Hitachi 8-Bit Microprocessor HD64180 Hardware Manual HD64180Z HD64180R1

USER'S MANUAL

Hitachi 8-Bit Microprocessor HD64180 Hardware Manual

ADE-602-002C

When using this document, keep the following in mind:

- I. This document may, wholly or partially, be subject to change without notice.
- 2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi's permission.
- 3. Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during operation of the user's unit according to this document.
- 4. Circuitry and other examples described herein are meant merely to indicate the characteristics and performance of Hitachi's semiconductor products. Hitachi assumes no responsibility for any intellectual property claims or other problems that may result from applications based on the examples described herein.
- No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
- 6. MEDICAL APPLICATIONS: Hitachi's products are not authorized for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi's sales company. Such use includes, but is not limited to, use in life support systems. Buyers of Hitachi's products are requested to notify the relevant Hitachi sales offices when planning to use the products in MEDICAL APPLICATIONS.

Preface

Based on a microcoded execution unit and advanced CMOS manufacturing technology, the HD64180 is an 8-bit MPU which provides the benefits of high performance, reduced system cost and low power operation while maintaining compatibility with the large base of industry standard 8-bit software.

Performance is improved by virtue of high operating frequency, pipelining, enhanced instruction set and an integrated Memory Management Unit (MMU) with 1M or 512k bytes memory physical address space.

System cost is reduced by incorporating key system functions on-chip including the MMU, two channel Direct Memory Access Controller (DMAC), wait state generator, dynamic RAM refresh, two channel Asynchronous Serial Communication Interface (ASCI), Clocked Serial I/O Port (CSI/O), two channel 16-bit Programmable Reload Timer (PRT), Versatile 12 source interrupt controller and a 'dual' $(68 \times \times, 80 \times \times)$ bus interface.

This manual describes the HD64180Z, HD64180R1 hardware architecture. There is a separate programming manual for the entire HD64180 series (ADE-602-004B).

. .

.

.

TABLE OF CONTENTS

1.	HD64	4180 OVERVIEW
	1.1	Block Diagram
	1.2	Pin Assignment
	1.3	CPU Architecture
	1.4	I/O Resources
•		
2.	HD64	
	2.1	Signal Description
	2.2	CPU Bus Timing 17
	2.3	WAIT State Generator
	2.4	HALT and Low Power Operation Modes
	2.5	Internal I/O Registers
	2.6	Memory Management Unit (MMU) 40
	2.7	Interrupts
	2.8	Dynamic RAM Refresh Control
	2.9	DMA Controller (DMAC) 65
	2.10	Asynchronous Serial Communication Interface (ASCI)
	2.11	Clocked Serial I/O Port (CSI/O)
	2.12	Programmable Reload Timer (PRT)
	2.13	6800 Type Bus Interface
	2.14	On-chip Clock Generator
	2.15	Miscellaneous
	2.16	Operation Notes
3.	HD64	4180 SOFTWARE ARCHITECTURE 117
	3.1	Instruction Set
	3.2	CPU Registers
	3.3	Addressing Modes
4.	ELEC	TRICAL CHARACTERISTICS
5.	HD64	4180 PACKAGE DIMENSIONS

APPENDIX

Instruction Set	145
Instruction Summary in Alphabetical Order	162
Op-code Map	172
Bus and Control Signal Condition in each Machine Cycle	176
Request Acceptances in Each Operating Mode	196
Request Priority	197
Operation Mode Transition	198
Status Signals	200
Pin Status during RESET and Low Power Operation Modes	201
Internal I/O Registers	202
	Instruction SetInstruction Summary in Alphabetical OrderOp-code MapBus and Control Signal Condition in each Machine CycleRequest Acceptances in Each Operating ModeRequest PriorityOperation Mode TransitionStatus SignalsPin Status during RESET and Low Power Operation ModesInternal I/O Registers

Figures

Figure No.	Description	Page
1.1.1	Block Diagram	6
2.2.1	Op-code Fetch Timing	17
2.2.2	Op-code Fetch Timing (with wait state)	18
2.2.3	Memory Read/Write Timing (without wait state)	19
2.2.4	Memory Read/Write Timing (with wait state)	19
2.2.5	I/O Read/Write Timing	20
2.2.6	LD (IX+d), g Instruction Timing	21
2.2.7	RESET Timing	21
2.2.8	Bus Exchange Timing (1)	22
2.2.9	Bus Exchange Timing (2)	23
2.2.10	Writing 0 to LIRTE When LIRE=0	24
2.2.11	Example of Program for Clearing the LIRTE Bit	25
2.2.12	I/O Read Cycle When $\overline{IOC} = 1$	26
2.2.13	I/O Write Cycle When $\overline{IOC} = 1$	26
2.2.14	I/O Read Cycle When $\overline{IOC} = 0$	26
2.2.15	I/O Write Cycle When $\overline{IOC}=0$	27
2.2.16	Operation of RETI Instruction	27
2.3.1	WAIT Timing	29
2.4.1	HALT Timing	33
2.4.2	SLEEP Timing	34
2.4.3	HALT Output	35
2.5.1	Internal I/O Address Relocation	36
2.6.1	Logical Address Mapping Examples	40
2.6.2	Logical to Physical Memory Mapping Example	40
2.6.3	MMU Block Diagram	41
2.6.4	I/O Address Translation	41
2.6.5	Logical Memory Organization	42
2.6.6	Logical Space Configuration (Example)	43
2.6.7	Physical Address Generation	45
2.6.8	Example of the Correspondence between Logical Space	
	and Physical Space	46
2.7.1	Interrupt Sources	47
2.7.2 (a)	TRAP Timing – 2nd Op-code Undefined	51
2.7.2 (b)	TRAP Timing – 3rd Op-code Undefined	52
2.7.3	NMI Sequence	53
2.7.4	NMI Timing	54
2.7.5	$\overline{INT_0}$ Mode 0 Timing (RST Instruction on the Data Bus)	55

Figure No.	Description	Page
2.7.6	INT ₀ Mode 1 Interrupt Sequence	56
2.7.7	$\overline{INT_0}$ Mode 1 Timing	56
2.7.8	INT ₀ Mode 2 Vector Acquisition	57
2.7.9	INT ₀ Mode 2 Timing	58
2.7.10	$\overline{INT_1}$, $\overline{INT_2}$ and Internal Interrupts Vector Acquisition	59
2.7.11	$\overline{INT_1}$, $\overline{INT_2}$ and Internal Interrupts Timing	60
2.8.1	Refresh Timing	62
2.8.2	Refresh Requests during Bus Release Mode	64
2.9.1	DMAC Block Diagram	66
2.9.2	Cycle Steal Mode DMA Timing	72
2.9.3	CPU Operation and DMA Operation	
	(DREQ ₀ is programmed for level sense)	73
2.9.4	CPU Operation and DMA Operation	
x	(DREQ ₀ is programmed for edge sense)	74
2.9.5	TEND ₀ Output Timing	74
2.9.6	DMA Cycle (Memory to/from Memory Mapped I/O	
	(Memory))	75
2.9.7	DMA Cycle (Memory to I/O)	75
2.9.8	DMAC Interrupt Request Circuit Diagram	78
2.9.9	NMI and DMA Operation	79
2.10.1	ASCI Block Diagram	80
2.10.2 (a)	$\overline{\mathrm{DCD}_0}$ Timing	88
2.10.2 (b)	RTS ₀ Timing	88
2.10.3	ASCI Interrupt Request Circuit Diagram	89
2.10.4	ASCI Clock Block Diagram	89
2.11.1	CSI/O Block Diagram	90
2.11.2	CSI/O Interrupt Circuit Diagram	92
2.11.3	Transmit Timing – Internal Clock	94
2.11.4	Transmit Timing – External Clock	94
2.11.5	Receive Timing – Internal Clock	95
2.11.6	Receive Timing – External Clock	95
2.12.1	PRT Block Diagram	96
2.12.2	PRT Operation Timing	99
2.12.3	PRT Output Timing	99
2.12.4	PRT Interrupt Request Circuit Diagram	99
2.13.1	E Clock Timing (During Read/Write Cycle and Interrupt	
	Acknowledge Cycle)	102
2.13.2	E Clock Timing (in BUS RELEASE Mode, SLEEP Mode,	
	SYSTEM STOP mode)	103

Figure No.	Description	Page
2.14.1	External Clock Interface	105
2.14.2	Crystal Interface	106
2.14.3	Note for Board Design of the Oscillation Circuit	106
2.14.4	Example of Board Design	107
2.16.1	LIR Hold Time	109
2.16.2	Circuit Example	109
2.16.3	$\overline{\text{LIR}}$ and $\overline{\text{LIR}}$ ' Timing in the Circuit	110
2.16.4	Z80 CTC Write Timing	111
2.16.5	Z80 I/O Write Timing	111
2.16.6	HD64180RI I/O Write Timing	111
2.16.7	Countermeasure Circuit and Timings in the Circuit	
2.16.8	Z80 CTC Access Flow	113
2.16.9	The CALL Execution Timing in INT ₀ Mode 0	115
2.16.10	INT ₀ Mode 0 Sequence	
3.2.1	CPU Registers	119

Ag.

х "Х

.

HD64180

HIGH INTEGRATION CMOS MPU

Based on a microcoded execution unit and advanced CMOS manufacturing technology, the HD64180 is an 8-bit MPU which provides the benefits of high performance, reduced system cost and low power operation while maintaining compatibility with the large base of industry standard 8-bit software.

Performance is improved by virtue of high operating frequency, pipelining, enhanced instruction set and an integrated Memory Management Unit (MMU) with 1M or 512k bytes memory physical address space.

System cost is reduced by incorporating key system functions on-chip including the MMU, two channel Direct Memory Access Controller (DMAC), wait state generator, dynamic RAM refresh, two channel Asynchronous Serial Communication Interface (ASCI), Clocked Serial I/O Port (CSI/O), two channel 16-bit Programmable Reload Timer (PRT), Versatile 12 source interrupt controller and a 'dual' $(68 \times \times, 80 \times \times)$ bus interface.

Low power consumption during normal CPU operation is supplemented by two specific software controlled low power operation modes.

The HD64180, when combined with CMOS VLSI memories and peripherals, is useful in system applications requiring high performance, battery power operation and standard software compatibility.

HD64180Z is fully compatible with Z80180 (Z180) which is marketed by Zilog Inc.

High Performance, High Integration CPU.

- Operating Frequency to 8 MHz.
- On-Chip MMU Supports 1M or 512k Bytes Memory and 64k Bytes I/O Address Space.
- Two Channel DMAC With Memory to/from Memory, Memory to/from I/O and Memory to/from Memory Mapped I/O Transfer Capability.
- WAIT Input and Wait State Generator for Slow Memory and I/O Device Interface.
- Programmable Dynamic RAM Refresh Addressing and Timing.
- Two Channel, Full Duplex Asynchronous Serial Communication Interface (ASCI) with Programmable Baud Rate Generator and Modem Control Handshake Signals.
- Clocked Serial I/O Port (CSI/O) with High Speed Operation (400k Bits/Second at 8 MHz).
- Two Channel 16-bit Programmable Reload Timer (PRT) for Counting, Timing and Output Waveform Generation.
- Versatile Interrupt Controller Manages Four External and Eight Internal Interrupt Sources.
- · 'Dual Bus' Interface Compatible With All Standard Memory and Peripheral LSI.
- · On-chip Clock Generator.
- Enhanced Standard 8-bit Software Architecture.
- Fully Compatible with CP/M-80, CP/M Plus** and Existing System and Application Software.
- Seven new Instructions including Multiply.
- On-chip I/O Address Relocation Register for Board Level Compatibility with Existing Systems and Software.
- SLEEP mode and SYSTEM STOP mode for Low Power Operation.
- VLSI CMOS Process Technology.
- Low Power Operation 100 mW at 8 MHz Operation.

25 mW SYSTEM STOP mode at 8 MHz operation.

· $V_{CC} = 5V \pm 10\%$ – Fully TTL Compatible.

** CP/M-80 and CP/M plus are registered trademarks of Digital Research, Inc.

Type of Products

HD64180Z

Part No.	Clock Frequency (MHz)	Package Type	Address Bus	Address Space
HD64180ZP4	4			
HD64180ZP6	6	DP-64S	A ₀ - A ₁₈	512k Byte
HD64180ZP8	8			
HD64180ZFS4	4			
HD64180ZFS6	6	FP-80B	A ₀ - A ₁₉	1M Byte
HD64180ZFS8	8			
HD64180ZCP4	4			
HD64180ZCP6	6	CP-68	A ₀ - A ₁₉	1M Byte
HD64180ZCP8	8			

HD64180R1

Part No.	Clock Frequency (MHz)	Package Type	Address Bus	Address Space
HD64180R1P4	4			-
HD64180R1P6	6	DP-64S	A 0 - A 18	512k Byte
HD64180R1P8	8			
HD64180R1FS4	4			
HD64180R1FS6	6	FP-80B	A ₀ - A ₁₉	1M Byte
HD64180R1FS8	8			
HD64180R1CP4	4			
HD64180R1CP6	6	CP-68	A ₀ - A ₁₉	1M Byte
HD64180R1CP8	8			

HD64180Z will be marketed by Zilog Inc.

Zilog (Z Mask)

Part No.	Clock Frequency (MHz)	Package Type	Address Bus	Address Space
Z8018006PSC	6			512k Buto
Z8018008PSC	8	DF-043	A0 - A18	STZK Dyte
Z8018006VSC	6			1M Puto
Z8018008VSC	8	CF-00	A0 - A19	

Zilog (R1 Mask)

Part No.	Clock Frequency (MHz)	Package Type	Address Bus	Address Space
Z6418006PSC	6			E12k Puto
Z6418008PSC	8	DF-043	A0 - A18	STZK Byle
Z6418006VSC	6	CD 69		1M Duto
Z6418008VSC	8	CF-00	A0 - A19	TIVI Dyte

1. HD64180 OVERVIEW

1.1 Block Diagram

The HD64180 combines a high performance CPU core with many of the systems and I/O resources required by a broad range of applications.

The CPU core consists of five functional blocks.

O Clock Generator

- O Bus State Controller
- O Interrupt Controller
- O Memory Management Unit (MMU)
- O Central Processing Unit (CPU)

The integrated I/O resources comprise the remaining four functional blocks.

- DMA Controller (DMAC two channels)
- O Asynchronous Serial Communication Interface (ASCI two channels)
- \bigcirc Clocked Serial I/O Port (CSI/O one channel)
- \bigcirc Programmable Reload Timer (PRT two channels)

Block Diagram

Figure 1.1.1 Block Diagram

1.2 Pin Assignment (Top View)

RESET BUSRED BUSACK INT N V </tr V_{ss} 1 XTAL 2 Ο EXTAL 3 888888272222888883 WAIT 4 BUSACK 5 44 REF 53 NC 53 NC 53 NC 54 HALT 56 TEND; 57 DREQ; 59 DREQ; 59 RXS/CTS; 50 CKA;/TEND; 53 CKA;/TEND; 53 CKA;/TEND; 53 CKA;/TEND; 53 CKA; 53 CKA; 55 CKA NMI 🗆 BUSREQ 6 NC 2 NC 3 RESET 7 NMI 8 Image: Construction of the state o 54 DREQ1 53 CKS INT₂ 11 ST 12 52 RXS/CTS1 51 TXS 50 CKA1/TENDo Image: Second 49 RXA1 48 TXA1 47 CKA0/DREQ0 47 CKA0/ 46 RXA0 45 TXA0 44 DCD0 43 CTS0 A7 20 A8 21 A9 22 A10 23 A11 24 42 RTSo 41 D7 40 D5 80 D4 30 D3 30 D3 31 D3 33 D1 33 D3 33 Vss A12 25 A13 26 A14 27 A15 28 A16 29 A17 30 A18/TOUT 31 A18/ Vcc 32 (DP-64S) (FP-80B) 60 HALT 50 TEND; 50 TEND; 50 REG; 50 RXS/CTS; 51 TXS 53 TXS 53 CKA;/TRDo 53 RXA; 53 TXA; 50 CKA;/DREG; 60 CKA;/DREG; 60 CKA; 70 DCC; 40 CTS; 40 CTS; 40 CTS; 40 CTS; 41 D; 42 D; 44 D; 44 D; 45 CKA; 46 CTS; 47 CKA; 46 CTS; 47 CKA; 47 CKA; 48 TXA; 49 CTS; 49 CKA; 40 CTS; Image: State \bigcirc Please leave the TEST • pin open. A18/ (CP-68)

HD64180Z

HD64180R1

1.3 CPU Architecture

The five CPU core functional blocks are described in this section.

Clock Generator

Generates the system clock (ϕ) from an external crystal or external clock input. Also, the system clock is programmably prescaled to generate timing for the on-chip I/O and system support devices.

Bus State Controller

Performs all status/control bus activity. This includes external bus cycle wait state timing, $\overline{\text{RESET}}$, DRAM refresh, and master DMA bus exchange. Generates 'dual-bus' control signals for compatibility with peripheral devices.

Interrupt Controller

Monitors and prioritizes the four external and eight internal interrupt sources. A variety of interrupt response modes are programmable.

Memory Management Unit (MMU)

Maps the CPU 64k bytes logical memory address space into a 1M or 512k bytes physical memory address space. The MMU organization preserves software object code compatibility while providing extended memory access and uses an efficient 'common area — bank area' scheme. I/O accesses (64k bytes I/O address space) bypass the MMU.

Central Processing Unit (CPU)

The CPU is microcoded to implement an upward compatible superset of the 8bit standard software instruction set. Many instructions require fewer clock cycles for execution and seven new instructions are added.

1.4 I/O Resources

DMA Controller (DMAC)

The two channel DMAC provides high speed memory to/from memory, memory to/from I/O and memory to/from memory mapped I/O transfers. The DMAC features edge or level sense request input, address increment/decrement/ no-change and (for memory to/from memory transfers) programmable burst or cy-cle steal transfer. In addition, the DMAC can directly access the full 1M or 512k bytes physical memory address space (the MMU is bypassed during DMA) and transfers (up to 64k bytes in length) can cross 64k bytes boundaries. See Fig. 2.9.1 for further details.

Asynchronous Serial Communication Interface (ASCI)

The ASCI provides two separate full duplex UARTs and includes programmable baud rate generator, modem control signals, and a multiprocessor communication format. The ASCI can use the DMAC for high speed serial data transfer, reducing CPU overhead. See Fig. 2.10.1 for further details.

Clocked Serial I/O Port (CSI/O)

The CSI/O provides a half duplex clocked serial transmitter and receiver. This can be used for simple, high speed connection to another microprocessor or micro-computer. See Fig. 2.11.1 for further details.

Programmable Reload Timer (PRT)

The PRT contains two separate channels each consisting of 16-bit timer data and 16-bit timer reload registers. The time base is divided by 20 (fixed) from the system clock and PRT channel 1 has an optional output allowing waveform generation. See Fig. 2.12.1 for further details.

2. HD64180 HARDWARE ARCHITECTURE

2.1 Signal Description

XTAL (IN)

Crystal oscillator connection. Should be left open if an external TTL clock is used. It is noted this input is not a TTL level input. See Table D.C. characteristics.

EXTAL (IN)

Crystal oscillator connection. An external TTL clock can be input on this line. This input is schmitt triggered.

ϕ (OUT)

System Clock. The frequency is equal to one-half of crystal oscillator.

RESET – CPU Reset (IN)

When LOW, initializes the HD64180 CPU. All output signals are held inactive during RESET.

A₀-A₁₉ – Address Bus (OUT, 3-STATE)

A₁₈/TOUT

The address bus enters the high impedance state during RESET and when another device acquires the bus as indicated by $\overline{\text{BUSREQ}}$ and $\overline{\text{BUSACK}}$ LOW. A₁₈ is multiplexed with the TOUT output from PRT channel 1. During RESET, the address function is selected. TOUT function can be selected under software control.

D₀-D₇ – Data Bus (IN/OUT, 3-STATE)

Bidirectional 8-bit data bus. The data bus enters the high impedance state during RESET and when another device acquires the bus as indicated by \overline{BUSREQ} and \overline{BUSACK} LOW.

RD – Read (OUT, 3-STATE)

Used during a CPU read cycle to enable transfer from the external memory or I/O device to the CPU data bus.

\overline{WR} – Write (OUT, 3-STATE)

Used during a CPU write cycle to enable transfer from the CPU data bus to the external memory or I/O device.

ME – Memory Enable (OUT, 3-STATE)

Indicates memory read or write operation. The HD64180 asserts $\overline{\text{ME}}$ LOW in the following cases.

- (a) When fetching instructions and operands.
- (b) When reading or writing memory data.
- (c) During memory access cycles of DMA.
- (d) During dynamic RAM refresh cycles.

IOE – I/O Enable (OUT, 3-STATE)

Indicates I/O read or write operation. The HD64180 asserts \overline{IOE} LOW in the following cases.

- (a) When reading or writing I/O data.
- (b) During I/O access cycles of DMA.
- (c) During $\overline{INT_0}$ acknowledge cycle

WAIT – Bus Cycle Wait (IN)

Introduces wait states to extend memory and I/O cycles. If LOW at the falling edge of T_2 , a wait state (Tw) is inserted. Wait states will continue to be inserted until the WAIT input is sampled HIGH at the falling edge of Tw, at which time the bus cycle will proceed to completion.

E – Enable (OUT)

Synchronous clock for connection to $HD63 \times \times$ series and other 6800/6500 series compatible peripheral LSIs.

BUSREQ – Bus Request (IN)

Another device may request use of the bus by asserting $\overline{\text{BUSREQ}}$ LOW. The CPU will stop executing instructions and places the address bus, data bus, $\overline{\text{RD}}$, $\overline{\text{WR}}$, $\overline{\text{ME}}$ and $\overline{\text{IOE}}$ in the high impedance state.

BUSACK – Bus Acknowledge (OUT)

When the CPU completes bus release (in response to $\overline{\text{BUSREQ}}$ LOW), it will assert $\overline{\text{BUSACK}}$ LOW. This acknowledges that the bus is free for use by the requesting device.

HALT – Halt/Sleep Status (OUT)

Asserted LOW after execution of the HALT or SLP instructions. Used with $\overline{\text{LIR}}$ and ST output pins to encode CPU status.

LIR — Load Instruction Register (OUT)

Asserted LOW when the current cycle is an op-code fetch cycle. Used with $\overline{\text{HALT}}$ and ST output pins to encode CPU status.

ST – Status (OUT) [12]

Used with the $\overline{\text{HALT}}$ and $\overline{\text{LIR}}$ output pins to encode CPU status. Please do not connect a pull-down resister to this pin.

ST	HALT	LIR	Operation
0	1	0	CPU operation (1st op-code fetch)
1	1	0	CPU operation (2nd op-code and 3rd op-code fetch)
1	1	1	CPU operation (MC except for op-code fetch)
0	X	1	DMA operation
0	0	0	HALT mode
1	0	1	SLEEP mode (including SYSTEM STOP mode)

Table 2.1.1 Status Summary

NOTE X: Don't care MC: Machine cycle

REF – Refresh (OUT)

When LOW, indicates the CPU is in the dynamic RAM refresh cycle and the low-order 8 bits (A_0 - A_7) of the address bus contain the refresh address.

NMI – Non-Maskable Interrupt (IN)

When edge transition from HIGH to LOW is detected, forces the CPU to save certain state information and vector to an interrupt service routine at address 0066H. The saved state information is restored by executing the RETN (Return from Non-Maskable Interrupt) instruction.

INT⁰ – Maskable Interrupt Level 0 (IN)

When LOW, requests a CPU interrupt (unless masked) and saves certain state information unless masked by software. $\overline{INT_0}$ requests service using one of three software programmable interrupt modes.

Mode	Operation
0	Instruction fetched and executed from data bus.
1	Instruction fetched and executed from address 0038H.
2	Vector System — Low-order 8 bits vector table address fetched from data bus.

In all modes, the saved state information is restored by executing RETI (Return from Interrupt) instruction.

INT₁, **INT**₂ – Maskable Interrupt Level 1, 2 (IN)

When LOW, requests a CPU interrupt (unless masked) and saves certain state information unless masked by software. $\overline{INT_1}$ and $\overline{INT_2}$ (and internally generated interrupts) request interrupt service using a vector system similar to Mode 2 of $\overline{INT_0}$.

$\overline{\text{DREQ}_0}$ – DMA Request – Channel 0 (IN)

When LOW (programmable edge or level sense), requests DMA transfer service from channel 0 of the HD64180 DMAC. $\overline{DREQ_0}$ is used for Channel 0 memory to/from I/O and memory to/from memory mapped I/O transfers. $\overline{DREQ_0}$ is not used for memory to/from memory transfers. This pin is multiplexed with CKA₀.

TEND₀ – Transfer End – Channel 0 (OUT)

Asserted LOW synchronous with the last write cycle of channel 0 DMA transfer to indicate DMA completion to an external device. This pin is multiplexed with CKA₁.

DREQ₁ – DMA Request – Channel 1 (IN)

When LOW (programmable edge or level sense), requests DMA transfer service from channel 1 of the HD64180 DMAC. Channel 1 supports Memory to/from I/O transfers.

TEND₁ – Transfer End – Channel 1 (OUT)

Asserted LOW synchronous with the last write cycle of channel 1 DMA transfer to indicate DMA completion to an external device.

TXA₀ – Asynchronous Transmit Data – Channel 0 (OUT)

Asynchronous transmit data from channel 0 of the Asynchronous Serial Communication Interface (ASCI).

RXA₀ – Asynchronous Receive Data – Channel 0 (IN)

Asynchronous receive data to channel 0 of the ASCI.

CKA₀ – Asynchronous Clock – Channel 0 (IN/OUT)

Clock input/output for channel 0 of the ASCI. This pin is multiplexed (software selectable) with $\overline{DREQ_0}$.

$\overline{\text{RTS}_0}$ – Request to Send – Channel 0 (OUT)

Programmable modem control output signal for channel 0 of the ASCI.

$\overline{\text{CTS}_0}$ – Clear to Send – Channel 0 (IN)

Modem control input signal for channel 0 of the ASCI.

DCD₀ – Data Carrier Detect – Channel 0 (IN)

Modem control input signal for channel 0 of the ASCI.

TXA₁ – Asynchronous Transmit Data – Channel 1 (OUT)

Asynchronous transmit data from channel 1 of the ASCI.

RXA₁ – Asynchronous Receive Data – Channel 1 (IN)

Asynchronous receive data to channel 1 of the ASCI.

14 HITACHI

CKA₁ – Asynchronous Clock – Channel 1 (IN/OUT)

Clock input/output for channel 1 of the ASCI. This pin is multiplexed (software selectable) with $\overline{\text{TEND}_0}$.

CTS₁ – Clear to Send – Channel 1 (IN)

Modem control input signal for channel 1 of the ASCI. This pin is multiplexed (software selectable) with RXS.

TXS – Clocked Serial Transmit Data (OUT)

Clocked serial transmit data from the Clocked Serial I/O Port (CSI/O).

RXS – Clocked Serial Receive Data (IN)

Clocked serial receive data to the CSI/O. This pin is multiplexed (software selectable) with ASCI channel 1 $\overline{\text{CTS}_1}$ modem control input.

CKS – Serial Clock (IN/OUT)

Input or output clock for the CSI/O.

TOUT — Timer Output (OUT)

Pulse output from Programmable Reload Timer channel 1. This pin is multiplexed (software selectable) with A_{18} (Address 18).

- Vcc Power Supply
- Vss Ground

Multiplexed pin descriptions

A18/TOUT	During RESET, this pin is initialized as A ₁₈ pin. If either TOC1 or
	TOC0 bit in Timer Control Register (TCR) is set to 1, TOUT
	function is selected.
	If TOC1 and TOC0 bits are cleared to 0, A ₁₈ function is selected.
CKA ₀ /DREQ ₀	During RESET, this pin is initialized as CKA ₀ pin. If either DM1
	or SM1 in DMA Mode Register (DMODE) is set to 1, $\overline{DREQ_0}$
	function is always selected.
CKA ₁ /TEND ₀	During RESET, this pin is initialized as CKA_1 pin. If $\overline{CKA1D}$ bit
	in ASCI control register ch 1 (CNTLA1) is set to 1, $\overline{\text{TEND}_0}$ func-
	tion is selected. If $\overline{CKA1D}$ bit is set to 0, CKA_1 function is
	selected.
$RXS/\overline{CTS_1}$	During RESET, this pin is initialized as RXS pin. If CTS1E bit in
	ASCI status register ch1 (STAT1) is set to 1, $\overline{\text{CTS}_1}$ function is
	selected.
	If CTS1E bit is set to 0, RXS function is selected.

Package type	Pin No.	HD64180Z	HD64180R1
CP-68	52	TEST	NC
FP-80B	53	TEST	NC

Pin Function Differences in the HD64180 Series

2.2 CPU Bus Timing

This section explains the HD64180 CPU timing for the following operations.

- (1) Instruction (op-code) fetch timing.
- (2) Operand and data read/write timing.
- (3) I/O read/write timing.
- (4) Basic instruction (fetch and execute) timing.
- (5) RESET timing.
- (6) **BUSREQ**/**BUSACK** bus exchange timing.

The basic CPU operation consists of one or more "machine cycles" (MC). A machine cycle consists of three system clocks, T_1 , T_2 and T_3 while accessing memory or I/O, or it consists of one system clock, Ti while the CPU internal operation. The system clock (ϕ) is half frequency of crystal oscillation (Ex. 16 MHz crystal $\rightarrow \phi$ of 8 MHz, 125 nsec). For interfacing to slow memory or peripherals, optional wait states (Tw) may be inserted between T₂ and T₃.

2.2.1 Instruction (op-code) fetch timing

Fig. 2.2.1 shows the instruction (op-code) fetch timing with no wait states.

An op-code fetch cycle is externally indicated when the $\overline{\text{LIR}}$ (Load Instruction Register) output pin is LOW.

In the first half of T_1 , the address bus is driven with the contents of the Program Counter (PC). Note that this is the translated address output of the HD64180 on-chip MMU.

In the second half of T_1 , the \overline{ME} (Memory Enable) and \overline{RD} (Read) signals are asserted LOW, enabling the memory.

The op-code on the data bus is latched at the rising edge of T_3 and the bus cycle terminates at the end of T_3 .

Figure 2.2.1 Op-Code Fetch Timing

Fig. 2.2.2 illustrates the insertion of wait states (Tw) into the op-code fetch cycle. Wait states (Tw) are controlled by the external \overline{WAIT} input combined with an on-chip programmable wait state generator.

At the falling edge of T_2 the combined \overline{WAIT} input is sampled. If \overline{WAIT} input is asserted LOW, a wait state (Tw) is inserted. The address bus, \overline{ME} , \overline{RD} and \overline{LIR} are held stable during wait states. When the \overline{WAIT} is sampled inactive HIGH at the falling edge of Tw, the bus cycle enters T_3 and completes at the end of T_3 .

Figure 2.2.2 Op-Code Fetch Timing (with wait state)

2.2.2 Operand and data read/write timing

The instruction operand and data read/write timing differs from op-code fetch timing in two ways. First, the $\overline{\text{LIR}}$ output is held inactive. Second, the read cycle timing is relaxed by one-half clock cycle since data is latched at the falling edge of T₃.

Instruction operands include immediate data, displacement and extended addresses and have the same timing as memory data reads.

During memory write cycles the $\overline{\text{ME}}$ signal goes active in the second half of T₁. At the end of T₁, the data bus is driven with the write data.

At the start of T_2 , the \overline{WR} signal is asserted LOW enabling the memory. \overline{ME} and \overline{WR} go inactive in the second half of T_3 followed by deactivation of the write data on the data bus.

Wait states (Tw) are inserted as previously described for op-code fetch cycles.

Fig. 2.2.3 illustrates the read/write timing without wait states (Tw), while Fig. 2.2.4 illustrates read/write timing with wait states (Tw).

Figure 2.2.3 Memory Read/Write Timing (without wait state)

Figure 2.2.4 Memory Read/Write Timing (with wait state)

2.2.3 I/O read/write timing

I/O instructions cause data read/write transfer which differs from memory data transfer in the following three ways. The \overline{IOE} (I/O Enable) signal is asserted LOW instead of the \overline{ME} signal. The 16-bit I/O address is not translated by the MMU and A₁₆-A₁₈ (A₁₉) are held LOW. At least one wait state (Tw) is always inserted for I/O read and write cycles (except internal I/O cycles).

Fig. 2.2.5 shows I/O read/write timing with the automatically inserted wait state (Tw).

Figure 2.2.5 I/O Read/Write Timing

2.2.4 Basic instruction timing

An instruction may consist of a number of machine cycles including op-code fetch, operand fetch and data read/write cycles. An instruction may also include cycles for internal processing in which case the bus is idle.

The example in Fig. 2.2.6 illustrates the bus timing for the data transfer instruction LD (IX+d),g. This instruction moves the contents of a CPU register (g) to the memory location with address computed by adding an signed 8-bit displacement (d) to the contents of an index register (IX).

The instruction cycle starts with the two machine cycles to read the two bytes instruction op-code as indicated by $\overline{\text{LIR}}$ LOW. Next, the instruction operand (d) is fetched.

The external bus is idle while the CPU computes the effective address. Finally, the computed memory location is written with the contents of the CPU register (g).

Figure 2.2.6 LD (IX+d), g Instruction Timing

2.2.5 RESET timing

Fig. 2.2.7 shows the HD64180 hardware RESET timing. If the RESET pin is LOW for six or more than six clock cycles, processing is terminated and the HD64180 restarts execution from (logical and physical) address 00000H.

Figure 2.2.7 RESET Timing

2.2.6 BUSREQ/BUSACK bus exchange timing

The HD64180 can coordinate the exchange of control, address and data bus ownership with another bus master. The alternate bus master can request the bus release by asserting the $\overline{\text{BUSREQ}}$ (Bus Request) input LOW. After the HD64180 releases the bus, it relinquishes control to the alternate bus master by asserting the $\overline{\text{BUSREQ}}$ (Bus Acknowledge) output LOW.

The bus may be released by the HD64180 at the end of each machine cycle. In this context a machine cycle consists of a minimum of 3 clock cycles (more if wait states are inserted) for op-code fetch, memory read/write and I/O read/write cycles. Except for these cases, a machine cycle corresponds to one clock cycle.

When the bus is released, the address $(A_0-A_{18} (A_{19}))$, data (D_0-D_7) and control $(\overline{ME}, \overline{IOE}, \overline{RD}, \text{ and } \overline{WR})$ signals are placed in the high impedance state.

Note that dynamic RAM refresh is not performed when the HD64180 has released the bus. The alternate bus master must provide dynamic memory refreshing if the bus is released for long periods of time.

Fig. 2.2.8 illustrates $\overline{\text{BUSREQ}}/\overline{\text{BUSACK}}$ bus exchange during a memory read cycle. Fig. 2.2.9 illustrates bus exchange when the bus release is requested during an HD64180 CPU internal operation. $\overline{\text{BUSREQ}}$ is sampled at the falling edge of the system clock prior to T₃, Ti and Tx (BUS RELEASE state). If $\overline{\text{BUSREQ}}$ is asserted LOW at the falling edge of the clock state prior to Tx, another Tx is executed.

Figure 2.2.8 Bus Exchange Timing (1)

Figure 2.2.9 Bus Exchange Timing (2)

2.2.7 Z80-Type Bus Interface

Users can enable or disable the $\overline{\text{LIR}}$ output and control the timing of the $\overline{\text{IOE}}$ and $\overline{\text{RD}}$ signals by software. The operation of the RETI instruction of the Z Mask is different from that of the R1 Mask. The details are described below. These features enable HD64180 to connect with directly Z80 peripherals.

LIR, IOE, and RD Signal Control

Operation Mode Control Register

The $\overline{\text{LIR}}$, $\overline{\text{IOE}}$, and $\overline{\text{RD}}$ signals are controlled through the Operation Mode Control Register. The register is newly added in the Z Mask.

Operation Mode Control Register (OMCR: I/O address=3EH)

○ bit 7: LIRE (LIR Enable)

LIRE controls the $\overline{\text{LIR}}$ output and is set to 1 during RESET.

(a) LIRE = 1:

The $\overline{\text{LIR}}$ output is the same as that of R1 version and is asserted low in the following cases:

- Op-code fetch cycles
- The acknowledge cycle of $\overline{INT_0}$
- The first machine cycle of the \overline{NMI} acknowledge cycle
- (b) LIRE = 0:

The $\overline{\text{LIR}}$ output is normally inactive (high). The $\overline{\text{LIR}}$ is asserted low only in the following cases.

- The second op-code fetch cycle of RETI (Please see (2) RETI Instruction)
- The acknowledge cycle of $\overline{INT_0}$

This mode is used to interface with Z80 peripheral LSIs using daisy chain interrupt.

 \bigcirc bit 6: <u>LIRTE</u> (<u>LIR</u> Temporary Enable)

LIRTE activates the LIR output temporarily. **LIRTE** is always read as 1 and is set to 1 during RESET. This bit is used for Z80's PIO when daisy chain interrupt is used. Z80's PIO can generate an interrupt request on account of writing this bit to 0 after internal control register is set.

(a) $\overline{\text{LIRTE}}$ set to 1:

There is no effect and the $\overline{\text{LIR}}$ output is subject to the LIRE bit.

- (b) $\overline{\text{LIRTE}}$ set to 0:
 - When the LIRE bit is 1, the $\overline{\text{LIR}}$ output is not affected by this write operation.
 - When the LIRE bit is 0, the $\overline{\text{LIR}}$ output is temporarily asserted low in one op-code fetch cycle just after 0 is written to $\overline{\text{LIRTE}}$ bit. The timing is shown in figure 2.2.10.

Figure 2.2.10 Writing 0 to LIRTE When LIRE=0

When clearing the $\overline{\text{LIRTE}}$ bit, all interrupts must be disabled (interrupt enable flag IEF₁ must be set to 0 by a DI instruction). The instruction that clears the $\overline{\text{LIRTE}}$ bit must be followed by an instruction with a 1-byte opcode. Figure 2.2.11 shows an example.

Figure 2.2.11 Example of Program for Clearing the LIRTE Bit
\bigcirc bit 5: \overline{IOC} (I/O Compatibility)

 \overline{IOC} controls the \overline{IOE} and \overline{RD} output and is set to 1 during RESET.

(a) $\overline{IOC} = 1$ (The \overline{IOE} and \overline{RD} outputs are the same as those of the R1 Mask.) In an I/O read cycle, \overline{IOE} and \overline{RD} signals go to low at a falling edge of T₁. The timing is shown in figure 2.2.12.

Figure 2.2.12 I/O Read Cycle When IOC=1

In an I/O write cycle, $\overline{\text{IOE}}$ signal goes to low at a falling edge of T₁. The timing is shown in figure 2.2.13.

Figure 2.2.13 I/O Write Cycle When $\overline{IOC}=1$

(b) $\overline{\text{IOC}} = 0$ (The $\overline{\text{IOE}}$ and $\overline{\text{RD}}$ outputs are compatible with the Z80's peripheral LSIs.)

In an I/O read cycle, $\overline{\text{IOE}}$ and $\overline{\text{RD}}$ signals go to low at a rising edge of T₂. The timing is shown in figure 2.2.14.

In an I/O write cycle, $\overline{\text{IOE}}$ signal goes to low at a rising edge of T₂. The timing is shown in figure 2.2.15.

Figure 2.2.15 I/O Write Cycle When $\overline{IOC}=0$

RETI Instruction

It should be noted that the operation of RETI instruction of the Z Mask is different from that of the R1 Mask. In the Z Mask, the CPU reads the op-code, EDH and 4DH, twice as shown in figure 2.2.16.

Figure 2.2.16 Operation of RETI Instruction

The number of states and machine cycles is shown in Table 2.2.1.

Table 2.2.1 The number of states and machine cycles

Version	Number of states	Number of machine cycles
R1	12	4
Z	22	10

Note 1: Interrupt request during RETI Instruction

The CPU can't be interrupted between the first and the second read of the op-code. The CPU can be interrupted after it completes the unstack operation.

How to Set the Bits in Operation Mode Control Register

Please set the bits in OMCR according to table 2.2.2.

 Table 2.2.2 How to Set the Bits in Operation Mode Control Register

Usage of Z80's peripheral			E	Bits in OMCR	
Daisy chain	стс	PIO	LIRE	LIRTE	IOC
YES	YES	YES	0	writing 0	0
		NO	0	*	0
	NO	YES	0	writing 0	0/1
		NO	0	*	0/1
NO	YES		1	*	0
	NO		1	*	0/1

* No operation to LIRTE

2.3 WAIT State Generator

2.3.1 Wait state timing

To ease interfacing with slow memory and I/O devices, the HD64180 uses wait states (Tw) to extend bus cycle timing. A wait state(s) is inserted based on the combined (logical OR) state of the external \overline{WAIT} input and an internal programmable wait state (Tw) generator. Wait states (Tw) can be inserted in both CPU execution and DMA transfer cycles.

2.3.2 WAIT input

When the external \overline{WAIT} input is asserted LOW, wait state (Tw) are inserted between T₂ and T₃ to extend the bus cycle duration. The \overline{WAIT} input is sampled at the falling edge of the system clock in T₂ or Tw. If the \overline{WAIT} input is asserted LOW at the falling edge of the system clock in Tw, another Tw is inserted into the bus cycle. Note that \overline{WAIT} input transitions must meet specified set-up and hold times. This can easily be accomplished by externally synchronizing \overline{WAIT} input transitions with the rising edge of the system clock.

Dynamic RAM refresh is not performed during wait states (Tw) and thus systems designs which uses the automatic refresh function must consider the affects of the occurrence and duration of wait states (Tw).

Figure 2.3.1 shows WAIT timing.

Figure 2.3.1 WAIT Timing

2.3.3 Programmable wait state insertion

In addition to the \overline{WAIT} input, wait states (Tw) can also be programmably inserted using the HD64180 on-chip wait state generator. Wait state (Tw) timing applies for both CPU execution and on-chip DMAC cycles.

By programming the 4 significant bits of the DMA/WAIT Control Register (DCNTL), the number of wait states (Tw) automatically inserted in memory and I/ O cycles can be separately specified. Bits 4, 5 specify the number of wait states (Tw) inserted for I/O access and bits 6, 7 specify the number of wait states (Tw) inserted for memory access.

DMA/WAIT Control Register (DCNTL : I/O Address = 32H)

bit_	7	6	5	4	(
	MWI1	MWIO	IWI1	IWIO))
	R/W	R/W	R/W	R/W	·}(

The number of wait states (Tw) inserted in a specific cycle is the maximum of the number requested by the \overline{WAIT} input, and the number automatically generated by the on-chip wait state generator.

O Bit 7,6 : MWI1, MWI0 (Memory Wait Insertion)

For CPU and DMAC cycles which access memory (including memory mapped I/O), 0 to 3 wait states may be automatically inserted depending on the programmed value in MWI1 and MWI0.

MWI1	MWIO	The number of wait states
0	0	0
0	1	1
1	0	2
1	1	3

O Bit 5, 4: IWI1, IWI0 (I/O Wait Insertion)

For CPU and DMA cycles which access external I/O (and interrupt acknowledge cycles), 1 to 6 wait states (Tw) may be automatically inserted depending on the programmed value in IWI1 and IWI0.

		the number of wait states						
IWI1	IWIO	For external I/O registers accesses	For internal I/O registers accesses	For INTo interrupt acknowledge cy- cles when LIR is LOW	For INT ₁ , INT ₂ and internal interrupts acknowledge cy- cles (Note (2))	For NMI interrupt acknowledge cy- cles when LIR is LOW (Note (2))		
0	0	1		2				
0	1	2	О	4	2			
1	0	3	(Note (1))	5		0		
1	1	4	l	6				

Note:

 For HD64180 internal I/O register access (I/O addresses 0000H-003FH), IWI1 and IWI0 do not determine wait state (Tw) timing. For ASCI, CSI/O and PRT Data Register accesses, 0 to 4 wait states (Tw) will be generated. The number of wait states inserted during access to these registers is a function of internal synchronization requirements and CPU state. All other on-chip I/O register accesses (i.e. MMU, DMAC, ASCI Control Registers, etc.)

All other on-chip I/O register accesses (i.e. MMU, DMAC, ASCI Control Registers, etc.) have 0 wait states inserted and thus require <u>only</u> three clock cycles.

(2) For interrupt acknowledge cycles in which $\overline{\text{LIR}}$ is HIGH, such as interrupt vector table read and PC stacking cycle, memory access timing applies.

2.3.4 WAIT input and RESET

During RESET, MWI1, MWI0, IWI1 and IWI0 are all set=1, selecting the maximum number of wait states (Tw) (3 for memory accesses, 4 for external I/O accesses).

2.4 HALT and Low Power Operation Modes

The HD64180 can operate in 4 different modes. HALT mode, IOSTOP mode and two low power operation modes - SLEEP and SYSTEM STOP. Note that in all operating modes, the basic CPU clock (XTAL, EXTAL) must remain active.

2.4.1 HALT mode

HALT mode is entered by execution of the HALT instruction (op-code = 76H) and has the following characteristics.

- (1) The internal CPU clock remains active.
- (2) All internal and external interrupts can be received.
- (3) Bus exchange (BUSREQ and BUSACK) can occur.
- (4) Dynamic RAM refresh cycle ($\overline{\text{REF}}$) insertion continues at the programmed interval.
- (5) I/O operations (ASCI, CSI/O and PRT) continue.
- (6) The DMAC can operate.
- (7) The $\overline{\text{HALT}}$ output pin is asserted LOW.
- (8) The external bus activity consists of repeated 'dummy' fetches of the op-code following the HALT instruction.

Essentially, the HD64180 operates normally in HALT mode, except that instruction execution is stopped.

HALT mode can be exited in the following two ways.

RESET Exit from HALT mode

If the \overrightarrow{RESET} input is asserted LOW for at least six clock cycles, HALT mode is exited and the normal RESET sequence (restart at address 00000H) is initiated.

Interrupt Exit from HALT mode

When an internal or external interrupt is generated, HALT mode is exited and the normal interrupt response sequence is initiated.

If the interrupt source is masked (individually by enable bit, or globally by IEF_1 state), the HD64180 remains in HALT mode. However, \overline{NMI} interrupt will initiate the normal \overline{NMI} interrupt response sequence independent of the state of IEF_1 .

HALT timing is shown in Fig. 2.4.1.

Figure 2.4.1 HALT Timing

2.4.2 SLEEP mode

SLEEP mode is entered by execution of the 2 byte SLP instruction. SLEEP mode has the following characteristics.

- (1) The internal CPU clock stops, reducing power consumption.
- (2) The internal crystal oscillator does not stop.
- (3) Internal and external interrupt inputs can be received.
- (4) DRAM refresh cycles stop.
- (5) I/O operations using on-chip peripherals continue.
- (6) The internal DMAC stop.
- (7) $\overline{\text{BUSREQ}}$ can be received and acknowledged.
- (8) Address outputs go HIGH and all other control signal output become inactive HIGH.
- (9) Data Bus, 3-state.

SLEEP mode is exited in one of two ways as shown below.

RESET Exit from SLEEP mode

If the **RESET** input is held LOW for at least six clock cycles, the HD64180 will exit SLEEP mode and begin the normal RESET sequence with execution starting at address (logical and physical) 00000H.

Interrupt Exit from SLEEP Mode

The SLEEP mode is exited by detection of an external (\overline{NMI} , $\overline{INT_0}$, $\overline{INT_1}$, $\overline{INT_2}$) or internal (ASCI, CSI/O, PRT) interrupt.

In the case of \overline{NMI} , SLEEP Mode is exited and the CPU begins the normal \overline{NMI} interrupt response sequence.

In the case of all other interrupts, the interrupt response depends on the state of

the global interrupt enable flag (IEF₁) and the individual interrupt source enable bit. If the individual interrupt condition is disabled by the corresponding enable bit.

occurrence of that interrupt is ignored and the CPU remains in the SLEEP state.

Assuming the individual interrupt condition is enabled, the response to that interrupt depends on the global interrupt enable flag (IEF₁). If interrupts are globally enabled (IEF₁=1) and an individually enabled interrupt occurs, SLEEP mode is exited and the appropriate normal interrupt response sequence is executed.

If interrupts are globally disabled ($IEF_1=0$) and an individually enabled interrupt occurs, SLEEP mode is exited and instruction execution begins with the instruction following the SLP instruction. Note that this provides a technique for synchronization with high speed external events without incurring the latency imposed by an interrupt response sequence.

Fig. 2.4.2 shows SLEEP timing.

Figure 2.4.2 SLEEP Timing

In the case that interrupt requests occur during the CPU fetches SLP instruction, \overrightarrow{HALT} output goes low level only by 1 state in SLEEP MODE as shown in Fig. 2.4.3.

Figure 2.4.3 HALT Output

2.4.3 IOSTOP mode

IOSTOP mode is entered by setting the IOSTP bit of the I/O Control Register (ICR) to 1. In this case, on-chip I/O (ASCI, CSI/O, PRT) stops operating. However, the CPU continues to operate. Recovery from IOSTOP mode is by resetting the IOSTP bit in ICR to 0.

2.4.4 SYSTEM STOP mode

SYSTEM STOP mode is the combination of SLEEP and IOSTOP modes. SYS-TEM STOP mode is entered by setting the IOSTP bit in ICR to 1 followed by execution of the SLP instruction. In this mode, on-chip I/O and CPU stop operating, reducing power consumption. Recovery from SYSTEM STOP mode is the same as recovery from SLEEP mode, noting that internal I/O sources (disabled by IOSTOP) cannot generate a recovery interrupt.

2.5 Internal I/O Registers

The HD64180 internal I/O Registers occupy 64 I/O addresses (including reserved addresses). These registers access the internal I/O modules (ASCI, CSI/O, PRT) and control functions (DMAC, DRAM refresh, interrupts, wait state generator, MMU and I/O relocation).

To avoid address conflicts with external I/O, the HD64180 internal I/O addresses can be relocated on 64 bytes boundaries within the bottom 256 bytes of the 64k bytes I/O address space.

I/O Control Register (ICR)

ICR allows relocating of the internal I/O addresses. ICR also controls enabling/ disabling of the IOSTOP mode.

	I/O Control Register (ICR : I/O Address = 3FH)								
bit	7	6	5	4	3	2	1	0	
	1047	1046	IOSTP	_	_	_	_		
L		R/W	R/W				1	L	

○ IOA7,6: I/O Address Relocation (bits 7-6)

IOA7 and IOA6 relocate internal I/O as shown in Fig. 2.5.1. Note that the highorder 8 bits of 16-bit internal I/O addresses are always 0. IOA7 and IOA6 are cleared to 0 during RESET.

Figure 2.5.1 Internal I/O Address Relocation

○ IOSTP: IOSTOP Mode (bit 5)

IOSTOP mode is enabled when IOSTP is set to 1. Normal I/O operation resumes when IOSTP is reset to 0. IOSTP is cleared to 0 during RESET.

Internal I/O Registers Address Map

The internal I/O register addresses are shown in Table 2.5.1. These addresses are relative to the 64 bytes boundary base address specified in ICR.

	De réstau		Address		
	Register	winemonic	Binary	Hexadecimal	
	ASCI Control Register A Ch 0	CNTLA0	XX000000	00H	
	ASCI Control Register A Ch 1	CNTLA1	XX000001	01H	
	ASCI Control Register B Ch 0	CNTLBO	XX000010	02H	
	ASCI Control Register B Ch 1	CNTLB1	XX000011	03H	
ASCI	ASCI Status Register Ch 0	STATO	XX000100	04H	
	ASCI Status Register Ch 1	STAT1	XX000101	05H	
	ASCI Transmit Data Register Ch 0	TDRO	XX000110	06H	
	ASCI Transmit Data Register Ch 1	TDR1	XX000111	07H	
	ASCI Receive Data Register Ch O	RDRO	XX001000	08H	
	ASCI Receive Data Register Ch 1	RDR1	XX001001	09H	
CSI/O	CSI/O Control Register	CNTR	XX001010	0AH	
	CSI/O Transmit/Receive Data Register	TRDR	XX001011	OBH	
	Timer Data Register Ch OL	TMDROL	XX001100	осн	
	Timer Data Register Ch OH	TMDROH	XX001101	ODH	
	Reload Register Ch OL	RLDROL	XX001110	OEH	
	Reload Register Ch OH	RLDROH	XX001111	OFH	
	Timer Control Register	TCR	XX010000	10H	
T :	Reserved		XX010001	11H	
Timer			>	\$	
			XX010011	13H	
	Timer Data Register Ch 1L	TMDR1L	XX010100	14H	
	Timer Data Register Ch 1H	TMDR1H	XX010101	15H	
	Reload Register Ch 1L	RLDR1L	XX010110	16H	
	Reload Register Ch 1H	RLDR1H	XX010111	17H	
	Free Running Counter	FRC	XX011000	18H	
	Reserved		XX011001	19H	
Others			5	\$ }	
			XX011111	1FH	
	1	1	,	1	

Table 2.5.1 Internal I/O Register Address Map (1)

			Address		
	Register	winemonic	Binary	Hexadecimal	
	DMA Source Address Register Ch OL	SAROL	XX100000	20H	
	DMA Source Address Register Ch OH	SAROH	XX100001	21H	
	DMA Source Address Register Ch 0B	SAROB	XX100010	22H	
	DMA Destination Address Register Ch OL	DAROL	XX100011	23H	
	DMA Destination Address Register Ch OH	DAROH	XX100100	_ 24H	
	DMA Destination Address Register Ch OB	DAROB	XX100101	25H	
	DMA Byte Count Register Ch OL	BCROL	XX100110	26H	
	DMA Byte Count Register Ch OH	BCROH	XX100111	27H	
	DMA Memory Address Register Ch 1L	MAR1L	XX101000	28H	
DMA	DMA Memory Address Register Ch 1H	MAR1H	XX101001	29H	
	DMA Memory Address Register Ch 1B	MAR1B	XX101010	2AH	
	DMA I/O Address Register Ch 1L	IAR1L	XX101011	2BH	
	DMA I/O Address Register Ch 1H	IAR1H	XX101100	2CH	
	Reserved		XX101101	2DH	
	DMA Byte Count Register Ch 1L	BCR1L	XX101110	2EH	
	DMA Byte Count Register Ch 1H	BCR1H	XX101111	2FH	
	DMA Status Register	DSTAT	XX110000	30H	
	DMA Mode Register	DMODE	XX110001	31H	
	DMA/WAIT Control Register	DCNTL	XX110010	32H	
	IL Register (Interrupt Vector Low Register)	IL	XX110011	33H	
INT	INT/TRAP Control Register	пс	XX110100	34H	
	Reserved		XX110101	35H	

Table 2.5.1 Internal I/O Register Address Map (2)

	Periotor	Maamonia	Address		
	Register	winemonic	Binary	Hexadecimal	
Refresh	Refresh Control Register	RCR	XX110110	36H	
	Reserved		XX110111	37H	
	MMU Common Base Register	CBR	XX111000	38H	
MMU	MMU Bank Base Register	BBR	XX111001	39H	
	MMU Common/Bank Area Register	CBAR	XX111010	ЗАН	
I/O	Reserved		XX111011) XX111101	3BH) (3DH	
	Operation Mode Control Register	OMCR	XX111110	3EH	
	I/O Control Register	ICR	XX111111	3FH	

 Table 2.5.1 Internal I/O Register Address Map (3)

I/O ADDRESSING NOTES

The internal I/O register addresses are located in the I/O address space from 0000H to 00FFH (16-bit I/O addresses). Thus, to access the internal I/O registers (using I/O instructions), the high-order 8 bits of the 16-bit I/O address must be 0.

The conventional I/O instructions (OUT (m),A/ IN A,(m) / OUTI / INI/ etc.) place the contents of a CPU register on the high-order 8 bits of the address bus, and thus may be difficult to use for accessing internal I/O registers.

For efficient internal I/O register access, a number of new instructions have been added, which force the high-order 8 bits of the 16-bit I/O address to 0. These instructions are IN0, OUT0, OTIM, OTIMR, OTDM, OTDMR and TSTIO (See section 3.1 Instruction Set).

Note that when writing to an internal I/O register, the same I/O write occurs on the external bus. However, the duplicate external I/O write cycle will exhibit internal I/O write cycle timing. For example, the $\overline{\text{WAIT}}$ input and programmable wait state generator are ignored. Similarly, internal I/O read cycles also cause a duplicate external I/O read cycle – however, the external read data is ignored by the HD64180.

Normally, external I/O addresses should be chosen to avoid overlap with internal I/O addresses to avoid duplicate I/O accesses.

2.6 Memory Management Unit (MMU)

The HD64180 contains an on-chip MMU which performs the translation of the CPU 64k bytes (16-bit addresses- 0000H to FFFFH) logical memory address space into a 512k bytes (19-bit addresses- 00000H to 7FFFFH) or 1M bytes (20-bit addresses- 00000H to FFFFFH) physical memory address space. Address translation occurs internally in parallel with other CPU operation.

2.6.1 Logical address spaces

The 64k bytes CPU logical address space is interpreted by the MMU as consisting of up to three separate logical address areas, Common Area 0, Bank Area and Common Area 1.

As shown in Fig. 2.6.1 a variety of logical memory configurations are possible. The boundaries between the Common and Bank Areas can be programmed with 4k bytes resolution.

Figure 2.6.1 Logical Address Mapping Examples

2.6.2 Logical to physical address translation

Fig. 2.6.2 shows an example in which the three logical address space portions are mapped into a 512k (1M) bytes physical address space. The important points to note are that Common and Bank Areas can overlap and that Common Area 1 and Bank Area can be freely relocated (on 4k bytes physical address boundaries). Common Area 0 (if it exists) is always based at physical address 00000H.

Figure 2.6.2 Logical to Physical Memory Mapping Example

2.6.3 MMU block diagram

The MMU block diagram is shown in Fig. 2.6.3. The MMU translates internal 16-bit logical addresses to external 19-bit or 20-bit physical addresses.

Figure 2.6.3 MMU Block Diagram

Whether address translation takes place depends on the type of CPU cycle as follows.

(1) Memory Cycles

Address Translation occurs for all memory access cycles including instruction and operand fetches, memory data reads and writes, hardware interrupt vector fetch and software interrupt restarts.

(2) I/O Cycles

The MMU is logically bypassed for I/O cycles. The 16-bit logical I/O address space corresponds directly with the 16 bit physical I/O address space. The three high order bits $(A_{16}-A_{18} (A_{19}))$ of the physical address are always 0 during I/O cycles.

Figure 2.6.4 I/O Address Translation

(3) DMA Cycles

When the HD64180 on-chip DMAC is using the external bus, the MMU is physically bypassed. The 19-bit or 20-bit source and destination registers in the DMAC are directly output on the physical address bus $(A_0-A_{18} (A_{19}))$.

2.6.4 MMU registers

Three MMU registers are used to program a specific configuration of logical and physical memory.

- (1) MMU Common/Bank Area Register (CBAR)
- (2) MMU Common Base Register (CBR)
- (3) MMU Bank Base Register (BBR)

CBAR is used to define the logical memory organization, while CBR and BBR are used to relocate logical areas within the 512k (1M) bytes physical address space. The resolution for both setting boundaries within the logical space and relocation within the physical space is 4k bytes.

The CAR field of CBAR determines the start address of Common Area 1 (Upper Common) and by default, the end address of the Bank Area. The BAR field determines the start address of the Bank Area and by default, the end address of Common Area 0 (Lower Common).

The CA and BA fields of CBAR may be freely programmed subject only to the restriction that CA may never be less than BA. Fig. 2.6.5 and Fig. 2.6.6 shows example of logical memory organizations associated with different values of CA and BA.

Figure 2.6.5 Logical Memory Organization

Figure 2.6.6 Logical Space Configuration (Example)

MMU REGISTER DESCRIPTION

MMU Common/Bank Area Register (CBAR)

CBAR specifies boundaries within the HD64180 64k bytes logical address space for up to three areas, Common Area 0, Bank Area and Common Area 1.

		••••••		iou nogio			101033	
bit	7	6	5	4	3	2	1	0
	CA3	CA2	CA1	CAO	BA3	BA2	BA1	BAO
L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

MMU Common/Bank Area Register (CBAR : I/O Address = 3AH)

O CA3-CA0: CA (bits 7-4)

CA specifies the start (low) address (on 4k bytes boundaries) for the Common Area 1. This also determines the last address of the Bank Area. All bits of CA are set to 1 during RESET.

BA3-BA0: BA (bits 3-0)

BA specifies the start (low) address (on 4k bytes boundaries) for the Bank Area. This also determines the last address of the Common Area 0. All bits of BA are reset to 0 during RESET.

MMU Common Base Register (CBR)

CBR specifies the base address (on 4k bytes boundaries) used to generate a 19bit or 20-bit physical address for Common Area 1 accesses. All bits of CBR are reset to 0 during RESET.

MMU Bank Base Register (BBR)

BBR specifies the base address (on 4k bytes boundaries) used to generate a 19bit or 20-bit physical address for Bank Area accesses. All bits of BBR are reset to 0 during RESET.

MMU Bank Base Register (BBR : I/O Address = 39H)

bit	7	6	5	4	3	2	1	0
	BB7*	BB6	BB5	BB4	BB3	BB2	BB1	BBO
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

2.6.5 Physical address translation

Fig. 2.6.7 shows the way in which physical addresses are generated based on the contents of CBAR, CBR and BBR. MMU comparators classify an access by logical area as defined by CBAR. Depending on which of the three potential logical areas (Common Area 1, Bank Area or Common Area 0) is being accessed, the appropriate 7-bit base address is added to the high-order 4 bits of the logical address, yielding a 19-bit or 20-bit physical address. CBR is associated with Common Area 1 accesses. Common Area 0 accesses use a (non-accessible, internal) base register which contains 0. Thus, Common Area 0, if defined, is always based at physical address 00000H. Figure 2.6.8 shows an example of the correspondence between logical space and physical space.

* CBR and BBR are expanded from 7 bits to 8 bits in the package version of CP-68 and FP-80B.

2.6.6 MMU and RESET

During RESET, all bits of the CA field of CBAR are set to 1 while all bits of the BA field of CBAR, CBR and BBR are reset to 0. The logical 64k bytes address space corresponds directly with the first 64k bytes (0000H to FFFFH) of the 512k bytes (00000H to 7FFFFH) physical address space. Thus, after RESET, the HD64180 will begin execution at logical and physical address 0.

Figure 2.6.7 Physical Address Generation

2.6.7 MMU register access timing

When data is written into CBAR, CBR or BBR, the value will be effective from the cycle immediately following the I/O write cycle which updates these registers.

Care must be taken during MMU programming to insure that CPU program execution is not disrupted. Observe that the next cycle following MMU register programming will normally be an op-code fetch from the newly translated address. One simple technique is to localize all MMU programming routines in a Common Area that is always enabled.

Figure 2.6.8 Example of the Correspondence between Logical Space and Physical Space

2.7 Interrupts

The HD64180 CPU has twelve interrupt sources, four external and eight internal, with fixed priority.

Higher	(1)	TRAP (Undefined Op-code Trap)	Internal Interrupt
1 Holley	(Z) (2)	Nivii (Non iviaskable interrupt)	
I T	(3)		External Interrupt
	(4)	IN 1 1 (Maskable Interrupt Level 1)	
	(5)	INT ₂ (Maskable Interrupt Level 2)	
	(6)	Timer 0	
	(7)	Timer 1	
	(8)	DMA channel 0	
	(9)	DMA channel 1	Internal Interrupt
	(10)	Clocked Serial I/O Port	-
Lower	(11)	Asynchronous SCI channel 0	
Priority	(12)	Asynchronous SCI channel 1	

Figure 2.7.1 Interrupt Sources

This section explains the CPU registers associated with interrupt processing, the TRAP interrupt, interrupt response modes and the external interrupts. The detailed discussion of internal interrupt generation (except TRAP) is presented in the appropriate hardware section (i.e. PRT, DMAC, ASCI and CSI/O).

2.7.1 Interrupt control registers and flags

The HD64180 contains three registers and two flags which are associated with interrupt processing.

	Function	Name	Access Method
(1)	Interrupt Vector High	Ι	LD A, I and LD I, A instructions
(2)	Interrupt Vector Low	IL	I/O instruction (addr= $33H$)
(3)	Interrupt/Trap Control	ITC	I/O instruction (addr= $34H$)
(4)	Interrupt Enable Flag 1,2	IEF1,IEF2	EI and DI
			LD A, I
			LD A, R instructions

Interrupt Vector Register (I)

Mode 2 for $\overline{INT_0}$ external interrupt, $\overline{INT_1}$ and $\overline{INT_2}$ external interrupts and all internal interrupts (except TRAP) use a programmable vectored technique to determine the address at which interrupt processing starts. In response to the interrupt a 16-bit address is generated. This address accesses a vector table in memory to obtain the address at which execution restarts.

While the method for generation of the least significant byte of the table address differs, all vectored interrupts use the contents of I as the most significant byte of the table address. By programming the contents of I, vector tables can be relocated

on 256 bytes boundaries throughout the 64k bytes logical address space.

Note that I is read/written with the LD A, I and LD I, A instructions rather than I/O (IN, OUT) instructions.

I is initialized to 00H during RESET.

Interrupt Vector Low Register (IL)

This register determines the most significant three bits of the low-order byte of the interrupt vector table address for external interrupts $\overline{INT_1}$ and $\overline{INT_2}$ and all internal interrupts (except TRAP). The five least significant bits are fixed for each specific interrupt source. By programming IL the vector table can be relocated on 32 bytes boundaries.

IL is initialized to 00H during RESET.

INT/TRAP Control Register (ITC)

ITC is used to handle TRAP interrupts and to enable or disable the external maskable interrupt inputs $\overline{INT_0}$, $\overline{INT_1}$ and $\overline{INT_2}$.

O TRAP (bit 7)

This bit is set to 1 when an undefined op-code is fetched. TRAP can be reset under program control by writing it with 0, however it cannot be written with 1 under program control. TRAP is reset to 0 during RESET.

O UFO: Undefined Fetch Object (bit 6)

When a TRAP interrupt occurs (TRAP bit is set to 1), the contents of UFO allow determination of the starting address of the undefined instruction. This is necessary since the TRAP may occur on either the second or third byte of the op-code. UFO allows the stacked PC value (stacked in response to TRAP) to be correctly adjusted. If UFO = 0, the first op-code should be interpreted as the stacked PC-1. If UFO = 1, the first op-code address is stacked PC-2. UFO is read-only.

○ ITE2,1,0: Interrupt Enable 2,1,0 (bits 2-0)

ITE2, ITE1 and ITE0 enable and disable the external interrupt inputs $\overline{INT_2}$, $\overline{INT_1}$ and $\overline{INT_0}$ respectively. If reset to 0, the interrupt is masked. During RESET, ITE0 is initialized to 1 while ITE1 and ITE2 are initialized to 0.

Interrupt Enable Flag 1,2 (IEF 1, IEF 2)

IEF₁ controls the overall enabling and disabling of all internal and external maskable interrupts (i.e. all interrupts except \overline{NMI} and TRAP).

If $IEF_1 = 0$, all maskable interrupts are disabled. IEF_1 can be reset to 0 by the DI (Disable Interrupts) instruction and set to 1 by the EI (Enable Interrupts) instruction.

The purpose of IEF₂ is to correctly manage the occurrence of $\overline{\text{NMI}}$. During $\overline{\text{NMI}}$, the prior interrupt reception state is saved and all maskable interrupts are automatically disabled (IEF₁ copied to IEF₂ and then IEF₁ cleared to 0). At the end of the $\overline{\text{NMI}}$ interrupt service routine, execution of the RETN (Return from Non-maskable Interrupt) will automatically restore the interrupt receiving state (by copying IEF₂ to IEF₁) prior to the occurrence of $\overline{\text{NMI}}$.

IEF₂ state can be reflected in the P/V bit of the CPU Status register by executing LD A, I or LD A, R instructions.

Table 2.7.1 shows the state of IEF1 and IEF2.

Interrupt Requests during LD A, I or LD A, R Instruction

All of interrupt requests including \overline{NMI} can't be sampled during execution of LD A, I or LD A, R instruction like EI and DI instruction.

Therefore, the correct value of IEF_2 is transferred to P/V Flag after completion of LD A, I or LD A, R.

CPU Operation	IEF 1	IEF ₂	REMARKS
RESET	0	0	Inhibits the interrupt except NMI and TRAP.
NMI	0	IEF 1	Copies the contents of IEF_1 to IEF_2 .
RETN	IEF ₂	not affected	Returns from the NMI service routine.
Interrupt except	0	0	Inhibits the interrupt except $\overline{\text{NMI}}$ and TRAP.
RETI	not affected	not affected	
TRAP	not affected	not affected	
El	1	1	Interrupts are not sampled
DI	0	0	interrupts are not sampled.
LD A, I	not affected	not affected	Transfers the contents of IEF ₂ to P/V
LD A, R	not affected	not affected	flag. Interrupts are not sampled.

Table 2.7.1 State of IEF₁ and IEF₂

2.7.2 TRAP interrupt

The HD64180 generates a non-maskable (not affected by the state of IEF₁) TRAP interrupt when an undefined op-code fetch occurs. This feature can be used to increase software reliability, implement an 'extended' instruction set, or both. TRAP may occur during op-code fetch cycles and also if an undefined op-code is fetched during the interrupt acknowledge cycle for $\overline{INT_0}$ when Mode 0 is used.

When a TRAP interrupt occurs the HD64180 operates as follows.

- (1) The TRAP bit in the Interrupt TRAP/Control (ITC) register is set to 1.
- (2) The current PC (Program Counter) value, reflecting the location of the undefined op-code, is saved on the stack.
- (3) The HD64180 vectors to logical address 0. Note that if logical address 0000H is mapped to physical address 00000H, the vector is the same as for RESET. In this case, testing the TRAP bit in ITC will reveal whether the restart at physical address 00000H was caused by RESET or TRAP.

The state of the UFO (Undefined Fetch Object) bit in ITC allows TRAP manipulation software to correctly 'adjust' the stacked PC depending on whether the second or third byte of the op-code generated the TRAP. If UFO = 0, the starting address of the invalid instruction is equal to the stacked PC-1. If UFO = 1, the starting address of the invalid instruction is equal to the stacked PC-2. Fig. 2.7.2 shows TRAP Timing.

Note that Bus Release cycle, Refresh cycle, DMA cycle and WAIT cycle can't be inserted just after T_{TP} state which is inserted for TRAP interrupt sequence.

Figure 2.7.2(a) TRAP Timing – 2nd Op-code Undefined

Figure 2.7.2(b) TRAP Timing - 3rd Op-code Undefined

2.7.3 External interrupts

The HD64180 has four external hardware interrupt inputs.

- (1) \overline{NMI} Non-maskable Interrupt
- (2) $\overline{INT_0}$ Maskable Interrupt Level 0
- (3) $\overline{INT_1}$ Maskable Interrupt Level 1
- (4) $\overline{INT_2}$ Maskable Interrupt Level 2

 $\overline{\text{NMI}}$, $\overline{\text{INT}_1}$ and $\overline{\text{INT}_2}$ have fixed interrupt response modes. $\overline{\text{INT}_0}$ has three different software programmable interrupt response modes – Mode 0, Mode 1 and Mode 2.

2.7.4 NMI – Non-Maskable Interrupt

The $\overline{\text{NMI}}$ interrupt input is edge sensitive and cannot be masked by software. When $\overline{\text{NMI}}$ is detected, the HD64180 operates as follows.

- (1) DMAC operation is suspended by the clearing of the DME (DMA Main Enable) bit in DCNTL.
- (2) The PC is pushed onto the stack.
- (3) The contents of IEF₁ are copied to IEF₂. This saves the interrupt reception state that existed prior to \overline{NMI} .
- (4) IEF₁ is cleared to 0. This disables all external and internal maskable interrupts (i.e. all interrupts except $\overline{\text{NMI}}$ and TRAP).
- (5) Execution commences at logical address 0066H.

The last instruction of an $\overline{\text{NMI}}$ service routine should be RETN (Return from Non-maskable Interrupt). This restores the stacked PC, allowing the interrupted program to continue. Furthermore, RETN causes IEF₂ to be copied to IEF₁, restoring the interrupt reception state that existed prior to the $\overline{\text{NMI}}$.

Note that $\overline{\text{NMI}}$, since it can be accepted during HD64180 on-chip DMAC operation, can be used to externally interrupt DMA transfer. The $\overline{\text{NMI}}$ service routine can reactivate or abort the DMAC operation as required by the application.

For $\overline{\text{NMI}}$, special care must be taken to insure that interrupt inputs do not 'overrun' the $\overline{\text{NMI}}$ service routine. Unlimited $\overline{\text{NMI}}$ inputs without a corresponding number of RETN instructions will eventually cause stack overflow.

Fig. 2.7.3 shows the use of $\overline{\text{NMI}}$ and RETN while Fig. 2.7.4 details $\overline{\text{NMI}}$ response timing. $\overline{\text{NMI}}$ is edge sensitive and the internally latched $\overline{\text{NMI}}$ falling edge is held until it is sampled. If the falling edge of $\overline{\text{NMI}}$ is latched before the falling edge

Figure 2.7.3 NMI Sequence

of clock state prior to T_3 or Ti in the last machine cycle, the internally latched \overline{NMI} is sampled at the falling edge of the clock state prior to T_3 or Ti in the last machine cycle and \overline{NMI} acknowledge cycle begins at the end of the current machine cycle.

Figure 2.7.4 NMI Timing

2.7.5 INT₀ – Maskable Interrupt Level 0

The next highest priority external interrupt after $\overline{\text{NMI}}$ is $\overline{\text{INT}_0}$. $\overline{\text{INT}_0}$ is sampled at the falling edge of the clock state prior to T₃ or Ti in the last machine cycle. If $\overline{\text{INT}_0}$ is asserted LOW at the falling edge of the clock state prior to T₃ or Ti in the last machine cycle, $\overline{\text{INT}_0}$ is accepted. The interrupt is masked if either the IEF₁ flag or the ITEO (Interrupt Enable 0) bit in ITC are reset to 0. Note that after RESET the state is as follows.

(1) IEF₁ is 0, so $\overline{INT_0}$ is masked.

(2) ITE0 is 1, so $\overline{INT_0}$ is enabled by execution of the EI (Enable Interrupts) instruction. The $\overline{INT_0}$ interrupt is unique in that three programmable interrupt response

modes are available – Mode 0, Mode 1 and Mode 2. The specific mode is selected with the IM 0, IM 1 and IM 2 (Set Interrupt Mode) instructions. During RESET, the HD64180 is initialized to use Mode 0 for $\overline{INT_0}$.

The three interrupt response modes for INTo are...

- (1) Mode 0 Instruction fetch from data bus.
- (2) Mode 1 Restart at logical address 0038H.
- (3) Mode 2 Low byte vector table address fetch from data bus.

54 HITACHI

During the interrupt acknowledge cycle, an instruction is fetched from the data bus (D_0 - D_7) at the rising edge of T₃. Often, this instruction is one of the eight single byte RST (RESTART) instructions which stack the PC and restart execution at a fixed logical address. However, multibyte instructions can be processed if the interrupt acknowledging device can provide a multibyte response. Unlike all other interrupts, the PC is not automatically stacked.

Note that TRAP interrupt will occur if an invalid instruction is fetched during Mode 0 interrupt acknowledge.

Fig. 2.7.5 shows INTo Mode 0 Timing.

Figure 2.7.5 INT₀ Mode 0 Timing (RST Instruction on the Data Bus)

\bigcirc **INT**⁰ Mode 1

When $\overline{INT_0}$ is received, the PC is stacked and instruction execution restarts at logical address 0038H. Both IEF₁ and IEF₂ flags are reset to 0, disabling all maskable interrupts. The interrupt service routine should normally terminate with the EI (Enable Interrupts) instruction followed by the RETI (Return from Interrupt) instruction, so that the interrupts are reenabled. Fig. 2.7.6 shows the use of $\overline{INT_0}$ (Mode 1) and RETI.

Fig. 2.7.7 shows $\overline{INT_0}$ Mode 1 timing.

Figure 2.7.6 INT₀ Mode 1 Interrupt Sequence

Figure 2.7.7 INTo Mode 1 Timing

$\bigcirc \quad \overline{\mathsf{INT}_0} \text{ Mode 2}$

This method determines the restart address by reading the contents of a table residing in memory. The vector table consists of up to 128 two-byte restart addresses stored in low byte, high byte order.

The vector table address is located on 256 bytes boundaries in the 64k bytes logical address space as programmed in the 8-bit Interrupt Vector Register (I). Fig. 2.7.8 shows the $\overline{INT_0}$ Mode 2 Vector acquisition.

During $\overline{INT_0}$ Mode 2 acknowledge cycle, first, the low-order 8 bits of vector is fetched from the data bus at the rising edge of T₃ and CPU acquires the 16-bit vector.

Next, the PC is stacked. Finally, the 16-bit restart address is fetched from the vector table and execution commences at that address.

Note that external vector acquisition is indicated by $\overline{\text{LIR}}$ and $\overline{\text{IOE}}$ both LOW. Two wait states (Tw) are automatically inserted for external vector fetch cycles.

During RESET the Interrupt Vector Register (I) is initialized to 00H and, if necessary, should be set to a different value prior to the occurrence of a Mode 2 $\overline{INT_0}$ interrupt. Fig. 2.7.9 shows $\overline{INT_0}$ interrupt Mode 2 Timing.

Figure 2.7.8 INTo Mode 2 Vector Acquisition

Figure 2.7.9 INTo Mode 2 Timing

2.7.6 INT₁, INT₂

The operation of external interrupts $\overline{INT_1}$ and $\overline{INT_2}$ is a vector mode similar to $\overline{INT_0}$ Mode 2. The difference is that $\overline{INT_1}$ and $\overline{INT_2}$ generate the low-order byte of vector table address using the IL (Interrupt Vector Low) register rather than fetching it from the data bus. This is also the interrupt response sequence used for all internal interrupts (except TRAP).

As shown in Fig. 2.7.10 the low-order byte of vector table address is comprised of the most significant three bits of the software programmable IL register while the least significant five bits are a unique fixed value for each interrupt ($\overline{INT_1}$, $\overline{INT_2}$ and internal) source.

 $\overline{INT_1}$ and $\overline{INT_2}$ are globally masked by IEF₁ = 0. Each is also individually maskable by respectively clearing the ITE1 and ITE2 (bits 1, 2) of the INT/TRAP control register to 0.

During RESET, IEF1, ITE1 and ITE2 bits are reset to 0.

2.7.7 Internal interrupts

Internal interrupts (except TRAP) use the same vectored response mode as $\overline{INT_1}$ and $\overline{INT_2}$ (Fig. 2.7.10). Internal interrupts are globally masked by IEF₁ = 0. Individual internal interrupts are enabled/disabled by programming each individual I/O (PRT, DMAC, CSI/O, ASCI) control register. The lower vector of $\overline{INT_1}$, $\overline{INT_2}$

and internal interrupt are summarized in Table 2.7.2.

Figure 2.7.10 INT₁, INT₂ and Internal Interrupts Vector Acquisition

Interrupt Source	Priority	۱L			Fixed Code				
interrupt Source		b7	b_6	b5	b4	bз	b2	b1	b٥
INT 1	Highest	*	*	*	0	0	0	0	0
INT ₂	1	*	*	*	0	0	0	1	0
PRT channel 0		*	*	*	0	0	1	0	0
PRT channel 1		*	*	*	0	0	1	1	0
DMA channel 0		*	*	*	0	1	0	0	0
DMA channel 1		*	*	*	0	1	0	1	0
CSI/O		*	*	*	0	1	1	0	0
ASCI channel 0		*	*	*	0	1	1	1	0
ASCI channel 1	Lowest	*	*	*	1	0	0	0	0

 Table 2.7.2 Interrupt Source and Lower Vector

* Programmable

○ Interrupt Acknowledge Cycle Timing

Fig. 2.7.11 shows interrupt acknowledge cycle timing for internal interrupts, $\overline{INT_1}$ and $\overline{INT_2}$. $\overline{INT_1}$ and $\overline{INT_2}$ are sampled at the falling edge of clock state prior to T₃ or Ti in the last machine cycle. If $\overline{INT_1}$ or $\overline{INT_2}$ is asserted LOW at the falling edge of clock state prior to T₃ or Ti in the last machine cycle. If in the last machine cycle, the interrupt request is accepted.

Figure 2.7.11 INT₁, INT₂ and Internal Interrupts Timing

60

2.7.8 Interrupt sources and reset

Interrupt Vector Register (I)

All bits reset to 0.

Since I = 0 locates the vector tables starting at logical address 0000H, vectored interrupts ($\overline{INT_0}$ Mode 2, $\overline{INT_1}$, $\overline{INT_2}$ and internal interrupts) will overlap with fixed restart interrupts like RESET (0), \overline{NMI} (0066H), $\overline{INT_0}$ Mode 1 (0038H) and RST (0000H - 0038H). The vector table(s) can be built elsewhere in memory and located on 256 bytes boundaries by reprogramming I with the LD I, A instruction.

IL Register

Bits 7 - 5 are reset to 0.

The IL Register can be programmed to locate the vector table for $\overline{INT_1}$, $\overline{INT_2}$ and internal interrupts on 32 bytes sub-boundaries within the 256 bytes area specified by I.

IEF1, IEF2 Flags

Reset to 0.

Interrupts other than \overline{NMI} and TRAP are disabled.

ITC Register

ITE0 set to 1. ITE1, ITE2 reset to 0.

 $\overline{INT_0}$ can be enabled by the EI instruction, which sets $IEF_1 = 1$. To enable $\overline{INT_1}$ and $\overline{INT_2}$ also requires that the ITE1 and ITE2 bits be respectively set = 1 by writing to ITC.

I/O Control Registers

Interrupt enable bits reset to 0.

All HD64180 on-chip I/O (PRT, DMAC, CSI/O, ASCI) interrupts are disabled and can be individually enabled by writing to each I/O control register interrupt enable bit.

2.7.9 Difference between $\overline{INT_0}$ interrupt and the other interrupts

As shown in Fig. 2.7.5, Fig. 2.7.7, Fig. 2.7.9 and Fig. 2.7.11, the interrupt acknowledge cycle of $\overline{INT_0}$ is different from those of the other interrupts, that is, $\overline{INT_1}$, $\overline{INT_2}$ and internal interrupts concerning the state of control signals. The state of the control signals in each interrupt acknowledge cycle are shown below.

 $\overline{\text{INT}_0}$ interrupt acknowledge cycle: $\overline{\text{LIR}} = 0$, $\overline{\text{IOE}} = 0$, ST = 0

 $\overline{INT_1}$, $\overline{INT_2}$ and internal interrupt acknowledge cycle: $\overline{LIR} = 1$, $\overline{IOE} = 1$, ST = 0
2.8 Dynamic RAM Refresh Control

The HD64180 incorporates a dynamic RAM refresh control circuit including 8bit refresh address generation and programmable refresh timing. This circuit generates asynchronous refresh cycles inserted at the programmable interval independent of CPU program execution. For systems which don't use dynamic RAM, the refresh function can be disabled.

When the internal refresh controller determines that a refresh cycle should occur, the current instruction is interrupted at the first breakpoint between machine cycles. The refresh cycle is inserted by placing the refresh address on A_0 - A_7 and the <u>REF</u> output is driven LOW.

Refresh cycles may be programmed to be either two or three clock cycles in duration by programming the REFW (Refresh Wait) bit in Refresh Control Register (RCR). Note that the external \overline{WAIT} input and the internal wait state generator are not effective during refresh.

Fig. 2.8.1 shows the timing of a refresh cycle with a refresh wait (T_{RW}) cycle.

Figure 2.8.1 Refresh Timing

Refresh Control Register (RCR)

RCR specifies the interval and length of refresh cycles, as well as enabling or disabling the refresh function.

• REFE: Refresh Enable (bit 7)

REFE = 0 disables the refresh controller while REFE = 1 enables refresh cycle insertion. REFE is set to 1 during RESET.

O REFW: Refresh Wait (bit 6)

REFW = 0 causes the refresh cycle to be two clocks in duration. REFW = 1 causes the refresh cycle to be three clocks in duration by adding a refresh wait cycle (T_{RW}). REFW is set to 1 during RESET.

○ CYC1, 0: Cycle Interval (bit 1, 0)

CYC1 and CYC0 specify the interval (in clock cycles) between refresh cycles.

In the case of dynamic RAMs requiring 128 refresh cycles every 2 ms (or 256 cycles every 4 ms), the required refresh interval is less than or equal to 15.625 μ s. Thus, the underlined values indicate the best refresh interval depending on CPU clock frequency. CYC0 and CYC1 are cleared to 0 during RESET.

CYC1	CYCO.	Insertion	Time interval					
	CICO	interval	φ: 8 MHz	6 MHz	4 MHz	2.5 MHz		
0	0	10 states	1.25 μs	1.66 μs	2.5 μs	4.0 μs		
0	1	20 states	2.5 μs	3.3 μs	5.0 μs	8.0 μs		
1	0	40 states	5.0 μs	6.6 μs	10.0 μs	16.0 μs		
1	1	80 states	10.0 μs	<u>13.3 μs</u>	20.0 µs	32.0 μs		

Table 2.8.1 Refresh Interval

REFRESH CONTROL AND RESET

After RESET, based on the initialized value of RCR, refresh cycles will occur with an interval of 10 clock cycles and be 3 clock cycles in duration.

DYNAMIC RAM REFRESH OPERATION NOTES

- (1) Refresh cycle insertion is stopped when the CPU is in the following states.
 - (a) During RESET
 - (b) When the bus is released in response to $\overline{\text{BUSREQ}}$
 - (c) During SLEEP mode

(d) During WAIT states

- (2) Refresh cycles are suppressed when the bus is released in response to BUSREQ. However, the refresh timer continues to operate. Thus, the time at which the first refresh cycle occurs after the HD64180 re-acquires the bus depends on the refresh timer, and has no timing relationship with the bus exchange.
- (3) Refresh cycles are suppressed during SLEEP mode. If a refresh cycle is requested during SLEEP mode, the refresh cycle request is internally 'latched' (until replaced with the next refresh request). The 'latched' refresh cycle is inserted at the end of the first machine cycle after SLEEP mode is exited. After this initial cycle, the time at which the next refresh cycle will occur depending on the refresh time, and has no timing relationship with the exit from SLEEP mode.
- (4) Regarding (2) and (3), the refresh address is incremented by 1 for each successful refresh cycle, not for each refresh request. Thus, independent of the number of 'missed' refresh requests, each refresh bus cycle will use a refresh address incremented by 1 from that of the previous refresh bus cycles.
- (5) When the internal refresh requests are asserted during Bus Release mode, one request of them is retained and one refresh cycle is executed, following one machine cycle of the CPU after completion of Bus Release mode as shown in Fig. 2.8.2.

Figure 2.8.2 Refresh Requests during Bus Release Mode

2.9 DMA Controller (DMAC)

The HD64180 contains a two channel DMA (Direct Memory Access) controller which supports high speed data transfer. Both channels (channel 0 and channel 1) have the following capabilities.

Memory Address Space

Memory source and destination addresses can be directly specified anywhere within the 512k or 1M bytes physical address space using 19-bit or 20-bit source and destination memory addresses. In addition, memory transfers can arbitrarily cross 64k bytes physical address boundaries without CPU intervention.

I/O Address Space

I/O source and destination addresses can be directly specified anywhere within the 64k bytes I/O address space (16-bit source and destination I/O addresses).

Transfer Length

Up to 64k bytes can be transferred based on a 16-bit byte count register.

DREQ Input

Level and edge sense \overline{DREQ} input detection are selectable.

TEND Output

Used to indicate DMA completion to external devices.

Transfer Rate

Each byte transfer can occur every six clock cycles. Wait states can be inserted in DMA cycles for slow memory or I/O devices. At the system clock (ϕ) = 8 MHz, the DMA transfer rate is as high as 1.33 megabytes/second (no wait states).

Additional feature disc for DMA interrupt request by DMA END. Each channel has the following additional specific capabilities.

Channel 0

- Memory to/from memory, memory to/from I/O, memory to/from memory mapped I/O transfers
- O Memory address increment, decrement, no-change
- O Burst or cycle steal memory to/from memory transfers
- O DMA to and from both ASCI channels
- Higher priority than DMAC channel 1

Channel 1

- Memory to/from I/O transfer
- Memory address increment, decrement

DMAC Registers

Each channel of the DMAC (channel 0, 1) has three registers specifically associated

with that channel.

Channel 0

SAR0 – Source Address Register DAR0 – Destination Address Register BCR0 – Byte Count Register

Channel 1

MAR1	—	Memory Address Register
IAR1		I/O Address Register
BCR1		Byte Count Register

The two channels share the following three additional registers in common.

DSTAT – DMA Status Register DMODE – DMA Mode Register DCNTL – DMA Control Register

2.9.1 DMAC block diagram

Fig. 2.9.1 shows the HD64180 DMAC Block Diagram.

2.9.2 DMAC register description

DMA Source Address Register Channel 0 (SAR0: I/O Address = 20H to 22H)

Specifies the physical source address for channel 0 transfers. The register contains 19 bits or 20 bits and may specify up to 512k or 1M bytes memory addresses or up to 64k bytes I/O addresses. Channel 0 source can be memory, I/O or memory mapped I/O.

DMA Destination Address Register Channel 0 (DAR0: I/O Address = 23H to 25H)

Specifies the physical destination address for channel 0 transfers. The register contains 19 bits or 20 bits and may specify up to 512k or 1M bytes memory addresses or up to 64k bytes I/O addresses. Channel 0 destination can be memory, I/O or memory mapped I/O.

DMA Byte Count Register Channel 0 (BCR0: I/O Address = 26H to 27H)

Specifies the number of bytes to be transferred. This register contains 16 bits and may specify up to 64k bytes transfers. When one byte is transferred, the register is decremented by one. If "n" bytes should be transferred, "n" must be stored before the DMA operation.

DMA Memory Address Register Channel 1 (MAR1: I/O Address = 28H to 2AH)

Specifies the physical memory address for channel 1 transfers. This may be destination or source memory address.

This register contains 19 bits or 20 bits and may specify up to 512k or 1M bytes memory addresses.

DMA I/O Address Register Channel 1 (IAR1: I/O Address = 2BH to 2CH)

Specifies the I/O address for channel 1 transfers. This may be destination or source I/O address. This register contains 16 bits and may specify up to 64k bytes I/O addresses.

DMA Byte Count Register Channel 1 (BCR1: I/O Address = 2EH to 2FH)

Specifies the number of bytes to be transferred. This register contains 16 bits and may specify up to 64k bytes transfers. When one byte is transferred, the register is decremented by one.

DMA Status Register (DSTAT)

DSTAT is used to enable and disable DMA transfer and DMA termination interrupts. DSTAT also allows determining the status of a DMA transfer i.e. completed or in progress.

O DE1: DMA Enable Channel 1 (bit 7)

When DE1 = 1 and DME = 1, channel 1 DMA is enabled. When a DMA transfer terminates (BCR1 = 0), DE1 is reset to 0 by the DMAC. When DE1 = 0 and the DMA interrupt is enabled (DIE1 = 1), a DMA interrupt request is made to the CPU.

To perform a software write to DE1, $\overline{\text{DWE1}}$ should be written with 0 during the same register write access. Writing DE1 to 0 disables channel 1 DMA, but DMA is restartable. Writing DE1 to 1 enables channel 1 DMA and automatically sets DME (DMA Master Enable) to 1. DE1 is cleared to 0 during RESET.

O DEO: DMA Enable Channel 0 (bit 6)

When DE0 = 1 and DME = 1, channel 0 DMA is enabled. When a DMA transfer terminates (BCR0 = 0), DE0 is reset to 0 by the DMAC. When DE0 = 0 and the DMA interrupt is enabled (DIE0 = 1), a DMA interrupt request is made to the CPU.

To perform a software write to DE0, $\overline{\text{DWE0}}$ should be written with 0 during the same register write access. Writing DE0 to 0 disables channel 0 DMA. Writing DE0 to 1 enables channel 0 DMA and automatically sets DME (DMA Main Enable) to 1. DE0 is cleared to 0 during RESET.

O DWE1: DE1 Bit Write Enable (bit 5)

When performing any software write to DE1, $\overline{DWE1}$ should be written with 0 during the same access. $\overline{DWE1}$ write value of 0 is not held and $\overline{DWE1}$ is always read as 1.

O DWEO: DEO Bit Write Enable (bit 4)

When performing any software write to DE0, $\overline{DWE0}$ should be written with 0 during the same access. $\overline{DWE0}$ write value of 0 is not held and $\overline{DWE0}$ is always read as 1.

O DIE1: DMA Interrupt Enable Channel 1 (bit 3)

When DIE1 is set to 1, the termination of channel 1 DMA transfer (indicated when DE1 = 0) causes a CPU interrupt request to be generated. When DIE1 = 0, the channel 1 DMA termination interrupt is disabled. DIE1 is cleared to 0 during RESET.

O DIE0: DMA Interrupt Enable Channel 0 (bit 2)

When DIE0 is set to 1, the termination channel 0 of DMA transfer (indicated when DE0 = 0) causes a CPU interrupt request to be generated. When DIE0 = 0, the channel 0 DMA termination interrupt is disabled. DIE0 is cleared to 0 during RESET.

O DME: DMA Master Enable (bit 0)

A DMA operation is only enabled when its DE bit (DE0 for channel 0, DE1 for channel 1) and the DME bit are set to 1.

When $\overline{\text{NMI}}$ occurs, DME is reset to 0, thus disabling DMA activity during the NMI interrupt service routine. To restart DMA, DE0 and/or DE1 should be written with 1 (even if the contents are already 1). This automatically sets DME to 1, allowing DMA operations to continue. Note that DME cannot be directly written. It is cleared to 0 by $\overline{\text{NMI}}$ or indirectly set to 1 by setting DE0 and/or DE1 to 1. DME is cleared to 0 during RESET.

DMA Mode Register (DMODE)

DMODE is used to set the addressing and transfer mode for channel 0.

		DIVIA IVI	ode Regis	ster (Divic		Address	- 31H)	
bit	7	6	5	4	3	2	1	0
	_	_	DM1	DMO	SM1	SMO	MMOD	
•	<u></u>	•	R/W	R/W	R/W	R/W	R/W	

DMA Mode Register (DMODE : I/O Address = 31H)

O DM1, DM0: Destination Mode Channel 0 (bits 5, 4)

Specifies whether the destination for channel 0 transfers is memory, I/O or memory mapped I/O and the corresponding address modifier. DM1 and DM0 are cleared to 0 during RESET.

Table 2.9.1 Destination

DM1	DMO	Memory/I/O	Address Increment/Decrement
0	0	Memory	+ 1
0	1	Memory	— 1
1	0	Memory	fixed
1	1	I/O	fixed

○ SM1, SM0: Source Mode Channel 0 (bits 3, 2)

Specifies whether the source for channel 0 transfers is memory, I/O or memory mapped I/O and the corresponding address modifier. SM1 and SM0 are cleared to 0 during RESET.

Table 2.9.2 Source

SM1	SMO	Memory/I/O	Address Increment/Decrement
0	0	Memory	+ 1
0	1	Memory	- 1
1	0	Memory	fixed
1	1	I/O	fixed

Table 2.9.3 shows all DMA transfer mode combinations of DM0, DM1, SM0, SM1. Since I/O to/from I/O transfers are not implemented, twelve combinations are available.

DM1	DM0	SM1	SMO	Transfer Mode	Address Increment/Decrement
0	0	0	0	Memory to Memory	SAR0+1, DAR0+1
0	0	0	1	Memory to Memory	SAR0-1, DAR0+1
0	0	1	0	Memory* to Memory	SAR0 fixed, DAR0+1
0	0	1	1	I/O to Memory	SAR0 fixed, DAR0+1
0	1	0	0	Memory to Memory	SAR0+1, DAR0-1
0	1	0	1	Memory to Memory	SAR0-1, DAR0-1
0	1	1	0	Memory* to Memory	SAR0 fixed, DAR0-1
0	1	1	1	I/O to Memory	SARO fixed, DARO-1
1	0	0	0	Memory to Memory*	SAR0+1, DAR0 fixed
1	0	0	1	Memory to Memory*	SAR0-1, DAR0 fixed
1	0	1	0	reserved	
1	0	1	1	reserved	
1	1	0	0	Memory to I/O	SAR0+1, DAR0 fixed
1	1	0	1	Memory to I/O	SAR0-1, DAR0 fixed
1	1	1	0	reserved	
1	1	1	1	reserved	

 Table 2.9.3 Combination of Transfer Mode

* : includes memory mapped I/O

○ MMOD: Memory Mode Channel 0 (bit 1)

When channel 0 is configured for memory to/from memory transfers, the external $\overline{DREQ_0}$ input is not used to control the transfer timing. Instead, two automatic transfer timing modes are selectable – burst (MMOD = 1) and cycle steal (MMOD = 0). For burst memory to/from memory transfers, the DMAC will sieze control of the bus continuously until the DMA transfer completes (as shown by the byte count register = 0). In cycle steal mode, the CPU is given a cycle for each DMA byte transfer cycle until the transfer is completed.

For channel 0 DMA with I/O source or destination, the $\overline{DREQ_0}$ input times the transfer and thus MMOD is ignored. MMOD is cleared to 0 during RESET.

DMA/WAIT Control Register (DCNTL)

DCNTL controls the insertion of wait states into DMAC (and CPU) accesses of memory or I/O. Also, the DMA request mode for each \overline{DREQ} ($\overline{DREQ_0}$ and \overline{DRE} - $\overline{Q_1}$) input is defined as level or edge sense. DCNTL also sets the DMA transfer mode for channel 1, which is limited to memory to/from I/O transfers.

DMA/WAIT Control Register (DCNTL : I/O Address = 32H)

bit	7	. 6	5	4	3	2	1	0
	MWI1	MWIO	IWI1	IWIO	DMS1	DMSO	DIM1	DIMO
L	R/W							

O MWI1, MWI0: Memory Wait Insertion (bits 7-6)

Specifies the number of wait states introduced into CPU or DMAC memory access cycles. MWI1 and MWI0 are set to 1 during RESET. See section of Wait State Control for details.

○ IWI1, IWI0: I/O Wait Insertion (bits 5-4)

Specifies the number of wait states introduced into CPU or DMAC I/O access cycles. IWI1 and IWI0 are set to 1 during RESET. See section of Wait State Control for details.

O DMS1, DMS0: DMA Request Sense (bits 3-2)

DMS1 and DMS0 specify the DMA request sense for channel 0 ($\overline{DREQ_0}$) and channel 1 ($\overline{DREQ_1}$) respectively. When reset to 0, the input is level sense. When set to 1, the input is edge sense. DMS1 and DMS0 are cleared to 0 during RESET.

O DIM1, DIMO: DMA Channel 1 I/O and Memory Mode (bits 1-0)

Specifies the source/destination and address modifier for channel 1 memory to/ from I/O transfer modes. IM1 and IM0 are cleared to 0 during RESET.

DIM1	DIMO	Transfer Mode	Address Increment/Decrement
0	0	Memory to I/O	MAR1+1, IAR1 fixed
0	1	Memory to I/O	MAR1-1, IAR1 fixed
1	0	I/O to Memory	IAR1 fixed, MAR1+1
1	1	I/O to Memory	IAR1 fixed, MAR1-1

Table 2.9.4 Channel 1 Transfer Mode

2.9.3 DMA operation

This section discusses the three DMA operation modes for channel 0, memory to/from memory, memory to/from I/O and memory to/from memory mapped I/O. In addition, the operation of channel 0 DMA with the on-chip ASCI (Asynchronous Serial Communication Interface) as well as Channel 1 DMA are described.

Memory to/from Memory – Channel 0

For memory to/from memory transfers, the external $DREQ_0$ input is not used for DMA transfer timing. Rather, the DMA operation is timed in one of two programmable modes – burst or cycle steal. In both modes, the DMA operation will automatically proceed until termination as shown by byte count (BCR0) = 0.

In burst mode, the DMA operation will proceed until termination. In this case, the CPU cannot perform any program execution until the DMA operation is completed.

In cycle steal mode, the DMA and CPU operation are alternated after each DMA byte transfer until the DMA is completed. The sequence ...

(1 CPU Machine Cycle) DMA Byte Transfer

... is repeated until DMA is completed. Fig. 2.9.2 shows cycle steal mode DMA timing.

Figure 2.9.2 Cycle Steal Mode DMA Timing

To initiate memory to/from memory DMA transfer for channel 0, perform the following operations.

- (1) Load the memory source and destination addresses into SAR0 and DAR0.
- (2) Specify memory to/from memory mode and address increment/decrement in the SM0, SM1, DM0 and DM1 bits of DMODE.
- (3) Load the number of bytes to transfer in BCR0.
- (4) Specify burst or cycle steal mode in the MMOD bit of DCNTL.
- (5) Program DE0 = 1 (with $\overline{DWE0} = 0$ in the same access) in DSTAT and the DMA operation will start 1 machine cycle later. If interrupt occurs at the same time, the DIE0 bit should be set to 1.

Memory to/from I/O (Memory Mapped I/O) - Channel O

For memory to/from I/O (and memory to/from memory mapped I/O) the $\overline{\text{DREQ}_0}$ input is used to time the DMA transfers. In addition, the $\overline{\text{TEND}_0}$ (Transfer End) output is used to indicate the last (byte count register BCR0 = 00H) transfer.

The $\overline{DREQ_0}$ input can be programmed as level or edge sensitive.

When level sense is programmed, the DMA operation begins when $\overline{DREQ_0}$ is sampled LOW. If $\overline{DREQ_0}$ is sampled HIGH, after the next DMA byte transfer, control is relinquished to the HD64180 CPU. As shown in Fig. 2.9.3. $\overline{DREQ_0}$ is sampled at the rising edge of the clock cycle prior to T₃ i.e. either T₂ or Tw.

Figure 2.9.3 CPU Operation and DMA Operation (DREQ₀ is programmed for level sense)

When edge sense is programmed, DMA operation begins at the falling edge of $\overline{\text{DREQ}_0}$. If another falling edge is detected before the rising edge of the clock prior to T₃ during DMA write cycle (i.e. T₂ or Tw), the DMAC continues operating. If an edge is not detected, the CPU is given control after the current byte DMA transfer completes. The CPU will continue operating until a $\overline{\text{DREQ}_0}$ falling edge is detected before the rising edge of the clock prior to T₃ at which time the DMA operation will (re)start. Fig. 2.9.4 shows the edge sense DMA timing.

During the transfers for channel 0, the $\overline{\text{TEND}_0}$ output will go LOW synchronous with the write cycle of the last (BCR0 = 00H) DMA transfer as shown in Fig. 2.9.5.

Figure 2.9.5 TEND₀ Output Timing

The $\overline{DREQ_0}$ and $\overline{TEND_0}$ pins are programmably multiplexed with the CKA0 and CKA1 ASCI clock input/outputs. However, when DMA channel 0 is programmed for memory to/from I/O (and memory to/from memory mapped I/O) transfers, the CKA0/ $\overline{DREQ_0}$ pin automatically functions as input pin even if it has been programmed as output pin for CKA0. And the CKA1/ $\overline{TEND_0}$ pin functions as output pin for $\overline{TEND_0}$ by setting CKA1D to 1 in CNTLA1.

Figure 2.9.6 shows memory to/from memory mapped I/O transfer timing and Figure 2.9.7 shows memory to I/O transfer timing.

To initiate memory to/from I/O (and memory to/from memory mapped I/O) DMA transfer for channel 0, perform the following operations.

Figure 2.9.6 DMA Cycle (Memory to/from Memory Mapped I/O (Memory))

Figure 2.9.7 DMA Cycle (Memory to I/O)

HITACHI 75

- (1) Load the memory and I/O or memory mapped I/O source and destination addresses (A₉-A₁₈ (A₁₉)) into SAR0 and DAR0. Note that I/O addresses (not memory mapped I/O) are limited to 16 bits (A₀-A₁₅).
- (2) Specify memory to/from I/O or memory to/from memory mapped I/O mode and address increment/decrement in the SM0, SM1, DM0 and DM1 bits of DMODE.
- (3) Load the number of bytes to transfer in BCR0.
- (4) Specify whether $\overline{DREQ_0}$ is edge or level sense by programming the DMS0 bit of DCNTL.
- (5) Enable or disable DMA termination interrupt with the DIE0 bit in DSTAT.
- (6) Program DE0 = 1 (with $\overline{DWE0} = 0$ in the same access) in DSTAT and the DMA operation will begin under the control of the $\overline{DREQ_0}$ input.

Memory to/from ASCI - Channel 0

Channel 0 has extra capability to support DMA transfer to and from the on-chip two channel ASCI. In this case the external $\overline{DREQ_0}$ input is not used for DMA timing. Rather, the ASCI status bits are used to generate an internal $\overline{DREQ_0}$. The TDRE (Transmit Data Register Empty) bit and the RDRF (Receive Data Register Full) bit are used to generate an internal $\overline{DREQ_0}$ for ASCI transmission and reception respectively.

To initiate memory to/from ASCI DMA transfer, perform the following operations.

(1) Load the source and destination addresses into SAR0 and DAR0. Specify the I/ O (ASCI) address as follows.

Bits A_0 - A_7 should be contain the address of the ASCI channel transmitter or receiver (I/O addresses 06H-09H).

Bits A_8 - A_{15} should equal 0.

Bits A₁₇-A₁₆ should be set according to the following table to enable use of the appropriate ASCI status bit as an internal DMA request.

SAR19	SAR18	SAR17	SAR16	DMA Transfer Request		
X	X	0	0	DREQo		
X	X	0	1	RDRF (ASCI channel 0)		
Х	X	1	0	RDRF (ASCI channel 1)		
X	X	1	1	reserved		

 Table 2.9.5
 DMA Request

X: Don't care

DAR19	DAR18	DAR17	DAR16	DMA Transfer Request
Х	Х	0	0	DREQ
X .	Х	0	1	TDRE (ASCI channel 0)
Х	Х	1	0	TDRE (ASCI channel 1)
х	х	1	1	reserved

X: Don't care

- (2) Specify memory to/from I/O transfer mode and address increment/decrement in the SM0, SM1, DM0 and DM1 bits of DMODE.
- (3) Load the number of bytes to transfer in BCR0.
- (4) The DMA request sense mode (DMS0 bit in DCNTL) MUST be specified as 'edge sense'.
- (5) Enable or disable DMA termination interrupt with the DIE0 bit in DSTAT.
- (6) Program DE0 = 1 (with $\overline{DWE0} = 0$ in the same access) in DSTAT and the DMA operation with the ASCI will begin under control of the ASCI generated internal DMA request.

The ASCI receiver or transmitter being used for DMA must be initialized to allow the first DMA transfer to begin.

The ASCI receiver must be 'empty' as shown by RDRF = 0.

The ASCI transmitter must be 'full' as shown by TDRE = 0. Thus, the first byte should be written to the ASCI Transmit Data Register under program control. The remaining bytes will be transferred using DMA.

Channel 1 DMA

DMAC Channel 1 can perform memory to/from I/O transfers. Except for different registers and status/control bits, operation is exactly the same as described for channel 0 memory to/from I/O DMA.

To initiate DMA channel 1 memory to/from I/O transfer perform the following operations.

- (1) Load the memory address (19 bits) into MAR1.
- (2) Load the I/O address (16 bits) into IAR1.
- (3) Program the source/destination and address increment/decrement mode using the DIM1 and DIM0 bits in DCNTL.
- (4) Specify whether $\overline{DREQ_1}$ is level or edge sense in the DMS1 bit in DCNTL.
- (5) Enable or disable DMA termination interrupt with the DIE1 bit in DSTAT.
- (6) Program DE1 = 1 (with $\overline{DWE1} = 0$ in the same access) in DSTAT and the DMA operation with the external I/O device will begin using the external \overline{DRE} . $\overline{Q_1}$ input and $\overline{TEND_1}$ output.

2.9.4 DMA bus timing

When memory (and memory mapped I/O) is specified as a source or destination, $\overline{\text{ME}}$ goes LOW during the memory access. When I/O is specified as a source or destination, $\overline{\text{IOE}}$ goes LOW during the I/O access.

When I/O (and memory mapped I/O) is specified as a source or destination, the DMA timing is controlled by the external DREQ input and the TEND output indicates DMA termination. Note that external I/O devices may not overlap addresses with internal I/O and control registers, even using DMA.

For I/O accesses, 1 wait state is automatically inserted. Additional wait states can be inserted by programming the on-chip wait state generator or using the external \overline{WAIT} input. Note that for memory mapped I/O accesses, this automatic I/O wait state is not inserted.

For memory to memory transfers (channel 0 only), the external $\overline{\text{DREQ}_0}$ input is ignored. Automatic DMA timing is programmed as either burst or cycle steal.

When a DMA memory address carry/borrow between bits A_{15} and A_{16} of the address bus occurs (when crossing 64k bytes boundaries), the minimum bus cycle is extended to four clocks by automatic insertion of one internal Ti state.

2.9.5 DMAC channel priority

For simultaneous $\overline{DREQ_0}$ and $\overline{DREQ_1}$ requests, channel 0 has priority over channel 1. When channel 0 is performing a memory to/from memory transfer, channel 1 cannot operate until the channel 0 operation has terminated. If channel 1 is operating, channel 0 cannot operate until channel 1 releases control of the bus.

2.9.6 DMAC and BUSREQ, BUSACK

The BUSREQ and BUSACK inputs allow another bus master to take control of the HD64180 bus. BUSREQ and BUSACK have priority over the on-chip DMAC and will suspend DMAC operation. The DMAC releases the bus to the external bus master at the breakpoint of the DMAC memory or I/O access. Since a single byte DMAC transfer requires a read and a write cycle, it is possible for the DMAC to be suspended after the DMAC read, but before the DMAC write. Even in this case, when the external master releases the HD64180 bus (BUSREQ HIGH), the on-chip DMAC will correctly continue the suspended DMA operation.

2.9.7 DMAC internal interrupts

Fig. 2.9.8 illustrates the internal DMA interrupt request generation circuit.

Figure 2.9.8 DMAC Interrupt Request Circuit Diagram

DE0 and DE1 are automatically cleared to 0 by the HD64180 at the completion (byte count = 0) of a DMA operation for channel 0 and channel 1 respectively. They remain 0 until a 1 is written. Since DE0 and DE1 use level sense, an interrupt will occur if the CPU IEF₁ flag is set to 1. Therefore, the DMA termination interrupt service routine should disable further DMA interrupts (by programming the channel DIE bit = 0) before enabling CPU interrupts (i.e. IEF₁ is set to 1). After reloading the DMAC address and count registers, the DIE bit can be set to 1 to reenable the channel interrupt, and at the same time DMA can resume by programming the channel DE bit = 1.

2.9.8 DMAC and NMI

 $\overline{\text{NMI}}$, unlike all other interrupts, automatically disables DMAC operation by clearing the DME bit of DSTAT. Thus, the $\overline{\text{NMI}}$ interrupt service routine may respond to time critical events without delay due to DMAC bus usage. Also, $\overline{\text{NMI}}$ can be effectively used as an external DMA abort input, recognizing that both channels are suspended by the clearing of DME.

If the falling edge of $\overline{\text{NMI}}$ occurs before the falling clock of the state prior to T₃ (T₂ or Tw) of the DMA write cycle, the DMAC will be suspended and the CPU will start the $\overline{\text{NMI}}$ response at the end of the current cycle.

By setting a channels DE bit to 1, that channels operation can be restarted, and DMA will correctly resume from the point at which it was suspended by $\overline{\text{NMI}}$. See Fig. 2.9.9 for details.

Figure 2.9.9 NMI and DMA Operation

2.9.9 DMAC and RESET

During RESET the bits in DSTAT, DMODE and DCNTL are initialized as stated in their individual register descriptions. Any DMA operation in progress is stopped allowing the CPU to use the bus to perform the RESET sequence. However, the address register (SAR0, DAR0, MAR1, IAR1) and byte count register (BCR0, BCR1) contents are not changed during RESET.

2.10 Asynchronous Serial Communication Interface (ASCI)

The HD64180 on-chip ASCI has two independent full duplex channels. Based on full programmability of the following functions, the ASCI can directly communicate with a wide variety of standard UARTs (Universal Asynchronous Receiver/ Transmitter) including the HD6350 CMOS ACIA and the Serial Communication Interface (SCI) contained on the HD6301 series CMOS single chip controllers.

The key functions for ASCI are shown below. Each channel is independently programmable.

- O Full duplex communication
- 7- or 8-bit data length
- O Program controlled 9th data bit for multiprocessor communication
- \bigcirc 1 or 2 stop bits
- O Odd, even, no parity
- O Parity, overrun, framing error detection
- O Programmable baud rate generator, /16 and /64 modes Speed to 38.4k bits per second (CPU $f_C = 6.144$ MHz)
- O Modem control signals Channel 0 has $\overline{DCD_0}$, $\overline{CTS_0}$ and $\overline{RTS_0}$ Channel 1 has $\overline{CTS_1}$
- O Programmable interrupt condition enable and disable
- O Operation with on-chip DMAC

2.10.1 ASCI block diagram

Fig. 2.10.1 shows the ASCI Block Diagram.

Figure 2.10.1 ASCI Block Diagram

2.10.2 ASCI register description

ASCI Transmit Shift Register 0, 1 (TSR0, 1)

When the ASCI Transmit Shift Register receives data from the ASCI Transmit Data Register (TDR), the data is shifted out to the TXA pin. When transmission is completed, the next byte (if available) is automatically loaded from TDR into TSR and the next transmission starts. If no data is available for transmission, TSR idles by outputting a continuous HIGH level. This register is not program accessible.

ASCI Transmit Data Register 0, 1 (TDR0, 1: I/O Address = 06H, 07H)

Data written to the ASCI Transmit Data Register is transferred to the TSR as soon as TSR is empty. Data can be written to while TSR is shifting out the previous byte of data. Thus, the ASCI transmitter is double bufferred.

Data can be written into and read from the ASCI Transmit Data Register.

If data is read from the ASCI Transmit Data Register, the ASCI data transmit operation won't be affected by this read operation.

ASCI Receive Shift Register 0, 1 (RSR0, 1)

This register receives data shifted in on the RXA pin. When full, data is automatically transferred to the ASCI Receive Data Register (RDR) if it is empty. If RSR is not empty when the next incoming data byte is shifted in, an overrun error occurs. This register is not program accessible.

ASCI Receive Data Register 0, 1 (RDR0, 1: I/O Address = 08H, 09H)

When a complete incoming data byte is assembled in RSR, it is automatically transferred to the RDR if RDR is empty. The next incoming data byte can be shifted into RSR while RDR contains the previous received data byte. Thus, the ASCI receiver is double buffered.

The ASCI Receive Data Register is read-only-register.

However, if RDRF = 0, data can be written into the ASCI Receive Data Register, and the data can be read.

ASCI Status Register 0, 1 (STAT0, 1)

Each channel status register allows interrogation of ASCI communication, error and modem control signal status as well as enabling and disabling of ASCI interrupts.

bit	7	6	5	4	3	2	1	0
	RDRF	OVRN	PE	FE	RIE	DCD ₀	TDRE	TIE
-	R	R	R	R	R/W	R	R	R/W

ASCI Status Register 0 (STAT0 : I/O Address = 04H)

O RDRF: Receive Data Register Full (bit 7)

RDRF is set to 1 when an incoming data byte is loaded into RDR. Note that if a framing or parity error occurs, RDRF is still set and the receive data (which generated the error) is still loaded into RDR. RDRF is cleared to 0 by reading RDR, when the $\overline{DCD_0}$ input is HIGH, in IOSTOP mode and during RESET.

OVRN: Overrun Error (bit 6)

OVRN is set to 1 when RDR is full and RSR becomes full. OVRN is cleared to 0 when the EFR bit (Error Flag Reset) of CNTLA is written to 0, when $\overline{DCD_0}$ is HIGH, in IOSTOP mode and during RESET.

\bigcirc **PE: Parity Error (bit 5)**

PE is set to 1 when a parity error is detected on an incoming data byte and ASCI parity detection is enabled (the MOD1 bit of CNTLA is set to 1). PE is cleared to 0 when the EFR bit (Error Flag Reset) of CNTLA is written to 0, when $\overline{DCD_0}$ is HIGH, in IOSTOP mode and during RESET.

\bigcirc FE: Framing Error (bit 4)

If a receive data byte frame is delimited by an invalid stop bit (i.e. 0, should be 1), FE is set to 1. FE is cleared to 0 when the EFR bit (Error Flag Reset) of CNTLA is written to 0, when $\overline{DCD_0}$ is HIGH, in IOSTOP mode and during RE-SET.

○ RIE: Receive Interrupt Enable (bit 3)

RIE should be set to 1 to enable ASCI receive interrupt requests. When RIE to 1, if any of the flags RDRF, OVRN, PE, FE become set to 1 an interrupt request is generated. For channel 0, an interrupt will also be generated by the transition of the external $\overline{DCD_0}$ input from LOW to HIGH. RIE is cleared to 0 during RESET.

O DCD: Data Carrier Detect (bit 2 STATO)

Channel 0 has an external $\overline{DCD_0}$ input pin. The $\overline{DCD_0}$ bit is set to 1 when the $\overline{DCD_0}$ input is HIGH. It is cleared to 0 on the first read of STAT0 following the $\overline{DCD_0}$ input transition from HIGH to LOW and during RESET. When $\overline{DCD_0} = 1$, receiver unit is reset and receiver operation is inhibited.

\bigcirc CTS1E: Channel 1 $\overrightarrow{\text{CTS}}$ Enable (bit 2 STAT1)

Channel 1 has an external $\overline{\text{CTS}_1}$ input which is multiplexed with the receive data

82 HITACHI

pin (RXS) for the CSI/O (Clocked Serial I/O Port). Setting CTS1E to 1 selects the $\overline{\text{CTS}_1}$ function and clearing CTS1E to 0 selects the RXS function.

O TDRE: Transmit Data Register Empty (bit 1)

TDRE = 1 indicates that the TDR is empty and the next transmit data byte can be written to TDR. After the byte is written to TDR, TDRE is cleared to 0 until the ASCI transfers the byte from the TDR to the TSR, at which time TDRE is again set to 1. TDRE is set to 1 in IOSTOP mode and during RESET. When the external \overline{CTS} input is HIGH, TDRE is reset to 0.

○ TIE: Transmit Interrupt Enable (bit 0)

TIE should be set to 1 to enable ASCI transmit interrupt requests. If TIE = 1, an interrupt will be requested when TDRE = 1. TIE is cleared to 0 during RESET.

ASCI Control Register A0, 1 (CNTLA0, 1)

Each ASCI channel Control Register A configures the major operating modes such as receiver/transmitter enable and disable, data format, and multiprocessor communication mode.

	A		or negiste		NILAU .		ss - 00	ירוי
bit	7	6	5	4	3	2	1	0
	MPE	RE	TE	RTS ₀	MPBR/ EFR	MOD2	MOD1	MODO
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	AS	SCI Contr	ol Registe	er A 1 (Cl	NTLA1 : I	I/O Addre	ess = 01	H)
bit	7	6	5	4	3	2	1	0
	MPE	RE	TE	CKA1D	MPBR/ EFR	MOD2	MOD1	MODO
•	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

ASCI Control Register A 0 (CNTLA0 : I/O Address = 00H)

O MPE: Multi Processor Mode Enable (bit 7)

The ASCI has a multiprocessor communication mode which utilizes an extra data bit for selective communication when a number of processors share a common serial bus. Multiprocessor data format is selected when the MP bit in CNTLB is set to 1. If multiprocessor mode is not selected (MP bit in CNTLB = 0), MPE has no effect. If multiprocessor mode is selected, MPE enables or disables the 'wake-up' feature as follows. If MPE is set to 1, only received bytes in which the MPB (multiprocessor bit) = 1 can affect the RDRF and error flags. Effectively, other bytes (with MPB = 0) are 'ignored' by the ASCI. If MPE is reset to 0, all bytes, regardless of the state of the MPB data bit, affect the RDRF and error flags. MPE is

cleared to 0 during RESET.

O RE: Receiver Enable (bit 6)

When RE is set to 1, the ASCI receiver is enabled. When RE is reset to 0, the receiver is disabled and any receive operation in progress is interrupted. However, the RDRF and error flags are not reset and the previous contents of receive data regiter, RDRF and error flags are held. RE is cleared to 0 in IOSTOP mode and during RESET.

• TE: Transmitter Enable (bit 5)

When TE is set to 1, the ASCI transmitter is enabled. When TE is reset to 0, the transmitter is disabled and any transmit operation in progress is interrupted. However, the TDRE flag is not reset and the previous contents of transmit data register and TDRE are held. TE is cleared to 0 in IOSTOP mode and during RESET.

\bigcirc **RTS**₀ – Request to Send Channel 0 (bit 4 in CNTLA0)

When $\overline{\text{RTS}_0}$ is reset to 0, the $\overline{\text{RTS}_0}$ output pin will go LOW. When $\overline{\text{RTS}_0}$ is set to 1, the $\overline{\text{RTS}_0}$ output immediately goes HIGH. $\overline{\text{RTS}_0}$ is set to 1 during RESET.

○ CKA1D: CKA1 Clock Disable (bit 4 in CNTLA1)

When CKA1D is set to 1, the multiplexed CKA1/ $\overline{\text{TEND}_0}$ pin is used for the $\overline{\text{TEND}_0}$ function. When CKA1D = 0, the pin is used as CKA1, an external data clock input/output for channel 1. CKA1D is cleared to 0 during RESET.

O MPBR/EFR: Multiprocessor Bit Receive/Error Flag Reset (bit 3)

When multiprocessor mode is enabled (MP in CNTLB = 1), MPBR, when read, contains the value of the MPB bit for the last receive operation. When written to 0, the EFR function is selected to reset all error flags (OVRN, FE and PE) to 0. MPBR/EFR is undefined during RESET.

O MOD2, 1, 0: ASCI Data Format Mode 2, 1, 0 (bits 2-0)

These bits program the ASCI data format as follows. MOD2

 $= 0 \rightarrow 7 \text{ bit data}$ $= 1 \rightarrow 8 \text{ bit data}$ MOD1

```
= 0 \rightarrow No parity
```

```
= 1 \rightarrow Parity enabled
```

```
MOD0
```

```
= 0 \rightarrow 1 stop bit
```

 $= 1 \rightarrow 2$ stop bits

The data formats available based on all combinations of MOD2, MOD1 and MOD0 are shown in Table 2.10.1.

MOD2	MOD1	MODO	Data Format
0	0	0	Start $+$ 7 bit data $+$ 1 stop
0	0	1	Start $+$ 7 bit data $+$ 2 stop
0	1	0	Start + 7 bit data + parity + 1 stop
0	1	1	Start $+$ 7 bit data $+$ parity $+$ 2 stop
1	0	0	Start + 8 bit data + 1 stop
1	0	1	Start $+$ 8 bit data $+$ 2 stop
1	1	0	Start $+$ 8 bit data $+$ parity $+$ 1 stop
1	1	1	Start + 8 bit data + parity + 2 stop

Table 2.10.1 Combination of Data Format

ASCI Control Register B0, 1 (CNTLB0, 1)

Each ASCI channel control register B configures multiprocessor mode, parity and baud rate selection.

ASCI Control Register B 0 (CNTLB0 : I/O Address = 02H) ASCI Control Register B 1 (CNTLB1 : I/O Address = 03H)

bit	7	6	5	4	3	2	1	0
	MPBT	MP	CTS/ PS	PEO	DR	SS2	SS1	SS0
	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

O MPBT: Multiprocessor Bit Transmit (bit 7)

When multiprocessor communication format is selected (MP bit = 1), MPBT is used to specify the MPB data bit for transmission. If MPBT = 1, then MPB = 1 is transmitted. If MPBT = 0, then MPB = 0 is transmitted. MPBT state is undefined during and after RESET.

O MP: Multiprocessor Mode (bit 6)

When MP is set to 1, the data format is configured for multiprocessor mode based on the MOD2 (number of data bits) and MOD0 (number of stop bits) bits in CNTLA. The format is as follows.

Start bit + 7 or 8 data bits + MPB bit + 1 or 2 stop bits

Note that multiprocessor (MP = 1) format has no provision for parity. If MP = 0, the data format is based on MOD0, MOD1 and MOD2 and may include parity. The MP bit is cleared to 0 during RESET.

○ **CTS**/PS: Clear to Send/Prescale (bit 5)

When read, $\overline{\text{CTS}/\text{PS}}$ reflects the state of the external $\overline{\text{CTS}}$ input. If the $\overline{\text{CTS}}$ input pin is HIGH, $\overline{\text{CTS}/\text{PS}}$ will be read as 1. Note that when the $\overline{\text{CTS}}$ input pin is HIGH, the TDRE bit is inhibited (i.e. held at 0). For channel 1, the $\overline{\text{CTS}_1}$ input is multiplexed with RXS pin (Clocked Serial Receive Data). Thus, $\overline{\text{CTS}/\text{PS}}$ is only valid when read if the channel 1 CTS1E bit = 1 and the $\overline{\text{CTS}_1}$ input pin function is

selected. The read data of $\overline{\text{CTS}}/\text{PS}$ is not affected by RESET.

When written, $\overline{\text{CTS}}/\text{PS}$ specifies the baud rate generator prescale factor. If $\overline{\text{CTS}}/\text{PS}$ is set to 1, the system clock (ϕ) is prescaled by 30 while if $\overline{\text{CTS}}/\text{PS}$ is cleared to 0, the system clock is prescaled by 10. $\overline{\text{CTS}}/\text{PS}$ is cleared to 0 during RESET.

• PEO: Parity Even Odd (bit 4)

PEO selects even or odd parity. PEO does not affect the enabling/disabling of parity (MOD1 bit of CNTLA). If PEO is cleared to 0, even parity is selected. If PEO is set to 1, odd parity is selected. PEO is cleared to 0 during RESET.

○ DR: Divide Ratio (bit 3)

DR specifies the divider used to obtain baud rate from the data sampling clock. If DR is reset to 0, divide by 16 is used while if DR is set to 1, divide by 64 is used. DR is cleared to 0 during RESET.

○ SS2, 1, 0: Source/Speed Select 2, 1, 0 (bits 2-0)

Specify the data clock source (internal or external) and baud rate prescale factor. SS2, SS1, SS0 are all set to 1 during RESET. Table 2.10.2 shows the divide ratio corresponding to SS2, SS1 and SS0.

SS2	SS1	SS0	Divide Ratio
0	0	0	÷ 1
0	0	1	÷2
0	1	0	÷4
0	1	1	÷ 8
1	0	0	÷16
1	0	1	÷ 32
1	1	0	÷64
1	1	1	external clock

 Table 2.10.2
 Divide Ratio

The external ASCI channel 0 data clock pins are multiplexed with DMA control lines (CKA₀/ $\overline{DREQ_0}$ and CKA₁/ $\overline{TEND_0}$). During RESET, these pins are initialized as ASCI data clock inputs. If SS2, SS1 and SS0 are reprogrammed (any other value than SS2, SS1, SS0 = 1) these pins become ASCI data clock outputs. However, if DMAC channel 0 is configured to perform memory to/from I/O (and memory mapped I/O) transfers the CKA₀/ $\overline{DREQ_0}$ pin revert to DMA control signals regardless of SS2, SS1, SS0 programming. Also, if the CKA1D bit in the CNTLA register is set to 1, then the CKA₁/ $\overline{TEND_0}$ reverts to the DMA Control output function regardless of SS2, SS1 and SS0 programming.

Final data clock rates are based on $\overline{\text{CTS}}/\text{PS}$ (prescale), DR, SS2, SS1, SS0 and the HD64180 system clock (ϕ) frequency as shown in Table 2.10.3.

Prescaler		Sampling Rate		Baud Rate				General	Baud Rate (Example) (BPS)			СКА	
PS	Divide Ratio	DR	Rate	SS2	SS1	SS0	Divide Ratio	Ratio	φ==6.144 MHz	$\phi = 4.608$ MHz	φ=3.072 MHz	I/O	Clock Frequency
				0	0	0	÷1	φ÷160	38400		19200		φ÷10
				0	0	1	2	320	19200		9600		20
				0	1	0	4	640	9600		4800		40
		0	16	0	1	1	8	1280	4800		2400	0	80
				1	0	<u>,</u> 0	16	2560	2400		1200		160
				1	0	1	32	5120	1200		600		320
				1	1	0	64	10240	600		300		640
0	φ÷10			1	1	1	_	fc÷16	_		_	1	fc
				0	0	0	÷1	$\phi \div 640$	9600		4800		$\phi \div 10$
				0	0	1	2	1280	4800		2400		20
			1	0	1	0	4	2560	2400		1200		40
		1	64	0	1	1	8	5120	1200		600	0	80
				1	0	0	16	10240	600		300		160
1				1	0	1	32	20480	300		150		320
				1	1	0	64	40960	150		75		640
				1	1	1	-	fc÷64	-	-	-	I	fc
				0	0	0	÷1	$\phi \div 480$		9600			$\phi \div 30$
				0	0	1	2	960		4800			60
				0	1	0	4	1920		2400			120
		0	16	0	1	1	8	3840		1200		0	240
				1	0	0	16	7680		600			480
				1	0		32	15360		300			960
					1	0	64	30720		150			1920
1	φ÷30			1	1	1	-	fc÷16	-	-	-	1	fc
				0	0	0	÷1	$\phi \div 1920$		2400			φ÷30
				0	0	1	2	3840		1200			60
				0	1	0	4	7680		600			120
		1	64	0	1	1	8	15360		300		0	240
				1	0	0	16	30720		150			480
					0		32	61440		75			960
						0	64	122880		37.5			1920
				1	1	1	-	fc÷64	_	-	_	1	fc

Table 2.10.3 Baud Rate List

2.10.3 MODEM control signals

ASCI channel 0 has $\overline{CTS_0}$, $\overline{DCD_0}$ and $\overline{RTS_0}$ external modem control signals. ASCI channel 1 has a $\overline{CTS_1}$ modem control signal which is multiplexed with RXS pin (Clocked Serial Receive Data).

CTS₀: Clear to Send 0 (input)

The $\overline{\text{CTS}_0}$ input allows external control (start/stop) of ASCI channel 0 transmit operations. When $\overline{\text{CTS}_0}$ is HIGH, channel 0 TDRE bit is held at 0 regardless of whether the TDR0 (Transmit Data Register) is full or empty. When $\overline{\text{CTS}_0}$ is LOW, TDRE will reflect the state of TDR0. Note that the actual transmit operation is not disabled by $\overline{\text{CTS}_0}$ HIGH, only TDRE is inhibited.

DCD0: Data Carrier Detect 0 (input)

The $\overline{DCD_0}$ input allows external control (start/stop) of ASCI channel 0 receive operations. When $\overline{DCD_0}$ is HIGH, channel 0 RDRF bit is held at 0 regardless of

whether the RDR0 (Receive Data Register) is full or empty. The error flags (PE, FE and OVRN bits) are also held at 0. Even after the $\overline{DCD_0}$ input goes LOW, these bits will not resume normal operation until the status register (STAT0) is read. Note that this first read of STAT0, while enabling normal operation, will still indicate the $\overline{DCD_0}$ input is HIGH ($\overline{DCD0}$ bit = 1) even though it has gone LOW. Thus, the STAT0 register should be read twice to insure the $\overline{DCD0}$ bit is reset to 0.

RTS₀: Request to Send 0 (output)

 $\overline{\text{RTS}_0}$ allows the ASCI to control (start/stop) another communication devices transmission (for example, by connection to that devices $\overline{\text{CTS}}$ input). $\overline{\text{RTS}_0}$ is essentially a 1 bit output port, having no side effects on other ASCI registers or flags.

CTS₁: Clear to Send 1 (input)

Channel 1 $\overline{\text{CTS}_1}$ input is multiplexed with the RXS pin (Clocked Serial Receive Data). The $\overline{\text{CTS}_1}$ function is selected when the CTS1E bit in STAT1 is set to 1. When enabled, the $\overline{\text{CTS}_1}$ operation is equivalent to $\overline{\text{CTS}_0}$.

Modem control signal timing is shown in Fig. 2.10.2 (a) and Fig. 2.10.2 (b).

Figure 2.10.2 (a) DCD₀ Timing

Figure 2.10.2 (b) RTS₀ Timing

2.10.4 ASCI interrupts

Fig. 2.10.3 shows the ASCI interrupt request generation circuit.

Figure 2.10.3 ASCI Interrupt Request Circuit Diagram

2.10.5 ASCI to/from DMAC operation

Operation of the ASCI with the on-chip DMAC channel 0 requires the DMAC be correctly configured to utilize the ASCI flags as DMA request signals.

2.10.6 ASCI and RESET

During RESET, the ASCI status and control registers are initialized as defined in the individual register descriptions.

Receive and Transmit operations are stopped during RESET. However, the contents of the transmit and receive data registers (TDR and RDR) are not changed by RESET.

2.10.7 ASCI clock

In external clock input mode, the external clock is directly input to the sampling rate $(\div 16/\div 64)$ as shown in Fig. 2.10.4.

Figure 2.10.4 ASCI Clock Block Diagram

2.11 Clocked Serial I/O Port (CSI/O)

The HD64180 includes a simple, high speed clock synchronous serial I/O port. The CSI/O includes transmit/receive (half duplex), fixed 8-bit data and internal or external data clock selection. High speed operation (baud rate as high as 200k bits/ second at $f_C = 4$ MHz) is provided. The CSI/O is ideal for implementing a multiprocessor communication link between the HD64180 and the HMCS400 series (4-bit) and the HD6301 series (8-bit) single chip controllers as well as additional HD64180 CPUs. These secondary devices may typically perform a portion of the system I/O processing such as keyboard scan/decode, LCD interface etc.

2.11.1 CSI/O block diagram

The CSI/O block diagram is shown in Fig. 2.11.1. The CSI/O consists of two registers - the Transmit/Receive Data Register (TRDR) and Control Register (CNTR).

Figure 2.11.1 CSI/O Block Diagram

2.11.2 CSI/O register description

CSI/O Transmit/Receive Data Register (TRDR: I/O Address = OBH)

TRDR is used for both CSI/O transmission and reception. Thus, the system design must insure that the constraints of half-duplex operation are met (Transmit and receive operation can't occur simultaneously). For example, if a CSI/O transmission is attempted at the same time that the CSI/O is receiving data, a CSI/O will not work. Also note that TRDR is not buffered. Therefore, attempting to perform a CSI/O transmit while the previous transmit data is still being shifted out causes the shift data to be immediately updated, thereby corrupting the transmit operation in progress. Similarly, reading TRDR while a transmit or receive is in progress should be avoided.

CSI/O Control/Status Register (CNTR: I/O Address = OAH)

CNTR is used to monitor CSI/O status, enable and disable the CSI/O, enable and disable interrupt generation and select the data clock speed and source.

\bigcirc EF: End Flag (bit 7)

EF is set to 1 by the CSI/O to indicate completion of an 8-bit data transmit or receive operation. If EIE (End Interrupt Enable) bit = 1 when EF is set to 1, a CPU interrupt request will be generated. Program access of TRDR should only occur if EF = 1. The CSI/O clears EF to 0 when TRDR is read or written. EF is cleared to 0 during RESET and IOSTOP mode.

○ EIE: End Interrupt Enable (bit 6)

EIE should be set to 1 to enable EF = 1 to generate a CPU interrupt request. The interrupt request is inhibited if EIE is reset to 0. EIE is cleared to 0 during RE-SET.

○ RE: Receive Enable (bit 5)

A CSI/O receive operation is started by setting RE to 1. When RE is set to 1, the data clock is enabled. In internal clock mode, the data clock is output from the CKS pin. In external clock mode, the clock is input on the CKS pin. In either case, data is shifted in on the RXS pin in synchronization with the (internal or external) data clock. After receiving 8 bits of data, the CSI/O automatically clears RE to 0, EF is set to 1 and an interrupt (if enabled by EIE = 1) will be generated. Note that RE and TE should never both be set to 1 at the same time. RE is cleared to 0 during RESET and IOSTOP mode.

Note that the RXS pin is multiplexed with $\overline{\text{CTS}_1}$ modem control input of ASCI channel 1. In order to enable the RXS function, the CTS1E bit in CNTA1 should be reset to 0.

○ TE: Transmit Enable (bit 4)

A CSI/O transmit operation is started by setting TE to 1. When TE is set to 1, the data clock is enabled. In internal clock mode, the data clock is output from the CKS pin. In external clock mode, the clock is input on the CKS pin. In either case, data is shifted out on the TXS pin synchronous with the (internal or external) data clock. While transmitting the eighth bit of data, the CSI/O automatically clears TE to 0, EF is set to 1 and an interrupt (if enabled by EIE = 1) will be generated. Note that TE and RE should never both be set to 1 at the same time. TE is cleared

to 0 during RESET and IOSTOP mode.

○ SS2, 1, 0: Speed Select 2, 1, 0 (bits 2-0)

SS2, SS1 and SS0 select the CSI/O transmit/receive clock source and speed. SS2, SS1 and SS0 are all set to 1 during RESET. Table 2.11.1 shows CSI/O Baud Rate Selection.

SS2	SS1	SS0	Divide Ratio	Baud Rate			
0	0	0	÷ 20	(400000)			
0	0	1	÷40	(200000)			
0	1	0	÷ 80	(100000)			
0	1	1	÷160	(50000)			
1	0	0	÷ 320	(25000)			
1	0	1	÷640	(12500)			
1	1	0	÷1280	(6250)			
1	1	1	external Clock input (less than ÷ 20)				

Table 2.11.1 CSI/O Baud Rate Selection

() shows the baud rate (BPS) at $\phi = 8$ MHz.

After RESET, the CKS pin is configured as an external clock input (SS2, SS1, SS0 = 1). Changing these values causes CKS to become an output pin and the selected clock will be output when transmit or receive operations are enabled.

2.11.3 CSI/O interrupts

The CSI/O interrupt request circuit is shown in Fig. 2.11.2.

Figure 2.11.2 CSI/O Interrupt Circuit Diagram

2.11.4 CSI/O operation

The CSI/O can be operated using status polling or interrupt driven algorithms.

Transmit – **Polling**

1. Poll the TE bit in CNTR until TE = 0.

92 HITACHI

- 2. Write the transmit data into TRDR.
- 3. Set the TE bit in CNTR to 1.
- 4. Repeat 1 to 3 for each transmit data byte.

Transmit – Interrupts

- 1. Poll the TE bit in CNTR until TE = 0.
- 2. Write the first transmit data byte into TRDR.
- 3. Set the TE and EIE bits in CNTR to 1.
- 4. When the transmit interrupt occurs, write the next transmit data byte into TRDR.
- 5. Set the TE bit in CNTR to 1.
- 6. Repeat 4 to 5 for each transmit data byte.

Receive – Polling

- 1. Poll the RE bit in CNTR until RE = 0.
- 2. Set the RE bit in CNTR to 1.
- 3. Poll the RE bit in CNTR until RE = 0.
- 4. Read the receive data from TRDR.
- 5. Repeat 2 to 4 for each receive data byte.

Receive – Interrupts

- 1. Poll the RE bit in CNTR until RE = 0.
- 2. Set the RE and EIE bits in CNTR to 1.
- 3. When the receive interrupt occurs read the receive data from TRDR.
- 4. Set the RE bit in CNTR to 1.
- 5. Repeat 3 to 4 for each receive data byte.

2.11.5 CSI/O operation timing notes

- (1) Note that transmitter clocking and receiver sampling timings are different from internal and external clocking modes. Fig. 2.11.3 to Fig. 2.11.6 shows CSI/O Transmit/Receive Timing.
- (2) The transmitter and receiver should be disabled (TE and RE = 0) when initializing or changing the baud rate.

2.11.6 CSI/O operation notes

- (1) Disable the transmitter and receiver (TE and RE = 0) before initializing or changing the baud rate. When changing the baud rate after completion of transmission or reception, a delay of at least one bit time is required before baud rate modification.
- (2) When RE or TE is cleared to 0 by software, a corresponding receive or transmit operation is immediately terminated. Normally, TE or RE should only be cleared to 0 when EF = 1.
- (3) Simultaneous transmission and reception is not possible. Thus, TE and RE should not both be 1 at the same time.

Figure 2.11.3 Transmit Timing – Internal Clock

Figure 2.11.4 Transmit Timing – External Clock

Figure 2.11.5 Receive Timing – Internal Clock

Figure 2.11.6 Receive Timing – External Clock

2.11.7 CSI/O and RESET

During RESET each bit in the CNTR is initialized as defined in the CNTR register description.

CSI/O transmit and receive operations in progress are aborted during RESET. However, the contents of TRDR are not changed.

2.12 Programmable Reload Timer (PRT)

The HD64180 contains a two channel 16-bit Programmable Reload Timer. Each PRT channel contains a 16-bit down counter and a 16-bit reload register. The down counter can be directly read and written and a down counter overflow interrupt can be programmably enabled or disabled. In addition, PRT channel 1 has a TOUT output pin (multiplexed with A_{18}) which can be set HIGH, LOW or toggled. Thus PRT1 can perform programmable output waveform generation.

2.12.1 PRT block diagram

The PRT block diagram is shown in Fig. 2.12.1. The two channels have separate timer data and reload registers and a common status/control register. The PRT input clock for both channels is equal to the system clock (ϕ) divided by 20.

Figure 2.12.1 PRT Block Diagram

2.12.2 PRT register description

Timer Data Register (TMDR: I/O Address = CH0: ODH, OCH CH1: 15H, 14H)

PRT0 and PRT1 each have 16-bit Timer Data Registers (TMDR). TMDR0 and TMDR1 are each accessed as low and high byte registers (TMDR0H, TMDR0L and TMDR1H, TMDR1L). During RESET, TMDR0 and TMDR1 are set to FFFFH.

TMDR is decremented once every twenty ϕ clocks. When TMDR counts down to 0, it is automatically reloaded with the value contained in the Reload Register (RLDR).

TMDR can be read and written by software using the following procedures. The read procedure uses a PRT internal temporary storage register to return accurate data without requiring the timer to be stopped. The write procedure requires the PRT to be stopped.

For reading (without stopping the timer), TMDR must be read in the order of lower byte – higher byte (TMDRnL, TMDRnH). The lower byte read (TMDRnL) will store the higher byte value in an internal register. The following higher byte read (TMDRnH) will access this internal register. This procedure insures timer data validity by eliminating the problem of potential 16-bit timer updating between each 8-bit read. Specifically, reading TMDR in higher byte – lower byte order may result in invalid data. Note the implications of TMDR higher byte internal storage for applications which may read only the lower and/or higher bytes. In normal operation all TMDR read routines should access both the lower and higher bytes, in that order.

For writing, the TMDR down counting must be inhibited using the TDE (Timer Down Count Enable) bits in the TCR (Timer Control Register), following which any or both higher and lower bytes of TMDR can be freely written (and read) in any order.

Timer Reload Register (RLDR: I/O Address = CH0: OEH, OFH CH1: 16H, 17H)

PRT0 and PRT1 each have 16-bit Timer Reload Registers (RLDR). RLDR0 and RLDR1 are each accessed as low and high byte registers (RLDR0H, RLDR0L and RLDR1H, RLDR1L). During RESET RLDR0 and RLDR1 are set to FFFFH.

When the TMDR counts down to 0, it is automatically reloaded with the contents of RLDR.

Timer Control Register (TCR)

TCR monitors both channels (PRT0, PRT1) TMDR status and controls enabling and disabling of down counting and interrupts as well as controlling the output pin (A_{18} /TOUT) for PRT 1.

		limer (Control Re	egister (1	CR : I/O I	Address =	= 10H)	
bit	7	6	5	4	3	2	1	0
	TIF1	TIFO	TIE1	TIEO	TOC1	тосо	TDE1	TDEO
	R	R	R/W	R/W	R/W	R/W	R/W	R/W

○ TIF1: Timer Interrupt Flag 1 (bit 7)

When TMDR1 decrements to 0, TIF1 is set to 1. This can generate an interrupt request if enabled by TIE1 = 1. TIF1 is reset to 0 when TCR is read and the higher or lower byte of TMDR1 are read. During RESET, TIF1 is cleared to 0.

○ TIFO: Timer Interrupt Flag 0 (bit 6)

When TMDR0 decrements to 0, TIF0 is set to 1. This can generate an interrupt request if enabled by TIE0 = 1. TIF0 is reset to 0 when TCR is read and the higher or lower byte of TMDR0 are read. During RESET, TIF0 is cleared to 0.
○ TIE1: Timer Interrupt Enable 1 (bit 5)

When TIE1 is set to 1, TIF1 = 1 will generate a CPU interrupt request. When TIE1 is reset to 0, the interrupt request is inhibited. During RESET, TIE1 is cleared to 0.

○ TIEO: Timer Interrupt Enable 0 (bit 4)

When TIE0 is set to 1, TIF0 = 1 will generate a CPU interrupt request. When TIE0 is reset to 0, the interrupt request is inhibited. During RESET, TIE0 is cleared to 0.

O TOC1, 0: Timer Output Control (bits 3, 2)

TOC1 and TOC0 control the output of PRT1 using the multiplexed $A_{18}/TOUT$ pin as shown below. During RESET, TOC1 and TOC0 are cleared to 0. This selects the address function for $A_{18}/TOUT$. By programming TOC1 and TOC0, the $A_{18}/TOUT$ pin can be forced HIGH, LOW or toggled when TMDR1 decrements to 0.

TOC1	тосо	OUTPUT
0	0	Inhibited (A ₁₈ /TOUT pin is selected as an address output function.)
0	1	toggled*
1	0	0 (A ₁₈ /TOUT pin is selected as a PBT1 output function)
1	1	

* When TMDR1 decrements to 0, TOUT level is reversed. This leads to production of a square wave with 50% duty to the external without any software support.

○ TDE1, 0: Timer Down Count Enable (bits 1, 0)

TDE1 and TDE0 enable and disable down counting for TMDR1 and TMDR0 respectively. When TDEn (n = 0, 1) is set to 1, down counting is executed for TMDRn. When TDEn is reset to 0, down counting is stopped and TMDRn can be freely read or written. TDE1 and TDE0 are cleared to 0 during RESET and TMDRn will not decrement until TDEn is set to 1.

Fig. 2.12.2 shows timer initialization, count down and reload timing. Fig. 2.12.3 shows timer output (A_{18} /TOUT) timing.

Figure 2.12.2 PRT Operation Timing

Figure 2.12.3 PRT Output Timing

Figure 2.12.4 PRT Interrupt Request Circuit Diagram

2.12.3 PRT interrupts

The PRT interrupt request circuit is shown in Fig. 2.12.4.

2.12.4 PRT and RESET

During RESET the bits in TCR are initialized as defined in the TCR register description. Down counting is stopped and the TMDR and RLDR registers are initialized to FFFFH. The A_{18} /TOUT pin reverts to the address output function.

2.12.5 PRT operation notes

- (1) TMDR data can be accurately read without stopping down counting by reading the lower (TMDRnL*) and higher (TMDRnH*) bytes in that order. Or, TMDR can be freely read or written by stopping the down counting.
- (2) Care should be taken to insure that a timer reload does not occur during or between lower (RLDRnL*) and higher (RLDRnH*) byte writes. This may be guaranteed by system design/timing or by stopping down counting (with TMDR containing a non-zero value) during the RLDR updating.

Similarly, in applications in which TMDR is written at each TMDR overflow, the system/software design should guarantee that RLDR can be updated before the next overflow occurs. Otherwise, time base inaccuracy will occur.

NOTE: * n = 0, 1

(3) During RESET, the multiplexed A₁₈/TOUT pin reverts to the address output. By reprogramming the TOC1 and TOC0 bits, the timer output function for PRT channel 1 can be selected. The following shows the initial state of the TOUT pin after TOC1 and TOC0 are programmed to select the PRT channel 1 timer output function.

(i) PRT (channel 1) has not counted down to 0.

If the PRT has not counted down to 0 (timed out), the initial state of TOUT depends on the programmed value in TOC1 and TOC0.

тос1	тосо	TOUT State After Programming TOC1/TOC0	TOUT State After Next Timeout
0	1	HIGH (1)	LOW (0)
1	0	HIGH (1)	LOW (0)
1	1	HIGH (1)	HIGH (1)

(ii) PRT (channel 1) has counted down to 0 at least once.

If the PRT has counted down to 0 (timed out) at least once, the initial state of TOUT depends on the number of time outs (even or odd) that have occurred.

Numbers of Timeouts	TOUT State After
(even or odd)	Programming TOC1/TOC0
Even (2, 4, 6)	HIGH (1)
Odd (1, 3, 5)	LOW (0)

2.13 6800 Type Bus Interface

2.13.1 E clock output timing

A large selection of 6800 type peripheral devices can be connected to the HD64180, including the Hitachi 6300 CMOS series (6321 PIA, 6350 ACIA, etc.) as well as 6800 family devices.

These devices require connection with the HD64180 synchronous E clock output. The speed (access time) required for the peripheral device are determined by the HD64180 clock rate. Table 2.13.1, Fig. 2.13.1 and Fig. 2.13.2 define E clock output timing.

Condition	Duration of E Clock Output "High"		
Op-code Fetch Cycle Memory Read/Write Cycle	$T_2 \uparrow - T_3 \downarrow$	$(1.5\phi + n_w \cdot \phi)$	
I/O read Cycle	1st Tw† − T₃↓	$(0.5\phi + n_w \cdot \phi)$	
I/O Write Cycle	1st Tw† ─ T₃†	$(n_w \cdot \phi)$	
NMI Acknowledge 1st MC	$T_2 \uparrow - T_3 \downarrow$	(1.5 <i>φ</i>)	
$\overline{INT_0}$, $\overline{INT_1}$, $\overline{INT_2}$ and Internal Interrupt Acknowledge 1st MC	1st Tw† − T₃↓	$(0.5\phi + n_w \cdot \phi)$	
BUS RELEASE mode SLEEP mode SYSTEM STOP mode	$\phi \downarrow - \phi \downarrow$	(2φ or 1φ)	

 Table 2.13.1
 E Clock Timing in Each Condition

NOTE) n_w : the number of wait states MC : Machine Cycle 102 HITACHI

and Interrupt Acknowledge Cycle)

Figure 2.13.2 E Clock Timing (in BUS RELEASE mode, SLEEP mode, SYSTEM STOP mode)

Wait states inserted in op-code fetch, memory read/write and I/O read/write cycles extend the duration of E clock output HIGH. Note that during I/O read/write cycles with no wait states (only occurs during on-chip I/O register accesses), E will not go HIGH.

The correspondence between the duration of E clock output HIGH and standard peripheral device speed selections is as follows.

Device Speed Selection	Required duration of E clock output HIGH
1.0 MHz (ex: HD6321P)	500 ns min.
1.5 MHz (ex: HD63A21P)	333 ns min.
2.0 MHz (ex: HD63B21P)	230 ns min.

2.13.2 6800 type bus interfacing note

When the HD64180 is connected to 6800 type peripheral LSIs with E clock, the 6800 type peripheral LSIs should be located in I/O address space.

If the 6800 type peripheral LSIs are located in memory address space, \overline{WR} set-up time and \overline{WR} hold time for E clock won't be guaranteed during memory read/write cycles and 6800 type peripheral LSIs can't be connected correctly.

2.14 On-chip Clock Generator

The HD64180 contains a crystal oscillator and system clock (ϕ) generator. A crystal can be directly connected or an external clock input can be provided. In either case, the system clock (ϕ) is equal to one-half the input clock. For example, a crystal or external clock input of 16 MHz corresponds with a system clock rate of ϕ = 8 MHz.

The following table shows the AT cut crystal characteristics (Co, Rs) and the load capacitance (CL1, CL2) required for various frequencies of HD64180 operation.

Clock Frequency	4MHz	4 MHz $< f \leq 12$ MHz	12MHz < f ≦ 16MHz
Со	<7 pF	<7 pF	<7 pF
Rs	< 60 Ω	< 60 Ω	< 35 Ω
CL1, CL2	10 to 22 pF $\pm 10\%$	10 to 22 pF \pm 10%	10 to 22 pF \pm 10%

Table 2.14.1 Crystal Characteristics

If an external clock input is used instead of a crystal, the waveform (twice the ϕ clock rate) should exhibit an external waveform shown in AC characteristics. The external clock input is connected to the EXTAL pin, while the XTAL pin is left open. Fig. 2.14.1 shows external clock interface.

Figure 2.14.1 External Clock Interface

Fig. 2.14.2 shows the HD64180 clock generator circuit while Fig. 2.14.3 and Fig. 2.14.4 specify circuit board design rules.

Figure 2.14.3 Note for Board Design of the Oscillation Circuit

Figure 2.14.4 Example of Board Design

Circuit Board design should observe the followings.

- (1) To prevent induced noise, the crystal and load capacitors should be physically located as close to the LSI as possible.
- (2) Signal lines should not run parallel to the clock oscillator inputs. In particular, the clock input circuitry and the system clock ϕ output should be separated as much as possible.
- (3) Similar to (2), V_{CC} power lines should be separated from the clock oscillator input circuitry.
- (4) Resistivity between XTAL or EXTAL and the other pins should be greater than 10M ohms.

Signal line layout should avoid areas marked with ////.

2.15 Miscellaneous

Free Running Counter (I/O Address = 18H)

Read only 8-bit free running counter without control registers and status registers. The contents of the 8-bit free running counter is counted down by 1 with an interval of 10 ϕ clock cycles. The free running counter continues counting down without being affected by the read operation.

If data is written into the free running counter, we can't guarantee the interval of DRAM refresh cycle and baud rates of ASCI and CSI/O.

In IOSTOP mode, the free running counter continues counting down. It is initialized to FFH during RESET.

2.16 Operation Notes

2.16.1 Precaution on interfacing the Z80 family peripheral LSIs to the HD64180R1

(1) Problem

In daisy chain, the Z80 family peripheral LSI (PIO, DMA, CTC, SIO, or DART) resets interrupt circuit (i.e. IEO changes from LOW to HIGH) by fetching the RETI op-code on the data bus concurrently during the CPU fetches the RETI. Therefore, the followings should be noted for the RETI op-code (EDH, 4DH) fetch timing in the Z80 peripheral LSI.

When the peripheral LSI fetches the first op-code of RETI (EDH), $\overline{\text{LIR}}$ should be asserted HIGH at the rising edge of system clock ϕ as shown in Fig. 2.16.1, A. (This isn't referred in the manuals for the Z80 peripheral LSI.) So, $\overline{\text{LIR}}$ hold time ($\overline{\text{LIR}}$ = HIGH) should be required as shown in Fig. 2.16.1.

Figure 2.16.1 LIR Hold Time

Because $\overline{\text{LIR}}$ changes synchronously with the rising edge of system clock ϕ , $\overline{\text{LIR}}$ delay time is equal to $\overline{\text{LIR}}$ hold time of the Z80 peripheral LSI. However, this $\overline{\text{LIR}}$ hold time may not be sufficient for the Z80 peripheral LSI in some case and IEO line may not be reset.

(2) An example of countermeasure

Fig. 2.16.2 shows an example of circuit, while Fig. 2.16.3 shows the LIR and $\overline{\text{LIR}}$ ' timing in the circuit.

Figure 2.16.2 Circuit Example

Figure 2.16.3 LIR and LIR' Timing in the Circuit

 $\overline{\text{LIR}}$, which is synchronized with the falling edge of system clock ϕ , is provided to the peripheral LSI. In this case, one-half clock cycle duration is confirmed as the hold time.

Please carefully examine the circuit before you use it on your application.

2.16.2 Precaution on interfacing HD64180R1 with Z80 CTC

1. Problem

The following problem may happen when interfacing HD64180R1 with Z80 CTC (Z8430). Therefore, countermeasure shown in section 2 should be taken. Fig. 2.16.4 illustrates Z80 CTC write timing specified in Z80 CTC Data Sheet. While Fig. 2.16.5 and Fig. 2.16.6 show Z80 I/O write timing and HD64180R1 I/O write timing respectively.

Figure 2.16.5 Z80 I/O Write Timing Figure 2.16.6 HD64180R1 I/O Write Timing

As shown above, \overline{IOE} in HD64180R1 goes LOW by a half ϕ clock cycle faster than \overline{IORQ} in Z80. When interfacing Z80 with Z80 CTC, data is written into Z80 CTC at the rising edge of Tw. While, when interfacing HD64180R1 with Z80 CTC, data is written into Z80 CTC at the rising edge of T2. In the latter case, data may not be written into Z80 CTC if \overline{IOE} set-up time for the rising of T2 is less than the set-up time specified in Z80 CTC.

2. Countermeasure

To avoid the problem, \overline{IOE} in HD64180R1 should be asserted LOW at the rising edge of T2 to assure the set-up time specified in Z80 CTC. Fig. 2.16.7 (a) shows a circuit for delaying \overline{IOE} by a half ϕ clock cycle.

If this circuit is externally connected between HD64180R1 and Z80 CTC, \overline{IOE} ' will be pulled LOW at the rising edge of T2 only in I/O read/write cycle as shown in Fig. 2.16.7 (b). While in $\overline{INT_0}$ acknowledge cycle, \overline{IOE} and \overline{IOE} ' are asserted LOW at the timing shown in Fig. 2.16.7 (c). In $\overline{INT_0}$ acknowledge cycle, IOE' delays be-

cause of propagation time of TTL gates of the countermeasure circuit and the vector access time is shortened. If vector access time for HD64180R1 is not assured during INT₀ acknowledge cycle, wait states should be inserted by programming IWI0 and IWI1 bits of DMA/WAIT Control Register. However, note that wait states insertion by software should be inhibited during Z80 CTC read/write cycles, because more than one wait state can not be allowed in the case of Z80 CTC. (Please see Z80 CTC Data Sheet. One wait state is automatically inserted during the cycles.) Refer to Fig. 2.16.8 "Z80 CTC Access Flow" for details.

Figure 2.16.7 Countermeasure Circuit and Timings in the Circuit

Figure 2.16.8 Z80 CTC Access Flow

2.16.3 Notes on HD64180 INT₀ Mode 0 (All Masks)

1. Problem

In $\overline{INT_0}$ Mode 0, the CPU executes an instruction which is placed on the data bus during the interrupt acknowledge cycle. Usually, RST (1-byte instruction) or CALL (3-byte instruction) is placed on the data bus. Then, the CPU pushes the Program Counter (PC) onto the stack and jumps to the interrupt service routine. In the case of RST instruction, the correct return address is pushed onto the stack. However, in the case of CALL instruction, the pushed return address is equal to the correct return address + 2.

2. Explanation of operation

During the 1st op-code fetch cycle in the interrupt acknowledge cycle, the CPU stops incrementing the PC. At this time, the PC contains the return address. After the 1st op-code is fetched, the CPU restarts incrementing the PC. Therefore, if RST (1-byte instruction) is executed in the interrupt acknowledge cycle, the correct return address is pushed onto the stack and the CPU can return from the interrupt service routine correctly. While, if CALL (3-byte instruction) is executed in the interrupt acknowledge cycle, the PC is incremented twice during the operand read cycle of the 2 bytes after the 1st op-code is fetched. Therefore, the return address + 2 in the PC is pushed onto the stack. So, when RETI is executed at the end of the interrupt service routine, the CPU can not return from the interrupt correctly.

Fig. 2.16.9 shows the CALL execution timing in $\overline{INT_0}$ Mode 0.

Figure 2.16.9 The CALL Execution Timing in $\overline{INT_0}$ Mode 0

3. Countermeasure

The following explains the countermeasures of the problem in $\overline{INT_0}$ Mode 0.

(1) RST

When RST is executed, the correct return address in the PC is pushed onto the stack.

(2) CALL

When CALL is executed, the stack contents must be decremented by two in the interrupt service routine to return from the interrupt correctly.

Table 2.16.1 summarizes how to adjust the stack contents depending on the instruction to be executed.

Table	2.16.1	Stack	Contents	Adjustment
-------	--------	-------	----------	------------

Instruction	Stack Contents Adjustment			
RST	No			
CALL	Decrement the stack contents by two			
Other instructions	No (The PC is not stacked.)			

The $\overline{INT_0}$ Mode 0 sequences when executing RST and CALL are shown in Fig. 2.16.10.

Figure 2.16.10 INT₀ Mode 0 Sequence

3. HD64180 SOFTWARE ARCHITECTURE

3.1 Instruction Set

The HD64180 is object code compatible with standard 8-bit operating system and application software. The instruction set also contains a number of new instructions to improve system and software performance, reliability and efficiency.

New Instructions	Operation
SLP	Enter SLEEP mode
MLT	8-bit multiply with 16-bit result
IN0 g, (m)	Input contents of immediate I/O address into register
OUT0 (m), g	Output register contents to immediate I/O address
OTIM	Block output – increment
OTIMR	Block output – increment and repeat
OTDM	Block output – decrement
OTDMR	Block output – decrement and repeat
TSTIO m	Non-destructive AND, I/O port and accumulator
TST g	Non-destructive AND, register and accumulator
TST m	Non-destructive AND, immediate data and accumulator
TST (HL)	Non-destructive AND, memory data and accumulator

SLP – Sleep

The SLP instruction causes the HD64180 to enter SLEEP low power consumption mode. See section 2.4 for a complete description of the SLEEP state.

MLT – Multiply

The MLT performs unsigned multiplication on two 8 bit numbers yielding a 16 bit result. MLT may specify BC, DE, HL or SP registers. In all cases, the 8-bit operands are loaded into each half of the 16-bit register and the 16-bit result is returned in that register.

INO g, (m) - Input, Immediate I/O address

The contents of immediately specified 8-bit I/O address are input into the specified register. When I/O is accessed, 00H is output in high-order bits of address automatically.

OUT0 (m), g - Output, immediate I/O address

The contents of the specified register are output to the immediately specified 8bit I/O address. When I/O is accessed, 00H is output in high-order bits of address automatically.

OTIM, OTIMR, OTDM, OTDMR – Block I/O

The contents of memory pointed to by HL is output to the I/O address in (C). The memory address (HL) and I/O address (C) are incremented in OTIM and OTIMR and decremented in OTDM and OTDMR respectively. B register is decre-

mented. The OTIMR and OTDMR variants repeat the above sequence until register B is decremented to 0. Since the I/O address (C) is automatically incremented or decremented, these instructions are useful for block I/O (such as HD64180 on-chip I/O) initialization. When I/O is accessed, 00H is output in high-order bits of address automatically.

TSTIO m – Test I/O Port

The contents of the I/O port addressed by C are ANDed with immediately specified 8-bit data and the status flags are updated. The I/O port contents are not written (non-destructive AND). When I/O is accessed, 00H is output in higher bits of address automatically.

TST g — Test Register

The contents of the specified register are ANDed with the accumulator (A) and the status flags are updated. The accumulator and specified register are not changed (non-destructive AND).

TST m – Test Immediate

The contents of the immediately specified 8-bit data are ANDed with the accumulator (A) and the status flags are updated. The accumulator is not changed (non-destructive AND).

TST (HL) — Test Memory

The contents of memory pointed to by HL are ANDed with the accumulator (A) and the status flags are updated. The memory contents and accumulator are not changed (non-destructive AND).

3.2. CPU Registers

The HD64180 CPU registers consist of Register Set GR, Register Set GR' and Special Registers.

The Register Set GR consists of 8-bit Accumulator (A), 8-bit Flag Register (F), and three General Purpose Registers (BC, DE, and HL) which may be treated as 16-bit registers (BC, DE, and HL) or as individual 8-bit registers (B, C, D, E, H, and L) depending on the instruction to be executed. The Register Set GR' is alternate register set of Register Set GR and also contains Accumulator (A'), Flag Register (F') and three General Purpose Registers (BC', DE', and HL'). While the alternate Register Set GR' contents are not directly accessible, the contents can be programmably exchanged at high speed with those of Register Set GR.

The Special Registers consist of 8-bit Interrupt Vector Register (I), 8-bit R Counter (R), two 16-bit Index Registers (IX and IY), 16-bit Stack Pointer (SP), and 16-bit Program Counter (PC).

Fig. 3.2.1 shows CPU registers configuration.

Figure 3.2.1 CPU Registers

3.2.1 Register description

Accumulator (A, A')

The Accumulator (A) serves as the primary register used for many arithmetic, logical and I/O instructions.

Flag Registers (F, F')

The flag register stores various status bits (described in the next section) which reflect the results of instruction execution.

General Purpose Registers (BC, BC', DE, DE', HL, HL')

The General Purpose Registers are used for both address and data operation. Depending on instruction, each half (8 bits) of these registers (B, C, D, E, H, and L) may also be used.

Interrupt Vector Register (I)

For interrupts which require a vector table address to be calculated ($\overline{INT_0}$ Mode 2, $\overline{INT_1}$, $\overline{INT_2}$ and internal interrupts), the Interrupt Vector Register (I) provides the most significant byte of the vector table address. I is cleared to 00H during RE-SET.

R Counter (R)

The least significant seven bits of the R Counter (R) serve to count the number of instructions executed by the HD64180. R is incremented for each CPU op-code fetch cycles (each LIR cycles). R is cleared to 00H during RESET.

Index Registers (IX, and IY)

The Index Registers are used for both address and data operations. For addressing, the contents of a displacement specified in the instruction are added to or subtracted from the Index Register to determine an effective operand address.

Stack Pointer (SP)

The Stack Pointer (SP) contains the memory address based LIFO stack. SP is cleared to 0000H during RESET.

Program Counter (PC)

The Program Counter (PC) contains the address of the instruction to be executed and is automatically updated after each instruction fetch. PC is cleared to 0000H during RESET.

3.2.2 Flag Register (F)

The Flag Register stores the logical state reflecting the results of instruction execution. The contents of the Flag Register are used to control program flow and instruction operation.

bit	7	6	5	4	3	2	1	0	
	S	×Ζ	-	Н	_	P/V	N	С	Flag Register (F)

\bigcirc S: Sign (bit 7)

S stores the state of the most significant bit (bit 7) of the result. This is useful for operations with signed numbers in which values with bit 7 = 1 are interpreted as negative.

○ Z: Zero (bit 6)

Z is set to 1 when instruction execution results containing 0. Otherwise, Z is reset to 0.

○ H: Half Carry (bit 4)

H is used by the DAA (Decimal Adjust Accumulator) instruction to reflect borrow or carry from the least significant 4 bits and thereby adjust the results of BCD addition and subtraction.

○ P/V: Parity/Overflow (bit 2)

P/V serves a dual purpose. For logical operations P/V is set to 1 if the number of 1 bit in the result is even and P/V is reset to 0 if the number of 1 bit in the result is odd. For two complement arithmetic, P/V is set to 1 if the operation produces a result which is outside the allowable range (+127 to -128 for 8-bit operations, +32767 to -32768 for 16-bit operations).

\bigcirc N: Negative (bit 1)

N is set to 1 if the last arithmetic instruction was a subtract operation (SUB, DEC, CP, etc.) and N is reset to 0 if the last arithmetic instruction was an addition operation (ADD, INC, etc.).

\bigcirc C: Carry (bit 0)

C is set to 1 when a carry (addition) or borrow (subtraction) from the most significant bit of the result occurs. C is also affected by Accumulator logic operations such as shifts and rotates.

3.3 Addressing Modes

The HD64180 instruction set includes eight addressing modes.

Implied Register Register Direct Register Indirect Indexed Extended Immediate Relative IO

Implied Register (IMP)

Certain op-codes automatically imply register usage, such as the arithmetic operations which inherently reference the Accumulator, Index Registers, Stack Pointer and General Purpose Registers.

Register Direct (REG)

8-bit Register

Many op-codes contain bit fields specifying registers to be used for the operation. The exact bit field definition vary depending on instruction as follows.

g or g' field	Register
0 0 0	В
0 0 1	С
0 1 0	D
0 1 1	Е
100	Н
1 0 1	L
1 1 0	_
1 1 1	A

ww field	Register
0 0	BC
0 1	DE
1 0	HL
1 1	S P
	the second se

xx field	Register
0 0	BC
0 1	DE
1 0	IX
1 1	S P

16-bit Register

zz field	Register
0 0	ВC
0 1	DE
1 0	ΗL
1 1	A F

yy field	Register
0 0	ВC
0 1	DE
1 0	IΥ
1 1	S P

Suffixed H and L to ww,xx,yy,zz (ex. wwH,IXL) indicate upper and lower 8-bit of the 16-bit register respectively.

Register Indirect (REG)

The memory operand address is contained in one of the 16-bit General Purpose Registers (BC, DE and HL).

Indexed (INDX)

The memory operand address is calculated using the contents of an Index Register (IX or IY) and an 8-bit signed displacement specified in the instruction.

Extended (EXT)

The memory operand address is specified by two bytes contained in the instruction.

Immediate (IMMED)

The memory operands are contained within one or two bytes of the instruction.

Relative (REL)

Relative addressing mode is only used by the conditional and unconditional branch instructions. The branch displacement (relative to the contents of the program counter) is contained in the instruction.

10 (10)

IO addressing mode is used only by I/O instructions. This mode specifies I/O address ($\overline{IOE} = 0$) and outputs them as follows.

- (1) An operand is output to A_0 -A7. The Contents of Accumulator is output to A_8 - A_{15} .
- (2) The Contents of Register C is output to A_0 -A7. The Contents of Register B is output to A_8 -A15.
- (3) An operand is output to A₀-A₇. 00H is output to A₈-A₁₅. (useful for internal I/O register access)
- (4) The Contents of Register C is output to A₀-A₇. 00H is output to A₈-A₁₅. (useful for internal I/O register access)

4. ELECTRICAL CHARACTERISTICS

■ ABSOLUTE MAXIMUM RATINGS

ltem	Symbol	Value	Unit
Supply Voltage	V _{cc}	$-0.3 \sim +7.0$	V
Input Voltage	V _{in}	$-0.3 \sim V_{CC} + 0.3$	V
Operating Temperature	T _{opr}	$-20 \sim +75$	°C
Storage Temperature	T _{stg}	$-55 \sim +150$	°C

[NOTE] Permanent LSI damage may occur if maximum ratings are exceeded. Normal operation should be under recommended operating conditions. If these conditions are exceeded, it could affect reliability of LSI.

DC CHARACTERISTICS ($V_{CC} = 5V \pm 10\%$, $V_{SS} = 0V$, Ta = $-20 \sim +75^{\circ}$ C, unless otherwise noted.)

Symbol	ltem	Condition	min	typ	max	Unit
V _{IH1}	Input "H" Voltage RESET, EXTAL, NMI		V _{CC} -0.6		V _{CC} +0.3	v
V _{IH2}	Input "H" Voltage Except RESET, EXTAL, NMI		2.0		V _{CC} +0.3	v
V _{IL1}	Input "L" Voltage RESET, EXTAL, NMI		-0.3	-	0.6	v
V _{IL2}	Input "L" Voltage Except RESET, EXTAL, NMI		-0.3	_	0.8	v
V	Output "H" Voltage	$I_{OH} = -200 \mu A$	2.4	-	-	V
∨он		$I_{OH} = -20\mu A$	V _{CC} -1.2	_	_	v
V _{OL}	Output "L" Voltage All Outputs	$I_{OL} = 2.2 \text{ mA}$	_	-	0.45	v
łı_	Input Leakage Current All Inputs Except XTAL, EXTAL	$Vin{=}0.5 \sim V_{CC}{-}0.5$	_	_	1.0	μΑ
եր Մ	Three State Leakage Current	Vin=0.5 \sim V _{CC} -0.5	_	_	1.0	μΑ
	Power Dissipation*	f=4 MHz	—	10	20	
	(Normal Operation)	f=6 MHz	—	15	30	mA
1*		f=8 MHz		20	40	
'CC	Power Dissipation*	f=4 MHz	—	2.5	5.0	
	(SYSTEM STOP mode)	f=6 MHz	_	3.8	7.5	
		f=8 MHz		5.0	10.0	
Ср	Pin Capacitance	Vin=0V, f=1 MHz Ta=25℃	_		12	pF

* Input signal

 $\label{eq:RESET, EXTAL, $\overline{\text{NMI}}$: $V_{\text{IHmin}} = V_{\text{CC}} - 0.6V$, $V_{\text{ILmax}} = 0.6V$ the others: $V_{\text{IHmin}} = V_{\text{CC}} - 1.0V$, $V_{\text{ILmax}} = 0.8V$ All output terminals are at no load.}$

■HD64180Z AC Characteristics

$(V_{CC} = 5V \pm 10\%, V_{SS} = 0V, Ta = -20 \text{ to } +75^{\circ}\text{C}, \text{ unless}$ otherwise noted.)

0	line		HD6418	80Z-4	HD6418	30Z-6	HD6418	30Z-8	Unit	
Symbol	Item		min	max	min	max	min	max	Unit	
t _{cyc}	Clock Cycle Time		250	2000	162	2000	125	2000	ns	
t _{CHW}	Clock "H" Pulse Width		110		65	-	50	-	ns	
t _{CLW}	Clock "L" Pulse Widtl	1	110	-	65	-	50	_	ns	
t _{cf}	Clock Fall Time		—	15	-	15	-	15	ns	
t _{cr}	Clock Rise Time		-	15	-	15	-	15	ns	
t _{AD}	Address Delay Time		_	110	-	90	-	80	ns	
t _{AS}	Address Set-up Time (ME or IOE ↓)		50	-	30	-	20	-	ns	
t _{MED1}	ME Delay Time 1		—	85	-	60	-	50	ns	
t _{RDD1}	RD Delay Time 1	$\overline{10C} = 1$	—	85		60	-	50	ns	
		$\overline{10C} = 0$	—	85	-	65	-	60		
t _{LD1}	LIR Delay Time 1		-	100	-	80	-	70*	ns	
t _{AH}	Address Hold Time 1 (ME, IOE, RD or WR †)	80	—	35	-	20		ns	
t _{MED2}	ME Delay Time 2		-	85	-	60	-	50	ns	
t _{RDD2}	RD Delay Time 2		-	85	1	60	-	50	ns	
t _{LD2}	LIR Delay Time 2		-	100	-	80	-	70*	ns	
t _{DRS}	Data Read Set-up Tim	ne	50	1	40	—	30	-	ns	
t _{DRH}	Data Read Hold Time		0	-	0	-	0	-	ns	
t _{STD1}	ST Delay Time 1		-	110	-	90	-	70	ns	
t _{STD2}	ST Delay Time 2		-	110	-	90	-	70	ns	
t _{WS}	WAIT Set-up Time		80	-	40	-	40	-	ns	
t _{WH}	WAIT Hold Time		70	-	40	-	40	-	ns	
twdz	Write Data Floating Delay Time		-	100	_	95	_	70	ns	
twrd1	WR Delay Time 1	***	-	90	-	65	-	60	ns	
twdd	Write Data Delay Tim	e	-	110		90	-	80	ns	
twds	Write Data Set-up Tir (WR ↓)	ne	60	-	40		20	-	ns	
t _{WRD2}	WR Delay Time 2		-	90	-	80	-	60	ns	
t _{WRP}	WR Pulse Width		280		170	-	130	-	ns	

• For a loading capacitance of less than or equal to 40 picofarads and operating temperature from 0 to 50 degrees, substract 10 nanoseconds from the value given in the maximum columns.

0	u	HD641	80Z-4	HD641	80Z-6	HD6418	30Z-8	11-14
Symbol	item	min	max	min	max	min	max	Unit
^t WDH	Write Data Hold Time (₩R †)	60	-	40	-	15	-	ns
t _{IOD1}	IOE Delay Time 1 IOC = 1	-	85	-	60		50	ns
	$\overline{10C} = 0$	-	85	-	65	-	60	
t _{IOD2}	IOE Delay Time 2	-	85	-	60	-	50	ns
t _{iod3}	IOE Delay Time 3 (LIR ↓)	540	-	340	-	250	-	ns
⁴NTS	INT Set-up Time (φ	80	-	40	-	40	-	ns
Ч NTH	ĪNT Hold Time (φ ↓)	70	-	40	-	40	-	ns
t _{NMIW}	NMI Pulse Width	120	-	120	-	100	-	ns
t _{BRS}	BUSREQ Set-up Time (φ ↓)	80	-	40	-	40	-	ns
t _{BRH}	BUSREQ Hold Time (¢ ↓)	70	-	40	-	40	-	ns
^t BAD1	BUSACK Delay Time 1	-	100	-	95	-	70	ns
t _{BAD2}	BUSACK Delay Time 2	-	100	-	95	-	70	ns
t _{BZD}	Bus Floating Delay Time		130	-	125	-	90	ns
^t меwн	ME Pulse Width (HIGH)	200	-	110	-	90	-	ns
^t MEWL	ME Pulse Width (LOW)	210	-	125	-	100	-	ns
t _{RFD1}	REF Delay Time 1	<u> </u>	110		90	-	80	ns
t _{RFD2}	REF Delay Time 2	-	110	-	90	-	80	ns
t _{HAD1}	HALT Delay Time 1		110	-	90	-	80	ns
tHAD2	HALT Delay Time 2	<u> -</u>	110	-	90	-	80	ns
t _{DROS}	DREQi Set-up Time	80	-	40	-	40		ns
^t drah	DREQi Hold Time	70	-	40		40	-	ns
t _{TED1}	TENDi Delay Time 1		85	-	70		60	ns
t _{TED2}	TENDi Delay Time 2		85		70	-	60	ns
t _{ED1}	Enable Delay Time 1	-	100		95	-	70	ns
t _{ED2}	Enable Delay Time 2	<u> </u>	100		95	-	70	ns
P _{WEH}	E Pulse Width (HIGH)	150	-	75		65	-	ns
P _{WEL}	E Pulse Width (LOW)	300	-	180	-	130	-	ns

Cumbal		HD6418	0Z-4	HD6418	30Z-6	HD6418	80Z-8	1.1
Буппрог	item	min	max	min	max	min	max	Unit
t _{Er}	Enable Rise Time	—	25	-	20		20	ns
t _{Ef}	Enable Fall Time	-	25	. —	20		20	ns
t _{TOD}	Timer Output Delay Time	-	300	-	300		200	ns
t _{STDI}	CSI/O Transmit Data Delay Time (Internal Clock Operation)	-	200	-	200	_	200	ns
t _{STDE}	CSI/O Transmit Data Delay Time (External Clock Operation)	-	7.5tcyc + 300	_	7.5tcyc + 300	-	7.5tcyc + 200	ns
t _{SRSI}	CSI/O Receive Data Set-up Time (Internal Clock Operation)	1	-	1	-	1	-	tcyc
t _{SRHI}	CSI/O Receive Data Hold Time (Internal Clock Operation)	1	-	1	-	1	-	tcyc
t _{SRSE}	CSI/O Receive Data Set-up Time (External Clock Operation)	1	-	1	-	1	-	tcyc
t _{SRHE}	CSI/O Receive Data Hold Time (External Clock Operation)	1	-	1	-	1	-	tcyc
t _{RES}	RESET Set-up Time	120	-	120	-	100	-	ns
t _{REH}	RESET Hold Time	80	-	80	-	70	-	ns
tosc	Oscillator Stabilization Time	-	20	-	20		20	ms
t _{ECYC}	External Clock Cycle Time	125	1000	81	1000	62.5	1000	ns
t _{EXHW}	External Clock "H" Pulse Width	50	-	32	-	25	-	ns
t _{EXLW}	External Clock "L" Pulse Width	50	-	32	-	25	-	ns
t _{EXr}	External Clock Rise Time (EXTAL)	-	25	-	25	-	25	ns
t _{EXf}	External Clock Fall Time (EXTAL)	-	25	-	25	-	25	ns
t _{Rr}	RESET Rise Time	-	50		50		50	ms
t _{Rf}	RESET Fall Time	-	50	-	50		50	ms
t ır	Input Rise Time (except EXTAL, RESET)	-	100	-	100		100	ns
Чf	Input Fall Time (except EXTAL, RESET)	-	100	-	100		100	ns

HD64180R1 AC CHARACTERISTICS

(V_{CC} = 5V \pm 10%, V_{SS} = 0V, Ta = $-20 \sim +75^\circ\text{C}$, unless otherwise noted.)

Symbol	ltem	HD	64180R	1-4	HD	64180R	1-6	HD	64180R	1-8	
e y mbor	ion	min	typ	max	min	typ	max	min	typ	max	Unit
t _{cyc}	Clock Cycle Time	250	-	2000	162	-	2000	125	_	2000	ns
^t снw	Clock "H" Pulse Width	110	-		65	-	-	50	-	-	ns
t _{CLW}	Clock "L" Pulse Width	110	_		65	-	-	50	-		ns
t _{cf}	Clock Fall Time	-	-	15	-	-	15	-	-	15	ns
t _{cr}	Clock Rise Time	-	-	15	-	-	15	_	_	15	ns
t _{AD}	Address Delay Time	—	-	110	-	-	90	_	-	80	ns
t _{AS}	Address Set-up Time (ME or IOE ↓)	50	-	-	30	-	-	20		-	ns
t _{MED1}	ME Delay Time 1	-	_	85	-	-	60	-	-	50	ns
t _{RDD1}	RD Delay Time 1	-	_	85	-	-	60	-	-	50	ns
τ _{LD1}	LIR Delay Time 1	_	_	100	_	_	80	-	-	70*	ns
t _{AH}	Address Hold Time (ME, IOE, RD or WR ↑)	80	_	-	35	_	-	20	-		ns
t _{MED2}	ME Delay Time 2	-	-	85	-	_	60	-	-	50	ns
t _{RDD2}	RD Delay Time 2	-	-	85	-	-	60	-	-	50	ns
t _{LD2}	LIR Delay Time 2	-	-	100	-	_	80	-	1	70*	ns
t _{DRS}	Data Read Set-up Time	50	-	- <u>`</u>	40	-	_	30	-	_	ns
t _{DRH}	Data Read Hold Time	0	_	-	0	_	_	0	-	_	ns
t _{STD1}	ST Delay Time 1	_	-	110	-	-	90	-	-	70	ns
t _{STD2}	ST Delay Time 2	-	-	110	-	-	90	-	-	70	ns
tws	WAIT Set-up Time	80	_	-	40	-	-	40	-	-	ns
t _{WH}	WAIT Hold Time	70	-	-	40	-	-	40			ns

(to be continued)

* For a loading capacitance of less than or equal to 40 picofarads and operating temperature from 0 to 50 degrees, substract 10 nanoseconds from the value given in the maximum columns.

Cumbral		HD	64180R1	1-4	HD	64180R	1-6	HD	64180R	1-8	1.1
Symbol	nem	min	typ	max	min	typ	max	min	typ	max	Unit
t _{WDZ}	Write Data Floating Delay Time	_	-	100	-	-	95	I	-	70	ns
t _{WRD1}	WR Delay Time 1	-	-	90	-	-	65	-	-	60	ns
t _{WDD}	Write Data Delay Time	-	-	110	-	-	90	-	-	80	ns
twds	Write Data Set-up Time (WR ↓)	60	-	-	40	-	-	20	-	_	ns
t _{WRD2}	WR Delay Time 2	-	1	90	-	-	80	-	-	60	ns
t _{WRP}	WR Pulse Width	280	-	-	170	-	-	130	_	-	ns
t _{WDH}	Write Data Hold Time (WR ↑)	60	-	-	40	-	-	15	-	-	ns
t _{IOD1}	IOE Delay Time 1	-	-	85	_	-	60	-	-	50	ns
t _{iOD2}	IOE Delay Time 2	-	-	85	-	-	60	-	-	50	ns
t _{iod3}	IOE Delay Time 3 (LIR ↓)	540	·—	-	340	-	-	250	-	-	ns
t _{ints}	INT Set-up Time (φ ↓)	80	_	-	40	-	-	40	-	_	ns
^t inth	ĪNT Hold Time (φ ↓)	70	_	-	40	-	-	40	-	-	ns
^t NMI₩	NMI Pulse Width	120	-	-	120	-	-	100	-	-	ns
t _{BRS}	BUSREQ Set-up Time $(\phi \downarrow)$	80	-	-	40	-	-	40	-	-	ns
t _{BRH}	BUSREQ Hold Time $(\phi \downarrow)$	70	-	-	40	-	-	40	-	-	ns
t _{BAD1}	BUSACK Delay Time 1	-	-	100	-	-	95	-	-	70	ns
t _{BAD2}	BUSACK Delay Time 2	-	-	100	-	-	95	-		70	ns
t _{BZD}	Bus Floating Delay Time	-	-	130 [,]	-	-	125	-	-	90	ns
t _{MEWH}	ME Pulse Width (HIGH)	200	-	-	110	-	-	90	-	-	ns
t _{MEWL}	ME Pulse Width (LOW)	210	_	-	125	-	-	100	-	-	ns

(to be continued)

		HD	64180R1	-4	HD	64180R	1-6	HD	54180R	-8	
Symbol	ltem	min	typ	max	min	typ	max	min	typ	max	Unit
t _{RFD1}	REF Delay Time 1	_	-	110	_	—	90		-	80	ns
t _{RFD2}	REF Delay Time 2	_	_	110	-	-	90	-	-	80	ns
t _{HAD1}	HALT Delay Time 1	-	-	110	-	-	90	_	-	80	ns
t _{HAD2}	HALT Delay Time 2	-	-	110	_	-	90	-	-	80	ns
	DREQi Set-up Time	80	-	-	40	-	_	40	-	-	ns
t _{DRQH}	DREQi Hold Time	70	l	-	40	-	_	40	-	-	ns
t _{TED1}	TENDi Delay Time 1		-	85	—	_	70		-	60	ns
t _{TED2}	TENDi Delay Time 2	-	-	85	-	-	70	-		60	ns
t _{ED1}	Enable Delay Time 1	—	-	100		-	95	_		70	ns
t _{ED2}	Enable Delay Time 2	_		100	—	_	95	_	-	70	ns
PWEH	E Pulse Width (HIGH)	150		_	75	_	-	65	-	-	ns
P _{WEL}	E Pulse Width (LOW)	300	-	-	180	_	-	130	—	_	ns
t _{Er}	Enable Rise Time	_	_	25	_	_	20	_	-	20	ns
t _{Ef}	Enable Fall Time	-	_	25	-	-	20	-	·	20	ns
t _{TOD}	Timer Output Delay Time	_	_	300	_	-	300	-	-	200	ns
t _{STDI}	CSI/O Transmit Data Delay Time (Internal Clock Operation)	_	_	200	_	_	200	_	-	200	ns
t _{STDE}	CSI/O Transmit Data Delay Time (Extemal Clock Operation)	_	-	7.5 tcyc + 300	_	_	7.5 tcyc + 300	_	-	7.5 tcyc + 200	ns [·]
t _{SRSI}	CSI/O Receive Data Set-up time (Internal Clock Operation)	1	-	_	1	_	_	1	-	_	tcyc
t _{SRHI}	CSI/O Receive Data Hold Time (Internal Clock Operation)	1	_	_	1	_	_	1	-	-	tcyc
t _{SRSE}	CSI/O Receive Data Set-up Time (External Clock Operation)	1	-	_	1	_	-	1	-	-	tcyc
t _{SRHE}	CSI/O Receive Data Hold Time (External Clock Operation)	1	_	-	1	_	_	1	-	_	tcyc
t _{RES}	RESET Set-up Time	120	-	—	120	-	_	100	-	_	ns
t _{REH}	RESET Hold Time	80	-	-	80	_	-	70	_	-	ns
tosc	Oscillator Stabilization Time	-	_	20	-	-	20	_	-	20	ms
t _{ECYC}	External Clock Cycle Type	125	_	1000	81		1000	62.5	-	1000	ns
t _{EXHW}	External Clock "H" Pulse Width	50	_	_	32	-	-	25	_	_	ns
t _{EXLW}	External Clock "L" Pulse Width	50	_	_	32	-	_	25	_	_	ns
t _{EXr}	External Clock Rise Time (EXTAL)		_	25	_	_	25	_	_	25	ns
t _{EXf}	External Clock Fall Time (EXTAL)	_	_	25	_	-	25	_	_	25	ns

(V_{CC} = 5V \pm 10%, V_{SS} = 0V, Ta = - 20 \sim +75°C, unless otherwise noted.)

Symbol	ltem	HD64180R1-4			HD64180R1-6			HD64180R1-8			Unit
		min	typ	max	min	typ	max	min	typ	max	Onit
t _{Rr}	RESET Rise Time	-	-	50	-	-	50	-	-	50	ms
t _{Rf}	RESET Fall Time	-	-	50	-	-	50	-	-	50	ms
t _{ir}	Input Rise Time (except EXTAL, RESET)	_	_	100	_	_	100	_	-	100	ns
t _{lf}	Input Fall Time (except EXTAL, RESET)	-	-	100	-	-	100	-	-	100	ns

I/O Read Cycle ($\overline{IOC}=1$)

CPU Timing (INT₀ Acknowledge cycle Refresh Cycle BUS RELEASE Mode HALT Mode SLEEP Mode SYSTEM STOP Mode

136 HITACHI

DMA Control Signals

Timer Output Timing

CSI/O Receive/Transmit Timing

External Clock Waveform

Input Rise Time and Fall Time (Except EXTAL, RESET)

Bus Timing Test Load (TTL Load)

Reference Level (Input)

A. Instruction Set

The following explains the symbols in instruction set.

1. Register

g, g', ww, xx, yy, and zz specify a register to be used. g and g' specify an 8-bit register. ww, xx, yy, and zz specify a pair of 16-bit registers. The following tables show the correspondence between symbols and registers.

g,g'	Reg.
000	В
001	С
010	D
011	E
100	H
101	L
111	Α

Reg.	xx	Reg.
BC	00	BC
DE	01	DE
HL	10	IX
SP	11	SP

уу	Reg.	ZZ	Reg.
00	BC	00	BC
01	DE	01	DE
10	IY -	10	HL
11	SP	11	AF

NOTE: Suffixed H and L to ww,xx,yy,zz (ex.wwH,IXL) indicate upper and lower 8-bit of the 16-bit register respectively.

2. Bit

b specifies a bit to be manipulated in the bit manipulation instruction. The following table shows the correspondence between b and bits.

b	Bit
000	0
001	1
010	2
011	3
100	4
101	5
110	6
111	7

3. Condition

f specifies the condition in program control instructions. The following shows the correspondence between f and conditions.

f	(Condition
000	NZ	non zero
001	Z	zero
010	NC	non carry
011	C	carry
100	PO	parity odd
101	PE	parity even
110	Р	sign plus
111	M	sign minus

4. Restart Address

 \boldsymbol{v} specifies a restart address. The following table shows the correspondence between \boldsymbol{v} and restart addresses.

V	Address
000	00H
001	08H
010	10H
011	18H
100	20H
101	28H
110	30H
111	38H

5. Flag

The following symbols show the flag conditions.

- : not affected
- † : affected
- \times : undefined
- S : set to 1
- R: reset to 0
- P : parity
- V : overflow

6. Miscellaneous

() _M	:	data in the memory address
$()_{I}$:	data in the I/O address
m or n	:	8-bit data
mn	:	16-bit data
r	:	8-bit register
R	:	16-bit register
b·() _M	:	a content of bit b in the memory address
b∙gr	:	a content of bit b in the register gr
d or j	:	8-bit signed displacement
S	:	source addressing mode
D	:	destination addressing mode
•	:	AND operation
+	:	OR operation
\oplus	:	EXCLUSIVE OR operation
**	:	added new instructions to Z80

1. Data Manipulation Instructions

(1) Arithmetic and Logical Instructions (8-bit)

0		OP and a	Τ		•	ddwoool				But Oi		Flag							
name	MNEMONICS	OP code	IMMED	EXT	IND	REG	REGI	IMP	REL	Bytes	States	Operation	7 S	6 Z	4 H	2 P/V	1 N	0 C	
ADD	ADD A,g	10 000 g				S		D		1	4	Ar+gr→Ar	1	1	I	V	R	1	
	ADD A, (HL)	10 000 110					S	D		1	6	Ar+(HL) _M →Ar	1	I	1	v	R	1	
	ADD A,m	11 000 110	S					D		2	6	Ar+m→Ar	1	1	1	V	R	I	
		<m></m>						_									_		
	ADD A, (IX+d)	11 011 101			S			D		3	14	$Ar + (IX + d)_{M} \rightarrow Ar$	1	1	1	v	R	I	
	ADD A (IY+d)	11 111 101			s			מ		3	14	Ar+(IV+d),.→Ar	1	t	t	v	R	t	
	nebe n,(ii (u)	10 000 110								ľ		ni (ii (u) _N (ni	1.	·	•	,	K	•	
		< d >																	
ADC	ADC A.g	10 001 g	1			s	1	D		1	4	Ar+gr+c→Ar	1	1	1	v	R	1	
	ADC A,(HL)	10 001 110					S	D		1	6	$Ar + (HL)_{M} + c \rightarrow Ar$	1	1	I	v	R	1	
	ADC A,m	11 001 110	S					D		2	6	Ar+m+c→Ar	1	I	1	V	R	1	
		<m></m>																	
	ADC A, (IX+d)	11 011 101			S			D		3	14	$Ar + (IX + d)_{M} + c \rightarrow Ar$	1	1	1	v	R	1	
		10 001 110																	
		11 111 101			c					2	14	Ar+(IV+d) +c-Ar	,	,	•	v	D	,	
	ADC A,(11+u)	10 001 110			3			D		3	14		•	•	·	v	ĸ	•	
		<pre> d ></pre>			1			(
AND	AND a	10 100 g				s		D		1	4	Ar∙gr→Ar	+	1	S	p	R	R	
11112	AND (HL)	10 100 110				ľ	S	D		1	6	Ar · (HL) _M →Ar	1	i	s	P	R	R	
	AND m	11 100 110	S					D		2	6	Ar∙m→Ar	1	1	S	P	R	R	
		<pre> < m ></pre>																	
	AND (IX+d)	11 011 101			S			D		3	14	Ar • (IX+d) _M →Ar	1	1	S	P·	R	R	
		10 100 110																	
		⟨ d ⟩																	
	AND (IY+d)	11 111 101			S			D		3	14	Ar · (IY+d) _M →Ar	1	1	S	P	R	R	
		10 100 110																	
		< a >					ļ												
Compare	CP g	10 111 g				S		D		1	4	Ar-gr		1	1	V	S	1	
	CP (HL)	10 111 110	s				5	מן		1	6	Ar-(HL) _M		1	1 t	v	5	1	
	CI III	(m)	3							ů	U		· ·	·	•	•	5	•	
	CP (IX+d)	11 011 101			s			D		3	14	$Ar - (IX + d)_M$	1	t	I	v	s	1	
		10 111 110										· · · ·							
		⟨d ⟩																	
	CP (IY+d)	11 111 101			S			D		3	14	$Ar - (IY+d)_{M}$	1	1	I	v	s	1	
		10 111 110																	
		(a)																	
COMPLE- MENT	CPL	00 101 111						S/D		1	3	Ār→Ar	ŀ	٠	S	·	S	•	
DEC	DEC g	00 g 101				S/D				1	4	gr−l→gr	1	1	I	v	S	•	
	DEC (HL)	00 110 101					S/D			1	10	$(HL)_{M} - 1 \rightarrow (HL)_{M}$	1	1	I	V	S	•	
	DEC (IX+d)	11 011 101			S/D					3	18	$(IX+d)_{M}-1 \rightarrow$	1	1	I	v	S	•	
		00 110 101										$(IX+d)_{M}$							
	DEC (IV+4)	< d >			s/D					2	19	(IV+d) =1-	١,	,	t	v	c		
	DEC (II + U/	00 110 101			3/0					5	10	$(IY+d)_{W}$	1.	·	•	•	5	-	
		<pre>< d ></pre>						1											
INC	INC g	00 g 100	1			S/D				1	4	gr+1→gr	1	1	t	v	R		
	INC (HL)	00 110 100				0,2	S/D			1	10	$(HL)_{M} + 1 \rightarrow (HL)_{M}$	1	ī	1	v	R		
	INC (IX+d)	11 011 101			S/D					3	18	(IX+d) _N +1→	1	I	1	v	R	•	
		00 110 100										(IX+d) _M							
		< d >		1															
	INC (IY+d)	11 111 101			S/D					3	18	(IY+d) _N +1→	1	1	1	v	R	·	
		00 110 100						ļ				(IY+d) _M							
		(a)	1		1			1					1						

Operation			Addressing							Flag								
name	MNEMONICS	OP code				101 055	ing .			Bytes	States	Operation	7	6	4	2	1	0
			IMMED	EXT	IND	REG	REGI	IMP	REL				S	Z	Н	P/V	N	С
MULT	MLT ww **	11 101 101 01 ww1 100				S/D				2	17	wwHr×wwLr→ww _z	·	•	•	÷	•	·
NEGATE	NEG	11 101 101 01 000 100						S/D		2	6	0−Ar→Ar	I	1	1	V	S	1
OR	ORg	10 110 g				S		D		1	4	Ar+gr→Ar	1	1	R	Р	R	R
	OR (HL)	10 110 110					s	D		1	6	Ar+(HL) _M →Ar	1	1	R	Р	R	R
	OR m	11 110 110	S					D		2	6	Ar+m→Ar	1	1	R	Р	R	R
		<m></m>						_							_	_	-	_
	OR (IX+d)	11 011 101			S			D		3	14	Ar+(IX+d) _M →Ar	1	1	R	Р	R	R
							ĺ											
	OR (IY+d)				s			D		3	14	Ar+(IY+d),,→Ar	1	1	R	Р	R	R
		10 110 110						-						·		•		
		< d >	1						l .									
SUB	SUB g	10 010 g				S		D		1	4	Ar−gr→Ar	1	1	I	V	S	1
	SUB (HL)	10 010 110					s	D		1	6	$Ar - (HL)_{M} \rightarrow Ar$	1	1	1	V	S	1
	SUB m	11 010 110	S			1		D	1	2	6	Ar−m→Ar	1	I	1	V	S	1
		<m></m>						_									-	
	SUB (IX+d)	11 011 101			S			D		3	14	Ar-(IX+d) _M →Ar	1	I	I	V	S	1
	SUB (IY+d)				S			D		3	14	Ar-(IY+d) _µ →Ar	1	t	1	v	s	1
	505 (11 (4)	10 010 110			Ŭ			. 2		Ů		in (it to) w in	1	•	·	·	Ũ	•
		⟨d>											1	\$				
SUBC	SBC A,g	10 011 g				S		D		1	4	Ar−gr−c→Ar	1	1	1	V	S	I
	SBC A, (HL)	10 011 110					s	D		1	6	$Ar - (HL)_{M} - c \rightarrow Ar$	1	1	I	V	S	I
	SBC A,m	11 011 110	S					D		2	6	Ar−m−c→Ar	1	I	Ţ	v	S	1
	SPC A (IV LA)	<m>< m>< 11 011 101</m>			c			П			14	$A_{T} = (IX + d) = c \rightarrow A_{T}$,		,	v	c	,
	SDC A, (IA + U)	10 011 101			3					5	14	AI - (IA + U/M - C + AI	1.	•	*	,	5	•
		< d >]
	SBC A, (IY+d)	11 111 101			S			D		3	14	$Ar - (IY+d)_{M} - c \rightarrow Ar$	1	I	1	V	S	I
		10 011 110																
		 d >																
TEST	TST g **	11 101 101				s				2	7	Ar∙gr	I	I	S	Р	R	R
		00 g 100									10	A., (III)			c	ъ	р	n
	ISI (HL)	11 101 101					5			2	10	Ar•(nL) _M	1	÷	3	r	ĸ	ĸ
	TST m **	11 101 101	s							3	9	Ar·m	1	I	s	Р	R	R
		01 100 100	-							-	-							
		<m></m>																
XOR	XOR g	10 101 g				S		D		1	4	Ar⊕gr→Ar	1	I	R	Р	R	R
	XOR (HL)	10 101 110					s	D		1	6	Ar⊕(HL) _M →Ar	1	1	R	Р	R	R
	XOR m	11 101 110	S					D		2	6	Ar⊕m→Ar	1	I	R	Р	R	R
	YOD (IV I)	<m></m>			c					2		A-(1)/1V 1) . A-			ъ	р	р	
	AUR (IA+0)	10 101 101			3			ע		3	14	AIT (IA ⊤U/N→AI	1	Ŧ	ĸ	r	ĸ	ĸ
		< d >							1									
1	XOR (IY+d)	11 111 101			S			D		3	14	$Ar \oplus (IY + d)_M \rightarrow Ar$	1	I	R	Р	R	R
		10 101 110																
		 d >																

(2) Rotate and Shift Instructions

Operation			Addressing									Fl	ag		••••••			
name	MNEMONICS	OP code	IMMED	FYT		PEC	RECI	IMP	PEI	Bytes	States	Operation	7	6	4 H	2 P/V	1 N	0
Rotate	RLA	00 010 111	Innicisi	EAT		KLO	KLOI	S/D	KEL	1	3			- <u>-</u>	R	<u>.</u>	R	- <u>-</u>
and	RLg	11 001 011				S/D		0,2		2	7		1	I	R	Р	R	ī
Shift		00 010 g				0,2				-						-		
Data	RL (HL)	11 001 011					S/D			2	13		I	t	R	Р	R	T
2444		00 010 110					0,2			-			·	·		•		•
	RL (IX+d)	11 011 101			S/D					4	19		l I	I	R	Р	R	I
		11 001 011								-						-		
		00 010 110																
	RL (IY+d)	11 111 101			S/D					4	19		1	1	R	Р	R	1
		11 001 011								_								
		< d >																
		00 010 110																
	RLCA	00 000 111						S/D		1	3			•	R	•	R	1
	RLC g	11 001 011				S/D				2	7	C b7	1	1	R	P	R	1
		00 000 g																
	RLC (HL)	11 001 011					S/D			2	13		1	1	R	Р	R	1
		00 000 110																
	RLC (IX+d)	11 011 101			S/D					4	19		1	1	R	Р	R	1
		11 001 011																
		< d >																
		00 000 110																
	RLC (IY+d)	11 111 101			S/D					4	19		1	1	R	Р	R	1
		11 001 011										Contraction of						
1		〈 d 〉																
		00 000 110						0.0				ПППППП						
	RLD	11 101 101						S/D		2	16	b7 6 b0	1	Ţ	ĸ	P	ĸ	•
	DDA							e/n		,	,				D		D	+
	RRA DD a	11 001 011				s/n		3/0		1	7	hâttatin-ôn	1	1	л р	P	л р	1
	KK g	00 011 g				3/0				-	'	67 60 C	·	·	ĸ		ĸ	•
	RR (HI)	11 001 011					S/D			2	13		1	t	R	Р	R	1
	RR (IIL)	00 011 110					0,0				10		·	•		•	ĸ	•
	RR (IX+d)	11 011 101			S/D					4	19		I	1	R	Р	R	1
		11 001 011								-								
		< d >																
		00 011 110																
	RR (IY+d)	11 111 101			S/D					4	19		1	1	R	P	R	1
		11 001 011																
		<d><</d>]
		00 011 110																
	RRCA	00 001 111						S/D		1	3	Garranda	·	·	R	·	R	1
	RRC g	11 001 011				S/D				2	7	b7	1	1	R	P	R	1
		00 001 g																
	RRC (HL)	11 001 011					S/D			2	13		I	1	R	P	R	1
	DDG (N/ - N	00 001 110			0.00										-	~	r	
	KRC (IX+d)	11 011 101			S/D					4	19		1	1	ĸ	Р	ĸ	t
		11 001 011																
		00 001 110																
	RRC (IV+d)	11 111 101			S/D					4	19		1	t	R	Р	R	t
		11 001 011			0,0					•	- 40		· ·	•	~	•	~	•
		< d >																
		00 001 110																
			1					l			1							

			1	Addressing											Fl	ag		
Operation	MNEMONICS	OP code			A	adressi	ng			Bytes	States	Operation	7	6	4	2	1	0
name			IMMED	EXT	IND	REG	REGI	IMP	REL				S	Z	Н	P/V	N	С
Rotate	RRD	11 101 101						S/D		2	16		I	1	R	Р	R	•
and		01 100 111										67						
Shift	SLA g	11 001 011				S/D				2	7		1	1	R	Ρ	R	1
Data		00 100 g																
	SLA (HL)	11 001 011					S/D			2	13	C b7 b0	I	1	R	Ρ	R	1
		00 100 110																
	SLA (IX+d)	11 011 101			S/D					4	19		I	1	R	Р	R	1
		11 001 011																
		<d>→</d>																
		00 100 110																
	SLA (IY+d)	11 111 101			S/D					4	19		1	1	R	Р	R	1
		11 001 011																
		(d)																
		00 100 110																
	SRA g	11 001 011				S/D				2	7	Guin	1	1	R	Р	R	1
		00 101 g																
	SRA (HL)	11 001 011					S/D			2	13		1	I	R	Р	R	1
		00 101 110																
	SRA (IX+d)	11 011 101			S/D					4	19		1	I	R	Р	R	1
		11 001 011																
		(d) ∖																
		00 101 110													_	-	_	
	SRA (IY+d)	11 111 101			S/D					4	19		I	I	R	Р	R	I
		11 001 011																
		(d)																
		00 101 110														-		
	SRL g	11 001 011				S/D				2	7	ดะที่กากการิเก็	1	1	R	Р	ĸ	1
	CDI (III)	00 111 g					0.0				•				ъ	р	n	
	SKL (HL)						S/D			z	3		+	1	ĸ	P	ĸ	1
		11 011 101			c /D						10				n	n	п	
	SKL (IX+0)	11 001 012			5/0					4	19		1	Ŧ	ĸ	r	ĸ	1
		00.111.110																
	SPI (IV+d)				s/p						10		t	t	P	р	R	t
	SKL (11 TU)	11 001 011			3/0					*	13		•	+	ĸ	T	ĸ	+
		00 111 110																
		00 111 110																

(3) Bit Manipulation Instructions

Quanting			Addressing											Flag								
Operation	MNEMONICS	OP code			A	Juressi	ng			Bytes	States	Operation	7	6	4	2	1	0				
name			IMMED	EXT	IND	REG	REGI	IMP	REL				S	Z	Н	P/V	N	С				
Bit Set	SET b,g	11 001 011				S/D				2	7	l→b·gr	•	•	•	•	•					
	_	11 b g										-										
	SET b,(HL)	11 001 011					S/D			2	13	1→b·(HL) _M			•			.				
		11 b 110																				
	SET b,(IX+d)	11 011 101			S/D					4	19	1→b·(IX+d) _M		•	•	•	•	•				
		11 001 011																				
		<d><</d>																				
		11 b 110																				
	SET b,(IY+d)	11 111 101			S/D					4	19	$1 \rightarrow b \cdot (IY + d)_M$			•	•		.				
		11 001 011																				
		(d)																				
		11 b 110																				
Bit Reset	RES b.g	11 001 011				S/D				2	7	0→b•ør	•	•	•	•	•					
		10 b g				2, -				-		6-										
	RES b.(HL)	11 001 011					S/D			2	13	0→b•(HL) _M										
		10 b 110					0, 2			~		(/ x										
	RES $h(IX+d)$	11 011 101			S/D					4	19	$0 \rightarrow b \cdot (IX + d)_{H}$.				
	natio of (int) a)	11 001 011			0/2																	
		<pre>(d)</pre>																				
		10 Ъ 110																				
	RES b.(IY+d)	11 111 101			S/D					4	19	0→b·(IY+d) _w						.				
		11 001 011			-, -					-												
		(d)																				
		10 b 110																				
Bit Tect	BITha	11 001 011				c				2	6	h.m→7	Y	t	s	Y	P					
Dit Test	DIT 0,g					5				-	U	D.BI .2	n n	·	5	n	ĸ					
	BIT b (HI)	11 001 011					s			2	Q	b.(HI)→7	x	t	s	x	R	.				
	DIT 0,(IIL)	01 b 110					5				5	U (IIL) M 2	1	•	U	A	ĸ					
	BIT $b(IX+d)$	11 011 101			s					4	15	$\overline{\mathbf{h} \cdot (\mathbf{IX} + \mathbf{d})}_{\mathbf{u}} \rightarrow \mathbf{z}$	x	t	S	x	R	.				
	Dir b, (iii + u)	11 001 011			Ŭ					·	10	o (all + G/M b		·	Ŭ							
		01 b 110																				
	BIT b (IY+d)	11 111 101			s					4	15	$\overline{b \cdot (IY + d)_{y}} \rightarrow z$	x	1	S	x	R	.				
	,(,	11 001 011												•	-							
		$\langle d \rangle$																				
		01 b 110																				
	L		1									L	L									

(4) Arithmetic Instructions (16-bit)

0			Τ			ddroool									F	lag		
Operation	MNEMONICS	OP code			A	aaress	ing			Bytes	States	Operation	7	6	4	2	1	0
name			IMMED	EXT	IND	REG	REGI	IMP	REL	1			S	Z	H	P/V	N	С
ADD	ADD HL,ww	00 ww1 001				S		D		1	7	HL _R +ww _R →HL _R	•	•	Х	•	R	1
	ADD IX,xx	11 011 101				S		D		2	10	IX _R +xx _R →IX _R		·	Х	•	R	I
		00 xx1 001																
	ADD IY,yy	11 111 101				S		D		2	10	IY _R +yy _R →IY _R		•	X	•	R	1
		00 yyl 001																
ADC	ADC HL,ww	11 101 101				S		D		2	10	HL _R +ww _R +c→HL _R	1	1	X	V	R	1
		01 ww1 010				{												
DEC	DEC ww	00 ww1 011				S/D				1	4	ww _R −1→ww _R			•			
	DEC IX	11 011 101						S/D		2	7	$IX_{R} - 1 \rightarrow IX_{R}$	•		•			
		00 101 011																
	DEC IY	11 111 101						S/D		2	7	IY _R −1→IY _R	•	•	٠		•	
	[00 101 011																
INC	INC ww	00 ww0 011				S/D				1	4	$ww_{R}+1\rightarrow ww_{R}$		•	•	•		•
	INC IX	11 011 101					ļ	S/D		2	7	$IX_{R}+1 \rightarrow IX_{R}$						
		00 100 011																
	INC IY	11 111 101]			S/D		2	7	$IY_R + 1 \rightarrow IY_R$	•	·	·	•	·	
		00 100 011									[
SBC	SBC HL,ww	11 101 101	1			S		D		2	10	HL _R -ww _R -c→HL _R	1	1	X	V	S	1
		01 ww0 010																

2. Data Transfer Instructions

(1) 8-Bit Load

o	,				٨	4									F	lag		
operation	MNEMONICS	OP code			A	uaress	ng			Bytes	States	Operation	7	6	4	2	1	0
name			IMMED	EXT	IND	REG	REGI	IMP	REL				S	Z	H	P/V	N	С
Load	LD A,I	11 101 101						S/D		2	6	lr→Ar	1	I	R	IEF ₂	R	•
8-bit Data		01 010 111	1															
	LD A,R	11 101 101						S/D		2	6	Rr→Ar	I	I	R	IEF ₂	R	•
		01 011 111																
	LD A, (BC)	00 001 010					s	D		1	6	(BC) _M →Ar ①	1.			•		
	LD A, (DE)	00 011 010					s	D		1	6	(DE) _M →Ar			•.			•
	LD A,(mn)	00 111 010		s				D		3	12	(mn) _M →Ar	.			•		
		$\langle n \rangle$																
		(m)																
	LD I.A	11 101 101						S/D		2	6	Ar→Ir	1.					
		01 000 111								_	-							
	LD R.A	11 101 101						S/D		2	6	Ar→Rr						
		01 001 111						0,2		-								
	ID (BC) A	00 000 010					D	S		1	7	Ar→(BC)	1.					
	LD (DF) A	00 010 010					D	s			7	$Ar \rightarrow (DF)_{\mu}$	1.					
	ID (mn) A	00 110 010		n				s		2	13	$Ar \rightarrow (mn)$						
	LD (IIII/,A			5						3	15	AL (IIII/M						
		(m)	1															
	IDad					S/D				1		<i>m</i> → <i>m</i>						
	LD g (HI)	01 g g				3/0	6				•	gigi		ż	Ż		÷	
	LD g,(IL)	00 ~ 110	6				3			2	6	(nL/M-gi		÷	÷	÷	÷	ż
	LD g,m	00 g 110	3							2	0	m-•gr	1.	·	·	•	·	·
	10 (11 1)					D					••	(11)						
	LD g,(IX+d)	11 011 101			5	U D				3	14	(IX+d) _M →gr		•	•	·	·	•
		01 g 110																
		< a >										(777 - 3)						
	LD g, (IY+d)	11 111 101			S	טן				3	14	(IY+d) _M →gr	· ·	•	·	•	·	•
		01 g 110									ļ							
		< d >					-											
	LD (HL),m	00 110 110	S				D			2	9	$m \rightarrow (HL)_{M}$	1.	•	•	•	·	•
		<pre> < m ></pre>																
	LD (IX+d),m	11 011 101	S		D					4	15	$m \rightarrow (IX+d)_{M}$	·	·	·	·	·	•
		00 110 110											1					
		< d >																
		<pre> < m ></pre>																
	LD (IY+d),m	11 111 101	S		D					4	15	m→(IY+d) _M	•	•	·	•	·	•
		00 110 110																
		< d >																
		<m></m>																
	LD (HL),g	01 110 g				S	D			1	7	gr→(HL) _M	·	·	·	•	٠	•
	LD (IX+d),g	11 011 101			D	S	1			3	15	$gr \rightarrow (IX + d)_M$	•	·	•	٠	·	٠
		01 110 g											1					
		<pre> d ></pre>																
	LD (IY+d),g	11 111 101			D	S				3	15	$gr \rightarrow (IY+d)_M$	•	·	•	٠	·	٠
		01 110 g																
		$\langle \mathbf{d} \rangle$																

① Interrupts are not sampled at the end of LD A, I or LD A, R.

(2) 16-Bit Load

					٨	dennoi									F	lag		
operation	MNEMONICS	OP code			A	Juressi	ng			Bytes	States	Operation	7	6	4	2	1	0
name			IMMED	EXT	IND	REG	REGI	IMP	REL				S	Z	Н	P/V	N	С
Load	LD ww,mn	00 ww0 001	S			D				3	9	mn→ww _s	•	•	•	•	•	•
16-bit Data		<pre>< n ></pre>											1					
		<pre> < m ></pre>																
	LD IX,mn	11 011 101	S			1		D		4	12	mn→IX ₈	.				•	
		00 100 001																
		<pre> < n ></pre>																
		<m></m>																
	LD IY,mn	11 111 101	S			Į		D		4	12	mn→IY ₈	1.	•	·	·	•	•
		00 100 001																
		<pre>< n ></pre>				ļ												
		<m></m>				i												
	LD SP,HL	11 111 001						S/D		1	4	HL _R →SP _R	.	•	•			
	LD SP,IX	11 011 101		[1		S/D		2	7	IX _R →SP _R		·		•	•	
		11 111 001																
	LD SP,IY	11 111 101						S/D		2	7	IY _R →SP _R	1.					
		11 111 001																
	LD ww, (mn)	11 101 101		S		D				4	18	(mn+1) _M →wwHr						
		01 ww1 011										(mn) _M →wwLr						
		<pre>(n)</pre>																
		<pre>< m ></pre>																
	LD HL, (mn)	00 101 010		s				D		3	15	(mn+1) _M →Hr	.					
	,	<pre>(n)</pre>										(mn) _M →Lr						
		(m)																
	LD IX.(mn)	11 011 101		s				D		4	18	(mn+1) _M →IXHr						
		00 101 010)					(mn) _N →IXLr						
		<pre> < n ></pre>																
		<pre>< m ></pre>																
	LD IY,(mn)	11 111 101		s				D		4	18	(mn+1) _M →IYHr	•					
		00 101 010										(mn) _N →IYLr						
		<pre> (n ></pre>				1		1					i					
		<pre>< m ></pre>																
	LD (mn).ww	11 101 101	1 .	D		s				4	19	wwHr→(mn+1)						
		01 ww0 011										wwLr→(mn) _w						
		<pre>< n ></pre>																
		<pre>< m ></pre>																
	LD (mn),HL	00 100 010		D				s		3	16	$Hr \rightarrow (mn+1)_{M}$						
		<pre>< n ></pre>										Lr→(mn) _N						
		<m></m>																
	LD (mn).IX	11 011 101		D				s		4	19	IXHr→(mn+1) _N						
		00 100 010		_				-				IXLr→(mn) _w						
		<pre> < n ></pre>											i i					
	1	<pre>< m ></pre>			ļ													
	LD (mn),IY	11 111 101		D				s		4	19	IYHr→(mn+1) _M	.					
		00 100 010										IYLr→(mn) _#						
		<pre> (n)</pre>											l I					
		<m></m>																
1	1	· · · · · · · · · · · · · · · · · · ·	1										L					

(3) Block Transfer

Operation	MUEMONICE	OD			· A	ddressi	ing			Buter	Curto	Onestin	-		F	lag		
name	MNEMONICS	OP code	DAMED	EVT	IND	DEC	PECI	IMD	DEI	Bytes	States	Operation	1	6	4	2	1 N	
			IMMED	EAI	IND	REG	KEGI	IMP	KEL		+		13	1	н	P/V	N	
Block Transfer Search	CPD	11 101 101 10 101 001					s	s		2	12	$Ar - (HL)_M$ $BC_R - 1 \rightarrow BC_R$	1	3	1	2	S	•
Data	CPDR	11 101 101 10 111 001					s	s		2	14 12	$HL_{R}-1 \rightarrow HL_{R}$ BC_{R} \neq 0 Ar \neq (HL)_{M} BC_{R}=0 or Ar=(HL)_{M} (Ar-(HL)_{H}	I	3	1	1	S	•
												$Q = BC_R - 1 \rightarrow BC_R \\ HL_R - 1 \rightarrow HL_R \\ Repeat Q until \\ Ar = (HL)_N \text{ or } BC_R = 0$		3		Ø		
	CPI	11 101 101 10 100 001					s	S		2	12	$Ar - (HL)_{M}$ $BC_{R} - 1 \rightarrow BC_{R}$ $HL_{R} + 1 \rightarrow HL_{R}$	1	1	I	1	S	•
	CPIR	11 101 101 10 110 001					S	s		2	14 12	$BC_{R} \neq 0 \text{ Ar} \neq (HL)_{M}$ $BC_{R} \equiv 0 \text{ or } Ar \equiv (HL)_{M}$	1	ĩ	1	Ĩ	s	•
												$Q \begin{pmatrix} Ar - (HL)_{M} \\ BC_{R} - 1 \rightarrow BC_{R} \\ HL_{R} + 1 \rightarrow HL_{R} \end{pmatrix}$ Repeat Q until						
	100						0/10				10	$Ar = (HL)_{M}$ or $BC_{R} = 0$				2		
		10 101 000					5/0			2	12	$BC_{R} - 1 \rightarrow BC_{R}$ $DE_{R} - 1 \rightarrow DE_{R}$		•	ĸ	1	ĸ	
	LDDR	11 101 101 10 111 000					S/D			2	$14 (BC_{R} \neq 0) \\ 12 (BC_{R} = 0)$	$\bigcap_{Q} (HL)_{M} \rightarrow (DE)_{M} \\ BC_{R} - 1 \rightarrow BC_{R} $		•	R	R	R	•
												$\begin{bmatrix} DE_{R}-1 \rightarrow DE_{R} \\ HL_{R}-1 \rightarrow HL_{R} \end{bmatrix}$ Repeat Q until						
												BC _R =0			_	٢	_	
		11 101 101 101 10 100 100 100 100 100 1					S/D			2	12	$(HL)_{M} \rightarrow (DE)_{M}$ $BC_{R} - 1 \rightarrow BC_{R}$ $DE_{R} + 1 \rightarrow DE_{R}$	•	•	ĸ	1	ĸ	·
	LDIR	11 101 101 10 110 000					S/D			2	14 (BC _R ≠0) 12 (BC _R =0)	$ \begin{array}{c} HL_{R}+1\rightarrow HL_{R} \\ Q \begin{pmatrix} (HL)_{M}\rightarrow (DE)_{M} \\ BC_{R}-1\rightarrow BC_{R} \\ DE_{R}+1\rightarrow DE_{R} \\ HL_{R}+1\rightarrow HL_{R} \\ \end{array} $	•	•	R	R	R	
												Repeat Q until BC _R =0						

P/V=0: BC_R-1=0 P/V=1: BC_R-1≠0
 Z=1: Ar=(HL)_M Z=0: Ar≠(HL)_M

(4) Stack and Exchange

Operation	Operation MNEMONICS OP	OP anda			A	dress	ing			Puter	States	Onemation	7	c	F	lag	1	
name	WINEWONICS	OF code	IMMED	EXT	IND	REG	REGI	IMP	REL	bytes	States	Operation	s	0 Z	4 H	Z P/V	N	-0 C
PUSH	PUSH zz	11 zz0 101				S		D		1	11	$zzLr \rightarrow (SP-2)_{M}$ $zzHr \rightarrow (SP-1)_{M}$	·	•	•	•	•	•
	PUSH IX	11 011 101 11 100 101						S/D		2	14	$SF_{R}-2 \rightarrow SF_{R}$ $IXLr \rightarrow (SP-2)_{M}$ $IXHr \rightarrow (SP-1)_{M}$		•	•			•
	PUSH IY	11 111 101 11 100 101						S/D		2	14	$SP_R - 2 \rightarrow SP_R$ $IYLr \rightarrow (SP-2)_M$ $IYHr \rightarrow (SP-1)_M$ $SP_R - 2 \rightarrow SP_R$		•	•	•		•
POP	POP zz	11 zz0 001				D		S		1	9	$(SP+1)_{M} \rightarrow zzHr$ (4) $(SP)_{M} \rightarrow zzLr$ $SP_{+} + 2 \rightarrow SP_{-}$	·	•	•	•	•	•
	POP IX	11 011 101 11 100 001						S/D		2	12	$(SP+1)_M \rightarrow IXHr$ $(SP)_M \rightarrow IXLr$ $SP_r + 2 \rightarrow SP_r$		•	•	·	•	·
	POP IY	11 111 101 11 100 001						S/D		2	12	$(SP+1)_{M} \rightarrow IYHr$ $(SP)_{M} \rightarrow IYLr$ $SP_{R}+2 \rightarrow SP_{R}$			•	·	•	•
Exchange	EX AF.AF	00 001 000						S/D		1	4	AF AF.	1.	•				•
	EX DE,HL	11 101 011						S/D		1	3	DE _R →HL _R					•	
	EXX	11 011 001						S/D		1	3	$BC_{R} \rightarrow BC_{R}'$ $DE_{R} \rightarrow DE_{R}'$ $HL_{R} \rightarrow HL_{R}'$	•	•	•	•	•	•
	EX (SP),HL	11 100 011						S/D		1	16	$Hr \mapsto (SP+1)_M$ $Lr \mapsto (SP)_M$.	•	•	•	•	•
	EX (SP),IX	11 011 101 11 100 011						S/D		2	19	$IXHr \leftrightarrow (SP+1)_{M}$ $IXLr \leftrightarrow (SP)_{M}$	•	·	•	·	•	·
	EX (SP),IY	11 111 101 11 100 011						S/D		2	19	IYHr↔(SP+1) _M IYLr↔(SP) _M		•	•	·	•	·

 $\textcircled{\sc 0}$ In the case of POP AF, Flag is written a current contents of the stack.

3. Program Control Instructions

Onenation					Δ.	drees	na								F	lag		
name	MNEMONICS	OP code	-	DVD	- A	uness.	Ing		0.001	Bytes	States	Operation	7	6	4	2	1	0
			IMMED	EXT	IND	REG	REGI	IMP	REL				S	Z	н	P/V	N	<u> </u>
Call	CALL mn	11 001 101		D						3	16	PCHr→(SP-1) _M	· ·	·	·	·	·	•
												PCLr→(SP-2) _M						
		(11)				1	1					$mn \rightarrow P \cup_R$						
	CALL fmm	11 6 100		n	ł	1	1	1		,	6 (f · false)	SFR-2-SFR						
	CALL I,IIII	(n)			}						16 (f ' true)	CALL mn fis true						
		(m)				1				ĺ	10 (1 . 11 11)	CALL IIII . I IS LIVE						
Lum	DINZ :	00 010 000					<u> </u>				$0 (B \rightarrow 0)$	D. 1 . D.						
Jump	DINZ	(:2)				1		1	U	2	9 (Br≠0) 7 (Br=0)	Dr-1-Dr	1.	•	·	·	•	·
		· · · · ·								-	/ (DI = 0)	$PC_{n} + i \rightarrow PC_{n} \cdot Br \neq 0$						
						ļ	l					ICR J ICR DI +0						
							[
	JP f,mn	11 f 010		D						3	6 (f: false)	$mn \rightarrow PC_R$: f is true						
		<pre>< n ></pre>						1		3	9 (f : true)	continue : f is false						
		<m></m>																
						}							1					
	JP mn	11 000 011		D				1		3	9	mn→PC _R	·	·	·	·	٠	·
		<pre> < n ></pre>																
		(m)						1					1					
	JP (HL)	11 101 001			1		ע			1	3	$HL_R \rightarrow PL_R$		•	:	•	•	•
	JP (IX)	11 101 001					U				0	IA _R →PU _R	1.	·	·	•	·	·
	IP (IV)	11 101 001					n			2	6	IV.→PC.						
	JI (II)	11 101 001									Ů	IIR IOR						
	JRi	00 011 000			Į				D	2	8	PC _R +j→PC _R						
		<j-2></j-2>				1												
	JR C,j	00 111 000							D	2	6	continue : C=0	1.	·	•	·	·	•
		< j-2 >								2	8	$PC_R + j \rightarrow PC_R : C = 1$						
	JR NC,j	00 110 000							D	2	6	continue : C=1	· ·	·	·	·	·	·
		< j-2 >								2	8	$PC_{R}+j \rightarrow PC_{R}$: C=0						
	JR Z,j	00 101 000				}			D	2	6	continue Z=0	· ·	•	·	·	•	·
	ID N7:	< j-2 >				}			D	2	8	$PC_R+j \rightarrow PC_R : Z=1$	1					
	JR NZ,J	(10) 000							D	2	0	$PC \rightarrow PC \rightarrow 7-0$	1.	·	·	·	·	•
		()-67					<u> </u>				0	$\Gamma C_R + j \rightarrow \Gamma C_R \cdot L = 0$						
Return	RET	11 001 001						טן		1	9	(SP) _M →PCLr	· ·	·	·	·	·	·
										[(SP+1) _M →PCHr						
	RET f	11 f 000				Į			П	1	5 (f · false)	ortinue f is false						
	KET I	111 000				ļ			, D	1	10 (f : true)	RET : f is true						
										-								
1	RETI	11 101 101						D		2	22 (Z)	(SP) _M →PCLr	•	•	•		•	•
		01 001 101									12 (R1)	(SP+1) _M →PCHr						
												SP _R +2→SP _R	1					
	RETN	11 101 101						D		2	12	(SP) _M →PCLr	·	•	·	·	·	·
		01 000 101										(SP+1) _M →PCHr						
						1		1				SP _R +2→SP _R						
												IEF₂→IEF1	<u> </u>					
Restart	RST v	11 v 111				1	1	D		1	11	$PCHr \rightarrow (SP-1)_{N}$	•	·	·	·	·	·
					1	l						PCLr→(SP-2) _M						
						l						0→PCHr						
			1			1	l					v→rulr SPSP						
L	l		L		L		1			L	1	51 R - 4-31 R						

4. I/O Instructions

0						daroos									F	lag		
Operation	MNEMONICS	OP code			A	uuressi	ng			Bytes	States	Operation	7	6	4	2	1	0
name			IMMED	EXT	IND	REG	REGI	IMP	1/0				S	Z	Н	P/V	N	С
INPUT	IN A,(m)	11 011 011						D	S	2	9	(Am) ₁ →Ar	•	•	•	•	•	•
		(m)			1							m→A₀~A7						
												Ar→A ₈ ~A ₁₅						
	IN g,(C)	11 101 101				D			S	2	9	(BC)₁→gr						
		01g 000										g=110 : Only the	1	1	R	Р	R	•
												flags will						
												change.						
												$Cr \rightarrow A_0 \sim A_7$						
												$Br \rightarrow A_s \sim A_{1s}$			_	_	_	
	IN0 g,(m) **	11 101 101				D			S	3	12	(00m) _x →gr	1	1	R	Р	R	•
1		00 g 000										g=110 : Only the						
		(m)										flags will						
						1			i			change.						
												$m \rightarrow A_0 \sim A_7$		ß			ര	
	IND	11 101 101					D		c	2	19	$(\mathbf{PC}) \rightarrow (\mathbf{HI})$	v	ا ب	v	v	•	v
		10 101 010					U		3	2	12	$(BC)_1 \rightarrow (HL)_M$	^	+	л	л	+	Λ
		10 101 010										Br-1-Br						
									· ·			$Cr \rightarrow A_{r} \sim A_{r}$						
											}	Br→A ₄ ~A ₁₄					ര	
	INDR	11 101 101					D		s	2	14(Br≠0)	$(BC)_{1} \rightarrow (HL)_{1}$	x	S	x	х	ĩ	X
		10 111 010									12(Br=0)	Q HL _g −1→HL _g		-				
												Br−1→Br						
											1	Repeat Q until						
												Br=0						
												Cr→A₀~A7						
												Br→A ₈ ~A ₁₅						
														\$			6	
	INI	11 101 101					D		S	2	12	(BC) ₁ →(HL) _M	X	1	х	х	I	Х
		10 100 010										$HL_{R}+1\rightarrow HL_{R}$						
												Br−1→Br						
												Cr→A ₀ ~A ₇					•	
	1110	11 101 101									14/0-+*	$Br \rightarrow A_{s} \sim A_{1s}$		c	v	v	6)	v
	INIK	10 110 010					ע		5	Z	$14(Br \neq 0)$ $12(P_{}0)$	$(BC)_{i} \rightarrow (HL)_{M}$	Å	5	X	X	ţ	X
		10 110 010									12(DT=0)	$ \Psi \Pi L_R + I \rightarrow \Pi L_R$ $ R_r - 1 \rightarrow R_r$						
												Repeat O until						
			1									Br=0						
												Cr→A ₂ ~A ₂						
												Br→A _a ~A ₁₅						
L	L	1	L			L				L	L		1					

(5) Z=1: Br-1=0 Z=0: Br-1≠0
 (6) N=1: MSB of Data=1 N=0: MSB of Data=0

Orantian			Addressing											Fl	ag			
name	MNEMONICS	OP code	IMMED	EXT	IND	REG	REGI	IMP	I/0	Bytes	States	Operation	7 S	6 Z	4 H	2 P/V	1 N	0 C
OUTPUT	OUT (m),A	11 010 011						S	D	2	10	$Ar \rightarrow (Am)_{1}$	•	·	•	•	•	·
		(11)										$m \rightarrow A_0 \sim A_7$ Ar $\rightarrow A_* \sim A_{**}$						
	OUT (C),g	11 101 101				s			D	2	10	$gr \rightarrow (BC)_{1}$.	•				•
		01g 001										Cr→A ₀ ~A ₇						
	OUTO () - **	11 101 101							n	_	19	$Br \rightarrow A_s \sim A_{1s}$						
	0010 (m),g	00 g 001				3			D	3	13	$gr \rightarrow (00m)_1$ $m \rightarrow A_0 \sim A_7$	1	•	•	·	•	.
		<m><</m>										$00 \rightarrow A_8 \sim A_{15}$		5			6	
	OTDM **	11 101 101					S		D	2	14	$(HL)_{M} \rightarrow (00C)_{1}$	1	1	1	P	1	1
		10 001 011										HL _R −1→HL _R						
												Br−1→Br						
												Cr→A₀~A7						
	OTD 10 **	11 101 101							P		1C(D-+0)	$00 \rightarrow A_{s} \sim A_{1s}$		<u> </u>		c	6	
	OIDMR	10 011 011					5		D	2	$16(Br \neq 0)$ 14(Br = 0)	(HL) _N →(00C) ₁ HL _n −1→HL _n	ĸ	5	ĸ	5	1	ĸ
												Q Cr−1→Cr						
												Br−1→Br						
												Repeat Q until						
												$Cr \rightarrow A_0 \sim A_7$						
												00→A ₈ ~A ₁₅					6	
	OTDR	11 101 101					S		D	2	14(Br≠0)	$(HL)_{M} \rightarrow (BC)_{I}$	X	S	х	х	1	x
		10 111 011	2								12(Br=0)	Q $HL_{R} - 1 \rightarrow HL_{R}$ $Br - 1 \rightarrow Br$						
												Repeat Q until						
												Br=0						
												$Cr \rightarrow A_0 \sim A_7$		æ			6	
	OUTI	11 101 101					s		D	2	12	$DT \rightarrow A_8 \sim A_{15}$ (HL) _W \rightarrow (BC),	x	t t	x	x	U I	x
		10 100 011							_			HL _R +1→HL _R		•			•	
												Br−1→Br						
												$Cr \rightarrow A_0 \sim A_7$ Br $\rightarrow A_0 \sim A_0$					ß	
	OTIR	11 101 101					s		D	2	14(Br≠0)	$((HL)_{M} \rightarrow (BC)_{I})$	x	s	х	х	1	x
		10 110 011									12(Br=0)	Q HL _R +1→HL _R						
												Br−1→Br						
												Br=0						
												Cr→A ₀ ~A ₇						
									-			Br→A ₈ ~A ₁₅				_	-	_
	TSTIO m **	11 101 101	s						S	3	12	$(00C)_1 \cdot m$ $(r \rightarrow A_1 \sim A_2)$	1	I	S	P	R	ĸ
		<pre>< m ></pre>										00→A _s ~A _{1s}		5			6	
	OTIM **	11 101 101					S		D	2	14	(HL) _N →(00C) ₁	1	1	1	P	1	1
		10 000 011										HL _R +1→HL _R						
												Br−1→Br						
												Cr→A₀~A7						
												$00 \rightarrow A_s \sim A_{1s}$		~		~	6	
	OTIMR **	11 101 101					5		D	2	16(Br≠0) 14(Br=0)	$(HL)_N \rightarrow (00C)_1$ $HL_0 + 1 \rightarrow HL_0$	ĸ	5	ĸ	5	ł	к
		10 010 011									11(D1 0)	Q Cr+1→Cr						
												Br−1→Br						
												Repeat Q until						
												Cr→A₀~A7						
												00→A ₈ ~A ₁₅		5			6	
	OUTD	11 101 101					S		D	2	12	$(HL)_{M} \rightarrow (BC)_{1}$	X	1	X	X	1	x
		10 101 011										$HL_R - I \rightarrow HL_R$ $Br - I \rightarrow Br$						
												Cr→A₀~A7						
												Br→A ₈ ~A ₁₅						

⑤ Z=1: Br-1=0 Z=0: Br-1≠0

MSB of Data=1
 N=0: MSB of Data=0

5. Special Control Instructions

Operation	Operation MNEMONICS	OP code			A	ddressi	ng			Butos	States	Operation	7	6	Fl	ag	1	0
name	MINEMONICS	OF code	IMMED	EXT	IND	REG	REGI	IMP	REL	bytes	States	Operation	s	<u> </u>	H	P/V	N	0 C
Special Function	DAA	00 100 111						S/D		1	4	Decimal Adjust Accumulator	1	1	I	P	·	1
Carry Control	CCF SCF	00 111 111 00 110 111								1	3 3	C→C 1→C		:	R R	•	R R	1 S
CPU Control	DI EI HALT IM 0 IM 1 IM 2 NOP SLP **	11 110 011 11 111 011 01 110 110 11 010 110 11 00 110 11 101 10								1 1 2 2 1 2	3 3 6 6 3 8	$\begin{array}{llllllllllllllllllllllllllllllllllll$		· · ·	· · ·	· · ·	· · ·	•
																		ļ

O Interrupts are not sampled at the end of DI or EI.

B. Instruction Summary in Alphabetical Order

1

** : Added new instructions to Z80

MNEMONICS	Bytes	Machine Cycles	States
ADC A,m	2	2	6
ADC A,g	1	2	4
ADC A, (HL)	1	2	6
ADC A, $(IX+d)$	3	6	14
ADC A, (IY+d)	3	6	14
ADD A,m	2	2	6
ADD A,g	1	2	4
ADD A, (HL)	1	2	6
ADD A, (IX+d)	3	6	14
ADD A, (IY+d)	3	6	14
ADC HL,ww	2	6	10
ADD HL,ww	1	5	7
ADD IX,xx	2	6	10
ADD IY,yy	2	6	10
AND m	2	2	6
AND g	1	2	4
AND (HL)	1	2	6
AND (IX+d)	3	6	14
AND (IY+d)	3	6	14
BIT b, (HL)	2	3	9
BIT b, (IX+d)	4	5	15
BIT b, (IY+d)	4	5	15
BIT b,g	2	2	6
CALL f,mn	3	2	6
			(If condition is false)
	3	6	16
			(If condition is true)

MNEMONICS	Bytes	Machine Cycles	States
CALL mn	3	6	16
CCF	1	1	3
CPD	2	6	12
CPDR	2	8	14
			(If BC _R ≠0 and Ar≠(HL) _M)
	2	6	12
			(If BC _R =0 or Ar=(HL) _M)
CP (HL)	1	2	6
СРІ	2	6	12
CPIR	2	8	14
			(If BC _R ≠0 and Ar≠(HL) _M)
	2	6	12
			(If BC _R =0 or Ar=(HL) _M)
CP (IX+d)	3	6	14
CP (IY+d)	3	6	14
CPL	1	1	3
CP m	2	2	6
CP g	1	2	4
DAA	1	2	4
DEC (HL)	1	4	10
DEC IX	2	3	7
DEC IY	2	3	7
DEC (IX+d)	3	8	18
DEC (IY+d)	3	8	18
DEC g	1	2	4
DEC ww	1	2	4
DI	1	1	3

MNEMONICS	Bytes	Machine Cycles	States
DJNZ j	2	5	9 (lf Br≠0)
	2	3	7 (If Br=0)
EI	1	1	3
EX AF,AF'	1	2	4 .
EX DE,HL	1	1	3
EX (SP),HL	1	6	16
EX (SP),IX	2	7	19
EX (SP),IY	2	7	19
EXX	1	1	3
HALT	1	1	3
IM O	2	2	6
IM 1	2	2	6
IM 2	2	2	6
INC g	1	2	4
INC (HL)	1	4	10
INC (IX+d)	3	8	18
INC (IY+d)	3	8	18
INC ww	1	2	4
INC IX	2	3	7
INC IY	2	3	7
IN A,(m)	2	3	9
IN g,(C)	2	3	9
INI	2	4	12
INIR	2	6	14 (lf Br≠0)
	2	4	12 (lf Br=0)
IND	2	4	12
INDR	2	6	14 (lf Br≠0)

MNEMONICS	Bytes	Machine Cycles	States
INDR	2	4	12 (lf Br=0)
INO g,(m)**	3	4	12
JP f,mn	3	2	6
			(If f is false)
	3	3	9
			(If f is true)
JP (HL)	1	1	3
JP (IX)	2	2	6
JP (IY)	2	2	6
JP mn	3	3	9
JR j	2	4	8
JR C,j	2	2	6
			(If condition is false)
	2	4	8
			(If condition is true)
JR NC,j	2	2	6
			(If condition is false)
	2	4	8
			(If condition is true)
JR Z,j	2	2	6
			(If condition is false)
	2	4	8
			(If condition is true)
JR NZ,j	2	2	6
			(If condition is false)
	2	4	8
			(If condition is true)

MNEMONICS	Bytes	Machine Cycles	States
LD A, (BC)	1	2	6
LD A, (DE)	1	2	6
LD A,I	2	2	6
LD A, (mn)	3	4	12
LD A,R	2	2	6
LD (BC),A	1	3	7
LDD	2	4	12
LD (DE),A	1	3	7
LD_ww,mn	3	3	9
LD ww,(mn)	4	6	18
LDDR	2	6	14 (lf BC _R ≠0)
	2	4	12 (If BC _R =0)
LD (HL),m	2	3	9
LD HL,(mn)	3	5	15
LD (HL),g	1	3	7
LDI	2	4	12
LD I,A	2	2	6
LDIR	2	6	14 (lf BC _R ≠0)
	2	4	12 (If BC _R =0)
LD IX,mn	4	4	12
LD IX, (mn)	4	6	18
LD (IX+d),m	4	5	15
LD (IX+d),g	3	7	15
LD IY,mn	4	4	12
LD IY,(mn)	4	6	18
LD (IY+d),m	4	5	15
LD (IY+d),g	3	7	15

MNEMONICS	Bytes	Machine Cycles	States
LD (mn),A	3	5	13
LD (mn),ww	4	7	19
LD (mn),HL	3	6	16
LD (mn),IX	4	7	19
LD (mn),IY	4	7	19
LD R,A	2	2	6
LD g,(HL)	1	2	6
LD g,(IX+d)	3	6	14
LD g,(IY+d)	3	6	14
LD g,m	2	2	6
LD g,g'	1	2	4
LD SP,HL	1	2	4
LD SP,IX	2	3	7
LD SP,IY	2	3	7
MLT ww**	2	13	17
NEG	2	2	6
NOP	1	1	3
OR (HL)	1	2	6
OR (IX+d)	3	6	14
OR (IY+d)	3	6	14
OR m	2	2	6
OR g	1	2	4
OTDM**	2	6	14
OTDMR**	2	8	16 (lf Br≠0)
	2	6	14 (lf Br=0)
OTDR	2	6	14 (lf Br≠0)
	2	4	12 (lf Br=0)

MNEMONICS	Bytes	Machine Cycles	States
OTIM**	2	6	14
OTIMR**	2	8	16 (lf Br≠0)
	2	6	14 (If Br=0)
OTIR	2	6	14 (lf Br≠0)
	2	4	12 (If Br=0)
OUTD	2	4	12
OUTI	2	4	12
OUT (m),A	2	4	10
OUT (C),g	2	4	10
OUT0 (m),g **	3	5	13
POP IX	2	4	12
POP IY	2	4	12
POP zz	1	3	9
PUSH IX	2	6	14
PUSH IY	2	6	14
PUSH zz	1	5	11
RES b,(HL)	2	5	13
RES b,(IX+d)	4	7	19
RES b,(IY+d)	4	7	19
RES b,g	2	3	7
RET	1	3	9
RET f	1	3	5
			(If condition is false)
	1	4	10
			(If condition is true)
RETI	2	10 (Z)	22 (Z)
		4 (R1)	12 (R1)
RETN	2	4	12

MNEMONICS	Bytes	Machine Cycles	States
RLA	1	1	3
RLCA	1	1	3
RLC (HL)	2	5	13
RLC (IX+d)	4	7	19
RLC (IY+d)	4	7	19
RLC g	2	3	7
RLD	2	8	16
RL (HL)	2	5	13
RL (IX+d)	4	7	19
RL (IY+d)	4	7	19
RL g	2	3	7
RRA	1	1	3
RRCA	1	1	3
RRC (HL)	2	5	13
RRC (IX+d)	4	7	19
RRC (IY+d)	4	7	19
RRC g	2	3	7
RRD	2	8	16
RR (HL)	2	5	13
RR (IX+d)	4	7	19
RR (IY+d)	4	7	19
RR g	2	3	7
RST v	1	5	11
SBC A,(HL)	1	2	6
SBC A,(IX+d)	3	6	14
SBC A,(IY+d)	3	6	14
SBC A,m	2	2	6

-
MNEMONICS	Bytes	Machine Cycles	States
SBC A,g	1	2	4
SBC HL,ww	2	6	10
SCF	1	1	3
SET b,(HL)	2	5	13
SET b,(IX+d)	4	7	19
SET b,(IY+d)	4	7	19
SET b,g	2	3	7
SLA (HL)	2	5	13
SLA (IX+d)	4	7	19
SLA (IY+d)	4	7	19
SLA g	2	3	7
SLP**	2	2	8
SRA (HL)	2	5	13
SRA (IX+d)	4	7	19
SRA (IY+d)	4	7	19
SRA g	2	3	7
SRL (HL)	2	5	13
SRL (IX+d)	4	7	19
SRL (IY+d)	4	7	19
SRL g	2	3	7
SUB (HL)	1	2	6
SUB (IX+d)	3	6	14
SUB (IY+d)	3	6	14
SUB m	2	2	6
SUB g	1	2	4
**TSTIO m	3	4	12
**TST g	2	3	7

MNEMONICS	Bytes	Machine Cycles	States
TST m**	3	3	9
TST (HL)**	2	4	10
XOR (HL)	1	2	6
XOR (IX+d)	3	6	14
XOR (IY+d)	3	6	14
XOR m	2	2	6
XOR g	1	2	4
			· ·
	1		

C. Op-code Map

Table 1 1st op-code map

Instruction format : XX

				V	vw(LO	=ALL)]									L0=	0~7		
				BC	DE	HL	SP]								BC	DE	HL	AF	ZZ
							g (LO	=0~7)]				NZ	NC	P0	Р	f
				В	D	Н	(HL)	В	D	Н	(HL)					00H	10H	20H	30H	v
		\sim	HI	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	
		LO	\geq	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	
	В	0000	0	NOP	DJNZ j	JR NZ, j	JR NC, j				1						RE	Τf		0
	C	0001	1		LD w	w, mn					NOTE1)						POF	> zz		1
	D	0010	2	LD(w	/w), A	LD (mn)	LD (mn)				1						JP	f, mn		2
						, HL	, А				1					JP mn	OUT (m)	EX(SP)	DI	3
	E	0011	3		INC	ww			LD g, s	6	1	ADD A	SUB s	AND s	OR s		, A	, HL		
	Н	0100	4		INC g		NOTE1)				1	, S					CALL	. f, mn		4
	L	0101	5		DEC g		NOTE1)				<u> </u>						PUS	H zz		5
F	(HL)	0110	6	I	_Dg, n	n	NOTEI)		NOTE2	2)	HALT	NOTE2)	NOTE2)	NOTE2)	NOTE2)	ADD A,m	SUB m	AND m	ORm	6
<u> </u>	Α	0111	7	RLCA	RLA	DAA	SCF										RS	Τν		7
E	В	1000	8	EXAF, AF'	JR j	JR Z, j	JR C,j										RE	T f		8
	C	1001	9		ADD H	HL, ww										RET	EXX	JP (HL)	LD SP,	9
S	D	1010	Α	LD A,	(ww)	LD HL,	LD A,'												HL	
						(mn)	(mn)										JP	f, mn		Α
	E	1011	В		DEC	ww			LD	g, s		ADC A	SBC A	XOR s	CP s	Table2	IN A, (m)	EXDE, HL	EI	В
	Н	1100	С		INC) g						,s	,s				CALL	. f, mn		С
	L	1101	D		DE	Сg										CALL mn	NOTE3)	Table3	NOTE3)	D
	(HL)	1110	E		LD	g, m			<u>N0</u>	TE2)		NOTE2)	NOTE2)	NOTE2)	NOTE2)	ADC A, m	SBC A, m	XOR m	CP m	E
	Α	1111	F	RRCA	RRA	CPL	CCF										RS	Τv		F
				0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	
				C	E	L	Α	С	E	L	A					Z	C	PE	М	f
				_			g(L0=	•8~F)								08H	18H	28H	38H	v
																	L0=	8~F		

NOTE1) (HL) replaces g.

2) (HL) replaces s.

- If DDH is supplemented as 1st op-code for the instructions which have HL or (HL) as an operand in Table 1, the instructions are executed replacing HL with IX and (HL) with (IX+d).
 - ex. 22H:LD (mn), HL

DDH 22H: LD (mn), IX

If FDH is supplemented as 1st op-code for the instructions which have HL or (HL) as an operand in Table 1, the instructions are executed replacing HL with IY and (HL) with (IY+d).

ex. 34H : INC (HL)

FDH 34H : INC (IY + d)

However, JP (HL) and EX DE, HL are exception and note the followings.

If DDH is supplemented as 1st op-code for JP (HL), (IX) replaces (HL) as operand and JP (IX) is executed.

If FDH is supplemented as 1st op-code for JP (HL), (IY) replaces (HL) as operand and JP (IY) is executed.

Even if DDH or FDH is supplemented as 1st op-code for EX DE, HL, HL is not replaced and the instruction is regarded as illegal instruction.

Table 2 2nd op-code map

		Instruc	tion	forma	it : <u>CE</u>	CB XX b (L0=0~7) 0 2 4 6 0 2 4 6								[
									-			U		-0~7	/					
	:	<u> </u>						0	2	4	6	0	2	4	6	0	2	4	6	
			HI	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	
_		L0 `		0	1	2	3	4	5	6	7	8	9	Α	В	C	D	E	F	
	В	0000	0																	0
	С	0001	1																	1
	D	0010	2	1																2
	Е	0011	3	1																3
	Н	0100	4	RLC g	RL g	SLA g			BIT	b, g			RES	b,g			SET	b,g		4
	L.	0101	5					NOTE 1) NOTE 1) NOTE 1) NOTE 1)									5			
A	(HL)	0110	6	NOTE1)	NOTE1)	NOTE1)		NOTE 1) NOTE 1) 0										6		
I	Δ	0111	7						NOTE 1) NOTE 1) NOTE 1) 6									7		
I	R	1000	8																	8
_	0	1000	<u> </u>																	0
		1010	- <u>-</u>																	3
20		1010																		
		11100							ыт	h ~			DEC	h~			CET	ha		
		1100	<u> </u>	INNO 8	nn g	ONA 8	oni g		DII	b, g			REG	o o, g			JE I	b, g		
		1101	<u> </u>																	
	(HL)	1110	E	NOTE1)	NOTE1)	NOTE1)	NOTE1)	E1) NOTE 1) E												
	A	1111	F															F		
				0	1	2	3	3 4 5 6 7 8 9 A B C D E F												
								1	3	5	7	1	3	5	7	1	3	5	7	
								b (LO=8~F)												

NOTE 1) If DDH is supplemented as 1st op-code for the instructions which have (HL) as operand in Table 2, the instructions are executed replacing (HL) with (IX+d). If FDH is supplemented as 1st op-code for the instructions which have (HL) as operand in Table 2, the instructions are executed replacing (HL) with (IY+d).

	Ins	structio	on forn	nat : <u>E</u>	<u>D XX</u>	W	w (LC)=ALL	_)									
						BC	DE	HL	SP									
				Ę	g (L0:	=0~7))	•										
		В	D	н		В	D	н										_
\sim	HI	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111	
LO	\geq	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	
0000	0		IN0	g, (m)			IN g	, (C)	•			LDI	LDIR					0
0001	1	00	<u>T0 (m</u>	ı),g	J	OL	(C) TL	,g				CPI	CPIR					1
0010	2					L	SBC H	HL, ww				INI	INIR					2
0011	3				1		LD (n	nn), ww	V	ΟΤΙΜ	OTIMR	OUTI	OTIR				ļ	3
0100			TST g	[TST (HL)	NEG		TST m	TSTIO m								ļ	4
0101	5					RETN				,							ļ	5
0110	6	4				IM 0	IM 1		SLP									6
0111	7					LD I, A	LD A,I	RRD		1				1]	7
1000	8		IN0	g, (m)			IN g	; (C)				LDD	LDDR				ļ	8
1001	9		OUT0	(m),g			OUT	(C),g				CPD	CPDR				ļ	9
1010	<u> </u>						ADC I	HL, ww				IND	INDR				}	Α
1011	B						LD wv	w, (mn)		OTDM	0TDMR	OUTD	OTDR)	В
1100	C		TS	Тg			MLT	ww										C
1101	D					RETI		7										D
1110	E						IM 2		7								ļ	E
1111	F					LD R, A	LD A;R	RLD								L		F
		0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F	
		C	E	L	A		<u>E</u>	L	A									
				{	g (LO:	=8~F)											

Table 3 2nd op-code map

D. Bus and Control Signal Condition in each Machine Cycle

* (ADDRESS) : invalid

Z (DATA) : high impedance.

	k.					*	:	added	new ins	tructions	to Z80
Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	IOE	LIR	HALT	ST
	MC1	T1T2T3	1st op-code Address	1st op-code	ο	1	о	1	0	1	о
	MC₂ ∼MC₅	TiTiTiTi	*	Z	1	1	1	1	1	1	1
	MC ₁	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	ο
ADD İX,xx ADD IY,yy	MC2	T1T2T3	2nd op-code Address	2nd op-code	ο	1	0	1	0	1	1
	MC ₃ ~MC ₆	TiTiTiTi	•	z	1	1	1	1	1	1	1
	MC1	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	0
ADC HL,ww SBC HL,ww	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	0	1	0	1	0	1	1
	MC₃ ∼MC₅	ТіТіТіТі	•	z	1	1	1	1	1	1	1
ADD A,g ADC A,g SUB g	MC1	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	0
SBC A,g AND g OR g XOR g CP g	MC2	Ti	•	z	1	1	1	1	1	1	1
ADD A,m ADC A,m SUB m SBC A,m	MC1	T ¹ ₁T₂T₃	1st op-code Address	1st op-code	0	1	0.	1	0	1	0
AND m OR m XOR m CP m	MC2	T1T2T3	1st operand Address	m	0	1	0	1	1	1	1
ADD A, (HL) ADC A, (HL) SUB (HL) SBC A, (HL)	MC1	T₁T₂T₃	1st op-code Address	1st op-code	0	1	0	1	0	1	0
AND (HL) OR (HL) XOR (HL) CP (HL)	MC ₂	T1T2T3	HL	DATA	0	1	0	1	1	1	1
ADD A, $(IX+d)$ ADD A, $(IY+d)$ ADC A, $(IX+d)$	MC1	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	0
ÁDC A, (IY+d) SUB (IX+d) SUB (IY+d) SBC A, (IX+d)	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	0	1	0	1	0	1	1

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	IOE	LIR	HALT	ST
SBC A, (IY+d) AND (IX+d)	МС₃	T1T2T3	1st operand Address	d	ο	1	0	1	1	1	1
AND (IY+d) OR (IX+d) OR (IY+d) XOR (IX+d) XOR (IY+d)	MC₄ ~MC₅	ТіТі	•	Z	1	1	1	1	1	1	1
CP (IX+d) CP (IY+d)	MC6	T1T2T3	IX+d IY+d	DATA	ο	1	0	1	1	1	1
	MC 1	T1T2T3	1st op-code Address	1st op-code	ο	1	0	1	ο	1	ο
ын о,д	MC2	T1T2T3	2nd op-code Address	2nd op-code	ο	1	0	1	ο	1	1
	MC1	T1T2T3	1st op-code Address	1st op-code	o	1	о	1	ο	1	ο
BIT b, (HL)	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	0	1	0	1	0	1	1
	MCз	T1T2T3	HL	DATA	0	1	0	1	1	1	1
	MC 1	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	ο	1	o
	MC2	T1T2T3	2nd op-code Address	2nd op-code	о	1	o	1	o	1	1
BIT b, (IX+d) BIT b, (IY+d)	MC ₃	T1T2T3	1st operand Address	d	0	1	ο	1	1	1	1
	MC4	T1T2T3	3rd op-code Address	3rd op-code	0	1	о	1	ο	1	1
	MC₅	T1T2T3	IX+d IY+d	DATA	0	1	о	1	1	1	1
	MC1	T1T2T3	1st op-code Address	1st op-code	0	1	о	1	0	1	0
	MC ₂	T1T2T3	1st operand Address	n	0	1	o	1	1	1	1
CALL mn	MC ₃	T1T2T3	2nd operand Address	m	0	1	ο	1	1	1	1
	MC4	ті	*	z	1	1	1	1	1	1	1
	MC₅	T1T2T3	SP-1	РСН	1	0	0	1	1	1	1
	MC ₆	T1T2T3	SP-2	PCL	1	0	0	1	1	1	1
CALL f,mn	MC ₁	T1T2T3	1st op-code Address	1st op-code	0	1	o	1	0	1	0
is false)	MC ₂	T1T2T3	1st operand Address	n	0	1	0	1	1	1	1

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	IOE	LIR	HALT	ST
	MC ₁	$T_1T_2T_3$	1st op-code Address	1st op-code	0	1	0	1	0	1	0
	MC ₂	$T_1T_2T_3$	1st operand Address	n	0	1	0	1	1	1	1
CALL f,mn	МС₃	T1T2T3	2nd operand Address	m	o	1	о	1	1	1	1
(If condition is true)	MC4	Ti	•	z	1	1	1	1	1	1	1
	MC₅	T1T2T3	SP-1	РСН	1	o	o	1	1	1	1
	MC ₆	T1T2T3	SP-2	PCL	1	0	0	1	1	1	1
CCF	MC 1	T1T2T3	1st op-code Address	1st op-code	o	1	0	1	o	1	o
	MC 1	T1T2T3	1st op-code Address	1st op-code	o	1	0	1	о	1	о
СРІ	MC2	T1T2T3	2nd op-code Address	2nd op-code	o	1	ο	1	o	1	1
CPD	MC ₃	T1T2T3	HL	DATA	0	1	0	1	1	1	1
	MC₄ ∼MC₅	TiTiTi	*	z	1	1	1	1	1	1	1
	MC1	T 1T2T3	1st op-code Address	1st op-code	o	1	ο	1	0	1	0
CPIR CPDR	MC2	T1T2T3	2nd op-code Address	2nd op-code	o	1	о	1	о	1	1
(If BC _R ≠0 and Ar≠(HL) _M)	MC ₃	T1T2T3	HL	DATA	0	1	o	1	1	1	1
	MC₄ ∼MC₃	тітітіті	*	z	1	1	1	1	1	1	1
	MC 1	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	0
CPIR CPDR	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	0	1	o	1	o	1	1
(If BC _R =0 or Ar=(HL) _M)	MC ₃	T1T2T3	HL	DATA	0	1	o	1	1	1	1
	MC₄ ~MC₅	ТіТіТі	•	z	1	1	1	1	1	1	1
CPL	MC1	T1T2T3	1st op-code Address	1st op-code	ο	1	0	1	0	1	o
DAA	MC ₁	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	0
	MC ₂	Ti	*	z	1	1	1	1	1	1	1
DI *1	MC ₁	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	o	1	0

*1 Interrupt request is not sampled.

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	ĪOE	LIR	HALT	ST
	MC1	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	ο	1	ο
DJNZ j	MC 2	Ti *2	*	z	1	1	1	1	1	1	1
(lf Br≠0)	MC₃	T1T2T3	1st operand Address	j-2	0	1	ο	1	1	1	1
	MC₄ ~MC₅	тіті	*	z	1	1	1	1	1	1	1
	MC ₁	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	0
DJNZ j (If Br=0)	MC ₂	ті*2	*	z	1	1	1	1	1	1	1
	МС₃	T1T2T3	1st operand Address	j-2	0	1	ο	1	1	1	1
El *3	MC1	T1T2T3	1st op-code Address	1st op-code	0	1	о	1	0	1	0
EX DE, HL EXX	MC 1	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	0
	MC1	T1T2T3	1st op-code Address	1st op-code	ο	1	о	1	ο	1	0
	MC ₂	Ті	•	z	1	1	1	1	1	1	1
	MC 1	$T_1T_2T_3$	1st op-code Address	1st op-code	ο	1	0	1	0	1	ο
	MC ₂	T1T2T3	SP	DATA	0	1	о	1	1	1	1
	MC₃	T1T2T3	SP+1	DATA	0	1	о	1	1	1	1
	MC4	Ti	•	z	1	1	1	1	1	1	1
	MC₅	T1T2T3	SP+1	н	1	ο	о	1	1	1	1
	MC ₆	$T_1T_2T_3$	SP	L	1	0	0	1	1	1	1
	MC ₁	T1T2T3	1st op-code Address	1st op-code	ο	1	ο	1	ο	1	ο
	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	ο	1	ο	1	0	1	1
EX (SP),IX EX (SP),IY	MC ₃	T1T2T3	SP	DATA	ο	1	ο	1	1	1	1
	MC4	T1T2T3	SP+1	DATA	ο	1	o	1	1	1	1
	MC₅	Ti	•	z	1	1	1	1	1	1	1

*2 DMA, REFRESH, or BUS RELEASE cannot be executed after this state. (Request is ignored)

(to be continued)

*3 Interrupt request is not sampled.

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	IOE	LIR	HALT	ST
EX (SP), IX	MC ₆	T1T2T3	SP+1	IXH IYH	1	0	0	1	1	1	1
EX (SP), IY	MC ₇	T1T2T3	SP	IXL IYL	1	0	0	1	1	1	1
	MC1	T1T2T3	1st op-code Address	1st op-code	o	1	0	1	0	1	о
			Next op-code Address	Next op-code	o	1	0	1	0	ο	о
IM O	MC1	T1T2T3	1st op-code Address	1st op-code	ο	1	0	1	0	1	0
IM 2	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	0	1	0	1	0	1	1
INC g	MC1	T1T2T3	1st op-code Address	1st op-code	ο	1	0	1	0	1	0
DEC g	MC ₂	Ti	•	Z	1	1	1	1	1	1	1
	MC ₁	T1T2T3	1st op-code Address	1st op-code	ο	1	0	1	o	1	0
INC (HL)	MC ₂	T1T2T3	HL	DATA	ο	1	ο	1	1	1	1
DEC (HL)	MC₃	Ti	*	Z	1	1	1	1	1	1	1
	MC4	T1T2T3	н	DATA	1	0	0	1	1	1	1
	MC1	T 1T 2T 3	1st op-code Address	1st op-code	0	1	0	1	o	1	ο
	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	0	1	0	1	0	1	1
INC (IX+d)	MC ₃	T1T2T3	1st operand Address	d	0	1	o	1	1	1	1
INC (IY+d)	MC₄										
DEC (IX+d) DEC (IY+d)	~MC5	тіті	•	Z	1	1	1	1	1	1	1
	MC ₆	T1T2T3	IX+d IY+d	DATA	0	1	0	1	1	1	1
	MC7	Ті	+	z	1	1	1	1	1	1	1
	MC ₈	T1T2T3	IX+d IY+d	DATA	1	0	0	1	1	1	1
INC ww	MC 1	T1T2T3	1st op-code Address	1st op-code	0	1	o	1	0	1	o
DEC ww	MC ₂	Ті	•	z	1	1	1	1	1	1	1
INC IX	MC 1	T1T2T3	1st op-code Address	1st op-dode	0	1	0	1	0	1	0
	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	0	1	0	1	0	1 ·	1
	MC₃	Ті	÷	z	1	1	1	1	1	1	1

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	IOE	LIR	HALT	ST
	MC1	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	0
IN A,(m)	MC ₂	T1T2T3	1st operand Address	m	o	1	0	1	1	1	1
	MC₃	T1T2T3	m to $A_0 \sim A_7$ A to $A_8 \sim A_{15}$	DATA	0	1	1	0	1	1	1
	MC1	T1T2T3	1st op-code Address	1st op-code	o	1	0	1	о	1	o
IN g,(C)	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	o	1	ο	1	0	1	1
	MC ₃	T1T2T3	вс	DATA	0	1	1	0	1	1	1
	MC1	$T_1T_2T_3$	1st op-code Address	1st op-code	o	1	0	1	o	1	о
INO. a. (m)**	MC ₂	$T_1T_2T_3$	2nd op-code Address	2nd op-code	o	1	0	1	o	1	1
1140 g, (11)	MC₃	T1T2T3	1st operand Address	m	о	1	ο	1	1	1	1
	MC₄	T 1T2T3	m to $A_0 \sim A_7$ OOH to $A_8 \sim A_{15}$	DATA	о	1	1	0	1	1	1
	MC ₁	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	0
INI	MC2	T 1T2T3	2nd op-code Address	2nd op-code	o	1	ο	1	о	1	1
IND	MC₃	T1T2T3	вс	DATA	о	1	1	ο	1	1	1
	MC₄	T1T2T3	HL	DATA	1	o	ο	1	1	1	1
	MC1	T1T2T3	1st op-code Address	1st op-code	o	1	ο	1	0	1	0
INIR	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	o	1	0	1	0	1	1
INDR (If Br≠0)	MC ₃	T1T2T3	вс	DATA	o	1	1	o	1	1	1
	MC4	T1T2T3	HL	DATA	1	o	o	1	1	1	1
	MC₅ ~MC₅	тіті	*	z	1	1	1	1	1	1	1
	MC ₁	T1T2T3	1st op-code Address	1st op-code	0	1	o	1	ο	1	ο
INIR	MC ₂	T ₁ T ₂ T ₃	2nd op-code Address	2nd op-code	o	1	o	1	0	1	1
(If Br=0)	MC₃	T₁T₂T₃	вс	DATA	ο	1	1	0	1	1	1
	MC4	$T_1T_2T_3$	HL	DATA	1	o	ο	1	1	1	1

1	
	0
1	1
1	1
1	0
1	1
1	0
1	1
1	1
1	0
1	0
1	1
1	0
1	1
1	1
1	0
1	1
1	0
1	1
1	. 1
1	0
1	1
1	0
1	1
	1 1

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	ĪOE	LIR	HALT	ST
LD g, (HL)	MC ₁	$T_1T_2T_3$	1st op-code Address	1st op-code	ο	1	ο	1	ο	1	0
	MC ₂	T1T2T3	HL	DATA	0	1	0	1	1	1	1
	MC ₁	T1T2T3	1st op-code Address	1st op-code	ο	1	ο	1	ο	1	о
	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	о	1	0	1	о	1	1
LD g, (IX+d) LD g, (IY+d)	MC3	$T_1T_2T_3$	1st operand Address	d.	ο	1	o	1	1	1	1
	MC₄ ∼MC₅	ТіТі	•	z	1	1	1	1	1	1	1
	MC ₆	T1T2T3	IX+d IY+d	DATA	0	1	о	1	1	1	1
	MC ₁	T 1T2T3	1st op-code Address	1st op-code	o	1	o	1	ο	1	0
LD (HL),g	MC2	Ті	•	Z	1	1	1	1	1	1	1
	MC ₃	T1T2T3	HL .	g	1	0	0	1	1	1	1
	MC ₁	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	0
	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	0	1	0	1	0	1	1
LD (IX+d),g LD (IY+d),g	MC ₃	T1T2T3	1st operand Address	d	0	1	0	1	1	1	1
	MC4 ~ MC6	тітіті	•	z	1	1	1	1	1	1	1
	MC7	T1T2T3	IX+d IY+d	g	1	0	0	1	1	1	1
	MC1	T1T2T3	1st op-code Address	1st op-code	0	1	o	1	ο	1	0
LD (HL),m	MC ₂	T 1T2T3	1st operand Address	m	o	1	o	1	1	1	1
	MC₃	T1T2T3	HL	DATA	1	о	o	1	1	1	1
	MC ₁	T1T2T3	1st op-code Address	1st op-code	ο	1	0	1	0	1	0
	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	о	1	ο	1	0	1	1
LD (IX+d),m LD (IY+d),m	MC ₃	T1T2T3	1st operand Address	d	ο	1	0	1	1	1	1
	MC₄	$T_1T_2T_3$	2nd operand Address	m	0	1	0	1	1	1	1
	MC₅	T1T2T3	IX+d IY+d	DATA	1	o	0	1	1	1	1
ld A, (BC) Ld A, (DE)	MC ₁	T 1T2T3	1st op-code Address	1st op-code	ο	1	ο	1	ο	1	0

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	ĪŌĒ	LIR	HALT	ST
LD A, (BC) LD A, (DE)	MC ₂	T1T2T3	BC DE	DATA	ο	1	0	1	1	1	1
·	MC1	T1T2T3	1st op-code Address	1st op-code	ο	1	0	1	ο	1	0
	MC ₂	T1T2T3	1st operand Address	n	ο	1	0	1	1	1	1
	MC₃	T1T2T3	2nd operand Address	m	o	1	о	1	1	1	1
	MC4	T₁T₂T₃	mn	DATA	o	1	0	1	1	1	1
	MC 1	$T_1T_2T_3$	1st op-code Address	1st op-code	0	1	0	1	0	1	ο
LD (BC),A LD (DE),A	MC 2	Ti	*	z	1	1	1	1	1	1	1
	MC ₃	$T_1T_2T_3$	BC DE	A	1	0	o	1	1	1	1
	MC ₁	T1T2T3	1st op-code Address	1st op-code	ο	1	ο	1	0	1	ο
	MC ₂	T1T2T3	1st operand Address	n	ο	1	ο	1	1	1	1
LD (mn),A	MC ₃	T1T2T3	2nd operand Address	m	o	1	0	1	.1	1	1
	MC4	Ті	•	z	1	1	1	1	1	1	1
	MC₅	T1T2T3	mn	А	1	0	0	1	1	1	1
LD A,I LD A,R }•4	MC1	T1T2T3	1st op-code Address	1st op-code	о	1	о	1	о	1	o
LD I,A LD R,A	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	0	1	0	1	ο	1	1
	MC ₁	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	o	1	ο
LD ww, mn	MC ₂	T1T2T3	1st operand Address	n	0	1	ο	1	1	1	1
	MC ₃	T1T2T3	2nd operand Address	m	0	1	0	1	1	1	1
	MC ₁	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	0
LD IX,mn	MC ₂	T 1T2T3	2nd op-code Address	2nd op-code	ο	1	ο	1	o	1	1
LD IY,mn	MСз	T₁T₂T₃	1st operand Address	n	о	1	о	1	1	1	1
	MC₄	T1T2T3	2nd operand Address	m	0	1	ο	1	1	1	1
	MC 1	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	0
	MC ₂	T1T2T3	1st operand Address	n	0	1	ο	1	1	1	1

*4 Interrupt request is not sampled.

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	ĪOE	LIR	HALT	ST .
	MC₃	$T_1T_2T_3$	2nd operand Address	m	0	1	0	1	1	1	1
LD HL, (mn)	MC₄	$T_1T_2T_3$	mn	DATA	0	1	0	1	1	1	1
	MC₅	T1T2T3	mn+1	DATA	0	1	0	1	1	1	1
	MC ₁	$T_1T_2T_3$	1st op-code Address	1st op-code	ο	1	ο	1	ο	1	0
	MC2	T1T2T3	2nd op-code Address	2nd op-code	0	1	0	1	0	1	1
	MC ₃	T1T2T3	1st operand Address	n	ο	1	ο	1	1	1	1
	MC₄	T 1T2T3	2nd operand Address	m	0	1	0	1	1	1	1
	MC₅	T 1T2T3	mn	DATA	ο	1	0	1	1	1	1
	MC ₆	$T_1T_2T_3$	mn+ 1	DATA	ο	1	0	1	1	1	1
	MC ₁	$T_1T_2T_3$	1st op-code Address	1st op-code	0	1	0	1	ο	1	о
	MC ₂	$T_1T_2T_3$	2nd op-code Address	2nd op-code	ο	1	0	1	о	1	1
LD IX,(mn)	MC ₃	T1T2T3	1st operand Address	n	0	1	ο	1	1	1	1
LD IY,(mn)	MC₄	T1T2T3	2nd operand Address	m	0	1	о	1	1	1	1
	MC₅	$T_1T_2T_3$	mn	DATA	0	1	0	1	1	1	1
	MC ₆	$T_1T_2T_3$	mn+ 1	DATA	ο	1	0	1	1	1	1
	MC ₁	$T_1T_2T_3$	1st op-code Address	1st op-code	ο	1	о	1	0	1	о
	MC ₂	T 1T2T3	1st operand Address	n	ο	1	ο	1	1	1	1
LD (mn) HI	MC₃	T1T2T3	2nd operand Address	m	ο	1	ο	1	1	1	1
	MC₄	Ti	*	z	1	1	1	1	1	1	1
	MC₅	$T_1T_2T_3$	mn	L	1	ο	0	1	1	1	1
	MC₅	T1T2T3	mn+ 1	н	1	ο	о	1	1	1	1

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	ĪŌĒ	LIR	HALT	ST
	MC ₁	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	0
	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	0	1	о	1	0	1	1
	MC₃	T1T2T3	1st operand Address	n	0	1	о	1	1	1	1
LD (mn),ww	MC₄	T1T2T3	2nd operand Address	m	o	1	0	1	1	1,	1
	MC₅	Ti	•	z	1	1	1	1	1	1	1
	MC ₆	$T_1T_2T_3$	mn	wwL	1	0	0	1	1	1	1
	MC ₇	T1T2T3	mn+ 1	wwH	1	0	0	1	1	1	1
	MC 1	T1T2T3	1st op-code Address	1st op-code	0	1	о	1	0	1	0
	MC ₂	$T_1T_2T_3$	2nd op-code Address	2nd op-code	0	1	0	1	o	1	1
	MC₃	T 1T2T3	1st operand Address	n	0	1	0	1	1	1	1
LD (mn),IX LD (mn),IY	MC₄	T₁T₂T₃	2nd operand Address	m	о	1	ο	1	1	1	1
	MC₅	ті	*	z	1	1	1	1	1	1	1
	MC ₆	T1T2T3	mn	IXL IYL	1	o	ο	1	1	1	1
	MC7	T1T2T3	mn+ 1	IXH IYH	1	о	o	1	1	1	1
ld Sp. HL	MC 1	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	o	1	о
	MC ₂	Ті	•	z	1	1	1	1	1	1	1
	MC 1	T1T2T3	1st op-code Address	1st op-code	0	1	ο	1	о	1	0
ld Sp,ix Ld Sp,iy	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	0	1	ο	1	o	1	1
	MC₃	Ti	•	Z	1	1	1	1	1	1	1
	MC 1	T1T2T3	1st op-code Address	1st op-code	0	1	ο	1	ο	1	0
LDI	MC2	T1T2T3	2nd op-code Address	2nd op-code	0	1	ο	1	0	1	1
LDD	MC₃	T1T2T3	HL	DATA	0	1	o	1	1	1	1
	MC₄	T1T2T3	DE	DATA	1	0	ο	1	1	1	1

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	ĪOE	LIR	HALT	ST
	MC 1	T₁T₂T₃	1st op-code Address	1st op-code	0	1	0	1	0	1	0
פורו	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	ο	1	о	1	0	1	1
LDDR (If BC _R ≠0)	MC₃	T₁T₂T₃	HL	DATA	0	1	0	1	1	1	1
	MC₄	$T_1T_2T_3$	DE	DATA	1	0	о	1	1	1	1
	MC₅ ∼MC₅	ТіТі	*	z	1	1	1	1	1	1	1
	MC1	T1T2T3	1st op-code Address	1st op-code	o	1	ο	1	о	1	0
LDIR	MC ₂	΄T₁T₂T₃	2nd op-code Address	2nd op-code	0	1	0	1	0	1	1
(If BC _R =0)	МС₃	$T_1T_2T_3$	HL	DATA	ο	1	о	1	1	1	1
	MC₄	T1T2T3	DE	DATA	1	0	ο	1 [.]	1	1	1
	MC ₁	T 1T2T3	1st op-code Address	1st op-code	ο	1	ο	1	о	1	о
MILT ww**	MC2	T 1T2T3	2nd op-code Address	2nd op-code	ο	1	ο	1	0	1	1
	MC3 ~MC13	ΤΙΤΙΤΙΤΙ ΤΙΤΙΤΙΤΙ ΤΙΤΙΤΙΤΙ ΤΙΤΙΤΙ	•	z	1	1	1	1	1	1	1
NEC	MC ₁	T1T2T3	1st op-code Address	1st op-code	o	1	ο	1	ο	1	o
NEG	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	0	1	ο	1	о	1	1
NOP	MC 1	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	0
	MC ₁	T1T2T3	1st op-code Address	1st op-code	o	1	ο	1	o	1	0
	MC2	T1T2T3	1st operand Address	m	0	1	ο	1	1	1	. 1
	MC ₃	Ті	•	z	1	1	1	1	1	1	1
	MC₄	T1T2T3	m to $A_0 \sim A_7$ A to $A_8 \sim A_{15}$	А	1	ο	1	0	1	1	1

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	ĪŌĒ	LIR	HALT	ST
	MC1	T1T2T3	1st op-code Address	1st op-code	ο	1	0	1	о	1	ο
	MC2	T₁T₂T₃	2nd op-code Address	2nd op-code	ο	1	0	1	о	1	1
	MC ₃	Ti	•	Z	1	1	1	1	1	1	1
	MC4	T₁T₂T₃	BC	g	1	ο	1	ο	1	1	1
	MC1	T₁T₂T₃	1st op-code Address	1st op-code	ο	1	0	1	0	1	о
	MC ₂	T₁T₂T₃	2nd op-code Address	2nd op-code	о	1	ο	1	ο	1	1
OUT0 (m),g**	MC ₃	T₁T₂T₃	1st operand Address	m	о	1	0	1	1	1	1
	MC₄	Ti	*	Z	1	1	1	1	1	1	1
	MC₅	T1T2T3	m to A₀~A⁊ 00H to A₃~A₁₅	g	1	о	1	0 [.]	1	1	1
	MC1	T1T2T3	1st op-code Address	1st op-code	о	1	о	1	ο	1	0
	MC2	T1T2T3	2nd op-code Address	2nd op-code	о	1	0	1	ο	1	1
OTIM**	MC ₃	Ti	*	Z	1	1	1	1	1	1	1
OTDM**	MC4	T1T2T3	HL	DATA	о	1	0	1	1	1	1
	MC₅	T1T2T3	C to A₀~A7 00H to A₃~A15	DATA	1	o	1	0	1	1	1
	MC6	Ті	•	z	1	1	1	1	1	1	1
	MC ₁	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	ο	1	0
	MC2	T1T2T3	2nd op-code Address	2nd op-code	0	1	0	1	ο	1	1
OTIMR**	MC ₃	Ti	•	Z	1	1	1	1	1	1	1
(lf Br≠0)	MC4	T1T2T3	HL	DATA	0	1	0	1	1	1	1
	MC₅	T1T2T3	C to $A_0 \sim A_7$ OOH to $A_3 \sim A_{15}$	DATA	1	0	1	ο	1	1	1
	МС6 ~МС₃	ТіТіТі	•	Z	1	1	1	1	1	1	1

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	ÎOE	LIR	HALT	ST
	MC 1	T1T2T3	1st op-code Address	1st op-code	ο	1	0	1	ο	1	0
	MC2	T1T2T3	2nd op-code Address	2nd op-code	о	1	0	1	0	1	1
OTIMR** OTDMR**	MC3	Ti	•	z	1	1	1	1	1	1	1
(If Br=O)	MC₄	T₁T₂T₃	HL	DATA	ο	1	о	1	1	1	1
	MC₅	T1T2T3	C to $A_0 \sim A_7$ OOH to $A_8 \sim A_{15}$	DATA	1	ο	1	o	1	1	1
	MC ₆	Ti	•	z	1	1	1	1	1	1	1
	MC ₁	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	o
ουτι	MC2	T1T2T3	2nd op-code Address	2nd op-code	ο	1	0	1	о	1	1
OUTD	MC₃	T1T2T3	HL	DATA	ο	1	о	-1	1	1	1
	MC₄	T1T2T3	вс	DATA	1	о	1	о	1	1	1
OTIR	MC 1	T1T2T3	1st op-code Address	1st op-code	о	1	0	1	о	1	0
	MC2	T1T2T3	2nd op-code Address	2nd op-code	0	1	0	1	0	1	1
OTDR (If Br≠0)	MC₃	T1T2T3	HL	DATA	0	1	0	1	1	1	1
	MC4	T1T2T3	вс	DATA	1	0	1	0	1	1	1
	MC₅ ∼MC₅	тіТі		z	1	1	1	1	1	1	1
	MC ₁	T1T2T3	1st op-code Address	1st op-code	о	1	0	1	0	1	o
OTIR OTDR	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	0	1	0	1	0	1	1
(If Br=0)	MC ₃	T1T2T3	HL	DATA	0	1	0	1	1	1	1
	MC₄	T1T2T3	вс	DATA	1	о	1	0	1	1	1
POP zz	MC ₁	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	0
	MC ₂	T1T2T3	SP	DATA	o	1	о	1	1	1	1
	MC ₃	T1T2T3	SP+1	DATA	o	1	о	1	1	1	1
POP IX POP IY	MC ₁	T1T2T3	1st op-code Address	1st op-code	о	1	о	1	о	1	0

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	IOE	LIR	HALT	ST
	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	0	1	0	1	ο	1	1
Pop IX Pop Iy	MC ₃	T1T2T3	SP	DATA	0	1	0	1	1	1	1
	MC 4	T 1T2T3	SP+1	DATA	0	1	0	1	1	1	1
	MC 1	T 1T 2T 3	1st op-code Address	1st op-code	0	1	0	1	0	1	0
	MC ₂ ~MC ₃	ТіТі	*	Z	1	1	1	1	1	1	1
1031122	MC₄	T 1T2T3	SP-1	zzH	1	o	о	1	1	1	1
	MC₅	$T_1T_2T_3$	SP-2	zzL	1	0	ο	1	1	1	1
	MC 1	$T_1T_2T_3$	1st op-code Address	1st op-code	0	1	о	1	о	1	0
	MC ₂	$T_{1}T_{2}T_{3}$	2nd op-code Address	2nd op-code	о	1	0	1	ο	1	1
PUSH IX PUSH IY	MC₃ ~MC₄	тіті		z	1	1	1	1	1	1	1
	MC 5	$T_1T_2T_3$	SP-1	IXH IYH	1	0	о	1	1	1	1
	MC ₆	$T_1T_2T_3$	SP-2	IXL IYL	1	0	о	1	1	1	1
RET	MC 1	T 1T 2T 3	1st op-code Address	1st op-code	0	1	о	1	0	1	0
	MC ₂	$T_1T_2T_3$	SP	DATA	0	1	o	1	1	1	1
	MC ₃	T 1T 2T 3	SP+1	DATA	0	1	0	1	1	1	1
RET f (If condition	MC 1	$T_1T_2T_3$	1st op-code Address	1st op-code	0	1	ο	1	о	1	0
is false)	MC ₂ ~MC ₃	TiTi	*	Z	1	1	1	1	1	1	1
	MC 1	T 1T 2T 3	1st op-code Address	1st op-code	0	1	ο	1	ο	1	0
RET f (If condition	MC ₂	Ті	•	Z	1	1	1	1	1	1	1
is true)	MC ₃	T 1T 2T 3	SP	DATA	0	1	0	1	1	1	1
	MC ₄	T1T2T3	SP+1	DATA	0	1	0	1	1	1	1
	MC 1	$T_1T_2T_3$	1st op-code Address	1st op-code	0	1	0	1	0	1	0
	MC 2	T ₁ T ₂ T ₃	2nd op-code Address	2nd op-code	0	1	0	1	0	1	1
REIT (RT)											

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	ĪOE	LIR	HALT	ST
	MC1	T ₁ T ₂ T ₃	1st op-code Address	1st op-code	0	1	0	1	0 •5 1	1	0
	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	o	1	ο	1	0 *5 1	1	1
	MC₃ ~MC₅	ΤιΤιΤι		Z	1	1	1	1	1 •5 1	1	1
	MC ₆	T1T2T3	1st op-code Address	1st op-code	o	1	ο	1	0 *5 0	1	1
	MC ₇	Ті	•	z	1	1	1	1	1 •5 1	1	1
	MC ₈	$T_1T_2T_3$	2nd op-code Address	2nd op-code	o	1	0	1	0 •5 0	1	1
	MC ₉	T 1T 2T 3	SP	data	o	1	ο	1	1 *5 1	1	1
	MC 10	T 1T 2T 3	SP+1	data	o	1	ο	1	1 *5 1	1	1
RLCA RLA RRCA RRA	MC1	T ₁ T ₂ T ₃	1st op-code Address	1st op-code	o	1	0	1	0	1	0
RLC g RL g	MC 1	T1T2T3	1st op-code Address	1st op-code	0	1	0	1	0	1	0
RRC g RR g SLA g	MC ₂	T₁T₂T₃	2nd op-code Address	2nd op-code	o	1	0	1	0	1	1
SRAg SRLg	MC₃	Ti	*	z	1	1	1	1	1	1	1
	MC 1	T 1T 2T 3	1st op-code Address	1st op-code	ο	1	0	1	0	1	0
RLC (HL) RL (HL) RRC (HL) RR (HL) SLA (HL) SRA (HL) SRL (HL)	MC ₂	T1T2T3	2nd op-code Address	2nd op-code	o	1	0	1	0	1	1
	MC₃	T ₁ T ₂ T ₃	HL	DATA	0	1	0	1	1	1	1
	MC₄	Ti	•	Z	1	1	1	1	1	1	1
	MC₅	$T_1T_2T_3$	HL	DATA	1	0	0	1	1	1	1

•5 The upper and lower data show the state of $\overline{\text{LIR}}$ when $\overline{\text{IOC}}=1$ and $\overline{\text{IOC}}=0$ respectively.

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	ĪOE	LIR	HALT	ST
RLC (IX+d)	MC ₁	$T_1T_2T_3$	1st op-code Address	1st op-code	ο	í	0	1	ο	1	0
$\begin{array}{c} \text{RLC (IY+d)} \\ \text{RL (IX+d)} \\ \text{BL (IX+d)} \end{array}$	MC ₂	$T_1T_2T_3$	2nd op-code Address	2nd op-code	ο	1	0	1	ο	1	1
RRC $(IX+d)$ RRC $(IY+d)$	MC ₃	T 1T2T3	1st operand Address	d	ο	1	0	1	1	1	1
RR (IX+d) RR (IY+d)	MC₄	T 1T2T3	3rd op-code Address	3rd op-code	ο	1	0	1	о	1	1
SLA (IX+d) SLA (IY+d) SBA (IX+d)	MC₅	$T_1T_2T_3$	IX+d IY+d	DATA	о	1	0	1	1	1	1
SRA (IY+d) SRL (IX+d)	MC ₆	Ti	*	z	1	1	1	1	1	1	1
SRL (IY+d)	MC ₇	$T_1T_2T_3$	IX+d IY+d	DATA	1	о	0	1	1	1	1
	MC 1	$T_1T_2T_3$	1st op-code Address	1st op-code	о	1	0	1	о	1	о
	MC2	T ₁ T ₂ T ₃	2nd op-code Address	2nd op-code	0	1	0	1	0	1	1
RRD	MC₃	$T_1T_2T_3$	HL	DATA	0	1	0	1	1	1	1
	MC₄ ∼MC7	тітіті	*	Z	1	1	1	1	1	1	1
	MC ₈	$T_1T_2T_3$	HL	DATA	1	0	0	1	1	1	<u></u> 1
	MC 1	$T_1T_2T_3$	1st op-code Address	1st op-code	0	1	0	1	0	1	0
RST v	MC ₂ ~MC ₃	тіті	*	z	1	1	1	1	1	1	1
	MC₄	$T_1T_2T_3$	SP- 1	РСН	1	0	0	1	1	1	1
	MC 5	$T_1T_2T_3$	SP-2	PCL	1	0	0	1	1	1	1
SCF	MC 1	$T_1T_2T_3$	1st op-code Address	1st op-code	0	1	0	1	0	1	ο
	MC 1	$T_1T_2T_3$	1st op-code Address	1st op-code	0	1	ο.	1	о	1	о
SET b,g RES b,g	MC ₂	$T_1T_2T_3$	2nd op-code Address	2nd op-code	0	1	0	1	0	1	1
	MC 3	Ti	*	z	1	1	1	1	1	1	1
	MC 1	$T_1T_2T_3$	1st op-code Address	1st op-code	0	1	0	1	0	1	ο
	MC 2	T1T2 3	2nd op-code Address	2nd op-code	0	1	0	1	0	1	1
SET b, (HL) RES b, (HL)	MC ₃	$T_1T_2T_3$	HL	DATA	0	1	0	1	1	1	1
	MC 4	Ti	*	Z	1	1	1	1	1	1	1
	MC 5	$T_1T_2T_3$	HL	DATA	1	0	0	1	1	1	1

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	ĪŌĒ	LIR	HALT	ST
	MC 1	$T_1T_2T_3$	1st op-code Address	1st op-code	0	1	0	1	о	1	0
	MC ₂	$T_1T_2T_3$	2nd op-code Address	2nd op-code	0	1	ο	1	о	1	1
SET b, (IX+d)	MC ₃	$T_1T_2T_3$	1st operand Address	d	0	1	о	1	1	1	1
SET b, $(IY+d)$ RES b, $(IX+d)$	MC 4	$T_1T_2T_3$	3rd op-code Address	3rd op-code	0	1	0	1	0	1	1
RES b, (IY+d)	MC 5	$T_1T_2T_3$	IX+d IY+d	DATA	0	1	0	1	1	1	1
	MC ₆	Ti	*	Z	1	1	1	1	1	1	1
	MC ₇	$T_1T_2T_3$	IX+d IY+d	DATA	1	0	0	1	1	1	1
SI P**	MC 1	$T_1T_2T_3$	1st op-code Address	1st op-code	0	1	0	1	ο	1	0
	MC ₂	$T_1T_2T_3$	2nd op-code Address	2nd op-code	0	1	о	1	0	1	1
	-	-	7FFFFH	Z	1.	1	1	1	1	0	1
	MC 1	$T_1T_2T_3$	1st op-code Address	1st op-code	0	1	о	1	ο	1	0
TSTIO m**	MC ₂	T ₁ T ₂ T ₃	2nd op-code Address	2nd op-code	0	1	0	1	0	1	1
	MC ₃	$T_1T_2T_3$	1st operand Address	m	0	1	0	1	1	1	1
	MC4	T ₁ T ₂ T ₃	C to $A_0 \sim A_7$ OOH to $A_8 \sim A_{15}$	DATA	0	1	1	ο	1	1	1
	MC ₁	$T_1T_2T_3$	1st op-code Address	1st op-code	0	1	о	1	ο	1	0
TST g**	MC ₂	$T_1T_2T_3$	2nd op-code Address	2nd op-code	0	1	о	1	0	1	1
	MC ₃	Ti	*	Z	1	1	1	1	1	1	1
	MC ₁	$T_1T_2T_3$	1st op-code Address	1st op-code	0	1	0	1	0	1	ο
TST m**	MC ₂	$T_1T_2T_3$	2nd op-code Address	2nd op-code	ο	1	0	1	о	1	1
	MC ₃	$T_1T_2T_3$	1st operand Address	m	ο	1	0	1	1	1	1
	MC 1	$T_1T_2T_3$	1st op-code Address	1st op-code	ο	1	0	1	о	1	0
TST (HL)**	MC ₂	$T_1T_2T_3$	2nd op-code Address	2nd op-code	ο	1	0	1	0	1	1
	MC ₃	Ti	*	Z	1	1	1	1	1	1	1
	MC₄	$T_1T_2T_3$	HL	DATA	0	1	0	1	1	1	1

INTERRUPT

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	IOE	LIR	HALT	ST
	MC ₁	T1T2T3	Next op-code Address (PC)		0	1	0	1	0	1	0
NMI	MC ₂ ~MC ₃	ТіТі	*	z	1	1	1	1	1	1	1
	MC₄	T1T2T3	SP-1	РСН	1	ο	0	1	1	1	1
	MC 5	$T_1T_2T_3$	SP-2	PCL	1	0	0	1	1	1	1
	MC ₁	T₁T₂T _W T _W T₃	Next op-code Address (PC)	1st op-code	1	1	1	0	0	1	0
INT ₀ MODE O	MC₂ ∼MC₃	TiTi	*	Z	1	1	1	1	1	1	1
(RST INSERTED)	MC₄	$T_1T_2T_3$	SP-1	РСН	1	ο	0	1	1	1	1
	MC₅	$T_1T_2T_3$	SP-2	PCL	1	0	0	1	1	1	1
	MC 1	T 1T 2T _W T _W T 3	Next op-code Address (PC)	1st op-code	1	1	1	0	0	1	0
INT [©] MODE O (CALL INSERTED)	MC ₂	T1T2T3	PC	n	0	1	0	1	1	1	1
	MC ₃	T 1T2T3	PC+1	m	0	1	· 0	1	1	1	1
	MC₄	Ti	*	Z	1	1	1	1	1	1	1
	MC₅	$T_1T_2T_3$	SP 1	PC+2(H)	1	0	0	1	1	1	1
	MC ₆	$T_1T_2T_3$	SP-2	PC+2(L)	1	0	ο	1	1	1	1
	MC1	T 1T 2T _W T _W T 3	Next op-code Address (PC)		1	1	1	0	0	1	0
INT ₀ MODE 1	MC ₂	$T_1T_2T_3$	SP-1	РСН	1	0	0	1	1	1	1
	MC₃	$T_{1}T_{2}T_{3}$	SP-2	PCL	1	0	0	1	1	1	1
	MC 1	T 1T 2T _W T _W T 3	Next op-code Address (PC)	Vector	1	1	1	0	0	1	0
	MC ₂	Ті	*	Z	1	1	1	1	1	1	1
INT ₀ MODE 2	MC ₃	$T_1T_2T_3$	SP-1	РСН	1	0	0	1	1	1	1
-	MC₄	$T_1T_2T_3$	SP-2	PCL	1	0	0	1	1	1	1
	MC₅	T ₁ T ₂ T ₃	I, Vector	DATA	0	1	0	1	1	1	1
	MC ₆	T ₁ T ₂ T ₃	I, Vector+1	DATA	0	1	0	1	1	1	1

Instruction	Machine Cycle	States	ADDRESS	DATA	RD	WR	ME	ĪOĒ	LIR	HALT	ST
MC ₁ T ₁ T ₂		T₁T₂T _W T _W T₃	Next op-code Address (PC)		1	1	1	1	1	1	0
MC ₂ Ti <u>INT₁</u> <u>INT₂</u> MC ₃ T ₁ T ₂ T ₃	Ті	•	z	1	1	1	1	1	1	1	
	MC₃	$T_1T_2T_3$	SP-1	РСН	1	0	0	1	1	1	1
Internal	MC₄	$T_1T_2T_3$	SP-2	PCL	1	ο	0	1	1	1	1
	MC₅	$T_1T_2T_3$	l, Vector	DATA	ο	1	0	1	1	1	1
	MC ₆	$T_1T_2T_3$	I, Vector+1	DATA	ο	1	0	1	1	1	1

Request	Current Status
WAIT	
Refresh Requ (Request of Refresh by th	iest ne on-chip

Request	Current Status	Normal Operation (CPU mode) (IOSTOP mode)	WAIT State	Refresh Cycle	Interrupt Acknowledge Cycle	DMA Cycle	BUS RELEASE mode	SLEEP mode	SYSTEM STOP mode
WAIT		Acceptable	Acceptable	Not acceptable	Acceptable	Acceptable	Not acceptable	Not acceptable	Not acceptable
Refresh Re (Request o Refresh by Refresh Co	equest f the on-chip ontroller)	Refresh cycle begins at the end of MC.	Not acceptable	Not acceptable	Refresh cycle begins at the end of MC.	Refresh cycle begins at the end of MC.	Not acceptable	Not acceptable	Not acceptable
DREQ ₁		DMA cycle begins at the end of MC.	DMA cycle begins at the end of MC.	Acceptable * Refresh cycle precedes. DMA cycle begins at the end of one MC.	Acceptable DMA cycle begins at the end of MC.	Acceptable Refer to "2.9 DMA Controller" for details.	Acceptable * After BUS RELEASE cycle, DMA cycle begins at the end of one MC.	Not acceptable	Not acceptable
BUSREQ		Bus is released at the end of MC.	Not acceptable	Not acceptable	Bus is released at the end of MC.	Bus is released at the end of MC.	Continue BUS RELEASE mode.	Acceptable	Acceptable
Interrupt	<u>INT</u> 0, <u>INT</u> 1, INT2	Accepted after executing the current instruction.	Accepted after executing the current instruction	Not acceptable	Not acceptable	Not acceptable	Not acceptable	Acceptable Return from SLEEP mode to normal operation.	Acceptable Return from SYSTEM STOP mode to normal operation.
	Internal I/O Interrupt	ţ	ţ	ţ	ţ	ţ	ţ	ţ	Not acceptable
	NMI	Ť	T	t	Not acceptable Interrupt acknowledge cycle precedes. NMI is accepted after executing the next in- struction.	Acceptable DMA cycle stops.	Ť	Ť	Acceptable Return from SYSTEM STOP mode to normal operation.

NOTE) * : not acceptable when DMA Request is in level sense. † : same as the above MC : Machine Cycle

E-2. Request Priority

The HD64180 has the following three types of requests. **Type 1.**

To be accepted in specified state WAIT

Type 2.

To be accepted in each machine cycle. Refresh Req. DMA Req. Bus Req.

Type 3.

To be accepted in each instruction..... Interrupt Req.

Type 1, Type 2, and Type 3 requests priority is shown as follows. highest priority Type 1 > Type 2 > Type 3 lowest priority

Each request priority in Type 2 is shown as follows.

highest priority Bus Req. > Refresh Req. > DMA Req. lowest priority

(NOTE) If Bus Req. and Refresh Req. occurs simultaneously, Bus Req. is accepted but Refresh Req. is cleared.

Refer to "2.7 Interrupts" for each request priority in Type 3.

E-3. Operation Mode Transition

198 HITACHI

- NOTE) *1 NORMAL: CPU executes instructions normally in NORMAL mode.
 - *2 DMA request: DMA is requested in the following cases.
 - (1) $\overline{DREQ_{0}}$, $\overline{DREQ_{1}} = 0$ (memory to/from (memory mapped) I/O DMA transfer)
 - (2) DEO = 1 (memory to/from memory DMA transfer)
 - *3 DMA end: DMA ends in the following cases.
 - (1) $\overline{DREQ_0}$, $\overline{DREQ_1} = 1$ (memory to/from (memory mapped) I/O DMA transfer)
 - (2) BCR0, BCR1 = 0000H (all DMA transfers)
 - (3) $\overline{NMI} = 0$ (all DMA transfers)

Other operation mode transitions

The following operation mode transitions are also possible.

 HALT
 IOSTOP
 (DMA (REFRESH BUS RELEASE)
 (DMA (REFRESH BUS RELEASE)
 SLEEP
 BUS RELEASE

SYSTEM STOP 💳 BUS RELEASE

F-1. Status Signals

The following table shows pin outputs in each operating mode.

	Mode	LIR	ME	ĪŌĒ	RD	WR	REF	HALT	BUSACK	ST	Address BUS	Data BUS
	Op-code Fetch (1st op-code)	0	0	1	0	1	1	1	1	0	A	IN
	Op-code Fetch (except 1st op-code)	0	0	1	0	1	1	1	1	1	А	IN
operation	Memory Read	1	0	1	0	1	1	1	1	1	А	IN
-personen	Memory Write	1	0	1	1	0	1	1	1	1	А	OUT
	I/O Read	1	1	0	0	1	1	1	1	1	A	IN
	I/O Write	1	1	0	1	0	1	1	1	1	А	OUT
	Internal Operation	1	1	1	1	1	1	1	1	1	А	IN
Refresh		1	о	1	1	1	0	1	1	•	А	IN
Interrupt	NMI	0	0	1	0	1	1	1.	1	0	A	IN
Acknowledge	INT ₀	0	1	0	1	1	1	1	1	0	А	IN
Cycle (1st machine cycle)	INT ₁ , INT ₂ & Internal Interrupts	1	1	1	1	1	1	1	1	0	А	IN
BUS RELEAS	SE	1	z	z	z	z	1	1	0	*	Z	IN
HALT		0	0	1	0	1	1	0	1	0	А	IN
SLEEP		1	1	1	1	1	1	0	1	1	1	N
	Memory Read	1	0 ·	1	0	1	1	*	1	0	А	N
Internal	Memory Write	1	0	1	1	0	1	•	1	0	А	OUT
DMA	I/O Read	1	1	0	0	1	1	•	1	0	А	IN
	I/O Write	1	1	0	1	0	1	*	1	0	А	OUT
RESET		1	1	1	1	1	1	1	1	1	Z	IN

NOTE) 1 : HIGH 0 : LOW

A : Programmable

Z : High Impedance IN : Input

OUT : Output

* : Invalid

Sumbol	Din function	Pin status in each operation mode									
Symbol	Pin function	RESET	SLEEP	IOSTOP	SYSTEM STOP						
WAIT	-	IN (N)	IN (N)	IN (A)	IN (N)						
BUSACK	-	1	OUT	OUT	OUT						
BUSREQ	-	IN (N)	IN (A)	IN (A)	IN (A)						
RESET		0	IN (A)	IN (A)	IN (A)						
NMI		IN (N)	IN (A)	IN (A)	IN (A)						
INT ₀	-	IN (N)	IN (A)	IN (A)	IN (A)						
INT ₁		IN (N)	IN (A)	IN (A)	IN (A)						
INT ₂		IN (N)	IN (A)	IN (A)	IN (A)						
ST		1	1	OUT	1						
A0~A17, A19	-	Z	1	A	1						
A18/TOUT	A18	Z	1	А	1						
	TOUT	Z	OUT	н	н						
Do~D7		Z	Z	A	Z						
RTS0		1	н	Ουτ	н						
CTS0		IN (N)	IN (A)	IN (N)	IN (N)						
DCD ₀	-	IN (N)	IN (A)	IN (N)	IN (N)						
TXAo		1	OUT	н	н						
RXA ₀		IN (N)	IN (A)	IN (N)	IN (N)						
CKAo/DREQo	CKAo (internal clock mode)	Z	OUT	Z	Z						
	CKAo (external clock mode)	Z	IN (A)	IN (N)	IN (N)						
	DREQo	Z	IN (N)	IN (A)	IN (N)						
TXA1		1	Ουτ	н	н						
RXA1		IN (N)	IN (A)	IN (N)	IN (N)						
CKA1/TEND0	CKA 1 (internal clock mode)	Z	OUT	Z	Z						
	CKA1 (external clock mode)	Z	IN (A)	IN (N)	IN (N)						
	TEND ₀	Z	1	OUT	1						
TXS	-	1	OUT	Н	н						
RXS/CTS1	RXS	IN (N)	IN (A)	IN (N)	IN (N)						
	CTS ₁	IN (N)	IN (A)	IN (N)	IN (N)						
скѕ	CKS (internal clock mode)	Z	OUT	1	1						
	CKS (external clock mode)	Z	IN (A)	Z	Z						
DREQ1	-	IN (N)	IN (N)	IN (A)	IN (N)						
TEND 1	-	1	1	OUT	1						
HALT	-	1	0	OUT	0						
REF		1	1	OUT	1						
IOE		1	1	OUT	1						
ME	-	1	1	OUT	1						
E	-	0	E clock output								
LIR	-	1	1	OUT	1						
WR		1	1	OUT	1						
RD	-	1	1	OUT	1						
φ	-	ϕ clock output	-		←						

F-2. Pin Status during RESET and Low Power Operation Modes

1: HIGH 0: LOW A: Programmable Z: High Impedance

IN (A): Input (Active) IN (N): Input (Not active) OUT: Output

H: Holds the previous state

←: same as the left

G. Internal I/O Registers

By programming IOA7 and IOA6 in the I/O control register, internal I/O register addresses are relocatable within ranges from 0000H to 00FFH in the I/O address space.

REGISTER	MNEMONICS	ADDRESS				REM	ARKS					
ASCI Control Basister A Channel O												
ASCI Control Register	: CNTLAO	00	bit	MPE	RE	. TE	RTSO	MPBR/ EFR	MOD2	MOD1	MODO	
			during RESET	0	0	0	1	invalid	0	0	0	
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
ASCI Control Register A Channel 1	A Channel 1		MODE Selection - MODE Selection - Multi Processor Bit Receive Error Flag Reset - Transmit Enable - Multi Processor Enable									
	: CNTLA1		bit	MPE	RE	TE	CKA1D	MPBR/ EFR	MOD2	MOD1	MODO	
			during RESET	0	0	0	1	invalid	0	0	0	
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
		MODE S Multi Processor Bit Error Flag Reset CKA1 Disable Receive Enable Multi Processor Enable										
			0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1	Start + Start + Start + Start + Start + Start + Start + Start +	7 bit Da 7 bit Da 7 bit Da 7 bit Da 7 bit Da 8 bit Da 8 bit Da 8 bit Da	ata + 1 ata + 2 ata + P ata + P ata + 1 ata + 1 ata + 2 ata + P ata + P	Stop 2 Stop 2 arity + 2 arity + 5 top 2 Stop 2 arity + 2 arity +	1 Stop 2 Stop 1 Stop 2 Stop				
ASCI Control Register	B Channel 0 : CNTLB0	02	bit	МРВТ	MP	CTS/ PS	PEO	DR	SS2	SS1	SSO	
			during RESET	invalid	0	•	0	0	1	1	1	
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
			• CTS : Dep PS : Clea	pending cared to 0	lulti Proc	Multi Pro essor B	Plear To Spocessor it Transn of CTS	Parity Evo Send/Pre nit Pin.	Divide R Divide R en or Oc	Clock So Speed So latio Id	ource and elect	

MNEMONICS	ADDRESS				REM	ARKS				
B Channel 1 : CNTLB1	03	bit	мрвт	MP	CTS/ PS	PEO	DR	SS2	SS1	SSO
		during RESET	invalid	0	0	0	0	1	1	1
		R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
						Llear To cessor	arity Eve Send/Pr	ivide Rat n or Odd escale	Clock So Speed S io	ource and Select
			1	Vicial 10	CE3501 D		1			1
		General divide ratio		PS (divide ra	=0 atio=10)		PS (divide ra	= 1 atio= 30	,
		SS2,1,0	DR=0) (× 16)	DR=1	I (× 64)	DR=0) (×16)	DR=1	(× 64)
		000	$\phi \div$	160	$\phi \div$	640	$\phi \div$	480	$\phi \div$	1920
		010	÷	640	÷	2560	÷	1920	+	7680
		100	+ + + + + + + + + + + + + + + + + + +	1280 2560	+ : + 10	5120 5240	+ +	3840 7680	$\begin{vmatrix} \div 1 \\ \div 3 \end{vmatrix}$	0720
		101 110	+ ! + 10	5120 0240	÷ 20	0480 0960	÷ 1! ÷ 3	5360 0720	÷ 6 ÷12	1440 2880
		111	Extern	al clock	frequen	icy <	$\frac{1}{\phi \div 4}$	0)		
Channel O	04	bit	RDRF	OVRN	PE	FE	RIE	DCDO	TDRE	TIE
: STATO	• ·	during RESET	0	0	0	0	0	*	**	0
		R/W	R		R		R/W	R	R	R/W
								- Receiv	-Trans Regis Pata Carri e Interru	I Transmit Interrupt Enable smit Data ter Empty ier Detect pt Enable
					L	ا ــــا Parity Err	Framing or	Error	Pin l	TDRE
			-		Over Run	Error		<u></u>	L	1
		* DCD ₀ : Dep	ending c	on the co	ondition	of DCDo	Pin.		н	0
Channel 1	05	bit	RDRF	OVRN	PE	FE	RIE	CTS1E	TDRE	TIE
SIAII			0	0	0	0			1 P	
			L <u></u>				<u> n/w</u>			
			F	Receive E	Dver Run Data Reg	Parity Error Error jister Full	aming E or	Receive la	Trans Regis CTS1 Er nterrupt	Transmit Interrupt Enable smit Data ter Empty able Enable
	MNEMONICS B Channel 1 : CNTLB1	MNEMONICS ADDRESS B Channel 1 0 : CNTLB1 0 Channel 0 0 : STATO 0 Channel 1 0 : STAT1 0	MNEMONICS ADDRESS B Channel 1 0 3 bit Channel 0 General divide ratio SS2,1,0 SS2,1,0 000 001 001 000 001 010 111 100 111 100 111 Channel 0 0 4 bit Channel 1 0 5 DCDo : Depolation Channel 1 0 5 bit Channel 1 0 5 NW	MNEMONICS ADDRESS B Channel 1 0 3 bit MPBT during RESET invalid R/W Invalid R/W general divide ratio SS2,1,0 DR=C 0000 \$	MNEMONICS ADDRESS B Channel 1 : CNTLB1 0 3 bit during RESET MPBT MP R/W R/W R/W R/W R/W R/W General divide ratio PS General divide ratio PS General divide ratio PS Good 0 1 SS2,1,0 DR=0 (× 16) DO 1 0001 + 320 010 + 320 101 + 2560 101 + 5120 100 + 5120 110 + 10240 111 External clock Channel 0 0 4 bit during RESET 0 0 R STATO 0 4 bit during RESET 0 0 0 Channel 1 0 5 5 DRF OVRN 0 Channel 1 0 5 5 R 0 0 STATO 0 5 5 Receive C 0 0 Channel 1 0 5 5 R	MNEMONICS ADDRESS REM B Channel 1 : CNTLB1 0 3 bit during RESET MPBT MP CTS/ PS R/W R/W R/W R/W R/W R/W R/W General divide ratio General divide ratio PS=0 (divide ratio = 10) Multi Processor B SS2,1/0 DR=0 (×16) DR=1 (divide ratio = 10) DR=2 (divide ratio = 10) SS2,1/0 DR=0 (×16) DR=1 (divide ratio = 10) DR=1 (divide ratio = 10) SS2,1/0 DR=0 (×16) DR=1 (divide ratio = 10) DR=1 (divide ratio = 10) 000 \$+ 160 \$+ 100 101 + 320 \$+ 100 + 260 \$+ 101 + 5120 \$+ 101 + 5120 \$+ 101 + 5120 \$+ 101 + 5120 \$+<	MNEMONICS ADDRESS REMARKS B Channel 1 : CNTLB1 0 3 bit during RESET R/W MPBT MP TTS/ PS PEO R/W R/W R/W R/W R/W R/W R/W General divide ratio (rivide ratio=10) Clear To Multi Processor Bit Transr General divide ratio (rivide ratio=10) SS2,1.0 DR= 0 (X 16) DR=1 (X 64) 000 \$\$\phi\$ + 160 \$\$\phi\$ + 640 + 2560 + 10240 + 2560 101 + 5120 + 20480 + 10240 + 40960 111 External clock (frequency <	MNEMONICS ADDRESS REMARKS B Channel 1 : CMTLB1 0 3 bit during RESET R/W MPBT MP TTS/ PS PEO DR R/W R/W	IMMEMONICS ADDRESS REMARKS B Channel 1 : CNTLB1 0 3 bit during RESET R/W MPBT WR/W MPR R/W MPW R/W R/W R/W	IMMEMONICS ADDRESS FEMARIKS B Channel 1 : CNTLB1 0 3 bit during RESET MP BT MP CTS/ PS PEO DR SS2 SS1 R/W R/W

REGISTER	MNEMONICS	ADD	RESS				REM	ARKS			in den en la constitue	
ASCI Transmit Data F	Register Channel	0	6					en e				
0	: TDRO											
ASCI Transmit Data F	Register Channel	0	7	1								
1	: TDR1											
			•									
0	egister Channel	0	8									
	: TSRO											
ASCI Receive Data Re	egister Channel	0	9									
	: TSR1											
CSI/O Control Registe	er	0	A	bit	EF	EIE	RE	TE	<u> </u>	SS2	SS1	SS0
	: CNTR			during RESET	0	0	0	0	1	1	1	1
				R/W	R	R/W	R/W	R/W		R/W	R/W	R/W
												d Select
							B		ansmit E	nable		
					-	LEr	nd Intern	upt Enab	le			
					L-Er	nd Flag		'n				
					SS2,1,0	Ba	aud Rate		S2,1,0	Ba	ud Rate	
					000	φ	÷ 20 ÷ 40		101		+ 320 + 640	
					010 011		÷ 80 ÷160		110 111	Exte	÷1280 emal	
CSI/O Transmit/Bassin	va Data		в.			'		P		(frec	uency <	< ÷ 20)
Register			в									
	: TRDR											
Timer Data Register C	hannel OL : TMDROL	0	С									
Timer Data Register C	hannel OH : TMDROH	0	D									
Timer Reload Register	Channel OL : RLDROL	0	E									
Timer Reload Register	Channel OH : RLDROH	0	F									
Timer Control Register	·	1	0	bit	TIF1	TIFO	TIF1	TIFO	TOCI	TOCO	TDF1	TDFO
	: TCR			during RESET	0	0	0	0	0	0	0	0
				R/W	R	R	R/W	R/W	R/W	R/W	R/W	R/W
											Tim	er Down
										T ime 0	Count E	nable 1,0
							l	- Timer I	Interrupt	Enable	utput Co 1,0	introl 1,0
						∟ Timer	Interrupt	t Flag 1,0	0			
					TOC		Δ/Τ	ОНТ				
				-		00	Inhibit	ed				
					(01 10	Togg 0	le				
						11	1					

REGISTER MN	EMONICS	ADDRESS	REMARKS							
Timer Data Register Channe :	I 1L TMDR1L	14								
Timer Data Register Channe	N 1H TMDR1H	15								
Timer Reload Register Chan	nel 1L : RLDR1L	16								
Timer Reload Register Chan	nel 1H : RLDR1H	17								
Free Running Counter	: FRC	18	read only							
DMA Source Address Regis Channel OL	ter : SAROL	20								
DMA Source Address Regis Channel OH	ter : SAROH	2 1								
DMA Source Address Regis	ter	22	Bits 0-2 (3) are used for SAR0B.							
	: SAROB		A19*, A18, A17, A16 DMA Transfer Request X X 0 DREQ0 (external) X X 0 1 RDR0 (ASCI0)							
DMA Destination Address Re Channel OL	• DAROI	23	X X 1 0 (HDH1 (ASCI1) X X 1 1 Not Used							
DMA Destination Address Re	egister	24								
Channel OH	: DAROH									
DMA Destination Address Re Channel OB	egister : DAROB	25	Bits 0-2 (3) are used for DAROB. A 19*, A 18, A 17, A 16 DMA Transfer Request X X 0 0 DREQ_0 (external) X X 0 1 TDR0 (ASCI0)							
DMA Byte Count Register C OL	hannel : BCROL	26	X X 1 0 TDR1 (ASCI1) X X 1 1 Not Used							
DMA Byte Count Register C OH	hannel	27								
DMA Memory Address Regi Channel 1L	ster	28								
DMA Memory Address Regi Channel 1H	ster	29								
DMA Memory Address Regi Channel 1B	ster	2 A	Bits 0-2 (3) are used for MAR1B.							
	: MAR1B	2 10								
1L	: jAR11	28								
DMA I/O Address Register (Channel	2 C								
1H	: IAR1H									

* These DMAC registers are expanded from 4 bits to 3 bits in the package version of CP-68 and FP-80B.
| REGISTER | MNEMONICS | ADD | RESS | | | | REM | ARKS | | | | |
|---------------------------------|--------------|-----|------|---|--|--|-----------------------------|--|--|--|-----------------------------------|-------------------------------|
| DMA Byte Count Register Channel | | 2 | E | | | | | | | | | |
| | | | | | | | | | | | | |
| DMA Byte Count Regi | ster Channel | 2 | F | | | | | | | | | |
| тн | : BCR1H | | | | | | | | | | | |
| DMA Status Register | ·DSTAT | 3 | 0 | bit | DE1 | DEO | DWE1 | DWEO | DIE1 | DIEO | _ | DME |
| | DOTAT | | 1 | during RESE | т о | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
| | | | | R/W | R/W | R/W | w | w | R/W | R/W | | R |
| DMA Mode Register | : DMODE | 3 | | LDMA
Master
Enable
LDMA Interrupt Enable 1,0
LDMA Enable Bit Write Enable 1,0
LDMA Enable ch 1,0 | | | | | | | | |
| | | | | bit | - | - | DM1 | DMO | SM1 | SMO | MMOD | - |
| | | | | during RESE | T 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 |
| | | | | R/W | | 1 | R/W | R/W | R/W | R/W | R/W | |
| | | | | DM1, 0 Dex
0 0
0 1
1 0
1 1
MMOD
0 C
1 R | stination
M
M
M
I/O
Mode
Cycle Steal | Address
DARO+
DARO
DARO f
DARO f
Mode | s
1
1
ixed
ixed | - Ch 0
Mode
<u>SM1, 0</u>
0 0
1 0
1 1 | Destina
∋ 1, 0
) Sourc
) M
I M
I M
I I/O | tion
SA
SA
SA
SA
SA
SA | dress
RO+1
RO-1
RO fixed | Memory
MODE
Select
e |

(to be continued)

REGISTER	MNEMONICS	ADDRESS	REMARKS								
DMA/WAIT Control Register		32	bit	MWI1	MWIO	IWI1	IWIO	DMS1	DMSO	DIM1	DIMO
	: DCNTL		during RESET	1	1	1	1	0	0	0	0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
							_ 1/0 v	Vait Inse	- DREC	LDN I/O Mo Di Select	IA Ch 1 Memory de Select , $i = 1,0$
					L- Mer	nory Wa	ait Insert	ion			
			MWI1,0	The n wai	umber o t states	fIV	VI1,0	The n wai	umber o t states	f	
			00		0		00		0 2		
			10		2		10		3		
					3				4		
			DMSi	Sense							
			0 Le	ige sens vel sens	e						
			DIM1,0	Transf	er Mode	Add	lress inc	rement/	Decreme	nt	
			00	M	→I/O	MAI	R1+1 R1-1	IAF	R1 fixed		
			10	I/C	D→M	IAR	1 fixed	MA	AR1+1		
			11	1/0	D→M	IAR	1 fixed	MA	AR1 — 1		
Interrupt Vector Low	Register	33	bit	IL7	IL6	IL5	-	-	-	-	-
	. IL		during RESE⊤	0	0	0	0	0	0	0	0
			R/W	R/W	R/W	R/W	J				
					Lin	terrupt \	/ector L	w			
INT/TRAP Control Reg	jister	34	bit	TRAP	UFO	-	_	Τ_	ITE2	ITE1	ITEO
	: ITC		during RESET	0	0	1	1	1	0	0	1
			R/W	R/W	R				R/W	R/W	R/W
				LT	RAP	ndefinec	I Fetch	Object		-INT Ena	able 2,1,0
Refresh Control Regist	ter	36	bit	REFE	REFW	-	_	- 1		CYC1	CYCO
	: RCR		during RESET	1	1	1	1	1	1	0	0
			R/W	R/W	R/W					R/W	R/W
				Re	-Re fresh En	fresh W able	/ait State	9		Cyc	le Select
			CYC1,0	Inter	val of R	efresh C	ycle				
			00		1	0 States	5				
			10		2	0					
			11		8	0					
				'							

(to be continued)

REGISTER	MNEMONICS	ADDRESS				REM	ARKS	1			
MMU Common Base Register		38	bit	Св7*	CB6	CB5	СВ4	СВЗ	CB2	CB1	СВО
	: CBR		during RESET	0	0	0	0	0	0	0	0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
				,	<u> </u>		Ĺ,	MMU Co	ommon	Base Reç	gister
MMU Bank Base Regi	ster	39	bit	BB7*	BB6	BB5	BB4	BB3	BB2	BB1	BBO
	. DDiri		during RESET	0	0	0	0	0	0	0	0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
									MMU Ba	ank Base	Register
MMU Common/Bank	Area Register	3 A	bit	CA3	CA2	CA1	CA0	BA3	BA2	BA1	BAO
	. CDAN		during RESET	1	1	1	1	0	0	0	0
			R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	Ř/W
						MN Are	/U Com a Regist	mon ær		- MMU Area	Bank Register
Operation Mode Cont (HD641807 Mask on	trol Register nly) : OMCR	3 E	bit	LIRE	LIRTE	·IOC	-	-	_	-	_
			during RESET	1	1	1	1	1	1	1	1
			R/W	R/W	L w	R/W					
					LIR Enat	LIR Ten ble	I/O Con nporary	npatibility Enable	ý		
I/O Control Register		3 F									
	: ICR		bit	IOA7	IOA6	IOSTP	-		-	-	-
			during RESET	0	0	0	1	1		1	1
			K/W	H/W	H/W				l		I
					-I/O Ad	L _{I/C} dress) Stop				

* These MMU registers are expanded from 7 bits to 8 bits in the package version of CP-68, and FP-80B.

HD64180 Hardware Manual

Publication Date:	1st Edition, August 1985
	4th Edition, March 1989
Published by:	Semiconductor and IC Div.
	Hitachi, Ltd.
Edited by:	Application Engineering Dept.
	Hitachi Microcomputer System Ltd.
Copyright 🛈 Hita	chi, Ltd., 1985. All rights reserved. Printed in Japan.

HITACHI, LTD. SEMICONDUCTOR AND INTEGRATED CIRCUITS DIVISION SALES OFFICE

HEAD QUARTERS

Semiconductor & IC Div. Karukozaka MN Bldg., 2-1, Ageba-cho, Shinjuku-ku, Tokyo 162, Japan Tel: Tokyo (03) 3266-9376 Fax: (03) 3235-2375

USA

Headquarters

Hitachi America, Ltd. Semiconductor & IC Div. 2000 Sierra Point Parkway Brisbane, CA. 94005-1819 Tel: 415-589-8300 Fax: 415-583-4207

Northwest Regional Office

1900 McCarthy Boulevard Milpitas, CA. 95131 Tel: 408-954-8100 Fax: 408-954-0499

Southwest Regional Office

18300 Von Karman Avenue, Suite 730 Irvine, CA. 92715 Tel: 714-553-8500 Fax: 714-553-8561

South Central Regional Office

2 Lincoln Centre, Suite 865 5420 LBJ Freeway Dallas, TX. 75240 Tel: 214-991-4510 Fax: 214-991-6151

Mid Atlantic Regional Office

1700 Galloping Hill Road Kenilworth, NJ. 07033 Tel: 201-245-6400 Fax: 201-245-6071

North Central Regional Office

500 Park Boulevard, Suite 415 Itasca, IL. 60143 Tel: 312-773-4864 Fax: 312-773-9006

Northeast Regional Office

77 Bedford St. Burlington, MA. 01803 Tel: 617-229-2150 Fax: 617-229-6554

Automotive Regional Office

6 Parklane Boulevard, Suite 558 Dearborn, MI. 48126 Tel: 313-271-4410 Fax: 313-271-5707

EUROPE (CE) Headquarters

Hitachi Europe GmbH Electronic Components Div. Central Europe Headquarters Hans-Pinsel-Straße 10A 8013 Haar bei München, F. R. Germany Tel: 089-46140 Fax: 089-463068

Branch Office

Hitachi Europe GmbH Electronic Components Div. Central Europe Headquarters Breslauer Straße 6 4040 Neuss 1, F. R. Germany Tel: 02101-15027 to 9 Fax: 02101-10513

Hitachi Europe GmbH Electronic Components Div. Central Europe Headquarters Verkaufsbüro Stuttgart Fabrikstraße 17 7024 Filderstadt 4, F. R. Germany Tel: 0711-772011 Fax: 0711-7775116

Hitachi Europe GmbH Electronic Components Div. Bureau de représentation en France Immeuble "Les Gemeaux" 2, Rue Antoine Etex F-94020 Creteil Cedex, France Tel: 1-43394500 Fax: 1-43398493

Hitachi Europe GmbH Electronic Components Div. 00158 Roma Via Pescosolido, 154, Italy Tel: 06-4510146, 4510147 Fax: 06-4510148 Hitachi Europe GmbH Electronic Components Div. Via L. Rizzo 8 I-20151 Milano, Italy Tel: 02-33404180 Fax: 02-33404152

EUROPE (NE)

Headquarters Hitachi Europe Ltd.

Electronic Components Div. Northern Europe Headquarters Whitebrook Park Lower Cookham Road Maidenhead Berkshire SL6 8YA, United Kingdom Tel: 0628-585000 Fax: 0628-778322

Branch Office

Hitachi Europe Ltd. Electronic Components Div. Northern Europe Headquarters Haukadalsgatan 10 Box 1062, S-164 21 Kista, Sweden Tel: 08-751-0035 Fax: 08-751-5073

ASIA

Headquarters Hitachi Asia Pte. Ltd. 78 Shenton Way #11-01 Singapore 0207 Tel: 221-6131, 7355 Fax: 225-4225, 221-4474

Branch Office

Hitachi Asia Pte. Ltd. Taipei Branch Office 9 th Fl. –1 No.64, Tun–Hwa N. Road Taipei Financial Center Taipei, Taiwan Tel: 02-741-4021 to 6 Fax: 02-752-1567

ASIA(HK)

Headquarters

Hitachi Asia (Hong Kong) Ltd. Unit 706, North Tower, World Finance Centre, Harbour City Canton Road, Tsimshatsui, Kowloon Hong Kong Tel: 852-7359218 Fax: 852-7306071

Branch Office

Hitachi Asia (Hong Kong) Ltd. Seoul Branch Office 18 Floor Kukje Center Building 191, 2-Ka, Hanggang–Ro Yongsan-Ku, Seoul, Korea Tel: 796-3115, 3647 to 8 Fax: 796-2145

Hitachi Asia (Hong Kong) Ltd. Beijing Office Room 1412, Beijing Fortune Building, 5 Dong San Huan Bei-lu, Chaoyang District, Beijing People's Republic of China Tel: 501-4351-4 Fax: 501-4350

