
HITACHI®

APPLICATION HANDBOOKApplication NotesTechnical NotesTechnical Briefs

APPLICATION HANDBOOK

- Application Notes
 - Technical Notes
 - Technical Briefs

When using this document, keep the following in mind:

- This document may, wholly or partially, be subject to change without notice.
- All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- 5. No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

Application Handbook Index

Application Notes, Technical Notes and Briefs

	SECTIONS:		
Introduction	·		SECTION
HD64180 Family			Section 2
4-Bit Family		7	Section
Display Devices			SECTION
H8 Family			Section Section
Memory			SECTION
Support Tools			CTION

HITACHI APPLICATION HANDBOOK

Table of Contents

SECTION 1 Introduction	Page 3
APPLICATION NOTES AND TECHNICAL NOTES & BRIEFS SECTION 2	
HD64180 Family	
HD641180X, 3180X, 7180X Technical Q & A Application Note	
HD64180S NPU Technical Q & A Application Note	101
HD64180 Technical Q & A Application Note	
Working with Interrupts—HD64180R/Z, 7180X Application Note	237
Demo Board to PC Bus Shared Memory Interface Application Note	241
180 Applications Board—Hardware Notes—HD64180R, Z Application Notes	245
Using the NPU in Appletalk Applications	249
Chained Block Transfer DMA Application Note	289
Memory Read and Write Timing Application Note	307
Task Switching Using the 64180 MMU Application Note	311
Reading of a Short Data Byte from the 64180 CSIO Technical Brief	333
Start Bit Detection in the 64180's ASCI Technical Brief	334
Differences in Mask S and S2 of NPU Technical Note	336
Start Bit Detection in MSCI Technical Note	337
DCDO Line Operation—HD64180R, Z, 7180X Technical Note	339
HD64180 DMAC: Memory-mapped I/O Transfers Technical Note	340
Notes on HD64180S (NPU) Bit Sync Loop Mode Technical Note	341
HD647180X Port A Programming Technical Brief	342
SECTION 3 4-Bit Family	
TMA3 bit on Timer A Operation—Compact 400 Technical Note	
4-bit ZTAT Microcomputer PROM Programming Tip HMCS400 Technical Note	
HD404272 User Cable Conversion Board	7
SECTION 4 Display Devices Graphics QA Test/Reliability Data—HD63484/487 Technical Note	5
ACRTC—Mask History Technical Note	
EV63487 MIVAC Evaluation Board Technical Brief	

HITACHI APPLICATION HANDBOOK

Table of Contents (cont'd)

3	ECTION 4	Page
	LCD	
	HD44780 and LCD Panel Design Tutorial Application Note	
	HD61830B/LM200 Split Panel Scanning Application Note	47
	Pixie Switch Auto Dash Board Indicator Application Note	
	HD61830/LM200 Custom Char. Gen. Tutorial Part II Application Note	75
	HD61830B/LM200 Panel Design Tutorial Application Note	
	LCD Controller ROM Mask Change Char Generator Technical Note	143
	LVIC II ROM Programming Mode—Palette Registers Access—HD66841 Technical Note	149
	H8/325 Evaluation Board & LCD Panel Technical Brief	
	LVIC Proto-Type Board—VGA B/W Panel Technical Brief	157
	EV66841 LVIC Evaluation Board Technical Brief	172
	HD66108T—Internal Oscillator Usage Technical Note	192
	HD66780—MPU Read Operation Timing Technical Note	194
2	ECTION 5	
-	8 Family	
•	H8/3XX Series	
	H8/310 Article on Smart Card Applications	5
	H8/300 CPU Technical Q & A Application Note	
	H8/300 16 × 16 Multiply Application Note	
	H8/330 Print Buffer Application Note	
	H8/330 Power-down Operation Application Note	
	H8/3XX Instruction Execution Time Calculations Technical Note	
	H8/320 Family EPROM Security Technical Note	
	H8/350 EPROM Security Technical Note	
	H8/330 EPROM Security Technical Note	
	H8/300 CPU Divide Instruction Technical Note	
	H8/300 CPU SUBX Instruction Technical Note	
	TO COUNTY TO COUNTY TO CONTROL TO	
	H8/5XX Series	
	H8/500 CPU Technical Q & A Application Note	101
	H8/500 Series Technical Q & A Application Note	
	H8/520 EPROM Security Technical Note	185
	H8/534 EPROM Security Technical Note	
	H8/536 EPROM Security Technical Note	
	H8/510 Instruction Execution Time Calculations Technical Note	
	H8/500 Instruction Execution Time Calculations Technical Note	
	H8/532 EPROM Security Technical Note	

HITACHI APPLICATION HANDBOOK

Table of Contents (cont'd)

SECTION 6	Page
Memory	
Word-wide DRAM Applications Technical Note	3
Mask History of HN58C256 Technical Note	5
FLASH Modifications to Intel Code Technical Note	7
1M to 4M Flash Upgrade and Features Technical Note	9
Low Voltage Memory Offerings Technical Note	11
Extended Refresh DRAM Technical Note	12
SECTION 7	
Support Tools	
H8/300 XRAY Tutorial Application Note	3
H8/300 Software Development from C Source to S Record Application Note	
H8/325 Standard I/O Application Note	
H8 Fourth Display Routine with HD61830B Application Note	29
Emulator to PC Interface Guide Application Note	45
Symbolic Debugging with the H Series ASE Application Note	55
Interfacing to the ASE Emulator Application Note	59
Disassemble Code Printout Technical Note	61
Starting up Emulator Version XRAY Technical Note	64
Hitachi's ASMH83 H8/300 Assembler/Linker—ASMH83 Assembler Technical Note	
Direct Memory Addressing with C Pointers—Microtec Toolkit Technical Note	67
HITACHI SAI ES OFFICES	70

Application Handbook

Application Notes, Technical Notes and Briefs

SECTION 1

Section

1
Introduction

FOREWORD

In this manual you will find a collection of Application Notes, Technical Briefs, TechNotes, and Question & Answers written by Hitachi, Ltd. and Hitachi America, Ltd. This collection was compiled through the efforts of the Technical Marketing Group for Hitachi, Ltd., and the Application Engineering Group and the Field Applications Engineers for Hitachi America, Ltd.

The documents in this handbook included design ideas and examples, application tips and hints, and also product tutorials. They are designed to assist the user in further understanding the technical information already available on each of the products. At this time we would like to extend thanks to the individual contributors of Hitachi America, Ltd. for making this handbook possible.

Stan Ayers, Field Application Engineer
Tom Hampton, Manager, Application Engineering
Carol Jacobson, Senior Application Engineer
Amelia Lam, Application Engineer
Marnie Mar, Senior Field Application Engineer
Oomer Serang, Senior Field Application Engineer
Kash Yajnik, Senior Application Engineer
Paul Yiu, Associate Application Engineer

This title is not all inclusive, so please check with your nearest Hitachi representative for additional information.

2

Section 2

HD64180 Family

HD641180X, HD643180X, HD647180X

Technical Q and A Application Note

Preface

The HD643180X, a member of the HD64180 family, is a single-chip microcontroller incorporating 16 kbytes of mask ROM. The HD647180X is a ZTAT™ (zero turnaround time) microcontroller that incorporates 16 kbytes of programmable ROM instead of mask ROM. The HD641180X has no internal ROM. The HD641180X, HD643180X and HD647180X incorporate the following on a single chip:

- 512 bytes of RAM
- Memory management unit (MMU)
- · DMA controller
- Timer
- · Asynchronous serial communication interface (ASCI)
- Clock synchronous serial I/O port (CSI/O)
- · Analog comparator
- · Parallel I/O pins

Note: ZTAT™ is a trademark of Hitachi

How to Use This Technical Q&A Manual

This technical manual contains answers to questions that many users have asked regarding Hitachi microcontrollers. It is intended to supplement the explanations in the current data books and user's manuals. Thus, please use this manual together with the data books and user's manuals.

If any further questions arise as you use this manual and the products described, please do not hesitate to get in touch with your nearest Hitachi semiconductor sales office.

SECTION

2

Contents

MMU		
	Logical to Physical Address Translation	QA641-002B/E 9
DMAG		
	DE1 Bit in the DMA Status Register (DSTAT)	-
	DME (DMA Master Enable) Bit in DMA Status Re	•
	DWE Bit in DMA Status Register	
	Memory ↔ I/O Transfer (channel 0)	
	Memory ↔ ASCI DMA Transfer	
	Memory (specified in application program) \leftrightarrow I/O I	
		QA641-008A/E 15
	Memory \leftrightarrow I/O (Z80SIO) DMA Transfer	
	DMAC Priority	
	DACK Signal Generation	
	DMA Transfer	QA641-065A/E 20
ASCI		
	Asynchronous Serial Communication Interface (AS	CI) Break Level
	Transfer	QA641-010A/E 21
	ASCI Baud Rate Calculation	QA641-011A/E 22
	ASCI Halted by CTS	QA641-043A/E 23
	DCD Pin and DCD Flag	QA641-044A/E 25
	External Clock Divide Ratio	QA641-045A/E 27
	ASCI Data Sampling	
	Restarting ASCI from I/O Stop Mode	
	TSR Status	
	Transmit Interrupt Timing	•
CSI/O		
001,0	RE and External Serial Clock for the CSI/O	QA641-070A/E 32
Timer		
	Timer Output	QA641-012B/E 33
	Timer (PRT) Count Down Using External Clock	
	Reload Timing	- · · · · · · · · · · · · · · · · · · ·
	TMDR Count Down	

Bus	Interface	
	Bus State during Internal I/O Access	QA641-014B/E 37
	E Clock during Sleep Mode or Bus Release Mode.	
	E Clock Timing during DMA Cycles or Refresh Cy	
	Data Sampling Timing during Memory Read	QA641-046A/E 40
Inter	rupt	
	Interrupt during MMU Operation	QA641-015B/E 41
	Interrupt during DMA Operation	QA641-016A/E 42
	INT ₀ Mode 2	QA641-017A/E 43
	NMI during Interrupt Acknowledge Cycle	QA641-018A/E 44
	Interrupt after Reset	QA641-019A/E 45
	Interrupt during Refresh Cycle	QA641-020B/E 46
	NMI Acknowledge	QA641-021B/E 47
	Interrupt Acknowledge Timing after EI Instruction	
	Execution	
	Interrupt Sampling during Block Transfer Instruction	o n
	Execution	QA641-048A/E 49
	Interrupt during SLP Instruction Cycle	QA641-049A/E 50
	INT ₀ Mode 0	QA641-050A/E 52
	NMI Interrupt Sampling Timing	QA641-051A/E 53
	Status Bit during TRAP	QA641-052A/E 54
	PC Stacking during TRAP	QA641-053A/E 55
	NMI during DMA Transfer	
	DREQ _i and NMI	
	Internal Interrupt Sampling Timing	
	INTA Signal Generation	
	Interrupt Request during HALT Opcode Fetch	
	Sample Mode Programming Pins' Levels	QA641-074A/E
I/O I	Port	
	Change from Input to Output	QA641-075A/E 68
	I/O Port Status in Sleep Mode	
	Port G	QA641-077A/E 70
	Notice at alternating Port A's function	
Men	nory	
	RAM Relocate Area	QA641-078A/E 72
	Inserting Wait State to Internal ROM	

Wait			
	WAIT Insertion during Refresh Cycle	QA641-022B/E 7	4
	WAIT Function at I/O Access	QA641-023B/E 7	5
	Inserted Wait States	QA641-122A/E 7	6
Reset			
	Power-On Reset Sequence	QA641-024A/E 7	7
	Control Signal Status after Reset	QA641-058A/E 7	8'
Low	Power Mode		
	Bus Status during Sleep Mode	QA641-025A/E7	9
	Sleep Mode and System Stop Mode	QA641-026A/E 8	0
	Recovery from System Stop	QA641-027B/E 8	1
	System Standby Function	QA641-028B/E 8	2
	Interrupt Sampling in Sleep Mode	QA641-059A/E 8	3
Refre	sh		
	Dynamic RAM Refresh during DMA	QA641-029A/E 8	5
	Dynamic RAM Refresh	QA641-030B/E 8	6
	Refresh Cycle Insertion	QA641-060A/E 8	7
Clock	Generator		
	EXTAL and ϕ	QA641-061A/E 8	8
	φ Clock Output Frequency Error	QA641-062A/E 8	9
	φ Pin Handling	QA641-123A/E 9	Ю
ASE			
	ASE Trace Function	QA641-031A/E 9	1
	Dynamic RAM Refresh of ASE		
Softw	are		
	Difference between RET and RETI Instructions	QA641-033A/E 9	13
	LD A, R and LD R, A Instructions		
	Processing Speed of SD200 Cross Assembler		
	LDIR Instruction	QA641-036A/E 9	96
	Extension Instructions (IN0, OUT0)	QA641-063A/E 9	8
	DEC (INC) and DAA Instructions	OA641-064A/E 9	9

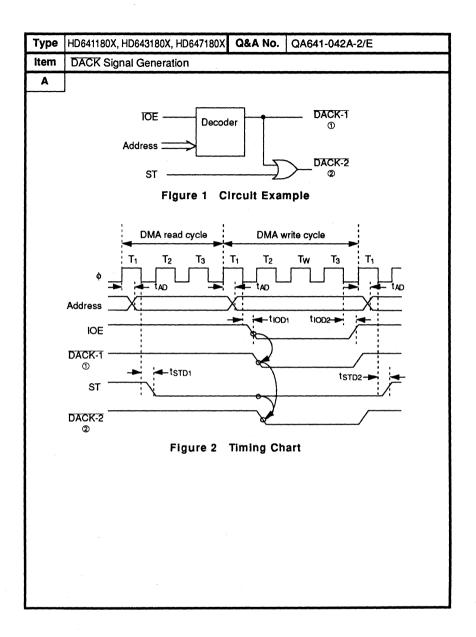
Туре	HD641180X, HD643180X, HD647180X Q&A No. QA	641-00	2B/E			
Item	Item Logical to Physical Address Translation					
Q			Classification			
Can th	e MMU base register (MMU common base register	V	мми			
	MU bank base register) be programmed so that		DMAC			
Commi	on area 1 overlaps with the base area?		ASCI			
			CSI/O			
	4		Timer			
			Bus Interface			
			Interrupt			
			I/O Port			
			Memory			
			Wait			
A			Reset			
Yes, de	epending on the MMU base register programming,		Low Power Mode			
commo	on area 1 and the bank area may overlap (figure 1).		Refresh			
	Physical address Logical address space		Clock Generator			
	space		ASE			
FFFF	KILL THE THE TELEPT		Software			
	area 1 base reg		Others			
C000H	(OFH)		Application Manual			
	Bank base reg (11H) Bank base reg (11H)		0641180X, HD643180X, 647180X Hardware Manual			
4000F			Other Data			
	Common					
00001	area 0 15000H	\vdash	Reference Q&A			
	Testadamadicaglicaglican) Testamaticagua arrangent, annual	-	Helefelice GXA			
	Figure 1 Overlapping Common Areas					
Comm	ent					
			y (1) (1)			

Type	HD641180X, HD643180X, HD647180X Q&A No. QA641	-003	BA/E			
Item	Item DE1 Bit in the DMA Status Register (DSTAT)					
Q			Classification			
1. How	long is DMA transfer disabled when the DE1 bit is		мми			
set t	0 0?		DMAC			
2. How	does DMA restart?		ASCI -			
			CSI/O			
			Timer			
			Bus Interface			
			Interrupt			
			I/O Port			
			Memory			
			Wait			
Α			Reset			
	A transfer is disabled until DE1 is reset to 1. Write 0		Low Power Mode			
to bi DE1	t DWE1 before performing any software write to		Refresh			
1 1 1			Clock Generator			
	emory ↔ memory DMA transfer is executed in burst e, DMA transfer cannot be interrupted. It can only be		ASE			
	rupted in memory ↔ memory cycle steal mode.		Software			
	nory \leftrightarrow I/O, or memory \leftrightarrow memory-mapped I/O		Others			
trans	sfer mode.		Application Manual			
To re	estart DMA transfer, set DE1 to 1.		641180X, HD643180X, 647180X Hardware Manual			
			Other Data			
		<u> </u>	Reference Q&A			
		 				
Comm	ent	<u> </u>				

	QA641-004B/E				
Item DME (DMA Master Enable) Bit in DMA Status Register					
Q Cla	assification				
When NMI occurs, DME is reset to 0 and DMA operation is MMU	J				
disabled, passing control to the CPU. $\sqrt{\ }$ DMA	AC .				
How is DMA operation timing halted? ASC	il · · · · · · · · · · · · · · · · · · ·				
2. How does DMA operation restart?	0				
Time	er				
Bus	Interface				
Inter	rrupt				
I/O F	Port				
Mem	nory				
Wait					
A Rese	et				
1. When Not occurs, the Cro takes control after the	Power Mode				
current DMA cycle is completed (figure 1) Refre	esh				
11 12 13 11 12 13 11	k Generator				
°ASE					
NMI	ware				
DME bit reset to 0, then Othe	ers				
DMA operation stops Appli	ication Manual				
	30X, HD643180X, 0X Hardware Manual				
2. To restart DMA operation, set DE bit (DE0 or DE1) to 1.	Other Data				
(This operation sets DME to 1.) The following program restarts DMAC:					
	ference Q&A				
OUTO (30H), A QA641-0	054A				
Comment					

Туре	HD641180X, HD643180X, HD647180X	643180X, HD647180X Q&A No. QA641-005A/E				
Item	Item DWE Bit in DMA Status Register					
Q					Classification	
	s the function of the DWE bit in the	DMA status			MMU	
registe	r?			1	DMAC	
					ASCI	
Í					CSI/O	
					Timer	
					Bus Interface	
1					Interrupt	
					I/O Port	
ł					Memory	
	in Mariana and San				Wait	
Α					Reset	
The DE	E bit enables DMA operation for the	internal DM	IAC.		Low Power Mode	
while th	ne DWE bit enables a software writ	e to the	•		Refresh	
corresp	oonding DE bit, for a specific chann	el operation	•		Clock Generator	
l					ASE	
l					Software	
l					Others	
l					Application Manual	
					641180X, HD643180X, 647180X Hardware Manual	
1					Other Data	
l					Reference Q&A	
Comm	nent					
	· · · · · · · · · · · · · · · · · · ·					
L						

Type	HD64	1180X, HD6	43180X, HD6	47180X Q&A No .	QA641	-006	6B/E
Item	em Memory ↔ I/O Transfer (channel 0)						
Q	Classification						
To enable DREQ ₀ input, both A ₁₇ and A ₁₆ of the I/O					-	MMU	
		t be set to		10		1	DMAC
Is the [OMA r	eauested	by DREQ ₀ a	accepted if either A	7 or	r	ASCI
A ₁₆ is					,	-	CSI/O
						_	Timer
						_	Bus Interface
							Interrupt
						-	I/O Port
Α							Memory
No. If e	ither <i>i</i>	A17 or A16	is set to 1.	DREQ ₀ is disabled	and	\vdash	Wait
			accepted.				Reset
To use	DREG	ე _ი input as	s DMA reau	est, set the bank bit	(A16.		Low Power Mode
			s 1 and 2.	,	10,		Refresh
Table 1	l So	urce Addı	ess Regist	er		_	Clock Generator
	-		,			<u> </u>	ASE
SAR1		SAR17	SAR16	DMA Request		<u> </u>	Software
Don't		0	0	DREQ ₀			
Don't		0	1	RDRF (ASCI ch0)			Others
Don't		1 .	1	RDRF (ASCI ch1) Reserved		1	Application Manual
			Address Ro				0641180X, HD643180X, 647180X Hardware Manual
14570		J	Addiood III	9.0.0.			Other Data
DAR1	8	DAR17	DAR16	DMA Request			ed types at least the state of the
Don't	care	0	0	DREQ ₀			
Don't	care	0		TDRE (ASCI ch0)			Reference Q&A
Don't		1	0	TDRE (ASCI ch1)			
Don't	care	1		Reserved		ļ	
Comm	ent					.	

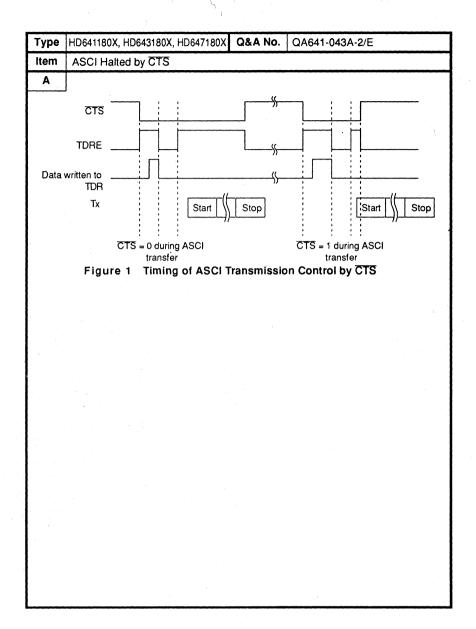

Type	HD641180X, HD643180X, HD647180X	Q&A No.	QA641	-007	' B/E
Item	$Memory \leftrightarrow ASCIDMA \ Transfer$				
Q					Classification
To execute memory ↔ ASCI DMA transfer, program DMA					MMU
source	source/destination address register as follows:				DMAC
	bits A ₀ -A ₇ to the address of the AS		ASCI		
rece	receive data register				CSI/O
2. Set	bits A ₈ -A ₁₅ to 00H				Timer
3. Set	bits A ₁₆ , A ₁₇ to 0, 1 or 1, 0	5	•		Bus Interface
					Interrupt
•	e memory \leftrightarrow ASCI DMA transfer be ly if bits A ₈ –A ₁₅ in the DMA source				I/O Port
	s register are not set to 00H?				Memory
					Wait
Α					Reset
No, if b	No, if bits A ₈ -A ₁₅ in the DMA source/destination address				Low Power Mode
_	register are not set to 00H, memory ↔ ASCI DMA transfer cannot be executed correctly.				Refresh
Carmot	be executed correctly.				Clock Generator
3	ample, to execute ASCI (channel 0)				ASE
	ansfer, set bits $A_0 - A_7$ to 08H, bits A A_{16} , A_{17} to 0, 1.	48-A15 10 U	υn,		Software
					Others
					Application Manual
					641180X, HD643180X, 647180X Hardware Manual
					Other Data
					Reference Q&A
Comment Setting bits A ₈ -A ₁₅ to anything other than 00H causes the internal DMAC to access another I/O address, not RDR. (DMA request from ASCI channel 0 is not reset).					

Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-008A/E			
Item	Memory (specified in application program) ↔ I/O DMA Transfer					
a					Classification	
Is it possible to execute memory (specified in application					MMU	
program) ↔ I/O DMA transfer indepenently of the MMU base register?				1	DMAC	
					ASCI	
					CSI/O	
					Timer	
					Bus Interface	
					Interrupt	
ł					I/O Port	
					Memory	
					Wait	
Α		-			Reset	
	execute memory (specified in appli		Low Power Mode			
← I/O DMA transfer correctly, the physical source address must be defined as follows:					Refresh	
				Clock Generator		
	ware calculates the physical source area using the logical address and				ASE	
			_		Software	
	calculated physical source address A source address register	s is loaded i	nto the		Others	
1				Application Manual		
DMA a	hysical address is known, it can be ddress register directly, but if the D	MA transfer	is	HD641180X, HD643180 HD647180X Hardware Man		
	ed within the logical memory area, tons can be used.	block transf	er	Other Data		
instruc	nons can be used.					
					Reference Q&A	
Comm	nent					
					· · · · · · · · · · · · · · · · · · ·	

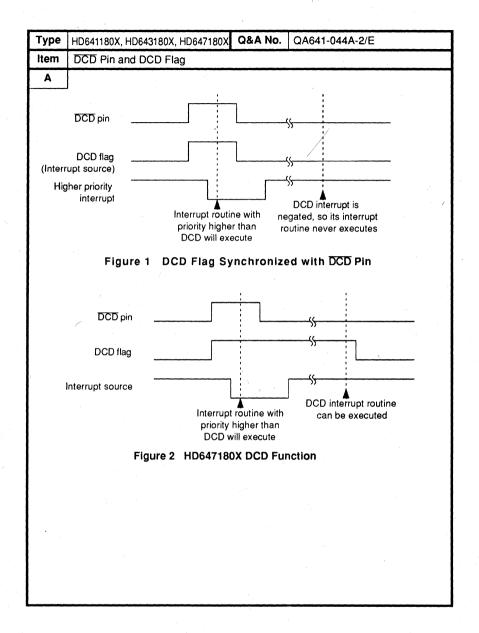
Type	HD641180X, HD643180X, HD647180X				
Item	Memory ↔ I/O (Z80SIO) DMA Transfer				
Q			Classification		
	memory ↔ I/O (Z80SIO) DMA transfer is executed		MMU		
	REQ is programmed for level sense, DMA transfer of complete correctly.		DMAC		
1	•		ASCI		
1	ere any restrictions on DMA operation? (RDY signal 30SIO is input to DREQ of HD64180.)		CSI/O		
1101112	30310 is input to DREQ of HD64180.)		Timer		
			Bus Interface		
			Interrupt		
			I/O Port		
-			Memory		
			Wait		
A			Reset		
	0SIO RDY signal is negated during DMA write cycle		Low Power Mode		
	peripheral LSI. Therefore, if the DREQ is meet for level sensing, an additional DMA cycle	L	Refresh		
	ince RDY is negated after DREQ signal sampling		Clock Generator		
(figure 1)			ASE		
	DMA read cycle DMA write cycle		Software		
	T_1 T_2 T_3 T_1 T_2 T_W T_3 T_1	L	Others		
		Application Manual HD641180X, HD643180X, HD647180X Hardware Manua			
Addr A	CK				
D	REQ		Other Data		
(Z80 RDY ou					
RDY output) DREQ sampled DMA cycle (If DREQ is not negated here,			Reference Q&A		
	an additional DMA cycle starts) Figure 1 DMA Timing				
Comment Take one of three measures: 1) Program DREQ for edge sensitivity,					
2) Insert a wait state during DMA write cycle to modify RDY response timing 3) Mask DREQ (RDY) signal by the ACK signal.					

						
Type	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-	-040)A/E	
Item	DMAC Priority					
a					Classification	
Which has higher priority, ch 0 memory ↔ memory DMA				MMU		
transfer or ch 1 memory ↔ I/O DMA transfer?				$\sqrt{}$	DMÀC	
	ssible to execute ch 1 memory \leftrightarrow I/C		sfer		ASCI	
before	ch 0 memory ↔ memory DMA trans	fer?	I		CSI/O	
			Ī		Timer	
					Bus Interface	
			Ī		Interrupt	
					I/O Port	
					Memory	
					Wait	
Α					Reset	
DMA c	h 0 has priority. However, when ch 1	DMA requ	est is		Low Power Mode	
generated when ch 1 is enabled and ch 0 is disabled, and					Refresh	
the ch 1 DMA is generated continuously, the ch 1 DMA transfer can be performed.				Clock Generator		
					ASE	
	ch 0 memory \leftrightarrow I/O DMA transfer, at can be accepted if no more ch 0 DI				Software	
genera	•				Others	
Durina	ch 0 memory ↔ memory DMA trans	fer. ch 1 D	ма	Application Manual		
	requests are ignored until ch 0 DMA transfer ends.			HD641180X, HD643180X, HD647180X Hardware Manual		
					Other Data	
		,				
		Reference Q&A				
					/	
Comm	nent					
	· ·					

Type	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-	-042A/E	
Item	DACK Signal Generation				
Q				Classification	on
How can the DACK signal, which indicates DMA transfer				MMU	
•	tion, be generated during ch 0 men	rnal	√ DMAC		
I/O DM	A transfer?			ASCI	
				CSI/O	
			Ī	Timer	
				Bus Interface	
				Interrupt	
		*	Ī	I/O Port	
			Ī	Memory	
				Wait	
Α				Reset	
When e	When external I/O is accessed during a DMA cycle, the		ie	Low Power Mo	ode
external I/O address is output through the address bus. At this time, the IOE signal and address output are decoded to generate a DACK-1 signal (figure 1, ①).				Refresh	
			ded to	Clock Generat	or
_			. 1	ASE	
	external I/O is accessed to initialize cle, DACK-1 and ST signals are lo	•		Software	
	te DACK-2 to distinguish a DMA fro			Others	
(figure	1, ②).			Application M	anua
-	: 1 and 2 (next page) show the DAC	CK generation		HD641180X, HD643 HD647180X Hardware	
			ſ	Other Data	а
				HD64180 App. No	te
			Ī	Reference C	A &
			Ī		
Comm	ent	!			



Type	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-0)65A/E
Item	DMA Transfer			
Q				Classification
	bes the DMA transfer execute who	en BCR is set	to	MMU
0000H	?	× '		√ DMAC
				ASCI
				CSI/O
				Timer
				Bus Interface
				Interrupt
				I/O Port
				Memory
				Wait
Α				Reset
When E	3CR is set to 0000H, 64 kbytes ar	e transferred	. [Low Power Mode
,				Refresh
				Clock Generator
				ASE
				Software
				Others
			Γ	Application Manua
				HD641180X, HD643180) HD647180X Hardware Manu
			Γ	Other Data
			 	Reference Q&A
			 	
Comm	ent			


Type	HD641180X, HD643180X, HD647180X	2&A No.	QA641	-010)A/E	
Item	Asynchronous Serial Communication Interface (ASCI) Break Level Transfer					
a					Classification	
Is it po	ssible to perform break level transfer v	by		MMU		
softwar	e?				DMAC	
				1	ASCI	
					CSI/O	
					Timer	
					Bus Interface	
					Interrupt	
,					I/O Port	
					Memory	
					Wait	
Α					Reset	
	No, the (HD64180) ASCI cannot perform break level				Low Power Mode	
transfe	transfer through software.				Refresh	
However, break level can be transferred if an external circuit				Clock Generator		
	is connected to to the RTS ₀ pin and the user system port (figure 1).				ASE	
(ligure	1).				Software	
HD	64180 HD64180				Others	
	Tx Dog Tx D	>∾ๅ			Application Manual	
	RTS ₀ RTS ₀ User O—Tx				HD641180X, HD643180X, HD647180X Hardware Manua	
	system				Other Data	
	port					
Fi	gure 1 Break Level Transfer Circui	le	Reference Q&A			
	If the $\overline{\text{RTS}}_0$ pin in ASCI control register A or port data register is set to 1, break level 0 can be transferred.				TOTOLOGICA	
Comm	ent			L		

.,,,,	HD641180X, HD643180X, HD647180X Q&A No. Q	10-71-01	IAL
Item	ASCI Baud Rate Calculation		
Q			Classification
How is	ASCI baud rate calculated?		MMU
			DMAC
			ASCI
			CSI/O
			Timer
			Bus Interface
			Interrupt
			I/O Port
			Memory
			Wait
Α			Reset
The fol	lowing expression shows how to calculate ASCI		Low Power Mode
baud ra	ate:		Refresh
baud	rate =		Clock Generator
/000	system clock frequency pling rate) (PS bit) (divider ratio set by SS0–SS2)		ASE
(San	ipling rate) (PS bit) (divider ratio set by SSU-SS2)		Software
	Sampling rate: 16 or 64		Others
	PS bit: 10 or 30 SS0–SS2: 1, 2, 4, 8, 16, 32, or 64		Application Manua
	1,2, 1,0,10,02,0101		0641180X, HD643180X 647180X Hardware Manu
			Other Data
			Reference Q&A
Comm	ent		•
	· · · · · · · · · · · · · · · · · · ·		

Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-	QA641-043A/E			
Item	ASCI Halted by CTS						
Q					Classification		
	the status of the ASCI after it is ha	alted by neg	ation		MMU		
of the (CTS signal?				DMAC		
				1	ASCI		
					CSI/O		
					Timer		
					Bus Interface		
					Interrupt		
					I/O Port		
					Memory		
					Wait		
Α					Reset		
	tinue ASCI transmission, write data	into the AS	СІ		Low Power Mode		
transm	transmit data register (TDR).				Refresh		
	lly, data can be programmed into th				Clock Generator		
ASCI to polling	ransmit interrupt by the TDRE flag,	or by TDRE			ASE		
_					Software		
	er, if CTS is negated (high), the TD alway read as 0. Data cannot be pr				Others		
	R for the following reasons:	ogrammeu	IIIO	Application Manual			
	I transmit interrupt by TDRE flag is			HD641180X, HD643180 HD647180X Hardware Man			
	n programming routine is disabled, I E flag always reads 0 when polled	because the	'		Other Data		
Therefo	ore, ASCI is idle when CTS is nega	ted (high).		_	Reference Q&A		
Figure CTS.	1 shows timing for ASCI transmissi	on control b	у				
Comm	ent						

Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641	-044	IA∕ E	
Item	DCD Pin and DCD Flag					
Q	,				Classification	
	DCD flag (ASCI status register ch 0	, bit 2) reset	when		мми	
the DC	D pin is asserted low?				DMAC	
					ASCI	
					CSI/O	
					Timer	
					Bus Interface	
					Interrupt	
-					I/O Port	
					Memory	
					Wait	
Α					Reset	
No, the DCD flag is not reset unless the ASCI status					Low Power Mode	
-	register is read. This allows the DCD interrupt to be				Refresh	
service	d correctly.				Clock Generator	
	CD pin and the DCD flag were res				ASE	
	D interrupt request would always boot be serviced when a higher priori		iu		Software	
occurre	ed simultaneously with the DCD into	errupt (figure	1).		Others	
Figure HD647	2 shows the actual function used b	y the		Application Manual		
110047	100%.					
					Other Data	
					Reference Q&A	
			i		·	
Comm	ent					

Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-0	045	A/E
item	External Clock Divide Ratio				
Q					Classification
Can th	Can the internal baud rate generator divider circuit be used				MMU
when the ASCI uses an external clock?					DMAC
				1	ASCI
					CSI/O
			Ī		Timer
					Bus Interface
					Interrupt
					I/O Port
			Γ		Memory
					Wait
Α					Reset
No, the	e divider cannot be used when the A	ASCI uses a	n F		Low Power Mode
	al clock. Therefore, the external clock				Refresh
	er, sampling rate can be controlled CI control register (table 1).	by the DR b	11 01		Clock Generator
	- , ,				ASE
	Sampling Rate				Software
DR B	t Sampling Rate + 16				Others
1	+ 64				Application Manual
					641180X, HD643180X, 647180X Hardware Manual
Intern		Sampling rate	_		Other Data
clock	(+ 1- + 64)	(+ 16, +64)			
Exterr clock			ŀ		Reference Q&A
fc ≤ φ 40	•				
Comm	ent		I_		·

Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-0	66A/E
Item	ASCI Data Sampling			
Q				Classification
Where	on the baud rate clock does the CF	U sample d	ata?	MMU
				DMAC
			Ţ.	ASCI
				CSI/O
				Timer
				Bus Interface
				Interrupt
				I/O Port
				Memory
	The state of the s			Wait
Α				Reset
	PU samples ASCI data at the falling	edge of the	baud	Low Power Mode
rate clo	ock.			Refresh
				Clock Generator
				ASE
				Software
1			L	Others
				Application Manual
				HD641180X, HD643180X, HD647180X Hardware Manual
				Other Data
				Reference Q&A
Comm	nent			

Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-067A/E			
Item	Restarting ASCI from I/O Stop Mo	ode				
Q					Classification	
How do	oes ASCI restart from IOSTOP mod	de?			мми	
					DMAC	
				1	ASCI	
					CSI/O	
					Timer	
					Bus Interface	
					Interrupt	
					I/O Port	
					Memory	
					Wait	
Α					Reset	
First, resetting the IOSTP bit in the I/O control register (ICR)			Low Power Mode			
causes	s I/O stop mode recovery.				Refresh	
	etting the receive enable (RE) bit of				Clock Generator	
enable transm	(TE) bit of the ASCI control register	er restarts As	SCI		ASE	
transm	1001011.				Software	
					Others	
	4				Application Manual	
					0641180X, HD643180X, 647180X Hardware Manual	
					Other Data	
	• .				Reference Q&A	
Comm	nent					

Туре	HD641180X, HD643180X, HD647180X Q&A No. QA6	641-068A/E
Item	TSR Status	
Q		Classification
	ransmit enable (TE) is reset to 0, the transmitter is	MMU
disable	d.	DMAC
	nis operation initialize the transmit shift register	√ ASCI
(TSR)?		CSI/O
		Timer
		Bus Interface
		Interrupt
		I/O Port
		Memory
		Wait
Α		Reset
	etting TE to 0 does not initialize the transmit shift	Low Power Mode
registe	(TSR) (figure 1).	Refresh
	Dut ─ D0 D1 D2 D3 D4 D5 D6 D7 ─ 1	Clock Generator
,		ASE
	TE reset to 0	Software
	D5 D6 D7 1 1 1 1 1 - 1	Others
	Figure 1 Transmit Shift Register	Application Manual
-		HD641180X, HD643180X, HD647180X Hardware Manua
		Other Data
		Reference Q&A
Comm	ent	

Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-0)69A/E
Item	Transmit Interrupt Timing			
a				Classification
	does the CPU acknowledge the tran	smit interru	pt in	MMU
the AS	CI transmit sequence?		DMAC	
				√ ASCI
			F	CSI/O
				Timer
			F	Bus Interface
			Γ	Interrupt
			Γ	I/O Port
				Memory
				Wait
Α				Reset
	PU acknowledges the transmit interr	upt when th	е [Low Power Mode
start bi	t goes out to the TXA pin.			Refresh
				Clock Generator
				ASE
				Software
			· •	Others
				Application Manual
				HD641180X, HD643180X, HD647180X Hardware Manual
			Γ	Other Data
			r	Reference Q&A
			F	
Comm	ent			

Туре	HD641180X, HD643180X, HD647180X Q&A No. QA6	41-070	DA/E
Item	RE and External Serial Clock for the CSI/O		
a	and the second	T	Classification
What is	s the relation between receive enable (RE) and the		MMU
	al serial clock (t _x in figure 1)?		DMAC
	cks		ASCI
	tx	V	CSI/O
	RXS	广	Timer
			Bus Interface
	RE		Interrupt
			I/O Port
	Figure 1 Receive Timing		Memory
			Wait
Α			Reset
	must be more than 5 system clocks (5φ). If it is less		Low Power Mode
than 5	o, CSI/O receive operation cannot start correctly.		Refresh
			Clock Generator
			ASE
			Software
			Others
			Application Manual
			641180X, HD643180X, 647180X Hardware Manual
			Other Data
			Reference Q&A
Comm	ent		

Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-0	12B/E
item	Timer Output			
Q				Classification
	ne timer (PRT) channel 0 provide a	timer outpu	t	MMU
functio	n?			DMAC
				ASCI
			Г	CSI/O
			-	Timer
				Bus Interface
				Interrupt
				I/O Port
				Memory
				Wait
Α				Reset
No, PR	T channel 1 should be used for time	er output.	Γ	Low Power Mode
				Refresh
			Γ	Clock Generator
				ASE
				Software
				Others
				Application Manual
			1	HD641180X, HD643180X, HD647180X Hardware Manual
				Other Data
			Γ	
				Reference Q&A
Comm	ent		7 -	

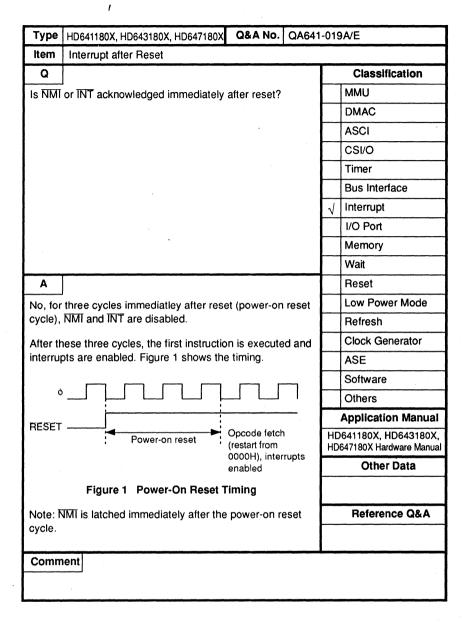
Type	HD641180X, HD643180X, HD647180X Q&A No. QA64 Timer (PRT) Count Down Using External Clock	1-010)A/ C
Q	Times (1717) Count Bown Coming External Clock	Т	Classification
Can the	e PRT count down using the external clock?		MMU
			DMAC
			ASCI
			CSI/O
		V	Timer
			Bus Interface
			Interrupt
			I/O Port
			Memory
			Wait
A			Reset
	e PRT can count down using only the φ clock		Low Power Mode
(divide	d by 20).		Refresh
			Clock Generator
			ASE
			Software
			Others
			Application Manua
			641180X, HD643180X 647180X Hardware Manu
			Other Data
			Reference Q&A
Comm	ent	-	

Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641	-072	2A/E
Item	TMDR Count Down				
Q					Classification
	he timer data register (TMDR) coun				MMU
	ount down enable (TDE) is reset to of TMDR and the reload register (RI		ne		DMAC
Status	or two trand the reload register (th	LD11):			ASCI
					CSI/O
	v."			1	Timer
					Bus Interface
					Interrupt
					I/O Port
					Memory
					Wait
Α					Reset
	IDR and RLDR remain the same w	hen the cou	inter		Low Power Mode
stops.					Refresh
					Clock Generator
					ASE
					Software
٠.					Others
1.					Application Manual
					641180X, HD643180X, 647180X Hardware Manual
					Other Data
					Reference Q&A
Comm	ent				

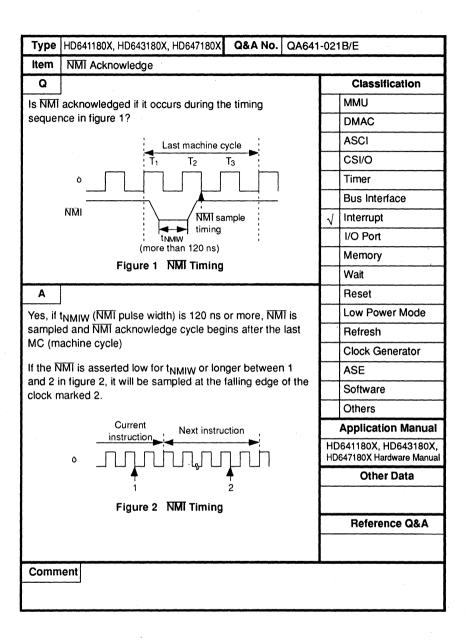
Туре	HD641180X, HD	0643180X, HD647180X	0647180X				
Item	Bus State du	ring Internal I/O Acce	ess				
Q						Classification	
1. Wha	it is the bus sta	atus during internal I/	O access?			MMU	
2. Wha	it happens if e	xternal I/O is assigne	d to the sam	ne		DMAC	
	ess as interna	•	2 (35 5 a			ASCI	
						CSI/O	
						Timer	
					1	Bus Interface	
						Interrupt	
						I/O Port	
						Memory	
						Wait	
Α						Reset	
1. Bus	status during i	nternal I/O access is	as follows:			Low Power Mode	
• D	ata bus					Refresh	
-		High impedance state)			Clock Generator	
	-Write: (ddress bus	Outputs data				ASE	
		Outputs address				Software	
		O address and an ex	damal I/O			Others	
		us status is as follow				Application Manual	
• D	ata bus					641180X, HD643180X, 647180X Hardware Manual	
·		Reads internal I/O; do external I/O	oes not read			Other Data	
	Write: 0	Outputs data to both	internal and			V	
• A	ddress bus	· ·				Reference Q&A	
	-Read/write: (Outputs address					
Comm	ent						

Туре	Type HD641180X, HD643180X, HD647180X Q&A No. QA641-037A/E					
Item	E Clock during Sleep Mode or Bus	Release M	lode			
Q				Classification		
	ssible to extend E clock pulse width	g wait	MMU			
states	(T _W) during sleep mode or bus relea	se mode?		DMAC		
				ASCI		
				CSI/O		
-				Timer		
				√ Bus Interface		
				Interrupt		
				I/O Port		
				Memory		
ž.				Wait		
Α		:		Reset		
	cause WAIT input is ignored during			Low Power Mode		
bus rel	ease mode, the E clock cycle canno	be extend	led.	Refresh		
				Clock Generator		
				ASE		
				Software		
				Others		
			L	Application Manual		
				HD641180X, HD643180X, HD647180X Hardware Manual		
		* * * * * * * * * * * * * * * * * * *		Other Data		
			-	Reference Q&A		
Comm	nent					

Tuna	HD641180X, HD643180X, HD647180X Q&A No. QA64		DA/E				
			SAVE				
Item	E Clock Timing during DMA Cycles or Refresh Cycles						
. Q		<u> </u>	Classification				
What is cycle?	the E clock output timing during the DMA or refresh		MMU				
Cycle :			DMAC				
		L	ASCI				
		<u></u>	CSI/O				
			Timer				
		\checkmark	Bus Interface				
			Interrupt				
			I/O Port				
			Memory				
			Wait				
Α			Reset				
	cess memory or I/O duration of E clock output high		Low Power Mode				
is ident	cal to the CPU. Table 1 shows output timing.		Refresh				
Table 1	Output Timing		Clock Generator				
Cycle	Timing		ASE				
Memo			Software				
I/O rea	, , , , , , , , , , , , , , , , , , ,		Others				
I/O wri	e First T _W rising (↑) to T ₃ rising (↑)		Application Manual				
During	efresh cycles, E clock output is held low.	HD641180X, HD643180X, HD647180X Hardware Manual					
			Other Data				
			Reference Q&A				
Comm	ent						
							

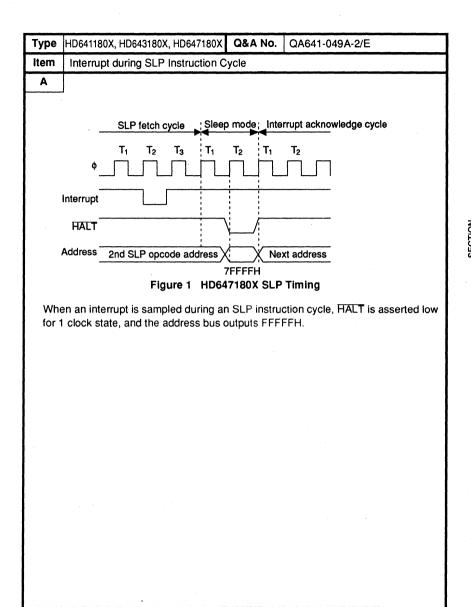

Туре	HD641180X, HD643180X, H	ID647180X	Q&A No.	QA641	-046	SA/E
Item	Data Sampling Timing	during Mer	nory Read			
Q	\ \					Classification
	Does the CPU sample data at the rising edge of T ₃ during					мми
	opcode fetch cycles and at the falling edge of T ₃ during				DMAC	
Ореган	operand and data read cycles?					ASCI
						CSI/O
						Timer
					1	Bus Interface
						Interrupt
						I/O Port
						Memory
						Wait
Α						Reset
	e CPU samples the opco					Low Power Mode
	edge of T_3 while it sample edge of T_3 (table 1).	es operand	is and data	at the		Refresh
-						Clock Generator
Table 1	Sampling Timing					ASE
CPU (Cycle	Sampli	ng Timing			Software
	de fetch cycle		ı edge (↑)			Others
Data a	and operand fetch cycle	T ₃ falling	g edge (↓)			Application Manual
						641180X, HD643180X, 647180X Hardware Manual
						Other Data
					Reference Q&A	
Comm	ent					
						,
						<u> </u>

Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641	-01	5B/E	
Item	Interrupt during MMU Operation					
Q					Classification	
How w	ill the MMU be affected if an interru	ıring	MMU			
its ope	its operation?				DMAC	
					ASCI	
					CSI/O	
					Timer	
					Bus Interface	
				1	Interrupt	
					I/O Port	
					Memory	
					Wait	
A					Reset	
	terrupt occurs during MMU operation	•			Low Power Mode	
	is relocated according to the MMU mming. Therefore, the interrupt vec				Refresh	
	d with reference to MMU base regis				Clock Generator	
(figure	1).				ASE	
Howev	er, the interrupt vector can be locat	ed in comm	on .		Software	
	which is always located in the sam	ne logical ad	dress		Others	
space.	V. Into				Application Manual	
FFFFI		rupt vector	x	HD641180X, HD64318 HD647180X Hardware Ma		
		A X Base			Other Data	
0000	——————————————————————————————————————	Base ^{regist} register (1) √				
Logic	Logical address space Physical address space				Reference Q&A	
Fig	ure 1 Interrupt Vector Generation	on auring M	IVIU			
Comm	nent					
L						


Q How wi	Interrupt during DMA Operation			
				<u> </u>
			Ŀ	Classification
ts oper	Il the DMAC be affected if an interru	uring	MMU	
	s operation:			DMAC
				ASCI
				CSI/O
				Timer
				Bus Interface
			V	Interrupt
				I/O Port
				Memory
		-		Wait
Α				Reset
1. If an	NMI occurs, DMAC operation is dis	sabled.		Low Power Mode
2. If an INT or an internal interrupt occurs during burst			Refresh	
	e memory ↔ memory DMA operati	_		Clock Generator
is igr	nored.			ASE
3. If an	INT or an internal interrupt occurs	during cycle	steal	Software
	e memory ↔ memory DMA operati			Others
	knowledged and the interrupt sequ DMAC read/write (DMAC cycle) are			Application Manua
figur	e 1.	мА	H	D641180X, HD643180X D647180X Hardware Manu
· · · · · · · · · · · · · · · · · · ·				Other Data
-	**************************************	\\X_	-	
	DMA DMA DMA DMA read write Interrupt read	DMA I write		Reference Q&A
Fig	acknowledge ure 1 Interrupt during Cycle Ste	al Mode DN	na	
Comm	ent			

Type	HD641180X, HD643180X, HD647180X	Q&A No.	QA641	-017	7A/E	
Item	ĪNT ₀ Mode 2					
Q					Classification	
	In Z80 INT ₀ mode 2, the LSB of the lower vector in the 16-				MMU	
bit vec	or address (A ₀) is always 0.				DMAC	
	HD647180X, is the LSB of the lowe	r vector (D ₀))		ASCI	
automa	atically set to 0 in \overline{INT}_0 mode 2?				CSI/O	
					Timer	
					Bus Interface	
				1	Interrupt	
					I/O Port	
					Memory	
					Wait	
A					Reset	
	Z80 $\overline{\text{INT}}_{0}$ mode 2, the LSB of the lo				Low Power Mode	
	atically set to 0. The Z80 data book on the set to 0.	explains tha	at the		Refresh	
Ì					Clock Generator	
	47180X $\overline{\text{INT}}_0$ mode 2, the LSB of the LSB of the set to 0 since $\overline{\text{INT}}_0$ mode 2 r				ASE	
vector.	ust be set to 0 since hv10 mode 21	equires a 2-	Dyle		Software	
Номоч	or oven if the LSP of the lower yea	tor (D.) is s	01.10		Others	
	er, even if the LSB of the lower vec nterrupt sequence is executed corr		et to		Application Manual	
·				HD641180X, HD643180X HD647180X Hardware Manua		
					Other Data	
					Reference Q&A	
Comm	ent					
	·					
			-			

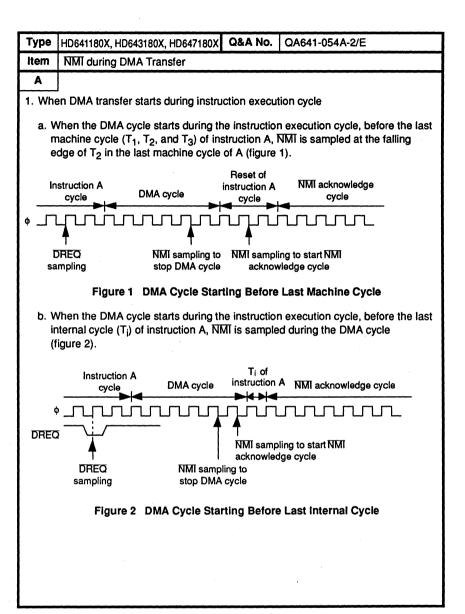
Туре	HD641180X, HD643180X, HD647180X Q&A No. QA641	-018	BA/E
Item	NMI during Interrupt Acknowledge Cycle		
Q			Classification
	acknowledged during the interrupt acknowledge		мми
cycle,	such as for INT?		DMAC
			ASCI
			CSI/O
			Timer
			Bus Interface
			Interrupt
			I/O Port
			Memory
•			Wait
Α			Reset
	e instruction (excluding EI and DI instructions) is		Low Power Mode
	ed after the INT acknowledge cycle, then the NMI		Refresh
	vledge cycle starts.		Clock Generator
	IT response sequence during the NMI acknowledge		ASE
Cycle is	the same.		Software
			Others
			Application Manual
			641180X, HD643180X, 647180X Hardware Manual
			Other Data
			Reference Q&A
Comm	ent		



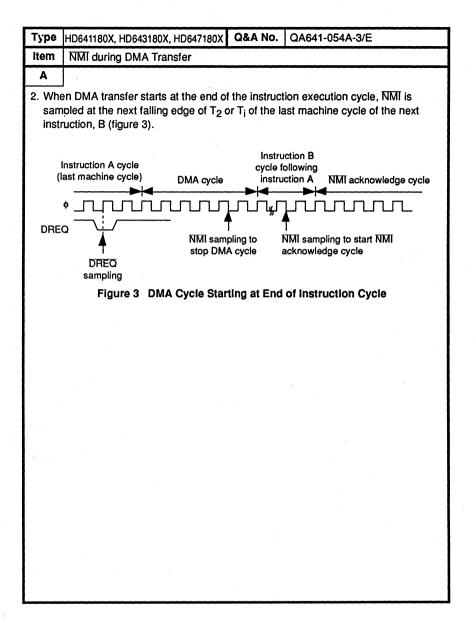
Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-0	20B/E
Item	Interrupt during Refresh Cycle			
Q	. ,			Classification
Is an in	terrupt (NMI or INT) acknowledged	esh	MMU	
cycles?				DMAC
				ASCI
				CSI/O
-				Timer
				Bus Interface
			-	√ Interrupt
				I/O Port
				Memory
				Wait
Α				Reset
	errupts are ignored during refresh c		Low Power Mode	
	acknowledged immediately after relinstruction execution because NMI			Refresh
	1 shows NMI acknowledge timing a	-		Clock Generator
				ASE
			_	Software
-	X	X	<u> </u>	Others
Machir	ne Refresh Last n	nachine T	1MI	Application Manual
cycle	e cycle c	le le	edge H	HD641180X, HD643180X, HD647180X.Hardware Manual
NMI			ycle	Other Data
	Figure 1 Refresh Timin	g		
	T_0 , \overline{INT}_1 , and \overline{INT}_2) is ignored during		ycles.	Reference Q&A
	emains active after the refresh cyclo rledged during the instruction just a	•	- 1	Tiererine dan
Comm	ent			
<u> </u>				

Item	HD641180X, HD643180X, HD647180X Q&A No. QA641-047A/E Interrupt Acknowledge Timing after El Instruction Execution					
Q	interrupt Acknowledge firming after Er instruction Exe	Cutic	Classification			
		ļ	MMU			
wnen i	s an interrupt acknowledged after an El instruction?	<u> </u>				
		<u> </u>	DMAC			
		<u> </u>	ASCI			
		ļ	CSI/O			
			Timer			
			Bus Interface			
			Interrupt			
			I/O Port			
		<u> </u>	Memory			
			Wait			
Α			Reset			
Maskable interrupts (INT ₀ , etc.) are acknowledged in the		Low Power Mode				
last ma	chine cycle of any instruction cycle other than El.		Refresh			
Note th	at no interrupts can be acknowledged during El		Clock Generator			
	ion execution. Therefore, if an interrupt occurs		ASE			
	ately before or during an El instruction cycle, it is rledged after the end of the RETI instruction cycle		Software			
	g the El instruction.		Others			
For exa	imple:		Application Manua			
. Or OAC		HD641180X, HD643180 HD647180X Hardware Man				
El	← Interrupt request		Other Data			
	← Interrupt request acknowledged during this instruction		Reference Q&A			
(Inte	rupt acknowledge cycle)					
Comm	ent					

Туре	HD641180X, HD643180X, HD647180X Q&	A No.	QA641-0	49A/E	
Item	Interrupt during SLP Instruction Cycle				1 .
Q				Cla	ssification
	What is the CPU status when an interrupt occurs during				
SLP In	struction execution?			DMA	C
				ASC	
				CSI/0)
	· ·			Time	r
			Γ	Bus	nterface
			T-	Inter	upt
			Γ	1/0 F	ort
				Mem	ory
<u> </u>				Wait	
Α				Rese	t
	e CPU operates when an interrupt occu			Low	Power Mode
	struction execution depends on whether 180X. The different responses are show			Refre	sh
next pa	•	VIII OII (I		Clock	Generator
			Γ	ASE	
				Softv	/are
				Othe	rs
				Appli	cation Manua
			-		ther Data
			-		ther bata
				Ref	erence Q&A
<u> </u>	ant		<u> </u>		
Comm	em				


Type	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-	-05	0A/E	
Item	INT ₀ Mode 0			1		
Q		*.			Classification	
	ALL instruction (three-byte instruct			мми		
	INT ₀ mode 0 acknowledge cycle, the rom the interrupt service correctly.			DMAC		
Teluini	Tom the interrupt service correctly.	. [ASCI		
			[CSI/O	
			[Timer	
			I		Bus Interface	
					Interrupt	
					I/O Port	
					Memory	
					Wait	
Α					Reset	
INT ₀ m	INT ₀ mode 0 operates as follows:				Low Power Mode	
1. Stac	ks PC contents by an instruction, u	sually (one-	bvte)		Refresh	
RST	, fetched during INT ₀ mode 0 ackno	owledge cyc			Clock Generator	
	s incrementing the PC during INT ₀ lowledge cycle	mode 0			ASE	
	cutes instruction fetched from data	bus during			Software	
inter	rupt acknowledge cycle		l		Others	
Howev	er, if the (three-byte) CALL instructi	on, which			Application Manual	
	s three machine cycles to fetch incl d, is executed during INT ₀ mode 0		e	HD641180X, HD643180X HD647180X Hardware Manua Other Data		
	PC increment stops only during inte	•				
	rledge cycle (one machine cycle) a ring the rest of the CALL instruction					
As a re	As a result, PC + 2 is stacked as the return address.				Reference Q&A	
	ore, decrement the stacked PC value to return from the interrupt correct to return from the interrupt correct to the contract of the contract		Ì			
Comm	ent		1			

Туре	HD641180X, HD643180X, HD647180X Q&A	No.	QA641	1-051A/E			
Item	NMI Interrupt Sampling Timing						
Q					Classification		
NMI is sampled at the falling edge of a ϕ clock state prior to					MMU		
T ₃ or T _i in the last machine cycle of each instruction.					DMAC		
When is NMI sampled if the last machine cycle is an internal T _i cycle?					ASCI		
					CSI/O		
2. How	about INT?				Timer		
					Bus Interface		
				1	Interrupt		
					I/O Port		
					Memory		
					Wait		
Α					Reset		
	Both NMI and INT are always sampled at the falling edge of				Low Power Mode		
	ck pulse prior to state T ₃ or T _i of the last m				Refresh		
cycle. The NMI sampling is not affected by the number of internal T _i cycles (figure 1).					Clock Generator		
Interrupt					ASE		
	acl	nowl	edge		Software		
	Instruction cycle cycle				Others		
T3	T ₃ T ₁ T ₂ T ₃ T ₁ T ₁ T ₁ T ₁			Application Manual			
L				HD641180X, HD643180X, HD647180X Hardware Manual			
	Sampling				Other Data		
Figure 1 Interrupt Sample Timing during Ti			Reference Q&A				
Comm	ent						


Type	HD641180X, HD643180X, HD647180X	Q&A No.	QA641	-052	2A/E	
Item	Status Bit during TRAP					
Q					Classification	
What happens if an additional TRAP occurs before the					мми	
INT/	INT/TRAP control register TRAP bit is cleared?				DMAC	
2. Wha	2. What is the status of the TRAP and UFO bits in this				ASCI	
case	case?				CSI/O	
İ					Timer	
					Bus Interface	
				1	Interrupt	
					I/O Port	
					Memory	
					Wait	
Α					Reset	
1. An a	An additional TRAP interrupt occurs.				Low Power Mode	
2. The	2. The TRAP bit remains 1 since it can be cleared only by				Refresh	
1	software.		, ,		Clock Generator	
The	The UFO bit remains unchanged since it cannot be				ASE	
	modified while the TRAP bit = 1.				Software	
					Others	
				Application Manual		
				HD641180X, HD643180X, HD647180X Hardware Manual		
					Other Data	
2.0						
					Reference Q&A	
UFO bit: Indicates if TRAP occured in 2nd or 3rd opcode fetch cycle: UFO = 0: TRAP occurred in 2nd opcode fetch cycle UFO = 1: TRAP occurred in 3rd opcode fetch cycle						

Туре	HD641180X, HD643180X, HD647180X Q&A No. QA641-053A/E								
Item		PC Stacking during TRAP							
Q	Classification								
							MMU		
	Why is the stacked PC value different for TRAP occurrence during second opcode fetch and during third opcode fetch?					├			
during second opcode retorrand during third opcode retorr						ļ	DMAC		
·						<u> </u>	ASCI		
						<u> </u>	CSI/O		
	•						Timer		
							Bus Interface		
						1	Interrupt		
							I/O Port		
Α							Memory		
Table 1	summarizes CPU	operations wh	en TRAF	occi	urs		Wait		
during	the second and thi	rd opcode fetch	nes.				Reset		
Table ⁻	Table 1 CPU Operations during TRAP						Low Power Mode		
							Refresh		
Mach	TRAP during Second TRAP during Third Machine Opcode Fetch Opcode Fetch					Clock Generator			
Cycle			tus	PC			ASE		
1	TRAP	PC TR	•	PC			Software		
2	occurrence Internal		urrence mory	PC	←		Others		
	operation	rea				Application Manual			
3	Stack		rnal ration	PC:					
4		— Sta		PC-		<u> </u>			
When the TRAP occurs in the second opcode, the CPU							Other Data		
stacks the PC for the undefined opcode's location.									
When it occurs in the third opcode, the CPU stacks PC – 1 Reference Q&A									
for the undefined opcode's location .					•				
Comm	ent								
	-								
							· · · · · · · · · · · · · · · · · · ·		

Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641	-054	1A/E		
Item	NMI during DMA Transfer						
Q			Classification				
What happens to DMAC after NMI assertion?					MMU		
l					DMAC		
					ASCI		
					CSI/O		
					Timer		
					Bus Interface		
				1	Interrupt /		
					I/O Port		
					Memory		
					Wait		
Α					Reset		
	NMI is asserted low during DMA tra		ма		Low Power Mode		
transfe	r ends at the end of the current DM.	A cycle.			Refresh		
	er, note that the NMI acknowledge			1.	Clock Generator		
	nt times, depending on the CPU state				ASE		
	transfer (figures 1, 2, and 3). In addition, NMI is sampled twice to stop the DMA cycle and start the NMI acknowledge				Software		
cycle.					Others		
DMAC	DMAC operations can be restarted by writing to the				Application Manual		
•	corresponding channel's DE bit.			HD641180X, HD643180X, HD647180X Hardware Manual			
NMI ac pages.	knowledge cycle timings are showr	on the nex	t		Other Data		
					•		
				Reference Q&A			
Comm	nent						

57

58

Type	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-	-055A/E
Item	DREQ _i and NMI			
Q				Classification
	appens to DMAC operation if $\overline{\text{NMI}}$ is			мми
	ne DMAC operates under the contro	of the DR	EQ _i	DMAC
pin?	•		Ī	ASCI
			Ī	CSI/O
			ſ	Timer
				Bus Interface
				√ Interrupt
				I/O Port
				Memory
				Wait
Α				Reset
DMAC operation is suspended and NMI is sampled with the			ith the	Low Power Mode
timing s	shown in figure 1.			Refresh
	Γ.	MI acknowle	daa	Clock Generator
	CPU cycle , DMA cycle , CPU cycle		uge	ASE
_		Not accepte		Software
DREQ	; — Joanning	/	[Others
NMI			<u> </u>	Application Manual
141411	Figure 1 DMA Cycle Stopped	by NMI		HD641180X, HD643180X, HD647180X Hardware Manua
			F	Other Data
			-	
			- 1	Reference Q&A
Comm	ent			

Type	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-055A-2/E	
Item	DREQ _i and NMI			
A				

Note that if $\overline{\text{DREQ}}_i$ and $\overline{\text{NMI}}$ are asserted simultaneously, $\overline{\text{NMI}}$ sampling has priority (figure 2).

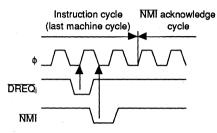
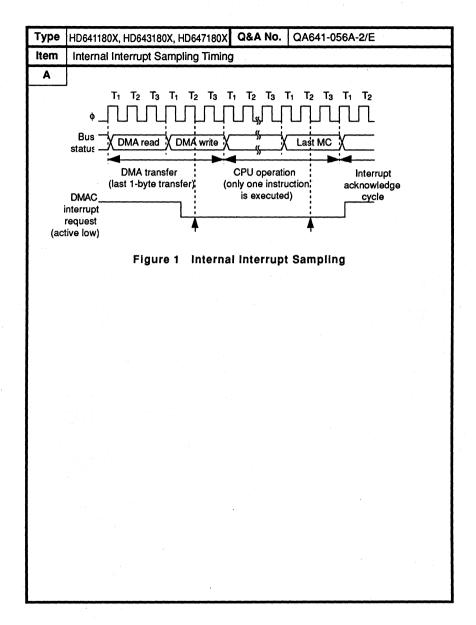



Figure 2 DREQ and NMI Conflict

Type HD641180X, HD643180X, HD647180X	Q&A No.	QA641-	QA641-056A/E			
Item Internal Interrupt Sampling Timir	g					
Q				Classification		
External interrupts are sampled at the fa	ling edge of s	state		MMU		
T ₂ or T _i in the last machine cycle.		ſ		DMAC		
When are internal interrupts sampled?				ASCI		
		Ī		CSI/O		
		[Timer		
		[Bus Interface		
			1	Interrupt		
		[I/O Port		
				Memory		
				Wait		
A	-			Reset		
During a DMA cycle, internal interrupts for		ike		Low Power Mode		
DMAC, ASCI, timer, and CSIO are not sa	ampled.	I		Refresh		
They are sampled at the falling edge of s				Clock Generator		
last machine cycle of the instruction cycl	e following th	е		ASE		
DMA cycle (figure 1).				Software		
		[Others		
		Ī		Application Manual		
a de la companya de				641180X, HD643180X, 647180X Hardware Manual		
• .				Other Data		
				Reference Q&A		
				•		
Comment						

Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-057A/E			
Item	INTA Signal Generation					
Q					Classification	
The H) 064180 can be interfaced to the 82	59 to contro	11/0		MMU	
interru	interrupts.				DMAC	
How can we generate an INTA signal to be input to the 8259 from the HD64180?				ASCI		
				CSI/O		
2. Are	there any precautions?				Timer	
					Bus Interface	
				1	Interrupt	
					I/O Port	
					Memory	
					Wait	
Α					Reset	
1. Three INTA signal pulses must be input when the 8259 is			Low Power Mode			
used	d to control interrupts:				Refresh	
a. O	ne INTA pulse for opcode fetch				Clock Generator	
b. Ti	wo INTA pulses for operand fetch				ASE	
	•		COS.		Software	
	INTA pulse for opcode fetch can be IOE. The INTA pulse for operand for	•	by LIR		Others	
	luced by RD.				Application Manual	
This	interface is the same as for Z80 ar	nd 8259.			641180X, HD643180X, 647180X Hardware Manual	
	re 1 shows an example of an INTA	signal gene	ration		Other Data	
circu	uit.					
				-	Reference Q&A	
				0	A641-050A	
					10-1-000/1	
Comm	ent					
This cir	This circuit is for reference only. Check logic and timing carefully for your application					

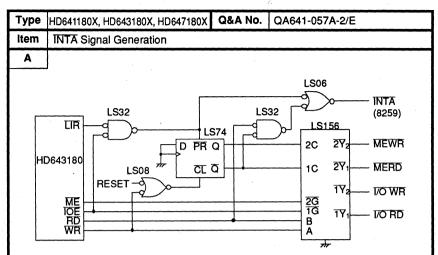
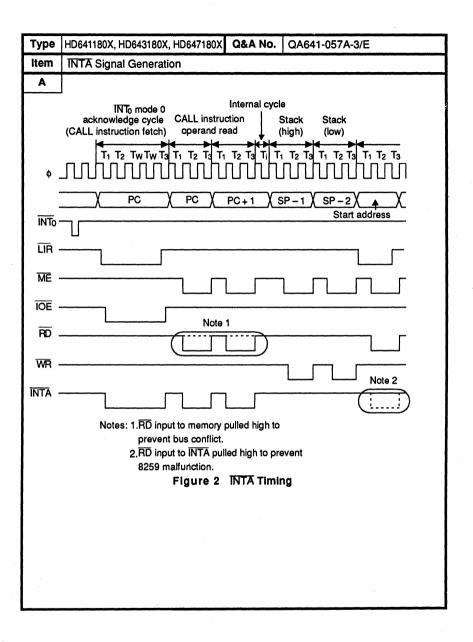



Figure 1 INTA Signal Generation Circuit Example

2. Precautions

- This circuit cannot be used when the DMAC is used in the system.
- When signal RD is used to generate the INTA signal for operand read (1b above) IOE must be used to avoid data conflict between I/O and memory (note 1 in figure 2).
- In INT₀ mode 0, if the RST instruction is executed during its acknowledge cycle, the PC is put on the stack. If a CALL instruction is executed, PC + 2 is put on the stack.

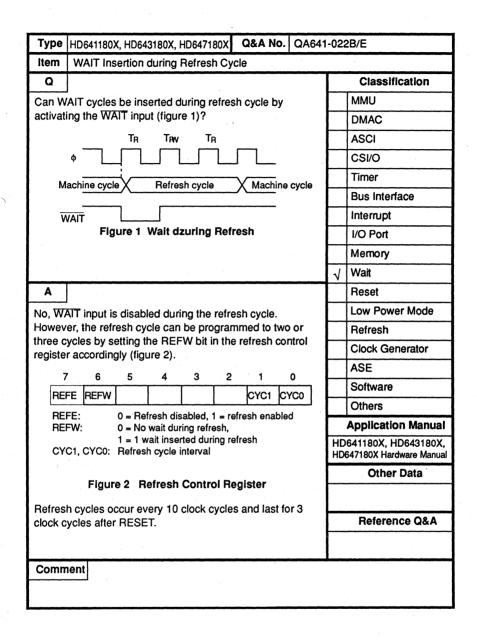
Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-	073	BA/E
Item	Interrupt Request during HALT Or	ocode Fetch			
Q					Classification
	Can the CPU acknowledge the interrupt request during				MMU
HALT	ppcode fetch?		Ī		DMAC
					ASCI
			ĺ		CSI/O
					Timer
					Bus Interface
				1	Interrupt
			[I/O Port
			I		Memory
					Wait
Α					Reset
	hen interrupt enable flag 1 is set to	1, the CPU	will		Low Power Mode
acknov	vledge the interrupt request.				Refresh
					Clock Generator
			Ì		ASE
					Software
					Others
					Application Manual
			1		Other Data
			}		Reference Q&A
			ł		
Comn	nent				

Туре	HD641180X, HD643180X, HD647180X Q&A No. C	QA641-0	641-074A/E			
Item	Sample Mode Programming Pins' Levels		_			
Q				Classification		
	en does the CPU sample the level on the mode			MMU		
prog	gramming (MP) pins?	L		DMAC		
2. Is it	possible to change the CPU mode during operation	ion?		ASCI		
		L		CSI/O		
				Timer		
		L		Bus Interface		
				Interrupt		
			1	I/O Port		
				Memory		
				Wait		
Α				Reset		
	CPU samples the MP pins' levels at the rising ed	dge		Low Power Mode		
of R	ESET.	L		Refresh		
	It is impossible to change the CPU mode during 0	CPU		Clock Generator		
oper	ration. (CPU does not check mode pins' levels.)			ASE		
				Software		
		L		Others		
				Application Manual		
				Other Data		
		1				
				Reference Q&A		
Comm	ient		-			

Type	HD641180X, HD643180X, HD647180X Q&A No. QA64	1-07	5A/E
Item	Change from Input to Output		
Q		П	Classification
	loes the I/O port output just after it changes from		мми
input to	output?		DMAC
			ASCI
			CSI/O
		Г	Timer
			Bus Interface
			Interrupt
			I/O Port
			Memory
			Wait
Α			Reset
The I/C	ports output depends on the contents of the output		Low Power Mode
	gister (ODR). If the data direction register (DDR) is		Refresh
	and the ODR is not set to output level data, the I/O tputs undefined data. Therefore, put valid data in the		Clock Generator
	efore setting the DDR to 1.		ASE
			Software
**			Others
			Application Manual
			0641180X, HD643180X, 647180X Hardware Manual
			Other Data
			Reference Q&A
Comm	nent		

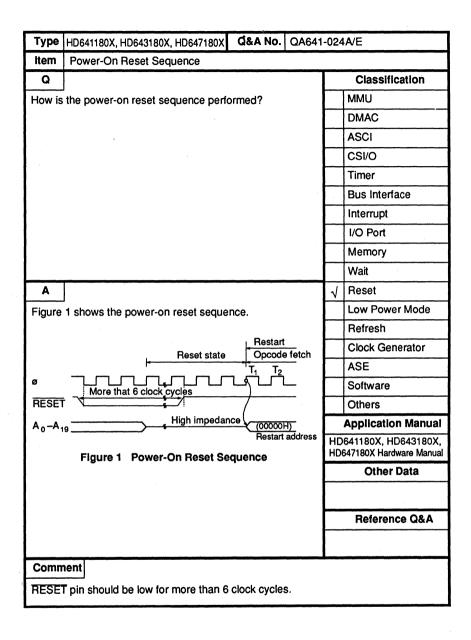
7 •
_
7 4

Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-076A/E			
Item	I/O Port Status in Sleep Mode					
Q					Classification	
What is	s the status of the I/O port during sl	eep mode?			мми	
					DMAC	
					ASCI	
					CSI/O	
,					Timer	
					Bus Interface	
					Interrupt	
1			`	7	I/O Port	
					Memory	
					Wait	
Α					Reset	
	port holds its output levels when t	he CPU ente	ers		Low Power Mode	
sleep r	node.				Refresh	
					Clock Generator	
					ASE	
					Software	
					Others	
					Application Manual	
					Other Data	
					Reference Q&A	
Comm	ent					


Item	Port G		
Q		Π	Classification
Can po	ort G be left open?		MMU
			DMAC
			ASCI
			CSI/O
			Timer
			Bus Interface
			Interrupt
		1	I/O Port
			Memory
			Wait
Α			Reset
No. Co	nnect port G to V _{CC} or GND through a resistance.		Low Power Mode
			Refresh
			Clock Generator
			ASE
			Software
			Others
			Application Manu
		\vdash	Other Data
		\vdash	Other Data
			Reference Q&A
Comm	nent		

Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641	-120)A/E	
Item	Notice at alternating Port A's function					
Q					Classification	
How ca	n we alternate Port A's function?				MMU	
					DMAC	
					ASCI	
					CSI/O	
					Timer	
					Bus Interface	
					Interrupt	
				1	I/O Port	
					Memory	
					Wait	
A					Reset	
	pins can also be used as ASCI cha				Low Power Mode	
	hannel 1 pins. If you want to use Po DMA ch 1 pins, please program DI				Refresh	
pins or	DIVIA CIT I PINS, Please program Di	JITA allei D	LIVA.		Clock Generator	
					ASE	
					Software	
					Others	
					Application Manual	
				_	Other Data	
				_		
				<u> </u>	Defense CO.	
				<u> </u>	Reference Q&A	
Comm	ent					

Type	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-	078	BA/E
Item	RAM Relocate Area				
Q		*			Classification
	ssible to locate the external memor	y to the RAM	A [MMU
relocate	e area?		ſ		DMAC
					ASCI
					CSI/O
					Timer
	· ·				Bus Interface
					Interrupt
					I/O Port
				1	Memory
					Wait
Α					Reset
	is possible to locate the external me				Low Power Mode
physica areas.	al address except for the internal RA	AM (or ROM	1)-		Refresh
aitas.					Clock Generator
					ASE
					Software
					Others
-					Application Manual
			L		
					Other Data
			ľ		Reference Q&A
Comm	ent				

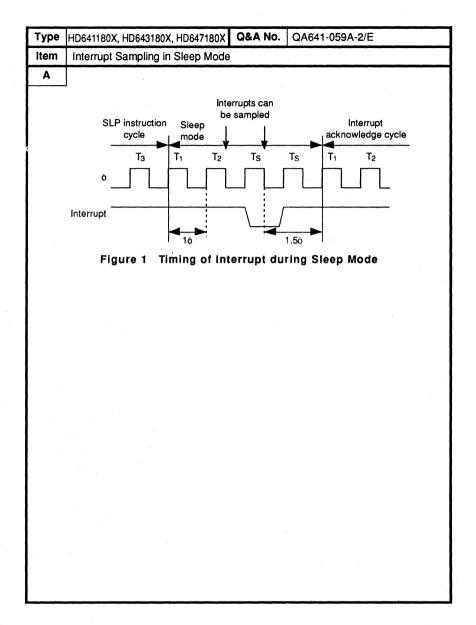

SECTION	

Туре	HD643180X, HD647180X	Q&A No.	QA641	QA641-121A/E			
Item	Inserting Wait State to Internal RO	OM .					
a					Classification		
	internal ROM is accesed, are wait s			MMU			
accord	ling to the programmed value in ope	erating mode	∋ 2?		DMAC		
					ASCI		
					CSI/O		
					Timer		
	·				Bus Interface		
			ļ		Interrupt		
					I/O Port		
			ļ	1	Memory		
					Wait		
Α					Reset		
Yes, w	ait states are inserted for internal R	₹OM.			Low Power Mode		
					Refresh		
	,				Clock Generator		
			1		ASE		
İ					Software		
					Others		
İ					Application Manual		
					Other Data		
					Reference Q&A		
Comm	nent			-			
1							

Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641	-023	BB/E
Item	WAIT Function at I/O Access				
Q					Classification
Is the \	NAIT state (T _W) always inserted du	ring I/O acc	ess?		мми
					DMAC
					ASCI
					CSI/O
					Timer
					Bus Interface
					Interrupt
					I/O Port
					Memory
				7	Wait
A					Reset
Yes, at	least one wait state is inserted duri	ng external	1/0		Low Power Mode
access	•				Refresh
	on-chip I/O access, zero to four wa				Clock Generator
	atically generated, depending on the -chip I/O (ASCI, CSI/O, PRT DATA				ASE
	ernal I/O access, the value of the Di				Software
registe	r is ignored.				Others
					Application Manual
					641180X, HD643180X, 647180X Hardware Manual
					Other Data
					Reference Q&A
Comm	ent				

Туре	HD641180X, HD643180X, HD647180X	&A No.	QA641	-122	AE
Item	Inserted Wait States				
Q	•				Classification
	any wait states are inserted after the re	eset start	in		MMU
the sin	gle-chip mode?				DMAC
			,		ASCI
					CSI/O
					Timer
					Bus Interface
i					Interrupt
					I/O Port
					Memory
				1	Wait
Α	*				Reset
	eset, three wait states are inserted, dep	ending o	n the		Low Power Mode
initial v	alue.				Refresh
					Clock Generator
					ASE
					Software
					Others
100					Application Manual
					Other Data
			.		
					Reference Q&A
Comm	ent		1		

Type	ype HD641180X, HD643180X, HD647180X Q&A No. QA641-058A/E				
Item	Control Signal Status after Res	et			
Q				Classification	
What is	s the status of the control signals	after each res	et?	MMU	
				DMAC	
				ASCI	
				CSI/O	
				Timer	
				Bus Interface	
				Interrupt	
				I/O Port	
				Memory	
				Wait	
Α			١,	Reset	
The RE	SET signal must be asserted fo	r at least 6 sta	tes.	Low Power Mode	
Table 1	shows the status of each contro	ol signal.		Refresh	
Table 1	Control Signal Status			Clock Generator	
Contr	ol Signal S	tatus		ASE	
		ligh impedance		Software	
Data I		ligh impedance		Others	
	ol signals (RD, WR, ME, IOE , H R, HALT, BUSACK, TEND,)	ligh (1)		Application Manual	
<u>Е</u>	L	ow (0) lock output		1D641180X, HD643180X, 1D647180X Hardware Manua	
			atataa	Other Data	
at pow	er, if RESET is not held low for a er-on reset, the state of these sig	gnals is undefir	ned.		
reset.	ernal reset, each signal remains	unchanged ur	ILII IT IS	Reference Q&A	
				QA641-024A	
Comm	ent				


Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641	-025	5A/E
Item	Bus Status during Sleep Mode				
Q					Classification
	s the bus status when the SLP inst	ruction is			MMU
execut	ed?				DMAC
					ASCI
					CSI/O
					Timer
					Bus Interface
		,			Interrupt
					I/O Port
					Memory
					Wait
Α					Reset
Table 1	shows the bus status.			1	Low Power Mode
Tahle	1 Bus Status				Refresh
					Clock Generator
Signa	Is Status Iss bus High (A ₀ -A ₁₉ = FFFFFH)				ASE
Data					Software
Contro	ol signals Inactive				Others
					Application Manual
					0641180X HD643180X, 0647180X Hardware Manual
					Other Data
					Reference Q&A
Comm	nent				

Type	HD641180X, HD643180X	K, HD647180X Q&A No. QA	641-02	6A/E
Item	Sleep Mode and Sys	tem Stop Mode		
Q				Classification
		en sleep mode and system		MMU
stop m	ode?			DMAC
•				ASCI
				CSI/O
				Timer
				Bus Interface
				Interrupt
				I/O Port
				Memory
,				Wait
Α				Reset
Table 1	shows the major diffe	rences.		Low Power Mode
Table 1	Sleep Mode and S	vstem Stop Mode		Refresh
				Clock Generator
Mode Sleep	Function CPU stop	Interrupt (internal/external)		ASE
Oleeb		Reset		Software
System		Interrupt (external)		Others
stop	I/O stop	• Reset		Application Manua
				0641180X, HD643180X 1647180X Hardware Manu
				Other Data
			-	Reference Q&A
			-	Helefelice WAA
Comm	nent			

Туре	HD641180X, HD643180X, HD647180X Q&A No. Q	A641-0	27B/E
Item	Recovery from System Stop		·
Q		T	Classification
What is	s the system status after recovery from system sto	op –	MMU
mode?			DMAC
			ASCI
			CSI/O
			Timer
			Bus Interface
			Interrupt
			I/O Port
			Memory
			Wait
Α			Reset
System	stop mode is a combination of sleep and I/O stop	p [Low Power Mode
modes			Refresh
	064180 exits system stop mode on detection of $\overline{ ext{NI}}$	MI	Clock Generator
or INT	external interrupts only, except for RESET.		ASE
	upts are globally disabled (IEF1 = 0), instruction		Software
executi instruct	on begins with the instruction following the SLP		Others
			Application Manual
	upts are globally enabled (IEF1 = 1), the appropria interrupt response sequence executes.		HD641180X, HD643180X, ID647180X Hardware Manual
Howev	er, I/O stop mode continues until the I/O stop bit is	s [Other Data
	after recovery from system stop mode.		
			Reference Q&A
Comm	ent		

Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-0	28B/E
Item	System Standby Function			
Q				Classification
	ne HD64180 have a system standb	y function (s	stop	мми
clock) t	o reduce power consumption?	•		DMAC
	•			ASCI
			CSI/O	
				Timer
	· C			Bus Interface
				Interrupt
				I/O Port
				Memory
				Wait
Α				Reset
No, clo	No, clock stop function is not provided. Minimize the clock		lock 1	Low Power Mode
	ncy to reduce power consumption. I			Refresh
-	e clock completely, MPU operation is are not guaranteed.	ano data in	the	Clock Generator
•				ASE
io mini	mize power consumption, we recor	nmena:	-	Software
1. Store	e all register information into battery	/ backed-up	RAM	Others
2. Stop	power supply to HD64180			Application Manua
				HD641180X, HD643180X HD647180X Hardware Manu
				Other Data
				3
				Reference Q&A
Comm	ent		L	

HITACHI

Type	HD641180X, HD643180X, HD647180X	Q&A No.	QA641	-029	PA/E
Item	Dynamic RAM Refresh during DM	IA			-
Q					Classification
Is DRA	Is DRAM refreshed during internal DMA operation?				MMU
					DMAC
					ASCI
					CSI/O
					Timer
					Bus Interface
					Interrupt
					I/O Port
					Memory
					Wait
Α					Reset
Yes, re	fresh cycles are inserted during inte	ernal DMA c	ycles.		Low Power Mode
The ref	resh controller does not distinguish	DMA cycle:	s from		Refresh
CPU c					Clock Generator
Dynam	ic RAM refresh is performed at the	end of the			ASE
machin	e cycle during both CPU and DMA	cycles. The			Software
interva	I and duration of the refresh cycle a	re programi	nable.		Others
					Application Manual
					641180X, HD643180X, 647180X Hardware Manual
					Other Data
	`				Reference Q&A
Comm	ent				

		Q&A No.	QA641-03	1-000b/E			
Item	Dynamic RAM Refresh						
Q			`	Classification			
	e HD647180X refresh controller diff	erent from t	he	MMU			
Z 80	refresh controller?			DMAC			
2. What is the function of the R counter?			ASCI				
				CSI/O			
				Timer			
				Bus Interface			
				Interrupt			
				I/O Port			
				Memory			
				Wait			
Α				Reset			
	the refresh controller is different fro			Low Power Mode			
	sh controller. Refresh cycles are insessed by software. Also, the interva		and $\sqrt{}$	Refresh			
-	th (2φ–3φ) of the refresh cycle are p			Clock Generator			
The	refresh address (8-bit address) is or			ASE			
(figu	re 1).			Software			
	MC Refresh cycle	MC+1		Others			
	•			Application Manua			
Addres		X		D641180X, HD643180X D647180X Hardware Manu			
				Other Data			
rigur	e 1 Refresh Example (refresh process)	ogrammed	103				
2. The	2. The R counter counts the number of CPU opcode			Reference Q&A			
fetch	nes. It has no relation to dynamic RA	M refresh.		QA641-022B			
Comm	ent						

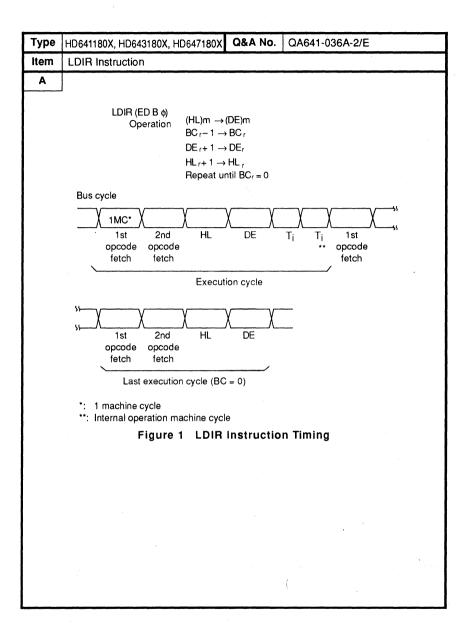
Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-0	60A/E
Item	Refresh Cycle Insertion			
Q				Classification
	Normally, a refresh cycle is inserted at the breakpoint of an			мми
instruc	tion cycle (machine cycle).			DMAC
	ssible to insert a refresh cycle betw	utive	ASCI	
interna	I machine cycles (T _i)?			CSI/O
				Timer
				Bus Interface
				Interrupt
				I/O Port
				Memory
				Wait
A				Reset
	refresh cycle can be inserted betwe		L	Low Power Mode
cycles,	and between internal and machine	cycles (figu	ire 1).	√ Refresh
	Internal Refresh Inter	da		Clock Generator
	MC* cycle cycle cycle	MC*		ASE
	T ₃ T _i T _{R1} T _{R2} T _i	T ₁		Software
a	EF		L	Others
	Internal Refresh			Application Manual
	MC* cycle cycle	MC*		HD641180X, HD643180X, HD647180X Hardware Manual
	T ₃ T _i T _i T _R T _R	T ₁		Other Data
p	EF]	
	MC*: Normal machine cycle (T ₁ , T ₂ , (T _W), and T ₃)			Reference Q&A
	Figure 1 Refresh Cycle Insert	ion Point	F	
Comm	nent			

Type	HD641180X, HD643180X, HD647180X	Q&A NO.	QA641-06	61A/E
Item	EXTAL and o			
Q				Classification
	s the relationship between EXTAL in			MMU
output	when an external clock is input thro	ugh EXTAL	?	DMAC
				ASCI
				CSI/O
				Timer
				Bus Interface
		•		Interrupt
				I/O Port
				Memory
			Ī	Wait
Α				Reset
φ clock	changes synchronously with the fa	lling edge o	f	Low Power Mode
EXTAL	(figure 1).			Refresh
				Clock Generator
E	(TAL	<u> </u>		ASE
	Delay -	■ Delay		Software
		a de la companya de l		Others
	Delay: 40 ns typ (reference on	y)		Application Manua
	Figure 1 External Cloc	k ···		D641180X, HD643180X D647180X Hardware Manua
	ersoner i grander i der er			Other Data
	And the same of th			Patarana Con
				Reference Q&A
Comm	ent			

Type	HD641180X, HD643180X, HD647180X	Q&A No.	QA641	A641-062A/E		
ltem	φ Clock Output Frequency Error					
Q					Classification	
Normally, φ clock output frequency is one half of the crystal oscillator frequency.				MMU		
				DMAC		
	Why does φ clock output frequency equal the crystal frequency in our system?				ASCI	
freque					CSI/O	
					Timer	
					Bus Interface	
		1			Interrupt	
					I/O Port	
					Memory	
		`			Wait	
A					Reset	
	ESET and Tout 1 terminals are han				Low Power Mode	
	utput frequency. Therefore, take the f measures:	e following t	wo		Refresh	
*				7	Clock Generator	
	ck that the reset circuit design asse al for at least six clock states.	rts the RES	ET		ASE	
					Software	
2. Do r	ot pull down Tout 1 (it is an output	signal).			Others	
					Application Manual	
					9641180X, HD643180X, 647180X Hardware Manual	
-					Other Data	
					Reference Q&A	
Comm	ent	:				
		1				

Type	HD641180X, HD643180X, HD647180X	Q&A No.	QA641-1	123A/E	
Item	φ Pin Handling				
Q			T	Classification	
lf φ pin	is not used, can it be connect capa	citively to G	ND	MMU	
(figure			·F	DMAC	
			- 1	ASCI	
	ø <u> </u>		Ī	CSI/O	
	<u> </u>			Timer	
	ارارہ Figure 1 Unused φ Pir	,		Bus Interface	
	i igule i Onuseu y Fil	•		Interrupt	
				I/O Port	
				Memory	
		<u>.</u>		Wait	
Α				Reset	
	ne φ pin can be connected to GND t	hrough a		Low Power Mode	,
maxim	um capacitance of 90 pF.		L	Refresh	
				√ Clock Generator	
-			L.	ASE	
			L	Software	
			· L	Others	
1 1 1 to			L	Application Man	
				HD641180X, HD64318 HD647180X Hardware Ma	
100				Other Data	
				Reference Q&	A
Comm	nent				
e company of the same					

Туре	HD641180X, HD643180X, HD647180X	Q&A No.	QA641	-03	1A/E	
Item	ASE Trace Function					
Q		· · · · · · · · · · · · · · · · · · ·			Classification	
How is	ASE trace information displayed or	the CRT?			мми	
					DMAC	
			3		ASCI	
					CSI/O	
					Timer	
					Bus Interface	
					Interrupt	
					I/O Port	
					Memory	
					Wait	
Α					Reset	
_	or step command execution, the to				Low Power Mode	
•	indicates the last trace data locations with negative values until the point.				Refresh	
	race pointer. After moving the trace				Clock Generator	
	trace pointer command, you can s	pecify the c	lisplay	1	ASE	
numbe	with a positive value (figure 1).				Software	
	Trace Trace				Others	
	buffer Trace buffer buffer	7 Å		Application Manua		
T	pointer	▼	·	H180AS01 User's Manual		
Trace buffer		Display nu can be sp			Other Data	
pointer	Increment by negative	by either p or nega				
	value	numb			Reference Q&A	
	Figure 1 Displaying Trace Info	rmation			Helefelice WXA	
Comm	ent					
						


Type	HD641180X, HD643180X, HD647180X Q&A No. QA	641-03	2A/E	
Item	Dynamic RAM Refresh of ASE			
Q			Classification	
Dynamic RAM refresh depends on the refresh control			MMU	
registe	r programming.		DMAC	
If the dynamic RAM refreshed during the wait state for			ASCI	
command input when using ASE?			CSI/O	
			Timer	
			Bus Interface	
			Interrupt	
			I/O Port	
			Memory	
			Wait	
Α			Reset	
When ASE is used, dynamic RAM refresh is executed as follows, depending on refresh control register programming:			Low Power Mode	
		g: [Refresh	
1. Refr	resh enable: REFE = 1		Clock Generator	
If RF	EFE bit is set to 1, dynamic RAM is refreshed while	\checkmark	ASE	
	is waiting for command input.		Software	
2 Refr	esh disable REFE = 0		Others	
			Application Manua	
while	If REFE bit is set to 0, dynamic RAM is not refreshed while ASE is waiting for command input. (But refresh		H180AS01 User's Manual	
СУСІ	es are inserted during trace.)		Other Data	
	rander og krigger i det en en en en en en en en en en en en en		Reference Q&A	
Comm	ent			

Туре	HD641180X, HD643180X, HD647180X Q&A No. QA641-033A/E					
Item	Item Difference between RET and RETI Instructions					
Q			Classification			
What is the difference between the RET and the RETI			мми			
instruc	instructions?		DMAC			
			ASCI			
			CSI/O			
,			Timer			
			Bus Interface			
			Interrupt			
			I/O Port			
			Memory			
			Wait			
A			Reset			
	ET and RETI instructions return from a subroutine to		Low Power Mode			
the ma	in program. Both instructions have identical		Refresh			
Turiction	15.		Clock Generator			
	er, RETI is normally used to return from an external of $(INT_0, INT_1, or INT_2)$ service routine.		ASE			
·		7	Software			
	RETI is a two-byte instruction, peripheral devices ne completion of the current interrupt service routine		Others			
	RETI execution, especially when using daisychain	Application Manu				
(Z80 p	(Z80 peripheral).		HD641180X, HD643180X, HD647180X Hardware Manual			
	er, for external interrupts, especially daisychained ots, the RET instruction is useful for identifying an		Other Data			
	interrupt service routine.					
			Reference Q&A			
Comm	ent					

Туре	HD641180X, HD643180X, HD647180X Q&A No. Q	A641-03	4A/F
Item	LD A, R and LD R, A Instructions		
Q			Classification
Can the	e refresh address be read by executing an LD A, I	R	MMU
or LD F	R, A instruction?		DMAC
			ASCI
			CSI/O
			Timer
			Bus Interface
			Interrupt
			I/O Port
		, [Memory
	t ser		Wait
Α			Reset
	refresh address cannot be read by executing the	LD	Low Power Mode
A, R or	LD R, A instruction.		Refresh
	064180 incorporates a dynamic RAM refresh		Clock Generator
	ler. But the R counter indicates the number of CPI e fetch cycles and has no relation to dynamic RAM	-	ASE
refresh		'	Software
			Others
			Application Manual
			D641180X, HD643180X, D647180X Hardware Manual
			Other Data
			Reference Q&A
Comm	ent		
			,

Type	HD641180X, HD643180X, HD647180X	Q&A No.	QA641	1-035A/E			
Item	Processing Speed of SD200 Cros	s Assemble	r				
Q					Classification		
	s the processing speed of the cross	assembler	for the		MMU		
SD200	?				DMAC		
					ASCI		
					CSI/O		
,					Timer		
					Bus Interface		
					Interrupt		
					I/O Port		
					Memory		
					Wait		
Α					Reset		
	out 2.5 minutes per 1,000 steps (2.5				Low Power Mode		
(floppy 1.0).	disk based) on the SD200 for S180	XAS6F (ve	rsion		Refresh		
1.0).					Clock Generator		
					ASE		
				1	Software		
					Others		
					Application Manual		
					641180X, HD643180X, 647180X Hardware Manual		
					Other Data		
					Reference Q&A		
Comm	ent						

Type	HD641180X, HD643180X, HD647180X Q&A No. QA641	-036	SA/E
Item	LDIR Instruction		
Q			Classification
What is	s the bus cycle status during LDIR instruction		мми
execut	ion?		DMAC
			ASCI
			CSI/O
			Timer
			Bus Interface
			Interrupt
			I/O Port
			Memory
			Wait
Α			Reset
	en instruction cycles are repeated. The last execution		Low Power Mode
cycle (I	BC = 0) is twelve cycles. That is:		Refresh
			Clock Generator
repe	ated		ASE
• BC	= 0: twelve instruction execution cycles are repeated	1	Software
See fig	ure 1.		Others
			Application Manual
			641180X, HD643180X, 647180X Hardware Manual
			Other Data
			Reference Q&A
Comm	nent		

Туре	HD641180X, HD643180X, HD647180X Q&A No. QA641	-063	BA/E
Item	Extension Instructions (IN0, OUT0)		
Q			Classification
	re any limitations when the IN0 or OUT0 instructions		MMU
access	external I/O?		DMAC
			ASCI
			CSI/O
			Timer
			Bus Interface
			Interrupt
			I/O Port
			Memory
			Wait
Α			Reset
	e IN0 and OUT0 instructions can only access the		Low Power Made
lower 2	56 bytes of I/O space.		Refresh
) and OUT (c), g instructions can access more than	<u> </u>	Clock Generator
256 by	es of I/O space (figure 1).		ASE
		\checkmark	Software
FFFF			Others
00FF	Accessed by IN g, (c) or		Application Manual
) Internal I/O by INO or OUT (c), g		
0000	I/O space		Other Data
	Figure 1 I/O Space Access		
			Reference Q&A
			·
00.00		<u> </u>	
Comm	ent		

Type	HD64118	0X, HD643180X,	HD647180X	Q&A	No.	QA641	-064	4A/E
Item	DEC (II	NC) and DAA	nstructions					
Q							Π	Classification
Norma	Normally, the DAA instruction is executed to obtain BCD				MMU			
data at	data after ADD or SUB instruction execution.						DMAC	
Does t	he DAA i	nstruction adju	st the resu	lt after D	EC ((INC)		ASCI
instruc	tions?							CSI/O
								Timer
								Bus Interface
								Interrupt
								I/O Port
								Memory
								Wait
Α								Reset
No, the	DAA ins	struction does	not support	BCD ad	justr	ment		Low Power Mode
after D	EC (INC)	instructions.						Refresh
DAA e	xecution	results depend	d on flag co	nditions.	See	table		Clock Generator
1 for a	n exampl	e.						ASE
Table '	1 DAA I	Example						Software
				F1				Others
Instru	ıction	Acc	N	Flag C	Н			Application Manual
	l value)	00	0	0	0		НΩ	064180 Data Sheet
DEC /	4	FF F9 (FF + FA)	<u> </u>	<u>0</u> 1	1		┝	Other Data
					<u> </u>		├	Other Data
Refer t	o the HD	64180 user's r	nanual for o	details.				
								Reference Q&A
								:
Comm	ent							
	·							

2

HD64180S NPU Network Processing Unit

Technical Q and A

Application Note

Preface

The HD64180S NPU (network processing unit) is a single-chip microcontroller that facilitates highspeed, low-cost processing of a variety of communication functions such as communication protocol and other user-specified functions.

The HD64180S mainly incorporates the following on a single chip:

- · 8-bit CPU
- · Multiprotocol serial communication interface (MSCI)
- Asynchronous serial communication interface/clock-synchronous serial I/O port (ASCI/CSIO)
- DMA controller

The HD64180S enables high-speed data transfer by taking over communication program processing from the host CPU.

This LSI, for example, can be used in an auxiliary communication system for computer-to-computer communication, or in the distributed control unit installed in an industrial robot.

In addition, the HD64180S can be easily applied to any type of existing communication system because it can interface with LSIs having conventional communication functions and can be controlled by conventional communication programs.

How to Use This Technical Q&A Manual

This technical manual contains answers to questions that many users have asked regarding Hitachi microcontrollers. It is intended to supplement the explanations in the current data books and user's manuals. Thus, please use this manual together with the data books and user's manuals.

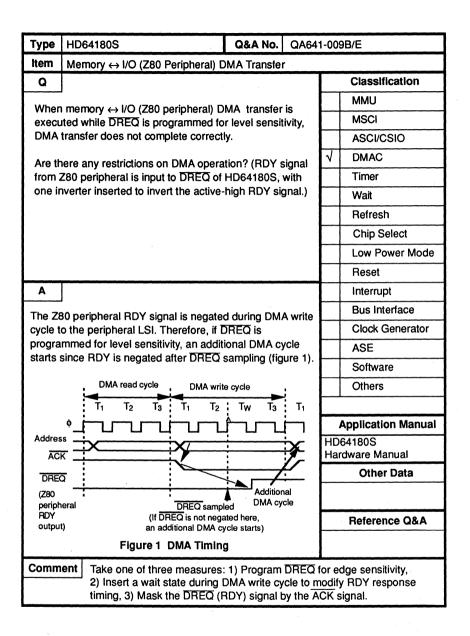
If any further questions arise as you use this manual and the products described, please do not hesitate to get in touch with your nearest Hitachi semiconductor sales office.

2

Contents

MMU		
	Logical to Physical Address Translation	QA641-002B/E 107
DMAC		
	DE (DMA Enable) Bit in DMA Status Register	QA641-004C/E 108
	DWE Bit in DMA Status Register	QA641-005A/E 109
	Memory (specified in application program)-to-I/O	
	DMA Transfer	QA641-008A/E 110
	Memory ↔ I/O (Z80 Peripheral) DMA Transfer	QA641-009B/E 111
	DACK Signal Generation	QA641-042B/E 112
	Ring Configuration during a Chained-Block Transfer	QA641-097A/E 114
	CRC Code Transmission during a Memory-to-MSCI	
	DMA Transfer	QA641-098A/E 115
	DMAC Error Handling	QA641-099A/E 116
MSCI.	ASCI/CSIO	
,	DCD Pin and CDCD Flag	OA641-044B/E 117
	Signal Direction of TXCM Pin (1)	
	Signal Direction of TXCM Pin (2)	
	AC Characteristics of Manchester Codes	
	AC Characteristics of Receive FM Data	QA641-103A/E 122
	RXRDY Flag	
	CRC Error Handling	
	Transmit Data Fixing	
	Mark Output Modulation	
	Idle Pattern Transmission	QA641-108A/E 127
	I/O Direction Setting of SYNC Line	QA641-109A/E 128
	Synchronization Using SYNC Line	
	Phase Relationship between SYNC Line and Data	QA641-111A/E 130
	SYNC Codes for Byte Synchronous Mode	-
	Data Insertion between Flags in Bit Synchronous Mode	
		QA641-113A/E 132
	Character Insertion in Bit Synchronous Loop Mode	
	Address Field Check Usage	•
	ADPLL Synchronization Pattern	QA641-116A/E 135
	Duty Cycle for ADPLL Operation	QA641-117A/E 136
	ADPLI Operation in Local Loop-Rack Mode	OA641-118A/F 137

Timer			
	Timer Counting Operation Using Input Clock	QA641-013C/E	138
	Compare-Match Flag	QA641-119A/E	139
Bus In	terface		
	Bus State during Internal I/O Access	QA641-014B/E	140
	Data Sampling Timing during Memory Read		
	Address Bus Status during INT ₀ Acknowledge Cycle		
		QA641-079A/E	142
	ST Output Timing in INT ₀ Mode 0	QA641-080A/E	143
Interru	npt .		
	Interrupt during MMU Operation	QA641-015B/E	144
	<u>INT</u> ₀ Mode 2	QA641-017A/E	145
	NMI during Interrupt Acknowledge Cycle	QA641-018A/E	146
	Interrupt after Reset		
	Interrupt during Refresh Cycle		
	NMI Acknowledge	QA641-021B/E	149
	Interrupt Acknowledge Timing after EI Instruction		
	Execution	QA641-047A/E	150
	Interrupt Sampling during Block Transfer Instruction		
	Execution	QA641-048A/E	151
	Interrupt during SLP Instruction Cycle	QA641-049B/E	152
	<u>INT</u> ₀ Mode 0		
	NMI Interrupt Sampling Timing	QA641-051A/E	154
	Status Bit during TRAP	QA641-052A/E	155
	PC Stacking during TRAP	QA641-053B/E	156
	NMI during DMA Transfer	QA641-054B/E	158
	DREQ _i and NMI	QA641-055A/E	161
	Internal Interrupt Sampling Timing	QA641-056B/E	163
	INTA Signal Generation	QA641-057B/E	164
	Interrupt Priority	QA641-081A/E	167
	Interrupt Request during HALT Opcode Fetch	QA641-082A/E	168
	ST Output Timing during Interrupt Acknowledge Cycle		
		QA641-083A/E	169
Wait			
	Wait Eunction at I/O Access	0.4641 023C/E	170

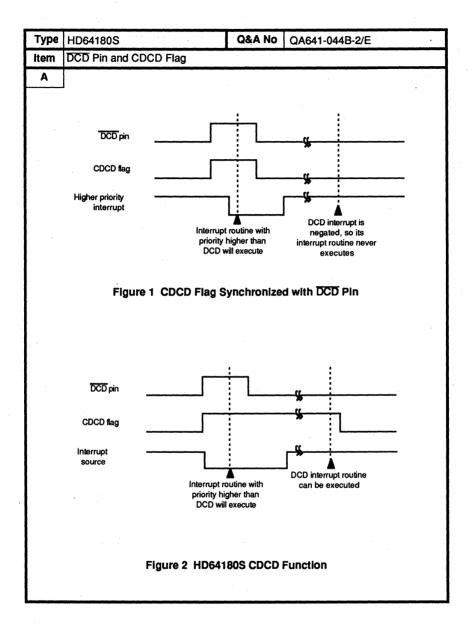

Reset		
	Power-On Reset Sequence	QA641-024B/E171
	Control Signal Status after Reset	QA641-058B/E172
Low F	Power Mode	
	Sleep Mode and System Stop Mode	QA641-026B/E173
	System Standby Function	QA641-028C/E174
	Interrupt Sampling in Sleep Mode	QA641-059B/E175
Refres	sh	
	Dynamic RAM Refresh during DMA	QA641-029A/E177
	Dynamic RAM Refresh (R Counter Function)	QA641-030B/E178
	Refresh Cycle Insertion	QA641-060A/E179
	Bus Release Mode and Refresh	QA641-095B/E 180
Clock	Generator	
	EXTAL Input and	OA641-061B/E 181
	φ Clock Output Frequency Error	•
	φ Pin Handling	•
ASE		
	ASE Trace Function	QA641-031A/E 184
	Dynamic RAM Refresh of ASE	QA641-032A/E 185
Softw	are	
	Difference between RET and RETI Instructions	QA641-033A/E 186
	LD A, R and LD R, A Instructions	QA641-034B/E 187
	Processing Speed of SD200 Cross Assembler	QA641-035A/E 188
	LDIR Instruction	QA641-036A/E 189
	Extension Instructions (IN0, OUT0)	
	DEC (INC) and DAA Instructions	QA641-064B/E 192

Type	HD64180S	Q&A No.	QA641	-002	B/E
Item	Logical to Physical Address Tran	slation			
Ø					Classification
Can ti	ne MMU base register (MMU comr	non base re	gister	1	MMU
	IMU bank base register) be progra		at		MSCI
comm	on area 1 overlaps with the bank a	area?			ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
Α					Interrupt
Yes, depending on the MMU base register programming.			nina		Bus Interface
-	on area 1 and the bank area may		٠. ا		Clock Generator
	Figure 1 Overlapping Comm	on Areas			ASE
		Physical			Software
		dress space			Others
FFFF			FFFH		
	area 1 Common base	Common area 1	rrrn	A	oplication Manua
	reg (0FH)	11111			064180S
C000H	Bank Pook hoos	Overlap 3	FFFH	На	rdware Manual
	area reg (11H)	У	000Н		Other Data
4000H	1 1 1/	Bank			
	Common area 0		000H		Reference Q&A
0000	1	area 0			
				L	
Comm	ent				

Туре	HD64180S	Q&A No.	QA641-0	04	C/E	
Item	DE (DMA Enable) Bit in DMA Star	tus Register				
Q					Classification	
When	NMI occurs, DE is reset to 0 and D	MA operatio	on is		MMU	
	disabled, passing control to the CPU.				MSCI	
1 How	v is DMA operation timing halted?		Ī		ASCI/CSIO	
1.1104	vis bivia operation tittiing haiteu:		Ţ-	V	DMAC	
2. Hov	v does DMA operation restart?				Timer	
		•			Wait	
					Refresh	
					Chip Select	
	9.00				Low Power Mode	
					Reset	
Α					Interrupt	
1. Whe	en NMI occurs, the CPU takes cont	rol after the			Bus Interface	
curi	rent DMA cycle is completed (figure	1).			Clock Generator	
	DE bit is reset to				ASE	
	DMA operation s	tops			Software	
	T ₁ T ₂ T ₃ T ₁ T ₂ 7	Га Т ₁			Others	
ф		י"ר די ר				
NMI			L		Application Manual	
MINI					64180S rdware Manual	
					Other Data	
	DMA read cycle DMA write cycle	; CPU cy	cle stops)			
	Figure 1 NMI Timing		_			
2. To restart DMA expension, set DE hit to 1					Reference Q&A	
2. To restart DMA operation, set DE bit to 1.						
Comm	ent					
		:				

Туре	HD64180S	Q&A No.	QA641-	005	A/E	
item	DWE Bit in DMA Status Register					
Q					Classification	
What	is the function of the DWE bit in the	DMA status	s		мми	
regist	er?				MSCI	
					ASCI/CSIO	
		√	DMAC			
					Timer	
					Wait	
					Refresh	
					Chip Select	
					Low Power Mode	
					Reset	
Α					Interrupt	
The D	WE bit, which enables write operat	ion to the DI	E bit. is		Bus Interface	
neces	sary to prevent the DE bit from bei	ng affected b	y the		Clock Generator	
	peration to the other bits of the DM llowing gives a more specific descr	•	jister.		ASE	
111610	nowing gives a more specific descri	ription.			Software	
	writing to the EOT, EOM, BOF, or				Others	
	ransfer, 1 must be written to the DI AA transfer ends immediately befor					
bit, DI	AA transfer will undesirably resume	when 1 is w	ritten/	Application Manual HD64180S Hardware Manual		
	DE bit. The DWE bit prevents this, essary write operation to the DE bi		ıy			
	•				Other Data	
					Reference Q&A	
Comm	ent					

Туре	HD64180S	Q&A No.	QA641-008A/E			
Item	Memory (specified in application p	rogram)-to-l/	O DMA	Trar	nsfer	
Q					Classification	
ls it p	ossible to execute memory (specifi		MMU			
progr	am)-to-I/O DMA transfer independe		MSCI			
base	register?				ASCI/CSIO	
				1	DMAC	
					Timer	
					Wait	
l.					Refresh	
					Chip Select	
					Low Power Mode	
					Reset	
Α					Interrupt	
No. to	execute memory (specified in app	lication prog	ram)-		Bus Interface	
to-I/O	DMA transfer correctly, one of the				Clock Generator	
condi	tions must be met:		-		ASE	
1. The	physical source address is define	d beforehan	d.		Software	
					Others	
	ommon area contains the value of t corresponds to the physical source		ister			
	is correspondente the physical source	,o		Application Manual		
	DMA transfer is executed using on ss, block transfer instructions can l				64180S dware Manual	
					Other Data	
					Reference Q&A	
	, , , , , , , , , , , , , , , , , , ,					
Comm	ent			-		


	HD64180S	Q&A No	QA	341-042	B/E
ltem	DACK Signal Generation				
Q					Classification
How o	an the DACK signal be generated	during cha	nnel 0		MMU
memo	ry ↔ external I/O DMA transfer?				MSCI
					ASCI/CSIO
				\checkmark	DMAC
					Timer
		*			Wait
					Refresh
					Chip Select
					Low Power Mod
					Reset
Α					Interrupt
When	external I/O is accessed during a	DMA cycle	, the		Bus Interface
exterr	nal I/O address is output through th	e address	bus. A		Clock Generator
	me, the TOE signal and address ou ate a DACK-1 signal (figure 1, ①).	tput are de	coded	to	ASE
gener	ate a bhort i signal (ligare 1, 6).				Software
	external I/O is accessed to initialize				Others
	J cycle, DACK-1 and ST signals ar ate DACK-2 to distinguish a DMA				
-	⊋ 1, ②).		,		pplication Manu
	es 1 and 2 (next page) show the D	ACK gener	ation		64180S dication Note
circuit	and signal timing, respectively.				Other Data
				-	D-1
					Reference Q&A
				-	
omm	ent				

Type	HD64180S	Q&A No	QA641-	097	A /E
Item	Ring Configuration during a Chain	ed-Block Tr	ansfer		
Q					Classification
ls it po	ossible to configure a ring, by using		MMU		
allows	a descriptor to specify n number of				MSCI
DMAC	chained-block transfer?				ASCI/CSIO
				1	DMAC
					Timer
					Wait
					Refresh
					Chip Select
l					Low Power Mode
					Reset
Α					Interrupt
Yes. L	oad the starting address of the des	criptor			Bus Interface
	ponding to the first buffer into the c	•			Clock Generator
	ponding to the n-th buffer. In this came as for the case without a ring.	ase, operati	ons are		ASE
					Software
					Others
1					·
			İ		pplication Manual
					64180S dware Manual
					Other Data
				一	Reference Q&A
Comm	ent			lane.	

Туре	HD64180S	Q&A No.	QA641-	-098	A/E
Item	CRC Code Transmission during a	Memory-to	-MSCI D	MA	Transfer
Q					Classification
Howi	How is the CRC code sent during a memory-to-MSCI DMA				MMU
8	transfer?			1	MSCI
					ASCI/CSIO
				1	DMAC
					Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
A					Interrupt
Durin	a chained-block transfer, the CRC) is automati	ically		Bus Interface
sent v	when status bit 7 of the descriptor c	orrespondin			Clock Generator
the bu	iffer containing the last data value i	s set to 1.			ASE
Durin	g a single-block transfer, set the CF	RCCC bit to1	, and		Software
	RC code will be automatically sent				Others
to 1.	s at DMA transfer completion, setti	ng the UDRI	N flag		
					Application Manual
					64180S dware Manual
				1 Idi	Other Data
				 	Other Data
					Reference Q&A
					Anna a garage
Comm	ent				

Туре	HD64180S	Q&A No.	QA641-	099	A/E
Item	DMAC Error Handling				
Q					Classification
What	will happen when an error occurs o	\ [MMU	
	transfer between memory and the MSCI?				MSCI
					ASCI/CSIO
				1	DMAC
					Timer
					Wait
			ſ		Refresh
	**************************************				Chip Select
					Low Power Mode
		-			Reset
A					Interrupt
When	an error such as counter overflow	occurs in the	, [Bus Interface
DMAC	C, the DMAC stops transfer.				Clock Generator
When	an error occurs in the MSCI, the D	MAC does n	ot stop		ASE
	ansfer, but indicates the error status				Software
					Others
			L		
					Application Manual
					64180S dware Manual
			ľ	Паі	Other Data
			ł		Other Data
			L		
			. [Reference Q&A
Comm	nent l				

Туре	HD64180S	Q&A No.	QA641-	-044	B/E
ltem	DCD Pin and CDCD Flag				
Q					Classification
Is the	Is the CDCD flag (MST1, ST1) reset when the DCD is				MMU
	ed low?			1	MSCI
				$\sqrt{}$	ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
A					Interrupt
No, th	e CDCD flag is not reset unless 1 is	s written to tl	ne bit		Bus Interface
positio	on. This allows the DCD interrupt to				Clock Generator
correc	itly.				ASE
	DCD pin and the CDCD flag were r				Software
	aneously, the DCD interrupt reques d and could not be serviced when a				Others
	ipt occurred simultaneously with the				
(figure	1). Figure 2 shows the actual fund				Application Manual
HD64	180S.				064180S Irdware Manual
					Other Data
					v
					Reference Q&A
Comm	ent				

Q&A No.

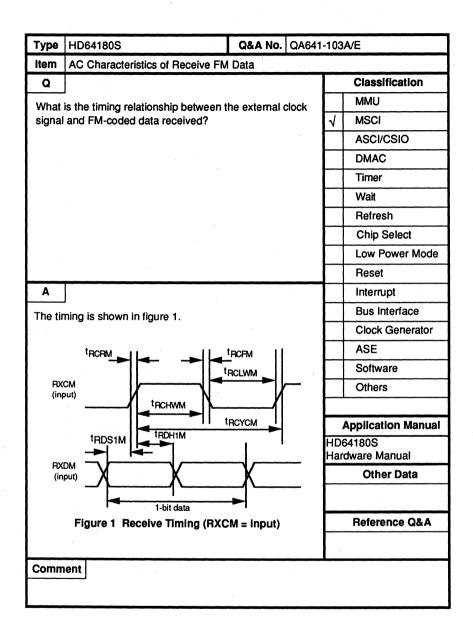
QA641-100A/E

Type

Item

Comment

MTXS register: MSCI TX clock source register


HD64180S

Signal Direction of TXCM Pin (1)

HITACHI

Type	HD64180S	Q&A	No.	QA641	-101	A/E
Item	Signal Direction of TXCM Pin (2)					
Q						Classification
	he TXCM pin function as an input o					MMU
	line input is specified as the transn MTXS register, and the auto-echo f					MSCI
	pin functions as an output) is selec				1	ASCI/CSIO
						DMAC
						Timer
						Wait
						Refresh
						Chip Select
						Low Power Mode
					,	Reset
Α						Interrupt
	The TXCM pin functions as an output, with the MMD2					Bus Interface
	r setting (auto-echo or local loop-b . Similarly, MMD2 and MD2 registe					Clock Generator
	nigher priority for pins TXCA and R		go ai		<u></u>	ASE
ASCI/	CSIO, and pin RXCM.				L	Software
						Others
						pplication Manual
					1	64180S rdware Manual
						Other Data
						Reference Q&A
Comm	ent 2: MSCI mode register 2					

Туре	HD64180S	Q&A No.	QA64	1-102	2A/E
Item	AC Characteristics of Manchester	Codes			
Q				1	Classification
How a	re the AC characteristics of the Ma	nchester co	des		MMU
define	d? The bit boundaries are unclear.			1	MSCI
-					ASCI/CSIO
					DMAC
	\				Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
Α					Interrupt
When	TXCM functions as an input pin, th	e time betw	een		Bus Interface
	ing edge of the TXCM input and th		te		Clock Generator
	ion point of the Manchester code is _M . The same time period is also de		DOM		ASE
	TXCM functions as an output.		DZIVI		Software
					Others
				<u> </u>	Application Manual
,				HD	64180S dware Manual
					Other Data
					Reference Q&A
-					
Comm	ent				
	-				

Туре	HD64180S	Q&A No.	QA641-104A/E			
Item	n RXRDY Flag					
ø					Classification	
Is it po	essible to clear the RXRDY flag (M	ST0) by any			MMU	
	d other than the three given in the			√	MSCI	
reset,	channel reset command, and syste	em stop mod	le?		ASCI/CSIO	
					DMAC	
					Timer	
					Wait	
					Refresh	
					Chip Select	
					Low Power Mode	
					Reset	
Α					Interrupt	
The R	XRDY flag is automatically cleared	when the re	eceive		Bus Interface	
	is empty.				Clock Generator	
,					ASE	
-					Software	
					Others	
	•					
					Application Manual	
	•				64180S dware Manual	
				nai	Other Data	
				┢	Other Data	
					Reference Q&A	
Comm	ent			L		
	<u></u> J					

Type	HD64180S	Q&A No. QA	641-10	5A/E
Item	CRC Error Handling			
Q				Classification
What	must be done to prevent a	n interrupt if the CRC erro	r 🗀	MMU
	pt bit is enabled, when the			MSCI
	er 2 (MST2) is set to 0 or 1 status FIFO during data re		ASCI/CSIO	
00	oldido i ii o doinig dala id	ooption.		DMAC
				Timer
				Wait
				Refresh
				Chip Select
	•			Low Power Mode
				Reset
Α				Interrupt
The C	CRC interrupt (bit) usually n	nust be masked. To		Bus Interface
	nine when a CRC error has			Clock Generator
	upt at the end of the receive EF flag) of the MFST (MSC			ASE
	the corresponding interrup			Software
				Others
			-	Application Manual
			HC	064180S Irdware Manual
				Other Data
			-	Reference Q&A
Comm	nent			

Туре	HD64180S	Q&A No.	QA641	-106	SA/E
item	Transmit Data Fixing				
Q					Classification
Is it po	ossible to hold MSCI transmit data t	to either 0 or	1 for		MMU
	cutive cycles, by software?			1	MSCI
					ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
			!		Chip Select
			1		Low Power Mode
					Reset
A					Interrupt
	ssible in the idle state, where 8-bit				Bus Interface
	n register (MIDL) are sent. The MID 00H or FFH.	L value sho	uld be		Clock Generator
261 10	oun of FFn.				ASE
					Software
					Others
		•			Application Manual
	×				64180S rdware Manual
					Other Data
					Reference Q&A
	•	,			
Comm	ent				

Туре	HD64180S	Q&A No.	QA641	-107	7A/E
Item	Mark Output Modulation				
Q					Classification
Is ma	k output subject to modulation whe	n FM codes	are		MMU
select				\checkmark	MSCI
					ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
Α					Interrupt
Yes. T	he 1 level is modulated for the corr	esponding o	ode		Bus Interface
type b	efore being output.				Clock Generator
					ASE
					Software
					Others
				-	Application Manual
					64180S dware Manual
100 a 100 a					Other Data
1.00					
				-	Reference Q&A
Comm	ent				

Туре	HD64180S	Q&A No.	QA641	-108	BA/E
Item	Idle Pattern Transmission				
a					Classification
In HD	LC mode, does the idle pattern tra	nsmission st	ate		мми
	the flag transmission state after all	eight bits of	the	1	MSCI
idle p	attern have been transmitted?				ASCI/CSIO
					DMAC
			•		Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
Α					Interrupt
Yes.					Bus Interface
					Clock Generator
					ASE
					Software
			·		Others
					Application Manual
					64180S rdware Manual
					Other Data
					Reference Q&A
	×.				
Comm	ent				

Туре	HD	64180S	Q&A No	QA641	1-109A/E				
Item	1/0	I/O Direction Setting of SYNC Line							
Q						Classification			
How is the I/O direction of the SYNC line specified?						MMU			
						MSCI			
						ASCI/CSIO			
						DMAC			
						Timer			
						Wait			
						Refresh			
						Chip Select			
						Low Power Mode			
						Reset			
- A						Interrupt			
It is sp	ı ecifie	ed by the MMD0 register (002B	H) as show	n in		Bus Interface			
It is specified by the MMD0 register (002BH) as shown in table 1. Table 1 SYNC Line Direction						Clock Generator			
						ASE			
Table 1 STNO Line Direction						Software			
	MMD0 Bits SYNC				Others				
7 6	5	Protocol Mode		ction					
$\frac{0}{0}$	1	Asynchronous Byte synchronous mono-sync	Inpu Out		Application Manual				
$\frac{0}{0}$ 1	0	Byte synchronous bi-sync	Out		HD64180S				
0 1	1	Byte synchronous external	Inpi		Hardware Manual				
1 0	0	Bit synchronous HDLC	Out			Other Data			
1 0	1	Bit synchronous loop	Out	put					
1 1	0	Reserved	Out	put		Reference Q&A			
1 1	1	Reserved	Out	put					
Comment									
MMD0: MSCI mode register 0									

Туре	HD64180S	Q&A No.	QA641-110A/E					
Item	Synchronization Using SYNC Line							
Q			Classification					
Is it po	ossible to establish synchronization	of data		MMU				
	to that at the beginning of data, by	7	MSCI					
line in modes	MSCI byte synchronous and exter		ASCI/CSIO					
	•		DMAC					
				Timer				
					Wait			
				Refresh				
				Chip Select				
		ļ		Low Power Mode				
					Reset			
Α					Interrupt			
	he HD64180S can establish synch:	ronization or	ıly at		Bus Interface			
the beginning of data.					Clock Generator			
					ASE			
			·		Software			
					Others			
				Application Manual				
					HD64180S Hardware Manual			
				Other Data				
		Reference Q&A						
Comm	ent							

Туре	HD64180S	Q&A No.	QA641	-111	A/E
Item	Phase Relationship between SYN	C Line and [Data		
Q					Classification
What	is the phase relationship between t	he SVNC lin	e and		MMU
data?	io trio priado rotationomp dottivo in t		o u	1	MSCI
					ASCI/CSIO
					DMAC
					Timer
					Wait
	•				Refresh
					Chip Select
					Low Power Mode
					Reset
Α					Interrupt
	elationship is shown in figure 1. Not				Bus Interface
	time and hold time are necessary f tion to the rising edge of the input of		d data		Clock Generator
IIIIGIA	tion to the hairig eage of the input t	lock puise.			ASE
B)	ксм				Software
	nput) tsysu		1		Others
-	- > + -				
	YNC TSYHD				Application Manual
	t _{RDS1M} t _{RDH11}		·		64180S rdware Manual
	XDM nput)	V			Other Data
,	, — / — — — — — — — — — — — — — — — — —				
				-	Reference Q&A
Fig	ure 1 Phase Relationship betwe Data	en SYNC Li	ne and		
Comm	nent	, in the second			

Туре	HD64180S	Q&A No.	QA641-112A/E				
Item	SYNC Codes for Byte Synchronous Mode						
Q				Classification			
Must	SYNC codes match during reception	yte		MMU			
	ronous and external synchronous	$\sqrt{}$	MSCI				
			ASCI/CSIO				
			DMAC				
					Timer		
					Wait		
					Refresh		
					Chip Select		
					Low Power Mode		
					Reset		
Α					Interrupt		
	is not necessary, because synchro				Bus Interface		
	ished using the SYNC line in byte sall synchronous modes. Any SYNC				Clock Generator		
transn		code can b	3		ASE		
i i					Software		
					Others		
					Application Manual		
					64180S dware Manual		
l					Other Data		
					Reference Q&A		
Comm	ent						

Туре	HD64180S	Q&A No.	QA641	QA641-113A/E			
Item	Item Data Insertion between Flags in Bit Synchronous Mode						
Q					Classification		
ls it p	ossible to insert data between a clo	sing flag an	d an		мми		
	ng flag, in bit synchronous mode?	1	MSCI				
					ASCI/CSIO		
					DMAC		
					Timer		
					Wait		
					Refresh		
					Chip Select		
					Low Power Mode		
					Reset		
Α					Interrupt		
Yes. I	Delaying the data write operation to	the transmi	buffer		Bus Interface		
allow	the idle pattern register value to b				Clock Generator		
a clos	ing flag and an opening flag.				ASE		
					Software		
1					Others		
					Application Manual		
					64180S rdware Manual		
					Other Data		
·							
				\vdash	Reference Q&A		
•				\vdash			
Comm	ent			-			

Type	HD64180S	Q&A No.	QA641	-114	A/E
item	Character Insertion in Bit Synchro	nous Loop N	/lode		
Q					Classification
ls it po	ossible to insert a desired characte		MMU		
	n Bit Synchronous loop mode?			1	MSCI
			ASCI/CSIO		
					DMAC
					Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
A					Interrupt
Yes.	The primary station transmits a cha	racter writte	n to		Bus Interface
the id	lle pattern register. The secondary	station trans	mits a		Clock Generator
	icter written to the idle pattern regis set to 1. When the GOP bit is clear		GOP		ASE
	ndary station enters the retransmiss		e and		Software
	nsmits the data, which was transmit	tted from the	•		Others
prima	ary station, after a 1-bit delay time.				
					Application Manual
					64180S rdware Manual
					Other Data
					Reference Q&A
		~			
Comm	ent				
L					

Туре	HD64180S	Q&A No.	QA641	-115	A/E
Item	Address Field Check Usage		8.3		
Q					Classification
In wha	at kind of applications is single addr	ess 2 mode			MMU
useful	?			1	MSCI
					ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
Α					Interrupt
Singl	e address 2 mode is very useful in	the applicati	on		Bus Interface
	n in figure 1, where data is transmi o of stations. This is achieved by sp				Clock Generator
	ess as the high-order address, and				ASE
addre	ess as the low-order address.				Software
	Receiv	-			Others
(Transmit station	5			
'	station (S	\geq) Group	Α .		Application Manual
		\ll			64180S rdware Manual
		≤) Group	В		Other Data
		≥/	İ		
		С	_		
	Group C Terminal				Reference Q&A
F	igure 1 Data Transmission to Sp	ecific Static	ons		
Comm	ent			L	

Type	HD64180S	Q&A No.	QA641	-116	6A/E	
Item	ADPLL Synchronization Pattern					
Q					Classification	
ls it po	ossible to establish synchronization		MMU			
Manc	nester-coded ADPLL synchronizati	V	MSCI			
0s an	d 1s are reversed?		ASCI/CSIO			
			DMAC			
					Timer	
					Wait	
					Refresh	
					Chip Select	
					Low Power Mode	
					Reset	
Α					Interrupt	
Yes. S	Synchronization patterns AAH and	55H can botl	n be		Bus Interface	
used.					Clock Generator	
					ASE	
					Software	
-					Others	
					Application Manual	
					64180S rdware Manual	
					Other Data	
					Reference Q&A	
		-				
Comm	ent					

Туре	HD64180S	Q&A No.	QA641-117A/E			
Item	Duty Cycle for ADPLL Operation					
Q		•			Classification	
Does	the ADPLL operate correctly using		MMU			
	duty cycle is smaller than 50%?	1	MSCI			
					ASCI/CSIO	
			•		DMAC	
					Timer	
					Wait	
					Refresh	
					Chip Select	
					Low Power Mode	
					Reset	
Α					Interrupt	
Yes. I	- t operates correctly as long as t _{PLF}	IWM and tel	I WM		Bus Interface	
chara	cteristics are satisfied, where tpLH	$_{ m MM}$ is the hig	jh-level		Clock Generator	
	width of the ADPLL operating clock w-level pulse width.	k, and t _{PLLV}	VM is		ASE	
111010	ii iovoi paiso wiatii.				Software	
					Others	
					Application Manual	
					64180S rdware Manual	
					Other Data	
					Reference Q&A	
Comm	ent	-				

Type	HD64180S	Q&A No.	QA641	-118A/E	
Item	ADPLL Operation in Local Loop-B	ack Mode			
Q				Classif	ication
Is it po	ossible to extract the clock element	from the dat	a in	MMU	
the re	ceive shift register, in MSCI local lo	op-back mo	de?	√ MSCI	
				ASCI/C	SIO
				DMAC	
				Timer	
				Wait	
				Refres	h
				Chip S	elect
				Low Po	ower Mode
				Reset	
A				Interru	ot
No. R	efer to figure 4-2, Block Diagram of	the MSCI		Bus Int	erface
	ver, on page 111 in the hardware m			Clock (Generator
				ASE	
				Softwa	re
				Others	
					on Manual
				HD64180S Hardware Ma	anual
					r Data
				Refere	nce Q&A
Comm	ent				

Type	HD64180S	Q&A No.	QA641	QA641-013C/E			
Item	Timer Counting Operation Using I	nput Clock					
Q					Classification		
Cant	he timer count events by using the	external clo	k?		MMU		
	, , , ,				MSCI		
1.0					ASCI/CSIO		
	**************************************				DMAC		
				1	Timer		
					Wait		
	•				Refresh		
					Chip Select		
	• •				Low Power Mode		
					Reset		
Α			٨		Interrupt		
Yes.	The internal timer can count the inp	uts on the T	INo and		Bus Interface		
TIN1	pins by using the event-counting fu	nction with t			Clock Generator		
exter	nal clock set to a frequency of \$\phi/4 o	r smaller.			ASE		
1 1 1 1 1 1 1					Software		
			•		Others		
					Application Manual		
					64180S rdware Manual		
				Г	Other Data		
					Reference Q&A		
Comm	ent						

Туре	HD64180S	Q&A No.	QA641-	119	A/E
item	Compare-Match Flag				
Q		-			Classification
What h	appens if the CMF flag is not clear			MMU	
	ot is issued (if enabled) when the c			MSCI	
	nter (TCNT) and timer constant req setting the CMF flag?	gister (TCON	IH)		ASCI/CSIO
				DMAC	
				7	Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
Α					Interrupt
	MF flag is not cleared, the operation				Bus Interface
	ot routine immediately after the pre				Clock Generator
	 Consequently, the CMF flag must st) interrupt routine. 	be cleared	within		ASE
` '					Software
					Others
					Application Manual
					64180S rdware Manual
					Other Data
	,				
					Reference Q&A
Comm	ent				

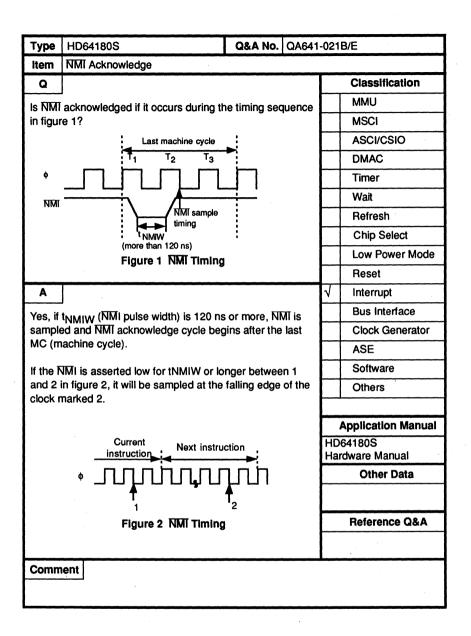
Туре	HD64180S	Q&A No. QA641-014B/E			
Item	Bus State during Internal I/O Acce	ess			
Q		-			Classification
1. Wha	at is the bus status during internal I	/O access?			MMU
					MSCI
	at happens when external I/O is as ress as internal I/O?	signed to the	same		ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
Α					Interrupt
1. Bus	status during internal I/O access is	as follows:		V	Bus Interface
	oata bus				Clock Generator
	- Read: High impedance sta	ate			ASE
	- Write: Outputs data				Software
	ddress bus - Read/write: Outputs address				Others
	Todar Willo. Odipalo dodrooo				
	en an internal I/O address and an e ress overlap, bus status is as follow				Application Manual
auu	ress overlap, bus status is as tollor	V5.			64180S rdware Manual
	Data bus			Tia	Other Data
-	 Read: Reads internal I/O; external I/O 	does not rea	ıd	_	Other Bata
_	- Write: Outputs data to bot	h internal an	d		
	external I/O				Reference Q&A
	- Read/write: Outputs address				
Comm	ent				

Type	HD64180S		Q&A No.	QA641	-046	A/E		
Item	Data Sampling Timing during Memory Read							
Q						Classification		
Does t	Does the CPU sample data at the rising edge of T ₃ during opcode fetch cycles and at the falling edge of T ₃ during operand and data read cycles?					MMU		
opcode						MSCI		
operar						ASCI/CSIO		
			DMAC					
						Timer		
						Wait		
						Refresh		
						Chip Select		
						Low Power Mode		
						Reset		
Α						Interrupt		
Yes, the	e CPU samples the opera	ation code	on the data	bus at	4	Bus Interface		
the risir	ng edge of T3 while it san					Clock Generator		
the falli	ng edge of T ₃ (table 1).					ASE		
Table 1	Sampling Timing					Software		
00110	. ·	C!	There has an			Others		
CPU Cy	on code fetch cycle	Sampling T ₃ rising e						
	d operand fetch cycle	T ₃ falling e				Application Manual		
		3			HD64180S Hardware Manual			
						Other Data		
· ,								
						Reference Q&A		
Comm	ent							

Туре	HD64180S	Q&A No.	QA641-079A/E					
ltem	m Address Bus Status during INT ₀ Acknowledge Cycle							
Q			Classification					
What	is on the address bus generated by	the CPU du	ırina		MMU			
	T ₀ acknowledge cycle when IOE is			MSCI				
					ASCI/CSIO			
			ı		DMAC			
					Timer			
					Wait			
					Refresh			
					Chip Select			
					Low Power Mode			
					Reset			
A					Interrupt			
The C	PU puts the PC value following the	the last	1	Bus Interface				
machi	ne cycle on the address bus during	the INTo			Clock Generator			
	wledge cycle. Although IOE is ass it has no affect since RD/WR is ne		this		ASE			
ouse,		gaica.			Software			
			•		Others			
					Application Manual			
				1	64180S rdware Manual			
					Other Data			
					Reference Q&A			
Comm	ent							

Type	HD64180S	Q&A No.	QA641-	015	B/E
Item	Interrupt during MMU Operation				
O					Classification
How w	rill the MMU be affected if an intern	uring		MMU	
its ope	ration?				MSCI
	•				ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
Α				1	Interrupt
If an interrupt occurs during MMU operation, the interrupt					Bus Interface
	vector is relocated according to the MMU base register programming. Therefore, the interrupt vector should be				Clock Generator
	with reference to the MMU base re				ASE
progran	nming (figure 1).				Software
Howeve	er, the interrupt vector can be locate	ed in commo	on		Others
	or in an area where banks are not s				
areas a	re always located in the same logic	cal address :	space.		Application Manual
	Interrupt vector 2 Interrupt		×		64180S rdware Manual
	vector 1	X Base			Other Data
Interru vector		Base regis register (1)	ter (2)		
-	al address space Physical addre	•			Reference Q&A
Fig	ure 1 Interrupt Vector Generatio Operation	n during Mi	MU		
Comm	ent				· · · · · · · · · · · · · · · · · · ·

Type	HD64180S	Q&A	No.	Q	A641	-017	A/E
Item	INT ₀ Mode 2						
Q							Classification
In 700	INT made 0, the LCD of the laws		. : All	. .			MMU
	$0 \overline{\text{INT}_0}$ mode 2, the LSB of the lower ctor address (A ₀) is always 0.	r vecto	iri u	ie	10-		MSCI
	. •		(D.)				ASCI/CSIO
	HD64180S, is the LSB of the lowe natically set to 0 in INT ₀ mode 2?	rvector	(D0)	,			DMAC
	•						Timer
							Wait
							Refresh
							Chip Select
							Low Power Mode
							Reset
Α						1	Interrupt
	·						Bus Interface
	Z80 INT ₀ mode 2, the LSB of the atically set to 0. The Z80 data bool						Clock Generator
	A_0) must be set to 0.	CAPIGI	113 (11	iai i			ASE
In HD	64180S INT ₀ mode 2, the LSB of the	ne lowe	r vec	tor			Software
	nust be set to 0 since INT ₀ mode 2						Others
vector							
Howe	ver, even if the LSB of the lower ve	ctor (D ₀) is s	set	to		pplication Manual
1, the	interrupt sequence is executed cor	rectly.					64180S rdware Manual
							Other Data
		•					Other Data
							Reference Q&A
Comm	ent						


Technical Questions & Answers

Туре	HD64180S	Q&A No.	QA641	-018	A/E
Item	NMI during Interrupt Acknowledge	Cycle			
Q					Classification
Is NM	acknowledged during the interrup	acknowledg	je		MMU
	such as for INT?	_			MSCI
					ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
	•				Chip Select
					Low Power Mode
					Reset
Α				1	Interrupt
	ne instruction (excluding El and DI				Bus Interface
	ted after the INT acknowledge cycl	e, then the Γ	IMI		Clock Generator
ackno	wledge cycle.				ASE
	MI response sequence during the I	√Mi acknowl	edge		Software
cycle i	s the same.				Others
			•		
				L	Application Manual
					64180S dware Manual
				Hai	Other Data
				 	Other Data
			•		Reference Q&A
Comm	ent				
	and the second s				

Technical Questions & Answers

Туре	HD64180S	Q&A No.	QA641	-019	A/E
Item	Interrupt after Reset				
Q					Classification
Is NMI	or INT acknowledged immediately	after reset?			MMU
					MSCI
					ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
Α				1	Interrupt
	No, for three cycles immediately after reset (power-on reset				Bus Interface
cycle)	NMI and INT are disabled.				Clock Generator
	hese three cycles, the first instructi		ed and		ASE
interru	pts are enabled. Figure 1 shows th	e timing.			Software
					Others
		$\Box\Box$	П		
RESE	-	! 			Application Manual
	Power-on reset	Opcode fetc			64180S rdware Manual
		0000H), inte enabled	rrupts		Other Data
	Figure 1 Power-On Reset	Timing	·		
Note:	Note: NMI is latched immediately after the power-on reset				Reference Q&A
cycle.	The second initionality diter the	o ponto on i	0001		
Comm	ent				

Туре	HD64180S	Q&A No.	QA641-	020	B/E
Item	Interrupt during Refresh Cycle				
Q		,			Classification
Is an i	nterrupt (NMI or INT) acknowledge	d during refr	esh		MMU
cycles	?	_			MSCI
					ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
Α		.,		1	Interrupt
No, in	terrupts are ignored during refresh	cycles. How	ever,		Bus Interface
	acknowledged immideately after r				Clock Generator
	instruction execution because NM 1 shows NMI acknowledge timing				ASE
	a control of the cont		. 0, 0.0.		Software
ф					Others
· · · · · · · · · · · · · · · · · · ·					
	Machine Refresh Last	X	<u>.</u>		Application Manual
,	cycle cycle machine	e ac	know-		64180S rdware Manual
NMI	Сусто		cle	1 la	Other Data
	Figure 1 Refresh Timi	na			Other Buta
	Figure i nemesii iiiiii	ציי			
	$\overline{NT_0}$, $\overline{INT_1}$, and $\overline{INT_2}$) is ignored dur		ycles.		Reference Q&A
	remains active after the refresh cyc wledged during the instruction just				
Comm			•		
-					
		·····			

Туре	HD64180S	Q&A No.	QA641-0)47	A/E	
Item	Interrupt Acknowledge Timing after El Instruction Execution					
Q					Classification	
When	is an interrpt acknowledged after a	an El instruct	ion?	T	MMU	
					MSCI	
	· ·		Γ	1	ASCI/CSIO	
					DMAC	
			Γ	T	Timer	
			Γ	T	Wait	
			Γ	T	Refresh	
				1	Chip Select	
					Low Power Mode	
				T	Reset	
Α				V	Interrupt	
Maska	ble interrupts (INTO, etc.) are ackn	owledged in	the	T	Bus Interface	
last ma	achine cycle of any instruction cycle	e other than	EI.	T	Clock Generator	
Note ti	nat no interrupts can be acknowled	aed durina F	. [ASE	
	tion execution. Therefore, if an inte				Software	
	liately before or during an El instru			T	Others	
	wledged after the end of the RETI in ng the El instruction.	ristruction cy	cie			
				-	Application Manual	
For ex	ample:		1 '		64180S dware Manual	
			- F	iar		
	in the second se		F		Other Data	
EI	← Interrupt request					
RE	ETI ← Interrupt request acknowle	edged during	this		Reference Q&A	
/in	instruction terrupt acknowledge cycle)		Γ			
		·				
Comm	ent					

Interrupt Sampling during Block Transfer Instruction Execution

Q&A No. QA641-048A/E

HD64180S

Type Item

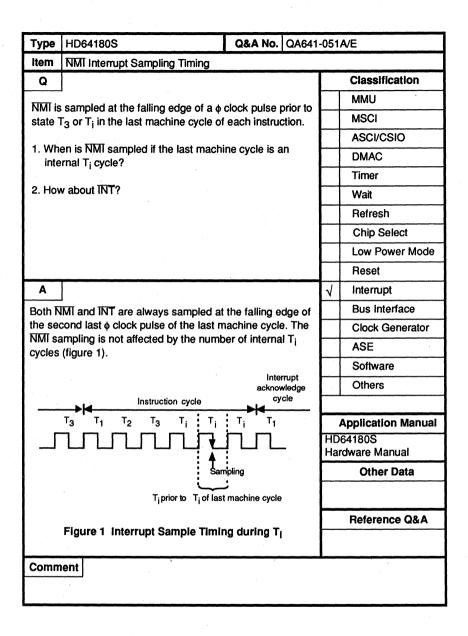

Comment

Figure 1 Interrupt during Block Transfer

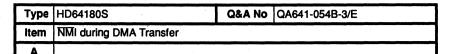
Reference Q&A

Туре	HD64180S	Q&A No.	QA641-	049	B/E
Item	Interrupt during SLP Instruction C	ycle			
Q				.,	Classification
What	is the CPU status when an interrup	t occurs duri	ing		MMU
SLP i	nstruction execution?				MSCI
·					ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
Α				1	Interrupt
The CI	PU operates as shown in figure 1.				Bus Interface
		Interrupt			Clock Generator
	SLP fetch cycle Sleep mode	acknowledg cycle	е		ASE
	T. T. T. T. T	т т.			Software
	T ₁ T ₂ T ₃ T _{S1} T _{S2}		Л		Others
Interru	pt ALT			HD	Application Manual
"	ALI L	/ :		Hai	dware Manual
Addre		Next addres	ss		Other Data
	FFFFFH Figure 1 CPU Timing		* -		
	an interrupt is sampled during an S	LP instruction	n		Reference Q&A
	HALT is asserted low for 1 clock starting is asserted low for 1 clock starting is asserted.	ate, and the			
Comm	ent				

Туре	HD64180S	Q&A No.	QA641-	-050	A/E
item	INT ₀ Mode 0	,			
Q			-		Classification
If the (CALL instruction (three-byte instruc		MMU		
during	INTo mode 0 acknowledge cycle,		MSCI		
return	from the interrupt service correctly	. Why is this	?		ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
Α			,	$\sqrt{}$	Interrupt
ĪNT ₀ n	node 0 operates as follows:				Bus Interface
1 Sta	cks PC contents by an instruction,	uchally (one-	hyto)		Clock Generator
RS	r, fetched during INT ₀ mode 0 ackr	nowledge cyc	ile		ASE
	os incrementing the PC during INT	mode 0			Software
-	nowledge cycle cutes instruction fetched from data	bus durina			Others
	rrupt acknowledge cycle.	. 200 00g			
Howey	ver, if the (three-byte) CALL instruc	tion which			Application Manual
	es three machine cycles to fetch inc				64180S rdware Manual
	nd, is executed during INT ₀ mode (_	je	Па	Other Data
	PC increment stops only during int wledge cycle (one machine cycle) a		nented		Other Data
by 2 d	uring the rest of the CALL instruction				
As a result, PC + 2 is stacked as the return address. Therefore, decrement the stacked PC value by 2 in					Reference Q&A
	re to return from the interrupt corre				
Comm	ent				
		,			

Type	HD64180S	Q&A	No.	QA6	41-052	2A/E	
Item	Status Bit during TRAP						
Q	Q Classification						
1. Wh	What happens if an aditional TRAP occurs before the					MMU	
	INT/TRAP control register TRAP bit is cleared?					MSCI	
2 Wh	at is the status of the TRAP and UI	=∩ bita ir	, thi	_		ASCI/CSIO	
cas		O DIES II	1 (11)	•		DMAC	
						Timer	
						Wait	
						Refresh	
						Chip Select	
						Low Power Mode	
						Reset	
Α					1	Interrupt	
1. An a	additional TRAP interrupt occurs.					Bus Interface	
	•					Clock Generator	
	TRAP bit remains 1 since it can be ware.	e clearec	on	y by		ASE	
30.1	waro.					Software	
	UFO bit remains unchanged since dified while the TRAP bit = 1.	it canno	ot be)		Others	
mod	Jilled Willie the TRAP Dit = 1.						
					L	pplication Manua	
						64180S rdware Manual	
						Other Data	
						Reference Q&A	
Comm	UFO bit: Indicates if TRAP occurred in 2nd or 3rd opcode fetch cycle: UFO bit = 0: TRAP occurred in 2nd opcode fetch cycle UFO bit = 1: TRAP occurred in 3rd opcode fetch cycle						

Туре	HD64180S		Q&A No.	QA641	053	B/E
Item	PC Stacking during	g TRAP				
Q				,		Classification
Why is the stacked PC value different for TRAP						MMU
occi	urrence during sec			third		MSCI
opc	ode fetch?					ASCI/CSIO
2. How	can the first opcod	de address be ca	lculated?			DMAC
						Timer
						Wait
						Refresh
						Chip Select
						Low Power Mode
						Reset
Α					1	Interrupt
1. Table 1 summarizes CPU operations when TRAP occurs						Bus Interface
durir	ng the second and	third opcode fetc	hes.			Clock Generator
Table 1	1 CPU Operation	s during TRAP				ASE
	. O. O Operation	o daming i i i i i				Software
	P during 2nd	TRAP during	•			Others
Bus Cy	ode Fetch	Opcode Fete Bus Cycle	PC	-		
1st opco		1st opcode fetch	PC-3 ←]		Application Manual
2nd opc	code PC	2nd opcode fetch	PC - 2			64180S rdware Manual
Stack	PC	Operand	PC - 1	-		Other Data
		read				
		3rd opcode fetch	PC			Deference Of A
		Memory read	PC		<u> </u>	Reference Q&A
		Stack	PC-1 -			
Comm	ent					·


Туре	HD64180S	Q&A No	QA641-053B-2/E
Item	PC Stacking during TRAP		
Α			

Therefore, the first opcode address can be calculated from one of the following equations to execute the instruction disturbed by TRAP occurrence.

- TRAP during 2nd opcode fetch 1st opcode address = stacked PC value - 1
- TRAP during 3rd opcode fetch 1st opcode address = stacked PC value - 2

Type	HD64180S	Q&A No. QA64	1-054	B/E	
Item	NMTduring DMA Transfer				
Q			Classification		
What happens to DMAC after NMI assertion?			MMU		
				MSCI	
				ASCI/CSIO	
				DMAC	
				Timer	
				Wait	
				Refresh	
				Chip Select	
				Low Power Mode	
				Reset	
Α			1	Interrupt	
When	 NMI is asserted low during DMA	A transfer the DMA		Bus Interface	
transfer ends at the end of the current DMA cycle.			Clock Generator		
Howey	ver note that the NMI acknowled	tae avale begins at		ASE	
However, note that the NMI acknowledge cycle begins at different times, depending on the CPU status before DMA				Software	
transfer (figures 1, 2, and 3).			Others		
	operations can be restarted by	writing 1 to the	_		
corresponding channel's DE bit.			Application Manu		
NMI ad	cknowledge cycle timings are sh	nown in the following	Hardware Manual		
pages.				Other Data	
				Reference Q&A	
Comm	ent				

 When DMA transfer starts at the end of the instruction execution cycle, NMI is sampled at the next falling edge of T₂ or T_i of the last machine cycle of the next instruction, B (figure 3).

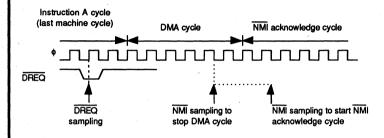
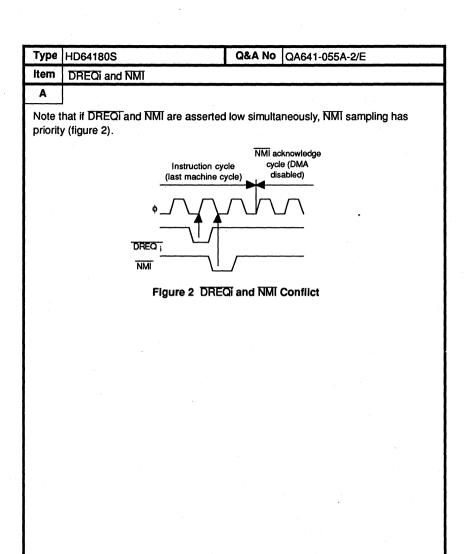
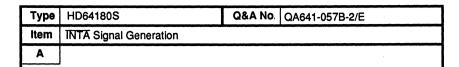



Figure 3 DMA Cycle Starting at the End of Instruction Cycle

As shown in figure 1 to figure 3, $\overline{\text{NMI}}$ has the following two functions:


- 1. To stop the DMA.
- 2. To execute the NMI routine.

Type	HD64180S	Q&A No.	QA641	-055A/E		
Item	DREQi and NMI					
Q		•			Classification	
	What happens to DMAC operation if NMI asserted low while				мми	
the Di	the DMAC operates under the control of the DREQI pin?				MSCI	
					ASCI/CSIO	
					DMAC	
					Timer	
					Wait	
					Refresh	
					Chip Select	
					Low Power Mode	
					Reset	
Α				1	Interrupt	
DMAC	operation is suspended and NMI	is sampled v	vith the		Bus Interface	
timing	timing shown in figure 1.				Clock Generator	
					ASE	
					Software	
	NMI acknowledge				Others	
-	CPU cycle DMA cycle CPU cycle Sampling	+◄-	A	pplication Manual		
NMI	DREQ			HD64180S Hardware Manual		
MAN					Other Data	
Figure 1 DMA Cycle Stopped by NMI			Reference Q&A			
Comm	ent					

Type	HD64180S	Q&A No.	QA641	-056B/E		
Item	Internal Interrupt Sampling Timing)				
Q					Classification	
Exterr	External interrupts are sampled at the falling edge of state			мми		
T ₂ or	T ₂ or T _i in the last machine cycle.			MSCI		
When	When are internal interrupts sampled?				ASCI/CSIO	
					DMAC	
					Timer	
					Wait	
					Refresh	
					Chip Select	
					Low Power Mode	
					Reset	
Α				1	Interrupt	
They	are sampled at the falling edge of s	state T ₂ or T	in the		Bus Interface	
	last machine cycle of the instruction cycle.			Clock Generator		
					ASE	
					Software	
					Others	
		-				
				Application Manual		
				HD64180S Hardware Manual		
				116	Other Data	
					Reference Q&A	
		Y				
Comm	ent			L		

Туре	HD64180S	Q&A No.	QA641	1-057B/E		
item	INTA Signal Generation					
Q					Classification	
The H	The HD64180S can be interfaced to the 8259 to control I/O				MMU	
interrupts.				MSCI		
1 40	1. How can we generate an INTA signal to be input to the				ASCI/CSIO	
1. How can we generate an INTA signal to be input to the 8259 from the HD64180S?				DMAC		
					Timer	
2. Are	2. Are there any precautions?				Wait	
					Refresh	
					Chip Select	
					Low Power Mode	
					Reset	
Α				1	Interrupt	
1. Thr	ee INTA signal pulses must be inpu	ut from the			Bus Interface	
HD	HD64180S to the 8259 to control interrupts:				Clock Generator	
a. C	One INTA pulse for opcode fetch				ASE	
					Software	
D. I	b. Two INTA pulses for operand read		*-		Others	
	The INTA pulse for opcode fetch can be produced by LIR					
	and IOE. The INTA pulse for operand read can be produced by RD. This interface is the same as for Z80 and 8259.			Application Manua HD64180S Hardware Manual		
This						
Fig: circ	ure 1 shows an example of an INT/ uit.	Signal gene	eration		Other Data	
				Reference Q&A		
		*				
Comment						
This circuit is for reference only. Check logic and timing carefully for your application.						

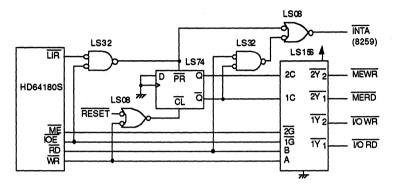
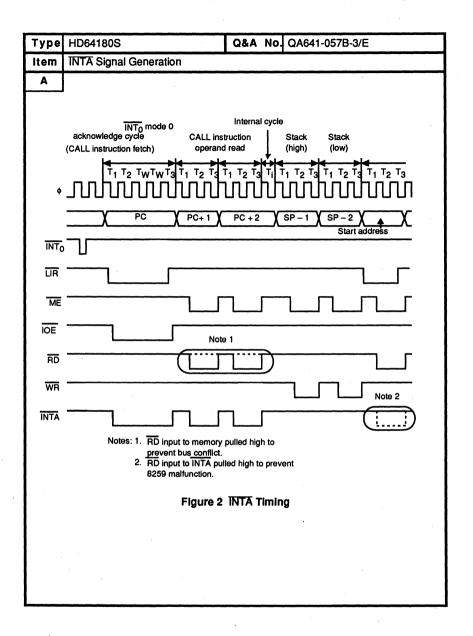
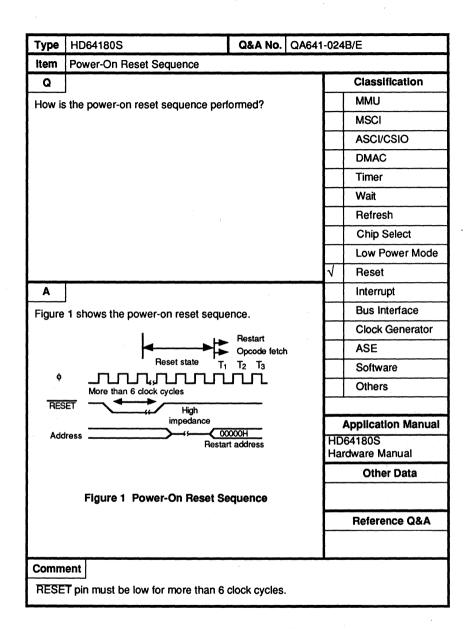



Figure 1 INTA Signal Generation Circuit Example

2. Precautions

- · This circuit cannot be used when the internal or external DMAC is used in the system.
- When RD signal is used to generate the INTA signal for operand read (1b above) TOE must be used to avoid dataconflict between I/O and memory (note 1 in figure 2).
- In INTO mode 0, if the RST instruction (3-byte) is executed during its acknowledge cycle, the PC is put on the stack. If a CALL instruction is executed, PC + 2 is put on the stack.

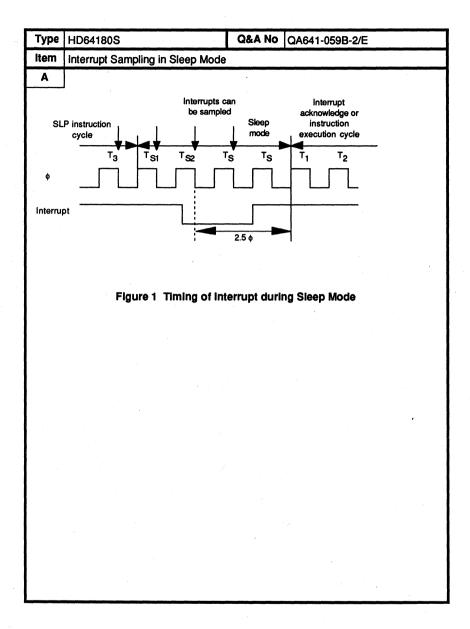


∵ype	HD64180S	Q&A	No.	QA64	1-08	1A/E
Item	Interrupt Priority					
Q						Classification
	How does the MPU accept interrupts that occurred					MMU
sim	simultaneously from many internal I/O operations?					MSCI
2. Wh	at about internal interrupts that occ	urred				ASCI/CSIO
sim	nultaneously with NMI or INT?					DMAC
						Timer
						Wait
						Refresh
						Chip Select
						Low Power Mode
						Reset
Α					1	Interrupt
Intern	al interrupts are maintained, and in	nterrupts	are			Bus Interface
accep	ted in order of highest priority.	-				Clock Generator
						ASE
						Software
						Others
	•				L	pplication Manual
						064180S Irdware Manual
						Other Data
					 	Deference Of a
					<u> </u>	Reference Q&A
Comm	ent					
	•					
					_	· · · · · · · · · · · · · · · · · · ·

Туре	HD64180S	Q&A No.	QA641-	-082	A/E
ltem	Interrupt Request during HALT Op	code Fetch			
Q					Classification
Can th	Can the CPU acknowledge an interrupt request during				MMU
HALT	opcode fetch?				MSCI
,					ASCI/CSIO
					DMAC
					Timer
	•				Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
Α				1	Interrupt
Yes. V	When interrupt enable flag 1 (IEF1)	is set to 1, ti	he		Bus Interface
CPU	will acknowledge the interrupt requ	est.	Ī		Clock Generator
					ASE
					Software
					Others
			. [4	Application Manual
					64180S
			}	Har	dware Manual Other Data
					Other Data
			. [Reference Q&A
			I		
Comm	ant		l		
Commi	ient				

Туре	HD64180S	Q&A No.	QA641	-083	A/E
Item	ST Output Timing during Interrupt	Acknowledg	e Cycle		
Q					Classification
					MMU
in mod	is the ST status during the $\overline{INT_0}$ acide 0?		MSCI		
					ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
					Chip Select
				,	Low Power Mode
					Reset
Α	Λ			$\sqrt{}$	Interrupt
ST sta	tus is the same as in modes 1 and	2.			Bus Interface
-					Clock Generator
					ASE
					Software
					Others
					Application Manual
					64180S rdware Manual
				па	Other Data
					Other Data
					Reference Q&A
Comm	ant			<u> </u>	
Comm	ent				

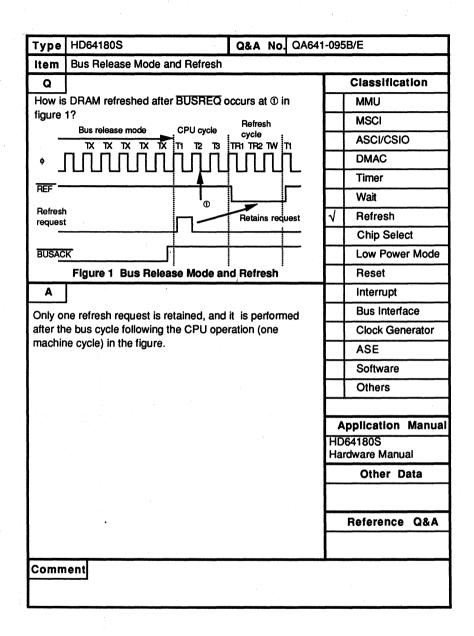
Туре	HD64180S	Q&A No.	QA641	-023	C/E
Item	Wait Function at I/O Access	9			
Q					Classification
Is a w	ait state (T _W) always inserted durin	g I/O access	?		MMU
					MSCI
					ASCI/CSIO
l					DMAC
					Timer
i				1	Wait
					Refresh
}					Chip Select
l					Low Power Mode
					Reset
Α			-		Interrupt
Yes, th	ne number of wait states specified I	by the softwa	are		Bus Interface
are ins	serted during external I/O access.				Clock Generator
During	on-chip I/O access, no wait state	is inserted.			ASE
	,				Software
					Others
					Application Manual
					64180S rdware Manual
					Other Data
					Reference Q&A
Comm	ent		-		



Type	HD64180S	Q&A	No.	Q	A641	-058	B/E
ltem/	Control Signal Status after Rese	t					
Q							Classification
What i	, s the status of the control signals	after ea	ch res	set?	,		MMU
							MSCI
							ASCI/CSIO
							DMAC
							Timer
					l		Wait
							Refresh
							Chip Select
							Low Power Mode
	· ·					$\sqrt{}$	Reset
Α							Interrupt
The R	SET signal must be asserted for	at least	6 stat	tes.			Bus Interface
Table 1	shows the status of each contro	l signal.					Clock Generator
Table ⁻	Control Signal Status						ASE
							Software
	Signal State						Others
Address		impedan					
Data bu		impedan	се			Α	pplication Manual
	signals (RD, WR, ME, IOE, High , HALT, BUSACK, TEND)	(1)					064180S Irdware Manual
φ	Cloc	output					Other Data
at pow	However, if RESET is not held low for at least 6 clock states at power-on reset, the state of these signals is undefined. For external reset, each signal remains unchanged until it is reset.						Reference Q&A
Comm	Comment						

Туре	HD64180S	Q&A No.	QA641	-026	B/E
Item	Sleep Mode and System Stop Mo	de			
Q					Classification
What i	s the difference between sleep mo	em		MMU	
stop m	stop mode?				MSCI
					ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
					Chip Select
				7	Low Power Mode
					Reset
Α					Interrupt
	n stop mode is entered when the IC		et to 1		Bus Interface
	e sleep instruction is executed. Oth	er major			Clock Generator
amerei	nces are as follows:				ASE
	mode				Software
CPL	J stopped; I/O not stopped				Others
	em stop mode J and I/O stopped; clock generator	and oscillate	nr.		Application Manual
	stopped	and Oscillate	וכ		64180S rdware Manual
					Other Data
					Reference Q&A
Comm	ent				
	<u> </u>				

Туре	HD64180S	Q&A No.	QA641-	028	C/E
Item	System Standby Function				
Q					Classification
Does	- the HD64180S have a system stan	dby function	(stop		MMU
clock)	to reduce power consumption?		[MSCI
					ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
					Chip Select
			Ī	1	Low Power Mode
					Reset
Α					Interrupt
Yes. H	- lowever, if the clock is completely s	topped, MPl] , ر		Bus Interface
	tion and data retention in the registon nteed.	ers are not			Clock Generator
guara	meea.				ASE
	oid these problems, we recommend				Software
	nation be stored in a battery-powere supply to HD64180S be stopped.	d RAM and t	then		Others
Politic	capply to 115041000 be stopped.				
1					Application Manual
					64180S rdware Manual
			ŀ		Other Data
			f		
			L		
			1		Reference Q&A
Comn	nent				


Туре	HD64180S	Q&A No.	QA641-	-059	B/E
Item	Interrupt Sampling in Sleep Mode				
Q					Classification
1. Can	an interrupt be accepted in sleep r	node?			мми
0 11					MSCI
2. IT SO	, when is sleep mode canceled?				ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
					Chip Select
				1	Low Power Mode
					Reset
Α				1	Interrupt
1. The	CPU accepts interrupts at the falling	na edae of th	ne o		Bus Interface
cloc	k pulse one pulse after it enters sle				Clock Generator
1).					ASE
2. Slee	ep mode is cancelled two and a hal	f φ clock pul	ses		Software
	r an interrupt is accepted. The CPL				Others
reco	overed according to the IEF1 flag st	tatus:			
• 11	EF flag = 1: CPU begins an interru	pt acknowle	dge		Application Manual
	cycle				64180S rdware Manual
• 11	EF flag = 0: CPU begins an NMI a	cknowledge	cycle	114	Other Data
	or executes the instruc		-	<u> </u>	
	SLP instruction for ma	iskable interi	upts		
	In this case, input the external interrupt signal so that a				Reference Q&A
low	level is sampled two or more conse	ecutive time:	S.		
Comm	ent	·			
		*			

Type	HD64180S	Q&A	No.	QA64	1-029	A/E	
Item	Dynamic RAM Refresh during DN	1A					
Q				,		Classifica	ition
Is DR	AM refreshed during internal DMA	operatio	n?			MMU	
						MSCI	
						ASCI/CSI	0
	•					DMAC	
						Timer	
						Wait	
					$\sqrt{}$	Refresh	
						Chip Sele	ct
						Low Powe	er Mode
						Reset	
Α						Interrupt	
Yes, re	fresh cycles are inserted during in	ternal Di	MA c	cycles.		Bus Interface Clock Generator	
The re	fresh controller does not distinguis	h DMA d	cycle	s from		ASE	
0.00	yoloo.					Software	
	nic RAM refresh is performed at the					Others	
	ne cycle during both CPU and DMA I and duration of the refresh cycles		. Ine	•		•	
	mmable.					pplication	Manual
						64180S rdware Manu	ıal
					110	Other D	
					┢─		
					L	Reference	Q&A
Comm	ent				-		

Туре	HD64180S	Q&A No.	QA641-	-030	B/E
Item	Dynamic RAM Refresh (R Counte	r Function)			
Q					Classification
1. Is the HD64180S refresh controller different from the Z80					MMU
refre	esh controller?				MSCI
2. Wha	t is the function of the R counter?				ASCI/CSIO
					DMAC
					Timer
					Wait .
			Ī	1	Refresh
					Chip Select
					Low Power Mode
					Reset
Α		•			Interrupt
1. Yes	the refresh controller is different fr	om the Z80			Bus Interface
	esh controller. Refresh cycles are in		L /01		Clock Generator
	ressed by software. Also, the interv of the refresh cycle are programma				ASE
	ress (12-bit address) is output at A				Software
					Others
	MC Refresh cycle	MC+1	[•
	•		J [-	Application Manual
Addres	s				64180S rdware Manual
REF				1 Iai	Other Data
Figu	re 1 Refresh Example (refresh p cycles)	rogrammed	to 3		- CHI PAGE
O The	Description accompletely at the manufacture of O	Dilamanda			Reference Q&A
	R counter counts the number of C hes. It has no relation to dynamic F				
Comm	ent				

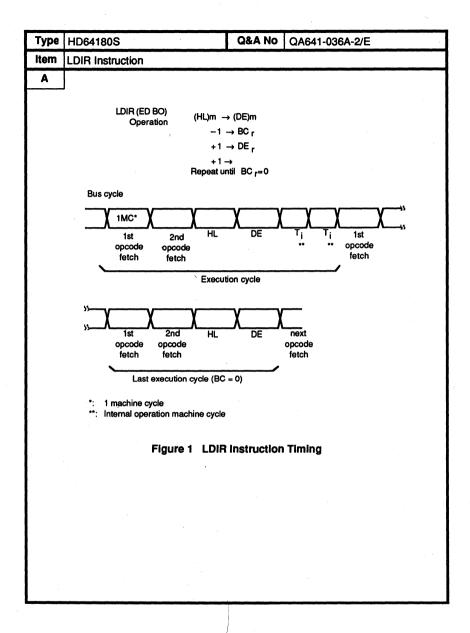
Туре	HD64180S	Q&A No.	QA641	-060)A/E
Item	Refresh Cycle Insertion				
Q					Classification
Norma	ally, a refresh cycle is inserted at the		MMU		
instruc	ction cycle (machine cycle).			MSCI	
ls it no	essible to insert a refresh cycle betw	veen consec	rutive		ASCI/CSIO
	al machine cycles (T _i)?				DMAC
					Timer
					Wait
	1			7	Refresh
					Chip Select
					Low Power Mode
					Reset
Α					Interrupt
Yes, a	refresh cycle can be inserted betwe	en internal	cycles,		Bus Interface
	tween internal and machine cycles				Clock Generator
cycle is	s also considered as a machine cyc				ASE
	MC cycle cycle cyc				Software
		≻ ←	. !		Others
	ئىرىنى ئىرىپ				
RE					Application Manual
-	Internal Refresh cycle cycle				64180S rdware Manual
		► MC*			Other Data
	•	²			
RE	F				D. (
	MC*: Normal machine cycle (T ₁ , T ₂	, (T _W), and T	3)	_	Reference Q&A
-	Figure 1 Refresh Cycle Insert	ion Point			L. C. L. K. A.
Comm	ent				
	Account of the Control of the Contro				

Туре	HD64180S	Q&A No.	QA641-0	061	B/E
Item	EXTAL Input and ϕ Clock Output				
Q					Classification
What i	s the phase relationship between E	and o		MMU	
clock o	clock output when an external clock is input through				MSCI
EXTAL	.?		. [ASCI/CSIO
			-		DMAC
					Timer
					Wait
			Γ		Refresh
			Į.		Chip Select
				•	Low Power Mode
		1			Reset
A					Interrupt
φ clock	changes synchronously with the fa	illing edge o	, [Bus Interface
	. (figure 1).	g oago o		/]	Clock Generator
					ASE
ı	EXTAL				Software
	Delay	Delay			Others
	• Delay	Delay			
		L	Ĺ		Application Manual
	Delay: 15 ns typ (reference only) .			64180S dware Manual
	Figure 1 External Cloc	\	F		Other Data
	i iguie i External Olot	~	F		
			L		
			L		Reference Q&A
Comm	ent				

Туре	HD64180S	Q&A No.	QA641-	062	A/E
Item	φ Clock Output Frequency Error				
Q					Classification
Norma	' Ily, φ clock output frequency is one	half of the c	vetal		MMU
	or frequency.	11411 01 1110 01	, stai		MSCI
\A/by d		the entered			ASCI/CSIO
	oes φ clock output frequency equal ncy in our system?	the crystal			DMAC
					Timer
	•				Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
A					Interrupt
How R	ESET and ST pins are handled ma	v effect o clo	ck		Bus Interface
output	frequency. Therefore, take the follo			1	Clock Generator
measu	res:		1		ASE
1. Che	ck that the reset circuit design asse	rts the RES	ET		Software
sign	al for at least six clock states.				Others
2. Do r	not pull down ST (it is an output sign	nal).			
					Application Manual
					64180S rdware Manual
					Other Data
					Reference Q&A
		,			
Comm	ent				i i

Туре	HD64180S Q&A No. QA641-096A/E				SA/E
Item	φ Pin Handling			,	
Q			÷		Classification
1. lf ø i	oin is not used, can it be connected	l capacitively	/ to		мми
	O (figure 1)?	. ,			MSCI
2 How	can radiated noise be prevented?				ASCI/CSIO
2.110	odii radiated noise be prevented:				DMAC
	HD64180S				Timer
	• =				Wait
		C < 90pF			Refresh
	777	-			Chip Select
	Figure 1 Unused φ Pi	n			Low Power Mode
					Reset
A					Interrupt
1 Voc	The φ pin can be connected to GN	ID through a			Bus Interface
	timum capacitance of 90pF.	ib thiough a		√	Clock Generator
					ASE
2. Had	iated noise can be reduced by shie	elaing LSI.			Software
	nat the ϕ pin should be opened nor	mally so that	it is		Others
an out	out signal.				
					Application Manual
			·	HD64180S Hardware Manual	
					Other Data
					Reference Q&A
Comm	ent				
	•				

Q	SE Trace Function SE trace information displayed o	n the CRT?		Classification MMU MSCI ASCI/CSIO DMAC Timer Wait Refresh Chip Select Low Power Mode
	SE trace information displayed o	n the CRT?		MMU MSCI ASCI/CSIO DMAC Timer Wait Refresh Chip Select
How is A	SE trace information displayed o	n the CRT?		MSCI ASCI/CSIO DMAC Timer Wait Refresh Chip Select
				ASCI/CSIO DMAC Timer Wait Refresh Chip Select
				DMAC Timer Wait Refresh Chip Select
				Timer Wait Refresh Chip Select
				Wait Refresh Chip Select
				Refresh Chip Select
				Chip Select
				Low Power Mode
				Reset
Α				Interrupt
After GO or STEP command execution, the trace buffer				Bus Interface
	ndicates the last trace data location			Clock Generator
	are indicated with negative values moved with the LINE command		1	ASE
display n	number can be specified either wi			Software
negative	value (figure 1).			Others
	Trace Trace buffer Trace	er 🔺		Application Manual
Trace	buffer pointer	Negative Positive	HD Hai	64180S rdware Manual
buffer ,	Increment	Display numbe can be specifie	d	Other Data
pointer	by negative value	by either positive or negative	/e	
	TRACE – n (CR) n: Displayed number	number		Reference Q&A
	Figure 1 Displaying Trace Int			
Commen				
				


Type	HD64180S	Q&A No.	Q&A No. QA641-032A/E		
Item	Dynamic RAM Refresh of ASE				
Q					Classification
Dynan	nic RAM refresh depends on the re	fresh control			MMU
registe	er programming.				MSCI
Is the	dynamic RAM refreshed during the	wait state fo	\r		ASCI/CSIO
	and input when using ASE?	Wan oldio i	"		DMAC
					Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
Α					Interrupt
When /	, ASE is used, dynamic RAM refresh	is executed	as		Bus Interface
	, depending on refresh control regis				Clock Generator
				1	ASE
1. Refr	esh enable: REFE = 1				Software
If RE	EFE bit is set to 1, dynamic RAM is	refreshed a	nd		Others
dyna	amic RAM contents remain intact, v				
waiti	ing for command input.			Application Manual	
2. Refr	esh enable: REFE = 0				64180S rdware Manual
H DE	EEE hit is eat to 0, dynamic DAM is	not refreche			Other Data
	EFE bit is set to 0, dynamic RAM is e ASE is waiting for command inpu		eu		
-					Reference Q&A
Comm	ent				

Туре	HD64180S	Q&A No.	QA641	-033	SA/E	
Item	Difference between RET and RET	I Instruction	s			
Q					Classification	
What i	s the difference between the RET	and RETI			MMU	
instruc	etions?				MSCI	
					ASCI/CSIO	
					DMAC	
					Timer	
					Wait	
					Refresh	
					Chip Select	
·					Low Power Mode	
					Reset	
Α					Interrupt	
Both F	Both RET and RETI instructions return from a subroutine to			Bus Interface		
the ma	ain program. Both instructions have	identical fu	nctions.		Clock Generator	
Howey	ver, RETI is normally used to return	from an ext	ernal		ASE	
	pt (INT ₀ , INT ₁ , or INT ₂) service rou			1	Software	
DETI.	potifica maximbayal davisas of the as	mmilation of	Maria		Others	
	notifies peripheral devices of the co t interrupt service routine.	impletion of	li ie			
					Application Manual	
interru	fore, for internal interrupts, especia pts, the RET instruction is useful for			HD64180S Hardware Manual		
interna	al interrupt service routine.				Other Data	
					Potoronoo OS A	
				-	Reference Q&A	
Comm	ent			<u> </u>		

Туре	HD64180S	Q&A No.	QA641	-034	B/E
Item	LD A, R and LD R, A Instructions				
Q					Classification
Can th	ne refresh address be read by exec	uting an LD	A, R		MMU
or LD	R, A instruction?			MSCI	
ł					ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
Α					Interrupt
No, the	e refresh address cannot be read b	y executing	the		Bus Interface
LD A,	R or LD R, A instruction.				Clock Generator
The H	D64180S incorporates a dynamic I	RAM refresh			ASE
contro	ller. But the R counter indicates the	number of	CPU	√	Software
opcod refrest	e fetch cycles and has no relation t	o dynamic F	RAM		Others
renesi	ı.				
					Application Manual
				HD64180S Hardware Manual	
					Other Data
					Reference Q&A
					i di
Comm	ent				
				_	

Туре	HD64180S	Q&A No.	QA641	-035	5A/E	
Item	Processing Speed of SD200 Cros	s Assembler	ſ			
Q					Classification	
What	is the processing speed of the cros	s assembler	for the		MMU	
SD20	SD200?				MSCI	
					ASCI/CSIO	
					DMAC	
					Timer	
					Wait	
İ					Refresh	
					Chip Select	
	•				Low Power Mode	
					Reset	
Α					Interrupt	
	bout 2.5 minutes per 1,000 steps (2				Bus Interface	
	y disk based) of the SD200 for S18	0XAS6F (ve	rsion		Clock Generator	
1.0).					ASE	
				1	Software	
					Others	
~						
					Application Manual	
					64180S rdware Manual	
					Other Data	
			,		Reference Q&A	
Comm	ent			-		

Type	HD64180S	Q&A No.	QA641-036A/E		
Item	LDIR Instruction				
Q					Classification
What	What is the bus cycle status during LDIR instruction				MMU
execu					MSCI
					ASCI/CSIO
					DMAC
					Timer
					Wait
					Refresh
					Chip Select
					Low Power Mode
					Reset
Α					Interrupt
Fourte	en instruction cycles are repeated.	The last exe	ecution		Bus Interface
	BC = 0) is twelve instruction cycles				Clock Generator
• BC -	0: Fourteen instruction execution	cycles are			ASE
100 +	repeated	cycles are		√	Software
BC -	0: Twelve instruction execution c	voles are			Others
100 =	repeated	yoles are			
See fir	gure 1.				Application Manual
000 11	guio i.				64180S rdware Manual
				nai	Other Data
					Other Data
					Reference Q&A
Comm	ent				

Туре	HD64180S	Q&A No.	QA641-0	64B/E
Item	DEC (INC) and DAA Instructions			
Q				Classification
Norma	ully, the DAA instruction is executed	to obtain Bo		MMU
	fter ADD or SUB instruction execut		MSCI	
Does t	he DAA instruction adjust the resul	t after DEC /	INC)	ASCI/CSIO
instruc	•	t and DLO	"""	DMAC
				Timer
				Wait
			r	Refresh
			F	Chip Select
				Low Power Mode
				Reset
Α				Interrupt
No, the	DAA instruction does not support	BCD adjustr	ment	Bus Interface
after D	EC (INC) instructions.			Clock Generator
DAA e	xecution results depend on flag cor	nditions See	table	ASE
	n example.		1	Software
Toble	1 DAA Evemple			Others
lable	1 DAA Example			
	Flag			Application Manual
Instruc	tion Acc N C	Н		ID64180S
(Initial v		0	F	Programming Manual
DEC A	FF 1 0	1	 	Other Data
DAA	F9 (FF + FA) 1 1	1		
Refer t	Refer to the HD64180S user's manual for details.			Reference Q&A
Comm	ent			
				

9

HD64180 8-Bit Microprocessor

Technical Q and A Application Note

INTRODUCTION

The HD64180 is a high-performance 8-bit multichip microprocessor which has object code compatibility with the 80 families. System cost is reduced by incorporating such powerful components on-chip as CPU, MMU, DMAC, PRT, ASCI, and CSI/O. Internal Op-Code trap for error protection improves system reliability. As the HD64180 is fabricated by the advanced CMOS process technology, low power consumption and wide operational power supply voltage range are realized. The low power consumption modes(sleep and system stop) greatly reduce average power dissipation.

HOW TO USE THIS MICROCOMPUTER TECHNICAL Q&A MANUAL

This is a technical manual composed of answers to questions that many users have posed regarding Hitachi microcomputers in the recent months. This manual is intended to supplement the explanations in the current data books and user's manuals. Thus, please use this manual together with the user's manuals and the data books.

If any further questions arise as you use this manual and the products that described, please do not hesitate to get in touch with your nearest Hitachi semiconductor sales office.

		Q&A No.	Page
1001			
MMU (1)	MMU Operation	QA641-001A/E	197
(2)	Logical to Physical Address Translation	QA641-002A/E	198
` '	,		
DMAC (1)	DE1 bit in the DMA Status Register	QA641-003A/E	199
(1)	(DSTAT)	Q11041 00311/12	133
(2)	DME bit (DMA MASTER ENABLE bit)	QA641-004A/E	200
(2)	in DMA Status Register	Q.10 12 00 11.7 2	
(3)	DWE bit in DMA Status Register	QA641-005A/E	201
(4)	Memory ↔ I/O DMA Transfer	QA641-006A/E	202
(5)	Memory ↔ ASCI DMA Transfer	QA641-007A/E	203
(6)	Memory (Specified in application	QA641-008A/E	204
• •	program) ↔ I/O DMA Transfer		
(7)	Memory ↔ I/O (Z80SIO) DMA Transfer	QA641-009A/E	205
ASCI			
(1)	Break Level Transfer with Asynchronous	0A641-010A/E	206
(1)	Serial Communication Interface (ASCI)	Q11041 01011/2	
(2)	ASCI Baud Rate Calculation	QA641-011A/E	207
, ,	Abol Bada Nate Calculation	Q.10 12 02217	
CSI/O			
TIMER			
(1)	Timer Output	QA641-012A/E	208
(2)	Timer (PRT) Counting Down Using	QA641-013A/E	209
	External Clock		
Bus Inter	face		
	Bus Status during Internal I/O Access	QA641-014A/E	210
Interrupt		QA641-015A/E	211
(1)	Interrupt during MMU Operation Interrupt during DMA Operation	QA641-016A/E	211
(3)	INTO Mode 2	QA641-017A/E	213
(4)	NMI during Interrupt Acknowledge Cycle	QA641-018A/E	214
(5)	Interrupt after RESET	QA641-019A/E	215
- (3)	THE THE PERSON NAMED IN TH	1230 12 02211/2	

		Q&A No.	Page
(6)	Interrupt during Refresh Cycles	QA641-020A/E	216
(7)	•	QA641-021A/E	217
WAIT		,	, 7.7
(1)	WAIT Insertion during Refresh Cycle	QA641-022A/E	218
(2)	WAIT Function at I/O Access	QA641-023A/E	219
RESET			
(1)	Power-on Reset Sequence	QA641-024A/E	220
Low Power	· Mode		
(1)	Bus Status during Sleep Mode	QA641-025A/E	221
(2)	Sleep Mode and System Stop Mode	QA641-026A/E	222
(3)	Recovery from System Stop Mode	QA641-027A/E	223
(4)	System Standby Function	QA641-028A/E	224
REFRESH			
(1)	Dynamic RAM Refresh during DMA	QA641-029A/E	225
(2)	Dynamic RAM Refresh	QA641-030A/E	226
Clock Ger	nerator		
ASE			
(1)	Trace Function of ASE	QA641-031A/E	227
(2)	Dynamic RAM Refresh of ASE	QA641-032A/E	228
Software			
(1)	Difference between RET and RETI	QA641-033A/E	229
	Instructions		
(2)	LD A, R/LD R, A Instructions	QA641-034A/E	230
(3)	LDIR Instruction	QA641-036A/E	231
Others			
(1)	E Clock during Sleep Mode or Bus	QA641-037A/E	233
	Release Mode		
(2)		QA641-038A/E	234
(0)		04641 0304/5	235
(3)	Internal I/O and External I/O Access	QA641-039A/E	233

			☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software		
Туре	HD64180	Div	☐ Evaluation kit ' ☐ SD ☐ SBC		
Item	MMU Operation				
Q			Classification		
			O MMU		
	will the MMU operate if MMU Ba				
	MU Common Base Register and MMU Base programmed to exceed 512k bytes				
	lress space?	•	CSI/O		
An	example follows.		TIMER		
			BUS INTERFACE		
			INTERRUPT		
	Logical Address Space	Physi	cal Address Space WAIT		
	\$FFFF MMU Common		RESET		
	Common Base Regis	ster	LOW POWER MODE		
	Area 1 + \$75		- REFRESH		
	\$C000	81000	CLOCK GENERATOR		
	• • • • • • • • • • • • • • • • • • •	٧	ASE		
	(\$7FFFF)				
			SOFTWARE		
			OTHERS		
A			Applicable Manual		
			Title		
car	physical address space exceeds 5 ry bit is ignored and MMU access ress \$00000.				
,			Other Data.		
			Title		
			Reference Q & A		
			No.		
COMMEN	r				

No. QA641-002A/E

Туре	нд64180	Div	□4s □8s ■8m [☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software			
			☐ Evaluation kit En	ulator SD SBC			
Item Logical to Physical Address Translation							
Q				Classification			
				O MMU			
Can common area 1 overlap with bank area depending				DMAC			
	on the MMU Base Register's (MMU Common Base Register and MMU Bank Base Register) programming?			ASCI			
		_		CSI/O			
				TIMER			
				BUS INTERFACE			
				INTERRUPT			
				WAIT			
				RESET			
	*			LOW POWER MODE			
				REFRESH			
				CLOCK GENERATOR			
				ASE			
				SD			
				SOFTWARE			
		-,		OTHERS			
A				Applicable Manual			
				Title			
	, common area 1 and bank area ending on the MMU Base Regist			HD64180			
	Phys	ical Addre		Data Sheet			
An	example is shown below.						
	ical Address Space			Other Data			
Logi	Total Address Space			Title			
Common	<u> </u>						
Area 1			} Overlapped				
•			Area				
Bank Area	·[Reference Q & A			
·				No.			
1							
COMMENT							
1							

					No. QA6	41-003A/I	
Туре	HD64180	Div	☐ 4S ☐ 8S ■ 8M ☐ ☐ Evaluation kit	,		ware D 🗆 SBC	
Item	DE1 bit in the DMA Status Register (DSTAT)						
Q				1	Classific	ation	
	_				MMU		
(1)	How long is DMA transfer disabled when DE1 bit is set to 0?			0	DMAC		
	(2) How does DMA restart?				ASCI		
(2)				CSI/O			
					TIMER		
					BUS INTE	ERFACE	
				INTERRUPT			
				L_	WAIT		
				L	RESET		
				LOW POWER MODE			
				<u> </u>	REFRESH		
				L	CLOCK GENERATOR		
				ASE			
				SD			
				SOFTWARE			
				 	OTHERS		
A				<u> </u>	plicable	Manual	
(1)	DMA transfer is disabled until DE1 bit is reset to 1. $\overline{\text{DWE1}}$ bit must be written with 0 when performing any software write to DE1.			<u> </u>	litle		
,				HD64180 Data Sheet			
(2)	If memory ↔ memory DMA transfe			<u> </u>	Other D	ata	
}	burst mode, DMA transfer cannot It can only be interrupted in r			Title			
	(cycle steal mode), memory \leftrightarrow I/O, or memory \leftrightarrow memor						
	mapped I/O transfer mode. To restart DMA transfer, DE1 must be set to 1.						
				Re	ference	Q & A	
					No.		
						. [
				ĺ			
	·						
COMMEN	T					-	
į							

No. QA641-004A/E ☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software Type HD64180 Div ☐ Evaluation kit , Emulator □SD □SBC Item DME bit (DMA MASTER ENABLE bit) in DMA Status Register Q Classification MMU When MMI occurs, DME bit is reset to 0 and DMA O DMAC operation is disabled passing control to the CPU. ASCI (1) How is DMA operation timing halted? CSI/O TIMER (2) How does DMA operation restart? BUS INTERFACE INTERRUPT WAIT RESET LOW POWER MODE REFRESH CLOCK GENERATOR ASE SD SOFTWARE OTHERS A Applicable Manual Title (1) When NMI occurs, the CPU is given control after the current DMA cycle is completed. HD64180 The following shows the timing Data Sheet Other Data Title NMI ← DMA write cycle → CPU cycle Reference Q & A No. (2) To restart DMA operation, DE (DEO or DE1) bit must be set to 1.

COMMENT

	7 •
	_
	7 4

	T				NO. QA041-005A/	
Туре	HD64180	Div	☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software			
			☐ Evaluation kit '☐ SD ☐ SBC			
Item DWE bit in DMA Status Register						
Q				1	Classification	
				MMU		
What is the function of $\overline{\text{DWE}}$ bit in DMA status register?			O DMAC			
			ASCI			
			-	CSI/O		
ł						
				TIMER		
Ì				BUS INTERFACE INTERRUPT		
						
İ				WAIT		
		,		-	RESET	
				LOW POWER MODE		
				REFRESH		
				-	CLOCK GENERATOR	
				ASE		
.				SD		
				SOFTWARE		
				+-	OTHERS	
A				_	plicable Manual	
DE	bit enables DMA operation of inte	rnal	DMAC, while	-	Title	
DWE	bit enables a software write to	its c			HD64180	
DE	bit, for a specific channel opera	tion.		Data Sheet Other Data		
ļ						
!						
1				-	Title	
				ļ		
ľ				-	£	
				Ke	ference Q & A	
•				<u> </u>	No.	
COMPANY			·	_		
COMMEN						

No. QA641-006A/E ☐4S ☐8S ■8M ☐16M ☐ Software Туре HD64180 Div Evaluation kit , Emulator □SD □SBC Item Memory ↔ I/O DMA Transfer Q Classification MMU To enable external $\overline{\rm DREQ_0}$ input, both Al7 and Al6 of I/O address must be set to 0. O DMAC ASCI Is DMA requested by DREQO acknowledged if either A₁₇ CSI/O or A_{16} is set to 1? TIMER BUS INTERFACE INTERRUPT WAIT RESET LOW POWER MODE REFRESH CLOCK GENERATOR ASE SD SOFTWARE OTHERS Applicable Manual Title No, if either $\rm A_{17}$ or $\rm A_{16}$ is set to 1, $\overline{\rm DREQ_0}$ is disabled and the DMA request is not accepted. HD64180 Data Sheet Other Data Title Reference Q & A No. COMMENT

					NO. QAU41-00/A/	
Type	HD64180	Div	□4s □8s ■8M □]16	M 🗌 Software	
Type	HD04130	DIV	Evaluation kit	, mulator □SD □SBC		
Item	Memory ↔ ASCI DMA Transfer					
Q					Classification	
					MMU	
	execute memory ↔ ASCI DMA trans			0	DMAC	
	stination address register should llows.	be pr	ogrammed as		ASCI	
					CSI/O	
(1)	Bits A ₀ -A ₇ must contain the add transmit or receive data regist		of the ASCI	Г	TIMER	
					BUS INTERFACE	
(2)	Bits A ₈ -A ₁₅ must be set to 00H	•			INTERRUPT	
(3)	Bits A_{16} - A_{17} must be set to "0:	l" or	"10".		WAIT	
Car	in the memory \leftrightarrow ASCI DMA transfer	ho or	antad		RESET	
	rectly if bits A_8-A_{15} in DMA sour			LOW POWER MODE		
ado	dress register are not set to OOH?	?			REFRESH	
					CLOCK GENERATOR	
		ASE				
ŀ		SD				
ł						
<u> </u>				<u> </u>	OTHERS	
A				<u>-</u>	plicable Manual	
No	, if bits Ag-A ₁₅ in DMA source/des	stinat	ion address	ļ.,	Title	
	gister are not set to OOH, Memory				UD64180	
tra	ansfer cannot be executed correct	Ly.		HD64180 Data Sheet		
For	example, to execute ASCI (channe	1 0)	RDR →	<u></u>		
	mory DMA transfer, Bits A ₀ -A ₇ must			<u> </u>	Other Data	
be be	is A_8 - A_{15} must be set to 00H and has set to "01" for correct ASCI (characteristics)	nnel	16 ^{-A} 17 must 1) RDR →	-	Title	
	mory DMA transfer.		•			
				Re	ference Q & A	
	•			-	No.	
				-		
				1		
COMMEN	т					
<u> </u>						
	is A_8 - A_{15} set to other than 00H wither I/O address and not RDR.	lll ca	use internal DMAC	to	access	
	MA request from ASCI channel 0 is	not r	eset)			

HITACHI

No. QA641-008A/E ☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software Туре HD64180 Div Evaluation kit , □SD □SBC Item Memory (specified in application program) ↔ I/O DMA Transfer Q Classification MMU Is it possible to execute memory (specified in O DMAC application program) - I/O DMA transfer independently ASCI of the MMU Base Register? CSI/O TIMER BUS INTERFACE INTERRUPT WAIT RESET LOW POWER MODE REFRESH CLOCK GENERATOR ASE SD SOFTWARE OTHERS A Applicable Manual Title No, to execute memory (specified in application program) ↔ I/O DMA transfer correctly, physical source address must be defined as follows. Software calculates physical source address of Other Data data area using the logical source address and the Base Register. Title (2) The calculated physical source address is loaded into the DMA source address Register. When the physical address is known, it can be loaded into the DMA address register directly, but Reference Q & A if DMA transfer is executed within the logical memory area, Block transfer instructions can be No. used. COMMENT

No. QA641-009A/E ☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software Type HD64180 Div Evaluation kit , □SD □SBC Item Memory ↔ I/O (Z80SIO) DMA Transfer Classification Q MMU When memory \leftrightarrow I/O (Z80SIO) DMA transfer is executed O DMAC while $\overline{\text{DREQ}_0}$ is programmed for level sense, DMA transfer does not complete correctly. ASCI CSI/O Are there any restrictions in DMA operation? TIMER (RDY signal of Z80SIO is input to DREQO of HD64180) BUS INTERFACE INTERRUPT WAIT RESET LOW POWER MODE REFRESH CLOCK GENERATOR ASE SD SOFTWARE OTHERS Applicable Manual Title When $\overline{\rm DREQ}_{0}$ is programmed for level sense additional DMA cycle_is executed since RDY signal (which is HD64180 input to $\overline{\text{DREQ}_0}$) is set high after additional sampling Data Sheet of DMA request signal (DREQO). Other Data The timing chart follows. Next DMA DMA read cycle DMA write cycle read cycle Title T: extra DMA transfer cycle A₀∿A₁₈ Reference Q & A ACK No. DREO (RDY) Sample timing of DMA request signal COMMENT If $\overline{\text{DREQ}}$ is programmed for edge sense, DMAC will operate correctly.

HITACHI

No. 0A641-010A/E

			y		NO. Q1041 010H)
Type	HD64180	Div	□4S □8S ■8M □]161	M 🗌 Software
			Evaluation kit	tor SD SBC	
Item	Break Level Transfer with Async Interface (ASCI)	chrono	us Serial Communic	ati	on
Q					Classification
				\vdash	MMU
	it possible through software to p	perfor	m break level	\vdash	DMAC
tra	nsfer with ASCI?			6	ASCI
				\vdash	CSI/O
					TIMER
					BUS INTERFACE
					INTERRUPT
				Г	WAIT
				Г	RESET
					LOW POWER MODE
					REFRESH
					CLOCK GENERATOR
1					ASE
					SD
					SOFTWARE
					OTHERS
A				Ap	plicable Manual
					Title
	the (HD64180) ASCI cannot performsfer through software.	rm bre	ak level	Γ	
""	msier chrough software.				
	ever, break level can be transfer			L	
cir	cuit is connected to $\overline{\text{RTS}_0}$ pin and	the t	user system port.		Other Data
An	example of a circuit for break le	evel t	ransfer follows.		Title
HD	64180 HI	64180	N-		
	T _X	1X	1 ²⁰ 7	1	
		RTS0		_	
		Jser /stem		Re	ference Q & A
<u> </u>	<u>Li</u>	Port		L	No.
If	RTSO bit in ASCI control register	r A or	data register		
of	port set to 1, break level "0" ca	n be	transferred.		•
				<u></u>	
COMMEN	T				

					NO. QA641-011A/
Туре	HD64180	Div	□4s □8s ■8m □]161	M 🗌 Software
			Evaluation kit	, nula	stor SD SBC
Item	ASCI Baud Rate Calculation				
Q					Classification
					MMU
Hov	v is ASCI baud rate calculated?				DMAC
·				0	ASCI
					CSI/O
					TIMER
					BUS INTERFACE
					INTERRUPT
					WAIT
				Ŀ	RESET
					LOW POWER MODE
				L	REFRESH
				L	CLOCK GENERATOR
				<u></u>	ASE
				<u></u>	SD
	•			-	SOFTWARE
				1	OTHERS
A				-	plicable Manual
The	following expression shows how t	o calo	culate ASCI	-	Title
	d rate.				HD64180
					Data Sheet
bau	d rate =			-	Other Data
	system clock (frequen	cy)		 	Title Data
(sa	ampling rate) (PS bit) (divide rat	io se	t by SSO-SS2)	-	TITLE
Not	e: Sampling rate : 16 or 64				
ŀ	PS bit : 10 or 30			Re	ference Q & A
	SS0-SS2 : 1,2,4,8,16,32	, or (54		No.
COMMEN	Т				

No. QA641-012A/E ☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software Type HD64180 Div Emulator □SD □SBC Timer Output Item Q Classification MMU Does Timer (PRT) channel O provide a timer output DMAC function? ASCI CSI/O OTIMER BUS INTERFACE INTERRUPT WAIT RESET LOW POWER MODE REFRESH CLOCK GENERATOR ASE SD SOFTWARE OTHERS Applicable Manual Title No, PRT channel 1 should be used for timer output. Note that TOUT pin is multiplexed with the A18 pin. HD64180 Therefore, when accessing up to 512k bytes of physical Data Sheet memory address, A₁₈/TOUT pin always functions as A₁₈. Other Data Title Reference Q & A No.

COMMENT

					NO. QA641-013A/
Туре	HD64180	Div	□4s □8s ■	8м □16	M 🗌 Software
-,,,,	100-100	kit , Emula	stor SD SBC		
Item	Timer (PRT) Counting Down Using	g Exte	rnal Clock		
Q				T	Classification
	·				MMU
Car	n the PRT count down using the ext	ernal	clock?	T-	DMAC
					ASCI
					CSI/O
				0	TIMER
					BUS INTERFACE
					INTERRUPT
					WAIT
l ·					RESET
ļ					LOW POWER MODE
					REFRESH
				<u></u>	CLOCK GENERATOR
					ASE
					SD
				_	SOFTWARE
<u></u>					OTHERS
A	•			-	plicable Manual
No.				<u> </u>	Title
	PRT can count down using only th	e ø c.	lock (divided	by	HD64180 Data Sheet
					Other Data
				L	Title
].				- 1	
İ					
				Re	ference Q & A
				<u> </u>	No.
		*			
COMMEN	T				
COMPEN					
1					
İ					
L					

No. QA641-014A/E □4S □8S ■8M □16M □ Software Type HD64180 Div ☐ Evaluation kit , ☐ SD ☐ SBC Emulator Bus Status, during Internal I/O Access Item Classification Q MMU What is the bus status during internal I/O access? DMAC ASCI CSI/O TIMER O BUS INTERFACE INTERRUPT WAIT RESET LOW POWER MODE REFRESH CLOCK GENERATOR ASE SOFTWARE OTHERS Applicable Manual A Title Bus status during internal I/O access is as follows. HD64180 (1) Data bus (D₀ - D₇) Data Sheet read cycle : high impedance write cycle : data Other Data Title (2) Address bus (A₀ - A₁₈) read/write cycle : address Reference Q & A No. COMMENT

No. QA641-015A/E

True	unc/190	24-	□4s □8s ■8M	□16M □ Software
Type	HD64180	Div	Evaluation kit	, □SD □SBC
Item	Interrupt during MMU Operation			
Q				Classification
	•			MMU
	w will MMU be affected if an inter s operation?	rupt	occurs during	DMAC
""	operation.			ASCI
· ·				CSI/O
į				TIMER
				BUS INTERFACE
				O INTERRUPT
İ				WAIT
				RESET
İ				LOW POWER MODE
1				REFRESH
İ				CLOCK GENERATOR
				ASE
į				SD
	•			SOFTWARE
				OTHERS
A				Applicable Manual
7.6			. •	Title
	an interrupt occurs during MMU op errupt vector is relocated accord			
	se Register programming.			HD64180 Data Sheet
The	refore, the interrupt vector shou	1d bo	defined	2010 511000
	ending on the MMU Base Register p			Other Data
	de de maindle for els duto			Title
	vever, it is possible for the inte located in Common Area O which is			
	logical address space.			
1				
				Reference Q & A
				No.
1				
				1
COMMEN	T			
1				

No. QA641-016A/E ☐ 45 ☐ 85 ■ 8M ☐ 16M ☐ Software Type HD64180 Div ☐ Evaluation kit , Emulator SD SBC Item Interrupt during DMA Operation Q Classification MMU How will DMAC be affected if an interrupt occurs during DMAC its operation? ASCI CSI/O TIMER BUS INTERFACE INTERRUPT WAIT RESET LOW POWER MODE REFRESH CLOCK GENERATOR ASE SD SOFTWARE OTHERS Applicable Manual A Title (1) If NMI occurs, DMAC operation is disabled. HD64180 (2) If INT or an internal interrupt occurs during Data Sheet memory \leftrightarrow memory DMA operation in burst mode, the interrupt is ignored. Other Data (3) If INT or an internal interrupt occurs during Title memory - memory DMA operation in cycle steal mode, the interrupt is acknowledged and the interrupt sequence (CPU cycle) and DMAC read/write (DMAC cycle) are executed as follows. Reference Q & A No. DMA read DMA write Interrupt DMA read DMA write acknowledge COMMENT

				٠	
		7	_	٦	
			٠.		
			,	1	
		•		4	
п		7	4		

_			□4S □8S ■8M □16	M 🗌 Software				
Type	HD64180	Div	☐ Evaluation kit , ☐ SD ☐ SBC					
Item	INTO Mode 2							
Q				Classification				
				MMU				
	Z80 INTO Mode 2, the LSB of lower	vect	or in 16 bit	DMAC				
vec	ctor address (A_0) is set to 0.			ASCI				
	the LSB of lower vector (D ₀) set	to 0	in HD64180	CSI/O				
INT	T ₀ Mode 2?			TIMER				
				BUS INTERFACE				
			0	INTERRUPT				
				WAIT				
				RESET				
				LOW POWER MODE				
				REFRESH				
				CLOCK GENERATOR				
	•			ASE				
				SD				
	•			SOFTWARE				
				OTHERS				
A			App	plicable Manual				
N-	4- 700 TVM Wala 2 Aba IOD as 1			itle				
not the	, in Z80 $\overline{\text{INT}_0}$ Mode 2, the LSB of 1 automatically set to 0. The Z80 at the LSB (A0) must be set to 0.) data	book explains	HD64180 Data Sheet				
	HD64180 $\overline{\text{INT}_0}$ Mode 2, the LSB of 3 at be set to 0 since $\overline{\text{INT}_0}$ Mode 2 m			Other Data				
	etor.	equil		itle				
	vever, even if the LSB (D_0) is set quence is executed correctly.	to 1	, the interrupt					
			Ret	ference Q & A				
				No.				
COMMEN	T							
				·				

No. QA641-018A/E ☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software Type HD64180 Div Evaluation kit , □SD □SBC NMI during Interrupt Acknowledge Cycle Item Q Classification MMU Is NMI acknowledged during interrupt acknowledge cycle DMAC such as INT? ASCI CSI/O TIMER BUS INTERFACE O INTERRUPT WAIT RESET LOW POWER MODE REFRESH CLOCK GENERATOR ASE SD SOFTWARE OTHERS A Applicable Manual Title Yes, one instruction (excluding EI and DI instructions) is executed after \overline{INT} acknowledge cycle, then \overline{IMI} HD64180 acknowledge cycle starts. Data Sheet NMI response sequence during NMI acknowledge cycle is Other Data the same as above. Title Reference Q & A No. COMMENT

					NO. QA641-019A/
Туре	HD64180	Div	☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software		
2,70	100-100	☐ Evaluation kit Em	mulator SD SBC		
Item	Interrupt after RESET				
Q				C1	lassification
	I				MMU
Is	NMI or INT acknowledged immediate	ely af	ter RESET?		DMAC
				H,	ASCI
				-	CSI/O
				1	TIMER
					BUS INTERFACE
				-	INTERRUPT
					WAIT
					RESET
					LOW POWER MODE
					REFRESH
					CLOCK GENERATOR
					ASE
					SD
					SOFTWARE
					OTHERS
A				App	licable Manual
N-		DEG	rm	T:	itle
	, for three cycle immediately afte ower-on Reset cycle),	er KES	E1		
	and INT are disabled.				HD64180 Data Sheet
	er these three cycles, the instru d interrupt is enabled. The timin		is executed as follows.		
ø		<u> </u>		<u> </u>	Other Data
				Ti	itle
RESET	·			1	
<u> </u>			Fetch (restart		
ļ		abled.	OOH) Interrupt	Pof	erence Q & A
					No.
Note	: NMI can be latched immediately	afte	r POR cycle.	<u> </u>	NO.
COMMEN	т			Ь—	
	V.		÷ 1		
L					

No. QA641-020A/E ☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software Туре HD64180 Div ☐ Evaluation kit , Emulator □SD □SBC Item Interrupt during Refresh Cycles Classification Q MMU Is an interrupt (NMI or INT) acknowledged during DMAC refresh cycles? ASCI CSI/O TIMER BUS INTERFACE INTERRUPT 0 WAIT RESET LOW POWER MODE REFRESH CLOCK GENERATOR ASE SD SOFTWARE OTHERS Applicable Manual No, an interrupt is ignored during refresh cycles. Title However, NMI is acknowledged immediately after HD64180 refresh cycles when executing instruction because Data Sheet NMI input is edge sensitive. The $\overline{\text{NMI}}$ acknowledge timing after refresh cycle is as follows. Other Data ø Title NMI Machine Refresh Machine acknowledge cycle cycle cycle cycle Reference Q & A NMI No. INT (INTO, INT1 and INT2) is ignored during refresh cycles. If INT remains active after refresh cycle it can be acknowledged during instruction executed just after reset. COMMENT

				No. QA641-021A/
Туре	HD64180	Div	□4s □8s ■8m [□16M □ Software
			Evaluation kit	, SD SBC
Item	NMI Acknowledge			!
Q				Classification
				MMU
	NMI acknowledged if occuring during sequence?	ing th	e following	DMAC
	ming sequence:			ASCI
	Last MC			CSI/O
l	T ₁ T ₂	тз	<u> </u>	TIMER
•	,			BUS INTERFACE
NM	<u> </u>			O INTERRUPT
-	<u> </u>			WAIT
	t _{NMIW}			RESET
}	(more than 120ns)		•	LOW POWER MODE
	NMI Sample tim	ning		REFRESH
				CLOCK GENERATOR
				ASE
мс	: Machine Cycle			SD
				SOFTWARE
<u> </u>			· · · · · · · · · · · · · · · · · · ·	OTHERS
A				Applicable Manual
Ye	s, if t_{NMIW} (\overline{NMI} pulse Width) is	120ns	or more.	Title
NM.	I is sampled and NMI acknowledge o			HD64180
af	ter last MC.			Data Sheet
ł				Out Date
				Other Data
				Title
1				
1				
				Reference Q & A
				No.
}				
ł				
COMMEN	rr [
	and the same of th			

No. OA641-022A/E ☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software HD64180 Type Div ☐ Evaluation kit , Emulator □SD □SBC Item WAIT Insertion during Refresh Cycle Classification Q MMU Can WAIT cycle be inserted during refresh cycle by DMAC activating WAIT input? ASCI CSI/O TRW TIMER BUS INTERFACE Machine Cycle Refresh Cycle Machine Cycle INTERRUPT WAIT 0 WAIT RESET LOW POWER MODE REFRESH CLOCK GENERATOR ASE SOFTWARE OTHERS Applicable Manual A Title No, WAIT input is disabled during refresh cycle. However, the refresh cycle can be programmed to two HD64180 or three cycles setting the REFW bit in the refresh Data Sheet control register accordingly. Other Data Title Reference Q & A No. COMMENT

Туре	HD64180	Div	□4s □8s ■8M []16	M 🗌 Software		
		Evaluation kit					
Item	WAIT Function at I/O Access						
Q					Classification		
					MMU		
Is	wait state (T_W) always inserted	when a	ccessing I/O?		DMAC		
				Г	ASCI		
				Г	CSI/O		
					TIMER		
					BUS INTERFACE		
	•				INTERRUPT		
				0	WAIT		
					RESET		
					LOW POWER MODE		
					REFRESH		
	~				CLOCK GENERATOR		
					ASE		
					SD		
					SOFTWARE		
				L	OTHERS		
A	•			Ap	plicable Manual		
Uha	on cocceder outcomed T/O a mint	6			Title		
	en accessing external I/O, a minimate is inserted.	num or	one wait		HD64180		
	en accessing on-chip I/O, zero to				Data Sheet		
	e automatically generated depending CPU and on-chip I/O.	ng on	the status	L			
	SCI, CSI/O, PRT DATA register acce	ess)		Ŀ	Other Data		
				1	Title		
				Po	ference Q & A		
				Ke	ference Q & A		
					NO.		
COMMEN	Т						
	•						

No. QA641-024A/E ☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software Type HD64180 Div ☐ Evaluation kit , Emulator □SD □SBC Power-on Reset Sequence Item Q Classification MMU How is the power-on reset sequence performed? DMAC ASCI CSI/O TIMER BUS INTERFACE INTERRUPT WAIT O RESET LOW POWER MODE REFRESH CLOCK GENERATOR ASE SD SOFTWARE OTHERS Applicable Manual Title The Power-on reset sequence is as follows. HD64180 Data Sheet Restart Op-code Fetch Other Data Title more than 6 clock cycles RESET High Impedance Reference Q & A Address 00000Н Restart Address COMMENT RESET pin should be held low for more than 6 clock cycles.

						No.	QA641-025A/I
Туре	HD64180		Div	☐4S ☐8S			oftware □SD □SBC
Item	Bus Status during	g Sleep Mode		<u> </u>			
Q						Classi	fication
	l					MMU	
	at is the Bus status	s when the slee	p ins	truction is	3	DMAC	
exc	cuted?					ASCI	
						CSI/C)
	,					TIME	·
							NTERFACE
							RRUPT
						WAIT	
						RESE	
						O LOW 1	OWER MODE
						REFR	ESH
						CLOCI	K GENERATOR
						ASE	
						SD	
						SOFT	JARE .
						OTHE	RS
A	-					Applica	ble Manual
						Title	
The	Bus status is as i	follows.				HD64	L80 ca Sheet
		C+	atus				.a sneet
						Othe	r Data
	Address Bus	High (A ₀	- A ₁₈	= 7FFFF)		Title	_]
	Data Bus	3-state					
	Control signal	Inactive					
						Referen	e Q&A
						No.	_
						1	
gesage.						<u> </u>	
COMMEN	1						
							ſ

No. QA641-026A/E ☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software Туре HD64180 Div Evaluation kit , □SD □SBC Item Sleep Mode and System Stop Mode Classification Q MMU What is the difference between sleep mode and system stop DMAC mode? ASCI CSI/O TIMER BUS INTERFACE INTERRUPT WAIT RESET LOW POWER MODE REFRESH CLOCK GENERATOR ASE SD SOFTWARE OTHERS A Applicable Manual Title The major differences are as follows. HD64180 Data Sheet Mode Sleep System stop Other Data CPU and internal I/O function CPU stop stop Title exit Interrupt Interrupt (Internal/ (External) External) Reset Reset Reference Q & A No. COMMENT

					No. QA641-027A/
Type	HD64180	Div	□4s □8s ■8m []16	M Software
-,,,,		1	Evaluation kit	, nula	SD SBC
Item	Recovery from System Stop Mode				
Q					Classification
	•		_		MMU
	at is the system status after reco OP mode?	overy	from SYSTEM		DMAC
	or mode.				ASCI
					CSI/O
1					TIMER
					BUS INTERFACE
					INTERRUPT
					WAIT
					RESET
1				0	LOW POWER MODE
					REFRESH
					CLOCK GENERATOR
				L	ASE
					SD
			•	L	SOFTWARE
				\perp	OTHERS
A				Ap	plicable Manual
eve	STEM STOP mode is the combination	of ST	FFD and	<u></u>	Title
	STOP modes.	OT SP	EEL GIIU		HD64180
m.	CVCTEN CTOD made to auto 1 to 1				Data Sheet
	SYSTEM STOP mode is exited by dealer or INT external interrupts only		on or		
1	•		•	<u></u>	Other Data
	interrupts are globally disabled struction execution begins with the			1	Title
	Llowing the SLEEP instruction.	1.10		1	
Tf	interrupts are globally enabled	(TFF1-	1) the		
app	propriate normal interrupt respons			1	
exe	ecuted.	_	,	Ke	ference Q & A
	wever, I/O STOP mode is maintained OP bit is set to 0 after recovery de.			-	No.
COMMEN	T T			Т	
COMMEN	<u>'</u>				
}					
L					

No. QA641-028A/E

			☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software		
Type	HD64180	Div	Evaluation kit	, nula	sor SD SBC
Item	System Standby Function				
Q					Classification
	•			Г	MMU
	es the HD64180 have a system stand			Г	DMAC
(8)	top clock) to reduce power consum)CION:			ASCI
ļ .					CSI/O
					TIMER
					BUS INTERFACE
-				\vdash	INTERRUPT
					WAIT
				\Box	RESET
				0	LOW POWER MODE
1					REFRESH
					CLOCK GENERATOR
1					ASE
					SD
					SOFTWARE
·					OTHERS
A	i.			Ap	plicable Manual
					litle
the	, clock stop function is not prove e clock frequency to reduce power wever, if clock is stopped completeration and data in the registers	consu	nption. MPU		HD64180 Data Sheet
, op.	praction and data in the registers	u.c	or guaranteeu.		Other Data
				-	Title
1					
				Po	ference Q & A
1					No.
				<u> </u>	NO.
COMMEN	T .			1	
COLLIER					*

					No. QA641-029A/
Type	HD64180	Div	□4s □8s ■8m □]16	M 🗌 Software
Type	N)04180	DIV	Evaluation kit	, ula	stor SD SBC
Item	Dynamic RAM Refresh during DMA	-			
Q				(Classification
	•				MMU
Is	DRAM refreshed during internal D	MA ope	ration?		DMAC
					ASCI
ľ					CSI/O
					TIMER
					BUS INTERFACE
					INTERRUPT
					WAIT
					RESET
				L	LOW POWER MODE
				0	REFRESH
					CLOCK GENERATOR
					ASE
				L	SD
				<u> </u>	SOFTWARE
				L	OTHERS
A				_	plicable Manual
Vac	s, refresh cycle is inserted during	og int	ernal DMA	Ľ	Title
	cle.	.g	cinai bin		
Post	fresh controller does not disting	dah D	WA arrala		· .
	om CPU cycle.	IISH D	MA Cycle	<u> </u>	
			. 1 . 6	_	Other Data
	namic RAM refresh is performed at thine cycle during both CPU cycle			Ľ	Title
and	the internal and duration of the			1	
are	e programmable.				
				L.	
				Ke	ference Q & A
				<u> </u>	No.
COMMEN	т			L	
COPRIEN					•
J					

No. QA641-030A/E ☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software HD64180 Type Div ☐ Evaluation kit , Emulator □SD □SBC Item Dynamic RAM Refresh Q Classification MMU Is the refresh controller of the HD64180 different DMAC from that of the Z80? ASCI What is the function of the R countor? CSI/O TIMER BUS INTERFACE INTERRUPT WAIT RESET LOW POWER MODE O REFRESH CLOCK GENERATOR ASE SD SOFTWARE OTHERS Applicable Manual Title Yes, the refresh controller of the ${\tt HD64180}$ differs from HD64180 that of the Z80. Refresh cycle is inserted or suppressed by software. Also the internal and Data Sheet length of refresh cycles are programmable. The refresh address (8-bit address) is output at A₀-A₇. Other Data Refresh cycle Title Address Reference Q & A REF * Refresh should be 3 cycles. The R Counter counts the number of CPU op-code fetch cycles and has no relation to dynamic RAM refresh. COMMENT

						NO. QA641-U31A/
Type	HD64180	Div	□4s □8s ■8m □]16	M 🗌 Software	
		Evaluation kit				
Item	Trace Function of ASE					
					Τ,	Classification
Q					H	MMU
Hov	v is the trace information	on of ASE o	displa	aved on the	<u> </u>	
CR'			•		<u> </u>	DMAC
					_	ASCI
ł					<u> </u>	CSI/O
					L_	TIMER
1					L_	BUS INTERFACE
					_	INTERRUPT
					_	WAIT
						RESET
						LOW POWER MODE
						REFRESH
						CLOCK GENERATOR
					0	ASE
]					L	SD
						SOFTWARE
					OTHERS	
A					Ap	plicable Manual
		_			7	Title
After excution of the Go or Step command, the trace buffer pointer indicates the last trace data. Specify display number with negative value until the pointer corresponds with Trace Pointer. After moving the Trace Buffer pointer with the Trace						H180AS01 User's Manual
	inter Command, it is poss					Other Data
nun	ber with a positive valu	ıe.			7	Title
	Trace Buffer	Trace	Buff	er J		
·	Trace	Buffer		1 †		
	point			The display	Re	ference Q & A
		1		number can be		No.
Trace Bu	1	nt		specified with either		
Pointer	with negative	- value		a positive or		
	negative	. varue		negative value.		
COMMEN	г					
L						

					No. QA641-032A/I	
Туре	HD64180	Div	□4s □8s ■8m □	8S ■8M □16M □ Software		
1,700	11004100	DIV	Evaluation kit	, ula	tor SD SBC	
Item	Dynamic RAM Refresh of ASE					
Q				(Classification	
					MMU	
	namic RAM is refreshed depending or gister programming.	on the	Refresh Control		DMAC	
, Ke	gister programming.				ASCI	
	the dynamic RAM refreshed during	the wa	ait state for		CSI/O	
Con	mmand input when using ASE?				TIMER	
					BUS INTERFACE	
					INTERRUPT	
					WAIT	
					RESET	
					LOW POWER MODE	
i .					REFRESH	
					CLOCK GENERATOR	
1				0	ASE	
				L	SD	
				L	SOFTWARE	
				L	OTHERS	
A				Ap	plicable Manual	
1.71-	on water ACE descents DAM makes at]	litle /	
	en using ASE, dynamic RAM refresh Llows by programming the Refresh (H180AS01	
(1)	Refresh enable: REFE=1				User's Manual	
	If REFE bit is set to 1, dynamic			\vdash	Other Data	
	during waiting state for command	1 1npu	ē•	—	Title	
(2)	Refresh disable: REFE=0			-		
	If REFE bit is set to 0, dynamic refreshed during wait state com					
	(But refresh cycle is inserted of				4	
				Re	ference Q & A	
					No.	
1						
1				1		
COMMEN	VT					
:						
1						

				No. QA641-033A/
Туре	HD64180	Div	□4S □8S ■8M □]16M [] Software
Type	NV04180	DIV	Evaluation kit	, □SD □SBC
Item	Difference between RET and RET	[Inst	ructions	
Q				Classification
				MMU
	at is the difference between the I	RET an	d RETI	DMAC
ins	struction?			ASCI
				CSI/O
				TIMER
				BUS INTERFACE
				INTERRUPT
				WAIT
				RESET
				LOW POWER MODE
				REFRESH
				CLOCK GENERATOR
				ASE
				SD
				O SOFTWARE
			·	OTHERS
A				Applicable Manual
Bot	th the RET and RETI instructions a	ire us	ed to return	Title
to	the main-program from a subrouting	ne, an		HD64180
ins	structions have identical function	ıs.		Data Sheet
	wever, RETI instruction is normallow an external interrupt $(\overline{INT_0}, \overline{INT_0})$			Other Data
	rvice routine.	.11 01	1112)	Title
Sin	nce RETI is a two-byte instruction	ı. per	ipheral devices	
kno rou	ow the completion of the current in tine during RETI execution espect	lnterr	upt service	
dai	lsy chain (Z80 Peripheral).	2		Reference Q & A
	so, when using an external interru			No.
	lsy chain, RET instruction is usef	ul in	identifying an	
1 100	ternal interrupt service routine.			
	·			
COMMEN	T			

No. QA641-034A/E

Tuna	HDC/190		□4s □8s ■8m □	16M □ Software	
Туре	HD64180	Div	Evaluation kit ,	lator SD SBC	
Item LD A, R/LD R, A Instructions					
Q				Classification	
				MMU	
	the refresh address be read by	execut	ing a LD A, R	DMAC	
l or	LD R, A instruction?		-	ASCI	
				CSI/O	
				TIMER	
				BUS INTERFACE	
				INTERRUPT	
1				WAIT	
1				RESET	
				LOW POWER MODE	
				REFRESH	
,				CLOCK GENERATOR	
1				ASE	
1.	· ·			SD	
				O SOFTWARE	
				OTHERS	
A	*			Applicable Manual	
				Title	
	, refresh address cannot be read b R, A instruction.	y the	LD A, R or	HD64180	
	K, A Instruction.			Data Sheet	
	HD64180 incorporates a dynamic H				
	the R counter indicates the numb ch cycles and has no relation to			Other Data	
		•		Title	
			· .		
				Reference Q & A	
			· .	No.	
COMMEN	T				

-	
5	
=	
5	
ñ	

			□4s □8s ■8m □]161	M 🗌 Software
Type	HD64180	Div	Evaluation kit	, ula	tor □SD □SBC
Item	LDIR Instruction				
Q				C	Classification
	•				MMU
	at is the status of the bus cycle struction execution?	durin	g LDIR		DMAC
Ins	struction execution:				ASCI
					CSI/O
					TIMER
					BUS INTERFACE
					INTERRUPT
					WAIT
					RESET
					LOW POWER MODE
					REFRESH
					CLOCK GENERATOR
				L	ASE
					SD
				0	SOFTWARE
				_	OTHERS
A				<u> </u>	plicable Manual
14	4		* - 4		Title
14	instruction execution cycles are	repea	rea.		HD64180
The	e last execution cycle (BC-0) is 1	12 сус	les.		Data Sheet
If	BC + 0, 14 instruction execution	cycle	s are repeated.	<u> </u>	
				<u> </u>	Other Data
lt.	BC = 0, 12 instruction execution	сусте	s are repeated.	-	Title
(re	efer to the following page)				
}				Po	ference Q & A
				I Ke	No.
				-	
COMMEN	т			٠	
L					

No. QA641-036A-2/E ☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software Dív Type HD64180 ☐ Evaluation kit , ☐ SD ☐ SBC Emulator LDIR Instruction Item Q LDIR (ED Bø) Operation $(HL)m \rightarrow (DE)m$ BCR-1 → BCR $DE_R+1 \rightarrow DE_R$ $HL_R+1 \rightarrow HL_R$ Repeat until BCR=0 Bus cycle 1MC* 2nd Ti lst lst Op code Op code Op code fetch fetch fetch execution cycle 1st 2nd Op code Op code fetch fetch Last execution cycle (BC=0) 1 machine cycle machine cycle for internal operation

			No. QA641-037A			
Туре	HD64180	Div	☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software			
-78-		217	Ewaluation kit, SD SBC			
Item	Item E Clock during Sleep Mode or Bus Release Mode					
Q			Classification			
	•		MMU			
Is ins	it possible to extend E clock pubserting wait status (Tw) during SI	se wi	dth by DMAC			
	Release Mode?	.сер	ASCI			
			CSI/O			
			TIMER			
			BUS INTERFACE			
			INTERRUPT			
			WAIT			
			RESET			
			LOW POWER MODE			
İ			REFRESH			
1			CLOCK GENERATO			
			ASE			
			SD			
			SOFTWARE			
			O OTHERS			
A			Applicable Manua			
No.	, since WAIT input is ignored duri	ng Sl	eep Mode or			
	Release Mode, E clock cycle canr		extended. HD64180			
			Data Sheet			
10			Other Peter			
			Other Data			
			Title			
			Reference Q & A			
			No.			
COMMEN	vT					
						
L						

No. QA641-038A/E ☐ 4S ☐ 8S ■ 8M ☐ 16M ☐ Software Туре HD64180 Div Evaluation kit, □SD □SBC Item E Clock Timing during DMA Cycles or Refresh Cycles Classification Q MMU What is the E clock output timing during the DMA or DMAC refresh cycle? ASCI CSI/O TIMER BUS INTERFACE INTERRUPT WAIT RESET LOW POWER MODE REFRESH CLOCK GENERATOR ASE SD SOFTWARE O OTHERS Applicable Manual Title DMA access memory or I/O duration of E clock output 'High' is identical to the CPU. HD64180 Data Sheet Thus, the output timing is as follows. Other Data M R/W cycle T2↑ ~ T3+ Title I/O read 1st $T_W \uparrow \circ T_3 \downarrow$ I/O write 1st $T_W \uparrow \circ T_3 \uparrow$ Reference Q & A During refresh cycle clock output is held low. COMMENT

No.	QA641-039A/E	,
<u>, П</u>	Software	

Type	HD64180	Div	□4s □8s ■8m □16	M 🗌 Software
			☐ Evaluation kit , Emula	stor SD SBC
Item	Internal I/O and External I/O A	ccess		
Q				Classification
				MMU
	is internal I/O accessed if an e		al I/O address	DMAC
Cor	aflicts with an internal I/O addre	881		ASCI
				CSI/O
				TIMER
				BUS INTERFACE
			,	INTERRUPT
				WAIT
				RESET
				LOW POWER MODE
1				REFRESH
				CLOCK GENERATOR
				ASE
				SD
1				SOFTWARE
			0	OTHERS
A			Aŗ	oplicable Manual
(1)	2.1			Title
(1)	Read case Internal I/O is read.			
(2)	Write case			HD64180 Data Sheet
	Both internal and external I/O the same value.	are w	ritten with	
	the same value.			Other Data
				Title
			Re	eference Q & A
				No.
1				
COMPANY				
COMMEN	1			
1.				

HD64180R/Z, HD647180X

Application Note

Working with Interrupts

Marnie Mar

Introduction

Hitachi's HD64180R/Z and HD647180X devices suit many controller applications that take advantage of the services of these devices' on-chip features. Such applications also require interrupt handling to respond to events occurring in the system.

This Application Note discusses details of the 64180 device's interrupt prioritization and handling capabilities. Included are examples of the use of the on-chip Asynchronous Serial Communications Interface transmit and receive interrupts.

This Application Note supplements information that is available in the 64180 family Hardware Manuals. For more information on interrupts and details on the registers mentioned, please refer to the Hardware Manual for the HD64180R/ Z or the HD647180X.

Enabling Interrupts

A hardware reset disables all interrupts except NMI and TRAP, which are non-maskable. The following steps must be taken in order for the interrupt controller to accept and handle maskable interrupts:

- 1. When using INTO Mode 2 or internal interrupts, load the Interrupt Vector Register (I) with the most significant eight bits of the 16-bit vector table address.
- 2. When using internal interrupts, load the Interrupt Vector Low Register (IL) to access to vector table.
- 3. For external interrupts, set the ITE2, ITE1 and ITE0 bits of the INT/Trap Control Register (ITC) to 1 to enable INT2, INT1 and INT0 respectively.
- 4. For internal interrupts, set the control register bits for the function to enable the required interrupt. For instance, enable the Transmit Interrupt for the Asynchronous Serial Communication Interface (ASCI) by setting bit 0 of the ASCI Status Register (STAT) to 1. Bit 0 is the Transmit Interrupt Enable (TIE) bit.
- 5. Finally, when the required vectors are initialized and interrupts enabled, the CPU must execute the Enable Interrupt

(EI) command. This sets the IEF1 and IEF2 flags to 1. As described in the hardware manuals, IEF1 controls general enabling and disabling of maskable interrupts (enabled when IEF1 = 1). IEF2 manages the occurrence of NMI.

The 64180 maskable interrupts are enabled at two levels, a general enable using the IEF1 bits (controlled using the EI and DI instructions), and an interrupt specific enable in either the ITC or a on-chip control register. This combination of enabling allows the user to control when each interrupt can be accepted. accepted.

Interrupt Service Routines

All vectored interrupts require a user-written interrupt service routine (ISR) to execute the system response to the interrupt. This routine should perform the following steps:

- 1. Save all registers used by the ISR, or swap to the alternate register set using the EXX and EX AF, AF' instructions.
- 2. Perform interrupt handling tasks, polling status bits as necessary to determine the exact cause of the interrupt.
- 3. Restore registers saved or swapped.
- 4. Reenable interrupts using the EI command. When the CPU accepts an interrupt, the IEF1 flag is set to 0 preventing all other interrupts from occurring. The EI command sets this flag back to 1 to allow other interrupts to be accepted.
- 5. Return to the interrupted program using either RET or RETI. Both perform the same function, but RETI is a two byte instruction. Use RETI when interfacing to an external I/O device that decodes RETI to determine the end of an interrupt service.

Interrupt Prioritization

The 64180 interrupts are prioritized in order from highest to lowest as shown in the hardware manual for the particular 64180 device in use. When more than one interrupt occurs at a time, this prioritization determines which interrupt is accepted and serviced.

Once the CPU accepts an interrupt and interrupt service

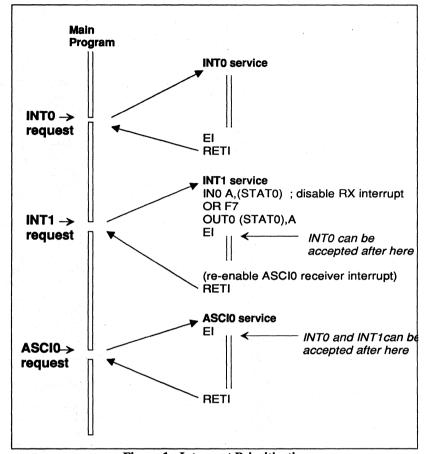


Figure 1 - Interrupt Prioritization

begins, no other interrupt can be accepted until the EI instruction is encountered in the executing interrupt service routine. When EI executes, the IEF1 flag is set, and any new or pending interrupt can be accepted.

Keep this in mind when setting up systems requiring nested interrupts, or higher priority interrupts that should preempt lower priority interrupt service. The EI command can be placed anywhere in an interrupt service routine, with the result of any enabled interrupt being acceptable following EI execution.

The 64180's interrupt prioritization allows the highest pending interrupt request to be serviced, but does not prevent a

lower priority enabled interrupt from being accepted during a higher priority interrupt service routine once EI is executed. To prevent a lower priority interrupt from occuring in such a case, disable this interrupt at the control register level during the higher priority interrupt service routine.

Figure 1 shows an example of allowing higher priority requests to interrupt a lower priority interrupt service routine. In this example, INTO is generated by an external source to signal an alarm condition that should trigger a response in most cases, but sometimes is masked. INT2 should be serviced without interruption, except when external circuitry triggers INTO. In addition, the system receives data through the ASCI under interrupt control.

HD64180R/Z, HD647180X

Once the system has been initialized, only these three interrupts are enabled (INT0, INT1, and ASCI0). Since the INT1 service should not be interrupted by an ASCI0 interrupt, this routine should start by masking the ASCI0 receive interrupt by setting the RIE bit of STAT0 to 0 (this interrupt should be reenabled prior to returning). The next step of this routine, and the first step of the ASCI0 service routine would be to execute the EI command. This allows all other enabled interrupts to be executed.

Asynchronous Serial Communication Interface (ASCI) Interrupts

The 64180 ASCI channels can each generate an interrupt to a separate vector location. The ASCI channels can be programmed to generate an interrupt on either the receiver condition, the transmitter condition, or both.

An interrupt can be generated by the receiver condition when the receive data register is full (RDRF), or an overrun, parity or framing error occurs. An interrupt can be generated by the transmitter when the transmit data register is empty.

If both the receiver and transmitter interrupts are enabled for an ASCI channel, this channel's interrupt service routine must check to see which source caused the interrupt. Do this by polling the ASCI status register.

Interrupt driven serial data transfers can minimize CPU time while maximizing data transfer rates. When using interrupt driven data reception, data can be received into a buffer in memory via an interrupt service routine. This memory buffer can be accessed by the CPU when it is ready to read the data.

This frees the CPU from polling the ASCI receiver, and allows the CPU to work on other tasks.

Interrupt driven data transmission can also minimize CPU involvement. Place data to be transmitted in a buffer in memory, and enable the transmit interrupt. Each time the transmit data register is empty, an interrupt service routine is executed. This routine takes a byte of data from the memory buffer and places it in the transmit data register. The service routine should disable the transmit interrupt when all the memory buffer data has transferred.

Whether to use interrupt driven serial I/O depends on the amount of data being transferred, and the relationship between the data transfer speed and the system operating speed. For slower system speeds and faster data transfer rates, the amount of time required to enter and process an interrupt service routine may offer little benefit over a polling scheme. Consider these parameters when choosing between interrupt driven or polled schemes.

Summary

The HD64180R/Z and HD647180X devices provide users with an interrupt controller with two levels of interrupt enabling, fixed prioritization, and flexibility that allows nested interrupts and preemption of lower priority interrupts by higher priority requests.

Both off-chip interrupts and interrupts generated by the onchip peripheral functions can be handled. The ASCI interrupts, described in detail here, can be used to maximize data transfer rates, while minimizing CPU time for controlling these transfers.

HD64180 Family

Application Note

Demo Board to PC Bus Shared Memory Interface

I. DESIGN NOTES:

The device used to provide shared memory is the Hitachi HD63310R Smart Dual Port RAM (SDPRAM). This device contains 1Kx8 of dual ported memory and 32 control/status registers. The devices is configured as two banks of 512 bytes

starts at FC00 and ends at FDFF, and the second section starts at FE00 and ends at FFFF. Diagram 1 displays these divisions. The PC writes to the same section that the '180 Monitor reads from and the '180 writes to the PC's read section. Both

portions are implemented as circular queues. When the last available memory location in a particular section is filled the next character is put at the start of the section (wrapping around to the beginning).

Two pointers for each section tell the requesting party where to put data or where to get data from. In both shared memory sections these pointers occupy the first four bytes of space available. These two pointers are called STORE and RETRIEVE. Diagram 1 (above) shows where these pointers are located in relation to the rest of shared memory. These pointers only contain the offset from the base of the shared memory section. The '180 always sees shared memory as FC00-FFFF but the PC may map this memory to one of several memory segments. To allow for this difference we only store the offset.

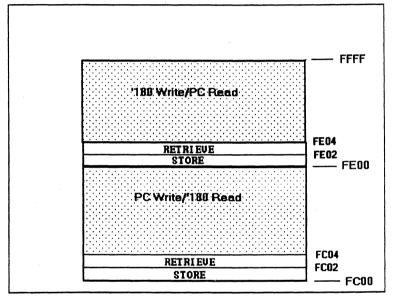


Diagram 1 - Shared Memory Divisions

of memory operating with a non-multiplexed address bus. Bits 0 and 1 of the Command Register (CMD) select whether the lower or upper bank is to be accessed by subsequent reads and writes to the device. The SDPRAM is mapped into the memory space of the PC and the '180 Board. The SDPRAM's control/status registers, including the semaphore registers are mapped into the I/O space of the '180 Board, and into the memory space of the PC. See Diagram 3 for this mapping. For more information on the operation of the SDPRAM, refer to the HD63310R data sheet.

The 1Kx8 of shared memory is divided into two equal portions. If we look at it like the '180 Monitor sees shared memory (occupying addresses FC00-FFFF) the first section

Memory semaphores are used explicitly by both the '180 Monitor and

the '180 Client software. We use two of the eight semaphores available, each one controlling access to one portion of shared memory. The first semaphore controls access to shared memory FE00-FFFF and the second to memory locations FC00-FDFF.

Each time we access shared memory we follow the following steps:

- 1. Get the appropriate memory semaphore.
- 2. Access the appropriate pointer (STORE if you are writing a character, RETRIEVE if you are reading a character).
- Add the contents of this pointer to the base address of the shared memory section you are accessing.
- 4. Perform the operation.

To demonstrate how this works let us assume that we want to write a character, 'X', from the PC to the '180. Let us also assume that our PC maps shared memory to C5C00-C5FFF. The layout of shared memory as seen by both the '180 and PC is shown in Diagram 2 (below).

If the queue is full we keep checking it until there is space available. The only time when this is a problem is when one side is writing to shared memory and the other side is also writing to shared memory (and thus not reading anything from

The first step is to get the write semaphore. For the SDPRAM, this is done by writing a "1" to bit 1 of the Acquire Ownership Register (AQR). Once written, this bit is read back to determine if it is set. If it is set, the semaphore has been acquired. If not, continue to write "1" and read back until the bit reads back set.

Next we read the contents of memory location C5C00-C5C01 to get the 2 byte offset that represents the location where we need to write the character. Let us assume that that offset is C44.

We add that offset to the base address of the PC write section of shared memory, C5000 to get the complete address, C5C44. We store the character, 'X', in location C5C44 and increment the STORE pointer by 1 to obtain C45.

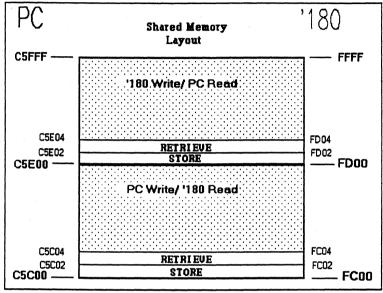


Diagram 2 - Shared Memory as seen by the '180 and the PC

Finally we write the new value for STORE, C45, to memory location C5C00-C5C01 and release the semaphore. To release the semaphore, bit one of the Release Available Register (REL) must be written with "1".

This is a very simplified example. We also need to be concerned with these factors:

- -What if shared memory is full?
- -What if we cannot get the memory semaphore?

What if shared memory is full?

First we need to know how to determine if shared memory is full. Since we already have pointers to the start and end of the circular queue we can compare the memory offsets that these pointers contain to determine if there is space available. In all cases the pointers are updated after the operation is complete, so we do our checking before the operation is done. If the start of the queue is equal to the end of the queue then the queue is empty. If the start of the queue is equal to one greater than the end of the queue then the queue is full.

shared memory). Eventually in this scenario shared memory would fill up and the sending side would stop and wait for available space. When the other side stops writing to shared memory it will read from shared memory, freeing up space.

There is only one specific instance when any type of deadlock can occur. If the '180 is sending a large amount of output to shared memory (such as a large dump) and is not reading any input into shared memory and the PC is also sending a large amount of output to shared memory and was no reading any input into shared memory, and this condition continues until both portions of shared memory are filled up then both sides will be waiting for free space (in a deadlock condition).

This instance is impossible since the only operation that can be run on the PC that sends a lot of data to SM without ever reading from shared memory is the File Transfer function, which requires the '180 to be in the 'load' state (always reading, never writing). So the way we handle the shared memory full condition works.

What if we cannot get the semaphore?

If the semaphore is not available we keep trying to get it until it is. The semaphore is obtained before each character is read

or written and released when that operation is done, so the semaphore is not held for a long time. If we do have to wait it will not be noticeable.

II. IMPLEMENTATION NOTES

1. Automatic Interface Selection

When the '180 Monitor first starts up (or when a RESET is performed) the user is asked to press return to continue. At this point we determine which interface the <return> came from and make it the primary interface. All future output is only sent through this interface (before this point all output is sent to both interfaces).

To use the other interface the user may perform a RESET and press return on the terminal connected to the other interface.

2. Selecting the PC Memory Segment

Since there are several segments that the PC can use to map shared

memory we have to find out which is being used. This is done at the hardware level and at the software level.

At the hardware level the DIP Switch SW3 must have positions 3 and 4 set to indicate the memory segment being used (see the User's Guide to the Shared Memory Interface). At the software level if the memory segment is not the default segment (C500) the user must enter the segment being used as

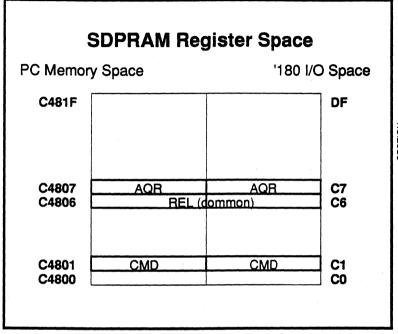


Diagram 3 - SDPRAM register space mapping for registers used by this application

a command line parameter when starting the NPU Client software on the PC.

All four possible mapping schemes are supported as long as both the hardware and software settings are correct.

HD64180R,Z

Hardware Notes

180 Applications Board

Marnie Mar

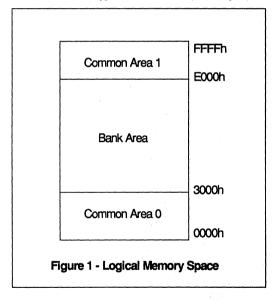
The 64180 Applications Board (Aps Board) is a general purpose CPU board that can be used as the basis for systems designs using Hitachi or other manufacturer's peripheral devices. This document discusses the hardware features of this board, which are summarized below:

- HD64180R or Z operating at 9.216MHz
- SRAM (64K or 128Kword byte-wide device)
- EPROM (16Kbyte or larger device)
- HD63310 Smart Dual Port RAM
- PC bus interface with selectable address space
- RS-232 level interface from 64180 ASCI port to DB-9
- Memory decode logic for 5 additional memory spaces
- I/O decode logic for 6 additional I/O spaces

Logical Memory Map

The 64180's Memory Management Unit (MMU) is used to access a larger than 64Kbyte memory space. The memory space has been defined assuming that the MMU's logical space is assigned at reset, and not changed during the course of program operation. This logical space assignment is shown in Figure 1. Although some of the information to follow assumes that this logical space setup will be used, keep in mind that this setup is defined by software, and can be modified.

Physical Memory Map

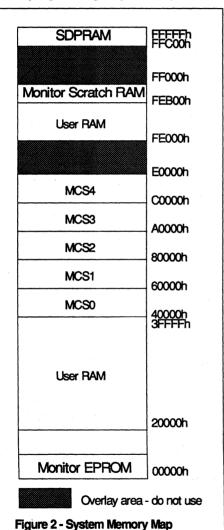

The board's physical memory map is shown in Figure 2. The EPROM space is assigned to low memory, which allows it to be accessible as Common Area 0 at all times. The SDPRAM space is assigned to high memory, and is accessible through Common Area 1.

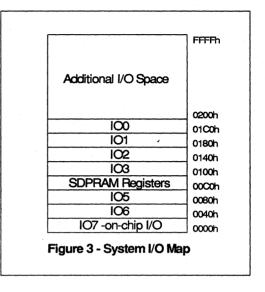
The SRAM, although it consists of a contiguous block of memory, is accessed in two separate areas of the physical memory. See the section on RAM Memory Map for more information.

The board's memory decode logic supports chip selects for five other blocks of memory. These select lines can be tied directly to user add-on hardware.

The SRAM and User Memory spaces are accessed through the MMU bank area. Portions of each section are accessed by programming the MMU's Bank Base Register (BBR) with the information that causes the desired area of memory to be addressed.

The areas indicated by cross-hatching should not be used for User memory space, since the decode logic allows these spaces to be overlayed by Aps Board memory spaces. For instance, if a 27256-type EPROM is used (8000h bytes), the




device will be activated for addresses 0000h-7FFFh, 8000h-FFFFh, 10000h-17FFFh, etc., since the EPROM is chip selected for all physical addresses in the range 00000h-2FFFFh, and the device responds address lines A0-A14.

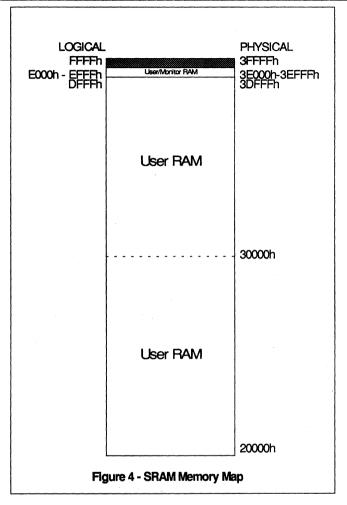
Physical I/O Space

The Aps Board I/O space is shown in Figure 3. The SDPRAM control registers have been mapped into locations C0-FFh. HD64180R/Z on-chip I/O registers are mapped into locations 00-3Fh.

The locations identified as IOO, IO1, etc. are those that can be accessed using chip-select signals generated by I/O decode

logic. The remaining I/O space is available for other system use.

RAM Space

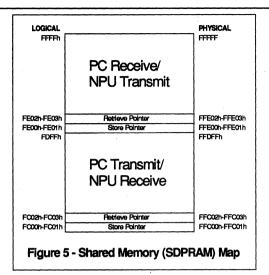

The RAM space is divided into two areas, one accessible through the bank area, and one accessible through Common Area 1. The bank area RAM would most likely be used for download of user code. The area accessed through Common 1 serves two purposes - one area (FEB00h-FEFFFh) is used by the monitor for scratchpad RAM, the remaining area (FE000h-FEAFFh) can be allocated by the user.

If 64Kbytes of RAM are used, physical locations 2E000h-2EFFFh are accessed through Common 1 for scratchpad and high user RAM.

Using the MMU set-up described earlier, physical RAM locations 3F000h-3FFFFh cannot be accessed by the processor, since this area overlays the logical memory space allocated to the SDPRAM. All other RAM areas can be accessed by loading the MMU Bank Base Register (BBR) with the appropriate address. For instance, to access physical locations 20000h-2AFFFh through the logical Bank Area located from 3000H-DFFFh, program the BBR with 1Dh.

SDPRAM Use

The HD63310 is a 1Kbyte Smart Dual Port RAM (SDPRAM) device which is used by the Aps Board for communication



with the host processor of a PC. The RAM is divided into two sections, one for transmissions of data from the Aps Board, and one for reception of data to the Aps Board. The first four bytes of both area are reserved for two 16-bit addresses. One address is a pointer to the next free location in the buffer, the other is a pointer to the next byte to be read from the buffer. These pointers are accessed and updated under program control by both the 64180 and the PC host CPU.

Control of access to each buffer is handled by a semaphore. Two bits of the 63310's Acquire Ownership register (AQR) are each assigned to one half of the DPRAM. The control programs obtain the semaphore before accessing the associated portion of DPRAM by writing a "1" to the appropriate bit of the AQR, and reading back until a "1" is read from that bit. When the access is complete, the program writes a one to the same bit position of the Release/Available Register (REL), which frees the semaphore.

Due to pin limitation, only 9 address lines (for 512Kbytes) are available to access the DPRAM in the non-multiplexed bus mode used. In order to indicate which half of the DPRAM these 9 address lines access, it is necessary to set bits in the 63310's Command Register.

HITACHI

Memory Access Speed

The aps board has been designed to operate with minimum 1 wait state for all memory accesses. The SDPRAM is able to add wait states to bus cycles in the case of access contention. The SDPRAM's READY signal is used to generate an input to the WAIT line of the '180 and the PC bus to extend bus cycles as necessary.

The limiting factor on wait states is during access to the SDPRAM. In order cause the WAIT input on the '180 to add wait states to a cycle, the WAIT line must be pulled low in time to meet the setup required in T2. As the memory decode logic is currently designed with memory chip selects being determined based on the ME signal, it is impossible to pull the WAIT line low in time to increase the length of bus cycles when the SDPRAM is being accessed.

HD64180S (NPU)

Application Note

Using the NPU in AppleTalk Applications

Marnie Mar

OBJECTIVE

Hitachi's HD64180S NPU (Network Processing Unit) features an on-chip Multi-Protocol Serial Interface channel (MSCI) which handles asynchronous, byte-synchronous, and bit-synchronous protocols. This Application Note discusses the NPU's MSCI and its capability to support the requirements of transmitting and receiving data under AppleTalk's Local-Talk Link Access Protocol (LLAP).

AppleTalk's LLAP corresponds to the data-link layer of the ISO-OSI model. The physical data link used by LLAP is a shared link common to all nodes in the network. LLAP's main responsibilities are to:

- perform data transmission and reception
- provide link access control
- provide a way to address nodes

This application note addresses the NPU's hardware capabilities which handle the first two items. Address determination for nodes on the link is handled by high level language software routines, which are described in detail in *Inside AppleTalk*, available from Addison Wesley.

SCOPE

The NPU's features that aid in the implementation of AppleTalk's LLAP will be discussed here, along with details on how to use these features. Programs

enabling the NPU to control these features and enact the LLAP protocol are also discussed. Program examples for receiving and transmitting frames using the LLAP protocol are given in the appendices.

This Application Note is based on routines that were written using the LLAP procedural model given in *Inside AppleTalk*. These routines were written in C and assembly language, and were tested by executing them on an NPU development board connected to an Apple Macintosh using the LocalTalk Connector Cable. LLAP Peek and Poke routines, available from

Apple Developers Association, were run on the Macintosh to allow the Mac to send and receive individual LLAP frame dialogs.

A brief description of LLAP is given in Appendix A. For more information on AppleTalk or LLAP, please refer to *Inside AppleTalk*.¹

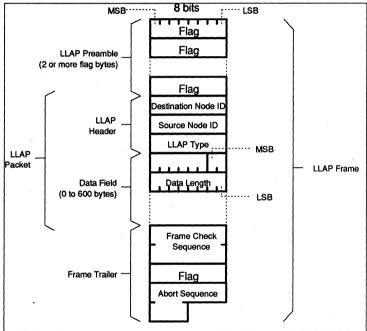


Figure 1 - LLAP Frame

A brief description of the NPU features as they relate to this application is given in Appendix B. For detailed information on the NPU, please refer to the HD64180S NPU Hardware Manual.²

NPU IMPLEMENTATION OF LLAP

The LLAP protocol requires that transmitted data be packed into frames, which are then unpacked by the receiver. The NPU's hardware has the capability of handling much of this packing and unpacking without additional software overhead. See Figure 1 for the LLAP frame format.

HITACHI

Section

The LLAP protocol defines application programs that take care of acquiring the bus prior to transmit, transmitting frames, and receiving and processing frame data. The NPU's CPU core can execute these programs with the help of the on-chip MSCI, timers, and DMAC.

The NPU's MSCI contains a rich set of features that can be enabled and manipulated by programming bits in a set of control registers associated with this channel. These features are described below as they relate to NPU LLAP operation.

Bit Synchronous Operations

The MSCI channel can be programmed to operate in a bitsynchronous mode which supports HDLC-type frame transmissions. The features of this mode (optional Flag pattern output on idle, optional address checking on receive, CRC generation/checking support) directly support the requirements for LLAP frame communications.

FM0 encoding

The MSCI can be programmed to transmit and receive data with FM0 type coding (see Figure 2). Other encoding options are NRZ, NRZI, Manchester, and FM1 types.

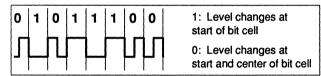


Figure 2 - FM0 encoding

To specify the encoding type desired, the user would program the NRZFM, CODE1, and CODE0 bits of MSCI Mode Register 2 (MMD2).

Idle/Flag Pattern

Whenever the MSCI transmitter is enabled but no data is available for transfer, it is said to be in the Idle mode. The MSCI supports the output of Flag bytes during idle transmission times if the Idle State Control (IDLC) bit of the MCTL is programmed to "1" (causing an idle pattern to be transmitted during idle states), and the idle pattern is written to the MSCI Idle Pattern (MIDL) register. For LLAP and many other bitsynchronous protocols, this pattern is defined to be 7Eh.

Error Checking

The MSCI has built in CRC generation and checking capabilities which directly supports the CRC-CCITT algorithm specified by LLAP. In order to enable CRC controller operation, the CRC Calculation Code (CRCCC) bit in MMD0 should be set high, the CRC1 bit (bit 1) should be set to 1 to select CRC-

CCITT, and CRC0 (bit 0) should be set to 0 to indicate an initial value of all 0's.

Address Checking for Received Frames

Once the MSCI receiver has detected a Flag pattern, it is prepared to receive the LLAP frame that follows. The addressing scheme used by LLAP defines that the first non-flag byte received is a destination address byte, which indicates which node the data is intended. The NPU's Address Field Check capabilities can be used to eliminate the need to check the address of each incoming frame under program control. To cause address checking to occur, MMD1 should be programmed with 40h to cause Single-byte addresses to be checked. MSA0 should be programmed with the node's own address, as determined by the LLAP node initialization procedure. This will cause the MSCI to compare the first byte (destination address byte) of all incoming frames with the contents of MSA0 (node's own address) to determine if it should continue to receive the frame data.

If the address bytes match, the frame data will continue to be received into the MSCI receive buffer to be placed in memory under DMA or program control. If not, the MSCI will re-enter

the Flag wait state.

The NPU recognizes destination bytes of FFh to indicate broadcast frames, and accepts the data of any frame with this destination byte.

ADPLL: Generation of Transmit and Receive Clocks

Since LLAP uses FMO data encoded with clock information, the receiver node must extract the clocking information from the incoming data in order to read this data. The NPU's Advanced Digital Phase Locked Loop circuit (ADPLL) handles this task.

Receive Clock Extraction

To use the ADPLL clock extraction function, an operating clock with frequency 8, 16 or 32 times the bit rate must be used. This operating clock can be generated by the baud rate generator, or can be input via the RXCM input line from and external clock.

The ADPLL operating clock's bit rate is specified in MMD2. MMD2 would be programmed as follows:

MMD2: C0h (1100 0000)

to select FM0 encoding, $8x\ ADPLL$ operating clock, and full duplex communications.

If the NPU system clock frequency is a multiple of the 230.4 Kbit per second bit rate, then the baud rate generator can be used to provide the ADPLL operating clock. Note, however, if the BRG is used to generate the transmit clock, it cannot be used for the ADPLL operating clock.

If the BRG is being used for the transmit clock, or if the NPU system clock frequency is not a multiple of 230.4 KHz, then an external clock such as a TTL clock oscillator must be used.

To specify that an external clock input on the MRXC pin provides the ADPLL operating clock, program:

MRXS: 70h (0111 0000).

To specify that the BRG generates the ADPLL operating clock, with NPU operating clock of 9.216 MHz, program:

MRXS: 60h (0110 0000) MTMC: 05h (0000 0101)

This would cause the BRG to generate a clock with frequency of 9.216/5 = 1.8432MHz (which is equal to 230.4KHz * 8).

Once the ADPLL has been initialized to handle clock extraction, it must be enabled to search for data from which to extract the clock. This search state is entered by writing the Enter Search Mode command into the MSCI command register. The state of the ADPLL can be determined by reading the Search Mode (SRCH) bit of MST3. If this bit is set, the ADPLL has not detected any data on the line. If the bit is cleared, a transition on the receive data line has been detected. The Flag Detection (FLGD) bit of MST1 is set to 1 when a Flag pattern has been detected on the receive line, which indicates another node is preparing to transmit a frame of data.

Clocking Transmit Data

The NPU's on-chip baud rate generator can be used to generate the transmit data clock if the NPU system clock is a multiple of LLAP's 230.4 KBps transfer frequency. If a 9.216 MHz system clock is used (crystal frequency of 18.432 MHz), the NPU's BRG could be programmed as follows:

MTXS: 40h (0100 0000) MTMC: 28h (0010 1000)

which would result in a baud clock of (9.216/28h)/1 or 230.4KHz.

However, if a 10MHz system clock is used, which is not a multiple of 230.4 KHz, an external clock operating at a frequency of 230.4 KHz must be placed in the system. In this

case, the MSCI should be programmed:

MTXS: 00h

to indicate that a clock attached to the TXCM input pin should be used to provide the transmit clock. The MTMC does not need to be programmed, since the baud rate generator is not being used.

Once a transmit clock has been specified, the task of encoding the clock into FM0-type data can be taken care of by the MSCI. To cause this to occur, program the following:

MMD2: 110x xxxx

with the x-bits defined for the desired ADPLL and Channel Connection operation.

Bit stuffing/zero insertion

A LLAP receiver detects the end of a frame whenever a bit sequence matching a flag byte is received (a "0" bit, followed by 6"1" bits). To prevent valid frame data from being detected as a flag sequence, the MSCI hardware will automatically insert a "0" bit whenever 5 "1" bits have been transferred in sequence in the data stream. This capability is referred to as zero-insertion or bit stuffing. The MSCI receiver hardware performs the reverse of this function, stripping out any "0" bit that follows a sequence of 5 "1" bits.

MSCI/DMA operation in bit-synchronous mode

To minimize the load on the processor, the MSCI and DMAC can operate with data read by the receiver being stored to memory under DMA control without processor intervention. When the MSCI determines that an incoming frame is addressed to itself, the data is placed in the MTRB, which triggers the DMAC to cause this data to be transferred to memory. The CPU is notified when a full frame of data has been received by enabling an interrupt when the End of Message (EOM) condition in the DMAC's DSR0 becomes true (by setting the EOME bit to "1" in DIR0).

MSCI Initialization Summary

The following summarizes the non-ADPLL MSCI registers that must be initialized to allow the NPU to transmit and receive frames under LLAP protocol:

- MSA0: program with own node address
- MIDL: program with \$7F (idle pattern)
- MMD0: program with \$86 for

Bit-sync, HDLC mode

CRC Calculation Enable

CRC-CCITT calculation, initial values 0s

- MMD1: program with \$40 for Single address, 1 byte long

- MMD2: program with \$C0 for FM0-type encoding

 MCTL: program with \$31 for TXRDY true when transmit buffer empty transmits FCS and flag on Underrun transmits flag during idle

- MCMD: programmed with commands as required:
TX enable to enable transmissions
RX enable to enable reception

The ADPLL registers should be initialized as described above.

This initialization prepares the MSCI to transmit and receive

LLAP frames. Transmission and reception are handled by application programs executed by the NPU's CPU which control MSCI operation. These programs may take advantage of the NPU's DMA controller, which can be initialized to transfer frame data between the MSCI and memory without the need for CPU intervention.

method is by detecting that the link is not inactive, referred to as a Carrier Sense condition. The second method is by detecting a Missing Clock condition. Prior to sending an RTS frame, LLAP nodes transmit a synchonization pulse which is defined as a transition on the link followed by an idle period greater than 2-bit times. This transition is detected by all receivers as a clock, but when the idle period is occurs, receivers conclude that they have lost the clock, or detected a missing clock. This missing clock detection is a fast way of determining that a sender is using the shared link.

Carrier Sense

This condition corresponds to the Flag Detect (FLGD) status bit of the MSCI Status Register 1 (MST1). This bit is set when a flag pattern has been detected on the link and synchronization

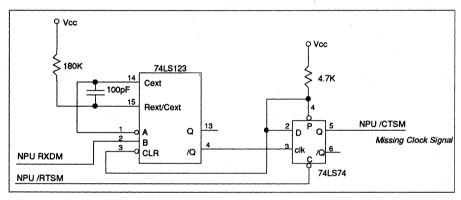


Figure 3 - Missing Clock Detect Circuit

ACCESSING THE SHARED LINK

The LLAP physical media consists of twisted-pair cable that carries both transmit and receive data between nodes. Since transmit and receive data from each node share the same transmission media, a node's transmitter must be disabled whenever the node is receiving data or listening for data on the bus. On the NPU Development Board, the RS-422 device that drives the LLAP link must be disabled along with the MSCI transmitter whenever the node is not sending data to the link.

Since LLAP is a shared-link protocol, any node on the link must not transmit data unless it has made an attempt to determine that no other nodes are transmitting. At all times that a node is not transmitting, it must be listening (receiver enabled). This would allow the node to determine that the link is free, or to determine if there is data to be received.

Checking the link for other transmitters

LLAP uses two methods to determine if the link is free. One

with an external transmitter has been established. It is cleared when the receiver is reset after a frame has been received.

Missing Clock Generation

A missing clock can be generated by enabling then disabling the transmit hardware line driver. A software timing loop ensures that one bit time passes between enable and disable. Receivers on the link detect this signal as an attempt to transmit by another node.

Missing Clock Detection

The detection of the Missing Clock signal is not supported by the NPU hardware. However, it can be supported using a simple external circuit. An example circuit based on a one-shot causes an indication to the MSCI that a missing clock has occurred. This signal is input on the RTS line of the MSCI (the modem control lines are not used by LLAP). Resetting the missing clock indication is done using the CTS line of the MSCI. This circuit is shown in Figure 3.

RECEIVING LLAP FRAMES

The LLAP protocol defines that all nodes are listeners (receiver circuitry of these nodes is enabled) except when a node has data to transmit and has determined that the link is free. To accomplish this, the MSCI receiver is enabled at initialization, and is only disabled when the node is transmitting data.

Following the reception of a frame, the receiver must be prepared to receive subsequent frames. An Rx Reset command should be issued to the MSCI CMD register to clear the receive buffer and status register values. The Enter Search Mode command should also be issued to cause the ADPLL to search for the next frame of data.

Once properly initialized, the MSCI can receive broadcast frames and frames whose addresses match the MSA0 value. If the frame is accepted, all bytes of data following the Destination Address byte are received and placed into the receive FIFO to be read from the MTRB (refer to LLAP frame information in Appendix A). An NPU program should be written to read these bytes from the MTRB (either directly or under DMA control), and process the frame data.

If DMA control is used to receive data, processing does not need to being until the entire frame has been received. This End Of fraMe (EOM) condition can be determined either by using the EOM status of the DMAC (bit 6 of the DSR) to cause an interrupt, or by CPU polling.

Search Mode

The receiver detects the start of the frame when a Flag byte is detected. Subsequent Flag bytes are ignored.

Address Checking

The first non-Flag byte received is taken to be the Destination Address byte. If this byte contains \$FF, this frame is accepted by the NPU hardware as a broadcast frame. Otherwise, if this byte matches the value programmed in the MSA0 register, then this frame is accepted as a frame addressed to the node. In all other cases, the receiver returns to searching for a Flag byte.

DETECTING ERRORS IN RECEIVED FRAMES

LLAP specifies a number of error conditions that should be detected and acted upon in the course of receiving frames of data. These conditions include overrun, bad frame CRC, bad frame type and bad frame size (data greater than 600 bytes).

CRC checking

The MSCI receiver determines that the end of a frame has been received when a flag byte is detected in the receive data stream. When this occurs, the hardware CRC calculation is automatically compared with the CRC information received in the

frame. If the values do not match, an error is detected. Error information is reflected in the CRCE bit of MST2 when the byte preceding the CRC information (the last data byte of the frame) is read from the MTRB. LLAP routines poll for this error condition following the receipt of a frame.

Overrun

An overrun error can be automatically detected by the hardware. Detection of this error can occur by polling the OVRNF bit of the MSCI Frame Status Register (MFST). This register stores the status of the last frame received in the bit-synchronous mode, and is reset by when the receiver is reset following the receipt of a frame.

Bad frame size

LLAP defines that frames should contain 0 to 600 bytes of data. Frames larger than 600 bytes should cause a bad frame size error. The NPU can detect this condition in software by counting the number of bytes in a received frame.

Bad frame type

LLAP defines frame type field values of \$00 to \$80 to signify data frames, type \$FF for broadcast frames, and types \$81,\$82, \$84, and \$85 for ENQ, ACK, RTS, and CTS frames, respectively. Any other value in the frame type field should generate an error. The NPU routine that handles receiving of data frames reads this type field, and returns an error indication if a non-valid value is found.

TRANSMITTING FRAMES

Generating LLAP Frames For Transmission

In order to transmit frames under LLAP protocol, the NPU must be initialized to place the information of the LLAP packet into the MTRB under program or DMA control. Once this preparation is done, the NPU's transmitter should be enabled.

Flag Preamble

LLAP defines that at least two Flag bytes preced the destination address byte when a frame is transmitted on the link.

Once the MSCI transmitter is enabled, the MSCI will transmit the idle pattern (\$7E, as programmed in the MIDL register) until transmit data is written to in the MTRB. The NPU timers or a timeout loop can be used to wait two byte times (69.4 uSeconds at 230.4Kbps) prior to placing data in the transmit buffer. This causes two Flag bytes to be output prior to the first byte of the LLAP packet.

Frame data transfer

Once this wait time has elapsed, the NPU should continue to place LLAP packet information bytes in the MTRB. Prior to sending the last data byte of the frame, an End-of-message

command should be issued to the MCMD. This informs the MSCI that the next byte transferred to the MTRB is the last character of the frame. Under Chained-block transfer DMA operation, EOM information is automatically passed to the MSCI by the DMAC.

CRC - generation

LLAP defines that an error checking byte be appended to transmitted frames to allow receivers to determine if data packets were correctly received. The EOM indicates the last byte of the frame being transmitted. Following this byte, the two generated CRC bytes are transmitted.

Flag Trailer

Following the transmission of the Frame Check Sequence (FCS), a flag byte is automatically transmitted.

Abort Trailer

LLAP protocol expects the Flag byte in the frame trailer to be followed by an abort sequence consisting of 12 to 18 one-bits. Once the transmission of a frame (including CRC bytes and trailing flag) has been completed, the NPU should disable the MSCI transmitter. The transmit drivers should be left enabled for approximately two byte-times to cause the abort sequence of 12 to 18 "1" s to be output to the link. After this time, the transmit drivers should be disabled, which frees up the bus.

Inter-Frame and Inter-Dialog Gap Timing

The RTSframe - CTSframe - Dataframe interchange between two nodes on the network is referred to by LLAP as a dialog. LLAP defines that the maximum time lapse or gap between these frames must be less than 200 microseconds (uS). If greater than 200 uS elapses between frames, it is assumed that a collision occurred, and the transmitter defers and attempts to reinitiate the dialog at a later time.

The gap between dialogs on the link is defined to be at least 400 uS. If a transmitter detects that the line is idle for greater than this amount of time, it can assume that no dialog is occurring on the link. The node will wait some additional delay time, and if the link remians inactive, it can transmit a RTSframe in an attempt to take over the link for a dialog.

These gap times can be determined by the on-chip timers. With an operating clock of 9.216 MHz, elapsed times of 200 and 400 uS can be counted out using the timer base clock of 9.216 / 8, or 1.152 MHz, divided by 8 (resulting in a count frequency of 144 KHz). 200 uS would elapse after a count of 29, and 400 uS would elapse after a count of 58.

A transmitter waiting to access the link would perform the following steps:

- 1. Initialize the TCONR for the minimum IDG time plus some additional time, as determined by the LLAP algorithm
- 2. Initialize the TCNT to 0 and enable count
- 3. Poll the CMF bit of the TCSR, and poll the link
- 4. If activity is found on the link, wait for the link to become idle and go back to Step 1.

If count match occurs and no activity on the link is detected, disable count and continue preparations for transmitting a frame.

A transmitter waiting for a response to an RTSframe would perform the following steps:

- 1. Initialize the TCONR for the maximum IFG time
- 2. Initialize the TCNT to 0 and enable counting
- 3. Poll the CMF bit of the TCSR, and poll the link
- 4. If activity is found on the link, receive it and determine if it is the CTS frame and proceed

If count match occurs, disable count and assume a collision occurred

PROGRAMMING AND TESTING LLAP ROUTINES Description of Routines and Testing

Inside AppleTalk contains a procedural model of LLAP written in pseudo-code. In order to demonstrate the NPU's ability to control a LLAP node, some of these routines were coded in C and assembler for the NPU, and executed using an development board designed around the NPU processor.

Hardware

The NPU Development Board is a Hitachi product which allows users to evaluate NPU software in a native environment. There is a small amount of prototype area on the board which allows users to also evaluate hardware interfaces to the NPU. The missing clock circuit mentioned above was built in this prototype area.

The board consists of an NPU, an optional ROM debug monitor, RAM and ROM space for code development, an off-chip UART for performing communications without using the on-chip channels, and driver and receiver circuitry to interface the serial channels to connectors going off-board.

RS-422 drivers/receivers

The MSCI port of the NPU can be interfaced using RS-232 or RS-422/485 signals. An on-board hardware switch selects which interface is active. Since LLAP requires RS-422 type communications, this feature is selected. The RS-422 transmit driver is controllable by writing to a hardware register in the board's I/O space. By writing to this register, an application

HD64180S

can turn on this driver to output information to the link, and can turn off the driver when the node is finished transmitting on the link. Since LLAP defines a shared link, only one transmitter can be active on the link at any time.

AppleTalk Cabling

The RS-422 signals that drive transmit data from and send receive data to the MSCI are carried off-board by a multi-pin header. These pins must be connected to an AppleTalk Local-Talk Connector kit. A simple way to do this is to build a cable

from the pin header to a DB-9 type female connector. This DB-9 can directly interface to the 9-pin plug of a LocalTalk connector kit. See Figure 4 for the pin-out for this cable.

Software/development tools

The software for this Application Note was generated using a 64180 C Compiler and Cross Assembler. Generated code was executed using the Hitachi 64180 ASE emulator interfaced to the NPU Development Board as a target system. The code examples were executed out of zero wait state ASE emulation memory.

Code execution speed requirements

At the start, all routines for implementing LLAP using the NPU were written in C. After some testing, however, it was determined that the C code generated was too slow to meet the requirement of IFG time of 200 uS. This IFG time must be met between the time a node finishes sending an RTS frame, and the time the addressed node begins sending an answering CTS frame. Because of this time requirement, the routine which handles receiving frames is modified from the specifications shown in Inside AppleTalk. In addition, portions of this routine were written in assembler to speed up execution.

These modifications removed some of the levels of subroutines by eliminating some of the code modularity. Instead of calling many subroutines that have specific functions, these functions were incorporated in "straight-line" code. This eliminated the time-consuming subroutine entry/exit code generated by the C compiler. Also, by accessing hardware registers using in-line assembly code rather than relying on C language subroutines, more execution time was cut.

DMA usage

The example routines used to implement the AppleTalk LLAP use the NPU's Chained Block Transfer mode of DMA opera-

tion. These routines use memory buffers to hold data to be transmitted and data that is received. These buffers are identified to the DMAC in a chain of descriptors (one descriptor for each buffer), which each consist of 10 bytes of information. This information includes a pointer to the memory buffer, the size of the buffer, status of the buffer, and a pointer to the next descriptor.

Transmitting frames under DMA control

In order to transmit a packet of data over the link, packet data

	LocalTalk DB-9 Connector Pin	NPU Board Header J485 Pin	
RXD+	8	6	+ pin RXDM receiver
TXD+	4	4	+ pin TXDM driver
RXD-	9	24	- pin RXDM receiver
TXD-	5	22	- pin TXDM driver

Figure 4 - LocalTalk Connections

must be placed in a LLAP frame. This frame must also be preceded by a LLAP RTS frame in a dialog in order to establish the proper transmission protocol.

To cause this sequence to occur under DMA control, the buffer pointed to by the first transmit descriptor should hold the RTS frame information. The next descriptor in the chain should point to the buffer which contains the data to be transmitted. The application program which fills this buffer should provide the appropriate LLAP header information (destination ID, source ID and LLAP type bytes), followed by the data length (2 bytes) and the data to be transmitted (up to 600 bytes). The MSCI will automatically transmit Flags prior to the frame, and the Frame check sequence following the frame.

DMAC Channel 1 (which is internally connected to the MSCI transmitter) should be initialized for chained block transfer mode, single frame. This will cause a single frame to be transmitted each time the DMA channel is enabled. Once the DMAC channel and the descriptor chain have been initialized, the LLAP handling program would enable DMA channel 1, which causes the RTS frame to be sent. The LLAP program then polls for receipt of a CTS frame. If one is received, the

DMAC is reenabled to transmit the data frame. If the CTS frame is not received within the inter-frame gap time, a collision is assumed to have occurred, and the program prepares to resend the RTS frame and the data frame after a time interval determined by the LLAP algorithm.

Receiving frames under DMA control

For receiving data from the link, a chain of descriptors pointing to a set of buffers in memory would be initialized at system start-up. These buffers would be arranged in a circular fashion to allow them to be reused as receive data is read out of them by the application program.

In the case of receiving data, the DMAC channel 0 is initialized to operate in chained-block mode, with multi-frame operation. Once initialized in this manner, DMA channel 0 (which is internally connected to the MSCI receiver) is always prepared to receive data frames.

The number and size of receive data buffers are parameters that must be chosen carefully. If too few buffers are specified, it is possible that an overrun condition can occur with respect to the DMA receive buffers, and received data would be lost. If too many buffers are specified, system memory may need to be larger than is really required.

DMA buffer sizing

The size of buffers is also important for efficient operation. Unlike with transmission, where buffer sizes can be specified according the size of frame to be transmitted, receive frame sizes are only known once the frame has been received. If the buffers are allocated equal to the largest possible frame, some space will usually be wasted. If buffers are too small, then more time than necessary will be taken up by buffer switching, where the DMAC must go out and read the next buffer descriptor to find out where to place incoming data.

If memory space is not a problem, receive buffers can be specified to be as long as the longest possible frame. For LLAP, this would be 605 bytes. In this case, buffer switching would never have to occur in the middle of a received frame.

If a more efficient memory scheme is required, then set up the receive buffers to be the size of the average frame. Then frames less than half the size of the maximum would not waste as much space. However, frames longer than this would require a buffer switch partway through the frame to continue storing the data to a new frame.

End of frame conditions

Through use of the status byte of the descriptor, the DMAC keeps track of whether the buffer pointed to by the descriptor

contains the end of a frame. For transmissions, the LLAP program should write the descriptor with a status byte indicating whether the buffer associated with the descriptor contains the end of frame. For receptions, the MSCI indicates to the DMAC if the end of frame has been received (indicated by the receipt of a Flag byte), and the DMAC then writes this information to the descriptor associated with the receive buffer that contains the end of the frame.

Initializing the DMAC

To initialize the DMA controller to be used in chained-block transfer mode with the MSCI for LLAP, the following registers should be written with the given values:

CPB (SARB): \$00 locates Chain Pointer Base with 0000 as the four high order bits of the 20-bit address

CDAL0: \$00 CDAL1: \$00 CDAH0: \$04 CDAH1: \$03

locates Chain Pointer at \$400 for transmit and \$300 for receive initially, which are the addresses of the first descriptors in each chain

EDAL0: \$40 EDAL1: \$70 EDAH0: \$40 EDAH1: \$30

identifies the end of the Chain of descriptors

DMRA1: \$98 (1001 1000) for transmit
DMRA0: \$96 (1001 0110) for receive
DIR0: \$40 (0100 0000) for receive
DIR1: \$00 for transmit
causes interrupt to occur when end of frame
received

PCR: \$00

Channel 0 (receive) has priority over channel 1

To complete initialization of the DMAC, the descriptors in the descriptor chain must be initialized with chain pointer and buffer pointer addresses. For transmit descriptors, buffer size and status should also be written to the descriptors. For receive, status and size will be written by the DMAC once the buffer data has been received.

For receiving data through the MSCI, the DMAC only needs to be initialized once. Since channel 0 is initialized for multiframe mode operation, DMA transmission over this channel never terminates. Transmission is only active, however, when the MSCI receiver receives data inputs.

For transmitting data through the MSCI, the DMAC is initial-

Application Note HD64180S

ized and enabled prior to the first frame transfer. Since channel 1 is initialized for single-frame mode operation, DMAC transfer terminates when the end of a frame has been transferred. DMA channel 0 must be reenabled for each frame transfer by placing the frame data in the buffer pointed to by the current descriptor, and writing \$72 (to clear any flags and to enable DMA) to DSR0.

Hardware interface routines

Inside AppleTalk provides LLAP Access Control Algorithms in Appendix B, which defines a specification for AppleTalk LLAP implementations. Within these specifications are references to hardware-specific routines that must be available to LLAP procedures.

These hardware interfaces are declared as functions and procedures that interact with the hardware, in most cases by reading or writing a status bit or pattern into a hardware register. These declarations, and the NPU MSCI features used to implement the associated functions and procedures are listed in Table 1.

Transmit and Receive Routines

Routines written to transmit and receive frame data deviate from the proceedural model in that they use the NPU's chained-block transfer DMA capabilities. Instead of transmitting and receiving bytes under program control, the DMAC sends or receives a frame at a time without processor intervention. Other deviations from the model are in the area of handling timing delays (software timing loops or the on-chip timers are used to cause timing delays instead of a system RealTimer function).

Bit and Byte Timing

Since bit and byte times are relatively short compared to the resolution of the on-chip timers, timing of these shorter intervals can be handled using software delays.

For instance, to generate the 1-bit time period that the transmit driver should be enabled to generate part of the Missing Clock signal, the following code section can be used:

enable transmit for 1 byte time (flag)

LD	A,4	;counter for loop
LD	B,TXDen	- -
OUT0	(NPUreg),B	enable transmit drive;
LD	B,TXen	
OUT0	(MCMD),B	;enable transmit
ρ 3∙		

TLOOP3:

SUB 1 ; 6 states JR NZ,TLOOP3 ; 6/8 states

This loop consists of ((3*12) + (1*14)) = 50 clock states. At 10 MHz, executing this loop would result in a 5 uSec delay, which is approximately the one bit time (4.34 uS) at 230.4KBps) required.

Testing LLAP routines

Once the LLAP routines were written, they were tested for their ability to transmit and receive data over the LocalTalk Link by connecting the NPU board to a MacIntosh using a LocalTalk Connector kit. Routines provided by Apple Developers Association allow the Mac to scan the link for frames being transmitted, and to send data frames prefaced by an RTS frame. Using these routines, and those written for the NPU, frames of data can be exchanged between the Mac and the NPU Demonstration Board.

Summary

The Hitachi HD64180S Network Processing Unit's feature set is usefule in implementing AppleTalk's LocalTalk Link Access Protocol. The device's Multi-protocol Serial Communications Interface operating in bit-synchronous mode automatically performs much of the frame handling required to implement this protocol. The on-chip DMA controller assists in transferring frame data between the MSCI and memory without need for direct program control.

A procedural model for the software required to implement LLAP control programs are available in Inside AppleTalk. This procedural model is easily converted to C language, and compiled to NPU object code using cross-software tools.

Once programs are converted to C, they can be carefully examined for areas where timing constraints may cause problems, such as in the area of meeting inter-frame gap times during LLAP dialogs. These areas can be examined for execution speed, and can be recoded as straight-line code or in assembly code if necessary.

References

- SIDHU, S.S., ANDREWS, R.F., and OPPENHEIMER, A.B.: Inside AppleTalk, Reading, MA: Addison Wesley, 1989.
- 2. HD64180S NPU/Hardware Manual, #U16. Available from Hitachi Sales Offices, Sales Representatives, and Distributors.

AppleTalk and Macintosh are registered trademarks of Apple Computer, Inc.

LocalTalk is a trademark of Apple Computer, Inc.

NPU Implementation of LLAP Hardware Requirements

CarrierSense indicates that the hardware is sensing a frame on the link; FLGD (bit 4) of MST1

RcvDataAvail indicates that a data byte is available; RXRDY (bit 0) of MST0

rxDATA identifies the next data byte available (MTRB register)

EndOfFrame indicates that a valid closing flag has been detected; EOM (bit 7) of MST2

CRCok indicates that the received frame's FCS is correct (when EndOfFrame is true); complement

of CRCE (bit 2) of MST2

OverRun indicates that the code did not keep up with data reception; OVRN (bit 3) of MST2

MissingClock indicates that the hardware has detected a missing transition on the link; /CTS (bit 3) of

MST3 (due to user added circuit)

setAddress sets the hardware to receive frames whose destination address matches MvAddress:

ADDRS1, ADDRS0 (bits 7,6) of MMD1

enableTxDrivers enableRxDrivers control the operation of the RS-422 drivers; RTS (bit 0) of MCTL

enableTx control the operation of the data transmitter

disableTx by means of issuing commands to the command register

txFLAG causes the automatic transmission of a flag at frame opening when Tx Enable is set;

however, code must delay long enough to cause the extra flag; the trailing flag is generated

automatically at frame end as part of the Tx Underrun processing (relys on the NPU's

transmission of flag pattern during idle state operation, IDLC bit 4 of MCTL)

txDATA causes transmission of a data byte (MTRB register)

txFCS causes the automatic transmission of the FCS by letting Tx Underrun occur; UDRNC (bit

5) of MCTL set to 1 causes FCS and flag transmission following underrun

txONEs causes 12-18 one-bits (1's) to be sent by disabling the NPU transmitter while leaving the

RS-422 drivers on and delaying

resetRX control the receiver by means of the Rx Enable command (resetRX

enableRX should also flush receiver FIFO)

disableRx

resetMissingClock causes the MissingClock indication to be cleared by a Reset Missing Clock command; RTS

(bit 0) of CTL (ASCI port RTS line)

Table 1 - LLAP Hardware Interface Routines for NPU

Appendix A - A BRIEF LLAP OVERVIEW

LocalTalk link

LLAP uses RS-422 signalling for transmission and reception over the LocalTalk link. This method provides differential, balanced voltage signalling over a maximum of 300 meters. The link consists of twisted pair cable shared by all nodes.

Data is encoded on the link using a self-clocking technique known as FM-0. In this technique, clocking information is encoded in the transmitted data stream. Each bit cell in the serial data stream contains a transition at each end that provides timing information known as one bit-time. Zeros are encoded by adding a transition midway through the bit-time, as shown in Figure 2.

Link access

The LLAP protocol uses a CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) scheme for controlling access to the shared link. This algorithm attempts to prevent more than one transmitter from using the link at a time. The protocol's handshaking method ensures that if a collision between transmitters occurs, one or both will back off and retry at a later time.

The collision avoidance scheme requires two items of information from the system hardware - an indication that a frame has been detected as being transmitted by another node on the link. and an indication that a missing clock has been detected.

Because LLAP is a shared link protocol, transmitters of nodes on the link are disabled until it is determined that no other node is transmitting on the bus. Once a node has determined the link is free, further collision avoidance takes place in the form of a handshaking method in which a node sends a Request To Send (RTS) frame addressed to the intended receiving node. If a Clear To Send (CTS) frame is received by the sender within the Inter-Frame Gap (IFG) time, the sender assumes that the link has been made available to itself, and sends the data information. If the CTS frame is not received withing the allotted time. it is assumed that a collision occurred, and the sender defers for awhile before attempting to regain control of the bus.

The collision avoidance procedure described here can be summarized in the following steps:

- 1. Check if a frame transmission in occurring on the bus If so, delay until maximum delay reached or frame ends If maximum delay reached, reset receiver (assume error)
- 2. Reset Missing Clock signal
- 3. Wait for the minimum IDG time to pass or until frame transmission sensed

- 4. If frame transmission sensed, start over from 1.
- 5. Wait some additional time (determined by LLAP algorithm)
- 6. If frame transmission sensed or Missing Clock detected, then

increment count of defers wait for some time (determined by LLAP algorithm) if excess defers, give up with error message

7. If no link activity detected

send RTS frame

if CTS frame not received, then assume collision, and start from 1.

else send data frame

An AppleTalk Local Link Access Protocol (LLAP) frame is a High-level Data Link Control (HDLC)-type frame is a state of a LLAP packet appears trailer, as shown in Figure 1.

LLAP defines that a frame transmission consists of a frame preamble of at least two flag bytes, followed by the LLAP packet, which is followed by a flag byte and a string of "1" bits. Flag bytes are defined by the protocol to contain the bit pattern 7Fh (0111 1110b).

The LLAP packet consists of the LLAP header and an optional data field. The LLAP header contains three bytes: the Destination (receiver) node ID, the Source (transmitter) node ID, and the LLAP frame type. Each node on the AppleTalk network is assigned an exclusive node ID. This ID is used by each node to determine if a frame on the network is intended for that node, by comparing the Destination node ID of the frame with it's own node ID. No node is assigned the ID of \$FF. When a frame with Destination ID of \$FF appears on the network, all nodes assume a broadcast is being made, and all nodes accept and process such a frame.

Frame types range from \$00 to \$FF. Values in the range \$80 to \$FF identify LLAP control packets. Such packets do not contain a data field. Frame types in the range of \$00 to \$7F are used for LLAP data packets, with the type field specifying the LLAP type of the client to whom the data should be delivered.

If the frame contains a data field, this field follows the byte containing the LLAP type field. This data information starts with a 10-bit value (in the two least significant bits of the first byte combined with the eight bits of data in the second byte of the field) indicating the size of the data in bytes, followed by the bytes of data themselves. The data field can contain up to 602 bytes (2 bytes for byte count, and 600 bytes of data).

In the frame trailer, the Frame Check Sequence (FCS) is a cyclic-redundancy check calculation based on the CRC-CCITT (Cyclic-Redundancy Check - Consultative Committee on International Telephone & Telegraph) algorithm. The flag byte contains the same pattern (\$7F) used to signal the start of the frame. The abort sequence consists of the 12 to 18 one-bits (1's) which signal the end of frame.

LLAP Timing

LLAP requires that clock information be included in transmitted data, and therefore must be extracted from received data for proper reception. LLAP is defined to transmit data at 230.4 KBps.

A node's interaction with the rest of the link depends heavily on timing. LLAP specifies a maximum time gap between frames in a dialog between two nodes and a minimum time gap between dialogs. A transmitter, once it has sensed the link to be idle, must wait for the minimum IDG plus some random amount of time before attempting to send an RTS frame. The node must be capable of keeping track of this gap time. The NPU timers can be programmed to handle these timing requirements.

NPU handling of LLAP also requires keeping track of shorter time periods, such as for outputting a Missing Clock signal, for delaying to allow a flag byte to transmit prior to placing data in the MSCI transmit buffer, and for delaying to allow the abort sequence (12 - 18 one bits) to be output.

These shorter time periods can be generated using software code delays.

Appendix B - AN OVERVIEW OF THE NPU

CPU Core and MMU

The NPU is a member of Hitachi's 64180 family of highintegration microcontroller devices. These devices are all based on the same CPU core which is capable of executing object code that is upward compatible with the Z80. The family members also have access to an on-chip Memory Management Unit (MMU) which allows the devices access to a 1 MByte addressing space, a Multi-protocol Serial Interface channel and an asynchronous Serial Channel for handling communications tasks, two channels of DMA capability, and two eight-bit timers. In addition to these features, the chip also provides an interrupt controller for on and off-chip interrupts, a DRAM refresh controller, programmable chip select outputs, and lowpower operation modes.

The MMU's ability to access a full 1 MByte of memory gives the CPU a large code and data space to work with, which is beneficial in supporting the LLAP protocol.

MSCI

The Multi-protocol Serial Communications Interface channel provides features which allow this device to control asynchronous, byte-synchronous and bit-synchronous communications. Many of the features required for the Open Systems Interconnect (OSI) model level 2 functionality are provided by this channel.

An on-chip baud rate generator can generate the clocks for transmitting and receiving data through this channel. A builtin Advanced Digital Phase Locked Loop circuit can be used to extact clock information from received data, or to reduce the noise component in an input receive clock or recieved data.

ADPLL

Associated with the MSCI is an on-chip Advanced Digital Phase Locked Loop (ADPLL). This feature allows the MSCI to extact clock information encoded in received data, and/or to perform noise suppression on received data or a receive clock.

DMAC

The chips DMA capabilities consist of both general purpose single and dual address DMA transfers, along with a special chained-block transfer mode that is available for use with the MSCI operating in bit-synchronous communications mode. This capability allows the MSCI to perform transmit and receive of serial data without CPU intervention.

The NPU's MSCI and DMAC allow fast transfers of bit-

synchronous serial data with minimal processor intervention. The DMAC is equipped with a chained-block transfer mode which allows the user to pre-program a table in memory that is automatically read by the DMAC to determine locations and sizes of blocks of memory that are to transmitted or received. The DMAC is internally connected to the MSCI, so that MSCI status (such as receive buffer full or transmit buffer empty) triggers the DMAC operations to move data between memory and the MSCI Transmit/Receive Buffer (MTRB).

These features minimize CPU processing time required to transmit and receive data over the link. Since the data movement between the MSCI and memory is handled by DMA control, the processor can take care of other system functions.

APPENDIX C - ROUTINE DESCRIPTIONS AND CODE EXAMPLES

This appendix contains descriptions of the routines written to implement LLAP data reception on the NPU Evaluation Board, and source code listings for these routines. The source files for these routines are available in DOS file format on the Hitachi Application Engineering bulletin board. Contact the Field Application Engineer in your local Hitachi Sales Office for information on accessing the bulletin board.

The routines described below werelinked together and tested in a program which would receive dialogs from a Macintosh running the AppleTalk Pokeutility. This utility sends a dialog by sending an RTS frame addressed to the node controlled by the NPU, reading a CTS frame from this node, then sending a data frame. The Poke utility returns an error message if the dialog does not occur correctly.

transmitFrame

This routine depends heavily on the hardware features of the MSCI for transmitting a LLAP frame with the proper framing (preceeded by two flags, followed by an abort sequence). Since the NPU's MSCI is designed to send flags until data is placed in the transmit buffer, the hardware is unable to meet the LLAP requirement of two flags automatically. Instead, this must be handled using a software timing routine, which delays until two flags have been output before placing data in the transmit buffer.

This routine assumes that all information making up a LLAP frame has been placed in a buffer in memory, and the DMA controller has been initialized to access this buffer and transmit its data to the MSCI. This routine then enables the DMAC channel by writing to the enable bit of the DMAC channel control register. Once the DMA channel has transmitted all of the frame data, the MSCI automatically transmits the CRC bytes, eliminating the need for a routine (txFCS) to do this. The transmit of a trailing flag byte is also automatic, eliminating the need for the last txFLAG call in TransmitFrame.

In order to generate an abort sequence of 12 to 18 "1" bits on the data link, the MSCI's transmitter must be disabled by software, which causes the transmit data line to go high. The RS-485 transmit driver remains enabled for an interval of 12 to 18 bit times, which causes "1" bits to be sent over the link. After this interval, the transmit driver is disabled, allowing another transmitter to use the link.

Since much of this activity depends on writing to hardware registers and measuring short timing intervals that can be implemented using code loops, a section of this routine was written as an assembler routine which is called by transmitFrame.

ReceiveLinkMgmt

ReceiveLinkMgmt is actually an interrupt service routine that is executed in response to the DMAC channel 0 EOM (End Of Message) interrupt. This interrupt occurs when DMAC channel 0 has detected that the MSCI has received a full frame of data. The MSCI notifies the DMAC of this condition once it detects a flag pattern in the received data stream.

Upon entry to this routine, the MSCI receiver is reset to allow reception of the next frame, and the Enter Search Mode command is executed to allow the MSCI receiver to synchronize with the next incoming frame.

Once these steps have been taken, the routine calls receiveFrame(), which will return the frame type information. This type information is used to inform an application program is data is available to be processed.

receiveFrame

This routine is called by receiveLinkMgmt to determine the type of frame being received, and to respond accordingly. The routine could also be called by TransmitLinkMgmt in order to accept the CTSframe that would be sent by another node in response to an RTSframe sent under TransmitLinkMgmt control.

To determine if this is the case, this routine checks the variable fCTSexpected. If this variable is set non-zero, which corresponds to "true", then an RTS frame has been sent by the transmitter, and a CTS frame is expected. This routine then waits for the EndOfF rame condition (which occurs when the end of the frame has been detected), or until an inter-frame gap timeout occurs, whichever comes first.

If fCTSexpected is false, then the routine can assume that is was called by the ReceiveLinkMgmt interrupt service routine. In this case, receiveFrame then determines the type of frame that was received, and acts accordingly. If an RTSframe was received, the receiveFrame() routine takes care of sending the CTSframe reply. This section of the routine was coded in assembler to ensure that the reply is sent within the interframe gap time required by LLAP.

The node's response to an enquiry frame (ENQ) would also need to be sent within the interframe gap time. Although the sample routine shown does not provide for this, the node's handling of sending the acknowledge frame (ACKframe) could be done in the same manner as for the CTSframe.

Application Note

For modularization an ease of understanding, the NPU LLAP program examples were written to follow as closely as possible to the procedural model shown in Inside AppleTalk.

However, after testing this code, it was determined that the nested levels of routines added overhead to the code that prevented the NPU from meeting the interframe gap requirements of LLAP. To solve this problem, parts of the routines were converted to straight-line code, with in-line assembly code used to eliminate the overhead added by the C compiler.

More efficient, but less understandable code for the NPU could be generated by combining the functionality of ReceiveLinkMgmt() and receiveFrame() into a single interrupt service routine. This routine could be written in C, with some in-line assembly code included to speed up critical code portions.

Additional LLAP routines

TransmitLinkMgmt was written for the NPU in C language, and is presented in the Appendix as an example, although it was not tested.

TransmitLinkMgmt implements the CSMA/CA algorithm used by AppleTalk's LLAP. Hardware status is read by this routine

to determine if the node is sensing data on the link by examining the MSCI receiver status. If the link is determined to be free, the transmitFrame routine is called. This routine controls

HD64180S

a transmit dialog which consists of sending an RTS frame, receiving a CTSframe, and then sending a Data frame.

The NPU version of this routine differs from the procedural model in that Inter Dialog Gap (IDG) timing is performed using the NPU timers rather than using a real-time clock value in the system ("RealTime"). Also, the function "Random" is simulated in the NPU system by reading the "R" counter register of the NPU (see Miscellaneous Routines on page 38). This register contains an incrementing counter that when read at random intervals, will return a random value.

Two routines, timerInit() and timeout(), were added to initialize an NPU timer, and then to poll the timer status to determine if timeout occurred.

InitializeLLAP, AcquireAddress, TransmitPacket, ReceivePacket depend mainly on lower level routines that interface with the NPU hardware. The procedural models for these routines can be translated to C and used with the lower level hardware-dependent routines.

Appendix C - NPU Initialization Routine

```
_NPUINIT : initialization of NPU for operation LLAP
                           protocol communications
                  Initializes MSCI for operation
; Station Address Setting - user defined
STAADDR: EQU
                    044H ; set for network use
        npu io address assignments 10-11-88 06:23:00
                         ; INTERRUPT CONTROL REG
TCR .
         FOU
                  OOOH
CBR:
         EQU
                  001 H
                         ; MMU COMMON BASE REG
BBR:
         EQU
                  002H
                         ; MMU BANK BASE REG
                         ; MMU COMMON/BANK AREA REG
; OPERATION MODE CTRL REG
CBAR:
         EQU
                  003H
OMCR:
         EOU
                  004H
IOCR:
         EQU
                  005H
                         ; I/O CTRL REG
WCRL:
                  0ah
         equ
WCRM:
                  0bh
         equ
WCRH:
         equ
                  0ch
TOWCR:
         equ
                  0dh
INTWR:
         equ
RWCR:
         equ
RCR:
                  18h
         equ
IER1:
         EOU
                  013h
                         : INTERRUPT ENABLE REG
MTRB:
         EQU
                  020H
                         ; MSCI TX/RX BUFFER REG
MSTO:
         EOU
                  021H
                         ; MSCI STATUS REG 0
                         ; MSCI STATUS REG 1
MST1:
         EQU
                  022H
MST2:
         EQU
                         ; MSCI STATUS REG 2
MST3:
         EQU
                  024H
                         ; MSCI STATUS REG 3
                         ; MSCI FRAME STATUS REG
MFST:
         EOU
                  025H
                         ; MSCI INTERRUPT ENABLE REG 0
                  026H
MIEO:
         EOU
MTE1 .
         EOU
                  027H
                         ; MSCI INTERRUPT ENABLE REG 1
MIE2:
         EQU
                  028H
                         ; MSCI INTERRUPT ENABLE REG 2
MFIE:
         EQU
                  029H
                         ; MSCI FRAME INTERRUPT ENABLE REG
                         ; MSCI COMMAND REG
MCMD:
         EQU
                  02AH
MMD0:
                         ; MSCI MODE REG 0
         EOU
                  02BH
                  02CH
MMD1 ·
         FOIL
                         ; MSCI MODE REG 1
MMD2:
         EOU
                  02DH
                         ; MSCI MODE REG 2
MCTL:
         EOU
                  02EH
                         ; MSCI CONTROL REG
MSA0:
                  02FH
                         ; MSCI SYNCHRONOUS ADDRESS REG 0
         EOU
MSA1:
                         ; MSCI SYNCHRONOUS ADDRESS REG 1
         EOU
                  030H
MIDI.:
                  031H
         EOU
                         : MSCI IDLE PATTERN REG
                         ; MSCI TIME CONSTANT REG
MTMC:
         EOU
                  032H
MRXS:
         EQU
                  033H
                         ; MSCI RX CLOCK SOURCE REG
MTXS:
                  034H
                         ; MSCI TX CLOCK SOURCE REG
DAROL:
         EOU
                         ; DESTINATION ADDRESS REG CH 0 LOW
BAROL:
         EOU
                  058H
                         ; BUFFER ADDRESS REG CH 0 LOW
DAROH:
         EOU
                  059H
                         ; DESTINATION ADDRESS REG CH 0 HI
                         ; BUFFER ADDRESS REG CH O HI
BAROH:
         EOU
                  059H
DAROB:
         EQU
                  05AH
                         ; DESTINATION ADDRESS REG CH O BANK
BAROB:
                  05AH
                         ; BUFFER ADDRESS REG CH O BANK
                         ; SOURCE ADDRESS REG CH 0 LOW
; DESCRIPTOR READ/WRITE REG CH 0 LOW
SAROL:
         EOU
                  05BH
DRWROL:
         EQU
                  05BH
                         ; SOURCE ADDRESS REG CH 0 HI
SAROH:
         EOU
                  05CH
DRWROH:
                  05CH
         EQU
                         : DESCRIPTOR READ/WRITE REG CH 0 HI
                         ; SOURCE ADDRESS REG CH O BANK
SAROB:
         EOU
                  05DH
CPB0:
         EQU
                  05DH
                         ; CHAIN POINTER BASE CH 0
CDAOL:
         EOU
                         ; ACCESS DESCRIPTOR ADDRESS REG CH 0 LOW
CDAOH:
                  05FH
                          ; ACCESS DESCRIPTOR ADDRESS REG CH 0 HI
EDAOL:
         EQU
                  060H
                          ; ERROR DESCRIPTOR ADDRESS REG CH 0 LOW
EDAOH:
         EOU
                  061 H
                          ; ERROR DESCRIPTOR ADDRESS REG CH 0 HI
```

```
BUFLOL:
         EQU
                 062H
                        ; RX BUFFER LENGTH CH 0 LOW
BUFLOH:
         EQU
                 063H
                        ; RX BUFFER LENGTH CH 0 HI
BCROL:
         EOU
                 064H
                        : BYTE COUNT REG CH 0 LOW
BCROH:
                 065H
                        ; BYTE COUNT REG CH 0 HI
         EOU
DSR0:
                 0688
                        . DMA STATUS REG CH O
         FOU
DMRAO .
                        ; DMA MODE REG A CH O
         EOU
                 069H
DMRRO -
         EOU
                 06AH
                        : DMA MODE REG B CH 0
ICNTO:
         EQU
                 06BH
                        ; FRAME END INTERRUPT COUNTER CH 0
DIRO:
         EQU
                 06CH
                        ; DMA INTERRUPT ENABLE REG CH 0
DCR0:
                        ; DMA COMMAND REG CH 0
DAR1L:
         EOU
                 070H
                        ; DESTINATION ADDRESS REG CH 1 LOW
                 070H
                        ; BUFFER ADDRESS REG CH 1 LOW
BAR1L:
        EOU
DAD1H.
         EOU
                 071H
                        ; DESTINATION ADDRESS REG CH 1 HI
BAR1H:
         EOU
                 071H
                        ; BUFFER ADDRESS REG CH 1 HI
DAR1B:
         EQU
                 072H
                        : DESTINATION ADDRESS REG CH 1 BANK
BAR1B:
                 072H
                        ; BUFFER ADDRESS REG CH 1 BANK
SAR1L:
         EQU
                 073H
                        ; SOURCE ADDRESS REG CH 1 LOW
DRWR1L:
        EOU
                 073H
                        * DESCRIPTOR READ/WRITE REG CH 1 LOW
SAR1H:
         EOU
                 074H
                        : SOURCE ADDRESS REG CH 1 HT
DRWR1H:
                 074H
        FOU
                        : DESCRIPTOR READ/WRITE REG CH 1 HI
SAR1B:
         EQU
                 075H
                        ; SOURCE ADDRESS REG CH 1 BANK
CPB1:
         EQU
                 075H
                        ; CHAIN POINTER BASE CH 1
CDA1L:
                 076H
                        ; ACCESS DESCRIPTOR ADDRESS REG CH 1 LOW
CDA1H:
                 077H
                        ; ACCESS DESCRIPTOR ADDRESS REG CH 1 HI
EDA1L:
         EQU
                 078H
                        ; ERROR DESCRIPTOR ADDRESS REG CH 1 LOW
                        ; ERROR DESCRIPTOR ADDRESS REG CH 1 HI
EDA1H:
        EOU
                 079H
                        : RX BUFFER LENGTH CH 1 LOW
BUFT.1 L.
        FOU
                 07AH
BUFL1H:
        EOU
                 07BH
                        ; RX BUFFER LENGTH CH 1 HI
BCR1L:
                 07CH
                        ; BYTE COUNT REG CH 1 LOW
BCR1H:
                        ; BYTE COUNT REG CH 1 HI
                 07DH
DSR1:
         EQU
                 080H
                        ; DMA STATUS REG CH 1
DMRA1:
        EOU
                 081H
                        ; DMA MODE REG A CH 1
                        ; DMA MODE REG B CH 1
DMRR1 .
        FOU
                 082H
                        ; FRAME END INTERRUPT COUNTER CH 1
ICNT1:
         EQU
                 0834
DIR1:
         EQU
                 084H
                        ; DMA INTERRUPT ENABLE REG CH 1
DCR1:
         EQU
                 085H
                        ; DMA COMMAND REG CH 1
        ABSOLUTE SECTION INITIALIZATION
    ************
                 extern ReceiveLinkMgmt, receive
                 global rxDescript,CTSframe
                 aseq
                         0000h
                 ora
RESET. defw
                 NPUINIT
        locate interrupt table at IL==00 (0000h)
        /INT1 overlaps reset vector, since not used
                         16h
                                          : DMIBO
                 ora
DMTB:
        defw
                 ReceiveLinkMamt
; RECEIEVE DESCRIPTOR SET UP
: RX BUFFER 1
rxDescript:
       ORG
                 100H
       DEFW
                110H
                          ; STARTING ADDRRESS OF NEXT DESCRIPTOR = 110H
       DEFW
                 300H
                          ; LOWER 16 BIT OF RX BUFFER POINTER = 300H
                           ; HIGHER 4 BIT OF 20 BIT RX BUFFER POINTER = 00
       DEFB
                 0
                           ; RESERVED
       DEFW
                 0
                           ; DATA LENGTH OF BLOCK 1 TO BE WRITTEN BY DMA
       DEFB
                           : STATUS ===> TO BE WRITTEN BY DMA
```

```
DEFB
                            ; RESERVED
; RX BUFFER 2
               110H
        ORG
                           ; STARTING ADDRRESS OF NEXT DESCRIPTOR = 120H
        DEEM
                 1 20 H
                           ; LOWER 16 BIT OF RX BUFFER POINTER = 320H
        DEFW
                 320H
        DEFR
                 nn
                            ; HIGHER 4 BIT OF 20 BIT RX BUFFER POINTER = 00
        DEFB
                 0
                            ; RESERVED
        DEFW
                            ; DATA LENGTH OF BLOCK 1 TO BE WRITTEN BY DMA
        DEFB
                 0
                            ; STATUS ===> TO BE WRITTEN BY DMA
                            * RESERVED
        DEFR
                 ٥
; RX BUFFER 3
        ORG
               120H
        DEFW
                 130H
                           ; STARTING ADDRRESS OF NEXT DESCRIPTOR = 130H
        DEFW
                 340H
                           ; LOWER 16 BIT OF RX BUFFER POINTER - 340H
        DEFB
                            ; HIGHER 4 BIT OF 20 BIT RX BUFFER POINTER = 00
        DEFB
                 0
                            ; RESERVED
                            ; DATA LENGTH OF BLOCK 1 TO BE WRITTEN BY DMA
        DEFW
                 0
                            ; STATUS ===> TO BE WRITTEN BY DMA
        DEFR
                 n
        DEFB
                 0
                            : RESERVED
: RX BUFFER 4
        ORG
               130H
                           ; STARTING ADDRESS OF NEXT DESCRIPTOR = 140H
        DEFW
                 360H
                           ; LOWER 16 BIT OF RX BUFFER POINTER = 360H
        DEFB
                 00
                            ; HIGHER 4 BIT OF 20 BIT RX BUFFER POINTER = 00
        DEFB
                            : RESERVED
                 0
        DEFW
                 n
                            : DATA LENGTH OF BLOCK 1 TO BE WRITTEN BY DMA
        DEFR
                 Λ
                         ; STATUS ===> TO BE WRITTEN BY DMA
        DEFB
                 0
                            : RESERVED
; RX BUFFER 5
        ORG
               140H
        DEFW
                           : STARTING ADDRRESS OF NEXT DESCRIPTOR = 150H
                 150H
                           ; LOWER 16 BIT OF RX BUFFER POINTER = 380H
        DEFW
                 380H
                            ; HIGHER 4 BIT OF 20 BIT RX BUFFER POINTER = 00
        DEFR
                 OΩ
                            : RESERVED
        DEFR
                 ٥
        DEFW
                 ٥
                            ; DATA LENGTH OF BLOCK 1 TO BE WRITTEN BY DMA
                 0
                            ; STATUS ===> TO BE WRITTEN BY DMA
        DEFB
                 0
        DEFB
                            : RESERVED
; RX BUFFER 6
        ORG
               150H
                           : STARTING ADDRRESS OF NEXT DESCRIPTOR = 160H
        DEFW
                 160H
                           ; LOWER 16 BIT OF RX BUFFER POINTER = 3A0H
        DEFW
                 HOAE
        DEFR
                 00
                            ; HIGHER 4 BIT OF 20 BIT RX BUFFER POINTER = 00
        DEFB
                 0
                            ; RESERVED
        DEFW
                 0
                            ; DATA LENGTH OF BLOCK 1 TO BE WRITTEN BY DMA
        DEFB
                            ; STATUS ===> TO BE WRITTEN BY DMA
        DEFR
                 0
                            . RESERVED
: RX BUFFER 7
        ORG
               160H
        DEFW
                 170H
                           ; STARTING ADDRRESS OF NEXT DESCRIPTOR = 170H
                           ; LOWER 16 BIT OF RX BUFFER POINTER = 3COH
        DEFB
                 00
                            : HIGHER 4 BIT OF 20 BIT RX BUFFER POINTER = 00
        DEFB
                 0
                            : RESERVED
                            ; DATA LENGTH OF BLOCK 1 TO BE WRITTEN BY DMA
        DEFW
                 0
        DEFB
                 Λ
                            ; STATUS ===> TO BE WRITTEN BY DMA
        DEFB
                 ٥
                            ; RESERVED
; RX BUFFER 8
               170H
        DEFW
                 100H
                           ; STARTING ADDRRESS OF NEXT DESCRIPTOR = 100H
        DEFW
                 3E0H
                           : LOWER 16 BIT OF RX BUFFER POINTER = 3EOH
        DEFR
                 nn
                            ; HIGHER 4 BIT OF 20 BIT RX BUFFER POINTER = 00
                            : RESERVED
        DEFR
                 Ω
        DEFW
                 O
                            ; DATA LENGTH OF BLOCK 1 TO BE WRITTEN BY DMA
        DEFB
                 0
                            ; STATUS ===> TO BE WRITTEN BY DMA
: CTSframe initialization
CTSframe:
                                                    ;reserved for dest addr
                                   STAADDR ; source addr is self
```

```
;CTSframe type
; TRANSMIT DESCRIPTOR SET UP
; TX BUFFER 1
       ORG
              40001
TXDESCR::
               4000H
                         ; STARTING ADDRRESS OF NEXT
TXDESCBUF::
       DEFW
               0000Н
                         ; LOWER 16 BIT OF TX BUFFER POINTER = TBD
                          ; HIGHER 4 BIT OF 20 BIT RX BUFFER POINTER = 00
                00
       DEFB
       DEFB
                0
                           ; RESERVED
TXDESCT::
       DEFW
                0
                          ; DATA LENGTH OF BLOCK 1 TO BE WRITTEN TX Prog
                81 H
                          ; STATUS EOM, EOT INCLUDED
                0
                           ; RESERVED
     MSCI initialization
*****************
                cseg
NPUINIT::
   DISABLE WAIT STATE/REFRESH
                A,00h
        T.D
        OUTO
                (WCRL), A
        OUTO
                (WCRM), A
        OUTO
                (WCRH), A
        OUTO
                (IOWCR), A
        OUTO
                (INTWR), A
        OUTO
                (RWCR), A
        OUTO
                (RCR),A
        OUTO
                (OF4h),A
                                 ; disable transmit driver
  TRANSMITTER AND RECEIEVER SET UP
        LD
            A.21H
        OUTO (MCMD), A
                        ; CHANNEL RESET
        T.D
            A.87H
        OUTO (MMDO), A
                        ; BIT-SYNC HDLC, AUTO ENABLE=0,
                                          ; CRC-CCITT=1 INITIALLY
            A,40H
        OUTO (MMD1), A
                        : Single ADDRESS CHECKED
        T.D
            A, OCOH
        OUTO (MMD2), A
                        ; FULL DUPLEX, FMO CODE,
                                          ; x8 ADPLL CLK
        LD A, 91H
        OUTO (MCTL), A
                        ; TxRDY ON NOT FULL, -RTSM=HIGH
                         ; ABORT ON IDLE & UNDERRUN
            A.70H
        OUTO (MRXS), A
                         ; RXCM FROM BRG (ADPLL OP. CLK)
        LD A, OOH
        OUTO (MTXS), A
                         ; TXCM FROM ?
        LD A,05H
         OUTO (MTMC), A
                         ; SET TMC=5 -> BAUD RATE
                                          ; for appletalk testing
        LD A. OOOH
        OUTO (MIEO), A
                         : TXINT AND RXINT DISABLED
        LD A,83H
        OUTO (MIE1), A
                         ; UNDERRUN, ABORT, IDLE DETECTION
                                         ; INTERRUPT disABLED
        OUTO (MFIE), A
        LD A, STAADDR
        OUTO (MSAO), A
                         ; SET SECONDARY STATION ADDRESS
```

```
LD
           A,7EH
       OUTO (MIDL),A
                     ; SET FLAG PATTERN = 01111110 AS
                                       ; IDLE PATTERN
.************************************
. DMA CHANNEL O SET UP (RECEIVED)
  *************
      LD A,96H
                           ; DMA MODE REGISTER A
       OUTO (DMRAO), A
                            ; MSCI,CBSA,
; MSCI->MEMORY,MULTI FRAME
       LD
            A,0
       OUTO (CPBO), A
                             ; 4 HIGHER BIT OF THE
                              ; 20-BIT DESCRIPTOR ADDR
       LD
            A,70H
       OUTO (EDAOL), A
                            ; 170H
                              ; STARTING ADDR (LOW-ORDER
                              ; 16 BITS) OF THE
       OUTO (EDAOH),A
                              ; RX DESCRIPTOR 8
       T.D
            A,00H
       OUTO (CDAOL), A
                             ; 100H
       LD
            A,01H
                              ; STARTING ADDR (LOW-ORDER
                              ; 16 BITS) OF THE
       OUTO (CDAOH), A
                              ; FIRST RX DESCRIPTOR
       LD
            A.5dh
       OUTO (BUFLOL), A
       LD
            A, 02h
       OUTO (BUFLOH), A
                              ; ALLOWING 600 BYTES IN
                              ; EACH RX BUFFER
       LD
            A,40H
       OUTO (DIRO).A
                              ; EOM INTERRUPT ENABLED
; DMA CHANNEL 1 SET UP (TRANSMITTER)
LD A,098H
                            ; DMA MODE REGISTER A
       OUTO (DMRA1), A
                              ; MSCI, CHAINED,
                             ; MEMORY->MSCI, SINGLE FRAME
      LD
           A.0
       OUTO (CPB1), A
                              ; 4 HIGHER BIT OF THE
                              ; 20-BIT DESCRIPTOR ADDR
       OUTO (EDA1L),A
                              ; 4020H
                              ; STARTING ADDR (LOW-ORDER
      LD
            A.40H
                              ; 16 BITS) OF THE
       OUTO (EDA1H), A
                              ; DESCRIPTOR NEXT TO THE
                              ; LAST TX BUFFER
            A,00H
       LD
       OUTO
           (CDA1L),A
                              ; 4000H
      LD
            A.40H
                              ; STARTING ADDR (LOW-ORDER
                              ; 16 BITS) OF THE
      OUTO (CDA1H), A
                              ; FIRST DESCRIPTOR OF THE
                              ; FIRST TX BUFFER
            A,00H
      OUTO (DIR1), A
                              ; EOT INTERRUPT DISABLED
       Enable DMIBO interrupts
       LD
               A,08h
                              ;DMIBO
       OUTO
               (IER1),A
       ΕI
                              :enable flags
       JP
               receive
                              ; receive frames
```

Appendix C - receive routine (continued)

```
do
        rxDescrPtr = &rxDescript[descrNumber];
        while (rcvStatus == 0);
        dataFrame = (*rxDescrPtr).BufferPtr;
        dataFrame = dataFrame+5; /* skip address info */
        incomingLength = ((*rxDescrPtr).DataLength - 5);
        /* move frame data to memory location accessed by
                 application */
        if(incomingLength > 3)
                 for(i=0;i<incomingLength;i++)
                         memory[i] = *dataFrame++;
                         txasci(memory[i]);
        descrNumber++:
        if(descrNumber == 8)
                 descrNumber = 0:
                 EDAaddr = &rxDescript[7];
                 EDAvalLo = EDAaddr; /* recast pointer */
                 EDAvalHi = EDAaddr >> 8:
                 outport(EDAL,EDAvalLo);
                 outport(EDAH,EDAvalHi);
        }
        /* check to see if rx buffers can be reused */
        else if (descrNumber == 1) /* circular buffer */
                 EDAaddr = &rxDescript[0];
                EDAvalLo = EDAaddr; /* recast pointer */
                 EDAvalHi = EDAaddr >> 8;
                 outport(EDAL,EDAvalLo);
                 outport(EDAH,EDAvalHi);
        }
    /* rcvStatus is incremented by receiveLinkMgmt() and
    receiveFrame() when a data frame is received */
        rcvStatus = rcvStatus - 1;
   } while (1>0);
txasci(item)
                /* transmit a character to the ASCI port */
char item;
{ int status;
   while((status=IBIT(ST1,6))==0);
   outport(TRB,item);
```

}

#define EDAH

#define CDAL

#define CDAH

#define DSR0

#define DIR0

#define DSR1

#define IER1

#define DMACenable

Appendix C - LLAP Definitions

/*	ltdefs.h	·····/		
This file contains definitions and declarations that are used by all LocalTalk C routines */***********************************				
#define	minFrameSize	3		
#define	maxFrameSize	605		
#define	maxDataSize	600		
#define	bitTime	4.34		
#define	byteTime	39.0		
#define	minIDGtime	400.0		
#define	IDGslottime	100.0		
#define	maxIFGtime	200.0		
#define	maxDefers	32		
#define	maxCollsns	32		
#define	lapENQ	0x81		
	lapACK	0x82		
#define	lapRTS	0x84		
#define	lapCTS	0x85		
#define	hdlcFLAG	0x7E		
#define	wksTries	20		
#define	MTRB	0x0020		
#define	MST1	0x0022		
#define	MST0	0x0021		
#define	MST2	0x0023		
#define	MCMD-	0x002A		
#define	MCTL	0x002E		
#define	MSA0	0x002F		
#define	RXRDYmask	0x0001		
#define	SYNCDmask	0x0010		
#define	CRCmask	0x0004		
#define	OVRNmask	0x0008		
#define	EOMmask	0x0080		
#define	RXreset	0x0011		
#define	RXenable	0x0012		
#define	RXdisable	0x0013		
#define	TXenable	0x0002		
#define	EnterSearch	0x0031		
#define	EDAL	0x60		
	a.			

0x61

0x5E

0x5F

0x68

0x6C

0x80

0x13

0x02

```
#define receiveOK
                        0x0F0
#define Receiving
                        0x0E0
#define nullReceive
                        0x0E1
#define EOFrame
                        0x40
#define DMIB0E
                        0x08
#define Enable
                        0x02
#define EOMreset
                        0x41
#define NPUreg
                        0xF4
#define TRUE
                        0xFF
#define FALSE
                        0x00
#define OverrunError
                        0x20
#define badframeSize
                        0x21
#define badframeCRC
                        0x22
#define noFrame
                        0x23
#define lapRTSframe
                        0x24
#define lapCTSframe
                        0x25
#define lapACKframe
                        0x26
#define lapDATAframe 0x27
#define lapENOframe
                        0x28
                        0x29
#define badframeType
#define UnderrunError
                        0x2A
#define frameError
                        0x2B
#define transmitOK
                        0x30
#define excessDefers
                        0x31
#define excessCollsns
                        0x32
#define dupAddress
                        0x33
struct structFrame {
  char destAddr:
  char srcAddr:
  char lapType:
  char dataField[maxFrameSize];
struct rawFrame {
  char rawdataField[maxFrameSize];
  };
struct Descriptor {
  unsigned int ChainPtr;
  long int BufferPtr;
  unsigned int DataLength;
  char status:
  char reserved;
  int spacer1;
                        /* reserve 6 bytes to place */
  int spacer2;
                        /* descriptors on even boundary */
  int spacer3;
  };
```

Appendix C - LLAP Definitions (continued)

extern char octet, anAddress, aLAPtype; extern char aDataField[maxFrameSize]; extern char MyAddress, fCTSexpected, fAdrValid, fAdrInUse; extern int Backoff, deferCount, collsnCount,i; extern char deferHistory,collsnHistory; extern int outgoingLength, incomingLength; extern struct structFrame outgoingPacket, *incomingPacket; extern struct structFrame ACKframe,CTSframe; extern struct Descriptor rxDescript[8],*rxDescrPtr; extern char memory[605];

extern char dstParam,srcParam,typeParam,dataParam; extern int dataLength;

```
Appendix C - ReceiveLinkMgmt Routine
/* ReceiveLinkMgmt function: called by EOMF Interrupt
                                                                   */
/* This routine processes each frame as it is received
  Routine calls ReceiveFrame
  Sets global rcvStatus when a dataframe is received
#include "ltdefs.h"
ReceiveLinkMgmt()
{ char status;
  extern int rcvStatus:
#entry
; assembly entry code
  push af
  push hl
  push de
  push bc
  push ix
  push iy
  exx
        af,af'
  ex
  push af
  push hl
  push de
  push bc
#endasm
  /* when interrupt is received, full frame has been
    received, so reset MSCI receiver and Enter Search
     Mode to prepare to receive next frame */
  resetRx();
  EnterSearchMode();
  status = Receiving;
  while (status == Receiving)
        switch(receiveFrame())
                case badframeCRC:
                case badframeType:
                case UnderrunError:
                case OverrunError:
                                         status = frameError;
                break;
```

Appendix C - ReceiveLinkMgmt Routine (continued)

case lapENQframe:

```
if(fAdrValid)
                                ACKframe.destAddr=(*incomingPacket).srcAddr;
                                ACKframe.srcAddr=MyAddress;
                                ACKframe.lapType=lapENQ;
                                transmitFrame(&ACKframe,3);
                                status = nullReceive;
                        else
                                fAdrInUse = TRUE;
                                status = nullReceive;
                break:
                case lapRTSframe:
                        if (!fAdrValid)
                                CTSframe.destAddr=(*incomingPacket).srcAddr;
                                CTSframe.srcAddr=MyAddress;
                                CTSframe.lapType=lapCTS;
                                transmitFrame(&CTSframe,3);
                        else */
                                fAdrInUse = TRUE:
                                status = nullReceive;
                        else
                                status = nullReceive:
                break;
                case lapDATAframe:
                        if (fAdrValid)
                                status = receiveOK;
                        }
                        else
                                fAdrInUse = TRUE;
                        {
                                status = nullReceive;
                break;
                case noFrame:
                                status = nullReceive;
  }
  rcvStatus = rcvStatus + 1;
  outport(DSR0,EOMreset); /* reset EOM interrupt */
  return;
#asm
```

Appendix C - ReceiveLinkMgmt Routine (continued)

aexit.:	pop pop	bc de
pop	hl	
pop	af	
ex	af,af'	
exx		
pop	iy	
pop	ix	
pop	bc	
pop	de	
pop	hl	
pop	af	
ei		
reti		

Appendix C - ReceiveFrame Routine

```
/**************
                                                                    */
/* receiveFrame()
                                                                   */
*/
*/
*/
/* This routine receives a LLAP frame
/* In-line assembly section added to speed up response
/* to RTS frames - must respond within inter-frame gap
/* time
  Calls:timerInit(), timeout(), CarrierSense(),
                EndOfFrame()
                 ei(),di() - library routines to enable and
                                   disable interrupts
                 inport() - routine to read a byte from an
                                  i/o port address
                                                                    */
#include "Itdefs.h"
#define SLOCLK
                         0x12
char receiveFrame()
{ char error;
  char RcvFrame:
   struct structFrame *structPacket; /* struct. access */
   struct Descriptor *rxDescrPtr; /*pointer to Descr*/
  char temp1,temp2;
/* set up packet pointers to point to same memory area */
   temp1 = inport(CDAL);
  temp2 = inport(CDAH);
  rxDescrPtr = (temp2 << 8) + temp1;
  incomingPacket=structPacket= (*rxDescrPtr).BufferPtr;
  error = FALSE;
/* Check if called by interrupt */
  if(fCTSexpected) /* waiting for txframe response */
                /* disable receive interrupts */
        timerInit(maxIFGtime,SLOCLK);
        while(!timeout() && !CarrierSense());
        if(!CarrierSense()) {
                ei();
                return(noFrame);
        else while(!EndOfFrame());
                /* check for frame receipt */
```

Appendix C - ReceiveFrame Routine (continued)

```
/* Check on validity of the frame */
if (error == FALSE)
{ if (fAdrValid)
      if ((temp1=(*structPacket).lapType) >= 0x80)
            switch(temp1)
                  case lapRTS:
                  CTSframe.destAddr=(*structPacket).srcAddr;
/ *
                                                      */
/*
                                                      */
      TFCODE.asm
/*
      Code segment to transfer a frame
/*
        (for CTS response to RTS)
      In-line assembly code
#asm
mstat0:
         equ
                  021H
                         ; MSCI Status Reg
mcomd:
         EQU
                  02AH
                         ; MSCI COMMAND REG
:
                  080H
Dstat1:
        EOU
                         ; DMA STATUS REG CH 1
txdrv:
         EOU
                 OF4H
                         ; NPU board control register
TXDen:
         EOU
                 018H
                         ; enables tx drivers on npu bd
TXDdis: EQU
                  H800
                        ; disables tx drivers on npu bd
                  002H
TXen:
         EQU
                         ; enables tx of MSCI
DMACen:
         EQU
                  002H
                         ; enables DMAC channel
      extern
                  TXDESCBUF, TXDESCT
; assembly entry code
 push
            аf
 push
            bc
 push
            hl
  1d
            a, 12h
 out.0
            (2Ah),a
                              ; disable receiver
  ld
            hl,CTSframe
                              ; load address of structure (ptr)
  ld
            (TXDESCBUF), hl
                              ;place this in tx descriptor
  ld
            a,03h
                              ;load count of bytes to transfer
  ld
            (TXDESCT), a
                              ;place this in tx descriptor
      enable transmit drivers for 1.5 bit times
tftime:
      LD
            A, 5
                              ;prepare to count 1.5 bit times
      LD
            B, TXDen
      OUTO (txdrv), B
                              ; enable transmit drivers
```

Appendix C - ReceiveFrame Routine (continued)

```
TLOOP1:
            SUB
                                         ;decrement A for timing
            JR
                 NZ, TLOOP1
                                         ;loop until timeout
     disable transmit drivers for 1.5 bit times
            T.D
                 B, TXDdis
            OUTO (txdrv),B
                                         ; disable transmit drive
TLOOP2:
           SUB
                                         ;decrement A for timing
           JR
                 NZ,TLOOP2
                                         ;loop until timeout
    enable transmit for 1 byte time (flag)
            LD
                 A,28
           LD
                 B, TXDen
                                        ;enable transmit drive
            OUTO (txdrv), B
           LD
                 B, TXen
                 (mcomd), B
                                        ;enable transmit
           OUTO
TLOOP3:
           SUB
            JR
                 NZ, TLOOP3
                                         ;loop until timeout
     enable DMAC to load TX buffer
           LD
                 B, DMACen
           OUTO (Dstat1),B
                                         :enable DMAC channel 1
ENDLP:
           INO
                 A, (mstat0)
            AND
                  02h
                 Z, ENDLP
           JR
                                         ; wait for end of frame
; wait for all chars and CRC to transmit
           LD
                 A, OAOh
                                         ;prepare for abort string
TLOOP4:
           SUB
                 1
                                         ;12 bit times
           JR
                 NZ, TLOOP 4
                                         ;loop until timeout
    disable transmitter
                 B,03h
           LD
           OUTO (mcomd), B
; wait for NULLs to transmit as Abort sequence
           LD
                 A,43h
TLOOP5:
            SUB
                                         ;12 bit times
            JR
                 NZ, TLOOP 5
                                         ;loop until timeout
; disable transmit drivers
           LD B, TXDdis
            OUTO (txdrv),B
                                         ; disable transmit drive
```

Appendix C - ReceiveFrame Routine (continued)

```
; re enable receiver, and enter search mode
       LD
               B, 12h
       out0
               (2ah),b
       LD
               B, 31h
       out0
               (2ah),b
       pop
               hl
       pop
               bc
       pop
               af
#endasm
                       RcvFrame = lapRTSframe;
                                      break;
                       case lapENQ: RcvFrame = lapENQframe;
                                      break:
                      case lapACK:
                                     /* Note ACK portion should be handled as RTS is to meet IFG requirements */
                                      RcvFrame = lapACKframe;
                                      fAdrInUse = TRUE;
                                      break:
                                                     case lapCTS:
                                      if(fCTSexpected)
                                             RcvFrame=lapCTSframe;
                                      else
                                             fAdrInUse = TRUE;
                                             RcvFrame = badframeType;
                                      break:
                      default : RcvFrame = badframeType;
               }
       }
       else
       RcvFrame = lapDATAframe;
  else if ((*structPacket).srcAddr != 0xFF)
               fAdrInUse = TRUE;
               RcvFrame = noFrame;
else RcvFrame = noFrame;
return(RcvFrame);
}
```

```
Appendix C - TransmitFrame Routine (continued)
/*
  transmitFrame - transmits a single LLAP frame
/* Based on procedural model in Inside AppleTalk
/* Calls: tftime(), disableRx(),ResetMissingClock()
#include "Itdefs.h"
extern unsigned int TXDESCR; /* address of tx descriptors*/
extern tftime(),disableRx(),ResetMissingClock();
transmitFrame(strucptr,framesize)
struct structFrame *strucptr;
int framesize;
{ struct Descriptor txDescript,*txDescrPtr;
  int mode:
  /* Disable Receiving, since link is shared */
  disableRx();
  /* Initialize TX Descriptor */
  txDescrPtr = &TXDESCR;
  (*txDescrPtr).BufferPtr = strucptr;
  (*txDescrPtr).DataLength = framesize;
  tftime():
  /* generate synchronizing pulse */
  /* Start frame transmission */
  /* allow one flag byte to transmit */
  /* enable DMAC to start transfer of data */
  ResetMissingClock();
  enableRx();
}
```

Appendix C - Timing related routines for transmitting frames

```
tftime - transmit frame timing related routines
; called by TransmitFrame
; generates missing clock signal by enable and disable
     of transmit driver
; enables transmitter for one byte time to allow two
     flags to transmit
; enables DMAC channel 1 to load MSCI with transmit data
; reprograms MSCI to output MARK in idle state
; waits for end of transmission
; at end of frame, allows approx. 12 bit times of mark
     for LLAP Abort sequence requirement
        npu io address assignments 10-11-88 06:23:00
MCMD:
        EQU
                02AH
                       ; MSCI COMMAND REG
                       ; MSCI CONTROL REG
MCTL:
        EQU
                02EH
MIDL:
        EQU
                031H
                       ; MSCI IDLE PATTERN REG
MST2:
       EQU
                023H ; MSCI Status Register 2
               080H
DSR1:
       EQU
                      ; DMA STATUS REG CH 1
DMRA1:
                081H
                      ; DMA MODE REG A CH 1
        EOU
DMRB1: EQU
                082H
                      ; DMA MODE REG B CH 1
DIR1:
       EOU
              084H ; DMA INTERRUPT ENABLE REG CH 1
DCR1:
       EOU
            085H
                       ; DMA COMMAND REG CH 1
NPUreg: EOU
                OF4H ; NPU board control register
TXDen:
        EOU
                018H ; enables tx drivers on npu bd
TXDdis: EOU
                008H
                      ; disables tx drivers on npu bd
TXen:
        EOU
                002H
                       ; enables tx of MSCI
DMACen: EOU
                002H
                       ; enables DMAC channel
public tftime
     cseq
     enable transmit drivers for 1.5 bit times
tftime:
           LD
                A,5
                           ;prepare to count 1.5 bit times
                B, TXDen
           OUTO (NPUreg), B ; enable transmit drivers
TLOOP1:
           SUB
                           ; decrement A for timing
                1
           JR
                NZ, TLOOP1 ;loop until timeout
```

```
Appendix C - Timing related routines for transmitting frames (continued)
      disable transmit drivers for 1.5 bit times
            LD
                  A, 5
            T.D
                  B. TXDdis
            OUTO
                  (NPUrea).B
                                     ; disable transmit drive
TLOOP2:
            SUB
                                     ;decrement A for timing
            JR
                                     ;loop until timeout
                  NZ,TLOOP2
      enable transmit for 1 byte time (flag)
            LD
                  A,28
            LD
                  B, TXDen
            OUTO
                  (NPUreg), B
                                     ;enable transmit drive
            LD
                  B, TXen
            OTUO
                  (MCMD),B
                                     ;enable transmit
TLOOP3:
            SUB
                   1
            JR
                  NZ, TLOOP 3
                                     ;loop until timeout
      enable DMAC to load TX buffer
            LD
                  B, DMACen
            OUTO
                  (DSR1),B
                                     ; enable DMAC channel 1
ENDLP:
            IN0
                  A, (MST2)
            AND
                   02h
            JR
                  Z, ENDLP
                                     ; wait for end of frame
; wait for all chars and CRC to transmit
            LD
                  A, OAOh
                                     ;prepare for abort string
TLOOP4:
            SUB
                   1
                                     :12 bit times
            JR
                  NZ,TLOOP4
                                     ;loop until timeout
     disable transmitter
                  B, 03h
            _{
m LD}
            OUTO (MCMD), B
; wait for NULLs to transmit as Abort sequence
            LD
                  A, 43h
TLOOP5:
            SUB
                                     ;12 bit times
            JR
                  NZ, TLOOP 5
                                     ;loop until timeout
; disable transmit drivers
            LD
                  B, TXDdis
            OUTO (NPUreg), B
                                     ; disable transmit drive
; return to transmitFrame routine
            RET
```

Appendix C - NPU Hardware Interface Routines

```
/* This file contains global variable declarations
/* and NPU hardware interface routines
/* Filename: NPUhwrt.c
         ************
#include "ltdefs.h"
int CarrierSense()
/* Reads MST1 and returns FLGD bit: (p. 145)
  1: Flag detected
  0: No flag detected
                                        */
  int MSCIStatReg1, status;
  MSCIStatReg1 = inport(MST1);
  status = (MSCIStatReg1 & SYNCDmask);
  return(status);
}
                        /* Also referred to as RxCharAvail */
int RcvDataAvail()
/* Reads MST0 and returns RxRDY bit: (p. 141)
  1: data in rx buffer
  0: no data in rx buffer
  int MSCIStatReg0, status;
  MSCIStatReg0 = inport(MST0);
  status = (MSCIStatReg0 & RXRDYmask);
  return(status);
}
int OverRun()
/* Reads MST2 register and returns OVRN bit:
                                                (p. 150)
  1: Overrun error detected
  0: No overrun error detected
                                        */
  int MSCIStatReg2, status;
  MSCIStatReg2 = inport(MST2);
  status = (MSCIStatReg2 & OVRNmask);
  return(status);
}
```

Appendix C - NPU Hardware Interface Routines (continued)

```
int EndOfFrame()
/* Reads MST2 register and returns EOM bit:
                                                  (p. 150)
   1: End of receive frame detected
   0: Receive frame end not detected
   int MSCIStatReg2, status;
   MSCIStatReg2 = inport(MST2);
   status = (MSCIStatReg2 & EOMmask);
   return(status);
int CRCok()
/* Reads MST2 register and checks CRC bit:
                                                  (p. 150)
   1: CRC error detected, return 0
   0: no CRC error detected, return 1
                                                  */
   int MSCIStatReg2, status;
  MSCIStatReg2 = inport(MST2);
   status = (MSCIStatReg2 & CRCmask);
  if (status)
        return(FALSE);
   else return(TRUE);
void resetRx()
/* Resets and reenables receive by issuing commands
  to the MCMD register (p. 137)
   outport(MCMD,RXreset);
   outport(MCMD,RXenable);
void enableRx()
/* reenables receive by issuing commands
                                                                  */
 to the MCMD register (p. 137)
  outport(MCMD,RXenable);
}
void disableRx()
/* Disables receive by issuing commands to the MCMD reg. */
  outport(MCMD,RXdisable);
```

*/

Appendix C - NPU Hardware Interface Routines (continued)

```
void EnterSearchMode()
/* Issues Enter Search Mode command to the MCMD register */
{ outport(MCMD,EnterSearch);
char rxDATA()
/*returns a character of data from the MSCI receive buffer*/
{ char data;
  data = inport(MTRB);
  return(data);
void enableTx()
/* enables transmit by issuing commands to the MCMD register
                                                                   (p. 137)
  outport(MCMD,TXenable);
void enableTxDrivers()
/* enables Tx drivers by writing to hardware register on NPU
  board (p. 18 of Dev Board UM) */
{ char data;
  data = inport(NPUreg);
  data = data \mid 0x10;
  outport(NPUreg,data);
void disableTxDrivers()
/* disables Tx drivers by writing to hardware register on
NPU
        board (p. 18 of Dev Board UM) */
{ char data;
  data = inport(NPUreg);
  data = data & 0x0EF;
  outport(NPUreg,data);
```

Appendix C - NPU Hardware Interface Routines (continued)

```
char endofTX()
/* polls DMA ch 1 status register 1 (DSR1) to check for End
  of Frame condition (p. 576) */
{    char data;
    data = inport(DSR1);
    data = data & 0x40;
    return(data);
}

void enableDMAC1()
/* enables DMAC to MSCI transfer for transmit data */
{    outport(DSR1,DMACenable);
}
```

Appendix C - Miscellaneous Routines

```
/******************
/* Miscellaneous Functions */
#define FALSE
                        0x00
#define CMF
                        7
#define TCSR0
                        0x52
#define TCONRO
                        0x51
#define TCNT0
                        0x50
#define TMRenable
                        0x12
#define IDGslottime
                        100.0
#define MST3
                        0x24
#define MCTL
                        0x2e
int rval;
int bitCount(bitVector)
int bitVector;
{ int
        sum;
  sum = BIT(&bitVector,0);
                                        /* BIT is a function which returns a bit value(specified by 2nd parameter) */
  sum = sum + BIT(\&bitVector,1);
                                                from a bit vector (address specified as 1st parameter */
  sum = sum + BIT(\&bitVector.2):
  sum = sum + BIT(&bitVector,3);
  sum = sum + BIT(\&bitVector,4);
  sum = sum + BIT(\&bitVector,5);
  sum = sum + BIT(&bitVector,6);
  sum = sum + BIT(\&bitVector,7);
  return(sum);
}
int min(val1, val2)
                        /* returns the minimum of two values */
int val 1, val 2;
{ if (val1 < val2)
        return(val1);
  else return(val2);
}
int max(val1,val2)
                        /* returns the maximum of two values */
nt val1,val2;
\{ if (val1 > val2) \}
        return(val1);
  else return(val2);
```

Appendix C - Miscellaneous Routines (continued)

```
float random (maxval)
                                   /* returns a simulated random value based on the value in the NPU R register */
int maxval;
{ extern int rval;
   float randval.floatslot:
#asm
   ld
         a,r
   ld
         (rval),a
#endasm
   randval=maxval*((float)rval/(float)127);
   randval=(randval*IDGslottime)/776;
return (randval):
void timerInit(seed.enable)
                                   /* initializes the NPU timer channel 0 */
char seed,enable;
{ outport(TCONR0,seed);
   outport(TCSR0,enable);
char timeout()
                                   /* polls the NPU timer channel 0 for timeout condition */
{ int status;
                                   /* disables timer when timeout detected */
   status = inport(TCSR0);
   status = BIT(&status,CMF);
   if(status)
         inport(TCNT0); /* clear CMF */
         outport(TCSR0,0x00);
        /* disable counter */
   return(status);
}
void ResetMissingClock()
                                   /* generate negative pulse on /RTSM output line */
                                   /* causes reset of external missing clock circuitry */
{ outport(MCTL,0x80);
   outport(MCTL,0x81);
char MissingClock()
                                   /* reads state of output of missing clock circuitry */
/* if /CTSM high, then detected */
   return(IBIT(MST3,0x03));
```

HD64180S (NPU)

Application Note

Chained Block Transfer DMA

Marnie Mar, Jun Tsong, Tom Yu

Introduction

Hitachi's HD64180S Network Processing Unit (NPU) combines the 64180 8-bit CPU core with a set of on-chip peripherals which provide the user with high-integration communications control capability. The on-chip peripherals include a Multi-protocol Serial Communications Interface (MSCI) which can support Asynchronous, Byte Synchronous and Bit Synchronous communications protocols. To assist in han-

dling data transmitted and received by the MSCI, the NPU also includes a two-channel Direct Memory Access Controller (DMAC).

The DMA capability provided on-chip includes standard DMA functions such as single and dual address transfers of data using external or auto (program generated) requests. In addition, when using Bit Synchronous protocols such as SDLC with the MSCI, the DMAC is capable of transmitting

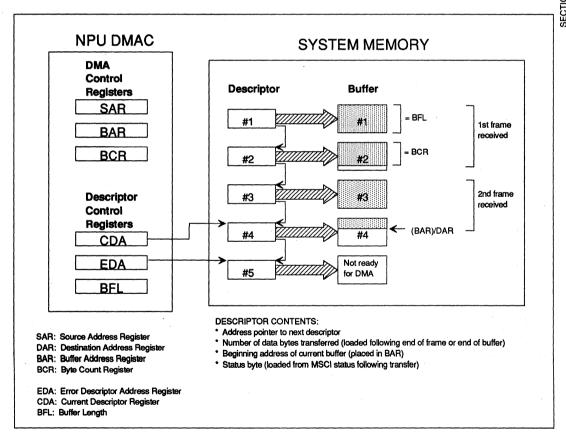


Figure 1 - Receive Data storage using MSCI and DMAC

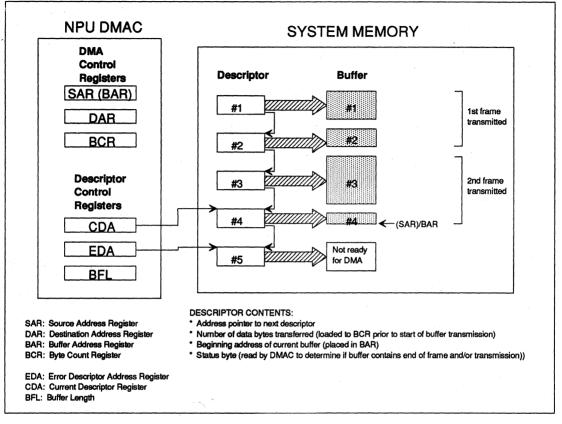


Figure 2 - Accessing transmit data usind MSCI and DMAC

data from and receiving data into a series of blocks, or buffers, in memory. This capability is provided by an internal connection between the DMAC channel 0 and the MSCI receiver, and channel 1 and the MSCI transmitter.

These memory buffers can be located anywhere in the 1 MByte memory space accessible by the NPU. Once initialization of the DMAC and a table in RAM defining the memory buffers occurs, data transfer and buffer management proceeds without further CPU intervention.

This Application Note discusses the details of this DMAC capability, refered to as the Chained-block Transfer Mode. A simple example program using the MSCI to transfer data using this mode is also discussed, and the program code is included as an example.

NPU's Buffer Management Scheme

The NPU can dynamically allocate individual buffers in various locations in system memory as the source or destination for DMA transfers. These buffers are identified when the user initializes a table of information in memory which contains an entry for each buffer. Each entry, called a descriptor, contains attributes such as start of buffer location, link pointer to the address of the next buffer's descriptor, buffer size, and buffer status. Using this descriptor table, the DMA channel can autonomously handle Bit Synchronous protocol data transfers between the MSCI and the memory buffers.

The size of buffers used depends on the application. Bit-

oriented protocols generally operate by transferring groups of data framed by control information, which are referred to as frames or packets of data. The size of buffers can be separately specified for transmit and receive data.

For transmissions, data to be sent in a frame may be located in one or more locations in memory, and therefore the transmit buffer(s) would be shorter than or equal in length to the data frame/packet. Data in several buffers can be contiguously sent to make up a frame. The status information held in each

transmit buffer descriptordescriptor indicates to the DMAC if the buffer contains the end of a frame.

The DMAC can be programmed to transmit one frame of data at a time, or to transmit multiple frames to assist in high speed data transfer.

transmitted.

If the DMAC channel is initialized for multiple frame transmissions, the status information in the transmit buffer descriptor includes a bit to indicate if the buffer identified by the descriptor contains the end of data to be

For reception, frames are received and stored in one or more buffers. A pre-determined maximum buffer size is used to allocate memory for these buffers. If the incoming data frame is longer than this maximum size specified, the frame will be broken up into separate buffers. The MSCI signals the DMAC when the last byte of a frame has been transferred using an internal signal line. By specifying a maximum buffer size equal to the size of the average frame, less memory space will be wasted by smaller frames or portions of frames which do not fill the buffer size allocated.

If multi-frame mode of operation has been specified, the DMAC will perform buffer switching following the receipt of the End of Frame signal. Data for the next frame will be received into a new buffer.

Advantages of the Linked-Chaining Mode

The NPU's linked chaining capabilities provide advantages over conventional DMA handling of serial data. Some of the advantages of this scheme are listed below:

- High performance in both serial data transmission rates and system throughput --- the Chained-block Transfer Mode allows the DMAC to continuously load data received by the MSCI into memory without incurring CPU overhead to switch

> buffers. Coupled with the MSCI's multi-block transfer capability, DMAC operating in this mode can move back-to-back frames of data located in different parts of memory to the MSCI's transmitter. also without CPU assistance. System processing time for received data is enhanced bv MSCI's three-byte FIFO for both receiver and transmitter.

System' Memory Address Bit 7 Bit 0 n Chain Pointer (L) Link to next descriptor Chain Pointer(H) n+1 Buffer Pointer (L) n+2 n+3 Buffer Pointer (H) Starting address of corresponding buffer n+4 Reserved Buffer Pointer(H) Reserved n+5 Data Length (L) n+6 Bytes of data in n+7 Data Length (H) corresponding buffer Status Byte n+8 Reserved n+9

Figure 3 - Buffer Descriptor for Chained Block Transfer DMA

- Efficient utilization of system memory — In a system without smart buffer management, consecutive memory blocks need to be reserved for each of the frames or packets of data to be received. The size of each memory block would need to be a long as the maximum frame/packet size (e.g. 264 bytes in an ISDN LSPD frame, 603 bytes in a LLAP packet for AppleTalk).

With the capabilities of the NPU, multiple buffers can be chained together to hold the data contained in one received frame. Although receive data buffer sizes must be fixed (for memory allocation), the size selected can be optimized by specifying the average frame size.

- Efficient transmission of data stored in multiple locations - In the case of data transmission, frame data may be scattered in system memory space in blocks of differing size. Provided with link information in the descriptors, the NPU's DMA can autonomously transfer such a frame of data to the MSCI's transmitter. Without this linking capability, the data

Receive Buffer Descriptor

Buffer's size is pre-programmed in BFL register

Data length field is written with the BCR contents by the DMAC during buffer switching. If switching occurs in the middle of a frame, length field will equal BFL register value.

Status field is written by the DMAC during each buffer switch

Status field is read by the user program prior to processing the receive buffer data

Transmit Buffer Descriptor

Buffer size is variable

Data length field is programmed by the user

During buffer switching, data length information is written to the DMAC's BCR.

CPU programs the Status field value

During buffer switching, DMAC reads the status field to determine if actions should be taken upon completion of transmission. If EOM bit is set, DMA notifies MSCI of end of frame.

In multi-frame mode, if the EOT bit is set, the DMAC stops following data transfer. Otherwise, if data is available (CDA not equal to EDA), transmission continues.

Table 1 - Differences between transmit and receive buffer descriptors

blocks would have to be combined in memory prior to transmission. With the DMAC's multiple frame transmission capability, multiple frames of this type can be transferred to the MSCI's transmitter continuously by DMA without CPU intervention.

- Low bus bandwidth overhead — Without buffer management capability, the DMAC would have to poll to determine if data was available for transmission, or an interrupt would have to be generated and serviced in order to signal the DMAC that data was ready to be transferred.

The NPU's buffer management capability allows the CPU to dynamically update the Error Descriptor Address (EDA) register which indicates to the DMAC the address of the last descriptor in the linked list. The buffer referenced by this last descriptor is not available to the DMAC. Each time the DMAC finishes with a buffer and proceeds to the attributes of the next buffer in the linked descriptor list, the EDA is automatically compared with the address of the new descriptor. If the addresses match, then DMA transfer ends. If the addresses do not match, the DMAC begins transfer to or from this buffer. No bus activity is required to make this determi-

nation.

- Low overhead in buffer switching — the DMAC automatically performs housekeeping tasks during buffer switching. No programmed intervention is required.

DMAC Control Registers

The following registers are used by the DMAC to implement the Chained Block Transfer Mode.

CPB: Chain Pointer Base specifies the four highest order bits of the descriptor's address. Written only by the CPU.

CDA: Current Descriptor Address specifies the lower 16 bits of the current descriptor's 20 bit address. CPB provides the four highest bits. The CDA is initially programmed by the user, and is updated by the DMAC during buffer switching.

EDA: Error Descriptor Address indicates the lower 16 bits of a descriptor's starting address. The descriptor identified in this register is the entry in the linked list following the last descriptor which is valid for DMAC use. The user can dynamically reprogram the EDA during MSCI - DMAC

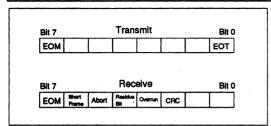


Figure 4 - DMA descriptor Status Bytes

operation which allows reuse of transmit or receive buffers.

BCR: Byte Count Register is a 16-bit down counter. For transmitting, the BCR indicates the number of remaining data bytes to be transferred in the transmit buffer current being accessed. For receiving, the BCR represents the number of unused bytes remaining in the receive buffer. The initial value of BCR is obtained from the current descriptor. The BCR is updated by the DMAC and cannot be written by the user.

BAR: Buffer Address Register specifies the address of data being transferred from or to the buffer. The initial value of BAR is obtained from the current descriptor. This register is updated by the DMAC, and cannot be written by the user.

BFL: Receive Buffer Length specifies the fixed size of receive buffers. All receive buffers have the same size determined by the value programmed in the BFL. During buffer switching, the BFL is copied to the BCR. BFL is programmed by the user.

DMA Buffer Descriptor Format

Each buffer to be used by the DMAC for data transfer must be identified using a descriptor, which has a format as shown in Figure 3. Each descriptor contains 10 bytes of data. All descriptor information must be contained in the 64Kbyte space defined by the CPB (Chain Pointer Base), so up to 6,553 descriptors may be defined. The components of a descriptor are described below:

Chain Pointer: Two bytes providing link information. The 20bit address of the next descriptor in the linked list is formed by combining these bits with the information in the CPB (Chain Pointer Base) as the four most significant bits. Buffer Pointer: Twenty bits which point to the start address of the buffer corresponding to this descriptor

Data Length: The amount of data stored in the buffer. For transmits, this information is initialized by the user. For

receives, this information is written by the DMAC when the buffer is filled, and is determined by the BFL (Receive Buffer Length) and the BCR (Byte Count Register) value when reception into the buffer has completed.

Status Byte: Status information on the buffer. The status byte differs for transmit and receive descriptors, as shown in Figure 4.

For transmit buffer descriptors, the status byte's EOM and EOT bits are read by the DMAC during buffer switching. EOM = 1 notifies the DMAC that the corresponding buffer contains the end of a frame. The EOT bit is used only when the MSCI is in multi-frame transmit mode. EOT = 1 indicates that the corresponding buffer contains the end of data to be transferred, and DMAC operation ends when this buffer has been transmitted.

For receive buffer descriptors, the status byte is directly copied from the MSCI's Frame Status register (MFST) upon the DMAC's receipt of an EOM condition. When the DMAC receives the end of frame signal internally from the MSCI, the DMAC will request the MSCI to dump the contents of its status register during buffer switching. If the buffer switching occurs in the middle of receiving a frame, the DMAC writes 00h to the descriptor's status byte.

Constructing a ring of descriptors for re-using buffers

Since buffer descriptors are organized in a linked list, it is possible to form a ring by programming the address of the first entry into the link field of the last entry. This would allow the DMAC to automatically access the list of descriptors and their associated buffers in a ring configuration. This would allow re-use of buffers in memory.

Because the DMAC compares the CDA and EDA in order to determine when all buffers available to the DMAC have been accessed, there will always be at least one descriptor that references a buffer that is unavailable to the DMAC. There are two ways of dealing with this descriptor and buffer:

- This descriptor can be set up as a dummy. The last real descriptor in the link would point to this dummy descriptor, and the EDA would be programmed with the address of this descriptor. When the DMAC reaches this dummy entry in the linked list, the CDA would equal the EDA, and the DMA channel would stop.
- The EDA can be programmed to the address of this last descriptor at the start, then when the buffer associated with the

first descriptor has been accessed the EDA can be reprogrammed to the address of the first descriptor. The link pointer of the last descriptor should point to the address of the first descriptor. The CPU could poll the DMAC's CDA register to determine when buffer 1 transfer has completed (CDA will contain the address of buffer 2's descriptor). Using this method of reprogramming the EDA allows buffers to be used in a ring configuration.

An example using this ring configuration of receive buffers is shown in Figure 5. In this example, eight memory buffers are allocated for receiving data from the MSCI under DMA control.

A program using this ring configuration of receive buffers was written to demonstrate the initialization of the NPU required to handle this type of receive operation. The code for this program is included in Appendix A.

To simplify the hardware required to execute this program, the NPU MSCI's local loopback mode was selected to cause data placed in the MSCI's transmit buffer to be looped back into the receive buffer. The data to be transmitted was initialized as a single frame contained in two separate buffers in memory. The transmit descriptor table was configured as a linked list containing the two entries for the buffers plus a dummy descriptor.

The program initializes the MSCI for bit oriented communications, then uses chained block transfer mode of the DMAC to transmit a frame of data. This transmitted data is looped back into the MSCI receiver, where it is received using chained block transfer mode DMA. As each of the receive buffers are filled, the contents of the buffer is moved under program control to a new location in memory.

This program was tested using the Hitachi 64180S ASE (Adaptive System Evaluator) Emulator. Correct operation of the program was determined by examining memory upon completion of the program to show that the transmitted data had been received and stored into memory. Examination of the DMAC registers also showed that DMA transfers had completed successfully.

The sequence of events that occur in this program is described below:

Initialization by user program:

- Transmit data buffers initialized
- Transmit descriptor table for DMA initialized
- Receive descriptor table for DMA initialized

- MSCI initialized for bit oriented protocol, single frame transfer, local loopback mode
- DMAC channel 0 initialized for receiving data into the receive buffers in chained block mode
- DMAC channel 1 initialized for transmitting data from the transmit buffers using chained block transfer mode
- DMAC channels, MSCI receiver and MSCI transmitter are enabled in that order

Preparation for transmitting data

Both DMAC channels prepare to transfer data between the MSCI and memory. For DMAC channel 1, the following occurs:

- DMAC compares CDA1 and EDA1, and continues if not equal
- DMAC reads information from the transmit descriptor pointed to by CDA1. The starting address information is stored in the DMAC's Source Address Register (SAR). The link address and status information are transferred to DMAC internal registers for future reference.
- The DMAC loads the data length value from the descriptor into the BCR
- DMAC responds to the MSCI internal request to accept transmit data

Transmitting data

- DMAC transfers one byte of data from buffer to the MSCI transmitter
 - DMAC decrements the BCR1 and increments the DAR1
 - Transfers continue until BCR1 = 0
 - When BCR1 = 0, buffer switching is initiated

Buffer switching during transmission

- The link field information of the descriptor for the buffer just transferred (descriptor #1, buffer #1) is read from the internal working register and written to the CDA1 register.
- The status field information of descriptor #1, which was placed in an internal working register prior to transmitting buffer #1's data, is checked to determine if the EOM bit is set. If so, transfer ends. If this bit is not set, tasks continue. (If Multi-frame mode was selected, the status field would be checked for EOT bit set, and transmission would complete only if this bit was set).
- This new CDA1 value is compared with the value in EDA1. If they are not equal, the buffer referenced by the descriptor addressed by the CDA1 contains data that should be transmitted. (If CDA = EDA, DMA transfer stops)
- The new descriptor's link field is stored in the internal working register. The buffer pointer stored in the descriptor

HITACHI

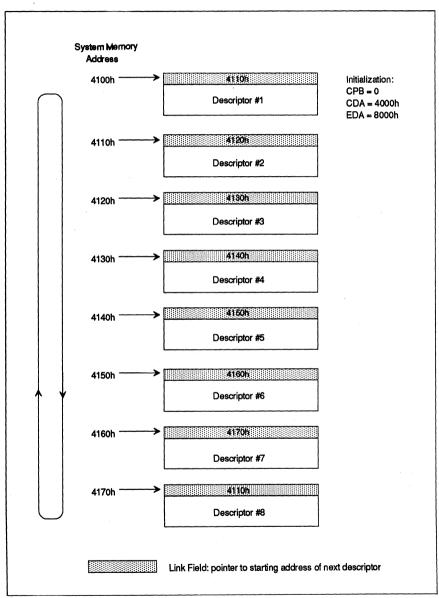


Figure 5 - Buffer Descriptors set up for continuous receipt of MSCI data

is loaded into the DMAC's BAR

- Data length field of the descriptor pointed to by the link field of descriptor #1 is loaded into the BCR.
- Status field of this next descriptor is loaded into an internal working register.
 - Data transmission from buffer #2 begins.

33 bus states are required to complete the buffer switching tasks when the switch occurs during the middle of a frame. 37 states are required when the buffer switch occurs at the end of a frame.

Preparation for receiving data

For DMAC Channel 0 (DMA receive data), the following actions occur:

- DMAC compares CDA0 and EDA0, and continues if not equal
- DMAC reads information from the receive descriptor pointed to by CDA0. The starting address information is stored in the DMAC's Destination Address Register (DAR0). The link address is transferred to a DMAC internal register for future reference.
- The DMAC loads the data length value from BFL0 into BCR0.
- DMAC responds to the MSCI internal request to receive data.

Receiving data

- DMAC transfers one byte of data from the MSCI receiver to the receive buffer
 - DMAC decrements BCR0 and increments DAR0
- Transfers continue until end of frame is detected or BCR1 = 0, when buffer switching is initiated

Receive Buffer Switching

- The number of bytes received into the buffer is written to the descriptor's data length field.
- If the end of the frame/packet was not received into this buffer, the DMAC writes 00h to the status field of the descriptor. If the end of the frame was received, the DMAC requests the MSCI to put its MFST value onto the internal data bus. This information is transferred by the DMAC to the descriptor's status field.
- The descriptor's link field information, which was placed into an internal working register when the descriptor was examined prior to receiving the data, is transferred to the CDA register.
- This new CDA value is compared with the value in the EDA. If they are not equal, the buffer referenced by the

descriptor addressed by the CDA is available to store receive data. (If CDA = EDA, DMA transfer stops)

- The new descriptor's link field is stored in the internal working register. The buffer pointer stored in the descriptor is loaded into the DMAC's BAR.
 - The DMAC's BFL value is copied to the BCR
 - Data reception into the new buffer begins

34 states are required to perform these buffer switching tasks.

Closing the loop

After one or more receive buffers have been filled by DMA transfers, the user program can begin processing the buffer data. When processing of first buffer's data is complete, the user program can update the EDA0 to point to the address of the next buffer's descriptor. The receive buffers will be filled sequentially, and when the eighth buffer is filled, its link address, which will be placed in CDA0, will point to the descriptor of the first buffer. Since EDA0 does not point to this first buffer's descriptor, upon comparison CDA0 will not equal EDA0 so reception from the MSCI will continue and receive data will be transferred to this first buffer again, closing the loop.

In this example program, the processing performed on the received data is to move it from the receive buffer to another location in memory, where the entire frame will be assembled in contiguous bytes. Following enabling of the DMAC and the MSCI, the user program polls the CDA0 register to determine when the first buffer has been filled and the DMAC has switched to filling the second buffer. The user program detects that this has occurred when the CDA0 register points to the second descriptor. The program continues this polling then moving for each receive buffer in the descriptor table.

Although eight receive buffers are available to the DMAC, a total of ten buffers worth of data will be received to process the transmitted frame. To accomplish this, the first two receive buffers must be reused. Upon initialization, EDAO points to the descriptor for the eighth buffer. The DMAC will therefore stop receiving data when the eighth descriptor is reached, unless EDAO is reprogrammed.

Once the first buffer has been filled and the data transferred, this buffer is available for reuse. At this point in the program, EDA0 can be reprogrammed to point to the address of the descriptor of the second buffer. When the second buffer has been filled and transferred, EDA0 can safely be reprogrammed to point to the address of the descriptor of the third buffer. When this second buffer has been filled the second time and buffer switching is initiated, the DMAC will detect that the

CDA = EDA, and transfer will stop.

Questions and Answers

The following paragraphs contain questions and answers pertaining to the use of the Chained Block Transfer Mode of DMA operation.

How does the DMAC know that the next descriptor references a buffer that is available for transfer?

During buffer switching, the current buffer's chain pointer becomes the new CDA. The DMAC compares this new CDA with the current EDA value. If they are equal, the end of the chain has been reached. If they are not equal, the new buffer is available for use by the DMAC.

How does the user program know that a particular buffer has been used by the DMAC?

The program can read the DMAC channel's CDA. If, for instance, the CDA contains the starting address of the third descriptor in the linked list, the user can determine from this that:

- 1. The DMAC is ready to access buffer #3 OR
- 2. The DMAC is in the process of accessing buffer #3. In either case, the user can be certain that the DMAC is finished with buffers corresponding to the first and second descriptors in the list, and these buffers can be processed by the user program and then reused as DMAC data buffers.

How can the DMAC reclaim buffers written with data received in a bad frame?

The MSCI can be programmed to cause an interrupt upon receipt of a bad frame, for instance by signalling a CRC error. In the service routine for this interrupt, the user program can determine which buffer contains the start of the bad frame detected. The program can then disable the DMA channel handling the receive, and reprogram the CDA with the start address of the descriptor referencing this buffer. Upon reenabling the DMA channel, new data will be written over the data of the bad frame.

How can a frame be retransmitted?

The user program can determine the start address of frames being transmitted from the transmit buffer descriptor table. If the need to retransmit a frame occurs, the DMAC can be disabled and the CDA register can be reprogrammed with the address of the descriptor corresponding to the buffer containing the start of the frame to be retransmitted. When DMA is reenabled, transmission will start with the beginning of the frame.

```
0000
                    "64180.TBL"
0000
             HOF "INT8"
              : TITLE: NPU DMA BUFFER MANAGEMENT DEMOSTRATION PROGRAM
                       DEFSEG ROM, ABSOLUTE
                      SEG
                             ROM
              ; DATA TO BE TRANSMITTED
3000
                     ORG
                            3000H
3000 030B465241
                            03,0BH, "FRAME1 B1-BUFFER MANAGEMENT DEMOSTRATION PROGRAM"; 50 BYTES
3100
                     ORG
                            3100H
3100 204652414D
                             " FRAME1 B2-ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"
              ; TRANSMIT DESCRIPTOR SET UP
              : TX BUFFER 1
4000
                     ORG
                            4000H
4000 1040
                             4010H
                                       ; STARTING ADDRRESS OF NEXT DESCRIPTOR = 4010H
4002 0030
                                       : LOWER 16 BIT OF TX BUFFER POINTER = 3000H
                     DWI.
                             3000H
                                       ; HIGHER 4 BIT OF 20 BIT TX BUFFER POINTER = 00
4004 00
                     DFR
                             0.0
4005 00
                                       ; RESERVED
4006 3200
                     DWI.
                             50
                                       : DATA LENGTH OF BLOCK 1 = 50
4008 00
                     DFB
                             0
                                       ; STATUS ===> NO EOM , NO EOT
4009 00
                     DFB
                                       : RESERVED
              ; TX BUFFER 2
                            4010H
4010
                     ORG
4010 2040
                     DWL
                             4020H
                                       ; STARTING ADDRRESS OF NEXT DESCRIPTOR = 4020H
                                       ; LOWER 16 BIT OF TX BUFFER POINTER = 3100H
4012 0031
                     DWL
                             3100H
                                       ; HIGHER 4 BIT OF 20 BIT TX BUFFER POINTER = 00
4014 00
                             00
                     DFR
4015 00
                                        : RESERVED
                                       ; DATA LENGTH OF BLOCK 2 = 50
4016 3200
                     DWI.
                             50
4018 81
                     DFB
                             81H
                                        ; STATUS ===> EOM , EOT
4019 00
                             0
                                       : RESERVED
                     DFB
              : TX BUFFER 3
                     ORG
4020
                            4020H
4020 3040
                             4030H
                                       ; STARTING ADDRRESS OF NEXT DESCRIPTOR = 4030H
                                       ; LOWER 16 BIT OF TX BUFFER POINTER = 3200H
4022 0032
                     DWT.
                             3200H
4024 00
                             0.0
                                        ; HIGHER 4 BIT OF 20 BIT TX BUFFER POINTER = 00
4025 00
                     DFB
                                        ; RESERVED
4026 3200
                      DWI.
                             50
                                        ; DATA LENGTH OF BLOCK 3 = 50
4028 80
                                        ; STATUS ===> EOM , NO EOT (END OF FRAME 1)
                      DFB
                             80H
4029 00
                                        ; RESERVED
                RECEIEVE DESCRIPTOR SET UP
              ; RX BUFFER 1
                      ORG
                            4100H
4100
```

-					
	4100	1041	DWL	4110H ;	STARTING ADDRRESS OF NEXT DESCRIPTOR = 4110H
	4102	0030	DMT	3000н ;	LOWER 16 BIT OF RX BUFFER POINTER = 3000H
	4104	03	DFB	03 ;	HIGHER 4 BIT OF 20 BIT RX BUFFER POINTER = 03
	4105	00	DFB	0 ;	RESERVED
	4106	0000	DWL	0 ;	DATA LENGTH OF BLOCK 1 TO BE WRITTEN BY DMA
	4108	00	DFB	0 ;	STATUS ===> TO BE WRITTEN BY DMA
	4109	00	DFB	0 ;	RESERVED
			; RX BUFFER 2		
	4110		ORG	4110H	
	4110	2041	DMT	4120H ;	STARTING ADDRRESS OF NEXT DESCRIPTOR = 4120H
	4112	2030	DWL	3020Н ;	LOWER 16 BIT OF RX BUFFER POINTER = 3020H
	4114	03	DFB	03 ;	HIGHER 4 BIT OF 20 BIT RX BUFFER POINTER = 03
	4115	00	DFB	0 ;	RESERVED
	4116	0000	DMT	0 ;	DATA LENGTH OF BLOCK 1 TO BE WRITTEN BY DMA
	4118	00	DFB	0 ;	STATUS ===> TO BE WRITTEN BY DMA
	4119	00	DFB	0 ;	RESERVED
			; RX BUFFER 3		
	4120		ORG	4120H	
	4120	3041	DWL	4130H ;	STARTING ADDRRESS OF NEXT DESCRIPTOR = 4130H
	4122	4030	AL.	3040Н ;	LOWER 16 BIT OF RX BUFFER POINTER = 3040H
	4124	03		03 ;	HIGHER 4 BIT OF 20 BIT RX BUFFER POINTER = 03
	4125	00	DFB	0 ;	RESERVED
	4126	0000	DWL	0 ;	DATA LENGTH OF BLOCK 1 TO BE WRITTEN BY DMA
	4128	00	DFB	0 ;	STATUS ===> TO BE WRITTEN BY DMA
	4129	00	DFB	0 ;	RESERVED
			; RX BUFFER 4		
	4130		ORG	4130H	
	4130	4041	DWL	4140H ;	STARTING ADDRESS OF NEXT DESCRIPTOR = 4140H
	4132	6030	DWL	3060Н ;	LOWER 16 BIT OF RX BUFFER POINTER = 3060H
	4134	03	DFB	03 ;	HIGHER 4 BIT OF 20 BIT RX BUFFER POINTER = 03
	4135	00	DFB	0 ;	RESERVED
	4136	0000	DMT	0 ;	DATA LENGTH OF BLOCK 1 TO BE WRITTEN BY DMA
	4138	00	DFB	.0 ;	STATUS ===> TO BE WRITTEN BY DMA
	4139	00	DFB	0 ;	RESERVED
			; RX BUFFER 5		
	4140		ORG	4140H	
	4140	5041	DMT	4150H ;	STARTING ADDRRESS OF NEXT DESCRIPTOR = 4150H
	4142	8030	DMT	3080Н ;	LOWER 16 BIT OF RX BUFFER POINTER = 3080H
	4144	03	DFB	03 ;	HIGHER 4 BIT OF 20 BIT RX BUFFER POINTER = 03
	4145	00	DFB	0 ;	RESERVED
	4146	0000	DWL	0 ;	DATA LENGTH OF BLOCK 1 TO BE WRITTEN BY DMA
	4148	00	DFB	0 ;	STATUS ===> TO BE WRITTEN BY DMA
	4149	00	DFB	0 , ;	RESERVED
			; RX BUFFER 6		
	4150		ORG	4150H	
	4150	6041	DWL	4160H ;	STARTING ADDRRESS OF NEXT DESCRIPTOR = 4160H
	4152	A030	DWL	30A0H ;	LOWER 16 BIT OF RX BUFFER POINTER = 30A0H
	4154	03	DFB	0. ;	HIGHER 4 BIT OF 20 BIT RX BUFFER POINTER = 03
	4155	00	OFB	0 ;	RESERVED
	4156	0000	DWL	0 ;	DATA LENGTH OF BLOCK 1 TO BE WRITTEN BY DMA
	4158	00	DFB	0 ;	STATUS ===> TO BE WRITTEN BY DMA

HITACHI

```
4159 00
                      DFB
                                       ; RESERVED
              ; RX BUFFER 7
4160
                            4160H
                     ORG
                                       ; STARTING ADDRRESS OF NEXT DESCRIPTOR = 4170H
                             4170H
4160 7041
                     DWI.
4162 C030
                             30C0H
                                       ; LOWER 16 BIT OF RX BUFFER POINTER = 30C0H
                     DWL
4164 03
                     DFB
                             0.3
                                       : HIGHER 4 BIT OF 20 BIT RX BUFFER POINTER = 03
4165 00
                     DFB
                             0
                                       : RESERVED
4166 0000
                                       ; DATA LENGTH OF BLOCK 1 TO BE WRITTEN BY DMA
                      DWL
4168 00
                      DFB
                             Λ
                                       ; STATUS ===> TO BE WRITTEN BY DMA
4169 00
                      DFB
                             0
                                       ; RESERVED
              ; RX BUFFER 8
                            4170H
4170
                     ORG
4170 0041
                     DWL
                             4100H
                                       ; STARTING ADDRRESS OF NEXT DESCRIPTOR = 4100H
4172 E030
                     DWI.
                             30E0H
                                       : LOWER 16 BIT OF RX BUFFER POINTER = 30E0H
4174 03
                     DFB
                             03
                                       ; HIGHER 4 BIT OF 20 BIT RX BUFFER POINTER = 03
                                       ; RESERVED
4175 00
                     DFB
4176 0000
                     DWT.
                             n
                                       ; DATA LENGTH OF BLOCK 1 TO BE WRITTEN BY DMA
4178 00
                      DFB
                             0
                                       ; STATUS ===> TO BE WRITTEN BY DMA
4179 00
                      DFB
                                       : RESERVED
              ***************
              : CPU ROUTINE
                          0F000H
F000
                      ORG
F000
              RESET:
              MSCI TRANSMIT IN DMA SET UP
                TRANSMITTER AND RECEIEVER SET UP
F000 3E21
                      LD A,21H
                      OUTO (MCMD), A
                                       ; CHANNEL RESET
F002 ED392A
F005 3E87
                      LD A,87H
F007 ED392B
                      OUTO (MMDO), A
                                       ; BIT-SYNC HDLC, AUTO ENABLE=0, CRC-CCITT=1 INITIALLY
F00A 3E00
                      LD
                          A,00H
F00C ED392C
                      OUTO (MMD1),A
                                       ; ADDRESS NOT CHECKED
F00F 3E03
                      LD
                          A, 03H
F011 ED392D
                      OUTO (MMD2), A
                                       ; FULL DUPLEX, NRZ CODE, LOCAL LPBK
F014 3EB1
                      LD A, OB1H
                      OUTO (MCTL), A
                                       ; DMA, FLAG AND IDLE, -RTSM=HIGH
F016 ED392E
                                       ; SPECIFIES FCS NO-LOAD
F019 3E43
                      LD A.43H
F01B ED3933
                      OUTO (MRXS), A
                                       ; RXCM FROM BRG
                          A, 43H
F01E 3E43
                      LD
F020 ED3934
                      OUTO (MTXS), A
                                      ; TXCM FROM BRG
F023 3E80
                      LD A,80H
F025 ED3932
                      OUTO (MTMC), A
                                      ; SET TMC=128 -> BAUD RATE SELECTED=9.6K
F028 3E00
                     LD A,000H
```

```
F02A ED3926
                    OUTO (MIEO), A
                                   : TXINT AND RXINT DISABLED
F02D 3E83
                    LD A,83H
F02F ED3927
                    OUTO (MIE1), A ; UNDERRUN, ABORT, IDLE DETECTION INTERRUPT ENABLED
F032 3E32
                    LD A, 32H
F034 ED392F
                    OUTO (MSAO), A ; SECONDARY STATION ADDRESS = 02H
F037 3E7E
                  LD A, 7EH
F039 ED3931
                    OUTO (MIDL), A
                                  ; SET FLAG PATTERN = 011111110 AS IDLE PATTERN
            ; DMA CHANNEL 0 SET UP
                                 (RECEIEVER)
            F03C 3E94
                   T.D
                       A,94H
                                        ; DMA MODE REGISTER A
F03E ED3969
                   OUTO (DMRAO), A
                                        ; MSCI, CBSA, MSCI->MEMORY, MULTI FRAME
F041 3E00
                   LD
                        A. 0
F043 ED395D
                   OUTO (CPBO),A
                                       ; 4 HIGHER BIT OF THE 20-BIT DESCRIPTOR ADDR
F046 3E70
                  T.D A. 70H
                   OUTO (EDAOL), A
F048 ED3960
                                        ; 4170H
F04B 3E41
                   LD A,41H
                                      ; STARTING ADDR (LOW-ORDER 16 BITS) OF THE
F04D ED3961
                  OUTO (EDAOH), A
                                        ; RX DESCRIPTOR 8
F050 3E00
                  LD A,00H
F052 ED395E
                   OUTO (CDAOL), A
                                        ; 4100H
                                       ; STARTING ADDR (LOW-ORDER 16 BITS) OF THE
F055 3E41
                   LD
                        A,41H
F057 ED395F
                   OUTO (CDAOH), A
                                        ; FIRST RX DESCRIPTOR
FO5A 3EOA
                  LD
                        A.10
F05C ED3962
                   OUTO (BUFLOL), A
F05F 3E00
                   LD
                        A, 0
F061 ED3963
                   OUTO (BUFLOH), A
                                       : ALLOWING ONLY 10 BYTES IN EACH RX BUFFER
F064 3E80
                 LD
                        A,80H
F066 ED396C
                   OUTO (DIRO), A
                                        ; EOT INTERRUPT ENABLED
            ; DMA CHANNEL 1 SET UP (TRANSMITTER)
            F069 3E9C
                   LD A,09CH
                                       ; DMA MODE REGISTER A
F06B ED3981
                   OUTO (DMRA1),A
                                        ; MSCI, CHAINED, MEMORY->MSCI, MULTI FRAME
F06E 3E00
                   LD
                        A.0
                  OUTO (CPB1),A
F070 ED3975
                                       ; 4 HIGHER BIT OF THE 20-BIT DESCRIPTOR ADDR
F073 3E20
                  LD
                        A, 20H
F075 ED3978
                   OUTO (EDA1L),A
                                        ; 4020H
                                      ; STARTING ADDR (LOW-ORDER 16 BITS) OF THE
F078 3E40
                   LD
                        A, 40H
                                        ; DESCRIPTOR NEXT TO THE LAST TX BUFFER
F07A ED3979
                   OUTO (EDA1H),A
F07D 3E00
                   LD
                        A,00H
                   OUTO (CDA1L), A
F07F ED3976
                                        ; 4000H
                                        ; STARTING ADDR (LOW-ORDER 16 BITS) OF THE
F082 3E40
                   LD
                        A,40H
F084 ED3977
                   OUTO (CDA1H),A
                                        ; FIRST DESCRIPTOR OF THE FIRST TX BUFFER
```

HITACHI

```
F087 3E80
                        LD
                               A.80H
F089 ED3984
                        OUTO
                              (DIR1),A
                                                  : EOT INTERRUPT ENABLED
                ; TO ENABLE DMA CHANNEL 0, 1 AND MSCI TX,RX
F08C 3E02
                        LD
                              A, 02H
F08E ED3968
                              (DSRO),A
                                                  ; DMA CHANNEL 0 ENABLE
F091 3E02
                        T.D
                              A. 02H
F093 ED3980
                        OUTO
                              (DSR1),A
                                                  ; DMA CHANNEL 1 ENABLE
F096 3E12
                        LD
                              A,12H
F098 ED392A
                        OUTO
                               (MCMD), A
                                                  : RX ENABLE
F09B 3E02
                        LD
                              A,02H
F09D ED392A
                        OUTO
                               (MCMD), A
                                                  ; TX ENABLE
                ; TEST CDA OF RECEIEVER
                : CHANGE EDA AFTER EACH BLOCK IS DONE
                ; RECONSTRRUCT DATA INTO ONE PIECE
F0A0 3E30
                        T.D
                                A,30H
F0A2 ED3902
                        OUTO
                                 (BBR),A
                                                 ; BBR OF MMU SET AT 30
FOA5
                BLK1:
FOA5 ED385E
                        TNO
                                                  ; CHECK LOWER BYTE OF CDAO
                                A. (CDAOL)
FOA8 FEOO
                        CP
FOAA 28F9
                        JR
                                 Z.BLK1
                ; MOVE BLOCK1
FOAC 210030
                        LD
                                HL, 3000H
FOAF 11003A
                        LD
                                DE, 3AOOH
F0B2 010A00
                        LD
                                BC,10
FOB5 EDB0
                        LDIR
FOB7
                BLK2:
FOB7 ED385E
                        INO
                                A, (CDAOL)
                                                  ; CHECK LOWER BYTE OF CDAO
FOBA FE10
                        CP
                                10H
FOBC 28F9
                        JR
                                Z,BLK2
                ; MOVE BLOCK2
FOBE 212030
                        LD
                                HL,3020H
FOC1 010A00
                        LD
                                BC,10
FOC4 EDB0
                        LDIR
                         CALL
                                 PUTSCR
                         DFB
                                   'BLOCK2 MOVED', 0
                ; SET NEW EDA
F0C6 3E10
                        LD
                              A,10H
FOC8 ED3960
                        OTUO
                              (EDAOL), A
                                                  ; NEW EDA0=4110H
FOCB 3E41
                        LD
                               A,41H
                                                   ; buffer of descr at 4100h
F0CD ED3961
                        OUTO
                               (EDAOH), A
                                                   ; ready for reuse
F0D0
                BLK3:
FODO ED385E
                        INO
                                 A, (CDAOL)
                                                   ; CHECK LOWER BYTE OF CDAO
                                 20H
FOD3 FE20
                        CP
F0D5 28F9
                        JR
                                 Z,BLK3
                ; MOVE BLOCK3
```

```
F0D7 214030
                        LD
                                HL,3040H
                                BC,10
FODA 010A00
                       LD
FODD EDBO
                       LDIR
FODF
               BLK4:
               ; SET NEW EDA
FODF 3E20
                       LD
                              A, 20H
F0E1 ED3960
                       OUTO (EDAOL),A
                                                  : NEW EDA0=4120H
F0E4 3E41
                                                  ; buffer of descr 4110h
                       LD
                              A,41H
F0E6 ED3961
                        OUTO
                              (EDAOH),A
                                                    can be reused
FOE9 ED385E
                       INO
                                A, (CDAOL)
                                                  ; CHECK LOWER BYTE OF CDAO
FOEC FE30
                        CP
                                30H
FOEE 28EF
                        gT.
                                Z,BLK4
               ; MOVE BLOCK4
F0F0 216030
                                HL,3060H
                       LD
FOF3 010A00
                       LD
                                BC.10
FOF6 EDB0
                       LDIR
FOF8
               BLK5:
               ; SET NEW EDA
FOF8 3E30
                       LD
                              A,30H
                                                 ;
FOFA ED3960
                        OUTO (EDAOL), A
                                                  ; NEW EDA0=4130H
FOFD 3E41
                        LD
                              A,41H
                                                 ; buffer of descr 4120h
FOFF ED3961
                 OUTO (EDAOH), A
                                                 ; can now be reused
F102 ED385E
                       INO
                                A, (CDAOL)
                                                 ; CHECK LOWER BYTE OF CDAO
F105 FE40
                        CP
                                40H
F107 28EF
                        JR
                                Z,BLK5
               ; MOVE BLOCK5
F109 218030
                        LD
                                HL,3080H
F10C 010A00
                       LD
                                BC.10
F10F EDB0
                       LDIR
F111
               BLK6:
F111 ED385E
                        INO
                                A, (CDAOL)
                                                  ; CHECK LOWER BYTE OF CDAO
F114 FE50
                        CP
                                50H
F116 28F9
                        JR
                                Z,BLK6
               ; MOVE BLOCK6
F118 21A030
                                HL, 30A0H
                       T.D
                       LD
                                BC, 10
F11B 010A00
F11E EDBO
                        LDIR
F120
               BLK7:
F120 ED385E
                        INO
                                A, (CDAOL)
                                                  ; CHECK LOWER BYTE OF CDAO
F123 FE60
                        CP
                                60H
F125 28F9
                        JR
                                Z,BLK7
               ; MOVE BLOCK7
F127 21C030
                                HL, 30C0H
                        LD
F12A 010A00
                        LD
                                BC,10
```

F12D	EDB0	L	DIR								
		D									e e
F12F	DD20EB	BLK8:	200	A (CDAOT)			CHEC	K LOWER	משעם ו	OE.	CDAO
	ED385E FE70			A, (CDAOL) 70H			; CHEC	LOWER	BITE (JF.	CDAU
F134				Z.BLK8							
1134	2013	; MOVE BL		Z, BERG							
F136	21E030			HL, 30EOH							
	010A00			BC,10							
	EDB0		DIR								
F13E		BLK9:									
F13E	ED385E	I	NO	A, (CDAOL)			; CHEC	K LOWER	BYTE (ΟF	CDA0
F141	FE00	C	P	00Н							
F143	28F9	J	R	Z,BLK9							
		; MOVE BL	OCK9								
F145	210030	L	.D	нь, зооон							
F148	010A00	L	D.	BC,10							
F14B	EDB0	L	DIR								
F14D		BLK10:									
	ED385E			A, (CDAOL)			; CHEC	K LOWER	BYTE	ЭF	CDA0
	FE10			10H							
F152	28F9			Z,BLK10							
	010000	; MOVE BL		20001							
	212030			HL,3020H							
	010A00 EDB0		D DIR	BC,10				*			
FIJA	שמש		DIK								
F15C		BLK11:									
	3E00		.D	А, ОН							
	ED3902		UTO	(BBR), A			; BBR O	F MMU S	ET AT	ο.	
				,,,			,				
F161		DONE:									
F161	C361F1	JP \$; loop h	ere whe	n done		
		;									
		; NPU EV	BOARD	IO ASSIGN	IMEN	T					
		;									
		; n	pu io a	ddress as	ssig	nme	nts 10-1	1-88 06	:23:00		
		;									
0000	= ''	ICR:	EQU	000H	; I	NTE	RRUPT CO	NTROL R	EG		
0001		CBR:	EQU	001H	; M	IMU	COMMON B	ASE REG			
0002	=	BBR:	EQU	002H	; N	MU	BANK BAS	E REG			
0003	= .	CBAR:	EQU	003Н			COMMON/B				
0004			EQU	004H			ATION MO		REG		
0005	= "	IOCR:	EQU	005H	;]	0\1	CTRL REG				
		;									
0020		MTRB:	EQU	020H			TX/RX B		EG		
0021		MSTO:	EQU	021H	•		STATUS				
0022	=	MST1:	EQU	022H	; l	MSCI	STATUS	REG 1			

Application Note	HD641808
Application Note	1117041002

0023 =	MST2:	EQU	023H	;	MSCI STATUS REG 2
0024 =	MST3:	EQU	024H	;	MSCI STATUS REG 3
0025 =	MFST:	EQU	025H	;	MSCI FRAME STATUS REG
0026 =	MIE0:	EQU	026H	;	MSCI INTERRUPT ENABLE REG 0
0027 =	MIE1:	EQU	027H	;	MSCI INTERRUPT ENABLE REG 1
	;				
0028 =	MIE2:	EQU	028H	;	MSCI INTERRUPT ENABLE REG 2
0029 =	MFEI:	EQU	029H	;	MSCI FRAME INTERRUPT ENABLE REG
002A =	MCMD:	EQU	02AH	;	MSCI COMMAND REG
002B =	MMD0:	EQU	02BH	;	MSCI MODE REG 0
002C =	MMD1:	EQU	02CH	;	MSCI MODE REG 1
002D =	MMD2:	EQU	02DH	;	MSCI MODE REG 2
002E =	MCTL:	EQU	02EH	;	MSCI CONTROL REG
002F =	MSA0:	EQU	02FH	;	MSCI SYNCHRONOUS ADDRESS REG 0
	;				
0030 =	MSA1:	EQU	030H	;	MSCI SYNCHRONOUS ADDRESS REG 1
0031 =	MIDL:	EQU	031H	ï	MSCI IDLE PATTERN REG
0032 =	MTMC:	EQU	032H	;	MSCI TIME CONSTANT REG
0033 =	MRXS:	EQU	033H		MSCI RX CLOCK SOURCE REG
0034 =	MTXS:	EQU	034H	;	MSCI TX CLOCK SOURCE REG
	;				
0058 =	DAROL:	EQU	058H		DESTINATION ADDRESS REG CH 0 LOW
0058 =	BAROL:	EQU	058H	ř	BUFFER ADDRESS REG CH 0 LOW
0059 =	DAROH:	EQU	059H	;	DESTINATION ADDRESS REG CH 0 HI
0059 =	BAROH:	EQU	059H	;	BUFFER ADDRESS REG CH 0 HI
005A =	DAROB:	EQU	05AH		DESTINATION ADDRESS REG CH 0 BANK
005A =	BAROB:	EQU	05AH	-	BUFFER ADDRESS REG CH 0 BANK
005B =	SAROL:	EQU	05BH		SOURCE ADDRESS REG CH 0 LOW
005B =	DRWR0L:	EQU	05BH		DESCRIPTOR READ/WRITE REG CH 0 LOW
005C =	SAROH:	EQU	05CH		SOURCE ADDRESS REG CH 0 HI
005C =	DRWR0H:	EQU	05CH	-	DESCRIPTOR READ/WRITE REG CH 0 HI
005D =	SAROB:	EQU	05DH		SOURCE ADDRESS REG CH 0 BANK
005D =	CPB0:	EQU	05DH		CHAIN POINTER BASE CH 0
005E =	CDA0L:	EQU	05EH	-	ACCESS DESCRIPTOR ADDRESS REG CH 0 LOW
005F =	CDAOH:	EQU	05FH	;	ACCESS DESCRIPTOR ADDRESS REG CH 0 HI
	;				
0060 =	EDAOL:	EQU	060H	•	ERROR DESCRIPTOR ADDRESS REG CH 0 LOW
0061 =	EDAOH:	EQU	061H		ERROR DESCRIPTOR ADDRESS REG CH 0 HI
0062 =	BUFLOL:	EQU	062H		RX BUFFER LENGTH CH 0 LOW
0063 =	BUFLOH:	EQU	063H		RX BUFFER LENGTH CH 0 HI
0064 =	BCR0L:	EQU	064H	-	BYTE COUNT REG CH 0 LOW
0065 =	BCR0H:	EQU	065H	;	BYTE COUNT REG CH 0 HI
	;				· · · · · · · · · · · · · · · · · · ·
0068 =	DSR0:	EQU	068H	•	DMA STATUS REG CH 0
0069 =	DMRA0:	EQU	069H		DMA MODE REG A CH 0
006A =	DMRB0:	EQU	06AH		DMA MODE REG B CH 0
006B =	ICNTO:	EQU	06BH	•	FRAME END INTERRUPT COUNTER CH 0
006C =	DIRO:	EQU	06CH		DMA INTERRUPT ENABLE REG CH 0
006D =	DCR0:	EQU	06DH	;	DMA COMMAND REG CH 0
0070 =	DAR1L:	EQU	070H	į	DESTINATION ADDRESS REG CH 1 LOW

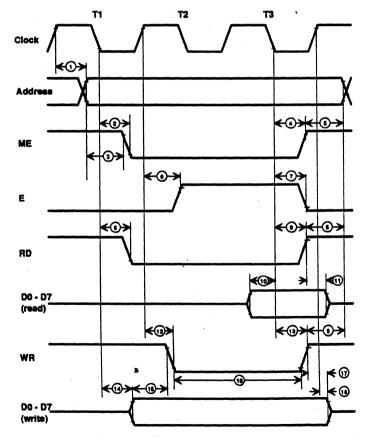
```
0070 =
               BAR1L:
                         EQU
                                 070H
                                          : BUFFER ADDRESS REG CH 1 LOW
0071 =
               DAR1H:
                         EQU
                                 071H
                                          : DESTINATION ADDRESS REG CH 1 HI
0071 =
               BAR1H:
                         EOU
                                 071H
                                          ; BUFFER ADDRESS REG CH 1 HI
0072 =
               DAR1B:
                         EQU
                                  072H
                                          ; DESTINATION ADDRESS REG CH 1 BANK
0072 =
               BAR1B:
                         EOU
                                  072H
                                          ; BUFFER ADDRESS REG CH 1 BANK
0073 =
               SAR1L:
                         FOU
                                  073H
                                          ; SOURCE ADDRESS REG CH 1 LOW
0073 =
               DRWR1L:
                                          ; DESCRIPTOR READ/WRITE REG CH 1 LOW
                         EQU
                                  073H
0074 =
               SAR1H:
                         EOU
                                 074H
                                          : SOURCE ADDRESS REG CH 1 HI
0074 =
               DRWR1H:
                         EQU
                                 074H
                                          : DESCRIPTOR READ/WRITE REG CH 1 HI
0075 =
               SAR1B:
                         EQU
                                 075H
                                          ; SOURCE ADDRESS REG CH 1 BANK
0075 =
               CPB1:
                                 075H
                         FOU
                                          ; CHAIN POINTER BASE CH 1
0076 =
               CDA1L:
                         EQU
                                  076H
                                          ; ACCESS DESCRIPTOR ADDRESS REG CH 1 LOW
0077 =
               CDA1H:
                                  077H
                                          : ACCESS DESCRIPTOR ADDRESS REG CH 1 HI
                         FOU
0078 =
               EDA1L:
                         EQU
                                  078H
                                          ; ERROR DESCRIPTOR ADDRESS REG CH 1 LOW
                                          ; ERROR DESCRIPTOR ADDRESS REG CH 1 HI
0079 =
               EDA1H:
                         FOU
                                 079H
007A =
               BUFL1L:
                         EQU
                                 07AH
                                          ; RX BUFFER LENGTH CH 1 LOW
007B =
                                          ; RX BUFFER LENGTH CH 1 HI
               BUFL1H:
                         EQU
                                  07BH
                                          ; BYTE COUNT REG CH 1 LOW
007C =
                                 07CH
               BCR11.:
                         FOU
007D =
               BCR1H:
                         EQU
                                 07DH
                                          ; BYTE COUNT REG CH 1 HI
0080 =
               DSR1:
                         EOU
                                 080H
                                          ; DMA STATUS REG CH 1
0081 =
               DMRA1:
                         EQU
                                  081H
                                          ; DMA MODE REG A CH 1
                                          ; DMA MODE REG B CH 1
0082 =
               DMRR1:
                         EOU
                                  082H
0083 =
               ICNT1:
                         EQU
                                  083H
                                          ; FRAME END INTERRUPT COUNTER CH 1
                                          : DMA INTERRUPT ENABLE REG CH 1
0084 =
               DIR1:
                         EQU
                                  084H
0085 =
               DCR1 :
                         EQU
                                  085H
                                          ; DMA COMMAND REG CH 1
               ; DEFINITIONS
FFFF =
               USRSP:
                                OFFFFH
                         FOU
0005 =
               PUTSCR:
                         EQU
00FE =
               INTV:
                         EQU
                                OFEH
000D =
               CR:
                         EQU
                                ODH
000A =
               LF:
                         EQU
                                OAH
0011 =
               XON:
                         EOU
                                11H
                         EQU
0013 =
               XOFF:
                                13H
0003 =
               EOT:
                         EQU
                                03H
0017 =
               EOB:
                         EQU
                                17H
0000
                        END
```

HD64180 Family

Application Note

Memory Read and Write Timing

Marnie Mar Revision B


This note provides designers of HD64180-family device based systems with CPU timing information for Memory Read/Write cycles.

This timing differs from Opcode Fetch cycle in that for Memory Read cycles, read data is latched on the falling edge of T3. For Opcode Fetch, data is latched on the rising edge of T3. Opcode Fetch and I/O cycle timing diagrams are shown in the 64180 family data books.

Although the timing parameters shown on the following pages are contained in the data books, a timing diagram showing their relation to the system clock is not included.

Please refer to the following data books for more information on these timing parameters.

- * HD64180 8-Bit Microprocessor Hardware Manual (#U77) (HD64180R0, HD64180R1, and HD64180Z)
- *HD64180X 8-Bit Microcontroller Hardware Manual (#U94)

CPU Memory Read/Write Timing

HD64180 Family

HD64180R0 AC Characteristics

Vcc = 5V +/- 10%, V_{ss} = 0 V, Ta= -20 to +75°C

		<u>HD64/</u> (4MHz	A180R0	HD641 (6MHz	3180R0 :)
# Symbol	<u>item</u>	Min	Max	Min	Max
1 t _{AD} 2 t _{MED1} 3 t _{AS} 4 t _{MED2} 5 t _{AH} 6 t _{ED1} 7 t _{ED2} 8 t _{RDD1} 9 t _{RDD2} 10 t _{DRS} 11 t _{DRH} 12 t _{WBD1} 13 t _{WRD2} 14 t _{WDD} 15 t _{WDS} 16 t _{WAP} 17 t _{WDH} 18 t _{WDZ}	Address Delay Time* ME Delay Time 1 Address Set-up Time* ME Delay Time 2 Address Hold Time Enable Delay Time 1 Enable Delay Time 2 RD Delay Time 2 RD Delay Time 2 Data Read Set-up Time Data Read Hold Time WR Delay Time 1 WR Delay Time 2 Write Data Delay Time Write Data Set-up Time Write Data Set-up Time Write Data Hold Time Write Data Hold Time Write Data Floating Delay Time	- 45 - 80 - - - - 50 0 - - - 60 220 60	110 85 - 85 - 100 100 85 85 - - 90 90 110 - -	- 10 - 35 - - - 45 0 - - 45 0	105 nS 75 nS - nS 75 nS 95 nS 95 nS 75 nS - nS 80 nS 90 nS - nS 90 nS 90 nS

^{*} See data book for additional information on these items

HD 64180R1 AC Characteristics

Vcc = 5V +/- 10%, $V_{ss} = 0 V$, Ta = -20 to +75°C

			HD641	80R1-4	HD641	80R1-6	HD641	180R1-8	HD641	180R1-10*
£	Symbol	<u>Item</u>	Min	Max	Min	Max	Min	Max	Min	Max
1	tap	Address Delay Time	-	110		90	•	80		70 nS
2	t _{MED1}	ME Delay Time 1	-	85	•	60	•	50	•	50 nS
3	tas	Address Set-up Time	50	•	30	-	20	•	10	- nS
4	t _{MED2}	ME Delay Time 2	-	85	-	60	•	50		50 nS
5	t	Address Hold Time	80	-	35	•	20	. •	10	- nS
6	t _{ED1}	Enable Delay Time 1	•	100	•	95	-	70		60 nS
7	t _{ED2}	Enable Delay Time 2	•	100	•	95		70		60 nS
8	t RDD1	RD Delay Time 1	-	85	-	60	-	50	•	50 nS
9	t _{ROD2}	RD Delay Time 2	-	85	•	60	•	50	-	50 nS
10	DRS	Data Read Set-up Time	50	•	· 40	-	30	-	25	- nS
11	t _{DRH}	Data Read Hold Time	0	•	• 0	-	0	•	0	- nS
12	twan1	WR Delay Time 1		90		65	-	60	•	50 nS
13	•	WR Delay Time 2		90		80	-	60	-	50 nS
14	WRD2	Write Data Delay Time	•	110		90		80		60 nS
15	t	Write Data Set-up Time	60 ,		40	•	20	-	15	- nS
16	wos	WR Pulse Width	280	•	170		130	-	110	- nS
17	WRP	Write Data Hold Time	60	•	40		15		10	- nS
18	WDZ	Write Data Floating Delay Time	· •	100	•	95		70		60 nS

^{* -} Preliminary Specification

HD64180Z AC Characteristics

Vcc = 5V +/- 10%, V_{ss} = 0 V, Ta= -20 to +75°C

			HD641	80Z-4	HD641	80Z-6	HD641	180Z-8	HD641	80Z-10°
£	Symbol	item	Min	Max	Min	Max	Min	Max	Min	Max
1	t _{AD}	Address Delay Time	•	110	-	90	-	80	•	70 nS
2	t _{MED1}	ME Delay Time 1	•	85	•	60	-	50	•	50 nS
3	tas	Address Set-up Time	50	•	30	-	20	-	10	- nS
4	t _{MED2}	ME Delay Time 2	-	85	•	60	-	50	•	50 nS
5	t _{AH}	Address Hold Time	80		35	-	20	•	10	- nS
6	t _{ED1}	Enable Delay Time 1	•.	100	-	95	-	70	•	60 nS
7	t _{ED2}	Enable Delay Time 2	-	100		95	•	70		60 nS
8	t _{RDD1}	RD Delay Time 1 IOC=1	-	85	-	60	-	50	-	50 nS
	HUU1	IOC=0	•	85		65	-	60	-	55 nS
9	t _{RDD2}	RD Delay Time 2	-	85		60	•	50	•	50 nS
10	t _{DRS}	Data Read Set-up Time	50	•	40	•	30		25	- nS
11	DRH	Data Read Hold Time	Õ	•	0	-	0		0	- nS
12	t WRD1	WR Delay Time 1	•	90	•	65		60		50 nS
13	WRDS	WR Delay Time 2	-	90		80		60		50 nS
14	, MADS	Write Data Delay Time	-	110		90		80		60 nS
15	WDS	Write Data Set-up Time	60	•	40	-	20	•	15	- nS
16	twee	WR Pulse Width	280		170		130		110	- nS
17	•	Write Data Hold Time	60		40		15		10	- nS
18	, WDH	Write Data Floating		100		95		70		60 nS
	WDZ	Delay Time		.50						55 116

^{*} Preliminary Specification

HD647180X AC Characteristics

Vcc = 5V +/- 10%, V_{ss} = 0 V, Ta= -20 to +75°C

			HD647	7180X-4	HD647	180X-6		180X-8
#	Symbol	Item	Min	Max	Min	Max	Min	Max
1	t _{AD}	Address Delay Time	•	110	-	90		80 nS
2	t _{MED1}	ME Delay Time 1	•	85	-	60	-	50 nS
3	tas	Address Set-up Time	50	•	30	•	20	- nS
4	MEDE	ME Delay Time 2	•	85	-	60	•	50 nS
5	tan	Address Hold Time	80	•	35	•	20	- nS
6	t _{ED1}	Enable Delay Time 1	•	100	-	95	•	70 nS
7	t _{ED2}	Enable Delay Time 2	•	100	· . •	95	•	70 nS
8	t _{RDD1}	RD Delay Time 1 IOC=1	•	85	•	60	•	50 nS
		IOC=0	•	85	•	65	•	60 nS
9	t _{BOO2}	RD Delay Time 2	•	85	-	60	•	50 nS
10	tons	Data Read Set-up Time	50	. •	40	•	30	- nS
11	t _{DRH}	Data Read Hold Time	0	•	0	•	0	- nS
12	t _{WRD1}	WR Delay Time 1	•	90	-	65	•	60 nS
13	t _{wro2}	WR Delay Time 2	•	90	-	80	•	60 nS
14	twoo	Write Data Delay Time *	-	110	•	90	•	80 nS
15	twos	Write Data Set-up Time	60		40	-	20	- nS
16	twee	WR Pulse Width	280	•	170	-	130	- nS
17	twoH	Write Data Hold Time	60	•	40	•	15	- nS
18	twoz .	Write Data Floating Delay Time	-	100	•	95	•	70 nS

HD64180 Family

Application Note

Task Switching Using the 64180 MMU

Marnie Mar

Introduction

Hitachi's HD64180 family of devices combine a wealth of onchip I/O features with a Memory Management Unit (MMU) which allows access to 512K or 1Mbyte of memory 64Kbytes at a time. The MMU features can be used to demonstrate a method of switching between multiple tasks residing in different areas of physical memory.

This task switching method is examined here in a program which bases the requests for task switches on events caused by on-chip peripherals. The HD64180 family features used by this program are also described, and flow charts for each task and the final coded program are also presented.

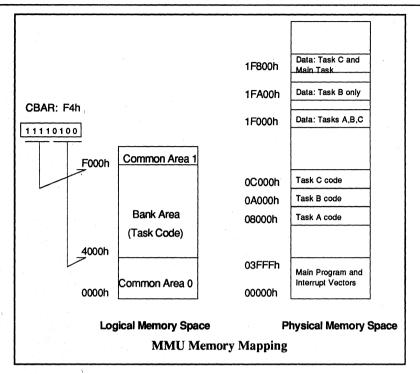
Some familiarity with the HD64180 devices is assumed. For further information, please refer the HD64180 Microprocessor Hardware Manual, the HD647180X Microcontroller Hardware Manual, and the HD64180 Software Manual.

HD64180 Family Devices

The HD64180 features highlighted in this note are available on the HD64180R1, HD64180Z and HD647180X members of the family, and the code example shown will run on any of these devices. References to the HD64180 throughout this article refer to any of these three devices.

Thanks to the high integration of these devices, execution of the code written for this note depends mainly on on-chip features. Because of this, the code presented here will run on many systems based on these devices. A HD64180R1-based single board computer was used to test this example code. This board computer consists of the HD64180R1 interfaced to 64K of EPROM in physical locations 0h - FFFFh, 64K of SRAM in locations 10000h - 1FFFFh, and RS232 drivers and receivers connected for ASCI port 1 communications. A switch was connected to the HD64180's/IRQ1 input to allow simulation of external events.

Sidenote: Managing the 64180's Memory Spage


The 64180 upgrades users of Z80-type processors by allowing access to a full 1 MByte of memory. However, to maintain code compatibility with the Z80, addresses in the 64180 instruction set must be specified in 16 bits, corresponding to the Z80's 64K address space.

The 64180 bridges the gap between the Z80's 64K address space and a 1 Mbyte address space by providing an on chip Memory Management Unit. This Memory Manager automatically maps 16-bit logical addresses specified in instructions to locations in the 1 Mbyte physical address space.

The user has direct access to 64K of memory at any time, by using 16-bit logical addresses. This 64K can be broken into up to three sections, which will map to three different sections of physical memory. These three sections are named Common Area 9, Bank Area, and Common Area 1.

Division of this 64K of logical memory is determined by the user, who must program the Common/Bank Area Register (CBAR) with two 4-bit values which indicate the base of the Bank area and the base of Common Area 1 (See the Figure on page 2). These four bits specify the most significant bits of a 16-bit address which indicates the starting address of the area. Common Area 0 is always located at logical and physical address 0000h. Note that if the four bits specifying the Bank Base are set to 0000, only a Bank area and Common Area 1 are defined. If the CBAR is programmed with 00000000, then only a Common Area 1 of 64Kbytes is specified. The base of the Bank Area must always be programmed to be less than or equal to the base of Common Area 1.

Translation of logical to physical address is automatically performed using values programmed into the Gormon Base Register (CBR) and the Bank Base Register (BBR). These registers specify the upper eight bits of a 20 bit address (the remaining 12 least significant bits are 0) that is added to the logical address to obtain the physical address. See the Figure on page 3 for a translation example.

Application: Time Control Using the HD64180

The features of the HD64180 are used in this application to perform the following tasks:

- control an elapsed time clock in memory
- display the elapsed time on a display device (terminal) connected to ASCI port 1, using the DMAC to transfer the time information to the ASCI
- acknowledge the occurrence of an external event by incrementing a count of the number of external events and recording the time of the last occurrence
- display external event occurrence information to the display device
 - accept and service interrupts based on these events

These tasks are performed in response to requests made to the HD64180 CPU by external and internal events. Three of these events (Programmable Reload Timer (PRT) channel 0 and PRT channel 1 count match, and external interrupt level 1) cause interrupts to occur, which are handled by the on-chip interrupt controller. The HD64180 polls for the fourth event, which is the receipt of a character by the SCI (RXRDY flag set).

In order to demonstrate the HD64180's ability to handle task switching using the MMU, each of the interrupt driven tasks is assigned to a different area of physical memory. Task switching is handled by reprogramming the MMU to access the area of memory where the task handler exists.

Memory Management

The HD64180 Memory Management Unit (MMU) allows access to 1Mbyte of address space or 512Kbyte of address space (for HD64180R1 DIP package, due to pin limitation). To maintain compatibility with Z80-type devices, at any point in time the device has access to 64Kbytes of memory. These 64Kbytes are addressed directly as a contiguous block of logical memory.

This logical memory actually maps into up to three different portions of physical memory. This mapping of logical addresses to physical addresses is accomplished using the three registers related to the MMU: the Common/Bank Area Register (CBAR), the Common Base Register (CBR), and the Bank Base Register (BBR).

Task A Code Execution Start Address: -

BBR: 04h

00000100

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 (4000h, logical base of code)

Task A Data Storage Start Address:

CBR: 10h

00010000

Logical Addresses:

1111000000000000

(F000h, logical base of data)

Physical Addresses:

64180 Family MMU Logical to Physical Address Calculation

These registers divide the logical address space into up to three areas, referred to as Common Area 0, Common Area 1, and Bank Area. The starting logical and physical address of Common Area 0 is always location 0000h. The starting logical addresses of Bank Area and Common Area 1 are specified by the CBAR. The physical starting address of Common Area 1 and the Bank Area are specified using the CBR and BBR, respectively.

Keep in mind that the actual physical starting address of the Bank Area and Common Area 1 is not determined solely from the CBR and BBR. These registers specify an eight-bit value that is added to most significant four bits of the logical address to provide the most significant 8 bits of the physical address. See the MMU Memory Mapping figure shown above.

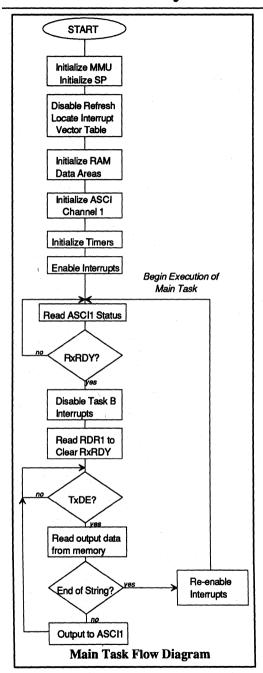
180's features can be used to trigger task servicing

The HD64180's on-chip peripheral features provide the capabilities required to carry out this application. The two channels of programmable reload timer are each capable of counting down from a programmed value, and generating an interrupt when a count of zero is reached.

PRT0 is programmed to count down every .01 second. The interrupt service routine requested when PRT0's countdown interrupt occurs increments the elapsed time clock stored in memory.

PRT1 is used by this application to trigger the display of the

elapsed time stored in memory. PRT1 is programmed to cause an interrupt every tenth of a second. Service of this interrupt involves initializing and initiating DMAC channel 1, which is used to display the elapsed time.


The full duplex ASCI channel serves two purposes for this application. The transmitter portion is used to transfer elapsed time (using the DMAC, as mentioned above) and external event information to the terminal screen. The RDRF bit of the receiver, set when data is received, can be used to initiate a task (display of event data) whenever a key press occurs on a terminal connecter to the ASCI port.

Interrupt Handling

The HD64180's interrupt controller handles interrupts from four external sources and eight internal souces. These interrupts are maskable (except for the Non Maskable Interrupt, NMI, and the Undefined Op-code Trap, TRAP), and are prioritized with fixed priority. Upon receiving and accepting an interrupt, the controller in most cases determines the location of an interrupt service routine using a vector table that is programmably located in memory.

Two other modes of vector generation are available with external interrupt 0 (INT0), one fetches vector information from the bus, the other vectors directly to a fixed location.

The HD64180 prioritizes interrupts using fixed priority levels. The priorities of the interrupts used for this program are

(from highest to lowest): \text{VRQ1, PRT0 countdown, followed} by PRT1 countdown. Note that for correct operation, PRT0 interrupt must always be accepted in order to maintain the elapsed time.

Program Design Notes

CPU Activity During Program Operation

Once the CPU and on-chip peripherals are initialized for this application, no further activity need be undertaken until an event (PRT time-out, external interrupt, receiver data ready) occurs. Since all these events can generate an interrupt to the CPU, the HD64180 could be placed in a sleep mode, to be awakened when an interrupt occurs.

Another option is to have the CPU poll for one of the events following initialization. This method was selected, and the least important task, in this case, reporting external event information, was chosen to be the task request polled. The remainder of the tasks interrupt this task whenever the event triggering them occurs.

Memory Configuration Considerations

The physical hardware to be used must be considered in designing the program. Since the program is to be placed in EPROM, data areas that are modified by the program must be singled out and placed in RAM. These data areas must also be initialized by the program to bring them to a known state.

Additionally, the program's use of logical and physical memory must be determined. Program initialization and the polling loop were selected for execution out of common area 1. Note that although this area starts at logical and physical address 0000h, the starting address of program code in this area must be selected carefully. The HD64180 expects a reset vector to be located at physical address 0000h, and the interrupt vector table may also be located starting in this area, depending on the programmed values for the IL (Interrupt vector Low) register.

The bank area was selected for execution of the tasks. Logically, this was set to 4000h. The MMU is reprogrammed by the task switcher to access each of the different tasks at this location, so the physical address of each task differs.

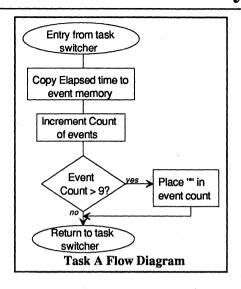
Finally, Common Area 1 was selected for use as the data areas accessed by the different tasks. Since only a small amount of data area is required, this logical area is programmed to start at F000h. This logical address space maps to physical addresses in RAM for this program.

The program to carry out the tasks outlined above was written in sections. The main program, to execute out of Common Area 0, consists of initialization of the HD64180 core and the on-chip peripherals functions to be used, and initialization of the RAM areas to be used for display data and the elapsed time clock. Following initialization, this main program enters a routine that continually checks for a keystroke on the terminal keyboard, which is signalled by the RXD bit of the serial channel 1 being set to 1.

The second section of code performs task switching, and is entered each time one of the enabled interrupts occurred. This section reprograms the MMU and preserves register contents prior to initiating the execution of interrupt service routines. This section also handles return from exception, by restoring register contents.

The other code sections perform the different tasks signalled for by interrupts. Task A increments the clock every .01 second. Task B counts the PRT1 interrupts requested and initializes the DMAC and enables the DMAC on the appropriate counts.

Execution of Task C results from an external event indicated by interrupt \IRQ1 going active. Task C increments a count of external events, and record the current value of the elapsed time clock.


The resulting program is shown in the Appendix.

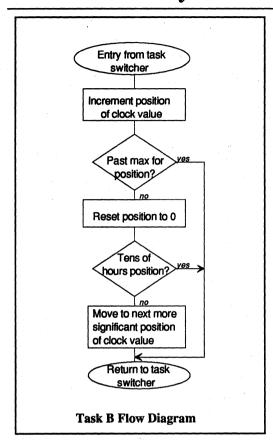
Initialization

At power-on, the HD64180 control registers take on default values that allow the device to operate according to default conditions. If deviation from these defaults is desired, the individual registers must be programmed with new initialization values. The stack pointer must be programmed to a valid address for stack operations to be performed correctly.

For this program, the MMU control registers were programmed to divide the logical space into three areas, accessing three different sections of physical memory. Since SRAMs were used, the refresh capability of HD64180 was turned off by writing to the Refresh Control Register (RCR).

The Interrupt Vector Table and I/O Registers are relocatable by programming their associated control registers. The Interrupt Vector Table was located at 20H by programming the IL register, so that the reset vector located at 00H would not overlay the vector entry for /INT1. Note that the interrupt vector table was initialized in EPROM using the capabilities

of the assembler.


For this program, the default reset value for the I/O Registers base address was taken. Similarly, the Operation Mode Control Register (OMCR) available in the HD64180Z and HD647180X was not reprogrammed from its' default value.

On-chip Peripheral Initialization

ASCI channel 1 and the PRT channels are initialized by writing the appropriate values into the associated control registers. PRT0 is programmed for a count based on the CPU clock and a start count and a reload count of h'1200, which results in an interrupt once every .01 seconds with a CPU clock of 9.216 MHz. During service of this interrupt, the elapsed time clock is updated.

Note that DMAC channel 0 must be used in order to cause DMA transfer to or from the on-chip serial channel. This channel is connected to the serial channels internally, allowing these transfers to occur. For this transfer to operate correctly, DMA channel 0 must be used, bits 0-2 of the DMA Destination Address Register DAROB must be programmed for the correct destination, and the channel must be programmed to respond to edge-sense requests using the DMS (DMA request Sense) bits of the DMA/WAIT Control Register (DCNTL).

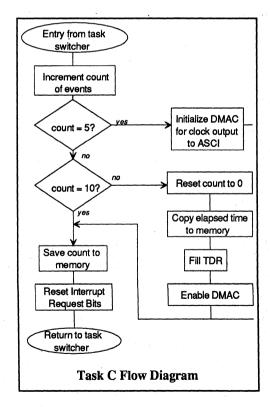
Values for ASCI baud rate (in CNTRLB1) and PRT data and reload registers were determined based on the CPU clock

input crystal frequency of 9.216MHz.

Interrupt Enable

Once the HD64180 has been initialized for operation, interrupts can be enabled, and the main task can be initiated. Enabling interrupts is a two level process.

First, individual bits in control registers must be set to enable interrupts. For the PRT channels, the Timer Interrupt Enable (TIE) bits of the Timer Connell Register (TCR) must be set. At the same time, the Timer countdown can be started by setting the Timer Down Count Enable (TDE) bits. To enable INT1 and disable INT0, which is enabled at reset, the appropriate bits of the ITC must be programmed.


Second, the Interrupt Enable Flags (IEF) of the interrupt

controller must be set. This is accomplished by executing the EI instruction.

Task switching using the MMU

As mentioned previously, the HD64180's logical address space is divided into the three areas allowed by the MMU. Common Area 0 is used for RAM initialization data, interrupt vectors, initialization code, and the main task execution. Common Area 1 is used for shared RAM space, which stores the elapsed time clock data and other data that is manipulated by the tasks. The Bank area is used for executing the subtask code segments.

Since the subtask execution code is always mapped to the logical addresses of the Bank area, task switching can be accomplished by storing the existing values of the MMU registers to the stack, reprogramming them to access the physical locations of the new task and its' associated data RAM area, and jumping to the first location of the bank area. With this scheme, each task can be located in a different area

of physical memory, yet still be accessed using the same addresses in logical memory.

In more complex applications, this method of switching tasks allows easy handling of the non-contiguous memory space. Although the entire code for this application could have fit in the directly addressable 64Kbyte memory space, more complex code would have to be broken into sections that would fit within the logical address space.

In this example, all tasks accessed the same data area, and the CBR was not reprogrammed during task switching. Note that by reprogramming the CBR register, physical data area locations can be switched at the same time as physical code areas.

Coding the Tasks

The main task operates continuously, and is interrupted by the other tasks based on events. This tasks consists simply of polling the RDRF bit of the ASCI1 status register to detect when a key has been pressed on the terminal. When a key input is detected (RDRF set), a routine is entered which displays the current external event information stored in RAM by transferring the data character by character through ASCI channel 1.

Task A is executed in response to the PRTO countdown interrupt. This task increments the elapsed time clock that is stored in RAM. Note that Task B interrupt requests are disabled during the main task execution, to prevent time data from being updated to the screen during the event display. However, note also that the elapsed time and external events can be accepted.

Task B is executed in response to the PRT1 countdown interrupt. The DMA controller is initiated as part of this task for data transfer to the ASC11 transmit data register. When the Task B interrupt count reaches 10, the elapsed time clock value is copied to the memory location indicated as the DMA source address, and DMA transfer for channel 0 is enabled. This causes the current elapsed time to be display to the terminal through ASC11. Copying the elapsed time clock value during Task B execution eliminates the possibility of a PRT0 interrupt changing the time during output to the terminal. Since DMA transfer continues beyond the time that Task B ends and interrupts are reinabled, it is possible that Task A could increment the elapsed time clock in memory before the entire DMA transfer completed.

Task C interrupts are serviced in response to an INT1 interrupt, which signals an external event. This routine simply copies the current elapsed time to a buffer in memory to record the time of the most recent event, and increments the event counter. To simplify programming, the event counter can increment to a maximum of nine. This event information is displayed by the main task in response to a key entry. If more than nine external events have occurred, an "*" is displayed in place of the number of external events.

Assembling Code for MMU Task Switching

Since the logical and physical addresses differ for the sections of code and data that are located outside of Common Area 0, care must be taken when specifying code addresses during assembly. Since the processor uses the logical addresses for execution, code should be located at the logical address space during assembly. For this example, all task code should be ORGed or located at h'4000, the logical address for task execution.

When downloading code to a development system or EPROMs, an offset should be specified so that the code is physically loaded to the correct address. For instance, Task C would be ORGed to location 4000h. When downloading to development system memory, an offset of 6000h should be specified so that the code would be loaded to the correct physical address of A000h, where the MMU will expect it to be.

Summary

This application identifies how the HD64180R, HD64180Z and HD647180X devices' on-chip features can be used in a multi-tasking operation. Reprogramming the MMU to initiate task switching allows for a simple method of allocating physical address space to executable code. The on-chip Programmable Reload Timers can generate interrupts which, during interrupt service accumulate elapsed time. The on-chip Serial Communications Interface controls transfer of data to a terminal, either using DMA or program transfer of data to the SCI transfer registers.

APPENDIX: Main Task Code Listing

```
64180 Application Program
       Elapsed time clock and external event logger
Main Program: (in common area 0)
       - Initializes the 64180 as follows:
               Interrupt vectors are loaded to h: 20
               MMU is set up so that:
                      Common Area 0 is fixed at h'0000
                      Bank Area is at logical 4000h
                      Common Area 1 is at logical F000h
               PRTO - generates an interrupt every .01 sec
               PRT1 - generates an interrupt every .1 sec
               ASCIO - displays elapsed time clock
               DMACO - handles transfer of data to terminal
       - Enters a loop polling for RxD condition
RxD Handler: (follows main program)
       - Initializes pointers for display of event data
       - Polls for TDRE, displays event data
       - Returns to loop polling for RxD condition
       - PRT1 interrupt disabled during this routine
Task Switcher: (in common area 0)
       - stores current MMU context
       - loads MMU values for next task
       - executes task code
       - executes return from interrupt
Task A: (in bank area, physical 8000h)
       - Results from PRTO timer interrupt (every .01s)
       - Increments elapsed time clock in common area 1
       - Returns to Task Switcher
Task B: (in bank area, physical A000h)
       - Results from PRT1 timer interrupt (every .1s)
       - Increments count of task B interrupts
       - If count = 5, then
               initialize DMACO for displaying clock
       - If count = 10, then
               reads and stores elapsed time clock
               starts DMACO to display time
               resets count
        - Returns to Task Switcher
Task C: (in bank area, physical C000h)
        - Results from external event (INT1)
        - Records Elapsed Time Clock value (time of event)
        - Increments event count
        - Returns to Task Switcher
```

APPENDIX: Main Task Code Listing (continued)

```
000000
                        PAGE
 000000
                        CPII
                             "64180.TBL"
  000000
                        INCL "INTIO.LIB"
                           64180 Internal I/O register equates
                          Copyright 1988, SOFTAID, INC., Columbia, MD.
                           Note: BASE must be defined as the internal I/O
                               relocation offset of 00h, 40h, 80h or 0C0h
                               and register ICR must be set appropriately.
nonnono
                                      EOU
                                              OOh
                        BASE:
00000000
                        CNTLA0:
                                      EQU
                                              OOH + BASE
                                                             ; ASCI CONTROL REGISTER A CH 0
00000001
                        CNTLA1:
                                      EOU
                                              01H + BASE
                                                             ; ASCI CONTROL REGISTER A CH 1
                                                              ; ASCI CONTROL REGISTER B CH 0
00000002
                        CNTLBO:
                                      EOU
                                              02H + BASE
                                                             ; ASCI CONTROL REGISTER B CH 1
00000003
                        CNTLB1:
                                      FOU
                                              03H + BASE
00000004
                        STAT0:
                                      EQU
                                              04H + BASE
                                                              ; ASCI STATUS REGISTER CH 0
00000005
                        STAT1:
                                      EQU
                                              05H + BASE
                                                              ; ASCI STATUS REGISTER CH 1
                                              06H + BASE
                                                             ; ASCI TRANSMIT DATA REGISTER CH 0
00000006
                        TDRO:
                                      FOU
00000007
                        TDR1:
                                      EQU
                                              07H + BASE
                                                              ; ASCI TRANSMIT DATA REGISTER CH 1
                                                             ; ASCI RECEIVE DATA REGISTER CH 0
                        RDRO:
                                      EOU
                                              08H + BASE
00000008
00000009
                       RDR1:
                                      EOU
                                              09H + BASE
                                                              : ASCI RECEIVE DATA REGISTER CH 1
A000000A
                                              OAH + BASE
                                                             ; CSI/O CONTROL REGISTER
                       CNTR:
                                      EOU
                                                             ; CSI/O TRANSMIT/RECEIVE DATA REGISTER
0000000B
                        TRDR:
                                      EOU
                                              OBH + BASE
                                                              ; TIMER DATA REGISTER CH OL
000000C
                        TMDROL:
                                      FOU
                                              OCH + BASE
                                                             ; TIMER DATA REGISTER CH OH
                                              ODH + BASE
00000000
                        TMDROH:
                                      EOU
000000E
                        RLDROL:
                                      EQU
                                              OEH + BASE
                                                              ; RELOAD REGISTER CH OL
000000F
                        RLDROH:
                                      EQU
                                              OFH + BASE
                                                              ; RELOAD REGISTER CH OH
00000010
                        TCR: ·
                                      EOU
                                              10H + BASE
                                                              : TIMER CONTROL REGISTER
00000014
                        TMDR1L:
                                      EOU
                                              14H + BASE
                                                              ; TIMER DATA REGISTER CH 1L
00000015
                        TMDR1H:
                                      EOU
                                              15H + BASE
                                                              ; TIMER DATA REGISTER CH 1H
00000016
                        RLDR1L:
                                      EOU
                                              16H + BASE
                                                              : RELOAD REGISTER CH 1L
00000017
                        RLDR1H:
                                      FOU
                                              18H + BASE
                                                              ; FREE RUNNING COUNTER
                                                             : DMA SOURCE ADDRESS REGISTER CH OL
                                              20H + BASE
00000020
                        SAROL:
                                      EOU
                                                             ; DMA SOURCE ADDRESS REGISTER CH OH
00000021
                        SAROH:
                                      EQU
                                              21H + BASE
00000022
                        SAROB:
                                      EOU
                                              22H + BASE
                                                              ; DMA SOURCE ADDRESS REGISTER CH OB
                                                              ; DMA DESTINATION ADDRESS REGISTER CH OL
00000023
                        DAROT.
                                      EOU
                                              23H + BASE
00000024
                        DAROH:
                                      EQU
                                              24H + BASE
                                                              ; DMA DESTINATION ADDRESS REGISTER CH OH
                                              25H + BASE
                                                              ; DMA DESTINATION ADDRESS REGISTER CH OB
00000025
                        DAROB:
                                      EOU
00000026
                        BCROL:
                                      EQU
                                              26H + BASE
                                                              ; DMA BYTE COUNT REGISTER CH OL
                                                              ; DMA BYTE COUNT REGISTER CH OH
00000027
                        BCROH:
                                      FOU
                                              27H + BASE
00000028
                        MAR1L:
                                      EOU
                                              28H + BASE
                                                              ; DMA MEMORY ADDRESS REGISTER CH 1L
                                      EOU
                                              29H + BASE
                                                              ; DMA MEMORY ADDRESS REGISTER CH 1H
00000029
                        MAR1H:
0000002A
                        MAR1B:
                                      EOU
                                              2AH + BASE
                                                            ; DMA MEMORY ADDRESS REGISTER CH 1B
                                                              ; DMA I/O ADDRESS REGISTER CH 1L
0000002B
                        IAR1L:
                                      EOU
                                              2BH + BASE
                                      EQU
                                              2CH + BASE
                                                              ; DMA I/O ADDRESS REGISTER CH 1H
0000002C
                        IAR1H:
0000002E
                        BCR1L:
                                      EOU
                                              2EH + BASE
                                                              ; DMA BYTE COUNT REGISTER CH 1L
```

HITACHI

HD64180 Family

```
APPENDIX: Main Task Code Listing (continued)
 0000002F
                        BCR1H:
                                      EOU
                                              2FH + BASE
                                                              ; DMA BYTE COUNT REGISTER CH 1H
 00000030
                        DSTAT:
                                      EQU
                                              30H + BASE
                                                              : DMA STATUS REGISTER
                                      EQU
 00000031
                        DMODE .
                                              31H + BASE
                                                              ; DMA MODE REGISTER
 00000032
                        DCNTL:
                                      EOU
                                              32H + BASE
                                                              : DMA/WAIT CONTROL REGISTER
                                                              ; IL REGISTER (INTERRUPT VECTOR LOW REG)
 00000033
                                      EQU
                                              33H + BASE
                        TT.:
 00000034
                        ITC:
                                      EQU
                                              34H + BASE
                                                              ; INT/TRAP CONTROL REGISTER
 00000036
                        RCR:
                                      EOU
                                              36H + BASE
                                                              : REFRESH CONTROL REGISTER
 00000038
                        CBR:
                                              38H + BASE
                                                              ; MMU COMMON BASE REGISTER
                                      EOU
 00000039
                        BBR:
                                      EQU
                                              39H + BASE
                                                              : MMU BANK BASE REGISTER
 0000003A
                        CBAR:
                                      EQU
                                              3AH + BASE
                                                              ; MMU COMMON/BANK AREA REGISTER
 0000003F
                        TCD.
                                      EOU
                                              3FH + BASE
                                                              ; I/O CONTROL REGISTER
                           Programmable reload timer enable equates
 00000001
                        PRT COUNT:
                                              01H
                                                              ; TIMER COUNT ENABLE
 00000010
                        PRT INT:
                                      EQU
                                              10H
                                                              : TIMER INTERRUPT ENABLE
                           ASCI initialization and status equates
 00000000
                        ASCI 38400:
                                      EQU
                                              ООН
                                                              ; BAUD RATE
 00000001
                        ASCI_19200: EQU
                                              01H
                                                              ; BAUD RATE
 00000002
                        ASCI 9600:
                                      EQU
                                              02H
                                                              ; BAUD RATE
 0000003
                        ASCI 4800:
                                     EOU
                                              03H
                                                              ; BAUD RATE
 00000004
                        ASCI 2400:
                                     FOU
                                              04H
                                                              ; BAUD RATE
 00000005
                        ASCI 1200:
                                      EQU
                                              05H
                                                              ; BAUD RATE
 00000006
                        ASCI 600:
                                      EQU
                                              06H
                                                              ; BAUD RATE
 00000004
                        ASCI 8BITS:
                                              04H
                                                              ; DATA BITS
 00000002
                        ASCI PARITY: EQU
                                              02H
                                                              ; PARITY ENABLE
 00000001
                        ASCI_2STOP:
                                              01H
                                                              ; 2 STOP BITS
 00000002
                        ASCI TDRE:
                                      EOU
                                              02H
                                                              ; TDRE BIT MASK
 00000080
                        ASCI RDRF:
                                      EOU
                                              80H
                                                              ; RDRF BIT MASK
   000000
                                      HOF
                                              "INT16"
 00000000
                        NULL:
                                      EQU
                                              00h
 00000000
                        CR:
                                      EQU
                                              ODh
 0000000A
                                      EQU
                                              0Ah
 00000000
                        T1LOW:
                                              000h
                                      EOU
 000000B4
                        T1HI:
                                      EQU
                                              OB4h
 00000000
                        TOLOW:
                                      EQU
                                              00h
 00000012
                                      EOU
                        TOHI:
 00004000
                        BANK:
                                              04000h ; bank logical location for task
                                      ; handling routines
```

```
Data Storage
                                   - System Data
000000
                                   ORG 00h
                                                           ;initialize reset information
                                           CLSTART
000000 C30001
                                   JР
                                                   ;interrupt vector table
000020
                            ORG
                                   020h
000020 B901
                     INT1: DWL
                                   TASKC
                                           ;external event interrupt
000022 DE01
                     INT2: DWL
                                   INTEND
000024 AB01
                     PRTO: DWL
                                   TASKA
                                          ;timer 0 countdown interrupt
000026 B201
                     PRT1: DWL
                                   TASKB
                                          ;timer 1 countdown interrupt
000028 DE01
                     DMA0: DWL
                                   INTEND
00002A DE01
                     DMA1: DWL
                                   INTEND
00002C DE01
                     CSIO: DWL
                                   INTEND
00002E DE01
                     ASCI0:
                                   DWL
                                           INTEND
000030 DE01
                     ASCI1:
                                   DWI.
                                           INTEND
                            Preliminary Storage area for task data - data in this
                                   area (ROM) is moved to RAM during initialization
000040
                                   ORG
                                           040h
                                                           ; storage area (Common 1)
                                                           ;used by all tasks
000040 30303A30303A30ELCLK:
                                           "00:00:00.0"
                                   DFB
                                           "0", CR
00004A 300D
                                   DFB
                                    ;storage area X (Common 1)
                                    ;used by Task C only
                                   DFB CR, LF, LF
00004C ODOAOA
                     EVDATA:
00004F 30
                                   DFB
                                                           ;storage for count of events (<= 9)
000050 206576656E7473
                                   DFB
                                           " events occurred", CR, LF
000062 204C6173742065
                                   DFB
                                           " Last event occurred at "
00007A 30303A30303A30
                                   DFB
                                           "00:00:00.00", CR, LF, LF
000088 00
                                                           ;end of data
                                   DFB
                                                           ; storage area Y (Common 1)
                                                           ;used by Task B
000090
                                   ORG
                                           090h
000090 00
                     CTRDATA:
                                   DFB
                                           0h
000091 30303A30303A30
                                           "00:00:00", CR
```

HD64180 Family

```
RAM DATA TABLE: the following sets up logical
                                   addresses to correspond with those used in
                                   tasks. These addresses map to physical RAM,
                                   which must be intialized by the main program
00F000
                                   ORG
                                           0F000h
                                                          ;storage area (Common 1)
                                                          ;used by all tasks
00F000 30303A30303A30ET_CLK:
                                   DFR
                                           *00:00:00.0"
00F00A 300D
                                           "0", CR
                     ET_CLKend:
                                   DFB
00F800
                                   ORG
                                           0F800h
                                   ; storage area X (Common 1)
                                   ;used by Task C only
OOF800 OD0A0A
                     EV START:
                                   DFB CR, LF, LF
00F803 30
                     EVNT_CT:
                                   DFR
                                           30h
                                                          ;storage for count of events (<= 9)
00F804 206576656E7473
                                           DFB
                                                   " events occurred", CR, LF
00F816 204C6173742065
                                           DFB
                                                   " Last event occurred at "
00F82E 30303A30303A30LAST EV:
                                           DFB
                                                   "00:00:00.00", CR, LF, LF
00F83C 00
                                                                  ;end of data
                                           LeB
OOFAGO
                                           ORG
                                                   0FA00h
                                                          ; storage area Y (Common 1)
                                                          ;used by Task B
00FA00 00
                     CTR:
                                           DFB
OOFA01 30303A30303A30D_TIME:
                                                   "00:00:00".CR
                                           DFB
OOFAOA
            PAGE
                            Initialization routines for 64180
000100
                                   100h
                           Initialize MMU: common 0 at location 0000h (logical)
                                                 common 1 at location F000h (logical)
                                                    bank at location 4000h (logical)
000100 3EF4
                     CLSTART:
                                   LD
                                           A, 0F4h ; Common 1 at F000h, Bank at 4000h
000102 ED393A
                                   OUTO
                                           (CBAR), A
000105 3E10
                                   LD
                                           A,10h ;Common1 physical at 1F000h
000107 ED3938
                                   OUTO
                                           (CBR),A
                                           IX, OFFFFh
                                                          ; stack at high memory
00010A DD21FFFF
                                   T.D
00010E DDF9
                                           SP, IX
000110 3E00
                                   LD
                                           A,00h ;turn off refresh insertion
000112 ED3936
                                   OUTO
                                           (RCR),A
```

```
000115
           PAGE
                         Initialize interrupt vector registers, table
000115 3E20
                                T.D
                                       A, 20h
                                                     :use low memory page
000117 ED3933
                                OUTO (IL),A
                                                     ;I initialized to 00h on reset
                   *******************
                         Initialize common RAM areas
                   :
00011A 214000
                                       HL, ELCLK
                                T.D
                                                            ;data to be moved to RAM
00011D 1100F0
                                       DE, ET CLK
                                T.D
                                                            ;data area to be loaded
000120 010C00
                                LD
                                       BC,12
                                                            ; count of characters
000123 EDB0
                                T.DTR
000125 214C00
                                T.D
                                       HL, EVDATA
                                                            :data to be moved to RAM
                                       DE, EV START ; data area to be loaded
000128 1100F8
                                LD
00012B 013D00
                                                   ; count of characters
                                T.D
00012E EDB0
                                T.DTR
000130 219000
                                LD
                                       HL, CTRDATA
                                                  ;data to be moved to RAM
000133 1100FA
                                LD
                                       DE.CTR
                                                    :data area to be loaded
                                       BC,10
000136 010A00
                                LD
                                                    count of characters;
000139 EDB0
                                LDIR
00013B
           PAGE
                         Initialize ASCI1 for serial communications
                                9600 baud, 7 data bits, 1 stop bits, no parity
0001
        70
                    SCINIT:
                                LD
                                       A,70h ;RE,TE,7,N,1
0001
        3901
                                OUTO
                                      (CNTLA1), A
                                                    :9600 at 9.216MHz
0001
        21
                                LD
                                       A, 21h
000142 ED3903
                                OUTO
                                       (CNTLB1), A
000145 3E00
                                LD
                                       A,00h
000147 ED3905
                                OUTO
                                       (STAT1), A
                                                           ; disable receiver interrupts
                                        *********
                         Initialize PRTO for interrupt every .01 second
                         Interrupts not yet enabled
                    MOINIT:
00014A 011000
                                LD
                                       BC, TCR
                                                     ; load address of register
00014D 3E00
                                LD
                                       A, TOLOW
00014F ED390C
                                OUTO
                                      (TMDROL), A ; timer data register OL
000152 ED390E
                                OUTO
                                      (RLDROL), A ; reload data register OL
000155 3E12
                                LD
                                       A, TOHI
```

HD64180 Family

```
000157 ED390D
                                   OUTO
                                           (TMDROH), A
                                                          ;timer data register OH
00015A ED390F
                                   OUTO
                                           (RLDROH) .A
                                                          reload data register OH
00015D
            PAGE
                           Initialize PRT1 for interrupt every .1 second
                           Interrupts not yet enabled
00015D 3E00
                                   LD
                                           A. T1LOW
00015F ED3914
                                   OUTO
                                                          ;timer data register 1L
                                           (TMDR1L),A
000162 ED3916
                                   OUTO
                                           (RLDR1L), A
                                                          ; reload data register 1L
000165 3EB4
                                   T.D
                                           A, T1HI
000167 ED3915
                                   OUTO
                                           (TMDR1H),A
                                                          ;timer data register 1H
00016A ED3917
                                   OUTO
                                           (RLDR1H),A
                                                          ; reload data register 1H
00016D
            PAGE
                           Enable all Interrupts, start clock, and wait for RxRDY
00016D FB
00016E 3E02
                                   A, 02h
                           LD
000170 ED3934
                                   OUTO
                                           (ITC),A
                                                          ; enable INT1 interrupts
000173 3E33
                           LD
                                   A.33h
                                                          ;start PRT timers
000175 ED3910
                                   OUTO
                                           (TCR),A
                           MAIN TASK:
                                   Loop here until RxRDY received from ASCIO
000178 010500
                     KEYLOOP:
                                   LD
                                           BC, STAT1
                                                                  ;ASCI status register
00017B ED7480
                                   TSTIO
                                           80h
                                                                  ;tests if RDRF
00017E 28F8
                                           Z, KEYLOOP
                                   JR
                           Reach here when RxRDY received
000180 ED3809
                                   INO
                                           A. (RDR1)
                                                                  ; read RDR to clear RDRF
000183 3E13
                                   LD
                                           A, 13h
000185 ED3910
                                   OUTO
                                           (TCR), A
                                                                  ; disable Task B irq
000188 3E20
                                   LD
                                           A, 20h
00018A ED3930
                                   OUTO
                                           (DSTAT), A
                                                                  ; disable DMA in progress
00018D DD2100F8
                     KEYIN:
                                   LD
                                           IX,0F800h
000191 ED7402
                     OUTLP:
                                   TSTIO 02h
                                                                  ;tests if TDRE
000194 28FB
                                   JR
                                           Z, OUTLP
                                                                 ;get memory to output
000196 DD7E00
                                   LD
                                           A, (IX+0)
```

```
000199 FE00
                                           NULL
                                                                   ;test if end of string
00019B 2807
                                   JR
                                           Z, KEYEND
00019D ED3907
                                   OUTO
                                           (TDR1),A
                                                                   ;output to asci port 1
0001A0 DD23
                                                                   ;increment memory pointer
                                   INC
                                           OUTLP
0001A2 18ED
                                   .TD
0001A4 3E33
                     KEYEND:
                                   LD
                                           A.33h
0001A6 ED3910
                                   OUTO
                                           (TCR),A
                                                                   ;enable timer irgs
0001A9 18CD
                                   JR
                                           KEYLOOP
                            Task Switcher - interrupt service
                                   entry point to this section depends on IRQ recv'd
                            enter here for PRTO irq
                     TASKA:
                                   PUSH BC
0001AB C5
0001AC 0E04
                                   C,04h
                                                  ;task A at physical 8000h
                                                   ; common 1 at physical 10000h
0001AE 0610
                            T.D
                                   B.10h
0001B0 180C
                            JR
                                   SWITCH
                            enter here for PRT1 irq
0001B2 C5
                     TASKB:
                                   PUSH BC
0001B3 0E06
                                   C.06h
                                                   ;task B at physical A000h
                            T.D
                           LD
                                   B, 10h
                                                   ;common 1 at physical 10000h
0001B5 0610
0001B7 1805
                                   SWITCH
                            enter here for IRQ1 request
                      ;
0001B9 C5
                      TASKC:
                                   PUSH BC
0001BA 0E08
                            LD
                                   C,08h
                                                   ;task C at physical C000h
0001BC 0610
                            LD
                                   B, 10h
                                                   ; common 1 at physical 10000h
                            Task switches handled here
0001BE ED1838
                     SWITCH: INO
                                   E, (CBR) ; read common1 base address
0001C1 ED1039
                            INO
                                    D, (BBR)
                                                   ; read bank base address
0001C4 D5
                            PUSH
                                                   ; save to stack
                                    (BBR),C
0001C5 ED0939
                            OUTO
                                                   ;initialize BBR
0001C8 ED0138
                            OUTO
                                    (CBR),B
                                                   ;initialize CBR
0001CB E5
                            PUSH
                                    HL
0001CC F5
                            PUSH
                                    AF
                                                   ; save context prior to int svc
0001CD DDE5
                            PUSH
                            Memory switched, call task handler routine
                                    BANK
                                                   :switch to task in bank area
0001CF CD0040
                            CALL
```

APPENDIX: Task Switcher Code Listing

```
Task complete, perform clean-up for return from task
                    RETURN:
0001D2 DDE1
                                 POP
                                        IX
0001D4 F1
                          POP
                                 AF
0001D5 E1
                          POP
                                 HL
0001D6 D1
                          POP
                                              ;restore MMU
0001D7 ED1139
                          OUTO
                                 (BBR),D
0001DA ED1938
                          OUTO
                                 (CBR),E
                                             ;restore MMU
0001DD C1
                          POP .
0001DE FB
                    INTEND: EI
0001DF ED4D
                          RETI
000000
                          END
```

APPENDIX: Task A Code Listing

```
TASK A ROUTINES: Interrupt service for timer 0
                                  - Causes elapsed time clock to increment by
                                    one hundredth of a second
                    ;
                          Task A Code: executed upon receipt of PRTO interrupt
                     ;
000000
                   CPU
                           "64180.TBL"
000000
                   INCL
                           "INTIO.LIB"
                     ;
                           Use same table of equates as for Main Task
                     :
                           RAM area loaded with data by main program
00F000
                          ORG
                                  0F000h
                                                ; storage area (Common 1)
00F000 30303A30303A30ET CLK:
                                  DFB
                                         "00:00:00.0"
00F00A 300D
                    ET CLKend: DFB "0", CR
00F00C
           PAGE
                           Task A: increment elapsed time clock
004000
                           ORG
                                  4000h
                                                         ;org at logical address
                    CLK_CHG:
004000 DD210AF0
                                  LD
                                        IX,ET CLKend ;IX contains address of clock
004004 3E01
                                  A, 01h
                          LD
004006 DD8600
                          ADD
                                  A, (İX+0)
                                                         ;increment
                          CP
                                  39h
                                                        ; if 3A, then update
004009 FE39
00400B 2078
                                  NZ, UPDATE
                                  A,30h
                                                        :reset to 0
00400D 3E30
                          LD
00400F DD7700
                          LD
                                   (IX+0),A
                                                         ;prepare to incr preceeding
004012 DD2B
                           DEC
004014 3E01
                          LD
                                  A, 01h
004016 DD8600
                         ADD
                                  A, (IX+0)
                                                        ;increment
                                  39h
                                                        ;if 3A, then update
004019 FE39
                           CP
00401B 2068
                           JR
                                  NZ, UPDATE
                                                      ;reset to 0
00401D 3E30
                           LD
                                  A.30h
00401F DD7700
                           LD
                                   (IX+0),A
                                                         ;prepare to incr preceeding
004022 DD2B
                           DEC
                                  IX
                                                         ;skip period
004024 DD2B
                           DEC
                                  ΙX
                                  A, 01h
004026 3E01
                           LD
```

			;	update	seconds	
c	04028	DD8600		ADD	A, (IX+0)	;increment
C	0402B	FE39		CP	39h	;if 3A, then update
C	0402D	2056		JR	NZ, UPDATE	
C	0402F	3E30		LD	A,30h	;reset to 0
C	04031	DD7700		LD	(IX+0),A	;prepare to incr preceeding
C	04034	DD2B		DEC	IX	
C	04036	3E01		LD	A,01h	
C	04038	DD8600		ADD	A, (IX+0)	;increment
C	0403B	FE36		CP	36h	;if 37 (>60), then update
C	0403D	2046		JR	NZ, UPDATE	
C	0403F	3E30		LD	A,30h	;reset to 0
C	04041	DD7700		LD	(IX+0),A	;prepare to incr preceeding
0	04044	DD2B		DEC	IX.	
C	04046	DD2B		DEC	IX	;skip period
C	04048	3E01		LD	A, 01h	
			;	update	minutes	
. 0	0404A	DD8600		ADD	A, (IX+0)	;increment
	0404D			CP	39h	;if 3A, then update
c	0404F	2034		JR	NZ, UPDATE	
	04051			LD	A, 30h	;reset to 0
		DD7700		LD	(IX+0),A	;prepare to incr preceeding
	04056			DEC	IX	
	04058			LD	A, 01h	
		DD8600		ADD	A, (IX+0)	;increment
c	0405D	FE36		CP	36h	; if 37 (>60), then update
c	0405F	2024		JR	NZ, UPDATE	
. 0	04061	3E30		LD	A, 30h	;reset to 0
C	04063	DD7700		LD	(IX+0),A	;prepare to incr preceeding
c	04066	DD2B		DEC	IX	
c	04068	DD2B		DEC	IX	;skip period
C	0406A	3E01		LD ,	A, 01h	
			;	update	hours	
c	0406C	DD8600		ADD	A, (IX+0)	;increment
·	0406F	FE39		CP	39h	;if 3A, then update
c	04071	2012		JR	NZ, UPDATE	
C	04073	3E30		LD	A, 30h	;reset to 0
c	04075	DD7700		LD	(IX+0),A	;prepare to incr preceeding
	04078			DEC	IX	
	00407A			LD	A,01h	
		DD8600		ADD	A, (IX+0)	;increment
	00407F			CP	39h	;if >100, then reset to 0
	004081			JR	NZ, UPDATE	
	004083			LD	A,30h	;reset to 0
		-			•	

.....

APPENDIX:	Task A	Code Listing	(continued)
-----------	--------	--------------	-------------

004085 DD7700

UPDATE:

LD (IX+0),A

;prepare to incr preceeding

004088 ED3810 00408B ED380C INO A, (TCR)
INO A, (TMDROL)

;read timer registers to reset
; timer interrupt

00408E C9

RET

; return from task routine

; to task switcher

000000

END

HD64180 Family

APPENDIX: Task B Code Listing

```
Task B - Executed upon receipt of PRT1 interrupt
000000
                         CPU
                                "64180.TBL"
000000
                         INCL
                                "INTIO.LIB"
                         Include same table of equates used for Main Task
                     ;
                         Data Storage
                                - System Data
00F000
                                ORG
                                       OF000h ; storage area (Common 1)
                                ;used by all tasks
00F000 30303A30303A30ET_CLK:
                                DFB
                                       *00:00:00.0"
00F00A 300D
                   ET CLKend:
                                DFB
                                       "0", CR
00FA00
                                ORG OFA00h ; storage area Y (Common 1)
00FA00 00
                                 DFB Oh ;used by Task B
                                     "00:00:00",CR
00FA01 30303A30303A30D TIME:
                                DFB
                         Task B - Prepare for and perform DMA to ASCI1
004000
                         ORG
                                4000h
                                                      ;org at logical address
004000 DD2100FA
                   CLK DSP:
                                LD
                                       IX, CTR
                                                      ;IX contains address of count
                                A,01h
004004 3E01
                         LD
                         ADD
004006 DD8600
                                A, (IX+0)
                                                      ;increment
004009 FE05
                         CP
                                 05h
                                                      ; compare to 5
                                 NZ, SEC_CHK
00400B 2005
                         JR
                    ;
                         reach here if count equals 5
00400D CD3740
                         CALL
                                 DMINIT
                                                      ; if = 5, initialize DMAC
                         JR
004010 181B
                                 DSP_END
004012 FE0A
                    SEC CHK:
                                 CP
                                      0Ah
                                                      ; compare to 10
004014 2017
                         JR
                                NZ, DSP END
                         reach here if count equals 10
004016 3E00
                         LD
                                 A, 00h
                                                      ; reset count value in A
004018 2100F0
                         LD
                                 HL, ET CLK
00401B 1101FA
                                 DE, D TIME
                         LD
00401E 010800
                         LD
                                 BC,8
004021 EDB0
                         LDIR
                                                      :Copy current clock
```

APPENDIX: Task B Code Listing (continued)

```
004023 0620
                                   B, 20h
                                                           ;output a space
004025 ED0107
                           OUTO
                                   (TDR1),B
                                                           ; prior to starting ASCI ch 0.
004028 0640
                           LD
                                   B, 40h
00402A ED0130
                           OUTO
                                   (DSTAT),B
                                                   ; start DMAC ch 0
                           exit interrupt service here
00402D DD7700
                     DSP END:
                                   LD
                                           (IX+0),A
                                                           ; restore counter to memory
004030 ED3810
                                   A, (TCR)
                                                 ;read registers to clear
004033 ED3814
                           INO
                                   A, (TMDR1L)
                                                  ; interrupt request
004036 C9
                           RET
                                                   ; return from task B
                                   DMAC Channel 0 Initialization
                                           for displaying elapsed time to terminal
004037 0101FA
                     DMINIT:
                                                           ;prepare to load source addr
00403A ED0920
                           OUTO
                                    (SAROL),C
                                                           ; source address at ET CLK
00403D ED0121
                           OUTO
                                    (SAROH),B
004040 1601
                           LD
                                   D,01h
004042 ED1122
                           OUTO
                                    (SAROB), D
004045 010700
                           LD
                                   BC, TDR1
                                                           ;prepare to load dest addr
004048 ED0923
                           OUTO
                                    (DAROL),C
                           OUTO
00404B ED0124
                                    (DAROH), B
00404E 1602
                           LD
                                   D, 02h
                                                           ; TDRE1 generates request
004050 ED1125
                           OUTO
                                    (DAROB), D
004053 0600
                           LD
                                   B, 0h
004055 ED0127
                           OUTO
                                    (BCROH),B
                                                  ;byte count high = 0
004058 0609
                           T.D
                                   B. 9
00405A ED0126
                           OUTO
                                    (BCROL),B
                                                   ;byte count low = 9 chars
00405D 0630
                           LD
                                   B, 30h
                                                   ; source (mem) incs, i/o stays
00405F ED0131
                           OUTO
                                    (DMODE),B
004062 06F4
                           LD
                                   B, OF4h
004064 ED0132
                           OUTO
                                    (DCNTL),B
                                                           ;edge sense on channel 0
004067 C9
                           RET
000000
                   END
```

HITACHI

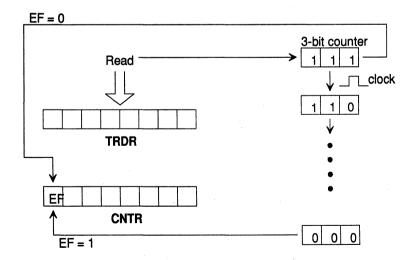
HD64180 Family

APPENDIX: Task C Code Listing

```
Task C - executed upon receiving IRQ1 (external event)
                                 Causes count of external events to be incremented
000000
                          CPU
                                 "64180.TBL"
000000
                          INCL
                                 "INTIO.LIB"
                          Include equates file used for Main Task
                          Data Storage
                                 - System Data loaded from EPROM at initialization
 00F000
                                        OF000h ;storage area (Common 1)
                                               ;used by all tasks
                                        "00:00:00.0"
 00F000 30303A30303A30ET CLK:
                                 DFB
 00F00A 300D
             ET CLKend:
                                        "0", CR
 00F800
                                 ORG OF800h ;storage area X (Common 1)
                                               ;used by Task C only
                  EV START: DFB CR, LF, LF
OOF800 ODOAOA
 00F803 30
                  EVNT CT:
                               DFB
                                                      ;storage for count of events (<= 9)
00F804 206576656E7473
                                DFB
                                        " events occurred", CR, LF
 00F816 204C6173742065
                               DFB
                                        " Last event occurred at "
OOF82E 30303A30303A30LAST_EV: DFB
                                     "00:00:00.00", CR, LF, LF
                         Task C
                                 copy current value of real time clock to memory
                                 increment event counter
 004000
                          ORG
                                 04000h
                                               ;org at logical address
                                                     ;end of ET_CLK string
 004000 210BF0
                    EVNT SAV:
                                 LD HL, ET_CLK+11
 004003 1139F8
                          LD
                                 DE, LAST_EV+11 ; end of LAST_EV string
 004006 010C00
                          LD
                                 BC,12
                                               ; number of chars to move
 004009 EDB8
                   LDDR
                                               ; move information
 00400B 2103F8
                          LD
                                 HL, EVNT_CT ;
                                           ;increment event count
 00400E 34
                          INC
                                 (HL)
 00400F 3E39
                          LD
                                 A, 39h
                                             ;load '9' + 1
 004011 BE
                          CP
                                 (HL)
                                               compare to value in Acc
 004012 3003
                          JR
                                 NC, SAV_END ; if not equal, then return
                                 A, "0"
 004014 3E30
                          LD
                                              ;if equal, then reset
 004016 77
                          LD
                                 (HL),A
 004017
                    SAV END:
 004017 C9
                     000000
                   END
```

Reading of a Short Data Byte from the 64180 CSIO

Tech Notes


Application Engineering

Amelia Lam

In 64180, the clock synchronous serial I/O (CSIO) port is used for fixed 8-bit data transfer in half duplex mode. Both transmit and receive use the same Data Register (TRDR) and the same Control/Status Register (CNTR). In the CNTR, an End flag (EF) is provided to indicate the status of an 8-bit data transfer; it is set to one if the transfer is completed, or reset to zero when data is read from or written to the TRDR.

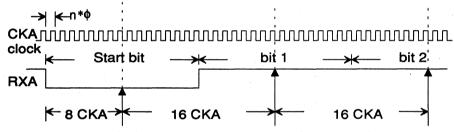
In some cases, the user might have a link established with data less than 8-bit. When that happens, the data will still be available in the Data Register, and the user can read the shorter byte, e.g. 6-bit, as soon as it is done. Question may arise as to what will happen to the EF bit, since this bit get set at the end of 8-bit data transfer.

In 64180, whenever a read occurs, it causes an CSIO internal 3-bit counter to be reset. This 3-bit counter will set the EF flag after it has counted to zero and reset the flag after data is read. And it will perform the down-counting at the next available clock. But if the read occurs right after the 6-bit transfer, the counter does not have a chance to reach zero. Because of this, the EF flag will never get set. Hence, the user **cannot** rely on the CNTR for status information and has to ensure the correct data is read with external circuitry.

Start Bit Detection in the 64180's ASCI

Tech Notes

Application Engineering

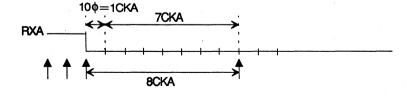

Amelia Lam

(Note: This technote is to replace #TN-0041, March 1992)

The ASCI detects a start bit by monitoring the low level of the receive data after the following sequences have taken place to prevent the wrong interpretation of the noise signal as the start bit:

- 1. The receiver is enabled
- 2. On the falling edge of the serial clock (CKA)
- 3. a delay of 10 system clocks (φ)

If a low level is detected, the ASCI will sample the RXD again at 1/2 of a bit time later; that is 8 CKA in +16 mode or 32 CKA in +64 mode. The start bit will become valid if the sampling level is still low. From this point on, the ASCI then samples the data bit at one-bit time interval, which happens to take place in the middle of each bit. If a valid start bit is not detected, the ASCI will repeat the search at each falling edge of the clock.

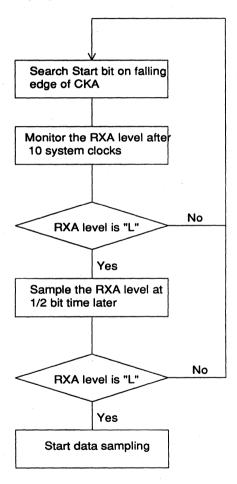


* n is determined from SS0,1,2 bits & PS bit of ASCI Control Register B

Data sampling in + 16 mode

The delay of 10ϕ clock is determined so that the next sampling point will be aligned at the center of the bit even in the worst case scenario with small prescale factor:

divide ratio is + 1 (SS0, SS1, SS2 = 000); prescale by 10 (PS=0); sampling clock is CKA + 16 (DR=0)



Start Bit Detection in the 64180's ASCI

Tech Notes

Here, 10ϕ equals 1 CKA, and the 64180 actually waits after 7 CKA elapsed then performs the second sampling of the start bit. With this, the total durations still equal 8 CKA. This is not so critical if the prescale factor is higher, since 10ϕ takes a less significant weight in the entire sampling cycle.

The following flow chart highlights the detection of a start bit in an Asynchronous data transfer.

Differences Between HD64180S and HD64180S2

Tech Notes

Application Engineering

Amelia Lam

The new product marking for the NPU is HD64180S2. It is the same as HD64180S except with the following differences:

	ing Paragan	HD64180S	HD64180S2
1.	Condition - Bit synchronous Loop Mode	Cannot be used	Can be used
2.	Condition - Bit or Byte synchronous FM encoding (FM0, FM1, Manchester)		
-	When the continous frames received by the MSCI are out of phase, the synchronization can be done by the ADPLL if an "enter search mode" command is generated in between the idle state of each frame	The user is required to generate an "enter search mode" command	An "enter search mode" command is automatically issued by the MSCI. No software intervention
3.	Condition - Bit synchronous HDLC or Loop mode		
	If an FCS is not included in the transmit frame, and the last data immediately before the closing flag is in the range of F0 - F7H (i.e. the bit sequence right before the flag is seen as xxx01111)	The closing flag sent by the transmitter becomes seven 1's. The receiver thus interprets this as an Abort sequence and results in the wrong frame.	The MSCI will correctly transmit the closing flag even if the last data byte is between F0 - F7H.
	バ バ in 64180S バ	last byte xxx0111	Flag 111111111111111111111111111111111111

Start Bit Detection in the 64180's ASCI

Tech Notes

Application Engineering

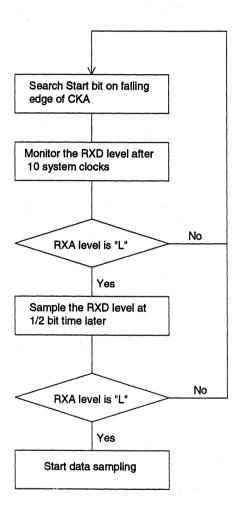
Amelia Lam

The ASCI detects a start bit by monitoring the low level of the receive data after the following sequences have taken place:

- 1. The receiver is enabled
- 2. On the falling edge of the serial clock (CKA)
- 3. a delay of 10 system clocks (Φ)

These prevent the wrong interpretation of the

noise signal as the start bit.


If a low level is detected, the ASCI will sample the RXD again at 1/2 of a bit time later; that is 8 CKA in +16 mode or 32 CKA in +64 mode. The start bit will become valid if the sampling level is still low. From this point on, the ASCI then samples the data bit at one-bit time interval, which happens to take place in the middle of each bit. If a valid start bit is not detected, the ASCI will repeat the search at each falling edge of the clock.

Data sampling in + 16 mode

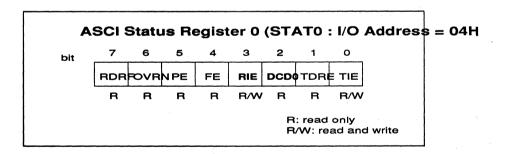
Start Bit Detection in the 64180's ASCI

The following flow chart highlights the detection of a start bit in an Asynchronous data transfer.

HD64180 Family—DCD0 Line Operation

Tech Notes

Application Engineering


Marnie Mar

Hardware Manual Supplement

When 64180 designs using ASCI channel 0 require DCD0 to be active, users should be aware of the following if receive interrupts are enabled.

A receive interrupt will be generated whenever receive interrupts are enabled and the ASCI detects a low to high transmition of the DCD0 bit of Status Register 0 (STAT0). This bit transition will occur if either the external DCD0 input line transitions from low to high, or if the DCD0 bit of STAT0 is cleared by reading STAT0, but the external DCD0 line remains high. The DCD0 bit will be cleared by the STAT0 read, but the bit will be reset as soon as the external DCD0 line is detected high.

If the external DCD0 line is to be held high in an application, receive interrupts should be disabled by clearing the RIE bit of STAT0. Otherwise, receive interrupts will be requested continuously until the external DCD0 line is set low.

64180 DMAC: Memory-Mapped I/O Transfers

Tech Notes

Application Engineering

A fixed memory location can be specified as the source or destination for a DMAC channel 0 transfer on the HD64180R, Z and HD647180X. When this occurs, the DMAC assumes that the fixed address is a register in an external memory-mapped I/O device which is capable of generating an external hardware request signal to be input on the DREQ₀ pin. Once the channel has been initialized and enabled, transfers will occur as requested by the DREQ₀ input which can be programmed to be edge or level sensitive.

If the user's system does not have the capability of providing a $DREQ_0$ input to trigger transfers to or from this location, transfers can be triggered by program control. In order for this to happen, program $DREQ_0$ to be level sensitive (set the DMS0 bit of the DCNTL register to 0) and tie the $DREQ_0$ pin low. This will cause DMA transfers to occur in burst mode whenever channel 0 is enabled (by writing 1 and 0 to the DSTAT register's DME0 and DWE0 bits, respectively).

Note on tying the $DREQ_0$ pin low: Since the $DREQ_0$ line is multiplexed with the CKA_0 input/output line, the user must not enable the ASCIO baud rate generator prior to initializing DMAC channel 0 for memory-mapped I/O transfers. Initializing the system in this order would cause the CKA_0 line to output the baud clock, and this pin in the output state should not be tied low.

Notes on HD64180S (NPU) Bit-Sync Loop Mode

Tech Notes

Application Engineering

Marnie Mar

Abnormal transmission of data in secondary stations

The following problem may be found when using the HD64180S Network Processing Unit (NPU). The Multiprotocol Serial Communications Interface (MSCI) of this device may not operate correctly when it is used in the Bit Synchronous Loop Mode in support of secondary stations for bit synchronous loop transmission of data. For details on the correct operation of the Bit-Synchronous Loop Mode, please refer to the HD64180S NPU Hardware Manual, #U16.

The MSCI operating in this mode may transmit data abnormally when the Go active On Poll (GOP) bit of the MSCI Control Register (MCTL) is changed from 0 to 1. If operating correctly, data transmission would not begin until both the GOP bit is changed to 1 and a Go Ahead (GA) pattern has been detected. Figure 1 shows this incorrect operation.

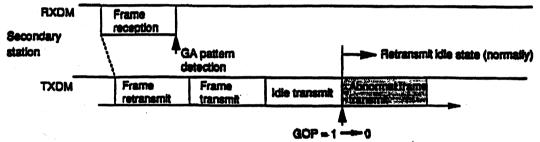
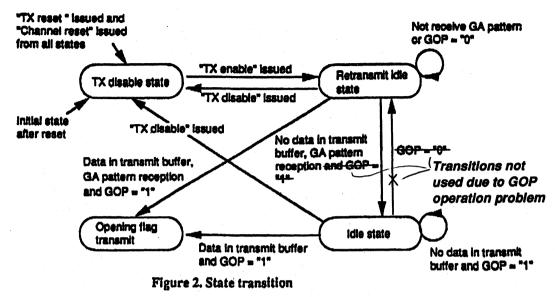


Figure 1. Failure in data transmission in a secondary station

Countermeasure

This abnormal transmission can be prevented by modifying the application software that controls the NPU operating in bit-synchronous loop mode.


Warning on using the GOP bit

The GOP bit should be changed from 0 to 1 only during the TX disable state immediately after hardware reset. After that, writing to the GOP bit should be avoided in the application software.

Figure 2 shows a portion of the State Transition Diagram for Transmission in Bit Synchronous Loop Mode. To avoid abnormal transmission of data, the GOP bit should never be written by application software after it has been initialization to "1". Therefore, GOP remains in the "1" state during operation. To cause transition from the Idle state to the Retransmit Idle state without writing "0" to the GOP bit requires the following steps:

- 1) Issuing the "TX Reset" command in the Idle state causes transition to the TX Disable state
- 2) Issuing the "TX Enable" command in the TX disable state causes transition to the Retransmit Idle state

Notes on HD64180S (NPU) Bit-Sync Loop Mode

Countermeasure by software

Figure 3 shows the results of the countermeasure for the loop mode operation problem in software:

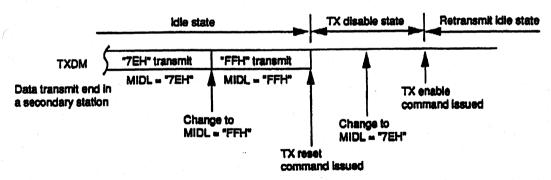


Figure 3. Example

Notes:

- 1) The MSCI Idle pattern register (MIDL) is programmed to FFh from 7Eh during the Idle state to cause the change from flag transmit to mark transmit.
- 2) The TXDM output pin is in mark state during the TX Disable state, which is the same as it would be if direct transition to Retransmit Idle state occurred.
- 3) When the GA pattern is detected, a secondary station transitions to the Idle state even though it does not have transmit data (refer to Figure 2). When this occurs, the above operation needs to be repeated to return to the retransmit idle state, since writing "0" to the GOP bit could cause problems.

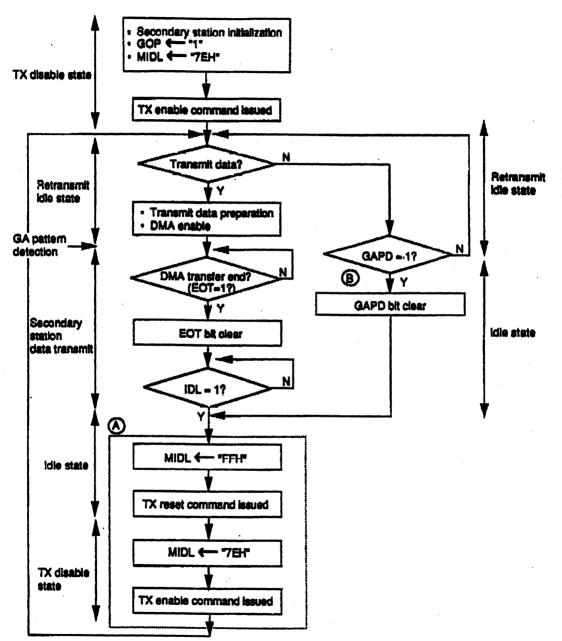


Figure 4. State transition control flow at bit synchronous loop mode

Tech Notes

Notes on HD64180S (NPU) Bit-Sync Loop Mode

Flow Chart

Figure 4 shows the flow chart of the transmit operation in Bit Synchronous Loop Mode using the recommended software countermeasure.

Notes:

- 1) Condition branches in the flow chart occur as a result of interrupts, or by CPU polling.
- 2) Operation shown in the box marked A replaces writing "0" to the GOP bit.
- 3) The GOP bit is always "1", so a secondary station transitions to an Idle State when the GA pattern is detected in the Retransmit Idle State whether or not transmit data is available. When this occurs, operation should return to the Retransmit Idle State by clearing the Go Ahead Pattern Detect (GAPD) bit of MSCI Status Register 1 (MST1).

Port A Register Programming

Tech Notes

Application Engineering

Marnie Mar

Writing to the DERA (Port A Disable Register) can affect the values programmed into the DDRA (Data Direction Register A). For instance, if the DDRA is programmed to set up directions for the I/O port pins, and the DERA register is later programmed with a value, it is possible for the DDRA value to change causing the data directions for the I/O pins to change.

To ensure that the directions of I/O pins are preserved, the following steps should be taken:

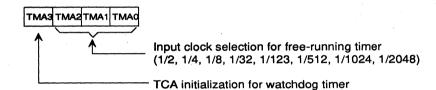
- 1. DERA should be programmed prior to programming the DDRA.
- 2. If the DERA is reprogrammed, the DDRA should also be reprogrammed.

Section 3

4-Bit Family

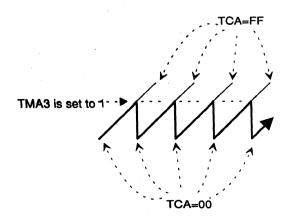
Effect of TMA2 on Timer A Operation

Tech Notes


Application Engineering

Amelia Lam

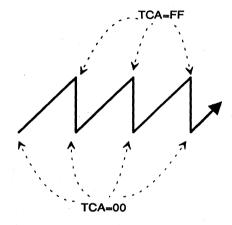
In the Compact 400 series, Timer A can be configured by mask option in two operation modes, namely Free-running timer or Watchdog timer. According to the databook, bit 3 of the Timer Mode Register A (TMA) is used for "TCA initialization for watchdog timer". This technote is to explain the usage of this bit 3 in watchdog mode, and the additional feature it provides in free-running mode.


Timer Mode Register (TMA)

This is a 4-bit write-only register. The prescaled input clock to Timer A is determined from bit0 to bit2, and bit 3 is for resetting the counter TCA.

Watchdog Timer

In the watchdog timer mode, Timer A counts up on every 1/2048 of the system clock signal and generates an overflow when the counter reaches FF, causing the MCU to reset at the same time. Therefore, TMA3 is used to reset the counter before the overflow situation occurs.



HITACHI

Effect of TMA2 on Timer A Operation

Free-running Timer

In the free-running timer mode, Timer A counts up on the clock signal selected by the TMA register. As soon as the counter reaches FF, it generates an overflow and sets the interrupt request flag. Timer A is then reloaded with 00 and starts counting again. But if TMA3 is set, the counter will get reset before it has the chance to reach FF, thus defeats the purpose of Timer A serving as a free-running timer. The databook refers this phenomenon as "the MCU malfunction". In fact, it is the timer, not the MCU, that is being referred. The real issue is the counter does not function as expected in the free-running timer mode. On the contrary, setting this bit 3 provides an additional feature, an event counter for Timer A in the free-running mode.

4-Bit ZTAT Microcomputer PROM Programming

Tech Notes

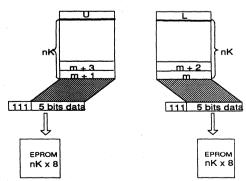
Application Engineering

Amelia Lam

The on-chip PROM of the HMCS400 ZTAT microcontrollers is programmed in the same way as a standard 27256 EPROM does. Since each instruction of the HMCS400 is 10 bits wide, a special programming sequence is employed in order to properly convert a 10-bit program code onto an 8bit memory locations.

However, there may be times when the PROM programmer reports a device or programming error even there isn't one. This may be caused by some of the records in the object file not having the entire memory space occupied with data. After the object file is downloaded into the PROM programmer, those unoccupied areas are then filled with data of '00' byte. This violates the HMCS400 programming specification which requires the upper three bits of each byte be '111'.

The following text illustrates a method to circumvent this problem.

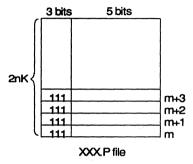

ZTAT Vs 27256 EPROM Code Assemblying

By using the Cross-Assembler, the 10-bit instruction source code will be transformed into an 8-bit object file ready for downloading. This is done by splitting 10-bit word into two halves and each half is padded with '111' in the most significant three bits to form a byte.

If an 8-bit EPROM is used for programming, the command is:

"ASSEMBLE filename"

this will create two 8-bit wide files to be burned into two EPROMs; one contains all the even address code, and the other one contains all the odd address code.


HITACHI

Tech Notes 4-Bit ZTAT Microcomputer PROM Programming

If the ZTAT is used for programming, the command is:

"ASSEMBLE filename /P"

this will generate an object file 'xxx.P' which contains both odd and even addresses interleaving with each other.

Downloading

When using a menu-driven software such as "PROMLINK" for downloading, first fill the programmer RAM space with FF prior to loading with the object code. This ensures all ones in the most significant three bits on each byte even after 00 is loaded to the RAM.

PROM Programming

Adjust the operation boundaries by setting the device block size to the code size. Instead of programming the entire ROM which the ZTAT part comprises, it only program the selected ROM space. By doing this, it adds efficiency in the burning process.

Alternative

Besides filling the programmer RAM with FF, an alternative to eliminate the gap between each record is to pad the source code with FF so that the starting address to the ending address of a whole record will have data in it.

HD404272 User Cable Conversion Board SW1 Pin Layout

Tech Notes

Application Engineering

Amelia Lam

HS4274ECS28H is a User System Interface Cable connecting to a general-purpose target probe (HS400ETA01H). It is used specifically for the high-voltage I/O Compact device HD404272 family. The unit includes a conversion board with header plugged into the target probe, one set of flexible ribbon cables with 28-pin shrink DIP connector plus protection socket, a power supply cable and a spare protection socket (No.3).

Rather than software programmable, the high-voltage pins on this user cable must be fixed to either input or output. The way to do this is by means of the on-board switches (SW1, SW3 & SW4). However, there is a mismatch in the SW1 switch layouts between the schematic and the board itself.

On the schematic of the HS4274ECS28H user's manual, the SW1 pinouts are connected to the databus as follows:

D0	100	14
	2	13
D1		
D2	3	
D3	4	11
D4	5	10
_		9
D12	• •	
D13	7	8
	SW1	

The correct settings should be the one showing on the board:

D13	1 14
D12	2 13
D4	3 12
D3	4 11
D2	5 10
D1	6 9
D0	7 8
	SW1

Section

4

Display Devices

- Graphics
- LCD

Section

4

Display Devices
Graphics

SECTION

HD63484 ACRTC AND HD63487 MIVAC Data

Tech Notes

Application Engineering

Kash Yajnik

Q/A, Test, and Reliability Information

The most frequently requested Q/A, test, and reliability data by the Hitachi customers using the parts listed above, is summarized below:

- 1.0 ACRTC (HD63484) Transistor Count = 117,000
- 2.0 MTBF
 - o HD63484 (ALL Packages) = 3.8×10^6 Hours at $T_A = 55$ °C, and

Confidence Level = 60%

o HD63487 (ALL Packages) = 3.4×10^6 Hours at $T_A = 55^{\circ c}$, and

Confidence Level = 60%

3.0 ACRTC (HD63484) - Junction to Case Thermal Resistance

PRODUCT	PACKAGE	COMMENT	θ 1-C
HD63484P8	DP-64	Plastic DIP	75 °C/ W
HD63484-8	DC-64	Ceramic DIP	35 °C/ W
HD63484CP8	CP-68	PLCC	45 °C/ W

Tech Notes

HD63484 and HD63487 MIVAC Data

4.0 ACRTC (HD63484) - Power Consumption Vs Speed

SPEED

 $I_{CC}(Max)$ @ $V_{CC} = +5V \pm 5 \%$

9.8MHz

120 mA

8 MHz

100 mA

6 MHz

80 mA

4 MHz

60 mA

HD63484 ACRTC

Tech Notes

Application Engineering

Kash Yainik

PRODUCT:

HD63484

ACRTC

Mask History

The details of limitations on the usage of the "R", "S", and "U" mask are shown below along with the product mask diagram for identifying different masks.

HD63484 ACRTC Limitations on Usage

The status of the item numbers described in this paragraph is summarized in the following table.

Limitation on the ACRTC function.

No.	Limitation for the ACRTC function	R Mask	S Mask	U Mask
1	Light Pen Interface	Unusable	Usable	Usable
2	RS Signal during DMA Transfer	Unusable	Usable	Usable
. 3	AREA Mode for AFRCT, RFRCT and PAINT Commands	Unusable	Usable	Usable
4	DRD Command	Unusable	Usable	Usable
5	DMOD Command	Unusable	Usable	Usable
6	PAUSE Bit	Unusable	Usable	Usable
7	AS Output Timing during Zooming	Unusable	Usable	Usable
8	BLINK Feature	Unusable	Usable	Usable
9	CLR, WT and DWT Command	Unusable	Usable	Usable
10	Writing to Registers during DRD Command Execution	Unusable	Unusable	Usable
11	Command DMA Transfer Mode	Unusable	Unusable	Usable
12	Tiling Using the PAINT Command	Unusable	Usable	Usable
13	Displaying WINDOW	Unusable	Unusable	Usable
14	PARAMETERs for ELLIPSE Command	Unusable	Unusable	Unusable
15	PARAMETERs for ELLIPSE ARC Command	Unusable	Unusable	Unusable
16	Light Pen Strobe Detect (LPD) Status Bit	Unusable	Unusable	Usable

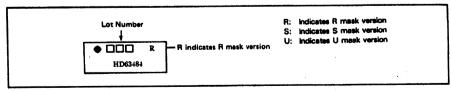


Figure N5 Product Mark

EV63487

Technical Brief

MIVAC Evaluation Board

Kash Yajnik

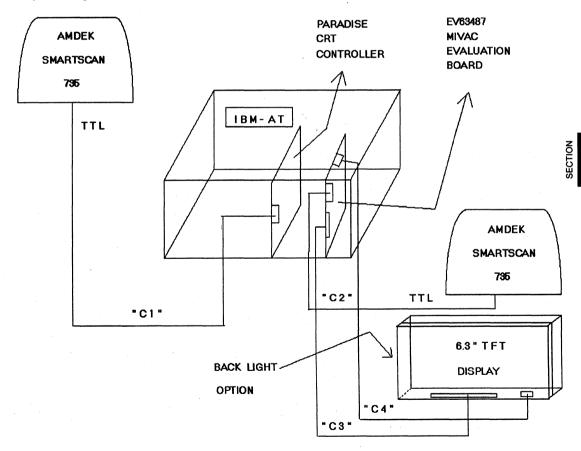
The EV63487 MIVAC Evaluation Board was designed by Hitachi Europe Ltd., Munich, Germany, and can be ordered through Hitachi America Ltd. in U.S.A. The board is shipped in a foil cover with a User Manual, and the associated software diskette capable of demonstrating graphics patterns on a 6.3" or 10.4" TFT color Liquid Crystal Module from Hitachi.

Up to eight colors may be displayed depending upon the selected LCD panel from Hitachi's ELT Division. The EV63487 MIVAC Evaluation Board can reside inside IBM PC-AT or a compatible system running later than DOS version 2.0. It is also possible to run the EV63487 Board with an external power supply. This board takes one slot in the chasis and its size is half that of the standard card. The back light power is also supplied by this card. Identical color images can be displayed on the CRT monitor as well as the color LCD panels.

The EV66387 Evaluation board uses Hitachi's Advanced CRT Controller (ACRTC) HD63484, and Memory Interface Video Attribute Controller (MIVAC) HD63487. This board has no LCD controller part as the CRT data is serially sent to the color panel for display.

This technical brief is written to complement the EV63487 User's Guide for one specific application using the 6.3" color TFT module (TM16D01HC) from Hitachi's Electron Tube Division (ELT). A copy of the schematic is also included to provide the design implementation detail. A system diagram is also included to high light the laboratory environment. Similarly, each user may tailor display subsystem requirements for the desired application.

The scope of this document is to help make the design task easier and quicker. The circuit minimization tasks are left to each user and are **not** attempted. This is intended as an illustrative example for the Hitachi field and technical staff, and their customers.


The following pages cover system configuration and components, EV63487 Board set up, System debug, and Demonstration software. The Appendix "A" covers LCD cable and the Appendix "B" shows the Back light power connections. The Appendix "C" lists the schematic.

Refer to the subsequent pages for more detail.

SYSTEM CONFIGURATION

The development system was configured with IBM PC-AT or compatible machine, Paradise Autoswitch EGA 480 card, EV63487 MIVAC Evaluation Board, Smartscan Amdek 735 digital color monitors, and Hitachi TFT active matrix, 8 color, 6.3" LCD display (TM16D01HC) from the ELT division. The 9 pin TTL video cables required to provide CRT video signals from the EV63487 Evaluation board or the Paradise video board are not provided. The MIVAC Evaluation board output connector cable to the 6.3" TFT display is shielded to increase noise immunity and to make the LCD display connection task easier. A separate +12V DC cable is also required for the back light option (#BLS-006M). The back light is easily mounted with the four corner screws of the 6.3" TFT display.

The system diagram is shown below:

1.0 "C1" = "C2" = "C3" = "C4" cables are **not** provided. NOTE:


Technical Brief EV63487

SYSTEM COMPONENTS

The hardware components are described in this section while the "C3", "C4", cable wiring diagrams and schematic are shown in the Appendices.

PC-AT: AST Premium 286 model 70 was operating at 10 MHZ, with 512KB memory, 20MB hard disk drive, and 1.2 MB, 5.25 " floppy drive. It was also running DOS version 3.2.

VIDEO CONTROLLER: It provides the video signals to the Amdek monitor # 1 over the cable "C1". Paradise Autoswitch EGA is card used in the CGA mode at (640H x 200V) resolution to generate the TTL level signals to the monitor. The switch settings for 80 column, RGB monitor in CGA mode are shown below in its diagram:

- **NOTE: 1.0** For more details refer to the Paradise CRT controller manual.
 - 2.0 Make sure this switch is correctly set.

EV63487 MIVAC EVALUATION BOARD

This board has no switches and its settings are built in. So, please refer to the EV 66841 User's Guide for details. Only the 6.3" TFT LCD display was used, eventhough the manual describes the 10.3" display.

The EV63487 board provides TTL level output signals carried by the 9 pin cable "C2" to the the video monitor Amdek # 2. The R,G,B, HSYNC, and VSYNC signals are included in that cable. The output signals are also sent over the 34 pin cable "C3" to the 6.3" TFT, 8 colors, Hitachi display. This board also supplies +12 Volts required by the back light through the cable "C4".

SECTION

HITACHI COLOR LCD TFT MODULE (TM16D01HC):

Refer to the display data sheet for detail. The page 14 of it shows how the sub-pixels are designated for LVIC HD66841 interface with 160 dots (H) and 200 dots (V) resolution. The cable "C3" provides the signals to the display while cable "C4" provides the back light power. The display tilt and swivel angles provide different contrast ratios in the ambient light, so it should be adjusted for the most desirable viewing angle.

AMDEK MONITORS

The two CRT color monitors #1 and #2 are used in the CGA mode. They show the DOS commands dialogue on monitor #1 while the monitor #2 displays the demonstration program output. Observe that the monitor #2 and the 6.3" TFT display show identical color images in the 640H x 200V mode.

SYSTEM DEBUG

First power up the system in CGA mode using the AMDEK color monitor #1 and the EGA board. Only the cable "C1" is plugged while the cables "C2", "C3", and "C4" are not connected effectively disconnecting the 6.3" TFT LCD display. After the system is up in the CGA mode, with a DOS prompt, verify that it works correctly. Then reconnect the EV63487 board cables "C2", "C3", and "C4". Also, verify that the cable "C2" is properly connected to the display, since there is **no** key in the connector. If the cable "C4" is properly connected, back florescent light should come on and it is clearly visible.

If every thing is working correctly, one can execute all the DOS commands when appropriate prompts are displayed on the CRT monitor #1 screen.

DEMONSTRATION SOFTWARE

After DOS 3.2 or later is installed, load the programs from the software diskette after creating MIVAC and SOURCE directories. Modify the AUTOEXEC.BAT file to run file INI20-32.EXE to initialize the ACRTC (HD63484) and the MIVAC (HD63487) from Hitachi. After the initialization program is run, execute the DEMO200.EXE program to show identical graphic images on the color 6.3" LCD panel as well as the video monitor #2.

The AUTOEXEC.BAT file sample is shown below:
PATH = C:\;C:\DOS;
SET PROMPT = \$P\$G
CLS
C:\MIVAC\EV63487\INI-32.EXE
ECHO HIT RETURN FOR TFT DEMO
ECHO OTHERWISE TYPE ^C

Technical Brief EV63487

DEMONSTRATION SOFTWARE (CNTD.)

PAUSE

C:\MIVAC\EV63487\DEMO200.EXE

The DEMO200.EXE program screen output on the DOS monitor #1 is described below:

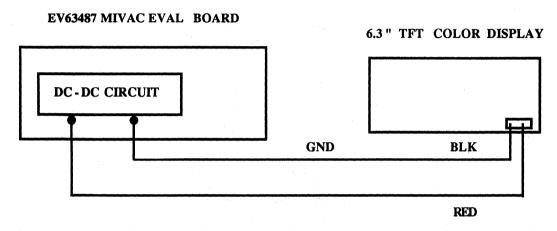
- 1.0 1000 Random filled circles
- 2.0 1000 Random filled rectangles
- 3.0 1000 Random rectangles
- 4.0 Lines
- 5.0 Color bars
- 6.0 16 filled ellipses
- 7.0 Logo

The corresponding images should be displayed on the 6.3" TFT color LCD display as the demonstration program is executed in the IBM PC-AT or compatible machine.

The 34 pin LCD shielded cable "C3" is shown below:

EV63487 BD

TM16D01HC TFT DISPLAY


" C3 "

				V (20V)
V_{EE} (-20V)	Pin 1		Pin 2	V _{EE} (-20V)
V_{DDA} (+5 V)	Pin 3	• •	Pin 4	$V_{DDA} (+5V)$
NC	Pin 5		Pin 6	V_{DD} (+5V)
IM0 (+5V)	Pin 7		Pin 8	$V_{DD} (+5V)$
IM1(G)	Pin 9		Pin 10	$V_{DD}(+5V)$
DOTE	Pin 11		Pin 12	G
VSYNC	Pin 13	• •	Pin 14	G
HSYNC	Pin 15		Pin 16	\mathbf{G}
DTMG	Pin 17		Pin 18	G
G	Pin 19		Pin 20	${f G}$
G	Pin 22		Pin 22	GRN
G	Pin 23		Pin 24	G
G	Pin 25		Pin 26	RED
\mathbf{G}	Pin 27		Pin 28	\mathbf{G}
G	Pin 29		Pin 30	BLU
G	Pin 31		Pin 32	DCLK
G	Pin 33	• •	Pin 34	LCLK

Technical Brief EV63487

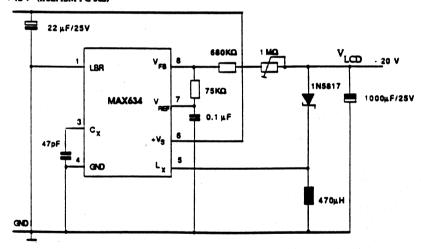
APPENDIX "B"

Back light power cable "C4", "C1", and "C2" are shown in this Appendix:

" C4 "

NOTE: Back light power is to be externally supplied through the "C4" cable.

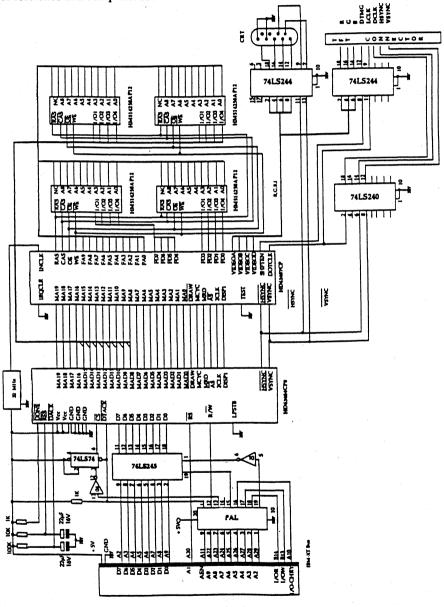
" C1 " AND " C2 " CABLES:


They are atached to the two monitors and are provided by Amdek, the manufacturer.

APPENDIX "C"

This section shows a copy of the schematic supplied by Hitachi Europe Ltd., Munich, Germany. It is inluded for reference and completeness.

DC-DC converter:


+ 12 V (from IBM PC bus)

EV63487

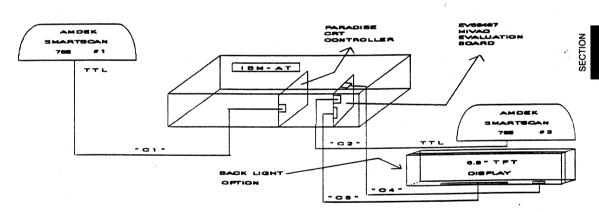
APPENDIX "C"

This section shows a copy of the schematic supplied by Hitachi Europe Ltd., Munich, Germany. It is merely included for reference and completeness.

EV63487

MIVAC Evaluation Board

This document presents information for a 6.3" or 10.4" color active matrix LCD subsystem implementation using Hitrohi semi conductor products ACRTC.HD63484 and MIVAC HD63487. Its major components include IBM PC-AT, EV63487 MIVAC Evaluation Board, Paradise Video Controller Board, and the color LCD display (TM16D01HC) from Hitachi's ELT Division. It can be further enhanced by adding demonstration software that runs on the IBM PC-AT or a compatible machine.


■ FEATURES

--Hardware--

- (1) IBM PC-AT or compatible machine
- (2) EV63487 MIVAC Evaluation Board from Hitachi Europe in Germany.
- (3) Color LCD 6.3" Active Matrix display from Hitachi with Back Light option
- (4) Paradise Video Controller Board

--Software--

- (1) DOS 3.2 Version or later
- (2) ACRTC and MIVAC Inilialization programs
- (3) Source code for the programs in " C " or BASIC
- (4) Demonstration programs for 6.3" or 10.4" TFT active matrix color LCD display

OBJECTIVES

- (1) To display EV63487 MIVAC Evaluation Board
- (2) To demonstrate 6.3" color active matrix display
- (3) To show demonstration software running on the EV63487 MIVAC Evaluation Board
- (4) To high light PC-AT bus interface

ADDITIONAL INFORMATION

The details of the system configuration and its design along with the associated software, are available in the Hitachi America Ltd. Technical Brief #TB0101.

HITACHI

Section

4

Display Devices LCD

HD44780 / LCD PANEL

Design Tutorial

H8/325 Application Note

Kash Yajnik

OVERVIEW

This tutorial is written to complement the H8/325 micro processor literature and also illustrate the HD44780 development for one specific application i.e. interfacing to a selected number of LCD panels from Hitachi's ELT Division.

A copy of the schematic and software listing is included to provide the design implementation detail. A system diagram is also included to high light the laboratory environment. Similarly, each user may tailor requirements for the desired application.

The scope of this document is to help make the customizing task easier and quicker. The circuit minimization tasks are left to each user and are not attempted. This is intended as an illustrative example for the Hitachi field and technical staff, and their customers. The H8/325 Series Model-I ASE (Adaptive System Evaluator) was designed by Hitachi Ltd., Tokyo, Japan, and can be ordered through Hitachi America Ltd., in U.S.A. The associated Emulator Box (HS328ABX01H) for H8/325 microprocessor based product development was used to send digital information. A HD44780 LCD Controller Driver located on the Hitachi panel from Electorn Tube (ELT) Division, Chicago, Illinois, processed the displayed message.

Black and white character information can be shown on selected LCD panels from Hitachi's ELT Division. Among the many products offered by the Hitachi's ELT Division, for this application, LCD panels LM016XML, LM016L,

LM041L, LM044L, and LM054 were selected and tested.

An Emulator Inter connect Board is required to enable the H8/325 ASE to talk to the LCD display panels. The character data is sent to the LCD panel for processing as well as display. The HD44780 LCD Controller Driver from Hitachi, SICD, located on the panel, processes the data sent by the H8/325 development system for display.

The H8/325 Emulator Interconnect Board resides on a bench connected to a LCD panel. The other end of the board is connected to the H8/325 Emulator User probe. It also requires external power supply. After power on, a demonstration program is loaded in the ASE system. It is then run to display a character message.

The following pages cover system configuration and components, H8/325 ASE Development System, Hardware Design, Software, and Demonstration Program. The Appendix " A " covers H8/325 ASE system details, and the Appendix " B " shows the Emulator Interconnect Board schematic. Also, Appendix " C " lists the LCD Panel data sheets, and Appendix " D " shows the H8/325 Initialization software listing. The appendices " E ", and " F " show HD44780 code listing and the reference literature respectively.

Refer to the subsequent pages for more detail.

TABLE OF CONTENTS

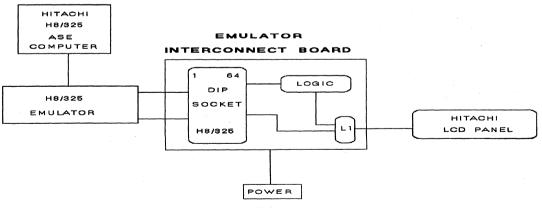
		TOPICS	P _A	AGE
1.0	INTRODUCT	ION		23
2.0	SYSTEM COI	MPONEN	тѕ	24
3.0	HARDWARE	DESIGN		25
4.0	HD44780 INI	ΓIALIZA′	TION FLOW CHART	27
5.0	HD44780 DA	ra tran	ISFER FLOW CHART	29
6.0	APPENDICES	S		31
	APPENDIX	"A"	H8/325 ASE SYSTEM	32
	APPENDIX	"B"	EMULATOR INTERCONNECT BOARD	34
	APPENDIX	"C"	LCD PANELS FEATURE LIST	35
	APPENDIX	"D"	H8/325 INITIALIZATION CODE LISTING	40
	APPENDIX	"E"	"INTIT780B.ABS" PROGRAM LISTING	41
	APPENDIX	"F"	REFERENCE LITERATURE	45

This section describes the design goals and provides a general overview of this presentation, along with a software development listing.

The design goals established for this project are briefly listed below:

- o To use H8/325 ASE system with software.
- o To display with LM016XML, LM016L, LM041L, LM044L, and LM054 panels from Hitachi.
- o To display four data bytes in the character mode using HD44780.
- o To design Emulator Interconnect Board.
- o To write programs for debug and test.

- o To use Hitachi H8/325 Emulator and User probe.
- o To use readily available software at Hitachi Field
 Offices for development.
- o To generate HD44780 / LCD Panel Tutorial.


A brief description of the LCD display system components listed above is provided in the next section as an overview. To complete the overview, a system block diagram is also presented. The rest of the sections described in the Table Of Contents are expanded in greater details along with their programming data. The Appendices give additional information, the program listing, and also list the referenced literature. A copy of the Emulator Interconnect Board schematic is also provided to illustrate the implementation details of this application.

SYSTEM CONFIGURATION

The display system was configured with H8/325 ASE Unit, Emulator Box, User cable, and a variety of LCD panels from the ELT Division, along with an Emulator Interconnect Board. The required cable lengths are shown in the schematic for CMOS signal levels. The LCD power pins are a part of the 14

pin panel cable, so a separate power cable is not required. The system block diagram for the Emulator Interconnect Board is shown in the Appendix "B". The system block diagram is shown below in Figure 1:

H8/825 ASE SYSTEM

NOTE:

FIGURE 1

1.0 The required ASE and Emulator cables are provided by Hitachi Ltd.

2.0 The Emulator Interconnect Board power and panel cables are built from the available documentation.

HITACHI

Section

SYSTEM COMPONENTS

The LCD display system components such as H8 / 325 ASE Unit, Emulator, User cable, Emulator Interconnect Board, a variety of display panels, External Power Supply and the related software are described in this section.

H8/325 ASE Unit: This product was designed by Hitachi Ltd., Tokyo, Japan. It is used as a demonstration and development tool. Refer to the Appendix "A" for its features and other details including a picture. The system software allows line assembly, disassembly, editing, trace, break setting, and other debug facility.

It is used in transparent mode and the host port is connected to a VAX computer. The CRT port is connected to DEC VT320 terminal. The Motorola S record compatible programs are loaded by 1.2 MB, 5 1/4" diskette. They are run to develop the code and associated demonstration software. The ASE is run at the emulation clock speed of 7.3 MHz and H8/325 mode 2 operation. The development system comes with ASE system program, control program, configuration file, edit command program, and diagnostic program. For more details, refer to the ASE manual (HS328ASE01HE).

LCD Display Panels: These character display panels are provided by the Hitachi's ELT Division. Although, LM016XML, LM016L, LM041L, LM044L, and LM054 panels were used and tested in the laboratory, most of the code development was done using LM016XML. The appendix "C" lists the panels and their features. Their cable pin outs are identical and so, switching between them is easier. Note that the display orientation for panels LM041L and LM044L is upside down from the other panels. The same demonstration program was run on all the LCD panels to show "S", "I", "C", and "D".

All the panels mentioned above are capable of displaying 1 or 2 or 4 lines of eight or sixteen or twenty 5x7 alpha numeric characters. Their resolution varies from 40 dots to 100 dots in width and 8 dots to 32 dots in height. The duty cycle may be 1/8 or 1/16.

The parallel data may be clocked in at a maximum "E" clock rate of 1 MHz. They run from +5V power supply. The customer has to solder 14 pins on each of the panels for the appropriate connector used on the Emulator Interconnect Board. The LCD panel mounting and the proper viewing angles are critical to a strain free LCD display. Please, handle the panels according to the care recommended by the LCD display manufacturer. The logic signals sent to the LCD panel are at CMOS levels.

Emulator Interconnect Board: A wire wrap board was built to send parallel data, control signals, and power to the LCD panel over the "L1" cable. The 64 pin male DIP User Cable was connected to the DIP socket on the Emulator Interconnect Board. The LCD panel contrast adjust potentiometer was also put on this board. The data bus and gating logic were also located. The power on reset pulse was provided by the H8/325 Emulator unit. Refer to the Appendix "B" for its schematic.

Power Supply: Open frame switcher power supply from Kepco, Model # ECM-021K-CB was used to power up the Emulator Interconnect Board as well as the display panel. Its rating was +5V@2A, +12V@0.3A, and -12V@0.2A. Note that the Emulator also sources power as shown in the schematic in Appendix "B".

Software: The H8/325 ASE system and PC resident software development tools, packages, and utilities are described very briefly:

H8/325 Cross Assembler: It is designed for DOS environment inside the IBM PC-AT compatible Personal Computer. When the user program is submitted as the source file, it assembles the code. Consequently, it produces Object and List files of the source program.

H8 / 325 Linker: To link various object code segments ("
*.OBJ " extention) developed in parallel for a larger program.
The linked file has " *.ABS " extention. Motorola " S " record conversion utility is also included with the linker, and is used as output file with " S " record format.

Load: To Load" S" Record file" INIT780B.ABS", after the ASE system is powered up, the floppy load command shown below is issued:

:FL INIT780B.ABS;S CR

NOTE: H8/325 ASE COMMANDS ARE NOT DOS EQUIVALENT.

Demonstration File: After the program file "INIT780B.ABS" is loaded from the floppy diskette, the following commands are given to run the program:

:.pc 300 CR

: go CR

Screen Editor: Any word processing package is acceptable. In this application, Microsoft "WORD" package was used. The source programs are created and edited with this package. The source program files have "*.SRC" extention.

HARDWARE DESIGN

This section covers H8/325 microprocessor design high lights, H8/325 initialization, operation mode selection, I/O port assignments, and HD44780 design guide lines.

H8 / 325 MPU Design: This HD6473258 product was designed by SICD, Hitachi Ltd., Tokyo, Japan. Refer to the Appendix "F" for all the required product design manuals for the associated circuit design. Only high lights are addressed in this illustrative application, since LCD controller peripheral design is the main goal.

H8/325 Initialization: Refer to the Appendix "D" for code sample. This program was developed to scope the H8/325 waveforms in operating mode 2. The "E" and "ø" clocks were measured. RESET Emulation command can be issued used during the debug process as required when ASE is used.

"E" Clock Determination: The maximum "E" clock rate of 1 MHz is specified in the panel specs. as well as the HD44780 data sheet. Based upon it, the maximum "ø" rate of 8 MHz is established. Therefore, the H8/325 crystal should be set at 16 MHz. Then ASE system is used, the "ø" clock is set at 7.37MHz using the CLOCK Emulation command.

Operating Mode Selection: Operating Mode 2i.e. Expanded mode with on chip ROM (32 K Bytes) address space was chosen. The associated external address space and address map is defined in the H8/320 Series Hardware Manual. The peripheral addressing is memory mapped, so please refer to it for details.

The H8/325 " E " clock timing generation was done by this MPU and so external logic was not required. This is one of the strengths of the Hitachi H8/320 Series micro processors. It was decided to exploit this feature.

I/O Port Assignments: The operating mode 2 selection also pre determined the I/O port selection. They are briefly summarized below:

o Ports 1 and 2: Address Bus

o Port 3; Data Bus

o Port 7 (Partly); Bus Control signals

o Port 4 (Bits 6 and 7); "ø" and "E" Clocks

o Port 5: Serial Communication

o Port 6; Interrupt Request and Free Running Timer

All the ports were listed to make sure that they were initialized correctly (specially port 7) to match the input output requirements of the HD44780 on the LCD panel.

HD44780 LCD Controller Driver: The reset conditions and busy flag check areas are discussed for more clarity:

Reset: The internal reset conditions or the hardware chip reset signal, timing sequence is specified in its data sheet. They are based upon the VCC on or off power sequence. If these can be assured at all times, no other reset e.g. software reset, is necessary for the panel. However, in case of doubt or for reliability purposes, a software power up sequence specified in the HD44780 data sheet may be executed. When contrast pot is correctly set, the panel will power up with visible character grid but no character display. Note that the software reset sequence depends upon 8 or 4 bit MPU interface. However, for this application 8 bit software reset flow chart was used.

Busy Flag Check: The HD44780 instruction execution times are shown in a table in the data sheet. When the software is designed to ensure that these execution times are guaranteed, to meet or exceed the specifications, no busy flag check is required. This will reduce the software code size but will not optimize the panel data transfer rate. Since, minimizing the LCD data transfer delay was not one of the objectives of this application, busy flag was not checked. The associated software had the built in delay to exceed the table of required instruction execution times.

LCD Display Panels: Although, LM016XML, LM016L, LM041L, LM044L, and LM054 panels tested in the Applications Engineering Laboratory, refer to the LM016XML specs for the remainder of this tutorial. The software coding was developed with it in mind. Minor panel dependent code changes are not shown and are left to each user for customizing the desired panel.

SOFTWARE

This section covers HD44780 software initialization code as well as the command sequence flow chart. For more coding details refer to the associated listing for the demonstration program " INIT780B.ABS " in the Appendix " E ".

HD44780 Initialization: The data sheet defines the desirable flow chart for 8 bit initialization sequence. However the actual implementation code is shown below:

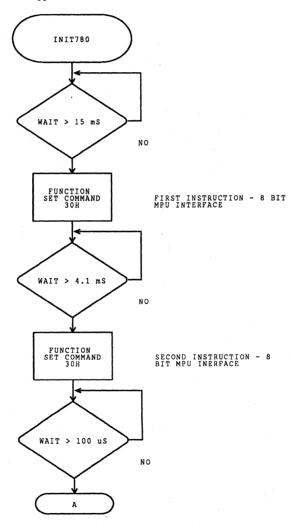


FIGURE 2

HD44780 Initialization:

This is continued in Figure 3 from the previous page:

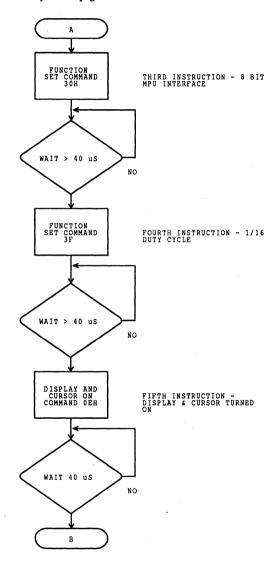


FIGURE 3

HITACHI

HD44780 Initialization:

This is continued in Figure 4 from the previous page:

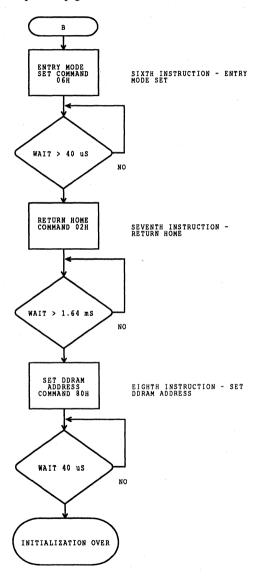


FIGURE 4

SECTION

HD44780 Data Transfer:

This is continued in Figure 5 from the previous page:

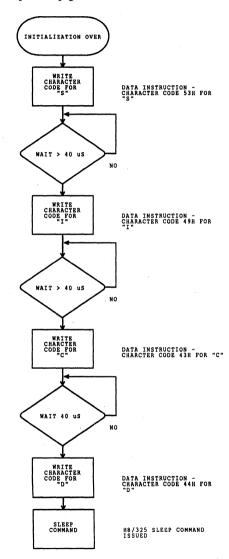
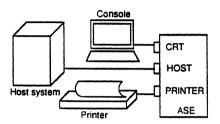


FIGURE 5

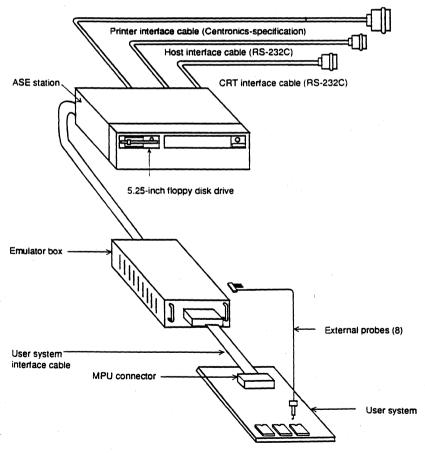
APPENDICES

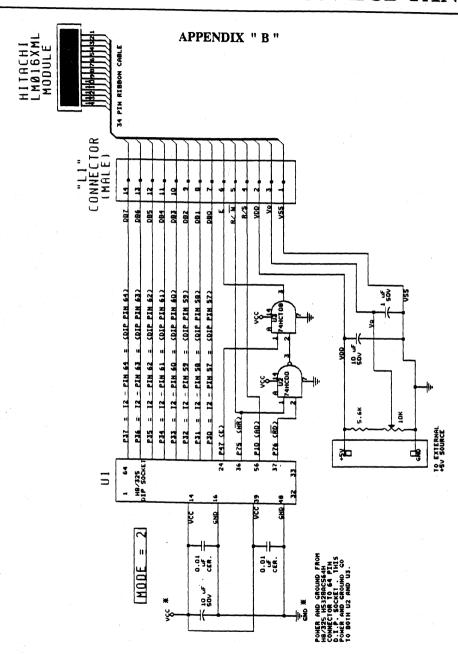
SECTION

APPENDIX " A "


Features

- · Realtime emulation
- · A wide selection of emulation commands, promoting efficient development for many functions
- · Operability as a stand-alone system, connected to an RS-232C interface console
- · A 5.25-inch floppy disk drive, which facilitates:
 - Loading, saving, and verifying user system memory contents
 - Saving emulation results
 - Input, edit, and execution of commands using a floppy disk for external storage
- · An RS-232C interface to a host system which enables:
 - Using a host system console as an ASE console
 - Loading, saving, and verifying the user program using host system facilities
- · A Centronics printer interface for printouts of emulation results.
- · Usability of the ASE station compatibility with all H-Series microprocessors
- · HELP functions to assist command usage without a manual
- · Command execution during emulation (called parallel mode), for example:
 - Trace data display
 - User memory display and modification
- · Memory and clock options
 - Emulation memory (substitute user system memory): 64 kbytes
 - Clock (emulation clock): 3.6864 MHz, 4.9152 MHz, 7.3728 MHz, and 9.8304 MHz


SECTION


APPENDIX "A"

Transparent mode

ASE Components

LM016XML

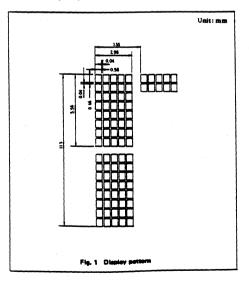
16 character x 2 lines Controller LSI HD44780 is built-in (See page 9 +5V single power supply Color tone	
MECHANICAL DATA (Nominal dimensions)	
Module size 84W x 44H x 12T	(max.) mm
Effective display area 61W	
Character size (5 x 7 dots) 2.96W	
Character pitch	
Dot size 0.56W	
Weight	
	•
Power supply for logic (V _{DD} -V _{SS})	6.5 V
Power supply for LCD drive	
(V _{DD} -V _O)	
Input voltage (Vi)	
Operating temeprature (Ta)	
Storage temperature (Tstg)20	70°C
ELECTRICAL CHARACTERISTICS $Ta = 25^{\circ}C$, $V_{OD} = 5.0 \text{ V} \pm 0.25 \text{ V}$	
Input "high" voltage (Vi _H)	
Input "low" voltage (ViL)	. 0.6 V max.
Output high voltage (V _{OH}) (-I _{OH} = 0.2 mA) .	. 2.4 V min.
Output low voltage (VoL) (IoL = 1.2 mA)	. 0.4 Vmax.
Power supply current (I_{DD}) $(V_{DD} = 5.0 \text{ V})$	1.0 mA typ.
	B.O mA max.
Power supply for LCD drive (Recommended) (\	(ov-aa
O	uty = 1/16
Range of V _{OD} - V _O 1	.5 ~ 5.25 V
Ta = 0°C	. 4.6 V typ.

OPTICAL DATA See page 7

INTERNAL PIN CONNECTION

APPENDIX "C"

Pin No.	Symbol	i Level i	Function						
1	Vss	-	٥٧						
2	V00	1 - 1	+5∨	Power supply					
3	Vo	- 1	-						
4	RS	H/L	L: Instruction H: Data inpo	on code input ut					
5	R/W	H/L		I (LCD module→MPU) te (LCD module ←MPU)					
6	E	H, H+L i	Enable signa						
7	080	H/L							
8	081	H/L							
9	082	H/L							
10	083	H/L	Date bus line						
11	DB4	H/L	Note (1)						
12	085	H/L							
13	D86	H/L							
14	087	H/L							


Mate

. 4.4 V typ.

Ta = 50°C 4.2 V typ.

In the HD44780, the data can be sent in either 4-bit 2-operation of 8-bit 1-operation so that it can interface to both 4 and 8 bit MPU's.

- (1) When interface data is 4 bits long, data is transferred using only 4 buses of OB_a—OB_a and DB_a—OB_a are not used. Data transfer between the MD44780 and the MPU completes when 4-bit data is transferred twice. Data of the higher order 4 bits (contents of OB_a—OB_a when interface data is 8 bits long) is transferred first and then lower order 4 bits (contents of OB_a—OB_a, when interface data is 8 bits long).
- (2) When interface data is 8 bits long, data is transferred using 8 data buses of OS₂ ~OB₂.

HD44780 / LCD PANEL

LM016L

APPENDIX "C"

- # 16 character x 2 lines
- Controller LSI HD44780 is built-in (See page 97).
- = +5V single power supply

MECHANICAL DATA (Nominal dimensions)

nax.) mm
5.8H mm
86H mm
3.55 mm
.66H mm
bout 35 g
max.
6.5 V
6.5 V
V _{DD} V
50°C

ELECTRICAL CHARACTERISTICS

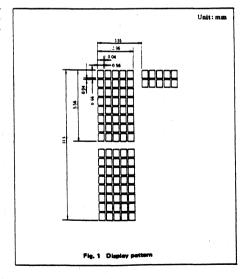
Ta = 25°C, V _{DD} = 5.0 V ± 0.25 V	
Input "high" voltage (Vi _H)	. 2.2 V min.
Input "low" voltage (Vi_)	
Output high voltage $(V_{OH}) (-I_{OH} = 0.2 \text{ mA})$	2.4 V min
Output low voltage (VoL) (loL = 1.2 mA)	0.4 Vmax
Power supply current (IDD) (VDD = 5.0 V)	1.0 mA typ.
	3.0 mA max.
Power supply for I CD drive (Becommended)	

Power supply for LCD drive (Recommended) (V_{DD} –\

Storage temperature (Tstg) -20

		. D	uty = 1/16
Range of V _C			
	Ta = 0°C		4.6 V typ.
	Ta = 25°C		4.4 V typ.
	Ta = 50°C		4.2 V typ.
OPTICAL DATA			See name 7

INTERNAL PIN CONNECTION


Pin No.	Symbol	Level	Fu	nction
1	Vss	T - T	ov	
2	V _{DD}	-	+5V	Power supply
3	V ₀	- 1	-	
4	RS	H/L	L: Instruction H: Data inp	on code input ut
5	R/W	H/L		d (LCD module→MPU) te (LCD module←MPU)
6	E	H, H→L I	Enable signa	
7	DB0	H/L		
. 8	081	, H/L		
9	082	H/L		
10	DB3	H/L	Data bus line	
11	DB4	H/L	Note (1)	
12	D85	H/L		
13	DB6	H/L		
14	087	H/L		

Notes:

70°C

In the HD44780, the data can be sent in either 4-bit 2-operation or 8-bit 1-operation so that it can interface to both 4 and 8 bit MPU's.

- (1) When interface data is 4 bits long, data is transferred using only 4 buses of D8, ~D8, and D8, ~D8, are not used. Data transfer between the HD44780 and the MPU completes when 4-bit data is transferred twice. Data of the higher order 4 bits (contents of D8, ~D8, when interface data is 8 bits long) is transferred first and then lower order 4 bits (contents of D8, ~D8, when interface data is 8 bits long).
- (2) When interface data is 8 bits long, data is transferred using 8 data buses of OB, ~OB...

APPENDIX "C"

LMO41L

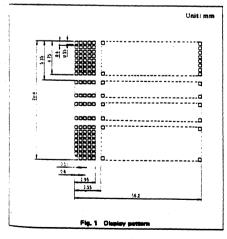
- a 16 character x 4 lines
- s Controller LSI HD44780 is built-in (See page 97).
- s +5V single power supply

MECHANICAL DATA (Nominal dimensions)

Module size	87W x 60H x 12T (max.) mm
Effective display area	61.8W x 25.2H mm
Character size (5 x 7 dots) .	2.95W x 4.15H mm
Character pitch	3.55 mm
Dot size	0.55W x 0.55H mm
Weight	about 60a

ABSOLUTE MAXIMUM RATINGS

Power supply for logic (V _{DD} -V _{SS}) 0	6.5 V
Power supply for LCD drive (VDD -Vo) 0	6.5 V
Input voitage (V _I) V _{SS}	Voo V
Operating temperature (Ta) 0	50°C
Storage temperature (Tstg)20	70°C


ELECTRICAL CHARACTRISTICS

Ta=25°C, Voo=5.0V±0.25V Innut "high" voltage (V...)

mper mg. voitage (VIM) 2.24 Hilli.
input "low" voltage (VIL) 0.6V max.
Output "high" voltage (VOH) (-IOH=0.2mA) . 2.4V min.
Output "low" voitage (VoL) (loL=1.2mA) 0.4V max.
Power supply current (IDD) (VDD=5.0V) 2.0 mA typ.
3.0 mA max.

Power supply for LCD drive (Recommended) (VDD-Vo) Duty = 1/16

Range of V _{DD} -V _O	. 1.5~5.25 V
Ta=0°C	4.6 V typ.
Ta=25°C	4.4 V typ.
Ta=50°C	. 4.2 V typ.
OPTICAL DATA	See page 7

INTERNAL PIN CONNECTION

Pin No.	Symbol	Level	Function					
1	Vss		ov					
2	Voo	-	+6∨	Power supply				
3	V _O	-	-					
4	RS	H/L	L: Instruct H: Data in	tion code input put				
5	R/W	H/L		ed (LCD module -MPU) rite (LCD module -MPU)				
. 6	E	H, H+L	Enable sign	181				
7	080	H/L						
8	081	H/L						
9	082	H/L						
10	D83	H/L	Data bus li					
11	D84	H/L	Note (1					
12	DB5	H/L						
13	086	H/L						
14	087	H/L						

Notes:

2.2V min. In the HD44780, the data can be sent in either 4-bit 2-operation 8-bit 1-operation so that it can interface to both 4 and 8 bit MPU's.

- (1) When interface data is 4 bits long, data is transferred using only 4 buses of DB₄~DB, and DB₆~DB, are not used. Data transfer between the HD44780 and the MPU completes when 4-bit data is transferred twice. Data of the higher order 4 bits (contents of DB, ~DB, when interface data is 8 bits long) is transferred first and then lower order 4 bits (contents of DB, ~DB, when interface data is 8 bits long).
- (2) When interface data is 8 bits long, data is transferred using 8 data buses of DB, ~DB, .

DISPLAY POSITION AND DD RAM ADDRESS

Character No.	1	2	3	4	5	6	7		9	10	11.	12	113	14	15	16
1 pt tomo	80	81	82	63	84	85	94	87	188	180	BA	188	180	80	86	80
2nd line	æ	C1	a	C3	C4	CS	CS	C7	æ	C	ĆA	ICB	CC	CD	CE	CF
3rd lune	90	91	82	93	94	96	96	97	98	199	194	98	190	190	96	90
4th line	00	101	102	03	D4	06	06	07	04	00	IDA	08	IOC	00	DE	0

- (1) 80 ~ DF are described in hexidecimal for DD RAM address.
- (2) The set to HD44780 are "N = "1", F = "0" (2 lines 6 x 7 + cursol)."
- (3) DD RAM address is no series in tine. Address set is necessary to
- Circuit is equal to 32 characters by 2 lines type.
- (5) In case of executing shift, first line and third line are shifted continuously, also second line and fourth line. Therefore it happens that display of third line is transferred to first line.

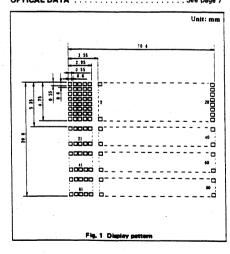
LM044L

APPENDIX "C"

- Controller LSI HD44780 is built-in (See page 97).
- +5V single power supply

MECHANICAL DATA (Nominal dimensions)

Module size	98W x 60H x 12T (max.) mm
Effective display area	76.0W x 25.2H mm
Character size (5 x 7 dots) .	2.95W x 4.15H mm
Character pitch	3.55 mm
Dot size	0.55W x 0.55H mm
Weight	about 65 g


ABSOLUTE MAXIMUM RATINGS	nin.	max.	
Power supply for logic (VDD-VSS)	. 0	6.5 V	
Power supply for LCD drive (VDD-VO)	. 0	6.5 V	
Input voltage (Vi)	٧ss	V _{DD} V	
Operating temperature (Ta)	. 0	50°C	
Storage temperature (Tstg)	-20	70°C	

ELECTRICAL CHARACTERISTICS

Ta = 25°C, V _{DD} = 5.0 V ± 0.25 V	
Input "high" voltage (Vi _H)	2.2 V min.
Input "low" voltage (ViL)	0.6 V max.
Output "high" voltage (V_{OH}) $(-I_{OH} = 0.2 \text{ mA})$	2.4 V min.
Output "low" voltage (VoL) (IoL = 1.2 mA)	0.4 V max
Power supply current (I _{DD}) (V _{DD} = 5.0 V)	1.0 mA typ.

3.5 mA max. Power supply for LCD drive (Recommended) $(V_{DD} - \hat{V}_{O})$ Duty = 1/16

Range of V _{DD} -V _O	 1.5~5.25 V
Ta = 0°C	 . 4.6 V typ.
Ta = 25°C	
Ta = 50°C	 . 4.2 V typ.

INTERNAL PIN CONNECTION

Pin No.	Symbol	Level	Fui	nction
1	Vss	-	0V	
2	VDD	-	+5V	Power supply
3	· vo	-	_	
4	RS	H/L	L: Instruction H: Data inpo	on code input ut
5	R/W	H/L		te (LCD module →MPU)
6	E	H, H→L :	Enable signa	1
7	D80	H/L		
8	DB1	H/L		
. 9	DB2	H/L		
10	DB3	H/L	Data bus line	
11	DB4	H/L	Note (1)	
12	D85	H/L		
13	D86	H/L		
14	DB7	H/L		

In the HD44780, the data can be sent in either 4-bit 2-operation of 8-bit 1-operation so that it can interface to both 4 and 8 bit MPU's.

- (1) When interface data is 4 bits long, data is transferred using only 4 buses of DB₄ ~ DB₇ and DB₆ ~ DB₇ are not used. Data transfer between the HD44780 and the MPU completes when 4-bit data is transferred twice. Data of the higher order 4 bits (contents of DB, ~DB, when interface data is 8 bits long) is transferred first and then lower order 4 bits (contents of DB, ~DB, when interface data is 8 bits long).
- When interface data is 8 bits long, data is transferred using 8 data buses of DB, ~DB, .

DISPLAY POSITION AND DD RAM ADDRESS

			_		_	_	_	_	_	_	_	_		_	-	-	-	-	_	-	-		-			-		_		_
Character No.	٠	1 3	1	3	į	4	٠	•	ŧ	•	١	7	1		ı	•	, 10	•	11	112	1	13	114	٠	115	116	- 17	118	119	120
101 6400	80	181		82	1	83	11	и	1		ī		11	17	i			1	84	180		8 C	180	5	186		190	191	182	193
																													103	
3rd line	94	19	Г		i	97	j		i		16	A	ī	90	11	ĸ	190	,	94	10	•	40	IA	١	A2	IAS	144	144	144	IA
4th line	04	10	•	6	i	<u> </u>	1	8	10	ö	×	×	i	DB	ic	×	101	7	Œ	iD	,	€0	18	,	162	163	164	169	166	161

- (1) 80 ~ E7 are described in hexidecimal for DD RAM address.
- Function setting of HD44780 should be "N = "1", F = "0" (2 lines of 5 x 7 + cursol).
- (3) DD RAM address is no series in line. Address setting is necessary to change the lines.
- (4) Circuit is equal to 40 characters by 2 lines type.
- (5) In case of executing shift, first line and third line are shifted continuously, also second line and fourth line. Therefore it happens that display of third line is transferred to first line.

SECTION

APPENDIX "C"

LM054

- 8 character x 1 line
- Controller LSI HD44780 is built-in (See page 97).
- # +5 V single power supply

MECHANICAL DATA (Nominel dimensions)

Effective	display	an	10										6	11	N :	(1	5.8	ł mr
Character	size (5	X.	7 c	lo	ts)							6.	45	5W	×	9.4	4 mr
Character	pitch	٠.															7.1	5 mr
Dot size													1.	.25	5W	×	1.3	d mi
Weight .																. a	bour	t 35
BSOLUTE	MAXI	ML	M	R	A	T	11	N	G	s					п	۱ir	١.	max

ABSOLUTE MAXIMUM RATINGS	nin.	max.
Power supply for logic (V _{OD} -V _{SS})	. 0	7.0 V
Power supply for LCD drive (VDD-VO)	. 0	13.5 V
Input voltage (Vi)	V55	V _{DD} V
Operating temperature (Ta)		
Storage temperature (Tstg)	-20	70°C

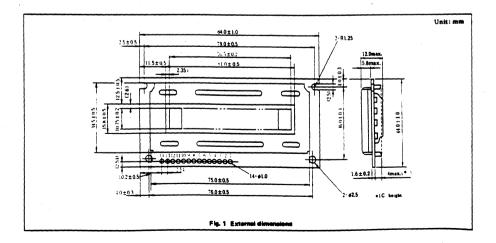
ELECTRICAL CHARACTERISTICS

18 - 25 C, 4 DD - 3.0 4 1 0.25 4	
Input "high" voltage (Vi _H)	2.2 V min.
input "low" voltage (ViL)	0.6 V max.
Output high voltage $(V_{OH}) (-I_{OH} = 0.2 \text{ mA})$.	2.4 V min.
Output low voltage (V_{OL}) ($I_{OL} = 1.2 \text{ mA}$)	0.4 V max.
Power supply current (I_{OD}) ($V_{DD} = 5.0 \text{ V}$) 1	.0 mA typ.

2.0 mA max. Power supply for LCD drive (Recommended) $(V_{DD}-V_0)$ Duty = 1/8

OPTICAL DATA See page 7

										uty = 1/8
Range of VDD-VO										1.5~5.25V
Ta = 0°C										
Ta = 25°C										
Ta = 50°C									٠	3.2 V typ.


INTERNAL PIN CONNECTION

Pin No.	Symbol	Level I	F	unction
1	Vss	- 1	0V	
2	Voc	-	+5∨	Power supply
3	V _O	-	-	
4	RS	H/L	L: Instruct H: Data in	tion code input put
5	R/W	H/L		ed (LCD module -MPU) rite (LCD module -MPU)
6	E	H, H→L	Enable sign	lei
7	080	H/L		
8	081	H/L		
9	082	H/L		
10	D83	H/L	Date bus In	·
11	D84	H/L	Note (1	
12	085	i H/L		
13	086	H/L		
14	087	H/L		

Manage

In the HD44780, the data can be sent in either 4-bit 2-operation or 8-bit 1-operation so that it can interface to both 4 and 8 bit MPU's.

- (1) When interface data is 4 bits long, data is transferred using only 4 buses of DB_a ~DB_a and DB_b ~DB_b are not used. Data transfer between the HD44780 and the MPU completes when 4-bit data is transferred twice. Data of the higher order 4 bits (contents of DB_a ~DB_b, when interface data is 8 bits long) is transferred first and then lower order 4 bits (contents of DB_a ~DB_b, when interface data is 8 bits long).
- (2) When interface data is 8 bits long, data is transferred using 8 data buses of D8₉ ~ O8₇.

APPENDIX "D"

```
Microtec Research ASMH83
                             Version 1.0A
                                             Sep 26 11:38:06 1991
                                                                       Page 1
Command line: C:\ASMH83\ASMH83.EXE -l init.src
Line
            Addr
1
2
                                              ; ASE SYSTEM TO PROVIDE RESET PULSE
3
                                              ; H8/325 INITIALIZATION - MODE 2
5
                                               .PROGRAM INIT
                                               .SECTION CODE
10
                                              .ALIGN 2
12
                                                      .ORG
                                                                     H'100
13
14
            0100 F8FF
                                                      MOV.B
                                                              #H'FF, ROL
                                                                             ; PORT 1 DDR - (A7-A0) ADR BUS OUT
            0102 38B0
15
                                                              ROL, @H'FFBO
                                                      MOV.B
                                                                             ; ON CHIP ADDRESS
16
            0104 0000
                                                      NOP
17
            0106 F8FF
                                                      MOV.B
                                                              #H'FF, ROL
                                                                             ; PORT 2 DDR - (A15-A0) ADR BUS OUT
18
            0108 38B1
                                                      MOV.B
                                                              ROL, @H'FFB1
                                                                             ; ON CHIP ADDRESS
19
            010A 0000
                                                      NOP
20
            0100 0000
                                                      NOP
21
                                              ; PORT 3 - DATA BUS - SET AUTOMATICALLY
22
                                              ; PORT 4 - INITIALIZED TO OUTPUT CLOCKS "PHI" & "E"
23
                                              ; PORT 5 - COMMUNICATION PORT - NOT USED
24
                                              ; PORT 6 - FREE RUNNING TIMER, NOT (INTRQ 0 TO 3) - NOT USED
25
26
            010E 0000
                                                      NOP
27
28
            0110 F87A
                                                      MOV.B
                                                              #H'7A, ROL
                                                                             ; PORT 7 DDR - CONTROL BUS
29
            0112 38BC
                                                      MOV.B
                                                             ROL, @H'FFBC ; ON CHIP ADDRESS
30
31
            0114 6AC8 9001
                                         LABEL
                                                      MOVTPE ROL, @H'9001:16
32
33
            0118 6B00 8002
                                                      MOV.W
                                                             @H'8002, RO
34
            011C 6B00 8000
                                                      MOV.W
                                                             9H'8000. RO
35
            0120 40F2
                                                      BRA
                                                                     LABEL
36
37
            0122 0000
                                                      NOP
                                                                             ; SCOPE THE H8/325 WAVEFORMS ON ALL
'INS
                                                      .END
```

HD44780 / LCD PANEL

57

APPENDIX "E"

Microtec Research ASMH83 Version 1.0A Page 1

```
Command line: C:\ASMH83\ASMH83.EXE -1 INIT780B.SRC
                                        : HITACHT LCD CHARACTER DISPLAY CONTROLLER
                                             ; HD44780 INITIALIZATION FOR 8 BIT MCU INTERFACE
                                             : MCU - HITACHI H8/325 PROCESSOR
                                             .PROGRAM INIT780B
                                             . SECTION . CODE
                                             ALIGN 2
11
                                                            ORG
                                                                           41300
                                                                                          . SET PC AT ADDRESS 300H
12
            0300 F8FF
                                                                           ; PORT 1 DDR - (A7-A0) ADR BUS OUT
                                                     MOV.B #H'FF, ROL
            0302 3880
                                                                           : ON CHIP ADDRESS
14
                                                           ROL. SH'FFBO
                                                     MOV. B
            0304 0000
15
                                                     NOP
16
            0306 F8FF
                                                                           ; PORT 2 DDR - (A15-A0) ADR BUS OUT
                                                     MOV.B
                                                           #H'FF, ROL
17
            0308 38B1
                                                     MOV.B ROL. #H'FFB1
                                                                           ; ON CHIP ADDRESS
18
            0308 0000
                                                     NOP
19
            030C 0000
                                                     NOP
20
                                              : PORT 3 - DATA BUS - SET AUTOMATICALLY
                                              ; PORT 4 - INITIALIZED TO OUTPUT CLOCKS "PHI" 6 "E"
21
22
                                             ; PORT 5 - COMMUNICATION PORT - NOT USED
23
                                              : PORT 6 - FREE RUNNING TIMER, NOT (INTRQ 0 TO 3) - NOT USED
24
                                                                           ; SCOPE THE H8/325 WAVEFORMS ON ALL PINS
25
            030E 0000
                                                     NOP
26
27
                                         ; PRESET DELAY COUNTS IN GENERAL REGISTERS
28
29
            0310 F164
                                                                                   ; COUNT EQ 100H FOR 15 ms
                                                             MOV.B #H'64, R1H
30
            0312 F21C
                                                            MOV.B #H'1C, R2H
                                                                                  ; COUNT EQ 28 FOR 4.1 ms
                                                                                  ; COUNT EQ 11 FOR 1.64mS
31
            0314 FAOR
                                                             MOV.B #H'0B, R2L
32
            0316 F9FF
                                                             MOV.B #H'FF, R1L
                                                                                   ; BASE TICKER PRESET - 150 us
33
34
                                         : START DELAY 1 - EXREDS 15 ms
35
 36
             0318 1A09
                                                                                           ; DECR BASE TICKER
                                                                    RIL
                                                     DEC
                                                                                           ; RIL COUNT DOWN CONTINUES
37
             031A 46FC
                                                     BNE
                                                                    A
                                                                                           ; BASE TICKER COUNT OVER
                                                                                           ; DECR SIGNIFICANT TIMER
             031C 1A01
                                                     DEC
                                                                    RIH
             031E 46F8
                                                                                           ; RIH COUNT DOWN CONTINUES
 40
                                                     RME
                                                                    A
                                                                                           ; 15 ms DELAY OVER
 41
 43
                                              FIRST INSTRUCTION - 8 BIT INTERFACE = 30H
 44
             0320 FB30
                                                                           ; INSTRUCTION CODE = 30H
 45
                                                     MOV.B #H'30, R3L
                                                      MOVTPE R3L, 8H'9000:16 ; PERIPHERAL WRITE WITH E CLOCK
 46
             0322 6ACB 9000
 47
             0326 0000
                                                      NOP
 48
                                         : START DELAY 2 - EXEEDS 4.1 mS
 49
 50
             0328 F9FF
                                                                           ; BASE TICKER PRESET COUNT- FFH
                                                      MOV.B #H'FF, R1L
 51
 52
             032A 1A09
                                                      DEC
                                                                                           ; DECR BASE TICKER
                                                                     RIL
 53
             032C 46FC
                                                                                           ; RIL COUNT DOWN CONTINUES
                                                      BNE
                                                                     R
                                                                                           ; BASE TICKER COUNT OVER
 54
             032E 1A02
                                                                                           ; DECR SIGNIFICANT TIMER
 55
                                                                     R2H
                                                      DEC
                                                                                           ; R2H COUNT DOWN CONTINUES
 56
             0330 46F8
                                                      BNE
                                                                     а
                                                                                            ; 4.1 ms DELAY OVER
```

APPENDIX "E"

									1222	_							
Micro	tec	Res	earch	ASMH	83	Version	1.0A	Oct 09 10	:25:36 1	991	Page 2						
Line			Addr														
58							;		NSTRUCT	ON - 8	BIT INT	ERFACE	- 30H				
60 61			2332	6ACB	9000		;		MOVTPE F	27 8410	000.16		DUPBAT L	DTTD W17		~~	
62			0336		,,,,,				NOP	(3L, en · 3	000:18	, FERI	FRENAL F	KIIE WI	in a cac	~~ ·	
63							;	START DELAY	3 - EXE	EDS 100	uS						
64							;								· ·		
66			0338	F9FF			,		MOV.B	H'FF, R	1L	; BASE	TICKER	PRESET C	COUNT- E	PH	
67			AEEO	1809			Ċ		DEC	1	RIL			; DECR	BASE T	CKER	
68			033C	4 6FC					BNR		3					OWN CONT	
6 9 70														; BASE	TICKER	COUNT O	VER
71							;		STRUCTION	ON - 8 E	IT INTE	ZRFACE	= 30H				
72							;										
73				6ACB	9000				MOVTPE I	R3L, @H'9	000:16	; PERI	PHERAL V	RITE WI	TH E CL	CK	
75			0342	0000				START DELA	NOP	PDP 40	e			•			
76							,	-	. 4 - 5	2203 40	43						
77			0344	F9FF					MOV.B	H'FF, F	1L	; BASE	TICKER	PRESET	COUNT-	FFH	
78 79			0346	1 2 0 0													
80				46FC					DEC BNE		R1L D				BASE T	ICKER OWN CONT	INUES
81																COUNT C	
82																	
83							; ;		INSTRUCT	ION -FUN	CTION N	MODE SE	T- DUTY	CYCLE 1	/16 - 3	FH	
85			034A	FB3F			•		MOV.B	#H'3F, [13L	; INST	RUCTION	CODE -	3FH		
86				6ACB	9000				MOVTPE							ock	
87 88			0350	0000					NOP								
89								START DELA	v 5 _ FY	PPDS 40	s						
90										1000							
91			0352	F9FF					MOV.B	#H'FF, I	11L	; BASE	TICKER	PRESET	COUNT-	FFH	
92 93			1354	1809					DEC		R1L			ORCE	BASE T	TOVER	
94				46FC				•	BNE		E					OWN CONT	INUES
95																COUNT	
96													,				
97								; FI FTH I ;	NSTRUCTI	ON - DI	SPLAY AI	ND CUR	SOR ON -	OEH			
99			0358	FB0E				•	MOV.B	#H'0E,	R3L	; INS	TRUCTION	CODE -	0EH		
100				6ACB					MOVTPE				IPHERAL			OCK	
101			035£	0000					NOP								
103								; START DELA	Y 6 - EX	EEDS 40	uS						
104								;									
105			0360	F9FF					MOV.B	#H'FF,	RIL	; BAS	E TICKEF	PRESET	COUNT-	FFH	
106 107			0363	1809				;	DEC		R1L				R BASE :	TOVER	
108				46FC					BNE		R1L G					DOWN CON	TINUES
109																R COUNT	
110								;									
111			. 0366	0000	'			; SIXTH	NOP INSTRUCT:	TON - 21	17DV 14-		- 0611				
113								; SIATH	LISTRUCT	- EI	INI MOD	UE SET	- UeH				
114				FB06									TRUCTIO				
115			036	A 6ACE	9000)			MOVTPE	R3L, #H	9000:10	6 ; PEF	RIPHERAL	WRITE W	ITH E C	LOCK	

SECTION

APPENDIX "E"

					••••	10:25:36	1991 Pag		
Line	Addr								
116	036E					NOP			
117	0370					MOV.B	#H'FF,R1L		; PRESET BASE TICKER COUNT
118	0372			3		DEC	RIL		; DECR R1L
119	0374	46FC				BNE	j		; COUNT DOWN CONTINUES
120									
121				;	DELAY	EXEEDS 4	Ous		
122									
123									
124									
125	•			:	SEVENT	H INSTRU	CTION - CURS	OR HO	ME & DDRAM ADR SET TO 0 = 02H
126				;					
127	0376								INSTRUCTION CODE = 02H
128		6ACB 9000					R3L, @H'9000	:16 ;	PERIPHERAL WRITE WITH E CLOCK
129	037C	0000				NOP			
130									
131					TART DEL	AY 7 - E	XEEDS 1.64 m	s	
132				;					
133	037E	FYFF				MOV . B	#H'FF, R1L	;	BASE TICKER PRESET COUNT- FFH
134 135									
	0380			н		DEC	R1L		; DECR BASE TICKER
136	0382	4 6FC				BNE	н		; R1L COUNT DOWN CONTINU
137									; BASE TICKER COUNT OVER
138	0384					DEC	R2L		; DECR SIGNIFICANT TIMES
139	0386	46F8				BNE	н		; R2L COUNT DOWN CONTINU
140				;					
141									; 1.64ms DELAY OVER
142				,					
143	0388	0000				NOP			
144									
146				,			LIZATION COM		
147				;	FIRST	COMMAND	- SET DORAM	ADDRE	SS - 80H
148	038A	0000							
149		FB80				NOP			; WRITE DDRAM ADR CODE - 80H
150		6ACB 9000							; PERIPHERAL WRITE WITH E CLOCK
:51		0000					K3L, 8H-900	0:16	; PERIPHERAL WRITE WITH E CLOCK
152	0392	0000				NOP			
153							0		
154				;	DELAY	EXEEDS 4	lous		
155	0394	F9FF							DODGE DICE BYOYER COUNT
156		1809		K			#H'FF,R1L		; PRESET BASE TICKER COUNT
157		46FC		K		DEC	R1L		DECR RIL
158	0370	1010	2			BNE	к		; COUNT DOWN CONTINUES
159									
160	2398	0000		,	SECON		- WRITE CH	MACTE	ER CODE 53H TO DDRAM
161		FB53				NOP	401453 037		; CHARACTER CODE FOR "S" = 53H
162		6ACB 900	,				#H'53, R3L		
163		0000	•				H3E, 84.400	11:16	; PERIPHERAL WRITE WITH E CLOCK
164	03A2	0030				NOP	.1		
				;	DELAY	EXEEDS	40uS		
165		5055		;		NOP			
166		F9FF					H'FF,R1L		; PRESET BASE TICKER COUNT
167		1A09		L		DEC	R11		; DECR RIL
168	BAEC	46FC				BNE	L		; COUNT DOWN CONTINUES
169									
170									
171				;	THIRD	COMMAND	- WRITE CHA	RACTE	R CODE - 49H
172									
173	0324	0000				NOP			

APPENDIX "E"

Line Addr 174	Microted	Research ASMH83	Version 1.0A Oct (09 10:25:36	1991 Page 4	
174 03AC F849						
174 03AC F849	Line	Addr				
175				MOV B	44149. P3T.	CHARACTER CODE FOR I = 49H
176 0382 0000 NOP 177 178 ; DELAY EXEEDS 40us 179 180 0384 F9FF						
177					KJL, en 3001.10 ,	PERILIBION WITH HITE CLOCK
178						
179 180			. 001	AV EVEENE 40	nue	
181 0386 1A09	179		, , , , , , ,			
181 0386 1A09	180	03B4 F9FF		MOU B	ARIPP RIT	: PRESET BASE TICKER COUNT
182 0388 46FC BNE M ; COUNT DOWN CONTINUES 183 184 ; FOURTH COMMAND - WRITE CHARACTER CODE - 43H 185 038A 0000 NOP 186 03BC F843 NOV.B :H'43, R3L ; CHARACTER CODE FOR C 187 03BE 6ACB 9001 MOVTPE R3L,8H'9001:16 ; PERIPHERAL WRITE WITH E CLOCK 188 03C2 0000 NOP 199 ; 190 ; DELAY EXEEDS 40us 191 192 03C4 F9FF NOV.B :H'FF,R1L ; PRESET BASE TICKER COUNT 193 03C6 1A09 N DEC R1L ; DECR R1L 194 03C8 46FC BNE N ; COUNT DOWN CONTINUES 195 196 ; FIFTH COMMAND - WRITE CHARACTER CODE - 44H 197 03CA 0000 NOP 198 03CC F844 NOV.B :H'44, R3L ; CHARACTER CODE FOR D 199 03CE 6ACB 9001 NOVE R3L,8H'9001:16 ; PERIPHERAL WRITE WITH E CLOCK 200 03D2 0000 NOP 201 ; H8/325 IN SLEEP MODE 205			м —			
183		•	••			· ·
185 23BA 0000	183			55		
185 33BA 0000 NOP 181'43, R3L ; CHARACTER CODE FOR C 187	184		: FOU	RTH COMMAND	- WRITE CHARACTER	CODE - 43H
186	185	03BA 0000	,		milia cinadiotali	
187 03BE 6ACB 9001 MOVTPE R3L, 8H'9001:16 ; PERIPHERAL WRITE WITH E CLOCK 188 03C2 0000 NOP 190 ; 190 ; 191 ; 192 03C4 F9FF MOV.B 9H'FF,R1L ; PRESET BASE TICKER COUNT 193 03C6 1A09 N DEC R1L ; DECR R1L 194 03C8 46FC BME N ; COUNT DOWN CONTINUES 195 ; 196 ; FIFTH COMMAND - WRITE CHARACTER CODE - 44H 197 03CA 0000 NOP 198 03CC F844 MOV.B 8H'44, R3L ; CHARACTER CODE FOR D 199 03CE 6ACB 9001 MOVTE R3L, 8H'9001:16 ; PERIPHERAL WRITE WITH E CLOCK 200 03D2 0000 NOP 201 ; H8/325 IN SLEEP MODE 203 204 03D4 0180 SLEEP	186	33BC FB43			4H'43. R3L : C	HARACTER CODE FOR C
188 03C2 0000 NOP 189 ; 190 ; 191 ; 191 ; 192 03C4 F9FF	187	03BE 6ACB 9001				
190	188	03C2 0000				
190	189		,			
191 192	190			AY EXERDS 4	Ous	
193 03C6 1A09 N DEC R1L ; DECR R1L 194 03C8 46FC BME N ; COUNT DOWN CONTINUES 195 196 ; FIFTH COMMAND - WRITE CHARACTER CODE - 44H 197 03CA 0000 NOP 198 03CC F844 MOV.B \$H'44, R3L ; CHARACTER CODE FOR D 199 03CE 6ACB 9001 MOVTPE R3L,8H'9001:16 ; PERIPHERAL WRITE WITH E CLOCK 200 03D2 0000 NOP 201 202 ; H8/325 IN SLEEP MODE 203 204 03D4 0180 SLEEP	191					
193 03C6 1A09 N DEC RIL ; DECR RIL 194 03C8 46FC BNE N ; COUNT DOWN CONTINUES 195 196	192	03C4 F9FF		MOV.B	#H'FF.R1L	; PRESET BASE TICKER COUNT
195 196 ; FIFTH COMMAND - WRITE CHARACTER CODE - 44H 197	193	03C6 1A09	N N	DEC		; DECR RIL
196	194	03C8 46FC		BNE	N	; COUNT DOWN CONTINUES
197 03CA 0000 NOP 198 03CC F844 MOV.B #H'44. R3L ; CHARACTER CODE FOR D 199 03CE 6ACB 9001 MOVTER R3L, #H'9001:16 ; PERIPHERAL WRITE WITH E CLOCK 200 03D2 0000 NOP 201 202 ; H8/325 IN SLEEP MODE 203 204 03D4 0180 SLEEP	195					
198 03CC F844 MOV.B #H'44, R3L ; CHARACTER CODE FOR D 199 03CE 6ACB 9001 MOVTPE R3L, 8H'9001:16 ; PERIPHERAL WRITE WITH E CLOCK 200 03D2 0000 NOP 201 202 ; H8/325 IN SLEEP MODE 203 204 03D4 0180 SLEEP	196		; FIF	TH COMMAND	- WRITE CHARACTER	CODE - 44H
199 03CE 6ACB 9001 MOVTE R3L,8H'9001:16; PERIPHERAL WRITE WITH E CLOCK 200 03D2 0000 NOP 201 202 ; H8/325 IN SLEEP MODE 203 204 03D4 0180 SLEEP 205	197	03CA 0000		NOP		
200 03D2 0000 NOP 201 202 ; H8/325 IN SLEEP MODE 203 204 03D4 0180 SLEEP 205	198	03CC FB44		MOV.B	#H'44, R3L ;	CHARACTER CODE FOR D
201 202 ; H8/325 IN SLEEP MODE 203 204 03D4 0180 SLEEP 205	199	03CE 6ACB 9001		MOVTPE	R3L, 8H'9001:16 ;	PERIPHERAL WRITE WITH E CLOCK
202 ; H8/325 IN SLEEP MODE 203 204 03D4 0180 SLEEP 205	200	0302 0000		NOP		
203 204 03D4 0180 SLEEP 205	201					
204 03D4 0180 SLEEP 205	202		; не/325	IN SLEEP M	ODE	
205	203					
	204	0304 0180		SLEEP		
206 .SND	205					
	206			. END		

APPENDIX "F"

The reference literature and other documents used in this design are summarized below:

- o H8/325 Series ASE Model-I User Manual #
 HS328ASE01HE
 o H8/320 Series Hardware Manual #
 M21T102
 o H8/300 Series Programming Manual #
 M21T103
- o Hitachi LCD Controller/Driver LSI Data
 Book # M24T013
- Hitachi Liquid Crystal Character Display
 Module Catalog # XX-E138
 Hitachi A SM 182 182 (200 A scendule)
- o Hitachi ASMH83 H8/300 Assembler Manual
- o Hitachi LSI Support Tools XRAYH83 H8/ 300 debugger Manual o Hitachi MCCH83 H8/300 C Compiler
- o Hitachi MCCH83 H8/300 C Compiler Manual

HD61830B / LM200

Split Panel Scanning

Application Note

Kash Yajnik

The first tutorial described in the Hitachi document #AE150 presents in depth design process for a LCD subsystem. The HD61830B / LM200 Design Tutorial Part II document #AE151 describes custom character generation. This Application Note illustrates how LM200 panel can be considered as two panels with the displayed information scanned across them.

Its major components include H8/532 Evaluation board as the local processor, LCD Controller HD61830B, and the display panel LM200 from Hitachi ELT Division.

The HD61830B controller is designed to run in the graphics mode. The H8/532 Evaluation Board is designed by Hitachi Microsystems. The LM200 LCD panel can display 240 Dots(W) by 64 Dots(H) character or graphics data as a single panel. However, as a split panel, its upper and lower halves can each display 240 Dots (W), and 32 Dots (H) information in the graphics mode. Hitachi Monitor firmware resident on the H8/532 Evaluation Board provides the program debugging and host computer communication facilities.

By adding a laptop computer to down load the programs to the Evaluation Board, a program development station can be readily built. The H8/532 Cross Assembler, Linker, any word processor package e.g. "WORD" as screen editor, and

Motorola "S" record conversion utility inside the Hitachi laptop PC complete the software development environment. The "PROCOMM" communication package is used to facilitate down load or up load of programs to the H8/532 Evaluation board.

The split scan program is listed in the Appendix "A". No effort is made for either code or logic minimization.

This application note is intended for the technical staff at customer sites and other Hitachi employees who are fairly familiar with LCD design guide lines. Therefore, basic LCD design principles are **not** covered.

The previously published tutorials include HD61830B LCD Controller Design, Introduction, Design Overview, Custom Character definition and display, LCD Interface Board Schematics, along with their associated Software. This application note is the last of the series and is a continuation of the Tutorial Part II.

Only the details **not** available in the reference section are explained at greater length in this publication, while the page 2 lists the Table Of Contents.

Refer to the subsequent pages for more information on the LM200 LCD Panel split scanning technique.

TABLE OF CONTENTS

	TOPI	CS	PAGE
1.0	INTRODUCTION.		49
2.0	DESIGN OVERVI	E W	. 50
3.0	SPLIT PANEL DIS	PLAY	53
4.0	LCD INTERFACE	BOARD SCHEMATIC	54
5.0	SOFTWARE		56
6.0	APPENDICES		. 57
	APPENDIX "A"	GRA-BCS.LIS(LOWER PANEL GRAPHICS DISPLAY - FOUR BYTES)	57
	APPENDIX "B"	REFERENCE LITERATURE	61

1.0 INTRODUCTION:

This section describes the design goals and provides a general overview of this presentation, along with a software development listing.

The design goals established for this project are briefly listed below:

- 1.1 To use H8/532 Evaluation Board with Monitor Software.
- 1.2 To provide split panel LCD display with LM200 from Hitachi.
- 1.3 To display four data bytes in the graphics mode using HD61830B.
- 1.4 To design Interface Board for the LM200 LCD panel.
- 1.5 To write programs for debug and test.
- 1.6 To use Hitachi Laptop Personal Computer "HL320".
- 1.7 To use readily available software at Hitachi Field Offices for development.
- 1.8 To generate HD61830B / LM200 split panel scanning application note.

A brief description of the LCD display subsystem components listed above is provided in the next section as an overview. To complete the overview, a subsystem block diagram is also presented. The rest of the sections described in the Table Of Contents are expanded in greater details along with their programming data. The Appendices give the program listing, and also list the referenced literature. A copy of the LCD Interface Board schematic is also provided to illustrate the implementation details of this application.

2.0 DESIGN OVERVIEW:

The LCD display subsystem components such as H8 / 532 Evaluation Board, LM200 display, LCD Interface Board, Hitachi Laptop Computer, and the related software are described in this section. At the end, a subsystem block diagram is also presented. For the HD61830B LCD Controller, and the LM200 LCD panel data sheets, as well as other related documentation refer, to the Appendix "B". This description from the HD61830B / LM200 Design Tutorial Part I and II is included only for completeness of this document, and can therefore be skipped by those familiar with them.

- 2.1 H8/532 Evaluation Board: This board was designed by Hitachi Micro Systems. It is provided as a training and development tool. On-board EPROM contains the Hitachi Monitor firmware used for single line assembly, disassembly, line editing, and debug purposes. Of the two serial ports, only the Terminal port is used to down load, up load, and run the programs. The I/O extention connectors "J1" and "J2" are used to connect to the LCD Interface Board. The partially decoded extented I/O space is further decoded on the LCD Interface Board. This board is designed to run at 10MHz and uses a 20 MHz crystal for that purpose. However, in this application a 16 MHz crystal is used to provide 1MHz "E" clock to the LCD Controller HD61830B. All the jumpers on this board are set at the factory according to their default states.
- 2.2 LM200 LCD Panel display: This display is provided by the Hitachi ELT Division. It is capable of displaying alpha-numeric characters as well as the graphics data. However, only graphics mode is used in this application. It is 240 dots wide and 64 dots high for single panel display. It has 1/32 duty cycle. The serial data is clocked in at 500KHz. It runs from +5V, and -5V power supply. The customer has to solder the pins on LM200 for the appropriate connector used on the LCD Interface Board. The LM200 LCD panel mounting and the proper viewing angles are critical to a strain free LCD display. Please, handle the panels according to the care recommended by the LCD display manufacturer. The logic signals sent to the LCD panel are at CMOS levels.
- 2.3 LCD Interface Board: A wire wrap board was built to control the LCD panel LM200. It also exchanged data with the H8/532 Evaluation Board over the I/O extention cables "J1" and "J2". The Hitachi LCD controller HD61830B was used on the LCD Interface Board. A 4,096 byte display buffer memory was also designed to store the character data. The 500KHz dot clock required by the display was also provided on this board. The LM200 LCD panel contrast adjust potentiometer was also put on this board. Set the jumper "J10" on this board to the "C-2" position. Test connectors were also provided to help debug this board.
- 2.4 Hitachi Laptop Personal Computer "HL320": It is connected to the serial terminal port of the H8/532 Evaluation Board. The connector RJ-12 is attached to the Terminal port while a male to female 25 pin adapter cable is required at the Laptop PC end. The Hitachi "HL320" PC provides the software development tools for the user programs. The program up load and down load capability is also provided by the laptop PC. The communication link is full duplex, 9600 baud, 8 bits, 1 stop bit, and no parity check.

2.0 DESIGN OVERVIEW: (CNTD.)

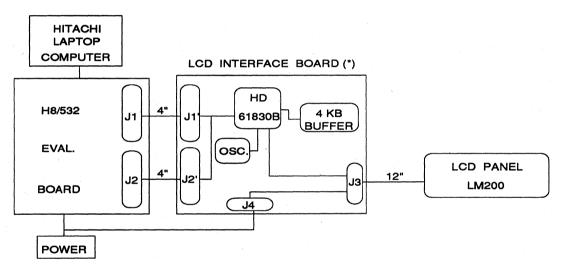
2.5 Software Tools: The laptop PC resident software development tools, packages, and utilities are described very breifly.

H8 / 532 Cross Assembler: It is designed for DOS environment inside the laptop Personal Computer. When the user program is submitted as the source file, it assembles the code. Consequently, it produces Object and List files of the source program. The list files with "*.LIS" extentions are reproduced in the appendices for the programs developed on the software work station.

H8/532 Linker: To link various object code segments ("*.OBJ" extention) developed in parallel for a larger program. The linked file has "*.ABS" extention.

Motorola "S" record Conversion Utility: It is used to convert the machine code into Motorola "S" record format for uploading it to the H8 / 532 Evaluation Board. The converted file has "*.MOT" extention.

Up Loading Of Laptop PC "S" Record file: Push "EDIT SHIFT" Key down. Depress the "PG UP" key when using "PROCOMM" package for communications. Also, select ASCII format.


Screen Editor: Any word processing package is acceptable. In this application, Microsoft "WORD" package is used. The source programs are created and edited with this package. The source program files have "*.SRC" extentions.

File Management Utilities: To help aid the program development, packages such as "XTREE", or "TREE86" may also be used.

Back -Up Utility: It is a good practice to back up program files. Such packages as "FASTBACK", OR "FASTBACK PLUS" can also be used.

The display subsystem block diagram is shown on the next page.

HD61830B / LM200 SOFTWARE STATION

* NOTE : 1.0 8 MHZ OSC. DIVIDED DOWN.

2.0 SET "J1" JUMPER TO " C-2 " POSITION.

BLOCK DIAGRAM

3.0 SPLIT PANEL DISPLAY:

Hitachi LCD panel LM200 with 240 dots(W) and 64 dots(H) resolution and 1/32 duty cycle is shown in the Figure 1. The upper and lower halves of the LM200 panel are each configured as separate panels with 240 dots (W) and 32 dots (H) resolution. Both, upper and lower panels display data in the graphics mode.

The upper half of the panel is scanned at "D1" time while the lower half of the panel is scanned at "D2" time. Both, "D1", and "D2" signals are generated by the HD61830B, operating at 1/32 duty cycle with horizontal pitch (HP) set at 8.

Each row can display 30 bytes (240 / 8) of graphics data and so, each half of the panel can display 32 x 30 = 960 bytes of information. If the display memory start address is set to zero, the first row (R1) will display the contents of the first 30 addresses contiguously. The Appendix " A " shows the listing of the split scan program for the LM200 panel. Similarly, the contents of the 1200 address (4B0H) are displayed in the 40 th row or the 8th row of the lower panel. Four bytes of graphics data (0H,FFH,66H, and 77H) are contiguously displayed in the 40th row at positions #1, #2, #3, and #4 respectively. Refer to the Figure 1 for details of the displayed patterns:

COLUMNS

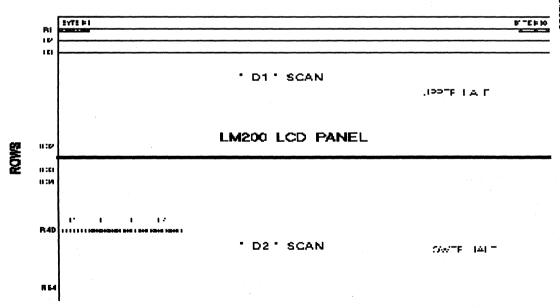
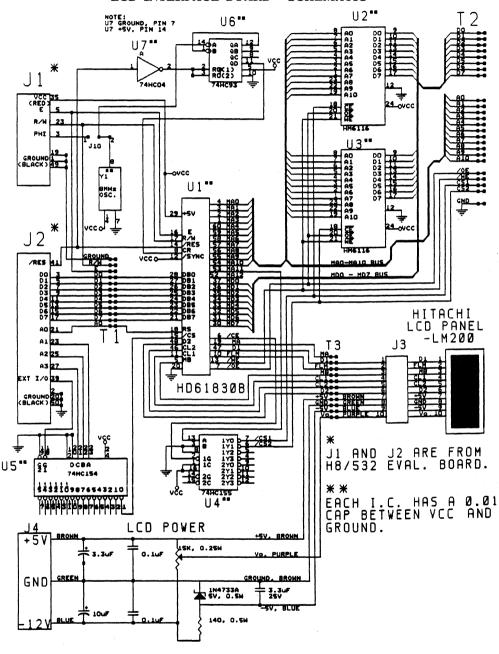



FIGURE 1

4.0 LCD INTERFACE BOARD SCHEMATIC:

The next page shows the schematic of the LCD interface board used in split panel scanning circuit. Also, note that the LCD PANEL LM200 DC power supply (+5V,G, -5V) can also be tied to the H8/532 Evaluation Board power source at one point. In such a case, the display contrast resistor may have to be re-adjusted. A zener regulator is added to derive the -5V DC required by the LCD panel. It generates -5V DC from the -12 V power supply provided by the external power source.

LCD INTERFACE BOARD - SCHEMATIC

5.0 SOFTWARE:

The software section covering the HD61830B / LM200 panel design tutorial part I shows I/O address, Busy Flag Varification, Initialization Flow Chart, Code Assembly Procedure while its Appendices show the program listings. Similarly, the software section of the Tutorial part II shows the custom character code patterns and their associated display.

For this tutorial, the "GRA-BCS.MOT" program " is listed in the Appendix "A". The "GRA-BCS.MOT" program is located at the address E000H in the H8/532 processor evaluation board memory space. When it is run, it initializes the LCD controller HD61830B. Then clears the screen by writing 0H i.e. code for a blank graphic byte in the LCD display memory. Following a screen clear routine, the four graphics data bytes "0H", "FFH", "66H", and "77H" are written in the LCD display frame memory starting at address 1200 i.e.(4B0H). Since the display is memory mapped, the four graphics data bytes get displayed in the lower half of the LCD panel LM200 at the row R40 at positions #1, #2, #3, and #4 respectively. For more information on the "GRA-BCS.MOT" program refer to the Appendix "A". Although, a total of 1920 = (64 x 30) bytes of graphical bytes can be displayed on this panel in the split scan mode, for demonstration purposes only four bytes were chosen for this application.

For register programming details, refer to the HD61830B data sheet.

The code developed in the Appendix "A" for "GRA-BCS.MOT" program can also be transported to the H8/532 Evaluation Board. It can reside within a HN27512AG -25 EPROM which replaces the HMS V1.2 debugger EPROM located at "U6" on the H8/532 Evaluation Board. In this manner, a stand alone display unit can also be built.

APPENDIX " A "

- 1.0 PROGRAM NAME " GRA-BCS.MOT "
- 2.0 ADDRESS RANGE " E000H E199H "
- 3.0 PROGRAM DESCRIPTION CLEARS SCREEN, CHECKS BUSY FLAG, AND DIS-PLAYS 4 GRAPHICS BYTES ON THE LCD LM200 PANEL STARTING AT THE 40TH ROW IN POSITIONS #1, #2, #3, AND #4.

1		HEADING	"GRABCS"				
2 GRA	C 0000		GRA,CODE				
3		EXPORT		X			
4 GRA	C E000	ORG		HEDDO		LOC CINTR	-ECCOH
5					•	200 UIII.	
6				·RISVE	AG CHECKED	,	
7				,			
8 GRA	C 0000E000	X:	EQU		\$		X=E000H
9 GRA	C E000 A013	CLRB	7	RO	-	CLEAR RO	,
10 GRA	C E002 A113		CLRB		R1		CLEAR RI
11 GRA	C E004 A213		CLRB		R2		CLEAR R2
12 GRA	C E006 A313		CLRB		RS		CLEAR RS
13 GRA	C E008 A413		CLRB		R4		CLEAR PA
14 GRA	C E00A 00	NOP			•••		
15 GRA	C E008 00	NOP .		· INITIAL IZ	ZATION STAR	т	
16 GRA	C E00C 00	NOP		,		•	
17 GRA	C E000 157FF10000		MOVTPE		RO, OH 7FF	1	OH TO 7FF1
18 GRA	C E012 5112		MOVE			LOAD R1 =	
19 GRA	C E014 157FF00091		MOVTPE		R1.OH7FR		:12H TO 7FF0
20 GRA	C E019 00	NOP			111,	,	,,
21 GRA	C E01A 157FF10084	X1:	MOVFPE		OH7FF1.Rd		READ 7FF1 DATA TO R4
22 GRA	C EDIF ACF7		BTST		87.R4		SAT TEST #7 OF R4
23 GRA	C E021 28F7		BNE		X1		# BAFLAG =Z=1 GO TO X1
24 GRA	C E023 00	NOP			****	BFLAG N	
25 GRA	C E024 5001		MOVE		#P1,RD		10AD R0-1H
28 GRA	C E028 157/F10090		MOVTPE		RO.OH7FF	1	;1H TO 7FF1
27 GRA	C E028 5107		MOVE		#47.R1	•	10AD R1=7H
28 GRA	C E02D 157FF00001		MOVTPE		RI.OH7FR	•	:7H TO 7FF0
29 GRA	C E032 00	NOP			,		
30 GRA	C E033 157FF10084	X2:	MOVFPE		ONTETI P		PEAD TIFFI DATA TO RA
31 GRA	C EOSO ACF7		BTST		87.R4		SIT TEST 87 OF PA
32 GRA	C E08A 28F7		BNE		X2		F BFLAG -Z-1 GO TO X2
33 GRA	C EOSC 00	NOP				BFLAG N	•
34 GRA	C E090 5002		MOVE		#12.90		10AD RO-2H
35 GRA	C E03F 157FF10090		MOVTPE		RO, CHTTFF	i	2H TO 7FF1
36 GRA	C E044 511D		MOVE		#HD,RI		1014
37 GRA	C E046 157FF00091		MOVTPE		RI.OH7FR		:1DH TO 7FF0
38 GRA	C E048 00	NOP					
39 GRA	C E04C 157FF10084	X3:	MOVFPE		OH7FF1,R	4	READ TIFFI DATA TO RE
40 GRA	C EOS1 ACF7		BTBT		67.R4		SIT TEST #7 OF PA
41 GRA	C E063 26F7		BNE		XS		# BFLAG -Z-1 GO TO X3
42 GRA	C E055 00	NOP				BFLAG N	OT SET
43 GRA	C E066 5008		MOVE		#H3,R0		LOAD RO-SH
44 GRA	C E058 157FF10090		MOVTPE		RO, OH 7FF	1	SHTO 7FFI
45 GRA	C E050 511F		MOVE		MMFAI	LOAD RI-	4FH
45 GRA	C BOSF 157FF00091		MOVTPE		RI.OH7FF	•	:1FH TO 7FF6
47 GRA	C E084 00	NOP			,		
48 GRA	C E065 157FF10004	XA:	MOVFPE		OH7FT1.R	4	READ IFFI DATA TO RE
49 GRA	C EDBA ACF7		BTST		67.RA		SIT TEST OF PA
50 GFA	C E09C 29F7		BNE		XA		# BFLAG -Z-1 GO TO XA
51 GRA	C E08E 00	NOP	-			SFLAG N	OT SET
52 GPA	C E08F 5008		MOVE		AFR,FD		70-01
- 53 GRA	C 5071 157FF10000		MOVTPE		RO. OH TET	7	#HTO 7FFI
54 GRA	C E076 157FF00082		MOVTPE		R2.0H7FI		SH TO 7FF0
55 GRA	C 5078 00	NOP					
56 GRA	C 207C 157FF1008		MOVFPE		ONTET S	W	SEAD TIFT DATA TO PA
57 GRA	CEON ACF7		BIST		87.R4		SET TEST OF PA

58 GRA	C E083 26F7		BNE		X8	# BAFLAG -Z-1 GO TO X8
50 GRA	C E065 00	NOP			AFLAGN	•
80 GRA	C E088 5009	••••	MOVE		#H9.RD	10AD RO-SH
61 GRA	C E088 157FF10090		MOVTPE		RO,@H7FF1	SH TO 7FF1
62 GRA	C E080 157FF00092		MOVTPE		R2.@H7FF0	SH TO 7FF0
63 GRA	C E092 00	NOP				
64				: SCREEN	CLEAR ROUTINE ST	ART
86						
66 GRA	C E093 AD13		CLRW		R6	;CLEAR RS
67 GRA	C E096 00	NOP				•
68 GRA	C E098 157FF10084	C1:	MOVFPE		OH7FF1,R4	READ 7FF1 DATA TO PA
66 GRA	C E098 ACF7		BTST		87,RA	JUST TEST 87 OF RA
70 GRA	C E090 28F7		BNE		C1	# BAFLAG -Z-1 GO TO C1
71 GRA	C 209F 00	NOP			BAFLAG N	
72 GPA	C EDAO 500A		MOVE		aha,ro	FD-AH
73 GRA	C E0A2 157FF10090		MOVTPE		RO,@H7FF1	CHTC TFT
74 GRA	C E0A7 5100		MOVE		#HO,R1	Al-all
75 GRA	C E0A9 157FF00091		MOVTPE		R1,@H7FF0	OH TO 7FFO-CUR LOB-OH
78 GRA	C EGAE GO	NOP				
77 GRA	C E0AF 157FF10084	œ	MOVFPE		OH7FF1,R4	READ TIFFE DATA TO RA
78 GRA	C EOB4 ACF7		STST		67,9M	ATTEST OF PA
79 GRA	C E086 26F7		BNE		cz	# BFLAG -Z-1 GO TO C2
80 GRA	C E088 00	NOP			#FLAG	
81 GRA	C 2089 500B		MOVE		#HB,RD	70-8H
12 GRA	C E088 157FF10090		MOVTPE		R0,@H7FF1	#H TO 7FF1
83 GRA	C E0C0 5100		MOVE		#PO,R1	;R1=GH ±MTO 7FF0-CUR H 8 =GH
M GRA	C E0C2 157FF00091 C E0C7 00	NOP	MOVTPE		R1,@H7FF0	THE TO THE CONTRACTOR
M GRA	C EDC# SDFFFF	NUP	MÖVH			
87 GRA	CENCE CO	CS:	NOP		HIFFFF,RECOUNT-	
M GPA	C E0CC 157FF10084	CA:	MONTE		OH7FF1,FA	HEAD HTTI DATA TO PA
M GRA	C EXD1 ACF7	٠.	BIBI		67.R4	ALT TEST OF PA
90 GRA	C E003 26F7		BNE		C4	# BFLAG -Z-1 00 TO C4
91 GRA	CE00600	NOP	-		B/FLAG	
92 GRA	C EXDS 800C		MOVE		#HCRO	30-CH
93 GRA	C E008 157FF10090		MOVTPE		RO.GH7FF1	CHTO 7FF1
M GRA	C E000 5100		MOVE		#MORI	RI-OH-CODE FOR DOT OFP
95 GRA	C E00F 157FF00091		MOVTPE		R1,@H7FF0	OH TO 7FF0
96 GRA	C EDEA OD	NOP				•======================================
97 GRA	C EDES OF BOES		SCBF		RE.CB	
98 GRA	C EDES CO	NOP				
99				: SCREEN	CLEAR ROUTINE CO	MPLETED
100 GRA	C EDED OO	NOP		,		
101 GRA	C EDEA CO		NOP			
10E GRA	C E0EB 157FF10004	X7:	MOVIPE		CHT/FF1.R4	SEAD TIPL DATA TO PA
109 GRA	C EDFO ACF7		STET		87.RA	ATTEST OF PA
104 GRA	C E0F2 20F7		BNE		X7	# BFLAG -2-1 GO TO X7
105 GRA	C E0F4 00	NOP			DA.FIG.	NOT SET
108 GRA	C E0F5 00	NOP				
107 GRA	C EDFS 00	NOP		HITMLE	ATION DONE	
108 GFA	C E0F700	NOP				
100 GRA	C EOFO SOOA		MOVE		MARG	20-MI
110 GRA	C EOFA 157FF10000	, ,	MOVTPE		RO,@H7FF1	AHTO TIFFI
111 GRA	C EOFF 5190		MOVE		#HBO.RI RI-BOH	•
112 GRA	C E101 157FF00001	1.7	MOVTPE		RI, OH7FF0	,SH TO 7FF0
113 GRA	C E106 00	NOP			· · ·	. 6
114 GRA	C E107 157FF1008	XXE:	MOVIPE		OH7FF1,RA	PEND TIPL DATA TO PA

115 GRA	C E10C ACF7		BTST		e7,R4	:BIT TEST 87 OF PA
116 GRA	C E10E 26F7		BNE		XB	;F BAFLAG =Z=1 GO TO X3
117 GRA	C E110 00	NOP			:B/FI	AG NOT SET
118 GRA	C E111 5008		MOVE		eHB,R0	;R0-8H
119 GRA	C E113 157FF10090		MOVTPE		RO, CHT7FF1	:BH TO 7FF1
120 GRA	C E118 5204		MOVE		#14,R2	,R2-04H
121 GRA	C E11A 157FF00092		MOVTPE		R2,0H7FF0	:04H TO 7FF0
122 GRA	C E11F 00	NOP				·
123 GRA	C E120 157FF10084	X9:	MOVFPE		QH7FF1,R4	READ 7FF1 DATA TO RA
124 GRA	C E125 ACF7		BTST		#7,P4	SIT TEST #7 OF R4
125 GRA	C E127 26F7		BNE		X9 ·	;F BFLAG -Z-1 GO TO X9
125 GRA	C E129 00	NOP				AG NOT SET
127 GRA	C E12A 500C		MOVE		#HC,R0	;10=CH :CH TO 7FF1
128 GRA 129 GRA	C E12C 157FF10090 C E131 5100		MOVTPE MOVE		RO,@H7FF1 #H0.R1	:R1=00H=GRAPHIC BYTE #1
130 GRA	C E131 5100 C E133 157FF00091		MOVTPE		R1.0H7FF0	2H TO 7FF0
131 GRA		NOP	MOVIPE		HI, GHT /FFU	JAN 10 PPG
132 GRA	C E139 00 C E139 157FF10084	NOP X10:	MOVFPE		OH7FF1 ,R4	FIEAD 7FF1 DATA TO RA
132 GPA	C E139 15/FF10084	AIU:	BTST		87.R4	BIT TEST #7 OF RA
135 GPA 134 GRA	C E13E ACF/		BIST		87,94 X10	# BAFLAG =Z=1 GO TO X10
135 GRA	C E140 20F/	NOP				LAG NOT SET
136 GRA	C E143 157FF10090	NUP .	MOVTPE		RO,@H7FF1	:CH TO 7FF1
137 GRA	C E148 51FF		MOVE			FF-GRAPHIC BYTE #2
136 GRA	C E14A 157FF00001		MOVIPE		RI, GH7FF0	4FF TO 7FF0
139 GRA	C E14F 00	NOP	MOVIPE		ni,gn/iiv	, 11 10 1110
140 GRA	C E150 157FF10084	X11:	MOVFPE		OH7FF1.R4	FREAD 7FF1 DATA TO R4
141 GRA	C E155 ACF7	A11.	BTST		87.R4	SIT TEST #7 OF RA
142 GRA	C E157 28F7		BNE		X11	# BFLAG -Z-1 GO TO X11
143 GRA	C E159 00	NOP	ONE.			LAG NOT SET
144 GRA	C E15A 157FF10090	100	MOVIPE	*	RO. CHT/FF1	CHTO 7FF1
145 GRA	C E15F 5166		MOVE			46-GRAPHIC BYTE AS
146 GRA	C E161 157FF00091		MOVTPE		R1.0H7FF0	£6 TO 7/F0
147 GRA	C E166 00	NOP			,	,
148 GRA	C E167 157FF10084	X12	MOVFPE		OH7FF1.R4	READ 7FF1 DATA TO R4
149 GRA	C E16C ACF7	~~~	BTST		87.R4	SIT TEST #7 OF PA
150 GRA	C E16E 26F7		BNE		X12	F BFLAG -Z-1 GO TO X12
151 GRA	C E170 00	NOP				LAG NOT SET
152 GRA	C E171 157FF10090		MOVTPE		RO. CHTTFT	:CH TO 7FF1
153 GRA	C E178 5177		MOVE			-77-GRAPHIC BYTE AL
154 GRA	C E178 157FF00091		MOVTPE		R1.0H7FF0	:77 10 7740
155 GRA	C E17D 00	NOP				#* ***********************************
158 GRA	C E17E 157FF10084		MOVIPE		OH7FF1,R4	FEAD 7FF1 DATA TO RA
157 GRA	C E183 ACF7		BTBT		87.R6	SIT TEST 87 OF RA
158 GRA	C E185 28F7		BNE		X18	# BFLAG -Z-1 GO TO X18
159 GRA	C E187 00	NOP		•		LAG NOT SET
100 GRA	C E188 157FF10098		MOVTPE	•	RS.OH7FF1	⊈HTO 7FF1
161 GRA	C E180 5132		MOVE			AD R1-32H-DISP-ON
162 GRA	C E18F 157FF00091		MOVTPE		R1,047FF0	SEN TO TIFFO
168						
164 GRA	C E194 00	NOP		DISPLAY	DOT LIGHT - U	OCT
165 GRA	C E195 00	NOP		: DISPLAY	DOT DARK - L	OGIC T*
166						
167 GRA	C E196 00	NOP				
188 GRA	C E197 00	NOP				
169 GRA	C E198 1A	SLEEP			34	MINE ANLESP
170 GRA	C E199 00	NOP			•	

APPENDIX "B"

REFERENCE LITERATURE

The literature and other documents used in this design are summarized below:

- o H8/532 Cross Assembler Manual #S085CPC and " C " compiler for IBM PC
- o H8/532 Evaluation Board User's Manual # US538EVB21H
- o H8/532 Software User's Manual # HS538EMSS1E
- o MS " WORD " User Manual and other reference manuals
- o "PROCOMM" User Manual and other reference manuals
- o LCD Data Book #M24T013 from Hitachi America Ltd.
- o Memory Data Books from Hitachi America Ltd.
- o Hitachi Graphic Module Catalog # XX-E139 from ELT Division
- o H8/532 Hardware User's Manual #M21T002 from Hitachi America, Ltd.
- o H8/500 Programming Manual #M21T001 from Hitachi America, Ltd.
- o H8/500 Software Application Note #M21T003 from Hitachi America, Ltd.
- o H8/532 Overview #M21T173 from Hitachi America, Ltd.
- o Hitachi Laptop Personal Computer HL320 Operator Manual
- o Hitachi Laptop Personal Computer HL320 MSDOS V3.2 User's Manual
- o Hitachi HD61830B / LM200 Panel Design Tutorial Part I (in this manual)
- o Hitachi HD61830B / LM200 Panel Design Custom Character Generation Tutorial Part II (in this manual)

HD4074308 / PIXIE SWITCH

Automobile Dash Board Indicator APPLICATION NOTE

Kash Yajnik

This document shows the design and implementation of the Hitachi 4 bit single chip Micro Processor HD4074308 used in automobile dash board indicator display application. Its major components include Micro Processor Module, Pixie Graphic Display Switch, and AC Power Adapter.

Fuel, Oil, Battery Voltage, and Engine Temperature gauges along with levels are displayed. The gauges are simulated by different input voltages. When they drop below or exceed their preset levels, an alarm sounds warning. By depressing the Pixie switch, the display cycles through all the four gauges.

The Hitachi Micro Processor Module contains 4 bit Micro processor HD4074308 with its instruction code and data storage. Variable voltages represent the gauge transducer inputs. The AC Power Adapter provides the required DC voltage. The gauges are graphically displayed on a Pixie switch. A buzzer is provided to sound the alarm. When the corrective action simulated by normal input volage levels, is taken, it stops the alarm.

The indicator display demonsration program is stored in the Hitachi HD4074308 Micro Processor. After power on, the Hitachi logo is displayed. When the Pixie switch is subse-

quently pushed; Fuel, Battery, Engine Temperature, and Oil gauge graphic is displayed on the Pixie switch one at a time. Likewise, a horizontal bar displayed above the gauge shows the associated gauge reading. The bar length changes as transducer voltages change. These levels are simulated by the appropriate potentiometers.

No effort is spent in either code or circuit minimization.

This application note is intended for the technical staff at customer sites and other Hitachi employees who are fairly familiar with design guide lines. Therefore, basic design principles are **not** covered.

This document includes Introduction, Design, Schematic, Silk Screen, Software, and the Appendices. The Appendix "A" lists the reference literature. The HD4074308 Micro Processor Features are described in the Appendix "B", while the Appendix "C" shows the IEE Pixie Switch features. The page 2 lists Table Of Contents.

Refer to the subsequent pages for more information on the details of this design.

HD4074308 / PIXIE SWITCH

TABLE OF CONTENTS

	TOPI	CS	PAGE
1.0	INTRODUCTION		. 66
2.0	DESIGN		. 67
3.0	SCHEMATIC / SILI	K SCREEN	. 69
4.0	SOFTWARE		. 71
5.0	APPENDICES		. 72
	APPENDIX "A"	REFERENCE LITERATURE	. 72
	APPENDIX "B"	HD4074308 FEATURES	. 73
	APPENDIX "C"	PIXIE SWITCH FEATURES	. 74

HD4074308 / PIXIE SWITCH

1.0 INTRODUCTION:

This section describes the design goals and provides a general overview of this presentation.

The design goals established for this project are briefly listed below:

- 1.1 To develop HD4974308 Processor Module
- 1.2 To provide custom four gauge digital graphic display on a single IEE Pixie Switch
- 1.3 To simulate gauge transducer viltages
- 1.4 To provide Indicator Display Demonstration Program
- 1.5 To build a stand alone Pixie Switch Display Demonstration Unit
- 1.6 To generate Automobile Dash Board Indicator Application Note

A brief design description is provided in the section 2.0. Its schematic and silk screen copy are shown in the section 3.0. The software section describes the available tools and demonstration program details. The Appendix "A" lists the reference literature used in this project. The HD4074308 4 bit single chip microprocessor features are described in the Appendix "B". The IEE Pixie LCD Graphic Switch features are briefly stated in the Appendix "C".

2.0 DESIGN:

The LCD display subsystem components such as Hitachi Micro Processor Module, IEE Pixie Switch Display, and the AC Power Adapter details, along with a subsystem block diagram are presented in this section. For the Hitachi 4 bit single chip micro processor HD4074308 data sheet, and the related hardware or software information, call your nearest Hitachi America Ltd. sales office. Refer to the IEE Pixie Switch data sheet features in the appendix "C" as required. In addition, the AC Power adapter rating information is also provided for completeness.

2.1 Hitachi Micro Processor Module:

It is a 2"(W) x5"(L) PCB module with different circuit blocks. The Hitachi 4 bit micro processor HD4074308P (Z-TAT Version) is located on it and is in Dual In Line Package. 4 channel Analog to Digital inputs, and upto 25 high voltage (40V) I/O pins are built inside the HD4074308P device. It runs from a 4 MHz crystal. On board audio buzzer, and automobile dash board variable voltage gauge simulating circuit is built around the four adjustible potentiometers. Each sensor gauge potentiometer (R16 through R19) is clearly marked in the silk screen drawing. A +12V DC voltage input jack for the AC Power Adapter is also provided on this assembly. A +5V DC regulator, and a -5V DC to DC convertor are also designed to provide the required voltage for the LCD display on the Pixie switch. A 7 " ribbon cable is also supplied to connect the IEE Pixie switch assembly. For more details refer to the schematic, and silk screen drawing in the section 3.0.

2.2 Pixie Switch / LCD Display:

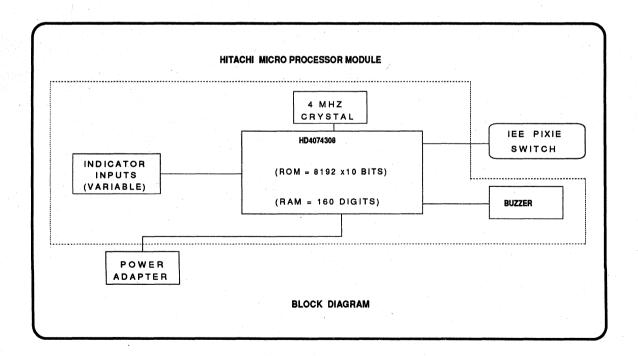
Each Pixie switch provides two switch terminals, back light LEDs, LCD drivers, and 864 pixels (24 dots high x 36 dots wide) LCD display. It operates in the graphics mode. A display contrast adjustment potentiometer "R1" is also located on the Hitachi Micro Processor Module. By changing "R1" the LCD display contrast can be changed for different ambient lighting conditions. The Pixie switch is mounted on a break away PCB with 4 stand offs and is connected to the Micro Processor Module by a ribbon cable. For more information on the IEE Pixie Switch, see the Appendix "C".

2.3 AC Power Adapter:

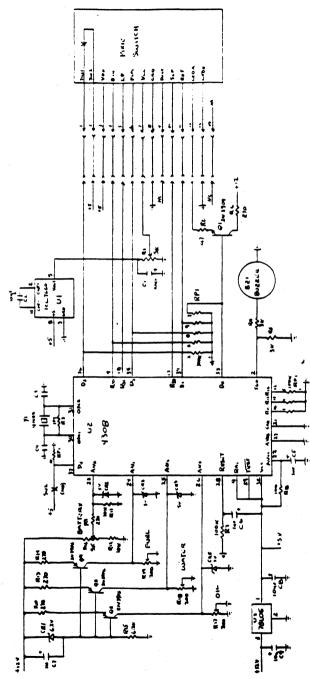
It is available from Radio Shack, A Division Of Tandy Corporation. This unit is listed as "ARCHER AC Adapter" catalog # 273-1652A. Its input is rated at 120V AC, 60 Hz, and 14 Watts. The output rating is 12V DC at 500 mA.

HD4074308 / PIXIE SWITCH

2.0 **DESIGN** : (CNTD.)

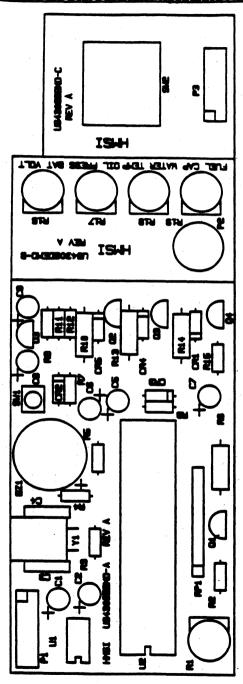

2.4 Software Tools:

For the HD4074308 program development following support tools are available from Hitachi America Ltd.;


- o Cross Assembler and Simulator Software for use with IBM PCs and compatibles.
- o In-Circuit emulator for IBM PC.
- Programming Socket Adapter for programming the on-chip EPROM during firmware development.
- o Emulator can be used for both HMCS400 Series and AS micro computer.

For more information, call your Hitachi FAE at nearest sales office.

The stand alone Pixie Switch Display Unit block diagram is shown below:



Automobile Dash Board Indicator Application Note

3.0 SCHEMATIC / SILKSCREEN

Automobile Dash Board Indicator Application Note

3.0 SCHEMATIC/SILKSCREEN

The Pixie switch Display unit schematic and its associated silk screen drawing are shown in this section.

70

4.0 SOFTWARE:

The Indicator Display Demonstration Program was developed by Hitachi Micro Systems Inc. (HMSI). The customers who wish to obtain a copy of this program may do so by calling your Hitachi FAE at the nearest sales office. The source program is resident on the Hitachi Bulletin Board. Due to its length and size, the program is not reproduced in this application note.

HD4074308 / PIXIE SWITCH

APPENDIX " A "

REFERENCE LITERATURE

The literature and other documents used in this design are summarized below:

- o Hitachi 4 Bit Single Chip. Micro Computer Data Book dated August 1989, #U76.
- o IEE Pixie Graphic LCD Switch data sheet dated April 1988. For more information, call IEE, Van Nuys, CA 91409. Tel # (818) 787 0311.
- o For other components used in this assembly, call their respective companies.
- o For Archer AC Power Adapter information, call your nearest Radio Shack Store (Catalog # 273-1652A).

HD4074308/PIXIE SWITCH

Automobile Dash Board Indicator Application Note

APPENDIX " B "

HD4074308 FEATURES

- 4-bit architecture
- 2048 words of 10-bit ROM (mask ROM
- 8192 words of 10-bit ROM (ZTAT version)
- 160 digits of 4-bit RAM
- 33 I/O pins, including 25 High voltage I/O pins (40 V max)
- Two Timers/Counters
 - -11-bit prescaler
 - -8-bit timer (free-run timer/watchdog
 - -8-bit timer (reload timer/event counter)
- Five interrupt sources
 - -External 2
 - -Timer
 - -A/D
- 2 A/D converter: 8 bits × 4 channels
- Two Tone generator outputs: 2
- Subroutine Stack
 - -Up to 16 levels including interrupts
- Two low power dissipation modes
 - -Standby mode -Stop mode
- On-chip oscillator
 - -Crystal or ceramic filter
 - (externally drivable)
- Package
 - -42-pin plastic DIP (DP-42)
 - -42-pin ceramic DIP with window (DC-42)
- Instruction set compatible with HMCS412C: 100 instructions
- High programming efficiency with 10-bit/ word
- ROM: 78 single-word instructions
- Direct branch to all ROM areas
- Direct or indirect addressing of all RAM areas

Program Development Support Tools

- H68/H680SD series macro assembler
- IBM-PC cross assembler
- ZTAT microcomputer (HD4074308)
- TTAT microcompuses.
 H400CMIX3 emulator
 wait target e Emulator unit, target probe, and user cable can be purchased individually.
- e Emulator unit can be used for both HMCS400 series and AS microcomputer

Ordering Information

	Part No.	ROM(Words)	Package
Mask ROM type	HD404302P	2,048	DP-42
ZTAT	HD4074308	P 8,192	DP-42
type	HD4074308	<u>c</u>	DC-42 (Note)

HD4074308/PIXIE SWITCH

Automobile Dash Board Indicator Application Note

APPENDIX " C "

PIXIE SWITCH FEATURES

MECHANICAL SPECIFICATIONS

Characters:

864 (24 x 36) LCD display with super-twist 18 Max. (using 5×7 matrix, 3 lines by 6 digits)

Pixel Size: .014 in. sq. Viewing Area: .490 x .590 in.

SWITCH DATA

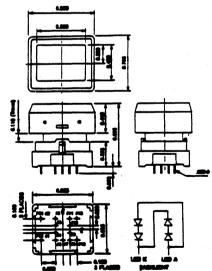
Nominal Rating: Contact Resistance: DC12V 50mA < 10

Isolation Resistance: Withstanding Voltage: AC250V (1 minute)

>50MQ (DC200V)

Switch Bounce: Swech Travel: Actuation Force:

< 5msec 0.118 in.


Life Expectancy:

130 g ±20 g >1,000,000 actuations

CONNECTOR PIN ASSIGNMENTS

No.	Pin	Function	Connection
1	SW1	switch	user defined
2	SW2	switch	user defined
3	Voo	supply voltage for logic +5V	power supply
4	DIN	data input	Dour or controle
5	LP.	latch pulse	controller
6	FLM	first line marker	controller
7	٧LC	supply voltage for LCD	power supply
8	GND	ground (±0V)	power supply
9	Dout	data output	Din
10	SCP	serial clock pulse	controller
11	RST	reset signal	controller
12	LED A	LED anode	power supply
13	LED K	LED cathode	power supply

DIMENSIONAL DRAWINGS

HD61830B / LM200

Custom Character Generation TUTORIAL PART II

Kash Yainik

The first tutorial described in the Hitachi document #AE150 presents in depth design process for a LCD subsystem. This document is part II of that tutorial and describes custom character generation. Its major components include H8/532 Evaluation board as the local processor, LCD Controller HD61830B, and the display panel LM200 from Hitachi ELT Division, and EPROM resident custom character set.

The HD61830B controller is designed to run in the character mode. The H8/532 Evaluation Board is designed by Hitachi Microsystems. The LM200 LCD panel can display 240 Dots(W) by 64 Dots(H) character or graphics data. Hitachi Monitor firmware resident on the H8/532 Evaluation Board provides the program debugging and host computer communication facilities.

By adding a laptop computer to down load the programs to the Evaluation Board, a program development station can be readily built. The H8/532 Cross Assembler, Linker, any word processor package e.g. "WORD" as screen editor, and Motorola "S" record conversion utility inside the Hitachi laptop PC complete the software development environment. The "PROCOMM" communication package is used to facilitate down load or up load of programs to the H8/532 Evaluation board.

The custom character generation program is listed in the Appendix "A". No effort is spent in either code or logic minimization.

This tutorial is intended for the technical staff at customer sites and other Hitachi employees who are fairly familiar with LCD design guide lines. Therefore, basic LCD design principles are not covered.

The HD61830B LCD Controller design tutorial includes Introduction, Design Overview, Custom Character definition and display, LCD Interface Board Schematic, along with the associated Software.

While a lot of programs were developed, only one is listed as an example in the Appendix "A". The Appendix "B" covers EPROM font data while the Appendix "C" lists the reference literature.

Only the details not available in the reference section are explained at greater length in this article. The page 2 shows the Table Of Contents.

Refer to the subsequent pages for more information on the part II of this design.

TABLE OF CONTENTS

	TOPI	CS	PAGE
1.0	INTRODUCTION.		. 78
2.0	DESIGN OVERVI	EW	. 79
3.0	CUSTOM CHARAC	CTER DEFINITION	. 82
4.0	CUSTOM CHARAC	CTER DISPLAY	. 87
5.0	LCD INTERFACE	BOARD SCHEMATIC	. 89
6.0	SOFTWARE		94
7.0	APPENDICES		95
	APPENDIX "A"	XCG.LIS(CUSTOM CHARACTER GENERATION - FOUR BYTES)	. 95
	APPENDIX "B"	EPROM CHARACTER FONT DATA	. 100
	APPENDIX "C"	REFERENCE LITERATURE	. 105

1.0 INTRODUCTION:

This section describes the design goals and provides a general overview of this presentation, along with a software development listing.

The design goals established for this project are briefly listed below:

- 1.1 To use H8/532 Evaluation Board with Monitor Software.
- 1.2 To provide custom character LCD display with LM200 panel from Hitachi.
- 1.3 To display largest characters in the character mode of the HD61830B.
- 1.4 To design Interface Board for the LM200 LCD panel.
- 1.5 To write programs for debug and test.
- 1.6 To use Hitachi Laptop Personal Computer "HL320".
- 1.7 To use readily available software at Hitachi Field Offices for development.
- 1.8 To build a stand alone display unit.
- 1.9 To generate HD61830B / LM200 panel design tutorial part II.

A brief description of the LCD display subsystem components listed above is provided in the next section as an overview. To complete the overview, a subsystem block diagram is also presented. The rest of the sections described in the Table Of Contents are expanded in greater details along with their programming data. The Appendices give the program listing, EPROM font data, and also list the referenced literature. A copy of the LCD Interface Board schematic is also provided to illustrate the implementation details of this tutorial.

2.0 DESIGN OVERVIEW:

The LCD display subsystem components such as H8 / 532 Evaluation Board, LM200 display, LCD Interface Board, Hitachi Laptop Computer, and the related software are described in this section. At the end, a subsystem block diagram is also presented. For the HD61830B LCD Controller, and the LM200 LCD panel data sheets, as well as other related documentation refer, to the Appendix "C". This description from the HD61830B / LM200 Design Tutorial Part I is included only for completeness of this document, and can therefore be skipped by those familiar with the Part I.

- 2.1 H8/532 Evaluation Board: This board was designed by Hitachi Micro Systems. It is provided as a training and development tool. On-board EPROM contains the Hitachi Monitor firmware used for single line assembly, disassembly, line editing, and debug purposes. Of the two serial ports, only the Terminal port is used to down load, up load, and run the programs. The I/O extention connectors "J1" and "J2" are used to connect to the LCD Interface Board. The partially decoded extented I/O space is further decoded on the LCD Interface Board. This board is designed to run at 10MHz and uses a 20 MHz crystal for that purpose. However, in this application a 16 MHz crystal is used to provide 1MHz "E" clock to the LCD Controller HD61830B. All the jumpers on this board are set at the factory according to their default states.
- 2.2 LM200 LCD Panel display: This display is provided by the Hitachi ELT Division. It is capable of displaying alpha-numeric characters as well as the graphics data. However, only character mode is used in this application. It is 240 dots wide and 64 dots high. It has 1/32 duty cycle. The serial data is clocked in at 500KHz. It runs from +5V, and -12V power supply. The customer has to solder the pins on LM200 for the appropriate connector used on the LCD Interface Board. The LM200 LCD panel mounting and the proper viewing angles are critical to a strain free LCD display. Please, handle the panels according to the care recommended by the LCD display manufacturer. The logic signals sent to the LCD panel are at CMOS levels.
- 2.3 LCD Interface Board: A wire wrap board was built to control the LCD panel LM200. It also exchanged data with the H8/532 Evaluation Board over the I/O extention cables "J1" and "J2". The Hitachi LCD controller HD61830B was used on the LCD Interface Board. A 4,096 byte display buffer memory was also designed to store the character data. The 500KHz dot clock required by the display was also provided on this board. The LM200 LCD panel contrast adjust potentiometer was also put on this board. Set the jumper "J10" on this board to the "C-2" position. Test connectors were also provided to help debug this board.
- 2.4 Hitachi Laptop Personal Computer "HL320": It is connected to the serial terminal port of the H8/532 Evaluation Board. The connector RJ-12 is attached to the Terminal port while a male to female 25 pin adapter cable is required at the Laptop PC end. The Hitachi "HL320" PC provides the software development tools for the user programs. The program up load and down load capability is also provided by the laptop PC. The communication link is full duplex, 9600 baud, 8 bits, 1 stop bit, and no parity check.

2.0 DESIGN OVERVIEW: (CNTD.)

2.5 Software Tools: The laptop PC resident software development tools, packages, and utilities are described very breifly.

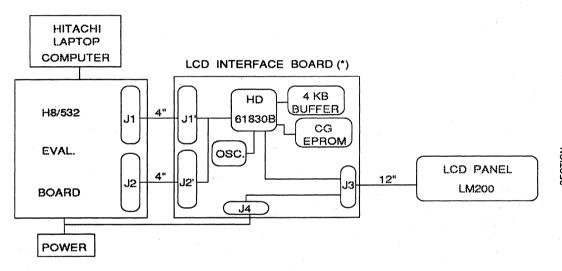
H8 / 532 Cross Assembler: It is designed for DOS environment inside the laptop Personal Computer. When the user program is submitted as the source file, it assembles the code. Consequently, it produces Object and List files of the source program. The list files with "*.LIS " extentions are reproduced in the appendices for the programs developed on the software work station.

H8/532 Linker: To link various object code segments ("*.OBJ" extention) developed in parallel for a larger program. The linked file has "*.ABS" extention.

Motorola "S" record Conversion Utility: It is used to convert the machine code into Motorola "S" record format for uploading it to the H8 / 532 Evaluation Board. The converted file has "*.MOT" extention.

Up Loading Of Laptop PC "S" Record file: Push "EDIT SHIFT" Key down. Depress the "PG UP" key when using "PROCOMM" package for communications. Also, select ASCII format.

Screen Editor: Any word processing package is acceptable. In this application, Microsoft "WORD" package is used. The source programs are created and edited with this package. The source program files have "*.SRC" extentions.


File Management Utilities: To help aid the program development, packages such as "XTREE", or "TREE86" may also be used.

Back -Up Utility: It is a good practice to back up program files. Such packages as "FASTBACK", OR "FASTBACK PLUS" can also be used.

EPROM Programming: Data I/O Model 212 Multi-programmer was used to program the 32KByte or 16KByte UV erasable EPROMS.

The stand alone display unit block diagram is shown on the next page.

HD61830B / LM200 STAND ALONE UNIT

* NOTE : 1.0 8 MHZ OSC. DIVIDED DOWN.

2.0 SET "J1" JUMPER TO "C-2" POSITION.

BLOCK DIAGRAM

CUSTOM CHARACTER DEFINITION:

In character mode, for visual comparison, the maximum programmable font size of 8 (Columns) x 16 (Rows) using the Hitachi LCD controller HD61830B was chosen for display. Also, note that in the **graphics** mode of the HD61830B, larger font sizes beyond the character mode limits are possible. However, for this tutorial, only the character mode is considered to illustrate custom character generation using an EPROM.

The custom characters were displayed on the LCD panel LM200 from Hitachi America Ltd. Arbitrarily, four custom characters "K", "A", "S", and "H" were chosen for font generation using a 32K bytes EPROM. The Figures 1,2,3, and 4 show each character, its character code, line position, and the EPROM data output. The character shapes were purposely chosen to be slightly different from the standard character shapes defined in the HD61830B data sheet. This makes character verification easier and distinguishes custom characters from the standard character set.

The custom character font line position address bits (A3-A0) were connected to the (MA15-MA12) signals from the HD61830B. These four bits form the lowest address nibble of the 32KB character generator EPROM. The character code address bits (A11-A4) are also provided by the (MD7-MD0) signals from the HD61830B. These character code bits determine the square in the character map where the custom character is located. For more information on the character map refer to the HD61830B data sheet. The standard character in the character map is replaced by the custom character at the location addressed by the character code bits (A11-A4) of the EPROM.

Note that **only one** 4,096 bytes long page can be addressed by the HD61830B from the available 8 pages in the 32K Bytes EPROM space in the character mode. Therefore, the upper address bits (A12-A14) of the EPROM are grounded to select page 0. The character font EPROM output data bits (D7'-D0') are sent to the HD61830B ROM data input bus (RD7-RD0).

It is left up to the reader to come up with a scheme to locate 8 different character sets on a 4KB page boundary e.g. Eight different languages for eight countries in Europe within the 32KB EPROM character space. The appropriate font page for a country should be activated when a LCD display panel is used for a product in the specified country. Such a font design would make the product saleable in the international markets.

For the implementation details on the four custom character EPROM refer to the schematic in the section 5.

С					PRO	M	AĽ	DRE	SS												
н		CI	IAR	ACT'	ER	CO	DE	S			LIN		N			EP	ROM	OU	JTPU	T	
R	A11	A10	A9	A8	A7	' A	6	A5	A4	АЗ	A2	A1	ΑO	07	06	05	04 (03	02	01	00
个	0	1	0	0	1	a		1	1	0	0	0	0		0	0	0	0	0	1	0
	ı		1]						0	0	O	1	0		0	0	0	0	1	O
										0	0	.1.	0	0	o		0	0	O	1	o
										0	0	1	1	0	0	0		0	0	1	0
				Π		11	-		11	0	1.	0	0	0	0	O	0		o	1	0
						11			11	0	1	0	1	0	O	0	0	O	1	1	0
"K"		<u> </u>		11	11	††			††	0	1	1	0	0	0	0	0	0	1	1	O
	h			††		77			l 1	0	1	1	1	0	0	0	0	0		1	0
			-	#	11	++			<u> </u>	1	0	0	0	o	0	0	0	0	1	1	0
			<u> </u>		11			+	 	1	0	0	1	0	0	0	0	0	1	1	0
 - -		<u> </u>	<u> </u>	11	11				††	1.	0	,1.	O	0	O	0	0		O	1	O
	h	1		##	++-	11		-		1	0	1	1	0	0	0		0	0	1	0
	 			††	1	7				1	1.	0	0	o	0		O	0	O	1	0
 		<u> </u>	-	\parallel	+	++			 	1	1	o	1	0		0	0	0	0	1 1	0
		 	-	+	+	++		-	+	1	1	1.	0		0	0	0	0	O	1 , 1	0
				 	+	+				1	1	1	1	0	0	0	0	0	0	0	0

FIGURE 1

С									EF	ÞΚ	RON	1	Αľ)D	RE	S	5						-			-			
н	Ī			С	H	AF	λS	CI	ľE.	R	C	0:	DE	s					LIN POS		Ŋ			EP	ROM	Oυ	rpu	rr	
R	Į.	A1:	LA	110)	A٤	•	Αŧ	В	A	7	A	8	A	5	A	4	АЗ	SA	A1	A0	07	06	05	04 (03	02	01	00
$ \uparrow \rangle$		0	1	1		0		C	,	C)	C)	0	,	3		0	o	0	O	0	0	0		0	0	0	0
	Ī																	O	O	0	1.	o	0		O		0	O	0
			Ī														ſ,	0	0	1	0	0		o	0	0		0	0
	Ī		Ī		Ī			Ī					•••••		•••••			0	0	1.	1	1	O	O	0	O	0	1	O
	-		ľ				T											0	1	0	0	1	0	0	0	0	0	1	0
	Ť		T		T	1	T	T								П		0	1	0	1	1	0	0	0	0	0	1	0
"A"	Ť	1	T	ļ	T		T	T			••••••		•••••					0	1.	1	0	1	0	0	o	0	O	1	0
	ľ		T		T	ľ		1						M		П		0	1	1	1	1	0	O	0	О	0	1	0
	T		T	ļ	T	Ī	1	T			•••••				•••••	П	•••••	1	0	O	o	1	1	1	1	1		1	0
	ľ				T		1				•••••						•••••	1.	0	0	1	1	0	0	0	O	0	1	0
																		1	o	1	o	1	o	0	o	0	0	1	0
	Ť		T		T	1	T	T			······		•••••	m		П	•••••	1	O	1	1.	1	О	0	O	O	0	1	O
	Ť	1	T		1	T	1	ľ										1	1	O	O	1	0	0	O	0	O	1	0
	ľ		T	<u> </u>	T	T	1	T				Ħ						1	1	0	1	1	0	0	0	0	0	1	0
	ľ		T		T	ľ	1	T				Ħ	••••••		•••••			1	1	.1.	0	1	0	O	0	O	O	1	0
$ \downarrow$								\downarrow				V	/	\bigcup		V		1	1	1	1	0	o	O	o	0	0	0	o

FIGURE 2

С					E	PRO	M Al	DDR	ES	S		-										
н		C	CFL	ARA	CTE	R (CODE	s				LIN POS		1			EP	ROM	OU	TPU	r	
R	A1	1 A1	0	A9	A8	A7	A6	ΑĐ	5 4	44	АЗ	SA	A1	AO	07	06	05	04 (03	02	01	00
\wedge	0	1		0	1	0	O	1		1	0	o	0	0	1	1	1	1	1	1	1	0
											0	O	O	1.	o	0	O	o	0	0	1	0
											0	0	1	0	0	0	0	0	0	0	1	0
		П	T								O	O	1.	1	0	O	o	0	0	O	1	o
											0	1	0	0	0	o	0	o	0	0	1	o
											0	1	0	1	0	0	O	o	0	0	1	0
"S"											0	1.	1	O	o	0	0	o	0	0	1	0
											0	1	1	1	1	1	1	1	1	1	1	O
											1	O	O	0	1	o	0	0	O	0	0	O
											1.	0	0	1	1	0	0	0	O	0	0	o
			ļ								1	o	1	o	1	o	0	0	0	0	O	o
											1	O	1	1.	1	0	0	o	0	0	O	0
											1	1	o	0	1	0	O	O	0	0	0	0
							11		T		1	1	0	1	1	0	0	О	0	0	0	0
									1		1	1	1.	O	1	1	1	1	1	1		O
$ \downarrow $	$\downarrow \downarrow$	$\downarrow \downarrow$			\downarrow			$\downarrow \downarrow$			1	1	1	1	0	0	o	О	0	0	0	0

FIGURE 3

С								E	ΡK	ROM	1	Αľ)I)	RE	S	3												
н				C	H	AR	AC	TE	R	C	:0	DE	s					LIN POS		Ŋ			EP	ROM	O	UTPT	rr	
R		A1	1	A1	0	A9	A	8	A	\7	A	16	A	5	A	4	АЗ	A2	A1	A0	07	06	05	04 (03	02	01	00
1		0	1	1		0		0	1	Ĺ	()	C)	C	>	o	0	0	0	1	0	0	0	0	0	1	0
	Ī												1				o	O	0	1.	1	0	0	o	0	0	1	O
														•••••			0	0	1	0	1	0	o	0	0	O	1	0
	1	1	1		1	ļ				, ,		••••••		•••••			0	O	1.	1	1	0	O	O	0	0	1	O
	1	1	1														0	1	0	0	1	O	0	О	0	0	1	O
	1											•••••			П		0	1	0	1	1	0	0	0	0	0	1	0
"H	,	<u> </u>	1		1									•••••			0	1.	1	0	1	0	0	0	0	0		0
	1		1	-	T				Ħ								O^	1	1	1	1	1	1	1	1	1	1	O
	1		1	1	T	ļ	П		Ħ	••••		•••••				•••••	1	0	0	0	1	O	0	0	O	0	1	O
	1	1															1.	0	0	1	1	0	O	0	0	0	1	0
			l														1	o	1	o	1	O	0	o	0	0	1	o
	†	1	1	1	1	ļ											1	О	1	1.	1	0	O	O	0	0	1	0
	1			1	T												1	1	o	O	1	0	0	0	0	0	1	0
	1	1	1	1	†												1	1	0	1	1	0	O	0	0	0	1	0
	†	-	†	1	1												1.	1	1.	О	1	o	O	0	0	O	1	O
$ \downarrow$		\downarrow	-	\downarrow			V		V				U	_	V		1	1	1	1	0	0	0	О	o	0	0	0

FIGURE 4

CUSTOM CHARACTER DISPLAY:

The horizontal character pitch (HP) is 8. Also, the inter character space is 1 row horizontally and 1 column vertically. Programming a logic 1 inside the EPROM corresponds to a lighted dot on the LCD panel LM200. It appears as a dark dot on the plain background. A variable resistor is also provided to adjust the contrast ratio. The character display for each of the four characters "K", "A", "S", and "H" is shown in the Figures 5,6,7, and 8 respectively. Observe the display pattern inversion from the corresponding programmed patterns of the EPROM illustrated in the Figures 1,2,3, and 4 of the section 3. The Appendix "B" shows the EPROM font data and its addresses along with a check sum. The Data I/O model 212 Multi Programmer was used for programming the 32K Bytes Hitachi EPROM HNC256AG-15 or 16K Bytes Hitachi EPROM HN27128AG-17. Both the EPROMS were used for generating the same four custom characters defined in the section 3 and displayed in the Figures of the section 4.

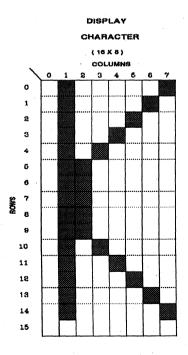
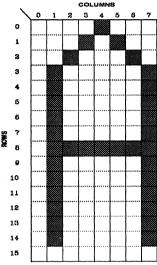



FIGURE 5

DISPLAY

CHARACTER

(16 X 8)

FIGURE 6

DISPLAY

CHARACTER

(16 X 8)

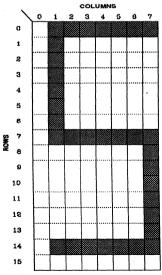


FIGURE 7

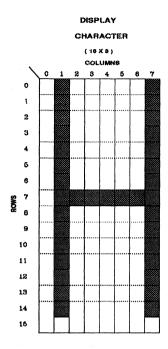
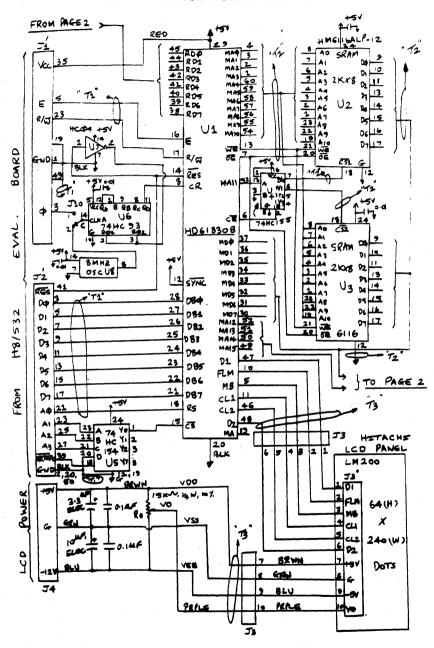
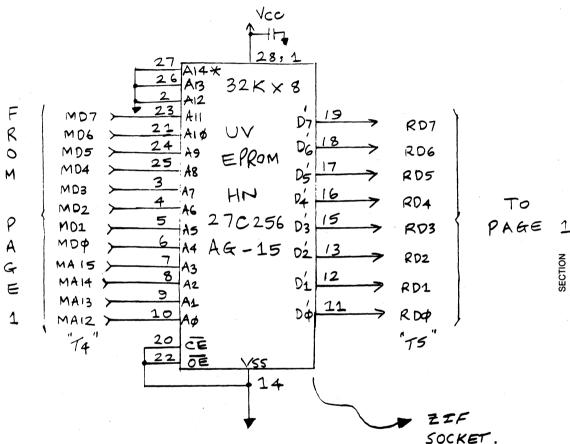



FIGURE 8

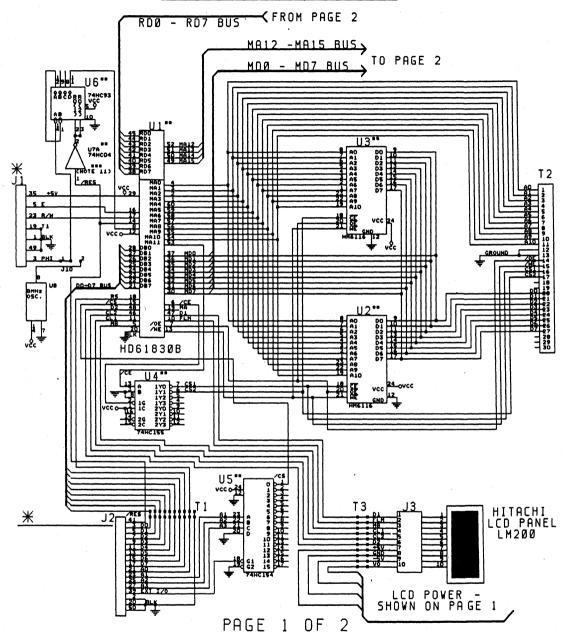
5.0 LCD INTERFACE BOARD SCHEMATIC:

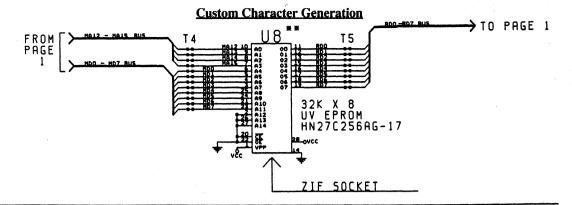

The next two pages show the schematic of the LCD interface board used in custom character generation. The Hitachi UV EPROM HN27C256AG -15 (32KBx8) resident in a ZIF socket was used as a character generator. As an alternate part, EPROM HN27128AG-17 (16KBx8) was also tested for the same application. Also, note that the LCD PANEL LM200 DC power supply (+5V,G, -12V) can also be tied to the H8/532 Evaluation Board power source at **one** point. In such a case, the display contrast resistor may have to be re-adjusted.

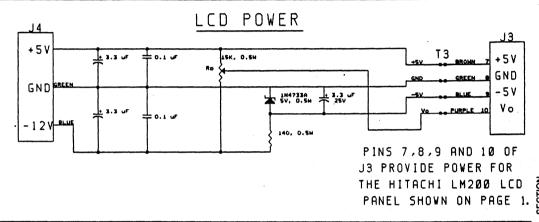
HD61830B/LM200 DESIGN - CUSTOM CHARACTER GENERATION LCD INTERFACE BOARD - SCHEMATIC

90

HD61830B/LM200 DESIGN - CUSTOM CHARACTER GENERATION LCD INTERFACE BOARD - SCHEMATIC




NOTE:


- 1.0 Test Connectors T1,T2, and T3 are for test and debug.
- 2.0 After power on reset, Display is "OFF", Slave Mode "ON", and Hp = 6.

TUTORIAL-PART II

Custom Character Generation—Schematic

NOTES:

- 1.0 Test connectors T1, T2, T3, T4, and T5 are for test and debug.
- 2.0 On H8/325 EVAL. BOARD change "Y1" crystal from 20 MHz to 16 MHz.
- 3.0 Power on reset: Display off, Slave Mode On, and Hp = 6.
- 4.0 Install 28 pin ZIF wire-wrap socket. '
- 5.0 Color code wires.
- 6.0 Decouple VCC pin 28.
- 7.0 Keep wire lengths as short as possible.
- 8.0 For HN27128AG-17 EPROM, A14 (pin 27) is tied to VCC.
- 9.0 \pm J1 and J2 are from H8/532 Evaluation board.
- 10.0 \pm \pm U1 U8 each have a 0.01 uF capacitor between Vcc and ground.
- 11.0 ** ** U7 has ground at pin 7 and Vcc at pin 14.

PAGE 2 OF 2

7.0 SOFTWARE:

The software section covering the HD61830B / LM200 panel design tutorial part I shows I/O address, Busy Flag Varification, Initialization Flow Chart, Code Assembly Procedure while its Appendices show the program listings.

In the tutorial part II, the custom character generation program "XCG.MOT" is listed in the Appendix "A". The Appendix "B" shows the character font patterns loaded in a 32KB EPROM. The "XCG.MOT" program is located at the address 8000H in the H8/532 processor Evaluation Board memory space. After initializing the LCD controller HD61830B, it enables the external character generator. Then clears the screen by writing character code 20H i.e. code for a blank in the LCD display memory. Following a screen clear routine, the character for the four custom character "K","A","S", and "H" are written in the LCD display frame memory. Since the display is memory mapped, the four custom characters get displayed. For more information on the "XCG.MOT" program refer to the Appendix "A". The number of custom characters can be expanded from 4 to 256 with a maximum font size of 16 (Rows) x 8 (columns) only in the character mode. However, for demonstartion purposes only four custom characters were chosen for this tutorial.

For register programming details, refer to the HD61830B data sheet.

The code developed in the Appendix "A" for external character generator program can also be transported to the H8/532 Evaluation Board. It can reside within a HN27512AG -25 EPROM which replaces the HMS V1.2 debugger EPROM located at "U6" on the H8/532 Evaluation Board. In this manner, a stand alone custom character display unit can also be built.

H8/330 Application Note

Listing 2: START.LIS (continued)

```
398
399 program C 00AE F808
400 program C 00B0 3890
                                                  401
*** H8/300 ASSEMBLER
                                          VER 1.1 *** 03/20/91 08:11:20
Buffer Initialization Routine
                                                                                                                                               PAGE
PROGRAM NAME -
                                                  ;main loop
  403 program C 00B2
404 program C 00B2 0180
405
406 program C 00B4 40FC
                                                  main:
                                                            sleep
                                                                                        ,wait for interrupts
                                                            bra
                                                                     main
  407
 408
******TOTAL ERRORS
*****TOTAL WARNINGS
                                                            .end
```

5

Listing 2: START.LIS (continued)

```
;re-initialize buffer pointers
 320 program C 0048 0D56
*** H8/300 ASSEMBLER
                                          mov.w r5,r6
VER 1.1 *** 03/20/91 08:11:20
                                                                                     clear IDP and ODP
PROGRAM NAME -
                                                      Buffer Initialization Routine
 322
                                                 initialize program constants and flags
  324
                                                 ;initialize margin area
  325 program C 004A F410
                                                          mov.b #h'10.r4h
                                                                                     :margin = 16 bytes
                                                 ;initialize flags mov.b #h'15,r41
  327
  328 program C 004C FC15
                                                                                      ; set buf mt, buf init, & on line active
  329
                                                 ;initialize free-running timer for input watchdog timing
  330
  331 program C 004E 79000000
332 program C 0052 6B80FF92
                                                                                      reset counter
                                                          mov.w r0.Afrt fro
 334 program C 0056 F801
335 program C 0058 3891
                                                          mov.b
                                                                   #1.r01
                                                                   rol, @frt_tcsr ; clear counter on match a
                                                          mov.b
 337 program C 005A F800
338 program C 005C 3896
                                                          mov.h
                                                                   40 -01
                                                                   r01, @frt tcr ;use phi/2
                                                          mov.b
 340 program C 005E 790001F4
341 program C 0062 6B80FF94
                                                          mov. w
                                                                   #500. r0
                                                                   r0, @frt_ocra
                                                                                   set count for 100 used
                                                          mov.w
  342
                                                 initialize multi-function timer 0 for output strobe generation
  343
  344 program C 0066 F801
  345 program C 0068 38C8
                                                                  r01, @tmr0_tcr ; use phi/8, no interrupts
                                                          mov.b
  346
  347 program C 006A F800
                                                          mov.b
                                                                   #0.r01
                                                                   r01,@tmr0 tcsr ;negative strobe
  348 program C 006C 38C9
                                                          mov.b
  350 program C 006E F800
351 program C 0070 38CC
                                                          mov.b
                                                                   #0,r01
                                                                   r01.#tmr0 tcnt :clear counter
                                                          mov.b
  353 program C 0072 F802
                                                          mov.b
                                                                   #2,r01
  354 program C 0074 38CB
355 program C 0076 F805
356 program C 0078 38CA
                                                                   r01, @tmr0_tcorb
                                                          mov.b
                                                                   r01, @tmr0 tcora ; generate strobe 2.4 usec wide
                                                          mov.b
  358
                                                 ;initialize multi-function timer 1 for initialization timing
  359 program C 007A F801
360 program C 007C 38D0
                                                          mov.b
                                                                   r01,@tmr1 tcr ;use phi/8, no interrupt
  361
  362 program C 007E F806
                                                          mov.b
                                                                   #6, r01
  363 program C 0080 38D1
                                                                   r01, @tmrl_tcsr ; negative strobe
  364
  365 program C 0082 F800
366 program C 0084 38D4
                                                          mov.b
                                                          mov.b
                                                                   r01,@tmr1_tcnt ;set counter to 0
  367
  368 program C 0086 F802
                                                          mov.b
  369 program C 0088 38D3
370 program C 008A F834
371 program C 008C 38D2
                                                                   r01,@tmr1_tcorb
                                                          mov.b
                                                          mov.b
                                                                   r01, @tmrl_tcora :generate strobe 40 usec wide
  372
                                                ;initialize interrupt structure
  373
  374 program C 008E F807
                                                          mov.b #7,r01
                                                                                     ; set maskable interrupts
  375 program C 0090 38C6
376 program C 0092 38C7
377 program C 0094 0700
                                                                                     ; for falling edge
                                                          mov.b
                                                                  r01, @iscr
r01, @ier
                                                          mov.b
                                                                                     ; enable maskable interrupts
                                                          ldc
                                                                    #h'00,ccr
                                                                                     global interrupt enable
  378
                                                 ; enable init pulse timer
  380 program C 0096 F800
381 program C 0098 38D4
                                                          mov.b #0,r01
mov.b r01,@tmr1 tcnt :reset init pulse count
  383 program C 009A F841
                                                          mov.b #h'41,r01
  384 program C 009C 38D0
                                                          mov.b r01, @tmr1 tcr ;use phi/8, interrupt on match a
  385
                                                 ;test for initialization complete
                                                 init_loop:
    btst.b #buf_init_flag,r41
  387 program C 009E
  388 program C 009E 732C
389 program C 00A0 46FC
                                                                                               ;init done ?
                                                           bne
                                                                   init_loop
  391
                                                 ;enable input handshaking
  392 program C 00A2 7FB27240
                                                           bclr.b #ibusy_bit,@in_hs
                                                                                               release input busy signal
                                                  ; set status indicators
  394
  395 program C 00A6 7FB27200
396 program C 00AA 7FB27210
```

Listing 2: START.LIS

```
*** H8/300 ASSEMBLER
                                      VER 1.1 ***
                                                    03/20/91 08:11:20
                                                                                                                                PAGE
                                                                                                                                         1
PROGRAM NAME -
                                                  Buffer Initialization Routine
                                                      .heading
                                                                       "Buffer Initialization Routine"
                                             :H8/330 Print Buffer Routine
                                             revision 2.0
                                             :written by:
                                                      Tom Hampton
                                                      Hitachi America, Ltd.
                                                      Application Engineering
   10
                                                      .output
  248
                                                                       dba.ob1
                                                      .print
 250
 251
                                                      .global
                                                                       start
  253 program C 0000
                                                      section
                                                                      program, code
 255
                                             initialization routines:
 256 program C 0000
                                             start:
 258
                                             ;initialize stack pointer
 259 program C 0000 7907FF80
                                                     mov.w ' #top ram,r7
                                                                               ;set SP to top of ram
                                             ;initialize input handshake and status indicators
 261
  262 program C 0004 F8FF
                                                     mov.b #h'ff,r01
mov.b r01,@pl_dr
                                                                               ;set IBUSY active to keep
 263 program C 0006 38B2
                                                                               ; istb interrupts inactive ;clear LEDs
  264
  265 program C 0008 38B0
                                                     mov.b r01, ep1 ddr
                                                                               ; set port as outputs
  266
  267
                                             ;initialize Memory Control Port
  268 program C 000A 38BA
                                                     mov.b r01,@p5_dr
mov.b r01,@p5_ddr
                                                                               ;set WE\, CS1\, & CS0\ inactive
  269 program C 000C 38B8
                                                                               set pins as outputs
  270
  271
                                             ;initialize Memory Address Bus
                                                     mov.b r01,@p3_dr
mov.b r01,@p8_dr
  272 program C 000E 38B6
  273 program C 0010 38BF
                                                                               ; set buffer address as FFFF
 274 program C 0012 38B4
275 program C 0014 38BD
                                                      mov.b
                                                              r01, 8p3 ddr
                                                                               ; set ports as outputs
                                                     mov.b
                                                             r01. ep8 ddr
  277
                                             ;initialize Output Data Port
 278 program C 0016 3889
                                                                               ; set port as output
                                                     mov.b
                                                              r01.ep6 ddr
                                             ;initialize Input Port Controls and Pause
  280
                                                                               turn-on MOS Pull-Ups
  281 program C 0018 38C1
                                                      mov.b
                                                              r01,@p9_dr
 283
                                             ;initialize Output Port Controls
 284 program C 001A F813
                                                     mov.b
                                                              #h'13,r01
  285 program C 001C 38B7
                                                      mov.b
                                                              r01, @p4_dr
                                                                               ;set OINIT\ active and OSTB\ inactive
 286 program C 001E F812
287 program C 0020 38B5
                                                     mov.b
                                                              #h'12.r01
                                                                               :set port as follows:
                                                     mov.b
                                                              r01, ep4_ddr
                                                                               ; Bit 4 as output (OINIT)
 288
                                                                               ; Bit 1 as output (OSTB\)
                                                                               ; Bit 0 as input (OBUSY), MOS Pull-Up active
 289
  290
 291
                                             ;initialize memory buffer
  292 program C 0022 F8FF
                                                              write, rol
                                                     mov.b
  293 program C 0024 38B1
                                                              r01,@mem_dir
                                                                               ; set memory data port as output
                                                      mov.b
                                                                               clearing value; buffer pointer
  294 program C 0026 F800
                                                      mov.b
                                                              #0,r01
 295 program C 0028 79050000
296 program C 002C 38B3
                                                              #0,r5
                                                     mov.w
                                                                               ; set data
                                                      mov.b
                                                              r01,@mem_data
  297
  298 program C 002E
                                             clear_buffer:
  299
                                             ;clear buffer location
                                                              r51,@addr_lo
  300 program C 002E 3DB6
                                                     mov.b
              C 0030 35BF
                                                              r5h,@addr_hi
                                                                               ;set address
  301 program
  302 program C 0032 4B04
                                                     bmi
                                                              wr_csl
                                             wr cs0:
  303 program C 0034
  304 program
               C 0034 F802
                                                      mov.b
                                                              #wrcs0,r01
                                                                               ;write to chip 0
  305 program
              C 0036 4002
                                                      bra
                                                               wr_cont
               C 0038
                                             wr csl:
  306 program
  307 program
               C 0038 F801
                                                      mov.b
                                                              #wrcs1,r01
                                                                               ;write to chip 1
  308 program
               C 003A
                                             wr_cont:
  309 program C 003A 38BA
                                                      mov.b
                                                              r01,@mem_ctrl
                                                                               ;activate write pulse
               C 003C F807
                                                               #7,r01
  310 program
  311 program C 003E 38BA
                                                      mov.b
                                                              r01,@mem_ctrl
                                                                               ;de-activate write pulse
  312
                                              ;increment buffer pointer
  314 program C 0040 8D01
                                                      add.b
                                                             #1,r51
  315 program C 0042 44EA
                                                      bcc
                                                               clear buffer
                                                                               ;loop until buffer cleared
  316 program C 0044 8501
                                                      add.b
                                                               #1,r5h
  317 program C 0046 44E6
                                                      bcc
                                                               clear_buffer
                                                                               :loop until buffer cleared
  318
```

Listing 1: BUFFER.LIS

GRAM NAME	Semblei —	•	 1.1 *** Ve	03/20/91 08:11: ctor Table Defi			P
1				.heading	"Vecto	r Table Definitions"	
2			;H8/330	Print Buffer R	outine		
4			revisi;	on 2.0			
5			;writte	n bv:			
7			,	Tom Hampton			
8			,	Hitachi Americ	a, Ltd.		
9			;	Application En	gineerin	3	
10							
18				.output	dbg, ob		
19				.print	nocref	nosct	
50							
51				.global	start	to a constant to the state of t	
52				.global		_int,pause_int,input_int,iinit_int	
3				.global	output	_int,ostb_int,oinit_int	
54	D 855					data logato-0	
55 vector	D 000			.section	vector	,data,locate=0	
56 57			·vector	table initiali	zation		
5 / 5 8			, vector	. capte initiali	racton		
9 vector	D 000	10		.org 0		,	
0 vector		0 0000		.data.w start		reset vector	
51	5 000			.uetu.u start		,	
2 vector	D 000	6		.org nmi ve	c		
3 vector		6 0000		.data.w iinit		input init strobe detect	
54				-			
55 vector	D 000	8		.org irq0_v	ec		
66 vector	D 000	8 0000		.data.w online		online pushbutton detect	
57					-	· ·	
68 vector	D 000	A		.org irq1_v	ec		
9 vector	D 000	A 0000		.data.w pause_	int	; pause pushbutton detect	
70				_			
71 vector	D 000			.org irq2_v			
2 vector	D 000	C 0000		.data.w input_	int	;input strobe detect	
73		2.0					
74 vector	D 002			.org ocia_v			
75 vector	D 002	0 0000		.data.w output	_int	output service request	
76						*	
77 vector	D 002			.org cmi0a_			
78 vector	D 002	6 0000		.data.w ostb_i	nt	output data strobe generator	
79	D 000						
0 vector	D 002	C 0000		.org cmila_		output init strobe generator	
1 vector	D 002	0000		.data.w oinit_	1116	toucher rute scrops daugracor	
33				.end			
****TOTAL	PDD008						
	とれいれる	U					

H8/330

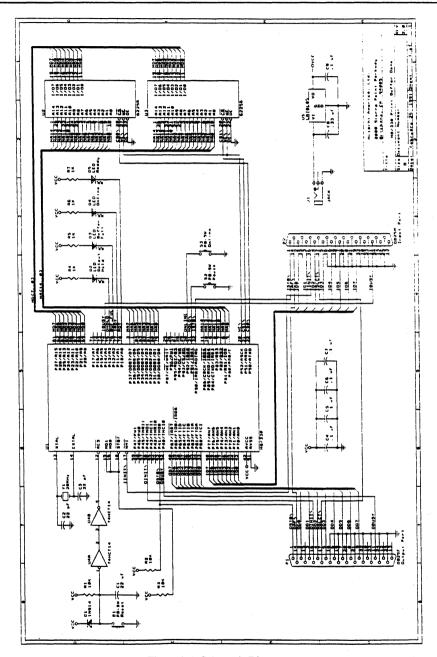


Figure A-1: Schematic Diagram

H8/330

Application Note

APPENDIX A

TABLE OF CONTENTS

Figure A	4-1 :	Print Buffer Schematic Diagram	
Listing	1:	Vector initialization	BUFFER.LIS
Listing	2:	Buffer initialization	START.LIS
Listing	3:	Input strobe service routine	INPUT.LIS
Listing	4:	Output service routine	OUTPUT.LIS
Listing	5:	Output data strobe service routine	OUT-STB.LIS
Listing	6:	Input initialization pulse service routine	IN-INIT.LIS
Listing	7:	Output initialization pulse service routine	OUT-INIT.LIS
Listing	8:	"Online" pushbutton service routine	ONLINE.LIS
Listing	9:	"Pause" pushbutton service routine	PAUSE.LIS
Listing	10:	Print buffer design equates	BUFFER.INC
Listing	11:	H8/330 equates	H8330.INC

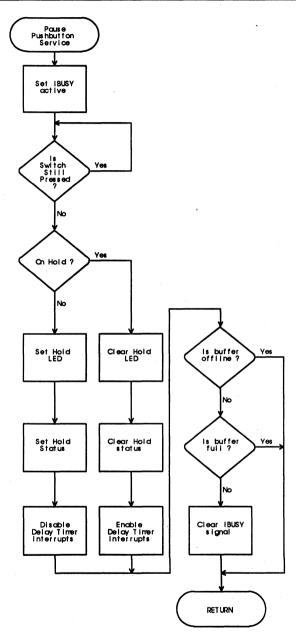


Figure 9: Pause Pushbutton Service Routine

PAUSE PUSHBUTTON SERVICE ROUTINE

This routine executes whenever the "Pause" pushbutton is pressed. Whenever this button is pressed, an interrupt request is generated that allows the software to control the ability of the print buffer to output any input data to the printer. This would be very similar to having pressed the "Online" pushbutton at the printer itself.

If the print buffer output is currently active when this pushbutton is pressed, then this routine will make it inactive. This is done by setting the "output hold" status flag and disabling input watchdog interrupts.

If the print buffer output is currently inactive when this pushbutton is pressed, then this routine will make it active. This is done by resetting the "output hold" status flag and enabling input watchdog interrupts. For a flow chart of this service routine, refer to Figure 9.

CONCLUSION

While this example does not use all of the peripheral features of the H8/330, it does provide examples of programming for both timers and I/O ports, as well as features of the individual I/O ports. Also included are methods for initializing the interrupts structure of the H8/330. Enhancements can most certainly be made to this example by doing some rearranging of the I/O port choices. A serial input or output option can be made by using the onchip SCI and moving the memory buffer control functions to another I/O port. More memory could be added by using more I/O bits from another port to expand the address field. This would also required a little extra address manipulation in determining buffer conditions, but it is achievable.

Figure 8: Online Pushbutton Service Routine

Online Pushbutton Service Routine

This routine executes whenever the "Online" pushbutton is pressed. Whenever this button is pressed, an interrupt request is generated that allows the software to control the ability of the print buffer to accept any input data. To inhibit input interrupts from being requested, the IBUSY signal is set active during the processing of this routine.

If the print buffer is currently online when this pushbutton is pressed, then this routine will take it off-line. This is done by resetting the "online" status flag and disabling input strobe interrupts. The \overline{ISTB} interrupt itself is disabled as well as the IBUSY signal left active so that the sending device has an indication that the buffer is now "off-line."

If the print buffer is currently off-line when this pushbutton is pressed, then this routine will take it online. This is done by setting the "online" status flag and enabling input strobe

interrupts. The ISTB interrupt itself is enabled as well as the IBUSY signal made inactive so that the sending device has an indication that the buffer is now "online." For a flow chart of this service routine, refer to Figure 8.

H8/330 Application Note

accept such data. If no data is in the buffer or the printer is not ready to accept the buffered data, this routine merely resets the input watchdog timer and checks to determine if the IBUSY signal should be activated before returning to the main program.

If there is data in the buffer and the printer is ready to accept the data, then this routine goes through the process of getting the data from the buffer and sending it to the output parallel port. In getting the data from the memory buffer, this routine must change the direction of the memory buffer's data bus to be input as well as set the address bus with the output data pointer. The proper $\overline{\text{CS}}$ signal is then generated in order to "read" the data to be output. That data is moved to the output parallel port and the multi-function timer that generates the output strobe ($\overline{\text{CSTB}}$) is enabled. The H8/330 then goes to "sleep" until the output strobe interrupt occurs.

After returning from the output strobe interrupt routine, the data output service routine has to determine whether or not the memory buffer is in a either the "empty" or "full" condition. If the buffer is in the empty condition, then this routine sets the "buffer empty" flag, deactivates the IBUSY signal, and resets the input watchdog timer in completing its operations. If the buffer is not "empty," then this routine must determine whether or not the buffer is in the "full" condition. If the buffer is in a "full" condition, then this routine just resets the input

watchdog timer and completes its service with the IBUSY signal still being set. If the buffer is not in the "full" condition, then the routine clears the "buffer full" flag, deactivates the IBUSY signal, and resets the input watchdog timer in completing its operations.

OUTPUT STROBE SERVICE ROUTINE

During the execution of the data output service routine, one of the 8-bit multi-function timers is programmed to generate the OSTB signal, and also an interrupt on the trailing edge of that strobe. During this service routine, this timer is programmed not to generate any more interrupts and also to keep its output at a high level

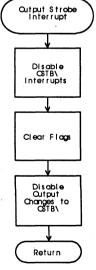
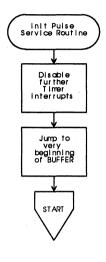
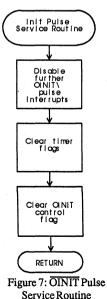



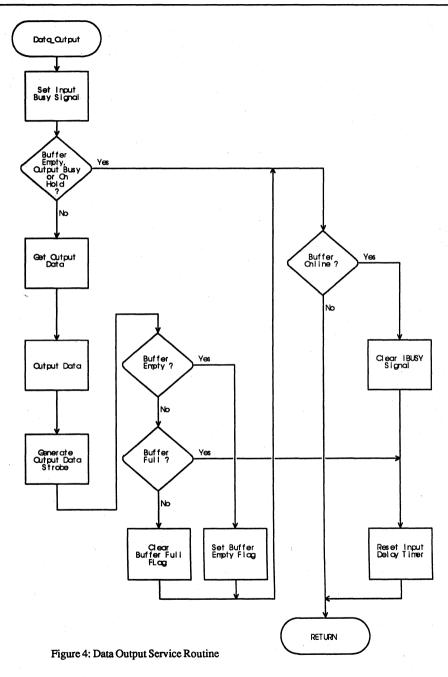
Figure 5: Output Strobe Service Routine

(thus generating no more strobes). Execution then returns to the data output service routine. For a flow chart of this service routine, refer to Figure 5.


INPUT INIT PULSE SERVICE ROUTINE

The input INIT pulse (IINIT) signal is connected directly to the NMI input of the H8/330. Whenever the sending device sets this signal active, the print buffer will disable all timers from generating any of their interrupts. It then restarts the software just as if the reset pushbutton had been pressed. This allows the sending device to control the reset of the buffer and printer through its hardware signal. It does not interfere with any software reset commands sent directly to the printer. For a flow chart of this service routine, refer to Figure 6.

Figure 6: IINIT Pulse Service Routine


OUTPUT INIT PULSE SERVICE ROUTINE

During the execution of the main routine, one of the 8-bit multifunction timers is programmed to generate the OINIT signal, and also an interrupt on the trailing edge of that strobe. During this service routine, this timer is programmed not to generate any more interrupts and also to keep its output at a high level (thus generating no more strobes). The routine also clears the "oinit" status bit so that the main routine can complete it operation. For a flow chart of this service routine, refer to Figure 7.

HITACHI

58

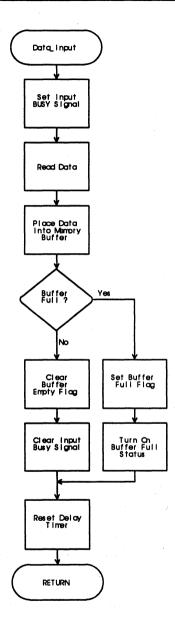


Figure 3: Data Input Service Routine

Now we can enable the second 8-bit multi-function timer to generate the \overline{OINIT} signal and also the interrupts. Here we wait in a loop until the "oinit" status bit has been cleared to indicate that the pulse has occurred. Now we clear out the IBUSY signal so that input data strobes can occur, and set the status indicators to show that the print buffer is "online" and "ready."

The last thing we do in the main routine is to enable the input watchdog timer so that its interrupts can be generated.

DATA INPUT SERVICE ROUTINE

The input data strobe (\overline{ISTB}) is input to the H8/330 as the lowest level maskable interrupt. Whenever the falling edge of the \overline{ISTB} signal is detected, the H8/330 goes through the process of inputting data from the parallel port and placing into the print buffer. For a flow chart of this service routine, refer to Figure 3. In order to keep further \overline{ISTB} interrupts from occurring before the print buffer is ready to accept them, this routine first sets the IBUSY signal active before it can do anything else. It then goes through the process of getting the data and writing it to the memory buffer.

A separate pointer is maintained for the input position of the buffer. This position is checked against the output data pointer to determine when the buffer is to full to accept any more data. As long as the buffer is not full, the "buffer empty" flag is cleared, the input watchdog timer is reset, and the IBUSY signal is deactivated. This would complete this service routine. If the memory buffer is determined to be full, then the "buffer full" flag is set, the "Buffer Full" status indicator is "turned on," and the service routine completes with the IBUSY signal remaining active after resetting the input watchdog timer. This inhibits further input strobe interrupts from occurring until the buffer has been emptied of some of its data.

DATA OUTPUT SERVICE ROUTINE

One of the timers is initialized such that it will generate an interrupt to the H8/330 if no input or output activity takes place within 100 µsec. Both the data input and data output service routines reset this counter in order to keep both activities going. For a flow chart of this service routine, refer to Figure 4. To ensure that no input data requests are generated while the output service is taking place, this routine also sets the IBUSY signal active immediately.

Since a timer generated this request rather the printer itself, this routine must determine whether or not there is data in the buffer to be output and whether or not the printer is ready to could possibly be requested before the H8/330 is initialized [except for NMI (IINIT), which performs the same function as a reset], we can now go about the business of initializing the H8/330 without worrying about missing a request for buffering.

At this point, we go through the process of initializing all of the I/O ports for proper usage. Since all of the I/O ports of the H8/330 are initialized as input ports at reset, we must go through each port and setup both direction and functions.

I/O Port 1 is used for two functions; status indication and input busy (IBUSY) signal control. All of these signals are outputs. The initial status for outputs on this port should be all high. This "turns" the LEDs off and sets the IBUSY signal active. To ensure that this happens as soon as the port is programmed for output function, we write to the data register prior to setting the direction.

The second set of ports we initialize are for the memory buffer. In order to make sure that the memory is inactive when we program the ports, we write to the I/O port (Port 5) used for the control signals to make the \overline{WE} and \overline{CS} signals inactive when the direction is changed to outputs. We are then able to program the I/O ports to be used as the address bus. Both of these ports (Port 3 and Port 8) are to be used as outputs. The only other port used in connection with the memory buffer is for data access. Since this port will be used bidirectionally, the direction will be programmed as we need to use it.

We can now program the ports that we intend to use for the parallel input and output ports. Since we have chosen Port 7 for the input port, no direction programming is necessary because Port 7 is input only anyway. Port 6 is used for the output parallel ports o its direction must be changed. Port 9 is used for control over both the input and output parallel ports. The signals involved here are the input strobe (ISTB) and the two control panel switches for online and output hold. Since all three of these signals are inputs, no direction change is required. We can, however, use the internal MOS pull-up feature of the port so that external resistors are not needed. To control this feature, we can write to the port data register with "1s" to enable the pull-ups (this feature is available only with port bits that are inputs).

Port 4 is used for control signals directly affecting the output parallel port. These signals include the output strobe (OSTB), output busy (OBUSY), and output initialization (OINIT). Since the OBUSY signal is an input while the other two signals are outputs, we must program this port for a mixture of input and output lines. Initially, we would like to ensure that the OSTB signal is inactive while the OINIT is active (to make

certain that the printer itself gets reset) and to enable the MOS pull-up on the OBUSY signal. To do this we program the data register of the port with the value H'13 before programming the direction of the port. For setting up bits 4 and 1 as outputs while bit 0 is an input, we must program the direction register with the value H'12.

At this point in the main routine we finally come to where we get to use the I/O ports for controlling the memory buffer. We use this opportunity to clear the memory buffer contents. In performing this operation, we must first set the I/O port used for the data bus to the output direction. We can then setup the ports used for the memory address with a valid address as well as the data port with the clearing value to be written. Next we write to the I/O port used for the control signals to activate the $\overline{\rm WE}$ and correct $\overline{\rm CS}$ signal. Since were are using different instructions to set and clear these bits, we can immediately deactivate the signals after having activated them. This sequence provides plenty of time for proper SRAM operation. This function is positioned inside a loop that executes until the entire buffer has been cleared.

We are now at a position where we can set the program constants and operation flags, as well as initializing the timers for their uses. The 16-bit free-running timer is used for watching input activity. This timer is programmed to generate an interrupt every 100 usec, but this occurs only if it is not reset in a service routine. One of the 8-bit multi-function timers is used to generate the output data strobe. This timer is programmed to generate a negative-going strobe that is 2.4 usec in width, and an interrupt on the trailing edge of that pulse. Since we don't want to generate the strobe at this time, the timer output is programmed to remain at a high level with no interrupts generated. We control the output level during the output service routine. The second 8-bit multi-function timer is used to generate the output initialization (OINIT) pulse. This timer is programmed to generate a negative-going strobe that is 40 usec in width, and an interrupt on the trailing edge of that pulse. Again, we do not wish to generate the strobe right now so the timer output is programmed to remain at a high level with no interrupts generated. We will generate the strobe right after we initialize the interrupt structure.

The interrupt structure must be setup to handle three (3) external interrupts and also for those external interrupts generated by the falling edge of a signal. For the external interrupts, this is accomplished by programming the Interrupt Sense Control Register (ISCR) for edge selection prior to programming the Interrupt Enable Register (IER). The interrupt mask is then released in the Condition Codes Register (CCR) of the H8/330 in order to enable all interrupts.

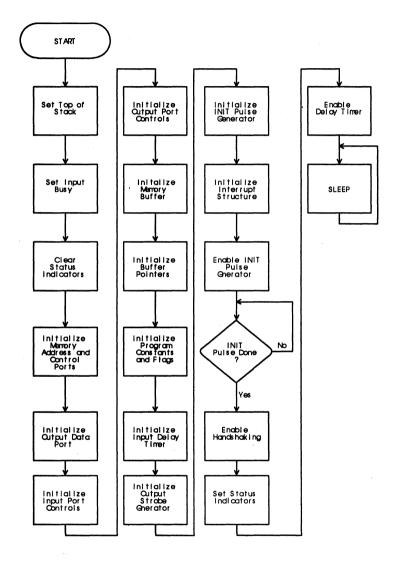


Figure 2: Main Routine

Three of the on-chip timers are used for strobe generation and event monitoring. One of the 8-bit multi-function timers is used to generate an output data strobe while the second multifunction timer is used to generate an output printer initialization strobe. Since the multi-function timers can control both of these outputs directly. Port 4 was used for this function. The 16-bit free-running timer is used for event monitoring; its function is basically that of a watchdog timer. This timer is started and allowed to run continuously until an input service is requested. During the service of the input interrupt request, this timer is reset. If the timer is allowed to overflow, then the software assumes that there was no input activity and will check to determine if any output service can be performed. This timer is also reset during the output service routine. The interrupt generated by this timer is used internally only and not brought out to the rest of the system.

MEMORY BUFFER

The interface to the memory buffer requires fifteen (15) lines for address (32K), eight (8) lines for data access, two (2) lines for chip selection, and one (1) line for write control. Since the memory devices draw the most power when they are chip selected, it was unnecessary to use an I/O line to control the output enables. These lines were left tied to ground so that they would always be active. In this manner, the chip select (CS_n) signal activate the appropriate memory device and keep power consumption to a minimum. I/O Port 5 happens to be a 3-bit port and is ideal for use for the three control signals.

Since Port 8 is already a 7-bit port, it was convenient to use it for the most significant portion $(MA_{14}-MA_8)$ of the address bus. Two more 8-bit ports are required to complete the address bus as well as the data access bus. Since only two full 8-bit ports remained, we used Port 2 for the data bus (MD_7-MD_0) and Port 3 for the least significant byte (MA_7-MA_0) of the address bus.

SOFTWARE

The print buffer software basically consists of eight separate routines.

- The main routine performs initialization of the I/O ports, timers, and the memory buffer as well as the generation of an initialization pulse for the printer attached to the buffer.
- The input strobe (ISTB) service routine is responsible for placing data from the input data port into the memory buffer. This routine has the lowest priority of

- all the external interrupt routines, but does take precedence over all internal interrupts.
- 3. The output service routine is responsible for placing data from the memory buffer out to the output port. This routine is allowed to occur only when no other higher priority activity (IINIT, ISTB, or control panel switch press) has requested service within 100 µsec. This routine is also responsible for generating the output data strobe (OSTB).
- The output strobe service routine takes care of disabling the multi-function timer from generating further output strobes (OSTB) as requested by the output service routine.
- 5. The input initialization (IINIT) service routine provides a means by which the sending device can reset the print buffer as well as the printer connected to it. This includes generation of an output initialization strobe (OINIT) as well as initializing the print buffer
- The initialization strobe routine takes care of disabling the multi-function timer from generating further output initialization strobes (OINIT) as requested by the input initialization service routine.
- 7. The online pushbutton service routine monitors an external switch which allows the user control over whether or not to allow data to be input to the print buffer. This performs a function similar to a printer's "online" switch.
- 8. The pause pushbutton service routine also monitor an external switch. This routine allows the user control over allowing the data in the memory buffer to be output to the printer. This would be useful in instances where the printer's "online" switch might not be readily accessible.

Complete source listings for each routine, as well as supporting files, can be foundin Appendix A.

MAIN ROUTINE

This routine performs the function of initializing the print buffer for operation. For a flow chart of its sequence, please refer to Figure 2. Inorder to prevent any interrupts from being requested by the input port, the main routine sets the IBUSY signal active. By setting this signal active, the sending device is inhibited from generating any strobe (ISTB) signals to the print buffer. Since the ISTB interrupt is the only interrupt that

H8/330 Application Note

DESIGN CONSIDERATIONS

One of the main considerations in the demo design was to keep the parts count to a minimum. This meant that we would have to use the features of the H8/330 wherever possible rather than an external device. A simple block diagram of the print buffer is shown in Figure 1.

The required parts had to consist of the H8/330 and some memory chips. We chose to use two (2) HM62256 SRAMs (32Kx8) to provide us with a 64K byte buffer. In order to clean up the power-on reset circuitry, we chose to add a 74HC14 although it probably wasn't necessary. This kept our parts count to only four ICs.

We also wanted to have some control over the operation of this print buffer. For this reason, three (3) switches were added to provide for an external reset, a means of taking the buffer "offline" (just as if it were a printer), and a means of halting the buffer's output. We also wanted to have an indication of this control, so four (4) LEDs were added to indicate the status of the buffer.

You will find a complete schematic of the H8/330 Print Buffer in Appendix A (Figure A-1). You may want to refer to this schematic as we discuss our decisions for devices and I/O port usage.

I/O PORT USAGE

In the expanded modes of operation, the H8/330 has the capability of directly addressing external memory through the use of twenty-seven (27) of its I/O lines. We could have used one of these modes of operation, but that would limit the size of our storage buffer to considerably less than 64K bytes. Also, in these modes of operation, the only two ports on the H8/330 that have the capability to drive LEDs directly also serve as the external address bus. In order not to require the use of an external device to drive LEDs, and also to allow a large storage buffer (we chose 64K bytes for simplicity), the single-chip mode of operation was used. This forces us to use individual I/O ports to control buffers addressing, memory control, and data access. We are, however, not losing the use of any I/O lines because of this.

STATUS DISPLAY

In this design, we have four (4) LEDs that are used to display the status of the print buffer. These status indicators include Ready, Online, Buffer Full, and Output Hold. Since only ports 1 and 2 have the capability of driving LEDs directly, neither could be used to address the external memory buffer. Port 1 was chosen to indicate the status.

CONTROL PANEL

Also in this design, we have two (2) switches which are used to provide user control over the actions of the print buffer. These two switches allow the user to halt (or restart) the buffer's output, and take the print buffer on-line or off-line. Since continual polling of these switches would take too much time out of the spooling action, it was decided to use external interrupts as the switch inputs. This meant that Port 9 would be used for this function. I was also convenient since Port 9 has internal MOS pull-up resistors, thus keeping with our constraint of minimizing the parts counts.

The third switch of the control panel controls a hardware reset to the print buffer in the event that the user wishes to reset the buffer during its normal operation.

PARALLEL INPUT AND OUTPUT

Since this print buffer is parallel-in and parallel-out, three (3) 8-bit ports are required to allow for this interface (data plus handshake). The A/D converter of the H8/330 is not being utilized for this application so I/O Port 7 is ideal for the parallel input port (since it happens to be an input only port anyway). Also, since no other external interrupts are required and the free-running timer interrupt is internal only, I/O Port 6 is an ideal selection for the parallel output port.

Additionally, three control signals ($\overline{\text{INIT}}$, $\overline{\text{STB}}$, and BUSY) from both the input and output ports are necessary for proper operation.

The INIT strobe (IINIT) from the input port is fed directly to the NMI input of the H8/330. When the personal computer generates this strobe, it is an indication that the system hardware wishes to reset the printer. For this reason, this event takes precedence over all others. When this occurs, the print buffer will generate an INIT pulse (OINIT) for the output port to reset the printer. This pulse is also generated during the initialization sequence of the print buffer.

The input STB signal (ISTB) is accepted as a maskable interrupt to Port 9. This strobe has the lowest priority of all maskable external interrupts in order to ensure that the initialization pulse and the switch press interrupts take precedence. This event causes the generation of the input BUSY signal (IBUSY) so that no other input STBs can occur until the data is properly buffered.

H8/330

Application Note

Parallel-to-Parallel Print Buffer Controller

Tom Hampton

INTRODUCTION

The HD6473308 (H8/330) is a highly integrated 8-bit micro-computing unit. Along with a central processing unit utilizing a reduced instruction set designed for speed, the H8/330 incorporates several system peripheral devices and memory onto a singlechip. These on-chip functions include 16K bytes of ROM or EPROM, 512 bytes of RAM, 15 bytes of dual-port RAM, 5 timers, a UART channel, 8 channels of A/D conversion, and 9 I/O Ports.

These features allow the H8/330 to be used in many applications; a print buffer is merely one of the vast possibilities. In this application, we are able to examine the usage of several of the on-chip peripherals as well as I/O ports and interrupt control. While this application does not use all of the peripheral features of the H8/330, it does provide programming examples for many of the peripherals as well as the CPU itself.

Three of the on-chip timers are used to control such events as strobe generation for both output data and printer initialization, and also for event monitoring. This is accomplished through the exception processing features of the H8/330. Four external interrupts are utilized to monitor input data strobes, input initialization strobes, and pushbutton (control panel) events.

In order to maximize the external memory addressing capabilities for this application, the H8/330 device is used in the single-chip mode of operation. In this mode, many of the I/O ports are used to control the memory buffer itself as well as for status displays. One of the I/O ports is even used for a bidirectional data bus even though the H8/330 does not have that feature directly.

Even though this application uses very little on-chip memory (less than 512 bytes of ROM and less than 20 bytes of RAM), the on-chip memory capabilities of the H8/330 provide enough room for code and data storage required by most applications.

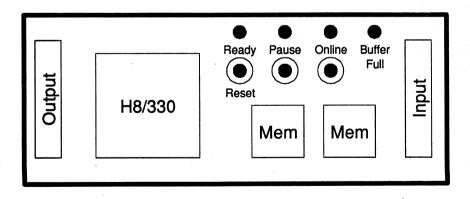


Figure 1: Buffer Block Diagram

PAGE

1

SECTION

Listing 1: 16x16 Multiply Routine

```
*** H8/300 ASSEMBLER
                                         VER 1.1 *** 05/01/91 12:20:11
PROGRAM NAME -
                                                ;H8/300 CPU 16x16 Multiply Routine
                                                :This routine uses strictly registers to maintain all
                                                storage facilities and for calculation.
                                                ;Register Usage
                                                             R1 = Multiplier
                                                         R2 - Multiplier
R2 - Multiplicand
R3,R4 - Temporary Result
R5 - Temporary Storage
   10
11
                                                 ;Exit:
   13
                                                             R1 - Result, LSW
   14
                                                             R2 - Result, MSW
   16
17
                                                 :Pictorial Description:
   18
                                                                   R1H
                                                                            RIL
                                                                       R2L*R1L
                                                                   R2H*R1T
                                                               R2L*R1H
   23
24
                                                          R2H*R1H
                                                          -- RESULT --
   26
27 P
                C 0000
                                                mult16:
                 C 0000 79040000
                                                                                      clear result register;
                                                 step1:
   29 P
                 C 0004 0D25
                                                          mov.w
                                                                   r2. r5
                                                                                      ; save multiplicand
   30
                 C 0006 5092
                                                                   r11, r2
                                                                                      ;multiplier(L) x multiplicand(L)
   32 P
                C 0008 0D23
                                                          mov. w
                                                                                              R3 <- R2L*R1L
   33
   34 P
                C 000A 0C5A
                                                 step3:
                                                         mov.b
                                                                   r5h, r21
                                                                                      ; retrieve multiplicand(H)
   35
   36 P
                 C 000C 5092
                                                 step4:
                                                         mulxu
                                                                   r11, r2
                                                                                      ; multiplier (L) x multiplicand (H)
                C 000E 08A3
                                                                                              R3H <- R3H + (R2H*R1L)L
R4L <- (R2H*R1L)H + CY
   37 P
                                                          add.b
                                                                   r21, r3h
   38 P
39
40 P
                                                          addx
                                                                   r2h, r41
                                                                                      retrieve multiplicand
                C 0012 0D52
                                                step5: mov.w
                                                                   r5.r2
   41
                C 0014 5012
                                                         mulxu
                                                                   rlh,r2
                                                                                      ; multiplier (H) x multiplicand (L)
                                                                                              R3H <- R3H + (R2L*R1H)L
R4L <- R4L + (R2L*R1H)H + CY
   43 P
                C 0016 08A3
C 0018 0E2C
                                                          add.b
                                                                   r21, r3h
                                                                                      :3.
   44 P
                                                          addx
                                                                   r2h, r41
                 C 001A 9400
                                                          addx
                                                                   #0, r4h
   46
   47 P
                                                 step7: mov.b
                                                                   r5h, r21
                                                                                      ;retrieve multiplicand(H)
   48
                C 001E 5012
   49 P
                                                         mulxu
                                                                   rlh.r2
                                                                   r4, r2
                                                                                             R2 <- R4 + (R2H*R1H)
   51 P
                C 0022 0D31
                                                          mov.w
                                                                   r3, r1
                                                                                      :setup return results
   52
                 C 0024 5470
                                                          rts
                                                                                      ;return
   54
                                                          . end
  *****TOTAL ERRORS
  *****TOTAL WARNINGS
```

Again our original multiplicand that was in R2 is no longer valid, so we must retrieve it from storage (see Figure 10). We must retrieve the high-byte of the saved multiplicand and place it into the lower half of register R2. Remember that the destination operand must exist in the lower half of the register in order for the multiply instruction to execute. This is performed with the following instruction:

mov.b r5h,r2l

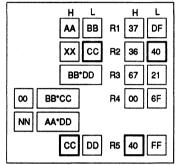


Figure 10 Step 7

In the eigth step (the final one of our multiplcation itself) we multiply the upper byte of the multiplicand by the upper byte of the multiplier (see Figure 11). This result (H'0DC0) is then added to the upper word (R4) of the previous results to provide our final answer, H'0E2F6721 (H'006F6721 + H'0DC00000). At this time we also move the result to registers R1 and R2 for return to the calling program (see Figure 12). This is performed by the following instructions:

mulxu	r1h,r2
add.w	r4,r2
mov.w	r3,r1
rts	

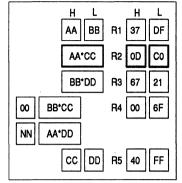


Figure 11: Step 8a

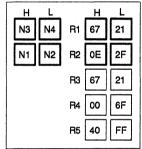


Figure 12: Step 8b

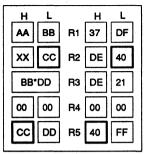


Figure 6: Step 3

The fourth step now multiplies the upper half of the multiplicand by the lower half of the multiplier. This result (H'37C0) is added to the previous result (see Figure 7), but not directly to it since some shifting of the results must be performed. We must add the low byte of this result (R2L) with the high byte of the previous result (R3H). We must then add the high byte of this result with the carry-over from the previous addition and place the result in R4L. This generates a 32-bit result of H'00389E21 (H'37C000 + H'DE21). This is performed with the following instructions:

mulxu r1h,r2 add.b r2l,r3h addx r2h,r4l

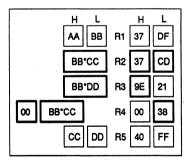


Figure 7: Step 4

We have now performed an 8x16 multiply function, but that is not what we wanted to do, but we are halfway through. Again our original multiplicand that was in R2 is no longer valid, so we must retrieve it from storage (see Figure 8). This is performed with the following instruction:

mov.w

r5,r2

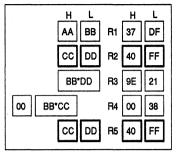


Figure 8: Step 5

The sixth step now multiplies the upper half of the multiplier with the lower half of the multiplicand. The result of this operation (H'36C9) is also added to the previous result, again with some shifting performed (see Figure 9). We must add the low byte of this result (R2L) with the high byte of the previous result (R3H). We must then add the high byte of this result with the carry-over from the previous addition and the current value in R4L, and place the result in R4L. The carry-over from this addition is placed into R4H. This alters our previous 32-bit result to be H'006F6721 (H'00389E21+H'36C900). This is performed with the following instructions:

mulxu	r1h,r2
add.b	r21,r3h
addx	r2h,r4l
addx	#0,r4h

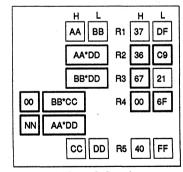


Figure 9: Step 6

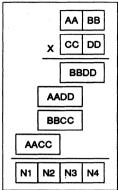


Figure 2: Modified Multiplication Procedure

used for performing the function. If the user decides it is important to save the current state of the working registers, then it is easy to add "push" instructions at the beginning of the routine to save the data, and "pop" instructions at the end of the routine to restore the data. As we discuss this routine, we will examine the modified procedure in detail as well as an example of data used in the execution of the routine.

Before the routine is called, the user must place the two 16-bit operands to be multiplied in registers R1 and R2 (see Figure 3). For this discussion, R1 will contain the "multiplier" and R2 will contain the "multiplicand." The result will be returned in these same registers, so if the original operands are to be used later, it is also up to the user to save them elsewhere. In our example, we will use the data H'37DF and H'40FF for the multiply routine.

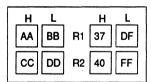


Figure 3: Parameter Passing

The first step we must perform in this routine is to prepare the destination working registers (R3 and R4, only R4 requires clearing) and also to save the multiplicand into a temporary register (R5) because we will need it again later (see Figure 4). This is performed with the following instructions:

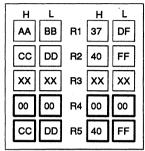


Figure 4: Step 1

In the next step, we perform the multiplication of the two lowbytes of the multiplier and multiplicand (see Figure 5). This result (H'DE21), which exists in R2, is then placed into our destination registers (R3 and R4, only R3 is required at this time). This is performed with the following instructions:

mulxu r11,r2 mov.w r2,r3

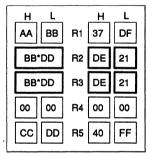


Figure 5: Step 2

Our original multiplicand that used to be in R2 is no longer valid since R2 has been corrupted because of the multiply instruction. In the third step (see Figure 6), we must retrieve the high-byte of the saved multiplicand and place it into the lower half of register R2. Remember that the destination operand must exist in the lower half of the register in order for the multiply instruction to execute. This is performed with the following instruction:

mov.w r5.r2

H8/300 Family

Application Note

16 × 16 Multiply

Tom Hampton

INTRODUCTION

The H8/300 CPU core is very powerful considering that it is an 8-bit architecture. Part of its power comes from the flexible instruction set, which allows for many byte and word operations. Part of its power also comes from the ability of the architecture to allow use of the general purpose register as either 16-bit or 8-bit registers as needed. While the instruction set is extremely powerful in its ability to handle bit-wide and byte-wide data, it only has a small number of instructions (other than data transfer) that allow operations on word-wide data.

One of the instructions that is noticeably missing is in the arithmetic area. While the CPU has the capability of doing an 8x8 unsigned multiply, it lacks the capability of doing a 16x16 unsigned multiply. Even though this instruction does not exist, the function can be easily implemented using the instructions currently available.

In this application note, we will examine a routine that provides the user with a 16x16 unsigned multiply function as well as perform it in a very short amount of time. In performing this operation, we will make use of the flexible instruction set as well as the architecture's flexibility to be used as either byte-wide or word-wide registers. Only five general purpose registers are used in this routine, including the two that pass the parameters. No fancy tricks were used, but it was important to pay special attention to the manner in which the multiply instruction operated on the registers.

This instruction requires that the destination operand be contained in the lower half of a 16-bit register even though the entire register will be used to hold the results. For this reason, it was necessary to use other register for working registers and temporary storage.

MULTIPLICATION PROCEDURES

STANDARD PROCEDURE

If one examines the normal procedure of a 16-bit multiply operation (see Figure 1), it would be easy to see the steps that would be taken if the H8/300 CPU had a 16-bit unsigned multiply instruction. The first step would be to multiply the 16-bits of one operand by the lower "digit" of the second operand, thus potentially yielding a 24-bit response. The second step would be to multiply the same 16-bit one operand by the higher "digit" of the second operand, which could yield yet another 24-bit response. The final step would be to add

AA BB

X CC DD

AADD BBDD

AACC BBCC

N1 N2 N3 N4

Figure 1: Standard Multiplication Procedure

these 24-bit responses together in the proper sequence (with required shifting) to form a 32-bit result. This is the procedure that we are all used to for multiplication.

MODIFIED PROCEDURE

Since the H8/300 CPU does not have a 16-bit multiply instruction, the normal procedure cannot be used. Instead we must modify the procedure to account for the creation of only 16-bit intermediate results (see Figure 2). In this procedure, we must multiply the individual 8-bit "pieces" of the operand to form intermediate results. This requires four steps since we actually have four bytes of operand data that we must multiply together. The results of these pieces of intermediate data must then be added together in the proper sequence (with shifting) to form the final 32-bit result.

SOFTWARE DESCRIPTION

The routine written to perform the 16x16 unsigned multiply function is shown in Listing 1. You may wish to refer to this listing during the following discussions. The routine occupies only 38 bytes of code space while executing in 8.6 µsec. One of the first things to note in this routine is that no registers are saved even though some of the general purpose registers are

Section 5

Product	H8/300 CPU	Q&A No.		QA8	3300-027A	
Topic	Debug information					
Question					Classificati	on—H8/300
1 16 1 12	mb a man arrow with the /DERLIC antion	and atom it			Registers	
	nk a program with the /DEBUG option ute module, then use the converter to co				Read timi	ng
	format to S type or HEX type format, w				Write timis	ng
	cluded?	in ucoug in	ioimation		Interrupts	
OC III	cidded:				Reset	
					External e	xpansion
					Power-do	wn state
					Instruction	ns
				0	Software	
					Developm	ent tools
				-	20.0.0pm	
				-		
				-		
				-		
					A 41 U	
					Miscellane	
1. Debu	g information is included only in the SY				Miscelland lated Manu nual Title	
1. Debu	-			Ma	ated Manu nual Title	als
1. Debu	-			Ma Ott Do	ated Manu nual Title ner Technic cumentatio	als eal
1. Debu	-			Ma Ott Do	ated Manu nual Title	als eal
1. Debu	-			Ma Ott Do	ated Manu nual Title ner Technic cumentatio	als eal
1. Debu	-			Ma Ott Do	ated Manu nual Title ner Technic cumentatio	als eal
1. Debu	-			Ma Ott Do	ated Manu nual Title ner Technic cumentatio	als eal
1. Debu	-			Ott Do	ated Manu nual Title ner Technic cumentatio cument Na	als al an me
1. Debu	-			Ott Do Do	ated Manu nual Title ner Technic cumentatic cument Na	als al n me
1. Debu	-			Ott Do Do	ated Manu nual Title ner Technic cumentatic cument Na	als al n me
1. Debu	-			Ott Do Do	ated Manu nual Title ner Technic cumentatic cument Na	als al n me
1. Debu	-			Ott Do Do	ated Manu nual Title ner Technic cumentatic cument Na	als al n me
1. Debu	-			Ott Do Do	ated Manu nual Title ner Technic cumentatic cument Na	als al n me
1. Debu	-			Ott Do Do	ated Manu nual Title ner Technic cumentatic cument Na	als al n me
1. Debu No de	ebug information is included in the S ty			Ott Do Do	ated Manu nual Title ner Technic cumentatic cument Na	als al n me
No de	-			Ott Do Do	ated Manu nual Title ner Technic cumentatic cument Na	als al n me
1. Debu No de	ebug information is included in the S ty			Ott Do Do	ated Manu nual Title ner Technic cumentatic cument Na	als al n me
1. Debu No de	ebug information is included in the S ty			Ott Do Do	ated Manu nual Title ner Technic cumentatic cument Na	als al n me
1. Debu No de	ebug information is included in the S ty			Ott Do Do	ated Manu nual Title ner Technic cumentatic cument Na	als al n me

Product	H8/300 CPU	Q&A No.		QA	8300-026A
Topic	Omitting :3, :8, :16, and @				
Question					Classification—H8/30
			1		Registers
	ing the H8/300 cross assembler, when	can you do t	he		Read timing
10110	wing?				Write timing
(1) Omit	::3				Interrupts
` '					Reset
(2) Omit	::8				External expansion
(3) Omit	.16			ļ	Power-down state
(3) OIIII					
(4) Omit	. @				Instructions
				0	Software
					Development tools
					Miscellaneous
Answer				Re	lated Manuals
	'			Ma	nual Title
1. These	e can be omitted in the following cases	•			
	can omit :3 when coding an <u>immediate</u> pulation instruction.	value in a bi	it		
	can omit:8 when coding an immediate address value in the absolute addressir		yte operand,		ner Technical cumentation
(2) Va	it .16han andina an immediat		aud	Do	cument Name
	can omit:16 when coding an immediate and, an address value in the absolute ad				
	and, an <u>address value</u> in the absolute ad acement in the register indirect with dis	•			
mode		spracement a	ludressing		
mode	·				
(4) You (can never omit @.			Re	lated Microcomputer
				Tec	hnical Q&A
	dicates the addressing mode. You must			Titl	e
	ever using the absolute address, register				
maire	ect, or register indirect with displaceme	nt addressin	g mode.		
dditional	Information				

Section 5

Product	H8/300 CPU	Q&A No.		QA830	00-025A
Topic	Setting a symbol with .EQU \$				
Question				Cla	ssification—H8/300
Y	,			F	Registers
in a progr	am coded like this:			F	Read timing
LBL	1 .EQU \$	(1)		٧	Vrite timing
LBL				1	nterrupts
				F	Reset
What valu	es are assigned to LBL1 and LBL2?			E	xternal expansion
				F	ower-down state
				lı	nstructions
	•			0 8	Software
					Development tools
			1		e e e e e e e e e e e e e e e e e e e
				1	Miscellaneous
Answer				Relat	ed Manuals
	th lines (1) and (2), the current location	n counter va	lue is	Manu	al Title
assig	ned to LBL1 or LBL2.				
The p	presence or absence of .EQU \$ does no	t make any	lifference.		1.7 •
					Technical mentation
					ment Name
				Relate	ed Microcomputer nical Q&A
				Title	
					' .
Additional	Information				
	•		•		

Product	H8/300 CPU	Q&A No.		QAS	3300-024A
Topic	Moving data specified by a label				
Question				(Classification—H8/300
How do w	ou program the following operations?				Registers
now do y	ou program the following operations:				Read timing
1. Trans	sfer data defined by an EQU directive t	o a general i	egister.		Write timing
2	for date defined by a DATA discosion a				Interrupts
2. Trans	sfer data defined by a DATA directive t	o a generai	egister		Reset
3. Trans	sfer data in an area defined by an RES	directive to	general		External expansion
regis	ter				Power-down state
					Instructions
				0	Software
		*			Development tools
					Miscellaneous
Answer				Rei	ated Manuals
					nual Title
Code your	software as follows:				
1. MOV.E	3 #[label-name], Rn				
(V					
2. MOV.E	3 @[label-name], Rn				
2. WOV.E					er Technical
· ·					cumentation
	3 @[label-name], Rn			Dog	cument Name
(V	v)				
					*
			}	Dal	ated Microcomputer
				Tec	hnical Q&A
				Title	9
	•				
Additional	Information				

Section 5

Prod	uct	H8/300 CPU	Q&A No.		QA	B300-023A
Topic	;	BRA and BRN instructions				
Ques	tion				T	Classification—H8/300
	3371		DD 4 (D	TC)		Registers
1.		t does the "True" condition mean in the action?	BKA (OF B	1)		Read timing
	mstrt	iction?				Write timing
2.	What	does the "False" condition mean in the	BRN (or E	BF)		Interrupts
	instr	iction?				Reset
						External expansion
						Power-down state
i					0	Instructions
. 71						Software
						Development tools
		1				
		*				
		•				
						Miscellaneous
Answ	/er				Re	lated Manuals
1.		BRA instruction is equivalent to a JMP			Ma	nual Title
2.	howe	peration PC + disp \rightarrow PC. Unlike the J ever, it can branch only in the range from BRN instruction is equivalent to two NO	m +255 to	256 bytes.		
						ner Technical cumentation
					Do	cument Name
					Re	lated Microcomputer
					Tit	e
					<u></u>	
Addit	ional	Information				

Product	H8/300 CPU	Q&A No.		QA8	300-022A
Topic	Notes on stack usage				•
Question				C	Classification—H8/300
1	, 	0			Registers
1. Are t	there any points to note about stack usa	ge!	•		Read timing
					Write timing
					Interrupts
					Reset
					External expansion
					Power-down state
			İ	0	Instructions
			Ì		Software
			İ		Development tools
			İ		······································
				-	
			ľ	-	
				-+	
				-+	Miscellaneous
Answer				Rela	ated Manuals
74101101	I		ŀ		nual Title
When	at a time, regardless of the data size. In accessing the stack using the post-incement addressing mode, you should always a size.		1	OIL	T. 1. 1. 1.
				Doc	er Technical cumentation
				Doc	ument Name
				Rela Tecl	ated Microcomputer hnical Q&A
				Title	
Additional	Information				
					,

Section 5

Product	H8/300 CPU	Q&A No.		QA8300-021A
Topic	Support of DAA and DAS instructions	for INC and I	DEC	
Question				Classification—H8/300
1 7%		L - 44 (A DC	.,	Registers
	DAA instruction is intended for use wit actions, but what happens if DAA is ex	•		Read timing
	actions, but what happens if DAA is exaction?	ecuted after	all INC	Write timing
msu	action:			Interrupts
2. The	DAS instruction is intended for use with	n subtract (S	UB)	Reset
instr	uctions, but what happens if DAS is exe	ecuted after	a DEC	External expansion
instr	uction?			Power-down state
				O Instructions
				Software
				Development tools
			-	
			-	
			. F	
			<u> </u>	Miscellaneous
Answer				Related Manuals
2. Basic	IC instruction. cally, the DAS instruction is not suppor	ted after exc	ecution of	H8/300 Series Programmi Manual
a DE	C instruction.			Other Technical
				Documentation
			•	Document Name
			·	
			-	Dalata d Missas a sussidad
				Related Microcomputer Technical Q&A
				Title
				* *
Additional	Information			
The actual	l operation performed is determined by	the flag stat	es	
inc actua	operation performed is determined by	ine mag stat		

Product H8/300 CPU Q&A No. QA8300-020A Topic Sampling and acceptance of interrupts during sleep mode Cuestion 1. When are interrupts sampled during sleep mode? 2. If an interrupt is sampled, how many system clock cycles later does the chip wake up? Answer 1. Interrupts are sampled on the falling edge of the system clock, just as in active mode. 2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Additional Information Additional Information							
Question 1. When are interrupts sampled during sleep mode? 2. If an interrupt is sampled, how many system clock cycles later does the chip wake up? Read timing Wite timing Interrupts Reset External expansion ○ Power-down state Instructions Software Development tools Interrupts are sampled on the falling edge of the system clock, just as in active mode. Related Manuals 2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Document Name Power-down state Related Microcomputer Technical Q&A Title QAB300-004A	Proc	luct	H8/300 CPU	Q&A No.		QA	3300-020A
1. When are interrupts sampled during sleep mode? 2. If an interrupt is sampled, how many system clock cycles later does the chip wake up? Answer	Торі	С	Sampling and acceptance of interrupts	during slee	o mode		
1. When are interrupts sampled during sleep mode? 2. If an interrupt is sampled, how many system clock cycles later does the chip wake up? Registers Read timing Write timing Interrupts Reset External expansion Power-down state	Que	stion					Classification—H8/300
1. When are interrupts sampled during steep mode? 2. If an interrupt is sampled, how many system clock cycles later does the chip wake up? Interrupt Interr							
2. If an interrupt is sampled, how many system clock cycles later does the chip wake up? Miscellaneous	1.	When	n are interrupts sampled during sleep m	ode?		-	
the chip wake up? Interrupts Reset External expansion Power-down state Instructions Software Development tools Miscellaneous Related Manuals Manual Title Other Technical Document Name Related Microcomputer Technical Q&A Title QA8300-004A	1	16	:	. ala al. aal	o lotan dasa	-	
Reset External expansion Power-down state Instructions Software Development tools Miscellaneous Related Manuals Manual Title Title Related Microcomputer Technical Q&A Title QA8300-004A	2.			i clock cycle	es rater does	-	
External expansion Power-down state Instructions Software Development tools Miscellaneous Related Manuals Manual Title The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Document Name Related Microcomputer Technical Q&A Title QA8300-004A		uie ci	mp wake up?			-	
Answer 1. Interrupts are sampled on the falling edge of the system clock, just as in active mode. 2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Document allon Document Name Related Microcomputer Technical Q&A Title QA8300-004A							
Answer 1. Interrupts are sampled on the falling edge of the system clock, just as in active mode. 2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Document Name Related Microcomputer Technical Q&A Title QA8300-004A	İ					<u> </u>	
Answer 1. Interrupts are sampled on the falling edge of the system clock, just as in active mode. 2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Document Name Related Microcomputer Technical Q&A Title QA8300-004A						0	Power-down state
Answer 1. Interrupts are sampled on the falling edge of the system clock, just as in active mode. 2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Document Name Related Microcomputer Technical Q&A Title QA8300-004A	l						
Answer 1. Interrupts are sampled on the falling edge of the system clock, just as in active mode. 2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Document Name Occument Name Related Microcomputer Technical Q&A Title QA8300-004A							
Answer 1. Interrupts are sampled on the falling edge of the system clock, just as in active mode. 2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Documentation Document Name Related Microcomputer Technical Q&A Title QA8300-004A	}						Software
1. Interrupts are sampled on the falling edge of the system clock, just as in active mode. 2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Document Name Related Microcomputer Technical Q&A Title QA8300-004A							Development tools
1. Interrupts are sampled on the falling edge of the system clock, just as in active mode. 2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Document Name Related Microcomputer Technical Q&A Title QA8300-004A	İ						
1. Interrupts are sampled on the falling edge of the system clock, just as in active mode. 2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Document Name Related Microcomputer Technical Q&A Title QA8300-004A	l						
1. Interrupts are sampled on the falling edge of the system clock, just as in active mode. 2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Document Name Related Microcomputer Technical Q&A Title QA8300-004A	1						
1. Interrupts are sampled on the falling edge of the system clock, just as in active mode. 2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Document Name Related Microcomputer Technical Q&A Title QA8300-004A							
1. Interrupts are sampled on the falling edge of the system clock, just as in active mode. 2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Document Name Related Microcomputer Technical Q&A Title QA8300-004A							
1. Interrupts are sampled on the falling edge of the system clock, just as in active mode. 2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Document Name Related Microcomputer Technical Q&A Title QA8300-004A				,			Miscellaneous
1. Interrupts are sampled on the falling edge of the system clock, just as in active mode. 2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Document Name Related Microcomputer Technical Q&A Title QA8300-004A	Ansı	ver			,	Re	ated Manuals
as in active mode. 2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Documentation Document Name Related Microcomputer Technical Q&A Title QA8300-004A	1	Interr	unts are sampled on the falling edge of	f the system	clock, just	Ма	nual Title
2. The chip wakes up from sleep mode 0.5 system clock cycle after the interrupt is sampled. Other Technical Documentation Document Name Related Microcomputer Technical Q&A Title QA8300-004A					, J		
Other Technical Document Name Related Microcomputer Technical Q&A Title QA8300-004A							
Other Technical Document Name Related Microcomputer Technical Q&A Title QA8300-004A	2.			tem clock cy	cle after the		
Document Name Related Microcomputer Technical Q&A Title QA8300-004A		interr	upt is sampled.				
Related Microcomputer Technical Q&A Title QA8300-004A							
Related Microcomputer Technical Q&A Title QA8300-004A						Do	cument Name
Technical Q&A Title QA8300-004A					-	_	
Technical Q&A Title QA8300-004A							
Technical Q&A Title QA8300-004A							
Technical Q&A Title QA8300-004A							
Title QA8300-004A						Rel	ated Microcomputer
QA8300-004A							
						Titl	е
							QA8300-004A
Additional Information							
Additional Information							
	Addi	tional	Information				
	7,000						
				•			

Section 5

Prod	uct	H8/300 CPU	Q&A No.	·	QA	3300-019A
Topic	•	Interrupts during fetching and execution	on of SLEEP	instruction		
Ques	tion					Classification—H8/300
						Registers
1.		does the H8/300 CPU operate if it reco	eives an inte	rrupt while		Read timing
ł	tetcn	ing a SLEEP instruction?			-	Write timing
2.	How	does the H8/300 CPU operate if it rece	ives an inte	rrupt while		Interrupts
		iting a SLEEP instruction?		•		Reset
						External expansion
					0	Power-down state
						Instructions
						Software
						Development tools
						Andrew Control of the
						#1177. Louis 1974. agree to the party of the
						Miscellaneous
Answ	/er				Re	lated Manuals
1.		SLEEP instruction is executed after the			Ma	nual Title
2.	interr	mode is released to handle the interrujupt handling, the next instruction after scuted.	•		Do	ner Technical cumentation cument Name
					Rel	ated Microcomputer
***					Titl	e
						•
Addit	ional	Information				

Prod	luct	H8/300	CPU	Q&A No.	QA8300-018A			
Topi	С	Notes on entering sleep mode						
Question		,					assification—H8/300	
1.	Δret	there any points to note when the H8/300 CPU enters sleep					Registers	
1.		le by executing the SLEEP instruction?				Read timing		
	mout	, by ence	ating the obbot instruction.	•			Write timing	
1							Interrupts	
Ì							Reset	
			•				External expansion	
						0 1	Power-down state	
							Instructions	
							Software	
						1	Development tools	
							Miscellaneous	
Ansv	ver	-				Relat	ted Manuals	
1.	-		ted below should be noted, deer from sleep mode. Recovery					
	1					Other Technical		
			NMI Interrupt	IRQn Int	errupt			
		ecessary Set I bit in CCR to 1,		Clear I bit in CCR to 0,		Documentation		
	regi		or	and clear interrupt enable bits to 0, except for interrupts used for	anabla	Document Name		
	setti	ngs other	clear all interrupt enable bits to 0.					
		ditions	Chable one to c.		. ,			
				recovery,	Į.			
				and		Related Microcomputer		
				make sure NMI is not ' requested.		nical Q&A		
	L					Title	T	
							QA8300-015A	
							•	
Addi	tional	Informat	ion					

SECTION

Technical Questions and Answers

	H8/300 CPU	Q&A No.	QA	.8300-017A		
Торіс	Entering sleep mode					
Question				Classification—H8/300		
1. Does	the H8/300 CPU always enter s	laan mada whan it ava	outos	Registers		
	LEEP instruction?	icep mode when it exc	cuies	Read timing		
uic 3	LEEF Instruction:			Write timing		
				Interrupts		
				Reset		
				External expansion		
			0	Power-down state		
		•		Instructions		
			-	Software		
			-	Development tools		
			 	Development tools		
	V *		-			
				Miscellaneous		
Answer				Related Manuals		
1. Exec sleep	uting the SLEEP instruction doe. The SLEEP instruction enters	, .	18/300 to Ma	anual Title		
Exec sleep cases The s (SYS no N.)	. The SLEEP instruction enters	ne system control regis	18/300 to Dwing Ster there is I (or no			
Exec sleep cases The s (SYS no N other) The S	The SLEEP instruction enters. Software standby bit (SSBY) in the SCR) is cleared to 0, the RES and MI request, and all other interruptions.	ne system control regist STBY lines are high, of requests are disabled to 0, the RES and ST	18/300 to owing ster there is 1 (or no Do Do Do Do Do Do Do Do Do Do Do Do Do	nual Title her Technical cumentation		
Exec sleep cases The s (SYS no N other The S lines	The SLEEP instruction enters: software standby bit (SSBY) in the RES and MI request, and all other interrupt interrupt is requested). SSBY bit in the SYSCR is cleared.	ne system control regist STBY lines are high, of requests are disabled to 0, the RES and ST	18/300 to owing ster there is 1 (or no Do Do Do Do Do Do Do Do Do Do Do Do Do	nual Title her Technical cumentation		
1. Exec sleep cases (1) The s (SYS) no N other (2) The S lines	The SLEEP instruction enters: software standby bit (SSBY) in the RES and MI request, and all other interrupt interrupt is requested). SSBY bit in the SYSCR is cleared.	ne system control regist STBY lines are high, of requests are disabled to 0, the RES and ST	18/300 to owing ster there is 1 (or no Do Do Do Do Do Do Do Do Do Do Do Do Do	her Technical cumentation ocument Name		
1. Exec sleep cases (1) The s (SYS) no N other (2) The S lines	The SLEEP instruction enters: software standby bit (SSBY) in the RES and MI request, and all other interrupt interrupt is requested). SSBY bit in the SYSCR is cleared.	ne system control regist STBY lines are high, of requests are disabled to 0, the RES and ST	18/300 to owing ster there is 1 (or no Do Do Do Do Do Do Do Do Do Do Do Do Do	her Technical cumentation cument Name		
1. Exec sleep cases (1) The s (SYS) no N other (2) The S lines	The SLEEP instruction enters: software standby bit (SSBY) in the RES and MI request, and all other interrupt interrupt is requested). SSBY bit in the SYSCR is cleared.	ne system control regist STBY lines are high, of requests are disabled to 0, the RES and ST	18/300 to owing ster there is 1 (or no Do Do Do Do Do Do Do Do Do Do Do Do Do	her Technical cumentation ocument Name		
1. Exec sleep cases (1) The s (SYS) no N other (2) The S lines to 1.	The SLEEP instruction enters: software standby bit (SSBY) in the RES and MI request, and all other interrupt interrupt is requested). SSBY bit in the SYSCR is cleared.	ne system control regist STBY lines are high, of requests are disabled to 0, the RES and ST	18/300 to owing ster there is 1 (or no Do Do Do Do Do Do Do Do Do Do Do Do Do	her Technical cumentation cument Name		
1. Exec sleep cases (1) The s (SYS no N. other (2) The S lines to 1.	The SLEEP instruction enters: software standby bit (SSBY) in the SCR) is cleared to 0, the RES and MI request, and all other interrupt interrupt is requested). SSBY bit in the SYSCR is cleare are high, there is no NMI reques	ne system control regist STBY lines are high, of requests are disabled to 0, the RES and ST	18/300 to owing ster there is 1 (or no Do Do Do Do Do Do Do Do Do Do Do Do Do	her Technical cumentation cument Name		

HITACHI

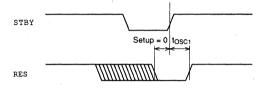
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
Product	H8/300 CPU	Q&A No.		QAE	3300-016A
Topic	Acceptance of external IRQ1 after rec	overy from s	oftware standby	mod	θ .
Question				(	Classification—H8/300
	,		****		Registers
	ose the chip enters software standby m		-		Read timing
	rol register (ISCR) cleared to H'00 (selected to bit in CCR cleared to 0. During selected to 0.	-	CC C,		Write timing
					Interrupts
	the $\overline{IRQi}$ line is driven low, then the chip recovers to active mode. If the $\overline{IRQi}$ line continues to be held low after that, will the $\overline{IRQi}$				Reset
	rupt be accepted?	ici tilat, will	ale inqi		External expansion
111101	rupt be uccepted.			0	Power-down state
				_	,
					Instructions
					Software
					Development tools
					Borolopinioni toolo
	•				
					<del></del>
		•			
					Miscellaneous
Answer	· ·				ated Manuals
1. Yes,	it will be accepted.			Ma	nual Title
					ner Technical cumentation
				Do	cument Name
	No. of the second second				
				Rei	ated Microcomputer
				Titl	e
Additional	Information				
Additional	mormanon				
			<u> </u>		

# Section 5

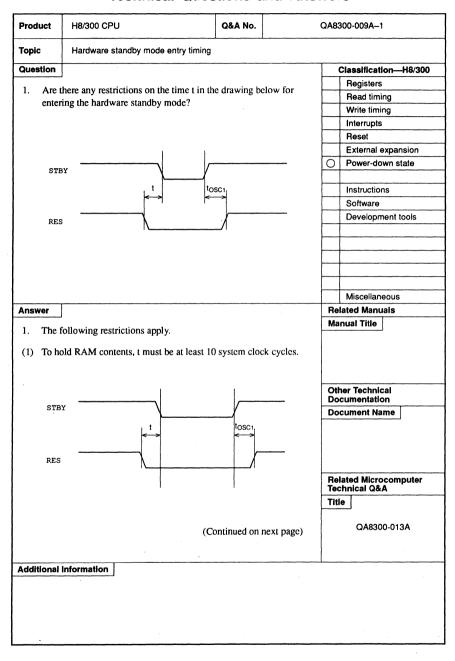
oduct	H8/300	CPU	Q&A No.		QAS	3300-015A	
pic	Notes o	on entering software standby	/ mode				
uestion	7				1	Classification	on—H8/30
			noo any			Registers	***************************************
	•	points to note when the H8				Read timin	ng
	•	by executing the SLEEP in		_		Write timin	g
to 1?		by bit (SSBY) in the system	in control regis	ier (STSCK)		Interrupts	-
. 10 1?						Reset	
						External e	xpansion
					0	Power-dov	
					-	Instruction	s 
					-	Software	
					-	Developme	ent tools
					-		
							<del></del>
							<del></del>
					-		
					-	Miscellane	OUE
					1 1	. wiscenane	
. The p		ed below should be noted,		he method		lated Manua	
. The p		r from software standby m	ode.	he method		lated Manua	
. The p		r from software standby m	ode.			lated Manua	
. The jused	to recove	r from software standby m  Recover	y Method IRQ0-IRQ2	Interrupt	Ma	lated Manua nual Title	als al
. The jused	to recove	Recover NMI Interrupt Set I bit in CCR to 1,	y Method  IRQ0-IRQ2  Clear I bit in C	Interrupt	Ma Oth Do	lated Manua nual Title ner Technica cumentation	als al n
. The pused	to recove	Recovery NMI Interrupt Set I bit in CCR to 1,	y Method  IRQ0-IRQ2  Clear I bit in Cland	Interrupt CCR to 0,	Ma Oth Do	lated Manua nual Title	als al n
Nec	to recove	Recover NMI Interrupt Set I bit in CCR to 1,	y Method  IRQ0-IRQ2  Clear I bit in C	Interrupt CCR to 0,	Ma Oth Do	lated Manua nual Title ner Technica cumentation	als al n
Nec regisett and	to recove	Recovery  NMI Interrupt  Set I bit in CCR to 1, or clear bits IRQoE-IRQ2E	y Method  IRQ0-IRQ2  Clear I bit in Clear interrupt bits to 0, exceinterrupts IRQ	Interrupt CCR to 0, enable pt for lo-IRQ2	Ma Oth Do	lated Manua nual Title ner Technica cumentation	als al n
Nec regisett and	cessary ister ings	Recovery  NMI Interrupt  Set I bit in CCR to 1, or clear bits IRQoE-IRQ2E	y Method  IRQ0-IRQ2  Clear I bit in C and clear interrupt bits to 0, exce interrupts IRQ if used for rec	Interrupt CCR to 0, enable pt for lo-IRQ2	Ma Oth Do	lated Manua nual Title ner Technica cumentation	als al n
Nec regisett and	cessary ister ings	Recovery  NMI Interrupt  Set I bit in CCR to 1, or clear bits IRQoE-IRQ2E	y Method  IRQ0-IRQ2  Clear I bit in Cand clear interrupt bits to 0, exce interrupts IRQ if used for recand make sure NN	Interrupt CCR to 0, enable pt for to-IRQ2 overy,	Ottr Do	lated Manual nual Title  ner Technica cumentation cument Nar	als al n ne
Nec regisett and	cessary ister ings	Recovery  NMI Interrupt  Set I bit in CCR to 1, or clear bits IRQoE-IRQ2E	y Method  IRQ0-IRQ2  Clear I bit in C and clear interrupt bits to 0, exce interrupts IRC if used for rec and	Interrupt CCR to 0, enable pt for to-IRQ2 overy,	Ottr Do Do	lated Manual nual Title  ner Technica cument Nar cument Nar lated Microc chnical Q&A	al al n n ne
Nec regisett and	cessary ister ings	Recovery  NMI Interrupt  Set I bit in CCR to 1, or clear bits IRQoE-IRQ2E	y Method  IRQ0-IRQ2  Clear I bit in Cand clear interrupt bits to 0, exce interrupts IRQ if used for recand make sure NN	Interrupt CCR to 0, enable pt for to-IRQ2 overy,	Ottr Do	lated Manual nual Title  ner Technica cument Nar cument Nar lated Microc chnical Q&A	als al n ne
Nec regisett and	cessary ister ings	Recovery  NMI Interrupt  Set I bit in CCR to 1, or clear bits IRQoE-IRQ2E	y Method  IRQ0-IRQ2  Clear I bit in Cand clear interrupt bits to 0, exce interrupts IRQ if used for recand make sure NN	Interrupt CCR to 0, enable pt for to-IRQ2 overy,	Ottr Do Do	lated Manual nual Title  ner Technica cument Nar cument Nar lated Microc chnical Q&A	al al n ne computer
Nec regisett and	cessary ister ings	Recovery  NMI Interrupt  Set I bit in CCR to 1, or clear bits IRQoE-IRQ2E	y Method  IRQ0-IRQ2  Clear I bit in Cand clear interrupt bits to 0, exce interrupts IRQ if used for recand make sure NN	Interrupt CCR to 0, enable pt for to-IRQ2 overy,	Ottr Do Do	nual Title nual Title ner Technica cumentation cument Nar lated Microo	al al n ne computer
Nec regisett and	cessary ister ings	Recovery  NMI Interrupt  Set I bit in CCR to 1, or clear bits IRQoE-IRQ2E	y Method  IRQ0-IRQ2  Clear I bit in Cand clear interrupt bits to 0, exce interrupts IRQ if used for recand make sure NN	Interrupt CCR to 0, enable pt for to-IRQ2 overy,	Ottr Do Do	nual Title nual Title ner Technica cumentation cument Nar lated Microo	al al n ne computer
Nec regisett and con	cessary ister ings	Recover  NMI Interrupt  Set I bit in CCR to 1, or clear bits IRQoE–IRQ2E to 0.	y Method  IRQ0-IRQ2  Clear I bit in Cand clear interrupt bits to 0, exce interrupts IRQ if used for recand make sure NN	Interrupt CCR to 0, enable pt for to-IRQ2 overy,	Ottr Do Do	nual Title nual Title ner Technica cumentation cument Nar lated Microo	al al n ne computer
Nec regisett and con	to recove	Recover  NMI Interrupt  Set I bit in CCR to 1, or clear bits IRQoE–IRQ2E to 0.	y Method  IRQ0-IRQ2  Clear I bit in Cand clear interrupt bits to 0, exce interrupts IRQ if used for recand make sure NN	Interrupt CCR to 0, enable pt for to-IRQ2 overy,	Ottr Do Do	nual Title nual Title ner Technica cumentation cument Nar lated Microo	al al n ne computer
Nec regisett and con	to recove	Recover  NMI Interrupt  Set I bit in CCR to 1, or clear bits IRQoE–IRQ2E to 0.	y Method  IRQ0-IRQ2  Clear I bit in Cand clear interrupt bits to 0, exce interrupts IRQ if used for recand make sure NN	Interrupt CCR to 0, enable pt for to-IRQ2 overy,	Ottr Do Do	nual Title nual Title ner Technica cumentation cument Nar lated Microo	al al n ne computer
Nec regisett and con	to recove	Recover  NMI Interrupt  Set I bit in CCR to 1, or clear bits IRQoE–IRQ2E to 0.	y Method  IRQ0-IRQ2  Clear I bit in Cand clear interrupt bits to 0, exce interrupts IRQ if used for recand make sure NN	Interrupt CCR to 0, enable pt for to-IRQ2 overy,	Ottr Do Do	nual Title nual Title ner Technica cumentation cument Nar lated Microo	al al n ne computer

Product	H8/300 CPU	Q&A No.		QA8	300-014A
Topic	Entering software standby mode				
Question				(	Classification—H8/300
1 Door	the H9/200 CDU always optor softwar	a atandhu m	odo whon		Registers
	the H8/300 CPU always enter software LEEP instruction is executed after the				Read timing
	Y) in the system control register (SYS)		•		Write timing
(552	1) in the system control legister (513)	CIT) 15 5CT 10	••		Interrupts
					Reset
					External expansion
		* *		0	Power-down state
					Instructions
					Software
					Development tools
				$\vdash$	Miscellaneous
Answer				Rel	ated Manuals
to 1 in (1) If RE and II (2) If RE	EP instruction is executed after the SSB in the following cases:  S and STBY are both high, there is no RQ2 are disabled (or neither interrupt in S and STBY are both high, there is no bit in CCR is set to 1.	NMI reques s requested)	t, and IRQ0	Doc	er Technical cumentation cument Name
			•		ated Microcomputer hnical Q&A
				Title	<del></del>
					QA8300-017A
Additional	Information			<u> </u>	
-Junvini i					

Prod	luct	H8/300 CPU	Q&A No.		QAE	3300-012A	
Topic		Acceptance of external IRQ1 after recovery from hardware standby mode					
Question						Classification—H8/300	
1.	Cum	and IDOI in driven law during handwar	a atandhu m	ada andia		Registers	
1.		ose IRQ1 is driven low during hardwar ow when the chip is recovered from ha				Read timing	
	Suiri	ow when the emp is recovered from ha	iuwaic stain	aby mode:		Write timing	
If the		IRQ1 line is kept low after recovery, v		Interrupts			
	accep	oted?				Reset	
						External expansion	
					0	Power-down state	
						Instructions	
		•				Software	
						Development tools	
						The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	
						Miscellaneous	
Ansı	ver				Rei	ated Manuals	
_					Ma	nual Title	
1.	The c	chip recovers from hardware standby m	ode via the	reset state.			
	IER (	the IRQ enable register) is therefore in	itialized and	IRO1 is			
		led. The IRQ1E bit (IRQ1 enable) in I		-			
		upt is not accepted immediately after r					
						ner Technical	
		IRQ1E bit in IER is later set to 1, the I				cumentation	
	0, and	If the $\overline{IRQ1}$ line is still low, then the into	errupt will b	e accepted.	Do	cument Name	
		•					
						ated Microcomputer	
					Titl		
Addi	tional	Information			·		

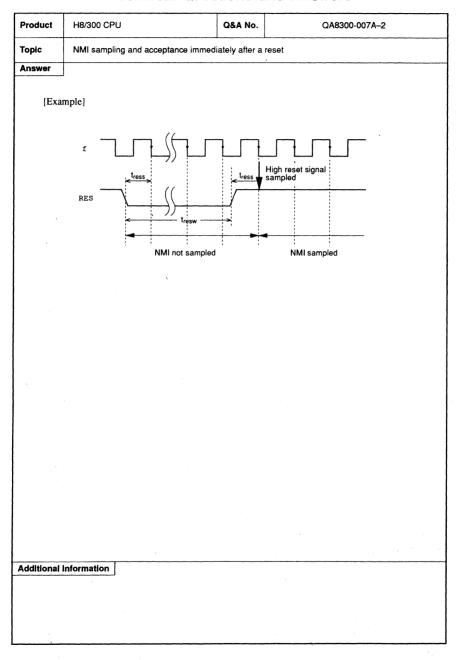

# 5

Product	H8/300 CPU	Q&A No.		QA	B300-011A	
Topic	Instruction execution at changeover to	hardware st	andby mode			
Question				T	Classificati	onH8/300
	<u></u>				Registers	
	n a low STBY input drives the H8/300			-	Read timi	na
	by mode, what happens to the instructi	on currently	being	<b> </b>	Write timir	_ <del></del>
exect	uted?				Interrupts	
					Reset	
					External e	xpansion
				0	Power-do	wn state
				-	Instruction	ns.
					Software	
					Developm	ent tools
				-		
				-		
			•	-		······································
				-	Miscellane	ous
Answer				Re	lated Manu	als
assur	action to end. Normal execution of the ed.	instruction	is not			
					ner Technic	
					cument Na	
						v.
				Re	lated Micro	computer
				Titl	e	
Additional	Information			<u> </u>		
				•		


	<del>                                     </del>						
Product	H8/300 CPU	Q&A No.		QA	3300-010A		
Topic	Entering hardware standby mode				•		
Question					Classification—H8/300		
1 11711	the abin anton bonds are seen the	:compa;	luž 1 -		Registers		
	the chip enter hardware standby mode RES is high?	II 21 BY IS C	inven iow		Read timing		
willie	E KEO IS HIGH!				Write timing		
					Interrupts		
					Reset		
					External expansion		
				0	Power-down state		
					Instructions		
					Software		
					Development tools		
					Miscellaneous		
Answer				Re	lated Manuals		
1 V	Pagardlags of its summent state the state	ontora ba J		Ma	nual Title		
	Regardless of its current state, the chip by mode whenever STBY is driven lov		ware				
Stalla	by mode whenever 31 B i is driven lov	₩.		1	3/300 Series		
				Pr	ogramming Manual		
				1			
					Other Technical		
				Documentation			
				Do	cument Name		
				<u></u>			
				Rel	lated Microcomputer chnical Q&A		
				Titl	<del></del>		
					QA8300-009A		
Additional	Information			٠			
			•				

Product	H8/300 CPU	Q&A No.	QA8300-009A-2
Topic	Hardware standby mode entry timing		
Answer			

(2) When it is not necessary to hold RAM contents, the setup time of RES to STBY becomes 0.




Additional Information



# Section 5

Product	H8/300 CPU	Q&A No.		QA8300-008A		
Topic	Stack pointer initialization immediately	after a rese				
Question					Classification—H8/300	
1 1171					Registers	
	y is it necessary to initialize the stack po		•		Read timing	
	set, even though all interrupts are inhibi r a reset?	ica immeaia	tery		Write timing	
anc	a leset?				Interrupts	
				0	Reset	
				<u> </u>	External expansion	
				-	Power-down state	
					T OWOT GOWN GLARG	
				-	Instructions	
				ļ		
					Software	
					Development tools	
			- 1			
					Miscellaneous	
Answer				Re	lated Manuals	
rese						
	revent program crashes, you should the	refore initial	ize the stack		ner Technical cumentation	
poin	ter immediately after the reset.				cument Name	
				- 00	cument Name	
					<u> </u>	
				Re Tec	lated Microcomputer chnical Q&A	
				Titi	e	
Additional	Information			L		
	for one system clock cycle that all inter	rupts are inf	ibited immedia	ately	after a reset.	



# 5

Product	H8/300 CPU	Q&A No.	. QA8300-007A-1				
Topic	NMI sampling and acceptance immed	iately after a	reset	-			
Question				Classification—H8/30			
		1 10			Registers		
1. Wh	en is the reset signal sampled?				Read timing		
2. When is the NMI signal sampled?					Write timing		
					Interrupts		
	er a reset, when is the NMI signal first sa	ampled, and	when can it	0	Reset		
firs	be accepted?				External expansion		
					Power-down state		
					Instructions		
					Software		
					Development tools		
					• '		
					Miscellaneous		
Answer				Re	lated Manuals		
1. The	reset signal is sampled on the falling ed	ge of the sys	stem clock	Ma	nual Title		
cloc							
	NMI signal is not sampled during the re	•			ner Technical cumentation		
	pling of the NMI signal starts from the	•	•	Do	cument Name		
	hich the high reset signal is sampled. To omes acceptable when the first instruction		•				
	the chip comes out of reset.	n nas been c	executed		The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon		
ance	the chip comes out of reset.						
` (See	next page)						
				Re	lated Microcomputer chnical Q&A		
				·Titl	е		
1				ľ			
Additiona	I Information						

			,		
Product	H8/300 CPU	Q&A No.		QA	B300-006A
Topic	Pending interrupts	***************************************	,		
Question			<del></del>	T	Classification—H8/300
**************************************	'				Registers
	ernal interrupts) can be disabled in the	•	sted below.		Read timing
wnai nap	pens to pending interrupts in these two	cases?			Write timing
1. Disal	oled in IER (IRQ enable register)			0	Interrupts
					Reset
2. Disal	oled by I bit in CCR				External expansion
					Power-down state
				-	Laster skin and
				-	Instructions
				-	Software
				-	Development tools
				-	
				-	
				-	
				-	
				-	Miscellaneous
Answer				Re	lated Manuals
					nual Title
In the reque will r  2. An irr but m the C	interrupt is disabled in IER (IRQnE bitting  e disabled state, the IRQn signal input it ists made in the disabled state are not stot be handled even if it is later enabled atterrupt that is requested while enabled hasked because the I bit in CCR is set to PU's interrupt controller. If the I bit is upt will be handled.	s ignored. It ampled. The d in IER. in IER (IRC o 1 is held p	nterrupt e interrupt OnE bit = 1) ending in	Do	her Technical cumentation cument Name lated Microcomputer chnical Q&A
A				<u></u>	
Additional	Information				

Product	H8/300 CPU	Q&A No.		QA83	00-005A
Topic	NMI requirements				
Question				CI	assification—H8/300
					Registers
1. Wha	t are the requirements for NMI?				Read timing
					Write timing
					nterrupts
					Reset
					External expansion
					Power-down state
					nstructions
					Software
					Development tools
					Sovoiopilioni (oolo
		,		-+	Miscellaneous
Answer					ed Manuals
Allswei					ial Title
Then below f  NMI  (2) To re	thing normal operation  e are requirements for setup and hold time.  thing thing thing thing the setup and hold time.  cover from software standby mode requirement is given in terms of NMI we think thing the setup and hold time.		e drawing	Docu	r Technical mentation ment Name ed Microcomputer nical Q&A
NMI					QA8300-004A
Additional	Information				
	ith 10-MHz system clock): 0 ns (Min), t _{NMIH} = 10 ns (Min), t _{NMIW} = 20	00 ns (Min)			

Prod	uct	H8/300 CPU	Q&A No.	QA8300-004A			
Topi	:	Interrupt sampling and acceptance					
Ques	stion				(	Classification—H8/300	
_						Registers	
1.	Whei	n are interrupts sampled?				Read timing	
2.	In car	ses where instruction execution may la	st several hu	ndred states		Write timing	
		ore, as with the block data transfer instr			0	Interrupts	
		terrupt accepted?				Reset	
	• •				External expansion		
						Power-down state	
						Instructions	
						Software	
						Development tools	
					$\vdash$		
						Miscellaneous	
Ansv	ver				Rel	ated Manuals	
					<b></b>	nual Title	
1.	Inten	rupts are sampled on every falling edge	of the syste	m clock.			
2.		rupts are accepted at the end of the instruction of some CCR control instructions).	ruction (but	not at	H8/300 Series Programming Manual		
						ner Technical cumentation	
					Do	cument Name	
					Rel Tec	ated Microcomputer hnical Q&A	
					Titl	е	
						040000 0054	
						QA8300-005A QA8300-020A	
						QAOOOO OZOA	
				· ;			
Addi	tional	Information					

Product	H8/300 CPU	Q&A No.		QA830	00-003A
Topic	Usage of general registers				
Question				Cla	ssification—H8/300
1. Is it r	possible to use both 8-bit and 16-bit	general registe	re at the	O F	Registers
	time?	general registe	is at the	F	Read timing
banne				V	Vrite timing
				<del></del>	nterrupts
			•		Reset
					xternal expansion
				F	ower-down state
	•				
				<del> </del>	nstructions
					Software
					evelopment tools
				<b>  -</b>	
				<b></b>	
•				<u> </u>	
				ļ	fiscellaneous
Answer					ed Manuals al Title
[Example]	R0H R0L MOV.  R1 MOV.	B #H'FF:8, B #H'E0:8, B ROH,R2H	ROL	Docu	Technical mentation
[ [ [	R3 MOV MOV R5 MOV MOV R5 MOV MOV MOV MOV MOV MOV MOV MOV MOV MOV	B #H'00:8, W #H'4000: W R1,R3 W @H'4000: W R4,R5	16,R1 16,R4	Docu	ment Name
Ī		B @H'4000, B R6H, R6L	R6H	Relate Techr	ed Microcomputer lical Q&A
Note that F	R7 is implicitly used as the stack point	nter.		7140	l .
Additional I	nformation				
	<del>i.,</del>				

Product	H8/300 CPU	Q&A No.		QAS	3300-002A	
Topic	Definition of V flag in CCR					
Question				(	Classificati	on—H8/300
In the same of	difference in the most the V floorie med	:e: L		0	Registers	
is there a	difference in the way the V flag is mod	med by:			Read timir	ng
1. Instr	uctions that operate on byte data, and				Write timir	ng
					Interrupts	
2. Instr	uctions that operate on word data?				Reset	
1					External e	xpansion
					Power-do	wn state
						-
					Instruction	s
					Software	
					Developm	ent tools
,						
		•		$\vdash$		
					Miscellane	ous
Answer				Rel	ated Manu	
	g in CCR is modified as follows:			Mai	nual Title	
value great	add and subtract instructions set the V changes from H'7F or less to H'80 or ger to H'7F or less.	greater, or fr	om H'80 or		ner Technic cumentatio	
value	changes from H'7FFF or less to H'800 00 or greater to H'7FFF or less.	•	•	-	cument Na	
		, v		Rel	ated Micro	computer
					hnical Q&/	\
				Titl	е	
				-		
Additional	Information			1		
-						

Product	H8/300 CPU	Q&A No.		QA830	0-001A
Topic	Register contents after power-up rese	t	,		
Question				Cla	ssification—H8/300
1. Wha	t are the register contents often a resum	macat?		() R	egisters
I. Wha	at are the register contents after a power	-up reset?		R	ead timing
				W	/rite timing
				In	iterrupts
				R	eset
				·Ε	xternal expansion
				, P	ower-down state
				In	structions
				S	oftware
				D	evelopment tools
				М	liscellaneous
Answer				Relate	d Manuals
1 0				Manua	al Title
1. Regi	ster contents are as follows:				
(1) Regi	sters of on-chip supporting modules			H8/30 Manu	00 Series Hardware als
Initia	alized. (In some cases the initial values	are undeten	mined.		
See t	he User's Manual for details.)			Other	Technical
(2) CDI					nentation
(2) CPU	registers			Docum	nent Name
The	program counter is loaded from the vec	tor table. T	he I bit in		
	is set to 1. Registers R0 to R7 and the				
unde	termined contents.				
Note: RA	AM contents are also undetermined.			Relate	d Microcomputer ical Q&A
				Title	
Additional	Information				

## **Contents**

	Q&A No.	Page
Registers		
(1) Register contents after power-up reset	QA8300-001A	15
(2) Definition of V flag in CCR	QA8300-002A	16
(3) Usage of general registers	QA8300-003A	17
Interrupts		
(1) Interrupt sampling and acceptance	QA8300-004A	18
(2) NMI requirements	QA8300-005A	19
(3) Pending interrupts	QA8300-006A	20
Reset		
(1) NMI sampling and acceptance immediately after a reset	QA8300-007A	21
(2) Stack pointer initialization immediately after a reset	QA8300-008A	23
Power-down state		
(1) Hardware standby mode entry timing	QA8300-009A	24
(2) Entering hardware standby mode	QA8300-010A	26
(3) Instruction execution at changeover to hardware standby mode	QA8300-011A	27
(4) Acceptance of external IRQ1 after recovery from hardware	QA8300-012A	28
standby mode		
(5) Recovery from hardware standby mode	QA8300-013A	29
(6) Entering software standby mode	QA8300-014A	30
(7) Notes on entering software standby mode	QA8300-015A	31
(8) Acceptance of external IRQ1 after recovery from software standby mode	QA8300-016A	32
(9) Entering sleep mode	QA8300-017A	33
(10) Notes on entering sleep mode	QA8300-018A	34
(11) Interrupts during fetching and execution of SLEEP instruction	QA8300-019A	35
(12) Sampling and acceptance of interrupts during sleep mode	QA8300-020A	36
Instructions		
(1) Support of DAA and DAS instructions for INC and DEC	QA8300-021A	37
(2) Notes on stack usage	QA8300-022A	38
(3) BRA and BRN instructions	QA8300-023A	39
Software		
(1) Moving data specified by a label	QA8300-024A	40
(2) Setting a symbol with .EQU \$	QA8300-025A	41
(3) Omitting :3, :8, :16, and @	QA8300-026A	42
(4) Debug information	QA8300-027A	43
		13

# How to Use Microcomputer Technical Questions and Answers

Technical Questions and Answers has been created by arranging technical questions actually asked by users of Hitachi microcomputers in a question-and-answer format. It should be read for technical reference in conjunction with the User's Manual.

Technical Questions and Answers can be read before beginning a microcomputer application design project to gain a more thorough understanding of the microcomputer, or during the design process to check up on difficult points.

This document gives concrete explanations of points that are not completely covered in the User's Manual. Most of the contents is user-inspired. Future editions of this document will contain further information, and efforts will also be made to improve the User's Manual.

# 5

# H8/300 CPU

### **Application Note**

# Technical Q & A

#### **Preface**

The H8/300 CPU is a high-speed central processing unit with an original Hitachi architecture.

The main features of the H8/300 CPU are listed below.

- · General-register architecture
  - Two-way register configuration
    - Sixteen 8-bit general registers, or
    - Eight 16-bit general registers
- · High-speed operation
  - Maximum clock rate is 10 MHz (internal system clock)
  - High-speed arithmetic operations
    - 8- or 16-bit register-register add or subtract: 0.2 μs (at 10 MHz)
    - $---8 \times 8$ -bit multiply:

1.4 µs (at 10 MHz)

-- 16 ÷ 8-bit divide:

1.4 µs (at 10 MHz)

- Concise instruction set
  - 57 Basic instruction types
- .
- Data transfer instructionsArithmetic instructions
- 14
- Logic operation instructions
- 4
- Shift instructions
- 8
- Bit manipulation instructions
- 14
- Branch instructions
- 3
- System control instructions
- 4
- Block data transfer/EEPROM write instruction 1
- · Maximum 64-kbyte address space
- · Three operating modes
  - Mode 1: expanded mode, on-chip ROM disabled
  - Mode 2: expanded mode, on-chip ROM enabled
  - Mode 3: single-chip mode
- · Three power-down modes
  - Sleep mode
  - Software standby mode
  - Hardware standby mode
- · Eight addressing modes
  - Register direct
  - Register indirect
  - Register indirect with displacement
  - Register indirect with post-increment or pre-decrement
  - Absolute address
  - Immediate
  - Program-counter relative
  - Memory indirect

- Rn @Rn
- @(d:16, Rn)
- @Rn+ or @-Rn
- @aa:8 or @aa:16
- #xx:8 or #xx:16
- @(d:8, PC)
- @@aa:8

#### HITACHI

#### 7. CONCLUSION

Smart card applications do require a high-level of performance and memory requirements on a microcontroller. With their high-performance CPU core and large memory capacities, the H8/310 and H8/3101 devices provide the necessary system requirements. With their lower power consumption and physical size, these devices also meet the necessary physical requirements for smart card applications.

#### **APPENDIX A: H8/310 PUBLICATIONS**

Further information on the H8/310 can be found in the documentation (available from Hitachi America, Ltd.) listed below.

Title	Hitachi Order Number
H8/310 Architectural Overview	M21T031
H8/300 Programming Manual	M21T004
H8/310 Hardware User's Manual	ADE-602-024

5

IBM® and PC® are registered trademarks of IBM Corporation

By setting control register bits, EEPMOV can also be used to erase and overwrite pages. The control registers also provide an EEPMOV disable bit. Specific EEPROM data may be protected by writing into the protect area of the EEPROM. This is done by setting the EEPROM protect bit in EPR register, and then overwriting the page the user wishes to protect.

Data in the H8/310's EEPROM is guaranteed for a minimum of ten years. Each page may accept up to ten thousand writes.

#### 4. INPUT/OUTPUT

The H8/310 has a simple I/O structure, adapted to its role as a smart card IC. There is a single, one-bit bidirectional port. The port is accessed as the MSB of memory location H'FFFE. The data direction register for the port is the MSB of the adjacent memory location. The H8/3101 has two of these one-bit ports, with a memory mapped location for each. The high-speed operation of the H8/300 series CPU core allows the creation of a software UART that is capable of asynchronous operations up to 9600 baud.

#### 5. PACKAGING/DIE CHARACTERISTICS

#### 5.1 H8/310 DIE

The H8/310 is available as a die or as a prefabricated button. The die drawing is shown in Figure 3.

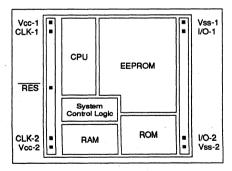



Figure 3: H8/310 Die Diagram

# 5.2 H8/310 Chip On Board (COB) Module The H8/310 is also available in a button assembly, which offers all the electrical components of an ISO smart card, assembled and tested by Hitachi. Custom contact metallization patterns are also available.

#### 5.3 SMALL OUTLINE PACKAGE (SOP)

For applications other than smart cards, where a standard package might be required, the H8/3101 is available in a SOP-10 surface mount package.

#### 6. SUPPORT TOOLS

#### 6.1 SOFTWARE

#### 6.1.1 Cross Tools

Code development for the H8/310 is possible using our Cross-Assembler for the IBM® PC® and compatibles, or using our optimizing, ANSI compliant C Compiler. The tools work with the Librarian/Linker, so C routines can be easily integrated into assembly language applications.

#### 6.1.2 Simulators/Debuggers

Our new XRAY simulator and debugger is an interactive, windowed environment for source level symbolic debugging for both C language and assembly code. With XRAY, users can step through code. Concurrent windows can display the full C source statements, the compiler output in assembly, and the status of any registers in the processor. XRAY works with a software simulator, or, using the same user interface, with the ASE emulator.

#### 6.2 HARDWARE

The Hitachi ASE emulator, a full featured hardware development system, is available for the H8/310. The ASE provides real-time emulation, with software and hardware breakpoints, as well as software trace triggering. The trace buffers can monitor both instruction accesses as well as data reads and writes to all memory and I/O locations. Other ASE functions include performance and memory coverage analysis. Parallel mode allows the examination of processor registers while code is running.

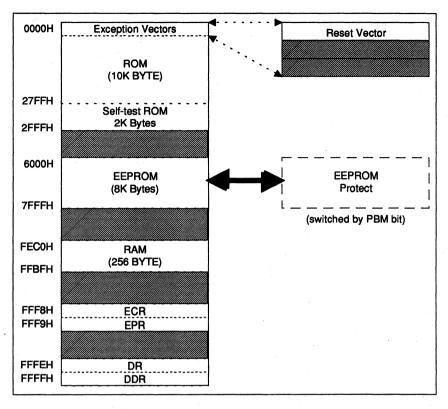



Figure 2: Memory Block Diagram

#### 3.1 ROM

The 10K of usable ROM (2K is reserved for testing) on the H8/310 is linked to the CPU via a 16-bit wide bus. Two bytes of data thus can be transferred in the same amount of time as one byte takes, without any performance penalties. This type of access takes only two CPU clock cycles.

#### 3.2 RAM

Like the masked ROM memory, the 256 bytes of RAM are also arranged in 16-bit words. It too can be accessed in two CPU clock cycles. This RAM memory can also be used for more than just data storage as the CPU allows programs to be executed from RAM memory.

#### 3.3 EEPROM

The H8/310's 8K x 8 EEPROM can be used for storing data or for program code. Reading the EEPROM is the same as ROM reads except that the data is byte wide.

The EEPROM on the H8/310 is organized as 256 pages of 32 bytes. Writes into a page of EEPROM are accomplished using the EEPMOV instruction. EEPMOV uses the contents of three general registers to set up a 32 byte transfer from RAM into EEPROM. The execution of this instruction makes use of an on-chip timer and high voltage generator to perform the write operation in approximately 10 msec. A status bit is available that suggests if any power supply fluctuation occurred during the write time. This would allow the software to perform EEPROM re-writes when voltage drops may cause data corruption.

Rn	Register Direct	Rn for 16-bit, RnL or RnH for 8-bit
@Rn	Register Indirect	Contents of register are used as a pointer
@Rn,disp	Register Indirect w/(16-bit displacement)	Contents of register are used as a pointer with displacement
@Rn+ @-Rn	Register Indirect w/Post-Increment or Pre-Decrement	Contents of register are used as a pointer with automatic adjustment during instruction execution
#nn:8 #nn:16	Immediate (8-bit or 16-bit data)	
@aa:8 @aa:16	Absolute Address (8-bit or 16-bit)	16-bit addresses cover entire memory range; 8-bit addresses cover H'FF00 through H'FFFF
@aa:8	PC relative (8-bit displacement)	Branch instructions
@@aa:8	Memory Indirect	Addressed memory contents are used as a pointer

Table 1: H8/300 CPU Addressing Modes

While the architecture is register oriented, many addressing modes are supported by the CPU that allow the user easy access to both memory and register contents. The addressing modes are listed in Table 1.

#### 2.1.2 Operating Modes

The H8/310 has only two states of operation, program execution and reset. To this, the H8/3101 adds the "sleep" mode and exception handling states. The sleep mode of operation reduces the H8/3101's current requirement to less than 100 microamperes. Recovery from sleep mode may be accomplished by processor reset, or by external interrupt (INT1). Both events trigger a transition through the exception handling state to the program execution state.

#### 2.1.3 INTERRUPTS

The H8/300 series interrupt features are not used in the H8/310. The H8/3101 however, uses an interrupt on one of the I/O ports to wake up the processor from sleep mode.

#### 2.2 PERFORMANCE

The maximum internal clock rate is 5 MHz, obtained from a 10 MHz external input. At this clock rate, register oriented instructions are remarkably fast. Examples of some instruction execution times are listed in Table 2.

8- or 16-bit register add	0.4 μS
8 x 8 multiply	2.8 μS
16/8 divide	2.8 μS

Table 2: H8/300 Execution Times

#### 3. MEMORY

The H8/310 provides a variety of memory types to support smart card applications. Shown in Figure 2, the memory map consists of a single 64K address space containing 10K of ROM, 8K of EEPROM, and 256 bytes of RAM.

### **Application Note**

# A Microcontroller for Smart Card Application

#### 1. INTRODUCTION

Smart cards are the next generation of transaction and information exchange vehicles. They promise to transform the way we carry data and buy services and products in the future. For smart cards to fulfill their broad potential, the on board LSIs must meet a certain baseline of performance.

True general purpose smart cards require sufficient user storage for complex (perhaps multiple) applications. This implies that large program storage and user data storage areas are required. Also needed is a powerful CPU to support encryption algorithms (such as DES, RSA, and FEAL8) and still give fast response.

The H8/300 core processor from Hitachi answers the processing power issue very capably. In adapting it to smart card use, Hitachi added generous ROM and EEPROM areas, and I/O specifically designed for smart card use. We will review these special purpose devices, the H8/310 and the new H8/3101, in this paper. Since the H8/3101 is similar to the H8/310, we will refer only to the H8/310 throughout the paper, except where the differences are important.

#### 2. ARCHITECTURAL OVERVIEW

#### 2.1 H8/300 SERIES CPU

The H8/300 series CPU is a general register machine with sixteen 8-bit registers (or eight 16-bit registers), which support a speed-oriented instruction set. The Program Counter and the Condition Code Register are the only other registers that are part of the CPU core. Five of the eight bits in the CCR are

used by the CPU to hold the status of the last operation. The general purpose registers and Condition Code Register are shown in Figure 1.

7 07 0						
ROL	R0					
R1L	R1					
R2L	R2					
` R3L	R3					
R4L	R4					
R5L	R5					
R6L	R6					
R7L(SPL)	R7(SP)					
15 8 7 0 General Purpose Registers						
Ceneral dipose negisters						
7 0						
1 - H - N Z V C						
Condition Codes Register						
	ROL R1L R2L R3L R4L R5L R6L R7L(SPL) 7 7 7 7 7 7 7 7 7 0 7 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 7 0 7 0 7 7 0 7 0 7 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7					

Figure 1: H8/300 CPU Registers

#### 2.1.1 Instruction Set

The instruction set comprises fifty-four types, including powerful bit manipulation and accumulation, multiply and divide, and data transfer. Each instruction has optimum addressing modes designed to enhance speed or save code (arithmetic instructions, for example, are register oriented).

Section 5

H8 Family H8/3XX Series

5

# 5 V

H8 Family

- H8/3XX Series
- H8/5XX Series

# **HD66780 (LCD-II A)**

**Tech Notes** 

# **Application Engineering**

Kash Yajnik

#### MPU READ Operation ( Data Sheet Changes )

When a Micro processor reads the HD66780 registers or requests the eight bits of pripheral data, the associated interface signals are shown in timing diagram below in Figure 53. The read operation parameters with their older values (Incorrect) and the revised values (Correct) are also listed accordingly:

#### 

nace nately 17me	tDDR	-	120	ns	Fig. 53	
Data Hold Time	tDHR	20	100	ns	Fig.53	
Correct						
Enable Pulse Width(High level)	PWEH	250	_	ns	Fig.53	
Data Delay Time	tDDR	T -	250	ns	Fig. 53	
Data Hold Time	tDIIR	20	-	ns	Fig.53	

#### Read Operation

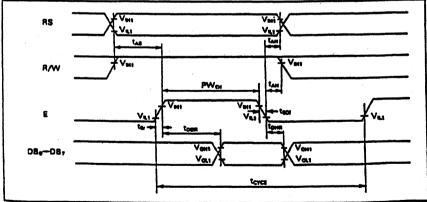
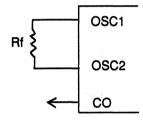
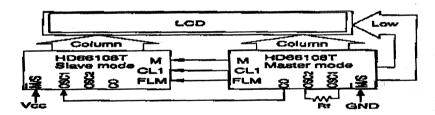



Figure 53. Bus Read Operation Sequence (Reading Data from HD66780 to MPU)

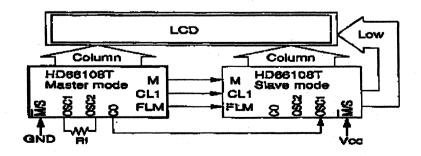
# **HD66108T 165 Channel Driver with RAM**


**Tech Notes** 

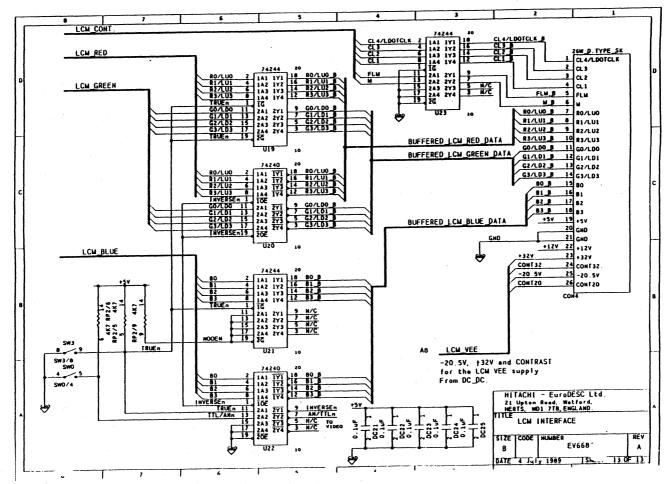
# **Application Engineering**

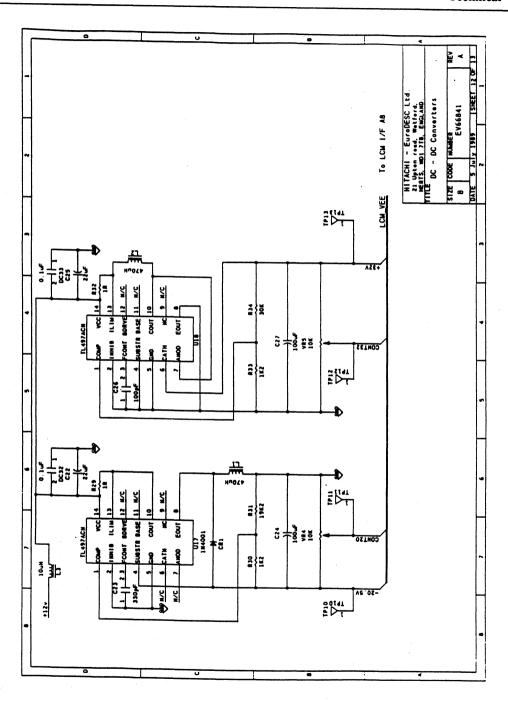

Kash Yajnik

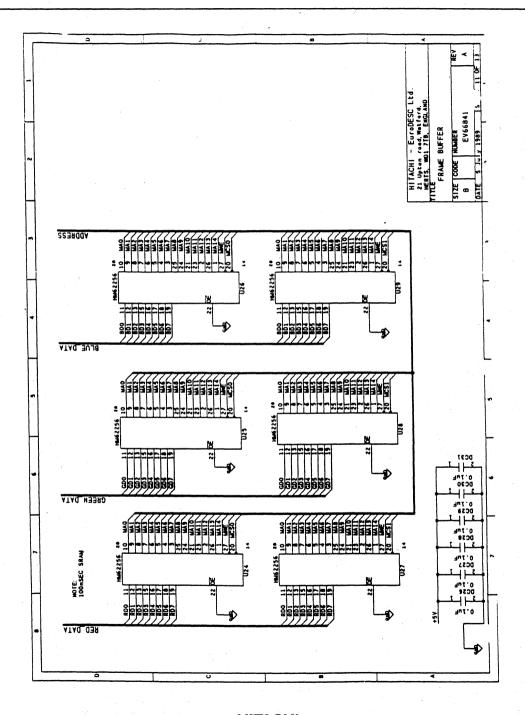
#### **Internal Oscillator**

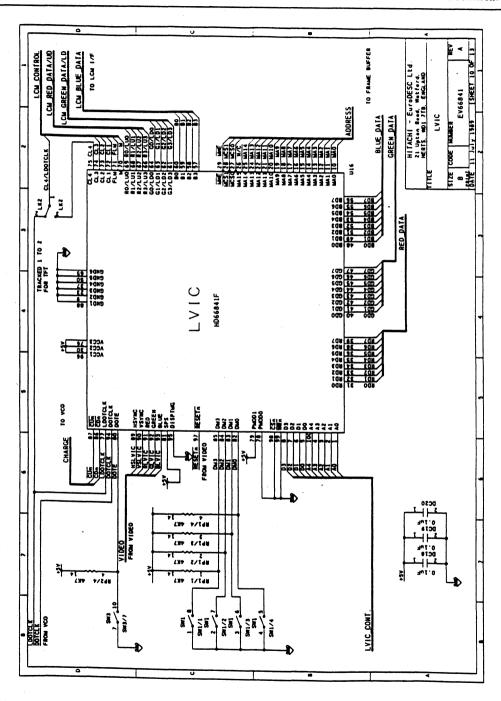

To use the on chip oscillator circuit, connect the resistor "Rf" between the terminals "OSC1" and "OSC2". For synchronous slave operation, the internally generated waveform is output on the "CO" terminal. The "Rf" resistor tolerance should be +2%, -2% or better. The resistor wiring length should be minimized since the oscillation frequency is affected by the terminal capacitance. Refer to the Figure shown below:

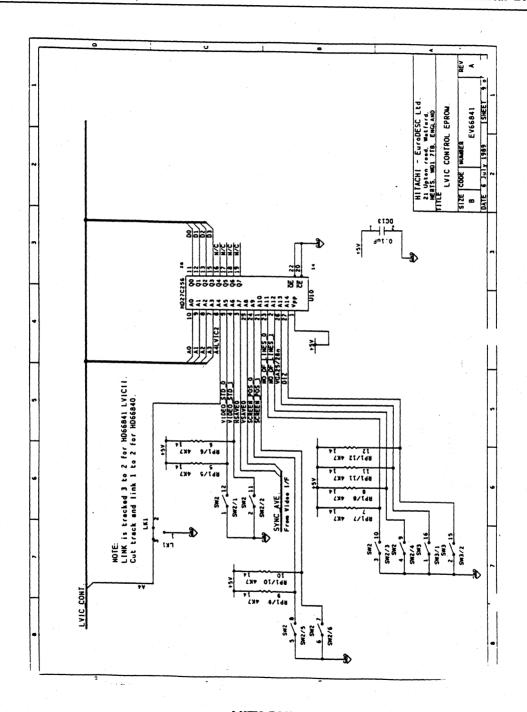


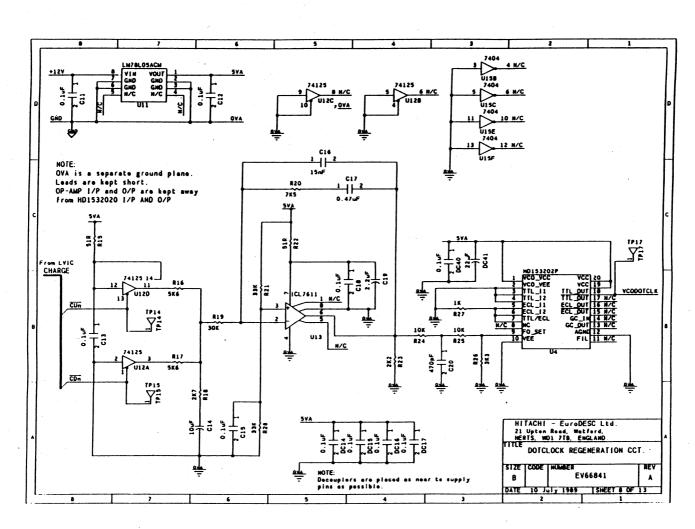

The Figure 24 on the Page 34 is revised to show the internal oscillator usage:

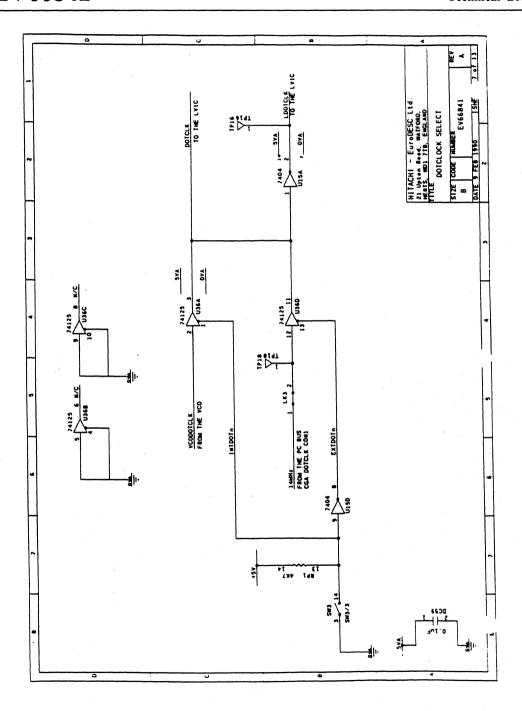


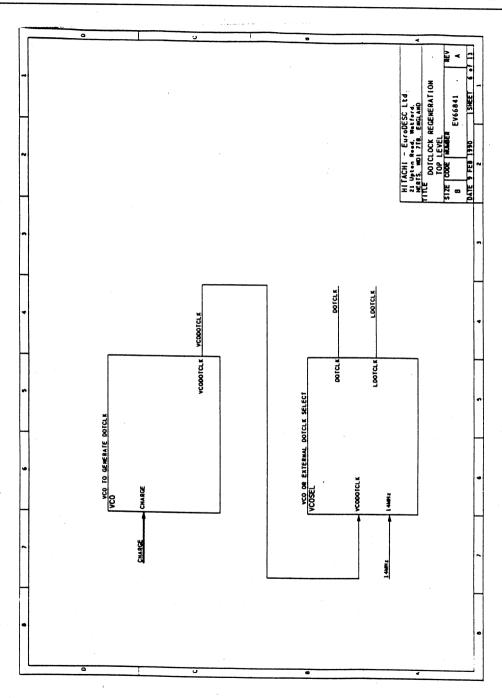


Also, the Figure 25 on the Page 35 is corrected to show the internal oscillator usage:





#### HITACHI



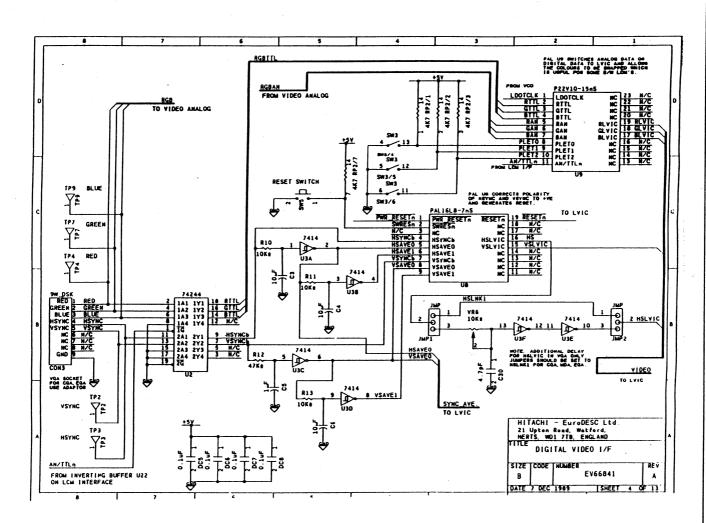



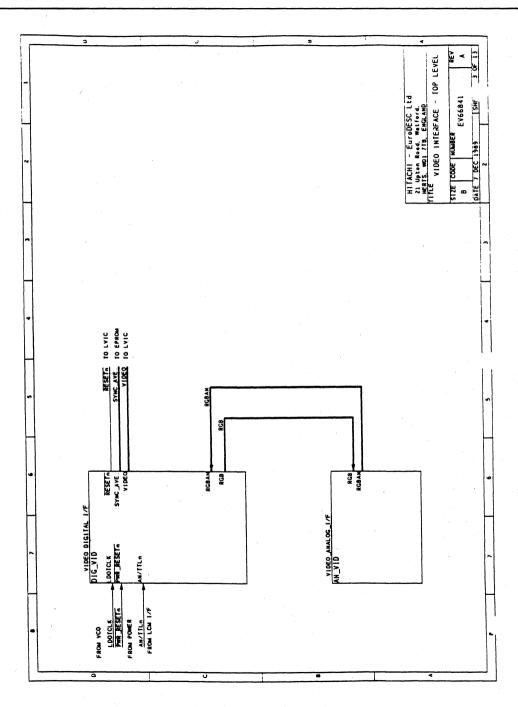


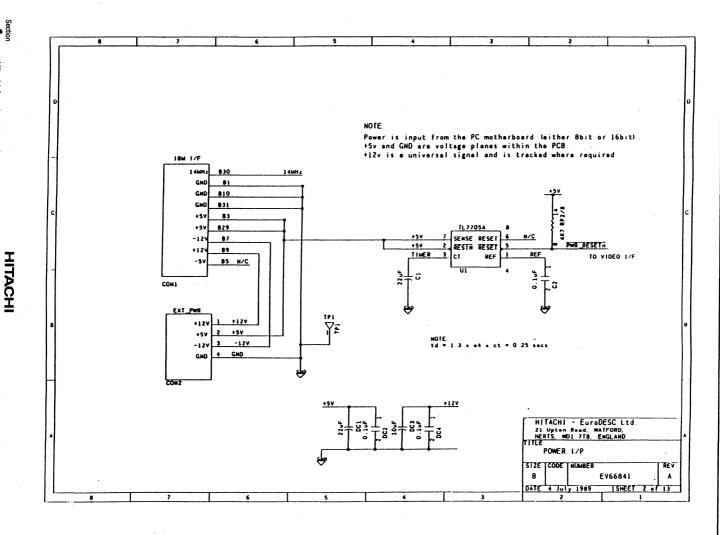




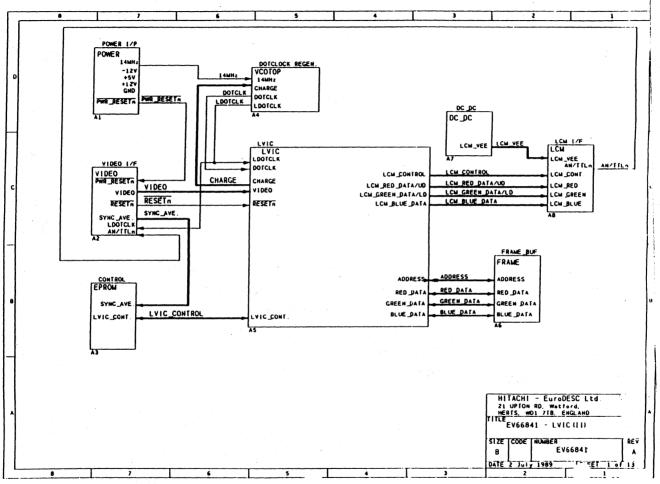




NOTE: PULLUPS OFFICHAL


+5YCOM

RED 1


# Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 HITACHI

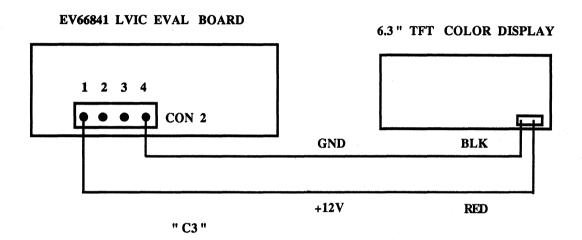






included for reference. This section shows a copy of the schematic supplied by "Eurodesc", Hitachi Europe Ltd., United Kingdom. It is merely

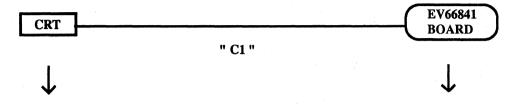


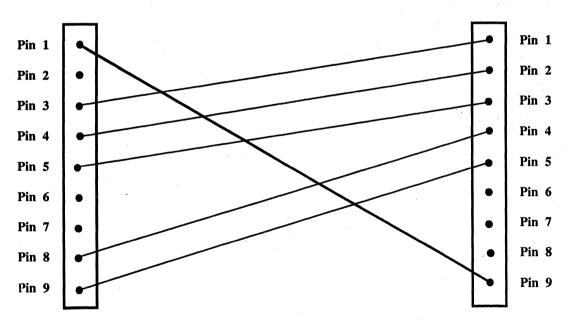

Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300 HITACHI

Section **4** 179

Technical Brief EV66841

### APPENDIX "B"


Back light power cable "C3" is shown in this Appendix:




NOTE: Back light power is to be externally supplied.

### APPENDIX "A"

The 9 pin video cable "C1" translation is shown below:





Technical Brief EV66841

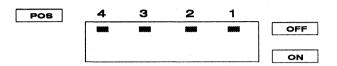
### HITACHI COLOR LCD TFT MODULE (TM16D01HC):

Refer to the display data sheet for detail. The page 14 of it shows how the sub-pixels are designated for LVIC HD66841 interface with 160 dots (H) and 200 dots (V) resolution. The cable "C2" provides the signals to the display while cable "C3" provides the back light power. The dispaly tilt and swivel angles provide different contrast ratios in the ambient light, so it should be adjusted for the most desirable viewing angle.

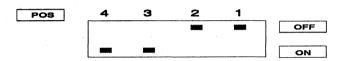
### SYSTEM DEBUG

First power up the system in CGA mode using the AMDEK color monitor and the EGA board effectively disconnecting the 6.3" TFT LCD display and reconnecting the cable "C1" to the monitor. After the system is up in CGA mode, varify that it works correctly. Then, disconnect the cable "C1" and connect it to the EV66841 board input. Also, varify that the cable "C2" is properly connected to the display, since there is no key in the connector. If cable "C3" is properly connected, back florescent light should come on and it is clearly visible.

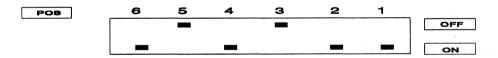
If every thing is working correctly, one can execute all the DOS commands when appropriate prompts are displayed on the LCD screen.


### NOTE:

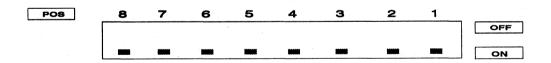
If the LCD screen is split and shows unreadable data, then disconnect and reconnect the cable "C2" to the color TFT display when the power is on. This dynamic reset should cause the correct data to be displayed.


### DEMONSTRATION SOFTWARE

After DOS 3.2 or later is installed, load any CGA graphics package such as PRINTSHOP or file management package XTREE for the video color display. With EV66841 evaluation board in the system, the color video display will be replaced by the color TFT LCD display. Both, XTREE and PRINTSHOP were used for the system display demonstration. By running Kaleidoscope 1, different colored dot patterns can be shown on the LCD screen. When Kaleidoscope 2 is run, various colored geometric patterns are displayed on the screen. For scanned color image files (*.GIF) for display, call Hitachi America Ltd., office at Sierra Point, CA.


1.0 SWITCH "0": It is set for digital input.




2.0 SWITCH "1": This is set for LVIC mode "13H".



3.0 SWITCH "2": Set for CGA mode and 200 vertical lines.

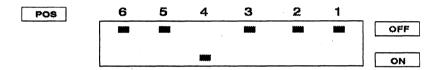


4.0 SWITCH "3": Dynamic fuctions saettings - 25 MHz and regenerated dot clock.



NOTE: 1.0 Make sure that cable "C1" is corectly connected at the display side. There is no cable key.

2.0 The attached schematic is only for reference so do not copy it for your design.


Technical Brief EV66841

### SYSTEM COMPONENTS

The hardware components are described in this section while the "C1", and "C2" cable wiring diagrams are shown in the Appendices.

PC-AT: AST Premium 286 model 70 was operating at 10 MHZ, with 512KB memory, 20MB hard disk drive, and 1.2 MB, 5.25 " floppy drive. It was also running DOS version 3.2.

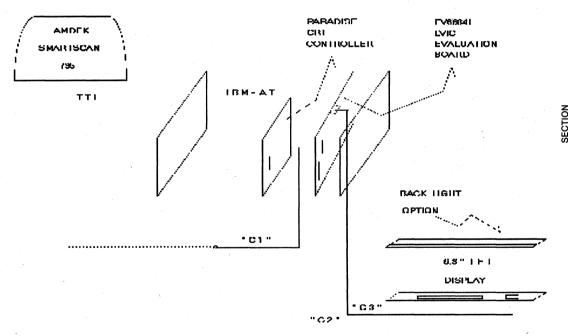
VIDEO CONTROLLER: Paradise Autoswitch EGA is card used in the CGA mode at (640H x 200V) resolution providing TTL level signals to the CRT monitor. The switch settings for 80 column, RGB monitor in CGA mode are listed below:



NOTE: 1.0 For more details refer to the Paradise CRT controller manual.

2.0 Make sure this switch is correctly set.

### **EV66841 LVIC EVALUATION BOARD**


This board has numerous switches and its settings are complex. So, please refer to the EV66841 User's Guide for details. Only the 6.3" TFT LCD switch settings are addressed in this section.

The EV66841 board accepts TTL level input signals carried by the 9 pin cable "C1" from the video controller board. The R,G,B, HSYNC, and VSYNC signals are used to regenerate the CRT dot clock, and sample the incoming video data. The output signals are sent over the cable "C2" to the 6.3" TFT, 8 colors, Hitachi display. This board also provides +12 Volts required by the back light through the cable "C3". The switch settings of this board are shown on the following page:

### SYSTEM CONFIGURATION

The development system was configured with IBM PC-AT or compatible machine, Paradise Autoswitch EGA 480 card, EV66841 LVIC Evaluation Board, Smartscan Amdek 735 digital color monitor, and Hitachi TFT active matrix, 8 color, 6.3", LCD display TM16D01HC from the ELT division. A custom cable is required to provide TTL level input video signals to the EV66841 board and is not provided. The LVIC Evaluation board output connector to the 6.3" TFT display is provided to make the display connection task easier. A separate +12V DC cable is also required for the back light option (#BLS-006M). The back light is easily mounted with the four corner screws of the 6.3" TFT display.

The system diagram is shown below:



NOTE:

1.0 "C1" = "C3" = Cables **not** provided.

2.0 "C2" Cable provided.

EV66841 March, 1991

### **Technical Brief**

### LVIC Evaluation Board

Kash Yajnik

The EV66841 LVIC Evaluation Board was designed by Eurodesc, Hitachi Europe Ltd., and can be ordered through Hitachi America Ltd. in U.S.A. The board is shipped with cables for multiple Liquid Crystal Modules from Hitachi.

Black and white as well as color information can be displayed depending upon the selected LCD panel from Hitachi's ELT Division. The EV66841 LVIC Evaluation Board can reside inside IBM PC-AT or a compatible system running later than DOS version 2.0. It is also possible to run the EV66841 Board with external power supply. A User's Guide is also provided to customize the board for many applications.

This technical brief is written to complement the EV66841 User's Guide for one specific application using the 6.3" color TFT module (TM16D01HC) from Hitachi's Electron Tube Division (ELT). A copy of the schematic is also included to

provide the design implementation detail. A system diagram is also included to high light the laboratory environment. Similarly, each user may tailor display subsystem requirements for the desired application.

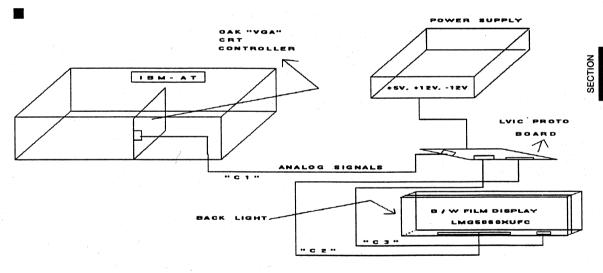
The scope of this document is to help make the customization task easier and quicker. The circuit minimization tasks are left to each user and are **not** attempted. This is intended as an illustrative example for the Hitachi field and technical staff, and their customers.

The following pages cover system configuration and components, EV66841 Board set up, System debug, and Demonstration software. The Appendix "A" covers 9 pin Video cable translation and the Appendix "B" shows the Back light power connections. The Appendix "C" lists the schematic.

Refer to the subsequent pages for more detail.

### LVIC Proto Type Board

This document presents information for a 6.3" color active matrix or black and white LCD subsystem implementation using Hitachi controller HD66841. Its major components include IBM PC-AT, LVIC Proto Type Board, Paradise or Oak Video Controller Board, and the LCD display (TM16D01HC or LMG5060XUFC) from Hitachi's ELT Division. It can be further enhanced by adding demonstration software that runs on the IBM PC-AT or a compatible machine.

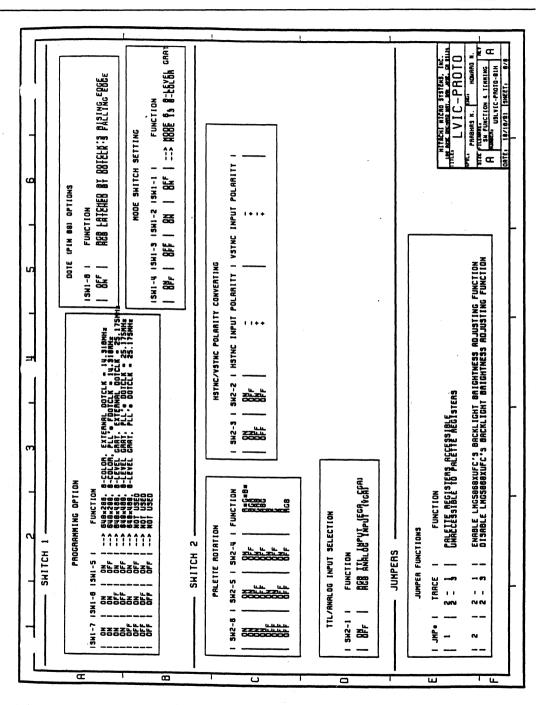

### FEATURES.

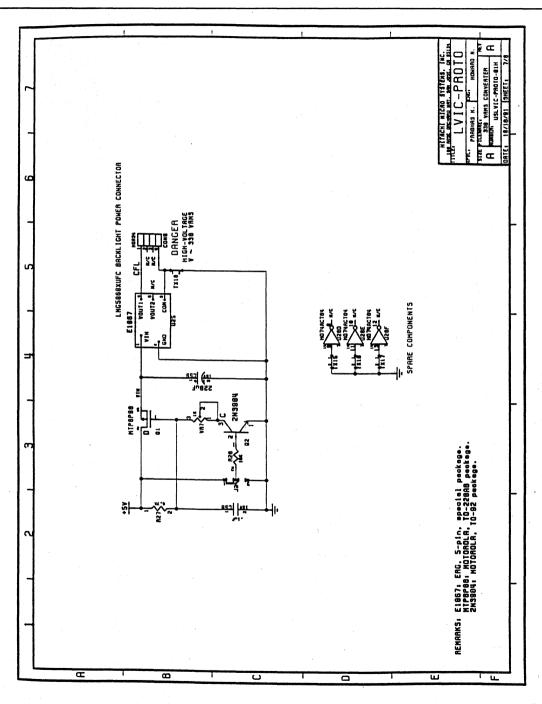
### --Hardware--

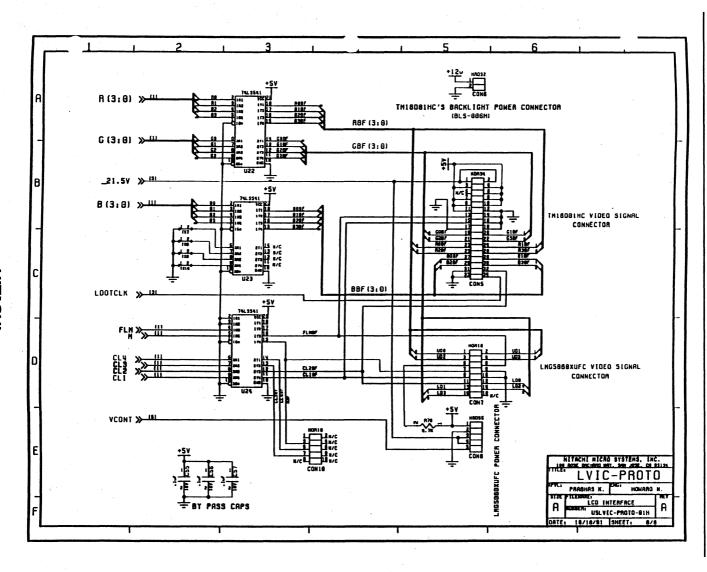
- (1) IBM PC-AT or compatible machine
- (2) HD66841 LVIC Proto Type Board from Hitachi
- (3) Color LCD Active Matrix or Black and White display from Hitachi with Back Light
- (4) Paradise or Oak Video Controller Board

### --Software--

- (1) DOS 3.2 Version or later
- (2) "XTREE", WINDOWS, or PRINTSHOP package
- (3) Any CGA color or VGA demonstration package
- (4) *.GIF files for color LCD or VGA type panel display





### OBJECTIVES


- (1) To display HD66841 LVIC Proto Type Board
- (2) To demonstrate 8 colors or 8 shades of grey on LCD panel
- (3) To show application software running on the HD66841 LVIC Proto Type Board
- (4) To high light PC-AT Bus Interface

### ADDITIONAL INFORMATION

The details of the system configuration and its design along with the associated software, are available in the Hitachi America Ltd. Technical Brief #TB0103.





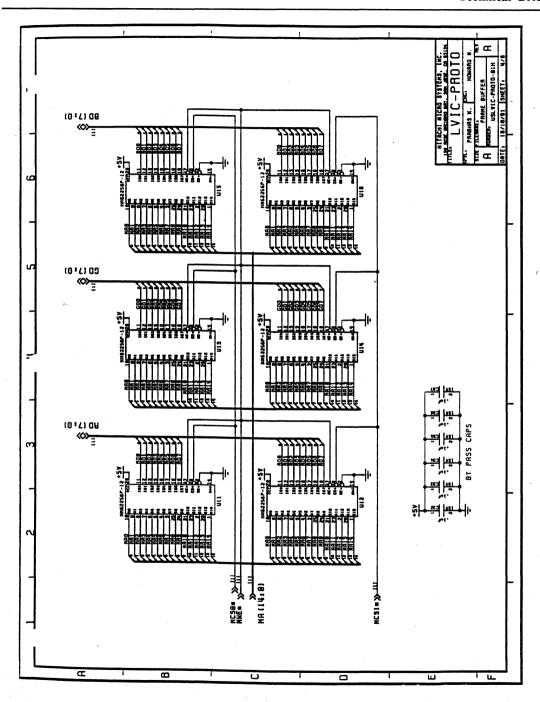


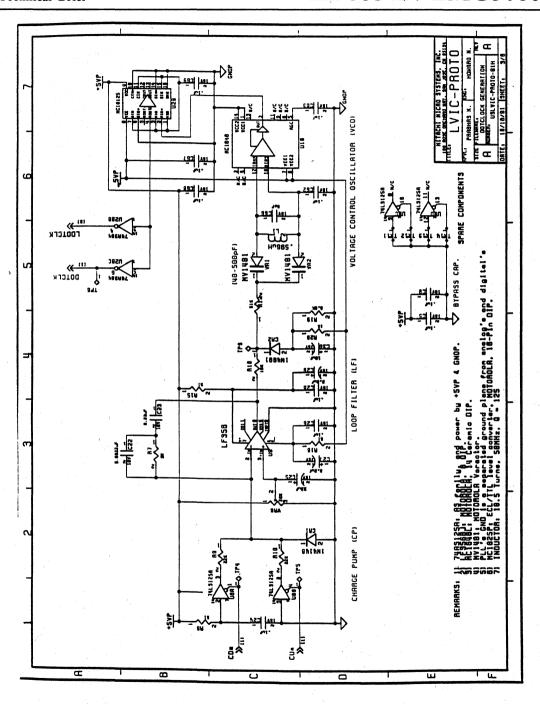
# Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

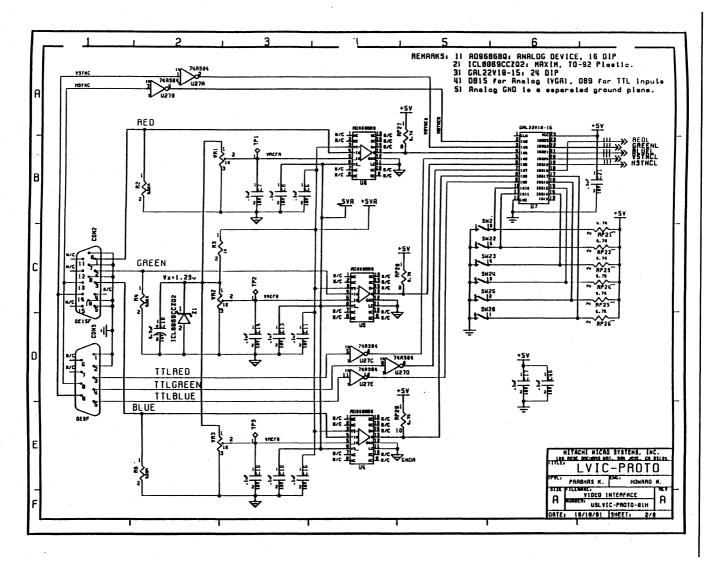
uA78H85C ULB 遣 180 C53 uR7885C CUPUT BUTTO MJ6 C U25 LNZINPHL 150 CA3 Kl<del>r</del> 罪 LN48GL ANALOG GNO PLANE GHOR Irale = 1.0 Anp R = 1 Ohn -X. **uR78HBSC** MAX701CPA

HA VCC 8

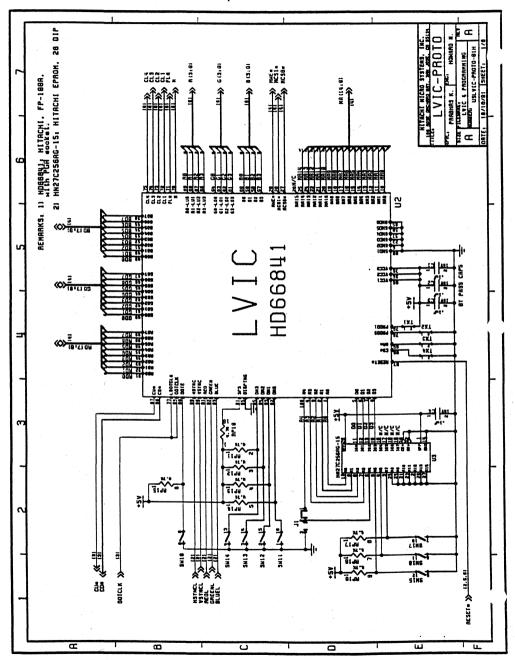
MC1 MC3 1 H/C


MC2 AESET 1 H/C U17 RESET 13 357 +54 TP7 VCONT uR7985C MESET= 78**7**≫ CAPPET BATTO TPB _21.54 LKZIRPHL · · · · · · · · 滥 LCO PONER SUPPLY PLL GND PLANE GHOP -PROTO HOMBRO N. un788SC, un788SC; II, TO-228AB package (pinout different between 78/79) ILUB/PKC; II, 14 DIP HRY78ICPR: MAXIM, 8 DIP. Digital, anelsg, and fill ground planes are separated. PONER & RESET RENARKS: A A USLYCC-PROTO-BIH 18/18/91 SHEET: 5/8


ш


2

Section 4 167


SECTION







This section shows a copy of the schematic supplied by Hitachi Micro System Inc., San Jose, California. It is merely included for reference and is not intended to be copied.



### APPENDIX "A"

1.0 The 9 or 15 pin male to male video cable "C1" is shown below:



" C1 "

- 2.0 The cables "C2" and "C3" are provided with as a part of the panel inter connect kit.
- 3.0 The LCD panel displays are to be ordered from Hitachi's Electron Tube Division.

# HITACHI COLOR LCD TFT MODULE (TM16D01HC):

Refer to the display data sheet for detail. The page 14 of it shows how the sub-pixels are designated for LVIC HD66841 interface with 160 dots (H) and 200 dots (V) resolution. The cable "C2" provides the signals to the display while cable "C3" provides the back light power. The display tilt and swivel angles provide different view angles in the ambient light, so it should be adjusted for the most desirable viewing angle.

# HITACHI B/W FILM LCD MODULE (LMG5060XUFC):

The mechanical, electrical, and optical specifications of this panel are stated in its data sheet, so, please refer to it. Its resolution is 640 dots (W) and 480 dots (H), with 1/240 duty cycle. Cold Cathode Flourescent back light is built inside the display.

### SYSTEM DEBUG

First power up the system in CGA mode using a CRT color monitor and the Paradise EGA board effectively disconnecting the 6.3" TFT LCD display and reconnecting the cable "C1" to the monitor. After the system is up in CGA mode, verify that it works correctly. Then, disconnect the cable "C1" and reconnect it to the LVIC Proto Board 9 pin input. Also, verify that the cable "C2" is properly connected to the display, since

there is no key in the connector. If cable " C3" is properly connected, florescent back light should come on and it is clearly visible. Also, verify the " SW1" and " SW2" settings on the LVIC Proto Board. The system must come up with " C" prompt.

Similarly, change the "C1" cable to analog 15 pin male cable and test the VGA panel LMG5060. The "SW1" and "SW2" switch settings change as shown earlier. Create VGA directory under the C:\ Then, copy VGAMODE.EXE file from the Oak software diskette in it. Run the VGAMODE.EXE file for different screen resolutions. However, for LMG5060 panel select 640 x 480 resolution.

If every thing is working correctly, one can execute all the DOS commands when appropriate prompts are displayed on the LCD screen.

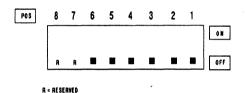
### DEMONSTRATION SOFTWARE

After DOS 3.2 or later is installed, load any CGA or VGA graphics package such as PRINTSHOP, WINDOWS file management package XTREE for the LCD display demonstration. With the LVIC proto Board in the system, the color video display will be replaced by the color TFT LCD display. The black and white display will show shades of grey. By running Kaleidoscope 1 and 2, under PRINT SHOP, different dot and line patterns can be shown on either LCD screen.

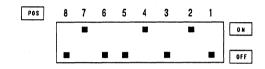
To display scanned image files (*.GIF), call Hitachi America Ltd., office at Sierra Point , CA.

### LVIC PROTO BOARD

The User Manual for this board describes all switches and their settings along with the PAL equations for LMG5060XUFC and TM16D01HC panels. In this section, only the switches are addressed. So, please refer to the LVIC Proto Board User's Guide for more details.


The CN1 and CN4 connector artwork is on the PCB, but they are not to be poppulated or used by the customer.

If the power cables are short, they may be extended. The external power connector and bench power supplies are to be used as shown in the system block diagram. The nominal power consumption of this board is stated below so that

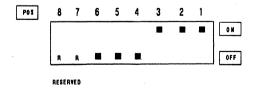

adequate power can be externally provided:

+5V@1A.+12V@0.17A.-12V@0.13A

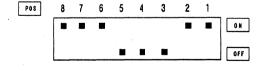
The LVIC Proto Board accepts analog level input signals carried by the 15 pin male cable "C1" from theOak VGA video controller board inside the PC-AT. The R,G,B,HSYNC, and VSYNC signals are used to regenerate the CRT dot clock, and sample the incoming video data. The output signals are sent over the cable "C2" to the black and white LMG5060 Hitachi display. This board also provides 330 Volts RMS required by the back light through the cable "C3". The switch settings of this board are shown below in Figure 4:



SW2




SW1


### FIGURE 4

The LVIC Proto Board also accepts TTL level input signals carried by the 9 pin cable "C1" from the Paradise video controller board. The R,G,B, HSYNC, and VSYNC signals are used to regenerate the CRT dot clock, and sample the incoming video data. The output signals are sent over the

cable " C2 " to the 6.3" TFT, 8 colors, Hitachi display TM16D01HC. This board also provides +12 Volts required by the back light through the cable " C3 ". The switch settings of this board are shown under in Figure 5:



SW₂



SW1

**NOTE**: The attached schematic is only for reference, so do not copy it for your design.

### FIGURE 5

Section

### HITACHI

Hitachi America, Ltd. • San Francisco Center • 2000 Sierra Point Pkwy. • Brisbane, CA 94005-1819 • (415) 589-8300

### SYSTEM COMPONENTS

The hardware components are described in this section while the " C1 ", and " C2 " cable details are shown in the Appendix " A ".

PC-AT: AST Premium 286 model 70 was operating at 10

MHZ, with 512KB memory; 20MB hard disk drive, and 1.2 MB, 5.25 " floppy drive. It was also running DOS version 3.2.

VIDEO CONTROLLERS: For OAK VGA cottroller board refer to its User's manual. The settings for the the six jumpers on the board are shown below in Figure 2:

### **JUMPERS**

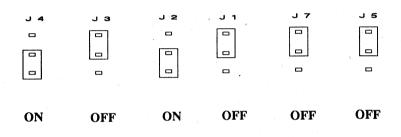
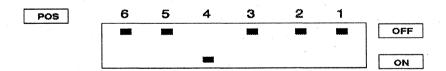




FIGURE 2

Paradise Autoswitch EGA is card used in the CGA mode at (640H x 200V) resolution providing TTL level signals to the

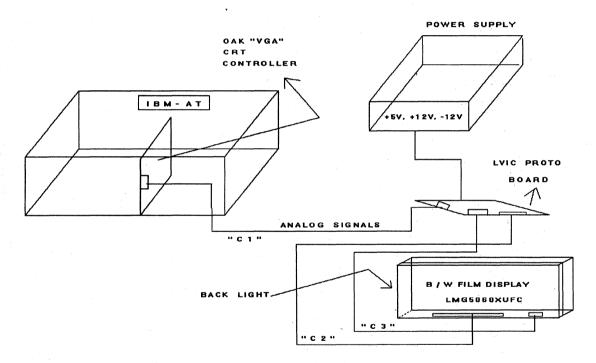
CRT monitor. The switch settings for 80 column, RGB monitor in CGA mode are listed below in Figure 3:



### NOTE:

- 1.0 For more details refer to the Paradise CRT controller manual.
- 2.0 Make sure this switch is correctly set.

### FIGURE 3


### **HITACHI**

### SYSTEM CONFIGURATION

The development system was configured with IBM PC-AT or compatible machine, OAK VGA or Paradise Autoswitch EGA 480 card, LVIC Proto Board, and Hitachi B/W LCD panel LMG5060 or TFT active matrix, 8 color, 6.3", LCD display TM16D01HC from the ELT division. The cables required to provide TTL or analog level input video signals to the LVIC Proto board are not provided. The LVIC Proto board output connectors to the 6.3" TFT or Black and white display

are provided to make the display connection task easier. A separate AC high voltage cable is also required for the back light of each type of display. The back light is easily mounted with the four corner screws of the 6.3" TFT display. The LMG 5060 display has built in back light.

The system diagram for the LMG5060 LCD panel is shown below:



NOTE: "C2" = "C3" Cables are provided.

### FIGURE 1

The magram shown above in Figure 1 is to be modified for a TFT color display. The OAK VGA controller is replaced by the Paradise Autoswitch EGA 480 Board and the LCD panel LMG5060 is replaced by the Color panel TM16D01HC. The

analog level input and CMOS level output cables for the LVIC proto board will be likewise changed to drive the color module.

Section

HITACHI

# HD66841 / LMG5060

### Technical Brief

### LVIC Proto Board

Kash Yainik

The HD66841 LVIC Proto Board was designed by Hitachi Micro Systems Inc., San Jose, and can be ordered through Hitachi America Ltd., in U.S.A. The board is shipped with cables kit for multiple Liquid Crystal Modules from Hitachi.

Black and white as well as color information can be displayed depending upon the selected LCD panel from Hitachi's ELT Division. This board is designed to display a black and white image with eight shades of grey using LCD panel LMG5060XUFC having VGA (640Hx480V) resolution. It can also display an eight colors CGA (640Hx240V) image when used with color TFT LCD display panel TM16D01HC.

The LVIC Proto Board resides outside the IBM PC-AT or a compatible system running later than DOS version 2.0. It requires external power supply. The back light power is also provided by this board.

A special prototype space is reserved on this board for customer circuit design and development in the critical areas of LVIC HD66841 based implementation.

LVIC Proto Board User Manual is also provided to customize this board for many applications.

This technical brief is written to complement the LVIC Proto Board User Manual for one specific application using the 6.3" color TFT module (TM16D01HC) or VGA module (LMG5060XUFC) from Hitachi's Electron Tube Division (ELT). A copy of the schematic is also included to provide the design implementation detail. A system diagram is also included to high light the laboratory environment. Similarly, each user may tailor display subsystem requirements for the desired application.

The scope of this document is to help make the customization task easier and quicker. The circuit minimization tasks are left to each user and are not attempted. This is intended as an illustrative example for the Hitachi field and technical staff. and their customers.

The following pages cover system configuration and components, the LVIC Proto Doals ...
demonstration software. The Appendix "A" covers allange, digital cable connection and the Appendix "B" shows lists the

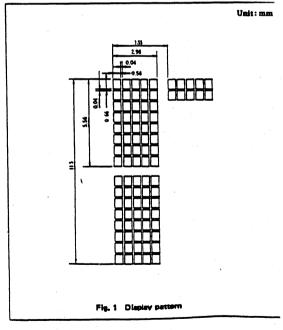
Refer to the subsequent pages for more detail.

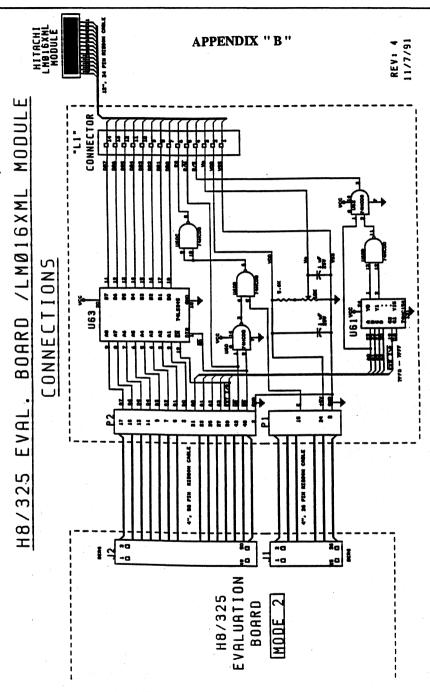
### APPENDIX "C"

### LM016XML

<ul> <li>16 character x 2 lines</li> <li>Controller LSI HD44780 is built-in (See page 97).</li> <li>+5V single power supply</li> <li>Color tone</li></ul>	New gray
MECHANICAL DATA (Nominal dimensions)         Module size	5.8H mm 86H mm 3.55 mm .66H mm
ABSOLUTE MAXIMUM RATINGS min. Power supply for logic $(V_{DD} - V_{SS})$	max. 6.5 V
Input voltage (Vi)	V _{DD} V 50°C 70°C
ELECTRICAL CHARACTERISTICS  Ta = 25°C, $V_{\rm DD}$ = 5.0 V $\pm$ 0.25 V  Input "high" voltage ( $V_{\rm IH}$ )	.6 Vmax. .4 V min. .4 Vmax.
Power supply for LCD drive (Recommended) (Vot	-V ₀ )

### Notes


In the HD44780, the data can be sent in either 4-bit 2-operation or 8-bit 1-operation so that it can interface to both 4 and 8 bit MPU's.


(1) When interface data is 4 bits long, data is transferred using only 4 buses of DB₄~DB, and DB₅~DB, are not used. Data transfer between the HD44780 and the MPU completes when 4-bit data is transferred twice. Data of the higher order 4 bits (contents of DB₄~DB, when interface data is 8 bits long) is transferred first and then lower order 4 bits (contents of DB₆~DB, when interface data is 8 bits long).

(2) When interface data is 8 bits long, data is transferred using 8 data buses of DB, ~DB,.

### INTERNAL PIN CONNECTION

Pin No.	Symbol	Level	Function	
1	V ₅₅	-	ov	
2	Voo	-	+6V	Power supply
3	v _o	_	-	
4	RS	H/L	L: Instruction code input H: Data input	
5	R/W	H/L	H: Data read (LCD module→MPU) L: Data write (LCD module ←MPU	
6	E	H, H+L	Enable signal	
7	080	H/L	Date bus line Note (1), (2)	
8	081	H/L		
9	DB2	H/L		
10	083	H/L		
11	084	H/L		
12	D85	H/L		
13	086	H/L	İ	
14	087	H/L		





### APPENDIX "A"

The H8/325 Evaluation Board Kit (US328EVB01H) includes the following items:

- o H8/325 Evaluation Board
- o Power cable for the board
- o Board Stand Offs (Q=4)
- o Five HMSI Demonstration Programs Diskette for PC-AT
- o Software Agreement Copy
- o Hardware Manual (M21T133) from HMSI
- o Software User Manual (HSM325EMSI1SE) from HMSI

The board factory jumpers, switch settings, and other details are shown in the hardware manual. They may be changed for this application. The associated steps are listed below for clarity:

- 1.0 The 20 MHz crystal is to be replaced by 16 MHz crystal.
- 2.0 The "SW1" is set for ROM position.
- 3.0 Jumper " J5 " is set for 32KB ROM space.
- 4.0 Jumper " J6 " for RAM space is not installed.
- 5.0 Jumpers " J3 " and " J4 " for mode selection are set for mode " 2 " i.e. " J3 " is installed while the jumper ' J4 " is removed.

These are shown below in the Figure 2:

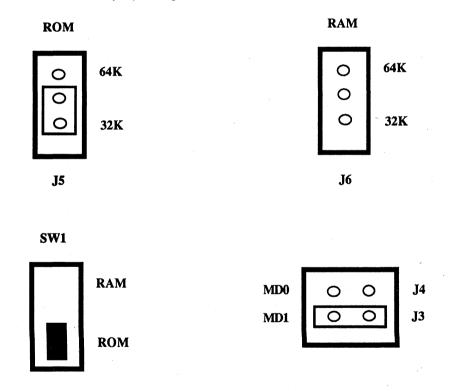



FIGURE 2

### SUB SYSTEM COMPONENTS

The LCD display subsystem components such as H8 / 325 Evaluation Board, LM016XML display, LCD Interconnect Board, Hitachi Laptop Computer, External Power Supply and the related software are described in this section.

H8/325 Evaluation Board: This board was designed by Hitachi Micro Systems, San Jose, CA. It is provided as a demonstration and development tool. On-board EPROM contains the Hitachi Monitor firmware used for single line assembly, disassembly, line editing, and debug purposes. Of the two serial ports, only the Terminal port is used to down load, up load, and run the programs. The I/O extention connectors "J1" and "J2" are used to connect to the LCD Interconnect Board. The partially decoded, extented I/O space is further decoded on the LCD Interface Board. This board is designed to run at 10 MHz and uses a 20 MHz crystal for that purpose. However, in this application a 16 MHz crystal is used to provide 1 MHz "E" clock to the LCD Controller HD44780 located on the LCD panel. All the jumpers on this board are not set to the factory default states. Refer, to the Appendix "A" for the H8/325 Evaluation Board details including the switch and jumper settings.

LCD Panel Display (LM016XML): This display is provided by the Hitachi's ELT Division. It is capable of displaying 2 lines of eight 5x7 alpha numeric characters. It is 40 dots wide and 16 dots high. It has 1/16 duty cycle. The parallel data is clocked in at 1 MHz "E" clock rate. It runs from +5V power supply. The customer has to solder 14 pins on LM016XML panel for the appropriate connector used on the LCD Interconnect Board. The LM016XML LCD panel mounting and the proper viewing angles are critical to a strain free LCD display. Please, handle the panels according to the care recommended by the LCD display manufacturer. The logic signals sent to the LCD panel are at CMOS levels. Refer to the Appendix "C" for more information on the panel.

LCD Interconnect Board: A wire wrap board was built to send parallel data, control signals, and power to the LCD panel over the "L1" cable. The I/O extention cables "J1" and "J2" were connected to the H8 / 325 Evaluation Board. The LM016XML LCD panel contrast adjust potentiometer was also put on this board. The data bus buffer and gating logic were also located on this board. The power on reset pulse was provided by the H8 / 325 Evaluation Board. Refer to the Appendix "B" for its schematic.

Hitachi Laptop Personal Computer "HL320": It is connected to the serial terminal port of the H8/ 325 Evaluation Board. The connector RJ-12 is attached to the Terminal port while a male to female 25 pin adapter cable is required at the Laptop PC end. The Hitachi "HL320" PC provides the software development tools for the user programs. The demonstration program up load and down load capability is also provided by the laptop PC. The communication link is full duplex, 9600 baud, 8 bits, 1 stop bit, and no parity check.

**Power Supply:** Open frame switcher power supply from Kepco, Model # ECM-021K-CB is used to power up the H8 / 325 Evaluation Board. Its rating is +5V @ 2A, +12V @ 0.3A, and -12V @ 0.2A. The Interconnect Board as well as the LCD display are also powered by it.

**Software:** The laptop PC resident software development tools, packages, and utilities are described very briefly:

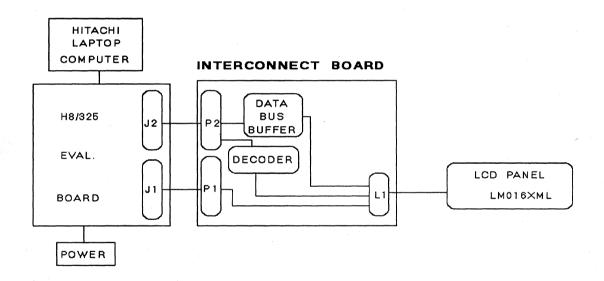
H8 / 325 Cross Assembler: It is designed for DOS environment inside the laptop Personal Computer. When the user program is submitted as the source file, it assembles the code. Consequently, it produces Object and List files of the source program.

H8 / 325 Linker: To link various object code segments (" *.OBJ." extention) developed in parallel for a larger program. The linked file has " *.ABS" extention. Motorola " S" record conversion utility is also included with the linker, and is used as output file with " S" record format.

Upload: To up Load "S" Record file, push "EDIT SHIFT "Key down. Depress the "PG UP "key when using "PROCOMM" package for communications. Also, select ASCII format.

**Demonstration File:** Motorola "S" record file "INIT780C.ABS" is uploaded to the H8 / 325 Evaluation Board. The uploaded file i.e. "INIT780C.ABS" is run for display demonstration.

Screen Editor: Any word processing package is acceptable. In this application, Microsoft "WORD" package is used. The source programs are created and edited with this package. The source program files have "*.SRC" extensions.


### SUB SYSTEM CONFIGURATION

The display subsystem was configured with H8/325 Evaluation Board, LCD display Interconnect Board, and LM015XML panel from the ELT division. The required cable lengths are shown in the schematic for CMOS signal levels. The LCD

power pins are a part of the 14 pin panel cable, so a separate power cable is not required.

The subsystem block diagram for the Interconnect Board is shown below in Figure 1:

### H8/325 EVALUATION BOARD / LM016XML



### **BLOCK DIAGRAM**

**NOTE**: The required cables cables may be built or purchased by the user, from other vendors.

### FIGURE 1

# HD6473258 / LM016XML

### **Technical Brief**

# H8/325 Evaluation Board & LCD Display

Kash Yajnik

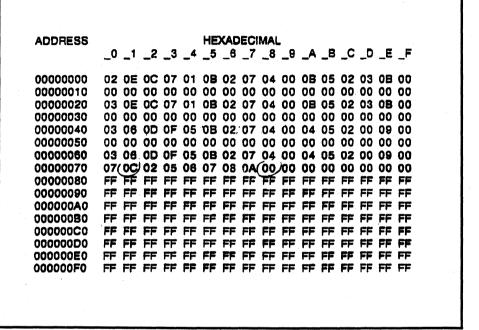
The H8/325 Evaluation Board (US328 EVB01H) was designed by Hitachi Micro Systems Inc., San Jose, and can be ordered through Hitachi America Ltd., in U.S.A. The board is shipped with power cable header, stand off hardware, demonstration programs, and associated manuals.

Black and white character information can be displayed depending upon the selected LCD panel from Hitachi's ELT Division. Among the many products offered by the Hitachi's ELT Division, for this application, LCD panel LM016XML was selected.

An Inter Connect Board is required to enable the H8/325 Evaluation Board to talk to the LCD display LM016XML. The character data is sent to the LCD panel for processing as well as display. The HD44780 LCD Controller Driver from Hitachi, SICD, located on the LM016XML panel, processes the data sent by the H8/325 Evaluation Board for display.

The H8/325 Evaluation Board resides on a bench connected to the LCD interface board. The other end of the interface board is connected to the panel. It requires external power supply. After power on, a demonstration program is down loaded and run, to display a character message.

This technical brief is written to complement the H8/325 Evaluation Board Manuals for one specific application i.e. interfacing to a peripheral. In this case, LCD panel LM016XML from Hitachi's Electron Tube Division (ELT).


A copy of the schematic is included to provide the design implementation detail. A system diagram is also included to high light the laboratory environment. Similarly, each user may tailor other subsystem requirements for the desired application.

The scope of this document is to help make the customizing task easier and quicker. The circuit minimization tasks are left to each user and are **not** attempted. This is intended as an illustrative example for the Hitachi field and technical staff, and their customers.

The following pages cover sub system configuration and components, H8/325 Evaluation Board set up, System Debug, and Demonstration Software. The Appendix " A " covers H8/325 Evaluation Board details, and the Appendix " B " shows the Interconnect Board schematic. Also, Appendix " C " lists the LCD Panel data sheet.

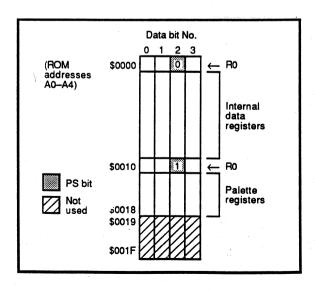
Refer to the subsequent pages for more detail.

5.0 For more details, refer to the lines for addresses **60H** and **70H** in the code sample is shown below:



# **HD66841 LVIC-II ROM Programming Mode**

### **Tech Notes**


# **Application Engineering**

Kash Yajnik

# Palette Registers Access

The palette registers inside the HD66841 (P1-P8) are provided for different shades of 13 level grey scale. The palette registers are **not** to be used for color LCD display. To use these palette registers, the following procedure is suggested along with sample code for it:

- 1.0 Connect HD66841 address A4 (Pin 100) to the EPROM / ROM address A4.
- 2.0 After power on, the HD66841 will continuously cycle the addresses A0 A4. The contents of the EPROM / ROM where the programming information is stored will be continuously read by the HD66841. However, the EPROM / ROM contents will **only** be loaded, when the power on reset pulse is applied.
- 3.0 Therefore, if the LCD display register settings are to be changed **dynamically**, a power on reset pulse is required to reload the new EPROM / ROM data in the LVIC II.
- 4.0 The details of the palette register select (PS) bit i.e. Register R0 bit 2 for the ROM Programming method are shown in the diggram below:



HD44780 - ROM MASK CHANGE FOR CHARACTER GENERATION

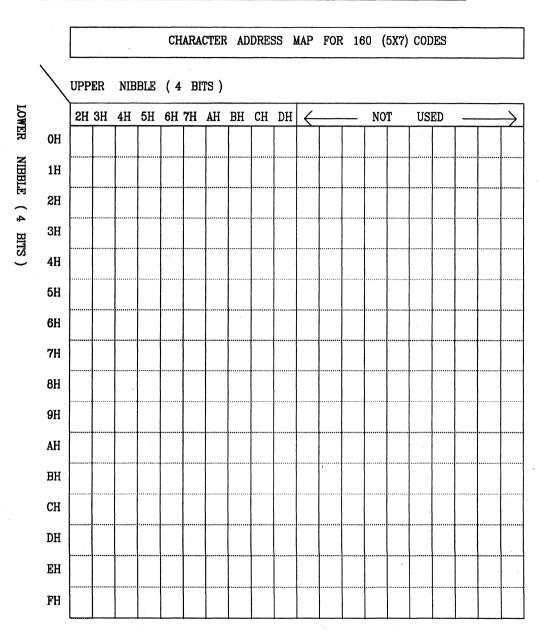
CHARACTER ADDRESS MAP FOR 32 (5X10) CODES NIBBLE ( 4 BITS ) **UPPER** LOWER EH FH NOT USED 0H NIBBLE ( 4 BITS ) 1H 2H ЗН 4H 5H 6H 7H 8H 9H AH BH CH DH EΗ FH

# **HD44780 - ROM MASK CHANGE FOR CHARACTER GENERATION**

2.0 Sixteen EPROM addresses for one 5x10 character. Therefore, for 32 character codes: EPROM addresses used = 16 x 32 = 512. Character font or matrix for letter"y" is shown by the EPROM dot pattern listed below:

			E	PR	OJ	á	A	DD	R	ES	S	-						LIN PO	IE SITIC	N		1	EPI	RO	M	OUT	PUT	·····	
		С		DD AR							E:	3							G RA		-						-		
٠.	A	10	A.	9	A	8	A	7	A	.6	Æ	1.5	ŀ	14	١,	A3	3	A2	A1	AO	+	- +	04	4 (	23	02	01	00	
	ļ	1		1		1		1		1		0			0	1		0	o	0			(	3	0	O	0	0	
																		O	0	1				0	0	0	0	0	
																		0	1	0				1	0	0	0	1	
												Ī						O	1	1				1	O	0	O	1	
							Ī											.1	0	o				1	0	0	0	1	
				•••••	П						Ī							1	O	1				1	0	0	0	1	•••
,																		1	1.	0				0	1.	1.	1	1.	
 							T	-	1		T			1			•••••	1	1	1				0	О	0	0	1	
		••••		0	"	0			1	-			Ť				••••	0	0	O				0	0	0	0	1	
			1								T		Ī				••••	0	0	1			1	0	1	1	1	С	)
	П		П				Ī		Ī	1	1	1		1				0	1	0			(	0	0	0	0	О	)
													T			1	,	O	1	1					1	1	1	1	•••
							T	ļ			1	T	Ť			1		1	0	0		ļ	$\parallel$						•••
 							T		1		T	1		†				1	0	1							T		•••
 							T	ļ	T	<u> </u>	1	†		1			•••••	1	1	0									•••
	U				N						1		T	$\downarrow$		$\downarrow$		1	1	1		İ				V	$\bigvee$		• ,

NOTE:


1.0 "++" = Unused and unprogrammed EPROM outputs.

2.0 "*" = Cursor 'OFF" code line 11. Fill with "0".

3.0 "1" = LCD display dot "ON".

#### HITACHI

**HD44780 - ROM MASK CHANGE FOR CHARACTER GENERATION** 



## HD44780 - ROM MASK CHANGE FOR CHARACTER GENERATION

1.0 Eight EPROM addresses for one 5x7 character. Therefore, for 160 character codes: EPROM addresses used = 8 x 160 = 1440. Character font or matrix for "P" is shown by the EPROM dot pattern listed below:

			EPI	RO	M.	ADD	RES	s				LIN PO	VE SITIC	ON		F	PRC	M.	OUTI	PUT	
	:	C				A DA	ATA COL	ES				CG RAM ADDRESS									
		A10	A9	Α	8.	A7	A6	<b>A</b> 5	A	4	АЗ	A2	A1	AO	+	+	04	03	oz	01	00
		0	1		0	1	0	0		0	0	0	0	0			1	1	1	1	0
								П				0	o	1			1	o	0	O	1
	••••••••											0	1	0			1	0	0	0	1
	•••••		$\Pi$				11		1		<u> </u>	0	1.	1			1	1	1	1	0
	•••••••		$\prod$									1	O	O			1	O	0	o	0
	••••••••••											1	0	1			1	0	0	0	(
	*********											1	1.	0			1	0	0	0	0
	••••••											1	1	1			0	0	0	O	O
	••••••••				<b></b>					×				, , ,							
	•••••						<b> </b>		Ī	•••••••											
	••••••									••••••			ļ				Ī				
	•••••		1	1																	
									1												
•••••			1				1		-	••••••							<b>T</b>				
		<b> </b>	1			ļ	·		†		<b>1</b>	<b> </b>	ļ				<b></b>	·		<u> </u>	<b> </b>

NOTE:

1.0 "++" = Unused and unprogrammed EPROM outputs.

2.0 "*" = Cursor 'OFF" code line 8. Fill with "0".

3.0 "1" = LCD display dot "ON".

### HITACHI

#### HD44780 - ROM MASK CHANGE FOR CHARACTER GENERATION

HD44780 and HD 44780A have internal character generator ROM equivalent to Hitachi part # HD44780A00. This character set has English as well as other symbols and is shown in the data sheet. It can display 160 characters which are formed on 5X7 dot matrix with eighth row assigned for the cursor. Additionally, 32 different character patterns are possible with 5x10 character boxes at pre-assigned character addresses with eleventh row for the cursor display. In all, 160 plus 32 i.e. 192 different character codes can reside in the internal ROM.

When a customer wishes to display special characters, the HD44780 / HD44780A masked ROM inside the part has to be changed. The data sheet pages 150 through 155 describe Hitachi 's procedure for modifying character patterns. The character patterns are provided to Hitachi inside a 2Kx8 or larger EPROM. After pattern varification by Hitachi and the customer, trial sample parts are given to the customer for display and evaluation. Subsequently, the custom part with CG ROM change is made for volume production. NRE charge may be normally required for this change. A customer develops Character patterns using DATA I/O or other programming tools. If the EPROM is bigger than 2Kx8, only the first 2Kx8 partition is to be used. The unused locations may be programmed as 0.

The page 2 shows, character code for "P" on a 5x7 character box. EPROM outputs O5, O6, and O7 are unused and can be treated as don't cares. The DD RAM data provides the 8 bit character codes while the CG RAM address supplies (lower 3 address) bits for the line positions inside the character box. A logic "1" corresponds to LCD display dot "ON" condition. Since, the unused bits in an EPROM are logic high, they may turn the undesired display dots "ON". Therefore, when in doubt turn the unused character dots "OFF" i.e. program logic "0".

The page 3 shows the pre-assigned character address map for the 160 (5x7) character codes. Similarly, page 4 shows the example of 5x10 character box for the character "y". Note that the eleventh line is programmed "0" for the cursor. EPROM outputs - the 12 th row address and beyond are programmed "0". Also, note that for 9th, 10th, and 11th row address, the A9, and A8 bits are programmed "0".

The page 5 shows the character address map for the 32 (5x10) characters. No more than 32 characters can be accommodated. The 32 characters will require the number of EPROM addresses shown below: With 16 addresses per character, the 32 characters will require 16x32 = 512 EPROM addresses. Therefore, an EPROM with 1440 + 512 = 1952 i.e. 2K bytes will be enough to contain the desired number of character patterns for this part.

Since, the character address space inside the HD44780/HD44780A is pre-assigned only the character dot patterns can be changed. The character address space is **not** changeable. If a customer desires the flexibility of using an external EPROM for chareacter generation, please, recommend that HD66840 or other LCD controller or LCD module using HD66840 may be considered in the design. The Hitachi ELT Division, Schaumburg, Illinois, will be happy to provide RFQ for custom LCD modules.

The details discussed are expanded on the following pages.

# **HD44780 LCD CONTROLLER**

# **ROM Mask Change**

# **Character Generation**

Kash Yajnik

This technical brief covers custom character generation using LCD Controller HD44780. The data sheet specifies a standard character set using the C.G. ROM built inside the HD44780. Refer to the data sheet or the LCD Controller Manual #U74 for more information on the standard character set.

For character sets that require other special characters such as Arabic, Hebrew, Katakana, or Kanji, to name a few, a mask change is required for the internal CG ROM. This information is provided to augment the character development procedure inside the HD44780 data sheet. The following pages describe this in greater detail.

It is suggested that the customer build a target subsystem using the HD44780 and the desired LCD display panel. The internal C.G. can then be used to display and develop a working character pattern tester. The <u>custom</u> HD44780 prototype parts can be tested on this tester to check out the special character set.

Normally, EPROM resident character patterns are used to transfer the information between Hitachi and the customer. Any EPROM which can store larger than 2K bytes, may be used to transport the character dot patterns.

Commercially available EPROM programmers may be used to program the character dot patterns inside the EPROM for **submission** to Hitachi America, Ltd., (HAL).

For more information, consult your nearest HAL, sales office or call the address listed below.

## The literature and other documents used in this design are summarized below:

- o H8/532 Cross Assembler Manual #S085CPC and " C " compiler for IBM PC
- o H8/532 Evaluation Board User's Manual # US538EVB21H
- o H8/532 Software User's Manual # HS538EMSS1E
- o MS "WORD "User Manual and other reference manuals
- o "PROCOMM" User Manual and other reference manuals
- o LCD Data Book #M24T013 from Hitachi America Ltd.
  o Memory Data Books from Hitachi America Ltd.
- o Hitachi Graphic Module Catalog # XX-E139 from ELT Division
- o H8/532 Hardware User's Manual #M21T002 from Hitachi
- o H8/500 Programming Manual #M21T001 from Hitachi
- o H8/500 Software Application Note #M21T003 from Hitachi
- o H8/532 Overview #M21T173 from Hitachi
- o Hitachi Laptop Personal Computer HL320 Operator Manual
- o Hitachi Laptop Personal Computer HL320 MSDOS V3.2 User's Manual

# **TUTORIAL - SOFTWARE DEVELOPMENT**

# HD61830B/LM200 LCD PANEL DESIGN

APPENDIX " C "

REFERENCE LITERATURE

*** H8/500 ASSEMBLER (HS5080ASA1SF) VER 1.0 *** 03/27/90 17:56:42

PAGE 6

" SECTION DATA LIST

SECTION

ATTRIBUTE SIZE

START

GRA

REL-CODE 0E198

#### · CROSS REFERENCE LIST

NAME	SECTION ATTRIVALUE SEQUENCE
C1	GRA 0000E096 68° 70
C2	GRA 0000E0AF 77° 79
СЗ	GRA 0000E0CB 87° 97
C4	GRA 0000E0CC 88° 90
GRA	GRA SCT 00000000 2"
X	GRA EXPT 0000E000 3 8°
X1	GRA 0000E01A 21° 23
X10	GRA 0000E137 131° 133
X11	GRA 0000E14E 139° 141
X12	GRA 0000E165 147° 149
X13	GRA 0000E17C 155° 157
X2	GRA 0000E033 30° 32
хэ	GRA 0000E04C 39° 41
X4	GRA 0000E065 48° 50
X6	GRA 0000E07C 56° 58
X7	GRA 0000E0EB 102° 104
X8	GRA 0000E107 114° 116
X9	GRA 0000E11E 122° 124

....TOTAL WARNINGS 0

	0.5100.1057		BTST		DIT TEAT 43 OF B4
115 GRA	C E10C ACF7		BNE	#7,R4	BIT TEST #7 OF R4
116 GRA	C E10E 26F7	NOP	PME	X8	;IF B/FLAG =Z=1 GO TO X8
117 GRA	C E110 00	NOP	MOVÆ		NOT SET
118 GRA	C E111 5008			#HB,R0	;R0=8H
119 GRA	C E113 157FF10090		MOVTPE	R0,@H7FF1	;BH TO 7FF1
120 GRA	C E118 5204		MOVE	#H4,R2	;R2=04H
121 GRA	C E11A 157FF00092		MOVTPE	R2,@H7FF0	;04H TO 7FF0
122 GRA	C E11F 00	NOP			
123 GRA	C E120 157FF10084	X9:	MOVFPE	@H7FF1,R4	READ 7FF1 DATA TO R4
124 GRA	C E125 ACF7		BTST	#7,R4	BIT TEST #7 OF R4
125 GRA	C E127 26F7		BNE	X9	:IF B/FLAG =Z=1 GO TO X9
126 GRA	C E129 00	NOP			NOT SET
127 GRA	C E12A 500C		MOV:E	#HC,R0	RO-CH
128 GRA	C E12C 157FF10090		MOVTPE	RO,@H7FF1	CH TO 7FF1
129 GRA	C E131 5100		MOV:E	#H0,R1	R1=00H-GRAPHIC BYTE #1
130 GRA	C E133 157FF00091		MOVTPE	R1,@H7FF0	;0H TO 7FF0
131 GRA	C E138 00	NOP			
132 GRA	C E139 157FF10084	X10:	MOVFPE	@H7FF1,R4	READ 7FF1 DATA TO R4
133 GRA	C E13E ACF7		BTST	#7,R4	BIT TEST #7 OF R4
134 GRA	C E140 26F7		BNE	X10	;F B/FLAG =Z=1 GO TO X10
135 GRA	C E142 00	NOP			NOT SET
136 GRA	C E143 157FF10090		MOVTPE	RO,@H7FF1	;CH TO 7FF1
137 GRA	C E148 51FF		MOV:E		GRAPHIC BYTE #2
138 GRA	C E14A 157FF00091		MOVTPE	R1,@H7FF0	;VFF TO 7FF0
139 GRA	C E14F 00	NOP	1401 505	0111111111111	0710 277 0171 70 01
140 GRA	C E150 157FF10084	X11:	MOVFPE	@H7FF1,R4	:READ 7FF1 DATA TO R4 BIT TEST #7 OF R4
141 GRA	C E155 ACF7		BTST	#7,R4	:F B/FLAG =Z=1 GO TO X11
142 GRA 143 GRA	C E157 26F7 C E159 00	NOP	BNE	X11	NOT SET
143 GRA	C E159 00 C E15A 157FF10090	NOP	MOVTPE	;6/FUAG R0.@H7FF1	:CH TO 7FF1
145 GRA	C E15F 5166		MOV:E	,	GRAPHIC BYTE #3
146 GRA	C E161 157FF00091		MOVTPE	R1,@H7FF0	:66 TO 7FF0
147 GRA	C E166 00	NOP	MOTIFE	ni,wnirry	,00107770
147 GRA	C E167 157FF10084	X12:	MOVFPE	@H7FF1,R4	:READ 7FF1 DATA TO R4
149 GRA	C E16C ACF7	^'-	BTST	#7.R4	BIT TEST #7 OF R4
150 GRA	C E16E 26F7		BNE	X12	F BFLAG =Z=1 GO TO X12
151 GRA	C E170 00	NOP	DITE	<del>-</del>	NOT SET
152 GRA	C E171 157FF10090	1101	MOVTPE	R0,@H7FF1	;CH TO 7FF1
153 GRA	C E178 5177		MOVE	#H777,R1 :R1=77=	·
154 GRA	C E178 157FF00091		MOVTPE	R1.@H7FF0	:77 TO 7FF0
155 GRA	C E170 00	NOP	mottire.	ni, whili v	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
156 GRA	C E17E 157FF10084		MOVFPE	@H7FF1,R4	READ 7FF1 DATA TO R4
157 GRA	C E183 ACF7	A I G	BIST	#7.R4	BIT TEST #7 OF R4
158 GRA	C E185 26F7		BNE	X13	;F BFLAG =Z=1 GO TO X13
159 GRA	C E187 00	NOP	J		NOT SET
160 GRA	C E188 157FF10093		MOVTPE	,3,0H7FF1	:0H TO 7FF1
161 GRA	C E18D 5132		MOVE		31-32H-DISP-ON
162 GRA	C E18F 157FF00091		MOVTPE	R1,@H7FF0	:32H TO 7FF0
163	O E 10 13/11 00001		MOTIFE	m,wmrv	,321 10 1770
164 GRA	C E194 00	NOP		: DISPLAY DOT LIGHT = LOGIC	. The
165 GRA	C E195 00	NOP		: DISPLAY DOT DARK = LOGIC	· -
166	2 6100 98	1101		, and and so I DARK # LOOK	•
167 GRA	C E196 00	NOP			
168 GRA	C E197 00	NOP			
169 GRA	C E198 1A	SLEEP		Line 22	ASLEEP
170 GRA	C E199 00	NOP		,recent,	rmadef
171	- 4.00 00	.101			
171					

58 GRA	C E083 26F7		BNE		X6	;IF B/FLAG -Z=1 GO TO X8
59 GRA	C E085 00	NOP			:B/FLAG I	KOT SET
60 GRA	C E086 5009		MOVE		#H'9,R0	:LOAD RO-OH
61 GRA	C E088 157FF10090		MOVTPE		R0,@H7FF1	:9H TO 7FF1
62 GRA	C E080 157FF00092	•	MOVTPE		R2,@H7FF0	OH TO 7FF0
63 GRA	C E092 00	NOP			* 1 <del>7</del>	
64				· SCREEN	CLEAR ROUTINE ST	TADT
•				, 001221	OLDAN MODIFIE S	iani
65			CI D.W		ne .	CICADOS
66 GRA	C E093 AD13		CLR.W		R5	; CLEAR R5
67 GRA	C E095 00	NOP				
68 GRA	C E096 157FF10084	C1:	MOVFPE		@H7FF1,R4	READ 7FF1 DATA TO R4
69 GRA	C E098 ACF7		BTST		#7,R4	BIT TEST #7 OF R4
70 GRA	C E090 26F7		BNE		C1	;IF B/FLAG =Z=1 GO TO C1
71 GRA	C E09F 00	NOP			,B/FLAG I	NOT SET
72 GRA	C E0A0 500A		MOV:E		#HARO	;R0=AH
73 GRA	C E0A2 157FF10090		MOVTPE		R0,@H7FF1	:AH TO 7FF1
74 GRA	C E0A7 5100		MOV:E		#H0.R1	R1=0H
75 GRA	C EQA9 157FF00091		MOVTPE		R1,@H7FF0	OH TO 7FF0-CUR L/B=OH
76 GRA	C EQAE 00	NOP				,
77 GRA	C E0AF 157FF10084	C2:	MOVFPE		@H7FF1.R4	READ 7FF1 DATA TO RA
		UZ.	BTST		•	:BIT TEST #7 OF R4
78 GRA	C EOB4 ACF7				#7,R4	
79 GRA	C E086 26F7		BNE		C2	;IF B/FLAG =Z=1 GO TO C2
80 GRA	C E088 00	NOP			,B/FLAG I	
81 GRA	C E089 5008		MOV:E		#HB,R0	;R0=8H
82 GRA	C E08B 157FF10090		MOVTPE		RO,@H7FF1	;8H TO 7FF1
83 GRA	C E0C0 5100		MOV£		#H10,R1	;R1=0H
84 GRA	C E0C2 157FF00091		MOVTPE		R1,@H7FF0	;OH TO 7FFO-CUR H/8-OH
85 GRA	C E0C7 00	NOP				
86 GRA	C EOC8 5DFFFF		MOV:I		#HFFFF.R5:COUNT-	AS-FFFFH
87 GRA	C EOCB 00	<b>C3</b> :	NOP			
88 GRA	C EOCC 157FF10084	C4:	MOVFPE		@H7FF1,R4	READ 7FF1 DATA TO R4
89 GRA	C E001 ACF7		BTST		#7.R4	:BIT TEST #7 OF R4
90 GRA	C E0D3 26F7		BNE		C4	;F B/FLAG =Z=1 GO TO C4
91 GRA	C E0D5 00	NOP	DIVE		:B/FLAG	
92 GRA	C E006 500C	INOP	MOV.E		#HC.RO	:R0=CH
						• • • • • • • • • • • • • • • • • • • •
93 GRA	C E0D8 157FF10090		MOVTPE		RO,@H7FF1	;CH TO 7FF1
94 GRA	C E000 5100		MOV:E		#HO,R1	R1-OH-CODE FOR DOT OFF
95 GRA	C EODF 157FF00091		MOVTPE		R1,@H7FF0	OH TO 7FF0
96 GRA	C E0E4 00	NOP				
97 GRA	C E0E5 018DE3		SC8/F		R5,C3	
98 GRA	C E0E8 00	NOP				
99				; SCREEN	CLEAR ROUTINE C	OMPLETED
100 GRA	C E0E9 00	NOP				
101 GRA	C E0EA 00		NOP			
102 GRA	C E0EB 157FF10084	X7:	MOVFPE		@H7FF1.R4	:READ 7FF1 DATA TO R4
103 GRA	C EOFO ACF7		BTST		#7,R4	BIT TEST #7 OF R4
104 GRA	C E0F2 26F7					,
		1100	BNE		X7	IF B/FLAG =Z=1 GO TO X7
105 GRA	C E0F4 00	NOP			;B/FUAG	NOT SET
106 GRA	C E0F5 00	NOP				
107 GRA	C E0F6 00	NOP		INITIALIZ	ATION DONE	
108 GRA	C E0F7 00	NOP				
109 GRA	C E0F8 500A		MOV:E		#HARO	;RO-AH
110 GRA	C E0FA 157FF10090	0	MOVTPE		R0,@H7FF1	;AH TO 7FF1
111 GRA	C E0FF 51B0		MOVE		#H80,R1 ;R1=B0H	
112 GRA	C E101 157FF00091		MOVTPE		R1,@H7FF0	OH TO 7FF0
113 GRA	C E106 00	NOP			,	,, . • 111 •
114 GRA	C E107 157FF1008		MOVFPE		@H7FF1.R4	READ 7FF1 DATA TO RA
I I S GRA	O EIV/ 13/FF1006	+ A0:	MUVIPE		MU LLI'W	HOU AIAU ITTI UASH,

		HEADBIO	*GRA-BCS					
1								
2 GRA	C 0000	EXPORT	GRA,CODE	:,ALIGN=2 X				
3	C E000	.ORG		HE000		LOC CNTR	COOL	
4 GRA	CEUU	.Una		n Euro		LOC CATA	-cwn	
5				· 01 164 E1	AG CHECKED			
6				,603170	AG CHECKEL	,		
7	C 0000E000	X:	EQU		s		:X = E000H	
8 GRA	•	CLR.B	.EQU	RO	•	CLEAR RO	A=6000H	
9 GRA	C E000 A013	WALD.	CLR.B	HU	Rt	,CLEAN NO	CLEAR RI	
10 GRA	C E002 A113 C E004 A213		CLRB		R2		CLEAR R2	
11 GRA	C E008 A313		CLR.B		R3		CLEAR RS	
12 GRA 13 GRA	C E008 A413		CLR.B		R4		CLEAR RA	
14 GRA	C E00A 00	NOP	<b>505</b>		,,,		,00041177	
15 GRA	C E008 00	NOP		: INITIALIZ	ATION STAR	T		
16 GRA	C E00C 00	NOP		•		.,		
17 GRA	C E000 157FF10090		MOVTPE		RO,@H7FF	ı	:0H TO 7FF1	
18 GRA	C E012 5112		MOV:E			:LOAD R1 =	12H	
19 GRA	C E014 157FF00091		MOVTPE		R1.@H7FR	0	:12H TO 7FF0	
20 GRA	C E019 00	NOP						
21 GRA	C E01A 157FF10084	X1:	MOVFPE		@H7FF1,R/	4	;READ 7FF1 DATA TO R4	
22 GRA	C E01F ACF7		BTST		#7,R4		BIT TEST #7 OF R4	
23 GRA	C E021 26F7		BNE		X1		F BFLAG -Z-1 GO TO X1	
24 GRA	C E023 00	NOP				;B/FLAG NO	OT SET	
25 GRA	C E024 5001		MOV:E		#HC1,R0		;LOAD RO=1H	
26 GRA	C E026 157FF10090		MOVTPE		RO,@H7FF	1	1H TO 7FF1	
27 GRA	C E028 5107		MOV:E		#H7,R1		;LOAD R1=7H	
28 GRA	C E02D 157FF00091		MOVTPE		R1,@H7FP	0	;7H TO 7FF0	
29 GRA	C E032 00	NOP						
30 GRA	C E033 157FF10084	X2:	MOVFPE		@H7FF1,R	4	READ 7FF1 DATA TO R4	
31 GRA	C E038 ACF7		BTST		#7,R4		;BIT TEST #7 OF R4	
32 GRA	C E03A 26F7		BNE		X2		;IF B/FLAG =Z=1 GO TO X2	
33 GRA	C E03C 00	NOP				:B/FLAG NO		
34 GRA	C E03D 5002		MOVE		#H12,R0		;LOAD RO-2H	
35 GRA	C E03F 157FF10090		MOVTPE		RO,@H7FF		;2H TO 7FF1	
36 GRA	C E044 511D		MOVE MOVTPE			:LOAD R1=		
37 GRA 38 GRA	C E046 157FF00001 C E048 00	NOP	MOVIPE		R1,@H7FF	U	;1DH TO 7FF0	
39 GRA	C E04C 157FF10084	NOP X3:	MOVFPE		AUTEE: D		DEAD TEEL DATA TO DA	
40 GRA	C E051 ACF7	A3:	BTST		@H7FF1,R #7.R4	•	:READ 7FF1 DATA TO RA	
41 GRA	C E063 26F7		BNE		*/,r\ X3		:IF B/FLAG =Z=1 GO TO X3	
42 GRA	C E065 00	NOP	DIVE		A3	:B/FLAG N	•	
43 GRA	C E066 5003	NOP	MOVE		#H'3.R0	,6/1043 14	:LOAD RO-3H	
44 GRA	C E058 157FF10090		MOVTPE		RO,@H7FF	:1	:3H TO 7FF1	
45 GRA	C E05D 511F		MOVE		#HTFR1	:LOAD R1	-	
46 GRA	C E05F 157FF00091		MOVTPE		R1.@H7FF	•	:1FH TO 7FF0	٠
47 GRA	C E064 00	NOP	mov1172		ni,wniiri	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
48 GRA	C E065 157FF10084	X4:	MOVFPE		@H7FF1.F	14	:READ 7FF1 DATA TO R4	
49 GRA	C E06A ACF7	•	BTST		#7.R4	~	BIT TEST #7 OF R4	
50 GRA	C E06C 26F7		BNE		X4		:IF B/FLAG =Z=1 GO TO X4	
51 GRA	C E06E 00	NOP				:B/FLAG N		
52 GRA	C E06F 5008		MOV:E		#118,710	,311 25 11	:R0=8H	
53 GRA	C E071 157FF10090	n de la	MOVTPE		R0.@H7FI	F1	:8H TO 7FF1	
54 GRA	C E076 157FF00092		MOVTPE		R2,@H7FI		OH TO 7FF0	
55 GRA	C E07B 00	NOP					,	
56 GRA	C E07C 157FF10084		MOVFPE		@H7FF1,8	R4	READ 7FF1 DATA TO R4	
57 GRA	C E081 ACF7		BTST		#7.R4		:BIT TEST #7 OF P4	

#### APPENDIX " B "

1.0 PROGRAM NAME - " GRA-BCS.MOT "

2.0 ADDRESS RANGE - " E000H - E199H "

3.0 PROGRAM DESCRIPTION - CLEARS SCREEN, CHECKS BUSY FLAG, AND DIS PLAYS 4 GRAPHIC BYTES ON THE LCD LM200 PANEL STARTING AT THE 1200TH CURSOR POSITION.

*** H8/500 ASSEMBLER (HS608DASA1SF) VER 1.0 *** 03/27/90 17:46:03

PAGE 6

" SECTION DATA LIST

SECTION

ATTRIBUTE SIZE

START

CHR

REL-CODE OCIAF

#### ··· CROSS REFERENCE LIST

NAME	SEC	TION ATTR VALUE	SEQUENCE
A	CHR	EXPT 0000C000 3	8*
C1	CHR	0000C0B0 79°	81
C2	CHR	0000C0C9 88°	90
C3	CHR	0000C0E5 98°	108
C4	CHR	0000C0E6 99°	101
CHR	CHR	SCT 00000000	r
X1	CHR	0000C018 23°	25
X10	CHR	0000C151 143°	145
X11	CHR	0000C168 151°	153
X12	CHR	0000C17F 1591	161
X13	CHR	0000C196 167°	169
X2	CHR	0000C034 32°	34
ХЗ .	CHR	0000C04D 41°	43
X4	CHR	0000C066 50°	52
X5	CHR	0000C07F 59°	61
X6	CHR	0000C096 67°	69
X7	CHR	0000C104 113°	115
X8	CHR	0000C121 126°	128
X9	CHR	0000C138 134°	136

		7/90 17:46:03	PAGE 4
NAME -	CHR-BCS		
C C1A5 513C	MOVE	#H3C,R1 :LOAE	R1=3CH=DISP=ON
C C1A7 157FF00091	MOVTPE	R1,@H7FF0	3CH TO 7FF0
			, , , , , , , , , , , , , , , , , , , ,
C C1AC 00	NOP		
C C1AD 00	NOP		
C CIAE IA	SLEEP		: PROCESSOR H8/532
; SLEEP			
	.ENO		
ERRORS 0			
. WARNINGS 0			
	NAME = C C1A5 513C C C C1A7 157FF00091 C C1AC 00 C C1AD 00 C C1AE 1A SLEEP .	NAME = CHR-BCS  C C1A5513C MOV.E C C1A7 157FF00001 MOVTPE  C C1AC 00 NOP C C1AD 00 NOP C C1AE 1A SLEEP SLEEP END ERRORS 0	C C1A5 513C MOVE #H3C,R1 :LOAL C C1A7 157FF00001 MOVTPE R1.@H7FF0  C C1AC 00 NOP C C1AD 00 NOP C C1AE 1A SLEEP :SLEEP .END

#### PROGRAM NAME . RNE X7 :IF B/FLAG =Z=1 GO TO X7 115 CHR C C108 26F7 NOP B/FLAG NOT SET 116 CHR C C100 00 NOP 117 CHR C C10E 00 NOP ; INITIALIZATION END 118 CHR C C10F 00 NOP 119 CHR C C110 00 NOP 120 CHR C C111 00 MOVE 121 CHR C C112 500A #HARO :RO=AH MOVTPE C C114 157FF10090 R0,@H7FF1 ;AH TO 7FF1 122 CHR 123 CHR C C119 5108 MOV:E #H*8.R1 ;R1-8H MOVTPE 124 CHR C C11B 157FF00091 R1,@H7FF0 :8H TO 7FF0 125 CHR C C120 00 NOP 126 CHR C C121 157FF10084 MOVFPE @H7FF1.R4 READ 7FF1 DATA TO R4 C C126 ACF7 BTST #7.R4 :BIT TEST #7 OF R4 127 CHR BNE :IF B/FLAG =Z=1 GO TO X8 C C128 26F7 128 CHR 129 CHR C C12A 00 NOP :B/FLAG NOT SET MOV:E #HB.RO :R0=8H 130 CHR C C12B 500B 131 CHR C C12D 157FF10090 MOVTPE RO,@H7FF1 :BH TO 7FF1 132 CHR C C132 157FF00092 MOVTPE R2,@H7FF0 OH TO 7FF0 133 CHR C C137 00 NOP MOVFPE 134 CHR C C138 157FF10084 @H7FF1,R4 :READ 7FF1 DATA TO R4 BTST 135 CHR C C13D ACF7 #7.R4 BIT TEST #7 OF R4 136 CHR C C13F 26F7 BNE X9 ;IF B/FLAG =Z=1 GO TO X9 137 CHR C C141 00 NOP :B/FLAG NOT SET #HC,RO MOV.E 138 CHR C C142 500C ;RO-CH 139 CHR C C144 157FF10090 MOVTPE R0,@H7FF1 :CH TO 7FF1 MOVE #HF4B,R1 ;R1=4B=CODE FOR "K" 140 CHR C C149 5148 141 CHR C C148 157FF00091 MOVTPE R1,@H7FF0 :48 TO 7FF0 NOP 142 CHR C C150 00 C C151 157FF10084 X10: MOVEPE @H7FF1.R4 :READ 7FF1 DATA TO R4 143 CHR C C158 ACF7 RTST #7.R4 BIT TEST #7 OF R4 144 CHR BNE F BFLAG -Z-1 GO TO X10 145 CHR C C158 26F7 X10 146 CHR C C15A 00 NOP B/FLAG NOT SET C C15B 157FF10090 MOVTPE R0,@H7FF1 CH TO 7FF1 147 CHR MOVE #H41,R1 ;R1=41=CODE FOR "A" 148 CHR C C160 5141 R1,@H7FF0 149 CHR C C162 157FF00091 MOVTPE :41 TO 7FF0 150 CHR C C167 00 NOP C C168 157FF10084 151 CHR X11: MOVFPE @H7FF1.R4 :READ 7FF1 DATA TO R4 152 CHR C C16D ACF7 BTST #7.R4 BIT TEST #7 OF R4 153 CHR C C16F 26F7 BNE :IF B/FLAG =Z=1 GO TO X11 154 CHR C C171 00 :B/FLAG NOT SET MOVTPE 155 CHR C C172 157FF10090 RO.@H7FF1 CH TO 7FF1 156 CHR C C177 5153 MOVE #H\$3.R1 :R1=53=CODE FOR 'S' 157 CHR C C179 157FF00091 MOVTPE R1,@H7FF0 :53 TO 7FF0 158 CHR C C17E 00 C C17F 157FF10084 X12: MOVFPE @H7FF1,R4 159 CHR READ 7FF1 DATA TO RA 160 CHR C C184 ACF7 BTST #7,R4 :BIT TEST #7 OF PA 161 CHR C C186 26F7 BNE X12 :F B/FLAG =Z=1 GO TO X12 162 CHR C C188 00 NOP :B/FLAG NOT SET 163 CHR C C189 157FF10090 MOVTPE R0,@H7FF1 CH TO 7FF1 C C18E 5148 MOV£ 164 CHR #H48.R1 :R1=48=CODE FOR "H" 165 CHR C C190 157FF00091 MOVTPE R1,@H7FF0 48 TO 7FF0 166 CHR C C195 00 NOP 167 CHR C C196 157FF10084 X13: MOVFPE @H7FF1.R4 :READ 7FF1 DATA TO R4 BTST BIT TEST #7 OF P4 168 CHR C C19B ACE7 #7 PA 169 CHR C C190 26F7 BNE X13 :F B/FLAG =Z=1 GO TO X13 170 CHR C C19F 00 NOP :B/FLAG NOT SET

*** H8/500 ASSEMBLER (HS508DASA1SF) VER 1.0 *** 03/27/90 17:46:03

CHR-BCS

R3.@H7FF1

:0H TO 7FF1

MOVTPE

171 CHR C C1A0 157FF10093

58 CHR	C C07E 00	NOP			
59 CHR	C C07F 157FF10084	X5:	MOVFPE	@H7FF1.R4	:READ 7FF1 DATA TO R4
SO CHR	C COSA ACF7		BTST	#7.R4	BIT TEST #7 OF R4
61 CHR	C C086 26F7		BNE	X5	:IF B/FLAG =Z=1 GO TO X5
62 CHR	C C088 00	NOP	5115		NOT SET
	C C089 5008		MOV:E	#H8.R0	:R0=8H
63 CHR	C C088 157FF10090		MOVTPE	RO,@H7FF1	:8H TO 7FF1
64 CHR	C C090 157FF00092		MOVTPE	R2,@H7FF0	;0H TO 7FF0
65 CHR	• • • • • • • • • • • • • • • • • • • •	NOP	MOVIFE	nz,wn /rrv	,011 10 7FF0
66 CHR	C C095 00		MOVEPE	0117554.04	READ 7FF1 DATA TO R4
67 CHR	C C096 157FF10084	X6:		@H7FF1,R4	
68 CHR	C C098 ACF7		BTST	#7,R4	BIT TEST #7 OF R4
69 CHR	C C09D 26F7		BNE	X6	;iF B/FLAG =Z=1 GO TO X8
70 CHR	C C09F 00	NOP		·	NOT SET
71 CHR	C COAO 5009		MOVE	#H9,R0	;LOAD RO-OH
72 CHR	C COA2 157FF10000		MOVTPE	R0,@H7FF1	;9H TO 7FF1
73 CHR	C COA7 157FF00092		MOVTPE	R2,@H7FF0	;0H TO 7FF0
74 CHR	C COAC 00	NOP			
75				; SCREEN CLEAR ROUTINE	START
76			A1 B 144		4.5.5.5
77 CHR	C COAD AD13		CLR.W	R5	; CLEAR R5
78 CHR	C COAF 00	NOP			
79 CHR	C C080 157FF10084	C1:	MOVFPE	@H7FF1,R4	READ 7FF1 DATA TO R4
80 CHR	C COB5 ACF7		BTST	#7,R4	BIT TEST #7 OF R4
81 CHR	C C087 26F7		BNE	C1	;F B/FLAG =Z=1 GO TO C1
82 CHR	C C089 00	NOP		<u>-</u> '	NOT SET
83 CHR	C COBA 500A		MOVE	#HA,R0	,RO-AH
84 CHR	C COBC 157FF10090	)	MOVTPE	RO,@H7FF1	AH TO 7FF1
85 CHR	C COC1 5100		MOVE	#HO,R1	;R1=0H
86 CHR	C COC3 157FF00091	1100	MOVTPE	R1,@H7FF0	OH TO 7FF0-CUR L/B-OH
87 CHR 88 CHR	C COC8 00 C COC9 157FF10084	NOP C2:	MOVFPE	@H7FF1.R4	:READ 7FF1 DATA TO R4
89 CHR	C COCE ACF7	· CZ:	BTST	• · · · · · · · · · · · · · · · · · · ·	BIT TEST #7 OF R4
90 CHR	C CODO 26F7		BNE	#7,R4 C2	,
91 CHR	C C002 00	NOP	BNE		;IF B/FLAG =Z=1 GO TO C2
92 CHR	C C002 00	NUP	MOV:E		3 NOT SET RO-BH
92 CHR 93 CHR	C C005 157FF10090		MOVTPE	#HB,R0 R0,@H7FF1	;HU=8H 8H TO 7FF1
94 CHR	C CODA 5100	,	MOVE	#H0.R1	
95 CHR	C COOC 157FF00091		MOVTPE	#HU,H1 R1,@H7FF0	;R1=0H :0H TO 7FF0-CUR H/B=0H
96 CHR	C COE1 00	NOP	MOAILE	HI,@H/FFU	OH TO /Pro-corn N/8=on
97 CHR	C COE2 5D01FF	NOP	L'VOM	##FF 86 .00 W	T DC 45501
98 CHR	C COE5 00	<b>ca</b> :	NOP	#H1FF,R5 ;COUN	1410411111
99 CHR	C COES 157FF10084		MOVEPE	@H7FF1.R4	:READ 7FF1 DATA TO R4
100 CHR	C COEB ACF7	, <b>(4</b> .	BIST	#7,R4	BIT TEST #7 OF R4
101 CHR	C COED 26F7		BNE	67,m	;IF B/FLAG =Z=1 GO TO C4
102 CHR	C COEF 00		NOP	~ .	:B/FLAG NOT SET
103 CHR	C COFO 500C		MOVE	#HC.RO	RO-CH
104 CHR	C COF2 157FF1009	^	MOVTPE		• • • • • • • • • • • • • • • • • • • •
105 CHR	C COF7 5120	•	MOVIFE	R0,@H7FF1	;CH TO 7FF1
106 CHR		•	MOVTPE	#H20,R1 ;R1=20 R1,@H7FF0	H-CODE FOR "BLANK" :20H TO 7FF0
100 CHR	C COFE 00	•	NOP	ni,@n/PPU	,20H 10 /FF0
107 CHR			SCB/F	DE C2	
109 CHR		NOP	SUBIT	R5,C3	
110 CHH	0 010200	nor			COLUM ETEN
111 CHR	C C103 00	NOP		SCREEN CLEAR ROUTINE	WMPLE IED
111 CAM	0010300	NOF			
113 CHR	C C104 157FF1008	4 X7:	MOVFPE	@H7FF1,R4	READ 7FF1 DATA TO R4
114 CHR		- ~/.	BTST	#7.R4	BIT TEST #7 OF R4
114 000	- GIVENUT		0101	#7,D#	,011 IE31 #/ UF PA

# *** H8/500 ASSEMBLER (HS506DASA1SF) VER 1.0 *** 04/04/90 16:33:20 PROGRAM NAME = CHR-8CS

1			"CHR-BCS"				
2 CHR	C 0000		CHR,CODE	E,ALIGN=2			
3		.EXPORT		A			
4 CHR	C C000	.ORG		HC000	;	LOC CNTR	1=C000H
5							
6				BUSY FL	AG CHECKED	)	
7							
8 CHR	C 0000C000	A:	EQU		\$	015455	A = C000H
9 CHR	C C000 A013	CLR.B		RO		CLEAR RO	
10 CHR	C C002 A113		CLRB		R1 R2		;CLEAR R1 :CLEAR R2
11 CHR	C C004 A213		CLR.B		R3		CLEAR R3
12 CHR	C C006 A313		CLR.B CLR.B		R4		CLEAR RA
13 CHR 14	C C008 A413		CLN.B		D# .		CLEANTH
15 CHR	C C00A 00	NOP					
16 CHR	C C008 00	NOP		· INITIAL L	ATION STAR	T	
17 CHR	C C00C 00	NOP		,		•	
18 CHR	C C000 00	NOP					
19 CHR	C C00E 157FF10090		MOVTPE		RO.@H7FF	1	OH TO 7FF1
20 CHR	C C013 511C		MOV:E			LOAD R1	CH
21 CHR	C C015 157FF00091		MOVTPE		R1,@H7FR	•	:1CH TO 7FF0
22 CHR	C C01A 00	NOP					
23 CHR	C C01B 157FF10084	X1:	MOVFPE		@H7FF1,R	4	;READ 7FF1 DATA TO R4
24 CHR	C CO20 ACF7		BTST		#7,R4		;BIT TEST #7 OF R4
25 CHR	C C022 26F7		BNE		X1		:F B/FLAG -Z-1 GO TO X1
26 CHR	C C024 00	NOP				B/FLAG N	OT SET
27 CHR	C C025 5001		MOV:E		#H*1,R0		;LOAD RO-1H
28 CHR	C C027 157FF10090		MOVTPE		RO,@H7FF	1	;1H TO 7FF1
29 CHR	C C02C 5195		MOV:E		#H*95,R1	:LOAD R1=	
30 CHR	C C02E 157FF00091		MOVTPE		R1,@H7FF	0	,95H TO 7FF0
31 CHR	C C033 00	NOP					
32 CHR	C C034 157FF10084	X2:	MOVFPE		@H7FF1,R	4	READ 7FF1 DATA TO R4
33 CHR	C C039 ACF7		BTST		#7,R4		;BIT TEST #7 OF R4
34 CHR	C C03B 26F7		BNE		X2		;IF B/FLAG =Z=1 GO TO X2
35 CHR	C C03D 00	NOP				;B/FLAG N	
36 CHR	C C03E 5002		MOV:E		#H*2,R0		;LOAD RO-2H
37 CHR	C C040 157FF10090		MOVTPE		RO,@H7FF		:2H TO 7FF1
38 CHR 39 CHR	C C045 5127 C C047 157FF00091		MOV:E MOVTPE		#H27,R1	;LOAD R1:	27H TO 7FF0
40 CHR	C C04C 00	NOP	MOVIPE		R1,@H7FF	v	2/N IO /FF0
41 CHR	C C04D 157FF10084		MOVFPE		@H7FF1,R	LA.	READ 7FF1 DATA TO R4
42 CHR	C C052 ACF7	,	BTST		#7.R4	-	BIT TEST #7 OF R4
43 CHR	C C054 26F7		BNE		Х3		:F B/FLAG -Z-1 GO TO X3
44 CHR	C C056 00	NOP				;B/FLAG N	•
45 CHR	C C057 5003		MOVE		#H3.R0	,	:LOAD RO-3H
46 CHR	C C059 157FF10090		MOVTPE		RO,@H7FF	F1	3H TO 7FE1
47 CHR	C C05E 511F		MOVE		#H1FR1	LOAD R1	•
48 CHR	C C060 157FF00091		MOVTPE		R1.@H7FI		:1FH TO 7FF0
49 CHR	C C065 00	NOP			,	•	
50 CHR	C C068 157FF10084		MOVFPE		@H7FF1,F	R4	READ 7FF1 DATA TO RA
51 CHR	C COSB ACF7		BTST		87,R4		BIT TEST #7 OF PA
52 CHR	C C06D 26F7		BNE		X4		F BFLAG -Z-1 GO TO X4
53 CHR	C C06F 00	NOP				:B/FLAG	VOT SET
54 CHR	C C070 5004		MOV:E		#HF4,R0		:LOAD RO-4H
55 CHR	C C072 157FF10090	)	MOVTPE	į.	R0,@H7F	F1	;4H TO 7FF1
56 CHR	C C077 5108		MOVE		#H18,R1		LOAD R1=8H
57 CHR	C C079 157FF00091		MOVTPE		R1,@H7F	F0	SH TO 7FF0

# APPENDIX " A "

- 1.0 PROGRAM NAME " CHR-BCS.MOT "
- 2.0 ADDRESS RANGE " C000H C1AEH "
- 3.0 PROGRAM DESCRIPTION CLEARS SCREEN, CHECKS BUSY FLAG, AND DIS PLAYS 4 LETTERS " KASH " ON THE LCD LM200 PANEL STARTING AT THE 8TH CURSOR POSITION.

- 7.4.4 "S" Record Conversion: To convert a file to "S" record format execute the command shown;
  - o Enter CNVS.EXE KY.ABS (The extentions are not necessary)

As a result of the conversion process an ASCII coded file is created with "*.MOT" extention. In this case, it will be KY.MOT.

7.4.5 To Up-load a File:

Change directory to "PROCOMM" i.e. C:\PROCOMM. Then execute the following commands;

- o Enter "PROCOMM" (Load the 'PROCOMM' package)
- o Set the serial communication line to 9600 Baud, NPTY, 8 Bits, 1 STOP Bit, Full Duplex, with ASCII code.
- o At the HMS > prompt, enter TL (For Terminal Load)
- o PUSH down "Shift/Edit "key. Press "Page Up" key.
- o The list of upload protocols appears.
- o PUSH up the "Shift/Edit "key.
- o Choose "7" for "ASCII" protocol.
- o Enter the file name that should be up-loaded in the window e.g. C:\H8-500\ASM\KY.MOT
- o As the data transmission continues, oserve the increasing line numbers in the status line along with other line settings.
- o At the end of data transmission, Address Range, followed by the HMS > prompt will appear on the screen, if there are no line errors. e.g.

Address Range C000 - C1AE HMS >

#### NOTE:

- 1.0 If there are any transmission errors, hit reset switch "SW3".
- 2.0 At the HMS > Prompt, Enter "TL" and repeat the upload process.
- 7.4.6 To run the "KY.MOT" program from the address range shown above, using the Hitachi Monitor System (HMS) on the H8/532 Evaluation Board, execute the following command;
  - HMS > G C000 (Return)...[Refer to H8/532 Eval. Board Software Manual for more details].
- 7.4.7 To run another program, push NMI switch "SW2" on the H8/532Eval. Board, and at the HMS > prompt, enter "TL" and upload a new ASCII file.

#### 7.4 Code Assembly Procedure:

Software code development procedure for this application is described in greater detail in this sub-section. The development tools and other commercially available packages used in this project are briefly addressed. No attempt is made to describe these packages in detail. Please, refer to their User manuals when in doubt. A working knowledge of the MS "WORD", "PROCOMM", and MSDOS in the PC environment is assumed in describing this procedure. Multiple code development stations were built with identical tool environment and allow the execution of this procedure.

#### 7.4.1 User program:

The source code is written in assembly language for the H8/532 micro processor. The data is entered at location counter H'C000 and a Microsoft "WORD" file is created with "*.DOC" extension under MSDOS operating system for the laptop PC. This file is copied to the C:\H8-500\ASM directory with "*.SRC" extension e.g. KY.SRC.

Note: 1.0 The "*.DOC" file should be unformatted.

2.0 User program code space may vary from H'8000 to H'F000.

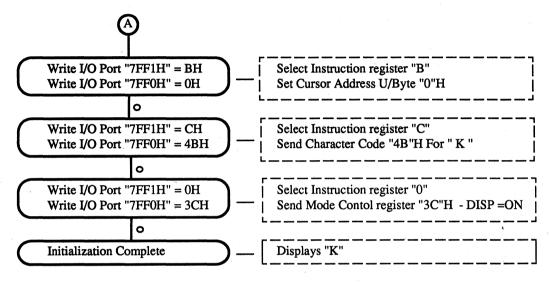
# 7.4.2 Invoke Assembler: To invoke the assembler the following steps are recommended;

o Change to the directory - C:\H8-500\ASM o Enter - H8ASM KY.SRC (The extension is not necessary)

As a result of the assembly process, "KY.LIS and KY.OBJ" files are created. Also, the number and types of assembly errors are indicated. If the number of errors, exeeds 0, then go back to "WORD" and examine the "KY.LIS" file to see where the errors were made. Find the corresponding errors in the source code file, and correct them. This process may have to be repeated many times until all the assembly errors are removed.

#### 7.4.3 Linker:

When there are no errors in the assembly process, generally, a hard copy of the "*.LIS" file is made for software documentation process. By providing adequate comments in the source file, software debug process is made easier.

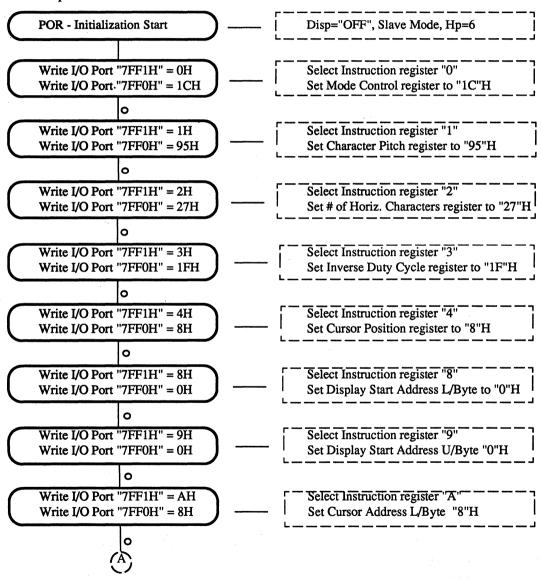

The multiple object files are then linked using the linker. To link a file execute the following command in the C:\H8-500\ASM directory;

o Enter - LNK KY.OBJ (The exension is not necessary)

The linking process generates the file "KY.ABS". It is to be converted to the Motorola "S" record format for up-loading to the H8/532 Evaluation Board for execution.

CTION

7.3 Initialization Flow Chart: (CNT'D.)




## NOTE:

- 1.0 Busy Flag Check code sequence is indicated by " o "
- 2.0 For code details in Graphics or Character mode, see the Appendices.
- 3.0 After Initialization, normally the display is cleared by writing character code for a blank "20 H" in the display buffer memory or by writing "0" in the graphics memory space. If the LCD screen is not cleared, power on random memory data will be displayed.
- 4.0 For programming details, refer to the HD61830B data sheet.

#### 7.3 Initialization Flow Chart:

Power on initialization flow chart is shown in this sub-section. The consecutive I/O instructions and their brief description is also listed.



#### 7.0 SOFTWARE:

Software section covers I/O addressing, Busy Flag Varification, Initialization Flow Chart, Code Assembly Procedure while Appendices show the program listings.

#### 7.1 I/O Addresss:

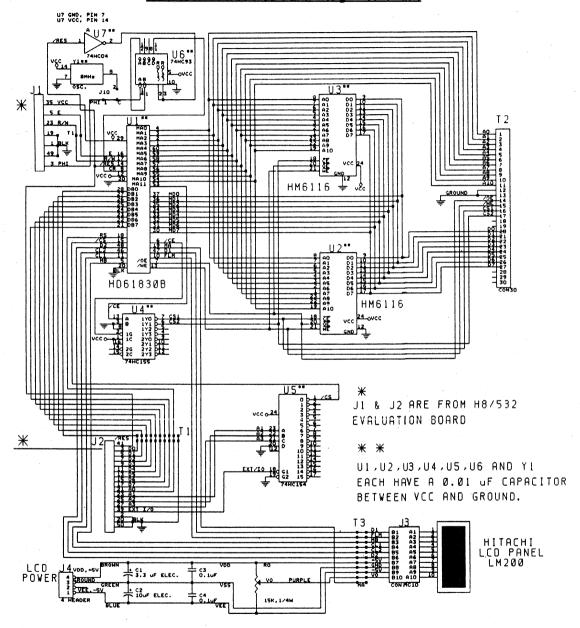
Referring to the H8/532 Evaluation Board Hardware Manual From Hitachi Micro Systems Inc. (HMSI), the Expansion Bus I/O space is located from H'7FF0 to H'7FFF for expanded minimum mode 1 memory (64 KBytes) space. Read the H8/532 documentation for more details. On the LCD Interface Board this space is further decoded. "MOVTPE" and "MOVFPE" instructions to or from the I/O addresses H'7FFO or H'7FF1 are used for data transfers.

These I/O addresses are memory mapped. The first write data to address H'7FF1 specifies one of the 13 instruction registers inside the HD61830B. It is followed by a second write to the I/O address H'7FF0 which sends the data to the data input regiser inside the HD61830B. Therefore, two sequential peripheral write commands are required. Fore more details, see the HD61830B data sheet.

Similarly, reading the I/O address H'7FF1, allows the programer to check the Busy Flag before sending a a second instruction when the first instruction is being processed by the HD61830B LCD Controller. In the same manner, reading the I/O address H'7FF0, provides the programer output data at the current cursor address. The I/O address (Hex) table for read or write operation is shown below:

I/O	OPERATION		D	ATA		B	ÜS		
ADD.	READ/WRITE	D7	D6	<b>D5</b>	D4	D3	D2	D1	D0
									•
7FF1	Write Instruction Reg. Bits (I3-I0)	0	0	0	0	13	12	I1	10
7FF1	Read Busy Flag (B/F))	B/F	D	D	D	D	D	D	D
7FF0	Write Data, Character Code, or Graphics Byte(W7-W0)	W7	W6	W5	W4	W3	W2	W1	W0
7FF0	Read Data, Character Code, or Graphics Byte (R7-R0)	R7	R6	R5	R4	R3	R2	R1	R0
		NO.	re: '	'D"	impli	es D	on't (	Care.	

#### 7.2 Busy Flag Check:


Emperically, it is determined that if the MPU processes consecutive I/O data instructions faster than FOUR "CL2" cycle times, the Busy Flag Check is required. In this application,  $f_{CL2}$  is 500KHz i.e. 2us cycle time. The four cycle times would make the HD61830B instruction execution time of 2x4 = 8us.

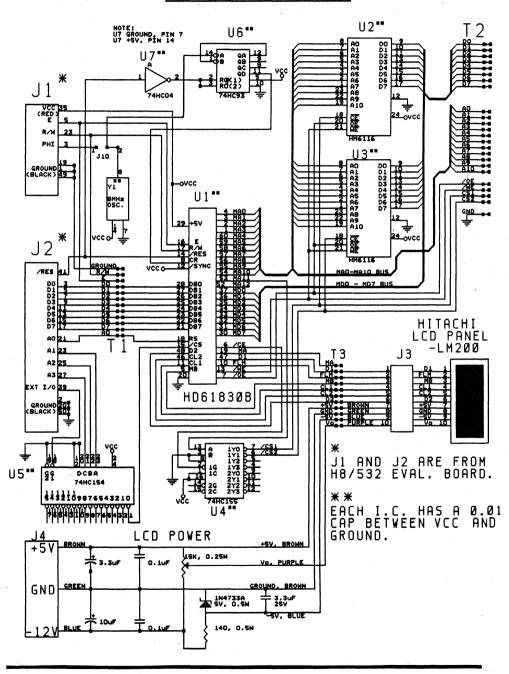
The H8/532 MPU operating with 16 MHz crystal provides 8MHz (T=125ns) "Phi" clock. From the Instruction Execution Table, "MOVFPE" or "MOVTPE" instruction requires 13 to 20 "Phi" clocks. With, faster time, i.e. 13 "Phi" clocks, it will take 13x 125ns = 1.625 micro-seconds. The two consecutive I/O Instructions will require at least 1.625 us x 2 = 3.25 micro-seconds.

Since, MPU Instruction time (3.25us) is substantially faster than 61830B instruction execution time (8us) the Busy Flag Check is required in this application. This was also varified in the laboratory.

# **TUTORIAL—SOFTWARE DEVELOPMENT**

### HD61830B/LM200 LCD Panel Design—Schematic




#### NOTE:

- 1.0 Test Connectors T1,T2, and T3 are for test and debug.
- 2.0 After power on reset, Display is "OFF", Slave Mode "ON", and Hp = 6.

#### HITACHI

# HD61830B/LM200 DESIGN—SPLIT LEVEL SCANNING

# **LCD Interface Board—Schematic**



# 5.2 LCD Display Timing:

LCD panel LM200 feature highlights are summarized along with some of the timing calculations for 1/32 duty cycle.

- **5.2.1** LM200 Features: Its pertinent features are listed below:
  - 5.2.1.1 Power Supply  $(V_{DD} V_{SS}) = 7V \text{ Max}$ -  $(V_{DD} - V_{EE}) = 13.5 \text{ V Max}$
  - 5.2.1.2 Input Signals:  $0.7 \times 5 = 3.5 \text{ V (High)}, 0.3 \times 5 = 1.5 \text{ V (Low)}$
  - 5.2.1.3 f_{cr.} Dot Clock Frequency 390KHz (Min.), 460KHz (Typ.), and 520KHz (Max.)
  - 5.2.1.4 Duty Cycle 1/32
  - 5.2.1.5 Power Supply For LCD Drivers 8.1V (Ta=0°C), 7.4V (Ta=25°C), and 6.5V (Ta=50°C)
  - 5.2.1.6 Scanning Split with top half panel during "D1" and bottom half panel during "D2".
- **5.2.3 LCD Interface Board Design:** To meet the features shown above, the design data is presented in the following description:
  - o Power Supply  $V_{DD} = +5V$ ,  $V_{SS} = 0$ , and  $V_{FR} = -5V$
  - o Input Signals CMOS levels
  - o f_{CLK2} 500KHz
  - o Duty Cycle 1/32
  - o Scanning Split as provided by the LCD Controller HD61830B
  - o LCD Driver Voltage 4.75V (V_o), variable through contrast adjustment pot.
- **5.2.4 LCD Timing:** All the calculations are based upon the data provided above. They are summa rized as follows:
  - o  $C_R = F_{CLK2} = 500$  KHZ implies that if a 8 MHz crystal oscillator used, a divide by 16 counter is required to produce a square waveform signal. Therefore, the dot clock time is 2us. This is an external oscillator and the jumper "J10" is set to "C-2" position. See the schematic in section 6.0.
  - o  $T_{CL}$  = Row scan time for 240 dots horizontally, is 240x2 = 480 us = 0.48 ms
  - o With Duty Cycle = 1/32, LCD AC drive =  $M_A = 32 \times 0.48 \text{ ms} = 15.36 \text{ ms}$
  - o  $M_B = 2M = 2x15.36 \text{ ms} = 30.72 \text{ ms}$ . Therefore,  $M_B$  Frequency = 32.55 Hz. Since, it is not a handle onic of the line frequency, there will not be any visible flickering of the LCD display.

### 5.0 LM200 LCD PANEL DISPLAY CRITERIA:

This section describes the display buffer memory capacity calculations and the LCD Display Timing related information for the LM200 LCD display panel. For the LM200 panel specifications, refer to the Graphics Panel Catalog from the Hitachi, ELT division.

### 5.1 Display Buffer Capacity:

LM200 panel can display 64 dots vertically, and 240 dots horizontally.

This implies a display of 64 x240 = 15,360 bits in graphics mode where a dot represents one LCD pixel on the panel. This would be lesser than 16,000 pixels that would be provided by a 2K by 8 SRAM in one bit per pixel mode. Allowing for scrolling, and other software overhead, this space was increased to 4K bytes. Therefore, the LCD Interface Board was designed for 4K bytes using two HM6116ALP-12 SRAM parts.

#### **Character Mode:**

The built in character ROM inside the HD61830B Controller is used. 5 dots(W) by 7 dots(H) character matrix is used with 6th column, 8th, and 10th rows as inter-character space. The cursor is set for the 9 th row.

With this data, 240/6 = 40 characters can be displayed per line. There can be 64/10 = 6.4 i.e. 6 lines of character display resulting in 40x6 = 240 characters per panel. By changing the character definition matrix, different numbers of characters can be displayed. Also, note that the HD61830B LCD Controller allows display of 32 different 5dots(w) x 10dots(h) characters. By using an external EPROM, special characters can also be displayed.

### **Graphics Mode:**

By defining horizontal pitch (Hp) to be 8 dots, and 1 bit per pixel, 1 byte in the display memory would represent 8 LCD dots in a row. Note that, the horizontal pitch can be 6,7, or 8 dots per byte to be displayed.

With Hp=8, 240 / 8 = 30 bytes of graphics data can be displayed per a row of dots. Since, there are 64 rows, a total of  $64 \times 30 = 1,920$  bytes of memory can be displayed on the LM200 panel. Note that even though LM200 panel is a split panel scanned as "D1", and "D2" halves, with 1/32 duty cycle, the display memory space is contiguous.

Observe, the buffer data inversion when it is displayed on the LM200 panel. For example, buffer data "33H" is displayed as "CCH" on the panel. Therefore, desired display data has to be inverted and then written to the display buffer.

**4.3 Display Memory Read Timing:** Refer to the SRAM data sheet for Read Cycle (1) timing diagram. The timing comparision between the HD61803B and the HM6116ALP-12 SRAM parameters is done below. Only the critical parameters are addressed:

	PARAMETERS	Symbol	HM6116ALP	HD61830B	UNITS
4.3.1.	Read Access Time	t _{AC}	120	650(Max.)	ns
4.3.2	Data Setup Time	t _{smD}	65(Max.)	50	ns
4.3.3	Data Hold Time	t _{HMD}	10(Min.)	40	ns

NOTE: Any EPROM or SRAM with access time faster than 450 ns and meeting the above parameters would be sufficient for memory read in this application. EPROM may be used as a external a custom character generator for special characters.

#### 4.4 Conclusion:

Since, the external clock frequency "CR" in this design is only 500KHz, no critical memory parameters are voilated. However, for faster panels, this analysis is very important.

#### 4.0 DISPLAY MEMORY TIMING:

This section describes the display buffer memory read and write timing. The Hitachi HM6116ALP-12 SRAMS (Q=2) with 120 ns access time make up the 4096 byte buffer. For the detailed read / write timing diagrams and their parameters refer to the HD61830B data sheet. To see the SRAM data sheet refer to the Hitachi Memory Data Book #M11.

# 4.1 Timing Data:

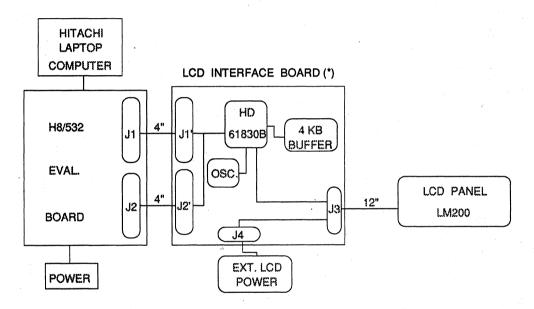
- o If the External Clock "CR" (Refer to the schematic in section 6.0) on the LCD Interface Board is set to 2 MHz, then  $T_{CR} = 500 \text{ ns}$ .
- o T1 = Memory Data Refresh Time for Upper Screen =  $4T_{CR}$  (For Horizontal H_p = 8) =  $4 \times 500 = 2,000$  ns = 2 us.
  - Note: For  $H_p = 7$ , T1 = 1.5 us, while For  $H_p = 6$ , T1 = 1.0 us.
- o T2 = Memory Data Refresh Time for Lower Screen =  $2T_{CR}$ =  $2 \times 500 = 1,000 = 1$  us.
- o T3 = Memory Read / Write Time =  $2 \times T_{CR} = 2 \times 500 \text{ ns} = 1 \text{us}.$
- **4.2 Display Memory Write Timing:** In the SRAM data sheet, use the Write Cycle (1) timing diagram. The comparision of the HM6116ALP-12 parameters and the Hitachi HD61830B memory write timing is listed below:

	PARAMETERS	Symbol	HM6116ALP	HD61830B	UNITS
4.2.1.	Write Cycle Time	t _{wc}	120(Min.)	1000	ns
4.2.2	/CS To Write End	t _{cw}	70(Min.)	600	ns
4.2.3	Write Recovery Time	t _{wr}	0(Min.)	350	ns
4.2.4	Write Pulse Width	t _{wP}	70(Min)	150	ns
4.2.5	Data To Write Overlap	t _{DW}	35(Min)	150	ns
4.2.6	Data hold From Write Time	t _{DH}	0(Min)	10	ns
4.2.7	Address Setup Time	t _{AS}	0(Min)	350	ns
4.2.8	Address Valid To Write End	t _{AW}	105(Min)	450	ns

#### 3.0 MPU READ / WRITE TIMING:

This section describes the various H8 / 532 Evaluation Board and the HD61830B Hitachi LCD Controller specifications and arrives at the design trade-offs. Refer to the timing diagrams in the HD61830B and the H8 / 532 single chip MPU data sheets for more details.

	PARAMETERS	Symbol	H8 / 532 EVAL. BOARD	HD61830B	UNITS
3.1	"E" Clock Cycle Time	t _{cyc}	800 *	1000 (Min.)	ns
3.2	"E" High Pulse Width	t _{wen}	370 *	450 (Min.)	ns
3.3	"E" Low Pulse Width	twel	370 *	450 (Min.)	ns
3.4	Address Hold time	t _{AH}	20	10 (Min.)	ns
3.5	Address Setup Time	t _{AS}	180	140 (Min.)	ns
3.6	Write Data Hold Time	t _{DHW}	30	10 (Min.)	ns
3.7	Write Data Setup Time	t _{DSW}	440	225 (Min.)	ns
3.8	Read Data Hold Time	t _{DH}	0 (Min.)	20	ns
3.9	Read Data Setup Time	t _{DDR}	40(Min.)	225	ns


# NOTE:

**Problem:** The H8 / 532 Evaluation Board running with 20 MHz crystal produces a 10 MHZ "PHI" clock. It is further divided slown and results in 1.25 MHz " E " clock with 50% duty cycle.

**Solution:** Run the H8 / 532 Evaluation Board with a 16 MHz crystal. This results in 1 MHz " E " clock. In this manner, by slowing down the " PHI " clock, the problem mentioned above is resolved. This is the reason for installing the 16 MHz crystal on the H8 /532 Evaluation Board.

^{*} Timing specifications of the HD61830B are violated .

### HD61830B / LM200 SOFTWARE DEVELOPMENT STATION



*NOTE: 1.0 8 MHZ OSC. DIVIDED DOWN.

2.0 SET "J1" JUMPER TO "C-2" POSITION.

**BLOCK DIAGRAM** 

#### 2.0 DESIGN OVERVIEW: (CNTD.)

2.5, Software Tools: The laptop PC resident software development tools, packages, and utilities are described very breifly.

H8 / 532 Cross Assembler: It is designed for DOS environment inside the laptop Personal Computer. When the user program is submitted as the source file, it assembles the code. Consequently, it produces Object and List files of the source program. The list files with "*.LIS " extentions are reproduced in the appendices for the programs developed on the software work station.

H8/532 Linker: To link various object code segments ("*.OBJ" extention) developed in parallel for a larger program. The linked file has "*.ABS" extention.

Motorola "S" record Conversion Utility: It is used to convert the machine code into Motorola "S" record format for uploading it to the H8 / 532 Evaluation Board. The converted file has "*.MOT" extention.

Up Loading Of Laptop PC "S" Record file: Push "EDIT SHIFT" Key down. Depress the "PG UP" key when using "PROCOMM" package for communications. Also, select ASCII format.

Screen Editor: Any word processing package is acceptable. In this application, Microsoft "WORD" package is used. The source programs are created and edited with this package. The source program files have "*.SRC" extentions.

File Management Utilities: To help aid the program development, packages such as "XTREE", or "TREE86" may also be used.

Back -Up Utility: It is a good practice to back up program files. Such packages as "FASTBACK", OR "FASTBACK PLUS" can also be used.

The software development station block diagram is shown on the next page.

#### 2.0 DESIGN OVERVIEW:

The LCD display subsystem components such as H8 / 532 Evaluation Board, LM200 display, LCD Interface Board, Hitachi Laptop Computer, and the related software are described in this section. At the end, a subsystem block diagram is also presented. For the HD61830B LCD Controller, and the LM200 LCD panel data sheets, as well as other related documentation refer, to the Appendix "C".

- 2.1 H8/532 Evaluation Board: This board was designed by Hitachi Micro Systems. It is provided as a training and development tool. On-board EPROM contains the Hitachi Monitor firmware used for single line assembly, disassembly, line editing, and debug purposes. Of the two serial ports, only the Terminal port is used to down load, up load, and run the programs. The I/O extention connectors "J1" and "J2" are used to connect to the LCD Interface Board. The partially decoded extented I/O space is further decoded on the LCD Interface Board. This board is designed to run at 10MHz and uses a 20 MHz crystal for that purpose. However, in this application a 16 MHz crystal is used to provide 1MHz "E" clock to the LCD Controller HD61830B. All the jumpers on this board are set at the factory according to their default states.
- 2.2 LM200 LCD Panel display: This display is provided by the Hitachi ELT Division. It is capable of displaying alpha-numeric characters as well as the graphics data. It is 240 dots wide and 64 dots high. It has 1/32 duty cycle. The serial data is clocked in at 500KHz. It runs from +5V, and -5V power supply. The customer has to solder the pins on LM200 for the appropriate connector used on the LCD Interface Board. The LM200 LCD panel mounting and the proper viewing angles are critical to a strain free LCD display. Please, handle the panels according to the care recommended by the LCD display manufacturer. The logic signals sent to the LCD panel are at CMOS levels. External power supply was used for the LCD panel.
- 2.3 LCD Interface Board: A wire wrap board was built to control the LCD panel LM200. It also exchanged data with the H8/532 Evaluation Board over the I/O extention cables "J1" and "J2". The Hitachi LCD controller HD61830B was used on the LCD Interface Board. A 4,096 byte display buffer memory was also designed to store the character or graphics data. The 500KHz dot clock required by the display was also provided on this board. The LM200 LCD panel contrast adjust potentiometer was also put on this board. Set the jumper "J10" on this board to the "C-2" position. Test connectors were also provided to help debug this board.
- 2.4 Hitachi Laptop Personal Computer "HL320": It is connected to the serial terminal port of the H8/532 Evaluation Board. The connector RJ-12 is attached to the Terminal port while a male to female 25 pin adapter cable is required at the Laptop PC end. The Hitachi "HL320" PC provides the software development tools for the user programs. The program up load and down load capability is also provided by the laptop PC. The communication link is full duplex, 9600 baud, 8 bits, 1 stop bit, and no parity check.

#### 1.0 INTRODUCTION:

This section describes the design goals, LCD display subsystem with its components, provides a general overview of this presentation, along with a software development station block diagram, and the organization of the other sections in this document.

The design goals established for this project are briefly listed below:

- 1.1 To use H8/532 Evaluation Board with Monitor Software.
- 1.2 To provide LCD display with LM200 panel from Hitachi.
- 1.2 Alpha-Numeric and Graphic display capability.
- 1.4 To design Interface Board for the LM200 LCD panel.
- 1.5 To write programs for debug and test.
- 1.6 To Use Hitachi Laptop Personal Computer "HL320".
- 1.7 To use readily available software at Hitachi Field Offices for development.
- 1.8 To build multiple HD61830B programming stations.
- 1.9 To generate HD61830B / LM200 panel design tutorial.

A brief description of the LCD display subsystem components listed above is provided in the next section as general overview. To complete the overview, a subsystem block diagram is also presented. The rest of the sections described in the Table Of Contents are expanded in greater details along with their technical data. The Appendices give the program listings, and also list the referenced literature. A copy of the LCD Interface Board schematic is also provided to illustrate the implementation details of this application.

#### TABLE OF CONTENTS

	TOPICS	PAGE
1.0	INTRODUCTION	110
2.0	DESIGN OVERVIEW	111
3.0	MPU READ / WRITE TIMING	114
4.0	DISPLAY MEMORY TIMING	115
5.0	LM200 LCD PANEL CRITERIA	117
6.0	LCD INTERFACE BOARD SCHEMATIC	119
7.0	SOFTWARE	121
8.0	APPENDICES	126
	APPENDIX "A" - CHR-BCS.LIS	126
	APPENDIX "B" - GRA-BCS.LIS	133
	APPENDIX "C" - REFERENCE LITERATURE	140

## HD61830B / LM200

## Panel Design TUTORIAL

Kash Yajnik

This tutorial presents in depth design process for a LCD subsystem. Its major components include H8/532 Evaluation board as the local processor, LCD Controller HD61830B, and the display panel LM200 from Hitachi ELT Division.

The HD61830B controller is designed to run in the character or graphics mode. The H8/532 Evaluation Board is designed by Hitachi Microsystems. The LM200 LCD panel can display 240 Dots(W) by 64 Dots(H) character or graphics data. Hitachi Monitor firmware resident on the H8/532 Evaluation Board provides the program debugging and host computer communication facilities.

By adding a laptop computer to down load the programs to the Evaluation Board, a program development station can be readily built. The H8/532 Cross Assembler, Linker, any word processor package e.g. "WORD" as screen editor, and Motorola "S" record conversion utility inside the Hitachi laptop PC complete the software development environment. The "PROCOMM" communication package is used to facilitate down load or up load of programs to the H8/532 Evaluation board.

In this manner, a number of software development stations were built to debug HD61830B / LM200 display programs.

These programs are listed in the Appendices "A" and "B". No effort is spent in either code or logic minimization.

This tutorial is intended for the technical staff at customer sites and other Hitachi employees who are fairly familiar with LCD design guide lines. Therefore, basic LCD design principles are not covered.

The HD61830B LCD Controller design tutorial includes Introduction, Design Overview, MPU Read/ Write Timing, Display Memory Timing, LM200 Panel Criteria, LCD Interface Board Schematic, and the associated Software.

While a lot of programs were developed, only two are listed as examples in their respective Appendices. The Appendix "A" shows the listing of the Character Mode display while the Appendix "B" shows the Graphics Mode listing. The Appendix "C" covers the reference literature.

Only the details not available in the reference literature are explained at greater length in this article. The page 2 shows the Table Of Contents.

Refer to the susequent pages for more details of this design.

The literature and other documents used in this design are summarized below:

- o H8/532 Cross Assembler Manual #S085CPC and " C " compiler for IBM PC
- o H8/532 Evaluation Board User's Manual # US538EVB21H
- o H8/532 Software User's Manual # HS538EMSS1E
- o MS " WORD " User Manual and other reference manuals
- o "PROCOMM" User Manual and other reference manuals
- o LCD Data Book #M24T013 from Hitachi America Ltd.
- o Memory Data Books from Hitachi America Ltd.
- σ Hitachi Graphic Module Catalog # XX-E139 from ELT Division
- o H8/532 Hardware User's Manual #M21T002 from Hitachi America, Ltd.
- o H8/500 Programming Manual #M21T001 from Hitachi America, Ltd.
- o H8/500 Software Application Note #M21T003 from Hitachi America, Ltd.
- o H8/532 Overview #M21T173 from Hitachi America, Ltd.
- o Hitachi Laptop Personal Computer HL320 Operator Manual
- o Hitachi Laptop Personal Computer HL320 MSDOS V3.2 User's Manual
- o Hitachi HD61830B / LM200 Panel Design Tutorial Part I (in this manual)

## APPENDIX " C "

### REFERENCE LITERATURE

SECTION

## **TUTORIAL - PART II**

## HD61830B/LM200 DESIGN - CUSTOM CHARACTER GENERATION

CHARACTER GENERATOR EPROM HN27C256AG-15

ADDRESS	DATA	CHARACTER
053FH	OH	" S "
0480H	82H	不
1H	82H	
2Н	82H	
3Н	82H	
4H	82H	
5H	82H	
6Н	82H	
7H	FEH	" H "
8Н	82H	
9Н	82H	
AH	82H	
ВН	82H	
СН	82H	
DH	82H	
EH	82H	
V FH	OH	$\downarrow$

## 4

### HD61830B/LM200 DESIGN - CUSTOM CHARACTER GENERATION

CHARACTER GENERATOR EPROM HN27C256AG-15

ADDRESS		DATA	CHARACTER
	020AH		<b></b>
	ВН	ОН	
	СН	ОН	" BLANK "
	DH	ОН	
	EH	ОН	
7	∠ FH	ОH	<b>4</b>
0	530H	FEH	不
	1H	02H	
	SH	02H	
	3Н	02H	
••••••	4H	02H	
•••••	5 <b>H</b>	02H	
	6H	02H	" S "
• • • • • • • • • • • • • • • • • • • •	7H	FEH	
	8H	80H	
	9H	80H	
/	AH	80H	
	ВН	80H	
	СН	80H	
	DH	80H	
	EH	FEH	
		<u> </u>	1

## **TUTORIAL - PART II**

## HD61830B/LM200 DESIGN - CUSTOM CHARACTER GENERATION

CHARACTER GENERATOR EPROM HN27C256AG-15

"
. "
·
Ł
7
NK "
<b>1</b>

## SECTION

## HD61830B/LM200 DESIGN - CUSTOM CHARACTER GENERATION

CHARACTER GENERATOR EPROM HN27C256AG-15

ADI	DRESS	DATA	CHARACTER
0	4B0H	82H	$\uparrow$
	1H	42H	
	2Н	22H	
	ЗН	12H	
	4H	OAH	
	5H	06H	
	6H	06H	
	7H	06H	" K "
	8Н		
	9H	06H	
,	AH	OAH	
	ВН	12H	
	СН	22H	
	DH	42H	
	EH	82H	
7	∠ FH	ОН	业
041	IOH	10H	不
	1H	28H	
	2H	44H	" Å "
	ЗН	82H	
	4H	82H	<b>\</b>

#### HITACHI

#### APPENDIX " B "

- 1.0 EPROM FONT DATA
- 2.0 ADDRESS RANGE " 000H 3FFH "
- 3.0 PROGRAM DESCRIPTION CUSTOM CHARACTER FONT PATTERN LISTING FOR "K","A","S", "H", AND "BLANK".
- 4.0 CHECK SUM 7F3CAD

RS,@H7FF1

OH TO 7FF1

MOVTPE

172 CHR C 81A1 157FF10083

SECTION

## **TUTORIAL - PART II**

### HD61830B/LM200 DESIGN - CUSTOM CHARACTER GENERATION

115 CHR	C 810A ACF7		STST	67,R4	SIT TEST #7 OF R4
116 CHR	C 810C 26F7		BNE	X7	:F B/FLAG =2=1 GO TO X7
117 CHR	C 810E 00	NOP			BUFLAG NOT SET
118 CHR	C 810F00	NOP			
119 CHR	C 8110 00	NOP		: INITIALIZATION END	1
120 CHR	C 8111 00	NOP			
121 CHR	C 8112 00	NOP			
122 CHR	C 8113 500A		MOVE	#HA,RD	;R0=AH
123 CHR	C 8115 157FF10090		MOVTPE	RO,⊕H7FF1	AH TO 7FF1
124 CHR	C 811A 510F		MOVE	#YF,R1	R1 <del>=F</del> H
125 CHR	C 811C 157FF00091		MOVTPE	R1,@H7FF0	:FH TO 7FF0
126 CHR	C 8121 00	NOP			
127 CHR	C 8122 157FF10084	X8:	MOVFPE	●H7FF1,R4	READ 7FF1 DATA TO RA
128 CHR	C 8127 ACF7		BTST	#7,R4	:BIT TEST #7 OF PA
129 CHR	C 8129 26F7		BNE	XB	;#F B/FLAG =Z=1 GO TO X8
130 CHR	C 8129 00	NOP			BUFLAG NOT SET
131 CHR	C 812C 5008		MOVE	#HB,R0	70-8H
132 CHR	C 812E 157FF10090		MOYTPE	RO, OH 7FF1	JEH TO 7FF1
133 CHR	C 8133 157FF00092		MOVTPE	R2.@H7FF0	OH TO 7FF0
134 CHR	C 8136 00	NOP			
135 CHR	C 8139 157FF10084	X9:	MOVFPE	QH7FF1,R4	READ 7FF1 DATA TO RA
136 CHR	C 813E ACF7		BTST	#7,R4	BIT TEST #7 OF R4
137 CHR	C 8140 28F7		BNE	X9	:# 8/FLAG =Z=1 GO TO X9
138 CHR	C 8142 00	NOP			AFLAG NOT SET
139 CHR	C 8143 500C		MOVE	#HC,RO	A0-CH
140 CHR 141 CHR	C 8145 157FF10090		MOVTPE	RO,@H7FF1	;CH TO 7FF1
142 CHR	C 814A 5148 C 814C 157FF00091		MOVE	#148,R1	RI-48-CODE FOR 10
143 CHR	C 8151 00	NOP	MOVTPE	R1,@H7FF0	;48 TO 7FF0
14 CHR	C 8152 157FF10084	X10:	MOVFPE	GH7FF1.R4	READ 7FF1 DATA TO RA
145 CHR	C 8157 ACF7	A10.	BTST	97,R4	BIT TEST #7 OF R4
146 CHR	C 8159 28F7		BNE	X10	F BAFLAG -Z-1 GO TO X10
147 CHR	C 8158 00	NOP	une.	A14	SFLAG NOT SET
148 CHR	C 815C 157FF10080	1101	MOVTPE	RO,@H7FF1	:CH TO 7FF1
149 CHR	C 8161 5141		MOVÆ	#f41,R1	R1=41=CODE FOR "A"
150 CHR	C 8163 157FF00091		MOVTPE	R1, <b>GH7FF</b> 0	41 TO 7FF0
151 CHR	Catego	NOP			
152 CHR	C 8169 157FF10084	X11:	MOVFPE	OH77FF1.R4	READ 7FF1 DATA TO RA
153 CHR	C BIGE ACFT		BTST	87.R4	SIT TEST 87 OF RA
154 CHR	C 8170 28F7		BNE	X11	:F B/FLAG =Z=1 GO TO X11
155 CHR	C 8172 00	NOP			SAFLAG NOT SET
156 CHR	C 8173 157FF10080		MOVTPE	RO. OHTTFF1	CH TO 7FF1
157 CHR	C 81 78 5153		MOV:E	#H53,R1	R1-69-CODE FOR "5"
158 CHR	C 817A 157FF00081		MOVTPE	R1, OH7FF0	53 TO 7FF0
155 CHR	C 817F 00	NOP		-	
100 CHR	C 8180 157FF10084	X12	MOVFPE	@+17FF1,R4	PEAD 7FF1 DATA TO RE
161 CHR	C 8185 ACF7		STST	87.R4	SIT TEST 87 OF RA
162 CHR	C 8187 26F7		BNE	X12	:F BFLAG -Z-1 GO TO X12
163 CHR	C 8189 00	NOP			SIFLAG NOT SET
164 CHR	C 818A 157FF10080		MOVTPE	RO,@H7FF1	CH TO 7FF1
165 CHR	C 818F 5148		MOVE	#148,R1	R1-48-CODE FOR TY
166 CHR	C 8191 157FF00081		MOVTPE	R1,@H7FF0	:46 TO 7FF0
167 CHR	C 8196 00	NOP			
166 CHR	C 8197 157FF10084	X13:	MOVFPE	@H7FF1,R4	PEAD 7FF1 DATA TO RA
189 CHR	C 819C ACF7		BTST	87,R4	SIT TEST 87 OF RA
170 CHR	C 819E 26F7		BNE .	X13	ENX OT CO 1-2- DAJFO TO X13
171 CHR	C 81A0 00	NOP			;B/FLAG NOT SET

## HD61830B/LM200 DESIGN - CUSTOM CHARACTER GENERATION

SE CHR	C 807A 157FF00091		MOVTPE	R1,@H7FF0	EH TO 7FF0
59 CHR	C 807F 00	NOP			
60 CHR	C 8080 157FF10084	X5:	MOVFPE	<b>⊕H7FF1,R4</b>	READ 7FF1 DATA TO RA
61 CHR	C 8085 ACF7		BTST	#7,R4	BIT TEST #7 OF R4
62 CHR	C 8087 26F7		BNE	X5	:# B/FLAG =Z=1 GO TO X5
63 CHR	C 8089 00	NOP			BAFLAG NOT SET
64 CHR	C 808A 5008		MOVE	#18,R0	;A0=6H
65 CHR 66 CHR	C 808C 157FF10080		MOVTPE	RO.@H7FF1	SH TO 7FF1
67 CHR	C 8091 157FF00092 C 8096 00		MOVTPE	R2.@H7FF0	OH TO 7FF0
68 CHR	C 8097 157FF10084	NOP			
SO CHR	C 809C ACF7	XS:	MOVFPE	<b>@H7FF1,R4</b>	READ 7FF1 DATA TO RA
70 CHR	C 809E 26F7		8TST BNE	87,R4	:BIT TEST #7 OF R4 :F BIFLAG =Z=1 GO TO X6
71 CHR	C 80A0 00	NOP	BNE	X8	BIFLAG NOT SET
72 CHR	C 80A1 5009	NOP	MOVE	#19.80	LOAD ROWH
73 CHR	C 80A3 157FF10090		MOVTPE		9H TO 7FF1
74 CHR	C 80A8 157FF00092		MOVIPE	R0,@H7FF1 R2.@H7FF0	:0H TO 7FF0
75 CHR	C SOAD 00	NOP	MUVIPE	na.gm/rrv	JUN 10 7FF0
75 CATA	Caund	NOP		: SCREEN CLEAR ROUTINE	CTART
/ <b>0</b>				; SCHEEN CLEAN HOUSING	3(M)
78 CHR	C SOAE AD13		CLR.W	R6	CLEAR RS
79 CHR	C 8080 00	NOP	COLW		COLONIA
80 CHR	C 8081 157FF10084	C1:	MOVEPE	<b>GH7FF1.R4</b>	READ 7FF1 DATA TO R4
at CHR	C 8086 ACF7	CI:	BTST	#17PF1,HA #7,R4	BIT TEST #7 OF R4
82 CHR	C 8088 28F7		BNE	67,746 C1	:F B/FLAG =Z=1 GO TO C1
83 CHR	C SOBA 00	NOP	DIVE	C1	1/FLAG NOT SET
M CHR	C 8088 500A	NUP	MOVE	#FARO	PO-AH
SE CHR	C 8080 157FF10080		MOVIPE	RO.@H7FF1	AH TO 7FF1
86 CHR	C 80C2 5100		MOVE	#10.81	R1=0H
87 CHR	C 80C4 157FF00081		MOVTPE	R1, <b>GH7FF</b> 0	OH TO 7FF0-CUR L/B=OH
SE CHR	C 80C9 00	NOP	MOTIFE	ni, gm/rrv	Jun 10 irro-con cason
80 CHR	C 80CA 157FF10084		MOVERE	<b>OH7FF1.R4</b>	READ 7FF1 DATA TO RA
90 CHR	C SOCF ACF7	-	BTST	87.R4	BIT TEST #7 OF R4
91 CHR	C 8001 28F7		BNE	. œ	F B/FLAG =Z=1 GO TO C2
92 CHR	C 8003 00	NOP		•	SIFLAG NOT SET
SS CHR	C 8004 5008		MOVE	#FERO	SO-BH
M CHR	C 8006 157FF10080		MOVTPE	RO,@H77FF1	9H TO 7FF1
95 CHR	C 8008 5100		MOVE	MORI	R1=OH
SE CHE	C 8000 157FF00081		MOVTPE	R1.@H7FF0	OH TO 7FF0-CUR ING-OH
97 CHR	C 8052 00	NOP		m, with	(M) 10 /110 001100-01
SH CHR	C BOES SDOIFF		HOVE	MITT AS	COUNT-RE-1FFH
SO CHR	C 8056 00	CE:	NOP	W	,
100 CHR	C 80E7 157FF10084		MOVFPE	@H77FF1.R4	READ 7FF1 DATA TO RA
101 CHR	C BOEC ACF7		BTST	87.R4	BUT TEST #7 OF RA
102 CHR	C 10EE 20F7		BNE	C4	F BFLAG -Z-1 GO TO C4
108 CHR	C 80F0 00	NOP			SAFLAG NOT SET
104 CHR	C 80F1 500C		MOVE	#FC.RO	90-CH
105 CHR	C 80F3 157FF1008	•	MOVIPE	RO, GHT/FF1	CH TO 7FF1
105 CHR	C 80F8 5120	-	MOVE	#f20.R1	R1-20H-CODE FOR TILANGE
107 CHR	C 80FA 157FF0008		MOVIPE	R1.@H7FF0	20H TO 7FF0
108 CHR	C SOFF 00	NOP		ni, <b>y</b> nirry	AM1 19 111 T
109 CHR	C 8100 0180E3		SCRF	R5,C3	
110 CHR	C 8103 00	NOP	<b>3007</b>	M3/€0	
111	~ 6100 W	1		SCREEN CLEAR ROUTINE	COME ETEN
112 CHR	C 8104 00	NOP		,	
113	- 1100 W	1			
114 CHR	C 8105 157FF1008	4 : X7:	MOVFPE	@H77FF1.R4	READ 7FF1 DATA TO RA
114 00	O GIVE IS/LL 1008	→ . A/:	MUTTE.	@#T/FT1,P\$	או עו אואט וידוז שעבון

**HITACHI** 

Section

## TUTORIAL - PART II

## HD61830B/LM200 DESIGN - CUSTOM CHARACTER GENERATION

		. =			
1 2 CHR	C 0000	HEADING		_	
3	Cooo		CHRICODE ALIGN	=₹ .	
3 4 CHR	C 8000	.EXPORT		A	
5	Cauc	.ORG		H <b>78000</b>	;LOC CNTR =8000H
6					
7					; BUSY FLAG CHECKED
8 CHR	C 00008000	A:	.EQU	•	A = 8000H
9 CHR	C 8000 A013	a.RB	.500	- Ro	CLEAR RO
10 CHR	C 8002 A113		CLRB	R1	CLEAR RI
11 CHR	C 8004 A213		CLRB	R2	CLEAR R2
12 CHR	C 8006 A313		CLRB	R3	CLEAR RS
13 CHR	C 8008 A413		CLRS	R4	CLEAR RA
14					,
15 CHR	C 800A 00	NOP			
16 CHR	C 800B 00	NOP	; INITU	ALIATION START	
17 CHR	C 800C 00	NOP			
18 CHR	C 8000 00	NOP	; EXTE	PRNAL CG ENABLED	
19 CHR	C 800E 00	NOP			
20 CHR	C 800F 157FF10090		MOVTPE	RO, OHT/FF1	;0H TO 7FF1
21 CHR	C 8014 51 1D		MOVE	#f10,R1	10AD R1 =10H
22 CHR	C 8016 157FF00091		MOVTPE	R1,@H7FF0	;10H TO 7FF0
23 CHR	C 8018 00	NOP			
24 CHR 25 CHR	C 801C 157FF10084 C 8021 ACF7	X1:	MOVFPE	@H7FF1,R4	READ 7FF1 DATA TO RA
25 CHR	C 8023 28F7		BNE	87,R4	:BIT TEST #7 OF R4
27 CHR	C 8025 00	NOP	OFFE	Χ1	; if evflag =Z=1 go to x1 :evflag not set
27 CHR	C 8026 5001	MOVE		#F1,R0	LOAD RO-1H
29 CHR	C 8028 157FF10090	MOV.E	MOVTPE	R0,@H7FF1	:1H TO 7FF1
30 CHR	C 8020 51F7		MOV:E	#IF7,R1	10AD R1=F7H
31 CHR	C 802F 157FF00001		MOVTPE	R1,@H7FF0	:F7H TO 7FF0
32 CHR	C 8034 00	NOP		,	,
33 CHR	C 8035 157FF10084	X2:	MOVFPE	OH7FF1,R4	:READ 7FF1 DATA TO PA
34 CHR	C 809A ACF7		BTST	67.R4	BIT TEST 87 OF RA
35 CHR	C 809C 26F7		BNE	X2	F 8/FLAG -Z-1 GO TO X2
36 CHR	C 805E 00	NOP			:B/FLAG NOT SET
37 CHR	C 809F 5002		MOV-E	#12,70	LOAD RO-SH
38 CHR	C 8041 157FF10080		MOVTPE	RO,@H7FF1	2H TO 7FF1
39 CHR	C 8046 511D		MOVE	#F1D,R1	10AD R1=10H
40 CHR	C 8048 157FF00081		MOVTPE	R1,@H7FF0	;1 <b>DH TO 7FF0</b>
41 CHR	C 8040 00	NOP		* .	
42 CHR	C 804E 157FF10084	X	MOVFPE	<b>@H77FF1,R4</b>	PEAD 7FF1 DATA TO PA
43048	C 8083 ACF7		STST	87,R4	SIT TEST #7 OF RA
4 CHR	C 8085 28F7		BNE	XS	:F BFLAG -Z-1 GO TO X3
46 CHR	C 8067 00	NOP			AFLAG NOT SET
46 CHR	C 8058 5008	MOVE		eH73,R0	10AD R0-SH
47 CHR 48 CHR	C 805A 157FF10080 C 806F 511F		MOVTPE	R0.@H77FF1	3H TO 7FF1
49 CHR	C 8081 1577700081		MOVIE MOVIPE	arif,Ri	LOAD RI-IFH
50 CHR	C 8088 00	NOP	-VIPE	R1, <b>@H7FF0</b>	;1FH TO 7FF8
51 CHR	C 8087 157FF10084	XA:	MOVFPE	@H7FF1,R4	READ 7FF1 DATA TO RA
52 CHR	C SOSC ACF7	~··	BTST	87.R4	SIT TEST #7 OF RA
23 CHR	C 806E 28F7		. SNE	XA	:F BFLAG =Z=1 GO TO X4
SICHE	C 8070 00	NOP	. <del></del>		SAFLAG NOT SET
55 CHR	C 8071 5004	MOV:E		#14.RD	LOAD RO-HH
SCHR	C 8073 157FF10090		MOVTPE	RO.@H77FF1	;4H TO 7FF1
57 CHR	C 8078 510E		MOVE	MERI	LOAD RI-EH
2. 2.44					

#### APPENDIX " A "

1.0 PROGRAM NAME - " XCG.MOT "

2.0 ADDRESS RANGE - " 8000H - 81AFH "

3.0 PROGRAM DESCRIPTION - CLEARS SCREEN, CHECKS BUSY FLAG, AND DIS-PLAYS 4 CUSTOM CHARACTERS ON THE LCD LM200 PANEL STARTING AT THE 8TH CURSOR POSITION.

PAGE

# SECTION

#### Listing 3: INPUT.LIS

```
*** H8/300 ASSEMBLER
                                       VER 1.1 ***
                                                       03/20/91 08:11:34
PROGRAM NAME -
                                                     Date Input Routine
                                                                         "Date Input Routine"
                                               ;H8/330 Print Buffer Routine
                                               ;written by:
                                                        Tom Hampton
Hitachi America, Ltd.
                                                        Application Engineering
   10
                                                        .output
  249
                                                        .print
                                                                         nocref.nosct
  251
                                                        .global
                                                                       . input int
  252
  253 program C 0000
                                                                         program, code
  254
                                               :Input /STB Interrupt Routine
  255
  257 program C 0000
258 program C 0000 7FB27040
                                                        bset.b #ibusy_bit,@in_hs
                                                                                           set input busy signal
  260
                                               get input data;
  261 program C 0004
262 program C 0004 20BE
                                               get_data:
                                                       mov.b
                                                               @in_port,r0h
  263
                                               ;write data into memory buffer
  265 program
266 program
              C 0006 F8FF
C 0008 38B1
                                                       mov.b
                                                                #write, r01
                                                                r01,@mem_dir
                                                                                   ;set port direction for write
  267 program
                C 000A 30B3
                                                                 rOh, @mem_data
  268 program
269 program
               C 000C 3DB6
                                                        mov.h
                                                                r51. Maddr lo
               C 000E 35BE
                                                                r5h,@addr_hi
                                                        mov.b
                                                                                  ;output buffer address
  270 program
                C 0010 4B04
                                                        bmi
                                                                 wr_cs1
  271 program
               C 0012
                                               wr cs0:
               C 0012 F802
  272 program
                                                                 #wrcs0,r01
                                                                                   ;write to U3
  273 program
               C 0014 4002
                                                                 wr_cont
  274 program
               C 0016
                                               wr_csl:
  275 program
                                                                                   ;write to U4
  276 program
               C 0018
                                               wr_cont:
               C 0018 38BA
                                                        mov.b
                                                                r01,@mem_ctrl
                                                                                  ;activate write pulse
  277 program
  278 program C 001A F807
279 program C 001C 38BA
280 program C 001E 0B05
                                                                 #7,r01
                                                                                   :de-activate write pulse
                                                        mov.b
                                                                r01,@mem_ctrl
                                                                 #1,r5
                                                                                   ;increment input pointer
  281
  282
                                               test for buffer full
  283 program C 0020 0D53
  284 program C 0022 1963
285 program C 0024 4708
                                                        sub. w
                                                                                   :is IDP - ODP ?
                                                                 buff_full
                                                        beg
                                                                                  ; ves
  287
                                               ; buffer is not full, but cannot be empty either
  288 program C 0026 720C
                                                        bclr.b #buf mt flag,r41
                                                                                           ; clear buffer empty flag
  289 program C 0028 7FB27240
                                                        bclr.b #ibusy_bit,@in_hs
                                                                                           ;clear IBUSY signal
  290 program C 002C 4006
                                                                 clean_ret
  291
                                               buff_full:
                                                        bset.b #buf_fl_flag,r4l
  293 program C 002E 701C
                                                                                           ;set buffer full flag
                                                                                            ; IBUSY remains set
  294
  295 program C 0030 7FB27220
                                                        bclr.b #buf_ful_bit,@stat_port ;turn Buffer Full LED ON
  296
  297
                                               reset input delay timer
  298 program C 0034
                                               clean_ret:
  299 program C 0034 79000000
300 program C 0038 6B80FF92
                                                       mov.w
                                                                #0.r0
                                                        mov.w
                                                               ro, efrt frc
                                                                                  reset delay timer
                                               ; enable delay timer interrupts
                                                       bclr.b #3, ffrt_tcsr
  303 program C 003C 7F917230
  305 program C 0040 5670
                                                        rte
  306
  *****TOTAL EPRORS
  *****TOTAL WARNINGS
```

PAGE

#### Listing 4: OUTPUT.LIS

```
*** H8/300 ASSEMBLER
                                          VER 1.1 ***
                                                         03/20/91 08:11:43
PROGRAM NAME -
                                                       Data Output Routine
                                                                             "Data Output Routine"
                                                 :H8/330 Print Buffer Routine
                                                  :written by:
                                                           Tom Hampton
                                                           Hitachi America, Ltd.
                                                           Application Engineering
   10
  248
                                                           .output
                                                                             dbg.obf
  249
  250
                                                           .global
                                                                             output int
  252
  253 program C 0000
                                                           section
                                                                             program.code
  255
                                                 :Data Output Service
                                                  ;input delay timer interrupt
  257
  258 program C 0000
                                                 output_int:
  259 program C 0000 7FB27040
                                                           bset.b #ibusy_bit,@in_hs
                                                                                                ; set input busy signal
  260
  261
                                                 ;test for buffer empty
  262 program C 0004 730C
                                                           btst.b #buf_mt_flag,r41
                                                                                                ; is buffer empty ?
  263 program C 0006 464E
  264
                                                 ;test for output busy
  266 program C 0008 7EB77300
267 program C 000C 4648
                                                           btst.b #obusy_bit,@out_hs
                                                                                                ; output busy ?
                                                                                                ; yes
  268
  269
                                                 ;test for output hold
  270 program C 000E 733C
271 program C 0010 4644
                                                           btst.b #ohold_flag,r41
                                                                                                ;output on hold ?
                                                           bne
                                                                    ret1
                                                                                                ; yes
  272
                                                  ;get output buffer data
  274 program C 0012 F800
275 program C 0014 38B1
                                                           mov.b
                                                                   #read, r01
                                                                    rOl. Amem dir
                                                                                       ;set port direction for read
                                                           mov.b
  277 program C 0016 3EB6
278 program C 0018 36BF
                                                                    r61, @addr lo
                                                           mov.b
                                                                    reh, eaddr hi
                                                                                       ;output buffer address
                                                           mov.b
  279 program
                C 001A 4B04
C 001C
                                                           bmi
  280 program
                                                 rd_cs0:
  281 program
                                                                    #rdcs0,r01
                                                                                       ;read from U3
  282 program
                C 001E 4002
C 0020
                                                           bra
                                                                    rd_cont
  283 program
                                                 rd csl:
  284 program
                 C 0020 F805
                                                           mov.b
                                                                    #rdcs1,r01
                                                                                       :read from U4
  285 program C 0022 788A
286 program C 0022 38BA
287 program C 0024 20B3
288 program C 0026 F807
                                                 rd cont:
                                                                     r01,@mem_ctrl
                                                                                       ;activate chip select pulse
                                                                    @mem_data,r0h
#7,r01
                                                           mov.b
                                                                                       ; get output data
                                                           mov.b
  289 program C 0028 38BA
290 program C 002A 0B06
                                                                     r01, @mem_ctrl
                                                                                       ;de-activate write pulse
                                                                             increment output pointer
                                                           adds
                                                                     #1,r6
  291
  292
                                                  ;output data to port
  293 program C 002C 30BB
                                                           mov.b r0h, eout port ; output data
  294
  295
                                                  ; generate output data strobe
  296 program C 002E F800
                                                           mov.b
                                                                    #0.r01
  297 program C 0030 38CC
                                                                     r01, @tmr0 tcnt ;clear counter
                                                           mov.b
  298 program C 0032 28C9
299 program C 0034 F816
300 program C 0036 38C9
                                                           mov.b
                                                                     @tmr0_tcsr,r01 :read flags
                                                                     #h'16.r01
                                                           mov.b
                                                           mov.b
                                                                    r01,@tmr0_tcsr ;generate a negative strobe
  301
                                                                                       ; 2.4 usec wide and clear flags
  302 program C 0038 F841
303 program C 003A 38C8
                                                           mov.b
                                                                    #h'41.r01
                                                           mov.b
                                                                   r01, @tmr0_tcr ; enable compare A interrupt
  305
                                                  ; enable interrupts for strobe generation
  306 program C 003C 0700
                                                                     #0,ccr
                                                                                       ;enable interrupts
                                                           ldc
  307
  308
                                                  ;wait for output strobe interrupt
   309 program C 003E 0180
                                                           sleep
  310
                                                  ; disable interrupts
                                                                     #h'80.ccr
   312 program C 0040 0780
                                                           ldc
                                                                                        :mask interrupts
   314
                                                  ;test for buffer empty
   315 program C 0042 0D63
316 program C 0044 1953
                                                           mov.w r6,r3
sub.w r5,r3
                                                                                       ;temporary work register
;is ODP = IDP ?
```

2

# SECTION

#### Listing 4: OUTPUT.LIS (continued)

```
317 program C 0046 470C
                                                                    buff mt ;yes
318
*** H8/300 ASSEMBLER
                                          VER 1.1 *** 03/20/91 08:11:43
                                                                                                                                                PAGE
PROGRAM NAME -
                                                        Data Output Routine
                                                  test for in full area
  320 program C 0048 084B
321 program C 004A 4516
                                                            add.b r4h,r3l
bcs ret2
                                                                                         ;is buffer still full ?
                                                                                        :ves
  323 program C 004C 721C
324 program C 004E 7FB27020
325 program C 0052 4002
                                                            326
                                                   ;set buffer empty flag
                                                   buff_mt:
bset.b #buf_mt_flag,r41
  328 program C 0054
329 program C 0054 700C
                                                                                                  ;set buffer empty flag
 331
332 program C 0056
333 program C 0056 734C
334 program C 0058 4708
                                                   ; should IBUSY be cleared ?
                                                   ret1:
                                                             btst.b #online_flag,r41
                                                                                                  ;is buffer online ?
                                                            beq
                                                                    ret2
                                                                                                  : no
  335
  336 program C 005A 731C
337 program C 005C 4604
                                                            btst.b #buf_fl_flag,r41
                                                                                                  ;is buffer full ?
                                                            bne
                                                                     ret2
                                                                                                  ; yes
                                                  ;clear IBUSY signal bolr.b #ibusy_bit,@in_hs
  339
  340 program C 005E 7FB27240
                                                                                                 :set IBUSY inactive
  342 program C 0062
343 program C 0062 79000000
344 program C 0066 6B80FF92
                                                   ret2:
                                                            mov.w #0,r0
mov.w r0,@frt_frc
                                                                                         reset delay timer
                                                  ;enable delay timer interrupts
holvib #3.8frt tosr ;clear compare flag
  347 program C 006A 7F917230
  349 program C 006E 5670
  350
  351
                                                            .end
  *****TOTAL ERRORS
  *****TOTAL WARNINGS
                              0
```

#### Listing 5: OUT-STB.LIS

```
*** H8/300 ASSEMBLER
                                    VER 1.1 ***
                                                 03/20/91 08:11:54
                                                                                                                           PAGE
PROGRAM NAME -
                                                Output STB Routine
                                                    .heading
                                                                    "Output STB Routine"
                                           ;H8/330 Print Buffer Routine
                                           :version 2.0
                                           ;written by:
                                                   Tom Hampton
                                                    Hitachi America, Ltd.
                                                    Application Engineering
  249
                                                    .print
                                                                    nocref, nosct
  251
                                                    .global
                                                                    ostb_int
  252
  253 program C 0000
                                                   .section
                                                                    program, code
  254
  255
                                           :Output Strobe interrupt
  256 program C 0000
                                           ostb_int:
                                                   mov.b
  257 program C 0000 F801
                                                           #1.701
  258 program C 0002 38C8
                                                          · rol.@tmr0 tcr ;disable further timer interrupts
                                                   mov.b
  259
  260 program C 0004 28C9
                                                   mov.b
                                                           @tmr0_tcsr,r01 ; read flags
  261 program C 0006 F81A
                                                   mov.b
  262 program C 0008 38C9
                                                           r01, ftmr0_tcsr ;clear flags, outputs to high level
  263
  264 program C 000A 5670
                                                   rte
  265
 266
                                                   .end
  *****TOTAL ERRORS
  *****TOTAL WARNINGS
                          0
```

#### Listing 6: IN-INIT.LIS

```
*** H8/300 ASSEMBLER
                                        VER 1.1 *** 03/20/91 08:12:01
                                                                                                                                        PAGE
PROGRAM NAME -
                                                      Input INIT Pulse Service Routine
                                                                           "Input INIT Pulse Service Routine"
                                                ;H8/330 Print Buffer Routine
                                                ;version 2.0
                                                ;written by:
                                                         Tom Hampton
                                                         Hitachi America, Ltd.
                                                         Application Engineering
  248
                                                         .output
                                                                           dbg,obj
nocref,nosct
                                                         .print
  250
                                                         .global
                                                                           iinit_int, start
  252
  253 program C 0000
                                                         .section
                                                                           program.code
  255
                                                :disable any timer interrupts
  256 program C 0000
                                                iinit_int:
  257 program C 0000 F801
258 program C 0002 38C8
259 program C 0004 38D0
                                                         mov.b
                                                         mov.b
                                                                  rol, @tmr0_tcr
rol, @tmr1 tcr
                                                                                     :disable output strobe interrupts
                                                                                     ; disable init pulse interrupts
                                                         mov.b
  260 program C 0006 3890
                                                                  rol, @frt_tier
                                                                                    ; disable input delay interrupts
  261
                                                ; jump to beginning imp @start
  262
  263 program C 0008 5A000000
                                                                                     ; jump to initialization routine
  264
  265
                                                          .end
  *****TOTAL ERRORS
  *****TOTAL WARNINGS
                             ٥
```

1

PAGE

#### Listing 7: OUT-INIT.LIS

```
*** H8/300 ASSEMBLER
                                        VER 1.1 *** 03/20/91 08:12:08
PROGRAM NAME -
                                                    INIT Pulse Output Routine
                                                                          "INIT Pulse Output Routine"
                                                        .heading
                                               ;H8/330 Print Buffer Routine
                                               version 2.0
                                                        Tom Hampton
Hitachi America, Ltd.
Application Engineering
  248
249
250
                                                                          nocref, nosct
                                                        print
  251
                                                        .global
                                                                          oinit_int
  252
253 program C 0000
  254
255
                                               ;output INIT signal interrupt
  256 program C 0000
                                               ; disable further timer interrupts
  257
  258 program C 0000 F901
                                                        mov.b #1,r11
mov.b r11,@tmr1_tcr ;use phi/8, no interrupts
  259 program C 0002 39D0
  260
                                               ;clear match flag
  262 program C 0004 7FD17260
                                                        bclr.b #6,@tmr1_tcsr ;clear compare match a flag
  263
                                               ;clear OINIT\ signal
  265 program C 0008 F900
266 program C 000A 39D1
                                                        mov.b #0,rll
mov.b rll,@tmrl_tcsr ;no more strobes
 268
269 program C 000C 722C
                                               clear oinit flag
bclr.b #buf init flag,r41
                                                                                        clear oinit flag;
  271 program C 000E 5670
                                                        rte
  273
*****TOTAL ERRORS
                                                        . end
  *****TOTAL WARNINGS
```

#### Listing 8: ONLINE.LIS

```
*** H8/300 ASSEMBLER
                                         VER 1.1 *** 03/20/91 08:12:16
                                                                                                                                           PAGE
                                                                                                                                                     1
PROGRAM NAME -
                                                      Online Pushbutton Service Routine
                                                                             "Online Pushbutton Service Poutine"
                                                 :H8/330 Print Buffer Routine
                                                 ;version 2.0
                                                 ;written by:
                                                          Tom Hampton
                                                          Hitachi America, Ltd.
Application Engineering
  248
                                                          output
                                                                            dbg.ob1
                                                                            nocref, nosct
                                                          .print
  250
  251
                                                          .global
                                                                            online int
  253 program C 0000
                                                          .section
                                                                            program, code
  254
                                                 on line pushbutton test
 256 program C 0000
257
                                                 online_int:
  258
                                                 259 program C 0000 7FB27040
                                                                                              ; set IBUSY active
  261
                                                 :test online switch
  262 program C 0004
263 program C 0004 7EC17320
                                                 test_sw:
                                                          btst.b #online_sw_bit,@in_hs2 ;test online switch
  264 program C 0008 47FA
                                                                   test_sw
                                                                                              ;still low
; will not go further
  265
                                                                                               ; until released
  267
                                                 ;test online status
  269 program C 000A 734C
270 program C 000C 4708
                                                          btst.b #online_flag,r41
                                                                                               ;test online status
                                                                  put_online
                                                                                               currently offline
                                                          beq
  272
                                                 currently online
 272
273 program C 000E
274 program C 000E 7FB27010
275 program C 0012 724C
                                                 put_offline:
                                                          bset.b #online_bit,@stat_port ;clear Online LED bclr.b #online_flag,r41 ;clear online stat
                                                                                               ; clear online status
  277 program C 0014
278 program C 0014 5670
                                                 just_ret:
                                                          rte
  280
                                                 ; currently offline
                                                 put_online:
  281 program C 0016
 282 program C 0016 7FB27210
283 program C 001A 704C
                                                          bclr.b #online_bit,@stat_port ;set Online LED bset.b #online_flag,r41 ;set online sta
                                                                                               ; set online status
  284
                                                 ; should IBUSY be cleared ?
 286 program C 001C 731C
287 program C 001E 46F4
                                                         btst.b #buf_fl_flag,r41
bne just_ret
                                                                                               :is buffer full
                                                                                              ;yes, IBUSY should remain active
  289
                                                 290 program C 0020 7FB27240
                                                                                              ; set IBUSY inactive
  292 program C 0024 5670
                                                          rte
  293
                                                          .end
  *****TOTAL EPROPS
  *****TOTAL WARNINGS
```

1

PAGE

#### Listing 9: PAUSE.LIS

```
*** H8/300 ASSEMBLER
                                         VER 1.1 *** 03/20/91 08:12:24
                                                       Pause Pushbutton Service Routine
PROGRAM NAME -
                                                                             "Pause Pushbutton Service Boutine"
                                                  ;H8/330 Print Buffer Routine
                                                  ·version 2.0
                                                  ;written by:
: Tom Hampton
                                                           Application Engineering
  249
                                                                             nocref.nosct
                                                           .print
  251
                                                           .global
                                                                             pause_int
  253 program C 0000
                                                           .section
                                                                             program, code
                                                  ; pause pushbutton test
  256 program C 0000
                                                  pause_int:
  257
                                                  259 program C 0000 7FB27040
                                                                                                :set IBUSY active
  260
                                                  ;test online switch
                                                 test_sw:
btst.b #pause_sw_bit,@in_hs2
beq test_sw
  262 program C 0004
  263 program C 0004 7EC17310
264 program C 0008 47FA
                                                                                               ;test pause switch
                                                                                                 ;still low
                                                                                                ; will not go further
                                                                                                ; until released
  267
  268
                                                  test hold status
  269 program C 000A 733C
270 program C 000C 470C
                                                           btst.b #ohold_flag,r41 ;test hold status
                                                                                    currently not on hold
                                                           beq
                                                                 put_on_hold
  271
                                                  ; currently on hold
  273 program C 000E
274 program C 000E 7FB27030
275 program C 0012 723C
                                                  put_off_hold:
                                                           bset.b #chold_bit,@stat_port ;clear Output Hold LED
bclr.b #chold_flag,r41 ;clear hold status
  276
                                                  ; enable delay timer interrupts
  278 program C 0014 F808
279 program C 0016 3890
                                                           mov.b #8,r01
mov.b r01,@frt_tier :enable delay timer interrupts
  281 program C 0018 400E
                                                           bra
                                                                    pause cont
  282
  283
                                                  currently off hold
  284 program C 001A
285 program C 001A 7FB27230
286 program C 001E 703C
                                                  put_on_hold:
                                                           bclr.b #ohold_bit,@stat_port ;set Output Hold LED
                                                           bset.b #ohold_flag,r41
                                                                                                ;set hold status
                                                  ; disable delay timer interrupts
  289 program C 0020 F800
290 program C 0022 3890
291 program C 0024 7F917230
                                                          mov.b #0,r01
mov.b r01,@frt_tier ;disable delay timer interrupts
bclr.b #3,@frt_tcsr ;clear compare flag in case
  292
  293 program C 0028
                                                  pause cont:
                                                  ; should IBUSY be cleared ?
  295
                                                  test for online first
  296 program C 0028 734C
297 program C 002A 4708
                                                           btst.b #online_flag,r41
                                                                                                ;is buffer offline ?
                                                           beq
                                                                    pause_ret
                                                                                                ; yes, keep IBUSY set
  298
                                                  ;test for buffer full
  299
  300 program C 002C 731C
                                                           btst.b #buf_fl_flag,r41
                                                                                                ;is buffer full ?
  301 program C 002E 4604
                                                                                                ; yes, keep IBUSY set
                                                           hne
                                                                   pause ret
  302
                                                  ;clear IBUSY
  303
  304 program C 0030 7FB27240
                                                                                                ; set IBUSY inactive
                                                           bclr.b #ibusy_bit,@in_hs
  305
  306 program C 0034
                                                  pause_ret:
   307 program C 0034 5670
  308
   *****TOTAL ERRORS
   *****TOTAL WARNINGS
```

#### Listing 10: BUFFER, INC

```
;H8/330 Printer Buffer Program
revision 2.0
Register Usage
          ROH - Buffer Data
         R4L = Status Flags
R4H = Buffer Margin (16 bytes)
         R5 = Input Buffer Pointer
R6 = Output Buffer Pointer
;buffer control flags (R4L)
                                                            -4- On Line Flag
online_flag
ohold_flag
                   .egu
                                                            -3- Output Hold Flag
                    . equ
buf_init_flag
buf_fl_flag
                                                           -2- Buffer Init Flag
                                                            -1- Buffer Full Flag
                    .equ
                              ō
                                                            -0- Buffer Empty Flag
;Port 1 Usage
                             p1_dr
p1_dr
4
in_hs
                    . equ
                                                 ;Input Port Control (output)
;Status Indicators
stat_port
                   . egu
                                                           -4- IBUSY (output)
-3- Output Hold LED (output)
-2- Buffer Full LED (output)
ohold bit
                    . egu
buf ful bit
                    .egu
online bit
                                                           -1- On Line LED (output)
                                                           -0- Ready LED (output)
ready bit
                    .equ
:Port 2 Usage
                             p2_dr
p2_ddr
h'ff
                                                 :Data (input/output)
mem_data
mem_dir
                   . eau
                   .equ
write
                                                  :write direction
read
                                                  read direction
                    .equ
Port 3 Usage
                             p3_dr
                                                  ;Address, Low Byte (output)
addr_lo
                   .equ
:Port 4 Usage
                             p4_dr
                                                  ;Output Port Handshake
out_hs
                    . equ
                                                           -4- OINIT\ (output)
-1- OSTB\ (TMO0)
-0- OBUSY (input)
oinit_bit
obusy_bit
                   . equ
                              0
mem_ctrl
                    . equ
                             p5_dr
                                                  :Memory Buffer Control
                                                           -2- WE\ (output)
-1- CS1\ (output)
-0- CS0\ (output)
                                                  ;write to chip 1
wrcsl
                    .egu
wrcs0
                    . equ
                                                  ;write to chip 0
                                                  read from chip 1
rdcsl
                    . eau
                                                  ;read from chip 0
rdcs0
                    .egu
Port 6 Usage
out_port
                   . equ
                             p6_dr
                                                  ;Output Port
;Port 7 Usage
in_port
                    . equ
                              p7_dr
                                                  ;Input Port
;Port 8 Usage
addr_hi
                    . equ
                              p8_dr
                                                  :Address, High Byte (output)
;Port 9 Usage
in_hs2
online sw bit
                             p9_dr
2
                    . equ
                                                  ;Port Control (inputs)
                                                           -2- ONLINE (input, IRQ0)
-1- HOLD\ (input, IRQ1)
                   .equ
pause_sw_bit
istb_bit
                                                            -0- ISTB\ (input, IRQ2)
;maskable interrupts
online
                    . equ
                                                  ;irq0
pause
                                                  ;irq1
                    .equ
                                                  ;irq2
                    .equ
```

Listing	11: H	8330.INC
;H8/330 Port	Definition	ons
;I/O Port Add	dress	
p1_ddr p2_ddr	.equ	h'ffb0
p2_ddr	.equ	h'ffbl
p3 ddr	.equ	h'ffb4
p4_ddr p5_ddr	.equ	h'ffb5
p5 ddr	. equ	h'ffb8
p6 ddr	.equ	h'ffb9
p8 ddr	. equ	h'ffbd
p8_ddr p9_ddr	.equ	h'ffc0
	•	
p1_dr p2_dr p3_dr	. equ	h'ffb2 h'ffb3
p2_dr	. equ	h'ffb3
p3_dr	. equ	h'ffb6
p4_dr p5_dr p6_dr	.equ	h'ffb7
p5_dr	. equ	h'ffba
p6_dr	.equ	h'ffbb
p7_dr	. equ	h'ffbe
p7_dr p8_dr	. equ	h'ffbf
p9_dr	. equ	h'ffcl
;System Cont:	rol Regist	ers
syscr	.equ	h'ffc4
mdcr	. equ	h' ffc5
iscr	. equ	h'ffc6
ier	.equ	h'ffc7
.Fran 2	w #4m	
;Free-Runnin		×1.6600
frt	.equ	h'ff90 h'ff90
frt_tier frt_tcsr	.equ	h' ff91
irt_tesr	. equ	h' ff92
frt freb	·edn ·edn	h' ff92
frt_iren	.equ	h' ff93
irt_irei	. equ	h' ff94
frt_frc frt_frch frt_frcl frt_ocra	·edn ·edn	11.11.24
frt_ocran	. equ	h' ff94 h' ff95
frt_ocrah frt_ocral frt_ocrb	. equ	h' ff94
frt_ocrb	. equ	h/ ##04
frt_ocrbh	. equ	h/ ff05
frt_ocrbl frt_tcr	.equ	h'ff95 h'ff96
frt_tocr	.equ	
frt icra	. equ	h' ff98
frt_icra frt_icrah	.equ	h' ff98
frt icral	.equ	h'ff99
frt_icral frt_icrb frt_icrbh frt_icrbl	. equ	h/ff01
frt icrbb	.equ	h'ff9a
frt icrbl	.equ	
frt_icrc	.equ	h/ff9c
frt lorch	. equ	h'ff9c
frt_icrch frt_icrcl	. equ	h'ff9d
frt icrd	.equ	h/ff9e
frt lordh	.equ	h'ff9e
frt_icrd frt_icrdh frt_icrdl	equ	h'ff9e h'ff9f
;Pulse-Width	Modulatio	on Timers
	. eau	h'ffa0
pwm0_ter	.equ	h'ffa0
pwm0_tcr pwm0_dtr pwm0_tcnt	. eau	h'ffal
pwm0_tcnt	.equ	h'ffa2
pwm1	.equ	h'ffa4
pwml_tcr	.equ	h'ffa4
pwml_ter pwml_ter pwml_dtr	.equ	h' ffa5 h' ffa6
pwml_tcnt	. equ	h'ffa6
:Multi-Funct		
tmr0	.equ	h'ffc8
tmr0_ter	. equ	h'ffc8
tmr0_tcsr	. equ	h'ffc9
tmr0_tcora	. equ	h'ffca h'ffcb
tmr0_tcorb	. equ	h'ffcb
tmr0_tcora tmr0_tcorb tmr0_tcnt	.equ	h'ffcc
	. equ	h'ffd0
tmrl_tcr	. equ	h'ffd0
tmrl_tcsr	. equ	h'ffdl
tmr1_tcora	.equ	h'ffd2
tmrl_tcorb	.equ	h'ffd3
tmrl_tcr tmrl_tcsr tmrl_tcora tmrl_tcorb tmrl_tcnt	. equ	h'ffd4
Serial Comm	unication	s interface
sci	.equ	h'ffd8
sci_smr sci_brr	.equ	h'ffd8 h'ffd9
sc1_brr	.equ	n'iid9

Listing	11: H833	<pre>0.INC (continue)</pre>	<u>i)</u>
sci scr	. equ	h'ffda	
sci_tdr	.equ	h'ffdb	
sci_ssr	.equ	h'ffdc	
sci_rdr	.equ	h'ffdd	
201_1U1			
;A/D Converte	r .		
adc	.equ	h'ffe0	
adc_a	.equ	h'ffe0	
adc b	.equ	h' ffe2	
adc c	.equ	h'ffe4	and the second second
adc_d	.equ	h'ffe6	
adc_adcsr	. equ	h'ffe8	
adc_adcr	.equ	h'ffea	
;Dual-Port RA dpram	.equ	h'fff0	
pccsr	.equ	h'fff0	
		h'fffl	
pcdr0	.equ	h'fff2	
pcdr2	.equ	h'fff3	
pcdr3	. equ		
pcdr4	.equ	h'fff4	
pcdr5	. equ	h'fff5	
pcdr6	.equ	h'fff6	
pcdr7	. equ	h'fff7	
pcdr8	.equ	h'fff8	
pcdr9	.equ	h'fff9	
pcdr10	.equ	h'fffa	
pcdr11	, equ	h'fffb	
pcdr12	.equ	h'fffc	
pcdr13	.equ	h'fffd	
pcdr14	.equ	h'fffe	
pcdr15	. equ	h'ffff	
:Memory Defin		h' 0040	
code_start			
end_rom	equ	h'3fff	
ram_start	.equ	h'fd80	
end_ram	.equ	h'ff7f h'ff80	
top_ram	. equ	11-11-00	
;Interrupt Ve	ctor Locations		
nmi vec	.equ	h'0006	; nmi
irq0_vec	.equ	h'0008	;irq0
irq1_vec	equ	h'000a	;irq1
irq2 vec	.equ	h'000c	;irq2
irq3_vec	.equ	h'000e	;irq3
irq4_vec	.equ	h'0010	;irg4
irq5_vec	.equ	h'0012	;irq5
irq6_vec	.equ	h'0014	;irq6
irq7_vec	.equ	h'0016	;irq7
icia vec		h'0018	frt input capture a
icib_vec	.equ	h'001a	frt input capture b
icic vec	.equ	h'001c	frt input capture c
icid vec		h'001e	frt input capture d
ocia_vec	.equ	h'0020	;frt output compare a
ocib vec	.equ	h'0022	:frt output compare b
fovi_vec	.equ	h'0024	frt overflow
	.equ	h'0026	:mft0 output compare a
cmi0b vec	.equ	h'0028	:mft0 output compare b
ovi0 vec	.equ	h'002a	:mft0 overflow
cmila_vec	.equ	h'002c	;mft1 output compare a
cmilb vec	.equ	h'002e	;mftl output compare b
ovil vec		h'0030	mftl overflow
mrei vec		h'0032	dpram read end
mwei vec	.equ	h'0034	dpram write end
eri_vec	.equ	h'0036	receive error
rxi_vec	.equ	h'0038	receive data available
txi_vec	.equ	h'003a	transmit buffer empty
adi_vec	.equ	h'003c	;a/d complete
-	-		•

## H8/330

### **Application Note**

## **Power-Down Operation**

Tom Hampton

#### INTRODUCTION

The H8/330 devices have three different power-down states of operation that significantly reduce power consumption by stopping some (or all) of the on-chip functions. These three modes differ not only for power consumption reduction, but also in how the entry and exit methods. Figure 1 shows a simple flow chart of the processing states for the H8/300 CPU.

This flow chart describes the processing sequence for all exception processing as well as power-down modes of operation. Table 1 shows power consumption during all modes of operation while Table 2 shows an overview of the individual modes for power-down operation.

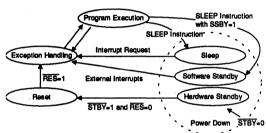



Figure 1: H8/330 Processing States

	Typical	Maximum		Frequency
	12	25	mA	6MHz
Normal	16	30	mA	8MHz
	20	40	mA	10MHz
	8	15	mA	6MHz
Sleep Mode	10	20	mA	8MHz
	12	25	mA	10MHz
Standby Modes	0.01	5.0	μА	

Table 1: H8/330 Power Consumption

Mode	Entrance	Clock	CPU	CPU Registers	On-Chip Peripherals	On-Chip RAM	I/O Ports	Exiting
Sleep Mode	Execute SLEEP Instruction	Run	Halt	Held	Run	Held	Held	Interrupt RES STBY
Software Standby Mode	SSBY=1, Execute SLEEP Instruction	Halt	Halt	Held	Halt and Initialized	Held	Held	NMI IRQ2-IRQ0 RES STBY
Hardware Standby Mode	STBY pin Active	Halt	Halt	Not Held	Halt and Initialized	Held	High Impedance	STBY high, then pulse RES

Table 2: H8/330 Power-Down Modes

#### HARDWARE STANDBY MODE

The "Hardware Standby" mode of power-down operation is controlled by an external input pin (STBY) on the H8/330. When the input to the STBY pin is made active, the H8/330 enters the hardware standby mode after completion of the current instruction.

Operation of the CPU and all on-chip peripherals are stopped completely during this mode of operation. The system oscillator is also stopped, to reduce power consumption to its minimum, so that no clock is supplied to any of the parts (CPU or peripherals) of the H8/330. Not only is the system clock stopped, but all the I/O ports on the H8/330 are placed into a high-impedance state. This inhibits the I/O ports from dribing or sourcing any external devices.

Only the on-chip RAM of the H8/330 is maintained during this mode of operation. Whatever values are placed into this RAM area are retained while nothing else is saved. (For further power reduction savings while still maintaining RAM data, please refer to the Special Considerations section later in this document.)

The H8/330 device remains in this mode of operation since the  $\overline{STBY}$  pin remains active, despite the state of any other inputs (including  $\overline{RES}$ ). The only way to remove the H8/330 from this mode of operation is with the following sequence:

- 1. release the STBY pin to the inactive state,
- 2. reset the device by pulsing the RES pin (see Figure 2 for the timing relationships on performing this function).

Since you are resetting the H8/330, you probably will only use this mode of operation when the H8/330 is used to initialize some external devices and then go to sleep until the external devices requires operations from the H8/330. Because the on-chip RAM is maintained during this mode of operation, you can place software semaphores in the RAM that will allow the initialization routines of the H8/330 to decide whether to do a complete re-initialization (as from a power-on condition) or a re-initialization of only itself (as in waking up from the hardware standby mode).

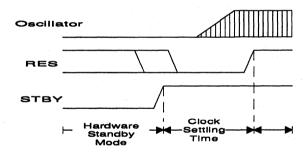



Figure 2: Exiting Hardware Standby Mode

#### SOFTWARE STANDBY MODE

The software standby mode of operation is very similar to the hardware standby mode, the same power consumption savings are available in either mode. Like the hardware standby mode of operation, the CPU and all on-chip peripherals are stopped completely during the software standby mode. The difference between the two modes is how they are entered and exited, and in how the CPU's registers and the I/O ports are handled.

The software standby mode of operation is controlled via software operation instead of hardware. There are two power-down functions controlled in software by programming the System Control Register (See Figure 3); the entering of the software standby mode and the time delay when leaving the software standby mode.

This mode of operation is entered by setting the "software standby bit" (SSBY) in the System Control Register (SYSCR) and then executing the SLEEP instruction. When the SLEEP instruction is executed, the SSBY bit is tested to find its value. If this bit is not set, then the H8/330 enters the "Sleep" mode of operation (discussed later in this document). If this bit is set, then the H8/330 enters the software standby mode of operation.

Figure 3: System Control Register

Before executing the SLEEP instruction, the user must program not only the SSBY bit in the SYSCR, but also the "Standby Timer Select" (STS₂-STS₀) bits. Since the on-chip oscillator is stopped during this mode of operation, enough time must be allowed to allow the oscillator to re-start (AC parameter t_{osc2}). The user can control this time by programming these three bits. By setting them to different values, the user controls how many clock cycles the CPU delays between recognizing the external interrupt signal and starting the exception processing service routine (see Table 3).

Unlike the hardware standby mode, this mode of operation maintains the registers of the CPU. This allows program execution to continue at the location following the SLEEP instruction when the H8/330 is released from the software standby mode. Also during this mode of operation, the I/O ports are maintained in their current states instead of being re-initialized. But, the on-chip peripherals (such as timers, serial channel, etc.) are reset and must be re-initialized whenever the H8/330 is released from software standby mode.

Since the on-chip peripherals are not operating during the software standby mode, it is only external interrupts ( $\overline{NMI}$  or  $\overline{IRQ}_2$ - $\overline{IRQ}_0$ ) that can awaken the H8/330 and return it to its normal operating sequence. This is handled just like any other exception sequence. The interrupting device is serviced after the oscillator settling time delay by the exception processing routine and operation is returned to the location following the SLEEP instruction.

This mode is probably the most useful of the power-down modes of operation because it offers the most power consumption savings. The CPU and on-chip peripherals are stopped while external devices (and on-chip I/O ports) are still allowed to function. This allows the user to have the rest of his system monitor external events while the CPU remains inactive.

Of course, you can always leave the software standby mode of operation by resetting the H8/330 or by entering the hardware standby mode.

		STS0	Settling Time	System Clock Frequency (MHz)						
STS2	rs2 sts			10	8	6	4	2	1	0.5
0	0	0	8192	0.8	1.0	1.3	2.0	4.1	8.2	16.4
0	0	1	16384	1.6	2.0	2.7	4.1	8.2	16.4	32.8
0	1	0	32768	3.3	4.1	5.5	8.2	16.4	32.8	65.5
0	1	1	65536	6.6	8.2	10.9	16.4	32.8	65.5	131.1
1	-	-	131072	13.1	16.4	21.8	32.8	65.5	131.1	262.1

Table 3: Standby Timer Select Values

#### **SLEEP MODE**

The "Sleep" mode of power-down operation is controlled by software. During this mode, operation of the H8/300 CPU core is halted while the rest of the on-chip functions remain active. Because of this, the "Sleep" mode offers the least amount of power consumption savings.

This mode of operation is controlled by executing the SLEEP instruction during the normal program operation. When this occurs, the H8/300 CPU is placed into a "halt" state with no further activity taking place. This halt state is similar to the situation where the CPU may be in an indefinite "wait" state except that no control signals are active.

Since the CPU is halted, no change in the I/O ports will occur (meaning that their current values will be held). Though the CPU is no longer running, all values in the registers are held in their current state. By doing this, the CPU is allowed to continue its operations directly from the location following the SLEEP instruction (after processing a return from the sleep mode).

Though the CPU is halted, the system clock is still allowed to run. This means that the on-chip peripherals can still function; the timers, the serial channel, the A/D converter, and the Dual-Port RAM can still do all their normal operations. In fact the H8/330 device gets out of the sleep mode of operation.

Whenever any of the on-chip peripherals generate an interrupt or an external interrupt is input to the device, the CPU is awakened from its sleep mode and processing continues as normal (see Figure 1 for flow details). The interrupting device is serviced during the exception processing routine and operation is returned to the location following the SLEEP instruction.

Like the Software Standby Mode, you can always leave the sleep mode of operation by resetting the H8/330 or by entering, the hardware standby mode.

#### SPECIAL CONSIDERATIONS

#### RAMRETENTION

The H8/330 also offers the ability for the user to maintain the contents of the on-chip RAM and CPU registers with a low voltage input to the device.

During either of the standby modes (hardware or software) of operation, the user can drop his supply voltage to +2.0 volts DC and still be assured that the contents of the on-chip RAM will not be lost. To use this feature correctly, the user must ensure that he disables the on-chip RAM (by clearing the RAME bit in the SYSCR) just before entering the standby mode. While in the standby modes of operation, the user can now reduce his supply voltage (thus further reducing current consumption in his system). During the software standby mode of operation, the user cannot only maintain the RAM contents but also the contents of the CPU's registers while the low voltage is applied.

Before releasing the H8/330 from either standby mode of operation, it is the responsibility of the user to ensure that the proper operating voltage ( $V_{\infty}$ =+5.0V ±10%) be available.

#### **EXTERNAL OSCILLATOR**

In most systems (or microcontrollers), it is the oscillator that is the main concern when attempting to reduce power consumption. Though peripheral and CPU functions are stopped, since the oscillator continues to operate small power savings are observed. The H8/330 overcomes this concern by providing its own on-chip oscillator that is stopped during the standby mode of operation.

If your system uses an external oscillator to drive the H8/330 device and you still wish to enjoy the power consumption savings that the H8/330 offers, you still can. In instances such as this, the H8/330 would accept the external clock input and stop the internal clock from being provide to the on-chip peripherals during the power-down modes. Here the oscillator stabilization time (AC parameter tosc) becomes effectively 0 ms. You can now program the Standby Timer Select bits in the SYSCR to "000" to reduce the delay when coming out of the software standby mode to its absolute minimum.

#### APPLICATION EXAMPLE

#### SOFTWARE STANDBY MODE

In this example, we will use the NMI input to suggest when the H8/330 should be in a power-down state. Since the NMI input is high, we would like the H8/330 to continue normal operations. When the NMI input goes low, we want to enter the software standby mode. This is possible because we can sense both edges of the NMI input on the H8/330. For the sake of programming the Standby Timer Select bits, lets assume that the H8/330 is operating at a clock frequency of 6MHz. In discussion of the software, we will talk only about programming that is required and not discuss peripheral initialization at all (refer to Figure 4 for a flow chart of the operations sequence).

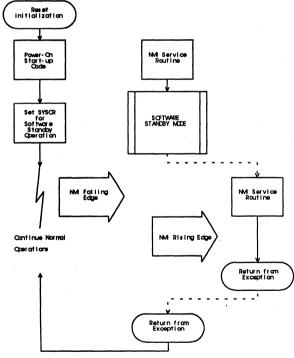
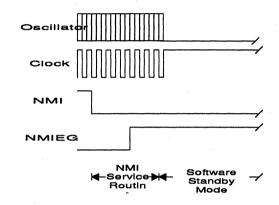



Figure 4: Application Example **Processing Flowchart** 

During the normal operating sequence, the H8/330 would go through the process of initializing all its peripherals and other functions for normal operation. Since the System Control Register defaults to having the NMI edge selection for falling edge, no programming of that bit is necessary at this time. We will take this opportunity to program the SYSCR for the proper STS values. We know that the  $t_{\rm OSC2}$  value is 10 msec from the AC characteristics of the H8/330. This calculates out to 60,000 t-states at 6MHz. To allow for this number of clock cycles, we must program STS₂-STS₀ to a value of "011." This will allows 10.9 msec to elapse for oscillator stabilization.

Whenever the falling edge of the NMI signal is recognized, the H8/330 will begin the processing of the NMI exception processing service routine. During this service routine we must do three basic operations; figure out whether we are going into or out of software standby mode, change the state of the NMI edge selection, and execute the SLEEP instruction (if we are going into the standby mode). Optionally we could also enable or disable the on-chip RAM if we were going to reduce voltage to the H8/330. After that we would return from this exception processing service routine to our normal operation (a flow chart of the NMI service routine is shown in Figure 5).

For our discussion of the software, please refer to Listing 1. In the main routine, the only thing we really need to do is to program the SYSCR with the values necessary for the NMI edge selection and the standby timer selection (for oscillator stabilization time). Initially we want to capture the falling edge of the NMI input and set the STS bits for a count of 65536. This requires the programming of "101110X1" into the SYSCR (refer to Figure 3 for a description). With this programmed into the SYSCR, we can continue with our normal processing.


Whenever the falling edge of the NMI signal is observed (see Figure 6), the H8/330 will begin processing the NMI exception processing service routine. Since this routine must handle both placing the H8/330 into

the software standby mode as well as recovering from it, we must first decide which one it is. To do this we can test the state of the NMIEG bit. If this bit is a "0," then we can assume that we have detected the falling edge and that we are going to go

into the software standby mode. Before we execute the SLEEP instruction we would need to program the NMIEG bit to "1" so that we can now monitor for the rising edge of the NMI signal. Optionally, if we are going to reduce the V_{cc} level we would need to clear the RAME bit in the SYSCR now before we execute the SLEEP instruction.

After executing the SLEEP instruction the H8/330 is now in the software standby mode of operation awaiting the input of the rising edge on the  $\overline{NMI}$  signal. When the rising edge is detected (see Figure 7), the H8/330 starts the internal counter for the standby timer and delays further processing until the counter has timed out. At this point the H8/330 begins processing the NMI exception processing service routine again.

We still need to test the NMIEG bit to decide whether we are going into the standby mode or coming out of it. If this bit is a "1," then we can assume that we are coming <u>out of</u> the standby mode. Here, we would want to change the NMI edge selection from rising edge to falling edge. If we had disabled the on-chip RAM, we would want to make sure that we re-enabled it for use. Afterward we merely return from the NMI service routine (which incidentally returns us to the NMI service routine that we were performing to go into standby mode).



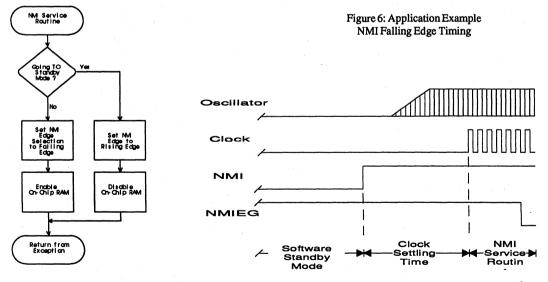



Figure 5: Application Software Flowchart (NMI Service Routine)

Figure 7: Application Example NMI Rising Edge Timing

#### Listing 1: Application Example NMI Service Routine

;H8/330 Power-Down Application Example

; NMI Service Routine

nmi_service:

btst.b beq

#2, @h'ffc4 falling_edge

test nmieg bit in SYSCR; going into power-down

coming out of power-down rising_edge:

bclr.b bset.b #2, @h' ffc4 #0, @h' ffc4

/set nmieg for falling edge
/enable on-chip RAM
/return from processing
/ to previous NMI routine

;going into power-down
falling_edge:

bset.b bclr.b #2, @h'ffc4 #0, @h'ffc4

;set nmieg for rising edge ; set named for rising ed; disable on-chip RAM; go to power-down mode; return from processing; to normal operation

.end

# **H8/3XX Instruction Timing**

**Tech Notes** 

## **Application Engineering**

Carol Jacobson

While benchmarks can provide a good estimate of a controllers CPU performance, they seldom give us enough information to determine a part's suitability for a particular application or the relative performance of a peripheral. A good approximation of a controllers ability to execute a particular function, within an allotted time, can be obtained by adding module overhead (interrupt latency, A/D conversion, serial bit rates) to the time required to execute the modules driver routine. Using information shown in the H8/300 Series Programming Manual, instruction execution times for any combination of addressing modes and memory access types can be calculated.

#### **Instruction Fetch**

H8/3xx devices have three possible data paths: a 16-bit internal data bus for R0 to R7 and on-chip memory, an 8-bit internal bus for on-chip peripherals and an 8-bit external bus. The H8/300 CPU uses a 16-bit word instruction set. The number of cycles needed to fetch an instruction equals the number words in the instruction times the number of cycles needed to fetch each word. This later value depends upon the data path used. These numbers are given in Tables C1 and C2 of Appendix C in the Programming Manual. For Example:

#### From on-chip ROM:

	hex code	# words	x	#clocks / 16-bits =	instruction fetch time
mov.b r0l,@h'2000	6A88 2000	2		2	4 clks

From external memory: wait states (m) cam be included for access to slower peripherals requiring additional time to complete the transfer:

	hex code	# bytes	x	#clocks / 8-bits =	instruction fetch time
mov.b r0l,@h'2000	6A88 2000	4		3 + m	12 + 4m clks

#### Execution

Like the instruction fetch, the number of cycles needed to execute each part of the instruction depends upon the operation and memory location. Additional cycles, represented in table C2 as columns J through N, can be defined as follows:

Branch Address Read: Cycles needed to fetch the destination address during an 8-bit indirect jump or jump to subroutine (JMP, JSR @@aa:8).

<u>Stack Operation:</u> Additional cycles for incrementing or decrementing the stack pointer and storing the program counter on the stack.

Byte Data Access: Time required to obtain non-immediate (or indirect) 8-bit data or address locations.

Word data Access: Time required to obtain non-immediate (or indirect) 16-bit data or address locations.

Internal Operation: Additional cycles for arithmetic address or data calculations.

The total instruction cycle time is the sum of the instruction fetch time plus any additional cycle time needed to complete execution of the instruction.

Appendix B of the H8/300 Programming Manual gives the number of clock cycles for each instruction, for all supported addressing modes, when all operations are on-chip. For instructions fetched from off-chip memory, timing can be calculated from table C1 and C2 values.

Note: Table C1, On-chip Reg. Field, refers to on-chip I/O and module registers not to registers R0 - R7 or the CCR.

#### **Table Calculations**

From tables C1 & C2:		(# o	(# of cycles)			
		hex code	Ĭ	Si	instruction fetch time	
int:	mov.b r0l,@h'2000	6A88 2000	2	2	4 clks	
ext:	mov.b r0l,@h'2000	6A88 2000	4	3 + m	12 + 4m clks	

#### Examples

1. a. MOV.B @R1+,R1H where the instruction resides in off-chip memory requiring no wait states and R1 contains an off-chip address value.

from C2	from C1	
I= 1	$Si = 6 + 2 \times 0 = 6$	instruction fetch;
L= 1	$Sl = 3 + 2 \times 0 = 3$	;indirect address access cycle
N= 1	Sn= 2	;time to increment R11

Total = 
$$(1 \times 6) + (1 \times 3) + (1 \times 2) = 11 \text{ clocks} = 1.1 \text{ us } @ 10\text{MHz}$$

b. If the same instruction had been stored on-chip and the address in R1 was on-chip RAM, from App. B we read:

6 states or clocks = 0.6 us @ 10MHz

$$Si = Sl = Sn = 2$$

Total = 
$$(1 \times 2) + (1 \times 2) + (1 \times 2) = 6$$
 clocks

2. a. BCLR @R3L,@H'8031 where the instruction resides in external ROM requiring 1 wait state and the destination is off-chip RAM requiring one wait state.

from C2	from C1	
I= 2	$Si = 6 + 2 \times 1 = 8$	;off chip access
L= 2	$Sl = 3 + 2 \times 1 = 5$	;byte access to off chip memory
$Total = (2 \times 8) + (2 \times 8)$	(5) = 26  clocks = 2.6  s	ıs @ 10 MHz

b. BCLR #03,@FRT_TCR where the instruction resides in external ROM requiring 1 wait state and the destination is the on-chip register field.

from C2	from C1	
I= 2	$Si = 6 + 2 \times 1 = 8$	;fetch from off chip memory
L= 2	S1=3	;byte access to on chip register field

 $Total = (2 \times 8) + (2 \times 3) = 22 \text{ clocks} = 2.2 \text{ w} @ 10 \text{ MH}$ 

# H8/320 Family Device EPROM Security

**Tech Notes** 

## **Application Engineering**

Tom Hampton

#### **EPROM Security**

The H8/320 Family of microcontrollers (except the H8/324 which is a masked programmed device only) have an EPROM security feature that can be used by the customer. This feature allows the user of the microcontroller to protect parts (or all) of the code programmed into the on-chip EPROM of the H8/320 from being read by means other than his own program. This feature cannot be tested by Hitachi and, due to this, is unguaranteed. It is up to the user to determine whether or not to implement the function of this feature and accept sole responsibility for its outcome.

#### **Memory Configuration**

The memory matrix of the H8/320 Family of microcontrollers is configured as a dual matrix, one with even addresses and the other with odd addresses. The configuration of each matrix appears as lines of memory 32 bytes wide (32 x 8, 256 bits). This configuration allows an individual memory line to consist of 64 bytes of data (including both even and odd addresses). Each memory line has 1 security bit thus allowing every 64 byte segment to have the option of the security feature. The address of this security bit is the same as the starting address for the memory line.

#### **Security Functions**

The security function had two different operations depending upon the mode of operation that the H8/320 Family device is placed into, EPROM programming mode or CPU operation mode.

#### **EPROM Programming Mode**

In the EPROM programming mode, the ability of the EPROM programmer to read the EPROM contents is limited by the state of the security bit.

If the security bit is a "1" (unprogrammed state), then the data in the EPROM can always be read. If the security bit is a "0" (programmed), then any read operation to the EPROM will result in a "00" being read. This indicates that once the security bit is programmed, the user will be unable to verify the contents of the EPROM.

# **H8/320 Family Device EPROM Security**

Tech Notes

security bit 1 EPROM data can be read (normal) security bit 0 "00" data is always read

#### **CPU Operating Modes**

In the CPU operating modes, the ability of any device to read the EPROM contents is limited by the state of the security bit.

If the security bit is a "1" (unprogrammed state), then the data in the EPROM can always be read by the CPU. If the security bit is a "0" (programmed), then the read state of the EPROM (from the CPU), depends upon where instruction execution is occurring from.

security bit 1 security bit 0

EPROM data can be read by CPU (normal)
After RESET, the CPU can read EPROM data until it executes an instruction outside the internal EPROM area (either external memory or internal RAM). Once an instruction is executed outside the internal EPROM memory area, then the EPROM becomes disabled and cannot be accessed any further. This prohibits an external program from being able to "dump" the contents of the on-chip EPROM.

#### **Programming the Security Bit**

There exists two EPROM programming mode; Normal and Security. The normal EPROM programming mode is used to program the code/data area of the on-chip EPROM memory for the H8/320 device. The "security" programming mode is used to program the security bits of the EPROM's memory area. The security function is then implemented by programming a "0" into the address corresponding to the memory line location. Setting the programming mode is done by setting certain I/O port pins to the following states:

	H8/320 Device I/O Port Pi	
Programming Mode	P7₀∕ĪŠ	P7 ₁ /OS
Normal	1	1
Security	1	0

Again, this feature cannot be tested by Hitachi and thus remains unguaranteed. It is up to the user to determine whether or not to implement the function of this feature and accept sole responsibility for its outcome.

# H8/350 Device EPROM Security

#### **Tech Notes**

#### **Application Engineering**

Tom Hampton

#### **EPROM Security**

The H8/350 Microcontroller has an EPROM security feature that can be used by the customer. This feature allows the user of the microcontroller to protect parts (or all) of the code programmed into the on-chip EPROM of the H8/350 from being read by means other than his own program. This feature cannot be tested by Hitachi and, due to this, is unguaranteed. It is up to the user to determine whether or not to implement the function of this feature and accept sole responsibility for its outcome.

#### **Memory Configuration**

The memory matrix of the H8/350 Microcontroller is configured as a dual matrix, one with even addresses and the other with odd addresses. The configuration of each matrix appears as lines of memory 32 bytes wide (32 x 8, 256 bits). This configuration allows an individual memory line to consist of 64 bytes of data (including both even and odd addresses). Each memory line has 1 security bit thus allowing every 64 byte segment to have the option of the security feature. The address of this security bit is the same as the starting address for the memory line.

#### **Security Functions**

The security function had two different operations depending upon the mode of operation that the H8/350 device is placed into, EPROM programming mode or CPU operation mode.

#### **EPROM Programming Mode**

In the EPROM programming mode, the ability of the EPROM programmer to read the EPROM contents is limited by the state of the security bit.

If the security bit is a "1" (unprogrammed state), then the data in the EPROM can always be read. If the security bit is a "0" (programmed), then any read operation to the EPROM will result in a "00" being read. This indicates that once the security bit is programmed, the user will be unable to verify the contents of the EPROM.

# H8/350 Device EPROM Security

Tech Notes

security bit

EPROM data can be read (normal)

1 security bit

"00" data is always read

#### **CPU Operating Modes**

In the CPU operating modes, the ability of any device to read the EPROM contents is limited by the state of the security bit.

If the security bit is a "1" (unprogrammed state), then the data in the EPROM can always be read by the CPU. If the security bit is a "0" (programmed), then the read state of the EPROM (from the CPU), depends upon where instruction execution is occurring from.

security bit security bit EPROM data can be read by CPU (normal)

After RESET, the CPU can read EPROM data until it executes an instruction outside the internal EPROM area (either external memory or internal RAM). Once an instruction is executed outside the internal EPROM memory area, then the EPROM becomes disabled and cannot be accessed any further. This prohibits an external program from being able to "dump" the contents of the on-chip EPROM.

#### **Programming the Security Bit**

0

There exists two EPROM programming mode; Normal and Security. The normal EPROM programming mode is used to program the code/data area of the on-chip EPROM memory for the H8/350 device. The "security" programming mode is used to program the security bits of the EPROM's memory area. The security function is then implemented by programming a "0" into the address corresponding to the memory line location. Setting the programming mode is done by setting certain I/O port pins to the following states:

	H8/350 Device I/O Port Pi	
Programming Mode	P8 ₀ /RS ₀ /E	P8 ₁ /RS ₁ /IOS
Normal	1	1
Security	1	0

Again, this feature cannot be tested by Hitachi and thus remains unguaranteed. It is up to the user to determine whether or not to implement the function of this feature and accept sole responsibility for its outcome.

# H8/330 Microcontroller EPROM Security

**Tech Notes** 

## **Application Engineering**

Tom Hampton

#### **EPROM Security**

The H8/330 Microcontroller has an EPROM security feature that can be used by the application programmer. This feature allows the user of the microcontroller to protect parts (or all) of the code programmed into the on-chip EPROM of the H8/330 from being read by means other than his or her own program. This feature cannot be tested by Hitachi and, due to this, is unguaranteed. It is up to the user to determine whether or not to implement the function of this feature and accept sole responsibility for its outcome.

#### **Memory Configuration**

The memory matrix of the H8/330 Microcontroller is configured as a dual matrix, one with even addresses and the other with odd addresses. The configuration of each matrix appears as lines of memory 32 bytes wide (32 x 8, 256 bits). This configuration allows an individual memory line to consist of 64 bytes of data (including both even and odd addresses). Each memory line has 1 security bit thus allowing every 64 byte segment to have the option of the security feature. The address of this security bit is the same as the starting address for the memory line.

#### **Security Functions**

The security function had two different operations depending upon the mode of operation that the H8/330 device is placed into, EPROM programming mode or CPU operation mode.

#### **EPROM Programming Mode**

In the EPROM programming mode, the ability of the EPROM programmer to read the EPROM contents is limited by the state of the security bit.

If the security bit is a "1" (unprogrammed state), then the data in the EPROM can always be read. If the security bit is a "0" (programmed), then any read operation to the EPROM will result in a "00" being read. This indicates that once the security bit is programmed, the user will be unable to verify the contents of the EPROM.

security bit 1 EPROM data can be read (normal) security bit 0 "00" data is always read

# H8/330 Microcontroller EPROM Security

Tech Notes

#### **CPU Operating Modes**

In the CPU operating modes, the ability of any device to read the EPROM contents is limited by the state of the security bit.

If the security bit is a "1" (unprogrammed state), then the data in the EPROM can always be read by the CPU. If the security bit is a "0" (programmed), then the read state of the EPROM (from the CPU), depends upon where instruction execution is occurring from.

security bit security bit

EPROM data can be read by CPU (normal)

After RESET, the CPU can read EPROM data until it executes an instruction outside the internal EPROM area (either external memory or internal RAM). Once an instruction is executed outside the internal EPROM memory area, then the EPROM becomes disabled and cannot be accessed any further. This prohibits an external program from being able to "dump" the contents of the on-chip EPROM.

#### **Programming the Security Bit**

0

There exists two EPROM programming mode; Normal and Security. The normal EPROM programming mode is used to program the code/data area of the on-chip EPROM memory for the H8/330. The "security" programming mode is used to program the security bits of the EPROM's memory area. The security function is then implemented by programming a "0" into the address corresponding to the memory line location. Setting the programming mode is done by setting certain I/O port pins to the following states:

H8/330 I/O Port P		O Port Pin
Programming Mode	P80	P81
Normal	1	1
Security	1	0

Again, this feature cannot be tested by Hitachi and thus remains unguaranteed. It is up to the user to determine whether or not to implement the function of this feature and accept sole responsibility for its outcome.

## H8/300 CPU DIVXU Instruction

**Tech Notes** 

#### **Application Engineering**

Tom Hampton

The H8/300 CPU provides an instruction to perform a 16/8 divide operation to yield an 8-bit result. The H8/300 Programming Manual incorrectly describes the flag results during the execution of this instruction. The text of the instruction states the following:

"Valid results are not assured if division by zero is attempted or an overflow occurs. Division by zero is indicated in the Zero flag. Overflow can be avoided by the coding shown on the next page."

This is in error. While it is true that valid results cannot be assured if the division by zero is attempted or an overflow should occur, it is incorrect in stating that the Zero flag will indicate that a divide by zero operation was attempted. The text should read:

"Valid results (remainder, quotient, and flag operation) are not assured if division by zero is attempted or an overflow occurs. Overflow can be avoided by the coding shown on the next page."

The text for the flag description currently states:

Z: Set to "1" if the divisor is zero; otherwise cleared to "0."

This text should read:

Z: Unpredictable if the divisor is zero; otherwise cleared to "0."

# 5

## H8/300 CPU SUBX Instruction

**Tech Notes** 

#### **Application Engineering**

Tom Hampton

The H8/300 CPU provides an instruction for subtracting two bytes from each other along with the value of the Carry flag. This instruction is useful when performing subtraction operations that are greater than 16-bits (an instruction is already available that can do either 8-bit or 16-bit subtractions with no problems). Lets take the example of a 32-bit subtraction as follows:

```
H' 40000000

- H' 3F8F2356

H' 0070DCAA (result)
```

If we look are each operation individually, the result is easily explained.

- 1. In subtracting the low order bytes from each other (56 from 00), we get a result of AA with a borrow from the next higher byte.
- 2. In subtracting the next higher order bytes from each other (23 from FF because of the borrow), we get a result of DC with the borrow continuing to the next higher byte.
- 3. In subtracting the next higher order bytes from each other (8F from FF because of the borrow), we get a result of 70 with the borrow continuing to the next higher byte.
- 4. In subtracting the highest order bytes from each other (3F from 3F because of the borrow), we get a result of 00 with no borrow.

If no borrow operations were never to occur, then we could code this very simply with two word subtract operations. But since this is not the case, we must code the sequence so as to keep track of the borrow operations. If we code this in the same sequence as the operation described above, it might look something like this:

```
mov.w
           #h' 4000, r1
mov.w
           #0.r2
           #h'3f8f,r3
mov.w
           #h'2356, r4
mov.w
sub.b
           r21,r41
                                  ;00-56
                                  ;00-23-borrow
           r2h, r4h
subx
subx
           r11, r31
                                  ;00-8f-borrow
suby
           rlh, r3l
                                  ;40-3f-borrow
```

(We could also replace the first two subtraction instructions with a subtract word operation to reduce code size and execution time but this method makes it easier to read for now.)

sub.w	r2, r4	;0000-2356
subx	r11, r31	;00-8f-borrow
subx	r1h.r31	:40-3f-borrow

95

The trick in using the SUBX instruction is to pay attention to the flag operations. During execution of a normal subtraction operation, the Zero flag is used to determine if the result of the operation is zero or not. However, the execution of the SUBX instruction is a little bit different. If the result of the operation is zero, then the Zero flag remains unchanged from the previous instruction. If the result is non-zero, then the Zero flag is cleared to correctly indicate a non-zero result. While this sounds a lot like what it is supposed to be, look at a scenario where the previous instruction would clear the zero flag (this may be something as simple as a MOV instruction). If the SUBX instruction were to follow this operation and the result were zero, then the Zero flag would remain at "0," clearly not indicating the result of the operation.

Because of this, it is extremely important that the SUBX instruction be used IMMEDIATELY following other SUB or SUBX instructions. This sequence allows the H8/300 CPU to properly keep track of borrows, and maintain the Zero flag in the correct state. To illustrate this problem, lets assume that our variables are stored in memory rather than registers. In this example, we have to move the data into our registers in order to perform the operation.

var1	.equ	H' 4000000	
var2	.equ	H'3f8f2356	
	mov.b	@(var2+3),r1h	;get 56
	mov.b	@(var1+3),r11	;get 00
1.	sub.b	rlh, rll	;00-56, Zero=0, Carry=1
	mov.b	rll,@(var1+3)	;store 1st result (AA), Zero=0, Carry=1
	mov.b	@(var2+2),r1h	;get 23, Zero=0, Carry=1
	mov.b	@(var1+2),r11	;get 00, Zero=1, Carry=1
2.	subx	rlh, rll	;00-23-borrow, Zero=1, Carry=1
	mov.b	rll,@(var1+2)	;store 2nd result (DC), Zero=0, Carry=1
	mov.b	@(var2+1),r1h	;get 8F, Zero=0, Carry=1
	mov.b	@(var1+1),rll	;get 00, Zero=1, Carry=1
3.	subx	rlh, rll	;00-8F-borrow, Zero=1, Carry=1
	mov.b	rll,@(varl+1)	;store 2nd result (70), Zero=0, Carry=1
	mov.b	@(var2),r1h	;get 3F, Zero=0, Carry=1
	mov.b	@(varl),rll	;get 40, Zero=0, Carry=1
4.	subx	rlh, rll	;40-3F-borrow, Zero=0, Carry=0
	mov.b	rll,@(varl)	;store 2nd result (00), Zero=1, Carry=0

Since the result of the SUB and SUBX operations are not 00 (until number 4), the flags behave as we wish them to. During the 4th subtraction operation, the Zero flag remains clear even though the result of the subtraction operation was zero. While this is the correct flag value for the entire operation, it would not be correct if we test the flag after the MOV instruction.

Lets change our variables so that the result of the subtraction operation should be zero (H'40000000 - H'40000000) and again follow the code sequence. Since each of the substraction operations (SUBX) would result in a zero value, the contents of the Zero flag would remain as it was prior to the execution of the instruction. In the 4th subtraction operation, we need only look at the values transfered by the MOV instructions. Since both values are non-zero in nature, then the contents of the Zero flag would be cleared as a result of that instruction. This allows the final value of the Zero flag (before the MOV instruction) to be 0, and this would be incorrect for the entire operation. Of course it would be correct after the MOV operation, but our previous example showed it to be opposite of this example.

# **H8/300 CPU SUBX Instruction**

Tech Notes

	mov.b	r11,@(var1+1)	;store 2nd result (70), Zero=0, Carry=1
	mov.b	@(var2),r1h	;get 40, Zero=0, Carry=1
	mov.b	@(var1),r11	;get 40, Zero=0, Carry=1
4.	subx	rlh, rll	;40-3F-borrow, Zero=0, Carry=0
	mov.b	rll,@(var1)	;store 2nd result (00), Zero=1, Carry=0

In the final analysis, to make things much simpler for the user, it is recommended that the SUBX instructions always follow other subtraction instructions IMMEDIATELY. The resulting Zero flag status would also the user to determine the status of his complete result.

5

Section 5

H8 Family H8/5XX Series

Ę

# 5

## H8/500 CPU

Application Note

Technical Q & A

# How to Use Microcomputer Technical Ouestions and Answers

Technical Questions and Answers has been created by arranging technical questions actually asked by users of Hitachi microcomputers in a question-and-answer format. It should be read for technical reference in conjunction with the User's Manual.

Technical Questions and Answers can be read before beginning a microcomputer application design project to gain a more thorough understanding of the microcomputer, or during the design process to check up on difficult points.

# 5

#### Contents

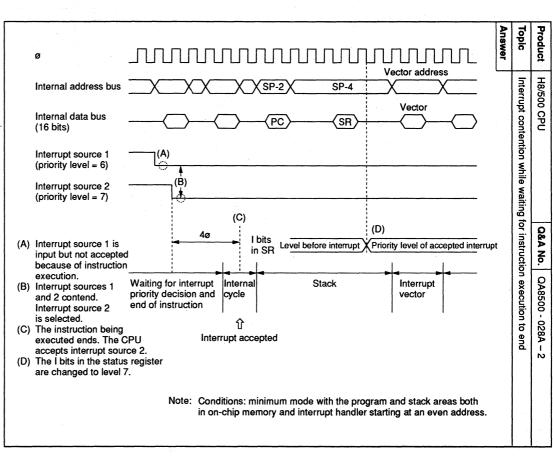
_		Q&A No.	Page
	gisters		
	Register contents after power-up reset	QA8500 - 001B	105
(2)		QA8500 - 002B	106
(3)	DP contents in unconditional jump within page	QA8500 - 036A	107
Int	errupts		
(1)	Interrupt sampling and acceptance	QA8500 - 004B	108
(2)	Holding of disabled external interrupts	QA8500 - 006B	109
(3)	Disabling of invalid instruction exceptions	QA8500 - 008A	110
(4)	Interrupt contention while waiting for instruction execution to end	QA8500 - 028A	111
(5)	Time of clearing of IRQ _n interrupt request signal	QA8500 - 030A	113
(6)	Requirements for enabling interrupts	QA8500 - 031A	115
(7)	Maximum wait after BREQ	QA8500 - 032A	116
(8)	Clearing of interrupt request enable bits and pending interrupts	QA8500 - 034A	117
(9)	Acceptance of NMI during NMI handling	QA8500 - 035A	118
Re	set.		
(1)	NMI sampling and acceptance immediately after a reset	QA8500 - 009B	119
(2)		QA8500 - 010B	121
٠,	Pin states at power-up reset	QA8500 - 037A	122
Po	wer-down state		
(1)	Hardware standby mode entry timing	QA8500 - 011B	123
(2)		QA8500 - 013B	124
(3)		QA8500 - 014B	125
	Recovery from hardware standby mode	QA8500 - 016B	126
(5)		QA8500 - 019B	127
(6)	•	QA8500 - 020B	128
(7)	Sampling and acceptance of interrupts during sleep mode	QA8500 - 021B	129
(8)	Execution time for entering software standby mode	QA8500 - 027A	130
Ins	tructions		
	BRN instruction	QA8500 - 023B	131
(1)	DATA III dedoi!	Q/10300 - 023D	131
	tware		100
(1)	Reserved addresses in interrupt vector area	QA8500 - 033A	132
Mi	scellaneous		
(1)	Access to on-chip registers while bus is released	QA8500 - 029A	133

Product	H8/500 CPU	Q&A No.	QA850	00 - 001B
Topic	Register contents after power-up r	eset		
Question				Classification—H8/500
	are the CPU register contents after a power-up reset?			O Registers
ı. Wilat	are the CPO register contents after a power-up reset:		Read timing	
				Write timing
			{	Interrupts
				Reset
			. [	External expansion
				Power-down state
			ſ	
				Instructions
				Software
				Development tools
			İ	
			(	
				100
		. ———		Miscellaneous
Answer				Related Manuals  Manual Title:
regist 0. Reg SR bi In ma from undet	r table. The interrupt mask bits (I ₂ , I er (SR) are set to 1, and the trace bit gisters R0 to R7, the base register (E ts have undetermined values.  Eximum mode the code page register the vector table. Other page register ermined values. Registers other that ers are the same as in minimum mode.	t (T) is clear BR), and the (CP) is loar s have n the page	red to other	Other Technical Documentation Document Name:  Related Microcomputer Technical Q&A Title:
∖dditiona	I Information	*		

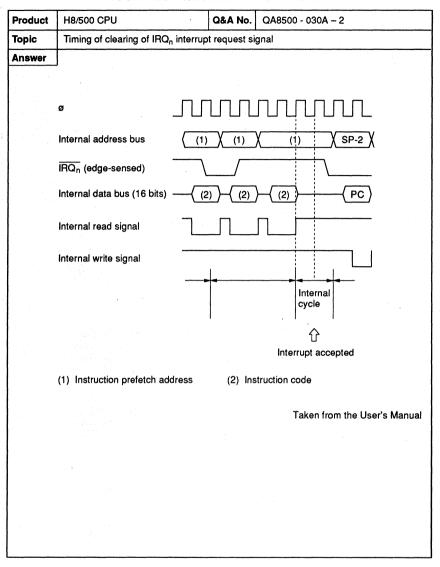
Product	H8/500 CPU	Q&A No.	QA850	00 - 002B
Topic	Page registers in single-chip mode	and expar	nded mir	nimum modes
Question		<del></del>		Classification—H8/500
1. Can ti	he DP, EP, and TP page registers be ers in the single-chip mode and exp s?			Registers Read timing Write timing Interrupts Reset External expansion Power-down state  Instructions
				Software Development tools
Answer				Miscellaneous Related Manuals
	out since the page registers are control in the accessed by system control in			Manual Title:
				Other Technical Documentation Document Name:
				Related Microcomputer Technical Q&A
				Title:
Additional	Information			
- The same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of the same special control of				

Product	H8/500 CPU	Q&A No.	QA850	00 - 036A	
Topic	DP contents in unconditional jump within page				
Question				Classification—H8/500	
1. If the JMP @R0 unconditional in-page jump instruction is			ion is	O Registers	
		•		Read timing	
executed in expanded maximum mode, are the data page (DP) register contents used in calculating the effective address?			Write timing		
			Interrupts		
			Reset		
		External expansion			
				Power-down state	
			1		
				Instructions	
				Software	
			-	Development tools	
			ŀ		
			-		
			t	Miscellaneous	
Answer				Related Manuals	
	 DP contents are not used in calculation		}	Manual Title:	
address of an unconditional jump within the same page.  If the JMP @R0 instruction is executed to jump within the same page, the R0 contents are loaded into the program counter (PC), but the code page (CP) register value does not change. The DP contents are therefore ignored.		in the	Other Technical Documentation Document Name:		
			-	Related Microcomputer Technical Q&A Title:	
	· ·				
Additiona	I Information				

Product	H8/500 CPU	Q&A No.	QA85	500 - 004B
Topic	Interrupt sampling and acceptance	)		
Question  1. When	are external interrupts (NMI, IRQ	,) sampled?		Classification—H8/500 Registers Read timing Write timing Interrupts Reset External expansion Power-down state  Instructions Software Development tools
edge ( (exter	-sensitive interrupts (IRQ ₀ ) are sam of the system clock. Edge-sensitive nal interrupts other than IRQ ₀ ) are g edge of the system clock.	interrupts		Miscellaneous Related Manuals Manual Title:  Other Technical Documentation Document Name:
				Related Microcomputer Technical Q&A Title:
Additional	Information			


		<del>,</del>					
Product		H8/500 CPU	Q&A No.	A No. QA8500 - 006B			
Тор	ic	Holding of disabled external interrupts					
held _I (1) (2)		e following two cases, are external interrupts (IRQ _n ) pending?  IRQ _n enable bit is cleared to 0 in on-chip register field  IRQ _n interrupt priority level ≤ interrupt mask level set in status register (SR)		ter	Classification—I Registers Read timing Write timing O Interrupts Reset External expans Power-down sta	ate	
					Miscellaneous		
1.	(2)	In this state, the interrupt request sign sampled and the interrupt is not held interrupt requests made in this state even if the IRQ _n enable bit is later s. An interrupt that is requested in this pending in the CPU's interrupt continuerrupt request mask level is later value lower than the external (IRQ _n priority level, the interrupt will be a IRQ ₀ is level-sensitive, however, so pending.	d pending. will be ign et to 1. state is hel roller. If the reduced to ) interrupt ccepted.	d e a	Related Manuals Manual Title:  Other Technical Documentation Document Name:  Related Microcomp Technical Q&A Title:	uter	
		I Information	I da Tilada		manistan (CD)		
1 ne	The interrupt request mask level is set in bits $I_2$ to $I_0$ in the status register (SR).						

#### HITACHI


Product	H8/500 CPU	Q&A No.	QA8500 - 008A		
Topic	Disabling of invalid instruction exc				
	exception handling of invalid instructions does the exception handling routine			Classification—H8/500 Registers Read timing Write timing O Interrupts Reset External expansion	
				Instructions Software Development tools	
Answer  1. No, it	cannot be disabled.	· · · · · · · · · · · · · · · · · · ·		Miscellaneous Related Manuals Manual Title:	
termi	nvalid instruction exception handler nated by returning with an RTE inst software technique, such as jumpinge.	ruction. Us		Other Technical Documentation Document Name:	
				Related Microcomputer Technical Q&A	
				Title:	
Additiona	I Information				

Product	H8/500 CPU	Q&A No.	QA850	0 - 028A — 1		
Topic	Interrupt contention while waiting f	Interrupt contention while waiting for instruction execution to end				
Question  1. Suppoinstru instru	Interrupt contention while waiting for sean interrupt occurs during execution, then during the waiting state ction ends another, higher-priority in interrupt does the CPU accept?	ation of an		tion to end  Classification—H8/500  Registers Read timing Write timing O Interrupts Reset External expansion Power-down state  Instructions Software Development tools		
level i next p chang	e CPU accepts the interrupt with the hig rel four states before the time of acceptar xt page.) The interrupt mask level in bits anged until the status register (SR) has be stack.		the not	Miscellaneous Related Manuals Manual Title:  Other Technical Documentation Document Name:		
Additional	Information			Related Microcomputer Technical Q&A Title:		
Additional	information					

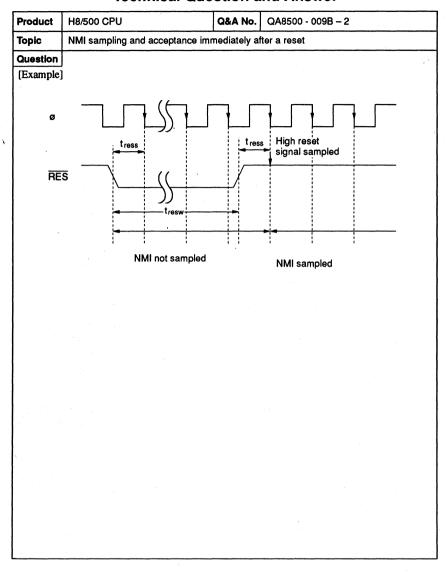
Hitachi America, Ltd. •



Product	H8/500 CPU	Q&A No.	QA850	00 - 030A — 1		
Topic	Time of clearing of IRQ _n interrupt request signal					
	are no interrupt request flags for ec nal interrupts (IRQ _n ). When are thes id?		e	Classification—H8/500 Registers Read timing Write timing O Interrupts Reset External expansion Power-down state  Instructions Software Development tools		
which in the reque	nterrupt request is cleared during the the interrupt is accepted, as indicated diagram on the next page. If the satest signal (IRQ _n ) occurs after this tind again.	ted by the a	rrow t	Miscellaneous Related Manuals Manual Title:  Other Technical Documentation Document Name:		
				Related Microcomputer Technical Q&A Title:		
Additional	Information		I			



# ., **...**


Product		H8/500 CPU	Q&A No.	QA8500	) - 031A
Topic		Requirements for enabling interrup	ots		
inter		do we fail to get an interrupt even though the rupt request enable bit ( $IRQ_nE$ ) is set to 1 and the rupt request signal ( $\overline{IRQ_n}$ ) is asserted?		. –	Classification—H8/500 Registers Read timing Write timing O Interrupts Reset External expansion Power-down state  Instructions Software Development tools
Ans	swer To en	able interrupts to be accepted, software	vare must:		Miscellaneous Related Manuals Manual Title:
	(2)	Set the interrupt enable bits for the obsources to 1.  Set values in the interrupt priority results the desired interrupt request matter $I_0$ in the status register (SR).  The above points.	egisters (IP	Rs).	Other Technical Documentation Document Name:  Related Microcomputer Technical Q&A  Title:
	eset ini	l Information tializes all IPR values to 0 and sets	bits I ₂ to I ₀	all to 1, r	masking all interrupts except

Product	H8/500 CPU	Q&A No.	QA8500 -	032A
Topic Maximum wait after BREQ				
	is the maximum waiting time from nal bus request signal (BREQ) until			Classification—H8/500 Registers Read timing Write timing Interrupts Reset External expansion Power-down state  Instructions Software Development tools
if the instru the E MOV the E	naximum waiting time is 10 to 17 started executing the MOVFF ction (which transfers data in synct clock) just before BREQ was asser TPE and MOVFPE execute in synct clock, the number of states varies of g of the start of execution.	E or MOV ronization ted. Becaus chronization	CCURS TPE with  with  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Dots  Other Do	Miscellaneous plated Manuals anual Title:  ther Technical acumentation acument Name:
Additiona	I Information		Te	elated Microcomputer chnical Q&A ile:

Product	H8/500 CPU	Q&A No.	QA8500	0 - 034A	
Topic	Clearing of interrupt request enabl	e bits and p	ending ir	nterrupts	
priori level	e an IRQ _n interrupt is being held per ty is equal to or less than the interru in the status register (SR), does clea e bit (IRQ _n E) also clear the IRQ _n in	pt request n ring the IRC	nask Qn	Classification—H8/500  Registers Read timing Write timing O Interrupts Reset External expansion Power-down state  Instructions Software Development tools	
the in	an IRQ _n interrupt request is held p terrupt request mask level ( $I_2$ to $I_0$ ),	the request	use of	Miscellaneous Related Manuals Manual Title:	
The II interr the IR	ns pending even if IRQ _n E is cleared RQ _n interrupt will be accepted later upt request mask level is reduced to Q _n priority level.	when the	, then	Other Technical Documentation Document Name:	
IRQ _n I		0	_ L	Related Microcomputer Technical Q&A Title:	
	y level 3) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ested	-		
Additiona	Information				
	J	o regardle	ss of wh	ether IRO _o E is set or cleared	
mQ0 is ic	$IRQ_0$ is level-sensitive, so it is not held pending, regardless of whether $IRQ_0E$ is set or cleared.				

Product	H8/500 CPU	Q&A No.	QA850	A8500 - 035A		
Торіс	Acceptance of NMI during NMI handling					
Question  1. NMI  Durin	Acceptance of NMI during NMI hat has the highest priority and is alway gethe NMI interrupt handling routin upt occurs will it also be accepted?	s accepted.		Classification—H8/500  Registers Read timing Write timing O Interrupts Reset External expansion Power-down state  Instructions Software Development tools		
Answer  1. If another NMI request is made during the NMI interrupt handling routine, the second request will also be accepted.				Miscellaneous Related Manuals Manual Title:  Other Technical Documentation Document Name:		
				Related Microcomputer Technical Q&A Title:		
Additional Information						

Product	H8/500 CPU	Q&A No.	QA8500 - 009B 1			
Topic	Topic NMI sampling and acceptance immediately after a reset					
Question	is the NMI signal first sampled aft		Classification—H8/500  Registers Read timing Write timing Interrupts Reset External expansion Power-down state  Instructions Software Development tools  Miscellaneous			
edge of The N instru reset.	ling of the NMI signal starts from the system clock at which the rest of the system clock at which the rest of the system clock at which the rest of the system clock at the chart page)	et signal is then the fire	high.			
Additional Information						
The reset and NMI signals are both sampled on the falling edge of the system clock.						



Product	H8/500 CPU	Q&A No.	QA850	8500 - 010B			
Topic	Stack pointer initialization immedia	ately after a	after a reset				
	is it necessary to initialize the stack diately after a reset?	pointer		0	Classification—H8/500 Registers Read timing Write timing Interrupts Reset External expansion Power-down state  Instructions Software Development tools  Miscellaneous		
out of the fir crash	NMI request signal is active when freset, the NMI interrupt will be actest instruction has been executed. To es, you should therefore initialize the diately after the reset.	cepted as so prevent pr	on as ogram	Oth Doc Doc	er Technical cumentation cument Name:		
Additiona	I Information						

	H8/500 CPU	Q&A No.	QA85	00 - 037A				
Topic	Pin states at power-up reset							
Question		***************************************		Classification—H8/500				
1. What	needs to be noted about pin states a	t a power-u	10	Registers				
reset?	-		-Р	Read timing				
TOSCI:				Write timing				
				Interrupts				
				O Reset				
				External expansion				
				Power-down state				
				Instructions				
				Software				
				Development tools				
				Miscellaneous				
Anewer								
1. Atap	power-up reset, the mode pins (MD ₂ )			Related Manuals Manual Title:				
1. At a p	power-up reset, the mode pins (MD ₂ to the desired mode setting and the Shigh. Output from the ø and E pins in the clock oscillator settles into stead	TBY pin m s unpredict	ust be able	Manual Title: Other Technical				
1. At a p	o the desired mode setting and the Shigh. Output from the ø and E pins i	TBY pin m s unpredict	ust be able	Manual Title:				
1. At a p	o the desired mode setting and the Shigh. Output from the ø and E pins i	TBY pin m s unpredict	ust be able	Manual Title:  Other Technical Documentation				
1. At a p	o the desired mode setting and the Shigh. Output from the ø and E pins i	TBY pin m s unpredict	ust be able	Manual Title:  Other Technical Documentation				
1. At a p	o the desired mode setting and the Shigh. Output from the ø and E pins i	TBY pin m s unpredict	ust be able	Manual Title:  Other Technical Documentation				
1. At a p	o the desired mode setting and the Shigh. Output from the ø and E pins i	TBY pin m s unpredict	ust be able	Manual Title:  Other Technical Documentation Document Name:  Related Microcomputer Technical Q&A				
1. At a p	o the desired mode setting and the Shigh. Output from the ø and E pins i	TBY pin m s unpredict	ust be able	Manual Title:  Other Technical Documentation Document Name:				
1. At a p	o the desired mode setting and the Shigh. Output from the ø and E pins i	TBY pin m s unpredict	ust be able	Manual Title:  Other Technical Documentation Document Name:  Related Microcomputer Technical Q&A				
1. At a p	o the desired mode setting and the Shigh. Output from the ø and E pins i	TBY pin m s unpredict	ust be able	Manual Title:  Other Technical Documentation Document Name:  Related Microcomputer Technical Q&A				
1. At a p	o the desired mode setting and the Shigh. Output from the ø and E pins i	TBY pin m s unpredict	ust be able	Manual Title:  Other Technical Documentation Document Name:  Related Microcomputer Technical Q&A				
tied to held i until	to the desired mode setting and the Singh. Output from the Ø and E pins in the clock oscillator settles into stead	TBY pin m s unpredict	ust be able	Manual Title:  Other Technical Documentation Document Name:  Related Microcomputer Technical Q&A				
1. At a p tied to held I until	o the desired mode setting and the Shigh. Output from the ø and E pins i	TBY pin ms unpredicts y oscillatio	aust be able n.	Manual Title:  Other Technical Documentation Document Name:  Related Microcomputer Technical Q&A Title:				

Product	H8/500 CPU	Q&A No.	QA850	00 - 011B
Topic	Hardware standby mode entry timi	ng		
	nere any restrictions on times t ₁ and for entering hardware standby mod		agram	Classification—H8/500 Registers Read timing Write timing Interrupts Reset External expansion
STBY  RES	t ₁ t ₂ t _{OSC}	<u>=</u>		O Power-down state  Instructions Software Development tools
	ollowing restrictions apply.  To hold RAM contents, t ₁ must be a	t least 10 s	vstem	Miscellaneous Related Manuals Manual Title:
(2)	clock cycles. The minimum value of When it is not necessary to hold RA is no restriction on $t_1$ and $t_2$ .	f t ₂ is 0 ns.		Other Technical Documentation Document Name:
STBY	t ₁ t ₂	tosc		Related Microcomputer Technical Q&A Title:
Additiona	Information			

Product	H8/500 CPU	Q&A No.	QA8500 - (	013B
Topic Instruction execution at changeover to hardware sta			are standby	mode
Question	Classification—H8/500			
When standl	a low STBY input drives the chip by mode, what happens to the instrexecuted?		re	Registers Read timing Write timing Interrupts Reset External expansion Power-down state  Instructions Software Development tools
				Miscellaneous
	nstruction being executed is aborted leted. Normal execution of the instead.		eing	nual Title:
			Do	ner Technical cumentation cument Name:
				lated Microcomputer chnical Q&A e:
		•		
Additional	Information			

## SECTION

Product	Product H8/500 CPU Q&A No. QA85		QA850	500 - 014B		
Topic	Mode pins in hardware standby m					
Question			Classification—H8/500			
1. What	happens if the states of the mode li	,	Registers			
		Read timing				
$MD_0$	MD ₀ ) are changed during hardware standby mode?		Write timing			
			Interrupts			
	Γ		Reset			
				External expansion		
				O Power-down state		
				Instructions		
				Software		
				Development tools		
				Miscellaneous		
Answer				Related Manuals		
				Manual Title:		
•	ware standby mode will not operate	•		Maridar Title.		
chang	ge the state of the mode lines during hardware standby					
mode		.*				
				Other Technical		
				Documentation		
				Document Name:		
				Related Microcomputer		
				Technical Q&A		
				Title:		
				Title.		
-						
A	I Indonesia I and			L		
Additiona	Information					

Product	H8/500 CPU	Q&A No.	QA850	500 - 016B			
Topic	Topic Recovery from hardware standby mode						
	hip must be recovered from hardwa				lassification—H8/500 Registers Read timing		
	Iding $\overline{RES}$ low, then driving $\overline{STBY}$ e $\overline{STBY}$ goes high does $\overline{RES}$ have to		long		Write timing Interrupts		
					Reset External expansion Power-down state		
					Instructions		
					Software Development tools		
			-				
Answer					Miscellaneous ted Manuals		
	cover from hardware standby mode, 100 ns before driving STBY high.	drive RES	low at	Man	ual Title:		
STBY			·	Docu	r Technical umentation ument Name:		
	, , , , , , , , , , , , , , , , , , ,	1/					
RES \				Tech	ted Microcomputer nical Q&A		
	100 ns t _O	sc		Title	<b>i</b> 		
Additional	Information		-				

Product	H8/500 CPU	1	Q&A No.	OA850	00 - 019B			
	L		aan no.					
Topic	Notes on entering sleep	mode			<b>,</b>			
Question  1. Are the	nere any points to note ab	out enterin	g sleep mo	de?	Classification—H8/500 Registers Read timing Write timing Interrupts Reset External expansion Power-down state  Instructions Software Development tools			
				ļ	Miscellaneous			
Answer					Related Manuals			
, -	oints listed below should and used to recover from s Recovery M	leep mode.		on aic				
NMI Intern	upt IR	Q _n Interrup	ot		Other Technical Documentation			
Clear all interrupt enable bits to 0, or set bits I ₂ to I ₀ in SR to a level bits to 0, or set bits I ₂ to I ₀ in SR all to 1.  Set bits I ₂ to I ₀ in SR to a level of the interrupt used for recovery, clear interrupt enable bits to 0 except for interrupts used for recovery, and make sure NMI.		Document Name:  Related Microcomputer Technical Q&A Title:						
Additional	Information							

Product	H8/500 CPU	Q&A No.	QA850	00 - 020B		
Topic	Interrupts during fetching and exe	cution of SL	on of SLEEP instruction			
Question  1. What				Classification—H8/500 Registers Read timing Write timing Interrupts Reset External expansion Power-down state  Instructions Software Development tools		
of int	mode is released to handle the inte			Miscellaneous Related Manuals Manual Title:		
instru	iction is executed.			Other Technical Documentation Document Name:		
				Related Microcomputer Technical Q&A Title:		
Additiona	I Information		·			

		Lucros onu	00.0.11	G 4 0 5			
Pro	Product         H8/500 CPU         Q&A No.         QA85		QA850	00 - 021B			
Тор	Topic Sampling and acceptance of interrupts during sleep mode						
Que	stion				Classification—H8/500		
1.				node?	Registers		
١	3,,1101	. are enterior interior apis samples au	g steep	.ouc.	Read timing		
2.	If an i	interrupt is sampled, how many syst	em clock c	veles	Write timing		
<u>۳</u> .		loes the chip wake up?	em clock c	y ClO3	Interrupts		
l	iater	loes the chip wake up?			Reset		
ŀ					External expansion		
l					O Power-down state		
ļ							
l					Instructions Software		
					Development tools		
l					Development tools		
l							
1							
					Miscellaneous		
A	wer				Related Manuals		
All					Manual Title:		
1.	Level	-sensitive interrupts (IRQ ₀ ) are sam	pled on the	rising	manual file.		
	edge o	of the system clock and edge-sensiti	ive interrup	ts			
	(exter	nal interrupts other than IRQ ₀ ) are	sampled on	the			
l		g edge of the system clock, just as in					
		5 0480 01 0.00 5) 500 0.00, 1450 45 1.			Other Technical		
2.	The cl	hip exits sleep mode six system clo	ck cycles af	ter the	Documentation		
] ~.		upt is sampled.	on of olos al		Document Name:		
	mitori	apt is sampled.					
1							
1					Related Microcomputer		
İ					Technical Q&A		
					Title:		
l							
l							
l							
Add	iitional	Information					
l							
l							
l							
l							

Product	H8/500 CPU	500 CPU Q&A No. QA8500 - 027A					
Topic	Execution time for entering software standby mode						
Question	Posistore						
	many states does it take to enter sof		by	Read timing			
mode	by executing the SLEEP instruction	n?		Write timing			
				Interrupts			
				Reset			
				External expansion			
				D Power-down state			
				Instructions			
			-	Software			
			-	Development tools			
			-	Development tools			
			-				
			-	Miscellaneous			
Answer			1	Related Manuals			
			1	Manual Title:			
1. Two s	states.		· -				
`			İ				
			-	Other Technical			
				Documentation			
			I	Document Name:			
			_)				
100				Related Microcomputer			
			l i	rechnical Q&A			
			7	litie:			
100							
A 1 1111		*****					
Additional	Information						

Product	H8/500 CPU Q&A No. QA85			QA85	A8500 - 023B			
Topic	BRN	I instruction					-	
Question							Classification—H8/500	
	j aanta	finatorian is Di	ONI (on DENO				Registers	
i. what	SOFT O	f instruction is Bl	(OF BF)!				Read timing	
							Write timing	
							Interrupts	
							Reset	
							External expansion	
							Power-down state	
						0	Instructions	
							Software	
							Development tools	
						_		
							Miscellaneous	
Answer						Po	lated Manuals	
Allawei							nual Title:	
<ol> <li>BRN</li> </ol>	is sim	ilar to a NOP inst	ruction, but	it has a diff	ferent	Ma	nual Title:	
byte l	ength	and executes in a	different nu	mber of sta	ites.			
See b								
300 0	ciow.							
			Number of	States		Oth	ner Technical	
		Byte Length	Required 1		on	Do	cumentation	
BRN d	: 8	2	3*	OI EXCOUNT		Do	cument Name:	
	: 16	3	3*					
	. 10							
NOP		1	2*			- n-		
* When in	struct	ion is fetched fron	n on-chip RC	M			lated Microcomputer	
RRN	has th	e same byte lengt	has Rection	example	which	Titl	e:	
		eful in debugging		onampie,		<b></b>		
make	s it use	rui iii debugging.	•			1		
						1		
Additional	Infor	mation				L		
Additiona	111101	mation						

Prod	Product H8/500 CPU Q&A No. QA8			QA85	00 - 033	BA
Topic	С	Reserved addresses in interrupt ve	ector area			
	Question Classification—H8/500 Registers					
1.	Can tl	he reserved addresses in the interrup	ot vector are	ea be	H+;	Read timing
1	used t	o store program code?			$\vdash$	Write timing
1					++i	nterrupts
l						Reset
1						External expansion
l						Power-down state
1					<del></del>	Power-down state
		the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s			$\vdash$	
					<del></del>	
l						nstructions
1						Software
l						Development tools
l						
l						
1						
l						
ł					1	Miscellaneous
Ansv	wor				Relati	ed Manuals
						al Title:
1.	Yes, the	hey can.			Maria	ar mue.
l						
l						
					Other	Technical
1					Docu	mentation
					Docu	ment Name:
1						· · · · · · · · · · · · · · · · · · ·
1		· · · · · · · · · · · · · · · · · · ·				
1					Relate	ed Microcomputer
						ical Q&A
					Title:	
		the second second				
1	1					
1						
1					l	
Addi	tional	Information				
1000						
1						

# SECTION

Product		H8/500 CPU	Q&A No.	0485	500 - 029A	
			Access to on-chip registers while bus is released			
Topic Question		Access to on-cnip registers while bus is released				
Question				Classification—H8/500		
1. When		the H8/500 CPU releases the bus to an external		Registers		
devic		ce, can the external device (bus master) access the		Read timing		
				Write timing		
Ì	H8/50	00's on-chip registers?		Interrupts		
					Reset	
					External expansion	
l					Power-down state	
					Instructions	
					Software	
					Development tools	
					O Miscellaneous	
Ansı	wer				Related Manuals	
1.	No O	n-chip registers cannot be accessed	avtamally	undar	Manual Title:	
		1 0	externally	unacı		
	any ci	rcumstances.				
					Other Technical	
					Documentation	
				Document Name:		
					Doddinent Hame.	
					·	
					Related Microcomputer	
					Technical Q&A	
					Title:	
Addi	tional	Information			No. of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	

## SECTION

### H8/500 Series

#### **Application Note**

### Technical Q & A

#### Preface

The H8/500 Series is a series of highly integrated single-chip microcontrollers. Their CPU core has an internal 16-bit architecture, and each chip includes diverse high-performance peripheral hardware.

These technical questions and answers relate to the H8/510, H8/520, H8/532, H8/534, and H8/536.

#### H8/500 Family

Item			H8/510	H8/520	H8/532	H8/534	H8/536
CPU			H8/500	H8/500	H8/500	H8/500	H8/500
Memory	ROM	Masked ROM		16 kbytes	32 kbytes	32 kbytes	62 kbytes
		ZTAT™*2	No	Yes	Yes	Yes	Yes
	RAM		_	512 bytes	1 kbyte	2 kbytes	2 kbytes
Address	space	(bytes)	16 M	1 M	1 M	1 M	1 M
External	data bu	ıs width (bits)	8/16	8	8 .	8	8
Timers	16-bit	free-running timer	2 ch	2 ch	3 ch 3 ch		3 ch
	8-bit ti	mer	1 ch	1 ch	1 ch	1 ch	1 ch
	Watch	dog timer	1 ch	1 ch	1 ch	1 ch	1 ch
	PWM	timer	_		3 ch	3 ch	3 ch
Serial con (async/sy		cation interface	2 ch	2 ch	1 ch	2 ch	2 ch
A/D converter	•	External trigger input	10 bits, 4 channels, trigger	10 bits, 4 or 8* channels trigger	•	10 bits, , 8 channels, no trigger	10 bits, 8 channels, no trigger
Interrupts	3	External interrupts	5	9	3	7	7
		Internal interrupts	18	18	19	23	23
I/O ports			60	50/54*1	65	65	65
Packages			QFP-112	DILC-64S (windowed)	LCC-84 (windowed)	LCC-84 (windowed)	LCC-84 (windowed)
				DILP-64S	PLCC-84	PLCC-84	PLCC-84
				PLCC-68*1	QFP-80	QFP-80	QFP-80
				QFP-64			

Notes: 1. PLCC-68 package

2. ZTAT™ is a registered trademark of Hitachi, Ltd.

#### HITACHI

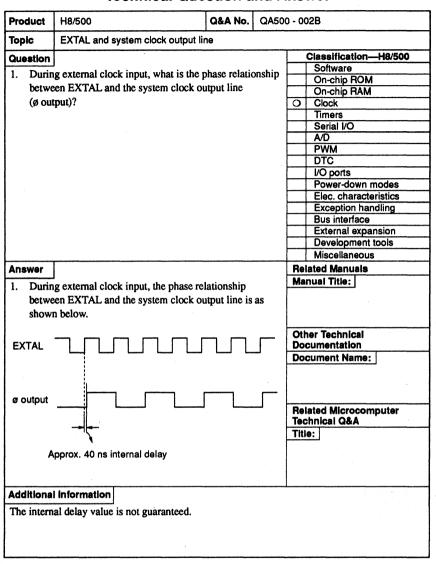
#### How to Use These Technical Questions and Answers

Technical Questions and Answers has been created by arranging technical questions actually asked by users of Hitachi microcomputers in a question-and-answer format. It should be read for technical reference in conjunction with the User's Manual.

Technical Questions and Answers can be read before beginning a microcomputer application design project to gain a more thorough understanding of the microcomputer, or during the design process to check up on difficult points.

(For questions and answers about the H8/500 CPU, see H8/500 CPU Microcomputer Technical Questions and Answers.)

#### Contents


On-chip ROM  (1) Address bus, data bus, and control line states during access to on-chip address space (2) Programming the H8/536 ZTAT  Clock  (1) EXTAL and system clock output line (2) External clock specifications (3) External clock input (4) External clock input (2) QA500 - 048A	Page
to on-chip address space  (2) Programming the H8/536 ZTAT QA500 - 046A  Clock  (1) EXTAL and system clock output line QA500 - 002B  (2) External clock specifications QA500 - 047A  (3) External clock input QA500 - 003B	
Clock (1) EXTAL and system clock output line QA500 - 002B (2) External clock specifications QA500 - 047A (3) External clock input QA500 - 003B	139
(1) EXTAL and system clock output lineQA500 - 002B(2) External clock specificationsQA500 - 047A(3) External clock inputQA500 - 003B	140
(2) External clock specifications QA500 - 047A (3) External clock input QA500 - 003B	
(2) External clock specifications QA500 - 047A (3) External clock input QA500 - 003B	141
(3) External clock input QA500 - 003B	142
•	143
	144
Timers	
(1) External clock input to 16-bit FRT QA500 - 006B	145
(2) Input capture signal for 16-bit FRT QA500 - 007B	146
(3) Access timing to FRC in 16-bit FRT QA500 - 009B –	
QA500 - 009B = 1	
(4) TCNT of 8-bit timer QA500 - 011B	149
(5) WDT when system clock stops QA500 - 012B	150
(6) NMI requested by WDT QA500 - 012B	151
(b) Null requested by WD1 QA300 - 013B	131
Serial communication interface (SCI)	
(1) Input/output designation of SCI clock pin QA500 - 018B	152
(2) Serial I/O line status QA500 - 019B	153
(3) RDRF bit set timing QA500 - 021B -	1 154
QA500 - 021B - 1	2 155
(4) TDRE bit set timing QA500 - 022B -	1 156
QA500 - 022B -	2 157
(5) RDR and DTR utilization when SCI is not used QA500 - 023B	158
(6) RDRF bit in SCI QA500 - 049A	159
(7) SCI receive error 1 QA500 - 050A	160
(8) SCI receive error 2 (clocked synchronous mode) QA500 - 051A	161
(9) SCI RxD input example (asynchronous mode) QA500 - 052A	162
(10) SCI transmit start (asynchronous mode) QA500 - 053A	163
(11) Simultaneous transmit/receive in clocked synchronous mode QA500 - 054A	164
(12) Clearing the SCI's TDRE bit QA500 - 055A	165

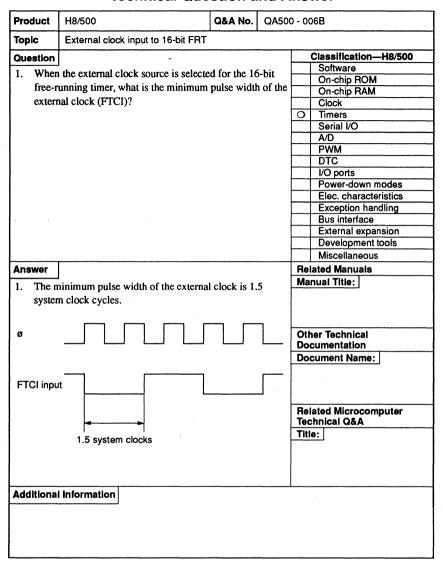
	Q&A No.	Page
A/D converter		
(1) Start of A/D conversion	QA500 - 024B	166
(2) Non-use of A/D converter reference voltage lines (AV _{CC} , AV _{SS} )	QA500 - 025B	167
(3) Changing A/D conversion mode or channels during conversion	QA500 - 027B	168
(4) Resistor ladder in A/D converter	QA500 - 028B	169
(5) Rise time of power supplies (AV _{CC} , V _{CC} )	QA500 - 029B	170
(6) Allowable impedance of A/D signal sources	QA500 - 056A	171
PWM timer		
(1) DTR of PWM timer	QA500 - 031B	172
(2) PWM pin assignments	QA500 - 057A	173
Data transfer controller (DTC)		
(1) Interrupts during DTC operation	QA500 - 032B	174
(2) DTC usage	QA500 - 033B	175
I/O ports		
(1) Analog input part data register during A/D conversion	QA500 - 035B	176
(2) Port output after reset	QA500 - 037B	177
(3) AS and RD signal timing	QA500 - 039B	178
(4) Unused I/O lines	QA500 - 040B	179
Power-down modes		
(1) Power dissipation in hardware and software standby modes	QA500 - 041B	180
Bus controller		
(1) State of D ₀ to D ₇ with 8-bit data bus	QA500 - 058A	181
Bus interface		
(1) State of $D_0$ to $D_7$ during byte access in 16-bit data bus mode	QA500 - 059A	182
Miscellaneous		
(1) RAM standby voltage	QA500 - 060A	183

### SECTION

Product		H8/500	Q&A No.	QA500	00 - 00	1B
Topic		Address bus, data bus, and contro	l line states	during	acces	ss to on-chip address space
Question					(	Classification—H8/500
1.		values are output on the following	linas whon	on		Software
1.		-			ा	On-chip ROM
ŀ	cnip n	nemory or the on-chip register field	is accessed	17	0	On-chip RAM
						Clock
	(1)	Address bus				Timers
ł	(2)	Data bus				Serial I/O
ŀ	` '	<del></del>			$\sqcup$	A/D
Ì	(3)	Bus control signals			$\sqcup$	PWM
					$\sqcup$	DTC
					1	I/O ports
					$\vdash \vdash$	Power-down modes
						Elec. characteristics
l					-	Exception handling
l					$\vdash \vdash$	Bus interface
1					$\vdash \vdash$	External expansion
					<del></del>	Development tools
						Miscellaneous
Ans	wer					ated Manuals
(1)	The a	ddress bus carries the address data,	regardless of	of	Man	nual Title:
(-)		er the access is to an on-chip or off	•			
	WIIOU	ior the access is to all on one of or	omp addre		ļ.	
(2)	The d	ata bus is in the high-impedance sta	te for both	read		
(2)		rite access by the CPU to an on-chi		·ouu	Oth	er Technical
l	aiu w	The access by the CI o to an on-em	p address.			umentation
(3)	The R	$\sqrt{W}$ signal is low for write access an	nd high for	read	Doc	ument Name:
(3)		s. The other control signals $(\overline{AS}, \overline{DS})$				
		s. The onici control signals (A3, D3	5, KD, WK)	aic		
	high.					
					Rela	ated Microcomputer
						hnical Q&A
					Title	):
		No.				
Add	litional	Information				
· ·						weed a

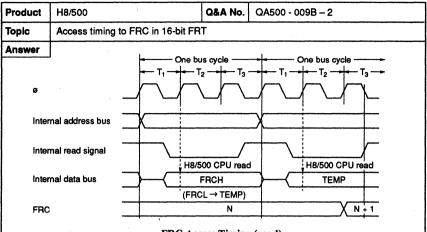
Product	H8/536	Q&A No.	QA500	0 - 046A
Topic	Programming the H8/536 ZTAT			
Question				Classification—H8/536
1. We are the H	e having trouble programming the 8/536. Are there any precautions we programming the H8/536, you must to memory type HN27C101 and e	e may be m	PROM	Classification—H8/536 Software On-chip ROM On-chip RAM Clock Timers Serial I/O A/D PWM DTC I/O ports Power-down modes Elec. characteristics Exception handling Bus interface External expansion Development tools Miscellaneous Related Manuals Manual Title:
end a	n addresses H'F680 to H'1FFFF or ddress.  re to use byte programming mode. apport page programming.			Other Technical Documentation Document Name:  Related Microcomputer Technical Q&A Title:
	I Information  OM writers do not support byte pro	gramming f	or the H	N27C101.




Product	H8/500		Q&A No.	QA500	0 - 047	7 <b>A</b>
Topic	External clock specificat	ions				
Question					С	classification—H8/500
	l on externel clock is sunn	lied to the	EYTAI ni	n .		Software
	When an external clock is supplied to the EXTAL pin, what are the rise-time and fall-time requirements?					On-chip ROM
wnat						On-chip RAM
			•		0	Clock
						Timers
1						Serial I/O
						A/D
						PWM
						DTC
						I/O ports
	v v					Power-down modes
					$\vdash \vdash$	Elec. characteristics
					$\vdash \vdash$	Exception handling
					-	Bus interface
l						External expansion
						Development tools
						Miscellaneous
Answer						ited Manuals
1. For a	20-MHz clock, the rise ti	ne (ta.) ai	nd fall time	(tcs)	Man	ual Title:
	d both be approximately 5		ia iun timo	(CI)		
Siloui	a boar be approximately 2	113.				
External (EXTAL)			\			er Technical umentation
	-	-			Doc	ument Name:
l e	tcr	tcr				
		-				
A 1						
					Tech	ited Microcomputer inical Q&A
					Title	
						Note that the second
Additiona	I Information				-	
L						

Product	H8/520, 532, 534, 536	Q&A No.	QA500	- 003B
Topic	External clock input	<u></u>		
Question  1. For exemple example.	sternal clock input, the Hardware M ple of a circuit using a 74HC04 (see HC04 necessary?		hy is	Classification—H8/532  Software On-chip ROM On-chip RAM O Clock Timers Serial I/O A/D PWM DTC I/O ports Power-down modes
Answer  1. If the unstab	XTAL pin open is left open, operati	ion may bec	come	Elec. characteristics     Exception handling     Bus interface     External expansion     Development tools     Miscellaneous  Related Manuals  Manual Title:
	The 74HC04 is necessary to assure stable operation at high clock rates.			Other Technical Documentation Document Name:
			-	Related Microcomputer Technical Q&A Title:
Additional	Information		I	
	XTAL pin can be left open if the exim versions and the H8/510, the XT.			

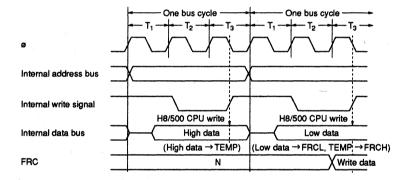
#### HITACHI


to 20 MHz.

Product         H8/520, 532, 534, 536         Q&A No.         QA500 - 048A				8A	
Topic	External clock input (2)		,		
Question					Classification—H8/532
1. The I	18/500 Series User's Manuals (except H8	2/510)	ehow		Software
a circuit using a 74HC04 for external clock input. (See diagram on previous page.) Can an ALS-TTL, for					On-chip ROM
					On-chip RAM
diagram on previous page.) Can an ALS-TTL, for example, be used instead?				0	Clock
					Timers
					Serial I/O
					A/D
					PWM
					DTC
					I/O ports
					Power-down modes
				$\sqcup$	Elec. characteristics
				$\vdash$	Exception handling
					Bus interface
					External expansion
				$\sqcup$	Development tools
				1 1	Miscellaneous
1. An A	LS-TTL device can be used if its propaga and drivability are equivalent to the 74HC		lelay		ated Manuals nual Title:
l. An A			lelay	Mai	er Technical
l. An A			lelay	Mai Oth Doe	er Technical
1. An A			lelay	Mai Oth Doe	er Technical
1. An A			lelay	Oth Doc Doc	er Technical cumentation cument Name:
			lelay	Oth Doc	er Technical cumentation cument Name:
1. An A			lelay	Oth Doc Doc	er Technical cumentation cument Name:
1. An A time :			lelay	Oth Doc Doc	er Technical cumentation cument Name:



Product	H8/500	Q&A No.	QA50	0 - 00	7B
Topic	Input capture signal for 16-bit FRT				
Question				(	Classification—H8/500
	FRT input capture line (FTI) is mult	inleved wit	h a		Software
	al-purpose input/output port that is				On-chip ROM
			-		On-chip RAM
	the rise and fall of the output data update the input			Clock	
captui	re register?				Timers
				$\vdash$	Serial I/O
				<b>├</b> ─┼	A/D
				$\vdash$	PWM DTC
				$\vdash$	
				$\vdash$	I/O ports Power-down modes
	•			$\vdash$	Elec. characteristics
				$\vdash$	Exception handling
				$\vdash$	Bus interface
				$\vdash$	External expansion
				$\vdash$	Development tools
+ 1				$\vdash$	Miscellaneous
	<del></del>			-	
Answer					ated Manuals nual Title:
	e input/output line, on the edge select bit (IEDG) in the timer control R).			Doc	er Technical umentation ument Name:  ated Microcomputer hnical Q&A
Additional	Information	•			


Product	H8/500	Q&A No.	QA500	) - 009B – 1
Topic	Access timing to FRC in 16-bit FR	Т		
Question	t is the read and write timing of the free-running ter (FRC) in the 16-bit free-running timer (FRT)?			Classification—H8/500 Software
				On-chip ROM On-chip RAM Clock O Timers Serial I/O A/D PWM DTC
				I/O ports Power-down modes Elec. characteristics Exception handling Bus interface External expansion Development tools Miscellaneous
the ne Word	ccess timing of the 16-bit timer's Fi ext page. access (or two successive byte acce The upper byte has to be accessed f	esses) shoul		Related Manuals Manual Title:  Other Technical Documentation Document Name:  Related Microcomputer Technical Q&A Title:
Additiona	Information			



#### FRC Access Timing (read)

#### Operation when register is read

When the upper byte is read, the upper byte value is passed to the CPU and the lower byte value is transferred to TEMP. Next, when the lower byte is read, the lower byte value in TEMP is passed to the CPU.



FRC Access Timing (write)

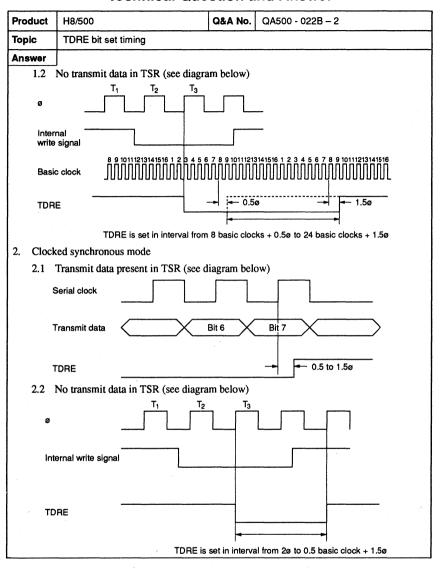
#### Operation when register is written

When the upper byte is written, the upper byte value is stored in TEMP. Next, when the lower byte is written, it is combined with the upper byte value in TEMP and all 16 data bits are written in the register.

Product	H8/500		Q&A No.	QA500	0 - 011B	
Topic	TCNT of 8-bit timer					
(TCN	a compare-match signa T) to H'00, does TCNT ounting up from H'00?				Classification—H8/500  Software On-chip ROM On-chip RAM Clock O Timers Serial I/O A/D PWM DTC I/O ports Power-down modes Elec. characteristics Exception handling Bus interface External expansion Development tools Miscellaneous	
Answer  1. TCN	Starts counting up from	n H'00.			Related Manuals  Manual Title:	
·					Other Technical Documentation Document Name:	
					Related Microcomputer Technical Q&A Title:	
					ine.	
Additiona	Information					

Product         H8/500         Q&A No.         QA50		QA50	00 - 012B			
Topic WDT when system clock stops						
Question				Classification—H8/500		
1. If the system clock stops, will the watchdog timer (WDT)				Software		
	detect anything wrong?		$\vdash$	On-chip ROM		
detect anything wrong:		$\vdash$	On-chip RAM			
				Clock		
		0	Timers			
				$\vdash$	Serial I/O	
				<del>     </del>	A/D	
				$\vdash$	PWM DTC	
				$\vdash$	I/O ports	
					Power-down modes	
				$\vdash$	Elec. characteristics	
				$\vdash$	Exception handling	
				<b> </b>	Bus interface	
				$\vdash$	External expansion	
				$\vdash$	Development tools	
				Щ.	Miscellaneous	
Answer				Related Manuals Manual Title:		
count	also stops, so the WDT cannot dete	ct the failu	re.	Oth	er Technical	
				Documentation		
			Document Name:			
		Related Microcomputer Technical Q&A				
				Title		
					<del></del>	
Additional	Information	:	***************************************			

Product   H8/532   Q&A No.   QA50			QA500	00 - 013B		
Topic	NMI requested by WDT					
Question				Classification—H8/532		
How reque reque  Answer  When	can you distinguish between an NN sted from the NMI pin and an NMI sted by the watchdog timer (WDT)	ot, it sets the	- 1	Classification—H8/532  Software On-chip ROM On-chip RAM Clock O Timers Serial I/O A/D PWM DTC I/O ports Power-down modes Elec. characteristics Exception handling Bus interface External expansion Development tools Miscellaneous Related Manuals Manual Title:		
overflow bit (OVF) in the WDT timer statu register (TCSR) to 1. You can detect this by		by software	e.			
		OVF Bit in	TCSR	Other Technical Documentation		
-	requested by input signal from pin requested by WDT	1		Document Name:  Related Microcomputer		
				Technical Q&A Title:		
Additional	Information					
When the	WDT is used in interval timer mode 520, H8/532)	e, IRQ ₀ inte	rrupts c	an be discriminated in the sa		

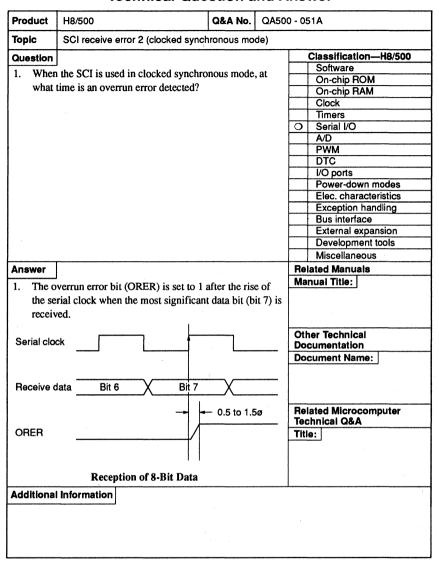

Product	roduct H8/500 Q&A No. QA5		QA500	A500 - 018B			
Topic Input/output designation of SCI clock pin		ock pin					
Question	Question			Classification—H8/500			
When the SCI is used, is the serial clock pin designated for input or output by writing a 0 or 1 in the data direction register (DDR) of the corresponding port?			C C C C C C C C C C C C C C C C C C C	Software On-chip ROM On-chip RAM Clock Immers Serial I/O V/D V/D V/D V/D V/D V/D V/D V/D V/D V/D			
				E	xternal expansion Development tools Miscellaneous		
Answer				Related Manuals Manual Title:			
<ol> <li>When you use the SCI, the input or output setting of the clock line depends on the communication mode bit (C/Ā.) in the serial mode register (SMR) and the clock enable 1 and 0 bits (CKE1 and CKE0) in the serial control register (SCR). You don't have to set the DDR.</li> </ol>			Other Technical Documentation Document Name:				
				Technical Q&A			
		O SEP AL AMERICAN AND A SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SECOND STATE OF THE SE		Title:	J		
Additional Information							

Product	H8/500	Q&A No.	QA500 - 019B
Горіс	Serial I/O line status		
Question			Classification—H8/50
1. After	input/output ports multiplexed with	Software	
			On-chip HOM
SCK lines have been used for serial communication, suppose they are redesignated as I/O ports by settings made in the serial control register (SCR) or serial mode		Oll-Clip haivi	
		, ,	
regist	er (SMR).		O Serial I/O
			A/D
What	values will the corresponding data	direction re	gister PWM
	contain?	unceuon re	DTC
אטט)	) contain?		I/O ports
			Power-down modes
			Elec. characteristics
			Exception handling
			Bus interface
			External expansion
			Development tools
			Miscellaneous
Answer			Related Manuals
			Manual Title
<ol> <li>SCI o</li> </ol>	perations do not affect the contents	of the DDF	R bits Manual Title:
of inp	ut/output ports. Given the condition	is you desci	ribe,
the DDR bits will retain the values they had before the pins		he pins	
	used for serial communication.		
water	used for serial communication.		Other Technical
			Documentation
			Document Name:
			-
		Related Microcomputer	
		Technical Q&A	
			Title:
Additional	Information		

Product		H8/500	Q&A No.	QA50	0 - 021B <b>-</b> 1		
Topic		RDRF bit set timing					
Question				Classification—H8/500			
1.	When	n data reception is completed, the receive data register				Software	
full bit (RDRF) in the serial state						On-chip ROM	
						On-chip RAM	
	1. At	what timing does this occur in asynchronous mode?				Clock	
						Timers	
2.	At wh	hat timing does this occur in clocked synchronous		0	Serial I/O		
	mode	?				A/D	
						PWM	
						DTC	
						I/O ports	
						Power-down modes	
						Elec. characteristics	
						Exception handling	
						Bus interface	
						External expansion	
						Development tools	
		• 4 (1.4)				Miscellaneous	
Ans	wer				Re	lated Manuals	
Car	See the next page.		Manual Title:				
366	me ne	xt page.				- The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the	
					011	ner Technical	
					Documentation		
						cument Name:	
					100	Culliant Hanne.	
					l		
			Related Microcomputer Technical Q&A				
					Titi	e:	
					<u> </u>		
Add	litional	Information					

Product H8/500 Q&A No. QA500 - 021B - 2 Topic RDRF bit set timing Answer 1. The RDRF bit is set to 1 after the fall of the next data sampling clock after the MSB of the data is received. (See the diagram below.) Basic clock Receive data D7 STOP Data sampling 0.5 to 1.5ø **RDRF** 8-Bit Data, 1 Stop Bit, Internal Clock The RDRF bit is set to 1 after the rising edge of the serial clock cycle in which the MSB of the data is received. (See the diagram below.) Serial clock Receive data Bit 6 Bit 7 **RDRF** 0.5 to 1.5ø 8-Bit Data

Product	H8/500	Q&A No.	QA500	0 - 022B – 1
Topic	TDRE bit set timing			
data r (SSR)	eight data bits have been transmitt egister empty bit (TDRE) in the ser is set to 1. At what timing does thi hronous mode?	ial status re		Classification—H8/500 Software On-chip ROM On-chip RAM Clock Timers
2. At when mode	nat timing does this occur in clocked?	d synchrono	ous	O Serial I/O A/D PWM DTC I/O ports Power-down modes Elec. characteristics Exception handling Bus interface External expansion Development tools Miscellaneous
1	E bit is set to 1 at different times de te transmit shift register (TSR) cont	_	it data	Related Manuals Manual Title:
· .	chronous mode  Transmit data present in TSR (see o	-	- 1	Other Technical Documentation  Document Name:
	→ 0.5 to 1.5e ming of the start of transmission af	ter the trans	mit	Related Microcomputer Technical Q&A Title:
Additional	e bit (TE) is set is similar.  Information on next page.			




Product	H8/500	Q&A No.	QA500	0 - 02	23B
Торіс	RDR and DTR utilization when SC	I is not use	d		
Question					Classification—H8/500
1. When	the serial communication interface	is not used	can		Software
	lowing be utilized as data registers		, cuii		On-chip ROM
uie ic	mowing be utilized as data registers	•		$\Box$	On-chip RAM
(1)	DDD (maning data manistan)				Clock
(1)	RDR (receive data register)			$\Box$	Timers
(2)	TDR (transmit data register)			0	Serial I/O
(-)	<b>,</b>			$\vdash$	A/D
				$\vdash \vdash$	PWM
				$\sqcup$	DTC
				$\sqcup$	I/O ports
				$\sqcup$	Power-down modes
					Elec. characteristics
				$\sqcup$	Exception handling
					Bus interface
				$\vdash$	External expansion
				$\sqcup$	Development tools
					Miscellaneous
Answer				Rel	ated Manuals
(1)	nswer is as follows:  RDR is a read-only register, so it ca data register.	nnot be use	d as a		ner Technical
(2)	TDR can be used as a data register.			-	cumentation
				Doc	cument Name:
				Tec	ated Microcomputer hnical Q&A
				Titi	e:
Additiona	I Information	·		•	

Product	H8/500	Q&A No.	QA500	) - 049A
Topic	RDRF bit in SCI			
(RDR to 0. '	RDRF bit in SCI ceive serial data, the receive data register (SSR) What happens if 0 is written in the bout first reading 1?	must be cl		Classification—H8/500  Software On-chip ROM On-chip RAM Clock Timers O Serial I/O A/D PWM DTC I/O ports Power-down modes Elec. characteristics Exception handling Bus interface External expansion
				Development tools Miscellaneous
	DRF bit retains its 1 value and is no un error occurs at completion of rec			Related Manuals Manual Title:  Other Technical
			-	Document Name:
				Related Microcomputer Technical Q&A Title:
	I Information  Insiderations apply to the transmit dates	nta register	empty b	

#### HITACHI

Classification	И
1. If the receive-error interrupt handler returns to the main program without clearing the overrun flag (ORER), framing error flag (FER), or parity error flag (PER) in the serial status register (SSR) to 0, will a receive error occur again?  Software  On-chip RON  Clock  Timers  Serial I/O  A/D  PWM  DTC  I/O ports  Power-down  Elec. charact  Exception ha	И
1. If the receive-error interrupt handler returns to the main program without clearing the overrun flag (ORER), framing error flag (FER), or parity error flag (PER) in the serial status register (SSR) to 0, will a receive error occur again?  On-chip ROM On-chip ROM Clock Timers O Serial I/O A/D PWM DTC I/O ports Power-down Elec. charact Exception ha	
program without clearing the overrun flag (ORER), framing error flag (FER), or parity error flag (PER) in the serial status register (SSR) to 0, will a receive error occur again?  On-chip RAN Clock Timers Serial I/O A/D PWM DTC I/O ports Power-down Elec. charact Exception ha	
framing error flag (FER), or parity error flag (PER) in the serial status register (SSR) to 0, will a receive error occur again?    Clock   Timers	1
serial status register (SSR) to 0, will a receive error occur again?  Timers Serial I/O A/D PWM DTC I/O ports Power-down Elec. charact Exception ha	
again?  O Serial I/O  A/D  PWM  DTC  I/O ports  Power-down  Elec. charact  Exception ha	
A/D PWM DTC I/O ports Power-down Elec. charact Exception ha	
A/D PWM DTC I/O ports Power-down Elec. charact Exception ha	
DTC  I/O ports  Power-down  Elec. charact  Exception ha	
I/O ports Power-down Elec. charact Exception ha	
Power-down Elec. charact Exception ha	
Elec. charact Exception ha	
Exception ha	
Bus interface	
External expa	
Development	t tools
Miscellaneou	IS
Answer Related Manuals	
1. After one more instruction is executed in the main program Manual Title:	
the receive error will occur again, because the error flag	
itself is the interrupt source.	
Other Technical	
Documentation	
Document Name	.
boothion runte	<u></u>
Related Microcor	nputer
Technical Q&A	
Title:	
	•
Additional Information	
This holds for all on-chip supporting modules, excluding only the external interrupts	S
	*



Product	H8/500	Q&A No.	QA50	0 - 052	
Topic	SCI RxD input example (asynchro	nous mode	)		
Question				Cla	assification—H8/532
Suppose     now switted data     Do a	coose the RxD pin is being used as an low. Do any precautions have to be the this pin over to its RxD function a correctly?  In precautions have to be taken in o correctly after detecting the break co	taken in ord and receive rder to rece	ler to serial	C   C   C   C   C   C   C   C   C   C	Software On-chip ROM On-chip RAM Clock Timers Serial I/O A/D PWM DTC //O ports Power-down modes Elec. characteristics Exception handling Bus interface External expansion Development tools
				N	Miscellaneous
Answer					ed Manuals
rece	nge the RxD input to high before settlive enable bit (RE) to 1.  The reception of the first data, supply line for at least one frame.			Other Docu	Technical mentation ment Name:
				Techr	ed Microcomputer nical Q&A
				Title:	
Addition	al Information				

Product	H8/500	Q&A No.	QA500 -	- 053A
Topic	SCI transmit start (asynchronous r	mode)		
data for (TDR) the SC from (	SCI transmitting sequence, following TDR to TSR, the transmit data E) in the serial status register (SSR) CI starts transmitting data. How must the time when the TDRE bit is set to art bit?	register em ) is set to 1, ch delay is	then there	Classification—H8/500 Software On-chip ROM On-chip RAM Clock Timers O Serial I/O A/D PWM DTC I/O ports Power-down modes Elec. characteristics Exception handling Bus interface External expansion Development tools
See th	elay time is eight basic clock cycles to diagram below.  1 2 3 4 5 6 7 8 9 1011 1213 1415 161 2 3 4 5 6  The diagram below.  0.5 to 1.5ø  Stop bit  Stop bit  8 basic clock cycles (0.5ø to 1.5ø	7 8 9 10 11 12 13 14 	5ø).	Miscellaneous Related Manuals Manual Title:  Other Technical Documentation Document Name:  Related Microcomputer Technical Q&A  Title:
	Information timing applies when transmission st	arts from th	ne setting	of the transmit enable bit (7

Product	H8/500	Q&A No.	QA500	0 - 05	•4A
Topic	Simultaneous transmit/receive in c	locked syn	chronou	s mo	de
Question					Classification—H8/500
1. Durir	g simultaneous transmitting and rec	eiving in c	ocked		Software
	ronous mode, can data be transferre				On-chip ROM
		ai iii iiie sia	ic		On-chip RAM
wnen	an overrun error has occurred?				Clock
					Timers
				0	Serial I/O
					A/D
					PWM DTC
					I/O ports Power-down modes
					Elec. characteristics
					Exception handling
					Bus interface
				<u> </u>	External expansion
					Development tools
					Miscellaneous
A	<u> </u>			Da	ated Menuela
In sin	cannot be transferred.				ated Manuals nual Title:
1. Data In sin synch proce		ing cannot		Ma Otł Do Do	nual Title:  ner Technical cumentation cument Name:  ated Microcomputer chnical Q&A
1. Data In sin synch proce	nultaneous transmitting and receiving a mode, transmitting or received independently before the ORER	ing cannot		Oth Do Do	nual Title:  ner Technical cumentation cument Name:  ated Microcomputer chnical Q&A
1. Data  In sin synch proce are be	nultaneous transmitting and receiving a mode, transmitting or received independently before the ORER	ing cannot		Oth Do Do	nual Title:  ner Technical cumentation cument Name:  ated Microcomputer chnical Q&A
1. Data  In sin synch proce are be	nultaneous transmitting and receiving and receiving aronous mode, transmitting or received independently before the ORER of the cleared to 0.	ing cannot		Oth Do Do	nual Title:  ner Technical cumentation cument Name:  ated Microcomputer chnical Q&A
1. Data  In sin synch proce are be	nultaneous transmitting and receiving and receiving aronous mode, transmitting or received independently before the ORER of the cleared to 0.	ing cannot		Oth Do Do	nual Title:  ner Technical cumentation cument Name:  ated Microcomputer chnical Q&A

Product	H8/500	Q&A No.	QA500 - 055A	
Topic	Clearing the SCI's TDRE bit			
proble transr	transmitting data, will there be any em if we wait until after writing tran nit data register (TDR) to read the 1 E bit, then clear this bit to 0?	ismit data i	in the On-chip RAM	
Answer  1. No pr	oblem will occur.		Related Manuals Manual Title:	
			Other Technical Documentation Document Name:	
			Related Microcomputer Technical Q&A	
			Title:	
	l Information te in TDR while the TDRE bit is 0,	however, yo	ou will destroy the previous TDR d	ata

	H8/500				<u> </u>
Topic	Start of A/D con	version		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	
Question					Classification—H8/5
1. Softw	are can select the	start of A/D co	onversion by s	etting	Software
	D start bit (ADS			- 1	On-chip ROM
					On-chip RAM
	CSR) to 1. What h			ופתו	Clock
bit ag	ain while A/D co	nversion is in p	rogress?		Timers
					Serial I/O
	happens if A/D c				O A/D
fallin	g edge of the exte	rnal trigger sigi	nal (ADTRG).	, then	PWM
ADT	RG goes high whi	le A/D convers	ion is in prog	ress?	
					I/O ports
(H8/5	10, H8/520, H8/5	(34, H8/536)			Power-down modes
					Elec. characteristics Exception handling
					Bus interface
					External expansion
					Development tools
					Miscellaneous
<b>A</b> -	l	<del></del>			
	ADST bit is set to	o 1 again during	g A/D convers	sion, it	Related Manuals  Manual Title:
If the will b     Opera least again	e ignored and A/l ation will be norm 1.5 cycles. After t during A/D conv	D conversion what if the $\overline{ADTR}$ hat, if the $\overline{ADT}$ ersion, it will b	ill continue.  G signal is lo	w for at	Related Manuals
will b  2. Opera least again	e ignored and A/l ation will be norm 1.5 cycles. After t	D conversion what if the $\overline{ADTR}$ hat, if the $\overline{ADT}$ ersion, it will b	ill continue.  G signal is lo	w for at	Related Manuals Manual Title:  Other Technical Documentation Document Name:
If the will b     Opera least again	e ignored and A/l ation will be norm 1.5 cycles. After t during A/D conv	D conversion what if the $\overline{ADTR}$ hat, if the $\overline{ADT}$ ersion, it will b	ill continue.  G signal is lo	w for at	Related Manuals Manual Title:  Other Technical Documentation
If the will b     Opera least again	e ignored and A/l ation will be norm 1.5 cycles. After t during A/D conv	D conversion what if the $\overline{ADTR}$ hat, if the $\overline{ADT}$ ersion, it will b	ill continue.  G signal is lo	w for at	Related Manuals  Manual Title:  Other Technical Documentation Document Name:  Related Microcomputer
If the will b     Opera least again	e ignored and A/l ation will be norm 1.5 cycles. After t during A/D conv	D conversion what if the $\overline{ADTR}$ hat, if the $\overline{ADT}$ ersion, it will b	ill continue.  G signal is lo	w for at	Related Manuals  Manual Title:  Other Technical Documentation  Document Name:  Related Microcomputer Technical Q&A
If the will b     Opera least again	e ignored and A/l ation will be norm 1.5 cycles. After t during A/D conv	D conversion what if the $\overline{ADTR}$ hat, if the $\overline{ADT}$ ersion, it will b	ill continue.  G signal is lo	w for at	Related Manuals  Manual Title:  Other Technical Documentation  Document Name:  Related Microcomputer Technical Q&A
If the will b     Opera least again conve	e ignored and A/l ation will be norm 1.5 cycles. After t during A/D conv	D conversion what if the $\overline{ADTR}$ hat, if the $\overline{ADT}$ ersion, it will b	ill continue.  G signal is lo	w for at	Related Manuals  Manual Title:  Other Technical Documentation  Document Name:  Related Microcomputer Technical Q&A
If the will b     Opera least again conve	e ignored and A/lation will be norm 1.5 cycles. After the during A/D conversion will continu	D conversion what if the $\overline{ADTR}$ hat, if the $\overline{ADT}$ ersion, it will b	ill continue.  G signal is lo	w for at	Related Manuals  Manual Title:  Other Technical Documentation  Document Name:  Related Microcomputer Technical Q&A

/ss) Classification—H8/500 Software On-chip ROM On-chip RAM Clock Timers Serial I/O A/D PWM DTC I/O ports Power-down modes
Software On-chip ROM On-chip RAM Clock Timers Serial I/O A/D PWM DTC I/O ports Power-down modes
On-chip ROM On-chip RAM Clock Timers Serial I/O A/D PWM DTC I/O ports Power-down modes
Serial I/O A/D PWM DTC I/O ports Power-down modes
Power-down modes
Elec. characteristics Exception handling Bus interface External expansion Development tools Miscellaneous
ited Manuals ual Title:
er Technical umentation ument Name:
ited Microcomputer inical Q&A
ł

Product	H8/500	Q&A No.	QA500	0 - 027B
Topic	Changing A/D conversion mode or	r channels o	during co	conversion
Question				Classification—H8/500
During A/	D conversion, what happens if you:			Software
24	2 conversion, what happens it you			On-chip ROM
1. Chan	ge the A/D conversion mode?			On-chip RAM
T. Citali	go the 14D conversion mode.			Clock
2. Chan	ge the channel selection?			Timers
z. Chang	ge the chamici sciection:			Serial I/O
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				O A/D
				PWM
27.1				DTC
				I/O ports
				Power-down modes
10-11				Elec. characteristics
				Exception handling
				Bus interface
				External expansion
				Development tools
<u> </u>				Miscellaneous
Answer				Related Manuals
conve	I changing the A/D conversion mod crsion. Conversion accuracy will be I changing the channel selection dur crsion. The same problem will occur	degraded.	<b>U</b>	Other Technical Documentation Document Name:  Related Microcomputer Technical Q&A Title:
	I Information			
1.	eck the A/D end flag (ADF) in the A Change the A/D conversion mode. Select the channel(s).	A/D control	/status r	register (ADCSR), then:

Product	H8/500	Q&A No.	QA50	0 - 028B	
Topic	Resistor ladder in A/D converter				
Question				Classification—H8/50	0
	ne analog power supplies of the A/L			Software	
		Conventer		On-chip ROM	
conne	ected only to the resistor ladder?			On-chip RAM	
				Clock	
				Timers	
				Serial I/O	
				O A/D	
				PWM	
				DTC	
				I/O ports	
				Power-down modes	
				Elec. characteristics	
				Exception handling	
				Bus interface	
				External expansion	
				Development tools	
				Miscellaneous	
Answer				Related Manuals	
				Manual Title:	
	nalog power supplies are connected			Thursday Thursday	
resisto	or ladder but also to analog circuits	in the comp	parator	:	
etc. T	hey also power the interface to digi	tal circuits	in the		
	converter.				
.420				Other Technical	
				Documentation	
				Document Name:	
				Related Microcomputer	
				Technical Q&A	
				Title:	
				, <del>**</del> *	
Additional	I Information			I	
Additional	- Internation				

Product	H8/500	Q&A No.	QA500	0 - 02	29B
Topic	Rise time of power supplies (AV _{CC}	, V _{CC} )			
Question					Classification—H8/500
1. Will a	any problems occur if there is a diffe	erence in ris	se.	L	Software
	between the analog power supply (				On-chip ROM
		Av CC) and	aigitai	<u> </u>	On-chip RAM
powe	r supply (V _{CC} )?			ļ	Clock
					Timers
				<u> </u>	Serial I/O
				0	A/D
					PWM DTC
	• *			-	I/O ports
				<u> </u>	Power-down modes Elec. characteristics
1 1					Exception handling
				<u> </u>	Bus interface
					External expansion
				_	Development tools
				-	Miscellaneous
				-	
Answer					lated Manuals
1. There	is no restriction on the order in wh	ich AV _{CC} a	nd	ма	nual Title:
	are powered up.				4
CC					
Durin	g the interval marked A in the diagr	ram below.			
	ge potentials in the interface to digit				ner Technical
A/D c	converter are unstable, which may converter	ause fluctua	ations		cumentation cument Name:
in cur	rent drain.			סט	cument Name:
	1 A 1				
	^				
	/	· · · · · · · · · · · · · · · · · · ·			
V _{CC}					ated Microcomputer
<del>-</del>				Titi	
					<u> </u>
AVCC					
_			-		
Additional	Information				

Product	H8/500	Q&A No.	QA500	) - 056A			
Topic	Allowable impedance of A/D signa	l sources					
Question			Classifica	tionH8/500			
	the allowable signal source impedance remain $10 \text{ k}\Omega$			Software			
	even if the A/D conversion time is changed?				ROM		
even	if the A/D conversion time is chang	ea?		On-chip	RAM		
				Clock			
ł				Timers			
				Serial I/C	)		
ĺ				O A/D			
				PWM			
ļ				DTC			
			•	I/O ports			
			:		own modes		
					aracteristics		
					n handling		
				Bus inter			
					expansion		
,					ment tools		
				Miscellar			
Answer				Related Manu	uals		
1. The k	ow-speed conversion mode should of	nerate ever	n at	Manual Title:			
	2, but this is not guaranteed.	operate ever	· at				
20 K3	, but this is not guaranteed.						
				Other Techni			
				Documentati			
				Document Na	ame:		
				Related Micro	ocomputer A		
				Title:	7.7		
Additional	Information						

Product	H8/532, H8/534, H8/536	Q&A No.	QA50	0 - 03	1B
Topic	DTR of PWM timer				
Question				(	Classification—H8/532
1. The d for pu duty o	uty register (DTR) of the PWM tim ulses with 0% duty cycle, H'7D for p cycle, and H'FA for pulses with 100 if a value from H'FB to H'FF is wri	oulses with % duty cyc	50% le, but	0	On-chip ROM On-chip RAM Clock Timers Serial I/O A/D PWM DTC I/O ports Power-down modes Elec. characteristics Exception handling Bus interface External expansion
				$\vdash$	Development tools
					Miscellaneous
Answer				Rela	ated Manuals
	alue from H'FB to H'FF is written in t with a 100% duty cycle.			Doc	er Technical sumentation sument Name:  atted Microcomputer hnical Q&A
Additions	I Information			L	
Additiona	I Information				

Product	H8/534, H8/536	Q&A No.	QA500	) - 057A
Topic	PWM pin assignments			
Question				Classification—H8/534
1. The F	PWM timer outputs (PW ₁ to PW ₃ ) a	re can be as	ssioned	Software
	to P6 ₃ (multiplexed with IRQ ₃ to			On-chip ROM
				On-chip RAM
	multiplexed with SCK2, RxD2, and	$TxD_2$ ). Car	i all six	Clock
pins b	be used for PWM output?			Timers
				Serial I/O
				A/D
				O PWM
				DTC
				I/O ports
				Power-down modes
				Elec. characteristics
				Exception handling
				Bus interface
				External expansion
				Development tools
				Miscellaneous
Answer				Related Manuals
1. Yes, t	hey can.			Manual Title:
			j	
				Other Technical
			1	Documentation
			ŀ	Document Name:
				Related Microcomputer Technical Q&A
				Title:
		,		
Additiona	I Information			
P6 ₁ to P6 ₃	can be used for both PWM output	and IRQ in	put. P9 ₂	to P9 ₄ can be used for either
	out or SCI functions, but not both.			
•	•			

Product	H8/500	Q&A No.	QA500 -	032B		
Topic	Interrupts during DTC operation					
Question				Classification—H8/500		
1. Duri	ung operation of the data transfer con	troller (DT)	~)	Software		
	happens if an interrupt is requested	•		On-chip ROM		
•		•	IIIy	On-chip RAM		
high	er than the interrupt the DTC is serv	ing?	_	Clock		
				Timers		
				Serial I/O		
			L	A/D		
				PWM		
				I/O ports		
			L	Power-down modes		
				Elec. characteristics		
				Exception handling		
				Bus interface		
				External expansion		
				Development tools		
				Miscellaneous		
Answer			F	lelated Manuals		
1. Whi	le the DTC is operating the CPU hal	te eo no oth	N N	lanual Title:		
		is, so no ou				
inter	rupts can be accepted.					
	nma di si di di di di di di di di di di di di di					
	DTC therefore completes its interrup		tter	Other Technical		
whic	h one instruction is executed; then the	ne pending		Documentation		
inter	rupt-handling sequence begins.		L	ocument Name:		
			-	ocument Name.		
30.00						
				* .		
				lelated Microcomputer		
			LT	echnical Q&A		
			T	itle:		
			1			
Additiona	al Information					

If the instruction executed after the conclusion of DTC operations is LDC or another instruction that inhibits interrupts, the interrupt-handling sequence will not start until the next instruction after that has been executed (and if that next instruction also inhibits interrupts, another instruction will be executed).

Pro	duct	H8/500	Q&A No.	QA50	0 - 033B
Тор	ic	DTC usage			
Que	stion				Classification—H8/500
		   TC	DOM		Software
1.	. Can DTC register information be located on ROM?			On-chip ROM	
١,	[		On-chip RAM		
2.		a DTC data transfer, the data transfer		•	Clock
	•	R) is decremented by 1, and if the r		he	Timers
	DTC	will no longer be activated. If DTC	register		Serial I/O
	inform	nation is stored on ROM with the D	TCR value	set to	A/D
	1. wil	l an interrupt occur after the DTC d	ata transfer	?	PWM
	2,	and morraph occur and a role	<b></b>	•	O DTC
					I/O ports
					Power-down modes
					Elec. characteristics
					Exception handling
					External expansion
					Development tools
					Miscellaneous
Ans	wer				Related Manuals
1.	DTC	register information can be located	on ROM		Manual Title:
٠.	210	ogistor information can be located	011 110 1121		
2.	An in	terrupt will be generated. The decisi	ion as to wi	nether	
		R = 0 is made when the DTCR value			
	D101	t = 0 is made when the D1 cit value	o is decicin	ontou.	Other Technical
					Documentation
					Document Name:
					1
					,
					Related Microcomputer
					Technical Q&A
					Title:
Add	litional	Information		-	
-					· .

Product	H8/500	Q&A No.	QA500	4500 - 035B		
Topic	Analog input port data register dur	ing A/D cor	version			
	g A/D conversion, what happens to			Classification—H8/500 Software On-chip ROM		
1	egister (DR) of the input port that is g input?	s also used	or	On-chip RAM Clock Timers		
			-	Serial I/O A/D PWM		
				DTC O I/O ports Power-down modes		
			-	Elec. characteristics Exception handling Bus interface		
			F	External expansion Development tools Miscellaneous		
Answer				Related Manuals		
t .	ised for analog input return the value conversion, regardless of the actual		ge.	Manual Title:  Other Technical Documentation Document Name:		
			L	Related Microcomputer Technical Q&A		
				Title:		
Additiona	Information					

Product	H8/500	Q&A No.	QA500	) - 037B
Topic	Port output after reset			
which	e an input/output port line to output should be set first: the port's data re irection register (DDR)?			Classification—H8/500 Software On-chip ROM On-chip RAM Clock Timers Serial I/O A/D PWM DTC O I/O ports Power-down modes Elec. characteristics Exception handling Bus interface External expansion Development tools Miscellaneous
(1)	ese registers in the following order.  Set the output data in the output port  Set the DDR bit of the output line to	_	ister.	Related Manuals Manual Title:  Other Technical
				Document Name:
				Related Microcomputer Technical Q&A Title:
	Information set initializes the port data registers	to 0.		

Pro	duct	H8/500	Q&A No.	QA500	) - 039B
Тор	ic	AS and RD signal timing			
<b>Que</b> 1.		te $\overline{AS}$ and $\overline{RD}$ signals synchronized of the system clock (ø), or with outp			Classification—H8/500  Software On-chip ROM On-chip RAM Clock Timers Serial I/O A/D PWM DTC O I/O ports Power-down modes Elec. characteristics Exception handling Bus interface External expansion Development tools
Ans	edge of	S and RD signals are synchronized of the system clock in the T ₁ state.  S and RD signals never go low before the T ₁ state. Case A in the diagram	ore the falli	ng	Miscellaneous Related Manuals Manual Title:  Other Technical Documentation
	ø A ₀ to A	tad	-Ta-		Related Microcomputer Technical Q&A
		Information			

Product	H8/500	Q&A No.	QA500	- 040B	
Topic	Unused I/O lines				
Question	should be done with unused I/O por	rt lines?		Classification—H8/500 Software On-chip ROM On-chip RAM Clock Timers Serial I/O A/D PWM DTC O I/O ports Power-down modes Elec. characteristics Exception handling Bus interface External expansion Development tools	
Answer				Miscellaneous Related Manuals	
1	Pull unused input/output port lines uthrough an approximately 10-kΩ resolves the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same for input-only port lines the same	sistor.		Manual Title:  Other Technical Documentation Document Name:  Related Microcomputer Technical Q&A Title:	
Additional Information					
Connect a	separate pull-up or pull-down resist	tor to each l	ine.		

Product	H8/520, 532, 534, 536	Q&A No.	QA50	0 - 041B
Topic	Power dissipation in hardware and	software s	tandby	modes
Question				Classification—H8/532
1. Is the	re any difference in current dissipati	ion hetweer	,	Software
	vare standby and software standby?	ion botwood	•	On-chip ROM
naiuw	rate standby and software standby:			On-chip RAM
				Clock
				Timers
	•			Serial I/O
				A/D PWM
				DTC
				I/O ports
				O Power-down modes
				Elec. characteristics
				Exception handling
				Bus interface
				External expansion
				Development tools
				Miscellaneous
Answer				Related Manuals
	nt dissipation satisfies the relationsh			Manual Title:
hardw In har imped softwa	vare standby ≤ software standby.  dware standby mode, all lines are plance state, which reduces current dare standby mode I/O ports hold the rent dissipation varies depending of	laced in the issipation. I ir previous	n states,	Other Technical Documentation Document Name:  Related Microcomputer Technical Q&A Title:
Additional	Information			
		·		· · · · · · · · · · · · · · · · · · ·

# SECTION

Product	H8/510	Q&A No.	QA500	) - 058A
Topic	State of D ₀ to D ₇ with 8-bit data bu	ıs		
Question				Classification—H8/510
	bit data bus mode (mode 2 or 4), du	iring acces	to the	Software
	• • • • • • • • • • • • • • • • • • • •	-		On-chip ROM
	ccessed via an eight-bit bus, what a		i	On-chip RAM
unuse	d data bus lines (D ₀ to D ₇ ) and con-	trol signals'	?	Clock
				Timers
			1	Serial I/O
				A/D
				PWM
				DTC
			Ì	I/O ports
				Power-down modes
			j	Elec. characteristics
				Exception handling
				Bus interface
				Development tools
			1	O Bus controller
				Miscellaneous
Answer	,			Related Manuals
				Manual Title:
	D ₇ are in the high-impedance state,	and LWR	is	Maridar Title.
alway	s 1.			
	•			
				Other Technical
				Documentation
				Document Name:
			ł	Related Microcomputer
				Technical Q&A
			ł	Title:
			ŀ	Title.
			1	
				•
Additional	Information			
Auditional	Inioination			
	·			

Pro	duct	H8/510	Q&A No.	QA50	00 - 059A	
Topic		State of D ₀ to D ₇ during byte access in 16-bit data bus mode				
	stion What	are the pin states during access to lous mode (mode 2 or 4)?			Classification—H8/500 Software On-chip ROM On-chip RAM Clock Timers Serial I/O A/D PWM DTC I/O ports Power-down modes Elec. characteristics Exception handling O Bus interface External expansion	
					Development tools	
					Miscellaneous	
1.	(2) 1 (2) i	$ \frac{\overline{LWR}}{\overline{HWR}} = 1 \qquad \qquad \frac{\overline{LWR}}{\overline{HWR}} = 0 \qquad \qquad \frac{\overline{HWR}}{\overline{HWR}} $ In read access, the states differ dependent of the control signal states are as follows: $ \overline{RD} = 0 $	out the same  s to odd add  = 0  = 1  ending on the	data.	Related Manuals  Manual Title:  Other Technical Documentation  Document Name:  Related Microcomputer Technical Q&A  Title:	
Additional Information						
1. The minimum RAM standby voltage (VRAM) is specified at 2.0 V. What voltage should be supplied to AV _{CC} ?						

# CITOR

Product	H8/520, 532, 534, 536	Q&A No.	QA500	0 - 060A
Topic	RAM standby voltage			
Question	Classification			Classification—H8/532
				Software
				On-chip ROM
				On-chip RAM
				Clock
				Timers
				Serial I/O
				A/D
				PWM
				DTC
				I/O ports
				Power-down modes
				Elec. characteristics
1			j	Exception handling
				Bus interface
				External expansion
				Development tools
				O Miscellaneous
Answer				Related Manuals
2 V. S	<ol> <li>AV_{CC} should be the same as the RAM standby voltage: 2 V. Setting AV_{CC} to 5 V or VSS will cause excessive current drain.</li> </ol>			Manual Title:
				Other Technical Documentation
				Document Name:
				Related Microcomputer Technical Q&A
				Title:
Additional	Information	**************		

# SECTION

# **H8/520 Device EPROM Security**

**Tech Notes** 

# **Application Engineering**

Tom Hampton

#### **EPROM Security**

The H8/520 Microcontroller has an EPROM security feature that can be used by the customer. This feature allows the user of the microcontroller to protect parts (or all) of the code programmed into the on-chip EPROM of the device from being read by means other than his own program. This feature cannot be tested by Hitachi and, due to this, is unguaranteed. It is up to the user to determine whether or not to implement the function of this feature and accept sole responsibility for its outcome.

#### **Memory Configuration**

The memory matrix of the H8/520 Microcontroller is configured as a dual matrix, one with even addresses and the other with odd addresses. The configuration of each matrix appears as lines of memory 32 bytes wide (32 x 8, 256 bits). This configuration allows an individual memory line to consist of 64 bytes of data (including both even and odd addresses). Each memory line has 1 security bit thus allowing every 64-byte segment to have the option of the security feature. The address of this security bit is the same as the starting address for the memory line.

#### **Security Functions**

The security function had two different operations depending upon the mode of operation that the device is placed into; EPROM programming mode or CPU operation mode.

#### **EPROM Programming Mode**

In the EPROM programming mode, the ability of the EPROM programmer to read the EPROM contents is limited by the state of the security bit.

If the security bit is a "1" (unprogrammed state), then the data in the EPROM can always be read. If the security bit is a "0" (programmed), then any read operation to the EPROM will result in a "00" being read. This indicates that once the security bit is programmed, the user will be unable to verify the contents of the EPROM.

bit=1 EPROM data can be read (normal)

bit=0 "00" data is always read

#### HITACHI

# **H8/520 Device EPROM Security**

#### **CPU Operating Mode**

In the CPU operating modes, the ability of any device to read the EPROM contents is limited by the state of the security bit.

If the security bit is a "1" (unprogrammed state), then the data in the EPROM can always be read by the CPU. If the security bit is a "0" (programmed), then the read state of the EPROM (from the CPU), depends upon where instruction execution is occurring from.

bit=1 bit=0 EPROM data can be read by CPU (normal)

After RESET, the CPU can read EPROM data until it executes an instruction outside the internal EPROM area (either external memory or internal RAM). Once an instruction is executed outside the internal EPROM memory area, then the EPROM becomes disabled and cannot be accessed any further. This prohibits an external program from being able to "dump" the contents of the on-chip EPROM.

#### **Programming the Security Bit**

There exists two EPROM programming modes; normal and security. The normal EPROM programming mode is used to program the code/data area of the on-chip EPROM memory for the H8/520 device. The "security" programming mode is used to program the security bits of the EPROM's memory area. The security function is then implemented by programming a "0" into the address corresponding to the memory line location. Setting the programming mode is done by setting certain I/O port pins to the following states:

		H8/520 Device	I/O Port Pin
Programming	Mode	P50/TMCI	P51/FTI1
Normal		1	1
Security		1	0

Again, this feature cannot be tested by Hitachi and thus remains unguaranteed. It is up to the user to determine whether or not to implement the function of this feature and accept sole responsibility for its outcome.

# H8/534 Device EPROM Security

**Tech Notes** 

# **Application Engineering**

Tom Hampton

#### **EPROM Security**

The H8/534 Microcontroller has an EPROM security feature that can be used by the customer. This feature allows the user of the microcontroller to protect parts (or all) of the code programmed into the on-chip EPROM of the device from being read by means other than his own program. This feature cannot be tested by Hitachi and, due to this, is unguaranteed. It is up to the user to determine whether or not to implement the function of this feature and accept sole responsibility for its outcome.

#### **Memory Configuration**

The memory matrix of the H8/534 Microcontroller is configured as a dual matrix, one with even addresses and the other with odd addresses. The configuration of each matrix appears as lines of memory 32 bytes wide (32 x 8, 256 bits). This configuration allows an individual memory line to consist of 64 bytes of data (including both even and odd addresses). Each memory line has 1 security bit thus allowing every 64-byte segment to have the option of the security feature. The address of this security bit is the same as the starting address for the memory line.

#### **Security Functions**

The security function had two different operations depending upon the mode of operation that the device is placed into; EPROM programming mode or CPU operation mode.

#### **EPROM Programming Mode**

In the EPROM programming mode, the ability of the EPROM programmer to read the EPROM contents is limited by the state of the security bit.

If the security bit is a "1" (unprogrammed state), then the data in the EPROM can always be read. If the security bit is a "0" (programmed), then any read operation to the EPROM will result in a "00" being read. This indicates that once the security bit is programmed, the user will be unable to verify the contents of the EPROM.

bit=1

EPROM data can be read (normal)

bit=0

"00" data is always read

#### **CPU Operating Mode**

In the CPU operating modes, the ability of any device to read the EPROM contents is limited by the state of the security bit.

If the security bit is a "1" (unprogrammed state), then the data in the EPROM can always be read by the CPU. If the security bit is a "0" (programmed), then the read state of the EPROM (from the CPU), depends upon where instruction execution is occurring from.

bit=1 bit=0 EPROM data can be read by CPU (normal)

After RESET, the CPU can read EPROM data until it executes an instruction outside the internal EPROM area (either external memory or internal RAM). Once an instruction is executed outside the internal EPROM memory area, then the EPROM becomes disabled and cannot be accessed any further. This prohibits an external program from being able to "dump" the contents of the on-chip

#### **Programming the Security Bit**

EPROM.

There exists two EPROM programming modes; normal and security. The normal EPROM programming mode is used to program the code/data area of the on-chip EPROM memory for the H8/534 device. The "security" programming mode is used to program the security bits of the EPROM's memory area. The security function is then implemented by programming a "0" into the address corresponding to the memory line location. Setting the programming mode is done by setting certain I/O port pins to the following states:

	H8/534 Device I/O Port Pin		
Programming Mode	P60/-IRQ2/A16	P61/PW1/-IRQ3/A17	
Normal	1	1	
Security	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	

Again, this feature cannot be tested by Hitachi and thus remains unguaranteed. It is up to the user to determine whether or not to implement the function of this feature and accept sole responsibility for its outcome.

# **H8/536 Device EPROM Security**

#### **Tech Notes**

# **Application Engineering**

Tom Hampton

#### **EPROM Security**

The H8/536 Microcontroller has an EPROM security feature that can be used by the customer. This feature allows the user of the microcontroller to protect parts (or all) of the code programmed into the on-chip EPROM of the device from being read by means other than his own program. This feature cannot be tested by Hitachi and, due to this, is unguaranteed. It is up to the user to determine whether or not to implement the function of this feature and accept sole responsibility for its outcome.

#### **Memory Configuration**

The memory matrix of the H8/536 Microcontroller is configured as a dual matrix, one with even addresses and the other with odd addresses. The configuration of each matrix appears as lines of memory 32 bytes wide (32 x 8, 256 bits). This configuration allows an individual memory line to consist of 64 bytes of data (including both even and odd addresses). Each memory line has 1 security bit thus allowing every 64-byte segment to have the option of the security feature. The address of this security bit is the same as the starting address for the memory line.

#### **Security Functions**

The security function had two different operations depending upon the mode of operation that the device is placed into; EPROM programming mode or CPU operation mode.

#### **EPROM Programming Mode**

In the EPROM programming mode, the ability of the EPROM programmer to read the EPROM contents is limited by the state of the security bit.

If the security bit is a "1" (unprogrammed state), then the data in the EPROM can always be read. If the security bit is a "0" (programmed), then any read operation to the EPROM will result in a "00" being read. This indicates that once the security bit is programmed, the user will be unable to verify the contents of the EPROM.

bit=1 EPROM data can be read (normal)

bit=0 "00" data is always read

# H8/536 Device EPROM Security

#### **CPU Operating Mode**

In the CPU operating modes, the ability of any device to read the EPROM contents is limited by the state of the security bit.

If the security bit is a "1" (unprogrammed state), then the data in the EPROM can always be read by the CPU. If the security bit is a "0" (programmed), then the read state of the EPROM (from the CPU), depends upon where instruction execution is occurring from.

bit=1

EPROM data can be read by CPU (normal)

bit=0

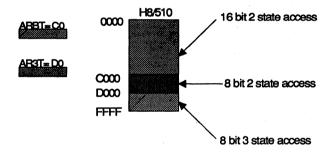
After RESET, the CPU can read EPROM data until it executes an instruction outside the internal EPROM area (either external memory or internal RAM). Once an instruction is executed outside the internal EPROM memory area, then the EPROM becomes disabled and cannot be accessed any further. This prohibits an external program from being able to "dump" the contents of the on-chip EPROM.

#### **Programming the Security Bit**

There exists two EPROM programming modes; normal and security. The normal EPROM programming mode is used to program the code/data area of the on-chip EPROM memory for the H8/536 device. The "security" programming mode is used to program the security bits of the EPROM's memory area. The security function is then implemented by programming a "0" into the address corresponding to the memory line location. Setting the programming mode is done by setting certain I/O port pins to the following states:

	H8/536 Device I/O Port Pin		
Programming Mode	P60/-IRQ2/A16	P61/PW1/-IRQ3/A17	
Normal	1	1	
Security	. 1	0	

Again, this feature cannot be tested by Hitachi and thus remains unguaranteed. It is up to the user to determine whether or not to implement the function of this feature and accept sole responsibility for its outcome.


# **H8/510 Instruction Timing**

**Tech Notes** 

# **Application Engineering**

Carol Jacobson

Although the H8/510 uses the same instruction set as the rest of the H8/500 family, the formulas used to calculate instruction fetch and execution times are somewhat different. The H8/510 address range is sectioned by the Three-state Area Top Register (AR3T,) defining two state or three state access field, and Byte Area Top Register (ARBT), defining 16-bit or 8-bit data bus fields. Locations with address values greater than the ARBT register value are accessed via an 8-bit bus. Locations with address values greater than or equal to the AR3T value are accessed using three states, two access plus one additional state for slower peripherials.



Access times for instructions fetched from each area are claculated using slightly different formulas. Therefore, it's important to understand the contents of the AR3T & ARBT before trying to determine execution times. Formulas are given in the H8/500 programming manual section 2.6.4.

#### **EXAMPLES:**

1.

Mode 3

Expanded Maximum 8-bit data bus (ABRT register is ignored)

AR3T=H'90

DPRegister=H'A0

# **H8/510 Instruction Timing**

address

opcode

operands

00000100

MOV.W

R1,@H'A00020

The instruction is fetched via an 8-bit data bus from a location accessed in two cycles. Word data is moved to a location accessed in three cycles via an 8-bit bus.

From section 2.6.4: Total CPU states (cycles) = (Value in Table 2-8) + 2I + J + K

$$T = 6 + 2(2) + 1 + 3 = 14$$
 clocks

2.

Mode 4

Expanded Maximum 16-bit data bus

AR3T=H'A0

ARBT=H'A2

address

opcode

operands

00A00100

MOV.W

R1.@FRT2 OCRA

The instruction is fetched via a 16-bit bus from a location accessed in three cycles. Word data is moved to the on-chip register field which is always accessed in three cycles via an 8-bit bus.

From section 2.6.4: Total CPU states (cycles)= (Value in Table 2-8)+ (Value in Table 2-9) + 2I + (J+K)/2

$$T = 6 + 1 + 2(2) + (1+3)/2 = 13$$
 clocks

# 5

# **H8/500 Instruction Timing**

**Tech Notes** 

### **Application Engineering**

Carol Jacobson

Individual instruction execution times for the H8/532, H8/534, H8/536, H8/520 can be calculated using tables 2-8 (1 thru 6) and table 2-9 of the H8/500 Series Programming Manual. Formulas for the H8/532, H8/534, H8/536, and H8/520 are given in section 2.6.1. H8/510 Instruction timing is discussed in TN-0039.

The main steps used to determine instruction execution timing are:

1. determine the instruction addressing mode, location and operand location.

(note: for indirect addressing modes the operand location is the location of the data)

- 2. from section 2.6.1 determine the which formula to use
- 3. apply values from Table 2.8 & 2.9 to the formula

#### **EXAMPLES:**

1.

Mov.w #H'DAFE,@FA80

;addressing mode: @AA:16

a. If the instruction and operands reside in on-chip RAM or ROM, the number of CPU clock cycles is the value from the body of Table 2.8 plus the value from Table 2.9.

Table 2.8 #cycles = 9 from Table 2.9 the 'adj. value' = 2 (even address) = 11 CPU clocks total execution time.

b. If the instruction resides in on-chip memory and the operands are from an on-chip module (peripheral) or off-chip, the number of CPU clock cycles is the value from the body of Table 2.8 plus 2 x the I value plus the adj. value from Table 2.9.

Table 2.8 #cycles= 9 + 2(2) plus the 'adj. value', 2 (even address) = 15 clocks

c. If the instruction resides in off-chip memory and the operands are from on-chip, the number of CPU clock cycles is the value from the body of Table 2.8 plus 2 x the J and K values from Table 2.8.

Table 2.8 #cycles= 9, K=3 and J=3; Total execution time = 9+2(3+3)=21 clocks

d. If the instruction resides in off-chip memory and the operands are from off-chip memory or onchip modules the number of CPU clock cycles is the value from the body of Table 2.8 plus 2 x the I, J and K values from Table 2.8.

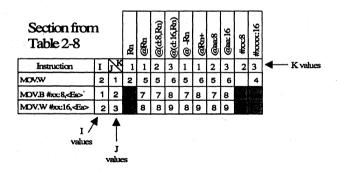
Table 2.8 #cycles= 9, I= 2, K= 3 and J= 3;

Total execution time = 9 + 2(3 + 3 + 2) = 25 clocks

2.

BSR

External ROM


;addressing mode @aa:16

a. If the instruction resides off-chip and the destination is an off-chip 16-bit location and the branch is taken: Table 2.8 # cycles= 7, I= 2, J+K= 5;

Total execution time = 7 + 2(2 + 5) = 21 clocks

b. If the instruction resides on-chip and the destination is an on-chip 16-bit location and the branch is taken: Table 2.8 #cycle= 7, From Table 2.9 'adj. value'= 0 (even address);

Total execution time= 7 + 0 = 7 clocks



# Section

# H8/532 Microcontroller EPROM Security

#### **Tech Notes**

### **Application Engineering**

Tom Hampton

### **EPROM Security**

The H8/532 Microcontroller has an EPROM security feature that can be used by the application programmer. This feature allows the user of the microcontroller to protect parts (or all) of the code programmed into the on-chip EPROM of the H8/532 from being read by means other than his or her own program. This feature cannot be tested by Hitachi and, due to this, is unguaranteed. It is up to the user to determine whether or not to implement the function of this feature and accept sole responsibility for its outcome.

### **Memory Configuration**

The memory matrix of the H8/532 Microcontroller is configured as a dual matrix, one with even addresses and the other with odd addresses. The configuration of each matrix appears as lines of memory 32 bytes wide (32 x 8, 256 bits). This configuration allows an individual memory line to consist of 64 bytes of data (including both even and odd addresses). Each memory line has 1 security bit thus allowing every 64 byte segment to have the option of the security feature. The address of this security bit is the same as the starting address for the memory line.

### **Security Functions**

The security function had two different operations depending upon the mode of operation that the H8/532 device is placed into, EPROM programming mode or CPU operation mode.

### **EPROM Programming Mode**

In the EPROM programming mode, the ability of the EPROM programmer to read the EPROM contents is limited by the state of the security bit.

If the security bit is a "1" (unprogrammed state), then the data in the EPROM can always be read. If the security bit is a "0" (programmed), then any read operation to the EPROM will result in a "00" being read. This indicates that once the security bit is programmed, the user will be unable to verify the contents of the EPROM.

security bit

EPROM data can be read (normal)

security bit 0

1

"00" data is always read

**Tech Notes** 

# H8/532 Microcontroller EPROM Security

### **CPU Operating Modes**

In the CPU operating modes, the ability of any device to read the EPROM contents is limited by the state of the security bit.

If the security bit is a "1" (unprogrammed state), then the data in the EPROM can always be read by the CPU. If the security bit is a "0" (programmed), then the read state of the EPROM (from the CPU), depends upon where instruction execution is occurring from.

security bit security bit

EPROM data can be read by CPU (normal)

After RESET, the CPU can read EPROM data until it executes an instruction outside the internal EPROM area (either external memory or internal RAM). Once an instruction is executed outside the internal EPROM memory area, then the EPROM becomes disabled and cannot be accessed any further. This prohibits an external program from being able to "dump" the contents of the on-chip EPROM.

### **Programming the Security Bit**

There exists two EPROM programming mode; Normal and Security. The normal EPROM programming mode is used to program the code/data area of the on-chip EPROM memory for the H8/532. The "security" programming mode is used to program the security bits of the EPROM's memory area. The security function is then implemented by programming a "0" into the address corresponding to the memory line location. Setting the programming mode is done by setting certain I/O port pins to the following states:

	H8/532 I/	H8/532 I/O Port Pin	
Programming Mode	P60	P61	
Normal	1	1	
Security	1	0	

Again, this feature cannot be tested by Hitachi and thus remains unguaranteed. It is up to the user to determine whether or not to implement the function of this feature and accept sole responsibility for its outcome.

Section 6
Memory

SECTION

### Word-wide DRAMs

### **Tech Notes**

### **Application Engineering**

Oomer A. Serang

### Introduction

Hitachi has introduced an assortment of word-wide 4Meg DRAMs. This Brief will describe the main purpose and application of word wide devices.

Table 1.0 below lists the various x 16 offerings.

Part Number	Refresh Rate	Control	Vec	Icc1 Current Consumption
HM514260-8	512 cycles/8ms	2CAS	5.0V +/- 10 %	150mA
HM514270-8	512 cycles/8ms	2 WE	5.0V +/- 10%	150mA
HM514170-8	1024 cycles/ 16ms	2 WE	5.0V +/- 10%	120mA
HM51V4160-8	1024 cycles/ 16ms	2 CAS	3.3V +/- 10%	105mA

### Table 1.0 Hitachi's 256kx16 parts list.

### **Applications**

The 256kx16 device can be used either to upgrade systems that are based on the older generation 256kx4 DRAMs or to give better performance to new systems that implement word wide busses. The distinction is made when choosing one of the two available refresh rates. The 512cycles/8ms is a direct replacement for older generation 256kx4 DRAMs. This implies that the DRAM controller does not have to be redesigned. While the 1024 cycles/16ms part consumes less current but will require

a new DRAM controller, and hence is targeted for new systems. The current reduction is due to the fact that fewer sense amplifiers are used and hence the overall current consumption is decreased.

Another system design variable is memory bank selection. Some designers prefer to use common /RAS while the /CAS signal serves as a bank select. Hitachi offers the 2CAS signal option precisely for those systems. Hitachi also offers 2WE parts which are best used in graphics applications, since it offers easier control of upper and lower bytes. In particular, the x16 DRAM part is used as a z-buffer while expensive VRAMs would be used as the main graphics buffer.

Lastly, the obvious advantages of designing with 256kx16 devices instead of 256k x4 parts should not be overlooked; less board space is used, memory cost is reduced, and the reliability is higher.

Consequently, an older memory system based on bank selection of 256 k x 4 DRAMs and their 8 ms refresh requirement can be upgraded with either the HM514260 or HM514270.

Word wide write cycles for the multiple/WE and multiple/CAS type devices can be confusing. To prevent confusion, it is important to understand that address and data is latched internally on a word-wide basis at the fall of /RAS and /WE or /CAS regardless of whether the write cycle is a byte write or a word write. This means that the x16 device does NOT permit writing upper and then lower bytes in sequence within the same write cycle. More specifically, early write cycles cannot be mixed with late write cycles in the same cycle. On the other hand, a word can be written with the fall of both upper and lower byte control signals at the same time, and one byte can be written with the fall of either the upper or lower control select signals.

In addition, fast page mode byte read cycles are permitted as long as there is a minimum tCP time separation between the first/UCAS being de-asserted and the second L-CAS becoming asserted as shown in Figure 1.0

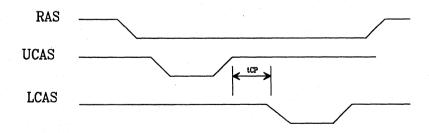



Figure 1.0 Page mode cycle

# Mask History of HN58C256

### **Tech Notes**

### **Application Engineering**

Oomer A. Serang

The original HN58C256, 256k EEPROM was introduced in 1989 as an R0 mask. Since that time the device has gone through 2 mask revisions and this Brief will summmarize the modifications.

The first revision was done in late 1990 to counter potential data destruction due to noise on /CE or /WE while Vcc was powering up or down. Normal program mode dictates that /CE and /WE be low while Vcc and /OE are high. However, while powering on and off unknown levels on /CE or /WE can inadvertently cause erroneous data to be written. Figure 1.0 below, shows the conditions that may lead to an inadvertent program cycle.

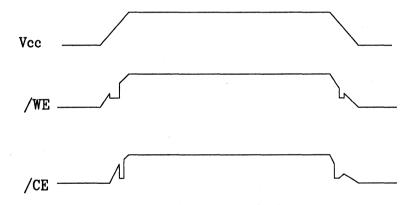



Figure 1.0 Conditions that may cause incorrect write.

Consequently, if a user could guarantee that /WE and /CE are high when Vcc was stabilizing then there could be no possibility of an inadvertent write occuring. Nonetheless, Hitachi decided to improve the chip by decreasing the programming voltage sensitivity level so that any glitches that occurred on /CE or /WE while Vcc was stabilizing were locked out.

From a specification standpoint, the only parameter that changed due to the R1 mask revision was an increase in the Icc1 standby current, from  $20\mu A$  maximum to  $50\mu A$  typical and  $200\mu A$  maximum. Other than the Icc1 change, all other AC and DC parameters remained the same.

The second mask revision, called appropriately enough R2, was implemented in the October 1991 timeframe. The R2 revision fixed a rarely occurring problem that caused random address locations to change to FFh. The culprit was found to be a combination of residual voltages coupled with specific rise times on Vcc. The details are best described by looking at Figure 2.0 below.

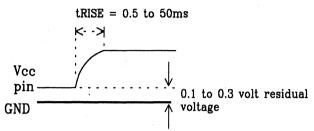



Figure 2.0 Conditions that may cause data to change to FFh.

If a residual voltage in the 0.1 to 0.3 volt range existed on the Vcc pin it would increase the internal capacitance coupling on the /RESET pin. This prevented the reset timer circuits from functioning properly. In fact, the internal reset signal would abort prematurely which briefly activated the write and erase circuits. The presently available R2 mask has countered the aformentioned peculiarity and results in a highly reliable device.

## **1M Flash Software Modification**

**Tech Notes** 

### **Application Engineering**

Oomer A. Serang

Intel presently offers customers some general 1MF lash code for use in 10Mhz 80186 based systems. This Note will point out the modifications that need to be made to Intel's code so it can support Hitachi's 1MF lash device.

The major differences between Hitachi and Intel are shown in Table 1.0

Parameter	Intel	Hitachi
Write operation duration	10µsec min 25µsec max	25µs min
Erase operation duration	9.5ms min 10.5ms max	9ms min 11ms max
Multiple chip erase	After erase verification of any chip, send reset command (FFH), until all chips have erased.	After erase verification of any chip, send verify command (A0H), until all chips have erased.
Multiple chip programming	After programming completion of any chip, send reset command (FFH) while waiting for all chips to complete programming.	After programming verification of any chip, program and verify chip again but send FFH as program data. Repeat, until all chips have completed programming.

Table 1.0 Major differences between Intel and Hitachi 1M Flash.



### 1M Flash Software Modification

Table 1.0 indicates that the programming Pulse Width and Erase Time duration for Hitachi's device is different from Intel's. However, if minor code modifications of the original Intel code are done, a Hitachi device can plug into an Intel socket.

For example, in Intel generated code the following instructions are recommended for Programming Pulse Generation in a 10Mhz 80186:

% * define (WAIT 10us)

push cx; save old counter register contents

mov cx, 6; put 6 into counter register loop \$: decrement until 0

loop\$ ;decrement until 0
pop cx ;restore old counter contents

The code above completes execution in 10us by counting down from 6, after which a control pulse is generated. To generate a 25us pulse width, the number of T states for each instruction is determined and then the appropriate counter value to generate a 25us execution time is calculated. In this case the value required is 17, so

```
mov cx,6
changes to
mov cx,17
```

The final code would look like:

```
%*define (WAIT 25us)
push cx
mov cx,17
loop $
pop cx
```

Lastly, the erase code supplied by Intel generates a 10ms wait and is as follows:

```
%*define(WAIT 10ms)
push cx
mov cx, 10
loop %W10ms
pop cx
```

Since the 10ms meets Hitachi's erase time specification as well, there is no need to modify any of the above code.

# 1M to 4M Flash Memory Upgrade

### **Tech Notes**

### **Application Engineering**

Oomer A. Serang

#### Introduction

It seems like it was only yesterday when the Hitachi 1M Flash device was introduced and promoted. The differences between our 1M device and a rival's was repeated and re-iterated often. Hence, it is probably very surprising to already begin dicussions on the 4M Flash device. Nonetheless, the 4Meg is here now and the aspects of replacing the 1M device is the topic of this Note.

#### 4M Features

- * Automatic chip and BLOCK erase
- * Status polling
- * Command register based control
- * Automatic and Manual Programming

### 1M to 4M Upgrade

A lot of design effort went into making the 4M Flash as compatible as possible with the 1M Flash device. Consequently, it is no coincidence that the 4M Flash package size is identical to the 1M Flash package size. In addition, the pins between the 1M and 4M devices are similar except for the fact that the 4M Flash has, of course, 2 additional address pins and more importantly no /WE pin. The figure below shows the pin-out difference.

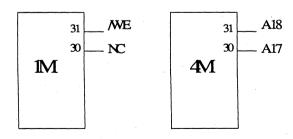



Figure 1.0 Difference in pin configurations between 1M and 4M Flash



# 1M to 4M Flash Memory Upgrade

Consequently, in the 1M device an address is latched when both the /WE and /CE go low while data is latched when either /WE or /CE goes high. In comparison, the 4M device has address and data latching when /CE goes high.

A lot of additional expense and effort can be avoided if customers design in for the 4M while they are designing in the 1M Flash. The customer should be told that if their 1M system has a trace that serves as either an address line or /WE line, depending upon a jumper position, then the 4M Flash will fit easily into the socket when an upgrade is required. The other address line required for the 4M can be laid out as a trace going to the NC pin of the 1M.

As far as the logic is concerned, the 4M Flash has easier timing in many cases because there is no longer a need to toggle a /WE pin as was the case with the 1M Flash device. In addition, the block select operation is simply controlled by A14-A18 so that incoporating the block select feature consists of only applying a new address and latching it in by the rising edge of /CE. In fact, block accesses can be implemented by "false" CPU write cycles. They are labeled as "false" write cycles because data is not actually written to the device even though the write cycle timing is implemented. An important restriction on the false write cycles is to make sure that the data on the bus is anything EXCEPT FFh when /CE rises. Putting FFh on the data bus will reset the device since FFh is the reset command.

When all the items are taken into account a pre-liminary analysis of the 1M to 4M upgrade yields the following steps:

- 1) Run an address line trace into the NC of the 1M. When using the 4M the trace will serve as A17.
- 2) Place a jumper on the board so that the /WE for the 1M can change to A18 for the 4Meg.
- 3) Modify PAL equations and incorporate false write cycles during block accesses and make sure the data on the bus is not FFh.

As a whole, the above steps indicate that although the 4M upgrade is not trivial, the upgrade is not excessively complicated either.

# Low Voltage RAMs

**Tech Notes** 

### **Application Engineering**

Oomer A. Serang

In the past, speed and memory organization were critical parameters in memory system designs. The popularity of notebook computers has now made power consumption of equal if not more importance. A previous note discussed extended refresh cycles as a means to decrease power consumption. This Note will introduce Hitachi's wide variety of low voltage RAM memory products.

Family	Density	Config.	Operating Voltage	Access Time
DRAM	4M	512kx8 256kx16 256kx18	2.7 to 3.6	70/80/100
PSRAM	4M	512kx8	2.7 to 3.6	120/150
SRAM	1M	128kx8	2.7 to 5.5	150

### Table 1.0 Hitachi's low voltage RAMs

All of the 4M low voltage DRAMs are manufactured using the same 0.5 µm process that is used to manufacture 16Meg DRAMs. Consequently, the low voltage 4M DRAMs are NOT just high voltage parts that are screened for low voltage operation. In fact, even the low voltage 4M PSRAM is NOT a 5.0 volt PSRAM screened for low voltage operation, but is instead a re-design of the standard part.

As can be imagined, low voltage operation introduces a gamut of potential problems like decreased noise margin and potential increase in soft errors. Noise margin aside, soft errors are most dependent on cycle times and power supply voltages. For a given DRAM cell, decreasing the power supply voltage increases the SER. An effective counter against the SER degradation is to increase the cell capacitance during the chip design stage or to use better dielectrics. Although no reliability data is yet available on the low voltage 4M DRAMs one can assume the SER to be comparable to standard voltage parts.



### **Extended Refresh DRAMs**

**Tech Notes** 

### **Application Engineering**

Oomer A. Serang

#### Introduction

The explosive growth of notebook computers has not only elevated computing convenience to an unprecedented level but it has also stimulated mainstream suppliers to offer specialized parts for the portable market. For example,  $2\frac{1}{2}$ " hard disk drives, super-twist color LCDs and miniaturized keyboards are direct consequences of the portable computer revolution. One of the most important objectives of notebook manufacturers is to minimize system power consumption. With reduced system power consumption the end-user can be assured of longer battery life and maximum operating time, thereby making the portable that much more appealing. Consequently, vendors who want to supply the notebook market are aggressively studying and implementing methods to reduce power consumption.

One particularly power hungry aspect of computers is their memory systems. Typical memory systems can consume as much as 30% of the total system power. In particular, the additional overhead of DRAM refresh cycles not only uses precious active bandwidth but also consumes scarce battery current. With this in mind, battery life can be extended if the frequency of memory refresh cycles were decreased. That was the motivating reason to develop and offer extended refresh DRAMs.

Extended refresh DRAMs are DRAMs that have dramatically relaxed refresh requirements. Since cycle times and power consumption are directly related it is possible to reduce power consumption by decreasing refresh frequency. In fact, when compared to standard DRAMs, the extended refresh DRAMs can go as much as 16 times longer without a refresh cycle. Another attraction of extended refresh DRAMs is that Hitachi doesn't consider them to be a low priority product in the memory chain but instead assigns them the same important status as standard 4Meg DRAM products. When low DRAM data retention currents are combined with the high volume manufacturing assurance of Hitachi, then advanced notebook computers, hand-held instruments and other power sensitive applications can become a reality.

Table 1 compares battery life between standard and extended refresh DRAMs. Although no system is going to be in data-retention mode 100% of the time the point to be made is that a SL based system can have a far longer battery life than a system based on standard 4Meg parts.

Part Number	Active Current (80 nsec part)	Data Retention Current	Battery Life (1 pc., 500 mAh)
HM514100/400ASL (1K cycles/256 msec)	90 mA	100 μA (typ.)	208 days (typ.)
HM514100/400A (1K cycles/16 msec)	90 mA	1 mA (typ.)	21 days (typ.)

Table 1: Standard vs. Extended Refresh Battery Life

#### Trench vs STC

Although standard 4Meg DRAMs are offered by a variety of suppliers as well as a variety of countries the same cannot be said of extended refresh DRAMs. Only a handful of vendors have processes and chip designs superior enough to guarantee extended refresh times.

When a DRAM isn't being accessed or refreshed the amount of time required for the stored charge to dissipate is a function of the dielectric material, cell to cell isolation, parasitic losses and even the cell structure. For example, an analysis of first generation trench cells revealed that they could not meet extended refresh requirements because of leakage between trenches. Since the storage node is directly in the silicon substrate, stress and crystallographic defects were manifested as leakage current. Consequently, the trench cell insulation characteristics was improved upon by depositing an additional SiO₂ layer around each trench and then staggering, rather than lining up in a single file, the cells, to get less cell to cell interaction as well as increased cell density. The improved cell leakage characteristics came at the expense of additional fabrication steps and increased production cost of the trench device.

Even Hitachi's first generation stacked capacitor architecture could not meet the stringent extended refresh specifications. However, Hitachi's second generation "A" mask stacked capacitor architecture yielded minimum leakage specifications primarily because the smaller junction area reduced the rate of leakage current.

Another advantage of extended refresh parts is that they aren't manufactured on special lines or under special circumstances. Hence, qualification of standard parts also immediately qualifies the extended parts. Although extended refresh does not require special manufacturing it does require special screening to meet stringent refresh requirements. The screening process consists of 2 additional steps. The first step is a functional test in which data is written to the DRAM and then after a long pause the device is read to see if the data is still valid. The second step is to measure the  $V_{\rm CC}$  current during standby to insure it is vastly smaller than standard DRAMs.

Presently Hitachi offers a number of slow refresh DRAMs. The part numbers and some specifications are shown in Table 2.

### **Extended Refresh DRAMs**

Part Number	Active Refresh Rate	Standby Refresh Rate	Standby Current Consumption	Data Retention Current Consumption
HM514100/400 AL	1K/128 msec	1K/128 msec	150 μA (max.)	200 μA (max.)
HM514100/400ASL	1K/16 msec	1K/256 msec	100 μA (max.)	150 μA (max.)

Table 2: Extended 4Meg DRAM Devices

The following calculation shows how the data retention current value is derived for the SL device:

Data retention current = refresh current + standby current

For the SL version

refresh current = (90 mA * 150 nsec * 1024 cycles) / 256 msec

standby current =  $100 \,\mu\text{A} * [256 \,\text{msec} - (150 \,\text{nsec} * 1024 \,\text{cycles})] / 256 \,\text{msec}$ 

Data retention current =  $50 \mu A + 100 \mu A$ 

 $= 150 \mu A$ 

When adhering to DRAM refresh specifications there are 2 implementation options available to designers. One method consists of stopping every 16 msec and then refreshing the entire DRAM at once and is referred to as a burst refresh. Alternatively, the micro-processor can be interrupted for a refresh cycle every 15.6 µsec and this method is referred to as a distributed refresh. Regardless of which type of refresh is used it is comforting to know that there are no  $V_{\rm CC}$  rise or fall time restrictions when entering or exiting data retention mode. Hence, a big advantage of the SL part is not only its ability to operate at a data retention voltage of 4.0 volts, but the  $V_{\rm CC}$  can switch from 5.5 Volts to 4.0 Volts without regard to the  $V_{\rm CC}$  fall time, or from 4.0 Volts to 5.5 Volts without regard to the rise time.

In practice, one way to control slow refresh DRAMs is to use the DRAM controller chip sets that are made specifically for extended refresh DRAMs. For example, Chips and Technology offers the 82C241 DRAM Controller and the 82C636 Power Control Unit. Effective utilization of the aforementioned parts reduces development cost and speeds the end product into the market place.

Since many customers implement an interrupt driven distributed refresh scheme, another aspect of designing in extended refresh DRAM requires some software modifications. For example, if a certain amount of time has elapsed without a keyboard interrupt then the DRAMs can go into extended refresh mode.

### **Voltage Degradation (4V operation)**

Although Hitachi's SL device can withstand  $V_{CC} = 4.0$  volts during data retention mode a potential drawback is that the Soft Error Rate (SER) will increase. Consequently, customers should be made aware of the relationship between low voltage and SER so they can design their systems accordingly.

Section 7
Support Tools

### MRI Toolkit for H8/300

### **Application Note**

### **Emulator Version XRAY Tutorial**

Paul Yiu

#### INTRODUCTION

This paper will demonstrate some basic functions in XRAY, using *frank.c* as an example. *Frank.c* is a very basic C program that utilizes loops, counters, and standard I/O routines. The main program, as well as the necessary auxiliary codes and files, are listed at the end of this document.

Note: In the following tutorial, white boxes indicate user inputs, while shaded boxes indicate computer responses.

### STARTING XRAY

If you are using XRAY for the first time, be sure to specify the baud rate. At the c:\xhih83 prompt, type:

xhih83 <filename> -e 9600 <CR>

Note: Do not add any extensions to the *<filename>* parameter. XRAY will load both the source code and the executable code.

Once you are in XRAY, it's a good idea to change default baud rate to the baud rate of the ASE. In the command window, type:

option emulator="9600"

<CR>

...... sets default baud rate.

startup

<CR>

...... saves option to startup.xry, which is called automatically each time XRAY is invoked.

Next time XRAY is called, the baud rate will be

set at 9600 by default.

### IN XRAY

Let's just run this program a couple of times to see what it does. Type:

go <CR>

This program asks for the user's selection in hex number, then outputs a specific string corresponding to the user's input. Frank Sinatra songs are used as examples here.

First, you will see the message "HITACHI America, Ltd." move from the left edge of the screen to the middle, then the message "Applications Engineering." Finally, there is a message asking for the user's input.

If you look at the source code, you will see that there are only 4 allowed inputs to this program. The other numbers will give an error message and restart the program. Let's choose 7. At program terminal, type:

7 <CR>

The song title *Fly me to the Moon* and an airplane are printed on the screen. At this point, the program resets and prints the opening messages again. You can experiment with inputs of 5,12,a,or 7. Also, try inputting an invalid number and see what happens.

The program is very simple; it was written with loops and counters to demonstrate XRAY commands. Now let's take a look at some XRAY debugger commands. At XRAY terminal, type:

<Ctrl>c

#### HITACHI

### Stopped due to halt from user

In the window at the top right corner, you can see that when we halted the program, *getchar* was being executed because the program was waiting for an input from the user.

Some functions are called from the C library; their C source codes aren't always available. To take a look at getchar in assembly, press the F3 key.

Now the screen should show the assembly listing, value of the stack and the registers. Press F3 again to get back to the original screen.

To see the C source code again, at the XRAY terminal, type:

restart <CR>

Note: in startup routine. Press F9 to go to main.

They F5 key invokes the help screen; it contains brief explantions of each debugger command. You can press F5 right now and look at some of the explanations.

All the commands you enter are stored in a last-in-first-out fashion. F7 retrieves your previous commands to save some typing.

#### DEBUGGING

This program calls a subroutine called *cpu_init*. Let's take a look at it. First we will set a break point at line 17. Type:

b #17 <CR>

Window #25 will appear at the top of the screen, listing all the break points; we only have one so far. Now type:

go <CR>

Break # 1 on instr at loc 0000003E module PT line 98

We now see line #98 instead of #17. Line #98 is the beginning of *cpu_init*; that's why the program stops at line #98.

Another useful function key is the F9 key. Press F9 now to allow XRAY to execute one line. Press F9 two more times to finish *cpu_init*.

Now line #19 is highlighted, not line #18 because line #18 is only a label, not an instruction.

F9 performs single stepping. The F10 key is similar, but it doesn't take you into each subroutine. Press F10 now, and line #19 will be executed.

Let's keep track of all the variables as we debug this program. Type:

monitor song, counter, delay <CR>

The values of these variables are listed in the top-left window. Let's set another break point at line #42. Type:

b #42 <CR>

If we start the program again, it should stop executing right after we make our song selection on the program screen. Type:

go <CR>

Break # 2 on instr at loc 000000F2 module PT approx line 42 (PC = 000000F6)

### **Application Note**

**XRAY** 

Again we see the title message and the request for input. At the program terminal, type:

a <CR>

Nothing happens on the program terminal because XRAY encountered another break point and halted execution. Now, if we look at the value of "song," we see 0x000a. We can also print the value of a variable without monitoring it. Type:

p song <CR>

0x000A

Looking at the source code, if we start the program again, we'd expect the *Stranger in the Night* message, accompanied by a couple of question marks dancing across the screen. But, one powerful feature of XRAY allows us to "cheat." We can execute C code on the spot. Type:

c song=5 <CR>

Result is: 5 0x05

The command "C," followed by an expression, is equivalent to an instruction in the C source code. In the Data window, we can see the value of "song" has been changed to 5. Let's start the program again and see what happens. Type:

go <CR>

The "The way you look tonight" message came on instead of song number 0x000a. There are more than one break commands in XRAY; let's take a look at them. We'll stop execution and

start over. Type:

<Ctrl> c

Stopped due to halt from user

restart <CR>

Note: in startup routine. Press F9 to go to main.

clear <CR>

The clear command clears all break points. If you wish to clear a specific breakpoint, just type in the breakpoint number after "clear." If you want to see where the breakpoints are, just type:

*b* <CR>

You should get a blank window at this point because we've cleared all the breakpoints.

**breakread:** If we enter "br & song," whenever the program tries to read the value of song, it halts.

**breakwrite**: Similar to breakread, "bw &song" halts the program whenever it tries to write a value to "song".

**breakaccess**: The program halts when there is a read or write.

Let's try breakread. Type:

br &song <CR>

### *** error code = 67

Oops, this give an error message. Since we restarted the program, it's not in "main" yet. The variable "song" is not yet recognized. Window #4 shows that the variables are not active. Press the spacebar to keep going. Let's get in main first, then set the breakpoint. Type:

b #18 <CR>

g <CR>

;abbreviation for

Break # 1 on instr at loc 00000042 module PT approx line #19

br &song

<CR>

Break # 2 on instr at loc 0000FF7C (PC = 00000FC)

Break at module PT approx line 42 (PC = 000000FC)

At the program terminal, type:

a <CR>

At line #42, the program tried to print the value of "song." The program halted because it tried to read the value of "song." Let's keep going.

Type:

g <CR>

Break # 2 on instr at loc 0000FF7C (PC = 0000189C) Break at module PT approx line 43 (PC = 0000189C) The program halts again at line #43 because the switch statement tried to read "song."

We can look at functions that aren't in the window. For example, type:

list cpu_init <CR>

We can see the listing of subroutine *cpu_init*. To get back to where we came from, type:

list <CR>

We are back to line #43 again. Now press F3 to debug at the assembly level. Instead of "list," we say "disassemble" in this mode. Type:

d 0x0030 <CR>

We see the beginning of the program. To get back to the original place, type:

d <CR>

Press F3 again to get back into high-level mode. If you have any macros defined, use "show <macro-name>" to see the listing of a macro. Let's define a macro here for practice.

Let's try "blocking out" a song. This will be analogous to locking some channels on cable TV for certain viewers. Say we don't want people to "hear" Strangers in the Night. So, every time someone chooses Strangers in the Night, we "play" Fly me to the Moon instead. Type the following in the XRAY terminal.

restart <CR>

**XRAY** 

**Application Note** 

Note: in startup routine. Press F9 to go to main.

clear 2 <CR>

We restarted the program and cleared the breakread breakpoint.

g <CR>

Break # 1 on instr at loc 00000042 module PT approx line 19 (PC = 00000046)

XRAY halts at line #19. Now, we will define the macro blck.
Type:

define int blck()
{
if (song==0x000a)
\$c song=0x0007\$;
return (1);
}

After the macro is defined, the command window may be expanded, press F4 to shrink/ expand the active window. Now the macro is defined. Once this macro is invoked, the value of "song" is changed to 7 if it's 0x0a. The "\$'s" around the c expression indicate that this line is a debugger command. When a macro returns a "1," the program just continues execution after the macro; but, if a macros returns a "0," the program halts after the macro. When do we invoke this macro? It will not be a wise idea to single step and invoke the macro after each step. How about right after the user inputs the selection? Type:

b #42;blck() <CR>

This command tells XRAY to check for value 0x000a after the user inputs his/her selection. Let's see how this breakpoints changes the flow of the program. First we should clear the breakpoint at line #18. Type:

clear 1 <CR>
g <CR>

The program prints the same welcome message on the program terminal, asking for input. Let's try to "hear" *Stranger in the Night*. At the program terminal, type:

a <CR>

Although we selected Stranger in the Night, Fly me to the Moon is displayed. One very useful way to utilize macros is to simulate hardware in the simulator version XRAY. For example, in the simulator version, we can set breakpoints and use macros to update status registers, which are normally updated by hardware.

Another useful command is **gostep**; this is especially useful when you are desperate. Say for some reason the stack goes out of bounds, and the program just hangs. We can write a simple macro that returns a "0" when the stack reaches a certain value. Let's say this macro is called **st_alert()**. Let's assume also we have no idea how and where the stack goes out of bounds. We can enter **gostep st_alert()**. XRAY will single step through the whole program, calling the **st_alert** macro after each step. This is extremely time consuming, but it will locate the problem.

#### SESSION CONTROL

There is a "save" command that only works in the simulator version; this command saves the register and memory contents into a file. This feature is not implemented in the emulator version because it will take too much time to actually save all the memory contents.

However, this does not mean we have to do all the debugging in one session. Here is an alternative way:

Before starting to use any XRAY commands, type:

All the commands you enter from this point on will be sent to a viewport. When you are done with the debugging session, type:

This will save all the commands in the file. Next time XRAY is invoked, type:

XRAY will then execute all the commands in the log file. This is not as convenient as "save" and 'restore," but it works for both the simulator and emulator versions.

If you wish to record results, as well as the commands, use the "journal" command; it works the same way as the "log" command, the difference being the journal files contain command results.

Note: The information is not automatically saved to a file. It is necessary to type in "log off" or "journal off" when you are done with the session.

#### SIMULATED I/O

If you are using the simulator version XRAY, you might want to simulate the actual input/output terminal. For example, if the serial port is at address **0xffdb**, we can see the output of the program by typing:

outport [0xffdb],std	<cr></cr>

This command tell XRAY to print the value of address 0xffdb to the standard I/O window of XRAY. Instead of "std," you can choose to use "c." This will cause the messages to be printed in the command window.

#### **MEMORY**

There are also commands to view or change memory locations. The following commands, followed by memory addresses or range, can perform a variety of functions. Please refer to the XRAYH83 H8/300 Debugger manual for more details.

Command Name	Summery
COMPARE	Find difference between two memory blocks
COPY	Copy memory block
DUMP	Display memory block in Command window
FILL	Fill memory block with value(s)
SEARCH	Search memory block for patterns of value(s)
SEIMEM	Assign values to memory block
SETREG	Change value(s) of various registers

Application Note XRAY

We have practiced with starting XRAY, customizing it, monitoring variables and memory locations, setting breakpoints, defining macros, and utilizing macros. These are just the basic commands to get XRAY running. There are more commands for more detailed analysis. Please refer to the XRAYH83 H8/300 Debugger manual for more commands.

XRAY Application Note

```
/*
       XRAY DEMO, using H8/325 Flash Board
#include "c:\cstuff\ioaddr.c"
                              /*Address of I/O ports*/
#include "c:\mcch83\stdio.h"
#include <stdlib.h>
void cpu init();
                      /*Initialize CPU (I/O ports...)*/
main()
unsigned int song;
                               /*The chosen song*/
unsigned int counter;
                               /*generic counter used for loops*/
unsigned int delay;
                               /*generic delay counter*/
cpu init();
                               /*Initial serial ports*/
beginning:
                               /*Program begins here*/
printf ("\r\n");
for (counter=0:counter<20:counter++)
                       for (delay=0; delay<50000; delay++)
                printf (" HITACHI America, Ltd.");
                printf ("\r\n");
for (counter=0; counter<20; counter++)
                       for (delay=0; delay<50000; delay++)
                printf (" Applications Engineering");
                printf ("\r\n\nThis Program Simulates a Jukebox, with no sound.\r\n");
printf ("\r\nEnter song number in hex : ");
iscanf ("%x", &song);
                            /*input stored as variable "song" */
printf ("\r\nYou have chosen the %x th song\r\n\n", song);
switch (song)
       case 0x07:
                       printf ("Fly me to the moon
                                                      /-| \r\n");
                       printf (" 0
                                                      /_| | \r\n");
                       printf ("
                                                       _| | \r\n");
                       printf ("
                                      00000000 | \r\n");
                       printf ("
                                        HAL Air
                                                          | \r\n");
                       printf ("
                                                       \r\n");
                                                   - 1
                       printf ("
                                                        \r\n");
                       printf ("
                                                         \r\n");
                       break;
        case 0x0a:
                       printf ("Strangers in the Night \r\n");
                        for (counter=0; counter<30; counter++)
                                for (delay=0; delay<50000; delay++)
```

Listing 1 Frank.c

**Application Note** 

**XRAY** 

```
printf (" ?? ");
                         printf ("\b\b\b");
                         printf (":)\r\n");
                         break;
        case 0x12:
                         for (counter=0; counter<20; counter++)
                         printf (" New York, New York ");
                         printf ("\r\n");
                         break:
        case 0x05:
                         printf ("The way you look tonight \r\n");
                         printf ("Some ");
                                  for (counter=0; counter<5000; counter++)</pre>
                         printf ("day \r\n");
                         printf ("When I am feeling low \r\n");
                         printf ("When the world seems cold \r\n");
                         printf ("And I feel a glow just thinking of \r\n");
                         printf ("
                                                                                00000
    u\r\n");
u
                         printf ("
                                                                      у у
                                                                                    0
    u\r\n");
u
                         printf ("
                                                                       УУ
    u\r\n");
u
                         printf ("
                                                                                    0
                                                                       уу
    u\r\n");
11
                         printf ("
                                                                       ΥУ
                                                                                00000
uuuuuu\r\n\n");
                         printf ("And the way you look tonight\r\n");
                         break;
        default: printf ("Song number not in selection!!\n\r");
                         break;
        goto beginning;
void cpu_init()
     /*Initialize SCI port*/
     *(unsigned char *)sci0 smr=0x00;
     *(unsigned char *)sci0 brr=31;
     *(unsigned char *)sci0 scr=0x30;
```

Listing 1 cont'd

XRAY Application Note

### Linker command file:

```
start $0030
sect code = $0030
LISTMAP CROSSREF, INTERNALS, PUBLICS
load mainadr
sect mainvec= $0000
sect zerovars=$fb80
order code, const, strings, __INITDATA, heap, zerovars
```

### DOS batch file:

```
mcch83 -g -c -o %1.obj %1.c
lnkh83 -c pt.cmd -o %1.abs -m>%1.map %1.obj iscanf.obj h8325.lib
```

### MRI Tools H8/300 Tutorial

### **Application Note**

### Software Development from C Source to Executable Files

Paul Yiu

### INTRODUCTION

The MRI/Hitachi Toolkit, (consisting of the Compiler, Assembler, Linker, and Librarian) is capable of processing C source codes to create executable code. The final code can then be debugged using XRAY. This paper will serve as a tutorial to demonstrate the process software development, using the Hitachi/MRI Toolkit.

### THE SAMPLE ROUTINE

A very basic routine, called *Sinatra*, (listing #10 at the end of this document) will be used to demonstrate the process. Using the H8/325 as an example, the program prints a menu on the screen, then the user makes his choice. After the choice is made, the program outputs a corresponding message on the screen. The difficulty does not lie in programming, but setting up the standard I/O, registers, and different sections in memory. Fortunately, the set-up only has to be done once. Most of the command files and modules can be used for other programs.

#### **SETTING UP**

### I/O

The source codes for s_write.c and iscanf.c need to be slightly modified to fit the hardware. Basically, we need to assign the correct serial ports for the read/write routines. These source codes are then compiled, assembled and put into a customized library. For further information please refer to Application Note #AE-0028 H8/325 Standard I/O.

### XRAY

The emulator version of XRAY require some set-up when used for the first time. The default baud rate can be changed, as well as the display mode. Please refer to Tech Note #TN-0021 Starting up Emulator version XRAY for details.

### Stack

The stack should be set at address 0xFF80 before any instructions begin. Listed below is file stack_ini.c.

```
#pragma asm
    .SECTION stack_ini, TEXT, ALIGN=2
    mov.w #h' ff80, sp
#pragma endasm
```

Listing 1: stack_ini.c

There is a very good reason these lines of code are not put inside *main*. The compiler, at the start of every routine, puts the value of R6 on the stack. If we put "mov.w #h'ff80,sp" in the first line of *main*, we would get:

```
_main:
    push r6
    mov.w sp,r6
    mov.w #h'ff80,sp
    Listing 2: uninitialized stack
```

This would mess up the stack. Writing a value on an unknown location could give undetermined results.

There is a routine, called s_start.c that automatically gets called when the program gets linked. This routine sets up the stack for XRAY. However, this routine is not actually a part of the program. For this program to work without the emulator (i.e. on the chip), the stack needs to be

MRI Application Note

initialized by the program itself.

### **Vectors**

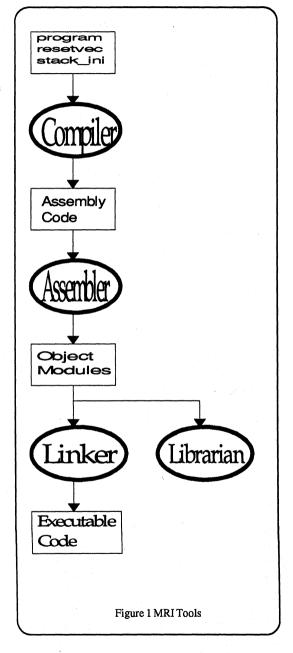
The first several address spaces are reserved for the vector table, which contains addresses of various interrupt functions. The reset vector is at address 0x0000. It should contain the address of need another file, called *resetvec.c*, to manipulate the correct address. It is listed below.

/*Reset vector. To be put at address 0*/
void (*mainvec[])()=(unsigned int
*)0x0030;

Listing 3: resetvec.c

This routine simply defines a dummy pointer to point to address 0x0030. We will put this pointer at address 0 with the Linker, later.

We don't have to specify a particular address for the pointer to point to. Say we have a function called delay_10 somewhere in the program. If we write another file, called *delay10.c*. It will look like this:


> extern void delay_10(void); void (*vec10[])()={delay_10}; /*function delay_10 can be anywhere*/ Listing 4: delay10.c

Here, a dummy pointer points to the function "delay_10." We can assign this pointer to any address; this is useful for interrupt routines.

### **USING MRI TOOLS**

It is a good idea to include the MRI tool directories in the autoexec.bat file. Also, create another directory to store all the programs. Figure 1 shows how the tools work together to create executable codes.

Before we go any further with the program, let's take a brief look at each tool.



### Compiler

As far as the user is concerned, the compiler simply "turns" C code into Assembly code. The main subject of interest is the long list of command options. All of these command-line options are useful, but only a few are discussed here, for the sake of brevity.

To invoke the compiler, type:

# mcch83 [option1 option2 option3......] source_filename <CR>

The "mcch83" command invokes more than just the compiler; this command behaves like a DOS batch file. If the user does not tell the software how far to process the program, it will go all the way and create an absolute file. The intermediary files, xxxx.src and xxxx.obj, will not be available. It is better to specify how far we want the software to process with some command-line options. These options are listed below.

### How far:

-S	The .c file gets compiled to create Assembly, a .src file
-c	The .c files gets compiled and assembled to create an object module, a .obj file.
None	The .c file gets processed all the way to create executable code, a .abs file

Table 1: Compiler Options

### **Debugging information:**

-g	Line numbers and trace information are created. This option is extremely important for debugging in XRAY. Use this option almost always.
-Fsm	C source code is mixed into the assembly code as comments.

Table 2: Compiler Options

### **Output:**

-0	This option, followed by a filename, will name the ouput file(s). If this option is not used, the default names (xxxx.src or xxxx.obj) will be used.
-l	This option, followed by a filename, will create a listing file containing the C source code and any errors/warning during compilation.

Table 3: Compiler Options

### Naming the sections

-NIname	Thevariable section is renamed to whatever the user entered for "name".	
-NCname	The constant section is renamed to whatever the user entered for "name".	

Table 4: Compiler Options

The significance of the options will become clear later. Refer to the *Hitachi MCCH83 H8/300 C Compiler* maual for more compiler options.

### Assembler

The assembler takes the assembly code and generates an object module. Most of the time the C source code is processed directly to the object module, so the assembler command-line options are not used very often.

To invoke the assembler, type:

asmh83 [option1 option2.....] source-filename <CR>

One very useful option is the "-l > filename." This option generates a listing that contains all the errors and warning during assembly. Refer to the Hitachi ASMH83 H8/300 Assembler manual for more assembler options.

### Linker

The linker links all the modules together and put in the appropriate places in memory. To invoke the linker, type:

> lnkh83 [option1 option2.....] objectfilename <CR>

Some important command-line options are listed here.

-c filename	The command file contains the linker commands.
-m> filename	The map file shows the locations of various modules, variable tables, and cross-reference tables.

Table 5: Linker Options

### Librarian

The librarian provides a mechanism to create, delete, and edit libraries, which are just collections of object modules. The standard library contains functions like *printf*, *getchar*, etc. We can make a custom library for the H8325. Please refer to Application Note #AE-0028 H8/325 Standard I/O for more information. To invoke the librarian, type:

libh83 [option] [obj-filename] libfilename <CR> or libh83 < cmd-filename <CR>

Listed below are some librarian command options.

-a	Adds modules to the designated library.
-d	Deletes modules from the designated library.
-е	Extracts modules from the library and generates ".obj" files.
-l	Generates a librarian listing.
-r	Replaces a module in the library with a ".obj" file module.

Table 6: Librarian Options

### MAKING EXECUTABLE CODE

1) First we want to compile and assemble

the program. Type:

mcch83 -g -c sinatra.c <CR>

We will get a *sinatra.obj* file, with debugging information.

2) Next we want to compile and assemble the auxiliary source codes. Type:

mcch83 -g -c -NImainvec resetvec.c <CR> mcch83 -g -c stack_ini.c <CR>

We will get files resetvec.obj and stack_ini.obj, with debugging information. Since our reset vector is a variable, an "init-vars" section will be created in the resetvec module (.obj file). Using "-NImainvec" renames the init-vars section mainvec, so it won't be confused with the init-vars section of the main program.

3) Before the modules are linked together, we need to create a command file for the linker, telling the linker how to put modules in memory. This is what the command file, *sinatra.cmd*, looks like.

start \$0030
LISTMAP
CROSSREF,INTERNALS,PUBLICS
load resetvec
load stack_ini
sect mainvec= \$0000
sect stack_ini=\$0030
sect zerovars=\$fb80
order stack_ini,code,const,strings+

Listing 5: Linker Command File

__INITDATA,heap,zerovars

The first 0x30 bytes of the ROM are reserved for interrupt vectors. To leave the first 0x30 memory addresses alone, we tell the linker to start at address 0x30.

The second line adds a cross-reference table in the map. We will take a look at the map later.

The third and fourth lines simply load the modules and combine them with the program.

The "sect" commands puts sections in absolute addresses. We put the reset vector (0x0030) at address 0x0000, stack_ini code at address 0x0030, and variables at top of RAM. All of the program, with the exception of variables, sit in ROM.

NOTE: The format of the executable code will be IEEE. To generate s-record, just add "format s" in the command file. The ASE machine takes s-record format, while XRAY accepts IEEE format.

The final step is to use the linker. Type:

lnkh83 -c sinatra.cmd -m>sinatra.map o sinatra.abs sinatra.obj h8325 <CR>

We used "-c sinatra.cmd" to tell the linker to receive commands from the *sinatra.cmd* file. We get a map file that lists the locations of various modules by typing "-m>sinatra.map."

The final product, *sinatra.abs*, is executable code, and it can be used for debugging. To download the program, we'll need to generate S record output. This would be accomplished by adding "*format s*" in the command file. Let's take a look at the *sinatra.map* file on page 7 (listing 6) and see where the sections went.

MRI Application Note

Listing #6 on page 7 shows the sections all went to the right places. We generated a cross-reference table and put it in the map file. Let's take a look at part of the cross-reference table. (listing #7 page 7)

The cross-reference table shows all the functions and variables, as well as the functions that called them.

There is also a module section in the map file; it lists all the modules, either user-defined or from the library, as well their sizes. Part of the module section is shown in listing #8, on page 7.

Some of the steps taken to generate executable code from C source may seem tedious, but they only have to be done once. Only minor modifications need to be done for different programs. For example, we can create a DOS batch file, called mk_code.bat. For the future programs, we only have to type:

mk_code program_name
<CR>

to create executable code.

This is what a mk_code.bat file might look like:

mcch83 -g -c -o %1.obj -l %1.lst %1.c

lnkh83 -c h8325.cmd -o %1.abs -m>%1.map %1.obj h8325.lib

Listing 9 mk_code.bat

The file **h8325.cmd** will probably look very much like sinatra.cmd. **H8325.lib** includes user-defined I/O routines. During execution, the symbol "%1" will be replaced by parameter "program_name." Basically, this batch file performs all the work in one command.

#### SUMMARY:

- 1) When compiling the C source code, use the -g and -l command-line options.
- 2) Create a separate module to set up the stack pointer; this module can be re-used by different programs.
- 3) Process all C codes with the -c command-line options to create object modules; then, use the linker to link all the modules together.
- Create a command file for the linker.
   The command file can place modules in desired order.
- 5) When debugging with XRAY, use IEEE format output. For debugging with the ASE machine alone, use S record format output.

SECTION SUMMARY								
SECTION	ATTRIBUTE	START	END	LENGTH	ALIGN			
mainvec	NORMAL DATA	0000	0001	0002	2 (WORD)			
stack ini	NORMAL CODE	0030	0033	0004	2 (WORD)			
code _	NORMAL CODE	0034	19C1	198E	2 (WORD)			
const	NORMAL CODE	19C2	1B6A	01A9	2 (WORD)			
strings	NORMAL CODE	1B6C	1D2B	01C0	2 (WORD)			
INITDATA	1							
	NORMAL DATA	1D2C	1D2C	0000	2 (WORD)			
heap	NORMAL DATA	1D2C	1D2D	0002	2 (WORD)			
zerovars	NORMAL DATA	FB80	FD0B	018C	2 (WORD)			

Listing 6: sinatra.map

getNum10	code	0558	iscanf	
_getNum16	code	0668	iscanf	
getchar	code	1950	getchar	
hcsr	const	1A46	pt	
ier	const	19EC	pt	
iscanf	code	0186	iscanf	
_iscr	const			

Listing 7: cross-reference table

MODULE SUM	MARY					١
MODULE	SECTION: START	SECTION: END	FILE			
pt	const:194E	const:19D7	C:\XHIH83\PROGRAM\pt3.obj			
	strings:1AF8	strings:1BB7				- 1
	code:0030	code:0137				1
iscanf	zerovars:FB80	zerovars:FB9B	C:\XHIH83\PROGRAM\iscanf.obj	l		
	code:0138	code:07B9				
ctype	const:19D8	const:1AD8	C:\XHIH83\PROGRAM\h8325.lib	L		
fakftoa	const:1ADA	const:1AF6	C:\XHIH83\PROGRAM\h8325.lib	L		
	code:07BA	code:07F7				
flsbuf	code:07F8	code:090F	C:\XHIH83\PROGRAM\h8325.lib	L		- 1
ltostr	code:0910	code:09C5	C:\XHIH83\PROGRAM\h8325.lib	L		
malloc	zerovars:FB9C	zerovars:FB9C	C:\XHIH83\PROGRAM\h8325.lib	L		1

Listing 8: modules

**MRI** 

```
/*
       Program: Sinatra.c
/*----*/
#include "c:\cstuff\ioaddr.c" /*Address of I/O ports*/
#include "c:\mcch83\stdio.h"
#include <stdlib.h>
void cpu_init(); /*Initialize CPU (I/O ports...)*/
main()
ſ
                            /*The chosen song*/
unsigned int song;
cpu init();
beginning:
printf ("\r\nEnter song number in hex : ");
iscanf ("%x", &song);
printf ("\r\nYou have chosen the %x th song\r\n\n", song);
switch (song)
       case 0x07:
                      printf ("Fly me to the moon
                                                      /-| \r\n");
                      printf (" 0
                                                      / | | \r\n");
                                                       __| | \r\n");
                      printf ("
                                      000000000 | \r\n");
HAL Air | \r\n");
                      printf ("
                       printf ("
                                                         \r\n ");
                      printf ("
                      printf ("
                                                         \r\n");
                      printf ("
                                                         \r\n");
                      break;
       case 0x0a:
                      printf ("Strangers in the Night \r\n");
                      break;
       case 0x12:
                      printf ("New York, New York \r\n");
       case 0x05:
                       printf ("The way you look tonight \r\n");
                       break;
       default: printf ("What? Not on this CD!!\n\r");
                      break;
       goto beginning;
void cpu init()
    ----*/
/*set for address outputs*/
      ----*/
    /*Initialize SCI port*/
    *(unsigned char *)sci0 smr=0x00;
    *(unsigned char *)sci0 brr=31;
    *(unsigned char *)sci0 scr=0x30;
```

Listing 10 Sinatra.c

# SECTION

Assembler instructions, after the linker.

```
0030
     7907 FF80
                          #H'FF80:16,sp
                 mov.w
0032
     FF80
                 mov.b
                          #H'80:8,spl
0034
      6DF6
                 push.w
                          r6
0036
     0D76
                 mov.w
                          sp,r6
0038
     7900 0006
                 mov.w
                          #6,r0
003A
     0006
                 nop
003C
     1907
                 sub.w
                          r0,sp
003E
      6DF2
                 push.w
                          r2
0040
      6DF3
                          r3
                 push.w
0042
     5E00 00FA
                 jsr
                          @cpu_init:16
0044
     00FA
                 nop
0046
     7900 0001
                 mov.w
                          #mainvec+1, r0
0048
     0001
                 nop
004A
     6FE0 FFFA
                          r0,@(-6:16,r6)
                mov.w
004C
     FFFA
                 mov.b
                          #H'FA:8, spl
004E
     1900
                 sub.w
                          r0, r0
0050
     6FE0 FFFC
                          r0,@(-4:16,r6)
                 mov.w
     FFFC
                          #H'FC:8,spl
0052
                mov.b
     1922
0054
                 sub.w
                          r2, r2
0056
     F801
                mov.b
                          #mainvec+1, r01
     6EA8 FC64
0058
                mov.b
                         r01,@(-924:16,r2)
005A
     FC64
                mov.b
                          #H'64:8,r41
005C
     0B02
                 adds.w
                          #1,r2
005E
     7900 0011 mov.w
                          #H'11:16,r0
0060
      0011
                 nop
     1D02
                          r0, r2
0062
                 cmp.w
0064
      4DF0
                 blt
                          H'FO
                                ; =>56
0066
     1922
                 sub.w
                          r2, r2
0068
     6E28 FC64
                mov.b
                         @(-924:16, r2), r01
                          #H'64:8,r41
006A
     FC64
                mov.b
      474C
                          H'4C ; =>BA
006C
                 bea
006E
      0D20
                          r2, r0
                 mov.w
0070
      0900
                 add.w
                          r0, r0
0072
      0B80
                 adds.w
                          #2,r0
0074
      0B00
                 adds.w
                          #1,r0
0076
     6FE0 FFFE
                 mov.w
                          r0,@(-2:16,r6)
0078
     FFFE
                 mov.b
                          #H'FE:8,spl
007A 0D03
                 mov.w
                          r0, r3
007C
     0923
                 add.w
                          r2, r3
                          H'C ; =>8C
007E
      400C
                 bra
0800
     F800
                 mov.b
                          #0,r01
0082 6EB8 FC64
                          r01,@(-924:16,r3)
                 mov.b
                          #H'64:8,r41
0084 FC64
                 mov.b
0086 6F60 FFFE
                 mov.w
                          @(-2:16,r6),r0
8800
     FFFE
                 mov.b
                          #H'FE:8.spl
```

Listing 11 disassembled code

Application Note

## **MRI**

```
A800
     0903
                 add.w
                          r0, r3
008C
     7900 0011
                          #H'11:16, r0
                 mov.w
008E
     0011
                 nop
0090
     1D03
                 cmp.w
                          r0, r3
0092 4DEC
                 blt
                          H'EC ; =>80
0094 6F60 FFFC
                mov.w
                          @(-4:16,r6),r0
0096 FFFC
                mov.b
                          #H'FC:8, spl
0098
     0B00
                 adds.w
                          #1,r0
009A 6FE0 FFFC
                          r0,@(-4:16,r6)
                mov.w
009C FFFC
                mov.b
                          #H'FC:8,spl
009E 6F60 FFFE
                 mov.w
                          @(-2:16,r6),r0
00A0 FFFE
                mov.b
                          #H'FE:8, spl
00A2
      6DF0
                 push.w
                          r0
00A4
     6F60 FFFC
                mov.w
                          @(-4:16,r6),r0
00A6 FFFC
                mov.b
                          #H'FC:8, spl
                 push.w
00A8 6DF0
                          r0
00AA 7900 1AFA
                          #H'1AFA:16,r0
                mov.w
00AC
     1AFA
                 dec.b
                          r21
00AE 6DF0
                 push.w
                          r0
00B0 5E00 0BC4
                 jsr
                          @printf:16
00B2
     0BC4
                 adds.w
                          #2,r4
     7904 0006
00B4
                 mov.w
                          #6,r4
00B6
     0006
                 nop
                 add.w
00B8
     0947
                          r4, sp
00BA 0B02
                 adds.w
                          #1, r2
00BC 7900 0011 mov.w
                          #H'11:16, r0
00BE 0011
                 nop
00C0
     1D02
                 cmp.w
                          r0, r2
00C2
     4DA4
                 blt
                          H'A4 ; =>68
00C4 6F60 FFFA
                mov.w
                          @(-6:16,r6),r0
00C6 FFFA
                mov.b
                          #H'FA:8, spl
00C8
     0B00
                 adds.w
                          #1, r0
00CA 6FE0 FFFA
                 mov.w
                          r0,@(-6:16,r6)
00CC FFFA
                mov.b
                          #H'FA:8, spl
00CE 7901 0001
                 mov.w
                          #mainvec+1, r1
00D0 0001
                 nop
00D2 1D10
                 cmp.w
                          r1, r0
00D4
     4E04
                 bgt
                          H'4 ; =>DA
                          @H'4E:16
00D6
     5A00 004E
                 jmp
00D8 004E
                 nop
00DA 6F60 FFFC
                 mov.w
                          @(-4:16,r6),r0
00DC FFFC
                 mov.b
                          #H'FC:8, spl
00DE
     6DF0
                 push.w
                          r0
00E0 7900 1B0B
                 mov.w
                          #H'1B0B:16,r0
00E2 1B0B
                 subs.w
                          #1,r3
00E4
      6DF0
                 push.w
                          r0
00E6 5E00 0BC4
                 jsr
                          @printf:16
00E8
      0BC4
                 adds.w
                          #2,r4
00EA 0B87
                 adds.w
                          #2,sp
```

Listing 11 cont'd

**MRI** 

## **Application Note**

```
00EC
      0B87
                 adds.w
                          #2,sp
OOEE
      0180
                 sleep
00F0
      6D73
                 pop.w
                          r3
00F2
      6D72
                 pop.w
                          r2
00F4
     0D67
                mov.w
                          r6,sp
00F6
      6D76
                 pop.w
                          r6
00F8
      5470
                 rts
     6B00 19B6
                         @sci0_smr:16,r0
00FA
                mov.w
00FC
                          r3, r6
     19B6
                 sub.w
00FE F900
                mov.b
                          #0,r11
0100
     6889
                mov.b
                          r11,@r0
                         @sci0_brr:16,r0
0102
      6B00 19B8
                mov.w
0104
     19B8
                 sub.w
                          r3, r0
                          #H'1F:8,r11
0106 F91F
                mov.b
0108
     6889
                mov.b
                          r11,@r0
010A 6B00 19BA mov.w
                         @sci0 scr:16,r0
010C 19BA
                          r3.r2
                 sub.w
010E F930
                mov.b
                          #H'30:8,r11
0110
      6889
                          r11,@r0
                mov.b
0112
      5470
                 rts
```

END of listing 11

## MRI Toolkit H8/300

## **Application Note**

## H8/325 Standard I/O

Paul Yiu

## INTRODUCTION

The MRI/Hitachi toolkit for the H8/300 is supplied with standard I/O routines; however, these routines were written to simulate I/O on the PC terminal. This means the user serial I/O interface goes through the debugging terminal, not the serial ports of the CPU. To have a "real" user I/O interface, we need to change some source code, compile it, and put it in the correct library module as replacement routines.

The two most important I/O functions are *printf* and *iscanf*. *Printf* outputs variables and strings to the screen, while *iscanf* takes user's input or commands.

## **Code Operation**

Figure 1 shows how *printf* works. We only need to change s_write.c to change the *printf* routine.

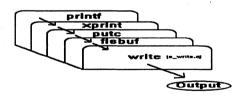



Figure 1: printf routine

Parts of the original s_write.c are listed here.

```
for (i=nbyte;i!=0;i--)
_simulated_output=*buffer++;
return (nbyte);
Listing 1: s_write.c (original)
```

The output is sent to the variable _simulated_output, which is displayed on the XRAY debugging output screen. To make the

output go to a serial port, we only need to replace the variable with the serial port address.

The modified s_write.c is listed below.

```
/*sci0 ssr and sci0 tdr are defined*/
/*as constants in another file*/
extern int const sci0 ssr;
extern int const sci0 tdr;
/*function write*/
int write (int fd, char *buffer,
unsigned nbyte)
unsigned int i;
for (i = nbvte; i != 0; i--)
  while ( (*(unsigned char *)sci0 ssr)
< 0x80)
      ;/*wait till ready to transmit*/
 *(unsigned char *)sci0 tdr=*buffer++;
 *(unsigned char *)sci0 ssr =
((*(unsigned char *)sci0 ssr)&0x7f);
        return (nbyte);
```

Listing 2: s_write.c

The two variables,  $sci0_tdr$  and  $sci0_ssr$  are defined as constants. To cast the variables into addresses, we put "(unsigned char *)" in front of the variables. Another "*" in front accesses the content of a specific address. Please refer to Technote #TN-0020 Direct Memory Addressing with C Pointers for more details on pointers and casting.

The code in bold and italic are modified for the H8/325. Bit 7 of sci0_ssr (Serial Status Register), when set to 1, indicates that Transmit

## HITACHI

**MRI Tools Application Note** 

Data Register (TDR) is empty: this means "ready to transmit." Sci0_tdr is the address of the TDR, where data goes to be output. After the data is sent to the data register, we clear bit 7 of the Serial Status Register because the TDR is now full. The hardware will set bit 7 of Serial Status Register after the data is transmitted to the shift register. Now the CPU is ready to transmit another byte of data.

## Input

The standard input routine is *iscanf*. The source code of iscanf is available in the package. Iscanf calls the macro "get_port," which in turn calls "getchar." Getchar can be used as a macro or a function. In iscanf.c, getchar the macro is used, but it is much more convenient to redefine the function, so we won't have to deal with the stdio.h file. Listed below is part of the supplied *iscanf.c* source code:

```
#define GET PORT() (sf len++, getchar());
#define UNGET PORT(c) (sf len--, ungetc(c,
stdin))
/* Function prototypes */
```

Listing 3: iscanf.c (partial)

To call the function instead of the macro, we just add parenthesis around "getchar."

So, the new *iscanf* code contains the following:

```
#define GET PORT() (sf len++, (getchar)())
#define UNGET_PORT(c) (sf len--, ungetc(c,
stdin))
/* Function prototypes */
```

Listing 4: iscanf.c (partial)

The original *getchar* routine tries to get input from the debugging terminal. We need to modify it to accept characters from the serial

port. What we will do is to write a getchar.c routine, compile and assemble it, then put it in the library, so each time getchar is called, our modified function will be used. Listed below is the custom-made *getchar* routine:

```
extern int const sci0 ssr;
extern int const sci0 rdr;
unsigned char getchar()
unsigned char c;
while (((*(unsigned char *)sci0 ssr) |
0xbf) == 0xbf
        ;/*loop till character a
        vailable*/
c=*(unsigned char *) sci0 rdr;
*(unsigned char *) sci0 ssr=((*(unsigned
char *)sci0 ssr)&0xbf);
printf("%c",c); /*echo input on the
screen*/
return (c);
```

Listing 5: getchar.c

## Compilation of source codes

Now there are three new C source codes, iscanf.c, s_write.c, and getchar.c. These routines need to be compiled, assembled, and linked into the library for future use. Instead of modifying the original library, we should make a copy of the original and modify the second copy. The library is located in c:\whih83\lib\ directory; it's called ch83emc.lib. First, we'll make a copy of it, called h8325.lib. This library is just a collection of all the modules of standard functions, such as printf, scanf, getchar, putchar, etc. Included in the MRI Toolkit is a librarian utility; we'll use the librarian to modify our H8325.lib file. The librarian utility is a "module manager." The librarian can create, edit, add, or

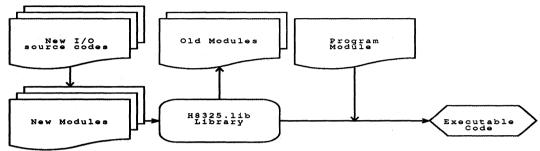



Figure2: Standard I/O Modules

dele te libraries that contain often-used functions. For more information on the librarian, please refer to Application Note AE-0029, Software Development from C source to S record.

First we want to take out the old s_write and getchar modules from the library.

The "-e" flag extracts these modules. Now there are two .obj files called s_write.obj and getchar.obj. These files should be renamed, so they are not confused with our new modules. We'll rename them as s_write.old and getchar.old. Now we want to delete these two modules from the library.

The "-d" flag deletes modules from the library.

The next step is to compile and assemble our new source codes.

The "-c" flag tells the compiler to make .obj files with the source, without creating executable files. Now, there should be .c, .obj, and .old files. The last thing is to put our new modules into the library.

The "-a" flag adds modules to the library.

The h8325.lib file now contains the updated I/O routines for future use. The h8325.lib file should be linked in when creating executable files. For more information on the linker and its command line options, please refer to Application Note AE-0029, Software Development from C source to S record.

## HD61830B/LM200

#### Tutorial

## **Forth Display Routine Demonstration**

Marnie Mar

#### Introduction

Replacing a debug monitor with a Forth interpreter gives hardware and software developers new options in developing and debugging designs. This Tutorial demonstrates the use of a Forth interpreter through the writing of test and application programs for an LCD display system.

Forth interpreters are now available for use with Hitachi's H8/ 532 and H8/330 microcontroller evaluation boards. The interpreters are available in object code form to be programmed into EPROM.

This Tutorial assumes some knowledge of Forth, and/or access to a Forth reference document. While the Forth examples shown here apply to an H8/532-based LCD display system, the ideas used apply to other microcontroller-based system developments.

A detailed description of this LCD Display system is available in a Tutorial on the HD61830B and LM200. This Tutorial is document number AE150, available from your local Field Application Engineer. Please refer to this document for system details.

## **Forth Simplifies Debug Monitor Functions**

Using a Forth interpreter speeds up microprocessor-based hardware checkout by allowing users to exercise the circuitry without generating native object code. Hardware designers can test circuitry by using Forth commands for interactively writing to and reading from memory locations and hardware registers in the memory or I/O map.

Memory interfaces can be tested by writing to memory locations and reading back to see that data was written. Peripheral device interfaces are tested similarly, and peripheral functions are tested by initializing control registers and checking for the expected operation.

When using a debug monitor, the user is required to perform many steps just to get a test program into memory. One method is to hand enter machine code into memory to be executed using monitor commands. Another method relies on the monitor to provide a line assembler, which requires the user to type assembly commands line by line. The third method requires an editor and a cross-assembler running on a PC, which are used to generate an object code file that must then be downloaded to target memory.

The Forth interpreter eliminates these steps by allowing the user to enter high-level commands which control the system. These commands are executed (interpreted) with each carriage return.

## **Obtaining Forth**

The object code files for the Forth interpreters (and the demonstration files used here) are available on the HAL Application Engineering Bulletin Board system. Please contact your local FAE for information on accessing this bulletin board and obtaining these files.

## **Installing Forth**

The Forth object code should be programmed into an HN27C256 or HN27512 EPROM by downloading the S-type or binary format object code into a device programmer. If an HN27512 device is used for the H8/532 board, program the Forth object code starting at device address 8000h. Otherwise, program the object code starting at address 0h.

Once programmed, the Forth EPROM replaces the debug monitor EPROM on the H8/330 Evaluation Board (US338EVB01H) or the H8/532 Evaluation Board (US538EVB21H). Both boards use the shipping switch configurations with the following exception: on the H8/330 Evaluation Board, jumper W2 should be set for the EPROM size used.

## **Starting Forth**

After installing the Forth EPROM and confirming jumper of placement, connect a terminal or a PC running terminal 5 emulation software to the evaluation board. Configure the  $\begin{picture}(60,0) \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0,0){100}} \put(0,0){\line(0$ terminal for 9600 baud, no parity, one stop bit. Apply power to the board, and a Forth sign-on message followed by the "ok" prompt should appear.

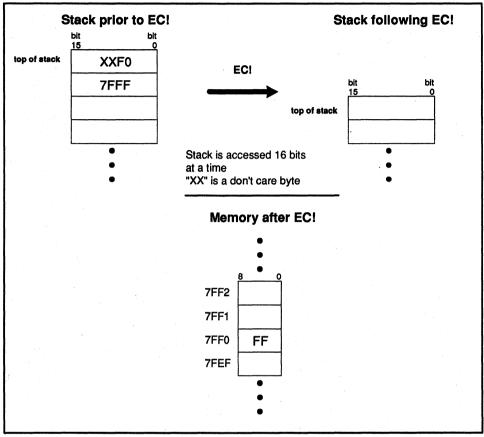



Figure 1 - EC! Stack and Memory Operation

## **Using Forth**

Following the "ok" prompt, type VLIST (note that all Forth words are defined in capital letters, and text entries are case sensitive). This lists all words defined in the Forth dictionary. Some of these words are standard Forth commands and should be described in your Forth reference document. Other words are recognizable as constant names defined for on-chip peripheral register locations.

At this point, Forth commands can be entered, and values can be placed on the stack. How are values placed on the stack? When a user types in information following the "ok" prompt, Forth first determines if the typed value is the name of an

operation currently defined in the dictionary (either part of the kernel or defined by the user). If so, the defined operation is carried out. If not, Forth assumes this is a value to be placed on the stack.

To view the contents of the stack, use ".S". This displays stack contents without changing the stack. "." displays the value on the top of the stack and also removes the value fromt he stack.

## Testing an interface

The first task is to determine if the H8/532 to HD61830B interface is performing properly. To check this interface, values can be written to registers in the device, then read back

30

## HD61830B/LM200

for verification. This is accomplished in H8 Forth using the operators EC! (to write to an address) and EC@ (to read from an address).

EC! and EC@ were defined for H8 Forth based on the standard Forth operators C! and C@. The H8 microcontroller instruction set includes instructions that synchronize data transfers to and from peripheral addresses using E clock timing. C! and C@ are based on reads and writes using standard H8 bus timing, while EC! and EC@ are based on reads and writes using the E clock timing.

Forth is a stack-based language that takes input parameters for an operation off the stack, and places operation results back on the stack. For EC!, Forth pops the word value on the top of the stack and accepts it as a memory address. The next byte on the stack is popped as a value, which is written to the popped address. This operation stores no results to the stack. See Figure 1 for a diagram of this operation.

The EC@ operation reads a value from an address. The address is popped from the top of the stack. A byte is read from this address, and is pushed onto the stack to be used by Forth operations to be executed in the future.

## **Documenting Forth**

Listings of Forth operations are commented using a description of what is popped from the stack and what is pushed to the stack. For instance, in the case of EC!, the listing would show:

```
EC! (address value -)
```

EC! is the operation performed. The opening paren signals the Forth interpreter that a comment follows. It must be followed by a space. EC! pops first an address, then a value. The "— " separates what is popped from what is pushed. In this example, no data is pushed back on the stack, so none is shown. The closing paren terminates the comment.

Similarly, EC@ would be commented as follows:

```
EC@ ( address - value )
```

showing that EC@ pops an address from the stack, and places the value read from the address on the stack following the operation.

## Testing a peripheral interface

The following sequence can be used to test the interface

between the microcontroller and an E clock peripheral with a read/write register at address 8000h:

```
HEX (all numerical values are hex)
FF 8000 EC! (write FFh to 8000h)
8000 EC! (read location 8000h, place value
on stack)
(remove top stack value and display)
```

The word HEX causes all further numerical inputs to be recognized as hex values. These commands are typed in response to the "ok" prompt. When the value read from the register is displayed, the user can see if the it is FFh as expected. Other write values can be tested in the same way.

## Testing the HD61830B interface

Testing the interface between the H8/532 and the HD61830B is not as simple as performing a write and a read, since this device does not have directly addressed registers. To access a register, the user must first write the address of the register to the device's instruction register, then either read or write data in a data holding register.

Labels can be used in place of the numerical register addresses and register numbers. The registers and register numbers can be defined for the HD61830B as follows:

```
7FF0 CONSTANT WRITREG
7FF1 CONSTANT BFLAG
0 CONSTANT MODEREG
1 CONSTANT CHARPITCH
2 CONSTANT NUMCHAR
3 CONSTANT NUMTIMES
```

7FF1 CONSTANT INSTREG

4 CONSTANT CURPOS 8 CONSTANT DSTARTLO

9 CONSTANT DSTARTHI

A CONSTANT CURSLO B CONSTANT CURSHI

C CONSTANT WRTDSP

D CONSTANT RDDISP E CONSTANT CLRBIT

F CONSTANT SETBIT

Each line would be entered followed by a carriage return, and the interpreter would respond with "ok" as the constant is accepted.

Once the register addresses have been defined as constants, writing of data can be simplified using a Forth colon definition called WRITVAL:

```
: WRITVAL
INSTREG EC! ( write to INSTREG )
WRITREG EC! ( write to WRITREG )
BEGIN
BFLAG EC@ ( read BFLAG )
80 AND ( AND with 80h )
80 <> ( loop until not equal )
UNTIL ( CONDITION - )
```

A colon definition defines a new operation, which becomes part of the Forth dictionary. Whenever WRITVAL is typed followed by a carriage return, this operation is carried out. A colon definition is terminated by a semicolon. When such a definition is entered to a Forth interpreter, the "ok" prompt is not displayed until the entire definition has been entered, and the semicolon terminator has been received. During definition (between the ":" and the ";") no execution takes place. The defined word must be entered as a command in order for the defined function to take place.

As shown in the comment on the first line of WRITVAL, this operation takes a register value and a register number off the stack, and places no data back on the stack. In other words, when the WRITVAL operation is requested, the user must make sure that these two values are on the stack, or an error will occur.

To write a value the value 12h into the mode register, use the following sequence (output from interpreter is <u>underlined</u>):

```
place 12h on the stack:

ok 12

place the register number on the stack:
ok MODEREG

execute WRITVAL:
ok WRITVAL
```

The function is complete when the "ok" prompt is returned.

The HD63810B should not be accessed again until the requested operation (write to the mode register) has completed. The device sets the most significant bit of the BFLAG register when it is busy, and clears this bit when the operation has completed. The second half of the WRITVAL colon definition takes care of this.

The BEGIN—UNTIL sequence is a looping construct. When the UNTIL is reached, Forth pops the value at the top of the

stack. A value of zero is a false condition, which causes a loop back to BEGIN. A non-zero value is taken to be a true condition, which terminates the loop.

The busy flag is checked by first reading the BFLAG register, ANDing the value with 80h, then comparing the value with 80h. If the value is equal, a busy condition exists, and the loop should continue. Otherwise, the loop ends.

## Writing and Reading Display RAM

Since the HD61830B lacks read/write registers, a write then read back test cannot be performed. An alternative method of testing is to cause the HD61830B to write to display RAM, then read back the written value. To write to the display RAM, the HD61830B must be initialized as to operating mode, display RAM start location, and cursor start location. The cursor moves forward with each display RAM access, so to read the same location that was written, the cursor must be backed-up. The operation is as follows:

initialize mode
initialize display RAM start address
initialize cursor location
write to display memory
move cursor back
read from display memory
compare read and written values

A sequence of Forth commands to perform this operation is shown in Appendix A.

## Writing display demonstrations

Once the interface has been tested, Forth can be used to write display programs for demonstration. Rather than enter each program line by line to the interpreter, it is possible to combine Forth operations and colon definitions into a text file. These files can then be downloaded from a PC to the user system using the file transfer capabilities of a terminal emulator program. The Forth interpreter accepts these inputs as if they were inputs from the keyboard.

The interpreter interprets Forth operations line by line. Therefore, there may be a delay between the time a line of your file is accepted, and the time the interpreter is ready for the next line. If the next line is sent by the PC too soon, the Forth interpreter will miss characters.

To minimize the chance of missed characters, a feature of the terminal emulation package is used to cause a pause between

#### Tutorial

## HD61830B/LM200

download of a carriage return and the following line. This pause can be adjusted to suit the file being downloaded.

The four demonstration files perform the following tasks:

- initialize the LCD controller in character mode, and display the full character set available on the HD61830B device
- initialize the LCD controller in graphics mode, and display a checkerboard pattern
- initialize the LCD controller in graphics mode, and tile the display with different tile patterns
- initialize the LCD controller in graphics mode, prompt the user for an eight byte tile pattern (8 dot x 8 dot tile), and tile the display with this pattern.

The Forth files required to run these programs are listed in Appendix B.

## Running the demonstration programs

Running the demonstration programs requires an LCD Software Development Station (available from Hitachi America, Ltd.), a Forth EPROM for the H8/532 evaluation board, a PC, the demonstration Forth files and a terminal emulation software package. PROCOMM Plus, available from Datastorm Technologies, Inc. was used during development.

The terminal emulation software should be set up to provide a delay following each line downloaded. PROCOMM Plus can be setup to perform this line pacing by accessing the line pacing parameter in the ASCII Transfer Options Setup screen. The demonstrations shown here were transferred with 30 second pauses between lines. This parameter should be lengthened if necessary so that no missed characters occur between the time that a Forth command is sent and the time that the interpreter is ready to receive another command.

When the "ok" prompt is on the screen, initiate the download using the file transfer features of the terminal emulation package. Lines of the file will be displayed, followed by "ok". The Forth interpreter executes the commands as if they were typed from the keyboard by the user. Watch the LCD display for the program results.

When the download is completed, remember that the colon definitions of the file have been loaded to the dictionary and can be entered at the keyboard and used for further demonstration. For instance, following the download of the pattern tiling file, the pattern names defined can be entered to cause these patterns to display on the LCD.

Since each file redefines the CONSTANT values, the H8/532 board of the Software Station should be reset prior to downloading the another demonstration file.

## Summary

A Forth interpreter replacing the debug monitor on an H8/532 or H8/330 evaluation board can be used to test hardware interfaces and generate hardware test programs. These programs can be stored in ASCII file format for downloading for future execution. Once downloaded, colon definitions defined in the file can be used as Forth commands to the interpreter.

The hardware-friendly interface of Forth minimizes the time and code generation required to test system circuitry. Writing application software in any language is greatly simplified when the hardware has been well tested with Forth routines.

For more information on any of the hardware or software tools described in tutorial, please contact the Field Application Engineer in your local Hitachi Field Sales office.

The information in this Tutorial has been carefully checked; however, the contents of this Tutorial may be changed and modified without notice. The company shall assume no responsibility for inaccuracies, or any problem involving a patent caused when applying the descriptions in this Tutorial.

```
Appendix A - RAM write and read through HD61830B
( Forth commands to test writing then reading of
( Display RAM using the HD61830B in character mode )
( values to be entered in hexadecimal )
HEX
( define HD61830B register address constants )
7FF1 CONSTANT INSTREG
7FF0 CONSTANT WRITREG
7FF0 CONSTANT RDREG
( define HD63180B register number constants )
O CONSTANT MODEREG
4 CONSTANT CURPOS
8 CONSTANT DSTARTLO
9 CONSTANT DSTARTHI
A CONSTANT CURSLO
B CONSTANT CURSHI
C CONSTANT WRTDISP
D CONSTANT RDDISP
MODEREG INSTREG EC!
                         ( write reg # to INSTREG )
1C WRITREG EC!
                         ( write mode )
DSTARTLO INSTREG EC!
00 WRITREG EC!
                         ( load Disp RAM start addr lo)
DSTARTHI INSTREG EC!
00 WRITREG EC!
                         ( load disp RAM start addr hi)
CURSLO INSTREG EC!
00 WRITREG EC!
                         ( initialize cursor)
CURSHI INSTREG EC!
00 WRITREG EC!
                         ( initialize cursor)
WRTDISP INSTREG EC!
AA WRITREG EC!
                         ( write AA to display RAM )
CURSLO INSTREG EC! .
00 WRITREG EC!
                         ( move cursor back - write to RAM automatically moves it forward)
CURSHI INSTREG EC!
00 WRITREG EC!
                         ( move cursor back )
RDDISP INSTREG EC1
                         ( read RAM and display )
RDREG EC@
                         ( value displayed should equal value written )
```

## Appendix B - Forth Demonstration Files

Character Mode Demonstration

```
( Demonstration Program for H8/532 and HD61830B system )
         Demonstrates character display mode )
( values to be entered in hexadecimal )
( define HD61830B register address constants )
7FF1 CONSTANT INSTREG
7FF0 CONSTANT WRITREG
7FF1 CONSTANT BFLAG
( define HD63180B register number constants )
O CONSTANT MODEREG
1 CONSTANT CHARPITCH
2 CONSTANT NUMCHAR
3 CONSTANT NUMTIMES
4 CONSTANT CURPOS
8 CONSTANT DSTARTLO
9 CONSTANT DSTARTHI
A CONSTANT CURSLO
B CONSTANT CURSHI
C CONSTANT WRTDISP
D CONSTANT RDDISP
E CONSTANT CLRBIT
F CONSTANT SETBIT
( WRITVAL writes a word to an HD61830B register, then waits
( for Busy condition to clear)
: WRITVAL ( REGVAL REGNUM - )
INSTREG EC! ( REGNUM - )
WRITREG EC!
             ( REGVAL - )
BEGIN
BFLAG EC@ ( - FLAG )
80 AND
           ( FLAG - BIT7 TEST)
80 <> ( BIT7 TEST - CONDITION )
UNTIL ( CONDITION - )
( CLEARSCREEN moves the cursor to the starting position and
( write 20h to screen to display spaces )
: CLEARSCREEN
00 CURSLO WRITVAL
00 CURSHI WRITVAL
1FF 0 DO
20 WRTDISP WRITVAL
LOOP
```

(continued on next page)

Character Mode Demonstration

```
( HD61830B Initialization commands)
1C MODEREG WRITVAL ( char mode, display off)
95 CHARPITCH WRITVAL ( 10 x 6 block char )
27 NUMCHAR WRITVAL
1F NUMTIMES WRITVAL
08 CURPOS WRITVAL ( display cursor at line 9)
00 DSTARTLO WRITVAL
00 DSTARTHI WRITVAL
CLEARSCREEN
3C MODEREG WRITVAL ( turn on display )
( DISPSCREEN loops from 20h to FFh, displaying the
( character corresponding to the loop variable )
: DISPSCREEN
  00 CURSLO WRITVAL
  00 CURSHI WRITVAL
  FF 20 DO
   I WRTDISP WRITVAL
  LOOP
( DISPLAY CHARACTER SET )
DISPSCREEN
```

Checkerboard Demonstration

```
Forth commands to display a checkerboard pattern on )
  LCD panel using HD61830B graphics mode )
( all following numeric entries in hexadecimal )
HEX
( define HD61830B register address constants )
7FF1 CONSTANT INSTREG
7FF0 CONSTANT WRITREG
7FF1 CONSTANT BFLAG
( define HD63180B register number constants )
0 CONSTANT MODEREG
1 CONSTANT CHARPITCH
2 CONSTANT NUMCHAR
3 CONSTANT NUMTIMES
4 CONSTANT CURPOS
8 CONSTANT DSTARTLO
9 CONSTANT DSTARTHI
A CONSTANT CURSLO
B CONSTANT CURSHI
C CONSTANT WRTDISP
D CONSTANT RDDISP
E CONSTANT CLRBIT
F CONSTANT SETBIT
( WRITVAL writes a word to an HD61830B register, then waits
( for Busy condition to clear)
: WRITVAL ( REGVAL REGNUM - )
  INSTREG EC! ( REGNUM - )
  WRITREG EC!
              ( REGVAL - )
  BEGIN
   BFLAG EC@ ( - FLAG )
              ( FLAG - BIT7 TEST)
             ( BIT7 TEST - CONDITION )
   80 <>
  UNTIL (CONDITION -)
( CLEARSCREEN moves the cursor to the starting position and
( write 20h to screen to display spaces )
: CLEARSCREEN
  00 CURSLO WRITVAL
  00 CURSHI WRITVAL
  A00 0 DO
   00 WRTDISP WRITVAL
  LOOP
```

(continued on next page)

Checkerboard Demonstration

```
( HD61830B Initialization commands)
12 MODEREG WRITVAL
                     ( graphics mode, display off)
07 CHARPITCH WRITVAL ( 8 bits per byte storage)
1D NUMCHAR WRITVAL
1F NUMTIMES WRITVAL
00 DSTARTLO WRITVAL
00 DSTARTHI WRITVAL
CLEARSCREEN
( move cursor back to start position )
00 CURSLO WRITVAL
00 CURSHI WRITVAL
32 MODEREG WRITVAL
                    ( TURN ON DISPLAY )
( BLACKROW displays a row of checkerboard pattern starting
( with black square)
: BLACKROW
    OF 00 DO
      FF WRTDISP WRITVAL
      00 WRTDISP WRITVAL
    LOOP
( WHITEROW displays a row of checkerboard pattern starting
( with white square)
: WHITEROW
    OF 00 DO
       00 WRTDISP WRITVAL
       FF WRTDISP WRITVAL
    LOOP
( CHECKBD uses WHITEROW and BLACKROW to display the
( checkerboard pattern)
: CHECKBD
04 00 DO
 08 00 DO
  WHITEROW
 LOOP
 08 00 DO
  BLACKROW
 LOOP
LOOP
( DRAW CHECKERBOARD PATTERN )
CHECKBD
```

Tiled Pattern Demonstration

```
( Tiles the LCD display with an 8 bit x 8 bit pattern.
  LOADWHEEL, LOADDIAMOND, LOADTHATCH, LOADWEAVE, and
    LOADK fill the array with a preset pattern )
( all values following accepted as hexadecimal )
HEX
( register address definitions for HD61830B )
7FF1 CONSTANT INSTREG
7FF0 CONSTANT WRITREG
7FF1 CONSTANT BFLAG
( register number definitions for HD61830B )
0 CONSTANT MODEREG
1 CONSTANT CHARPITCH
2 CONSTANT NUMCHAR
3 CONSTANT NUMTIMES
4 CONSTANT CURPOS
8 CONSTANT DSTARTLO
9 CONSTANT DSTARTHI
A CONSTANT CURSLO
B CONSTANT CURSHI
C CONSTANT WRTDISP
D CONSTANT RDDISP
E CONSTANT CLRBIT
F CONSTANT SETBIT
( writes a byte value to a register )
: WRITVAL ( REGVAL REGNUM - )
  INSTREG EC! ( REGNUM - )
  WRITREG EC!
              ( REGVAL - )
  BEGIN
   BFLAG EC@ ( - FLAG )
   80 AND
              ( FLAG - BIT7 TEST)
   80 <>
             ( BIT7 TEST - CONDITION )
  UNTIL ( CONDITION - )
( Clears the screen by writing 00h to each display byte )
: CLEARSCREEN
  00 CURSLO WRITVAL
  00 CURSHI WRITVAL
  A00 0 DO
   00 WRTDISP WRITVAL
  LOOP
```

(continued on next page)

Tiled Pattern Demonstration

```
( Moves cursor position to upper left corner )
: CURINIT
00 CURSLO WRITVAL
00 CURSHI WRITVAL
( Initialization for character write mode )
12 MODEREG WRITVAL
                      ( 1C TO mode register)
07 CHARPITCH WRITVAL ( 95 to char pitch register)
1D NUMCHAR WRITVAL
                     ( 27 TO number of chars reg)
1F NUMTIMES WRITVAL
                      ( 1F to number of times reg)
00 DSTARTLO WRITVAL
00 DSTARTHI WRITVAL
CLEARSCREEN
( Return cursor to start position )
CURINIT
32 MODEREG WRITVAL
                     ( TURN ON DISPLAY )
( Array definitions for tiling routine )
O VARIABLE BYTEARRAY 8 ALLOT
O VARIABLE BYTESTORE 2 ALLOT
( Tiles one row with the 8 bytes in BYTEARRAY )
: TILEROW
 08 0 DO
  1E 0 DO
   BYTEARRAY J + C@
   WRTDISP WRITVAL
  LOOP
LOOP
```

(continued on next page)

## HD61830B/LM200

## Appendix B - Forth Demonstration Files - continued

## Tiled Pattern Demonstration

```
( Tiles display using TILEROW )
: TILE
 10 0 DO
    TILEROW
 LOOP
: LOADWHEEL
 14 BYTEARRAY 0 + C!
 OC BYTEARRAY 1 + C!
 C8 BYTEARRAY 2 + C!
 79 BYTEARRAY 3 + C!
 9E BYTEARRAY 4 + C!
 13 BYTEARRAY 5 + C!
 30 BYTEARRAY 6 + C!
 28 BYTEARRAY 7 + C!
 CURINIT
 TILE
:
: LOADDIAMOND
 20 BYTEARRAY 0 + C!
 50 BYTEARRAY 1 + C!
 88 BYTEARRAY 2 + C!
 50 BYTEARRAY 3 + C!
 20 BYTEARRAY 4 + C!
 00 BYTEARRAY 5 + C!
 00 BYTEARRAY 6 + C!
 00 BYTEARRAY 7 + C!
 CURINIT
 TILE
: LOADTHATCH
 88 BYTEARRAY 0 + C!
 54 BYTEARRAY 1 + C!
 22 BYTEARRAY 2 + C!
 45 BYTEARRAY 3 + C!
 88 BYTEARRAY 4 + C!
```

```
15 BYTEARRAY 5 + C!
  22 BYTEARRAY 6 + C!
  51 BYTEARRAY 7 + C!
  CURINIT
  TILE
: LOADWEAVE
  F8 BYTEARRAY 0 + C!
  74 BYTEARRAY 1 + C!
  22 BYTEARRAY 2 + C!
  47 BYTEARRAY 3 + C!
  8F BYTEARRAY 4 + C!
  17 BYTEARRAY 5 + C!
  22 BYTEARRAY 6 + C!
  71 BYTEARRAY 7 + C!
  CURINIT
  TILE
: LOADK
  11 BYTEARRAY 0 + C!
  09 BYTEARRAY 1 + C!
  05 BYTEARRAY 2 + C!
  03 BYTEARRAY 3 + C!
  05 BYTEARRAY 4 + C!
  09 BYTEARRAY 5 + C!
  11 BYTEARRAY 6 + C!
  00 BYTEARRAY 7 + C!
 CURINIT
  TILE
( type LOADWHEEL, LOADWEAVE, LOADTHATCH,
LOADDIAMOND, LOADK
( to see these patterns drawn )
```

Interactive Tiling Demonstration

```
( Tiles the LCD display with an 8 bit x 8 bit pattern.
  ASK requests 8 bytes for the pattern and stores
    these into an array
   TILE tiles the display with these patterns
( all values following accepted as hexadecimal )
( register address definitions for HD61830B )
7FF1 CONSTANT INSTREG
7FF0 CONSTANT WRITREG
7FF1 CONSTANT BFLAG
( register number definitions for HD61830B )
O CONSTANT MODEREG
1 CONSTANT CHARPITCH
2 CONSTANT NUMCHAR
3 CONSTANT NUMTIMES
4 CONSTANT CURPOS
8 CONSTANT DSTARTLO
9 CONSTANT DSTARTHI
A CONSTANT CURSLO
B CONSTANT CURSHI
C CONSTANT WRTDISP
D CONSTANT RDDISP
E CONSTANT CLRBIT
F CONSTANT SETBIT
( writes a byte value to a register )
: WRITVAL ( REGVAL REGNUM - )
  INSTREG EC!
               ( REGNUM - )
  WRITREG EC! ( REGVAL - )
  BEGIN
   BFLAG EC@
             ( - FLAG )
              ( FLAG - BIT7 TEST)
   80 AND
   80 <>
             ( BIT7 TEST - CONDITION )
  UNTIL ( CONDITION - )
( Clears the screen by writing 00h to each display byte )
: CLEARSCREEN
  00 CURSLO WRITVAL
  00 CURSHI WRITVAL
  A00 0 DO
   00 WRTDISP WRITVAL
  LOOP
                                (continued on next page)
```

Interactive Tiling Demonstration

# F

```
Appendix B - Forth Demonstration Files - continued
( Moves cursor position to upper left corner )
: CURINIT
00 CURSLO WRITVAL
00 CURSHI WRITVAL
( Initialization for character write mode )
12 MODEREG WRITVAL ( 1C TO mode register)
07 CHARPITCH WRITVAL ( 95 to char pitch register)
1D NUMCHAR WRITVAL ( 27 TO number of chars reg)
1F NUMTIMES WRITVAL (1F to number of times reg)
00 DSTARTLO WRITVAL
00 DSTARTHI WRITVAL
CLEARSCREEN
( Return cursor to start position )
CURINIT
32 MODEREG WRITVAL
                     ( TURN ON DISPLAY )
( Array definitions for tiling routine )
0 VARIABLE BYTEARRAY 8 ALLOT
0 VARIABLE BYTESTORE 2 ALLOT
( Gets a byte of data from keyboard and converts to hex )
: GETBYTE
            ( -- Key value1 )
KEY
DUP
            ( -- Key value1 )
BYTESTORE 0 + C!
                        (place value1 in array[0])
            ( Key value1 -- )
EMIT
KEY
            ( -- Key value2 )
DUP
            ( -- Key value2 )
BYTESTORE 1 + C!
                      ( place value2 in array[1] )
EMIT
            ( Key_value2 -- )
( Converts two ASCII bytes into a hex byte )
: CONVERTER
BYTESTORE 0 + C@ ( -- Key value1 )
                   ( Key value1 -- hex1 )
DUP
                ( -- hex1)
9 >
                   ( hex1 -- condition)
                                (continued on next page)
```

Interactive Tiling Demonstration

```
IF 7 -
            ( condition hex -- newhex)
ELSE
THEN
10 *
             ( Hex -- HexMSN): generate Most Significant Nibble in HEX
BYTESTORE 1 + C@
                   (-- Value2)
             ( Value2 -- hexLSN )
30 -
DUP
            ( -- hexLSN )
9 >
            ( hexLSN -- condition )
IF 7 -
             ( condition -- hexLSN )
ELSE
THEN
             ( hexLSN hexMSN -- hex equivalent )
( Prompts user for 8 hex bytes to be tiled)
: ASK
 CR
 8 0 DO
 ." ENTER BYTE "
 GETBYTE
 CR
 CONVERTER
 BYTEARRAY I + C!
 LOOP
( Tiles one row with the 8 bytes in BYTEARRAY )
: TILEROW
 08 0 DO
  1E 0 DO
   BYTEARRAY J + C@
   WRTDISP WRITVAL
  LOOP
 LOOP
( Tiles display using TILEROW )
: TILE
  10 0 DO
    TILEROW
  LOOP
( type ASK, enter bytes, then type CURINIT to initialize
    cursor, then TILE to display pattern
    this sequence can be performed repeatedly )
```

## Hitachi Emulators

## **Applications Guide**

## **Emulator to PC Interface Guide**

Marnie Mar

#### Introduction

Designers using Hitachi microcontrollers can simplify system implementation by using a PC for all development steps from code generation and hardware testing to system integration and debugging.

Using a PC and cross software tools available from Hitachi and third party vendors, users can compile, assemble, and link code destined to run on their target processor. The object file resulting from this process is ready to be tested for proper operation using software simulators or hardware emulators.

When using a software simulator that also runs on the PC, this object file is simply read by the simulator program, and debugging begins. However, when the debugging environment is a separate piece of hardware for emulation, the transfer of object information is less trivial.

This guide describes how to interface Hitachi emulators to a PC, so that object code can be transferred and debugging sessions can be carried out using the PC's keyboard and display as the user interface. Four types of emulators will be discussed, giving details on interface cable specifications, software required and where to obtain it, emulator features, and tips on using the emulator.

The following Hitachi emulators will be covered:

- H Series Adaptive System Evaluator (ASE)
- 64180 Family Adaptive System Evaluator (ASE)
- 63xx Family Emulators
- 400 Series Device Emulators

This guide assumes the user has access to the following:

- A PC with unused COM1: or COM2: serial port. If the PC is not an IBM PC/XT or AT, compare the serial port pin-out of your machine with those shown in diagrams in this document to ensure that the recommended cables will provide the proper connections.
- Cross software for the processor to be emulated which will generate an object format acceptable to the emulator (acceptable formats are shown for each emulator type).
- Emulator and User's Manual for the processor to be emulated.
- An RS-232C breakout box or equipment to build the recommended cables as shown in this guide (in some cases, the cables shipped with the emulators will not operate correctly when connected to the PC).
- Hitachi America, Ltd.'s Application Engineering Bulletin Board System for downloading files. For more information contact your local Field Application Engineer.
- A terminal emulation and file transfer program, such as Procomm, Crosstalk, PC-Talk, or many others running on the PC (required for some 64180 interface configurations).

The following abbreviations are used throughout this guide:

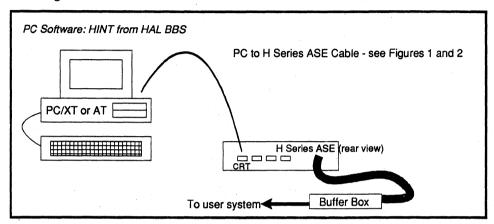
ASE - Adaptive System Evaluator: a hardware development tool which emulates device operation

HAL - Hitachi America, Ltd.

MRI - Microtec Research Inc.

HINT - H-Series Interface Software

BBS - HAL Application Engineering Bulletin Board System


For more information on Hitachi products, please contact your local Field Sales Office.

For information on Microtec Research, Inc. tools, call 1-800-950-5554.

## **H Series ASE Interface**

Hitachi provides emulation capability for users of H Series devices in the form of the ASE, or Adaptive System Evaluator. An ASE consists of a main station common to all H Series devices, a buffer box specific to the device being emulated, and a target probe determined by the package type being designed in.

## **System Configuration:**



## **ASE Part Number:**

HS640AST01H

#### **Interface Software:**

HINT from HAL BBS. Download file named HINT22A.EXE from area O: Special Function Programs. This is a self-extracting file that will unarchive itself when executed.

### **Interface Cables:**

See Figure 1 or 2, depending on whether PC/XT or AT computer is used. The HINT program assumes communications through COM1: of the PC.

#### **ASE Communications:**

Execute the H Series Interface program HINT22. EXE. The user communicates with the ASE debug monitor through the CRT port using XON/XOFF flow control supported by both the HINT program and the ASE operating system. The ASE ignores any input on the CTS pin (pin 4). The RTS output is always high, so this signal can be input to the PC CTS signal to ensure that the PC always detects a Clear To Send condition.

HINT assumes a communications speed of 9600 bits per second, with 8 bit data, 1 stop bit, no parity. The ASE CRT

port is configured for this speed at shipping. Refer to the User's Manual for more information on configuring this port.

## **Object Code File Transfers:**

Object code information can be uploaded and downloaded through either the ASE HOST or CRT port. In order to use the CRT port (and remove the need for an additional terminal or PC), the ASE must be booted in the proper mode. To do this, turn the ASE on without the floppy disk latched into the drive. This causes the ASE to prompt for an operation. Select the I command, to use an ASE interface.

If the ASE is started with the floppy disk in the drive, the ASE system will automatically load from the floppy, and the ASE will assume that uploads and downloads will take place through the HOST port. This would result in a configuration similar to the two-display configuration shown for the 64180 ASE, and is not recommended.

The ASE performs object file transfers using software handshaking. This additional handshaking is provided by the HINT program, and is described in the ASE User's Manual. The handshaking method is specific to these emulators, and is not supported by common terminal emulator/file transfer software packages.

## **H Series ASE Interface (continued)**

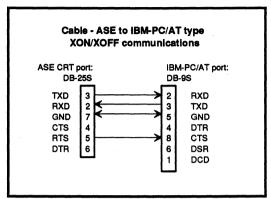



Figure 1

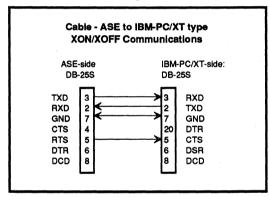



Figure 2

## **Object File Formats:**

S records

Intel Hex records

ASCII symbol and S-record files generated by HAL crosssoftware tools

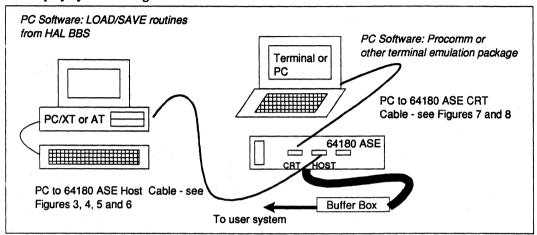
## Symbol Capability:

The ASE provides the capability of referring to addresses by associated symbol name. Symbol names are assigned to addresses at link time, and are based on the symbol names defined at assembly time. These are user-defined in the assembler source, or compiler-defined when the compiler generates the assembly listing.

For HAL cross software tools, symbolic information is loaded

to the ASE from a symbol and S-record output file using a special feature of the HINT interface program.

#### Notes on use of the H Series ASE:


A buffer box and end user cable defined by the device begin emulated must be purchased separately. Some devices are be added to expand the user memory space for larger could applications. These add-on memory boards fit into the buffer Solutions. supported by buffer boxes which allow additional memory to

The ASE must be used with a buffer box attached. The ASE main station operating system software is contained on a disk that comes with each buffer box, and is specific to that buffer box. No software disks are shipped with the ASE alone.

## 64180 Family ASE Interface

Emulation of the 64180 family of devices is performed using an ASE, or Adaptive System Evaluator. An ASE consists of a main station common to all 64180 devices, a buffer box specific to the device being emulated, and a target probe determined by the package type being designed in.

## **Dual Display System Configuration:**



#### **ASE Part Number:**

HS180AST01H (also H180AS01)

#### **Interface Software**

LOAD and SAVE available by downloading file ASECOMM.EXE from Area O: Special Function Programs of the BBS

Terminal Emulator/File Transfer software package

#### - Dual Display System:

LOAD and SAVE programs to run on PC connected to HOST port of ASE (COM1: port of PC must be used) -OR-Terminal emulator and File Transfer software to run on PC connected to HOST port of ASE

If a PC is connected to the CRT port; terminal emulation software must be used to communicate with the ASE debug monitor through the CRT port.

In the dual display configuration, one display (connected to HOST port) must be associated with a PC and is used to initiate file transfers for upload and download. The other display can be a terminal or PC running terminal emulation

software and is used to communicate with the ASE debug monitor through the CRT port.

### - Single Display System:

PROCOMM/other terminal emulator to run on a PC connected to both HOST and CRT port of ASE using Y connector.

#### **Interface Cables:**

Select the cable configuration from Figures 3 through 9, depending on the type of system you plan to use. Configure the cables required for your system as shown. The cables to use depend on the type of PC being interfaced, which software package is used, and whether XON/XOFF or RTS/CTS data flow control is used.

Note that the Y connector requires -12V level for proper operation. This can be provided by external power supply, or from the user system. See Figure 9 for this cable configuration.

## **Interface Communications - CRT Port:**

The 64180 ASE CRT port requires that the CTS and DTR inputs to the ASE be active before transmission of data can

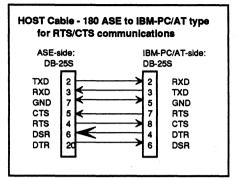



Figure 1

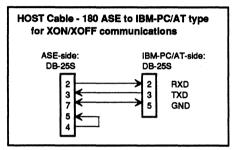



Figure 5

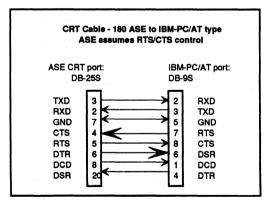



Figure 7

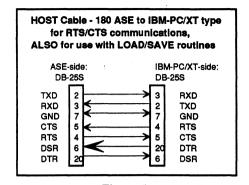



Figure 4

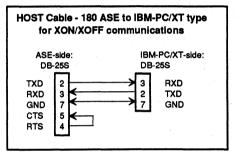



Figure 6

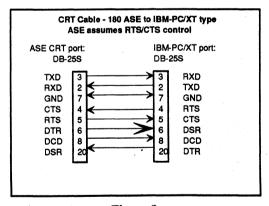
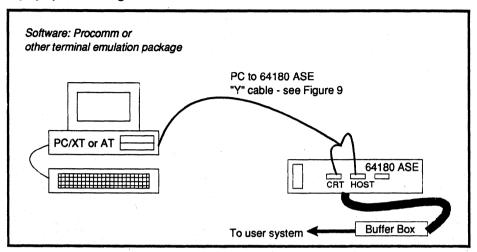




Figure 8

## 64180 Family ASE Interface (continued)

## **Single Display System Configuration:**



occur. The CTS signal controls the flow of data transmitted from the ASE to the CRT. The RTS line output from the ASE CRT port is always high, since flow control from the CRT device is not critical (keyboard input).

Operating speed of the CRT port can be selected by setting the switches of the ASE control board as shown in the ASE User's Manual. These switches are set to an invalid code at shipping. The data format is 8 data bits, 1 start bit, 1 stop bit, no parity. After the speed has been selected on the ASE, set up the terminal or terminal emulator software accordingly.

## **Interface Communications - HOST port:**

The 64180 HOST port can be software configured for RTS/CTS (hardware) or XON/XOFF (software) data flow control. This selection is made by executing the ASE's HOST command. The LOAD/SAVE programs assume RTS/CTS control is used. When PROCOMM or another terminal emulation package is used, either XON/XOFF or RTS/CTS control can be selected, with the software package and the ASE configured accordingly.

Operating speed of the HOST port is defined to be 9600 bits per second if the LOAD/SAVE programs are used, but can be user selected if a terminal emulation package is used for file transfer to the HOST port. The HOST command of the ASE

is used to specify the parameters of HOST port commmunications, including baud rate and XON/XOFF or RTS/CTS handshaking.

## **Object File Transfers:**

In the Dual Display configuration, either the LOAD/SAVE routines from the BBS or a terminal emulation/file transfer program can be used to transfer files to and from the ASE's HOST port. If the LOAD/SAVE routines are used, see the User's Guide information archieved with these files on the BBS.

If terminal emulation software is used, the procedure is similar to that for the Single Display configuration. The LOAD, VERIFY or SAVE command should be issued to the ASE. After this is done, execute the steps necessary to cause an ASCII file transfer as required by the software package you are using. Once the ASE has received a LOAD or VERIFY command, it will wait for a file to be received through the HOST port. If the ASE receives a SAVE command, it will begin sending data to the HOST port.

## **Object File Formats:**

S records

Hitachi S6 symbol records can be included in S record files Intel Hex records

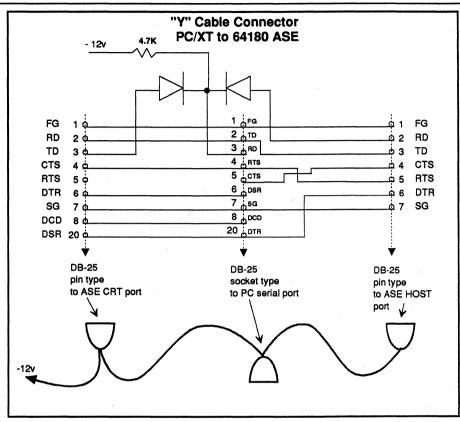



Figure 9

## **Symbol Capability:**

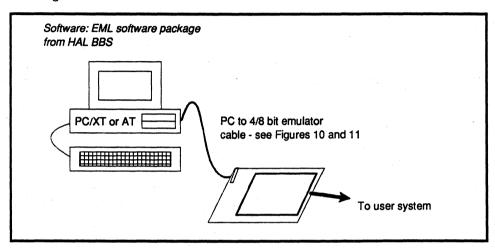
Symbol names can be assigned to physical address values. MRI Cross Software Tools generate symbol information records (S6 records) which can be downloaded to enter symbol information into memory.

#### **Notes on Emulator Use:**

A buffer box and end user cable defined by the device being emulated must be purchased separately from the ASE. The ASE comes with 8Kbyte of emulation RAM for user development. This RAM space can be increased by purchasing additional (up to two) 256Kbyte memory boards, which are placed in the ASE main station.

Hitachi sells an ASE package which consists of the ASE station (HS180AST01H) and a buffer box supporting the

64180R device (HS180ABX02H) as part number HS180ASE02H. The ASE and this buffer box can also be purchased separately. Buffer boxes supporting all other 64180 devices are sold separately. For devices with package type options, end-user target cables are sold separately to emulate other package types.


The ASE cannot be used without a buffer box, since at power up, a check for a buffer box is made. If none is found, operation will not continue. ASE system software on floppy disk is included with each buffer box. No system software is shipped with the ASE alone.

Older versions of the ASE are marked H180AS01. These units will work with all 64180 family buffer boxes, and have the same functionality as the H180AST01H.

## 63xx Family Emulator Interface

Hitachi manufactures and sells emulators which support a specific device or set of devices in the HD63xx micro families. These emulators have similar capabilities, and each has a serial interface which allows connection to a PC for download and upload of code, and for communication with the emulator monitor for debugging sessions.

## **System Configuration:**



## **Emulator part numbers:**

Includes H31MIX2.3.4, H35MIX3.5

#### Interface Software:

EML interface software, available on the HAL BBS. Download file EML.EXE from area O: Special Function Programs. This file is a self-extracting archive file which will unarchive itself when executed.

#### **Interface Cable:**

See Figures 11 and 12. Configure a cable for your system as shown to connect the emulator serial port to either COM1: or COM2: serial port of the PC.

## **Interface Communications:**

The interface program comes in two versions which allow the user to communicate through either COM1: or COM2: serial port of the PC. Execute either EML1.EXE or EML2.EXE to communicate through COM1: and COM2:, respectively.

The EML programs operate at 9600 BPS,8 data bits, 1 start and 1 stop bit, so for proper operation, the emulator must be

configured for operation at this speed. Set SW3 of the emulator as shown in Figure 10 to allow communications between the emulator and a PC running EML.

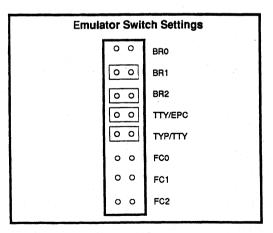



Figure 10

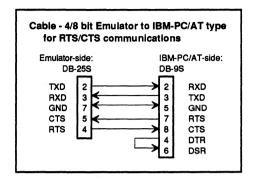



Figure 11

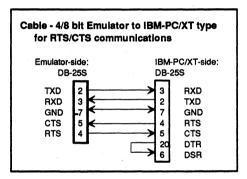



Figure 12

## **Object Code File Transfers:**

File transfers require a special software handshaking protocol unique to these Hitachi emulators, which is supported by EML. While the various terminal emulation packages available on the market can be used to communicate with the emulator debug monitor, these packages do not support this upload/download handshaking protocol.

The following commands are used to transfer object files (<CR> represents pressing the Carriage Return or Enter key on the PC):

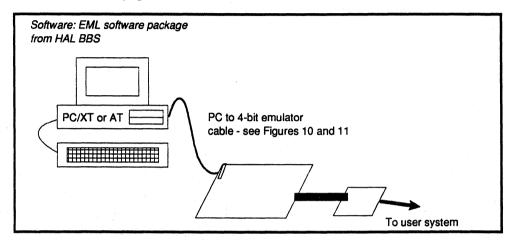
Loading object file: L <filename> <CR> Verifying object file: V <filename> <CR> Saving (punching) new object file:

P <filename> <CR>

The E (End) command followed by <CR> at the prompt will terminate the interface program and return control to DOS.

### Object file format for download:

Motorola S records (S0, S1, S9)
Intel Hex records


#### **Notes on EML Use:**

A User's Manual for the EML program is not included in the BBS distribution file, however, the important information from this manual (hardware interface, upload/download commands) is listed here.

### 4-bit Microcontroller Emulators

### **System Configuration:**

Hitachi emulators for devices in the 400-Series are similar to the 63xx emulators in that they use the same serial interface for connection to a PC. The EML programs metioned in the 63xx section is also used for communication with these emulators.



### **Emulator part numbers:**

HS400EUA01H /HS400EUA02H emulator station H400CMIX2 emulator

### Interface Software:

EML interface software available on the HAL BBS. Download file EML.EXE from Area O: Special Function Programs. This is an archive file which will unarchive automatically when it is executed.

### **Interface Details and Object File Transfers:**

See information on EML program use in the 63xx Family Emulators section. For the HS400EUA01H, configure the Emulator Operation Selection Switch settings as shown at right. For the H400CMIX2, configure as shown in Figure 10.

### Object File Format for Download:

S record files

Hitachi S6 record files (symbol information only) for the HS400EUA01H/02H

Intel Hex record files

### Symbolic Capabilities:

Symbol names can be assigned to address locations manually using the monitor SYM command. Symbol files can also be downloaded to the emulator using the *LOAD* command.

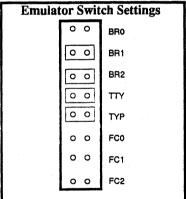



Figure 13

### Notes on the 400 Series Emulators:

The HS400EUA01H/02H connects to a series of target probes that each allow emulation of a different device in this family. Each target probe connects to a User Cable which connects the target probe to the user system. These pieces must be purchased separately by part number, make sure to get the correct target probe and user cable as required for your application. The HS400EUA01H cannot operate without a target probe attached.

## **H Series Support Tools**

July, 1990

### **Application Note**

### Symbolic Debugging with the H Series ASE and MRI Tools Marnie Mar

### Objective

Designers using the Hitachi Adaptive System Evaluator (ASE) emulator and Microtec Research, Inc. (MRI) software development tools can use symbols associated with assembly-level source code to aid in debugging. This note discusses how to use the MRI tools to generate an object code file containing symbol information, how to modify this file so that the information is acceptable to the ASE, and how to load the modified file information to the ASE from a floppy disk.

#### Procedure overview

The MRI linker will generate an S-type linked object file that contains symbol information. This file can be edited using a word processor into two separate files, one containing only Srecord information and the other containing symbol information in a form acceptable to the ASE. Once these two files are

file cc.bat - uses an option file to specify compiler directives. Resulting S record object file containing symbols will be placed by default in file sieve.abs.

mcch83 -dcoption.cmp sieve.c

file coption.cmp - compiler options list, includes specification of options to the assembler, and a command file containing linker options

- -Fsm -Vi -1>test.lst -Wa, -fde, -l>sieve.lst -esform.cmd
- file sform.cmd linker option comand file

format s listmap publics, internals listabs publics, internals debug symbols extern mri start load ch83isc.lib load ch83isf.lib

Figure 1 - Compiling C code to S-type object

file sieveasm.bat - batch file to assemble and link an application written in assembler. Linker commands are read from a command file. Resulting linked object and symbol information is placed in sieve.abs.

asmh83 -fde -l>sieve.lst sieve.src lnkh83 -csform.cmd -osieve.abs sieve

file sform.cmd - linker command file to generate Stype object file.

format s listmap publics, internals listabs publics, internals debug symbols extern mri start load ch83isc.lib load ch83isf.lib end

Figure 2 - Assembling source code to S-type object

available, standard ASE commands can be used to read these files from the disk.

### Generating the S-type linked object file

Figure 1 and Figure 2 show examples of generating S-record object files with symbol information, for C language sources and assembler sources, respectively. These batch and command files assume that the proper "path" statements have been set up so that the current directory has access to the Compiler, Assembler, and Linker executable files, as well as the source and object involved. These figures show examples only, and the flexibility of the MRI tools allows users to arrive at similar results using various combinations of command files, batch files, command line options, and assembler source file directives.

A useful option to the compiler is the "-Fsm" option, which causes the C source code lines to be intermixed as comments into the resulting assembler source file. The resulting assembler listing file will assist in locating code when debugging using the ASE.

Assembler options are specified to the compiler driver using the "-Wa..." compiler option. These options can also be included in the assembler command line. Options to note include the "-fde" option, which is required to cause symbol information to be placed in the object file generated by the assembler, and the "-1 > filename" option which

sembler, and the "-1 > filename" option which causes a listing to be generated and redirected to the file filename.

Linker commands can be entered either on the command line, or in a command file as shown in the examples. When linking, the "debug_symbols" entry in the command file is required to cause the internal symbols to be output to the resulting S-type linked object file. These internal symbols correspond to local labels used in assembler source files.

The "listmap publics,internals" command in conjunction with the "debug_symbols" command ensures that both global and local symbols are output to the object file, making them available for use in debugging.

### Editing the MRI S-record linked object file

Excerpts from an linked object file generated using the command sequences discussed above are shown in Figure 3. In order to use this file information with the ASE, a word processor must be used to divide this symbol and S-record information into two separate files. One file contains only the S-record information, starting with a record beginning with the characters "SO". The S record information is acceptable by the ASE without modification.

The other file, which contains the symbol information, must be edited to allow it to be read by the ASE. The ASE uses two commands that will be used to load this symbol information into ASE memory. The Command_Chain, or cc command is used to read and execute valid ASE commands from a file in the floppy drive. The Symbol, or Sy command allows the user to define symbols by inputting the symbol name followed by the symbol address, in the form:

: sy !newsymbol=h'3000<cr>

where newsymbol is the name of the symbol to be defined. The ":" is the prompt output by the ASE. All symbols must

be preceeded by an exclamation point (!) when they are defined, and the h'prefix indicates to the ASE that the number following refers to a hexadecimal value. The lines starting with "\$\$" in the MRI generated file are informational only, and should be delected.

```
$$ sieve
   environ $11AC __com_line $11B0 _flags $13B0
 iob $13C4
$$ sieve
  main $0080 L7001 $0128 L5 $009E L14 $00DA
 SO $004C L13 $00CC L1 $0096 L11 $0108
 L9 $00B2 S1 $0040
$$ fakftoa
   fltused $115C ftoa $0146 dldd $016E
$$ flsbuf
   flsbuf $0170
$$ imul
   aimul $0298 imul $0280
   axor $02E8 not $0302 lognot $031E aand
   neg $030C aor $02CE
S00600004844521B
S11400400A2564207072696D65730A00207072696D86
S10E005165202564203D2025640A0082
S11400806DF60D767900000619076DF26DF3790000AE
S10411680082
S114112A6DF60D766DF26DF36F6300080D3240146F2F
S114113B6000060D010B016FE1000668086A881168EE
S113114C1B020D2246E80D306D736D726D76547072
S9031036B6
```

Figure 3 - Excerpts from MRI's linked S-record file

The editted version of the symbol information is shown in Figure 4. Each symbol definition must be placed on a separate line of the file, and the "!" and the "=" sign must be added to each line. The "\$" that is generated by the MRI tools must be replaced by the "h" address prefix recognized by the ASE. Global replace features of word processors can

Figure 4 - Edited symbol information

be exploited to aid in converting the MRI symbol information into a file readable by the ASE.

The names of the symbols in this file are used only to assist the developer with debugging, so it is possible to modify these

# **H Series Support Tools**

names to simplify their use. For instance, leading underscores ("_'") generated by the MRI tools to indicate global symbols can be eliminated, long symbol names can be shortened, and names can be made more descriptive.

### Loading object code to the ASE

Once the S record file and the new symbol file have been generated, they should be copied to a disk formatted by the ASE using the 1.2MByte drive on a PC. To load the S-record file to the ASE, use the Floppy_Load or FL command. This command offers the option of specifying an offset to the load addresses contained in the object module file, however, if this offset is used, the symbol table you generated will not match up with the code downloaded. The object code and associated symbols can be assigned to a specific start address at link time by using the -B or BASE linker option. This command is executed as follows:

: FL filename <cr>

where *filename* is the name of the S-record file on the disk in the ASE floppy drive.

### Loading symbol information to the ASE

The newly generated symbol file is loaded using the Command_Chain command:

: CC filename <cr>

where *filename* is the name of the modified symbol file placed on the disk in the ASE floppy drive.

### Conclusion

It is possible to load both symbol and object code information into ASE memory using ASE commands. These commands rely on the availability of object code and symbol information files that can be generated using MRI tools and any word processor.

Loading code and symbol information in this matter allows the user the ability to perform symbolic debug of code, and eliminates the need for downloading using a serial link from the development computer.

## **HD64180S Development Board**

Update to #U17

User's Manual Update

### Interfacing to the ASE Emulator

The NPU Development Board (part number US180EVB01H) can be used as an in-circuit target for the Hitachi ASE Emulator and NPU Buffer Box. In order to do this, however, a modification to the board must be made.

This modification adjusts the timing of the signals that access the DRAM module on the NPU Board. Although the access signals are changed, no additional wait states must be added to access this memory. This modification will not affect the operation of the board with an NPU device installed.

The modification consists of adding a 74HCT32 IC, cutting a trace, and adding jumper wires. The changes are shown in Figure 1.

Page 1 of the circuit diagram (on page 56 of the manual) is affected by these changes. New connections to U8 (DS1005N1500 delay line), shown on the bottom right of this page of the circuit diagram, are shown in Figure 2.

This modification results in delaying the leading edge of the CAS signal that is input to the DRAM module. The OR gate ensures that the trailing edge of the CAS meets requirements.

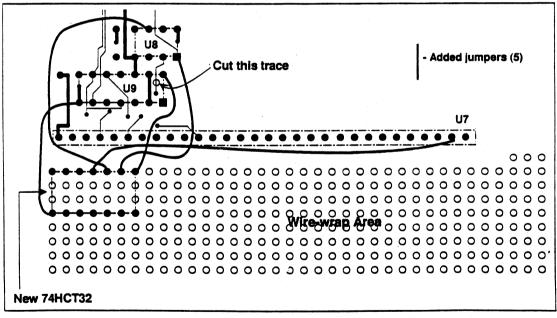



Figure 1 - Board modifications for interface to ASE (non-component side of board)

The information in this Hardware Manual Update has been carefully checked; however, the contents of this User's Manual Update may be changed and modified without notice. The company shall assume no responsibility for inaccuracies, or any problem involving a patent caused when applying the descriptions in this Hardware Manual Update.

# **Linker-Generated Disassembled Code**

**Tech Notes** 

### **Application Engineering**

Paul Yiu

### Introduction

An assembler generates relocatable modules from assembly source codes; these relocatable modules are then put into designated addresses by the linker. Though the assembler can produce a listing, the listed addresses are relative. Using the "-m" command line option can produce a map file that lists the location of individual modules; however, it is often desirable to have access to disassembled code that has already been put into their correct addresses.

If the user only wants to look at the disassembled code after linker, he/she only needs to invoke XRAY, where the source code is listed. We can use the "macro" feature of XRAY to obtain a hardcopy of the disassembled code.

First, in XRAY, type:

### fopen 60, filename.out

This command creates a window #60 and dumps its data in a text file named *filename*.out. The lower windows are reserved for default XRAY use. For example, we type in XRAY commands in window #10. Windows 50 to 256 are user-defined.

Before we write the macro, be sure your linked file is loaded. When invoking XRAY, type:

### xhih83 filename

Note: Don't include the filename extension. Please refer to technote #TN-0021 for details on initial baud rate and display if you are using the emulator version XRAY.

Next we will define a macro in XRAY. This macro takes two arguments that signify the beginning and ending addresses of your listing; the macro then prints the disassembled code to window #60, which in turn dumps its data into the text file we defined. The macro is listed on the next page.

### **Linker-Generated Disassembled Code**

```
: define void outcode(beg.end)
: int beg;
: int end;
: {
: int counter;
: for (counter=beg;counter<=end;counter=counter+2)
     $fprintf 60,"% m\r\n",counter$;
: }
:.
Let's go through the macro definition line by line.
: define void outcode(beg,end)
            This informs XRAY we are starting to define a
            macro named outcode, with two arguments, beg and
            end.
: int beg;
            "Beg" is the starting address of our disas-
            sembled code.
: int end;
            We can scroll thorugh the screen and find the
            end of our code.
: {
            The macro body starts here.
: int counter;
            "Counter" is a variable in the macro.
: for (counter=beg;counter<=end;counter=counter+2)
            This starts a loop, very similar to a "for"
            loop in C.
            Start of loop.
     $fprintf 60,"%m\r\n",counter$;
```

Section 62 **7** 

### **Linker-Generated Disassembled Code**

Tech Notes

The "\$'s" indicate that **fprintf** is an XRAY command. We need to put dollar signs around an XRAY commands.

End of loop.

:}
End of macro body.

The period tells XRAY your definition is done.

Basically, this macro takes two arguments, the beginning and ending addresses of the code we wish to print. Lines of code are printed to the designated window until the counter reaches the end of the block.

The next command line in XRAY prints assembly code in the first 100 hex address space.

### > macro outcode(0,0x100)

This may seem a bit tedious, to define a whole macro just to take a look at the disassembled code, but it only has to be done once. The macro can be saved in an include file, which can be called up each time XRAY is invoked.

# Starting up Emulator Version XRAY

### **Tech Notes**

### **Application Engineering**

Paul Yiu

#### Introduction

The Hitachi/Microtec XRAY for Emulators is designed to allow the ASE machine to communicate with an IBM-PC or compatible. However, XRAY's default baud rate is 19.2K while the default baud rate for ASE is 9200. As a result, the first-time user may get the error message "Problem communicating with the CPU." This is because XRAY and the ASE are communicating at different speeds. This problem is very simple to correct. Simply add "-e 9600" at the end of the command line when calling XRAY; this will set the XRAY to communicate at 9600 baud.

C:\XHIH83> xhih83 <filename> -e 9600 enter

### In XRAY

Once you are in XRAY, you can use the OPTION command to change some default settings.

option emulator="9600" ...... sets default baud rate

startup ...... saves option to startup.xry, which is called automati-

cally each time XRAY is called.

### Using a monochrome LCD display

Because monochrome LCD displays cannot fully take advantage of all of XRAY's colors and highlights, it may be difficult for the user to see highlighted material or error messages. Here is how to fix the problem.

Once the user is inside XRAY, there is an option color command that can change the display.

option color=none ....... changes color to white/blue

option highlight=inverse ........ when highlight=bright, it's not visible in the no color

mode.

**startup** ...... saves options to startup.xry

Refer to the XRAY manual, Debugger Commands, for more options. Be sure to enter *STARTUP* to save the options for future use.

### HITACHI

### ASMH83 Assembler/Linker

### **Tech Notes**

### **Application Engineering**

Carol Jacobson

Using the ASE emulator, system designers can download and execute software routines from either target memory or emulator on-chip ROM space. Prior to download, source text files containing address information, assembly instructions and labels must be converted to a hex code format which can be interpreted by the CPU and system. The three formats accepted by the ASE, SYSROF, Intellec HEX and S-record (Motorola) are detailed in the ASE 8/3xx Series Users Manual. Hitachi's ASMH83 Assembler translates H8/300 assembly files to S-record hex files containing lines of hex code with each line preceded by the address assigned in the source file. Labels are converted to hex address locations and user comments are removed.

### **Creating Hex Files**

Converting source to hex files requires three steps:.

- 1. Generating the assembly source file containing H8/300 code, assembler directives and labels
- 2. Assembling the source file to produce an object file (*.obj)
- 3. Linking the object file to produce an absolute hex file in S format (*.abs).

### The Source File

The source text file can be created using any basic editor but must have the following format:

Assembler Directives (See ASMH83 H8/300 Manual) label: H8/300 opcode operand, operand ; comments .end

### The Assembler

To start assembly, from a DOS environment, enter the directory containing the ASMH83.EXE file and type the command line:

ASMH83 -l >*.lis [source DOS path] (*.lis = name assigned to listing file)

Assembly usualy takes about 10 sec for 400-500 lines. At the end of assembly you will be notified of errors and warnings and two new files will have been created in the current directory: *.obj and *.lis. If you received error or warning messages, using an editor, review the listing file (*.lis) for error information, correct the errors in the source file and re-assemble. All errors must be removed to

# SECTION

produce a valid hex file.

CAUTION: If you have more than a few hundred lines of code and assembly seems to complete in 1 or 2 seconds without error, verify that a new .obj file was produced. If the .obj file was not produced, the assembler may not have located the source file or understood the command line as entered. Verify the source location and command format and reenter the command.

### The Linker

For most purposes the linker performs two critical tasks, it links several sections of code together to produce one program file and it outputs the program file in an executable form, in this case S-record. For each program a short command file containing at least the linker format and load instructions must be created. This is a batch file which always takes the extension .cmd. For example a command file, PRG.cmd, for linking file PRG.obj, may contain only the lines:

format s (output= S records)

load pgm.obj (load file pgm.obj)

load xxx.obj (load any other files to be linked with prg.obj)

base 3000 (base offset = h'3000, ie code starts at h'3030)

To invoke the linker, from the directory containing the file LNKH83.EXE enter the command line:

### LNKH83 -c [command file DOS path]

When the linker has finished you will receive a message notifying you of any errors and a file, *.abs will have been created in the current directory (*.abs is given the same file name as the .cmd file). The file, *.abs, is the S-record form of the linked files and can be downloaded to the ASE.

The summary given here is by no means complete, but it should be sufficient to get you started. Take time to look through the ASMH83 H8/300 Assembler manual. There are several options not covered in this TechNote which may greatly simplify and enhance your code.

# **Direct Memory Addressing with C Pointers**

**Tech Notes** 

### **Application Engineering**

Paul Yiu

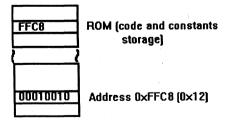
### **Direct Addressing**

In Embedded Programming, the C source code often needs to access memory addresses directly to drive the hardware peripherals, such as I/O ports, timers, registers, etc.

The best way to demonstrate direct addressing is by example. If we have a timer, called tmr0, at addressing 0xffc8, and we want to change its value. This is the simplest way:

1 Define tmr0 as a constant:

In C source code:


unsigned int const tmr0 = 0xFFC8;

- a) It's best to define addresses as unsigned numbers, so the compiler won't mistake 0xffc8 as a negative number.
- b) The compiler puts our variable, tmr0, in ROM because it's declared as a constant, thus freeing up more RAM.
- c) In C, hex numbers are preceded by 0x(zero x).
- d) Pointers are extremely tricky, and they take up extra memory space, so we define tmr0 as just an integer. We can cast this number to be a pointer later.
- 2 Cast this integer as a pointer to a memory address:

In C source code:

*(unsigned char *)tmr0 = 0x12;

a) (unsigned char *) casts tmr0 to be a pointer to an unsigned character. Now, (unsigned char *)tmr0 refers to address hex FFC8. Adding a '*' in front of it makes the expression content of address 0xFFC8.



# Tech Notes Direct Memory Addressing with C Pointers

- b) If we want to put an integer in address FFC8 and FFC9, we can just change the casting to (unsigned int *), then if we say *(unsigned int *)tmr0=0x1234;, we will have 0x12 in FFC8, 0x34 in FFC9.
- c) The benefit of defining address as integers instead of pointers is we don't need to define this pointer as a character or an integer until we want to put numbers in these addresses. These integers, casted as pointers, are much more flexible.

### **Pointers to Strings**

In C, the simplest way to define a string is to define a pointer that points to that string.

In C source code:

```
unsigned char *sinatra="Fly me to the moon.";
```

Compiled:

```
.EXPORT _sinatra
_sinatra .DATA.W S0
.SECTION strings,TEXT,ALIGN=2
S0 .SDATA "Fly me to the moon"<0>
```

- a) The compiler will put this string in the strings section. The pointer, "sinatra" refers to the address of the first character, "F."
- b) *sinatra refers to the character "F."

Say we have defined another pointer, called ptr.

```
In C source code:
```

```
unsigned char *ptr;
ptr=sinatra;
```

Compiled:

```
.IMPORT _ptr
.comm _ptr,H'2
mov.w @_sinatra,r0
mov.w r0,@_ptr
```

a) Here, we first define a pointer, called ptr, not pointed to anything yet. Secondly, we tell the compiler to let "ptr" point to whatever "sinatra" is pointing to. *ptr now is character "F." Since the string is stored in memory in order, if we increment ptr, we get the next character.

In C source code:

```
ptr++;
```

Compiled:

```
adds #1,r0
mov.w r0,@_ptr
```

- a) *ptr now is character "l."
- b) ptr corresponds to the address of the letter "l."

# **Direct Memory Addressing with C Pointers**

Tech Notes

sinatra <b>V</b>		(in strings section, in ROM)						
F	ı	у		m	e		t	
↑ ptr=c		1 ptr+	2	••••				

# Hitachi America, Ltd.

SEMICONDUCTOR & I.C. DIVISION

San Francisco Center 2000 Sierra Point Parkway Brisbane, CA 94005–1819 Telephone: 415–589–8300

Fax: 415-583-4207

### **REGIONAL OFFICES**

#### NORTHEAST REGION

Hitachi America, Ltd. 77 South Bedford Street Burlington, MA 01803 Telephone: 617-229-2150 Fax: 617-229-6554

#### NORTH CENTRAL REGION

Hitachi America, Ltd. 500 Park Boulevard, Suite 415 Itasca, IL 60143 Telephone: 708-773-4864 Fax: 708-773-9006

### **NORTHWEST REGION**

Hitachi America, Ltd. 1900 McCarthy Boulevard, Suite 310 Milpitas, CA 95035 Telephone: 408-954-8100

Fax: 408-954-0499

### SOUTHEAST REGION

Hitachi America, Ltd. 5511 Capital Center Drive, Suite 204 Raleigh, NC 27606 Telephone: 919-233-0800 Fax: 919-233-0508

### SOUTH CENTRAL REGION

Hitachi America, Ltd. Two Lincoln Centre, Suite 865 5420 LBJ Freeway Dallas, TX 75240 Telephone: 214-991-4510 Fax: 214-991-6151

### **SOUTHWEST REGION**

Hitachi America, Ltd. 2030 Main Street, Suite 450 Irvine, CA 92714 Telephone: 714-553-8500 Fax: 714-553-8561

### PACIFIC MOUNTAIN REGION

Hitachi America, Ltd. 4600 S. Ulster Street, Suite 700 Denver, CO 80237 Telephone: 303-740-6644 Fax: 303-740-6609

#### **AUTOMOTIVE REGION**

Hitachi America, Ltd. 330 Town Center Drive, Suite 311 Dearborn, MI 48126 Telephone: 313-271-4410 Fax: 313-271-5707

#### MID-ATLANTIC REGION

Hitachi America, Ltd. 325 Columbia Turnpike, Suite 203 Florham Park, NJ 07932 Telephone: 201-514-2100 Fax: 201-514-2020

### **DISTRICT OFFICES**

### **CANADA**

Hitachi (Canadian) Ltd. 320 March Road, Suite 602 Kanata, Ontario, Canada K2K 2E3 Telephone: 613-591-1990 Fax: 613-591-1994

#### **FLORIDA**

Hitachi America, Ltd. 4901 N.W. 17th Way, Suite 302 Fort Lauderdale, FL 33309 Telephone: 305-491-6154 Fax: 305-771-7217

### **MINNESOTA**

Hitachi America, Ltd. 3800 W. 80th Street, Suite 1050 Bloomington, MN 55431 Telephone: 612-896-3444 Fax: 612-896-3443

### **IBM REGION**

Hitachi America, Ltd. 21 Old Main Street, Suite 104 Fishkill, NY 12524 Telephone: 914-897-3000 Fax: 914-897-3007

#### **TEXAS**

Hitachi America, Ltd. 10777 Westheimer, Suite 1040 Houston, TX 77042 Telephone: 713-974-0534 Fax: 713-974-0587

Hitachi America, Ltd. 9600 Great Hills Trail, Ste. 150W Austin, TX 77042 Telephone: 512-345-9983 Fax: 512-343-2759

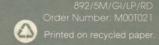
#### MANUFACTURING FACILITY

Hitachi Semiconductor (America) Inc. 6321 East Campus Circle Drive Irving, TX 75063-2712

### **ENGINEERING FACILITY**

Hitachi Micro Systems, Inc. 179 East Tasman Drive San Jose, CA 95134

Technical product or pricing questions can be answered by your nearest Hitachi office.


You may order product literature either by calling your nearest Hitachi office or by calling 1-800-285-1601.



# HITACHI®

Our Standards Set Standards

Hitachi America, Ltd.
Semiconductor & I.C. Division
San Francisco Center
2000 Sierra Point Parkway, Brisbane, CA 94005-1819

