}$ | 1 | - |
| MOV.W | @(disp, GBR) , R0 | 11000101 dddddddd | (disp $\times 2+$ GBR) \rightarrow sign extension \rightarrow RO | 1 | - |
| MOV.L | @(disp, GBR) , R0 | 11000110 dddddddd | $\begin{aligned} & \text { (disp } \times 4+\text { GBR) } \rightarrow \\ & \text { RO } \end{aligned}$ | 1 | - |

A.1.9 Indirect Indexed GBR Addressing

Table A. 16 Indirect Indexed GBR Addressing

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AND.B | \#imm, @(R0, GBR) | 11001101iiiiiiii | $\begin{aligned} & \text { (RO + GBR) \& imm } \rightarrow \\ & (\mathrm{RO}+\mathrm{GBR}) \end{aligned}$ | 3 | - |
| OR.B | \# imm, @(R0, GBR) | 11001111iiiiiiii | $\begin{aligned} & \text { (RO + GBR) } \downarrow \mathrm{imm} \rightarrow(\mathrm{RO} \\ & + \text { GBR }) \end{aligned}$ | 3 | - |
| TST.B | \#imm, @(R0, GBR) | 11001100 iiiiiiiii | ($\mathrm{RO} 0+\mathrm{GBR}$) \& imm, when result is $0,1 \rightarrow T$ | 3 | Test results |
| XOR.B | \#imm, @(R0, GBR) | 11001110iiiiiiii | $\begin{aligned} & (\mathrm{RO}+\mathrm{GBR}) \wedge \mathrm{imm} \rightarrow(\mathrm{RO} \\ & +\mathrm{GBR}) \end{aligned}$ | 3 | - |

A.1.10 PC Relative Addressing with Displacement

Table A. 17 PC Relative Addressing with Displacement

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MOV.W | @(disp, PC), Rn | 1001nnnndddddddd | (disp $\times 2+\mathrm{PC}$) \rightarrow sign extension $\rightarrow \mathrm{Rn}$ | 1 | - |
| MOV.L | @(disp, PC), Rn | 1101nnnndddddddd | $($ disp $\times 4+\mathrm{PC}) \rightarrow \mathrm{Rn}$ | 1 | - |
| MOVA | @(disp, PC) , R0 | 11000111dddddddd | $\operatorname{disp} \times 4+\mathrm{PC} \rightarrow \mathrm{RO}$ | 1 | - |

A.1.11 PC Relative Addressing with Rm

Table A.18 PC Relative Addressing with Rm

| Instruction | | Code | Operation | State | T Bit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BRAF | $\mathrm{Rm}^{*}{ }^{2}$ | 0000 mmmm00100011 | Delayed branch, Rm $+\mathrm{PC} \rightarrow \mathrm{PC}$ | 2 | - |
| BSRF | $\mathrm{Rm} \star^{2}$ | 0000 mmmm00000011 | Delayed branch, PC $\rightarrow \mathrm{PR}, \mathrm{Rm}+\mathrm{PC}$
 $\rightarrow \mathrm{PC}$ | - | |

Notes: 2. SH-2 CPU instruction

A.1.12 PC Relative Addressing

Table A. 19 PC Relative Addressing

| Instruction | Code | Operation | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BF | label | 10001011 dddddddd | When $\mathrm{T}=0$, disp $\times 2+\mathrm{PC} \rightarrow \mathrm{PC} ;$
 When $\mathrm{T}=1$, nop | $3 / 1^{* 3}$ | - |
| BF/S | label*2 | 10001111 dddddddd | When $\mathrm{T}=0$, disp $\times 2+\mathrm{PC} \rightarrow \mathrm{PC} ;$
 When $\mathrm{T}=1$, nop | $2 / 1^{* 3}$ | - |
| BT | label | 10001001 dddddddd | When $\mathrm{T}=1$, disp $\times 2+\mathrm{PC} \rightarrow \mathrm{PC} ;$
 When $\mathrm{T}=0$, nop | $3 / 1^{* 3}$ | - |
| BT/S | label*2 | 10001101 dddddddd | When $\mathrm{T}=1$, disp $\times 2+\mathrm{PC} \rightarrow \mathrm{PC} ;$
 When $\mathrm{T}=0$, nop | $2 / 1^{* 3}$ | - |
| BRA | label | 1010 dddddddddddd | Delayed branch, disp $\times 2+\mathrm{PC} \rightarrow$
 PC | 2 | - |
| BSR | label | 1011dddddddddddd | Delayed branch, PC $\rightarrow \mathrm{PR}$, disp $\times 2$
 $2+\mathrm{PC} \rightarrow \mathrm{PC}$ | - | |

Notes: 2. SH-2 CPU instruction
3. One state when it does not branch

A.1.13 Immediate

Table A. 20 Arithmetic Logical Operation with Direct Register Addressing

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ADD | \#imm, Rn | 0111nnnniiiiiiii | $\mathrm{Rn}+\mathrm{imm} \rightarrow \mathrm{Rn}$ | 1 | - |
| AND | \#imm, R0 | 11001001iiiiiiii | RO \& imm \rightarrow RO | 1 | - |
| CMP/EQ | \#imm, R0 | 10001000iiiiiiii | When R0 = imm, $1 \rightarrow \mathrm{~T}$ | 1 | Comparison result |
| MOV | \#imm, Rn | 1110nnnniiiiiiii | imm \rightarrow sign extension \rightarrow Rn | 1 | - |
| OR | \#imm, R0 | 11001011iiiiiiii | RO I imm \rightarrow RO | 1 | - |
| TST | \#imm, R0 | 11001000iiiiiiii | RO \& imm, when result is 0 , $1 \rightarrow T$ | 1 | Test results |
| XOR | \#imm, R0 | 11001010iiiiiiii | $\mathrm{RO} \wedge \mathrm{imm} \rightarrow \mathrm{RO}$ | 1 | - |

Table A. 21 Specify Exception Processing Vector

| Instruction | Code | Operation | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| TRAPA $\#$ imm | 11000011 iiiiiiii | PC/SR \rightarrow Stack area, (imm $\times 4+8$
 VBR) \rightarrow PC | - | |

A. 2 Instruction Sets by Instruction Format

Tables A. 22 to A. 48 list instruction codes and execution states by instruction formats.

Table A. 22 Instruction Sets by Format

| Format | Category | Sample Instruction | | Types | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | SH-2 | SH-1 |
| 0 | - | NOP | | 8 | 8 |
| n | Direct register addressing | MOVT | Rn | 18 | 17 |
| | Direct register addressing (store with control or system registers) | STS | MACH, Rn | 6 | 6 |
| | Indirect register addressing | TAS.B | @Rn | 1 | 1 |
| | Pre decrement indirect register addressing | STC.L | SR, @-Rn | 6 | 6 |
| m | Direct register addressing (load with control or system registers) | LDC | Rm, SR | 6 | 6 |
| | PC relative addressing with Rn | BRAF | Rm | 2 | 0 |
| | Direct register addressing | JMP | @Rm | 2 | 2 |
| | Post increment indirect register addressing | LDC.L | @Rm+, SR | 6 | 6 |
| nm | Direct register addressing | ADD | Rm, Rn | 34 | 31 |
| | Indirect register addressing | MOV.L | $\mathrm{Rm}, @ \mathrm{Rn}$ | 6 | 6 |
| | Post increment indirect register addressing (multiply/accumulate operation) | MAC.W | @Rm+, @Rn+ | 2 | 1 |
| | Post increment indirect register addressing | MOV.L | @Rm+, Rn | 3 | 3 |
| | Pre decrement indirect register addressing | MOV.L | $\mathrm{Rm}, \mathrm{Q}-\mathrm{Rn}$ | 3 | 3 |
| | Indirect indexed register addressing | MOV.L | $\mathrm{Rm}, @(\mathrm{RO}, \mathrm{Rn})$ | 6 | 6 |
| md | Indirect register addressing with displacement | MOV.B | @(disp, Rm), R0 | 2 | 2 |
| nd4 | Indirect register addressing with displacement | MOV.B | R0,@(disp,Rn) | 2 | 2 |
| nmd | Indirect register addressing with displacement | MOV.L | Rm, @(disp, Rn) | 2 | 2 |
| d | Indirect GBR addressing with displacement | MOV.L | R0,@(disp, GBR) | 6 | 6 |
| | Indirect PC addressing with displacement | MOVA | @(disp, PC), R0 | 1 | 1 |
| | PC relative addressing | BF | label | 4 | 2 |
| d12 | PC relative addressing | BRA | label | 2 | 2 |
| nd8 | PC relative addressing with displacement | MOV.L | @(disp, PC), Rn | 2 | 2 |
| i | Indirect indexed GBR addressing | AND. ${ }^{\text {B }}$ | \#imm, @(R0, GBR) | 4 | 4 |
| | Immediate addressing (arithmetic and logical operations with direct register) | AND | \#imm, R0 | 5 | 5 |
| | Immediate addressing (specify exception processing vector) | TRAPA | \#imm | 1 | 1 |
| ni | Immediate addressing (direct register arithmetic operations and data transfers) | ADD | \#imm, Rn | 2 | 2 |

A.2.1 0 Format

Table A. 230 Format

| Instruction | Code | Operation | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| CLRT | 0000000000001000 | $0 \rightarrow T$ | 1 | 0 |
| CLRMAC | 0000000000101000 | $0 \rightarrow$ MACH, MACL | 1 | - |
| DIVOU | 0000000000011001 | $0 \rightarrow$ M/Q/T | 1 | 0 |
| NOP | 0000000000001001 | No operation | 1 | - |
| RTE | 0000000000101011 | Delayed branching, stack
 area \rightarrow PC/SR | 4 | LSB |
| RTS | 0000000000001011 | Delayed branching, PR \rightarrow
 PC | 2 | - |
| SETT | 0000000000011000 | $1 \rightarrow T$ | 1 | 1 |
| SLEEP | 0000000000011011 | Sleep | $3^{* 4}$ | - |
| N | | | | |

Notes: 4. This is the number of states until a transition is made to the Sleep state.

A.2.2 n Format

Table A. 24 Direct Register Addressing

| Instruction | | $\begin{aligned} & \text { Code } \\ & \hline 0100 \mathrm{nnnn} 00010101 \end{aligned}$ | Operation$R n>0,1 \rightarrow T$ | $\begin{aligned} & \text { State } \\ & \hline 1 \end{aligned}$ | TBit
 Comparison result |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CMP/PL | Rn | | | | |
| CMP/PZ | Rn | $0100 \mathrm{nnnn00010001}$ | $R \mathrm{n} \geq 0,1 \rightarrow \mathrm{~T}$ | 1 | Comparison result |
| DT | $\mathrm{Rn} \star^{2}$ | 0100nnnn00010000 | $\mathrm{Rn}-1 \rightarrow \mathrm{Rn}$; If Rn is $0,1 \rightarrow \mathrm{~T}$, if Rn is nonzero, $0 \rightarrow T$ | 1 | Comparison result |
| MOVT | Rn | 0000 nnnn 00101001 | $\mathrm{T} \rightarrow \mathrm{Rn}$ | 1 | - |
| ROTL | Rn | 0100 nnnn 00000100 | $\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow \mathrm{MSB}$ | 1 | MSB |
| ROTR | Rn | 0100 nnnn 00000101 | LSB $\rightarrow \mathrm{Rn} \rightarrow \mathrm{T}$ | 1 | LSB |
| ROTCL | Rn | 0100nnnn00100100 | $\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow \mathrm{T}$ | 1 | MSB |
| ROTCR | Rn | 0100 nnnn 00100101 | $T \rightarrow R n \rightarrow T$ | 1 | LSB |
| SHAL | Rn | 0100 nnnn 00100000 | $\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow 0$ | 1 | MSB |
| SHAR | Rn | 0100 nnnn 00100001 | MSB $\rightarrow \mathrm{Rn} \rightarrow \mathrm{T}$ | 1 | LSB |
| SHLL | Rn | 0100 nnnn 00000000 | $\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow 0$ | 1 | MSB |
| SHLR | Rn | 0100 nnnn 00000001 | $0 \rightarrow R n \rightarrow T$ | 1 | LSB |
| SHLL2 | Rn | 0100 nnnn 00001000 | $\mathrm{Rn} \ll 2 \rightarrow \mathrm{Rn}$ | 1 | - |
| SHLR2 | Rn | 0100 nnnn 00001001 | $\mathrm{Rn} \gg 2 \rightarrow \mathrm{Rn}$ | 1 | - |
| SHLL8 | Rn | 0100 nnnn 00011000 | $\mathrm{Rn} \ll 8 \rightarrow \mathrm{Rn}$ | 1 | - |
| SHLR8 | Rn | 0100 nnnn 00011001 | $\mathrm{Rn} \gg 8 \rightarrow \mathrm{Rn}$ | 1 | - |
| SHLL16 | Rn | 0100 nnnn 00101000 | $\mathrm{Rn} \ll 16 \rightarrow \mathrm{Rn}$ | 1 | - |
| SHLR16 | Rn | $0100 \mathrm{nnnn00101001}$ | $\mathrm{Rn} \gg 16 \rightarrow \mathrm{Rn}$ | 1 | - |

Notes: 2. SH-2 CPU instruction.

Table A. 25 Direct Register Addressing (Store with Control and System Registers)

| Instruction | Code | Operation | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| STC | SR, Rn | 0000 nnnn 00000010 | $\mathrm{SR} \rightarrow \mathrm{Rn}$ | 1 | - |
| STC | GBR,Rn | 0000 nnnn 00010010 | GBR $\rightarrow R n$ | 1 | - |
| STC | VBR,Rn | 0000 nnnn 00100010 | VBR $\rightarrow R n$ | 1 | - |
| STS | MACH,Rn | 0000 nnnn 00001010 | MACH $\rightarrow R n$ | 1 | - |
| STS | MACL,Rn | 0000 nnnn 00011010 | MACL $\rightarrow R n$ | 1 | - |
| STS | PR,Rn | $0000 n n n n 00101010$ | PR $\rightarrow R n$ | 1 | - |

Table A. 26 Indirect Register Addressing

| Instruction | Code | Operation | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| TAS.B @Rn | $0100 \mathrm{nnnnn00011011}$ | When (Rn) is $0,1 \rightarrow \mathrm{~T}, 1 \rightarrow$
 MSB of (Rn) | 4 | Test results |

Table A. 27 Pre Decrement Indirect Register

| Instruction | Code | Operation | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| STC.L | SR, @-Rn | 0100 nnnn 00000011 | $\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{SR} \rightarrow(\mathrm{Rn})$ | 2 | - |
| STC.L | GBR, @-Rn | 0100 nnnn 00010011 | $\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{GBR} \rightarrow(\mathrm{Rn})$ | 2 | - |
| STC.L | VBR, @-Rn | 0100 nnnn 00100011 | $\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{VBR} \rightarrow(\mathrm{Rn})$ | 2 | - |
| STS.L | MACH, @-Rn | $0100 \mathrm{nnnn00000010}$ | $\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{MACH} \rightarrow(\mathrm{Rn})$ | 1 | - |
| STS.L | MACL, @-Rn | $0100 \mathrm{nnnn00010010}$ | $\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{MACL} \rightarrow(\mathrm{Rn})$ | 1 | - |
| STS.L | PR, @-Rn | 0100 nnnn 00100010 | $\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{PR} \rightarrow(\mathrm{Rn})$ | 1 | - |

A.2.3 m Format

Table A. 28 Direct Register Addressing (Load with Control and System Registers)

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LDC | Rm, SR | 0100 mmmm 00001110 | $\mathrm{Rm} \rightarrow \mathrm{SR}$ | 1 | LSB |
| LDC | Rm, GBR | 0100 mmmm 00011110 | $\mathrm{Rm} \rightarrow \mathrm{GBR}$ | 1 | - |
| LDC | Rm, VBR | $0100 \mathrm{mmmm00101110}$ | $\mathrm{Rm} \rightarrow$ VBR | 1 | - |
| LDS | Rm, MACH | $0100 \mathrm{mmmm00001010}$ | $\mathrm{Rm} \rightarrow \mathrm{MACH}$ | 1 | - |
| LDS | Rm, MACL | $0100 \mathrm{mmmm00011010}$ | $\mathrm{Rm} \rightarrow \mathrm{MACL}$ | 1 | - |
| LDS | Rm, PR | $0100 \mathrm{mmmm00101010}$ | $\mathrm{Rm} \rightarrow \mathrm{PR}$ | 1 | - |

Table A. 29 Indirect Register

| Instruction | | Code | Operation | State | T Bit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| JMP | @Rm | 0100 mmmm00101011 | Delayed branch, Rm $\rightarrow \mathrm{PC}$ | 2 | - |
| JSR | @Rm | 0100 mmmm00001011 | Delayed branch, $\mathrm{PC} \rightarrow \mathrm{PR}$,
 $\mathrm{Rm} \rightarrow \mathrm{PC}$ | 2 | - |

Table A. 30 Post Increment Indirect Register

| Instruction | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: |
| LDC.L @Rm+, SR | $0100 \mathrm{mmmm00000111}$ | $(\mathrm{Rm}) \rightarrow \mathrm{SR}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | 3 | LSB |
| LDC.L @Rm+, GBR | $0100 \mathrm{mmmm00010111}$ | $(\mathrm{Rm}) \rightarrow \mathrm{GBR}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | 3 | - |
| LDC.L @Rm+,VBR | $0100 \mathrm{mmmm00100111}$ | $(\mathrm{Rm}) \rightarrow \mathrm{VBR}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | 3 | - |
| LDS.L @Rm+, MACH | 0100 mmmm 00000110 | $(\mathrm{Rm}) \rightarrow \mathrm{MACH}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | 1 | - |
| LDS.L @Rm+,MACL | $0100 \mathrm{mmmm00010110}$ | $(\mathrm{Rm}) \rightarrow \mathrm{MACL}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | 1 | - |
| LDS.L @Rm+, PR | $0100 \mathrm{mmmm00100110}$ | $(\mathrm{Rm}) \rightarrow \mathrm{PR}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | 1 | - |

Table A. 31 PC Relative Addressing with Rm

| Instruction | | Code | Operation | State | T Bit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BRAF | Rm^{2} | 0000 mmmm00100011 | Delayed branch, $\mathrm{Rm}+\mathrm{PC} \rightarrow \mathrm{PC}$ | 2 | - |
| BSRF | $\mathrm{Rm} \star^{2}$ | 0000 mmmm00000011 | Delayed branch, $\mathrm{PC} \rightarrow \mathrm{PR}, \mathrm{Rm}+\mathrm{PC}$
 $\rightarrow \mathrm{PC}$ | - | |

Notes: 2. SH-2 CPU instruction

A.2.4 nm Format

Table A. 32 Direct Register Addressing

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ADD | Rm, Rn | 0011 nnnnmmmm1100 | $\mathrm{Rn}+\mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |
| ADDC | Rm, Rn | $0011 \mathrm{nnnnmmmm1110}$ | $\underset{\rightarrow T}{\mathrm{Rn}+\mathrm{Rm}+\mathrm{T} \rightarrow \mathrm{Rn}, \text { carry }}$ | 1 | Carry |
| ADDV | Rm, Rn | 0011nnnnmmmm1111 | $\mathrm{Rn}+\mathrm{Rm} \rightarrow \mathrm{Rn}$, overflow $\rightarrow T$ | 1 | Overflow |
| AND | Rm, Rn | $0010 \mathrm{nnnnmmmm1001}$ | $\mathrm{Rn} \& \mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |
| CMP/EQ | Rm, Rn | 0011nnnnmmmm0000 | When $\mathrm{Rn}=\mathrm{Rm}, 1 \rightarrow \mathrm{~T}$ | 1 | Comparison result |
| CMP/HS | Rm, Rn | 0011nnnnmmmm0010 | When unsigned and $\mathrm{Rn} \geq$
 $\mathrm{Rm}, 1 \rightarrow \mathrm{~T}$ | 1 | Comparison result |
| CMP/GE | Rm, Rn | 0011nnnnmmmm0011 | When signed and $\mathrm{Rn} \geq$ $\mathrm{Rm}, 1 \rightarrow \mathrm{~T}$ | 1 | Comparison result |
| CMP/HI | Rm, Rn | 0011nnnnmmmm0110 | When unsigned and $\mathrm{Rn}>$ Rm, $1 \rightarrow T$ | 1 | Comparison result |
| CMP/GT | Rm, Rn | 0011nnnnmmmm0111 | When signed and $\mathrm{Rn}>$ $\mathrm{Rm}, 1 \rightarrow \mathrm{~T}$ | 1 | Comparison result |
| CMP/STR | Rm, Rn | 0010nnnnmmmm1100 | When a byte in Rn equals a byte in Rm, $1 \rightarrow T$ | 1 | Comparison result |
| DIV1 | Rm, Rn | 0011nnnnmmmm0100 | 1-step division ($\mathrm{Rn} \div \mathrm{Rm}$) | 1 | Calculation result |
| DIV0S | Rm, Rn | 0010nnnnmmmm0111 | MSB of $\mathrm{Rn} \rightarrow \mathrm{Q}$, MSB of $R m \rightarrow M, M^{\wedge} Q \rightarrow T$ | 1 | Calculation result |
| DMULS.L | $\mathrm{Rm}, \mathrm{Rn} *^{2}$ | $0011 \mathrm{nnnnmmmm1101}$. | Signed, $\mathrm{Rn} \times \mathrm{Rm} \rightarrow$ MACH, MACL | 2 to $4^{* 1}$ | - |
| DMULU.L | $\mathrm{Rm}, \mathrm{Rn} *^{2}$ | 0011nnnnmmmm0101 | Unsigned, Rn \times Rm \rightarrow MACH, MACL | 2 to 4*1 | - |
| EXTS.B | Rm, Rn | $0110 \mathrm{nnnnmmmm1110}$ | Sign-extends Rm from byte \rightarrow Rn | 1 | - |
| EXTS.W | Rm, Rn | $0110 \mathrm{nnnnmmmm1111}$ | Sign-extends Rm from word \rightarrow Rn | 1 | - |
| EXTU.B | Rm, Rn | $0110 \mathrm{nnnnmmmm1100}$ | Zero-extends Rm from byte \rightarrow Rn | 1 | - |
| EXTU.W | Rm, Rn | $0110 \mathrm{nnnnmmmm1101}$ | Zero-extends Rm from word $\rightarrow \mathrm{Rn}$ | 1 | - |
| MOV | Rm, Rn | 0110nnnnmmmm0011 | $\mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |

Notes: 1. The normal minimum number of execution states
2. $\mathrm{SH}-2 \mathrm{CPU}$ instruction

Table A. 32 Direct Register Addressing (cont)

| Instruction | | Code
 0000nnnnmmmm0111 | Operation$\mathrm{Rn} \times \mathrm{Rm} \rightarrow \mathrm{MACL}$ | $\frac{\text { State }}{2 \text { to } 4^{* 1}}$ | $\frac{\text { T Bit }}{-}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MUL.L | $\mathrm{Rm}, \mathrm{Rn} *^{2}$ | | | | |
| MULS.W | Rm, Rn | $0010 \mathrm{nnnnnmmmm1111}$ | Signed, $\mathrm{Rn} \times \mathrm{Rm} \rightarrow$ MAC | 1 to $3^{* 1}$ | - |
| MULU.W | Rm, Rn | 0010 nnnn nmmmm1110 | Unsigned, $\mathrm{Rn} \times \mathrm{Rm} \rightarrow$ MAC | 1 to $3^{* 1}$ | - |
| NEG | Rm, Rn | $0110 \mathrm{nnnnmmmm1011}$ | $0-\mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |
| NEGC | Rm, Rn | 0110nnnnmmmm1010 | $\begin{aligned} & 0-\mathrm{Rm}-\mathrm{T} \rightarrow \mathrm{Rn} \text {, borrow } \\ & \rightarrow T \end{aligned}$ | 1 | Borrow |
| NOT | Rm, Rn | $0110 \mathrm{nnnnmmmm0111}$ | $\sim \mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |
| OR | Rm, Rn | $0010 \mathrm{nnnnnmmmm1011}$ | Rn I Rm $\rightarrow \mathrm{Rn}$ | 1 | - |
| SUB | Rm, Rn | 0011 nnnnmmmm1000 | $\mathrm{Rn}-\mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |
| SUBC | Rm, Rn | 0011 nnnnmmmm1010 | $\begin{aligned} & \mathrm{Rn}-\mathrm{Rm}-\mathrm{T} \rightarrow \mathrm{Rn}, \\ & \text { borrow } \rightarrow \mathrm{T} \end{aligned}$ | 1 | Borrow |
| SuBv | Rm, Rn | 0011 nnnnmmmm1011 | $\mathrm{Rn}-\mathrm{Rm} \rightarrow \mathrm{Rn}$, underflow $\rightarrow T$ | 1 | Underflow |
| SWAP.B | Rm, Rn | 0110nnnnmmmm1000 | $\mathrm{Rm} \rightarrow$ Swap upper and lower halves of lower 2 bytes $\rightarrow \mathrm{Rn}$ | 1 | - |
| SWAP.W | Rm, Rn | 0110nnnnmmmm1001 | $\mathrm{Rm} \rightarrow$ Swap upper and lower word \rightarrow Rn | 1 | - |
| TST | Rm, Rn | 0010nnnnmmmm1000 | Rn \& Rm , when result is $0,1 \rightarrow T$ | 1 | Test results |
| XOR | Rm, Rn | $0010 \mathrm{nnnnnmmmm1010}$ | Rn ^ $\mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |
| XTRCT | Rm, Rn | $0010 \mathrm{nnnnnmmmm1101}$ | Center 32 bits of Rm and $\mathrm{Rn} \rightarrow \mathrm{Rn}$ | 1 | - |

Notes: 1. The normal minimum number of execution cycles.
2. SH-2 CPU instructions

Table A. 33 Indirect Register Addressing

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MOV.B | $\mathrm{Rm}, @ \mathrm{Rn}$ | 0010nnnnmmmm0000 | $\mathrm{Rm} \rightarrow(\mathrm{Rn})$ | 1 | - |
| MOV.W | Rm, @Rn | 0010nnnnmmmm0001 | $\mathrm{Rm} \rightarrow(\mathrm{Rn})$ | 1 | - |
| MOV.L | $\mathrm{Rm}, @ \mathrm{Rn}$ | 0010nnnnmmmm0010 | $R m \rightarrow(\mathrm{Rn})$ | 1 | - |
| MOV.B | @Rm, Rn | 0110nnnnmmmm0000 | $(\mathrm{Rm}) \rightarrow$ sign extension $\rightarrow \mathrm{Rn}$ | 1 | - |
| MOV.W | @Rm, Rn | $0110 \mathrm{nnnnmmmm0001}$ | $(\mathrm{Rm}) \rightarrow$ sign extension $\rightarrow \mathrm{Rn}$ | 1 | - |
| MOV.L | @Rm, Rn | 0110nnnnmmmm0010 | $(\mathrm{Rm}) \rightarrow \mathrm{Rn}$ | 1 | - |

Table A. 34 Post Increment Indirect Register (Multiply/Accumulate Operation)

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MAC.L | $@ R \mathrm{~m}+$, @ $\mathrm{n}+$ * 2 | $0000 \mathrm{nnnnmmmm1111}$ | Signed, (Rn) $\times(\mathrm{Rm})+$ $M A C \rightarrow M A C$ | $\begin{aligned} & 3 /(2 \text { to } \\ & 4)^{\star 1} \end{aligned}$ | - |
| MAC.W | @Rm+, @Rn+ | $0100 \mathrm{nnnnmmmm1111}$ | Signed, (Rn) $\times(\mathrm{Rm})+$
 MAC \rightarrow MAC | $3 /(2)^{* 1}$ | - |

Notes: 1. The normal minimum number of execution cycles.(The number in parentheses in the number of cycles when there is contention with preceding/following instructions).
2. SH-2 CPU instruction.

Table A. 35 Post Increment Indirect Register

| Instruction | Code | Operation | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MOV.B | @Rm+ Rn | $0110 \mathrm{nnnnnmmm0100}$ | $(\mathrm{Rm}) \rightarrow$ sign extension \rightarrow
 $\mathrm{Rn}, \mathrm{Rm}+1 \rightarrow \mathrm{Rm}$ | 1 | - |
| | | | $(\mathrm{Rm}) \rightarrow$ sign extension \rightarrow
 $\mathrm{Rn}, \mathrm{Rm}+2 \rightarrow \mathrm{Rm}$ | 1 | - |
| MOV.W | @Rm+,Rn | 0110 nnnnmmmm0101 | | | |
| MOV.L | @Rm+,Rn | 0110 nnnnmmmm0110 | $(\mathrm{Rm}) \rightarrow \mathrm{Rn}, \mathrm{Rm}+4 \rightarrow \mathrm{Rm}$ | 1 | - |

Table A. 36 Pre Decrement Indirect Register

| Instruction | | Code | Operation | State | T Bit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MOV.B | Rm, @ -Rn | 0010 nnnnmmmm0100 | $\mathrm{Rn}-1 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow(\mathrm{Rn})$ | 1 | - |
| MOV.W | $\mathrm{Rm}, @-\mathrm{Rn}$ | $0010 \mathrm{nnnnmmmm0101}$ | $\mathrm{Rn}-2 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow(\mathrm{Rn})$ | 1 | - |
| MOV.L | $\mathrm{Rm}, @-\mathrm{Rn}$ | $0010 \mathrm{nnnnmmmm0110}$ | $\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow(\mathrm{Rn})$ | 1 | - |

Table A. 37 Indirect Indexed Register

| Instruction | | Code | Operation | Cycles | T Bit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MOV.B | $\mathrm{Rm}, @(\mathrm{RO}, \mathrm{Rn})$ | 0000 nnnnmmmm0100 | $\mathrm{Rm} \rightarrow(\mathrm{RO}+\mathrm{Rn})$ | 1 | - |
| MOV.W | $\mathrm{Rm}, @(\mathrm{RO}, \mathrm{Rn})$ | $0000 \mathrm{nnnnmmmm0101}$ | $\mathrm{Rm} \rightarrow(\mathrm{RO} 0+\mathrm{Rn})$ | 1 | - |
| MOV.L | $\mathrm{Rm}, @(\mathrm{RO}, \mathrm{Rn})$ | $0000 \mathrm{nnnnnmmm0110}$ | $\mathrm{Rm} \rightarrow(\mathrm{RO} 0+\mathrm{Rn})$ | 1 | - |
| MOV.B | $@(\mathrm{RO} 0, \mathrm{Rm}), \mathrm{Rn}$ | 0000 nnnnmmmm1100 | $(\mathrm{RO} 0+\mathrm{Rm}) \rightarrow$ sign
 extension $\rightarrow \mathrm{Rn}$ | 1 | - |
| MOV.W | $@(\mathrm{RO} 0, \mathrm{Rm}), \mathrm{Rn}$ | 0000 nnnnnmmmm1101 | $(\mathrm{RO}+\mathrm{Rm}) \rightarrow$ sign
 extension $\rightarrow \mathrm{Rn}$ | 1 | - |
| MOV.L | $@(\mathrm{RO} 0, \mathrm{Rm}), \mathrm{Rn}$ | 0000 nnnnmmmm1110 | $(\mathrm{RO}+\mathrm{Rm}) \rightarrow \mathrm{Rn}$ | 1 | - |

A. 2.5 md Format

Table A. 38 md Format

| Instruction | Code | Operation | State | TBit |
| :--- | :--- | :--- | :--- | :--- |
| MOV.B @(disp,Rm),R0 | 10000100 mmmmdddd | (disp +Rm$) \rightarrow$ sign
 extension $\rightarrow \mathrm{RO}$ | 1 | - |
| MOV.W @(disp,Rm),R0 | 10000101mmmmdddd | (disp $\times 2+\mathrm{Rm}) \rightarrow$
 sign extension \rightarrow
 RO | 1 | - |

A.2.6 nd4 Format

Table A. 39 nd4 Format

| Instruction | | Code | Operation | State | T Bit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MOV.B | RO, @ (disp,Rn) | 10000000 nnnndddd | $\mathrm{RO} \rightarrow($ disp +Rn$)$ | 1 | - |
| MOV.W | $\mathrm{RO}, @(d i s p, \mathrm{Rn})$ | 10000001 nnnndddd | $\mathrm{RO} \rightarrow($ disp $\times 2+\mathrm{Rn})$ | 1 | - |

A.2.7 nmd Format

Table A. 40 nmd Format

| Instruction | Code | Operation | State | T Bit | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MOV.L | $\mathrm{Rm}, @($ disp, Rn $)$ | 0001 nnnnmmmmdddd | $\mathrm{Rm} \rightarrow($ disp $\times 4+\mathrm{Rn})$ | 1 | - |
| MOV.L | @(disp,Rm) Rn | 0101 nnnnmmmmdddd | $(\operatorname{disp} \times 4+\mathrm{Rm}) \rightarrow \mathrm{Rn}$ | 1 | - |

A.2.8 d Format

Table A. 41 Indirect GBR with Displacement

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MOV.B | R0,@(disp,GBR) | 11000000dddddddd | RO \rightarrow (disp + GBR) | 1 | - |
| MOV.W | R0,@(disp, GBR) | 11000001 dddddddd | $\begin{aligned} & \mathrm{RO} \rightarrow \text { (disp } \times 2+ \\ & \mathrm{GBR}) \end{aligned}$ | 1 | - |
| MOV.L | R0, @(disp, GBR) | 11000010dddddddd | $\begin{aligned} & \mathrm{RO} \rightarrow(\text { disp } \times 4+ \\ & \mathrm{GBR}) \end{aligned}$ | 1 | - |
| MOV.B | @(disp, GBR), R0 | 11000100dddddddd | (disp + GBR) \rightarrow sign extension \rightarrow R0 | 1 | - |
| MOV.W | @(disp, GBR), R0 | 11000101dddddddd | (disp $\times 2+$ GBR) \rightarrow sign extension \rightarrow RO | 1 | - |
| MOV.L | @(disp, GBR), R0 | 11000110dddddddd | $\begin{aligned} & \text { (disp } \times 4+\text { GBR) } \rightarrow \\ & \text { RO } \end{aligned}$ | 1 | - |

Table A. 42 PC Relative with Displacement

| Instruction | | Code | Operation | State | T Bit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MOVA | @(disp, PC), RO | 11000111 dddddddd | disp $\times 4+\mathrm{PC} \rightarrow \mathrm{RO}$ | 1 | - |

Table A. 43 PC Relative Addressing

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BF | label | 10001011dddddddd | When $\mathrm{T}=0$, disp $\times 2+\mathrm{PC} \rightarrow \mathrm{PC}$; When $T=1$, nop | 3/1*3 | - |
| BF/S | label* ${ }^{2}$ | 10001111dddddddd | When $\mathrm{T}=0$, disp $\times 2+\mathrm{PC} \rightarrow \mathrm{PC}$; When $T=1$, nop | 2/1*3 | - |
| BT | label | 10001001dddddddd | When $\mathrm{T}=1$, disp $\times 2+\mathrm{PC} \rightarrow \mathrm{PC}$; When $T=0$, nop | 3/1*3 | - |
| BT/S | label* ${ }^{2}$ | 10001101dddddddd | When $\mathrm{T}=1$, disp $\times 2+\mathrm{PC} \rightarrow \mathrm{PC}$; When $T=0$, nop | 2/1*3 | - |

Notes: 2. SH-2 CPU instruction
3. One state when it does not branch

| Instruction | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: |
| BRA label | 1010dddddddddddd | Delayed branch, disp $\times 2+\mathrm{PC} \rightarrow \mathrm{PC}$ | 2 | - |
| BSR label | 1011dddddddddddd | Delayed branching, PC $\rightarrow \mathrm{PR}$, disp $\times 2$ $+\mathrm{PC} \rightarrow \mathrm{PC}$ | 2 | - |

A.2.10 nd8 Format

Table A. 45 nd8 Format

| Instruction | | Code | Operation | State | T Bit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| MOV.W | @(disp, PC) , Rn | 1001 nnnndddddddd | $($ disp $\times 2+\mathrm{PC}) \rightarrow$ sign
 extension $\rightarrow \mathrm{Rn}$ | 1 | - |
| MOV.L | @(disp, PC), Rn | 1101 nnnndddddddd | $($ disp $\times 4+\mathrm{PC}) \rightarrow \mathrm{Rn}$ | 1 | - |

A.2.11 i Format

Table A. 46 Indirect Indexed GBR Addressing

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AND.B | \#imm, @(R0, GBR) | 11001101iiiiiiii | $\begin{aligned} & \text { (RO + GBR) \& imm } \rightarrow \\ & (\mathrm{RO}+\mathrm{GBR}) \end{aligned}$ | 3 | - |
| OR.B | \#imm, @(R0, GBR) | 11001111iiiiiiii | $\begin{aligned} & \text { (RO + GBR) } \operatorname{imm} \rightarrow \\ & (R 0+G B R) \end{aligned}$ | 3 | - |
| TST.B | \#imm, @(R0,GBR) | 11001100 iiiiiiii | (RO + GBR) \& imm, when result is $0,1 \rightarrow T$ | 3 | Test results |
| XOR.B | \# imm, @(R0, GBR) | 11001110iiiiiiii | $\begin{aligned} & (\mathrm{RO}+\mathrm{GBR})^{\wedge} \mathrm{imm} \rightarrow \\ & (\mathrm{RO}+\mathrm{GBR}) \end{aligned}$ | 3 | - |

Table A.47 Immediate Addressing (Arithmetic Logical Operation with Direct Register)

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AND | \#imm, RO | 11001001iiiiiiii | RO \& imm \rightarrow RO | 1 | - |
| CMP/EQ | \#imm,R0 | 10001000iiiiiiii | $\text { When RO }=\mathrm{imm}, 1 \rightarrow$ T | 1 | Comparison results |
| OR | \#imm, R0 | 11001011iiiiiiii | RO $1 \mathrm{imm} \rightarrow$ RO | 1 | - |
| TST | \#imm, R0 | 11001000iiiiiiii | RO \& imm, when result is $0,1 \rightarrow T$ | 1 | Test results |
| XOR | \#imm,R0 | 11001010iiiiiiii | RO ^ imm \rightarrow R 0 | 1 | - |

Table A. 48 Immediate Addressing (Specify Exception Processing Vector)

| Instruction | Code | Operation | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| TRAPA | \#imm | 11000011 iiiiiiiii | PC/SR \rightarrow Stack area, (imm $\times 4+$
 VBR) \rightarrow PC | 8 |

A.2.12 ni Format

Table A. 49 ni Format

| Instruction | | Code | Operation | State | T Bit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ADD | $\#$ imm, Rn | 0111nnnniiiiiiii | $\mathrm{Rn}+\mathrm{imm} \rightarrow \mathrm{Rn}$ | 1 | - |
| MOV | $\#$ imm, Rn | 1110nnnniiiiiiii | imm \rightarrow sign extension $\rightarrow \mathrm{Rn}$ | 1 | - |

A. 3 Instruction Set in Order by Instruction Code

Table A. 50 lists instruction codes and execution states in order by instruction code.
Table A. 50 Instruction Set by Instruction Code

| Instruction | Code | Operation | State | T Bit |
| :--- | :--- | :--- | :--- | :--- |
| CLRT | 0000000000001000 | $0 \rightarrow T$ | 1 | 0 |
| NOP | 0000000000001001 | No operation | 1 | - |
| RTS | 0000000000001011 | Delayed branch, PR \rightarrow
 PC | 2 | - |
| SETT | 0000000000011000 | $1 \rightarrow T$ | 1 | 1 |
| DIVOU | 0000000000011001 | $0 \rightarrow M / Q / T$ | 1 | 0 |

Table A. 50 Instruction Set by Instruction Code (cont)

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SLEEP | | 0000000000011011 | Sleep | 3 | - |
| CLRMAC | | 0000000000101000 | $0 \rightarrow$ MACH, MACL | 1 | - |
| RTE | | 0000000000101011 | Delayed branch, stack area $\rightarrow P C / S R$ | 4 | LSB |
| STC | SR, Rn | $0000 \mathrm{nnnn00000010}$ | $\mathrm{SR} \rightarrow \mathrm{Rn}$ | 1 | - |
| BSRF | $\mathrm{Rm} *^{2}$ | 0000mmmm00000011 | Delayed branch, PC \rightarrow $\mathrm{PR}, \mathrm{Rm}+\mathrm{PC} \rightarrow \mathrm{PC}$ | 2 | - |
| STS | MACH, Rn | 0000nnnn00001010 | $\mathrm{MACH} \rightarrow \mathrm{Rn}$ | 1 | - |
| STC | GBR, Rn | 0000nnnn00010010 | GBR \rightarrow Rn | 1 | - |
| STS | MACL, Rn | 0000nnnn00011010 | MACL \rightarrow Rn | 1 | - |
| STC | VBR, Rn | 0000nnnn00100010 | VBR \rightarrow Rn | 1 | - |
| BRAF | $\mathrm{Rm} *^{2}$ | 0000mmmm00100011 | Delayed branch, Rm + $P C \rightarrow P C$ | 2 | - |
| MOVT | Rn | 0000nnnnn00101001 | $\mathrm{T} \rightarrow \mathrm{Rn}$ | 1 | - |
| STS | PR, Rn | 0000nnnn00101010 | $\mathrm{PR} \rightarrow \mathrm{Rn}$ | 1 | - |
| MOV.B | Rm, @ (R0, Rn) | 0000nnnnmmmm0100 | $R m \rightarrow(R 0+R n)$ | 1 | - |
| MOV.W | Rm, @ (R0, Rn) | 0000 nnnnmmmm0101 | $R m \rightarrow(R 0+R n)$ | 1 | - |
| MOV.L | Rm, @(R0,Rn) | $0000 \mathrm{nnnnmmmm0110}$ | $R m \rightarrow(R 0+R n)$ | 1 | - |
| MUL.L | $\mathrm{Rm}, \mathrm{Rn} *^{2}$ | $0000 \mathrm{nnnnmmmm0111}$ | $\mathrm{Rn} \times \mathrm{Rm} \rightarrow \mathrm{MACL}$ | $\begin{aligned} & 2 \\ & \text { (to 4)*1 } \end{aligned}$ | - |
| MOV.B | @ (R0, Rm) , Rn | $0000 \mathrm{nnnnmmmm1100}$ | $\begin{aligned} & (R 0+R m) \rightarrow \text { sign } \\ & \text { extension } \rightarrow R n \end{aligned}$ | 1 | - |
| MOV.W | @(R0, Rm) , Rn | $0000 \mathrm{nnnnmmmm1101}$ | $\begin{aligned} & (R 0+R m) \rightarrow \text { sign } \\ & \text { extension } \rightarrow R n \end{aligned}$ | 1 | - |
| MOV.L | @ (R0, Rm), Rn | 0000nnnnmmmm1110 | $(\mathrm{RO}+\mathrm{Rm}) \rightarrow \mathrm{Rn}$ | 1 | - |
| MAC.L | @Rm+, @Rn+**2 | $0000 \mathrm{nnnnmmmm1111}$ | Signed, (Rn) $\times(\mathrm{Rm})+$ $\text { MAC } \rightarrow \text { MAC }$ | $\begin{aligned} & 3 /(2 \\ & \text { to } 4)^{\star 1} \end{aligned}$ | - |
| MOV.L | Rm, @(disp, Rn) | 0001nnnnmmmmdddd | $R m \rightarrow(\operatorname{disp} \times 4+\mathrm{Rn})$ | 1 | - |
| MOV.B | Rm, @Rn | 0010nnnnmmmm0000 | $R \mathrm{~m} \rightarrow(\mathrm{Rn})$ | 1 | - |
| MOV.W | $\mathrm{Rm}, @ \mathrm{Rn}$ | $0010 \mathrm{nnnnmmmm0001}$ | $R m \rightarrow(R n)$ | 1 | - |

Notes: 1. The normal minimum number of execution states (The number in parentheses is the number of states when there is contention with preceding/following instructions)
2. SH-2 CPU instruction

Table A. 50 Instruction Set by Instruction Code (cont)

| Instruction | | $\begin{aligned} & \text { Code } \\ & \hline 0010 \mathrm{nnnnmmmm} 0010 \end{aligned}$ | $\begin{aligned} & \text { Operation } \\ & \hline R m \rightarrow(R n) \end{aligned}$ | $\begin{aligned} & \text { State } \\ & \hline 1 \end{aligned}$ | $\frac{\text { T Bit }}{-}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MOV.L | Rm, @Rn | | | | |
| MOV.B | Rm, ©-Rn | 0010nnnnmmmm0100 | $\begin{aligned} & \mathrm{Rn}-1 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow \\ & (\mathrm{Rn}) \end{aligned}$ | 1 | - |
| MOV.W | Rm, @-Rn | $0010 \mathrm{nnnnmmmm0101}$ | $\begin{aligned} & \mathrm{Rn}-2 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow \\ & (\mathrm{Rn}) \end{aligned}$ | 1 | - |
| MOV.L | Rm, @-Rn | $0010 \mathrm{nnnnmmmm0110}$ | $\begin{aligned} & \mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{Rm} \rightarrow \\ & (\mathrm{Rn}) \end{aligned}$ | 1 | - |
| DIV0S | Rm, Rn | 0010nnnnmmmm0111 | MSB of $\mathrm{Rn} \rightarrow \mathrm{Q}, \mathrm{MSB}$ of $R m \rightarrow M, M^{\wedge} Q \rightarrow$ T | 1 | Calculation result |
| TST | Rm, Rn | $0010 \mathrm{nnnnmmmm1000}$ | Rn \& Rm, when result is $0,1 \rightarrow T$ | 1 | Test results |
| AND | Rm, Rn | $0010 \mathrm{nnnnmmmm1001}$ | Rn \& Rm $\rightarrow \mathrm{Rn}$ | 1 | - |
| XOR | Rm, Rn | $0010 \mathrm{nnnnmmmm1010}$ | Rn ^ $\mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |
| OR | Rm, Rn | $0010 \mathrm{nnnnmmmm1011}$ | Rn I Rm \rightarrow Rn | 1 | - |
| CMP/STR | Rm, Rn | $0010 \mathrm{nnnnmmmm1100}$ | When a byte in Rn equals a byte in Rm, 1 \rightarrow T | 1 | Comparison result |
| XTRCT | Rm, Rn | $0010 \mathrm{nnnnmmmm1101}$ | Center 32 bits of Rm and $\mathrm{Rn} \rightarrow \mathrm{Rn}$ | 1 | - |
| MULU.W | Rm, Rn | $0010 \mathrm{nnnnmmmm1110}$ | Unsigned, $\mathrm{Rn} \times \mathrm{Rm} \rightarrow$ MAC | 1 to 3*1 | - |
| MULS.W | Rm, Rn | 0010nnnnmmmm1111 | Signed, Rn \times Rm \rightarrow MAC | 1 to $3^{* 1}$ | - |
| CMP/EQ | Rm, Rn | 0011nnnnmmmm0000 | When $\mathrm{Rn}=\mathrm{Rm}, 1 \rightarrow \mathrm{~T}$ | 1 | Comparison result |
| CMP/HS | Rm, Rn | 0011nnnnmmmm0010 | When unsigned and $R n \geq R m, 1 \rightarrow T$ | 1 | Comparison result |
| CMP/GE | Rm, Rn | 0011nnnnmmm0011 | When signed and $\mathrm{Rn} \geq$ Rm, $1 \rightarrow T$ | 1 | Comparison result |
| DIV1 | Rm, Rn | 0011nnnnmmmm0100 | $\begin{aligned} & \text { 1-step division }(R n \div \\ & R m) \end{aligned}$ | 1 | Calculation result |
| DMULU.L | $\mathrm{Rm}, \mathrm{Rn} *^{2}$ | 0011nnnnmmm0101 | Unsigned, Rn \times Rm \rightarrow MACH, MACL | 2 to $4^{* 1}$ | - |

Notes: 1. The normal minimum number of execution states
2. $\mathrm{SH}-2 \mathrm{CPU}$ instruction

Table A. 50 Instruction Set by Instruction Code (cont)

| Instruction | | $\begin{aligned} & \text { Code } \\ & \hline 0011 \text { nnnnmmmm0110 } \end{aligned}$ | Operation
 When unsigned and $\mathrm{Rn}>\mathrm{Rm}, 1$ $\rightarrow T$ | $\begin{aligned} & \text { State } \\ & \hline 1 \end{aligned}$ | TBit
 Comparison result |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CMP/HI | Rm, Rn | | | | |
| CMP/GT | Rm, Rn | 0011 nnnnmmmm0111 | When signed and $R n>R m, 1 \rightarrow T$ | 1 | Comparison result |
| SUB | Rm, Rn | $0011 \mathrm{nnnnmmmm1000}$ | $\mathrm{Rn}-\mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |
| SUBC | Rm, Rn | 0011 nnnnmmmm1010 | $\begin{aligned} & \mathrm{Rn}-\mathrm{Rm}-\mathrm{T} \rightarrow \\ & \text { Rn, borrow } \rightarrow \mathrm{T} \end{aligned}$ | 1 | Borrow |
| SUBV | Rm, Rn | 0011nnnnmmmm1011 | $\begin{aligned} & \mathrm{Rn}-\mathrm{Rm} \rightarrow \mathrm{Rn}, \\ & \text { underflow } \rightarrow \mathrm{T} \end{aligned}$ | 1 | Underflow |
| ADD | Rm, Rn | 0011 nnnnmmmm1100 | $\mathrm{Rm}+\mathrm{Rn} \rightarrow \mathrm{Rn}$ | 1 | - |
| DMULS.L | $\mathrm{Rm}, \mathrm{Rn} *^{2}$ | 0011 nnnnmmmm1101 | Signed, Rn \times Rm $\rightarrow \mathrm{MACH}, \mathrm{MACL}$ | 2 to 4*1 | - |
| ADDC | Rm, Rn | 0011 nnnnmmmm1110 | $\begin{aligned} & \mathrm{Rn}+\mathrm{Rm}+\mathrm{T} \rightarrow \\ & \mathrm{Rn}, \text { carry } \rightarrow \mathrm{T} \end{aligned}$ | 1 | Carry |
| ADDV | Rm, Rn | 0011 nnnnmmmm1111 | $\begin{aligned} & R n+R m \rightarrow R n, \\ & \text { overflow } \rightarrow T \end{aligned}$ | 1 | Overflow |
| SHLL | Rn | 0100 nnnn 00000000 | $\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow 0$ | 1 | MSB |
| SHLR | Rn | 0100 nnnn 00000001 | $0 \rightarrow R n \rightarrow T$ | 1 | LSB |
| STS.L | MACH, @-Rn | 0100 nnnn 00000010 | $\begin{aligned} & \mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \\ & \mathrm{MACH} \rightarrow(\mathrm{Rn}) \end{aligned}$ | 1 | - |
| STC.L | SR, @-Rn | 0100 nnnn 00000011 | $\underset{\rightarrow(\mathrm{Rn})}{\mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{SR}}$ | 2 | - |
| ROTL | Rn | 0100 nnnn 00000100 | $\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow \mathrm{MSB}$ | 1 | MSB |
| ROTR | Rn | 0100 nnnn 00000101 | LSB $\rightarrow \mathrm{Rn} \rightarrow \mathrm{T}$ | 1 | LSB |
| LDS.L | @Rm+, MACH | 0100mmmm00000110 | $\begin{aligned} & (\mathrm{Rm}) \rightarrow \mathrm{MACH}, \\ & \mathrm{Rm}+4 \rightarrow \mathrm{Rm} \end{aligned}$ | 1 | - |
| LDC.L | @Rm+, SR | 0100mmmm00000111 | $\begin{aligned} & (R m) \rightarrow S R, R m \\ & +4 \rightarrow R m \end{aligned}$ | 3 | LSB |
| SHLL2 | Rn | 0100 nnnn 00001000 | $\mathrm{Rn} \ll 2 \rightarrow \mathrm{Rn}$ | 1 | - |
| SHLR2 | Rn | 0100 nnnn 00001001 | $\mathrm{Rn} \gg 2 \rightarrow \mathrm{Rn}$ | 1 | - |
| LDS | Rm, MACH | 0100 mmmm 00001010 | $\mathrm{Rm} \rightarrow \mathrm{MACH}$ | 1 | - |

Notes: 1. The normal minimum number of execution states
2. $\mathrm{SH}-2 \mathrm{CPU}$ instruction

| Instruction | | Code
 0100 mmmm 00001011 | Operation
 Delayed branch, PC $\rightarrow \mathrm{PR}, \mathrm{Rm} \rightarrow \mathrm{PC}$ | $\begin{aligned} & \text { State } \\ & \hline 2 \end{aligned}$ | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| JSR | @Rm | | | | |
| LDC | Rm, SR | 0100 mmmm 00001110 | $\mathrm{Rm} \rightarrow \mathrm{SR}$ | 1 | LSB |
| DT | $\mathrm{Rn} *^{2}$ | 0100 nnnn 00010000 | $\mathrm{Rn}-1 \rightarrow \mathrm{Rn}$; if Rn is $0,1 \rightarrow T$, if $R n$ is nonzero, $0 \rightarrow T$ | 1 | Comparison result |
| CMP/PZ | Rn | $0100 \mathrm{nnnn00010001}$ | $\mathrm{Rn} \geq 0,1 \rightarrow \mathrm{~T}$ | 1 | Comparison result |
| STS.L | MACL, @-Rn | 0100 nnnn 00010010 | $\underset{\rightarrow(\mathrm{Rn})}{\mathrm{Rn}-4} \rightarrow \mathrm{Rn}, \mathrm{MACL}$ | 1 | - |
| STC.L | GBR, ©-Rn | $0100 \mathrm{nnnn00010011}$ | $\begin{aligned} & \mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{GBR} \rightarrow \\ & (\mathrm{Rn}) \end{aligned}$ | 2 | - |
| CMP/PL | Rn | 0100 nnnn 00010101 | $\mathrm{Rn}>0,1 \rightarrow \mathrm{~T}$ | 1 | Comparison result |
| LDS.L | @Rm+, MACL | $0100 \mathrm{mmmm00010110}$ | $\begin{aligned} & (\mathrm{Rm}) \rightarrow \mathrm{MACL}, \mathrm{Rm}+ \\ & 4 \rightarrow \mathrm{Rm} \end{aligned}$ | 1 | - |
| LDC.L | $@ \mathrm{Cm}+$, GBR | $0100 \mathrm{mmmm00010111}$ | $\begin{aligned} & \mathrm{Rm}) \rightarrow \mathrm{GBR}, \mathrm{Rm}+4 \\ & \rightarrow \mathrm{Rm} \end{aligned}$ | 3 | - |
| SHLL8 | Rn | 0100 nnnn 00011000 | $\mathrm{Rn} \ll 8 \rightarrow \mathrm{Rn}$ | 1 | - |
| SHLR8 | Rn | $0100 \mathrm{nnnn00011001}$ | $\mathrm{Rn} \gg 8 \rightarrow \mathrm{Rn}$ | 1 | - |
| LDS | Rm, MACL | $0100 \mathrm{mmmm00011010}$ | $\mathrm{Rm} \rightarrow \mathrm{MACL}$ | 1 | - |
| TAS.B | @Rn | $0100 \mathrm{nnnn00011011}$ | $\begin{aligned} & \text { When }(\mathrm{Rn}) \text { is } 0,1 \rightarrow \\ & \mathrm{~T}, 1 \rightarrow \mathrm{MSB} \text { of }(\mathrm{Rn}) \end{aligned}$ | 4 | Test results |
| LDC | Rm, GBR | $0100 \mathrm{mmmm00011110}$ | $\mathrm{Rm} \rightarrow$ GBR | 1 | - |
| SHAL | Rn | $0100 \mathrm{nnnn00100000}$ | $\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow 0$ | 1 | MSB |
| SHAR | Rn | 0100 nnnn 00100001 | MSB $\rightarrow \mathrm{Rn} \rightarrow \mathrm{T}$ | 1 | LSB |
| STS.L | PR, @-Rn | $0100 \mathrm{nnnn00100010}$ | $\begin{aligned} & \mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{PR} \rightarrow \\ & (\mathrm{Rn}) \end{aligned}$ | 1 | - |
| STC.L | VBR, ©-Rn | 0100 nnnn 00100011 | $\begin{aligned} & \mathrm{Rn}-4 \rightarrow \mathrm{Rn}, \mathrm{VBR} \rightarrow \\ & (\mathrm{Rn}) \end{aligned}$ | 2 | - |
| ROTCL | Rn | 0100 nnnn 00100100 | $\mathrm{T} \leftarrow \mathrm{Rn} \leftarrow \mathrm{T}$ | 1 | MSB |
| ROTCR | Rn | $0100 \mathrm{nnnn00100101}$ | $T \rightarrow R n \rightarrow T$ | 1 | LSB |
| LDS.L | @Rm+, PR | $0100 \mathrm{mmmm00100110}$ | $\underset{\rightarrow R m}{(R m) \rightarrow P R, R m+4}$ | 1 | - |
| LDC.L | @Rm+, VBR | $0100 \mathrm{mmmm00100111}$ | $\underset{\rightarrow R m}{(R m) \rightarrow V B R, R m+4}$ | 3 | - |

Notes: 2. SH-2 CPU instruction

Table A. 50 Instruction Set by Instruction Code (cont)

| Instruction | | Code
 0100nnnn00101000 | Operation$\mathrm{Rn} \ll 16 \rightarrow \mathrm{Rn}$ | $\begin{aligned} & \text { State } \\ & \hline 1 \end{aligned}$ | $\frac{\text { T Bit }}{-}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SHLL16 | Rn | | | | |
| SHLR16 | Rn | 0100 nnnn 00101001 | Rn>>16 \rightarrow Rn | 1 | - |
| LDS | Rm, PR | 0100 mmmm 00101010 | $\mathrm{Rm} \rightarrow \mathrm{PR}$ | 1 | - |
| JMP | @Rm | 0100 mmmm 00101011 | Delayed branch, Rm $\rightarrow P C$ | 2 | - |
| LDC | Rm, VBR | 0100 mmmm 00101110 | $\mathrm{Rm} \rightarrow$ VBR | 1 | - |
| MAC.W | @Rm+, @Rn+ | 0100nnnnmmmm1111 | $\begin{aligned} & \text { Signed, }(R n) \times(R m) \\ & + \text { MAC } \rightarrow \text { MAC } \end{aligned}$ | $3 /(2)^{* 1}$ | - |
| MOV.L | @(disp, Rm), Rn | 0101nnnnmmmmdddd | (disp + Rm) \rightarrow Rn | 1 | - |
| MOV.B | @Rm, Rn | 0110nnnnmmmm0000 | $\begin{aligned} & (R m) \rightarrow \text { sign } \\ & \text { extension } \rightarrow R n \end{aligned}$ | 1 | - |
| MOV.W | @Rm, Rn | 0110nnnnmmmm0001 | $\begin{aligned} & (R m) \rightarrow \text { sign } \\ & \text { extension } \rightarrow R n \end{aligned}$ | 1 | - |
| MOV.L | $@ \mathrm{em}, \mathrm{Rn}$ | 0110nnnnmmmm0010 | $(\mathrm{Rm}) \rightarrow \mathrm{Rn}$ | 1 | - |
| MOV | Rm, Rn | 0110nnnnmmmm0011 | $\mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |
| MOV.B | @Rm+, Rn | 0110nnnnmmmm0100 | $\begin{aligned} & (R m) \rightarrow \text { sign } \\ & \text { extension } \rightarrow R n, R m \\ & +1 \rightarrow R m \end{aligned}$ | 1 | - |
| MOV.W | @Rm+, Rn | 0110nnnnmmmm0101 | $\begin{aligned} & (R m) \rightarrow \text { sign } \\ & \text { extension } \rightarrow R n, R m \\ & +2 \rightarrow R m \end{aligned}$ | 1 | - |
| MOV.L | @Rm+, Rn | 0110nnnnmmmm0110 | $\underset{\rightarrow R m}{(R m)} \rightarrow \mathrm{Rn}, \mathrm{Rm}+4$ | 1 | - |
| NOT | Rm, Rn | 0110nnnnmmmm0111 | $\sim \mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |
| SWAP.B | Rm, Rn | 0110nnnnmmmm1000 | Rm \rightarrow Swap upper and lower halves of lower 2 bytes $\rightarrow \mathrm{Rn}$ | 1 | - |
| SWAP.W | Rm, Rn | 0110nnnnmmmm1001 | Rm \rightarrow Swap upper and lower word \rightarrow Rn | 1 | - |
| NEGC | Rm, Rn | 0110nnnnmmmm1010 | $\begin{aligned} & 0-\mathrm{Rm}-\mathrm{T} \rightarrow \mathrm{Rn}, \\ & \text { borrow } \rightarrow \mathrm{T} \end{aligned}$ | 1 | Borrow |
| NEG | Rm, Rn | 0110nnnnmmmm1011 | $0-\mathrm{Rm} \rightarrow \mathrm{Rn}$ | 1 | - |

Notes: 1 The normal minimum number of execution states (The number in parentheses is the number in contention with preceding/following instructions)

Table A. 50 Instruction Set by Instruction Code (cont)

| Instruction | | Code | Operation | State | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| EXTU.B | Rm, Rn | 0110nnnnmmmm1100 | Zero-extends Rm from byte \rightarrow Rn | 1 | - |
| EXTU.W | Rm, Rn | $0110 \mathrm{nnnnmmmm1101}$ | Zero-extends Rm from word \rightarrow Rn | 1 | - |
| EXTS.B | Rm, Rn | 0110nnnnmmmm1110 | Sign-extends Rm from byte \rightarrow Rn | 1 | - |
| ExTS.W | Rm, Rn | 0110nnnnmmmm1111 | Sign-extends Rm from word $\rightarrow \mathrm{Rn}$ | 1 | - |
| ADD | \#imm, Rn | 0111 nnnniiiiiiii | $\mathrm{Rn}+\mathrm{imm} \rightarrow \mathrm{Rn}$ | 1 | - |
| MOV.B | R0,@(disp,Rn) | 10000000 nnnndddd | $\mathrm{RO} \rightarrow(\mathrm{disp}+\mathrm{Rn})$ | 1 | - |
| MOV.W | Ro, @(disp,Rn) | 10000001nnnndddd | $\begin{aligned} & \mathrm{RO} \rightarrow \text { (disp } \times 2+ \\ & \mathrm{Rn}) \end{aligned}$ | 1 | - |
| MOV.B | @(disp, Rm), R0 | 10000100 mmmmdddd | $\begin{aligned} & \text { (disp }+ \text { Rm) } \rightarrow \text { sign } \\ & \text { extension } \rightarrow R 0 \end{aligned}$ | 1 | - |
| MOV.W | @(disp, Rm), R0 | 10000101 mmmmdddd | $\begin{aligned} & (\text { disp } \times 2+R m) \rightarrow \\ & \text { sign extension } \rightarrow R 0 \end{aligned}$ | 1 | - |
| CMP/EQ | \#imm, R0 | 10001000 iiiiiiiii | $\text { When } \mathrm{RO}=\mathrm{imm}, 1$ $\rightarrow \mathrm{T}$ | 1 | Comparison results |
| BT | label | 10001001 dddddddd | $\begin{aligned} & \text { When } \mathrm{T}=1 \text {, disp } \times \\ & 2+\mathrm{PC} \rightarrow \mathrm{PC} \text {; } \\ & \text { When } \mathrm{T}=0 \text {, nop. } \end{aligned}$ | 3/1*3 | - |
| BT/S | label* | 10001101dddddddd | $\begin{aligned} & \text { When } \mathrm{T}=1 \text {, disp } \times \\ & 2+\mathrm{PC} \rightarrow \mathrm{PC} \text {; } \\ & \text { When } \mathrm{T}=1 \text {, nop. } \end{aligned}$ | 2/1*3 | - |
| BF | label | 10001011 dddddddd | $\begin{aligned} & \text { When } \mathrm{T}=0, \text { disp } \times \\ & 2+\mathrm{PC} \rightarrow \mathrm{PC} ; \\ & \text { When } \mathrm{T}=0 \text {, nop } \end{aligned}$ | $3 / 1 * 3$ | - |
| BF/S | label* | $10001111 d d d d d d d d$ | $\begin{aligned} & \text { When } T=0 \text {, disp } \times \\ & 2+P C \rightarrow P C \text {; } \\ & \text { When } T=1 \text {, nop } \end{aligned}$ | 2/1*3 | - |
| MOV.W | @(disp, PC), Rn | 1001nnnndddddddd | $\begin{aligned} & (\operatorname{disp} \times 2+\mathrm{PC}) \rightarrow \\ & \text { sign extension } \rightarrow \mathrm{Rn} \end{aligned}$ | 1 | - |
| BRA | label | 1010dddddddddddd | Delayed branch, disp $\times 2+\mathrm{PC} \rightarrow$ PC | 2 | - |

Notes: 2. SH-2 CPU instruction
3. One state when it does not branch

| Instruction | | Code
 1011dddddddddddd | Operation$\begin{aligned} & \text { Delayed branch, PC } \\ & \rightarrow \mathrm{PR}, \text { disp } \times 2+\mathrm{PC} \\ & \rightarrow \mathrm{PC} \end{aligned}$ | $\begin{aligned} & \text { State } \\ & \hline 2 \end{aligned}$ | T Bit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| BSR | label | | | | |
| MOV.B | RO,@(disp, GBR) | 11000000 dddddddd | $\mathrm{R} 0 \rightarrow$ (disp + GBR) | 1 | - |
| MOV.W | R0,@(disp, GBR) | 11000001 dddddddd | $\begin{aligned} & R 0 \rightarrow \text { (disp } \times 2+ \\ & G B R) \end{aligned}$ | 1 | - |
| MOV.L | R0, @(disp, GBR) | 11000010dddddddd | $\begin{aligned} & \mathrm{RO} \rightarrow \text { (disp } \times 4+ \\ & \mathrm{GBR}) \end{aligned}$ | 1 | - |
| TRAPA | \#imm | 11000011iiiiiiii | PC/SR \rightarrow Stack area, (imm $\times 4+$ VBR) \rightarrow PC | 8 | - |
| MOV.B | @(disp, GBR), R0 | 11000100dddddddd | $(\text { disp }+ \text { GBR }) \rightarrow \text { sign }$ $\text { extension } \rightarrow \text { R0 }$ | 1 | - |
| MOV.W | @(disp, GBR), R0 | 11000101 dddddddd | $\begin{aligned} & (\text { disp } \times 2+G B R) \rightarrow \\ & \text { sign extension } \rightarrow R 0 \end{aligned}$ | 1 | - |
| MOV.L | @(disp, GBR), R0 | 11000110 dddddddd | $\begin{aligned} & \text { (disp } \times 4+\text { GBR }) \rightarrow \\ & \text { RO } \end{aligned}$ | 1 | - |
| MOVA | @(disp, PC), R0 | 11000111 dddddddd | $\mathrm{disp} \times 4+\mathrm{PC} \rightarrow \mathrm{RO}$ | 1 | - |
| TST | \#imm, R0 | 11001000iiiiiiii | R0 \& imm, when result is $0,1 \rightarrow T$ | 1 | Test results |
| AND | \#imm, R0 | 11001001iiiiiiii | RO \& imm \rightarrow RO | 1 | - |
| XOR | \#imm, R0 | 11001010iiiiiiii | RO ^ imm \rightarrow RO | 1 | - |
| OR | \#imm, R0 | 11001011iiiiiiii | RO l imm \rightarrow RO | 1 | - |
| TST.B | \#imm, @(RO, GBR) | 11001100iiiiiiii | ($\mathrm{R} 0+\mathrm{GBR}$) \& imm, when result is $0,1 \rightarrow$ T | 3 | Test results |
| AND. ${ }^{\text {B }}$ | \#imm, ©(R0, GBR) | 11001101iiiiiiii | $\begin{aligned} & \text { (RO + GBR) \& imm } \\ & \rightarrow(\mathrm{RO}+\mathrm{GBR}) \end{aligned}$ | 3 | - |
| XOR.B | \#imm, @(R0, GBR) | 11001110iiiiiiii | $\begin{aligned} & (\mathrm{RO}+\mathrm{GBR})^{\wedge} \mathrm{imm} \rightarrow \\ & (\mathrm{RO}+\mathrm{GBR}) \end{aligned}$ | 3 | - |
| OR.B | \#imm, @(R0, GBR) | 11001111iiiiiiii | $\begin{aligned} & \text { (RO + GBR) } \backslash i \mathrm{~mm} \rightarrow \\ & (\mathrm{RO}+\mathrm{GBR}) \end{aligned}$ | 3 | - |
| MOV.L | @(disp, PC), Rn | 1101nnnndddddddd | $(\mathrm{disp} \times 4+\mathrm{PC}) \rightarrow \mathrm{Rn}$ | 1 | - |
| mov | \#imm, Rn | 1110nnnniiiiiiii | $\begin{aligned} & \text { imm } \rightarrow \text { sign } \\ & \text { extension } \rightarrow R n \end{aligned}$ | 1 | - |

A. 4 Operation Code Map

Table A. 51 is an operation code map.
Table A. 51 Operation Code Map

| Instruction Code | | | | Fx: 0000 | Fx: 0001 | Fx: 0010 | Fx: 0011-1111 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MSB | | | LSB | MD: 00 | MD: 01 | MD: 10 | MD: 11 |
| 0000 | Rn | ${ }^{\text {Fx }}$ | \%0000 | | | | |
| 0000 | Rn | Fx | 0001 | | | | |
| 0000 | Rn | Fx | 0010 | STC SR,Rn* | STC GBR,Rn | STC VBR,Rn | |
| 0000 | :Rm | Fx | 0011 | BSRF Rm* | | BRAF Rm* | |
| 0000 | Bn | Rm | \% 01 MD | $\begin{aligned} & \text { MOV.B } \\ & \text { Rm, @(R0,Rn) } \end{aligned}$ | $\begin{aligned} & \text { MOV.W } \\ & \text { Rm, @(R0,Rn) } \end{aligned}$ | $\begin{aligned} & \text { MOV.L } \\ & \text { Rm, @(R0,Rn) } \end{aligned}$ | $\begin{aligned} & \text { MUL.L } \\ & \text { Rm, Rn* } \end{aligned}$ |
| 0000 | 0000 | Fx | ¢1000 | CLRT | SETT | CLRMAC | |
| 0000 | O0000 | Fx | 1001 | NOP | DIVOU | | |
| 0000 | O0000 | Fx | 1010 | | | | |
| 0000 | O0000 | Fx | 1011 | RTS | SLEEP | RTE | |
| 0000 | 就Rn | Fx | :1000 | | | | |
| 0000 | :Rn | Fx | :1001 | | | MOVT Rn | |
| 0000 | !Rn | Fx | 1010 | STS MACH,Rn | STS MACL,Rn | STS PR,Rn | |
| 0000 | !Rn | Fx | 1011 | | | | |
| 0000 | !Rn | Fx | 11MD | $\begin{aligned} & \text { MOV.B } \\ & \text { @(R0,Rm), Rn } \end{aligned}$ | $\begin{aligned} & \text { MOV.W } \\ & \text { @(R0,Rm), Rn } \end{aligned}$ | $\begin{aligned} & \text { MOV.L } \\ & \text { @(R0,Rm),Rn } \end{aligned}$ | $\begin{aligned} & \text { MAC.L } \\ & \text { @Rm+, @Rn+* } \end{aligned}$ |
| 0001 | !Rn | Rm | disp | MOV.L Rm, @(dis | sp:4,Rn) | | |
| 0010 | | Rm | 00MD | MOV.B Rm, @Rn | MOV.W Rm, @Rn | MOV.L Rm, @Rn | |
| 0010 | !Rn | Rm | O1MD | $\begin{aligned} & \text { MOV.B } \\ & \text { Rm, @-Rn } \end{aligned}$ | $\begin{aligned} & \text { MOV.W } \\ & \text { Rm, @-Rn } \end{aligned}$ | $\begin{aligned} & \text { MOV.L } \\ & \text { Rm, @-Rn } \\ & \hline \end{aligned}$ | DIV0S Rm,Rn |
| 0010 | 园Rn | Rm | 10MD | TST Rm, Rn | AND Rm, Rn | XOR Rm,Rn | OR Rm, Rn |
| 0010 | \% | Rm | 11MD | $\begin{aligned} & \mathrm{CMP} / \mathrm{STR} \\ & \mathrm{Rm}, \mathrm{Rn} \end{aligned}$ | XTRCT Rm,Rn | MULU.WRm, Rn | MULS.WRm, Rn |
| 0011 | QR | Rm | 00MD | CMP/EQ Rm, Rn | | CMP/HS Rm, Rn | CMP/GERm, Rn |
| 0011 | ¿Rn | Rm | 01MD | DIV1 Rm,Rn | $\begin{aligned} & \text { DMULU.L } \\ & \text { Rm,Rn** } \\ & \hline \end{aligned}$ | CMP/HI Rm, Rn | CMP/GT Rm, Rn |
| 0011 | ¢Rn | Rm | 10MD | SUB Rm, Rn | | SUBC Rm,Rn | SUBV Rm, Rn |
| 0011 | ¢Rn | Rm | 11MD | ADD Rm,Rn | $\begin{array}{\|l} \hline \text { DMULS.L } \\ \text { Rm,Rn* } \\ \hline \end{array}$ | ADDC Rm, Rn | ADDV Rm, Rn |
| 0100 | \% B | Fx | 0000 | SHLL Rn | DT Rn* | SHAL Rn | |
| 0100 | :Rn | Fx | 0001 | SHLR Rn | CMP/PZ Rn | SHAR Rn | |

Table A. 51 Operation Code Map (cont)

| Instruction Code | | | | Fx: 0000 | Fx: 0001 | Fx: 0010 | Fx: 0011-1111 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MSB | | | LSB | MD: 00 | MD: 01 | MD: 10 | MD: 11 |
| 0100 | ¢Rn | Fx | 0010 | $\begin{aligned} & \text { STS.L } \\ & \text { MACH, @-Rn } \end{aligned}$ | $\begin{aligned} & \text { STS.L } \\ & \text { MACL, @-Rn } \end{aligned}$ | $\begin{aligned} & \text { STS.L } \\ & \text { PR, @-Rn } \end{aligned}$ | |
| | ¢ | Fx | 0011 | $\begin{aligned} & \text { STC. L } \\ & \text { SR, @-Rn } \end{aligned}$ | $\begin{aligned} & \text { STC.L } \\ & \text { GBR, @-Rn } \end{aligned}$ | $\begin{aligned} & \text { STC.L } \\ & \text { VBR, @-Rn } \end{aligned}$ | |
| 0100 | ¢R | Fx | 0100 | ROTL Rn | | ROTCL Rn | |
| 0100 | Rn | Fx | 0101 | ROTR Rn | CMP/PL Rn | ROTCR Rn | |
| 0100 | Rm | Fx | 0110 | $\begin{aligned} & \text { LDS.L } \\ & \quad @ R m+, \text { MACH } \end{aligned}$ | $\begin{aligned} & \text { LDS.L } \\ & \text { @Rm+, MACL } \end{aligned}$ | $\begin{aligned} & \text { LDS.L } \\ & \quad \text { @Rm+, PR } \end{aligned}$ | |
| 0100 | Rm | Fx | 0111 | $\begin{aligned} & \text { LDC. } \mathrm{L} \\ & \text { @Rm+, SR } \end{aligned}$ | $\begin{aligned} & \text { LDC. L } \\ & \text { @Rm+, GBR } \end{aligned}$ | $\begin{aligned} & \text { LDC. L } \\ & \text { @Rm+, VBR } \end{aligned}$ | |
| 0100 | Rn | Fx | ¢1000 | SHLL2 Rn | SHLL8 Rn | SHLL16 Rn | |
| 0100 | Rn | Fx | ¢1001 | SHLR2 Rn | SHLR8 Rn | SHLR16 Rn | |
| 0100 | Rm | Fx | ¢1010 | LDS Rm, MACH | LDS Rm,MACL | LDS Rm, PR | |
| 0100 | Rm/ Rn | Fx | \%1011 | JSR @Rm | TAS.B @Rn | JMP @Rm | |
| 0100 | Rm | Fx | 1100 | | | | |
| 0100 | Rm | Fx | 1101 | | | | |
| 0100 | \%n | Fx | 1110 | LDC Rm, SR | LDC Rm, GBR | LDC Rm, VBR | |
| 0100 | \%n | Rm | 1111 | MAC.W @Rm+, @Rn | | | |
| 0101 | Rn | Rm | disp | MOV.L @(disp:4 | Rm) , Rn | | |
| 0110 | Rn | Rm | O0MD | MOV. B Rm,Rn | MOV.W @Rm, Rn | MOV.L @Rm,Rn | MOV Rm, Rn |
| 0110 | \%n | Rm | 01MD | MOV.B Rm+, Rn | MOV.W @Rm+, Rn | MOV.L@Rm+,Rn | NOT Rm, Rn |
| 0110 | Rn | Rm | 10MD | $\begin{gathered} \text { SWAP . B } \\ \text { Rm, Rn } \\ \hline \end{gathered}$ | $\begin{array}{r} \text { SWAP.W } \\ \text { Rm, Rn } \\ \hline \end{array}$ | NEGC Rm, Rn | NEG Rm,Rn |
| 0110 | Rn | Rm | 11MD | EXTU.B Rm,Rn | EXTU.W Rm,Rn | EXTS.B Rm,Rn | EXTS.W Rm, Rn |
| 0111 | Rn | | mm | ADD \#imm:8, | | | |
| 1000 | O0MD | Rn | disp | $\begin{aligned} & \text { MOV.B RO, } \\ & \quad \text { (disp: } 4, \mathrm{Rn}) \end{aligned}$ | $\begin{aligned} & \text { MOV.W R0, } \\ & \text { @(disp:4,Rn) } \end{aligned}$ | | |
| 1000 | O1MD | Rm | disp | $\begin{aligned} & \text { MOV.B } \\ & \text { @(disp:4, } \\ & \text { Rm), R0 } \end{aligned}$ | $\begin{aligned} & \text { MOV.W } \\ & \text { @(disp: } 4, \\ & \text { Rm), RO } \\ & \hline \end{aligned}$ | | |
| 1000 | 10MD | | /disp | $\begin{aligned} & \text { CMP/EQ } \\ & \quad \text { \#imm: } 8, \text { R0 } \\ & \hline \end{aligned}$ | BT label:8 | | BF label:8 |
| 1000 | 11MD | | /disp | | $\begin{aligned} & \mathrm{BT} / \mathrm{S} \\ & \text { label: } 8 \text { * } \end{aligned}$ | | $\begin{aligned} & \mathrm{BF} / \mathrm{S} \\ & \text { label: } 8 * \\ & \hline \end{aligned}$ |

Table A. 51 Operation Code Map (cont)

| Instruction Code | | | Fx: 0000 | Fx: 0001 | Fx: 0010 | Fx: 0011-1111 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MSB | | LSB | MD: 00 | MD: 01 | MD: 10 | MD: 11 |
| 1001 | Qn | disp | MOV.W @ (dis | (8, PC), Rn | | |
| 1010 | disp | | BRA label:12 | | | |
| 1011 | disp | | BSR label:12 | | | |
| 1100 | OOMD | imm/disp | ```MOV.B R0, @(disp:8, GBR)``` | ```MOV.W R0, @(disp:8, GBR)``` | ```MOV.L R0, @(disp:8, GBR)``` | TRAPA \#imm: 8 |
| 1100 | \%01MD | disp | $\begin{aligned} & \text { MOV.B } \\ & \text { @(disp: } 8, \\ & \text { GBR), R0 } \end{aligned}$ | ```MOV.W @(disp:8, GBR),R0``` | $\begin{aligned} & \text { MOV.L } \\ & \text { @(disp:8, } \\ & \text { GBR), RO } \end{aligned}$ | ```MOVA @(disp:8, PC),R0``` |
| 1100 | 10MD | imm | $\begin{aligned} & \text { TST } \\ & \text { \# \#mm: 8, R0 } \end{aligned}$ | AND
 \#imm:8,R0 | $\begin{aligned} & \text { XOR } \\ & \quad \text { \#imm: } 8, \text { R0 } \end{aligned}$ | $\begin{aligned} & \text { OR } \\ & \text { \#imm: } 8, \text { R0 } \end{aligned}$ |
| 1100 | 11MD | imm | $\begin{aligned} & \text { TST.B } \\ & \quad \text { \#imm: } 8, \\ & \text { @ (R0, GBR) } \end{aligned}$ | | $\begin{aligned} & \text { XOR.B } \\ & \text { \#imm: } 8, \\ & \text { @(R0, GBR) } \end{aligned}$ | $\begin{aligned} & \text { OR.B } \\ & \quad \text { \#imm: } 8, \\ & \text { @(R0,GBR) } \end{aligned}$ |
| 1101 | ¢Rn | disp | MOV.L @(disp:8,PC),R0 | | | |
| 1110 | ¢Rn | imm | MOV \#imm:8,Rn | | | |
| 1111 | | \cdots | | | | |

Note: SH-2 CPU instructions

Appendix B Pipeline Operation and Contention

The SH-1 and SH-2 CPU is designed so that basic instructions are executed in one state. Two or more states are required for instructions when, for example, the branch destination address is changed by a branch instruction or when the number of states is increased by contention between MA and IF. Table B. 1 gives the number of execution states and stages for different types of contention and their instructions. Instructions without contention and instructions that require 2 or more cycles even without contention are also shown.

Instructions experience contention in the following ways:

- Operations and transfers between registers are executed in one state with no contention.
- No contention occurs, but the instruction still requires 2 or more cycles.
- Contention occurs, increasing the number of execution states. Contention combinations are as follows:
- MA contends with IF
- MA contends with IF and sometimes with memory loads as well
- MA contends with IF and sometimes with the multiplier as well
- MA contends with IF and sometimes with memory loads and sometimes with the multiplier

Table B. 1 Instructions and Their Contention Patterns

| Contention | State | Stage | Instruction |
| :---: | :---: | :---: | :---: |
| None | 1 | 3 | Transfer between registers |
| | | | Operation between registers (except multiplication instruction) |
| | | | Logical operation between registers |
| | | | Shift instruction |
| | | | System control ALU instruction |
| | 2 | 3 | Unconditional branche |
| | 3/1*3 | 3 | Conditional branche |
| | 3 | 3 | SLEEP instruction |
| | 4 | 5 | RTE instruction |
| | 8 | 9 | TRAP instruction |
| MA contends with IF | 1 | 4 | Memory store instruction and STS.L instruction (PR) |
| | 2 | 4 | STC.L instruction |
| | 3 | 6 | Memory logic operations |
| | 4 | 6 | TAS instruction |
| MA contends with IF and sometimes with memory loads as well | 1 | 5 | Memory load instructions and LDS.L instruction (PR) |
| | 3 | 5 | LDC.L instruction |
| MA contends with IF and sometimes with the multiplier as well | 1 | 4 | Register to MAC transfer instruction, memory to MAC transfer instruction and MAC to memory transfer instruction |
| | $\underset{* 2}{1} \text { to } 3$ | $6 / 7 * 1$ | Multiplication instruction |
| | 3/(2)*2 | 7/8*1 | Multiply/accumulate instruction |
| | $\begin{aligned} & 3 /(2)^{* 2} \end{aligned}$ | 9 | Double-length multiply/accumulate instruction (SH-2 only) |
| | 2 to 4*2 | 9 | Double-length multiplication instruction (SH-2 only) |
| MA contends with IF and sometimes with memory loads and sometimes with the multiplier | 1 | 5 | MAC to register transfer instruction |

Notes: 1. With the SH-2 CPU, multiply/accumulate instructions are 7 stages and multiplication instructions are 6 stages, while with the SH-1 CPU, multiply/accumulate instructions are 8 stages and multiplication instructions are 7 stages.
2. The normal minimum number of execution states (The number in parentheses is the number in contention with preceding/following instructions).
3. One stage when it does not branch.

SH-1/SH-2 Programming Manual

Publication Date: \quad 1st Edition, September 1994 3rd Edition, September 1996
Published by: Semiconductor and IC Div. Hitachi, Ltd.
Edited by: Technical Documentation Center. Hitachi Microcomputer System Ltd.
Copyright © Hitachi, Ltd., 1994. All rights reserved. Printed in Japan.

HITACHI, LTD. SEMICONDUCTOR AND INTEGRATED CIRCUITS DIVISION SALES OFFICE

HEAD QUARTERS

Semiconductor \& IC Div
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100, Japan
Tel: Tokyo (03) 3270-2111
Fax: (03) 3270-5109
USA
Headquarters
Hitachi America, Ltd.
Semiconductor \& IC Div.
2000 Sierra Point Parkway
Brisbane, CA. 94005-1835
Tel: 415-589-8300
Fax: 415-583-4207
Northwest Regional Office
1740 Technology Drive, Suite 500
San Jose, CA 95110
Tel: 408-451-9570
Fax: 408-451-9859
Southwest Regional Office
2030 Main St., Suite 450
Irvine, CA. 92714
Tel: 714-553-8500
Fax: 714-553-8561
South Central Regional Office
2 Lincoln Centre, Suite 865
5420 LBJ Freeway
Dallas, TX. 75240
Tel: 214-991-4510
Fax: 214-991-6151
Mid-Atlantic Regional Office
325 Columbia Turnpike, \#203
Florham Park, NJ. 07932
Tel: 201-514-2100
Fax: 201-514-2020
North Central Regional Office
500 Park Boulevard, Suite 415
Itasca, IL. 60143
Tel: 312-773-4864
Fax: 312-773-9006
Northeast Regional Office
77 South Bedford St.
Burlington, MA. 01803
Tel: 617-229-2150
Fax: 617-229-6554

Automotive Regional Office

330 Town Centre Drive, Suite 311
Dearborn, MI. 48126
Tel: 313-271-4410
Fax: 313-271-5707

Pacific Mountain Region

4600 South Ulster St., Suite 700
Denver, CO 80237
Tel: 303-740-6644
Fax: 303-740-6609

Southeast Region

5511 Capital Center Dr., Suite 204
Raleigh, NC 27608
Tel: 919-233-0800
Fax: 919-233-0508

CANADA

Hitachi (Canadian) Ltd.
320 March Road, Suite 602
Kanata, Ontario K2K 1E3 CANADA
Tel: 613-591-1990
Fax: 613-591-1994

EUROPE (CE)

Headquarters
Hitachi Europe GmbH
Electronic Components Group
Continental Europe
Dornacher Straße 3
D-85622 Feldkirchen
München
Tel: 089-9 91 80-0
Fax: 089-9 293000

Sales Office

Hitachi Europe GmbH
Electronic Components Div.
North Germany/Benelux
Am Seestem 18; D-40547 Düsseldorf
Postfach 1105 36; D-40505 Düsseldorf
Tel: 0211-52 83-0
Fax: 0211-52 83-779
Hitachi Europe GmbH
Electronic Components Div.
Central Germany
Friedrich-List-Straße 42
D-70771 Leinfelden-Echterdingen
Tel: 0711-99085-5
Fax: 0711-99085-75

Hitachi Europe GmbH
Electronic Components Div.
South Germany/Austria/Switzerland/East Europe Dornacher Straße 3
D-85622 Feldkirchen
München
Tel: 089-9 91 80-0
Fax: 089-9 293000
Hitachi Europe GmbH
Electronic Components Div.
Italy
Via Tommaso Gulli 39; 1-20147 Milano
Tel: 02-48 7861
Fax: 02-48 786391
Via F. D'Ovidio 97; I-00135 Roma
Tel: 06-82 001824
Fax: 06-82 001825
Hitachi Europe GmbH
Electronic Components Div.
Spain
c/Buganvilla, 5; E-28036 Madrid
Tel: 0034-1-7 6727 82, -92
Fax: 0034-1-3 838511
Hitachi Europe (France) S.A.
Electronic Components Div.
France
18 rue Grange Dame Rose; B.P. 134
F-78148 Velizy Cedex
Tel: 01-34 630500
Fax: 01-34 653431

EUROPE (NE)

Headquarters
Hitachi Europe Ltd.
Electronic Components Div.
Northern Europe Headquarters
Whitebrook Park
Lower Cookham Road
Maidenhead
Berkshire SL6 8YA, United Kingdom
Tel: 0628-585000
Fax: 0628-778322

Branch Office

Hitachi Europe Ltd.
Electronic Components Div.
Northern Europe Headquarters
Haukadalsgatan 10
Box 1062, S-164 21 Kista, Sweden
Tel: 08-751-0035
Fax: 08-751-5073

ASIA

Headquarters

Hitachi Asia Pte. Ltd.
16 Collyer Quay \#20-00
Hitachi Tower
Singapore 0104
Tel: 535-2100
Fax: 535-1533

Branch Office

Hitachi Asia Pte. Ltd.
Taipei Branch Office
9 th FI. -1 No.64, Tun-Hwa N. Road
Taipei Financial Center
Taipei, Taiwan
Tel: 02-741-4021 to 6
Fax: 02-752-1567

ASIA(HK)

Headquarters

Hitachi Asia (Hong Kong) Ltd.
Unit 706, North Tower,
World Finance Centre, Harbour City
Canton Road, Tsim Sha Tsui, Kowloon
Hong Kong
Tel: 27359218
Fax: 27306071

Branch Office

Hitachi Asia (Hong Kong) Ltd.
Seoul Branch Office
18 Floor Kukje Center Building
191, 2-Ka, Hanggang-Ro
Yongsan-Ku, Seoul, Korea
Tel: 796-3115, 3647 to 8
Fax: 796-2145
Hitachi Asia (Hong Kong) Ltd.
Beijing Office
Room 1412, Beijing Fortune Building,
5 Dong San Huan, Bei-lu,
Chaoyang District Beijing
People's Republic of China
Tel: 501-4351-4
Fax: 501-4350

8

HITACHI

[^0]: Notes 2. Conditional branch with delay is an SH-2 CPU function.

