HLN1OOO

HTACHIFull Line
 Condensed Catalog

A World Leader in Technology

HITACHI FULL LINE CONDENSED CATALOG

(0) HITACHI

FOR YOUR CONVENIENCE ...

This catalog contains a complete listing of all major Hitachi product lines in a condensed, quick-reference-style format.
Refer to the table of contents for instant identification of product families.
Comprehensive index pages list specific products by catalog part numbers and their
location page numbers.
The catalog is divided into sections containing all related products within each product line category.
For page layout data refer to the typical page illustrated below:

FREE LITERATURE

The HITACHI HLN- symbol
shown on selected pages indi-
cates the availability of comprehensive Data Sheets or

PART NUMBER

Principal features of each item are listed in brief "one line" descriptions.

FEATURES

Principal features of each item are listed in brief "one line" identification.

BLOCK DIAGRAM

The equivalent schematic of the product is illustrated, where applicable.
other descriptive material for each product designated by a HITACHI LITERATURE NUMBER.

Example:

... HLN-101 indicates the availability of a comprehensive Product Data Sheet number HLN 101 ... yours upon request.
Contact your nearest HITACHI sales office, representative or distributor for free literature.

PRODUCT ILLUSTRATION

An illustration of the basic product is shown on each page, identifying the product packaging, pin terminals, etc., for instant visual identification of product configuration.

COLOR-CODED PAGE EDGE

For easy indexing of sections.

TABLE OF CONTENTS

MOS MEMORIES

1

BIPOLAR MEMORIES

2

MICROPROCESSORS

BIPOLAR LOGIC

(6) HITACHI

1 MOS MEMORIES

PAGE

PAGE
Current Line of Hitachi IC Memories2
HITACHI Memory Products Quick Reference Chart: Typical Characteristics of Random Access Memories 3
Typical Characteristics of Read Only Memories 4
HM472114A-1, HM472114A-2, HM472114AP-1, HM472114AP-2, 1024 -word $\times 4$-bit Static Random Access Memory 5
HM472114P-3, HM472114P-4,1024 -word $\times 4$-bit StaticRandom Access Memory6
HM4334P-3, HM4334P-41024 -word $\times 4$-bit Static CMOS RAM7
HM4334LP-3, HM4334LP-41024 -word $\times 4$-bit Static CMOS RAM
HM6148P, HM6148P-6
1024-word $\times 4$-bit High Speed Static CMOS RAM 9
HM6148LP, HM6148LP-6
1024 -word $\times 4$-bit High Speed Static CMOS RAM 10
HM4315P 4096-word $\times 1$-bit
Static Random Access Memory 11
HM6147, HM6147-3, HM6147P, HM6147P-3 4096-word $\times 1$-bit High Speed Static CMOS RAM 12
HM6147LP, HM6147LP-3
4096-word $\times 1$-bit High Speed Static CMOS RAM 13
HM6147H-35, HM6147H-45, HM6147HP-35, HME1474P-45, 4006-word $\times 1$-hit high Speed Static CMOS RAM 14
HM6147HLP-35, HM6147HLP-45,
4096-word $\times 1$-bit High Speed Static RAM 15
HM6116P-2, HM6116P-3, HM6116P-4
2048 -word $\times 8$-bit High Speed Static CMOS RAM 16
HM6116FP-2, HM6116FP-3, HM6116FP-4,2048 -word $\times 8$-bit High Speed Static CMOS RAM17
HM6116LP-2, HM6116LP-3, HM6116LP-4
2048 -word $\times 8$-bit High Speed Static CMOS RAM 18
HM6116LFP-2, HM6116LFP-3, HM6116LFP-4, 2048 -word $\times 8$-bit High Speed Static CMOS RAM 19
HM6117P-3, HM 6117P-4,
2048-word $\times 8$-bit High Speed Static CMOS RAM 20
HM6117FP-3, HM6117FP-4,
2048 -word $\times 8$-bit High Speed Static CMOS RAM 21
HM6117LP-3, HM6117LP-4
2048 -word $\times 8$-bit High Speed Static CMOS RAM 22
HM6117LFP-3, HM 6117LFP-4,
2048 -word $\times 8$-bit High Speed Static CMOS RAM 23
HM6167, HM6167-6, HM6167-8, HM6167P, HM6167P-6, HM6167P-8
16384-word $\times 1$-bit High Speed Static CMOS RAM 24
HM6167LP, HM6167LP-6, HM6167LP-8, 16384-word $\times 1$-bit High Speed Static CMOS RAM 25
HM4716A-1, HM4716A-2, HM4716A-3, HM4716A-4, HM4716AP-1, HM4716AP-2, HM4716AP-3, HM4716AP-4 16,384-word $\times 1$-bit Dynamic Random Access Memory 26
16384-word $\times 1$-bit Dynamic Random
HM4816A-3, HM4816A-3E, HM4816A-4,
HM4816A-7, HM4816AP-3, HM4816AP-3E, HM4816AP-4, HM4816AP-7Access Memory65,536-word $\times 1$-bit Dynamic RandomAccess Memory28
HN462716G
2048 -word $\times 8$-bit UV Erasable and Electrically Programmable Read Only Memory 29
HN462716G-1, HN462716G-2
2048 -word $\times 8$-bit U.V. Erasable and Electrically Programmable Read Only Memory 30
HN462532, HN462532G, HN462532G-2 4096 -word $\times 8$-bit U.V. and Eraseable and Programmable Read Only Memory 31
HN482732AG
4096-word $\times 8$-bit U.V. Erasable and Programmable Read Only Memory 32
HN482764, HN482764-3,
HN482764G, HN482764G-3
8192-word $\times 8$-bit U.V. Erasable and Programmable Read Only Memory 33
HN482764-4, HN482764G-4
8192 -word $\times 8$-bit U.V. Erasable and Programmable Read Only Memory 34
HN48016P
2048-word $\times 8$-bit Electrically Erasable and Programmable ROM 35
Packaging Information (Dimensions in mm) 36
64K Dynamic Ram Industry Cross Reference 38
16 K Bit $(2 \mathrm{~K} \times 8$) Static Ram Industry Cross Reference 40

2 BIPOLAR MEMORIES

PAGE PAGE
Bipolar Ram Family Tree 44
HM2110, HM2110-1, HM2110-2 46
HM2112, HM2112-1 1024-word $\times 1$-bit Fully Decoded Random Access Memory 47
HM2510, HM2510-1, HM2510-2, 1024-word $\times 1$-bit Fully Decoded Random Access Memory 48
HM2511, HM2511-1, 1024-word $\times 1$-bit
Fully Decoded Random Access Memory 49
HM10414, HM10414-1, 256-word $\times 1$-bit Fully Decoded Random Access Memory 50
HM10422, 256-word \times 4-bit Fully Decoded Random Access Memory 51
HM10470, HM10470-1, 4096-word $\times 1$-bit 52
HM10474, HM10474-1, 1024-word $\times 4$-bit Fully Decoded Random Access Memory 53
HM100415, 1024-word \times 1-bit Fully Decoded Random Access Memory 54
HM100422, 256-word \times 4-bit Fully Decoded Random Access Memory 55
HM100470, HM100470-1, 4096-word $\times 1$-bit Fully Decoded Random Access Memory 56
HM100474, HM100474-1, 1024-word $\times 4$-bit Fully Decoded Random Access Memory 57
HN25084S, HN25085S, 2048-word \times 4-bit PROM 58
HN25088S, HN25089S, 1024-word $\times 8$-bit PROM 59
HN25168S, HN25169S, 2048-word $\times 8$-bit PROM 60
3 MICROPROCESSORS
PAGEPAGE
Quality Assurance Flow for Assembly and Test:
(all microprocessor and microcomputer products) 62
Hitachi Microprocessor/Peripheral Cross Reference 63
New Hitachi Microprocessor Numbering System 64
HD6800, HD68A00, HD68B00
MPU (Micro Processing Unit) 65
HD6802 MPU (Microprocessor with Clock and RAM 66
HD6802W MPU (Microprocessor with Clock and RAM) 67
HD6303, HD63A03, HD63B03,C-MOS MPU Advance Information68
HD6809, HD68A09, HD68B09
MPU (Micro Processing Unit) 69
HD6809E, HD68A09E, HD68B09E, MPU Preliminary 70
HD6821, HD68A21, HD68B21
PIA (Peripheral Interface Adapter) 71
HD6840, HD68A40, HD68B40
PTM (Programmable Timer Module) 72
HD6843S, HD68A43S
FDC (Floppy Disk Controller) 73
HD6844P, HD68A44P
DMAC (Direct Memory Access Controller 74
HD6845S, HD68A45S, HD68B45S
CRTC (CRT Controller) 75
HD6846 COMBO (Combination ROM I/O Timer) 76
HD6850, HD68A50
ACIA (Asynchronous Communication Interface Adapter 77
HD6852, HD68A52
SSDA (Synchronous Serial Data Adapter) 78
HD146818 RTC (Real Time Clock plus RAM) 79
HD46508, HD46508-I ADU (Analog Data Acquisition Unit) PRELIMINARY 80
HD68000 MPU (Micro Processing Unit) PRELIMINARY 81
HD68450 DMAC (Direct Memory Access Controller) 82
Packaging Information 83
8 -Bit Single-Chip Microcomputer HD6805 Series 84
8-Bit Single-Chip Microcomputer HMCS6800 Series 88
HD6801S0, HD6801S5, MCU (Microcomputer Unit) 90
HD6801V0, HD6801V5, MCU PRELIMINARY 91
HD6803, HD 6803-1, MPU (Microprocessing Unit) 92
HD6805SI, MCU (Microcomputer Unit) 93
HD6805UI, MCU (Micropomputer Unit) 94
HD6805VI, MCU (Microcomputer Unit) 95
HD6805W0, MCU PRELIMINARY 96
HD6301V0, HD63A01VO, HD63BOIVO, CMOS MCU (Microcomputer Unit) PRELIMINARY 97
HD63L05, CMOS MCU (Microcomputer Unit) 98
HD68P01S0, HD68P01V07, MCU
(Microcomputer Unit) 99
HD68P05V07, MCU
(Microcomputer Unit) PRELIMINARY 101
4-Bit Microcomputers-HMCS40 Series 103
4-Bit Single-Chip HMCS40 Microcomputer Series 105
LCD Drive Devices-LCD-II and LCD-III 107
Software/Hardware Development Systems 110
Hitachi Single Chip H68SD5
Microcomputer Development System 112
4 BIPOLAR LOGIC
PAGE PAGE
74LS Product Line by Part Number 118
74LS Product Line by Function 120
10K ECL Logic 123
HD10101 Quadruple OR/NOR Gates 124
HD10102 Quadruple 2-input NOR Gates 124
HD10104 Quadruple 2-input AND Gates 125
HD10105 Triple 2-3-2 input OR/NOR Gates 125
HD10106 Triple 4-3-3 input NOR Gates 126
HD10107 Triple 2-input Exclusive-OR/NOR Gates 126
HD10109 Dual 4-5 input OR/NOR Gates 127
HD10110 Dual 3-input 3-output OR Gates 127
HD10111 Dual 3-input 3-output NOR Gates 128
HD10116 Triple Line Receivers 128
HD10117 Dual 2-wide 2-3 input
OR-AND/OR-AND INVERT Gates 129
HD10118 Dual 2-wide 3-input OR-AND Gates 129
HDIO119 4-wide 4-3-3-3-input OR/AND Gate 130
HDIO121 4 -wide OR-AND/OR-AND-INVERT Gate 131
HD10124 Quadruple TL-to-ECL Translators 131
HD10125 Quadruple ECL-to-TIL Translators 132
HD10130 Dual Latches 133
HD10131 Dual Type-D Master-Slave Flip Flops 134
HD10132 Dual Multiplexers with Latch and Common Reset 135
HD10133 Quadruple Latches 136
HD10134 Multiplexer with Latch 137
HD10136 Universal Hexadecimal Counter 138
HD10145 64-bit Register File (RAM) 140
HD10147 128-bit Random Access Memory 141
HD10148 64-bit Random Access Memory 142
HD10160 12-bit Parity Generator/Checker 143
HD10161 Binary to-1-of-8 Decoder (Low) 144
HD10162 Binary to-1-0f-8 Decoder (High) 146
HD10164 8-line Multiplexer 148
HD10174 Dual 4-to-1 Multiplexers 150
HD10175 Quintuple Latches 151
HD10179 Look-Ahead Carry Block 152
HD10180 Dual High Speed Adders/Subtractors 153
HD10181 4-bit Arithmetic Logic Unit/Function Generator 155
HD10209 Dual High Speed 4-5 input OR/NOR Gates 158
HD10210 Dual High Speed 3-input OR Gates 158
HD10211 Dual High Speed 3-input 3-output NOR Gates 159
HD10230 Dual High Speed Latches 160
HD10231 Dual High Speed Type-D Master-Slave Flip Flops 161
100K ECL Logic Production Status 162
Contents 164
General Information 165
HD100101 Triple 5-input OR/NOR Gates 167
HDI00102 Quintuple 2-input OR/NOR Gates 167
HD100107 Quintuple Exclusive OR/NOR Gates 168
HD100112 Quadruple Drivers 168
HD100114 Quint. Differential Line Receivers 169
HD100117 Triple 2-wide
OR-AND/OR-AND-INVERT Gates 170
HDIO01185-wide OR-AND/OR-AND-INVERT Gates 170
HD100122 9-bit Buffers 171
HD100123 Hex Bus Drivers 171
HD100130 Triple D-type Latches 172
HD100131 Triple D-type Flip Flops 173
HD100136 4-stage Counter/Shift Register 174
HD100141 8-bit Shift Registers 176
HD100145 16×4 Read/Write Register File 177
HD100150 Hex D-Type Latches 178
HD100151 Hex D-Type Flip Flops 179
HD100155 Quad. Multiplexers/Latches 180
HD100156 Mask-merge 181
HD1001588-bit Shift Matrix 183
HD100160 Dual Parity Generators/Checkers 185
HD100163 Dual 8-input Multiplexers 186
HD100164 16-input Multiplexer 187
HD100165 Universal Priority Encoder 188
HD100166 9-bit Comparators 190
HD100170 Universal Demultiplexers/Decoders 192
HD100171 Triple 4-input Multiplexers with Enable 193
HD100422 256-word $\times 4$-bit Fully Decoded Random Access Memory 194

LINEAR

PAGE

Quick Reference Guide 196
Industrial Linear Circuits 202PAGE
Introduction 204
Power MOS FETs 205
Main Characteristics 206
Hitachi Laser Diodes 207
Hitachi Infrared Emitting Diodes 210PAGE
Hitachi Gate Turn-Off Thyristor (GTO) 214
Triacs 216
EROM
PAGE
Fiber Optic Digital Modules
DS2101, DR2101 218
Fiber Optic Digital Modules
DS2202, DR2202 219
Fiber Optic Digital Modules DS2301, DR2301 220
Laser Diode Modules
LD2201, LD2202, LD2221, LD5201, LD5202, LD5221 221
Optical Wavelength Multiplexers, Demultiplexers WM1201, WM1210, WM1310 222
Optical Wavelength Multiplexers, Demultiplexers WM2201, WM2301 223
Optical Directional Couplers CPIXOX, CPIXIX 224
Optical Fiber Connectors CNXXOX, CNXX3X 225

Die Photo of New 64K Static CMOS RAM, HM6264

CURRENT LINE OF HITACHI IC MEMORIES

- MOS Memory

- Bipolar Memory

TYPICAL CHARACTERISTICS OF MOS MEMORY

- MOS RAM

[^0]* The package codes of P, G, C, and FP are applied to the package materials as follows.

P: Plastıc DIP, G:Cerdip, C : Side-brazed Ceramic DIP, FP: Small Sized Flat Package.

TYPICAL CHARACTERISTICS OF MOS MEMORY

- MOS ROM

Program	Total Bit	Type No.	Process	$\begin{aligned} & \text { Organi- } \\ & \text { zation } \\ & \binom{\text { word }}{\times \text { bit }} \end{aligned}$	Access Time (ns) max	Supply Voltage (V)	Power Dissipation (W)	Package***				Replacement
								$\begin{array}{\|l} \text { Pın } \\ \text { No. } \end{array}$	C	G	P	
Mask	32k-bit	HN46332	NMOS	4096×8	350	+5	0.25	24			\bullet	
	64k-bit	HN48364		8192×8	350		0.225	24			\bullet	
	128k-bit	HN43128	CMOS	$\begin{array}{l\|} \hline 16384 \times 8 \\ 32768 \times 4 \end{array}$	6000		3 m	28			\bullet	
		HN613128*		16384×8	250		$5 \mu / 0.1$	28			\bullet	
	256k-bit	HN61256		$\begin{array}{\|l\|} \hline 32768 \times 8 \\ 65536 \times 4 \end{array}$	3000		3 m	28			\bullet	
U. V. Erasable \& Electrically	16k-bit	HN462716	NMOS	2048×8	450	+5	0.555	24	\bullet	\bullet		2716
		HN462716-1			350		0.555			\bullet		2716-1
		HN462716-2			390					\bullet		2716-2
	32k-bit	HN462532	NMOS	4096×8	450	+5	0.858	24	\bullet	\bullet		TMS2532
		HN462532-2			390					\bullet		
		HN462532L			450		0.543			\bullet		TMS25L32
		HN462732	nMOS	4096×8	450	+5	0.788	24	\bullet	\bullet		2732
		HN462732-2			390					\bullet		
		HN482732A-20**	NMOS	4096×8	200	+5	-	24		\bullet		2732A-2
		HN482732A-25**			250					\bullet		2732A
		HN482732A-30**			300					\bullet		2732A-3
	64k-bit	HN482764*	NMOS	8192×8	250	+5	0.555	28	\bullet	\bullet		2764
		HN482764-3*			300				\bullet	\bullet		2764-3
		HN482764-4			450				\bullet	\bullet		
Electrically Erasable	16k-bit	HN48016*	NMOS	2048×8	350	+5	0.3	24			\bullet	

* Prelımınary
** Under development
*** The package codes of P, G, and C are applied to the package materials as follows.
P: Plastic DIP, G: Cerdip, C:Sıde-brazed Ceramic DIP

HM472114A-1, HM472114A-2, HM472114AP-1, HM472114AP-2

1024-word \times 4-bit Static Random Access Memory

- Fast Access Time HM472114A-1 150ns (max.) HM472114A-2 200ns (max.)
- Low Operating Power HM47214A-2 200mW (typ.)
- Single +5V Supply
- Completely Static Memory No Clock or Retresh Required
- Fully TTL Compatible . All Inputs and Output
- Common Data Input and Output Using Three-state Outputs
- N-channel Si Gate MOS Technology
- Pin Equivalent with Intel 2114L Series

- BLOCK DIAGRAM

HM472114A-1, HM472114A-2

(DG-18)
HM472114AP-1, HM472114AP-2

(DP-18)

- PIN ARRANGEMENT

1024-word \times 4-bit Static Random Access Memory

- Fast Access Time

HM47211P-3 300 ns (max.) HM47211P-4 450 ns (max.)

- Low Operating Power

200 mW (typ)

- Single +5V Supply Voltage
- Completely Static Memory No Clock or Refresh Required
- Directly TTL Compatible
- Common Data Inputs and Output
- Three-state Outputs
- DC Standby Mode . Reduces $V_{C C}$
- N-channel Si Gate MOS Technology
- Interchangeable with Intel 2114 L Series

(DP-18)

- BLOCK DIAGRAM

- PIN ARRANGEMENT

(Top View)

HM4334P-3, HM4334P-4

1024-word \times 4-bit Static CMOS RAM

- FEATURES
- Single 5V Supply
- Low Power Standby and Low Power Operation; Standby: $10 \mu \mathrm{~W}$ (typ.) Operation: 20 mW (typ.)
- Fast Access Time: HM4334P-3: 300 ns (max.) HM4334P-4: 450 ns (max.)
- Directly TTL Compatible: All inputs and outputs
- Common Data Input and Output using Three-state Outputs
- On Chip Address Register

(DP-18)

- BLOCK DIAGRAM

HM4334LP-3, HM 4334LP-4

1024-word \times 4-bit Static CMOS RAM

FEATURES

- Single 5V Supply
- Low Power Standby and Low Power Operation;

Standby: $\quad 10 \mu \mathrm{~W}$ (typ.)
Operation: 20 mW (typ.)

- Fast Access Time; HM4334P-3L: 300 ns (max.) (5V $\pm 5 \%$) HM4334P-4L: 450 ns (max.) ($5 \mathrm{~V} \pm 10 \%$)
- Directly TTL Compatible: All inputs and outputs
- Common Data Input and Output using Three-state Outputs
- On Chip Address Register
(DP-18)

BLOCK DIAGRAM

PIN ARRANGENENT

(Top View)

HM6148P, HM6148P-6

1024-word \times 4-bit High Speed Static CMOS RAM

- FEATURES
- Single 5 V Supply
- Fast Access Time

HM6148P 70 ns (max) HM6148P-6 85 ns (max) Standby : $100 \mu \mathrm{~W}$ (typ) Operation: 200 mW (typ)

- Completely Static RAM; No Clock or Timing Strobe Required
- No Peak Power-On Current
- No Change of $t_{A C S}$ with Short Deselected Time
- Equal Access and Cycle Times
- Directly TTL Compatible; All Inputs and Outputs
- Three State Output
- Common Data Input and Output
- Pin-Out Compatible with Intel 2148

- BLOCK DIAGRAM

- PIN ARRANGEMENT

HM6148LP, HM6148LP-6

1024-word \times 4-bit High Speed Static CMOS RAM

- FEATURES
- Single 5V Supply
- Fast Access Time

HM6148LP 70 ns (max) HM6148LP-6 85 ns (max)

- Low Power Standby and Low Power Operation;

Standby : $10 \mu \mathrm{~W}$ (typ)
Operation: 200 mW (typ)

- Completely Static RAM; No Clock or Timing Strobe Required
- No Peak Power-On Current
- No Change of $t_{A C S}$ with Short Deselected Time
- Equal Access and Cycle Times
- Directly TTL Compatible; All Inputs and Outputs
- Three State Output
- Common Data Input and Output
- Capability of Battery Back Up Operation
(DP-18)
- Pin-Out Compatible with Intel 2148

(Top View)

4096-word \times 1-bit Static Random Access Memory

- Low Power Standby
$10 \mu \mathrm{~W}$ typ.
- Low Power Operation 20 mW typ.
- Data Retention . 2.0V
- Fast Access Time . 450ns max.
- TTL/CMOS Compatible Input/Output
- On Chip Address Register
- Si Gate CMOS Technology

- PIN ARRANGEMENT

4096-word \times 1-bit High Speed Static CMOS RAM

- FEATURES

- Single 5V Supply and High Density 18 Pin Package
- High Speed: Fast Access Time 55ns/70ns Max.
- Low Power Standby and Low Power Operation, Standby: $100 \mu \mathrm{~W}$ typ., Operation: 75 mW typ.
- Completely Static Memory - No Clock nor Timing Strobe Required
- No Peak Power-On Current
- No Change of $t_{A C s}$ with Short Chip Deselect Time
- Equal Access and Cycle Time
- Directly TTL Compatible - All Input and Output
- Separate Data Input and Output: Three State Output
- Pin-out Compatible with Intel 2147 NMOS STATIC RAM

HM6147, HM6147-3

(DG-18)
HM6147P, HM6147P-3

(DP-18)

- PIN ARRANGEMENT

(Top View)

4096-word \times 1-bit High Speed Static CMOS RAM

- FEATURES
- Single 5V Supply and High Density 18 Pin Package
- High Speed: Fast Access Time 55ns/70ns Max.
- Low Power Standby and Low Power Operation, Standby: $5 \mu \mathrm{~W}$ typ., Operation: 75 mW typ.
- Completely Statıc Memory - No Clock nor Timing Strobe Required
- No Peak Power-On Current
- No Change of $t_{\text {Acs }}$ with Short Chip Deselect Time
- Equal Access and Cycle Time
- Directly TTL Compatible - All Input and Output
- Separate Data Input and Output: Three State Output
- Capability of Battery Back up Operation
- Pin-out Compatible with Intel 2147 NMOS STATIC RAM

- BLOCK DIAGRAM

- PIN ARRANGEMENT

HM6147H-35, HM6147H-45, HM6147HP-35, HM6147HP-45

4096-word $\times 1$-bit High Speed Static CMOS RAM

FEATURES

- Single 5V Supply and High Density 18 Pin Package
- High Speed: Fast Access Time 35ns/45ns Max.
- Low Power Standby and Low Power Operation, Standby: $100 \mu \mathrm{~W}$ typ., Operation: 150 mW typ.
- Completely Static Memory - No Clock nor Timing Strobe Required
- No Peak Power-On Current
- No Change of $t_{A C S}$ with Short Chip Deselect Time
- Equal Access and Cycle Time
- Directly TTL Compatible - All Input and Output
- Separate Data Input and Output: Three State Output
- Plug-In Replacement with Intel 2147H NMOS STATIC RAM
HM6147H-35, HM6147H-45

BLOCK DIAGRAM

PIN ARRANGEMENT

HM6147HLP-35, HM6147HLP-45 -Preliminay-

4096-word \times 1-bit High Speed Static RAM

FFEATURES

- Single 5V Supply and High Density 18 Pin Package
- High Speed: Fast Access Time 35ns/45ns Max.
- Low Power Standby and Low Power Operation, Standby; $5 \mu \mathrm{~W}$ typ., Operation: 150 mW typ.
- Completely Static Memory - No Clock nor Timing Strobe Required
- No Peak Power-On Current
- No Change of $t_{A C S}$ with Short Chip Deselect Time
- Equal Access and Cycle Time
- Directly TTL Compatible - All Input and Output
- Separate Data Input and Output: Three State Output
- Plug-In Replacement with Intel 2147H NMOS STATIC RAM
- Capable of Battery Back up Operation

BLOCK DIAGRAM

IPIN ARRANGEMENT

HM6116P-2, HM6116P-3, HM6116P-4

2048-word \times 8-bit High Speed Static CMOS RAM

- FEATURES
- Single 5V Supply and Hıgh Density 24 pın Package
- High Speed: Fast Access Time 120ns/150ns/200ns (max.)
- Low Power Standby and Low Power Operation; Standby: $100 \mu \mathrm{~W}$ (typ.) Operation: 180mW (typ.)
- Completely Statıc RAM: No clock or Timıng Strobe Required
- Directly TTL Compatible: All Input and Output
- Pin Out Compatible with Standard 16K EPROM/MASK ROM
- Equal Access and Cycle Time

- FUNCTIONAL BLOCK DIAGRAM

2048-word \times 8-bit High Speed Static CMOS RAM

FEATURES

- High Density Small-Sized Package
- Projection Area Redueced to One-Thirds of Conventional DIP
- Thickness Reduced to a Half of Conventional DIP
- Single 5V Supply
- High Speed: Fast Access Time
- Low Power Standby
- Low Power Operation;

120ns/150ns/200ns (max.)
Standby: $\quad 100 \mu \mathrm{~W}$ (typ.)
Operation: 180 mW (typ.)

- Completely Static RAM: No clock nor Timing Strobe Required
- Directly TTL Compatible: All Input and Output
- Equal Access and Cycle Time

■FUNCTIONAL BLOCK DIAGRAM

PIN ARRANGEMENT

HM6116LP-2, HM6116LP-3, HM6116LP-4

HITACHI

2048-word $\times 8$-bit High Speed Static CMOS RAM

- FEATURES

- Single 5V Supply and High Density 24 pin Package
- High Speed: Fast Access Time $120 \mathrm{~ns} / 150 \mathrm{~ns} / 200 \mathrm{~ns}$ (max.)
- Low Power Standby and Low Power Operation; Standby: 20μ W (typ.)

Operation: 160 mW (typ.)

- Completely Static RAM: No clock or Timing Strobe Required
- Directly TTL Compatible: All Input and Output
- Pin Out Compatible with Standard 16K EPROM/MASK ROM
- Equal Access and Cycle Time
- Capability of Battery Back up Operation

(DP-24)

HM6116LFP-2, HM6116LFP-3, HM6116LFP-4

2048-word \times 8-bit High Speed Static CMOS RAM

FEATURES

- High Density Small-sized Package
- Projection Area Redueced to One-Thirds of conventional DIP
- Thickness Reduced to a Half of Conventional DIP
- Single 5V Supply
- High Speed: Fast Access Time
- Low Power Standby and Low Power Operation;
- Completely Static RAM:

No Clock nor Timing Strobe Required

- Directly TTL Compatible: All Input and Output
- Equal Access and Cycle Time
- Capability of Battery Back up Operation

2048-word \times 8-bit High Speed Static CMOS RAM

FEATURES

- Single 5V Supply and High Density 24 pin Package.
- High Speed: Fast Access Time
- Low Power Standby and Low Power Operation:

150ns/200ns (max.)
Standby: $\quad 100 \mu \mathrm{~W}$ (typ.)
Operation: 200 mW (typ.)

- Completely Static RAM: No clock nor Timing Strobe Required
- Directly TTL Compatible: All Input and Output
- Pin Out Compatible with Standard 16K EPROM/MASK ROM
- Equal Access and Cycle Time

IFUNCTIONAL BLOCK DIAGRAM

IPIN ARRANGEMENT

2048-word \times 8-bit High Speed Static CMOS RAM

FEATURES

- High Density Small Sized Package
- Projection Area Reduced to One-Thirds of Conventional DIP
- Thickness Reduced to a Half of Conventional DIP
- Single 5V Supply and High Density 24 pin Package.
- High Speed: Fast Access Time

150ns/200ns (max.)

- Low Power Standby and Low Power Operation: Standby: $\quad 100 \mu \mathrm{~W}$ (typ.) Operation: 200 mW (typ.)
- Completely Static RAM: No clock nor Timing Strobe Required
- Directly TTL Compatible: All Input and Output
- Pin Out Compatible with Standard 16K EPROM/MASK ROM
- Equal Access and Cycle Time

IFUNCTIONAL BLOCK DIAGRAM

IPIN ARRANGEMENT

2048-word \times 8-bit High Speed Static CMOS RAM

FEATURES

- Single 5V Supply and High Density 24 Pin Package.
- High Speed: Fast Access Time

150ns/200ns max.

- Low Power Standby and Low Power Operation;

Standby: 10μ W (typ.) Two Chip Enable Input for Battery Back up Operation: 180 mW (typ.)

- Completely Static RAM: No clock nor Timing Strobe Required
- Directly TTL Compatible: All Input and Output
- Pin Out Compatible with Standard 16K EPROM/MASK ROM
- Equal Access and Cycle Time
- Capability of Battery Back up Operation

IFUNCTIONAL BLOCK DIAGRAM

PIN ARRANGEMENT

2048-word \times 8-bit High Speed Static CMOS RAM

FEATURES

- High Density Small-sized Packaged
- Projection Area Reduced to One-Thirds of Conventional DIP
- Thickness Reduced to a Half of Conventional DIP
- Single 5V Supply
- High Speed: Fast Access Time 150ns/200ns max.
- Low Power Standby and Low Power Operation;

Standby: $10 \mu \mathrm{~W}$ (typ.) Two Chip Enable Input for Battery Back up Operation: 180 mW (typ.)

- Completely Static RAM: No clock nor Timing Strobe Required
- Directly TTL Compatible: All Input and Output
- Pin Out Compatible with Standard 16K EPROM/MASK ROM

- Equal Access and Cycle Time
- Capability of Battery Back up Operation

IFUNCTIONAL BLOCK DIAGRAM

IPIN ARRANGEMENT

HM6167, HM6167-6, HM6167-8, HM6167P, HM6167P-6, HM6167P-8

FEATURES

- Single +5V Supply and High Density 20 Pin Package
- Fast Access Time - 70ns/85ns/100ns
- Low Power Stand-by and Low Power Operation

Stand-by 25 mW Typ. and Operating 150 mW Typ.

- Completely Static Memory No Clock nor Refresh Required
- Fully TTL Compatible - All Inputs and Output
- Separate Data Input and Output Three State Output
- Pin-Out Compatible with Intel 2167 Series

HM6167, HM6167-6, HM6167-8 (DG-20)
HM6167P, HM6167P-6, HM6167P-8 (DP-20)

IPIN ARRANGEMENT

16384-word \times 1-bit High Speed Static CMOS RAM

FEATURES

- Single +5 V Supply and High Density 20 Pin Package
- Fast Access Time . $70 n \mathrm{~ns} / 85 \mathrm{~ns} / 100 \mathrm{~ns}$
- Low Power Stand-by and Low Power Operation

Stand-by $5 \mu \mathrm{~W}$ (typ) and Operating 150 mW (typ.)

- Completely Static Memory No Clock or Refresh Required
- Fully TTL Compatible All Inputs and Output
- Separate Data Input and Output Three State Output
- Capable of Battery Back up Operation

PIN ARRANGEMENT

16384-word × 1-bit Dynamic Random Access Memory

The HM4716A is a 16,384 word by 1 bit MOS random access memory circuit fabricated with HITACHI's double poly N-channel silicon gate process for high performance and high functional derisity. The HM4716A uses a single transistor dynamic storage cell and dynamic control circuitry to achieve high speed and low power dissipation. Multiplexed address inputs permit the HM4716A to be packaged in a standard 16 pin DIP on 0.3 inch centers. This package size provides high system bit densities and is compatible with widely available automated testing and insertion equipment. The HM4716A is designed to facilitate upgrading of the 16 -pin 4 K RAM. However, the data output latch incorporated in the present 4 K design is not appropriate for 16K RAM's. This new generation of memory products (16K RAM's) requires a slightly modified output stage to allow more system flexibility. Instead of the conventional latch, the HM4716A output is controlled by the Column Address Storobe (CE). Data out of the HM4716A will remain valid from the access time from the Column Address Strobe unitl $\overline{\mathrm{CE}}$ goes into precharge (logic 1). However, in early write cyles (\bar{W} active low before $\overline{C E}$ goes low), the data output will remain in the high impedance (open-circuit) state throughout the entire cycle. This type of output operation results in some very significant system implications.

1. Common I/O Operation

If all write operation are handled in the "early write" mode, then data in can be connected directly to data-out on a printed circuit board.
2. Data Output Control

Data well remain valid at the output during a read cycle from TCELQV until CE returns to precharge.
This allows data to be valid from one cycle up until a new memory cycle begins.
3. Two Methods of Chip Selection

Both CE and/or RE can be decoded for chip selection.

4. Refresh

Refreshing can be accomplished every 2 ms by either of the two following methods:
(1) normal read or write cycles on 128 addresses, A0 to A6.
(2) $\overline{R E}$ only cycles on 128 addresses, A0 to A6.

A write cycle will refresh stored data on all bits of the selected row except the bit which is addressed.
$\overline{R E}$ only regreshes results in a substantial reduction in operating power.
5. Page Mode Operation

The HM4716A is designed for page mode operation.

HM4716A-1, HM4716A-2, HM4716A-3, HM4716A-4
(DG-16A)
HM4716AP-1, HM4716AP-2, HM4716AP-3, HM4716AP-4

(DP-16)

HM4816A-3, HM4816A-3E, HM4816A-4, HM4816A-7, HM4816AP-3, HM4816AP-3E, HM4816AP-4, HM4816AP-7

16384-word \times 1-bit Dynamic Random Access Memory

The HM4816A is a new generation MOS dynamic RAM circuit organized as 16,384 words by 1 bit. As a state-of-the art MOS memory device, the HM4816A (16K RAM) incorporates advanced circuit techniques designed to provide wide operating margins, both internally and to the system user, while achieving performance levels in speed and power.
The use of dynamic circuitry throughout, including sense amplifiers, assures that power dissipation is minimized without any sacrifice in speed or operating margin. These factors combine to make the HM4816A a truly superior RAM product. Multiplexed address inputs permits the HM4816A to be packaged in standard 16-pin DIP. Non-critical clock timing requirements allow use of the multiplexing technique while maintaining high performance.

IFEATURES

- Single 5V supply Low power standby and operation (Standby: 11 mW max., operation: 150 mW max.)
- Fast access time \& cycle time

	HM4816A-3 HM 4816AP-3	HM 4816A-3E HM 4816AP-3E	HM 4816A-4 HM 4816AP-4	HM 4816A-7 HM 4816AP-7
Maximum Access (ns) Time	100	105	120	150
Read, Write Cycle (ns) (ns)	235	200	270	320
Read-Modify-Write (ns) Cycle	285	235	320	410

- Directly TTL compatible: All inputs \& outputs
- Output data controlled by $\overline{\mathrm{CAS}}$ and unlatched at end of cycle to allow two dimensional chip selection and extended page boundary.
- Common I/O capability using "easy write" operation.
- Read modify write, $\overline{\mathrm{RAS}}$ only refresh and page mode capability
- Only 128 refresh cycle required every 2 ms
- Compatible with Intel 2118-3/-4/-7
- BLOCK DIAGRAM

HM4816A-3, HM4816A-3E, HM4816A-4, HM 4816A-7

(DP-16)

PIN ARRANGEMENT

65536-word \times 1-bit Dynamic Random Access Memory

The HM4864 is a 65,536 -words by 1 -bit, MOS random access memory circuit fabricated with HITACHI's double-poly N -channel silicon gate process for high performance and high functional density. The HM4864 uses a single transistor dynamic storage cell and dynamic control circuitry to achieve high speed and low power dissipation.
Multiplexed address inputs permit the HM4864 to be packaged in a standard 16 pin DIP on 0.3 inch centers.
This package size provides high system bit densities and is compatible with widely available automated testing and insertion equipment. System oriented features include single power supply of +5 V with $\pm 10 \%$ tolerance, direct interfacing capability with high performance logic families such as Schottky TTL, maximum input noise immunity to minimize "false triggering" of the inputs, on-chip address and data registers which eliminate the need for interface registers, and two chip select methods to allow the user to determine the appropriate speed/power characteristics of this memory system. The HM4864 also incorporates several flexible timing/operating modes.
In addition to the usual read,write, and read-modify-write cycles, the HM4864 is capable of delayed write cycles, page-mode operation and $\overline{\text { RAS }}$-only refresh.
Proper control of the clock inputs ($\overline{\mathrm{RAS}}, \overline{\mathrm{CAS}}$, and $\overline{\mathrm{WE}}$) allows common 1/O capability, two dimensional chip selection, and extended page boundaries (when operating in page mode).

FEATURES

- Recognized industry standard 16-pin configuration
- 150ns access time, 270ns cycle time (HM4864-2, HM4864P-2)
- 200ns access time, 335ns cycle time (HM4864-3, HM4864P-3)
- Single power supply of $+5 \mathrm{~V} \pm 10 \%$ with a built-in $V_{B B}$ generator

- The inputs TTL compatible, low capacitance, and protected against static charge
- Output data controlled by CAS and unlatched at end of cycle to allow two dimensional chip selection and extended page boundary
- Common I/O capability using "early write" operation
- Read-Modify-Write, $\overline{\text { RAS-only refresh, and Page-mode capability }}$
- 128 refresh cycle

IPIN ARRANGEMENT

HN462716G

2048-word \times 8-bit UV Erasable and Electrically Programmable Read Only Memory

The HN462716G is a 2048 word by 8 bit erasable and electrically programmable ROMs. This device is packaged in a 24 -pin, dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern, whereby a new pattern can then be written into the device.

- Single Power Supply +5V $\pm 5 \%$;
- Simple ProgrammingProgram Voltage: +25V DC

Programs with One 50ms Pulse

- Static \qquad No Clocks Required
- Inputs and Outputs TTL Compatible During Both Read and Program Modes
- Fully Decoded-on Chip Address Decode
- Access Time 450ns Max.
- Low Power Dissipation 555mW Max. Active Power

213mW Max. Standby Power

- Three State Output OR- Tie Capability
- Interchangeable with Intel 2716

HN462716G

(DG-24B)

- BLOCK DIAGRAM

- PIN ARRANGEMENT

HN462716G-1, HN462716G-2

2048-word \times 8-bit U.V. Erasable and Electrically Programmable Read Only Memory

The HN462716 is a 2048 word by 8 bit erasable and electrically programmable ROMs. This device is packaged in a 24 -pin, dual-inline package with transparent lid. The transparent lid allows the user to exposes the chip to ultraviolet light to erase the bit pattern, whereby a new pattern can then be written into the device.

- Single Power Supply $+5 \mathrm{~V} \pm 5 \%$;
- Simple Programming Program Voltage: +25V DC

Programs with One 50ms Pulse

- Static No Clocks Required
- Inputs and Outputs TTL Compatible During Both Read and Program Modes
- Fully Decoded-on Chip Address' Decode
- Access Time 350ns Max.: HN462716G-1

390ns Max.: HN462716G-2

- Low Power Dissipation 555mW Max. Active Power

161mW Max. Standby Power

- Three State Output OR- Tie Capability
- Interchangeable with Intel 2716

PIN ARRANGEMENT

(Top View)

4096-word $\times 8$-bit U.V. and Erasable and Programmable Read Only Memory

The HN462532 is a 4096 word by 8 bit erasable and electrically programmable ROM. This device is packaged in a 24 -pin, dual-in-line package with transparent lid. The transparent lid allows the user to expose the chip to ultraviolet light to erase the bit pattern, whereby a new pattern can then be written into the device.

- FEATURES

- Single Power Supply $+5 \mathrm{~V} \pm 5 \%$
- Simple Programming Program Voltage: +25V D.C. Program with One 50 ms Pulse
- Static \qquad No Clocks Required
- Inputs and Outputs TTL Compatible During Both Read and Program Modes
- Fully Decoded On-Chip Address Decode
- Access Time

450ns (max.) HN462532/G
390ns (max.) HN462532G-2

- Low Power Dissipation

858mW (max) Active Power 201mW (max) Standby Power

- Three Stste Output OR-Tie Capability
- Compatible with TMS2532

BLOCK DIAGRAM

PIN ARRANGEMENT

4096-word $\times 8$-bit U.V. Erasable and Programmable Read Only Memory

The HN482732A is a 4096 -word by 8 -bit erasable and electrically programmable ROM. This device is packaged in a 24 pin dual-in-line package with transparent lid.
The transparent lid on the package allow the memory content to be erased with ultraviolet light.

- FEATURES

- Single Power Supply $+5 \mathrm{~V} \pm 5 \%$
- Simple Programming Program Voltage: +21V D.C Program with one 50 ms Pulse
- Static

No clocks Required

- Inputs and Outputs TTL Compatible During Both Read and Program Mode
- Access Time

HN482732AG-20	200ns (max)
HN482732AG-25	250ns (max)
HN482732AG-30	300 ns (max)

- Absolute Max. Rating of Vpp Pin . . . 28V
- Low Stand-by Current 35mA (max)
- Compatible with Intel 2732A

BLOCK DIAGRAM

PIN ARRANGEMENT

The HN482764 is a 8192 word by 8 bit erasable and electrically programmable ROM. This device is packaged in a 28 pin dual-in-line package with transparent lid. The transparent lid on the package allows the memory content to be erased with ultraviolet light.

FEATURES

- Single Power Supply +5V $\pm 5 \%$
- Simple Programming Program Voltage: +21V D.C.

Program with one 50 ms Pulse

- Static No Clocks Required
- Inputs and Outputs TTL Compatible During Both Read and Program Mode.
- Access Time. HN482764/G 250ns max HN482764/G-3 300ns max
- Absolute Max. Rating of Vpp pin . . . 28V
- Low Stand-by Current 35mA max.
- Compatible with Intel 2764

PIN ARRANGMENT

8192-word $\times 8$-bit U.V. Erasable and Programmable Read Only Memory

The HN482764 is a 8192 word by 8 bit erasable and electrically programmable ROM. This device is packaged in a 28 pin dual-in-line package with transparent lid. The transparent lid on the package allows the memory content to be erased with ultraviolet light.

FEATURES

- Single Power Supply $+5 \mathrm{~V} \pm 5 \%$
- Simple Programming Program Voltage: +21V D.C. Program with one 50 ms Pulse
- Static

No Clocks Required

- Inputs and Outputs TTL Compatible During Both Read and Program Mode
- Access Time. 450ns max.
- Absolute Max. Rating of Vpp Pin . . . 28V
- Low Stand-by Current. 35mA max.
- Compatible with Intel 2764

BLOCK DIAGRAM

PIN ARRANGEMENT

2048-word $\times 8$-bit Electrically Erasable and Programmable ROM

This device operates from a single power supply and features fast single address location programming. All the words are erased by one TTL level pulse. Erasing the bit pattern and programming new pattern can be made within 42 seconds.

FEATURES

- Single Power Supply $+5 \mathrm{~V} \pm 5 \%$
- Simple Programming Program voltage: +25V D.C.

Program with one 20 ms pulse.

- Electrically Erasing Erase Voltage: +25V D.C.

Erase all words with one 200 ms pulse.

- Fully Static

No clocks required.

- Inputs and Outputs TTL compative during read, program and erase mode.
- Fully Decoded On-Chip Address Decode.
- Access Time

350ns Max.

- Low Power Dissipation 300mW Max.
- Three State Output OR-Tie Capability
- Pin-out Compatible with Intel 2716.

PIN. ARRANGEMENT

PACKAGING INFORMATION (Dimensions in mm)

- DUAL-IN-LINE PLASTIC
DP-16

- DP-24		Applic	ble ICs
		DP-16	HM4716AP-1, HM4716AP-2, HM4716AP-3, HM4716AP-4,
		DP-18	HM472114AP-1, HM472114AP-2, HM 472114P-3, HM472114P-4, HM4334P-3, HM4334P-4, HM6148P, HM6148P-6. HM6148LP, HM6148LP-6, HM4315P, HM6147P, HM6147P-3, HM6147LP, HM6147LP-3
		DP-24	HM6116P-2, HM6116P-3, HM6116P-4, HM6116LP-2, HM6116LP-3, HM6116LP-4, HN462316EP, HN46332P, HN48364P, HN48016P

- DUAL-IN-LINE CERAMIC (Glass-sealed)
ODG-16

Applicable ICs

DG-16	HM2105, HM2106, HM10414, HM10414-1 HM2504, HM2504-1, HD2912
	HM4716A-1, HM4716A-2, HM4716A-3, HM4716A-4,
DG-16A	HM2110, HM2110-1, HM2110-2, HM2112,
	HM2112-1, HM2510, HM2510-1, HM2510-2,
	HM2511, HM2511-1, HD2916, HD2923

DG-18	HM72114A-1, HM472114A-2, HM472114-3 HM472114-4, HM10470, HM10470-1, HN25044, HN25045, HN25084, HN25085
	HN25088, HN25089
DG-24A	HM10422, HM100422
DG-24B	HN462716G

- DUAL-IN-LINE CERAMIC (with Lid)

64K Dynamic Ram

	MANUFACTURER			HITACHI		FUJITSU		INTEL	
	ITEM		UNIT	$\begin{gathered} H M_{484-2} \end{gathered}$	$\underset{4864-3}{H M}$	$\begin{gathered} \text { MB } \\ 8264-15 \end{gathered}$	$\begin{gathered} \text { MB } \\ \mathbf{8 2 6 4 - 2 0} \end{gathered}$	12164-5	12164-6
	TACC		ns	150	200	150	200	150	200
$\begin{array}{\|l\|l} \hline \stackrel{F}{2} \\ \mathbf{N} \\ \underset{\sim}{c} \\ \hline \end{array}$	NO. 1 P/N			NC		NC (Hidden Refresh)			
	Refresh		Cycle	128		128			
	Abs. Max.		V	7		7		7.5	
	Icc	OP'N	mA	60		45		67	60
		STDBY	mA	3.5		5		8	
C	$\mathrm{V}_{1 H}$ min/max		V	2.4/6.5		2.4/6.5		2.4/7.0	
	$\mathrm{V}_{\text {IL }}$ min/max		V	-1.0/0.8		-1.0/0.8		-2.0/0.8	
	trc		ns	270	335	320	330	300	375
	trwc		ns	270	335	350	375	345	435
	tcac		ns	100	135	100	135	85	110
	tred		ns	50	65	50	65	35/65	45/90
	trp		ns	100	120	100	120	140	165
	tasr		ns	0	0	0	0	0	0
	trah		ns	20	25	15	20	25	35
	tasc		ns	-10	-10	0	0	0	0
	tcan		ns	45	55	45	55	35	45
	trcs		ns	0	0	0	0	0	0
	trch		ns	0	0	0	0	0	0
	twch		ns	45	55	45	55	45	55
	twp		ns	45	55	45	55	45	55
	trwl		ns	45	55	60	80	60	80
	tcwl		ns	45	55	60	80	60	80
	tds		ns	0	0	0	0	0	0
	tdh		ns	45	55	45	55	45	55
	twcs		ns	-20	-20	-10	-10	0	0
	trwd		ns	110	145	120	160	130	175
	tewd		ns	60	80	70	95	65	85
	tcrp		ns	-20	-20	0	0		
	tref		ns	2	2	2	2		

Industry Cross Reference

MITSUBISHI (OId Spec)		MOSTEK		MOTOROLA		T.I.		
$\underset{58764-15}{M}$	$\begin{gathered} M \\ 58764-20 \end{gathered}$	$\begin{gathered} \text { MK } \\ 4164-10 \end{gathered}$	$\begin{gathered} \text { MK } \\ 4164-20 \end{gathered}$	$\begin{gathered} \text { MCM } \\ \mathbf{6 6 6 4 - 1 5} \end{gathered}$	6664-20	$\begin{gathered} \text { TMS } \\ \text { 4164-15 } \end{gathered}$	$\begin{aligned} & \text { TMS } \\ & 4164-20 \end{aligned}$	$\begin{aligned} & \text { TMS } \\ & 4164-25 \end{aligned}$
150	200	100	120	150	200	150	200	250
NC		REF		REF		N/C		
256		128		128		256		
7		7		7		6		
54.5		60		50		37		
9		4		5		5		
2.4/6.5		2.4/V VCC^{+1}		2.4/7.0		2.4/V $\mathrm{Vdd}+0.3$		
-1.0/0.8		-2.0/0.8		-1.0/0.8		-1.0/0.8		
310	375	235	265	300	330	280	350	410
325	395	260	315	300	330	280	350	410
100	135	50	60	75	100	100	135	165
50	65	50	60	75	100	50	65	85
150	165	125	135	100	120	100	120	150
0	0	0	0	0	0	0	0	0
25	25	10	10	20	25	20	25	35
-5	-5	0	0	0	0	-5	-5	-5
45	55	15	20	45	55	45	55	75
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0
45	55	35	40	45	55	60	80	110
45	55	30	35	45	55	45	55	75
50	70	35	40	45	55	60	80	100
50°	70	35	40	45	55	60	80	100
0	0	0	0	0	0	0	0	0
45	55	35	40	45	55	60	80	100
-10	-10	0	0	-10	-10	-5	-5	-5
110	145	110	120	120	155	90	130	190
60	80	50	60	45	55	40	50	60
-20	-20	-	-	-10	-10	0	0	0
4	4	2	2	2	2	4	4	4

16K BIT (2K X 8) STATIC RAM

NOTE: Harris has announced CMOS 6516 2K X $8 \mathrm{w} /$ preliminary data sheet only.
Data is insufficient to be included in this Cross Reference.

INDUSTRY CROSS REFERENCE

December '80

BIPOLAR MEMORIES

LITERATURE NO.

BIPOLAR MEMORY FAMILY TREE

- Bipolar Memory

TYPICAL CHARACERISTICS OF BIPOLAR MEMORY

- Bipolar RAM

Level	Total Bit	Type No.	Organization $\binom{$ word }{\times bit }	Output	Access Time (ns) max	Supply Voltage (V)	Power Dissipation (mW/bit)	Package**				Replacement
								Pin No.	F	G	P	
$\begin{aligned} & \text { ECL } \\ & 10 \mathrm{k} \end{aligned}$	256-bit	HM2105	256×1	Open Emitter	35	-5.2	1.8	16		\bullet		F10410
		HM2106			15		1.8			\bullet		
		HM10414			10		2.8			\bullet		F10414
		HM10414-1			8					\bullet		
	1 k -bit	HM2110	1024×1		35		0.5			\bullet		F10415
		HM2110-1			25					\bullet		F10415A
		HM2110-2			20					\bullet		
		HM2112			10		0.8			\bullet		
		HM2112-1			8					\bullet		
		HM10422	256×4		10		0.8	24		\bullet		F10422
	4 k -bit	HM10470	4096×1		25		0.2	18		\bullet		F10470
		HM10470-1			15					\bullet		
		HM10474	1024×4		25		0.2	24		\bullet		F10474
$\begin{aligned} & \text { ECL } \\ & 100 \mathrm{k} \end{aligned}$	1k-bit	HM100415*	1024×1		10	-4.5	0.6	16		\bullet		F100415
		HM100422	256×4		10		0.8	24	\bullet	\bullet		F100422
	4k-bit	HM100470	4096×1		25		0.2	18		\bullet		F100470
		HM100474	1024×4		25		0.2	24	\bullet	\bullet		F100474
TTL	256-bit	HM2504	256×1	Open Collector	55	+5	1.8	16		\bullet		93411
		HM2504-1			45					\bullet		93411A
	1 k -bit	HM2510	1024×1		70					\bullet		
		HM2510-1			45		0.5			\bullet		93415
		HM2510-2			35					\bullet		93415A
		HM2511		3-state	70		0.5			\bullet		
		HM2511-1			45					\bullet		93425

Bipolar PROM

Level	Total Bit	Type No.	Organization$\binom{\text { word }}{\times \text { bit }}$	Output	Access Time (ns) max	Supply Voltage (V)	Power Dissipation(mW)	Package**				Replacement
								Pin No.	F	G	P	
TTL	8 k -bit	HN25084	2048×8	Open Collector	60	+5	550	18		\bullet		82S184
		HN25085		3 -state						\bullet		82S185
		HN25084S*		Open Collector	50		550			\bullet		
		HN25085S*		3 -state						\bullet		
		HN25088	1024×8	Open Collector	60		600	24		\bullet		82S180
		HN25089		3 -state						\bullet		82S181
		HN25088S*		Open Collector	50		600			\bullet		
		HN25089 ${ }^{*}$		3 -state						\bullet		
	16k-bit	HN25168S*	2048×8	Open Collector	60		600	24		\bullet		82S190
		HN25169 ${ }^{*}$		3-state						\bullet		82S191

[^1]The HM2110 Series item is an ECL compatible, 1024 -word $\times 1$-bit, read/write, random access memory developed for application to scratch pads, control and buffer memories, etc. which require high speeds.

- It is compatible with 10 K ECL logic.
- Chip select access time 10ns (max.)
- Address access time

HM2110: 35ns (max.)
HM2110-1: 25ns (max.)
HM2110-2: 20ns (max.)

- Power consumption
$0.5 \mathrm{~mW} / \mathrm{bit}$ (typ)
- Output obtainable by Wired-OR (open emitter).

ITRUTH TABLE

Input			Output	Mode
$\overline{\mathrm{CS}}$	$\overline{\mathrm{WE}}$	Din		
H	\times	\times	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	\times	Dout *	Read

\times : ırrelevant

* : Read out noninverted

BLOCK DIAGRAM

1024-word \times 1-bit Fully Decoded Random Access Memory

The HM2112 is an ECL compatible, 1024 -word $\times 1$-bit, read/write, random access memory developed for application to scratch pads, control and buffer memories, etc. which require high speeds.

- FEATURES
- Level

10k ECL Compatible

- Construction 1024-word by 1-bit
- Address Access Time HM 2112 10ns (max.) HM2112-1 8ns (max.)
- Chip Select Access Time 6ns (max.)
- Power Consumption $0.8 \mathrm{~mW} /$ bit (typ)
- Output Obtainable by Wired-OR (open emitter)
truth table

Input			Output	Mode	
$\overline{\mathrm{CS}}$	$\overline{\mathrm{WE}}$	Din			
H	\times	\times	L	Not Selected	
L	L	L	L	Write "0"	
L	L	H	L	Write "1"	
L	H	\times	Dout*	Read	

X: Irrelevant

* : Read out noniverted
- BLOCK DIAGRAM

- PIN ARRANGEMENT

1024-word \times 1-bit Fully Decoded Random Access Memory

The HM 2510 Series item is a 1024-word $\times 1$-bit read/write random access memory developed for application to buffer memories, control memories, high-speed main memories, etc. It is a fully decoded, read/write, random access memory perfectly compatible with standard DTL and TTL logic families, desigend as an open collector output type for simplicity of expansion.

- Level	TTL compatible
- Construction 1024-word x 1 bit	
- Read access time	HM2510: 70ns (max.)
	HM2510-1: 45ns (max.)
	HM2510-2: 35ns (max.)
- Chip select access time	HM2510: 40ns (max.)
	HM2510-1: 30ns (max.)
	HM2510-2: 25ns (max.)
- Power consumption	$0.5 \mathrm{~mW} / \mathrm{bit}$
- Output	Open collector

(DG-16A)

TRUTH TABLE

Inputs			Output	Mode	
$\overline{\mathrm{CS}}$	$\overline{\mathrm{WE}}$	Din			
H	\times	\times	H	Not Selected	
L	L	L	H	Write "0"	
L	L	H	H	Write "1"	
L	H	\times	Dout *	Read	

\times : Don't care

* : Read out non-inverted

PIN ARRANGEMENT

BLOCK DIAGRAM

1024-word \times 1-bit Fully Decoded Random Access Memory

The HM2511 Series item is a 1024 -word x 1 -bit read/write random access memory with tristate output developed for application to buffer memories, control memories, high-speed main memories, etc. It is a fully decoded, read/write, random access memory perfectly compatible with standard DTL and TTL logic families.

- Level	TTL compatible
- Construction	1024-word $\times 1$ bit
- Read access time	HM2511: 70ns (max)
- Chip select access time	HM2511-1: 45ns (max) HM2511: 40ns (max)
	HM2511-1: 30ns (max)
- Power consumption	$0.5 \mathrm{~mW} / \mathrm{bit}$
- Output . .	tri-state

(DG-16A)

- PIN ARRANGEMENT
- TRUTH TABLE

Input			Output Open Collector	
$\overline{\mathrm{CS}}$	$\overline{\mathrm{WE}}$	Din	Mode	
H	\times	\times	High Z	Not Selected
L	L	L	High Z	Write "0"
L	L	H	High Z	Write "1"
L	H	\times	Dout *	Read

\times : Don't care

* : Read out noninverted

- BLOCK DIAGRAM

HM10414, HM10414-1

256-word \times 1-bit Fully Decoded Random Access Memory

The HM10414 is ECL 10K compatible, 256 -word $\times 1$-bit, read/write, random access memory developed for high speed systems such as scratch pad and control/ buffer storages.

The fabrication process uses the Hitachi's low capacitance, oxide isolation method with double metalization.

The HM10414 is encapsulated in cerdip-16pin package, compatible with Fairchild's F10414.

- Fully compatible with 10K ECL level
- Address access time; HM10414: 10ns (max.)

HM10414-1: 8ns (max.)

- Write pulse width: 6 ns (min.)
- Three chip select pins
- Output obtainable by wired-OR (open emitter)
- TRUTH TABLE

Input				Output	Mode	
$\overline{\text { CS }}$	$\overline{\mathrm{WE}}$	Din				
any one	H	X	X	L	Not Selected	
all	L	L	L	L	Write "0"	
all	L	L	H	L	Write "1"	
all	L	H	X	Dout*	Read	

x : Don't care

* : Read out non-inverted

- PIN ARRANGEMENT

- BLOCK DIAGRAM

Note) The specifications of this device are subject to change without notice. Please contact your nearest Hitachi's Sales Dept. regarding specifications.

256-word \times 4-bit Fully Decoded Random Access Memory

The HM10422 is ECL 10 K compatible, 256 -word $\times 4$-bit, read/write, random access memory developed for high speed systems such as scratch pads and control buffer storages.

Four active Low Block Select lines are provided to select each block independently.

The fabrication process uses the Hitachi's low capacitance, oxide isolation method with double metalization.

The HM10422 is encapsulated in cerdip-24pin package, or 24pin flat package, compatible with Fairchild's F10422.

- FEATURES
- 256-word x 4-bit organization
- Fully compatible with 10K ECL' level
- Address access time: 10ns (max)
- Write pulse width: $6 \mathrm{~ns}(\mathrm{~min})$
- Power dissipation: $0.8 \mathrm{~mW} / \mathrm{bit}$
- Output obtainable by wired-OR (open emitter)
- TRUTH TABLE

Input			Output	Mode	
$\overline{\mathrm{BS}}$	$\overline{\mathrm{WE}}$	Din			
H	X	X	L	Not Selected	
L	L	L	L	Write "0"	
L	L	H	L	Write "1"	
L	H	X	Dout"	Read	

Notes:
X ; irrelevant

* ; Read Out Noninvert
- BLOCK DIAGRAM

Note) The specifications of this device are subject to change without notice. Please contact your nearest Hitachi's Sales Dept. regarding specifications.

HM10470, HM10470-1

4096-word \times 1-bit Fully Decoded Random Access Memory

The HM10470 is ECL 10K compatible, 4096 -words $\times 1$-bit, read/write, random access memory developed for high speed systems such as scratch pads and control/ buffer storages.

The fabrication process uses the Hitachi's low capacitance, oxide isolation method with double metalization.

The HM10470 is encapsulated in cerdip-18pin package, compatible with Fairchild's F10470.

- FEATURES
- 4096-word $\times 1$-bit organization
- Fully compatible with 10K ECL level
- Address access time: HM 1047025 ns (max) HM 10470-1 15 ns (max)
- Write pulse width: HM $1047020 \mathrm{~ns}(\mathrm{~min})$

$$
\text { HM 10470-1 } 15 \mathrm{~ns}(\mathrm{~min})
$$

- Low power dissipation: $0.2 \mathrm{~mW} / \mathrm{bit}$
- Output obtainable by wired-OR (open emitter)
- TRUTH TABLE

Input			Output	Mode	
$\overline{\mathrm{CS}}$	$\overline{\mathrm{WE}}$	Din			
H	X	X	L	Not Selected	
L	L	L	L	Write "0"	
L	L	H	L	Write "1"	
L	H	X	Dout*	Read	

Notes) X ; ırrelevant
${ }^{*}$; Read OUt ì ioninvert

- PIN ARRANGEMENT

- BLOCK DIAGRAM

Note) The specifications of this device are subject to change without notice. Please contact your nearest Hitachı's Sales Dept. regarding specifications.

HM10474, HM10474-1

1024-word \times 4-bit Fully Decoded Random Access Memory

The HM10474 is ECL 10k compatible, 1024 -words $\times 4$-bit, read/write, random access memory developed for high speed systems such as scratch pads and control/ buffer storages.

The fabrication process uses the Hitachi's low capacitance, oxide isolation method with double metalization.

The HM10474 is encapsulated in cerdip-24pin package, compatible with Fairchild's F10474.

- FEATURES
- 1024-word x 4bit organization
- Fully compatible with 10 k ECL level
- Address access time: HM 1047425 ns (max)

HM 10474-1 15 ns (max)

- Write pulse width: HM 10474

$$
\text { HM 10474-1 } \quad 15 \mathrm{~ns}(\min)
$$

- Low power dissipation: $0.2 \mathrm{~mW} / \mathrm{bit}$
- Output obtainable by wired-OR (open emitter)
- TRUTH TABLE

Input			Output	Mode	
$\overline{\mathrm{CS}}$	$\overline{\mathrm{WE}}$	Din			
H	X	\times	L	Not Selected	
L	L	L	L	Write "0"	
L	L	H	L	Write "1"	
L	H	x	Dout*	Read	

Notes: x,

1024-word \times 1-bit Fully Decoded Random Access Memory

The HM100415 is a 1024 -word $\times 1$-bit, read/write random access memory developed for application to scratch pads, control and buffer memories which require very high speeds.

The HM100415 is compatible with the HD100K families and includes on-chip voltage and temperature compensation for improved noise margin. This memory is encapsulated in cerdip-16pin package.

- FEATURES

- Level . 100K ECL Compatible
- Organization 1024-word by 1-bit
- Address Access Time $10 n s$ (max.)
- Chip Select Access Time 5ns (max.)
- Power Consumption 0.6mW/bit (typ)
- Output Obtainable by Wired-OR (open emitter)
- TRUTH TABLE

Input			Output	Mode	
$\overline{\mathrm{CS}}$	$\overline{\mathrm{WE}}$	Din			
H	\times	\times	L	Not Selected	
L	L	L	L	Write "0"	
L	L	H	L	Write "1"	
L	H	\times	Dout*	Read	
$\mathrm{X}:$					
- BLOCK DIAGRAM					

- PIN ARRANGEMENT

256-word \times 4-bit Fully Decoded Random Access Memory

The HM100422 is ECL 100 K compatible, 256 -word $\times 4$-bit, read/write, random access memory developed for high speed system such as scratch pads and control/ buffer storages.

Four active Low Block Select lines are provided to select each block independently.

The fabrication process uses the Hitachi's low capacitance, oxide isolation method with double metalization.

The HM100422 is encapsulated in cerdip-24pin package, or 24pin flat package compatible with Fairchild's F100422.

- FEATURES

- 256-word $\times 4$-bit organization
- Fully compatible with 100 K ECL level
- Address access time: 10ns (max.)
- Minimum write pulse width: 6 ns (min.)
- Low power dissipation: $0.8 \mathrm{~mW} / \mathrm{bit}$
- Output obtainable by wired-OR (open emitter)
- TRUTH TABLE

Item		Output	Mode	
$\overline{\mathrm{BS}}$	$\overline{\mathrm{WE}}$			
H	X	x	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	x	Dout*	Read

Notes:

* ; Read Out Noninvert

Note) The specifications of this device are subject to change without notice. Please contact your nearest Hitachi's Sales Dept. regarding specifications.

HM100470, HM100470-1

4096-word \times 1-bit Fully Decoded Random Access Memory

The HM100470 is ECL 100k compatible, 4096-words $\times 1$-bit, read/write, random access memory developed for high speed systems such as scratch pads and control/ buffer storages.

The fabrication process uses the Hitachi's low capacitance, oxide isolation method with double metalization.

The HM100470 is encapsulated in cerdip-18pin package, compatible with Fairchild's F100470.

- FEATURES
- 4096-word x 1-bit organization
- Fully compatible with $100 k$ ECL level
- Address access time: HM 10047025 ns (max)

HM 100470-1 15 ns (max)

- Write pulse width: HM 100470

$$
\text { HM 100470-1 } 15 \mathrm{~ns}(\mathrm{~min})
$$

- Low power dissipation: $0.2 \mathrm{~mW} / \mathrm{bit}$
- Output obtainable by wired-OR (open emitter)
- TRUTH TABLE

Input			Output	Mode
$\overline{\mathrm{CS}}$	$\overline{\mathrm{WE}}$	Din		
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Dout*	Read

Notes: x,
*,

- BLOCK DIAGRAM

1024-word \times 4-bit Fully Decoded Random Access Memory

The HM100474 is ECL 100k compatible,1024-words x 4-bit, read/write, random access memory developed for high speed systems such as scratch pads and control/ buffer storages.

The fabrication process uses the Hitachi's low capacitance, oxide isolation method with double metalization.

The HM100474 is encapsulated in cerdip-24pin and flat-24pin package, compatible with Fairchild's F100474.

- FEATURES
- 1024-word x 4-bit organization
- Fully compatible with $100 k$ ECL level
- Address access time: HM 100474
HM 100474-1
- Write pulse width: HM 100474 HM 100474-1

25 ns (max)
15 ns (max)
$20 \mathrm{~ns}(\min)$
15 ns (min)

- Low power dissipation: $0.2 \mathrm{~mW} / \mathrm{bit}$
- Output obtainable by wired-OR (open emitter)
- TRUTH TABLE

Input			Output	Mode
$\overline{\mathrm{CS}}$	$\overline{\mathrm{WE}}$	Din		
H	X	X	L	Not Selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	X	Dout*	Read

Notes: \times, Irrelevant
*, Read Out Noninverted

- BLOCK DIAGRAM

- PIN ARRANGEMENT

HM100474F/-1

(Top View)

HM100474/-1

(DG-24A)
HM100474F/-1

(FG-24)

HM100474/-1

2048-word \times 4-bit Programmable Read Only Memories

The HITACHI HN25084S and HN25085S are high speed electrically programmable, fully decoded TTL Bipolar 8192 bit read only memories organized as 2048 words by 4 bits with on-chip address decoding and one chip enable input. The HN25084S and HN25085S are fabricated with logic level "zeros" (low); logic level "ones" (high) can be electrically programmed in the selected bit locations. The same address inputs are used for both programming and reading.

FEATURES

- 2048 words $\times 4$ bits organization (fully decoded)
- DTL/TTL compatible inputs and outputs
- Fast read access time: 25 ns typ. (50 ns max)
- Medium power consumption: 550 mW typ.
- One chip enable input for memory expansion
- Open collector outputs (HN25084S)/Three-state outputs (HN25085S)
- Standard cerdip 18-pin dual in-line package
-OPERATION
- Programming

A logic one can be permanently programmed into a selected bit location by using programming equipment. First, the desired word is selected by the eleven address inputs in TTL level. The device is disabled by bringing $\overline{\mathrm{CE}}$ to a logic "one". Then a train of high current programming pulses is applied to the desired output. After the sensed voltage indicates that the selected bit is in the logic "one" state, an additional pulse train is applied, then is stopped.

- Reading

To read the memory the device is enabled by bringing $\overline{C E}$ to a logic "zero". The outputs then correspond to the data programmed in the selected word.

PIN ARRANGEMENT

- LOGIC DIAGRAM

Note) The specifications of this device are subject to change without notice. Please contact your nearest Hitachi's Sales Dept. regarding specifications.

1024-word $\times 8$-bit Programmable Read Only Memories

The HITACHI HN25088S and HN25089S are high speed electrically programmable, fully decoded TTL Bipolar 8192 bit-read only memories organized as 1024 words by 8 bits with on-chip address decoding and four chip enable inputs. The HN25088S and HN25089S are fabricated with logic level "zeros" (low); logic level "ones" (high) can be electrically programmed in the selected bit locations. The same address inputs are used for both programming and reading.

FEATURES

- 1024 words $\times 8$ bits organization (fully decoded)
- DTL/TTL compatible inputs and outputs
- Fast read access time: 25 ns typ. (50 ns max)
- Medium power consumption: 600 mW typ.
- Four chip enable inputs for memory expansion
- Open collector outputs (HN25088S)/Three-state outputs (HN25089S)
- Standard cerdip 24-pin dual in-line package

OPERATION

- Programming

A logic one can be permanently programmed into a selected bit location by using programming equipment. First, the desired word is selected by the ten address inputs in TTL level. The device is disabled by bringing CE1 and/or CE2 to as logic "one" or CE3 and/or CE4 to a logic "zero". Then a train of high current programming pulses is applied to the desired output. After the sensed voltage indicates that the selected bit is in the logic one state, an additional pulse train is applied, then is stopped.

- Reading

To read the memory the device is enabled by bringing $\overline{\text { CE1 }}$ and $\overline{\text { CE2 }}$ to a logic "zero", CE3 and CE4 to a logic "one". The outputs then corresponed to the data programmed in the selected word.

PIN ARRANGEMENT

LOGIC DIAGRAM

Note) The specifications of this device are subject to change without notice. Please contact your nearest Hitachi's Sales Dept. regarding specifications.

2048-word $\times 8$-bit Programmable Read Only Memories

The HITACHI HN25168S and HN25169S are high speed electrically programmable, fully decoded TTL Bipolar 16384 bit read only memories organized as 2048 words by 8 bits with on-chip address decoding and three chip enable inputs. The HN25168S and HN25166S are fabricated with logic level "zeros" (low); logic level "ones" (high) can be electrically programmed in the selected bit locations. The same address inputs are used for both programming and reading.

FEATURES

- 2048 words $\times 8$ bits organization (fully decoded)
- DTL/TTL compatible inputs and outputs
- Fast read access time: 40 ns typ. (60 ns max)
- Medium power consumption: 600 mW typ.
- Three chip enable inputs for memory expansion.
- Open collector outputs (HN25168S)/Three-state outputs (HN25169S)
- Standard cerdip 24-pin dual in-line package

OPERATION

- Programming

A logic one can be permanently programmed into a selected bit location by using programming equipment. First, the desired world is selected by the eleven address inputs in TTL level. The device is disabled by bringing $\overline{\mathrm{CE}}$ to as logic "one" or CE2 and/or CE3 to a logic "zero". Then a train of high current programming pulses is applied to the desired output. After the sensed voltage indicates that the selected bit is in the logic one state, an additional pulse is applied, then is stopped.

- Reading

To read the memory the device is enabled by bringing $\overline{\text { CET }}$ to a logic

PIN ARRANGEMENT
 "zero", CE2 and CE3 to a logic "one". The outputs then corresponed to the data programmed in the selected word.

ILOGIC DIAGRAM

MICROPROCESSORS

An Unprecedented Commitment to Quality and Reliability . . .

As quality and reliability become increasingly important concerns, Hitachi continues to improve its efforts to provide the best possible product. The experience gained in shipping millions of microprocessors and peripheral LSIs for critical and demanding automotive and industrial applications is reflected in every product we sell. Each unit shipped receives 100% dynamic high-temperature burn-in, a quality assurance effort unparalleled in the semiconductor industry, and another reason why Hitachi is the Symbol of Semiconductor Quality, Worldwide.

QUALITY ASSURANCE FLOW FOR ASSEMBLY AND TEST (all microprocessor and microcomputer products):

PROCESS	INSPECTION LEVEL	QC CRITERIA	REMARKS
1 Dicing	-	-	-
2 Chip Visual	100\%	Visual	100x
3 Lot Acceptance	AQL $=025 \%$ *	Visual	100x
4 Die Altachment	-	-	Au-Si
5 Patrol Inspection	Once/Day/Machine	Visual	-
6 Wire Bonding	-	-	Al Ultrasonic
7 Patrol Inspection	Once/Day/Machine	Visual	
	Once/Week/Machine	Bond Dimension	
		Bond Strength	
8 Visual Inspection	100\%	Visual	20 x
9 Lot Acceptance	AQL $=025 \%$ *	Visual	20x
10 Seal	-	-	A-Sn Alloy
11 Temperature Cycle	100\%	-	$\begin{aligned} & -55^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}-150^{\circ} \mathrm{C} \\ & 10 \mathrm{Cycles} \end{aligned}$
12 Hermeticity	100\%	Fine and Gross	Hermetic Packages Only
13 Plating	-	-	Tin (Sn)
14 Lead Trim	-	-	-
15 Visual Inspection	100\%	Visual	
16 Lot Acceptance	AQL $=025 \%$	Visual	
17 Burn-ın	100\%	-	Dynamıc $\mathrm{Ta}=125^{\circ} \mathrm{C}$
18 Electrical Test	100\%	DC, AC, Functional	$\mathrm{Ta}=70^{\circ} \mathrm{C}$
19 Markıng	-	-	
20 Electrical	100\%	DC	
21 Visual Inspection	100\%	External Visual	
22 Lot Acceptance	AQL $=025 \%$ *	Electrical	
	AQL $=065 \%$	External Visual	

[^2]
HITACHI MICROPROCESSOR／PERIPHERAL CROSS REFERENCE

Hitachı is in the process of converting many micro－ processor part numbers to＂industry standard＂ generic part numbers．A complete list showing both the＂old＂and＂new＂part numbers is shown in figure 1．The use of industry standard part numbers will greatly simplify the interface between Hitachı and our customers

Beginning JULY 1，1981，all orders should be entered using the＂new＂part numbers only
Note that during the conversion process，product shipped by Hitachi will be marked 1 of 2 ways（see figure 2）．

Description	＂old＂ HITACHI number	＂new＂ HITACHI number	MOTOROLA number
16／32 bit microprocessing unit， 8 mhz	－	HD68000－8	MC68000L
16／32 bit microprocessing unit， 6 mhz	－	HD68000－6	MC68000L6
16／32 bit microprocessing unit， 4 mhz	－－－－－	HD68000－4	MC68000L4
$8 / 16$ bit microprocessing unit， 1 mhz	HD6809P	HD6809P	MC6809P
$8 / 16$ bit microprocessing unit， 1.5 mhz	HD68A09P	HD68A09P	MC68A09P
$8 / 16$ bit microprocessing unit， 2 mhz	HD68B09P	HD68B09P	MC68B09P
8 bit microprocessing unit，1mhz	HD46800DP	HD6800P	MC6800P
8 bit microprocessing unit， 1.5 mhz	HD468A00P	HD68A00P	MC68A00P
8 bit microprocessing unit， 2 mhz	HD468B00P	HD68B00P	MC68B00P
8 bit microprocessing unit， $1 \mathrm{mhz}$. with clock and 128 bytes RAM	HD46802SP	HD6802SP	MC6802P
8 bit microprocessing unit， 1 mhz ． with clock and 256 bytes RAM	－－－－－－	HD6802WP	
8 bit CMOS microprocessor with 1／O		HD6303P	
8 bit NMOS microprocessor with 1／O， 1 mhz	－ーーーー	HD6803P	MC6803P
8 bit NMOS microprocessor with I／O， 1.25 mhz		HD6303P－1	MC6803P－1
8 bit microprocessing unit with clock， 1 mhz	－－－－－	HD6808SP	MC6808P
128×8 statıc RAM，450ns access time	HM46810P	HM6810P	MC6810P
128×8 static RAM，360ns access time	HM468A10P	HM68A10P	MC68A10P
Peripheral interface adapter， 1 mhz	HD46821P	HD6821P	MC6821P
Peripheral interface adapter， 15 mhz	HD468A21P	HD68A21P	MC68A21P
Peripheral interface adapter， 2 mhz	HD468B21P	HD68B21P	MC68B21P
Programmable tımer module， 1 mhz		HD6840P	MC6840P
Programmable timer module， 1.5 mhz	ー—————	HD68A40P	MC68A40P
Programmable timer module， 2 mhz	－－－－－－	HD68B40P	MC68B40P
Floppy disk controller， 1 mhz	HD46503SP	HD6843SP	MC6843P
Floppy disk controller， 1.5 mhz	HD46503SP－1	HD68A43SP	MC68A43P
8 bit DMA controller， 1 mhz ．	HD46504RP	HD6844P	MC6844P
8 bit DMA controller， 15 mhz	HD46504RP－1	HD68A44P	MC68A44P
8 bit DMA controller， 2 mhz	HD46504RP－2	HD68B44P	MC68B44P
CRT controller， 1 mhz	HD46505RP	HD6845RP	MC6845P
CRT controller， 15 mhz	HD46505RP－1	HD68A45RP	MC68A45P
CRT controller， 2 mhz	HD46505RP－2	HD68B45RP	MC68B45P
CRT controller（enhanced）， 1 mhz	HD46505SP	HD6845SP	，
CRT controller（enhanced）， 15 mhz	HD46505SP－1	HD68A45SP	ーーーーーー
CRT controller（enhanced）， 2 mhz	HD46505SP－2	HD68B45SP	
ROM，I／O，Timer combo， 1 mhz	－－－－－－	HD6846P	MC6846P
Asynchronous comm interface， 1 mhz	HD46850P	HD6850P	MC6850P
Asynchronous comm interface， 1.5 mhz	HD468A50P	HD68A50P	MC68A50P
Synchronous comm interface， 1 mhz	HD46852P	HD6852P	MC6852P
Synchronous comm interface， 15 mhz	HD468A52P	HD68A52P	MC68A52P
Analog data acquisition unit， 1 mhz	HD46508P	HD46508P	
Analog data acquisition unit， 15 mhz	HD46508P－1	HD46508P－1	－－－－
Analog data acquisition unit， 1 mhz （enhanced）	HD46508PA	HD46508PA	－－－－－－
Analog data acquisition unit， 1.5 mhz （enhanced）	HD46508PA－1	HD46508PA－1	
CMOS real time clock with RAM ．．		HD146818P	MC146818P

Figure 1．Hitachi Microprocessor／Peripheral Cross Reference
(a) Present marking

(區) 103 HD46505SP JABAN

(b) New marking

(直) 1 CB HD46505SP JAPAN HD6845SP

Figure 2.

MPU (Micro Processing Unit)

The HD6800 is a monolithic 8-bit microprocessor forming the central control function for Hitachi's HMCS6800 family. Compatible with TTL, the HD6800 as with all HMCS6800 system parts, requires only one 5 V power supply, and no external TTL devices for bus interface. The HD68A00 and HD68B00 are high speed versions.

The HD6800 is capable of addressing 65 K bytes of memory with its 16 -bit address lines. The 8 -bit data bus is bi-directional as well as 3 -state, making direct memory addressing and multiprocessing applications realizable.

- FEATURES

- Versatile 72 Instruction - Variable Length (1~3 Byte)
- Seven Addressing Modes - Direct, Relative, Immediate, Indexed, Extended, Implied and Accumulator
- Variable Length Stack
- Vectored Restart
- Maskable Interrupt
- Separate Non-Maskable Interrupt - Internal Registers Saved in Stack
- Six Internal Registers - Two Accumulators, Index Register, Program Counter, Stack Pointer and Condition Code Register
- Direct Memory Accessing (DMA) and Multiple Processor Capability
- Clock Rates as High as 2.0 MHz (HD6800 ... 1 MHz , HD68A00 ... 1.5 MHz, HD68B00 ... 2.0 MHz)
- Halt and Single Instruction Execution Capability
- Compatible with MC6800, MC68A00 and MC68B00

- BLOCK DIAGRAM

HD6800P, HD68A00P, HD68B00P

(DP-40)

- PIN ARRANGEMENT

(Top View)

MPU (Microprocesssor with Clock and RAM)

The HD6802 is a monolithic 8-bit microprocessor that contains all the registers and accumulators of the present HD6800 plus an internal clock oscillator and driver on the same chip. In addition, the HD6802 has 128 bytes of RAM on the chip located at hex addresses 0000 to 007F. The first 32 bytes of RAM, at hex addresses 0000 to 001 F , may be retained in a low power mode by utilizing V_{CC} standby, thus facilitating memory retention during a power-down situation.

The HD6802 is completely software compatible with the HD6800 as well as the entire HMCS6800 family of parts. Hence, the HD6802 is expandable to 65 K words.

- FEATURES

- On-Chip Clock Circuit
- 128×8 Bit On-Chip RAM
- 32 Bytes of RAM are Retainable
- Software-Compatible with the HD6800
- Expandable to 65 K words
- Standard TTL-Compatible Inputs and Outputs
- 8 Bit Word Size
- 16 Bit Memory Addressing
- Interrupt Capability
- Compatible with MC6802
- MINIMUM SYSTEM

(DP-40)
- PIN ARRANGEMENT

(Top View)

HD6802W

MPU (Microprocessor with Clock and RAM)

HD6802W is the enhanced version of HD6802 which contains MPU, clock and 256 bytes RAM. Internal RAM has been extended from 128 to 256 bytes to increase the capacity of system read/write memory for handling temporary data and manipulating the stack.

The internal RAM is located at hex addresses 0000 to 00FF. The first 32 bytes of RAM, at hex addresses 0000 to 001 F , may be retained in a low power mode by utilizing V_{CC} standby, thus facilitating memory retention during a power-down situation.

The HD6802W is completely software compatible with the HD6800 as well as the entire HMCS6800 family of parts. Hence, the HD6802W is expandable to 65 k words.

- FEATURES

- On-Chip Clock Circuit
- 256×8 Bit On-Chip RAM
- 32 Bytes of RAM are Retainable
- Software-Compatible with the HD6800, HD6802
- Expandable to 65 k words
- Standard TTL-Compatible Inputs and Outputs

- 8 Bit Word Size
- 16 Bit Memory Addressing
- Interrupt Capability

\author{

- PIN ARRANGEMENT
}
- BLOCK DIAGRAM

HD6303, HD63A03, HD63B03

CMOS MPU (Microprocessing Unit) ADVANCE INFORMATION

The HD6303 is an 8-bit CMOS micro processing unit which has the completely compatible instruction set with the HD6301V0. 128 bytes RAM, Serial Communication Interface (SCI), parallel I/O terminals as well as three functions of timer on-chip are incorporated in the HD6303. It is bus compatible with HMCS6800 and can be expanded up to 65 k words. Like the HMCS6800 family, I/O level is TTL compatible with +5.0 V single power supply. As the HD6303 is CMOS MPU, power dissipation is extremely low. And also Sleep Mode and Stand-By Mode which the HD6303 has for low power dissipation make lower power application possible.

- FEATURES

- Object Code Upward Compatible with the HD6800, HD6802, HD6801
- Abundant On-Chip Functions Compatible with the HD6301 V0; 128 Bytes RAM, 13 Parallel I/O Lines (including Timer, SCI I/O Terminals), 16 -bit Timer, Serial Communication Interface (SCI)
- Low Power Consumption Mode; Sleep Mode, Stand-By Mode
- Minimum Instruction Cycle Time
$1 \mu \mathrm{~s}(\mathrm{f}=1 \mathrm{MHz}), 0.67 \mu \mathrm{~s}(\mathrm{f}=1.5 \mathrm{MHz}), 0.5 \mu \mathrm{~s}(\mathrm{f}=2.0 \mathrm{MHz})$
- Bit Manipulation, Bit Test Instruction
- Error Detecting Function; Address Trap, Op Code Trap
- Up to 65k Words Address Space

- BLOCK DIAGRAM

HD6303P
HD63A03P
HD63B03P

(DP-40)

- PIN ARRANGEMENT

(Top View)
- TYPE OF PRODUCTS

Type No.	Bus Timing
HD6303	1.0 MHz
HD63A03	1.5 MHz
HD63B03	2.0 MHz

MPU (Micro Processing Unit)

The HD6809 is a revolutionary high performance 8 -bit microprocessor which supports modern programming techniques such as position independence, reentrancy, and modular programming.

This third-generation addition to the HMCS6800 family has major architectural improvements which include additional registers, instructions and addressing modes.

The basic instructions of any computer are greatly enhanced by the presence of powerful addressing modes. The HD6809 has the most complete set of addressing modes available on any 8 -bit microprocessor today.

The HD6809 has hardware and software features which make it an ideal processor for higher level language execution or standard controller applications.

HD46800D COMPATIBLE

- Hardware - Interfaces with All HMCS6800 Peripherals
- Software - Upward Source Code Compatible Instruction Set and Addressing Modes
- ARCHITECTURAL FEATURES
- Two 16-bit Index Registers
- Two 16-bit Indexable Stack Pointers
- Two 8-bit Accumulators can be Concatenated to Form One 16-Bit Accumulator
- Direct Page Register Allows Direct Addressing Throughout Memory
- HARDWARE FEATURES
- On Chip Oscillator
- $\overline{\mathrm{DMA} / \mathrm{BREQ}}$ Allows DMA Operation or Memory Refresh
- Fast Interrupt Request Input Stacks Only Condition Code Register and Program Counter
- MRDY Input Extends Data Access Times for Use With Slow Memory
- Interrupt Acknowledge Output Allows Vectoring By Devices
- SYNC Acknowledge Output Allows for Synchronization to External Event
- Single Bus-Cycle RESET
- Single 5-Volt Supply Operation
- NMI Blocked After RESET Until After First Load of Stack Pointer
- Early Address Valid Allows Use With Slower Memories
- Early Write-Data for Dynamic Memories
- Compatible with MC6809, MC68A09 and MC68B09

HD6809P, HD68A09P, HD68B09P

- PIN ARRANGEMENT
(Top View)

$\mathrm{V}_{\mathrm{ar}} 1$	\checkmark	-7011
NMI 2		$38 \times 1 \mathrm{~A}$
1RÖ 3		281x1A1
Fírou ${ }^{\text {a }}$		37 RES
BS 5		36 MRDY
BA 6		35 a
$\mathrm{v}_{\mathrm{cc}} 7$		34 E
$\mathrm{A}_{0} 8$	HD6809	33 DMA/BREO
A, 9		$32 \mathrm{R} / \mathrm{W}$
A. 10		31 D ,
A, 11		30 D,
A +12		28 D ,
As, 13		28 D,
A. 14		27 D
A, 15		26 D,
$\mathrm{A}_{8} 16$		25 D 。
A, 17		240
$\mathrm{A}_{10} 18$		$23 A_{1}$
A_{1}, 19		$22 A_{1}$
$A_{12} 20$		$21 A_{1}$

- SOFTWARE FEATURES
- 10 Addressing Modes
- HMCS6800 Upward Compatible Addressing Modes
- Direct Addressing Anywhere in Memory Map
- Long Relative Branches
- Program Counter Relative
- True Indirect Addressing
- Expanded Indexed Addressing:

MPU (Microprocessing Unit) PRELIMINARY

The HD6809E is a revolutionary high performance 8 -bit microprocessor which supports modern programming techniques such as position independence, reentrancy, and modular programming.

This third-generation addition to the HMCS6800 famıly has major architectural improvements which include additional registers, instructions and addressing modes.

The basic instructions of any computer are greatly enhanced by the presence of powerful addressing modes. The HD6809E has the most complete set of addressing modes avalable on any 8 -bit microprocessor today.

The HD6809E has hardware and software features which make it an ideal processor for higher level language execution or standard controller applications. External clock inputs are provided to allow synchronization with peripheials, systems or other MPUs.

HD6800 COMPATIBLE

- Hardware - Interfaces with All HMCS6800 Peripherals
- Software - Upward Source Code Compatıble Instruction Set and Addressing Modes

- ARCHITECTURAL FEATURES

- Two 16-bit Index Registers
- Two 16-bit Indexable Stack Poınters
- Two 8-bit Accumulators can be Concatenated to Form One 16-Bit Accumulator
- Direct Page Register Allows Direct Addressing Throughout Memory
- HARDWARE FEATURES
- External Clock Inputs, E and Q, Allow Synchronization
- TSC Input Controls Internal Bus Buffers
- LIC Indicates Opcode Fetch
- Àvivî́ Âiiows Eíícient Uuse of Common Resources in Â Multiprocessor System
- BUSY is a Status Line for Multiprocessing
- Fast Interrupt Request Input Stacks Only Condition Code Register and Program Counter
- Interrupt Acknowledge Output Allows Vectoring By Devices
- SYNC Acknowledge Output Allows for Synchronization to External Event
- Single Bus-Cycle RESET
- Single 5-Volt Supply Operation
- NMI Blocked After RESET UntıI After First Load of Stack Pointer
- Early Address Valid Allows Use With Slower Memories
- Early Write-Data for Dynamic Memories
- SOFTWARE FEATURES
- 10 Addressing Modes
- HMCS6800 Upward Compatıble Addressing Modes
- Direct Addressing Anywhere in Memory Map
- Long Relative Branches
- Program Counter Relative
- True Indirect Addressing
- Expanded Indexed Addressing ${ }^{-}$
$0,5,8$, or 16 -bit Constant Offsets
8 , or 16 -bit Accumulator Offsets
Auto-Increment/Decrement by 1 or 2
- Improved Stack Manıpulation
- 1464 Instruction with Unique Addressing Modes
- 8×8 Unsigned Multıply
- 16-bit Arithmetic

- Transfer/Exchange All Registers
- Push/Pull Any Registers or Any Set of Registers
- Load Effective Address
- PIN ARRANGEMENT

(Top View)

HD6821, HD68A21, HD68B21

PIA (Peripheral Interface Adapter)

The HD6821 Peripheral Interface Adapter provides the universal means of interfacing peripheral equipment to the HD6800 Microprocessing Unit(MPU). This device is capable of interfacing the MPU to peripherals through two 8 -bit bi-directional peripheral data buses and four control lines. No external logic is required for interfacing to most peripheral devices.

- FEATURES

- Two Bi-directional 8-Bit Peripheral Data Bus for interface to Peripheral devices
- Two Programmable Control Registers
- Two Programmable Data Directıon Registers
- Four Individually-Controlled Interrupt Input Lines: Two Usable as Peripheral Control Outputs
- Handshake Control Logic for Input and Output Peripheral Operation
- High-Impedance 3-State and Direct Transistor Drive Peripheral Lines
- Program Controlled Interrupt and Interrupt Disable Capability
- CMOS Drive Capability on Side A Peripheral Lines
- Two TTL Drive Capability on All A and B Side Buffers
- N Channel Silicon Gate MOS
- Compatible with MC6821, MC68A21 and MC68 B21

- BLOCK DIATRAM

The functional configuration of the PIA is programmed by the MPU during system initialization. Each of the peripheral data lines can be programmed to act as an input or output, and each of the four control/interrupt lines may be programmed for one of several control modes. This allows a high degree of flexibility in the over-all operation of the interface.

HD6821P, HD68A21P, HD68B21P

(DP-40)

- PIN ARRANGEMENT

(Top View)

PTM (Programmable Timer Module)

The HD6840 is a programmable subsystem component of the HMCS6800 family designed to provide variable system time intervals.

The HD6840 has three 16 -bit binary counters, three corresponding control registers and a status register. These counters are under software control and may be used to cause system interrupts and/or generate output signals. The HD6840 may be utilized for such tasks as frequency measurements, event counting, interval measuring and similar tasks. The device may be used for square wave generation, gated delay signals, single pulses of controlled duration, and pulse width modulation as well as system interrupts.

- FEATURES

- Operates from a Single 5 Volts Power Supply
- Fully TTL Compatible
- Single System Clock Required (E)
- Selectable Prescaler on Timer 3 Capable of 4 MHz for the HD6840, 6 MHz for the HD68A40 and 8 MHz for the HD68B40
- Programmable Interrupts ($\overline{\mathrm{RQ}}$) Output to MPU
- Readable Down Counter Indicates Counts to Go to Time-Out
- Selectable Gating for Frequency or Pulse-Width Comparison
- $\overline{R E S}$ Input
- Three Asynchronous External Clock and Gate/Trigger Inputs Internally Synchronized

HD6840P, HD68A40P, HD68B40P

(DP-28)

- Three Maskable Outputs
- RIOCK DIAGRAM
= PIAN ARRANGEAEATS

FDC (Floppy Disk Controller)

The HD6843SP Floppy Disk Controller performs the complex MPU/Floppy interface function. The FDC was designed to optimize the balance between the "Hardware/Software" in order to achieve integration of all key functions and maintain flexibility.

The FDC can interface a wide range of drives with a minimum of external hardware. Multiple drives can be controlled with the addition of external multiplexing rather than additional FDC's.

- FEATURES
- Format compatible with IBM3740
- User Programmable read/write format
- Ten powerful macro-commands
- Macro End Interrupt allows parallel processing of MPU and FDC
- Controls multiple Floppies with external multiplexing
- Direct interface with HMCS6800
- Programmable seek and settling times enable operation with a wide range of Floppy drives
- Offers both Programmed Controlled 1/O (PCIO) and DMA data transfer mode
- Free-Format read or write
- Single 5-volt power supply
- All registers directly accessible
- Compatible with MC6843.

- PIN ARRANGEMENT

(Top View)

DMAC (Direct Memory Access Controller)

The HD6844 Direct Memory Access Controller (DMAC) performs the function of transferring data directly between memory and peripheral device controllers. It controls the address and data buses in place of the MPU in bus organized systems such as the HMCS6800 Microprocessor System.

The bus interface of the HD6844 includes select, read/ write, interrupt, transfer request/grant, and bus interface logic to allow the data transfer over an 8 -bit bidirectional data bus. The functional configuration of the DMAC is programmed via the data bus. The internal structure provides for control and handling of four individual channels, each of which is separately configured. Programmable control registers provide control for the transfer location and length, individual channel control and transfer mode configuration, priority of servicing, data chaining, and interrupt control. Status and control lines provide control to the peripheral controllers.

The mode of transfer for each channel can be programmed as cycle-stealing or a burst transfer mode.

Typical applications would be with the Floppy Disk Controller (FDC), etc..

- FEATURES

- Four DMA Channels, Each Having a 16-Bit Address Register and a 16-Bit Byte Count Register
- 1 M Byte/Sec (HD6844P), 1.5 M Byte/Sec (HD68A44P)

Maximum Data Transfer Rate

- Selection of Fixed or Rotating Priority Service Control
- Separate Control Bits for Each Channel
- Data Chain Function
- Address Increment or Decrement Update
- Programmable Interrupts and DMA End to Peripheral Controllers
- Compatible with MC6844

- BLOCK DIAGRAM

HD6844P, HD68A44P

- PIN ARRANGEMENT

(Top View)

CRTC (CRT Controller)

The CRTC is a LSI controller which is designed to provide an interface for microcomputers to raster scan type CRT displays. The CRTC belongs to the HMCS6800 LSI Family and has full compatibility with MPU in both data lines and control lines. Its primary function is to generate timing signal which is necessary for raster scan type CRT display according to the specification programmed by MPU. The CRTC is also designed as a programmable controller, so applicable to wide-range CRT display from small low-functioning character display up to raster type full graphic display as well as large high-functioning limited graphic display.

- FEATURES

- Number of Displayed Characters on the Screen, Vertical Dot Format of One Character, Horizontal and Vertical Sync Signal, Display Timing Signal are Programmable
- 3.7 MHz High Speed Display Operation
- Line Buffer-less Refreshing
- 14-bit Refresh Memory Address Output (16k Words max. Access)
- Programmable Interlace/Non-interlace Scan Mode
- Built-in Cursor Control Function
- Programmable Cursor Height and its Blink
- Built-in Light Pen Detection Function
- Paging and Scrolling Capability
- TTL Compatible
- Single $+5 V$ Power Supply
- Upward compatible with MC6845

- SYSTEM BLOCK DIAGRAM

HD6845SP, HD68A45SP, HD68B45SP

- PIN ARRANGEMENT

- ORDERING INFORMATION

CRTC	Bus Timing	CRT Display Timing
HD6845SP	1.0 MHz	
HD68A45SP	1.5 MHz	3.7 MHz max.
HD68B45SP	2.0 MHz	

COMBO (Combination ROM I/O Timer)

The HD6846 combination chip provides the means, in conjunction with the HD6802, to develop a basic 2-chip microcomputer system. The HD6846 consists of 2048 bytes of mask-programmable ROM, an 8 -bit bidirectional data port with control lines, and a 16 -bit programmable timer-counter.

This device is capable of interfacing with the HD6802 (basic HD6800, clock and 128 bytes of RAM) as well as the HD6800 if desired. No external logic is required to interface with most peripheral devices.

- FEATURES

- 2048 8-Bit Bytes of Mask-Programmable ROM
- 8-Bit Bidirectional Data Port for Parallel Interface plus Two Control Lines
- Programmable Interval Timer-Counter Functions
- Programmable I/O Peripheral Data, Control and Direction Registers
- Compatible with the Complete HMCS6800 Microcomputer Product Family
- TTL-Compatible Data and Peripheral Lines
- Single 5-Volt Power Supply
- Compatible with MC6846

(DP-40)

- TYPICAL MICROCOMPUTER

This is a block diagram of a typical cost effective microcomputer The MPU is the center of the microcomputer system and is shown in a minimum system inter. the center of the microcomputer system and is shown in a minimum system inter-
facing with a ROM combination chip It is not intended that this system be limited to this function but that it be expandable with other parts in the HMCS6800 Microcomputer family.

(Top View)

ACIA (Asynchronous Communication Interface Adapter)

The HD6850 Asynchronous Communications Interface Adapter provides the data formatting and control to interface serial asynchronous data communications information to bus organized systems such as the HMCS6800 Microprocessing Unit.

The bus interface of the HD6850 includes select, enable, read/write, interrupt and bus interface logic to allow data transfer over an 8 -bit bi-directional data bus. The parallel data of the bus system is serially transmitted and received by the asynchronous data interface, with proper formatting and error checking.

The functional configuration of the ACIA is programmed via the data bus during system initialization. A programmable Control Register provides variable word lengths, clock division ratios, transmit control, receive control, and interrupt control. For peripheral or modem operation three control lines are provided.

- FEATURES

- Serial/Parallel Conversion of Data
- Eight and Nine-bit Transmission
- Insertion and Deleting of Start and Stop Bit
- Optional Even and Odd Parity
- Parity, Overrun and Framıng Error Checkıng
- Peripheral/Modem Control Functions (Clear to Send $\overline{\mathrm{CTS}}$, Request to Send $\overline{\mathrm{RTS}}$, Data Carier Detect $\overline{\mathrm{DCD}})$
- Optional $\div 1, \div 16$, and $\div 64$ Clock Modes
- Up to 500kbps Transmission
- Programmable Control Register
- N-channel Silicon Gate Process
- Compatible with MC6850 and MC68A50
- BLOCK DIAGRAM

HD6850P, HD68A50P

(DP-24)

- PIN ARRANGEMENT

SSDA (Synchronous Serial Data Adapter)

The HD6852 Synchronous Serial Data Adapter provides a bi-directional serial interface for synchronous data information interchange. It contains interface logic for simultaneously transmitting and receiving standard synchronous communications characters in bus organized systems such as the HMCS6800 Microprocessor systems.

The bus interface of the HD6852 includes select, enable, read/write, interrupt, and bus interface logic to allow data transfer over an 8 -bit bi-directional data bus. The parallel data of the bus system is serially transmitted and received by the synchronous data interface with synchronization, fill character insertion/deletion, and error checking. The functional configuration of the SSDA is programmed via the data bus during system initialization.

Programmable control registers provide control for variable word length, transmit control, receive control, synchronization control and interrupt control. Status, timing and control lines provide peripheral or modem control.

Týpical applications include data communications terminals, floppy disk controllers, cassette or cartridge tape controllers and numerical control systems.

- FEATURES

- Programmable Interrupts from Transmitter, Receiver, and Error Detection Logic
- Character Synchronization on One or Two Sync Codes
- External Synchronization Available for Parallel-Serial Operation
- Píoğrammatle Syinc Coute Register
- Up to 600kbps Transmitter
- Peripheral/Modem Control Functions
- Three Bytes of FIFO Buffering on Both Transmit and Receive
- 6, 7, or 8 Bit Data Transmission
- Optional Even and Odd Parity
- Parity, Overrun, and Underflow Status
- Compatible with MC6852 and MC68A52

HD6852P, HD68A52P

(DP-24)

- PIN ARRANGEMENT

(Top View)

RTC (Real Time Clock plus RAM) PRELIMINARY

The HD146818 is a HMCS6800 peripheral CMOS device which combines three unique features: a complete time-of-day clock with alarm and one hundred calendar, a programmable periodic interrupt and square-wave generator, and 50 bytes of Low-power static RAM.

This device includes HD6801, HD6301 multiplexed bus interface circuit and 8085 's multıplexed bus interface as well, so it can be directly connected to HD6801, HD6301 and 8085.

The Real-Time Clock plus RAM has two distinct uses. First, it is designed as battery powered CMOS part including all the common battery backed-up functions such as RAM, time, and calender. Secondly, the HD146818 may be used with a CMOS microprocessor to relieve the software of timekeeping workload and to extend the available RAM of an MPU such as the HD6301.

- FEATURES

- Time-of-Day Clock and Calendar
- Counts Seconds, Minutes, and Hours of the Day
- Counts Days of Week, Date, Month, and Year
- Binary or BCD Representation of Time, Calendar, and Alarm
- 12- or 24 Hour Clock with AM and PM in 12-Hour Mode
- Automatic End of Month Recognition
- Automatic Leap Year Compensation
- Interfaced with Software as 64 RAM Locations
- 14 Bytes of Clock and Control Register
- 50 Bytes of General Purpose RAM
- Three Interrupt are Separately Software Maskable and Testable
- Time-of-Day Alarm, Once-per-Second to Once-per-Day
- Periodic Rates from $30.5 \mu \mathrm{~s}$ to 500 ms
- End-of-Clock Update Cycle
- Programmable Square-Wave Output Signal
- Three Time Base Input Options
- 4.194304 MHz
- 1.048576 MHz
- 32.768 kHz
- Clock Output May be used as Microprocessor Clock Input
- At Time Base Frequency $\div 4$ or $\div 1$
- Multiplexed Bus Interface Circuit of HD6801, HD6301 and 8085
- Low-Power, High-Speed, High-Density CMOS
- Motorola MC146818 Compatible

HD146818P

(DP-24)

- PIN ARRANGEMENT

(Top View)

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Value	Unit
Supply Voltage	$V_{\text {cC }}{ }^{*}$	$-0.3 \sim+7.0$	V
Input Voltage	$\mathrm{V}_{\text {in }}{ }^{*}$	$-0.3 \sim+7.0$	V
Operating Temperature	$\mathrm{T}_{\text {opr }}$	$0 \sim+70$	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-55 \sim+150$	${ }^{\circ} \mathrm{C}$

* With respect to $\mathrm{V}_{\text {SS }}$ (SYSTEM GND)
(NOTE) Permanent LSI damage may occur if maxımum rating are exceeded. Normal operation should be under recomended operating condition. If these conditions are exceeded. It could affect reliability of LSI.

ADU (Analog Data Acquisition Unit) PRELIMINARY

The HD46508 is a monolithic NMOS device with a 10 -bit analog-to-digital converter, a programmable voltage comparator, a 16-channel analog multiplexer and HMCS6800 microprocessor family compatible interface.

Each of 16 analog inputs is either converted to a digital data by the analog-to-digital converter or compared with the specified value by the programmable comparator. The analog-todigital converter uses successive approximation method as the conversion technique. It's intrinsic resolution is 10 bits but it can be 8 bits if the programmer so desires. The programmable voltage comparator compares the input voltage with the value specified by the programmer. The result (greater than, or smaller than) is reflected to the flag in the status register.

The device can expand its capability by controlling the external circuits such as sample holder, pre-amplifier and external multiplexer.

With these features, this device is ideally suited to applications such as process control, machine control and vehicle control.

- FEATURES

- 16-channel Analog multiplexer
- Programmable A/D Converter resolution (10-bit or 8-bit)
- Programmable Voltage comparison (PC)
- Conversion Time $100 \mu \mathrm{~s}$ (A/D), $13 \mu \mathrm{~s}$ (PC)
- External Sample and Hold Circuit Control
- Auto Range-switching Control of External Amplifier
- Waiting Function for the Settling Time of External Amplifier
- Interrupt Control (Only for A/D conversion)
- Single $+5 V$ Power Supply
- Compatible with HMCS6800 Bus (The connection with other Asynchronous Buses possible)

- BLOCK DIAGRAM

MPU (Micro Processing Unit) PRELIMINARY

Advances in semiconductor technology have provided the capability to place on a singie silicon chip a microprocessor at least an order of magnitude higher in performance and circuit complexity than has been previously available. The HD68000 is one of such VLSI microprocessors. It combines state-of-the-art technology and advanced circuit design techniques with computer sciences to achieve an architecturally advanced 16 -bit microprocessor.

The resources available to the HD68000 user consist of the following.

As shown in the programming model, the HD68000 offers seventeen 32 -bit registers in addition to the 32 -bit program counter and a 16 -bit status register. The first eight registers (D0-D7) are used as data registers for byte (8-bit), word (16-bit), and long word (32-bit) data operations. The second set of seven registers (A0-A6) and the system stack pointer may be used as software stack pointers and base address registers. In addition, these registers may be used for word and long word address operations. All 17 registers may be used as index registers.

- FEATURES

- 32-Bit Data and Address Registers - Memory Mapped I/O
- 16 Megabyte Direct Addressing Range
- 56 Powerful Instruction Types
- Operations on Five Main Data Types

- PROGRAMMING MODEL

- PIN ARRANGEMENT

These information and specification
are subject to change without notice.

HD68450

DMAC (Direct Memory Access Controller) ADVANCE INFORMATION

HD68450 is a DMA Controller for the HMCS68000 16-bit microprocessor system. Increasingly large amounts of data are being processed by the 16 -bit microprocessor systems and, consequently, the ability to transfer large amounts of data in a large memory space becomes a necessity. HD68450 has been designed to meet this requirement in a highly efficient manner.

HD68450 has 4 independent DMA channels of operation with programmable channel priorities. It can handle data sizes of byte, word (16-bits), and longword (32-bits), and has a direct addressing range of 16 megabytes. It performs 16-bit DMA transfers on an asynchronous bus as well as synchronous transfers with 8 -bit HMCS6800 peripheral LSI's using the enable signal. It outputs function code signal for memory management and it can handle bus error, halt, and retry operations to compliment the highly reliable HMCS68000 system.

The transfer modes of HD68450 consists of transfer between memory and peripheral device, and also between memories. Transfer of blocks of data can be done by using the continue mode, array chain mode, or linked array chain mode. Single addressing mode is provided for transfer between memory and device having the same port size, as well as dual addressing mode for different port sizes. In the dual addressing mode, transfer is done in two bus cycles - memory to DMAC, then DMAC to device. As can be seen by its many features, HD68450 is a highly intelligent device to meet the different data transfer requirements for each individual applications.

- FEATURES

- HMCS68000 Bus Compatible
- Interfaces Directly with HMCS68000/HMCS6800 Peripherals
- ivemory-io-Device, Device-to-Memory, and Memory-toMemory Transfers.
- Continue Mode and Array Chained, Linked Array Chained Operations
- 4 Independent Channels with Programmable Priorities
- Handles Byte, Word, and Longword Data Sizes
- External Request Mode and Auto-Request Mode
- Maximum Transfer Rate of 2 Mega Word/Sec

- PIN ARRANGEMENT

RES,	\checkmark	6 64DTR
$\overline{\mathrm{REO}} \mathrm{C}_{2}$		63 DBEN
$\overline{\mathrm{REO}},{ }^{3}$		62 HIBYT
¢ $\overline{\text { EO, }}$,		$610 \cdot 6$
PCL, 5		60 OWN
$\mathrm{PCL}_{2} \mathbf{6}$		$5{ }^{5 \times 8}$
${ }^{P C C L 5} L_{1} 7$		$58 \overline{\text { BG }}$
$\mathrm{PCL}_{0} 8$		$57{ }^{5}$
BGACK ${ }^{\text {a }}$		$56 \mathrm{~A}_{2}$
DTC ${ }^{\text {d }}$		$55 A_{1}$
DTACK		54 A ,
$\overline{\text { USS }}$		$53 A_{5}$
Los ${ }^{13}$		52 A 。
AS ${ }^{14}$		$51 \mathrm{~V}_{0}$
R/W		$5 \mathrm{~S}_{1}$
V_{so} (16)	HD68450	$49 \mathrm{~V}_{\text {ss }}$
Cs 17	HD68450	$48 \mathrm{~A}_{8} / \mathrm{D}_{0}$
$V_{\text {do }}$ [18		$47 A_{9} / D_{1}$
CLK回		$46 A_{10} / D_{2}$
IACK ${ }^{20}$		$45 A_{11} / D_{3}$
TREO 21		$44 \mathrm{~A}_{12} / \mathrm{D}_{1}$
DONE 22		$43 \mathrm{~A}_{13} / \mathrm{D}_{5}$
$\overline{\text { ACK, }} 2$		$42 A_{14} / D_{6}$
$\overline{\text { ACK }}^{24}$		$41 \mathrm{~A}_{15} / \mathrm{D}_{7}$
$\overline{\text { ACK }}$, 25		$40 \mathrm{~A}_{16} / \mathrm{D}_{8}$
$\overline{\text { ACK }}{ }^{26}$		$39 A_{17} / D_{\text {, }}$
$\overline{\mathrm{BEC}} \mathrm{E}_{2}{ }^{2}$		$38 \mathrm{~A}_{18} / \mathrm{D}_{10}$
BEC, 28		$37{ }_{19} / D_{1}$
BEC, 2		$36 A_{20} / D_{12}$
$\mathrm{FC}_{2} 30$		$35 A_{21} / D_{13}$
FC, 31		34 A_{22} / D_{14}
$\mathrm{FC}_{0}{ }^{32}$		$33 A_{23} / D_{15}$

(Top View)

PACKAGE INFORMATION

Packages are classified into 3 types; dual-in-line plastic, dualinline ceramic (glass-sealed) and dual-in-line ceramic (with lid). according to the quality of material used for packaging.

Type	Function	Package*			
		Pin No.	C**	G	P
HD6800	Micro Processing Unit	40	0		0
HD68A00			0		0
HD68B00			0		0
HD6802S	Microprocessor with Clock and RAM	40	0		0
HD6809	8/16 Bit Mıcro Processing Unit	40	0		0
HD68A09			0		0
HD68B09			0		0
HD6821	Peripheral Interface Adapter	40	0		0
HD68A21			0		0
HD68B21			0		0
HD6840	Programmable Timer Module	40			
HD68A40			0		0
HD68B40					
HD6850	Asynchronous Communications Interface Adapter	24	0		0
HD68A50			0		0
HD6852	Synchronous Serial Data Adapter	24	0		0
HD68A52			0		0
HD6846	Combination ROM I/O Timer	40	0		0
HD6843S	Floppy Disk Controller	40	0		0
HD68A43S			0		0
HD6844	Direct Memory Access Controller	40	0		0
HD68A44			0		0
HD6845	CRT Controller	40	0		0
HD68A45			0		0
HD68B45			0		0
HD46508	Analog Data Acquisition Unit	40			0
HD46508-1					0
HD68000-4	16/32 Bit Microprocessor	64			
HD68000-6			O-std.		
HD68000-8					
HD68450-4	16 Bit Direct Memory Access Controller	64			
HD68450-6			O-std.		
HD68450-8					

[^3]
8-Bit Single-Chip Microcomputer Series

Because of versatile functions, low cost and ease of use, 8 -bit single-chip microcomputers are widely used. Hitachi's 8-bit single-chip microcomputers consist of the HD6805 NMOS family, developed for control of relatively small systems, the HD6801 NMOS family, suited for applications requiring high-precision, high-speed processing, and the HD6301 CMOS family that feature the low power consumption characteristic of CMOS while maintaining and enhancing the functionality and performance of the HD6801 family. Utilizing state of the art $3 \mu \mathrm{~m}$ process techniques, these LSI devices outperform conventional products in both functionality and data processing capability. Table 1 compares the characteristics of HD6805 and HD6801 families.

Evaluation kits and cross software are available to help users with program development systems implementation.

HD6805 Family

The HD6805 family consists of the HD6805S0, HD6805U0, and HD6805V0. They are all supplied in standard 28- or 40 -pin DIL plastic packages. In additions, new versions incorporating 8-bit A/D converters powerful timers and wider I/O ports are being developed. Instruction sets of the HD6805 family are all interchangeable. This enables the use of common programs, thus making it easy to meet the demand to upgrade appication systems.

- Specifications:
$\begin{array}{ll}\text { - ROM } & 1 \text { k-byte to } 4 \mathrm{k} \text {-byte } \\ \text { - RAM } & 64 \text {-byte to } 96 \text {-byte } \\ \text { - I/O ports } & 20 \text { to } 32\end{array}$

- CPU Architecture:

The architecture of the HD6805 family has the following characteristics:

- Bit operation instructions and bit test/branch instructions are very powerful.
- Memory and I/O are located in the same address space.
- Several address modes may be used.
- The stack system is quite flexible.

Thanks to powerful bit instructions, any bit can be set or cleared at any output port. Also, it is possible to subject any bit to test or conditional branching at any input port. Thus, all the processing necessary for bit I/O operations can be executed by one instruction. Similarly, it is possible to set, clear, test and subject to conditional branching any bit at any RAM address. Specifically, all RAM bits can be readily utilized. As software flags in a program by means of the bit instructions. With these abundant bit instructions, the HD6805 family is suitable for small-scale control where point input and point output are common practices. Because indirect register, modification and other index modes are powerful, effective use can be made of address modes for table reference on ROM, reduction of the average number of bytes in a program, and other purposes. Since the multiple interrupt and subroutine call instructions of the HD6805 family are automatically saved and returned by the stack pointer, almost unlimited nesting is possible.

- On-Chip memory and Peripheral Functions:

On-chip RAM, ROM and I/O are arranged in a common address space. Further, various on-chip memory are available, permitting an optimum choice for each individual application. To make the most use of available device pins, the I/O ports for each device can collectively be designated by the program for use either as input or output ports. With its high drive current capacity, port B can directly drive not only TTL but also darlington and LED circuits. Port D contains seven voltage comparators whose input voltage logical decision threshold levels can be set externally. The use of port D enables the direct input of logical threshold levels other than TTL without employing any external signal level conversion.

Table 1. Comparison between HD6801 Family and HD6805 Family

Description Classification	Instruction System	Memory	I/O Port	Timer	Serial	A/D
HD6801 Family	- Extended from HD6800 -16-bit operation possible - Multıplication possible	- External memory addition possible in memory extension mode -Standby possible	-TTL compatable - I/O data strobe signal control	-Pulse generation -Pulse width measurIng -Clock timer	- Start-stop type -Synchronous transmissionreception	\qquad
HD6805 Family	- Single-type instructions - Bit operation instructions - Bit test instructions - Look-up table reference capability	- On-chip ROM \& RAM only	-TTL compatable -CMOS compatable -Darlington drive possible - Voltage comparator provided	-Clock tımer -Pulse counter [Pulse generation Pulse width measur$\mathrm{ing}]$	-	[Successive approximation type 8-bit A/D converter]

Fig. 1 shows a block diagram of the HD6805V0, and Fig. 2 exemplifies the use of the I/O ports of the HD6805 family.

HD6801 Family

The HD6801 family consists of the HD6801S0 and HD6801V0, both available in 40-pin DIL standard packages. The HD6801 family ranks above the HD6805 family. It is a family of high-performance, multi-function 8-bit single-chip microcomputers incorporating CPUs with powerful, high-speed instruction sets that are equivalent to, or even superior to the CPUs of standard microprocessor units. Abundant memory (such as ROM and RAM) multifunction timers, serial communication control circuity, and various peripheral functions are all incorporated on one chip.

- Specifications

- On-board ROM:

2k-byte to 4 k -byte

- On-board RAM:

128-byte

- I/O ports:

- CPU Architecture

The characteristics of the HD6801 family's CPU architecture are as follows:

- Its instruction set has been expanded from that of the HMCS6800.

Fig. 2. An example of HD6805 family I/O ports in use.

- It contains such high-level instructions as multiplication and 16 -bit operations.
- Its branch (and some other instructions) are faster than those of the HMCS6800.
- By adding external memory, its address space can be expanded up to 65 k -word, thereby supporting applications other than those programmed in its on-board ROM and without sacrificing operating speed or other performance items.
Hence the HD6801 family is a family of microcomputers that can perform high-speed, high-precision data processing.

- On-board Memories and Peripheral Functions

The most important peripheral function incorporated in the HD6801 family is a start-stop communication control function that enables simultaneous execution of data transmission and reception. The data transfer rate can be set by the program. The start-stop communication control function is especially useful for communication terminals and computer printers. The on-board 16 -bit timer is enhanced that, in addition to ordinary time measurements, the measurement of the input pulse widths and also the generation of pulses of programmable width are attainable with high accuracy.

Fig. 3 shows a function block diagram of the HD6801S0, Fig. 4 shows a block diagram of an incorporated communication control circuit, and Fig. 5 shows a block diagram of an incorporated timer.

HD6301 Family

The HD6301 family consists of the HD6301V, which incorporates CPU, ROM, RAM, I/O ports and other peripheral functions. The HD6301 family is a high-performance, power-efficient product that is equivalent, or superior to the high-performance NMOS single-chip microcomputer

Fig. 3. Block diagram of HD6801S0.

Fig. 5. Schematic block diagram of HD6801S0 timer.
type HD6801. This power is accomplished by the combination of latest $3 \mu \mathrm{~m}$ CMOS techniques and microprogram control approach.

- Functions

The instruction set of the HD6301 family has been expanded from that of the HD6801 family. Its enhanced characteristics include the addition of true bit operating instructions (set, clear, invert and test), which were an advantage of the HD6805 family. 4k-bytes of ROM, 128-bytes of RAM, multi-function timer (compatible with the HD6801 family) and communications control circuitly have been incorporated on the chip.

The HD6301 family also has an operation code trap and an address trap function. Therefore, when any undefined operation code is fetched or any instruction is fetched from an unusable address, it generates an internal interruption of the highest priority. These error detecting and processing functions are effective for the prevention of system run-away due to system noise and program error with a resultant increase in debug efficiency during the course of program development.

- Performance

To increase instruction execution speed, two measures were taken; (1) reducing the number of instruction execution cycles through the introduction of extensive pipeline control, and (2) increasing the clock frequency. Consequently, the minimum instruction execution cycle (1 cycle) of the HD6301 family now equals $0.7 \mu \mathrm{~s}^{*}$ (when the clock frequency is 1.5 MHz). The power consumed by the HD6301V0 is 30 mW during operation (1 MHz), 3 mW in
 standby. This is a remarkable improvement when compared with conventional NMOS/HMOS approaches.

- Power-efficient Operation

In addition to the ordinary operation mode, the HD6301 family has two low-power-consumption modes; sleep and power-down.

In the sleep mode, the CPU stops processing, with the internal state of CPU, output port latch, RAM and other status remaining unchanged. Meanwhile, the timer, serial communication control and interrupt control sections continue to function. Even in the sleep mode, clocking, data transmission and reception, and pulse generation can be accomplished. In the sleep mode, the HD6301 consumes only one-tenth the power consumed during normal operation. When the "sleep" instruction is executed, the operation mode changes to the sleep mode. The normal operation mode returns when an interrupt request is made from an external terminal or timer to the CPU, whereupon the interrupted job or requested routine starts. The sleep mode is a state in which the system remains inoperative is done in such a manner that the interrupted job can be resumed any time. (This state is often referred to as a "hot startable" state.)

The use of the sleep mode enables power consumption to be effectively reduced in any system whose CPU need not be operated at all times. A good example is a system that conducts much data transmission, reception and clocking, but in which computing and other CPU-related operations account for only about 10 percent of the total operation time. In this case, the mean power consumption can be cut by as much as 80 percent. Another power-saving opportunity is the power-down mode, in which all device operation stops. In the power-down mode, the contents of the on-board RAM remain intact. Accordingly, the system can be protected against power interruption by ordinary saving and returning methods. The HD6301's power consumption in the power-down mode drops to 1 percent, or even less, of the level in normal operation. When an input is supplied through a special terminal the HD6301 switches from operation or sleep mode into the power-down mode. To return to the former mode. A reset-start is necessary.

Table 2 shows key specifications of the HD6301V. Fig. 6 shows a system block diagram, and Fig. 7 shows a mode transition diagram.

Description	Specification
Instruction set	- Expanded from HD6801S0 - Augmented bit operation and test instructions
On-board memory	$\begin{array}{ll}- \text { ROM. } & \text { 4k-byte } \\ - \text { RAM } & 128 \text {-byte }\end{array}$
Function	- Multi-function 16k-bit timer (same as HD6801S0) - Start-stop serial communication circuit (same as HD6801S0)
System extension	- Single-chip mode - Non-multiple extension mode (64 k -byte maximum) - Multiple extension mode (64 k -byte maximum)
1/O port	29 I/O common ports
Error processing	Address and operation code trap
Operating speed	All instructions are single cycle - Frequency $91 \mathrm{MHz} \sim 1.5 \mathrm{MHz}^{*}$
Power consumption	- Operation mode $30 \mathrm{~mW}(1 \mathrm{Mhz})$ Sleep Mode $3 \mathrm{~mW}(1 \mathrm{MHz})$ Power-down mode 03 mW

Fig. 6. Block diagram of HD6301.

Fig. 7. Mode transition diagram of HD6301V.

8-Bit Single-Chip Microcomputer Series

HMCS6800 Series 8 -bit single-chip microcomputers are divided into two families:

The HD6801 Family is designed for "high-end" equipment applications. These microcomputers contain a CPU, oscillator, ROM, RAM, TIMER, and serial and parallel I/O ports. In addition, the revolutionary HD6301V is fabricated using a high-performance CMOS process and is upward compatible with the HD6801.

The HD6805 Family is a very low-cost series of microcomputers ideally suited for controller-type applications. These microcomputers contain a CPU, on-chip oscillator, ROM, RAM, and I/O ports.

FEATURES

- Versatile interrupt handling
- Powerful indexed addressing
- Full set of conditional branches
- Memory mapped I/O
- 16-bit timer (6801/6301)
- 8-bit programmable timer with 7-bit programmable pre-scaler (6805)
- 8×8 multiply $(6801 / 6301)$
- Sleep operation for power saving (6301)
- True bit manipulation (6805)

OUTLINE OF 8-BIT SINGLE-CHIP MICROCOMPUTER

8-BIT SINGLE-CHIP CHARACTERISTICS

Type Number			HD6801S	H06801V	HD6803	HD6301 V	HD6805S	HD6805U	HD6805V
	Process		NMOS	NMOS	NMOS	CMOS	NMOS	NMOS	NMOS
	Supply Voltage		5V	5 V	5 V	5V	5V	5V	5 V
	Operating Temperature**		$0 \sim 70^{\circ} \mathrm{C}$	$0 \sim 70^{\circ} \mathrm{C}$	$0 \sim 70^{\circ} \mathrm{C}$	0~70 ${ }^{\circ} \mathrm{C}$	0~70 ${ }^{\circ} \mathrm{C}$	$0 \sim 70^{\circ} \mathrm{C}$	0~70 ${ }^{\circ} \mathrm{C}$
	Package		$\begin{aligned} & \text { DP-40 } \\ & \text { DC-40 } \end{aligned}$	$\begin{aligned} & D P-40 \\ & D C-40 \end{aligned}$	$\begin{aligned} & \text { DP. } 40 \\ & \text { DC. } 40 \end{aligned}$	DP-40	$\begin{aligned} & \text { DP- } 28 \\ & \text { DC- } 28 \end{aligned}$	$\begin{aligned} & \text { DP-40 } \\ & \text { DC- } 40 \end{aligned}$	DP-40
	Memory	ROM (K Byte)	2	4	-	4	1.1	2	4
		RAM (Byte)	128	128	128	128	64	96	96
	1/0		29	29	13	29	20	32	32
	Timer	bit)	16	16	16	16	8***	8***	8***
	Serial Comm. Interface		Yes	Yes	Yes	Yes	No	No	No
	Other Features		- Data Retention Capability - SingleChip or External Memory	- Data Retention Capability - SingleChip or External Memory	- Multiplexed Address and Data - Add External EPROMs for HD6801 Emulation	- 0.3 mW Max. (Sleep) - 30 mW Max. (Active) - Single- Chip or External Memory	- Vectored Interrupts - SelfCheck Mode - Master Reset	- Voltage Comparator - SelfCheck Mode - Master Reset	- Voltage Comparator - Self- Check Mode - Master Reset
Compatibility			MC6801	-	MC6803	-	MC6805P2	-	-

[^4]
Support Products

A characteristic of single-chip microcomputers is that the user can set his own program in the LSI's ROM area. Hence, several support tools to help the user develop his own programs are called for:

- Evaluation Kit

An evaluation kit is comprised of a main board an emulation section, and a pocketable console that varies from type to type. An assembler and text editor are available in the form of EPROMs. The characteristics of evaluation kits are as follows:

- Conductive to easy program development.
- Capable of hardware debugging. When connected to a prototype system being developed by the user.
- Connectable to a console typewriter.
- Capable of storing the developed program by writing to EPROM (HN462716).
Some examples of evaluation kits are given below.
(1) Development of a Simple System Program

An evaluation kit for this use consists of a main board, emulation section, and hand-held console. It is used at the machine language level.
(2) Development of Paper-tape-based Program

This evaluation kit consists of a main board, emulation section and terminal, plus an assembler and text editor. A paper tape source program is made by use of the assembly language, which can be assembled or edited on the main board.

- Cross Software

Table 3 lists the assemblers for the 8-bit single-chip microcomputers.

Fig. 8. Photographs of Evaluation Kits.

Assembler for Evaluation Kit

This assembler assembles a source program, written in HD6801 or HD6805 assembly level language, on paper tape. The object program is outputted on paper tape in absolute address form (S-type object format). Direct output to the evaluation kit memory is also possible. In this case, a source program developed using the cross assembler is inputted to the Evaluation Kit.

- Cross Assembler for Development System

This cross assembler is capable of efficient assembling on a floppy disk basis. The source program is inputted from a file on the floppy disk, and the object program is outputted on a file too.

The assemblers for the HD6801 and HD6301 are provided with macro, conditional assembly, and relocatable object output functions. The relocatable object can be linked and relocated with other object programs by the linkage editor which is a feature of the Floppy Disk Operating System (FDOS).

The HD6805 cross assembler outputs the object program on a floppy disk file in absolute address form, so that it can readily written into EPROM or output on paper tape.

- Cross Assembler for an Intel MDS [system]:

This cross assembler (for Intel's development system [MDS]) operates under the control of OS and ISIS-II. Capable of conditional assembly, it outputs an object program, in hexadecimal paper tape format, on a Floppy Disk. The ISIS-II command converts the object program into an object file of absolute address form.

It is also possible to write the object program prepared by the HD6801 cross assembler into EPROM (HN462716) and debug using the evaluation kit.

Table 3. List of Cross Software Products

Host Machine	6805	6801	6301
Evaluation kit	0	0	$\hat{\Delta}$
Intel MDS	$\hat{\Delta}$	Δ	$\hat{\Delta}$

O Available
\triangle Under development
\therefore Under evaluation

* With macro function
** With relocatable object output function

HD6801S0, HD6801S5

MCU (Microcomputer Unit)

The HD6801S MCU is an 8-bit microcomputer system which is compatible with the HMCS6800 family of parts. The HD6801S MCU is object code compatible with the HD6800 with improved execution times of key instructions plus several new 16 -bit and 8 -bit instructions including an 8×8 unsigned multiply with 16 -bit result. The HD6801S MCU can operate as a single - chip microcomputer or be expanded to 65 k words. The HD6801S MCU is TTL compatible and requires one +5.0 volt power supply. The HD6801S MCU has 2 k bytes of ROM and 128 bytes of RAM on chip. Serial Communications interface (S.C.I.), and parallel I/O as well as a three function 16-bit timer. Features and Block diagram of the HD6801S include the following:

- FEATURES

- Expanded HMCS6800 Instruction Set
- 8×8 Multiply
- On-Chip Serial Communications Interface (S.C.I.)
- Object Code Compatible With The HD6800 MPU
- 16-Bit Timer
- Single Chip Or Expandable To 65k Words
- $2 k$ Bytes Of ROM
- 128 Bytes Of RAM (64 Bytes Retainable On Power Down)
- 29 Parallel I/O Lines And 2 Handshake Control Lines
- Internal Clock/Divided-By-Four Circuitry
- TTL Compatible Inputs And Outputs
- interrupt Capabiiity
- Compatible with MC6801
- BLOCK DIAGRAM

- PIN ARRANGEMENT

	HD6801S	

(Top View)

- TYPE OF PRODUCTS

MCU	Bus Timing
HD6801S0	1 MHz

HD6801V0, HD6801V5

MCU (Microcomputer Unit) PRELIMINARY

The HD6801V MCU is an 8-bit microcomputer system which is compatible with the HD6801S except the ROM size. The HD6801V MCU is object code compatible with the HD6800 with improved execution times of key instructions plus several new 16 -bit and 8 -bit instructions including an 8×8 unsigned multiply with 16 -bit result. The HD6801V MCU can operate as a single chip microcomputer or be expanded to 65 k words. The HD6801V MCU is TTL compatible and requires one +5.0 volt power supply. The HD6801V MCU has 4 k bytes of ROM and 128 bytes of RAM on chip. Serial Communications interface (SCI), and parallel I/O as well as a three function 16 -bit timer. Features and Block diagram of the HD6801V include the following:

- FEATURES

- Expanded HMCS6800 Instruction Set
- 8×8 Multiply
- On-Chip Serial Communications Interface (SCI)
- Object Code Compatible With The HD6800 MPU
- 16-Bit Timer
- Single Chip Or Expandable Tn 65k Words
- 4k Bytes Of ROM
- 128 Bytes Of RAM (64 Bytes Retainable On Power Down)
- 29 Parallel I/O Lines And 2 Handshake Control Lines
- Internal Clock/Divided-By-Four Circuitry
- TTL Compatible Inputs And Outputs
- Interrupt Capability
- Compatible with MC6801 (except ROM size)
- BLOCK DIAGRAM

- PIN ARRANGEMENT

- TYPE OF PRODUCTS

MCU	Bus Timing
HD6801V0	1 MHz

HD6803, HD6803-1

MPU (Microprocessing Unit)

The HD6803 MPU is an 8-bit microcomputer system which is compatible with the HMCS6800 family of parts. The HD6803 MPU is object code compatible with the HD6800 with improved execution times of key instructions plus several new 16-bit and 8 -bit instructions including an 8×8 unsigned multiply with 16 -bit result. The HD6803 MPU can be expanded to 65 k words. The HD6803 MPU is TTL compatible and requires one +5.0 volt power supply. The HD6803 MPU has 128 bytes of RAM, Serial Communications interface (S.C.I.), and parallel I/O as well as a three function 16 -bit timer. Features and Block diagram of the HD6803 include the following:

- FEATURES

- Expanded HMCS6800 Instruction Set
- 8×8 Multiply
- On-Chip Serial Communications Interface (S.C.I.)
- Object Code Compatible With The HD6800 MPU
- 16-Bit Timer
- Expandable to 65k Words
- Multiplexed Address and Data
- 128 Bytes Of RAM (64 Bytes Retainable On Power Down)
- 13 Parallel I/O Lines
- Internal Clock/Divided-By-Four
- TTL Compatible Inputs And Outputs
- Interrupt Capabilitv
- Compatible with MC6803
- BLOCK DIAGRAM

- PIN ARRANGEMENT

(Top View)
- TYPE OF PRODUCTS

Type No.	Bus Timing
HD6803	1.0 MHz
HD6803-1	1.25 MHz

HD6805S 1

MCU (Microcomputer Unit)

The HD6805S1 is the 8 -bit Microcomputer Unit (MCU) which contains a CPU, on-chip clock, ROM, RAM, I/O and timer. It is designed for the user who needs an economical microcomputer with the proven capabilities of the HD 6800-based instruction set.

The following are some of the hardware and software highlights of the MCU.

- HARDWARE FEATURES
- 8-Bit Architecture
- 64 Bytes of RAM
- Memory Mapped I/O
- 1100 Bytes of User ROM
- Internal 8-Bit Timer with 7-Bit Prescaler
- Vectored Interrupts - External and Timer
- 20 TTL/CMOS Compatible I/O Lines; 8 Lines LED

Compatible

- On-Chip Clock Circuit
- Self-Check Mode
- Master Reset
- Low Voltage Inhibit
- Complete Development System Support by Evaluation kit
- 5 Vdc Single Supply
- Compatible with MC6805P2
- SOFTWARE FEATURES
- Similar to HD6800
- Byte Efficient Instruction Set
- Easy to Program
- True Bit Manipulation
- Bit Test and Branch Instructions
- Versatile Interrupt Handing

HD6805S1P

(DP-28)

- PIN ARRANGEMENT

Vss 1		28 RES
$\overline{\text { INT }} 2$		$27 A_{1}$
Vcc^{3}		$26 A^{\prime}$
XTAL 4		$25 A_{5}$
EXTAL 5		$24 A_{4}$
num 6		$23 A_{3}$
TIMER 7	HD6805S1	$22 A_{2}$
$\mathrm{C}_{0} 8$	HD6805S	$21 A_{1}$
$\mathrm{C}_{1} 9$		$20 A_{0}$
$\mathrm{C}_{2} 10$		19 B
$\mathrm{C}_{3} 11$		$18 \mathrm{~B}_{6}$
$\mathrm{B}_{0} 12$		17 B s
$\mathrm{B}_{1} 13$		$16 \mathrm{~B}_{4}$
$\mathrm{B}_{2} 14$		(15) B_{3}

(Top View)

- Powerful Indexed Addressing for Tables
- Full Set of Conditional Brancnes
- Memory Usable as Registers/Flags
- Single Instruction Memory Examine/Change
- 10 Powerful Addressing Modes
- All Addressing Modes Apply to ROM, RAM and I/O
- Compatible with MC6805P2
- BLOCK DIAGRAM

Self check
ROM

HD6805U1

MCU (Microcomputer Unit)

The HD6805U1 is the 8 -bit Microcomputer Unit (MCU) which contains a CPU, on-chip clock, ROM, RAM, I/O and timer. It is designed for the user who needs an economical microcomputer with the proven capabilities of the HD6800based instruction set.

The following are some of the hardware and software highlights of the MCU.

- HARDWARE FEATURES
- 8-Bit Architecture
- 96 Bytes of RAM
- Memory Mapped I/O
- 2056 Bytes of User ROM
- Internal 8-Bit Timer with 7-Bit Prescaler
- Vectored Interrupts - External and Timer
- 24 I/O Ports +8 Input Port
(8 Lines LED Compatible; 7 Voltage Comparator Inputs)
- On-Chip Clock Circuit
- Self-Check Mode
- Master Reset
- Low Voltage Inhibit
- Complete Development System Support by Evaluation Kit
- 5 Vdc Single Supply
- SOFTWARE FEATURES
- Similar to HD6800
- Byte Efficient Instruction Set
- Easy to Program
- True Bit Manipulation
- Bit Test and Branch Instructions
- Versatile Interrupt Handing
- Powerful Indexed Addressing for Tables
- Full Set of Conditional Branches
- Memory Usable as Registers/Flags
- Single Instruction Memory Examine/Change
- 10 Powerful Addressing Modes
- All Addressing Modes Apply to ROM, RAM and I/O

Compatible Instruction Set with MC6805P2

- BLOCK DIAGRAM

(Top View)

HD6805V1

MCU (Microcomputer Unit)

The HD6805V1 is the 8 -bit Microcomputer Unit (MCU) which contains a CPU, on-chip clock, ROM, RAM, I/O and timer. It is designed for the user who needs an economical microcomputer with the proven capabilities of the HD6800based instruction set.

The following are some of the hardware and software highlights of the MCU.

- HARDWARE FEATURES

- 8-Bit Architecture
- 96 Bytes of RAM
- Memory Mapped I/O
- 3848 Bytes of User ROM
- Internal 8-Bit Timer with 7-Bit Prescaler
- Vectored Interrupts - External and Timer
- 24 I/O Ports +8 Input Port (8 Lines LED Compatible; 7 Voltage Comparator Inputs)
- On-Chip Clock Circuit
- Self-Check Mode .
- Master Reset
- Low Voltage Inhibit
- Complete Development System Support by Evaluation Kit
- 5 Vdc Single Supply
- SOFTWARE FEATURES
- Similar to HD6800
- Byte Efficient Instruction Set
- Easy to Program
- True Bit Manipulation
- Bit Test and Branch Instructions
- Versatile Interrupt Handing
- Powerful Indexed Addressing for Tables
- Full Set of Conditional Branches
- Memory Usable as Registers/Flags
- Single Instruction Memory Examine/Change
- 10 Powerful Addressing Modes
- All Addressing Modes Apply to ROM, RAM and I/O
- Compatible Instruction Set with MC6805P2
- BLOCK DIAGRAM

HD6805WO

MCU (Microcomputer Unit) PRELIMINARY

The HD6805W0 is an 8-bit microcomputer unit (MCU) which contains a CPU, on-chip clock, ROM, RAM, standby RAM, A/D Converter, I/O and two timers. This MCU is a member of the HD6805 family but compared with HD6805S, it is a single-chip microcomputer with strengthened internal functions of standby RAM, A/D Converter, timers and I/O.

The following are some of the hardware and software highlights of the MCU.

- HARDWARE FEATURES
- 8-Bit Architecture
- 96 Bytes of RAM
(8 bytes are standby RAM functions)
- Memory Mapped I/O
- 3834 Bytes of User ROM
- Internal 8-Bit Tımer (Timer 1) with 7-Bit Prescaler
- Internal 8-Bit Programmable Timer (Timer 2)
- Interrupts - 2 External and 4 Timers
- 23 TTL/CMOS compatible I/O Lines; 8 Lines LED Direct Drive
- 8-Bit, 4-channel Internal A/D Converter
- Internal Clock Circuit
- Self-Check Mode
- Master Reset
- Low Voltage Inhibit
- Complete Development System Support by Evaluation Kit
- 5 Vdc Single Supply
- SÚFTVíấe FEATURES
- Similar to HD6800
- Byte Efficient Instruction Set
- Easy to Program
- True Bit Manipulation
- Bit Test and Branch Instructions
- Versatile Interrupt Handing
- Powerful Indexed Addressing for Tables
- Full Set of Conditional Branches
- Memory Usable as Registers/Flags
- Single Instruction Memory Examine/Change
- 10 Powerful Addressing Modes
- All Addressing Modes Apply to ROM, RAM and I/O
- Compatible with MC6805P2, HD6805S1 and HD6805V1

- PIN ARRANGEMENT

(Top View)

HD6301V0, HD63AO1VO, HD63B01VO

CMOS MCU (Microcomputer Unit) PRELIMINARY

The HD6301V0 is an 8-bit CMOS single-chip microcomputer unit, Object Code compatible with the HD6801. 4 kB ROM, 128 bytes RAM, Serial Communication Interface (SCI), parallel I/O terminals as well as three functions of timer on chip are incorporated in the HD6301V0. It is bus compatible with HMCS6800, provided with some additional functions such as an improved execution time of key instruction plus several new instructions of operation to increase system throughput. The HD6301V0 can be expanded up to 65 k words. Like the HMCS6800 family, I/O level is TTL compatible with +5.0 V single power supply. By using the Hitachi's $3 \mu \mathrm{~m}$ CMOS process, low power consumption is realized. And as lower power dissipation mode, HD6301V0 has Sleep Mode and Stand-By Mode. So flexible low power consumption application is possible.

- FEATURES

- Object Code Upward Compatible with HD6801 Family
- Abundant On-Chip Functions Compatible with HD6801V0; 4kB ROM, 128 Bytes RAM, 29 Parallel I/O Lines, 2 Lines of Data Strobe, 16-bit Timer, Serial Communication Interface
- Low Power Consumption Mode: Sleep Mode, Standby Mode
- Minimum Instruction Cycle Time
$1 \mu \mathrm{~s}(\mathrm{f}=1 \mathrm{MHz}), 0.67 \mu \mathrm{~s}(\mathrm{f}=1.5 \mathrm{MHz}), 0.5 \mu \mathrm{~s}(\mathrm{f}=2 \mathrm{MHz})$
- Bit Manipulation, Bit Test Instruction
- Protection from System Burst: Address Trap, Op-Code Trap
- Up to 65k Words Address Space
- Wide Operation Range
$V_{C C}=3$ to $6 \mathrm{~V}(f=0.5 \mathrm{MHz}), f=0.1$ to $1.5 \mathrm{MHz}\left(V_{c C}=5 \mathrm{~V}\right.$ $\pm 10 \%), f=0.1$ to $2.0 \mathrm{MHz}\left(\mathrm{V}_{\mathrm{cc}}=5 \mathrm{~V} \pm 5 \%\right)$
- BLOCK DIAGRAM

HD6301VOP, HD63A01V0P, HD63B01V0P

(DP-40)

- PIN ARRANGEMENT

(Top View)
- TYPE OF PRODUCTS

Type No.	Bus Timing
HD6301V0	1 MHz
HD63A01V0	1.5 MHz
HD63B01V0	2 MHz

HD63L05

CMOS MCU (Microcomputer Unit) PRELIMINARY

The HD63L05 is a CMOS single-chip microcomputer suitable for low-voltage and low-current operation. Having CPU functions similar to those of the HMCS6800 family, the HD63L05 is equipped with a 4 k bytes ROM, 96 bytes RAM, I/O, timer, 8 bits A/D, and LCD (6×7 segments) drivers, all on one chip.

- HARDWARE FEATURES
- 3V Power Supply
- 8-Bit Architecture
- Built-in $4 k$ Bytes ROM (Mask ROM)
- Built-in 96 Bytes RAM
- 20 Parallel I/O Ports
- Built-in 6×7 Segments LCD Driver Capability
- Built-in 8-Bit Timer
- Built-in 8-Bit A/D Converter
- Program Halt Function for Low Power Dissipation
- Stand-by Input Terminal for Data Holding

- SOFTWARE FEATURES

- An Instruction Set Similar to That of The HMCS6800 Family (Compatible with The HD6805S)
- HMCS6800 Family Software Development System Is Applicable

- PIN ARRANGEMENT

(Top View)

HD68P01 S0, HD68P01 V07,

MCU (Microcomputer Unit) PRELIMINARY

The HD68P01 is an 8 -bit single chip microcomputer unit (MCU) which significantly enhances the capabilities of the HMCS6800 family of parts. It can be used in production systems to allow for easy firmware changes with minimum delay or it can be used to emulate the HD6801 for software development. It includes 128 bytes of RAM, Serial Communications Interface (SCI), parallel I/O and a three function Programmable Timer on chip, and 2048 bytes, 4096 bytes or 8192 bytes of EPROM on package. It includes an upgrade HD6800 microprocessing unit (MPU) while retaining upward source and object code compatibility. Execution times of key instructions have been improved and several new instructions have been added including an unsigned 8 by 8 multiply with 16-bit result. The HD68P01 can function as a monolithic microcomputer or can be expanded to a 65 k byte address space. It is TTL compatible and requires one +5 volt power supply. A summary of HD68P01 features includes:

- FEATURES

- Expanded HMCS6800 Instruction Set
- 8×8 Multiply Instruction
- Serial Communications Interface (SCI)
- Upward Source and Object Code Compatible with HD6800
- 16-bit Three-function Programmable Timer
- Applicable to All Type of EPROM

2048 bytes; HN462716
4096 bytes; HN462732
8192 bytes; HN482764

- 128 Bytes of RAM (64 bytes Retainable on Powerdown)
- 29 Parallel I/O and Two Handshake Control Line
- Internal Clock Generator with Divide-by-Four Output
- Full TTL Compatibility
- Full Interrupt Capability
- Single-Chip or Expandable to 65k Bytes Address Space
- Bus compatible with HMCS6800 Family

- TYPE OF PRODUCTS

Type No.	Bus Timing	EPROM Type No.
HD68P01S0	1 MHz	HN462716
HD68P01V07	1 MHz	HN462732

- PIN ARRANGEMENT (Top View)

HD68P05V07

MCU (Microcomputer Unit) PRELIMINARY

The HD68P05V07 is the 8-bit Microcomputer Unit (MCU) which contains a CPU, on-chip clock, RAM, I/O and Timer. It is designed for the user who needs an economical microcomputer with the proven capabilities of the HD6800-based instruction set. Setting EPROM on the package, this MCU has the equivalent function as the HD6805U and HD6805V. HD68P05V07 uses HN462732 as EPROM. The following are some of the hardware and software highlights of the MCU:

- HARDWARE FEATURES

- 8-Bit Architerture
- 96 Bytes of RAM
- Memory Mapped I/O
- Internal 8-Bit Timer with 7-Bit Prescaler
- Vectored Interrupts - External, Timer and Software
- 24 I/O Ports +8 Input Port
(8 Lines LED Compatible; 7 Voltage Comparator Inputs)
- On-Chip Clock Circuit
- Master Reset
- Complete Development System Support by Evaluation Kit
- 5 Vdc Single Supply
- SOFTWARE FEATURES
- Similar to HD6800
- Byte Efficient Instruction Set
- Easy to Program
- True Bit Manipulation
- Bit Test and Branch Instructions
- Versatile Interrupt Handing
- Powerful Indexed Addressing for Tables
- Full Set of Conditional Branches
- Memory Usable as Registers/Flags
- Single Instruction Memory Examine/Change
- 10 Powerful Addressing Modes
- All Addressing Modes Apply to ROM, RAM and I/O
- Compatible Instruction Set with HD6805

- PIN ARRANGEMENT (Top View)

ADR.
ADR_{8}
${ }_{A D R}$,

Address

4-Bit Microcomputers-HMCS40 Series

Outline

Hitachi has introduced nine 4-bit single-chip microcomputers known as the HMCS40 series. They have found wide applications in both household and industrial fields. The following five new products have just been added to the line: HMCS47C (CMOS with 4 k words of ROM); HMCS45A, HMCS44A and HMCS43 (PMOS for use with a ceramic filter type of oscillator); and the HMCS43S (PMOS 28 -pin DIL with 1 k word of ROM).

HMCS47C-CMOS with $\mathbf{4 k}$ words of ROM

The HMCS47C is an expanded ROM version of the HMCS45C, ROM capacity has been increased to 4,096 words, and RAM capacity to 256×4-bits. By doubling the operating frequency, the instruction cycle time has been decreased from $10 \mu \mathrm{~s}$ to $5 \mu \mathrm{~s}$. The instruction set, pin arrangement and package type are the same as the HMCS45C. Table 1 compares the HMCS47C to the HMCS45C.

With increased memory capacity and operation speed, one HMCS47C can substitute for two chips of conventional smaller-capacity. Resulting in a decrease in systems cost and package area. A more sophisticated 42 -pin variation, (the HMCS46S), is also under development.

HMCS45A/HMCS44A/HMCS43 PMOSs Incorporating Ceramic Filter Oscillator

The current HMCS45A, HMCS44A and HMCS43 work with conventional crystal type or external RC networks. They are now available incorporating oscillators com-

Fig. 1. Difference in external oscillator component.

patible with external ceramic filters, thus offering a wide choice for users. Since the frequency stability of a ceramic filter oscillator falls within a ± 2 percent range, these new products are suited for applications calling for high precision control. Figs. 1 and 2 show the difference in external oscillator components and pin arrangements. These new variations are identical with the current products in terms of functionality and electric characteristics.

The user can specify the desired oscillator type in the "I/O type specification form" that is to be filled out when ordering ROMs. When "incorporated RC oscillation" and "external" are specified, the ROM is masked using the conventional product with an RC oscillator. When "incorporated ceramic filter oscillation" is specified, the ROM is masked using the newly developed product with the ceramic filter oscillator.

HMCS43C•PMOS 1k word ROM 28-pin DIL

This is a variation of the current HMCS43. Input and output pins have been reduced been so it now comes in a 28-pin DIL package. It is suited for applications where wide I / O is not required and small devices package area is important. The standby function of the HMCS 43 has been dropped. In all other respects, the HMCS43S is identical with the HMCS43. Fig. 3 shows the pin arrangement of the HMCS43S. Table 2 lists the main specifications differences of the new products.

Fig. 2. Difference in pin arrangement between the RC oscillation type and ceramic filter oscillation.

Do 1	288
$\mathrm{D}_{1} \mathrm{D}_{2}$	${ }^{27} \mathrm{R}^{27} \mathrm{R}_{32}$
$\mathrm{D}_{2} \sqrt{3}$	$26 \mathrm{R}_{31}$
$\mathrm{D}_{3} 4$	$25 \mathrm{R}_{30}$
D. 5	(24) R_{23}
Ds 6	23] R_{22}
D6 \square^{7}	22 R_{21}
$\mathrm{V}_{\text {disp }} 8$	21) R_{20}
RESET 9	20 INTI
Voo 110	19 INTO
OSC! 11	$18 \mathrm{R}_{13}$
OSC2 12	$17 \mathrm{R}_{12}$
TEST 13	$16 R_{11}$
Voc 114	(15) R_{10}

Fig. 3. Pin arrangement of HMCS43S.

Table 2. Key Specifications of the New HMCS40 Series

S-	Classification	HMCS47C	HMCS45A	HMCS44A	HMCS43	HMCS43S	Unit
Description Designation		HD44860	HD38825	HD38805	HD38755	HD38757	
Process		CMOS	PMOS	PMOS	PMOS	PMOS	-
Package		FP-54	FP-54	DP-42	DP-42	DP-28	-
Supply voltage		5	-10	-10	-10	-10	V
Power consumption	In operation	1	17	17	11	11	mA
	On standby	0.01	2	2	1	-	mA
ROM	Program	$4,096 \times 10$	$2,048 \times 10$	$2,048 \times 10$	$1,024 \times 10$	$1,024 \times 10$	bit
	Pattern		128×10	128×10	64×10	64×10	bit
RAM		256×4	160×4	160×4	80×4	80×4	bit
Stack register		4	4	4	3	3	-
Input/output		44	44	32	32	19	-
Interrupt	External	2	2	2	2	2	-
	Timer/counter	Provided	Provided	Provided	Provided	Provided	-
Standby function		Provided (Halt)	Provided (RAM hold)	Provided (RAM hold)	Provided (RAM hold)	-	-
On boardi oscillator		Provided	Provided	Provided	Provided	Provided	-
Power on reset		Provided	Provided	Provided	Provided	Provided	-

4-Bit Single-Chip HMCS40 Microcomputer Series

The HMCS40 Series are high-performance, low-cost 4-bit single-chip microcomputers designed for dedicated applications using PMOS, CMOS, or NMOS LSI process technologies.

The Instruction Set of each chip is consistent across the product line, allowing for easy expansion within the family.

FEATURES

- A full line: PMOS/CMOS/NMOS
$0.5 \sim 4 \mathrm{~K}$ words ROM
$32 \sim 256$ words RAM
$22-44$ I/O Lines
- All instructions (except one) are single-cycle
- Pattern generation instruction (table reference capability)
- Powerful interrupt function (except HMCS42/42C)
- Three interrupt sources $\left\{\begin{array}{l}\text { Two external interrupt lines } \\ \text { One timer/event counter }\end{array}\right.$
- High voltage output (50 V): PMOS (for direct vacuum fluorescent drive)
- Low-power dissipation (2mW): CMOS
- High-speed (2μ s cycle time): NMOS
- Built-in clock pulse generator (or you can use an external clock)
- Built-in power-on-reset circuitry
- Battery backup: PMOS and CMOS (except HMCS42)
- I/O options (user selectable at each pin) PMOS: pull-up resistor/open drain CMOS: pull-up resistor/open drain/CMOS output NMOS: pull-up resistor

HMCS40 SERIES PRODUCT CHARACTERISTICS

Family Name				HMCS42		HMCS42C		HMCS43		HMCS43C		HMCS44A		HMCS44C		*HMCS44N							
	Process			PMOS		CMOS		PMOS		CMOS		PMOS		CMOS		NMOS							
	Supply Voltage (V)			-10		5		-10		5		-10		5		5							
	Power Dissipation (mW)			100		1.5		100		2		150		2		450							
	Max. I/O Terminal Voltage (V)			- 50		10****.		-50		10****		- 50		10****		5							
	Output Characteristics			$\begin{aligned} & 1.8 \mathrm{~V} / 10 \mathrm{~mA} \\ & 1.8 \mathrm{~V} / 3 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{aligned} & 2.4 \mathrm{~V} /-1 \mathrm{~mA} \\ & 0.8 \mathrm{~V} / 1.6 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 1.8 \mathrm{~V} / 10 \mathrm{~mA} \\ & 1.8 \mathrm{~V} / 3 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{aligned} & 2.4 \mathrm{~V} /-1 \mathrm{~mA} \\ & 0.8 \mathrm{~V} / 1.6 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 1.8 \mathrm{~V} / 10 \mathrm{~mA} \\ & 1.8 \mathrm{~V} / 3 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 2.4 \mathrm{~V} /-1 \mathrm{~mA} \\ & 0.8 \mathrm{~V} / 1.6 \mathrm{~mA} \end{aligned}$		$1.6 \mathrm{~mA} / 0.4 \mathrm{~V}$							
	Operating Temperature Range (${ }^{\circ} \mathrm{C}$)			-20~+75**		-20~+75**		-20~+75**		-20~+75**		-20~+75**		-20~+75**		-20~+75**							
	Package			DP-28		DP-28		DP. 42		DP-42		DP. 42		DP-42		DP.42							
	Memory	ROM	(bits)	$\begin{aligned} & 512 \times 10 \\ & 32 \times 10^{* * *} \\ & \hline \end{aligned}$		$\begin{aligned} & 512 \times 10 \\ & 32 \times 10^{* * *} \\ & \hline \end{aligned}$		$\begin{aligned} & 1,024 \times 10 \\ & 64 \times 10^{* * *} \\ & \hline \end{aligned}$		$\begin{aligned} & 1,024 \times 10 \\ & 64 \times 10^{* * *} \\ & \hline \end{aligned}$		$\begin{aligned} & 2,048 \times 10 \\ & 128 \times 10^{* * *} \end{aligned}$		$\begin{aligned} & 2,048 \times 10 \\ & 128 \times 10^{* * *} \end{aligned}$		$\begin{aligned} & 2,048 \times 10 \\ & 128 \times 10^{* * *} \\ & \hline \end{aligned}$							
		RAM	(bits)	32×4		32×4		80×4		80×4		160×4		160×4		160×4							
	Registers			4		4		6		6		8		8		6							
	Stack Registers			2		2		3		3		4		4		4							
	1/O Ports	Data Input		22	4×1	22	4×1	32	4×1	32	4×1	32	-	32	-	32	-						
		Discrete Inp			-		-		-		-		-		-		-						
		Data Outpu			4×2		4×2		4×2		4×2		-		-		-						
		Discrete Ou			1×6		1×6		1×12		1×12		-		-		-						
		Data Input/			-		-		4×1		4×1		4×4		4×4		4×4						
		Discrate Inp			1×4		1×4		1×4		1×4		1×16		1×16		1×16						
	Interrupts	External		-		-		2		2		2		2		2							
		Timer		-		-		Yes															
		Event Coun		-		-		Yes															
	Instruc. tions	Number of		51		51		71		71		71		71		71							
		Cycle Time	($\mu \mathrm{s}$)	10		10		10		10		10		10		2							
	Clock Pulse Generator			Yes (External)																			
	Power on Reset																						
	Battery Backup			-		Halt		RAM Hold						Halt		-							
	luation Chip			$\begin{aligned} & \text { HD38750E } \\ & \text { HD44850E } \end{aligned}$		HD44850E		$\begin{aligned} & \text { HD38750E } \\ & \text { HD44850E } \end{aligned}$		HD44850E		HD44850E		HD44850E		*HD44860E							

[^5]** $-40 \sim+85^{\circ} \mathrm{C}$ (Special Request); please contact Hitachi America, Ltd.
*** Pattern Memory
**** Applied to NMOS open drain outputs Supply Voltage $+03(\mathrm{~V})$ is applied to other pins

HMCS45C BLOCK DIAGRAM

OUTLINE OF THE HMCS40 SERIES

HMCS45A		HMCS45C		* HMCS46C		HMCS47C	
PMOS		CMOS		CMOS		CMOS	
-10		5		5		5	
150		2		4		4	
-50		10****		5		5	
$\begin{aligned} & 1.8 \mathrm{~V} / 10 \mathrm{~mA} \\ & 1.8 \mathrm{~V} / 3 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 2.4 \mathrm{~V} /-1 \mathrm{~mA} \\ & 0.8 \mathrm{~V} / 1.6 \mathrm{~mA} \end{aligned}$		$\begin{aligned} & 2.4 \mathrm{~V} /-1 \mathrm{~mA} \\ & 0.8 \mathrm{~V} / 1.6 \mathrm{~mA} \\ & \hline \end{aligned}$		$\begin{aligned} & 2.4 \mathrm{~V} /-1 \mathrm{~mA} \\ & 0.8 \mathrm{~V} / 1.6 \mathrm{~mA} \end{aligned}$	
-20~+75**		-20~+75**		-20~+75**		-20~+75**	
FP-54		FP-54		DP-42		FP-54	
$\begin{aligned} & 2,048 \times 10 \\ & 128 \times 10^{* * *} \end{aligned}$		$\begin{aligned} & 1,048 \times 10 \\ & 128 \times 10^{* * *} \end{aligned}$		4,096x 10		4,096×10	
160×4		160×4		256x4		256x4	
6		6		6		6	
4		4		4		4	
44	-	44	-	32	-	44	-
	-		-		-		-
	4×1		4×1		-		4×1
	-		-		-		-
	4×6		4×6		4×4		4×6
	1×16						
2		2		2		2	
Yes		Yes		Yes		Yes	
Yes		Yes		Yes		Yes	
71		71		71		71	
10		10		5		5	
Yes (External)							
RAM Hold		Halt		Halt		Halt	
HD44850E				HD44855E			

LCD Drive Devices-LCD-II and LCD-III

The use of liquid crystal display (LCD) devices has long been limited to pocket computers and watches. They have recently found increasingly wide acceptance in home appliances, industrial equipment and many other types of consumer equipment. LCDs have many merits, such as lower power consumption, freedom in display pattern design, abundant information resulting from high-density patterns, and easy interface formation with MOS devices. When combined with power-efficient CMOS devices, LCD is become particularly suited for use in equipment requiring battery drive or backup. With the development of multicolor LCDs, improvement in time-division drive characteristic, expansion of operating temperature, and other improvements, LCDs will be applied to an ever widing variety of products and fields. Hitachi has developed the LCD-III machine, a 4-bit CMOS microcomputer containing the LCD drive circuitry, Hitachi has also developed the LCD-II, a controller driver circuit employing a dot matrix type of cutout for English and numeric characters, and the HD44100, which is a driver circuit that can be connected to a LCD-II or LCD-III device to enlarge their display function, the HD44100 may be connected to any microcomputer to enable it to give a liquid crystal display.

	Liquid Crystal Display		
Time Division	Operation Margin	Display Quality	Signal Line Required
Small (Duty ratio high)	Wide	High	Many
Large (Duty ratio low)	Narrow	Low	Few

Table 1. Functions and Characteristics of LCD-III

Description		Specification	
Designation		HD44790	HD44795
Process		CMOS	
Supply voltage		5 V	3 V
Instruction cycle		$10 \mu \mathrm{~s}$	$20 \mu \mathrm{~s}$
Power consumption		04 mA	01 mA
Package		80-pın flat package	
Function		4-bit single chip microcomputer with LCD drive circuitry	
ROM	Program	2,048-word $\times 10$-bit	
	Pattern	128 -word $\times 10$-bit	
RAM	Data RAM	160-word $\times 4$-bit	
	Display RAM		
Stack register		4	
Input/ output	4-bit data	4-bit $\times 4$	
	1-bit discrete data	1 -bit $\times 16$	
Interrup. tion	Input	2	
	Timer/counter	Provided	rystal oscillaon for timer
LCD drive	Scanning spot (common)	4	
	Signal line (segment)	32	xtendable to segments
	Duty ratıo	$1 / 4,1 / 3,1 / 2$, static	
	Blas	1/3, 1/2	
	Display method	Program-generated LCD RAM segment data is auto. matic	

LCD-III (HD44790 and HD44795)

- Microcomputer Function

The microcomputer function of the LCD-III is equivalent to that of the HMCS44C, a device in the HMCS40 series. Complete with 32 general-purpose I/O lines 2 external interrupt inputs, and a timer-counter, the LCD-III can perform powerful control and arithmetic functions. With an on-chip oscillator or external crystal the clock function is easily realized. The incorporated standby (or holding) function permits design of extremely a powerefficient systems.

- LCD Function

The number of display divisions is important to LCD devices and their relationship can be expressed as follows:

With the LCD-III a user can choose the optimum duty ratio from $1 / 4,1 / 3,1 / 2$ and static based, so the best-suited value can be set for each application. The LCD-III contains 32 signal lines (for segment signals), which can be expanded to 96 by specifying the extension mode (program option) and connecting the HD44100 externally. Since all display data are generated by the program, 7 -segment, 14 -segment, or graphic displays can be efficiently realized.

- 16-digit, 7 -segment numerical display (1/4 duty, $1 / 3$ bias)

- 128-segment graphic and numerical display (1/4 duty, $1 / 3$ bias)

- 18-dıgıt, 14 -segment plus symbol display ($1 / 3$ duty, $1 / 3$ bias) - two HD44100s connected -

- 8-dıgıt, 7 -segment display (1/2 duty, $1 / 2$ bıas)

- 4-digit, 7-segment plus symbol display (static)

Fig. 1. Examples of LCD-III's liquid crystal display.

- Development Support Tools

Since the instruction set of the LCD-III is identical with that of the HMCS40 series, full use of programs for these can be used. All cross software and the low cost H40EVKIT (program development system) are directly applicable to the LCD-III. All the user need buy is the evaluation board (H40LCEV00) for the LCD-III. New program can be HE or CE developed economically and efficiently.

- Cross Assembler

For use with the IBM360, IBM370, Intel MDS, Motorola EXORciser, H68SD5.

- Evaluation Board
 H40LCEV00

- Program Development System

Combination of H40EVKIT and H40LCEV00

LCD-II (HD44780)

- Outline

The LCD-II is a CMOS controller-driver circuit that drives a 5×7-dot or 5×10-dot English and numerical dot matrix liquid crystal display according to the character data received from a 4 -bit or 8 -bit microcomputer. It contains all display functions needed for the display data RAM, character generators ROM and RAM, scanning spot drive circuit, and signal line drive circuit. It is most often applied to make up an English and numerical dot matrix type LCD system.

- Functions and Characteristics
- Power-efficient CMOS process
- 80-pin flat plastic package
- Character data RAM 80-word $\times 8$-bit (80 digits)
- Large-capacity character generator ROM

$$
\left.\begin{array}{lrr}
5 \times & 7 \text {-dot } \cdots \cdots & 160 \\
5 \times 10-\operatorname{dot} & \cdots & 32
\end{array}\right]
$$

Rewritable according to the user's request.

- Character generator RAM (512-bit)

$$
\begin{array}{lll}
5 \times & 7 \text {-dot } \cdots \cdots & 8 \\
5 \times 10-\operatorname{dot} & \cdots & 4
\end{array}
$$

The character pattern written from the CPU enables free character display.

- Abundant instruction functions

The instruction functions include full character data RAM clearing, cursor control, display shift and display blinking.

- Display output

Scanning spot $\ldots \ldots 16$ (Duty ratio $1 / 8,1 / 11$ and $1 / 16$)
Signal line . . 40 (Extandable to 360 by external connection of the HD44100 outside)

- No. of displayable digits

Duty Ratio	Type Face	LCD-II Alone	Expansion by each HD44100	Maximum
$1 / 8$	5×7 dots	8 digits	8 digits	80 digits
$1 / 11$	5×10 dots	8 digits	8 digits	80 digits
$1 / 16$	5×7 dots	16 digits	16 digits	80 digits

- Exchangeable with 4-bit and 8-bit CPU interface programs

- Applications

Portable computer, word processors, portable terminal equipment, electronic translators, electronic typewriters, general-purpose data terminals, industrial controllers, etc.

- 80-digit dot matrix dısplay (1/16 duty, $1 / 5$ bias) - four HD44100s connected - 5×7-Dot Plus Gursor

- 16-dıgıt dot matrix dısplay ($1 / 11$ duty, $1 / 4$ bıas) - one HD44100 connected -

- 24-digit dot matrix display ($1 / 8$ duty, $1 / 4$ bias) - two HD44100s connected -

HD44100

- Outline

The HD44100 is a CMOS driver circuit incorporating two channels of 20-bit bidirectional shift register, latch, and liquid crystal display drive circuit. Receiving serial data from a CPU or controller circuit, the HD44100 latches and converts the data into liquid crystal display drive waveform. When two channels are connected in series. The HD44100 may be used as a 40 -signal-line drive circuit. It can also give time-division display by using one channel for scanning spot drive and the other for signal line drive. When a plurality of HD44100s are connected, a large-capacity LCD circuit results.

- Functions and Characteristics

- Power-efficient CMOS process
- 60-pin flat plastic package
- 20-bit bidirectional shift register, latch and liquid crystal display drive circuit $\times 2$ channels
- Freely selectable display duty ratio and bias
- Large-capacity display permitting series connection
- Interface for CPU or controller circuit 1 for serial data and 3 for control signal
- Functions required of CPU or control circuit display data generation and serial transfer to HD44100, control of display timing

- 40-segment bar graph display (statıc)

- 6-digit 7-segment plus symbol display (1/3 duty, $1 / 3$ bias)

- 20×60-dot graphic display (1/20 duty, $1 / 5$ bias)

Fig. 3. Examples of HD44100's liquid crystal display interface.

Software/Hardware Development Systems

Hitachi Development Systems enable a user to develop complete integrated hardware and suitable software with considerable efficiency.

Support capabilities are provided from complete
systems to low-cost evaluation kits and cross assemblers.
The user can select the most suitable tools from the Hitachi lineup. Hitachi's resident engineering group can also design user application software upon request.

Development Systems for HMCS40 Series

SUPPORT HARDWARE

HMCS40 Series support hardware allows development and debugging of users software for the 4 -bit microcomputer family

HMCS40 SERIES SUPPORT SOFTWARE

HMCS40 Series cross assemblers allow development of 4-bit microcomputer software utilizing the customer's existing development equipment in a "host computer" mode

EVALUATION KITS

H40EVKIT H40EVKIT2 (under development) The Evaluation Kit is a single board-type development tool that includes "debugger,"' "assembler," and "text editor" functions When a TTY is connected, functionality expands to all program development (up to prototype hardware debugging)

CROSS ASSEMBLERS

Type Number Host Computer MediaSource Program Format						Object Program Format
S40XAM1	32-Bit HITACHI-M Series	MT Memory 100K Byte	Card	Paper Tape		
S40XAM1	32 -Bit IBM 370	MT Memory 100K Byte	Card	Paper Tape		
S40EXR1	8-Bit Motorola EXORcisor-II	Floppy Disk	Floppy Disk	EPROM		
S40MDS1	8-Bit Intel MDS220/230	Floppy Disk	Floppy Disk	EPROM		
S40XAE-1	8-Bit H40EVKIT 6800 Base	EPROM Memory 4K Byte	Paper Tape	Paper Tape		

EVALUATION BOARDS

H43EV00 H45CEV00 H40LCEV00 H40NEV00 (under development) H47CEV00 (under development)
The Evaluation Board consists of an evaluation chip and sockets for EPROM Program evaluation and operation (incurcuit emulation) of prototype hardware is possible by connecting the card through an edge connector to the users prototype hardware.

EVALUATION CHIPS

 HD38750E HD44850E HD44855E HD44860EEvaluation Chips are ROM-less versions of the HMCS40 Family Program evaluation operational check of prototype hardware single-step debugging is possible.

Note: HD44855E is a universal chip External PMOS level translation is required to emulate PMOS microcomputers

HMCS40 Series Support System Lineup

		PMOS				CMOS							NMOS
		42	43	44A	45A	42C	43C	44C	45C	46C	47C	LCD-III	44N
Evaluation Kit	H40EVKIT	-	-	\bullet	\bullet	\bullet	-	\bullet	-			-	
	H40EVKIT2*									-	\bullet		\bullet
Evaluation Board	H43EV00	-	-										
	H45CEV00	\bullet	-	\bullet	\bullet	\bullet	\bullet	-	\bullet				
	H47CEV00*									\bullet	\bullet		
	H40NEVO0*												-
	H40LCEV00											\bullet	
Evaluation Chip	HD38750E	-	-										
	HD44850E	-	-	-	\bullet	\bullet	\bullet	\bullet	-				
	HD44855E									\bullet	\bullet	\bullet	
	HD44860E*												\bullet

* Under Development.

Hitachi 4-Bit/8-Bit Single-Chip Microcomputer Development Schedule

1. Development Schedule | 2. Remarks |
| :--- |
| - Hitachi's manutacturing process starts upon receipt of |
| customer's ROM code and I/O option list. |

Hitachi Single Chip H68SD5
 Microcomputer Development System

The H68SD5 is a development system for HITACHI 4-bit and 8-bit single chip microcomputers.
It is an all-in-one type compact HD6800 based CRT/Key board microcomputer terminal with one Floppy disk driver and has standard interface for the TTY (RS-232C or TTL level) and printer (Centronics parallel interface). The EPROM writer and the second Floppy disk driver are optionally available.

Features

- Supports the system development for 8-bit and 4-bit single chip microcomputers - HD6801/6301 series, HD6805/6305 series and HMCS 40 series
- Disk based low cost system
- Provides the Text Editor, Assembler, Emulator and EPROM Writer controlled by FDOS-III
- 56K-byte RAMs
- Allows linking between the H68SD5 and the I/O devices (TTY and Printer)
- Easy to debug user's prototype system using the Emulator Module

SYSTEM CONFIGULATION

H68SD5

* OPTION

EPROM WRITER*

EMULATOR MODULE* $\left(\begin{array}{l}\text { HD6801/6301 series } \\ \text { HD6805/6305 series } \\ \text { HMCS40 series }\end{array}\right)$

- Hardware

As shown in the above figure, the standard system of the H68SD5 consists of a power supply unit, 7 function blocks, a console display and one Floppy disk driver. User's system can be developed easily with this Floppy disk based system.
It is possible to emulate user's prototype system by linking the Emulator Module which is provided for each single chip microcomputer.

The functions of the Emulator Module are as follows.

- Direct link to user's system
- Provides the I/O ports, ROM and RAM which emulate the internal operation of the MCU (Microcomputer Unit)
- Eight break points
- Reset and abort functions
- Object program lọad/punch

- Software

Software functions

Monitor
The monitor is core for operation of the H68SD5

- Controls the FDOS-III and I/O devices

FDOS-III
The FDOS-III is the operating system which controls the H68SD5.

- Allows Floppy disk based operation (from programming through debugging)
- Allows conversational operation with the CRT/Keyboard

Assembler

The Assembler converts a source program to an object program in an absolute/relocatable form.

Text Editor

The Text Editor allows modifying and editing of a source program.

- Allows a delete and insert of a statement
- Allows a change and search of a character string

Linkage Editor

The Linkage Editor allows relocation and linking of relocatable objects generated by the Assembler (Only for HD6801/ 6301 series)

Emulator

The Emulator is used for software debugging and user's prototype system emulation.

- Provides displaying and changing the contents of registers/memory
- Provides setting, displaying and changing break points
- Allows user's program trace and single-step execution

EPROM Writer

The EPROM Writer writes a program into the EPROM.

- For the HN462532, HN462716, HN462732 and HN48016
- Verifies data written in the EPROM
- Allows copying from an EPROM to another one
- Blank check

- Specification

Item	Specification
Main board	MPU: HD6800 RAM: 56K-byte dynamic RAM Monitor: 4K-byte ROM
Floppy disk driver	Memory capacity: Approx. 250K-byte (77 tracks, 26 sector, 128 byte) Format: FDOS recording format based on IBM 3740 data format Recording density: 3268 BPI (bit per inch)
Console display	Picture size: 12 inches, black/green Display form: Laster scan Display character numbers: 80 characters $\times 24$ lines
I/O interface	TTY (Serial interface) Printer (Centronics parallel interface)
Power supply	Voltage: AC90V to 127 V or AC 180 V to 254 V Frequency: $50 \mathrm{~Hz}, 60 \mathrm{~Hz} \pm 1 \mathrm{~Hz}$
Temperature	Operating: $10^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$ Storage: $-10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Humidity	Operating: 20% to 80% RH (without dew) Storage: 10% to 80% RH (without dew)
Expansion equipment	EPROM Writer Emulator Module

[^6]Please contact your nearest Hitachi's Sales Dept. regarding specifications.

BIPOLAR LOGIC

CAT NO.
DESCRIPTION
HD74LS00

HD74LS01
HD74LS02
HD74LS03

HD74LS04
HD74LS05

HD74LS08
HD74LS09

HD74LS10
HD74LS 11
HD74LS12

HD74LS13 Dual 4-input Positive NAND Schmitt Triggers
HD74LS14
HD74LS15
HD74LS20
HD74LS21
HD74LS22
HD74LS26

HD74LS27
HD74LS30
HD74LS32
HD74LS37

HD74LS38

HD74LS40
HD74LS42
HD74LS47

HD74LS48

HD74LS49

HD74LS51
HD74LS54
HD74LS55
HD74LS73
Quadruple 2-input Positive NAND Gates
Quadruple 2-input Positive NAND Gates (with open collector outputs) Quadruple 2-input Positive NOR Gates Quadruple 2-input Positive NAND Gates (with open collector outputs)
Hex Inverters
Hex Inverters (with open collector outputs)
Quadruple 2-input Positive AND Gates
Quadruple 2-input Positive AND Gates (with open collector outputs)
Triple 3-input Positive NAND Gates Triple 3-input Positive AND Gátes Triple 3-input Positive NAND Gates (with open collector outputs

Hex Schmitt Trigger Inverters Triple 3-input AND Gates (with open collector outputs)
Dual 4-input Positive NAND Gates Dual 4-input Positive AND Gates Dual 4-input Positive NAND Gates (with open collector outputs) Quadruple 2-input High-voltage Interface NAND Gates
Triple 3-input Positive NOR Gates 8-input Positive NAND Gates Quadruple 2-input Positive OR Gates Quadruple 2-input Positive NAND Buffers
Quadruple 2-input Positive NAND Buffers (with open collector outputs) Dual 4-input Positive NAND Buffers BCD-to-Decimal Decoders BCD-to-Seven Segment Decoders/Drivers (with 15 V outputs)
BCD-to-Seven Segment Decoders/Drivers
BCD-to-seven Segment Decoders/Drivers
2-wide 2-input, 2-wide 3-input AND-OR-INVERT Gates
4-wide 2-input, 3-input AND-ORINVERT Gates
2-wide 4-input AND-OR-INVERT Gates
Dual J-K Negative Edge-triggered Flip-Flops (with clear)

CAT NO.

DESCRIPTION

HD74LS74A Dual D-type Positive Edge-triggered Flip-Flops
HD74LS75 Quadruple Latches
HD74LS76 Dual J-K Negative Edge-triggered Flip-Flops (with Preset and clear)
HD74LS77 4-bit Bistable Latches
HD74LS78 Dual J-K Negative Edge-triggered Flip-Flops (with preset, common, clear, and common clock)
HD74LS83A 4-bit Binary Full Adders
HD74LS85
HD74LS86
HD74LS90
HD74LS91
HD74LS92
HD74LS93 4-bit Magnitude Comparators Quadruple Exclusive-OR Gates Decade Counters 8-bit Shift Registers Divide-by-Twelve Counters

HD74LS95B
HD74LS96
4-bit Binary Counters
4-bit Shift Registers
5-bit Shift Registers (Dual parallel-in, parallel-out)
HD74LS 107 Dual J-K Negative Edge-triggered Flip-Flops (with clear)
HD74LS109A Dual J-K Negative Edge-triggered Flip-Flops (with preset and clear)
HD74LS112 Dual J-K Negative Edge-triggered Flip-Flops (with preset and clear)
HD74LS113 Dual J-K Negative Edge-triggered Flip-Flops (with preset)
HD74LS114 Dual J-K Negative Edge-triggered Flip-Flops (with preset, common clock, and common clear)
HD74LS 122 Retriggerable Monostable Multivibrators (with clear)
HD74LS123 Dual Retriggerable Monostable Multivibrators (with clear)
HD74LS125A Quadruple Bus Buffer Gates with three-state outputs (inverting)
HD74LS126A Quadruple Bus Buffer Gates with three-state outputs (noninverting)
HD74LS132 Quadruple 2-input NAND Schmitt Triggers
HD74LS136 Quadruple Exclusive-OR Gates (with open collector outputs)
HD74LS138 3-to-8-line Decoders/Demultiplexers
HD74LS 139 Dual 2-to-4-line
Decoders/Demultiplexers
HD74LS145 BCD-to-Decimal Decoders/Drivers (with 15 V outputs)
HD74LS 148 8-to-3-line Octal Priority Encoders
HD74LS151 1-of-8-line Data Selectors/Multiplexers
HD74LS152 1-of-8-line Data Selectors/Multiplexers

CAT NO.
DESCRIPTION

HD74LS153	Du
	Selectors/ Multiplexers
HD74LS154	4-to-16-line Data
	Selectors/Multiplexers
HD74LS155	Dual 2-to-4-line
	Decoders/Demultiplexers
HD74LS156	Dual 2-to-4-line
	Decoders/Demultiplexers (with open collector outputs)
HD74LS157	Quadruple 2-to-1-line Data
	Selectors/Multiplexers
HD74LS158	Quadruple 2-to-1-line Data
	Selectors/Multiplexers
HD74LS160	Synchronous Decade Counters
HD74LS161	Synchronous 4-bit Binary Counters
HD74LS162	Fully Synchronous Decade Counters
HD74LS163	Fully Synchronous 4-bit Binary Counters
HD74LS164	8-bit Parallel-out Shift Registers
HD74LS173	4-bit D-type Registers (with three-state outputs)
HD74LS174	Hex D-type Flip-Flops (with clear)
HD74LS175	Quadruple D-type Flip-Flops (with clear)
HD74LS181	Arithmetic Logic Unit/Function Generators
HD74LS190	Synchronous Up/Down Decade
	Counters (single clock line)
HD74LS191	Synchronous Up/Down 4-bit Binary Counters (single clock line)
HD74LS192	Synchronous Up/Down Decade
	Counters (dual clock lines)
HD74LS193	Synchronous Up/Down 4-bit Binary
	Counters (dual clock lines)
HD74LS194A	4-bit Bidirectional Universal Shift Registers
HD74LS195A	4-bit Parallel Access Shift Registers
HD74LS221	Dual Monostable Multivibrators (w
	Schmitt trigger inputs)
HD74LS240	Octal Buffers/Line Drivers/Line
	Receivers (inverted three-state outpu
HD74LS241	Octal Buffers/Line Drivers/Line
	Receivers (noninverted three-state outputs)
HD74LS242	Quadruple Bus transceivers (wtih three-state outputs)
HD74LS243	Quadruple Bus Transceivers (with three-state outputs)
HD74LS244	Octal Buffers/Line Drivers/Line
	Receivers (noninverted three-state outputs)

CAT NO.

DESCRIPTION

HD74LS245 Octal Bus Transceivers (noninverted three-state outputs)
HD74LS247 BCD-to-Seven Segment
Decoders/Drivers (with 15 V outputs)
HD74LS248 BCD-to-Seven Segment Decoders/Drivers
HD74LS249 BCD-to-Seven Segment Decoders/Drivers
HD74LS251 1-of-8-line Data Selectors/Multiplexers (with three-state outputs)
HD74LS253 Dual Data Selectors/Multiplexers (with three-state outputs)
HD74LS257 Quadruple 2-to-1-line Data
Selectors/Multiplexers (with threestate outputs)
HD74LS258

HD74LS259
HD74LS266
HD74LS279
HD74LS280
HD74LS283
HD74LS290
HD74LS293
HD74LS295B 4-bit Right-shift, Left-shift Registers (with three-state outputs)
HD74LS298 Quadruple 2-input Multiplexers (with storage)
HD74LS299 8-bit Universal Shift/Storage Registers (with three-state outputs)
HD74LS365A Hex Bus Buffers/Drivers (with threestate outputs)
HD74LS366A Hex Bus Buffers/Drivers (with threestate outputs)
HD74LS367A Hex Bus Drivers (with three-state outputs)
HD74LS368A Hex Bus Drivers (with three-state outputs)
HD74LS375
HD74LS386
HD74LS390
HD74LS393
HD74LS490
HD74LS668
HD74LS669 Synchronous 4-bit Binary Up/Down Counters

74LS PRODUCT LINE BY FUNCTION

CAT NO
DESCRIPTION

- NAND/NOR/AND/OR Gates

HD74LS00 Quad. 2-input Positive NAND Gates
HD74LS01 Quad. 2-input Positive NAND Gates (with open collector outputs)
HD74LS02 Quad. 2-input Positive NOR Gates
HD74LS03 Quad. 2-input Positive NAND Gates (with open collector Gates
HD74LS04
Hex Inverters
HD74LS05 Hex Inverters (with open collector outputs)
HD74LS08 Quad. 2-input Positive AND Gates
HD74LS09 Quad. 2-input Positive AND Gates (with open collector outputs)
HD74LS10 Triple 3-input Positive NAND Gates
HD74LS11 Triple 3-input Positive AND Gates
HD74LS12 Triple 3-input Positive NAND Gates
(with open collector outputs)
HD74LS13 Dual 4-input Schmitt NAND Gates
HD74LS14 Hex Schmitt-trigger Inverters
HD74LS15 Triple 3-input Positive AND Gates (with open collector outputs)
HD74LS20 Dual 4-input Positive NAND Gates
HD74LS21 Dual 4-input Positive AND Gates
HD74LS22 Dual 4-input Positive NAND Gates (with open collector outputs)
HD74LS26 Quad. 2-input High-voltage Interface NAND Gates
HD74LS27 Triple 3-input Positive NOR Gates
HD74LS30 8 -input Positive NAND Gates
HD74LS32 Quad. 2-input Positive OR Gates
HD74LS37 Quad. 2-input Positive NAND Buffers
HD74LS38 Quad. 2-input Positive NAND Buffers (with open collector outputs)
HD74LS40 Dual 4-input Positive NAND Buffers
HD74LS125A Quad. Bus Buffer Gates with threestate outputs (inverting)
HD74LS126A Quad. Bus Buffer Gates with threestate outputs (noninverting)
HD74LS132 Quad. 2-input Positive NAND Schmitt Triggers

- AND-OR-INVERT Gates

HD74LS51 2-wide 2-input, 2-wide 3-input AND-OR-INVERT Gates
HD74LS54 4-wide 2-input, 3-input AND-ORINVERT Gates
HD74LS55 2-wide 4-input AND-OR-INVERT Gates

- BUS BUFFERS/DRIVERS/TRANSCEIVERS

HD74LS240 Octal Buffers/Line Drivers/Line Receivers (inverted three-state outputs)

CAT NO.
DESCRIPTION
HD74LS241 Octal Buffers/Line Drivers/Line Receivers (noninverted three-state out.)
HD74LS242 Quad. Bus Transceivers (with threestate outputs)
HD74LS243 Quad. Bus Transceivers (with threestate outputs)
HD74LS244 Octal Buffers/Line Drivers/Line Receivers (inverted three-state outputs)
HD74LS245 Octal Bus Transceivers (with noninverted three-state outputs)
HD74LS365A Hex Bus Buffers/ Drivers (with threestate outputs)
HD74LS366A Hex Bus Buffers/Drivers (with threestate outputs)
HD74LS367A Hex Bus Buffers/ Drivers (with threestate outputs)
HD74LS368A Hex Bus Buffers/ Drivers (with threestate outputs)

FLIP-FLOPS

HD74LS73 Dual J-K Flip-Flops
HD74LS74A Dual D-type Edge-triggered Flip-Flops
HD74LS78 Dual J-K Flip-Flops (with PR and CLR, and common CK)
HD74LS107 Dual J-K Flip-Flops
HD74LS109A Dual J-K Positive Edge-triggered FlipFlops (with PR and CLR)
HD74LS112 Dual J-K Negative Edge-triggered Flip-Flops (with PR and CLR)
HD74LS113 Dual J-K Negative Edge-triggered Flip-Flops (with PR)
HD74LS114 Dual J-K Negative Edge-triggered Flip-Flops (with PR, common CLR, and common CK)
HD74LS122 Retriggerable Monostable Multivibrators
HD74LS123 Dual Retriggerable Monostable Multivibrators
HD74LS174 Hex D-type (Flip-Flops (with CLR)
HD74LS175 Quad. D-type Flip-Flops (with CLR)
HD74LS221 Dual Monostable Multivibrators (with Schmitt Trigger)

COUNTERS

HD74LS90 Decade Counters
HD74LS92 Divide-by-Twelve Counters
HD74LS160 Synchronous Decade Counters
HD74LS161 Synchronous 4-bit Binary Counters
HD74LS162 Fully Synchronous Decade Counters
HD74LS163 Fully Synchronous 4-bit Binary Counters

74LS LOGIC FAMILY

74LS PRODUCT LINE BY FUNCTION

HD74LS190 | Synchronous Decade Up/Down |
| :--- |
| Counters |

HD74LS191 Synchronous 4-bit Binary Up/Down Counters
HD74LS192 Synchronous Decade Up/Down Counters
HD74LS193 Synchronous 4-bit Binary Up/Down Counters
HD74LS290 Decade Counters
HD74LS293 4-bit Binary Counters
HD74LS390 Dual 4-bit Decade Counters
HD74LS393 Dual 4-bit Binary Counters
HD74LS490 Dual 4-bit Decade Counters
HD74LS668 Synchronous Decade Up/Down
Counters
HD74LS669 Synchronous 4-bit Binary Up/Down Counters

- 4-BIT, 5-BIT SHIFT/STORA GE REGISTERS	
HD74LS95B	4-bit Right-shift, Left-shift Registers
HD74LS96	5-bit Shift Registers (Dual parallel-in, parallel-out)
HD74LS173	4-bit D-type Registers (with three-state outputs)

HD74LS194A 4-bit Parallel-in, Parallel-out Bidirectional Shift Registers
HD74LS195A 4-bit Parallel-in, Parallel-out Shift Registers (J-K inputs for first stage)
HD74LS295B 4-bit Right-shift, Left-shift Register

- 8-BIT SHIFT REGISTERS

HD74LS91 8-bit Shift Registers
HD74LS164 8 -bit Parallel-out Shift Registers
HD74LS166 Parallel-load 8-bit Shift Registers
HD74LS299 8 -bit Universal Shift/Storage Registers

- ENCODERS

HD74LS148 8-to-3-line Priority Encoders

■ DECODERS/DEMULTIPLEXERS	
HD74LS42	BCD-to-Decimal Decoders
HD74LS138	3-8-line Decoders
HD74LS139	Dual 2-to-4-line
HD74LS154	Decoders/Demultiplexers 4-to-16-line Decoders/Demultiplexers
HD74LS155	Dual 2-to-4-line HD74LS156 Decoders/Demultiplxers 2-to-4-line Decoders/Demultiplexers (with open collector outputs)

- DECODERS/LAMP DRIVERS/BUFFERS

HD74LS145 BCD-to-Decimal Decoders/Drivers (with 15 V outputs)
HD74LS47 BCD-to-Seven Segment Decoders/Drivers (with 15 V outputs)
HD74LS48 BCD-to-Seven Segment Decoders/Drivers
HD74LS49 BCD-to-Seven Segment Decoders/Drivers
HD74LS247 BCD-to-Seven Segment Decoders/Drivers (with 15 V outputs)
HD74LS248 BCD-to-Seven Segment Decoders/Drivers
HD74LS249 BCD-to-Seven Segment Decoders/Drivers

■ LATCHES

HD74LS75 Quad. Bistable Latches
HD74LS77 4-bit Bistable Latches
HD74LS279 Quad. $\overline{\mathrm{S}}-\overline{\mathrm{R}}$ Latches
HD74LS259 8-bit Addressable Latches
HD74LS375 4-bit Bistable Latches

- ARITHMETIC ELEMENTS

HD74LS83A 4-bit Binary Full Adders
HD74LS85 4-bit Magnitude Comparators
HD74LS86 Quad. 2-input Exclusive-OR Gates
HD74LS136 Quad. 2-input Exclusive-OR Gates (with open collector outputs)
HD74LS181 4-bit Arithmetic Logic Units/Function Generators
HD74LS266 Quad. 2-input Exclusive-NOR Gates (with open collector outputs)
HD74LS280 9-Bit Odd/Even Parity Generators/Checkers
HD74LS283 4-bit Binary Full Adders (with fast carry)
HD74LS386 Quad. 2-input Exclusive-OR Gates

- DATA SELECTORS/MULTIPLEXERS

HD74LS151 8-bit Data Selectors/Multiplexers (with strobe)
HD74LS152 8-bit Data Selectors/Multiplexers
HD74LS153 Dual 4-to-1-line Data Selectors/Multiplexers
HD74LS157 Quad. 2-to-1-line Data Selectors/Multiplexers
HD74LS158 Quad. 2-to-1-line Data Selectors/Multiplexers
HD74LS251 8-bit Data Selectors/Multiplexers (with strobe and three-state outputs)

74LS LOGIC FAMILY

74LS PRODUCT LINE BY FUNCTION

HD74LS253 Dual 4-to-1-line Data
Selectors/ Multiplexers (with threestate outputs)
HD74LS257 Quad. 2-to-1-line Data
Selectors/ Multiplexers (with threestate outputs)

HD10101
HD10102
HD10104
HD10105
HD10106
HD10107
HD10109
HD10110
HD10111
HD10116
HD10117
HD10118
HD10119
HD10121
HD10124
HD10125
HD10130
HD10131
HD10132
HD10133
HD10134
HD10136
HD10145
HD10147
HD10148
HD10160
HD10161
HD10162
HD10164
HD10174
HD10175
HD10179
HD10180
HD10181
HD10209 Dual High Speed 4-5 input OR/NOR Gates
HD10210 Dual High Speed 3-input 3-output OR Gates
HD10211 Dual High Speed 3-input 3-output NOR Gates
HD10230 Dual High Speed Latches
HD10231 Dual High Speed Type-D Master-Slave Flip Flops

HD10101

Quadruple OR/NOR Gates

- PIN ARRANGEMENT

(Top View)

- CIRCUIT SCHEMATIC

HD10102

Quadruple 2-input NOR Gates

PIN ARRANGEMENT

- CIRCUIT SCHEMATIC

Quadruple 2-input AND Gates

IPIN ARRANGEMENT

■CIRCUIT SCHEMATIC (1/4)

HD10105

Triple 2-3-2 input OR/NOR Gates

IPIN ARRANGEMENT

(Tup View)

CIRCUIT SCHEMATIC

HD10106

Triple 4-3-3 input NOR Gates

- PIN ARRANGEMENT

CIRCUIT SCHEMATIC

HD10107

Triple 2-input Exclusive-OR/NOR Gates

- PIN ARRANGEMENT

(Top View)

■CIRCUIT SCHEMATIC

HD10109

Dual 4-5 input OR/NOR Gates

- PIN ARRANGEMENT

(Top View)

CIRCUIT SCHEMATIC

HD10110

Dual 3-input 3-output OR Gates

■PIN ARRANGEMENT

(Top View)

■CIRCUIT SCHEMATIC

HD10111

Dual 3-input 3-output NOR Gates

PIN ARRANGEMENT

(Top View)

CIRCUIT SCHEMATIC

HD10116

Triple Line Receivers

The HD10116 is designed for use in sensing differential signals over long lines. The bias supply (V_{BB}) is made available to make the device useful as a Schmitt trigger, or in other applications where a stable reference voltage is necessary. Active
current source provides these receivers with excellent common mode noise rejection. If any amplifier in a package is not used, one input of that amplifier must be connected to V_{BB} to prevent upsetting the current source bias network.

MIN ARRANGEMENT

(Top View)

CIRCUIT SCHEMATIC

HD10117

Dual 2-wide 2-3-input OR-AND/OR-AND INVERT Gates

(Top View)

■CIRCUIT SCHEMATIC

HD10118

Dual 2-wide 3-input OR-AND Gates

HD10119

4-wide 4-3-3-3-input OR/AND Gate

PIN ARRANGEMENT

(Top View)

FIUNCTION TABLE

Inputs												Outputs
A	B	C	D	E	F	G	H	I	J	K	L	Y
L	L	L	L	\times	L							
\times	\times	\times	\times	L	L	L	\times	\times	\times	\times	\times	L
\times	\times	\times	\times	\times	\times	L	L	L	\times	\times	\times	L
\times	L	L	L	L								
Notes 1												H

Notes) 1. Each input of OR gates are combined to high.
2. X: Don't Care

■CIRCUIT SCHEMATIC

HD10121

4-wide OR-AND/OR-AND-INVERT Gate

PIN ARRANGEMENT

HD10124

Quadruple TTL-to-ECL Translators

The HD10124 is a quad translator for interfacing data and control signals between a saturated logic section and the ECL section of digital systems. The device has TTL compatible inputs, and ECL complementary open-emitter outputs that allow use as an inverting/noninverting translator or as a differential line driver. When the common strobe input is at the low logic level, it forces all true outputs to a ECL high logic state.

Power supply requirements are ground, +5.0 V , and -5.2 V . The DC levels are standard or Schottky TTL in, ECL 10K out.
An advantage of this device is that TTL level information can be transmitted differentially, via balanced twisted pair lines, to the ECL equipment, where the signal can be received by any of the ECL receivers or the HD10125 ECL to TTL translator.

IPIN ARRANGEMENT

(Top View)

ICIRCUIT SCHEMATIC

HD10125

Quadruple ECL-to-TTL Translators

The HD10125 is a quad translator for interfacing data and control signals between the ECL section and saturated logic sections of digital systems. The HD10125 incorpolates differential inputs and Schottky TTL "totem pole" outputs. Differential inputs allow for use as an inverting/ noninverting translator or as a differential line receiver.
The V_{BB} reference voltage is available on pin 1 for use in single-ended input biasing. The outputs go to a low logic level whenever the inputs are left floating. Power supply requirements are ground, +5 V and -5.2 V . The HD10125 has a fanout of 10 TTL loads. The DC levels are ECL 10K in and Schottky TTL or standard TTL out. The device has an input common mode noise rejection of $\pm 1.0 \mathrm{~V}$.

IPIN ARRANGEMENT

(Top View)

HD10130

Dual Latches

The HD10130 is a clocked dual D-type latch. Each latch may be clocked separately by holding the common clock in the low state, and using the clock enable inputs for the clocking function. If the common clock is to be used to clock the latch, the clock enable (CE) inputs must be in the low state. In this mode the enable inputs perform the function of controlling the common clock (C). Any change at the D input will be reflected at the

IPIN ARRANGEMENT

(Top View)
output while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state a change in the information present at the data inputs will not affect the output information. The set and reset inputs for not override the clock and D inputs. They are effective only when either $\overline{\mathrm{C}}$ or $\overline{\mathrm{CE}}$ or both are high.

FUNCTION TABLE

D	$\overline{\mathrm{C}}$	$\overline{\mathrm{C}}_{\mathrm{E}}$	$\mathrm{Q}_{\mathrm{n}, 1}$
L	L	L	L
H	L	L	H
\times	L	H	Q_{n}
\times	H	L	Q_{n}
\times	H	H	Q_{n}

[^7]
ICIRCUIT SCHEMATIC

HD10131

Dual Type-D Master-Slave Flip Flops

The HD10131 is a dual master-slave type D flip-flop. Asynchronous $\operatorname{Set}(\mathrm{S})$ and Reset(R) override Clock(C_{C}) and Clock Enable(CE) inputs. Each flip-flop may be clocked separately by holding the common clock in the low state and using the enable inputs for the clocking function. If the common clock is to be used to clock the flip-flop, the Clock Enable inputs must be in the low state. In this case, the enable inputs perform the function of controlling the common clock.
The output states of the flip-flop change on the positive transition of the clock. A change in the information present at the data(D) input will not affect the output information at any other time due to master-slave construction.

IPIN ARRANGEMENT

(Top View)

IFUNCTION TABLE

- R-S

R	S	Q_{n+1}	\bar{Q}_{n+1}
L	L	Q_{n}	\bar{Q}_{n}
L	H	H	L
H	L	L	H
H	H	\times	\times

x. Not Defined

- CIRCUIT SCHEMATIC
- Clock

C	D	Q_{n+1}
L	\times	Q_{n}
\uparrow	L	\dot{L}
\uparrow	H	H

Notes)

1. Don't Care
2. $\mathrm{C}=\overline{\mathrm{CE}}+\mathrm{C}_{\mathrm{C}}$
3. $A \uparrow$ is a clock transition from a low to a high state.

HD10132

Dual Multiplexers with Latch and Common Reset

The HD10132 is a dual multiplexer with clocked D type latches. It incorporates common data select and reset inputs. Each latch may be clocked separately by holding the common clock in the low state, and using the clock enable inputs for a clocking function. If the common clock is to used to clock the latch, the clock enable(CE) inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the common clock $\left(\mathrm{C}_{\mathrm{C}}\right)$. The data select(A) input determines which data input is enabled. A high (H)
level enables data inputs D12 and D22 and a low(L) level enables data inputs D11 and D21.
Any change on the data input will be reflected at the outputs while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state a change in the information present at the data inputs will not affect the output information.
The reset input is enabled when the clock is in the high state and disabled when the clock is in the high state, and disabled when the clock is low.

IPIN ARRANGEMENT

[FUNCTION TABLE

R	D	C_{c}	$\overline{C_{\mathrm{E}}}$	$\mathrm{Q}_{\mathrm{n}+1}$
\times	L	L	L	L
L	L	L	H	Q_{n}
L	L	H	L	Q_{n}
L	L	H	H	Q_{n}
\times	H	L	L	H
L	H	L	H	Q_{n}
L	H	H	L	Q_{n}
L	H	H	H	Q_{n}
H	\times	\times	H	L

Notes) 1. Don't care.
2. $D_{n}=\left(\bar{A} \cdot D_{n_{1}}\right)+\left(A \cdot D_{n_{2}}\right)$

HD10133

Quadruple Latches

The HD10133 is a high speed, low power quad latch consisting of four bistable latch circuits with D type inputs and gated Q outputs, allowing direct wiring to a bus. When the clock is high, outputs will follow D inputs. Information is latched on the
negative going transition of the clock. The outputs are gated when the output enable $(\overline{\mathrm{G})}$ is low. All four latches may be clocked at one time with the common clock (C_{C}), or each half may be clocked separately with its clock enable (CE).

IPIN ARRANGEMENT

(Top View)

IFUNCTION TABLE

$\overline{\mathrm{G}}$	C	D	Q_{n+1}
H	\times	\times	L
L	L	\times	Q_{n}
L	H	L	L
L	H	H	H

Notes) \times : Don't care.
$\mathrm{C}=\mathrm{C}_{\mathrm{c}}+\overline{\mathrm{C}_{\mathrm{E}}}$

HD10134

Multiplexer with Latch

The HD10134 is a dual multiplexer with clocked D type latches. Each latch may be clocked separately by holding the common clock in the low state, and using the clock enable inputs for the clocking function. If the common clock is to be used to clock the latch, the clock enable(CE) inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the common $\operatorname{clock}\left(\mathrm{C}_{\mathrm{C}}\right)$.
The data select inputs determine which data input is enabled. A high (H) level on the AO input enables
data input D12 and a low(L) level on the A0 input enables data input D11. A high (H) level on the A1 input enables data input D22 and a low(L) level on the A1 input enables data input D21. Any change on the data input will be reflected at the outputs while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information.

IPIN ARRANGEMENT

(Top View)

IFUNCTION TABLE

. C	A_{0}	D_{11}	D_{12}	$\mathrm{Q}_{n \cdot 1}$
L	L	L	\times	L
L	L	H	\times	H
L	H	\times	L	L
L	H	\times	H	H
H	\times	\times	\times	Q_{n}
Notes)$\times:$ Don't care. $^{\mathrm{C}=\overline{\mathrm{C}}_{\mathrm{E}}+\mathrm{C}_{\mathrm{c}}}$				

HD10136

Universal Hexadecimal Counter

The HD10136 is a high speed synchronous counter that can count up, count down, preset, or stop count at frequencies exceeding 100 MHz . The flexibility of this device alluws the designer to use one basic counter for most applications, and the synchronous counter feature makes the HD10136 suitable for either computers or instrumentation.
Three control lines (S1, S2, and Carry In) determine the operation mode of the counter. Lines S1 and S2 determine one of four operations; preset (program), increment (count up), decrement (count down), or hold (stop count). Note that in the preset mode a clock pulse is necessary to load the counter, and the information present on the data inputs(D0, D1, D2, and D3) will be entered into the counter. Carry Out goes low on the terminal count, or when the counter is being preset.
This device is not designed for use with gated clocks. Control is via S1 and S2.

FUNCTION SELECT TABLE

S_{1}	$\mathrm{~S}_{2}{ }^{3}$	Operating Mode
L	L	Preset (Program)
L	H	Increment (Count Up)
H	L	Decrement (Count Down)
H	H	Hold (Stop Count)

Inputs								Outputs				
S_{1}	S_{2}	D_{0}	D_{1}	D_{2}	D_{3}	$\overline{\mathrm{Cin}}$	C	Q 0	Q1	Q2	Q3	$\overline{\text { Cout }}$
L	L	L	L	H	H	\times	\uparrow	L	L	H	H	L
L	H	\times	\times	\times	\times	L	\uparrow	H	L	H	H	H
L	H	\times	\times	\times	\times	L	\uparrow	L	H	H	H	H
L	H	\times	\times	\times	\times	L	\dagger	H	H	H	H	L
L	H	\times	\times	\times	\times	H	L	H	H	H	H	H
L	H	\times	\times	\times	\times	H	\uparrow	H	H	H	H	H
H	H	\times	\times	\times	\times	\times	\uparrow	H	H	H	H	H
L	L	H	H	L	L	\times	\uparrow	H	H	L	L	L
H	L	\times	\times	\times	\times	L	\uparrow	L	H	L	L	H
H	L	\times	\times	\times	\times	L	\dagger	H	L	L	L	H
H	L	\times	\times	\times	\times	L	\uparrow	L	L	L	L	L
H	L	\times	\times	\times	\times	L	\uparrow	H	H	H	H	H

Notes) $1 . \times:$ Don't care.
2. A \uparrow is defined as a clock input transition from a low to a high logic level.

HD10145

64-bit Register File (RAM)

The HD10145 is a 16 word $\times 4$-bit RAM. Bit selection is achieved by means of a 4-bit address A0 through A3. The active-low chip select allows memory expansion up to 32 words. The fast chip select access time allows memory expansion without affecting system performance. The operating mode of the RAM($\overline{C E}$ input low) is controlled by

PIN ARRANGEMENT

the $\overline{W E}$ input. With $\overline{W E}$ low the chip is in the write mode- the output is low and the data present at Dn is stored at the selected address.
With WE high the chip is in the read mode- The data state at the selected memory location is presented non-inverted at Qn.

IFUNCTION TABLE

Mode	Inputs			Output
	$\overline{\mathrm{CE}}$	$\overline{\mathrm{WE}}$	D	Q
Write "L"	L	L	L	L
Write "H"	L	L	H	L
Read	L	H	\times	Q
Disabled	H	\times	\times	L
Note) \times : Don't care				

HD10147

128-bit Random Access Memory

The HD10147 is a fast 128 -word $\times 1$-bit RAM. Bit selection is achieved by means of a 7 -bit address, AO through A6. The active-low chip selects and fast chip select access time allow easy memory expansion up to 512 words without affecting system performance. The operating mode ($\overline{\mathrm{CE}}$
input low) is controlled by the $\overline{W E}$ input. With $\overline{W E}$ low the chip is in the write mode- the output is low and the data present at Dn is stroed at the selected address. With WE high the chip is in the read mode- the data state at the selected memory location is presented non-inverted at Dout.

IPIN ARRANGEMENT

(Top View)

BLOCK DIAGRAM

[FUNCTION TABLE

Mode	Input				Output
	$\overline{\mathrm{CE}_{1}}$	$\overline{\mathrm{CE}_{2}}$	$\overline{\mathrm{WE}}$	Din	Dout
Write "L"	L	L	L	L	L
	L	L	L	H	L
Read	L	L	H	\times	Q
Disabled	H	L	\times	\times	L
	L	H	\times	\times	L

Note) \times : Don't care.

HD10148

64-bit Random Access Memory

The HD10148 is a fast 64 -word $\times 1$-bit RAM. Bit selection is achieved by means of a 6-bit address, AO through A5. The active low chip selects and fast chip select access time allow easy memory expansion up to 256 words without affecting system performance. The operating mode ($\overline{\mathrm{CE}}$

[PIN ARRANGEMENT

[FUNCTION TABLE

Mode	Inputs			Output
	CE	WE	Din	Dout
Write "L"	L	L	L	L
Write "H"	L	L	H	L
Read	L	H	\times	Q
Disabled	H	\times	\times	L

\times : Don't care.
$\overline{\mathrm{CE}}=\overline{\mathrm{CE}_{1}}+\overline{\mathrm{CE}_{2}}$
inputs low) is controlled by the WE input. With $\overline{\text { WE }}$ low the chip is in the write mode- The output is low and the data present at Din is stored at the selected address. With WE high the chip is in the read mode- the data state at the selected memory location is presented non-inverted at Dout.

BLOCK DIAGRAM

HD10160

12-bit Parity Generator/Checker

The HD10160 consists of nine Exclusive-OR gates in a single package, internally connected to provide odd parity checking or generation. Output goes high when an odd number of inputs are high.

Unconnected inputs are pulled to low logic levels allowing parity detection and generation for less than 12 bits.

PIN ARRANGEMENT

(Top View)

- FUNCTION TABLE

Inputs	Output
Sum of High Level Inputs	Y
Even	H
Odd	L

HD10161

Binary to-1-0f-8 Decoder (Low)

The HD10161 is designed to decode a three bit input word to a one of eight line output. The selected output will be low while all other outputs will be high. The enable inputs, when either or both are high, force all outputs high. The

HD10161 is a true parallel decoder.
No series gating is used internally, eliminating unequal delay time found in other decoders. This design provides the identical 4 ns delay from any address or enable input to any output.

- PIN ARRANGEMENT

FUNCTION TABLE

Enable Inputs		Inputs			Outputs							
$\overline{E_{1}}$	$\overline{\mathrm{E}_{0}}$	C	B	A	Q0	Q1	Q2	Q ${ }^{\text {a }}$	Q4	Qs	Q6	Q7
L	L	L	L	L	L	H	H	H	H	H	H	H
L	L	L	L	H	H	L	H	H	H	H	H	H
L	L	L	H	L	H	H	L	H	H	H	H	H
L	L	L	H	H	H	H	H	L	H	H	H	H
L	L	H	L	L	H	H	H	H	L	H	H	H
L	L	H	L	H	H	H	H	H	H	L	H	H
L	L	H	H	L	H	H	H	H	H	H	L	H
L	L	H	H	H	H	H	H	H	H	H	H	L
H	\times	\times	\times	\times	H	Ȟ	H	H	H	H	H	H
\times	H	\times	\times	\times	H	H	H	H	H	H	H	H

x : Don't Care

BLOCK DIAGRAM

HD 10162

Binary to-1-of-8 Decoder (High)

The HD10162 is designed to convert three lines of input data to a one-of-eight output. The selected output will be high while all other outputs are low. The enable inputs, when either or both are high, force all outputs low. The HD10162 is a true parallel decoder. No series gating is used internally,
eliminating unequal delay times found in other decoders. This device is ideally suited for demultiplexer applications. One of the two enable inputs is used as the data input, while the other is used as a data enable input.

PIN ARRANGEMENT

FUNCTION TABLE

Enable Inputs		Inputs			Outputs							
$\overline{\mathrm{E}_{0}}$	$\overline{E_{1}}$	C	B	A	Q 0	Q1	Q2	Q 3	Q4	Q5	Q6	Q ${ }_{7}$
L	L	L	L	L	H	L	L	L	L	L	L	L
L	L	L	L	H	L	H	L	L	L	L	L	L
L	L	L	H	L	L	L.	H	L	L	L	L	L
L	L	L	H	H	L	L	L	H	L	L	L	L
L	L	H	L	L	L	L	L	L	H	L	L	L
L	L	H	L	H	L	L	L	L	L	H	L	L
L	L	H	H	L	L	L	L	L	L	L	H	L
L	L	H	H	H	L	L	L	L	L	L	L	H
H	\times	\times	\times	\times	L	L	L	L	L	L	L	L
\times	H	\times	\times	\times	L	L	L	L	L	L	L	L

BLOCK DIAGRAM

HD10164

8-line Multiplexer

The HD10164 can be used whenever data multiplexing or parallel to serial conversion is desirable. Full parallel gating permits equal delays through any data path. The output of the HD10164 incorporates a buffer gate with eight data inputs
and an enable. A high level on the enable forces the output low. The HD10164 can be connected directly to a data bus, due to its open emitter output and output enable.

PIN ARRANGEMENT

IFUNCTION TABLE

Enable	Address Inputs			$*$
	C	B	A	
L	L	L	L	X_{0}
L	L	L	H	X_{1}
L	L	H	L	X_{2}
L	L	H	H	X_{3}
L	H	L	L	X_{4}
L	H	L	H	X_{5}
L	H	H	L	X_{6}
L	H	H	H	X_{7}
H	\times	\times	\times	L
$\times:$ Don't Care				

BLOCK DIAGRAM

HD10174

Dual 4-to-1 Multiplexers

PIN ARRANGEMENT

(Top View)
-BLOCK DIAGRAM

HD10175

Quintuple Latches

The HD10175 is a high speed, low power quint latch. It features five D type latches with common reset and a common two-input clock. Data is transferred on the negative edge of the clock and latched on the positive edge. The two clock inputs are "OR"ed together.
Any change on the data input will be reflected at
the outputs while the clock is low. The outputs are latches on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data inputs will not affect the output information. The reset input is enabled only when the clock is in the high state.

- PIN ARRANGEMENT

(Top View)
- FUNCTION TABLE

D	C_{0}	C_{1}	Reset	Q_{n+1}
L	L	L	L	L
H	L	L	L	H
\times	H	\times	L	Q_{n}
\times	\times	H	L	Q_{n}
\times	H	\times	H	L
\times	\times	H	H	L

\times : Don't Care

HD10179

Look-Ahead Carry Block

The HD10179 is a high speed, low power, standard ECL complex function that is designed to perform the look-ahead carry function. This device can be used with the HD10181 4-unit ALU directly, or with the HD10180 dual arithmetic unit in any computer, instrumentation or digital communication application requiring high speed arithmetic operation on long words.

PIN ARRANGEMENT

BLOCK DIAGRAM

HD10180

Dual High Speed Adders/Subtractors

The HD10180 is a high speed, low power, generalpurpose adder/subtractor. Inputs for each adder are Carry-in, operand A, and operand B; outputs
are Sum, Sum, and Carry-out. The common Select inputs serve as a control line to invert A for subtract, and a control line to invert B.

- PIN ARRANGEMENT

(Top View)

FUNCTION SELECT TABLE

$\mathrm{Sel}_{\mathrm{A}}$	$\mathrm{Sel}_{\mathrm{B}}$	Function
H	H	$\mathrm{S}=\mathrm{A}+\mathrm{B}$
H	L	$\mathrm{S}=\mathrm{A}-\mathrm{B}$
L	H	$\mathrm{S}=\mathrm{B}-\mathrm{A}$
L	L	$\mathrm{S}=0-\mathrm{A}-\mathrm{B}$

- FUNCTION TABLE

Function	Inputs					Outputs			Function	Inputs					Outputs		
	$\mathrm{Sel}_{\mathrm{A}}$	$\mathrm{Sel}_{\mathrm{B}}$	Ao	B_{0}	Cin	So	$\overline{\mathrm{S}}$	Cout		Sel_{A}	$\mathrm{Sel}_{\mathrm{B}}$	A	B	Cin	So	$\overline{\mathrm{So}}$	Cout
ADD	H	H	L	L	L	L	H	L	REVERSE SUBTRACT	L	H	L	L	L	H	L	L
	H	H	L	L	H	H	L	L		L	H	L	L	H	L	H	H
	H	H	L	H	L	H	L	L		L	H	L	H	L	L	H	H
	H	H	L	H	H	L	H	H		L	H	L	H	H	H	L	H
	H	H	H	L	L	H	L	L		L	H	H	L	L	L	H	L
	H	H	H	L	H	L	H	H		L	H	H	L	H	H	L	L
	H	H	H	H	L	L	H	H		L	H	H	H	L	H	L	L
	H	H	H	H	H	H	L	H		L	H	H	H	H	L	H	H
SUBTRACT	H	L	L	L	L	H	L	L		L	L	L	L	L	L	H	H
	H	L	L	L	H	L	H	H		L	L	L	L	H	H	L	H
	H	L	L	H	L	L	H	L		L	L	L	H	L	H	L	L
	H	L	L	H	H	H	L	L		L	L	L	H	H	L	H	H
	H	L	H	L	L	L	H	H		L	L	H	L	L	H	L	L
	H	L	H	L	H	H	L	H		L	L	H	L	H	L	H	H
	H	L	H	H	L	H	L	L		L	L	H	H	L	L	H	L
	H	L	H	H	H	L	H	H		L	L	H	H	H	H	L	L

BLOCK DIAGRAM

HD10181

4-bit Arithmetic Logic Unit/Function Generator

The HD10181 is a high-speed arithmetic logic unit capable of performing 16 logic operations and 16 arithmetic operations on two four-bit words. Full internal carry is incorporated for ripple through operation. Arithmetic logic operations are selected by applying the appropriate binary word to the select inputs (S1 through S3) as indicated in the
table of arithmetic/logic functions. Group carry propagate $\left(\mathrm{P}_{\mathrm{G}}\right)$ and carry generate $\left(\mathrm{G}_{\mathrm{G}}\right)$ are provided to allow fast operations on very long words using a second order look-ahead. The internal carry is enabled by applying a low level voltage to the mode control input (M).

FUNCTIONS OF PIN NUMBER

Pin No.	Function
$\mathrm{A}_{3}, \mathrm{~A}_{2}, \mathrm{~A}_{1}, \mathrm{~A}_{0}$	Word A Inputs
$\mathrm{B}_{3}, \mathrm{~B}_{2}, \mathrm{~B}_{1}, \mathrm{~B}_{0}$	Word B Inputs
$\mathrm{S}_{3}, \mathrm{~S}_{2}, \mathrm{~S}_{1}, \mathrm{~S}_{0}$	Function-Select Inputs
C_{n}	Ripple-Carry Input
M	Mode Control Input
$\mathrm{F}_{3}, \mathrm{~F}_{2}, \mathrm{~F}_{1}, \mathrm{~F}_{0}$	Function Outputs
P_{6}	Carry Propagate Output
C_{n+4}	Ripple-Carry Output
G_{6}	Carry-Generate Output

FUNCTION TABLE

1. Positive Logic

Function Select				$\begin{gathered} \text { Logic Function } \\ (\mathrm{M}=" \mathrm{H} ") \\ \mathrm{F} \end{gathered}$	Arithmetic Operation$\begin{gathered} \left(M=" L ", C_{n}=" L "\right) \\ F \end{gathered}$
$\overline{\mathrm{S}}_{3}$	\bar{S}_{2}	\bar{S}_{1}	\bar{S}_{0}		
L	L	L	L	$\mathrm{F}=\overline{\mathrm{A}}$	$\mathrm{F}=\mathrm{A}+0$
L	L	L	H	$\mathrm{F}=\overline{\mathrm{A}}+\overline{\mathrm{B}}$	$\mathrm{F}=\mathrm{A}+(\mathrm{A} \cdot \overline{\mathrm{B}})$
L	L	H	L	$\mathrm{F}=\overline{\mathrm{A}}+\mathrm{B}$	$\mathrm{F}=\mathrm{A}+(\mathrm{A} \cdot \mathrm{B})$
L	L	H	H	$\mathrm{F}={ }^{\text {" }} \mathrm{H}$ "	$\mathrm{F}=\mathrm{A} \times 2$
L	H	L	L	$\mathrm{F}=\overline{\mathrm{A}} \cdot \overline{\mathrm{B}}$	$\mathrm{F}=(\mathrm{A}+\mathrm{B})+0$
L	H	L	H	$\mathrm{F}=\overline{\mathrm{B}}$	$\mathrm{F}=(\mathrm{A}+\mathrm{B})+(\mathrm{A} \cdot \overline{\mathrm{B}})$
L	H	H	L	$\mathrm{F}=\mathrm{A} \cdot \mathrm{B}$	$F=A+B$
L	H	H	H	$\mathrm{F}=\mathrm{A}+\overline{\mathrm{B}}$	$\mathrm{F}=\mathrm{A}+(\mathrm{A}+\mathrm{B})$
H	L	L	L	$\mathrm{F}=\overline{\mathrm{A}} \cdot \mathrm{B}$	$\mathrm{F}=(\mathrm{A}+\overline{\mathrm{B}})+0$
H	L	L	H	$\mathrm{F}=\mathrm{A} 4, \mathrm{~B}$	$F=A-B-1$
H	L	H	L	$\mathrm{F}=\mathrm{B}$	$\mathrm{F}=(\mathrm{A}+\overline{\mathrm{B}})+(\mathrm{A} \cdot \mathrm{B})$
H	L	H	H	$\mathrm{F}=\mathrm{A}+\mathrm{B}$	$\mathrm{F}=(\mathrm{A}+\overline{\mathrm{B}})+\mathrm{A}$
H.	H	L	L	$\mathrm{F}=$ "L"	$\mathrm{F}=-1$ (two's complement)
H	H	L	H	$\mathrm{F}=\mathrm{A} \cdot \overline{\mathrm{B}}$	$\mathrm{F}=(\mathrm{A} \cdot \overline{\mathrm{B}})-1$
H	H	H	L	$\mathrm{F}=\mathrm{A} \cdot \mathrm{B}$	$\mathrm{F}=(\mathrm{A} \cdot \mathrm{B})-1$
H	H	H	H	$\mathrm{F}=\mathrm{A}$	$\mathrm{F}=\mathrm{A}-1$

2. Negative Logic

Function Select				Logic Function$\begin{gathered} (M=" H ") \\ F \end{gathered}$	Arithmetic Operation$(M=" L ", \quad C n=" H ")$
S_{3}	S_{2}	S_{1}	So		
L	L	L	L	$\mathrm{F}=\overline{\mathrm{A}}$	$\mathrm{F}=\mathrm{A}-1$
L	L	L	H	$F=\overline{A+B}$	$\mathrm{F}=\mathrm{A}+(\mathrm{A}+\overline{\mathrm{B}})$
L	L	H	L	$\mathrm{F}=\overline{\mathrm{A}} \cdot \mathrm{B}$	$\mathrm{F}=\mathrm{A}+(\mathrm{A}+\mathrm{B})$
L	L	H	H	$\mathrm{F}={ }^{\text {" }} \mathrm{L}$ "	$\mathrm{F}=\mathrm{A} \times 2$
L	H	L	L	$\mathrm{F}=\overline{\mathrm{A} \cdot \mathrm{B}}$	$\mathrm{F}=(\mathrm{A} \cdot \mathrm{B})-1$
L	H	L	H	$\mathrm{F}=\overline{\mathrm{B}}$	$\mathrm{F}=(\mathrm{A} \cdot \mathrm{B})+(\mathrm{A}+\overline{\mathrm{B}})$
L	H	H	L	$\mathrm{F}=\mathrm{A} \oplus \mathrm{B}$	$\mathrm{F}=\mathrm{A}+\mathrm{B}$
L	H	H	H	$\mathrm{F}=\mathrm{A} \cdot \overline{\mathrm{B}}$	$\mathrm{F}=\mathrm{A}+(\mathrm{A} \cdot \mathrm{B})$
H	L	L	L	$\mathrm{F}=\overline{\mathrm{A}}+\mathrm{B}$	$\mathrm{F}=(\mathrm{A} \cdot \overline{\mathrm{B}})-0$
H	L	L	H	$\mathrm{F}=\mathrm{A} \cdot \mathrm{B}$	$\mathrm{F}=\mathrm{A}-\mathrm{B}-1$
H	L	H	L	$\mathrm{F}=\mathrm{B}$	$\mathrm{F}=(\mathrm{A} \cdot \overline{\mathrm{B}})+(\mathrm{A}+\mathrm{B})$
H	L	H	H	$\mathrm{F}=\mathrm{A} \cdot \mathrm{B}$	$\mathrm{F}=(\mathrm{A} \cdot \overline{\mathrm{B}})+\mathrm{A}$
H	H	L	L	$\mathrm{F}={ }^{\text {" }} \mathrm{H}$ "	$\mathrm{F}=-\dot{-1}$ (two's complement)
H	H	L	H	$F=A+\bar{B}$	$\mathrm{F}=(\mathrm{A}+\overline{\mathrm{B}})+0$
H	H	H	L	$\mathrm{F}=\mathrm{A}+\mathrm{B}$	$\mathrm{F}=(\mathrm{A}+\mathrm{B})+0$
H	H	H	H	$\mathrm{F}=\mathrm{A}$	$\mathrm{F}=\mathrm{A}+0$

HD10181

BLOCK DIAGRAM

HD10209

Dual High Speed 4-5 input OR/NOR Gates

PIN ARRANGEMENT

CIRCUIT SCHEMATIC

HD 10210

Dual High Speed 3-input OR Gates

PIN ARRANGEMENT

(Top View)

- CIRCUIT SCHEMATIC

HD10211

Dual High Speed 3-input 3-output NOR Gates

- PIN ARRANGEMENT

■CIRCUIT SCHEMATIC

HD10230

Dual High Speed Latches

The HD10230 is a clocked dual D type latch. Each latch may be clocked separately by holding the common clock in the low state, and using the clock enable inputs for the clocking function. If the common clock is to be used to clock the latch, the clock enable (CE) inputs must be in the low state. In this mode, the enable inputs perform the function of controlling the common clock(C). Any

PIN ARRANGEMENT

(Top View)
change at the D input will be reflected at the output while the clock is low. The outputs are latched on the positive transition of the clock. While the clock is in the high state, a change in the information present at the data reset inputs do not override the clock and D inputs. They are effective only when either $\overline{\mathrm{C}}$ or $\overline{\mathrm{CE}}$ or both are high.

FUNCTION

D	$\overline{\mathrm{C}}$	$\overline{\mathrm{C}}_{\mathrm{E}}$	Q_{n+1}
L	L	L	L
H	L	L	H
\times	L	H	Q_{n}
\times	H	L	Q_{n}
\times	H	H	Q_{n}
$\times:$ Don't Care			

HD10231

Dual High Speed Type-D Master-Slave Flip Flops

The HD10231 is a dual master-slave type D flip-flop. Asynchronous $\operatorname{Set}(\mathrm{S})$ and $\operatorname{Reset}(\mathrm{R})$ override Clock ($\overline{\mathrm{C}_{\mathrm{C}}}$) and Clock Enable ($\overline{\mathrm{CE}}$) inputs. Each flip-flop may be clocked separately by holding the common clock in the low state and using the enable inputs for the clocking function. If the common clock is to be used to clock the flip-flop, the Clock Enable inputs must be in the

PIN ARRANGEMENT

(Top View)
low state. In this case, the enable inputs perform the function of controlling the common clock.
The output states of the flip-flop change on the positive transition of the clock. A change in the information present at the data(D) input will not affect the output information at any other time due. to master-slave construction.

FUNCTION TABLE

- R-S

R	S	Q_{n+1}	$\overline{\mathrm{Q}}_{n+1}$
L	L	Q_{n}	$\overline{\mathrm{Q}}_{n}$
L	H	H	L
H	L	L	H
H	H	\times	\times

x : Don't Cale

- CLOCK

C	D	Q_{n+1}
L	\times	Q_{n}
\uparrow	L	L
\uparrow	H	H

1. \times : Don't Care
2. $\mathrm{C}=\overline{\mathrm{C}}_{\mathrm{E}}+\overline{\mathrm{C}} \mathrm{C}$
3. \uparrow : transition from low to high

HITACHI
HLN041
LITERATURE NO

PRODUCTION STATUS

Device	Function	Production Status	
		Samples	Volume
HD100101	Triple 5-Input OR/NOR Gates	NOW	NOW
HD100102	Quint. 2-Input OR/NOR Gates	NOW	NOW
HD100107	Quint. Exclusive OR/NOR Gates	NOW	NOW
HD100112	Quadruple Drivers	NOW	NOW
HD100114	Quint. Differential Line Receivers	NOW	NOW
HD100117	Triple 2-Wide OR-AND/OR-AND-INVERT Gates	NOW	NOW
HD100118	5-Wide OR-AND/OR-AND-INVERT Gates	NOW	NOW
HD100122	9-Bit Buffers	NOW	NOW
HD100123	Hex Bus Drivers	NOW	NOW
HD100124	TTL to ECL Translator	3Q82	4Q82
HD100125	ECL to TTL Translator	3Q82	4Q82
HD100130	Triple D-Type Latches	NOW	NOW
HD100131	Triple D-Type Flip Flops	NOW	NOW
HD100136	4-Stage Counter/Shift Register	4Q81	1Q82
HD100141	8-Bit Shift Registers	NOW	NOW
HD100142	4×4 Content Addressable Memory	1Q82	2Q82
HD100145	16×4 Read/Write Register	NOW	NOW
HD100150	Hex D-Type Latches	NOW	NOW
HD100151	Hex D-Type Flip Flops	NOW	SEPT.
HD100155	Quad. Multiplexers/Latchers	4Q81	1Q82
HD100156	Mask-Merge	4Q81	1Q82
HD100158	8-Bit Shift Matrix	NOW	NOW
HD100160	Dual Parity Generators/Checkers	NOW	NOW
HD100163	Dual 8-Input Multiplexers	NOW	NOW
HD100164	16-Input Multiplexers	NOW	NOW
HD100165	Universal Priority Encoder	NOW	NOW
HD100166	9-Bit Comparators	NOW	NOW
HD100170	Universal Demultiplexers/ Decoders	NOW	NOW
HD100171	Triple 4-Input Multiplexers with Enable	NOW	NOW
HD100179	Carry Look-Ahead	4Q81	1Q82
HD100180	Fast 6-Bit Adder	4Q81	1Q82
HD100181	4-Bit Binary/BCD ALU	1Q82	2Q82
HD100182	9-Bit Wallace Tree Adder	2Q83	4Q83
HD100183	2×8 Bit Recoder Multiplier	2Q83	4Q83
HD100194	Quint. Duplex Bus Driver (Transceiver)	2Q83	4Q83

ECL 100K LOGIC FAMILY

100K ECL LOGIC FAMILY

CONTENTS

GENERAL INFORMATION 165
HD100107 Quintuple Exclusive-OR/NOR Gates 168
HD100112 Quadruple Drivers 168
HD100114 Quint. Differential Line Receivers 169
HD100117 Triple 2-wide OR-AND/OR-AND-INVERT Gates 170
HD100118 5-wide OR-AND/OR-AND-INVERT Gates 170
HD100122 9-bit Buffers 171
HD100123 Hex Bus Drivers 171
HD100130 Triple D-type Latches 172
HD100131 Triple D-type Flip Flops 173
HD100136 4-stage Counter/Shift Register 174
HD100141 8-bit Shift Registers 176
HD100145 16×4 Read/Write Register File 177
HD100150 Hex D-type Latches 178
HD100151 Hex D-type Flip Flops. 179
HD100155 Quad. Multiplexers/Latches 180
HD100156 Mask-merge 181
HD100158 8-bit Shift Matrix 183
HD100160 Dual Parity Generators/Checkers 185
HD100163 Dual 8-input Multiplexers 186
HD100164 16-input Multiplexer 187
HD100165 Universal Priority Encoder 188
HD100166 9-bit Comparators 190
HD100170 Universal Demultiplexers/Decoders 192
HD100171 Triple 4-input Multiplexers with Enable 193
HD100422 256-word $\times 4$-bit Fully Decoded Random Access Memory 194

100K ECL LOGIC FAMILY

GENERAL INFORMATION

1. OUTLINE

With the increase of the information mass, the computer system requires high speed, large capacity and high reliability. To satisfy the needs, development of the semiconductor components with high speed, high integration and high reliability has been needed, and the simple mounting and the easier handling were indispensable at the same time. Hitachi has developed the 100 K series which operate at a high speed (three times faster than HD10K series) and

Table 1. Comparison of the Speed-Power Product

	HD100K	HD10K	HD74	HD74S	HD74LS
Propagation Delay Time	0.75 ns	2 ns	10 ns	3 ns	10 ns
Power Dissipation	40 mW	25 mW	10 mW	20 mW	2 mW
Speed-Power Product	30 pJ	50 pJ	100 pJ	66 pJ	20 pJ

which immune from the influence by the temperature and power variations. The 100 K series employ the $3 \mu \mathrm{~m}$ fine pattern process and the ion implantation process, and that realizes the above mentioned high performances. The figures of merit at the gates of typical digital ICs are shown in table 1 and figure 1. The following tables shows the electrical characteristics of HD100K series.

Fig. 1 Propagation Delay Time vs. Power Dissipation

Table 2. Electrical Characteristics ($T a=0 \sim+85^{\circ} \mathrm{C}, V_{E E}=-4.5 \mathrm{~V}, V_{C c}$: GND)

Symbol	Item	\min	typ	\max	Unit	Conditions	
$V_{O H}$	Output Voltage High	-1025	-955	-880	mV	$V_{I N}=V_{I H \max }$	
$V_{O L}$	Output Voltage Low	-1810	-1705	-1620	mV	or $V_{I L \min }$	$R_{L}=50 \Omega$
$V_{O H A}$	Output Threshold Voltage High	-1035	-	-	mV	$V_{I N}=V_{I H \operatorname{man}}$	$V_{T T}=-2 \mathrm{~V}$
$V_{O L A}$	Output Threshold Voltage Low	-	-	-1610	mV	or $V_{I L \max }$	
$V_{I H}$	Input Voltage High	-1165	-	-880	mV		
$V_{I L}$	Input Voltage Low	-1810	-	-1475	mV		
$I_{I L}$	Input Current Low	0.5	-	-	$\mu \mathrm{A}$	$V_{I N}=V_{I L \min }$	

Table 3. Maximum Ratings

Item	Symbol	Rating	Unit
Supply Voltage*	$V_{E E}$	-7.0	V
Input Voltage*	$V_{i n}$	$0 \sim V_{E E}$	V
Output Current	I_{0}	50	mA
Surge Output Current	$I_{0(s u r g e)}$	100	mA
Junction Temperature	$T_{,}$	150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$T_{s s}$	$-65 \sim+150$	${ }^{\circ} \mathrm{C}$

* Value at $V_{c c}$ and $V_{C C A}=\mathrm{GND}$
- 24 Pin Ceramic Flat Package

Fig. 2 Packag
Fig. 2
ERIES

2. FEATURES OF HD100K SERIES

- On-chip complementary output

Built-in complementary output requires no application of inverters, and it avoids the problems of number of external parts, power dissipation, propagation delay and so on.

- High input impedance and low output impedance Due to the high input impedance (compared with TTL), more fan-out is obtained, and various circuit confideration is realized.

Table 4. Recommended Operating Conditions

Item	Symbol	Value	Unit
Operating Temperature Range	T_{A}	$0 \sim 85$	${ }^{\circ} \mathrm{C}$
Supply Voltage Range	$V_{E E}$	$-4.2 \sim-5.7$	V

- 24 Pin Ceramic Dual-in-line Package (HD100K Series)

(Dimensions in $\mathbf{m m}$)

- Stability

Built-in temperature and voltage compensation circuits assure the stable output characteristics within all the temperature and the voltage ranges.

- Compatibility

HD100K series is fully compatible with F100K series on pin configulation, functions and characteristics.

3. DEFINITION OF SYMBOLS AND TESTING METHOD

3.1. DC Characteristics

Note) 1. All outputs are loaded with 50Ω to GNG ($50 \Omega \pm 1 \%$) 2. Decoupling $0.1 \mu \mathrm{~F}(25 \mathrm{~V})$ from GND to $V_{C c}$ and $V_{E E}$ 3. The tolerance of to shall be $\pm 2{ }^{\circ} \mathrm{C}$

HD100101

Triple 5-input OR/NOR Gates

PIN ARRANGEMENT

- LOGIC DIAGRAM

HD100102

Quintuple 2-input OR/NOR Gates

PIN ARRANGEMENT
LOGIC DIAGRAM

HD100107

Quintuple Exclusive-OR/NOR Gates

PIN ARRANGEMENT

HD100112

Quadruple Drivers

Quint. Differential Line Receivers

The HD100114 is a Quint. Differential Amp. with emitterfollower outputs. An internal reference supply (VBB) is available for single ended reception. Active current sources provide common mode rejection of 1.5 V in either the
positive or negative direction.
A defined output state exists if both inputs are at the same potential between and including -VEE and VCC. The defined state is logic high on outputs $\mathbf{Y n}$.

PIN ARRANGEMENT

-truth table

Input		Output	
A_{n}	B_{n}	Y_{n}	$\overline{\mathrm{Y}}_{\mathrm{n}}$
H	$V_{B B}$	H	L
L	$V_{B B}$	L	H
$V_{B B}$	H	L	H
$V_{B B}$	L	H	L
$\mathrm{A}_{\mathrm{n}}-\mathrm{B}_{\mathrm{n}} \geqq 0.15 \mathrm{~V}$		H	L
$\mathrm{A}_{\mathrm{n}}-\mathrm{B}_{\mathrm{n}} \leqq 0.0 \mathrm{~V}$		L	H
$0.0<\mathrm{A}_{\mathrm{n}}-\mathrm{B}_{\mathrm{n}}<0.15 \mathrm{~V}$	F	F	
Open $^{V_{c c}}$	Open	L	H
$V_{E E}$	$V_{c c}$	L	H

$\mathrm{H}=$ High level
L-Low level
$V_{s t}$ - Base bias voltage

* - Undefined
- logic diagram

$D-V_{B B}$

HD100117

Triple 2-wide OR-AND/OR-AND-INVERT Gates

PIN ARRANGEMENT

HD100118

5-wide OR-AND/OR-AND-INVERT Gates

9-bit Buffers

The HD100122 contains nine independent, high speed, buffer gates each with a single input and a single output. The gates are non-inverting. These buffers are useful in bus
oriented systems where minimal output loading or bus isolation is desired.

PIN ARRANGEMENT

Note) NC: No connection

The HD1001 23 contains six bus drivers capable of driving terminated lines with terminations as low as 25Ω. To reduce crosstalk, each output has its respective ground connection and transition times were designed to be longer than on other HD100K devices.
The driver itself performs the positive logic AND of a data input (A, B inputs) and the OR of two select inputs (C, D
inputs).
The output voltage low level is designed to be more negative than normal ECL outputs.
This allows an emitter-follower output transistor to turn off when the termination supply is $-2.0 \mathrm{~V} \pm 10 \%$, and thus present a high impedance to the data bus.

PIN ARRANGEMENT

logic diagram

Triple D-type Latches

The HD100130 contains three D-type latches with true and complement outputs and with Common Enable (Ec), Master Set (MS) and Master Reset (MR) inputs. Each latch has its own Enable ($\overline{\mathrm{E}} \mathrm{n}$), Direct Set (SDn) and Direct Clear (CDn) inputs.
The \mathbf{Q} output follows its Data (D) input when both $\overline{\text { En }}$ and
$\overline{\mathrm{Ec}}$ are low. When either $\overline{\mathrm{En}}$ or $\overline{\mathrm{Ec}}$ or both are high, a latch stores the last valid data present on its Dn input before En or Ec went high. Both Master Reset (MR) and Master Set (MS) inputs override the Enable inputs.
The individual CDn and SDn also override the Enable inputs.

PIN ARRANGEMENT

logic diagram

ITRUTH TABLE

D_{n}	$\overline{\mathrm{E}_{n}}$	$\overline{\mathrm{E}}$	MS SD_{n}	MR CD_{n}	\mathbf{Q}_{n}
L	L	L	L	L	L
H	L	L	L	L	H
\times	H	\times	L	L	$*$
\times	\times	H	L	L	$*$
\times	\times	\times	H	L	H
\times	\times	\times	L	H	L
\times	\times	\times	H	H	U

H-High level
L-Low level
x-Immaterial
\# - Ratains data present before $\overline{\mathrm{E}}$ positive transition
U - Undefined

Triple D-type Flip Flops

The HD100131 contains three D-type Master-Slave Flip Flops with true and complement outputs, a Common Clock (CPc), and Master Set (MS) and Master Reset (MR) inputs. Each flip-flop has individual clocks (CPn), Direct Set (SDn) and Direct Clear (CDn) inputs. Data enters a master when
both CPn and CPc are low and transfers to a slave when CPn or CPc (or both) go high.
The Master Set, Master Reset and individual CDn and SDn inputs override the Clock inputs.

- PIN ARRANGEMENT

TRUTH TABLE

D_{n}	CPn	$\mathrm{CP}_{\text {c }}$	$\begin{aligned} & \hline \text { MS } \\ & \text { SD }_{n} \end{aligned}$	$\begin{aligned} & \hline \mathrm{MR} \\ & \mathrm{CD}_{\mathrm{n}} \end{aligned}$	$\mathrm{Q}_{\mathrm{n}+1}$
L	\dagger	L	L	L	L
H	\dagger	L	L	L	H
L	L	1	L	L	L
H	L	\dagger	L	L	H
\times	H	\times	L	L	Q
\times	\times	H	L	L	Qn
\times	\times	\times	H	L	H
\times	\times	\times	L	H	L
\times	\times	\times	H	H	U

$\mathrm{H}=$ High level
L - Low level
X - Immaterial
$\mathbf{U}=$ Undefined
$\uparrow=$ Clock transition from low level to high level

HD100136

4-stage Counter/Shift Register

The HD100136 operates as either a modulo-16 up/down counter or as a 4-bit bidirectional shift register. Three Select (Sn) inputs determine the mode of operation, as shown in the mode select table. Two Count Enable (CEP, $\overline{\text { CET }) ~ i n p u t s ~ a r e ~ p r o v i d e d ~ f o r ~ e a s e ~ o f ~ c a s c a d i n g ~ i n ~ m u l t i-~}$ stage counters. One Count Enable (CET) input also doubles as a Serial Data (Do) input for shift-up operation.
For shift-down operation D_{3} is the Serial Data input. In counting operations the Terminal Count (TC) output goes low when the counter reaches 15 in the count/up mode or 0 in the count/down mode. In the shift modes, the TC
output repeats the Q_{3} output. The dual nature of this $\overline{\mathrm{TC}} / \mathrm{Q}_{3}$ output and the $\mathrm{Do} / \mathrm{CET}$ input means that one interconnection from one stage to the next higher stage serves as the link for multi-stage counting or shift-up operation. The individual Preset (Pn) inputs are used to enter data in parallel or to preset the counter in programmable counter applications A high signal on the Master Reset (MR) input overrides all other inputs and asynchronously clears the fli-flops. In addition, asynchronous clear is provided, as well as a complement function which synchronously inverts the contents of the flip-flops.

PIN ARRANGEMENT

FUNCTION SELECT TABLE

S_{0}	S $_{1}$	S $_{2}$	Function
L	L	L	Load
L	H	L	Shift down
H	H	L	Shift up
L	L	H	Count down
L	H	H	Count up
H	H	H	Hold
H	L	L	Complement
H	L	H	Clear
H - High level L $=$ Low level			

IN												OUT					Mode
So	S_{1}	$\mathrm{S}_{\mathbf{2}}$	$\mathrm{C}_{\text {P }}$	M_{k}	CEP	D $/$ /CET	D_{3}	P_{3}	P_{2}	P_{1}	P_{0}	Q	Q 2	Q	Q 0	TC	
L	L	L	\dagger	L	\times	\times	X	H	L	H	H	H	L	H	H	L	Load H
H	H	H	1	L	\times	\times	x	\times	\times	x	\times	H	L	H	H	H	Hold
L	H	H	1	L	L	L	\times	\times	x	\times	\times	H	H	L	L	H	Count up(max)
L	H	H	\dagger	L	L	L	\times	x	\times	\times	x	H	H	L	H	H	
L	H	H	1	L	L	L	\times	x	x	\times	\times	H	H	H	L	H	
L	H	H	1	L	L	L	\times	x	\times	x	\times	H	H	H	H	L	
L	H	H	\dagger	L	L	L	x	\times	x	\times	x	L	L	1	L	H	
L	H	H	1	L	L	L	x	. \times	x	x	x	L	L	L	H	H	
L	H	H	\times	L	L	H	\times	\times	\times	\times	\times	L	L	L	H	H	(CET inhibit)
L	H	H	\times	L	H	L	x	\times	\times	\times	\times	L	L	L	H	H	(CEP inhibit)
H	H	H	\dagger	L	\times	\times	\times	L	H	L	L	L	H	L	L	L	Load ${ }^{\text {r }}$
L	L	H	1	L	L	L	\times	\times	\times	\times	x	L	L	H	H	H	Count down(men)
L	L	H	1	L	L	L	\times	\times	\times	\times	\times	L	L	H	L	H	
L	L	H	\dagger	L	L	L	x	x	x	x	x	L	L	L	H	H	
L	L	H	1	L	L	L	\times	\times	x	x	x	L	L	L	L	L	
L	L	H	\dagger	L	L	L	x	\times	\times	x	x	H	H	H	H	H	
L	L	H	1	L	L	L	\times	\times	\times	\times	\times	H	H	H	L	H	
H	L	L	1	L	\times	\times	x	\times	\times	\times	\times	L	L	L	H	L	Complement
H	L	H	1	L	\times	L	\times	\times	\times	\times	\times	L	L	L	L	H	Clear
H	H	L	\dagger	L	x	H	L	x	x	\times	x	L	L	L	H	L	Shift up
H	H	L	\dagger	L	\times	L	L	x	x	x	x	L	L	H	L	L	
H	H	L	\dagger	L	\times	H	L	\times	\times	x	\times	L	H	L	H	L	
H	H	L	\dagger	L	\times	L	L	\times	\times	\times	x	H	L	H	L	H	
\times	\times	\times	\times	H	\times	\times	\times	\times	\times	x	\times	L	L	L	L	L	Clear(MR)
L	H	L	\dagger	L	x	L	H	\times	\times	\times	\times	H	L	L	L	H	Shift down
L	H	L	1	L	\times	L	L	\times	\times	\times	\times	L	H	L	L	L	
L	H	L	\dagger	L	x	L	H	\times	\times	\times	x	H	L	H	L	H	
L	H	L	1	L	\times	L	L	\times	\times	\times	\times	L	H	L	H	L	
x-Immaterial $\dot{\sim}-$ each LOAD data 1-CP positive transition																	

- logic diagram

8-bit Shift Registers

The HD100141 contains eight clocked D-type flip flops with individual inputs ($\mathbf{P n}$) and outputs (Qn) for parallel operation, and with serial inputs (Dn) and steering logic for bidirectional shifting.
The flip flops accept input data a set-up time before the positive-going transition of the clock pulse and their
outputs respond a propagation delay after this rising clock edge.
The circuit operating mode is determined by the Select inputs S_{0} and S_{1}, which are internally decoded to select either "parallel entry", "hold", "shift left" or "shift right" as described in the Function Sheet Table.

PIN ARRANGEMENT

LOGIC SYMBOL

FUNCTION SHEET TABLE

Function	Input					Output							
	D_{7}	D 0	S_{1}	So	CP	Q,	Q6	Qs	Q.	Q	Q_{2}	Q ${ }_{1}$	Q。
Load Register	x	X	L	L	\uparrow	P_{7}	P_{6}	P_{5}	P،	P_{3}	P_{2}	P_{1}	Po
Shift Left	X	L	L	H	1	Qs	Qs	Q	Q ${ }_{3}$	Q \mathbf{Q} $\mathbf{2}$	Q_{1} Q_{1}	Qo	L
	X	H	L	H	\dagger	Q.	Qs	Q.	Qs	Q_{2}	Q ${ }_{1}$	Q 0	H
Shift Right Shift Right	$\begin{aligned} & \mathrm{L} \\ & \mathrm{H} \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathbf{x} \end{aligned}$	$\begin{aligned} & \mathbf{H} \\ & \mathbf{H} \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{~L} \end{aligned}$	t	L	$\begin{aligned} & \mathbf{Q}_{1} \\ & \mathbf{Q}_{1} \end{aligned}$	$\begin{aligned} & Q_{6} \\ & Q_{0} \end{aligned}$	$\begin{aligned} & Q_{s} \\ & Q_{s} \end{aligned}$	$\begin{aligned} & Q_{1} \\ & Q_{1} \end{aligned}$	$\begin{aligned} & Q_{3} \\ & Q_{3} \end{aligned}$	Q_{2} Q_{2}	Q_{1} Q_{1}
Hold	X	X	H	H	X	\square No Change \longrightarrow No Change $\longrightarrow$$\square$							
Hold	x	X	x	X	H								
Hold	x	X	x	X	L								

[^8]

LOGIC DIAGRAM

HD100150

Hex D-Type Latches

PIN ARRANGEMENT

lOGIC DIAGRAM

HD100151

Hex D-type Flip Flops

HD100151 contains six master/slave flip flops with True and Complement outputs. A pair of Common Clock inputs (CPa and CPb) and common Master Reset (MR) input. Data enters a master when both CPa and CPb are low and
transfers to the slave when CPa or CPb (or both) go high. The MR inputs overrides all other inputs and makes the \mathbf{Q} outputs low.

PIN ARRANGEMENT

TRUTH TABLE (Each Flip Flop)

D.	CP.	CP.	MR	Qn (t+1)
L	\checkmark	L	L	L
H	\checkmark	L	L	H
L	L	Γ	L	L
H	L	Γ	L	H
\times	H	,	L	Qu(t)
\times	-	H	L	Qn(t)
\times	\times	\times	H	L

x. Immaterial
$t, t+1:$ Time before and after CP positive transition

LOGIC DIAGRAM

HD100155

Quad. Multiplexers/Latches

The HD 100155 contains four transparent latches, each of which can accept and store data from two sources. When both Enable (En) inputs are low, the data that appears at an output is controlled by the Select ($\mathbf{S n}$) inputs, as shown in the operating mode table. In addition to routing data from either D_{0} or D_{1}, the Select inputs can force the outputs low for the case where the latch is transparent (both Enables are low) and can steer a high signal from either D_{0} or D_{1} to an output. The Select inputs can be tied together for applications requiring only that data be steered from either D_{0} or D_{1}.
A positive-going signal on either Enable input latches the outputs. A high signal on the Master Reset (MR) input overrides all the other inputs and forces the Q outputs low.

TRUTH TABLE

Input							Output	
MR	\bar{E}_{1}	\bar{E}_{2}	S_{1}	$\overline{\mathbf{S}}$	$\begin{aligned} & \hline D_{12} \\ & D_{16} \\ & D_{16} \\ & D_{1 d} \end{aligned}$	$\begin{aligned} & \mathrm{D}_{00} \\ & \mathrm{D}_{00} \\ & \mathrm{D}_{00} \\ & \mathrm{D}_{0 \mathrm{~d}} \end{aligned}$	$\begin{aligned} & \overline{Q_{a}} \\ & \frac{Q_{0}}{Q_{c}} \\ & \overline{Q_{d}} \end{aligned}$	Q_{d} Q_{b} Q_{c} Q_{d}
H	\times	\times	\times	\times	\times	\times	H	L.
L	L	L	H	H	H	\times	L	H
L	L	L	H	H	L	\times	H	L
L	L	L	L	L	\times	H	L	H
L	L	L	L	L	x	L	H	L
L	L	L	L	H	\times	\times	H	L
L	L	L	H	L	H	\times	L	H
L	L	L	H	L	\times	H	L	H
L	L	L	H	L	L	L	H	L
L	H	\times	\times	\times	\times	\times	No	Change
L	\times	H	\times	\times	\times	\times	No	Change
$\begin{aligned} & \text { H H Hıgh Level } \\ & \text { L }=\text { Low Level } \\ & \text { X }=\text { Immaterial } \end{aligned}$								

LOGIC DIAGRAM

- OPERATING MODE TABLE

CONTROLS				OUTPUT
\bar{E}_{1}	$\overline{E_{2}}$	$\overline{\text { S }}$	S_{1}	Q_{n}
H	\times	\times	\times	latched*
\times	H	\times	\times	latched*
L	L	L	L	Do.
L	L	L	H	$\mathrm{D}_{0 \times}+\mathrm{D}_{1}$
L	L	H	L	L
L	L	H	H	D.

H-High Level
L- Low Level
x - Immaterial

* - Stores deta present before E went high.

PIN ARRANGEMENT

Mask-merge

The HD100156 merges two 4-bit words to form a 4-bit output word. The AMj enable allows the merge of An into Bn by one, two, or three places (per the ASj value) from the left. The BMj enable similarly allows the merge of Bn into An from the left (per the BSj value). The Bn merge overrides the An merge when both are enabled.
This means An first merges into Bn and Bn then merges
into the An merge. A Bn address (BSj) greater than or equal to the An address (ASj) thus forces the outputs to all Bn .
The merge outputs feed 4 latches, which have a common enable (E) input. All inputs have a $50 \mathrm{k} \Omega$ (typ.) pull-down resistor tied to VEE.
All four outputs do not have pull-down resistors, so they have wired-OR capability and will require external resistors.

PIN ARRANGEMENT

LOGIC DIAGRAM

- TRUTH TABLE

Input									Output			
BM ${ }_{1}$	BM.	AM_{1}	AM ${ }^{\text {a }}$	BS ${ }_{1}$	BS 0	AS_{1}	AS	\bar{E}	$\overline{\text { Q }}$	$\overline{Q_{1}}$	$\overline{Q_{2}}$	$\overline{Q_{3}}$
\times	\times	H	\times	\times	x	x	\times	L	Bo	B_{1}	B_{2}	B3
H	\times	L	Bo	B_{1}	B_{2}	B,						
L	L	L	L	\times	x	\times	\times	L	A	Ar	A_{2}	A_{1}
L	L	L	H	\times	\times	L	L	L	Bo	B_{1}	B_{2}	B,
L	L	L	H	\times	\times	L	H	L	A	B_{1}	B_{2}	B)
L	L	L	H	\times	\times	H	L	L	A_{0}	A_{1}	B_{2}	B_{3}
L	L	L	H	\times	\times	H	H	L	A_{0}	A_{1}	A_{2}	B_{3}
L	H	L	L	L	L	\times	\times	L	A_{0}	A_{1}	A_{2}	A_{3}
L	H	L	L	L	H	x	x	L	Bo	A_{1}	A_{2}	A_{1}
L	H	L	L	H	L	\times	\times	L	Bo	B_{1}	A_{2}	A_{3}
L	H	L	L	H	H	\times	\times	L	Bo	B_{1}	B_{2}	A_{3}
L	H	L	H	L	L	L	H	L	A_{0}	B_{1}	B_{2}	B_{3}
L	H	L	H	L	L	H	L	L	A_{0}	A_{1}	B_{2}	B_{3}
L	H	L	H	L	L	H	H	L	A	A_{1}	A_{2}	. B_{3}
L	H	L	H	L	H	H	L	L	B_{0}	A_{1}	B_{2}	B_{3}
L	H	L	H	L	H	H	H	L	Bo	A_{1}	A_{2}	B,
L	H	L	H	H	L	H	H	L	Bo	B_{1}	A_{2}	B3
L	H	L	H	H	H	H	H	L	Bo	B_{1}	B_{2}	Bs
L	H	L	H	H	H	H	L	L	Bo	B_{1}	B_{2}	B_{3}
L	H	L	H	H	H	L	H	L	Bo	B_{1}	B_{2}	B_{3}
L	H	L	H	H	H	L	L	L	Bo	B_{1}	B_{2}	B_{3}
L	H	L	H	H	L	H	L	L	Bo	B_{1}	B_{2}	B_{3}
L	H	L	H	H	L	L	H	L	Bo	B_{1}	B_{2}	B_{3}
L	H	L	H	H	L	L	L	L	B.	B_{1}	B_{2}	B_{3}
L	H	L	H	L	H	L	H	L	Bo	B_{1}	B_{2}	Bs
L	H	L	H	L	H	L	L	L	Bo	B_{1}	B_{2}	B3
L	H	L	H	L	L	L	L	L	Bo	B_{1}	B_{2}	B_{3}
\times	H	Q。	Q ${ }_{1}$	Q2	Q ${ }^{\text {a }}$							

8-bit Shift Matrix

The HD100158 contains a combinatorial network which performs the function of an 8 -bit shift matrix. Three control lines (Sn) are internally decoded and define the number of places which an 8 -bit word present at the inputs (Dn) is shifted to the left and presented at the outputs $\left(\mathrm{Z}_{\mathrm{n}}\right)$. A Mode Control input (M) is provided which if low, forces low all outputs to the right of the one that contain
D_{7}. This operation is sometimes referred to as "low back fill".
If M is high, an end-round shift is performed such that D_{0} appears at the output to the right of the one that contains D_{7}.
This operation is commonly referred to as "barrel shif ting".

PIN ARRANGEMENT

- truth table

INPUT				OUTPUT							
M	So	S_{1}	S_{2}	Z	Z_{1}	Z_{2}	Z_{3}	$\mathrm{Z} \cdot$	Z_{5}	Z6	Z_{7}
\times	L	L	L	D_{0}	D_{1}	D_{2}	D_{3}	D.	D_{5}	D_{6}	D_{7}
L	H	L	L	D_{1}	D_{2}	D_{3}	D_{1}	D_{5}	D_{6}	D_{7}	L
L	L	H	L	D_{2}	D_{3}	D ${ }^{\text {d }}$	D_{5}	D_{6}	D_{7}	L	L
L	H	H	L	D_{3}	D.	D_{5}	D_{6}	D_{7}	L	L	L
L	L	L	H	D.	D_{5}	D_{6}	D_{7}	L	L	L	L
L	H	L	H	D_{5}	D_{6}	D_{7}	L	L	L	L	L
L	L	H	H	D_{6}	D_{7}	L	L	L	L	L	L
L	H	H	H	D_{7}	L	L	L	L	L	L	L
H	H	L	L	D_{1}	D_{2}	D_{3}	D.	D_{5}	D_{6}	D_{7}	D_{0}
H	L	H	L	D_{2}	D_{3}	D.	D_{5}	D_{6}	D_{7}	D_{0}	D_{1}
H	H	H	L	D_{3}	D.	D_{5}	D_{6}	D_{7}	D_{0}	D_{1}	D_{2}
H	L	L	H	D.	D_{5}	D_{6}	D_{7}	D_{0}	D_{1}	D_{2}	D_{3}
H	H	L	H	D_{5}	D_{6}	D_{7}	D_{0}	D_{1}	D_{2}	D_{1}	D_{1}
H	L	H	H	D ${ }^{6}$	D_{7}	D_{0}	D_{1}	D_{2}	D ${ }^{\text {d }}$	D ${ }^{\text {d }}$	D_{5}
H	H	H	H	D_{7}	D_{0}	D_{1}	D_{2}	D_{3}	D.	D_{5}	D ${ }_{6}$

$\mathrm{H}=\mathrm{High}$ level
L-Low level
X-Immaterial

HD100160

Dual Parity Generators/Checkers

- PIN ARRANGEMENT

EOGIC DIAGRAM

TRUTH TABLE (each half)

Sum of High Input	Output Z
EVEN	H
ODD	L

Dual 8-input Multiplexers

© PIN ARRANGEMENT

HD100164

16-input Multiplexer

PNARANCEMENT

logic diagram

The HD100165 contains eight input latches with a Common Enable ($\overline{\mathrm{E}}$) followed by encoding logic which generates the binary address of the highest priority input having a high signal. The circuit operates as a dual 4 -input encoder when the Mode Control input (M) is low, and as a single 8 -input encoder when M is high.
In the 8 -input mode, $\mathrm{Q}_{0}, \mathrm{Q}_{1}$ and Q_{2} are the relevant outputs, I_{0} is the highest priority input and GS $_{1}$ is the relevant Group Signal output. In the dual mode, $\mathrm{Q}_{0}, \mathrm{Q}_{1}$
and GS_{1} operate with $\mathrm{I}_{0}-\mathrm{I}_{3}, \mathrm{Q}_{2}, \mathrm{Q}_{3}$ and GS_{2} operate with $\mathrm{I}_{4}-\mathrm{I}_{7}$.
A GS output goes low when its pertinent inputs are all low. Inputs are latched wher $\overline{\mathrm{E}}$ goes high. A high signal on the Output Enable ($\overline{(O E)}$ input forces all Q outputs low and GS outputs high. Expansion to acommodate more inputs can be done by connecting the GS output of a higher priority group to the $\overline{\mathrm{OE}}$ input of the next lower priority group.

\square PIN ARRANGEMENT

TRUTH TABLE

$\overline{\mathbf{E}}$	OE	M	Io	I_{1}	I_{2}	I_{3}	I 4	Is	I6	I7	Q。	Q1	Q 2	Q3	GS ${ }_{1}$	GS ${ }_{2}$
L	L	L	H	\times	\times	\times									H	
L	L	L	L	H	\times	\times					H	L			H	
L	L	L	L	L	H	\times					L	H			H	
L	L	L	L	L	L	H					H	H			H	
L	L	L	L	L	L	L					L	L			L	
L	L	L					H	\times	\times	\times			L	L		H
L	L	L					L	H	\times	\times			H	L		H
L	L	L					L	L	H	\times			L	H		H
L	L	L					L	L	L	H			H	H		H
L	L	L					L			L			L	L		L
L	L	H	H	\times	L	L	L	L	H	H						
L	L	H	L	H	\times	\times	\times	\times	\times	\times	H	L	L	L	H	H
L	L	H	L	L	H	\times	\times	\times	\times	\times	L	H	L	L	H	H
L	L	H	L	L	L	H	\times	\times	\times	\times	H	H	L	L	H	H
L	L	H	L	L	L	L	H	\times	\times	\times	L	L	H	L	H	H
L	L	H	L	L	L	L	L	H	\times	\times	H	L	H	L	H	H
L	L	H	L	L	L	L	L	L	H	\times	L	H	H	L	H	H
L	L	H	L	L	L	L	L	L	L	H	H	H	H	L	H	H
L	L	H	L	L	L	L	L	L	L	L	L	L	L	L	L	H
\times	H	\times	L	L	L	L	H	H								
H	L	L	\times	*	*	*	*	*	*							
H	L	H	\times	*	*	*	*	*	*							
$\begin{aligned} & -\mathrm{H}_{1} \\ & =\mathrm{L} 0 \\ & -\mathrm{St} \end{aligned}$	evel evel data	b	$\overline{\mathrm{E}}$ w													

HD100166

9-bit Comparators

The HD100166 is a 9-bit Magnitude Comparator which compares the arithmetic value of two 9 -bit words and indicates whether one word is greater than, or equal to the other.

The outputs do not have pull down resistors, which provides the wire OR functions by tying several outputs together.

- PIN ARRANGEMENT

■ LOGIC DIAGRAM

TRUTH TABLE

				Input						Output	
As Ba	$\mathrm{A}_{7} \mathrm{~B}_{7}$	A6 B6	$\mathrm{A}_{5} \mathrm{~B}_{5}$	A4 B4	$\mathrm{A}_{3} \quad \mathrm{~B}_{3}$	$\mathrm{A}_{2} \quad \mathrm{~B}_{2}$	$\mathrm{A}_{1} \quad \mathrm{~B}_{1}$	$\mathrm{A}_{0} \mathrm{~B}_{0}$	$A>B$	B $>\mathrm{A}$	$\overline{\mathrm{A}-\mathrm{B}}$
									H	L	H
L H									L	H	H
$A_{1}=B_{3}$	H L								H	L	H
$A_{t}-B_{1}$	L H								L	H	H
$A_{1}=B_{2}$	$\mathrm{A}_{7}=\mathrm{B}_{7}$	H L							H	L	H
$A_{1}-B_{2}$	$\mathrm{A}_{7}=\mathrm{B}_{7}$	L H							L	H	H
$A_{s}=B_{3}$	$\mathrm{A}_{7}=\mathrm{B}_{7}$	$\mathrm{A}_{6}=\mathrm{B}_{6}$	H L						H	L	H
$A_{8}-B_{3}$	$A_{7}=B_{7}$	$A_{6}-B_{6}$	L H						L	H	H
$A_{s}=B_{s}$	$\mathrm{A}_{7}=\mathrm{B}_{7}$	$A_{6}-B_{6}$	$A_{s}=B_{5}$						H	L	H
$A_{8}=B_{8}$	$A_{7}=B_{7}$	$A_{6}=B_{6}$	$A_{5}=B_{5}$	L H					L	H	H
$A_{s}=B_{s}$	$\mathrm{A}_{7}-\mathrm{B}_{7}$	$A_{6}=B_{6}$	$A_{s}=B_{s}$	$A_{4}=B_{4}$	H L				H	L	H
$A_{8}=B_{8}$	$\mathrm{A}_{7}=\mathrm{B}_{7}$	$A_{6}=B_{6}$	$A_{s}=B_{s}$	$A_{1}=B_{4}$	$\mathrm{L} \quad \mathrm{H}$				L	H	H
$A_{8}=B_{8}$	$A_{7}=B_{7}$	$A_{6}=B_{6}$	$A_{5}=B_{5}$	$A_{4}=B_{4}$	$A_{3}=B_{3}$				H	L	H
$A_{8}=B_{8}$	$\mathrm{A}_{7}=\mathrm{B}_{7}$	$A_{6}=B_{6}$	$A_{5}=B_{5}$	$A_{4}=B_{4}$	$A_{3}=B_{3}$	L H			L	H	H
$A_{s}=B_{8}$	$\mathrm{A}_{7}=\mathrm{B}_{7}$	$A_{6}=B_{6}$	$A_{5}=B_{5}$	$A_{4}=B_{4}$	$A_{3}=B_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	H L		H	L	H
$A_{8}=B_{8}$	$A_{7}=B_{7}$	$A_{6}=B_{6}$	$A_{s}=B_{5}$	$A_{4}=B_{4}$	$A_{3}=B_{3}$	$A_{2}=B_{2}$	L H		L	H	H
$A_{8}=B_{8}$	$\mathrm{A}_{7}=\mathrm{B}_{7}$	$A_{6}=B_{6}$	$A_{5}=B_{5}$	$A_{4}=B_{4}$	$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$\mathrm{A}_{1}=\mathrm{B}_{1}$		H	L	H
$A_{8}=B_{8}$	$\mathrm{A}_{7}=\mathrm{B}_{7}$	$A_{6}=B_{6}$	$A_{5}=B_{5}$	$A_{4}=B_{4}$	$A_{3}=B_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$A_{1}=B_{1}$	L H	L	H	H
$A_{8}=B_{8}$	$A_{7}=B_{7}$	$A_{6}=B_{6}$	$A_{s}=B_{s}$	$A_{1}=B_{4}$	$\mathrm{A}_{3}=\mathrm{B}_{3}$	$\mathrm{A}_{2}=\mathrm{B}_{2}$	$A_{1}=B_{1}$	$\mathrm{A}_{0}=\mathrm{B}_{0}$	L	L	L
H - High Level											
Blank = Don't care											

Universal Demultiplexers/Decoders

- PIN ARRANGEMENT

- LOGIC DIAGRAM

TRUTH TABLE

- Dual 1-of-4 Mode ($M=A_{24}=H_{c}=L$)

Input				Active High Output ($\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}=\mathrm{H}$)				Active Low Output$\left(\mathrm{H}_{\mathrm{a}}, \mathrm{H}_{\mathrm{b}}=\mathrm{L}\right)$			
$\begin{aligned} & \overline{E_{11}} \\ & \overline{E_{b 1}} \end{aligned}$	$\begin{aligned} & \overline{E_{\mathrm{a}_{2}}} \\ & \overline{\mathrm{E}_{2}} \end{aligned}$	$\begin{aligned} & \mathbf{A}_{16} \\ & \mathrm{~A}_{16} \end{aligned}$	$\begin{aligned} & A_{04} \\ & A_{00} \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{00} \\ & \mathrm{Z}_{00} \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{10} \\ & \mathrm{Z}_{10} \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{2 \mathrm{~b}} \\ & \mathrm{Z}_{2 \mathrm{~b}} \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{3 \mathrm{a}} \\ & \mathrm{Z}_{3 \mathrm{~b}} \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{00} \\ & \mathrm{Z}_{00} \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{10} \\ & \mathrm{Z}_{16} \end{aligned}$	$\begin{aligned} & \mathrm{Z}_{26} \\ & \mathrm{Z}_{2 \mathrm{~b}} \end{aligned}$	Z_{3}. Z_{36}
H	\times	\times	\times	L	L	L	L	H	H	H	H
\times	H	\times	\times	L	L	L	L	H	H	H	H
L	L	L	L	H	L	L	L	L	H	H	H
L	L	L	H	L	H	L	L	H	L	H	H
L	L	H	L	L	L	H	L	H	H	L	H
L	L	H	H	L	L	L	H	H	H	H	L

- Single 1-of-8 Mode ($M=H: A_{0 b}=A_{1 b}=H_{t}=H_{b}=L$)

Input					Active High Output$\left(\mathrm{H}_{\mathrm{c}}-\mathrm{H}\right)$							
$\overline{E_{1}}$	$\overline{E_{2}}$	A_{20}	A_{1}.	A_{0}	Z。	Z_{1}	Z_{2}	Z_{3}	Z.	Z	Z。	Z,
H	\times	\times	\times	\times	L	L	L	L	L	L	L	L
\times	H	\times	\times	\times	L	L	L	L	L	L	L	L
L	L	L	L	L	H	L	L	L	L	L	L	L
L	L	L	L	H	L	H	L	L	L	L	L	L
L	L	L	H	L	L	L	H	L	L	L	L	L
L	L	L	H	H	L	L	L	H	L	L	L	L
L	L	H	L	L	L	L	L	L	H	L	L	L
L	L	H	L	H	L	L	L	L	L	H	L	L
L	L	H	H	L	L	L	L	L	L	L	H	L
L	L	H	H	H	L	L	L	L	L	L	L	H

* for H_{c}-Low, Output states are complemented.

HD100171

Triple 4-input Multiplexers with Enable

- LOGIC DIAGRAM

256-word \times 4-bit Fully Decoded Random Access Memory

The HM 100422 is ECL 100 K compatible, $7^{\circ} 0$-word $\times 4$-bit, read/write, random access memory developed for high speed system such as scratch pads and control/buffer storages.
Four active low Block Select lines are provided to select each block independently.
The fabrication process uses the Hitachi's low capacitance, oxide isolation method with double metalization.
The HM100422 is encapsulated in cerdip-24pin package, compatible with Fairchild's F100422.

PIN ARRANGEMENT

TRUTH TABLE

Item			Output	Mode
$\overline{\text { BS }}$	$\overline{W E}$	D.		
H	\times	\times	L	Not selected
L	L	L	L	Write "0"
L	L	H	L	Write "1"
L	H	\times	Dou* ${ }^{*}$	Read

Notes) \times : irrelevant

* : Read out noninvert.
- FEATURES
- 256-word $\times 4$-bit organization
- Fully compatible with 100 K ECL level
- Address access time: 10 ns (max.)
- Minimum write pulse width: 6 ns (min .)
- Low power dissipaiton: $0.8 \mathrm{~mW} /$ bit
- Output obtainable by wired-OR (open emitter)

- BLOCK DIAGRAM

LINEAR

QUICK REFERENCE GUIDE

FM/AM RECEIVER

Type No.	Outline	Electrical Performance						Recommended Application			Remarks
		AM-RF Conv.	$\begin{gathered} \text { AM-IF } \\ \text { Amp. } \end{gathered}$	AM Det.	$\begin{gathered} \text { FM-IF } \\ \text { Amp. } \end{gathered}$	FM Demod.	Other	Tuner Receiver	Radio	Car Use	
HA11225	DP-16				\bullet	\bullet	$\begin{aligned} & \hline \text { Muting } \\ & \text { Tuning Meter } \\ & \text { Signal Meter } \end{aligned}$	\bullet			Muting level variable S/N: 84dB typ.
HA12411	DP-16				-	\bullet	$\begin{aligned} & \text { Muting } \\ & \text { Tuning Meter } \\ & \text { Signal Meter } \end{aligned}$	\bigcirc		\bullet	
HA12412	DP-16				\bullet	\bullet	Muting Tuning Meter Signal Meter	\bullet			Tuning meter short-circuit for AM-band
HA12413	DP-16		\bullet	\bullet	-	\bullet	Audio Amp., Muting Tuning Meter Signal Meter	0	-		$V_{c c}=3 \sim 16 \mathrm{~V}$. Low operating current
HA12417	SP-16	-	-	\bullet						\bullet	Good strong field
HA12418	SP-16				-	-	$\begin{aligned} & \text { Muting } \\ & \text { Tuning Meter } \\ & \text { Signal Meter } \end{aligned}$	\bigcirc		\bullet	

FM STEREO DEMODULATOR

Type No.	Outline	Electrical Performance				Recommended Application			Remarks
		Demodulation System	Pilot Canceller	Post Amp.	Lamp Driver	Tuner Receiver	Radio	Car Use	
HA12016	DP-16	PLL	\bullet	\bullet	-	-			$\begin{aligned} & \mathrm{S} / \mathrm{N}: 88 \mathrm{~dB} \text { typ. } \\ & G_{v}: 12.5 \mathrm{~dB} \text { typ. } \end{aligned}$
HA12018	SP-16	PLL			\bullet		-	-	$G_{v}:-1.4 \mathrm{~dB}$ Low supply voltage operation

OUTLINE

> SP-16

POWER IC LINE UP

Type No.	Outline	Maximum Ratings		Electrical Characteristics			Recommended Application				Remarks
				Hi Fi Amp.	Car Use	Cassette Tape Recorder	Home Stereo				
		$P_{T}(\mathrm{~W})$	$V_{c c}(\mathrm{~V})$					$P_{\text {out }}$ (W)	$R_{L}(\Omega)$	$V_{c c}(\mathrm{~V})$	
HA1374	SP-10TA	7.2	22	3.0×2	8	15			\bigcirc	\bullet	2 channel built-in
HA1374A	SP-10TA	7.2	25	4.0×2	8	17			\bigcirc	\bullet	2 channel built-in
HA1377	SP-12T	15	18	5.8×2	4	13.2		\bullet	\bigcirc		2 channel buit-in
HA1377A	SP-12T	15	18	5.8×2	4	13.2		\bullet	\bigcirc		2 channel built-in
				17							BTL connection
HA1388	SP-12T	15	18	18	4	13.2		\bullet		\bigcirc	BTL system
HA1389/R	SP-10TA	7.2	30	7	8	22			\bigcirc	\bullet	
HA1392	SP-12T	15	20	4.3×2	4	12			\bullet	\bigcirc	2 channel built-in
				6.8×2	4	15					
HA1394	SP-12T	15	35	8.2×2	8	25			0	\bullet	2 channel built-in
HA1397	SP-12T	30	± 30	20	8	± 22	\bullet			\bigcirc	2 supplies system
HA1398	SP-12T	15	18	5.8×2	4	13.2		-	\bigcirc		2 channel built-in

PREAMPLIFIER IC LINE UP

Type No.	Outline	Maximum Ratings		Electrical Characteristics				Recommended Application				Remarks
				Noise	$\begin{gathered} T H D \\ (\%) \end{gathered}$	$G_{V(O L)}$ (dB)	$\begin{aligned} & V_{\text {out }} \\ & (\mathrm{V}) \end{aligned}$	Hi Fi Amp.	Car Use	Cassette Tape Recorder	Home Stereo	
		$P_{T}(\mathrm{~mW})$	$V_{c c}(\mathrm{~V})$									
HA12012	SP-8	250	20	$\begin{aligned} & V_{n(1 n)} \\ & 0.98 \mu \mathrm{~V} \end{aligned}$	0.07	105	2.5		\bullet		\bigcirc	2 channel built-in
HA12017	SP-8	500	± 26.5	$\begin{aligned} & V_{\text {n (out })} \\ & 1.15 \mathrm{mV} \end{aligned}$	0.002	105	14.7	\bullet			\bigcirc	2 supplies system

OUTLINE

■ CASSETTE TAPE DECK

Type No.	Outline	Electrical Performance					Remarks
		Headphone Amp.	Mechanizm Control	Electronic Switch	Other		
HA12001W	DP-22			\bullet			
HA12005	DP-16	\bullet			\bullet		PLY/REC Switch, Head Switch, Mute Switch, etc
HA12006	DP-16-2		\bullet		\bullet		12 point linear-scale bar-graph display
HA12010	DP-16					Suitable for digital indication of level meter	
HA12019	DP-16						

OUTLINE

DP-16

$$
D P-16-2
$$

PLL FREQUENCY SYNTHESIZER TUNING SYSTEM

Type No.	Outline	Device	System Block	Function	Remarks
HD10551	SP-8	ECL	Prescaler	Guarantee of divide on 150 MHz . Selection $1 / 10,1 / 11,1 / 20,1 / 2,1 / 40$ and $1 / 4$	
HD44015	DP-22	CMOS	PLL	Able to synthesize all band receiver (FM/SW/MW/LW)	
HD44752 HD44753	$\begin{aligned} & \text { DP-42 } \\ & \text { FP-54 } \end{aligned}$	CMOS	Microprocessor Controller	4 bit 1 chip microcomputer - Function of receiving memory - Manual scan - Automatic scan - Time display/timer	HD44752 is controller for 4 band European use. HD44753 is controller for FM and MW band in American and Japanese use
HA12009	DP-42	Bipolar	Indicating Decoder/Driver	Frequency display and time display in FM/AM 2 band tuner.	Able to drive both LED and fluorescent tube displays

OUTLINE
SP-8
DP-22

COLOR TV BLOCK DIAGRAM

AFT AND PIF

Type No.	Outline	Electrical Performance						Recommended Application		Remarks
		AFT	PIF Amp.	RF AGC	Video Det.	Supply Voltage (V)	Other			
								Color	B/W	
HA11215A	DP-24	\bullet	\bullet	Forward	\bullet	12	with Video Amp.	\bullet		direct coupled SAW filter
HA11221	DP-16	-	\bullet	Reverse	Quasi Sync. Det.	11	with Sync. Sept.		\bullet	
HA11238	DP-22	\bullet	\bullet	Forward	Quasi Sync. Det.	12	with Video Amp.	\bullet		direct coupled SAW filter
HA11440	DP-16	\bullet	\bullet	Reverse	Quasi Sync. Det.	12	with Video Amp.	\bullet		direct coupled SAW filter

COLOR AND VIDEO SIGNAL PROCESSING

Type No.	Outline	Electrical Performance					Recommended Application		Remarks
		Color Amp.	Color Sync.	Color Demod.	Video Amp.	Supply Voltage (V)			
							Color	B/W	
HA11401	DP-16	-	-	-	Tint, Brightness	12	\bullet		Sync. Sept., Pedestal Clamp, Blanking
HA11412A	DP-28	\bullet	\bullet	-	Brightness Control	12	\bullet		Tint DC Control
HA11431	DP-28	\bullet	\bullet	\bullet	Brightness Control	12	\bullet		Tint DC Control, Blanking Circuit
HA11436	DP-28	-	\bullet	\bullet	Brightness Control	12	\bullet		with Auto. Flesh Control

SYNCHRONOUS SIGNAL PROCESSING AND DEFLECTION

Type No.	Outline	Electrical Performance							Recommended Application		Remarks
		Sync. Sept.	Horiz. Osc.	Horiz. Drive.	Vert. Osc.	Vert. Drive	Vert. Out.	Supply Voltage (V)			
									Color	$\mathrm{B}^{\prime} / \mathrm{W}^{\prime}$	
HA11244	DP-16	-	\bullet	-	\bullet	-	-	12	\bullet	-	with X-ray protection
HA11409	DP-16	-	-	-	-	-	-	12	-	-	VIR use
HA11423	DP-16-2	\bullet	\bullet	-	\bullet	-	-	12	\bullet		with X-ray protection and blanhing circuit
HA1385	DP-5T	-	-	-	-	-	-	110	-		dual power supply

SOUND SIGNAL PROCESSING

Type No.	Outline	Electrical Performance					Recommended Application		Remarks
		$\underset{\text { Amp. }}{\text { SIF }}$	Discrım.	AF Amp.	Power Amp.	Supply Voltage (V)			
							Color	B/W	
HA11229	DP-14	\bullet	Sync. Det.	\bullet	-	5.5	-	-	Low voltage operation (3 to 8 V)
TDA1035S	QP-12T	-	-	\bullet	-	24	\bullet	\bullet	DC volume control, Input/Output for VCR

OTHER FUNCTION

Type No.	Outline	Function	Recommended Application
HZT33	D-35	High stabilized zener IC of 33 V	Preset voltage supply for electronic tuning

OUTLINE

DP-5T
DP-14
DP-16] DP-16-2
|DP-22|

DP-24

DP-28

$Q \bar{P}-12 \mathrm{~T}$

D-35

INDUSTRIAL LINEAR CIRCUITS

- LINEAR ICs

	Functions		HITACHI Type No.	Package Code					Cross-reference	
			M	P	PS	G	GS			
Operational Amplifiers	General Purpose			HA17741			DP-8		DG-8	Fairchild μ A 741 C
	High Speed		HA17715	T-100					Fairchild μ A715C	
	Dual		HA17458			DP-8		DG-8	NS LM1458	
			HA17747		DP-14		DG-14		Fairchild μ A 747 C	
			HA17904			DP-8		DG-8	NS LM2904	
	Quad.		HA17301		DP-14		DG-14		Motorola MC3301	
			HA17902		DP-14		DG-14		NS LM2902	
Voltage Comparators	Single		HA1813			DP-8			*	
	Universal		HA1812			DP-8		DG-8		
	Dual		HA17903			DP-8		DG-8	NS LM2903	
			HA1807				DG-14			
	Quad.		HA17901		DP-14		DG-14		NS LM2901	
Voltage Regulators	Variable	2~37V, 150 mA	HA17723				DG-14		Fairchild μ A 723C	
	Fixed	$5 \mathrm{~V}, 1 \mathrm{~A}$	HA17805		T-220AB				Fairchild μ A 7805 C	
		6V, 1A	HA17806		T-220AB				Fairchild μ A 7806C	
		7V, 1A	HA17807		T-220AB					
		8V, 1A	HA17808		T-220AB				Fairchild μ A 7808 C	
		12V, 1A	HA17812		T-220AB				Fairchild μ A 7812C	
		15V, 1A	HA17815		T-220AB				Fairchild μ A 7815 C	
		18V, 1A	HA17818		T-220AB				Fairchild μ A7818C	
		24V, 1A	HA17824		T-220AB				Fairchild μ A 7824 C	
		5V, 0.5A	HA178M05		T-220AB				Fairchild μ A78M05C	
		6V, 0.5A	HA178M06		T-220AB				Fairchild μ A 78M06C	
		7V, 0.5A	HA178M07		T-220AB					
		8V, 0.5A	HA178M08		T-220AB				Fairchild μ A 78M08C	
		12V, 0.5A	HA178M12		T-220AB				Fairchild μ A 78 M 12 C	
		15V, 0.5A	HA178M15		T-220AB				Fairchild μ A 78M15C	
		18V, 0.5A	HA178M18		T-220AB				Fairchild μ A $78 \mathrm{M18C}$	
		20V, 0.5A	HA178M20		T-220AB				Fairchild $\mu \mathrm{A} 78 \mathrm{M} 20 \mathrm{C}$	
		24V, 0.5A	HA178M24		T-220AB				Fairchild $\mu \mathrm{A} 78 \mathrm{M} 24 \mathrm{C}$	
	Switchıng Regulator Controller		HA17524		DP-16		DG-16		Silicon General SG3524	
$A / D, D / A$ Converters	8-bit Double Integral Type A/D		HA16613		DP-28					
	8-bit D/A		HA17408		DP-16		DG-16		AMD AM1408	
Other Functions	Differential Video Amp.		HA17733	T-100					Farrchild μ A733C	
	5 Transıstor Arrays		HA1127				DG-14		RCA CA3045	
	Precision Timers		HA17555			DP-8		DG-8	Signetics NE555	
	Monostable Multivibrators		HA1607			DP-8				
	Micromotor Speed Controller		HA16503		DP-14					
	Light-measurement Amp. for Camera		HA16506		DP-14					
			HA16564		DP-14					
	Coin Sensor		HA16603		DP-16					
	Electric Leakage Breaker		HA16604		SP-8					
	Burner Controller		HA16605W		DP-20					

DISCRETES

INTRODUCTION

In 1977, HITACHI was the first in the world to develop and mass-produce 100 Watt Complementary Power MOS FETs. Since then, Power MOS FETs have been used in a variety of fields as an ideal power device with high switching speed and high resistance to electrically induced failure. HITACHI Power MOS FET technology has consistently advanced in the areas of on-resistance, voltage and current handling capability and packaging.

POWER MOS FET FEATURES:

A. Excellent frequency response and high switching speed. (No carrier storage effects.)
B. High resistance to electrical destruction. (No current concentration effects.)
C. Easy parallel connection for higher power applications.
D. Minimum drive power. (Voltage controlled device.)

There are two basic Power MOS FET structures: Vertical Type and Lateral Type. The advantages of Vertical Types are: a) Drain Case and b) low on-resistance and low loss. Advantages of Lateral Types are: a) Source Case, b) high resistance to electrical destruction, and c) high frequency response. HITACHI has both types to meet various requirements. The Vertical Types are called "D Series," and the Lateral Types are called "S Series."

Power MOS FETs show extreme advantages, not only in new fields where conventional power devices are inadequate, but also in existing fields where conventional devices are already in use.

HITACHI POWER MOS FETs

Wide Variations of Power MOS FETs

Applications	Function	Features		Type No.	
		Bipolar Transistor	Power MOS FET		
Audio Out.	(1) Linear Power Amplifier (2) PWM Power Amp.			$\begin{aligned} & \text { 2SK213~216 } \\ & \text { 2SJ76~79 } \\ & \text { 2SK286/2S J96 } \\ & \text { 2SK 133~135 } \\ & \text { 2SJ48~50 } \end{aligned}$	$\begin{aligned} & \text { 2SK } 225 \sim 227 \\ & \text { 2S J81~83 } \\ & \text { 2SK 175~176 } \\ & \text { 2SJ55~56 } \\ & (\text { HS } 7843 / 7844) \end{aligned}$
High-speed Power Switching	(1) Switching Regulator (2) DC-DC Converter (3) DC-AC Inverter (4) Arcing Machine	$f=20 \sim 50 \mathrm{kHz}$	$f=100 \sim 1000 \mathrm{kHz}$ Small Size, Light Weight	$\begin{aligned} & \text { 2SK 221 (H) } \\ & \text { 2SK 258 (H) } \\ & \text { 2SK260 (H) } \\ & \text { 2SK 176, } 2 \mathrm{SJ56} \\ & \text { 2SK298, } 299 \\ & \text { 2SK 312, } \end{aligned}$	
		$f=1 \sim 20 \mathrm{kHz}$	$f=500 \mathrm{kHz}$ High Precision	(HS 84027) (HS 7231)	
Ultrasonic Applications	(1) Medical Diagnosis (2) Sonar (3) Heatıng, Washing	$f=2 \sim 3 \mathrm{MHz}$	High Resolution $\quad f=10 \mathrm{MHz}$	$\begin{aligned} & \text { 2SK } 296 \\ & \text { 2SK } 294 \\ & \text { 2SK216 } \end{aligned}$	
Motor Control	(1) Motor Drive		Smooth Cycling	$\begin{aligned} & \text { 2SK 176 } \\ & \text { 2SK 298~299 } \\ & \text { 2SK 312~313 } \\ & \text { 2SK 308 } \end{aligned}$	
Communication System	(1) MW, SW Transmitter (2) HF, VHF Transmitter		Small Size Lower Power	2SK221 (H) 2SK258(H) 2SK 260 (1) 2SK176, 2SJ56 2SK 298, 299 2SK317, 2SK 318	
Other	(1) IC Interface (2) Analog Switch (3) Character Display	cpu (R)	High Speed Low Driving Power	$\begin{array}{ll} \text { 2SK 216, } & \text { 2SK294 } \\ \text { 2SK 288, } & \text { 2SK } 296 \\ \text { 2SK 134, } & \text { 2SK 176 } \\ \text { 2SK 308 } & \end{array}$	

[^9]
MAIN CHARACTERISTICS OF HITACHI POWER MOS FETS

- D Series

Type No.		Maximum Ratings				Electrical Characteristics					Outline
		Voss	Vass	ID	Pco"*			$\mathrm{t}_{\text {on }}$	$\mathrm{t}_{\text {oft }}$	f_{c}	
N-ch	P-ch	(V)	(V)	(A)	(W)	typ	max	(ns)	(ns)	(MHz)	
2SK347	-	400	± 20	1	19	4.5	9.0	-	-	-	T-24L
2SK352	-	250	± 9	0.3	8	30	50	-	-	250	T-126
2SK345	2SJ101	40	± 20	5	30						T-220AB
2SK346	2SJ102	60				0.3	0.4	40	70	-	
2SK294	-	80									
2SK295	-	100				0.4	0.56	40	70	5	
2SK296	-	300		1		2.5	4.0	20	70	10	
2SK310	-	400									
2SK311	-	450		3		2.5	4.0	25	70	10	
2SK319	-	400									
2SK320	-	450		5	50	1.1	1.83	50	120	5	
2SK343	2SJ99	140	± 20	8	100	0.3	0.5	100	90	2	T-22
2SK344	2SJ100	160									
2SK308	-	120	± 20		100	0.2	0.3	60	160	4	T-3
(HS84033)	-	250		10		0.4	-	-	-	-	
2SK298	-	400									
2SK299	-	450		8		1.1	1.75	50	120	5	
2SK312	-	400			125	0.67	0.9	70	200	3	
2SK313	-	450		12							
2SK351	-	800		5		1.67	3.0	100	300	2	

-S Series

Type No.		Maximum Ratings				Electrical Characteristics					Outline
N -ch	P-ch	$\begin{aligned} & V_{D S S} \\ & (\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \hline V_{\text {GSS }} \\ & (\mathrm{V}) \end{aligned}$	$\begin{aligned} & I_{D} \\ & (\mathrm{~A}) \end{aligned}$	$\begin{gathered} P_{c{ }^{* * *}}(\mathrm{~W}) \\ \hline \end{gathered}$	$R_{\text {on }}(\Omega)$		$\begin{aligned} & t_{\text {on }} \\ & (\mathrm{ns}) \end{aligned}$	$\begin{aligned} & t_{\text {off }} \\ & (\mathrm{ns}) \end{aligned}$	$\begin{gathered} f_{\mathrm{e}} \\ (\mathrm{MHz}) \end{gathered}$	
						typ	max				
2SK213	2SJ76	${ }^{*} 140$	± 15	0.5	30	8/10	-	20	30	40/30	T-220AB
2SK214	2SJ77	${ }^{*} 160$									
2SK214(K)	2SJ77 (1)	160									
2SK215	2SJ78	* 180									
2SK216	2SJ79	* 200									
2SK216(1)	2SJ79 (1)	200									
2SK286	2SJ96	- 60	± 20	8	100	0.5	0.8	80/100	110/250	3/2	T-22
2SK287®	-	60				0.5	0.6	25	350	2	
2SK288®	-	80									
2SK225	2SJ81	* 120	± 15	7		1.0	1.7	180/230	60/110	3/2	
2SK226	2SJ82	* 140									
2SK227	2SJ83	${ }^{*} 160$									
2SK133	2SJ48	* 120	± 14	7	100	1.0	1.7	180/230		3/2	T-3
2SK134	2SJ49	*140						180/230	60/110		
2SK134(H)	2SJ49(1)							90/150	110/210		
2SK135	2SJ50							180/230	110/110		
2SK135(H)	2SJ50(1)	*160						90/150	110/210		
2SK175	2SJ55	* 180	± 20	8	125	1.0	1.7	270/330	90/120	2/1	
2SK176	2SJ56	${ }^{*} 200$						270/330	90/120		
2SK176(1)	2SJ56(1)	200						60	200		
2SK220(H)	-	160	± 20	8	100	1.0	1.5	25	45	50	
2SK 221 (1)	-	200		8	125	0.8	1.1	25	140	7	
2SK258(H)	-	250		8							
2SK259(H)	-	350		5	125	2.5	3.0	25	140	7	
2SK260(H)	-	400		5	125	2.5	3.0	25	140	7	
2SK317	-	180	± 20	8	120	0.95	1.25	-	-	300	T-40
2SK318	-			4	70	1.9	2.5				

*; $V_{D S X} \quad * * T_{c}=25^{\circ} \mathrm{C}$

COUTLINE

- FEATURES

- Wide Selection of Wavelength for Various Applications, Visible, Infrared and Long wavelength.
- Continuous or Pulsed Operation up to $50^{\circ} \mathrm{C}$.
- Various Types of Package.
- Low Operating Current.
- Fully Stabilized Fundamental Mode.
- CHARACTERISTICS OF LASER DIODES

- Absolute Maximum Ratings

Package Outline	Type No.	Allowable Output Power $\mathrm{P} \mathrm{o}^{*}$ (mW) (mW)	Reverse Voltage V_{F} (V)	Operating Temp. Topr (${ }^{\circ} \mathrm{C}$)	Storage Temp. $\mathrm{T}_{\mathrm{stg}}$ $\left({ }^{\circ} \mathrm{C}\right)$
Open-Air Type	HLP1400	15	2	$0 \sim+50$	$0 \sim+60$
	HLP2400	3			
	HLP3400	10			
	HLP5400	5			
Hermetic Seal Type	HL7801E, HL780IG	5		$0 \sim+50$	$-40 \sim+60$
	HLP1600, HLP1700	15			
	HLP2600, HLP2700	3			
	HLP3600, HLP3700	10			
	HLP5600, HLP5700	5			
Fiber Pigtail Type	HLP1500	6			
	HLP2500	1.5			
	HLP3500	3			
	HLP5500	1.2			

* Free of kink below this value

- Optical and Electrical Characteristics

Package Outline	Type No.	Peak Wavelength$\begin{gathered} \lambda_{p} \\ (\mathrm{~nm}) \end{gathered}$			Beam Divergence $\theta_{/ / \times \theta_{\perp}}{ }^{*}$ $($ deg $)$$\|$	TestCondition	Threshold Current Ith (mA) typ 70	Output Power Po (mW)		Monitor Power P_{m} $(\mathrm{~mW})$ min	TestCondition $\|$$\mathrm{I}_{\mathrm{F}}$ (mA)
		min	typ	max				min	typ		
Open-Air Type	HLP1400	800	830	850	12×26	10	70	4	5	2	$1 \mathrm{th}+25$
	HLP2400				25×35	2	20	1	1.5	0.5	Ith +5
	HLP3400				25×35	6	35	4	6	1.0	Ith + 15
	HLP5400	-	1300	-	30×40	3	50	1.5	3	-	Ith +20
Hermetic Seal Type	HL780IE, HL780IG	760	780	800	15×27	3	60	-	3	$(0.1 \mathrm{~mA}) * *$	Ith +15
	HLP1600, HLP1700	800	830	850	12×26	10	70	4	5	0.2	Ith +25
	HLP2600, HLP2700				25×35	2	20	1	1.5	0.05	1 th +5
	HLP3600, HLP3700				25×35	6	35	4	6	0.1	Ith +15
	HLP5600, HLP5700	-	1300	-	30×40	3	50	1.5	3	-	Ith +20
Fiber Pigtail Type	HLP1500	800	830	850	-	4	70	2	3	0.5	1th +25
	HLP2500				-	1.0	20	0.5	0.8	0.1	Ith +5
	HLP3500				-	2	35	1.5	2	0.3	Ith +15
	HLP5500	-	1300	-	-	0.5	50	0.4	0.7	0.05	Ith +20

[^10]Map of Wavelength vs. Output Power

- PACKAGE

Five types of packages are currently available.
Especially the type 500 is a hermetically sealed package.
Package

HITACHI INFRARED EMITTING DIODES

- FEATURES

- High Power Output … $10 \sim 60 \mathrm{~mW}$
- Wide Selection of Wavelength $735 \sim 905 \mathrm{~nm}$

By changing the mixed crystal ratio " x " of material Ga1-xAlxAs,
the peak wavelength can be selected within the range of $735 \sim 905 \mathrm{~nm}$.

- Excellent Monochromacy … Spectral Width 30 nm .
- Excellent Frequency Response Rise and Fall Time 12 ns.
- SELECTION GUIDE

Series (Type No.)	Package	Feature	$\begin{array}{\|c\|} \hline \lambda_{p} \\ \text { typ } \\ (\mathrm{nm}) \end{array}$	Optical Output Power P_{0} (typ)							
				10 mW	15 mW	20 mW	25 mW	30 mW	40 mW	50 mW	60 mW
HLP Series	T-type	Open-Aır type Close access to optics	760			HLP20TA		HLP30TA	HLP40TA		
			800					HLP30TB	HLP40TB	HLP50TB	HLP60TB
			840					HLP30TC	HLP40TC	HLP50TC	HLP60TC
			880					HLP30TD	HLP40TD	HLP50TD	HLP60TD
		Open-Aır type Close access to optics	760			HLP20RA		HLP30RA	HLP40RA		
			800					HLP30RB	HLP40RB	HLP50RB	HLP60RB
			840					HLP30RC	HLP40RC	HLP50RC	HLPGORC
			880					HLP30RD	HLP40RD	HLP50RD	HLP60RD
		Hermetic Seal type Easy to handle	760	HLP20RGA	HLP30RGA	HLP40RGA					
			800		HLP30RGB	HLP40RGB	HLP50RGB	HLP60RGB			
			840		HLP30RGC	HLP40RGC	HLP50RGC	HLP60RGC			
			880		HLP30RGD	HLP40RGD	HLP50RGD	HLP60RGD			
		Hermetic Seal type Easy to handle sharp directiona	760	HLP20RLA	HLP30RLA	HLP40RLA					
			800		HLP30RLB	HLP40RLB	HLP50RLB	HLP60RLB			
			840		HLP30RLC	HLP40RLC	HLP50RLC	HLP60RLC			
			880		HLP30RLD	HLP40RLD	HLP50RLD	HLP60RLD			
$\begin{aligned} & \text { HLP-W } \\ & \text { Series } \end{aligned}$	T-type	Sharp directional	760			HLP2OWTA		HLP30WTA	HLP40WTA		
			800					HLP30WTB	HLP40WTB	HLP50WTB	HLP60WTB
			840					HLP30WTC	HLP40WTC	HLP50WTC	HLP60WTC
			880					HLP30WTD	HLP40WTD	HLP50WTD	HLP60WTD
		Sharp directional	760			HLP20WRA		HLP3OWRA	HLP4OWRA		
			800					HLP30WRB	HLP40WRB	HLP50WRB	HLP60WRB
			840					HLP30WRC	HLP40WRC	HLP50WRC	HLP60WRC
			880					HLP3OWRD	HLP40WRD	HLP60WRD	HLP60WRD
		Hermetic Seal type Easy to handle	760	HLP20WRGA	HLP30WRGA	HLP40WRGA					
			800		HLP3OWRGB	HLP40WRGB	HLP50WRGB	HLP60WRGB			
			840		HLP3OWRGC	HLP40WRGC	HLP50WRGC	HLP60WRGC			
			880		HLP30WRGD	HLP40WRGD	HLP50WRGD	HLP60WRGD			
(HE- 8401F		With Fiber	$\begin{gathered} 790 \\ 2 \\ 890 \end{gathered}$	$200 \mu \mathrm{~W}$							

- CHARACTERISTICS OF INFRARED EMITTING DIODES

- Absolute Maximum Ratings

Item	Symbol	Open-Air Type T, R-type	Hermetic Seal Type RG, RL-type	Fiber Pigtail Type F-type	Unit
Forward Current	I_{F}	$\mathbf{2 5 0 (2 3 0 ^ { * })}$	$\mathbf{2 5 0 (2 3 0 ^ { * })}$	$\mathbf{1 5 0}$	mA
Reverse Current	V_{R}	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	V
Power Dissipation	P_{d}	600	600	-	mW
Operating Temp.	$\mathrm{T}_{\text {opr }}$	$-20 \sim+40^{* *}$	$-20 \sim+60$	$-10 \sim+60$	${ }^{\circ} \mathrm{C}$
Storage Temp.	$\mathrm{T}_{\text {stg }}$	$-40 \sim+60^{* *}$	$-40 \sim+80$	$-20 \sim+70$	${ }^{\circ} \mathrm{C}$

Value at $\lambda_{p}=760 \mathrm{~nm} \quad{ }^{ *}$ Storage and operating conditions must be taken under humidity of lower than 40\%.

- Optical and Electrical Characteristics

Item	Symbol	Test Condition	T, R, RG, RL-type			F-type			Unit
			min	typ	max	min	typ	max	
Output Power	P_{0}	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	-	-	-	100	200	-	$\mu \mathrm{W}$
		$\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$	Refer to selection guide			-	-	-	mW
Peak Wavelength	λp	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	-	-	-	790	840	890	nm
		$\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$	Refer to selection guide			-	-	-	
Spectral Width	$\Delta \lambda$	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	-	-	-	-	30	40	nm
		$\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$	-	30	35	-	-	-	
Forward Voltage	V_{F}	$\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}$	-	-	-	-	1.8	2.5	V
		$\mathrm{I}_{\mathrm{F}}=200 \mathrm{~mA}$	-	1.7(2.3*)	2.3(2.6*)	-	-	-	
Reverse Current	$I_{\text {R }}$	$\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}$	-	-	30	-	--	10	$\mu \mathrm{A}$
Capacitance	C_{j}	$V_{R}=0, f=1 \mathrm{MHz}$	-	30	-	-	30	-	pF
Rise and Fall Time	t_{r}, t_{f}		-	12(20*)	-	-	12	-	ns
Cut-Off Frequency	f_{c}	1 bias $=100 \mathrm{~mA}, 30 \%$ mod, -3 dB	-	30	-	-	30	-	MHz

* Value at $\lambda_{p}=760 \mathrm{~nm}$

- Radiation Patterns

HLP Series (T, R-type)

HLP Series (RG-type)
HLP-W Series

HLP Series (RL-type)

- Forward Characteristics (HLP, HLP-W Series)

HITACHI INFRARED EMITTING DIODES

- PACKAGE

	Package	Outline	Dimensional Outline (unit in mm)	Feature
	T-type			A chip is mounted on a flat metal stem, designed to be conveniently used as a diode array. This type is suitable for multiassembling with high density.
	R-type			The R type is capable of close accessing to the optics.
	RG-type			The RG type is hermetically sealed using a flat glass, highly reliable.
	RL-type			The RL type is hermetically sealed using a optical lens and has the characteristics of sharp directional beam divergence. The focal length is about 7 mm .
\%	F-type			The F type is provided with a fiber pigtail and suitable for fiber communication.

POWER THYRISTORS

HITACHI GATE TURN-OFF THYRISTOR (GTO)

GTO thyristors permit main current to be turned on or off by plus or minus gate pulse current. Therefore, they do away with commutation circuits and permit high frequency operation, thus making it possible to miniaturize the size of inverters and choppers and increase their performance.

The Hitachi GTO Thyristor adopts an anode shorted emitter construction. This feature simultaneously allows low on-state voltage and high speed. Besides, its stable high temperature characteristics make Hitachi GTO Thyristors ideal for many applications.

The Hitachi GTO Thyristors are available in wide series to meet the customer needs for AC
 230 V and 460 V line applications.

Main Applications

AVAF Inverter	Variable speed control of electric motors for fan, compressor and pump drive.
CVCF Inverter	AC Power supplies for computers, instrumentation, communication equipment, etc.
Chopper	NC machine tools, electric automobiles, forklifts and electro-driven vehicles.
High-frequency power supplies	Induction heating and welding machines.
Electrical home appliances	Induction-heated cooking devices and control of various appliance drive motors.

Hitachi GTO Series

Type Items	$\begin{aligned} & \text { GFT } \\ & \text { 20A6 } \end{aligned}$	$\begin{aligned} & \text { GFT } \\ & \text { 50A6 } \end{aligned}$	$\begin{aligned} & \text { GFF } \\ & \text { 90A6 } \end{aligned}$	$\begin{gathered} \text { GFP } \\ \text { 450A8 } \end{gathered}$	$\begin{gathered} \text { GFT } \\ 20 B 12 \end{gathered}$	$\begin{gathered} \text { GFT } \\ 50 \mathrm{~B} 12 \end{gathered}$	$\begin{gathered} \text { GFF } \\ \text { 90B12 } \end{gathered}$	$\begin{gathered} \text { GFF } \\ \text { 200E12 } \end{gathered}$	$\begin{gathered} \text { GFF } \\ \text { 300B12 } \end{gathered}$	$\begin{gathered} \text { GFP } \\ \text { 600C16 } \end{gathered}$	$\begin{aligned} & \text { GFP } \\ & \text { 100B25 } \end{aligned}$
Repetitive Peak Offstate Voltage (VDRM)	600 V	600 V	600 V	800 V	1,200 V	1,600 V	2,500 V				
Repetitive Controllable On-state Current (ITCM)	20 A	50 A	90 A	450 A	20 A	50 A	90 A	200 A	300 A	600 A	1,000 A
Peak On-state Voltage $\left(\mathbf{V}_{T M}\right)$	2.4 V	2.5 V	2.3 V	2.0 V	3.0 V	3.1 V	2.8 V	3.8 V	3.2 V	2.5 V	2.5 V
Gate Turn-on Time (tgt) (Typical)	$2 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$	$2 \mu \mathrm{~s}$	$3 \mu \mathrm{~s}$	$4 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$				
Gate Turn-off Time (tgq) (Typical)	$4.5 \mu \mathrm{~s}$	$4.5 \mu \mathrm{~s}$	$4.5 \mu \mathrm{~s}$	$5 \mu \mathrm{~s}$	$4.5 \mu \mathrm{~s}$	$4.5 \mu \mathrm{~s}$	$4.5 \mu \mathrm{~s}$	$4.5 \mu \mathrm{~s}$	$10 \mu \mathrm{~s}$	$11 \mu \mathrm{~s}$	$21 \mu \mathrm{~s}$
Package	TO-66	TO-3	$\begin{aligned} & \text { TO-3 } \\ & \text { Flat } \\ & \text { Base } \end{aligned}$	Press Pack	TO-66	TO-3	$\begin{aligned} & \text { TO-3 } \\ & \text { Flat } \\ & \text { Base } \end{aligned}$	Flat Base	Flat Base	Press Pack	Press Pack

[^11]
TRIACS

(ISOLATED TO-3 FLAT BASE)

FEATURES:

- Electrically isolated TO-3 flat base package and FASTON terminals.
- High surge current capability.
- Low on-state voltage.
- 1500 or 2000 V (RMS) isolation voltage (1 minute).
- Selected types available for an inductive load operation.

$$
\mathrm{T}_{\mathrm{J}}, \mathrm{~T}_{\mathrm{STG}}=-40 \sim+125^{\circ} \mathrm{C}
$$

TYPE	$V_{\text {DRM }}$ (V)	$I_{T} \text { (rms) @Tc }$ (A) (C)	$\begin{gathered} l_{\text {TSM }} \\ \left(50 \mathrm{H}_{\mathrm{z}}\right) \end{gathered}$ (A)	$\mathrm{V}_{\text {тм }}$ @lтм (V) (A)	$\mathrm{I}_{\mathrm{GT}} / \mathrm{V}_{\mathrm{GT}}$ (mA) (V)	IDRM @ $V_{\text {DRM }}$ (mA)	di/dt ($\mathrm{A} / \mu \mathrm{S}$)	dv/dt (сомм) (Vms)	Viso
FSM16C2L FSM16C4L FSM16C6L	$\begin{aligned} & 200 \\ & 400 \\ & 600 \end{aligned}$	16 @76	150	1.5 @ 23	50/2.5	0.2	20	10	$\begin{aligned} & 2500 \\ & 2500 \\ & 2500 \end{aligned}$
FSM20C2L FSM20C4L FSM20C6L	$\begin{aligned} & 200 \\ & 400 \\ & 600 \end{aligned}$	20 @74	180	1.5 @ 28	50/2.5	0.2	20	10	$\begin{aligned} & 2500 \\ & 2500 \\ & 2500 \end{aligned}$
FSM30C2L FSM30C4L FSM30C6L	$\begin{aligned} & 200 \\ & 400 \\ & 600 \end{aligned}$	30 @63	275	1.5 @45	50/2.5	0.2	20	10	$\begin{aligned} & 2500 \\ & 2500 \\ & 2500 \end{aligned}$

$\mathrm{I}_{\mathrm{GT}}, \mathrm{V}_{\mathrm{GT}}: \mathrm{MT2}(+) / \mathrm{G}(+), \quad$ MT2 (+)/G(-), MT2(-)/G(-)
Viso: Isolation voltage between a terminal and the flat base.

SECTION
 \bullet

FIBER OPTIC COMMUNICATION DEVICES

FIBER OPTIC DIGITAL MODULES
 DS2101, DR2101

FEATURES

- DC to 2 M bits $/ \mathrm{sec}$ data rate
- 2 km transmission length
- Operation on single 5V supply
- TTL compatible interface
- Wide dynamic range
- No shielding required
- DIP (Dual Inline Package) pin arrangement
- Couples to wide variety of fibers

DESCRIPTION

Hitachi DS2101 and DR2101 Fiber Optic Digital Modules are the transmitter and receiver for a high-sensitivity, low-speed TTL Fiber Optic Data Link. The DS 2101 transmitter module operates from a TTL input and launches $300 \mu \mathrm{~W}$ of optical power into a $200 \mu \mathrm{~m}, 0.5 \mathrm{~N} . \mathrm{A}$. optical fiber. The DR2101 receiver module, optimized for low noise and maximum sensitivity, will operate with only a $0.2 \mu \mathrm{~W}$ optical power input. Input data must be
errcoded such that its short-term average value is constant and average duty cycle is 50 percent. Both modules have full internal power supply regulation and provide adjustment-free operation over the full operating temperature range. For easy interfacing the modules contain an integrated optical connector providing a plugable interface that couples optical power efficiently to wide variety of optical fibers.

FEATURES

- 0.1 M bits to 10 M bits $/ \mathrm{sec}$ data rate
- 1 km transmission length
- Operation on single 5V supply
- TTL compatible interface
- Wide dynamic range
- No shielding required
- DIP (Dual Inline Package) pin arrangement
- Couples to wide variety of fibers

DESCRIPTION

Hitachi DS2202 and DR2202 Fiber Optic Digital Modules are the transmitter and receiver for a high-sensitivity, high-speed TTL Fiber Optic Data Link. The DS2202 transmitter module operates from a TTL input and launches $5 \mu \mathrm{~W}$ of optical power into an $80 \mu \mathrm{~m}, 0.2 \mathrm{~N} . \mathrm{A}$. optical fiber. The DR2202 receiver module, optimized for low noise and maximum sensitivity, will operate with only a $0.5 \mu \mathrm{~W}$ optical power input. Input data must be
encoded such that its short-term average value is constant and average duty cycle is 50 percent. Both modules have full internal power supply regulation and provide adjustment-free operation over the full operating temperature range. For easy interfacing the modules contain an integrated optical connector providing a plugable interface that couples optical power efficiently to wide variety of optical fibers.

FIBER OPTIC DIGITAL MODULES DS2301, DR2301

\qquad

FEATURES

- 0.1 M bits to 32 M bits/sec data rate
- 3 km transmission length
- TTL/ECL compatible interface
- Operation on single 5 V supply for TTL (+5 V and -5.2 V supplies for ECL)
- Wide dynamic range
- No shielding required
- DIP (Dual Inline Package) pin arrangement
- Couples to wide variety of fibers

DESCRIPTION

Hitachi DS2301 and DR2301 Fiber Optic Digital Modules are the transmitter and receiver for a high-sensitivity, high-speed TTL or ECL Fiber Optic Data Link. The DS2301 transmitter module operates from a TTL or an ECL input and launches $100 \mu \mathrm{~W}$ of optical power into an $80 \mu \mathrm{~m}$, 0.2 N.A. optical fiber. The DR2301 receiver module, optimized for low noise and high speed, will operate with only a $0.5 \mu \mathrm{~W}$ optical power input. Input data must be encoded such that its
short-term average value is constant and its average duty cycle is 50 percent. Both modules comprise TTL and ECL interfaces which are selectable with TTL input/output terminals and V_{EE} power supply.

For easy interfacing without problems of source or detector/fiber alignment, the modules contain an integrated optical connector providing a plugable interface that couples optical power efficiently to wide variety of optical fibers.

FEATURES

- Suitable for long-distance, high bit rate fiber optic transmissions
- Continuous or pulsed operation up to $60^{\circ} \mathrm{C}$
- Fully stabilized fundamental mode TEoo oscillation
- Hermetically sealed package
- Fiber pigtail type with monitor diode and thermo-electric cooler

DESCRIPTION

The Hitachi LD2000 and 5000 series are extremely compact, highly efficient, reliable laser sources for optical transmission systems and measuring instruments. LD2000 and 5000 series have a typical peak emission wavelength of $0.83 \mu \mathrm{~m}$ and $1.3 \mu \mathrm{~m}$, respectively. These modules are unique
because they have stable oscillation in a fundamental transverse mode and have hermetically sealed packages with monitor diode and thermoelectric cooler. Under modulated conditions, they can respond to speeds exceeding 1 GHz .

Model No.	Outline
LD2201	Short wavelength Laser Diode Module
LD2202	Short wavelength Laser Diode Module with thermo-electric cooler
LD2221	Short wavelength Laser Diode Module (high stable optical characteristics)
LD5201	Long wavelength Laser Diode Module
LD5202	Long wavelength Laser Diode Module with thermo-electric cooler
LD5221	Long wavelength Laser Diode Module (high stable optical characteristics)

OPTICAL WAVELENGTH MULTIPLEXERS
 DEMULTIPLEXERS
 WM1201, WM1210, WM1310

FEATURES

- Optical interference filter type used in W.D.M. transmissions
- Small, lightweight, solid construction
- Applicable to various kinds of fiber
- Easy to handle
- Low insertion loss

DESCRIPTION
The Hitachi optical wavelength multiplexers/ comprise optical interference filters as wavedemultiplexers are used for wavelength division length selective components. multiplexing transmission systems. These devices

Model No.	Outline
WM1201	Two-wavelength Multiplexer/Demultiplexer (short wavelength)
WM1210	Two-wavelength Multiplexer/Demultiplexer (long wavelength)
WM1310	Three-wavelength Multiplexer/Demultiplexer (long wavelength)

OPTICAL WAVELENGTH MULTIPLEXERS DEMULTIPLEXERS
 WM2201, WM2301
 \qquad

FEATURES

- Used in W.D.M. Transmissions
- Simplicity of structure and ease of arrangement since concave grating is used.
- Low loss and sharp cutoff characteristics
- Narrow interchannel wavelength spacing

DESCRIPTION

The Hitachi optical wavelength multiplexers/ demultiplexers are suited to wavelength division multiplexing transmission systems. These devices comprise concave grating which can separate or combine a number of waves without additional
wavelength selective components. Since an aberration-corrected concave grating is used, these devices have low loss and sharp cutoff characteristics.

Model No.	Outline
WM2201	Two-wavelength Multiplexer/Demultiplexer (long wavelength)
WM2301	Three-wavelength Multiplexer/Demultiplexer (long wavelength)

OPTICAL DIRECTIONAL COUPLERS CP1XOX, CP1X1X

FEATURES

- Small, lightweight, solid construction
- Applicable to various kinds of fiber
- Easy to handle

DESCRIPTION

Hitachi optical directional couplers are used for dividing and coupling optical signals in opticalfiber transmission systems. These devices have
many applications, such as monitors for supervising transmission line and tap-off couplers for end terminals of optical data bus, CATV etc.

Model No.	Outline
CP1X0X	Directional coupler for short wavelength
CP1X1X	Directional coupler for long wavelength

OPTICAL FIBER CONNECTORS CNXXOX, CNXX3X

FEATURES

- A high precision optical connector with very low connection loss
- No center, alignment type
- Easy, smooth connector assembly in the field
- High environmental reliability
- Low cost

DESCRIPTION

The Hitachi optical fiber connector CN series for optical fiber transmission is classified into a stainless type (CNXXOX) and plastic type (CNXX3X). The stainless-type connectors are manufactured by precision production technol-

OUTLINE

Stainless Type (CNXXOX)

Model No.	Type	Fiber	
		Core dia. ($\mu \mathrm{m}$)	Clad dia. ($\mu \mathrm{m}$)
CN1101	Plug	200	250
CN1102		80	125
CN1103		$\cdots 50$	-125
CN2101	Adaptor	-	-
CN2102			
CN3101	Receptacle	-	-
CN3102			
Plastic Type (CNXX3X)			
Model No.	Type	Fiber	
		Core dia. ($\mu \mathrm{m}$)	Clad dia. ($\mu \mathrm{m}$)
CN1131	Plug	200	250
CN1132		80	125
CN2131	Adaptor	-	-
CN2132			
CN3131	Receptacle	-	-
CN3132			

ogy and are characterized by low connection loss and high environmental reliability. The plastictype connectors are manufactured by the preci-sion-molding technique and are characterized by low cost and light weight.

(0) HITACHI

A World Leader in Technology
Hitachi America, Ltd.
Semiconductor and IC Sales and Service Division 1800 Bering Drive, San Jose, CA 95112 1-408-292-6404

[^0]: * Prelımınary \triangle HM6116LP Series : $10 \mu \mathrm{~W}$

[^1]: * Prelımınary
 ** The package codes of F, G, and P are applied to the package material as follows.
 F. Flat Package, G: Cerdıp, P. Plastıc DIP

[^2]: *Combined DC, AC and functional

[^3]: * The package codes of C, G and P are applied to the package materials as follows
 C. Ceramic with Lid

 G; Glass - Sealed Ceramic
 P, Plastic
 ** Special Order Only

[^4]: ** Wide Temperature Range ($-40 \sim+85^{\circ} \mathrm{C}$). Please contact Hitachi America, Ltd.
 *** Timer: 8-Bit programmable Timer with 7-Bit programmable pre-scaler.

[^5]: * Under Development.

[^6]: Note) The specifications of this system are subject to change without notice.

[^7]: \times Don't care

[^8]: H - High Level
 L-Low Level
 X - Don't Care
 p - Low to High transtion

[^9]: (): Under development

[^10]: * The beam divergence is the full beam width at half maximum points, parallel and perpendicular to the junction plane.
 ** The monitor output current is defined as the short current of the photo diode which is included in the package.

[^11]: Specifications are subject to change without notice.

