SNOIIVOITddV ⿹NISSEЭOYd
TVNOIS כOTVNV YO』 SOI YVENIT 2 3 Vive
 Hy $=$ 5 2
+
0
0 $\frac{8}{5}$ 63
I
3
$\frac{1}{1}$
$\frac{1}{10}$ Transistor Arrays, and Special Analog Circuits

un :Hillics

 FOR ANALOG SIENAL PROCESSING - APPLIGATIONS * $+00_{0}^{2} 0$

TECHNICAL ASSISTANCE

Harris Marketing Support Services (HMSS)

HMSS provides world-class service to customers requiring information on all products offered by Harris Semiconductor. Ask Harris Marketing Support Services for answers concerning:

- Product Identification
- Distributor Stocking Levels
- Availability
- Requests for Literature and Samples
- Competitive and Obsolete Cross-Reference

HMSS services are available from 8:00am to 8:00pm EST. Within the United States, call 1-800-4HARRIS. Callers from outside the United States, dial (407) 727-9207.

HMSS is the initial contact for customers who need technical assistance with the selection and use of our products. Callers have the option to be connected directly to the Central Applications Group.

Central Applications

Ask our experienced staff of engineers for assistance with:

- Device Selection
- Specification Interpretation
- Applications for Any Harris Product

Central Applications serves you Monday through Thursday 8:00am to 7:00pm and Friday 8:00am to 5:00pm EST. Within the United States, call 1-800-4HARRIS. Callers from outside the United States dial (407) 727-9207.

Central Applications' knowledge of our portfolio can provide you with a total system design solution using the latest Harris devices!

Electronic Technical Support

Electronic services from Harris Semiconductor offer you the most current information possible.

http://www.semi.harris.com

- Latest Literature Revisions
- New Product Listing
- Product Information
- Design Support
- Contact Information
(407) 724-7800
- Latest Literature Revisions
- New Product Listing
- Data Book Request Form
centapp @ harris.com, or 1-800-4HARRIS
- Technical Application Assistance

HARRIS LINEAR PRODUCTS

Harris Semiconductor is a pioneer in developing and producing advanced Linear products for the most demanding Commercial, Industrial and Automotive applications worldwide. Harris offers an extensive line of Linear components including: High Speed and General Purpose Op Amps, Comparators, Sample/Hold Amps, Video Crosspoint Switches, Special Analog Circuits and Transistor Arrays.

This data book fully describes Harris Semiconductor's Linear ICs. It includes a complete set of data sheets for product specifications, application notes with design details for specific applications of Harris products, and a description of the Harris Quality and Reliability program. Section 12, Harris' On-Line Services, describes how our customers have access to the most recent technical updates.

It is our intention to provide you with the most up-to-date information on Linear Products. For complete, current and detailed technical specifications on any Harris devices, please contact the nearest Harris sales, representative or distributor office, listed in Section 13; or direct literature requests to:

Harris Semiconductor Data Services Department

P.O. Box 883, MS 53-204

Melbourne, FL 32902
Phone: 1-800-442-7747
Fax: 407-724-7240
For a complete listing of all Harris Semiconductor products, please refer to the Product Selection Guide (PSG201; ordering information above).

See Section 12 for Harris' On-Line Services

Abstract

Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its subsidiaries.

LINEAR INTEGRATED CIRCUITS

FOR COMMERCIAL AND INDUSTRIAL APPLICATIONS

| New Products | 1 |
| ---: | :--- | :--- |
| Table of Contents and General Information | 2 |
| *Operational Amplifiers | 3 |
| *Comparators | 4 |
| *Sample and Hold Amplifiers | 5 |
| *Video Crosspoint Switches | 6 |
| *Transistor and Diode Arrays, and Differential Amplifiers | 7 |
| Special Analog Circuits | 8 |
| Harris Quality and Reliability | 9 |
| Application Notes, Abstracts and Spice Model Listing | 10 |
| Packaging Information | 11 |
| Harris' On-Line Services | 12 |
| Sales Offices | 13 |

*A Product Selection Guide is located at the beginning of the section.

NEW PRODUCTS
PAGE
VIDEO OP AMPS AND BUFFERS 1-3
SAMPLE/HOLD 1-5
PIN DRIVER 1-6
WIRELESS COMMUNICATIONS 1-6
VIDEO CROSSPOINT SWITCHES 1-7

VIDEO OP AMPS AND BUFFERS

HFA1109 LOW POWER, WIDEBAND, VIDEO OP AMP	HFA1145 LOW POWER VIDEO OP AMP WITH DISABLE
AnswerFAX DOCUMENT \# 4019 - Wide -3dB Bandwidth . 550MHz - High Slew Rate . $1200 \mathrm{~V} / \mathrm{\mu s}$ - Gain Flatness to 250 MHz $\pm 0.5 \mathrm{~dB}$ - Fast Settling Time (0.1\%). 17ns - Differential Gain/Phase 0.02\%/0.02 Degrees - Low Supply Current . 10 mA - 8 Lead PDIP and SOIC	AnswerFAX DOCUMENT \# 3955 - -3dB Bandwidth. \qquad 330 MHz - High Slew Rate . 1000V/ $\mu \mathrm{s}$ - Differential Gain/Phase 0.02\%/0.03 Degrees - Gain Flatness to 75 MHz . $\pm 0.1 \mathrm{~dB}$ - Low Supply Current. . 6 mA - Output Enable/Disable ($T_{\text {ON }} / T_{\text {OFF }}=180 \mathrm{~ns} / 35 n \mathrm{n}$) - 8 Lead PDIP and SOIC
HFA1105 LOW POWER VIDEO OP AMP	HFA1113 PROG. GAIN VIDEO BUFFER WITH OUTPUT LIMITING
AnswerFAX DOCUMENT \# 3395 - -3dB Bandwidth ($\mathrm{A}_{\mathrm{V}}=+2$) 330MHz - High Slew Rate . $1000 \mathrm{~V} /$ / s - Gain Flatness to 75 MHz. $\pm 0.1 \mathrm{~dB}$ - Fast Settling Time (0.1%). 15 ns - Differential Gain/Phase 0.02\%/0.03 Degrees - Low Supply Current . $6 m A$ - 8 Lead PDIP and SOIC	AnswerFAX DOCUMENT \# 1342 - Wide -3dB Bandwidth . 850 MHz - High Slew Rate . 2400V/us - Differential Gain/Phase 0.02\%/0.04 Degrees - User Programmable Gain of $+2, \pm 1$ - User Programmable Output Limiting - 8 Lead PDIP and SOIC
VIDEO OP AMP WITH EXTERNAL COMPENSATION	HFA1114 CABLE DRIVING BUFFER WITH SUMMING NODE
AnswerFAX DOCUMENT \# 3922 - -3dB Bandwidth . 315MHz - High Slew Rate . $700 \mathrm{~V} / \mu \mathrm{s}$ - Differential Gain/Phase. 0.02\%/0.05 Degrees - Low Supply Current . 5.8mA - Compensation Pin for Bandwidth Limiting - 8 Lead PDIP and SOIC	AnswerFAX DOCUMENT \# 3151 - Wide -3dB Bandwidth . 850 MHz - High Slew Rate . $2400 \mathrm{~V} / \mathrm{\mu s}$ - Differential Gain/Phase 0.02\%/0.04 Degrees - User Programmable Gain (+2, ± 1) - Summing Node Pinout Enables Tailoring of System Response For Cable Length - 8 Lead PDIP and SOIC
HFA1149 LOW POWER, WIDEBAND OP AMP WITH OUTPUT DISABLE	HA4600 400MHz VIDEO BUFFER WITH OUTPUT DISABLE AnswerFAX DOCUMENT \# 3990
AnswerFAX DOCUMENT \# 4019 - Wide -3dB Bandwidth . 550 5Hz - High Slew Rate . $1200 \mathrm{~V} /$ /s - Gain Flatness to 250 MHz $\pm 0.5 \mathrm{~dB}$ - Differential Gain/Phase 0.02\%/0.02 Degrees - Low Supply Current . 10 mA - Fast Enable/Disable Times18ns/11ns - 8 Lead PDIP and SOIC	- Symmetrical Slew Rates . 1700V/ $/$ s - 0.1dB Gain Flatness . \qquad 250MHz - Off Isolation (100 MHz) . 85dB - Differential Gain and Phase 0.01\%/0.01Degrees - High ESD Rating . >2000V - 8 Lead PDIP and SOIC

AnswerFAX DOCUMENT \# 3653

- -3dB Bandwidth
- High Slew Rate .
- Fast Settling Time (0.1\%). 15ns
- Differential Gain/Phase 0.02\%/0.04 Degrees
- Low Supply Current .7mA
- User Programmable Output Limiting
- Fast Overdrive Recovery
<1 ns
- 8 Lead PDIP and SOIC

HFA1115
 LOW POWER PROGRAMMABLE GAIN VIDEO BUFFER

AnswerFAX DOCUMENT \# 3606

- -3dB Bandwidth

225 MHz

- High Slew Rate . $1100 \mathrm{~V} / \mu \mathrm{s}$
- Differential Gain/Phase 0.02\%/0.03 Degrees
- User Programmable Gain $(+2, \pm 1)$
- User Programmable Output Limiting
- Low Supply Current

7 mA

- 8 Lead PDIP and SOIC

HFA1205
 DUAL LOW POWER VIDEO OP AMP

AnswerFAX DOCUMENT \# 3605

- -3dB Bandwidth ($A_{V}=+2$)

400 MHz

- High Slew Rate

1275V/ $\mu \mathrm{s}$

- Differential Gain/Phase \qquad 0.03\%/0.03 Degrees
- Low Supply Current

6mA/Op Amp

- Gain Flatness to 50 MHz $\pm 0.03 \mathrm{~dB}$
- 8 Lead PDIP and SOIC

HFA1212
DUAL PROGRAMMABLE GAIN VIDEO BUFFER
AnswerFAX DOCUMENT \# 3607

- -3dB Bandwidth $\left(A_{V}=+2\right)$. 350MHz
- High Slew Rate . 1100V/ $\mu \mathrm{s}$
- Differential Gain/Phase. 0.02\%/0.02 Degrees
- User Programmable Gain $(+2, \pm 1)$
- Low Supply Current 6mA/Op Amp
- 8 Lead PDIP and SOIC

HFA1245
 DUAL LOW POWER VIDEO AMP WITH DISABLE

AnswerFAX DOCUMENT \# 3682

- High Slew Rate . $1050 \mathrm{~V} / \mu \mathrm{s}$
- Differential Gain/Phase 0.02\%/0.03 Degrees

- Low Supply Current. 6mA/Op Amp
- Output Enable/Disable ($\mathrm{T}_{\mathrm{ON}} / \mathrm{T}_{\text {OFF }}=160 \mathrm{~ns} / 20 \mathrm{~ns}$)
- 14 Lead PDIP and SOIC

- 14 Lead PDIP and SOIC

HA5023/HA5013/HA5025 DUALTRIPLE/QUAD VIDEO OP AMPS

AnswerFAX DOCUMENT \# 3393/3654/3591

- -3dB Bandwidth. 125 MHz
- Slew Rate . 475V/ $/$ s
- Differential Gain/Phase 0.03\%/0.03 Degrees
- High ESD Protection . 4000V
- Low Supply Current. 7.5mA/Op Amp
- $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ Operation
- PDIP and SOIC

```
    HA-5020/HA5022/HA5024
SINGLE/DUAL/QUAD VIDEO OP AMP WITH DISABLE
```

AnswerFAX DOCUMENT \# 2845/3392/3550

- -3dB Bandwidth 125 MHz
- Differential Gain/Phase. 0.03\%/0.03 Degrees
- High ESD Protection 4000V
- Low Supply Current 7.5mA/Op Amp
- $\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ Operation

```- Individual Output Disable/Enable- PDIP and SOIC
```


SAMPLE/HOLD

HA5351

FAST ACQUISITION SAMPLE/HOLD

AnswerFAX DOCUMENT \# 3690

- Fast Acquisition to 0.01%. 70ns
- Low Offset Error . $2 m V$
- Low Pedestal Error . 10 mV
- Low Droop Rate. $2 \mu \mathrm{~V} / \mu \mathrm{s}$
- Wide Unity Gain Bandwidth. 40 MHz
- Low THD (Hold Mode). -72dBc
- Low Power Dissipation. 220mW
- 8 Lead PDIP and SOIC

HFA5251
ULTRA HIGH SPEED ATE PIN DRIVERS

AnswerFAX DOCUMENT \# 3689

- High ECL Data Rate

800 MHz

- $1 V_{\text {p-p }}$ Rise/Fall Time . 500ps
- Precise Output Impedance . 50Ω
- Output Swing . -2V to +7V
- High Impedance Three-State Output Control
- Die Form Only

HFA5253 ULTRA HIGH SPEED ATE PIN DRIVER

AnswerFAX DOCUMENT \# 4003

- High ECL Data Rate . 800 MHz
- $1 V_{\text {P-p }}$ Rise/Fall Time . 500ps
- Wide Output Swing . -3 V to +8 V
- Precise Output Impedance . 50Ω
- HIZ Output Leakage . 100nA
- Slew Rate Control
- 20 Lead Power SOIC and Die

WIRELESS COMMUNICATIONS

HFA3046, HFA3096, HFA3127, HFA3128 ULTRA HIGH FREQUENCY TRANSISTOR ARRAYS

AnswerFAX DOCUMENT \# 3076

- NPN Transistor F_{T}. 8GHz
- NPN Current Gain (h $h_{\text {FE }}$). 70
- PNP Transistor F_{T}. 5.5 GHz
- PNP Current Gain (h_{FE}) . 40
- 14 Lead SOIC (HFA3046)
- 16 Lead SOIC (HFA3096, HFA3127, HFA3128)

HFA3101
GILBERT CELL TRANSISTOR ARRAY

AnswerFAX DOCUMENT \# 3663

- NPN Transistor Array Configured as a Gilbert Cell
- High Gain Bandwidth Product 10GHz
- High Power Gain BW Product 5GHz
- Current Gain (h_{FE}) . 70
- Low Collector Leakage Current <0.01nA
- Pin Compatible to UPA101
- 8 Lead SOIC

HFA3102 DUAL DIFFERENTIAL AMPLIFIER

AnswerFAX DOCUMENT \# 3635

- High Gain Bandwidth Product 10GHz
- High Power Gain BW Product 5GHz
- High Current Gain ($h_{\text {FE }}$) . 70
- Noise Figure (Transistor) . 3.5dB
- Low Collector Leakage Current $<0.01 n A$
- Excellent $h_{\text {FE }}$ and $V_{B E}$ Matching
- Pin Compatible to UPA102G
- 14 Lead SOIC

VIDEO CROSSPOINT SWITCHES

HA4201
 WIDEBAND CROSSPOINT SWITCH WITH TALLY OUTPUT

AnswerFAX DOCUMENT \# 3680

- Low Power Dissipation. 105mW
- Symmetrical Slew Rates 1700V/ $\mu \mathrm{s}$
- 0.1dB Gain Flatness . 250MHz
- Off Isolation (100 MHz) . 85dB
- Differential Gain
0.01\%
- Differential Phase
0.01 Degrees
- 8 Lead PDIP and SOIC

HA4244 WIDEBAND CROSSPOINT SWITCH WITH LATCHED CONTROL SIGNAL	
AnswerFAX DOCUMENT \# 4078	
Synchronous Enable Control (Latched)	
- Low Power Dissipation. 105mW	
Symmetrical Slew Rates \qquad $1700 \mathrm{~V} / \mu \mathrm{s}$	
- 0.1dB Gain Flatness . 250MHz	
- Off Isolation (100MHz) . 85dB	
- Differential Gain . 0.01\%	
- Differential Phase. 0.01 Degrees	
- 8 Lead SOIC	

- 8 Lead SOIC

HA4314B
 $400 \mathrm{MHz} 4 \times 1$, VIDEO CROSSPOINT SWITCH

AnswerFAX DOCUMENT \# 3679

- Low Power Dissipation. 105mW
- Symmetrical Slew Rates 1400V/ Hs
- 0.1dB Gain Flatness . 100MHz
- Differential Gain/Phase 0.01\%/0.01 Degrees
- Pin Compatible to GX4314/L
- 14 Lead PDIP and SOIC

HA4344B
400MHz 4×1,
VIDEO CROSSPOINT SWITCH

AnswerFAX DOCUMENT \# 3956

- Synchronous Controls (Latched)
- Low Power Dissipation.

105 mW

- Symmetrical Slew Rates

1400V/us

- 0.1dB Gain Flatness . 165 MHz
- Differential Gain/Phase 0.01\%/0.01 Degrees
- 16 Lead PDIP and SOIC

HA4404B 400MHz 4×1, VIDEO CROSSPOINT SWITCH

AnswerFAX DOCUMENT \# 3678

- Open Collector Tally Outputs
- Low Power Dissipation

105 mW

- Symmetrical Slew Rates .
- 0.1dB Gain Flatness . 165MHz
- Differential Gain/Phase 0.01\%/0.01 Degrees
- 16 Lead PDIP and SOIC

HA455 HIGH PERFORMANCE 8×8 VIDEO CROSSPOINT SWITCH

AnswerFAX DOCUMENT \# 4244

- Fully Buffered Inputs and Outputs ($A_{V}=+1$)
- Wide -3dB Bandwidth 130 MHz
- Slew Rate 250V/ $\mu \mathrm{s}$
- Differential Gain/Phase 0.02\%/0.02 Degrees
- Crosstalk (at 10 MHz)
-60dB
- 44 Lead MQFP

HA456
 80MHz, LOW POWER 8×8 VIDEO CROSSPOINT SWITCH

AnswerFAX DOCUMENT \# 4153

- Fully Buffered Inputs and Outputs $\left(A_{V}=+1\right)$
- -3dB Bandwidth.

80 MHz

- Slew Rate . $170 \mathrm{~V} / \mathrm{\mu s}$
- Differential Gain/Phase 0.04\%/0.2 Degrees
- Crosstalk (at 10 MHz) -60dB
- 44 Lead PLCC and MQFP

HA457
 WIDEBAND, $A_{V}=2,8 \times 8$ VIDEO CROSSPOINT SWITCH

AnswerFAX DOCUMENT \# 4231

- Fully Buffered Inputs and Outputs $\left(A_{V}=+2\right)$
- Wide -3dB Bandwidth . 150MHz
- Slew Rate . 350V/ s
- Differential Gain/Phase 0.01\%/0.02 Degrees
- Crosstalk (at 10MHz) . -60dB
- 44 Lead MQFP

TABLE OF CONTENTS AND GENERAL INFORMATION

PAGE
ALPHA NUMERIC PRODUCT INDEX 2-3
PRODUCT INDEX BY FAMILY 2-11
COMMERCIAL LINEAR PRODUCT CROSS REFERENCE 2-16
DATA ACQUISITION PRODUCTS 2-37
DIGITAL SIGNAL PROCESSING PRODUCTS $2-42$

Alpha Numeric Product Index

CA124 Quad, 1 MHz , Operational Amplifier for Commercial, Industrial, and Military Applications 3-17
CA139 Quad Voltage Comparator for Industrial, Commercial and Military Applications 4-3
CA1391 TV Horizontal Processor
CA1394 TV Horizontal Processor 8-9
CA139A Quad Voltage Comparator for Industrial, Commercial and Military Applications 4-3
CA1458 Single and Dual, High Gain Operational Amplifier for Military, Industrial and Commercial Applications 3-29
CA1558 Single and Dual, High Gain Operational Amplifier for Military, Industrial and Commercial Applications 3-29
CA158 Dual, 1 MHz , Operational Amplifier for Commercial Industrial, and Military Applications 3-22
CA158A Dual, 1 MHz , Operational Amplifier for Commercial Industrial, and Military Applications 3-22
CA2111A FM IF Amplifier-Limiter and Quadrature Detector 8-13
CA224 Quad, 1 MHz , Operational Amplifier for Commercial, Industrial, and Military Applications 3-17
CA239 Quad Voltage Comparator for Industrial, Commercial and Military Applications 4-3
CA239A Quad Voltage Comparator for Industrial, Commercial and Military Applications 4-3
CA258 Dual, 1 MHz , Operational Amplifier for Commercial Industrial, and Military Applications 3-22
CA258A Dual 1 MHz Operational Amplifier for Commercial Industrial, and Military Applications 3-22
CA2904 Dual, 1 MHz , Operational Amplifier for Commercial Industrial, and Military Applications 3-22
CA3012 FM IF Wideband Amplifier 8-18
CA3018 General Purpose Transistor Array 7-5
CA3018A General Purpose Transistor Array 7-5
CA3020 8MHz Power Amp For Military, Industrial and Commercial Equipment 3-34
CA3020A 8MHz Power Amp For Military, Industrial and Commercial Equipment 3-34
CA3028A Differential/Cascode Amplifier for Commercial and Industrial Equipment from DC to 120 MHz 7-6
CA3028B Differential/Cascode Amplifier for Commercial and Industrial Equipment from DC to 120 MHz 7-6
CA3039 Diode Array 7-18
CA3045 General Purpose NPN Transistor Array 7-22
CA3046 General Purpose NPN Transistor Array 7-22
CA3049 Dual High Frequency Differential Amplifier For Low Power Applications Up to 500 MHz 7-28
CA3053 Differential/Cascode Amplifier for Commercial and Industrial Equipment from DC to 120 MHz 7-6
СА3054 Dual Independent Differential Amp for Low Power Applications from DC to 120 MHz 7-37
CA3060 110kHz, Operational Transconductance Amplifier Array 3-35
СА3078 2 kHz , Micropower Operational Amplifier 3-36
CA3078A 2 kHz , Micropower Operational Amplifier 3-36PAGE

Alpha Numeric Product Index (Continuea)

PAGE
CA3080 2 MHz , Operational Transconductance Amplifier (OTA) 3-45
CA3080A 2 MHz , Operational Transconductance Amplifier (OTA) 3-45
CA3081 General Purpose High Current NPN Transistor Array 7-45
CA3082 General Purpose High Current NPN Transistor Array 7-45
САЗ083 General Purpose High Current NPN Transistor Array 7-48
CA3086 General Purpose NPN Transistor Array 7-52
CA3088E AM Receiver Subsystem and General-Purpose Amplifier Array 8-23
CA3089 FM IF System 8-27
CA3094 30 MHz , High Output Current Operational Transconductance Amplifier (OTA) 3-56
CA3094A 30 MHz , High Output Current Operational Transconductance Amplifier (OTA) 3-56
CA3094B 30 MHz , High Output Current Operational Transconductance Amplifier (OTA) 3-56
CA3096 NPN/PNP Transistor Array 7-57
CA3096A NPN/PNP Transistor Array 7-57
CA3096C NPN/PNP Transistor Array 7-57
CA3098 Programmable Schmitt Trigger with Memory, Dual Input Precision Level Detector 4-9
CA3100 38MHz, Operational Amplifier 3-57
CA3102 Dual High Frequency Differential Amplifier For Low Power Applications Up to 500MHz 7-28
CA3126 TV Chroma Processor 8-33
CA3127 High Frequency NPN Transistor Array 7-69
CA3130 15 MHz , BiMOS Operational Amplifier with MOSFET Input/CMOS Output 3-64
CA3130A 15 MHz , BiMOS Operational Amplifier with MOSFET Input/CMOS Output 3-64
CA3140 $\quad 4.5 \mathrm{MHz}$, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output 3-79
CA3140A 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output 3-79
CA3141 High-Voltage Diode Array For Commercial, Industrial and Military Applications 7-75
CA3146 High-Voltage Transistor Array 7-76
CA3146A High-Voltage Transistor Array 7-76
CA3154 TV Sync/AGC/Horizontal Signal Processor 8-42
CA3160 4MHz, BiMOS Operational Amplifier with MOSFET Input/CMOS Output 3-98
CA3160A 4MHz, BiMOS Operational Amplifier with MOSFET Input/CMOS Output 3-98
CA3183 High-Voltage Transistor Array 7-76
CA3183A High-Voltage Transistor Array 7-76
CA3189 FM IF System 8-48

Alpha Numeric Product Index (conitineed)

		PAGE
CA3193	1.2MHz, BiCMOS Precision Operational Amplifier	3-114
CA3193A	1.2MHz, BiCMOS Precision Operational Amplifier	3-114
CA3224E	Automatic Picture Tube Bias Control Circuit	8-56
CA3227	High-Frequency NPN Transistor Array For Low-Power Applications at Frequencies Up to 1.5 GHz	7-84
CA324	Quad, 1 MHz , Operational Amplifier for Commercial, Industrial, and Military Applications	3-17
CA3240	Dual, 4.5 MHz , BiMOS Operational Amplifier with MOSFET Input/Bipolar Output	3-115
CA3240A	Dual, 4.5 MHz , BiMOS Operational Amplifier with MOSFET Input/Bipolar Output	3-115
CA3246	High-Frequency NPN Transistor Array For Low-Power Applications at Frequencies Up to 1.5 GHz	7-84
CA3256	25MHz, BiMOS Analog Video Switch and Amplifier	8-61
CA3260	4 MHz , BiMOS Operational Amplifier with MOSFET Input/CMOS Output	3-129
CA3260A	4 MHz , BiMOS Operational Amplifier with MOSFET Input/CMOS Output	3-129
CA3280	Dual, 9MHz, Operational Transconductance Amplifier (OTA)	3-132
CA3280A	Dual, 9MHz, Operational Transconductance Amplifier (OTA	3-132
CA3290	BiMOS Dual Voltage Comparator with MOSFET Input, Bipolar Output	4-10
CA3290A	BiMOS Dual Voltage Comparator with MOSFET Input, Bipolar Output	4-10
CA339	Quad Voltage Comparator for Industrial, Commercial and Military Applications	4-3
CA339A	Quad Voltage Comparator for Industrial, Commercial and Military Applications	4-3
CA3420	0.5 MHz , Low Supply Voltage, Low Input Current BiMOS Operational Amplifier	3-141
CA3420A	0.5 MHz , Low Supply Voltage, Low Input Current BiMOS Operational Amplifier	3-141
CA3440	63 kHz , Nanopower, BiMOS Operational Amplifier	3-142
CA3440A	63 kHz , Nanopower, BiMOS Operational Amplifier	3-142
CA3450	220 MHz , Video Line Driver, High Speed Operational Amplifier	3-143
CA358	Dual, 1 MHz , Operational Amplifier for Commercial Industrial, and Military Applications	3-22
CA358A	Dual, 1 MHz , Operational Amplifier for Commercial Industrial, and Military Applications	3-22
CA5130	15 MHz , BiMOS Microprocessor Operational Amplifier with MOSFET Input/CMOS Output	3-144
CA5130A	15 MHz , BiMOS Microprocessor Operational Amplifier with MOSFET Input/CMOS Output	3-144
CA5160	4 MHz , BiMOS Microprocessor Operational Amplifier with MOSFET Input/CMOS Output	3-145
CA5160A	4 MHz , BiMOS Microprocessor Operational Amplifier with MOSFET Input/CMOS Output	3-145
CA5260	3 MHz , BiMOS Microprocessor Operational Amplifier with MOSFET Input/CMOS Output	3-146
CA5260A	3 MHz , BiMOS Microprocessor Operational Amplifier with MOSFET Input/CMOS Output	3-146
CA5420	0.5 MHz , Low Supply Voltage, Low Input Current BiMOS Operational Amplifier	3-150
CA5420A	0.5MHz, Low Supply Voltage, Low Input Current BiMOS Operational Amplifier	3-150

Alpha Numeric Product Index (Conitinued)

PAGE
CA5470 Quad, 14 MHz , Microprocessor BiMOS-E Operational Amplifier with MOSFET Input/Bipolar Output 3-156
CA555 Timer for Timing Delays and Oscillator Application in Commercial, Industrial and Military Equipment 8-3
CA555C Timer for Timing Delays and Oscillator Application in Commercial, Industrial and Military Equipment 8-3
CA741 Single and Dual, High Gain Operational Amplifier for Military, Industrial and Commercial Applications 3-29
CA741C Single and Dual, High Gain Operational Amplifier for Military, Industrial and Commercial Applications 3-29
CD22402 Sync Generator for TV Applications and Video Processing Systems 8-62
HA-2400 40 MHz , PRAM Four Channel Programmable Amplifier 3-161
HA-2404 40 MHz , PRAM Four Channel Programmable Amplifier 3-161
HA-2405 40MHz, PRAM Four Channel Programmable Amplifier 3-161
HA-2406 30MHz, Digitally Selectable Four Channel Operational Amplifier 3-167
HA-2420 3.2μ s Sample and Hold Amplifier 5-3
HA-2425 $3.2 \mu \mathrm{~s}$ Sample and Hold Amplifier 5-3
HA-2444 50 MHz , Selectable, Four Channel Video Operational Amplifier 3-173
HA-2500 12 MHz , High Input Impedance, Operational Amplifier 3-174
HA-2502 12MHz, High Input Impedance, Operational Amplifier 3-174
HA-2505 12 MHz , High Input Impedance, Operational Amplifier 3-174
HA-2510 12 MHz , High Input Impedance, Operational Amplifier 3-181
HA-2512 12 MHz , High Input Impedance, Operational Amplifier 3-181
HA-2515 12 MHz , High Input Impedance, Operational Amplifier 3-181
HA-2520 20 MHz , High Slew Rate, Uncompensated, High Input Impedance, Operational Amplifier 3-188
HA-2522 20 MHz , High Slew Rate, Uncompensated, High Input Impedance, Operational Amplifier 3-188
HA-2525 20 MHz , High Slew Rate, Uncompensated, High Input Impedance, Operational Amplifier 3-188
HA-2529 20 MHz , High Input Impedance, High Slew Rate Operational Amplifier 3-196
HA-2539 600 MHz , Very High Slew Rate Operational Amplifier 3-197
HA-2540 400 MHz , Fast Settling Operational Amplifier 3-205
HA-2541 40MHz, Fast Settling, Unity Gain Stable, Operational Amplifier 3-213
HA-2542 70 MHz , High Slew Rate, High Output Current Operational Amplifier 3-222
HA-2544 50 MHz , Video Operational Amplifier 3-233
HA-2546 30 MHz , Voltage Output, Two Quadrant Analog Multiplier 8-73
HA-2547 100 MHz , Two Quadrant, Current Output, Analog Multiplier 8-87
HA-2548 150 MHz , High Slew Rate, Precision Operational Amplifier 3-244
HA-2556 57 MHz , Wideband, Four Quadrant, Voltage Output Analog Multiplier 8-88

Alpha Numeric Product Index (continues)

PAGE
HA-2557130 MHz , Four Quadrant, Current Output Analog Multiplier8-102
HA-260012 MHz , High Input Impedance Operational Amplifier3-245
HA-2602
HA-2605
HA-2620HA-2625
HA-2640
HA-2645
HA-2839HA-2840
HA-2841
HA-2842
HA-2850
HA4201
HA4244HA4314BHA4344B
HA4404BHA455HA456
HA-4741
HA-4900
HA-4905HA-5002
HA-5004
HA501312MHz, High Input Impedance Operational Amplifier3-245
12 MHz , High Input Impedance Operational Amplifier 3-245
100 MHz , High Input Impedance, Very Wideband, Uncompensated Operational Amplifier 3-252
HA-2622 100 MHz , High Input Impedance, Very Wideband, Uncompensated Operational Amplifier 3-252
100 MHz , High Input Impedance, Very Wideband, Uncompensated Operational Amplifier 3-252
4 MHz , High Supply Voltage Operational Amplifier 3-259
4 MHz , High Supply Voltage Operational Amplifier 3-259
600 MHz , Very High Slew Rate Operational Amplifier 3-265
600 MHz , Very High Slew Rate Operational Amplifier 3-266
50 MHz , Fast Settling, Unity Gain Stable, Video Operational Amplifier 3-273
80MHz, High Slew Rate, High Output Current, Video Operational Amplifier 3-281
470MHz, Low Power, High Slew Rate Operational Amplifier 3-290
$480 \mathrm{MHz}, 1 \times 1$ Video Crosspoint Switch with Tally Output 6-3
480MHz, 1×1 Video Crosspoint Switch with Synchronous Enable 6-10
$400 \mathrm{MHz}, 4 \times 1$ Video Crosspoint Switch 6-16
350MHz, 4×1 Video Crosspoint Switch with Synchronous Controls 6-23
$330 \mathrm{MHz}, 4 \times 1$ Video Crosspoint Switch with Tally Outputs 6-26
$130 \mathrm{MHz}, 8 \times 8$ Video Crosspoint Switch 6-33
80 MHz , Low Power, 8×8 Video Crosspoint Switch 6-34
HA457 $170 \mathrm{MHz}, A_{V}=+2,8 \times 8$ Video Crosspoint Switch 6-35
HA4600 480 MHz Video Buffer with Output Disable 6-36
Quad, 3.5MHz, Operational Amplifier 3-291
Precision Quad Comparator 4-18
HA-4902 Precision Quad Comparator 4-18
Precision Quad Comparator 4-18
110 MHz , High Slew Rate, High Output Current Buffer 3-297
100 MHz Current Feedback Amplifier 3-305
Triple, 125 MHz Video Amplifier 3-306
HA-5020 100MHz Current Feedback Video Amplifier with Disable 3-320
HA5022 Dual, 125 MHz , Video Current Feedback Amplifier with Disable 3-340

Alpha Numeric Product Index (coninues)

PAGE
HA5023 Dual 125 MHz Video Current Feedback Amplifier 3-356
HA5024 Quad 125MHz Video Current Feedback Amplifier with Disable 3-370
HA5025 Quad, 125 MHz Video Current Feedback Amplifier 3-386
HA-5033 250MHz Video Buffer 3-399
HA-5101 10 MHz and 100 MHz , Low Noise, Operational Amplifier 3-408
HA-5102 Dual and Quad, 8 MHz and 60 MHz , Low Noise, Operational Amplifier 3-419
HA-5104 Dual and Quad, 8 MHz and 60 MHz , Low Noise, Operational Amplifier 3-419
HA-5111 10 MHz and 100 MHz , Low Noise, Operational Amplifier 3-408
HA-5112 Dual and Quad, 8 MHz and 60 MHz , Low Noise, Operational Amplifier 3-419
HA-5114 Dual and Quad, 8 MHz and 60 MHz , Low Noise, Operational Amplifier 3-419
HA-5127 8.5 MHz , Ultra-Low Noise Precision Operational Amplifier 3-432
HA-5127A 8.5MHz, Ultra-Low Noise Precision Operational Amplifier 3-432
HA-5130 2.5 MHz , Precision Operational Amplifier 3-441
HA-5134 4MHz, Precision, Quad Operational Amplifier 3-450
HA-5135 2.5 MHz , Precision Operational Amplifier 3-441
HA-5137 63MHz, Ultra-Low Noise Precision Operational Amplifier 3-458
HA-5137A 63MHz, Ultra-Low Noise Precision Operational Amplifier 3-458
HA-5142 Dual/Quad, 400 kHz , Ultra-Low Power Operational Amplifier 3-466
HA-5144 Dual/Quad, 400 kHz , Ultra-Low Power Operational Amplifier 3-466
HA-5147 120 MHz , Ultra-Low Noise Precision Operational Amplifier 3-474
HA-5147A 120MHz, Ultra-Low Noise Precision Operational Amplifier 3-474
HA-5160 100 MHz , JFET Input, High Slew Rate, Uncompensated, Operational Amplifier 3-482
HA-5162 100 MHz , JFET Input, High Slew Rate, Uncompensated, Operational Amplifier 3-482
HA-5170 8 MHz Precision, JFET Input Operational Amplifier 3-489
HA-5177 2 MHz , Ultra-Low Offset Voltage Operational Amplifier 3-497
HA-5190 150 MHz , Fast Settling Operational Amplifier 3-498
HA-5195 150 MHz , Fast Settling Operational Amplifier 3-498
HA-5221 100 MHz , Single and Dual, Low Noise, Precision Operational Amplifier 3-506
HA-5222 100 MHz , Single and Dual, Low Noise, Precision Operational Amplifier 3-506
HA-5320 $1 \mu \mathrm{~s}$ Precision Sample and Hold Amplifier 5-12
HA-5330 650ns Precision Sample and Hold Amplifier 5-19
HA-5340 700ns, Low Distortion, Precision Sample and Hold Amplifier 5-24

Alpha Numeric Product Index (conituees)

HA5351 64ns Sample and Hold Amplifier 5-32 5-32
HA7210 10 kHz to 10 MHz , Low Power Crystal Oscillator 8-103
HA7211 10 kHz to 10 MHz , Low Power Crystal Oscillator 8-103
HFA1100 850 MHz , Low Distortion Current Feedback Operational Amplifier 3-518
HFA1102 600 MHz Current Feedback Amplifier with Compensation Pin 3-528
HFA1103 200MHz, Video Op Amp with High Speed Sync Stripper 3-533
HFA1105 330 MHz , Low Power, Current Feedback Video Operational Amplifier 3-539
HFA1106 315 MHz , Low Power, Video Operational Amplifier with Compensation Pin 3-550
HFA1109 550 MHz , Low Power, Current Feedback Operational Amplifier 3-564
HFA1110 750MHz Low Distortion Unity Gain, Closed Loop Buffer 3-565
HFA1112 850 MHz , Low Distortion Programmable Gain Buffer Amplifier 3-573
HFA1113 850 MHz , Low Distortion, Output Limiting, Programmable Gain, Buffer Amplifier 3-585
HFA1114 850MHz Video Cable Driving Buffer 3-600
HFA1115 225 MHz , Low Power, Output Limiting, Closed Loop Buffer Amplifier 3-605
HFA1118 500 MHz Programmable Gain Video Buffer with Output Limiting and Output Disable 3-611
HFA1119 500 MHz Programmable Gain Video Buffer with Output Limiting and Output Disable 3-611
HFA1120 850 MHz , Low Distortion Current Feedback Operational Amplifier 3-518
HFA1130 850MHz, Output Limiting, Low Distortion Current Feedback Operational Amplifier 3-612
HFA1135 360 MHz , Low Power, Video Operational Amplifier with Output Limiting 3-623
HFA1145 330 MHz , Low Power, Current Feedback Video Operational Amplifier with Output Disable 3-628
HFA1149 550 MHz , Low Power, Current Feedback Operational Amplifier 3-564
HFA1205 Dual, 400 MHz , Low Power, Video Operational Amplifier 3-640
HFA1212 Dual 350MHz, Low. Power Closed Loop Buffer Amplifier 3-647
HFA1245 Dual, 530 MHz , Low Power, Video Operational Amplifier with Disable 3-657
HFA1405 Quad, 560 MHz , Low Power, Video Operational Amplifier 3-663
HFA1412 Quad, 350MHz, Programmable Gain Buffer Amplifier 3-676
HFA3046 Ultra High Frequency Transistor Array 7-89
HFA3096 Ultra High Frequency Transistor Array 7-89
HFA3101 Gilbert Cell UHF Transistor Array 7-98
HFA3102 Dual Long-Tailed Pair Transistor Array 7-110
HFA3127 Ultra High Frequency Transistor Array 7-89
HFA3128
PAGE

Alpha Numeric Product Index (continued)

PAGE
HFA5250 500 MHz , Ultra High Speed Monolithic Pin Driver 8-116
HFA5251 800 MHz Monolithic Pin Driver 8-117
HFA5253 800MHz, Ultra High-Speed Monolithic Pin Driver 8-128
ICL7611 1.4MHz, Low Power CMOS Operational Amplifier 3-689
ICL7612 1.4MHz, Low Power CMOS Operational Amplifier 3-689
ICL7621 Dual/Quad, Low Power CMOS Operational Amplifier 3-700
ICL7641 Dual/Quad, Low Power CMOS Operational Amplifier 3-700
ICL7642 Dual/Quad, Low Power CMOS Operational Amplifier 3-700
ICL7650S 2MHz, Super Chopper-Stabilized Operational Amplifier 3-711
ICL8013 1 MHz , Four Quadrant Analog Multiplier 8-145
ICL8038 Precision Waveform Generator/Voltage Controlled Oscillator 8-153
ICM7242 Long Range Fixed Timer 8-163
ICM7555 General Purpose Timer 8-170
ICM7556 General Purpose Timer 8-170
LM1458 Single and Dual, High Gain Operational Amplifier for Military, Industrial and Commercial Application 3-29
LM2901 Quad Voltage Comparator for Industrial, Commercial and Military Applications 4-3
LM2902 Quad, 1 MHz , Operational Amplifier for Commercial, Industrial, and Military Applications 3-17
LM2904 Dual, 1 MHz , Operational Amplifier for Commercial Industrial, and Military Applications 3-22
LM324 Quad, 1 MHz , Operational Amplifier for Commercial, Industrial, and Military Applications 3-17
LM3302 Quad Voltage Comparator for Industrial, Commercial and Military Applications 4-3
LM339 Quad Voltage Comparator for Industrial, Commercial and Military Applications 4-3
LM339A Quad Voltage Comparator for Industrial, Commercial and Military Applications 4-3
LM358 Dual, 1 MHz , Operational Amplifier for Commercial Industrial, and Military Applications 3-22
LM555 Timer for Timing Delays and Oscillator Application in Commercial, Industrial and Military Equipment 8-3
LM555C Timer for Timing Delays and Oscillator Application in Commercial, Industrial and Military Equipment 8-3
LM741 Single and Dual, High Gain Operational Amplifier for Military, Industrial and Commercial Applications 3-29
LM741C Single and Dual, High Gain Operational Amplifier for Military, Industrial and Commercial Applications 3-29

Product Index by Family

PAGE

COMPARATOR DATA SHEETS

CA139, CA139A, Quad Voltage Comparators for Industrial, Commercial and Military Applications 4-3
CA239, CA239A,САЗ39, САЗ39A,LM339, LM339A,
LM2901, LM3302
CA3098 Programmable Schmitt Trigger with Memory, Dual Input Precision Level Detector 4-9
CA3290, CA3290A BiMOS Dual Voltage Comparators with MOSFET Input, Bipolar Output 4-10
HA-4900, HA-4902, Precision Quad Comparators 4-18
HA-4905
OPERATIONAL AMPLIFIER DATA SHEETS
CA124, CA224, CA324, Quad, 1MHz, Operational Amplifiers for Commercial, Industrial, and Military Applications 3-17
LM324, LM2902
CA158, CA158A,Dual, 1MHz, Operational Amplifiers for Commercial Industrial, and Military Applications.3-22
CA258, CA258A,CA358, CA358A,CA2904,LM358, LM2904
CA741, CA741C, CA1458, CA1558,
LM741, LM741C, LM1458Single and Dual, High Gain Operational Amplifiersfor Military, Industrial and Commercial Applications3-29
CA3020, CA3020A8MHz Power Amps For Military, Industrial and Commercial Equipment3-34
CA3060 110 kHz , Operational Transconductance Amplifier Array 3-35
CA3078, CA3078A 2kHz, Micropower Operational Amplifier 3-36
CA3080, CA3080A 2 MHz , Operational Transconductance Amplifier (OTA) 3-45
CA3094, CA3094A, 30MHz, High Output Current Operational Transconductance Amplifier (OTA) 3-56
CA3094B
CA310038 MHz , Operational Amplifier3-57
CA3130, CA3130A 15MHz, BiMOS Operational Amplifier with MOSFET Input/CMOS Output 3-64
CA3140, CA3140A 4.5 MHz , BiMOS Operational Amplifier with MOSFET Input/Bipolar Output 3-79
CA3160, CA3160A 4 MHz , BiMOS Operational Amplifier with MOSFET Input/CMOS Output 3-98
CA3193, CA3193A 1.2MHz, BiCMOS Precision Operational Amplifiers 3-114
CA3240, CA3240A Dual, 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output 3-115
CA3260, CA3260A 4 MHz , BiMOS Operational Amplifier with MOSFET Input/CMOS Output 3-129
CA3280, CA3280A Dual, 9MHz, Operational Transconductance Amplifier (OTA) 3-132
CA3420, CA3420A 0.5 MHz , Low Supply Voltage, Low Input Current BiMOS Operational Amplifiers 3-141
CA3440, CA3440A 63 kHz , Nanopower, BiMOS Operational Amplifiers 3-142
CA3450 220MHz, Video Line Driver, High Speed Operational Amplifier 3-143
CA5130, CA5130A 15 MHz , BiMOS Microprocessor Operational Amplifiers with MOSFET Input/CMOS Output 3-144
CA5160, CA5160A 4MHz, BiMOS Microprocessor Operational Amplifiers with MOSFET Input/CMOS Output 3-145
CA5260, CA5260A 3 MHz , BiMOS Microprocessor Operational Amplifiers with MOSFET Input/CMOS Output 3-146

Product Index by Family (continues)

PAGE
CA5420, CA5420A 0.5 MHz , Low Supply Voltage, Low Input Current BiMOS Operational Amplifiers 3-150
CA5470
HA-2400, HA-2404,Quad, 14MHz, Microprocessor BiMOS-E Operational Amplifier with MOSFET Input/Bipolar Output.3-156
40 MHz , PRAM Four Channel Programmable Amplifiers 3-161
HA-2405HA-2406
30MHz, Digitally Selectable Four Channel Operational Amplifier 3-167
HA-2444 50 MHz , Selectable, Four Channel Video Operational Amplifier 3-173
HA-2500, HA-2502, 12 MHz , High Input Impedance, Operational Amplifiers 3-174
HA-2505
HA-2510, HA-2512,12 MHz , High Input Impedance, Operational Amplifiers3-181
HA-2515
HA-2520, HA-2522,20 MHz , High Slew Rate, Uncompensated, High Input Impedance, Operational Amplifiers3-188
HA-2525
HA-252920MHz, High Input Impedance, High Slew Rate Operational Amplifier3-196
HA-2539 600 MHz , Very High Slew Rate Operational Amplifier 3-197
HA-2540 400 MHz , Fast Settling Operational Amplifier 3-205
HA-2541 40 MHz , Fast Settling, Unity Gain Stable, Operational Amplifier 3-213
HA-2542 70MHz, High Slew Rate, High Output Current Operational Amplifier 3-222
HA-2544 50 MHz , Video Operational Amplifier 3-233
HA-2548 150MHz, High Slew Rate, Precision Operational Amplifier 3-244
HA-2600, HA-2602, 12 MHz , High Input Impedance Operational Amplifiers 3-245HA-2605
HA-2620, HA-2622, HA-2625100 MHz , High Input Impedance, Very Wideband, Uncompensated Operational Amplifiers3-252
HA-2640, HA-26454 MHz , High Supply Voltage Operational Amplifiers3-259
HA-2839 600MHz, Very High Slew Rate Operational Amplifier 3-265
HA-2840 600MHz, Very High Slew Rate Operational Amplifier 3-266
HA-2841 50 MHz , Fast Settling, Unity Gain Stable, Video Operational Amplifier 3-273
HA-2842 80 MHz , High Slew Rate, High Output Current, Video Operational Amplifier 3-281
HA-2850 470MHz, Low Power, High Slew Rate Operational Amplifier 3-290
HA-4741 Quad, 3.5 MHz , Operational Amplifier 3-291
HA-5002 110MHz, High Slew Rate, High Output Current Buffer 3-297
HA-5004 100MHz Current Feedback Amplifier 3-305
HA5013 Triple, 125MHz Video Amplifier 3-306
HA-5020 100MHz Current Feedback Video Amplifier With Disable 3-320
HA5022 Dual, 125MHz, Video Current Feedback Amplifier with Disable 3-340
HA5023 Dual 125MHz Video Current Feedback Amplifier 3-356
HA5024 Quad 125MHz Video Current Feedback Amplifier with Disable 3-370
HA5025 Quad, 125MHz Video Current Feedback Amplifier 3-386
HA-5033 250MHz Video Buffer 3-399
HA-5101, HA-5111 10 MHz and 100 MHz , Low Noise, Operational Amplifiers 3-408

Product Index by Family (continued)

PAGE
HA-5112, HA-5114
HA-5127, HA-5127A
HA-5137, HA-5137A
HFA1103 200MHz, Video Op Amp with High Speed Sync Stripper 3-533
HFA1105 330MHz, Low Power, Current Feedback Video Operational Amplifier 3-539
HFA1106 315 MHz , Low Power, Video Operational Amplifier with Compensation Pin 3-550HFA1109, HFA1149
550 MHz , Low Power, Current Feedback Operational Amplifiers 3-564
HFA1110 750 MHz , Low Distortion Unity Gain, Closed Loop Buffer 3-565
HFA1112 850MHz, Low Distortion Programmable Gain Buffer Amplifier 3-573
HFA1113 850MHz, Low Distortion, Output Limiting, Programmable Gain, Buffer Amplifier 3-585HFA1114
850 MHz Video Cable Driving Buffer 3-600
HFA1115 3-605HFA1118, HFA1119
500 MHz Programmable Gain Video Buffers with Output Limiting and Output Disable 3-611
HFA1130 850MHz, Output Limiting, Low Distortion Current Feedback Operational Amplifier 3-612
HFA1135 360 MHz , Low Power, Video Operational Amplifier with Output Limiting 3-623
HFA1145 330 MHz , Low Power, Current Feedback Video Operational Amplifier with Output Disable 3-628HFA1205
Dual, 400MHz, Low Power, Video Operational Amplifier 3-640
HFA1212 Dual 350MHz, Low Power Closed Loop Buffer Amplifier 3-647
HFA1245 Dual, 530 MHz , Low Power, Video Operational Amplifier with Disable 3-657
HFA1405 Quad, 560 MHz , Low Power, Video Operational Amplifier. 3-663HFA1412ICL7611, ICL7612
Quad, 350 MHz , Low Power, Programmable Gain Buffer Amplifier. 3-676
1.4MHz, Low Power CMOS Operational Amplifiers 3-689
ICL7621, ICL7641,ICL7642
ICL7650S
HA-5102, HA-5104, Dual and Quad, 8 MHz and 60 MHz , Low Noise Operational Amplifiers 3-419

3-419
HA-5130, HA-5135 2.5 MHz , Precision Operational Amplifiers 3-441
HA-5134 4 MHz , Precision, Quad Operational Amplifier 3-45063 MHz , Ultra-Low Noise Precision Operational Amplifier3-458
HA-5142, HA-5144 Dual/Quad, 400kHz, Ultra-Low Power Operational Amplifiers 3-466 -466
HA-5147, HA-5147A 120 MHz , Ultra-Low Noise Precision Operational Amplifiers 3-474
HA-5160, HA-5162 100MHz, JFET Input, High Slew Rate, Uncompensated, Operational Amplifiers 3-482
HA-5170 8 MHz , Precision, JFET Input Operational Amplifier 3-489 489
HA-5177 2 MHz , Ultra-Low Offset Voltage Operational Amplifier 3-497
HA-5190, HA-5195 150 MHz , Fast Settling Operational Amplifiers 3-498
HA-5221, HA-5222 100 MHz , Single and Dual Low Noise, Precision Operational Amplifiers 3-506
HFA1100, HFA1120 850MHz, Low Distortion Current Feedback Operational Amplifiers 3-518
HFA1102 600 MHz Current Feedback Amplifier with Compensation Pin. 3-528
8.5 MHz , Ultra-Low Noise Precision Operational Amplifier 3-4324

Product Index by Family (continued)

PAGE
SAMPLE AND HOLD AMPLIFIER DATA SHEETS
HA-2420, HA-2425 $3.2 \mu \mathrm{~s}$ Sample and Hold Amplifiers 5-3
HA-5320 1μ s Precision Sample and Hold Amplifier 5-12
HA-5330 650ns Precision Sample and Hold Amplifier 5-19
HA-5340 700ns, Low Distortion, Precision Sample and Hold Amplifier 5-24
HA5351 64ns Sample and Hold Amplifier 5-32
SPECIAL ANALOG CIRCUIT DATA SHEETS
CA555, CA555C, Timers for Timing Delays and Oscillator Application LM555, LM555C in Commercial, Industrial and Military Equipment 8-3
CA1391, CA1394 TV Horizontal Processors 8-9
CA2111A FM IF Amplifier-Limiter and Quadrature Detector 8-13
СА3012 FM IF Wideband Amplifier 8-18
CA3088E AM Receiver Subsystem and General-Purpose Amplifier Array 8-23
CA3089 FM IF System 8-27
CA3126 TV Chroma Processor 8-33
CA3154 TV Sync/AGC/Horizontal Signal Processor. 8-42
CA3189 FM IF System 8-48
CA3224E Automatic Picture Tube Bias Control Circuit 8-56
CA3256 25 MHz , BiMOS Analog Video Switch and Amplifier 8-61
CD22402 Sync Generator for TV Applications and Video Processing Systems 8-62
HA-2546 30 MHz , Voltage Output, Two Quadrant Analog Multiplier 8-73
HA-2547 100 MHz , Two Quadrant, Current Output, Analog Multiplier 8-87
HA-2556 57 MHz , Wideband, Four Quadrant, Voltage Output Analog Multiplier 8-88
HA-2557 130 MHz , Four Quadrant, Current Output Analog Multiplier 8-102
HA7210, HA7211 10 kHz to 10 MHz , Low Power Crystal Oscillator 8-103
HFA5250 500 MHz , Ultra High Speed Monolithic Pin Driver 8-116
HFA5251 800MHz Monolithic Pin Driver 8-117
HFA5253 800MHz, Ultra High-Speed Monolithic Pin Driver 8-128
ICL8013 1 MHz , Four Quadrant Analog Multiplier 8-145
ICL8038 Precision Waveform Generator/Voltage Controlled Oscillator 8-153
ICM7242 Long Range Fixed Timer 8-163
ICM7555, ICM7556 General Purpose Timers 8-170
TRANSISTOR AND DIODE ARRAY, AND DIFFERENTIAL AMPLIFIER DATA SHEETS
CA3018, CA3018A General Purpose Transistor Arrays 7-5
CA3028A, CA3028B, Differential/Cascode Amplifiers for Commercial and Industrial Equipment CA3053 from DC to 120 MHz 7-6
CA3039 Diode Array 7-18
CA3045, СА3046 General Purpose NPN Transistor Arrays 7-22

Product Index by Family (continued)

PAGE
CA3049, CA3102 Dual High Frequency Differential Amplifiers For Low Power Applications Up to 500 MHz 7-28
CA3054 Dual Independent Differential Amp for Low Power Applications from DC to 120 MHz 7-37
САЗ081, САЗ082 General Purpose High Current NPN Transistor Arrays 7-45
CA3083 General Purpose High Current NPN Transistor Array. 7-48
CA3086 General Purpose NPN Transistor Array 7-52
САЗ096, САЗ096A, NPN/PNP Transistor Arrays 7-57
CA3096C
CA3127 High Frequency NPN Transistor Array 7-69
CA3141 High-Voltage Diode Array For Commercial, Industrial and Military Applications. 7-75
CA3146, CA3146A High-Voltage Transistor Arrays 7-76
CA3183, CA3183A
CA3227, CA3246 High-Frequency NPN Transistor Arrays For Low-Power Applicationsat Frequencies Up to 1.5 GHz7-84
HFA3046, HFA3096, Ultra High Frequency Transistor Arrays 7-89
HFA3127, HFA3128
Gilbert Cell UHF Transistor Array 7-98
HFA3101
Dual Long-Tailed Pair Transistor Array 7-110
HFA3102
VIDEO CROSSPOINT SWITCH DATA SHEETS
HA4201 $480 \mathrm{MHz}, 1 \times 1$ Video Crosspoint Switch with Tally Output 6-3
HA4244 480MHz, 1×1 Video Crosspoint Switch with Synchronous Enable 6-10
HA4314B $400 \mathrm{MHz}, 4 \times 1$ Video Crosspoint Switch 6-16
HA4344B 350MHz, 4×1 Video Crosspoint Switch with Synchronous Controls 6-23
HA4404B 330MHz, 4×1 Video Crosspoint Switch with Tally Outputs 6-26
HA455 $130 \mathrm{MHz}, 8 \times 8$ Video Crosspoint Switch 6-33
HA456 80MHz, Low Power, 8×8 Video Crosspoint Switch 6-34
HA457 $170 \mathrm{MHz}, A_{V}=+2,8 \times 8$ Video Crosspoint Switch 6-35
HA4600 480 MHz , Video Buffer with Output Disable 6-36

Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
3507J	HA2-2525-5	Yes	
3508J	HA2-2625-5	Yes	
3551J	HA2-5162-5	\dagger	Reduced ${ }_{\text {BIAS }} /$ greater Bandwidth
3551 S	HA2-5160-2	\dagger	Reduced ${ }_{\text {BIAS }} /$ greater Bandwidth
AD389BD	HA1-5320-2	No	Faster Acquisition/Reduced Droop
AD389KD	HA1-5320-5	No	Faster Acquisition/Reduced Droop
AD507JH	HA2-2625-5	Yes	
AD507KH	HA2-2625-5	Yes	
AD507SH	HA2-2620-2	Yes	
AD509.JH	HA2-2525-5	Yes	Substitute HA2-2529-5
AD509KH	HA2-2525-5	Yes	Substitute HA2-2529-5
AD509SH	HA2-2520-2	Yes	Substitute HA2-2529-2
AD518JH	HA2-2515-5	Yes	
AD518JN	НАЗ-2515-5	Yes	
AD518KH	HA2-2515-5	Yes	
AD518SH	HA2-2510-2	Yes	
AD539JD	HA1-2547-5	No	Enhanced Bandwidth
AD539KD	HA1-2547-5	No	Enhanced Bandwidth
AD539SD	HA1-2547-9	No	Enhanced Bandwidth
AD542JH	HA1-5170-5	\dagger	Enhanced ACs
AD5539JN	НАЗ-2839-5	\dagger	
AD5539JQ	HA1-2839-5	\dagger	
AD5539SQ	HA1-2539-2	\dagger	
AD582KD	HA1-2425-5	No	Faster Acquisition/Enhanced ACs
AD582SD	HA1-2420-2	No	Faster Acquisition/Enhanced ACs
AD583KD	HA1-2425-5	Yes	Faster Acquisition/Greater Iout
AD585AQ	HA1-5320-5	No	Faster Acquisition/Reduced Droop
AD585SQ	HA1-5320-2	No	Faster Acquisition/Reduced Droop
AD8001AN	HFA1105IP	Yes	
AD8001AR	HFA1105IB	Yes	
AD810AN	НАЗ-5020-9	Yes	Better AC Specifications
AD811AN	НАЗ-5020-9	Yes	Lower Power
AD811AR-8	HFA11051B	Yes	Lower Power, Better AC Specs
AD811SQ/883	HA7-5020/883	Yes	Lower Power, Price
AD812AN	HA5023IP	Yes	Better AC and Video Specs
AD812AR	HA5023IB	Yes	Better Video Spec
AD812AR-8	HA5023IB	Yes	Better AC and Video Specs
AD813AN	HA5013IP	Yes	Better AC and Video Specs
AD813AR-14	HA5013IP	Yes	Better AC and Video Specs
AD817AN	НАЗ-2841-5	Yes	
AD817AR	HA9P2841-5	Yes	
AD818AN	НАЗ-2841-5	Yes	
AD818AN	НАЗ-5020-9	Yes	Better Video, V_{FB} vs C_{FB}
AD818AR	HA9P2841-5	Yes	
AD826AN	HA5023IP	Yes	Better AC and Video Specs $\mathrm{V}_{\text {FB }}$ vs $\mathrm{C}_{\text {FB }}$

\dagger Primary Pins are pin-to-pin; secondary/optional pins are not.

Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
AD826AR	HA5023IB	Yes	Better AC and Video Specs $\mathrm{V}_{\text {FB }}$ vs $\mathrm{C}_{\text {FB }}$
AD827JN	HA5023IP	Yes	Better Specs, $\mathrm{V}_{\text {FB }}$ vs $\mathrm{C}_{\text {FB }}$
AD827JR	HA5022IB	Yes	Better Specs, V_{FB} vs C_{FB}
AD828AN	HA5023IP	Yes	Lower Power V_{FB} vs C_{FB}
AD828AR	HA5023IP	Yes	Lower Power V_{FB} vs C_{FB}
AD840JN	HA3B2840-5	Yes	Lower Cost
AD840JQ	HA1-2840-5	Yes	Lower Cost
AD840KN	НАЗВ2840-5	Yes	Lower Cost
AD840KQ	HA1-2840-5	Yes	Lower Cost
AD840SQ	HA1-2840/883	Yes	Lower Cost
AD840SQ/883	HA1-2840/883	Yes	Lower Cost
AD841JH	HA2-2541-5	Yes	
AD841JN	HA3-2841-5	Yes	Lower Cost
AD841JQ	HA1-2541-5	Yes	
AD841KH	HA2-2541-5	Yes	
AD841KN	HA3-2841-5	Yes	Lower Cost
AD841KQ	НАЗ-2841-5	Yes	Enhanced ACs/lower Power
AD841SH	HA2-2541/883	Yes	Enhanced ACs/lower Power
AD841SQ	HA1-2841/883	Yes	Lower Cost
AD841SQ/883	HA1-2841/883	Yes	Lower Cost
AD842JH	HA2-2542-5	Yes	
AD842JN	HA3B2842-5	Yes	Lower Cost
AD842JQ	HA1-2542-5	Yes	
AD842KH	HA2-2542-5	Yes	
AD842KN	HA3B2842-5	Yes	Lower Cost
AD842KQ	HA1-2542-5	Yes	
AD842SH	HA2-2542/883	Yes	Enhanced ACs/lower Cost
AD842SQ	HA1-2842/883	Yes	Lower Cost
AD842SQ/883	HA1-2842/883	Yes	Lower Cost
AD844AN	HA3-5020-9	Yes	Enhanced ACs and Video Performance
AD844AQ	HA7-5020-9	Yes	Enhanced ACs and Video Performance
AD844BQ	HA7-5020-9	Yes	Enhanced ACs and Video Performance
AD844SQ/883B	HA7-5020/883	Yes	Enhanced ACs and Video Performance
AD846AN	HA3-5020-9	Yes	Enhanced ACs/lower Cost
AD846AQ	HA7-5020-9	Yes	Enhanced ACs/lower Cost
AD846BQ	HA7-5020-9	Yes	Enhanced ACs/lower Cost
AD846SQ	HA7-5020/883	Yes	Enhanced ACs/lower Cost
AD847JN	HA3-2544C-5	Yes	
AD847SQ	HA7-2544-2	Yes	
AD9620AD	HFA1110IJ	Yes	Performance, Price
AD9620SD	HFA1110MJ/883	Yes	Performance, Price
AD9621AQ	HFA1100IJ	Yes	Better Specs, $\mathrm{V}_{\text {FB }}$ vs $\mathrm{C}_{\text {FB }}$
AD9621AR	HFA1105IB	Yes	Lower Power, V_{FB} vs C_{FB}
AD9622AQ	HFA1100IJ	Yes	Better Specs, V_{FB} vs C_{FB}
AD9622AR	HFA1105IB	Yes	Lower Power, V_{FB} vs C_{FB}
AD9623AQ	HFA1100IJ	Yes	Higher Speed, V_{FB} vs C_{FB}
AD9623AR	HFA1105IB	Yes	Lower Power, V_{FB} vs C_{FB}

Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
AD9624AQ	HFA11001J	Yes	Higher Speed, $\mathrm{V}_{\text {FB }}$ vs $\mathrm{C}_{\text {FB }}$
AD9624AR	HFA1105IB	Yes	Lower Power, $\mathrm{V}_{\text {FB }}$ vs $\mathrm{C}_{\text {FB }}$
AD9630AN	HFA1110IP	Yes	Performance, Price
AD9630AQ	HFA1110IJ	Yes	Performance, Price
AD9630AR	HFA11101B	Yes	Performance, Price
AD9630SQ	HFA1110MJ/883	Yes	Performance, Price
ADEL2020AN	НАЗ-5020-9	Yes	
ADLH0032CG	HA2-2542-5	\dagger	Monolithic/lower Cost
ADLH0032G	HA2-2542-2	\dagger	Monolithic/lower Cost
ADLH0033CG	HA2-5033-5	\dagger	Enhanced ACs/monolithic/lower Cost
ADLH0033G	HA2-5033-2	\dagger	Enhanced ACs/monolithic/lower Cost
ADOP27AQ	HA7-5127A-2	Yes	Enhanced ACs/Reduced ICC
ADOP27EQ	HA7-5127A-5	Yes	Enhanced ACs/Reduced ICC
ADOP27GQ	HA7-5127-5	Yes	Enhanced ACs/Reduced ICC
ADOP37AQ	HA7-5137A-2	Yes	Enhanced ACs/Reduced ICC
ADOP37EQ	HA7-5137A-5	Yes	Enhanced ACs/Reduced ICC
ADOP37GQ	HA7-5137-5	Yes	Enhanced ACs/Reduced ICC
AM-450-2	HA2-2505-5	Yes	Guaranteed $\mathrm{V}_{\text {OuT }} / \mathrm{ACs}$
AM-450-2M	HA2-2502-2	Yes	Guaranteed V ${ }_{\text {OUT }} / \mathrm{ACs}$
AM-452-2	HA2-2525-5	Yes	Guaranteed $\mathrm{V}_{\text {OUT }} / \mathrm{ACs}$
AM-452-2M	HA2-2522-2	Yes	Guaranteed $\mathrm{V}_{\text {OUT }} / \mathrm{ACs}$
AM-460-2	HA2-2605-5	Yes	Guaranteed $\mathrm{V}_{\text {OUT }} / \mathrm{ACs}$
AM-460-2M	HA2-2602-2	Yes	Guaranteed $\mathrm{V}_{\text {OuT }} / \mathrm{ACs}$
AM-462-2	HA2-2625-5	Yes	Guaranteed $\mathrm{V}_{\text {OUT }} / \mathrm{ACs}$
AM-462-2M	HA2-2620-2	Yes	Guaranteed $\mathrm{V}_{\text {OUT }} / \mathrm{ACs}$
AM-7650-1	ICL7650SCPD	Yes	Almost Identical
AM-7650-2	ICL7650SCTV-1	Yes	Almost Identical
BUF634P	НАЗ-5002-5	Yes	
CA3054	CA3054	Yes	Vout Version Available
CA3146P	CA3146E	Yes	
CLC109AJP	НАЗ-5002-5	Yes	Higher Output Current
CLC110A8D	HFA1110MJ/883	Yes	Better Performance
CLC110AID	HFA1110IJ	Yes	Better Performance
CLC110AJP	HFA1110IP	Yes	Better Performance
CLC110ALC	HFA1110Y	N/A	Die
CLC400A8D	HFA1120MJ/883	\dagger	Better Performance
CLC400AID	HFA1120IJ	\dagger	Better Performance
CLC400AJE	HFA1105IB	Yes	Faster, Lower Power, $\pm 5 \mathrm{~V}$ Only
CLC400AJE	HFA11201B	\dagger	Better Performance
CLC400AJP	HFA1120IP	\dagger	Better Performance
CLC400ALC	HFA1120Y	N/A	Die
CLC401A8D	HFA1100MJ/883	Yes	Better Performance
CLC401AIB	HFA1100IJ	Yes	Better Performance
CLC401AID	HFA1100IJ	Yes	Better Performance
CLC401AJE	HFA1105IB	Yes	Faster, Lower Power
CLC401AJP	HFA1100IP	Yes	Better Performance
CLC401ALC	HFA1100Y	N/A	Die

[^0]Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
CLC402A8D	HFA1100MJ/883	Yes	Better Performance
CLC402AIB	HFA11001J	Yes	Better Performance
CLC402AID	HFA1100IJ	Yes	Better Performance
CLC402AJE	HFA1100IB	Yes	Better Performance
CLC402AJE	HFA1105IB	Yes	Faster, Lower Power
CLC402AJP	HFA1100IP	Yes	Better Performance
CLC402ALC	HFA1100Y	N/A	Die
CLC404A8D	HFA1100MJ/883	Yes	Better Performance
CLC404AIB	HFA11001J	Yes	Better Performance
CLC404AID	HFA11001J	Yes	Better Performance
CLC404AJE	HFA1100IB	Yes	Better Performance
CLC404AJE	HFA1105IB	Yes	Faster, Lower Power
CLC404AJP	HFA1100IP	Yes	Better Performance
CLC404ALC	HFA1100Y	N/A	Die
CLC406A8D	HFA1100MJ/883	Yes	Better Performance
CLC406AIB	HFA11001J	Yes	Better Performance
CLC406AID	HFA11001J	Yes	Better Performance
CLC406AJE	HFA1100IB	Yes	Better Performance
CLC406AJE	HFA1105IB	Yes	Faster, Lower Power
CLC406AJP	HFA1100IP	Yes	Better Performance
CLC406ALC	HFA1100Y	N/A	Die

CLC409A8D	HFA1100MJ/883	Yes	Better Performance
CLC409AIB	HFA1100IJ	Yes	Better Performance
CLC409AID	HFA1100IJ	Yes	Better Performance
CLC409AJE	HFA11091B	Yes	
CLC409AJP	HFA11091P	Yes	Better Performance
CLC409ALC	HFA1109Y	N/A	Better Performance
CLC410AJP	HFA1149IP	Yes	
CLC410A8D	HFA1120MJ/883	\dagger	CLC Has Enable
CLC410AID	HFA1120IJ	\dagger	CLC Has Enable
CLC410AJE	HFA1149IB	Yes	
CLC410AJP	HFA11491P	\dagger	CLC Has Enable
CLC410ALC	HFA1149Y	N/A	CLC Has Enable
CLC414AJE	HA5025IB	Yes	Better Video and DC Specifications
CLC414AJP	HA5025IP	Yes	Better Video and DC Specifications
CLC415AJE	HA5025IB	Yes	Better DC Specifications
CLC415AJP	HA5025IP	Yes	Better DC Specifications
CLC425AJE	HFA1100IB	Yes	V_{FB} vs C_{FB}
CLC425AJP	HFA1100IP	Yes	$\mathrm{V}_{\text {FB }}$ vs $\mathrm{C}_{\text {FB }}$
CLC428AJE	HA5023IB	Yes	V_{FB} vs C_{FB}
CLC428AJP	HA5023IP	Yes	V_{FB} vs C_{FB}
CLC430	HA-5020	Yes	Enhanced AC and Video Performance
CLC430AIB	HA7-5020-9	Yes	Better AC Performance
CLC430AID	HA7-5020-9	Yes	Better AC Performance
CLC430AJE	HA9P5020-9	Yes	Better AC Performance
CLC430AJP	HA3-5020-9	Yes	Better AC Performance
CLC432AJE	HA5023IB	Yes	Better AC and Video Specs

\dagger Primary Pins are pin-to-pin; secondary/optional pins are not.

Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
CLC432AJP	HA5023IP	Yes	Better AC and Video Specs
CLC449AJE	HFA11001B	Yes	
CLC449AJP	HFA11001P	Yes	
CLC501A8D	HFA1130MJ/883	Yes	Better Performance
CLC501AID	HFA1130IJ	Yes	Better Performance
CLC501AJE	HFA11301B	Yes	Better Performance
CLC501AJP	HFA1130IP	Yes	Better Performance
CLC502A8D	HFA1130MJ/883	Yes	Better Performance
CLC502AID	HFA1130IJ	Yes	Better Performance
CLC502AJE	HFA11301B	Yes	Better Performance
CLC502AJP	HFA1130IP	Yes	Better Performance
EHA1-2539-2	HA1-2539-2	Yes	
EHA1-2539-5	HA1-2839-5	Yes	Lower Cost
EHA1-2539/883B	HA1-2839/883	Yes	Lower Cost
EHA1-2540-2	HA1-2540-2	Yes	
EHA1-2540/883	HA1-2840/883	Yes	Lower Cost
EHA1-5190-2	HA1-5190-2	Yes	
EHA1-5195-5	HA1-5195-5	Yes	
EHA2-2500-2	HA2-2500-2	Yes	
EHA2-2502-2	HA2-2502-2	Yes	
EHA2-2505-5	HA2-2505-5	Yes	
EHA2-2510-2	HA2-2510-2	Yes	
EHA2-2512-2	HA2-2512-2	Yes	
EHA2-2515-5	HA2-2515-5	Yes	
EHA2-2520-2	HA2-2520-2	Yes	Substitute HA2-2529-2
EHA2-2522-2	HA2-2522-2	Yes	Substitute HA2-2529-2
EHA2-2525-5	HA2-2525-5	Yes	Substitute HA2-2529-5
EHA2-2600-2	HA2-2600-2	Yes	
EHA2-2602-2	HA2-2602-2	Yes	
EHA2-2605-5	HA2-2605-5	Yes	
EHA2-2620-2	HA2-2620-2	Yes	
EHA2-2622-2	HA2-2622-2	Yes	
EHA2-2625-5	HA2-2625-5	Yes	
EHA2-5190-2	HA2-5190-2	Yes	
EHA2-5195-5	HA2-5195-5	Yes	
EНАЗ-2539-5	НАЗ-2839-5	Yes	Lower Cost
ЕНАЗ-2540-5	НАЗ-2540-5	Yes	
EHA3-2540-5	HA3B2840-5	Yes	Lower Cost
EHA7-2500-2	HA7-2500-2	Yes	
EHA7-2502-2	HA7-2502-2	Yes	
EHA7-2505-5	HA7-2505-5	Yes	
EHA7-2510-2	HA7-2510-2	Yes	
EHA7-2512-2	HA7-2512-2	Yes	
EHA7-2515-5	HA7-2515-5	Yes	
EHA7-2520-2	HA7-2520-2	Yes	
EHA7-2522-2	HA7-2522-2	Yes	
EHA7-2525-5	HA7-2525-5	Yes	

\dagger Primary Pins are pin-to-pin; secondary/optional pins are not.

Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
EHA7-2600-2	HA7-2600-2	Yes	
EHA7-2602-2	HA7-2602-2	Yes	
EHA7-2605-5	HA7-2605-5	Yes	
EHA7-2620-2	HA7-2620-2	Yes	
EHA7-2622-2	HA7-2622-2	Yes	
EHA7-2625-5	HA7-2625-5	Yes	
EL2003CH	HA2-5002-5	Yes	Greater Slew Rate/Reduced ICC
EL2003CJ	HA7-5002-5	No	Greater Slew Rate/Reduced ICC
EL2003CN	НАЗ-5002-5	No	Greater Slew Rate/Reduced ICC
EL2003CPL	HA9P5002-9	No	Greater Slew Rate/Reduced ICC
EL2003H	HA2-5002-2	Yes	Greater Slew Rate/Reduced ICC
EL2003J	HA7-5002-2	No	Greater Slew Rate/Reduced ICC
EL2005CG	HA2-5033-5	\dagger	Greater Bandwidth
EL2005G	HA2-5033-2	\dagger	Greater Bandwidth
EL2020CJ	HA7-5020-5	Yes	Better Performance
EL2020CM	HA9P5020-5	\dagger	Enhanced ACs and $\mathrm{V}_{\text {OUT }} /$ /lower Cost
EL2020CN	НАЗ-5020-5	Yes	Better Performance
EL2020J	HA7-5020/883	Yes	Enhanced ACs and $\mathrm{V}_{\text {Out }}$ /lower Cost
EL2020J/883B	HA7-5020/883	Yes	Better Performance
EL2030CJ	HA7-5020-5	\dagger	Enhanced V ${ }_{\text {Out }}$ /lower Cost
EL2030CN	НАЗ-5020-5	Yes	Disable Feature
EL2030J/883B	HA7-5020/883	\dagger	Enhanced $\mathrm{V}_{\text {OUT }} /$ lower Cost
EL2033CJ	HA7-5002-5	\dagger	Greater Slew Rate/Reduced ICC
EL2033CN	НАЗ-5002-5	\dagger	Greater Slew Rate/Reduced ICC
EL2033J	HA7-5002-2	\dagger	Greater Slew Rate/Reduced ICC
EL2039CJ	HA1-2839-5	Yes	Lower Cost
EL2039CN	НАЗ-2839-5	Yes	Lower Cost
EL2039J	HA1-2839/883	Yes	Enhanced ACs/lower Power/lower Cost
EL2039J/883	HA1-2839/883	Yes	Lower Cost
EL2040CN	HA3B2840-5	Yes	Lower Cost
EL2040J	HA1-2840/883	Yes	Enhanced ACs/lower Power/lower Cost
EL2040J/883	HA1-2840/883	Yes	Lower Cost
EL2041CG	HA2-2541-5	Yes	Enhanced ACs/lower Power/lower Cost
EL2041CJ	НАЗ-2841-5	Yes	Enhanced ACs/lower Power
EL2041G	HA2-2841/883	Yes	Enhanced ACs//ower Power/lower Cost
EL2041J	HA1-2841/883	Yes	Enhanced ACs/lower Power/lower Cost
EL2044CN	НАЗ-2841-5	\dagger	Low Power
EL2044CS	HA9P2841-5	Yes	Primary Pins are Pin-to-pin Compatible; Optional Pins are No
EL2070CN	HFA11201P	\dagger	Better Performance
EL2070CS	HFA11201B	\dagger	Better Performance
EL2070J/883B	HFA1120MJ/883	\dagger	Better Performance
EL2071CN	HFA1100IP	\dagger	Better Performance
EL2071CS	HFA11201B	\dagger	Better Performance
EL2071J/883B	HFA1120MJ/883	\dagger	Better Performance
EL2072CN	HFA1110IP	Yes	Better Performance
EL2072CS	HFA1110IB	Yes	Better Performance

PART NUMBER.	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
EL2072J/883B	HFA1110MJ/883	Yes	Better Performance
EL2120CN	HA3-5020-5	Yes	Lower Power
EL2120CS	HA9P5020-5	Yes	Lower Power
EL2130CN	HFA1100IP	Yes	Better Performance
EL2130CS	HFA11001B	Yes	Better Performance
EL2130CS	HFA1105IB	Yes	Better Performance, Lower Power
EL2160CN	НАЗ-5020-5	Yes	
EL2160CS	HA9P5020-5	Yes	
EL2166CN	НАЗ-5020-5	Yes	
EL2166CS	HA9P5020-5	Yes	
EL2171CN	HFA1100IP	Yes	Better Performance
EL2171CS	HFA11001B	Yes	Better Performance
EL2171J/883B	HFA1100lJ/883	Yes	Better Performance
EL2190G	HA2-5190-2	Yes	
EL2190J	HA1-5190-2	Yes	
EL2195CG	HA2-5195-5	Yes	
EL2195CJ	HA1-5195-5	Yes	
EL2210CM	HA50231B	Yes	Better AC and Video Specs
EL2210CN	HA5023IP	Yes	Better AC and Video Specs
EL2211CM	HA5023IB	Yes	Better AC and Video Specs
EL2211CN	HA5023IP	Yes	Better AC and Video Specs
EL2232CN	HA5023IP	Yes	$\pm 5 \mathrm{~V}$ Only
EL2260CN	HA5023IP	Yes	Better Video and DC Specifications, $\pm 5 \mathrm{~V}$ Only
EL2260CS	HA5023IB	Yes	Better Video and DC Specifications, $\pm 5 \mathrm{~V}$ Only
EL2310CN	HA5013IP	Yes	Better Performance
EL2310CS	HA50131B	Yes	Better Performance
EL2311CN	HA50131P	Yes	Better Performance
EL2311CS	HA50131B	Yes	Better Performance
EL2410CN	HA5025IP	Yes	Better Performance
EL2410CS	HA5025IB	Yes	Better Performance
EL2411CN	HA5025IP	Yes	Better Performance
EL2411CS	HA5025IB	Yes	Better Performance
EL2460CN	HA5025IP	Yes	Better Video and DC Specifications
EL2460CS	HA50251B	Yes	Better Video and DC Specifications
EL400CN	HFA11201P	\dagger	Better Performance
EL400CS	HFA11201B	\dagger	Better Performance
EL400J/883B	HFA1120MJ/883	\dagger	Better Performance
ELH0032CG	HA2-2542-5	\dagger	
ELH0032G	HA2-2542-2	\dagger	
ELH0033CG	HA2-5033-5	\dagger	Greater Bandwidth
ELH0033G	HA2-5033-2	\dagger	Greater Bandwidth
GB4600-CDA	HA4600CP	Yes	Lower Power, Faster Switching
GB4600-CKA	HA4600CB	Yes	Lower Power, Faster Switching
GX4201-CDA	HA4201CP	Yes	Lower Power, Faster Switching
GX4201-CKA	HA4201CB	Yes	Lower Power, Faster Switching
GX4314-CDB	HA4314ACP	Yes	Lower Power, Faster Switching
GX4314-CKB	HA4314ACB	Yes	Lower Power, Faster Switching

\dagger Primary Pins are pin-to-pin; secondary/optional pins are not.

Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
GX4314LCDB	HA4314ACP	Yes	Lower Power, Faster Switching
GX4314LCKB	HA4314ACB	Yes	Lower Power, Faster Switching
GX4404-CDC	HA4404ACP	Yes	Lower Power, Faster Switching
GX4404-CKD	HA4404ACB	Yes	Lower Power, Faster Switching
HOS-100AH	HA2-5033-2	\dagger	Greater Bandwidth/lower Cost
HOS-100SH	HA2-5033-2	\dagger	Greater Bandwidth/lower Cost
HOS050	HA2-2542-2	\dagger	Lower Cost
HOS050A	HA2-2542-2	\dagger	Lower Cost
HOS050C	HA2-2542-2	\dagger	Lower Cost
ICL7611ACPA	ICL7611ACPA	Yes	
ICL7611ACTV	ICL 7611 ACTV	Yes	
ICL7611AMTV	ICL7611AMTV	Yes	
ICL7611BCPA	ICL7611BCPA	Yes	
ICL7611BCTV	ICL.7611BCTV	Yes	
ICL7611BMTV	ICL7611BMTV	Yes	
ICL7611DCPA	ICL7611DCPA	Yes	
ICL7611DCSA	ICL7611DCBA	Yes	
ICL7611DCTV	ICL7611DCTV	Yes	
ICL7611DMTV	ICL76110MTV	Yes	
ICL7612ACPA	ICL7612ACPA	Yes	
ICL7612ACTV	ICL7612ACTV	Yes	
ICL7612AMTV	ICL7612AMTV	Yes	
ICL7612BCPA	ICL7612BCPA	Yes	
ICL7612BCTV	ICL7612BCTV	Yes	
ICL7612BMTV	ICL7612BMTV	Yes	
ICL7612DCPA	ICL7612DCPA	Yes	
ICL7612DCSA	ICL7612DCBA	Yes	
ICL7612DCTV	ICL7612DCTV	Yes	
ICL7612DMTV	ICL7612DMTV	Yes	
ICL7621ACPA	ICL7621ACPA	Yes	
ICL7621ACTV	ICL7621ACTV	Yes	
ICL7621AMTV	ICL7621AMTV	Yes	
ICL7621BCPA	ICL7621BCPA	Yes	
ICL7621BCTV	ICL7621BCTV	Yes	
ICL7621BMTV	ICL7621BMTV	Yes	
ICL7621DCPA	ICL7621DCPA	Yes	
ICL7621DCSA	1CL7621DCBA	Yes	
ICL7621DCTV	ICL7621DCTV	Yes	
ICL7621DMTV	ICL7621DMTV	Yes	
ICL7641CCPD	ICL7641CCPD	Yes	
ICL7641ECPD	ICL7641ECPD	Yes	
ICL7642CCJD	ICL7642CCJD	Yes	
ICL7642CCPD	ICL7642CCPD	Yes	
ICL7642CMJD	ICL7642CMJD	Yes	
ICL7642ECJD	ICL7642ECJD	Yes	
ICL7642ECPD	ICL7642ECPD	Yes	
ICL7642EMJD	ICL7642EMJD	Yes	

\dagger Primary Pins are pin-to-pin; secondary/optional pins are not.

Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
ICL7650BCPA-1	ICL7650SCPA-1	Yes	Reduced $\mathrm{V}_{10} /_{\text {IIAS }}$
ICL7650BCPD	ICL7650SCPD	Yes	Reduced $\mathrm{V}_{\text {IO }}{ }^{\text {I }}$ BIAS
ICL7650BCTV-1	ICL7650SCTV-1	Yes	Reduced $\mathrm{V}_{\text {IO }} /{ }_{\text {I }}$ IIAS
ICM7242IPA	ICM72421PA	Yes	
ICM7555CD	ICM7555CBA	Yes	
ICM7555CN	ICM7555IPA	Yes	Wider Operating Voltage Range
ICM7555IN	ICM7555IPA	Yes	Wider Operating Voltage Range
ICM7555IPA	ICM7555IPA	Yes	Wider Operating Voltage Range
ICM7555ITV	ICM7555ITV	Yes	
ICM7555MTV	ICM7555MTV	Yes	
ICM7556IPD	ICM7556IPD	Yes	Wider Operating Supply Range
ICM7556MJD	ICM7556MJD	Yes	Wider Operating Supply Range
KF351N	CA3140E	Yes	Reduced ${ }_{\text {BIAS }} / I_{1 O}$
KS272ACN	CA5260AE	Yes	Specified at +5 V Supply
KS272AIN	CA5260AE	Yes	Specified at +5 V Supply
KS272CN	CA5260E	Yes	Specified at +5 V Supply
KS272IN	CA5260E	Yes	Specified at +5 V Supply
KS274CN	CA5470E	Yes	Greater Bandwidth/spec. at +5 V Supply
KS2741N	CA5470E	Yes	Greater Bandwidth/spec. at +5 V Supply
LF157H	CA3130AT	Yes	Reduced IBIAS
LF198AH	HA1-2420-2 (CDIP)	No	Faster Acquisition
LF198H	HA1-2420-2 (CDIP)	No	Faster Acquisition
LF351D	CA3140M	Yes	Reduced $\mathrm{IBIAS} / \mathrm{I}_{10}$
LF351H	CA3140T	Yes	Reduced $\mathrm{I}_{\text {BIAS }} / 1_{10}$
LF351M	CA3140M	Yes	Reduced $\mathrm{IBIAS} / 1 \mathrm{IO}$
LF351N	CA3140E	Yes	Reduced $\mathrm{IBIAS} / \mathrm{I}_{10}$
LF351P	CA3140E	Yes	Reduced $\mathrm{I}_{\text {BIAS }} / \mathrm{I}_{10}$
LF353N	CA3240E	Yes	Reduced $\mathrm{IBIAS} / \mathrm{I}^{10}$
LF353P	CA3240E	Yes	Reduced $\mathrm{I}_{\text {BIAS }} / I_{10}$
LF357AH	CA3130AT	Yes	Reduced IBIAS
LF357H	CA3130T	Yes	Reduced $\mathrm{I}_{\text {BIAS }} / I_{10}$
LF357M	CA3130M	Yes	Reduced $\mathrm{IBIAS} / \mathrm{I}^{1 \mathrm{O}}$
LF357N	CA3130E	Yes	Reduced I ${ }_{\text {BIAS }} / \mathrm{I}^{\text {a }}$
LF398AH	HA1-2425-5 (CDIP)	No	Faster Acquisition
LF398AN	НАЗ-2425-5	No	Faster Acquisition
LF398H (CAN)	HA1-2425-5 (CDIP)	No	Faster Acquisition
LF398N	НАЗ-2425-5	No	Faster Acquisition
LF400CH	CA3100T	\dagger	Similar ACs
LF411CD	CA3140AM	Yes	Reduced $\mathrm{I}_{\mathrm{BIAS}} / \mathrm{I}^{1 \mathrm{O}}$
LF411CH	CA3140AT	Yes	Reduced IBIAS $/ 10$
LF411CN	CA3140AE	Yes	Reduced $\mathrm{I}_{\mathrm{BIAS}} / I_{\mathrm{IO}}$
LF411CP	CA3140AE	Yes	Reduced $\mathrm{IBIAS} / \mathrm{I}^{1 O}$
LF411MH	CA3140AT	Yes	Reduced I ${ }_{\text {BIAS }} / I_{10}$
LF412CD	CA3240AE	Yes	Reduced $\mathrm{I}_{\text {BIAS }} / I_{10}$
LF412CN	CA3140AE	Yes	Reduced I ${ }_{\text {BIAS }} / 10$
LF412CP	CA3240AE	Yes	Reduced I ${ }_{\text {BIAS }} / \mathrm{I}^{\circ} \mathrm{O}$
LH0002CH	HA2-5002-5	\dagger	Enhanced ACs/DCs/monolithic

\dagger Primary Pins are pin-to-pin; secondary/optional pins are not.

Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
LH0002CN	HA3-5002-5	No	Enhanced ACs/DCs/monolithic
LH0002H	HA2-5002-2	\dagger	Enhanced ACs/DCs/monolithic
LH0022CD	CA3140AE (PDIP)	No	Greater Bandwidth/slew Rate
LH0022CH	CA3140AT	Yes	Greater Bandwidth/slew Rate
LH0032ACG	HA2-2542-S	Yes	Monolithic/lower Cost
LH0032AG	HA2-2542-2	Yes	Monolithic/lower Cost
LH0032CG	HA2-2542-5	Yes	Monolithic/lower Cost
LH0032G	HA2-2542-2	Yes	Monolithic/lower Cost
LH0033ACG	HA2-5033-5	\dagger	Greater Bandwidth/monolithic/lower Cost
LH0033AG	HA2-5033-2	\dagger	Monolithic/lower Cost
LH0033CG	HA2-5033-5	\dagger	Greater Bandwidth/monolithic/lower Cost
LH0033CJ	НАЗ-5033-5	\dagger	Monolithic/lower Cost
LH0033G	HA2-5033-2	\dagger	Monolithic/lower Cost
LH0042CD	CA3140E (PDIP)	No	Greater Bandwidth/slew Rate
LH0042CH	CA3140T	Yes	Greater Bandwidth/slew Rate
LH4161CH	HA2-2544-5	No	Pdip Substitute Is HA3-2544C-5
LH4161CJ	HA7-2544-5	No	
LH4161H	HA2-2544-2	No	
LH4161J	HA7-2544-2	No	
LM143H	HA2-2640-2	\dagger	Enhanced ACs
LM193H	CA3290AT	Yes	Mosfet Input
LM2901N	CA3290AE	Yes	Mosfet Input
LM2903N	CA3290AE	Yes	Mosfet Input
LM293H	CA3290AT	Yes	Mosfet Input
LM3045J	CA3045F	Yes	,
LM3046D	CA3046M	Y's	
LM3046N	CA3046E	Yes	
LM3080AN	CA3080AE	Yes	
LM3080N	CA3080E	Yes	
LM3086J	CA3086F	Yes	
LM3086M	CA3086M	Yes	
LM3086N	САЗ086	Yes	
LM3146M	CA3146M	Yes	Enhanced A Version Offered
LM3146N	CA3146E	Yes	Enhanced A Version Offered
LM3302N	CA3290E/LM3302N	Yes	
LM343H	HA2-2645-5	\dagger	Enhanced ACs
LM393H	CA3290AT	Yes	Mosfet Input
LM393N	CA3290AE	Yes	Mosfet Input
LM556CN	ICM7556IPD	Yes	CMOS/Reduced ICC
LM604ACM	HA9P2406-5	No	Enhanced ACs
LM604ACN	НАЗ-2406-5	No	Enhanced ACs
LM604AMJ	HA1-2400-2	No	Enhanced ACs
LM604CM	HA9P2406-5	No	Enhanced ACs
LM604CN	НАЗ-2406-5	No	Enhanced ACs
LM6118J	HA7-5222-9	Yes	Lower V_{10}
LM6161J	HA7-2544-2	\dagger	Guaranteed Differential Phase/gain
LM6162M	HA9P5020-5	Yes	Better Specs With Disable

Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
LM6162N	HA3-2841-5	Yes	Better AC and Video Specs
LM6164J	HA1-5190-2	No	Reduced Voltage Noise
LM6165J	HA1-2540-2	No	Enhanced Slew Rate/Avol
LM6181AIN	НАЗ-5020-9	Yes	
LM6181IN	НАЗ-5020-9	Yes	
LM6182AIN	HA50231P	Yes	
LM6182IN	HA5023IP	Yes	
LM6218AJ	HA7-5222-9	Yes	Lower V10
LM6262M	HA9P5020-5	Yes	Better Specs With Disable
LM6262N	НАЗ-2841-5	Yes	Better AC and Video Specs
LM6262N	НАЗ-5020-5	Yes	Better Specs With Disable
LM6361N	НАЗ-2544C-5	\dagger	Guaranteed Differential Phase/gain
LM6362M	HA9P5020-5	Yes	Better Specs With Disable
LM6362N	НАЗ-2841-5	Yes	Better AC and Video Specs
LM6362N	НАЗ-5020-5	Yes	Better Specs With Disable
LM6364N	HA1-5195-5	No	Reduced Voltage Noise
LM6365N	HA3-2540C-5	No	Enhanced Slew Rate/Avol
LMC555CH	ICM7555ITV	Yes	Reduced I_{Cd} /wider Supply Range
LMC555CM	ICM7555CBA	Yes	Reduced I $\mathrm{CC} /$ wider Supply Range
LMC555CN	ICM7555IPA	Yes	Reduced I ${ }_{\text {cC/wider Supply Range }}$
LMC668ACJ	ICL7650SIJD	Yes	Enhanced Vout
LMC668ACJ-8	ICL7650SIJA-1	Yes	Enhanced V ${ }_{\text {OUT }}$
LMC668ACN	ICL7650SIPD	Yes	Enhanced VOUT
LS204AT	HA2-5102-2	Yes	Reduced Noise Voltage
LS204CB	HA3-5102-5	Yes	Reduced Noise Voltage
LS204CM	HA9P-5102-5	Yes	Reduced Noise Voltage
LS204CT	HA2-5102-5	Yes	Reduced Noise Voltage
LS204T	HA2-5102-2	Yes	Reduced Noise Voltage
LS 404 CB	НАЗ-5104-5	Yes	Reduced Noise Voltage
LS404CM	HA9P-5104-5	No	Reduced Noise Voltage, Wide Body 16 Ld. SOIC
LS404M	HA9P-5104-9	No	Reduced Noise Voltage, Wide Body 16 Ld. SOIC
LT1014AMJ	HA1-5134A-2	Yes	Reduced V_{10} /enhanced ACs
LT1014CJ	HA1-5134-5	Yes	Reduced V_{10} /enhanced ACs
LT1014MJ	HA1-5134-2	Yes	Reduced V_{10} /enhanced ACs
LT1022CH	HA2-5160-5	\dagger	Greater Bandwidth/slew Rate
LT1022MH	HA2-5160-2	\dagger	Greater Bandwidth/slew Rate
LT1037ACJ8	HA7-5137A-5	Yes	Enhanced ACs/Reduced ICC
LT1037AMJ8	HA7-5137A-2	Yes	Enhanced ACs/Reduced ICC
LT1037CJ8	HA7-5137-5	Yes	Enhanced ACs/Reduced ICC
LT1037MJ8	HA7-5137-2	Yes	Enhanced ACs/Reduced ICC
LT1126ACN8	НАЗ-5222-5	Yes	
LT1126AMJ8	HA7-5222/883	Yes	
LT1126CJ8	HA7-5222-5	Yes	
LT1126CN8	HA3-5222-5	Yes	
LT1126MJ8	HA7-5222/883	Yes	
LT1190CN8	HA3-2841-5	Yes	Better Video Specs, Lower Power
LT1190CS8	HA9P2841-5	Yes	Better Video Specs, Lower Power

\dagger Primary Pins are pin-to-pin; secondary/optional pins are not.

Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
LT1192CN8	HA3-2842-5	Yes	Better Video Specs, Lower Power
LT1192CS8	HA9P2842-5	Yes	Better Video Specs, Lower Power
LT1195CN8	HA3-2841-5	Yes	Better Video Specs, Lower Power
LT1195CS8	HA9P2841-5	Yes	Better Video Specs, Lower Power
LT1206CN8	HA3-5002-5	Yes	Better AC Specs
LT1208CN8	HA5023IP	Yes	Better Performance
LT1208CS8	HA5023IB	Yes	Better Performance
LT1209CN	HA5025IP	Yes	
LT1220CN8	HA3-2841-5	Yes	
LT1221CN8	HA3-2841-5	Yes	
LT1221MJ8	HA7-2841/883	Yes	
LT1222CJ8	HA7-2840-5	\dagger	
LT1222CN8	HA3-2840-5	\dagger	
LT1222MJ8	HA7-2840/883	\dagger	
LT1223CJ8	HA7-5020-5	Yes	Enhanced ACs and Video Performance
LT1223CN8	HA3-5020-5	Yes	Enhanced ACs and Video Performance
LT1223CS8	HA9P5020-5	Yes	Enhanced ACs and Video Performance
LT1223MJ8	HA7-5020/883	Yes	Enhanced ACs and Video Performance
LT1224CN8	HA3-2841-5	Yes	Better Video Specifications
LT1224CS8	HA9P2841-5	Yes	Better Video Specifications
LT1224MJ8	HA7-2841/883	Yes	Better Video Specifications
LT125CN	HA3-2841-5	Yes	$\mathbf{2}$

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
LT1360CS8	HA9P2841-5	Yes	
LT1360CS8	HA9P5020-5	Yes	V_{FB} vs $\mathrm{C}_{\text {FB }}$
LT1361CN8	HA5023IP	Yes	V_{FB} vs $\mathrm{C}_{\text {FB }}$
LT1361CS8	HA5023IB	Yes	V_{FB} vs $\mathrm{C}_{\text {FB }}$
LT1362CN	HA5025IP	Yes	$\mathrm{V}_{\text {FB }}$ vs $\mathrm{C}_{\text {FB }}$
LT1362CS	HA5025IB	Yes	Functional Equivalent
LT1363CN8	НАЗ-2841-5	Yes	
LT1363CN8	НАЗ-5020-5	Yes	V_{FB} vs $\mathrm{C}_{\text {FB }}$
LT1363CS8	HA9P2841-5	Yes	
LT1363CS8	HA9P5020-5	Yes	$\mathrm{V}_{\text {FB }}$ vs $\mathrm{C}_{\text {FB }}$
LT1364CN8	HA5023IP	Yes	V_{FB} vs $\mathrm{C}_{\text {FB }}$
LT1364CS8	HA5023IB	Yes	V_{FB} vs $\mathrm{C}_{\text {FB }}$
LT1365CN	HA5025IP	Yes	V_{FB} vs $\mathrm{C}_{\text {FB }}$
LT1365CS	HA5025IB	Yes	V_{FB} vs $\mathrm{C}_{\text {FB }}$
LTC1050ACH	ICL7650SITV-1	\dagger	Reduced I ${ }_{\text {BIAS }} / I_{10}$
LTC1050ACN8	ICL7650SIPA-1	\dagger	Reduced I ${ }_{\text {BIAS }} / I_{1 O}$
LTC1050AMH	ICL7650SMTV-1	\dagger	Reduced I ${ }_{\text {BIAS }} / I^{\prime} \mathrm{O}$
LTC1050CH	ICL7650SITV-1	\dagger	Reduced $\mathrm{I}_{\mathrm{BIAS}} / \mathrm{IIO}^{\prime} /$ greater $\mathrm{A}_{\text {VOL }}$
LTC1050CN8	ICL7650SIPA-1	\dagger	Reduced $\mathrm{IBIAS} / \mathrm{IO}^{\prime} /$ greater $\mathrm{A}_{\mathrm{VOL}}$
LTC1050CP	ICL7650SIPA-1	\dagger	Reduced I ${ }_{\text {BIAS }} / \mathrm{I}^{\text {O }}$
LTC1050MH	ICL7650SMTV-1	\dagger	Reduced $\mathrm{IBIAS} /{ }_{\text {IO }} /$ greater $\mathrm{A}_{\text {VOL }}$
MAX404CPA	НАЗ-2842-5	Yes	
MAX404CSA	HA9P2842-5	Yes	Better Video Specs, Lower Power
MAX404EPA	HA3-2842-9	Yes	Better Video Specs, Lower Power
MAX404ESA	HA9P2842-5	Yes	Better Video Specs, Lower Power
MAX452CPA	НАЗ-2841-5	Yes	Lower Power
MAX452CSA	HA9P2841-5	Yes	Lower Power
MAX452EJA	HA3-2841-9	Yes	Lower Power
MAX452EPA	НАЗ-2841-9	Yes	Lower Power
MAX457CPA	HA5023IP	Yes	Better Performance, Lower Power
MAX457CSA	HA5023IB	Yes	Better Performance, Lower Power
MAX457EPA	HA5023IP	Yes	Better Performance, Lower Power
MAX460IGC	HA2-5033-5	\dagger	Greater Bandwidth
MAX460MGC	HA2-5033-2	\dagger	Greater Bandwidth
MAX467CPE	HA5013IP	Yes	Better AC Specs, Lower Power
MAX467CWE	HA50131B	Yes	Better AC Specs, Lower Power
MC1776CD	ICL7611DCBA	Yes	Lower Power Drain
MC1776CG	ICL7611BCTV	Yes	Lower Power Drain
MC1776CP1	ICL7611BCPA	Yes	Lower Power Drain
MC1776G	ICL7611BMTV	Yes	Lower Power Drain
MC3302N	CA3290E	Yes	Mosfet Input
MC3303D	CA5470M	Yes	Mos Input/enhanced ACs
MC3303N	CA5470E	Yes	Femos Input/enhanced ACs
MC33071P	CA3140AE	Yes	Reduced $\mathrm{I}_{\text {BIAS }} / I_{10}$
MC33072P	CA3240AE	Yes	Reduced $\mathrm{IBIAS} / \mathrm{I}^{\circ}$
MC3346D	CA3046M	Yes	Full -55 To $125^{\circ} \mathrm{C}$ Operation
MC3346P	CA3046E	Yes	Full -55 To $125^{\circ} \mathrm{C}$ Operation

\dagger Primary Pins are pin-to-pin; secondary/optional pins are not.

Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
MC34001BG	CA3140AT	Yes	Reduced $\mathrm{I}_{\text {BIAS }} / I_{10}$
MC34001BP	CA3140AE	Yes	Reduced $\mathrm{I}_{\text {BIAS }} / I_{10}$
MC34001G	CA3140T	Yes	Reduced IBIAS / I_{10}
MC34001P	CA3140E	Yes	Reduced I ${ }_{\text {BIAS }} / 1{ }^{\text {a }}$
MC34002BG	CA3240AT	Yes	Reduced $\mathrm{I}_{\text {BIAS }} / I_{\text {IO }}$
MC34002BP	CA3240AE	Yes	Reduced $\mathrm{I}_{\text {BIAS }} / \mathrm{I}_{10}$
MC34002G	CA3240T	Yes	Reduced $\mathrm{I}_{\text {BIAS }} / I_{10}$
MC34002P	CA3240E	Yes	Reduced $\mathrm{I}_{\text {BIAS }} / I_{10}$
MC3403D	CA5470M	Yes	Mos Input/enhanced ACs
MC3403N	CA5470E	Yes	Mos Input/enhanced ACs
MC34071P	CA3140AE	Yes	Reduced $\mathrm{I}_{\text {BIAS }} / I_{10}$
MC34072P	CA3240AE	Yes	Reduced $\mathrm{I}_{\text {BIAS }} / \mathrm{I}_{\mathrm{O}}$
MC3456L	ICM7556MJD	Yes	CMOS/Reduced ICC
MC3456P	ICM7556IPD	Yes	CMOS/Reduced ICC
MC3556L	ICM7556MJD	Yes	CMOS/Reduced ICC
MC668ACN-8	ICL7650SCPA-1	Yes	Enhanced V ${ }_{\text {OUT }}$
NE5230N	CA5160AE	No	Mos Input
NE5517AN	CA3280AE	No	Reduced V_{10}
NE5517D	CA3280M	No	Reduced V_{10}
NE5517N	CA3280E	No	Reduced V_{10}
NE5532AFE	HA7-5102-5	Yes	Enhanced $\mathrm{V}_{\text {OUT }} /$ Reduced ICC
NE5532AN	НАЗ-5102-5	Yes	Enhanced V ${ }_{\text {OuT }}$ /Reduced ICC
NE5532FE	HA7-5102-5	Yes	Enhanced $\mathrm{V}_{\text {OUT }} /$ Reduced $\mathrm{I}_{\text {CC }}$
NE5532N	HA3-5102-5	Yes	Enhanced $\mathrm{V}_{\text {OUT }}$ /Reduced ICC
NE5534AFE	HA7-5101-5	\dagger	Enhanced $\mathrm{V}_{\text {OUT }}$
NE5534AN	НАЗ-5101-5	\dagger	Enhanced V ${ }_{\text {OUT }}$
NE5534FE	HA7-5101-5	\dagger	Enhanced $\mathrm{V}_{\text {OUT }}$
NE5534N	HA3-5101-5	\dagger	Enhanced VOUT
NE5539D	HA9P-2539-5	\dagger	Specified at $\pm 15 \mathrm{~V}$ Supplies
NE5539F	HA1-2839-5	\dagger	Specified at $\pm 15 \mathrm{~V}$ Supplies
NE5539N	НАЗ-2839-5	\dagger	Specified at $\pm 15 \mathrm{~V}$ Supplies
NE556-1N	ICM7556IPD	Yes	CMOS/Reduced ICC
NE556N	ICM7556IPD	Yes	CMOS/Reduced ICC
OP-15CH	CA3140AT	Yes	Reduced $\mathrm{IBIAS} / \mathrm{I}^{10}$
OP-15GN8	CA3140AE	Yes	Reduced $\mathrm{I}_{\text {BIAS }} / \mathrm{I}_{\mathrm{IO}}$
OP11AY	HA1-5134-2	Yes	Enhanced ACs
OP11EY	HA1-5134-5	Yes	Enhanced ACs
OP11FY	HA1-5104-5	Yes	Enhanced ACs
OP160GP	НАЗ-5020-9	Yes	
OP160GS	HA9P5020-5	Yes	
OP215GZ	CA3240AE (PDIP)	Yes	
OP220CJ	HA2-5142-2	Yes	Enhanced ACs
OP220CZ	HA7-5142-2	Yes	Enhanced ACs
OP220GJ	HA2-5142-5	Yes	Enhanced ACs
OP220GZ	HA7-5142-5	Yes	Enhanced ACs
OP271AZ	HA7-5102-2	Yes	Lower Voltage Noise/greater Bandwidth

Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
OP271EZ	HA7-5102-5	Yes	Lower Voltage Noise/greater Bandwidth
OP271FZ	HA7-5102-5	Yes	Lower Voltage Noise/greater Bandwidth
OP271GP	НАЗ-5102-5	Yes	Lower Voltage Noise/greater Bandwidth
OP271GS	HA9P-5102-9	Yes	Lower Voltage Noise/greater Bandwidth
OP27AJ8	HA7-5127A-2	Yes	Enhanced ACs/Reduced ICC
OP27AZ	HA7-5127A-2	Yes	Enhanced ACs/Reduced ICC
OP27CJ8	HA7-5127-2	Yes	Enhanced ACs/Reduced ICC
OP27CZ	HA7-5127-2	Yes	Enhanced ACs/Reduced ICC
OP27EJ8	HA7-5127A-5	Yes	Enhanced ACs/Reduced ICC
OP27EZ	HA7-5127A-5	Yes	Enhanced ACs/Reduced ICC
OP27GJ8	HA7-5127-5	Yes	Enhanced ACs/Reduced ICC
OP27GZ	HA7-5127-5	Yes	Enhanced ACs/Reduced ICC
OP37AJ8	HA7-5137A-2	Yes	Enhanced ACs/Reduced ICC
OP37AZ	HA7-5137A-2	Yes	Enhanced ACs/Reduced ICC
OP37CJ8	HA7-5137-2	Yes	Enhanced ACs/Reduced IcC
OP37CZ	HA7-5137-2	Yes	Enhanced ACs/Reduced ICC
OP37EJ8	HA7-5137A-5	Yes	Enhanced ACs/Reduced ICC
OP37EZ	HA7-5137A-5	Yes	Enhanced ACs/Reduced ICC
OP37GJ8	HA7-5137-5	Yes	Enhanced ACs/Reduced ICC
OP37GZ	HA7-5137-5	Yes	Enhanced ACs/Reduced ICC
OP400AY	HA1-5134A-2	Yes	
OP400EY	HA1-5134A-5	Yes	
OP400FY	HA1-5134-5	Yes	
OP420BY	HA1-5144-2	Yes	Enhanced ACs
OP420CY	HA1-5144-2	Yes	Enhanced ACs
OP420HY	HA1-5144-5	Yes	Enhanced ACs
OP470AY	HA1-5104-2	Yes	
OP470EY	HA1-5104-5	Yes	
OP470FY	HA1-5104-5	Yes	
OP470GP	НАЗ-5104-5	Yes	
OP470GS	HA9P5104-5	Yes	
OP470GS	HA9P5104-5	Yes	
OP47AD	HA7-5147A-2	Yes	Greater Bandwidth/min $\mathrm{A}_{\text {CL }}=10$
OP47AT	HA2-5147A-2	Yes	Greater Bandwidth/min $A_{C L}=10$
OP47CD	HA7-5147-2	Yes	Greater Bandwidth/min $\mathrm{A}_{\mathrm{CL}}=10$
OP47CT	HA2-5147-2	Yes	Greater Bandwidth/min $\mathrm{A}_{\mathrm{CL}}=10$
OP47EN	HA7-5147A-5 (CDIP)	Yes	Greater Bandwidth/min $\mathrm{A}_{\mathrm{CL}}=10$
OP47GN	HA7-5147-5 (CDIP)	Yes	Greater Bandwidth/min $\mathrm{A}_{\mathrm{CL}}=10$
OP62AJ	HA2-5221-5	\dagger	Greater Slew Rate
OP62AZ	HA7-5221-9	\dagger	Greater Slew Rate
OP62EJ	HA2-5221-5	\dagger	Greater Slew Rate
OP62EZ	HA7-5221-9	\dagger	Greater Slew Rate
OP62FJ	HA2-5221-5	\dagger	Greater Slew Rate
OP62FZ	HA7-5221-9	\dagger	Greater Slew Rate
OP63AJ	HA2-5221-5	\dagger	Reduced V_{10}
OP63AZ	HA7-5221-9	\dagger	Reduced V_{10}
OP63EJ	HA2-5221-5	\dagger	Reduced V_{10}

[^1]
Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
OP63EZ	HA7-5221-9	\dagger	Reduced V_{10}
OP63FJ	HA2-5221-5	\dagger	Reduced V_{10}
OP63FZ	HA7-5221-9	\dagger	Reduced V_{10}
OP64AJ	HA2-5221-5	\dagger	Reduced V_{10}
OP64AZ	HA7-2622-2	Yes	
OP64AZ	HA7-5221-9	\dagger	Reduced V_{10}
OP64EJ	HA2-5221-5	\dagger	Reduced V_{10}
OP64EZ	HA7-5221-9	\dagger	Reduced V_{10}
OP64FJ	HA2-5221-5	\dagger	Reduced V_{10}
OP64FZ	HA7-2625-5	Yes	
OP64FZ	HA7-5221-9	\dagger	Reduced V_{10}
OP80FJ	CA5420AT	\dagger	Single Supply Operation
OP80GJ	CA5420T	\dagger	Single Supply Operation
OP80GP	CA5420E	\dagger	Single Supply Operation
OPA121KP	CA3140AE	\dagger	Mos Input/enhanced ACs
OPA2111KM	HA2-5102-5	Yes	Greater Bandwidth
OPA2111KP	НАЗ-5102-5	Yes	Greater Bandwidth
OPA27AZ	HA7-5127A-2	Yes	Enhanced ACs/Reduced ICC
OPA27CZ	HA7-5127-2	Yes	Enhanced ACs/Reduced ICC
OPA27EZ	HA7-5127A-5	Yes	Enhanced ACs/Reduced ICC
OPA27GZ	HA7-5127-5	Yes	Enhanced ACs/Reduced ICC
OPA37AZ	HA7-5137A-2	Yes	Enhanced ACs/Reduced ICC
OPA37CZ	HA7-5137-2	Yes	Enhanced ACs/Reduced ICC
OPA37EZ	HA7-5137A-5	Yes	Enhanced ACs/Reduced ICC
OPA37GZ	HA7-5137-5	Yes	Enhanced ACs/Reduced ICC
OPA404AG	HA1-5114-5	Yes	Lower Voltage Noise/enhanced ACs
OPA404BG	HA1-5114-5	Yes	Lower Voltage Noise/enhanced ACs
OPA404KP	HA3-5114-5	Yes	Lower Voltage Noise/enhanced ACs
OPA404KU	HA9P5114-5	Yes	Lower Voltage Noise/enhanced ACs
OPA404SG	HA1-5114-2	Yes	Lower Voltage Noise/enhanced ACs
OPA445AP	HA7-2645-5	Yes	
OPA445BM	HA2-2640-2	Yes	
OPA445SM	HA2-2640-2	Yes	
OPA623AU	HFA11051B	Yes	Better Video and DC Specifications
OPA633AH	HA2-5033-2	Yes	
OPA633KP	НАЗ-5033-5	Yes	
OPA633SH	HA2-5033-5	Yes	
OPA644H	HFA1100IJ	Yes	Better Bandwidth
OPA644HB	HFA1100IJ	Yes	Better Bandwidth
OPA644P	HFA11001P	Yes	Better Bandwidth
OPA644PB	HFA1100IP	Yes	Better Bandwidth
OPA644U	HFA11001B	Yes	Better Bandwidth
OPA644UB	HFA11001B	Yes	Better Bandwidth
OPA648H	HFA11001J	Yes	
OPA648P	HFA1100IP	Yes	
OPA648U	HFA11001B	Yes	

Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
OPA658P	HFA11001P	Yes	Harris Is Higher ICC
OPA658PB	HFA11001P	Yes	Harris Is Higher ICC
OPA658U	HFA11001B	Yes	Harris Is Higher ICC
OPA658U	HFA11051B	Yes	Harris Is Lower AC
OPA658UB	HFA11001B	Yes	Harris Is Higher ICC
OPA658UB	HFA1105IB	Yes	Harris Is Lower ACs
RC3403AN	CA5470E	Yes	Mos Input/enhanced ACs
RC4741D	HA1-4741-2	Yes	Guaranteed ACs
RC4741M	HA9P4741-9	Yes	Guaranteed ACs
RC5532AN	HA3-5102-5	Yes	Enhanced $\mathrm{V}_{\text {OUT }}$ /Reduced $\mathrm{I}_{\text {CC }}$
RC5532N	НАЗ-5102-5	Yes	Enhanced V ${ }_{\text {OUT }}$ /Reduced ICC
RC5534AN	НАЗ-5101-5	\dagger	Enhanced $\mathrm{V}_{\text {Out }} /$ Reduced $\mathrm{I}_{\text {cc }}$
RC5534N	НАЗ-5101-5	\dagger	Enhanced $\mathrm{V}_{\text {OUT }}$ /Reduced $\mathrm{I}_{\text {cc }}$
RM5334T	HA2-5101-2,	\dagger	Reduced Icc
RM5532AD	HA7-5102-2	Yes	Reduced ICC
RM5532AT	HA2-5102-2	Yes	Reduced I ICC
RM5532D	HA7-5102-2	Yes	Reduced ICC
RM5532T	HA2-5102-2	Yes	Reduced ICC
RM5534AD	HA7-5101-2	\dagger	Reduced ICC
RM5534AT	HA2-5101-2	\dagger	Reduced ICC
RM5534D	HA7-5101-2	\dagger	Reduced ICC
SA556-1N	ICM7556IPD	Yes	CMOS/Reduced ICC
SA556N	ICM7556IPD	Yes	CMOS/Reduced ICC
SE5532AFE	HA7-5102-2	Yes	Reduced Icc
SE5532FE	HA7-5102-2	Yes	Reduced Icc
SE5534AFE	HA7-5101-2	\dagger	Reduced I ${ }_{\text {BIAS }} / \mathrm{I}^{\circ}$
SE5534FE	HA7-5101-2	\dagger	Reduced $\mathrm{IBIAS}^{\prime} / 1 \mathrm{O}$
SE5539F	HA1-2539-2	\dagger	Specified at $\pm 15 \mathrm{~V}$ Supplies
SE556-1CN	ICM7556MJD	Yes	CMOS/Reduced ICC
SE556-1F	ICM7556MJD	Yes	CMOS/Reduced ICC
SE556F	ICM7556MJD	Yes	CMOS/Reduced ICC
SG1536T	HA2-2640-2	\dagger	Reduced V_{10} /enhanced ACs
SG1536Y	HA7-2640-2	\dagger	Reduced $\mathrm{V}_{\text {IO }}$ /enhanced ACs
SG3045J	CA3045F	Yes	
SG3049T	CA3049T	Yes	Greater Bandwidth/Reduced Noise
SG3083	САЗ083	Yes	
SG3183D	CA3183M	Yes	Identical Specs at $25^{\circ} \mathrm{C}$
SG3183N	CA3183E	Yes	Identical Specs at $25^{\circ} \mathrm{C}$
SHC5320KH	HA1-5320-5	Yes	
SHC5320SH	HA1-5320-2	Yes	
SHC85	HA1-2425-5	No	Enhanced ACs
SHC85ET	HA1-2420-2	No	Enhanced ACs
SHM-20C	HA1-5320-5	Yes	Guaranteed Acquisition Time
SHM-20M	HA1-5320-2	Yes	Guaranteed Acquisition Time
SHM-IC-1	HA1-2425-5	Yes	Almost Identical
SHM-IC-1M	HA1-2420-2	Yes	Almost Identical

\dagger Primary Pins are pin-to-pin; secondary/optional pins are not.

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
SL3045C-DG	CA3045F	Yes	
SL3046C-DP	CA3046E	Yes	
SL3127C-DC	CA3127F	Yes	VOUT Version Available
SL3127C-DP	CA3127E	Yes	
SL3145C-DC	CA3045F	Yes	Greater Breakdown Voltages
SL3145C-DP	CA3046E	Yes	Greater Breakdown Voltages
SL3227-DP	CA3227E	Yes	Greater Breakdown Voltages
SL3227-MP	CA3227M	Yes	Greater Breakdown Voltages
SL3245-DP	CA3246E	Yes	Programmable Biasing Current
SL3245-MP	CA3246M	Yes	Faster Acquisition/lower Droop
SMP10AY	HA1-2420-2	\dagger	Faster Acquisition/lower Droop
SMP10BY	HA1-2420-2	\dagger	Faster Acquisition/lower Droop
SMP10EY	HA1-2425-5	\dagger	Faster Acquisition/lower Droop
SMP10FY	HA1-2425-5	\dagger	Faster Acquisition/lower Droop
SMP11AY	HA1-2420-2	\dagger	Faster Acquisition/lower Droop
SMP11BY	HA1-2420-2	\dagger	Faster Acquisition/lower Droop
SMP11EY	HA1-2425-5	\dagger	
SMP11FY	HA1-2425-5	\dagger	
SP1-2541-2	HA1-2541-2	Yes	
SP1-2541-5	HA1-2541-5	Yes	
SP1-2542-2	HA1-2542-2	Yes	
SP1-2542-5	HA1-2542-5	Yes	
SP1-5330-2	HA1-5330-2	Yes	
SP1-5330-5	HA1-5330-5	Yes	
SP2-2500-2	HA2-2500-2	Yes	
SP2-2502-2	HA2-2502-2	Yes	
SP2-2505-5	HA2-2505-5	Yes	
SP2-2510-2	HA2-2510-2	Yes	
SP2-2512-2	HA2-2512-2	Yes	
SP2-2515-5	HA2-2515-5	Yes	
SP2-2520-2	HA2-2520-2	Yes	Substitute HA2-2529-2
SP2-2522-2	HA2-2522-2	Yes	Substitute HA2-2529-2
SP2-2525-5	HA2-2525-5	Yes	Substitute HA2-2529-5
SP2-2541-2	HA2-2541-2	Yes	
SP2-2541-5	HA2-2541-5	Yes	
SP2-2542-2	HA2-2542-2	Yes	
SP2-2542-5	HA2-2542-5	Yes	
SP2-2600-2	HA2-2600-2	Yes	
SP2-2602-2	HA2-2602-2	Yes	
SP2-2605-5	HA2-2605-5	Yes	
SP2-2620-2	HA2-2620-2	Yes	
SP2-2622-2	HA2-2622-2	Yes	
SP2-2625-5	HA2-2625-5	Yes	
SP3-2505-5	НАЗ-2505-5	Yes	
SP3-2515-5	НАЗ-2515-5	Yes	
SP3-2525-5	НАЗ-2525-5	Yes	Substitute HA3-2529-5
SP3-2542-5	HA3B2842-5	Yes	

\dagger Primary Pins are pin-to-pin; secondary/optional pins are not.

Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
SP3-2605-5	HA3-2605-5	Yes	
SP3-2625-5	HA3-2625-5	Yes	
SP7-2500-2	HA7-2500-2	Yes	
SP7-2502-2	HA7-2502-2	Yes	
SP7-2505-5	HA7-2505-5	Yes	
SP7-2510-2	HA7-2510-2	Yes	
SP7-2512-2	HA7-2512-2	Yes	*
SP7-2515-5	HA7-2515-5	Yes	
SP7-2520-2	HA7-2520-2	Yes	Substitute HA7-2529-2
SP7-2522-2	HA7-2522-2	Yes	Substitute HA7-2529-2
SP7-2525-5	HA7-2525-5	Yes	Substitute HA7-2529-5
SP7-2600-2	HA7-2600-2	Yes	
SP7-2602-2	HA7-2602-2	Yes	
SP7-2605-5	HA7-2605-5	Yes	
SP7-2620-2	HA7-2620-2	Yes	
SP7-2622-2	HA7-2622-2	Yes	
SP7-2625-5	HA7-2625-5	Yes	
TA75393P	CA3290AE/CA3290E	Yes	Reduced $\mathrm{IBIAS} / \mathrm{l}_{\mathrm{O}} / \mathrm{l}_{\mathrm{CC}}$
TA75557F	HA9P5102-9	No	Greater Bandwidth/Reduced Vnoise
TA75557P	НАЗ-5102-5	Yes	Greater Bandwidth/Reduced Vnoise
TA75559F	HA9P5112-9	No	Greater Bandwidth/Reduced Vnoise
TA75559P	НАЗ-5112-5	Yes	Greater Bandwidth/Reduced Vnoise
TCA971	CA3146AE/CA3046E	Yes	Greater VCBO With CA3146
TCA971G	CA3146AM/CA3046M	Yes	Greater VCBO With CA3146
TCA991	CA3146E/CA3046E	Yes	Greater VCBO With CA3146
TCA991G	CA3146M/CA3046M	Yes	Greater VCBO With CA3146
TD62507F	CA3183AM	No	Alt. Product Is CA3083
TD62507P	CA3183AE	No	Alt. Product Is CA3083
TDB2046DP	CA3046E	Yes	Full -55 To $125^{\circ} \mathrm{C}$ Operation
TDB2046FP	CA3046M	Yes	Full -55 To $125^{\circ} \mathrm{C}$ Operation
TLC252ACD	CA5260AM	Yes	Specified at +5 V Supply
TLC252ACP	CA5260AE	Yes	Specified at +5 V Supply
TLC252CD	CA5260M	Yes	Specified at +5 V Supply
TLC252CP	CA5260E	Yes	Specified at +5 V Supply
TLC254CD	CA5470M	Yes	Specified at +5 V Supply
TLC254CN	CA5470E	Yes	Specified at +5V Supply
TLC272ACD	CA5260AM	Yes	Greater $\mathrm{V}_{\text {OUT }}$ Range/Reduced I_{CC}
TLC272ACP	CA5260AE	Yes	Greater V ${ }_{\text {OUT }}$ Range/Reduced $\mathrm{I}_{\text {CC }}$
TLC272AID	CA5260AM	Yes	Greater V ${ }_{\text {OUT }}$ Range/Reduced ${ }^{\text {CC }}$
TLC272AIP	CA5260AE	Yes	Greater V OUT $^{\text {Range/Reduced } \mathrm{I}_{\mathrm{CC}}}$
TLC272CD	CA5260M	Yes	Greater $\mathrm{V}_{\text {OUT }}$ Range/Reduced $\mathrm{I}_{\text {CC }}$
TLC272CP	CA5260E	Yes	Greater $\mathrm{V}_{\text {OUT }}$ Range/Reduced $\mathrm{I}_{\text {CC }}$
TLC2721D	CA5260M	Yes	Greater $\mathrm{V}_{\text {OUT }}$ Range/Reduced I_{CC}
TLC272IP	CA5260E	Yes	Greater $\mathrm{V}_{\text {OUT }}$ Range/Reduced $\mathrm{I}_{\text {CC }}$
TLC272MJG	CA5260E (PDIP)	Yes	Greater $\mathrm{V}_{\text {OUT }}$ Range/Reduced $\mathrm{I}_{\text {CC }}$
TLC274CD	CA5470M	Yes	Greater V OUT/bandwidth/slew Rate
TLC274CN	CA5470E	Yes	Greater $\mathrm{V}_{\mathrm{OUT}} / \mathrm{bandwidth/slew} \mathrm{Rate}$

\dagger Primary Pins are pin-to-pin; secondary/optional pins are not.

Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
TLC2741D	CA5470M	Yes	Greater $\mathrm{V}_{\text {OUT }} / \mathrm{b}$ andwidth/slew Rate
TLC2741N	CA5470E	Yes	Greater $\mathrm{V}_{\text {OUT }} /$ bandwidth/slew Rate
TLC274MJ	CA5470E (PDIP)	Yes	Greater V ${ }_{\text {OUT }} /$ bandwidth/slew Rate
TLC27M2ACD	CA5260AM	Yes	Greater $\mathrm{V}_{\text {OUT }} / \mathrm{bandwidth/slew} \mathrm{Rate}$
TLC27M2ACP	CA5260AE	Yes	Greater $\mathrm{V}_{\text {OUT }} / \mathrm{bandwidth/slew} \mathrm{Rate}$
TLC27M2AID	CA5260AM	Yes	Greater $\mathrm{V}_{\text {OUT }} / \mathrm{bandwidth/slew} \mathrm{Rate}$
TLC27M2AIP	CA5260AE	Yes	Greater $\mathrm{V}_{\text {OUT }} / \mathrm{bandwidth/slew} \mathrm{Rate}$
TLC27M2CD	CA5260M	Yes	Greater $\mathrm{V}_{\text {OUT }} /$ bandwidth/slew Rate
TLC27M2CP	CA5260E	Yes	Greater $\mathrm{V}_{\text {OUT }} / \mathrm{bandwidth/slew} \mathrm{Rate}$
TLC27M21D	CA5260M	Yes	Greater $\mathrm{V}_{\text {OUT }} / \mathrm{bandwidth/slew} \mathrm{Rate}$
TLC27M2IP	CA5260E	Yes	Greater $\mathrm{V}_{\text {OUT }} / \mathrm{bandwidth/slew} \mathrm{Rate}$
TLC27M2MJG	CA5260E (PDIP)	Yes	Greater $\mathrm{V}_{\text {OUT }} / \mathrm{bandwidth/slew} \mathrm{Rate}$
TLC555CD	ICM7555CBA	Yes	Reduced ICC
TLC555IP	ICM7555IPA	Yes	Reduced ICC
TLC556CN	ICM7556IPD	Yes	Reduced ICC
TLC556IN	ICM7556IPD	Yes	Reduced ICC
TLC556MJ	ICM7556MJD	Yes	Reduced ICC
TP1321	HA-5195	Yes	
TP1322	HA-2520	Yes	
TP1326	HA-2600	Yes	
TP1332	HA-2645	Yes	
TP1339	HA-2620	No	
TP1341	HA-2840	Yes	
TP1342	HA-2839	Yes	
TP1344	HA-5160	Yes	
TP1345	HA-5162	Yes	
TP4856	HA1-2420/25	Yes	Guaranteed Acquisition Time
TP4866	HA1-5320	Yes	Guaranteed Acquisition Time
TSC7650ACPA	ICL7650SCPA-1	Yes	Reduced Tempco/voltage Noise
TSC7650ACPD	ICL7650SCPD	Yes	Reduced Tempco/voltage Noise
TSC7650AIJA	ICL7650SIJA-1	Yes	Reduced Tempco/voltage Noise
TSC7650AIJD	ICL7650SIJD	Yes	Reduced Tempco/voltage Noise
UCOP01CN	CA3140AE	Yes	Mosfet Input
UC0P01GJ	CA3140AE (PDIP)	Yes	Mosfet Input
ULN2046A-1	CA3146E	Yes	Full -40 To $85^{\circ} \mathrm{C}$ Operation
ULN2046L-1	CA3146M	Yes	
ULN2083A	СА3083	Yes	Full -55 To $125^{\circ} \mathrm{C}$ Operation
ULN2083A-1	CA3183E	Yes	Full -40 To $85^{\circ} \mathrm{C}$ Operation
ULN2083L	CA3083M	Yes	Full -55 To $125^{\circ} \mathrm{C}$ Operation
ULN2086A	САЗ086	Yes	Full -55 To $125^{\circ} \mathrm{C}$ Operation
XR-13600AP	CA3280AE	No	Reduced V_{10} /enhanced ACs
XR-13600CP	CA3280E	No	Reduced V_{10} /enhanced ACs
XR-2242CP	ICM7242IPA	Yes	Greatly Reduced ICC
XR-3403CP	CA5470E	Yes	Mos Inputenhanced ACs
XR-4739CN	HA7-5102-5	No	Enhanced ACs/DCs
XR-4739CP	НАЗ-5102-5	No	Enhanced ACs/DCs
XR-4741CN	HA1-4741-5	Yes	Guaranteed Channel Separation

Commercial Linear Product Cross Reference

PART NUMBER	HARRIS DEVICE	PIN-TO-PIN	HARRIS ADVANTAGE/COMMENT
XR-4741CP	НАЗ-4741-5	Yes	Guaranteed Channel Separation
XR-4741M	HA1-4741-2	Yes	Guaranteed Channel Separation
XR-5532AN	HA7-5102-5	Yes	Reduced $\mathrm{V}_{\text {IO }} \mathrm{l}_{\text {BIAS }}$
XR-5532AP	НАЗ-5102-5	Yes	Reduced $\mathrm{V}_{\text {IO }} /{ }^{\text {BIAAS }}$
XR-5532N	HA7-5102-5	Yes	Reduced $\mathrm{V}_{10} /_{\text {IIAS }}$
XR-5532P	НАЗ-5102-5	Yes	Reduced $\mathrm{V}_{10} / /_{\text {BIAS }}$
XR-5534ACN	HA7-5101-5	\dagger	Greater $A_{\text {VOL }} /$ Reduced V_{10}
XR-5534ACP	НАЗ-5101-5	\dagger	Greater $A_{\text {VOL }} /$ Reduced V_{10}
XR-5534AM	HA7-5101-2	\dagger	Greater AvoL
XR-5534CN	HA7-5101-5	\dagger	Greater $\mathrm{AVOL}^{\text {/reduced }} \mathrm{V}_{\text {IO }}$
XR-5534CP	НАЗ-5101-5	\dagger	Greater $\mathrm{A}_{\text {VOL }} /$ reduced V_{10}
XR-5534M	HA7-5101-2	\dagger	Greater Avol
XR-8038CN	ICL8038CCJD	Yes	
XR-8038CP	ICL8038CCPD	Yes	
XR-8038M	ICL8038AMJD	Yes	
XR-8038N	ICL8038BCJD	Yes	
UPA103G	HFA3046B	Yes	Lower Cost
uPC357C	CA3130E	Yes	Reduced I ${ }_{\text {BIAS }}$
uPC4741C	НАЗ-4741-5	Yes	Guaranteed Specs Over Temp
uPC4741G2	HA9P4741-9	\dagger	Guaranteed Specs Over Temp
uPD5555C	ICM7555CPA	Yes	Reduced ICC
uPD5556C	ICM7556CPD	Yes	Reduced ICC

[^2]
Data Acquisition Products

A/D CONVERTERS DISPLAY
CA3162/CA3162A A/D Converter for $31 / 2$-Digit Display
ICL71C03/ICL8052 Precision $4 \frac{1}{2}$-Digit A/D Converter
ICL71C03/ICL8068 Precision $4 \frac{1}{2}$-Digit A/D Converter
ICL7106 $\quad 3 \frac{1}{2}$-Digit LCD Single-Chip A/D Converter
ICL7107 $\quad 3 \frac{1}{2}$-Digit LED Single-Chip A/D Converter
ICL7116/7117 $3 \frac{1}{2}$-Digit with Display Hold Single-Chip A/D Converter
ICL7126 $3 \frac{1}{2}$-Digit Low Power Single-Chip A/D Converter
ICL7129 $\quad 4 \frac{1}{2}$-Digit LCD Single-Chip A/D Converter
ICL7136 $3 \frac{1}{2}$-Digit LCD Low Power A/D Converter
ICL7137 $\quad 3 \frac{1}{2}$-Digit LED Low Power Single-Chip A/D Converter
ICL7139 $\quad 3 \frac{3}{4}$-Digit Autoranging Multimeter
ICL7149 Low Cost $3 / 4$-Digit Autoranging Multimeter

A/D CONVERTERS INTEGRATING

ICL7104/ICL8052	$14 / 16$-Bit μ P-Compatible 2-Chip A/D Converter
ICL7104/ICL8068	14/16-Bit μ P-Compatible 2-Chip A/D Converter
ICL7109	12-Bit μ P-Compatible A/D Converter
ICL7135	$4 \frac{1}{2}$-Digit BCD Output A/D Converter

A/D SUCCESSIVE APPROXIMATION

ADC0802/3/4	8 -Bit μ P-Compatible A/D Converter
CA3310/CA3310A	CMOS 10-Bit A/D Converter with Internal Track and Hold
HI-574A	Fast, Complete 12-Bit A/D Converter with Microprocessor Interface
HI5812	Low Power, Sampling 12-Bit A/D Converter
HI-674A	I2 μ s, Complete 12-Bit A/D Converter with Microprocessor Interface
HI-774	8 s Complete 12-Bit A/D Converter with Microprocessor Interface

A/D CONVERTERS FLASH

HI3304 4-Bit 25 MSPS A/D Converter
HI1826 6-Bit 140 MSPS A/D Converter
HI1866 6-Bit 140 MSPS A/D Converter
HI3306 6-Bit 15 MSPS A/D Converter
HI-5701 6-Bit 30 MSPS A/D Converter
HI3318 8-Bit 15 MSPS A/D Converter
HI1386 8-Bit 75 MSPS A/D Converter
HI1396 8-Bit 125 MSPS A/D Converter
HI1166 8-Bit 250 MSPS A/D Converter
HI1276 8-Bit 500 MSPS A/D Converter

D/A CONVERTERS

AD7520 10/12-Bit Multiplying DIA Converter
AD7521 10/12-Bit Multiplying DIA Converter
AD7530 10/12-Bit Multiplying DIA Converter

AD7531	10/12-Bit Multiplying D1A Converter
AD7523	8 -Bit Multiplying D/A Converter
AD7533	10-Bit Multiplying D/A Converter
AD7541	12-Bit Multiplying D/A Converter
AD7545	12-Bit Buffered Multiplying CMOS DAC
HI-DAC80V	12-Bit, Low Cost, Monolithic D/A Converter
HI-DAC85V	12-Bit, Low Cost, Monolithic D/A Converter

D/A CONVERTERS HIGH SPEED

HI 2304	Triple 8-Bit 20MHz D/A Converter
HI1106	8-Bit 35MHz D/A Converter
HI1260	Triple 8-Bit 35MHz D/A Converter
HI20206	Triple 8-Bit 35MHz D/A Converter
HI1171	8-Bit 40MHz CMOS D/A Converter
HI1178	Triple 8-Bit 40MHz D/A Converter
HI1177	Dual 8-Bit 40MHz D/A Converter
HI3338	8-Bit $50 \mathrm{MHz} \mathrm{D/A} \mathrm{Converter}$
HI20203	8-Bit $160 \mathrm{MHz} \mathrm{D/A} \mathrm{Converter}$
HI3050	Triple 10-Bit 50MHz D/A Converter
HI2307	Triple 10-Bit 50MHz D/A Converter

ANALOG SWITCHES

DG181	Dual SPST (302) Switch
DG182	Dual SPST (75R) Switch
DG184	Dual DPST (30) Switch
DG185	Dual DPST (758) Switch
DG187	SPST (30) Switch
DG188	SPST (758) Switch
DG190	Dual SPST (30) Switch
DG191	Dual SPST (758) Switch
DG200	Dual SPST CMOS Analog Switch
DG201A	Quad Monolithic SPST CMOS Analog Switch
DG202	Quad Monolithic SPST CMOS Analog Switch
DG211	Quad Monolithic SPST CMOS Analog Switch
DG212	Quad Monolithic SPST CMOS Analog Switch
DG300A	Dual SPST TTL Compatible CMOS Analog Switch
DG301A	SPDT TTL Compatible CMOS Analog Switch
DG302A	Dual DPST TTL Compatible CMOS Analog Switch
DG303A	Dual SPDT TTL Compatible CMOS Analog Switch
DG308A	Quad Monolithic SPST CMOS Analog Switch
DG309	Quad Monolithic SPST CMOS Analog Switch
DG401/403/405	Dual CMOS Analog Switches
DG411/412/413	Quad SPST CMOS Analog Switches
DG441/442	Quad SPST CMOS Analog Switches
HI-200	Dual SPST CMOS Analog Switch
HI-201	Quad SPST CMOS Analog Switch

HI-201HS
HI-222
HI-300
HI-301
HI-302
HI-303
HI-304
HI-305
HI-306
HI-307
HI-381
HI-384
HI-387
HI-390
HI-5040
HI-5041
HI-5042
HI-5043
HI-5044
HI-5045
HI-5046
HI-5046A
HI-5047
HI-5047A
HI-5048
HI-5049
HI-5050
HI-5051
IH401A
IH5040
IH5041
IH5042
IH5043
IH5044
IH5045
IH5046
IH5047
IH5052
IH5053
IH5140
IH5141
IH5142
IH5143
IH5144
IH5145

High-Speed Quad SPST CMOS Analog Switch
High Frequency Video Switch
Dual SPST CMOS Analog Switch SPDT CMOS Analog Switch Dual DPST CMOS Analog Switch Dual SPDT CMOS Analog Switch Dual SPST CMOS Analog Switch SPDT CMOS Analog Switch Dual DPST CMOS Analog Switch Dual SPDT CMOS Analog Switch Dual SPST CMOS Analog Switch Dual DPST CMOS Analog Switch SPDT CMOS Analog Switch Dual SPDT CMOS Analog Switch SPST CMOS Analog Switch Dual SPST CMOS Analog Switch SPDT CMOS Analog Switch Dual SPDT CMOS Analog Switch DPST CMOS Analog Switch Dual DPST CMOS Analog Switch DPDT CMOS Analog Switch DPDT CMOS Analog Switch 4PST CMOS Analog Switch 4PST CMOS Analog Switch Dual SPST CMOS Analog Switch Dual DPST CMOS Analog Switch SPDT CMOS Analog Switch Dual SPDT CMOS Analog Switch Quad Varafet Analog Switch SPST 75 Ohm High-Level CMOS Analog Switch
Dual SPST 75 Ohm High-Level CMOS Analog Switch
SPDT 75 Ohm High-Level CMOS Analog Switch
Dual SPDT 75 Ohm High-Level CMOS Analog Switch DPST 75 Ohm High-Level CMOS Analog Switch Dual DPST 75 Ohm High-Level CMOS Analog Switch DPDT 75 Ohm High-Level CMOS Analog Switch 4PST 75 Ohm High-Level CMOS Analog Switch
Quad SPST CMOS Analog Switch Quad SPST CMOS Analog Switch SPST High-Level CMOS Analog Switch
Dual SPST High-Level CMOS Analog Switch
SPDT High-Level CMOS Analog Switch
Dual SPDT High-Level CMOS Analog Switch DPST High-L.evel CMOS Analog Switch Dual DPST High-Level CMOS Analog Switch

IH5148	Dual SPST High-Level CMOS Analog Switch
IH5149	Dual DPST High-Level CMOS Analog Switch
IH5150	SPDT High-Level CMOS Analog Switch
IH5151	Dual SPDT High-Level CMOS Analog Switch
IH5341	Dual SPST CMOS RF/Video Switch
$I H 5352$	Quad SPST CMOS RF/Video Switch

MULTIPLEXERS

DG406/407 16-Channel/Dual 8-Channel CMOS Analog Multiplexer
DG408/409 Single 8-Channel/Differential 4-Channel CMOS Analog Multiplexers
DG506A
DG507A
DG508A
16-Channel/Dual 8-Channel CMOS Analog Multiplexer
16-Channel/Dual 8-Channel CMOS Analog Multiplexer
8-Channel/Dual 4-Channel CMOS Analog Multiplexer
DG509A 8-Channel/Dual 4-Channel CMOS Analog Multiplexer
DG526
16-Channel/Dual 8-Channel CMOS Latchable Multiplexer
16-Channel/Dual 8-Channel CMOS Latchable Multiplexer
8-Channel/Dual 4-Channel Latchable Multiplexer
DG528
8-Channel/Dual 4-Channel Latchable Multiplexer
DG529 Low Resistance Single 8/Differential 4-Channel CMOS Analog Multiplexers

HI-506
HI-507
HI-506A
HI-507A
HI-508
HI-509
HI-508A
HI-509A
HI-516 Single 16/Differential 8-Channel CMOS Analog Multiplexer
(
HI-518 8-Channel/Differential 4-Channel CMOS High-Speed Analog Mulitplexer
HI-524 4-Channel Wideband and Video Multiplexer
HI-539 Monolithic, 4-Channel, Low Level, Differential Multiplexer
HI-546 Single 16/Differential 8-Channel CMOS Analog Mulitplexer with Active Overvoltage Protection
HI-547 Single 16/Differential 8-Channel CMOS Analog Mulitplexer with Active Overvoltage Protection
HI-548 Single 8/Differential 4-Channel CMOS Analog Multiplexer with Active Overvoltage Protection
HI-549 Single 8/Differential 4-Channel CMOS Analog Multiplexer with Active Overvoltage Protection
IH6108 8-Channel CMOS Analog Multiplexer
IH6208 4-Channel Differential CMOS Analog Multiplexer

DISPLAY DRIVERS

CA3161 BCD to Seven Segment Decoder/Driver
CA3168 2-Digit BCD to Seven Segment Decoder/Driver
ICM7211 4-Digit LCD/LED Display Driver
ICM7212 4-Digit LCD/LED Display Driver
ICM7218 8-Digit LED Multiplexed Display Driver
ICM7228 8-Digit LED Multiplexed Display Driver
ICM7231 Numeric/Alphanumeric Triplexed LCD Display Driver

ICM7232 Numeric/Alphanumeric Triplexed LCD Display Driver
ICM7243 8-Character μ P-Compatible LED Display Driver

REAL-TIME CLOCK

ICM7170 $\quad \mu$ P-Compatible Real-Time Clock
COUNTERS WITH DISPLAY DRIVERS/TIMEBASE GENERATORS

ICM7207/A	CMOS Timebase Generator
ICM7208	7-Digit LED Display Counter
ICM7209	Timebase Generator
ICM7213	One Second/One Minute Timebase Generator
ICM7216A/B/D	8-Digit Multi-Function Frequency Counter/Timer
ICM7217	4-Digit LED Display Programmable Up/Down Counter
ICM7224	$4 \frac{1}{2}$-Digit LCD/LED Display Counter
ICM7226A/B	8 -Digit Multi-Function Frequency Counter/Timer
ICM7249	$5 \frac{1}{2}$-Digit LCD μ-Power Event/Hour Meter

SPECIAL PURPOSE

AD590 2-Wire Current Output Temperature Transducer
ICL. 8069 Low Voltage Reference
DATA COMMUNICATIONS
ICL232 +5 Volt Powered Dual RS-232 Transmitter/Receiver
HIN200 +5 Volt 5T/0R Powered Dual RS-232 Transmitter/Receiver
HIN201 +5 Volt 2T/2R Powered Dual RS-232 Transmitter/Receiver
HIN202 +5 Volt 2T/2R Powered Dual RS-232 Transmitter/Receiver
HIN204 +5 Volt 4T/0R Powered Dual RS-232 Transmitter/Receiver
HIN206 +5 Volt 4T/3R Powered Dual RS-232 Transmitter/Receiver
HIN207 +5 Volt 5T/3R Powered Dual RS-232 Transmitter/Receiver
HIN208 +5 Volt 4T/4R Powered Dual RS-232 Transmitter/Receiver
HIN209 +5 Volt 3T/5R Powered Dual RS-232 Transmitter/Receiver
HIN211 +5 Volt 4T/4R Powered Dual RS-232 Transmitter/Receiver
HIN213 +5 Volt 4T/5R Powered Dual RS-232 Transmitter/Receiver

Digital Signal Processing Products

MULTIPLIERS

```
HMA510
HMU16/HMU17
```

16×16-Bit CMOS Parallel Multiplier Accumulator 16×16-Bit CMOS Parallel Multipliers

ONE DIMENSIONAL FILTERS

DECI • MATE	Harris HSP43220 Decimating Digital Filter Development Software
HSP43124	Serial I/O Filter
HSP43168	Dual FIR Filter
HSP43216	Half Band Filter
HSP43220	Decimating Digital Filter
HSP43881	Digital Filter
HSP43891	Digital Filter

TWO DIMENSIONAL FILTERS

HSP48901
HSP48908
3×3 Image Filter Two Dimensional Convolver

SIGNAL SYNTHESIZERS

```
HSP45102
HSP45106
HSP45116
HSP45116A
HSP45116-DB
```


SPECIAL FUNCTION

12-Bit Numerically Controlled Oscillator
16-Bit Numerically Controlled Oscillator
Numerically Controlled Oscillator/Modulator Numerically Controlled Oscillator/Modulator HSP45116 Evaluation Daughter Board

HSP45240
HSP45256
HSP48410
HSP9501
HSP9520/9521
HSP-EVAL

COMMUNICATIONS

NOTES:

1. New Product Offerings
2. New Product Offerings in Short Term Road Map

LINEAR

OPERATIONAL AMPLIFIERS

PAGE
SELECTION GUIDE 3-4
OPERATIONAL AMPLIFIER DATA SHEETS
CA124, CA224, CA324, Quad, 1MHz, Operational Amplifiers for Commercial, Industrial, and Military Applications 3-17
LM324, LM2902
CA158, CA158A, Dual, 1 MHz , Operational Amplifiers for Commercial Industrial, and Military Applications 3-22
CA258, CA258ACA358, CA358A,CA2904,LM358, LM2904
CA741, CA741C, CA1458, CA1558, LM741, LM741C, LM1458CA3020, САЗ020ACA3060CA3078, САЗ078AСАЗ080, СА3080AСАЗ094, СА3094A,CA3094B
CA3100
CA3130, CA3130A
Single and Dual, High Gain Operational Amplifiersfor Military, Industrial and Commercial Applications3-29
8MHz Power Amps For Military, Industrial and Commercial Equipment 3-34
110kHz, Operational Transconductance Amplifier Array 3-35
2 kHz , Micropower Operational Amplifier 3-36
2 MHz , Operational Transconductance Amplifier (OTA) 3-45
30 MHz , High Output Current Operational Transconductance Amplifier (OTA) 3-56
CA3140, CA3140A38 MHz , Operational Amplifier3-57
CA3160, CA3160A 4 MHz , BiMOS Operational Amplifier with MOSFET Input/CMOS Output 3-98
CA3193, СА3193A $1.2 \mathrm{MHz}, \mathrm{BiCMOS}$ Precision Operational Amplifiers 3-114
САЗ240, САЗ240A Dual, 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output 3-115
CA3260, СА3260A 4MHz, BiMOS Operational Amplifier with MOSFET Input/CMOS Output 3-129
CA3280, СА3280A Dual, 9MHz, Operational Transconductance Amplifier (OTA) 3-132
CA3420, СА3420A 0.5 MHz , Low Supply Voltage, Low Input Current BiMOS Operational Amplifiers 3-141
CA3440, CA3440A 63 kHz , Nanopower, BiMOS Operational Amplifiers 3-142
CA3450 $\mathbf{2 2 0 M H z}$, Video Line Driver, High Speed Operational Amplifier 3-143
CA5130, CA5130A 15 MHz , BiMOS Microprocessor Operational Amplifiers with MOSFET Input/CMOS Output 3-144
CA5160, CA5160A 4MHz, BiMOS Microprocessor Operational Amplifiers with MOSFET Input/CMOS Output 3-145
CA5260, CA5260A 3MHz, BiMOS Microprocessor Operational Amplifiers with MOSFET Input/CMOS Output 3-146

Operational Amplifiers (Continued)

CA5420, CA5420A 0.5 MHz , Low Supply Voltage, Low Input Current BiMOS Operational Amplifiers 3-150
CA5470 Quad, 14MHz, Microprocessor BiMOS-E Operational Amplifier with MOSFET Input/Bipolar Output. 3-156
HA-2400, HA-2404,
40 MHz, PRAM Four Channel Programmable Amplifiers. 3-161
HA-2405
HA-2406
30 MHz , Digitally Selectable Four Channel Operational Amplifier 3-167
HA-2444 50 MHz , Selectable, Four Channel Video Operational Amplifier 3-173HA-2500, HA-2502,HA-2505
HA-2510, HA-2512,
HA-2515
HA-2520, HA-2522,HA-2525
HA-2529
HA-2539
12 MHz , High Input Impedance, Operational Amplifiers. 3-174
12 MHz , High Input Impedance, Operational Amplifiers. 3-181
3-188
20MHz, High Slew Rate, Uncompensated, High Input Impedance, Operational Amplifiers
20 MHz , High Input Impedance, High Slew Rate Operational Amplifier. 3-196
600 MHz , Very High Slew Rate Operational Amplifier 3-197
HA-2540 400 MHz , Fast Settling Operational Amplifier. 3-205
HA-2541 40 MHz , Fast Settling, Unity Gain Stable, Operational Amplifier 3-213
HA-2542 70 MHz , High Slew Rate, High Output Current Operational Amplifier 3-222
HA-2544 50 MHz , Video Operational Amplifier 3-233
HA-2548 150MHz, High Slew Rate, Precision Operational Amplifier 3-244
HA-2600, HA-2602, 12 MHz , High Input Impedance Operational Amplifiers 3-245
HA-2605
HA-2620, HA-2622,HA-2625
HA-2640, HA-26454MHz, High Supply Voltage Operational Amplifiers3-259
HA-2839 600 MHz , Very High Slew Rate Operational Amplifier 3-265
HA-2840 600 MHz , Very High Slew Rate Operational Amplifier 3-266
HA-2841 50 MHz , Fast Settling, Unity Gain Stable, Video Operational Amplifier 3-273
HA-2842 80 MHz , High Slew Rate, High Output Current, Video Operational Amplifier 3-281
HA-2850 470 MHz , Low Power, High Slew Rate Operational Amplifier 3-290
HA-4741 Quad, 3.5 MHz , Operational Amplifier 3-291
HA-5002 110 MHz , High Slew Rate, High Output Current Buffer 3-297
HA-5004 100MHz Current Feedback Amplifier 3-305
HA5013 Triple, 125MHz Video Amplifier. 3-306
HA-5020 100MHz Current Feedback Video Amplifier With Disable 3-320
HA5022 Dual, 125MHz, Video Current Feedback Amplifier with Disable 3-340
HA5023 Dual 125MHz Video Current Feedback Amplifier 3-356
HA5024 Quad 125MHz Video Current Feedback Amplifier with Disable 3-370
HA5025 Quad, 125 MHz Video Current Feedback Amplifier 3-386
HA-5033 250MHz Video Buffer 3-399
HA-5101, HA-5111 10 MHz and 100 MHz , Low Noise, Operational Amplifiers 3-408

Operational Amplifiers (coninuea)

HA-5102, HA-5104, Dual and Quad, 8 MHz and 60 MHz , Low Noise Operational Amplifiers 3-419
HA-5112, HA-5114
HA-5127, HA-5127A8.5MHz, Ultra-Low Noise Precision Operational Amplifier3-432
HA-5130, HA-5135 2.5 MHz , Precision Operational Amplifiers 3-441
HA-5134 4 MHz , Precision, Quad Operational Amplifier 3-450
HA-5137, HA-5137A 63MHz, Ultra-Low Noise Precision Operational Amplifier 3-458
HA-5142, HA-5144 Dual/Quad, 400kHz, Ultra-Low Power Operational Amplifiers 3-466
HA-5147, HA-5147A 120MHz, Ultra-Low Noise Precision Operational Amplifiers 3-474
HA-5160, HA-5162 100 MHz , JFET Input, High Slew Rate, Uncompensated, Operational Amplifiers 3-482
HA-5170 8 MHz , Precision, JFET Input Operational Amplifier 3-489
HA-5177 2MHz, Ultra-Low Offset Voltage Operational Amplifier 3-497HA-5190, HA-5195
150MHz, Fast Settling Operational Amplifiers. 3-498
HA-5221, HA-5222 100 MHz , Single and Dual Low Noise, Precision Operational Amplifiers 3-506
HFA1100, HFA1120 850MHz, Low Distortion Current Feedback Operational Amplifiers 3-518
HFA1102 600MHz Current Feedback Amplifier with Compensation Pin. 3-528
HFA1103 200MHz, Video Op Amp with High Speed Sync Stripper 3-533
HFA1105 330MHz, Low Power, Current Feedback Video Operational Amplifier 3-539
HFA1106
HFA1109, HFA1149315MHz, Low Power, Video Operational Amplifier with Compensation Pin3-550
550 MHz , Low Power, Current Feedback Operational Amplifiers 3-564
HFA1110 750MHz, Low Distortion Unity Gain, Closed Loop Buffer 3-565
HFA1112 850MHz, Low Distortion Programmable Gain Buffer Amplifier 3-573
HFA1113 850 MHz , Low Distortion, Output Limiting, Programmable Gain, Buffer Amplifier 3-585
HFA1114 850MHz Video Cable Driving Buffer 3-600
HFA1115 3-605
HFA1118, HFA1119500 MHz Programmable Gain Video Buffers with Output Limiting and Output Disable
HFA1130 850MHz, Output Limiting, Low Distortion Current Feedback Operational Amplifier 3-6123-611
HFA1135 360 MHz , Low Power, Video Operational Amplifier with Output Limiting 3-623
HFA1145 330MHz, Low Power, Current Feedback Video Operational Amplifier with Output Disable 3-628
HFA1205 Dual, 400 MHz , Low Power, Video Operational Amplifier 3-640
HFA1212 Dual 350MHz, Low Power Closed Loop Buffer Amplifier 3-647
HFA1245 Dual, 530 MHz , Low Power, Video Operational Amplifier with Disable 3-657
HFA1405 Quad, 560 MHz , Low Power, Video Operational Amplifier. 3-663
HFA1412 Quad, 350 MHz , Low Power, Programmable Gain Buffer Amplifier. 3-676
ICL7611, ICL7612 1.4MHz, Low Power CMOS Operational Amplifiers 3-689
Dual/Quad, Low Power CMOS Operational Amplifiers ICL7621, ICL7641, 3-700
ICL7642
ICL7650S
2MHz, Super Chopper-Stabilized Operational Amplifier3-711
Operational Amplifiers Glossary of Terms 3-721

Selection Guide

WIDEBAND: Min/Max Limits at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified

DEVICE	GBWP (TYP) (MHz)	FPBW (TYP) (MHz)	SLEW RATE (TYP) ($\mathrm{V} / \mu \mathrm{s}$)	$\begin{gathered} \mathrm{A}_{\mathrm{VOL}} \\ (\mathrm{~dB}) / \\ \mathrm{A}_{\mathrm{ZOL}} \\ (\mathrm{~V} / \mathrm{mA}) \end{gathered}$	MINIMUM STABLE GAIN	OFFSET voltage (mV)	BIAS CURRENT (nA)	CMRR (dB)	PSRR (dB)	SUPPLY CURRENT (mA/OP AMP)
BUFFERS										
HFA1112	850	260	2400	-	+1, -1, +2	25	35000	\cdot	39	26.0
HFA1113	850	260	2400	-	+1, -1, +2	25	35000	-	39	26.0
HFA1114	850	260	2400	-	+1, -1, +2	25	35000	-	39	26.0
HFA1110	750	150	1300	-	+1	25	40000	-	39	26.0
HA4600	400	-	1700	-	+1	10	50000	-	-	13.0
HA-5033	250	17.5	1100	-	+1	15	35000	-	54	25.0
HFA1115	225	140	1100	-	+1, -1, +2	10	15000	-	45	7.1
HA-5002	110	20.7	1300	-	+1	20	7000	-	54	10.0
DUAL BUFFERS										
HFA1212	340	140	1100	-	+1, -1, +2	10	15000	-	45	6.1
QUAD BUFFERS										
HFA1412	225	140	1100	-	+1, -1, +2	10	15000	-	45	6.1
SINGLE OP AMPS										
HFA1100	850	300	2300	$\begin{array}{c\|} \hline 500 \\ \text { (Note 1) } \end{array}$	1	6.0	40000	40	45	26.0
HFA1120	850	300	2300	$\begin{gathered} 500 \\ (\text { Note 1) } \end{gathered}$	1	6.0	40000	40	45	26.0
HFA1130	850	300	2300	$\begin{gathered} 500 \\ (\text { Note 1) } \end{gathered}$	1	6.0	40000	40	45	26.0
HA-2539	600	9.5	600	80	10	10.0	20000	60	60	25.0
HA-2839	600	10.0	625	86	10	2.0	14500	75	75	15.0
HA-2840	600	10.0	625	86	10	2.0	14500	75	75	15.0
HFA1109	500	TBD	1200	$\begin{gathered} 500 \\ (\text { Note 1) } \end{gathered}$	1	5.0	15000	47	50	10.0
HFA1149	500	TBD	1200	$\begin{gathered} 500 \\ (\text { Note 1) } \end{gathered}$	1	5.0	15000	47	50	10.0
HA-2850	470	5.4	340	86	10	2.0	14500	75	75	8.0
HA-2540	400	6.0	400	80	10	10.0	20000	60	60	25.0
HFA1105	350	140	1000	$\begin{gathered} \hline 500 \\ (\text { Note 1) } \end{gathered}$	1	5.0	15000	47	50	6.1
HFA1145	350	140	1000	$\begin{gathered} 500 \\ (\text { Note 1) } \end{gathered}$	1	5.0	15000	47	50	6.1
HFA1135	350	170	1200	$\begin{gathered} 500 \\ (\text { Note 1) } \end{gathered}$	1	5.0	15000	47	50	7.1
HFA1106	315	100	700	$\begin{gathered} 500 \\ \text { (Note 1) } \end{gathered}$	(Note 2)	5.0	15000	47	50	6.1
HA-5190	150	6.5	200	83	5	5.0	15000	74	70	28.0
HA-5195	150	6.5	200	83	5	6.0	15000	74	70	28.0
HA-5147	140	0.5	35	117	10	0.1	80	100	86	4.0

NOTE: Bold type designates a new product from Harris.

Selection Guide

WIDEBAND: Min/Max Limits at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

DEVICE	GBWP (TYP) (MHz)	FPBW (TYP) (MHz)	SLEW RATE (TYP) (V/ $/ \mathrm{s}$)	Avol (dB)/ AZOL (V/mA)	MINIMUM STABLE GAIN	OFFSET VOLTAGE (mV)	BIAS CURRENT (nA)	CMRR (dB)	PSRR (dB)	SUPPLY CURRENT (mA/OP AMP)
HA-5147A	120	0.5	35	120	10	0.03	40	114	108	4.0
HA-5020	100	17.5	1100	$\begin{gathered} 3500 \\ (\text { Note 1) } \end{gathered}$	1	8.0	8000	60	64	10.0
HA-2620	100	0.6	35	100	$\begin{gathered} 5 \\ (\text { Note 2) } \end{gathered}$	4.0	15	80	80	3.7
HA-2622	100	0.6	35	98	$\begin{gathered} 5 \\ \text { (Note 2) } \end{gathered}$	5.0	25	74	74	4.0
HA-2625	100	0.6	35	98	$\begin{gathered} 5 \\ \text { (Note 2) } \end{gathered}$	5.0	25	74	74	4.0
HA-5111	100	0.8	50	120	$\begin{gathered} 10 \\ (\text { Note 2) } \end{gathered}$	3.0	200	80	80	6.0
HA-5160	100	1.9	120	97	$\begin{gathered} 10 \\ \text { (Note 2) } \end{gathered}$	3.0	0.05	74	74	10.0
HA-5162	100	1.10	70	88	$\begin{gathered} 10 \\ \text { (Note 2) } \end{gathered}$	15.0	0.065	70	70	12.0
HA-5221	100	0.56	35	106	1	0.75	80	86	86	11.0
HA-2842C	150	18.0	1200	94	$\begin{gathered} 2 \\ (\text { Note 2) } \end{gathered}$	3.0	10000	80	70	15.0
HA-2842	80	6.0	400	94	2	3.0	10000	80	70	15.0
HA-2841	50	3.8	240	88	1	3.0	10000	80	70	11.0
DUAL OP AMPS										
HFA1245	530	150	1050	$\begin{gathered} 500 \\ (\text { Note 1) } \end{gathered}$	1	5	15000	45	48	6.1
HFA1205	400	180	1275	$\begin{gathered} \hline 500 \\ (\text { Note 1) } \end{gathered}$	1	5	15000	45	48	6.1
HA5022	125	28	475	$\begin{gathered} 1000 \\ (\text { Note 1) } \end{gathered}$	1	3.0	8000	53	60	10.0
HA5023	125	28	475	$\begin{gathered} 1000 \\ (\text { Note 1) } \end{gathered}$	1	3.0	8000	53	60	10.0
HA-5222	100.0	0.56	35	106	1	0.75	80.0	86	86	11.0
HA-5112	60.0	0.32	20	100	10	2.0	200.0	86	86	2.5
TRIPLE OP AMPS										
HA5013	125	28	475	$\begin{gathered} 3500 \\ (\text { Note 1) } \end{gathered}$	1	3.0	8000	53	60	10.0
QUAD OP AMPS										
HFA1405	400	TBD	1000	$\begin{gathered} 500 \\ (\text { Note 1) } \end{gathered}$	1	5	15000	45	48	6.1
HA5024	125	28	475	$\begin{array}{c\|} \hline 3500 \\ (\text { Note 1) } \end{array}$	1	3.0	8000	53	60	10.0
HA5025	125	28	475	$\begin{gathered} 3500 \\ (\text { Note 1) } \end{gathered}$	1	3.0	8000	53	60	10.0
HA-5114	60.0	0.32	20.0	100	10	2.5	200.0	86	86	1.63
HA-2444	50.0	5.1	160	71	1	7.0	15000	70	65	6.25

Selection Guide

WIDEBAND: Min/Max Limits at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

DEVICE	GBWP (TYP) (MHz)	FPBW (TYP) (MHz)	SLEW RATE (TYP) (V/ $\mathrm{\mu s}$)	Avol (dB)/ AzOL (V/mA)	MINIMUM STABLE GAIN	OFFSET VOLTAGE (mV)	BIAS CURRENT (nA)	CMRR (dB)	PSRR (dB)	SUPPLY CURRENT (mA/OP AMP)
HA-2400	40.0	0.95	30.0	94	$\begin{gathered} 10 \\ \text { (Note 2) } \end{gathered}$	9.0	200.0	80	74	1.5
HA-2404	40.0	0.95	30.0	94	$\begin{gathered} 10 \\ \text { (Note 2) } \end{gathered}$	9.0	200.0	80	74	1.5
HA-2405	40.0	0.95	30.0	94	$\begin{gathered} 10 \\ \text { (Note 2) } \end{gathered}$	9.0	250.0	74	74	1.5

NOTES:

1. Azol applies to current feedback amplifiers only (HA-5004, HA-502X, HFA11XX, HFA12XX, HFA14XX).
2. Product features an external compensation pin to limit bandwidth for noise reduction or to allow unity gain operation.

HIGH SLEW RATE: Min/Max Limits at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified

DEVICE	SLEW RATE (TYP) (V/ $\mathrm{\mu s}$)	GBWP (TYP) (MHz)	FPBW (TYP) (MHz)	Avol (dB)/ AZOL (V/mA)	MINIMUM STABLE GAIN	OFFSET VOLTAGE (mV)	BIAS CURRENT (nA)	CMRR (dB)	PSRR (dB)	SUPPLY CURRENT (mA/OP AMP)
BUFFERS										
HFA1112	2400	850	260	-	+1, -1, +2	25.0	35000	-	39	26.0
HFA1113	2400	850	260	-	+1, -1, +2	25.0	35000	-	39	26.0
HFA1114	2400	850	260	*	+1, -1, +2	25	35000	-	39	26.0
HA4600	1700	400	-	-	+1	10	50000	-	-	13.0
HFA1110	1300	750	150	-	+1	25.0	40000	-	39	26.0
HA-5002	1300	110	20.7	-	+1	20.0	7000	-	54	10.0
HFA1115	1100	225	140	-	+1, -1, +2	10	15000	-	45	7.1
HA-5033	1100	250	17.5	-	+1	15.0	35000	\bullet	54	25.0
DUAL BUFFERS										
HFA1212	1100	340	140	*	+1, -1, +2	10	15000	-	45	6.1
QUAD BUFFERS										
HFA1412	1100	225	140	-	+1, -1, +2	10	15000	-	45	6.1
SINGLE OP AMPS										
HFA1100	2300	850	300	$\begin{gathered} 500 \\ \text { (Note 1) } \end{gathered}$	1	6.0	40000	40	45	26.0
HFA1120	2300	850	300	$\begin{gathered} 500 \\ \text { (Note 1) } \end{gathered}$	1	6.0	40000	40	45	26.0
HFA1130	2300	850	300	$\begin{gathered} 500 \\ \text { (Note 1) } \end{gathered}$	1	6.0	40000	40	45	26.0
HFA1109	1200	500	TBD	$\begin{gathered} 500 \\ (\text { Note 1) } \end{gathered}$	1	5.0	15000	47	50	10.0
HFA1149	1200	500	TBD	$\begin{gathered} 500 \\ (\text { Note 1) } \end{gathered}$	1	5.0	15000	47	50	10.0
HFA1135	1200	350	170	$\begin{gathered} 500 \\ \text { (Note 1) } \end{gathered}$	1	5.0	15000	47	50	7.1
HA-2842C	1200	150	18.0	94	$\begin{gathered} 2 \\ (\text { Note 2) } \end{gathered}$	3.0	10000	80	70	15.0

Selection Guide

HIGH SLEW RATE: Min/Max Limits at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

DEVICE	SLEW RATE (TYP) (V/ $\mu \mathrm{s}$)	GBWP (TYP) (MHz)	FPBW (TYP) (MHz)	Avol (dB)/ Azol (V/mA)	MINIMUM STABLE GAIN	OFFSET VOLTAGE (mV)	BIAS CURRENT (nA)	CMRR (dB)	PSRR (dB)	SUPPLY CURRENT (mANOP AMP)
HA-5020	1100	100	17.5	$\begin{gathered} 3500 \\ \text { (Note 1) } \end{gathered}$	1	8.0	8000	60	64	10.0
HFA1105	1000	350	140	$\begin{gathered} 500 \\ (\text { Note 1) } \end{gathered}$	1	5.0	15000	47	50	6.1
HFA1145	1000	350	140	$\begin{gathered} 500 \\ \text { (Note 1) } \end{gathered}$	1	5.0	15000	47	50	6.1
HA-2839	625	600	10.0	86	10	2.0	14500	75	75	15.0
HA-2840	625	600	10.0	86	10	2.0	14500	75	75	15.0
HA-2539	600	600	9.5	80	10	10.0	20000	60	60	25.0
HA-2540	400	400	6.0	80	10	10.0	20000	60	60	25.0
HA-2842	400	80	6.0	94	2	3.0	10000	80	70	15.0
HA-2542	350	70	5.5	80	$\stackrel{2}{(\text { Note 2) }}$	10.0	35000	70	70	34.5
HA-2850	340	400	5.4	86	10	2.0	14500	75	75	8.0
HA-2841	240	50	3.8	88	1	3.0	10000	80	70	11.0
HA-2541	250	40	4.0	80	1	2.0	35000	70	70	40.0
HA-5190	200	150	6.5	83	5	5.0	15000	74	70	28.0
HA-5195	200	150	6.5	83	5	6.0	15000	74	70	28.0
HA-2544	150	50	4.2	71	1	15.0	15000	75	70	12.0
HA-2520	120	20	2	80	(Note 2)	8.0	200	80	80	6.0
HA-2522	120	20	2	78	(Note 2)	10.0	250	74	74	6.0
HA-2525	120	20	2	78	(Note 2)	10.0	250	74	74	6.0
HA-5160	120	100	1.9	97	$\begin{gathered} 10 \\ \text { (Note 2) } \end{gathered}$	3.0	0.05	74	74	10.0
DUAL OP AMPS										
HFA1205	1275	400	140	$\begin{gathered} 500 \\ (\text { Note 1) } \end{gathered}$	1	5	15000	45	48	6.1
HFA1245	1050	530	130	$\begin{gathered} 500 \\ (\text { Note 1) } \end{gathered}$	1	5	15000	45	48	6.1
HA5022	475	125	28	$\begin{gathered} 1000 \\ (\text { Note 1) } \end{gathered}$	1	3.0	8000	53	60	10.0
HA5023	475	125	28	$\begin{gathered} 1000 \\ \text { (Note 1) } \end{gathered}$	1	3.0	8000	53	60	10.0
CA3280	125	9.0	1.99	94	1	3.0	5000	80	86	2.4
CA3280A	125	9.0	1.99	94	1	0.5	5000	94	94	2.4
TRIPLE OP AMPS										
HA5013	475	125	28	$\begin{aligned} & 3500 \\ & \text { (Note 1) } \end{aligned}$	1	3.0	8000	53	60	10.0

HIGH SLEW RATE: Min/Max Limits at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

DEVICE	SLEW RATE (TYP) (V/ $/ \mathrm{s}$)	GBWP (TYP) (MHz)	FPBW (TYP) (MHz)	Avol (dB)! AZOL (V/mA)	MINIMUM stable GAIN	OFFSET voltage (mV)	BIAS CURRENT (nA)	CMRR (dB)	PSRR (dB)	SUPPLY CURRENT (mA/OP AMP)
QUAD OP AMPS										
HFA1405	1000	400	TBD	$\begin{gathered} 500 \\ \text { (Note 1) } \end{gathered}$	1	5.0	15000	45	48	6.1
HA5024	475	125	28	$\begin{gathered} 3500 \\ (\text { Note 1) } \end{gathered}$	1	3.0	8000	53	60	10.0
HA5025	475	125	28	$\begin{gathered} 3500 \\ (\text { Note 1) } \end{gathered}$	1	3.0	8000	53	60	10.0
HA-2444	160	50	5.1	71	1	7.0	15000	70	65	6.25

NOTES:

1. AzOL applies to current feedback amplifiers only (HA-5004, HA-502X, HFA11XX, HFA12XX, HFA14XX).
2. Product features an external compensation pin to limit bandwidth for noise reduction or to allow unity gain operation.

VIDEO: Typical Values at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified

DEVICE	FEATURES	DiF. GAIN (\%)	DIF. PHASE (DEG)	0.1 dB FLAT GAIN (MHz)	GBWP (MHz)	SLEW RATE ($\mathrm{V} / \mu \mathrm{s}$)	OUTPUT CURRENT (mA)	SUPPLY VOLTAGE RANGE $(\pm V)$	SUPPLY CURRENT (mA/OP AMP)
BUFFERS									
HA4600	Video Buffer w/Output Disable	0.01	0.01	250	480	1700	20	4.5-5.5	10.5
HFA1110	+1 , Std. Buffer Pinout	0.02	0.02	>100	750	1300	60	4.5-5.5	21.0
HFA1112	$-1,+1,+2$ (Selectable) Standard Op Amp Pinout	0.02	0.04	>100	850	2400	60	4.5-5.5	21.0
HFA1113	$-1,+1,+2$ (Selectable) Standard Op Amp Pinout, Vout Limits	0.02	0.04	>100	850	2400	60	4.5-5.5	21.0
HFA1114	$-1,+1,+2$ (Selectable) Summing Node Pinout	0.02	0.04	>100	850	1100	60	4.5-5.5	21.0
HFA1115	$-1,+1,+2$ (Selectable) Standard Op Amp Pinout, $V_{\text {OUT }}$ Limits	0.02	0.03	>50	225	1100	60	4.5-5.5	5.9
HA-5033	+1, Std. Buffer Pinout	0.03	0.02	-	250	1100	100	5-16	21.0
HA-5002	+1, Std. Buffer Pinout	0.06	0.21	-	110	1300	200	5-20	8.3
DUAL BUFFERS									
HFA1212	-1, +1, +2 (Selectable)	0.02	0.02	>50	340	1100	60	4.5-5.5	5.9
QUAD BUFFERS									
HFA1412	-1, +1, +2 (Selectable)	0.02	0.02	>50	225	1100	60	4.5-5.5	5.9
SINGLE OP AMPS									
HFA1109	$A_{V} \geq 1, C F B$, Wideband	0.02	0.03	100	500	1200	30	4.5-5.5	10.0
HFA1149	$A_{V} \geq 1$, CFB, Programmable Output Disable	0.02	0.03	100	500	1200	30	4.5-5.5	10.0
HFA1105	$A_{V} \geq 1$, Low Icc, CFB	0.02	0.03	>50	350	1000	60	4.5-5.5	5.9
HFA1145	$A_{V} \geq 1$, Low Icc, CFB, Output Disable	0.02	0.03	>50	350	1000	60	4.5-5.5	5.9
HFA1135	$A_{V} \geq 1$, Low Icc, CFB, Programmable Output Limiting	0.02	0.04	>50	360	1200	60	4.5-5.5	6.9

NOTE: Bold type designates a new product from Harris.

Selection Guide
VIDEO: Typical Values at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

DEVICE	FEATURES	DIF. GAIN (\%)	DIF. PHASE (DEG)	$\begin{aligned} & \text { 0.1dB } \\ & \text { FLAT } \\ & \text { GAIN } \\ & \text { (MHz) } \end{aligned}$	$\begin{aligned} & \text { GBWP } \\ & \text { (MHz) } \end{aligned}$	SLEW RATE ($\mathrm{V} / \mu \mathrm{s}$)	OUTPUT CURRENT (mA)	SUPPLY VOLTAGE RANGE (\pm V)	SUPPLY CURRENT (mA/OP AMP)
HFA1106	HFA1105 with Compensation Pin for Bandwidth Limiting	0.02	0.05	100	315	700	60	4.5-5.5	5.9
HA-2842	$A_{V} \geq 2$, Cable Driver	0.02	0.03	>10	80	400	100	6-17	14.2
HA-5020	$A_{V} \geq 1$, Output Disable, CFB (Current Feedback)	0.02	0.03	5	100	1100	32	4.5-18	7.5
HFA1100	$A_{V} \geq 1, \mathrm{CFB}$	0.03	0.05	75	850	2300	60	4.5-5.5	21.0
HFA1120	HFA1100 with Offset Adjust	0.03	0.05	75	850	2300	60	4.5-5.5	21.0
HFA1130	$A_{V} \geq 1, C F B$, Programmable Output Limiting	0.03	0.05	75	850	2300	60	4.5-5-5	21.0
HA-2544	$A_{V} \geq 1$	0.03	0.03	5	50	150	35	8-17	10.0
HA-2841	$A_{V} \geq 1$, Low ICC	0.03	0.03	>10	50	240	30	6-17	10.0
DUAL OP AMPS									
HFA1245	$A_{V} \geq 1$, Low Icc, CFB, Output Disable	0.02	0.03	50	530	1050	60	4.5-5.5	5.9
HFA1205	$A_{V} \geq 1$, Low Icc, CFB	0.03	0.03	>50	400	1275	60	4.5-5.5	5.9
HA5022	$A_{V} \geq 1, C F B$, Output Disable	0.03	0.03	20	125	475	20	4.5-18	7.5
HA5023	$A_{V} \geq 1, C F B$	0.03	0.03	20	125	475	20	4.5-18	7.5
TRIPLE OP AMPS									
HA5013	$A_{V} \geq 1, C F B$	0.03	0.03	20	125	475	20	4.5-18	7.5
QUAD OP AMPS									
HFA1405	$A_{V} \geq 1$, Low $I_{C c}, \mathrm{CFB}$	0.03	0.03	TBD	400	>1000	60	4.5-5.5	5.9
HA5024	$A_{V} \geq 1, C F B$, Output Disable	0.03	0.03	20	125	475	20	4.5-18	7.5
HA5025	$A_{V} \geq 1, C F B$	0.03	0.03	20	125	475	20	4.5-18	7.5
HA-2444	$A_{V} \geq 1,4$-Channel, Mux'd Output	0.03	0.03	10	50	160	25	8.5-17	5.0

NOTES:

1. Single Supply Range.

LOW NOISE: Min/Max Limits at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified

DEVICE	NOISE VOLTAGE 1kHz (TYP) ($\mathrm{nV} / \sqrt{\mathrm{Hz}}$)	NOISE CURRENT 1kHz (TYP) ($\mathrm{pA} \sqrt{\mathrm{Hz} \text {) }}$		SLEW RATE (TYP) (V/ $/ \mathrm{s}$)	MINIMUM STABLE GAIN	$\begin{aligned} & \text { OFFSET } \\ & \text { VOLTAGE } \\ & (\mathrm{mV}) \end{aligned}$	BIAS CURRENT (nA)	SUPPLY CURRENT (mA/OP AMP)
SINGLE OP AMPS								
HA-5127A	3.0	0.4	8.5	10	1	0.025	40	4.0
HA-5137A	3.0	0.4	63	20	5	0.025	40	4.0
HA-5147A	3.0	0.4	120	35	10	0.025	40	4.0
HA-5101	3.0	0.6	10	10	1	3.0	200	6.0
HA-5111	3.0	0.6	100	50	10	3.0	200	6.0
HA-5221	3.4	0.97	100	35	1	0.75	80	11.0
HA-5020	4.5	$\begin{gathered} 2.5 \\ \text { (Note 1) } \end{gathered}$	100	1100	1	8.0	$\begin{gathered} 8000 \\ \text { (Note 1) } \end{gathered}$	10.0

NOTE: Bold type designates a new product from Harris.

Selection Guide

LOW NOISE: Min/Max Limits at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

DEVICE	NOISE VOLTAGE 1 kHz (TYP) ($\mathrm{nV} / \sqrt{\mathrm{Hz}}$)	NOISE CURRENT 1 kHz (TYP) ($\mathrm{pA} / \sqrt{\mathrm{Hz} \text {) }}$	GBWP (TYP) (MHz)	SLEW RATE (TYP) ($\mathrm{V} / \mathrm{\mu s}$)	MINIMUM STABLE GAIN	OFFSET VOLTAGE (mV)	BIAS CURRENT (nA)	SUPPLY CURRENT (mA/OP AMP)
HFA1105	3.5	$\begin{gathered} 2.5 \\ (\text { Note 1) } \end{gathered}$	350	1000	1	5.0	15000	6.1
HFA1106	3.5	$\begin{gathered} 2.5 \\ (\text { Note 1) } \end{gathered}$	315	700	(Note 2)	5.0	15000	6.1
HFA1135	3.5	$\begin{gathered} 2.5 \\ \text { (Note 1) } \end{gathered}$	350	1200	1	5.0	15000	6.1
HFA1145	3.5	$\begin{gathered} 2.5 \\ \text { (Note 1) } \end{gathered}$	350	1000	1	5.0	15000	7.1
HA-5190	6.0	5.0	150	200	5	5.0	15000	28.0
HA-2839	6.0	6.0	600	625	10	2.0	14500	15.0
HA-2840	6.0	6.0	600	625	10	2.0	14500	15.0
HA-2539	6.0	6.0	600	600	10	10.0	20000	25.0
HA-2540	6.0	6.0	400	400	10	10.0	20000	25.0
HA-5170	10.0	0.01	8.0	8.0	1	0.3	0.1	2.5
HA-2542	10.0	3.0	70	350	$\stackrel{2}{(\text { Note 2) }}$	10.0	35000	34.5
HA-2541	10.0	4.0	40	250	1	2.0	35000	40.0
DUAL OP AMPS								
HA-5222	3.4	0.97	100	35	1	0.75	80	11.0
HFA1205	3.5	$\begin{gathered} 2.5 \\ (\text { Note 1) } \end{gathered}$	400	1275	1	5.0	15000	6.1
HFA1245	3.5	$\begin{gathered} 2.5 \\ \text { (Note 1) } \end{gathered}$	530	1050	1	5.0	15000	6.1
HA-5102	4.3	0.57	8.0	3.0	1	2.0	200	2.5
HA-5112	4.3	0.57	60	20	10	2.0	200	2.5
HA5022	4.5	$\begin{gathered} 2.5 \\ \text { (Note 1) } \end{gathered}$	125	475	1	3.0	$\begin{aligned} & 8000 \\ & (\text { Note 1) } \end{aligned}$	10.0
HA5023	4.5	$\begin{gathered} 2.5 \\ (\text { Note 1) } \end{gathered}$	125	475	1	3.0	$\begin{gathered} 8000 \\ \text { (Note 1) } \end{gathered}$	10.0
QUAD OP AMPS								
HFA1405	3.5	$\begin{gathered} 2.5 \\ \text { (Note 1) } \end{gathered}$	400	>1000	1	5.0	15000	6.1
HA-5104	4.3	0.57	8.0	3.0	1	2.5	200	1.63
HA-5114	4.3	0.57	60	20	10	2.5	200	1.63
HA5024	4.5	$\begin{gathered} 2.5 \\ \text { (Note 1) } \end{gathered}$	125	475	1	3.0	$\begin{gathered} 8000 \\ \text { (Note 1) } \end{gathered}$	10.0
HA5025	4.5	$\begin{gathered} 2.5 \\ (\text { Note } 1) \end{gathered}$	125	475	1	3.0	$\begin{gathered} 8000 \\ (\text { Note 1) } \end{gathered}$	10.0
HA-5134	7.0	1.0	4.0	1.0	1	0.2	50	2.0

NOTES:

1. +Input. These are current feedback amplifiers, so value for -Input will be larger.
2. Product features an external compensation pin to limit bandwidth for additional noise reduction or to allow unity gain operation.

NOTE: Bold type designates a new product from Harris.

Selection Guide

GENERAL PURPOSE: Typical Values at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified

DEVICE	DESCRIPTION	MINIMUM STABLE GAIN	GBWP (MHz)	SLEW RATE (V/ $\mu \mathrm{s}$)	OFFSET VOLTAGE (mV)	BIAS CURRENT ($\mu \mathrm{A}$)	SUPPLY VOLTAGE RANGE $(\pm$ V)	SUPPLY CURRENT (mA/OP AMP)
SINGLE OP AMPS								
HA-2544	Ultra-Stable, High Performance	1	50	150	6.0	7.00	8-17.5	10.0
CA3100	Wideband Amplifier	1	38	70	1.0	0.7	7-18	8.5
CA3130A	BiMOS, CMOS Output, Output Strobe	1	15	30	2.0	5.0pA	2.5-8	2.0
HA-2500	Wideband, High Slew Rate, High Input Impedance	1	12	30	2.0	0.1	10-20	4.0
HA-2510	Wideband, High Slew Rate, High Input Impedance	1	12	60	4.0	0.1	10-20	4.0
HA-2600	Wideband, Compensated, High Input Impedance	1	12	7	0.5	0.001	4-22.5	3.0
HA-5101	Low Noise, High Performance	1	10	10	0.5	0.1	3-20	4.0
HA-5127A	Low Noise, Precision, Compensated	1	8.5	10	0.01	0.01	5-22	3.5
HA-5170	JFET Input, Precision	1	8	8	0.1	20pA	5-22	1.9
CA3140A	BiMOS, Output Strobe Capability	1	4.5	9	2.0	10.0 pA	2-18	4.0
HA-2640	High Voltage, Compensated	1	4	5	2.0	0.01	10-50	3.2
CA3160A	BiMOS, CMOS Output, Output Strobe	1	4	10	2.0	5.0pA	2.5-8	2.0
CA3080	Operational Transconductance Amp	1	2	75	0.4	2.0	2-18	1.0
CA741	Low Cost, Mil/Com Temp	1	1	0.5	1.0	0.08	5-22	1.7
LM741	Low Cost, Mil/Com Temp	1	1	0.5	1.0	0.08	5-22	1.7
HA-2520	Uncompensated	3 (Note 1)	20	120	5.0	0.125	10-20	4.0
HA-5137A	Low Noise, Precision	5	80	20	0.01	0.01	5-22	3.5
HA-2620	Wideband, Uncompensated, High Input Impedance	5 (Note 1)	100	35	0.5	0.001	4-22.5	3.0
HA-5195	Wideband, Fast Settling	5	150	200	3.0	5.0	12-17.5	19.0
HA-5147A	Low Noise, Precision, Wideband	10	140	35	0.01	0.01	5-22	3.5
HA-5111	Low Noise, High Performance, Uncompensated	10 (Note 1)	100	50	0.5	0.1	3-20	4.0
DUAL								
CA3280A	Operational Transconductance Amp	1	9	125	0.25	1.8	2-18	2.0
HA-5102	Low Noise, High Performance	1	8	3	0.5	0.13	3-20	1.5
CA3240A	BiMOS, High Input Impedance	1	4.5	9	2.0	10.0 pA	2-18	4.0
CA3260A	BiMOS, CMOS Output, High Input Impedance	1	4	10	2.0	5.0 pA	2-8	0.6
CA5260A	Mil Temp Version of CA3260A	1	3	5	2.0	5.0 pA	2.25-8	0.6
CA158A	Wide Supply Range, Mil Temp	1	1	0.25	1.0	0.02	1.5-16	0.75
CA1558	Low Cost, Mil Temp Range	1	1	0.5	1.0	0.08	5-22	1.7

NOTE: Bold type designates a new product from Harris.

Selection Guide

GENERAL PURPOSE: Typical Values at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

DEVICE	DESCRIPTION	MINIMUM STABLE GAIN	GBWP (MHz)	SLEW RATE ($\mathrm{V} / \mu \mathrm{s}$)	OFFSET VOLTAGE (mV)	BIAS CURRENT ($\mu \mathrm{A}$)	SUPPLY VOLTAGE RANGE $(\pm \mathrm{V})$	SUPPLY CURRENT (mA/OP AMP)
LM358	Wide Supply Range, Low Cost	1	1	0.5	2.0	0.05	1.5-16	0.7
LM1458	Low Cost	1	1	0.5	2.0	0.08	5-18	1.7
LM2904	Wide Supply Range, Ind. Temp	1	1	0.5	2.0	0.05	1.5-13	0.7
HA-5112	Low Noise, High Performance, Uncompensated	10	60	20	0.5	0.13	3-20	1.5
QUAD								
CA5470	High Input Impedance, Wide Supply Range, Mil Temp	1	14	5	5.0	1.0pA	1.5-8	2.5
HA-5104	Low Noise, High Performance	1	8	3	0.5	0.13	3-20	1.25
CA124	Wide Supply Range, Mil Temp	1	1	0.5	2.0	0.045	2.5-16	0.2
HA-4741	Quad 741, Wide Supply	1	3.5	1.6	0.5	0.06	2-20	4.5
HA-5114	Low Noise, High Performance, Uncompensated	10	60	20	0.5	0.13	3-20	1.25
LM2902	Low Cost, Ind. Temp	1	1	0.5	2.0	0.04	2.5-16	0.2
LM324	Low Cost	1	1	0.5	2.0	0.05	2.5-16	0.2

NOTE:

1. Can be compensated to unity gain.

PRECISION: Min/Max Limits at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified

DEVICE	$\begin{aligned} & \text { OFFSET } \\ & \text { VOLTAGE } \\ & (\mathrm{mV}) \end{aligned}$	$\begin{gathered} \mathrm{V}_{10} \\ \text { DRIFT } \\ \text { (TYP) } \\ \left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right) \end{gathered}$	BIAS CURRENT (nA)	OFFSET CURRENT (nA)	CMRR (dB)	PSRR (dB)	GBWP (TYP) (MHz)	SLEW RATE (TYP) ($\mathrm{V} / \mu \mathrm{s}$)	Avol (dB)	SUPPLY CURRENT (mA/OP AMP)
SINGLE OP AMPS										
ICL7650S	0.005	0.02	0.01	0.02	120	120	2.0	2.5	135	3.0
HA-5127A	0.025	0.20	40.0	35.0	114	108	8.5	10.0	120	4.0
HA-5130	0.025	0.40	2.0	2.0	110	100	2.5	0.8	120	1.7
HA-5137A	0.025	0.20	40.0	35.0	114	108	63.0	20.0	120	4.0
HA-5147A	0.025	0.20	40.0	35.0	114	108	120.0	35.0	120	4.0
HA-5135	0.075	0.40	4.0	4.0	106	94	2.5	0.8	120	1.7
HA-5137	0.100	0.40	80.0	75.0	100	96	63.0	20.0	117	4.0
HA-5147	0.100	0.40	80.0	75.0	100	96	120.0	35.0	117	4.0
HA-5170	0.300	2.0	0.1	0.03	85	85	8.0	8.0	109	2.5
HA-5221	0.750	0.5	80.0	50.0	86	86	100.0	35.0	106	11.0
DUAL OP AMPS										
HA-5222	0.75	0.5	80	50	86	86	100.0	35.0	106	11.0
CA158A	2.0	7.0	50	10	70	65	1.0	0.5	94	1.5
HA-5102	2.0	3.0	200	75	86	86	8.0	3.0	100	2.5
HA-5112	2.0	3.0	200	75	86	86	60.0	20.0	100	2.5
ICL7621A	2.0	10.0	0.05	0.03	76	80	0.5	0.16	86	0.25

Selection Guide

PRECISION: Min/Max Limits at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

DEVICE	$\begin{aligned} & \text { OFFSET } \\ & \text { VOLTAGE } \\ & (\mathrm{mV}) \end{aligned}$	V_{10} DRIFT (TYP) $\left(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\right)$	BIAS CURRENT (nA)	OFFSET CURRENT (nA)	CMRR (dB)	$\begin{aligned} & \text { PSRR } \\ & \text { (dB) } \end{aligned}$	GBWP (TYP) (MHz)	SLEW RATE (TYP) (V/ $/ \mathrm{s}$)	Avol (dB)	SUPPLY CURRENT (mA/OP AMP)
CA3280A	0.5	3.0	5000	700	94	94	9.0	125.0	94	2.4
CA258A	3.0	7.0	80	15	70	65	1.0	0.5	94	1.5
CA358A	3.0	7.0	100	30	65	65	1.0	0.5	88	1.5
HA-5142	6.0	3.0	100.0	10.0	77	77	0.4	1.5	86	0.15
QUAD OP AMPS										
HA-5134	0.2	0.3	50.0	50.0	100	100	4.0	1.0	118	2.0
HA-5114	2.5	3.0	200.0	75.0	86	86	60.0	20.0	100	1.63
HA-5104	2.5	3.0	200.0	75.0	86	86	8.0	3.0	100	1.63
CA124	5.0	7.0	150.0	30.0	70	65	1.0	0.5	94	0.5
HA-5144	6.0	3.0	100.0	10.0	77	77	0.4	1.5	86	0.15
CA224	7.0	7.0	250.0	50.0	65	65	1.0	0.5	88	0.5
CA324	7.0	7.0	250.0	50.0	65	65	1.0	0.5	86	0.5
CA2902	7.0	7.0	250.0	50.0	65	65	1.0	0.5	86	0.3

LOW BIAS CURRENT: Min/Max Limits at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified

DEVICE	BIAS CURRENT (nA)	OFFSET CURRENT (nA)	OFFSET VOLTAGE (mV)	CM RANGE AT NOMINAL SUPPLIES (V)	AvOL (dB)	GBWP (TYP) (MHz)	SLEW RATE (TYP) (V/ $\mu \mathrm{s}$)	$\begin{array}{\|c\|} \hline \text { CMRR } \\ \text { (dB) } \\ \hline \end{array}$	$\begin{aligned} & \text { PSRR } \\ & \text { (dB) } \end{aligned}$	SUPPLY CURRENT (mA/OP AMP)
SINGLE OP AMPS										
CA5420A	0.001	0.0005	5.0	-0 to +3.7 at $+5,-0$	85	0.5	0.5	75	75	0.5
CA5420	0.002	0.001	10.0	-0 to +3.7 at $+5,-0$	85	0.5	0.5	70	70	0.5
ICL7650S	0.01	0.02	0.005	-5 to +3.5 at $+5,-5$	135	2.0	2.5	120	120	3.0
CA3130A	0.03	0.02	5.0	-0 to +10.0 at $+15,-0$	94	15.0	30.0	80	76	15.0
HA-5160	0.05	0.01	3.0	-10.0 to +10.0 at $+15,-15$	98	100.0	120	74	74	10.0
HA-5170	0.10	0.03	0.3	-10.0 to +10.0 at $+15,-15$	110	8.0	8.0	90	90	2.5
DUAL OP AMPS										
CA5260	0.015	0.01	15.0	-0 to +2.5 at $+5,-0$	80	3.0	5.0	70	70	1.0
CA5260A	0.015	0.01	4.0	-0 to +2.5 at $+5,-0$	83	3.0	5.0	80	75	1.0
CA3260A	0.03	0.02	5.0	-0 to +10.0 at $+15,-0$	94	4.0	10.0	80	76	1.5
CA3240A	0.04	0.02	5.0	-15 to +12.0 at $+15,-15$	86	4.5	9.0	70	76	6.0
CA3240	0.05	0.03	15.0	-15 to +11.0 at $+15,-15$	86	4.5	9.0	70	76	6.0
CA3260	0.05	0.03	15.0	-0 to +10.0 at $+15,-0$	94	4.0	10.0	70	70	1.5
ICL7621A	0.05	0.03	2.0	-4.2 to +4.2 at $+5,-5$	86	0.5	0.16	76	80	0.25
CA158A	50.0	10.0	2.0	-15 to +13.5 at $+15,-15$	94	1.0	0.5	70	65	1.5
QUAD OP AMPS										
CA5470	0.05	0.05	25.0	-0 to +3.5 at $+5,-0$	80	14.0	5.0	55	60	3.0
ICL7641	0.05	0.03	10.0	-3.7 to +3.7 at $+5,-5$	76	1.4	1.6	60	70	2.5
ICL7642	0.05	0.03	10.0	-4.4 to +4.4 at $+5,-5$	80	0.04	0.02	70	80	0.03
HA-5134	50.0	50.0	0.2	-10 to +10 at $+15,-15$	118	4.0	1.0	100	100	2.0

NOTE: Bold type designates a new product from Harris.

5V SINGLE-SUPPLY: Min/Max Limits at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified

DEVICE	SUPPLY CURRENT (TYP) (mA/OP AMP)	INPUT OFFSET VOLTAGE (mV)	DOES INPUT include GROUND?	$\begin{array}{\|l\|} \text { RAIL-TO- } \\ \text { RAIL } \\ \text { OUTPUT? } \end{array}$	INPUT BIAS CURRENT (nA)	GAIN BANDWIDTH PRODUCT (TYP) (MHz)	SLEW RATE (TYP) (V/ $/ \mathrm{s}$)	MINIMUM SINGLE SUPPLY VOLTAGE (V)	OUTPUT SHORT CIRCUIT CURRENT (TYP) (mA) SOURCE = + SINK = SUPPLY AT $5 \mathrm{~V}, 0 \mathrm{~V}$
SINGLE OP AMPS									
ICL7612A	0.01	2	Yes	Yes	0.05	0.04	0.016	2.0	+12.5, -0.8
ICL7611A	0.01	2	No	Yes	0.05	0.04	0.016	2.0	+12.5, -0.8
ICL7612D	0.01	15	Yes	Yes	0.05	0.04	0.016	2.0	+12.5, -0.8
ICL7611D	0.01	15	No	Yes	0.05	0.04	0.016	2.0	+12.5, -0.8
CA3078A (Note 1)	0.025	3.5	No	No	12	1.5	0.5	1.5	+12.0, -12.0
$\begin{aligned} & \text { CA3078 } \\ & \text { (Note 1) } \end{aligned}$	0.13	4.5	No	No	170	8	1.5	1.5	+12.0, -12.0
CA3130A (Note 1)	0.30	5	Yes	Yes	0.03	15	10	5.0	+3.2, -2.2
CA3130 (Note 1)	0.30	15	Yes	Yes	0.05	15	10	5.0	+3.2, -2.2
CA3160A (Note 1)	0.30	5	Yes	Yes	0.03	4	10	5.0	+3.2, -2.2
$\begin{aligned} & \text { CA3160 } \\ & \text { (Note 1) } \end{aligned}$	0.30	15	Yes	Yes	0.05	4	10	5.0	+3.2, -2.2
CA5420A	0.40	5	Yes	Yes	0.001	0.5	0.5	2.0	+2.6, -2.4
CA5420	0.40	10	Yes	Yes	0.002	0.5	0.5	2.0	+2.6, -2.4
	1.60	5	Yes	No	0.04	3.7	9	4.0	+10.0, -1.0
$\begin{aligned} & \text { CA3140 } \\ & \text { (Note 1) } \end{aligned}$	1.60	15	Yes	No	0.05	3.7	9	4.0	+10.0, -1.0
HFA1100	5.5	6.0	No	No	40000	300	500	'4.5	-
DUAL OP AMPS									
HA-5142	0.05	6	Yes	No	100	0.4	1.5	3.0	+4.5, -4.5
$\begin{aligned} & \text { ICL7621A } \\ & \text { (Note 1) } \end{aligned}$	0.10	2	No	Yes	0.05	0.5	0.16	2.0	+12.5, -0.4
$\begin{aligned} & \text { ICL7621D } \\ & \text { (Note 1) } \end{aligned}$	0.10	15	No	Yes	0.05	0.5	0.16	2.0	+12.5, -0.4
CA158A	0.35	3	Yes	No	100	1	0.5	3.0	+40, -20
CA358	0.35	7	Yes	No	250	1	0.5	3.0	+40, -20
CA3260A (Note 1)	0.60	5	Yes	Yes	0.03	4	10	4.0	+3.2, -2.2
CA3260 (Note 1)	0.60	15	Yes	Yes	0.05	4	10	4.0	+3.2, -2.2
CA5260A	0.80	4	Yes	Yes	0.015	3	5	4.5	+2.2, -2.0
CA5260	0.80	15	Yes	Yes	0.015	3	5	4.5	+2.2, -2.0

NOTE: Bold type designates a new product from Harris.

Selection Guide

5V SINGLE-SUPPLY: Min/Max Limits at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

DEVICE	SUPPLY CURRENT (TYP) (mA/OP AMP)	INPUT OFFSET VOLTAGE (mV)	DOES INPUT INCLUDE GROUND?	RAIL-TORAIL OUTPUT?	INPUT BIAS CURRENT (nA)	GAIN BANDWIDTH PRODUCT (TYP) (MHz)	SLEW RATE (TYP) (V/ $\mu \mathrm{s}$)	MINIMUM SINGLE SUPPLY VOLTAGE (V)	OUTPUT SHORT CIRCUIT CURRENT (TYP) (mA) SOURCE = + SINK = SUPPLY AT $5 \mathrm{~V}, 0 \mathrm{~V}$
CA3240A (Note 1)	2.00	5	Yes	No	0.04	3.7	9	5.0	+20.0, -1.0
CA3240 (Note 1)	2.00	15	Yes	No	0.05	3.7	9	5.0	+20.0, -1.0
QUAD OP AMPS									
ICL7642C	0.01	10	No	Yes	0.05	0.044	0.016	2.0	+10.0, -0.05
ICL7642E	0.01	20	No	Yes	0.05	0.044	0.016	2.0	+12.5, -0.05
HA-5144	0.05	6	Yes	No	100	0.4	1.5	3.0	+4.5, -4.5
CA324	0.20	7	Yes	No	250	1	0.5	5.0	+40, -20
CA124	0.20	5	Yes	No	150	1	0.5	5.0	+40, -20
$\begin{array}{\|l} \text { ICL7641C } \\ \text { (Note 1) } \end{array}$	1.00	10	No	Yes	0.05	1.4	1.6	5.0	+12.5, -0.8
$\begin{aligned} & \text { ICL7641E } \\ & \text { (Note 1) } \end{aligned}$	1.00	20	No	Yes	0.05	1.4	1.6	5.0	+12.5, -0.8
CA5470	1.50	22	Yes	No	0.05	14	5	3.0	+5.5, -1.2

NOTES:

1. Limits are for single 5 V operation if data is available in datasheet.
2. Supply Current for single 5 V supply, if specified in datasheet.

LOW POWER: Min/Max Limits at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Note 1)

DEVICE	SUPPLY CURRENT (mA/OP AMP)	SUPPLY VOLTAGE RANGE (\pm V)	SLEW RATE (TYP) (V/ $\mu \mathrm{s}$)	GBWP (TYP) (MHz)	CM RANGE AT NOMINAL SUPPLY (V)	OUTPUT VOLTAGE SWING (V)	OUTPUT SHORT CIRCUIT CURRENT (TYP) (mA) SOURCE = SINK = -	OFFSET VOLTAGE (mV)	BIAS CURRENT (nA)	PSRR (dB)

SINGLE OP AMPS

CA3078A	0.02	$0.75-18$	0.5	1.5	-5 to +5 at $+6,-6$	± 5.1	± 12.0	3.5	12.0	70
ICL7611A	0.02	$1.0-9.0$	0.02	0.044	-4.4 to +4.4 at $+5,-5$	± 4.9	$+25.0,-7.0$	2.0	0.05	80
ICL7612A	0.02	$1.0-9.0$	0.02	0.044	-5.3 to +5.3 at $+5,-5$	± 4.9	$+25.0,-7.0$	2.0	0.05	80
CA3078	0.13	$0.75-7.0$	1.5	8.0	-5 to +5 at $+6,-6$	± 5.1	± 12.0	4.5	170.0	70
CA5420A	0.55	$1.0-11.0$	0.5	0.5	-0 to +3.7 at $+5,-0$	$+4.9,+0.15$	$+2.6,-2.4$	5.0	0.005	70
DUAL OP AMPS										
HA-5142	0.15	$1.5-17.5$	1.5	0.4	-0 to +3.0 at $+5,-0$	$+3.8,+1.0$	$+4.5,-4.5$	6.0	100	77
ICL7621A	0.25	$1.0-9.0$	0.16	0.5	-4.2 to +4.2 at $+5,-5$	± 4.9	$+15.0,-0.9$	2.0	0.05	80
CA158A	1.5	$1.5-16.0$	0.5	1.0	-15 to +13.5 at $+15,-15$	$+13.5,-15.0$	$+40.0,-20$	2.0	50.0	65
CA258A	1.5	$1.5-16.0$	0.5	1.0	-15 to +13.5 at $+15,-15$	$+13.5,-15.0$	$+40.0,-20$	3.0	80.0	65

NOTE: Bold type designates a new product from Harris.

LOW POWER: Min/Max Limits at $25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Note 1) (Continued)

DEVICE	SUPPLY CURRENT (mA/OP AMP)	SUPPLY VOLTAGE RANGE (\pm V)	SLEW RATE (TYP) ($\mathrm{V} / \mathrm{\mu s}$)	GBWP (TYP) (MHz)	CM RANGE AT NOMINAL SUPPLY (V)	OUTPUT VOLTAGE SWING (V)	OUTPUT SHORT CIRCUIT CURRENT (TYP) (mA) SOURCE = $+$ SINK $=-$	OFFSET VOLTAGE (mV)	BIAS CURRENT (nA)	PSRR (dB)
CA2904	1.5	1.5-13.0	0.5	1.0	-15 to +13.5 at +15, -15	+13.5, -15.0	+40.0, -20	7.0	250.0	50
CA258	1.5	1.5-16.0	0.5	1.0	-15 to +13.5 at $+15,-15$	+13.5, -15.0	+40.0, -20	5.0	150.0	65
CA358	1.5	1.5-16.0	0.5	1.0	-15 to +13.5 at $+15,-15$	+13.5, -15.0	+40.0, -20	7.0	250.0	65
CA158	1.5	1.5-16.0	0.5	1.0	-15 to +13.5 at $+15,-15$	+13.5, -15.0	+40.0, -20	5.0	150.0	65
CA358A	1.5	1.5-16.0	0.5	1.0	-15 to $+13.5 \mathrm{at}+15,-15$	+13.5, -15.0	+40.0, -20	3.0	100.0	65
CA3260A	1.5	2.0-8.0	10	4	-0 to +10 at $+15,-0$	$\begin{gathered} +14.99 \\ +0.01 \end{gathered}$	+22.0, -20	5.0	0.03	77
CA5260A	2.0	2.25-8.0	5.0	3.0	-0 to +2.5 at $+5,-0$	+4.99, +0.01	+2.2, -2.0	5.0	0.030	76
QUAD OP AMPS										
ICL7642	0.02	1.0-9.0	0.02	0.04	-4.4 to +4.4 at $+5,-5$	± 4.5	+10, -0.08	10.0	0.05	80
HA-5144	0.15	1.5-17.5	1.5	0.4	-0 to +3 at $+5,-0$	$+3.8,+1.0$	+4.5, -4.5	6.0	100.0	77
CA124	0.5	2.5-16.0	0.5	1.0	-15 to +13.5 at $+15,-15$	+13.5, -15	+40.0, -20	5.0	150.0	65
CA224	0.5	2.5-16.0	0.5	1.0	-15 to +13.5 at $+15,-15$	+13.5, -15	+40.0, -20	7.0	250.0	65
CA324	0.5	2.5-16.0	0.5	1.0	-15 to +13.5 at $+15,-15$	+13.5, -15	+40.0, -20	7.0	250.0	65
ICL7641	2.5	1.5-9.0	1.6	1.4	-3.7 to +3.7 at $+5,-5$	± 4.5	+25, -7.0	10.0	0.05	80

NOTE:

1. See "CM Range" column for the Nominal Supply Voltage at which these specifications apply.

November 1996

CA124, CA224, CA324, LM324, LM2902

Quad, 1 MHz , Operational Amplifiers for Commercial, Industrial, and Military Applications

Features

- Operation from Single or Dual Supplies
- Unity-Gain Bandwidth 1MHz (Typ)
- DC Voltage Gain . 100dB (Typ)
- Input Bias Current . 45nA (Typ)
- Input Offset Voltage . 2mV (Typ)
- Input Offset Current
- CA224, CA324, LM324, LM2902 5nA (Typ)
- CA124 . 3nA (Typ)
- Replacement for Industry Types 124, 224, 324

Applications

- Summing Amplifiers
- Multivibrators
- Oscillators
- Transducer Amplifiers
- DC Gain Blocks

Pinout

CA124, CA224, CA324, LM2902 (PDIP, SOIC)

 LM324 (PDIP)TOP VIEW

Description

The CA124, CA224, CA324, LM324, and LM2902 consist of four independent, high-gain operational amplifiers on a single monolithic substrate. An on-chip capacitor in each of the amplifiers provides frequency compensation for unity gain. These devices are designed specially to operate from either single or dual supplies, and the differential voltage range is equal to the power-supply voltage. Low power drain and an input common-mode voltage range from OV to V_{+} -1.5 V (single-supply operation) make these devices suitable for battery operation.

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. NO.
CA0124E	-55 to 125	14 Ld PDIP	E14.3
$\begin{aligned} & \text { CA0124M } \\ & (124) \end{aligned}$	-55 to 125	14 Ld SOIC	M14.15
$\begin{aligned} & \text { CA0124M96 } \\ & \text { (124) } \end{aligned}$	-55 to 125	14 Ld SOIC Tape and Reel	M14.15
CA0224E	-40 to 85	14 Ld PDIP	E14.3
$\begin{aligned} & \text { CA0224M } \\ & (224) \end{aligned}$	-40 to 85	14 Ld SOIC	M14.15
$\begin{aligned} & \text { CA0224M96 } \\ & \text { (224) } \end{aligned}$	-40 to 85	14 Ld SOIC Tape and Reel	M14.15
CA0324E	0 to 70	14 Ld PDIP	E14.3
$\begin{aligned} & \text { CA0324M } \\ & \text { (324) } \end{aligned}$	0 to 70	14 Ld SOIC	M14.15
$\begin{aligned} & \hline \begin{array}{l} \text { CA0324M96 } \\ \text { (324) } \end{array} \\ & \hline \end{aligned}$	0 to 70	14 Ld SOIC Tape and Reel	M14.15
LM324N	0 to 70	14 Ld PDIP	E14.3
LM2902N	-40 to 85	14 Ld PDIP	E14.3
$\begin{aligned} & \text { LM2902M } \\ & \text { (2902) } \end{aligned}$	-40 to 85	14 Ld SOIC	M14.15
$\begin{aligned} & \text { LM2902M96 } \\ & \text { (2902) } \end{aligned}$	-40 to 85	14 Ld SOIC Tape and Reel	M14.15

Absolute Maximum Ratings
Supply Voltage 32 V or $\pm 16 \mathrm{~V}$
Differential Input Voltage.
-0.3 V to 32 V Input Voltage 0.3 V to 32 VInput Current $\left(V_{1}<-0.3 V\right.$, Note 1) . 50 mA
Output Short Circuit Duration (V $+\leq 15 \mathrm{~V}$, Note 2) . . . Continuous
Continuous

Operating Conditions

Temperature Range

CA124.	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
CA224, LM2902	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
CA324, LM324	$.0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

Thermal Information

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied

NOTES:

1. This input current will only exist when the voltage at any of the input leads is driven negative. This current is due to the collector base junction of the input p-n-p transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral $n-p-n$ parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the amplifiers to go to the V+ voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This transistor action is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V .
2. The maximum output current is approximately 40 mA independent of the magnitude of $\mathrm{V}+$. Continuous short circuits at $\mathrm{V}+>15 \mathrm{~V}$ can cause excessive power dissipation and eventual destruction. Short circuits from the output to $\mathrm{V}+$ can cause overheating and eventual destruction of the device.
3. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Values Apply for Each Operational Amplifier. Supply Voltage $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { TEMP. } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	CA124			CA224, CA324, LM324			LM2902			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage (Note 6)		25	-	2	5	-	2	7	-	-	-	mV
		Full	-	-	7	-	-	9	-	-	10	mV
Average Input Offset Voltage Drift	$\mathrm{R}_{S}=0 \Omega$	Full	-	7	-	-	7	-	-	7	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Differential Input Voltage (Note 5)		Full	-	-	V+	-	-	V+	-	-	V+	V
Input Common Mode Voltage Range (Note 5)	$\mathrm{V}+=30 \mathrm{~V}$	25	0	-	V+-1.5	0	-	$V+-1.5$	-	-	-	V
	$\mathrm{V}+=30 \mathrm{~V}$	Full	0	-	$\mathrm{V}+-2$	0	-	$\mathrm{V}+-2$	-	-	-	V
	$\mathrm{V}+=26 \mathrm{~V}$	Full	-	-	-	-	-	-	0	-	$V+-2$	V
Common Mode Rejection Ratio	DC	25	70	85	-	65	70	-	-	-	-	dB
Power Supply Rejection Ratio	DC	25	65	100	-	65	100	-	-	-	-	dB
Input Bias Current (Note 4)	$1_{1}+$ or 1_{1-}	25	-	45	150	-	45	250	-	-	-	nA
	$1_{1}+$ or 1_{1} -	Full	-	-	300	-	-	500	-	40	500	nA
Input Offset Current	$1_{1+}+1_{1-}$	25	-	3	30	-	5	50	-	-	-	nA
	$1_{1}+-1_{1-}$	Full	-	-	100	-	-	150	-	45	200	nA
Average Input Offset Current Drift		Full	-	10	-	-	10	-	-	10	\cdot	$\mathrm{pA}^{\circ} \mathrm{C}$

CA124, CA224, CA324, LM324, LM2902
Electrical Specifications
Values Apply for Each Operational Amplifier. Supply Voltage $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	CA124			CA224, CA324, LM324			LM2902			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Large Signal Voltage Gain	$R_{L} \geq 2 k \Omega, V+=15 \mathrm{~V}$ $\text { (For Large } \mathrm{V}_{\mathrm{O}} \text { Swing) }$	25	94	100	-	88	100	-	-	-	-	dB
	$R_{L} \geq 2 \mathrm{k} \Omega, V_{+}=15 \mathrm{~V}$ $\text { (For Large } \mathrm{V}_{\mathrm{O}} \text { Swing) }$	Full	88	-	-	83	-	-	83	-	-	dB
Output Voltage Swing High Level	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	25	0	-	$V+-1.5$	0	-	$V+-1.5$	-	-	-	V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}+=30 \mathrm{~V}$	Full	26	-	-	26	-	-	-	-	-	V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}+=26 \mathrm{~V}$	Full	-	-	-	-	-	-	22	-	-	V
	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}+=30 \mathrm{~V}$	Full	27	28	-	27	28	-	23	28	-	V
Low Level	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	Full	-	5	20	-	5	20	-	5	100	mV
Output Current Source Sink	$\begin{aligned} & \mathrm{V}_{1}+=+1 \mathrm{~V}, \mathrm{~V}_{1-}=0 \mathrm{~V}, \\ & \mathrm{~V}+=15 \mathrm{~V} \end{aligned}$	25	20	40	-	20	40	-	-	-	-	mA
	$\begin{aligned} & V_{1+}+1 \mathrm{~V}, V_{1-}=0, \\ & V_{+}=15 \mathrm{~V} \end{aligned}$	Full	10	20	-	10	20	-	10	20	-	mA
	$\left\lvert\, \begin{aligned} & \mathrm{V}_{1}+=0 \mathrm{~V}, \mathrm{~V}_{1-}=1 \mathrm{~V}, \\ & \mathrm{~V}_{+}=15 \mathrm{~V} \end{aligned}\right.$	25	10	20	-	10	20	-	-	-	-	mA
	$\begin{aligned} & V_{1^{+}}=0 \mathrm{~V}, \mathrm{~V}_{1^{-}}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV} \end{aligned}$	25	12	50	-	12	50	-	-	-	-	$\mu \mathrm{A}$
	$\begin{aligned} & V_{1-}=1 \mathrm{~V}, V_{1+}=0, \\ & V+=15 \mathrm{~V} \end{aligned}$	Full	5	8	-	5	8	-	5	8	-	mA
Crosstalk	$\begin{aligned} & f=1 \text { to } 20 \mathrm{kHz} \\ & \text { (Input Referred) } \end{aligned}$	25	-	-120	-	-	-120	-	-	-	-	dB
Total Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$	Full	-	0.8	2	-	0.8	2	-	0.7	1.2	mA
	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}+=26 \mathrm{~V}$	Full	-	-	-	-	-	-	-	1.5	3	mA

NOTES:
4. Due to the PNP input stage the direction of the input current is out of the IC. No loading change exists on the input lines because the current is essentially constant, independent of the state of the output.
5. The input signal voltage and the input common mode voltage should not be allowed to go negative by more than 0.3 V . The positive limit of the common mode voltage range is $\mathrm{V}+-1.5 \mathrm{~V}$, but either or both inputs can go to +32 V without damage.
6. $\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with $\mathrm{V}+$ from 5 V to 30 V , and over the full input common mode voltage range (0 V to $\mathrm{V}+-1.5 \mathrm{~V}$).

Schematic Diagram (One of Four Operational Amplifiers)

Typical Performance Curves

FIGURE 1. OPEN LOOP FREQUENCY RESPONSE

FIGURE 2. VOLTAGE FOLLOWER PULSE RESPONSE (SMALL SIGNAL)

FIGURE 3. VOLTAGE FOLLOWER PULSE RESPONSE (LARGE SIGNAL)

FIGURE 4. INPUT CURRENT vs AMBIENT TEMPERATURE

FIGURE 6. LARGE SIGNAL FREQUENCY RESPONSE

FIGURE 8. INPUT CURRENT vs SUPPLY VOLTAGE

FIGURE 5. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 7. OUTPUT CURRENT vs AMBIENT TEMPERATURE

FIGURE 9. VOLTAGE GAIN vs SUPPLY VOLTAGE

Features

- Internal Frequency Compensation for Unity Gain
- High DC Voltage Gain 100dB (Typ)
- Wide Bandwidth at Unity Gain

1 MHz (Typ)

- Wide Power Supply Range:
- Single Supply
. 3 V to 30 V
- Dual Supplies
$\pm 1.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$
- Low Supply Current.
1.5 mA (Typ)
- Low Input Bias Current
- Low Input Offset Voltage and Current
- Input Common-Mode Voltage Range Includes Ground
- Differential Input Voltage Range Equal to V+ Range
- Large Output Voltage Swing

OV to $\mathrm{V}+\mathbf{- 1 . 5 V}$

Ordering Information

PART NUMBER	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. NO.
CA0158E	-55 to 125	8 Ld PDIP	E8.3
CA0158AE	-55 to 125	8 Ld PDIP	E8.3
CA0158M	-55 to 125	8 Ld SOIC	M8.15
CA0158M96	-55 to 125	8 Ld SOIC Tape and Reel	M8.15
CA0158T	-55 to 125	8 Pin Can	T8.C
CA0158AT	-55 to 125	8 Pin Can	T8.C
CA0258E	-25 to 85	8 Ld PDIP	E8.3
CA0258AE	-25 to 85	8 Ld PDIP	E8.3
CA0258M	-25 to 85	8 Ld SOIC	M8.15
CA0258M96	-25 to 85	8 Ld SOIC Tape and Reel	M8.15
CA0258AM	-25 to 85	8 Ld SOIC	M8.15
CA0258AM96	-25 to 85	8 Ld SOIC Tape and Reel	M8.15
CA0258T	-25 to 85	8 Pin Can	T8.C
CA0258AT	-25 to 85	8 Pin Can	T8.C
CA0358E	0 to 70	8 Ld PDIP	E8.3
CA0358AE	0 to 70	8 Ld PDIP	E8.3
CA0358M	0 to 70	8 Ld SOIC	M8.15
CA0358AM	0 to 70	8 Ld SOIC	M8.15
CA0358M96	0 to 70	8 Ld SOIC Tape and Reel	M8.15
CA0358AM96	0 to 70	8 Ld SOIC Tape and Reel	M8.15
CA0358T	0 to 70	8 Pin Can	T8.C
CA0358AT	0 to 70	8 Pin Can	T8.C
CA2904E	-40 to 85	8 Ld PDIP	E8.3
CA2904M	-40 to 85	8 Ld SOIC	M8.15
CA2904M96	-40 to 85	8 Ld SOIC Tape and Reel	M8.15
LM358N	0 to 70	8 Ld PDIP	E8.3
LM2904N	0 to 70	8 Ld PDIP	E8.3

Description

The CA158, CA158A, CA258, CA258A, CA358, CA358A and CA2904 types consist of two independent, high gain, internally frequency compensated operational amplifiers which are designed specifically to operate from a single power supply over a wide range of voltages. They may also be operated from split power supplies. The supply current is basically independent of the supply voltage over the recommended voltage range.

These devices are particularly useful in interface circuits with digital systems and can be operated from the single common $5 \mathrm{~V}_{\mathrm{DC}}$ power supply. They are also intended for transducer amplifiers, DC gain blocks and many other conventional op amp circuits which can benefit from the single power supply capability.
The CA158, CA158A, CA258, CA258A, CA358, CA358A, and CA2904 types are an equivalent to or a replacement for the industry types 158, 158A, 258, 258A, 358, 358A, and CA2904.
Technical Data on LM Branded types is identical to the corresponding CA Branded types.

Pinouts

CA158, CA258, CA358 (METAL CAN)
TOP VIEW

CA158, CA258, CA358, CA2904 (PDIP, SOIC) LM358, LM2904 (PDIP) TOP VIEW


```
Absolute Maximum Ratings
Supply Voltage
    CA2904, LM2904
    Other Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32V or m16V
        6V or }\pm13\textrm{V
Differential Input Voltage (All Types). . . . . . . . . . . . . . . . . . . . . 32V
Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - - 0.3V to V+
Input Current (V }\mp@subsup{V}{1}{}<-0.3\textrm{V},\mathrm{ Note 1) . . . . . . . . . . . . . . . . . . . . 50mA
Output Short Circuit Duration (V+\leq15V, Note 2). . . . . . Continuous
```


Operating Conditions

Thermal Information

Thermal Resistance (Typical, Note 3)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
PDIP Package	130	N/A
SOIC Package	170	N/A
Can Package.	155	67

Maximum Junction Temperature (Can Package) $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$ (SOIC - Lead Tips Only)

Temperature Range

```
CA158, CA158A
    CA258, CA258A .............................. . . . 25'0}\textrm{C}\mathrm{ to }8\mp@subsup{5}{}{\circ}\textrm{C
    CA2904, LM2904 . . . . . . . . . . . . . . . . . . . . . . . . . - 40'0
    CA358, CA358A, LM358. . . . . . . . . . . . . . . . . . . . . .0}\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to 70
```

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. This input current will only exist when the voltage at any of the input leads is driven negative. This current is due to the collector base junction of the input PNP transistors becoming forward biased and thereby acting as input diode clamps. In addition to this diode action, there is also lateral NPN parasitic transistor action on the IC chip. This transistor action can cause the output voltages of the amplifiers to go to the V_{+} voltage level (or to ground for a large overdrive) for the time duration that an input is driven negative. This transistor action is not destructive and normal output states will re-establish when the input voltage, which was negative, again returns to a value greater than -0.3 V .
2. The maximum output current is approximately 40 mA independent of the magnitude of $\mathrm{V}+$. Continuous short circuits at $\mathrm{V}+>15 \mathrm{~V}$ can cause excessive power dissipation and eventual destruction. Short circuits from the output to $V+$ can cause overheating and eventual destruction of the device. Destructive dissipation can result from simultaneous short circuits on both amplifiers.
3. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Values Apply for Each Operational Amplifier. Supply Voltage $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { TEMP } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	CA158A			CA258A			CA358A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage (Note 6)		25	-	1	2	-	1	3	-	2	3	mV
		Full	-	-	4	-	-	4	-	-	5	mV
Average Input Offset Voltage Drift	$\mathrm{R}_{S}=0 \Omega$	Full	-	7	15	-	7	15	-	7	20	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Common Mode Voltage Range (Note 5)	$\mathrm{V}+=30 \mathrm{~V}$	25	0	-	$V+-1.5$	0	-	$\mathrm{V}+-1.5$	0	-	$\mathrm{V}+-1.5$	V
	$\mathrm{V}+=30 \mathrm{~V}$	Full	0	-	$\mathrm{V}+-2$	0	-	$\mathrm{V}+-2$	0	-	$\mathrm{V}+$-2	V
Common Mode Rejection Ratio	DC	25	70	85	-	70	85	-	65	85	-	dB
Power Supply Rejection Ratio	DC	25	65	100	\cdot	65	100	-	65	100	-	dB
Input Bias Current (Note 4)	$\mathrm{I}_{1}+$ or 1_{1-}	25	-	20	50	-	40	80	-	45	100	nA
	$I_{1}+$ or $I_{1}-$	Full	-	40	100	-	40	100	-	40	200	nA
Input Offset Current	$1_{1}+-1_{1}$	25	-	2	10	-	2	15	-	5	30	nA
	$1_{1+}+1_{1-}$	Full	-	-	30	-	-	30	-	-	75	nA
Average Input Offset Current Drift		Full	-	10	200	-	10	200	-	10	300	$\mathrm{pA}^{\circ} \mathrm{C}$
Large Signal Voltage Gain	$\begin{aligned} & R_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{~V}_{+}=15 \mathrm{~V} \\ & \text { (For Large } \mathrm{V}_{\mathrm{O}} \text { Swing) } \end{aligned}$	25	50	100	-	50	100	-	25	100	-	kVN

Electrical Specifications Values Apply for Each Operational Amplifier. Supply Voltage $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { TEMP } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	CA158A			CA258A			CA358A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	25	0	-	$\mathrm{V}+-1.5$	0	-	$\mathrm{V}+-1.5$	0	-	$\mathrm{V}+-1.5$	V
Output Source Current	$\begin{aligned} & \mathrm{V}_{1}+=+1 \mathrm{~V}, \mathrm{~V}_{1-}=0 \mathrm{~V}, \\ & \mathrm{~V}_{+}=15 \mathrm{~V} \end{aligned}$	25	20	40	-	20	40	-	20	40	-	mA
Sink	$\begin{aligned} & \mathrm{V}_{1}+=0 \mathrm{~V}, \mathrm{~V}_{1-}=1 \mathrm{~V}, \\ & \mathrm{~V}_{+}=15 \mathrm{~V} \end{aligned}$	25	10	20	-	10	20	-	10	20	-	mA
	$\begin{aligned} & \mathrm{V}_{1+}=0 \mathrm{~V}, \mathrm{~V}_{1-}=1 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV} \end{aligned}$	25	12	50	-	12	50	-	12	50	-	$\mu \mathrm{A}$
Short Circuit Output Current (Note 2) Crost	$\mathrm{R}_{\mathrm{L}}=0 \Omega$	25	-	40	60	-	40	60	-	40	60	mA
Crosstalk	$\begin{aligned} & \mathrm{f}=1 \text { to } 20 \mathrm{kHz} \\ & \text { (Input Referred) } \end{aligned}$	25	-	-120	-	-	-120	-	-	-120	-	dB
Total Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$	Full	-	0.7	1.2	-	0.7	1.2	-	0.7	1.2	mA
	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}+=30 \mathrm{~V}$	Full	-	1.5	3	-	1.5	3	-	1.5	3	mA

NOTES:

4. Due to the PNP input stage the direction of the input current is out of the IC. No loading change exists on the input lines because the current is essentially constant, independent of the state of the output.
5. The input signal voltage and the input common mode voltage should not be allowed to go negative by more than 0.3 V . The positive limit of the common mode voltage range is $\mathrm{V}+-1.5 \mathrm{~V}$, but either or both inputs can go to +32 V without damage.
6. $\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with $\mathrm{V}+$ from 5 V to 30 V , and over the full input common mode voltage range (0 V to $\mathrm{V}+-1.5 \mathrm{~V}$).

Electrical Specifications Values Apply for Each Operational Amplifier. Supply Voltage $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	$\begin{array}{\|c} \text { TEMP } \\ \left({ }^{\circ} \mathrm{C}\right) \end{array}$	CA158, CA258			CA358, LM358			CA2904, LM2904			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage (Note 9)		25	-	2	5	-	2	7	-	2	7	mV
		Full	-	-	7	-	-	9	-	-	10	mV
Average Input Offset Voltage Drift	$\mathrm{R}_{\mathrm{S}}=0 \Omega$	Full	-	7	-	-	7	-	-	7	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Common Mode Voltage Range (Note 8)	$\mathrm{V}+=30 \mathrm{~V}$	25	0	-	$\mathrm{V}+-1.5$	0	-	$V+-1.5$	0	-	$V+-1.5$	V
	$\mathrm{V}+=30 \mathrm{~V}$	Full	0	-	V+-2	0	-	$V+-2$	0	-	$V+-2$	V
Common Mode Rejection Ratio	DC	25	70	85	-	65	70	-	50	70	-	dB
Power Supply Rejection Ratio	DC	25	65	100	-	65	100	-	50	100	-	dB
Input Bias Current (Note 7)	$1_{1}+$ or $1_{1}-$	25	-	45	150	-	45	250	-	45	250	nA
	$l_{1}+$ or $I_{1}-$	Full	-	40	300	-	40	500	-	40	500	nA
Input Offset Current	$1_{1+}+1_{1-}$	25	-	3	30	-	5	50	-	5	50	nA
	$1_{1+}+1_{1-}$	Full	-	-	100	-	-	150	-	45	200	nA
Average Input Offset Current Drift		Full	-	10	-	-	10	-	-	10	-	$\mathrm{pA}{ }^{\circ} \mathrm{C}$

CA158, CA158A, CA258, CA258A, CA358, CA358A, CA2904, LM358, LM2904
Electrical Specifications Values Apply for Each Operational Amplifier. Supply Voltage $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	$\begin{array}{\|c} \text { TEMP } \\ \left({ }^{\circ} \mathrm{C}\right) \end{array}$	CA158, CA258			CA358, LM358			CA2904, LM2904			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Large Signal Voltage Gain	$\begin{aligned} & R_{L} \geq 2 \mathrm{k} \Omega, V_{+}=15 \mathrm{~V} \\ & \text { (For Large } \mathrm{V}_{\mathrm{O}} \text { Swing) } \end{aligned}$	25	50	100	-	25	100	-	-	100	-	kV/N
Output Voltage Swing	$R_{L}=2 k \Omega$	25	0	-	$V+-1.5$	0	-	$V+-1.5$	0	-	$V+-1.5$	V
Output Source Current	$\begin{aligned} & V_{1+}=+1 \mathrm{~V}, \mathrm{~V}_{1}=0 \mathrm{~V}, \\ & \mathrm{~V}_{+}=15 \mathrm{~V} \end{aligned}$	25	20	40	-	20	40	-	20	40	-	mA
Sink	$\begin{aligned} & V_{1+}=0 \mathrm{~V}, \mathrm{~V}_{1-}=1 \mathrm{~V}, \\ & \mathrm{~V}_{+}=15 \mathrm{~V} \end{aligned}$	25	10	20	-	10	20	\cdot	10	20	-	mA
	$\begin{aligned} & \mathrm{V}_{1+}=0 \mathrm{~V}, \mathrm{~V}_{1-}=1 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=200 \mathrm{mV} \end{aligned}$	25	12	50	-	12	50	-	-	-	-	$\mu \mathrm{A}$
Short Circuit Output Current (Note 2)	$\mathrm{R}_{\mathrm{L}}=0 \Omega$	25	-	40	60	-	40	60	-	40	60	mA
Crosstalk	$\mathrm{f}=1$ to 20 kHz (Input Referred)	25	-	-120	-	-	-120	-	-	-120	-	dB
Total Supply Current	$\mathrm{R}_{\mathrm{L}}=\infty$	Full	-	0.7	1.2	-	0.7	1.2	-	0.7	1.2	mA
	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}+=30 \mathrm{~V}$	Full	-	1.5	3	-	1.5	3	-	1.5	3	mA

NOTES:
7. Due to the PNP input stage the direction of the input current is out of the IC. No loading change exists on the input lines because the current is essentially constant, independent of the state of the output.
8. The input signal voltage and the input common mode voltage should not be allowed to go negative by more than 0.3 V . The positive limit of the common mode voltage range is $\mathrm{V}+-1.5 \mathrm{~V}$, but either or both inputs can go to +32 V without damage.
9. $\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega$ with $\mathrm{V}+$ from 5 V to 30 V , and over the full input common mode voltage range (0 V to $\mathrm{V}+-1.5 \mathrm{~V}$).

Schematic Diagram

ONE OF TWO OPERATIONAL AMPLIFIERS

CA158, CA158A, CA258, CA258A, CA358, CA358A, CA2904, LM358, LM2904

Typical Performance Curves

FIGURE 1. INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE

FIGURE 3. SUPPLY CURRENT DRAIN vs SUPPLY VOLTAGE

FIGURE 5. VOLTAGE GAIN vs SUPPLY VOLTAGE

FIGURE 2. INPUT CURRENT vs AMBIENT TEMPERATURE

FIGURE 4. COMMON MODE REJECTION RATIO vs INPUT FREQUENCY

FIGURE 6. OPEN-LOOP FREQUENCY RESPONSE

FIGURE 7. VOLTAGE FOLLOWER PULSE RESPONSE (LARGE SIGNAL)

FIGURE 9. LARGE-SIGNAL FREQUENCY RESPONSE

FIGURE 11. OUTPUT SOURCE CURRENT CHARACTERISTICS

FIGURE 8. VOLTAGE FOLLOWER PULSE RESPONSE (SMALL SIGNAL)

FIGURE 10. INPUT CURRENT vs SUPPLY VOLTAGE

FIGURE 12. OUTPUT SINK CURRENT CHARACTERISTICS

Typical Performance Curves (Continued)

FIGURE 13. OUTPUT CURRENT vs AMBIENT TEMPERATURE
Metallization Mask Layout

Dimensions in parentheses are in millimeters and derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

The photographs and dimensions represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are 57° instead of 90° with respect to the face of the chip. Therefore, the isolated chip is actually 7 mils $(0.17 \mathrm{~mm})$ larger in both dimensions.

November 1996

Single and Dual, High Gain Operational Amplifiers for Military, Industrial and Commercial Applications

Features

- Input Bias Current

500nA (Max)

- Input Offset Current

200nA (Max)

Applications

- Comparator
- Multivibrator
- DC Amplifier
- Integrator or Differentiator
- Summing Amplifier
- Narrow Band or Band Pass Filter

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
CA0741E	-55 to 125	8 Ld PDIP	E8.3
CA0741CE	0 to 70	8 Ld PDIP	E8.3
CA1458E	0 to 70	8 Ld PDIP	E8.3
CA1558E	-55 to 125	8 Ld PDIP	E8.3
CA0741T	-55 to 125	8 Pin Metal Can	T8.C
CA0741CT	0 to 70	8 Pin Metal Can	T8.C
CA1458T	0 to 70	8 Pin Metal Can	T8.C
CA1558T	-55 to 125	8 Pin Metal Can	T8.C
LM741N	-55 to 125	8 Ld PDIP	E8.3
LM741CN	0 to 70	8 Ld PDIP	E8.3
LM741H	-55 to 125	8 Pin Metal Can	T8.C
LM741CH	0 to 70	8 Pin Metal Can	T8.C
LM1458N	0 to 70	8 Ld PDIP	E8.3

Description

The CA1458, CA1558 (dual types); CA741C, CA741 (single types); high-gain operational amplifiers for use in military, industrial, and commercial applications.
These monolithic silicon integrated circuit devices provide output short circuit protection and latch-free operation. These types also feature wide common mode and differential mode signal ranges and have low offset voltage nulling capability when used with an appropriately valued potentiometer. $A 10 \mathrm{k} \Omega$ potentiometer is used for offset nulling types CA741C, CA741 (see Figure 1). Types CA1458, CA1558 have no specific terminals for offset nulling. Each type consists of a differential input amplifier that effectively drives a gain and level shifting stage having a complementary emitter follower output.

The manufacturing process make it possible to produce IC operational amplifiers with low burst "popcorn" noise characteristics. The CA741 gives limit specifications for burst noise in the data bulletin, File Number 530. Contact your Sales Representative for information pertinent to other operational amplifier types that meet low burst noise specifications.

Technical Data on LM Branded types is identical to the corresponding CA Branded types.

Pinouts

CA741, CA741C, LM741, LM741C (CAN)
TOP VIEW

CA741, CA741C, LM741, LM741C (PDIP)
TOP VIEW

CA1458, CA1558 (METAL CAN) TOP VIEW

CA1458, CA1558, LM1458 (PDIP) TOP VIEW

Absolute Maximum Ratings

Supply Voltage
CA741C, CA1458, LM741C, LM1458 (Note 1). 36 V
CA741, CA1558, LM741 (Note 1). 44V
Differential Input Voltage. 30V
Input Voltage. V $_{\text {SUPPLY }}$
Offset Terminal to V - Terminal Voltage (CA741C, CA741) . . $\pm 0.5 \mathrm{~V}$
Output Short Circuit Duration . Indefinite

Thermal Information

3)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} /\right.$	$\theta_{\text {JC }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
PDIP Package	130	N/A
Can Package	155	67
Maximum Junction Temperature (Can Package)		
Maximum Junction Temperature (Plastic Package)		
Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$		
aximum Lead Temperature (Solde		

Operating Conditions

Temperature Range
CA741, CA1558, LM741 . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
CA741C, CA1458, LM741C, LM1458 (Note 2) $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Values apply for each section of the dual amplifiers.
2. All types in any package style can be operated over the temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$, although the published limits for certain electrical specification apply only over the temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$.
3. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Typical Values Intended Only for Design Guidance, $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$

PARAMETER	SYMBOL	TEST CONDITIONS	TYPICAL VALUE (ALL TYPES)	UNITS
Input Capacitance	C_{1}		1.4	pF
Offset Voltage Adjustment Range			± 15	mV
Output Resistance	R_{O}		75	Ω
Output Short Circuit Current			25	mA
Transient Response Rise Time	t_{r}	Unity Gain, $\mathrm{V}_{\mathrm{I}}=20 \mathrm{mV}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, $C_{L} \leq 100 \mathrm{pF}$	0.3	$\mu \mathrm{s}$
Overshoot	O.S.		5.0	\%
Slew Rate (Closed Loop)	SR	$R_{L} \geq 2 \mathrm{k} \Omega$	0.5	$\mathrm{V} / \mathrm{\mu s}$

Electrical Specifications For Equipment Design, $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$

PARAMETER	TEST CONDITIONS	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	(NOTE 4) CA741, CA1558, LM741			(NOTE 4) CA741C, CA1458, LM741C, LM1458			$\begin{gathered} \text { UNIT } \\ \mathrm{S} \end{gathered}$
			MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	25	-	1	5	-	2	6	mV
		Full	-	1	6	-	-	7.5	mV
Input Common Mode Voltage Range	*	25	-	-	-	$\pm 12 \mathrm{~V}$	$\pm 13 \mathrm{~V}$	-	V
		Full	$\pm 12 \mathrm{~V}$	$\pm 13 \mathrm{~V}$	-	-	-	-	V
Common Mode Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	25	-	-	-	70	90	-	dB
		Full	70	90	-	-	-	-	dB
Power Supply Rejection Ratio	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	25	-	-	-	-	30	150	$\mu \mathrm{V} / \mathrm{V}$
		Full	-	30	150	-	-	-	$\mu \mathrm{V} / \mathrm{N}$
Input Resistance		25	0.3	2	-	0.3	2	-	$\mathrm{M} \Omega$

CA741, CA741C, CA1458, CA1558, LM741, LM741C, LM1458
Electrical Specifications For Equipment Design, $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ (Continued)

PARAMETER	TEST CONDITIONS	$\begin{array}{\|c} \text { TEMP } \\ \left({ }^{\circ} \mathrm{C}\right) \end{array}$	(NOTE 4) CA741, CA1558, LM741			(NOTE 4)CA741C, CA1458, LM741C,LM1458			$\begin{gathered} \text { UNIT } \\ \mathrm{S} \end{gathered}$
			MIN	TYP	MAX	MIN	TYP	MAX	
Input Bias Current		25	-	80	500	-	80	500	nA
		Full	*	-	-	-	-	800	nA
		-55	-	300	1500	-	-	-	nA
		125	-	30	500	-	-	-	nA
Input Offset Current		25	-	20	200	-	20	200	nA
		Full	-	-	-	-	-	300	nA
		-55	-	85	500	-	-	-	nA
		125	-	7	200	-	-	-	nA
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	50,000	200,000	-	20,000	200,000	-	V/N
		Full	25,000	-	-	15,000	-	-	V / N
Output Voltage Swing	$R_{L} \geq 10 \mathrm{k} \Omega$	25	-	-	-	$\pm 12 \mathrm{~V}$	$\pm 14 \mathrm{~V}$	*	V
		Full	$\pm 12 \mathrm{~V}$	$\pm 14 \mathrm{~V}$	-	-	-	-	
	$\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$	25	-	-	-	$\pm 10 \mathrm{~V}$	$\pm 13 \mathrm{~V}$	-	V
		Full	$\pm 10 \mathrm{~V}$	$\pm 13 \mathrm{~V}$	-	$\pm 10 \mathrm{~V}$	$\pm 13 \mathrm{~V}$	-	
Supply Current		25	-	1.7	2.8	-	1.7	2.8	mA
		-55	-	2	3.3	-	-	-	mA
		125	-	1.5	2.5	-	-	-	mA
Device Power Dissipation		25	-	50	85	-	50	85	mW
		-55	-	60	100	-	-	-	mW
		125	-	45	75	-	-	-	mW

NOTE:
4. Values apply for each section of the dual amplifiers.

Test Circuits

FIGURE 1. OFFSET VOLTAGE NULL CIRCUIT FOR CA741C, CA741, LM741C, AND LM741

FIGURE 2. TRANSIENT RESPONSE TEST CIRCUIT FOR ALL TYPES

Schematic Diagram (Notes 5, 6)
CA741C, CA741, LM741C, LM741 AND FOR EACH AMPLIFIER OF THE CA1458, CA1558, AND LM1458

NOTES:
5. See Pinouts for Terminal Numbers of Respective Types.
6. All Resistance Values are in Ohms.

Typical Performance Curves

FIGURE 3. COMMON MODEINPUT VOLTAGE RANGE vs SUPPLY VOLTAGE FOR ALL TYPES

FIGURE 4. OUTPUT VOLTAGE vs SUPPLY VOLTAGE FOR ALL TYPES

Typical Performance Curves (Continued)

FIGURE 5. TRANSIENT RESPONSE FOR CA741C AND CA741
Metallization Mask Layout

CA1458H

NOTE: Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

Features

- High Power Output Class B Amplifier
- CA3020
0.5 W (Typ) at $\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}$
- CA3020A 1.0 W (Typ) at $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$
- Wide Frequency Range . . Up to 8 MHz with Resistive Loads
- High Power Gain 75dB (Typ)
- Single Power Supply For Class B Operation With Transformer
- CA3020 . 3V 3V to 12 t 12V
- Built-In Temperature-Tracking Voltage Regulator Provides Stable Operation Over $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Temperature Range

Applications

- AF Power Amplifiers For Portable and Fixed Sound and Communications Systems
- Servo-Control Amplifiers
- Wide-Band Linear Mixers
- Video Power Amplifiers
- Transmission-Line Driver Amplifiers (Balanced and Unbalanced)
- Fan-In and Fan-Out Amplifiers For Computer Logic Circuits
- Lamp-Control Amplifiers
- Motor-Control Amplifiers
- Power Multivibrators
- Power Switches

Description

The CA3020 and CA3020A are integrated-circuit, multistage, multipurpose, wide-band power amplifiers on a single monolithic silicon chip. They employ a highly versatile and stable direct coupled circuit configuration featuring wide frequency range, high voltage and power gain, and high power output. These features plus inherent stability over a wide temperature range make the CA3020 and CA3020A extremely useful for a wide variety of applications in military, industrial, and commercial equipment.
The CA3020 and CA3020A are particularly suited for service as class B power amplifiers. The CA3020A can provide a maximum power output of 1 W from a $12 \mathrm{~V}_{\mathrm{DC}}$ supply with a typical power gain of 75 dB . The CA3020 provides 0.5 W power output from a 9V supply with the same power gain.

Refer to AN5766 for application information.

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ}{ }^{\circ}\right)$	PACKAGE	PKG. NO.
CA3020	-55 to 125	12 Pin Metal Can	T12.B
CA3020A	-55 to 125	12 Pin Metal Can	T12.B

Pinout

Schematic Diagram

The resistance values included on the schematic diagram have been supplied as a convenience to assist Equipment Manufacturers in optimizing the selection of "outboard" components of equipment designs. The values shown may vary as much as 30%.
Harris reserves the right to make any changes in the Resistance Values provided such changes do not adversely affect the published performance characteristics of the device.

November 1996

Features

- Low Power Consumption as Low as 100 mW Per Amplifier
- Independent Biasing for Each Amplifier
- High Forward Transconductance
- Programmable Range of Input Characteristics
- Low Input Bias and Input Offset Current
- High Input and Output Impedance
- No Effect on Device Under Output Short-Circuit Conditions
- Zener Diode Bias Regulator

Applications

- For Low Power Conventional Operational Amplifier Applications
- Active Filters
- Comparators
- Gyrators
- Mixers
- Modulators
- Multiplexers
- Multipliers
- Strobing and Gating Functions
- Sample and Hold Functions

Description

The CA3060 monolithic integrated circuit consists of an array of three independent Operational Transconductance Amplifiers (see Note). This type of amplifier has the generic characteristics of an operational voltage amplifier with the exception that the forward gain characteristic is best described by transconductance rather than voltage gain (open-loop voltage gain is the product of the transconductance and the load resistance, $\left.g_{M} R_{L}\right)$. When operated into a suitable load resistor and with provisions for feedback, these amplifiers are well suited for a wide variety of operational-amplifier and related applications. In addition, the extremely high output impedance makes these types particularly well suited for service in active filters.

The three amplifiers in the CA3060 are identical push-pull Class A types which can be independently biased to achieve a wide range of characteristics for specific application. The electrical characteristics of each amplifier are a function of the amplifier bias current ($\mathrm{I}_{\mathrm{ABC}}$). This feature offers the system designer maximum flexibility with regard to output current capability, power consumption, slew rate, input resistance, input bias current, and input offset current. The linear variation of the parameters with respect to bias and the ability to maintain a constant DC level between input and output of each amplifier also makes the CA3060 suitable for a variety of nonlinear applications such as mixers, multipliers, and modulators.

In addition, the CA3060 incorporates a unique Zener diode regulator system that permits current regulation below supply voltages normally associated with such systems.

NOTE: Generic applications of the OTA are described in AN-6668. For improved input operating ranges, refer to CA3080 and CA3280 data sheets (File Nos. 475 and 1174) and application notes AN6668 and AN6818.

Pinout

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
CA3060E	-40 to 85	16 Ld PDIP	E16.3

2kHz, Micropower Operational Amplifier

Features

- Low Standby Power \qquad As Low As 700nW
- Wide Supply Voltage Range $\pm 0.75 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$
- High Peak Output Current. 6.5mA (Min)
- Adjustable Quiescent Current
- Output Short Circuit Protection

Applications

- Portable Electronics
- Telemetry
- Medical Electronics
- Intrusion Alarms
- Instrumentation

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
CA3078AE	-55 to 125	8 Ld PDIP	E8.3
CA3078AM $(3078 A)$	-55 to 125	8 Ld SOIC	M8.15
CA3078AM96 (3078A)	-55 to 125	8 Ld SOIC Tape and Reel	M8.15
CA3078AT	-55 to 125	8 Pin Metal Can	T8.C
CA3078E	0 to 70	8 Ld PDIP	E8.3
CA3078M (3078)	0 to 70	8 Ld SOIC	M8.15
CA3078T	0 to 70	8 Pin Metal Can	T8.C

Description

The CA3078 and CA3078A are high gain monolithic operational amplifiers which can deliver milliamperes of current yet only consume microwatts of standby power. Their operating points are externally adjustable and frequency compensation may be accomplished with one external capacitor. The CA3078 and CA3078A provide the designer with the opportunity to tailor the frequency response and improve the slew rate without sacrificing power. Operation with a single 1.5 V battery is a practical reality with these devices.

The CA3078A is a premium device having a supply voltage range of $\mathrm{V} \pm=0.75 \mathrm{~V}$ to $\mathrm{V} \pm=15 \mathrm{~V}$. The CA3078 has the same lower supply voltage limit but the upper limit is $\mathrm{V}+=+6 \mathrm{~V}$ and $\mathrm{V}=-6 \mathrm{~V}$.

Pinouts

CA3078 (PDIP, SOIC)
TOP VIEW

CA3078 (METAL CAN) TOP VIEW

NOTE: Pin 4 is connected to case.

Schematic Diagram

CA3078 AND CA3078A

CA3078, CA3078A

```
Absolute Maximum Ratings
Supply Voltage (Between V+ and V- Terminal)
```



```
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V+ to V-
Input Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.1mA
Output Short Circuit Duration (Note 1) . . . . . . . . . . . . No Limitation
```


Operating Conditions

```
Temperature Range
```

```
CA3078
\(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
САЗ078A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
```

Thermal Information

Thermal Resistance (Typical, Note 2)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
PDIP Package . .	130	N/A
SOIC Package .	170	N/A
Metal Can Package	175	100

Maximum Junction Temperature (Metal Can Package) $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Short circuit may be applied to ground or to either supply.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air

Electrical Specifications For Equipment Design

PARAMETER	TEST CONDITIONS			$\begin{gathered} \hline \text { CA3078 LIMITS } \\ \mathrm{R}_{\mathrm{SET}}=1 \mathrm{M} \Omega \\ \hline \end{gathered}$					$\begin{gathered} \text { CA3078A LIMITS } \\ \mathrm{R}_{\mathrm{SET}}=5.1 \mathrm{M} \Omega \end{gathered}$					UNITS
	$\begin{gathered} V_{+} \\ \text {and } V_{-} \end{gathered}$	$\begin{gathered} \mathbf{R}_{\mathbf{S}} \\ (\mathbf{k} \Omega) \end{gathered}$	$\begin{gathered} \mathbf{R}_{\mathrm{L}} \\ (\mathbf{k} \Omega) \end{gathered}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } \\ 70^{\circ} \mathrm{C} \end{gathered}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$		
				MIN	TYP	MAX	MIN	MAX	MIN	TYP	MAX	MIN	MAX	
V_{10}	$\pm 6 \mathrm{~V}$	≤ 10	-	-	1.3	4.5	-	5	-	0.70	3.5	-	4.5	mV
10		-	-	-	6	32	-	40	-	0.50	2.5	-	5.0	nA
1 IB		-	-	-	60	170	-	200	-	7	12	-	50	nA
AOL		-	≥ 10	88	92	-	86	-	92	100	-	90	-	dB
l_{Q}		-	-	-	100	130	-	150	-	20	25	-	45	$\mu \mathrm{A}$
$P_{\text {D }}$		-	-	-	1200	1560	-	1800	-	240	300	-	540	$\mu \mathrm{W}$
$\mathrm{V}_{\text {OM }}$		-	≥ 10	± 5.1	± 5.3	-	± 5	-	± 5.1	± 5.3	-	± 5	-	V
$V_{\text {ICR }}$		≤ 10	-	-	$\begin{array}{\|c\|} \hline-5.5 \text { to } \\ +5.8 \\ \hline \end{array}$	-	$\begin{gathered} -5 \text { to } \\ +5 \end{gathered}$	-	-	$\begin{array}{\|c} -5.5 \text { to } \\ +5.8 \\ \hline \end{array}$	-	$\begin{gathered} -5 \text { to } \\ +5 \\ \hline \end{gathered}$	-	V
CMRR		≤ 10	-	80	110	-	-	-	80	115	-	-	-	dB
lom ${ }^{\text {or }}$ IOM ${ }^{-}$		-	-	-	12	-	6.5	30	-	12	-	6.5	30	mA
$\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{V}_{+}$		≤ 10	-	76	93	-	-	-	76	105	-	-	-	$\mu \mathrm{V} N$
$\Delta V_{10} / \Delta V$ -		≤ 10	-	76	93	-	-	-	76	105	-	-	-	$\mu \mathrm{V} N$
									$\mathrm{R}_{\text {SET }}=13 \mathrm{M} \Omega$					
V_{10}	$\pm 15 \mathrm{~V}$	≤ 10	-	-	-	-	-	-	-	1.4	3.5	-	4.5	mV
$\mathrm{AOL}^{\text {a }}$		-	≥ 10	-	-	-	-	-	92	100	-	88	-	dB
I_{Q}		-	-	-	-	-	-	-	-	20	30	-	50	$\mu \mathrm{A}$
$P_{\text {D }}$		-	-	-	-	-	-	-	-	600	750	-	1350	$\mu \mathrm{W}$
$\mathrm{V}_{\text {OM }}$		-	≥ 10	-	-	-	-	-	± 13.7	± 14.1	-	± 13.5	-	V
CMRR		≤ 10	-	-	-	-	-	-	80	106	-	-	-	dB
IB		-	-	-	-	-	-	-	-	7	14	-	55	nA
10		-	-	-	-	-	-	-	-	0.50	2.7	-	5.5	nA

CA3078, CA3078A

Electrical Specifications $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Typical Values Intended Only for Design Guidance

PARAMETER	CA3078		CA3078A		UNITS
	$\begin{gathered} \mathrm{V}_{+}=+1.3 \mathrm{~V} \\ \mathrm{~V}-=-1.3 \mathrm{~V} \\ \mathrm{R}_{\text {SET }}=2 \mathrm{M} \Omega \end{gathered}$	$\begin{aligned} \mathrm{V}_{+} & =+0.75 \mathrm{~V}, \\ \mathrm{~V}- & =-0.75 \mathrm{~V} \\ \mathrm{R}_{\text {SET }} & =10 \mathrm{M} \Omega \end{aligned}$	$\begin{gathered} \mathrm{V}_{+}=+1.3 \mathrm{~V} \\ \mathrm{~V}-=-1.3 \mathrm{~V} \\ \mathrm{R}_{\mathrm{SET}}=2 \mathrm{M} \Omega \end{gathered}$	$\begin{aligned} \mathrm{V}_{+} & =+0.75 \mathrm{~V}, \\ \mathrm{~V}- & =-0.75 \mathrm{~V} \\ \mathrm{R}_{\text {SET }} & =10 \mathrm{M} \Omega \end{aligned}$	
V_{10}	1.3	1.5	0.7	0.9	mV
10	1.7	0.5	0.3	0.054	nA
1 IB	9	1.3	3.7	0.45	nA
AOL	80	60	84	65	dB
${ }_{1} \mathrm{Q}$	10	1	10	1	$\mu \mathrm{A}$
PD	26	1.5	26	1.5	$\mu \mathrm{W}$
Vop-P	1.4	0.3	1.4	0.3	V
$V{ }_{\text {ICR }}$	-0.8 to +1.1	-0.2 to +0.5	-0.8 to +1.1	-0.2 to +0.5	V
CMRR	100	90	100	90	dB
${ }^{\text {l }}$ OM ${ }^{ \pm}$	12	0.5	12	0.5	mA
$\Delta \mathrm{V}_{10} / \Delta \mathrm{V} \pm$	20	50	20	50	$\mu \mathrm{V} N$

Electrical Specifications $\quad T_{A}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\text {SUPPLY }}= \pm 6 \mathrm{~V}$, Typical Values Intended Only for Design Guidance

PARAMETER	TEST CONDITIONS	CA3078	CA3078A		UNITS
		$\mathrm{R}_{\text {SET }}=1 \mathrm{M} \Omega$	$\mathrm{R}_{\text {SET }}=5.1 \mathrm{M} \Omega$	$\mathrm{R}_{\text {SET }}=1 \mathrm{M} \Omega$	
$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}_{\mathrm{A}}$	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	6	5	6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
$\Delta{ }_{10} / \Delta T_{A}$	$\mathrm{R}_{\mathrm{S}} \leq 10 \mathrm{k} \Omega$	70	6.3	70	$\mathrm{pA}^{\circ} \mathrm{C}$
$\mathrm{BW}_{\mathrm{OL}}$	3 dB pt .	2	0.3	2	kHz
SR	See Figures 23, 24	0.04	0.027	0.04	V/us
		1.5	0.5	1.5	V/ $/ \mathrm{s}$
t_{R}	10\% to 90\% Rise Time	2.5	3	2.5	$\mu \mathrm{s}$
R_{1}	-	0.87	7.4	1.7	M Ω
Ro	-	0.8	1	0.8	$\mathrm{k} \Omega$
$\mathrm{e}_{\mathrm{N}}(10 \mathrm{~Hz})$	$\mathrm{R}_{S}=0$	25	40	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$\mathrm{i}_{\mathrm{N}}(10 \mathrm{~Hz}$)	$\mathrm{R}_{S}=1 \mathrm{M} \Omega$	1	0.25	-	$\mathrm{pA} \sqrt{\mathrm{Hz}}$

Test Circuits

FIGURE 1. TRANSIENT RESPONSE AND SLEW RATE, UNITY GAIN (INVERTING) TEST CIRCUIT

FIGURE 2. SLEW RATE, UNITY GAIN (NON-INVERTING) TEST CIRCUIT

Value of R_{B} required to have a null adjustment range of $\pm 7.5 \mathrm{mV}$
$R_{B} \approx \frac{R_{1} V_{+}}{7.5 \times 10^{-3}}$
assuming $R_{B} \gg R_{I}$

FIGURE 3. OFFSET VOLTAGE NULL CIRCUITS

FIGURE 4. INVERTING 20dB AMPLIFIER CIRCUIT

FIGURE 5. NON-INVERTING 20dB AMPLIFIER CIRCUIT

TABLE 1. UNITY GAIN SLEW RATE vs COMPENSATION - CA3078 AND CA3078A
$V_{\text {SUPPLY }}= \pm 6 \mathrm{~V}$, Output Voltage $\left(\mathrm{V}_{\mathrm{O}}\right)= \pm 5 \mathrm{~V}$, Load Resistance $\left(\mathrm{R}_{\mathrm{L}}\right)=10 \mathrm{k} \Omega$, Transient Response: 10% overshoot for an output voltage of 100 mV , Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)=25^{\circ} \mathrm{C}$

COMPENSATION TECHNIQUE	UNITY GAIN (INVERTING) FIGURE 1					UNITY GAIN (NON-INVERTING) FIGURE 2				
	R_{1}	C_{1}	R_{2}	C_{2}	SLEW RATE	R_{1}	C_{1}	R_{2}	C_{2}	SLEW RATE
	k Ω	pF	$\mathrm{k} \Omega$	$\mu \mathrm{F}$	$\mathrm{V} / \mu \mathrm{s}$	k Ω	pF	$\mathrm{k} \Omega$	$\mu \mathrm{F}$	$\mathrm{V} / \mu \mathrm{s}$
CA3078- $\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}$										
Single Capacitor	0	750	∞	0	0.0085	0	1500	∞	0	0.0095
Resistor and Capacitor	3.5	350	∞	0	0.04	5.3	500	∞	0	0.024
Input	∞	0	0.25	0.306	0.67	∞	0	0.311	0.45	0.67
CA3078A - $\mathrm{I}_{\mathrm{Q}}=20 \mu \mathrm{~A}$										
Single Capacitor	0	300	∞	0	0.0095	0	800	∞	0	0.003
Resistor and Capacitor	14	100	∞	0	0.027	34	125	∞	0	0.02
Input	∞	0	0.644	0.156	$0.29{ }^{\circ}$	∞	0	0.77	0.4	0.4

Application Information

Compensation Techniques

The CA3078A and CA3078 can be phase compensated with one or two external components depending upon the closed loop gain, power consumption, and speed desired. The recommended compensation is a resistor in series with a capacitor connected from Terminal 1 to Terminal 8. Values of the resistor and capacitor required for compensation as a function of closed loop gain are shown in Figures 25 and 26. These curves represent the compensation necessary at quiescent currents of $100 \mu \mathrm{~A}$ and $20 \mu \mathrm{~A}$, respectively, for a transient response with 10\% overshoot. Figures 23 and 24 show the slew rates that can be obtained with the two different compensation techniques. Higher speeds can be achieved with input compensation, but this increases noise output.

Compensation can also be accomplished with a single capacitor connected from. Terminal 1 to Terminal 8, with speed being sacrificed for simplicity. Table 1 gives an indication of slew rates that can be obtained with various compensation techniques at quiescent currents of $100 \mu \mathrm{~A}$ and $20 \mu \mathrm{~A}$.

Single Supply Operation

The CA3078A and CA3078 can operate from a single supply with a minimum total supply voltage of 1.5 V . Figures 4 and 5 show the CA3078A or CA3078 in inverting and non-inverting 20 dB amplifier configurations utilizing a 1.5 V type "AA" cell for a supply. The total consumption for either circuit is approximately 675 nW . The output voltage swing in this configuration is 300 mV P-p with a $20 \mathrm{k} \Omega$ load.

Typical Performance Curves

FIGURE 6. INPUT OFFSET VOLTAGE vs TOTAL QUIESCENT CURRENT

FIGURE 7. INPUT OFFSET CURRENT vs TOTAL QUIESCENT CURRENT

FIGURE 8. INPUT BIAS CURRENT vs TOTAL QUIESCENT CURRENT

FIGURE 10. BIAS SETTING RESISTANCE vs TOTAL QUIESCENT CURRENT

FIGURE 12. OUTPUT VOLTAGE SWING vs TOTAL QUIESCENT CURRENT

FIGURE 9. OPEN LOOP VOLTAGE GAIN vs TOTAL QUIESCENT CURRENT

FIGURE 11. MAXIMUM OUTPUT CURRENT vs TOTAL QUIESCENT CURRENT

FIGURE 13. OPEN LOOP VOLTAGE GAIN vs FREQUENCY FOR CA3078

Typical Performance Curves (Continued)

FIGURE 14. OUTPUT AND COMMON MODE VOLTAGE vs SUPPLY VOLTAGE

FIGURE 17. INPUT OFFSET CURRENT vs TEMPERATURE

FIGURE 15. OPEN LOOP VOLTAGE GAIN vs FREQUENCY FOR CA3078A

FIGURE 16. INPUT OFFSET VOLTAGE vs TEMPERATURE

FIGURE 18. INPUT BIAS CURRENT vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 19. OPEN LOOP VOLTAGE GAIN vs TEMPERATURE

FIGURE 21. EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY

FIGURE 20. TOTAL QUIESCENT CURRENT vs TEMPERATURE

FIGURE 22. EQUIVALENT INPUT NOISE CURRENT vs FREQUENCY

Typical Performance Curves (Continued)

Supply Volts: $\mathrm{V}+=+6, \mathrm{~V}-=-6$
Quiescent Current $\left(\mathrm{I}_{\mathrm{Q}}\right)=100 \mu \mathrm{~A}$
Ambient Temperature $\left(T_{A}\right)=25^{\circ} \mathrm{C}$
Load Impedance: $R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$
Feedback Resistance $\left(R_{F}\right)=0.1 \mathrm{M} \Omega$
Output Voltage (VOP-P) $=10 \mathrm{~V}$
R_{1} determined for transient response with 10% overshoot on a 100 mV output signal $\left(R_{1} \times C_{1}=2.5 \times 10^{-6}\right)$

FIGURE 23. SLEW RATE vs CLOSED LOOP GAIN FOR $\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}-\mathrm{CA} 3078$

Supply Volts: $\mathrm{V}_{+}=+6, \mathrm{~V}-=-6$
Quiescent Current $\left(I_{Q}\right)=100 \mu \mathrm{~A}$
Ambient Temperature $\left(\mathrm{T}_{\mathrm{A}}\right)=25^{\circ} \mathrm{C}$
Load Impedance: $R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$
Feedback Resistance $\left(R_{F}\right)=0.1 \mathrm{M} \Omega$
Output Voltage (VOP-p) $=100 \mathrm{mV}$
R_{1} determined for transient response with 10% overshoot on a 100 mV output signal $\left(R_{1} \times C_{1}=2.5 \times 10^{-6}\right)$

FIGURE 25. PHASE COMPENSATION CAPACITANCE vs CLOSED LOOP GAIN - CA3078

Supply Volts: $\mathrm{V}_{+}=+6, \mathrm{~V}-=-6$
Quiescent Current $\left(\mathrm{l}_{\mathrm{Q}}\right)=20 \mu \mathrm{~A}$
Ambient Temperature $\left(T_{A}\right)=25^{\circ} \mathrm{C}$
Load Impedance: $R_{L}=10 \mathrm{k} \Omega, C_{L}=100 \mathrm{pF}$
Feedback Resistance $\left(R_{F}\right)=0.1 \mathrm{M} \Omega$
Output Voltage (V OP-P)) 10 V
R_{1} determined for transient response with 10% overshoot on a 100 mV output signal ($\mathrm{R}_{1} \times \mathrm{C}_{1}=2 \times 10^{-6}$)

FIGURE 24. SLEW RATE vs CLOSED LOOP GAIN FOR $I_{Q}=20 \mu \mathrm{~A}$ - CA3078A

Supply Volts: $\mathrm{V}+=+6, \mathrm{~V}-=-6$
Quiescent Current $\left(I_{Q}\right)=20 \mu \mathrm{~A}$
Ambient Temperature $\left(T_{A}\right)=25^{\circ} \mathrm{C}$
Load Impedance: $R_{L}=10 k \Omega, C_{L}=100 \mathrm{pF}$
Feedback Resistance (R_{F}) $=0.1 \mathrm{M} \Omega$
Output Voltage (VOP-p) $=100 \mathrm{mV}$
R_{1} determined for transient response with 10% overshoot on a 100 mV output signal ($\mathrm{R}_{1} \times \mathrm{C}_{1}=2 \times 10^{-6}$)

FIGURE 26. PHASE COMPENSATION CAPACITANCE vs CLOSED LOOP GAIN - CA3078A

2MHz, Operational Transconductance Amplifier (OTA)

Description

The CA3080 and CA3080A types are Gatable-Gain Blocks which utilize the unique operational-transconductanceamplifier (OTA) concept described in Application Note AN6668, "Applications of the CA3080 and CA3080A HighPerformance Operational Transconductance Amplifiers".
The CA3080 and CA3080A types have differential input and a single-ended, push-pull, class A output. In addition, these types have an amplifier bias input which may be used either for gating or for linear gain control. These types also have a high output impedance and their transconductance $\left(\mathrm{g}_{\mathrm{M}}\right)$ is directly proportional to the amplifier bias current (l_{ABC}).

The CA3080 and CA3080A types are notable for their excellent slew rate $(50 \mathrm{~V} / \mu \mathrm{s})$, which makes them especially useful for multiplexer and fast unity-gain voltage followers. These types are especially applicable for multiplexer applications because power is consumed only when the devices are in the "ON" channel state.

The CA3080A's characteristics are specifically controlled for applications such as sample-hold, gain-control, multiplexing, etc.

Pinouts

NOTE: Pin 4 is connected to case.
Absolute Maximum Ratings
Supply Voltage (Between V+ and V- Terminal). 36V
Differential Input Voltage. 5V
Input Voitage. V+ to V-
Input Signal Current . ImA
Amplifier Bias Current ($\mathrm{I}_{\mathrm{ABC}}$) . $2 m A$
Output Short Circuit Duration (Note 1) No Limitation

Operating Conditions

Temperature Range
САЗ080.
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
CA3080A \qquad $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Short circuit may be applied to ground or to either supply.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications For Equipment Design, $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER		TEST CONDITIONS	TEMP	CA3080			CA3080A			UNITS	
		MIN		TYP	MAX	MIN	TYP	MAX			
Input Offset Voltage			${ }^{\prime} \mathrm{ABC}=5 \mu \mathrm{~A}$	25	-	0.3	-	-	0.3	2	mV
		${ }^{\text {ABC }}=500 \mu \mathrm{~A}$	25	-	0.4	5	-	0.4	2	mV	
		Full	-	-	6	-	-	5	mV		
Input Offset Voltage Change			$I_{\text {ABC }}=500 \mu \mathrm{~A}$ to $5 \mu \mathrm{~A}$	25	-	0.2	-	-	0.1	3	mV
Input Offset Voltage Temp. Drift		${ }^{\text {ABC }}$ = $100 \mu \mathrm{~A}$	Full	-	-	-	-	3.0	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Input Offset Voltage Sensitivity	Positive	$\mathrm{I}_{\text {ABC }}=500 \mu \mathrm{~A}$	25	-	-	150	-	-	150	$\mu \mathrm{V} / \mathrm{N}$	
	Negative		25	-	-	150	-	-	150	$\mu \mathrm{V} / \mathrm{N}$	
Input Offset Current		$I_{\text {ABC }}=500 \mu \mathrm{~A}$	25	-	0.12	0.6	-	0.12	0.6	$\mu \mathrm{A}$	
Input Bias Current		${ }^{\prime} A B C=500 \mu \mathrm{~A}$	25	-	2	5	-	2	5	$\mu \mathrm{A}$	
		Full	-	-	7	-	-	15	$\mu \mathrm{A}$		
Differential Input Current			$\mathrm{I}_{\text {ABC }}=0, \mathrm{~V}_{\text {DIFF }}=4 \mathrm{~V}$	25	-	0.008	-	-	0.008	5	nA
Amplifier Bias Voltage		$\mathrm{I}_{\text {ABC }}=500 \mu \mathrm{~A}$	25	-	0.71	-	-	0.71	-	V	
Input Resistance		$l_{\text {ABC }}=500 \mu \mathrm{~A}$	25	10	26	-	10	26	-	$\mathrm{k} \Omega$	
Input Capacitance		${ }^{\prime} A B C=500 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{MHz}$	25	-	3.6	-	-	3.6	-	pF	
Input-to-Output Capacitance		${ }^{\prime} A B C=500 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{MHz}$	25	-	0.024	-	-	0.024	-	pF	
Common-Mode Input-Voltage Range		${ }^{\text {ABC }}=500 \mu \mathrm{~A}$	25	$\begin{gathered} 12 \text { to } \\ -12 \end{gathered}$	$\begin{gathered} 13.6 \text { to } \\ -14.6 \end{gathered}$	-	$\begin{gathered} 12 \text { to } \\ -12 \end{gathered}$	$\begin{aligned} & 13.6 \text { to } \\ & -14.6 \end{aligned}$	-	V	
Forward Transconductance (Large Signal)		$I_{\text {ABC }}=500 \mu \mathrm{~A}$	25	6700	9600	13000	7700	9600	12000	$\mu \mathrm{S}$	
		Full	5400	-	-	4000	-	-	$\mu \mathrm{S}$		
Output Capacitance			${ }^{\text {ABC }}=500 \mu \mathrm{~A}, \mathrm{f}=1 \mathrm{MHz}$	25	-	5.6	-	-	5.6	-	pF
Output Resistance		$\mathrm{I}_{\text {ABC }}=500 \mu \mathrm{~A}$	25	-	15	-	-	15	-	$\mathrm{M} \Omega$	
Peak Output Current		${ }^{\text {ABC }}=5 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=0 \Omega$	25	-	5	-	3	5	7	$\mu \mathrm{A}$	
		$\mathrm{I}_{\text {ABC }}=500 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=0 \Omega$	25	350	500	650	350	500	650	$\mu \mathrm{A}$	
		Full	300	-	-	300	-	-	$\mu \mathrm{A}$		

Electrical Specifications For Equipment Design, $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER		TEST CONDITIONS	TEMP	CA3080			CA3080A			UNITS	
		MIN		TYP	MAX	MIN	TYP	MAX			
Peak Output Voltage	Positive		$\mathrm{I}_{\mathrm{ABC}}=5 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=\infty$	25	-	13.8	-	12	13.8	-	V
	Negative	25		-	-14.5	-	-12	-14.5	-	V	
	Positive	${ }^{\prime} A B C=500 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=\infty$	25	12	13.5	-	12	13.5	-	V	
	Negative		25	-12	-14.4	-	-12	-14.4	-	V	
Amplifier Supply Current		$\mathrm{I}^{\text {ABC }}=500 \mu \mathrm{~A}$	25	0.8	1	1.2	0.8	1	1.2	mA	
Device Dissipation		$\mathrm{I}_{\text {ABC }}=500 \mu \mathrm{~A}$	25	24	30	36	24	30	36	mW	
Magnitude of Leakage Current		$\mathrm{I}_{\text {ABC }}=0, \mathrm{~V}_{\text {TP }}=0$	25	-	0.08	-	-	0.08	5	nA	
		${ }^{\text {A }}$ ABC $=0, V_{\text {TP }}=36 \mathrm{~V}$	25	-	0.3	-	-	0.3	5	nA	
Propagation Delay		$\mathrm{I}_{\text {ABC }}=500 \mu \mathrm{~A}$	25	-	45	-	-	45	-	ns	
Common-Mode Rejection Ratio		$\mathrm{I}_{\text {ABC }}=500 \mu \mathrm{~A}$	25	80	110	-	80	110	-	dB	
Open-Loop Bandwidth		$\mathrm{I}_{\text {ABC }}=500 \mu \mathrm{~A}$	25	-	2	-	-	2	-	MHz	
Slew Rate		Uncompensated	25	-	75	-	-	75	-	V/us	
		Compensated	25	-	50	-	-	50	-	V/us	

Schematic Diagram

Typical Applications

FIGURE 1. SCHEMATIC DIAGRAM OF THE CA3080 AND CA3080A IN A UNITY-GAIN VOLTAGE FOLLOWER CONFIGURATION AND ASSOCIATED WAVEFORM

Typical Applications (Continued)

FIGURE 2. $1,000,000 / 1$ SINGLE-CONTROL FUNCTION GENERATOR - 1 MHz TO $\mathbf{1 H z}$

NOTE: A Square-Wave Signal Modulates The External Sweeping Input to Produce 1 Hz and 1 MHz , showing the $1,000,000 / 1$ frequency range of the function generator.
FIGURE 3A. TWO-TONE OUTPUT SIGNAL FROM THE FUNCTION GENERATOR

NOTE: The bottom trace is the sweeping signal and the top trace is the actual generator output. The center trace displays the 1 MHz signal via delayed oscilloscope triggering of the upper swept output signal.
FIGURE 3B. TRIPLE-TRACE OF THE FUNCTION GENERATOR SWEEPING TO 1 MHz

FIGURE 3. FUNCTION GENERATOR DYNAMIC CHARACTERISTICS WAVEFORMS

Typical Applications (Continued)

NOTE: Time required for output to settle within $\pm 3 \mathrm{mV}$ of a 4 V step.

FIGURE 4. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLE-HOLD CONFIGURATION

FIGURE 5. SAMPLE AND HOLD CIRCUIT

Typical Applications (Continued)

Top Trace: Output Signal 5V/Div., $2 \mu \mathrm{~s} /$ Div.
Bottom Trace:
Input Signal $5 \mathrm{~V} /$ Div., $2 \mu \mathrm{~s} /$ Div.
Center Trace: Difference of Input and Output Signals Through Tektronix Amplifier 7A13 $5 \mathrm{mV} /$ Div., $2 \mu \mathrm{~s} /$ Div.

FIGURE 6. LARGE SIGNAL RESPONSE AND SETTLING TIME FOR CIRCUIT SHOWN IN FIGURE 23

Top Trace: System Output; $100 \mathrm{mV} /$ Div., $500 \mathrm{~ns} /$ Div. Bottom Trace: Sampling Signal; 20V/Div., $500 \mathrm{~ns} / \mathrm{Div}$.
FIGURE 7. SAMPLING RESPONSE FOR CIRCUIT SHOWN IN FIGURE 23

Top Trace: Output; $50 \mathrm{mV} /$ Div., $200 \mathrm{~ns} /$ Div. Bottom Trace: Input; $50 \mathrm{mV} / D i v ., 200 \mathrm{~ns} / D i v$. FIGURE 8. INPUT AND OUTPUT RESPONSE FOR CIRCUIT SHOWN IN FIGURE 23

FIGURE 9. THERMOCOUPLE TEMPERATURE CONTROL WITH CA3079 ZERO VOLTAGE SWITCH AS THE OUTPUT AMPLIFIER

Typical Applications (Continued)

FIGURE 10. SCHEMATIC DIAGRAM OF THE CA3080A IN A SAMPLE-HOLD CIRCUIT WITH BIMOS OUTPUT AMPLIFIER

Top Trace: Output; 5V/Div., $2 \mu \mathrm{~s} / \mathrm{Div}$.
Center Trace: Differential Comparison of Input and Output $2 \mathrm{mV} /$ Div., $2 \mu \mathrm{~s} /$ Div.
Bottom Trace: Input; 5V/Div., $2 \mu \mathrm{~s} /$ Div.
FIGURE 11. LARGE-SIGNAL RESPONSE FOR CIRCUIT SHOWN IN FIGURE 28

Top Trace: Output
$20 \mathrm{mV} /$ Div., $100 \mathrm{~ns} /$ Div.
Input
200mV/Div., 100ns/Div.

FIGURE 12. SMALL-SIGNAL RESPONSE FOR CIRCUIT SHOWN IN FIGURE 28

Typical Applications (Continued)

FIGURE 13. PROPAGATION DELAY TEST CIRCUIT AND ASSOCIATED WAVEFORMS

Typical Performance Curves

FIGURE 14. INPUT OFFSET VOLTAGE vs AMPLIFIER BIAS CURRENT

FIGURE 16. INPUT BIAS CURRENT vs AMPLIFIER BIAS CURRENT

FIGURE 15. INPUT OFFSET CURRENT vS AMPLIFIER BIAS CURRENT

FIGURE 17. PEAK OUTPUT CURRENT vs AMPLIFIER BIAS CURRENT

FIGURE 18. PEAK OUTPUT VOLTAGE vs AMPLIFIER BIAS CURRENT

FIGURE 20. TOTAL POWER DISSIPATION vs AMPLIFIER BIAS CURRENT

FIGURE 22. LEAKAGE CURRENT TEST CIRCUIT

FIGURE 19. AMPLIFIER SUPPLY CURRENT vs AMPLIFIER BIAS CURRENT

FIGURE 21. TRANSCONDUCTANCE vS AMPLIFIER BIAS CURRENT

FIGURE 23. LEAKAGE CURRENT vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 24. DIFFERENTIAL INPUT CURRENT TEST CIRCUIT

FIGURE 26. INPUT RESISTANCE vs AMPLIFIER BIAS CURRENT

FIGURE 28. INPUT AND OUTPUT CAPACITANCE vs AMPLIFIER BIAS CURRENT

FIGURE 25. INPUT CURRENT vs INPUT DIFFERENTIAL VOLTAGE

FIGURE 27. AMPLIFIER BIAS VOLTAGE vs AMPLIFIER BIAS CURRENT

FIGURE 29. OUTPUT RESISTANCE vs AMPLIFIER BIAS CURRENT

Typical Performance Curves (Continued)

FIGURE 30. INPUT-TO-OUTPUT CAPACITANCE TEST CIRCUIT

FIGURE 31. INPUT-TO-OUTPUT CAPACITANCE vs SUPPLY VOLTAGE Operational Transconductance Amplifier (OTA)

Features

- CA3094T, E, M for Operation Up to 24V
- CA3094AT, E, M for Operation Up to 36 V
- CA3094BT, M for Operation Up to 44V
- Designed for Single or Dual Power Supply
- Programmable: Strobing, Gating, Squelching, AGC Capabilities
- Can Deliver 3W (Average) or 10W (Peak) to External Load (in Switching Mode)
- High Power, Single Ended Class A Amplifier will Deliver Power Output of 0.6W (1.6W Device Dissipation)
- Total Harmonic Distortion (THD) at 0.6W in Class A Operation 1.4\% (Typ)

Applications

- Error Signal Detector: Temperature Control with Thermistor Sensor; Speed Control for Shunt Wound DC Motor
- Over Current, Over Voltage, Over Temperature Protectors
- Dual Tracking Power Supply with CA3085
- Wide Frequency Range Oscillator
- Analog Timer
- Level Detector
- Alarm Systems
- Voltage Follower
- Ramp Voltage Generator
- High Power Comparator
- Ground Fault Interrupter (GFI) Circuits

Description

The CA3094 is a differential input power control switch/amplifier with auxiliary circuit features for ease of programmability. For example, an error or unbalance signal can be amplified by the CA3094 to provide an on-off signal or proportional control output signal up to 100 mA . This signal is sufficient to directly drive high current thyristors, relays, DC loads, or power transistors. The CA3094 has the generic characteristics of the CA3080 operational amplifier directly coupled to an integral Darlington power transistor capable of sinking or driving currents up to 100 mA .

The gain of the differential input stage is proportional to the amplifier bias current (l_{ABC}), permitting programmable variation of the integrated circuit sensitivity with either digital and/or analog programming signals. For example, at an $I_{A B C}$ of $100 \mu \mathrm{~A}$, a 1 mV change at the input will change the output from 0 to $100 \mu \mathrm{~A}$ (typical).

The CA3094 is intended for operation up to 24 V and is especially useful for timing circuits, in automotive equipment, and in other applications where operation up to 24 V is a primary design requirement (see Figures 28, 29 and 30 in Typical Applications text). The CA3094A and CA3094B are like the CA3094 but are intended for operation up to 36 V and 44 V , respectively (single or dual supply).

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE ($\left.{ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
CA3094T, AT, BT	-55 to 125	8 Pin Metal Can	T8.C
CA3094E, AE, BE	-55 to 125	8 Ld PDIP	E8.3
CA3094M, AM, BM $(3094, ~ A, ~ B) ~$	-55 to 125	8 Ld SOIC	M8.15

Pinouts

CA3094 (PDIP, SOIC) TOP VIEW

NOTE: Pin 4 is connected to case.

CA3094 (METAL CAN)

TOP VIEW

38MHz, Operational Amplifier

Features

- High Open Loop Gain at Video

Frequencies 42dB (Typ) at 1 MHz

- Unity Gain

Crossover Frequency (f_{T}) 38MHz (Typ)

- Full Power Bandwidth

- Slew Rate
- 20dB Amplifier
$70 \mathrm{~V} / \mu \mathrm{s}$ (Тур)
- Unity Gain Amplifier. 25V/ $\mu \mathrm{s}$ (Typ)
- Settling Time . 0.6 \quad s (Typ)
- Output Current
$\pm 15 \mathrm{~mA}$ (Min)
- Single Capacitor Compensation
- Offset Null Terminals

Applications

- Video Amplifiers
- Fast Peak Detectors
- Meter Driver Amplifiers
- High Frequency Feedback Amplifiers
- Video Pre-Drivers
- Oscillators
- Multivibrators
- Voltage Controlled Oscillator
- Fast Comparators

Description

The CA3100 is a large signal wideband, high speed operational amplifier which has a unity gain cross over frequency (f_{T}) of approximately 38 MHz and an open loop, 3 dB corner frequency of approximately 110 kHz . It can operate at a total supply voltage of from 14 V to $36 \mathrm{~V}(\pm 7 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$ when using split supplies) and can provide at least $18 \mathrm{~V}_{\text {P-P }}$ and $30 \mathrm{~mA} \mathrm{P}_{\text {P-P }}$ at the output when operating from $\pm 15 \mathrm{~V}$ supplies. The CA3100 can be compensated with a single external capacitor and has DC offset adjust terminals for those applications requiring offset null. (See Figure 1).
The CA3100 circuit contains both bipolar and PMOS transistors on a single monolithic chip.

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
CA3100E	-40 to 85	8 Ld PDIP	E8.3
CA3100M (3100)	-40 to 85	8 Ld SOIC	M8.15
CA3100T	-55 to 125	8 Pin Metal Can	T8.C

Pinouts

CA3100
METAL CAN)
TOP VIEW

CA3100

Absolute Maximum Ratings

Operating Conditions

Temperature Range
CA3100E, CA3100M.
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
CA3100T.

$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 1)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	
IP Package	100	N/A
IIC Package	165	N/A
Metal Can Package	170	85
Maximum Junction Temperature (Metal Can)		
Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$		
Maximum Storage Temperature Range $665^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$		
Maximum Lead Temperature (Solderin (SOIC - Lead Tips Only)		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
2. CA3100 does not contain circuitry to protect against short circuits in the output.

Electrical Specifications $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
DC						
Input Offset Voltage	V_{10}	$\mathrm{V}_{\mathrm{O}}=0 \pm 0.1 \mathrm{~V}$	-	± 1	± 5	mV
Input Bias Current	1 IB	$\mathrm{V}_{\mathrm{O}}=0 \pm 1 \mathrm{~V}$	-	0.7	2	$\mu \mathrm{A}$
Input Offset Current	10	$\mathrm{V}_{\mathrm{O}}=0 \pm 1 \mathrm{~V}$	-	± 0.05	± 0.4	$\mu \mathrm{A}$
Common Mode Input Voltage Range	VICR	CMRR $\geq 76 \mathrm{~dB}$	± 12	$\begin{aligned} & +14 \\ & -13 \end{aligned}$	-	V
Common Mode Rejection Ratio	CMRR	$\mathrm{V}_{\mathrm{CM}}= \pm 12 \mathrm{~V}$	76	90	-	dB
Maximum Output Voltage	$\mathrm{V}_{\mathrm{OM}}{ }^{+}$	Differential Input Voltage $=0 \pm 0.1 \mathrm{~V}$,$R_{L}=2 k \Omega$	+9	+11	-	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$		-9	-11	-	V
Maximum Output Current	lOM^{+}	Differential Input Voltage $=0+0.1 \mathrm{~V}$,$R_{L}=250 \Omega$	+15	+30	-	mA
	IOM^{-}		-15	-30	-	mA
Supply Current	$1+$	$\mathrm{V}_{\mathrm{O}}=0 \pm 0.1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}} \geq 10 \mathrm{k} \Omega$	-	8.5	10.5	mA
Power Supply Rejection Ratio	PSRR	$\Delta \mathrm{V}+= \pm 1 \mathrm{~V}, \Delta \mathrm{~V}-= \pm 1 \mathrm{~V}$	60	70	-	dB
DYNAMIC						
Unity-Gain Crossover Frequency	f_{T}	$\mathrm{C}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{O}}=0.3 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	-	38	-	MHz
Open Loop Voltage Gain	$\mathrm{AOL}^{\text {L }}$	$f=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{O}}= \pm 1 \mathrm{~V},($ Note 3)	56	61	-	dB
		$f=1 \mathrm{MHz}, \mathrm{C}_{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{O}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	36	42	-	dB
Slew Rate	SR	$A_{V}=10, C_{C}=0, V_{l}=1 \mathrm{~V}$ (Pulse)	50	70	-	$\mathrm{V} / \mathrm{\mu s}$
		$A_{V}=1, C_{C}=10 \mathrm{pF}, \mathrm{V}_{1}=10 \mathrm{~V}$ (Pulse)	-	25	-	$\mathrm{V} / \mathrm{\mu s}$
Full Power Bandwidth (Note 4)	FPBW	$A_{V}=10, C_{C}=0, V_{O}=18 V_{P-P}$	0.8	1.2	\cdot	MHz
		$\mathrm{A}_{\mathrm{V}}=1, \mathrm{C}_{\mathrm{C}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{O}}=18 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	-	0.4	-	MHz
Open Loop Differential Input Impedance	Z_{1}	$f=1 \mathrm{MHz}$	-	30	\cdot	$\mathrm{k} \Omega$
Open Loop Output Impedance	Z_{0}	$f=1 \mathrm{MHz}$	-	110	-	Ω

Electrical Specifications $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX
Wideband Noise Voltage (RTI)	e_{N} (Total)	$B W=1 M H z, R_{S}=1 \mathrm{k} \Omega$	-	8	-
Settling Time (To Within $\pm 50 \mathrm{mV}$ of 9 V Output Swing)	tS	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$	-	$0.6 \mathrm{~V}_{\mathrm{RMS}}$	

NOTES:
3. Low frequency dynamic characteristic.
4. Full Power Bandwidth $=\frac{\text { Slew Rate }}{\pi V_{O P-P}}$.

Test Circuits

FIGURE 1. OPEN-LOOP VOLTAGE GAIN TEST CIRCUIT AND OFFSET ADJUST CIRCUIT

FIGURE 3. FOLLOWER SLEW RATE TEST CIRCUIT

FIGURE 2. SLEW RATE IN 10X AMPLIFIER TEST CIRCUIT

FIGURE 4. WIDEBAND INPUT NOISE VOLTAGE TEST CIRCUIT

Test Circuits (Continued)

FIGURE 5. OUTPUT VOLTAGE SWING (VOM), OUTPUT CURRENT SWING (IOM) TEST CIRCUIT

FIGURE 6. SETTLING TIME TEST CIRCUIT

Schematic Diagram

Typical Applications

FIGURE 7. 20dB VIDEO AMPLIFIER

FIGURE 9. FAST POSITIVE PEAK DETECTOR

FIGURE 8. 20dB VIDEO LINE DRIVER

FIGURE 10. 1 MHz METER-DRIVER AMPLIFIER

Typical Performance Curves

FIGURE 11. OPEN LOOP GAIN, OPEN LOOP PHASE SHIFT vs FREQUENCY

FIGURE 12. OPEN LOOP GAIN vs FREQUENCY

Typical Performance Curves (continued)

FIGURE 13. OPEN LOOP GAIN vs FREQUENCY

FIGURE 15. SLEW RATE vs COMPENSATION CAPACITANCE

FIGURE 17. WIDEBAND INPUT NOISE VOLTAGE vs SOURCE RESISTANCE

FIGURE 14. REQUIRED COMPENSATION CAPACITANCE vs CLOSED LOOP GAIN

FIGURE 16. TYPICAL OPEN LOOP OUTPUT IMPEDANCE vs FREQUENCY

FIGURE 18. TYPICAL OPEN LOOP DIFFERENTIAL INPUT IMPEDANCE vs FREQUENCY

Typical Performance Curves (Continued)

FIGURE 19. MAXIMUM OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 21. MAXIMUM OUTPUT VOLTAGE vs SUPPLY VOLTAGE

FIGURE 20. COMMON MODE INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE

FIGURE 22. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 23. INPUT BIAS CURRENT vs SUPPLY VOLTAGE

15MHz, BiMOS Operational Amplifier with MOSFET Input/CMOS Output

Features

- MOSFET Input Stage Provides:
- Very High $Z_{I}=1.5 \mathrm{~T} \Omega\left(1.5 \times 10^{12} \Omega\right)$ (Typ)
- Very Low $I_{I}=5 p A$ (Typ) at 15 V Operation $=2 p A(T y p)$ at 5 V Operation
- Ideal for Single-Supply Applications
- Common-Mode Input-Voltage Range Includes

Negative Supply Rail; Input Terminals can be Swung 0.5V Below Negative Supply Rail

- CMOS Output Stage Permits Signal Swing to Either (or both) Supply Rails

Applications

- Ground-Referenced Single Supply Amplifiers
- Fast Sample-Hold Amplifiers
- Long-Duration Timers/Monostables
- High-Input-Impedance Comparators (Ideal Interface with Digital CMOS)
- High-Input-Impedance Wideband Amplifiers
- Voltage Followers (e.g. Follower for Single-Supply D/A Converter)
- Voltage Regulators (Permits Control of Output Voltage Down to OV)
- Peak Detectors
- Single-Supply Full-Wave Precision Rectifiers
- Photo-Diode Sensor Amplifiers

Description

CA3130A and CA3130 are op amps that combine the advantage of both CMOS and bipolar transistors.

Gate-protected P-Channel MOSFET (PMOS) transistors are used in the input circuit to provide very-high-input impedance, very-low-input current, and exceptional speed performance. The use of PMOS transistors in the input stage results in common-mode input-voltage capability down to 0.5 V below the negative-supply terminal, an important attribute in single-supply applications.

A CMOS transistor-pair, capable of swinging the output voltage to within 10 mV of either supply-voltage terminal (at very high values of load impedance), is employed as the output circuit.

The CA3130 Series circuits operate at supply voltages ranging from 5 V to $16 \mathrm{~V},(\pm 2.5 \mathrm{~V}$ to $\pm 8 \mathrm{~V})$. They can be phase compensated with a single external capacitor, and have terminals for adjustment of offset voltage for applications requiring offset-null capability. Terminal provisions are also made to permit strobing of the output stage.
The CA3130A offers superior input characteristics over those of the CA3130.

Pinouts

> CA3131, CA3130A
> (PDIP, SOIC) TOP VIEW

CA3130, CA3130A
(METAL CAN) TOP VIEW

Ordering Information

PART NO. (BRAND)	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
CA3130AE	-55 to 125	8 Ld PDIP	E8.3
$\begin{aligned} & \text { CA3130AM } \\ & (3130 A) \end{aligned}$	-55 to 125	8 Ld SOIC	M8.15
$\begin{aligned} & \text { CA3130AM96 } \\ & \text { (3130A) } \end{aligned}$	-55 to 125	8 Ld SOIC (Note)	M8.15
CA3130AT	-55 to 125	8 Pin Metal Can	T8.C
CA3130BT	-55 to 125	8 Pin Metal Can	T8.C
CA3130E	-55 to 125	8 Ld PDIP	E8.3
$\begin{aligned} & \text { CA3130M } \\ & (3130) \end{aligned}$	-55 to 125	8 Ld SOIC	M8.15
$\begin{aligned} & \text { CA3130M96 } \\ & (3130) \end{aligned}$	-55 to 125	8 Ld SOIC (Note)	M8.15
CA3130T	-55 to 125	8 Pin Metal Can	T8.C

NOTE: Denotes Tape and Reel.

Absolute Maximum Ratings

DC Supply Voltage (Between V+ And V- Terminals) 16V
Differential input Voltage. 8 V
DC Input Voltage . (V+ +8 V) to ($\mathrm{V}--0.5 \mathrm{~V}$)
Input-Terminal Current
Output Short-Circuit Duration (Note 1)
). Indefinite

Operating Conditions

Temperature Range
$-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 2)	$\theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
PDIP Package	100	N/A
SOIC Package .	160	N/A
Metal Can Package	170	85

Maximum Junction Temperature (Metal Can Package) $175^{\circ} \mathrm{C}$ Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$ Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$ (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Short circuit may be applied to ground or to either supply.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=\mathrm{V}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	CA3130			CA3130A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	\| V_{10} \|	$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$	-	8	15	-	2	5	mV
Input Offset Voltage Temperature Drift	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$		-	10	-	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Offset Current	1110	$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$	-	0.5	30	-	0.5	20	pA
Input Current	1	$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$	-	5	50	-	5	30	pA
Large-Signal Voltage Gain	A_{OL}	$\begin{aligned} & V_{O}=10 V_{P-P} \\ & R_{L}=2 k \Omega \end{aligned}$	50	320	-	50	320	-	kV/N
			94	110	-	94	110	-	dB
Common-Mode Rejection Ratio	CMRR		70	90	-	80	90	-	dB
Common-Mode Input Voltage Range	VICR		0	$\begin{gathered} -0.5 \text { to } \\ 12 \end{gathered}$	10	0	$\begin{gathered} -0.5 \text { to } \\ 12 \end{gathered}$	10	V
Power-Supply Rejection Ratio	$\Delta \mathrm{V}_{10} / \Delta \mathrm{V}_{\mathrm{S}}$	$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$	-	32	320	-	32	150	$\mu \mathrm{V} / \mathrm{N}$
Maximum Output Voltage	$\mathrm{V}_{\text {OM }}{ }^{+}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	12	13.3	-	12	13.3	-	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	-	0.002	0.01	-	0.002	0.01	V
	$\mathrm{V}_{\text {OM }}{ }^{+}$	$\mathrm{R}_{\mathrm{L}}=\infty$	14.99	15	-	14.99	15	-	V
	$\mathrm{V}_{\mathrm{OM}}{ }^{-}$	$\mathrm{R}_{\mathrm{L}}=\infty$	-	0	0.01	-	0	0.01	V
Maximum Output Current	$\mathrm{l}_{\mathrm{OM}}+($ Source $)$ at $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		12	22	45	12	22	45	mA
	$\mathrm{I}_{\text {OM }}$ (Sink) at $\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}$		12	20	45	12	20	45	mA
Supply Current	$1+$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=7.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$	-	10	15	-	10	15	mA
	$1+$	$\begin{aligned} & V_{\mathrm{O}}=0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=\infty \end{aligned}$	-	2	3	-	2	3	mA

Electrical Specifications Typical Values Intended Only for Design Guidance, $\mathrm{V}_{\text {SUPPLY }}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	CA3130, CA3130A	UNITS
Input Offset Voltage Adjustment Range		10k Ω Across Terminals 4 and 5 or 4 and 1	± 22	mV
Input Resistance	R_{1}		1.5	T Ω
Input Capacitance	C_{1}	$f=1 \mathrm{MHz}$	4.3	pF
Equivalent Input Noise Voltage	${ }^{e} N$	$\begin{aligned} & \mathrm{BW}=0.2 \mathrm{MHz}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{M} \Omega \\ & \text { (Note 3) } \end{aligned}$	23	$\mu \mathrm{V}$
Open Loop Unity Gain Crossover Frequency		$\mathrm{C}_{C}=0$	15	MHz
		$\mathrm{C}_{\mathrm{C}}=47 \mathrm{pF}$	4	MHz
Slew Rate: Open Loop	SR	$C_{C}=0$	30	V/ $/ \mathrm{s}$
Closed Loop		$\mathrm{C}_{\mathrm{C}}=56 \mathrm{pF}$	10	V/ $/ \mathrm{s}$
Transient Response: Rise Time	t_{r}	$\begin{aligned} & \mathrm{C}_{\mathrm{C}}=56 \mathrm{pF}, \\ & \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$ (Voltage Follower)	0.09	$\mu \mathrm{s}$
Overshoot	OS		10	\%
	ts		1.2	$\mu \mathrm{s}$

NOTE:
3. Although a $1 \mathrm{M} \Omega$ source is used for this test, the equivalent input noise remains constant for values of R_{S} up to $10 \mathrm{M} \Omega$.

Electrical Specifications Typical Values Intended Only for Design Guidance, $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Unless Otherwise Specified (Note 4)

PARAMETER	SYMBOL	TEST CONDITIONS	CA3130	CA3130A	UNITS
Input Offset Voltage	V_{10}		8	2	mV
Input Offset Current	10		0.1	0.1	pA
Input Current	1		2	2	pA
Common-Mode Rejection Ratio	CMRR		80	90	dB
Large-Signal Voltage Gain	AOL	$\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	100	100	kVN
			100	100	dB
Common-Mode Input Voltage Range	VICR		0 to 2.8	0 to 2.8	V
Supply Current	$1+$	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$	300	300	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$	500	500	$\mu \mathrm{A}$
Power Supply Rejection Ratio	$\Delta V_{10} / \Delta V_{+}$		200	200	$\mu \mathrm{V} N$

NOTE:
4. Operation at 5 V is not recommended for temperatures below $25^{\circ} \mathrm{C}$.

Schematic Diagram

NOTE:
5. Diodes D_{5} through D_{8} provide gate-oxide protection for MOSFET input stage.

Application Information

Circuit Description

Figure 1 is a block diagram of the CA3130 Series CMOS Operational Amplifiers. The input terminals may be operated down to 0.5 V below the negative supply rail, and the output can be swung very close to either supply rail in many applications. Consequently, the CA3130 Series circuits are ideal for single-supply operation. Three Class A amplifier stages, having the individual gain capability and current consumption shown in Figure 1, provide the total gain of the CA3130. A biasing circuit provides two potentials for common use in the first and second stages. Terminal 8 can be used both for phase compensation and to strobe the output stage into quiescence. When Terminal 8 is tied to the negative supply rail (Terminal 4) by mechanical or electrical means, the output potential at Terminal 6 essentially rises to the positive supply-rail potential at Terminal 7. This condition of essentially zero current drain in the output stage under the strobed "OFF" condition can only be achieved when the ohmic load resistance presented to the amplifier is very high
(e.g.,when the amplifier output is used to drive CMOS digital circuits in Comparator applications).

Input Stage

The circuit of the CA3130 is shown in the schematic diagram. It consists of a differential-input stage using PMOS field-effect transistors $\left(Q_{6}, Q_{7}\right)$ working into a mirror-pair of bipolar transistors (Q_{9}, Q_{10}) functioning as load resistors together with resistors R_{3} through R_{6}. The mirror-pair transistors also function as a differential-to-single-ended converter to provide base drive to the second-stage bipolar transistor $\left(Q_{11}\right)$. Offset nulling, when desired, can be effected by connecting a $100,000 \Omega$ potentiometer across Terminals 1 and 5 and the potentiometer slider arm to Terminal 4. Cascade-connected PMOS transistors Q_{2}, Q_{4} are the constant-current source for the input stage. The biasing circuit for the constant-current source is subsequently described. The small diodes D_{5} through D_{8} provide gate-oxide protection against high-voltage transients, including static electricity during handling for Q_{6} and Q_{7}.

NOTES:

6. Total supply voltage (for indicated voltage gains) $=15 \mathrm{~V}$ with input terminals biased so that Terminal 6 potential is +7.5 V above Terminal 4.
7. Total supply voltage (for indicated voltage gains) $=15 \mathrm{~V}$ with output terminal driven to either supply rail.
FIGURE 1. BLOCK DIAGRAM OF THE CA3130 SERIES

Second-Stage

Most of the voltage gain in the CA3130 is provided by the second amplifier stage, consisting of bipolar transistor Q_{11} and its cascade-connected load resistance provided by PMOS transistors Q_{3} and Q_{5}. The source of bias potentials for these PMOS transistors is subsequently described. Miller Effect compensation (roll-off) is accomplished by simply connecting a small capacitor between Terminals 1 and 8. A 47 pF capacitor provides sufficient compensation for stable unity-gain operation in most applications.

Bias-Source Circuit

At total supply voltages, somewhat above 8.3 V , resistor R_{2} and zener diode Z_{1} serve to establish a voltage of 8.3 V across the series-connected circuit, consisting of resistor R_{1}, diodes D_{1} through D_{4}, and PMOS transistor Q_{1}. A tap at the junction of resistor R_{1} and diode D_{4} provides a gate-bias potential of about 4.5V for PMOS transistors Q_{4} and Q_{5} with respect to Terminal 7. A potential of about 2.2 V is developed across diode-connected PMOS transistor Q_{1} with respect to Terminal 7 to provide gate bias for PMOS transistors Q_{2} and Q_{3}. It should be noted that Q_{1} is "mirror-connected (see Note 8)" to both Q_{2} and Q_{3}. Since transistors Q_{1}, Q_{2}, Q_{3} are designed to be identical, the approximately $200 \mu \mathrm{~A}$ current in Q_{1} establishes a similar current in Q_{2} and Q_{3} as constant current sources for both the first and second amplifier stages, respectively.
At total supply voltages somewhat less than 8.3 V , zener diode Z_{1} becomes nonconductive and the potential, developed across series-connected $R_{1}, D_{1}-D_{4}$, and Q_{1}, varies directly with variations in supply voltage. Consequently, the gate bias for Q_{4}, Q_{5} and Q_{2}, Q_{3} varies in accordance with supply-voltage variations. This variation results in
deterioration of the power-supply-rejection ratio (PSRR) at total supply voltages below 8.3 V . Operation at total supply voltages below about 4.5 V results in seriously degraded performance.

Output Stage

The output stage consists of a drain-loaded inverting amplifier using CMOS transistors operating in the Class A mode. When operating into very high resistance loads, the output can be swung within millivolts of either supply rail. Because the output stage is a drain-loaded amplifier, its gain is dependent upon the load impedance. The transfer characteristics of the output stage for a load returned to the negative supply rail are shown in Figure 2. Typical op amp loads are readily driven by the output stage. Because large-signal excursions are non-linear, requiring feedback for good waveform reproduction, transient delays may be encountered. As a voltage follower, the amplifier can achieve 0.01% accuracy levels, including the negative supply rail.

NOTE:

8. For general information on the characteristics of CMOS transis-tor-pairs in linear-circuit applications, see File Number 619, data sheet on CA3600E "CMOS Transistor Array".

FIGURE 2. VOLTAGE TRANSFER CHARACTERISTICS OF CMOS OUTPUT STAGE

Input Current Variation with Common Mode Input Voltage

As shown in the Table of Electrical Specifications, the input current for the CA3130 Series Op Amps is typically 5pA at $T_{A}=25^{\circ} \mathrm{C}$ when Terminals 2 and 3 are at a common-mode potential of +7.5 V with respect to negative supply Terminal 4. Figure 3 contains data showing the variation of input current as a function of common-mode input voltage at $T_{A}=25^{\circ} \mathrm{C}$. These data show that circuit designers can advantageously exploit these characteristics to design circuits which typically require an input current of less than 1pA, provided the com-mon-mode input voltage does not exceed 2 V . As previously noted, the input current is essentially the result of the leakage current through the gate-protection diodes in the input circuit and, therefore, a function of the applied voltage. Although the finite resistance of the glass terminal-to-case insulator of the
metal can package also contributes an increment of leakage current, there are useful compensating factors. Because the gate-protection network functions as if it is connected to Terminal 4 potential, and the Metal Can case of the CA3130 is also internally tied to Terminal 4, input Terminal 3 is essentially "guarded" from spurious leakage currents.

FIGURE 3. INPUT CURRENT vs COMMON-MODE VOLTAGE

Offset Nulling

Offset-voltage nulling is usually accomplished with a 100,000 2 potentiometer connected across Terminals 1 and 5 and with the potentiometer slider arm connected to Terminal 4. A fine offset-null adjustment usually can be effected with the slider arm positioned in the mid-point of the potentiometer's total range.

Input-Current Variation with Temperature

The input current of the CA3130 Series circuits is typically 5 pA at $25^{\circ} \mathrm{C}$. The major portion of this input current is due to leakage current through the gate-protective diodes in the input circuit. As with any semiconductor-junction device, including op amps with a junction-FET input stage, the leakage current approximately doubles for every $10^{\circ} \mathrm{C}$ increase in temperature. Figure 4 provides data on the typical variation of input bias current as a function of temperature in the CA3130.

FIGURE 4. INPUT CURRENT vs TEMPERATURE

In applications requiring the lowest practical input current and incremental increases in current because of "warm-up" effects, it is suggested that an appropriate heat sink be used with the CA3130. In addition, when "sinking" or "sourcing" significant output current the chip temperature increases, causing an increase in the input current. In such cases, heatsinking can also very markedly reduce and stabilize input current variations.

Input Offset Voltage (V_{10}) Variation with DC Bias and Device Operating Life

It is well known that the characteristics of a MOSFET device can change slightly when a DC gate-source bias potential is applied to the device for extended time periods. The magnitude of the change is increased at high temperatures. Users of the CA3130 should be alert to the possible impacts of this effect if the application of the device involves extended operation at high temperatures with a significant differential DC bias voltage applied across Terminals 2 and 3 . Figure 5 shows typical data pertinent to shifts in offset voltage encountered with CA3130 devices (metal can package) during life testing. At lower temperatures (metal can and plastic), for example at $85^{\circ} \mathrm{C}$, this change in voltage is considerably less. In typical linear applications where the differential voltage is small and symmetrical, these incremental changes are of about the same magnitude as those encountered in an operational amplifier employing a bipolar transistor input stage. The $2 \mathrm{~V}_{\mathrm{DC}}$ differential voltage example represents conditions when the amplifier output stage is "toggled", e.g., as in comparator applications.

FIGURE 5. TYPICAL INCREMENTAL OFFSET-VOLTAGE SHIFT vs OPERATING LIFE

FIGURE 6A. DUAL POWER SUPPLY OPERATION

FIGURE 6B. SINGLE POWER SUPPLY OPERATION
FIGURE 6. CA3130 OUTPUT STAGE IN DUAL AND SINGLE POWER SUPPLY OPERATION

Power-Supply Considerations

Because the CA3130 is very useful in single-supply applications, it is pertinent to review some considerations relating to power-supply current consumption under both single-and dual-supply service. Figures 6A and 6B show the CA3130 connected for both dual-and single-supply operation.

Dual-supply Operation: When the output voltage at Terminal 6 is $0 V$, the currents supplied by the two power supplies are equal. When the gate terminals of Q_{8} and Q_{12} are driven increasingly positive with respect to ground, current flow through Q_{12} (from the negative supply) to the load is increased and current flow through Q_{8} (from the positive supply) decreases correspondingly. When the gate terminals of Q_{8} and Q_{12} are driven increasingly negative with respect to ground, current flow through Q_{8} is increased and current flow through Q_{12} is decreased accordingly.
Single-supply Operation: Initially, let it be assumed that the value of R_{L} is very high (or disconnected), and that the inputterminal bias (Terminals 2 and 3) is such that the output terminal (No. 6) voltage is at $V_{+} / 2$, i.e., the voltage drops across Q_{8} and Q_{12} are of equal magnitude. Figure 20 shows typical quiescent supply-current vs supply-voltage for the CA3130 operated under these conditions. Since the output stage is operating as a Class A amplifier, the supply-current will remain constant under dynamic operating conditions as long as the transistors are operated in the linear portion of their voltage-transfer characteristics (see Figure 2). If either Q_{8} or Q_{12} are swung out of their linear regions toward cut-off (a non-linear region), there will be a corresponding reduction in supply-current. In the extreme case, e.g., with Terminal 8
swung down to ground potential (or tied to ground), NMOS transistor Q_{12} is completely cut off and the supply-current to series-connected transistors Q_{8}, Q_{12} goes essentially to zero. The two preceding stages in the CA3130, however, continue to draw modest supply-current (see the lower curve in Figure 20) even though the output stage is strobed off. Figure 6A shows a dual-supply arrangement for the output stage that can also be strobed off, assuming $R_{L}=\infty$ by pulling the potential of Terminal 8 down to that of Terminal 4.

Let it now be assumed that a load-resistance of nominal value (e.g., $2 k \Omega$) is connected between Terminal 6 and ground in the circuit of Figure 6B. Let it be assumed again that the input-terminal bias (Terminals 2 and 3) is such that the output terminal (No. 6) voltage is at $\mathrm{V}+/ 2$. Since PMOS transistor Q_{8} must now supply quiescent current to both R_{L} and transistor Q_{12}, it should be apparent that under these conditions the supply-current must increase as an inverse function of the R_{L} magnitude. Figure 22 shows the voltagedrop across PMOS transistor Q_{8} as a function of load current at several supply voltages. Figure 2 shows the voltagetransfer characteristics of the output stage for several values of load resistance.

Wideband Noise

From the standpoint of low-noise performance considerations, the use of the CA3130 is most advantageous in applications where in the source resistance of the input signal is on the order of $1 \mathrm{M} \Omega$ or more. In this case, the total inputreferred noise voltage is typically only $23 \mu \mathrm{~V}$ when the testcircuit amplifier of Figure 7 is operated at a total supply voltage of 15 V . This value of total input-referred noise remains essentially constant, even though the value of source resistance is raised by an order of magnitude. This characteristic is due to the fact that reactance of the input capacitance becomes a significant factor in shunting the source resistance. It should be noted, however, that for values of source resistance very much greater than $1 \mathrm{M} \Omega$, the total noise voltage generated can be dominated by the thermal noise contributions of both the feedback and source resistors.

FIGURE 7. TEST-CIRCUIT AMPLIFIER (30-dB GAIN) USED
FOR WIDEBAND NOISE MEASUREMENTS

Typical Applications

Voltage Followers

Operational amplifiers with very high input resistances, like the CA3130, are particularly suited to service as voltage followers. Figure 8 shows the circuit of a classical voltage follower, together with pertinent waveforms using the CA3130 in a split-supply configuration.

A voltage follower, operated from a single supply, is shown in Figure 9, together with related waveforms. This follower circuit is linear over a wide dynamic range, as illustrated by the reproduction of the output waveform in Figure 9A with inputsignal ramping. The waveforms in Figure 9B show that the follower does not lose its input-to-output phase-sense, even though the input is being swung 7.5 V below ground potential. This unique characteristic is an important attribute in both operational amplifier and comparator applications. Figure 9B also shows the manner in which the CMOS output stage permits the output signal to swing down to the negative supply-rail potential (i.e., ground in the case shown). The digital-to-analog converter (DAC) circuit, described later, illustrates the practical use of the CA3130 in a single-supply voltage-follower application.

9-Bit CMOS DAC

A typical circuit of a 9-bit Digital-to-Analog Converter (DAC) is shown in Figure 10. This system combines the concepts of multiple-switch CMOS ICs, a low-cost ladder network of discrete metal-oxide-film resistors, a CA3130 op amp connected as a follower, and an inexpensive monolithic regulator in a simple single power-supply arrangement. An additional feature of the DAC is that it is readily interfaced with CMOS input logic, e.g., 10V logic levels are used in the circuit of Figure 10.

The circuit uses an R/2R voltage-ladder network, with the output potential obtained directly by terminating the ladder arms at either the positive or the negative power-supply terminal. Each CD4007A contains three "inverters", each "inverter" functioning as a single-pole double-throw switch to terminate an arm of the R/2R network at either the positive or negative power-supply terminal. The resistor ladder is an assembly of 1% tolerance metal-oxide film resistors. The five arms requiring the highest accuracy are assembled with series and parallel combinations of $806,000 \Omega$ resistors from the same manufacturing lot.

A single 15 V supply provides a positive bus for the CA3130 follower amplifier and feeds the CA3085 voltage regulator. A "scale-adjust" function is provided by the regulator output control, set to a nominal 10 V level in this system. The linevoltage regulation (approximately 0.2%) permits a 9 -bit accuracy to be maintained with variations of several volts in the supply. The flexibility afforded by the CMOS building blocks simplifies the design of DAC systems tailored to particular needs.

Single-Supply, Absolute-Value, Ideal Full-Wave Rectifier

The absolute-value circuit using the CA3130 is shown in Figure 11. During positive excursions, the input signal is fed through the feedback network directly to the output. Simultaneously, the positive excursion of the input signal also drives the output terminal (No. 6) of the inverting amplifier in a negative-going excursion such that the 1N914 diode effectively disconnects the amplifier from the signal path. During a negative-going excursion of the input signal, the CA3130 functions as a normal inverting amplifier with a gain equal to $-R_{2} / R_{1}$. When the equality of the two equations shown in Figure 11 is satisfied, the full-wave output is symmetrical.

Peak Detectors

Peak-detector circuits are easily implemented with the CA3130, as illustrated in Figure 12 for both the peak-positive and the peak-negative circuit. It should be noted that with large-signal inputs, the bandwidth of the peak-negative circuit is much less than that of the peak-positive circuit. The second stage of the CA3130 limits the bandwidth in this case. Negative-going output-signal excursion requires a pos-itive-going signal excursion at the collector of transistor Q_{11}, which is loaded by the intrinsic capacitance of the associated circuitry in this mode. On the other hand, during a neg-ative-going signal excursion at the collector of Q_{11}, the transistor functions in an active "pull-down" mode so that the intrinsic capacitance can be discharged more expeditiously.

Top Trace: Output
Center Trace: Input
FIGURE 8A. SMALL-SIGNAL RESPONSE ($50 \mathrm{mV} / \mathrm{DIV}$., 200ns/DIV.)

Top Trace: Output Signal; 2V/Div., $5 \mu \mathrm{~s} /$ Div.
Center Trace: Difference Signa; $5 \mathrm{mV} / \mathrm{Div}$., $5 \mu \mathrm{~s} / \mathrm{Div}$. Bottom Trace: Input Signal; 2V/Div., $5 \mu \mathrm{~s} /$ Div.
FIGURE 8B. INPUT-OUTPUT DIFFERENCE SIGNAL SHOWING SETTLING TIME (MEASUREMENT MADE WITH TEKTRONIX 7A13 DIFFERENTIAL AMPLIFIER)
FIGURE 8. SPLIT SUPPLY VOLTAGE FOLLOWER WITH ASSOCIATED WAVEFORMS

FIGURE 9A. OUTPUT WAVEFORM WITH INPUT SIGNAL RAMPING (2V/DIV., $500 \mu \mathrm{~s} /$ DIV.)

Top Trace:Output; 5V/Div., 200 $\mu \mathrm{s} /$ Div. Bottom Trace:Input Signal; 5V/Div., 200 $\mu \mathrm{s} /$ Div.

FIGURE 9B. OUTPUT WAVEFORM WITH GROUND REFERENCE SINE-WAVE INPUT

FIGURE 9. SINGLE SUPPLY VOLTAGE FOLLOWER WITH ASSOCIATED WAVEFORMS. (e.g., FOR USE IN SINGLE-SUPPLY D/A CONVERTER; SEE FIGURE 9 IN AN6080)

BIT	REQUIRED RATIO-MATCH
1	
2	STANDARD
3	$\pm 0.1 \%$
4	$\pm 0.2 \%$
5	$\pm 0.4 \%$
$6-9$	$\pm 0.8 \%$
	$\pm 1 \%$ ABS

NOTE: All resistances are in ohms.

FIGURE 10. 9-BIT DAC USING CMOS DIGITAL SWITCHES AND CA3130

Top Trace: Output Signal; 2V/Div. Bottom Trace: Input Signal; 10V/Div. Time base on both traces: $0.2 \mathrm{~ms} /$ Div.
Gain $=\frac{R_{2}}{R_{1}}=X=\frac{R_{3}}{R_{1}+R_{2}+R_{3}}$
$R_{3}=R_{1}\left(\frac{X+X^{2}}{1-X}\right)$
For $X=0.5: \frac{2 \mathrm{~K} \Omega}{4 \mathrm{k} \Omega}=\frac{R_{2}}{R_{1}}$
$R_{3}=4 k \Omega\left(\frac{0.75}{0.5}\right)=6 k \Omega$
$20 V_{\text {P-p }}$ Input: $B W(-3 d B)=230 \mathrm{kHz}, \mathrm{DC}$ Output $(\mathrm{Avg})=3.2 \mathrm{~V}$
$1 \mathrm{~V}_{\text {P-p }}$ Input: $\mathrm{BW}(-3 \mathrm{~dB})=130 \mathrm{kHz}, \mathrm{DC}$ Output $(\mathrm{Avg})=160 \mathrm{mV}$
FIGURE 11. SINGLE SUPPLY, ABSOLUTE VALUE, IDEAL FULL-WAVE RECTIFIER WITH ASSOCIATED WAVEFORMS

FIGURE 12A. PEAK POSITIVE DETECTOR CIRCUIT

FIGURE 12B. PEAK NEGATIVE DETECTOR CIRCUIT FIGURE 12. PEAK-DETECTOR CIRCUITS

FIGURE 13. VOLTAGE REGULATOR CIRCUIT (OV TO 13V AT 40mA)

REGULATION (NO LOAD TO FULL LOAD): $<0.005 \%$ INPUT REGULATION: $0.01 \% / V$ HUM AND NOISE OUTPUT: $<250 \mu \mathrm{~V}_{\text {RMS }}$ UP TO 100 kHz

FIGURE 14. VOLTAGE REGULATOR CIRCUIT (0.1V TO 50V AT 1A)

Error-Amplifier in Regulated-Power Supplies

The CA3130 is an ideal choice for error-amplifier service in regulated power supplies since it can function as an erroramplifier when the regulated output voltage is required to approach zero. Figure 13 shows the schematic diagram of a 40 mA power supply capable of providing regulated output voltage by continuous adjustment over the range from OV to $13 \mathrm{~V} . \mathrm{Q}_{3}$ and Q_{4} in IC_{2} (a CA3086 ransistor-array IC.) function as zeners to provide supply-voltage for the CA3130 comparator $\left(\mathrm{IC}_{1}\right) . \mathrm{Q}_{1}, \mathrm{Q}_{2}$, and Q_{5} in IC 2 are configured as a low impedance, temperature-compensated source of adjustable reference voltage for the error amplifier. Transistors Q_{1}, $\mathrm{Q}_{2}, \mathrm{Q}_{3}$, and Q_{4} in IC_{3} (another CA3086 transistor-array IC) are connected in parallel as the series-pass element. Transistor Q_{5} in IC_{3} functions as a current-limiting device by diverting base drive from the series-pass transistors, in accordance with the adjustment of resistor R_{2}.
Figure 14 contains the schematic diagram of a regulated power-supply capable of providing regulated output voltage by continuous adjustment over the range from 0.1 V to 50 V and currents up to 1 A . The error amplifier $\left(\mathrm{IC}_{1}\right)$ and circuitry associated with IC_{2} function as previously described, although the output of $I C_{1}$ is boosted by a discrete transistor $\left(Q_{4}\right)$ to provide adequate base drive for the Darlington-connected series-pass transistors Q_{1}, Q_{2}. Transistor Q_{3} functions in the previously described current-limiting circuit.

Multivibrators

The exceptionally high input resistance presented by the CA3130 is an attractive feature for multivibrator circuit design because it permits the use of timing circuits with high R/C ratios. The circuit diagram of a pulse generator (astable multivibrator), with provisions for independent control of the "on" and "off" periods, is shown in Figure 15. Resistors R_{1} and R_{2} are used to bias the CA3130 to the mid-point of the supply-voltage and R_{3} is the feedback resistor. The pulse repetition rate is selected by positioning S_{1} to the desired position and the rate remains essentially constant when the resistors which determine "on-period" and "off-period" are adjusted.

Function Generator

Figure 16 contains a schematic diagram of a function generator using the CA3130 in the integrator and threshold detector functions. This circuit generates a triangular or square-wave output that can be swept over a $1,000,000: 1$ range $(0.1 \mathrm{~Hz}$ to 100 kHz) by means of a single control, R_{1}. A voltage-control input is also available for remote sweep-control.

The heart of the frequency-determining system is an opera-tional-transconductance-amplifier (OTA) (see Note 10), IC_{1}, operated as a voltage-controlled current-source. The output, I_{O}, is a current applied directly to the integrating capacitor, C_{1}, in the feedback loop of the integrator IC_{2}, using a CA3130, to provide the triangular-wave output. Potentiometer R_{2} is used
to adjust the circuit for slope symmetry of positive-going and negative-going signal excursions.
Another CA3130, IC_{3}, is used as a controlled switch to set the excursion limits of the triangular output from the integrator circuit. Capacitor C_{2} is a "peaking adjustment" to optimize the high-frequency square-wave performance of the circuit.
Potentiometer R_{3} is adjustable to perfect the "amplitude symmetry" of the square-wave output signals. Output from the threshold detector is fed back via resistor R_{4} to the input of $I C_{1}$ so as to toggle the current source from plus to minus in generating the linear triangular wave.

Operation with Output-Stage Power-Booster

The current-sourcing and-sinking capability of the CA3130 output stage is easily supplemented to provide power-boost capability. In the circuit of Figure 17, three CMOS transistorpairs in a single CA3600E (see Note 12) IC array are shown parallel connected with the output stage in the CA3130. In the Class A mode of CA3600E shown, a typical device consumes 20 mA of supply current at 15 V operation. This arrangement boosts the current-handling capability of the CA3130 output stage by about 2.5X.

The amplifier circuit in Figure 17 employs feedback to establish a closed-loop gain of 48 dB . The typical large-signal bandwidth $(-3 \mathrm{~dB})$ is 50 kHz .
NOTE:
9. See file number 619 for technical information.

$$
\begin{array}{rl}
\text { POSITION OF S } & \text { PULSE PERIOD } \\
0.001 \mu \mathrm{~F} & 4 \mu \mathrm{~s} \text { to } 1 \mathrm{~ms} \\
0.01 \mu \mathrm{~F} & 40 \mu \mathrm{~s} \text { to } 10 \mathrm{~ms} \\
0.1 \mu \mathrm{~F} & 0.4 \mathrm{~ms} \text { to } 100 \mathrm{~ms} \\
1 \mu \mathrm{~F} & 4 \mathrm{~ms} \text { to } 1 \mathrm{~s}
\end{array}
$$

FIGURE 15. PULSE GENERATOR (ASTABLE MULTIVIBRATOR) WITH PROVISIONS FOR INDEPENDENT CONTROL OF "ON" AND "OFF" PERIODS

NOTE:
10. See file number 475 and AN6668 for technical information.

FIGURE 16. FUNCTION GENERATOR (FREQUENCY CAN BE VARIED $\mathbf{1 , 0 0 0}, 000 / 1$ WITH A SINGLE CONTROL)

NOTES:
11. Transistors $Q_{P 1}, Q_{P 2}, Q_{P 3}$ and $Q_{N 1}, Q_{N 2}, Q_{N 3}$ are parallel connected with Q_{8} and Q_{12}, respectively, of the CA3130.
12. See file number 619.

FIGURE 17. CMOS TRANSISTOR ARRAY (CA3600E) CONNECTED AS POWER BOOSTER IN THE OUTPUT STAGE OF THE CA3130

Typical Performance Curves

FIGURE 18. OPEN LOOP GAIN vs TEMPERATURE

FIGURE 19. OPEN-LOOP RESPONSE

Typical Performance Curves (Continued)

FIGURE 20. QUIESCENT SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 22. VOLTAGE ACROSS PMOS OUTPUT TRANSISTOR $\left(Q_{8}\right)$ vs LOAD CURRENT

FIGURE 21. QUIESCENT SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 23. VOLTAGE ACROSS NMOS OUTPUT TRANSISTOR $\left(Q_{12}\right)$ vs LOAD CURRENT

4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output

Features

- MOSFET Input Stage
- Very High Input Impedance ($Z_{I N}$) -1.5T Ω (Typ)
- Very Low Input Current (I_{1}) -10pA (Typ) at $\pm 15 \mathrm{~V}$
- Wide Common Mode Input Voltage Range (VICR) - Can be Swung 0.5V Below Negative Supply Voltage Rail
- Output Swing Complements Input Common Mode Range
- Directly Replaces Industry Type 741 in Most Applications

Applications

- Ground-Referenced Single Supply Amplifiers in Automobile and Portable Instrumentation
- Sample and Hold Amplifiers
- Long Duration Timers/Multivibrators (μ seconds-Minutes-Hours)
- Photocurrent Instrumentation
- Peak Detectors
- Active Filters
- Comparators
- Interface in 5V TTL Systems and Other Low Supply Voltage Systems
- All Standard Operational Amplifier Applications
- Function Generators
- Tone Controls
- Power Supplies
- Portable Instruments
- Intrusion Alarm Systems

Description

The CA3140A and CA3140 are integrated circuit operational amplifiers that combine the advantages of high voltage PMOS transistors with high voltage bipolar transistors on a single monolithic chip.
The CA3140A and CA3140 BiMOS operational amplifiers feature gate protected MOSFET (PMOS) transistors in the input circuit to provide very high input impedance, very low input current, and high speed performance. The CA3140A and CA3140 operate at supply voltage from 4 V to 36 V (either single or dual supply). These operational amplifiers are internally phase compensated to achieve stable operation in unity gain follower operation, and additionally, have access terminal for a supplementary external capacitor if additional frequency roll-off is desired. Terminals are also provided for use in applications requiring input offset voltage nulling. The use of PMOS field effect transistors in the input stage results in common mode input voltage capability down to 0.5 V below the negative supply terminal, an important attribute for single supply applications. The output stage uses bipolar transistors and includes built-in protection against damage from load terminal short circuiting to either supply rail or to ground.
The CA3140 Series has the same 8 -lead pinout used for the " 741 " and other industry standard op amps. The CA3140A and CA3140 are intended for operation at supply voltages up to $36 \mathrm{~V}(\pm 18 \mathrm{~V})$.

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE ($\left.{ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
CA3140AE	-55 to 125	8 Ld PDIP	E8.3
CA3140AM (3140A)	-55 to 125	8 Ld SOIC	M8.15
CA3140AS	-55 to 125	8 Pin Metal Can	T8.C
CA3140AT	-55 to 125	8 Pin Metal Can	T8.C
CA3140E	-55 to 125	8 Ld PDIP	E8.3
CA3140M (3140)	-55 to 125	8 Ld SOIC	M8.15
CA3140M96 (3140)	-55 to 125	8 Ld SOIC Tape and Reel	
CA3140T	-55 to 125	8 Pin Metal Can	T8.C

Pinouts

CA3140 (METAL CAN)
TOP VIEW

CA3140 (PDIP, SOIC) TOP VIEW

Absolute Maximum Ratings
DC Supply Voltage (Between V+ and V- Terminals)
36V
Differential Mode Input Voltage.
DC Input Voltage . (V+ +8V) To (V- -0.5 V)
Input Terminal Current . 1 mA
Output Short Circuit Duration (Note 2). Indefinite
\section*{Operating Conditions}
Temperature Range
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 1)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
PDIP Package $\ldots \ldots \ldots \ldots \ldots \ldots$	100	N/A
SOIC Package.	160	N/A
Metal Can Package	170	85

Maximum Junction Temperature (Metal Can Package) $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $\ldots-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
2. Short circuit may be applied to ground or to either supply.

Electrical Specifications $\quad V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Electrical Specifications For Equipment Design, at $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	CA3140			CA3140A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{IV}_{10} \mathrm{l}$	-	5	15	-	2	5	mV
Input Offset Current	HIO_{1}	-	0.5	30	-	0.5	20	pA
Input Current	1	-	10	50	-	10	40	pA
Large Signal Voltage Gain (Note 3) (See Figures 6, 29)	AOL	20	100	-	20	100	\bullet	kV/
		86	100	-	86	100	\bullet	dB
Common Mode Rejection Ratio (See Figure 34)	CMRR	-	32	320	-	32	320	$\mu \mathrm{V} / \mathrm{N}$
		70	90	-	70	90	-	dB
Common Mode Input Voltage Range (See Figure 8)	$\mathrm{V}_{\text {ICR }}$	-15	-15.5 to +12.5	11	-15	-15.5 to +12.5	12	V

Electrical Specifications For Equipment Design, at $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	CA3140			CA3140A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Power-Supply Rejection Ratio, $\Delta V_{10} / \Delta V_{S}$ (See Figure 36)	PSRR	-	100	150	-	100	150	$\mu \mathrm{V} /$
		76	80	-	76	80	-	dB
Max Output Voltage (Note 4) (See Figures 2, 8)	$\mathrm{V}_{\text {OM }}{ }^{+}$	+12	13	-	+12	13	-	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$	-14	-14.4	-	-14	-14.4	-	V
Supply Current (See Figure 32)	I+	-	4	6	-	4	6	mA
Device Dissipation	P_{D}	-	120	180	-	120	180	mW
Input Offset Voltage Temperature Drift	$\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{T}$	-	8	-	-	6	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

NOTES:
3. At $\mathrm{V}_{\mathrm{O}}=26 \mathrm{~V}_{\mathrm{P}-\mathrm{P},}+12 \mathrm{~V},-14 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$.
4. At $R_{L}=2 k \Omega$.

Electrical Specifications For Design Guidance At $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Block Diagram

Schematic Diagram

NOTE: All resistance values are in ohms.

Application Information

Circuit Description

As shown in the block diagram, the input terminals may be operated down to 0.5 V below the negative supply rail. Two class A amplifier stages provide the voltage gain, and a unique class $A B$ amplifier stage provides the current gain necessary to drive low-impedance loads.
A biasing circuit provides control of cascoded constant current flow circuits in the first and second stages. The CA3140 includes an on chip phase compensating capacitor that is sufficient for the unity gain voltage follower configuration.

Input Stage

The schematic diagram consists of a differential input stage using PMOS field-effect transistors $\left(Q_{9}, Q_{10}\right)$ working into a mirror pair of bipolar transistors $\left(\mathrm{Q}_{11}, \mathrm{Q}_{12}\right)$ functioning as load resistors together with resistors R_{2} through R_{5}. The mirror pair transistors also function as a differential-to-single-ended converter to provide base current drive to the second stage bipolar transistor $\left(Q_{13}\right)$. Offset nulling, when desired, can be effected with a $10 \mathrm{k} \Omega$ potentiometer connected across Terminals 1 and 5 and with its slider arm connected to Terminal 4. Cascode-connected bipolar transistors Q_{2}, Q_{5} are the constant current source for the input stage. The base biasing circuit for the constant current source is described subsequently. The small diodes D_{3}, D_{4}, D_{5} provide gate oxide protection against high voltage transients, e.g., static electricity.

Second Stage

Most of the voltage gain in the CA3140 is provided by the second amplifier stage, consisting of bipolar transistor Q_{13} and its cascode connected load resistance provided by bipolar transistors $\mathrm{Q}_{3}, \mathrm{Q}_{4}$. On-chip phase compensation, sufficient for a majority of the applications is provided by C_{1}. Additional Miller-Effect compensation (roll off) can be accomplished, when desired, by simply connecting a small capacitor between Terminals 1 and 8 . Terminal 8 is also used to strobe the output stage into quiescence. When terminal 8 is tied to the negative supply rail (Terminal 4) by mechanical or electrical means, the output Terminal 6 swings low, i.e., approximately to Terminal 4 potential.

Output Stage

The CA3140 Series circuits employ a broad band output stage that can sink loads to the negative supply to complement the capability of the PMOS input stage when operating near the negative rail. Quiescent current in the emitter-follower cascade circuit $\left(Q_{17}, Q_{18}\right)$ is established by transistors $\left(Q_{14}, Q_{15}\right)$ whose base currents are "mirrored" to current flowing through diode D_{2} in the bias circuit section. When the CA3140 is operating such that output Terminal 6 is sourcing current, transistor Q_{18} functions as an emitter-follower to source current from the $\mathrm{V}+$ bus (Terminal 7), via $\mathrm{D}_{7}, \mathrm{R}_{9}$, and R_{11}. Under these conditions, the collector potential of Q_{13} is sufficiently high to permit the necessary flow of base current to emitter follower Q_{17} which, in turn, drives Q_{18}.
When the CA3140 is operating such that output Terminal 6 is sinking current to the V - bus, transistor Q_{16} is the current sinking element. Transistor Q_{16} is mirror connected to D_{6}, R_{7},
with current fed by way of Q_{21}, R_{12}, and Q_{20}. Transistor Q_{20}, in turn, is biased by current flow through R_{13}, zener D_{8}, and R_{14}. The dynamic current sink is controlled by voltage level sensing. For purposes of explanation, it is assumed that output Terminal 6 is quiescently established at the potential midpoint between the $\mathrm{V}+$ and V - supply rails. When output current sinking mode operation is required, the collector potential of transistor Q_{13} is driven below its quiescent level, thereby causing Q_{17}, Q_{18} to decrease the output voltage at Terminal 6. Thus, the gate terminal of PMOS transistor Q_{21} is displaced toward the V - bus, thereby reducing the channel resistance of Q_{21}. As a consequence, there is an incremental increase in current flow through $Q_{20}, R_{12}, Q_{21}, D_{6}, R_{7}$, and the base of Q_{16}. As a result, Q_{16} sinks current from Terminal 6 in direct response to the incremental change in output voltage caused by Q_{18}. This sink current flows regardless of load; any excess current is internally supplied by the emitter-follower Q_{18}. Short circuit protection of the output circuit is provided by Q_{19}, which is driven into conduction by the high voltage drop developed across R_{11} under output short circuit conditions. Under these conditions, the collector of Q_{19} diverts current from Q_{4} so as to reduce the base current drive from Q_{17}, thereby limiting current flow in Q_{18} to the short circuited load terminal.

Bias Circuit

Quiescent current in all stages (except the dynamic current sink) of the CA3140 is dependent upon bias current flow in R_{1}. The function of the bias circuit is to establish and maintain constant current flow through D_{1}, Q_{6}, Q_{8} and $D_{2} . D_{1}$ is a diode connected transistor mirror connected in parallel with the base emitter junctions of Q_{1}, Q_{2}, and Q_{3}. D_{1} may be considered as a current sampling diode that senses the emitter current of Q_{6} and automatically adjusts the base current of Q_{6} (via Q_{1}) to maintain a constant current through Q_{6}, Q_{8}, D_{2}. The base currents in Q_{2}, Q_{3} are also determined by constant current flow D_{1}. Furthermore, current in diode connected transistor Q_{2} establishes the currents in transistors Q_{14} and Q_{15}.

Typical Applications

Wide dynamic range of input and output characteristics with the most desirable high input impedance characteristics is achieved in the CA3140 by the use of an unique design based upon the PMOS Bipolar process. Input common mode voltage range and output swing capabilities are complementary, allowing operation with the single supply down to 4 V .
The wide dynamic range of these parameters also means that this device is suitable for many single supply applications, such as, for example, where one input is driven below the potential of Terminal 4 and the phase sense of the output signal must be maintained - a most important consideration in comparator applications.

Output Circuit Considerations

Excellent interfacing with TTL circuitry is easily achieved with a single 6.2V zener diode connected to Terminal 8 as shown in Figure 1. This connection assures that the maximum output signal swing will not go more positive than the zener voltage minus two base-to-emitter voltage drops within the CA3140. These voltages are independent of the operating supply voltage.

FIGURE 1. ZENER CLAMPING DIODE CONNECTED TO TERMINALS 8 AND 4 TO LIMIT CA3140 OUTPUT SWING TO TTL LEVELS

FIGURE 2. VOLTAGE ACROSS OUTPUT TRANSISTORS (\mathbf{Q}_{15} AND Q_{16}) vs LOAD CURRENT

Figure 2 shows output current sinking capabilities of the CA3140 at various supply voltages. Output voltage swing to the negative supply rail permits this device to operate both power transistors and thyristors directly without the need for level shifting circuitry usually associated with the 741 series of operational amplifiers.

Figure 4 shows some typical configurations. Note that a series resistor, R_{L}, is used in both cases to limit the drive available to the driven device. Moreover, it is recommended that a series diode and shunt diode be used at the thyristor input to prevent large negative transient surges that can appear at the gate of thyristors, from damaging the integrated circuit.

Offset Voltage Nulling

The input offset voltage can be nulled by connecting a $10 \mathrm{k} \Omega$ potentiometer between Terminals 1 and 5 and returning its wiper arm to terminal 4, see Figure 3A. This technique, however, gives more adjustment range than required and therefore, a considerable portion of the potentiometer rotation is not fully utilized. Typical values of series resistors (R) that may be placed at either end of the potentiometer, see Figure 3B, to optimize its utilization range are given in the Electrical Specifications table.
An alternate system is shown in Figure 3C. This circuit uses only one additional resistor of approximately the value shown in the table. For potentiometers, in which the resistance does not drop to 0Ω at either end of rotation, a value of resistance 10% lower than the values shown in the table should be used.

Low Voltage Operation

Operation at total supply voltages as low as 4 V is possible with the CA3140. A current regulator based upon the PMOS threshold voltage maintains reasonable constant operating current and hence consistent performance down to these lower voltages.

The low voltage limitation occurs when the upper extreme of the input common mode voltage range extends down to the voltage at Terminal 4. This limit is reached at a total supply voltage just below 4 V . The output voltage range also begins to extend down to the negative supply rail, but is slightly higher than that of the input. Figure 8 shows these characteristics and shows that with 2 V dual supplies, the lower extreme of the input common mode voltage range is below ground potential.

FIGURE 3A. BASIC

FIGURE 3B. IMPROVED RESOLUTION

FIGURE 3C. SIMPLER IMPROVED RESOLUTION

FIGURE 3. THREE OFFSET VOLTAGE NULLING METHODS

Figure 4. METHODS OF UTILIZING THE $V_{\text {CE(SAT) }}$ SINKING CURRENT CAPABILITY OF THE CA3140 SERIES

FIGURE 5A. WAVEFORM

FIGURE 5B. TEST CIRCUITS

FIGURE 5. SETTLING TIME vs INPUT VOLTAGE

Bandwidth and Slew Rate

For those cases where bandwidth reduction is desired, for example, broadband noise reduction, an external capacitor connected between Terminals 1 and 8 can reduce the open loop -3dB bandwidth. The slew rate will, however, also be proportionally reduced by using this additional capacitor. Thus, a 20% reduction in bandwidth by this technique will also reduce the slew rate by about 20%.

Figure 5 shows the typical settling time required to reach 1 mV or 10 mV of the final value for various levels of large signal inputs for the voltage follower and inverting unity gain amplifiers. The exceptionally fast settling time characteristics are largely due to the high combination of high gain and wide bandwidth of the CA3140; as shown in Figure 6.

Input Circuit Considerations

As mentioned previously, the amplifier inputs can be driven below the Terminal 4 potential, but a series current limiting resistor is recommended to limit the maximum input terminal current to less than 1 mA to prevent damage to the input protection circuitry.

Moreover, some current limiting resistance should be provided between the inverting input and the output when the CA3140 is used as a unity gain voltage follower. This resistance prevents the possibility of extremely large input signal transients from forcing a signal through the input protection network and directly driving the internal constant current source which could result in positive feedback via the output terminal. A $3.9 \mathrm{k} \Omega$ resistor is sufficient.

FIGURE 6. OPEN LOOP VOLTAGE GAIN AND PHASE vs FREQUENCY

FIGURE 7. INPUT CURRENT vs TEMPERATURE

UPPLY VOLTAGE (V+, V-)

FIGURE 8. OUTPUT VOLTAGE SWING CAPABILITY AND COMMON MODE INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE

The typical input current is on the order of 10pA when the inputs are centered at nominal device dissipation. As the output supplies load current, device dissipation will increase, raising the chip temperature and resulting in increased input current. Figure 7 shows typical input terminal current versus ambient temperature for the CA3140.

It is well known that MOSFET devices can exhibit slight changes in characteristics (for example, small changes in input offset voltage) due to the application of large differential input voltages that are sustained over long periods at elevated temperatures.

Both applied voltage and temperature accelerate these changes. The process is reversible and offset voltage shifts of the opposite polarity reverse the offset. Figure 9 shows the typical offset voltage change as a function of various stress voltages at the maximum rating of $125^{\circ} \mathrm{C}$ (for metal can); at lower temperatures (metal can and plastic), for example, at $85^{\circ} \mathrm{C}$, this change in voltage is considerably less. In typical linear applications, where the differential voltage is small and symmetrical, these incremental changes are of about the
same magnitude as those encountered in an operational amplifier employing a bipolar transistor input stage.

FIGURE 9. TYPICAL INCREMENTAL OFFSET VOLTAGE SHIFT vs OPERATING LIFE

Super Sweep Function Generator

A function generator having a wide tuning range is shown in Figure 10. The 1,000,000/1 adjustment range is accomplished by a single variable potentiometer or by an auxiliary sweeping signal. The CA3140 functions as a non-inverting readout amplifier of the triangular signal developed across the integrating capacitor network connected to the output of the CA3080A current source.

Buffered triangular output signals are then applied to a second CA3080 functioning as a high speed hysteresis switch. Output from the switch is returned directly back to the input of the CA3080A current source, thereby, completing the positive feedback loop

The triangular output level is determined by the four 1N914 level limiting diodes of the second CA3080 and the resistor divider network connected to Terminal No. 2 (input) of the CA3080. These diodes establish the input trip level to this switching stage and, therefore, indirectly determine the amplitude of the output triangle.

Compensation for propagation delays around the entire loop is provided by one adjustment on the input of the CA3080. This adjustment, which provides for a constant generator amplitude output, is most easily made while the generator is sweeping. High frequency ramp linearity is adjusted by the single 7 pF to 60 pF capacitor in the output of the CA3080A.

It must be emphasized that only the CA3080A is characterized for maximum output linearity in the current generator function.

Meter Driver and Buffer Amplifier

Figure 11 shows the CA3140 connected as a meter driver and buffer amplifier. Low driving impedance is required of the CA3080A current source to assure smooth operation of the Frequency Adjustment Control. This low-driving impedance requirement is easily met by using a CA3140 connected as a voltage follower. Moreover, a meter may be placed across the input to the CA3080A to give a logarithmic analog indication of the function generator's frequency.

Analog frequency readout is readily accomplished by the means described above because the output current of the CA3080A varies approximately one decade for each 60 mV change in the applied voltage, $\mathrm{V}_{\mathrm{ABC}}$ (voltage between Terminals 5 and 4 of the CA3080A of the function generator). Therefore, six decades represent 360 mV change in $\mathrm{V}_{\mathrm{ABC}}$.

Now, only the reference voltage must be established to set the lower limit on the meter. The three remaining transistors from the CA3086 Array used in the sweep generator are used for this reference voltage. In addition, this reference generator arrangement tends to track ambient temperature variations, and thus compensates for the effects of the normal negative temperature coefficient of the CA3080A $\mathrm{V}_{\mathrm{ABC}}$ terminal voltage.
Another output voltage from the reference generator is used to insure temperature tracking of the lower end of the Frequency Adjustment Potentiometer. A large series resistance simulates a current source, assuring similar temperature coefficients at both ends of the Frequency Adjustment Control.

To calibrate this circuit, set the Frequency Adjustment Potentiometer at its low end. Then adjust the Minimum Frequency Calibration Control for the lowest frequency. To establish the upper frequency limit, set the Frequency Adjustment Potentiometer to its upper end and then adjust the Maximum Frequency Calibration Control for the maximum frequency. Because there is interaction among these controls, repetition of the adjustment procedure may be necessary. Two adjustments are used for the meter. The meter sensitivity control sets the meter scale width of each decade, while the meter position control adjusts the pointer on the scale with negligible effect on the sensitivity adjustment. Thus, the meter sensitivity adjustment control calibrates the meter so that it deflects $1 / 6$ of full scale for each decade change in frequency.

Sine Wave Shaper

The circuit shown in Figure 12 uses a CA3140 as a voltage follower in combination with diodes from the CA3019 Array to convert the triangular signal from the function generator to a sine-wave output signal having typically less than 2% THD. The basic zero crossing slope is established by the $10 \mathrm{k} \Omega$ potentiometer connected between Terminals 2 and 6 of the CA3140 and the $9.1 \mathrm{k} \Omega$ resistor and $10 \mathrm{k} \Omega$ potentiometer from Terminal 2 to ground. Two break points are established by diodes D_{1} through D_{4}. Positive feedback via D_{5} and D_{6} establishes the zero slope at the maximum and minimum levels of the sine wave. This technique is necessary because the voltage follower configuration approaches unity gain rather than the zero gain required to shape the sine wave at the two extremes.

FIGURE 10A. CIRCUIT

Top Trace: Output at junction of 2.7Ω and 51Ω resistors; $5 \mathrm{~V} /$ Div., $500 \mathrm{~ms} /$ Div.
Center Trace: External output of triangular function generator; 2V/Div., $500 \mathrm{~ms} /$ Div.
Bottom Trace: Output of "Log" generator; 10V/Div., $500 \mathrm{~ms} /$ Div.
FIGURE 10B. FIGURE FUNCTION GENERATOR SWEEPING

1V/Div., 1s/Div.

Three tone test signals, highest frequency $\geq 0.5 \mathrm{MHz}$. Note the slight asymmetry at the three second/cycle signal. This asymmetry is due to slightly different positive and negative integration from the CA3080A and from the PC board and component leakages at the 100pA level.
FIGURE 10C. FUNCTION GENERATOR WITH FIXED
FIGURE 10D. INTERCONNECTIONS FREQUENCIES

FIGURE 10. FUNCTION GENERATOR

FIGURE 11. METER DRIVER AND BUFFER AMPLIFIER

FIGURE 13. SWEEPING GENERATOR

This circuit can be adjusted most easily with a distortion analyzer, but a good first approximation can be made by comparing the output signal with that of a sine wave generator. The initial slope is adjusted with the potentiometer R_{1}, followed by an adjustment of R_{2}. The final slope is established by adjusting R_{3}, thereby adding additional segments that are contributed by these diodes. Because there is some interaction among these controls, repetition of the adjustment procedure may be necessary.

Sweeping Generator

Figure 13 shows a sweeping generator. Three CA3140s are used in this circuit. One CA3140 is used as an integrator, a second device is used as a hysteresis switch that determines the starting and stopping points of the sweep. A third CA3140 is used as a logarithmic shaping network for the log function. Rates and slopes, as well as sawtooth, triangle, and logarithmic sweeps are generated by this circuit.

Wideband Output Amplifier

Figure 14 shows a high slew rate, wideband amplifier suitable for use as a 50Ω transmission line driver. This circuit, when used in conjunction with the function generator and sine wave shaper circuits shown in Figures 10 and 12 provides $18 \mathrm{~V}_{\text {P-P }}$ output open circuited, or $9 \mathrm{~V}_{\text {P-P }}$ output when terminated in 50Ω. The slew rate required of this amplifier is $28 \mathrm{~V} / \mu \mathrm{s}\left(18 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \times \pi \times 0.5 \mathrm{MHz}\right)$.

FIGURE 14. WIDEBAND OUTPUT AMPLIFIER

Power Supplies

High input impedance, common mode capability down to the negative supply and high output drive current capability are key factors in the design of wide range output voltage supplies that use a single input voltage to provide a regulated output voltage that can be adjusted from essentially 0V to 24 V .

Unlike many regulator systems using comparators having a bipolar transistor input stage, a high impedance reference voltage divider from a single supply can be used in connection with the CA3140 (see Figure 15).

FIGURE 15. BASIC SINGLE SUPPLY VOLTAGE REGULATOR SHOWING VOLTAGE FOLLOWER CONFIGURATION

Essentially, the regulators, shown in Figures 16 and 17, are connected as non inverting power operational amplifiers with a gain of 3.2. An 8 V reference input yields a maximum output voltage slightly greater than 25 V . As a voltage follower, when the reference input goes to OV the output will be 0 V . Because the offset voltage is also multiplied by the 3.2 gain factor, a potentiometer is needed to null the offset voltage.

Series pass transistors with high $I_{\text {CBO }}$ levels will also prevent the output voltage from reaching zero because there is a finite voltage drop ($\mathrm{V}_{\text {CESAT }}$) across the output of the CA3140 (see Figure 2). This saturation voltage level may indeed set the lowest voltage obtainable.
The high impedance presented by Terminal 8 is advantageous in effecting current limiting. Thus, only a small signal transistor is required for the current-limit sensing amplifier. Resistive decoupling is provided for this transistor to minimize damage to it or the CA3140 in the event of unusual input or output transients on the supply rail.

Figures 16 and 17, show circuits in which a D2201 high speed diode is used for the current sensor. This diode was chosen for its slightly higher forward voltage drop characteristic, thus giving greater sensitivity. It must be emphasized that heat sinking of this diode is essential to minimize variation of the current trip point due to internal heating of the diode. That is, 1 A at 1 V forward drop represents one watt which can result in significant regenerative changes in the current trip point as the diode temperature rises. Placing the small signal reference amplifier in the proximity of the current sensing diode also helps minimize the variability in the trip level due to the negative temperature coefficient of the diode. In spite of those limitations, the current limiting point can easily be adjusted over the range from 10 mA to 1 A with a single adjustment potentiometer. If the temperature stability of the current limiting system is a serious consideration, the more usual current sampling resistor type of circuitry should be employed.
A power Darlington transistor (in a metal can with heatsink), is used as the series pass element for the conventional current limiting system, Figure 16, because high power Darlington dissipation will be encountered at low output voltage and high currents.
A small heat sink VERSAWATT transistor is used as the series pass element in the fold back current system, Figure 17, since dissipation levels will only approach 10W. In this system, the D2201 diode is used for current sampling. Fold-
back is provided by the $3 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ divider network connected to the base of the current sensing transistor.

FIGURE 16. REGULATED POWER SUPPLY

FIGURE 17. REGULATED POWER SUPPLY WITH "FOLDBACK" CURRENT LIMITING

Both regulators provide better than 0.02% load regulation. Because there is constant loop gain at all voltage settings, the regulation also remains constant. Line regulation is 0.1% per volt. Hum and noise voltage is less than $200 \mu \mathrm{~V}$ as read with a meter having a 10 MHz bandwidth.

Figure 18A shows the turn ON and turn OFF characteristics of both regulators. The slow turn on rise is due to the slow rate of rise of the reference voltage. Figure 18B shows the transient response of the regulator with the switching of a 20Ω load at 20 V output.

5V/Div., 1s/Div.
FIGURE 18A. SUPPLY TURN-ON AND TURNOFF CHARACTERISTICS

Top Trace: Output Voltage; $200 \mathrm{mV} /$ Div., $5 \mu \mathrm{~s} /$ Div.

Bottom Trace: Collector of load switching transistor, load =1A; $5 \mathrm{~V} /$ Div., $5 \mu \mathrm{~s} /$ Div.

FIGURE 18B. TRANSIENT RESPONSE

FIGURE 18. WAVEFORMS OF DYNAMIC CHARACTERISTICS OF POWER SUPPLY CURRENTS SHOWN IN FIGURES 16 AND 17

Tone Control Circuits

High slew rate, wide bandwidth, high output voltage capability and high input impedance are all characteristics required of tone control amplifiers. Two tone control circuits that exploit these characteristics of the CA3140 are shown in Figures 19 and 20.

The first circuit, shown in Figure 20, is the Baxandall tone control circuit which provides unity gain at midband and uses standard linear potentiometers. The high input impedance of the CA3140 makes possible the use of low-cost, low-value, small size capacitors, as well as reduced load of the driving stage.

Bass treble boost and cut are $\pm 15 \mathrm{~dB}$ at 100 Hz and 10 kHz , respectively. Full peak-to-peak output is available up to at least 20 kHz due to the high slew rate of the CA3140. The amplifier gain is 3 dB down from its "flat" position at 70 kHz .

Figure 19 shows another tone control circuit with similar boost and cut specifications. The wideband gain of this circuit is equal to the ultimate boost or cut plus one, which in this case is a gain of eleven. For 20 dB boost and cut, the input loading of this circuit is essentially equal to the value of the resistance from Terminal No. 3 to ground. A detailed analysis of this circuit is given in "An IC Operational Transconductance Amplifier (OTA) With Power Capability" by L. Kaplan and H. Wittlinger, IEEE Transactions on Broadcast and Television Receivers, Vol. BTR-18, No. 3, August, 1972.

NOTES:
5. 20 dB Flat Position Gain.
6. $\pm 15 \mathrm{~dB}$ Bass and Treble Boost and Cut at 100 Hz and 10 kHz , respectively.
7. $25 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ output at 20 kHz .
8. -3 dB at 24 kHz from 1 kHz reference.

FOR DUAL SUPPLIES

FIGURE 19. TONE CONTROL CIRCUIT USING CA3130 SERIES (20dB MIDBAND GAIN)

FOR SINGLE SUPPLY

FIGURE 20. BAXANDALL TONE CONTROL CIRCUIT USING CA3140 SERIES

Wien Bridge Oscillator

Another application of the CA3140 that makes excellent use of its high input impedance, high slew rate, and high voltage qualities is the Wien Bridge sine wave oscillator. A basic Wien Bridge oscillator is shown in Figure 21. When $R_{1}=R_{2}=R$ and $C_{1}=C_{2}=C$, the frequency equation reduces to the familiar $f=1 /(2 \pi R C)$ and the gain required for oscillation, $A_{\text {OSC }}$ is equal to 3 . Note that if C_{2} is increased by a factor of four and R_{2} is reduced by a factor of four, the gain required for oscillation becomes 1.5 , thus permitting a potentially higher operating frequency closer to the gain bandwidth product of the CA3140.

NOTES: $f=\frac{1}{2 \pi \sqrt{R_{1} C_{1} R_{2} C_{2}}}$
$A_{\text {OSC }}=1+\frac{C_{1}}{C_{2}}+\frac{R_{2}}{R_{1}}$

$$
A_{C L}=1+\frac{R_{F}}{R_{S}}
$$

FIGURE 21. BASIC WIEN BRIDGE OSCILLATOR CIRCUIT USING AN OPERATIONAL AMPLIFIER

Oscillator stabilization takes on many forms. It must be precisely set, otherwise the amplitude will either diminish or reach some form of limiting with high levels of distortion. The element, R_{S}, is commonly replaced with some variable resistance element. Thus, through some control means, the value of R_{S} is adjusted to maintain constant oscillator output. A FET channel resistance, a thermistor, a lamp bulb, or other device whose resistance increases as the output amplitude is increased are a few of the elements often utilized.

Figure 22 shows another means of stabilizing the oscillator with a zener diode shunting the feedback resistor (R_{F} of Figure 21). As the output signal amplitude increases, the zener diode impedance decreases resulting in more feedback with consequent reduction in gain; thus stabilizing the amplitude of the output signal. Furthermore, this combination of a monolithic zener diode and bridge rectifier circuit tends to provide a zero temperature coefficient for this regulating system. Because this bridge rectifier system has no time constant, i.e., thermal time constant for the lamp bulb, and RC time constant for filters often used in detector networks, there is no lower frequency limit. For example, with $1 \mu \mathrm{~F}$ polycarbonate capacitors and $22 \mathrm{M} \Omega$ for the frequency determining network, the operating frequency is 0.007 Hz .

As the frequency is increased, the output amplitude must be reduced to prevent the output signal from becoming slewrate limited. An output frequency of 180 kHz will reach a slew rate of approximately $9 \mathrm{~V} / \mu$ s when its amplitude is 16 V p-p.

FIGURE 22. WIEN BRIDGE OSCILLATOR CIRCUIT USING
CA3140

Simple Sample-and-Hold System

Figure 23 shows a very simple sample-and-hold system using the CA3140 as the readout amplifier for the storage capacitor. The CA3080A serves as both input buffer amplifier and low feed-through transmission switch (see Note 13). System offset nulling is accomplished with the CA3140 via its offset nulling terminals. A typical simulated load of $2 \mathrm{k} \Omega$ and 30 pF is shown in the schematic.

FIGURE 23. SAMPLE AND HOLD CIRCUIT

In this circuit, the storage compensation capacitance $\left(C_{1}\right)$ is only 200 pF . Larger value capacitors provide longer "hold" periods but with slower slew rates. The slew rate is:

$$
\frac{\mathrm{dv}}{\mathrm{dt}}=\frac{\mathrm{l}}{\mathrm{C}}=0.5 \mathrm{~mA} / 200 \mathrm{pF}=2.5 \mathrm{~V} / \mu \mathrm{s}
$$

NOTE:
13. AN6668 "Applications of the CA3080 and CA 3080A High Performance Operational Transconductance Amplifiers".

Pulse "droop" during the hold interval is $170 \mathrm{pA} / 200 \mathrm{pF}$ which is $0.85 \mu \mathrm{~V} / \mu \mathrm{s}$; (i.e., $170 \mathrm{pA} / 200 \mathrm{pF}$). In this case, 170 pA represents the typical leakage current of the CA3080A when strobed off. If C_{1} were increased to 2000 pF , the "hold-droop" rate will decrease to $0.085 \mu \mathrm{~V} / \mu \mathrm{s}$, but the slew rate would decrease to $0.25 \mathrm{~V} / \mu \mathrm{s}$. The parallel diode network connected between Terminal 3 of the CA3080A and Terminal 6 of the CA3140 prevents large input signal feedthrough across the input terminals of the CA3080A to the 200pF storage capacitor when the CA3080A is strobed off. Figure 24 shows dynamic characteristic waveforms of this sample-and-hold system.

Top Trace: Output; 50mV/Div., 200ns/Div. Bottom Trace: Input; 50mV/Div., 200ns/Div.

Top Trace: Output Signal; 5V/Div, $2 \mu \mathrm{~s} /$ Div.
Center Trace: Difference of Input and Output Signals through Tektronix Amplifier 7A13; 5mV/Div., $2 \mu \mathrm{~s} /$ Div.
Bottom Trace: Input Signal; 5V/Div., $2 \mu \mathrm{~s} /$ Div.
LARGE SIGNAL RESPONSE AND SETTLING TIME

SAMPLING RESPONSE
Top Trace: Output; 100mV/Div., 500ns/Div. Bottom Trace: Input; 20V/Div., 500ns/Div.
FIGURE 24. SAMPLE AND HOLD SYSTEM DYNAMIC CHARACTERISTICS WAVEFORMS

Current Amplifier

The low input terminal current needed to drive the CA3140 makes it ideal for use in current amplifier applications such as the one shown in Figure 25 (see Note 14). In this circuit, low current is supplied at the input potential as the power supply to load resistor R_{L}. This load current is increased by the multiplication factor R_{2} / R_{1}, when the load current is monitored by the power supply meter M. Thus, if the load current is 100 nA , with values shown, the load current presented to the supply will be $100 \mu \mathrm{~A}$; a much easier current to measure in many systems.

FIGURE 25. BASIC CURRENT AMPLIFIER FOR LOW CURRENT MEASUREMENT SYSTEMS

Note that the input and output voltages are transferred at the same potential and only the output current is multiplied by the scale factor.

The dotted components show a method of decoupling the circuit from the effects of high output load capacitance and the potential oscillation in this situation. Essentially, the necessary high frequency feedback is provided by the capacitor with the dotted series resistor providing load decoupling.

Full Wave Rectifier

Figure 26 shows a single supply, absolute value, ideal fullwave rectifier with associated waveforms. During positive excursions, the input signal is fed through the feedback network directly to the output. Simultaneously, the positive excursion of the input signal also drives the output terminal (No. 6) of the inverting amplifier in a negative going excursion such that the 1N914 diode effectively disconnects the amplifier from the signal path. During a negative going excursion of the input signal, the CA3140 functions as a normal inverting amplifier with a gain equal to $-R_{2} / R_{1}$. When the equality of the two equations shown in Figure 26 is satisfied, the full wave output is symmetrical.

NOTE:

14. "Operational Amplifiers Design and Applications", J. G. Graeme, McGraw-Hill Book Company, page 308, "Negative Immittance Converter Circuits".

GAIN $=\frac{R_{2}}{R_{1}}=X=\frac{R_{3}}{R_{1} R_{2}+R_{3}}$
$R_{3}=\left(\frac{X+x^{2}}{1-X}\right) R_{1}$
FOR $X=0.5 \frac{5 \mathrm{k} \Omega}{10 \mathrm{k} \Omega}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{1}}$
$R_{3}=10 \mathrm{k} \Omega\left(\frac{0.75}{0.5}\right)=15 \mathrm{k} \Omega$
20 V p-p $\operatorname{Input} B W(-3 d B)=290 k H z, D C$ Output $(A v g)=3.2 \mathrm{~V}$

FIGURE 26. SINGLE SUPPLY, ABSOLUTE VALUE, IDEAL FULL WAVE RECTIFIER WITH ASSOCIATED WAVEFORMS

FIGURE 27. TEST CIRCUIT AMPLIFIER (30dB GAIN) USED FOR WIDEBAND NOISE MEASUREMENT

FIGURE 28A. TEST CIRCUIT

Top Trace: Output; 50mV/Div., 200ns/Div. Bottom Trace: Input; 50mV/Div., 200ns/Div. FIGURE 28B. SMALL SIGNAL RESPONSE

(Measurement made with Tektronix 7A13 differential amplifier.)
Top Trace: Output Signal; 5V/Div., $5 \mu \mathrm{~s} /$ Div. Center Trace: Difference Signal; $5 \mathrm{mV} / \mathrm{Div} ., 5 \mu \mathrm{~s} / \mathrm{Div}$. Bottom Trace: Input Signal; 5V/Div., $5 \mu \mathrm{~s} /$ Div.

FIGURE 28C. INPUT-OUTPUT DIFFERENCE SIGNAL SHOWING SETTLING TIME

FIGURE 28. SPLIT SUPPLY VOLTAGE FOLLOWER TEST CIRCUIT AND ASSOCIATED WAVEFORMS

Typical Performance Curves

FIGURE 29. OPEN-LOOP VOLTAGE GAIN vs SUPPLY VOLTAGE AND TEMPERATURE

FIGURE 31. SLEW RATE vs SUPPLY VOLTAGE AND TEMPERATURE

FIGURE 33. MAXIMUM OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 30. GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE AND TEMPERATURE

FIGURE 32. QUIESCENT SUPPLY CURRENT vs SUPPLY VOLTAGE AND TEMPERATURE

FIGURE 34. COMMON MODE REJECTION RATIO vs FREQUENCY

Typical Performance Curves (Continued)

FIGURE 35. EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY

FIGURE 36. POWER SUPPLY REJECTION RATIO vs FREQUENCY

Dimensions in parenthesis are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

The photographs and dimensions represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are 57° instead of 90° with respect to the face of the chip. Therefore, the isolated chip is actually 7 mils $(0.17 \mathrm{~mm})$ larger in both dimensions.

4MHz, BiMOS Operational Amplifier with MOSFET Input/CMOS Output

Features

- MOSFET Input Stage Provides:
- Very High $Z_{I}=1.5 \mathrm{~T} \Omega\left(1.5 \times 10^{12} \Omega\right)$ (Typ)
- Very Low $I_{I}=5 p A$ (Typ) at 15 V Operation

$$
=2 p A(T y p) \text { at } 5 \mathrm{~V} \text { Operation }
$$

- Common-Mode Input Voltage Range Includes Negative Supply Rail; Input Terminals Can Be Swung 0.5V Below Negative Supply Rail
- CMOS Output Stage Permits Signal Swing to Either (or Both) Supply Rails

Applications

- Ground Referenced Single Supply Amplifiers
- Fast Sample Hold Amplifiers
- Long Duration Timers/Monostables
- High Input Impedance Wideband Amplifiers
- Voltage Followers (e.g., Follower for Single Supply D/A Converter)
- Wien-Bridge Oscillators
- Voltage Controlled Oscillators
- Photo Diode Sensor Amplifiers

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
CA3160AE	-55 to 125	8 Ld PDIP	E8.3
CA3160AT	-55 to 125	8 Pin Metal Can	T8.C
CA3160E	-55 to 125	8 Ld PDIP	E8.3
CA3160T	-55 to 125	8 Pin Metal Can	T8.C

Description

The CA3160A and CA3160 are integrated circuit operational amplifiers that combine the advantage of both CMOS and bipolar transistors on a monolithic chip. The CA3160 series are frequency compensated versions of the popular CA3130 series.

Gate protected P-Channel MOSFET (PMOS) transistors are used in the input circuit to provide very high input impedance, very low input current, and exceptional speed performance. The use of PMOS field effect transistors in the input stage results in common-mode input voltage capability down to 0.5 V below the negative supply terminal, an important attribute in single supply applications.

A complementary symmetry MOS (CMOS) transistor-pair, capable of swinging the output voltage to within 10 mV of either supply voltage terminal (at very high values of load impedance), is employed as the output circuit.

The CA3160 Series circuits operate at supply voltages ranging from 5 V to 16 V , or $\pm 2.5 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ when using split supplies, and have terminals for adjustment of offset voltage for applications requiring offset null capability. Terminal provisions are also made to permit strobing of the output stage.

The CA3160A offers superior input characteristics over those of the CA3160.

Pinouts

NOTE: CA3160 Series devices have an on-chip frequency compensation network. Supplementary phase compensation or frequency roll-off (if desired) can be connected externally between Terminals 1 and 8.

Absolute Maximum Ratings

Supply Voltage (Between V+ and V- Terminals)
$+16 \mathrm{~V}$
Differential Mode Input Voltage
. 8 V
Input Voltage. (V+ +8 V) to ($\mathrm{V}--0.5 \mathrm{~V}$)
Input Current.

Output Short Circuit Duration (Note 2) Indefinite

Operating Conditions

Temperature Range
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
2. Short Circuit may be applied to ground or to either supply.

Electrical Specifications $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	CA3160			CA3160A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mathrm{V}_{10}{ }^{\text {I }}$	$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$	-	6	15	-	2	5	mV
Input Offset Current	HIO_{1}	$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$	-	0.5	30	-	0.5	20	pA
Input Current	1	$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$	-	5	50	-	5	30	pA
Large-Signal Voltage Gain	AOL	$\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	50	320	-	50	320	-	kV/V
			94	110	-	94	110	\cdot	dB
Common-Mode Rejection Ratio	CMRR		70	90	-	80	95	-	dB
Common-Mode Input-Voltage Range	$V_{\text {ICR }}$		0	-0.5 to 12	10	0	-0.5 to 12	10	V
Power-Supply Rejection Ratio	PSRR	$\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$	-	32	320	-	32	150	$\mu \mathrm{V} / \mathrm{N}$
Maximum Output Voltage	$\mathrm{V}_{\text {OM }}{ }^{+}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	12	13.3	-	12	13.3	-	V
	$\mathrm{V}_{\mathrm{OM}}{ }^{-}$		-	0.002	0.01	-	0.002	0.01	V
	$\mathrm{V}_{\mathrm{OM}^{+}}$	$\mathrm{R}_{\mathrm{L}}=\infty$	14.99	15	-	14.99	15	-	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$		-	0	0.01	-	0	0.01	V
Maximum Output Current	${ }^{\text {OM }}+$	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ (Source)	12	22	45	12	22	45	mA
	Іом ${ }^{-}$	$\mathrm{V}_{\mathrm{O}}=15 \mathrm{~V}$ (Sink)	12	20	45	12	20	45	mA
Supply Current (Note 3)	$1+$	$\mathrm{V}_{\mathrm{O}}=7.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$	-	10	15	-	10	15	mA
		$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$	-	2	3	-	2	3	mA
Input Offset Voltage Temperature Drift		$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$	-	8	-	-	6	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

Electrical Specifications For Design Guidance, $\mathrm{V}_{\text {SUPPLY }}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		CA3160	CA3160A	UNITS
				TYP	TYP	
Input Offset Voltage Adjustment Range		10k Ω Across Terminals 4 and 5 or Terminals 4 and 1		± 22	± 22	mV
Input Resistance	R_{1}			1.5	1.5	T Ω
Input Capacitance	Cl_{1}	$f=1 \mathrm{MHz}$		4.3	4.3	pF
Equivalent Input Noise Voltage	e_{N}	$\mathrm{BW}=0.2 \mathrm{MHz}$	$\mathrm{R}_{S}=1 \mathrm{M} \Omega$	40	40	$\mu \mathrm{V}$
			$\mathrm{R}_{\mathrm{S}}=10 \mathrm{M} \Omega$	50	50	$\mu \mathrm{V}$
Equivalent Input Noise Voltage	${ }^{\mathrm{N}}$	$\mathrm{R}_{\mathrm{S}}=100 \Omega$	1kHz	72	72	$n \mathrm{~V} \sqrt{\mathrm{~Hz}}$
			10kHz	30	30	$n \mathrm{~V} \sqrt{\mathrm{~Hz}}$
Unity Gain Crossover Frequency	f_{T}			4	4	MHz
Slew Rate	SR			10	10	V/ $/ \mathrm{s}$

CA3160, CA3160A
Electrical Specifications For Design Guidance, $\mathrm{V}_{\text {SUPPLY }}= \pm 7.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

PARAMETER		SYMBOL	TEST CONDITIONS	CA3160	CA3160A	UNITS	
		TYP		TYP			
Transient Response	Rise and Fall Time		t_{r}	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, (Voltage Follower)	0.09	0.09	$\mu \mathrm{s}$
	Overshoot	OS	10		10	\%	
Settling Time		ts	$\begin{aligned} & C_{L}=25 \mathrm{pF}, R_{L}=2 \mathrm{k} \Omega, \text {, (Voltage Follower) } \\ & \mathrm{TO}_{\mathrm{O}}<0.1 \%, \mathrm{~V}_{I N}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \end{aligned}$	1.8	1.8	$\mu \mathrm{s}$	

Electrical Specifications For Design Guidance, $\mathrm{V}_{+}=+5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	CA3160	CA3160A	UNITS
			TYP	TYP	
Input Offset Voltage	V_{10}		6	2	mV
Input Offset Current	10		0.1	0.1	pA
Input Current	1		2	2	pA
Common-Mode Rejection Ratio	CMRR		80	90	dB
Large Signal Voltage Gain	AOL	$\mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$	100	100	kV/N
			100	100	dB
Common-Mode Input Voltage Range	$V_{\text {ICR }}$		0 to 2.8	0 to 2.8	V
Supply Current	$1+$	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$	300	300	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$	500	500	$\mu \mathrm{A}$
Power Supply Rejection Ratio	PSRR	$\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{V}_{+}$	200	200	$\mu \mathrm{V} / \mathrm{N}$

NOTE:
3. IcC typically increases by $1.5 \mathrm{~mA} / \mathrm{MHz}$ during operation.

Block Diagram

Schematic Diagram

NOTE: Diodes D_{5} Through D_{7} Provide Gate Oxide Protection For MOSFET Input Stage.

Application Information

Circuit Description

Refer to the Block Diagram of the CA3160 series CMOS Operational Amplifiers. The input terminals may be operated down to 0.5 V below the negative supply rail, and the output can be swung very close to either supply rail in many applications. Consequently, the CA3160 series circuits are ideal for single supply operation. Three class A amplifier stages, having the individual gain capability and current consumption shown in the Block Diagram provide the total gain of the CA3160. A biasing circuit provides two potentials for common use in the first and second stages. Terminals 8 and 1 can be used to supplement the internal phase compensation network if additional phase compensation or frequency roll-off is desired. Terminals 8 and 4 can also be used to strobe the output stage into a low quiescent current state. When Terminal 8 is tied to the negative supply rail (Terminal 4) by mechanical or electrical means, the output potential at Terminal 6 essentially rises to the positive supply-rail potential at Terminal 7. This condition of essentially zero current drain in the output stage under the strobed "OFF" condition can only be achieved when the ohmic load resistance presented to the amplifier is very high (e.g., when the amplifier output is used to drive MOS digital circuits in comparator applications).

Input Stage - The circuit of the CA3160 is shown in the Schematic Diagram. It consists of a differential-input stage using PMOS field-effect transistors (Q_{6}, Q_{7}) working into a mirror-pair of bipolar transistors $\left(\mathrm{Q}_{9}, \mathrm{Q}_{10}\right)$ functioning as load resistors together with resistors R_{3} through R_{6}. The mirror-pair transistors also function as a differential-to-single-ended converter to provide base drive to the second-stage bipolar transistor $\left(\mathrm{Q}_{11}\right)$. Offset nulling, when desired, can be effected by connecting a $100,000 \Omega$ potentiometer across Terminals 1 and 5 and the potentiometer slider arm to Terminal 4. Cascode-connected PMOS transistors Q_{2}, Q_{4}, are the constant-current source for the input stage. The biasing circuit for the constant-current source is subsequently described. The small diodes D_{5} through D_{7} provide gate-oxide protection against high-voltage transients, including static electricity during handling for Q_{6} and Q_{7}.

Second-Stage - Most of the voltage gain in the CA3160 is provided by the second amplifier stage, consisting of bipolar transistor Q_{11} and its cascode-connected load resistance provided by PMOS transistors Q_{3} and Q_{5}. The source of bias potentials for these PMOS transistors is described later. Miller Effect compensation (roll off) is accomplished by means of the 30 pF capacitor and $2 \mathrm{k} \Omega$ resistor connected between the base and collector of transistor Q_{11}. These internal components
provide sufficient compensation for unity gain operation in most applications. However, additional compensation, if desired, may be used between Terminals 1 and 8 .
Bias-Source Circuit - At total supply voltages, somewhat above 8.3V, resistor R_{2} and zener diode Z_{1} serve to establish a voltage of 8.3 V across the series-connected circuit, consisting of resistor R_{1}, diodes D_{1} through D_{4}, and PMOS transistor Q_{1}. A tap at the junction of resistor R_{1} and diode D_{4} provides a gate-bias potential of about 4.5V for PMOS transistors Q_{4} and Q_{5} with respect to Terminal 7. A potential of about 2.2 V is developed across diode-connected PMOS transistor Q_{1} with respect to Terminal 7 to provide gate bias for PMOS transistors Q_{2} and Q_{3}. It should be noted that Q_{1} is "mirror-connected" to both Q_{2} and Q_{3}. Since transistors Q_{1}, Q_{2}, Q_{3} are designed to be identical, the approximately $200 \mu \mathrm{~A}$ current in Q_{1} establishes a similar current in Q_{2} and Q_{3} as constant-current sources for both the first and second amplifier stages, respectively.

At total supply voltages somewhat less than 8.3 V , zener diode Z_{1} becomes nonconductive and the potential, developed across series-connected $R_{1}, D_{1}-D_{4}$, and Q_{1}, varies directly with variations in supply voltage. Consequently, the gate bias for Q_{4}, Q_{5} and Q_{2}, Q_{3} varies in accordance with supply-voltage variations. This variation results in deterioration of the power-supply-rejection ratio (PSRR) at total supply voltages below 8.3 V . Operation at total supply voltages below about 4.5 V results in seriously degraded performance.

Output Stage - The output stage consists of a drain-loaded inverting amplifier using CMOS transistors operating in the Class A mode. When operating into very high resistance loads, the output can be swung within millivolts of either supply rail. Because the output stage is a drain-loaded amplifier, its gain is dependent upon the load impedance. The transfer characteristics of the output stage for a load returned to the negative supply rail are shown in Figure 17. Typical op amp loads are readily driven by the output stage. Because largesignal excursions are non-linear, requiring feedback for good waveform reproduction, transient delays may be encountered. As a voltage follower, the amplifier can achieve 0.01\% accuracy levels, including the negative supply rail.

Offset Nulling

Offset-voltage nulling is usually accomplished with a 100,000 Ω potentiometer connected across Terminals 1 and 5 and with the potentiometer slider arm connected to Terminal 4. A fine offset-null adjustment usually can be effected with the slider arm positioned in the mid-point of the potentiometer's total range.

Input Current Variation with Common Mode Input Voltage

As shown in the Electrical Specifications, the input current for the CA3160 Series Op Amps is typically 5 pA at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ when Terminals 2 and 3 are at a common-mode potential of +7.5 V with respect to negative supply Terminal 4. Figure 23 contains data showing the variation of input current as a function of common-mode input voltage at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. These data show that circuit designers can advantageously exploit these characteristics to design circuits which typically require an input current of less than 1 pA , provided the common-mode input
voltage does not exceed 2 V . As previously noted, the input current is essentially the result of the leakage current through the gate-protection diodes in the input circuit and, therefore, a function of the applied voltage. Although the finite resistance of the glass terminal-to-case insulator of the metal can package also contributes an increment of leakage current, there are useful compensating factors. Because the gate-protection network functions as if it is connected to Terminal 4 potential, and the metal can case of the CA3160 is also internally tied to Terminal 4, input Terminal 3 is essentially "guarded" from spurious leakage currents.

Input-Current Variation with Temperature

The input current of the CA3160 Series circuits is typically 5 pA at $25^{\circ} \mathrm{C}$. The major portion of this input current is due to leakage current through the gate-protective diodes in the input circuit. As with any semiconductor junction device, including op amps with a junction-FET input stage, the leakage current approximately doubles for every $10^{\circ} \mathrm{C}$ increase in temperature. Figure 24 provides data on the typical variation of input bias current as a function of temperature in the CA3160.
In applications requiring the lowest practical input current and incremental increases in current because of "warm-up" effects, it is suggested that an appropriate heat sink be used with the CA3160. In addition, when "sinking" or "sourcing" significant output current the chip temperature increases, causing an increase in the input current. In such cases, heat-sinking can also very markedly reduce and stabilize input current variations.

Input Offset Voltage (V_{10}) Variation with DC Bias vs Device Operating Life

It is well known that the characteristics of a MOSFET device can change slightly when a DC gate-source bias potential is applied to the device for extended time periods. The magnitude of the change is increased at high temperatures. Users of the CA3160 should be alert to the possible impacts of this effect if the application of the device involves extended operation at high temperatures with a significant differential DC bias voltage applied across Terminals 2 and 3 . Figure 25 shows typical data pertinent to shifts in offset voltage encountered with CA3160 devices in metal can packages during life testing. At lower temperatures (metal can and plastic) for example at $85^{\circ} \mathrm{C}$, this change in voltage is considerably less. In typical linear applications where the differential voltage is small and symmetrical, these incremental changes are of about the same magnitude as those encountered in an operational amplifier employing a bipolar transistor input stage. The 2 V differential voltage example represents conditions when the amplifier output state is "toggled", e.g., as in comparator applications.

Power Supply Considerations

Because the CA3160 is very useful in single supply applications, it is pertinent to review some considerations relating to power supply current consumption under both single and dual supply service. Figures 1A and 1B show the CA3160 connected for both dual and single supply operation.
Dual-supply operation: When the output voltage at Terminal 6 is 0 V , the currents supplied by the two power supplies are equal. When the gate terminals of Q_{8} and Q_{12} are driven
increasingly positive with respect to ground, current flow through Q_{12} (from the negative supply) to the load is increased and current flow through Q_{8} (from the positive supply) decreases correspondingly. When the gate terminals of Q_{8} and Q_{12} are driven increasingly negative with respect to ground, current flow through Q_{8} is increased and current flow through Q_{12} is decreased accordingly.

Single supply operation: Initially, let it be assumed that the value of R_{L} is very high (or disconnected), and that the inputterminal bias (Terminals 2 and 3) is such that the output terminal (No. 6) voltage is at $\mathrm{V}+/ 2$, i.e., the voltage-drops across Q_{8} and Q_{12} are of equal magnitude. Figure 18 shows typical quiescent supply-current vs supply voltage for the CA3160 operated under these conditions.

Since the output stage is operating as a Class A amplifier, the supply current will remain constant under dynamic operating conditions as long as the transistors are operated in the linear portion of their voltage-transfer characteristics (see Figure 17). If either Q_{8} or Q_{12} are swung out of their linear regions toward cutoff (a non-linear region), there will be a corresponding reduction in supply-current. In the extreme case, e.g., with Terminal 8 swung down to ground potential (or tied to ground), NMOS transistor Q_{12} is completely cut off and the supply current to series connected transistors Q_{8}, Q_{12} goes essentially to zero. The two preceding stages in the CA3160, however, continue to draw modest supply-current (see the lower curve in Figure 18) even though the output stage is strobed off. Figure 1A shows a dualsupply arrangement for the output stage that can also be strobed off, assuming $R_{L}=\infty$, by pulling the potential of Terminal 8 down to that of Terminal 4.

Let it now-be assumed that a load resistance of nominal value (e.g., $2 \mathrm{k} \Omega$) is connected between Terminal 6 and ground in the circuit of Figure 1B. Let it further be assumed again that the input-terminal bias (Terminals 2 and 3) is such that the output terminal (No. 6) voltage is at $\mathrm{V}+/ 2$. Since PMOS transistor Q_{8} must now supply quiescent current to both R_{L} and transistor Q_{12}, it should be apparent that under these conditions the supply current must increase as an inverse function of the R_{L} magnitude. Figure 20 shows the voltage-drop across PMOS transistor Q_{8} as a function of load current at several supply voltages. Figure 17 shows the voltage transfer characteristics of the output stage for several values of load resistance.

Wideband Noise

From the standpoint of low-noise performance considerations, the use of the CA3160 is most advantageous in applications where in the source resistance of the input signal is on the order of $1 \mathrm{M} \Omega$ or more. In this case, the total input-referred noise voltage is typically only $40 \mu \mathrm{~V}$ when the test circuit amplifier of Figure 2 is operated at a total supply voltage of 15 V . This value of total input-referred noise remains essentially constant, even though the value of source resistance is raised by an order of magnitude. This characteristic is due to the fact that reactance of the input capacitance becomes a significant factor in shunting the source resistance. It should be noted, however, that for values of source resistance very much greater than $1 \mathrm{M} \Omega$, the total noise voltage generated can be dominated by the thermal noise contributions of both the feedback and source resistors.

FIGURE 1A. DUAL POWER SUPPLY OPERATION

FIGURE 1B. SINGLE POWER SUPPLY OPERATION
FIGURE 1. CA3160 OUTPUT STAGE IN DUAL AND SINGLE POWER SUPPLY OPERATION

FIGURE 2. TEST CIRCUIT AMPLIFIER (30dB GAIN) USED FOR WIDEBAND NOISE MEASUREMENTS

FIGURE 3A.

Top Trace: Output Bottom Trace: Input
FIGURE 3B. SMALL SIGNAL RESPONSE

Top Trace: Output Signal
Center Trace: Difference Signal $5 \mathrm{mV} / \mathrm{Div}$. Bottom Trace: Input Signal
FIGURE 3C. INPUT-OUTPUT DIFFERENCE SIGNAL SHOWING SETTLING TIME

FIGURE 3. DUAL SUPPLY VOLTAGE FOLLOWER WITH ASSOCIATED WAVEFORMS

Typical Applications

Voltage Followers

Operational amplifiers with very high input resistances, like the CA3160, are particularly suited to service as voltage followers. Figure 3 shows the circuit of a classical voltage follower, together with pertinent waveforms using the CA3160 in a split-supply configuration.

A voltage follower, operated from a single supply, is shown in Figure 4 together with related waveforms. This follower circuit is linear over a wide dynamic range, as illustrated by the reproduction of the output waveform in Figure 4B with inputsignal ramping. The waveforms in Figure 4C show that the follower does not lose its input-to-output phase-sense, even though the input is being swung 7.5 V below ground potential. This unique characteristic is an important attribute in both operational amplifier and comparator applications. Figure 4C also shows the manner in which the COS/MOS output stage permits the output signal to swing down to the negative sup-ply-rail potential (i.e., ground in the case shown). The digital-to-analog converter (DAC) circuit, described in the following section, illustrates the practical use of the CA3160 in a single supply voltage follower application.

9-Bit CMOS DAC

A typical circuit of a 9-bit Digital-to-Analog Converter (DAC) (see Note 6) is shown in Figure 5. This system combines the concepts of multiple-switch CMOS ICs, a low-cost ladder network of discrete metal-oxide-film resistors, a CA3160 op amp connected as a follower, and an inexpensive monolithic regulator in a simple single power-supply arrangement. An additional feature of the DAC is that it is readily interfaced with CMOS input logic, e.g., 10 V logic levels are used in the circuit of Figure 5.

The circuit uses an R/2R voltage-ladder network, with the out-put-potential obtained directly by terminating the ladder arms at either the positive or the negative power supply terminal. Each CD4007A contains three inverters, each inverter functioning as a single-pole double-throw switch to terminate an arm of the R/2R network at either the positive or negative power-supply terminal. The resistor ladder is an assembly of 1% tolerance metal-oxide film resistors. The five arms requiring the highest accuracy are assembled with series and parallel combinations of $806,000 \Omega$ resistors from the same manufacturing lot.

A single 15V supply provides a positive bus for the CA3160 follower amplifier and feeds the CA3085 voltage regulator. A "scale-adjust" function is provided by the regulator output control, set to a nominal 10V level in this system. The line-voltage regulation (approximately 0.2\%) permits a 9-bit accuracy to be maintained with variations of several volts in the supply. The flexibility afforded by the CMOS building blocks simplifies the design of DAC systems tailored to particular needs.

NOTE:

[^3]

Top Trace: Output Bottom Trace: Input

FIGURE 4B. OUTPUT WAVEFORM WITH GROUND REFERENCE SINE WAVE INPUT

FIGURE 4C. OUTPUT SIGNAL WITH INPUT SIGNAL RAMPING
FIGURE 4. SINGLE SUPPLY VOLTAGE FOLLOWER WITH ASSOCIATED WAVEFORMS. (e.g., FOR USE IN SINGLE SUPPLY D/A CONVERTER; SEE FIGURE 9 IN AN6080)

Error-Amplifier in Regulated Power Supplies

The CA3160 is an ideal choice for error-amplifier service in regulated power supplies since it can function as an erroramplifier when the regulated output voltage is required to approach zero.

The circuit shown in Figure 6 uses a CA3160 as an error amplifier in a continuously adjustable 1A power supply. One of the key features of this circuit is its ability to regulate down to the vicinity of $O V$ with only one DC power supply input.

An RC network, connected between the base of the output drive transistor and the input voltage, prevents "turn-on overshoot", a condition typical of many operational amplifier regulator circuits. As the amplifier becomes operational, this RC network ceases to have any influence on the regulator performance.

Precision Voltage-Controlled Oscillator

The circuit diagram of a precision voltage-controlled oscillator is shown in Figure 7. The oscillator operates with a tracking error in the order of 0.02% and a temperature coefficient of $0.01 \% /{ }^{\circ} \mathrm{C}$. A multivibrator (A_{1}) generates pulses of constant amplitude (V) and width (T_{2}). Since the output (Terminal 6) of A_{1} (a CA3130) can swing within about 10 mV of either supplyrail, the output pulse amplitude (V) is essentially equal to $\mathrm{V}+$. The average output voltage ($\mathrm{E}_{\mathrm{AVG}}=\mathrm{V} T_{2} / T_{1}$) is applied to the non-inverting Input terminal of comparator A_{2} via an integrating network $\mathrm{R}_{3}, \mathrm{C}_{2}$. Comparator A_{2} operates to establish circuit conditions such that $E_{A V G}=V_{1}$. This circuit condition is accomplished by feeding an output signal from Terminal 6 of A_{2} through R_{4}, D_{4} to the inverting terminal (Terminal 2) of A_{1}, thereby adjusting the multivibrator interval, T_{3}.

Voltmeter With High Input Resistance

The voltmeter circuit shown in Figure 8 illustrates an application in which a number of the CA3160 characteristics are exploited. Range-switch SW_{1} is ganged between input and output circuitry to permit selection of the proper output voltage for feedback to Terminal 2 via $10 \mathrm{k} \Omega$ current-limiting resistor. The circuit is powered by a single 8.4 V mercury bat tery. With zero input signal, the circuit consumes somewhat less than $500 \mu \mathrm{~A}$ plus the meter current required to indicate a given voltage. Thus, at full scale input, the total supply current rises to slightly more than $1500 \mu \mathrm{~A}$.

FIGURE 5. 9-BIT DAC USING CMOS DIGITAL SWITCHES AND CA3160

Hum and Noise Output $<250 \mu \mathrm{~V}_{\text {RMS }}$; Regulation (No Load to Full Load) $<0.005 \%$; Input Regulation $<0.01 \% \mathrm{~N}$
FIGURE 6. VOLTAGE REGULATOR CIRCUIT (0.1 V TO 35V AT 1A)

FIGURE 7. VOLTAGE CONTROLLED OSCILLATOR

FIGURE 8. HIGH INPUT RESISTANCE DC VOLTMETER

Function Generator

A function generator having a wide tuning range is shown in Figure 9. The adjustment range, in excess of $1,000,000 / 1$, is accomplished by a single potentiometer. Three operational amplifiers are utilized: a CA3160 as a voltage follower, a CA3080 as a high speed comparator, and a second CA3080A as a programmable current source. Three variable
capacitors C_{1}, C_{2}, and C_{3} shape the triangular signal between 500 kHz and 1 MHz . Capacitors $\mathrm{C}_{4}, \mathrm{C}_{5}$, and the trimmer potentiometer in series with C_{5} maintain essentially constant ($+10 \%$) amplitude up to 1 MHz .

FIGURE 9A. HIGH INPUT RESISTANCE DC VOLTMETER

NOTE: A square wave signal modulates the external sweeping input to produce 1 Hz and 1 MHz , showing the $1,000,000 / 1$ frequency range of the Function Generator.

FIGURE 10. TWO-TONE OUTPUT SIGNAL FROM THE FUNCTION GENERATOR

NOTE: The bottom trace is the sweeping signal and the top trace is the actual generator output. The center trace displays the 1 MHz signal via delayed oscilloscope triggering of the upper swept output signal.

FIGURE 10A. TRIPLE-TRACE OF THE FUNCTION GENERATOR SWEEPING TO $\mathbf{1 M H z}$

FIGURE 10. $1,000,000 / 1$ SINGLE CONTROL FUNCTION GENERATOR: 1 Hz to 1 MHz

FIGURE 11A.

Staircase Generator

Figure 10 shows a staircase generator circuit utilizing three CMOS operational amplifiers. Two CA3130s are used; one as a multivibrator, the other as a hysteresis switch. The third amplifier, a CA3160, is used as a linear staircase generator.

Picoammeter Circuit

Figure 11 is a current-to-voltage converter configuration utilizing a CA3160 and CA3140 to provide a picoampere meter for 13pA full scale meter deflection. By placing Terminals 2 and 4 of the CA3160 at ground potential, the CA3160 input is operated in the "guarded mode". Under this operating condition, even slight leakage resistance present between Terminals 3 and 2 or between Terminals 3 and 4 would result in zero voltage across this leakage resistance, thus substantially reducing the leakage current.

If the CA3160 is operated with the same voltage on input Terminals 3 and 2 as on Terminal 4, a further reduction in the input current to the less than one picoampere level can be achieved as shown in Figure 23.

To further enhance the stability of this circuit, the CA3160 can be operated with its output (Terminal 6) near ground, thus markedly reducing the dissipation by reducing the supply current to the device.

The CA3140 stage serves as a X100 gain stage to provide the required plus and minus output swing for the meter and feedback network. A 100-to-1 voltage divider network consisting of a $9.9 \mathrm{k} \Omega$ resistor in series with a 100Ω resistor sets
the voltage at the $10 G \Omega$ resistor (in series with Terminal 3) to $\pm 30 \mathrm{mV}$ full-scale deflection. This 30 mV signal results from $\pm 3 \mathrm{~V}$ appearing at the top of the voltage divider network which also drives the meter circuitry.

By utilizing a switching technique in the meter circuit and in the $9.9 \mathrm{k} \Omega$ and 100Ω network similar to that used in voltmeter circuit shown in Figure 8, a current range of 3pA to 1 nA full scale can be handled with the single 10G Ω resistor.

Top Trace: Staircase Output 2V Steps Center Trace: Comparator Bottom Trace: Oscillator
FIGURE 11B. STAIRCASE GENERATOR WAVEFORM
FIGURE 11. STAIRCASE GENERATOR CIRCUIT

FIGURE 12. CURRENT-TO-VOLTAGE CONVERTER TO PROVIDE A PICOAMMETER WITH ± 3 PA FULL SCALE DEFLECTION

FIGURE 13 A.

Top Trace: Sampled Output Center Trace: Input Signal Bottom Trace: Sampling Pulses
FIGURE 13B. SAMPLE AND HOLD WAVEFORM

Top Trace: Sampled Output Center Trace: Input Signal Bottom Trace: Sampling Pulses
FIGURE 13C. SAMPLE AND HOLD WAVEFORM

FIGURE 13. SINGLE SUPPLY SAMPLE AND HOLD SYSTEM, INPUT OV TO 10V

Single Supply Sample-and-Hold System

Figure 12 shows a single supply sample-and-hold system using a CA3160 to provide a high input impedance and an input voltage range of 0 V to 10 V . The output from the input buffer integrator network is coupled to a CA3080A. The CA3080A functions as a strobeable current source for the CA3140 output integrator and storage capacitor. The CA3140 was chosen because of its low output impedance and constant gain-bandwidth product. Pulse "droop" during the hold interval can be reduced to zero by adjusting the $100 \mathrm{k} \Omega$ bias-voltage potentiometer on the positive input of the CA3140. This zero adjustment sets the CA3080A output voltage at its zero current position. In this sample-and-hold circuit it is essential that the amplifier bias current be reduced to zero to minimize output signal current during the hold mode. Even with 320 mV at the amplifier bias circuit terminal (5) at least 1100 pA of output current will be available.

Wien Bridge Oscillator

A simple, single supply Wien Bridge oscillator using a CA3160 is shown in Figure 13. A pair of parallel-connected 1N914 diodes comprise the gain-setting network which standardizes the output voltage at approximately 1.1 V . The 500Ω potentiometer is adjusted so that the oscillator will always start and the oscillation will be maintained. Increasing the amplitude of the voltage may lower the threshold level for starting and for sustaining the oscillation, but will introduce more distortion.

FIGURE 14. SINGLE SUPPLY WEIN BRIDGE OSCILLATOR

Operation with Output Stage Power Booster

The current sourcing and sinking capability of the CA3160 output stage is easily supplemented to provide power-boost capability. In the circuit of Figure 14, three CMOS transistor-pairs in a single CA3600 IC array are shown parallel-connected with the output stage in the CA3160. In the Class A mode of CA3600E shown, a typical device consumes 20 mA of supply current at 15 V operation. This arrangement boosts the current-handling capability of the CA3160 output stage by about 2.5 X .
The amplifier circuit in Figure 14 employs feedback to establish a closed-loop gain of 20 dB . The typical large-signalbandwidth $(-3 \mathrm{~dB})$ is 190 kHz .

FIGURE 15. CMOS TRANSISTOR ARRAY (CA3600E) CONNECTED AS POWER BOOSTER IN THE OUTPUT STAGE OF THE CA3160

Typical Performance Curves

FIGURE 16. OPEN LOOP VOLTAGE GAIN AND PHASE SHIFT vs FREQUENCY

FIGURE 18. VOLTAGE TRANSFER CHARACTERISTICS OF CMOS OUTPUT STAGE

FIGURE 20. QUIESCENT SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 17. OPEN LOOP GAIN vs TEMPERATURE

FIGURE 19. QUIESCENT SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 21. VOLTAGE ACROSS PMOS OUTPUT TRANSISTOR (\mathbf{Q}_{8}) vs LOAD CURRENT

Typical Performance Curves (Continued)

FIGURE 22. VOLTAGE ACROSS NMOS OUTPUT TRANSISTOR $\left(Q_{12}\right)$ vs LOAD CURRENT

FIGURE 24. INPUT CURRENT vs COMMON MODE VOLTAGE

FIGURE 23. EQUIVALENT NOISE VOLTAGE vs FREQUENCY

FIGURE 25. INPUT CURRENT vs TEMPERATURE

FIGURE 26. TYPICAL INCREMENTAL OFFSET VOLTAGE SHIFT vs OPERATING LIFE

Features

- Low VIO
- CA3193A . 200 HV (Max)
- CA3193 . $500 \mu \mathrm{~V}$ (Max)
- Low $\Delta V_{I O} / \Delta T$
- CA3193A
$3 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (Max)
- CA3193 . $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (Max)
- Low IIO and II
- Low $\Delta_{I O} / \Delta T$: CA3193.
$150 \mathrm{pA}{ }^{\circ} \mathrm{C}$ (Max)
- Low $\Delta_{\mathrm{l}}^{\mathrm{l}} \mathrm{J} \Delta \mathrm{T}$: CA3193 $3.7 n A{ }^{\circ} \mathrm{C}$ (Max)

Applications

- Thermocouple Preamplifiers
- Strain Gauge Bridge Amplifiers
- Summing Amplifiers
- Differential Amplifiers
- Bilateral Current Sources
- Log Amplifiers
- Differential Voltmeters
- Precision Voltage References
- Active Filters
- Buffers
- Integrators
- Sample-and-Hold Circuits
- Low Frequency Filters

Description

The CA3193A and CA3193 are ultra-stable, precision instrumentation, operational amplifiers that employ both PMOS and bipolar transistors on a single monolithic chip. The CA3193A and CA3193 amplifiers are internally phase compensated and provide a gain bandwidth product of 1.2 MHz . They are pin compatible with the industry 741 series and many other IC op amps, and may be used as replacements for 741 series types in most applications.
The CA3193A and CA3193 can also be used as functional replacements for op amp types 725, 108A, OP-5, OP-7, LM11 and LM714 in many applications where nulling is not employed. Because of their low offset voltage and low offset voltage vs temperature coefficient the CA3193A and CA3193 amplifiers have a wider range of applications than most op amps and are particularly well suited for use as thermocouple amplifiers, high gain filters, buffer, strain gauge bridge amplifiers and precision voltage references.

The two types in the CA3193 series are functionally identical. The CA3193A and CA3193 operate from supply voltages of $\pm 3.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$.

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
CA3193AE	-25 to 85	8 Ld PDIP	E8.3
CA3193AT	-25 to 85	8 Pin Metal Can	T8.C
CA3193E	0 to 70	8 Ld PDIP	E8.3
CA3193T	0 to 70	8 Pin Metal Can	T8.C

Pinouts

NOTE: Pin 4 is connected to case on S and T suffix.

SEMICONDUCTOR

CA3240, CA3240A

Dual, 4.5MHz, BiMOS Operational Amplifier with MOSFET Input/Bipolar Output

Description

The CA3240A and CA3240 are dual versions of the popular CA3140 series integrated circuit operational amplifiers. They combine the advantages of MOS and bipolar transistors on the same monolithic chip. The gate-protected MOSFET (PMOS) input transistors provide high input impedance and a wide common-mode input voltage range (typically to 0.5 V below the negative supply rail). The bipolar output transistors allow a wide output voltage swing and provide a high output current capability.
The CA3240A and CA3240 are compatible with the industry standard 1458 operational amplifiers in similar packages. The offset null feature is available only when these types are supplied in the 14 lead PDIP package (E1 suffix).

Ordering Information

PART NUMBER	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. NO.
CA3240AE	-40 to 85	8 Ld PDIP	E8.3
CA3240AE1	-40 to 85	14 Ld PDIP	E14.3
CA3240E	-40 to 85	8 Ld PDIP	E8.3
CA3240E1	-40 to 85	14 Ld PDIP	E14.3

Pinouts

```
CA3240, CA3240A, (PDIP)
TOP VIEW
```


CA3240, CA3240A, (PDIP) TOP VIEW

$\begin{aligned} & \text { INV. } \\ & \operatorname{INPUT}(A) \\ & 1 \end{aligned}$	OFFSET NULL (A)
NON-INV INPUT (A) 2 \qquad	$13 \mathrm{~V}+\dagger$
OFFSET 3	12] OUTPUT (A)
NULL (V -4	11 NC
OFFSET 5	10 OUTPUT (B)
NON - INV. 6	$9 \mathrm{v}+\dagger$
inv INPUT (B) \square	OFFSET NULL (B)

[^4]
Functional Diagram

NOTE: Only available with 14 lead DIP (E1 Suffix).

Electrical Specifications For Equipment Design, $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	CA3240			CA3240A			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	V_{10}	-	5	15	-	2	5	mV
Input Offset Current	10	-	0.5	30	-	0.5	20	pA
Input Current	1	-	10	50	-	10	40	pA
Large-Signal Voltage Gain (See Figures 13, 28) (Note 3)	$\mathrm{AOL}^{\text {L }}$	20	100	-	20	100	-	kV/
		86	100	-	86	100	-	dB
Common Mode Rejection Ratio (See Figure 18)	CMRR	-	32	320	-	32	320	$\mu \mathrm{V} / \mathrm{N}$
		70	90	-	70	90	-	dB
Common Mode Input Voltage Range (See Figure 25)	VICR	-15	$\begin{gathered} -15.5 \text { to } \\ +12.5 \end{gathered}$	11	-15	$\begin{gathered} -15.5 \text { to } \\ +12.5 \end{gathered}$	12	V
Power Supply Rejection Ratio (See Figure 20)	$\begin{array}{\|c\|} \hline \text { PSRR } \\ \left(\Delta \mathrm{V}_{1 \mathrm{O}} / \Delta \mathrm{V}_{ \pm}\right) \end{array}$	-	100	150	-	100	150	$\mu \mathrm{V} / \mathrm{N}$
		76	80	-	76	80	-	dB
Maximum Output Voltage (Note 4) (See Figures 24, 25)	$\mathrm{V}_{\text {OM }}{ }^{+}$	12	13	-	12	13	-	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$	-14	-14.4	-	-14	-14.4	-	V
Maximum Output Voltage (Note 5)	$\mathrm{V}_{\text {OM }}$	0.4	0.13	-	0.4	0.13	-	V
Total Supply Current (See Figure 16) For Both Amps	+	-	8	12	-	8	12	mA
Total Device Dissipation	P_{D}	-	240	360	-	240	360	mW

NOTES:
3. At $\mathrm{V}_{\mathrm{O}}=26 \mathrm{~V}_{\text {P.P },}+12 \mathrm{~V},-14 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$.
4. At $R_{L}=2 k \Omega$.
5. At $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=\mathrm{GND}, \mathrm{I}_{\mathrm{SINK}}=200 \mu \mathrm{~A}$.

Electrical Specifications For Equipment Design, $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	TYPICAL VALUES		UNITS
			CA3240A	CA3240	
Input Offset Voltage Adjustment Resistor (E1 Package Only)		Typical Value of Resistor Between Terminals 4 and 3(5) or Between 4 and 14(8) to Adjust Maximum $V_{I O}$	18	4.7	k Ω
Input Resistance	R_{1}		1.5)	1.5	T Ω
Input Capacitance	C_{1}		4	4	pF
Output Resistance	R_{0}		60	60	Ω
Equivalent Wideband Input Noise Voltage (See Figure 2)	${ }^{\mathrm{N}} \mathrm{N}$	$\mathrm{BW}=140 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{M} \Omega$	48	48	$\mu \mathrm{V}$

CA3240, CA3240A

Electrical Specifications For Equipment Design, $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		TYPICAL VALUES		UNITS
				CA3240A	CA3240	
Equivalent Input Noise Voltage (See Figure 19)	${ }_{\mathrm{N}}$	$f=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=100 \Omega$		40	40	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$f=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=100 \Omega$		12	12	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Short-Circuit Current to Opposite Supply	lOM^{+}	Source		40	40	mA
	Iom-	Sink		11	11	mA
Gain Bandwidth Product (See Figures 14, 28)	$\mathrm{f}_{\text {T }}$			4.5	4.5	MHz
Slew Rate (See Figure 15)	SR			9	9	V/us
Transient Response (See Figure 1)	t_{r}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	Rise Time	0.08	0.08	$\mu \mathrm{s}$
	OS	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$	Overshoot	10	10	\%
Settling Time at $10 \mathrm{~V}_{\text {P-P }}$ (See Figure 26)	ts	$A_{V}=+1, R_{L}=2 k \Omega, C_{L}=100 \mathrm{pF} \text {, }$ Voltage Follower	To 1 mV	4.5	4.5	$\mu \mathrm{s}$
			To 10 mV	1.4	1.4	$\mu \mathrm{s}$
Crosstalk (See Figure 23)		$\mathrm{f}=1 \mathrm{kHz}$		120	120	dB

Electrical Specifications For Equipment Design, at $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TYPICAL VALUES		UNITS
		CA3240A	CA3240	
Input Offset Voltage	$\mathrm{V}_{10}{ }^{\text {I }}$	3	10	mV
Input Offset Current (Note 8)	HIO_{1}	32	32	pA
Input Current (Note 8)	1	640	640	pA
Large Signal Voltage Gain (See Figures 13, 28), (Note 6)	$\mathrm{AOL}^{\text {l }}$	63	63	kV/
		96	96	dB
Common Mode Rejection Ratio (See Figure 18)	CMRR	32	32	$\mu \mathrm{V} / \mathrm{N}$
		90	90	dB
Common Mode Input Voltage Range (See Figure 25)	$V_{\text {ICR }}$	-15 to +12.3	-15 to +12.3	V
Power Supply Rejection Ratio (See Figure 20)	PSRR	150	150	$\mu \mathrm{V} / \mathrm{N}$
	$\left(\Delta \mathrm{V}_{\text {IO }} / \Delta \mathrm{V} \pm\right)$	76	76	dB
Maximum Output Voltage (Note 7) (See Figures 24, 25)	$\mathrm{V}_{\mathrm{OM}^{+}}$	12.4	12.4	V
	$\mathrm{V}_{\mathrm{OM}^{-}}$	-14.2	-14.2	V
Supply Current (See Figure 16) Total For Both Amps	I+	8.4	8.4	mA
Total Device Dissipation	P_{D}	252	252	mW
Temperature Coefficient of Input Offset Voltage	$\Delta V_{10} / \Delta T$	15	15	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

NOTES:
6. At $\mathrm{V}_{\mathrm{O}}=26 \mathrm{~V}_{\mathrm{P}-\mathrm{P},}+12 \mathrm{~V},-14 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$.
7. At $R_{L}=2 k \Omega$.
8. At $T_{A}=85^{\circ} \mathrm{C}$.

Electrical Specifications For Equipment Design, at $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TYPICAL VALUES		UNITS
		CA3240A	CA3240	
Input Offset Voltage	$\mathrm{V}_{10} \mathrm{l}$	2	5	mV
Input Offset Current	HIO_{10}	0.1	0.1	pA
Input Current	1	2	2	pA
Input Resistance	RIN	1	1	$T \Omega$
Large Signal Voltage Gain (See Figures 13, 28)	$\mathrm{AOL}^{\text {a }}$	100	100	kV/V
		100	100	dB

Electrical Specifications For Equipment Design, at $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

PARAMETER		SYMBOL	TYPIC	UES	UNITS	
		CA3240A	CA3240			
Common-Mode Rejection Ratio			CMRR	32	32	$\mu \mathrm{V} / \mathrm{N}$
		90		90	dB	
Common-Mode Input Voltage Range (See Figure 25)		VICR	-0.5	-0.5	V	
		2.6	2.6	V		
Power Supply Rejection Ratio			PSRR	31.6	31.6	$\mu \mathrm{V} / \mathrm{N}$
		90		90	dB	
Maximum Output Voltage (See Figures 24, 25)		$\mathrm{V}_{\mathrm{OM}^{+}}$	3	3	V	
		$\mathrm{V}_{\mathrm{OM}^{-}}$	0.3	0.3	V	
Maximum Output Current	Source	${ }^{\text {OM }}+$	20	20	mA	
	Sink	IOM^{-}	1	1	mA	
Slew Rate (See Figure 15)		SR	7	7	$\mathrm{V} / \mathrm{\mu s}$	
Gain Bandwidth Product (See Figure 14)		f_{T}	4.5	4.5	MHz	
Supply Current (See Figure 16)		${ }_{+}^{+}$	4	4	mA	
Device Dissipation		P_{D}	20	20	mW	

Test Circuits and Waveforms

$50 \mathrm{mV} /$ Div., 200ns/Div.
Top Trace: Input, Bottom Trace: Output
FIGURE 1A. SMALL SIGNAL RESPONSE

5V/Div., $1 \mu \mathrm{~s} /$ Div.
Top Trace: Input, Bottom Trace: Output
FIGURE 1B. LARGE SIGNAL RESPONSE

FIGURE 1C. TEST CIRCUIT
FIGURE 1. SPLIT-SUPPLY VOLTAGE FOLLOWER TEST CIRCUIT AND ASSOCIATED WAVEFORMS

Test Circuits and Waveforms (Continued)

FIGURE 2. TEST CIRCUIT AMPLIFIER (30dB GAIN) USED FOR WIDEBAND NOISE MEASUREMENT

Schematic Diagram (One Amplifier of Two)

NOTES:
9. Only available with 14 Lead DIP (E1 Suffix).
10. All resistance values are in ohms.

Application Information

Circuit Description

The schematic diagram details one amplifier section of the CA3240. It consists of a differential amplifier stage using PMOS transistors (Q_{9} and Q_{10}) with gate-to-source protection against static discharge damage provided by zener diodes D_{3}, D_{4}, and D_{5}. Constant current bias is applied to the differential amplifier from transistors Q_{2} and Q_{5} connected as a constant current source. This assures a high common-mode rejection ratio. The output of the differential amplifier is coupled to the base of gain stage transistor Q_{13} by means of an NPN current mirror that supplies the required differential-to-single-ended conversion. Provision for offset null for types in the 14 lead plastic package (E 1 suffix) is provided through the use of this current mirror.
The gain stage transistor Q_{13} has a high impedance active load $\left(Q_{3}\right.$ and Q_{4}) to provide maximum open-loop gain. The collector of Q_{13} directly drives the base of the compound emitter-follower output stage. Pulldown for the output stage is provided by two independent circuits: (1) constant-current-connected transistors Q_{14} and Q_{15} and (2) dynamic current-sink transistor Q_{16} and its associated circuitry. The level of pulldown current is constant at about 1 mA for Q_{15} and varies from 0 to 18 mA for Q_{16} depending on the magnitude of the voltage between the output terminal and $V+$. The dynamic current sink becomes active whenever the output terminal is more negative than $V+$ by about 15 V . When this condition exists, transistors Q_{21} and Q_{16} are turned on causing Q_{16} to sink current from the output terminal to V -. This current always flows when the output is in the linear region, either from the load resistor or from the emitter of Q_{18} if no load resistor is present. The purpose of this dynamic sink is to permit the output to go within $0.2 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CE}}\right.$ (sat)) of V with a $2 \mathrm{k} \Omega$ load to ground. When the load is returned to $V+$, it may be necessary to supplement the 1 mA of current from Q_{15} in order to turn on the dynamic current sink (Q_{16}). This may be accomplished by placing a resistor (Approx. $2 \mathrm{k} \Omega$) between the output and V-.

Output Circuit Considerations

Figure 24 shows output current-sinking capabilities of the CA3240 at various supply voltages. Output voltage swing to the negative supply rail permits this device to operate both power transistors and thyristors directly without the need for level-shifting circuitry usually associated with the 741 series of operational amplifiers.
Figure 3 shows some typical configurations. Note that a series resistor, RL, is used in both cases to limit the drive available to the driven device. Moreover, it is recommended that a series diode and shunt diode be used at the thyristor input to prevent large negative transient surges that can appear at the gate of thyristors, from damaging the integrated circuit.

Input Circuit Considerations

As indicated by the typical VICR, this device will accept inputs as low as 0.5 V below V -. However, a series currentlimiting resistor is recommended to limit the maximum input terminal current to less than 1 mA to prevent damage to the input protection circuitry.
Moreover, some current-limiting resistance should be provided between the inverting input and the output when the

CA3240 is used as a unity-gain voltage follower. This resistance prevents the possibility of extremely large input-signal transients from forcing a signal through the input-protection network and directly driving the internal constant-current source which could result in positive feedback via the output terminal. A 3.9 kW resistor is sufficient.
The typical input current is on the order of 10pA when the inputs are centered at nominal device dissipation. As the output supplies load current, device dissipation will increase, rasing the chip temperature and resulting in increased input current. Figure 4 shows typical input-terminal current versus ambient temperature for the CA3240.

FIGURE 3. METHODS OF UTILIZING THE VCE (SAT) SINKING CURRENT CAPABILITY OF THE CA3240 SERIES

FIGURE 4. INPUT CURRENT vs TEMPERATURE
It is well known that MOSFET devices can exhibit slight changes in characteristics (for example, small changes in input offset voltage) due to the application of large differential input voltages that are sustained over long periods at elevated temperatures.

Both applied voltage and temperature accelerate these changes. The process is reversible and offset voltage shifts of the opposite polarity reverse the offset. In typical linear applications, where the differential voltage is small and symmetrical, these incremental changes are of about the same magnitude as those encountered in an operational amplifier employing a bipolar transistor input stage.

Offset-Voltage Nulling

The input offset voltage of the CA3240AE1 and CA3240E1 can be nulled by connecting a $10 \mathrm{k} \Omega$ potentiometer between Terminals 3 and 14 or 5 and 8 and returning its wiper arm to Terminal 4, see Figure 5A. This technique, however, gives more adjustment range than required and therefore, a considerable portion of the potentiometer rotation is not fully utilized. Typical values of series resistors that may be placed at either end of the potentiometer, see Figure 5B, to optimize its utilization range are given in the table "Electrical Specifications for Equipment Design" shown on third page of this data sheetAn alternate system is shown in Figure 5C. This circuit uses only one additional resistor of approximately the value shown in the table. For potentiometers, in which the resistance does not drop to 0Ω at either end of rotation, a value of resistance 10% lower than the values shown in the table should be used.

Typical Applications

On/Off Touch Switch

The on/off touch switch shown in Figure 6 uses the CA3240E to sense small currents flowing between two contact points on a touch plate consisting of a PC board metalli-

FIGURE 5A. BASIC
zation "grid". When the "on" plate is touched, current flows between the two halves of the grid causing a positive shift in the output voltage (Terminal 7) of the CA3240E. These positive transitions are fed into the САЗ059, which is used as a latching circuit and zero-crossing TRIAC driver. When a positive pulse occurs at Terminal 7 of the CA3240E, the TRIAC is turned on and held on by the CA3059 and its associated positive feedback circuitry ($51 \mathrm{k} \Omega$ resistor and $36 \mathrm{k} \Omega / 42 \mathrm{k} \Omega$ voltage divider). When the positive pulse occurs at Terminal 1 (CA3240E), the TRIAC is turned off and held off in a similar manner. Note that power for the CA3240E is supplied by the CA3059 internal power supply.

The advantage of using the CA3240E in this circuit is that it can sense the small currents associated with skin conduction while allowing sufficiently high circuit impedance to provide protection against electrical shock.

Dual Level Detector (Window Comparator)

Figure 7 illustrates a simple dual liquid level detector using the CA3240E as the sensing amplifier. This circuit operates on the principle that most liquids contain enough ions in solution to sustain a small amount of current flow between two electrodes submersed in the liquid. The current, induced by an 0.5 V potential applied between two halves of a PC board grid, is converted to a voltage level by the CA3240E in a circuit similar to that of the on/off touch switch shown in Figure 6. The changes in voltage for both the upper and lower level sensors are processed by the CA3140 to activate an LED whenever the liquid level is above the upper sensor or below the lower sensor..

R(NOTE 11)

FIGURE 5B. IMPROVED RESOLUTION

FIGURE 5C. SIMPLER IMPROVED RESOLUTION
NOTE:
11. See Electrical Specification Table on Third page of this data sheet for value of R.

FIGURE 5. THREE OFFSET-VOLTAGE NULLING METHODS, (CA3240AE1, CA3240E1 ONLY)

NOTE:
12. At 220 V operation, TRIAC should be $\mathrm{T} 2300 \mathrm{D}, \mathrm{R}_{\mathrm{S}}=18 \mathrm{~K}, 5 \mathrm{~W}$.

FIGURE 6. ON/OFF TOUCH SWITCH

FIGURE 7. DUAL LEVEL DETECTER

Constant-Voltage/Constant-Current Power Supply

The constant-voltage/constant-current power supply shown in Figure 8 uses the CA3240E1 as a voltage-error and cur-rent-sensing amplifier. The CA3240E1 is ideal for this application because its input common-mode voltage range includes ground, allowing the supply to adjust from 20 mV to 25 V without requiring a negative supply voltage. Also, the ground reference capability of the CA3240E1 allows it to sense the voltage across the 1Ω current-sensing resistor in the negative output lead of the power supply. The CA3086 transistor array functions as a reference for both constantvoltage and constant-current limiting. The 2N6385 power Darlington is used as the pass element and may be required to dissipate as much as 40 W . Figure 9 shows the transient response of the supply during a 100 mA to 1 A load transition.

Precision Differential Amplifier

Figure 10 shows the CA3240E in the classical precision differential amplifier circuit. The CA3240E is ideally suited for biomedical applications because of its extremely high input impedance. To insure patient safety, an extremely high electrode series resistance is required to limit any current that might result in patient discomfort in the event of a fault condition. In this case, $10 \mathrm{M} \Omega$ resistors have been used to limit the current to less than $2 \mu \mathrm{~A}$ without affecting the performance of the circuit. Figure 11 shows a typical electrocardiogram waveform obtained with this circuit.

Top Trace: Output Voltage;
$500 \mathrm{mV} / \mathrm{Div} ., 5 \mu \mathrm{~s} / \mathrm{Div}$.
Bottom Trace: Collector Of Load Switching Transistor Load $=100 \mathrm{~mA}$ to $1 \mathrm{~A} ; 5 \mathrm{~V} /$ Div., $5 \mu \mathrm{~s} /$ Div.

FIGURE 9. TRANSIENT RESPONSE

FIGURE 10. PRECISION DIFFERENTIAL AMPLIFIER

Vertical: $1.0 \mathrm{mV} /$ Div
Amplifier Gain $=100 \mathrm{X}$
Scope Sensitivity $=0.1 \mathrm{~V} /$ Div.
Horizontal: $>0.2 \mathrm{~s} /$ Div. (Uncal)
FIGURE 11. TYPICAL ELECTROCARIOGRAM WAVEFORM

Differential Light Detector

In the circuit shown in Figure 12, the CA3240E converts the current from two photo diodes to voltage, and applies 1 V of reverse bias to the diodes. The voltages from the CA3240E outputs are subtracted in the second stage (CA3140) so that only the difference is amplified. In this manner, the circuit can be used over a wide range of ambient light conditions without circuit component adjustment. Also, when used with a light source, the circuit will not be sensitive to changes in light level as the source ages.

FIGURE 12. DIFFERENTIAL LIGHT DETECTOR

Typical Performance Curves

FIGURE 14. GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE
FIGURE 13. OPEN LOOP VOLTAGE GAIN vs SUPPLY VOLTAGE

FIGURE 15. SLEW RATE vs SUPPLY VOLTAGE

FIGURE 16. QUIESCENT SUPPLY CURRENT vs SUPPLY VOLTAGE

Typical Performance Curves (Continued)

FIGURE 17. MAXIMUM OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 19. EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY

FIGURE 21. OUTPUT SINK CURRENT vs OUTPUT VOLTAGE

FIGURE 18. COMMON MODE REJECTION RATIO vs frequency.

FIGURE 20. POWER SUPPLY REJECTION RATIO vs FREQUENCY

FIGURE 22. SUPPLY CURRENT vs OUTPUT VOLTAGE

Typical Performance Curves (Continued)

FIGURE 23. CROSSTALK vs FREQUENCY

FIGURE 25A.

FIGURE 24. VOLTAGE ACROSS OUTPUT TRANSISTORS \mathbf{Q}_{15} AND Q_{16} vs LOAD CURRENT

FIGURE 25B.

FIGURE 25. OUTPUT VOLTAGE SWING CAPABILITY AND COMMON MODE INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE

Typical Performance Curves (Continued)

FIGURE 26A. SETTLING TIME vs INPUT VOLTAGE

FIGURE 26B. TEST CIRCUIT (FOLLOWER)

FIGURE 26C. TEST CIRCUIT (INVERTING)
FIGURE 26. INPUT VOLTAGE vs SETTLING TIME

FIGURE 27. INPUT CURRENT vs TEMPERATURE

FIGURE 28. OPEN LOOP VOLTAGE GAIN AND PHASE vs FREQUENCY

4MHz, BiMOS Operational Amplifier with MOSFET Input/CMOS Output

Features

- MOSFET Input Stage provides
- Very High $Z_{I}=1.5 \mathrm{~T} \Omega\left(1.5 \times 10^{12} \Omega\right)$ (Typ)
- Very Low $I_{I}=5 p A(T y p)$ at 15 V Operation
= 2pA (Typ) at 5V Operation
- Ideal for Single Supply Applications
- Common Mode Input Voltage Range Includes Negative Supply Rail; Input Terminals Can be Swung 0.5V Below Negative Supply Rail
- CMOS Output Stage Permits Signal Swing to Either (Or Both) Supply Rails

Applications

- Ground Referenced Single Supply Amplifiers
- Fast Sample-Hold Amplifiers
- Long Duration Timers/Monostables
- Ideal Interface with Digital CMOS
- High Input Impedance Wideband Amplifiers
- Voltage Followers (e.g. Follower for Single Supply D/A Converter)
- Voltage Regulators (Permits Control of Output Voltage Down to 0V)
- Wien Bridge Oscillators
- Voltage Controlled Oscillators
- Photo Diode Sensor Amplifiers

Description

CA3260A and CA3260 are integrated circuit operational amplifiers that combine the advantage of both CMOS and bipolar transistors on a monolithic chip. The CA3260 series circuits are dual versions of the popular CA3160 series.

Gate protected P-Channel MOSFET (PMOS) transistors are used in the input circuit to provide very high input impedance, very low input current, and exceptional speed performance. The use of PMOS field effect transistors in the input stage results in common mode input voltage capability down to 0.5 V below the negative supply terminal, an important attribute in single supply applications.

A complementary symmetry MOS (CMOS) transistor pair, capable of swinging the output voltage to within 10 mV of either supply voltage terminal (at very high values of load impedance), is employed as the output circuit.

The CA3260 Series circuits operate at supply voltages ranging from 4 V to 16 V , or $\pm 2 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ when using split supplies. The CA3260A offers superior input characteristics over those of the CA3260.

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
CA3260E	-55 to 125	8 Ld PDIP	E8.3
CA3260T	-55 to 125	8 Pin Metal Can	T8.C
CA3260AE	-55 to 125	8 Ld PDIP	E8.3
CA3260AT	-55 to 125	8 Pin Metal Can	T8.C

Pinouts

CA3260, CA3260A (PDIP)
TOP VIEW

CA3260, CA3260A (METAL CAN)

TOP VIEW

Absolute Maximum Ratings

DC Supply Voltage (V+ to V-) . 16V
DC Input Voltage . (V+ +8 V) to ($\mathrm{V}--0.5 \mathrm{~V}$)
Differential Input Voltage
8V
Input Terminal Current . 1 mA
Output Short Circuit Duration (Note 1) Indefinite

Operating Conditions

Temperature Range
e. $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Short circuit may be applied to ground or to either supply.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $T_{A}=25^{\circ} \mathrm{C}$, Typical Values Intended Only for Design Guidance

PARAMETER		SYMBOL	TEST CONDITIONS	TYPICA	ALUES	UNITS	
		CA3260A		CA3260			
Input Resistance			R_{1}	$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$	1.5	1.5	$T \Omega$
Input Capacitance		Cl_{1}	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$	4.3	4.3	pF	
Unity Gain Crossover Frequency		${ }_{\text {f }}$	$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$	4	4	MHz	
Slew Rate		SR	$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$	10	10	$\mathrm{V} / \mu \mathrm{s}$	
Transient Response	Rise Time	t_{r}	$\begin{aligned} & C_{L}=25 \mathrm{pF}, R_{\mathrm{L}}=2 \mathrm{k} \Omega, A_{V}=+1, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V} \end{aligned}$	0.09	0.09	$\mu \mathrm{s}$	
	Overshoot	OS		10	10	\%	
Settling Time (to $<0.1 \%, \mathrm{~V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$)		ts	$\begin{aligned} & C_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{~A}_{\mathrm{V}}=+1, \\ & \mathrm{~V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V} \end{aligned}$	1.8	1.8	$\mu \mathrm{s}$	
Input Offset Voltage		V_{10}	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$	2	6	mV	
Input Offset Current		10	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$	0.1	0.1	pA	
Input Current		1	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$	2	2	pA	
Common Mode Rejection Ratio		CMRR	$\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$	70	60	dB	
Large Signal Voltage Gain		AOL	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, R_{\mathrm{L}}=20 \mathrm{k} \Omega, \\ & \mathrm{~V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \end{aligned}$	100	100	kV/N	
		100		100	dB		
Common Mode Input Voltage Range			VICR	$V_{+}=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$	0 to 2.5	0 to 2.5	V
Supply Current		$1+$	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$	1	1	mA	
		$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$	1.2	1.2	mA		
Power Supply Rejection Ratio			PSRR	$\Delta \mathrm{V}_{10} / \Delta \mathrm{V}+, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$	200	200	$\mu \mathrm{V} N$

Electrical Specifications For Each Amplifier at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	CA3260A			CA3260			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	$\mid \mathrm{V}_{10} \mathrm{l}$	$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$	-	2	5	-	6	15	mV
Input Offset Current	HIO^{\prime}	$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$	-	0.5	20	-	0.5	30	pA
Input Current	1	$\mathrm{V}_{\mathrm{S}}= \pm 7.5 \mathrm{~V}$	-	5	30	-	5	50	pA
Large Signal Voltage Gain	$\mathrm{AOL}^{\text {L }}$	$\begin{aligned} & V_{O}=10 V_{P-P}, \\ & R_{L}=10 \mathrm{k} \Omega \end{aligned}$	50	320	-	50	320	-	kV/
			94	110	-	94	110	-	dB
Common Mode Rejection Ratio	CMRR		80	95	-	70	90	-	dB

Electrical Specifications For Each Amplifier at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	CA3260A			CA3260			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Common Mode Input Voltage Range	$\mathrm{V}_{\text {ICR }}$		0	$\begin{gathered} -0.5 \text { to } \\ 12 \end{gathered}$	10	0	$\begin{gathered} -0.5 \text { to } \\ 12 \end{gathered}$	10	V
Power Supply Rejection Ratio	PSRR	$\begin{aligned} & \Delta V_{10} / \Delta V_{+} \\ & V_{+}=17.5 \mathrm{~V} \end{aligned}$	-	32	150	-	32	320	$\mu \mathrm{V} / \mathrm{N}$
Maximum Output Voltage	$\mathrm{V}_{\text {OM }}{ }^{+}$	$R_{L}=10 \mathrm{k} \Omega$	11	13.3	-	11	13.3	-	V
	$\mathrm{V}_{\mathrm{OM}}{ }^{-}$		-	0.002	0.01	-	0.002	0.01	V
	$\mathrm{V}_{\mathrm{OM}}{ }^{+}$	$\mathrm{R}_{\mathrm{L}}=\infty$	14.99	15	-	14.99	15	-	V
	$\mathrm{V}_{\mathrm{OM}}{ }^{-}$		-	0	0.01	-	0	0.01	V
Maximum Output Current	${ }^{1} \mathrm{OM}^{+}$Source	$\mathrm{V}_{\mathrm{O}}=7.5 \mathrm{~V}$	12	22	45	12	22	45	mA
	Iom- Sink		12	20	45	12	20	45	mA
$\begin{gathered} \text { Total Supply Current } \\ V_{\mathrm{O}}(\text { Amplifier } \mathrm{A})=7.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{O}}(\text { Amplifier } B)=7.5 \mathrm{~V} \\ \hline \end{gathered}$	$1+$	$R_{L}=\infty$	-	9	15.5	-	9	15.5	mA
$\begin{aligned} & V_{O}(\text { Amplifier } A)=0 \mathrm{~V} \\ & V_{O}(\text { Amplifier } B)=0 \mathrm{~V} \end{aligned}$			-	1.2	3	-	1.2	3	mA
$\begin{aligned} & \mathrm{V}_{\mathrm{O}}(\text { Amplifier } \mathrm{A})=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}(\text { Amplifier } B)=7.5 \mathrm{~V} \end{aligned}$			-	5	8.5	-	5	8.5	mA
Input Offset Voltage Temperature Drift	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$		-	6	-	-	8	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Crosstalk		$\mathrm{f}=1 \mathrm{kHz}$	-	120	-	-	120	-	dB

Schematic Diagram

HARRIS
SEMICONDUCTOR

Dual, 9MHż, Operational Transconductance Amplifier (OTA)

Features

- Low Initial Input Offset Voltage: $500 \mu \mathrm{~V}$ (Max) (CA3280A)
- Low Offset Voltage Change vs $\mathrm{I}_{\mathrm{ABC}}$: $<500 \mu \mathrm{~V}$ (Typ) for All Types
- Low Offset Voltage Drift: $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (Max) (CA3280A)
- Excellent Matching of the Two Amplifiers for All Characteristics
- Internal Current-Driven Linearizing Diodes Reduce the External Input Current to an Offset Component
- Flexible Supply Voltage Range \qquad

Applications

- Voltage Controlled Amplifiers
- Voltage Controlled Oscillators
- Multipliers
- Demodulators
- Sample and Hold
- Instrumentation Amplifiers
- Function Generators
- Triangle Wave-to-Sine Wave Converters
- Comparators
- Audio Preamplifier

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
CA3280AE	-55 to 125	16 Ld PDIP	E16.3
CA3280E	0 to 70	16 Ld PDIP	E 16.3
CA3280AF3	-55 to 125	16 Ld CERDIP	F 16.3

Description

he CA3280 and CA3280A types consist of two variable operational amplifiers that are designed to substantially reduce the initial input offset voltage and the offset voltage variation with respect to changes in programming current. This design results in reduced "AGC thump," an objectionable characteristic of many AGC systems. Interdigitation, or crosscoupling, of critical portions of the circuit reduces the amplifier dependence upon thermal and processing variables.

The CA3280 has all the generic characteristics of an operational voltage amplifier except that the forward transfer characteristics is best described by transconductance rather than voltage gain, and the output is current, not voltage. The magnitude of the output current is equal to the product of transconductance and the input voltage. This type of operational transconductance amplifier was first introduced in 1969 (see Note 1), and it has since gained wide acceptance as a gateable, gain controlled building block for instrumentation and audio applications, such as linearization of transducer outputs, standardization of widely changing signals for data processing, multiplexing, instrumentation amplifiers operating from the nanopower range to high current and high speed comparators.

For additional application information on this device and on OTAs in general, please refer to Application Notes: AN6818, AN6668, and AN6077.
"OTA Obsoletes Op Amp", by C. F. Wheatley and H. A. Wittlinger, NEC Proceedings, December 1969.
NOTE:

1. "OTA Obsoletes Op Amp", by C. F. Wheatley and H. A. Wittlinger, NEC Proceedings, December 1969

Absolute Maximum Ratings	
Supply Voltage (Between V+ and V-)	+36V
Differential Input Voltage.	5 V
Input Voltage Range.	$V+$ to V -
Input Current at $\mathrm{I}_{\mathrm{D}}=0$	$100 \mu \mathrm{~A}$
Amplifier Bias Current (${ }_{\text {ABC }}$)	10 mA
Output Short Circuit Duration (Note 3)	Indefinite
Linearizing Diode Bias Current, ID	5 mA
Peak Input Current with Linearizing D	+

Thermal Information

Thermal Resistance (Typical, Note 3) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ CERDIP Package 65.
PDIP Package 100 N/A
Maximum Junction Temperature (CERDIP Package) $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $\ldots-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$

Operating Conditions

Temperature Range

```
СА3280 \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
САЗ280A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
```

Supply Voltage Range (Typ) $\pm 2 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
2. Short circuit may be applied to ground or to either supply.
3. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications For Equipment Design, at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		CA3280			CA3280A			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	V_{10}	${ }^{\text {ABC }}$ ($=1 \mathrm{~mA}$		-	-	3	-	-	0.5	mV
		${ }^{\prime} A B C=100 \mu \mathrm{~A}$		-	0.7	3	-	0.25	0.5	mV
		$I_{\text {ABC }}=10 \mu \mathrm{~A}$		-	-	3	-	-	0.5	mV
		$I_{A B C}=1 \mathrm{~mA}$ to $10 \mu \mathrm{~A}$, $T_{A}=$ Full Temp. Range		-	0.8	4	-	0.8	1.5	mV
Input Offset Voltage Drift	$1 \Delta \mathrm{~V}_{10} \mid$	${ }^{\prime}{ }_{\text {ABC }}=1 \mu \mathrm{~A}$ to 1 mA		-	0.5	1	-	0.5	1	mV
		$I_{A B C}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=\text { Full }$ Temperature Range		-	5	-	-	3	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Amplifier Bias Voltage Peak Output Voltage	$\mathrm{V}_{\text {ABC }}$	${ }^{\prime} A B C=100 \mu \mathrm{~A}$		-	1.2	-	-	1.2	-	V
	$\mathrm{V}_{\text {OM }}{ }^{+}$	$1 \mathrm{ABC}=500 \mathrm{~mA}$		12	13.7	-	12.5	13.7	-	V
	$\mathrm{V}_{\mathrm{OM}}{ }^{-}$			12	-14.3	-	-13.3	-14.3	-	V
	$\mathrm{V}_{\mathrm{OM}^{+}}$	${ }^{\text {ABC }}=5 \mu \mathrm{~A}$		12	13.9	-	12.5	13.9	-	V
	$\mathrm{V}_{\mathrm{OM}}{ }^{-}$			12	-14.5	-	-13.5	-14.5	-	V
Common Mode Input Voltage Range	VICR	${ }^{\prime} A B C=100 \mu \mathrm{~A}$		-13	-	13	-13	-	13	V
Noise Voltage	${ }^{\text {N }}$	${ }^{\text {ABC }}=500 \mu \mathrm{~A}$	10Hz	-	20	-	-	20	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
			1 kHz	-	8	-	-	8	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
			10kHz	-	7	-	-	7	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Offset Current	10	$I_{\text {ABC }}=500 \mu \mathrm{~A}$		-Z	0.3	0.7	-	0.3	0.7	$\mu \mathrm{A}$
Input Bias Current	IB	${ }^{\prime} A B C=500 \mu \mathrm{~A}$		-	1.8	5	-	1.8	5	$\mu \mathrm{A}$
		$I_{A B C}=500 \mu A, T_{A}=$ Full Temperature Range		-	3	8	-	3	8	$\mu \mathrm{A}$
Peak Output Current	${ }^{\text {O }}$ + ${ }^{+}$	${ }^{\text {ABC }}=500 \mu \mathrm{~A}$	Source	350	410	650	350	410	650	$\mu \mathrm{A}$
	IOM^{-}		Sink	-350	-410	-650	-350	-410	-650	$\mu \mathrm{A}$
	lOM^{+}	${ }^{\prime} \mathrm{ABC}=5 \mu \mathrm{~A}$	Source	3	4.1	7	3	4.1	7	$\mu \mathrm{A}$
	Іом ${ }^{-}$		Sink	-3	-4.1	-7	-3	-4.1	-7	$\mu \mathrm{A}$

CA3280, CA3280A

Electrical Specifications For Equipment Design, at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS		CA3280			CA3280A			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
Peak Output Current Sink and Source	${ }^{\text {I OM }}$, IOM^{+}	$I_{A B C}=500 \mu A$, Temperature R	$\begin{aligned} & T_{A}=\text { Full } \\ & \text { ange } \end{aligned}$	350	450	550	350	450	550	$\mu \mathrm{A}$
Linearization Diodes Offset Current Dynamic Impedance		$I_{D}=100 \mu \mathrm{~A}$		-	10	-	*	10	\cdot	$\mu \mathrm{A}$
		$\mathrm{I}_{\mathrm{D}}=10 \mu \mathrm{~A}$		-	0.5	1	-	0.5	1	$\mu \mathrm{A}$
		$\mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}$		-	700	-	-	700	-	Ω
Diode Network Supply Current		$I_{\text {ABC }}=100 \mu \mathrm{~A}$		250	400	800	250	400	800	$\mu \mathrm{A}$
Amplifier Supply Current (Per Amplifier)	$1+$	${ }^{\prime} \mathrm{ABC}=500 \mu \mathrm{~A}$		-	2	2.4	-	2	2.4	mA
Amplifier Output Leakage Current	lOL	$I_{A B C}=0, V_{O}=0 \mathrm{~V}$		-	0.015	0.1	-	0.015	0.1	nA
		$\mathrm{I}_{\mathrm{ABC}}=0, \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V}$		-	0.15	1	-	0.15	1	nA
Common Mode Rejection Ratio	CMRR	${ }^{\prime} A B C=100 \mu \mathrm{~A}$		80	100	-	94	100	-	dB
Power Supply Rejection Ratio	PSRR	${ }^{\text {ABC }}=100 \mu \mathrm{~A}$		86	105	-	94	105	-	dB
Open Loop Voltage Gain	AOL	$\begin{aligned} & I_{A B C}=100 \mu \mathrm{~A}, \\ & R_{L}=\infty V_{O}=20 V_{P-P} \end{aligned}$		94	100	-	94	100	-	dB
				50	100	-	50	100	-	kV/N
Forward Transconductance	G_{M}	$\begin{aligned} & \mathrm{I}_{\mathrm{ABC}}=50 \mu \mathrm{~A}, \text { Large } \\ & \text { Signal } \\ & \hline \end{aligned}$		-	0.8	1.2	-	0.8	1.2	mS
	9M	$I_{\text {ABC }}=1 \mathrm{~mA}$, Small Signal		-	16	22	-	16	22	mS
Input Resistance	R_{1}	$I_{\text {ABC }}=10 \mu \mathrm{~A}$		0.5	-	-	0.5	-	-	M Ω
Channel Separation		$\mathrm{f}=1 \mathrm{kHz}$		-	94	*	-	94	-	dB
Open Loop Total Harmonic Distortion	THD	$\begin{aligned} & f=1 \mathrm{kHz}, I_{A B C}=1.5 \mathrm{~mA}, \\ & R_{L}=15 \mathrm{k} \Omega, V_{O}=20 V_{P-P} \end{aligned}$		-	0.4	-	-	0.4	-	\%
Bandwidth	${ }_{\text {f }}$	${ }^{\prime}{ }_{\text {ABC }}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=100 \Omega$		-	9	-	-	9	-	MHz
Slew Rate, Open Loop	SR	$I_{\text {ABC }}=1 \mathrm{~mA}$		-	125	-	*	125	-	V/ $/ \mathrm{s}$
Capacitance	C_{1}	${ }^{\prime} A B C=100 \mu \mathrm{~A}$	Input	-	4.5	-	-	4.5	-	pF
	CO_{0}		Output	-	7.5	\cdot	-	7.5	\cdot	pF
Output Resistance	Ro	$l_{A B C}=100 \mu \mathrm{~A}$		-	63	-	-	63	-	M Ω

Test Circuits and Waveforms

Figure 1. LEAKAGE CURRENT TEST CIRCUIT

FIGURE 2. CHANNEL SEPARATION TEST CIRCUIT

Test Circuits and Waveforms (Continued)

FIGURE 3A. EFFECTS OF DIODE LINEARIZATION, WITH DIODE PROGRAMMING TERMINAL ACTIVE

FIGURE 3B. WITH DIODE PROGRAMMING TERMINAL CUTOFF FIGURE 3. CA3280 TRANSFER CHARACTERISTICS

Application Information

Figures 4 and 5 show the equivalent circuits for the current source and linearization diodes in the CA3280. The current through the linearization network is approximately equal to the programming current. There are several advantages to driving these diodes with a current source. First, only the offset current from the biasing network flows through the input resistor. Second, another input is provided to extend the gain control dynamic range. And third, the input is truly differential and can accept signals within the common mode range of the CA3280.

Typical Applications

The structure of the variable operational amplifier eliminates the need for matched resistor networks in differential to single ended converters, as shown in Figure 6. A matched resistor network requires ratio matching of 0.01% or trimming for 80 dB of common-mode rejection. The CA3280, with its excellent common mode rejection ratio, is capable of converting a small ($\pm 25 \mathrm{mV}$) differential input signal to a single-ended output without the need for a matched resistor network.

Figure 7 shows the CA3280 in a typical gain control application. Gain control can be performed with the amplifier bias current ($I_{A B C}$). With no diode bias current, the gain is merely $g_{M} R_{L}$. For example, with an $I_{A B C}$ of 1 mA , the g_{M} is approximately 16 mS . With the CA3280 operating into a $5 \mathrm{k} \Omega$ resistor, the gain is 80 .
The need for external buffers can be eliminated by the use of low value load resistors, but the resulting increase in the required amplifier bias current reduces the input impedance of the CA3280. The linearization diode impedance also decreases as the diode bias current increases, which further loads the input. The diodes, in addition to acting as a linearization network, also operate as an additional attenuation system to accommodate input signals in the volt range when they are applied through appropriate input resistors.
Figure 10 shows a triangle wave to sine wave converter using the CA3280. Two $100 \mathrm{k} \Omega$ resistors are connected between the differential amplifier emitters and $\mathrm{V}+$ to reduce the current flow through the differential amplifier. This allows the amplifier to fully cut off during peak input signal excursions. THD is appropriately 0.37% for this circuit.

FIGURE 4. VOA SHOWING LINEARIZATION DIODES AND CURRENT DRIVE

FIGURE 6. DIFFERENTIAL TO SINGLE ENDED CONVERTER

FIGURE 5. BLOCK DIAGRAM OF LINEARIZED VOA

FIGURE 7. TYPICAL GAIN CONTROL CIRCUIT

FIGURE 8. TWO CHANNEL LINEAR MULTIPLEXER

FIGURE 9. CA3280 USED IN CONJUNCTION WITH A CA3160 TO PROVIDE A FUNCTION GENERATOR WITH A TUNABLE RANGE OF $\mathbf{2 H z}$ TO $\mathbf{1 M H z}$

FIGURE 10. TRIANGLE WAVE-TO-SINE WAVE CONVERTER

Typical Performance Curves

FIGURE 11. AMPLIFIER GAIN vs FREQUENCY

FIGURE 12. SUPPLY CURRENT vs DIODE CURRENT

Typical Performance Curves (Continued)

FIGURE 13. INPUT OFFSET CURRENT vs AMPLIFIER BIAS CURRENT

FIGURE 15. PEAK OUTPUT VOLTAGE vs AMPLIFIER BIAS CURRENT

FIGURE 17. LEAKAGE CURRENT vs TEMPERATURE

FIGURE 14. INPUT OFFSET VOLTAGE vs AMPLIFIER BIAS CURRENT

FIGURE 16. INPUT CURRENT vs INPUT DIFFERENTIAL VOLTAGE

FIGURE 18. AMPLIFIER BIAS VOLTAGE vs AMPLIFIER BIAS CURRENT

Typical Performance Curves (Continued)

FIGURE 19. 1/f NOISE vs FREQUENCY

FIGURE 21. DIODE RESISTANCE vs DIODE CURRENT

FIGURE 23. SUPPLY CURRENT vs AMPLIFIER BIAS CURRENT

FIGURE 20. PEAK OUTPUT CURRENT vs AMPLIFIER BIAS CURRENT

FIGURE 22. AMPLIFIER GAIN vs AMPLIFIER BIAS CURRENT

FIGURE 24. INPUT BIAS CURRENT vs AMPLIFIER BIAS CURRENT

Metallization Mask Layout

Dimensions in parentheses are in millimeters and derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch).

The photographs and dimensions represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are 57° instead of 90° with respect to the face of the chip. Therefore, the isolated chip is actually 7 mils (0.17 mm) larger in both dimensions.

Features

- 2V Supply at 300μ A Supply Current
- 1pA Input Current (Typ) (Essentially Constant to $85^{\circ} \mathrm{C}$)
- Rail-to-Rail Output Swing (Drive $\pm 2 \mathrm{~mA}$ into $1 \mathrm{k} \Omega$ Load)
- Pin Compatible with 741 Operational Amplifiers

Applications

- pH Probe Amplifiers
- Picoammeters
- Electrometer (High Z) Instruments
- Portable Equipment
- Inaccessible Field Equipment
- Battery-Dependent Equipment (Medical and Military)

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathbf{C}\right)$	PACKAGE	PKG. NO.
CA3420AE	-55 to 125	8 Ld PDIP	E8.3
CA3420AT	-55 to 125	8 Pin Metal Can	T8.C
CA3420E	-55 to 125	8 Ld PDIP	E8.3
CA3420T	-55 to 125	8 Pin Metal Can	T8.C

Description

The CA3420A and CA3420 are integrated circuit operational amplifiers that combine PMOS transistors and bipolar transistors on a single monolithic chip. The CA3420A and CA3420 BiMOS operational amplifiers feature gate protected PMOS transistors in the input circuit to provide very high input impedance, very low input currents (less than $1 \mathrm{pA})$. The internal bootstrapping network features a unique guardbanding technique for reducing the doubling of leakage current for every $10^{\circ} \mathrm{C}$ increase in temperature. The CA3420 series operates at total supply voltages from 2 V to 20 V either single or dual supply. These operational amplifiers are internally phase compensated to achieve stable operation in the unity gain follower configuration. Additionally, they have access terminals for a supplementary external capacitor if additional frequency roll-off is desired. Terminals are also provided for use in applications requiring input offset voltage nulling. The use of PMOS in the input stage results in common mode input voltage capability down to 0.45 V below the negative supply terminal, an important attribute for single supply application. The output stage uses a feedback OTA type amplifier that can swing essentially from rail-to-rail. The output driving current of $1.5 \mathrm{~mA}(\mathrm{Min})$ is provided by using nonlinear current mirrors.

Pinouts

> CA3420 (PDIP) TOP VIEW

CA3420 (METAL CAN)
TOP VIEW

Functional Diagram

 November 1996 Harris Answert AX. see Section 12

63kHz, Nanopower, BiMOS Operational Amplifiers

Features

- High Input Resistance
- Standby Power at $\mathbf{V}_{+}=\mathbf{5 V}$ 300nW (Typ)
- Supply Current, BW, Slew Rate Programmable Using External Resistor
- Input Current

10pA (Typ)

- 5V to 15V Supply
- Output Drives Typical Bipolar Type Loads

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
CA3440AE	-55 to 125	8 Ld PDIP	E8.3
CA3440E	-55 to 125	8 Ld PDIP	E8.3
CA3440M (3440)	-55 to 125	8 Ld SOIC	M8.15

Description

The CA3440A and CA3440 (see Note) are integrated circuit operational amplifiers that combine the advantages of MOS and bipolar transistors on a single monolithic chip.

The CA3440A and CA3440 BiMOS op amps feature gate protected PMOS transistors in the input circuit to provide very high input impedance, very low input currents (less than $10 p A$). These devices operate at total supply voltage from 5 V to 15 V and can be operated over the temperature range from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. Their virtues are programmability and very low standby power consumption (300 nW). These operational amplifiers are internally phase compensated to achieve stable operation in the unity gain follower configuration. Terminals are also provided for use in applications requiring input offset voltage nulling. The use of PMOS in the input stage results in common mode input voltage capability down to 0.5 V below the negative supply terminals, an important attribute for single supply applications. The output stage uses MOS complementary source follower form which permits moderate load driving capability ($10 \mathrm{k} \Omega$) at very low standby currents (50 nA).

The CA3440A and CA3440 have the same 8 pin terminal pinout as the "741" and other industry standard op amps with two exceptions: terminals one and five must be connected to the negative supply or to a potentiometer if nulling is required. Terminal 8 must be programmed through an external resistor returned to the negative supply.

NOTE: Formerly Developmental Type No. TA10590.

Pinout

CA3440, CA3440A

(PDIP, SOIC)
TOP VIEW

A comphere una shem kovalubie va web,

Features

- High Open Loop Gain at Video Frequencies
- AOL .$>40 \mathrm{~dB}$ at $\mathrm{f}=5 \mathrm{MHz}$
- Power Bandwidth of $10 \mathrm{MHz} \ldots . A_{C L}=5 ; \mathrm{V}_{\mathrm{O}}= \pm 3.5 \mathrm{~V}$
- Slew Rate at Full Load $330 \mathrm{~V} / \mu \mathrm{s}\left(\mathrm{A}_{\mathrm{V}} \geq 10\right)$
- $\mathrm{f}_{\mathrm{T}}=\mathbf{2 2 0 M H z} \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}$ With a Load of 50Ω \| 20 pFII $1 \mathrm{M} \Omega$ (Scope Input)
- $\mathrm{V}_{\text {OUT }}= \pm 4.1 \mathrm{~V}$ Into 75Ω
- Offset Null Terminals

Applications

- Video Line Driver
- High Frequency Unity Gain Buffer
- Pulse Amplifier
- High Speed Comparator
- High Frequency Oscillator and Video Amplifiers
- Driver for A/Ds in Video Applications 10MHz BW

Description

The CA3450 (see Note) is a large signal video line driver and high speed operational amplifier capable of driving 50Ω transmission lines and flash A/Ds. The uncompensated unity gain crossing occurs at 230 MHz without load. It can operate at dual or single supplies of $\pm 7.25 \mathrm{~V}$ or 14.5 V , respectively. The CA3450 can be compensated with a single capacitor network. It has output drive capability of 75 mA SINK or SOURCE. The CA3450 is capable of driving Flash A/Ds in video or high speed instrumentation (accurate) applications with bandwidth up to 10 MHz . Offset voltage nulling terminals are also available.

NOTE: Formerly Developmental Type No. TA11371A.
Ordering Information

| PART NUMBER | TEMP.
 RANGE${ }^{\circ} \mathrm{C}$) |
| :--- | :---: | :--- | :---: |\quad PACKAGE | PKG. |
| :---: |
| NO. |$|$

 November 1996 , page: htrprax, see SeAmplifie, BiMOS Microprocessor Operational Amplifiers with MOSFET Input/CMOS Output

Features

- MOSFET Input Stage
- Very High Z_{I}. $1.5 T \Omega$ ($1.5 \times 10^{12} \Omega$) (Typ)
- Very Low II 5pA (Typ) at 15V Operation 2pA (Typ) at 5V Operation
- Ideal for Single Supply Applications
- Common Mode Input Voltage Range Includes

Negative Supply Rail; Input Terminals Can Be
Swung 0.5V Below Negative Supply Rail

- CMOS Output Stage Permits Signal Swing to Either (or Both) Supply Rails
- CA5130A, CA5130 Have Full Military Temperature Range Guaranteed Specifications for $\mathrm{V}_{+}=\mathbf{5 V}$
- CA5130A, CA5130 Are Guaranteed to Operate Down to $\mathrm{V}_{+}=4.5 \mathrm{~V}$ for A_{OL}
- CA5130A, CA5130 Are Guaranteed to Operate at $\pm 7.5 \mathrm{~V}$ CA3130A, CA3130 Specifications

Applications

- Ground Referenced Single Supply Amplifiers
- Fast Sample-Hold Amplifiers
- Long Duration Timers/Monostables
- High Input Impedance Comparators (Ideal Interface with Digital CMOS)
- High Input Impedance Wideband Amplifiers
- Voltage Followers (e.g., Follower for Single-Supply D/A Converter)
- Voltage Regulators (Permits Control of Output Voltage Down to OV)
- Peak Detectors
- Single Supply Full Wave Precision Rectifiers
- Photo Diode Sensor Amplifiers
- 5V Logic Systems
- Microprocessor Interface

Description

CA5130A and CA5130 are integrated circuit operational amplifiers that combine the advantage of both CMOS and bipolar transistors on a monolithic chip. They are designed and guaranteed to operate in microprocessors or logic systems that use +5 V supplies.
Gate protected P-Channel MOSFET (PMOS) transistors are used in the input circuit to provide very high input impedance, very low input current, and exceptional speed performance. The use of PMOS field effect transistors in the input stage results in common mode input voltage capability down to 0.5 V below the negative supply terminal, an important attribute in single supply applications.
A complementary symmetry MOS (CMOS) transistor-pair, capable of swinging the output voltage to within 10 mV of either supply voltage terminal (at very high values of load impedance), is employed as the output circuit.
The CA5130 Series circuits operate at supply voltages ranging from 4 V to 16 V , or $\pm 2 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ when using split supplies. They can be phase compensated with a single external capacitor, and have terminals for adjustment of offset voltage for applications requiring offset null capability. Terminal provisions are also made to permit strobing of the output stage.
The CA5130A, CA5130 have guaranteed specifications for 5 V operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
CA5130AE	-55 to 125	8 Ld PDIP	E8.3
CA5130AM (5130A)	-55 to 125	8 Ld SOIC	M8.15
CA5130AT	-55 to 125	8 Pin Metal Can	T8.C
CA5130E	-55 to 125	8 Ld PDIP	E8.3
CA5130M (5130)	-55 to 125	8 Ld SOIC	M8.15
CA5130T	-55 to 125	8 Pin Metal Can	T8.C

Pinouts

HARRIS
SEMICONDUCTOR

Pry track tata shere

4 MHz , BiMOS Microprocessor Operational Amplifiers with MOSFET Input/CMOS Output

Features

- MOSFET Input Stage
- Very High $Z_{\mid} ; 1.5 \mathrm{~T} \Omega\left(1.5 \times 10^{12} \Omega\right)$ (Typ)
- Very Low I; 5pA (Typ) at 15V Operation 2pA (Typ) at 5V Operation
- Common-Mode Input Voltage Range Includes Negative Supply Rail; Input Terminals Can be Swung 0.5V Below Negative Supply Rail
- CMOS Output Stage Permits Signal Swing to Either (or Both) Supply Rails
- CA5160A, CA5160 Have Full Military Temperature Range Guaranteed Specifications for $\mathbf{V}_{+}=5 \mathrm{~V}$
- CA5160A, CA5160 Are Guaranteed to Operate Down to 4.5 V for A_{OL}
- CA5160A, CA5160 Are Guaranteed Up to $\pm 7.5 \mathrm{~V}$

Applications

- Ground Referenced Single Supply Amplifiers
- Fast Sample-Hold Amplifiers
- Long Duration Timers/Monostables
- Ideal Interface With Digital CMOS
- High Input Impedance Wideband Amplifiers
- Voltage Followers (e.g., Follower for Single Supply D/A Converter)
- Wien-Bridge Oscillators
- Voltage Controlled Oscillators
- Photo Diode Sensor Amplifiers
- 5V Logic Systems
- Microprocessor Interface

Description

CA5160A and CA5160 are integrated circuit operational amplifiers that combine the advantage of both CMOS and bipolar transistors on a monolithic chip. The CA5160 series circuits are frequency compensated versions of the popular CA5130 series. They are designed and guaranteed to operate in microprocessor or logic systems that use +5 V supplies.
Gate-protected P-Channel MOSFET (PMOS) transistors are used in the input circuit to provide very high input impedance, very low input current, and exceptional speed performance. The use of PMOS field effect transistors in the input stage results in common-mode input voltage capability down to 0.5 V below the negative supply terminal, an important attribute in single supply applications.
A complementary symmetry MOS (CMOS) transistor pair, capable of swinging the output voltage to within 10 mV of either supply voltage terminal (at very high values of load impedance), is employed as the output circuit.
The CA5160 Series circuits operate at supply voltages ranging from +5 V to +16 V , or $\pm 2.5 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ when using split supplies, and have terminals for adjustment of offset voltage for applications requiring offset-null capability. Terminal provisions are also made to permit strobing of the output stage. They have guaranteed specifications for 5 V operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. NO.
CA5160AE	-55 to 125	8 Ld PDIP	E8.3
CA5160AM (5160A)	-55 to 125	8 Ld SOIC	M8.15
CA5160M (5160)	-55 to 125	8 Ld SOIC	M8.15
CA5160E	-55 to 125	8 Ld PDIP	E8.3
CA5160T	-55 to 125	8 Pin Metal Can	T8.C

Pinouts

NOTE: CA5160 Series devices have an on-chip frequency compensation network. Supplementary phase-compensation or frequency roll-off (if desired) can be connected externally between terminals 1 and 8 .

3MHz, BiMOS Microprocessor Operational Amplifiers with MOSFET Input/CMOS Output

Features

- MOSFET Input Stage provides
- Very High $Z_{I}=1.5 \mathrm{~T} \Omega\left(1.5 \times 10^{12} \Omega\right)$ (Typ)
- Very Low $I_{I}=5 p A(T y p)$ at 15 V Operation

$$
=2 p A(T y p) \text { at 5V Operation }
$$

- Ideal for Single Supply Applications
- Common Mode Input Voltage Range Includes Negative Supply Rail; Input Terminals Can be Swung 0.5V Below Negative Supply Rail
- CMOS Output Stage Permits Signal Swing to Either (or Both) Supply Rails
- CA5260A, CA5260 Have Full Military Temperature Range Guaranteed Specifications for $\mathrm{V}_{+}=5 \mathrm{~V}$
- CA5260A, CA5260 are Guaranteed to Operate Down to 4.5V for A_{OL}
- Fully Guaranteed to Operate from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ at V+ = 5V, V- = GND

Applications

- Ground Referenced Single Supply Amplifiers
- Fast Sample-Hold Amplifiers
- Long Duration Timers/Monostables
- Ideal Interface with Digital CMOS
- High Input Impedance Wideband Amplifiers
- Voltage Followers (e.g., Follower for Single Supply D/A Converter)
- Voltage Regulators (Permits Control of Output Voltage Down to OV)
- Wien Bridge Oscillators
- Voltage Controlled Oscillators
- Photo Diode Sensor Amplifiers
- 5V Logic Systems
- Microprocessor Interface

Description

The CA5260A and CA5260 are integrated-circuit operational amplifiers that combine the advantage of both CMOS and bipolar transistors on a monolithic chip. The CA5260 series circuits are dual versions of the popular CA5160 series. They are designed and guaranteed to operate in microprocessor or logic systems that use +5 V supplies.
Gate-protected P-Channel MOSFET (PMOS) transistors are used in the input circuit to provide very-high-input impedance, very-low-input current, and exceptional speed performance. The use of PMOS field-effect transistors in the input stage results in common-mode input-voltage capability down to 0.5 V below the negative-supply terminal, an important attribute in single-supply applications.

A complementary-symmetry MOS (CMOS) transistor-pair, capable of swinging the output voltage to within 10 mV of either supply-voltage terminal (at very high values of load impedance), is employed as the output circuit.

The CA5260 Series circuits operate at supply voltages ranging from 4.5 V to 16 V , or $\pm 2.25 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$ when using split supplies.

The CA5260, CA5260A have guaranteed specifications for 5V operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. NO.
CA5260AE	-55 to 125	8 Ld PDIP	E8.3
$\begin{aligned} & \text { CA5260AM } \\ & \text { (5260A) } \end{aligned}$	-55 to 125	8 Ld SOIC	M8.15
$\begin{aligned} & \text { CA5260AM96 } \\ & \text { (5260A) } \end{aligned}$	-55 to 125	8 Ld SOIC Tape and Reel	M8.15
CA5260E	-55 to 125	8 Ld PDIP	E8.3
$\begin{aligned} & \hline \text { CA5260M } \\ & (5260) \end{aligned}$	-55 to 125	8 Ld SOIC	M8.15
$\begin{aligned} & \text { CA5260M96 } \\ & \text { (5260) } \end{aligned}$	-55 to 125	8 Ld SOIC Tape and Reel	M8.15

Pinout

CA5260, CA5260A

Absolute Maximum Ratings

Supply Voltage (Between V+ and V- Terminals)
Differential Input Voltage Input Voltage. (V+ $+8 \mathrm{~V})$ to $(\mathrm{V}--0.5 \mathrm{~V})$ Input Current. 1mA Output Short Circuit Duration (Note 1) Indefinite

Operating Conditions

Temperature Range
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 2)	$\theta_{J A}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
PDIP Package	96
SOIC Package	157
Maximum Junction Temperature (Die).	$175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package)	$150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range	C to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s). . (SOIC - Lead Tips Only)	.. $300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Short circuit may be applied to ground or to either supply.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Typical Values Intended Only for Design Guidance, $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	TYPICAL VALUES		UNITS
			CA5260	CA5260A	
Input Resistance	R_{1}		1.5	1.5	$T \Omega$
Input Capacitance	C_{1}	$\mathrm{f}=1 \mathrm{MHz}$	4.3	4.3	pF
Unity Gain Crossover Frequency	${ }_{\text {f }}$		3	3	MHz
Slew Rate	SR	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}_{\text {P-P }}$	5	5	V/ $\mu \mathrm{s}$
Transient Response Rise Time	t_{r}	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (Voltage Follower)	0.09	0.09	$\mu \mathrm{s}$
Overshoot	OS		10	10	\%
Settling Time ($\mathrm{To}^{\text {c }}<0.1 \%, \mathrm{~V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$)	ts	$\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ (Voltage Follower)	1.8	1.8	$\mu \mathrm{s}$

Electrical Specifications $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}=0 \mathrm{~V}$

PARAMETER	SYMBOL	TEST CONDITIONS	CA5260			CA5260A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	V_{10}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-	2	15	-	1.5	4	mV
Input Offset Current	1 IO	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-	1	10	-	1	10	pA
Input Current	1	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-	2	15	-	2	15	pA
Common Mode Rejection Ratio	CMRR	$\mathrm{V}_{\mathrm{CM}}=0$ to 1 V	70	85	\bullet	80	85	-	dB
		$\mathrm{V}_{\mathrm{CM}}=0$ to 2.5 V	50	55	-	50	55	-	dB
Common Mode Input Voltage Range	$\mathrm{V}_{\text {ICR }}{ }^{+}$		2.5	3	-	2.5	3	-	V
	$\mathrm{V}_{\text {ICR }}{ }^{-}$		-	-0.5	0	-	-0.5	0	V
Power Supply Rejection Ratio	PSRR	$\Delta \mathrm{V}+=1 \mathrm{~V} ; \Delta \mathrm{V}-=1 \mathrm{~V}$	70	84	-	75	84	-	dB
Large Signal Voltage Gain (Note 3)	AOL	$\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}_{\mathrm{O}}=0.5$ to 4 V	105	111	-	107	113	-	dB
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \text { to } 3.6 \mathrm{~V} \\ & \hline \end{aligned}$	80	86	-	83	86	-	dB
Source Current	ISOURCE	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	1.75	2.2	-	1.75	2.2	-	mA
Sink Current	ISINK	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	1.70	2	-	1.70	2	-	mA
Output Voltage	$\mathrm{V}_{\mathrm{OM}^{+}}$	$\mathrm{R}_{\mathrm{L}}=\infty$	4.99	5	-	4.99	5	-	V
	$\mathrm{V}_{\mathrm{OM}^{-}}$		-	0	0.01	-	0	0.01	V
	$\mathrm{V}_{\mathrm{OM}^{+}}$	$R_{L}=10 \mathrm{k} \Omega$	4.4	4.7	-	4.4	4.7	-	V
	$\mathrm{V}_{\mathrm{OM}}{ }^{-}$		-	0	0.01	-	0	0.01	V
	$\mathrm{V}_{\mathrm{OM}^{+}}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	3	3.4	-	3	3.4	-	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$		-	0	0.01	-	0	0.01	V

Electrical Specifications $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$ (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	CA5260			CA5260A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Supply Current	ISUPPLY	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-	1.60	2.0	-	1.60	2.0	mA
		$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-	1.80	2.25	-	1.80	2.25	mA

NOTE:
3. For $\mathrm{V}_{+}=4.5 \mathrm{~V}$ and $\mathrm{V}-=\mathrm{GND} ; \mathrm{V}_{\mathrm{OUT}}=0.5 \mathrm{~V}$ to 3.2 V at $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$.

Electrical Specifications $T_{A}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$

PARAMETER	SYMBOL	TEST CONDITIONS	CA5260			CA5260A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Input Offiset Voltage	V_{10}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-	3	20	-	2	15	mV
Input Offset Current	10	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-	1	10	-	1	10	nA
Input Current	1	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-	2	15	-	2	15	nA
Common Mode Rejection Ratio	CMRR	$\mathrm{V}_{\text {CM }}=0$ to 1 V	60	78	-	65	78	-	dB
		$\mathrm{V}_{\mathrm{CM}}=0$ to 2.5 V	50	60	-	50	60	-	dB
Common Mode Input Voltage Range	$\mathrm{V}_{\text {ICR }}{ }^{+}$		2.5	3	-	2.5	3	-	V
	$\mathrm{V}_{\text {ICR }}{ }^{-}$		-	-0.5	0	-	-0.5	0	V
Power Supply Rejection Ratio	PSRR	$\begin{aligned} & \Delta V+=1 V ; \\ & \Delta V-=1 V \end{aligned}$	60	65	-	62	65	-	dB
Large Signal Voltage Gain (Note 4)	AOL	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=\infty, \\ & \mathrm{V}_{\mathrm{O}}=0.5 \text { to } 4 \mathrm{~V} \end{aligned}$	70	78	-	70	78	-	dB
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{O}}=0.5 \text { to } 3.6 \mathrm{~V} \end{aligned}$	60	65	-	60	65	-	dB
Source Current	Isource	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	1.3	1.6	-	1.3	1.6	-	mA
Sink Current	ISINK	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	1.2	1.4	-	1.2	1.4	-	mA
Output Voltage	$\mathrm{V}_{\text {OM }}{ }^{+}$	$\mathrm{R}_{\mathrm{L}}=\infty$	4.99	5	-	4.99	5	-	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$		-	0	0.01	-	0	0.01	V
	VOM^{+}	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	4.2	4.4	-	4.2	4.4	-	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$		-	0	0.01	-	0	0.01	V
	$\mathrm{V}_{\text {OM }}{ }^{+}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	2.5	2.7	-	2.5	2.7	-	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$		-	0	0.01	-	0	0.01	V
Supply Current	IsUPPLY	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-	1.65	2.2	-	1.65	2.2	mA
		$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-	1.95	2.35	-	1.95	2.35	mA

NOTE:
4. For $\mathrm{V}_{+}=4.5 \mathrm{~V}$ and $\mathrm{V}-=\mathrm{GND} ; \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ to 3.2 V at $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$.

Electrical Specifications Each Amplifier at $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	CA5260			CA5260A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	V_{10}	$\mathrm{V}_{\mathrm{S}}= \pm 7.5$	-	6	15	-	2	5	mV
Input Offset Current	10	$\mathrm{V}_{\mathrm{S}}= \pm 7.5$	-	0.5	30	\cdot	0.5	20	pA
Input Current	1	$\mathrm{V}_{\mathrm{S}}= \pm 7.5$	-	5	50	-	5	30	pA
Large Signal Voltage Gain	$\mathrm{AOL}^{\text {a }}$	$\begin{aligned} & V_{O}=10 V_{P-P}, \\ & R_{L}=10 \mathrm{k} \Omega \end{aligned}$	50	320	-	50	320	-	kV/
			94	110	-	94	110	-	dB
Common Mode Rejection Ratio	CMRR		70	90	-	80	95	-	dB

CA5260, CA5260A

Electrical Specifications Each Amplifier at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=15 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	CA5260			CA5260A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Common Mode Input Voltage Range	VICR		10	$\begin{gathered} -0.5 \text { to } \\ 12 \end{gathered}$	0	10	$\begin{gathered} -0.5 \text { to } \\ 12 \end{gathered}$	0	V
Power Supply Rejection Ratio, $\Delta \mathrm{V}_{\mathrm{IO}} / \Delta \mathrm{V} \pm$	PSRR	$\mathrm{V}_{S}= \pm 7.5$	-	32	320	-	32	150	$\mu \mathrm{V} / \mathrm{N}$
Maximum Output Voltage	$\mathrm{V}_{\mathrm{OM}^{+}}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	11	13.3	-	11	13.3	-	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$		-	0.002	0.01	-	0.002	0.01	V
	$\mathrm{V}_{\mathrm{OM}^{+}}$	$\mathrm{R}_{\mathrm{L}}=\infty$	14.99	15	-	14.99	15	-	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$		-	0	0.01	-	0	0.01	V
Maximum Output Current	${ }^{\mathrm{I}} \mathrm{OM}^{+}$ (Source)	$\mathrm{V}_{\mathrm{O}}=7.5 \mathrm{~V}$	12	22	45	12	22	45	mA
	IOM- (Sink)		12	20	45	12	20	45	mA
Total Supply Current, $\mathrm{R}_{\mathrm{L}}=\infty$	$1+$	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}(\mathrm{AmpA})=7.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}(\mathrm{Amp} \mathrm{~B})=7.5 \mathrm{~V} \end{aligned}$	-	9	16.5	-	9	16.5	mA
		$\begin{aligned} & \mathrm{V}_{\mathrm{O}}(\operatorname{Amp} \mathrm{~A})=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}(\operatorname{Amp~B})=0 \mathrm{~V} \end{aligned}$	-	1.2	4	-	1.2	4	mA
		$\begin{aligned} & V_{O}(A m p A)=0 \mathrm{~V} \\ & V_{O}(A m p B)=7.5 \mathrm{~V} \end{aligned}$	-	5	9.5	-	5	9.5	mA
Input Offset Voltage Temperature Drift	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$		-	8	-	-	6	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Crosstalk		$\mathrm{f}=1 \mathrm{kHz}$	-	120	-	-	120	-	dB

Schematic Diagram

HARRIS
SEMICONDUCTOR

0.5MHz, Low Supply Voltage, Low Input Current BiMOS Operational Amplifiers

Features

- CA5420A, CA5420 at 5V Supply Voltage with Full Military Temperature Range Guaranteed Specifications
- CA5420A, CA5420 Guaranteed to Operate from $\pm 1 \mathrm{~V}$ to $\pm 10 \mathrm{~V}$ Supplies
- 2V Supply at $300 \mu \mathrm{~A}$ Supply Current
- 1pA (Typ) Input Current (Essentially Constant to $85^{\circ} \mathrm{C}$)
- Rail-to-Rail Output Swing (Drive $\pm 2 \mathrm{~mA}$ Into $1 \mathrm{k} \Omega$ Load)
- Pin Compatible with 741 Op Amp

Applications

- pH Probe Amplifiers
- Picoammeters
- Electrometer (High Z) Instruments
- Portable Equipment
- Inaccessible Field Equipment
- Battery Dependent Equipment (Medical and Military)
- 5V Logic Systems
- Microprocessor Interface

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. NO.
CA5420AM (5420A)	-55 to 125	8 Ld SOIC	M8.15
CA5420AT	-55 to 125	8 Pin Metal Can	T8.C
CA5420E	-55 to 125	8 Ld PDIP	E8.3
CA5420M (5420)	-55 to 125	8 Ld SOIC	M8.15
CA5420T	-55 to 125	8 Pin Metal Can	T8.C

Description

The CA5420A and CA5420 (see Note) are integrated circuit operational amplifiers that combine PMOS transistors and bipolar transistors on a single monolithic chip. They are designed and guaranteed to operate in microprocessor logic systems that use $\mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=$ GND, since they can operate down to $\pm 1 \mathrm{~V}$ supplies. They will also be suitable for 3.3 V logic systems.

The CA5420A and CA5420 BiMOS operational amplifiers feature gate-protected PMOS transistors in the input circuit to provide very high input impedance, very low input currents (less than 1 pA). The internal bootstrapping network features a unique guardbanding technique for reducing the doubling of leakage current for every $10^{\circ} \mathrm{C}$ increase in temperature. The CA5420 series operates at total supply voltages from 2 V to 20 V either single or dual supply. These operational amplifiers are internally phase compensated to achieve stable operation in the unity gain follower configuration. Additionally, they have access terminals for a supplementary external capacitor if additional frequency roll-off is desired. Terminals are also provided for use in applications requiring input offset voltage nulling. The use of PMOS in the input stage results in commonmode input voltage capability down to 0.45 V below the negative supply terminal, an important attribute for single supply application. The output stage uses a feedback OTA type amplifier that can swing essentially from rail-to-rail. The output driving current of $1.0 \mathrm{~mA}(\mathrm{Min})$ is provided by using nonlinear current mirrors.

These devices have guaranteed specifications for 5 V operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.
The CA5420 series has the same 8 lead pinout used for the industry standard 741.
NOTE: Formerly Development Type No. TA10841.

Absolute Maximum Ratings	
Supply Voltage (Between V+ and V- Terminals)	22 V
Differential Input Voltage.	
Input Voltage.	0.5V)
Input Current.	1 mA
ut Short Circuit Duration (Note	

Operating Conditions

Temperature Range

Thermal Information
Thermal Resistance (Typical, Note 2) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ PDIP Package 96 N/A SOIC Package 157 N/A Metal Can Package 165 N/A
80
Maximum Junction Temperature (Metal Can) $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range (All Types) ... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$ (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Short circuit may be applied to ground or to either supply.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Typical Values Intended Only for Design Guidance. $\mathrm{V}+=+5 \mathrm{~V}$; V - $=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER	SYMBOL	TES	DITIONS	CA5420	CA5420A	UNITS
Input Resistance	R_{1}			150	150	$T \Omega$
Input Capacitance	C_{1}			4.9	4.9	pF
Output Resistance	R_{O}			300	300	Ω
Equivalent Input Noise Voltage	${ }^{\text {N }}$	$\mathrm{f}=1 \mathrm{kHz}$	$R_{S}=100 \Omega$	62	62	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}=10 \mathrm{kHz}$		38	38	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Short-Circuit Current Source	OM^{+}			2.6	2.6	mA
To Opposite Supply \quad Sink	IOM^{-}			2.4	2.4	mA
Gain Bandwidth Product	${ }_{\text {f }}$			0.5	0.5	MHz
Slew Rate	SR			0.5	0.5	V/us
Transient Response	t_{r}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}$		0.7	0.7	$\mu \mathrm{s}$
	OS			15	15	\%
Current from Terminal 8 To V-	$18+$			20	20	$\mu \mathrm{A}$
Current from Terminal 8 To V_{+}	I_{8}			2	2	mA
Settling Time	0.01\%	$A_{V}=1$	$2 \mathrm{~V}_{\text {P-P }}$ Input	8	8	$\mu \mathrm{s}$
	0.10\%	$A_{V}=1$	$2 \mathrm{~V}_{\text {P-P }}$ Input	4.5	4.5	$\mu \mathrm{s}$

Electrical Specifications $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	CA5420			CA5420A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	V_{10}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-	1.5	10	-	1	5	mV
Input Offset Current	10	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-	0.02	1	-	0.02	0.5	pA
Input Current	1	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-	0.02	2	-	0.02	1	pA
Common Mode Rejection Ratio	CMRR	$\mathrm{V}_{\mathrm{CM}}=0$ to $3.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$	70	80	-	75	83	-	dB
Common Mode Input Voltage Range	$\mathrm{V}_{\text {ICR }}{ }^{+}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	3.7	4	-	3.7	4	-	V
	$\mathrm{V}_{\text {ICR }}{ }^{-}$		-	-0.3	0	-	-0.3	0	V
Power Supply Rejection Ratio	PSRR	$\Delta \mathrm{V}+=1 \mathrm{~V} ; \Delta \mathrm{V}-=1 \mathrm{~V}$	70	80	-	75	83	-	dB

CA5420, CA5420A

Electrical Specifications $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0$, Unless Otherwise Specified (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	CA5420			CA5420A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Large Signal Voltage Gain $V_{O}=0.5 \text { to } 4 \mathrm{~V}$	AOL	$R_{L}=\infty$	85	87	-	85	87	-	dB
$\mathrm{V}_{\mathrm{O}}=0.5$ to 4 V		$R_{L}=10 \mathrm{k} \Omega$	85	87	-	85	87	-	dB
$\mathrm{V}_{\mathrm{O}}=0.7$ to 3 V		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	80	85	-	80	85	-	dB
Source Current	Isource	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	1.2	2.7	-	1.2	2.7	-	mA
Sink Current	ISINK	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	1.2	2.1	-	1.2	2.1	-	mA
Output Voltage	$\mathrm{V}_{\mathrm{OM}}{ }^{+}$	$\mathrm{R}_{\mathrm{L}}=\infty$	4.9	4.94	-	4.9	4.94	-	V
	$\mathrm{V}_{\mathrm{OM}}{ }^{-}$		-	0.13	0.15	-	0.13	0.15	V
	$\mathrm{V}_{\mathrm{OM}}{ }^{+}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	4.7	4.9	-	4.7	4.9	-	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$		-	0.12	0.15	-	0.12	0.15	V
	$\mathrm{V}_{\text {OM }}{ }^{+}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$,	3.5	4.6	-	3.5	4.6	-	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$		-	0.1	0.15	-	0.1	0.15	V
Supply Current	ISUPPLY	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-	400	500	-	400	500	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-	430	550	-	430	550	$\mu \mathrm{A}$

Electrical Specifications $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=0$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	CA5420			CA5420A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	V_{10}	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-	3	15	-	2	10	mV
Input Offset Current	10	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-	1.5	3	-	1.5	3	nA
Up to $\mathrm{T}_{\text {A }}=85^{\circ} \mathrm{C}$	10		-	2	10	-	2	10	pA
Input Current	11	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-	2	5	-	2	5	nA
Up to $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	11		-	15	25	-	10	15	pA
Common Mode Rejection Ratio	CMRR	$\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0 \text { to } 3.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V} \end{aligned}$	65	75	-	70	80	-	dB
Common Mode Input Voltage Range	$\mathrm{V}_{\text {ICR }}{ }^{+}$	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	3.7	4	-	3.7	4	-	V
	$V_{1 C R^{-}}$		-	-0.3	0	-	-0.3	0	V
Power Supply Rejection Ratio	PSRR	$\begin{aligned} & \Delta V+=1 V ; \\ & \Delta V-=1 V \end{aligned}$	65	80	-	70	83	-	dB
Large Signal Voltage Gain $\mathrm{V}_{\mathrm{O}}=0.5 \text { to } 4 \mathrm{~V}$	AOL	$\mathrm{R}_{\mathrm{L}}=\infty$	80	85	-	85	87	-	dB
$\mathrm{V}_{\mathrm{O}}=0.7$ to 4 V		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	80	85	-	80	87	-	dB
$\mathrm{V}_{\mathrm{O}}=0.7$ to 2.5 V		$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	75	80	-	75	80	-	dB
Source Current	Isource	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	1	2.7	-	1	2.7	-	mA
Sink Current	ISINK	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	1	2.1	-	1	2.1	-	mA
Output Voltage	$\mathrm{V}_{\mathrm{OM}^{+}}$	$\mathrm{R}_{\mathrm{L}}=\infty$	4.8	4.9	-	4.8	4.9	-	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$		-	0.16	0.2	-	0.16	0.2	V
	$\mathrm{V}_{\mathrm{OM}^{+}}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	4.7	4.9	-	4.7	4.9	-	V
	VOM^{-}		-	0.15	0.20	-	0.15	0.2	V
	$\mathrm{V}_{\text {OM }}{ }^{+}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	3	4	-	3	4	-	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$		-	0.14	0.2	-	0.14	0.2	V
Supply Current	ISUPPLY	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$	-	430	550	-	430	550	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$	-	480	600	-	480	600	$\mu \mathrm{A}$

CA5420, CA5420A

Electrical Specifications For Equipment Design at $V_{\text {SUPPLY }}= \pm 1 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	CA5420			CA5420A			UNITS	
			MIN	TYP	MAX	MIN	TYP	MAX		
Input Offset Voltage	V_{10}		-	5	10	-	2	5	mV	
Input Offset Current	1 liOl		-	0.01	4 (Note 3)	-	0.01	4 (Note 3)	pA	
Input Current	$1 \\|_{1}$		-	0.02	5 (Note 3)	-	0.02	5 (Note 3)	pA	
Large Signal Voltage Gain	AOL	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	10	100	-	20	100	-	kVN	
			80	100	-	86	100	\bullet	dB	
Common Mode Rejection Ratio	CMRR		-	560	1800	-	560	1000	$\mu \mathrm{V} / \mathrm{N}$	
			55	65	-	60	65	-	dB	
Common Mode Input Voltage Range	$\mathrm{V}_{1 \mathrm{CR}^{+}}$		0.2	0.5	-	0.2	0.5	-	V	
	$\mathrm{V}_{1 \mathrm{ICR}^{-}}$		-	-1.3	-	-1	-1.3	-	V	
Power Supply Rejection Ratio	PSRR		-	100	1000	-	32	320	$\mu \mathrm{V} / \mathrm{N}$	
			60	80	-	70	90	-	dB	
Maximum Output Voltage	$\mathrm{V}_{\mathrm{OM}^{+}}$	$\mathrm{R}_{\mathrm{L}}=\infty$	0.9	0.95	-	0.9	0.95	-	V	
	$\mathrm{V}_{\mathrm{OM}}{ }^{-}$		-0.85	-0.91	-	-0.85	-0.91	-	V	
Supply Current	IsUPPLY		-	350	650	-	350	650	$\mu \mathrm{A}$	
Device Dissipation	P_{D}		-	0.7	1.1	-	0.7	1.1	mW	
Input Offset Voltage Temp. Drift	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$		-	4	-	-	4	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	

Electrical Specifications For Equipment Design at $V_{\text {SUPPLY }}= \pm 10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	CA5420			CA5420A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Input Offset Voltage	V_{10}		-	5	10	-	2	5	mV
Input Offset Current	1 lol		-	0.03	4 (Note 3)	-	0.03	4 (Note 3)	pA
Input Current	11		-	0.05	5 (Note 3)	-	0.05	5 (Note 3)	pA
Large Signal Voltage Gain	AOL	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	10	100	-	20	100	-	kV/V
			80	100	-	86	100	-	dB
Common Mode Rejection Ratio	CMRR		-	100	320	-	100	320	$\mu \mathrm{V} / \mathrm{N}$
			70	80	-	70	80	-	dB
Common Mode Input Voltage Range	$\mathrm{V}_{\text {ICR }}+$		8.5	9.3	-	9	9.3	-	V
	$\mathrm{V}_{\text {ICR }}{ }^{-}$		-10	-10.3	-	-10	-10.3	-	V
Power Supply Rejection Ratio	PSRR		-	32	320	-	32	320	$\mu \mathrm{V} / \mathrm{N}$
			70	90	-	70	90	-	dB
Maximum Output Voltage	$\mathrm{V}_{\text {OM }}{ }^{+}$	$\mathrm{R}_{\mathrm{L}}=\infty$	9.7	9.9	-	9.7	9.9	-	V
	$\mathrm{V}_{\text {OM }}{ }^{-}$		-9.7	-9.85	-	-9.7	-9.85	-	V
Supply Current	ISUPPLY		-	450	1000	-	450	1000	$\mu \mathrm{A}$
Device Dissipation	P_{D}		-	9	14	-	9	14	mW
Input Offset Voltage Temperature Drift	$\Delta \mathrm{V}_{10} / \Delta \mathrm{T}$		-	4	-	-	4	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

NOTE:
3. The maximum limit represents the levels obtainable on high-speed automatic test equipment. Typical values are obtained under laboratory conditions.

Typical Applications

Picoammeter Circuit

The exceptionally low input current (typically 0.2 pA) makes the CA5420 highly suited for use in a picoammeter circuit. With only a single $10 \mathrm{G} \Omega$ resistor, this circuit covers the range from $\pm 1.5 p A$. Higher current ranges are possible with suitable switching techniques and current scaling resistors. Input transient protection is provided by the $1 \mathrm{M} \Omega$ resistor in series with the input. Higher current ranges require that this resistor be reduced. The $10 \mathrm{M} \Omega$ resistor connected to pin 2 of the CA5420 decouples the potentially high input capacitance often associated with lower current circuits and reduces the tendency for the circuit to oscillate under these conditions.

FIGURE 1. PICOAMMETER CIRCUIT

High Input Resistance Voltmeter

Advantage is taken of the high input impedance of the CA5420 in a high input resistance DC voltmeter. Only two 1.5 V " $A \mathrm{~A}$ " type penlite batteries power this exceedingly high-input resistance $(>1,000,000 \mathrm{M} \Omega$) DC voltmeter. Full-scale deflection is $\pm 500 \mathrm{mV}, \pm 150 \mathrm{mV}$, and $\pm 15 \mathrm{mV}$. Higher voltage ranges are easily added with external input voltage attenuator networks.
The meter is placed in series with the gain network, thus eliminating the meter temperature coefficient error term.
Supply current in the standby position with the meter undeflected is $300 \mu \mathrm{~A}$. At full-scale deflection this current rises to $800 \mu \mathrm{~A}$. Carbon-zinc battery life should be in excess of 1,000 hours.

FIGURE 2. HIGH INPUT RESISTANCE VOLTMETER

Typical Performance Curves

FIGURE 3. OUTPUT VOLTAGE SWING AND COMMON MODE INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE

FIGURE 4. OUTPUT VOLTAGE vs LOAD SOURCING CURRENT

Typical Performance Curves (Continued)

FIGURE 5. OUTPUT VOLTAGE vs LOAD SINKING CURRENT

FIGURE 7. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE

FIGURE 9. INPUT NOISE VOLTAGE vs FREQUENCY

FIGURE 6. SUPPLY CURRENT vs OUTPUT VOLTAGE

FIGURE 8. INPUT BIAS CURRENT DRIFT $\left(\Delta \mathrm{I}_{\mathrm{B}} / \Delta \mathrm{T}\right)$

FIGURE 10. OPEN LOOP GAIN AND PHASE SHIFT RESPONSE

HARRIS
SEMICONDUCTOR

November 1996

Quad, 14MHz, Microprocessor BiMOS-E Operational Amplifier with MOSFET Input/Bipolar Output

Features

- High Speed CMOS Input Stage Provides
- Very High Z_{1}. 5 T Ω ($5 \times 10^{12} \Omega$) (Typ)
- Very Low I_. 0.5pA (Typ) at 5V Operation
- Very Low IIO 0.5pA (Typ) at 5V Operation
- ESD Protection to 2000V
- 3V to 16V Power Supply Operation
- Fully Guaranteed Specifications Over Full Military Range
- Wide BW (14 MHz); High SR ($5 \mathrm{~V} / \mu \mathrm{s}$) at 5V Supply
- Wide VICR Range From -0.5V to 3.7V (Typ) at 5V Supply
- Ideally Suited for CMOS and HCMOS Applications

Applications

- Bar Code Readers
- Photodiode Amplifiers (IR)
- Microprocessor Buffering
- Ground Reference Single Supply Amplifiers
- Fast Sample and Hold
- Timers
- Voltage Controlled Oscillators
- Voltage Followers
- V to I Converters
- Peak Detectors
- Precision Rectifiers
- 5V Logic Systems
- 3V Logic Systems

Description

The CA5470 is an operational amplifier that combines the advantages of both high speed CMOS and bipolar transistors on a single monolithic chip. It is constructed in the BiMOS-E process which adds drain-extension implants to $3 \mu \mathrm{~m}$ polygate CMOS, enhancing both the voltage capability and providing vertical bipolar transistors for broadband analog/digital functions. This process lends itself easily to high speed operational amplifiers, comparators, analog switches and interface peripherals, resulting in twice the speed of the conventional CMOS transistors having similar feature size.

BiMOS-E are broadbased bipolar transistors that have high transconductance, gains more constant with current level, stable "precision" base-emitter offset voltages and superior drive capability. Excellent interface with environmental potentials enable use in 5 V logic systems and future 3.3V logic systems. Refer to Application Note AN8811.

ESD capability exceeds the standard 2000 V level. The CA5470 series can operate with single supply voltages from 3 V to 16 V or $\pm 1.5 \mathrm{~V}$ to $\pm 8 \mathrm{~V}$. They have guaranteed specifications at both 5 V and $\pm 7.5 \mathrm{~V}$ at room temperature as well as over the full $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ military range.

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. NO.
CA5470E	-55 to 125	14 Ld PDIP	E14.3
CA5470M (5470)	-55 to 125	14 Ld SOIC	M14.15
CA5470M96 (5470)	-55 to 125	14 Ld SOIC Tape and Reel	M14.15

Pinout

Absolute Maximum Ratings

DC Supply Voltage (Between V + And V- Terminals)
Differential Input Voltage. 8 BV
Input Voltage. (V+ +8 V) to (V- -0.5 V)
Input Current. 1 mA
Output Short Circuit Duration (Note 1) Indefinite

Operating Conditions

Temperature Range
. $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Short circuit may be applied to ground or to either supply.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Typical Values Intended Only for Design Guidance at $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	TYPICAL VALUES	UNITS
Input Resistance	R_{1}		5	$T \Omega$
Input Capacitance	C_{1}	$f=1 \mathrm{MHz}$	3.1	pF
Unity Gain Crossover Frequency	${ }_{\text {f }}$		14	MHz
Slew Rate	SR	$\mathrm{V}_{\text {OUT }}=3.65 \mathrm{~V}_{\text {P-P }}$	5	V/us
Transient Response: Rise Time/Fall Time	t_{r}	$C_{L}=25 p F, R_{L}=2 k \Omega$ (Voltage Follower)	27/25	ns
Overshoot	OS		20	\%
Settling Time ($\mathrm{To}<0.1 \%, \mathrm{~V}_{\mathrm{IN}}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$)	ts	$C_{L}=25 p F, R_{L}=2 k \Omega$ (Voltage Follower)	1	$\mu \mathrm{s}$
Full Power BW, SR = 5V/ $\mu \mathrm{s}$	FPBW	$\mathrm{A}_{V}=1, \mathrm{~V}_{\text {OUT }}=3.65 \mathrm{~V}_{\text {P-P }}$	436	kHz

Electrical Specifications $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}=\mathrm{GND}$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	IV101		-	6	22	mV
Input Offset Current	$\mathrm{HIO}^{\mathrm{O}}$		-	0.5	50 (Note 3)	pA
Input Current	1		-	0.5	50 (Note 3)	pA
Common Mode Input Range	$V_{\text {ICR }}$		3.5	-0.5 to 3.7	0	V
Common Mode Rejection Ratio	CMRR	$\mathrm{V}_{\text {ICR }}=0 \mathrm{~V}$ to 3.5 V	55	70	-	dB
Power Supply Rejection Ratio	PSRR	$\Delta \mathrm{V}=2 \mathrm{~V}$	60	75	-	dB
Positive Output Voltage Swing	$\mathrm{V}_{\mathrm{OM}^{+}}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to GND	4	4.4	-	V
Negative Output Voltage Swing	$\mathrm{V}_{\text {OM }}{ }^{-}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to GND	-	0.06	0.10	V
Total Supply Current	ISUPPLY	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$	-	6	7	mA
Unity Gain Bandwidth Product	${ }_{\text {f }}$		10	14	-	MHz
Slew Rate	SR		4	5	-	V/ $\mu \mathrm{s}$
Output Current Source to opposite supply	IsOURCE		4	5.5	-	mA
Sink to opposite supply	${ }^{\text {SIINK}}$		1.0	1.2	-	mA
Open Loop Gain	$\mathrm{AOL}^{\text {L }}$	0.5 V to $3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	80	90	-	dB

NOTE:
3. This is the lowest value that can be tested reliably. Almost all devices will be $<10 \mathrm{pA}$

Thermal Information

Thermal Resistance (Typical, Note 1)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
PDIP Package	80
SOIC Package	175
Maximum Junction Temperature (Die).	. $1755^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package)	$150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range	${ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s). . (SOIC - Lead Tips Only)	$.300^{\circ} \mathrm{C}$

Electrical Specifications $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}-=\mathrm{GND}$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$\mathrm{IV}_{10} \mathrm{l}$		-	6	25	mV
Input Offset Current	11 IO		-	550	5500	pA
Input Current	1		-	550	11000	pA
Common Mode Input Range	$V_{\text {ICR }}$		3.5	-0.5 to 3.7	0	V
Common Mode Rejection Ratio	CMRR	$V_{\text {ICR }}=0 \mathrm{~V}$ to 3.5 V	50	65	-	dB
Power Supply Rejection Ratio	PSRR	$\Delta \mathrm{V}=2 \mathrm{~V}$	58	75	-	dB
Positive Output Voltage Swing	VOM^{+}	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to GND	3.8	4.2	-	V
Negative Output Voltage Swing	$\mathrm{V}_{\text {OM }}{ }^{-}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to GND	-	0.08	0.11	V
Total Supply Current	ISUPPLY	$\mathrm{V}_{\text {OUT }}=2.5 \mathrm{~V}$	-	9	11	mA
Unity Gain Bandwidth Product	f_{T}		8	12	-	MHz
Slew Rate	SR		3	5	-	V/us
Output Current Source to opposite supply	ISOURCE		4	5.5	-	mA
Sink to opposite supply	ISINK		0.8	1.2	-	mA
Open Loop Gain	$\mathrm{AOL}^{\text {L }}$	0.5 V to $3.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	80	90	-	dB

Electrical Specifications $\quad T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 7.5 \mathrm{~V}$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$\mathrm{IV}_{10} \mathrm{l}$		-	5	25	mV
Input Offset Current	$\mathrm{HIO}^{\mathrm{O}}$		-	0.5	50 (Note 4)	pA
Input Current	1		-	1	50 (Note 4)	pA
Common Mode Input Range	$V_{\text {ICR }}$		5.8	-7.8 to 6.0	-7.5	V
Common Mode Rejection Ratio	CMRR	$\mathrm{V}_{\text {ICR }}=0 \mathrm{~V}$ to 13.3 V	60	70	-	dB
Power Supply Rejection Ratio	PSRR	$\Delta \mathrm{V}=1 \mathrm{~V}$	60	76	-	dB
Positive Output Voltage Swing	$\mathrm{V}_{\mathrm{OM}}+$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to GND	6.3	6.5	-	V
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to GND	6.4	6.6	-	V
Negative Output Voltage Swing	$\mathrm{V}_{\text {OM }}{ }^{-}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$ to GND	-	-2.6	-2	V
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to GND	-	-7.3	-7.1	V
Total Supply Current	ISUPPLY	$\mathrm{V}_{\text {OUT }}=\mathrm{GND}, \mathrm{R}_{\mathrm{L}}=\infty$	-	10	12	mA
Unity Gain Bandwidth Product	f_{T}		12	16	-	MHz
Slew Rate	SR		4	7	-	V/ $/ \mathrm{s}$
Output Current Source to opposite supply	IsOURCE		6.2	6.8	-	mA
Sink to opposite supply	IsINK		1	1.4	-	mA
Open Loop Gain	AOL	-5 V to $+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	80	90	-	dB

NOTE:
4. This is the lowest value that can be tested reliably. Almost all devices will be $<10 \mathrm{pA}$.

Electrical Specifications $\quad T_{A}=-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 7.5 \mathrm{~V}$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Input Offset Voltage	$\mathrm{V}_{1 \mathrm{O}}{ }^{\text {l }}$		-	5	30	mV
Input Offset Current	$\mathrm{IIO}^{\mathrm{O}}$		-	550	5500	pA
Input Current	1		-	1100	11000	pA
Common Mode Input Range	VICR		5.8	-7.8 to 6.0	-7.5	V
Common Mode Rejection Ratio	CMRR	$\mathrm{V}_{\text {ICR }}=0 \mathrm{~V}$ to 3.5 V	58	70	-	dB
Power Supply Rejection Ratio	PSRR	$\Delta \mathrm{V}=1 \mathrm{~V}$	60	76	\checkmark	dB
Positive Output Voltage Swing	$\mathrm{V}_{\mathrm{OM}^{+}}$	$R_{L}=2 k \Omega$ to GND	4.75	5.5	\cdots	V
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to GND	6.1	6.4	-	V
Negative Output Voltage Swing	$\mathrm{V}_{\mathrm{OM}}{ }^{-}$	$R_{L}=2 k \Omega$ to GND	-	-2.6	-2	V
		$R_{L}=10 \mathrm{k} \Omega$ to GND	-	-7.3	-7.1	V
Total Supply Current	ISUPPLY	$\mathrm{V}_{\text {OUT }}=\mathrm{GND}, \mathrm{R}_{\mathrm{L}}=\infty$	-	12	18	mA
Unity Gain Bandwidth Product	f_{T}		10	15	-	MHz
Slew Rate	SR		3	7	-	$\mathrm{V} / \mu \mathrm{s}$
Output Current Source to opposite supply	IsOURCE		6.2	6.8	-	mA
Sink to opposite supply	ISINK		1	1.4	-	mA
Open Loop Gain	AOL	-5 V to $+5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	80	90	*	dB

Block Diagram ($1 / 4$ of CA5470)

Typical Performance Curve

FIGURE 1. MAXIMUM OUTPUT VOLTAGE SWING vs FREQUENCY

Metallization Mask Layout

Dimensions in parentheses are in millimeters and derived from the basic inch dimensions as indicated. Grid graduations are in mils ($10^{-3} \mathrm{inch}$).

The layout represents a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are 57° instead of 90° with respect to the face of the chip. Therefore, the isolated chip is actually 7 mils $(0.17 \mathrm{~mm})$ larger in both dimensions.

40MHz, PRAM Four Channel
Programmable Amplifiers

Features

- Programmability
- High Rate Slew. $30 \mathrm{~V} / \mu \mathrm{s}$
- Wide Gain Bandwidth 40 MHz
- High Gain 150kV/V
- Low Offset Current . .5nA
- High Input Impedance $30 \mathrm{M} \Omega$
- Single Capacitor Compensation
- DTLTTL Compatible Inputs

Applications

- Thousands of Applications; Program
- Signal Selection/Multiplexing
- Operational Amplifier Gain
- Oscillator Frequency
- Filter Characteristics
- Add-Subtract Functions
- Integrator Characteristics
- Comparator Levels

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathbf{C}\right)$	PACKAGE	PKG. NO.
HA1-2400-2	-55 to 125	16 Ld CERDIP	F16.3
HA1-2404-4	-25 to 85	16 Ld CERDIP	F16.3
HA1-2405-5	0 to 75	16 Ld CERDIP	F16.3
HA3-2405-5	0 to 75	16 Ld PDIP	E16.3

Description

THA-2400/04/05 comprise a series of four-channel programmable amplifiers providing a level of versatility unsurpassed by any other monolithic operational amplifier. Versatility is achieved by employing four input amplifier channels, any one (or none) of which may be electronically selected and connected to a single output stage through DTLTTL compatible address inputs. The device formed by the output and the selected pair of inputs is an op amp which delivers excellent slew rate, gain bandwidth and power bandwidth performance. Other advantageous features for these dielectrically isolated amplifiers include high voltage gain and input impedance coupled with low input offset voltage and offset current. External compensation is not required on this device at closed loop gains greater than 10.

Each channel of the HA-2400/04/05 can be controlled and operated with suitable feedback networks in any of the standard op amp configurations. This specialization makes these amplifiers excellent components for multiplexing signal selection and mathematical function designs. With $30 \mathrm{~V} / \mu \mathrm{s}$ slew rate, 40 MHz gain bandwidth and $30 \mathrm{M} \Omega$ input impedance these devices are ideal building blocks for signal generators, active filters and data acquisition designs. Programmability, coupled with 4 mV typical offset voltage and 5 nA offset current, makes these amplifiers outstanding components for signal conditioning circuits.

During Disable Mode VOUT goes to V-. For high output impedance during Disable, see HA2444.
For further design ideas, see Application Note AN514.

Pinout

HA-2400/04 (CERDIP)
HA-2405 (CERDIP, PDIP) TOP VIEW)

TRUTH TABLE

D1	D0	EN	SELECTED CHANNEL	D1
L	L	H	1	L
L	H	H	2	L
H	L	H	3	H
H	H	H	4	H
X	X	L	None, V OUT goes to $\mathrm{V}-$	X

Absolute Maximum Ratings $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Voltage Between $V+$ and V - Terminals . 45.0V

Differential Input Voltage. V VUPPLY Digital Input Voltage . -0.76 V to +10.0 V Output Current Short Circuit Protected, ISC $< \pm 33 \mathrm{~mA}$) Internal Power Dissipation (Note 1)

Operating Conditions

Temperature Range
HA-2400-2. $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-2404-4. $-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
HA-2405-5. $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

HA-2405-5 $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 2) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ PDIP Package 80 N/A CERDIP Package 90 35
Maximum Junction Temperature (Ceramic Package). $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $\ldots \ldots . . .6^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Maximum power dissipation including output load, must be designed to maintain the junction temperature below $175^{\circ} \mathrm{C}$ for the ceramic package, and below $150^{\circ} \mathrm{C}$ for the plastic packages.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Test Conditions: $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified. Digital Inputs: $\mathrm{V}_{\mathrm{IL}}=+0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4$. Limits apply to each of the four channels, when addressed

PARAMETER	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	HA-2400/04			HA-2405			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS									
Offset Voltage		25	-	4	9	-	4	9	mV
		Full	-	-	11	-	-	11	mV
Bias Current (Note 8)		25	-	50	200	-	50	250	nA
		Full	-	-	400	-	-	500	nA
Offset Current (Note 8)		25	-	5	50	-	5	50	nA
		Full	-	-	100	-	-	100	nA
Input Resistance (Note 8)		25	-	30	-	-	30	-	$\mathrm{M} \Omega$
Common Mode Range		Full	± 9.0	-	-	± 9.0	-	-	V
TRANSFER CHARACTERISTICS									
Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	25	50	150	-	50	150	-	kV/N
	$\mathrm{V}_{\text {OUT }}=20 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$	Full	25	-	-	25	-	-	kV/N
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 5 \mathrm{~V}$	Full	80	100	-	74	100	-	dB
Gain Bandwidth (Notes 3, 9)		25	20	40	-	20	40	-	MHz
Gain Bandwidth (Notes 4, 9)		25	4	8	-	4	8	-	MHz
Minimum Stable Gain	$\left(\mathrm{C}_{\text {COMP }}=0\right)$		10	-	-	10	-	-	VN
OUTPUT CHARACTERISTICS									
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	Full	± 10.0	± 12.0	-	± 10.0	± 12.0	-	V
Output Current		25	10	20	-	10	20	-	mA
Full Power Bandwidth (Notes 3, 10)	$\mathrm{V}_{\text {OUT }}=20 \mathrm{~V}_{\text {P-P }}$	25	640	950	-	640	950	-	kHz
Full Power Bandwidth (Notes 4, 10)	$\mathrm{V}_{\text {OUT }}=20 \mathrm{~V}_{\text {P-P }}$	25	200	250	-	200	250	-	kHz
TRANSIENT RESPONSE (Note 11)									
Rise Time (Note 4)	$\mathrm{V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{V}_{\text {PEAK }}$	25	-	20	45	-	20	50	ns
Overshoot (Note 4)	$\mathrm{V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{V}_{\text {PEAK }}$	25	-	25	40	-	25	40	\%
Slew Rate (Note 3)	$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}_{\text {P-P }}$	25	20	30	-	20	30	-	$\mathrm{V} / \mu \mathrm{s}$
Slew Rate (Notes 4, 9)	$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}_{\text {P-P }}$	25	6	8	-	6	8	-	$\mathrm{V} / \mu \mathrm{s}$

Electrical Specifications Test Conditions: $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified. Digital Inputs: $\mathrm{V}_{\mathrm{IL}}=+0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4$. Limits apply to each of the four channels, when addressed (Continued)

PARAMETER	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	HA-2400/04			HA-2405			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Settling Time (Notes 4, 5, 9)	$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}_{\text {P-P }}$	25	-	1.5	2.5	-	1.5	2.5	$\mu \mathrm{s}$
CHANNEL SELECT CHARACTERISTICS									
Digital Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	Full	-	1	1.5	-	1	1.5	mA
Digital Input Current	$\mathrm{V}_{\text {IN }}=+5.0 \mathrm{~V}$	Full	-	5	-	-	5	-	nA
Output Delay (Notes 6, 9)		25	-	100	. 250	-	100	250	ns
Crosstalk (Note 7)		25	-80	-110	-	-74	-110	-	dB
POWER SUPPLY CHARACTERISTICS									
Supply Current		25	-	4.8	6.0	-	4.8	6.0	mA
Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	Full	74	90	-	74	90	-	dB

NOTES:
3. $A_{V}=+10, C_{C O M P}=0, R_{L}=2 k \Omega, C_{L}=50 p F$.
4. $A_{V}=+1, C_{C O M P}=15 p F, R_{L}=2 k \Omega, C_{L}=50 p F$.
5. To 0.1% of final value.
6. To 10% of final value; output then slews at normal rate to final value.
7. Unselected input to output; $\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}_{\mathrm{DC}}$.
8. Unselected channels have approximately the same input parameters.
9. Guaranteed by design.
10. Full Power Bandwidth based on slew rate measurement using: $F P B W=\frac{S R}{2 \pi V_{\text {PEAK }}} ; \mathrm{V}_{\text {PEAK }}=5 \mathrm{~V}$.
11. See Figure 13 for test circuit.

Schematic Diagram
HA-2400

Diagram Includes: One Input Stage, Decode Control, Bias Network, and Output Stage

Typical Applications

FIGURE 1. HA-2400 AMPLIFIER, NONINVERTING PROGRAMMABLE GAIN

Sample Charging Rate $=\frac{\mathrm{I}_{1}}{\mathrm{C}} \mathrm{V} / \mathrm{s}$
Hold Drift Rate $=\frac{L_{2}}{C} V / s$
Switch Pedestal Error $=\frac{\mathrm{Q}}{\mathrm{C}} \mathrm{V}$
$l_{1} \approx 150 \times 10^{-6} \mathrm{~A}$
$\mathrm{I}_{2} \approx 200 \times 10^{-9} \mathrm{~A}$ at $25^{\circ} \mathrm{C}$
$\approx 600 \times 10^{-9} \mathrm{~A}$ at $-55^{\circ} \mathrm{C}$
$\approx 100 \times 10^{-9} \mathrm{~A}$ at $125^{\circ} \mathrm{C}$
$\mathrm{Q}=2 \times 10^{-12} \mathrm{C}$
FIGURE 2. HA-2400 SAMPLE AND HOLD

For more examples, see Harris Application Note AN514.

Typical Performance Curves

FIGURE 3. INPUT BIAS CURRENT AND OFFSET CURRENT vs TEMPERATURE

FIGURE 5. POWER SUPPLY CURRENT vs TEMPERATURE

FIGURE 7. FREQUENCY RESPONSE vs COMP

FIGURE 4. NORMALIZED AC PARAMETERS vs TEMPERATURE

FIGURE 6. OPEN LOOP FREQUENCY AND PHASE RESPONSE

FIGURE 8. NORMALIZED AC PARAMETERS vs SUPPLY VOLTAGE

Typical Performance Curves (Continued)

FIGURE 9. OPEN LOOP VOLTAGE GAIN vs TEMPERATURE

FIGURE 11. EQUIVALENT INPUT NOISE vs BANDWIDTH

FIGURE 10. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 12. INPUT NOISE vs FREQUENCY

FIGURE 13. SLEW RATE AND TRANSIENT RESPONSE

HARRIS
SEMICONDUCTOR

30MHz, Digitally Selectable Four Channel

Features

- TTL Compatible Inputs
- Single Capacitor Compensation
- Low Crosstalk $-110 \mathrm{~dB}$
- High Slew Rate . 20V/ $/$ s
- Low Offset Current . $5 n A$
- Offset Voltage 7 mV
- High Gain-Bandwidth 30 MHz
- High Input Impedance 30M Ω

Applications

- Digital Control Of
- Analog Signal Multiplexing
- Op Amp Gains
- Oscillator Frequencies
- Filter Characteristics
- Comparator Levels

Ordering Information

| PART NO. | TEMP
 RANGE (${ }^{\circ} \mathbf{C}$) |
| :--- | :---: | :--- | :--- |

Description

The HA-2406 is a monolithic device consisting of four op amp input stages that can be individually connected to one output stage by decoding two TTL lines into four channel select signals. In addition to allowing each channel to be addressed, an enable control disconnects all input stages from the output stage when asserted low.

Each input-output combination of the HA-2406 is designed to be a $20 \mathrm{~V} / \mu \mathrm{s}, 30 \mathrm{MHz}$ gain-bandwidth amplifier that is stable at a gain of ten. By connecting one external 15pF capacitor all amplifiers are compensated for unity gain operation. The compensation lead may also be used to limit the output swing to TTL levels through suitable clamping diodes and divider networks (see Application Note AN514).

Dielectric isolation and short-circuit protected output stages contribute to the quality and durability of the HA-2406. When used as a simple amplifier, its dynamic performance is very good and when its added versatility is considered, the HA-2406 is unmatched in the analog world. It can replace a number of individual components in analog signal conditioning circuits for digital signal processing systems. Its advantages include saving board space and reducing power supply requirements.

During Disable Mode VOUT goes to V-. For high output impedance during Disable, see HA2444.

For further design ideas, see Application Note AN514.

Pinout

HA-2406
(PDIP, CERDIP, SOIC)
TOP VIEW)

TRUTH TABLE

D1	D0	EN	SELECTED CHANNEL
L	L	H	1
L	H	H	2
H	L	H	3
H	H	H	4
X	X	L	None, V OUT goes to V-

```
Absolute Maximum Ratings \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
Supply Voltage Between V+ and V- Terminals . . . . . . . . . . . . . . 45V
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . VSUPPLY
Output Current . . . . . . . . . . . Short Circuit Protected (ISC \(< \pm 33 \mathrm{~mA}\) )
```


Operating Conditions

Temperature Range

Thermal Information

$\begin{array}{ccc}\text { Thermal Resistance (Typical, Note 1) } & \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) & \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \\ \text { PDIP Package } \ldots \ldots \ldots \ldots \ldots \ldots & 80 & \text { N/A } \\ \text { SOIC Package. } & 96 & \text { N/A } \\ \text { CERDIP Package } & 90 & 35\end{array}$

Maximum Junction Temperature (Ceramic Package) $175^{\circ} \mathrm{C}$

Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $\ldots65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$ (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Test Conditions: $\mathrm{V}_{\text {SUPPLY }}=15.0 \mathrm{~V}$, Unless Otherwise Specified. Digital Inputs: $\mathrm{V}_{\mathrm{IL}}=+0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}$. Limits apply to each of the four channels, when addressed.

PARAMETER	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	HA-2406-5, -9			UNITS
			MIN	TYP	MAX	

INPUT CHARACTERISTICS

Offset Voltage		25	-	7	10	mV
		Full	-	-	12	mV
Bias Current (Note 7)		25	-	50	250	nA
		Full	-	-	500	nA
Offset Current (Note 7)		25	-	5	50	nA
		Full	-	-	100	nA
Input Resistance (Note 7)		25	-	30	-	$\mathrm{M} \Omega$
Common Mode Range		Full	± 9.0	-	-	V

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain	$\begin{aligned} & R_{L}=2 k \Omega \\ & V_{\text {OUT }}=20 V_{P-P} \end{aligned}$	25	40	150	-	kV/
		Full	20	-	-	kV/N
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 5 \mathrm{~V}$	Full	74	80	-	dB
Gain Bandwidth Product (Notes 2, 9)		25	15	30	-	MHz
Gain Bandwidth Product (Notes 3, 9)		25	3	6	-	MHz
Minimum Stable Gain	$\mathrm{C}_{\text {COMP }}=0$		10	-	-	VN

OUTPUT CHARACTERISTICS

Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	Full	± 10.0	± 12.0	-	V
Output Current	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	25	10	15	-	mA
Full Power Bandwidth (Notes 2, 8, 9)	$\mathrm{V}_{\text {OUT }}=20 \mathrm{~V}_{\text {P-P }}$	25	240	320	-	kHz
Full Power Bandwidth (Notes 3, 8)	$\mathrm{V}_{\text {OUT }}=20 \mathrm{~V}_{\text {P-P }}$	25	64	95	-	kHz
TRANSIENT RESPONSE (Note 10)						
Rise Time (Note 3)	$\mathrm{V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{V}_{\text {PEAK }}$	25	-	30	100	ns
Overshoot (Note 3)	$\mathrm{V}_{\text {OUT }}=200 \mathrm{mV} \mathrm{V}_{\text {PEAK }}$	25	-	25	40	\%
Slew Rate (Notes 2, 9)	$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}_{\text {P-P }}$	25	15	20	-	$\mathrm{V} / \mathrm{\mu s}$
Slew Rate (Note 3)	$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}_{\text {P-P }}$	25	4	6	-	$\mathrm{V} \mu \mathrm{s}$
Settling Time (Notes 3, 4)	$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}_{\text {P-P }}$	25	-	2.0	3.5	$\mu \mathrm{s}$
CHANNEL SELECT CHARACTERISTICS						
Digital Input Current	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	Full	-	1	1.5	mA

Electrical Specifications Test Conditions: $\mathrm{V}_{\text {SUPPLY }}=15.0 \mathrm{~V}$, Unless Otherwise Specified. Digital Inputs: $\mathrm{V}_{\mathrm{IL}}=+0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+2.4 \mathrm{~V}$. Limits apply to each of the four channels, when addressed. (Continued)

PARAMETER	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	HA-2406-5, -9			UNITS
			MIN	TYP	MAX	
Digital Input Current	$\mathrm{V}_{\mathrm{IN}}=+5.0 \mathrm{~V}$	Full	-	15	-	nA
Output Delay (Notes 5, 9)		25	-	150	300	ns
Crosstalk (Note 6)		25	-74	-110	-	dB
POWER SUPPLY CHARACTERISTICS						
Supply Current		25	-	4.8	7.0	mA
Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	Full	74	90	-	dB

NOTES:
2. $A_{V}=+10, C_{C O M P}=0, R_{L}=2 k \Omega, C_{L}=50 p F$.
3. $A_{V}=+1, C_{C O M P}=15 p F, R_{L}=2 k \Omega, C_{L}=50 p F$.
4. To 0.1% of final value.
5. To 10% of final value; output then slews at normal rate to final value.
6. Unselected input to output; $\mathrm{V}_{I \mathrm{~N}}= \pm 10 \mathrm{~V}$
7. Unselected channels have approximately the same input parameters.
8. Full power Bandwidth based on slew rate measurement using: $\mathrm{FPBW}=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$.
9. Sample tested.
10. See Figure 11 for test circuit.

Schematic Diagram

Diagram Includes: One Input Stage, Decode Control, Bias Network, and Output Stag

Typical Applications

FIGURE 1. HA-2406 AMPLIFIER, NONINVERTING PROGRAMMABLE GAIN

Sample Charging Rate $=\frac{\mathrm{I}_{1}}{\mathrm{C}} \mathrm{V} / \mathrm{s}$
Hold Drift Rate $=\frac{1_{2}}{\mathrm{C}} \mathrm{V} / \mathrm{s}$
Switch Pedestal Error $=\frac{\mathrm{Q}}{\mathrm{C}} \mathrm{V}$

$$
\begin{aligned}
I_{1} & \approx 150 \times 10^{-6} \mathrm{~A} \\
I_{2} & \approx 200 \times 10^{-9} \mathrm{~A} \text { at } 25^{\circ} \mathrm{C} \\
& \approx 600 \times 10^{-9} \mathrm{~A} \text { at }-55^{\circ} \mathrm{C} \\
& \approx 100 \times 10^{-9} \mathrm{~A} \text { at } 125^{\circ} \mathrm{C} \\
Q & \approx 2 \times 10^{-12} \mathrm{C}
\end{aligned}
$$

FIGURE 2. HA-2406 SAMPLE AND HOLD

For more examples, see Harris Application Note AN514.

Typical Performance Curves

FIGURE 3. INPUT BIAS CURRENT AND OFFSET CURRENT vs TEMPERATURE

FIGURE 5. POWER SUPPLY CURRENT vs TEMPERATURE

FIGURE 7. FREQUENCY RESPONSE vs $\mathrm{C}_{\text {COMP }}$

FIGURE 4. NORMALIZED AC PARAMETERS vs TEMPERATURE

FIGURE 6. OPEN LOOP FREQUENCY AND PHASE RESPONSE

FIGURE 8. NORMALIZED AC PARAMETERS vs SUPPLY VOLTAGE

Typical Performance Curves (Continued)

FIGURE 9. OPEN LOOP VOLTAGE GAIN vs TEMPERATURE

FIGURE 11. EQUIVALENT INPUT NOISE vs BANDWIDTH

FIGURE 10. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 12. INPUT NOISE vs FREQUENCY

FIGURE 13. SLEW RATE AND TRANSIENT RESPONSE

50MHz, Selectable, Four Channel Video Operational Amplifier

Features

- Digital Selection of Input Channel
- Unity Gain Stability
- Gain Flatness to $\mathbf{1 0 M H z}$ 0.1 dB
- Differential Gain 0.03\%
- Differential Phase 0.03 Degrees
- Fast Channel Selection . 60ns
- Crosstalk Rejection 60 dB

Applications

- Video Multiplexer
- Programmable Gain Amplifier
- Special Effects Processors
- Video Distribution Systems
- Heads-up/Night Vision Displays
- Medical Imaging Systems
- Radar Video

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathbf{C}\right)$	PACKAGE	PKG. NO.
HA3-2444-5	0 to 75	16 Ld PDIP	E16.3
HA3-2444-9	-40 to 85	16 Ld PDIP	E16.3
HA9P2444-5	0 to 75	16 Ld SOIC	M16.3
HA9P2444-9	-40 to 85	16 Ld SOIC	M16.3

Description

The HA-2444 is a channel-selectable video op amp consisting of four differential inputs, a single-ended output, and digital control circuitry allowing two digital inputs to activate one of the four differential inputs. The HA-2444 also includes a high impedance output state allowing the outputs of multiple HA-2444s to be wire-OR'd. Functionally, the HA-2444 is equivalent to four wideband video op amps and a wideband multiplexer.

Unlike similar competitor devices, the HA-2444 is not restricted to multiplexing. Any op amp configuration can be used with any of the inputs. Signal amplification, addition, integration, and more can be put under digital control with broadcast quality performance.

The key video parameters of the HA-2444 have been optimized without compromising DC performance. Gain Flatness to 10 MHz is only 0.1 dB . Differential gain and phase are typically 0.03% and 0.03 degrees, respectively. Laser trimming allows offset voltages in the 4.0 mV range and a unique common current source design assures minimal channel-to-channel mismatch, while maintaining 60 dB of crosstalk rejection at 5 MHz . Open loop gain of 76 dB and low input offset and bias currents enhance the performance of this versatile device.

For information about military grade devices, please refer to the HA-2444/883 data sheet.

Pinout

Logic Operation

TRUTH TABLE

EN	D1	D0	SELECTED CHANNEL
H	L	L	1
H	L	H	2
H	H	L	3
H	H	H	4
L	X	X	NONE-OUT is set to a high impedance state.

$\mathrm{L}=$ Low State (0.8 V Max)
$\mathrm{H}=$ High State (2.4 V Min)
X = Don't Care

12MHz, High Input Impedance, Operational Amplifiers

November 1996

Features

- Slew Rate . 30V/ $\mu \mathrm{s}$
- Fast Settling . 330ns
- Full Power Bandwidth . 500 kHz
- Gain Bandwidth . 12 MHz
- High Input Impedance . 50M Ω
- Low Offset Current $10 n A$
- Internally Compensated For Unity Gain Stability

Applications

- Data Acquisition Systems
- RF Amplifiers
- Video Amplifiers
- Signal Generators

Ordering Information

PART NUMBER	TEMP RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA2-2500-2	-55 to 125	8 Pin Metal Can	T8.C
HA2-2502-2	-55 to 125	8 Pin Metal Can	T8.C
HA2-2505-5	0 to 75	8 Pin Metal Can	T8.C
HA3-2505-5	0 to 75	8 Ld PDIP	E8.3
HA7-2500-2	-55 to 125	8 Ld CERDIP	F8.3A
HA7-2505-5	0 to 75	8 Ld CERDIP	F8.3A

Description

HA-2500, HA-2502, HA-2505 comprises a series of operational amplifiers whose designs are optimized to deliver excellent slew rate, bandwidth, and settling time specifications. The outstanding dynamic features of this internally compensated device are complemented with low offset voltage and offset current.

These dielectrically isolated amplifiers are ideally suited for applications such as data acquisition, RF, video, and pulse conditioning circuits. Slew rates of $\pm 30 \mathrm{~V} / \mu \mathrm{s}$ and 330 ns (0.1%) settling time make these devices excellent components in fast, accurate data acquisition and pulse amplification designs. 12 MHz small signal bandwidth and 500 kHz power bandwidth make these devices well suited to RF and video applications. With 2 mV typical offset voltage plus offset trim capability and 10nA offset current, HA-2500, HA-2502, HA-2505 are particularly useful components in signal conditioning designs.

The gain and offset voltage figures of the HA-2500 series are optimized by internal component value changes while the similar design of the HA-2510 series is maximized for slew rate.

MIL-STD-883 product and data sheets are available upon request.

Pinouts

HA-2500/02 (CERDIP)
HA-2505 (PDIP, CDIP)
TOP VIEW

HA-2500/02/05
(METAL CAN)
TOP VIEW


```
Absolute Maximum Ratings
Supply Voltage Between V+ and V- Terminals . . . . . . . . . . . . . 40V
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15V
Peak Output Current.
50mA
```


Operating Conditions

```
Temperature Range
```

HA-2500/2502-2
$55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-2505-5 $.0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Absolute Maximum Ratings

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\quad V_{S}= \pm 15 \mathrm{~V}$

| | HA-2500-2 | HA-2502-2 | | | HA-2505-5 | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PARAMETER | | MIN | TYP | MAX | MIN | TYP | MAX | MIN | TYP | MAX | UNITS |

INPUT CHARACTERISTICS

Offset Voltage	25	-	2	5	-	4	8	-	4	8	mV
	Full	-	-	8	-	-	10	-	-	10	mV
Offset Voltage Average Drift	Full	-	20	-	-	20	-	-	20	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	25	-	100	200	-	125	250	-	125	250	nA
	Full	-	-	400	-	-	500	-	-	500	nA
Offset Current	25	-	10	25	-	20	50	-	20	50	nA
	Full	-	-	50	-	-	100	-	-	100	nA
Input Resistance (Note 2)	25	25	50	\bullet	20	50	-	20	50	\bullet	M Ω
Common Mode Range	Fuil	± 10	-	-	± 10	-	-	± 10	-	-	V

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain (Notes 3, 6)	25	20	30	-	15	25	-	15	25	-	kV / N
	Full	15	-	-	10	-	-	10	-	-	kV / N
Common Mode Rejection Ratio (Note 4)	Full	80	90	-	74	90	-	74	90	-	dB
Gain Bandwidth Product (Note 5)	25	-	12	-	-	12	-	-	12	-	MHz

OUTPUT CHARACTERISTICS

Output Voltage Swing (Note 3)	Full	± 10	± 12	-	± 10	± 12	-	± 10	± 12	-
Output Current (Note 6)	25	± 10	± 20	-	± 10	± 20	-	± 10	± 20	-
Full Power Bandwidth (Notes 6, 11)	25	350	500	-	300	500	-	300	500	-

TRANSIENT RESPONSE

Rise Time (Notes 3, 7, 8, 9)	25	-	25	50	-	25	50	-	25	50	ns
Overshoot (Notes 3, 7, 8, 9)	25	-	25	40	-	25	50	-	25	50	$\%$
Slew Rate (Notes 3, 7, 9, 12)	25	± 25	± 30	-	± 20	± 30	-	± 20	± 30	-	$\mathrm{V} / \mu \mathrm{s}$
Settling Time to 0.1\% (Notes 3, 7, 9, 12)	25	-	0.33	-	-	0.33	-	-	0.33	-	$\mu \mathrm{s}$

HA-2500, HA-2502, HA-2505
Electrical Specifications $\quad \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ (Continued)

PARAMETER	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	HA-2500-2			HA-2502-2			HA-2505-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
POWER SUPPLY CHARACTERISTICS											
Supply Current	25	-	4	6	-	4	6	-	4	6	mA
PSRR (Note 10)	Full	80	90	-	74	90	-	74	90	-	dB

NOTES:
2. This parameter value is based on design calculations.
3. $R_{L}=2 k \Omega$.
4. $\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$.
5. $A_{V}>10$.
6. $\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$.
7. $C_{L}=50 p F$.
8. $V_{O}= \pm 200 \mathrm{mV}$.
9. See Transient Response Test Circuits and Waveforms.
10. $\Delta V= \pm 5 \mathrm{~V}$.
11. Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW $=$ Slew Rate $/ 2 \pi V_{\text {PEAK }}$.
12. $\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}$.

Test Circuits and Waveforms

NOTE: Measured on both positive and negative transitions from 0 V to +200 mv and OV to -200 mV at the output.
FIGURE 1. SLEW RATE AND SETtLING TIME
FIGURE 2. TRANSIENT RESPONSE

NOTE: Measured on both positive and negative transitions from 0 V to +200 mv and 0 V to -200 mV at the output.

FIGURE 3. SLEW RATE AND TRANSIENT RESPONSE

$R_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$
Upper Trace: Input
Lower Trace: Output
Vertical $=5 \mathrm{~V} /$ Div. Horizontal $=200 \mathrm{~ns} /$ Div. $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

FIGURE 4. VOLTAGE FOLLOWER PULSE RESPONSE

Test Circuits and Waveforms (Continued)

13. $A_{V}=-1$.
14. Feedback and Summing Resistor Ratios should be 0.1% matched.
15. Clipping Diodes CR_{1} and CR_{2} are optional. HP5082-2810 recommended.

FIGURE 5. SETTLING TIME TEST CIRCUIT
NOTE: Tested offset adjustment range is $1 \mathrm{~V}_{\mathrm{OS}}+1 \mathrm{mVI}$ minimum referred to output. Typical ranges are $\pm 6 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=20 \mathrm{k} \Omega$.

FIGURE 6. SUGGESTED Vos ADJUSTMENT AND COMPENSATION HOOK UP

Schematic

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 7. INPUT BIAS AND OFFSET CURRENT vs TEMPERATURE

FIGURE 9. NORMALIZED AC PARAMETERS vs TEMPERATURE

FIGURE 11. NORMALIZED AC PARAMETERS vs SUPPLY VOLTAGE

FIGURE 8. EQUIVALENT INPUT NOISE vs BANDWIDTH (WITH 10Hz HIGH PASS FILTER)

FIGURE 10. OPEN LOOP FREQUENCY AND PHASE RESPONSE

NOTE: External compensation components are not required for stability, but may be added to reduce bandwidth if desired.
FIGURE 12. OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM COMPENSATION PIN TO GROUND

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 13. OPEN LOOP VOLTAGE GAIN vs TEMPERATURE

FIGURE 14. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 15. POWER SUPPLY CURRENT vs TEMPERATURE

Die Characteristics

DIE DIMENSIONS:

57 mils $\times 65$ mils $\times 19$ mils $1450 \mu \mathrm{~m} \times 1650 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:
Type: AI, 1\% Cu
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$

PASSIVATION:

Type: Nitride (Si3N4) over Silox (SiO2, 5\% Phos.)
Silox Thickness: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$

SUBSTRATE POTENTIAL (Powered Up):
Unbiased
TRANSISTOR COUNT:
40
PROCESS:
Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2510, HA-2512,
 HA-2515

12MHz, High Input Impedance, Operational Amplifiers

November 1996

Features

- Slew Rate . 60V/ hs
- Fast Settling . 250ns
- Full Power Bandwidth . 1MHz
- Gain Bandwidth . 12MHz
- High Input Impedance . 100M Ω
- Low Offset Current . $10 n A$
- Internally Compensated for Unity Gain Stability

Applications

- Data Acquisition Systems
- RF Amplifiers
- Video Amplifiers
- Signal Generators
- Pulse Amplification

Description

HA-2510/12/15 are a series of high performance operational amplifiers which set the standards for maximum slew rate, highest accuracy and widest bandwidths for internally compensated devices. In addition to excellent dynamic characteristics, these dielectrically isolated amplifiers also offer low offset current and high input impedance.

The $\pm 60 \mathrm{~V} / \mu \mathrm{s}$ slew rate and $250 \mathrm{~ns}(0.1 \%)$ settling time of these amplifiers is ideally suited for high speed $D / A, A / D$, and pulse amplification designs. HA-2510/12/15's superior 12 MHz gain bandwidth and 1000 kHz power bandwidth is extremely useful in RF and video applications. For accurate signal conditioning these amplifiers also provide 10nA offset current, coupled with $100 \mathrm{M} \Omega$ input impedance, and offset trim capability.

MIL-STD-883 product and data sheets available upon request.

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA2-2510-2	-55 to 125	8 Pin Metal Can	T8.C
HA2-2512-2	-55 to 125	8 Pin Metal Can	T8.C
HA2-2515-5	0 to 75	8 Pin Metal Can	T8.C
HA3-2515-5	0 to 75	8 Ld PDIP	E8.3
HA7-2510-2	-55 to 125	8 Ld CERDIP	F8.3A
HA7-2512-2	-55 to 125	8 Ld CERDIP	F8.3A
HA7-2515-5	0 to 75	8 Ld CERDIP	F8.3A

Pinouts

TOP VIEW

Absolute Maximum Ratings
Voltage Between V+ and V-Terminals
40 V
Differential Input Voltage. 15V
Peak Output Current. 50mA

Operating Conditions

Temperature Range
HA-2510/12-2 . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-2515-5. $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 1)	$\theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{Jc}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
Metal Can Package $\ldots \ldots \ldots \ldots \ldots \ldots$	165	80
PDIP Package $\ldots \ldots \ldots \ldots \ldots \ldots \ldots$	96	N/A
CERDIP Package $\ldots \ldots \ldots \ldots \ldots \ldots$	135	50

Maximum Junction Temperature (Hermetic Package) $175^{\circ} \mathrm{C}$ Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$ Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$

PARAMETER	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	HA-2510-2			HA-2512-2			HA-2515-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	

INPUT CHARACTERISTICS

Offset Voltage	25	-	4	8	-	5	10	-	5	10	mV
	Full	-	-	11	-	-	14.	-	-	14	mV
Offset Voltage Average Drift	Full	-	20	-	-	25	-	-	30	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	25	-	100	200	-	125	250	-	125	250	nA
	Full	-	-	400	-	-	500	-	-	500	nA
Offset Current	25	-	10	25	-	20	50	-	20	50	nA
	Full	-	-	50	-	-	100	-	-	100	nA.
Input Resistance (Note 2)	25	50	100	-	40	100	-	40	100	-	M Ω
Common Mode Range	Full	± 10.0	-	-	± 10.0	-	-	± 10.0	-	-	V

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain (Notes 3, 6)	25	10	15	-	7.5	15	-	7.5	15	-	$\mathrm{kV} /$
	Full	7.5	-	-	5	-	-	5	-	-	$\mathrm{kV} / \mathrm{v}^{\prime}$
Common Mode Rejection Ratio (Note 4)	Full	80	90	-	74	90	-	74	90	-	dB
Gain Bandwidth Product (Note 5)	25	-	12	-	-	12	-	-	12	-	MHz

OUTPUT CHARACTERISTICS

Output Voltage Swing (Note 3)	Full.	± 10.0	± 12.0	-	± 10.0	± 12.0	-	± 10.0	± 12.0	\bullet	V
Output Current (Note 6)	25	± 10	± 20	-	± 10	± 20	-	± 10	± 20	-	mA
Full Power Bandwidth (Notes 6, 11)	25	750	1000	-	600	1000	-	600	1000	-	kHz

TRANSIENT RESPONSE

Rise Time (Notes 3, 7, 8, 9)	25	-	25	50	-	25	50	-	25	50
Overshoot (Notes 3, 7, 8, 9)	25	-	25	40	-5	25	50	-	25	50
Slew Rate (Notes 3, 7, 9, 12)	25	± 50	± 65	-	± 40	± 60	-	± 40	± 60	-
Settling Time to 0.1\% (Notes 3, 7, 9, 12)	25	-	0.25	-	-	0.25	-	-	0.25	-

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ (Continued)

PARAMETER	TEMP (${ }^{\circ} \mathrm{C}$)	HA-2510-2			HA-2512-2			HA-2515-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	

POWER SUPPLY CHARACTERISTICS

Supply Current	25	-	4	6	-	4	6	-	4	6	mA
Power Supply Rejection Ratio (Note 10)	Full	80	90	-	74	90	-	74	90	-	dB

NOTES:
2. This parameter value is based on design calculations.
3. $R_{L}=2 k \Omega$.
4. $\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$
5. $A_{V}>10$.
6. $V_{O}= \pm 10 \mathrm{~V}$.
7. $C_{L}=50 \mathrm{pF}$.
8. $\mathrm{V}_{\mathrm{O}}= \pm 200 \mathrm{mV}$.
9. See Transient Response Test Circuits and Waveforms.
10. $\Delta \mathrm{V}= \pm 5 \mathrm{~V}$.
11. Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW = Slew Rate/2 $2 \mathrm{~V}_{\text {PEAK }}$.
12. $\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}$.

Test Circuits and Waveforms

NOTE: Measured on both positive and negative transitions from 0 V to +200 mV and 0 V to -200 mV at the output. FIGURE 1. SLEW RATE AND SETTLING TIME

NOTE: Measured on both positive and negative transitions from 0 V to +200 mV and 0 V to -200 mV at the output.

FIGURE 3. SLEW RATE AND TRANSIENT RESPONSE

NOTE: Measured on both positive and negative transitions from OV to +200 mV and $O V$ to -200 mV at the output.

FIGURE 2. TRANSIENT RESPONSE

$R_{L}=2 k \Omega, C_{L}=50 p F$ Upper Trace: Input Lower Trace: Output

Vertical $=5 \mathrm{~V} /$ Div. Horizontal $=200 \mathrm{~ns} /$ Div. $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$

FIGURE 4. VOLTAGE FOLLOWER PULSE RESPONSE

Test Circuits and Waveforms (Continued)

NOTES:
13. $A_{V}=-1$.
14. Feedback and summing resistor ratios should be 0.1% matched.
15. Clipping diodes CR_{1} and CR_{2} are optional. HP5082-2810 recommended.

FIGURE 5. SETTLING TIME TEST CIRCUIT

NOTE: Tested offset adjustment range is $\mathrm{IVOS}+1 \mathrm{mVI}$ minimum referred to output. Typical ranges are $\pm 6 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=20 \mathrm{k} \Omega$.

FIGURE 6. SUGGESTED VOS ADJUSTMENT AND COMPENSATION HOOK UP

Schematic

Typical Performance Curves

FIGURE 7. POWER SUPPLY CURRENT vs TEMPERATURE

FIGURE 9. EQUIVALENT INPUT NOISE vs BANDWIDTH (WITH $\mathbf{1 0 H z}$ HIGH PASS FILTER)

FIGURE 11. OPEN LOOP GAIN AND PHASE RESPONSE

FIGURE 8. INPUT BIAS AND OFFSET CURRENT vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 13. OPEN LOOP GAIN RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM COMPENSATION PIN TO GROUND

FIGURE 14. OPEN LOOP VOLTAGE GAIN vs TEMPERATURE

FIGURE 15. OUTPUT VOLTAGE SWING vs FREQUENCY

Die Characteristics

DIE DIMENSIONS:
65 mils $\times 57$ mils $\times 19$ mils $1650 \mu \mathrm{~m} \times 1450 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:
Type: AI, 1\% Cu
Thickness: $16 \mathrm{k} \AA+2 \mathrm{k} \AA$
PASSIVATION:

SUBSTRATE POTENTIAL (Powered Up):
Unbiased
TRANSISTOR COUNT:
40
PROCESS:
Bipolar Dielectric Isolation

Type: Nitride ($\mathrm{Si}_{3} \mathrm{~N}_{4}$) over Silox ($\mathrm{SiO}_{2}, 5 \%$ Phos.)
Silox Thickness: $12 k \AA \pm 2 k \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$
Metallization Mask Layout

20MHz, High Slew Rate, Uncompensated, High Input Impedance, Operational Amplifiers

Features

- High Slew Rate. 120V/ $/$ s
- Fast Settling . 200ns
- Full Power Bandwidth . 2MHz
- Gain Bandwidth ($A_{V} \geq 3$) 20MHz
- High Input Impedance . 100M
- Low Offset Current . $10 n A$

Applications

- Data Acquisition Systems
- RF Amplifiers
- Video Amplifiers
- Signal Generators
- Pulse Amplification

Description

HA-2520/2522/2525 comprise a series of operational amplifiers delivering an unsurpassed combination of specifications for slew rate, bandwidth and settling time. These dielectrically isolated amplifiers are controlled at close loop gains greater than 3 without external compensation. In addition, these high performance components also provide low offset current and high input impedance.
$120 \mathrm{~V} / \mathrm{us}$ slew rate and 200 ns (0.2%) settling time of these amplifiers make them ideal components for pulse amplification and data acquisition designs. These devices are valuable components for RF and video circuitry requiring up to 20 MHz gain bandwidth and 2 MHz power bandwidth. For accurate signal conditioning designs the HA-2520/2522/2525's superior dynamic specifications are complemented by 10 nA offset current, $100 \mathrm{M} \Omega$ input impedance and offset trim capability. MIL-STD-883 product and data sheets are available upon request.

Ordering Information

PART NUMBER (BRAND)	$\begin{aligned} & \text { TEMP. } \\ & \text { RANGE }\left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	PACKAGE	PKG. NO.
HA2-2520-2	-55 to 125	8 Pin Metal Can	T8.C
HA2-2522-2	-55 to 125	8 Pin Metal Can	T8.C
HA2-2525-5	0 to 75	8 Pin Metal Can	T8.C
HA3-2525-5	0 to 75	8 Ld PDIP	E8.3
HA4P2525-5	0 to 75	20 Ld PLCC	N20.35
HA7-2520-2	-55 to 125	8 Ld CERDIP	F8.3A
HA7-2522-2	-55 to 125	8 Ld CERDIP	F8.3A
HA7-2525-5	0 to 75	8 Ld CERDIP	F8.3A
$\begin{aligned} & \text { HA9P2525-5 } \\ & \text { (H25255) } \end{aligned}$	0 to 75	8 Ld SOIC	M8.15

Pinouts

HA-2520/22 (CERDIP) HA-2525 (PDIP, CERDIP, SOIC) TOP VIEW

HA-2520/22/25
(METAL CAN)
TOP VIEW

Absolute Maximum Ratings
Supply Voltage (Between V+ and V- Terminals) . 50 mA
Differential Input Voltage. .

Operating Conditions

Temperature Range
HA-2520/2522-2
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-2525-5.
-5. . $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 1)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	
Metal Can Package $\ldots \ldots \ldots \ldots \ldots$	165	80	
PDIP Package	96	N/A	
CERDIP Package	135	50	
PLCC Package	74	157	N/A
SOIC Package	157		

Maximum Junction Temperature (Hermetic Packages) $175^{\circ} \mathrm{C}$ Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$ Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$ (SOIC and PLCC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\quad V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$

PARAMETER	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	HA-2520-2			HA-2522-2			HA-2525-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS											
Offset Voltage	25	-	4	8	-	5	10	-	5	10	mV
	Full	-	-	11	-	-	14	-	-	14	mV
Offset Voltage Drift	Full	-	20	-	-	25	-	-	30	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	25	-	100	200	-	125	250	-	125	250	nA
	Full	-	-	400	-	-	500	-	-	500	nA
Offset Current	25	-	10	25	-	20	50	-	20	50	nA
	Full	-	-	50	-	-	100	-	-	100	nA
Input Resistance (Note 2)	25	50	100	-	40	100	-	40	100	-	M Ω
Common Mode Range	Full	± 10.0	-	-	± 10.0	-	-	± 10.0	-	-	V

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain (Notes 3, 6)	25	10	15	-	7.5	15	-	7.5	15	-	kV / N
	Full	7.5	-	-	5	-	-	5	-	-	kV / N
Common Mode Rejection Ratio (Note 4)	Full	80	90	-	74	90	-	74	90	-	dB
Gain Bandwidth (Notes 2, 5)	25	10	20	-	10	20	-	10	20	-	MHz
Minimum Stable Gain	25	3	-	-	3	-	-	3	-	-	$\mathrm{V} N$

OUTPUT CHARACTERISTICS

Output Voltage Swing (Note 3)	Full	± 10.0	± 12.0	-	± 10.0	± 12.0	-	± 10.0	± 12.0	-	V
Output Current (Note 6)	25	± 10	± 20	-	± 10	± 20	-	± 10	± 20	-	mA
Full Power Bandwidth (Notes 6, 11)	25	1.5	2.0	-	1.2	2.0	-	1.2	2.0	-	MHz

TRANSIENT RESPONSE ($A_{V}=+3$)

Rise Time (Notes 3, 7, 8, 10)	25	-	25	50	-	25	50	-	25	50	ns
Overshoot (Notes 3, 7, 8, 10)	25	-	25	40	-	25	50	-	25	50	\%
Slew Rate (Notes 3, 7, 10, 12)	25	± 100	± 120	-	± 80	± 120	-	± 80	± 120	-	V/us
Settling Time (Notes 3, 7, 10, 12)	25	-	0.20	-	-	0.20	-	-	0.20	-	$\mu \mathrm{s}$

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ (Continued)

PARAMETER	$\begin{gathered} \text { TEMP } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	HA-2520-2			HA-2522-2			HA-2525-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
POWER SUPPLY CHARACTERISTICS											
Supply Current	25	-	4	6	-	4	6	-	4	6	mA
Power Supply Rejection Ratio (Note 9)	Full	80	90	-	74	90	-	74	90	-	dB

NOTES:
2. This parameter value is based on design calculations.
3. $R_{L}=2 k \Omega$.
4. $V_{C M}= \pm 10 \mathrm{~V}$.
5. $A_{V}>10$.
6. $\mathrm{V}_{\mathrm{O}}= \pm 10.0 \mathrm{~V}$.
7. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.
8. $V_{O}= \pm 200 \mathrm{mV}$.
9. $\Delta \mathrm{V}= \pm 5.0 \mathrm{~V}$.
10. See Transient Response Test Circuits and Waveforms.
11. Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW $=\frac{\text { Slew Rate }}{2 \pi \mathrm{~V}_{\text {PEAK }}}$.
12. $\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}$.

Test Circuits and Waveforms

FIGURE 1. SLEW RATE AND SETTLING TIME

FIGURE 3. SLEW RATE AND TRANSIENT RESPONSE

NOTE: Measured on both positive and negative transitions from OV to +200 mV and 0 V to -200 mV at the output.

FIGURE 2. TRANSIENT RESPONSE

NOTES:
13. $A_{V}=-3$.
14. Feedback and summing resistor ratios should be 0.1% matched.
15. Clipping diodes CR_{1} and CR_{2} are optional. HP5082-2810 recommended.

FIGURE 4. SETTLING TIME TEST CIRCUIT

Test Circuits and Waveforms (Continued)

NOTE: Tested offset adjustment range is $I V_{O S}+1 \mathrm{mVI}$ minimum referred to output. Typical ranges are $\pm 20 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=20 \mathrm{k} \Omega$.
FIGURE 5. SUGGESTED $V_{\text {OS }}$ ADJUSTMENT AND COMPENSATION HOOK-UP
Schematic Diagram

Typical Application

Inverting Unity Gain Circuit

Figure 6 shows a Compensation Circuit for an inverting unity gain amplifier. The circuit was tested for functionality with supply voltages from $\pm 4 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$, and the performance as tested was: Slew Rate $\approx 120 \mathrm{~V} / \mu \mathrm{s}$; Bandwidth $\approx 10 \mathrm{MHz}$; and Settling Time $(0.1 \%) \approx 500 \mathrm{~ns}$. Figure 7 illustrates the amplifier's frequency response, and it is important to note that capacitance at pin 8 must be minimized for maximum bandwidth.

FIGURE 6. INVERTING UNITY GAIN CIRCUIT

FIGURE 7. FREQUENCY RESPONSE FOR INVERTING UNITY GAIN CIRCUIT

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 8. OFFSET VOLTAGE vs TEMPERATURE (6 TYPICAL UNITS FROM 3 LOTS)

FIGURE 10. OFFSET CURRENT vs TEMPERATURE (5 TYPICAL UNITS FROM 3 LOTS)

FIGURE 9. BIAS CURRENT vs TEMPERATURE (6 TYPICAL UNITS FROM 3 LOTS)

FIGURE 11. OPEN LOOP GAIN vs TEMPERATURE (6 TYPICAL UNITS FROM 3 LOTS)

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 12. OUTPUT CURRENT vs SUPPLY VOLTAGE

FIGURE 14. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 16. OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM COMP PIN TO GROUND

FIGURE 13. OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE

FIGURE 15. FREQUENCY RESPONSE

FIGURE 17. INPUT NOISE CHARACTERISTICS

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 18. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 19. NORMALIZED AC PARAMETERS vs SUPPLY VOLTAGE

Die Characteristics

DIE DIMENSIONS:
67 mils $\times 57$ mils $\times 19$ mils
($1700 \mu \mathrm{~m} \times 1440 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$)

METALLIZATION:

Type: AI, 1\% Cu
Thickness: $16 \mathrm{k} \AA+2 \mathrm{k} \AA$
SUBSTRATE POTENTIAL:
Unbiased

PASSIVATION:
Type: Nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ over Silox ($\mathrm{SiO}_{2}, 5 \%$ Phos.) Silox Thickness: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$
TRANSISTOR COUNT:
40

PROCESS:
Bipolar Dielectric Isolation

Metallization Mask Layout

Features

- High Slew Rate . 150V/ $/$ s
- Fast Settling . 200ns
- Full Power Bandwidth . 2MHz
- Gain Bandwidth ($A_{V} \geq 3$) 20MHz
- High Input Impedance . 130M
- Low Offset Current . 5 .
- High Output Current . $\pm 30 \mathrm{~mA}$

Applications

- Data Acquisition Systems - Signal Generators
- RF Amplifiers - Pulse Amplification
- Video Amplifiers

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA2-2529-2	-55 to 125	8 Pin Metal Can	T8.C
HA2-2529-5	0 to 75	8 Pin Metal Can	T8.C
HA3-2529-5	0 to 75	8 Ld PDIP	E8.3
HA7-2529-5	0 to 75	8 Ld CERDIP	F8.3A
HA9P2529-5 (H25295)	0 to 75	8 Ld SOIC	M8.15

Description

The HA-2529 is a monolithic operational amplifier which typifies excellence of design. With a design based on years of experience coupled with the reliable dielectric isolation process, this amplifier provides an outstanding combination of DC and AC parameters at closed loop gains greater than 3.
The HA-2529 offers $150 \mathrm{~V} / \mu$ s slew rate and fast settling time (200 ns), while consuming a mere 6 mA of quiescent current, making this amplifier ideal for video circuitry and data acquisition designs. With 20 MHz gain bandwidth combined with $7.5 \mathrm{kV} / \mathrm{V}$ open loop gain, the HA-2529 is an ideal component for demanding signal conditioning designs. This device provides $\pm 30 \mathrm{~mA}$ output current drive with an output voltage swing of $\pm 10 \mathrm{~V}$ making it suited for pulse amplifier and RF amplifier components.
The HA-2529 will upgrade output current, slew rate, offset voltage drift and offset current drift in systems presently using the HA-2520/22/25 or EHA-2520/22/25.
MIL-STD-883 product and data sheets are available upon request.

Pinouts

HA-2529 (METAL CAN) TOP VIEW

HARR
SEMICONDUCTOR

600MHz, Very High Slew Rate Operational Amplifier

Features

- Very High Slew Rate \qquad $600 \mathrm{~V} / \mu \mathrm{s}$
- Open Loop Gain 15kV/V
- Wide Gain-Bandwidth ($A_{V} \geq 10$) 600 MHz
- Power Bandwidth 9.5 MHz
- Low Offset Voltage. . 8 mV
- Input Voltage Noise $.6 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Output Voltage Swing $\pm 10 \mathrm{~V}$
- Monolithic Bipolar Dielectric Construction

Applications

- Pulse and Video Amplifiers
- Wideband Amplifiers
- High Speed Sample-Hold Circuits
- RF Oscillators

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ}\right.$ C $)$	PACKAGE	PKG. NO.
HA1-2539-2	-55 to 125	14 Ld CERDIP	F14.3
HA1-2539-5	0 to 75	14 Ld CERDIP	F14.3
HA3-2539-5	0 to 75	14 Ld PDIP	E14.3
HA3-2539C-5	0 to 75	14 Ld PDIP	E14.3
HA9P2539-5	0 to 75	14 Ld SOIC	M14.15
HA9P2539-9	-40 to 85	14 Ld SOIC	M14.15

Description

The Harris HA-2539 represents the ultimate in high slew rate, wideband, monolithic operational amplifiers. It has been designed and constructed with the Harris High Frequency Bipolar Dielectric Isolation process and features dynamic parameters never before available from a truly differential device.

With a $600 \mathrm{~V} / \mu$ s slew rate and a 600 MHz gain bandwidth product, the HA-2539 is ideally suited for use in video and RF amplifier designs, in closed loop gains of 10 or greater. Full $\pm 10 \mathrm{~V}$ swing coupled with outstanding AC parameters and complemented by high open loop gain makes the devices useful in high speed data acquisition systems.

For further design assistance please refer to Application Note AN541 (Using the HA-2539 Very High Slew Rate Wideband Operational Amplifiers) and Application Note AN556 (Thermal Safe-Operating-Areas For High Current Operational Amplifiers.

For military grade product information, the HA-2539/883 data sheet is available upon request.

For a lower power version of this product, please see the HA-2839 and HA-2840 data sheets.

Pinout

HA-2539
(PDIP, CERDIP, SOIC)
TOP VIEW

NOTE: No-Connection (NC) leads may be tied to a ground plane for better isolation and heat dissipation.

Absolute Maximum Ratings
Supply Voltage Between V+ and V- Terminals 35 V
Differential inpui Voltage.
. VV
Peak Output Current. 50 mA
Continuous Output Current $.33 \mathrm{~mA}_{\text {RMS }}$

Operating Conditions

Temperature Range

HA-2539-2.	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-2539/2539C-5	. $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
	$-40^{\circ} \mathrm{C}$ to 85°

$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
HA-2539-9.
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 2)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
CERDIP Package	75	20
PDIP Package	107	N/A
SOIC Package	119	N/A

Maximum Internal Quiescent Power Dissipation (Note 1)
Maximum Junction Temperature (Ceramic Package) $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Packages). $150^{\circ} \mathrm{C}$ Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:

1. Maximum power dissipation with load conditions must be designed to maintain the maximum junction temperature below $175^{\circ} \mathrm{C}$ for the ceramic package and below $150^{\circ} \mathrm{C}$ for the plastic packages. By using Application Note AN556 on Safe Operating Area equations, along with the thermal resistances, proper load conditions can be determined. Heat sinking is recommended above $75^{\circ} \mathrm{C}$.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L}<10 \mathrm{pF}$, Unless Otherwise Specified

PARAMETER	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	HA-2539-2			HA-2539-5, -9			HA-2539C-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	

INPUT CHARACTERISTICS

Offset Voltage	25	-	8	10	-	8	15	-	8	15	mV
	Full	-	13	15	-	13	20	-	13	20	mV
Average Offset Voltage Drift	Full	-	20	-	-	20	-	-	20	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	25	-	5	20	-	5	20	-	5	20	$\mu \mathrm{A}$
	Full	-	-	25	-	-	25	-	-	25	$\mu \mathrm{A}$
Offset Current	25	-	1	6	-	1	6	-	1	6	$\mu \mathrm{A}$
	Full	-	-	8	-	-	8	-	-	8	$\mu \mathrm{A}$
Input Resistance	25	-	10	-	-	10	-	-	10	-	$\mathrm{k} \Omega$
Input Capacitance	25	-	1	\bullet	-	1	-	-	1	-	pF
Common Mode Range	Full	± 10.0	-	-	± 10.0	-	-	± 10.0	-	-	V
Input Current Noise $\left(f=1 \mathrm{kHz}, R_{\text {SOURCE }}=0 \Omega\right.$)	25	-	6	-	-	6	-	-	6	-	$\mathrm{pA} \sim \mathrm{Nz}$
Input Voltage Noise $\left(f=1 \mathrm{kHz}, \mathrm{R}_{\text {SOURCE }}=0 \Omega\right)$	25	-	6	-	-	6	-	-	6	-	$\mathrm{nV} / \mathrm{Hz}$

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain (Note 3)	25	10	15	-	10	15	-	7	10	-	kVN
	Full	5	-	-	5	-	-	5	-	-	kV / N
Common Mode Rejection Ratio (Note 4)	Full	60	72	-	60	72	-	60	72	-	dB
Minimum Stable Gain	25	10	-	-	10	-	-	10	-	-	V / N
Gain Bandwidth (Notes 5, 6)	25	-	600	-	-	600	-	-	600	-	MHz

OUTPUT CHARACTERISTICS

Output Voltage Swing (Notes 3, 10)	Full	± 10.0	-	-	± 10.0	-	-	± 10.0	-	-	V
Output Current (Note 3)	25	± 10	± 20	-	± 10	± 20	-	± 10	± 20	-	mA
Output Resistance	25	-	30	-	-	30	-	-	30	-	Ω
Full Power Bandwidth (Notes 3, 7)	25	8.7	9.5	-	8.7	9.5	-	8.7	9.5	-	MHz

Electrical Specifications $\quad V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L}<10 p F$, Unless Otherwise Specified (Continued)

PARAMETER	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	HA-2539-2			HA-2539-5, -9			HA-2539C-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
TRANSIENT RESPONSE (Note 8)											
Rise Time	25	-	7	-	-	7	-	-	7	-	ns
Overshoot	25	-	15	-	-	15	-	-	15	-	\%
Slew Rate	25	550	600	-	550	600	-	550	600	-	V/us
Settling Time: 10V Step to 0.1\%	25	-	180	-	-	180	-	-	200	-	ns
POWER REQUIREMENTS											
Supply Current	Full	-	20	25	-	20	25	-	20	25	mA
Power Supply Rejection Ratio (Note 9)	Full	60	70	-	60	70	-	60	70	-	dB

NOTES:
3. $R_{L}=1 \mathrm{k} \Omega, V_{O}= \pm 10 \mathrm{~V}$.
4. $V_{C M}= \pm 10.0 \mathrm{~V}$.
5. $\mathrm{V}_{\mathrm{O}}=90 \mathrm{mV}$.
6. $A_{V}=10$.
7. Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$.
8. Refer to Test Circuits section of data sheet.
9. $\mathrm{V}_{\text {SUPPLY }}=+5 \mathrm{~V},-15 \mathrm{~V}$ and $+15 \mathrm{~V},-5 \mathrm{~V}$.
10. Guaranteed range for output voltage is $\pm 10 \mathrm{~V}$. Functional operation outside of this range is not guaranteed.

FIGURE 1. TEST CIRCUIT

Vertical Scale: $\mathrm{A}=0.5 \mathrm{~V} /$ Div., $\mathrm{B}=5.0 \mathrm{~V} /$ Div. Horizontal Scale: $50 \mathrm{~ns} /$ Div.

FIGURE 2. LARGE SIGNAL RESPONSE

Vertical Scale: $\operatorname{Input}=10 \mathrm{mV} /$ Div., Output $=50 \mathrm{mV} /$ Div. Horizontal Scale: $20 \mathrm{~ns} /$ Div.

FIGURE 3. SMALL SIGNAL RESPONSE

Test Circuits and Waveforms (Continued)

NOTES:
14. $A_{V}=-10$.
15. Load Capacitance should be less than 10 pF .
16. It is recommended that resistors be carbon composition and that feedback and summing network ratios be matched to 0.1%.
17. SETTLE POINT (Summing Node) capacitance should be less than 10 pF . For optimum settling time results, it is recommended that the test circuit be constructed directly onto the device pins. A Tektronix 568 Sampling Oscilloscope with S-3A sampling heads is recommended as a settle point monitor.

FIGURE 4. SETTLING TIME CIRCUIT

Schematic Diagram

Typical Applications

FIGURE 5. FREQUENCY COMPENSATION BY OVERDAMPING

FIGURE 7. REDUCING DC ERRORS; COMPOSITE AMPLIFIER

FIGURE 6. STABILIZATION USING $Z_{I N}$

FIGURE 8. DIFFERENTIAL GAIN ERROR (3\%) HA-2539 20dB VIDEO GAIN BLOCK

Typical Performance Curves

FIGURE 9. INPUT OFFSET VOLTAGE AND BIAS CURRENT vs TEMPERATURE

FIGURE 10. INPUT NOISE VOLTAGE AND NOISE CURRENT vs FREQUENCY

Typical Performance Curves (Continued)

Vertical Scale: $10 \mathrm{mV} / \mathrm{Div}$.
Horizontal Scale: $50 \mathrm{~ms} /$ Div.

FIGURE 11. BROADBAND NOISE (0.1 Hz TO 1 MHz)

FIGURE 13. POWER SUPPLY REJECTION RATIO vs FREQUENCY

FIGURE 15. CLOSED LOOP FREQUENCY RESPONSE

FIGURE 12. COMMON MODE REJECTION RATIO vs FREQUENCY

FIGURE 14. OPEN LOOP GAIN/PHASE vs FREQUENCY

FIGURE 16. OUTPUT VOLTAGE SWING vs FREQUENCY

Typical Performance Curves (Continued)

FIGURE 17. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE

FIGURE 19. SETTLING TIME FOR VARIOUS OUTPUT STEP VOLTAGES

FIGURE 18. NORMALIZED AC PARAMETERS vs TEMPERATURE

FIGURE 20. POWER SUPPLY CURRENT vs TEMPERATURE

Die Characteristics

```
DIE DIMENSIONS:
SUBSTRATE POTENTIAL (Powered Up):
```

62 mils $\times 76$ mils $\times 19$ mils $1575 \mu \mathrm{~m} \times 1930 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:
Type: Al, 1\% Cu
Thickness: $16 \mathrm{k} \AA$ +2k \AA

PASSIVATION:

V-
TRANSISTOR COUNT:
30
PROCESS:
Bipolar Dielectric Isolation

Type: Nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ over Silox ($\mathrm{SiO}_{2}, 5 \%$ Phos.)
Silox Thickness: $12 k \AA \pm 2 k \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$

Metallization Mask Layout

HA-2539

HARRIS
SEMICONDUCTOR

400MHz, Fast Settling Operational Amplifier

Features

- Very High Slew Rate . 400V/ $\mu \mathrm{s}$
- Fast Settling Time . 140ns
- Wide Gain Bandwidth ($A_{V} \geq 10$) 400MHz
- Power Bandwidth. 6MHz
- Low Offset Voltage. 8mV
- Input Voltage Noise . 6nV/ $\sqrt{\mathrm{Hz}}$
- Output Voltage Swing . $\pm 10 \mathrm{~V}$
- Monolithic Bipolar Construction

Applications

- Pulse and Video Amplifiers
- Wideband Amplifiers
- High Speed Sample-Hold Circuits
- Fast, Precise D/A Converters

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA1-2540-2	-55 to 125	14 Ld CERDIP	F14.3
HA1-2540-5	0 to 75	14 Ld CERDIP	F14.3
HA3-2540-5	0 to 75	14 Ld PDIP	E14.3
HA3-2540C-5	0 to 75	14 Ld PDIP	E14.3
HA9P2540-5	0 to 75	14 Ld SOIC	M14.15

Description

The Harris HA-2540 is a wideband, very high slew rate, monolithic operational amplifier featuring superior speed and bandwidth characteristics. Bipolar construction coupled with dielectric isolation allows this truly differential device to deliver outstanding performance in circuits where closed loop gain is 10 or greater. Additionally, the HA-2540 has a drive capability of $\pm 10 \mathrm{~V}$ into a $1 \mathrm{k} \Omega$ load. Other desirable characteristics include low input voltage noise, low offset voltage, and fast settling time.

A $400 \mathrm{~V} / \mu \mathrm{s}$ slew rate ensures high performance in video and pulse amplification circuits, while the 400 MHz gain-bandwidth product is ideally suited for wideband signal amplification. A settling time of 140 ns also makes the HA-2540 an excellent selection for high speed Data Acquisition Systems.
Refer to Application Note AN541 and Application Note AN556 for more information on High Speed Op Amp applications. HA-2540/883 MIL-STD-883 data sheet is available on request.

For a lower power version of this product, please see the HA-2840 and HA-2850 datasheets.

Pinout

HA-2540
(CERDIP, PDIP, SOIC)
TOP VIEW


```
Absolute Maximum Ratings
Voltage Between V+ and V- Terminals . . . . . . . . . . . . . . . . . . . 35V
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6V
Output Current . . . . . . . . . . . . . 33mARMMS Continuous, 50mAPEAK
```


Operating Conditions

```
Temperature Range
\begin{tabular}{|c|c|}
\hline 40-2 & \(125^{\circ} \mathrm{C}\) \\
\hline HA-2540/2540C-5 & \(0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\) \\
\hline HA-2540/2540C- & \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
```


Thermal Information

Thermal Resistance (Typical, Note 2)	$\theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{Jc}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
CERDIP Package	75	20
PDIP Package	107	N/A
SOIC Package .	119	N/A

Maximum Internal Power Dissipation (Note 1)
Maximum Junction Temperature (Ceramic Package) $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Packages). $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$ (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Maximum power dissipation with load conditions must be designed to maintain the maximum junction temperature below $175^{\circ} \mathrm{C}$ for the ceramic package, and below $150^{\circ} \mathrm{C}$ for the plastic package. By using Application Note AN556 on Safe Operating Area Equations, along with the thermal resistances, proper load conditions can be determined. Heat sinking is recommended above $75^{\circ} \mathrm{C}$.
2. $\theta_{J A}$ is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\quad V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L}<10 \mathrm{pF}$, Unless Otherwise Specified

PARAMETER	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	HA-2540-2			HA-2540-5, -9			HA-2540C-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS											
Offset Voltage	25	-	8	10	-	8	15	-	8	15	mV
	Full	-	13	15	-	13	20	-	13	20	mV
Average Offset Voltage Drift	Full	-	20	-	-	20	-	-	20	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	25	-	5	20	-	5	20	-	5	20	$\mu \mathrm{A}$
	Full	-	-	25	-	-	25	-	-	25	$\mu \mathrm{A}$
Offset Current	25	-	1	6	-	1	6	-	1	6	$\mu \mathrm{A}$
	Full	-	-	8	-	-	8	-	-	8	$\mu \mathrm{A}$
Input Resistance	25	-	10	-	-	10	-	-	10	-	$\mathrm{k} \Omega$
Input Capacitance	25	-	1	-	-	1	-	-	1	-	pF
Common Mode Range	Full	± 10	-	-	± 10	-	-	± 10	-	-	V
Input Noise Current ($\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\text {SOURCE }}=0 \Omega$)	25	-	6	\cdot	-	6	-	-	6	-	$\mathrm{pA} \sqrt{\text { Hz }}$
Input Noise Voltage ($\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\text {SOURCE }}=0 \Omega$)	25	-	6	-	-	6	-	-	6	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS											
Large Signal Voltage Gain (Note 3)	25	10	15	-	10	15	-	7	10	-	kV/V
	Full	5	-	-	5	-	-	5	-	-	kV/N
Common-Mode Rejection Ratio (Note 4)	Full	60	72	-	60	72	-	60	72	-	dB
Minimum Stable Gain	25	10	-	-	10	-	-	10	-	-	$\mathrm{V} N$
Gain Bandwidth Product (Notes 5, 6)	25	-	400	-	-	400	-	-	400	-	MHz
OUTPUT CHARACTERISTICS											
Output Voltage Swing (Notes 3, 10)	Full	± 10	-	-	± 10	-	-	± 10	-	-	V
Output Current (Note 3)	25	± 10	± 20	-	± 10	± 20	-	± 10	± 20	-	mA
Output Resistance	25	-	30	-	-	30	-	-	30	-	Ω
Full Power Bandwidth (Notes 3, 7)	25	5.5	6	-	5.5	6	-	5.5	6	-	MHz

HA-2540

Electrical Specifications $\quad V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L}<10 \mathrm{pF}$, Unless Otherwise Specified (Continued)

PARAMETER	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	HA-2540-2			HA-2540-5, -9			HA-2540C-5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
TRANSIENT RESPONSE (Note 8)											
Rise Time	25	-	14	-	-	14	-	-	14	-	ns
Overshoot	25	-	5	-	-	5	-	-	5	-	\%
Slew Rate	25	320	400	-	320	400	-	320	400	-	$\mathrm{V} / \mathrm{\mu s}$
Settling Time: 10 V Step to 0.1%	25	-	140	-	-	140	-	-	140	-	ns
POWER REQUIREMENTS											
Supply Current	Full	-	20	25	-	20	25	-	20	25	mA
Power Supply Rejection Ratio (Note 9)	Full	60	70	-	60	70	-	60	70	-	dB

NOTES:
3. $R_{L}=1 \mathrm{k} \Omega, V_{O}= \pm 10 \mathrm{~V}$.
4. $\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$.
5. $V_{O}=90 \mathrm{mV}$.
6. $A_{V}=10$.
7. Full power bandwidth guaranteed based on slew rate measurement using: $F P B W=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$
8. Refer to Test Circuits section of the data sheet.
9. $\mathrm{V}_{\text {SUPPLY }}=+5 \mathrm{~V},-15 \mathrm{~V}$ and $+15 \mathrm{~V},-5 \mathrm{~V}$.
10. Guaranteed range for output voltage is $\pm 10 \mathrm{~V}$. Functional operation outside of this range is not guaranteed

Test Circuits and Waveforms

FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT

Vertical Scale: $A=0.5 \mathrm{~V} /$ Div., $B=5.0 \mathrm{~V} /$ Div. Horizontal Scale: $50 \mathrm{~ns} / \mathrm{Div}$.

Vertical Scale: $\operatorname{Input}=10 \mathrm{mV} /$ Div.; Output $=50 \mathrm{mV} /$ Div. Horizontal Scale: 20ns/Div.

SMALL SIGNAL RESPONSE

Test Circuits and Waveforms (Continued)

NOTES:
13. $A_{V}=-10$.
14. Load Capacitance should be less than 10 pF . Turn on time delay typically 4 ns .
15. It is recommended that resistors be carbon composition and the feedback and summing network ratios be matched to 0.1%.
16. SETTLE POINT (Summing Node) capacitance should be less than 10pF. For optimum settling time results, it is recommended that the test circuit be constructed directly onto the device pins. A Tektronix 568 Sampling Oscilloscope with S-3A sampling heads is recommended as a settle point monitor.

FIGURE 2. SETTLING TIME TEST CIRCUIT

Schematic Diagram

Typical Applications

NOTE: With one HA-2540 and two low capacitance switching diodes, signals exceeding 10 MHz can be separated. This circuit is most useful for full wave rectification, AM detectors or sync generation.

FIGURE 3. WIDEBAND SIGNAL SPLITTER

NOTES:
17. Used for experimental purposes. $\mathrm{C}_{\mathrm{F}} \cong 3 \mathrm{pF}$.
18. C_{1} is optional ($0.001 \mu \mathrm{~F} \rightarrow 0.01 \mu \mathrm{~F}$ ceramic).
19. R_{5} is optional and can be utilized to reduce input signal amplitude and/or balance input conditions. $\mathrm{R}_{5}=500 \Omega$ to $1 \mathrm{k} \Omega$.

FIGURE 4. BOOTSTRAPPING FOR MORE OUTPUT CURRENT AND VOLTAGE SWING

Refer to Application Note AN541 For Further Application Information.

Typical Performance Curves

FIGURE 5. CLOSED LOOP FREQUENCY RESPONSE

FIGURE 7. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE

FIGURE 9. SETTLING TIME FOR VARIOUS OUTPUT STEP VOLTAGES

FIGURE 6. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 8. NORMALIZED AC PARAMETERS vs TEMPERATURE

FIGURE 10. POWER SUPPLY CURRENT vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 11. INPUT OFFSET VOLTAGE AND BIAS CURRENT vs TEMPERATURE

Vertical Scale: $10 \mathrm{mV} / \mathrm{Div}$.
Horizontal Scale: 50ms/Div.

FIGURE 13. BROADBAND NOISE (0.1 Hz TO 1 MHz)

FIGURE 15. POWER SUPPLY REJECTION RATIO vs FREQUENCY

FIGURE 12. INPUT NOISE VOLTAGE AND NOISE CURRENT vs FREQUENCY

FIGURE 14. COMMON MODE REJECTION RATIO vs FREQUENCY

FIGURE 16. OPEN LOOP GAIN/PHASE vs FREQUENCY

Die Characteristics

DIE DIMENSIONS:

62 mils $\times 76$ mils $\times 19$ mils $1575 \mu \mathrm{mx} 1930 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:

Type: AI, 1\% Cu
Thickness: $16 \mathrm{k} \AA ̊+2 \mathrm{k} \AA$

PASSIVATION:

Type: Nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ over Silox ($\mathrm{SiO}_{2}, 5 \%$ Phos.)
Silox Thickness: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$

SUBSTRATE POTENTIAL (Powered Up):

V-

TRANSISTOR COUNT:

30
PROCESS:
Bipolar Dielectric Isolation

Metallization Mask Layout

HARRIS
SEMICONDUCTOR

40MHz, Fast Settling, Unity Gain Stable, Operational Amplifier

Features

- Unity Gain Bandwidth 40 MHz
- High Slew Rate 250V/ $\mu \mathrm{s}$
- Low Offset Voltage. 0.8 mV
- Fast Settling Time (0.1\%) . 90ns
- Power Bandwidth 4 MHz
- Output Voltage Swing (Min) $\pm 10 \mathrm{~V}$
- Unity Gain Stability
- Monolithic Bipolar Dielectric Isolation Construction

Applications

- Pulse and Video Amplifiers
- Wideband Amplifiers
- High Speed Sample-Hold Circuits
- Fast, Precise D/A Converters
- High Speed A/D Input Buffer

For a lower power version of this product, please see the HA-2841 data sheet.

Description

The HA-2541 is the first unity gain stable monolithic operational amplifier to achieve 40 MHz unity gain bandwidth. A major addition to the Harris series of high speed, wideband op amps, the HA-2541 is designed for video and pulse applications requiring stable amplifier response at low closed loop gains.

The uniqueness of the HA-2541 is that its slew rate and bandwidth characteristics are specified at unity gain. Historically, high slew rate, wide bandwidth and unity gain stability have been incompatible features for a monolithic operational amplifier. But features such as $250 \mathrm{~V} / \mu$ s slew rate and 40 MHz unity gain bandwidth clearly show that this is not the case for the HA-2541. These features, along with 90ns settling time to 0.1%, make this product an excellent choice for high speed data acquisition systems.

MIL-STD-883 product and data sheets are available upon request, Harris AnswerFAX (407-724-7800) document \#3698.

For further application suggestions on the HA-2541, please refer to Application Note AN550 (Using the HA-2541), and Application Note AN556 (Thermal Safe Operating Areas for High Current Operational Amplifiers), Harris AnswerFAX (407-724-7800) document \#9550 and 9556. Also see 'Applications' in this data sheet.

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA1-2541-2	-55 to 125	14 Ld CERDIP	F14.3
HA1-2541-5	0 to 75	14 Ld CERDIP	F14.3
HA2-2541-2	-55 to 125	12 Pin Metal Can	T12.C
HA2-2541-5	0 to 75	12 Pin Metal Can	T12.C

Pinouts

Absolute Maximum Ratings
Voltage Between V+ and V- Terminals 35 V
Differential Input Voltage. 6 V
Peak Output Current 50 mA
Continuous Output Current. $28 \mathrm{~mA}_{\text {RMS }}$

Operating Conditions

Temperature Range
HA-2541-2. $\qquad$$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-2541-5. \qquad $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 2) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ CERDIP Package 75
Can Package 65
Maximum Junction Temperature (Note 1) $175^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Maximum power dissipation with load conditions must be designed to maintain the maximum junction temperature below $175^{\circ} \mathrm{C}$. By using Application Note AN556 on Safe Operating Area equations, along with the thermal resistances, proper load conditions can be determined. Heat sinking is recommended above $75^{\circ} \mathrm{C}$.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} \text { HA-2541-2 } \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{gathered}$			$\begin{aligned} & \text { HA- } 2541-5 \\ & 0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C} \end{aligned}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS									
Offset Voltage		25	-	0.8	2	-	1	2	mV
		Full	-	-	6	-	-	6	mV
Average Offset Voltage Drift		Full	-	9	-	-	9	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	11	35	-	11	35	$\mu \mathrm{A}$
		Full	-	-	50	-	-	50	$\mu \mathrm{A}$
Average Bias Current Drift		Full	-	85	-	-	85	-	$n{ }^{\prime}{ }^{\circ} \mathrm{C}$
Offset Current		25	-	1	7	-	1	7	$\mu \mathrm{A}$
		Full	-	-	9	-	-	9	$\mu \mathrm{A}$
Input Resistance		25	-	100	-	-	100	-	k ת
Input Capacitance		25	-	1	-	-	1	-	pF
Common Mode Range		Full	± 10	± 11	-	± 10	± 11	-	V
Input Noise Voltage	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{g}}=0 \Omega$	25	-	10	-	-	10	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{g}}=0 \Omega$	25	-	4	-	-	4	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS									
Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	10	16	-	10	16	-	kV/N
		Full	5	-	-	5	-	-	kV/
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	Full	70	90	-	70	90	-	dB
Minimum Stable Gain		25	1	-	-	1	-	-	V / N
Unity Gain Bandwidth	$\mathrm{V}_{\mathrm{O}}=90 \mathrm{mV}$	25	-	40	-	-	40	-	MHz
OUTPUT CHARACTERISTICS									
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	Full	± 10	± 11	-	± 10	± 11	-	V
Output Current	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	25	± 10	± 15	-	± 10	± 15	-	mA
Output Resistance		25	-	2	-	-	2	-	Ω
Full Power Bandwidth (Note 3)	$\mathrm{V}_{\mathrm{P}}=10 \mathrm{~V}$	25	3	4	-	3	4	-	MHz
Differential Gain	Note 4	25	-	0.1	-	-	0.1	-	\%
Differential Phase	Note 4	25	-	0.2	-	-	0.2	-	Degrees

Electrical Specifications $\quad V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L} \leq 10 \mathrm{pF}$. Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { HA- } 2541-2 \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-2541-5 } \\ 0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C} \end{gathered}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Harmonic Distortion	Note 6	25	-	<0.01	-	-	<0.01	-	\%

TRANSIENT RESPONSE (Note 5)

Rise Time		25	-	4	-	-	4	-	ns
Overshoot		25	-	40	-	-	40	-	$\%$
Slew Rate		25	200	250	-	200	250	-	$\mathrm{V} / \mu \mathrm{s}$
Settling Time	10V Step To 0.1%	25	-	90	-	-	90	-	ns
	10V Step To 0.01\%	25	-	175	-	-	175	-	ns

POWER REQUIREMENTS

Supply Current		25	-	29	-	-	29	-	mA
		Full	-	-	40	-	-	40	mA
Power Supply Rejection Ratio	$\mathrm{V}_{S}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	Full	70	80	-	70	78	-	dB

NOTES:
3. Full Power Bandwidth guaranteed based on slew rate measurement using: $\mathrm{FPBW}=\frac{\text { Slew Rate }}{2 \pi \mathrm{~V}_{\text {PEAK }}}$
4. Differential Gain and Phase are measured with a 1 V differential voltage at 5 MHz .
5. Refer to Test Circuits section of this data sheet.
6. $f=10 \mathrm{kHz} ; A_{V}=5 ; V_{O}=14 V_{P-P}$.

Test Circuits and Waveforms

FIGURE 1. TRANSIENT RESPONSE TEST CIRCUIT

Vertical Scale: 5V/Div. Horizontal Scale: 50ns/Div.

LARGE SIGNAL RESPONSE

10. $A_{V}=-1$.
11. Feedback and summing resistor ratios should be 0.1% matched.
12. HP5082-2810 clipping diodes recommended.
13. Tektronix P6201 FET probe used at settling point.

FIGURE 2. SETTLING TIME TEST CIRCUIT

Vertical Scale: $\mathrm{V}_{\mathbb{I N}}=100 \mathrm{mV} /$ Div., $\mathrm{V}_{\text {OUT }}=50 \mathrm{mV} /$ Div. Horizontal Scale: 20ns/Div.

SMALL SIGNAL RESPONSE

Test Circuits and Waveforms (Continued)

NOTES:
14. $V_{S}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega$.
15. $T_{A}=25^{\circ} \mathrm{C}$.
16. Propagation delay variance is negligible over full temperature range.

Vertical Scale: $100 \mathrm{mV} /$ Div.
Horizontal Scale: 5ns/Div.

PROPAGATION DELAY
Schematic Diagram

Typical Applications (Also see Application Note AN550)

Application 1

High power amplifiers and buffers are in use in a wide variety of applications. Many times the "high power" capability is needed to drive large capacitive loads as well as low value resistive loads. In both cases the final driver stage is usually a power transistor of some type, but because of their inherently low gain, several stages of pre-drivers are often required. The HA-2541, with its 10 mA output rating, is powerful enough to drive a power transistor without additional stages of current amplification. This capability is well demonstrated with the high power buffer circuit in Figure 3.

The HA-2541 acts as the pre-driver to the output power transistor. Together, they form a unity gain buffer with the ability to drive three 50Ω coaxial cables in parallel, each with a capacitance of 2000 pF . The total combined load is 16.6Ω and 6000 pF capacitance.

LOAD 16.6 2 ; 6000 pF OR 12.5 2 ; 6000 pF

FIGURE 3. DRIVING POWER TRANSISTORS TO GAIN ADDITIONAL CURRENT BOOSTING

Application 2

Video

One of the primary uses of the HA-2541 is in the area of video applications. These applications include signal construction, synchronization addition and removal, as well as signal modification. A wide bandwidth device such as the HA-2541 is well suited for use in this class of amplifier. This, however, is a more involved group of applications than ordinary amplifier applications since video signals contain precise DC levels which must be retained.

The addition of a clamping circuit restores DC levels at the output of an amplifier stage. The circuit shown in Figure 4 utilizes the HA-5320 sample and hold amplifier as the DC clamp. Also shown is a 3.57 MHz trap in series, which will block the color burst portion of the video signal and allow the DC level to be amplified and restored.

FIGURE 4. VIDEO DC RESTORER

Suggested Offset Voltage Adjustment

NOTE: Tested Offset Adjustment Range is IV OS +1 mVI minimum referred to output. Typical range is $\pm 15 \mathrm{mV}$ for $R_{T}=5 \mathrm{k} \Omega$.

Typical Performance Curves

FIGURE 5. INPUT RESISTANCE vs FREQUENCY

FIGURE 7. NOISE DENSITY vs FREQUENCY

FIGURE 9. OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE

FIGURE 6. OFFSET VOLTAGE vs TEMPERATURE (6 REPRESENTATIVE UNITS)

FIGURE 8. BIAS CURRENT vs TEMPERATURE (6 REPRESENTATIVE UNITS)

FIGURE 10. OUTPUT CURRENT vs SUPPLY VOLTAGE

Typical Performance Curves (Continued)

FIGURE 11. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 13. PSRR vs SUPPLY VOLTAGE (AVERAGE OF 3 LOTS)

FIGURE 15. REJECTION RATIOS vs FREQUENCY

FIGURE 12. SLEW RATE vs SUPPLY VOLTAGE (NORMALIZED WITH $V_{S}= \pm 15 \mathrm{~V}$ AT $25^{\circ} \mathrm{C}$)

FIGURE 14. CMRR vs SUPPLY VOLTAGE (AVERAGE OF 3 LOTS)

FIGURE 16. OPEN LOOP GAIN vs SUPPLY VOLTAGE (AVERAGE OF 3 LOTS)

Typical Performance Curves (Continued)

OPEN LOOP $A_{V}=-100 \% A_{V}=-10$ init $A_{V}=-1$,
FIGURE 17. GAIN AND PHASE FREQUENCY RESPONSE

$$
R_{\mathrm{S}}=0 \Omega \quad \mathrm{R}_{\mathrm{S}}=5 \mathrm{k} \Omega, \quad \mathrm{R}_{\mathrm{S}}=50 \mathrm{k} \Omega
$$

FIGURE 18. SMALL SIGNAL BANDWIDTH vs SOURCE RESISTANCE

FIGURE 19. CLOSED LOOP FREQUENCY RESPONSE

Die Characteristics

DIE DIMENSIONS:

80 mils $\times 90$ mils $\times 19$ mils
$2020 \mu \mathrm{~m} \times 2280 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

SUBSTRATE POTENTIAL (Powered Up):

V-
TRANSISTOR COUNT:

METALLIZATION:

Type: Al, 1\% Cu
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$

PASSIVATION:

41

PROCESS:
Bipolar Dielectric Isolation

Type: Nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ over Silox ($\mathrm{SiO}_{2}, 5 \%$ Phos.)
Silox Thickness: $12 k \AA+2 k \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$

Metallization Mask Layout

70MHz, High Slew Rate, High Output Current Operational Amplifier

Description

The HA-2542 is a wideband, high slew rate, monolithic operational amplifier featuring an outstanding combination of speed, bandwidth, and output drive capability.

Utilizing the advantages of the Harris D.I. technology this amplifier offers $350 \mathrm{~V} / \mu$ s slew rate, 70 MHz gain bandwidth, and $\pm 100 \mathrm{~mA}$ output current. Application of this device is further enhanced through stable operation down to closed loop gains of 2.

For additional flexibility, offset null and frequency compensation controls are included in the HA-2542 pinout.

The capabilities of the HA-2542 are ideally suited for high speed coaxial cable driver circuits where low gain and high output drive requirements are necessary. With 5.5 MHz full power bandwidth, this amplifier is most suitable for high frequency signal conditioning circuits and pulse video amplifiers. Other applications utilizing the HA-2542 advantages include wideband amplifiers and fast samplehold circuits.

For more information on the HA-2542, please refer to Application Note AN552 (Using the HA-2542), or Application Note AN556 (Thermal Safe-Operating-Areas for High Current Op Amps).

For a lower power version of this product, please see the HA-2842 data sheet.

Pinouts

> HA-2542
> (PDIP, CERDIP)
> TOP VIEW

HA-2542
(METAL CAN)
TOP VIEW

Absolute Maximum Ratings

Supply Voltage (Between V+ and V- Terminals).
35 V
Differential Input Voltage.
. 6 V
Output Current 50 mA Continuous, 125mAPEAK

Operating Conditions

Temperature Range
HA-2542-2.
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-2542-5. $.0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 2)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
CERDIP Package	75	20
PDIP Package	100	N/A
Metal Can Package	65	34

Maximum Junction Temperature (Note 1, Hermetic Packages) . $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Maximum power dissipation with load conditions must be designed to maintain the maximum junction temperature below $175^{\circ} \mathrm{C}$ for ceramic and can packages, and below $150^{\circ} \mathrm{C}$ for plastic packages. By using Application Note AN556 on Safe Operating Area equations, along with the thermal resistances, proper load conditions can be determined. Heatsinking will be required in many applications. See the "Application Information" section to determine if heat sinking is required for your application.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { TEMP. } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	$\begin{gathered} \text { HA-2542-2 } \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-2542-5 } \\ 0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C} \end{gathered}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS									
Offset Voltage		25	-	5	10	-	5	10	mV
		Full	-	8	20	-	8	20	mV
Average Offset Voltage Drift		Full	-	14	-	-	14	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	15	35	-	15	35	$\mu \mathrm{A}$
		Full	-	26	50	-	26	50	$\mu \mathrm{A}$
Average Bias Current Drift		Full	-	66	-	-	45	-	$n A /{ }^{\circ} \mathrm{C}$
Offset Current		25	-	1	7	-	1	7	$\mu \mathrm{A}$
		Full	-	-	9	-	-	9	$\mu \mathrm{A}$
Input Resistance		25	-	100	-	-	100	-	k Ω
Input Capacitance		25	-	1	-	-	1	-	pF
Common Mode Range		Full	± 10	-	-	± 10	-	-	V
Input Noise Voltage	0.1 Hz to 100 Hz	25	.	2.2	-	-	2.2	\bullet	$\mu \mathrm{V}_{\mathrm{P}-\mathrm{P}}$
Input Noise Density	$f=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{G}}=0 \Omega$	25	-	10	-	-	10	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density	$f=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{G}}=0 \Omega$	25	-	3	-	\cdot	3	\bullet	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS									
Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	10	30	-	10	30	-	kVN
		Full	5	15	-	5	20	-	kVN
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	Full	70	100	-	70	100	-	dB
Minimum Stable Gain		25	2	-	-	2	-	-	$\mathrm{V} N$
Gain Bandwidth Product	$A_{V}=100$	25	-	70	-	-	70	-	MHz
OUTPUT CHARACTERISTICS									
Output Voltage Swing		Full	± 10	± 11	-	± 10	± 11	-	V
Output Current (Note 3)		25	100	-	-	100	-	-	mA
Output Resistance		25	-	5	\bullet	\bullet	5	-	Ω

Electrical Specifications $\quad V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \text { HA-2542-2 } \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{gathered}$			$\begin{aligned} & \text { HA-2542-5 } \\ & 0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C} \end{aligned}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Full Power Bandwidth (Note 4)	$V_{\text {PEAK }}=10 \mathrm{~V}$	25	4.7	5.5	-	4.7	5.5	-	MHz
Differential Gain (Note 5)		25	-	0.1	-	-	0.1	-	\%
Differential Phase (Note 5)		25	-	0.2	-	-	0.2	-	Degree
Harmonic Distortion (Note 7)		25	-	<0.04	-	-	<0.04	-	\%

TRANSIENT RESPONSE (Note 6)

Rise Time		25	-	4	-	-	4	-	ns
Overshoot		25	-	25	-	-	25	-	$\%$
Slew Rate		25	300	350	-	300	350	-	$\mathrm{V} / \mu \mathrm{s}$
Settling Time	10V Step to 0.1%	25	-	100	-	-	100	-	ns
	10V Step to 0.01%	25	-	200	-	-	200	-	ns

POWER SUPPLY CHARACTERISTICS

Supply Current		25	-	30	-	-	30	-	mA
	F		Full	-	31	34.5	-	31	40
mA									
Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$	Full	70	79	-	70	79	-	dB

NOTES:
3. $R_{L}=50 \Omega, \mathrm{~V}_{\mathrm{O}}= \pm 5 \mathrm{~V}$, Output duty cycle must be reduced for lout $>50 \mathrm{~mA}$ (e.g. $\leq 50 \%$ duty cycle for 100 mA).
4. Full Power Bandwidth guaranteed based on slew rate measurement using: $\mathrm{FPBW}=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$.
5. Differential gain and phase are measured at 5 MHz with a 1 V differential input voltage.
6. Refer to Test Circuits section of this data sheet.
7. $V_{I N}=1 V_{R M S} ; f=10 \mathrm{kHz} ; A_{V}=10$.

Test Circuits and Waveforms

NOTES:
8. $V_{S}= \pm 15 \mathrm{~V}$.
9. $A_{V}=+2$.
10. $C_{L} \leq 10 \mathrm{pF}$.

TEST CIRCUIT

Vertical Scale: $\mathrm{V}_{I N}=2.0 \mathrm{~V} /$ Div., $\mathrm{V}_{\text {OUT }}=5.0 \mathrm{~V} /$ Div. Horizontal Scale: 200ns/Div.

LARGE SIGNAL RESPONSE

Test Circuits and Waveforms (Continued)

Vertical Scale: $100 \mathrm{mV} /$ Div. Horizontal Scale: 50ns/Div.

SMALL. SIGNAL RESPONSE

SETtLING TIME TEST CIRCUIT (See Notes 11-15.)

Vertical Scaie: $100 \mathrm{mV} /$ Div. Horizontal Scale: $10 \mathrm{~ns} /$ Div.
$\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$. Propagation delay variance is negligible over full temperature range.

PROPAGATION DELAY

NOTES:
11. $A_{V}=-2$.
12. Feedback and summing resistors must be matched (0.1%).
13. HP5082-2810 clipping diodes recommended.
14. Tektronix P6201 FET probe used at settling point.
15. For 0.01% settling time, heat sinking is suggested to reduce thermal effects and an analog ground plane with supply decoupling is suggested to minimize ground loop errors.

Schematic Diagram

Application Information (Refer to Application Note AN552 for Further Information)

The Harris HA-2542 is a state of the art monolithic device which also approaches the "ALL-IN-ONE" amplifier concept. This device features an outstanding set of AC parameters augmented by excellent output drive capability providing for suitable application in both high speed and high output drive circuits.

Primarily intended to be used in balanced 50Ω and 75Ω coaxial cable systems as a driver, the HA-2542 could also be used as a power booster in audio systems as well as a power amp in power supply circuits. This device would also be suitable as a small DC motor driver.

The applications shown in Figures 2 through Figure 4 demonstrate the HA-2542 at gains of +100 and +2 and as a video cable driver for small signals.

Power Dissipation Considerations

At high output currents, especially with the PDIP package, care must be taken to ensure that the Maximum Junction Temperature (T_{J}, see "Absolute Maximum Ratings" table) is not exceeded. As an example consider the HA-2542 in the PDIP package, with a required output current of 20 mA at $\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$. The power dissipation is the quiescent power ($1.2 \mathrm{~W}=30 \mathrm{~V} \times 40 \mathrm{~mA}$) plus the power dissipated in the output stage (POUT $=200 \mathrm{~mW}=20 \mathrm{~mA} \times(15 \mathrm{~V}-5 \mathrm{~V})$), or a total of 1.4 W . The thermal resistance $\left(\theta_{\mathrm{JA}}\right)$ of the PDIP package is $100^{\circ} \mathrm{C} / \mathrm{W}$, which increases the junction temperature by $140^{\circ} \mathrm{C}$ over the ambient temperature (T_{A}). Remaining below $T_{J M A X}$ requires that T_{A} be restricted to $\leq 10^{\circ} \mathrm{C}\left(150^{\circ} \mathrm{C}-140^{\circ} \mathrm{C}\right)$. Heatsinking would be required for operation at ambient temperatures greater than $10^{\circ} \mathrm{C}$.

Note that the problem isn't as severe with either the CERDIP or Can packages due to their lower thermal resistances, and higher TJMAX. Nevertheless, it is recommended that Figure 1 be used to ensure that heat sinking is not required.

FIGURE 1. MAXIMUM OPERATING TEMPERATURE vs OUTPUT CURRENT

Allowable output power can be increased by decreasing the quiescent dissipation via lower supply voltages.

For more information please refer to Application Note AN556, "Thermal Safe Operating Areas for High Current Op Amps".

Prototyping Guidelines

For best overall performance in any application, it is recommended that high frequency layout techniques be used. This should include: 1) mounting the device through a ground plane: 2) connecting unused pins (NC) to the ground: 3) mounting feedback components on Teflon standoffs and or locating these components as close to the device as possible: 4) placing power supply decoupling capacitors from device supply pins to ground.

As a result of speed and bandwidth optimization. the HA-2542 can's case potential, when powered-up, is equal to the V - potential. Therefore, contact with other circuitry or ground should be avoided.

Frequency Compensation

The HA-2542 may be externally compensated with a single capacitor to ground. This provides the user the additional flexibility in tailoring the frequency response of the amplifier. A guideline to the response is demonstrated on the typical performance curve showing the normalized AC parameters versus compensation capacitance. It is suggested that the user check and tailor the accurate compensation value for each application. As shown additional phase margin is achieved at the loss of slew rate and bandwidth.

For example, for a voltage gain of +2 (or -1) and a load of $500 \mathrm{pF} / 2 \mathrm{k} \Omega, 20 \mathrm{pF}$ is needed for compensation to give a small signal bandwidth of 30 MHz with 40° of phase margin. If a full power output voltage of $\pm 10 \mathrm{~V}$ is needed, this same configuration will provide a bandwidth of 5 MHz and a slew rate of $200 \mathrm{~V} / \mathrm{\mu s}$.

If maximum bandwidth is desired and no compensation is needed, care must be given to minimize parasitic capacitance at the compensation pin. In some cases where minimum gain applications are desired, bending up or totally removing this pin may be the solution. In this case, care must also be given to minimize load capacitance.
For wideband positive unity gain applications, the HA-2542 can also be over-compensated with capacitance greater than 30 pF to achieve bandwidths of around 25 MHz . This over-compensation will also improve capacitive load handling or lower the noise bandwidth. This versatility along with the $\pm 100 \mathrm{~mA}$ output current makes the HA- 2542 an excellent high speed driver for many power applications.

Typical Applications

Frequency $(0 \mathrm{~dB})=44.9 \mathrm{MHz}$,
Phase Margin (0 dB) $=40^{\circ}$

FIGURE 2. NONINVERTING CIRCUIT ($A_{V C L}=100$)

Typical Applications (Continued)

Frequency $(\mathrm{dB})=56 \mathrm{MHz}$, Phase Margin $(3 \mathrm{~dB})=40^{\circ}$
FREQUENCY RESPONSE
FIGURE 3. NONINVERTING CIRCUIT (AvCL $=2$)

1V/Div.; 100ns/Div.
PULSE RESPONSE
FIGURE 4. VIDEO CABLE DRIVER ($\mathrm{A}_{\mathrm{VCL}}=2$)

FIGURE 5. SUGGESTED OFFSET VOLTAGE ADJUSTMENT AND FREQUENCY COMPENSATION

Typical Performance Curves

FIGURE 6. INPUT NOISE VOLTAGE AND INPUT NOISE CURRENT vs FREQUENCY

FIGURE 8. INPUT RESISTANCE vs FREQUENCY

FIGURE 10. BIAS CURRENT vs SUPPLY VOLTAGE

FIGURE 7. OFFSET VOLTAGE vs TEMPERATURE

FIGURE 9. BIAS CURRENT vs TEMPERATURE

FIGURE 11. PSRR AND CMRR vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 12. SUPPLY CURRENT vs SUPPLY VOLTAGE, AT VARIOUS TEMPERATURES

FIGURE 14. SLEW RATE vs TEMPERATURE AT VARIOUS SUPPLY VOLTAGES

FIGURE 16. OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE, AT VARIOUS TEMPERATURES

FIGURE 13. PSRR AND CMRR vs FREQUENCY

FIGURE 15. OPEN LOOP GAIN vs TEMPERATURE, AT VARIOUS SUPPLY VOLTAGES

FIGURE 17. NORMALIZED AC PARAMETERS vs COMPENSATION CAPACITANCE

FIGURE 18. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 20. FREQUENCY RESPONSE CURVES

FIGURE 19. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 21. HA-2542 CLOSED LOOP GAIN vs TEMPERATURE

Die Characteristics

DIE DIMENSIONS:

106 mils $\times 73$ mils $\times 19$ mils $2700 \mu \mathrm{~m} \times 1850 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:
Type: AI, 1\% Cu Thickness: $16 \mathrm{k} \AA \begin{aligned} & \\ & \\ & \mathrm{k} \AA \\ & \AA\end{aligned}$

PASSIVATION

Type: Nitride ($\mathrm{Si}_{3} \mathrm{~N}_{4}$) over Silox ($\mathrm{SiO}_{2}, 5 \%$ Phos.)
Silox Thickness: $12 k \AA+2 k \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$

SUBSTRATE POTENTIAL (Powered Up):

V-
TRANSISTOR COUNT:
43
PROCESS:
Bipolar Dielectric Isolation

Metallization Mask Layout

HA-2544

Features

- Gain Bandwidth
- High Slew Rate \qquad 50 MHz
- Low Supply Current $150 \mathrm{~V} / \mu \mathrm{s}$
- Differential Gain Error 10mA 0.03\%
- Differential Phase Error \qquad
- Gain Flatness at $\mathbf{1 0 M H z}$. 0.12 dB

Applications

- Video Systems
- Imaging Systems
- Video Test Equipment
- Pulse Amplifiers
- Radar Displays
- Signal Conditioning Circuits
- Data Acquisition Systems

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE ($\left.{ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA2-2544-2	-55 to 125	8 Pin Metal Can	T8.C
HA3-2544-5	0 to 75	8 Ld PDIP	E8.3
HA3-2544C-5	0 to 75	8 Ld PDIP	E8.3
HA7-2544-2	-55 to 125	8 Ld CERDIP	F8.3A
HA7-2544-5	0 to 75	8 Ld CERDIP	F8.3A
$\begin{aligned} & \text { HA9P2544-5 } \\ & \text { (H25445) } \end{aligned}$	0 to 75	8 Ld SOIC	M8.15
$\begin{aligned} & \text { HA9P2544-9 } \\ & \text { (H25449) } \end{aligned}$	-40 to 85	8 Ld SOIC	M8.15
HA9P2544C-5 (H2544C5)	0 to 75	8 Ld SOIC	M8.15
HA9P2544C-9 (H2544C9)	-40 to 85	8 Ld SOIC	M8.15

Description

The HA-2544 is a fast, unity gain stable, monolithic op amp designed to meet the needs required for accurate reproduction of video or high speed signals. It offers high voltage gain ($6 \mathrm{kV} / \mathrm{V}$) and high phase margin (65 degrees) while maintaining tight gain flatness over the video bandwidth. Built from high quality Dielectric Isolation, the HA-2544 is another addition to the Harris series of high speed, wideband op amps, and offers true video performance combined with the versatility of an op amp.

The primary features of the HA-2544 include 50 MHz Gain Bandwidth, $150 \mathrm{~V} / \mu \mathrm{s}$ slew rate, 0.03% differential gain error and gain flatness of just 0.12 dB at 10 MHz . High performance and low power requirements are met with a supply current of only 10 mA .

Uses of the HA-2544 range from video test equipment, guidance systems, radar displays and other precise imaging systems where stringent gain and phase requirements have previously been met with costly hybrids and discrete circuitry. The HA-2544 will also be used in non-video systems requiring high speed signal conditioning such as data acquisition systems, medical electronics, specialized instrumentation and communication systems.
Military (/883) product and data sheets are available upon request.

Pinouts

HA-2544
(METAL CAN) TOP VIEW

Absolute Maximum Ratings

Voltage Between V+ and V- Terminals . 35 V
Differential Input Voltage (Note 1). 6 V
Peak Output Current . $\pm 40 \mathrm{~mA}$

Operating Conditions

Temperature Range
HA-2544/2544C-5.............................. $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
HA-2544/2544C-9....................... $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
HA-2544-2. $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 2)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
Metal Can Package	160	75
PDIP Package	92	N/A
CERDIP Package	135	50
SOIC Package .	157	N/A

Maximum Junction Temperature (Hermetic Packages) $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Packages). $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range........$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. To achieve optimum $A C$ performance, the input stage was designed without protective diode clamps. Exceeding the maximum differential input voltage results in reverse breakdown of the base-emitter junction of the input transistors and probable degradation of the input parameters especially V_{OS}, los and Noise.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\quad V_{S U P P L Y}= \pm 15 \mathrm{~V}, C_{L} \leq 10 p F, R_{L}=1 \mathrm{k} \Omega$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	$\begin{aligned} & \text { TEMP } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	HA-2544-2, -5, -9			HA-2544C-5, -9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	

INPUT CHARACTERISTICS

Offset Voltage		25	-	6	15	-	15	25	mV
		-2, -5	-	-	20	-	-	40	mV
		-9	-	-	25	-	-	40	mV
Average Offset Voltage Drift (Note 7)		Full	-	10	-	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	7	15	-	9	18	$\mu \mathrm{A}$
		Full	-	-	20	-	-	30	$\mu \mathrm{A}$
Average Bias Current Drift (Note 7)		Full	-	0.04	-	-	0.04	-	$\mu \mathrm{A}{ }^{\circ} \mathrm{C}$
Offset Current		25	-	0.2	2	-	0.8	2	$\mu \mathrm{A}$
		Full	-	-	3	-	-	3	$\mu \mathrm{A}$
Offset Current Drift		Full	-	10	-	-	10	-	$\mathrm{nA}^{\circ} \mathrm{C}$
Common Mode Range		Full	± 10	± 11.5	-	± 10	± 11.5	-	V
Differential Input Resistance		25	50	90	-	50	90	-	$\mathrm{k} \Omega$
Differential Input Capacitance		25	-	3	-	-	3	-	pF
Input Noise Voltage	$\mathrm{f}=1 \mathrm{kHz}$	25	-	20	-	-	20	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$	25	-	2.4	-	-	2.4	-	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
Input Noise Voltage (Note 7)	0.1 Hz to 10 Hz	25	-	1.5	-	-	1.5	-	$\mu \mathrm{V}_{\text {P-P }}$
	0.1 Hz to 1 MHz	25	-	4.6	-	-	4.6	-	$\mu \mathrm{V}_{\text {RMS }}$

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain (Note 7)	$\mathrm{V}_{\mathrm{O}}= \pm 5 \mathrm{~V}$	25	3.5	6	-	3	6	-	kVN
		Full	2.5	-	-	2	-	-	kV/
Common Mode Rejection Ratio (Note 7)	$\Delta \mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	-2, -5	75	89	-	70	89	-	dB
		-9	75	89	-	65	89	-	dB
Minimum Stable Gain		25	+1	-	-	+1	-	-	V / N
Unity Gain Bandwidth (Note 7)	$\mathrm{V}_{\mathrm{O}}= \pm 100 \mathrm{mV}$	25	-	45	-	-	45	-	MHz
Gain Bandwidth Product (Note 7)	$\mathrm{V}_{\mathrm{O}}= \pm 100 \mathrm{mV}$	25	-	50	-	-	50	-	MHz
Phase Margin		25	-	65	-	-	65	-	Degrees

Electrical Specifications $V_{S U P P L Y}= \pm 15 \mathrm{~V}, C_{L} \leq 10 \mathrm{pF}, R_{L}=1 \mathrm{k} \Omega$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	HA-2544-2, -5, -9			HA-2544C-5, -9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
OUTPUT CHARACTERISTICS									
Output Voltage Swing Full Power Bandwidth (Note 6)		Full	± 10	± 11	-	± 10	± 11	-	V
		25	3.2	4.2	-	3.2	4.2	-	MHz
Peak Output Current (Note 7)		25	± 25	± 35	-	± 25	± 35	-	mA
Continuous Output Current (Note 7)		25	± 10	-	-	± 10	-	-	mA
Output Resistance	Open Loop	25	-	20	-	-	20	-	Ω
TRANSIENT RESPONSE									
Rise Time (Note 4)		25	-	7	-	-	7	-	ns
Overshoot (Note 4)		25	-	10	-	-	10	-	\%
Slew Rate		25	100	150	-	100	150	-	$\mathrm{V} / \mu \mathrm{s}$
Settling Time (Note 5)		25	-	120	-	-	120	-	ns
VIDEO PARAMETERS $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$ (Note 8)									
Differential Phase (Note 9)		25	-	0.03	-	-	0.03	-	Degree
Differential Gain (Notes 3, 9)		25	-	0.0026	-	-	0.0026	-	dB
		25	-	0.03	-	-	0.03	-	\%
Gain Flatness	5 MHz	25	-	0.10	-	-	0.10	-	dB
	10 MHz	25	-	0.12	-	-	0.12	-	dB
Chrominance to Luminance Gain (Note 10)		25	-	0.1	-	-	0.1	-	dB
Chrominance to Luminance Delay (Note 10)		25	-	7	-	-	7	-	ns
POWER SUPPLY CHARACTERISTICS									
Supply Current		Full	-	10	12	-	10	15	mA
Power Supply Rejection Ratio (Note 7)	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	-2, -5	70	80	-	70	80	-	dB
		-9	65	80	-	65	80	-	dB

NOTES:
3. $A_{D}(\%)=\left[10^{\frac{A_{D}(\mathrm{~dB})}{20}}-1\right] \times 100$.
4. For Rise Time and Overshoot testing, $\mathrm{V}_{\mathrm{OUT}}$ is measured from 0 to +200 mV and 0 to -200 mV .
5. Settling Time is specified to 0.1% of final value for a 10 V step and $A_{V}=-1$.
6. Full Power Bandwidth is guaranteed by equation: Full Power Bandwidth $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}\left(\mathrm{V}_{\text {PEAK }}=5 \mathrm{~V}\right.$).
7. Refer to typical performance curve in Data Sheet.
8. The video parameter specifications will degrade as the output load resistance decreases.
9. Tested with a VM700A video tester, using a NTC-7 Composite input signal. For adequate test repeatability, a minimum warm-up of 2 minutes is suggested. $A_{V}=+1$.
10. C-L Gain and C-L Delay was less than the resolution of the test equipment used which is 0.1 dB and 7 ns , respectively.

Test Circuits and Waveforms

NOTES:
11. $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$.
12. $A_{V}=+1$.
13. $R_{S}=50 \Omega$ or 75Ω (Optional).
14. $R_{L}=1 \mathrm{k} \Omega$.
15. $C_{L}<10 p F$.
16. $\mathrm{V}_{\text {IN }}$ for Large Signal $= \pm 5 \mathrm{~V}$
17. $V_{I N}$ for Small Signal $=0$ to +200 mV and 0 to -200 mV .

FIGURE 1. TRANSIENT RESPONSE

$V_{\text {OUT }}=0$ to +10 V
Vertical Scale: $\mathrm{V}_{\text {IN }}=5 \mathrm{~V} /$ Div.; $\mathrm{V}_{\text {OUT }}=2 \mathrm{~V} /$ Div. Horizontal Scale: 100ns/Div.

LARGE SIGNAL RESPONSE

NOTES:
18. $A_{V}=-1$.
19. Feedback and summing resistor ratios should be 0.1% matched.
20. HP5082-2810 clipping diodes recommended.
21. Tektronix P6201 FET probe used at settling point.

FIGURE 2. SETTLING TIME TEST CIRCUIT

$V_{\text {OUT }}=0$ to +200 mV
Vertical Scale: $V_{I N}=100 \mathrm{mV} /$ Div.; $V_{\text {OUT }}=100 \mathrm{mV} /$ Div. Horizontal Scale: $100 \mathrm{~ns} /$ Div.

SMALL SIGNAL RESPONSE

NOTE: Tested offset adjustment range is $1 \mathrm{~V}_{\mathrm{OS}}+1 \mathrm{mVI}$ minimum referred to output. Typical range for $\mathrm{R}_{\mathrm{T}}=20 \mathrm{k} \Omega$ is approximately $\pm 30 \mathrm{mV}$.

Schematic Diagram

Application Information

The HA-2544 is a true differential op amp that is as versatile as any op amp but offers the advantages of high unity gain bandwidth, high speed and low supply current. More important than its general purpose applications is that the HA-2544 was especially designed to meet the requirements found in a video amplifier system. These requirements include fine picture resolution and accurate color rendition, and must meet broadcast quality standards.

In a video signal, the video information is carried in the amplitude and phase as well as in the DC level. The amplifier must pass the 30 Hz line rate luminance level and the 3.58 MHz (NTSC) or 4.43 MHz (PAL) color band without altering phase or gain. The HA-2544's key specifications aimed at meeting this include high bandwidth (50 MHz), very low gain flatness (0.12 dB at 10 MHz), near unmeasurable differential gain and differential phase (0.03% and 0.03 degrees), and low noise $(20 \mathrm{nV} / \sqrt{ } \mathrm{Hz})$. The HA-2544 meets these quidelines.

The HA-2544 also offers the advantage of a full output voltage swing of $\pm 10 \mathrm{~V}$ into a $1 \mathrm{k} \Omega$ load. This equates to a full power bandwidth of 2.4 MHz for this $\pm 10 \mathrm{~V}$ signal. If video signal levels of $\pm 2 \mathrm{~V}$ maximum is used (with $R_{L}=1 \mathrm{k} \Omega$), the full power bandwidth would be 11.9 MHz without clipping distortion. Another usage might be required for a direct 50Ω or 75Ω load where the HA-2544 will still swing this $\pm 2 \mathrm{~V}$ signal as shown in the above display. One important note that must be realized is that as load resistance decreases the video parameters are also degraded. For optimal video performance a $1 \mathrm{k} \Omega$ load is recommended.

If lower supply voltages are required, such as $\pm 5 \mathrm{~V}$, many of the characterization curves indicate where the parameters vary. As shown the bandwidth, slew rate and supply current are still very well maintained.

Prototyping and PC Board Layout

When designing with the HA-2544 video op amp as with any high performance device, care should be taken to use high frequency layout techniques to avoid unwanted parasitic effects. Short lead lengths, low source impedance and lower value feedback resistors help reduce unwanted poles or zeros. This layout would also include ground plane construction and power supply decoupling as close to the supply pins with suggested parallel capacitors of $0.1 \mu \mathrm{~F}$ and $0.001 \mu \mathrm{~F}$ ceramic to ground.
In the noninverting configuration, the amplifier is sensitive to stray capacitance ($<40 \mathrm{pF}$) to ground at the inverting input. Therefore, the inverting node connections should be kept to a
minimum. Phase shift will also be introduced as load parasitic capacitance is increased. A small series resistor (20Ω to 100Ω) before the capacitance effectively decouples this effect.

Stability/Phase Margin/Compensation

The HA-2544 has not sacrificed unity gain stability in achieving its superb AC performance. For this device, the phase margin exceeds 60 degrees at the unity crossing point of the open loop frequency response. Large phase margin is critical in order to reduce the differential phase and differential gain errors caused by most other op amps. Because this part is unity gain stable, no compensation pin is brought out. If compensation is desired to reduce the noise bandwidth, most standard methods may be used. One method suggested for an inverting scheme would be a series R-C from the inverting node to ground which will reduce bandwidth, but not effect slew rate. If the user wishes to achieve even higher bandwidth ($>50 \mathrm{MHz}$), and can tolerate some slight gain peaking and lower phase margin, experimenting with various load capacitance can be done.

Shown in Application 1 is an excellent Differential Input, Unity Gain Buffer which also will terminate a cable to 75Ω and reject common mode voltages. Application 2 is a method of separating a video signal up into the Sync only signal and the Video and Blanking signal. Application 3 shows the HA- 2544 being used as a 100 kHz High Pass 2-Pole Butterworth Filter. Also shown is the measured frequency response curves.

Typical Applications

FIGURE 4. APPLICATION $1,75 \Omega$ DIFFERENTIAL INPUT BUFFER

FIGURE 6. APPLICATION 3, 100kHz HIGH PASS 2-POLE BUTTERWORTH FILTER

FIGURE 5. APPLICATION 2, COMPOSITE VIDEO SYNC SEPARATOR

FIGURE 7. MEASURED FREQUENCY RESPONSE OF APPLICATION 3

Typical Performance Curves

FIGURE 8. INPUT NOISE VOLTAGE AND NOISE CURRENT vs FREQUENCY

0.1 Hz to 10 Hz , Noise Voltage $=0.97 \mu \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ FIGURE 10. NOISE VOLTAGE $\left(A_{V}=1000\right)$

FIGURE 12. PSRR AND CMRR vs TEMPERATURE

FIGURE 9. INPUT OFFSET VOLTAGE vs TEMPERATURE (3 TYPICAL UNITS)

FIGURE 11. INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 13. OPEN LOOP GAIN vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 14. OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE

FIGURE 16. OUTPUT CURRENT vs SUPPLY VOLTAGE

FIGURE 18. SUPPLY CURRENT vs SUPPLY VOLTAGE (NORMALIZED TO V $= \pm 15 \mathrm{~V}$ AT $25^{\circ} \mathrm{C}$)

FIGURE 15. FREQUENCY RESPONSE AT VARIOUS GAINS

FIGURE 17. OPEN LOOP RESPONSE

FIGURE 19. VOLTAGE FOLLOWER RESPONSE

Typical Video Performance Curves

FIGURE 20. AC GAIN VARIATION vs DC OFFSET LEVELS (DIFFERENTIAL GAIN)

NTSC Method, $R_{L}=1 \mathrm{k} \Omega$, Differential Gain $<0.05 \%$ at $T_{A}=75^{\circ} \mathrm{C}$ No Visual Difference at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$ or $125^{\circ} \mathrm{C}$

FIGURE 22. DIFFERENTIAL GAIN

FIGURE 24. GAIN FLATNESS

FIGURE 21. AC PHASE VARIATION vs DC OFFSET LEVELS (DIFFERENTIAL PHASE)

NTSC Method, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$,
Differential Phase <0.05 Degree at $T_{A}=75^{\circ} \mathrm{C}$ No Visual Difference at $T_{A}=-55^{\circ} \mathrm{C}$ or $125^{\circ} \mathrm{C}$

FIGURE 23. DIFFERENTIAL PHASE

NTSC Method, $R_{L}=1 \mathrm{k} \Omega, \mathrm{C}$-L Delay $<7 \mathrm{~ns}$ at $\mathrm{T}_{\mathrm{A}}=75^{\circ} \mathrm{C}$ No Visual Difference at $T_{A}=-55^{\circ} \mathrm{C}$ or $125^{\circ} \mathrm{C}$
Vertical Scale: Input $=100 \mathrm{mV} /$ Div., Output $=50 \mathrm{mV} /$ Div. Horizontal Scale: 500ns/Div.

FIGURE 25. CHROMINANCE TO LUMINANCE DELAY

Typical Video Performance Curves (Continued)

$\mathrm{V}_{\mathbb{N}}=2.0 \mathrm{~V} /$ Div., $\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} /$ Div., Timebase $=50 \mathrm{~ns}$
FIGURE 26. $\pm 2 \mathrm{~V}$ OUTPUT SWING (WITH RLOAD $=75 \Omega$, FREQUENCY $=5.00 \mathrm{MHz}$)

FIGURE 27. BANDWIDTH vs LOAD CAPACITANCE

Die Characteristics

DIE DIMENSIONS:
80 mils $\times 64$ mils $\times 19$ mils $2030 \mu \mathrm{~m} \times 1630 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:
Type: AI, 1\% Cu
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
PASSIVATION:
Type: Nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ over Silox ($\mathrm{SiO}_{2}, 5 \%$ Phos.) Silox Thickness: $12 k \AA \pm 2 k \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$

SUBSTRATE POTENTIAL (Powered Up):

V-

TRANSISTOR COUNT:

44

PROCESS:

Bipolar Dielectric Isolation

Metallization Mask Layout

Features

- High Slew Rate $120 \mathrm{~V} / \mu \mathrm{s}$
- Low Offset Voltage $.300 \mu \mathrm{~V}$
- High Open Loop Gain 130 dB
- Gain Bandwidth Product 150 MHz
- Low Noise Voltage at $\mathbf{1 k H z}$ $8.3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Minimum Gain Stability

Applications

- High Speed Instrumentation
- Data Acquisition Systems
- Analog Signal Conditioning
- Precision, Wideband Amplifiers
- Pulse/RF Amplifiers

Description

The HA-2548 is an op amp that offers a unique combination of bandwidth, slew rate, and precision specifications. These features can eliminate the need for composite op amp designs and external calibration circuitry.

Optimized for gains ≥ 5, the HA-2548 has a gain-bandwidth product of 150 MHz and a slew rate of $120 \mathrm{~V} / \mu$ s while maintaining extremely high open loop gain (130dB Typ) and low offset voltage ($300 \mu \mathrm{~V}$ Typ). These specifications are achieved through uniquely designed input circuitry and a single ultra-high gain stage that minimizes the AC signal path. Capable of delivering over 30 mA of output current, the HA-2548 is ideal for precision, high speed applications such as signal conditioning, instrumentation, video/pulse amplifiers and buffers.

For information on the military version of this device please refer to the HA-2548/883 datasheet.

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA2-2548-5	0 to 75	8 Pin Metal Can	T8.C
HA2-2548-9	-40 to 85	8 Pin Metal Can	T8.C
HA3-2548-5	0 to 75	8 Ld PDIP	E8.3
HA7-2548-5	0 to 75	8 Ld SBDIP	D8.3
HA9P2548-5	0 to 75	16 Ld SOIC	M16.3

Pinouts

HA-2548
(PDIP, SBDIP)
TOP VIEW

HA-2548
(METAL CAN)
TOP VIEW

HA-2548
(SOIC)
TOP VIEW

HA-2600, HA-2602, HA-2605

12MHz, High Input Impedance Operational Amplifiers

Features

- Bandwidth
- High Input Impedance . 500M
- Low Input Bias Current .1nA
- Low Input Offset Current. .1nA
- Low Input Offset Voltage. \qquad
- High Gain \qquad 150kV/V
- Slew Rate 7V/us
- Output Short Circuit Protection
- Unity Gain Stable

Applications

- Video Amplifier
- Pulse Amplifier
- Audio Amplifiers and Filters
- High-Q Active Filters
- High-Speed Comparators
- Low Distortion Oscillators

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. NO.
HA2-2600-2	-55 to 125	8 Pin Metal Can	T8.C
HA2-2602-2	-55 to 125	8 Pin Metal Can	T8.C
HA2-2605-5	0 to 75	8 Pin Metal Can	T8.C
НАЗ-2605-5	0 to 75	8 Ld PDIP	E8.3
HA7-2600-2	-55 to 125	8 Ld CERDIP	F8.3A
HA7-2602-2	-55 to 125	8 Ld CERDIP	F8.3A
HA7-2605-5	0 to 75	8 Ld CERDIP	F8.3A
$\begin{array}{\|l} \hline \begin{array}{l} \text { HA9P2605-5 } \\ \text { (H26055) } \end{array} \\ \hline \end{array}$	0 to 75	8 Ld SOIC	M8.15

Description

HA-2600/2602/2605 are internally compensated bipolar operational amplifiers that feature very high input impedance ($500 \mathrm{M} \Omega, \mathrm{HA}-2600$) coupled with wideband AC performance. The high resistance of the input stage is complemented by low offset voltage ($0.5 \mathrm{mV}, \mathrm{HA}-2600$) and low bias and offset current (1nA, HA-2600) to facilitate accurate signal processing. Input offset can be reduced further by means of an external nulling potentiometer. 12 MHz unity gainbandwidth, $7 \mathrm{~V} / \mu \mathrm{s}$ slew rate and $150 \mathrm{kV} / \mathrm{V}$ open-loop gain enables HA-2600/2602/2605 to perform high-gain amplification of fast, wideband signals. These dynamic characteristics, coupled with fast settling times, make these amplifiers ideally suited to pulse amplification designs as well as high frequency (e.g. video) applications. The frequency response of the amplifier can be tailored to exact design requirements by means of an external bandwidth control capacitor.

In addition to its application in pulse and video amplifier designs, HA-2600/2602/2605 are particularly suited to other high performance designs such as high-gain low distortion audio amplifiers, high-Q and wideband active filters and high-speed comparators. For more information, please refer to Application Note AN515.
The HA-2600 and HA-2602 are offered as /883 Military Grade; product and data sheets are available upon request.

Pinouts

Absolute Maximum Ratings

Supply Voltage Between V+ and V- Terminals. 45V
Differential Input Voltage. 12V
Peak Output Current. Full Short Circuit Protection

Operating Conditions

Temperature Range

600	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-2605-5.	. $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
HA-2605-9.	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 1)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{Jc}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
Metal Can Package	165	80
PDIP Package	96	N/A
CERDIP Package	135	50
SOIC Package .	157	N/A

Maximum Junction Temperature (Hermetic Package) $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$ (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEMP. (${ }^{\circ} \mathrm{C}$)	HA-2600-2			HA-2602-2			$\begin{aligned} & \text { HA-2605-9 } \\ & \text { HA-2605-5 } \end{aligned}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS											
Offset Voltage	25	-	0.5	4	-	3	5	-	3	5	mV
	Full	-	2	6	-	-	7	-	-	7	mV
Average Offset Voltage Drift	Full	-	5	-	-	5	-	-	5	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current (Note 2)	25	-	1	10	-	15	25	-	5	25	nA
	Full	-	10	30	-	-	60	-	-	40	nA
Offset Current (Note 2)	25	-	1	10	-	5	25	-	5	25	nA
	Full	-	5	30	-	-	60	-	-	40	nA
Differential Input Resistance (Note 12)	25	100	500	-	40	300	-	40	300	-	$\mathrm{M} \Omega$
Input Noise Voltage Density ($f=1 \mathrm{kHz}$)	25	-	11	-	-	11	-	-	11	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density ($f=1 \mathrm{kHz}$)	25	-	0.16	-	-	0.16	-	-	0.16	-	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
Common Mode Range	Full	± 11	± 12	-	± 11	± 12	-	± 11	± 12	-	V

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain (Notes 3, 6)	25	100	150	-	80	150	-	80	150	-	kVN
	Full	70	-	-	60	-	-	70	-	-	kVN
Common Mode Rejection Ratio (Note 4)	Full	80	100	-	74	100	-	74	100	-	dB
Minimum Stable Gain	25	1	-	-	1	-	-	1	-	-	VN
Gain Bandwidth Product (Note 5)	25	-	12	-	-	12	-	-	12	-	MHz
OUTPUT CHARACTERISTICS											
Output Voltage Swing (Note 3)	Full	± 10	± 12	-	± 10	± 12	-	± 10	± 12	-	V
Output Current (Note 6)	25	± 15	± 22	-	± 10	± 18	-	± 10	± 18	-	mA
Full Power Bandwidth (Notes 6, 13)	25	50	75	-	50	75	-	50	75	-	kHz
TRANSIENT RESPONSE (Note 10)											
Rise Time (Notes 3, 7, 8, 9)	25	-	30	60	-	30	60	-	30	60	ns
Overshoot (Notes 3, 7, 8, 9)	25	-	25	40	-	25	40	-	25	40	\%
Slew Rate (Notes 3, 7, 9, 14)	25	± 4	± 7	-	± 4	± 7	-	± 4	± 7	-	V/us
Settling Time (Notes 3, 7, 15)	25	-	1.5	\bullet	-	1.5	-	-	1.5	-	$\mu \mathrm{s}$

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	HA-2600-2			HA-2602-2			$\begin{aligned} & \text { HA-2605-9 } \\ & \text { HA-2605-5 } \end{aligned}$			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
POWER SUPPLY CHARACTERISTICS											
Supply Current	25	-	3	3.7	-	3	4	-	3	4	mA
Power Supply Rejection Ratio (Note 11)	Full	80	90	-	74	90	-	74	90	-	dB

NOTES:
2. Typical and minimum specifications for -9 are identical to those of -5 . All maximum specifications for -9 are identical to those of -5 except for Full Temperature Bias and Offset Currents, which are 70nA Max.
3. $R_{L}=2 k \Omega$.
4. $\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$.
5. $\mathrm{V}_{\text {OUT }}<90 \mathrm{mV}$.
6. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$.
7. $C_{L}=100 \mathrm{pF}$.
8. $V_{\text {OUT }}= \pm 200 \mathrm{mV}$.
9. $A_{V}=+1$.
10. See Transient Response Test Circuits and Waveforms.
11. $\Delta \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$.
12. This parameter value guaranteed by design calculations.
13. Full Power Bandwidth guaranteed by slew rate measurement: FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$.
14. $V_{\text {OUT }}= \pm 5 \mathrm{~V}$

Test Circuits and Waveforms

NOTE: Measured on both positive and negative transitions from 0 V to +200 mV and OV to -200 mV at the output.

FIGURE 1. TRANSIENT RESPONSE

FIGURE 3. SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

FIGURE 2. SLEW RATE

NOTE: Tested offset adjustment range is IV OS +1 mVI minimum referred to output. Typical ranges are $\pm 10 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=100 \mathrm{k} \Omega$.

FIGURE 4. SUGGESTED Vos ADJUSTMENT AND COMPENSATION HOOK UP

Schematic Diagram

Typical Applications

FEATURES:

1. Constant cell voltage.
2. Minimum bias current error.

DRIFT RATE $=\frac{I_{B I A S}}{C}$
If $C=1000 \mathrm{pF}$
Then DRIFT $=0.01 \mathrm{~V} / \mu \mathrm{s}(\mathrm{Max})$

NOTE: A small load capacitance is recommended in all applications where practical to prevent possible high frequency oscillations resulting from external wiring parasitics. Capacitance up to 100 pF has negligible effect on the bandwidth or slew rate.

FIGURE 5. PHOTO CURRENT TO VOLTAGE CONVERTER
FIGURE 6. SAMPLE AND HOLD

Typical Applications (Continued)

FEATURES:

1. Minimum bias current in reference cell.
2. Short Circuit Protection.

FEATURES

1. $Z_{I N}=10^{12} \Omega$ (Min).
2. $Z_{\text {OUT }}=0.01 \Omega$ (Max), B.W. $=12 \mathrm{MHz}$ (Typ).
3. Slew Rate $=4 \mathrm{~V} / \mu \mathrm{s}$ (Min), Output Swing $= \pm 10 \mathrm{~V}$ (Min) to 50 kHz .

NOTE: A small load capacitance is recommended in all applications where practical to prevent possible high frequency oscillations resulting from external wiring parasitics. Capacitance up to 100pF has negligible effect on the bandwidth or slew rate.

FIGURE 7. REFERENCE VOLTAGE AMPLIFIER
FIGURE 8. VOLTAGE FOLLOWER
Typical Performance Curves $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 9. INPUT BIAS CURRENT AND OFFSET CURRENT vs TEMPERATURE

FIGURE 11. OPEN LOOP FREQUENCY RESPONSE

FIGURE 10. BROADBAND NOISE CHARACTERISTICS

FIGURE 12. INPUT IMPEDANCE vs TEMPERATURE (100 Hz)

Typical Performance Curves ${ }^{\prime} \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 13. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 15. COMMON MODE VOLTAGE RANGE vs SUPPLY Voltage

FIGURE 17. COMMON MODE REJECTION RATIO vs FREQUENCY

NOTE: External compensation components are not required for stability, but may be added to reduce bandwidth if desired. If External Compensation is used, also connect 100pF capacitor from output to ground.

FIGURE 14. OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM COMPENSATION PIN TO GROUND

FIGURE 16. OPEN LOOP VOLTAGE GAIN vs TEMPERATURE

FIGURE 18. NOISE DENSITY vs FREQUENCY

Die Characteristics

DIE DIMENSIONS:

69 mils $\times 56$ mils $\times 19$ mils
$1750 \mu \mathrm{~m} \times 1420 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:

Type: AI, 1\% Cu
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
SUBSTRATE POTENTIAL (Powered Up):
Unbiased

PASSIVATION:
Type: Nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ over Silox ($\mathrm{SiO}_{2}, 5 \%$ Phos.) Silox Thickness: $12 \mathrm{k} \AA+2 \mathrm{k} \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$
TRANSISTOR COUNT:
140
PROCESS:
Bipolar Dielectric Isolation

Metallization Mask Layout

100MHz, High Input Impedance, Very Wideband, Uncompensated Operational Amplifiers

Description

HA-2620/2622/2625 are bipolar operational amplifiers that feature very high input impedance ($500 \mathrm{M} \Omega$, HA-2620) coupled with wideband AC performance. The high resistance of the input stage is complemented by low offset voltage (0.5 mV , HA-2620) and low bias and offset current (1nA, HA-2620) to facilitate accurate signal processing. Input offset can be reduced further by means of an external nulling potentiometer. The 100 MHz gain bandwidth product (HA2620/2622/2625 are stable for closed loop gains greater than 5), $35 \mathrm{~V} / \mu$ s slew rate and $150 \mathrm{kV} / \mathrm{V}$ open loop gain enables HA-2620/2622/2625 to perform high gain amplification of very fast, wideband signals. These dynamic characteristics, coupled with fast settling times, make these amplifiers ideally suited to pulse amplification designs as well as high frequency (e.g., video) applications. The frequency response of the amplifier can be tailored to exact design requirements by means of an external bandwidth control capacitor connected from the Comp pin to GND.
In addition to its application in pulse and video amplifier designs, HA-2620/2622/2625 is particularly suited to other high performance designs such as high-gain low distortion audio amplifiers, high-Q and wideband active filters and high-speed comparators. For more information, please refer to Application Notes AN509, AN519 and AN546.

The HA-2620 and HA-2622 are both offered as /883 Military Grade with the HA-2622 also available in CLCC packages. MIL-STD-883 data sheets are available upon request. Harris AnswerFAX (407-724-7800) Document \#3701.

Pinouts

HA-2620, HA-2622, HA-2625
(METAL CAN)
TOP VIEW

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	HA-2620-2			HA-2622-2			HA-2625-5, -9			UNITS	3
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX		
INPUT CHARACTERISTICS												
Offset Voltage (Note 3)	25	-	0.5	4	-	3	5	-	3	5	mV	
	Full	-	2	6	-	-	7	-	-	7	mV	
Average Offset Voltage Drift	Full	-	5	-	-	5	-	-	5	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
Bias Current	25	-	1	15	-	5	25	-	5	25	nA	
	Full	-	10	35	-	-	60	-	-	40	$n \mathrm{~A}$	
Offset Current	25		1	15	-	5	25	-	5	25	nA	
	Full	-	5	35	-	-	60	-	-	40	nA	

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	TEMP. (${ }^{\circ} \mathrm{C}$)	HA-2620-2			HA-2622-2			HA-2625-5, -9			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Slew Rate (Notes 4, 9, 10, 12)	25	± 25	± 35	-	± 20	± 35	-	± 20	± 35	\bullet	V/hs
POWER SUPPLY CHARACTERISTICS											
Supply Current	25	-	3	3.7	-	3	4	-	3	4	mA
Power Supply Rejection Ratio (Note 11)	Full	80	90	-	74	90	-	74	90	-	dB

NOTES:
2. This parameter value guaranteed by design calculations.
3. Offset may be externally adjusted to zero.
4. $R_{L}=2 k \Omega$.
5. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$.
6. $\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$.
7. $V_{\text {OUT }}<90 \mathrm{mV}$.
8. 40 dB Gain.
9. See Transient Response Test Circuits and Waveforms.
10. $A_{V}=5$ (The HA-2620 family is not stable at unity gain without external compensation).
11. $\Delta V_{S}= \pm 5 \mathrm{~V}$.
12. $\mathrm{V}_{\mathrm{OUT}}= \pm 5 \mathrm{~V}$.
13. Full Power Bandwidth guaranteed by slew rate measurement: $F P B W=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$.

Test Circuits and Waveforms

NOTE: Measured on both positive and negative transistions from $O \mathrm{~V}$ to +200 mV and OV to -200 mV at output.

TRANSIENT RESPONSE

SLEW RATE AND TRANSIENT RESPONSE
slew rate

NOTE: Tested Offset Adjustment is $\mathrm{IV}_{\mathrm{OS}}+1 \mathrm{mVI}$ minimum referred to output. Typical range is $\pm 10 \mathrm{mV}$ with $R_{T}=100 \mathrm{k} \Omega$.
SUGGESTED VOS ADJUSTMENT AND COMPENSATION HOOK-UP

Schematic Diagram

Typical Applications

FIGURE 1．HIGH INPUT IMPEDANCE COMPARATOR

FIGURE 2．FUNCTION GENERATOR

Typical Applications (Continued)

NOTE: A small load capacitance of at least 30 pF (including stray capacitance) is recommended to prevent possible high frequency oscillations.

FIGURE 3. VIDEO AMPLIFIER
Typical Performance Curves $\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 4. INPUT BIAS CURRENT AND OFFSET CURRENT vs TEMPERATURE

FIGURE 6. OPEN LOOP FREQUENCY RESPONSE

FIGURE 5. BROADBAND NOISE CHARACTERISTICS

FIGURE 7. INPUT IMPEDANCE vs TEMPERATURE, 100 Hz

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 8. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 10. COMMON MODE VOLTAGE RANGE vs SUPPLY Voltage

NOTE: External Compensation is required for closed loop gain < 5 . If external compensation is used, also connect 100pF capacitor from output to ground.
FIGURE 9. OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM COMP. PIN TO GND

FIGURE 11. OPEN LOOP VOLTAGE GAIN vs TEMPERATURE

FIGURE 12. NOISE DENSITY vs FREQUENCY

Die Characteristics

DIE DIMENSIONS:
69 mils $\times 56$ mils $\times 19$ mils
$1750 \mu \mathrm{~m} \times 1420 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:

Type: Al, 1\% Cu
Thickness: $16 \mathrm{k} \AA ̊+2 \mathrm{k} \AA$
SUBSTRATE POTENTIAL (Powered Up)
Unbiased

PASSIVATION:

Type: Nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ over Silox ($\mathrm{SiO}_{2}, 5 \%$ Phos.) Silox Thickness: $12 \mathrm{k} \AA \pm 2 k \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$
TRANSISTOR COUNT:
140
PROCESS:
Bipolar Dielectric Isolation

Metallization Mask Layout

Features

- Output Voltage Swing . $\pm 35 \mathrm{~V}$
- Supply Voltage . $\pm 10 \mathrm{~V}$ to $\pm 40 \mathrm{~V}$
- Offset Current. 5nA
- Bandwidth. 4MHz
- Slew Rate . 5V/ $\mu \mathrm{s}$
- Common Mode Input Voltage Range $\pm 35 \mathrm{~V}$
- Output Overload Protection

Applications

- Industrial Control Systems
- Power Supplies
- High Voltage Regulators
- Resolver Excitation
- Signal Conditioning

Ordering Information

Description

HA-2640 and HA-2645 are monolithic operational amplifiers which are designed to deliver unprecedented dynamic specifications for a high voltage internally compensated device. These dielectrically isolated devices offer very low values for offset voltage and offset current coupled with large output voltage swing and common mode input voltage.

For maximum reliability, these amplifiers offer unconditional output overload protection through current limiting and a chip temperature sensing circuit. This sensing device turns the amplifier "off", when the chip reaches a certain temperature level.

These amplifiers deliver $\pm 35 \mathrm{~V}$ common mode input voltage range, $\pm 35 \mathrm{~V}$ output voltage swing, and up to $\pm 40 \mathrm{~V}$ supply range for use in such designs as regulators, power supplies, and industrial control systems. 4 MHz gain bandwidth and $5 \mathrm{~V} / \mu \mathrm{s}$ slew rate make these devices excellent components for high performance signal conditioning applications. Outstanding input and output voltage swings coupled with a low 5 nA offset current make these amplifiers excitation designs.

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathbf{C}\right)$	PACKAGE	PKG. NO.
HA2-2640-2	-55 to 125	8 Pin Metal Can	T8.C
HA2-2645-5	0 to 75	8 Pin Metal Can	T8.C
HA7-2640-2	-55 to 125	8 Ld CERDIP	F8.3A
HA7-2645-5	0 to 75	8 Ld CERDIP	F8.3A

Pinouts

HA-2640/2645	HA-2640/2645
(CERDIP)	(METAL CAN)
TOP VIEW	TOP VIEW

(TO-99 CASE VOLTAGE = FLOATING)

```
Absolute Maximum Ratings
Voltage Between V+ and V- Terminals 100V
Differential Input Voltage Range 37 V
Output Current
Full Short Circuit Protection
```


Operating Conditions

```
Temperature Range
```


Thermal Information

$\begin{array}{ccc}\text { Thermal Resistance (Typical, Note 1) } & \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) & \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \\ \text { CERDIP Package } \ldots \ldots \ldots \ldots \ldots & 135 & 50 \\ \text { Metal Can Package } \ldots \ldots \ldots \ldots \ldots . & 165 & 80\end{array}$
Maximum Junction Temperature . $175^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $. \ldots . .$. . . $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\quad V_{S U P P L Y}= \pm 40 \mathrm{~V}, R_{L}=5 \mathrm{k} \Omega$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { HA- } 2640-2 \\ -55^{\circ} \mathrm{C} \text { TO } 125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-2645-5 } \\ 0^{\circ} \mathrm{C} \text { TO } 75^{\circ} \mathrm{C} \end{gathered}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS									
Offset Voltage		25	-	2	4	-	2	6	mV
		Full		-	6	-	-	7	mV
Average Offset Voltage Drift		Full	-	15	-	-y	15	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	10	25	-	12	30	nA
		Full	-	-	50	-	-	50	nA
Offset Current		25	-	5	12	-	15	30	nA
		Full	-	-	35	-	-	50	nA
Input Resistance (Note 2)		25	50	250	-	40	200	-	$\mathrm{M} \Omega$
Common Mode Range		Full	± 35	-	-	± 35	-	-	V

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain	$\mathrm{V}_{\text {OUT }}= \pm 30 \mathrm{~V}$	25	100	200	-	100	200	-	kVN
		Full	75	-	-	75	-	-	kVN
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 20 \mathrm{~V}$	Full	80	100	-	74	100	-	dB
Minimum Stable Gain		25	1	-	-	1	-	-	V / N
Unity Gain Bandwidth	$\mathrm{V}_{\text {OUT }}=90 \mathrm{mV}$	25	-	4	-	-	4	-	MHz

OUTPUT CHARACTERISTICS

Output Voltage Swing		Full	± 35	-	-	± 35	-	-	V
Output Current	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	25	± 12	± 15	-	± 10	± 12	-	mA
Output Resistance	Open Loop	25	-	500	-	-	500	-	Ω
Full Power Bandwidth (Note 3)	$\mathrm{V}_{\text {OUT }}= \pm 35 \mathrm{~V}$	25	-	23	-	-	23	-	kHz

TRANSIENT RESPONSE $A_{V}=+1, C_{L}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=5 \mathrm{k} \Omega$

Rise Time	$\mathrm{V}_{\text {OUT }}= \pm 200 \mathrm{mV}$	25	-	60	135	-	60	135	ns
Overshoot	$\mathrm{V}_{\text {OUT }}= \pm 200 \mathrm{mV}$	25	-	15	30		15	40	$\%$
Slew Rate		25	± 3	± 5	-	± 2.5	± 5	-	$\mathrm{V} / \mathrm{\mu s}$

POWER SUPPLY CHARACTERISTICS

Supply Current		25	-	3.2	3.8	-	3.2	4.5	mA
Supply Voltage Range		Full	± 10	-	± 40	± 10	-	± 40	V
Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$ to $\pm 40 \mathrm{~V}$	Full	80	90	-	74	90	-	dB

NOTES:

2. This parameter is based upon design calculations.
3. Full Power Bandwidth guaranteed based upon slew rate measurement: $\mathrm{FPBW}=\mathrm{S} . \mathrm{R} . / 2 \pi \mathrm{~V}_{\text {PEAK }} ; \mathrm{V}_{\text {PEAK }}=35 \mathrm{~V}$.

Schematic Diagram

Test Circuits and Waveform

FIGURE 1. SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

Tested offset adjustment range is $\mathrm{V}_{\mathrm{OS}}+1 \mathrm{mVI}$ minimum referred to output. Typical range is $\pm 20 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega$.
FIGURE 2. SUGGESTED $V_{\text {os AD A }}$ ADUSTMENT AND COMPENSATION HOOK UP

Test Circuits and Waveform (Continued)

Vertical $=10 \mathrm{~V} /$ Div., Horizontal $=5 \mu \mathrm{~s} /$ Div.
NOTE: $R_{\mathrm{L}}=5 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 40 \mathrm{~V}$
FIGURE 3. VOLTAGE FOLLOWER PULSE RESPONSE

Typical Performance Curves $\mathrm{v}_{\mathrm{S}}= \pm 40 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 4. INPUT BIAS AND OFFSET CURRENT vs TEMPERATURE

FIGURE 6. NORMALIZED AC PARAMETERS vs TEMPERATURE

FIGURE 5. INPUT NOISE CHARACTERISTICS

FIGURE 7. OPEN LOOP FREQUENCY RESPONSE

Typical Performance Curves $\mathrm{v}_{\mathrm{S}}= \pm 40 \mathrm{~V} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 8. NORMALIZED AC PARAMETERS vs SUPPLY VOLTAGE AT $25^{\circ} \mathrm{C}$

FIGURE 10. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 12. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 9. OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS VALUES OF CAPACITORS FROM COMPENSATION PIN TO GROUND

FIGURE 11. OUTPUT CURRENT CHARACTERISTIC

FIGURE 13. OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE

Die Characteristics

```
DIE DIMENSIONS: SUBSTRATE POTENTIAL (Powered Up):
```


SUBSTRATE POTENTIAL (Powered Up):

 93 mils \(\times 68\) mils \(\times 19\) mils
 \(2360 \mu \mathrm{~m} \times 1720 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)
 METALLIZATION:

Type: AI, 1\% Cu
Thickness: $16 \mathrm{k} \AA ̊ \pm 2 \mathrm{k} \AA$

PASSIVATION:

Type: Nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ over Silox ($\mathrm{SiO}_{2}, 5 \%$ Phos.)
Silox Thickness: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$
Unbiased
TRANSISTOR COUNT:
76
PROCESS:
HV200 Bipolar Dielectric Isolation

Metallization Mask Layout

v-
BAL

November 1996

Features

- Low Supply Current. 13mA
- Very High Slew Rate . 625V/ $\mu \mathrm{s}$
- Open Loop Gain. 25kV/V
- Wide Gain-Bandwidth ($A_{V} \geq 10$) 600MHz
- Full Power Bandwidth . 10MHz
- Low Offset Voltage
. 0.6 mV
- Differential Gain/Phase
0.03\%/0.03 Degrees
- Enhanced Replacement for EL2039

Applications

- Pulse and Video Amplifiers
- Wideband Amplifiers
- High Speed Sample-Hold Circuits
- RF Oscillators

Description

The HA-2839 is a wideband, very high slew rate, operational amplifier featuring superior speed and bandwidth characteristics. Bipolar construction, coupled with dielectric isolation, delivers outstanding performance in circuits with a closed loop gain of 10 or greater.

A $625 \mathrm{~V} / \mu$ s slew rate and a 600 MHz gain bandwidth product ensure high performance in video and RF amplifier designs. Differential gain and phase are a low 0.03% and 0.03 degrees respectively, making the HA-2839 ideal for video applications. A full $\pm 10 \mathrm{~V}$ output swing, high open loop gain, and outstanding AC parameters, make the HA-2839 an excellent choice for high speed Data Acquisition Systems.

The HA-2839 is available in commercial and industrial temperature ranges, and a choice of packages. For military grade product, refer to the HA-2839/883 data sheet.
Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathbf{C}\right)$	PACKAGE	PKG. NO.
HA1-2839-5	0 to 75	14 Ld CERDIP	F14.3
HA3-2839-5	0 to 75	14 Ld PDIP	E14.3
HA3-2839-9	-40 to 85	14 Ld PDIP	E14.3

Pinout

NOTE: No Connection (NC) pins may be tied to a ground plane for better isolation and heat dissipation.

HA-2840

600MHz, Very High Slew Rate Operational Amplifier

Features

- Low Supply Current. 13mA
- Very High Slew Rate . 625V/ $\mu \mathrm{s}$
- Open Loop Gain. 25kV/V
- Wide Gain-Bandwidth ($A_{V} \geq 10$) 600 MHz
- Full Power Bandwidth . 10MHz
- Low Offset Voltage. $0.6 m V$
- Differential Gain/Phase \qquad 0.03\%/0.03 Degrees
- Enhanced Replacement for EL2039

Applications

- Pulse and Video Amplifiers
- Wideband Amplifiers
- High Speed Sample-Hold Circuits
- RF Oscillators

Description

The HA-2840 is a wideband, very high slew rate, operational amplifier featuring superior speed and bandwidth characteristics. Bipolar construction, coupled with dielectric isolation, delivers outstanding performance in circuits with a closed loop gain of 10 or greater.

A $625 \mathrm{~V} / \mu \mathrm{s}$ slew rate and a 600 MHz gain bandwidth product ensure high performance in video and RF amplifier designs. Differential gain and phase are a low 0.03% and 0.03 degrees respectively, making the HA-2840 ideal for video applications. A full $\pm 10 \mathrm{~V}$ output swing, high open loop gain, and outstanding AC parameters, make the HA-2840 an excellent choice for high speed Data Acquisition Systems.

The HA-2840 is available in commercial and industrial temperature ranges, and a choice of packages. See the "Ordering Information" below for more information. For military grade product, refer to the HA-2840/883 data sheet.

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE ($\left.{ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA3B2840-5	0 to 75	14 Ld PDIP	E14.3
HA3-2840-5	0 to 75	8 Ld PDIP	E8.3
HA9P2840-5 (H28405)	0 to 75	8 Ld SOIC	M8.15
HA3B2840-9	-40 to 85	14 Ld PDIP	E14.3
HA7-2840-9	-40 to 85	8 Ld CERDIP	F8.3A
HA3-2840-9	-40 to 85	8 Ld PDIP	E8.3

Pinouts

NOTE: No Connection (NC) pins may be tied to a ground plane for better isolation and heat dissipation.
Absolute Maximum Ratings
Voltage Between V+ and V- Terminals . 35V
Differential Input Voltage. 6 V
Output Current . 50mA

Operating Conditions

Temperature Range
HA-2840-5
$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
HA-2840-9.
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Recommended Supply Voltage Range. $\pm 7 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$

Thermal Information

Thermal Resistance (Typical, Note 2)	θ_{J}	W)
14 Lead PDIP Package	80	N/A
8 Lead CERDIP Package	135	50
8 Lead PDIP Package	96	N/A
8 Lead SOIC Package	157	N/A
Maximum Internal Quiescent Power Dissipation (Note		
Maximum Junction Temperature (Ceramic Package)		
Maximum Junction Temperature (Plastic Package)		
Maximum Storage Temperature Range -65 ${ }^{\circ} \mathrm{C}$ to $150{ }^{\circ}$		
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$		

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Maximum power dissipation with load conditions must be designed to maintain the maximum junction temperature below $175^{\circ} \mathrm{C}$ for ceramic packages and below $150^{\circ} \mathrm{C}$ for plastic packages.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L} \leq 10 p F$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	HA-2840-5, -9			UNITS
			MIN	TYP	MAX	
INPUT CHARACTERISTICS						
Offset Voltage (Note 8)		25	-	0.6	2	mV
		Full	-	2	6	mV
Average Offset Voltage Drift		Full	-	20	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current (Note 8)		25	-	5	14.5	$\mu \mathrm{A}$
		Full	-	8	20	$\mu \mathrm{A}$
Offset Current		25	-	1	4	$\mu \mathrm{A}$
		Full	-	-	8	$\mu \mathrm{A}$
Input Resistance		25	-	10	-	$\mathrm{k} \Omega$
Input Capacitance		25	-	1	-	pF
Common Mode Range		Full	± 10	-	-	V
Input Noise Voltage (Note 8)	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\text {SOURCE }}=0 \Omega$	25	-	6	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current (Note 8)	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\text {SOURCE }}=10 \mathrm{k} \Omega$	25	-	6	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS						
Large Signal Voltage Gain	Note 3	25	20	25	-	kV/N
		Full	15	20	-	kV/
Common-Mode Rejection Ratio (Note 8)	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	Full	75	80	-	dB
Minimum Stable Gain		25	10	-	-	VN
Gain Bandwidth Product (Note 8)	$\mathrm{V}_{\mathrm{O}}=90 \mathrm{mV}, A_{V}=+100$	25	-	600	-	MHz
OUTPUT CHARACTERISTICS						
Output Voltage Swing (Note 8)	Note 3	Full	± 10	-	-	V
Output Current (Note 8)	Note 3	Full	± 10	± 20	-	mA
Output Resistance		25	-	30	-	Ω
Full Power Bandwidth (Note 4)	Note 3	25	8.7	10	-	MHz
Differential Gain (Note 7)	$A_{V}=10$	25	-	0.03	-	\%

HA-2840

Electrical Specifications $V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L} \leq 10 p F$. Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	HA-2840-5, -9			UNITS
			MIN	TYP	MAX	
Differential Phase (Note 7)	$A_{V}=10$	25	-	0.03	-	Degrees
Harmonic Distortion (Note 8)	$A_{V}=10, V_{O}=2 V_{P-P}, f=1 \mathrm{MHz}$	25	-	-79	-	dBc
TRANSIENT RESPONSE (Note 5)						
Rise Time		25	-	4	-	ns
Overshoot	\cdot	25	-	20	-	\%
Slew Rate (Notes 6, 8)	Note 3	25	550	625	-	$\mathrm{V} / \mathrm{\mu s}$
Settling Time	10 V Step to 0.1\%	25	-	180	-	ns
POWER REQUIREMENTS						
Supply Current (Note 8)		Full	-	13	15	mA
Power Supply Rejection Ratio (Note 8)	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	Full	75	90	-	dB

NOTES:
3. $R_{L}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, 0 \mathrm{~V}$ to $\pm 10 \mathrm{~V}$ for slew rate.
4. Full Power Bandwidth guaranteed based on slew rate measurement using: FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}:\left(V_{\text {PEAK }}=10 \mathrm{~V}\right)$.
5. Refer to Test Circuit section of data sheet.
6. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.
7. Differential gain and phase are measured with a VM700A video tester, using a NTC-7 composite VITS.
8. See "Typical Performance Curves" for more information.

Test Circuits and Waveforms

LARGE SIGNAL RESPONSE

Input $=10 \mathrm{mV} /$ Div. Output $=100 \mathrm{mV} /$ Div. $50 \mathrm{~ns} / \mathrm{Div}$.

SMALL SIGNAL RESPONSE

Test Circuits and Waveforms (Continued)

NOTES:
12. $A_{V}=-10$.
13. Load Capacitance should be less than 10 pF .
14. It is recommended that resistors be carbon composition and that feedback and summing network ratios be matched to 0.1%.
15. SETTLING POINT (Summing Node) capacitance should be less than 10 pF . For optimum settling time results, it is recommended that the test circuit be constructed directly onto the device pins. A Tektronix 568 Sampling Oscilloscope with S-3A sampling heads is recommended as a settle point monitor.

SETTLING TIME TEST CIRCUIT
Typical Performance Curves $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {Supply }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \mathrm{C}_{\mathrm{L}}<10 \mathrm{pF}$, Unless Otherwise Specified

FIGURE 1. FREQUENCY RESPONSE FOR VARIOUS GAINS

FIGURE 3. GAIN BANDWIDTH PRODUCT vs TEMPERATURE

FIGURE 2. GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE

FIGURE 4. CMRR vs FREQUENCY

Typical Performance Curves $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \mathrm{C}_{\mathrm{L}}<10 \mathrm{PF}$, Unless Otherwise Specified (Continued)

FIGURE 5. PSRR vs FREQUENCY

FIGURE 7. SLEW RATE vs TEMPERATURE

FIGURE 9. INPUT OFFSET VOLTAGE AND INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 6. INPUT NOISE vs FREQUENCY

FIGURE 8. SLEW RATE vs SUPPLY VOLTAGE

FIGURE 10. SUPPLY CURRENT vs SUPPLY VOLTAGE

Typical Performance Curves $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}<10 \mathrm{pF}$, Unless Otherwise Specified (Continued)

FIGURE 11. POSITIVE OUTPUT SWING vs TEMPERATURE

FIGURE 13. MAXIMUM UNDISTORTED OUTPUT SWING vs FREQUENCY

FIGURE 12. NEGATIVE OUTPUT SWING vs TEMPERATURE

FIGURE 14. TOTAL HARMONIC DISTORTION vs FREQUENCY

FIGURE 15. INTERMODULATION DISTORTION vs FREQUENCY (TWO TONE)

Die Characteristics

DIE DIMENSIONS: SUBSTRATE POTENTIAL (Powered Up):

65 mils $\times 52$ mils $\times 19$ mils
$1650 \mu \mathrm{~m} \times 1310 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$
METALLIZATION:
Type: Aluminum, 1\% Copper Thickness: $16 \mathrm{k} \AA ̊ \pm 2 \mathrm{k} \AA$

PASSIVATION:
Type: Nitride over Silox
Silox Thickness: $12 k \AA \begin{aligned} & \\ & \\ & 2 k \\ & \AA\end{aligned}$
Nitride thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
Metallization Mask Layout
HA-2840

50MHz, Fast Settling, Unity Gain Stable, Video Operational Amplifier

Description

The HA-2841 is a wideband, unity gain stable, operational amplifier featuring a 50 MHz unity gain bandwidth, and excellent DC specifications. This amplifier's performance is further enhanced through stable operation down to closed loop gains of +1 , the inclusion of offset null controls, and by its excellent video performance.

The capabilities of the HA-2841 are ideally suited for high speed pulse and video amplifier circuits, where high slew rates and wide bandwidth are required. Gain flatness of 0.05 dB , combined with differential gain and phase specifications of 0.03%, and 0.03 degrees, respectively, make the HA-2841 ideal for component and composite video applications.
A zener/nichrome based reference circuit, coupled with advanced laser trimming techniques, yields a supply current with a low temperature coefficient and low lot-to-lot variability. Tighter ICC control translates to more consistent AC parameters ensuring that units from each lot perform the same way, and easing the task of designing systems for wide temperature ranges. Critical AC parameters, Slew Rate and Bandwidth, each vary by less than $\pm 5 \%$ over the industrial temperature range (see characteristic curves).

For military grade product, refer to the HA-2841/883 data sheet. Harris AnswerFAX (407 724-7800), document number 3621.

Pinouts

> HA-2841
> (PDIP, SOIC)
> TOP VIEW

Abstract

Absolute Maximum Ratings

Voltage Between $\mathrm{V}+$ and V - Terminals . 35V Differential Input Voltage. 6 V Output Current (Note 3) . 50mA 10 mA (50\% Duty Cycle)

\section*{Operating Conditions}

Temperature Range HA-2841-5 $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$ HA-2841-9. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Recommended Supply Voltage Range. $\pm 6.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$

\section*{Thermal Information}

Thermal Resistance (Typical, Note 2) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ 14 Lead PDIP Package . 89 8 Lead PDIP Package . 92 8 Lead SOIC Package . 157 Maximum Junction Temperature (Die, Note 1) $175^{\circ} \mathrm{C}$ Maximum Júnction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$ Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$ (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTES: 1. Maximum power dissipation, including output load, must be designed to maintain the maximum junction temperature below $150^{\circ} \mathrm{C}$ for plastic packages. 2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air. 3. $\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ unconnected. Output duty cycle must be reduced if $\mathrm{I}_{\mathrm{OUT}}>10 \mathrm{~mA}$.

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}} \leq 10 \mathrm{pF}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	HA-2841-5, -9			UNITS
			MIN	TYP	MAX	
INPUT CHARACTERISTICS						
Offset Voltage (Note 10)		25	-	1	3	mV
		Full	-	-	6	mV
Average Offset Voltage Drift		Full	-	14	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current (Note 10)		25	-	5	10	$\mu \mathrm{A}$
		Full	-	8	15	$\mu \mathrm{A}$
Average Bias Current Drift		Full	-	45	-	$n A /{ }^{\circ} \mathrm{C}$
Offset Current		25	-	0.5	1.0	$\mu \mathrm{A}$
		Full	-	-	1.5	$\mu \mathrm{A}$
Input Resistance		25	-	170	-	$\mathrm{k} \Omega$
Input Capacitance		25	-	1	-	pF
Common Mode Range		Full	± 10	-	-	V
Input Noise Voltage	10 Hz to 1 MHz	25	-	16	-	$\mu \mathrm{V}_{\text {RMS }}$
Input Noise Voltage (Note 10)	$f=1 \mathrm{kHz}, \mathrm{R}_{\text {SOURCE }}=0 \Omega$	25	-	16	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current (Note 10)	$f=1 \mathrm{kHz}, \mathrm{R}_{\text {SOURCE }}=10 \mathrm{k} \Omega$	25	-	2	-	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS						
Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	25	50	-	kV/N
		Full	10	30	-	kV N
Common-Mode Rejection Ratio (Note 10)	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	Full	80	95	-	dB
Minimum Stable Gain		25	1	-	-	V / N
Gain Bandwidth Product (Notes 5, 10)		25	-	50	-	MHz
Gain Flatness to 5 MHz (Note 10)	$\mathrm{R}_{\mathrm{L}} \geq 75 \Omega$	25	-	± 0.015	-	dB
Gain Flatness to 10MHz (Note 10)	$\mathrm{R}_{\mathrm{L}} \geq 500 \Omega$	25	-	± 0.05	-	dB
OUTPUT CHARACTERISTICS						
Output Voltage Swing (Note 10)		Full	± 10	± 10.5	-	V
Output Current (Note 10)	Note 3	Full	15	30	-	mA
Output Resistance		25	-	8.5	-	Ω
Full Power Bandwidth (Note 6)	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	3.2	3.8	-	MHz

Electrical Specifications $\quad V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L} \leq 10 \mathrm{pF}$. Uniess Otherwise Specitied (Continued)

PARAMETER	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	HA-2841-5, -9			UNITS
			MIN	TYP	MAX	
Differential Gain (Note 10)	Note 4	25	-	0.03	-	\%
Differential Phase (Note 10)	Note 4	25	-	0.03	-	Degrees
Harmonic Distortion (Note 10)	$V_{O}=2 V_{\text {P-P }}, f=1 \mathrm{MHz}, A_{V}=+1$	25	-	>83	-	dBc
TRANSIENT RESPONSE (Note 7)						
Rise Time		25	-	3	-	ns
Overshoot		25	-	33	-	\%
Slew Rate (Notes 9, 10)	$A_{V}=+1$	25	200	240	-	$\mathrm{V} / \mu \mathrm{s}$
Settling Time	10 V Step to 0.1\%	25	-	90	-	ns
POWER REQUIREMENTS						
Supply Current (Note 10)		25	-	10	-	mA
		Full	-	10	11	mA
Power Supply Rejection Ratio (Note 10)	Note 8	Full	70	80	-	dB

NOTES:
4. Differential gain and phase are measured with a VM700A video tester, using a NTC-7 composite VITS. $R_{F}=R_{1}=1 \mathrm{k} \Omega, R_{L}=700 \Omega$.
5. $A_{V C L}=1000$, Measured at unity gain crossing.
6. Full Power Bandwidth guaranteed based on slew rate measurement using FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}\left(V_{\text {PEAK }}=10 \mathrm{~V}\right)$.
7. Refer to Test Circuit section of data sheet.
8. $V_{\text {SUPPLY }}= \pm 10 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$.
9. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.
10. See "Typical Performance Curves" for more information.

Test Circuits and Waveforms

NOTES:
11. $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$.
12. $A_{V}=+1$.
13. $C_{L}<10 p F$.

TEST CIRCUIT

Test Circuits and Waveforms (Continued)

NOTES:
14. $A_{V}=-1$.
15. Load Capacitance should be less than 10 pF .
16. Feedback and summing resistors must be matched to 0.1%.
17. Tektronix P6201 FET probe used at settling point.
18. HP5082-2810 clipping diodes recommended.

SETTLING TIME TEST CIRCUIT

suggested offset voltage adjustment

Typical Applications (Also see Application Note AN550)

Application 1 - High Power Amplifiers and Buffers

High power amplifiers and buffers are in use in a wide variety of applications. Many times the "high power" capability is needed to drive large capacitive loads as well as low value resistive loads. In both cases the final driver stage is usually a power transistor of some type, but because of their inherently low gain, several stages of pre-drivers are often required. The HA-2841, with its 15 mA output rating, is powerful enough to drive a power transistor without additional stages of current amplification. This capability is well demonstrated with the high power buffer circuit in Figure 1.
The HA-2841 acts as the pre-driver to the output power transistor. Together, they form a unity gain buffer with the ability to drive three 50Ω coaxial cables in parallel, each with a capacitance of 2000 pF . The total combined load is 16.6Ω and 6000 pF capacitance.

FIGURE 1. DRIVING POWER TRANSISTORS TO GAIN ADDITIONAL CURRENT BOOSTING

Application 2 - Video

One of the primary uses of the HA-2841 is in the area of video applications. These applications include signal construction, synchronization addition and removal, as well as signal modification. A wide bandwidth device such as the HA-2841 is well suited for use in this class of amplifier. This,
however, is a more involved group of applications than ordinary amplifier applications since video signals contain precise DC levels which must be retained.

The addition of a clamping circuit restores DC levels at the output of an amplifier stage. The circuit shown in Figure 2 utilizes the HA-5320 sample and hold amplifier as the DC clamp. Also shown is a 3.57 MHz trap in series, which will block the color burst portion of the video signal and allow the DC level to be amplified and restored.

FIGURE 2. VIDEO DC RESTORER

Prototyping Guidelines

For best overall performance in any application, it is recommended that high frequency layout techniques be used. This should include:

1. Mounting the device through a ground plane.
2. Connecting unused pins (NC) to the ground plane.
3. Mounting feedback components on Teflon standoffs and/or locating these components as close to the device as possible.
4. Placing power supply decoupling capacitors from device supply pins to ground.

Typical Performance Curves $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}<10 \mathrm{pF}$, Unless Otherwise Specified

FIGURE 3. FREQUENCY RESPONSE FOR VARIOUS GAINS

FIGURE 5. GAIN BANDWIDTH PRODUCT vs TEMPERATURE

FIGURE 7. PSRR vs FREQUENCY

FIGURE 4. GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE

FIGURE 6. CMRR vs FREQUENCY

FIGURE 8. INPUT NOISE vs FREQUENCY

Typical Performance Curves $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SuPPLY }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \mathrm{C} \mathrm{C}_{\mathrm{L}}<10 \mathrm{PF}$, Unless Otherwise Specified (Continued)

FIGURE 9. SLEW RATE vs TEMPERATURE

FIGURE 11. INPUT OFFSET VOLTAGE AND INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 13. POSITIVE OUTPUT SWING vs TEMPERATURE

FIGURE 10. SLEW RATE vs SUPPLY VOLTAGE

FIGURE 12. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 14. NEGATIVE OUTPUT SWING vs TEMPERATURE

Typical Performance Curves $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}<10 \mathrm{pF}$, Unless Otherwise Specified (Continued)

FIGURE 15. MAXIMUM UNDISTORTED OUTPUT SWING vs FREQUENCY

FIGURE 17. INTERMODULATION DISTORTION vs FREQUENCY (TWO TONE)

FIGURE 19. DIFFERENTIAL PHASE vs LOAD RESISTANCE

FIGURE 16. TOTAL HARMONIC DISTORTION vs FREQUENCY

FIGURE 18. DIFFERENTIAL GAIN vs LOAD RESISTANCE

FIGURE 20. GAIN FLATNESS vs FREQUENCY

Die Characteristics

DIE DIMENSIONS:
77 mils $\times 81$ mils $\times 19$ mils
$1960 \mu \mathrm{~m} \times 2060 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:

Type: Aluminum, 1\% Copper Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$

PASSIVATION:

Type: Nitride over Silox Silox Thickness: $12 k \AA \pm 2 k \AA$ Nitride thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$

SUBSTRATE POTENTIAL (Powered Up):
V-
TRANSISTOR COUNT:
43
PROCESS:
High Frequency Bipolar Dielectric Isolation

Metallization Mask Layout

80MHz, High Slew Rate, High Output Current, Video Operational Amplifier

Description

The HA-2842 is a wideband, high slew rate, operational amplifier featuring an outstanding combination of speed, bandwidth, and output drive capability. This amplifier's performance is further enhanced through stable operation down to closed loop gains of +2 , the inclusion of offset null controls, and by its excellent video performance.

The capabilities of the HA-2842 are ideally suited for high speed cable driver circuits, where low closed loop gains and high output drive are required. With a 6 MHz full power bandwidth, this amplifier is well suited for high frequency signal conditioning circuits and video amplifiers. Gain flatness of 0.035 dB , combined with differential gain and phase specifications of 0.02%, and 0.03 degrees, respectively, make the HA-2842 ideal for component and composite video applications.

A zener/nichrome based reference circuit, coupled with advanced laser trimming techniques, yields a supply current with a low temperature coefficient and low lot-to-lot variability. For example, the average ${ }^{\mathrm{C}} \mathrm{CC}$ variation from $85^{\circ} \mathrm{C}$ to $-40^{\circ} \mathrm{C}$ is $<600 \mu \mathrm{~A}(\pm 2 \%)$, while the standard deviation of the ICC distribution is $<0.1 \mathrm{~mA}(0.8 \%)$ at $25^{\circ} \mathrm{C}$. Tighter I_{CC} control translates to more consistent AC parameters ensuring that units from each lot perform the same way, and easing the task of designing systems for wide temperature ranges. Critical AC parameters, Slew Rate and Bandwidth, each vary by less than $\pm 5 \%$ over the industrial temperature range (see Typical Performance Curves).

The HA-2842C is the same amplifier with a compensation pin available to the user. By connecting a capacitor from pin 8 to GND, the HA-2842C can be compensated for unity gain operation, or the bandwidth can be limited to reduce total noise.

Pinouts

HA-2842
(PDIP)
TOP VIEW
(PDIP)
TOP VIEW

HA-2842C
(PDIP, SOIC)
TOP VIEW

[^5]
Absolute Maximum Ratings

Voltage Between V+ and V- Terminals
Differential Input Voltage. 6 V
Output Current (Notes 3, 4) .125 mA 100mA (50\% Duty Cycle)

Operating Conditions

Temperature Range
HA-2842-5. $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
HA-2842-9. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Recommended Supply Voltage Range. $\pm 6.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$

Thermal Information

Thermal Resistance (Typical, Note 2) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / W\right)$
14 Lead PDIP Package . 89
8 Lead PDIP Package . 92
8 Lead SOIC Package . 157
Maximum Junction Temperature (Die). $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package, Note 1) $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Maximum power dissipation, including output load, must be designed to maintain the maximum junction temperature below $150^{\circ} \mathrm{C}$ for plastic packages. By using Application Note AN556 on Safe Operating Area equations, along with the packaging thermal resistances listed in the Operating Conditions section, proper load conditions can be determined.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
3. $\mathrm{V}_{\mathrm{O}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}$ Unconnected, Duty cycle $\leq 50 \%$. For information about using high output current amplifiers, please refer to Application Note AN556 (Thermal Safe-Operating-Areas For High Current Op Amps), and the "Power Dissipation Considerations" section in the "Application Information" section of this datasheet.
4. Maximum continuous (100% Duty Cycle) output current is 50 mA . For currents $>50 \mathrm{~mA}$, Duty Cycle must be derated accordingly.

Electrical Specifications $\quad V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{L}=1 k \Omega, C_{L} \leq 10 p F$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	HA-2842-5, -9			UNITS
			MIN	TYP	MAX	
INPUT CHARACTERISTICS						
Offset Voltage (Note 10)		25	-	1	3	mV
		Full	-	-	6	mV
Average Offset Voltage Drift		Full	-	13	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current (Note 10)		25	\cdot	5	10	$\mu \mathrm{A}$
		Full	-	-	15	$\mu \mathrm{A}$
Average Bias Current Drift		Full	-	20	-	$n A /{ }^{\circ} \mathrm{C}$
Offset Current		25	-	0.5	1.0	$\mu \mathrm{A}$
		Full	\bullet	-	1.5	$\mu \mathrm{A}$
Average Offset Current Drift		Full	\cdot	1.3	-	$n A /{ }^{\circ} \mathrm{C}$
Input Resistance		25	\cdot	170	-	$\mathrm{k} \Omega$
Input Capacitance		25	-	1	-	pF
Common Mode Range		Full	± 10	-	-	V
Input Noise Voltage	10 Hz to 1 MHz	25	-	16	-	$\mu \mathrm{V}_{\text {RMS }}$
Input Noise Voltage Density	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\text {SOURCE }}=0 \Omega$	25	-	16	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current (Note 10)	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\text {SOURCE }}=100 \mathrm{k} \Omega$	25	-	2	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	50	100	-	kV/
		Full	30	60	-	kV/
Common-Mode Rejection Ratio (Note 10)	$\mathrm{V}_{C M}= \pm 10 \mathrm{~V}$	Full	80	110	-	dB
Minimum Stable Gain		25	2	-	-	$\mathrm{V} N$
Gain Bandwidth Product (Note 10)	$\mathrm{A}_{\mathrm{VCLL}}=100$	25	-	80	-	MHz
Gain Flatness to 10MHz (Note 10)	$\mathrm{R}_{\mathrm{L}} \geq 75 \Omega$	25	-	± 0.035	-	dB
OUTPUT CHARACTERISTICS						
Output Voltage Swing (Note, 10)	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	Full	± 10	± 11	-	V
Output Current (Note 10)	Note 3	Full	100	-	-	mA

HA-2842

Electrical Specifications $V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	HA-2842-5, -9			UNITS
			MIN	TYP	MAX	
Output Resistance		25	-	8.5	-	Ω
Full Power Bandwidth (Note 6)	$\mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$	25	5.2	6	-	MHz
Differential Gain (Note 10)	Note 5	25	-	0.02	-	\%
Differential Phase (Note 10)	Note 5	25	-	0.03	-	Degrees
Harmonic Distortion (Note 10)	$\mathrm{V}_{\mathrm{O}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{A}_{\mathrm{V}}=2$	25	-	>81	-	dBc

TRANSIENT RESPONSE (Note 7)

Rise Time		25	-	4	-	ns
Overshoot		25	-	25	-	$\%$
Slew Rate (Notes 9, 10)	$\mathrm{A}_{\mathrm{V}}=+2$	25	325	400	-	$\mathrm{V} / \mu \mathrm{s}$
Settling Time	10V Step to 0.1%	25	-	100	-	ns

POWER REQUIREMENTS

Supply Current (Note 10)		25	-	14.2	-	mA
		Full	-	14.3	15	mA
Power Supply Rejection Ratio (Note 10)	Note 8	Full	70	80	-	dB

NOTES:
5. Differential gain and phase are measured with a VM700A video tester, using a NTC-7 composite VITS. $R_{F}=R_{1}=1 \mathrm{k} \Omega, R_{L}=700 \Omega$.
6. Full Power Bandwidth guaranteed based on slew rate measurement using FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}} ; V_{\text {PEAK }}=10 \mathrm{~V}$.
7. Refer to Test Circuits section of this data sheet.
8. $V_{\text {SUPPLY }}= \pm 10 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$.
9. This parameter is not tested. The limits are guaranteed based on lab characterization and reflect lot-to-lot variation.
10. See "Typical Performance Curves" for more information.

Test Circuits and Waveforms

LARGE SIGNAL RESPONSE

Input $=5 \mathrm{~V} /$ Div., Output $=5 \mathrm{~V} /$ Div., $50 \mathrm{~ns} /$ Div.

Input $=100 \mathrm{mV} /$ Div., Output $=100 \mathrm{mV} /$ Div., $50 \mathrm{~ns} /$ Div.
SMALL SIGNAL RESPONSE

Test Circuits and Waveforms (Continued)

NOTES:
14. $A_{V}=-2$.
15. Feedback and summing resistors must be matched (0.1%).
16. HP5082-2810 clipping diodes recommended.
17. Tektronix P6201 FET probe used at settling point.
18. For 0.01% settling time, heat sinking is suggested to reduce thermal effects and an analog ground plane with supply decoupling is suggested to minimize ground loop errors.

SETTLING TIME TEST CIRCUIT

SUGESTED OFFSET VOLTAGE ADJUSTMENT

Application Information

The Harris HA-2842 is a state of the art monolithic device which also approaches the "ALL-IN-ONE" amplifier concept. This device features an outstanding set of AC parameters augmented by excellent output drive capability providing for suitable application in both high speed and high output drive circuits.
Primarily intended to be used in balanced 50Ω and 75Ω coaxial cable systems as a driver, the HA-2842 could also be used as a power booster in audio systems as well as a power amp in power supply circuits. This device would also be suitable as a small DC motor driver.

Prototyping Guidelines

For best overall performance in any application, it is recommended that high frequency layout techniques be used. This should include:

1. Mounting the device through a ground plane.
2. Connecting unused pins (NC) to the ground plane.
3. Mounting feedback components on Teflon standoffs and/or locating these components as close to the device as possible.
4. Placing power supply decoupling capacitors from device supply pins to ground.

Power Dissipation Considerations

At high output currents, especially with the 8 lead SOIC package, care must be taken to ensure that the Maximum Junction Temperature (T_{J}, see "Absolute Maximum Ratings" table) isn't exceeded. As an example consider the HA-2842 in the SOIC
package, with a required output current of 50 mA at $\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}$ with $\pm 15 \mathrm{~V}$ supplies. The power dissipation is the quiescent power ($450 \mathrm{~mW}=30 \mathrm{~V} \times 15 \mathrm{~mA}$) plus the power dissipated in the output stage (POUT $=250 \mathrm{~mW}=50 \mathrm{~mA} \times(15 \mathrm{~V}-10 \mathrm{~V})$), or a total of 700 mW . The thermal resistance (θ_{JA}) of the SOIC package is $157^{\circ} \mathrm{C} / \mathrm{W}$, which increases the junction temperature by $110^{\circ} \mathrm{C}$ over the ambient temperature $\left(T_{A}\right)$. Remaining below $T_{J M A X}$ requires that T_{A} be restricted to $\leq 40^{\circ} \mathrm{C}\left(150^{\circ} \mathrm{C}-110^{\circ} \mathrm{C}\right)$. Heatsinking would be required for operation at ambient temperatures greater than $40^{\circ} \mathrm{C}$.
Note that the problem isn't as severe with either of the PDIP packages due to their lower thermal resistances, however it is recommended that the above analysis be performed for any package if operating outside the conditions listed below:

$$
\text { MAX POUT WITHOUT HEATSINK }\left(V_{S}= \pm 15 \mathrm{~V}\right)
$$

T_{A}	14 LEAD PDIP $\left(\theta_{\text {JA }}=89^{\circ} \mathrm{C} / W\right)$	8 LEAD PDIP $\left(\theta_{\text {JA }}=92^{\circ} \mathrm{C} / W\right)$	8 LEAD SOIC $\left(\theta_{\text {JA }}=157^{\circ} \mathrm{C} / \mathrm{W}\right)$
$85^{\circ} \mathrm{C}$	280 mW	260 mW	Heatsink Required
$70^{\circ} \mathrm{C}$	450 mW	420 mW	60 mW
$25^{\circ} \mathrm{C}$	950 mW	910 mW	350 mW

Allowable output power can be increased by decreasing the quiescent dissipation via lower supply voltages.

For more information please refer to Application Note AN556, Thermal Safe Operating Areas for High Current Op Amps.

Typical Performance Curves $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}<10 \mathrm{pF}$, Unless Otherwise Specified

FIGURE 1. FREQUENCY RESPONSE FOR VARIOUS GAINS

FIGURE 3. GAIN BANDWIDTH PRODUCT vs TEMPERATURE

FIGURE 2. GAIN BANDWIDTH PRODUCT vs SUPPLY VOLTAGE

FIGURE 4. CMRR vs FREQUENCY

FIGURE 5. PSRR vs FREQUENCY

FIGURE 6. INPUT NOISE vs FREQUENCY

Typical Performance Curves $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {Supply }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}<10 \mathrm{pF}$, Unless Othewise Specified (Continued)

FIGURE 7. SLEW RATE vs TEMPERATURE

FIGURE 9. INPUT OFFSET VOLTAGE AND INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 11. POSITIVE OUTPUT SWING vs TEMPERATURE

FIGURE 8. SLEW RATE vs SUPPLY VOLTAGE

FIGURE 10. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 12. NEGATIVE OUTPUT SWING vs TEMPERATURE

Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}<10 \mathrm{pF}$, Unless Otherwise Specified (Continued)

FIGURE 13. MAXIMUM UNDISTORTED OUTPUT SWING vs FREQUENCY

FIGURE 15. INTERMODULATION DISTORTION vs FREQUENCY (TWO TONE)

FIGURE 17. DIFFERENTIAL PHASE vs LOAD RESISTANCE

FIGURE 14. TOTAL HARMONIC DISTORTION vs FREQUENCY

FIGURE 16. DIFFERENTIAL GAIN vs LOAD RESISTANCE

FIGURE 18. GAIN FLATNESS vs FREQUENCY (AvCL = 2)

Typical Performance Curves $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}<10 \mathrm{pF}$, Unless Otherwise Specified (Continued)

FIGURE 19. GAIN BANDWIDTH PRODUCT vs LOAD RESISTANCE

Metallization Topology

DIE DIMENSIONS:

77 mils $\times 81$ mils $\times 19$ mils
$1960 \mu \mathrm{~m} \times 2060 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$
METALLIZATION:
Type: Aluminum, 1\% Copper
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
PASSIVATION:
Type: Nitride over Silox
Silox Thickness: $12 k \AA \pm 2 k \AA$
Nitride thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$

SUBSTRATE POTENTIAL (Powered Up):

V-

TRANSISTOR COUNT:

58

PROCESS:

High Frequency Bipolar Dielectric Isolation

Metallization Mask Layout
HA-2842

semprois

Features

- Low Supply Current \qquad
- High Slew Rate $340 \mathrm{~V} / \mu \mathrm{s}$
- Open Loop Gain . 25kV/V
- Wide Gain-Bandwidth $\left(A_{V} \geq 10\right)$ 470MHz
- Full Power Bandwidth . 5.4 MHz
- Low Offset Voltage. . 0.6 mV
- Input Noise Voltage $11 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Differential Gain/Phase \qquad 0.04\%/0.04 Degrees
- Lower Power Enhanced Replacement for AD840 and EL2040

Applications

- Pulse and Video Amplifiers
- Wideband Amplifiers
- High Speed Sample-Hold Circuits
- Fast, Precise D/A Converters

Description

The HA-2850 is a wideband, high slew rate, operational amplifier featuring superior speed and bandwidth characteristics. Bipolar construction, coupled with dielectric isolation, delivers outstanding performance in circuits with a closed loop gain of 10 or greater.

A $340 \mathrm{~V} / \mu$ s slew rate and a 470 MHz gain bandwidth product ensure high performance in video and wideband amplifier designs. Differential gain and phase are a low 0.04% and 0.04 degrees respectively, making the HA-2850 ideal for video applications. A full $\pm 10 \mathrm{~V}$ output swing, high open loop gain, and outstanding AC parameters, make the HA-2850 an excellent choice for high speed Data Acquisition Systems.

The HA-2850 is available in commercial and industrial temperature ranges, and a choice of packages. For military grade product, refer to the HA-2850/883 data sheet. Harris AnswerFAX (407-724-7800) Document \#3595.

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. NO.
HA3B2850-5	0 to 75	14 Ld PDIP	E14.3
НАЗ-2850-5	0 to 75	8 Ld PDIP	E8.3
HA9P2850-5 (H28505)	0 to 75	8 Ld SOIC	M8.15
HA3B2850-9	-40 to 85	14 Ld PDIP	E14.3
НАЗ-2850-9	-40 to 85	8 Ld PDIP	E8.3

Pinouts

NOTE: No Connection (NC) pins may be tied to a ground plane for better isolation and heat dissipation.

Features

- Slew Rate . $1.6 \mathrm{~V} / \mu \mathrm{s}$
- Bandwidth. 3.5 MHz
- Input Voltage Noise . 9nV/ $\sqrt{\mathrm{Hz}}$
- Input Offset Voltage . 0.5 mV
- Input Bias Current .60nA
- Supply Range. $\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$
- No Crossover Distortion
- Standard Quad Pinout

Applications

- Universal Active Filters
- D3 Communications Filters
- Audio Amplifiers
- Battery-Powered Equipment

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA1-4741-2	-55 to 125	14 Ld CERDIP	F14.3
HA1-4741-5	0 to 75	14 Ld CERDIP	F14.3
HA3-4741-5	0 to 75	14 Ld PDIP	E14.3
HA9P4741-9	-40 to 85	16 Ld SOIC	M16.3

Description

HA-4741, which contains four amplifiers on a monolithic chip, provides a new measure of performance for general purpose operational amplifiers. Each amplifier in the HA-4741 has operating specifications that equal or exceed those of the 741-type amplifier in all categories of performance.

HA-4741 is well suited to applications requiring accurate signal processing by virtue of its low values of input offset voltage (0.5 mV), input bias current (60 nA) and input voltage noise $(9 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz$) .3 .5 \mathrm{MHz}$ bandwidth, coupled with high open-loop gain, allow the HA-4741 to be used in designs requiring amplification of wide band signals, such as audio amplifiers. Audio application is further enhanced by the HA-4741's negligible output crossover distortion.

These excellent dynamic characteristics also make the HA4741 ideal for a wide range of active filter designs. Performance integrity of multi-channel designs is assured by a high level of amplifier-to-amplifier isolation (69dB at 10 kHz).

A wide range of supply voltages ($\pm 2 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$) can be used to power the HA-4741, making it compatible with almost any system including battery-powered equipment.

HA-4741/883 product and data sheets available upon request.

Pinouts

Absolute Maximum Ratings

$T_{A}=25^{\circ} \mathrm{C}$ Unless Otherwise Stated
Supply Voltage Between V+ and V- Terminals 40V
Differential Input Voltage. 30 V
Input Voltage. V SUPPLY
Output Short Circuit Duration (Note 3) Indefinite

Operating Conditions

Temperature Range:
HA-4741-2. $-55^{\circ} \mathrm{C}$ 的 $125^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
HA-4741-5. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 2) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} M\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ $\begin{array}{lcc}\text { CERDIP Package } & 90 & 35 \\ \text { PDIP Package } & 107 & \text { N/A } \\ \text { SOIC Package } & 96 & \text { N/A }\end{array}$
Maximum Junction Temperature (Ceramic Package, Note 1) $175^{\circ} \mathrm{C}$ Maximum Junction Temperature (Plastic Packages, Note 1)150 ${ }^{\circ} \mathrm{C}$ Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Maximum power dissipation, including output load, must be designed to maintain junction temperature below $175^{\circ} \mathrm{C}$ for the ceramic package, and below $150^{\circ} \mathrm{C}$ for the plastic packages.
2. $\theta_{J A}$ is measured with the component mounted on an evaluation PC board in free air.
3. One amplifier may be shorted to ground indefinitely.

Electrical Specifications $\quad \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	HA-4741-2			HA-4741-5			$\begin{array}{\|l\|} \hline \text { (NOTE 4) } \\ \text { HA-4741-9 } \end{array}$	UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MAX	

INPUT CHARACTERISTICS

Offset Voltage		25	-	0.5	3	-	1	5	5	mV
		Full	-	4	5	-	4	6.5	8.5	mV
Average Offset Voltage Drift		Full	\bullet	5	-	-	5	-		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	60	200	-	60	300	300	nA
		Full	-	-	325	-	-	400	400	nA
Offset Current		25	-	15	30	-	30	50	50	nA
		Full	-	-	75	-	-	100	100	nA
Common Mode Range		Full	± 12	-	-	± 12	-	-	-	V
Differential Input Resistance		25	-	0.5	-	-	0.5	-	-	$\mathrm{M} \Omega$
Input Voltage Noise	$\mathrm{f}=1 \mathrm{kHz}$	25	-	9	-	-	9	-	-	$\mathrm{n} V / \sqrt{\mathrm{Hz}}$

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	25	50	100	-	25	50	-	-	kV N
		Full	25	-	-	15	-	-	-	kV N
Common Mode Rejection Ratio		25	80	95	-	80	95	-	-	dB
		Full	74	-	-	74	-	-	-	dB
Channel Separation (Note 5)		25	66	69	-	66	69	-	-	dB
Small Signal Bandwidth		25	2.5	3.5	-	2.5	3.5	\bullet		MHz
OUTPUT CHARACTERISTICS										
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	Full	± 12	± 13.7	-	± 12	± 13.7	-	-	V
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	Full	± 10	± 12.5	-	± 10	± 12.5	\bullet	-	V
Full Power Bandwidth (Notes 6, 7)		25	-	25	-	-	25	-	-	kHz
Output Current	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	Full	± 5	± 15	-	± 5	± 15	-	-	mA
Output Resistance		25	-	300	-	-	300	-	-	Ω
TRANSIENT RESPONSE $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$										
Rise Time	$V_{\text {OUT }}= \pm 200 \mathrm{mV}$	25	-	75	140	-	75	140	140	ns
Overshoot		25	-	25	40	-	25	40	40	\%

HA-4741

Electrical Specifications $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	HA-4741-2			HA-4741-5			(NOTE 4) HA-4741-9	UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MAX	
Slew Rate	$\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}$	25	-	± 1.6	-	-	± 1.6	-	-	V/us
POWER SUPPLY CHARACTERISTICS										
Supply Current		25	-	4.5	5	-	5	7	7	mA
Power Supply Rejection Ratio	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	Full	80	95	-	80	95	-	-	dB

NOTES:
4. Typical and Minimum specifications for the -9 version are the same as those for the -5 version.
5. Referred to input; $f=10 \mathrm{kHz}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV}$ PEAK.
6. $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$.
7. Full power bandwidth guaranteed based upon slew rate measurement: $\mathrm{FPBW}=\mathrm{S} . \mathrm{R} . / 2 \pi \mathrm{~V}_{\text {PEAK }}$.

Test Circuit and Waveforms

FIGURE 1. SMALL AND LARGE SIGNAL TEST CIRCUIT

Volts $=5 \mathrm{~V} /$ Div., Time $=5 \mu \mathrm{~s} /$ Div.
FIGURE 2. LARGE SIGNAL RESPONSE

Volts $=40 \mathrm{mV} /$ Div., , Time $=100 \mathrm{~ns} /$ Div.

FIGURE 3. SMALL SIGNAL RESPONSE

Schematic Diagram

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 4. OPEN LOOP FREQUENCY RESPONSE

FIGURE 6. NORMALIZED AC PARAMETERS vs SUPPLY VOLTAGE

FIGURE 5. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 7. NORMALIZED AC PARAMETERS vs TEMPERATURE

HA-4741
Typical Performance Curves $\mathrm{V}_{\text {supply }}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 8. INPUT NOISE vs FREQUENCY

FIGURE 10. MAXIMUM OUTPUT VOLTAGE SWING vs LOAD RESISTANCE

FIGURE 9. SMALL SIGNAL BANDWIDTH AND PHASE MARGIN vs LOAD CAPACITANCE

FIGURE 11. INPUT BIAS AND OFFSET CURRENT vs TEMPERATURE

FIGURE 12. POWER CONSUMPTION vs TEMPERATURE

Die Characteristics

DIE DIMENSIONS:

87 mils $\times 75$ mils $\times 19$ mils
$2210 \mu \mathrm{~m} \times 1910 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:

Type: Al, 1\% Cu
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$

PASSIVATION:

Type: Nitride
Thickness: $7 \mathrm{k} \AA \pm 0.7 \mathrm{k} \AA$

SUBSTRATE POTENTIAL (Powered Up):
V-
TRANSISTOR COUNT:

72

PROCESS:
Junction Isolated Bipolar/JFET

Metallization Mask Layout

HARRIS
SEMICONDUCTOR

110 MHz , High Slew Rate, High Output Current Buffer

Features

- Voltage Gain . 0.995
- High Input Impedance . 3000k Ω
- Low Output Impedance . 3Ω
- Very High Slew Rate . 1300V/ $\mu \mathrm{s}$
- Very Wide Bandwidth . 110MHz
- High Output Current . $\pm 200 m A$
- Pulsed Output Current . 400mA
- Monolithic Construction

Applications

- Line Driver
- Data Acquisition
- 110MHz Buffer
- High Power Current Booster
- High Power Current Source
- Sample and Holds
- Radar Cable Driver
- Video Products

Description

The HA-5002 is a monolithic, wideband, high slew rate, high output current, buffer amplifier.
Utilizing the advantages of the Harris D.I. technologies, the HA-5002 current buffer offers $1300 \mathrm{~V} / \mu$ s slew rate with 110 MHz of bandwidth. The $\pm 200 \mathrm{~mA}$ output current capability is enhanced by a 3Ω output impedance.
The monolithic HA-5002 will replace the hybrid LH0002 with corresponding performance increases. These characteristics range from the $3000 \mathrm{k} \Omega$ input impedance to the increased output voltage swing. Monolithic design technologies have allowed a more precise buffer to be developed with more than an order of magnitude smaller gain error.
The HA-5002 will provide many present hybrid users with a higher degree of reliability and at the same time increase overall circuit performance.
For the military grade product, refer to the HA-5002/883 datasheet.

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. NO.
HA2-5002-2	-55 to 125	8 Pin Metal Can	T8.C
HA2-5002-5	0 to 75	8 Pin Metal Can	T8.C
HA3-5002-5	0 to 75	8 Ld PDIP	E8.3
HA4P5002-5	0 to 75	20 Ld PLCC	N20.35
HA7-5002-2	-55 to 125	8 Ld CERDIP	F8.3A
HA7-5002-5	0 to 75	8 Ld CERDIP	F8.3A
$\begin{array}{\|l} \hline \begin{array}{l} \text { HA9P5002-5 } \\ \text { (H50025) } \end{array} \\ \hline \end{array}$	0 to 75	8 Ld SOIC	M8.15
$\begin{aligned} & \text { HA9P5002-9 } \\ & \text { (H50029) } \\ & \hline \end{aligned}$	-40 to 85	8 Ld SOIC	M8.15

Pinouts

HA-5002 (PDIP, CERDIP, SOIC)
TOP VIEW

HA-5002 (METAL CAN)
TOP VIEW

Absolute Maximum Ratings

Voltage Between V+ and V- Terminals $\ldots . .44 V$
$V_{1}+$ to $V_{1}-$
$\pm 200 \mathrm{~mA}$
$\pm 400 \mathrm{~mA}$
Output Current (Continuous) . $\pm 200 \mathrm{~mA}$
Output Current (50 ms On, 1s Off)

Operating Conditions

Temperature Range
HA-5002-2. $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-5002-5. $40^{\circ} \mathrm{C}$ to to $85^{\circ} \mathrm{C}$
HA-5002-9.

Thermal Information

Thermal Resistance (Typical, Note 2)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
CERDIP Package	115	28
PDIP Package	92	N/A
Metal Can Package	155	67
PLCC Package	74	N/A
SOIC Package	157	N/A

Maximum Junction Temperature (Herrnetic Packages, Note 1) . . $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Packages, Note 1) $150^{\circ} \mathrm{C}$ Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Maximum Lead Temperature (Soldering 10s) 300 ${ }^{\circ} \mathrm{C}$ (PLCC and SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:

1. Maximum power dissipation, including load conditions, must be designed to maintain the maximum junction temperature below $175^{\circ} \mathrm{C}$ for the ceramic and can packages, and below $150^{\circ} \mathrm{C}$ for the plastic packages.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $V_{\text {SUPPLY }}= \pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}, R_{S}=50 \Omega, R_{L}=1 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { TEMP } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	HA-5002-2			HA-5002-5, -9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	

Offset Voltage		25	-	5	20	-	5	20	mV
		Full	-	10	30	-	10	30	mV
Average Offset Voltage Drift		Full	-	30	-	-	30	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	2	7	-	2	7	$\mu \mathrm{~A}$
		Full	-	3.4	10	-	2.4	10	$\mu \mathrm{~A}$
Input Resistance		Full	1.5	3	-	1.5	3	-	$\mathrm{M} \Omega$
Input Noise Voltage		25	-	18	-	-	18	-	$\mu \mathrm{V}_{\text {P-p }}$

TRANSFER CHARACTERISTICS

Voltage Gain $\left(\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}\right)$	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	25	-	0.900	-	-	0.900	-	$\mathrm{V} N$
	$R_{L}=100 \Omega$	25	-	0.971	-	-	0.971	-	V/V
	$R_{L}=1 \mathrm{k} \Omega$	25	-	0.995	-	-	0.995	-	VN
	$R_{L}=1 \mathrm{k} \Omega$	Full	0.980	-	-	0.980	-	-	VN
-3dB Bandwidth	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}_{\text {P-P }}$	25	-	110	-	-	110	-	MHz
AC Current Gain		25	-	40	-	-	40	-	A/mA

OUTPUT CHARACTERISTICS

Output Voltage Swing	$R_{L}=100 \Omega$	25	± 10	± 10.7	-	± 10	± 11.2	-	V
	$R_{L}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	Full	± 10	± 13.5	-	± 10	± 13.9	-	V
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 12 \mathrm{~V}$	Full	± 10	± 10.5	-	± 10	± 10.5	-	V
Output Current	$\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=40 \Omega$	25	-	220	-	-	220	-	mA
Output Resistance		Full	-	3	10	-	3	10	Ω
Harmonic Distortion	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\text {RMS }}, f=10 \mathrm{kHz}$	25	-	<0.005	-	-	<0.005	-	\%

TRANSIENT RESPONSE

Full Power Bandwidth (Note 3)		25	-	20.7	-	-	20.7	-	MHz
Rise Time		25	-	3.6	-	-	3.6	-	ns
Propagation Delay		25	-	2	-	-	2	-	ns
Overshoot		25	-	30	-	-	30	-	$\%$
Slew Rate		25	1.0	1.3	-	1.0	1.3	-	V / ns
Settling Time	To 0.1%	25	-	50	-	-	50	-	ns
Differential Gain	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	25	-	0.06	-	-	0.06	-	$\%$
Differential Phase	$\mathrm{R}_{\mathrm{L}}=500 \Omega$	25	-	0.22	-	-	0.22	-	Degrees

Electrical Specifications $V_{\text {SUPPLY }}= \pm 12 \mathrm{~V}$ to $\pm 15 \mathrm{~V}, R_{S}=50 \Omega, R_{L}=1 \mathrm{k} \Omega, C_{L}=10 \mathrm{pF}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP $\left({ }^{\circ} \mathrm{C}\right)$	HA-5002-2			HA-5002-5, -9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
POWER REQUIREMENTS									
Supply Current		25	-	8.3	-	-	8.3	-	mA
		Full	-	-	10	-	-	10	mA
Power Supply Rejection Ratio	$A_{V}=10 \mathrm{~V}$	Full	54	64	-	54	64	-	dB

NOTE:
3. $\mathrm{FPBW}=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}} ; \mathrm{V}_{\mathrm{P}}=10 \mathrm{~V}$.

Test Circuit and Waveforms

FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE

$R_{S}=50 \Omega, R_{L}=100 \Omega$
SMALL SIGNAL WAVEFORMS

$R_{S}=50 \Omega, R_{L}=100 \Omega$
LARGE SIGNAL WAVEFORMS

$R_{S}=50 \Omega, R_{L}=1 \mathrm{k} \Omega$
SMALL SIGNAL WAVEFORMS

$R_{S}=50 \Omega, R_{L}=1 \mathrm{k} \Omega$
LARGE SIGNAL WAVEFORMS

Schematic Diagram

Application Information

Layout Considerations

The wide bandwidth of the HA-5002 necessitates that high frequency circuit layout procedures be followed. Failure to follow these guidelines can result in marginal performance.

Probably the most crucial of the RF/video layout rules is the use of a ground plane. A ground plane provides isolation and minimizes distributed circuit capacitance and inductance which will degrade high frequency performance.
Other considerations are proper power supply bypassing and keeping the input and output connections as short as possible which minimizes distributed capacitance and reduces board space.

Power Supply Decoupling

For optimal device performance, it is recommended that the positive and negative power supplies be bypassed with capacitors to ground. Ceramic capacitors ranging in value from 0.01 to $0.1 \mu \mathrm{~F}$ will minimize high frequency variations in supply voltage, while low frequency bypassing requires larger valued capacitors since the impedance of the capacitor is dependent on frequency.

It is also recommended that the bypass capacitors be connected close to the HA-5002 (preferably directly to the supply pins).

Operation at Reduced Supply Levels

The HA-5002 can operate at supply voltage levels as low as $\pm 5 \mathrm{~V}$ and lower. Output swing is directly affected as well as slight reductions in slew rate and bandwidth.

Short Circuit Protection

The output current can be limited by using the following circuit:

$$
R_{\text {LIM }}=\frac{v_{+}}{\text {IOUTMAX }}=\frac{v}{l_{\text {OUTMAX }}}
$$

Capacitive Loading

The HA-5002 will drive large capacitive loads without oscillation but peak current limits should not be exceeded. Following the formula I = Cdv/dt implies that the slew rate or the capacitive load must be controlled to keep peak current below the maximum or use the current limiting approach as shown. The HA-5002 can become unstable with small capacitive loads (50pF) if certain precautions are not taken. Stability is enhanced by any one of the following: a source resistance in series with the input of 50Ω to $1 \mathrm{k} \Omega$; increasing capacitive load to 150 pF or greater; decreasing C LOAD to 20pF or less; adding an output resistor of 10Ω to 50Ω; or adding feedback capacitance of 50pF or greater. Adding source resistance generally yields the best results.

FIGURE 2. FREE AIR POWER DISSIPATION

Typical Application

FIGURE 3. COAXIAL CABLE DRIVER - 50Ω SYSTEM

Typical Performance Curves

FIGURE 4. GAIN/PHASE vs FREQUENCY $\left(R_{L}=1 \mathrm{k} \Omega\right)$

FIGURE 5. GAIN/PHASE vs FREQUENCY $\left(R_{L}=50 \Omega\right)$

FIGURE 6. VOLTAGE GAIN vs TEMPERATURE ($R_{L}=100 \Omega$)

FIGURE 8. OFFSET VOLTAGE vs TEMPERATURE

FIGURE 10. MAXIMUM OUTPUT VOLTAGE vs TEMPERATURE

FIGURE 7. VOLTAGE GAIN vs TEMPERATURE ($R_{L}=1 \mathbf{k} \Omega$)

FIGURE 9. BIAS CURRENT vs TEMPERATURE

FIGURE 11. SUPPLY CURRENT vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 12. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 14. V $_{\text {OUT }}$ MAXIMUM vs $V_{\text {Supply }}$

FIGURE 16. SLEW RATE vs SUPPLY VOLTAGE

FIGURE 13. INPUT/OUTPUT IMPEDANCE vs FREQUENCY

FIGURE 15. PSRR vs FREQUENCY

FIGURE 17. GAIN ERROR vs INPUT VOLTAGE

Die Characteristics

DIE DIMENSIONS:
81 mils $\times 80$ mils $\times 19$ mils
$2050 \mu \mathrm{~m} \times 2030 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$
METALLIZATION:
Type: Al, 1\% Cu
Thickness: $20 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$

PASSIVATION:

Type: Nitride
Thickness: $7 \mathrm{k} \AA \pm \pm 0.7 \mathrm{k} \AA$
Metallization Mask Layout

SUBSTRATE POTENTIAL (Powered Up): V1-

TRANSISTOR COUNT:
27
PROCESS:
Bipolar Dielectric Isolation

HA-5002

Features

- Slew Rate . 1200V/ $/$ 8
- Output Current . $\pm 100 \mathrm{~mA}$
- Drives . $\pm 9 \mathrm{~V}$ into 100Ω
- VSUPPLY . $\pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$
- Thermal Overioad Protection and Output Flag
- Bandwidth Nearly Independent of Gain
- Output Enable/Disable

Applications

- Unity Gain Video/Wideband Buffer
- Video Gain Block
- High Speed Peak Detector
- Fiber Optic Transmitters
- Zero Insertion Loss Transmission Line Drivers
- Current to Voltage Converter
- Radar Systems

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA1-5004-5	0 to 70	14 Ld CERDIP	F14.3
HA1-5004-9	-40 to 85	14 Ld CERDIP	F14.3

Description

The HA-5004 current feedback amplifier is a video/wideband amplifier optimized for low gain applications. The design is based on current-mode feedback which allows the amplifier to achieve higher closed loop bandwidth than voltage-mode feedback operational amplifiers. Since feedback is employed, the HA-5004 can offer better gain accuracy and lower distortion than open loop buffers. Unlike conventional op amps, the bandwidth and rise time of the HA-5004 are nearly independent of closed loop gain. The 100 MHz bandwidth at unity gain reduces to only 65 MHz at a gain of 10 . The HA-5004 may be used in place of a conventional op amp with a significant improvement in speed power product.

Several features have been designed in for added value. A thermal overload feature protects the part against excessive junction temperature by shutting down the output. If this feature is not needed, it can be inhibited via a TTL input (TOI). A TTL chip enable/disable ($\overline{\mathrm{OE}}$) is also provided; when the chip is disabled its output is high impedance. Finally, an open collector output flag (TOL) is provided to indicate the status of the chip. The status flag goes low to indicate when the chip is disabled due to either the internal Thermal Overload shutdown or the external disable.

In order to maximize bandwidth and output drive capacity, internal current limiting is not provided. However, current limiting may be applied via the $\mathrm{V}_{\mathrm{C}^{+}}$and V_{C} - pins which provide power separately to the output stage.

For Military grade product refer to the HA-5004/883 data sheet.

Pinout

TRUTH TABLE

INPUTS		TEMP	TOL OUTPUT OPPEN COLLECTOR)	OPERATION
$\overline{O E}$	TOI	T_{J}	1	Normal
0	0	Normal	0	Auto Shutdown, HI-Z OUT
0	0	High (Note)	1	Normal
0	1	X	1	ManualShutdown, HI-Z OUT
1	X	X	0	

NOTE: $>180^{\circ} \mathrm{C}$ Typical

HA5013

Features

- Wide Unity Gain Bandwidth \qquad 125 MHz
- Slew Rate $475 \mathrm{~V} / \mu \mathrm{s}$
- Input Offset Voltage . $800 \mu \mathrm{~V}$
- Differential Gain. 0.03\%
- Differential Phase 0.03 Degrees
- Supply Current (Per Amplifier) 7.5mA
- ESD Protection. 4000V
- Guaranteed Specifications at $\pm 5 \mathrm{~V}$ Supplies
- Low Cost

Applications

- PC Add-On Multimedia Boards
- Flash AND Driver
- Color Image Scanners
- CCD Cameras and Systems
- RGB Cable Driver
- RGB Video Preamp
- PC Video Conferencing

Description

The HA5013 is a low cost triple amplifier optimized for RGB video applications and gains between 1 and 10. It is a current feedback amplifier and thus yields less bandwidth degradation at high closed loop gains than voltage feedback amplifiers.

The low differential gain and phase, 0.1 dB gain flatness, and ability to drive two back terminated 75Ω cables, make this amplifier ideal for demanding video applications.

The current feedback design allows the user to take advantage of the amplifier's bandwidth dependency on the feedback resistor.

The performance of the HA5013 is very similar to the popular Harris HA-5020 single video amplifier.

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA5013IP	-40 to 85	14 Ld PDIP	E14.3
HA5013IB	-40 to 85	14 Ld SOIC	M14.15
HA5025EVAL	High Speed Op Amp DIP Evaluation Board		

Pinout

Absolute Maximum Ratings

Voltage Between V+ and V- Terminals . 36V
DC Input Voltage . $\pm \mathrm{V}_{\text {SUPPLY }}$
Differential Input Voltage. 10 V
Output Current (Note 2) Short Circuit Protected
ESD Rating (Note 4)
Human Body Model (Per MIL-STD-883 Method 3015.7) . . 2000V

Operating Conditions

Temperature Range
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Supply Voltage Range (Typical)
$\pm 4.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$

Thermal Information
Thermal Resistance (Typical, Note 1)

$$
\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)
$$

PDIP Package . 100
SOIC Package . 120
Maximum Junction Temperature (Die Only, Note 3) $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package, Note 3) . . $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
2. Output is protected for short circuits to ground. Brief short circuits to ground will not degrade reliability, however, continuous (100% duty cycle) output current should not exceed 15 mA for maximum reliability.
3. Maximum power dissipation, including output load, must be designed to maintain junction temperature below $175^{\circ} \mathrm{C}$ for die, and below $150^{\circ} \mathrm{C}$ for plastic packages. See Application Information section for safe operating area information.
4. The non-inverting input of unused amplifiers must be connected to GND.

Electrical Specifications $V_{S U P P L Y}= \pm 5 V, R_{F}=1 k \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	(NOTE 9) TEST LEVEL	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	MIN	TYP	MAX	UNITS	
INPUT CHARACTERISTICS								
Input Offset Voltage ($\mathrm{V}_{1 \mathrm{O}}$)		A	25	-	0.8	3	mV	
		A	Full	-	-	5	mV	

HA5013

Electrical Specifications $\quad V_{S U P P L Y}= \pm 5 V, R_{F}=1 k \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 p F$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	(NOTE 9) TEST LEVEL	TEMP. (${ }^{\circ} \mathrm{C}$)	MIN	TYP	MAX	UNITS
-IN Power Supply Rejection	$\pm 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 6.5 \mathrm{~V}$	A	25	-	-	0.2	$\mu \mathrm{AN}$
		A	Full	-	-	0.5	$\mu \mathrm{A} V$
Input Noise Voltage	$f=1 \mathrm{kHz}$	B	25	-	4.5	\bullet	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
+Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$	B	25	-	2.5	-	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
-Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$	B	25	-	25.0	-	$\mathrm{pA} \sqrt{\mathrm{Hz}}$

TRANSFER CHARACTERISTICS

Transimpedence	$\mathrm{V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}$ (Note 11)	A	25	1.0	-	-	M Ω
		A	Full	0.85	-	-	M Ω
Open Loop DC Voltage Gain	$\begin{aligned} & R_{\mathrm{L}}=400 \Omega, \mathrm{~V}_{\text {OUT }}= \\ & \pm 2.5 \mathrm{~V} \end{aligned}$	A	25	70	-	-	dB
		A	Full	65	-	-	dB
Open Loop DC Voltage Gain	$\begin{aligned} & R_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\text {OUT }}= \\ & \pm 2.5 \mathrm{~V} \end{aligned}$	A	25	50	-	-	dB
		A	Full	45	-	-	dB

OUTPUT CHARACTERISTICS

Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	A	25	± 2.5	± 3.0	-	V
		A	Full	± 2.5	± 3.0	-	V
Output Current		$\mathrm{R}_{\mathrm{L}}=150 \Omega$	B	Full	± 16.6	± 20.0	-
Short Circuit Output Current	$\mathrm{V}_{\mathrm{IN}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	A	Full	± 40	± 60	-	mA

POWER SUPPLY CHARACTERISTICS

Supply Voltage Range		A	25	5	-	15	V
Quiescent Supply Current		A	Full	-	7.5	10 $\mathrm{~mA} / \mathrm{Op}$ Amp	

AC CHARACTERISTICS $A_{V}=+1$

Slew Rate	Note 6	B	25	275	350	-	V/us
Full Power Bandwidth (Note 7)	.	B	25	22	28	-	MHz
Rise Time (Note 8)	$V_{\text {OUT }}=1 V, R_{L}=100 \Omega$	B	25	-	6	-	ns
Fall Time (Note 8)	$V_{\text {OUT }}=1 V, R_{L}=100 \Omega$	B	25	-	6	-	ns
Propagation Delay (Note 8)	$V_{\text {OUT }}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	B	25	-	6	-	ns
Overshoot		B	25	-	4.5	-	\%
-3dB Bandwidth	$V_{\text {OUT }}=100 \mathrm{mV}$	B	25	-	125	-	MHz
Settling Time	To 1\%, 2V Output Step	B	25	-	50	-	ns
Settling Time	To 0.25\%, 2V Output Step	B	25	-	75	-	ns

AC CHARACTERISTICS $A_{V}=+2, R_{F}=681 \Omega$

Slew Rate	Note 6	B	25	-	475	-	$\mathrm{V} / \mu \mathrm{s}$
Full Power Bandwidth (Note 7)		B	25	-	26	-	MHz
Rise Time (Note 8)	$V_{\text {OUT }}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	B	25	-	6	-	ns
Fall Time (Note 8)	$V_{\text {OUT }}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	B	25	-	6	-	ns

HA5013

Electrical Specifications $V_{S U P P L Y}= \pm 5 V, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	(NOTE 9) TEST LEVEL	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	MIN	TYP	MAX	UNITS
Propagation Delay (Note 8)	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	B	25	-	6	-	ns
Overshoot		B	25	-	12	-	\%
-3dB Bandwidth	$V_{\text {OUT }}=100 \mathrm{mV}$	B	25	-	95	-	MHz
Settling Time	To 1\%, 2V Output Step	B	25	-	50	-	ns
Settling Time	To 0.25\%, 2V Output Step	B	25	-	100	-	ns
Gain Flatness	5 MHz	B	25	-	0.02	-	dB
	20 MHz	B	25	-	0.07	-	dB

AC CHARACTERISTICS $A_{V}=+10, R_{F}=383 \Omega$

Slew Rate	Note 6	B	25	350	475	-	$\mathrm{V} / \mu \mathrm{s}$
Full Power Bandwidth (Note 7)		B	25	28	38	-	MHz
Rise Time (Note 8)	$V_{\text {OUT }}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	B	25	-	8	-	ns
Fall Time (Note 8)	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	B	25	-	9	-	ns
Propagation Delay (Note 8)	$\mathrm{V}_{\text {OUT }}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \Omega$	B	25	-	9	-	ns
Overshoot		B	25	-	1.8	-	\%
-3dB Bandwidth	$\mathrm{V}_{\text {OUT }}=100 \mathrm{mV}$	B	25	-	65	-	MHz
Settling Time	To 1\%, 2V Output Step	B	25	-	75	-	ns
	To 0.1\%, 2V Output Step	B	25	-	130	-	ns

VIDEO CHARACTERISTICS

Differential Gain	$R_{L}=150 \Omega,($ Note 10)	B	25	-	0.03	-	$\%$
Differential Phase	$R_{L}=150 \Omega,($ Note 10$)$	B	25	-	0.03	-	Degrees

NOTES:

5. At $-40^{\circ} \mathrm{C}$ Product is tested at $\mathrm{V}_{\mathrm{CM}}= \pm 2.25 \mathrm{~V}$ because Short Test Duration does not allow self heating.
6. VOUT switches from -2 V to +2 V , or from +2 V to -2 V . Specification is from the 25% to 75% points.
7. FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}} ; V_{\text {PEAK }}=2 \mathrm{~V}$.
8. Measured from 10% to 90% points for rise/fall times; from 50% points of input and output for propagation delay.
9. A. Production Tested; B. Typical or Guaranteed Limit based on characterization; C. Design Typical for information only.
10. Measured with a VM700A video tester using an NTC-7 composite VITS.
11. At $-40^{\circ} \mathrm{C}$ Product is tested at $\mathrm{V}_{\text {OUT }}= \pm 2.25 \mathrm{~V}$ because Short Test Duration does not allow self heating.

Test Circuits and Waveforms

FIGURE 1. TEST CIRCUIT FOR TRANSIMPEDANCE MEASUREMENTS

FIGURE 2. SMALL SIGNAL PULSE RESPONSE CIRCUIT

Vertical Scale: $V_{I N}=100 \mathrm{mV} /$ Div., $V_{\text {OUT }}=100 \mathrm{mV} /$ Div. Horizontal Scale: 20ns/Div.

FIGURE 4. SMALL SIGNAL RESPONSE

FIGURE 3. LARGE SIGNAL PULSE RESPONSE CIRCUIT

Vertical Scale: $\mathrm{V}_{I N}=1 \mathrm{~V} /$ Div., $\mathrm{V}_{\mathrm{OUT}}=1 \mathrm{~V} /$ Div. Horizontal Scale: 50ns/Div.

FIGURE 5. LARGE SIGNAL RESPONSE

Schematic (One Amplifier of Three)

Application Information

Optimum Feedback Resistor

The plots of inverting and non-inverting frequency response, see Figure 8 and Figure 9 in the typical performance section, illustrate the performance of the HA5013 in various closed loop gain configurations. Although the bandwidth dependency on closed loop gain isn't as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback amplifier's unique relationship between bandwidth and R_{F}. All current feedback amplifiers require a feedback resistor, even for unity gain applications, and R_{F}, in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to R_{F}. The HA5013 design is optimized for a $1000 \Omega R_{F}$ at a gain of +1 . Decreasing R_{F} in a unity gain application decreases stability, resulting in excessive peaking and overshoot. At higher gains the amplifier is more stable, so R_{F} can be decreased in a tradeoff of stability for bandwidth.

The table below lists recommended R_{F} values for various gains, and the expected bandwidth.

GAIN $\left(\mathbf{A}_{\mathbf{C L}}\right)$	$\mathbf{R}_{\mathbf{F}}(\Omega)$	BANDWIDTH $\mathbf{(M H z)}$
-1	750	100
+1	1000	125
+2	681	95
+5	1000	52
+10	383	65
-10	750	22

PC Board Layout

The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended. If leaded components are used the leads must be kept short especially for the power supply decoupling components and those components connected to the inverting input.

Attention must be given to decoupling the power supplies. A large value $(10 \mu \mathrm{~F})$ tantalum or electrolytic capacitor in parallel with a small value ($0.1 \mu \mathrm{~F}$) chip capacitor works well in most cases.

A ground plane is strongly recommended to control noise. Care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input (-IN). The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and possible instability. It is recommended that the ground plane be removed under traces connected to -IN, and that connections to -IN be kept as short as possible to minimize the capacitance from this node to ground.

Driving Capacitive Loads

Capacitive loads will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases the oscillation can be avoided by placing an isolation resistor (R) in series with the output as shown in Figure 6.

FIGURE 6. PLACEMENT OF THE OUTPUT ISOLATION RESISTOR, R

The selection criteria for the isolation resistor is highly dependent on the load, but 27Ω has been determined to be a good starting value.

Power Dissipation Considerations

Due to the high supply current inherent in triple amplifiers, care must be taken to insure that the maximum junction temperature (T_{J}, see Absolute Maximum Ratings) is not exceeded. Figure 7 shows the maximum ambient temperature versus supply voltage for the available package styles (PDIP, SOIC). At $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ quiescent operation both package styles may be operated over the full industrial range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. It is recommended that thermal calculations, which take into account output power, be performed by the designer.

FIGURE 7. MAXIMUM OPERATING AMBIENT TEMPERATURE vs SUPPLY VOLTAGE

Typical Performance Curves $V_{\text {SUPPLY }}= \pm 5 V, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$,
 Unless Otherwise Specified

FIGURE 8. NON-INVERTING FREQUENCY RESPONSE

FIGURE 10. PHASE RESPONSE AS A FUNCTION OF FREQUENCY

FIGURE 12. BANDWIDTH AND GAIN PEAKING vs FEEDBACK RESISTANCE

FIGURE 9. INVERTING FREQUENCY RESPONSE

FIGURE 11. BANDWIDTH AND GAIN PEAKING vs FEEDBACK RESISTANCE

FIGURE 13. BANDWIDTH AND GAIN PEAKING vs LOAD RESISTANCE

GAIN PEAKING (dB)

HA5013
Typical Performance Curves $v_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 14. BANDWIDTH vs FEEDBACK RESISTANCE

FIGURE 16. DIFFERENTIAL GAIN vs SUPPLY VOLTAGE

FIGURE 18. DISTORTION vs FREQUENCY

FIGURE 15. SMALL SIGNAL OVERSHOOT vs LOAD RESISTANCE

FIGURE 17. DIFFERENTIAL PHASE vs SUPPLY VOLTAGE

FIGURE 19. REJECTION RATIOS vs FREQUENCY

HA5013

Typical Performance Curves $v_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 20. PROPAGATION DELAY vs TEMPERATURE

FIGURE 22. SLEW RATE vs TEMPERATURE

FIGURE 24. INVERTING GAIN FLATNESS vs FREQUENCY

FIGURE 21. PROPAGATION DELAY vs SUPPLY VOLTAGE

FIGURE 23. NON-INVERTING GAIN FLATNESS vs FREQUENCY

FIGURE 25. INPUT NOISE CHARACTERISTICS

Typical Performance Curves $V_{S U P P L Y}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 26. INPUT OFFSET VOLTAGE vs TEMPERATURE

FIGURE 28. -INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 30. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 27. +INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 29. TRANSIMPEDANCE vs TEMPERATURE

FIGURE 31. REJECTION RATIO vs TEMPERATURE

Typical Performance Curves $V_{S U P P L Y}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 32. SUPPLY CURRENT vs DISABLE INPUT VOLTAGE

FIGURE 34. OUTPUT SWING vs LOAD RESISTANCE

FIGURE 36. INPUT BIAS CURRENT CHANGE BETWEEN CHANNELS vs TEMPERATURE

FIGURE 33. OUTPUT SWING vs TEMPERATURE

FIGURE 35. INPUT OFFSET VOLTAGE CHANGE BETWEEN CHANNELS vs TEMPERATURE

FIGURE 37. CHANNEL SEPARATION vs FREQUENCY

Typical Performance Curves $V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 38. DISABLE FEEDTHROUGH vs FREQUENCY

FIGURE 39. TRANSIMPEDANCE vs FREQUENCY

FIGURE 40. TRANSIMPEDENCE vs FREQUENCY

Die Characteristics

DIE DIMENSIONS:

$2010 \mu \mathrm{~m} \times 3130 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:

Type: Metal 1: AICu (1\%)
Thickness: Metal 1: $8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA$
Type: Metal 2: AICu (1\%)
Thickness: Metal 2: $16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA$

PASSIVATION:

Type: Nitride
Thickness: $4 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA$
TRANSISTOR COUNT:
248
PROCESS:
High Frequency Bipolar Dielectric Isolation

SUBSTRATE POTENTIAL
Unbiased
Metallization Mask Layout

100MHz Current Feedback Video Amplifier With Disable

Features

- Wide Unity Gain Bandwidth 100MHz
- Slew Rate . 800V/ $/$ s
- Output Current . $\pm 30 \mathrm{~mA}$ (Min)
- Drives 3.5 V into 75Ω
- Differential Gain.
. 0.03\%
- Differential Phase. 0.03 Degrees
- Low Input Voltage Noise 4.5nV/ $/ \sqrt{\mathrm{Hz}}$
- Low Supply Current. \qquad 10 mA (Max)
- Wide Supply Range
$\pm 5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$
- Output Enable/Disable
- High Performance Replacement for EL2020

Applications

- Unity Gain Video/Wideband Buffer
- Video Gain Block
- Video Distribution Amp/Coax Cable Driver
- Flash A/D Driver
- Waveform Generator Output Driver
- Current to Voltage Converter; D/A Output Buffer
- Radar Systems
- Imaging Systems

Ordering Information

$\left.\begin{array}{|l|c|l|l|}\hline \begin{array}{c}\text { PART NUMBER } \\ \text { (BRAND) }\end{array} & \begin{array}{c}\text { TEMP. } \\ \text { RANGE (}\end{array} \\ \hline{ }^{\circ} \text { C) }\end{array}\right)$

Description

The HA-5020 is a wide bandwidth, high slew rate amplifier optimized for video applications and gains between 1 and 10. Manufactured on Harris' Reduced Feature Complementary Bipolar DI process, this amplifier uses current mode feedback to maintain higher bandwidth at a given gain than conventional voltage feedback amplifiers. Since it is a closed loop device, the HA-5020 offers better gain accuracy and lower distortion than open loop buffers.

The HA-5020 features low differential gain and phase and will drive two double terminated 75Ω coax cables to video levels with low distortion. Adding a gain flatness performance of 0.1 dB makes this amplifier ideal for demanding video applications. The bandwidth and slew rate of the HA-5020 are relatively independent of closed loop gain. The 100 MHz unity gain bandwidth only decreases to 60 MHz at a gain of 10 . The HA-5020 used in place of a conventional op amp will yield a significant improvement in the speed power product. To further reduce power, the HA5020 has a disable function which significantly reduces supply current, while forcing the output to a true high impedance state. This allows the outputs of multiple amplifiers to be wire-OR'd into multiplexer configurations. The device also includes output short circuit protection and output offset voltage adjustment.

The HA-5020 is available in commercial and industrial temperature ranges, and a choice of packages. See the "Ordering Information" section below for more information. For military grade product, please refer to the HA-5020/883 datasheet.

For multi channel versions of the HA-5020 see the HA5022 dual with disable, HA5023 dual, HA5013 triple, HA5024 quad with disable or HA5025 quad op amp data sheets.

Pinout


```
Absolute Maximum Ratings (Note 1)
Voltage Between V+ and V. Terminals . . . . . . . . . . . . . . . . . . . 36V
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 士V \V SUPPLY
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10V
Output Current . . . . . . . . . . . . . . . . . . . . . Short Circuit Protected
```


Operating Conditions

Temperature Range
HA-5020-5
$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
HA-5020-9 $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 2) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{N}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
PDIP Package 130 N/A CERDIP Package 135

135
50 SOIC Package

170
N/A
Maximum Junction Temperature (Ceramic Package, Note 1) . . . $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Packages, Note 1) . . . $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$ (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Maximum power dissipation, including output load, must be designed to maintain junction temperature below $175^{\circ} \mathrm{C}$ for ceramic packages, and below $150^{\circ} \mathrm{C}$ for plastic packages.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\quad V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	HA-5020-5, -9			UNITS
			MIN	TYP	MAX	
INPUT CHARACTERISTICS						
Input Offset Voltage (Notes 3, 14)		25	-	2	8	mV
		Full	-	\cdot	10	mV
Average Input Offset Voitage Drift		Full	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
V_{10} Common Mode Rejection Ratio (Note 14)	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	25	60	-	-	dB
		Full	50	-	-	dB
V_{10} Power Supply Rejection Ratio (Note 14)	$\pm 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V}$	25	64	-	-	dB
		Full	60	\bullet	-	dB
Non-Inverting Input (+IN) Current (Note 14)		25	-	3	8	$\mu \mathrm{A}$
		Full	-	-	20	$\mu \mathrm{A}$
+IN Common Mode Rejection	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	25	-	-	0.1	$\mu \mathrm{A} N$
		Full	-	-	0.5	$\mu \mathrm{AN}$
+IN Power Supply Rejection	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V}$	25	-	\bullet	0.06	$\mu \mathrm{A} N$
		Full	-	\bullet	0.2	$\mu \mathrm{A} V$
Inverting Input (-IN) Current (Note 14)		25	-	12	20	$\mu \mathrm{A}$
		Full	-	25	50	$\mu \mathrm{A}$
-IN Common Mode Rejection	$\mathrm{V}_{C M}= \pm 10 \mathrm{~V}$	25	-	-	0.4	$\mu \mathrm{A}$,
		Full	-	\cdot	0.5	$\mu \mathrm{A} V$
-IN Power Supply Rejection	$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 18 \mathrm{~V}$	25	-	-	0.2	$\mu \mathrm{A} V$
		Full	-	\bullet	0.5	$\mu \mathrm{AN}$
TRANSFER CHARACTERISTICS						
Transimpedance (Notes 9, 14)		25	3500	\cdot	-	V/mA
		Full	1000	\bullet	\bullet	V/mA
Open Loop DC Voltage Gain (Note 9)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=400 \Omega, \\ & \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V} \end{aligned}$	25	70	-	-	dB
		Full	65	\bullet	\bullet	dB
Open Loop DC Voltage Gain	$\begin{aligned} & R_{\mathrm{L}}=100 \Omega, \\ & V_{\mathrm{OUT}}= \pm 2.5 \mathrm{~V} \end{aligned}$	25	60	-	-	dB
		Full	55	\bullet	\bullet	dB
OUTPUT CHARACTERISTICS						
Output Voltage Swing (Note 14)	$R_{L}=150 \Omega$	25 to 85	± 12	± 12.7	\bullet	V
		-40 to 0	± 11	± 11.8	-	V

Electrical Specifications $V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	HA-5020-5, -9			UNITS
			MIN	TYP	MAX	
Output Current (Guaranteed by Output Voltage Test)		25	± 30	± 31.7	-	mA
		Full	± 27.5	-	\cdot	mA
POWER SUPPLY CHARACTERISTICS						
Quiescent Supply Current (Note 14)		Full	-	7.5	10	mA
Supply Current, Disabled (Note 14)	DISABLE $=0 \mathrm{~V}$	Full	-	5	7.5	mA
Disable Pin Input Current	$\overline{\text { DISABLE }}=0 \mathrm{~V}$	Full	-	1.0	1.5	mA
Minimum Pin 8 Current to Disable (Note 4)		Full	350	-	-	$\mu \mathrm{A}$
Maximum Pin 8 Current to Enable (Note 5)		Full	-	-	20	$\mu \mathrm{A}$
AC CHARACTERISTICS ($\mathrm{A}_{V}=+1$)						
Slew Rate (Note 6)		25	600	800	-	V/us
		Full	500	700	-	V/us
Full Power Bandwidth (Note 7) (Guaranteed by Slew Rate Test)		25	9.6	12.7	-	MHz
		Full	8.0	11.1	-	MHz
Rise Time (Note 8)		25	-	5	-	ns
Fall Time (Note 8)		25	-	5	-	ns
Propagation Delay (Notes 8, 14)		25	-	6	-	ns
-3dB Bandwidth (Note 14)	$\mathrm{V}_{\text {OUT }}=100 \mathrm{mV}$	25	-	100	-	MHz
Settling Time to 1\%	10 V Output Step	25	-	45	-	ns
Settling Time to 0.25\%	10V Output Step	25	-	100	-	ns

AC CHARACTERISTICS ($A_{V}=+10, R_{F}=383 \Omega$)

Slew Rate (Notes 6, 9)		25	900	1100	-	$\mathrm{V} / \mu \mathrm{s}$
		Full	700	-	-	$\mathrm{V} / \mu \mathrm{s}$
Full Power Bandwidth (Note 7) (Guaranteed by Slew Rate Test)		25	14.3	17.5	-	MHz
		Full	11.1	-	-	MHz
Rise Time (Note 8)		25	-	8	-	ns
Fall Time (Note 8)		25	-	8	-	ns
Propagation Delay (Notes 8, 14)		25	-	9	-	ns
-3dB Bandwidth		25	-	60	-	MHz
Settling Time to 1\%	V OUT = 100mV	-	-	55	-	ns
Settling Time to 0.1\%	10V Output Step	25	-	90	-	ns

HARRIS VALUE ADDED SPECIFICATIONS

Input Noise Voltage (Note 14)	$\mathrm{f}=1 \mathrm{kHz}$	25	-	4.5	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
+ Input Noise Current (Note 14)	$\mathrm{f}=1 \mathrm{kHz}$	25	-	2.5	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
-Input Noise Current (Note 14)	$\mathrm{f}=1 \mathrm{kHz}$	25	-	25	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Common Mode Range		Full	± 10	± 12	-	V
$-\mathrm{I}_{\text {BIAS }}$ Adjust Range (Note 3)		Full	± 25	± 40	-	$\mu \mathrm{A}$
Overshoot (Note 14)		25	-	7	-	$\%$
Output Current, Short Circuit (Note 14)	$\mathrm{V}_{\text {IN }}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	Full	± 50	± 65	-	mA
Output Current, Disabled (Note 14)	DISABLE $=0 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	Full	-	-	1	$\mu \mathrm{~A}$
Output Disable Time (Notes 10, 14)			25	-	10	-
Output Enable Time (Notes 11, 14)		25	-	200	-	ns
Supply Voltage Range		25	± 5	-	± 15	V
Output Capacitance, Disabled (Note 12)	$\overline{\text { DISABLE }=0 \mathrm{~V}}$	25	-	6	-	pF

Electrical Specifications $\quad V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 \mathrm{pF}$,
Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	HA-5020-5, -9			UNITS
			MIN	TYP	MAX	
VIDEO CHARACTERISTICS						
Differential Gain (Notes 13, 14)	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	25	-	0.03	-	\%
Differential Phase (Notes 18, 20, 21)	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	25	-	0.03	-	Degrees
Gain Flatness	To 5 MHz	25	-	0.1	-	dB

Electrical Specifications $\quad V+=+5 V, V-=-5 V, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 p F$, Unless Otherwise Specified. Parameters are not tested. The limits are guaranteed based on lab characterizations, and reflect lot-to-lot variation.

PARAMETER	TEST CONDITIONS	TEMP.$\left({ }^{\circ} \mathrm{C}\right)$	HA-5020-5, -9			UNITS
			MIN	TYP	MAX	
INPUT CHARACTERISTICS						
Input Offset Voltage (Notes 3, 14)		25	-	2	8	mV
		Full	-	-	10	mV
Average Input Offset Voltage Drift		Full	-	10	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
V_{10} Common Mode Rejection Ratio (Notes 14, 15)		25	50	-	-	dB
		Full	35	-	-	dB
V_{10} Power Supply Rejection Ratio (Note 14)	$\pm 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 6.5 \mathrm{~V}$	25	55	-	-	dB
		Full	50	-	-	dB
Non-Inverting Input (+IN) Current (Note 14)		25	-	3	8	$\mu \mathrm{A}$
		Full	-	-	20	$\mu \mathrm{A}$
+IN Common Mode Rejection (Note 15)		25	-	-	0.1	$\mu \mathrm{AN}$
		Full	-	-	0.5	$\mu \mathrm{AV}$
+IN Power Supply Rejection	$\pm 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 6.5 \mathrm{~V}$	25	-	-	0.06	$\mu \mathrm{AN}$
		Full	-	-	0.2	$\mu \mathrm{AN}$
Inverting Input (-IN) Current (Note 14)		25	-	12	20	$\mu \mathrm{A}$
		Full	-	25	50	$\mu \mathrm{A}$
-IN Common Mode Rejection (Note 15)		25	-	-	0.4	$\mu \mathrm{AN}$
		Full	-	-	0.5	$\mu \mathrm{AV}$
-IN Power Supply Rejection	$\pm 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 6.5 \mathrm{~V}$	25	-	-	0.2	$\mu \mathrm{AN}$
		Full	-	-	0.5	$\mu \mathrm{A} N$

TRANSFER CHARACTERISTICS

Transimpedance (Notes 9, 14)		25	1000	-	-	V/mA
		Full	850	-	-	V/mA
Open Loop DC Voltage Gain	$\begin{aligned} & R_{\mathrm{L}}=400 \Omega, \\ & \mathrm{~V}_{\mathrm{OUT}}= \pm 2.5 \mathrm{~V} \end{aligned}$	25	65	-	-	dB
		Full	60	-	-	dB
Open Loop DC Voltage Gain	$\begin{aligned} & R_{L}=100 \Omega, \\ & V_{\text {OUT }}= \pm 2.5 \mathrm{~V} \end{aligned}$	25	50	-	-	dB
		Full	45	-	-	dB
OUTPUT CHARACTERISTICS						
Output Voltage Swing (Note 14)		25 to 85	± 2.5	± 3.0	-	V
		-40 to 0	± 2.5	± 3.0	-	V

Electrical Specifications $V+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified. Parameters are not tested. The limits are guaranteed based on lab characterizations, and reflect lot-to-lot variation. (Continued)

PARAMETER	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	HA-5020-5, -9			UNITS
			MIN	TYP	MAX	
Output Current (Guaranteed by Output Voltage Test)	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	25	± 16.6	± 20	-	mA
		Full	± 16.6	± 20	-	mA
POWER SUPPLY CHARACTERISTICS						
Quiescent Supply Current (Note 14)		Full	-	7.5	10	mA
Supply Current, Disabled (Note 14)	$\overline{\text { DISABLE }}=0 \mathrm{~V}$	Full	-	5	7.5	mA
$\overline{\text { Disable Pin Input Current }}$	$\overline{\text { DISABLE }}=0 \mathrm{~V}$	Full	-	1.0	1.5	mA
Minimum Pin 8 Current to Disable (Note 16)		Full	350	-	-	$\mu \mathrm{A}$
Maximum Pin 8 Current to Enable (Note 5)		Full	-	-	20	$\mu \mathrm{A}$
AC CHARACTERISTICS ($A_{V}=+1$)						
Slew Rate (Note 17)		25	215	400	-	V/us
Full Power Bandwidth (Note 18)		25	22	28	-	MHz
Rise Time (Note 8)		25	-	6	-	ns
Fall Time (Note 8)		25	-	6	-	ns
Propagation Delay (Note 8)		25	-	6	-	ns
Overshoot		25	-	4.5	-	\%
-3dB Bandwidth (Note 14)	$\mathrm{V}_{\text {OUT }}=100 \mathrm{mV}$	25	-	125	-	MHz
Settling Time to 1\%	2V Output Step	25	-	50	-	ns
Settling Time to 0.25\%	2V Output Step	25	-	75	-	ns

AC CHARACTERISTICS ($A_{V}=+2, R_{F}=681 \Omega$)

Slew Rate (Note 17)		25	-	475	-	$\mathrm{V} / \mathrm{\mu s}$
Full Power Bandwidth (Note 18)		25	-	26	-	MHz
Rise Time (Note 8)		25	-	6	-	ns
Fall Time (Note 8)		25	-	6	-	ns
Propagation Delay (Note 8)		25	-	6	-	ns
Overshoot		25	-	12	-	\%
-3dB Bandwidth (Note 14)	$\mathrm{V}_{\text {OUT }}=100 \mathrm{mV}$	25	-	95	-	MHz
Settling Time to 1\%	2V Output Step	25	\bullet	50	-	ns
Settling Time to 0.25\%	2V Output Step	25	-	100	-	ns

AC CHARACTERISTICS ($A_{V}=+10, R_{F}=383 \Omega$)

Slew Rate (Note 17)		25	350	475	-	$\mathrm{V} / \mathrm{\mu s}$
Full Power Bandwidth (Note 18)		25	28	38	-	MHz
Rise Time (Note 8)		25	-	8	-	ns
Fall Time (Note 8)		25	-	9	-	ns
Propagation Delay (Note 8)		25	-	9	-	ns
Overshoot		25	-	1.8	-	$\%$
-3dB Bandwidth (Note 14)	Vout = 100mV	25	-	65	-	MHz
Settling Time to 1\%	2V Output Step	25	-	75	-	ns

Electrical Specifications $\quad V_{+}=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified. Parameters are not tested. The limits are guaranteed based on lab characterizations, and reflect lot-to-lot variation. (Continued)

PARAMETER	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	HA-5020-5, -9			UNITS
			MIN	TYP	MAX	
Settling Time to 0.25\%	2V Output Step	25	-	130	-	ns
HARRIS VALUE ADDED SPECIFICATIONS						
Input Noise Voltage (Note 14)	$\mathrm{f}=1 \mathrm{kHz}$	25	-	4.5	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
+ Input Noise Current (Note 14)	$\mathrm{f}=1 \mathrm{kHz}$	25	-	2.5	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
-Input Noise Current (Note 14)	$\mathrm{f}=1 \mathrm{kHz}$	25	-	25	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Common Mode Range		Full	$\pm 2.5 \mathrm{~V}$	-	-	V
Output Current, Short Circuit	$\mathrm{V}_{\text {IN }}= \pm 2.5 \mathrm{~V} \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	Full	± 40	± 60	-	mA
Output Current, Disabled (Note 14)	$\begin{aligned} & \overline{\text { DISABLE }}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \end{aligned}$	Full	-	-	2	$\mu \mathrm{A}$
Output Disable Time (Notes 14, 20)		25	-	40	-	$\mu \mathrm{s}$
Output Enable Time (Notes 14, 21)		25	-	40	-	ns
Supply Voltage Range		25	± 5	-	± 15	V
Output Capacitance, Disabled (Note 19)	$\overline{\text { DISABLE }}=0 \mathrm{~V}$	25	-	6	-	pF
VIDEO CHARACTERISTICS						
Differential Gain (Notes 13, 14)	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	25	-	0.03	\bullet	\%
Differential Phase (Notes 13, 14)	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	25	-	0.03	-	Degrees
Gain Flatness to 5 MHz	To 5MHz	25	-	0.1	-	dB

NOTES:
3. Suggested $\mathrm{V}_{\text {OS }}$ Adjust Circuit: The inverting input current ($-\mathrm{I}_{\mathrm{BIAS}}$) can be adjusted with an external $10 \mathrm{k} \Omega$ pot between pins 1 and 5 , wiper connected to $\mathrm{V}+$. Since $-\mathrm{I}_{\text {BIAS }}$ flows through the feedback resistor (R_{F}), the result is an adjustment in offset voltage. The amount of offset voltage adjustment is determined by the value of $R_{F}\left(\Delta V_{O S}=\Delta-I_{\text {BIAS }}{ }^{*} R_{F}\right)$.
4. $R_{L}=100 \Omega, V_{I N}=10 \mathrm{~V}$. This is the minimum current which must be pulled out of the $\overline{\text { Disable }}$ pin in order to disable the output. The output is considered disabled when $-10 \mathrm{mV} \leq \mathrm{V}_{\text {OUT }} \leq+10 \mathrm{mV}$.
5. $\mathrm{V}_{I N}=0 \mathrm{~V}$. This is the maximum current that can be pulled out of the Disable pin with the HA-5020 remaining enabled. The HA-5020 is considered disabled when the supply current has decreased by at least 0.5 mA .
6. $V_{\text {OUT }}$ switches from -10 V to +10 V , or from +10 V to -10 V . Specification is from the 25% to 75% points.
7. FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}} ; V_{\text {PEAK }}=10 \mathrm{~V}$.
8. $R_{L}=100 \Omega, V_{\text {OUT }}=1 \mathrm{~V}$. Measured from 10% to 90% points for rise/fall times; from 50% points of input and output for propagation delay.
9. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.
10. $\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}$, $\overline{\text { Disable }}=+15 \mathrm{~V}$ to 0 V . Measured from the 50% point of $\overline{\text { Disable }}$ to $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$.
11. $\mathrm{V}_{\mathrm{IN}}=+10 \mathrm{~V}$, $\overline{\text { Disable }}=0 \mathrm{~V}$ to +15 V . Measured from the 50% point of $\overline{\text { Disable }}$ to $\mathrm{V}_{\mathrm{OUT}}=10 \mathrm{~V}$.
12. $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, Force $\mathrm{V}_{\mathrm{OUT}}$ from 0 V to $\pm 10 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=50 \mathrm{~ns}$.
13. Measured with a VM700A video tester using a NTC-7 composite VITS.
14. See "Typical Performance Curves" for more information.
15. $\mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V}$. At $-40^{\circ} \mathrm{C}$ product is tested at $\mathrm{V}_{\mathrm{CM}}= \pm 2.25 \mathrm{~V}$ because short test duration does not allow self heating.
16. $R_{L}=100 \Omega . \mathrm{V}_{\mathbb{N}}=2.5 \mathrm{~V}$. This is the minimum current which must be pulled out of the $\overline{\mathrm{Disable}} \mathrm{pin}$ in order to disable the output. The output is considered disabled when $-10 \mathrm{mV} \leq \mathrm{V}_{\text {OUT }} \leq+10 \mathrm{mV}$.
17. $\mathrm{V}_{\text {OUT }}$ switches from -2 V to +2 V , or from +2 V to -2 V . Specification is from the 25% to 75% points.
18. $F P B W=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}} ; V_{\text {PEAK }}=2 \mathrm{~V}$.
19. $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, Force $\mathrm{V}_{\mathrm{OUT}}$ from 0 V to $\pm 2.5 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=50 \mathrm{~ns}$.
20. $\mathrm{V}_{\mathbb{I N}}=+2 \mathrm{~V}$, $\overline{\text { Disable }}=+5 \mathrm{~V}$ to 0 V . Measured from the 50% point of $\overline{\text { Disable }}$ to $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$.
21. $\mathrm{V}_{\mathrm{IN}}=+2 \mathrm{~V}, \overline{\text { Disable }}=0 \mathrm{~V}$ to +5 V . Measured from the 50% point of $\overline{\text { Disable }}$ to $V_{\mathrm{OUT}}=2 \mathrm{~V}$.

Test Circuits and Waveforms

FIGURE 1. TEST CIRCUIT FOR TRANSIMPEDANCE MEASUREMENTS

FIGURE 2. SMALL SIGNAL PULSE RESPONSE CIRCUIT

Vertical Scale: $\mathrm{V}_{\text {IN }}=100 \mathrm{mV} /$ Div., $\mathrm{V}_{\text {OUT }}=100 \mathrm{mV} /$ Div. Horizontal Scale: 20ns/Div.

FIGURE 4. SMALL SIGNAL RESPONSE

FIGURE 3. LARGE SIGNAL PULSE RESPONSE CIRCUIT

Vertical Scale: $\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V} /$ Div., $\mathrm{V}_{\mathrm{OUT}}=1 \mathrm{~V} /$ Div. Horizontal Scale: $50 \mathrm{~ns} /$ Div.

FIGURE 5. LARGE SIGNAL RESPONSE

Schematic Diagram

Application Information

Optimum Feedback Resistor

The plots of inverting and non-inverting frequency response illustrate the performance of the HA-5020 in various closed loop gain configurations. Although the bandwidth dependency on closed loop gain isn't as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback amplifier's unique relationship between bandwidth and R_{F} All current feedback amplifiers require a feedback resistor, even for unity gain applications, and R_{F}, in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to R_{F}. The HA-5020 design is optimized for a $1000 \Omega R_{F}$ at a gain of +1 . Decreasing R_{F} in a unity gain application decreases stability, resulting in excessive peaking and overshoot. At higher gains the amplifier is more stable, so R_{F} can be decreased in a trade-off of stability for bandwidth.

The table below lists recommended R_{F} values for various gains, and the expected bandwidth.

GAIN $\left(\mathbf{A}_{\mathbf{C L}}\right)$	$\mathbf{R}_{\mathbf{F}}(\Omega)$	BANDWIDTH $(\mathbf{M H z})$
-1	750	100
+1	1000	125
+2	681	95
+5	1000	52
+10	383	65
-10	750	22

PC Board Layout

The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended. If leaded components are used the leads must be kept short especially for the power supply decoupling components and those components connected to the inverting input.

Attention must be given to decoupling the power supplies. A large value $(10 \mu \mathrm{~F})$ tantalum or electrolytic capacitor in parallel with a small value ($0.1 \mu \mathrm{~F}$) chip capacitor works well in most cases.
A ground plane is strongly recommended to control noise. Care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input (-IN). The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and possible instability. It is recommended that the ground plane be removed under traces connected to -IN, and that connections to $-\operatorname{IN}$ be kept as short as possible to minimize the capacitance from this node to ground.

Driving Capacitive Loads

Capacitive loads will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases the oscillation can be avoided by placing an isolation resistor (R) in series with the output as shown in Figure 6.

FIGURE 6. PLACEMENT OF THE OUTPUT ISOLATION RESISTOR, R

The selection criteria for the isolation resistor is highly dependent on the load, but 27Ω has been determined to be a good starting value.

Enable/Disable Function

When enabled the amplifier functions as a normal current feedback amplifier with all of the data in the electrical specifications table being valid and applicable. When disabled the amplifier output assumes a true high impedance state and the supply current is reduced significantly.

The circuit shown in Figure 7 is a simplified schematic of the enable/disable function. The large value resistors in series with the DISABLE pin makes it appear as a current source to the driver. When the driver pulls this pin low current flows out of the pin and into the driver. This current, which may be as large as $350 \mu \mathrm{~A}$ when external circuit and process variables are at their extremes, is required to insure that point " A " achieves the proper potential to disable the output. The driver must have the compliance and capability of sinking all of this current.

FIGURE 7. SIMPLIFIED SCHEMATIC OF ENABLE/DISABLE FUNCTION

When $V_{C C}$ is +5 V the DISABLE pin may be driven with a dedicated TTL gate. The maximum low level output voltage of the TTL gate, 0.4 V , has enough compliance to insure that the amplifier will always be disabled even though D_{1} will not turn on, and the TTL gate will sink enough current to keep point " A " at its proper voltage. When $V_{C C}$ is greater than +5 V the DISABLE pin should be driven with an open collector device that has a breakdown rating greater than V_{CC}.
Referring to Figure 7, it can be seen that R_{6} will act as a pullup resistor to $+\mathrm{V}_{\mathrm{CC}}$ if the DISABLE pin is left open. In those cases where the enable/disable function is not required on all circuits some circuits can be permanently enabled by letting the DISABLE pin float. If a driver is used to set the enable/disable level, be sure that the driver does not sink more than $20 \mu \mathrm{~A}$ when the DISABLE pin is at a high level. TTL gates, especially CMOS versions, do not violate this criteria so it is permissible to control the enable/disable function with TTL.

Typical Applications

Two Channel Video Multiplexer

Referring to the amplifier $U_{1 A}$ in Figure 8, R_{1} terminates the cable in its characteristic impedance of 75Ω, and R_{4} back terminates the cable in its characteristic impedance. The amplifier is set up in a gain configuration of +2 to yield an overall network gain of +1 when driving a double terminated cable. The value of R_{3} can be changed if a different network gain is desired. R_{5} holds the disable pin at ground thus inhibiting the amplifier until the switch, S_{1}, is thrown to position 1. At position 1 the switch pulls the disable pin up to the plus supply rail thereby enabling the amplifier. Since all of the actual signal switching takes place within the amplifier, it's differential gain and phase parameters, which are 0.03% and 0.03 degrees respectively, determine the circuit's performance. The other circuit, $U_{1 B}$, operates in a similar manner.
When the plus supply rail is 5 V the disable pin can be driven by a dedicated TTL gate as discussed earlier. If a multiplexer IC or its equivalent is used to select channels its logic must be break before make. When these conditions are satisfied the HA-5020 is often used as a remote video multiplexer, and the multiplexer may be extended by adding more amplifier ICs.

Low Impedance Multiplexer

Two common problems surface when you try to multiplex multiple high speed signals into a low impedance source such as an AVD converter. The first problem is the low source impedance which tends to make amplifiers oscillate and causes gain errors. The second problem is the multiplexer which supplies no gain, introduces all kinds of distortion and limits the frequency response. Using op amps which have an enable/disable function, such as the HA-5020, eliminates the
multiplexer problems because the external mux chip is not needed, and the HA-5020 can drive low impedance (large capacitance) loads if a series isolation resistor is used.

Referring to Figure 9, both inputs are terminated in their characteristic impedance; 75Ω is typical for video applications. Since the drivers usually are terminated in their characteristic impedance the input gain is 0.5 , thus the amplifiers, U_{2}, are configured in a gain of +2 to set the circuit gain equal to one. Resistors R_{2} and R_{3} determine the amplifier gain, and if a different gain is desired R_{2} should be changed according to the equation $G=\left(1+R_{3} / R_{2}\right)$. R_{3} sets the frequency response of the amplifier so you should refer to the manufacturers data sheet before changing its value. R_{5}, C_{1} and D_{1} are an asymmetrical charge/discharge time circuit which configures U_{1} as a break before make switch to prevent both amplifiers from being active simultaneously. If this design is extended to more channels the drive logic must be designed to be break before make. R_{4} is enclosed in the feedback loop of the amplifier so that the large open loop amplifier gain of U_{2} will present the load with a small closed loop output impedance while keeping the amplifier stable for all values of load capacitance.

The circuit shown in Figure 9 was tested for the full range of capacitor values with no oscillations being observed; thus, problem one has been solved. The frequency and gain characteristics of the circuit are now those of the amplifier and independent of any multiplexing action; thus, problem two has been solved. The multiplexer transition time is approximately $15 \mu \mathrm{~s}$ with the component values shown.

FIGURE 8. TWO CHANNEL HIGH IMPEDANCE MULTIPLEXER

FIGURE 9. LOW IMPEDANCE MULTIPLEXER
Typical Performance Curves $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,
Unless Otherwise Specified

FIGURE 10. INPUT NOISE vs FREQUENCY (AVERAGE OF 18 UNITS FROM 3 LOTS)

FIGURE 12. +INPUT BIAS CURRENT vs TEMPERATURE (AVERAGE OF 30 UNITS FROM 3 LOTS)

FIGURE 11. INPUT OFFSET VOLTAGE vs TEMPERATURE (ABSOLUTE VALUE AVERAGE OF 30 UNITS FROM 3 LOTS)

FIGURE 13. -INPUT BIAS CURRENT vs TEMPERATURE (ABSOLUTE VALUE AVERAGE OF 30 UNITS FROM 3 LOTS)

Typical Performance Curves $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, \mathrm{R}_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 14. TRANSIMPEDANCE vs TEMPERATURE (AVERAGE OF 30 UNITS FROM 3 LOTS)

FIGURE 16. DISABLE SUPPLY CURRENT vs SUPPLY VOLTAGE (AVERAGE OF 30 UNITS FROM 3 LOTS)

FIGURE 18. DISABLE MODE FEEDTHROUGH vs FREQUENCY

FIGURE 15. SUPPLY CURRENT vs SUPPLY VOLTAGE (AVERAGE OF 30 UNITS FROM 3 LOTS)

FIGURE 17. SUPPLY CURRENT vs DISABLE INPUT VOLTAGE

FIGURE 19. DISABLED OUTPUT LEAKAGE vs TEMPERATURE (AVERAGE OF 30 UNITS FROM 3 LOTS)

Typical Performance Curves $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$, Uniess Otherwise Specified (Continued)

FIGURE 20. ENABLE/DISABLE TIME vs OUTPUT VOLTAGE (AVERAGE OF 9 UNITS FROM 3 LOTS)

FIGURE 22. INVERTING FREQUENCY RESPONSE

FIGURE 24. BANDWIDTH AND GAIN PEAKING vs LOAD RESISTANCE

FIGURE 21. NON-INVERTING GAIN vs FREQUENCY

FIGURE 23. PHASE vs FREQUENCY

FIGURE 25. BANDWIDTH AND GAIN PEAKING vs FEEDBACK RESISTANCE

Typical Performance Curves $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$,
 Unless Otherwise Specified (Continued)

FIGURE 26. BANDWIDTH AND GAIN PEAKING vs FEEDBACK RESISTANCE

FIGURE 28. REJECTION RATIOS vs TEMPERATURE (AVERAGE OF 30 UNITS FROM 3 LOTS)

FIGURE 30. OUTPUT SWING OVERHEAD vs TEMPERATURE (AVERAGE OF 30 UNITS FROM 3 LOTS)

FIGURE 27. BANDWIDTH vs FEEDBACK RESISTANCE

FIGURE 29. REJECTION RATIOS vs FREQUENCY

FIGURE 31. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE

Typical Performance Curves $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$,

Unless Otherwise Specified (Continued)

FIGURE 32. SHORT CIRCUIT CURRENT LIMIT vs TEMPERATURE

FIGURE 34. PROPAGATION DELAY vs SUPPLY VOLTAGE (AVERAGE OF 18 UNITS FROM 3 LOTS)

FIGURE 36. DISTORTION vs FREQUENCY

FIGURE 33. PROPAGATION DELAY vs TEMPERATURE
(AVERAGE OF 18 UNITS FROM 3 LOTS)

FIGURE 35. SMALL SIGNAL OVERSHOOT vs LOAD RESISTANCE

FIGURE 37. DIFFERENTIAL GAIN vs SUPPLY VOLTAGE (AVERAGE OF 18 UNITS FROM 3 LOTS)

Typical Performance Curves $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 38. DIFFERENTIAL PHASE vs SUPPLY VOLTAGE (AVERAGE OF 18 UNITS FROM 3 LOTS)

FIGURE 39. SLEW RATE vs TEMPERATURE (AVERAGE OF 30 UNITS FROM 3 LOTS)

Typical Performance Curves $V_{\text {SUPPLY }}= \pm 5 V, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 40. NON-INVERTING FREQUENCY RESPONSE

FIGURE 42. PHASE RESPONSE AS A FUNCTION OF FREQUENCY

FIGURE 41. INVERTING FREQUENCY RESPONSE

FIGURE 43. BANDWIDTH AND GAIN PEAKING vs FEEDBACK RESISTANCE

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Othemise Spectified (Continued)

FIGURE 44. BANDWIDTH AND GAIN PEAKING vs FEEDBACK RESISTANCE

FIGURE 46. BANDWIDTH vs FEEDBACK RESISTANCE

FIGURE 48. PROPAGATION DELAY vs TEMPERATURE

FIGURE 45. BANDWIDTH AND GAIN PEAKING vs LOAD RESISTANCE

FIGURE 47. REJECTION RATIOS vs FREQUENCY

FIGURE 49. SLEW RATE vs TEMPERATURE

HA-5020
Typical Performance Curves $\mathrm{V}_{\text {Supply }}= \pm 5 \mathrm{~V}, A_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 50. NON-INVERTING GAIN FLATNESS vs FREQUENCY

FIGURE 52. INPUT NOISE CHARACTERISTICS

FIGURE 54. OUTPUT SWING vs TEMPERATURE

FIGURE 51. INVERTING GAIN FLATNESS vs FREQUENCY

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{V}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 56. DISABLE FEEDTHROUGH vs FREQUENCY

FIGURE 57. TRANSIMPEDANCE vs FREQUENCY

FIGURE 58. TRANSIMPEDENCE vs FREQUENCY

Die Characteristics

DIE DIMENSIONS:
$1640 \mu \mathrm{~m} \times 1520 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$
METALLIZATION:
Type: Aluminum, 1\% Copper
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
SUBSTRATE POTENTIAL (Powered Up):

V-
PASSIVATION:
Type: Nitride over Silox
Silox Thickness: $12 k \AA \pm+2 k \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1 \mathrm{k} \AA$
TRANSISTOR COUNT:
62
PROCESS:
High Frequency Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5020

Dual, 125MHz, Video Current Feedback Amplifier with Disable

Features

- Dual Version of HA-5020
- Individual Output Enable/Disable
- Input Offset Voltage . $800 \mu \mathrm{~V}$
- Wide Unity Gain Bandwidth 125MHz
- Slew Rate . 475V/ $/$ s
- Differential Gain . 0.03\%
- Differential Phase. 0.03 Degrees
- Supply Current (per Amplifier) $7.5 m A$
- ESD Protection. 4000 V
- Guaranteed Specifications at $\pm 5 \mathrm{~V}$ Supplies

Applications

- Video Multiplexers; Video Switching and Routing
- Video Gain Block
- Video Distribution Amplifier/RGB Amplifier
- Flash A/D Driver
- Current to Voltage Converter
- Medical Imaging
- Radar and Imaging Systems

Description

The HA5022 is a dual version of the popular Harris HA5020. It features wide bandwidth and high slew rate, and is optimized for video applications and gains between 1 and 10. It is a current feedback amplifier and thus yields less bandwidth degradation at high closed loop gains than voltage feedback amplifiers.

The low differential gain and phase, 0.1 dB gain flatness, and ability to drive two back terminated 75Ω cables, make this amplifier ideal for demanding video applications.

The HA5022 also features a disable function that significantly reduces supply current while forcing the output to a true high impedance state. This functionality allows $2: 1$ video multiplexers to be implemented with a single IC.

The current feedback design allows the user to take advantage of the amplifier's bandwidth dependency on the feedback resistor. By reducing R_{F}, the bandwidth can be increased to compensate for decreases at higher closed loop gains or heavy output loads.

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA5022IP	-40 to 85	16 Ld PDIP	E16.3
HA5022IB	-40 to 85	16 Ld SOIC	M16.15
HA5022EVAL	High Speed Op Amp DIP Evaluation Board		

Pinout

HA5022
(PDIP, SOIC)
TOP VIEW

Absolute Maximum Ratings
Voltage Between V+ and V- Terminals
36 V
DC Input Voltage (Note 3) . \pm V $_{\text {SUPPLY }}$
Differential Input Voltage. 10V
Output Current (Note 4) Short Circuit Protected
ESD Rating (Note 3)
Human Body Model (Per MIL-STD-883 Method 3015.7) . . 2000V

Operating Conditions

Temperature Range
Supply Voltage Range (Typical)
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Maximum power dissipation, including output load, must be designed to maintain junction temperature below $175^{\circ} \mathrm{C}$ for die, and below $150^{\circ} \mathrm{C}$ for plastic packages. See Application Information section for safe operating area information.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
3. The non-inverting input of unused amplifiers must be connected to GND.
4. Output is protected for short circuits to ground. Brief short circuits to ground will not degrade reliability, however, continuous (100\% duty cycle) output current should not exceed 15 mA for maximum reliability.

Electrical Specifications $\quad V_{S U P P L Y}= \pm 5 \mathrm{~V}, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 p F$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { (NOTE 11) } \\ \text { TEST } \\ \text { LEVEL } \end{gathered}$	TEMP. (${ }^{\circ} \mathrm{C}$)	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS							
Input Offset Voltage (V_{10})		A	25	-	0.8	3	mV
		A	Full	-	-	5	mV
Delta V_{10} Between Channels		A	Full	-	1.2	3.5	mV
Average Input Offset Voltage Drift		B	Full	-	5	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
V_{10} Common Mode Rejection Ratio	Note 5	A	25	53	-	-	dB
		A	Full	50	-	-	dB
V_{10} Power Supply Rejection Ratio	$\pm 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 6.5 \mathrm{~V}$	A	25	60	-	-	dB
		A	Full	55	-	-	dB
Input Common Mode Range	Note 5	A	Full	± 2.5	-	-	V
Non-Inverting Input (+1N) Current		A	25	-	3	8	$\mu \mathrm{A}$
		A	Full	-	-	20	$\mu \mathrm{A}$
+IN Common Mode Rejection $\left(+I_{\text {BCMR }}=\frac{1}{+R_{\text {IN }}}\right)$	Note 5	A	25	-	-	0.15	$\mu \mathrm{AN}$
		A	Full	-	-	0.5	$\mu \mathrm{AV}$
+IN Power Supply Rejection	$\pm 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 6.5 \mathrm{~V}$	A	25	-	-	0.1	$\mu \mathrm{AV}$
		A	Full	-	-	0.3	$\mu \mathrm{A} / \mathrm{V}$
Inverting Input (-IN) Current		A	25,85	-	4	12	$\mu \mathrm{A}$
		A	-40	-	10	30	$\mu \mathrm{A}$
Delta -IN BIAS Current Between Channels		A	25, 85	-	6	15	$\mu \mathrm{A}$
		A	-40	-	10	30	$\mu \mathrm{A}$
-IN Common Mode Rejection	Note 5	A	25	-	-	0.4	$\mu \mathrm{AV}$
		A	Full	-	-	1.0	$\mu \mathrm{AV}$

Electrical Specifications $\quad V_{S U P P L Y}= \pm 5 V, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 p F$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { (NOTE 11) } \\ \text { TEST } \\ \text { LEVEL } \end{gathered}$	TEMP. (${ }^{\circ} \mathrm{C}$)	MIN	TYP	MAX	UNITS
-IN Power Supply Rejection	$\pm 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 6.5 \mathrm{~V}$	A	25	-	-	0.2	$\mu \mathrm{A} V$
		A	Full	-	-	0.5	$\mu \mathrm{A} / \mathrm{V}$
Input Noise Voltage	$\mathrm{f}=1 \mathrm{kHz}$	B	25	-	4.5	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
+Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$	B	25	-	2.5	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
-Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$	B	25	-	25.0	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

TRANSFER CHARACTERISTICS

Transimpedance		Note 16	A	25	1.0	-	-	M Ω
			A	Full	0.85	-	-	M Ω
Open Loop DC Voltage Gain		$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}$	A	25	70	-	-	dB
			A	Full	65	-	-	dB
Open Loop DC Voltage Gain	\checkmark	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}$	A	25	50	-	-	dB
			A	Full	45	-	-	dB

OUTPUT CHARACTERISTICS

Output Voltage Swing	$R_{L}=150 \Omega$	A	25	± 2.5	± 3.0	-	V
		A	Full	± 2.5	± 3.0	-	V
Output Current	$R_{L}=150 \Omega$	B	Full	± 16.6	± 20.0	-	mA
Output Current, Short Circuit	$\mathrm{V}_{\text {IN }}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	A	Full	± 40	± 60	-	mA
Output Current, Disabled	$\begin{aligned} & V_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{I N}=0 \mathrm{~V}, \\ & \text { DISABLE }=0 \mathrm{~V} \end{aligned}$	A	Full	-	-	2	$\mu \mathrm{A}$
Output Disable Time	Note 12	B	25	-	40	-	$\mu \mathrm{s}$
Output Enable Time	Note 13	B	25	-	40	-	ns
Output Capacitance, Disabled	Note 14	B	25	-	15	-	pF

POWER SUPPLY CHARACTERISTICS

Supply Voltage Range		A	25	5	-	15	V
Quiescent Supply Current		A	Full	-	7.5	10	$\mathrm{~mA} / \mathrm{Op}$ Amp
Supply Current, Disabled	$\overline{\text { DISABLE }=0 \mathrm{~V}}$	A	Full	-	5	7.5	$\mathrm{~mA} / \mathrm{Op}$ Amp
Disable Pin Input Current	$\overline{\text { DISABLE }=0 \mathrm{~V}}$	A	Full	-	1.0	1.5	mA
Minimum Pin 8 Current to Disable	Note 6	A	Full	350	-	-	$\mu \mathrm{A}$
Maximum Pin 8 Current to Enable	Note 7	A	Full	-	-	20	$\mu \mathrm{~A}$

AC CHARACTERISTICS ($A_{V}=+1$)

Slew Rate	Note 8	B	25	275	400	-	$\mathrm{V} / \mathrm{\mu s}$
Full Power Bandwidth	Note 9	B	25	22	28	-	MHz
Rise Time	Note 10	B	25	-	6	-	ns
Fall Time	Note 10	B	25	-	6	-	ns
Propagation Delay	Note 10	B	25	-	6	-	ns
Overshoot		B	25	-	4.5	-	$\%$
-3dB Bandwidth	Vout = 100mV	B	25	-	125	-	MHz
Settling Time to 1\%	2V Output Step	B	25	-	50	-	ns
Settling Time to 0.25\%	2V Output Step	B	25	-	75	-	ns

Electrical Specifications $\quad V_{S U P P L Y}= \pm 5 \mathrm{~V}, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 \mathrm{PF}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	$\begin{array}{\|c\|} \hline \text { (NOTE 11) } \\ \text { TEST } \\ \text { LEVEL } \end{array}$	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	MIN	TYP	MAX	UNITS

AC CHARACTERISTICS ($A_{V}=+2, R_{F}=681 \Omega$)

Slew Rate	Note 8	B	25	-	475	-	V/us
Full Power Bandwidth	Note 9	B	25	-	26	-	MHz
Rise Time	Note 10	B	25	-	6	-	ns
Fall Time	Note 10	B	25	-	6	-	ns
Propagation Delay	Note 10	B	25	-	6	-	ns
Overshoot		B	25	-	12	-	\%
-3dB Bandwidth	$V_{\text {OUT }}=100 \mathrm{mV}$	B	25	-	95	-	MHz
Settling Time to 1\%	2V Output Step	B	25	-	50	-	ns
Settling Time to 0.25\%	2V Output Step	B	25	-	100	-	ns
Gain Flatness	5 MHz	B	25	-	0.02	-	dB
	20MHz	B	25	-	0.07	-	dB

AC CHARACTERISTICS ($A_{V}=+10, R_{F}=383 \Omega$)

Slew Rate	Note 8	B	25	350	475	-	$\mathrm{V} / \mathrm{\mu s}$
Full Power Bandwidth	Note 9	B	25	28	38	-	MHz
Rise Time	Note 10	B	25	-	8	-	ns
Fall Time	Note 10	B	25	-	9	-	ns
Propagation Delay	Note 10	B	25	-	9	-	ns
Overshoot		B	25	-	1.8	-	$\%$
-3dB Bandwidth	$V_{\text {OUT }}=100 \mathrm{mV}$	B	25	-	65	-	MHz
Settling Time to 1\%	2V Output Step	B	25	-	75	-	ns
Settling Time to 0.1\%	2V Output Step	B	25	-	130	-	ns
VIDEO CHARACTERISTICS							
Differential Gain (Note 15)	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	B	25	-	0.03	-	$\%$
Differential Phase (Note 15)	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	B	25	-	0.03	-	Degrees

NOTES:
5. $\mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V}$. At $-40^{\circ} \mathrm{C}$ Product is tested at $\mathrm{V}_{\mathrm{CM}}= \pm 2.25 \mathrm{~V}$ because short test duration does not allow self heating.
6. $\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{I N}=2.5 \mathrm{~V}$. This is the minimum current which must be pulled out of the Disable pin in order to disable the output. The output is considered disabled when $-10 \mathrm{mV} \leq \mathrm{V}_{\text {OUT }} \leq+10 \mathrm{mV}$.
7. $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$. This is the maximum current that can be pulled out of the Disable pin with the HA5022 remaining enabled. The HA5022 is considered disabled when the supply current has decreased by at least 0.5 mA .
8. $\mathrm{V}_{\text {OUT }}$ switches from -2 V to +2 V , or from +2 V to -2 V . Specification is from the 25% to 75% points.
9. FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}} ; V_{\text {PEAK }}=2 \mathrm{~V}$.
10. $R_{L}=100 \Omega, V_{\text {OUT }}=1 \mathrm{~V}$. Measured from 10% to 90% points for rise/fall times; from 50% points of input and output for propagation delay.
11. A. Production Tested; B. Typical or Guaranteed Limit based on characterization; C. Design Typical for information only.
12. $\mathrm{V}_{I N}=+2 \mathrm{~V}$, $\overline{\mathrm{DISABLE}}=+5 \mathrm{~V}$ to 0 V . Measured from the 50% point of $\overline{\mathrm{DISABLE}}$ to $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$.
13. $\mathrm{V}_{I N}=+2 \mathrm{~V}$, $\overline{\mathrm{DISABLE}}=0 \mathrm{~V}$ to +5 V . Measured from the 50% point of $\overline{\text { DISABLE }}$ to $\mathrm{V}_{\mathrm{OUT}}=2 \mathrm{~V}$.
14. $\mathrm{V}_{I N}=0 \mathrm{~V}$, Force $\mathrm{V}_{\mathrm{OUT}}$ from 0 V to $\pm 2.5 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=50 \mathrm{~ns}$, $\overline{\text { DISABLE }}=0 \mathrm{~V}$.
15. Measured with a VM700A video tester using an NTC-7 composite VITS.
16. $\mathrm{V}_{\mathrm{OUT}}= \pm 2.5 \mathrm{~V}$. At $-40^{\circ} \mathrm{C}$ Product is tested at $\mathrm{V}_{\mathrm{OUT}}= \pm 2.25 \mathrm{~V}$ because short test duration does not allow self heating.

Test Circuits and Waveforms

FIGURE 1. TEST CIRCUIT FOR TRANSIMPEDANCE MEASUREMENTS

FIGURE 2. SMALL SIGNAL PULSE RESPONSE CIRCUIT

Vertical Scale: $V_{I N}=100 \mathrm{mV} /$ Div., $\mathrm{V}_{\text {OUT }}=100 \mathrm{mV} /$ Div. Horizontal Scale: $20 \mathrm{~ns} /$ Div.

FIGURE 4. SMALL SIGNAL RESPONSE

FIGURE 3. LARGE SIGNAL PULSE RESPONSE CIRCUIT

Vertical Scale: $\mathrm{V}_{\mathbb{I N}}=1 \mathrm{~V} /$ Div., $\mathrm{V}_{\text {OUT }}=1 \mathrm{~V} /$ Div. Horizontal Scale: $50 \mathrm{~ns} /$ Div.

FIGURE 5. LARGE SIGNAL RESPONSE

Schematic Diagram (One Amplifier of Two)

Application Information

Optimum Feedback Resistor

The plots of inverting and non-inverting frequency response, see Figure 11 and Figure 12 in the Typical Performance Curves section, illustrate the performance of the HA5022 in various closed loop gain configurations. Although the bandwidth dependency on closed loop gain isn't as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback amplifier's unique relationship between bandwidth and R_{F}. All current feedback amplifiers require a feedback resistor, even for unity gain applications, and R_{F}, in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to R_{F}. The HA5022 design is optimized for a $1000 \Omega R_{F}$ at a gain of +1 . Decreasing R_{F} in a unity gain application decreases stability, resulting in excessive peaking and overshoot. At higher gains the amplifier is more stable, so R_{F} can be decreased in a trade-off of stability for bandwidth.
The table below lists recommended R_{F} values for various gains, and the expected bandwidth.

GAIN $\left(\mathbf{A}_{\mathbf{C L}}\right)$	$\mathbf{R}_{\mathbf{F}}(\Omega)$	BANDWIDTH $(\mathbf{M H z})$
-1	750	100
+1	1000	125
+2	681	95
+5	1000	52
+10	383	65
-10	750	22

PC Board Layout

The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended. If leaded components are used the leads must be kept short especially for the power supply decoupling components and those components connected to the inverting input.

Attention must be given to decoupling the power supplies. A large value $(10 \mu \mathrm{~F})$ tantalum or electrolytic capacitor in parallel with a small value $(0.1 \mu \mathrm{~F})$ chip capacitor works well in most cases.

A ground plane is strongly recommended to control noise. Care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input ($-\mathbb{N}$). The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and possible instability. It is recommended that the ground plane be removed under traces connected to -IN, and that connections to -IN be kept as short as possible to minimize the capacitance from this node to ground.

Driving Capacitive Loads

Capacitive loads will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases the oscillation can be avoided by placing an isolation resistor (R) in series with the output as shown in Figure 6.

FIGURE 6. PLACEMENT OF THE OUTPUT ISOLATION RESISTOR, R

The selection criteria for the isolation resistor is highly dependent on the load, but 27Ω has been determined to be a good starting value.

Power Dissipation Considerations

Due to the high supply current inherent in quad amplifiers, care must be taken to insure that the maximum junction temperature (T_{J}, see Absolute Maximum Ratings) is not exceeded. Figure 7 shows the maximum ambient temperature versus supply voltage for the available package styles (PDIP, SOIC). At $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ quiescent operation both package styles may be operated over the full industrial range of $40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. It is recommended that thermal calculations, which take into account output power, be performed by the designer.

FIGURE 7. MAXIMUM OPERATING AMBIENT TEMPERATURE vs SUPPLY VOLTAGE

Enable/Disable Function

When enabled the amplifier functions as a normal current feedback amplifier with all of the data in the electrical specifications table being valid and applicable. When disabled the amplifier output assumes a true high impedance state and the supply current is reduced significantly.

The circuit shown in Figure 8 is a simplified schematic of the enable/disable function. The large value resistors in series with the DISABLE pin makes it appear as a current source to the driver. When the driver pulls this pin low current flows out of the pin and into the driver. This current, which may be as large as $350 \mu \mathrm{~A}$ when external circuit and process variables are at their extremes, is required to insure that point " A " achieves the proper potential to disable the output. The driver must have the compliance and capability of sinking all of this current.

FIGURE 8. SIMPLIFIED SCHEMATIC OF ENABLE/DISABLE FUNCTION

When V_{CC} is +5 V the DISABLE pin may be driven with a dedicated TTL gate. The maximum low level output voltage of the TTL gate, 0.4 V , has enough compliance to insure that the amplifier will always be disabled even though D_{1} will not turn on, and the TTL gate will sink enough current to keep point " A " at its proper voltage. When $V_{C C}$ is greater than $+5 V$ the DISABLE pin should be driven with an open collector device that has a breakdown rating greater than V_{CC}.

Referring to Figure 8, it can be seen that R_{6} will act as a pullup resistor to $+V_{C C}$ if the DISABLE pin is left open. In those cases where the enable/disable function is not required on all circuits some circuits can be permanently enabled by letting the DISABLE pin float. If a driver is used to set the enable/disable level, be sure that the driver does not sink more than $20 \mu \mathrm{~A}$ when the DISABLE pin is at a high level. TTL gates, especially CMOS versions, do not violate this criteria so it is permissible to control the enable/disable function with TTL.

Typical Applications

Two Channel Video Multiplexer

Referring to the amplifier $U_{1 A}$ in Figure 9, R_{1} terminates the cable in its characteristic impedance of 75Ω, and R_{4} back terminates the cable in its characteristic impedance. The amplifier is set up in a gain configuration of +2 to yield an overall network gain of +1 when driving a double terminated cable. The value of R_{3} can be changed if a different network gain is desired. R_{5} holds the disable pin at ground thus inhibiting the amplifier until the switch, S_{1}, is thrown to posi-
tion 1. At position 1 the switch pulls the disable pin up to the plus supply rail thereby enabling the amplifier. Since all of the actual signal switching takes place within the amplifier, it's differential gain and phase parameters, which are 0.03% and 0.03 degrees respectively, determine the circuit's performance. The other circuit, $U_{1 B}$, operates in a similar manner.

When the plus supply rail is 5 V the disable pin can be driven by a dedicated TTL gate as discussed earlier. If a multiplexer IC or its equivalent is used to select channels its logic must be break before make. When these conditions are satisfied the HA5022 is often used as a remote video multiplexer, and the multiplexer may be extended by adding more amplifier ICs.

Low Impedance Multiplexer

Two common problems surface when you try to multiplex multiple high speed signals into a low impedance source such as an A/D converter. The first problem is the low source impedance which tends to make amplifiers oscillate and causes gain errors. The second problem is the multiplexer which supplies no gain, introduces all kinds of distortion and limits the frequency response. Using op amps which have an enable/disable function, such as the HA5022, eliminates the multiplexer problems because the external mux chip is not needed, and the HA5022 can drive low impedance (large capacitance) loads if a series isolation resistor is used.
Referring to Figure 10, both inputs are terminated in their characteristic impedance; 75Ω is typical for video applications. Since the drivers usually are terminated in their characteristic impedance the input gain is 0.5 , thus the amplifiers, U_{2}, are configured in a gain of +2 to set the circuit gain equal to one. Resistors R_{2} and R_{3} determine the amplifier gain, and if a different gain is desired R_{2} should be changed according to the equation $G=\left(1+R_{3} / R_{2}\right)$. R_{3} sets the frequency response of the amplifier so you should refer to the manufacturers data sheet before changing its value. R_{5}, C_{1} and D_{1} are an asymmetrical charge/discharge time circuit which configures U_{1} as a break before make switch to prevent both amplifiers from being active simultaneously. If this design is extended to more channels the drive logic must be designed to be break before make. R_{4} is enclosed in the feedback loop of the amplifier so that the large open loop amplifier gain of U_{2} will present the load with a small closed loop output impedance while keeping the amplifier stable for all values of load capacitance.
The circuit shown in Figure 10 was tested for the full range of capacitor values with no oscillations being observed; thus, problem one has been solved. The frequency and gain characteristics of the circuit are now those of the amplifier independent of any multiplexing action; thus, problem two has been solved. The multiplexer transition time is approximately 15μ s with the component values shown.

FIGURE 9. TWO CHANNEL HIGH IMPEDANCE MULTIPLEXER

FIGURE 10. LOW IMPEDANCE MULTIPLEXER

HA5022
Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 11. NON-INVERTING FREQUENCY RESPONSE

FIGURE 13. PHASE RESPONSE AS A FUNCTION OF FREQUENCY

FIGURE 15. BANDWIDTH AND GAIN PEAKING vs FEEDBACK RESISTANCE

FIGURE 12. INVERTING FREQUENCY RESPONSE

FIGURE 14. BANDWIDTH AND GAIN PEAKING vs FEEDBACK RESISTANCE

FIGURE 16. BANDWIDTH AND GAIN PEAKING vs LOAD RESISTANCE

Typical Performance Curves $\mathrm{v}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=4000 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 17. BANDWIDTH vs FEEDBACK RESISTANCE

FIGURE 19. DIFFERENTIAL GAIN vs SUPPLY VOLTAGE

FIGURE 21. DISTORTION vs FREQUENCY

FIGURE 18. SMALL SIGNAL OVERSHOOT vs LOAD RESISTANCE

FIGURE 20. DIFFERENTIAL PHASE vs SUPPLY VOLTAGE

FIGURE 22. REJECTION RATIOS vs FREQUENCY

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{V}=+1, \mathrm{R}_{F}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 23. PROPAGATION DELAY vs TEMPERATURE

FIGURE 25. SLEW RATE vs TEMPERATURE

FIGURE 27. INVERTING GAIN FLATNESS vs FREQUENCY

FIGURE 24. PROPAGATION DELAY vs SUPPLY VOLTAGE

FIGURE 26. NON-INVERTING GAIN FLATNESS vs FREQUENCY

FIGURE 28. INPUT NOISE CHARACTERISTICS

Typical Performance Curves $V_{S U P P L Y}= \pm 5 V, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 29. INPUT OFFSET VOLTAGE vs TEMPERATURE

FIGURE 31. -INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 33. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 30. +INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 32. TRANSIMPEDANCE vs TEMPERATURE

FIGURE 34. REJECTION RATIO vs TEMPERATURE

Typical Performance Curves $V_{S U P P L Y}= \pm 5 V, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 35. SUPPLY CURRENT vs DISABLE INPUT VOLTAGE

FIGURE 37. OUTPUT SWING vs LOAD RESISTANCE

FIGURE 39. INPUT BIAS CURRENT CHANGE BETWEEN CHANNELS vs TEMPERATURE

FIGURE 36. OUTPUT SWING vs TEMPERATURE

FIGURE 38. INPUT OFFSET VOLTAGE CHANGE BETWEEN CHANNELS vs TEMPERATURE

FIGURE 40. DISABLE SUPPLY CURRENT vs SUPPLY VOLTAGE

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 41. CHANNEL SEPARATION vs FREQUENCY

FIGURE 43. DISABLE FEEDTHROUGH vs FREQUENCY

FIGURE 42. ENABLE/DISABLE TIME vs OUTPUT VOLTAGE

FIGURE 44. TRANSIMPEDANCE vs FREQUENCY

FIGURE 45. TRANSIMPEDENCE vs FREQUENCY

Die Characteristics

DIE DIMENSIONS:
$1650 \mu \mathrm{~m} \times 2540 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:

Type: Metal 1: AICu (1\%)
Thickness: Metal 1: $8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA$
Type: Metal 2: AICu (1\%)
Thickness: Metal 2: $16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA$
SUBSTRATE POTENTIAL (Powered Up):
V-
Metallization Mask Layout

Dual 125MHz Video Current Feedback Amplifier

Features

- Wide Unity Gain Bandwidth

125 MHz

- Slew Rate $475 \mathrm{~V} / \mu \mathrm{s}$
- Input Offset Voltage . $800 \mu \mathrm{~V}$
- Differential Gain 0.03\%
- Differential Phase 0.03 Degrees
- Supply Current (per Amplifier) 7.5 mA
- ESD Protection. 4000V
- Guaranteed Specifications at $\pm 5 \mathrm{~V}$ Supplies

Applications

- Video Gain Block
- Video Distribution Amplifier/RGB Amplifier
- Flash ADD Driver
- Current to Voltage Converter
- Medical Imaging
- Radar and Imaging Systems
- Video Switching and Routing

Description

The HA5023 is a wide bandwidth high slew rate dual amplifier optimized for video applications and gains between 1 and 10. It is a current feedback amplifier and thus yields less bandwidth degradation at high closed loop gains than voltage feedback amplifiers.

The low differential gain and phase, 0.1 dB gain flatness, and ability to drive two back terminated 75Ω cables, make this amplifier ideal for demanding video applications.

The current feedback design allows the user to take advantage of the amplifier's bandwidth dependency on the feedback resistor. By reducing R_{F}, the bandwidth can be increased to compensate for decreases at higher closed loop gains or heavy output loads.

The performance of the HA5023 is very similar to the popular Harris HA-5020.

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA5023IP	-40 to 85	8 Ld PDIP	E8.3
HA5023IB (H5023I)	-40 to 85	8 Ld SOIC	M8.15
HA5023EVAL	High Speed Op Amp DIP Evaluation Board		

Pinout

HA5023
(PDIP, SOIC)
TOP VIEW


```
Absolute Maximum Ratings
Voltage Between V+ and V- Terminals . . . . . . . . . . . . . . . . . . . 36V
DC Input Voltage (Note 3) . . . . . . . . . . . . . . . . . . . . . . . . \ \ SUPPLY
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10V
Output Current (Note 4) . . . . . . . . . . . . . . . Short Circuit Protected
ESD Rating (Note 3)
    Human Body Model (Per MIL-STD-883 Method 3015.7) . . 2000V
```


Operating Conditions

Temperature Range
Supply Voltage Range (Typical)
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Maximum power dissipation, including output load, must be designed to maintain junction temperature below $175^{\circ} \mathrm{C}$ for die, and below $150^{\circ} \mathrm{C}$ for plastic packages. See Application Information section for safe operating area information.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
3. The non-inverting input of unused amplifiers must be connected to GND.
4. Output is protected for short circuits to ground. Brief short circuits to ground will not degrade reliability, however, continuous (100\% duty cycle) output current should not exceed 15 mA for maximum reliability.

Electrical Specifications $\quad V_{S U P P L Y}= \pm 5 \mathrm{~V}, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	(NOTE 9) TEST LEVEL	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS							
Input Offset Voltage (V_{10})		A	25	-	0.8	3	mV
		A	Full	-	-	5	mV
Delta V_{10} Between Channels		A	Full	-	1.2	3.5	mV
Average Input Offset Voltage Drift		B	Full	-	5	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
V_{10} Common Mode Rejection Ratio	Note 5	A	25	53	-	\bullet	dB
		A	Full	50	-	-	dB
V_{10} Power Supply Rejection Ratio	$\pm 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 6.5 \mathrm{~V}$	A	25	60	-	-	dB
		A	Full	55	-	-	dB
Input Common Mode Range	Note 5	A	Full	± 2.5	-	-	V
Non-Inverting Input (+IN) Current		A	25	-	3	8	$\mu \mathrm{A}$
		A	Full	-	-	20	$\mu \mathrm{A}$
+IN Common Mode Rejection$\left(+I_{B C M R}=\frac{1}{+R_{I N}}\right)$	Note 5	A	25	-	-	0.15	$\mu \mathrm{AV}$
		A	Full	-	-	0.5	$\mu \mathrm{AV}$
+IN Power Supply Rejection	$\pm 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 6.5 \mathrm{~V}$	A	25	-	-	0.1	$\mu \mathrm{A} N$
		A	Full	-	-	0.3	$\mu \mathrm{AV}$
Inverting Input (-IN) Current		A	25, 85	-	4	12	$\mu \mathrm{A}$
		A	-40	-	10	30	$\mu \mathrm{A}$
Delta -IN BIAS Current Between Channels		A	25, 85	-	6	15	$\mu \mathrm{A}$
		A	-40	-	10	30	$\mu \mathrm{A}$

Electrical Specifications $\quad V_{S U P P L Y}= \pm 5 V, R_{F}=1 k \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 p F$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	(NOTE 9) TEST LEVEL	TEMP. (${ }^{\circ} \mathrm{C}$)	MIN	TYP	MAX	UNITS
-IN Common Mode Rejection	Note 5	A	25	-	-	0.4	$\mu \mathrm{A} V$
		A	Full	\bullet	-	1.0	$\mu \mathrm{A} V$
-IN Power Supply Rejection	$\pm 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 6.5 \mathrm{~V}$	A	25	-	-	0.2	$\mu \mathrm{A} V$
		A	Full	-	-	0.5	$\mu \mathrm{A} V$
Input Noise Voltage	$\mathrm{f}=1 \mathrm{kHz}$	B	25	-	4.5	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
+Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$	B	25	-	2.5	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
-Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$	B	25	-	25.0	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

TRANSFER CHARACTERISTICS

Transimpedence	Note 11	A	25	1.0	-	-	M Ω
		A	Full	0.85	-	-	M Ω
Open Loop DC Voltage Gain	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}$	A	25	70	-	-	dB
		A	Full	65	-	-	dB
Open Loop DC Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}$	A	25	50	-	-	dB
		A	Full	45	-	-	dB

OUTPUT CHARACTERISTICS

Output Voltage Swing	$R_{\mathrm{L}}=150 \Omega$	A	25	± 2.5	± 3.0	-	V
		A	Full	± 2.5	± 3.0	-	V
Output Current	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	B	Full	± 16.6	± 20.0	-	mA
Output Current, Short Circuit	$\mathrm{V}_{\mathrm{IN}}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	A	Full	± 40	± 60	-	mA

POWER SUPPLY CHARACTERISTICS

Supply Voltage Range		A	25	5	-	15	V
Quiescent Supply Current		A	Full	-	7.5	10	mANOp Amp

AC CHARACTERISTICS ($A_{V}=+1$)

Slew Rate	Note 6	B	25	275	350	-	$\mathrm{V} / \mu \mathrm{s}$
Full Power Bandwidth	Note 7	B	25	22	28	-	MHz
Rise Time	Note 8	B	25	-	6	-	ns
Fall Time	Note 8	B	25	-	6	-	ns
Propagation Delay	Note 8	B	25	-	6	-	ns
Overshoot		B	25	-	4.5	-	$\%$
-3dB Bandwidth	VouT = 100mV	B	25	-	125	-	MHz
Settling Time to 1\%	2V Output Step	B	25	-	50	-	ns
Settling Time to 0.25\%	2V Output Step	B	25	-	75	-	ns

HA5023

Electrical Specifications $V_{S U P P L Y}= \pm 5 V, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	(NOTE 9) TEST LEVEL	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	MIN	TYP	MAX	UNITS

AC CHARACTERISTICS ($\mathrm{A}_{\mathrm{V}}=+2, \mathrm{R}_{\mathrm{F}}=681 \Omega$)

Slew Rate	Note 6	B	25	-	475	-	V/ $/ \mathrm{s}$
Full Power Bandwidth	Note 7	B	25	-	26	-	MHz
Rise Time	Note 8	B	25	-	6	-	ns
Fall Time	Note 8	B	25		6	-	ns
Propagation Delay	Note 8	B	25	-	6	-	ns
Overshoot		B	25	-	12	-	\%
-3dB Bandwidth	$V_{\text {OUT }}=100 \mathrm{mV}$	B	25	-	95	-	MHz
Settling Time to 1%	2V Output Step	B	25	-	50	-	ns
Settling Time to 0.25\%	2V Output Step	B	25	-	100	-	ns
Gain Flatness	5 MHz	B	25	-	0.02	-	dB
	20 MHz	B	25	-	0.07	-	dB

AC CHARACTERISTICS ($A_{V}=+10, R_{F}=383 \Omega$)

Slew Rate	Note 6	B	25	350	475	-	$\mathrm{V} / \mu \mathrm{s}$
Full Power Bandwidth	Note 7	B	25	28	38	-	MHz
Rise Time	Note 8	B	25	-	8	-	ns
Fall Time	Note 8	B	25	-	9	-	ns
Propagation Delay	Note 8	B	25	-	9	-	ns
Overshoot		B	25	-	1.8	-	\%
-3dB Bandwidth	$\mathrm{V}_{\text {OUT }}=100 \mathrm{mV}$	B	25	-	65	-	MHz
Settling Time to 1%	2V Output Step	B	25	-	75	-	ns
Settling Time to 0.1\%	2V Output Step	B	25	-	130	-	ns
VIDEO CHARACTERISTICS							
Differential Gain (Note 10)	$R_{L}=150 \Omega$	B	25	-	0.03	-	\%
Differential Phase (Note 10)	$R_{L}=150 \Omega$	B	25	-	0.03	-	Degrees

NOTES:
5. $\mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V}$. At $-40^{\circ} \mathrm{C}$ Product is tested at $\mathrm{V}_{\mathrm{CM}}= \pm 2.25 \mathrm{~V}$ because Short Test Duration does not allow self heating.
6. $V_{\text {OUT }}$ switches from -2 V to +2 V , or from +2 V to -2 V . Specification is from the 25% to 75% points.
7. FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}} ; V_{\text {PEAK }}=2 \mathrm{~V}$.
8. $R_{L}=100 \Omega, V_{O U T}=1 \mathrm{~V}$. Measured from 10% to 90% points for rise/fall times; from 50% points of input and output for propagation delay.
9. A. Production Tested; B. Typical or Guaranteed Limit based on characterization; C. Design Typical for information only.
10. Measured with a VM700A video tester using an NTC-7 composite VITS.
11. $\mathrm{V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}$. At $-40^{\circ} \mathrm{C}$ Product is tested at $\mathrm{V}_{\text {OUT }}= \pm 2.25 \mathrm{~V}$ because Short Test Duration does not allow self heating.

Test Circuits and Waveforms

FIGURE 1. TEST CIRCUIT FOR TRANSIMPEDANCE MEASUREMENTS

FIGURE 2. SMALL SIGNAL PULSE RESPONSE CIRCUIT

Vertical Scale: $\mathrm{V}_{I N}=100 \mathrm{mV} /$ Div., $\mathrm{V}_{\mathrm{OUT}}=100 \mathrm{mV} /$ Div. Horizontal Scale: 20ns/Div.

FIGURE 4. SMALL SIGNAL RESPONSE

FIGURE 3. LARGE SIGNAL PULSE RESPONSE CIRCUIT

Vertical Scale: $V_{I N}=1 \mathrm{~V} /$ Div., $V_{\text {OUT }}=1 \mathrm{~V} /$ Div. Horizontal Scale: $50 \mathrm{~ns} /$ Div.

FIGURE 5. LARGE SIGNAL RESPONSE

Schematic Diagram (One Amplifier of Two)

Application Information

Optimum Feedback Resistor

The plots of inverting and non-inverting frequency response, see Figure 8 and Figure 9 in the typical performance section, illustrate the performance of the HA5023 in various closed loop gain configurations. Although the bandwidth dependency on closed loop gain isn't as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback amplifier's unique relationship between bandwidth and R_{F}. All current feedback amplifiers require a feedback resistor, even for unity gain applications, and R_{F}, in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to R_{F}. The HA5023 design is optimized for a $1000 \Omega R_{F}$ at a gain of +1 . Decreasing R_{F} in a unity gain application decreases stability, resulting in excessive peaking and overshoot. At higher gains the amplifier is more stable, so R_{F} can be decreased in a trade-off of stability for bandwidth.

The table below lists recommended R_{F} values for various gains, and the expected bandwidth.

GAIN $\left(\mathbf{A}_{\mathbf{C L}}\right)$	$\mathbf{R}_{\mathbf{F}}(\Omega)$	BANDWIDTH $(\mathbf{M H z})$
-1	750	100
+1	1000	125
+2	681	95
+5	1000	52
+10	383	65
-10	750	22

PC Board Layout

The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended. If leaded components are used the leads must be kept short especially for the power supply decoupling components and those components connected to the inverting input.
Attention must be given to decoupling the power supplies. A large value $(10 \mu \mathrm{~F})$ tantalum or electrolytic capacitor in parallel with a small value $(0.1 \mu \mathrm{~F})$ chip capacitor works well in most cases.
A ground plane is strongly recommended to control noise. Care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input (-IN). The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and possible instability. It is recommended that the ground plane be removed under traces con-
nected to -IN, and that connections to -IN be kept as short as possible to minimize the capacitance from this node to ground.

Driving Capacitive Loads

Capacitive loads will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases the oscillation can be avoided by placing an isolation resistor (R) in series with the output as shown in Figure 6.

FIGURE 6. PLACEMENT OF THE OUTPUT ISOLATION RESISTOR, R

The selection criteria for the isolation resistor is highly dependent on the load, but 27Ω has been determined to be a good starting value.

Power Dissipation Considerations

Due to the high supply current inherent in quad amplifiers, care must be taken to insure that the maximum junction temperature (T_{J}, see Absolute Maximum Ratings) is not exceeded. Figure 7 shows the maximum ambient temperature versus supply voltage for the available package styles (Plastic DIP, SOIC). At $\pm 5 \mathrm{~V}_{\text {DC }}$ quiescent operation both package styles may be operated over the full industrial range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. It is recommended that thermal calculations, which take into account output power, be performed by the designer.

FIGURE 7. MAXIMUM OPERATING AMBIENT TEMPERATURE vs SUPPLY VOLTAGE

Typical Performance Curves $V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,
Unless Otherwise Specified

FIGURE 8. NON-INVERTING FREQENCY RESPONSE

FIGURE 10. PHASE RESPONSE AS A FUNCTION OF FREQUENCY

FIGURE 12. BANDWIDTH AND GAIN PEAKING vs FEEDBACK RESISTANCE

FIGURE 9. INVERTING FREQUENCY RESPONSE

FIGURE 13. BANDWIDTH AND GAIN PEAKING vs LOAD RESISTANCE

Typical Performance Curves $V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{V}=+1, \mathrm{R}_{F}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 14. BANDWIDTH vs FEEDBACK RESISTANCE

FIGURE 16. DIFFERENTIAL GAIN vs SUPPLY VOLTAGE

FIGURE 18. DISTORTION vs FREQUENCY

FIGURE 15. SMALL SIGNAL OVERSHOOT vs LOAD RESISTANCE

FIGURE 17. DIFFERENTIAL PHASE vs SUPPLY VOLTAGE

FIGURE 19. REJECTION RATIOS vs FREQUENCY

Typical Performance Curves $v_{S U P P L Y}= \pm 5 V, A_{V}=+1, R_{F}=1 k \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 20. PROPAGATION DELAY vs TEMPERATURE

FIGURE 22. FIGURE 22. SLEW RATE vs TEMPERATURE

FIGURE 24. INVERTING GAIN FLATNESS vs FREQUENCY

FIGURE 21. PROPAGATION DELAY vs SUPPLY VOLTAGE

FIGURE 23. NON-INVERTING GAIN FLATNESS vs FREQUENCY

FIGURE 25. INPUT NOISE CHARACTERISTICS

HA5023
Typical Performance Curves $V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 26. INPUT OFFSET VOLTAGE vs TEMPERATURE

FIGURE 28. -INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 30. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 27. +INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 29. TRANSIMPEDANCE vs TEMPERATURE

FIGURE 31. REJECTION RATIO vs TEMPERATURE

Typical Performance Curves
$V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$,
Unless Otherwise Specified (Continued)

FIGURE 32. SUPPLY CURRENT vs DISABLE INPUT VOLTAGE

FIGURE 34. OUTPUT SWING vs LOAD RESISTANCE

FIGURE 36. INPUT BIAS CURRENT CHANGE BETWEEN CHANNELS vs TEMPERATURE

FIGURE 33. OUTPUT SWING vs TEMPERATURE

FIGURE 35. INPUT OFFSET VOLTAGE CHANGE BETWEEN CHANNELS vs TEMPERATURE

FIGURE 37. CHANNEL SEPARATION vs FREQUENCY

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{V}=+1, \mathrm{R}_{F}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 38. DISABLE FEEDTHROUGH vs FREQUENCY

FIGURE 39. TRANSIMPEDANCE vs FREQUENCY

FIGURE 40. TRANSIMPEDENCE vs FREQUENCY

Die Characteristics

DIE DIMENSIONS:

$1650 \mu \mathrm{~m} \times 2540 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:

Type: Metal 1: AICu (1\%) Thickness: Metal 1: $8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA$

Type: Metal 2: AICu (1\%)
Thickness: Metal 2: $16 \mathrm{k} \AA \pm \pm 0.8 \mathrm{k} \AA$
SUBSTRATE POTENTIAL (Powered Up): V-

PASSIVATION:

Type: Nitride
Thickness: $4 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA$
TRANSISTOR COUNT:
124
PROCESS:
High Frequency Bipolar Dielectric Isolation

Metallization Mask Layout

Quad 125MHz Video Current Feedback Amplifier with Disable

Features

- Quad Version of HA-5020
- Individual Output Enable/Disable
- Input Offset Voltage . 800 $\mathbf{8 0}^{\mathbf{V}}$
- Wide Unity Gain Bandwidth 125MHz
- Slew Rate . 475V/ $\mu \mathrm{s}$
- Differential Gain . 0.03\%
- Differential Phase. 0.03 Degrees
- Supply Current (per Amplifier) 7.5mA
- ESD Protection. 4000V
- Guaranteed Specifications at $\pm 5 \mathrm{~V}$ Supplies

Applications

- Video Multiplexers; Video Switching and Routing
- Video Gain Block
- Video Distribution Amplifier/RGB Amplifier
- Flash A/D Driver
- Current to Voltage Converter
- Medical Imaging
- Radar and Imaging Systems

Description

The HA5024 is a quad version of the popular Harris HA5020. It features wide bandwidth and high slew rate, and is optimized for video applications and gains between 1 and 10. It is a current feedback amplifier and thus yields less bandwidth degradation at high closed loop gains than voltage feedback amplifiers.

The low differential gain and phase, 0.1 dB gain flatness, and ability to drive two back terminated 75Ω cables, make this amplifier ideal for demanding video applications.

The HA5024 also features a disable function that significantly reduces supply current while forcing the output to a true high impedance state. This functionality allows $2: 1$ and 4:1 video multiplexers to be implemented with a single IC.

The current feedback design allows the user to take advantage of the amplifier's bandwidth dependency on the feedback resistor. By reducing R_{F}, the bandwidth can be increased to compensate for decreases at higher closed loop gains or heavy output loads.

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA5024IP	-40 to 85	20 Ld PDIP	E20.3
HA5024IB	-40 to 85	20 Ld SOIC	M20.3
HA5024EVAL	High Speed Op Amp DIP Evaluation Board		

Pinout

Absolute Maximum Ratings
Voltage Between V+ and V- Terminals
. . 36 V
DC Input Voltage (Note 3) $\pm V_{\text {SUPPLY }}$
Differential Input Voltage. 10 V
Output Current (Note 4) Short Circuit Protected
ESD Rating (Note 3)
Human Body Model (Per MIL-STD-883 Method 3015.7) . . 2000V

Operating Conditions

Temperature Range
Supply Voltage Range (Typical)
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Maximum power dissipation, including output load, must be designed to maintain junction temperature below $175^{\circ} \mathrm{C}$ for die, and below $150^{\circ} \mathrm{C}$ for plastic packages. See Application Information section for safe operating area information.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
3. The non-inverting input of unused amplifiers must be connected to GND.
4. Output is protected for short circuits to ground. Brief short circuits to ground will not degrade reliability, however, continuous (100\% duty cycle) output current should not exceed 15 mA for maximum reliability.

Electrical Specifications $\quad V_{S U P P L Y}= \pm 5 \mathrm{~V}, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { (NOTE 11) } \\ \text { TEST } \\ \text { LEVEL } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { TEMP. } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}\right.$	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS							
Input Offset Voltage (V_{10})		A	25	-	0.8	3	mV
		A	Full	-	-	5	mV
Delta V_{10} Between Channels		A	Full	-	1.2	3.5	mV
Average Input Offset Voltage Drift		B	Full	-	5	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
V_{10} Common Mode Rejection Ratio	Note 5	A	25	53	-	-	dB
		A	Full	50	-	-	dB
V_{10} Power Supply Rejection Ratio	$\pm 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 6.5 \mathrm{~V}$	A	25	60	-	-	dB
		A	Full	55	-	-	dB
Input Common Mode Range	Note 5	A	Full	± 2.5	-	-	V
Non-Inverting Input (+iN) Current		A	25	-	3	8	$\mu \mathrm{A}$
		A	Full	-	-	20	$\mu \mathrm{A}$
+IN Common Mode Rejection$\left(+\mathrm{I}_{\mathrm{BCMR}}=\frac{1}{\mathrm{R}_{I N}}\right)$	Note 5	A	25	-	-	0.15	$\mu \mathrm{AN}$
		A	Full	-	-	0.5	$\mu \mathrm{A} N$
+IN Power Supply Rejection	$\pm 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 6.5 \mathrm{~V}$	A	25	-	-	0.1	$\mu \mathrm{AN}$
		A	Full	-	-	0.3	$\mu \mathrm{A} N$
Inverting Input (-IN) Current		A	25,85	-	4	12	$\mu \mathrm{A}$
		A	-40	-	10	30	$\mu \mathrm{A}$
Delta -IN BIAS Current Between Channels		A	25,85	-	6	15	$\mu \mathrm{A}$
		A	-40	-	10	30	$\mu \mathrm{A}$
-IN Common Mode Rejection	Note 5	A	25	-	-	0.4	$\mu \mathrm{A} N$
		A	Full	-	-	1.0	$\mu \mathrm{A} N$
-IN Power Supply Rejection	$\pm 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 6.5 \mathrm{~V}$	A	25.	-	-	0.2	$\mu \mathrm{AN}$
		A	Full	-	-	0.5	$\mu \mathrm{AN}$

HA5024

Electrical Specifications $\quad V_{S U P P L Y}= \pm 5 V, R_{F}=1 k \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 p F$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	$\begin{array}{\|c\|} \hline \text { (NOTE 11) } \\ \text { TEST } \\ \text { LEVEL } \end{array}$	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	MIN	TYP	MAX	UNITS
Input Noise Voltage	$\mathrm{f}=1 \mathrm{kHz}$	B	25	-	4.5	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
+Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$	B	25	-	2.5	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
-Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$	B	25	-	25.0	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS							
Transimpedence	Note 16	A	25	1.0	-	-	M Ω
		A	Full	0.85	-	-	M Ω
Open Loop DC Voltage Gain	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}$	25A	25	70	-	-	dB
		A	Full	65	-	-	dB
Open Loop DC Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}$	A	25	50	-	-	dB
		A	Full	45	-	-	dB
OUTPUT CHARACTERISTICS							
Output Voltage Swing	$R_{L}=150 \Omega$	A	25	± 2.5	± 3.0	-	V
		A	Full	± 2.5	± 3.0	-	V
Output Current	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	B	Full	± 16.6	± 20.0	-	mA
Output Current, Short Circuit	$\mathrm{V}_{\text {IN }}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	A	Full	± 40	± 60	-	mA
Output Current, Disabled (Note 5)	$\begin{aligned} & \text { DISABLE }=0 \mathrm{~V}, \\ & V_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=0 \mathrm{~V} \end{aligned}$	A	Full	-	-	2	$\mu \mathrm{A}$
Output Disable Time	Note 12	B	25	-	40	-	$\mu \mathrm{s}$
Output Enable Time	Note 13	B	25	-	40	-	ns
Output Capacitance Disabled	Note 14	B	25	-	15	-	pF
POWER SUPPLY CHARACTERISTICS							
Supply Voltage Range		A	25	5	-	15	V
Quiescent Supply Current		A	Full	-	7.5	10	mA/Op Amp
Supply Current, Disabled	$\overline{\text { DISABLE }}=0 \mathrm{~V}$	A	Full	-	5	7.5	mA/Op Amp
$\overline{\text { Disable Pin Input Current }}$	$\overline{\text { DISABLE }}=0 \mathrm{~V}$	A	Full	-	1.0	1.5	mA
Minimum Pin 8 Current to Disable	Note 6	A	Full	350	-	-	$\mu \mathrm{A}$
Maximum Pin 8 Current to Enable	Note 7	A	Full	-	-	20	$\mu \mathrm{A}$
AC CHARACTERISTICS ($\mathrm{A}_{V}=+1$)							
Slew Rate	Note 8	B	25	275	350	-	V/ $/ \mathrm{s}$
Full Power Bandwidth	Note 9	B	25	22	28	-	MHz
Rise Time	Note 10	B	25	-	6	-	ns
Fall Time	Note 10	B	25	-	6	-	ns
Propagation Delay	Note 10	B	25	-	6	-	ns
Overshoot		B	25	-	4.5	-	\%
-3dB Bandwidth	$\mathrm{V}_{\text {OUT }}=100 \mathrm{mV}$	B	25	-	125	-	MHz
Settling Time to 1\%	2V Output Step	B	25	-	50	-	ns
Settling Time to 0.25\%	2V Output Step	B	25	-	75	-	ns
AC CHARACTERISTICS ($A_{V}=+2, \mathrm{R}_{\mathrm{F}}=681 \Omega$)							
Slew Rate	Note 8	B	25	-	475	-	V/us
Full Power Bandwidth	Note 9	B	25	-	26	-	MHz

HA5024

Electrical Specifications $\quad V_{S U P P L Y}= \pm 5 \mathrm{~V}, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 p F$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	(NOTE 11) TEST LEVEL	TEMP. (${ }^{\circ} \mathrm{C}$)	MIN	TYP	MAX	UNITS
Rise Time	Note 10	B	25	-	6	-	ns
Fall Time	Note 10	B	25	-	6	-	ns
Propagation Delay	Note 10	B	25	-	6	-	ns
Overshoot		B	25	-	12	-	\%
-3dB Bandwidth	$V_{\text {OUT }}=100 \mathrm{mV}$	B	25	-	95	-	MHz
Settling Time to 1\%	2V Output Step	B	25	-	50	-	ns
Settling Time to 0.25\%	2V Output Step	B	25	-	100	-	ns
Gain Flatness	5 MHz	B	25	-	0.02	-	dB
	20 MHz	B	25	-	0.07	-	dB

AC CHARACTERISTICS ($A_{V}=+10, R_{F}=383 \Omega$)

Slew Rate	Note 8	B	25	350	475	-	$\mathrm{V} / \mu \mathrm{s}$
Full Power Bandwidth	Note 9	B	25	28	38	-	MHz
Rise Time	Note 10	B	25	-	8	-	ns
Fall Time	Note 10	B	25	-	9	-	ns
Propagation Delay	Note 10	B	25	-	9	-	ns
Overshoot		B	25	-	1.8	-	$\%$
-3dB Bandwidth	Vout = 100mV	B	25	-	65	-	MHz
Settling Time to 1\%	2V Output Step	B	25	-	75	-	ns
Settling Time to 0.1\%	2V Output Step	B	25	-	130	-	ns

VIDEO CHARACTERISTICS

Differential Gain (Note 15)	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	B	25	-	0.03	-	$\%$
Differential Phase (Note 15)	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	B	25	-	0.03	-	Degrees

NOTES:
5. $\mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V}$. At $-40^{\circ} \mathrm{C}$ Product is tested at $\mathrm{V}_{\mathrm{CM}}= \pm 2.25 \mathrm{~V}$ because short test duration does not allow self heating.
6. $R_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\mathrm{IN}}=2.5 \mathrm{~V}$. This is the minimum current which must be pulled out of the $\overline{\mathrm{Disable}}$ pin in order to disable the output. The output is considered disabled when $-10 \mathrm{mV} \leq \mathrm{V}_{\mathrm{OUT}} \leq+10 \mathrm{mV}$.
7. $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$. This is the maximum current that can be pulled out of the $\overline{\text { Disable pin with the HA5024 remaining enabled. The HA5024 is }}$ considered disabled when the supply current has decreased by at least 0.5 mA .
8. $\mathrm{V}_{\text {OUT }}$ switches from -2 V to +2 V , or from +2 V to -2 V . Specification is from the 25% to 75% points.
9. FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}} ; V_{\text {PEAK }}=2 \mathrm{~V}$.
10. $R_{L}=100 \Omega, V_{O U T}=1 \mathrm{~V}$. Measured from 10% to 90% points for rise/fall times; from 50% points of input and output for propagation delay.
11. A. Production Tested; B. Typical or Guaranteed Limit based on characterization; C. Design Typical for information only.
12. $\mathrm{V}_{I N}=+2 \mathrm{~V}, \overline{\mathrm{DISABLE}}=+5 \mathrm{~V}$ to 0 V . Measured from the 50% point of $\overline{\text { DISABLE }}$ to $\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}$.
13. $\mathrm{V}_{\mathrm{IN}}=+2 \mathrm{~V}, \overline{\mathrm{DISABLE}}=0 \mathrm{~V}$ to +5 V . Measured from the 50% point of $\overline{\mathrm{DISABLE}}$ to $\mathrm{V}_{\mathrm{OUT}}=2 \mathrm{~V}$.
14. $\mathrm{V}_{I N}=0 \mathrm{~V}$, Force $\mathrm{V}_{\text {OUT }}$ from 0 V to $\pm 2.5 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=50 \mathrm{~ns}$, $\overline{\mathrm{DSABLE}}=0 \mathrm{~V}$.
15. Measured with a VM700A video tester using an NTC-7 composite VITS.
16. $\mathrm{V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}$. At $-40^{\circ} \mathrm{C}$ Product is tested at $\mathrm{V}_{\text {OUT }}= \pm 2.25 \mathrm{~V}$ because short test duration does not allow self heating.

Test Circuits and Waveforms

FIGURE 1. TEST CIRCUIT FOR TRANSIMPEDANCE MEASUREMENTS

FIGURE 2. SMALL SIGNAL PULSE RESPONSE CIRCUIT

Vertical Scale: $V_{I N}=100 \mathrm{mV} /$ Div., $V_{\text {OUT }}=100 \mathrm{mV} /$ Div. Horizontal Scale: 20ns/Div.

FIGURE 4. SMALL SIGNAL RESPONSE

FIGURE 3. LARGE SIGNAL PULSE RESPONSE CIRCUIT

Vertical Scale: $\mathrm{V}_{I N}=1 \mathrm{~V} /$ Div., $\mathrm{V}_{\text {OUT }}=1 \mathrm{~V} /$ Div. Horizontal Scale: $50 \mathrm{~ns} /$ Div.

FIGURE 5. LARGE SIGNAL RESPONSE

Schematic (One Amplifier of Four)

Application Information

Optimum Feedback Resistor

The plots of inverting and non-inverting frequency response, see Figure 11 and Figure 12 in the Typical Performance Curves section, illustrate the performance of the HA5024 in various closed loop gain configurations. Although the bandwidth dependency on closed loop gain isn't as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback amplifier's unique relationship between bandwidth and R_{F} All current feedback amplifiers require a feedback resistor, even for unity gain applications, and R_{F}, in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to R_{F}. The HA5024 design is optimized for a $1000 \Omega R_{F}$ at a gain of +1 . Decreasing R_{F} in a unity gain application decreases stability, resulting in excessive peaking and overshoot. At higher gains the amplifier is more stable, so R_{F} can be decreased in a trade-off of stability for bandwidth.

The table below lists recommended R_{F} values for various gains, and the expected bandwidth.

GAIN $\left(\mathbf{A}_{\mathbf{C L}}\right)$	$\mathbf{R}_{\mathbf{F}}(\Omega)$	BANDWIDTH $\mathbf{(M H z)}$
-1	750	100
+1	1000	125
+2	681	95
+5	1000	52
+10	383	65
-10	750	22

PC Board Layout

The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended. If leaded components are used the leads must be kept short especially for the power supply decoupling components and those components connected to the inverting input.

Attention must be given to decoupling the power supplies. A large value $(10 \mu \mathrm{~F})$ tantalum or electrolytic capacitor in parallel with a small value $(0.1 \mu \mathrm{~F})$ chip capacitor works well in most cases.

A ground plane is strongly recommended to control noise. Care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input (-IN). The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and possible instability. It is recommended that the ground plane be removed under traces connected to -IN, and that connections to -IN be kept as short as possible to minimize the capacitance from this node to ground.

Driving Capacitive Loads

Capacitive loads will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases the oscillation can be avoided by placing an isolation resistor (R) in series with the output as shown in Figure 6.

FIGURE 6. PLACEMENT OF THE OUTPUT ISOLATION RESISTOR, R

The selection criteria for the isolation resister is highly dependent on the load, but 27Ω has been determined to be a good starting value.

Power Dissipation Considerations

Due to the high supply current inherent in quad amplifiers, care must be taken to insure that the maximum junction temperature (T_{J}, see Absolute Maximum Ratings) is not exceeded. Figure 7 shows the maximum ambient temperature versus supply voltage for the available package styles (Plastic DIP, SOIC). At $\pm 5 \mathrm{~V}_{\text {DC }}$ quiescent operation both package styles may be operated over the full industrial range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. It is recommended that thermal calculations, which take into account output power, be performed by the designer.

FIGURE 7. MAXIMUM OPERATING AMBIENT TEMPERATURE vs SUPPLY VOLTAGE

Enable/Disable Function

When enabled the amplifier functions as a normal current feedback amplifier with all of the data in the electrical specifications table being valid and applicable. When disabled the amplifier output assumes a true high impedance state and the supply current is reduced significantly.

The circuit shown in Figure 8 is a simplified schematic of the enable/disable function. The large value resistors in series with the DISABLE pin makes it appear as a current source to the driver. When the driver pulls this pin low current flows out of the pin and into the driver. This current, which may be as large as $350 \mu \mathrm{~A}$ when external circuit and process variables are at their extremes, is required to insure that point " A " achieves the proper potential to disable the output. The driver must have the compliance and capability of sinking all of this current.
When V_{CC} is +5 V the DISABLE pin may be driven with a dedicated TTL gate. The maximum low level output voltage of the TTL gate, 0.4 V , has enough compliance to insure that the amplifier will always be disabled even though D_{1} will not turn on, and the TTL gate will sink enough current to keep point " A " at its proper voltage. When $V_{C C}$ is greater than +5 V the DISABLE pin should be driven with an open collector device that has a breakdown rating greater than V_{CC}.
Referring to Figure 8, it can be seen that R_{6} will act as a pull-up resistor to $+V_{C C}$ if the DISABLE pin is left open. In those cases where the enable/disable function is not required on all circuits some circuits can be permanently enabled by letting the DISABLE pin float. If a driver is used to set the enable/disable level, be sure that the driver does not sink more than $20 \mu \mathrm{~A}$ when the DISABLE pin is at a high level. TTL gates, especially CMOS versions, do not violate this criteria so it is permissible to control the enable/disable function with TTL.

FIGURE 8. SIMPLIFIED SCHEMATIC OF ENABLE/DISABLE FUNCTION

Typical Applications

Four Channel Video Multiplexer

Referring to the amplifier $U_{1 A}$ in Figure 9, R_{1} terminates the cable in its characteristic impedance of 75Ω, and R_{4} back terminates the cable in its characteristic impedance. The amplifier is set up in a gain configuration of +2 to yield an overall network gain of +1 when driving a double terminated cable. The value of R_{3} can be changed if a different network gain is desired. R_{5} holds the disable pin at ground thus inhibiting the amplifier until the switch, S_{1}, is thrown to position 1. At position 1 the switch pulls the disable pin up to the plus supply rail thereby enabling the amplifier. Since all of the actual signal switching takes place within the amplifier, its differential gain and phase parameters, which are 0.03% and 0.03 degrees respectively, determine the circuit's performance. The other three circuits, $U_{1 B}$ through $U_{1 D}$, operate in a similar manner.

When the plus supply rail is 5 V the disable pin can be driven by a dedicated TTL gate as discussed earlier. If a multiplexer IC or
its equivalent is used to select channels its logic must be break before make. When these conditions are satisfied the HA5024IP is often used as a remote video multiplexer, and the multiplexer may be extended by adding more amplifier ICs.

Low Impedance Multiplexer

Two common problems surface when you try to multiplex multiple high speed signals into a low impedance source such as an A/D converter. The first problem is the low source impedance which tends to make amplifiers oscillate and causes gain errors. The second problem is the multiplexer which supplies no gain, introduces all kinds of distortion and limits the frequency response. Using op amps which have an enable/disable function, such as the HA5024, eliminates the multiplexer problems because the external mux chip is not needed, and the HA5024 can drive low impedance (large capacitance) loads if a series isolation resistor is used.

NOTES:
17. U_{1} is HA5024IP.
18. All resistors in Ω.
19. S_{1} is break before make.
20. Use ground plane.

FIGURE 9. FOUR CHANNEL VIDEO MULTIPLEXER

Referring to Figure 10, both inputs are terminated in their characteristic impedance; 75Ω is typical for video applications. Since the drivers usually are terminated in their characteristic impedance the input gain is 0.5 , thus the amplifiers, U_{2}, are configured in a gain of +2 to set the circuit gain equal to one. Resistors R_{2} and R_{3} determine the amplifier gain, and if a different gain is desired R_{2} should be changed according to the equation $G=\left(1+R_{3} / R_{2}\right)$. R_{3} sets the frequency response of the amplifier so you should refer to the manufacturers data sheet before changing its value. $\mathrm{R}_{5}, \mathrm{C}_{1}$ and D_{1} are an asymmetrical charge/discharge time circuit which configures U_{1} as a break before make switch to prevent both amplifiers from being active simultaneously. If this design is extended to more chan-
nels the drive logic must be designed to be break before make. R_{4} is enclosed in the feedback loop of the amplifier so that the large open loop amplifier gain of U_{2} will present the load with a small closed loop output impedance while keeping the amplifier stable for all values of load capacitance.

The circuit shown in Figure 10 was tested for the full range of capacitor values with no oscillations being observed; thus, problem one has been solved. The frequency and gain characteristics of the circuit are now those of the amplifier independent of any multiplexing action; thus, problem two has been solved. The multiplexer transition time is approximately $15 \mu \mathrm{~s}$ with the component values shown.

FIGURE 9. LOW IMPEDANCE MULTIPLEXER

Typical Performance Curves

$V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 9. NON-INVERTING FREQUENCY RESPONSE

FIGURE 10. INVERTING FREQUENCY RESPONSE

Typical Performance Curves
$V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 11. PHASE RESPONSE AS A FUNCTION OF FREQUENCY

FIGURE 13. BANDWIDTH AND GAIN PEAKING vs FEEDBACK RESISTANCE

FIGURE 15. BANDWIDTH vs FEEDBACK RESISTANCE

FIGURE 12. BANDWIDTH AND GAIN PEAKING vs FEEDBACK RESISTANCE

FIGURE 14. BANDWIDTH AND GAIN PEAKING vs LOAD RESISTANCE

FIGURE 16. SMALL SIGNAL OVERSHOOT vs LOAD RESISTANCE

Typical Performance Curves $\quad v_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 17. DIFFERENTIAL GAIN vs SUPPLY VOLTAGE

FIGURE 19. DISTORTION vs FREQUENCY

FIGURE 21. PROPAGATION DELAY vs TEMPERATURE

FIGURE 18. DIFFERENTIAL PHASE vs SUPPLY VOLTAGE

FIGURE 20. REJECTION RATIOS vs FREQUENCY

FIGURE 22. PROPAGATION DELAY vs SUPPLY VOLTAGE

Typical Performance Curves $V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 23. SLEW RATE vs TEMPERATURE

FIGURE 25. INVERTING GAIN FLATNESS vs FREQUENCY

FIGURE 27. INPUT OFFSET VOLTAGE vs TEMPERATURE

FIGURE 24. NON-INVERTING GAIN FLATNESS vs FREQUENCY

FIGURE 26. INPUT NOISE CHARACTERISTICS

FIGURE 28. +INPUT BIAS CURRENT vs TEMPERATURE

Typical Performance Curves
$V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$,
Unless Otherwise Specified (Continued)

FIGURE 29. -INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 31. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 33. SUPPLY CURRENT vs DISABLE INPUT VOLTAGE

FIGURE 30. TRANSIMPEDANCE vs TEMPERATURE

FIGURE 32. REJECTION RATIO vs TEMPERATURE

FIGURE 34. OUTPUT SWING vs TEMPERATURE

HA5024
Typical Performance Curves $V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
Unless Otherwise Specified (Continued)

FIGURE 35. OUTPUT SWING vs LOAD RESISTANCE

FIGURE 37. INPUT BIAS CURRENT CHANGE BETWEEN CHANNELS vs TEMPERATURE

FIGURE 39. CHANNEL SEPARATION vs FREQUENCY

FIGURE 36. INPUT OFFSET VOLTAGE CHANGE BETWEEN CHANNELS vS TEMPERATURE

FIGURE 38. DISABLE SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 40. ENABLE/DISABLE TIME vs OUTPUT VOLTAGE

Typical Performance Curves $V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 41. DISABLE FEEDTHROUGH vs FREQUENCY

FIGURE 42. TRANSIMPEDANCE vs FREQUENCY

FIGURE 43. TRANSIMPEDENCE vs FREQUENCY

Die Characteristics

DIE DIMENSIONS:
$2680 \mu \mathrm{~m} \times 2600 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:

Type: Metal 1: AlCu (1\%)
Thickness: Metal 1: $8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA$
Type: Metal 2: AICu (1\%)
Thickness: Metal 2: $16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA$
SUBSTRATE POTENTIAL (Powered Up):
V-

Metallization Mask Layout

PASSIVATION:

Type: Nitride
Thickness: $4 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA$
TRANSISTOR COUNT:
248
PROCESS:
High Frequency Bipolar Dielectric Isolation

Quad, 125MHz Video Current Feedback Amplifier

Features

- Wide Unity Gain Bandwidth 125MHz
- Slew Rate . 475V/ $/$ s
- Input Offset Voltage . 800 1 V
- Differential Gain . 0.03\%
- Differential Phase. 0.03 Degrees
- Supply Current (per Amplifier) 7.5mA
- ESD Protection. 4000V
- Guaranteed Specifications at $\pm 5 \mathrm{~V}$ Supplies

Applications

- Video Gain Block
- Video Distribution Amplifier/RGB Amplifier
- Flash A/D Driver
- Current to Voltage Converter
- Medical Imaging
- Radar and Imaging Systems
- Video Switching and Routing

Description

To put art in a text area: insert an anchored frame from the he HA5025 is a wide bandwidth high slew rate quad amplifier optimized for video applications and gains between 1 and 10. It is a current feedback amplifier and thus yields less bandwidth degradation at high closed loop gains than voltage feedback amplifiers.
The low differential gain and phase, 0.1 dB gain flatness, and ability to drive two back terminated 75Ω cables, make this amplifier ideal for demanding video applications.
The current feedback design allows the user to take advantage of the amplifier's bandwidth dependency on the feedback resistor.

The performance of the HA5025 is very similar to the popular Harris HA-5020.

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA5025IP	-40 to 85	14 Ld PDIP	E14.3
HA5025IB	-40 to 85	14 Ld SOIC	M14.15
HA5025EVAL	High Speed Op Amp DIP Evaluation Board		

Pinout

Absolute Maximum Ratings

Voltage Between $\mathrm{V}+$ and V - Terminals 36V
DC Input Voltage (Note 3) . VV SUPPLY $^{\text {S }}$
Differential Input Voltage. 10V
Output Current (Note 4) Short Circuit Protected
ESD Rating (Note 3)
Human Body Model (Per MIL-STD-883 Method 3015.7) . . 2000V

Operating Conditions

Temperature Range \qquad Supply Voltage Range (Typical)
\qquad $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Maximum power dissipation, including output load, must be designed to maintain junction temperature below $175^{\circ} \mathrm{C}$ for die, and below $150^{\circ} \mathrm{C}$ for plastic packages. See Application Information section for safe operating area information.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
3. The non-inverting input of unused amplifiers must be connected to GND.
4. Output is protected for short circuits to ground. Brief short circuits to ground will not degrade reliability, however, continuous (100\% duty cycle) output current should not exceed 15 mA for maximum reliability.

Electrical Specifications $\quad V_{S U P P L Y}= \pm 5 V, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 p F$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	(NOTE 9) TEST LEVEL	TEMP. (${ }^{\circ} \mathrm{C}$)	MIN	TYP	MAX	UNITS
INPUT CHARACTERISTICS							
Input Offset Voltage ($\mathrm{V}_{1 \mathrm{O}}$)		A	25	-	0.8	3	mV
		A	Full	-	-	5	mV
Delta V_{10} Between Channels		A	Full	-	1.2	3.5	mV
Average Input Offset Voltage Drift		B	Fuil	-	5	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
V_{10} Common Mode Rejection Ratio	Note 5	A	25	53	-	-	dB
		A	Full	50	-	-	dB
V_{10} Power Supply Rejection Ratio	$\pm 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 6.5 \mathrm{~V}$	A	25	60	-	-	dB
		A	Full	55	-	-	dB
Input Common Mode Range	Note 5	A	Full	± 2.5	-	-	V
Non-Inverting Input (+IN) Current		A	25	-	3	8	$\mu \mathrm{A}$
		A	Full	-	-	20	$\mu \mathrm{A}$
+ IN Common Mode Rejection$\left(+I_{\text {BCMR }}=\frac{1}{+R_{I N}}\right)$	Note 5	A	25	-	-	0.15	$\mu \mathrm{A} V$
		A	Full	-	-	0.5	$\mu \mathrm{A} V$
+IN Power Supply Rejection	$\pm 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 6.5 \mathrm{~V}$	A	25	-	\cdot	0.1	$\mu \mathrm{A} N$
		A	Full	-	-	0.3	$\mu \mathrm{A} N$
Inverting Input (-IN) Current		A	25, 85	-	4	12	$\mu \mathrm{A}$
		A	-40	-	10	30	$\mu \mathrm{A}$
Delta - IN BIAS Current Between Channels		A	25, 85	-	6	15	$\mu \mathrm{A}$
		A	-40	-	10	30	$\mu \mathrm{A}$
-IN Common Mode Rejection	Note 5	A	25	-	-	0.4	$\mu \mathrm{AN}$
		A	Full	-	-	1.0	$\mu \mathrm{A} V$
-IN Power Supply Rejection	$\pm 3.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{S}} \leq \pm 6.5 \mathrm{~V}$	A	25	-	-	0.2	$\mu \mathrm{A} V$
		A	Full	-	-	0.5	$\mu \mathrm{A} N$
Input Noise Voltage	$\mathrm{f}=1 \mathrm{kHz}$	B	25	-	4.5	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
+Input Noise Current	$f=1 \mathrm{kHz}$	B	25	-	2.5	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
-Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}$	B	25	-	25.0	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

HA5025

Electrical Specifications $\quad V_{S U P P L Y}= \pm 5 \mathrm{~V}, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	(NOTE 9) TEST LEVEL	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	MIN	TYP	MAX	UNITS
TRANSFER CHARACTERISTICS							
Transimpedance	Note 11	A	25	1.0	-	-	M Ω
		A	Full	0.85	-	-	M Ω
Open Loop DC Voltage Gain	$\mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}$	A	25	70	-	-	dB
		A	Full	65	-	-	dB
Open Loop DC Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{~V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}$	A	25	50	-	-	dB
		A	Full	45	-	-	dB
OUTPUT CHARACTERISTICS							
Output Voltage Swing	$R_{L}=150 \Omega$	A	25	± 2.5	± 3.0	-	V
		A	Full	± 2.5	± 3.0	-	V
Output Current	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	B	Full	± 16.6	± 20.0	-	mA
Output Current, Short Circuit	$\mathrm{V}_{\text {IN }}= \pm 2.5 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V}$	A	Full	± 40	± 60	-	mA

POWER SUPPLY CHARACTERISTICS

Supply Voltage Range		A	25	5	-	15	V
Quiescent Supply Current		A	Full	-	7.5	10	$\mathrm{~mA} / O p$ Amp

AC CHARACTERISTICS ($A_{V}=+1$)

Slew Rate	Note 6	B	25	275	350	-	$\mathrm{V} / \mu \mathrm{s}$
Full Power Bandwidth	Note 7	B	25	22	28	-	MHz
Rise Time	Note 8	B	25	-	6	-	ns
Fall Time	Note 8	B	25	-	6	-	ns
Propagation Delay	Note 8	B	25	-	6	-	ns
Overshoot		B	25	-	4.5	-	$\%$
-3dB Bandwidth	V OUT $=100 \mathrm{mV}$	B	25	-	125	-	MHz
Settling Time to 1\%	2V Output Step	B	25	-	50	-	ns
Settling Time to 0.25\%	2V Output Step	B	25	-	75	-	ns

AC CHARACTERISTICS ($\mathrm{A}_{\mathrm{V}}=+2, \mathrm{R}_{\mathrm{F}}=681 \Omega$)

Slew Rate	Note 6	B	25	-	475	-	$\mathrm{V} / \mathrm{\mu s}$
Full Power Bandwidth	Note 7	B	25	-	26	-	MHz
Rise Time	Note 8	B	25	-	6	-	ns
Fall Time	Note 8	B	25	-	6	-	ns
Propagation Delay	Note 8	B	25	-	6	-	ns
Overshoot		B	25	-	12	-	$\%$
-3dB Bandwidth	V	B	25	-	95	-	MHz
Settling Time to 1\%	VUT $=100 \mathrm{mV}$	B	25	-	50	-	ns
Settling Time to 0.25\%	2V Output Step	B	25	-	100	-	ns
Gain Flatness	2 V Output Step	B	25	-	0.02	-	dB

AC CHARACTERISTICS ($\mathrm{A}_{\mathrm{V}}=+10, \mathrm{R}_{\mathrm{F}}=383 \Omega$)

Slew Rate	Note 6	B	25	350	475	-	$\mathrm{V} / \mu \mathrm{s}$
Full Power Bandwidth	Note 7	B	25	28	38	-	MHz
Rise Time	Note 8	B	25	-	8	-	ns
Fall Time	Note 8	B	25	-	9	-	ns
Propagation Delay	Note 8	B	25	-	9	-	ns
Overshoot		B	25	-	1.8	-	$\%$
-3dB Bandwidth	VOUT $=100 \mathrm{mV}$	B	25	-	65	-	MHz
Settling Time to 1\%	2V Output Step	B	25	-	75	-	ns

Electrical Specifications $\quad V_{S U P P L Y}= \pm 5 \mathrm{~V}, R_{F}=1 \mathrm{k} \Omega, A_{V}=+1, R_{L}=400 \Omega, C_{L} \leq 10 \mathrm{pF}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	(NOTE 9) TEST LEVEL	TEMP. (${ }^{\circ} \mathrm{C}$)	MIN	TYP	MAX	UNITS
Settling Time to 0.1\%	2V Output Step	B	25	-	130	-	ns
VIDEO CHARACTERISTICS							
Differential Gain (Note 10)	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	B	25	-	0.03	-	\%
Differential Phase (Note 10)	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	B	25	-	0.03	-	Degrees

NOTES:
5. $\mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V}$. At $-40^{\circ} \mathrm{C}$ Product is tested at $\mathrm{V}_{\mathrm{CM}}= \pm 2.25 \mathrm{~V}$ because Short Test Duration does not allow self heating.
6. $V_{\text {OUT }}$ switches from -2 V to +2 V , or from +2 V to -2 V . Specification is from the 25% to 75% points.
7. $\mathrm{FPBW}=\frac{\text { Slew Rate }}{2 \pi \mathrm{~V}_{\text {PEAK }}} ; V_{\text {PEAK }}=2 \mathrm{~V}$.
8. $R_{L}=100 \Omega, V_{\text {OUT }}=1 \mathrm{~V}$. Measured from 10% to 90% points for rise/fall times; from 50% points of input and output for propagation delay.
9. A. Production Tested; B. Typical or Guaranteed Limit based on characterization; C. Design Typical for information only.
10. Measured with a VM700A video tester using an NTC-7 composite VITS.
11. $\mathrm{V}_{\mathrm{OUT}}= \pm 2.5 \mathrm{~V}$. At $-40^{\circ} \mathrm{C}$ Product is tested at $\mathrm{V}_{\mathrm{OUT}}= \pm 2.25 \mathrm{~V}$ because Short Test Duration does not allow self heating.

Test Circuits and Waveforms

FIGURE 1. TEST CIRCUIT FOR TRANSIMPEDANCE MEASUREMENTS

FIGURE 2. SMALL SIGNAL PULSE RESPONSE CIRCUIT

Vertical Scale: $\mathrm{V}_{\mathrm{IN}}=100 \mathrm{mV} /$ Div., $\mathrm{V}_{\text {OUT }}=100 \mathrm{mV} /$ Div. Horizontal Scale: 20ns/Div.

FIGURE 4. SMALL SIGNAL RESPONSE

FIGURE 3. LARGE SIGNAL PULSE RESPONSE CIRCUIT

Vertical Scale: $V_{I N}=1$ V/Div., $V_{\text {OUT }}=1 \mathrm{~V} /$ Div. Horizontal Scale: $50 \mathrm{~ns} /$ Div.
FIGURE 5. LARGE SIGNAL RESPONSE

Schematic Diagram (One Amplifier of Four)

Application Information

Optimum Feedback Resistor

The plots of inverting and non-inverting frequency response, see Figure 8 and Figure 9 in the typical performance section, illustrate the performance of the HA5025 in various closed loop gain configurations. Although the bandwidth dependency on closed loop gain isn't as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback amplifier's unique relationship between bandwidth and R_{F}. All current feedback amplifiers require a feedback resistor, even for unity gain applications, and R_{F}, in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to R_{F}. The HA5025 design is optimized for a $1000 \Omega R_{F}$ at a gain of +1 . Decreasing R_{F} in a unity gain application decreases stability, resulting in excessive peaking and overshoot. At higher gains the amplifier is more stable, so R_{F} can be decreased in a trade-off of stability for bandwidth.

The following table lists recommended R_{F} values for various gains, and the expected bandwidth.

GAIN $\left(A_{\mathbf{C L}}\right)$	$\mathbf{R}_{\mathbf{F}}(\Omega)$	BANDWIDTH (MHz)
-1	750	100
+1	1000	125
+2	681	95
+5	1000	52
+10	383	65
-10	750	22

PC Board Layout

The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended. If leaded components are used the leads must be kept short especially for the power supply decoupling components and those components connected to the inverting input.
Attention must be given to decoupling the power supplies. A large value $(10 \mu \mathrm{~F})$ tantalum or electrolytic capacitor in
parallel with a small value ($0.1 \mu \mathrm{~F}$) chip capacitor works well in most cases.

A ground plane is strongly recommended to control noise. Care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input (-IN). The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and possible instability. It is recommended that the ground plane be removed under traces connected to $-\operatorname{IN}$, and that connections to -IN be kept as short as possible to minimize the capacitance from this node to ground.

Driving Capacitive Loads

Capacitive loads will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases the oscillation can be avoided by placing an isolation resistor (R) in series with the output as shown in Figure 6.

FIGURE 6. PLACEMENT OF THE OUTPUT ISOLATION RESISTOR, R

The selection criteria for the isolation resistor is highly dependent on the load, but 27Ω has been determined to be a good starting value.

Power Dissipation Considerations

Due to the high supply current inherent in quad amplifiers, care must be taken to insure that the maximum junction temperature (T_{J}, see Absolute Maximum Ratings) is not exceeded. Figure 7 shows the maximum ambient temperature versus supply voltage for the available package styles (PDIP, SOIC). At $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ quiescent operation both package styles may be operated over the full industrial range of $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$. It is recommended that thermal calculations, which take into account output power, be performed by the designer.

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 8. NON-INVERTING FREQUENCY RESPONSE

FIGURE 9. INVERTING FREQUENCY RESPONSE

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 10. PHASE RESPONSE AS A FUNCTION OF FREQUENCY

FIGURE 12. BANDWIDTH AND GAIN PEAKING vs FEEDBACK RESISTANCE

FIGURE 14. BANDWIDTH vs FEEDBACK RESISTANCE

FIGURE 11. BANDWIDTH AND GAIN PEAKING vs FEEDBACK RESISTANCE

FIGURE 13. BANDWIDTH AND GAIN PEAKING vs LOAD RESISTANCE

FIGURE 15. SMALL SIGNAL OVERSHOOT vs LOAD RESISTANCE

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{V}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 16. DIFFERENTIAL GAIN vs SUPPLY VOLTAGE

FIGURE 18. DISTORTION vs FREQUENCY

FIGURE 20. PROPAGATION DELAY vs TEMPERATURE

FIGURE 17. DIFFERENTIAL PHASE vs SUPPLY VOLTAGE

FIGURE 19. REJECTION RATIOS vs FREQUENCY

FIGURE 21. PROPAGATION DELAY vs SUPPLY VOLTAGE

Typical Performance Curves $V_{S U P P L Y}= \pm 5 V, A_{V}=+1, R_{F}=1 \mathrm{k} \Omega, R_{L}=400 \Omega, T_{A}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 22. SLEW RATE vs TEMPERATURE

FIGURE 24. INVERTING GAIN FLATNESS vs FREQUENCY

FIGURE 26. INPUT OFFSET VOLTAGE vs TEMPERATURE

FIGURE 23. NON-INVERTING GAIN FLATNESS vs FREQUENCY

FIGURE 25. INPUT NOISE CHARACTERISTICS

FIGURE 27. +INPUT BIAS CURRENT vs TEMPERATURE

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 28. -INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 30. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 32. SUPPLY CURRENT vs DISABLE INPUT VOLTAGE

FIGURE 29. TRANSIMPEDANCE vs TEMPERATURE

FIGURE 31. REJECTION RATIO vs TEMPERATURE

FIGURE 33. OUTPUT SWING vs TEMPERATURE

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{V}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified. (Continued)

FIGURE 34. OUTPUT SWING vs LOAD RESISTANCE

FIGURE 36. INPUT BIAS CURRENT CHANGE BETWEEN CHANNELS vs TEMPERATURE

FIGURE 38. DISABLE FEEDTHROUGH vs FREQUENCY

FIGURE 35. INPUT OFFSET VOLTAGE CHANGE BETWEEN CHANNELS vs TEMPERATURE

FIGURE 37. CHANNEL SEPARATION vs FREQUENCY

FIGURE 39. TRANSIMPEDANCE vs FREQUENCY

Typical Performance Curves $\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=1 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{L}}=400 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 40. TRANSIMPEDANCE vs FREQUENCY

Die Characteristics

DIE DIMENSIONS:
$2010 \mu \mathrm{~m} \times 3130 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$
METALLIZATION:
Type: Metal 1: AlCu (1\%)
Thickness: Metal 1: $8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA$
Metal 2: AICu (1\%)
Metal 2: $16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA$
SUBSTRATE POTENTIAL (Powered Up):
V-
Metallization Mask Layout

HA-5033

Features

- Differential Phase Error
0.02 Degrees
- Differential Gain Error 0.03\%
- High Slew Rate . 1100V/ $\mu \mathrm{s}$
- Wide Bandwidth (Small Signal) 250MHz
- Wide Power Bandwidth DC to 17.5 MHz
- Fast Rise Time
- High Output Drive $\pm 10 \mathrm{~V}$ With 100Ω Load
- Wide Power Supply Range $\pm 5 \mathrm{~V}$ to $\pm 16 \mathrm{~V}$
- Replace Costly Hybrids

Applications

- Video Buffer
- High Frequency Buffer
- Isolation Buffer
- High Speed Line Driver
- Impedance Matching
- Current Boosters
- High Speed A/D Input Buffers
- Related Literature
- AN548, Designer's Guide for HA-5033

Description

The HA-5033 is a unity gain monolithic IC designed for any application requiring a fast, wideband buffer. Featuring a bandwidth of 250 MHz and outstanding differential phase/ gain characteristics, this high performance voltage follower is an excellent choice for video circuit design. Other features, which include a minimum slew rate of $1000 \mathrm{~V} / \mu \mathrm{s}$ and high output drive capability, make the HA-5033 applicable for line driver and high speed data conversion circuits.
The high performance of this product is a result of the Harris Dielectric Isolation process. A major feature of this process is that it produces both PNP and NPN high frequency transistors which makes wide bandwidth designs, such as the HA-5033, practical. Alternative process methods typically produce a lower AC performance.

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA2-5033-2	-55 to 125	12 Pin Metal Can	T12.C
HA2-5033-5	0 to 75	12 Pin Metal Can	T12.C
HA3-5033-5	0 to 75	8 Ld PDIP	E8.3
HA9P5033-5 (H50335)	0 to 60 (Note 3)	8 Ld PSOP	M8.15A

Pinouts

Absolute Maximum Ratings

Voltage Between V+ and V- Pins . 40V
DC Input Voltage . V+ to V-
Output Current (Peak) (50 ms On/1 Second Off) $\pm 200 \mathrm{~mA}$
ESD Rating
Human Body Model (Per MIL-STD-883 Method 3015.7) . . 2000V

Operating Conditions

Temperature Ranges

HA-5033-2.	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-5033-5 (Note 3).	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
HA9P5033-5 (Notes 1, 3)	$-40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 2) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
Metal Can Package 65
PDIP Package 96 N/A
PSOP Package (Note 4) 129 N/A
Maximum Internal Power Dissipation (Note 1)
Maximum Junction Temperature (Note 1) $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Packages) $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$
(PSOP - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Maximum power dissipation, including load conditions, must be designed to maintain the maximum junction temperature below $175^{\circ} \mathrm{C}$ for the metal can package, and below $150^{\circ} \mathrm{C}$ for the plastic packages. (See Figure 5.)
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
3. Maximum operating temperature in the PSOP package is limited to $60^{\circ} \mathrm{C}$, for $\mathrm{V}_{\text {SUPPLY }}= \pm 12 \mathrm{~V}$ to prevent the junction temperature from exceeding $150^{\circ} \mathrm{C}$. The maximum operating temperature may have to be derated further, depending on the output load condition. The operating temperature may be increased if the HA9P5033 is operated at lower VSUPPLY. For example, the quiescent operating temperature may be increased to $75^{\circ} \mathrm{C}$ by operating at $\mathrm{V}_{\text {SUPPLY }} \leq \pm 9.7 \mathrm{~V}$. See Figure 5 for more information.
4. Direct attach of the PSOP copper slug to copper area on the PCB can reduce the θ_{JA} value to $<100^{\circ} \mathrm{C} / \mathrm{W}$. Consult the Harris Application Group for more information.

Electrical Specifications $V_{S U P P L Y}= \pm 12 V, R_{S}=50 \Omega, R_{L}=100 \Omega, C_{L}=10 p F$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	HA-5033-2			HA-5033-5			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	

INPUT CHARACTERISTICS

Offset Voltage		25	-	5	15	-	5	15	mV
		Full	-	6	25	-	6	25	mV
Average Offset Voltage Drift		Full	-	33	-	-	33	-	$\mu \mathrm{V} / \mathrm{C}^{\mathrm{C}}$
Bias Current		25	-	20	35	-	20	35	$\mu \mathrm{~A}$
		Full	-	30	50	-	30	50	$\mu \mathrm{~A}$
Input Resistance		25	-	3	-	-	3	-	$\mathrm{M} \Omega$
Input Capacitance		25	-	1.6	-	-	1.6	-	pF
Input Noise Voltage		20	-	20	-	-	20	-	$\mu \mathrm{V}_{\mathrm{P}-\mathrm{P}}$

TRANSFER CHARACTERISTICS

Voltage Gain	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	25	0.93	-	-	0.93	-	-	V / N
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	25	0.93	0.99	-	0.93	0.99		$\mathrm{V} N$
	$R_{L}=100 \Omega$	Full	0.92	-	-	0.92	-	-	VN
-3dB Bandwidth		25	-	250	-		250	-	MHz

OUTPUT CHARACTERISTICS

Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=100 \Omega$	Full	± 8	± 10	-	± 8	± 10	-	V
	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$	Full	± 11	± 12	-	± 11	± 12	-	V
Output Current		25	± 80	± 100	-	± 80	± 100	-	mA
Output Resistance		25	-	8	-	-	8	-	Ω
Full Power Bandwidth	$\mathrm{V}_{\mathrm{OUT}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	25	-	146	-	-	146	-	MHz
Full Power Bandwidth (Note 5)		25	15.9	17.5	-	15.9	17.5	-	MHz

TRANSIENT RESPONSE

Rise Time	$V_{\text {OUT }}=500 \mathrm{mV}$	25	-	4.6	-	-	4.6	-	ns
Propagation Delay		25	-	1	-	-	1	-	ns
Overshoot		25	-	3	-	-	3	-	$\%$
Slew Rate (Note 5)		25	1	1.1	-	1	1.1	-	V / ns
Settling Time to 0.1\%		25	-	50	-	-	50	-	ns

Electrical Specifications $\quad V_{S U P P L Y}= \pm 12 V, R_{S}=50 \Omega, R_{L}=100 \Omega, C_{L}=10 p F$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	HA-5033-2			HA-5033-5			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Differential Phase Error (Note 6)		25	-	0.02	-	-	0.02	-	Degree
Differential Gain Error (Note 6)		25	-	0.03	-	-	0.03	-	\%
POWER SUPPLY CHARACTERISTICS									
Supply Current		25	-	21	25	-	21	25	mA
		Full	-	21	30	-	21	30	mA
Power Supply Rejection Ratio		Full	54	-	-	54	-	-	dB
Harmonic Distortion	$\mathrm{V}_{\text {IN }}=1 \mathrm{~V}_{\mathrm{RMS}}$ at 100 kHz	25	-	<0.1	-	-	<0.1	-	\%

NOTES:
5. $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 10 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \Omega$.
6. Differential gain and phase error are nonlinear signal distortions found in video systems and are defined as follows: Differential gain error is defined as the change in amplitude at the color subcarrier frequency as the picture signal is varied from blanking to white level. Differential phase error is defined as the change in the phase of the color subcarrier as the picture signal is varied from blanking to white level. $R_{L}=300 \Omega$.

Test Circuits and Waveforms

FIGURE 1. SLEW RATE AND SETtLING TIME

FIGURE 3. SETTLING TIME

$T_{A}=25^{\circ} \mathrm{C}, R_{S}=50 \Omega, R_{L}=100 \Omega$
+10V RESPONSE

FIGURE 2. TRANSIENT RESPONSE

NOTE: Measured on both positive and negative transitions.
FIGURE 4. RISE TIME

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$
+10V RESPONSE

Test Circuits and Waveforms (Continued)

$T_{A}=25^{\circ} \mathrm{C}, R_{S}=50 \Omega, R_{L}=100 \Omega$
PULSE RESPONSE

Schematic Diagram

Application Information

Layout Considerations

The wide bandwidth of the HA-5033 necessitates that high frequency circuit layout procedures be followed. Failure to follow these guidelines can result in marginal performance.
Probably the most crucial of the RF/video layout rules is the use of a ground plane. A ground plane provides isolation and minimizes distributed circuit capacitance and inductance which will degrade high frequency performance. This ground plane shielding can also incorporate the metal case of the HA-5033 since pin \#2 is internally tied to the package. This feature allows the user to make metal to metal contact between the ground plane and the package, which extends shielding, provides additional heat sinking and eliminates the use of a socket, IC sockets contribute inter-lead capacitance which limits device bandwidth and should be avoided.

For the PDIP, pin 6 can be tied to either supply, grounded, or simply not used. But to optimize device performance and improve isolation, it is recommended that this pin be grounded.

Other considerations are proper power supply bypassing and keeping the input and output connections as short as possible which minimizes distributed capacitance and reduces board space.

Power Supply Decoupling

For optimum device performance, it is recommended that the positive and negative power supplies be bypassed with capacitors to ground. Ceramic capacitors ranging in value from $0.01 \mu \mathrm{~F}$ to $0.1 \mu \mathrm{~F}$ will minimize high frequency variations in supply voltage. Solid tantalum capacitors $1 \mu \mathrm{~F}$ or larger will optimize low frequency performance.
It is also recommended that the bypass capacitors be connected close to the HA-5033 (preferably directly to the supply pins).

Graph is based on:

Where: TJMAX $=$ Maximum Junction Temperature of the Device
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature
$\theta_{\mathrm{JA}}=$ Junction to Ambient Thermal Resistance

FIGURE 5. FREE AIR POWER DISSIPATION

Typical Applications (Also see Application Note AN548)

FIGURE 6. VIDEO COAXIAL LINE DRIVER 50Ω SYSTEM

$$
T_{A}=25^{\circ} C, R_{S}=50 \Omega, R_{M}=R_{L}=50 \Omega
$$

$$
v_{O}=V_{I N}\left[\frac{R_{L}}{R_{L}+R_{M}}\right]=\left[\frac{1}{2}\right] V_{I N}
$$

POSITIVE PULSE RESPONSE

FIGURE 7. VIDEO GAIN BLOCK

NEGATIVE PULSE RESPONSE

$$
\begin{gathered}
T_{A}=25^{\circ} \mathrm{C}, R_{S}=50 \Omega, R_{M}=R_{L}=50 \Omega \\
V_{O}=V_{I N}\left[\frac{R_{L}}{R_{L}+R_{M}}\right]=\left[\frac{1}{2}\right] V_{I N}
\end{gathered}
$$

Typical Performance Curves

FIGURE 8. INPUT OFFSET VOLTAGE vs TEMPERATURE

FIGURE 10. SUPPLY CURRENT vs TEMPERATURE

FIGURE 12. SLEW RATE vs LOAD CAPACITANCE

FIGURE 9. INPUT BIAS CURRENT vs TEMPERATURE

FIGURE 11. SLEW RATE vs TEMPERATURE

FIGURE 13. SLEW RATE vs LOAD CAPACITANCE

Typical Performance Curves (Continued)

FIGURE 14. GAIN ERROR vs INPUT VOLTAGE

FIGURE 16. GAIN ERROR vs TEMPERATURE

FIGURE 18. Y-PARAMETERS PHASE vs FREQUENCY

FIGURE 15. GAIN ERROR vs INPUT VOLTAGE

FIGURE 17. $\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}$ vs IOUT

FIGURE 19. Y-PARAMETER MAGNITUDE vs FREQUENCY

Typical Performance Curves (Continued)

FIGURE 20. POWER SUPPLY REJECTION RATIO vs FREQUENCY

FIGURE 22. TOTAL HARMONIC DISTORTION vs INPUT VOLTAGE

FIGURE 24. OUTPUT SWING vs FREQUENCY (NOTE)

FIGURE 21. TOTAL HARMONIC DISTORTION vs FREQUENCY

FIGURE 23. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE

FIGURE 25. OUTPUT SWING vs FREQUENCY (NOTE)

NOTE:
This curve was obtained by noting the output voltage necessary to produce an observable distortion for a given frequency. If higher distortion is acceptable, then a higher output voltage for a given frequency can be obtained. However, operating the HA-5033 with increased distortion (to the right of curve shown), will also be accompanied by an increase in supply current. The resulting increase in chip temperature must be considered and heat sinking will be necessary to prevent thermal runaway. This characteristic is the result of the output transistor operation. If the signal amplitude or signal frequency or both are increased beyond the curve shown, the NPN, PNP output transistors will approach a condition of being simultaneously on. Under this condition, thermal runaway can occur.

Die Characteristics

DIE DIMENSIONS:
51 mils $\times 67$ mils $\times 19$ mils
$1300 \mu \mathrm{~m} \times 1700 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$
METALLIZATION:
Type: AI, 1\% Cu
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
SUBSTRATE POTENTIAL (Powered Up):
Unbiased
TRANSISTOR COUNT:
20
PROCESS:
Bipolar Dielectric Isolation

PASSIVATION:

Type: Nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ over Silox $\left(\mathrm{SiO}_{2}, 5 \%\right.$ Phos.)
Silox Thickness: $12 k \AA+2 k \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$

Metallization Mask Layout

November 1996

10 MHz and 100 MHz , Low Noise, Operational Amplifiers

Features

- Low Noise \qquad
- Bandwidth \qquad 10MHz (Comp 100MHz (Uncompensated)
- Slew Rate \qquad 10V/ $\mu \mathrm{s}$ (Compensated) 50V/ $\mu \mathrm{s}$ (Uncompensated)
- Low Offset Voltage Drift \qquad $3 \mu V{ }^{\circ} \mathrm{C}$
- High Gain . $1 \times 10^{6} \mathrm{~V} / \mathrm{V}$
- High CMRR/PSRR 100dB
- High Output Drive Capability 30 mA

Applications

- High Quality Audio Preamplifiers
- High Q Active Filters
- Low Noise Function Generators
- Low Distortion Oscillators
- Low Noise Comparators
- For Further Design Ideas, See Application Note AN554, Harris AnswerFAX (407-724-7800) Document \#9554

Description

The HA-5101/5111 are dielectrically isolated operational amplifiers featuring low noise. Both amplifiers have an excellent noise voltage density of $3.0 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz . The uncompensated HA-5111 is stable at a minimum gain of 10 and has the same DC specifications as the unity gain stable HA-5101. The difference in compensation yields a 100 MHz gain-bandwidth product and a $50 \mathrm{~V} / \mu \mathrm{s}$ slew rate for the HA5111 versus a 10 MHz unity gain bandwidth and a $10 \mathrm{~V} / \mu \mathrm{s}$ slew rate for the HA-5101.

DC characteristics of the HA-5101/5111 assure accurate performance. The 0.5 mV offset voltage is externally adjustable and offset voltage drift is just $3 \mu \mathrm{~V}{ }^{\circ} \mathrm{C}$. An offset current of only 30 nA reduces input current errors and an open loop voltage gain of $1 \times 10^{6} \mathrm{~V} / \mathrm{V}$ increases loop gain for low distortion amplification.

The HA-5101/5111 are ideal for audio applications, especially low-level signal amplifiers such as microphone, tape head and phono cartridge preamplifiers. Additionally, it is well suited for low distortion oscillators, low noise function generators and high Q filters.

Pinouts

HA-5101, HA-5111 (PDIP, CERDIP, SOIC) TOP VIEW

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA2-5101-2	-55 to 125	8 Pin Can	T8.C
HA3-5101-5	0 to 75	8 Ld PDIP	E8.3
HA7-5101-2	-55 to 125	8 Ld CERDIP	F8.3A
HA9P5101-5 (H51015)	0 to 75	8 Ld SOIC	M8.15
HA9P5101-9 (H51019)	-40 to 85	8 Ld SOIC	M8.15
HA3-5111-5	0 to 75	8 Ld PDIP	E8.3
HA7-5111-2	-55 to 125	8 Ld CERDIP	F8.3A
HA9P5111-5 (H51115)	0 to 75	8 Ld SOIC	M8.15
HA9P5111-9 (H51119)	-40 to 85	8 Ld SOIC	M8.15

Absolute Maximum Ratings
Voltage Between V+ and V- Terminals 40V
Differential Input Voltage. . 7V
input Voltage
$\pm V_{\text {SUPPLY }}$
Output Current
Full Short Circuit Protection

Operating Conditions

Temperature Range

HA-5101/5111-2.	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-5101/5111-5.	. . $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
HA-5101/5111-9 .	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 2) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$

PDIP Package 94 N/A CERDIP Package 135 . 50 SOIC Package...................... 157 N/A
Maximum Junction Temperature (Note 1) $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$ (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:

1. Maximum power dissipation, including output load, must be designed to maintain the maximum junction temperature below $175^{\circ} \mathrm{C}$ for hermetic packages, and below $150^{\circ} \mathrm{C}$ for the plastic packages.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $V_{S U P P L Y}= \pm 15 \mathrm{~V}, \mathrm{R}_{S}=100 \Omega, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { TEMP } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	HA-5101-2, -5; HA-5111-2, -5			HA-5101-9, HA-5111-9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS									
Offset Voltage		25	-	0.5	3	-	0.5	3	mV
		Full	-	-	4	-	-	4	mV
Offset Voltage Drift		Full	-	3	-	-	3	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	100	200	-	100	200	nA
		Full	-	-	325	-	-	325	nA
Offset Current		25	-	30	75	-	30	75	nA
		Full	-	-	125	-	-	125	nA
Input Resistance		25	-	500	-	-	500	-	$\mathrm{k} \Omega$
Common Mode Range		Full	± 12	\bullet	-	± 12	-	-	V

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	25	-	1000	-	-	1000	-	kV N
		Full	100	250	-	100	250	-	kVN
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	Full	80	100	-	80	100	-	dB
Small Signal Bandwidth	HA-5101, $A_{V}=1$	25	-	10	-	-	10	-	MHz
Gain Bandwidth Product	HA-5111, $\mathrm{A}_{\mathrm{V}}=10$	25	-	100	-	-	100	-	MHz
Minimum Stable Gain	HA-5101	Full	1	-	-	1	-	-	V/N
	HA-5111	Full	10	-	-	10	-	-	V/N

OUTPUT CHARACTERISTICS

Output Voltage Swing	$R_{L}=10 \mathrm{k} \Omega$	Full	± 12	± 13	-	± 12	± 13	-	V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	Full	± 12	± 13	-	± 12	± 13	-	V
	$\mathrm{V}_{\mathrm{S}}= \pm 18 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=600 \Omega$	25	± 15	-	-	± 15	-	-	V
Output Current (Note 3)		25	25	30	-	25	30	-	mA

Electrical Specifications $\quad V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{S}=100 \Omega, R_{L}=2 k \Omega, C_{L}=50 p F$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { TEMP } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	HA-5101-2, -5; HA-5111-2, -5			HA-5101-9, HA-5111-9			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Full Power Bandwidth (Note 4)	HA-5101	25	95	160	-	95	160	-	kHz
	HA-5111	25	630	790	-	630	790	-	kHz
Output Resistance		25	-	110	-	-	110	-	Ω
Maximum Load Capacitance		25	-	800	-	-	800	-	pF

TRANSIENT RESPONSE (Note 5)

Rise Time	HA-5101	25	-	50	100	-	50	100	ns
	HA-5111	25	-	30	60	-	30	60	ns
Overshoot	HA-5101	25	-	20	35	-	20	35	\%
	HA-5111	25	-	20	40	-	20	40	\%
Slew Rate	HA-5101	25	6	10	-	6	10	-	$\mathrm{V} / \mathrm{\mu s}$
	HA-5111	25	40	50	-	40	50	-	$\mathrm{V} / \mu \mathrm{s}$
Settling Time (Note 6)	HA-5101 0.01\%	-	-	2.6	-	-	2.6	-	$\mu \mathrm{s}$
	HA-5111 0.01\%	-	-	0.5	-	-	0.5	-	$\mu \mathrm{s}$

NOISE CHARACTERISTICS (Note 7)

Input Noise Voltage	$f=10 \mathrm{~Hz}$	25	-	5	7	-	5	7	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}=1 \mathrm{kHz}$	25	-	3.0	4.0	-	3.0	4.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current	$\mathrm{f}=10 \mathrm{~Hz}$	25	-	4.0	9	\bullet	4.0	9	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}=1 \mathrm{kHz}$		-	0.6	2.5	-	0.6	2.5	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Broadband Noise Voltage	$\mathrm{f}=$ DC To 30 kHz	25	-	0.870	-	-	0.870	-	$\mu \mathrm{V}_{\text {RMS }}$

POWER SUPPLY CHARACTERISTICS

Supply Current HA-5101/5111		Full	-	4	6	-	4	7	mA
Power Supply Rejection Ratio	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$	Full	80	100	-	80	100	-	dB

NOTES:

3. Output current is measured with $\mathrm{V}_{\text {OUT }}= \pm 15 \mathrm{~V}$ with $\mathrm{V}_{\text {SUPPLY }}= \pm 18 \mathrm{~V}$.
4. Full power bandwidth is guaranteed by equation: Full power bandwidth $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}, V_{\text {PEAK }}=10 \mathrm{~V}$.
5. Refer to Test Circuits section of the data sheet.
6. Setting time is measured to 0.01% of final value for a 10 V output step, and $\mathrm{A}_{V}=-10$ for $\mathrm{HA}-5111$ and 0.01% of final value for a 10 V output step, $A_{V}=-1$ for HA-5101.
7. The limits for these parameters are guaranteed based on lab characterization, and reflect lot-to-lot variation.

Test Circuits and Waveforms

FIGURE 1. HA-5101 LARGE SIGNAL RESPONSE CIRCUIT

Ch. $1=2.5 \mathrm{~V} / \mathrm{Div}$.
Timebase $=200 \mathrm{~ns} /$ Div.
FIGURE 3. HA-5111 LARGE SIGNAL TRANSIENT RESPONSE

Ch. $1=2.5 \mathrm{~V} / \mathrm{Div}$.
Timebase $=1.00 \mu \mathrm{~s} /$ Div.
FIGURE 5. HA-5101 LARGE SIGNAL TRANSIENT RESPONSE
in

FIGURE 2. HA-5101 SMALL SIGNAL RESPONSE CIRCUIT

Ch. $1=100 \mathrm{mV} /$ Div.
Timebase $=100 \mathrm{~ns} /$ Div.
FIGURE 4. HA-5111 SMALL SIGNAL TRANSIENT RESPONSE

Ch. $1=50 \mathrm{mV} /$ Div.
Timebase $=100 \mathrm{~ns} /$ Div.
FIGURE 6. HA-5101 SMALL SIGNAL TRANSIENT RESPONSE

Test Circuits and Waveforms (Continued)

FIGURE 7. HA-5111 LARGE AND SMALL SIGNAL RESPONSE CIRCUIT

NOTES:
8. $A_{V}=-1$ (HA-5101), $A_{V}=-10$ (HA-5111).
9. Feedback and summing resistors should be 0.1% matched.
10. Clipping diodes are optional, HP5082-2810 recommended.

FIGURE 8. SETTLING TIME CIRCUIT

Schematic

Application Information

Operation At $\pm 5 \mathrm{~V}$ Supply

The HA-5101/11 performs well at $\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ exhibiting typical characteristics as listed below:

$l_{\text {CC }}$	3.7 mA
V_{10}	0.5 mV
'BIAS	56 nA
$A_{V O L}\left(\mathrm{~V}_{\mathrm{O}}= \pm 3 \mathrm{~V}\right)$	$106 \mathrm{kV} / \mathrm{N}$
$V_{\text {OUT }}$	3.7 V
I OUT	13 mA
CMRR ($\Delta \mathrm{V}_{\mathrm{CM}}= \pm 2.5 \mathrm{~V}$)	90 dB
PSRR ($\Delta \mathrm{V}_{\mathrm{S}}=0.5 \mathrm{~V}$)	90 dB
Unity Gain Bandwidth (5101)	10 MHz
GBWP (5111).	100 MHz
Slew Rate (5101)	$7 \mathrm{~V} / \mu \mathrm{s}$
Slew Rate (5111)	$40 \mathrm{~V} / \mu \mathrm{s}$

Offset Adjustment

The following is the recommended V_{10} adjust configuration:

NOTE: Proper decoupling is always recommended, $0.1 \mu \mathrm{~F}$ high quality capacitor should be at or very near the device's supply pins.

Compensation

An external compensation capacitor can be used with the HA-5111 connected between pin 8 and ground (or $V-, V+$ not Recommended). A plot of gain bandwidth product vs compensation capacitor has been included as a design aid. The capacitor should be a high frequency type mounted near the device leads to minimize parasitics.

Input Protection

The HA-5101/11 has built-in back-to-back protection diodes which will limit the differential input voltage to approximately 7 V . If the $5101 / 11$ will be used in conditions where that voltage may be exceeded, then current limiting resistors must be used. No more than 25 mA should be allowed to flow in the HA-5101/11's input.

Comparator Circuit

Choose R RIM Such That: $\quad \frac{\left(\Delta V_{\text {INMAX }}-7 V\right)}{25 m A} \leq 2 R_{\text {LIM }}$

Output Saturation

When an op amp is overdriven, output devices can saturate and sometimes take a long time to recover. Saturation can be avoided (sometimes) by using circuits such as:

If saturation cannot be avoided the HA-5101/11 recovers from a 25% overdrive in about 6.5μ s (see photos).

Top: Input Bottom: Output, 5V/Div., $2 \mu \mathrm{~s} /$ Div.
Output is overdriven negative and recovers in 6μ s.

Typical Performance Curves

FIGURE 9. HA-5101/11 NOISE SPECTRUM

$A_{V}=25000 \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\left(2.25 \mu \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \mathrm{RTO}\right)$
PEAK-TO-PEAK NOISE 0.1 Hz TO 10 Hz

FIGURE 11. INPUT OFFSET CURRENT vs TEMPERATURE

FIGURE 10. OFFSET VOLTAGE vs TEMPERATURE

$A_{V}=25000, V_{S}= \pm 15 \mathrm{~V}\left(12.89 \mathrm{mV} V_{\text {P-P }} R T O\right)$
PEAK-TO-PEAK TOTAL NOISE 0.1 Hz TO 1 MHz

FIGURE 12. INPUT BIAS CURRENT vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 13. SLEW RATE/RISE TIME vs TEMPERATURE

FIGURE 15. INPUT OFFSET WARMUP DRIFT vs TIME (NORMALIZED TO ZERO FINAL VALUE) (SIX REPRESENTATIVE UNITS)

FIGURE 17. DC OPEN-LOOP VOLTAGE GAIN vs SUPPLY VOLTAGE

FIGURE 14. OPEN-LOOP GAIN/PHASE vs FREQUENCY

FIGURE 16. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 18. SHORT CIRCUIT CURRENT vs TIME

Typical Performance Curves (Continued)

FIGURE 19. HA-5111 FREQUENCY RESPONSE

FIGURE 21. HA-5101 FREQUENCY RESPONSE

FIGURE 23. HA-5101 CLOSED-LOOP GAIN vs FREQUENCY

FIGURE 20. HA-5111 CLOSED-LOOP GAIN vs FREQUENCY

FIGURE 22. HA-5111 REJECTION RATIOS vs FREQUENCY

FIGURE 24. HA-5101 REJECTION RATIOS vs FREQUENCY

Typical Performance Curves (Continued)

FIGURE 25. HA-5111 SETTLING WAVEFORM 500ns/DIV.

FIGURE 27. HA-5101 + $V_{\text {OUT }}$ vs R_{L}

FIGURE 26. HA-5101 SETTLING WAVEFORM $1.5 \mu \mathrm{~s} / \mathrm{DIV}$.

FIGURE 28. HA-5101 - $\mathrm{V}_{\text {OUT }}$ vs R_{L}

Die Characteristics

DIE DIMENSIONS:
70 mils $\times 70$ mils $\times 19$ mils
$1790 \mu \mathrm{~m} \times 1780 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$
METALLIZATION:
Type: Al, 1\% Cu
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$

PASSIVATION:

Type: Nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ over Silox ($\mathrm{SiO}_{2}, 5 \%$ Phos.)
Silox Thickness: $12 \mathrm{k} \AA+2 \mathrm{k} \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$
SUBSTRATE POTENTIAL (Powered Up): V-
TRANSISTOR COUNT: 54
PROCESS: Bipolar Dielectric Isolation

Metallization Mask Layout

Dual and Quad, 8 MHz and 60 MHz , Low Noise

November 1996

Features

- Low Noise 4.3nV/ $\sqrt{\mathrm{Hz}}$
- Bandwidth \qquad 60 MHz (Uncompensated)
- Slew Rate \qquad $3 \mathrm{~V} / \mu \mathrm{s}$ (Compensated) 20V/ $\mu \mathrm{s}$ (Uncompensated)
- Low Offset Voltage.
0.5 mV
- Available in Duals or Quads

Applications

- Applications
- High Q, Active Filters
- Audio Amplifiers
- Instrumentation Amplifiers
- Integrators
- Signal Generators
- For Further Design Ideas, See Application Note AN554

Description

Low noise and high performance are key words describing HA-5102 and HA-5104, HA-5112, HA-5114. These general purpose amplifiers offer an array of dynamic specifications ranging from a $3 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 8 MHz bandwidth (5102/04) to $20 \mathrm{~V} / \mathrm{\mu s}$ slew rate and 60 MHz gain-bandwidth-product (HA-5112/14). Complementing these outstanding parameters is a very low noise specification of $4.3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz .
Fabricated using the Harris high frequency DI process, these operational amplifiers also offer excellent input specifications such as a 0.5 mV offset voltage and 30 nA offset current. Complementing these specifications are 108 dB open loop gain and 60dB channel separation. Consuming a very modest amount of power ($90 \mathrm{~mW} /$ package for duals and $150 \mathrm{~mW} /$ package for quads), HA-5102/04/12/14 also provide 15 mA of output current.
This impressive combination of features make this series of amplifiers ideally suited for designs ranging from audio amplifiers and active filters to the most demanding signal conditioning and instrumentation circuits.
These operational amplifiers are available in dual or quad form with industry standard pinouts allowing form immediate interchangeability with most other dual and quad operational amplifiers
HA-5102 Dual, Comp.
HA-5104
Quad, Comp
HA-5112 Dual, Uncomp. HA-5114 Quad, Uncomp.
Refer to the $/ 883$ data sheet for military product.

Pinouts (See Ordering Information on next page)

HA-5102 (METAL CAN)
TOP VIEW

HA-5102/5112 (SOIC) TOP VIEW

HA-5104/5114 (PDIP, CERDIP)
 TOP VIEW

HA5104/5114 (SOIC) TOP VIEW

Ordering Information

PART NUMBER	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. NO
HA2-5102-2	-55 to 125	8 Pin Metal Can	T8.C
HA2-5102-5	0 to 75	8 Pin Metal Can	T8.C
HA3-5102-5	0 to 75	8 Ld PDIP	E8.3
HA7-5102-2	-55 to 125	8 Ld CERDIP	F8.3A
HA7-5102-5	0 to 75	8 Ld CERDIP	F8.3A
HA9P5102-5	0 to 75	16 Ld SOIC	M16.3
HA9P5102-9	-40 to 85	16 Ld SOIC	M16.3
HA1-5104-2	-55 to 125	14 Ld CERDIP	F14.3
HA1-5104-5	0 to 75	14 Ld CERDIP	F14.3
HA3-5104-5	0 to 75	14 Ld PDIP	E14.3
HA9P5104-5	0 to 75	16 Ld SOIC	M16.3
HA9P5104-9	-40 to 85	16 Ld SOIC	M16.3
НАЗ-5112-5	0 to 75	8 Ld PDIP	E8.3
HA7-5112-2	-55 to 125	8 Ld CERDIP	F8.3A
HA9P5112-5	0 to 75	16 Ld SOIC	M16.3
HA9P5112-9	-40 to 85	16 Ld SOIC	M16.3
HA1-5114-2	-55 to 125	14 Ld CERDIP	F14.3
HA1-5114-5	0 to 75	14 Ld CERDIP	F14.3
НАЗ-5114-5	0 to 75	14 Ld PDIP	E14.3
HA9P5114-5	0 to 75	16 Ld SOIC	M16.3
HA9P5114-9	-40 to 85	16 Ld SOIC	M16.3

Absolute Maximum Ratings	
Supply Voltage Between V+ and V- Terminals	40V
Differential Input Voltage.	
Input Voltage.	$\pm \mathrm{V}_{\text {SUPPLY }}$
Output Short Circuit Duration (Note 3)	Indefinite
Operating Conditions	
Temperature Range	
HA-5102/5104/5112/5114-2	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-5102/5104/5112/5114-5	. $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
HA-5102/5104/5112/5114-9	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Supply Voltage Between V+ and V- Terminals

Output Short Circuit Duration (Note 3)
$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
$40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Thermal Information
Thermal Resistance (Typical, Note 2) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ Metal Can Package 165 80 8 Lead PDIP Package 92 N/A 8 Lead CERDIP Package 135 50 SOIC Package (HA-5102, HA-5112) . . 112 N/A
14 Lead CERDIP Package 80 30 14 Lead PDIP Package 86 N/A SOIC Package (HA-5104, HA-5114) . . 96 N/A
Maximum Junction Temperature (Note 1, Ceramic Package) . . $175^{\circ} \mathrm{C}$ Maximum Junction Temperature (Plastic Package) $150^{\circ} \mathrm{C}$ Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Maximum Lead Temperature (Soldering 10s). $300^{\circ} \mathrm{C}$ (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Maximum power dissipation, including output load, must be designed to maintain the maximum junction temperature below $175^{\circ} \mathrm{C}$ for hermetic packages, and below $150^{\circ} \mathrm{C}$ for plastic packages.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
3. Any one amplifier may be shorted to ground indefinitely.

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEMP. (${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \text { HA-5102-2, -5 } \\ & \text { HA-5112-2, }-5 \end{aligned}$			$\begin{aligned} & \text { HA-5104-2, }-5 \\ & \text { HA-5114-2, }-5 \end{aligned}$			$\begin{aligned} & \text { HA-5102-9 } \\ & \text { HA-5112-9 } \end{aligned}$			$\begin{aligned} & \text { HA-5104-9 } \\ & \text { HA-5114-9 } \end{aligned}$			UNITS
		MIN	TYP	MAX										
INPUT CHARACTERISTICS														
Offset Voltage	25	-	0.5	2.0	-	0.5	2.5	-	0.5	2.0	-	0.5	2.5	mV
	Full	-	-	2.5	-	-	3.0	-	-	2.5	-	-	3.0	mV
Offset Voltage Average Drift	Full	-	3	-	-	3	-	-	3	-	-	3	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	25	-	130	200	-	130	200	-	130	200	-	130	200	nA
	Full	-	-	325	-	-	325	-	-	500	-	-	500	nA
Offset Current	25	-	30	75	-	30	75	-	30	75	-	30	75	nA
	Full	-	-	125	-	-	125	-	-	125	-	-	125	nA
Input Resistance	25	-	500	-	-	500	-	-	500	-	-	500	-	k Ω
Common Mode Range	Full	± 12	-	-	V									
TRANSFER CHARACTERISTICS														
Large Signal Voltage Gain $\left(\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\right.$)	25	100	250	-	100	250	-	80	250	-	80	250	-	kVN
	Full	100	-	-	100	-	-	80	-	-	80	-	-	kV/
Common Mode Rejection Ratio ($\mathrm{V}_{\mathrm{CM}}= \pm 5.0 \mathrm{~V}$)	Full	86	95	-	86	95	-	80	95	-	80	95	-	dB
Small Signal Bandwidth $H A-5102 / 5104\left(A_{V}=1\right)$	25	-	8	-	-	8	-	-	8	-	-	8	-	MHz
Gain Bandwidth Product $H A-5112 / 5114\left(A_{V}=10\right)$	25	-	60	-	-	60	-	-	60	-	-	60	-	MHz
Channel Separation (Note 4)	25	-	60	-	-	60	-	-	60	-	-	60	-	dB

Electrical Specifications $\quad V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified (Continued)

STABILITY

Minimum Stable Closed Loop Gain HA-5102/5104	Full	1	-	-	1	-	-	1	-	-	1	-	-	V/N
HA-5112/5114	Full	10	-	-	10	-	-	10	-	-	10	-	-	V/N

TRANSIENT RESPONSE (Note 6)

Rise Time HA-5102/5104	25	-	108	200	-	108	200	-	108	200	-	108	200	ns
HA-5112/5114	25	-	48	100	-	48	100	-	48	100	-	48	100	ns
Overshoot HA-5102/5104	25	-	20	35	-	20	35	-	20	35	-	20	35	\%
HA-5112/5114	25	-	30	40	-	30	40	-	30	40	-	30	40	\%
Slew Rate HA-5102/5104	25	1	3	-	1	3	-	1	3	-	1	3	-	V/ $\mu \mathrm{s}$
HA-5112/5114	25	12	20	-	12	20	-	12	20	-	12	20	-	$\mathrm{V} / \mu \mathrm{s}$
Settling Time (Note 7) HA-5102/5104	25	-	4.5	-	-	4.5	-	-	4.5	-	-	4.5	-	$\mu \mathrm{s}$
HA-5112/5114	25	-	0.6	-	-	0.6	-	-	0.6	-	-	0.6	-	$\mu \mathrm{s}$

NOISE CHARACTERISTICS (Note 8)

Input Noise Voltage $f=10 \mathrm{~Hz}$	25	-	9	25	-	9	25	-	9	25	-	9	25	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
$f=1 \mathrm{kHz}$	25	-	4.3	6.0	-	4.3	6.0	-	4.3	6.0	-	4.3	6.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current $f=10 \mathrm{~Hz}$	25	-	5.1	15	-	5.1	15	-	5.1	15	-	5.1	15	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
$f=1 \mathrm{kHz}$	25	-	0.57	3	-	0.57	3	-	0.57	3	-	0.57	3	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
Broadband Noise Voltage $f=D C \text { to } 30 \mathrm{kHz}$	25	-	870	-	-	870	-	-	870	-	-	870	-	$\mathrm{n} \mathrm{V}_{\text {RMS }}$

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$. Unless Otherwise Specified (Continued)

PARAMETER	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { HA-5102-2, -5 } \\ & \text { HA-5112-2, }-5 \end{aligned}$			$\begin{aligned} & \text { HA-5104-2, -5 } \\ & \text { HA-5114-2, -5 } \end{aligned}$			$\begin{aligned} & \text { HA-5102-9 } \\ & \text { HA-5112-9 } \end{aligned}$			$\begin{aligned} & \text { HA-5104-9 } \\ & \text { HA-5114-9 } \end{aligned}$			UNITS
		MIN	TYP	MAX										
POWER SUPPLY CHARACTERISTICS														
Supply Current (All Amps)	25	-	3.0	5.0	-	5.0	6.5	-	3.0	5.0	-	5.0	6.5	mA
Power Supply Rejection Ratio $\left(\Delta \mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}\right)$	Full	86	100	-	86	100	-	80	100	-	80	100	-	dB

NOTES:
4. Channel separation value is referred to the input of the amplifier. Input test conditions are: $f=10 \mathrm{kHz} ; \mathrm{V}_{\mathbb{I N}}=100 \mathrm{~m} V_{\text {PEAK }} ; R_{S}=1 \mathrm{k} \Omega$.
5. Full power bandwidth is guaranteed by equation: Full power bandwidth $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$.
6. Refer to Test Circuits section of the data sheet.
7. Settling time is measured to 0.1% of final value for a 1 V input step, and $A_{V}=-10$ for HA-5112/5114, and a 10 V input step, $A_{V}=-1$ for HA-5102/5104.
8. The limits for these parameters are guaranteed based on lab characterization, and reflect lot-to-lot variation.

Test Circuits and Waveforms
HA-5102, HA-5104

Vertical $=5 \mathrm{~V} /$ Div., Horizontal $=5 \mu \mathrm{~s} /$ Div. $\left(A_{V}=-1\right)$
FIGURE 1. LARGE SIGNAL RESPONSE CIRCUIT

Vertical $=40 \mathrm{mV} /$ Div., Horizontal $=50 \mathrm{~ns} /$ Div. $\left(A_{V}=+1\right)$
FIGURE 2. SMALL SIGNAL RESPONSE CIRCUIT

Test Circuits and Waveforms (Continued)

Input $=0.5 \mathrm{~V} /$ Div., Output $=5 \mathrm{~V} /$ Div., Time $=50 \mathrm{~ns} /$ Div.

NOTE: $A_{V}=+10$.
FIGURE 3. LARGE AND SMALL SIGNAL RESPONSE CIRCUIT ($A_{V}=+10$)

Input $=10 \mathrm{mV} /$ Div., Output $=50 \mathrm{mV} /$ Div., Time $=50 \mathrm{~ns} /$ Div.

NOTES:
9. $A_{V}=-1(H A-5102 / 5104), A_{V}=-10(H A-5112 / 5114)$.
10. Feedback and summing resistors should be 0.1% matched.
11. Clipping diodes are optional, HP5082-2810 recommended.

FIGURE 4. SETTLING TIME CIRCUIT

Simplified Schematic

Typical Performance Curves

FIGURE 5. INPUT NOISE VOLTAGE DENSITY

FIGURE 6. INPUT NOISE CURRENT DENSITY

Typical Performance Curves (Continued)

$V_{S}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 50 \mu \mathrm{~V} /$ Div., $1 \mathrm{~s} /$ Div., $\mathrm{A}_{\mathrm{V}}=1000 \mathrm{~V} / \mathrm{N}$ Input Noise $=0.232 \mu \mathrm{~V}_{\text {P-P }}$

FIGURE 7. 0.1 Hz TO 10 Hz NOISE

FIGURE 9. VIO vs TEMPERATURE

FIGURE 11. I_{O} vs TEMPERATURE

$V_{S}= \pm 15 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, 500 \mu \mathrm{~V} /$ Div., $1 \mathrm{~s} /$ Div., $A_{V}=1000 \mathrm{~V} / \mathrm{V}$ Total Output Noise $=2.075 \mu \mathrm{~V}_{\text {P-P }}$

FIGURE 8. 0.1 Hz TO 1 MHz NOISE

FIGURE 10. V_{IO} vs V_{S}

FIGURE 12. IBIAS vS TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 13. ICC vs TEMPERATURE (HA-5104/14)

FIGURE 15. Avol vs TEMPERATURE

FIGURE 17. Avol vs $\mathbf{V}_{\mathbf{S}}$

FIGURE 14. ICC vs V_{S} (HA-5102/12)

FIGURE 16. Avol vs LOAD RESISTANCE

FIGURE 18. $\mathbf{V}_{\text {OUT }}$ vs $\mathbf{V}_{\mathbf{S}}$

Typical Performance Curves (Continued)

FIGURE 19. OUTPUT SHORT CIRCUIT CURRENT vs TIME

FIGURE 21. PSRR vs FREQUENCY

FIGURE 23. HA-5112/14 FREQUENCY RESPONSE

FIGURE 20. CMRR vs FREQUENCY

FIGURE 22. HA-5104/02 UNITY GAIN FREQUENCY RESPONSE

FIGURE 24. OPEN LOOP GAIN vs FREQUENCY

Typical Performance Curves (Continued)

FIGURE 25. SMALL SIGNAL OVERSHOOT vs CLOAD

FIGURE 26. SLEW RATE vs TEMPERATURE

FIGURE 27. RISE TIME vs TEMPERATURE

Die Characteristics

DIE DIMENSIONS:

SUBSTRATE POTENTIAL (Powered Up):

98.4 mils $\times 67.3$ mils $\times 19$ mils
$2500 \mu \mathrm{~m} \times 1710 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$
METALLIZATION:
Type: AI, 1\% Cu
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
Unbiased
TRANSISTOR COUNT:

PASSIVATION:

Type: Nitride ($\mathrm{Si}_{3} \mathrm{~N}_{4}$) over Silox ($\mathrm{SiO}_{2}, 5 \%$ Phos.)
Silox Thickness: $12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$
Metallization Mask Layout

Features

- Slew Rate . 10V/ $/$ s
- Unity Gain Bandwidth 8.5 MHz
- Low Noise $3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz
- Low VOS . 10 10 V
- High CMRR . 126dB
- High Gain $1800 \mathrm{~V} / \mathrm{mV}$

Applications

- High Speed Signal Conditioners
- Wide Bandwidth Instrumentation Amplifiers
- Low Level Transducer Amplifiers
- Fast, Low Level Voltage Comparators
- Highest Quality Audio Preamplifiers
- Pulse/RF Amplifiers

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA3-5127-5	0 to 75	8 Ld PDIP	E8.3
HA3-5127A-5	0 to 75	8 Ld PDIP	E8.3
HA7-5127-2	-55 to 125	8 Ld CERDIP	F8.3A
HA7-5127-5	0 to 75	8 Ld CERDIP	F8.3A
HA7-5127A-2	-55 to 125	8 Ld CERDIP	F8.3A
HA7-5127A-5	0 to 75	8 Ld CERDIP	F8.3A
HA9P5127-5 (H51275)	0 to 75	8 Ld SOIC	M8.15

Description

The HA-5127 monolithic operational amplifier features an unparalleled combination of precision DC and wideband high speed characteristics. Utilizing the Harris D. I. technology and advanced processing techniques, this unique design unites low noise ($3 \mathrm{n} V / \sqrt{\mathrm{Hz}}$) precision instrumentation performance with high speed ($10 \mathrm{~V} / \mu \mathrm{s}$) wideband capability.

This amplifier's impressive list of features include low V_{OS} ($10 \mu \mathrm{~V}$), wide unity gain-bandwidth (8.5 MHz), high open loop gain ($1800 \mathrm{~V} / \mathrm{mV}$), and high CMRR (126dB). Additionally, this flexible device operates over a wide supply range ($\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$) while consuming only 140 mW of power.

Using the HA-5127 allows designers to minimize errors while maximizing speed and bandwidth.

This device is ideally suited for low level transducer signal amplifier circuits. Other applications which can utilize the HA-5127's qualities include instrumentation amplifiers, pulse amplifiers, audio preamplifiers, and signal conditioning circuits. This device can easily be used as a design enhancement by directly replacing the 725, OP25, OP06, OP07, OP27 and OP37. For the military grade product, refer to the HA-5127/883 data sheet.

Pinout

HA-5127
(PDIP, CERDIP, SOIC)
TOP VIEW

Absolute Maximum Ratings

Supply Voltage Between V+ and V- Terminals
Differential Input Voltage (Note 3).
.0 .7 V
Output Current
Full Short Circuit Protection

Operating Conditions

Temperature Range
HA-5127/27A-2.
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA5127/27A-5

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:

1. Maximum power dissipation, including output load must be designed to maintain the maximum junction temperature below $175^{\circ} \mathrm{C}$ for Hermetic packages, and below $150^{\circ} \mathrm{C}$ for the plastic packages.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
3. For differential input voltages greater than 0.7 V , the input current must be limited to 25 mA to protect the back-to-back input diodes.

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}<50 \mathrm{pF}, \mathrm{R}_{\mathrm{S}}<100 \Omega$

PARAMETER	TEST CONDITIONS	TEMP.$\left({ }^{\circ} \mathrm{C}\right)$	HA-5127A			HA-5127			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS									
Offset Voltage		25	-	10	25	-	30	100	$\mu \mathrm{V}$
		Full	-	30	60	-	70	300	$\mu \mathrm{V}$
Average Offset Voltage Drift		Full	-	0.2	0.6	-	0.4	1.8	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	± 10	± 40	-	± 15	± 80	$n \mathrm{~A}$
		Full	-	± 20	± 60	-	± 35	± 150	nA
Offset Current		25	-	7	35	-	12	75	nA
		Full	-	15	50	-	30	135	nA
Common Mode Range		Full	± 10.3	± 11.5	-	± 10.3	± 11.5	-	V
Differential Input Resistance (Note 4)		25	1.5	6	-	0.8	4	-	$\mathrm{M} \Omega$
Input Noise Voltage (Note 5)	0.1 Hz to 10 Hz	25	-	0.08	0.18	-	0.09	0.25	$\mu \mathrm{V}_{\text {P-P }}$
Input Noise Voltage Density (Note 6)	$\mathrm{f}=10 \mathrm{~Hz}$	25	-	3.5	8.0	-	3.8	8.0	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
	$f=100 \mathrm{~Hz}$		-	3.1	4.5	-	3.3	4.5	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
	$f=1000 \mathrm{~Hz}$		-	3.0	3.8	-	3.2	3.8	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density (Note 6)	$\mathrm{f}=10 \mathrm{~Hz}$	25	-	1.7	4.0	-	1.7	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	$f=100 \mathrm{~Hz}$		-	1.0	2.3	-	1.0	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	$f=1000 \mathrm{~Hz}$		-	0.4	0.6	-	0.4	0.6	$\mathrm{pA} \sqrt{\mathrm{Hz}}$

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	25	1000	1800	-	700	1500	-	V / mV
		Full	600	1200	-	300	800	-	V / mV
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	Full	114	126	-	100	120	-	dB
Minimum Stable Gain		25	1	-	-	1	-	-	V/N
Unity-Gain-Bandwidth		25	5	8.5	-	5	8.5	-	MHz
OUTPUT CHARACTERISTICS									
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	25	± 10.0	± 11.5	-	± 10.0	± 11.5	-	V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	Full	± 11.7	± 13.8	-	± 11.5	± 13.5	-	V
Full Power Bandwidth (Note 7)		25	111	160	-	111	160	-	kHz
Output Resistance	Open Loop	25	-	70	-	-	70	-	Ω
Output Current		25	16.5	25	-	16.5	25	-	mA
TRANSIENT RESPONSE (Note 8)									
Rise Time		25	-	-	150	-	-	150	ns
Slew Rate	$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}$	25	7	10	-	7	10	-	$\mathrm{V} / \mu \mathrm{s}$

Electrical Specifications $V_{S U P P L Y}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}<50 \mathrm{pF}, \mathrm{R}_{\mathrm{S}}<100 \Omega$ (Continued)

PARAMETER	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	HA-5127A			HA-5127			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Settling Time (Note 9)		25	-	1.5	-	-	1.5	-	$\mu \mathrm{s}$
Overshoot		25	-	20	40	-	20	40	\%
POWER SUPPLY CHARACTERISTICS									
Supply Current		25	-	3.5	-	-	3.5	-	mA
		Full	-	-	4.0	-	-	4.0	mA
Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	Full	-	2	4	-	16	51	$\mu \mathrm{V} / \mathrm{N}$

NOTES:
4. This parameter value is based upon design calculations.
5. Refer to Typical Performance Curves.
6. The limits for this parameter are guaranteed based on lab characterization, and reflect lot-to-lot variation.
7. Full power bandwidth guaranteed based on slew rate measurement using: FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$.
8. Refer to Test Circuits section of the data sheet.
9. Settling time is specified to 0.1% of final value for a 10 V output step and $A_{V}=-1$.

Test Circuits and Waveforms

FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUITS

Vertical Scale: Input $=0.5 \mathrm{~V} /$ Div., Output $=5 \mathrm{~V} /$ Div. Horizontal Scale: $1 \mu \mathrm{~s} /$ Div.

LARGE SIGNAL RESPONSE

Vertical Scale: $100 \mathrm{mV} / \mathrm{Div}$. Horizontal Scale: 200ns/Div.

SMALL SIGNAL RESPONSE

NOTES:
10. $A_{V}=-1$.
11. Feedback and summing resistors should be 0.1% matched.
12. Clipping diodes are optional. HP5082-2810 recommended.

FIGURE 2. SETTLING TIME TEST CIRCUIT
Schematic Diagram

Application Information

NOTE: Tested Offset Adjustment Range is IV OS +1 mVI minimum referred to output. Typical range is $\pm 4 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=10 \mathrm{k} \Omega$.
FIGURE 3. SUGGESTED OFFSET VOLTAGE ADJUSTMENT

Low resistances are preferred for low noise applications as a $1 \mathrm{k} \Omega$ resistor has $4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of thermal noise. Total resistances of greater than $10 \mathrm{k} \Omega$ on either input can reduce stability. In most high resistance applications, a few picofarads of capacitance across the feedback resistor will improve stability.

FIGURE 4. SUGGESTED STABILITY CIRCUITS

Typical Performance Curves Unless Otherwise Specified: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$

FIGURE 5. TYPICAL OFFSET VOLTAGE DRIFT vs TEMPERATURE

FIGURE 6. NOISE CHARACTERISTICS

Typical Performance Curves Unless Otherwise Specified: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ (Continued)

FIGURE 7. NOISE vs SUPPLY VOLTAGE

FIGURE 9. OFFSET VOLTAGE DRIFT vs TIME

FIGURE 11. PSRR vs FREQUENCY

FIGURE 8. CMRR vs FREQUENCY

FIGURE 10. OFFSET VOLTAGE WARM UP DRIFT

FIGURE 12. CLOSED LOOP GAIN AND PHASE vs FREQUENCY

Typical Performance Curves Unless Otherwise Specified: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ (Continued)

FIGURE 13. Avol AND Vout vs LOAD RESISTANCE

FIGURE 15. SUPPLY CURRENT vs TEMPERATURE

FIGURE 17. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 14. NORMALIZED SLEW RATE vs TEMPERATURE

FIGURE 16. MAX UNDISTORTED SINEWAVE OUTPUT vs FREQUENCY

FIGURE 18. BANDWIDTH AND SLEW RATE vs SUPPLY VOLTAGE

Typical Performance Curves Unless Otherwise Specified: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V} \quad$ (Continued)

FIGURE 19. OPEN LOOP GAIN AND PHASE

FIGURE 20. CLOSED LOOP GAIN AND PHASE

Horizontal Scale $=1 \mathrm{~s} /$ Div.
Vertical Scale $=0.002 \mu \mathrm{~V} /$ Div.
$\mathrm{A}_{\mathrm{CL}}=25,000 \mathrm{~V} / \mathrm{V}, \mathrm{E}_{\mathrm{N}}=0.08 \mu \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \mathrm{RTI}$

FIGURE 21. PEAK-TO-PEAK NOISE VOLTAGE (0.1 Hz TO 10 Hz)

Die Characteristics

DIE DIMENSIONS:
104 mils $\times 65$ mils $\times 19$ mils
$2650 \mu \mathrm{~m} \times 1650 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:

Type: AI, 1\% Cu
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$
SUBSTRATE POTENTIAL (Powered Up):
V-

Metallization Mask Layout

PASSIVATION:

Type: Nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ over Silox ($\mathrm{SiO}_{2}, 5 \%$ Phos.) Silox Thickness: $12 k \AA \pm 2 k \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$
TRANSISTOR COUNT:
63
PROCESS:
Bipolar Dielectric Isolation

2.5MHz, Precision Operational Amplifiers

Features

- Low Offset Voltage. $25 \mu \mathrm{~V}$ (Max)
- Low Offset Voltage Drift $0.4 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Low Noise . 9nV/ $\sqrt{H z}$
- Open Loop Gain. 140dB
- Unity Gain Bandwidth . 2.5MHz
- All Bipolar Construction

Applications

- High Gain Instrumentation
- Precision Data Acquisition
- Precision Integrators
- Biomedical Amplifiers
- Precision Threshold Detectors

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA2-5130-5	0 to 75	8 Pin Metal Can	T8.C
HA2-5135-5	0 to 75	8 Pin Metal Can	T8.C
HA7-5130-2	-55 to 125	8 Ld CERDIP	F8.3A
HA7-5130-5	0 to 75	8 Ld CERDIP	F8.3A
HA7-5135-2	-55 to 125	8 Ld CERDIP	E8.3A
HA7-5135-5	0 to 75	8 Ld CERDIP	E8.3A

Description

The Harris HA-5130/5135 are precision operational amplifiers manufactured using a combination of key technological advancements to provide outstanding input characteristics.

A Super Beta input stage is combined with laser trimming, dielectric isolation and matching techniques to produce $25 \mu \mathrm{~V}$ (Maximum) input offset voltage and $0.4 \mu \mathrm{~V}{ }^{\circ} \mathrm{C}$ input offset voltage average drift. Other features enhanced by this process include $9 n \mathrm{~V} / \sqrt{\mathrm{Hz}}$ (Typ.) Input Noise Voltage, 1nA Input Bias Current and 140 dB Open Loop Gain.

These features coupled with 120 dB CMRR and PSRR make HA-5130/5135 an ideal device for precision DC instrumentation amplifiers. Excellent input characteristics in conjunction with 2.5 MHz bandwidth and $0.8 \mathrm{~V} / \mu$ s slew rate, make this amplifier extremely useful for precision integrator and biomedical amplifier designs. These amplifiers are also well suited for precision data acquisition and for accurate threshold detector applications.

HA-5130/5135 offers added features over the industry standard OP-07 in regards to bandwidth and slew rate specifications. For the military grade product, refer to the HA5135/883 data sheet.

Pinouts

NOTE: Both BAL 1 pins are connected together internally.

Absolute Maximum Ratings

Voltage Between $\mathrm{V}+$ and V - Terminals . 40 V
Differential Input Voltage.
. . .
....
\qquad . . 7V
Oütput Short Circuit Duration . Indefinite

Operating Conditions

Temperature Ranges
HA-5130/5135-2
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-5130/5135-5
. $0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. Maximum power dissipation, including output load, must be designed to maintain the maximum junction temperature below $175^{\circ} \mathrm{C}$.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$

PARAMETER	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	HA-5130-2/-5			HA-5135-2/-5			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	

INPUT CHARACTERISTICS

Offset Voltage		25	-	10	25	-	10	75	$\mu \mathrm{V}$
		Full	-	50	60	-	50	130	$\mu \mathrm{V}$
Average Offset Voltage Drift		Full	-	0.4	0.6	-	0.4	1.3	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	± 1	± 2	-	± 1	± 4	nA
		Full	-	-	± 4	-	-	± 6	nA
Bias Current Average Drift		Full	-	0.02	0.04	-	0.02	0.04	$n A /{ }^{\circ} \mathrm{C}$
Offset Current		25	-	\cdot	2	-	-	4	nA
		Full	-	-	4	-	-	5.5	nA
Offset Current Average Drift		Full	-	0.02	0.04	-	0.02	0.04	$\mathrm{nA}^{\circ} \mathrm{C}$
Common Mode Range		Full	± 12	-	-	± 12	-	-	V
Differential Input Resistance		25	20	30	-	20	30	-	M Ω
Input Noise Voltage (Note 3)	0.1 Hz to 10 Hz	25	-	-	0.6	-	-	0.6	$\mu \mathrm{V}_{\text {P-P }}$
Input Noise Voltage Density (Note 3)	$f=10 \mathrm{~Hz}$	25	-	13.0	18.0	-	13.0	18.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}=100 \mathrm{~Hz}$		-	10.0	13.0	-	10.0	13.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	$f=1000 \mathrm{~Hz}$		-	9.0	11.0	-	9.0	11.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current (Note 3)	0.1 Hz to 10 Hz	25	-	15	30	-	15	30	pAP-p
Input Noise Current Density (Note 3)	$\mathrm{f}=10 \mathrm{~Hz}$	25	-	0.4	0.8	-	0.4	0.8	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	$f=100 \mathrm{~Hz}$		-	0.17	0.23	-	0.17	0.23	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	$f=1000 \mathrm{~Hz}$		-	0.14	0.17	-	0.14	0.17	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	25	120	140	-	120	140	-	dB
		Full	120	-	-	120	-	-	dB
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	Full	110	120	-	106	120	-	dB
Closed Loop Bandwidth	$\mathrm{A}_{\mathrm{VCL}}=+1$	25	0.6	2.5	-	0.6	2.5	-	MHz

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ (Continued)

PARAMETER	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	HA-5130-2/-5			HA-5135-2/-5			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
OUTPUT CHARACTERISTICS									
Output Voltage Swing	$R_{L}=600 \Omega$	25	± 10	± 12	-	± 10	± 12	-	V
		Full	± 10	-	-	± 10	-	-	V
Full Power Bandwidth (Note 4)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	25	8	10	-	8	10	-	kHz
Output Current	$\mathrm{V}_{\text {OUT }}=10 \mathrm{~V}$	25	± 15	± 20	-	± 15	± 20	-	mA
Output Resistance	Note 5	25	-	45	-	-	45	-	Ω
TRANSIENT RESPONSE (Note 6)									
Rise Time		25	-	340	-	-	340	-	ns
Slew Rate		25	0.5	0.8	-	0.5	0.8	-	V/us
Settling Time (Note 7)		25	-	11	-	-	11	-	$\mu \mathrm{s}$
POWER SUPPLY CHARACTERISTICS									
Supply Current		Full	-	1.0	1.7	-	1.0	1.7	mA
Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	Full	100	130	-	94	130	-	dB

NOTES:
3. Not tested. 90% of units meet or exceed these specifications.
4. Full power bandwidth guaranteed based on slew rate measurement using: FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$.
5. Output resistance measured under open loop conditions $(f=100 \mathrm{~Hz}$).
6. Refer to test circuits section of the data sheet.
7. Settling time is measured to 0.1% of final value for a 10 V output step and $\mathrm{A}_{\mathrm{V}}=-1$.

Test Circuits and Waveforms

FIGURE 1. SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

Vertical Scale: Input $=50 \mathrm{mV} /$ Div. Output $=100 \mathrm{mV} /$ Div. Horizontal Scale: $1 \mu \mathrm{~s} /$ Div.

SMALL SIGNAL RESPONSE

Vertical Scale: 5V/Div. Horizontal Scale: $5 \mu \mathrm{~s} /$ Div. LARGE SIGNAL RESPONSE

Test Circuits and Waveforms (Continued)

8. $A_{V}=-1$.
9. Feedback and summing resistors should be 0.1% matched.
10. Clipping diodes are optional. HP5082-2810 recommended.

FIGURE 2. SETTLING TIME CIRCUIT

Schematic Diagram

Application Information

Power Supply Decoupling

Although not absolutely necessary, it is recommended that all power supply lines be decoupled with $0.01 \mu \mathrm{~F}$ ceramic capacitors to ground. Decoupling capacitors should be located as near to the amplifier terminals as possible.

Considerations For Prototyping:

The following list of recommendations are suggested for prototyping.

1. Resolving low level signals requires minimizing leakage currents caused by external circuitry. Use of quality insulating materials, thorough cleaning of insulating surfaces and implementation of moisture barriers when required is suggested.
2. Error voltages generated by thermocouples formed between dissimilar metals in the presence of temperature gradients
should be minimized. Isolation of low level circuity from heat generating components is recommended.
3. Shielded cable input leads, guard rings and shield drivers are recommended for the most critical applications.

Large Capacitive Loads

When driving large capacitive loads ($>500 \mathrm{pF}$), a small value resistor ($\approx 50 \Omega$) should be connected in series with the output and inside the feedback loop.

Offset Voltage Adjustment (See Figure 3)

A $20 \mathrm{k} \Omega$ balance potentiometer is recommended if offset nulling is required. However, other potentiometer values such as $10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega$ and $100 \mathrm{k} \Omega$ may be used. The minimum adjustment range for given values is $\pm 2 \mathrm{mV}$. V_{OS} TC of the amplifier is optimized at minimal V_{OS}. Tested Offset Adjustment is $\mathrm{IV} \mathrm{V}_{\mathrm{OS}}+1 \mathrm{mVI}$ minimum referred to output.

FIGURE 3. OFFSET NULLING CONNECTIONS

Saturation Recovery

Input and output saturation recovery time is negligible in most applications. However, care should be exercised to avoid exceeding the absolute maximum ratings of the device.
Differential Input Voltages
Inputs are shunted with back-to-back diodes for overvoltage 'protection. In applications where differential input voltages in excess of 1 V are applied between the inputs, the use of limiting resistors at the inputs is recommended.

Typical Applications

The excellent input and gain characteristics of HA-5130 are well suited for precision integrator applications. Accurate integration over seven decades of frequency using HA-5130, virtually nullifies the need for more expensive chopper-type amplifiers.

FIGURE 4. PRECISION INTEGRATOR
Low V_{OS} coupled with high open loop Gain, high CMRR and high PSRR make HA-5130 ideally suited for precision detector applications, such as the zero crossing detector shown in Figure 5.

FIGURE 6. PRECISION INSTRUMENTATION AMPLIFIER

Typical Performance Curves

FIGURE 7. INPUT OFFSET VOLTAGE, INPUT BIAS AND OFFSET CURRENT vs TEMPERATURE

FIGURE 9. HA-5130 OFFSET VOLTAGE STABILITY vs TIME

FIGURE 11. OPEN LOOP FREQUENCY RESPONSE

FIGURE 8. INPUT BIAS CURRENT vs DIFFERENTIAL INPUT VOLTAGE

FIGURE 10. INPUT NOISE vs FREQUENCY

FIGURE 12. CLOSED LOOP FREQUENCY RESPONSE

Typical Performance Curves (Continued)

FIGURE 13. SMALL SIGNAL BANDWIDTH AND PHASE MARGIN vs LOAD CAPACITANCE

FIGURE 15. MAXIMUM OUTPUT VOLTAGE SWING vs LOAD RESISTANCE

FIGURE 17. CMRR vs FREQUENCY

FIGURE 14. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 16. NORMALIZED AC PARAMETERS vs SUPPLY VOLTAGE

FIGURE 18. PSRR vs FREQUENCY

Typical Performance Curves (Continued)

FIGURE 19. SETTLING TIME FOR VARIOUS OUTPUT STEP VOLTAGES

FIGURE 20. POWER SUPPLY CURRENT vs TEMPERATURE

Die Characteristics

DIE DIMENSIONS:

72 mils $\times 103$ mils $\times 19$ mils ($1840 \mu \mathrm{~m} \times 2620 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$)

METALLIZATION:

Type: Al, 1\% Cu
Thickness: $16 k \AA \pm 2 k \AA$
SUBSTRATE POTENTIAL (Powered Up): V-

PASSIVATION:

Type: Nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ over Silox ($\mathrm{S}_{1} \mathrm{O}_{2}, 5 \%$ Phos.)
Silox Thickness: $12 k \AA \pm 2 k \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$
TRANSISTOR COUNT:
71
PROCESS:
Bipolar Dielectric Isolation

Metallization Mask Layout

HA-5130, HA-5135

v.

HA-5134

4MHz, Precision, Quad Operational Amplifier

Features

- Low Offset Voltage. $200 \mu \mathrm{~V}$ (Max)
- Low Offset Voltage Drift $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ (Max)
- High Channel Separation 120dB
- Low Noise $7 n V / \sqrt{H z}$
- Unity Gain Bandwidth 4MHz
- High CMRR/PSRR \qquad 120 dB (Typ)

Applications

- Instrumentation Amplifiers
- State-Variable Filters
- Precision Integrators
- Threshold Detectors
- Precision Data Acquisition Systems
- Low-Level Transducer Amplifiers

Description

The HA-5134 is a precision quad operational amplifier that is pin compatible with the OP-400, LT1014, OP11, RM4156, and LM148 as well as the HA-4741. Each amplifier features guaranteed maximum values for offset voltage of $200 \mu \mathrm{~V}$, offset voltage drift of $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, and offset current of 75 nA over the full military temperature range while CMRR/PSRR is guaranteed greater than 94 dB and $\mathrm{A}_{\mathrm{VOL}}$ is guaranteed above $500 \mathrm{kV} / \mathrm{V}$ from $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$.

Precision performance of the HA-5134 is enhanced by a noise voltage density of $7 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz , noise current density of $1 \mathrm{pA} / \sqrt{\mathrm{Hz}}$ at 1 kHz and channel separation of 120 dB . Each unity-gain stable quad amplifier is fabricated using the dielectric isolation process to assure performance in the most demanding applications.

The HA-5134 is ideal for compact circuits such as instrumentation amplifiers, state-variable filters, and low-level transducer amplifiers. Other applications include precision data acquisition, precision integrators, and accurate threshold detectors in designs where board space is a limitation.

For military grade product, refer to the HA-5134/883 data sheet.

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA1-5134-2	-55 to 125	14 Ld CERDIP	F14.3
HA1-5134-5	0 to 75	14 Ld CERDIP	F14.3

Pinout

Absolute Maximum Ratings

Voltage Between V+ and V- Terminals
Differential Input Voltage (Note 2).
6V
Full Short Circuit Protection

Operating Conditions

Temperature Range

```
HA-5134-2.
\(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
HA-5134-5 \(0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\)
```

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
2. For differential input voltages greater than 6 V , the input current must be limited to 25 mA to protect the back-to-back input diodes.
3. Maximum power dissipation, including output load, must be designed to maintain the maximum junction temperature below $175^{\circ} \mathrm{C}$.

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{S}} \leq 100 \Omega$. Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { TEMP } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	HA-5134-2/-5			UNITS
			MIN	TYP	MAX	

INPUT CHARACTERISTICS

Offset Voltage		25	-	50	200	$\mu \mathrm{V}$
		Full	-	75	350	$\mu \mathrm{V}$
Average Offset Voltage Drift		Full	-	0.3	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	± 10	± 50	nA
		Full	-	± 20	± 75	nA
Offset Current		25	-	10	50	nA
		Full	-	15	75	nA
Average Offset Current Drift		Full	-	0.05	-	$n{ }^{\circ}{ }^{\circ} \mathrm{C}$
Common Mode Range		Full	± 10	-	\bullet	V
Differential Input Resistance		25	-	30	-	M Ω
Input Noise Voltage	0.1 Hz to 10 Hz	25	-	0.2	-	$\mu \mathrm{V}_{\mathrm{P}-\mathrm{P}}$
Input Noise Voltage Density	$f=10 \mathrm{~Hz}$	25	-	10	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}=100 \mathrm{~Hz}$		-	7.5	-	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}=1 \mathrm{kHz}$		-	7	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density	$\mathrm{f}=10 \mathrm{~Hz}$	25	-	3	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}=100 \mathrm{~Hz}$		-	1.5	-	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
	$\mathrm{f}=1 \mathrm{kHz}$		-	1	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain	V	OUT $= \pm 10 \mathrm{~V}$	25	800	1200	-
		Full	500	750	-	kVN
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	25	100	120	-	dB
		Full	94	115	-	dB
Minimum Stable Gain		25	1	-	-	VN
Unity-Gain Bandwidth		25	-	4	-	MHz

OUTPUT CHARACTERISTICS

Output Voltage Swing		Full	12	13.5	-	V

Electrical Specifications $V_{S U P P L Y}= \pm 15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{S}} \leq 100 \Omega$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	$\begin{gathered} \text { TEMP } \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	HA-5134-2/-5			UNITS
			MIN	TYP	MAX	
Output Current		25	-	20	-	mA
Full Power Bandwidth (Note 4)		25	12	16	-	kHz
Channel Separation	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	25	120	136	-	dB

TRANSIENT RESPONSE (Note 5)

Rise Time	$\mathrm{A}_{\mathrm{V}}=+1, \mathrm{~V}_{\mathrm{OUT}}=200 \mathrm{mV}$	25	-	200	400	
Slew Rate	$\mathrm{A}_{\mathrm{V}}=+1$	25	0.75	1.0	-	ns
Overshoot	$\mathrm{A}_{\mathrm{V}}=+1$	25 s				
Settling Time (Note 6)		-	20	40	$\%$	

POWER SUPPLY CHARACTERISTICS

Supply Current	All Amps	Full	-	6.5	8	mA
Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 5 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	25	100	120	-	dB
		Full	94	115	-	dB

NOTES:
4. Full power bandwidth guaranteed based on slew rate measurement using: FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}} ; V_{\text {PEAK }}=10 \mathrm{~V}$.
5. Refer to Test Circuits section of the data sheet.
6. Specified to 0.01% of a 10 V step, $\mathrm{A}_{\mathrm{V}}=-1$.

Test Circuits and Waveforms

FIGURE 1. SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

Vertical: $50 \mathrm{mV} /$ Div., Horizontal: $200 \mathrm{~ns} /$ Div. $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, A_{V}=+1, R_{L}=2 \mathrm{k} \Omega, C_{L}=50 \mathrm{pF}$

SMALL SIGNAL RESPONSE

Vertical: $2 \mathrm{~V} /$ Div., Horizontal: $2 \mu \mathrm{~s} /$ Div. $T_{A}=25^{\circ} C, V_{S}= \pm 15 \mathrm{~V}, A_{V}=+1, R_{L}=2 k \Omega, C_{L}=50 p F$

LARGE SIGNAL RESPONSE

Test Circuits and Waveforms (Continued)

NOTES:
7. $A_{V}=-1$.
8. Feedback and summing resistors should be 0.1% matched.
9. Clipping diodes are optional. HP5082-2810 recommended.

FIGURE 2. SETTLING TIME CIRCUIT

$$
\begin{gathered}
T_{A}=25^{\circ} \mathrm{C}, V_{S}= \pm 15 \mathrm{~V}, A_{V}=1000 \\
e_{n}=0.167 \mu V_{P-P} \\
0.05 \mu \mathrm{~V} / \text { Div., } 1 \mathrm{~s} / \text { Div. }
\end{gathered}
$$

PEAK-TO-PEAK NOISE 0.1 Hz TO 10 Hz

Schematic Diagram (Each Amplifier)

Application Information

Power Supply Decoupling

Although not absolutely necessary, it is recommended that all power supply lines be decoupled with $0.01 \mu \mathrm{~F}$ ceramic capacitors to ground. Decoupling capacitors should be located as near to the amplifier terminals as possible.

Considerations For Prototyping

The following list of recommendations are suggested for prototyping.

1. Resolving low level signals requires minimizing leakage currents caused by external circuitry. Use of quality insulating
materials, thorough cleaning of insulating surfaces and implementation of moisture barriers when required is suggested.
2. Error voltages generated by thermocouples formed between dissimilar metals in the presence of temperature gradients should be minimized. Isolation of low level circuitry from heat generating components is recommended.
3. Shielded cable input leads, guard rings and shield drivers are recommended for the most critical applications.

Typical Applications

$$
\begin{gathered}
\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, A_{\mathrm{V}}=1, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \\
20 \mathrm{mV} / \text { Div., } 1 \mu \mathrm{~s} / \text { Div. }
\end{gathered}
$$

FIGURE 3. SMALL SIGNAL TRANSIENT RESPONSE $\left(C_{\text {LOAD }}=1 \mathrm{nF}\right)$

$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\text {LOAD }}=50 \Omega \mathrm{C}_{\text {LOAD }}=0.01 \mu \mathrm{~F}, \mathrm{~A}_{\mathrm{V}}=3, \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}$ Top: Input, 2V/Div., $20 \mu \mathrm{~s} /$ Div. Bottom: Output, $5 \mathrm{~V} / \mathrm{Div}, 20 \mu \mathrm{~s} / \mathrm{Div}$.

TRANSIENT RESPONSE OF APPLICATION CIRCUIT \#1

NOTES:
10. $-A_{V}=\left(1+\frac{2 R}{R_{G}}\right)\left(\frac{R_{2}}{R_{1}}\right)$.
11. $10 \Omega-100 \Omega$ recommended for short circuit limiting.
12. When driving heavy loads the HA-5002 may contribute to thermal errors. Proper thermal shielding is recommended.

FIGURE 4. APPLICATION CIRCUIT \#1: INSTRUMENTATION AMPLIFIER WITH POWER OUTPUT

Typical Applications (Continued)

\mathbf{G}_{1}	\mathbf{G}_{0}	$A_{\mathbf{V}}$
0	0	-1
0	1	-2
1	0	-4
1	1	-8

High AvOL of HA-5134 reduces gain error. Gain Error $\cong 0.004 \%$ at $A_{V}=8$.

FIGURE 5. APPLICATION CIRCUIT \#2: PROGRAMMABLE GAIN AMPLIFIER

NOTE: If differential input voltages greater than 6 V are present, input current must be limited to less than 25 mA .

Horizontal: $50 \mu \mathrm{~s} /$ Div.
$V_{\text {IN }}= \pm 25 \mathrm{mV}, \mathrm{V}_{\text {OUT }}= \pm 14 \mathrm{~V}$

FIGURE 6. APPLICATION CIRCUIT \#3: PRECISION COMPARATOR
Typical Performance Curves

FIGURE 7. $V_{I O}$ WARM-UP DRIFT

FIGURE 8. INPUT OFFSET VOLTAGE vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 9. OFFSET CURRENT vs TEMPERATURE

FIGURE 11. REJECTION RATIOS vs TEMPERATURE

FIGURE 13. CMRR vs FREQUENCY

FIGURE 10. CHANNEL SEPARATION vs FREQUENCY

FIGURE 12. NOISE DENSITY vs FREQUENCY

FIGURE 14. PSRR vs FREQUENCY

Typical Performance Curves (Continued)

FIGURE 15. CLOSED LOOP FREQUENCY RESPONSE

FIGURE 17. MAXIMUM OUTPUT VOLTAGE vs TEMPERATURE

FIGURE 19. OVERSHOOT vs CLOAD

FIGURE 16. CLOSED LOOP GAIN/PHASE vs FREQUENCY

FIGURE 18. SUPPLY CURRENT vs TEMPERATURE

FIGURE 20. OPEN LOOP GAIN AND PHASE vs FREQUENCY

HA-5137, HA-5137A

63MHz, Ultra-Low Noise Precision Operational Amplifier

Features

- Slew Rate . 20V/ $/ \mathrm{s}$
- Wide Gain Bandwidth ($A_{V} \geq 5$) 63MHz
- Low Noise $3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at $\mathbf{1 k H z}$
- Low Vos . 10 10 V
- High CMRR . 126dB
- High Gain
$1800 \mathrm{~V} / \mathrm{mV}$

Applications

- High Speed Signal Conditioners
- Wide Bandwidth Instrumentation Amplifiers
- Low Level Transducer Amplifiers
- Fast, Low Level Voltage Comparators
- Highest Quality Audio Preamplifiers
- Pulse/RF Amplifiers
- For Further Design Ideas See Application Note 553

Ordering Information

$\left.\begin{array}{|l|c|l|l|}\hline \begin{array}{c}\text { PART NUMBER } \\ \text { (BRAND) }\end{array} & \begin{array}{c}\text { TEMP. } \\ \text { RANGE (}\end{array} \\ \hline \text { HA3-5137A-5 }\end{array}\right)$

Description

The HA-5137 operational amplifier features an unparalleled combination of precision DC and wideband high speed characteristics. Utilizing the Harris Dielectric Isolation technology and advanced processing techniques, this unique design unites low noise ($3 \mathrm{nV} / \sqrt{\mathrm{Hz}})$ precision instrumentation performance with high speed ($20 \mathrm{~V} / \mu \mathrm{s}$) wideband capability.

This amplifier's impressive list of features include low V_{OS} $(10 \mu \mathrm{~V})$, wide gain bandwidth $(63 \mathrm{MHz})$, high open loop gain $(1800 \mathrm{~V} / \mathrm{mV})$, and high CMRR (126 dB). Additionally, this flexible device operates over a wide supply range ($\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$) while consuming only 140 mW of power.
Using the HA-5137 allows designers to minimize errors while maximizing speed and bandwidth in applications requiring gains greater than five.

This device is ideally suited for low level transducer signal amplifier circuits. Other applications which can utilize the HA-5137's qualities include instrumentation amplifiers, pulse or RF amplifiers, audio preamplifiers, and signal conditioning circuits.

This device can easily be used as a design enhancement by directly replacing the $725, \mathrm{OP} 25, \mathrm{OP} 06, \mathrm{OP} 07, \mathrm{OP} 27$ and OP37 where gains are greater than five. For the military grade product, refer to the HA-5137/883 data sheet.

Pinout

Absolute Maximum Ratings

Voltage Between V+ and V-Terminals 44 V
Differential Input Voltage (Note 1). .
0.7 V

Output Current
Full Short Circuit Protection

Operating Conditions

Temperature Range
HA-5137/37A-2
$55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Thermal Information

$\begin{array}{ccc}\text { Thermal Resistance (Typical, Note 2) } & \theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) & \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \\ \text { CERDIP Package } \ldots \ldots \ldots \ldots \ldots \ldots & 135 & 50 \\ \text { PDIP Package } \ldots \ldots \ldots \ldots \ldots \ldots & 120 & \text { N/A } \\ \text { SOIC Package } \ldots \ldots \ldots \ldots \ldots \ldots & 160 & \text { N/A }\end{array}$
Maximum Junction Temperature (Hermetic Package) $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Packages) $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$
(SOIC - Lead Tips Only)
Die Characteristics
Back Side Potential . V-
Number of Transistors
63
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:

1. For differential input voltages greater than 0.7 V , the input current must be limited to 25 mA to protect the back-to-back input diodes.
2. $\theta_{J A}$ is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF}, \mathrm{R}_{\mathrm{S}} \leq 100 \Omega$

PARAMETER	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	HA-5137			HA-5137A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS									
Offset Voltage		25	-	30	100	-	10	25	$\mu \mathrm{V}$
		Full	-	70	300	-	30	60	$\mu \mathrm{V}$
Average Offset Voltage Drift		Full	-	0.4	1.8	-	0.2	0.6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	15	80	-	10	40	nA
		Full	-	35	150	-	20	60	nA
Offset Current		25	-	12	75	-	7	35	nA
		Full	-	30	135	-	15	50	nA
Common Mode Range		Full	± 10.3	± 11.5	-	± 10.3	± 11.5	-	V
Differential Input Resistance (Note 3)		25	0.8	4	-	1.5	6	-	$\mathrm{M} \Omega$
Input Noise Voltage (Note 4)	0.1 Hz to 10 Hz	25	-	0.09	0.25	-	0.08	0.18	$\mu \mathrm{V}_{\text {P-P }}$
Input Noise Voltage Density (Note 5)	$f=10 \mathrm{~Hz}$	25	-	3.8	8.0	-	3.5	8.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	$f=100 \mathrm{~Hz}$	25	-	3.3	4.5	-	3.1	4.5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	$f=1000 \mathrm{~Hz}$	25	-	3.2	3.8	-	3.0	3.8	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density (Note 5)	$\mathrm{f}=10 \mathrm{~Hz}$	25	-	1.7	-	-	1.7	4.0	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
	$f=100 \mathrm{~Hz}$	25	-	1.0	-	-	1.0	2.3	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
	$f=1000 \mathrm{~Hz}$	25	-	0.4	0.6	-	0.4	0.6	$\mathrm{pA} \sqrt{\mathrm{Hz}}$

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$, $\mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}$	25	700	1500	-	1000	1800	-	V / mV
		Full	300	800	-	600	1200	-	V / mV
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	Full	100	120	-	114	126	-	dB
Minimum Stable Gain		25	5	-	-	5	-	-	V / V

Electrical Specifications $V_{S U P P L Y}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF}, \mathrm{R}_{\mathrm{S}} \leq 100 \Omega$ (Continued)

PARAMETER	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	HA-5137			HA-5137A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Gain-Bandwidth-Product	$\mathrm{f}=10 \mathrm{kHz}$	25	60	80	-	60	80	-	MHz
	$f=1 \mathrm{MHz}$	25	-	63	-	-	63	-	MHz
OUTPUT CHARACTERISTICS									
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	25	± 10.0	± 11.5	-	± 10.0	± 11.5	-	V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	Full	± 11.4	± 13.5	-	± 11.7	± 13.8	-	V
Full Power Bandwidth (Note 6)		25	220	320	-	220	320	-	kHz
Output Resistance	Open Loop	25	-	70	-	-	70	-	Ω
Output Current		25	16.5	25	-	16.5	25	-	mA

TRANSIENT RESPONSE (Note 7)

Rise Time		25	-	-	100	-	-	100	ns
Slew Rate	$\mathrm{V}_{\text {OUT }}= \pm 3 \mathrm{~V}$	25	14	20	-	14	20	-	$\mathrm{V} / \mathrm{\mu s}$
Settling Time	Note 8	25	-	1.0	-	-	1.0	-	$\mu \mathrm{s}$
Overshoot		25	-	20	40	-	20	40	\%

POWER SUPPLY CHARACTERISTICS

Supply Current		25	-	3.5	-	-	3.5	-	mA
		Full	-	-	4.0	-	-	4.0	mA
Power Supply Rejection Ratio		$\mathrm{V}_{\mathrm{S}}= \pm 4 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	Full	-	16	51	-	2	4

NOTES:
3. This parameter value is based upon design calculations.
4. Refer to Typical Performance section of the data sheet.
5. The limits for this parameter are based on lab characterization, and reflect lot-to-lot variation.
6. Full power bandwidth guaranteed based on slew rate measurement using: FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$.
7. Refer to Test Circuits section of the data sheet.
8. Settling time is specified to 0.1% of final value for a 10 V output step and $A_{V}=-5$.

Test Circuits and Waveforms

FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT

Test Circuits and Waveforms (Continued)

Vertical Scale: Input = $1 \mathrm{~V} /$ Div. Output $=5 \mathrm{~V} /$ Div.
Horizontal Scale: $1 \mu \mathrm{~s} /$ Div.
LARGE SIGNAL RESPONSE

Vertical Scale: $\operatorname{Input}=20 \mathrm{mV} /$ Div. Output $=100 \mathrm{mV} /$ Div.
Horizontal Scale: 100ns/Div.
SMALL SIGNAL RESPONSE

NOTES:
9. $A_{V}=-5$.
10. Feedback and summing resistors should be 0.1% matched.
11. Clipping diodes are optional. HP5082-2810 recommended.

FIGURE 2. SETTLING TIME TEST CIRCUIT

Schematic Diagram

Application Information

NOTE: Tested Offset Adjustment Range is $1 V_{O S}+1 \mathrm{mVI}$ minimum referred to output. Typical range is $\pm 4 \mathrm{mV}$ with $\mathrm{RP}=10 \mathrm{k} \Omega$.
FIGURE 3. SUGGESTED OFFSET VOLTAGE ADJUSTMENT

NOTE: Low resistances are preferred for low noise applications as a $1 \mathrm{k} \Omega$ resistor has $4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of thermal noise. Total resistances of greater than $10 \mathrm{k} \Omega$ on either input can reduce stability. In most high resistance applications, a few picofarads of capacitance across the feedback resistor will improve stability.

FIGURE 4. SUGGESTED STABILITY CIRCUITS

Typical Performance Curves Unless Otherwise Specified: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$

FIGURE 5. TYPICAL OFFSET VOLTAGE DRIFT vs TEMPERATURE

FIGURE 6. NOISE CHARACTERISTICS

Typical Performance Curves Unless Otherwise Specified: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ (Continued)

FIGURE 7. NOISE vs SUPPLY VOLTAGE

FIGURE 9. SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 11. PSRR vs FREQUENCY

FIGURE 8. CMRR vs FREQUENCY

FIGURE 10. BANDWIDTH AND SLEW RATE vs SUPPLY VOLTAGE

FIGURE 12. CLOSED LOOP GAIN AND PHASE vs FREQUENCY

Typical Performance Curves Unless Otherwise Specified: $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$ (Continued)

FIGURE 13. Avol AND $\mathrm{V}_{\text {out }}$ vs LOAD RESISTANCE

FIGURE 15. SUPPLY CURRENT vs TEMPERATURE

FIGURE 17. OPEN LOOP GAIN AND PHASE vs FREQUENCY

FIGURE 14. NORMALIZED SLEW RATE vs TEMPERATURE

FIGURE 16. VOUT MAX (UNDISTORTED SINEWAVE OUTPUT) vs FREQUENCY

$\mathrm{A}_{\mathrm{CL}}=25,000 \mathrm{~V} / \mathrm{N}$
Horizontal Scale $=1 \mathrm{~s} /$ Div.
cale $=0.002 \mu \mathrm{~V} /$ Div., $\mathrm{E}_{\mathrm{N}}=0.08 \mu \mathrm{~V}_{\text {P-P }} \mathrm{RTI}$
$\mathrm{A}_{\mathrm{CL}}=25,000 \mathrm{~V} / \mathrm{N}$
Horizontal Scale $=1 \mathrm{~s} /$ Div.
cale $=0.002 \mu \mathrm{~V} /$ Div., $\mathrm{E}_{\mathrm{N}}=0.08 \mu \mathrm{~V}_{\text {P-P }} \mathrm{RTI}$
$\mathrm{A}_{\mathrm{CL}}=25,000 \mathrm{~V} / \mathrm{N}$
Horizontal Scale $=1 \mathrm{~s} /$ Div.
Vertical Scale $=0.002 \mu \mathrm{~V} /$ Div., $\mathrm{E}_{\mathrm{N}}=0.08 \mu \mathrm{~V}_{\text {P-P }}$ RTI

FIGURE 18. PEAK-TO-PEAK NOISE VOLTAGE $(0.1 \mathrm{~Hz}$ TO 10 Hz$)$

Dual/Quad, 400kHz, Ultra-Low Power Operational Amplifiers

Features

- Low Supply Current.
$.45 \mu$ A/Amp
- Wide Supply Voltage Range Single 3V to 30V or Dual . $\pm 1.5 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$
- High Slew Rate. 1.5V/ $/$ s
- High Gain . 100kV/V
- Unity Gain Stable
- Available in Duals and Quads

Applications

- Portable Instruments
- Meter Amplifiers
- Telephone Headsets
- Microphone Amplifiers
- Instrumentation
- For Further Design Ideas See Application Note 544

Description

The HA-5142/44 ultra-low power operational amplifiers provide AC and DC performance characteristics similar to or better than most general purpose amplifiers while only drawing $1 / 30$ of the supply current of most general purpose amplifiers. In applications which require low power dissipation and good AC electrical characteristics, this family offers the industry's best speed/power ratio.
The HA-5142/44 provides accurate signal processing by virtue of their low input offset voltage $(2 \mathrm{mV})$, low input bias current $(45 \mathrm{nA})$, high open loop gain ($100 \mathrm{kV} / \mathrm{N}$) and low noise ($20 \mathrm{nV} / \sqrt{\mathrm{Hz}}$), for low power operational amplifiers. These characteristics coupled with a $1.5 \mathrm{~V} / \mu \mathrm{s}$ slew rate and a 400 kHz bandwidth make the HA$5142 / 44$ ideal for use in low power instrumentation, audio amplifier and active filter designs. The wide range of supply voltages (3 V to 30 V) also allow these amplifiers to be very useful in low voltage battery powered equipment. These parts are also tested and guaranteed at both $\pm 15 \mathrm{~V}$ and single ended +5 V supplies.
These amplifiers are available with industry standard pinouts which allow the HA-5142/5144s to be interchangeable with most other operational amplifiers. For military grade product refer to the 5142, 5144/883 data sheet.

Pinouts (See Ordering Information on Next Page)

HA-5144 (SOIC)
TOP VIEW

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA2-5142-2	-55 to 125	8 Pin Metal Can	T8.C
HA2-5142-5	0 to 75	8 Pin Metal Can	T8.C
HA3-5142-5	0 to 75	8 Ld PDIP	E8.3
HA7-5142-2	-55 to 125	8 Ld CERDIP	F8.3A
HA7-5142-5	0 to 75	8 Ld CERDIP	F8.3A
HA9P5142-9	-40 to 85	16 Ld SOIC	M16.3
HA1-5144-2	-55 to 125	14 Ld CERDIP	F14.3
HA1-5144-5	0 to 75	14 Ld CERDIP	F14.3
HA3-5144-5	0 to 75	14 Ld PDIP	E14.3
HA9P5144-5	0 to 75	16 Ld SOIC	M16.3
HA9P5144-9	-40 to 85	16 Ld SOIC	M16.3

Schematic Diagram

Absolute Maximum Ratings

Supply Voltage Between V+ and V- Terminals
Differential Input Voltage 7 V
Output Current Short Circuit Protected

Operating Conditions

Temperature Range

HA-5142/44-5	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
HA-5142/44-2	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-5142/44-	$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

Thermal Information

Thermal Resistance (Typical, Note 1)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	$\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
14 Lead CERDIP Package	75	20
8 Pin Metal Can Package	155	67
14 Lead PDIP Package	100	N/A
8 Lead PDIP Package	120	N/A
8 Lead CERDIP Package	135	50
16 Lead SOIC Package (HA-5142)	110	N/A
16 Lead SOIC Package (HA-5144)	100	N/A

Maximum Junction Temperature (Hermetic Packages) $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Packages) $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$ (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\quad R_{S}=100 \Omega, C_{L} \leq 10 p F$. Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} -2,-5,-9 \\ \mathrm{~V}_{+}=+5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \end{gathered}$			$\begin{gathered} -2,-5,-9 \\ \mathrm{~V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \end{gathered}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS									
Offset Voltage	Note 11	25	-	2	6	-	2	6	mV
		Full	-	-	8	-	-	8	mV
Average Offset Voltage Drift		Full	-	3	-	-	3	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current	Note 11	25	-	45	100	-	45	100	nA
		Full	-	-	125	-	-	125	nA
Offset Current	Note 11	25	-	0.3	10	-	0.3	10	nA
		Full	-	-	20	-	-	20	nA
Common Mode Range		Full	0 to 3	-	-	± 10	-	-	V
Differential Input Resistance		25	-	0.6	-	-	0.6	-	M Ω
Input Noise Voltage	$\mathrm{f}=1 \mathrm{kHz}$	25	-	20	-	-	20	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current	$f=1 \mathrm{kHz}$	25	-	0.25	-	-	0.25	\bullet	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS									
Large Signal Voltage Gain	Notes 2, 4	25	20	100	-	20	100	-	kVN
		$\begin{aligned} & \text { Full } \\ & -2,-5 \end{aligned}$	15	-	-	15	-	-	kV/
		$\begin{aligned} & \text { Full } \\ & -9 \end{aligned}$	12	-	-	12	-	-	kV/
Common Mode Rejection Ratio	Note 7	$\begin{gathered} \text { Full } \\ -2,-5 \end{gathered}$	77	105	-	77	105	-	dB
		Full -9	70	105	-	70	105	-	dB

Electrical Specifications $R_{S}=100 \Omega, C_{L} \leq 10 p F$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} -2,-5,-9 \\ \mathrm{~V}_{+}=+5 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V} \end{gathered}$			$\begin{gathered} -2,-5,-9 \\ V_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V} \end{gathered}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Bandwidth	Notes 2, 3	25	-	0.4	-	-	0.4	-	MHz
OUTPUT CHARACTERISTICS									
Output Voltage Swing	Notes 2, 10	25	$\begin{gathered} 1.0 \text { to } \\ 3.8 \end{gathered}$	$\begin{gathered} 0.7 \text { to } \\ 4.2 \end{gathered}$	-	± 10	± 13	-	V
		Full	$\begin{gathered} 1.2 \text { to } \\ 3.5 \end{gathered}$	$\begin{gathered} 0.9 \text { to } \\ 4.0 \end{gathered}$	-	± 10	± 13	-	V
Full Power Bandwidth	Notes 2, 4, 8	25	-	240	-	-	24	-	kHz

TRANSIENT RESPONSE (Notes 2, 3)

Rise Time		25	-	600	-	-	600	-	
Slew Rate	Note 6	25	0.8	1.5	-	0.8	1.5	-	$\mathrm{ns} / \mu \mathrm{s}$
Settling Time	Note 5	25	-	10	-	-	10	-	$\mu \mathrm{s}$

POWER SUPPLY CHARACTERISTICS

Supply Current		25	-	45	80	-	100	150	$\mu \mathrm{~A} / \mathrm{Amp}$
		Full	-	-	100	-	-	200	$\mu \mathrm{~A} / \mathrm{Amp}$
Power Supply Rejection Ratio	Note 9	Full $-2,-5$	77	105	-	77	105	-	dB
	Full -9	70	105	-	70	105	-	dB	

NOTES:
2. $R_{L}=50 \mathrm{k} \Omega$.
3. $C_{L}=50 \mathrm{pF}$.
4. $V_{O}=1.4$ to 2.5 V for $\mathrm{V}_{\text {SUPPLY }}=+5,0 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}= \pm 10 \mathrm{~V}$ for $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$.
5. Settling Time is specified to 0.1% of final value for a 3 V output step and $\mathrm{A}_{\mathrm{V}}=-1$ for $\mathrm{V}_{\text {SUPPLY }}=+5 \mathrm{~V}, 0 \mathrm{~V}$. Output step $=10 \mathrm{~V}$ for $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$.
6. Maximum input slew rate $=10 \mathrm{~V} / \mu \mathrm{s}$.
7. $\mathrm{V}_{\mathrm{CM}}=0$ to 3 V for $\mathrm{V}_{\text {SUPPLY }}=+5,0 \mathrm{~V} ; \mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$ for $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$.
8. Full Power Bandwidth is guaranteed by equation: $\mathrm{FPBW}=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$.
9. $\Delta V_{S}=+10 \mathrm{~V}$ for $V_{\text {SUPPLY }}=+5,0 \mathrm{~V} ; \Delta \mathrm{V}_{S}= \pm 5 \mathrm{~V}$ for $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$.
10. For $V_{\text {SUPPLY }}=+5,0 \mathrm{~V}$ terminate R_{L} at +2.5 V . Typical output current is $\pm 3 \mathrm{~mA}$.
11. $V_{O}=1.4 \mathrm{~V}$ for $\mathrm{V}_{\text {SUPPLY }}=+5 \mathrm{~V}, 0 \mathrm{~V}$.

Test Circuits and Waveforms

FIGURE 1. SLEW RATE AND TRANSIENT RESPONSE TEST CIRCUIT

$+V_{\text {SUPPLY }}=+15 \mathrm{~V},-\mathrm{V}_{\text {SUPPLY }}=-15 \mathrm{~V}$
Vertical Scale: Input $=5 \mathrm{~V} /$ Div.; Output $=2 \mathrm{~V} /$ Div. Horizontal Scale: $2 \mu \mathrm{~s} /$ Div.

LARGE SIGNAL RESPONSE

$+\mathrm{V}_{\text {SUPPLY }}=+5 \mathrm{~V},-\mathrm{V}_{\text {SUPPLY }}=\mathbf{0} \mathrm{V}$

Vertical Scale: Input = $2 \mathrm{~V} /$ Div.; Output $=1 \mathrm{~V} /$ Div. Horizontal Scale: $5 \mu \mathrm{~s} /$ Div.
LARGE SIGNAL RESPONSE

$+V_{\text {SUPPLY }}=+15 \mathrm{~V},-\mathrm{V}_{\text {SUPPLY }}=-15 \mathrm{~V}$

Vertical Scale: Input $=100 \mathrm{mV} /$ Div.; Output $=50 \mathrm{mV} /$ Div. Horizontal Scale: $2 \mu \mathrm{~s} /$ Div.

SMALL SIGNAL RESPONSE

$+\mathrm{V}_{\text {SUPPLY }}=+5 \mathrm{~V},-\mathrm{V}_{\text {SUPPLY }}=\mathbf{0} \mathrm{V}$

Vertical Scale: Input $=100 \mathrm{mV} /$ Div.; Output $=50 \mathrm{mV} /$ Div. Horizontal Scale: $5 \mu \mathrm{~s} /$ Div.
SMALL SIGNAL RESPONSE

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 2. OPEN LOOP FREQUENCY RESPONSE

FIGURE 4. BANDWIDTH AND PHASE MARGIN vs LOAD CAPACITANCE

FIGURE 6. OUTPUT VOLTAGE SWING vs FREQUENCY AND SINGLE SUPPLY VOLTAGE

FIGURE 3. INPUT OFFSET CURRENT AND BIAS CURRENT vs TEMPERATURE

FIGURE 5. NORMALIZED AC PARAMETERS vs SUPPLY VOLTAGE

FIGURE 7. NORMALIZED AC PARAMETERS vS TEMPERATURE

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 2.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 8. INPUT NOISE vs FREQUENCY

FIGURE 10. PSRR AND CMRR vs FREQUENCY

FIGURE 9. MAXIMUM OUTPUT VOLTAGE SWING vs LOAD RESISTANCE AND SINGLE SUPPLY VOLTAGE

FIGURE 11. POWER SUPPLY CURRENT vs TEMPERATURE AND SINGLE SUPPLY VOLTAGE

FIGURE 12. CHANNEL SEPARATION vs FREQUENCY

Die Characteristics

DIE DIMENSIONS:
104 mils $\times 55$ mils $\times 19$ mils $2650 \mu \mathrm{~m} \times 1400 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:

Type: AI, 1\% Cu
Thickness: $16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA$

PASSIVATION:

Type: Nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ over Silox ($\mathrm{SiO}_{2}, 5 \%$ Phos.)
Silox Thickness: $12 k \AA+2 k \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$

TRANSISTOR COUNT:

SUBSTRATE POTENTIAL (Powered Up):
V.

PROCESS:
Bipolar/JFET Dielectric Isolation

Metallization Mask Layout
HA-5142

November 1996

120MHz, Ultra-Low Noise Precision Operational Amplifiers

Features

- Slew Rate
$35 \mathrm{~V} / \mu \mathrm{s}$
- Wide Gain Bandwidth $\left(A_{V} \geq 10\right)$ 120 MHz
- Low Noise $3 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz
- Low Vos
$10 \mu \mathrm{~V}$
- High CMRR

126dB

- High Gain $1800 \mathrm{~V} / \mathrm{mV}$

Applications

- High Speed Signal Conditioners
- Wide Bandwidth Instrumentation Amplifiers
- Low Level Transducer Amplifiers
- Fast, Low Level Voltage Comparators
- Highest Quality Audio Preamplifiers
- Pulse/RF Amplifiers

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE	PKG. NO.
HA2-5147-2	-55 to 125	8 Pin Metal Can	T8.C
HA2-5147-5	0 to 75	8 Pin Metal Can	T8.C
HA2-5147A-2	-55 to 125	8 Pin Metal Can	T8.C
HA2-5147A-5	0 to 75	8 Pin Metal Can	T8.C
HA3-5147-5	0 to 75	8 Ld PDIP	E8.3
HA7-5147-2	-55 to 125	8 Ld CERDIP	F8.3A
HA7-5147-5	0 to 75	8 Ld CERDIP	F8.3A
HA7-5147A-2	-55 to 125	8 Ld CERDIP	F8.3A
HA7-5147A-5	0 to 75	8 Ld CERDIP	F8.3A

Pinouts

Description

The HA-5147 operational amplifier features an unparalleled combination of precision DC and wideband high speed characteristics. Utilizing the Harris D. I. technology and advanced processing techniques, this unique design unites low noise $(3 \mathrm{nV} / \sqrt{\mathrm{Hz}})$ precision instrumentation performance with high speed ($35 \mathrm{~V} / \mu \mathrm{s}$) wideband capability.
This amplifier's impressive list of features include low $V_{O S}$ ($10 \mu \mathrm{~V}$), wide gain bandwidth (120 MHz), high open loop gain ($1800 \mathrm{~V} / \mathrm{mV}$), and high CMRR (126dB). Additionally, this flexible device operates over a wide supply range ($\pm 5 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$) while consuming only 140 mW of power.

Using the HA-5147 allows designers to minimize errors while maximizing speed and bandwidth in applications requiring gains greater than ten.
This device is ideally suited for low level transducer signal amplifier circuits. Other applications which can utilize the HA-5147's qualities include instrumentation amplifiers, pulse or RF amplifiers, audio preamplifiers, and signal conditioning circuits. Further application ideas are given in Application Note 553, Harris AnswerFAX (407-724-7800) document \#9553.

This device can easily be used as a design enhancement by directly replacing the 725, OP25, OP06, OP07, OP27 and OP37 where gains are greater than ten. For military grade product, refer to the HA-5147/883 data sheet.

HA-5147, HA-5147A
 (METAL CAN) TOP VIEW


```
Absolute Maximum Ratings }\mp@subsup{T}{A}{}=2\mp@subsup{5}{}{\circ}\textrm{C
Voltage Between V + and V - Terminals .
Differential Input Voltage (Note 1). .
Output Current
0.7 V Full Short Circuit Protection
```


Operating Conditions

```
Temperature Range
HA-5147/47A-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(0^{\circ} \mathrm{C}\) 號 \(125^{\circ} \mathrm{Co} 75^{\circ} \mathrm{C}\)
HA-5147/47A-5 . . . . . . . . . . . .
```


Thermal Information

$\begin{array}{ccc}\text { Thermal Resistance (Typical, Note 2) } & \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) & \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \\ \text { CERDIP Package } \ldots \ldots \ldots \ldots \ldots & 135 & 50 \\ \text { Can Package } \ldots \ldots \ldots \ldots \ldots \ldots & 155 & 67 \\ \text { PDIP Package } \ldots \ldots \ldots \ldots \ldots \ldots & 120 & \text { N/A }\end{array}$
Maximum Junction Temperature (Hermetic Package). $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package). $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$

Die Characteristics

Back Side Potential . V-
Number of Transistors

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:

1. For differential input voltages greater than 0.7 V , the input current must be limited to 25 mA to protect the back-to-back input diodes.
2. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\quad V_{S U P P L Y}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF}, \mathrm{R}_{\mathrm{S}} \leq 100 \Omega$

PARAMETERS	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	HA-5147			HA-5147A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS									
Offset Voltage		25	-	30	100	-	10	25	$\mu \mathrm{V}$
		Full	-	70	300	-	30	60	$\mu \mathrm{V}$
Average Offset Voltage Drift		Full	-	0.4	1.8	-	0.2	0.6	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	15	80	-	10	40	nA
		Full	-	35	150	-	20	60	nA
Offset Current		25	-	12	75	-	7	35	nA
		Full	-	30	135	-	15	50	nA
Common Mode Range		Full	± 10.3	± 11.5	-	± 10.3	± 11.5	-	V
Differential Input Resistance (Note 3)		25	0.8	4	-	1.5	6	-	M Ω
Input Noise Voltage (Note 4)	0.1 Hz to 10 Hz	25	-	0.09	0.25	-	0.08	0.18	$\mu V_{\text {P-P }}$
Input Noise Voltage Density (Note 5)	$f=10 \mathrm{~Hz}$	25	-	3.8	8.0	-	3.5	8.0	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}=100 \mathrm{~Hz}$		-	3.3	4.5	-	3.1	4.5	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	$f=1000 \mathrm{~Hz}$		-	3.2	3.8	-	3.0	3.8	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density (Note 5)	$\mathrm{f}=10 \mathrm{~Hz}$	25	-	1.7	-	-	1.7	4.0	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}=100 \mathrm{~Hz}$		-	1.0	-	-	1.0	2.3	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}=1000 \mathrm{~Hz}$		-	0.4	0.6	-	0.4	0.6	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS									
Minimum Stable Gain		25	10	-	-	10	-	-	V/V
Large Signal Voltage Gain	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	25	700	1500	-	1000	1800	-	V / mV
		Full	300	800	-	600	1200	-	V/mV
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	Full	100	120	-	114	126	-	dB

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{C}_{\mathrm{L}} \leq 50 \mathrm{pF}, \mathrm{R}_{\mathrm{S}} \leq 100 \Omega$ (Continued)

PARAMETERS	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	HA-5147			HA-5147A			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Gain-Bandwidth-Product	$f=10 \mathrm{kHz}$	25	120	140	-	120	140	-	MHz
	$f=1 \mathrm{MHz}$		-	120	-	-	120	-	MHz
OUTPUT CHARACTERISTICS									
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=600 \Omega$	25	± 10.0	± 11.5	-	± 10.0	± 11.5	-	V
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	Full	± 11.4	± 13.5	-	± 11.7	± 13.8	\bullet	V
Full Power Bandwidth (Note 6)		25	445	500	-	445	500	\bullet	kHz
Output Resistance	Open Loop	25	-	70	-	-	70	-	Ω
Output Current		25	16.5	25	-	16.5	25	-	mA
TRANSIENT RESPONSE (Note 7)									
Rise Time		25	-	22	50	-	22	50	ns
Slew Rate	$\mathrm{V}_{\text {OUT }}= \pm 3 \mathrm{~V}$	25	28	35	-	28	35	-	V/us
Settling Time	Note 8	25	-	400	-	-	400	-	ns
Overshoot		25	-	20	40	-	20	40	\%
POWER SUPPLY CHARACTERISTICS									
Supply Current		25	-	3.5	-	-	3.5	-	mA
		Full	-	-	4.0	-	-	4.0	mA
Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 4 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$	Full	-	16	51	-	2	4	$\mu \mathrm{V} / \mathrm{N}$

NOTES:
3. This parameter value is based upon design calculations.
4. Refer to Typical Performance section of the data sheet.
5. The limits for this parameter are guaranteed based on lab characterization, and reflect lot-to-lot variation.
6. Full power bandwidth guaranteed based on slew rate measurement using: FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$.
7. Refer to Test Circuits section of the data sheet.
8. Settling time is specified to 0.1% of final value for a 10 V output step and $A_{V}=-10$.

Test Circuits and Waveforms

FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT

Test Circuits and Waveforms (Continued)

Vertical Scale: Input $=0.5 \mathrm{~V} /$ Div.
Output $=5 \mathrm{~V} /$ Div.
Horizontal Scale: 500ns/Div.
LARGE SIGNAL RESPONSE

Vertical Scale: Input $=10 \mathrm{mV} /$ Div.
Output $=100 \mathrm{mV} /$ Div.
Horizontal Scale: 100ns/Div.
SMALL SIGNAL RESPONSE

FIGURE 2. SETTLING TIME TEST CIRCUIT

Application Information

NOTE: Tested Offset Adjustment Range is IV OS +1 mVI minimum referred to output. Typical range is $\pm 4 \mathrm{mV}$ with $R_{P}=10 \mathrm{k} \Omega$.

FIGURE 3. SUGGESTED OFFSET VOLTAGE ADJUSTMENT

NOTE: Low resistances are preferred for low noise applications as a $1 \mathrm{k} \Omega$ resistor has $4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ of thermal noise. Total resistances of greater than $10 \mathrm{k} \Omega$ on either input can reduce stability. In most high resistance applications, a few picofarads of capacitance across the feedback resistor will improve stability.

FIGURE 4. SUGGESTED STABILITY CIRCUITS

Typical Performance Curves $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified

FIGURE 5. TYPICAL OFFSET VOLTAGE vs TEMPERATURE

FIGURE 6. NOISE CHARACTERISTICS

Typical Performance Curves $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified (Continued)

FIGURE 7. NOISE vs SUPPLY VOLTAGE

FIGURE 9. PSRR vs FREQUENCY

FIGURE 11. Avol and Vout vs LOAD RESISTANCE

FIGURE 8. CMRR vs FREQUENCY

FIGURE 10. OPEN LOOP GAIN AND PHASE vs FREQUENCY

FIGURE 12. NORMALIZED SLEW RATE vs TEMPERATURE

HA-5147, HA-5147A
Typical Performance Curves $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified (Continued)

FIGURE 13. SUPPLY CURRENT vs TEMPERATURE

FIGURE 15. CLOSED LOOP GAIN AND PHASE vs FREQUENCY

FIGURE 14. VOUT MAX (UNDISTORTED SINEWAVE OUTPUT) vs FREQUENCY

$\mathrm{A}_{\mathrm{CL}}=25,000 \mathrm{~V} / N ; \mathrm{E}_{\mathrm{N}}=0.08 \mu \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \mathrm{RTI}$
Horizontal Scale $=1 \mathrm{~s} /$ Div.; Vertical Scale $=0.002 \mu \mathrm{~V} /$ Div.

FIGURE 16. PEAK-TO-PEAK NOISE VOLTAGE (0.1 Hz TO 10 Hz)

HARRIS
SEMICONDUCTOR

100MHz, JFET Input, High Slew Rate, Uncompensated, Operational Amplifiers

Features

- Wide Gain Bandwidth ($\mathrm{A}_{\mathrm{V}} \geq 10$) 100MHz
- High Slew Rate $120 \mathrm{~V} / \mathrm{s}$
- Settling Time 280ns
- Power Bandwidth 1.9 MHz
- Offset Voltage 1.0 mV
- Bias Current 20pA

Applications

- Video and RF Amplifiers
- Data Acquisition
- Pulse Amplifiers
- Precision Signal Generation

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathbf{C}\right)$	PACKAGE	PKG. NO.
HA2-5160-2	-55 to 125	8 Pin Metal Can	T8.C
HA2-5160-5	0 to 75	8 Pin Metal Can	T8.C
HA2-5162-5	0 to 75	8 Pin Metal Can	T8.C

Description

The HA-5160 is a wideband, uncompensated, operational amplifier with FET/Bipolar technologies and Dielectric Isolation. This monolithic amplifier features superior high frequency capabilities further enhanced by precision laser trimming of the input stage to provide excellent input characteristics. This device has excellent phase margin at a closed loop gain of 10 without external compensation.

The HA-5160/5162 offers a number of important advantages over similar FET input op amps from other manufacturers. In addition to superior bandwidth and settling characteristics, the Harris devices have nearly constant slew rate, bandwidth, and settling characteristics over the operating temperature range. This provides the user predictable performance in applications where settling time, full power bandwidth, closed loop bandwidth, or phase shift is critical. Note also that Harris specified all parameters at ambient (rather than junction) temperature to provide the designer meaningful data to predict actual operating performance.

Complementing the HA-5160/5162's predictable and excellent dynamic characteristics are very low input offset voltage, very low input bias current, and a very high input impedance. This ideal combination of features make these amplifiers most suitable for precision, high speed, data acquisition system designs and for a wide variety of signal conditioning applications. The HA-5160 provides excellent performance for applications which require both precision and high speed performance. The HA-5162 meets or exceeds the performance specifications of National's hybrid op amp, the LH0062.

Military version (/883) data sheets are available upon request.

Pinout

HA-5160/5162
 (METAL CAN)
 TOP VIEW

NOTE: Case connected to V-

Absolute Maximum Ratings
Voltage Between V+ and V
40 V
Differential Input Voltage.
Peak Output Current. \qquad
\qquad 40V

Operating conditions

Temperature Ranges
HA-5160-2 $\qquad$$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-5160-5, HA-5162-5
$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$
Supply Voltage Range (Typical) $\pm 7 \mathrm{~V}$ to $\pm 18 \mathrm{~V}$

Thermal Information

Thermal Resistance (Typical, Note 1) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ Metal Can Package 155 67 Maximum Junction Temperature $175^{\circ} \mathrm{C}$ Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$

Die Characteristics

Number of Transistors . 82
Substrate Potential (Powered Up).
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { HA- } 5160-2 \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{gathered}$			$\begin{aligned} & \text { HA-5160-5 } \\ & 0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & \text { HA-5162-5 } \\ & 0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C} \end{aligned}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	

INPUT CHARACTERISTICS

Offset Voltage		25	-	1	3	-	1	3	-	3	15	mV
		Full	-	3	5	-	3	5	-	5	20	mV
Offset Voltage Average Drift		Full	-	10	-	-	20	-	-	20	35	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	20	50	-	20	50	-	20	65	pA
		Full	-	5	10	-	5	10	-	5	10	nA
Offset Current		25	-	2	10	-	2	10	-	2	10	pA
		Full	-	2	5	-	2	5	-	2	5	nA
Input Capacitance		25	-	5	-	-	5	-	-	5	-	pF
Input Resistance		25	-	10^{12}	-	-	10^{12}	-	-	10^{12}	-	Ω
Common Mode Range		Full	± 10	± 11	-	± 10	± 11	-	± 10	± 11	-	V
TRANSFER CHARACTERISTICS												
Large Signal Voltage Gain	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	25	75	150	-	75	150	-	25	100	-	kV/N
		Full	60	100	-	60	100	-	25	75	-	kV/N
Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	Full	74	80	-	74	80	-	70	80	-	dB
Minimum Stable Gain		25	10	-	-	10	-	-	10	-	-	V/N
Gain Bandwidth Product	$A_{V} \geq 10$	Full	-	100	-	-	100	-	-	100	-	MHz

OUTPUT CHARACTERISTICS

Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k}$,	25	± 10	± 11	-	± 10	± 11	-	± 10	± 11	-	V
		Full	± 10	± 11	-	± 10	± 11	-	± 10	± 11	-	V
Output Current	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	25	± 10	± 20	-	± 10	± 20		± 10	± 20	-	mA
Output Short Circuit Current		25	-	± 35	-	-	± 35	-	-	± 35	-	mA
Full Power Bandwidth (Note 2)	$\begin{aligned} & \mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	25	1.6	1.9	-	1.6	1.9	-	0.8	1.1	-	MHz
Output Resistance	Open Loop	25	-	50	-	-	50	-	-	50	-	Ω
TRANSIENT RESPONSE (Note 3)												
Rise Time	$A_{V}=+10$	25	-	20	-	-	20	-	-	20	-	ns
Slew Rate	$A_{V}=+10$	25	100	120	-	100	120	-	50	70	-	V/ $/ \mathrm{s}$
Settling Time (Note 4)	$A_{V}=-10$	25	-	280	-	-	280	-	-	400	-	ns

HA-5160, HA-5162
Electrical Specifications $\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP. (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} H A-5160-2 \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{gathered}$			$\begin{aligned} & \text { HA- } 5160-5 \\ & 0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C} \end{aligned}$			$\begin{aligned} & \text { HA-5162-5 } \\ & 0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C} \end{aligned}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
POWER SUPPLY CHARACTERISTICS												
Supply Current		Full	-	8	10	-	8	10	-	8	12	mA
Power Supply Rejection Ratio	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	25	74	86	-	74	86	-	70	86	-	dB

NOTES:
2. Full Power Bandwidth guaranteed, based on slew rate measurement using: FPBW $=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$.
3. Refer to Test circuits section of the data sheet.
4. Settling Time is measured to 0.2% of final value for a 10 V output step.

Test Circuits and Waveforms

FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT

Vertical Scale: $A=0.5 \mathrm{~V} /$ Div., $B=5 \mathrm{~V} /$ Div. Horizontal Scale: $500 \mathrm{~ns} /$ Div.

LARGE SIGNAL RESPONSE

NOTES:
5. $A_{V}=-10$.
6. Feedback and summing resistors should be 0.1% matched.
7. Clipping diodes are optional. HP5082-2810 recommended.

FIGURE 2. SETTLING TIME TEST CIRCUIT

Vertical Scale: $A=10 \mathrm{mV} /$ Div., $B=100 \mathrm{mV} /$ Div. Horizontal Scale: $100 \mathrm{~ns} /$ Div.

SMALL SIGNAL RESPONSE

Schematic Diagram

Application Information

Power Supply Decoupling

Although not absolutely necessary, it is recommended that all power supply lines be decoupled with $0.01 \mu \mathrm{~F}$ ceramic capacitors to ground. Decoupling capacitors should be located as near to the amplifier terminals as possible.

Stability

The phase margin of the HA-5160/5162 will be improved by connecting a small capacitor ($>10 \mathrm{pF}$) between the output
and the inverting input of the device This small capacitor compensates for the input capacitance of the FET.

Capacitive Loads

When driving large capacitive loads ($>100 \mathrm{pF}$), it is suggested that a small resistor $(\approx 100 \Omega$) be connected in series with the output of the device and inside the feedback loop.

Power Supply Minimum

The absolute supply minimum is $\pm 6 \mathrm{~V}$ and the safe level is $\pm 7 \mathrm{~V}$.

Typical Applications

SUGGESTED COMPENSATION FOR UNITY GAIN STABILITY (NOTE)

FIGURE 3A. INVERTING UNITY GAIN CIRCUIT

Vertical Scale: 2V/Div. Horizontal Scale: 500ns/Div.

FIGURE 3B. INVERTING UNITY GAIN PULSE RESPONSE

Vertical Scale: 2V/Div. Horizontal Scale: 500ns/Div.

NOTE: Values were determined experimentally for optimum speed and setting time.
FIGURE 4A. NONINVERTING UNITY GAIN CIRCUIT
FIGURE 4B. NONINVERTING UNITY GAIN PULSE RESPONSE
FIGURE 4. GAIN $O F+1$

Typical Performance Curves

FIGURE 5. INPUT OFFSET VOLTAGE AND BIAS CURRENT vs TEMPERATURE

FIGURE 7. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 9. INPUT NOISE VOLTAGE AND NOISE CURRENT vs FREQUENCY

FIGURE 6. OPEN LOOP FREQUENCY RESPONSE

FIGURE 8. OPEN LOOP FREQUENCY RESPONSE FOR VARIOUS COMPENSATION CAPACITANCES

FIGURE 10. NORMALIZED AC PARAMETERS vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 11. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE

FIGURE 13. COMMON MODE REJECTION RATIO vs FREQUENCY

FIGURE 12. SETTLING TIME FOR VARIOUS OUTPUT STEP VOLTAGES

FIGURE 14. POWER SUPPLY REJECTION RATIO vs FREQUENCY

FIGURE 15. POWER SUPPLY CURRENT vs TEMPERATURE

8MHz, Precision, JFET Input Operational Amplifier

Description

The Harris HA-5170 is a precision, JFET input, operational amplifier which features low noise, low offset voltage and low offset voltage drift. Constructed using FET/Bipolar technology, the Harris Dielectric Isolation (DI) process, and laser trimming this amplifier offers low input bias and offset currents. This operational amplifier design also completely eliminates the troublesome errors due to warm-up drift.

Complementing these excellent input characteristics are dynamic performance characteristics never before available from precision operational amplifiers. An $8 \mathrm{~V} / \mu \mathrm{s}$ slew rate and 8 MHz bandwidth allow the designer to extend precision instrumentation applications in both speed and bandwidth. These characteristics make the HA-5170 well suited for precision integrator amplifier designs.
The superior input characteristics also make the HA-5170 ideally suited for transducer signal amplifiers, precision voltage followers and precision data acquisition systems. For application assistance, please refer to Application Note AN540 addressing specifically this device.

Military version (-8) product and data sheets available upon request.

Pinouts

HA-5170
(CERDIP)
TOP VIEW

HA-5170
(METAL CAN) TOP VIEW

Absolute Maximum Ratings	
Voltage Between V+ and V- Terminals	44 V
Differential Input Voltage.	30 V
Output Short Circuit Duration	Indefinite
Operating Conditions	
Temperature Range	
HA-5170-2.	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
HA-5170-5.	$\ldots 0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Absolute Maximum Ratings

Voltage Between V+ and V- Terminals
Differential Input Voltage. Indefinite

Operating Conditions

Thermal Information

Thermal Resistance (Typical, Note 1) $\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ CERDIP Package 135 . 50
Metal Can Package 155 67
Maximum Junction Temperature . $175^{\circ} \mathrm{C}$
Maximum Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $\quad V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { HA- } 5170-2 \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-5170-5 } \\ 0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C} \end{gathered}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	

INPUT CHARACTERISTICS

Offset Voltage		25	-	0.1	0.3	-	0.1	0.3	mV
		Full	-	-	0.5	-	-	0.5	mV
Average Offset Voltage Drift (Note 3)		Full	-	2	5	-	2	5	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	20	100	-	20	100	pA
		Full	-	3	30	-	0.1	2	nA
Bias Current Average Drift		Full	-	3	-	-	3	-	$\mathrm{pA}{ }^{\circ} \mathrm{C}$
Offset Current		25	-	3	30	-	3	60	pA
		Full	-	-	5	-	-	0.1	nA
Offset Current Average Drift (Note 3)		Full	-	0.3	1	-	0.3	1	$\mathrm{pA}^{\circ} \mathrm{C}$
Common Mode Range		Full	± 10	+15.1	-	± 10	+15.1	-	V
		Full		-12	-	-	-12	-	V
Differential Input Capacitance		25	-	80	100	-	80	100	pF
Differential Input Resistance (Note 3)		25	1×10^{10}	6×10^{10}	-	1×10^{10}	6×10^{10}	-	Ω
Input Capacitance (Single Ended)		25	-	12	-	-	12	-	pF
Input Noise Voltage (Note 3)	0.1 Hz to 10 Hz	25	-	0.5	5	-	0.5	5	$\mu \mathrm{V}_{\mathrm{P}-\mathrm{P}}$
Input Noise Voltage Density (Note 3)	$\mathrm{f}=10 \mathrm{~Hz}$	25	-	20	150	-	20	150	$n \mathrm{~V} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}=100 \mathrm{~Hz}$	25	-	12	50	-	12	50	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}=1000 \mathrm{~Hz}$	25	-	10	25	-	10	25	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
Input Noise Current Density (Note 3)	$\mathrm{f}=10 \mathrm{~Hz}$	25	-	0.05	-	-	0.05	-	$\mathrm{pA} \sqrt{\mathrm{Hz}}$
	$\mathrm{f}=100 \mathrm{~Hz}$	25	-	0.01	-	-	0.01	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
	$\mathrm{f}=1000 \mathrm{~Hz}$	25	-	0.01	0.1	-	0.01	0.1	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	$\left\|\begin{array}{c} \text { TEMP. } \\ \left({ }^{\circ} \mathrm{C}\right) \end{array}\right\|$	$\begin{gathered} \text { HA- } 5170-2 \\ -55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C} \end{gathered}$			$\begin{gathered} \text { HA-5170-5 } \\ 0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C} \end{gathered}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	

TRANSFER CHARACTERISTICS

Large Signal Voltage Gain	$\begin{aligned} & V_{\text {OUT }}= \pm 10 \mathrm{~V} \\ & R_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	25	300	600	-	300	600	-	kV/N
		Full	200	-	-	250	-	-	kV/V
Common Mode Rejection Ratio	$\Delta \mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}$	Full	85	100	-	90	100	-	dB
Minimum Stable Gain		25	1	-	-	1	-	-	V / N
Closed Loop Bandwidth	$A_{V C L}=+1$	25	4	8	-	4	8	-	MHz

OUTPUT CHARACTERISTICS

Output Voltage Swing	$R_{\mathrm{L}}=2 \mathrm{k} \Omega$	25	± 10	± 12	-	± 10	± 12	-	V
Full Power Bandwidth (Note 4)	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	25	80	120	-	80	120	-	kHz
Output Current (Note 5)	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}$	25	± 10	± 15	-	± 10	± 15	-	mA
Output Resistance (Note 3)	Open Loop, 100Hz	25	-	45	100	-	45	100	Ω

TRANSIENT RESPONSE

Rise Time	Note 2	25	-	45	100	-	45	100
Slew Rate	Note 2	25	5	8	-	5	8	-
Settling Time (Notes 3, 7)		25	-	1	5	-	1	5

POWER SUPPLY CHARACTERISTICS

Supply Current	Full	-	1.9	2.5	-	1.9	2.5	mA
Power Supply Rejection Ratio (Note 8)	Full	85	105	-	90	105	-	dB

NOTES:
2. See "Test Circuits and Waveforms" section.
3. Parameter is not 100% tested. 90% of all units meet or exceed these specifications.
4. Full power bandwidth guaranteed based on slew rate measurement using: $\mathrm{FPBW}=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$.
5. Isc turns on at $\cong 23 \mathrm{~mA}$.
6. Settling time is measured to 0.1% of final value for a 10 V output step and $A_{V}=-1$.
7. $\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-10 \mathrm{~V}$ to -20 V and $\mathrm{V}-=-15 \mathrm{~V}, \mathrm{~V}+=+10 \mathrm{~V}$ to +20 V .

Test Circuits and Waveforms

Tested Offset Adjustment Range is $\mathrm{IV}_{\mathrm{OS}}+1 \mathrm{mVI}$ minimum referred to output. Typical range is $\pm 5 \mathrm{mV}$ with $\mathrm{R}_{\mathrm{T}}=1 \mathrm{k} \Omega$ and $\pm 15 \mathrm{mV}$ with $R_{T}=100 \mathrm{k} \Omega$.

FIGURE 1. $\mathrm{V}_{\text {OS }}$ ADJUSTMENT

Vertical Scale: 5V/Div.
Horizontal Scale: $1 \mu \mathrm{~s} /$ Div.
LARGE SIGNAL RESPONSE

$\cong 10 \mathrm{~Hz}$ FILTER
$A_{V}=25,000$

FIGURE 3. LOW FREQUENCY NOISE TEST CIRCUIT

FIGURE 2. LARGE AND SMALL SIGNAL RESPONSE CIRCUIT

Vertical Scale: $10 \mathrm{mV} / \mathrm{Div}$.
Horizontal Scale: 100ns/Div.
SMALL SIGNAL RESPONSE

Vertical Scale: $200 \mathrm{nV} /$ Div. (Noise Referred to Input) $5 \mathrm{mV} /$ Div. at Output, $\mathrm{A}_{\mathrm{VCL}}=25,000$ Horizontal Scale: 1s/Div.

HA-5170 LOW FREQUENCY NOISE (0.1 Hz TO 10Hz)

Schematic Diagram

Typical Performance Curves

FIGURE 4. INPUT NOISE vs FREQUENCY

FIGURE 6. SETTLING TIME FOR VARIOUS OUTPUT STEP VOLTAGES

FIGURE 8. POWER SUPPLY CURRENT vs SUPPLY VOLTAGE

FIGURE 5. OFFSET VOLTAGE DRIFT vs TEMPERATURE OF REPRESENTATIVE UNITS

FIGURE 7. BIAS CURRENT vs TEMPERATURE

FIGURE 9. NORMALIZED AC PARAMETERS vs TEMPERATURE

Typical Performance Curves (Continued)

FIGURE 10. POWER SUPPLY REJECTION RATIO vs FREQUENCY

FIGURE 12. SMALL SIGNAL BANDWIDTH AND PHASE MARGIN vs LOAD CAPACITANCE

FIGURE 14. NORMALIZED AC PARAMETERS vs SUPPLY VOLTAGE

FIGURE 11. COMMON MODE REJECTION RATIO vs FREQUENCY

FIGURE 13. OUTPUT VOLTAGE SWING vs FREQUENCY AND SUPPLY VOLTAGE

FIGURE 15. MAXIMUM OUTPUT VOLTAGE SWING vs LOAD RESISTANCE

Typical Performance Curves (Continued)

FIGURE 16. OPEN LOOP FREQUENCY RESPONSE

FIGURE 17. CLOSED LOOP FREQUENCY RESPONSE FOR VARIOUS CLOSED LOOP GAINS

HARRI
SEMICONDUCTOR

HA-5177 November 1996 or via Harlis Answerffx, see Secio Offset Voltage Operational Amplifier

Features

- Low Offset Voltage. $20 \mu \mathrm{~V}$
- Low Offset Voltage Drift $0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- High Voltage Gain 150dB
- High CMRR 140dB
- High PSRR 135dB
- Low Noise $9.0 \mathrm{nV} / \sqrt{\mathrm{Hz}}$
- Low Power Consumption 51mW (Max)

Applications

- High Gain Instrumentation Amplifiers
- Precision Control Systems
- Precision Integrators
- High Resolution Data Converters
- Precision Threshold Detectors
- Low Level Transducer Amplifiers

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathbf{C}\right)$	PACKAGE	PKG. NO.
HA3-5177-5	0 to 75	8 Ld PDIP	E8.3
HA7-5177-5	0 to 75	8 Ld CERDIP	F8.3A

Description

The HA-5177 is an all bipolar, precision operational amplifier, utilizing Harris dielectric isolation and advance processing techniques. This design features a combination of precision input characteristics, wide bandwidth (2 MHz) and high speed $(0.8 \mathrm{~V} / \mu \mathrm{s})$.

The HA-5177 uses advanced matching techniques and laser trimming to produce low offset voltage ($20 \mu \mathrm{~V}$) and low offset voltage drift $\left(0.2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\right)$. This design also features low voltage noise ($9.0 \mathrm{nV} / \sqrt{\mathrm{Hz}}$), low current noise ($1.2 \mathrm{pA} \sqrt{\mathrm{Hz}}$), nanoamp input currents, and 120 dB minimum gain.

These outstanding features along with high CMRR (140dB) and high PSRR (135 dB) make this unity gain stable amplifier ideal for high resolution data acquisition systems, precision integrators, and low level transducer amplifiers.

The HA-5177 can be used as a direct replacement for the OP05, OP07, and OP77 while offering higher bandwidth and slew rate. See the HA-5177/883 data sheet for military grade parts and LCC package. Harris AnswerFAX (407-724-7800) Document \#3733.

Pinout

HA-5177
(PDIP, CERDIP)
TOP VIEW

150MHz, Fast Settling
Operational Amplifiers

Description

HA-5190/5195 are operational amplifiers featuring a combination of speed, precision, and bandwidth. Employing monolithic bipolar construction coupled with Dielectric Isolation, these devices are capable of delivering $200 \mathrm{~V} / \mu \mathrm{s}$ slew rate with a settling time of $70 \mathrm{~ns}(0.1 \%, 5 \mathrm{~V}$ output step). These truly differential amplifiers are designed to operate at gains ≥ 5 without the need for external compensation. Other outstanding HA-5190/5195 features are 150 MHz gain bandwidth product and 6.5 MHz full power bandwidth. In addition to these dynamic characteristics, these amplifiers also have excellent input characteristics such as 3 mV offset voltage and $6.0 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ input voltage noise at 1 kHz .

With $200 \mathrm{~V} / \mu$ s slew rate and 70 ns settling time, these devices make ideal output amplifiers for accurate, high speed D/A converters or the main components in high speed sample/hold circuits. The 5190/5195 are also ideally suited for a variety of pulse and wideband video amplifiers. Please refer to Application Notes AN525 and AN526 for some of these application designs.

At temperatures above $75^{\circ} \mathrm{C}$ a heat sink is required for the HA-5190 (see Note 2 and Application Note AN556). For military versions, please request the HA-5190/883 data sheet.

Pinout

HA-5195 (SOIC)
TOP VIEW

HA-5190/5195 (METAL CAN) TOP VIEW

NOTE: Case Tied To V-

HA-5190, HA-5195

Absolute Maximum	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Supply Voltage (V+ to V-)	35 V
Differential Input Voltage.	6V
Output Current	50 mA (Peak)

Thermal Information

$\begin{array}{cccc}\text { Thermal Resistance (Typical, Note 2) } & \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) & \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \\ \text { CERDIP Package } \ldots \ldots \ldots \ldots \ldots \ldots & 75 & 20 \\ \text { Metal Can Package } \ldots \ldots \ldots \ldots \ldots & 65 & 34 \\ \text { SOIC Package. } & 119 & \text { N/A }\end{array}$
Maximum Junction Temperature (Hermetic Package, Note 1) . . $175^{\circ} \mathrm{C}$ Maximum Junction Temperature (Plastic Package, Note 1) . $150^{\circ} \mathrm{C}$ Maximum Storage Temperature Range $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ Maximum Lead Temperature (Soldering 10s) $300^{\circ} \mathrm{C}$ (SOIC Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:

1. Heat sinking may be required, especially at $T_{A} \geq 75^{\circ} \mathrm{C}$.
2. $\theta_{J A}$ is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified

PARAMETER	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	HA-5190-2			HA-5195-5			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
INPUT CHARACTERISTICS									
Offset Voltage		25	-	3	5	-	3	6	mV
		Full	-	-	10	-	-	10	mV
Average Offset Voltage Drift		Full	-	20	-	-	20	-	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Bias Current		25	-	5	15	-	5	15	$\mu \mathrm{A}$
		Full	-	-	20	-	-	20	$\mu \mathrm{A}$
Offset Current		25	-	1	4	-	1	4	$\mu \mathrm{A}$
		Full	-	-	6	-	-	6	$\mu \mathrm{A}$
Input Resistance		25	-	10	-	-	10	-	$\mathrm{k} \Omega$
Input Capacitance		25	-	1	-	-	1	-	pF
Common Mode Range		Full	± 5	-	-	± 5	-	-	V
Input Noise Current	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{G}}=0 \Omega$	25	-	5	-	-	5	-	$\mathrm{pA} / \sqrt{\mathrm{Hz}}$
Input Noise Voltage	$\mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{G}}=0 \Omega$	25	-	6	-	-	6	-	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
TRANSFER CHARACTERISTICS									
Large Signal Voltage Gain (Note 3)		25	15	30	-	10	30	-	kV/
		Full	5	-	-	5	-	-	kVN
Common Mode Rejection Ratio	$\Delta \mathrm{V}_{\mathrm{CM}}= \pm 5 \mathrm{~V}$	Full	74	95	-	74	95	-	dB
Minimum Stable Gain		25	5	-	-	5	-	-	$\mathrm{V} N$
Gain-Bandwidth-Product	$\mathrm{V}_{\text {OUT }}=90 \mathrm{mV}, \mathrm{A}_{\mathrm{V}}=10$	25	-	150	-	150	-	-	MHz
OUTPUT CHARACTERISTICS									
Output Voltage Swing (Note 3)		Full	± 5	± 8	-	± 5	± 8	-	V
Output Current (Note 3)		25	± 25	± 30	\cdot	± 25	± 30	-	mA
Output Resistance	Open Loop	25	-	30	-	-	30	-	Ω
Full Power Bandwidth (Notes 3, 4)		25	5	6.5	-	5	6.5	-	MHz
TRANSIENT RESPONSE (Note 5)									
Rise Time		25	-	13	18	-	13	18	ns
Overshoot		25	-	8	-	-	8	-	\%
Slew Rate		25	160	200	-	160	200	-	V/ $\mu \mathrm{s}$
Settling Time (Note 5)	5 V Step to 0.1\%	25	70	-	-	70	-	ns	25
	5 V Step to 0.01\%	25	-	100	\cdot	-	100	-	ns
	2.5V Step to 0.1\%	25	-	50	-	\cdot	50	-	ns
	2.5 V Step to 0.01%	25	-	80	-	-	80	-	ns

Electrical Specifications $V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}$, Unless Otherwise Specified (Continued)

PARAMETER	TEST CONDITIONS	TEMP (${ }^{\circ} \mathrm{C}$)	HA-5190-2			HA-5195-5			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
POWER SUPPLY CHARACTERISTICS									
Supply Current		Full	-	19	28	-	19	28	mA
Power Supply Rejection Ratio	$\Delta \mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}$ to $\pm 20 \mathrm{~V}$	Full	70	90	-	70	90	-	dB

NOTES:
3. $R_{L}=200 \Omega, C_{L}<10 p F, V_{O U T}= \pm 5 \mathrm{~V}$.
4. Full power bandwidth guaranteed based on slew rate measurement using: $\mathrm{FPBW}=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}$.
5. Refer to Test Circuits section of the data sheet.

Test Circuits and Waveforms

FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT

Vertical Scale: $\mathrm{V}_{I N}=2.0 \mathrm{~V} /$ Div., $\mathrm{V}_{\text {OUT }}=4.0 /$ Div. Horizontal Scale: $100 \mathrm{~ns} /$ Div.

LARGE SIGNAL RESPONSE

Vertical Scale: $\mathrm{V}_{\text {IN }}=50 \mathrm{mV} /$ Div., $\mathrm{V}_{\text {OUT }}=100 \mathrm{mV} /$ Div. Horizontal Scale: 100ns/Div

SMALL SIGNAL RESPONSE

NOTES:
8. $A_{V}=-5$.
9. Load Capacitance should be less than 10 pF .
10. It is recommended that resistors be carbon composition and that feedback and summing network ratios be matched to 0.1%.
11. Settle Point (Summing Node) capacitance should be less than 10 pF . For optimum settling time results, it is recommended that the test circuit be constructed directly onto the device pins. A Tektronix 568 Sampling Oscilloscope with S-3A sampling heads is recommended as a settle point monitor.

FIGURE 2. SETTLING TIME TEST CIRCUIT

Schematic Diagram

Application Information

Power Supply Decoupling

Although not absolutely necessary, it is recommended that all power supply lines be decoupled with $0.01 \mu \mathrm{~F}$ ceramic capacitors to ground. Decoupling capacitors should be located as near to the amplifier terminals as possible.

Stability Considerations

HA-5190/5195 is stable at gains >5. Gains < 5 are covered below. Feedback resistors should be of carbon composition located as near to the input terminals as possible.

Wiring Considerations

Video pulse circuits should be built on a ground plane. Minimum point to point connections directly to the amplifier terminals should be used. When ground planes cannot be used, good single point grounding techniques should be applied.

Output Short Circuit

HA-5190/5195 does not have output short circuit protection. Short circuits to ground can be tolerated for approximately 10 seconds. Short circuits to either supply will result in immediate destruction of the device.

Heavy Capacitive Loads

When driving heavy capacitive loads ($>100 \mathrm{pF}$) a small resistor (100Ω) should be connected in series with the output and inside the feedback loop.

Typical Applications (Also see Application Notes AN525 and AN526)

Vertical Scale: 2V/Div. Horizontal Scale: $100 \mathrm{~ns} /$ Div

NOTE: Values were determined experimentally for optimum speed and settling time. R_{F} and C_{1} should be optimized for each particular application to ensure best overall frequency response.

FIGURE 3. SUGGESTED COMPENSATION FOR NONINVERTING UNITY GAIN AMPLIFIER

Vertical Scale: 2V/Div. Horizontal Scale: 50ns/Div.

Figure 4. SUGgested Compensation for inverting unity gain amplifier

FIGURE 5. VIDEO PULSE AMPLIFIER/75 Ω COAXIAL DRIVER

FIGURE 6. VIDEO PULSE AMPLIFIER COAXIAL LINE DRIVER

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified

FIGURE 7. INPUT OFFSET VOLTAGE AND BIAS CURRENT vs TEMPERATURE

FIGURE 9. OUTPUT VOLTAGE SWING vs FREQUENCY

FIGURE 11. NORMALIZED AC PARAMETERS vs LOAD CAPACITANCE

FIGURE 8. OPEN LOOP FREQUENCY RESPONSE

Typical Performance Curves $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless Otherwise Specified (Continued)

FIGURE 13. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE

FIGURE 15. COMMON MODE REJECTION RATIO vs FREQUENCY

FIGURE 14. SETTLING TIME FOR VARIOUS OUTPUT STEP VOLTAGES

FIGURE 16. POWER SUPPLY REJECTION RATIO vs FREQUENCY

FIGURE 17. POWER SUPPLY CURRENT vs TEMPERATURE

Die Characteristics

DIE DIMENSIONS:
54 mils $\times 88$ mils $\times 19$ mils $1360 \mu \mathrm{~m} \times 2240 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}$

METALLIZATION:

Type: AI, 1\% Cu Thickness: $16 \mathrm{k} \AA \mathrm{I}^{2} \mathrm{k} \AA$

PASSIVATION:

Type: Nitride $\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)$ over Silox ($\mathrm{SiO}_{2}, 5 \%$ Phos.)
Silox Thickness: $12 k \AA+2 k \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT:

PROCESS:
Bipolar Dielectric Isolation

Metallization Mask Layout

November 1996

100MHz, Single and Dual Low Noise,
 Precision Operational Amplifiers

Features

- Gain Bandwidth Product 100MHz
- Unity Gain Bandwidth . 25MHz
- Slew Rate . 25V/ $\mu \mathrm{s}$
- Low Offset Voltage. 0.3mV
- High Open Loop Gain . 128dB
- Channel Separation at 10kHz 110dB
- Low Noise Voltage at $\mathbf{1 k H z} \ldots$. 3.4nV/ $\sqrt{\mathrm{Hz}}$
- High Output Current
. 56mA
- Low Supply Current per Amplifier 8mA

Applications

- Precision Test Systems
- Active Filtering
- Small Signal Video
- Accurate Signal Processing
- RF Signal Conditioning

Description

The HA-5221/5222 are single and dual high performance dielectrically isolated, op amps, featuring precision DC characteristics while providing excellent AC characteristics. Designed for audio, video, and other demanding applications, noise $(3.4 \mathrm{nV} / \sqrt{\mathrm{Hz}}$ at 1 kHz$)$, total harmonic distortion (<0.005\%), and DC errors are kept to a minimum.

The precision performance is shown by low offset voltage $(0.3 \mathrm{mV})$, low bias currents (40 nA), low offset currents (15 nA), and high open loop gain (128dB). The combination of these excellent DC characteristics with the fast settling time ($0.4 \mu \mathrm{~s}$) make the HA-5221/5222 ideally suited for precision signal conditioning.

The unique design of the HA-5221/5222 gives them outstanding AC characteristics not normally associated with precision op amps, high unity gain bandwidth (35 MHz) and high slew rate $(25 \mathrm{~V} / \mu \mathrm{s})$. Other key specifications include high CMRR (95 dB) and high PSRR (100dB). The combination of these specifications will allow the HA-5221/5222 to be used in RF signal conditioning as well as video amplifiers.
For MIL-STD-883C compliant product and Ceramic LCC packaging, consult the HA-5221/5222/883C data sheet. Harris AnswerFAX (407-724-7800) Document \#3716.

Pinouts

HA-5221
(PDIP, CERDIP, SOIC)
TOP VIEW

HA-5222 (PDIP, SOIC) TOP VIEW

HA-5221 (METAL CAN) TOP VIEW

HA-5222 (CERDIP) TOP VIEW

Ordering Information

PART NUMBER (BRAND)	TEMP. RANGE (${ }^{\circ} \mathrm{C}$)	PACKAGE	PKG. NO.
HA2-5221-5	0 to 75	8 Pin Metal Can	T8.C
НАЗ-5221-5	0 to 75	8 Ld PDIP	E8.3
HA7-5221-5	0 to 75	8 Ld CERDIP	F8.3A
HA7-5221-9	-40 to 85	8 Ld CERDIP	F8.3A
HA9P5221-5 (H52215)	0 to 75	8 Ld SOIC	M8. 15
НАЗ-5222-5	0 to 75	16 Ld PDIP	E16.3
HA7-5222-5	0 to 75	8 Ld CERDIP	F8.3A
HA7-5222-9	-40 to 85	8 Ld CERDIP	F8.3A
HA9P5222-5	0 to 75	16 Ld SOIC	M16.3
HA9P5222-9	-40 to 85	16 Ld SOIC	M16.3

Absolute Maximum Ratings
Supply Voltage Between $\mathrm{V}+$ and V - Terminals
Differential Input Voltage (Note 1). . 5 V
Output Current Short Circuit Duration
Indefinite

Operating Conditions

Temperature Range

```
HA-5221/5222-9
HA-5221/5222-5

\section*{Thermal Information}
\begin{tabular}{|c|c|c|}
\hline Thermal Resistance (Typical, Note 2) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{N}\right)\) & \(\theta_{\mathrm{Jc}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline Metal Can Package & 165 & 80 \\
\hline CERDIP Package (HA7-5221). & 135 & 50 \\
\hline CERDIP Package (HA7-5222). & 115 & 30 \\
\hline 8 Ld PDIP Package & 92 & N/A \\
\hline 8 Ld SOIC Package . & 157 & N/A \\
\hline 16 Ld PDIP Package & 85 & N/A \\
\hline 16 Ld SOIC Package . & 95 & N/A \\
\hline \multicolumn{3}{|l|}{Maximum Junction Temperature (Hermetic Package) . . . . . . . \(175^{\circ} \mathrm{C}\)} \\
\hline \multicolumn{3}{|l|}{Maximum Junction Temperature (Plastic Package) . . . . . . . \(150^{\circ} \mathrm{C}\)} \\
\hline Maximum Storage Temperature Range & & to \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Lead Temperature (Soldering & & \(.300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
(SOIC - Lead Tips Only)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{3}{|l|}{HA-5221-9, HA-5222-9} & \multicolumn{3}{|l|}{HA-5221-5, HA-5222-5} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{10}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & & 25 & - & 0.30 & 0.75 & - & 0.30 & 0.75 & mV \\
\hline & & Full & - & 0.35 & 1.5 & - & 0.35 & 1.5 & mV \\
\hline Average Offset Voltage Drift & & Full & - & 0.5 & - & - & 0.5 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{Input Bias Current} & & 25 & - & 40 & 80 & - & 40 & 100 & nA \\
\hline & & Full & - & 70 & 200 & - & 70 & 200 & nA \\
\hline \multirow[t]{2}{*}{Input Offset Current} & & 25 & - & 15 & 50 & - & 15 & 100 & nA \\
\hline & & Full & - & 30 & 150 & - & 30 & 150 & nA \\
\hline \multirow[t]{2}{*}{Input Offset Voltage Match} & & 25 & - & 400 & 750 & - & 400 & 750 & \(\mu \mathrm{V}\) \\
\hline & & Full & - & - & 1500 & - & - & 1500 & \(\mu \mathrm{V}\) \\
\hline Common Mode Range & & 25 & \(\pm 12\) & - & - & \(\pm 12\) & - & - & V \\
\hline Differential Input Resistance & & 25 & - & 70 & - & - & 70 & - & k \(\Omega\) \\
\hline Input Noise Voltage & \(\mathrm{f}=0.1 \mathrm{~Hz}\) to 10 Hz & 25 & - & 0.25 & - & - & 0.25 & - & \(\mu \mathrm{V}_{\mathrm{P}-\mathrm{P}}\) \\
\hline Input Noise Voltage & \(f=10 \mathrm{~Hz}\) & 25 & - & 6.2 & 10 & - & 6.2 & 10 & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline \multirow[t]{2}{*}{Density (Notes 3, 12)} & \(f=100 \mathrm{~Hz}\) & 25 & - & 3.6 & 6 & - & 3.6 & 6 & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline & \(f=1000 \mathrm{~Hz}\) & 25 & - & 3.4 & 4.0 & - & 3.4 & 4.0 & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Noise Current & \(f=10 \mathrm{~Hz}\) & 25 & - & 4.7 & 8.0 & - & 4.7 & 8.0 & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline \multirow[t]{2}{*}{Density (Notes 3, 12} & \(f=100 \mathrm{~Hz}\) & 25 & - & 1.8 & 2.8 & - & 1.8 & 2.8 & \(\mathrm{pA} \sqrt{ } \sqrt{\mathrm{Hz}}\) \\
\hline & \(\mathrm{f}=1000 \mathrm{~Hz}\) & 25 & - & 0.97 & 1.8 & - & 0.97 & 1.8 & \(\mathrm{pA} \sqrt{ } \sqrt{\mathrm{Hz}}\) \\
\hline THD +N & Note 4 & 25 & - & <0.005 & - & - & <0.005 & - & \% \\
\hline
\end{tabular}

HA-5221, HA-5222

Electrical Specifications \(\mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{3}{|l|}{HA-5221-9, HA-5222-9} & \multicolumn{3}{|l|}{HA-5221-5, HA-5222-5} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{10}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Large Signal Voltage Gain} & \multirow[t]{2}{*}{Note 5} & 25 & 106 & 128 & - & 106 & 128 & \(-\) & dB \\
\hline & & Full & 100 & 120 & - & 100 & 120 & - & dB \\
\hline CMRR & \(\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}\) & Full & 86 & 95 & - & 86 & 95 & - & dB \\
\hline Unity Gain Bandwidth & \(-3 \mathrm{~dB}\) & 25 & - & 35 & - & - & 35 & - & MHz \\
\hline Gain Bandwidth Product & 1 kHz to 400 kHz & 25 & - & 100 & - & - & 100 & - & MHz \\
\hline Minimum Stable Gain & & Full & 1 & - & - & 1 & - & - & \(\mathrm{V} / \mathrm{N}\) \\
\hline
\end{tabular}

OUTPUT CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Output Voltage Swing} & \(R_{L}=333 \Omega\) & Full & \(\pm 10\) & - & - & \(\pm 10\) & - & - & V \\
\hline & \(R_{L}=1 \mathrm{k} \Omega\) & 25 & \(\pm 12\) & \(\pm 12.5\) & - & \(\pm 12\) & \(\pm 12.5\) & - & V \\
\hline & \(R_{L}=1 \mathrm{k} \Omega\) & Full & \(\pm 11.5\) & \(\pm 12.1\) & - & \(\pm 11.5\) & \(\pm 12.1\) & - & V \\
\hline Output Current & \(\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}\) & Full & \(\pm 30\) & \(\pm 56\) & - & \(\pm 30\) & \(\pm 56\) & - & mA \\
\hline Output Resistance & & 25 & - & 10 & - & - & 10 & - & \(\Omega\) \\
\hline Full Power Bandwidth & Note 6 & 25 & 239 & 398 & - & 239 & 398 & - & kHz \\
\hline Channel Separation & Note 7 & 25 & - & 110 & - & - & 110 & - & dB \\
\hline
\end{tabular}

TRANSIENT RESPONSE (Note 11)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Slew Rate & Notes 8, 12 & Full & 15 & 25 & - & 15 & 25 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Rise Time & Notes 9, 12 & Full & - & 13 & 20 & - & 13 & 20 & ns \\
\hline Overshoot & Notes 9, 12 & Full & - & 28 & 50 & - & 28 & 50 & \% \\
\hline \multirow[t]{2}{*}{Settling Time (Note 10)} & 0.1\% & 25 & - & 0.4 & - & - & 0.4 & - & \(\mu \mathrm{s}\) \\
\hline & 0.01\% & 25 & - & 1.5 & - & - & 1.5 & - & \(\mu s\) \\
\hline
\end{tabular}

\section*{POWER SUPPLY}
\begin{tabular}{|l|c|c|c|c|c|c|c|c|}
\hline PSRR & \(V_{S}= \pm 10 \mathrm{~V}\) to \(\pm 20 \mathrm{~V}\) & Full & 86 & 100 & - & 86 & 100 & - \\
\hline Supply Current & & Full & - & 8 & 11 & - & 8 & 11 \\
\hline
\end{tabular}

NOTES:
3. Refer to typical performance curve in data sheet.
4. \(A_{V C L}=10, f_{O}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{R}_{\mathrm{L}}=600 \Omega, 10 \mathrm{~Hz}\) to 100 kHz , Minimum resolution of test equipment is \(0.005 \%\).
5. \(V_{\text {OUT }}=0\) to \(\pm 10 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \Omega, C_{\mathrm{L}}=50 \mathrm{pF}\).
6. Full Power Bandwidth is calculated by: FPBW \(=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}, V_{\text {PEAK }}=10 \mathrm{~V}\).
7. \(H A-5222\) only, \(f=10 \mathrm{kHz}, R_{L}=1 \mathrm{k} \Omega, C_{L}=50 \mathrm{pF}\).
8. \(\mathrm{V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\).
9. \(\mathrm{V}_{\mathrm{OUT}}= \pm 100 \mathrm{mV}, R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\).
10. Settling time is specified for a 10 V step and \(A_{V}=-1\).
11. See Test Circuits.
12. Guaranteed by characterization.

\section*{Test Circuits and Waveforms}


FIGURE 1. TRANSIENT RESPONSE TEST CIRCUIT


13. \(\mathrm{AV}=-1\).
14. Feedback and summing resistors must be matched ( \(0.1 \%\) ).
15. HP5082-2810 clipping diodes recommended.
16. Tektronix P6201 FET probe used at settling point.

FIGURE 4. SETTLING TIME TEST CIRCUIT

Schematic Diagram


\section*{Application Information}

\section*{Operation at Various Supply Voltages}

The HA-5221/5222 operates over a wide range of supply voltages with little variation in performance. The supplies may be varied from \(\pm 5 \mathrm{~V}\) to \(\pm 15 \mathrm{~V}\). See typical performance curves for variations in supply current, slew rate and output voltage swing.

\section*{Offset Adjustment}

The following diagram shows the offset voltage adjustment configuration for the HA-5221. By moving the potentiometer wiper towards pin 8 (+BAL), the op amps output voltage will increase; towards pin 1 (-BAL) decreases the output voltage. A \(20 \mathrm{k} \Omega\) trim pot will allow an offset voltage adjustment of about 10 mV .


\section*{Capacitive Loading Considerations}

When driving capacitive loads \(>80 \mathrm{pF}\), a small resistor, \(50 \Omega\) to \(100 \Omega\), should be connected in series with the output and inside the feedback loop.

\section*{Saturation Recovery}

When an op amp is over driven, output devices can saturate and sometimes take a long time to recover. By clamping the input, output saturation can be avoided. If output saturation can not be avoided, the maximum recovery time when overdriven into the positive rail is \(10.6 \mu \mathrm{~s}\). When driven into the negative rail the maximum recovery time is \(3.8 \mu \mathrm{~s}\).

\section*{Input Protection}

The HA-5221/5222 has built in back-to-back protection diodes which limit the maximum allowable differential input voltage to approximately 5 V . If the HA-5221/5222 will be used in circuits where the maximum differential voltage may be exceeded, then current limiting resistors must be used. The input current should be limited to a maximum of 10 mA .


\section*{PC Board Layout Guidelines}

When designing with the HA-5221 or the HA-5222, good high frequency (RF) techniques should be used when building a PC board. Use of ground plane is recommended. Power supply decoupling is very important. A \(0.01 \mu \mathrm{~F}\) to \(0.1 \mu \mathrm{~F}\) high quality ceramic capacitor at each power supply pin with a \(2.2 \mu \mathrm{~F}\) to \(10 \mu \mathrm{~F}\) tantalum close by will provide excellent decoupling. Chip capacitors produce the best results due to ease of placement next to the op amp and basically no lead inductance. If leaded capacitors are used, the leads should be kept as short as possible to minimize lead inductance.

\section*{Typical Performance Curves \(\mathrm{v}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)}


FIGURE 5. OPEN LOOP GAIN AND PHASE vs FREQUENCY


FIGURE 6. CLOSED LOOP GAIN vs FREQUENCY

Typical Performance Curves \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (Continued)


FIGURE 7. CLOSED LOOP GAIN vs FREQUENCY


FIGURE 9. CMRR vs FREQUENCY


FIGURE 11. OPEN LOOP GAIN vs TEMPERATURE


FIGURE 8. VARIOUS CLOSED LOOP GAINS vs FREQUENCY


FIGURE 10. PSRR vs FREQUENCY


FIGURE 12. OFFSET VOLTAGE vs TEMPERATURE (4 REPRESENTATIVE UNITS)

Typical Performance Curves \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (Continued)


FIGURE 13. BIAS CURRENT vs TEMPERATURE (4 REPRESENTATIVE UNITS)


FIGURE 15. SLEW RATE vs TEMPERATURE


FIGURE 17. SUPPLY CURRENT vs SUPPLY VOLTAGE


FIGURE 14. OUTPUT VOLTAGE SWING vs TEMPERATURE


FIGURE 16. OFFSET VOLTAGE WARM-UP DRIFT (CERDIP PACKAGES)


FIGURE 18. SLEW RATE vs SUPPLY VOLTAGE

Typical Performance Curves \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (Continued)


FIGURE 19. OUTPUT VOLTAGE SWING vs SUPPLY VOLTAGE


FIGURE 21. OFFSET CURRENT vs TEMPERATURE (4 REPRESENTATIVE UNITS)


FIGURE 23. BANDWIDTH AND PHASE MARGIN vs LOAD CAPACITANCE


FIGURE 20. NOISE CHARACTERISTICS


FIGURE 22. CMRR AND PSRR vs TEMPERATURE


FIGURE 24. SHORT CIRCUIT OUTPUT CURRENT vs TIME

Typical Performance Curves \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (Continued)


Vertical Scale \(=1 \mathrm{mV} /\) Div.; \(\quad\) Horizontal Scale \(=1 \mathrm{~s} /\) Div. \(A_{V}=+25,000 ; E_{N}=0.168 \mu V_{\text {P-P }} R T I\)

FIGURE 25. 0.1 Hz TO 10 Hz NOISE


FIGURE 27. OUTPUT VOLTAGE SWING vs FREQUENCY


FIGURE 29. SUPPLY CURRENT/AMPLIFIER vs TEMPERATURE


Vertical Scale \(=10 \mathrm{mV} /\) Div.; Horizontal Scale \(=1 \mathrm{~s} /\) Div. \(A_{V}=+25.000 ; \mathrm{E}_{\mathrm{N}}=1.5 \mu \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \mathrm{RTI}\)

FIGURE 26. 0.1 Hz TO 1 MHz


FIGURE 28. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE


FIGURE 30. CHANNEL SEPARATION vs FREQUENCY
(HA-5222 ONLY)

\section*{Die Characteristics}

\section*{DIE DIMENSIONS:}

72 mils \(\times 94\) mils \(\times 19\) mils \(1840 \mu \mathrm{~m} \times 2400 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)

\section*{METALLIZATION:}

Type: Al, 1\% Cu
Thickness: \(16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA\)

\section*{PASSIVATION:}

Type: Nitride \(\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)\) over Silox ( \(\mathrm{SiO}_{2}, 5 \%\) Phos.)
Silox Thickness: \(12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA\)
Nitride Thickness: \(3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA\)

\section*{SUBSTRATE POTENTIAL (Powered Up):}

V-
TRANSISTOR COUNT:
62
PROCESS:
Bipolar Dielectric Isolation

\section*{Metallization Mask Layout}


OUT
V+

\section*{Die Characteristics}

DIE DIMENSIONS:
78 mils \(\times 185\) mils \(\times 19\) mils \(1980 \mu \mathrm{~m} \times 4690 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)

\section*{METALLIZATION:}

Type: Al, 1\% Cu
Thickness: \(16 \mathrm{k} \AA+2 \mathrm{k} \AA\)

\section*{PASSIVATION:}

SUBSTRATE POTENTIAL (Powered Up): V-

TRANSISTOR COUNT:
128
PROCESS:
Bipolar Dielectric Isolation
```

Type: Nitride ($\mathrm{Si}_{3} \mathrm{~N}_{4}$) over Silox ($\mathrm{SiO}_{2} 5 \%$ Phos.)
Silox Thickness: $12 \mathrm{k} \AA+2 \mathrm{k} \AA$
Nitride Thickness: $3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA$

```

\section*{Metallization Mask Layout}


\section*{850MHz, Low Distortion Current Feedback Operational Amplifiers}

\section*{Features}
- Low Distortion (30MHz, HD2) . . . . . . . -56dBc
- -3dB Bandwidth . . . . . . . . . . . . . . . . . 850MHz
- Very Fast Slew Rate . . . . . . . . . . . . . . 2300V/ \(\mu \mathrm{s}\)
- Fast Settling Time (0.1\%) . . . . . . . . . . . . 11ns
- Excellent Gain Flatness
- ( 100 MHz ) . . . . . . . . . . . . . . . . . . . . . \(\pm 0.14 \mathrm{~dB}\)
- (50MHz) . . . . . . . . . . . . . . . . . . . . . . \(\pm 0.04 \mathrm{~dB}\)
- (30MHz) . . . . . . . . . . . . . . . . . . . . . . \(\pm 0.01 \mathrm{~dB}\)
- High Output Current . . . . . . . . . . . . . . . 60mA
- Overdrive Recovery . . . . . . . . . . . . . . . . <10ns

\section*{Applications}
- Video Switching and Routing
- Pulse and Video Amplifiers
- Wideband Amplifiers
- RF/IF Signal Processing
- Flash A/D Driver
- Medical Imaging Systems
- Related Literature
- AN9420, Current Feedback Theory
- AN9202, HFA11XX Evaluation Fixture

\section*{Description}

The HFA1100, 1120 are a family of high-speed, wideband, fast settling current feedback amplifiers. Built with Harris' proprietary complementary bipolar UHF-1 process, these devices are the fastest monolithic amplifiers available from any semiconductor manufacturer.

The HFA1100 is a basic op amp with uncommitted pins 1,5 , and 8. The HFA1120 includes inverting input bias current adjust pins (pins 1 and 5) for adjusting the output offset voltage.

These devices offer a significant performance improvement over the AD811, AD9617/18, the CLC400-409, and the EL2070, EL2073, EL2030.
For Military grade product refer to the HFA1100/883, HFA1120/883 data sheet.

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|}
\hline PART NUMBER (BRAND) & TEMP. RANGE \(\left({ }^{\circ} \mathrm{C}\right)\) & PACKAGE & PKG. NO. \\
\hline HFA1100MJ/883, HFA1120MJ/883 & -55 to 125 & 8 Ld CERDIP & F8.3A \\
\hline HFA1100IJ, HFA1120IJ & -40 to 85 & 8 Ld CERDIP & F8.3A \\
\hline HFA1100IP, HFA1120IP & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline HFA1100IB, HFA1120IB (H1100I, H1120I) & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline HFA11XXEVAL & \multicolumn{3}{|l|}{DIP Evaluation Board for High-Speed Op Amps} \\
\hline
\end{tabular}

\section*{Pinouts}

HFA1100
(PDIP, CERDIP, SOIC)
TOP VIEW


HFA1120
(PDIP, CERDIP, SOIC)
TOP VIEW


\section*{The Op Amps With Fastest Edges}

\begin{tabular}{|c|c|c|c|}
\hline Absolute Maximum Ratings \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & \multicolumn{3}{|l|}{Thermal Information} \\
\hline Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . 12 V & Thermal Resistance (Typical, Note 1) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) & \(\theta_{\mathrm{Jc}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V V SUPPLY & CERDIP Package & 115 & 35 \\
\hline Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V & PDIP Package & 130 & N/A \\
\hline Output Current (50\% Duty Cycle). . . . . . . . . . . . . . . . . . . . . 60mA & SOIC Package & 170 & N/A \\
\hline & Maximum Junction Temperature (Die & ERDIP) & \(.175^{\circ} \mathrm{C}\) \\
\hline Operating Conditions & \multicolumn{3}{|l|}{Maximum Junction Temperature (Plastic Package) . . . . . . 150 \({ }^{\circ} \mathrm{C}\)} \\
\hline & \multicolumn{3}{|l|}{Maximum Storage Temperature Range . . . . . . . - \(65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)} \\
\hline & \multicolumn{3}{|l|}{Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\) (SOIC - Lead Tips Only)} \\
\hline
\end{tabular}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. \(\theta_{J A}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 V, A_{V}=+1, R_{F}=510 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 2) TEST LEVEL & TEMP. ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Input Offset Voltage (Note 3)} & & A & 25 & - & 2 & 6 & mV \\
\hline & & A & Full & - & - & 10 & mV \\
\hline Input Offset Voltage Drift & & C & Full & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{10}\) CMRR} & \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}\)} & A & 25 & 40 & 46 & - & dB \\
\hline & & A & Full & 38 & - & - & dB \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{10}\) PSRR} & \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{S}}= \pm 1.25 \mathrm{~V}\)} & A & 25 & 45 & 50 & - & dB \\
\hline & & A & Full & 42 & - & - & dB \\
\hline \multirow[t]{2}{*}{Non-Inverting Input Bias Current (Note 3)} & \multirow[t]{2}{*}{\(+1 \mathrm{~N}=0 \mathrm{~V}\)} & A & 25 & - & 25 & 40 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & - & 65 & \(\mu \mathrm{A}\) \\
\hline \(+I_{\text {BIAS }}\) Drift & & C & Full & - & 40 & - & \(n{ }^{\circ}{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{\(+\left.\right|_{\text {BIAS }}\) CMS} & \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}\)} & A & 25 & - & 20 & 40 & \(\mu \mathrm{A} N\) \\
\hline & & A & Full & - & - & 50 & \(\mu \mathrm{A} N\) \\
\hline \multirow[t]{2}{*}{Inverting Input Bias Current (Note 3)} & \multirow[t]{2}{*}{\(-\mathrm{IN}=0 \mathrm{~V}\)} & A & 25 & - & 12 & 50 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & - & 60 & \(\mu \mathrm{A}\) \\
\hline \(-\mathrm{l}_{\text {BIAS }}\) Drift & & C & Full & - & 40 & - & \(n{ }^{\circ}{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{\({ }^{-1}\) IIAS CMS} & \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}\)} & A & 25 & - & 1 & 7 & \(\mu \mathrm{AN}\) \\
\hline & & A & Full & - & - & 10 & \(\mu \mathrm{A} V\) \\
\hline \multirow[t]{2}{*}{\(-^{-1 / A A S}\) PSS} & \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{S}}= \pm 1.25 \mathrm{~V}\)} & A & 25 & - & 6 & 15 & \(\mu \mathrm{A} N\) \\
\hline & & A & Full & - & - & 27 & \(\mu \mathrm{A} N\) \\
\hline \(-\mathrm{I}_{\text {BIAS }}\) Adj. Range (HFA1120) & & A & 25 & \(\pm 100\) & \(\pm 200\) & - & \(\mu \mathrm{A}\) \\
\hline Non-Inverting Input Resistance & & A & 25 & 25 & 50 & - & \(\mathrm{k} \Omega\) \\
\hline Inverting Input Resistance & & C & 25 & - & 20 & 30 & \(\Omega\) \\
\hline Input Capacitance (Either Input) & & B & 25 & - & 2 & - & pF \\
\hline Input Common Mode Range & & C & Full & \(\pm 2.5\) & \(\pm 3.0\) & - & V \\
\hline Input Noise Voltage (Note 3) & 100 kHz & B & 25 & - & 4 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline +Input Noise Current (Note 3) & 100 kHz & B & 25 & - & 18 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline -Input Noise Current (Note 3) & 100 kHz & B & 25 & - & 21 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline
\end{tabular}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=510 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & \[
\begin{aligned}
& \text { (NOTE 2) } \\
& \text { TEST } \\
& \text { LEVEL }
\end{aligned}
\] & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{TRANSFER CHARACTERISTICS \(A_{V}=+2\), Unless Otherwise Specified} \\
\hline Open Loop Transimpedance (Note 3) & & B & 25 & - & 300 & - & \(\mathrm{k} \Omega\) \\
\hline -3dB Bandwidth (Note 3) & \[
\begin{aligned}
& V_{\text {OUT }}=0.2 V_{P-P}, \\
& A_{V}=+1
\end{aligned}
\] & B & 25 & 530 & 850 & - & MHz \\
\hline -3dB Bandwidth & \[
\begin{aligned}
& V_{O U T}=0.2 V_{P-P}, \\
& A_{V}=+2, R_{F}=360 \Omega
\end{aligned}
\] & B & 25 & - & 670 & - & MHz \\
\hline Full Power Bandwidth & \[
\begin{aligned}
& V_{\text {OUT }}=4 V_{P-P}, \\
& A_{V}=-1
\end{aligned}
\] & B & 25 & - & 300 & - & MHz \\
\hline Gain Flatness (Note 3) & To 100 MHz & B & 25 & - & \(\pm 0.14\) & - & dB \\
\hline Gain Flatness & To 50 MHz & B & 25 & - & \(\pm 0.04\) & - & dB \\
\hline Gain Flatness & To 30 MHz & B & 25 & - & \(\pm 0.01\) & - & dB \\
\hline Linear Phase Deviation (Note 3) & DC to 100 MHz & B & 25 & - & 0.6 & - & Degrees \\
\hline Differential Gain & NTSC, \(\mathrm{R}_{\mathrm{L}}=75 \Omega\) & B & 25 & - & 0.03 & - & \% \\
\hline Differential Phase & NTSC, \(\mathrm{R}_{\mathrm{L}}=75 \Omega\) & B & 25 & - & 0.05 & - & Degrees \\
\hline Minimum Stable Gain & & A & Full & 1 & - & - & \(\mathrm{V} / \mathrm{N}\) \\
\hline \multicolumn{8}{|l|}{OUTPUT CHARACTERISTICS \(A_{V}=+2\), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Output Voltage (Note 3)} & \multirow[t]{2}{*}{\(A_{V}=-1\)} & A & 25 & \(\pm 3.0\) & \(\pm 3.3\) & - & V \\
\hline & & A & Full & \(\pm 2.5\) & \(\pm 3.0\) & - & V \\
\hline \multirow[t]{2}{*}{Output Current} & \multirow[t]{2}{*}{\(R_{L}=50 \Omega, A_{V}=-1\)} & A & 25,85 & 50 & 60 & - & mA \\
\hline & & A & -40 & 35 & 50 & - & mA \\
\hline DC Closed Loop Output Impedance (Note 3) & & B & 25 & - & 0.07 & - & \(\Omega\) \\
\hline 2nd Harmonic Distortion (Note 3) & \(30 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & B & 25 & - & -56 & - & dBc \\
\hline 3rd Harmonic Distortion (Note 3) & \(30 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}\) & B & 25 & - & -80 & - & dBc \\
\hline 3rd Order Intercept (Note 3) & 100 MHz & B & 25 & 20 & 30 & - & dBm \\
\hline 1 dB Compression & 100 MHz & B & 25 & 15 & 20 & - & dBm \\
\hline \multicolumn{8}{|l|}{TRANSIENT RESPONSE \(A_{V}=+2\), Unless Otherwise Specified} \\
\hline Rise Time & \(\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}\) Step & B & 25 & - & 900 & - & ps \\
\hline Overshoot (Note 3) & \(\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}\) Step & B & 25 & - & 10 & - & \% \\
\hline Slew Rate & \(A_{V}=+1, V_{\text {OUT }}=5 V_{\text {P-P }}\) & B & 25 & - & 1400 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Slew Rate & \(A_{V}=+2, V_{\text {OUT }}=5 \mathrm{~V}_{\text {P-P }}\) & B & 25 & 1850 & 2300 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline 0.1\% Settling (Note 3) & \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}\) to 0 V & B & 25 & - & 11 & - & ns \\
\hline 0.2\% Settling (Note 3) & \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}\) to 0 V & B & 25 & - & 7 & - & ns \\
\hline Overdrive Recovery Time & 2X Overdrive & B & 25 & - & 7.5 & 10 & ns \\
\hline \multicolumn{8}{|l|}{POWER SUPPLY CHARACTERISTICS} \\
\hline Supply Voltage Range & & B & Full & \(\pm 4.5\) & - & \(\pm 5.5\) & V \\
\hline \multirow[t]{2}{*}{Supply Current (Note 3)} & & A & 25 & - & 21 & 26 & mA \\
\hline & & A & Full & - & - & 33 & mA \\
\hline
\end{tabular}

\section*{NOTES:}
2. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.
3. See Typical Performance Curves for more information.

\section*{Application Information}

\section*{Optimum Feedback Resistor ( \(\mathbf{R}_{\mathbf{F}}\) )}

The enclosed plots of inverting and non-inverting frequency response detail the performance of the HFA1100/1120 in various gains. Although the bandwidth dependency on \(A_{C L}\) isn't as severe as that of a voltage feedback amplifier, there is an appreciable decrease in bandwidth at higher gains. This decrease can be minimized by taking advantage of the current feedback amplifier's unique relationship between bandwidth and \(\mathrm{R}_{\mathrm{F}}\). All current feedback amplifiers require a feedback resistor, even for unity gain applications, and the \(R_{F}\), in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifiers bandwidth is inversely proportional to \(\mathrm{R}_{\mathrm{F}}\). The HFA1100, 1120 designs are optimized for a \(510 \Omega R_{F}\), at a gain of +1 . Decreasing \(R_{F}\) in a unity gain application decreases stability, resulting in excessive peaking and overshoot (Note: Capacitive feedback causes the same problems due to the feedback impedance decrease at higher frequencies). At higher gains the amplifier is more stable, so \(R_{F}\) can be decreased in a trade-off of stability for bandwidth. The table below lists recommended \(R_{F}\) values for various gains, and the expected bandwidth.
\begin{tabular}{|c|c|c|}
\hline \(\mathbf{A}_{\mathbf{C L}}\) & \(\mathbf{R}_{\mathbf{F}}(\Omega)\) & \(\mathbf{B W}(\mathbf{M H z})\) \\
\hline+1 & 510 & 850 \\
\hline-1 & 430 & 580 \\
\hline+2 & 360 & 670 \\
\hline+5 & 150 & 520 \\
\hline+10 & 180 & 240 \\
\hline+19 & 270 & 125 \\
\hline
\end{tabular}

\section*{Offset Adjustment}

The HFA1120 allows for adjustment of the inverting input bias current to null the output offset voltage. - \({ }^{-1}\) BIAS flows through \(R_{F}\), so any change in bias current forces a corresponding change in output voltage. The amount of adjustment is a function of \(R_{F}\). With \(R_{F}=510 \Omega\), the typical adjust range is \(\pm 100 \mathrm{mV}\). For offset adjustment connect a \(10 \mathrm{k} \Omega\) potentiometer between pins 1 and 5 with the wiper connected to V -.

\section*{Use of Die in Hybrid Applications}

These amplifiers are designed with compensation to negate the package parasitics that typically lead to instabilities. As a result, the use of die in hybrid applications results in overcompensated performance due to lower parasitic capacitances. Reducing \(R_{F}\) below the recommended values for packaged units will solve the problem. For \(A_{V}=+2\) the recommended starting point is \(300 \Omega\), while unity gain applications should try \(400 \Omega\).

\section*{PC Board Layout}

The frequency performance of these amplifiers depends a great deal on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!

Attention should be given to decoupling the power supplies. A large value ( \(10 \mu \mathrm{~F}\) ) tantalum in parallel with a small value chip \((0.1 \mu \mathrm{~F})\) capacitor works well in most cases.

Terminated microstrip signal lines are recommended at the input and output of the device. Output capacitance, such as that resulting from an improperly terminated transmission line will degrade the frequency response of the amplifier and may cause oscillations. In most cases, the oscillation can be avoided by placing a resistor in series with the output.

Care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input. The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and possible instability. To this end, it is recommended that the ground plane be removed under traces connected to pin 2, and connections to pin 2 should be kept as short as possible.

An example of a good high frequency layout is the Evaluation Board shown below.

\section*{Evaluation Board}

An evaluation board is available for the HFA1100 (Part Number HFA11XXEVAL). Please contact your local sales office for information.

The layout and schematic of the board are shown below:


BOTTOM LAYOUT


Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{F}=510 \Omega, T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified


FIGURE 1. SMALL SIGNAL PULSE


FIGURE 3. NON-INVERTING FREQUENCY RESPONSE


FIGURE 5. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS


FIGURE 2. LARGE SIGNAL PULSE


FIGURE 4. INVERTING FREQUENCY RESPONSE


FIGURE 6. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 7. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES


FIGURE 9. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES


FIGURE 11. OPEN LOOP TRANSIMPEDANCE


FIGURE 8. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES


FIGURE 10. -3dB BANDWIDTH vs TEMPERATURE


FIGURE 12. GAIN FLATNESS

Typical Performance Curves \(V_{S U P P L Y}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 13. DEVIATION FROM LINEAR PHASE


FIGURE 15. CLOSED LOOP OUTPUT RESISTANCE


FIGURE 17. 2nd HARMONIC DISTORTION vs Pout


FIGURE 14. SETTLING RESPONSE


FIGURE 16. 3rd ORDER INTERMODULATION INTERCEPT


FIGURE 18. 3rd HARMONIC DISTORTION vs Pout

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 19. OVERSHOOT vs INPUT RISE TIME


FIGURE 21. OVERSHOOT vs FEEDBACK RESISTOR


FIGURE 23. SUPPLY CURRENT vs SUPPLY VOLTAGE


FIGURE 20. OVERSHOOT vs INPUT RISE TIME


FIGURE 22. SUPPLY CURRENT vs TEMPERATURE


FIGURE 24. \(\mathbf{V}_{10}\) AND BIAS CURRENTS vs TEMPERATURE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 25. OUTPUT VOLTAGE vs TEMPERATURE


FIGURE 26. INPUT NOISE vs FREQUENCY

\section*{Die Characteristics}

DIE DIMENSIONS:
63 mils \(\times 44\) mils \(\times 19\) mils \(1600 \mu \mathrm{~m} \times 1130 \mu \mathrm{~m}\)

METALLIZATION:
Type: Metal 1: AICu (2\%)/TiW Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)

Type: Metal 2: AlCu (2\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)
PASSIVATION:
Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)

TRANSISTOR COUNT:

SUBSTRATE POTENTIAL (Powered Up):
Floating (Recommend Connection to V-)

\section*{Metallization Mask Layout}


HFA1102 \\ \title{
600MHz Current Feedback \\ \title{
600MHz Current Feedback Amplifier with Compensation Pin
} Amplifier with Compensation Pin
}

\section*{Features}
- Compensation Pin for Bandwidth Limiting
- Low Distortion (HD2 at 30MHz). . . . . . . . . . . . . -56dBc
- -3dB Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . 600MHz
- Very Fast Slew Rate . . . . . . . . . . . . . . . . . . . . . 2000V/ \(\mu \mathrm{s}\)
- Fast Settling Time (0.1\%) . . . . . . . . . . . . . . . . . . . . 11ns
- Excellent Gain Flatness
- (100MHz) \(\pm 0.05 \mathrm{~dB}\)
- (50MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\pm 0.02 \mathrm{~dB}\)
- (30MHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\pm 0.01 \mathrm{~dB}\)
- High Output Current . . . . . . . . . . . . . . . . . . . . . . . 60mA
- Overdrive Recovery........................... . . <10ns

\section*{Applications}
- Low Noise Amplifiers
- Video Switching and Routing
- Pulse and Video Amplifiers
- RF/IF Signal Processing
- Flash A/D Driver
- Medical Imaging Systems

\section*{Description}

The HFA1102 is a high speed wideband current feedback amplifier featuring a compensation pin for bandwidth limiting. Built with Harris' proprietary complementary bipolar UHF-1 process, it has excellent AC performance and low distortion.

Because the HFA1102 is already unity gain stable, the primary purpose for limiting the bandwidth is to reduce the total noise (broadband) of the circuit. The bandwidth of the HFA1102 may be limited by connecting a capacitor and series damping resistor from pin 8 to ground. Typical bandwidths for various values of compensation capacitors are shown in the Electrical Specifications section of this datasheet.

A variety of packages and temperature grades are available. See the ordering information below for details.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{c} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HFA1102IJ & -40 to 85 & 8 Ld CERDIP & F8.3A \\
\hline HFA1102IP & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
HFA1102IB \\
(HI102I)
\end{tabular} & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline HFA11XXEVAL & \multicolumn{3}{|l|}{ DIP Evaluation Board for High Speed Op Amps } \\
\hline
\end{tabular}

\section*{Pinout}

HFA1102
(PDIP, CERDIP, SOIC)
TOP VIEW


\section*{The Op Amps with Fastest Edges}


\section*{Absolute Maximum Ratings}

Voltage Between V+ and V. 12V
DC Input Voltage \(V_{\text {SUPPLY }}\)
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 V
Output Current (50\% Duty Cycle)
.60 mA

\section*{Operating Conditions}

Temperature Range \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)

\section*{Thermal Information}
\begin{tabular}{|c|c|c|}
\hline Thermal Resistance (Typical, Note 1) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) & \(\theta_{\text {Jc }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline CERDIP Package . . . . . . & 120 & 35 \\
\hline PDIP Package & 130 & N/A \\
\hline SOIC Package & 170 & N/A \\
\hline
\end{tabular}

Maximum Junction Temperature (Ceramic Package and Die) . . \(175^{\circ} \mathrm{C}\) Maximum Junction Temperature (Plastic Package) . . . . . . . . \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range . . . . . . . . . \(65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\) (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 V, A_{V}=+1, R_{F}=510 \Omega, R_{L}=100 \Omega, C_{C O M P}=0 p F\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP. ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & & 25 & - & 2 & 6 & mV \\
\hline & & Full & - & - & 10 & mV \\
\hline Input Offset Voltage Drift & & Full & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{10}\) CMRR} & \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}\)} & 25 & 40 & 46 & - & dB \\
\hline & & Full & 38 & - & - & dB \\
\hline \(V_{10}\) PSRR & \(\Delta \mathrm{V}_{\mathrm{S}}= \pm 1.25 \mathrm{~V}\) & 25 & 45 & 50 & - & dB \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & Full & 42 & - & - & dB \\
\hline \multirow[t]{2}{*}{Non-Inv. Input Bias Current} & \multirow[t]{2}{*}{\(+\mathbb{N}=0 \mathrm{~V}\)} & 25 & - & 25 & 40 & \(\mu \mathrm{A}\) \\
\hline & & Full & - & - & 65 & \(\mu \mathrm{A}\) \\
\hline \(+\mathrm{I}_{\text {BIAS }}\) Drift & & Full & - & 40 & - & \(n A^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{\(+{ }_{\text {I BIAS }}\) CMS} & \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}\)} & 25 & - & 20 & 40 & \(\mu \mathrm{A}\) V \\
\hline & & Full & - & - & 50 & \(\mu \mathrm{AV}\) \\
\hline \multirow[t]{2}{*}{Inv. Input Bias Current} & \multirow[t]{2}{*}{\(-\mathrm{IN}=0 \mathrm{~V}\)} & 25 & - & 12 & 50 & \(\mu \mathrm{A}\) \\
\hline & & Full & \(\bullet\) & - & 60 & \(\mu \mathrm{A}\) \\
\hline \({ }^{-1}\) BIAS Drift & & Full & - & 40 & - & \(\mathrm{nA}^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{\(-_{\text {IIAS }}\) CMS} & \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}\)} & 25 & \(\bullet\) & 1 & 7 & \(\mu \mathrm{AV}\) \\
\hline & & Full & - & - & 10 & \(\mu \mathrm{A} V\) \\
\hline \multirow[t]{2}{*}{\(-_{\text {IIAS }}\) PSS} & \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{S}}= \pm 1.25 \mathrm{~V}\)} & 25 & \(\bullet\) & 6 & 15 & \(\mu \mathrm{AV}\) \\
\hline & & Full & - & - & 27 & \(\mu \mathrm{AN}\) \\
\hline Non-Inv. Input Resistance & & 25 & 25 & 50 & - & \(\mathrm{k} \Omega\) \\
\hline Inv. Input Resistance & & 25 & - & 16 & 30 & \(\Omega\) \\
\hline Input Capacitance & Either Input & 25 & - & 2 & - & pF \\
\hline Input Common Mode Range & & Full & \(\pm 2.5\) & \(\pm 3.0\) & - & V \\
\hline Input Noise Voltage & 100kHz & 25 & - & 4 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline +Input Noise Current & 100 kHz & 25 & \(\bullet\) & 18 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline -Input Noise Current & 100kHz & 25 & - & 21 & - & \(\mathrm{pA} \sqrt{\mathrm{Hz}}\) \\
\hline
\end{tabular}

Electrical Specifications \(\quad V_{S U P P L Y}= \pm 5 V, A_{V}=+1, R_{F}=510 \Omega, R_{L}=100 \Omega, C_{C O M P}=0 p F\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP. ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{TRANSFER CHARACTERISTICS \(A_{V}=+1, \mathrm{R}_{\mathrm{F}}=150 \Omega, \mathrm{R}_{\text {DAMP }}=120 \Omega\), Unless Otherwise Specified} \\
\hline Open Loop Transimpedance & & 25 & - & 500 & - & k \(\Omega\) \\
\hline Linear Phase Deviation & DC to 100 MHz & 25 & - & 0.6 & - & Degrees \\
\hline Differential Gain & NTSC, \(\mathrm{R}_{\mathrm{L}}=75 \Omega\) & 25 & - & 0.03 & - & \% \\
\hline Differential Phase & NTSC, \(\mathrm{R}_{\mathrm{L}}=75 \Omega\) & 25 & - & 0.03 & - & Degrees \\
\hline Minimum Stable Gain & & Full & 1 & - & - & V/v \\
\hline \multirow[t]{4}{*}{Bandwidth Limiting Characteristics -3 dB Bandwidth ( \(\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{A}_{\mathrm{V}}=+1\) )} & \(\mathrm{C}_{\text {COMP }}=0 \mathrm{pF}\) & 25 & - & 600 & - & MHz \\
\hline & \(\mathrm{C}_{\text {COMP }}=1 \mathrm{pF}\) & 25 & - & 350 & - & MHz \\
\hline & \(\mathrm{C}_{\text {COMP }}=3 \mathrm{pF}\) & 25 & - & 190 & - & MHz \\
\hline & \(\mathrm{C}_{\text {COMP }}=7 \mathrm{pF}\) & 25 & - & 55 & - & MHz \\
\hline \multirow[t]{3}{*}{Gain Flatness (To 30MHz)} & \(\mathrm{C}_{\text {COMP }}=0 \mathrm{pF}\) & 25 & - & \(\pm 0.01\) & - & dB \\
\hline & \(C_{\text {COMP }}=1 \mathrm{pF}\) & 25 & - & \(\pm 0.05\) & - & dB \\
\hline & \(\mathrm{C}_{\text {COMP }}=3 \mathrm{pF}\) & 25 & - & \(\pm 0.10\) & - & dB \\
\hline Gain Flatness & To 100 MHz & 25 & - & \(\pm 0.05\) & - & dB \\
\hline Gain Flatness & To 50 MHz & 25 & - & \(\pm 0.02\) & - & dB \\
\hline
\end{tabular}

OUTPUT CHARACTERISTICS \(A_{V}=+2\), Unless Otherwise Specified
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline Output Voltage & \(\mathrm{A}_{\mathrm{V}}=-1\) & 25 & \(\pm 3.0\) & \(\pm 3.3\) & - & V \\
\cline { 3 - 7 } & & Full & \(\pm 2.5\) & \(\pm 3.0\) & - & V \\
\hline Output Current & \(\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{~A}_{\mathrm{V}}=-1\) & 25 & 50 & 65 & - & mA \\
\hline & & Full & 40 & 60 & - & mA \\
\hline Closed Loop Output Impedance & DC & 25 & - & 0.1 & - & \(\Omega\) \\
\hline 2nd Harmonic Distortion & \(30 \mathrm{MHz}, \mathrm{V}_{\mathrm{OUT}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & 25 & - & -56 & - & dBc \\
\hline 3rd Harmonic Distortion & \(30 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & 25 & - & -80 & - & dBc \\
\hline 3rd Order Intercept & 100 MHz & 25 & - & 30 & - & dBm \\
\hline 1dB Compression & 100 MHz & 25 & - & 20 & - & dBm \\
\hline
\end{tabular}

TRANSIENT RESPONSE \(A_{V}=+1, R_{F}=150 \Omega, R_{\text {DAMP }}=120 \Omega\), Unless Otherwise Specified
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline Rise Time & \(\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}\) Step & 25 & - & 600 & - & ps \\
\hline Overshoot & \(\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}\) Step & 25 & - & 10 & - & \(\%\) \\
\hline \multirow{2}{*}{ Slew Rate } & \(\mathrm{A}_{\mathrm{V}}=+1, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & 25 & - & 1200 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\cline { 2 - 7 } & \(\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {OUT }}=5 \mathrm{~V}_{\text {P-P }}\) & 25 & - & 2000 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline \(0.1 \%\) Settling Time & \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}\) to 0 V & 25 & - & 11 & - & ns \\
\hline \(0.2 \%\) Settling Time & \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}\) to 0 V & 25 & - & 7 & - & ns \\
\hline
\end{tabular}

POWER SUPPLY CHARACTERISTICS
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Supply Voltage Range & & Full & \(\pm 4.5\) & - & \(\pm 5.5\) & V \\
\hline Supply Current & & 25 & - & 21 & 26 & mA \\
\hline & & Full & - & - & 33 & mA \\
\hline
\end{tabular}

\section*{Application Information}

\section*{Optimum Feedback Resistor ( \(\mathbf{R}_{\mathbf{F}}\) )}

All current feedback amplifiers require a feedback resistor, even for unity gain applications. The \(R_{F}\), in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to \(R_{F}\). The HFA1102 design is optimized for a \(150 \Omega\) \(R_{F}\), at a gain of +1 . Decreasing \(R_{F}\) in a unity gain application decreases stability, leading to excessive peaking and overshoot. At higher gains the amplifier is more stable, so \(R_{F}\) can be decreased in a trade-off of stability for bandwidth.

\section*{Bandwidth Limiting}

The bandwidth of the HFA1102 may be limited by connecting a resistor (RDAMP) and capacitor in series from pin 8 to GND. The series resister is required to damp the interaction between the package parasitics and \(\mathrm{C}_{\text {COMP }}\). Typical bandwidths for various values of compensation capacitor are shown in the specification tables. Because the HFA1102 is already unity gain stable, the main reason for limiting the bandwidth is to reduce the total noise (broadband) of the circuit. Additionally, compensating the HFA1102 allows the use of a lower value \(R_{F}\) for a given gain. The decreased bandwidth due to \(\mathrm{C}_{\text {COMP }}\) offsets the bandwidth increase from the lower \(R_{F}\), keeping the amplifier stable. Reducing \(R_{F}\) provides the double benefits of reduced \(D C\) errors ( \(-l_{B} \times R_{F}\) ) and reduced total noise ( \(l_{N I} \times R_{F}\) and \(4 K T R_{F}\) ).

\section*{PC Board Layout}

The frequency performance of this amplifier depends a great deal on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!
Attention should be given to decoupling the power supplies. A large value \((10 \mu \mathrm{~F})\) tantalum in parallel with a small value chip \((0.1 \mu \mathrm{~F})\) capacitor works well in most cases.
Terminated microstrip signal lines are recommended at the input and output of the device. Output capacitance, such as that resulting from an improperly terminated transmission line will degrade the frequency response of the amplifier and may cause oscillations. In most cases, the oscillation can be avoided by placing a resistor in series with the output.

Care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input. The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and possible instability. To this end, it is recommended that the ground plane be removed under traces connected to pin 2, and connections to pin 2 should be kept as short as possible.
An example of a good high frequency layout is the Evaluation Board shown.

\section*{Evaluation Board}

The HFA1102 may be evaluated using the HFA11XX Evaluation Board which is available from your local sales office (part number HFA11XXEVAL). R \({ }_{\text {DAMP }}\) and \(\mathrm{C}_{\text {COMP }}\) should be connected in series from the socket pin to the GND plane. The trace from pin 8 to the \(\mathrm{V}_{\mathrm{H}}\) connector should be cut near the socket to remove this parallel capacitance. The layout and schematic of the board are shown below:


FIGURE 1. EVALUATION BOARD SCHEMATIC AND LAYOUT


FIGURE 2. OPEN LOOP TRANSIMPEDANCE FOR VARIOUS COMPENSATION CAPACITORS

\section*{Die Characteristics}

DIE DIMENSIONS:
63 mils \(\times 44\) mils \(\times 19\) mils
\(1600 \mu \mathrm{~m} \times 1130 \mu \mathrm{~m}\)
METALLIZATION:
Type: Metal 1: AICu (2\%)/TiW
Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)
Type: Metal 2: AICu (2\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)

\section*{PASSIVATION:}

Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
52
SUBSTRATE POTENTIAL (Powered Up):
Floating (Recommend Connection to V-)

Metallization Mask Layout
HFA1102


NOTE: Output Limiting Function \(\left(\mathrm{V}_{\mathrm{H}}, \mathrm{V}_{\mathrm{L}}\right)\) is available to users of the HFA1102 in die form. Please refer to the HFA1130 data sheet for information regarding the operation and use of this function.

\section*{HFA1103}

\section*{200MHz, Video Op Amp with High Speed Sync Stripper}

\section*{Description}

The HFA1103 is a high-speed, wideband, fast settling current feedback op amp with a sync stripping function. The HFA1103 is a basic op amp with a modified output stage that enables it to strip the sync from a component video signal. The output stage has an open emitter NPN transistor that prevents the output from going low during the sync pulse. Removing the sync signal benefits digitizing systems because only the active video information is applied to the A/D converter. This enables the full dynamic range of the A/D converter to be used to process the video signal. The HFA1103 includes inverting input bias current adjust pins (pins 1 and 5) for adjusting the output offset voltage.

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|}
\hline PART NUMBER (BRAND) & TEMP. RANGE \(\left({ }^{\circ} \mathrm{C}\right)\) & PACKAGE & PKG. NO. \\
\hline HFA11031P & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l}
HFA1103IB \\
(H1103I)
\end{tabular} & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline
\end{tabular}

\section*{Pinout}


Sync Stripper Waveforms
 VIDEO INPUT

Application Schematic

```

Absolute Maximum Ratings
Voltage Between V+ and V- . 12V
Input Voltage.
VSUPPLY
Differential Input Voltage. ... 5 V
Output Current (50\% Duty Cycle). 60mA

```

Operating Conditions
Temperature Range
\(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)

\section*{Thermal Information}

Thermal Resistance (Typical, Note 1) \(\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\)
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Maximum Junction Temperature (Plastic Package) . . . . . . . \(150^{\circ} \mathrm{C}\) Maximum Storage Temperature Range . . . . . . . . . \(65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\) (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(\quad V_{S U P P L Y}= \pm 5 V, A_{V}=+2, R_{F}=750 \Omega, R_{L}=50 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{DC CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Residual Sync (Note 2)} & \multirow[t]{2}{*}{\(V_{I N}=-300 \mathrm{mV}, A_{V}=+1\)} & 25 & - & 8 & 10 & mV \\
\hline & & Full & - & - & 12 & mV \\
\hline \multirow[t]{2}{*}{Output Offset Voltage (Notes 3,5)} & & 25 & - & 10 & 30 & mV \\
\hline & & Full & - & - & 40 & mV \\
\hline Output Offset Voltage Drift (Note 3) & & Full & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{\(V_{\text {OS }}\) PSRR} & \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{S}}= \pm 1.25 \mathrm{~V}\)} & 25 & 39 & 45 & - & dB \\
\hline & & Full & 35 & - & - & dB \\
\hline \multirow[t]{2}{*}{Non-Inverting Input Bias Current} & \multirow[t]{2}{*}{\(+1 \mathrm{~N}=0 \mathrm{~V}\)} & 25 & - & 5 & 40 & \(\mu \mathrm{A}\) \\
\hline & & Full & - & - & 65 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Inverting Input Bias Current} & \multirow[t]{2}{*}{\(-\mathrm{IN}=0 \mathrm{~V}\)} & 25 & - & 5 & 50 & \(\mu \mathrm{A}\) \\
\hline & & Full & - & - & 60 & \(\mu \mathrm{A}\) \\
\hline \({ }^{-1}\) BIAS Adjust Range (Notes 4, 6) & & 25 & 100 & 200 & - & \(\mu \mathrm{A}\) \\
\hline Non-Inverting Input Resistance & & 25 & 25 & 50 & - & \(\mathrm{k} \Omega\) \\
\hline Inverting Input Resistance & & 25 & - & 16 & 30 & \(\Omega\) \\
\hline Input Capacitance & & 25 & - & 2 & - & pF \\
\hline Input Common Mode Range & & Full & \(\pm 2.5\) & \(\pm 3.0\) & - & V \\
\hline Input Noise Voltage & 100kHz & 25 & - & 4 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline +Input Noise Current & 100 kHz & 25 & - & 18 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline -Input Noise Current & 100 kHz & 25 & - & 21 & - & \(\mathrm{pA} \sqrt{\mathrm{Hz}}\) \\
\hline \multicolumn{7}{|l|}{TRANSFER CHARACTERISTICS \(A_{V}=+2\), Unless Otherwise Specified} \\
\hline Open Loop Transimpedance & & 25 & - & 500 & \(\bullet\) & k \(\Omega\) \\
\hline -3dB Bandwidth & \(V_{\text {OUT }}=1.0 V_{P-P}, A_{V}=+2\) & 25 & - & 200 & - & MHz \\
\hline Gain Flatness & To \(\pm 0.1 \mathrm{~dB}\) & 25 & - & 32 & - & MHz \\
\hline Minimum Stable Gain & & Full & 1 & - & - & VN \\
\hline \multicolumn{7}{|l|}{OUTPUT CHARACTERISTICS \(A_{V}=+2\), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Output Voltage (Note 3)} & & 25, 85 & 2.5 & 3.0 & - & V \\
\hline & & \(-40^{\circ} \mathrm{C}\) & 1.75 & 2.5 & - & V \\
\hline
\end{tabular}

Electrical Specifications \(V_{S U P P L Y}= \pm 5 V, A_{V}=+2, R_{F}=750 \Omega, R_{L}=50 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ PARAMETER } & TEST CONDITIONS & \begin{tabular}{c} 
TEMP \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & MIN & TYP & MAX & UNITS \\
\hline Output Current & & 25,85 & 50 & 60 & - & mA \\
\hline & & \(-40^{\circ} \mathrm{C}\) & 35 & 50 & - & mA \\
\hline Linearity Near Zero & & 25 & - & 0.01 & - & \(\%\) \\
\hline
\end{tabular}

TRANSIENT RESPONSE \(\quad A_{V}=+2\), Unless Otherwise Specified
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline Rise Time & \(V_{\text {OUT }}=2.0 \mathrm{~V}\) Step & 25 & - & 2 & - & ns \\
\hline Overshoot & \(V_{\text {OUT }}=2.0 \mathrm{~V}\) Step & 25 & - & 10 & - & \(\%\) \\
\hline Slew Rate & \(\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {OUT }}=0\) to \(2 \mathrm{~V},+2 \mathrm{~V}\) to 0 V & 25 & - & 600 & - & \(\mathrm{V} / \mathrm{ms}\) \\
\hline \(0.1 \%\) Settling & \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}\) to OV & 25 & - & 9 & - & ns \\
\hline Overdrive Recovery Time & \(2 \times\) Overdrive & 25 & - & 12 & - & ns \\
\hline
\end{tabular}

POWER SUPPLY CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Supply Voltage Range & Full & \(\pm 4.5\) & - & \(\pm 5.5\) & V \\
\hline \multirow[t]{2}{*}{Supply Current (No Load)} & 25 & - & 11 & 16 & mA \\
\hline & Full & - & - & 23 & mA \\
\hline
\end{tabular}

NOTES:
2. The residual sync is specified at the output of a doubly terminated circuit (see page 1 of this data sheet).
3. Since the HFA1103 has an open emitter NPN output stage, this measurement is only valid for positive values.
4. The - IBIAS current can be used to adjust the offset voltage to zero, but -IBIAS does not flow bidirectionally because the HFA1103 output stage is an open emitter NPN transistor.
5. \(V_{O S}\) includes the error contribution of \(I_{B S N}\) at \(R_{F}=750 \Omega\).
6. This is the minimum change in inverting input bias current when a BAL pin is connected to V - through a \(50 \Omega\) resistor.

\section*{Test Circuit}


FIGURE 1. TEST CIRCUIT

\section*{Application Information}

\section*{Offset Adjustment}

The HFA1103 allows for adjustment of the inverting input bias current to null the output offset voltage. - \({ }^{-1}\) BIAS flows through \(\mathrm{R}_{\mathrm{F}}\), so any change in bias current forces a corresponding change in output voltage. The amount of adjustment is a function of \(R_{F}\). With \(R_{F}=750 \Omega\), the typical adjust range is 150 mV . For offset adjustment connect a \(10 \mathrm{k} \Omega\) potentiometer between pins 1 and 5 with the wiper connected to V -.

\section*{PC Board Layout}

The frequency performance of these amplifiers depends a great deal on the amount of care taken in designing the PC board. The use of low inductance components such as
chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!

Attention should be given to decoupling the power supplies. A large value \((10 \mu \mathrm{~F})\) tantalum in parallel with a small value chip \((0.1 \mu \mathrm{~F})\) capacitor works well in most cases.

Terminated microstrip signal lines are recommended at the input and output of the device. Output capacitance, such as that resulting from an improperly terminated transmission line will degrade the frequency response of the amplifier and may cause oscillations. In most cases, the oscillation can be avoided by placing a resistor in series with the output.

Care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input. The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and possible instability. To this end, it is recommended that the ground plane be removed under traces connected to pin 2, and connections to pin 2 should be kept as short as possible.

An example of a good high frequency layout is the Evaluation Board shown in Figure 3.

\section*{Evaluation Board}

The HFA1100 series evaluation board may be used for the HFA1103 with minor modifications. The evaluation board may be ordered using part number HFA11XXEVAL. Please note that an HFA1103 sample is not included with the evaluation board and must be ordered separately.

The layout and schematic of the board are shown below:


FIGURE 2. EVALUATION BOARD SCHEMATIC


FIGURE 4. VIDEO AMPLIFIER WITH SYNC STRIPPER AND DC RESTORE


FIGURE 6. OUTPUT OF HFA1103 SYNC STRIPPER CONFIGURED AS ON THE FIRST PAGE OF THIS DATA SHEET

\section*{Die Characteristics}

DIE DIMENSIONS: SUBSTRATE POTENTIAL (Powered Up):
63 mils \(\times 44\) mils \(\times 19\) mils \(1600 \mu \mathrm{~m} \times 1130 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)

METALLIZATION:
Type: Metal 1: AlCu (2\%)/TiW
Thickness: Metal1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)
Type: Metal 2: AlCu (2\%)
Thickness: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)
Floating (Recommend Connection to V-)
PASSIVATION:
Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:

Metallization Mask Layout


\section*{330MHz, Low Power, Current Feedback Video Operational Amplifier}

\section*{Description}

The HFA1105 is a high speed, low power current feedback amplifier built with Harris' proprietary complementary bipolar UHF-1 process.

This amplifier features an excellent combination of low power dissipation ( 58 mW ) and high performance. The slew rate, bandwidth, and low output impedance ( \(0.08 \Omega\) ) make this amplifier a good choice for driving Flash ADCs. Component and composite video systems also benefit from this op amp's excellent gain flatness, and good differential gain and phase specifications. The HFA1105 is ideal for interfacing to Harris' line of video crosspoint switches (HA4201, HA4600, HA4314, HA4404, HA4344), to create high performance, low power switchers and routers.

The HFA1105 is a low power, high performance upgrade for the CLC406. For a comparable amplifier with output disable or output limiting functions, please see the data sheets for the HFA1145 and HFA1135 respectively.
For Military grade product, please refer to the HFA1145/883 data sheet.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{c} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & PKG. NO. \\
\hline HFA1105IP & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
HFA1105IB \\
(H1105I)
\end{tabular} & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline HFA11XXEVAL & \begin{tabular}{l} 
DIP Evaluation \\
Op Amps
\end{tabular} \\
\hline
\end{tabular}

\section*{Pinout}

HFA1105
(PDIP, SOIC)
TOP VIEW


\section*{Absolute Maximum Ratings}
Supply Voltage (V+ to V-) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11V
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V VUPPLY
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V
Output Current (Note 1) Short Circuit Protected 30 mA Continuous \(60 \mathrm{~mA} \leq 50 \%\) Duty Cycle
ESD Rating
ESD Raing.

\section*{Operating Conditions}

Temperature Range

\section*{Thermal Information}
\begin{tabular}{|c|c|}
\hline Thermal Resistance (Typical, Note 2) & \(\theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline PDIP Package & 130 \\
\hline SOIC Package . & 170 \\
\hline Maximum Junction Temperature (Die). & . \(175{ }^{\circ} \mathrm{C}\) \\
\hline Maximum Junction Temperature (Plastic Package) & \(.150^{\circ} \mathrm{C}\) \\
\hline Maximum Storage Temperature Range & \({ }^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Lead Temperature (Soldering 10s) & \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous ( \(100 \%\) duty cycle) output current must not exceed 30 mA for maximum reliability.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 V, A_{V}=+1, R_{F}=510 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & & A & 25 & - & 2 & 5 & mV \\
\hline & & A & Full & - & 3 & 8 & mV \\
\hline Average Input Offset Voltage Drift & & B & Full & - & 1 & 10 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Input Offset Voltage Common-Mode Rejection Ratio} & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 25 & 47 & 50 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 85 & 45 & 48 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 45 & 48 & - & dB \\
\hline \multirow[t]{3}{*}{Input Offset Voltage Power Supply Rejection Ratio} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 50 & 54 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & 47 & 50 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 47 & 50 & - & dB \\
\hline \multirow[t]{2}{*}{Non-Inverting Input Bias Current} & & A & 25 & - & 6 & 15 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 10 & 25 & \(\mu \mathrm{A}\) \\
\hline Non-Inverting Input Bias Current Drift & & B & Full & - & 5 & 60 & \(n \mathrm{~A}^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Non-Inverting Input Bias Current Power Supply Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 0.5 & 1 & \(\mu \mathrm{AV}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 0.8 & 3 & \(\mu \mathrm{AN}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 0.8 & 3 & \(\mu \mathrm{AN}\) \\
\hline \multirow[t]{3}{*}{Non-Inverting Input Resistance} & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 0.8 & 1.2 & - & M \(\Omega\) \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 85 & 0.5 & 0.8 & - & M \(\Omega\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 0.5 & 0.8 & - & M \(\Omega\) \\
\hline \multirow[t]{2}{*}{Inverting Input Bias Current} & & A & 25 & - & 2 & 7.5 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 5 & 15 & \(\mu \mathrm{A}\) \\
\hline Inverting Input Bias Current Drift & & B & Full & - & 60 & 200 & \(\mathrm{nA}^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Specifications \(V_{S U P P L Y}= \pm 5 V, A_{V}=+1, R_{F}=510 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{3}{*}{Inverting Input Bias Current Common-Mode Sensitivity} & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 3 & 6 & \(\mu \mathrm{AV}\) \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 4 & 8 & \(\mu \mathrm{A} N\) \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 4 & 8 & \(\mu \mathrm{A} N\) \\
\hline \multirow[t]{3}{*}{Inverting Input Bias Current Power Supply Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 2 & 5 & \(\mu \mathrm{A} V\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 4 & 8 & \(\mu \mathrm{AV}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 4 & 8 & \(\mu \mathrm{A} V\) \\
\hline Inverting Input Resistance & & C & 25 & - & 60 & - & \(\Omega\) \\
\hline Input Capacitance & & C & 25 & - & 1.6 & - & pF \\
\hline \multirow[t]{2}{*}{Input Voltage Common Mode Range (Implied by \(\mathrm{V}_{10}\) CMRR, \(+\mathrm{R}_{\text {IN }}\), and \({ }^{-I_{B I A S}}\) CMS Tests)} & & A & 25, 85 & \(\pm 1.8\) & \(\pm 2.4\) & - & V \\
\hline & & A & -40 & \(\pm 1.2\) & \(\pm 1.7\) & - & V \\
\hline Input Noise Voltage Density (Note 6) & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 3.5 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Non-Inverting Input Noise Current Density (Note 6) & \(f=100 \mathrm{kHz}\) & B & 25 & - & 2.5 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Inverting Input Noise Current Density (Note 6) & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 20 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline \multicolumn{8}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline Open Loop Transimpedance Gain & \(A_{V}=-1\) & c & 25 & - & 500 & - & k \(\Omega\) \\
\hline \multicolumn{8}{|l|}{AC CHARACTERISTICS \(\mathrm{R}_{\mathrm{F}}=510 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{7}{*}{-3dB Bandwidth ( \(\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-P }}\), Note 6 )} & \multirow[t]{2}{*}{\(A_{V}=+1,+R_{S}=510 \Omega\)} & B & 25 & - & 270 & - & MHz \\
\hline & & B & Full & - & 240 & - & MHz \\
\hline & \(A_{V}=-1, R_{F}=425 \Omega\) & B & 25 & - & 300 & - & MHz \\
\hline & \multirow[t]{2}{*}{\(A_{V}=+2\)} & B & 25 & - & 330 & - & MHz \\
\hline & & B & Full & - & 260 & - & MHz \\
\hline & \multirow[t]{2}{*}{\(A_{V}=+10, R_{F}=180 \Omega\)} & B & 25 & - & 130 & - & MHz \\
\hline & & B & Full & - & 90 & - & MHz \\
\hline \multirow[t]{3}{*}{Full Power Bandwidth \(\left(V_{\text {OUT }}=5 V_{\text {P-P }}\right.\) at \(A_{V}=+2 /-1\), \(4 V_{\text {P-P }}\) at \(A_{V}=+1\), Note 6)} & \(A_{V}=+1,+R_{S}=510 \Omega\) & B & 25 & - & 135 & - & MHz \\
\hline & \(A_{V}=-1\) & B & 25 & - & 140 & - & MHz \\
\hline & \(A_{V}=+2\) & B & 25 & - & 115 & - & MHz \\
\hline \multirow[t]{4}{*}{Gain Flatness
\[
\left(A_{V}=+2, V_{\text {OUT }}=0.2 V_{P-P}, \text { Note } 6\right)
\]} & \multirow[t]{2}{*}{To 25 MHz} & B & 25 & - & \(\pm 0.03\) & - & dB \\
\hline & & B & Full & - & \(\pm 0.04\) & - & dB \\
\hline & \multirow[t]{2}{*}{To 75 MHz} & B & 25 & - & \(\pm 0.11\) & - & dB \\
\hline & & B & Full & - & \(\pm 0.22\) & - & dB \\
\hline \multirow[t]{2}{*}{Gain Flatness
\[
\left(A_{V}=+1,+R_{S}=510 \Omega, V_{\text {OUT }}=0.2 V_{P-P}, \text { Note } 6\right)
\]} & To 25 MHz & B & 25 & - & \(\pm 0.03\) & - & dB \\
\hline & To 75 MHz & B & 25 & - & \(\pm 0.09\) & - & dB \\
\hline Minimum Stable gain & & A & Full & - & 1 & - & \(\mathrm{V} / \mathrm{N}\) \\
\hline \multicolumn{8}{|l|}{OUTPUT CHARACTERISTICS \(A_{V}=+2, R_{F}=510 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Output Voltage Swing (Note 6)} & \multirow[t]{2}{*}{\(A_{V}=-1, R_{L}=100 \Omega\)} & A & 25 & \(\pm 3\) & \(\pm 3.4\) & - & V \\
\hline & & A & Full & \(\pm 2.8\) & \(\pm 3\) & - & V \\
\hline
\end{tabular}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 V, A_{V}=+1, R_{F}=510 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & \[
\begin{aligned}
& \text { (NOTE 3) } \\
& \text { TEST } \\
& \text { LEVEL }
\end{aligned}
\] & \begin{tabular}{l}
TEMP. \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{2}{*}{Output Current (Note 6)} & \multirow[t]{2}{*}{\(A_{V}=-1, R_{L}=50 \Omega\)} & A & 25, 85 & 50 & 60 & - & mA \\
\hline & & A & -40 & 28 & 42 & - & mA \\
\hline Output Short Circuit Current & & B & 25 & - & 90 & - & mA \\
\hline Closed Loop Output Impedance (Note 6) & DC & B & 25 & - & 0.08 & - & \(\Omega\) \\
\hline \multirow[t]{2}{*}{Second Harmonic Distortion ( \(\mathrm{V}_{\mathrm{OUT}}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\), Note 6 )} & 10 MHz & B & 25 & - & -48 & - & dBc \\
\hline & 20MHz & B & 25 & - & -44 & - & dBc \\
\hline \multirow[t]{2}{*}{Third Harmonic Distortion \(\left(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}\right.\), Note 6\()\)} & 10 MHz & B & 25 & - & -50 & - & dBc \\
\hline & 20 MHz & B & 25 & - & -45 & - & dBc \\
\hline Reverse Isolation ( \(\mathrm{S}_{12}\), Note 6) & 30 MHz & B & 25 & - & -55 & - & dB \\
\hline
\end{tabular}

TRANSIENT CHARACTERISTICS \(A_{V}=+2, R_{F}=510 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Rise and Fall Times} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}_{\text {P-P }}\)} & B & 25 & - & 1.1 & - & ns \\
\hline & & B & Full & - & 1.4 & - & ns \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Overshoot (Note 4) \\
\(\left(\mathrm{V}_{\text {OUT }}=0\right.\) to \(\left.0.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }} \mathrm{t}_{\text {RISE }}=1 \mathrm{~ns}\right)\)
\end{tabular}} & +OS & B & 25 & - & 3 & - & \% \\
\hline & -os & B & 25 & - & 5 & - & \% \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Overshoot (Note 4) \\
\(\left(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}_{\text {P-P }}, \mathrm{V}_{\text {IN }} \mathrm{t}_{\text {RISE }}=1 \mathrm{~ns}\right)\)
\end{tabular}} & +OS & B & 25 & - & 3 & - & \% \\
\hline & -os & B & 25 & - & 11 & - & \% \\
\hline \multirow[t]{4}{*}{Slew Rate
\[
\left(V_{\text {OUT }}=4 V_{P-P}, A_{V}=+1,+R_{S}=510 \Omega\right)
\]} & \multirow[t]{2}{*}{+SR} & B & 25 & - & 1000 & - & V/us \\
\hline & & B & Full & - & 975 & - & V/us \\
\hline & \multirow[t]{2}{*}{-SR (Note 5)} & B & 25 & - & 650 & \(\bullet\) & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & & B & Full & - & 580 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline \multirow[t]{4}{*}{Slew Rate
\[
\left(V_{\text {OUT }}=5 V_{\text {P-P }}, A_{V}=+2\right)
\]} & \multirow[t]{2}{*}{+SR} & B & 25 & - & 1400 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & & B & Full & - & 1200 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & \multirow[t]{2}{*}{-SR (Note 5)} & B & 25 & - & 800 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & & B & Full & - & 700 & - & V/us \\
\hline \multirow[t]{4}{*}{Slew Rate
\[
\left(V_{\text {OUT }}=5 V_{P-P}, A_{V}=-1\right)
\]} & \multirow[t]{2}{*}{+SR} & B & 25 & - & 2100 & - & V/ \(/ \mathrm{s}\) \\
\hline & & B & Full & - & 1900 & - & V/ \(/ \mathrm{s}\) \\
\hline & \multirow[t]{2}{*}{-SR (Note 5)} & B & 25 & \(\bullet\) & 1000 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline & & B & Full & - & 900 & \(\bullet\) & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline \multirow[t]{3}{*}{Settling Time ( \(\mathrm{V}_{\text {OUT }}=+2 \mathrm{~V}\) to 0 V step, Note 6)} & To 0.1\% & B & 25 & - & 15 & - & ns \\
\hline & To 0.05\% & B & 25 & - & 23 & - & ns \\
\hline & To 0.02\% & B & 25 & - & 30 & - & ns \\
\hline Overdrive Recovery Time & \(\mathrm{V}_{\mathrm{IN}}= \pm 2 \mathrm{~V}\) & B & 25 & - & 8.5 & - & ns \\
\hline \multicolumn{8}{|l|}{VIDEO CHARACTERISTICS \(A_{V}=+2, R_{F}=510 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Differential Gain ( \(f=3.58 \mathrm{MHz}\) )} & \(R_{L}=150 \Omega\) & B & 25 & - & 0.02 & - & \% \\
\hline & \(\mathrm{R}_{\mathrm{L}}=75 \Omega\) & B & 25 & - & 0.03 & - & \% \\
\hline
\end{tabular}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP. ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{2}{*}{Differential Phase ( \(\mathrm{f}=3.58 \mathrm{MHz}\) )} & \(R_{L}=150 \Omega\) & B & 25 & - & 0.03 & \(\cdot\) & Degrees \\
\hline & \(R_{L}=75 \Omega\) & B & 25 & - & 0.05 & - & Degrees \\
\hline \multicolumn{8}{|l|}{POWER SUPPLY CHARACTERISTICS} \\
\hline Power Supply Range & & C & 25 & \(\pm 4.5\) & - & \(\pm 5.5\) & V \\
\hline \multirow[t]{2}{*}{Power Supply Current} & & A & 25 & - & 5.8 & 6.1 & mA \\
\hline & & A & Full & - & 5.9 & 6.3 & mA \\
\hline
\end{tabular}

NOTES:
3. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.
4. Undershoot dominates for output signal swings below GND (e.g., \(0.5 \mathrm{~V}_{\text {P-p }}\) ), yielding a higher overshoot limit compared to the \(\mathrm{V}_{\text {OUT }}=0\) to 0.5 V condition. See the "Application Information" section for details.
5. Slew rates are asymmetrical if the output swings below GND (e.g. a bipolar signal). Positive unipolar output signals have symmetric positive and negative slew rates comparable to the +SR specification. See the "Application information" section, and the pulse response graphs for details.
6. See Typical Performance Curves for more information.

\section*{Application Information}

\section*{Optimum Feedback Resistor}

Although a current feedback amplifier's bandwidth dependency on closed loop gain isn't as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback amplifier's unique relationship between bandwidth and \(R_{F}\). All current feedback amplifiers require a feedback resistor, even for unity gain applications, and \(R_{F}\) in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to \(R_{F}\) The HFA1105 design is optimized for \(R_{F}=510 \Omega\) at a gain of +2 . Decreasing \(R_{F}\) decreases stability, resulting in excessive peaking and overshoot (Note: Capacitive feedback will cause the same problems due to the feedback impedance decrease at higher frequencies). At higher gains, however, the amplifier is more stable so \(R_{F}\) can be decreased in a trade-off of stability for bandwidth.

The table below lists recommended \(R_{F}\) values for various gains, and the expected bandwidth. For a gain of +1 , a resistor ( \(+\mathrm{R}_{\mathrm{S}}\) ) in series with +IN is required to reduce gain peaking and increase stability.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
GAIN \\
\(\left(\mathbf{A}_{\mathbf{C L}}\right)\)
\end{tabular} & \(\mathbf{R}_{\mathbf{F}}(\Omega)\) & \begin{tabular}{c} 
BANDWIDTH \\
\((\mathbf{M H z})\)
\end{tabular} \\
\hline-1 & 425 & 300 \\
\hline+1 & \(510\left(+\mathrm{R}_{\mathrm{S}}=510 \Omega\right)\) & 270 \\
\hline+2 & 510 & 330 \\
\hline+5 & 200 & 300 \\
\hline+10 & 180 & 130 \\
\hline
\end{tabular}

\section*{Non-Inverting Input Source Impedance}

For best operation, the DC source impedance seen by the non-inverting input should be \(\geq 50 \Omega\). This is especially important in inverting gain configurations where the non-inverting input would normally be connected directly to GND.

\section*{Pulse Undershoot and Asymmetrical Slew Rates}

The HFA1105 utilizes a quasi-complementary output stage to achieve high output current while minimizing quiescent supply current. In this approach, a composite device replaces the traditional PNP pulldown transistor. The composite device switches modes after crossing OV, resulting in added distortion for signals swinging below ground, and an increased undershoot on the negative portion of the output waveform (See Figures 5, 8, and 11). This undershoot isn't present for small bipolar signals, or large positive signals. Another artifact of the composite device is asymmetrical slew rates for output signals with a negative voltage component. The slew rate degrades as the output signal crosses through OV (See Figures 5, 8, and 11), resulting in a slower overall negative slew rate. Positive only signals have symmetrical slew rates as illustrated in the large signal positive pulse response graphs (See Figures 4, 7, and 10).

\section*{PC Board Layout}

The amplifier's frequency response depends greatly on the care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!

Attention should be given to decoupling the power supplies. A large value \((10 \mu \mathrm{~F})\) tantalum in parallel with a small value ( \(0.1 \mu \mathrm{~F}\) ) chip capacitor works well in most cases.

Terminated microstrip signal lines are recommended at the device's input and output connections. Capacitance, parasitic or planned, connected to the output must be minimized, or isolated as discussed in the next section.
Care must also be taken to minimize the capacitance to ground at the amplifier's inverting input (-IN), as this capacitance causes gain peaking, pulse overshoot, and if large enough, instability. To reduce this capacitance, the designer should remove the ground plane under traces connected to \(-\operatorname{IN}\), and keep connections to -IN as short as possible.
An example of a good high frequency layout is the Evaluation Board shown in Figure 2.

\section*{Driving Capacitive Loads}

Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor ( \(\mathrm{R}_{\mathrm{S}}\) ) in series with the output prior to the capacitance.
Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the \(R_{S}\) and \(C_{L}\) combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an overdamped response, while points below or left of the curve indicate areas of underdamped performance.
\(R_{S}\) and \(C_{L}\) form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 270 MHz (for \(A_{V}=+1\) ). By decreasing \(R_{S}\) as \(C_{L}\) increases (as illustrated in the curves), the maximum bandwidth is obtained without sacrificing stability. In spite of this, the bandwidth decreases as the load capacitance increases. For example, at \(A_{V}=+1, R_{S}=62 \Omega, C_{L}=40 \mathrm{pF}\), the overall bandwidth is limited to 180 MHz , and bandwidth drops to 75 MHz at \(A_{V}=+1\), \(R_{S}=8 \Omega, C_{L}=400 \mathrm{pF}\).


FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs load capacitance

\section*{Evaluation Board}

The performance of the HFA1105 may be evaluated using the HFA11XX Evaluation Board.

The layout and schematic of the board are shown in Figure 2. To order evaluation boards (part number HFA11XXEVAL), please contact your local sales office.


FIGURE 2A. TOP LAYOUT


FIGURE 2B. BOTTOM LAYOUT


FIGURE 2. EVALUATION BOARD SCHEMATIC AND LAYOUT

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified


FIGURE 3. SMALL SIGNAL PULSE RESPONSE


FIGURE 5. LARGE SIGNAL BIPOLAR PULSE RESPONSE


FIGURE 7. LARGE SIGNAL POSITIVE PULSE RESPONSE


FIGURE 4. LARGE SIGNAL POSITIVE PULSE RESPONSE


FIGURE 6. SMALL SIGNAL PULSE RESPONSE


FIGURE 8. LARGE SIGNAL BIPOLAR PULSE RESPONSE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPIY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Speciifed (Continued)


TIME (5ns/DIV.)
FIGURE 9. SMALL SIGNAL PULSE RESPONSE


FIGURE 11. LARGE SIGNAL BIPOLAR PULSE RESPONSE


FIGURE 13. FREQUENCY RESPONSE


TIME (5ns/DIV.)
FIGURE 10. LARGE SIGNAL POSITIVE PULSE RESPONSE


FIGURE 12. FREQUENCY RESPONSE

FIGURE 14. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES

Typical Performance Curves \(\mathrm{V}_{\mathrm{SUPPLY}}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 15. FULL POWER BANDWIDTH


FIGURE 17. -3dB BANDWIDTH vs TEMPERATURE


FIGURE 19. REVERSE ISOLATION


FIGURE 16. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS


FIGURE 18. GAIN FLATNESS


FIGURE 20. OUTPUT IMPEDANCE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 21. SETTLING RESPONSE


FIGURE 23. THIRD HARMONIC DISTORTION vs POUT


FIGURE 25. INPUT NOISE CHARACTERISTICS


FIGURE 22. SECOND HARMONIC DISTORTION vs POUT


FIGURE 24. OUTPUT VOLTAGE vs TEMPERATURE


FIGURE 26. SUPPLY CURRENT vs SUPPLY VOLTAGE

\section*{Die Characteristics}

DIE DIMENSIONS:
59 mils \(\times 59\) mils \(\times 19\) mils
\(1500 \mu \mathrm{~m} \times 1500 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)

\section*{METALLIZATION:}

Type: Metal 1: \(\operatorname{AICu}(2 \%) / T i W\)
Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)
Type: Metal 2: AICu(2\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)

PASSIVATION:
Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
75
SUBSTRATE POTENTIAL (Powered Up):
Floating
(Recommend Connection to V-)

Metallization Mask Layout


\section*{315MHz, Low Power, Video Operational Amplifier with Compensation Pin}

\section*{Features}
- Compensation Pin for Bandwidth Limiting
- Lower Lot-to-Lot Variability With External Compensation
- High Input Impedance . . . . . . . . . . . . . . . . . . . . . . . 1M \(\Omega\)
- Differential Gain
0.02\%
- Differential Phase 0.05 Degrees
- Wide -3dB Bandwidth 315 MHz
- Very Fast Slew Rate 700V/ \(\mu \mathrm{s}\)
- Low Supply Current. . . . . . . . . . . . . . . . . . . . . . . 5.8mA
- Gain Flatness (to \(\mathbf{1 0 0} \mathbf{M H z}\) ) . . . . . . . . . . . . . . . . . \(\pm 0.1 \mathrm{~dB}\)

\section*{Applications}
- Noise Critical Applications
- Professional Video Processing
- Medical Imaging
- Video Digitizing Boards/Systems
- Radar/IF Processing
- Hand Held and Miniaturized RF Equipment
- Battery Powered Communications
- Flash ADD Drivers
- Oscilloscopes and Analyzers

\section*{Description}

The HFA1106 is a high speed, low power current feedback operational amplifier built with Harris' proprietary complementary bipolar UHF-1 process. This amplifier features a compensation pin connected to the internal high impedance node, which allows for implementation of external clamping or bandwidth limiting.

Bandwidth limiting is accomplished by connecting a capacitor ( \(\mathrm{C}_{\mathrm{COMP}}\) ) and series damping resistor ( \(\mathrm{R}_{\mathrm{COMP}}\) ) from pin 8 to ground. Amplifier performance for various values of \(\mathrm{C}_{\text {COMP }}\) is documented in the Electrical Specifications.

The HFA1106 is ideal for noise critical wideband applications. Not only can the bandwidth be limited to minimize broadband noise, the HFA1106 is optimized for lower feedback resistors ( \(R_{F}=100 \Omega\) for \(A_{V}=+2\) ) than most current feedback amplifiers. The low feedback resistor reduces the inverting input noise current contribution to total output noise, while reducing DC errors as well. Please see the "Application Information" section for details.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{c} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE (
\end{tabular} \\
\hline\({ }^{\circ}\) C)
\end{tabular}\(\quad\) PACKAGE \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}\(|\)

Pinout
HFA1106
(PDIP, SOIC)
TOP VIEW


\section*{HFA1106}
Absolute Maximum Ratings
Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11V
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V VUPPLY
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 .
Output Current (Note 1)
Short Circuit Protected
30 mA Continuous
\(60 \mathrm{~mA} \leq 50 \%\) Duty Cycle
ESD Rating

\section*{Operating Conditions}

Temperature Range
\(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability; however, continuous ( \(100 \%\) duty cycle) output current must not exceed 30 mA for maximum reliability.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(V_{S U P P L Y}= \pm 5 V, A_{V}=+1, R_{F}=510 \Omega, C_{C O M P}=0 p F, R_{L}=100 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & & A & 25 & - & 2 & 5 & mV \\
\hline & & A & Full & - & 3 & 8 & mV \\
\hline Average Input Offset Voltage Drift & & B & Full & - & 1 & 10 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Input Offset Voltage Common-Mode Rejection Ratio} & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 47 & 50 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 85 & 45 & 48 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.2 \mathrm{~V}\) & A & -40 & 45 & 48 & - & dB \\
\hline \multirow[t]{3}{*}{Input Offset Voltage Power Supply Rejection Ratio} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 50 & 54 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & 47 & 50 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 47 & 50 & - & dB \\
\hline \multirow[t]{2}{*}{Non-Inverting Input Bias Current} & & A & 25 & - & 6 & 15 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 10 & 25 & \(\mu \mathrm{A}\) \\
\hline Non-Inverting Input Bias Current Drift & & B & Full & - & 5 & 60 & \(n \mathrm{~A} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Non-Inverting Input Bias Current Power Supply Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 0.5 & 1 & \(\mu \mathrm{A} N\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 0.8 & 3 & \(\mu \mathrm{A} N\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 0.8 & 3 & \(\mu \mathrm{A} N\) \\
\hline \multirow[t]{3}{*}{Non-Inverting Input Resistance} & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 25 & 0.8 & 1.2 & - & \(\mathrm{M} \Omega\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 85 & 0.5 & 0.8 & - & \(\mathrm{M} \Omega\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 0.5 & 0.8 & - & \(\mathrm{M} \Omega\) \\
\hline \multirow[t]{2}{*}{Inverting Input Bias Current} & & A & 25 & - & 2 & 7.5 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 5 & 15 & \(\mu \mathrm{A}\) \\
\hline Inverting Input Bias Current Drift & & B & Full & - & 60 & 200 & \(n \mathrm{~A} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Inverting Input Bias Current Common-Mode Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 3 & 6 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 4 & 8 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 4 & 8 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline \multirow[t]{3}{*}{Inverting Input Bias Current Power Supply Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 2 & 5 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 4 & 8 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 4 & 8 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline
\end{tabular}

HFA1106

Electrical Specifications \(\quad V_{S U P P L Y}= \pm 5 V, A_{V}=+1, R_{F}=510 \Omega, C_{C O M P}=0 p F, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP. ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline Inverting Input Resistance & & C & 25 & - & 60 & - & \(\Omega\) \\
\hline Input Capacitance & & C & 25 & - & 1.6 & - & pF \\
\hline \multirow[t]{2}{*}{Input Voltage Common Mode Range (Implied by \(\mathrm{V}_{10}\) CMRR, \(+\mathrm{R}_{\text {IN }}\), and \({ }^{-\mathrm{I}_{\mathrm{BIAS}}}\) CMS Tests)} & & A & 25, 85 & \(\pm 1.8\) & \(\pm 2.4\) & - & V \\
\hline & & A & -40 & \(\pm 1.2\) & \(\pm 1.7\) & - & V \\
\hline Input Noise Voltage Density & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 3.5 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Non-Inverting Input Noise Current Density & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 2.5 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Inverting Input Noise Current Density & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 20 & - & \(\mathrm{pA} \sqrt{\text { Hz }}\) \\
\hline \multicolumn{8}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline Open Loop Transimpedance Gain & \(A_{V}=-1\) & C & 25 & \(\cdot\) & 500 & - & k \(\Omega\) \\
\hline
\end{tabular}

AC CHARACTERISTICS \(A_{V}=+2, R_{F}=100 \Omega, R_{C O M P}=51 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{-3dB Bandwidth
\[
\left(A_{V}=+1, R_{F}=150 \Omega, V_{\text {OUT }}=0.2 V_{P-P}\right)
\]} & \(\mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}\) & B & 25 & 250 & 315 & - & MHz \\
\hline & \(\mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}\) & B & 25 & 140 & 170 & - & MHz \\
\hline & \(\mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}\) & B & 25 & 65 & 80 & - & MHz \\
\hline \multirow[t]{3}{*}{-3dB Bandwidth ( \(\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {OUT }}=0.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) )} & \(\mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}\) & B & 25 & 185 & 245 & - & MHz \\
\hline & \(\mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}\) & B & 25 & 110 & 140 & - & MHz \\
\hline & \(\mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}\) & B & 25 & 55 & 70 & - & MHz \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \pm 0.1 \mathrm{~dB} \text { Flat Bandwidth } \\
& \left(A_{V}=+1, R_{F}=150 \Omega, V_{\text {OUT }}=0.2 V_{P-P}\right)
\end{aligned}
\]} & \(\mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}\) & B & 25 & 45 & 65 & - & MHz \\
\hline & \(\mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}\) & B & 25 & 25 & 40 & - & MHz \\
\hline & \(\mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}\) & B & 25 & 13 & 17 & - & MHz \\
\hline \multirow[t]{3}{*}{\(\pm 0.1 \mathrm{~dB}\) Flat Bandwidth \(\left(A_{V}=+2, V_{\text {OUT }}=0.2 V_{P-P}\right)\)} & \(\mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}\) & B & 25 & 60 & 100 & - & MHz \\
\hline & \(\mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}\) & B & 25 & 15 & 30 & - & MHz \\
\hline & \(\mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}\) & B & 25 & 11 & 14 & - & MHz \\
\hline \multicolumn{2}{|l|}{Minimum Stable Gain} & A & Full & 1 & - & - & V/V \\
\hline \multicolumn{8}{|l|}{OUTPUT CHARACTERISTICS \(A_{V}=+2, R_{F}=100 \Omega, R_{C O M P}=51 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Output Voltage Swing} & \multirow[t]{2}{*}{\(A_{V}=-1, R_{F}=510 \Omega\)} & A & 25 & \(\pm 3\) & \(\pm 3.4\) & - & V \\
\hline & & A & Full & \(\pm 2.8\) & \(\pm 3\) & - & V \\
\hline \multirow[t]{2}{*}{Output Current} & \multirow[t]{2}{*}{\[
\begin{aligned}
& A_{V}=-1, R_{L}=50 \Omega, \\
& R_{F}=510 \Omega
\end{aligned}
\]} & A & 25, 85 & 50 & 60 & - & mA \\
\hline & & A & -40 & 28 & 42 & - & mA \\
\hline Closed Loop Output Impedance & DC & B & 25 & - & 0.07 & - & \(\Omega\) \\
\hline Output Short Circuit Current & \(\mathrm{A}_{\mathrm{V}}=-1\) & B & 25 & - & 90 & - & mA \\
\hline \multirow[t]{3}{*}{Second Harmonic Distortion \(\left(10 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\right)\)} & \(\mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}\) & B & 25 & -45 & -53 & - & dBc \\
\hline & \(\mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}\) & B & 25 & -42 & -48 & - & dBc \\
\hline & \(\mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}\) & B & 25 & -38 & -44 & - & dBc \\
\hline \multirow[t]{3}{*}{Third Harmonic Distortion \(\left(10 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P_P }}\right)\)} & \(\mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}\) & B & 25 & -50 & -57 & - & dBc \\
\hline & \(\mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}\) & B & 25 & -48 & -56 & - & dBc \\
\hline & \(\mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}\) & B & 25 & -48 & -56 & - & dBc \\
\hline \multirow[t]{3}{*}{Second Harmonic Distortion \(\left(20 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-p }}\right)\)} & \(\mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}\) & B & 25 & -42 & -46 & - & dBc \\
\hline & \(\mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}\) & B & 25 & -38 & -42 & - & dBc \\
\hline & \(\mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}\) & B & 25 & -34 & -38 & \(-\) & dBc \\
\hline \multirow[t]{3}{*}{Third Harmonic Distortion \(\left(20 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}\right)\)} & \(\mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}\) & B & 25 & -46 & -57 & - & dBc \\
\hline & \(\mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}\) & B & 25 & -52 & -57 & - & dBc \\
\hline & \(\mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}\) & B & 25 & -50 & -57 & - & dBc \\
\hline
\end{tabular}

\section*{HFA1106}

Electrical Specifications \(\quad V_{S U P P L Y}= \pm 5 V, A_{V}=+1, R_{F}=510 \Omega, C_{C O M P}=0 p F, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & \begin{tabular}{l}
TEMP. \\
( \({ }^{\circ} \mathrm{C}\) )
\end{tabular} & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{TRANSIENT CHARACTERISTICS \(A_{V}=+2, R_{F}=100 \Omega, R_{C O M P}=51 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{3}{*}{Rise and Fall Times
\[
\left(V_{\text {OUT }}=0.5 V_{P-P}, A_{V}=+1, R_{F}=150 \Omega\right)
\]} & \(\mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}\) & B & 25 & - & 2.6 & 2.9 & ns \\
\hline & \(\mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}\) & B & 25 & - & 3.7 & 4.2 & ns \\
\hline & \(\mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}\) & B & 25 & - & 5.2 & 6.2 & ns \\
\hline \multirow[t]{3}{*}{Rise and Fall Times
\[
\left(V_{\text {OUT }}=0.5 V_{\text {P-P }}, A_{V}=+2\right)
\]} & \(\mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}\) & B & 25 & \(\cdot\) & 2.7 & 3.2 & ns \\
\hline & \(\mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}\) & B & 25 & - & 3.9 & 4.4 & ns \\
\hline & \(\mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}\) & B & 25 & - & 5.9 & 6.9 & ns \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Overshoot (Note 4) \\
\(\left(A_{V}=+1, R_{F}=150 \Omega, V_{I N} t_{\text {RISE }}=2.5 \mathrm{~ns}\right)\)
\end{tabular}} & \(\mathrm{V}_{\text {OUT }}=250 \mathrm{mV} \mathrm{V}_{\text {P-P }}\) & B & 25 & - & 1.5 & 4 & \% \\
\hline & \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}\) & B & 25 & - & 6 & 10 & \% \\
\hline & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) to 2V & B & 25 & - & 4 & 7.5 & \% \\
\hline \multirow[t]{3}{*}{Overshoot (Note 4) \(\left(A_{V}=+2, V_{\text {IN }} t_{\text {RISE }}=2.5 \mathrm{~ns}\right)\)} & \(\mathrm{V}_{\text {OUT }}=250 \mathrm{mV} \mathrm{V}_{\text {P-P }}\) & B & 25 & - & 2 & 5 & \% \\
\hline & \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}\) & B & 25 & - & 6.5 & 12 & \% \\
\hline & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) to 2V & B & 25 & - & 2.5 & 7.5 & \% \\
\hline \multirow[t]{6}{*}{Slew Rate
\[
\left(V_{\text {OUT }}=4 V_{P-P}, A_{V}=+1, R_{F}=150 \Omega\right)
\]} & \(+\mathrm{SR}, \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}\) & B & 25 & 580 & 680 & - & V/ \(/\) s \\
\hline & -SR, \(\mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}\) & B & 25 & 400 & 545 & - & V/ \(\mu \mathrm{s}\) \\
\hline & \(+\mathrm{SR}, \mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}\) & B & 25 & 470 & 530 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline & -SR, \(\mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}\) & B & 25 & 300 & 410 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline & \(+\mathrm{SR}, \mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}\) & B & 25 & 320 & 365 & - & V/ \(/\) s \\
\hline & \(-\mathrm{SR}, \mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}\) & B & 25 & 200 & 300 & - & V/us \\
\hline \multirow[t]{6}{*}{Slew Rate
\[
\left(V_{\text {OUT }}=5 V_{P-P}, A_{V}=+2\right)
\]} & \(+\mathrm{SR}, \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}\) & B & 25 & 750 & 910 & - & V/us \\
\hline & \(-\mathrm{SR}, \mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}\) & B & 25 & 500 & 720 & - & V/us \\
\hline & \(+\mathrm{SR}, \mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}\) & B & 25 & 550 & 730 & - & V/us \\
\hline & -SR, \(\mathrm{C}_{\mathrm{C}}=2 \mathrm{pF}\) & B & 25 & 350 & 520 & - & V/us \\
\hline & \(+\mathrm{SR}, \mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}\) & B & 25 & 380 & 485 & \(\bullet\) & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline & \(-\mathrm{SR}, \mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}\) & B & 25 & 250 & 375 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline \multirow[t]{3}{*}{Settling Time ( \(\mathrm{V}_{\text {OUT }}=+2 \mathrm{~V}\) to 0 V Step, \(\mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}\) to 5 pF )} & To 0.1\% & B & 25 & - & 26 & 35 & ns \\
\hline & To 0.05\% & B & 25 & - & 33 & 43 & ns \\
\hline & To 0.02\% & B & 25 & - & 49 & 75 & ns \\
\hline Overdrive Recovery Time & \(\mathrm{V}_{\text {IN }}= \pm 2 \mathrm{~V}\) & B & 25 & - & 8.5 & - & ns \\
\hline \multicolumn{8}{|l|}{VIDEO CHARACTERISTICS \(A_{V}=+2, R_{F}=100 \Omega, R_{\text {COMP }}=51 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Differential Gain
\[
\left(f=3.58 \mathrm{MHz}, R_{L}=150 \Omega\right)
\]} & \(\mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}\) & B & 25 & - & 0.02 & - & \% \\
\hline & \(\mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}\) & B & 25 & - & 0.02 & - & \% \\
\hline \multirow[t]{2}{*}{Differential Phase
\[
\left(f=3.58 \mathrm{MHz}, R_{L}=150 \Omega\right)
\]} & \(\mathrm{C}_{\mathrm{C}}=0 \mathrm{pF}\) & B & 25 & - & 0.05 & - & Degrees \\
\hline & \(\mathrm{C}_{\mathrm{C}}=5 \mathrm{pF}\) & B & 25 & \(\bullet\) & 0.07 & - & Degrees \\
\hline \multicolumn{8}{|l|}{POWER SUPPLY CHARACTERISTICS} \\
\hline Power Supply Range & & C & 25 & \(\pm 4.5\) & - & \(\pm 5.5\) & V \\
\hline \multirow[t]{2}{*}{Power Supply Current} & & A & 25 & - & 5.8 & 6.1 & mA \\
\hline & & A & Full & - & 5.9 & 6.3 & mA \\
\hline
\end{tabular}

\section*{NOTES:}
3. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.
4. Undershoot dominates for output signal swings below GND (e.g. \(2 \mathrm{~V}_{\text {P-p }}\) ) yielding a higher overshoot limit compared to the \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) to 2 V condition.

\section*{Application Information}

\section*{Optimum Feedback Resistor}

All current feedback amplifiers (CFAs) require a feedback resistor ( \(R_{F}\) ) even for unity gain applications, and \(R_{F}\) in conjunction with the internal compensation capacitor sets the dominant pole of the frequency response. Thus the amplifier's bandwidth is inversely proportional to \(R_{F}\) The HFA1106 design is optimized for \(R_{F}=150 \Omega\) at a gain of +1 . Decreasing \(R_{F}\) decreases stability resulting in excessive peaking and overshoot - Note: Capacitive feedback causes the same problems due to the feedback impedance decrease at higher frequencies. At higher gains, however, the amplifier is more stable, so \(R_{F}\) can be decreased in a trade-off of stability for bandwidth (e.g., \(R_{F}=100 \Omega\) for \(A_{V}=+2\) ).

\section*{Why Use Externally Compensated Amplifiers?}

Externally compensated op amps were originally developed to allow operation at gains below the amplifier's minimum stable gain. This enabled development of non-unity gain stable op amps with very high bandwidth and slew rates. Users needing lower closed loop gains could stabilize the amplifier with external compensation if the associated performance decrease was tolerable.

With the advent of CFAs, unity gain stability and high performance are no longer mutually exclusive, so why offer unity gain stable op amps with compensation pins?
The main reason for external compensation is to allow users to tailor the amplifier's performance to their specific system needs. Bandwidth can be limited to the exact value required, thereby eliminating excess bandwidth and its associated noise. A compensated op amp is also more predictable; lower lot-to-lot variation requires less system overdesign to cover process variability. Finally, access to the internal high impedance node allows users to implement external output limiting or allows for stabilizing the amplifier when driving large capacitive loads.

\section*{Noise Advantages - Uncompensated}

The HFA1106 delivers lower broadband noise even without an external compensation capacitor. Package capacitance present at the Comp pin stabilizes the op amp, so lower value feedback resistors can be used. A smaller value \(\mathrm{R}_{\mathrm{F}}\) minimizes the noise voltage contribution of the amplifier's inverting input noise current \(-I_{N I} \times R_{F}\), usually a large contributor on CFAs - and minimizes the resistor's thermal noise contribution (4KTR \({ }_{F}\) ). Figure 1 details the HFA1105 broadband noise performance in its recommended configuration of \(A_{V}=+2\), and \(R_{F}=510 \Omega\). Adding a Comp pin to the HFA1105 (thereby creating the HFA1106) yields the 23\% noise reduction shown in Figure 2. In both cases, the scope bandwidth, 100 MHz , limits the measurement range to prevent amplifier bandwidth differences from affecting the results.


FIGURE 1. HFA1105 NOISE PERFORMANCE, \(A_{V}=\boldsymbol{+ 2}\), \(R_{F}=510 \Omega\)


FIGURE 2. HFA1106 NOISE PERFORMANCE, UNCOMPENSATED, \(A_{V}=+2, R_{F}=100 \Omega\)

\section*{Offset Advantage}

An added advantage of the lower value \(R_{F}\) is a smaller DC output offset. The op amp's inverting input bias current ( \(\mathrm{I}_{\mathrm{BI}}\) ) flows through the feedback resistor and generates an offset voltage error defined by:
\(V_{E}=I_{B I} \times R_{F}\); and \(V_{O S}=A_{V}\left( \pm V_{I O}\right) \pm V_{E}\)
Reducing \(R_{F}\) reduces these errors.

\section*{Bandwidth Limiting}

The HFA1106 bandwidth may be limited by connecting a resistor, \(\mathrm{R}_{\text {COMP }}\) (required to damp the interaction between the compensation capacitor and the package parasitics), and capacitor, \(\mathrm{C}_{\mathrm{COMP}}\), in series from pin 8 to GND. Typical performance characteristics for various \(\mathrm{C}_{\text {COMP }}\) values are listed in the specification table. The HFA1106 is already unity gain stable, so the main reason for limiting the bandwidth is to reduce the broadband noise.

\section*{Noise Advantages - Compensated}

System noise reduction is maximized by limiting the op amp to the bandwidth required for the application. Noise increases as the square root of the bandwidth increase ( \(4 x\) bandwidth increase yields \(2 x\) noise increase), so eliminating excess
bandwidth significantly reduces system noise. Figure 3 illustrates the noise performance of the HFA1106 with its bandwidth limited to 40 MHz by a \(10 \mathrm{pF} \mathrm{C}_{\text {COMP }}\) As expected the noise decreases by approximately \(37 \%\) ( \(100 \% \times(1-\sqrt{40 \mathrm{MHz} / 100 \mathrm{MHz}})\) ) compared with Figure 2. The decrease is an even more dramatic \(48 \%\) versus the HFA1105 noise level in Figure 1.


FIGURE 3. HFA1106 NOISE PERFORMANCE, COMPENSATED, \(A_{V}=+2, R_{F}=100 \Omega, C_{C}=10 \mathrm{pF}\)
Additionally, compensating the HFA1106 allows the use of a lower value \(R_{F}\) for a given gain. The decreased bandwidth due to \(\mathrm{C}_{\text {COMP }}\) keeps the amplifier stable by offsetting the increased bandwidth from the lower \(R_{F}\). As noted previously, a lower value \(R_{F}\) provides the double benefit of reduced DC errors and lower total noise.

\section*{Less Lot-to-Lot Variability}

External compensation provides another advantage by allowing designers to set the op amp's performance with a precision external component. On-chip compensation capacitors can vary by \(10-20 \%\) over the process extremes. A precise external capacitor dominates the on-chip compensation for consistent lot-to-lot performance and more robust designs. Compensating high frequency amplifiers to lower bandwidths can simplify design tasks and ensure long term manufacturability.

\section*{PC Board Layout}

This amplifier's frequency response depends greatly on the care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!
Attention should be given to decoupling the power supplies. A large value \((10 \mu \mathrm{~F})\) tantalum in parallel with a small value \((0.1 \mu \mathrm{~F})\) chip capacitor works well in most cases.
Terminated microstrip signal lines are recommended at the device's input and output connections. Capacitance, parasitic or planned, connected to the output must be minimized, compensated for by increasing \(\mathrm{C}_{\text {COMP }}\), or isolated by a series output resistor.

Care must also be taken to minimize the capacitance to ground at the amplifier's inverting input ( -IN ), as this capacitance causes gain peaking, pulse overshoot, and if large
enough, instability. To reduce this capacitance, the designer should remove the ground plane under traces connected to -IN , and keep connections to -IN as short as possible.

An example of a good high frequency layout is the Evaluation Board shown in Figure 4.

\section*{Evaluation Board}

The performance of the HFA1106 may be evaluated using the HFA11XX Evaluation Board.

Figure 4 details the evaluation board layout and schematic. Connecting \(\mathrm{R}_{\text {COMP }}\) and \(\mathrm{C}_{\text {COMP }}\) in series from socket pin 8 to the GND plane compensates the op amp. Cutting the trace from pin 8 to the \(\mathrm{V}_{\mathrm{H}}\) connector removes the stray parallel capacitance, which would otherwise affect the evaluation. Additionally, the \(500 \Omega\) feedback and gain setting resistors should be changed to the proper value for the gain being evaluated.

To order evaluation boards (part number HFA11XXEVAL), please contact your local sales office.


FIGURE 4. EVALUATION BOARD SCHEMATIC AND LAYOUT

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified


FIGURE 5. SMALL SIGNAL PULSE RESPONSE


FIGURE 7. LARGE SIGNAL PULSE RESPONSE


FIGURE 9. LARGE SIGNAL PULSE RESPONSE


FIGURE 6. SMALL SIGNAL PULSE RESPONSE


FIGURE 8. LARGE SIGNAL PULSE RESPONSE


FIGURE 10. LARGE SIGNAL PULSE RESPONSE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 11. FREQUENCY RESPONSE


FIGURE 13. FREQUENCY RESPONSE (12 UNITS, 4 RUNS)


FIGURE 15. FREQUENCY RESPONSE (12 UNITS, 4 RUNS)


FIGURE 12. GAIN FLATNESS


FIGURE 14. GAIN FLATNESS (12 UNITS, 4 RUNS)


FIGURE 16. GAIN FLATNESS (12 UNITS, 4 RUNS)

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 17. SMALL SIGNAL PULSE RESPONSE


FIGURE 19. LARGE SIGNAL PULSE RESPONSE


FIGURE 21. LARGE SIGNAL PULSE RESPONSE


FIGURE 18. SMALL SIGNAL PULSE RESPONSE


FIGURE 20. LARGE SIGNAL OUTPUT VOLTAGE


FIGURE 22. LARGE SIGNAL PULSE RESPONSE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Othewwise Specified (Continued)


FIGURE 23. FREQUENCY RESPONSE


FIGURE 25. FREQUENCY RESPONSE (12 UNITS, 4 RUNS)


FIGURE 27. FREQUENCY RESPONSE (12 UNITS, 4 RUNS)


FIGURE 24. GAIN FLATNESS


FIGURE 26. GAIN FLATNESS (12 UNITS, 4 RUNS)


FIGURE 28. GAIN FLATNESS (12 UNITS, 4 RUNS)

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 29. SMALL SIGNAL PULSE RESPONSE


FIGURE 31. LARGE SIGNAL PULSE RESPONSE


FIGURE 33. LARGE SIGNAL PULSE RESPONSE


FIGURE 30. SMALL SIGNAL PULSE RESPONSE


FIGURE 32. LARGE SIGNAL PULSE RESPONSE


FIGURE 34. LARGE SIGNAL PULSE RESPONSE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 35. FREQUENCY RESPONSE


FIGURE 37. FREQUENCY RESPONSE (12 UNITS, 4 RUNS)


FIGURE 39. FREQUENCY RESPONSE (12 UNITS, 4 RUNS)


FIGURE 36. GAIN FLATNESS


FIGURE 38. GAIN FLATNESS (12 UNITS, 4 RUNS)


FIGURE 40. GAIN FLATNESS (12 UNITS, 4 RUNS)

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 41. SETTLING RESPONSE


FIGURE 42. OUTPUT VOLTAGE vs TEMPERATURE


FIGURE 43. SUPPLY CURRENT vs SUPPLY VOLTAGE

\section*{Die Characteristics}

DIE DIMENSIONS:
59 mils \(\times 58.2\) mils \(\times 19\) mils
\(1500 \mu \mathrm{~m} \times 1480 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)
METALLIZATION:
Type: Metal 1: \(\mathrm{AlCu}(2 \%) / T i W\)
Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)
Type: Metal 2: \(\mathrm{AlCu}(2 \%)\)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)

\section*{PASSIVATION:}

Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)

\section*{TRANSISTOR COUNT:}

SUBSTRATE POTENTIAL (Powered Up):
Floating
(Recommend Connection to V-)

Metallization Mask Layout


\section*{Features}
- Wide - 3dB Bandwidth ( \(A_{V}=+2\) ). . . . . . . . . . . . 550MHz
- Gain Flatness (To 250MHz) . . . . . . . . . . . . . . . . . . . 0.5dB
- Very Fast Slew Rate (AV = +2). . . . . . . . . . . . . 1200V/ \(\mu \mathrm{s}\)
- High Input Impedance . . . . . . . . . . . . . . . . . . . . . 1.7M \(\Omega\)
- Differential Gain/Phase . . . . . . . . . 0.02\%/0.02 Degrees
- Low Supply Current

10 mA
- Fast Output Enable/Disable (HFA1149)

\section*{Applications}
- Professional Video Processing
- Video Switchers and Routers
- Medical Imaging
- PC Multimedia Systems
- Video Pixel Switching (HFA1149)
- Video Distribution Amplifiers
- Flash Converter Drivers
- Radar/IF Processing

\section*{Description}

The HFA1109, and HFA1149 are high speed, low power, current feedback amplifiers built with Harris' proprietary complementary bipolar UHF-1 process. These amplifiers feature a unique combination of power and performance specifically tailored for video applications.
The HFA1109 is a standard pinout op amp. It is a higher performance, drop-in replacement (no feedback resistor change required) for the CLC409.

The HFA1149 incorporates an output disable pin which is TTLCMOS compatible, and user programmable for polarity (active high or low). This feature eliminates the inverter required between amplifiers in multiplexer configurations. The ultra-fast ( 10 ns ) enable and disable times make the HFA1149 the obvious choice for pixel switching and other high speed multiplexing applications. The HFA1149 is a high performance, pin compatible upgrade for the popular HA-5020 and HFA1145, as well as the CLC410.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
PART NUMBER \\
(BRAND)
\end{tabular}} & \begin{tabular}{c} 
TEMP. \\
RANGE ( \(\left.{ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HFA1109IP, HFA1149IP & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
HFA1109IB, HFA1149IB \\
(H1109I, H1149I)
\end{tabular} & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline HFA11XXEVAL & \begin{tabular}{l} 
DIP Evaluation Board for High Speed Op \\
Amps
\end{tabular} \\
\hline
\end{tabular}

\section*{Pinouts}

HFA1149 PIN DESCRIPTIONS
\begin{tabular}{|c|l|}
\hline PIN NAME & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline Threshold Set & \begin{tabular}{l} 
Optional Logic Thresold Set. Maintains Disable Pin \\
TTL Compatibility with Asymmetrical Supplies (e.g., \\
\(+10 \mathrm{~V}, \mathrm{OV}\) ).
\end{tabular} \\
\hline Polarity Set & \begin{tabular}{l} 
Defines Polarity of Disable Input. High or Floating \\
Selects Active Low Disable (i.e., \(\overline{\text { DIS). }}\)
\end{tabular} \\
\hline DIS/DIS & \begin{tabular}{l} 
TTL Compatible Disable Input. Output is Driven to a \\
True Hi-Z State When Active. Polarity depends on \\
state of Polarity Set Pin.
\end{tabular} \\
\hline
\end{tabular}

HFA1149 DISABLE FUNCTIONALITY
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
POLARITY SET \\
(PIN 5)
\end{tabular} & DISABLE (PIN 8) & OUTPUT (PIN 6) \\
\hline High or Float & High or Float & Enabled \\
\hline High or Float & Low & Disabled \\
\hline Low & High or Float & Disabled \\
\hline Low & Low & Enabled \\
\hline
\end{tabular}

November 1996

\section*{750MHz, Low Distortion Unity Gain, Closed Loop Buffer}

\section*{Features}
- Wide -3dB Bandwidth . . . . . . . . . . . . . . . . . . . . 750 MHz
- Very Fast Slew Rate . . . . . . . . . . . . . . . . . . . . . . 1300V/ \(\mu \mathrm{s}\)
- Fast Settling Time (0.2\%) . . . . . . . . . . . . . . . . . . . . . 7ns
- High Output Current . . . . . . . . . . . . . . . . . . . . . . . . 60 mA
- Fixed Gain of +1
- Gain Flatness (100MHz). . . . . . . . . . . . . . . . . . . . 0.03dB
- Differential Phase. . . . . . . . . . . . . . . . . . 0.025 Degrees
- Differential Gain.
0.04\%
- 3rd Harmonic Distortion (50MHz). . . . . . . . . . . -80dBc
- 3rd Order Intercept (100MHz) . . . . . . . . . . . . . . 30dBm

\section*{Applications}
- Video Switching and Routing
- RF/IF Processors
- Driving Flash ADD Converters
- High-Speed Communications
- Impedance Transformation
- Line Driving
- Radar Systems

\section*{Description}

The HFA1110 is a unity gain closed loop buffer that achieves -3 dB bandwidth of 750 MHz , while offering excellent video performance and low distortion. Manufactured on Harris' proprietary complementary bipolar UHF-1 process, the HFA1110 also offers very fast slew rate, and high output current. It is one more example of Harris' intent to enhance its leadership position in products for high speed signal processing applications.

The HFA1110's settling time of 11 ns to \(0.1 \%\), low distortion and ability to drive capacitive loads make it an ideal flash A/D driver.

The HFA1110 is an enhanced, pin compatible upgrade for the AD9620, AD9630, CLC110, EL2072, BUF600 and BUF601.

For buffer applications requiring a standard op amp pinout, or selectable gain \((-1,+1,+2)\), see the HFA1112 data sheet. For output limiting see the HFA1113 datasheet.

For military grade product please refer to the HFA1110/883 data sheet.

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|}
\hline PART NUMBER (BRAND) & TEMP. RANGE \(\left({ }^{\circ} \mathrm{C}\right)\) & PACKAGE & PKG. NO. \\
\hline HFA11101J & -40 to 85 & 8 Ld CERDIP & F8.3A \\
\hline HFA1110IP & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline HFA1110IB (H1110I) & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline HFA1110EVAL & \multicolumn{3}{|l|}{High Speed Buffer DIP Evaluation Board} \\
\hline
\end{tabular}

\section*{Pinout}

HFA1110
(PDIP, CERDIP, SOIC)
TOP VIEW


Pin Descriptions
\begin{tabular}{|c|c|l|}
\hline NAME & \begin{tabular}{c} 
PIN \\
NUMBER
\end{tabular} & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline V + & 1 & Positive Supply \\
\hline Opt \(\mathrm{V}+\) & 2 & Optional Positive Supply \\
\hline NC & 3 & No Connection \\
\hline IN & 4 & Input \\
\hline V- & 5 & Negative Supply \\
\hline Opt \(\mathrm{V}-\) & 6 & Optional Negative Supply \\
\hline NC & 7 & No Connection \\
\hline OUT & 8 & Output \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings}

Voltage Between V+ and V12V
DC Input Voltage VSUPPLY
Output Current . 60 mA

\section*{Operating Conditions}

Temperature Range

\section*{Thermal Information}
\begin{tabular}{|c|c|c|}
\hline 1) & JA & \[
\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)
\] \\
\hline CERDIP Package & 120 & 35 \\
\hline PDIP Package & 98 & /A \\
\hline SOIC Package & 158 & N/A \\
\hline Maximum Junction Temperature (Ceram & ckage). & . \(175{ }^{\circ} \mathrm{C}\) \\
\hline Maximum Junction Temperature (Plastic & ackage) & . \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Storage Temperature Range & & \(150^{\circ}\) \\
\hline Maximum Lead Temperature (Soldering (SOIC - Lead Tips Only) & & \\
\hline
\end{tabular}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 V, R_{L}=100 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Output Offset Voltage (Note 2)} & & 25 & - & 8 & 25 & mV \\
\hline & & Full & - & - & 35 & mV \\
\hline Output Offset Voltage Drift & & Full & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{PSRR} & & 25 & 39 & 45 & - & dB \\
\hline & & Full & 35 & \(\cdot\) & - & dB \\
\hline Input Noise Voltage (Note 2) & 100 kHz & 25 & - & 14 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Noise Current (Note 2) & 100 kHz & 25 & - & 51 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline \multirow[t]{2}{*}{Input Bias Current (Note 2)} & & 25 & - & 10 & 40 & \(\mu \mathrm{A}\) \\
\hline & & Full & \(\bullet\) & - & 65 & \(\mu \mathrm{A}\) \\
\hline Input Resistance & & 25 & 25 & 50 & \(\cdot\) & k \(\Omega\) \\
\hline Input Capacitance & & 25 & - & 2 & \(\cdot\) & pF \\
\hline
\end{tabular}

TRANSFER CHARACTERISTICS
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline Gain & V OUT \(=2 V_{\text {P-P }}\) & 25 & 0.980 & 0.990 & 1.02 & \(\mathrm{~V} N\) \\
\cline { 3 - 7 } & & Full & 0.975 & - & 1.025 & \(\mathrm{~V} N\) \\
\hline DC Non-Linearity (Note 2) & \(\pm 2 \mathrm{~V}\) Full Scale & 25 & - & 0.003 & - & \(\%\) \\
\hline
\end{tabular}

OUTPUT CHARACTERISTICS
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline Output Voltage (Note 2) & & 25 & 3.0 & 3.3 & - & \(\pm \mathrm{V}\) \\
\cline { 3 - 7 } & & Full & 2.5 & 3.0 & - & \(\pm \mathrm{V}\) \\
\hline Output Current (Note 2) & \(\mathrm{R}_{\mathrm{L}}=50 \Omega\) & 25,85 & 50 & 60 & - & mA \\
\hline & & -40 & 35 & 50 & - & mA \\
\hline
\end{tabular}

POWER SUPPLY CHARACTERISTICS
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline Supply Voltage Range & & Full & 4.5 & - & 5.5 & \(\pm \mathrm{V}\) \\
\hline Supply Current (Note 2) & & 25 & - & 21 & 26 & mA \\
\hline & & Full & - & - & 33 & mA \\
\hline
\end{tabular}

AC CHARACTERISTICS
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline\(-3 d B\) Bandwidth (Note 2) & \(\mathrm{V}_{\mathrm{OUT}}=0.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & 25 & - & 750 & - & MHz \\
\hline Slew Rate & \(\mathrm{V}_{\mathrm{OUT}}=5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & 25 & - & 1300 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Full Power Bandwidth (Note 2) & \(\mathrm{V}_{\mathrm{OUT}}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & 25 & - & 150 & - & MHz \\
\hline Gain Flatness (Note 2) & To 100MHz & 25 & - & \(\pm 0.03\) & - & dB \\
\hline & To 30MHz & 25 & - & \(\pm 0.01\) & - & dB \\
\hline \multirow{7}{}{} & Linear Phase Deviation (Note 2) & DC to 100MHz & 25 & - & \(\pm 0.3\) & - \\
\hline 2nd Harmonic Distortion (Note 2) & \(50 \mathrm{MHz}, \mathrm{V}_{\mathrm{OUT}}=2 \mathrm{~V}_{\text {P-P }}\) & 25 & - & -60 & - & Degrees \\
\hline
\end{tabular}

HFA 1110

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ PARAMETER } & \multicolumn{1}{|c|}{ TEST CONDITIONS } & TEMP \(\left({ }^{\circ} \mathbf{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline 3rd Harmonic Distortion (Note 2) & \(50 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}\) & 25 & - & -80 & - & dBc \\
\hline 3rd Order Intercept (Note 2) & 100 MHz & 25 & - & 30 & - & dBm \\
\hline-1 dB Gain Compression & 100 MHz & 25 & - & 14 & - & dBm \\
\hline Reverse Gain ( \(\mathrm{S}_{12}\), Note 2) & \(100 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=1 \mathrm{~V}_{\text {P-P }}\) & 25 & - & -60 & - & dB \\
\hline
\end{tabular}

TRANSIENT RESPONSE
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline Rise Time & \(V_{\text {OUT }}=0.5 \mathrm{~V}\) Step & 25 & - & 0.5 & - & ns \\
\hline Overshoot (Note 2) & \begin{tabular}{l}
\(V_{\text {OUT }}=1.0 \mathrm{~V}\) Step, Input Signal \\
Rise/Fall \(=1 \mathrm{~ns}\)
\end{tabular} & 25 & - & 2.5 & - & \(\%\) \\
\hline \(0.2 \%\) Settling Time (Note 2) & \(V_{\text {OUT }}=1 \mathrm{~V}\) to OV & 25 & - & 7 & - & ns \\
\hline \(0.1 \%\) Settling Time (Note 2) & \(V_{\text {OUT }}=1 \mathrm{~V}\) to 0V & 25 & - & 11 & - & ns \\
\hline Overdrive Recovery Time & & 25 & - & 15 & - & ns \\
\hline Differential Gain & \(3.58 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=75 \Omega\) & 25 & - & 0.04 & - & \(\%\) \\
\hline Differential Phase & \(3.58 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=75 \Omega\) & 25 & - & 0.025 & - & Degrees \\
\hline
\end{tabular}

NOTE:
2. See Typical Performance Curves for more information

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified


TIME (5ns/DIV.)
FIGURE 1. SMALL SIGNAL PULSE RESPONSE


FIGURE 3. FREQUENCY RESPONSE


FIGURE 5. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES


FIGURE 2. LARGE SIGNAL PULSE RESPONSE


FIGURE 4. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS


FIGURE 6. -3dB BANDWIDTH vs TEMPERATURE

HFA1110
Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 7. GAIN FLATNESS


FIGURE 9. REVERSE GAIN AND PHASE \(\left(\mathrm{S}_{12}\right)\)


FIGURE 11. SECOND HARMONIC DISTORTION vs POUT


FIGURE 8. DEVIATION FROM LINEAR PHASE


FIGURE 10. TWO-TONE, THIRD ORDER INTERMODULATION

INTERCEPT


FIGURE 12. THIRD HARMONIC DISTORTION vs POUT

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 13. SETTLING RESPONSE


FIGURE 15. OVERSHOOT vs INPUT RISETIME


FIGURE 17. SUPPLY CURRENT vs SUPPLY VOLTAGE


FIGURE 14. RECOMMENDED SERIES OUTPUT RESISTOR vs CloAD


FIGURE 16. INTEGRAL LINEARITY ERROR


FIGURE 18. SUPPLY CURRENT vs TEMPERATURE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 19. BIAS CURRENT vs TEMPERATURE


FIGURE 21. OUTPUT VOLTAGE vs TEMPERATURE


FIGURE 20. OFFSET VOLTAGE vs TEMPERATURE


FIGURE 22. INPUT NOISE vs FREQUENCY

\section*{Die Characteristics}

DIE DIMENSIONS:
63 mils \(\times 44\) mils \(\times 19\) mils \(1600 \mu \mathrm{~m} \times 1130 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)

METALLIZATION:
Type: Metal 1: AICu(2\%)/TiW
Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)
Type: Metal 2: AICu(2\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)

PASSIVATION:
Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
52
SUBSTRATE POTENTIAL (Powered Up):
Floating (Recommend Connection to V -)

\section*{Metallization Mask Layout}


OUT

\section*{850MHz, Low Distortion Programmable Gain Buffer Amplifier}

\section*{Features}
- User Programmable for Closed-Loop Gains of \(+1,-1\) or +2 without Use of External Resistors
- Wide -3dB Bandwidth

850 MHz
- Very Fast Slew Rate

2400V/ \(\mu \mathrm{s}\)
- Fast Settling Time (0.1\%) . . . . . . . . . . . . . . . . . . 11ns
- High Output Current .60 mA
- Excellent Gain Accuracy . . . . . . . . . . . . . . . . . . 0.99V/V
- Overdrive Recovery. . . . . . . . . . . . . . . . . . . . . . . <10ns
- Standard Operational Amplifier Pinout

\section*{Applications}
- RF/IF Processors
- Driving Flash A/D Converters
- High-Speed Communications
- Impedance Transformation
- Line Driving
- Video Switching and Routing
- Radar Systems
- Medical Imaging Systems
- Related Literature
- AN9507, Video Cable Drivers Save Board Space

\section*{Description}

The HFA1112 is a closed loop Buffer featuring user programmable gain and ultra high speed performance. Manufactured on Harris' proprietary complementary bipolar UHF-1 process, the HFA1112 offers a wide -3 dB bandwidth of 850 MHz , very fast slew rate, excellent gain flatness, low distortion and high output current.

A unique feature of the pinout allows the user to select a voltage gain of +1 , -1 , or +2 , without the use of any external components. Gain selection is accomplished via connections to the inputs, as described in the "Application Information" section. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space.

Compatibility with existing op amp pinouts provides flexibility to upgrade low gain amplifiers, while decreasing component count. Unlike most buffers, the standard pinout provides an upgrade path should a higher closed loop gain be needed at a future date.
This amplifier is available with programmable output limiting as the HFA1113. For applications requiring a standard buffer pinout, please refer to the HFA1110 datasheet. For Military product, refer to the HFA1112/883 data sheet.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{l} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HFA1112IJ & -40 to 85 & 8 Ld CERDIP & F8.3A \\
\hline HFA1112IP & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
HFA1112IB \\
(H1112I)
\end{tabular} & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline HFA11XXEVAL & High Speed Op Amp DIP Evaluation Board \\
\hline
\end{tabular}

\section*{Pinout}

HFA1112
(PDIP, CERDIP, SOIC) TOP VIEW


Pin Descriptions
\begin{tabular}{|c|c|l|}
\hline NAME & \begin{tabular}{c} 
PIN \\
NUMBER
\end{tabular} & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline NC & \(1,5,8\) & No Connection \\
\hline\(-\operatorname{IN}\) & 2 & Inverting Input \\
\hline+ N & 3 & Non-Inverting Input \\
\hline V- & 4 & Negative Supply \\
\hline OUT & 6 & Output \\
\hline V+ & 7 & Positive Supply \\
\hline
\end{tabular}

Absolute Maximum Ratings
Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12V
Input Voltage
\(V_{\text {SUPPLY }}\)
Output Current . 60 mA

\section*{Operating Conditions}

Temperature Range \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)

\section*{Thermal Information}
\begin{tabular}{ccc} 
Thermal Resistance (Typical, Note 1) & \(\theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) & \(\theta_{\text {JC }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
CERDIP Package \(\ldots \ldots \ldots \ldots \ldots \ldots\) & 120 & 35 \\
PDIP Package \(\ldots \ldots \ldots \ldots \ldots \ldots\) & 98 & N/A \\
SOIC Package. . . . . . . . . . . . . . & 170 & N/A
\end{tabular}

Maximum Junction Temperature (Ceramic Package and Die) . . \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (Plastic Package) . . . . . . . . \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range .......... \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\) (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~A}_{V}=+1, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Output Offset Voltage} & & 25 & - & 8 & 25 & mV \\
\hline & & Full & - & - & 35 & mV \\
\hline Output Offset Voltage Drift & & Full & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{PSRR} & & 25 & 39 & 45 & - & dB \\
\hline & & Full & 35 & - & - & dB \\
\hline Input Noise Voltage (Note 3) & 100 kHz & 25 & - & 9 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Non-Inverting Input Noise Current (Note 3) & 100 kHz & 25 & - & 37 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline \multirow[t]{2}{*}{Non-Inverting Input Bias Current} & & 25 & - & 25 & 40 & \(\mu \mathrm{A}\) \\
\hline & & Full & - & - & 65 & \(\mu \mathrm{A}\) \\
\hline Non-Inverting Input Resistance & & 25 & 25 & 50 & - & \(\mathrm{k} \Omega\) \\
\hline Inverting Input Resistance (Note 2) & & 25 & 240 & 300 & 360 & \(\Omega\) \\
\hline Input Capacitance & & 25 & - & 2 & - & pF \\
\hline Input Common Mode Range & & Full & \(\pm 2.5\) & \(\pm 2.8\) & - & V \\
\hline \multicolumn{7}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Gain} & \multirow[t]{2}{*}{\(\mathrm{AV}_{\mathrm{V}}=+1, \mathrm{~V}_{\mathrm{IN}}=+2 \mathrm{~V}\)} & 25 & 0.980 & 0.990 & 1.02 & VN \\
\hline & & Full & 0.975 & - & 1.025 & \(\mathrm{V} N\) \\
\hline \multirow[t]{2}{*}{Gain} & \multirow[t]{2}{*}{\(\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\mathrm{IN}}=+1 \mathrm{~V}\)} & 25 & 1.96 & 1.98 & 2.04 & VN \\
\hline & & Full & 1.95 & \(\bullet\) & 2.05 & VN \\
\hline DC Non-Linearity (Note 3) & \(A_{V}=+2, \pm 2 \mathrm{~V}\) Full Scale & 25 & - & 0.02 & - & \% \\
\hline \multicolumn{7}{|l|}{OUTPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Output Voltage (Note 3)} & \multirow[t]{2}{*}{\(A_{V}=-1\)} & 25 & \(\pm 3.0\) & \(\pm 3.3\) & - & V \\
\hline & & Full & \(\pm 2.5\) & \(\pm 3.0\) & - & V \\
\hline \multirow[t]{2}{*}{Output Current (Note 3)} & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{L}}=50 \Omega\)} & 25, 85 & 50 & 60 & - & mA \\
\hline & & -40 & 35 & 50 & \(\cdot\) & mA \\
\hline Closed Loop Output Impedance & \(D C, A_{V}=+2\) & 25 & - & 0.3 & - & \(\Omega\) \\
\hline \multicolumn{7}{|l|}{POWER SUPPLY CHARACTERISTICS} \\
\hline Supply Voltage Range & & Full & \(\pm 4.5\) & - & \(\pm 5.5\) & V \\
\hline \multirow[t]{2}{*}{Supply Current (Note 3)} & & 25 & - & 21 & 26 & mA \\
\hline & & Full & - & - & 33 & mA \\
\hline
\end{tabular}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{AC CHARACTERISTICS} \\
\hline \multirow[t]{3}{*}{-3dB Bandwidth ( \(\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-p, }}\), Notes 2, 3)} & \(A_{V}=-1\) & 25 & 450 & 800 & - & MHz \\
\hline & \(A_{V}=+1\) & 25 & 500 & 850 & - & MHz \\
\hline & \(A_{V}=+2\) & 25 & 350 & 550 & - & MHz \\
\hline \multirow[t]{3}{*}{Slew Rate
\[
\left(V_{\text {OUT }}=5 V_{\text {P-P }}, \text { Note 2 }\right)
\]} & \(A_{V}=-1\) & 25 & 1500 & 2400 & - & V/us \\
\hline & \(A_{V}=+1\) & 25 & 800 & 1500 & - & V/us \\
\hline & \(A_{V}=+2\) & 25 & 1100 & 1900 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline \multirow[t]{3}{*}{Full Power Bandwidth ( \(\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}_{\text {P-P }}\), Note 3)} & \(A_{V}=-1\) & 25 & - & 300 & - & MHz \\
\hline & \(A_{V}=+1\) & 25 & - & 150 & - & MHz \\
\hline & \(A_{V}=+2\) & 25 & - & 220 & - & MHz \\
\hline \multirow[t]{3}{*}{Gain Flatness (to 30 MHz , Notes 2, 3)} & \(A_{V}=-1\) & 25 & - & \(\pm 0.02\) & - & dB \\
\hline & \(A_{V}=+1\) & 25 & - & \(\pm 0.1\) & - & dB \\
\hline & \(A_{V}=+2\) & 25 & - & \(\pm 0.015\) & \(\pm 0.04\) & dB \\
\hline \multirow[t]{3}{*}{Gain Flatness (to 50 MHz , Notes 2, 3)} & \(A_{V}=-1\) & 25 & - & \(\pm 0.05\) & - & dB \\
\hline & \(A_{V}=+1\) & 25 & - & \(\pm 0.2\) & - & dB \\
\hline & \(A_{V}=+2\) & 25 & - & \(\pm 0.036\) & \(\pm 0.08\) & dB \\
\hline \multirow[t]{2}{*}{Gain Flatness (to 100 MHz , Notes 2, 3)} & \(A_{V}=-1\) & 25 & - & \(\pm 0.10\) & - & dB \\
\hline & \(A_{V}=+2\) & 25 & - & \(\pm 0.07\) & \(\pm 0.22\) & dB \\
\hline \multirow[t]{3}{*}{Linear Phase Deviation (to 100 MHz , Note 3 )} & \(A_{V}=-1\) & 25 & - & \(\pm 0.13\) & - & Degrees \\
\hline & \(A_{V}=+1\) & 25 & - & \(\pm 0.83\) & - & Degrees \\
\hline & \(A_{V}=+2\) & 25 & - & \(\pm 0.05\) & - & Degrees \\
\hline \multirow[t]{3}{*}{2nd Harmonic Distortion \(\left(30 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-p }}\right.\), Notes 2, 3)} & \(A_{V}=-1\) & 25 & - & -52 & - & dBc \\
\hline & \(A_{V}=+1\) & 25 & - & -57 & - & dBc \\
\hline & \(A_{V}=+2\) & 25 & - & -52 & -45 & dBc \\
\hline \multirow[t]{3}{*}{3rd Harmonic Distortion \(\left(30 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-p, }}\right.\), Notes 2, 3)} & \(A_{V}=-1\) & 25 & - & -71 & - & dBc \\
\hline & \(A_{V}=+1\) & 25 & - & -73 & - & dBc \\
\hline & \(A_{V}=+2\) & 25 & - & -72 & -65 & dBc \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
2nd Harmonic Distortion \\
\(\left(50 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-p }}\right.\), Notes 2, 3)
\end{tabular}} & \(A_{V}=-1\) & 25 & - & -47 & - & dBc \\
\hline & \(A_{V}=+1\) & 25 & - & -53 & - & dBc \\
\hline & \(A_{V}=+2\) & 25 & - & -47 & -40 & dBc \\
\hline \multirow[t]{3}{*}{3rd Harmonic Distortion \(\left(50 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-p }}\right.\), Notes 2, 3)} & \(A_{V}=-1\) & 25 & \(\cdot\) & -63 & - & dBc \\
\hline & \(A_{V}=+1\) & 25 & - & -68 & - & dBc \\
\hline & \(A_{V}=+2\) & 25 & - & -65 & -55 & dBc \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
2nd Harmonic Distortion \\
( \(100 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-p }}\), Notes 2,3 )
\end{tabular}} & \(A_{V}=-1\) & 25 & - & -41 & - & dBc \\
\hline & \(A_{V}=+1\) & 25 & - & -50 & - & dBc \\
\hline & \(A_{V}=+2\) & 25 & - & -42 & -35 & dBc \\
\hline \multirow[t]{3}{*}{3rd Harmonic Distortion (100MHz, \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}\), Notes 2, 3)} & \(A_{V}=-1\) & 25 & - & -55 & - & dBc \\
\hline & \(A_{V}=+1\) & 25 & - & -49 & - & dBc \\
\hline & \(A_{V}=+2\) & 25 & - & -62 & -45 & dBc \\
\hline \multirow[t]{2}{*}{3rd Order Intercept ( \(A_{V}=+2\), Note 3 )} & 100 MHz & 25 & - & 28 & - & dBm \\
\hline & 300 MHz & 25 & - & 13 & - & dBm \\
\hline \multirow[t]{2}{*}{1dB Compression ( \(A_{V}=+2\), Note 3)} & 100 MHz & 25 & - & 19 & - & dBm \\
\hline & 300 MHz & 25 & - & 12 & - & dBm \\
\hline
\end{tabular}

Electrical Specifications \(V_{S U P P L Y}= \pm 5 \mathrm{~V}, \mathrm{~A}_{V}=+1, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{3}{*}{Reverse Isolation ( \(\mathrm{S}_{12}\), Note 3)} & 40MHz & 25 & - & -70 & - & dB \\
\hline & 100 MHz & 25 & - & -60 & - & dB \\
\hline & 600 MHz & 25 & - & -32 & - & dB \\
\hline \multicolumn{7}{|l|}{TRANSIENT CHARACTERISTICS} \\
\hline \multirow[t]{3}{*}{Rise Time ( \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\) Step, Note 2)} & \(A_{V}=-1\) & 25 & - & 500 & 800 & ps \\
\hline & \(A_{V}=+1\) & 25 & - & 480 & 750 & ps \\
\hline & \(A_{V}=+2\) & 25 & - & 700 & 1000 & ps \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Rise Time } \\
& \text { (VOUT }=2 \mathrm{~V} \text { Step })
\end{aligned}
\]} & \(A_{V}=-1\) & 25 & - & 0.82 & - & ns \\
\hline & \(A_{V}=+1\) & 25 & - & 1.06 & - & ns \\
\hline & \(A_{V}=+2\) & 25 & - & 1.00 & - & ns \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Overshoot \\
( \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\) Step, Input \(\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}=200 \mathrm{ps}\), Notes 2, 3, 4)
\end{tabular}} & \(A_{V}=-1\) & 25 & - & 12 & 30 & \% \\
\hline & \(A_{V}=+1\) & 25 & - & 45 & 65 & \% \\
\hline & \(A_{V}=+2\) & 25 & - & 6 & 20 & \% \\
\hline 0.1\% Settling Time (Note 3) & \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}\) to 0 V & 25 & - & 11 & - & ns \\
\hline 0.05\% Settling Time & \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}\) to OV & 25 & - & 15 & - & ns \\
\hline Overdrive Recovery Time & \(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}_{\text {P-P }}\) & 25 & - & 8.5 & - & ns \\
\hline \multirow[t]{2}{*}{Differential Gain} & \(A_{V}=+1,3.58 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=150 \Omega\) & 25 & - & 0.03 & - & \% \\
\hline & \(A_{V}=+2,3.58 \mathrm{MHz}, \mathrm{R}_{L}=150 \Omega\) & 25 & - & 0.02 & - & \% \\
\hline \multirow[t]{2}{*}{Differential Phase} & \(A_{V}=+1,3.58 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=150 \Omega\) & 25 & - & 0.05 & - & Degrees \\
\hline & \(A_{V}=+2,3.58 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=150 \Omega\) & 25 & - & 0.04 & - & Degrees \\
\hline
\end{tabular}

NOTES:
2. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.
3. See Typical Performance Curves for more information.
4. Overshoot decreases as input transition times increase, especially for \(A_{V}=+1\). Please refer to Typical Performance Curves.

\section*{Application Information}

\section*{Closed Loop Gain Selection}

The HFA1112 features a novel design which allows the user to select from three closed loop gains, without any external components. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space.
This "buffer" operates in closed loop gains of \(-1,+1\), or +2 , and gain selection is accomplished via connections to the tinputs. Applying the input signal to +IN and floating -IN selects a gain of +1 , while grounding \(-\mathbb{N}\) selects a gain of +2 . A gain of -1 is obtained by applying the input signal to \(-\operatorname{IN}\) with +IN grounded.
The table below summarizes these connections:
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
GAIN \\
(ACL)
\end{tabular}} & \multicolumn{2}{|c|}{ CONNECTIONS } \\
\cline { 2 - 3 } & +INPUT (PIN 3) & -INPUT (PIN 2) \\
\hline-1 & GND & Input \\
\hline+1 & Input & NC (Floating) \\
\hline+2 & Input & GND \\
\hline
\end{tabular}

\section*{PC Board Layout}

The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!
Attention should be given to decoupling the power supplies. A large value ( \(10 \mu \mathrm{~F}\) ) tantalum in parallel with a small value \((0.1 \mu \mathrm{~F})\) chip capacitor works well in most cases.
Terminated microstrip signal lines are recommended at the input and output of the device. Capacitance directly on the output must be minimized, or isolated as discussed in the next section.

For unity gain applications, care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input. At higher frequencies this capacitance will tend to short the -INPUT to GND, resulting in a closed loop gain which increases with frequency. This will cause excessive high frequency peaking and potentially other problems as well.

An example of a good high frequency layout is the Evaluation Board shown in Figure 2.

\section*{Driving Capacitive Loads}

Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor ( \(\mathrm{R}_{\mathrm{S}}\) ) in series with the output prior to the capacitance.

Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the \(R_{S}\) and \(C_{L}\) combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an overdamped response, while points below or left of the curve indicate areas of underdamped performance.
\(R_{S}\) and \(C_{L}\) form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 850 MHz . By decreasing \(R_{S}\) as \(C_{L}\) increases (as illustrated in the curves), the maximum bandwidth is obtained without sacrificing stability. Even so, bandwidth does decrease as you move to the right along the curve. For example, at \(A_{V}=+1, R_{S}=50 \Omega, C_{L}=30 p F\), the overall bandwidth is limited to 300 MHz , and bandwidth drops to 100 MHz at \(A_{V}=+1, R_{S}=5 \Omega, C_{L}=340 \mathrm{pF}\).


FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs LOAD CAPACITANCE

\section*{Evaluation Board}

The performance of the HFA1112 may be evaluated using the HFA11XX Evaluation Board, slightly modified as follows:
1. Remove the \(500 \Omega\) feedback resistor \(\left(R_{2}\right)\), and leave the connection open.
2. a. For \(A_{V}=+1\) evaluation, remove the \(500 \Omega\) gain setting resistor \(\left(R_{1}\right)\), and leave pin 2 floating.
b. For \(A_{V}=+2\), replace the \(500 \Omega\) gain setting resistor with a \(0 \Omega\) resistor to GND.
The layout and modified schematic of the board are shown in Figure 2.
To order evaluation boards (part number HFA11XXEVAL), please contact your local sales office.


FIGURE 2. EVALUATION BOARD SCHEMATIC AND LAYOUT

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified


FIGURE 3. SMALL SIGNAL PULSE RESPONSE


TIME (5ns/DIV.)
FIGURE 5. SMALL SIGNAL PULSE RESPONSE


FIGURE 7. SMALL SIGNAL PULSE RESPONSE


FIGURE 4. LARGE SIGNAL PULSE RESPONSE


FIGURE 6. LARGE SIGNAL PULSE RESPONSE


FIGURE 8. LARGE SIGNAL PULSE RESPONSE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FREQUENCY ( MHz )
FIGURE 9. FREQUENCY RESPONSE


FIGURE 11. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS


FIGURE 13. FREQUENCY RESPONSE FOR VARIOUS OUTPUT voltages


FIGURE 10. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS


FIGURE 12. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS


FIGURE 14. FREQUENCY RESPONSE FOR VARIOUS OUTPUT voltages

\section*{Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)}


FIGURE 15. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES


FIGURE 17. -3dB BANDWIDTH vs TEMPERATURE


FIGURE 19. DEVIATION FROM LINEAR PHASE


FIGURE 16. FULL POWER BANDWIDTH


FIGURE 18. GAIN FLATNESS


FIGURE 20. SETTLING RESPONSE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 21. LOW FREQUENCY REVERSE ISOLATION \(\left(\mathbf{S}_{12}\right)\)


FIGURE 23. 1dB GAIN COMPRESSION vs FREQUENCY


FIGURE 25. 2nd HARMONIC DISTORTION vs Pout


FIGURE 22. HIGH FREQUENCY REVERSE ISOLATION \(\left(\mathrm{S}_{12}\right)\)


FIGURE 24. 3rd ORDER INTERMODULATION INTERCEPT vs FREQUENCY


FIGURE 26. 3rd HARMONIC DISTORTION vs POUT

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 27. 2nd HARMONIC DISTORTION vs Pout


FIGURE 29. 2nd HARMONIC DISTORTION vs POUT .


FIGURE 31. INTEGRAL LINEARITY ERROR


FIGURE 28. 3rd HARMONIC DISTORTION vs Pout


FIGURE 30. 3rd HARMONIC DISTORTION vs Pout


FIGURE 32. OVERSHOOT vs INPUT RISE TIME

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 33. OVERSHOOT vs INPUT RISE TIME


FIGURE 35. SUPPLY CURRENT vs SUPPLY VOLTAGE


FIGURE 37. OUTPUT VOLTAGE vs TEMPERATURE


FIGURE 34. OVERSHOOT vs INPUT RISE TIME


FIGURE 36. SUPPLY CURRENT vs TEMPERATURE


FIGURE 38. INPUT NOISE CHARACTERISTICS

\section*{Die Characteristics}

DIE DIMENSIONS:
63 mils \(\times 44\) mils \(\times 19\) mils \(1600 \mu \mathrm{~m} \times 1130 \mu \mathrm{~m} 483 \mu \mathrm{~m}\)

METALLIZATION:
Type: Metal 1: AICu (2\%)/TiW
Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)
Type: Metal 2: AICu (2\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm \pm 0.8 \mathrm{~K} \AA\)

\section*{PASSIVATION:}

Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
52
SUBSTRATE POTENTIAL (Powered Up):
Floating (Recommend Connection to V-)

\section*{Metallization Mask Layout}

HFA1112
NC


\title{
850MHz, Low Distortion, Output Limiting, Programmable Gain, Buffer Amplifier
}

\section*{Features}
- User Programmable Output Voltage Limiting
- User Programmable For Closed-Loop Gains of +1, -1 or +2 Without Use of External Resistors
- Wide -3dB Bandwidth . 850 MHz
- Excellent Gain Flatness (to 100 MHz ) . . . . . . . . \(\pm 0.07 \mathrm{~dB}\)
- Low Differential Gain and Phase. . . . 0.02\%/0.04 Degrees
- Low Distortion (HD3, 30MHz) . . . . . . . . . . . . . . -73dBc
- Very Fast Slew Rate . . . . . . . . . . . . . . . . . . . . 2400V/ \(\mu\) s
- Fast Settling Time (0.1\%) . . . . . . . . . . . . . . . . . . . 13ns
- High Output Current . . . . . . . . . . . . . . . . . . . . . . . . 60 mA
- Excellent Gain Accuracy. . . . . . . . . . . . . . . . . . 0.99V/V
- Overdrive Recovery . . . . . . . . . . . . . . . . . . . . . . . . <ins
- Standard Operational Amplifier Pinout

\section*{Applications}
- RF/IF Processors
- Driving Flash AD Converters
- High-Speed Communications
- Impedance Transformation
- Line Driving
- Video Switching and Routing
- Radar Systems
- Medical Imaging Systems

\section*{Description}

The HFA1113 is a high speed Buffer featuring user programmable gain and output limiting coupled with ultra high speed performance. This buffer is the ideal choice for high frequency applications requiring output limiting, especially those needing ultra fast overload recovery times. The output limiting function allows the designer to set the maximum positive and negative output levels, thereby protecting later stages from damage or input saturation. The sub-nanosecond overdrive recovery time quickly returns the amplifier to linear operation following an overdrive condition.
A unique feature of the pinout allows the user to select a voltage gain of \(+1,-1\), or +2 , without the use of any external components, as described in the "Application Information" section. Compatibility with existing op amp pinouts provides flexibility to upgrade low gain amplifiers, while decreasing component count. Unlike most buffers, the standard pinout provides an upgrade path should a higher closed loop gain be needed at a future date.
Component and composite video systems will also benefit from this buffer's performance, as indicated by the excellent gain flatness, and \(0.02 \% / 0.04\) Degree Differential Gain/Phase specifications ( \(R_{L}=150 \Omega\) ).
For Military product, refer to the HFA1113/883 data sheet.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{c} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HFA1113MJ/883 & -55 to 125 & 8 Ld CERDIP & F8.3A \\
\hline HFA1113IJ & -40 to 85 & 8 Ld CERDIP & F8.3A \\
\hline HFA1113IP & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
HFA1113IB \\
(H1113I)
\end{tabular} & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline HFA11XXEVAL & \multicolumn{3}{|l|}{ DIP Evaluation Board For High Speed Op Amps } \\
\hline
\end{tabular}

\section*{Pinout}

HFA1113
(PDIP, CERDIP, SOIC)
TOP VIEW


\section*{Pin Descriptions}
\begin{tabular}{|c|c|l|}
\hline NAME & \begin{tabular}{c} 
PIN \\
NUMBER
\end{tabular} & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline NC & 1 & No Connection \\
\hline\(-I N\) & 2 & Inverting Input \\
\hline+ IN & 3 & Non-Inverting Input \\
\hline V- & 4 & Negative Supply \\
\hline \(\mathrm{V}_{\mathrm{L}}\) & 5 & Lower Output Limit \\
\hline OUT & 6 & Output \\
\hline \(\mathrm{V}_{+}\) & 7 & Positive Supply \\
\hline \(\mathrm{V}_{\mathrm{H}}\) & 8 & Upper Output Limit \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings}

Voltage Between V+ and V\(12 V\)
DC Input Voltage \(\qquad\) \(V_{\text {SUPPLY }}\)
Voltage at \(\mathrm{V}_{\mathrm{H}}\) or \(\mathrm{V}_{\mathrm{L}}\) Terminal . . . . . . . . . . . . . . . (V+) +2 V to ( V -) -2 V
Output Current (50\% Duty Cycle)
. 60 mA
Operating Conditions
Temperature Range
\(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)

\section*{Thermal Information}
\(\begin{array}{cccc}\text { Thermal Resistance (Typical, Note 1) } & \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) & \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \\ \text { CERDIP Package } \ldots \ldots \ldots \ldots \ldots & 120 & 35 \\ \text { PDIP Package } \ldots \ldots \ldots \ldots \ldots \ldots & 98 & \text { N/A } \\ \text { SOIC Package. . . . . . . . . . . . . . . } & 158 & \text { N/A }\end{array}\)
Maximum Junction Temperature (Ceramic Package and Die) . . \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (Plastic Package) . . . . . . . \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\) (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{L}=100 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & \begin{tabular}{l}
TEMP. \\
( \({ }^{\circ} \mathrm{C}\) )
\end{tabular} & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Output Offset Voltage} & & 25 & - & 8 & 25 & mV \\
\hline & & Full & - & - & 35 & mV \\
\hline Output Offset Voltage Drift & & Full & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{PSRR} & & 25 & 39 & 45 & - & dB \\
\hline & & Full & 35 & - & - & dB \\
\hline Input Noise Voltage (Note 3) & 100 kHz & 25 & - & 9 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline +Input Noise Current (Note 3) & 100 kHz & 25 & - & 37 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline \multirow[t]{2}{*}{Non-Inverting Input Bias Current} & & 25 & - & 25 & 40 & \(\mu \mathrm{A}\) \\
\hline & & Full & - & - & 65 & \(\mu \mathrm{A}\) \\
\hline Non-Inverting Input Resistance & & 25 & 25 & 50 & - & \(\mathrm{k} \Omega\) \\
\hline Inverting Input Resistance (Note 2) & & 25 & 240 & 300 & 360 & \(\Omega\) \\
\hline Input Capacitance & & 25 & - & 2 & - & pF \\
\hline Input Common Mode Range & & Full & \(\pm 2.5\) & \(\pm 2.8\) & - & V \\
\hline
\end{tabular}

TRANSFER CHARACTERISTICS
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \multirow{3}{*}{ Gain } & \(\mathrm{A}_{\mathrm{V}}=+1, \mathrm{~V}_{\mathrm{IN}}=+2 \mathrm{~V}\) & 25 & 0.980 & 0.990 & 1.020 & \(\mathrm{~V} / \mathrm{V}\) \\
\cline { 3 - 8 } & & Full & 0.975 & - & 1.025 & \(\mathrm{~V} / \mathrm{V}\) \\
\hline & \(\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\mathrm{IN}}=+1 \mathrm{~V}\) & 25 & 1.96 & 1.98 & 2.04 & \(\mathrm{~V} / \mathrm{N}\) \\
\hline & & Full & 1.95 & - & 2.05 & \(\mathrm{~V} / \mathrm{N}\) \\
\hline DC Non-Linearity (Note 3) & \(\mathrm{A}_{\mathrm{V}}=+2, \pm 2 \mathrm{~V}\) Full Scale & 25 & - & 0.02 & - & \(\%\) \\
\hline
\end{tabular}

OUTPUT CHARACTERISTICS
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline Output Voltage (Note 3) & \(\mathrm{A}_{\mathrm{V}}=-1\) & 25 & \(\pm 3.0\) & \(\pm 3.3\) & - & V \\
\cline { 3 - 7 } & & Full & \(\pm 2.5\) & \(\pm 3.0\) & - & V \\
\hline Output Current (Note 3) & \(\mathrm{R}_{\mathrm{L}}=50 \Omega\) & 25,85 & 50 & 60 & - & mA \\
\hline & & -40 & 35 & 50 & - & mA \\
\hline Closed Loop Output Impedance & \(\mathrm{DC}, \mathrm{A}_{\mathrm{V}}=+2\) & 25 & - & 0.3 & - & \(\Omega\) \\
\hline
\end{tabular}

\section*{POWER SUPPLY CHARACTERISTICS}
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline Supply Voltage Range & & Full & \(\pm 4.5\) & - & \(\pm 5.5\) & V \\
\hline Supply Current (Note 3) & & 25 & - & 21 & 26 & mA \\
\hline & & Full & - & - & 33 & mA \\
\hline
\end{tabular}

\section*{AC CHARACTERISTICS}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \begin{tabular}{l}
-3dB Bandwidth \\
( \(\mathrm{V}_{\mathrm{OUT}}=0.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P},}\), Notes 2, 3)
\end{tabular} & \(\mathrm{A}_{\mathrm{V}}=-1\) & 25 & 450 & 800 & - & MHz \\
\cline { 2 - 7 } & \(\mathrm{A}_{\mathrm{V}}=+1\) & 25 & 500 & 850 & - & MHz \\
\cline { 2 - 7 } & \(\mathrm{A}_{\mathrm{V}}=+2\) & 25 & 350 & 550 & - & MHz \\
\hline
\end{tabular}

\section*{HFA1113}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 V, A_{V}=+1, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & \[
\begin{aligned}
& \text { TEMP. } \\
& \left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
\] & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Slew Rate } \\
& \text { (VouT }=5 \mathrm{~V}_{\text {P-p }}, \text { Note 2) }
\end{aligned}
\]} & \(A_{V}=-1\) & 25 & 1500 & 2400 & - & V/us \\
\hline & \(A_{V}=+1\) & 25 & 800 & 1500 & \(\cdot\) & V/us \\
\hline & \(A_{V}=+2\) & 25 & 1100 & 1900 & - & V/ \(/\) s \\
\hline \multirow[t]{3}{*}{Full Power Bandwidth ( \(\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}_{\text {P-p, }}\), Note 3)} & \(A_{V}=-1\) & 25 & - & 300 & - & MHz \\
\hline & \(A_{V}=+1\) & 25 & - & 150 & - & MHz \\
\hline & \(A_{V}=+2\) & 25 & - & 220 & - & MHz \\
\hline \multirow[t]{3}{*}{Gain Flatness (to 30 MHz , Notes 2, 3)} & \(A_{V}=-1\) & 25 & - & \(\pm 0.02\) & - & dB \\
\hline & \(A_{V}=+1\) & 25 & - & \(\pm 0.1\) & - & dB \\
\hline & \(A_{V}=+2\) & 25 & - & \(\pm 0.015\) & \(\pm 0.04\) & dB \\
\hline \multirow[t]{3}{*}{Gain Flatness (to 50 MHz , Notes 2,3)} & \(A_{V}=-1\) & 25 & - & \(\pm 0.05\) & - & dB \\
\hline & \(A_{V}=+1\) & 25 & - & \(\pm 0.2\) & - & dB \\
\hline & \(A_{V}=+2\) & 25 & - & \(\pm 0.036\) & \(\pm 0.08\) & dB \\
\hline \multirow[t]{2}{*}{Gain Flatness (to 100 MHz , Notes 2, 3)} & \(A_{V}=-1\) & 25 & - & \(\pm 0.10\) & - & dB \\
\hline & \(A_{V}=+2\) & 25 & - & \(\pm 0.07\) & \(\pm 0.22\) & dB \\
\hline \multirow[t]{3}{*}{Linear Phase Deviation (to 100 MHz , Note 3)} & \(A_{V}=-1\) & 25 & - & \(\pm 0.13\) & - & Degrees \\
\hline & \(A_{V}=+1\) & 25 & - & \(\pm 0.83\) & - & Degrees \\
\hline & \(A_{V}=+2\) & 25 & - & \(\pm 0.05\) & - & Degrees \\
\hline \multirow[t]{3}{*}{2nd Harmonic Distortion \(\left(30 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-p, }}\right.\), Notes 2,3\()\)} & \(A_{V}=-1\) & 25 & - & -52 & - & dBc \\
\hline & \(A_{V}=+1\) & 25 & - & -57 & - & dBc \\
\hline & \(A_{V}=+2\) & 25 & - & -52 & -45 & dBc \\
\hline \multirow[t]{3}{*}{3rd Harmonic Distortion \(\left(30 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-p }}\right.\), Notes 2, 3)} & \(A_{V}=-1\) & 25 & - & -71 & - & dBc \\
\hline & \(A_{V}=+1\) & 25 & - & -73 & - & dBc \\
\hline & \(A_{V}=+2\) & 25 & - & -72 & -65 & dBc \\
\hline \multirow[t]{3}{*}{2nd Harmonic Distortion \(\left(50 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-p }}\right.\), Notes 2, 3)} & \(A_{V}=-1\) & 25 & - & -47 & - & dBc \\
\hline & \(A_{V}=+1\) & 25 & - & -53 & - & dBc \\
\hline & \(A_{V}=+2\) & 25 & - & -47 & -40 & dBc \\
\hline \multirow[t]{3}{*}{3rd Harmonic Distortion \(\left(50 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}\right.\), Notes 2, 3)} & \(A_{V}=-1\) & 25 & - & -63 & - & dBc \\
\hline & \(A_{V}=+1\) & 25 & - & -68 & - & dBc \\
\hline & \(A_{V}=+2\) & 25 & - & -65 & -55 & dBc \\
\hline \multirow[t]{3}{*}{2nd Harmonic Distortion \(\left(100 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}\right.\), Notes 2, 3)} & \(A_{V}=-1\) & 25 & - & -41 & - & dBc \\
\hline & \(A_{V}=+1\) & 25 & - & -50 & - & dBc \\
\hline & \(A_{V}=+2\) & 25 & - & -42 & -35 & dBc \\
\hline \multirow[t]{3}{*}{3rd Harmonic Distortion ( \(100 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-p }}\), Notes 2, 3)} & \(A_{V}=-1\) & 25 & - & -55 & - & dBc \\
\hline & \(A_{V}=+1\) & 25 & - & -49 & - & dBc \\
\hline & \(A_{V}=+2\) & 25 & - & -62 & -45 & dBc \\
\hline \multirow[t]{2}{*}{3rd Order Intercept ( \(A_{V}=+2\), Note 3 )} & 100 MHz & 25 & - & 28 & - & dBm \\
\hline & 300 MHz & 25 & - & 13 & - & dBm \\
\hline \multirow[t]{2}{*}{1dB Compression ( \(\mathrm{A}_{\mathrm{V}}=+2\), Note 3)} & 100 MHz & 25 & - & 19 & - & dBm \\
\hline & 300 MHz & 25 & \(\cdot\) & 12 & - & dBm \\
\hline \multirow[t]{3}{*}{Reverse Isolation ( \(\mathrm{S}_{12}\), Note 3)} & 40 MHz & 25 & - & -70 & - & dB \\
\hline & 100 MHz & 25 & - & -60 & - & dB \\
\hline & 600 MHz & 25 & - & -32 & - & dB \\
\hline \multicolumn{7}{|l|}{TRANSIENT CHARACTERISTICS} \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Rise Time } \\
& \left(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\right. \text { Step, Note 2) }
\end{aligned}
\]} & \(A_{V}=-1\) & 25 & - & 500 & 800 & ps \\
\hline & \(A_{V}=+1\) & 25 & - & 480 & 750 & ps \\
\hline & \(A_{V}=+2\) & 25 & - & 700 & 1000 & ps \\
\hline
\end{tabular}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & \[
\begin{gathered}
\text { TEMP. } \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Rise Time } \\
& \left(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V} \text { Step }\right)
\end{aligned}
\]} & \(A_{V}=-1\) & 25 & - & 0.82 & - & ns \\
\hline & \(A_{V}=+1\) & 25 & - & 1.06 & - & ns \\
\hline & \(A_{V}=+2\) & 25 & - & 1.00 & - & ns \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Overshoot \\
( \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\) Step, \\
\(\operatorname{Input} t_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}=200 \mathrm{ps}\), Notes 2, 3, 4)
\end{tabular}} & \(A_{V}=-1\) & 25 & \(\cdot\) & 12 & 30 & \% \\
\hline & \(A_{V}=+1\) & 25 & - & 45 & 65 & \% \\
\hline & \(A_{V}=+2\) & 25 & - & 6 & 20 & \% \\
\hline 0.1\% Settling Time (Note 3) & \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}\) to OV & 25 & - & 13 & 20 & ns \\
\hline 0.05\% Settling Time & \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}\) to OV & 25 & - & 20 & 33 & ns \\
\hline \multirow[t]{2}{*}{Differential Gain} & \(\mathrm{A}_{\mathrm{V}}=+1,3.58 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=150 \Omega\) & 25 & - & 0.03 & - & \% \\
\hline & \(A_{V}=+2,3.58 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=150 \Omega\) & 25 & - & 0.02 & - & \% \\
\hline \multirow[t]{2}{*}{Differential Phase} & \(A_{V}=+1,3.58 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=150 \Omega\) & 25 & - & 0.05 & - & Degrees \\
\hline & \(A_{V}=+2,3.58 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=150 \Omega\) & 25 & - & 0.04 & - & Degrees \\
\hline \multicolumn{7}{|l|}{OUTPUT LIMITING CHARACTERISTICS \(A_{V}=+2, \mathrm{~V}_{\mathrm{H}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-1 \mathrm{~V}\), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Clamp Accuracy (Note 3)} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{IN}}= \pm 1.6 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1\)} & 25 & - & \(\pm 100\) & \(\pm 150\) & mV \\
\hline & & Full & - & - & \(\pm 200\) & mV \\
\hline Clamp Overshoot & \(\mathrm{V}_{\text {IN }}= \pm 1 \mathrm{~V}\), Input \(\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}=500 \mathrm{ps}\) & 25 & - & 7 & - & \% \\
\hline Overdrive Recovery Time (Note 3) & \(\mathrm{V}_{\text {IN }}= \pm 1 \mathrm{~V}\) & 25 & - & 0.75 & 1.5 & ns \\
\hline Negative Clamp Range & & 25 & - & \[
\begin{gathered}
-5.0 \text { to } \\
+2.0 \\
\hline
\end{gathered}
\] & - & V \\
\hline Positive Clamp Range & & 25 & - & \[
\begin{aligned}
& -2.0 \text { to } \\
& +5.0
\end{aligned}
\] & - & V \\
\hline \multirow[t]{2}{*}{Clamp Input Bias Current (Note 3)} & & 25 & - & 50 & 200 & \(\mu \mathrm{A}\) \\
\hline & & Full & - & - & 300 & \(\mu \mathrm{A}\) \\
\hline Clamp Input Bandwidth (Note 3) & \(\mathrm{V}_{\mathrm{H}}\) or \(\mathrm{V}_{\mathrm{L}}=100 \mathrm{mV} \mathrm{V}_{\text {P-P }}\) & 25 & - & 500 & - & MHz \\
\hline
\end{tabular}

NOTES:
2. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.
3. See Typical Performance Curves for more information.
4. Overshoot decreases as input transition times increase, especially for \(A V=+1\). Please refer to Typical Performance Curves.

\section*{Application Information}

\section*{Closed Loop Gain Selection}

The HFA1113 features a novel design which allows the user to select from three closed loop gains, without any external components. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space.
This "buffer" operates in closed loop gains of \(-1,+1\), or +2 , and gain selection is accomplished via connections to the \(\pm\) Inputs. Applying the input signal to +IN and floating -IN selects a gain of +1 , while grounding -IN selects a gain of +2 . A gain of -1 is obtained by applying the input signal to \(-\operatorname{IN}\) with +IN grounded.
The table below summarizes these connections:
\begin{tabular}{|c|c|c|}
\hline \multirow{3}{*}{ GAIN (ACL) } & \multicolumn{2}{|c|}{ CONNECTIONS } \\
\cline { 2 - 3 } & \begin{tabular}{c} 
+INPUT \\
(PIN 3)
\end{tabular} & \begin{tabular}{c}
-INPUT \\
(PIN 2)
\end{tabular} \\
\hline-1 & GND & Input \\
\hline+1 & Input & NC (Floating) \\
\hline+2 & Input & GND \\
\hline
\end{tabular}

\section*{PC Board Layout}

The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!

Attention should be given to decoupling the power supplies. A large value \((10 \mu \mathrm{~F})\) tantalum in parallel with a small value chip \((0.1 \mu \mathrm{~F})\) capacitor works well in most cases.
Terminated microstrip signal lines are recommended at the input and output of the device. Capacitance directly on the output must be minimized, or isolated as discussed in the next section.

For unity gain applications, care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input. At higher frequencies this capacitance will tend to short the -INPUT to GND, resulting in a closed loop gain which increases with frequency. This will cause excessive high frequency peaking and potentially other problems as well.

An example of a good high frequency layout is the Evaluation Board shown in Figure 3.

\section*{Driving Capacitive Loads}

Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor ( \(R_{S}\) ) in series with the output prior to the capacitance.
Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the \(R_{S}\) and \(C_{L}\) combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an overdamped response, while points below or left of the curve indicate areas of underdamped performance.
\(R_{S}\) and \(C_{L}\) form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 850 MHz . By decreasing \(R_{S}\) as \(C_{L}\) increases (as illustrated in the curves), the maximum bandwidth is obtained without sacrificing stability. Even so, bandwidth does decrease as you move to the right along the curve. For example, at \(A_{V}=+1, R_{S}=50 \Omega, C_{L}=30 \mathrm{pF}\), the overall bandwidth is limited to 300 MHz , and bandwidth drops to 100 MHz at \(A_{V}=+1\), \(R_{S}=5 \Omega, C_{L}=340 \mathrm{pF}\).


FIGURE 1. RECOMMENDED SERIES RESISTOR vS LOAD CAPACITANCE

\section*{Evaluation Board}

The performance of the HFA1113 may be evaluated using the HFA11XX Evaluation Board, slightly modified as follows:
1. Remove the \(500 \Omega\) feedback resistor \(\left(R_{2}\right)\), and leave the connection open.
2. a. For \(A_{V}=+1\) evaluation, remove the \(500 \Omega\) gain setting resistor \(\left(\mathrm{R}_{1}\right)\), and leave pin 2 floating.
b. For \(A_{V}=+2\), replace the \(500 \Omega\) gain setting resistor with a \(0 \Omega\) resistor to GND.
The modified schematic and layout of the board are shown in Figures 2 and 3.
To order evaluation boards (part number HFA11XXEVAL), please contact your local sales office.


FIGURE 2. MODIFIED EVALUATION BOARD SCHEMATIC


BOTTOM LAYOUT


FIGURE 3. EVALUATION BOARD LAYOUT

\section*{Limiting Operation}

\section*{General}

The HFA1113 features user programmable output clamps to limit output voltage excursions. Clamping action is obtained by applying voltages to the \(\mathrm{V}_{\mathrm{H}}\) and \(\mathrm{V}_{\mathrm{L}}\) terminals (pins 8 and 5) of the amplifier. \(\mathrm{V}_{\mathrm{H}}\) sets the upper output limit, while \(\mathrm{V}_{\mathrm{L}}\) sets the lower clamp level. If the amplifier tries to drive the output above \(\mathrm{V}_{\mathrm{H}}\), or below \(\mathrm{V}_{\mathrm{L}}\), the clamp circuitry limits the output voltage at \(V_{H}\) or \(V_{L}( \pm\) the clamp accuracy), respectively. The low input bias currents of the clamp pins allow them to be driven by simple resistive divider circuits, or active elements such as amplifiers or DACs.

\section*{Clamp Circuitry}

Figure 4 shows a simplified schematic of the HFA1113 input stage, and the high clamp \(\left(V_{H}\right)\) circuitry. As with all current feedback amplifiers, there is a unity gain buffer \(\left(Q_{X 1}-Q_{X 2}\right)\)
between the positive and negative inputs. This buffer forces \(-\mathbb{I N}\) to track \(+\mathbb{I N}\), and sets up a slewing current of:
\[
\left(V_{-I N}-V_{O U T}\right) / R_{F}+V_{-I N} / R_{G}
\]

This current is mirrored onto the high impedance node \((Z)\) by \(Q_{X 3}-Q_{X 4}\), where it is converted to a voltage and fed to the output via another unity gain buffer. If no clamping is utilized, the high impedance node may swing within the limits defined by \(Q_{p 4}\) and \(Q_{N 4}\). Note that when the output reaches its quiescent value, the current flowing through -IN is reduced to only that small current ( \(-I_{\text {BIAS }}\) ) required to keep the output at the final voltage.
Tracing the path from \(V_{H}\) to \(Z\) illustrates the effect of the clamp voltage on the high impedance node. \(\mathrm{V}_{\mathrm{H}}\) decreases by \(2 \mathrm{~V}_{\mathrm{BE}}\left(\mathrm{Q}_{\mathrm{N} 6}\right.\) and \(\left.\mathrm{Q}_{\mathrm{P} 6}\right)\) to set up the base voltage on \(\mathrm{Q}_{\mathrm{P} 5}\).


FIGURE 4. HFA1113 SIMPLIFIED \(V_{H}\) CLAMP CIRCUITRY
\(Q_{P 5}\) begins to conduct whenever the high impedance node reaches a voltage equal to \(Q_{P 5}\) 's base voltage \(+2 V_{B E}\) ( \(\mathrm{Q}_{\mathrm{P} 5}\) and \(Q_{N 5}\) ). Thus, \(Q_{P 5}\) clamps node \(Z\) whenever \(Z\) reaches \(V_{H} . R_{1}\) provides a pull-up network to ensure functionality with the clamp inputs floating. A similar description applies to the symmetrical low clamp circuitry controlled by \(\mathrm{V}_{\mathrm{L}}\).
When the output is clamped, the negative input continues to source a slewing current (ICLAMP) in an attempt to force the output to the quiescent voltage defined by the input. Q \({ }_{P 5}\) must sink this current while clamping, because the -IN current is always mirrored onto the high impedance node. The clamping current is calculated as:
\(I_{\text {CLAMP }}=\left(\mathrm{V}_{- \text {IN }}-\mathrm{V}_{\text {OUT }}\right.\) CLAMPED \() / 300 \Omega+\mathrm{V}_{\text {-IN }} / R_{\text {G }}\).
As an example, a unity gain circuit with \(\mathrm{V}_{\mathbb{I}}=2 \mathrm{~V}\), and \(\mathrm{V}_{\mathrm{H}}=1 \mathrm{~V}\), would have \(I_{C L A M P}=(2 \mathrm{~V}-1 \mathrm{~V}) / 300 \Omega+2 \mathrm{~V} / \infty=3.33 \mathrm{~mA}\left(\mathrm{R}_{\mathrm{G}}=\infty\right.\) because - \(\operatorname{IN}\) is floated for unity gain applications). Note that \(\mathrm{I}_{\mathrm{CC}}\) will increase by ICLAMP when the output is clamp limited.

\section*{Clamp Accuracy}

The clamped output voltage will not be exactly equal to the voltage applied to \(\mathrm{V}_{\mathrm{H}}\) or \(\mathrm{V}_{\mathrm{L}}\). Offset errors, mostly due to \(\mathrm{V}_{\mathrm{BE}}\) mismatches, necessitate a clamp accuracy parameter which is found in the device specifications. Clamp accuracy is a function of the clamping conditions. Referring again to Figure 4, it can be seen that one component of clamp accuracy is the \(V_{B E}\) mismatch between the \(Q_{X 6}\) transistors, and the \(Q_{X 5}\) transistors. If the transistors always ran at the same current level there would be no \(V_{B E}\) mismatch, and no contribution to the inaccuracy. The \(Q_{X 6}\) transistors are biased at a constant current, but as described earlier, the current through \(Q_{X 5}\) is equivalent to \(I_{C L A M P}\). \(V_{B E}\) increases as \(I_{C L A M P}\) increases, causing the clamped output voltage to increase as well. \(I_{\text {CLAMP }}\) is a function of the overdrive level ( \(A_{V C L} \times V_{I N}-V_{\text {OUT }}\) CLAMPED), so clamp accuracy degrades as the overdrive increases. As an example, the specified accuracy of \(\pm 100 \mathrm{mV}\) ( \(A_{V}=-1, V_{H}=1 \mathrm{~V}\) ) for a 1.6 X overdrive degrades to \(\pm 240 \mathrm{mV}\) for a 3X (200\%) overdrive, as shown in Figure 43.
Consideration must also be given to the fact that the clamp voltages have an affect on amplifier linearity. The "Nonlinearity Near Clamp Voltage" curve, Figure 48, illustrates the impact of several clamp levels on linearity.

\section*{Clamp Range}

Unlike some competitor devices, both \(\mathrm{V}_{\mathrm{H}}\) and \(\mathrm{V}_{\mathrm{L}}\) have usable ranges that cross \(0 V\). While \(V_{H}\) must be more positive than \(\mathrm{V}_{\mathrm{L}}\), both may be positive or negative, within the range restrictions indicated in the specifications. For example, the HFA1113 could be limited to ECL output levels by setting \(\mathrm{V}_{\mathrm{H}}=-0.8 \mathrm{~V}\) and \(\mathrm{V}_{\mathrm{L}}=-1.8 \mathrm{~V} . \mathrm{V}_{\mathrm{H}}\) and \(\mathrm{V}_{\mathrm{L}}\) may be connected to the same voltage (GND for instance) but the result won't be in a DC output voltage from an AC input signal. A \(150 \mathrm{mV}-200 \mathrm{mV}\) AC signal will still be present at the output.

\section*{Recovery from Overdrive}

The output voltage remains at the clamp level as long as the overdrive condition remains. When the input voltage drops below the overdrive level ( \(\mathrm{V}_{\mathrm{CLAMP}} / \mathrm{A}_{\mathrm{VCL}}\) ) the amplifier will return to linear operation. A time delay, known as the Overdrive Recovery Time, is required for this resumption of linear operation. The plots of "Unclamped Performance" and "Clamped Performance" (Figures 41 and 42) highlight the HFA1113's subnanosecond recovery time. The difference between the unclamped and clamped propagation delays is the overdrive recovery time. The appropriate propagation delays are 8.0 ns for the unclamped pulse, and 8.8 ns for the clamped ( \(2 X\) overdrive) pulse yielding an overdrive recovery time of 800 ps . The measurement uses the \(90 \%\) point of the output transition to ensure that linear operation has resumed. Note: The propagation delay illustrated is dominated by the fixturing. The delta shown is accurate, but the true HFA1113 propagation delay is 500ps.
Overdrive recovery time is also a function of the overdrive level. Figure 47 details the overdrive recovery time for various clamp and overdrive levels.

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified


FIGURE 5. SMALL SIGNAL PULSE RESPONSE


FIGURE 7. SMALL SIGNAL PULSE RESPONSE


FIGURE 9. SMALL SIGNAL PULSE RESPONSE


FIGURE 6. LARGE SIGNAL PULSE RESPONSE


FIGURE 10. LARGE SIGNAL PULSE RESPONSE

Typical Performance Curves \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 11. FREQUENCY RESPONSE


FIGURE 13. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS


FIGURE 15. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES


FIGURE 12. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS


FIGURE 14. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS


FIGURE 16. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 17. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES


FIGURE 19. -3dB BANDWIDTH vs TEMPERATURE


FIGURE 21. DEVIATION FROM LINEAR PHASE


FIGURE 18. FULL POWER BANDWIDTH


FIGURE 20. GAIN FLATNESS


FIGURE 22. SETTLING RESPONSE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 23. LOW FREQUENCY REVERSE ISOLATION ( \(\mathrm{S}_{12}\) )


FIGURE 25. 1dB GAIN COMPRESSION vs FREQUENCY


FIGURE 27. SECOND HARMONIC DISTORTION vs Pout


FIGURE 24. HIGH FREQUENCY REVERSE ISOLATION ( \(\mathbf{S}_{12}\) )


FIGURE 26. THIRD ORDER INTERMODULATION INTERCEPT vs FREQUENCY


FIGURE 28. THIRD HARMONIC DISTORTION vs POUT

Typical Performance Curves \(V_{S U P P L Y}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 29. SECOND HARMONIC DISTORTION vs POUT


FIGURE 31. SECOND HARMONIC DISTORTION vs Pout


FIGURE 33. INTEGRAL LINEARITY ERROR


FIGURE 30. THIRD HARMONIC DISTORTION vs POUT


FIGURE 32. THIRD HARMONIC DISTORTION vs POUT


FIGURE 34. OVERSHOOT vs INPUT RISE TIME

HFA1113
Typical Performance Curves \(V_{S U P P L Y}= \pm 5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 35. OVERSHOOT vs INPUT RISE TIME


FIGURE 37. SUPPLY CURRENT vs SUPPLY VOLTAGE


FIGURE 39. OUTPUT VOLTAGE vs TEMPERATURE


FIGURE 36. OVERSHOOT vs INPUT RISE TIME


FIGURE 38. SUPPLY CURRENT vs TEMPERATURE


FIGURE 40. INPUT NOISE CHARACTERISTICS

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 41. UNCLAMPED PERFORMANCE


FIGURE 43. \(\mathrm{V}_{\mathrm{H}}\) CLAMP ACCURACY vs OVERDRIVE


FIGURE 45. \(\mathrm{V}_{\mathrm{H}}\) CLAMP ACCURACY vs OVERDRIVE


TIME (20ns/DIV.)
FIGURE 42. CLAMPED PERFORMANCE


FIGURE 44. \(\mathrm{V}_{\mathrm{L}}\) CLAMP ACCURACY vs OVERDRIVE


FIGURE 46. \(V_{L}\) CLAMP ACCURACY vs OVERDRIVE

Typical Performance Curves \(V_{S U P P L Y}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), U'inless Otherwise Specified (Continued)


FIGURE 47. OVERDRIVE RECOVERY vs OVERDRIVE


FIGURE 49. CLAMP ACCURACY vs TEMPERATURE


FIGURE 51. \(V_{H}\) CLAMP INPUT BANDWIDTH


FIGURE 48. NON-LINEARITY NEAR CLAMP VOLTAGE


FIGURE 50. CLAMP BIAS CURRENT vs TEMPERATURE


FIGURE 52. \(\mathrm{V}_{\mathrm{L}}\) CLAMP INPUT BANDWIDTH

\section*{Die Characteristics}

DIE DIMENSIONS:
63 mils \(\times 44\) mils \(\times 19\) mils \(1600 \mu \mathrm{~m} \times 1130 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)

\section*{METALLIZATION:}

Type: Metal 1: \(\mathrm{AlCu}(2 \%) / T i W\)
Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)
Type: Metal 2: AICu(2\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)

\section*{PASSIVATION:}

Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)

\section*{TRANSISTOR COUNT:}

\section*{52}

SUBSTRATE POTENTIAL (Powered Up):
Floating (Recommend Connection to V-)

\section*{Metallization Mask Layout}

HFA1113


OUT

\section*{Features}
- Access to Summing Node Allows Circuit Customization
". User Programmable For Closed-Loop Gains of +1, -1 or +2 Without Use of External Resistors
- Wide -3dB Bandwidth 850 MHz
- Very Fast Slew Rate . . . . . . . . . . . . . . . . . . . . 2400V/ \(/\) s
- Fast Settling Time (0.1\%) . . . . . . . . . . . . . . . . . . . \(11 n \mathrm{~ns}\)
- High Output Current . 60 mA
- Excellent Gain Accuracy. . . . . . . . . . . . . . . . . . 0.99V/V
- Overdrive Recovery . . . . . . . . . . . . . . . . . . . . . . . <10ns
- Standard Operational Amplifier Pinout

\section*{Applications}
- RF/IF Processors
- Driving Flash A/D Converters
- High Speed Communications
- Impedance Transformation
- Line Driving
- Video Switching and Routing
- Radar Systems
- Medical Imaging Systems

\section*{Description}

The HFA1114 is a closed loop Buffer featuring user programmable gain and ultra high speed performance. Manufactured on Harris' proprietary complementary bipolar UHF-1 process, the HFA1114 offers a wide -3dB bandwidth of 850 MHz , very fast slew rate, excellent gain flatness, low distortion and high output current.

A unique feature of the pinout allows the user to select a voltage gain of \(+1,-1\), or +2 , without the use of any external components. Gain selection is accomplished via connections to the inputs, as described in the "Application Information" section. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space.

Compatibility with existing op amp pinouts provides flexibility to upgrade low gain amplifiers, while decreasing component count. Unlike most buffers, the standard pinout provides an upgrade path should a higher closed loop gain be needed at a future date.

For applications requiring a standard buffer pinout, please refer to the HFA1110 datasheet.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{l} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. RANGE \\
( \(\left.{ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HFA1114IP & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
HFA1114IB \\
(H1114I)
\end{tabular} & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline HFA11XXEVAL & \begin{tabular}{l} 
DIP Evaluation Board for High Speed \\
Op Amps
\end{tabular} \\
\hline
\end{tabular}

\section*{Pinout}

HFA1114 (PDIP, SOIC) TOP VIEW


\section*{Pin Descriptions}
\begin{tabular}{|c|c|l|}
\hline NAME & \begin{tabular}{c} 
PIN \\
NUMBER
\end{tabular} & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline NC & 1,8 & No Connection \\
\hline- IN & 2 & Inverting Input \\
\hline+ IN & 3 & Non-Inverting Input \\
\hline V- & 4 & Negative Supply \\
\hline SN & 5 & Summing Node \\
\hline OUT & 6 & Output \\
\hline V+ & 7 & Positive Supply \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Absolute Maximum Ratings & & \multicolumn{2}{|l|}{Thermal Information} \\
\hline Voltage Between V+ and V- & 12V & Thermal Resistance (Typical, Note 1) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline DC Input Voltage & V SUPPLY & PDIP Package & 130 \\
\hline Differential Input Voltage. & & SOIC Package . & 170 \\
\hline Output Current & 60 mA & Maximum Junction Temperature (Die). & \(.175{ }^{\circ} \mathrm{C}\) \\
\hline & & Maximum Junction Temperature (Plastic Package) & \(\ldots 150^{\circ} \mathrm{C}\) \\
\hline Operating Conditions & & Maximum Storage Temperature Range & \(5^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) \\
\hline Temperature Range & \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) & Maximum Lead Temperature (Soldering 10s). . . . (SOIC - Lead Tips Only) & \[
\ldots 300^{\circ} \mathrm{C}
\] \\
\hline
\end{tabular}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. \(\theta_{J A}\) is measured with the component mounted on an evaluation PC board in free air.

\section*{Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 V, A_{V}=+1, R_{L}=100 \Omega\), Unless Otherwise Specified}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Output Offset Voltage} & & 25 & - & 8 & 25 & mV \\
\hline & & Full & - & - & 35 & mV \\
\hline Output Offset Voltage Drift & & Full & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{PSRR} & & 25 & 39 & 45 & - & dB \\
\hline & & Full & 35 & - & - & dB \\
\hline Input Noise Voltage & 100kHz & 25 & - & 9 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Non-Inverting Input Noise Current & 100 kHz & 25 & - & 37 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline
\end{tabular}

HFA1114

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{POWER SUPPLY CHARACTERISTICS} \\
\hline Supply Voltage Range & & Full & \(\pm 4.5\) & - & \(\pm 5.5\) & V \\
\hline \multirow[t]{2}{*}{Supply Current} & & 25 & - & 21 & 26 & mA \\
\hline & & Full & - & - & 33 & mA \\
\hline \multicolumn{7}{|l|}{AC CHARACTERISTICS} \\
\hline \multirow[t]{3}{*}{-3 dB Bandwidth ( \(\mathrm{V}_{\mathrm{OUT}}=0.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) )} & \(A_{V}=-1\) & 25 & - & 800 & - & MHz \\
\hline & \(A_{V}=+1\) & 25 & - & 850 & - & MHz \\
\hline & \(A_{V}=+2\) & 25 & - & 550 & - & MHz \\
\hline \multirow[t]{3}{*}{Slew Rate ( \(\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}_{\mathrm{P-P}}\) )} & \(A_{V}=-1\) & 25 & - & 2400 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & \(A_{V}=+1\) & 25 & - & 1500 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline & \(A_{V}=+2\) & 25 & - & 1900 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Full Power BW & \(5 V_{\text {P-P, }}, A_{V}=+2\) & 25 & - & 220 & - & MHz \\
\hline Gain Flatness & To \(30 \mathrm{MHz}, A_{V}=+2\) & 25 & - & \(\pm 0.015\) & - & dB \\
\hline Gain Flatness & To \(100 \mathrm{MHz}, \mathrm{AV}=+2\) & 25 & - & \(\pm 0.07\) & - & dB \\
\hline 2nd Harmonic Distortion & \(50 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}\) & 25 & - & -53 & - & dBc \\
\hline 3rd Harmonic Distortion & \(50 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}\) & 25 & - & -68 & - & dBc \\
\hline 3rd Order Intercept & \(100 \mathrm{MHz}, \mathrm{AV}^{\prime}=+2\) & 25 & - & 28 & - & dBm \\
\hline 1dB Compression & \(100 \mathrm{MHz}, A_{V}=+2\) & 25 & - & 19 & - & dBm \\
\hline \multirow[t]{2}{*}{Rise Time (VOUT \(=0.5 \mathrm{~V}\) Step)} & \(A_{V}=+2\) & 25 & - & 700 & - & ps \\
\hline & \(A_{V}=+1\) & 25 & - & 480 & - & ps \\
\hline Overshoot & \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\) Step, \(\mathrm{A}_{\mathrm{V}}=+2\) & 25 & - & 6 & - & \% \\
\hline 0.1\% Settling Time & \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}\) to 0 V & 25 & - & 11 & - & ns \\
\hline 0.05\% Settling Time & \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}\) to 0 V & 25 & - & 15 & - & ns \\
\hline Overdrive Recovery Time & & 25 & - & 8.5 & - & ns \\
\hline \multirow[t]{2}{*}{Differential Gain} & \(A_{V}=+1,3.58 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=150 \Omega\) & 25 & - & 0.03 & - & \% \\
\hline & \(A_{V}=+2,3.58 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=150 \Omega\) & 25 & - & 0.02 & - & \% \\
\hline \multirow[t]{2}{*}{Differential Phase} & \(A_{V}=+1,3.58 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=150 \Omega\) & 25 & - & 0.05 & - & Degrees \\
\hline & \(A_{V}=+2,3.58 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=150 \Omega\) & 25 & - & 0.04 & - & Degrees \\
\hline
\end{tabular}

\section*{Application Information}

\section*{Closed Loop Gain Selection}

The HFA1114 features a novel design which allows the user to select from three closed loop gains, without any external components. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space.
This "buffer" operates in closed loop gains of \(-1,+1\), or +2 , and gain selection is accomplished via connections to the \(\pm\) inputs. Applying the input signal to +IN and floating -IN selects a gain of +1 , while grounding \(-\mathbb{N}\) selects a gain of +2 . A gain of -1 is obtained by applying the input signal to \(-\mathbb{N}\) with \(+\mathbb{I N}\) grounded.

The table below summarizes these connections:
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
GAIN \\
(ACL)
\end{tabular}} & \multicolumn{2}{|c|}{ CONNECTIONS } \\
\cline { 2 - 3 } & +INPUT (PIN 3) & -INPUT (PIN 2) \\
\hline-1 & GND & Input \\
\hline+1 & Input & NC (Floating) \\
\hline+2 & Input & GND \\
\hline
\end{tabular}

\section*{PC Board Layout}

The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!
Attention should be given to decoupling the power supplies. A large value \((10 \mu \mathrm{~F})\) tantalum in parallel with a small value \((0.1 \mu \mathrm{~F})\) chip capacitor works well in most cases.
Terminated microstrip signal lines are recommended at the input and output of the device. Capacitance directly on the output must be minimized, or isolated as discussed in the next section.
For unity gain applications, care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input. At higher frequencies this capacitance will tend to short the -INPUT to GND, resulting in a closed loop gain which increases with frequency. This will cause excessive high frequency peaking and potentially other problems as well.
An example of a good high frequency layout is the Evaluation Board shown in Figure 2.

\section*{Driving Capacitive Loads}

Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. in most cases, the oscillation can be avoided by placing a resistor \(\left(R_{S}\right)\) in series with the output prior to the capacitance.

Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the \(R_{S}\) and \(C_{L}\) combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an overdamped response, while points below or left of the curve indicate areas of underdamped performance.
\(R_{S}\) and \(C_{L}\) form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 850 MHz . By decreasing \(\mathrm{R}_{\mathrm{S}}\) as \(\mathrm{C}_{\mathrm{L}}\) increases (as illustrated in the curves), the maximum bandwidth is obtained without sacrificing stability. Even so, bandwidth does decrease as you move to the right along the curve. For example, at \(A_{V}=+1, R_{S}=50 \Omega, C_{L}=30 p F\), the overall bandwidth is limited to 300 MHz , and bandwidth drops to 100 MHz at \(A_{V}=+1, R_{S}=5 \Omega, C_{L}=340 \mathrm{pF}\).


FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs LOAD CAPACITANCE

\section*{Evaluation Board}

The performance of the HFA1114 may be evaluated using the HFA11XX Evaluation Board, slightly modified as follows:
2. Remove the \(500 \Omega\) feedback resistor \(\left(R_{2}\right)\), and leave the connection open.
3. a. For \(A_{V}=+1\) evaluation, remove the \(500 \Omega\) gain setting resistor ( \(\mathrm{R}_{1}\) ), and leave pin 2 floating.
b. For \(A_{V}=+2\), replace the \(500 \Omega\) gain setting resistor with a \(0 \Omega\) resistor to GND.
4. Isolate Pin 5 from the stray board capacitance to minimize peaking and overshoot.
The layout and modified schematic of the board are shown in Figure 2.
To order evaluation boards (part number HFA11XXEVAL), please contact your local sales office.


FIGURE 2. EVALUATION BOARD SCHEMATIC AND LAYOUT

\section*{Die Characteristics}

DIE DIMENSIONS:
63 mils \(\times 44\) mils \(\times 19\) mils \(1600 \mu \mathrm{~m} \times 1130 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)

\section*{METALLIZATION:}

Type: Metal 1: AICu(2\%)/TiW
Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)
Type: Metal 2: AICu(2\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)

\section*{PASSIVATION:}

Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
52
SUBSTRATE POTENTIAL (Powered Up):
Floating (Recommend Connection to V-)

Metallization Mask Layout

NC


OUT

\title{
225MHz, Low Power, Output Limiting, Closed Loop Buffer Amplifier
}

November 1996

\section*{Features}
- User Programmable Output Voltage Limiting
- High Input Impedance . . . . . . . . . . . . . . . . . . . . . . . 1M \(\Omega\)
- Differential Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.02\%
- Differential Phase. . . . . . . . . . . . . . . . . . 0.03 Degrees
- Wide -3dB Bandwidth ( \(A_{V}=+2\) ) . . . . . . . . . . . . 225MHz
- Very Fast Slew Rate ( \(A_{V}=-1\) ) . . . . . . . . . . . . . 1135V/ \(\mu \mathrm{s}\)
- Low Supply Current. . . . . . . . . . . . . . . . . . . . . . . . 7.1mA
- High Output Current . . . . . . . . . . . . . . . . . . . . . . . 60 mA
- Excellent Gain Accuracy. . . . . . . . . . . . . . . . . 0.99V/V
- User Programmable For Closed-Loop Gains of +1, -1 or +2 Without Use of External Resistors
- Fast Overdrive Recovery.
<1ns
- Standard Operational Amplifier Pinout

\section*{Applications}
- Flash ADD Drivers
- Video Cable Drivers
- High Resolution Monitors
- Professional Video Processing
- Medical Imaging
- Video Digitizing Boards/Systems
- Battery Powered Communications

\section*{Description}

The HFA1115 is a high speed closed loop Buffer featuring both user programmable gain and output limiting. Manufactured on Harris' proprietary complementary bipolar UHF-1 process, the HFA1115 also offers a wide -3 dB bandwidth of 225 MHz , very fast slew rate, excellent gain flatness and high output current.

This buffer is the ideal choice for high frequency applications requiring output limiting, especially those needing ultra fast overload recovery times. The limiting function allows the designer to set the maximum positive and negative output levels, thereby protecting later stages from damage or input saturation. The HFA1115 also allows for voltage gains of \(+2,+1\), and -1 , without the use of external resistors. Gain selection is accomplished via connections to the inputs, as described in the "Application Information" text. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space.

Compatibility with existing op amp pinouts provides flexibility to upgrade low gain amplifiers, while decreasing component count. Unlike most buffers, the standard pinout provides an upgrade path, should a higher closed loop gain be needed at a future date. For Military product, refer to the HFA1115/883 data sheet.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{c} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HFA1115IP & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
HFA1115IB \\
(H1115I)
\end{tabular} & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline HFA11XXEVAL & High Speed Op Amp DIP Evaluation Board \\
\hline
\end{tabular}

Pinout
HFA1115 (PDIP, SOIC) TOP VIEW


Pin Descriptions
\begin{tabular}{|c|c|l|}
\hline NAME & PIN NUMBER & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline NC & 1 & No Connection \\
\hline\(-I N\) & 2 & Inverting Input \\
\hline\(+\mathbb{N}\) & 3 & Non-Inverting Input \\
\hline V- & 4 & Negative Supply \\
\hline \(\mathrm{V}_{\mathrm{L}}\) & 5 & Lower Output Limit \\
\hline OUT & 6 & Output \\
\hline \(\mathrm{V}_{+}\) & 7 & Positive Supply \\
\hline \(\mathrm{V}_{\mathrm{H}}\) & 8 & Upper Output Limit \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings}

Voltage Between V+ and V. 11V
DC Input Voltage
Output Current (Note 2)
\(V_{\text {SUPPLY }}\)
ESD Rating
Human Body Model (Per MIL-STD-883 Method 3015.7) . . . 600V

\section*{Operating Conditions}

Temperature Range
\(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)
Supply Voltage Range (Typical) . 5 V to 10 V

\section*{Thermal Information}

Thermal Resistance (Typical, Note 1) \(\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\)
PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
SOIC Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . . . . \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (Plastic Packages) . . . . . . \(150^{\circ} \mathrm{C}\) Maximum Storage Temperature Range . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\) (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.
2. Output is protected for short circuits to ground. Brief short circuits to ground will not degrade reliability, however, continuous (100\% duty cycle) output current should not exceed 30 mA for maximum reliability.

Electrical Specifications \(\quad V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{L}=100 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Output Offset Voltage} & & A & 25 & - & 2 & 10 & mV \\
\hline & & A & Full & - & 3 & 15 & mV \\
\hline Average Output Offset Voltage Drift & & B & Full & - & 22 & 70 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Common-Mode Rejection Ratio} & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 25 & 42 & 45 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 85 & 40 & 44 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.2 \mathrm{~V}\) & A & -40 & 40 & 45 & - & dB \\
\hline \multirow[t]{3}{*}{Power Supply Rejection Ratio} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 45 & 49 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & 43 & 48 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 43 & 48 & - & dB \\
\hline \multirow[t]{2}{*}{Non-Inverting Input Bias Current} & & A & 25 & - & 1 & 15 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 3 & 25 & \(\mu \mathrm{A}\) \\
\hline Non-Inverting Input Bias Current Drift & & B & Full & - & 30 & 80 & \(n A^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Non-Inverting Input Resistance} & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 25 & 0.8 & 1.1 & - & \(\mathrm{M} \Omega\) \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 85 & 0.5 & 1.4 & \(\cdot\) & \(\mathrm{M} \Omega\) \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.2 \mathrm{~V}\) & A & -40 & 0.5 & 1.3 & - & \(\mathrm{M} \Omega\) \\
\hline Inverting Input Resistance & & C & 25 & 280 & 350 & 420 & \(\Omega\) \\
\hline Input Capacitance & & C & 25 & - & 1.6 & - & pF \\
\hline \multirow[t]{2}{*}{Input Voltage Common Mode Range (Implied by \(\mathrm{V}_{1 \mathrm{O}}\) CMRR and \(+\mathrm{R}_{\mathrm{IN}}\) Tests)} & & A & 25, 85 & \(\pm 1.8\) & \(\pm 2.4\) & \(\cdot\) & V \\
\hline & & A & -40 & \(\pm 1.2\) & \(\pm 1.7\) & - & V \\
\hline Input Noise Voltage Density & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 7 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Non-Inverting Input Noise Current Density & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 3.6 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline \multicolumn{8}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline \multirow[t]{6}{*}{Gain} & \multirow[t]{2}{*}{\(A_{V}=-1\)} & A & 25 & -0.98 & -0.996 & -1.02 & \(\mathrm{V} / \mathrm{N}\) \\
\hline & & A & Full & -0.975 & -1.000 & -1.025 & VN \\
\hline & \multirow[t]{2}{*}{\(A_{V}=+1\)} & A & 25 & 0.98 & 0.992 & 1.02 & \(\mathrm{V} N\) \\
\hline & & A & Full & 0.975 & 0.993 & 1.025 & VN \\
\hline & \multirow[t]{2}{*}{\(A_{V}=+2\)} & A & 25 & 1.96 & 1.988 & 2.04 & VN \\
\hline & & A & Full & 1.95 & 1.990 & 2.05 & V/N \\
\hline
\end{tabular}

Electrical Specifications \(\quad V_{S U P P L Y}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & \[
\begin{aligned}
& \text { (NOTE 3) } \\
& \text { TEST } \\
& \text { LEVEL }
\end{aligned}
\] & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{AC CHARACTERISTICS} \\
\hline \multirow[t]{3}{*}{-3dB Bandwidth ( \(\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-P }}\) )} & \(A_{V}=-1\) & B & 25 & - & 225 & - & MHz \\
\hline & \(A_{V}=+1,+R_{S}=620 \Omega\) & B & 25 & - & 170 & - & MHz \\
\hline & \(A_{V}=+2\) & B & 25 & - & 225 & - & MHz \\
\hline \multirow[t]{3}{*}{Full Power Bandwidth \(\left(V_{\text {OUT }}=5 V_{\text {P-P }}\right.\) at \(A_{V}=+2 /-1\), \(4 V_{\text {P-P }}\) at \(A_{V}=+1\) )} & \(A_{V}=-1\) & B & 25 & - & 157 & - & MHz \\
\hline & \(A_{V}=+1,+R_{S}=620 \Omega\) & B & 25 & - & 140 & - & MHz \\
\hline & \(A_{V}=+2\) & B & 25 & \(\cdot\) & 125 & - & MHz \\
\hline \multirow[t]{2}{*}{Gain Flatness (to \(25 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-P }}\) )} & \(\mathrm{A}_{\mathrm{V}}=+1,+\mathrm{R}_{\mathrm{S}}=620 \Omega\) & B & 25 & - & \(\pm 0.1\) & - & dB \\
\hline & \(A_{V}=+2\) & B & 25 & - & \(\pm 0.04\) & - & dB \\
\hline \multirow[t]{2}{*}{Gain Flatness (to \(50 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-P }}\) )} & \(\mathrm{A}_{\mathrm{V}}=+1,+\mathrm{R}_{\mathrm{S}}=620 \Omega\) & B & 25 & - & \(\pm 0.25\) & - & dB \\
\hline & \(A_{V}=+2\) & B & 25 & - & \(\pm 0.1\) & - & dB \\
\hline \multicolumn{8}{|l|}{OUTPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Output Voltage Swing} & \multirow[t]{2}{*}{\(A_{V}=-1\)} & A & 25 & \(\pm 3.0\) & \(\pm 3.2\) & - & V \\
\hline & & A & Full & \(\pm 2.8\) & \(\pm 3.0\) & - & V \\
\hline \multirow[t]{2}{*}{Output Current} & \multirow[t]{2}{*}{\(A_{V}=-1, R_{L}=50 \Omega\)} & A & 25, 85 & 50 & 55 & - & mA \\
\hline & & A & -40 & 28 & 42 & - & mA \\
\hline Output Short Circuit Current & & B & 25 & - & 90 & - & mA \\
\hline Closed Loop Output Impedance & DC, \(A_{V}=+2\) & B & 25 & - & 0.07 & - & \(\Omega\) \\
\hline \multirow[t]{2}{*}{Second Harmonic Distortion ( \(A_{V}=+2, V_{\text {OUT }}=2 V_{\text {P-P }}\) )} & 10 MHz & B & 25 & - & -50 & - & dBc \\
\hline & 20 MHz & B & 25 & - & -45 & - & dBc \\
\hline
\end{tabular}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 V, A_{V}=+1, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP. ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{POWER SUPPLY CHARACTERISTICS} \\
\hline Power Supply Range & & C & 25 & 4.5 & - & 5.5 & \(\pm \mathrm{V}\) \\
\hline \multirow[t]{2}{*}{Power Supply Current} & & A & 25 & 6.6 & 6.9 & 7.1 & mA \\
\hline & & A & Full & - & 7.1 & 7.3 & mA \\
\hline \multirow[t]{2}{*}{Non-Inverting Input Bias Current Power Supply Sensitivity} & \multirow[t]{2}{*}{\(\Delta V_{P S}= \pm 1.25 \mathrm{~V}\)} & A & 25 & - & 0.5 & 1 & \(\mu \mathrm{A} V\) \\
\hline & & A & Full & - & - & 3 & \(\mu \mathrm{A} V\) \\
\hline \multicolumn{8}{|l|}{OUTPUT LIMITING CHARACTERISTICS \(A_{V}=+2, \mathrm{~V}_{\mathrm{H}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-1 \mathrm{~V}\), Unless Otherwise Specified} \\
\hline Clamp Accuracy & \(\mathrm{V}_{\text {IN }}= \pm 1.6 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1\) & A & Full & -125 & -70 & 125 & mV \\
\hline Overdrive Recovery Time & \(\mathrm{V}_{\mathrm{IN}}= \pm 1 \mathrm{~V}\) & B & 25 & - & 0.8 & - & ns \\
\hline Negative Clamp Range & & B & 25 & \multicolumn{3}{|c|}{-5.0 to +2.0} & V \\
\hline Positive Clamp Range & & B & 25 & \multicolumn{3}{|c|}{-2.0 to +5.0} & V \\
\hline Clamp Input Bias Current & & A & Full & - & 85 & 200 & \(\mu \mathrm{A}\) \\
\hline Clamp Input Bandwidth & & C & 25 & - & 100 & - & MHz \\
\hline
\end{tabular}

NOTE:
3. Test Level: A. Production Tested.; B. Typical or Guaranteed Limit Based on Characterization.; C. Design Typical for Information Only.

\section*{Application Information}

\section*{Closed Loop Gain Selection}

The HFA1115 features a novel design which allows the user to select from three closed loop gains, without any external components. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space.
This "buffer" operates in closed loop gains of \(-1,+1\), or +2 , and gain selection is accomplished via connections to the \(\pm\) inputs. Applying the input signal to \(+\mathbb{N}\) and floating \(-\mathbb{N}\) selects a gain of +1 (see next section for layout caveats), while grounding \(-\operatorname{IN}\) selects a gain of +2 . A gain of -1 is obtained by applying the input signal to -IN with \(+I N\) grounded.
The table below summarizes these connections:
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
GAIN \\
(ACL)
\end{tabular}} & \multicolumn{2}{|c|}{ CONNECTIONS } \\
\cline { 2 - 3 } & +INPUT (PIN 3) & -INPUT (PIN 2) \\
\hline-1 & GND & Input \\
\hline+1 & Input & NC (Floating) \\
\hline+2 & Input & GND \\
\hline
\end{tabular}

\section*{Unity Gain Considerations}

Unity gain selection is accomplished by floating the -Input of the HFA1115. Anything that tends to short the -Input to GND, such as stray capacitance at high frequencies, will cause the amplifier gain to increase toward a gain of +2 . The result is excessive high frequency peaking, and possible instability. Even the minimal amount of capacitance associated with attaching the -Input lead to the PCB results in approximately 3 dB of gain peaking. At a minimum this requires due care to ensure the minimum capacitance at the -Input connection.

Table 1 lists five alternate methods for configuring the HFA1115 as a unity gain buffer, and the corresponding performance. The implementations vary in complexity and involve performance trade-offs. The easiest approach to implement is simply shorting the two input pins together, and applying the input signal to this common node. The amplifier bandwidth drops from 400 MHz to 200 MHz , but excellent gain flatness is the benefit. Another drawback to this approach is that the amplifier input noise voltage and input offset voltage terms see a gain of +2 , resulting in higher noise and output offset voltages. Alternately, a 100 pF capacitor between the inputs shorts them only at high frequencies, which prevents the increased output offset voltage but delivers less gain flatness.
Another straightforward approach is to add a \(620 \Omega\) resistor in series with the positive input. This resistor and the HFA1115 input capacitance form a low pass filter which rolls off the signal bandwidth before gain peaking occurs. This configuration was employed to obtain the datasheet AC and transient parameters for a gain of +1 .

\section*{PC Board Layout}

The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!
Attention should be given to decoupling the power supplies. A large value ( \(10 \mu \mathrm{~F}\) ) tantalum in parallel with a small value \((0.1 \mu \mathrm{~F})\) chip capacitor works well in most cases.

Terminated microstrip signal lines are recommended at the input and output of the device. Capacitance directly on the output must be minimized, or isolated as discussed in the next section.
For unity gain applications, care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input. At higher frequencies this capacitance will tend to short the -INPUT to GND, resulting in a closed loop gain which increases with frequency. This will cause excessive high frequency peaking and potentially other problems as well.
An example of a good high frequency layout is the Evaluation Board shown in Figure 1.

\section*{Driving Capacitive Loads}

Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor \(\left(R_{S}\right)\) in series with the output prior to the capacitance.
\(R_{S}\) and \(C_{L}\) form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 225 MHz . By decreasing \(R_{S}\) as \(C_{L}\) increases the maximum bandwidth is obtained without sacrificing stability.

\section*{Evaluation Board}

The performance of the HFA1115 may be evaluated using the HFA11XX Evaluation Board, slightly modified as follows:
4. Remove the \(500 \Omega\) feedback resistor \(\left(R_{2}\right)\), and leave the connection open.
5. a. For \(A_{V}=+1\) evaluation, remove the \(500 \Omega\) gain setting resistor \(\left(R_{1}\right)\), and leave pin 2 floating.
b. For \(A_{V}=+2\), replace the \(500 \Omega\) gain setting resistor with a \(0 \Omega\) resistor to GND.
The layout and modified schematic of the board are shown in Figure 1.
To order evaluation boards (Part Number HFA11XXEVAL), please contact your local sales office.

TABLE 1. UNITY GAIN PERFORMANCE FOR VARIOUS IMPLEMENTATIONS
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ APPROACH } & PEAKING (dB) & BW (MHz) & +SR/-SR (V/ \(\mu \mathbf{s})\) & \begin{tabular}{c}
\(\pm 0.1 \mathrm{~dB}\) GAIN FLATNESS \\
(MHz)
\end{tabular} \\
\hline Remove Pin 2 & 2.5 & 400 & \(1200 / 850\) & 20 \\
\hline\(+R_{S}=620 \Omega\) & 0.6 & 170 & \(1125 / 800\) & 25 \\
\hline\(+R_{S}=620 \Omega\) and Remove Pin 2 & 0 & 165 & \(1050 / 775\) & 65 \\
\hline Short Pins 2, 3 & 0 & 200 & \(875 / 550\) & 45 \\
\hline 100 pF cap. between pins 2, 3 & 0.2 & 190 & \(900 / 550\) & 19 \\
\hline
\end{tabular}


FIGURE 1. EVALUATION BOARD SCHEMATIC AND LAYOUT

\section*{Die Characteristics}

DIE DIMENSIONS:
59 mils \(\times 58.2\) mils \(\times 19\) mils
\(1500 \mu \mathrm{~m} \times 1480 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)

\section*{METALLIZATION:}

Type: Metal 1: AICu(2\%)/TiW
Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)
Type: Metal 2: AICu(2\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)

SUBSTRATE POTENTIAL (Powered Up):
Floating (Recommend Connection to V-)

\section*{PASSIVATION:}

Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
89

Metallization Mask Layout


\section*{ADVANCE INFORMATION}

November 1996

500MHz Programmable Gain Video Buffers with Output Limiting and Output Disable

\section*{Features}
- User Programmable For Closed Loop Gains of \(\pm 1\), or +2 Without Use of External Resistors
- User Programmable Output Limiting (HFA1119)
- Standard Operational Amplifier Pinout
- Excellent Gain Accuracy \(\pm 0.5 \%\)
- Wide -3dB Bandwidth ( \(A_{V}=+2\) ) \(\ldots\). . . . . . . . . . 500MHz
- Gain Flatness (to \(\mathbf{2 5 0 M H z}\) ) \(\pm 0.5 \mathrm{~dB}\)
- Very Fast Slew Rate ( \(\mathrm{A}_{\mathrm{V}}=\mathbf{+ 2}\) ) \(1200 \mathrm{~V} / \mu \mathrm{s}\)
- Differential Gain/Phase . . . . . . . . 0.02\%/0.02 Degrees
- Fast Output Enable/Disable 10ns

\section*{Applications}
- Flash AND Drivers
- Video Cable Drivers
- Professional Video Processing
- Medical Imaging
- PC Multimedia Systems
- Video Pixel Switching
- Oscilloscopes and Analyzers

\section*{Description}

The HFA1118, and HFA1119 are high speed, low power, closed loop buffers built with Harris' proprietary complementary bipolar UHF-1 process. Both buffers allow for selection of voltage gains of +2 and \(\pm 1\), without the use of external gain setting resistors.

The HFA1119 is the ideal choice for high frequency applications requiring output limiting, especially those needing ultra fast overload recovery times. For added flexibility, the HFA1119 also features an active low, TTLCMOS compatible disable input, which when activated forces the output to a high impedance state, and reduces supply current.
The HFA1118 features a TTLCMOS compatible output disable pin which is user programmable for polarity (active high or low). This feature eliminates the inverter required between amplifiers in multiplexer configurations. The ultra-fast (10ns) enable and disable times make the HFA1118 and HFA1119 the obvious choices for pixel switching and other high speed multiplexing applications.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HFA1118IP, HFA1119IP & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline HFA1118IB, HFA1119IB & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline HFA11XXEVAL & \begin{tabular}{l} 
DIP Evaluation Board for High Speed Op \\
Amps
\end{tabular} \\
\hline
\end{tabular}

\section*{Pinouts}

HFA1118
(PDIP, SOIC)
TOP VIEW


HFA1119
(PDIP, SOIC)
TOP VIEW


HFA1118 PIN DESCRIPTIONS
\begin{tabular}{|c|l|}
\hline PIN NAME & \multicolumn{1}{|c|}{ DESCRIPTION } \\
\hline Threshold Set & \begin{tabular}{l} 
Optional Logic Threshold Set. Maintains Disable \\
Pin TTL Compatibility with Asymmetrical Supplies \\
(e.g., \(+10 \mathrm{~V}, ~ \mathrm{~V}\) )
\end{tabular} \\
\hline Polarity Set & \begin{tabular}{l} 
Defines Polarity of Disable Input. High or Floating \\
Selects Active Low Disable (i.e., DIS).
\end{tabular} \\
\hline\(\overline{\text { DIS/DIS }}\) & \begin{tabular}{l} 
TTL Compatible Disable Input. Output is Driven \\
to a True Hi-Z State When Active. Polarity \\
depends on state of Polarity Set Pin.
\end{tabular} \\
\hline
\end{tabular}

HFA1118 DISABLE FUNCTIONALITY
\begin{tabular}{|c|c|c|}
\hline POLARITY SET (PIN 5) & DISABLE (PIN 8) & OUTPUT (PIN 6) \\
\hline High or Float & High or Float & Enabled \\
\hline High or Float & Low & Disabled \\
\hline Low & High or Float & Disabled \\
\hline Low & Low & Enabled \\
\hline
\end{tabular}

\title{
850MHz, Output Limiting, Low Distortion Current Feedback Operational Amplifier
}

November 1996

\section*{Features}
- User Programmable Output Voltage Limits
- Low Distortion (30MHz, HD2) . . . . . . . . . . . . . . -56dBc
- -3dB Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . 850MHz
- Very Fast Slew Rate . . . . . . . . . . . . . . . . . . . . . . 2300V/ \(\mu \mathrm{s}\)
- Fast Settling Time (0.1\%) . . . . . . . . . . . . . . . . . . . 11ns
- Excellent Gain Flatness
- ( 100 MHz )
0.14 dB
- (50MHz) 0.04dB
- (30MHz) .0.01dB
- High Output Current . . . . . . . . . . . . . . . . . . . . . . . . 60 mA
- Overdrive Recovery <1ns

\section*{Applications}
- Residue Amplifier
- Video Switching and Routing
- Pulse and Video Amplifiers
- Wideband Amplifiers
- RF/IF Signal Processing
- Flash A/D Driver
- Medical Imaging Systems
- Related Literature
- AN9420, Current Feedback Theory
- AN9202, HFA11XX Evaluation Fixture

\section*{Description}

The HFA1130 is a high speed wideband current feedback amplifier featuring programmable output limits. Built with Harris' proprietary complementary bipolar UHF-1 process, it is the fastest monolithic amplifier available from any semiconductor manufacturer.

This amplifier is the ideal choice for high frequency applications requiring output limiting, especially those needing ultra fast overdrive recovery times. The output limiting function allows the designer to set the maximum positive and negative output levels, thereby protecting later stages from damage or input saturation. The sub-nanosecond overdrive recovery time quickly returns the amplifier to linear operation, following an overdrive condition.

The HFA1130 offers significant performance improvements over the CLC500/501/502.

A variety of packages and temperature grades are available. See the ordering information below for details. For \(/ 883\) product refer to the HFA1130/883 datasheet.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
PART NUMBER \\
(BRAND)
\end{tabular}} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{c|}{ PACKAGE } & PKG. NO. \\
\hline HFA1130MJ/883 & -55 to 125 & 8 Ld CERDIP & F8.3A \\
\hline HFA1130IJ & -40 to 85 & 8 Ld CERDIP & F8.3A \\
\hline HFA1130IP & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
HFA1130IB \\
(H1130I)
\end{tabular} & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline HFA11XXEVAL & DIP Evaluation Board for High-Speed Op Amps \\
\hline
\end{tabular}

Pinout
HFA1130 (PDIP, CERDIP, SOIC) TOP VIEW


\section*{The Op Amps With Fastest Edges}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Absolute Maximum Ratings \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)} \\
\hline Voltage Between V + and V- & 12 V \\
\hline Input Voltage. & \(\mathrm{V}_{\text {SUPPLY }}\) \\
\hline Differential Input Voltage. & \\
\hline Output Current (50\% Duty Cycle). & 60 mA \\
\hline
\end{tabular}

\section*{Operating Conditions}

Temperature Range
\(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)

\section*{Thermal Information}
\begin{tabular}{|c|c|c|}
\hline Thermal Resistance (Typical, Note 1) & \(\theta_{\mathrm{JA}}(\) & \({ }^{\prime}\) \\
\hline CERDIP Package & 120 & 35 \\
\hline PDIP Package & 130 & N/A \\
\hline SOIC Package & 170 & N/A \\
\hline \multicolumn{3}{|l|}{Maximum Junction Temperature (Die or CERDIP)} \\
\hline \multicolumn{3}{|l|}{Maximum Junction Temperature (Plastic Package)} \\
\hline \multicolumn{3}{|l|}{Maximum Storage Temperature Range \(\ldots . . .65^{\circ} \mathrm{C}\) to \(\mathrm{T}_{\mathrm{A}}\) to \(150^{\circ} \mathrm{C}\)} \\
\hline Maximum Lead Temperature (Solderin (SOIC - Lead Tips Only) & & \\
\hline
\end{tabular}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 V, A_{V}=+1, R_{F}=510 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 2) TEST LEVEL & TEMP. ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Input Offset Voltage (Note 3)} & \multirow[t]{2}{*}{} & A & 25 & - & 2 & 6 & mV \\
\hline & & A & Full & - & - & 10 & mV \\
\hline Input Offset Voltage Drift & & C & Full & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{10}\) CMRR} & \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}\)} & A & 25 & 40 & 46 & - & dB \\
\hline & & A & Full & 38 & - & - & dB \\
\hline \multirow[t]{2}{*}{\(V_{10}\) PSRR} & \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{S}}= \pm 1.25 \mathrm{~V}\)} & A & 25 & 45 & 50 & - & dB \\
\hline & & A & Full & 42 & - & - & dB \\
\hline \multirow[t]{2}{*}{Non-Inverting Input Bias Current (Note 3)} & \multirow[t]{2}{*}{\(+\mathrm{IN}=0 \mathrm{~V}\)} & A & 25 & - & 25 & 40 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & - & 65 & \(\mu \mathrm{A}\) \\
\hline \(+I_{\text {BIAS }}\) Drift & & C & Full & - & 40 & - & \(n{ }^{\circ}{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{+IBIAS CMS} & \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}\)} & A & 25 & - & 20 & 40 & \(\mu \mathrm{A} N\) \\
\hline & & A & Full & - & - & 50 & \(\mu \mathrm{A} N\) \\
\hline \multirow[t]{2}{*}{Inverting Input Bias Current (Note 3)} & \multirow[t]{2}{*}{\(-\mathrm{IN}=0 \mathrm{~V}\)} & A & 25 & - & 12 & 50 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & - & 60 & \(\mu \mathrm{A}\) \\
\hline \(-^{\text {BIAS }}\) Drift & & C & Full & - & 40 & - & \(n A^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{\({ }^{-1} \mathrm{I}_{\text {IAS }}\) CMS} & \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 2 \mathrm{~V}\)} & A & 25 & - & 1 & 7 & \(\mu \mathrm{A} V\) \\
\hline & & A & Full & - & - & 10 & \(\mu \mathrm{A} N\) \\
\hline \multirow[t]{2}{*}{\({ }^{-1}\) BIAS PSS} & \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{S}}= \pm 1.25 \mathrm{~V}\)} & A & 25 & - & 6 & 15 & \(\mu \mathrm{AN}\) \\
\hline & & A & Full & - & - & 27 & \(\mu \mathrm{A} N\) \\
\hline Non-Inverting Input Resistance & & A & 25 & 25 & 50 & - & k \(\Omega\) \\
\hline Inverting Input Resistance & & C & 25 & - & 20 & 30 & \(\Omega\) \\
\hline Input Capacitance (Either Input) & & B & 25 & - & 2 & - & pF \\
\hline Input Common Mode Range & & C & Full & \(\pm 2.5\) & \(\pm 3.0\) & - & V \\
\hline Input Noise Voltage (Note 3) & 100 kHz & B & 25 & - & 4 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline +Input Noise Current (Note 3) & 100 kHz & B & 25 & - & 18 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline -Input Noise Current (Note 3) & 100 kHz & B & 25 & - & 21 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline \multicolumn{8}{|l|}{TRANSFER CHARACTERISTICS \(A_{V}=+2\), Unless Otherwise Specified} \\
\hline Open Loop Transimpedance (Note 3) & & B & 25 & - & 300 & - & \(\mathrm{k} \Omega\) \\
\hline -3dB Bandwidth (Note 3) & \[
\begin{aligned}
& V_{\text {OUT }}=0.2 V_{\text {P-P }}, \\
& A_{V}=+1
\end{aligned}
\] & B & 25 & 530 & 850 & - & MHz \\
\hline
\end{tabular}

HFA1130

Electrical Specifications \(\quad V_{S U P P L Y}= \pm 5 V, A_{V}=+1, R_{F}=510 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE2) TEST LEVEL & TEMP. ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline -3dB Bandwidth & \[
\begin{aligned}
& V_{\text {OUT }}=0.2 V_{\text {P-P }}, \\
& A_{V}=+2, R_{F}=360 \Omega
\end{aligned}
\] & B & 25 & - & 670 & - & MHz \\
\hline Full Power Bandwidth & \(4 \mathrm{~V}_{\text {P-P, }}, A_{V}=-1\) & B & Full & - & 300 & - & MHz \\
\hline Gain Flatness (Note 3) & To 100 MHz & B & 25 & - & \(\pm 0.14\) & - & dB \\
\hline Gain Flatness & To 50 MHz & B & 25 & - & \(\pm 0.04\) & - & dB \\
\hline Gain Flatness & To 30MHz & B & 25 & - & \(\pm 0.01\) & - & dB \\
\hline Linear Phase Deviation (Note 3) & DC to 100 MHz & B & 25 & - & 0.6 & - & Degrees \\
\hline Differential Gain & NTSC, \(\mathrm{R}_{\mathrm{L}}=75 \Omega\) & B & 25 & - & 0.03 & - & \% \\
\hline Differential Phase & NTSC, \(\mathrm{R}_{\mathrm{L}}=75 \Omega\) & B & 25 & - & 0.05 & - & Degrees \\
\hline Minimum Stable Gain & & A & Full & 1 & - & - & VN \\
\hline \multicolumn{8}{|l|}{OUTPUT CHARACTERISTICS \(A_{V}=+2\), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Output Voltage (Note 3)} & \multirow[t]{2}{*}{\(A_{V}=-1\)} & A & 25 & \(\pm 3.0\) & \(\pm 3.3\) & - & V \\
\hline & & A & Full & \(\pm 2.5\) & \(\pm 3.0\) & - & V \\
\hline \multirow[t]{2}{*}{Output Current} & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{L}}=50 \Omega, A_{V}=-1\)} & A & 25, 85 & 50 & 60 & - & mA \\
\hline & & A & -40 & 35 & 50 & - & mA \\
\hline DC Closed Loop Output Impedance (Note 3) & & B & 25 & - & 0.07 & - & \(\Omega\) \\
\hline 2nd Harmonic Distortion (Note 3) & \(30 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}\) & B & 25 & - & -56 & - & dBc \\
\hline 3rd Harmonic Distortion (Note 3) & \(30 \mathrm{MHz}, \mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}\) & B & 25 & - & -80 & - & dBc \\
\hline 3rd Order Intercept (Note 3) & 100 MHz & B & 25 & 20 & 30 & - & dBm \\
\hline 1dB Compression & 100 MHz & B & 25 & 15 & 20 & - & dBm \\
\hline \multicolumn{8}{|l|}{TRANSIENT RESPONSE \(\mathrm{A}_{\mathrm{V}}=+2\), Unless Otherwise Specified} \\
\hline Rise Time & \(\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}\) Step & B & 25 & - & 900 & - & ps \\
\hline Overshoot (Note 3) & \(\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}\) Step & B & 25 & - & 10 & - & \% \\
\hline \multirow[t]{2}{*}{Slew Rate} & \[
\begin{aligned}
& A_{V}=+1, \\
& V_{O U T}=5 V_{P-P}
\end{aligned}
\] & B & 25 & - & 1400 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & \[
\begin{aligned}
& A_{V}=+2, \\
& V_{O U T}=5 V_{P-P}
\end{aligned}
\] & B & 25 & 1850 & 2300 & - & V/ \(/\) s \\
\hline 0.1\% Settling Time (Note 3) & \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}\) to 0V & B & 25 & - & 11 & - & ns \\
\hline 0.2\% Settling Time (Note 3) & \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}\) to 0 V & B & 25 & - & 7 & - & ns \\
\hline \multicolumn{8}{|l|}{POWER SUPPLY CHARACTERISTICS} \\
\hline Supply Voltage Range & & B & Full & \(\pm 4.5\) & - & \(\pm 5.5\) & V \\
\hline \multirow[t]{2}{*}{Supply Current (Note 3)} & & A & 25 & - & 21 & 26 & mA \\
\hline & & A & Full & - & - & 33 & mA \\
\hline \multicolumn{8}{|l|}{LIMITING CHARACTERISTICS \(A_{V}=+2, \mathrm{~V}_{\mathrm{H}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-1 \mathrm{~V}\), Unless Otherwise Specified} \\
\hline Clamp Accuracy & \(\mathrm{V}_{\mathrm{IN}}= \pm 2 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1\) & A & 25 & - & 60 & \(\pm 125\) & mV \\
\hline Clamped Overshoot & \[
\begin{aligned}
& \mathrm{V}_{\text {IN }}= \pm 1 \mathrm{~V}, \\
& \text { Input } t_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}=2 \mathrm{~ns}
\end{aligned}
\] & B & 25 & - & 4 & - & \% \\
\hline Overdrive Recovery Time & \(\mathrm{V}_{\mathrm{IN}}= \pm 1 \mathrm{~V}\) & B & 25 & - & 0.75 & 1.5 & ns \\
\hline Negative Clamp Range & & B & 25 & - & -5.0 to +2.0 & - & V \\
\hline Positive Clamp Range & & B & 25 & - & -2.0 to +5.0 & - & V \\
\hline Clamp Input Bias Current & & A & 25 & - & 50 & 200 & \(\mu \mathrm{A}\) \\
\hline Clamp Input Bandwidth & \(\mathrm{V}_{H}\) or \(\mathrm{V}_{\mathrm{L}}=100 \mathrm{mV} \mathrm{P}_{\text {P. }}\) & B & 25 & - & 500 & - & MHz \\
\hline
\end{tabular}

\section*{NOTES:}
2. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.
3. See Typical Performance Curves for more information.

\section*{Application Information}

\section*{Optimum Feedback Resistor ( \(\mathbf{R}_{\mathbf{F}}\) )}

The enclosed plots of inverting and non-inverting frequency response detail the performance of the HFA1100/1120 in various gains. Although the bandwidth dependency on \(A_{C L}\) isn't as severe as that of a voltage feedback amplifier, there is an appreciable decrease in bandwidth at higher gains. This decrease can be minimized by taking advantage of the current feedback amplifier's unique relationship between bandwidth and \(R_{F}\). All current feedback amplifiers require a feedback resistor, even for unity gain applications, and the \(R_{F}\), in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to \(R_{F}\). The HFA1100, 1120 designs are optimized for a \(510 \Omega R_{F}\), at a gain of +1 . Decreasing \(R_{F}\) in a unity gain application decreases stability, resulting in excessive peaking and overshoot (Note: Capacitive feedback causes the same problems due to the feedback impedance decrease at higher frequencies). At higher gains the amplifier is more stable, so \(R_{F}\) can be decreased in a trade-off of stability for bandwidth. The table below lists recommended \(R_{F}\) values for various gains, and the expected bandwidth.
\begin{tabular}{|c|c|c|}
\hline \(\mathbf{A}_{\mathbf{C L}}\) & \(\mathbf{R}_{\mathbf{F}}(\Omega)\) & \(\mathbf{B W}(\mathrm{MHz})\) \\
\hline+1 & 510 & 850 \\
\hline-1 & 430 & 580 \\
\hline+2 & 360 & 670 \\
\hline+5 & 150 & 520 \\
\hline+10 & 180 & 240 \\
\hline+19 & 270 & 125 \\
\hline
\end{tabular}

\section*{Clamp Operation}

\section*{General}

The HFA1130 features user programmable output clamps to limit output voltage excursions. Clamping action is obtained by applying voltages to the \(\mathrm{V}_{\mathrm{H}}\) and \(\mathrm{V}_{\mathrm{L}}\) terminals (pins 8 and 5) of the amplifier. \(\mathrm{V}_{\mathrm{H}}\) sets the upper output limit, while \(\mathrm{V}_{\mathrm{L}}\) sets the lower clamp level. If the amplifier tries to drive the output above \(\mathrm{V}_{\mathrm{H}}\), or below \(\mathrm{V}_{\mathrm{L}}\), the clamp circuitry limits the output voltage at \(\mathrm{V}_{\mathrm{H}}\) or \(\mathrm{V}_{\mathrm{L}}\) ( \(\pm\) the clamp accuracy), respectively. The low input bias currents of the clamp pins allow them to be driven by simple resistive divider circuits, or active elements such as amplifiers or DACs.

\section*{Clamp Circuitry}

Figure 1 shows a simplified schematic of the HFA1130 input stage, and the high clamp \(\left(\mathrm{V}_{\mathrm{H}}\right)\) circuitry. As with all current feedback amplifiers, there is a unity gain buffer \(\left(Q_{x_{1}}-Q_{x_{2}}\right)\) between the positive and negative inputs. This buffer forces \(-I N\) to track \(+\mathbb{N}\), and sets up a slewing current of \(\left(\mathrm{V}_{-1 \mathrm{~N}}-\mathrm{V}_{\mathrm{OUT}}\right) / \mathrm{R}_{\mathrm{F}}\). This current is mirrored onto the high impedance node \((Z)\) by \(Q_{X 3} Q_{X 4}\), where it is converted to a voltage and fed to the output via another unity gain buffer. If no clamping is utilized, the high impedance node may swing within the limits defined by \(Q_{P 4}\) and \(Q_{N 4}\). Note that when the output reaches it's quiescent value, the current flowing through -IN is reduced to only that small current ( \(-I_{\text {BIAS }}\) ) required to keep the output at the final voltage.


FIGURE 1. HFA1130 SIMPLIFIED V HLAMP CIRCUITRY \(^{\text {CIM }}\)
Tracing the path from \(V_{H}\) to \(Z\) illustrates the effect of the clamp voltage on the high impedance node. \(\mathrm{V}_{\mathrm{H}}\) decreases by \(2 \mathrm{~V}_{\mathrm{BE}}\) ( \(Q_{N 6}\) and \(Q_{P 6}\) ) to set up the base voltage on \(Q_{P 5}\). \(Q_{P 5}\) begins to conduct whenever the high impedance node reaches a voltage equal to \(Q_{P 5}\) 's base \(+2 V_{B E}\left(Q_{P 5}\right.\) and \(\left.Q_{N 5}\right)\). Thus, \(Q_{P 5}\) clamps node \(Z\) whenever \(Z\) reaches \(V_{H}\). \(R_{1}\) provides a pull-up network to ensure functionality with the clamp inputs floating. A similar description applies to the symmetrical low clamp circuitry controlled by \(\mathrm{V}_{\mathrm{L}}\).
When the output is clamped, the negative input continues to source a slewing current ( \(\mathrm{I}_{\text {CLAMP }}\) ) in an attempt to force the output to the quiescent voltage defined by the input. \(Q_{P 5}\) must sink this current while clamping, because the -IN current is always mirrored onto the high impedance node. The clamping current is calculated as \(\left(V_{-I N}-V_{O U T}\right) / R_{F}\). As an example, a unity gain circuit with \(\mathrm{V}_{I N}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{H}}=1 \mathrm{~V}\), and \(\mathrm{R}_{\mathrm{F}}=510 \Omega\) would have \(I_{\text {CLAMP }}=(2-1) / 510 \Omega=1.96 \mathrm{~mA}\). Note that \(I_{C C}\) will increase by \(\mathrm{I}_{\text {CLAMP }}\) when the output is clamp limited.

\section*{Clamp Accuracy}

The clamped output voltage will not be exactly equal to the voltage applied to \(\mathrm{V}_{\mathrm{H}}\) or \(\mathrm{V}_{\mathrm{L}}\). Offset errors, mostly due to \(\mathrm{V}_{\mathrm{BE}}\) mismatches, necessitate a clamp accuracy parameter which is found in the device specifications. Clamp accuracy is a function of the clamping conditions. Referring again to Figure 1, it can be seen that one component of clamp accuracy is the \(V_{B E}\) mismatch between the \(Q_{X 6}\) transistors, and the \(Q_{X 5}\) transistors. If the transistors always ran at the same current level there would be no \(V_{B E}\) mismatch, and no contribution to the inaccuracy. The \(Q_{X 6}\) transistors are biased at a constant current, but as described earlier, the current through \(Q_{X 5}\) is equivalent to \(I_{\text {CLAMP. }} V_{B E}\) increases as \(I_{\text {CLAMP }}\) increases, causing the clamped output voltage to increase as well. ICLAMP is a function of the overdrive level ( \(\mathrm{V}_{-1 \mathrm{~N}}-\mathrm{V}_{\text {OUTCLAMPED }}\) ) and \(\mathrm{R}_{\mathrm{F}}\), so clamp accuracy degrades as the overdrive increases, or as \(R_{F}\) decreases. As an example, the specified accuracy of \(\pm 60 \mathrm{mV}\) for a \(2 X\) overdrive with \(R_{F}=510 \Omega\) degrades to \(\pm 220 \mathrm{mV}\) for \(R_{F}=240 \Omega\) at the same overdrive, or to \(\pm 250 \mathrm{mV}\) for a \(3 X\) overdrive with \(R_{F}=510 \Omega\).

Consideration must also be given to the fact that the clamp voltages have an effect on amplifier linearity. The "Nonlinearity Near Clamp Voltage" curve in the data sheet illustrates the impact of several clamp levels on linearity.

\section*{Clamp Range}

Unlike some competitor devices, both \(\mathrm{V}_{\mathrm{H}}\) and \(\mathrm{V}_{\mathrm{L}}\) have usable ranges that cross 0 V . While \(\mathrm{V}_{\mathrm{H}}\) must be more positive than \(\mathrm{V}_{\mathrm{L}}\), both may be positive or negative, within the range restrictions indicated in the specifications. For example, the HFA1130 could be limited to ECL output levels by setting \(\mathrm{V}_{\mathrm{H}}=-0.8 \mathrm{~V}\) and \(\mathrm{V}_{\mathrm{L}}=-1.8 \mathrm{~V} . \mathrm{V}_{\mathrm{H}}\) and \(\mathrm{V}_{\mathrm{L}}\) may be connected to the same voltage (GND for instance) but the result won't be in a DC output voltage from an AC input signal. A \(150-200 \mathrm{mV}\) AC signal will still be present at the output.

\section*{Recovery from Overdrive}

The output voltage remains at the clamp level as long as the overdrive condition remains. When the input voltage drops below the overdrive level ( \(\mathrm{V}_{\mathrm{CLAMP}} / \mathrm{A}_{\mathrm{VCL}}\) ) the amplifier will return to linear operation. A time delay, known as the Overdrive Recovery Time, is required for this resumption of linear operation. The plots of "Unclamped Performance" and "Clamped Performance" highlight the HFA1130's subnanosecond recovery time. The difference between the unclamped and clamped propagation delays is the overdrive recovery time. The appropriate propagation delays are 4.0ns for the unclamped pulse, and 4.8 ns for the clamped ( 2 X overdrive) pulse yielding an overdrive recovery time of 800 ps . The measurement uses the \(90 \%\) point of the output transition to ensure that linear operation has resumed. Note: The propagation delay illustrated is dominated by the fixturing. The delta shown is accurate, but the true HFA1130 propagation delay is 500 ps.

\section*{Use of Die in Hybrid Applications}

This amplifier is designed with compensation to negate the package parasitics that typically lead to instabilities. As a result, the use of die in hybrid applications results in overcompensated performance due to lower parasitic capacitances. Reducing \(R_{F}\) below the recommended values for packaged units will solve the problem. For \(A_{V}=+2\) the recommended starting point is \(300 \Omega\), while unity gain applications should try \(400 \Omega\).

\section*{PC Board Layout}

The frequency performance of this amplifier depends a great deal on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!
Attention should be given to decoupling the power supplies. A large value \((10 \mu \mathrm{~F})\) tantalum in parallel with a small value chip ( \(0.1 \mu \mathrm{~F}\) ) capacitor works well in most cases.
Terminated microstrip signal lines are recommended at the input and output of the device. Output capacitance, such as that resulting from an improperly terminated transmission line will degrade the frequency response of the amplifier and
may cause oscillations. In most cases, the oscillation can be avoided by placing a resistor in series with the output.
Care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input. The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and possible instability. To this end, it is recommended that the ground plane be removed under traces connected to pin 2, and connections to pin 2 should be kept as short as possible.
An example of a good high frequency layout is the Evaluation Board shown below.

\section*{Evaluation Board}

An evaluation board is available for the HFA1130, (Part Number HFA11XXEVAL). Please contact your local sales office for information.
The layout and schematic of the board are shown here:


FIGURE 2. BOARD SCHEMATIC

TOP LAYOUT


BOTTOM LAYOUT


HFA1130
Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\) Unless Otherwise Specified


FIGURE 3. SMALL SIGNAL PULSE RESPONSE


FIGURE 5. UNCLAMPED PERFORMANCE


FIGURE 7. NON-INVERTING FREQUENCY RESPONSE


FIGURE 4. LARGE SIGNAL PULSE RESPONSE


FIGURE 6. CLAMPED PERFORMANCE


FIGURE 8. INVERTING FREQUENCY RESPONSE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{F}=510 \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\) Unless Otherwise Specified (Continued)


FIGURE 9. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS


FIGURE 11. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES


FIGURE 13. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES


FIGURE 10. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS


FIGURE 12. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES


FIGURE 14. -3dB BANDWIDTH vs TEMPERATURE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\) Unless Otherwise Specified (Continued)


FIGURE 15. GAIN FLATNESS


FIGURE 17. OPEN LOOP TRANSIMPEDANCE


FIGURE 19. CLOSED LOOP OUTPUT RESISTANCE


FIGURE 16. DEVIATION FROM LINEAR PHASE


FIGURE 18. SETTLING RESPONSE


FIGURE 20. 3rd ORDER INTERMODULATION INTERCEPT

Typical Performance Curves \(V_{\text {SUPPLY }}= \pm 5 V, R_{F}=510 \Omega, T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 21. 2nd HARMONIC DISTORTION vs POUT


FIGURE 23. OVERSHOOT vs INPUT RISE TIME


FIGURE 25. OVERSHOOT vs FEEDBACK RESISTOR


Figure 22. 3rd harmonic distortion vs Pout


FIGURE 24. OVERSHOOT vs INPUT RISE TIME


FIGURE 26. SUPPLY CURRENT vs TEMPERATURE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\) Unless Otherwise Specified (Continued)


FIGURE 27. SUPPLY CURRENT vs SUPPLY VOLTAGE


FIGURE 29. OUTPUT VOLTAGE vs TEMPERATURE


FIGURE 28. \(V_{10}\) AND BIAS CURRENTS vs TEMPERATURE


FIGURE 30. INPUT NOISE vs FREQUENCY


FIGURE 31. NON-LINEARITY NEAR CLAMP VOLTAGE

\section*{Die Characteristics}

DIE DIMENSIONS:
63 mils \(\times 44\) mils \(\times 19\) mils
\(1600 \mu \mathrm{~m} \times 1130 \mu \mathrm{~m}\)
METALLIZATION:
Type: Metal 1: AICu(2\%)/TiW
Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)
Type: Metal 2: ALCu(2\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)

\section*{PASSIVATION:}

Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
52
SUBSTRATE POTENTIAL (Powered Up):
Floating (Recommend Connection to V-)

Metallization Mask Layout


HFA1135

> 360 MHz , Low Power, Video Operational Amplifier with Output Limiting

\section*{Features}
- User Programmable Output Voltage Limiting
- Fast Overdrive Recovery. . . . . . . . . . . . . . . . . . . . <1ns
- Low Supply Current . . . . . . . . . . . . . . . . . . . . . . . . 6.8mA
- High Input Impedance . . . . . . . . . . . . . . . . . . . . . . . 2M 2
- Wide -3dB Bandwidth . . . . . . . . . . . . . . . . . . . . . 360MHz
- Very Fast Slew Rate . . . . . . . . . . . . . . . . . . . . . . 1200V/ \(\mu \mathrm{s}\)
- Gain Flatness (to 50 MHz ) . . . . . . . . . . . . . . . . . \(\pm 0.07 \mathrm{~dB}\)
- Differential Gain . . . . . . . . . . . . . . . . . . . . . . . . . . 0.02\%
- Differential Phase. . . . . . . . . . . . . . . . . . . 0.04 Degrees
- Pin Compatible Upgrade to CLC501 and CLC502

\section*{Applications}
- Flash A/D Drivers
- High Resolution Monitors
- Professional Video Processing
- Video Digitizing Boards/Systems
- Multimedia Systems
- RGB Preamps
- Medical Imaging
- Hand Held and Miniaturized RF Equipment
- Battery Powered Communications

\section*{Description}

The HFA1135 is a high speed, low power current feedback amplifier build with Harris' proprietary complementary bipolar UHF-1 process. This amplifier features user programmable output limiting, via the \(V_{H}\) and \(V_{L}\) pins.
The HFA1135 is the ideal choice for high speed, low power applications requiring output limiting (e.g. flash A/D drivers), especially those requiring fast overdrive recovery times. The limiting function allows the designer to set the maximum and minimum output levels to protect downstream stages from damage or input saturation. The sub-nanosecond overdrive recovery time ensures a quick return to linear operation following an overdrive condition.
Component and composite video systems also benefit from this operational amplifier's performance, as indicated by the gain flatness, and differential gain and phase specifications.
The HFA1135 is a low power, high performance upgrade for the CLC501 and CLC502.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{c} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HFA1135IP & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
HFA1135IB \\
(H1135I)
\end{tabular} & -40 to 85 & 8 Ld SOIC & M 8.15 \\
\hline HFA11XXEVAL & DIP Evaluation Board for High Speed Op Amps \\
\hline
\end{tabular}

\section*{Pinout}


\section*{Absolute Maximum Ratings \(T_{A}=25^{\circ} \mathrm{C}\)}

Voltage Between V+ and V-
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(V_{\text {SUPPLY }}\)
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 C
Output Current (Note 1)
Short Circuit Protected
30 mA Continuous
\(60 \mathrm{~mA} \leq 50 \%\) Duty Cycle
ESD Rating. \(>600 \mathrm{~V}\)

\section*{Thermal Information}

Thermal Resistance (Typical, Note 2) \(\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\)

SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Maximum Junction Temperature (Die Only). . . . . . . . . . . . . . . . \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (Plastic Package) . . . . . . . . \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range . ......... \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\) (SOIC - Lead Tips Only)

\section*{Operating Conditions}

Temperature Range
\(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous ( \(100 \%\) duty cycle) output current must not exceed 30 mA for maximum reliability.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(\quad V_{S U P P L Y}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=510 \Omega\) (Note 4), \(R_{L}=100 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & & A & 25 & - & 2 & 5 & mV \\
\hline & & A & Full & - & 3 & 8 & mV \\
\hline Average Input Offset Voltage Drift & & B & Full & - & 1 & 10 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Input Offset Voltage Common-Mode Rejection Ratio} & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 47 & 50 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 85 & 45 & 48 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 45 & 48 & - & dB \\
\hline \multirow[t]{3}{*}{Input Offset Voltage Power Supply Rejection Ratio} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 50 & 54 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & 47 & 50 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 47 & 50 & - & dB \\
\hline \multirow[t]{2}{*}{Non-Inverting Input Bias Current} & & A & 25 & - & 6 & 15 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 10 & 25 & \(\mu \mathrm{A}\) \\
\hline Non-Inverting Input Bias Current Drift & & B & Full & - & 5 & 60 & \(n{ }^{\circ}{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Non-Inverting Input Bias Current Power Supply Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 0.5 & 1 & \(\mu \mathrm{A} N\) \\
\hline & \(\Delta \mathrm{V}_{\text {PS }}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 0.8 & 3 & \(\mu \mathrm{A} N\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 0.8 & 3 & \(\mu \mathrm{A} N\) \\
\hline \multirow[t]{3}{*}{Non-Inverting Input Resistance} & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 25 & 0.8 & 2 & - & \(\mathrm{M} \Omega\) \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 85 & 0.5 & 1.3 & - & \(\mathrm{M} \Omega\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 0.5 & 1.3 & - & M \(\Omega\) \\
\hline \multirow[t]{2}{*}{Inverting Input Bias Current} & & A & 25 & - & 2 & 7.5 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 5 & 15 & \(\mu \mathrm{A}\) \\
\hline Inverting Input Bias Current Drift & & B & Full & - & 60 & 200 & \(\mathrm{nA}^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Inverting Input Bias Current Common-Mode Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 3 & 6 & \(\mu \mathrm{A} N\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 4 & 8 & \(\mu \mathrm{A} N\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 4 & 8 & \(\mu \mathrm{A}\) V \\
\hline
\end{tabular}

Electrical Specifications \(V_{S U P P L Y}= \pm 5 V, A_{V}=+1, R_{F}=510 \Omega\) (Note 4), \(R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{3}{*}{Inverting Input Bias Current Power Supply Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 2 & 5 & \(\mu \mathrm{A} N\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 4 & 8 & \(\mu \mathrm{A} N\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 4 & 8 & \(\mu \mathrm{A} V\) \\
\hline Inverting Input Resistance & & C & 25 & - & 40 & - & \(\Omega\) \\
\hline Input Capacitance (Either Input) & & C & 25 & - & 1.6 & - & pF \\
\hline \multirow[t]{2}{*}{Input Voltage Common Mode Range (Implied by \(\mathrm{V}_{10}\) CMRR, \(+\mathrm{R}_{\text {IN }}\), and \({ }^{-I_{\text {BIAS }}}\) CMS tests)} & & A & 25, 85 & \(\pm 1.8\) & \(\pm 2.4\) & - & V \\
\hline & & A & -40 & \(\pm 1.2\) & \(\pm 1.7\) & - & V \\
\hline Input Noise Voltage Density & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 3.5 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Non-Inverting Input Noise Current Density & \(f=100 \mathrm{kHz}\) & B & 25 & - & 2.5 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Inverting Input Noise Current Density & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 20 & - & \(\mathrm{pA} \sqrt{\mathrm{Hz}}\) \\
\hline \multicolumn{8}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline Open Loop Transimpedance Gain & \(A_{V}=-1\) & C & 25 & - & 500 & - & k \(\Omega\) \\
\hline \multicolumn{8}{|l|}{AC CHARACTERISTICS \(A_{V}=+2, R_{F}=250 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{4}{*}{-3dB Bandwidth ( \(\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-P }}\) )} & \(A_{V}=+1, R_{F}=1.5 \mathrm{k} \Omega\) & B & 25 & - & 660 & - & MHz \\
\hline & \(A_{V}=+2, R_{F}=250 \Omega\) & B & 25 & - & 360 & - & MHz \\
\hline & \(A_{V}=+2, R_{F}=330 \Omega\) & B & 25 & - & 315 & - & MHz \\
\hline & \(A_{V}=-1, R_{F}=330 \Omega\) & B & 25 & - & 290 & - & MHz \\
\hline \multirow[t]{3}{*}{Full Power Bandwidth \(\left(V_{\text {OUT }}=5 V_{\text {P-P }}\right.\) at \(A_{V}=+2 /-1\), \(4 V_{\text {P-P }}\) at \(A_{V}=+1\) )} & \(A_{V}=+1, R_{F}=1.5 \mathrm{k} \Omega\) & B & 25 & - & 90 & - & MHz \\
\hline & \(A_{V}=+2, R_{F}=250 \Omega\) & B & 25 & - & 130 & - & MHz \\
\hline & \(A_{V}=-1, R_{F}=330 \Omega\) & B & 25 & - & 170 & - & MHz \\
\hline \multirow[t]{3}{*}{Gain Flatness (to \(25 \mathrm{MHz}, \mathrm{V}_{\mathrm{OUT}}=0.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) )} & \(A_{V}=+1, R_{F}=1.5 \mathrm{k} \Omega\) & B & 25 & - & \(\pm 0.10\) & - & dB \\
\hline & \(A_{V}=+2, R_{F}=250 \Omega\) & B & 25 & - & \(\pm 0.02\) & - & dB \\
\hline & \(A_{V}=+2, R_{F}=330 \Omega\) & B & 25 & - & \(\pm 0.02\) & - & dB \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Gain Flatness } \\
& \text { (to } 50 \mathrm{MHz}, \mathrm{~V}_{\text {OUT }}=0.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} \text { ) }
\end{aligned}
\]} & \(A_{V}=+1, R_{F}=1.5 \mathrm{k} \Omega\) & B & 25 & - & \(\pm 0.22\) & - & dB \\
\hline & \(A_{V}=+2, R_{F}=250 \Omega\) & B & 25 & - & \(\pm 0.07\) & - & dB \\
\hline & \(A_{V}=+2, R_{F}=330 \Omega\) & B & 25 & - & \(\pm 0.03\) & - & dB \\
\hline Minimum Stable Gain & & A & Full & - & 1 & - & \(\mathrm{V} N\) \\
\hline \multicolumn{8}{|l|}{OUTPUT CHARACTERISTICS \(\quad R_{F}=510 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Output Voltage Swing} & \multirow[t]{2}{*}{\(A_{V}=-1, R_{L}=100 \Omega\)} & A & 25 & \(\pm 3\) & \(\pm 3.4\) & - & V \\
\hline & & A & Full & \(\pm 2.8\) & \(\pm 3\) & - & V \\
\hline \multirow[t]{2}{*}{Output Current} & \multirow[t]{2}{*}{\(A_{V}=-1, R_{L}=50 \Omega\)} & A & 25, 85 & 50 & 60 & - & mA \\
\hline & & A & -40 & 28 & 42 & - & mA \\
\hline Output Short Circuit Current & & B & 25 & - & 90 & - & mA \\
\hline Closed Loop Output Impedance & \(D C, A_{V}=+2, R_{F}=250 \Omega\) & B & 25 & - & 0.07 & - & \(\Omega\) \\
\hline \multirow[t]{2}{*}{Second Harmonic Distortion
\[
\left(A_{V}=+2, R_{F}=250 \Omega, V_{O U T}=2 V_{P-P}\right)
\]} & 10 MHz & B & 25 & - & -50 & - & dBc \\
\hline & 20 MHz & B & 25 & - & -45 & - & dBc \\
\hline \multirow[t]{2}{*}{Third Harmonic Distortion
\[
\left(A_{V}=+2, R_{F}=250 \Omega, V_{O U T}=2 V_{P-P}\right)
\]} & 10 MHz & B & 25 & - & -50 & - & dBc \\
\hline & 20 MHz & B & 25 & - & -45 & \(\bullet\) & dBc \\
\hline
\end{tabular}

HFA1135

Electrical Specifications \(V_{S U P P L Y}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=510 \Omega\) (Note 4), \(R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & \[
\begin{gathered}
\text { (NOTE 3) } \\
\text { TEST } \\
\text { LEVEL }
\end{gathered}
\] & \begin{tabular}{l}
TEMP. \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{TRANSIENT CHARACTERISTICS \(A_{V}=+2, R_{F}=250 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Rise and Fall Times
\[
\left(\mathrm{V}_{\mathrm{OUT}}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\right)
\]} & Rise Time & B & 25 & - & 0.81 & - & ns \\
\hline & Fall Time & B & 25 & - & 1.25 & - & ns \\
\hline \multirow[t]{2}{*}{Overshoot (Note 5) \(\left(\mathrm{V}_{\text {OUT }}=0\right.\) to \(\left.0.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }} \mathrm{t}_{\text {RISE }}=2.5 \mathrm{~ns}\right)\)} & +OS & B & 25 & - & 3 & - & \% \\
\hline & -OS & B & 25 & - & 5 & - & \% \\
\hline \multirow[t]{2}{*}{Overshoot (Note 5) \(\left(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}_{\text {P-P }}, \mathrm{V}_{\text {IN }} \mathrm{t}_{\text {RISE }}=2.5 \mathrm{~ns}\right)\)} & +OS & B & 25 & - & 2 & - & \% \\
\hline & -OS & B & 25 & - & 10 & - & \% \\
\hline \multirow[t]{2}{*}{Slew Rate
\[
\left(V_{\text {OUT }}=4 V_{P-P}, A_{V}=+1, R_{F}=1.5 \mathrm{k} \Omega\right)
\]} & +SR & B & 25 & - & 875 & - & V/ \(\mu \mathrm{s}\) \\
\hline & -SR & B & 25 & - & 510 & - & V/us \\
\hline \multirow[t]{2}{*}{Slew Rate
\[
\left(V_{\text {OUT }}=5 V_{P-P}, A_{V}=+2, R_{F}=250 \Omega\right)
\]} & +SR & B & 25 & - & 1530 & - & V/ \(\mu \mathrm{s}\) \\
\hline & -SR & B & 25 & - & 850 & - & V/us \\
\hline \multirow[t]{2}{*}{Slew Rate
\[
\left(V_{\text {OUT }}=5 V_{P-P}, A_{V}=-1, R_{F}=330 \Omega\right)
\]} & +SR & B & 25 & - & 2300 & - & V/us \\
\hline & -SR & B & 25 & - & 1200 & - & V/us \\
\hline \multirow[t]{3}{*}{Settling Time ( \(\mathrm{V}_{\text {OUT }}=+2 \mathrm{~V}\) to 0 V step)} & To 0.1\% & B & 25 & - & 15 & - & ns \\
\hline & To 0.05\% & B & 25 & - & 20 & - & ns \\
\hline & To 0.02\% & B & 25 & - & 30 & - & ns \\
\hline \multicolumn{8}{|l|}{VIDEO CHARACTERISTICS \(A_{V}=+2, \mathrm{R}_{\mathrm{F}}=250 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Differential Gain ( \(\mathrm{f}=3.58 \mathrm{MHz}\) )} & \(\mathrm{R}_{\mathrm{L}}=150 \Omega\) & B & 25 & - & 0.02 & - & \% \\
\hline & \(\mathrm{R}_{\mathrm{L}}=75 \Omega\) & B & 25 & - & 0.03 & - & \% \\
\hline \multirow[t]{2}{*}{Differential Phase ( \(\mathrm{f}=3.58 \mathrm{MHz}\) )} & \(R_{L}=150 \Omega\) & B & 25 & - & 0.04 & - & Degrees \\
\hline & \(R_{L}=75 \Omega\) & B & 25 & \(\bullet\) & 0.06 & - & Degrees \\
\hline \multicolumn{8}{|l|}{OUTPUT LIMITING CHARACTERISTICS \(A_{V}=+2, \mathrm{R}_{\mathrm{F}}=250 \Omega, \mathrm{~V}_{\mathrm{H}}=+1 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=-1 \mathrm{~V}\), Unless Otherwise Specified} \\
\hline Clamp Accuracy & \(\mathrm{V}_{1 N}= \pm 2 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=-1, \mathrm{R}_{\mathrm{F}}=510 \Omega\) & A & Full & -125 & 25 & 125 & mV \\
\hline Overdrive Recovery Time & \(\mathrm{V}_{1 \mathrm{~N}}= \pm 1 \mathrm{~V}\) & B & 25 & \(\bullet\) & 0.8 & - & ns \\
\hline Negative Clamp Range & & B & 25 & & . 0 to + & & V \\
\hline Positive Clamp Range & & B & 25 & & . 0 to +5 & & V \\
\hline \multirow[t]{2}{*}{Clamp Input Bias Current} & & A & 25 & - & 50 & 200 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 80 & 200 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{8}{|l|}{POWER SUPPLY CHARACTERISTICS} \\
\hline Power Supply Range & & C & 25 & \(\pm 4.5\) & - & \(\pm 5.5\) & V \\
\hline \multirow[t]{2}{*}{Power Supply Current} & & A & 25 & 6.6 & 6.8 & 7.1 & mA \\
\hline & & A & Full & 6.4 & 6.9 & 7.3 & mA \\
\hline
\end{tabular}

\section*{NOTES:}
3. Test Level: A. Production Tested.; B. Typical or Guaranteed Limit Based on Characterization.; C. Design Typical for Information Only.
4. The optimum feedback resistor for the HFA1135 at \(A_{V}=+1\) is \(1.5 \mathrm{k} \Omega\). The Production Tested parameters are tested with \(\mathrm{R}_{\mathrm{F}}=510 \Omega\) because the HFA1135 shares test hardware with the HFA1105 amplifier.
5. Undershoot dominates for output signal swings below GND (e.g., \(0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}\) ), yielding a higher overshoot limit compared to the \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) to 0.5 V condition.

\section*{Die Characteristics}

DIE DIMENSIONS:
59 mils \(\times 58.2\) mils \(\times 19\) mils
\(1500 \mu \mathrm{~m} \times 1480 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)
METALLIZATION:
Type: Metal 1: \(\operatorname{AICu}(2 \%) / T i W\)
Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)
Type: Metal 2: AICu(2\%)
Thickness: Metal \(2: 16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)
SUBSTRATE POTENTIAL (Fowered Up):
Floating (Recommend Connection to V-)

\section*{PASSIVATION:}

Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:

PROCESS:
Bipolar Dielectric Isolation

Metallization Mask Layout


\title{
330MHz, Low Power, Current Feedback Video
}

November 1996

\section*{Features}
- Low Supply Current. . . . . . . . . . . . . . . . . . . . . . . 5.8mA
- High Input Impedance \(1 \mathrm{M} \Omega\)
- Wide -3dB Bandwidth . . . . . . . . . . . . . . . . . . . 330MHz
- Very Fast Slew Rate . . . . . . . . . . . . . . . . . . . . . . 1000V/us
- Gain Flatness (to 75 MHz ) . . . . . . . . . . . . . . . . . \(\pm 0.1 \mathrm{~dB}\)
- Differential Gain . . . . . . . . . . . . . . . . . . . . . . . . . . 0.02\%
- Differential Phase. . . . . . . . . . . . . . . . . . . 0.03 Degrees
- Output Enable/Disable Time \(\qquad\) 180ns/35ns
- Pin Compatible Upgrade for CLC410

\section*{Applications}
- Flash A/D Drivers
- Video Switching and Routing
- Professional Video Processing
- Video Digitizing Boards/Systems
- Multimedia Systems
- RGB Preamps
- Medical Imaging
- Hand Held and Miniaturized RF Equipment
- Battery Powered Communications

\section*{Description}

The HFA1145 is a high speed, low power current feedback amplifier built with Harris' proprietary complementary bipolar UHF-1 process.

This amplifier features a TTL/CMOS compatible disable control, pin 8, which when pulled low reduces the supply current and forces the output into a high impedance state. This allows easy implementation of simple, low power video switching and routing systems. Component and composite video systems also benefit from this op amp's excellent gain flatness, and good differential gain and phase specifications.

Multiplexed A/D applications will also find the HFA1145 useful as the A/D driver/multiplexer.

The HFA1145 is a low power, high performance upgrade for the CLC410.

For Military grade product, please refer to the HFA1145/883 data sheet.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{c} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. RANGE \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular} \\
\hline HFA1145IP & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
HFA1145IB \\
(H1145I)
\end{tabular} & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline HFA11XXEVAL & \multicolumn{3}{|c|}{ DIP Evaluation Board for High Speed Op Amps } \\
\hline
\end{tabular}

\section*{Pinout}

HFA1145
(PDIP, SOIC)
TOP VIEW


\section*{Absolute Maximum Ratings}

Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11V
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(V_{\text {SUPPLY }}\)
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V
Output Current (Note 1) Short Circuit Protected 30 mA Continuous \(60 \mathrm{~mA} \leq 50 \%\) Duty Cycle
ESD Rating. \(>600 \mathrm{~V}\)
Operating Conditions
Temperature Range \(\qquad\)
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous ( \(100 \%\) duty cycle) output current must not exceed 30 mA for maximum reliability.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(V_{S U P P L Y}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=510 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP. ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & & A & 25 & - & 2 & 5 & mV \\
\hline & & A & Full & - & 3 & 8 & mV \\
\hline Average Input Offset Voltage Drift & & B & Full & - & 1 & 10 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Input Offset Voltage Common-Mode Rejection Ratio} & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 47 & 50 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 85 & 45 & 48 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 45 & 48 & - & dB \\
\hline \multirow[t]{3}{*}{Input Offset Voltage Power Supply Rejection Ratio} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 50 & 54 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & 47 & 50 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 47 & 50 & - & dB \\
\hline \multirow[t]{2}{*}{Non-Inverting Input Bias Current} & & A & 25 & - & 6 & 15 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 10 & 25 & \(\mu \mathrm{A}\) \\
\hline Non-Inverting Input Bias Current Drift & & B & Full & - & 5 & 60 & \(n \mathrm{~A}^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Non-Inverting Input Bias Current Power Supply Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 0.5 & 1 & \(\mu \mathrm{AV}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 0.8 & 3 & \(\mu \mathrm{AV}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 0.8 & 3 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline \multirow[t]{3}{*}{Non-Inverting Input Resistance} & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 25 & 0.8 & 1.2 & - & \(\mathrm{M} \Omega\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 85 & 0.5 & 0.8 & - & \(\mathrm{M} \Omega\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 0.5 & 0.8 & \(\bullet\) & \(\mathrm{M} \Omega\) \\
\hline \multirow[t]{2}{*}{Inverting Input Bias Current} & & A & 25 & - & 2 & 7.5 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 5 & 15 & \(\mu \mathrm{A}\) \\
\hline Inverting Input Bias Current Drift & & B & Full & - & 60 & 200 & \(n \mathrm{~A}^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Inverting Input Bias Current Common-Mode Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 3 & 6 & \(\mu \mathrm{AV}\) \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 4 & 8 & \(\mu \mathrm{AV}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 4 & 8 & \(\mu \mathrm{AV}\) \\
\hline \multirow[t]{3}{*}{Inverting Input Bias Current Power Supply Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 2 & 5 & \(\mu \mathrm{AV}\) \\
\hline & \(\Delta V_{\text {PS }}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 4 & 8 & \(\mu \mathrm{AV}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 4 & 8 & \(\mu \mathrm{AV}\) \\
\hline Inverting Input Resistance & & C & 25 & - & 60 & - & \(\Omega\) \\
\hline
\end{tabular}

HFA1145

Electrical Specifications \(V_{S U P P L Y}= \pm 5 V, A_{V}=+1, R_{F}=510 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline Input Capacitance & & C & 25 & - & 1.6 & - & pF \\
\hline \multirow[t]{2}{*}{Input Voitage Common Mode Range (Implied by \(\mathrm{V}_{1 \mathrm{O}}\) CMRR, \(+\mathrm{R}_{\mathrm{IN}}\), and \({ }^{-\mathrm{I}_{\mathrm{BIAS}}}\) CMS tests)} & & A & 25,85 & \(\pm 1.8\) & \(\pm 2.4\) & - & V \\
\hline & & A & -40 & \(\pm 1.2\) & \(\pm 1.7\) & - & V \\
\hline Input Noise Voltage Density (Note 6) & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 3.5 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Non-Inverting Input Noise Current Density (Note 6) & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 2.5 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Inverting Input Noise Current Density (Note 6) & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 20 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline \multicolumn{8}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline Open Loop Transimpedance Gain & \(A_{V}=-1\) & C & 25 & - & 500 & - & \(\mathrm{k} \Omega\) \\
\hline \multicolumn{8}{|l|}{AC CHARACTERISTICS \(\quad R_{F}=510 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{7}{*}{-3dB Bandwidth \(\left(\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-P }}\right.\), Note 6\()\)} & \multirow[t]{2}{*}{\(\mathrm{A}_{\mathrm{V}}=+1,+\mathrm{R}_{\mathrm{S}}=510 \Omega\)} & B & 25 & - & 270 & - & MHz \\
\hline & & B & Full & - & 240 & - & MHz \\
\hline & \(A_{V}=-1, R_{F}=425 \Omega\) & B & 25 & - & 300 & - & MHz \\
\hline & \multirow[t]{2}{*}{\(A_{V}=+2\)} & B & 25 & - & 330 & - & MHz \\
\hline & & B & Full & - & 260 & - & MHz \\
\hline & \multirow[t]{2}{*}{\(A_{V}=+10, R_{F}=180 \Omega\)} & B & 25 & - & 130 & - & MHz \\
\hline & & B & Full & - & 90 & - & MHz \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Full Power Bandwidth \(\left(V_{\text {OUT }}=5 V_{\text {P.P }}\right.\) at \(A_{V}=+2 /-1\), \\
\(4 V_{\text {P-P }}\) at \(A_{V}=+1\), Note 6)
\end{tabular}} & \(\mathrm{A}_{\mathrm{V}}=+1,+\mathrm{R}_{\mathrm{S}}=510 \Omega\) & B & 25 & - & 135 & - & MHz \\
\hline & \(A_{V}=-1\) & B & 25 & - & 140 & - & MHz \\
\hline & \(A_{V}=+2\) & B & 25 & - & 115 & - & MHz \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Gain Flatness } \\
& \left(\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-P }}, \text { Note } 6\right)
\end{aligned}
\]} & \multirow[t]{2}{*}{To 25 MHz} & B & 25 & - & \(\pm 0.03\) & - & dB \\
\hline & & B & Full & - & \(\pm 0.04\) & - & dB \\
\hline & \multirow[t]{2}{*}{To 75 MHz} & B & 25 & - & \(\pm 0.11\) & - & dB \\
\hline & & B & Full & - & \(\pm 0.22\) & - & dB \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Gain Flatness } \\
& \left(A_{V}=+1,+R_{S}=510 \Omega, V_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-P }},\right. \\
& \text { Note 6) }
\end{aligned}
\]} & To 25 MHz & B & 25 & - & \(\pm 0.03\) & - & dB \\
\hline & To 75 MHz & B & 25 & - & \(\pm 0.09\) & - & dB \\
\hline Minimum Stable gain & & A & Full & - & 1 & - & \(\mathrm{V} / \mathrm{N}\) \\
\hline \multicolumn{8}{|l|}{OUTPUT CHARACTERISTICS \(A_{V}=+2, \mathrm{R}_{\mathrm{F}}=510 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Output Voltage Swing (Note 6)} & \multirow[t]{2}{*}{\(A_{V}=-1, R_{L}=100 \Omega\)} & A & 25 & \(\pm 3\) & \(\pm 3.4\) & \(\cdot\) & V \\
\hline & & A & Full & \(\pm 2.8\) & \(\pm 3\) & - & V \\
\hline \multirow[t]{2}{*}{Output Current (Note 6)} & \multirow[t]{2}{*}{\(A_{V}=-1, R_{L}=50 \Omega\)} & A & 25, 85 & 50 & 60 & - & mA \\
\hline & & A & -40 & 28 & 42 & - & mA \\
\hline Output Short Circuit Current & & B & 25 & - & 90 & - & mA \\
\hline Closed Loop Output Impedance (Note 6) & DC & B & 25 & - & 0.08 & - & \(\Omega\) \\
\hline \multirow[t]{2}{*}{Second Harmonic Distortion ( \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}\), Note 6 )} & 10 MHz & B & 25 & - & -48 & - & dBc \\
\hline & 20 MHz & B & 25 & - & -44 & - & dBc \\
\hline \multirow[t]{2}{*}{Third Harmonic Distortion ( \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}\), Note 6)} & 10 MHz & B & 25 & - & -50 & - & dBc \\
\hline & 20 MHz & B & 25 & - & -45 & - & dBc \\
\hline Reverse Isolation ( \(\mathrm{S}_{12}\), Note 6) & 30 MHz & B & 25 & - & -55 & - & dB \\
\hline \multicolumn{8}{|l|}{TRANSIENT CHARACTERISTICS \(A_{V}=+2, \mathrm{R}_{F}=510 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Rise and Fall Times} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}_{\text {P-P }}\)} & B & 25 & - & 1.1 & - & ns \\
\hline & & B & Full & - & 1.4 & - & ns \\
\hline
\end{tabular}

HFA1145

Electrical Specifications \(V_{S U P P L Y}= \pm 5 V, A_{V}=+1, R_{F}=510 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP. ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Overshoot (Note 4) \\
( \(\mathrm{V}_{\text {OUT }}=0\) to \(0.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }} \mathrm{t}_{\text {RISE }}=1 \mathrm{~ns}\) )
\end{tabular}} & +OS & B & 25 & - & 3 & - & \% \\
\hline & -os & B & 25 & - & 5 & - & \% \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Overshoot }(\text { Note } 4) \\
& \left(V_{\text {OUT }}=0.5 V_{\text {P-P }}, V_{\text {IN }} \text { t }_{\text {RISE }}=1 \mathrm{~ns}\right)
\end{aligned}
\]} & +OS & B & 25 & - & 3 & - & \% \\
\hline & -OS & B & 25 & - & 11 & - & \% \\
\hline \multirow[t]{4}{*}{Slew Rate
\[
\left(V_{\text {OUT }}=4 V_{P-P}, A_{V}=+1,+R_{S}=510 \Omega\right)
\]} & \multirow[t]{2}{*}{+SR} & B & 25 & - & 1000 & - & V/ \(/ \mathrm{s}\) \\
\hline & & B & Full & - & 975 & - & V/ \(/ \mathrm{s}\) \\
\hline & \multirow[t]{2}{*}{-SR (Note 5)} & B & 25 & - & 650 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline & & B & Full & - & 580 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline \multirow[t]{4}{*}{Slew Rate
\[
\left(\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{~A}_{\mathrm{V}}=+2\right)
\]} & \multirow[t]{2}{*}{+SR} & B & 25 & - & 1400 & - & V/us \\
\hline & & B & Full & - & 1200 & - & V/us \\
\hline & \multirow[t]{2}{*}{-SR (Note 5)} & B & 25 & - & 800 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & & B & Full & - & 700 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Slew Rate } \\
& \left(V_{\text {OUT }}=5 V_{P-P}, A_{V}=-1\right)
\end{aligned}
\]} & \multirow[t]{2}{*}{+SR} & B & 25 & - & 2100 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & & B & Full & - & 1900 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & \multirow[t]{2}{*}{-SR (Note 5)} & B & 25 & - & 1000 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & & B & Full & - & 900 & - & V/us \\
\hline \multirow[t]{3}{*}{Settling Time ( \(\mathrm{V}_{\text {OUT }}=+2 \mathrm{~V}\) to 0 V step, Note 6)} & To 0.1\% & B & 25 & - & 15 & - & ns \\
\hline & To 0.05\% & B & 25 & - & 23 & - & ns \\
\hline & To 0.02\% & B & 25 & - & 30 & - & ns \\
\hline Overdrive Recovery Time & \(\mathrm{V}_{1 \mathrm{~N}}= \pm 2 \mathrm{~V}\) & B & 25 & - & 8.5 & - & ns \\
\hline \multicolumn{8}{|l|}{VIDEO CHARACTERISTICS \(\quad A_{V}=+2, \mathrm{R}_{\mathrm{F}}=510 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Differential Gain ( \(\mathrm{f}=3.58 \mathrm{MHz}\) )} & \(\mathrm{R}_{\mathrm{L}}=150 \Omega\) & B & 25 & - & 0.02 & - & \% \\
\hline & \(\mathrm{R}_{\mathrm{L}}=75 \Omega\) & B & 25 & - & 0.03 & - & \% \\
\hline \multirow[t]{2}{*}{Differential Phase ( \(f=3.58 \mathrm{MHz}\) )} & \(R_{L}=150 \Omega\) & B & 25 & - & 0.03 & \(\cdot\) & Degrees \\
\hline & \(R_{L}=75 \Omega\) & B & 25 & - & 0.05 & - & Degrees \\
\hline \multicolumn{8}{|l|}{DISABLE CHARACTERISTICS} \\
\hline Disabled Supply Current & \(\mathrm{V}_{\text {DISABLE }}=0 \mathrm{~V}\) & A & Full & - & 3 & 4 & mA \\
\hline DISABLE Input Logic Low & & A & Full & - & - & 0.8 & V \\
\hline \multirow[t]{2}{*}{DISABLE Input Logic High} & & A & 25,85 & 2.0 & - & - & V \\
\hline & & A & -40 & 2.4 & - & - & V \\
\hline \(\overline{\text { DISABLE }}\) Input Logic Low Current & \(\mathrm{V}_{\text {DISABLE }}=0 \mathrm{~V}\) & A & Full & - & 100 & 200 & \(\mu \mathrm{A}\) \\
\hline DISABLE Input Logic High Current & \(\mathrm{V}_{\text {DISABLE }}=5 \mathrm{~V}\) & A & Full & - & 1 & 15 & \(\mu \mathrm{A}\) \\
\hline Output Disable Time (Note 6) & \[
\begin{aligned}
& V_{\text {IN }}= \pm 1 \mathrm{~V}, \\
& V_{\overline{D I S A B L E}}=2.4 \mathrm{~V} \text { to } 0 \mathrm{~V}
\end{aligned}
\] & B & 25 & - & 35 & - & ns \\
\hline Output Enable Time (Note 6) & \[
\begin{array}{|l|}
\hline \mathrm{V}_{\text {IN }}= \pm 1 \mathrm{~V}, \\
\mathrm{~V}_{\mathrm{DISABLE}}=0 \mathrm{~V} \text { to } 2.4 \mathrm{~V} \\
\hline
\end{array}
\] & B & 25 & - & 180 & - & ns \\
\hline Disabled Output Capacitance & \(\mathrm{V}_{\text {DISABLE }}=0 \mathrm{~V}\) & B & 25 & - & 2.5 & \(\cdot\) & pF \\
\hline Disabled Output Leakage & \[
\begin{aligned}
& \mathrm{V}_{\text {DISABLE }}=0 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=\mp 2 \mathrm{~V}, \\
& \mathrm{~V}_{\text {OUT }}= \pm 3 \mathrm{~V}
\end{aligned}
\] & A & Full & - & 3 & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Off Isolation
\[
\left(V_{\text {DISABLE }}=0 V, V_{I N}=1 V_{P-P}, \text { Note } 6\right)
\]} & At 5MHz & B & 25 & - & -75 & - & dB \\
\hline & At 25 MHz & B & 25 & - & -60 & - & dB \\
\hline \multicolumn{8}{|l|}{POWER SUPPLY CHARACTERISTICS} \\
\hline Power Supply Range & & C & 25 & \(\pm 4.5\) & \(\cdot\) & \(\pm 5.5\) & V \\
\hline
\end{tabular}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=510 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ PARAMETER } & TEST CONDITIONS & \begin{tabular}{c} 
(NOTE 3) \\
TEST \\
LEVEL
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
\({ }^{\circ}{ }^{\circ}\) C)
\end{tabular} & MIN & TYP & MAX & UNITS \\
\hline Power Supply Current & & A & 25 & - & 5.8 & 6.1 & mA \\
\hline & & A & Full & - & 5.9 & 6.3 & mA \\
\hline
\end{tabular}

NOTES:
3. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.
4. Undershoot dominates for output signal swings below GND (e.g. \(0.5 \mathrm{~V}_{\text {P-p }}\) ), yielding a higher overshoot limit compared to the \(\mathrm{V}_{\mathrm{OUT}}=0\) to 0.5 V condition. See the "Application Information" section for details.
5. Slew rates are asymmetrical if the output swings below GND (e.g. a bipolar signal). Positive unipolar output signals have symmetric positive and negative slew rates comparable to the +SR specification. See the "Application Information" section, and the pulse response graphs for details.
6. See Typical Performance Curves for more information.

\section*{Application Information}

\section*{Optimum Feedback Resistor}

Although a current feedback amplifier's bandwidth dependency on closed loop gain isn't as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback amplifier's unique relationship between bandwidth and \(R_{F}\) All current feedback amplifiers require a feedback resistor, even for unity gain applications, and \(R_{F}\) in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to \(R_{F}\) The HFA1145 design is optimized for \(R_{F}=510 \Omega\) at a gain of +2 . Decreasing \(R_{F}\) decreases stability, resulting in excessive peaking and overshoot (Note: Capacitive feedback will cause the same problems due to the feedback impedance decrease at higher frequencies). At higher gains, however, the amplifier is more stable so \(R_{F}\) can be decreased in a trade-off of stability for bandwidth.

The table below lists recommended \(R_{F}\) values for various gains, and the expected bandwidth. For a gain of +1 , a resistor ( \(+\mathrm{R}_{\mathrm{S}}\) ) in series with +IN is required to reduce gain peaking and increase stability.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
GAIN \\
\(\left(\mathbf{A}_{C L}\right)\)
\end{tabular} & \(\mathbf{R}_{\mathbf{F}}(\Omega)\) & \begin{tabular}{c} 
BANDWIDTH \\
\((\mathbf{M H z})\)
\end{tabular} \\
\hline-1 & 425 & 300 \\
\hline+1 & \(510\left(+R_{\mathbf{S}}=510 \Omega\right)\) & 270 \\
\hline+2 & 510 & 330 \\
\hline+5 & 200 & 300 \\
\hline+10 & 180 & 130 \\
\hline
\end{tabular}

Non-inverting Input Source Impedance
For best operation, the DC source impedance seen by the non-inverting input should be \(\geq 50 \Omega\). This is especially important in inverting gain configurations where the non-inverting input would normally be connected directly to GND.

\section*{DISABLE Input TTL Compatibility}

The HFA1145 derives an internal GND reference for the digital circuitry as long as the power supplies are symmetrical
about GND. With symmetrical supplies the digital switching threshold \(\left(\mathrm{V}_{\mathrm{TH}}=\left(\mathrm{V}_{\mathrm{IH}}+\mathrm{V}_{\mathrm{IL}}\right) / 2=(2.0+0.8) / 2\right)\) is 1.4 V , which ensures the TTL compatibility of the DISABLE input. If asymmetrical supplies (e.g. \(+10 \mathrm{~V}, \mathrm{OV}\) ) are utilized, the switching threshold becomes:
\(V_{T H}=\frac{V++V-}{2}+1.4 \mathrm{~V}\)
and the \(\mathrm{V}_{\mathrm{IH}}\) and \(\mathrm{V}_{\mathrm{IL}}\) levels will be \(\mathrm{V}_{\mathrm{TH}} \pm 0.6 \mathrm{~V}\), respectively.

\section*{Optional GND Pad (Die Use Only) for TTL Compatibility}

The die version of the HFA1145 provides the user with a GND pad for setting the disable circuitry GND reference. With symmetrical supplies the GND pad may be left unconnected, or tied directly to GND. If asymmetrical supplies (e.g. \(+10 \mathrm{~V}, 0 \mathrm{~V}\) ) are utilized, and TTL compatibility is desired, die users must connect the GND pad to GND. With an external GND, the DISABLE input is TTL compatible regardless of supply voltage utilized.

\section*{Pulse Undershoot and Asymmetrical Slew Rates}

The HFA1145 utilizes a quasi-complementary output stage to achieve high output current while minimizing quiescent supply current. In this approach, a composite device replaces the traditional PNP pulldown transistor. The composite device switches modes after crossing 0 V , resulting in added distortion for signals swinging below ground, and an increased undershoot on the negative portion of the output waveform (See Figures 5, 8, and 11). This undershoot isn't present for small bipolar signals, or large positive signals. Another artifact of the composite device is asymmetrical slew rates for output signals with a negative voltage component. The slew rate degrades as the output signal crosses through OV (See Figures 5, 8, and 11), resulting in a slower overall negative slew rate. Positive only signals have symmetrical slew rates as illustrated in the large signal positive pulse response graphs (See Figures 4, 7, and 10).

\section*{PC Board Layout}

This amplifier's frequency response depends greatly on the care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!

Attention should be given to decoupling the power supplies. A large value \((10 \mu \mathrm{~F})\) tantalum in parallel with a small value \((0.1 \mu \mathrm{~F})\) chip capacitor works well in most cases.
Terminated microstrip signal lines are recommended at the device's input and output connections. Capacitance, parasitic or planned, connected to the output must be minimized, or isolated as discussed in the next section.
Care must also be taken to minimize the capacitance to ground at the amplifier's inverting input ( -IN ), as this capacitance causes gain peaking, pulse overshoot, and if large enough, instability. To reduce this capacitance, the designer should remove the ground plane under traces connected to - -N , and keep connections to -IN as short as possible.
An example of a good high frequency layout is the Evaluation Board shown in Figure 2.

\section*{Driving Capacitive Loads}

Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor \(\left(\mathrm{R}_{\mathrm{S}}\right)\) in series with the output prior to the capacitance.
Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the \(R_{S}\) and \(C_{L}\) combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an overdamped response, while points below or left of the curve indicate areas of underdamped performance.
\(R_{S}\) and \(C_{L}\) form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 270 MHz (for \(A_{V}=+1\) ). By decreasing \(R_{S}\) as \(C_{L}\) increases (as illustrated in the curves), the maximum bandwidth is obtained without sacrificing stability. In spite of this, the bandwidth decreases as the load capacitance increases. For example, at \(A_{V}=+1, R_{S}=62 \Omega, C_{L}=40 p F\), the overall bandwidth is limited to 180 MHz , and bandwidth drops to 75 MHz at \(A_{V}=+1\), \(\mathrm{R}_{\mathrm{S}}=8 \Omega, \mathrm{C}_{\mathrm{L}}=400 \mathrm{pF}\).


FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs LOAD CAPACITANCE

\section*{Evaluation Board}

The performance of the HFA1145 may be evaluated using the HFA11XX Evaluation Board.

The layout and schematic of the board are shown in Figure 2. The \(\mathrm{V}_{\mathrm{H}}\) connection may be used to exercise the DISABLE pin, but note that this connection has no \(50 \Omega\) termination. To order evaluation boards (part number HFA11XXEVAL), please contact your local sales office.


FIGURE 2A. TOP LAYOUT


FIGURE 2B. TOP LAYOUT


FIGURE 2C. TOP LAYOUT

FIGURE 2. EVALUATION BOARD SCHEMATIC AND LAYOUT

Typical Performance Curves \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, R_{F}=510 \Omega, T_{A}=25^{\circ} \mathrm{C}, R_{L}=100 \Omega\), Unless Otherwise Specified


FIGURE 3. SMALL SIGNAL PULSE RESPONSE


FIGURE 5. LARGE SIGNAL BIPOLAR PULSE RESPONSE


FIGURE 7. LARGE SIGNAL POSITIVE PULSE RESPONSE


FIGURE 4. LARGE SIGNAL POSITIVE PULSE RESPONSE


FIGURE 6. SMALL SIGNAL PULSE RESPONSE


FIGURE 8. LARGE SIGNAL BIPOLAR PULSE RESPONSE

Typical Performance Curves \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


TIME (5ns/DIV.)
FIGURE 9. SMALL SIGNAL PULSE RESPONSE


FIGURE 11. LARGE SIGNAL BIPOLAR PULSE RESPONSE


FIGURE 13. FREQUENCY RESPONSE


FIGURE 10. LARGE SIGNAL POSITIVE PULSE RESPONSE


FIGURE 12. OUTPUT ENABLE AND DISABLE RESPONSE


FIGURE 14. FREQUENCY RESPONSE

Typical Performance Curves \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{F}=510 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 15. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES


FIGURE 17. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS


FIGURE 19. GAIN FLATNESS


FIGURE 16. FULL POWER BANDWIDTH


FIGURE 18. -3dB BANDWIDTH vs TEMPERATURE


FIGURE 20. OFF ISOLATION

Typical Performance Curves \(\mathrm{V}_{\text {SUPPIY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Othewwise Specified (Continued)


FIGURE 21. REVERSE ISOLATION ( \(\mathbf{S}_{12}\) )


FIGURE 23. SETTLING RESPONSE


FIGURE 25. THIRD HARMONIC DISTORTION vs POUT


FIGURE 22. ENABLED OUTPUT IMPEDANCE


FIGURE 24. SECOND HARMONIC DISTORTION vs POUT


FIGURE 26. OUTPUT VOLTAGE vs TEMPERATURE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{F}}=510 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified \(^{(C o n t i n u e d)}\)


FIGURE 27. INPUT NOISE CHARACTERISTICS


FIGURE 28. SUPPLY CURRENT vs SUPPLY VOLTAGE

\section*{Die Characteristics}

DIE DIMENSIONS:
59 mils \(\times 59\) mils \(\times 19\) mils
\(1500 \mu \mathrm{~m} \times 1500 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)
METALLIZATION:
Type: Metal 1: \(\mathrm{AlCu}(2 \%) / T i W\)
Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)
Type: Metal 2: AICu(2\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)
Metallization Mask Layout

\section*{PASSIVATION:}

Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
75
SUBSTRATE POTENTIAL (Powered Up):
Floating (Recommend Connection to V-)


NOTE: This pad is not bonded out on packaged units. Die users may set a GND reference, via this pad, to ensure the TTL compatibility of the \(\overline{\mathrm{DIS}}\) input when using asymmetrical supplies (e.g. \(\mathrm{V}_{+}=10 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}\) ). See the "Application Information" section for details.

\title{
Dual, 400MHz, Low Power, Video Operational Amplifier
}

\section*{Features}
- Low Supply Current . . . . . . . . . . . . . . . 5.8mA/Op Amp
- High Input Impedance . . . . . . . . . . . . . . . . . . . . . . . 2M 2
- Wide -3dB Bandwidth ( \(\mathrm{A}=+\mathbf{2}\) ) \(\ldots\). . . . . . . . . . 400 MHz
- Very Fast Slew Rate . . . . . . . . . . . . . . . . . . . . . 1275V/ \(\mu \mathrm{s}\)
- Gain Flatness (to \(\mathbf{5 0 M H z}\) ) \(\ldots . . . . . . . . . . . . . . . . \pm 0.03 \mathrm{~dB}\)
- Differential Gain. . . . . . . . . . . . . . . . . . . . . . . . . . 0.03\%
- Differential Phase. . . . . . . . . . . . . . . . . . . 0.03 Degrees
- Pin Compatible Upgrade to HA5023

\section*{Applications}
- Flash AD Drivers
- High Resolution Monitors
- Video Switching and Routing
- Professional Video Processing
- Video Digitizing Boards/Systems
- Multimedia Systems
- RGB Preamps
- Medical Imaging
- Hand Held and Miniaturized RF Equipment
- Battery Powered Communications
- High Speed Oscilloscopes and Analyzers

\section*{Description}

The HFA1205 is a dual, high speed, low power current feedback amplifier built with Harris' proprietary complementary bipolar UHF-1 process.

These amplifiers deliver 400 MHz bandwidth and \(1275 \mathrm{~V} /\) us slew rate, on only 60 mW of quiescent power. They are specifically designed to meet the performance, power, and cost requirements of high volume video applications. The excellent gain flatness and differential gain/phase performance make these amplifiers well suited for component or composite video applications. Video performance is maintained even when driving a back terminated cable ( \(R_{L}=150 \Omega\) ), and degrades only slightly when driving two back terminated cables ( \(R_{L}=75 \Omega\) ). RGB applications will benefit from the high slew rates, and high full power bandwidth.

The HFA1205 is a pin compatible, low power, high performance upgrade for the popular Harris HA5023. For a dual amplifier with output disable capability, please see the HFA1245 datasheet.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{l} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HFA1205IP & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
HFA1205IB \\
(H1205I)
\end{tabular} & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline HA5023EVAL & \multicolumn{3}{|l|}{ High Speed Op Amp DIP Evaluation Board } \\
\hline
\end{tabular}

\section*{Pinout}

HFA1205
(PDIP, SOIC)
TOP VIEW


\author{
Absolute Maximum Ratings \\ Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11V \\ DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V \\ Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 . \\ Output Current (Note 2) . . . . . . . . . . . . . . . . . Short Circuit Protected \\ 30 mA Continuous \\ \(60 \mathrm{~mA} \leq 50 \%\) Duty Cycle \\ ESD Rating \\ Human Body Model (Per MIL-STD-883 Method 3015.7) . . . 600V
}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Thermal Information} \\
\hline Thermal Resistance (Typical, Note 1) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline PDIP Package & 130 \\
\hline SOIC Package . & 160 \\
\hline Maximum Junction Temperature (Die Only). & \(.175^{\circ} \mathrm{C}\) \\
\hline Maximum Junction Temperature (Plastic Package) & \(.150^{\circ} \mathrm{C}\) \\
\hline Maximum Storage Temperature Range & \({ }^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Lead Temperature (Soldering 10s). . (SOIC - Lead Tips Only) & \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Thermal Information

\section*{Operating Conditions}

Temperature Range

\section*{\(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.
2. Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous ( \(100 \%\) duty cycle) output current must not exceed 30 mA for maximum reliability.

Electrical Specifications \(V_{S U P P L Y}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=560 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP. ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & & A & 25 & - & 2 & 5 & mV \\
\hline & & A & Full & - & 3 & 8 & mV \\
\hline Average Input Offset Voltage Drift & & B & Full & - & 1 & 10 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Input Offset Voltage Common-Mode Rejection Ratio} & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 45 & 48 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 85 & 43 & 46 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 43 & 46 & - & dB \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Input Offset Voltage \\
Power Supply Rejection Ratio
\end{tabular}} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 48 & 52 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & 46 & 50 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 46 & 50 & - & dB \\
\hline \multirow[t]{2}{*}{Non-Inverting Input Bias Current} & & A & 25 & - & 6 & 15 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 10 & 25 & \(\mu \mathrm{A}\) \\
\hline Non-Inverting Input Bias Current Drift & & B & Full & - & 5 & 60 & \(n \mathrm{~A} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Non-Inverting Input Bias Current Power Supply Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 0.5 & 1 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 0.8 & 3 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 0.8 & 3 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline \multirow[t]{3}{*}{Non-Inverting Input Resistance} & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 25 & 0.8 & 2 & - & M \(\Omega\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 85 & 0.5 & 1.3 & - & M \(\Omega\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 0.5 & 1.3 & - & M \(\Omega\) \\
\hline \multirow[t]{2}{*}{Inverting Input Bias Current} & & A & 25 & - & 2 & 8.5 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 5 & 15 & \(\mu \mathrm{A}\) \\
\hline Inverting Input Bias Current Drift & & B & Full & - & 60 & 200 & \(n \mathrm{~A} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=560 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{3}{*}{Inverting Input Bias Current Common-Mode Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 3 & 6 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 4 & 8 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 4 & 8 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline \multirow[t]{3}{*}{Inverting Input Bias Current Power Supply Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 2 & 5 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 4 & 8 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 4 & 8 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline Inverting Input Resistance & & C & 25 & - & 60 & - & \(\Omega\) \\
\hline Input Capacitance & & c & 25 & - & 1.6 & - & pF \\
\hline \multirow[t]{2}{*}{Input Voltage Common Mode Range (Implied by \(\mathrm{V}_{10}\) CMRR, \(+\mathrm{R}_{\text {IN }}\), and \({ }^{-I_{B I A S}}\) CMS tests)} & & A & 25, 85 & \(\pm 1.8\) & \(\pm 2.4\) & - & V \\
\hline & & A & -40 & \(\pm 1.2\) & \(\pm 1.7\) & - & V \\
\hline Input Noise Voltage Density & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 3.5 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Non-Inverting Input Noise Current Density & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 2.5 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Inverting Input Noise Current Density & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 20 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline
\end{tabular}

\section*{TRANSFER CHARACTERISTICS}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline Open Loop Transimpedance Gain & \(A_{V}=-1\) & \(C\) & 25 & - & 500 & - & \(\mathrm{k} \Omega\) \\
\hline
\end{tabular}

AC CHARACTERISTICS \(A_{V}=+2, R_{F}=464 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{-3 dB Bandwidth ( \(\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-P }}\) )} & \(A_{V}=+1,+R_{S}=432 \Omega\) & B & 25 & - & 280 & - & MHz \\
\hline & \(A_{V}=+2\) & B & 25 & - & 400 & - & MHz \\
\hline & \(A_{V}=-1, R_{F}=332 \Omega\) & B & 25 & - & 360 & - & MHz \\
\hline \multirow[t]{3}{*}{Full Power Bandwidth ( \(\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}_{\text {P-P }}\) at \(\mathrm{A}_{\mathrm{V}}=+2 /-1\), \(4 V_{\text {P-P }}\) at \(A_{V}=+1\) )} & \(A_{V}=+1, R_{S}=432 \Omega\) & B & 25 & - & 140 & - & MHz \\
\hline & \(A_{V}=+2\) & B & 25 & - & 125 & - & MHz \\
\hline & \(A_{V}=-1, R_{F}=332 \Omega\) & B & 25 & - & 180 & - & MHz \\
\hline \multirow[t]{2}{*}{Gain Flatness ( \(\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\text {OUT }}=0.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) )} & To 25 MHz & B & 25 & - & \(\pm 0.02\) & - & dB \\
\hline & To 50 MHz & B & 25 & - & \(\pm 0.03\) & - & dB \\
\hline Minimum Stable Gain & & A & Full & - & 1 & - & \(\mathrm{V} / \mathrm{N}\) \\
\hline \multirow[t]{2}{*}{Crosstalk} & 5 MHz & B & 25 & - & -60 & - & dB \\
\hline & 10 MHz & B & 25 & - & -54 & - & dB \\
\hline
\end{tabular}

OUTPUT CHARACTERISTICS \(R_{F}=560 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Output Voltage Swing} & \multirow[t]{2}{*}{\(A_{V}=-1, R_{L}=100 \Omega\)} & A & 25 & \(\pm 3\) & \(\pm 3.4\) & - & V \\
\hline & & A & Full & \(\pm 2.8\) & \(\pm 3\) & - & V \\
\hline \multirow[t]{2}{*}{Output Current} & \multirow[t]{2}{*}{\(A_{V}=-1, R_{L}=50 \Omega\)} & A & 25, 85 & 50 & 60 & - & mA \\
\hline & & A & -40 & 28 & 42 & - & mA \\
\hline Output Short Circuit Current & & B & 25 & - & 90 & - & mA \\
\hline Closed Loop Output Impedance & \(D C, A_{V}=+2, R_{F}=464 \Omega\) & B & 25 & - & 0.07 & - & \(\Omega\) \\
\hline
\end{tabular}

HFA1205

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 V, A_{V}=+1, R_{F}=560 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{2}{*}{Second Harmonic Distortion \(\left(A_{V}=+2, R_{F}=464 \Omega, V_{O U T}=2 V_{P-P}\right)\)} & 10 MHz & B & 25 & - & -50 & - & dBc \\
\hline & 20 MHz & B & 25 & - & -45 & - & dBc \\
\hline \multirow[t]{2}{*}{Third Harmonic Distortion
\[
\left(A_{V}=+2, R_{F}=464 \Omega, V_{O U T}=2 V_{P-P}\right)
\]} & 10 MHz & B & 25 & - & -55 & - & dBc \\
\hline & 20 MHz & B & 25 & - & -50 & - & dBc \\
\hline
\end{tabular}

TRANSIENT CHARACTERISTICS \(A_{V}=+2, R_{F}=464 \Omega\), Unless Otherwise Specified


VIDEO CHARACTERISTICS \(A_{V}=+2, R_{F}=464 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Differential Gain ( \(\mathrm{f}=3.58 \mathrm{MHz}\) )} & \(R_{L}=150 \Omega\) & B & 25 & - & 0.03 & - & \% \\
\hline & \(R_{L}=75 \Omega\) & B & 25 & - & 0.03 & - & \% \\
\hline \multirow[t]{2}{*}{Differential Phase ( \(f=3.58 \mathrm{MHz}\) )} & \(R_{L}=150 \Omega\) & B & 25 & - & 0.03 & - & Degrees \\
\hline & \(R_{L}=75 \Omega\) & B & 25 & - & 0.05 & - & Degrees \\
\hline
\end{tabular}

\section*{POWER SUPPLY CHARACTERISTICS}
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline Power Supply Range & & C & 25 & \(\pm 4.5\) & - & \(\pm 5.5\) & V \\
\hline Power Supply Current & & A & 25 & 5.6 & 5.8 & 6.1 & \begin{tabular}{c}
\(\mathrm{mA} /\) \\
Op Amp
\end{tabular} \\
\hline & & A & Full & 5.4 & 5.9 & 6.3 & \begin{tabular}{c}
\(\mathrm{mA} /\) \\
Op Amp
\end{tabular} \\
\hline
\end{tabular}

NOTE:
3. Test Level: A. Production Tested.; B. Typical or Guaranteed Limit Based on Characterization.; C. Design Typical for Information Only.

\section*{Application Information}

\section*{Optimum Feedback Resistor}

Although a current feedback amplifier's bandwidth dependency on closed loop gain isn't as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback amplifier's unique relationship between bandwidth and \(R_{F}\). All current feedback amplifiers require a feedback resistor, even for unity gain applications, and \(R_{F}\), in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to \(R_{F}\). The HFA1205 design is optimized for a \(464 \Omega R_{F}\) at a gain of +2 . Decreasing \(R_{F}\) decreases stability, resulting in excessive peaking and overshoot (Note: Capacitive feedback will cause the same problems due to the feedback impedance decrease at higher frequencies). At higher gains the amplifier is more stable, so \(R_{F}\) can be decreased in a trade-off of stability for bandwidth.

The table below lists recommended \(R_{F}\) values for various gains, and the expected bandwidth. For good channel-tochannel gain matching, it is recommended that all resistors (termination as well as gain setting) be \(\pm 1 \%\) tolerance or better. Note that a series input resistor, on +IN , is required for a gain of +1 , to reduce gain peaking and increase stability.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
GAIN \\
\(\left(\mathbf{A}_{\mathbf{C L}}\right)\)
\end{tabular} & \(\mathbf{R}_{\mathbf{F}}(\Omega)\) & \begin{tabular}{c} 
BANDWIDTH \\
\((\mathbf{M H z})\)
\end{tabular} \\
\hline-1 & 332 & 360 \\
\hline+1 & \(464\left(+R_{\mathrm{S}}=432 \Omega\right)\) & 280 \\
\hline+2 & 464 & 400 \\
\hline
\end{tabular}

\section*{Non-inverting Input Source Impedance}

For best operation, the DC source impedance seen by the non-inverting input should be \(\geq 50 \Omega\). This is especially important in inverting gain configurations where the noninverting input would normally be connected directly to GND.

\section*{PC Board Layout}

The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!
Attention should be given to decoupling the power supplies. A large value \((10 \mu \mathrm{~F})\) tantalum in parallel with a small value ( \(0.1 \mu \mathrm{~F}\) ) chip capacitor works well in most cases.
Terminated microstrip signal lines are recommended at the input and output of the device. Capacitance directly on the output must be minimized, or isolated as discussed in the next section.
Care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input (-IN). The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and possible instability. To this end, it is
recommended that the ground plane be removed under traces connected to -IN, and connections to -IN should be kept as short as possible.

\section*{Driving Capacitive Loads}

Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor ( \(\mathrm{R}_{\mathrm{S}}\) ) in series with the output prior to the capacitance.
Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the \(R_{S}\) and \(C_{L}\) combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an overdamped response, while points below or left of the curve indicate areas of underdamped performance.
\(R_{S}\) and \(C_{L}\) form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 280 MHz (for \(A_{V}=+1\) ). By decreasing \(R_{S}\) as \(C_{L}\) increases (as illustrated in the curves), the maximum bandwidth is obtained without sacrificing stability. In spite of this, bandwidth decreases as the load capacitance increases. For example, at \(A_{V}=+1, R_{S}=62 \Omega, C_{L}=40 p F\), the overall bandwidth is limited to 180 MHz , and bandwidth drops to 70 MHz at \(A_{V}=+1, R_{S}=8 \Omega, C_{L}=400 \mathrm{pF}\).


FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs LOAD CAPACITANCE

\section*{Evaluation Board}

The performance of the HFA1205 may be evaluated using the HA5023 Evaluation Board. The feedback and gain setting resistors must be replaced with the appropriate value (see "Optimum Feedback Resistor" section) for the gain being evaluated.
To order evaluation boards (Part Number HA5023EVAL), please contact your local sales office.

Typical Performance Curves \(V_{S U P P L Y}= \pm 5 V, R_{F}=\) Optimum Value From "Apps info" Table, \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified


FIGURE 2. SMALL SIGNAL PULSE RESPONSE


FIGURE 4. FREQUENCY RESPONSE


FIGURE 6. GAIN FLATNESS


FIGURE 3. LARGE SIGNAL PULSE RESPONSE


FIGURE 7. CROSSTALK vs FREQUENCY

\section*{Die Characteristics}

\section*{DIE DIMENSIONS:}

69 mils \(\times 92\) mils \(\times 19\) mils
\(1750 \mu \mathrm{~m} \times 2330 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)

\section*{METALLIZATION:}

Type: Metal 1: AICu(2\%)/TiW Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)

Type: Metal 2: AICu(2\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)

SUBSTRATE POTENTIAL (Powered Up):
Floating (Recommend Connection to V-)
PASSIVATION:
Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
180

Metallization Mask Layout


\section*{Dual 350MHz, Low Power Closed Loop Buffer Amplifier}

\section*{Features}
- Differential Gain 0.025\%
- Differential Phase. . . . . . . . . . . . . . . . . . . 0.03 Degrees
- Wide -3dB Bandwidth ( \(\mathrm{A}_{\mathrm{V}}=+2\) ) . 350MHz
- Very Fast Slew Rate ( \(A_{V}=-1\) ) \(1100 \mathrm{~V} / \mu \mathrm{s}\)
- Low Supply Current \(\qquad\) 6mA/Buffer
- High Output Current . 60 mA
- Excellent Gain Accuracy . . . . . . . . . . . . . . . . . . 0.99V/V
- User Programmable For Closed-Loop Gains of +1, -1 or +2 Without Use of External Resistors
- Overdrive Recovery

8ns
- Standard Operational Amplifier Pinout

\section*{Applications}
- High Resolution Monitors
- Professional Video Processing
- Medical Imaging
- Video Digitizing Boards/Systems
- RF/IF Processors
- Battery Powered Communications
- Flash Converter Drivers
- High Speed Pulse Amplifiers

\section*{Description}

The HFA1212 is a dual closed loop Buffer featuring user programmable gain and high speed performance. Manufactured on Harris' proprietary complementary bipolar UHF-1 process, these devices offer wide -3dB bandwidth of 350 MHz , very fast slew rate, excellent gain flatness and high output current.

A unique feature of the pinout allows the user to select a voltage gain of \(+1,-1\), or +2 , without the use of any external components. Gain selection is accomplished via connections to the inputs, as described in the "Application Information" section. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space.

Compatibility with existing op amp pinouts provides flexibility to upgrade low gain amplifiers, while decreasing component count. Unlike most buffers, the standard pinout provides an upgrade path should a higher closed loop gain be needed at a future date. For Military product, refer to the HFA1212/883 data sheet.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{l} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HFA1212IP & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
HFA1212IB \\
(H1212I)
\end{tabular} & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline
\end{tabular}

\section*{Pinout}

HFA1212
(PDIP, SOIC)
TOP VIEW


\section*{Absolute Maximum Rating}

Supply Voltage (V+ to V-)
DC Input Voltage \(\qquad\) V
Output Current (Note 1) Short Circuit Protected ESD Rating

Human Body Model (Per MIL-STD-883 Method 3015.7) . . . 600V

\section*{Operating Conditions}

Temperature Range
\(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)

\section*{Thermal Information}

Thermal Resistance (Typical, Note 2) \(\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) PDIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . . . . \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (Plastic Package) . . . . . . . . \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range . . . . . . . . . \(65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\) (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Output is protected for short circuits to ground. Brief short circuits to ground will not degrade reliability, however, continuous (100\% duty cycle) output current should not exceed 30 mA for maximum reliability.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(\quad V_{S U P P L Y}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{L}=100 \Omega\), Unless Otherwise Specified.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & \[
\begin{aligned}
& \text { (NOTE 3) } \\
& \text { TEST } \\
& \text { LEVEL }
\end{aligned}
\] & TEMP \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Output Offset Voltage} & & A & 25 & - & 2 & 10 & mV \\
\hline & & A & Full & - & 3 & 15 & mV \\
\hline Average Output Offset Voltage Drift & & B & Full & - & 22 & 70 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{Channel-to-Channel Output Offset Voltage Mismatch} & & A & 25 & - & - & 15 & mV \\
\hline & & A & Full & - & - & 30 & mV \\
\hline \multirow[t]{3}{*}{Common-Mode Rejection Ratio} & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 42 & 45 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 85 & 40 & 44 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 40 & 45 & - & dB \\
\hline \multirow[t]{3}{*}{Power Supply Rejection Ratio} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 45 & 49 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & 43 & 48 & \(\cdot\) & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 43 & 48 & - & dB \\
\hline \multirow[t]{2}{*}{Input Bias Current} & & A & 25 & - & 1 & 15 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 3 & 25 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current Drift & & B & Full & - & 30 & 80 & \(n A^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{Channel-to-Channel Input Bias Current Mismatch} & & A & 25 & - & - & 15 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & - & 25 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Input Bias Current Power Supply Sensitivity} & \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.25 \mathrm{~V}\)} & A & 25 & - & 0.5 & 1 & \(\mu \mathrm{A} N\) \\
\hline & & A & Full & - & - & 3 & \(\mu \mathrm{A}, ~\) \\
\hline \multirow[t]{3}{*}{Input Resistance} & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 0.8 & 1.1 & - & \(\mathrm{M} \Omega\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 85 & 0.5 & 1.4 & - & \(\mathrm{M} \Omega\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 0.5 & 1.3 & - & \(\mathrm{M} \Omega\) \\
\hline Inverting Input Resistance & & C & 25 & - & 350 & - & \(\Omega\) \\
\hline Input Capacitance & & C & 25 & - & 2 & - & pF \\
\hline \multirow[t]{2}{*}{Input Voltage Common Mode Range (Implied by \(\mathrm{V}_{10}\) CMRR and \(+\mathrm{R}_{\text {IN }}\) tests)} & & A & 25, 85 & \(\pm 1.8\) & \(\pm 2.4\) & - & V \\
\hline & & A & -40 & \(\pm 1.2\) & \(\pm 1.7\) & - & V \\
\hline Input Noise Voltage Density (Note 4) & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 7 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Noise Current Density (Note 4) & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & \(\cdot\) & 3.6 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline
\end{tabular}

Electrical Specifications \(\quad V_{S U P P L Y}= \pm 5 V, A_{V}=+1, R_{L}=100 \Omega\), Unless Otherwise Specified. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & \[
\begin{aligned}
& \text { (NOTE 3) } \\
& \text { TEST } \\
& \text { LEVEL }
\end{aligned}
\] & TEMP ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline \multirow[t]{6}{*}{Gain ( \(\mathrm{V}_{\text {IN }}=-1 \mathrm{~V}\) to +1 V )} & \multirow[t]{2}{*}{\(A_{V}=-1\)} & A & 25 & -0.98 & 0.996 & -1.02 & VN \\
\hline & & A & Full & 0.975 & 1.000 & -1.025 & \(\mathrm{V} N\) \\
\hline & \multirow[t]{2}{*}{\(A_{V}=+1\)} & A & 25 & 0.98 & 0.992 & 1.02 & \(\mathrm{V} N\) \\
\hline & & A & Full & 0.975 & 0.993 & 1.025 & VN \\
\hline & \multirow[t]{2}{*}{\(A_{V}=+2\)} & A & 25 & 1.96 & 1.988 & 2.04 & VN \\
\hline & & A & Full & 1.95 & 1.990 & 2.05 & VN \\
\hline \multirow[t]{6}{*}{Channel-to-Channel Gain Mismatch} & \multirow[t]{2}{*}{\(A_{V}=-1\)} & A & 25 & - & - & \(\pm 0.02\) & \(\mathrm{V} N\) \\
\hline & & A & Full & - & - & \(\pm 0.025\) & \(\mathrm{V} N\) \\
\hline & \multirow[t]{2}{*}{\(\mathrm{A}_{\mathrm{V}}=+1\)} & A & 25 & - & - & \(\pm 0.025\) & VN \\
\hline & & A & Full & - & - & \(\pm 0.025\) & \(\mathrm{V} N\) \\
\hline & \multirow[t]{2}{*}{\(A_{V}=+2\)} & A & 25 & - & - & \(\pm 0.04\) & \(\mathrm{V} N\) \\
\hline & & A & Full & - & - & \(\pm 0.05\) & \(\mathrm{V} N\) \\
\hline \multicolumn{8}{|l|}{AC CHARACTERISTICS} \\
\hline \multirow[t]{3}{*}{-3dB Bandwidth ( \(\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-P }}\), Note 4)} & \(A_{V}=-1\) & B & 25 & - & 300 & \(\cdot\) & MHz \\
\hline & \(A_{V}=+1,+R_{S}=620 \Omega\) & B & 25 & - & 240 & - & MHz \\
\hline & \(A_{V}=+2\) & B & 25 & - & 350 & \(\cdot\) & MHz \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Full Power Bandwidth \(\left(V_{\text {OUT }}=5 V_{\text {P-P }}\right.\) at \(A_{V}=+2\) or -1 , \\
\(\mathrm{V}_{\text {OUT }}=4 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) at \(\mathrm{A}_{\mathrm{V}}=+1\), Note 4)
\end{tabular}} & \(A_{V}=-1\) & B & 25 & \(\cdot\) & 165 & - & MHz \\
\hline & \(A_{V}=+1,+R_{S}=620 \Omega\) & B & 25 & - & 150 & - & MHz \\
\hline & \(A_{V}=+2\) & B & 25 & - & 125 & - & MHz \\
\hline Gain Flatness & \(A_{V}=+2, \mathrm{To} 25 \mathrm{MHz}\) & B & 25 & \(\cdot\) & \(\pm 0.03\) & \(\cdot\) & dB \\
\hline
\end{tabular}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 V, A_{V}=+1, R_{L}=100 \Omega\), Unless Otherwise Specified. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline PARAMETER & \multicolumn{2}{|l|}{TEST CONDITIONS} & \[
\begin{gathered}
\text { (NOTE 3) } \\
\text { TEST } \\
\text { LEVEL }
\end{gathered}
\] & TEMP \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
Slew Rate \\
\(\left(V_{\text {OUT }}=5 V_{\text {P-P }}\right.\) at \(A_{V}=+2\) or -1 , \\
\(\mathrm{V}_{\text {OUT }}=4 \mathrm{~V}_{\text {P-P }}\) at \(\mathrm{AV}_{\mathrm{V}}=+1\) )
\end{tabular}} & \multirow[t]{2}{*}{\(A_{V}=-1\)} & +SR & B & 25 & - & 2000 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & & -SR & B & 25 & - & 1150 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & \multirow[t]{2}{*}{\[
\begin{aligned}
& A_{V}=+1 \\
& +R_{S}=620 \Omega
\end{aligned}
\]} & +SR & B & 25 & - & 1100 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & & -SR & B & 25 & - & 850 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & \multirow[t]{2}{*}{\(A_{V}=+2\)} & +SR & B & 25 & - & 1300 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & & -SR & B & 25 & - & 900 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline \multirow[t]{3}{*}{Settling Time ( \(\mathrm{V}_{\text {OUT }}=+2 \mathrm{~V}\) to OV Step, Note 4)} & \multicolumn{2}{|l|}{To 0.1\%} & B & 25 & - & 24 & - & ns \\
\hline & \multicolumn{2}{|l|}{To 0.05\%} & B & 25 & - & 37 & - & ns \\
\hline & \multicolumn{2}{|l|}{To 0.02\%} & B & 25 & - & 60 & - & ns \\
\hline Overdrive Recovery Time & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {IN }}= \pm 2 \mathrm{~V}\)} & B & 25 & - & 8.5 & - & ns \\
\hline \multicolumn{9}{|l|}{VIDEO CHARACTERISTICS} \\
\hline Differential Gain ( \(f=3.58 \mathrm{MHz}, A_{V}=+2\) ) & \multicolumn{2}{|l|}{\(R_{L}=150 \Omega\)} & B & 25 & - & 0.025 & - & \% \\
\hline Differential Phase ( \(f=3.58 \mathrm{MHz}, A_{V}=+2\) ) & \multicolumn{2}{|l|}{\(R_{L}=150 \Omega\)} & B & 25 & - & 0.03 & - & Degrees \\
\hline \multicolumn{9}{|l|}{POWER SUPPLY CHARACTERISTICS} \\
\hline Power Supply Range & & & C & 25 & \(\pm 4.5\) & - & \(\pm 5.5\) & V \\
\hline \multirow[t]{2}{*}{Power Supply Current} & & & A & 25 & - & 5.9 & 6.1 & mA/Op Amp \\
\hline & & & A & Full & - & 6.1 & 6.3 & mA/Op Amp \\
\hline
\end{tabular}

NOTES:
3. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.
4. See Typical Performance Curves for more information.
5. Negative overshoot dominates for output signal swings below GND (e.g. \(0.5 \mathrm{~V}_{\text {P-P }}\) ), yielding a higher overshoot limit compared to the \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) to 0.5 V condition. See the "Application Information" section for details.

\section*{Application Information}

\section*{HFA1212 Advantages}

The HFA1212 features a novel design which allows the user to select from three closed loop gains, without any external components. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space. Implementing a dual, gain of 2, cable driver with this IC eliminates the four gain setting resistors, which frees up board space for termination resistors.

Like most newer high performance amplifiers, the HFA1212 is a current feedback amplifier (CFA). CFAs offer high bandwidth and slew rate at low supply currents, but can be difficult to use because of their sensitivity to feedback capacitance and parasitics on the inverting input (summing node). The HFA1212 eliminates these concerns by bringing the gain setting resistors on-chip. This yields the optimum placement and value of the feedback resistor, while minimizing feedback and summing node parasitics. Because there is no access to the summing node, the PCB parasitics do not impact performance at gains of +2 or -1 (see "Unity Gain Considerations" for discussion of parasitic impact on unity gain performance).

The HFA1212's closed loop gain implementation provides better gain accuracy, lower offset and output impedance, and better distortion compared with open loop buffers.

\section*{Closed Loop Gain Selection}

This "buffer" operates in closed loop gains of \(-1,+1\), or +2 , with gain selection accomplished via connections to the inputs Applying the input signal to +IN and floating - IN selects a gain of +1 (see next section for layout caveats), while grounding \(-\mathbb{N}\) selects a gain of +2 . A gain of -1 is obtained by applying the input signal to -IN with +IN grounded through a \(50 \Omega\) resistor.
The table below summarizes these connections:
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
GAIN \\
(ACL)
\end{tabular}} & +INPUT & CONNECTIONS \\
\cline { 2 - 3 }-1 & \(50 \Omega\) to GND & InPUT \\
\hline+1 & Input & NC (Floating) \\
\hline+2 & Input & GND \\
\hline
\end{tabular}

Unity Gain Considerations
Unity gain selection is accomplished by floating the -Input of the HFA1212. Anything that tends to short the -Input to GND, such as stray capacitance at high frequencies, will cause the amplifier gain to increase toward a gain of +2 . The result is excessive high frequency peaking, and possible instability. Even the minimal amount of capacitance associated with attaching the -Input lead to the PCB results in approximately 6 dB of gain peaking. At a minimum this requires due care to ensure the minimum capacitance at the -Input connection.

TABLE 1. UNITY GAIN PERFORMANCE FOR VARIOUS IMPLEMENTATIONS
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ APPROACH } & PEAKING (dB) & BW (MHz) & \(\pm 0.1 \mathrm{~dB}\) GAIN FLATNESS (MHz) \\
\hline Remove -IN Pin & 4.5 & 430 & 21 \\
\hline\(+R_{S}=620 \Omega\) & 0 & 220 & 27 \\
\hline\(+R_{S}=620 \Omega\) and Remove -IN Pin & 0.5 & 215 & 15 \\
\hline Short \(+\mathbb{N}\) to -IN (e.g., Pins 2 and 3) & 0.6 & 280 & 70 \\
\hline 100 pF Capacitor Between \(+\mathbb{I N}\) and -IN & 0.7 & 290 & 40 \\
\hline
\end{tabular}

Table 1 lists five alternate methods for configuring the HFA1212 as a unity gain buffer, and the corresponding performance. The implementations vary in complexity and involve performance trade-offs. The easiest approach to implement is simply shorting the two input pins together, and applying the input signal to this common node. The amplifier bandwidth decreases from 430 MHz to 280 MHz , but excellent gain flatness is the benefit. A drawback to this approach is that the amplifier input noise voltage and input offset voltage terms see a gain of +2 , resulting in higher noise and output offset voltages. Alternately, a 100 pF capacitor between the inputs shorts them only at high frequencies, which prevents the increased output offset voltage but delivers less gain flatness.
Another straightforward approach is to add a \(620 \Omega\) resistor in series with the amplifier's positive input. This resistor and the HFA1212 input capacitance form a low pass filter which rolls off the signal bandwidth before gain peaking occurs. This configuration was employed to obtain the data sheet AC and transient parameters for a gain of +1 .

\section*{Puise Overshoot}

The HFA1212 utilizes a quasi-complementary output stage to achieve high output current while minimizing quiescent supply current. In this approach, a composite device replaces the traditional PNP pulldown transistor. The composite device switches modes after crossing OV , resulting in added distortion for signals swinging below ground, and an increased overshoot on the negative portion of the output waveform (see Figure 6, Figure 9, and Figure 12). This overshoot isn't present for small bipolar signals (see Figure 4, Figure 7, and Figure 10) or large positive signals (see Figure 5, Figure 8 and Figure 11).

\section*{PC Board Layout}

This amplifier's frequency response depends greatly on the care taken in designing the PC board (PCB). The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!
Attention should be given to decoupling the power supplies. A large value \((10 \mu \mathrm{~F})\) tantalum in parallel with a small value \((0.1 \mu \mathrm{~F})\) chip capacitor works well in most cases.

Terminated microstrip signal lines are recommended at the input and output of the device. Capacitance directly on the output must be minimized, or isolated as discussed in the next section.

An example of a good high frequency layout is the Evaluation Board shown in Figure 3.

\section*{Driving Capacitive Loads}

Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor \(\left(R_{S}\right)\) in series with the output prior to the capacitance.

Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the \(R_{S}\) and \(C_{L}\) combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an overdamped response, while points below or left of the curve indicate areas of underdamped performance.
\(R_{S}\) and \(C_{L}\) form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 350 MHz . By decreasing \(R_{S}\) as \(C_{L}\) increases (as illustrated in the curves), the maximum bandwidth is obtained without sacrificing stability. In spite of this, bandwidth decreases as the load capacitance increases.


FIGURE 1. RECOMMENDED SERIES RESISTOR vs LOAD CAPACITANCE

\section*{Evaluation Board}

The performance of the HFA1212 may be evaluated using the HA5023 Evaluation Board, slightly modified as follows:
1. Remove the two feedback resistors, and leave the connections open.
2. a. For \(A_{V}=+1\) evaluation, remove the gain setting resistors \(\left(R_{1}\right)\), and leave pins 2 and 6 floating.
b. For \(A_{V}=+2\), replace the gain setting resistors \(\left(R_{1}\right)\) with \(0 \Omega\) resistors to GND.

The modified schematic for amplifier 1, and the board layout are shown in Figures 2 and 3.

To order evaluation boards (part number HA5023EVAL), please contact your local sales office.


FIGURE 3A. TOP LAYOUT


FIGURE 3B. BOTTOM LAYOUT FIGURE 3. EVALUATION BOARD LAYOUT

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified


FIGURE 4. SMALL SIGNAL PULSE RESPONSE


FIGURE 5. LARGE SIGNAL POSITIVE PULSE RESPONSE

Typical Performance Curves (Continued) \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified


FIGURE 6. LARGE SIGNAL BIPOLAR PULSE RESPONSE


FIGURE 8. LARGE SIGNAL POSITIVE PULSE RESPONSE


FIGURE 10. SMALL SIGNAL PULSE RESPONSE


FIGURE 7. SMALL SIGNAL PULSE RESPONSE


FIGURE 9. LARGE SIGNAL BIPOLAR PULSE RESPONSE


FIGURE 11. LARGE SIGNAL POSITIVE PULSE RESPONSE

Typical Performance Curves (Continued) \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified


FIGURE 12. LARGE SIGNAL BIPOLAR PULSE RESPONSE


FIGURE 14. FULL POWER BANDWIDTH


FIGURE 16. REVERSE ISOLATION


FIGURE 13. FREQUENCY RESPONSE


FIGURE 15. GAIN FLATNESS


FIGURE 17. ALL HOSTILE CROSSTALK

Typical Performance Curves (Continued) \(V_{S U P P L Y}= \pm 5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified


FIGURE 18. 2nd HARMONIC DISTORTION vs POUT


FIGURE 20. SETTLING RESPONSE


FIGURE 19. 3rd HARMONIC DISTORTION vs POUT


FIGURE 21. INPUT NOISE CHARACTERISTICS


FIGURE 22. OUTPUT VOLTAGE vs TEMPERATURE

\section*{Die Characteristics}

DIE DIMENSIONS:
69 mils \(\times 92\) mils \(\times 19\) mils
\(1750 \mu \mathrm{~m} \times 2330 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)
METALLIZATION:
Type: Metal 1: AICu(2\%)/TiW
Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)
Type: Metal 2: AICu(2\%) Thickness: Metal 2: \(16 \mathrm{k} \AA\)\begin{tabular}{l} 
\\
\hline
\end{tabular} \(.8 \mathrm{k} \AA\)

\section*{Metallization Mask Layout}

\section*{PASSIVATION:}

Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
180
SUBSTRATE POTENTIAL (Powered Up):
Floating (Recommend Connection to V-)


\title{
Dual, 530MHz, Low Power, Video Operational Amplifier with Disable
}

\section*{Features}
- Low Supply Current
5.8mA/Op Amp
- High Input Impedance . . . . . . . . . . . . . . . . . . . . . . . 2M \(\Omega\)
- Low Crosstalk (5MHz) . . . . . . . . . . . . . . . . . . . . . -73dB
- High Off Isolation (5MHz) . . . . . . . . . . . . . . . . . . -61dB
- Wide -3dB Bandwidth (Av=+2) . . . . . . . . . . . . 530MHz
- Very Fast Slew Rate . . . . . . . . . . . . . . . . . . . . . 1050V/ \(\mu \mathrm{s}\)
- Gain Flatness (to 50 MHz ) . . . . . . . . . . . . . . . . . \(\pm 0.11 \mathrm{~dB}\)
- Differential Gain . . . . . . . . . . . . . . . . . . . . . . . . . . 0.02\%
- Differential Phase. . . . . . . . . . . . . . . . . . . 0.03 Degrees
- Individual Output Enable/Disable
- Output Enable/Disable Time
\(160 \mathrm{~ns} / 20 \mathrm{~ns}\)
- Pin Compatible Upgrade to HA5022

\section*{Applications}
- Flash A/D Drivers
- High Resolution Monitors
- Video Multiplexers
- Video Switching and Routing
- Professional Video Processing
- Video Digitizing Boards/Systems
- Multimedia Systems
- RGB Preamps
- Medical Imaging
- Hand Held and Miniaturized RF Equipment
- Battery Powered Communications
- High Speed Oscilloscopes and Analyzers

\section*{Description}

The HFA1245 is a dual, high speed, low power current feedback amplifier built with Harris' proprietary complementary bipolar UHF-1 process.

The HFA1245 features individual TTLCMOS compatible disable controls. When pulled low they disable the corresponding amplifier, which reduces the supply current and forces the output into a high impedance state. This feature allows easy implementation of simple, low power video switching and routing systems. Component and composite video systems also benefit from this op amp's excellent gain flatness, and good differential gain and phase specifications.

Multiplexed A/D applications will also find the HFA1245 useful as the A/D driver/multiplexer.

The HFA1245 is a low power, high performance upgrade for the popular Harris HA5022. For a dual amplifier without disable, in a standard 8 lead pinout, please see the HFA1205 data sheet.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|c|}
\hline PART NUMBER & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{c|}{ PACKAGE } & \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular} \\
\hline HFA1245IP & -40 to 85 & 14 Ld PDIP & E14.3 \\
\hline HFA1245IB & -40 to 85 & 14 Ld SOIC & M14.15 \\
\hline HA5022EVAL & High Speed Op Amp DIP Evaluation Board \\
\hline
\end{tabular}

\section*{Pinout}


\section*{HFA1245}

\section*{Absolute Maximum Ratings}

Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 V
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSUPPLY
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 V
Output Current (Note 2) . . . . . . . . . . . . . . . . . Short Circuit Protected
30 mA Continuous
\(60 \mathrm{~mA} \leq 50 \%\) Duty Cycle
ESD Rating
Human Body Model (Per MIL-STD-883 Method 3015.7) . . . 600V

\section*{Thermal Information}
\begin{tabular}{|c|c|}
\hline Thermal Resistance (Typical, Note 1) & \(\theta_{J A}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline PDIP Package & 100 \\
\hline SOIC Package & 120 \\
\hline Maximum Junction Temperature (Die). & \(175^{\circ} \mathrm{C}\) \\
\hline Maximum Junction Temperature (Plastic & . \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Storage Temperature Range & to \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Lead Temperature (Solderin & \\
\hline
\end{tabular}

Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\) (SOIC - Lead Tips Only)

\section*{Operating Conditions}

Temperature Range
\(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

\section*{NOTES:}
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.
2. Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous (100\% duty cycle) output current must not exceed 30 mA for maximum reliability.

Electrical Specifications \(\quad V_{S U P P L Y}= \pm 5 V, A_{V}=+1, R_{F}=560 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & \[
\begin{array}{|c|}
\hline \text { NOTE 3) } \\
\text { TEST } \\
\text { LEVEL }
\end{array}
\] & TEMP. ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & & A & 25 & - & 2 & 5 & mV \\
\hline & & A & Full & - & 3 & 8 & mV \\
\hline Average Input Offset Voltage Drift & & B & Full & - & 1 & 10 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Input Offset Voltage Common-Mode Rejection Ratio} & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 45 & 48 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 85 & 43 & 46 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 43 & 46 & - & dB \\
\hline \multirow[t]{3}{*}{Input Offset Voltage Power Supply Rejection Ratio} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 48 & 52 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & 46 & 50 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 46 & 50 & - & dB \\
\hline \multirow[t]{2}{*}{Non-Inverting Input Bias Current} & & A & 25 & - & 6 & 15 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 10 & 25 & \(\mu \mathrm{A}\) \\
\hline Non-Inverting Input Bias Current Drift & & B & Full & - & 5 & 60 & \(n \mathrm{~A} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Non-Inverting Input Bias Current Power Supply Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 0.5 & 1 & \(\mu \mathrm{A} / \mathrm{N}\) \\
\hline & \(\Delta \mathrm{V}_{\text {PS }}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 0.8 & 3 & \(\mu \mathrm{A} / \mathrm{N}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 0.8 & 3 & \(\mu \mathrm{A} / \mathrm{V}\) \\
\hline \multirow[t]{3}{*}{Non-Inverting Input Resistance} & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 0.8 & 2 & - & M \(\Omega\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 85 & 0.5 & 1.3 & - & \(\mathrm{M} \Omega\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 0.5 & 1.3 & - & \(\mathrm{M} \Omega\) \\
\hline \multirow[t]{2}{*}{Inverting Input Bias Current} & & A & 25 & - & 2 & 7.5 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 5 & 15 & \(\mu \mathrm{A}\) \\
\hline Inverting Input Bias Current Drift & & B & Full & - & 60 & 200 & \(n \mathrm{n} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Inverting Input Bias Current Common-Mode Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 3 & 6 & \(\mu \mathrm{A} N\) \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 4 & 8 & \(\mu \mathrm{A} N\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 4 & 8 & \(\mu \mathrm{A} N\) \\
\hline
\end{tabular}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 V, A_{V}=+1, R_{F}=560 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP. ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{3}{*}{Inverting Input Bias Current Power Supply Sensitivity} & \(\Delta \mathrm{V}_{\text {PS }}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 2 & 5 & \(\mu \mathrm{A} / \mathrm{N}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 4 & 8 & \(\mu \mathrm{A} / \mathrm{N}\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 4 & 8 & \(\mu \mathrm{A} N\) \\
\hline Inverting Input Resistance & & C & 25 & - & 40 & - & \(\Omega\) \\
\hline Input Capacitance & & C & 25 & - & 2.5 & - & pF \\
\hline \multirow[t]{2}{*}{Input Voltage Common Mode Range (Implied by \(\mathrm{V}_{1 \mathrm{O}}\) CMRR, \(+\mathrm{R}_{I N}\), and - \(\mathrm{I}_{\mathrm{BIAS}}\) CMS tests)} & & A & 25, 85 & \(\pm 1.8\) & \(\pm 2.4\) & - & V \\
\hline & & A & -40 & \(\pm 1.2\) & \(\pm 1.7\) & - & V \\
\hline Input Noise Voltage Density & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 3.5 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Non-Inverting Input Noise Current Density & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 2.5 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Inverting Input Noise Current Density & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 20 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hzz}}\) \\
\hline \multicolumn{8}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline Open Loop Transimpedance Gain & \(A_{V}=-1\) & C & 25 & - & 500 & - & k \(\Omega\) \\
\hline \multicolumn{8}{|l|}{AC CHARACTERISTICS \(A_{V}=+2, R_{F}=560 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{3}{*}{-3 dB Bandwidth ( \(\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-P }}\) )} & \(A_{V}=+1,+R_{S}=560 \Omega\) & B & 25 & - & 290 & - & MHz \\
\hline & \(A_{V}=+2\) & B & 25 & - & 530 & - & MHz \\
\hline & \(A_{V}=-1, R_{F}=510 \Omega\) & B & 25 & - & 230 & - & MHz \\
\hline \multirow[t]{3}{*}{Full Power Bandwidth \(\left(V_{\text {OUT }}=5 V_{\text {P-P }}\right.\) at \(A_{V}=+2 /-1\), \(4 V_{\text {P-P }}\) at \(A_{V}=+1\) )} & \(A_{V}=+1,+R_{S}=560 \Omega\) & B & 25 & - & 150 & - & MHz \\
\hline & \(A_{V}=+2\) & B & 25 & - & 130 & - & MHz \\
\hline & \(A_{V}=-1, R_{F}=510 \Omega\) & B & 25 & - & 120 & - & MHz \\
\hline \multirow[t]{2}{*}{Gain Flatness ( \(\left.\mathrm{A}_{\mathrm{V}}=+2, \mathrm{~V}_{\mathrm{OUT}}=0.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\right)\)} & To 25 MHz & B & 25 & - & \(\pm 0.04\) & - & dB \\
\hline & To 50 MHz & B & 25 & - & \(\pm 0.11\) & - & dB \\
\hline Minimum Stable Gain & & A & Full & - & 1 & - & \(\mathrm{V} / \mathrm{N}\) \\
\hline \multirow[t]{2}{*}{Crosstalk (Note 4)} & 5 MHz & B & 25 & - & -73 & - & dB \\
\hline & 10 MHz & B & 25 & - & -64 & - & dB \\
\hline \multicolumn{8}{|l|}{OUTPUT CHARACTERISTICS \(\mathrm{R}_{\mathrm{F}}=560 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Output Voltage Swing} & \multirow[t]{2}{*}{\(A_{V}=-1, R_{L}=100 \Omega\)} & A & 25 & \(\pm 3\) & \(\pm 3.4\) & - & V \\
\hline & & A & Full & \(\pm 2.8\) & \(\pm 3\) & - & V \\
\hline \multirow[t]{2}{*}{Output Current} & \multirow[t]{2}{*}{\(A_{V}=-1, R_{L}=50 \Omega\)} & A & 25, 85 & 50 & 60 & - & mA \\
\hline & & A & -40 & 28 & 42 & \(\bullet\) & mA \\
\hline Output Short Circuit Current & & B & 25 & - & 90 & - & mA \\
\hline DC Closed Loop Output Impedance & \(A_{V}=+2, R_{F}=560 \Omega\) & B & 25 & - & 0.07 & - & \(\Omega\) \\
\hline \multirow[t]{2}{*}{Second Harmonic Distortion \(\left(A_{V}=+2, R_{F}=560 \Omega, V_{O U T}=2 V_{P-P}\right)\)} & 10 MHz & B & 25 & - & -50 & - & dBc \\
\hline & 20 MHz & B & 25 & - & -45 & - & dBc \\
\hline \multirow[t]{2}{*}{Third Harmonic Distortion \(\left(A_{V}=+2, R_{F}=560 \Omega, V_{O U T}=2 V_{P-P}\right)\)} & 10 MHz & B & 25 & - & -55 & - & dBc \\
\hline & 20 MHz & B & 25 & - & -50 & - & dBc \\
\hline \multicolumn{8}{|l|}{TRANSIENT CHARACTERISTICS \(A_{V}=+2, R_{F}=560 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Rise and Fall Times ( \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}_{\text {P-P }}\) )} & Rise Time & B & 25 & - & 0.65 & - & ns \\
\hline & Fall Time & B & 25 & - & 1.20 & - & ns \\
\hline Overshoot & \begin{tabular}{l}
\(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}_{\text {P-P }}\), \\
\(\mathrm{V}_{\text {IN }} \mathrm{t}_{\text {RISE }}=1.0 \mathrm{~ns}\)
\end{tabular} & B & 25 & - & 7 & - & \% \\
\hline
\end{tabular}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 V, A_{V}=+1, R_{F}=560 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & \begin{tabular}{l}
TEMP. \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{2}{*}{Slew Rate
\[
\left(V_{\text {OUT }}=4 V_{P-P}, A_{V}=+1,+R_{S}=560 \Omega\right)
\]} & +SR & B & 25 & - & 1050 & - & V/us \\
\hline & -SR & B & 25 & - & 800 & - & V/us \\
\hline \multirow[t]{2}{*}{Slew Rate ( \(\left.\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}_{\text {P-P }}, \mathrm{A}_{\mathrm{V}}=+2\right)\)} & +SR & B & 25 & - & 1400 & - & V/us \\
\hline & -SR & B & 25 & - & 900 & - & V/us \\
\hline \multirow[t]{2}{*}{Slew Rate
\[
\left(V_{\text {OUT }}=5 V_{P-P}, A_{V}=-1, R_{F}=510 \Omega\right)
\]} & +SR & B & 25 & - & 1950 & - & V/ \(/\) s \\
\hline & -SR & B & 25 & - & 1050 & - & V/ \(/ \mathrm{s}\) \\
\hline \multirow[t]{3}{*}{Settling Time ( \(\mathrm{V}_{\text {OUT }}=+2 \mathrm{~V}\) to 0 V step)} & To 0.1\% & B & 25 & - & 15 & - & ns \\
\hline & To 0.05\% & B & 25 & - & 20 & - & ns \\
\hline & To 0.02\% & B & 25 & - & 30 & - & ns \\
\hline Overdrive Recovery Time & \(\mathrm{V}_{\mathrm{IN}}= \pm 2 \mathrm{~V}\) & B & 25 & - & 8.5 & - & ns \\
\hline \multicolumn{8}{|l|}{VIDEO CHARACTERISTICS \(A_{V}=+2, R_{F}=560 \Omega\), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Differential Gain ( \(f=3.58 \mathrm{MHz}\) )} & \(\mathrm{R}_{\mathrm{L}}=150 \Omega\) & B & 25 & - & 0.02 & - & \% \\
\hline & \(\mathrm{R}_{\mathrm{L}}=75 \Omega\) & B & 25 & - & 0.03 & - & \% \\
\hline \multirow[t]{2}{*}{Differential Phase ( \(f=3.58 \mathrm{MHz}\) )} & \(\mathrm{R}_{\mathrm{L}}=150 \Omega\) & B & 25 & - & 0.03 & - & Degrees \\
\hline & \(R_{L}=75 \Omega\) & B & 25 & - & 0.05 & - & Degrees \\
\hline \multicolumn{8}{|l|}{DISABLE CHARACTERISTICS} \\
\hline Disabled Supply Current & \(V_{\text {DISABLE }}=0 \mathrm{~V}\) & A & Full & - & 3 & 4 & mA/Op Amp \\
\hline \multirow[t]{3}{*}{DISABLE Input Logic Voltage} & Low & A & Full & - & - & 0.8 & V \\
\hline & \multirow[t]{2}{*}{High} & A & 25, 85 & 2.0 & - & - & v \\
\hline & & A & \(-40^{\circ} \mathrm{C}\) & 2.4 & - & - & V \\
\hline DISABLE Input Logic Low Current & \(V_{\text {DISABLE }}=0 \mathrm{~V}\) & A & Full & - & 100 & 200 & \(\mu \mathrm{A}\) \\
\hline DISABLE Input Logic High Current & \(V_{\text {DISABLE }}=5 \mathrm{~V}\) & A & Full & - & 1 & 15 & \(\mu \mathrm{A}\) \\
\hline Output Disable Time & \[
\begin{array}{|l}
\mathrm{V}_{\text {IN }}= \pm 1 \mathrm{~V}, \\
\mathrm{~V}_{\text {DISABLE }}=2.4 \mathrm{~V} \text { to } 0 \mathrm{~V}
\end{array}
\] & B & 25 & - & 20 & - & ns \\
\hline Output Enable Time & \[
\begin{aligned}
& \mathrm{V}_{\text {IN }}= \pm 1 \mathrm{~V}, \\
& \mathrm{~V}_{\text {DISABLE }}=0 \mathrm{~V} \text { to } 2.4 \mathrm{~V}
\end{aligned}
\] & B & 25 & - & 160 & - & ns \\
\hline Disabled Output Capacitance & \(V_{\text {DISABLE }}=0 \mathrm{~V}\) & B & 25 & - & 3.8 & - & pF \\
\hline Disabled Output Leakage & \[
\begin{aligned}
& V_{\text {DISABLE }}=0 \mathrm{~V} \\
& \mathrm{~V}_{\text {IN }}=+2 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}= \pm 3 \mathrm{~V}
\end{aligned}
\] & A & Full & - & 2 & 10 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Off Isolation }\left(V_{\text {DISABLE }}=0 V\right. \\
& \left.V_{I N}=1 V_{P-P}, A_{V}=+2\right)
\end{aligned}
\]} & At 5 MHz & B & 25 & - & -61 & - & dB \\
\hline & At 10 MHz & B & 25 & - & -55 & - & dB \\
\hline \multicolumn{8}{|l|}{POWER SUPPLY CHARACTERISTICS} \\
\hline Power Supply Range & & C & 25 & \(\pm 4.5\) & - & \(\pm 5.5\) & v \\
\hline \multirow[t]{2}{*}{Power Supply Current} & & A & 25 & 5.6 & 5.8 & 6.1 & mA/Op Amp \\
\hline & & A & Full & 5.4 & 5.9 & 6.3 & mA/Op Amp \\
\hline
\end{tabular}

\section*{NOTES:}
3. Test Level: A. Production Tested.; B. Typical or Guaranteed Limit Based on Characterization.; C. Design Typical for Information Only.
4. The typical use for these amplifiers is in multiplexed configurations, where one amplifier (hostile channel) is enabled, and the passive channel is disabled. The crosstalk data specified is tested in this manner, with the input signal applied to the hostile channel, while monitoring the output of the passive channel. Crosstalk performance with both the hostile and passive channels enabled is typically: -63dB at 5 MHz , and -50 dB at 10 MHz .

\section*{Application Information}

\section*{Optimum Feedback Resistor}

Although a current feedback amplifier's bandwidth dependency on closed loop gain isn't as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback amplifier's unique relationship between bandwidth and RF. All current feedback amplifiers require a feedback resistor, even for unity gain applications, and \(\mathrm{R}_{\mathrm{F}}\), in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to RF. The HFA1245 design is optimized for a \(560 \Omega R_{F}\) at a gain of +2 . Decreasing \(R_{F}\) decreases stability, resulting in excessive peaking and overshoot (Note: Capacitive feedback will cause the same problems due to the feedback impedance decrease at higher frequencies). At higher gains the amplifier is more stable, so \(R_{F}\) can be decreased in a trade-off of stability for bandwidth.

The table below lists recommended \(R_{F}\) values for various gains, and the expected bandwidth. For good channel-tochannel gain matching, it is recommended that all resistors (termination as well as gain setting) be \(\pm 1 \%\) tolerance or better. Note that a series input resistor, on +IN , is required for a gain of +1 , to reduce gain peaking and increase stability.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
GAIN \\
\(\left(\mathbf{A}_{C L}\right)\)
\end{tabular} & \(\mathbf{R}_{\mathbf{F}}(\Omega)\) & \begin{tabular}{c} 
BANDWIDTH \\
\((\mathrm{MHz})\)
\end{tabular} \\
\hline-1 & 510 & 230 \\
\hline+1 & \(560\left(+\mathrm{R}_{\mathrm{S}}=560 \Omega\right)\) & 290 \\
\hline+2 & 560 & 530 \\
\hline
\end{tabular}

Non-inverting Input Source Impedance
For best operation, the DC source impedance looking out of the non-inverting input should be \(\geq 50 \Omega\). This is especially important in inverting gain configurations where the noninverting input would normally be connected directly to GND.

\section*{Optional GND Pin for TTL Compatibility}

The HFA1245 derives an internal GND reference for the digital circuitry as long as the power supplies are symmetrical about GND. The GND reference is used to ensure the TTL compatibility of the DISABLE inputs. With symmetrical supplies the GND pin (Pin 12) may be floated, or connected directly to GND. If asymmetrical supplies (e.g., \(+10 \mathrm{~V}, 0 \mathrm{~V}\) ) are utilized, and TTL compatibility is desired, the GND pin must be connected to GND.

\section*{PC Board Layout}

The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!

Attention should be given to decoupling the power supplies. A large value ( \(10 \mu \mathrm{~F}\) ) tantalum in paraliel with a small value \((0.1 \mu \mathrm{~F})\) chip capacitor works well in most cases.

Terminated microstrip signal lines are recommended at the input and output of the device. Capacitance directly on the output must be minimized, or isolated as discussed in the next section.

Care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input (-IN). The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and possible instability. To this end, it is recommended that the ground plane be removed under traces connected to -IN , and connections to -IN should be kept as short as possible.

\section*{Driving Capacitive Loads}

Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor ( \(\mathrm{R}_{\mathrm{S}}\) ) in series with the output prior to the capacitance.

Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the \(R_{S}\) and \(C_{L}\) combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an overdamped response, while points below or left of the curve indicate areas of underdamped performance.
\(R_{S}\) and \(C_{L}\) form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 290 MHz (for \(A_{V}=+1\) ). By decreasing \(R_{S}\) as \(C_{L}\) increases (as illustrated in the curves), the maximum bandwidth is obtained without sacrificing stability. Even so, bandwidth does decrease as you move to the right along the curve. For example, at \(A_{V}=+1, R_{S}=62 \Omega, C_{L}=40 \mathrm{pF}\), the overall bandwidth is limited to 180 MHz , and bandwidth drops to 70 MHz at \(A_{V}=+1\), \(R_{S}=8 \Omega, C_{L}=400 p F\).


FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs LOAD CAPACITANCE

\section*{Die Characteristics}

DIE DIMENSIONS:
69 mils \(\times 92\) mils \(\times 19\) mils \(1750 \mu \mathrm{~m} \times 2330 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)

\section*{METALLIZATION:}

Type: Metal 1: AICu(2\%)/TiW Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)

Type: Metal 2: AICu(2\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)

SUBSTRATE POTENTIAL (Powered Up):
Floating (Recommend Connection to V-)
PASSIVATION:
Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)

\section*{TRANSISTOR COUNT:}

180

\section*{Metallization Mask Layout}

HFA1245


NOTE:
5. This is an optional GND pad. Users may set a GND reference, via this pad, to ensure the TTL compatibility of the DISABLE inputs when using asymmetrical supplies (e.g., \(\mathrm{V}+=10 \mathrm{~V}, \mathrm{~V}-=0 \mathrm{~V}\) ). See the "Application Information" section for details.

HFA1405

\section*{Quad, 560MHz, Low Power, Video Operational Amplifier}

\section*{Description}

The HFA1405 is a quad, high speed, low power current feedback amplifier built with Harris' proprietary complementary bipolar UHF-1 process.

These amplifiers deliver up to 560 MHz bandwidth and \(1700 \mathrm{~V} / \mu\) s slew rate, on only 58 mW of quiescent power. They are specifically designed to meet the performance, power, and cost requirements of high volume video applications. The excellent gain flatness and differential gain/phase performance make these amplifiers well suited for component or composite video applications. Video performance is maintained even when driving a back terminated cable ( \(R_{L}=150 \Omega\) ), and degrades only slightly when driving two back terminated cables ( \(R_{L}=75 \Omega\) ). RGB applications will benefit from the high slew rates, and high full power bandwidth.

The HFA1405 is a pin compatible, low power, high performance upgrade for the popular Harris HA5025, and for the CLC414 and CLC415.

Ordering Information
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathbf{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HFA1405IB & -40 to 85 & 14 Ld SOIC & M14.15 \\
\hline HFA1405IP & -40 to 85 & 14 Ld PDIP & E14.3 \\
\hline HA5025EVAL & \multicolumn{3}{|l|}{ High Speed Op Amp DIP Evaluation Board } \\
\hline
\end{tabular}

\section*{Pinout}

HFA1405
(PDIP, SOIC)
TOP VIEW

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Absolute Maximum Ratings \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)} \\
\hline Voltage Between V+ and V- & 11V \\
\hline DC Input Voltage & \(V_{\text {SUPPLY }}\) \\
\hline Differential Input Voltage. & 5 V \\
\hline Output Current (Note 2) & Short Circuit Protected \\
\hline & 30mA Continuous \\
\hline & \(60 \mathrm{~mA} \leq 50 \%\) Duty Cycle \\
\hline \multicolumn{2}{|l|}{ESD Rating} \\
\hline Human Body Model (Per MIL-STD & ethod 3015.7) . . . 600V \\
\hline
\end{tabular}

Absolute Maximum Ratings \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11V
DC Input Voltage ........................................... \(V_{\text {SUPPLY }}\)

30mA Continuous
. .600 V

Thermal Information
\begin{tabular}{|c|c|}
\hline Thermal Resistance (Typical, Note 1) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline SOIC Package & 120 \\
\hline PDIP Package & 100 \\
\hline Maximum Junction Temperature (Die). & 17 \\
\hline Maximum Junction Temperature (Plastic Package) & 150 \\
\hline Maximum Storage Temperature Range & 150 \\
\hline Maximum Lead Temperature (Soldering 10s). (SOIC - Lead Tips Only) & \\
\hline
\end{tabular}

\section*{Operating Conditions}

Temperature Range
\(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.
2. Output is short circuit protected to ground. Brief short circuits to ground will not degrade reliability, however continuous ( \(100 \%\) duty cycle) output current must not exceed 30 mA for maximum reliability.

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=510 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { (NOTE 4) } \\
\text { TEST } \\
\text { LEVEL }
\end{gathered}
\]} & \multirow[b]{2}{*}{TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{3}{|l|}{HFA1405IB (SOIC)} & \multicolumn{3}{|l|}{HFA1405IP (PDIP)} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{11}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & & A & 25 & - & 2 & 5 & - & 2 & 5 & mV \\
\hline & & A & Full & - & 3 & 8 & - & 3 & 8 & mV \\
\hline Average Input Offset Voltage Drift & & B & Full & - & 1 & 10 & - & 1 & 10 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Input Offset Voltage Common-Mode Rejection Ratio} & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 45 & 48 & - & 45 & 48 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 85 & 43 & 46 & - & 43 & 46 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.2 \mathrm{~V}\) & A & -40 & 43 & 46 & - & 43 & 46 & - & dB \\
\hline \multirow[t]{3}{*}{Input Offset Voltage Power Supply Rejection Ratio} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 48 & 52 & - & 48 & 52 & \(\bullet\) & dB \\
\hline & \(\Delta \mathrm{V}_{\text {PS }}= \pm 1.8 \mathrm{~V}\) & A & 85 & 46 & 48 & - & 46 & 48 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 46 & 48 & - & 46 & 48 & - & dB \\
\hline \multirow[t]{2}{*}{Non-Inverting Input Bias Current} & & A & 25 & - & 6 & 15 & - & 6 & 15 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 10 & 25 & - & 10 & 25 & \(\mu \mathrm{A}\) \\
\hline Non-Inverting Input Bias Current Drift & & B & Full & - & 5 & 60 & - & 5 & 60 & \(\mathrm{nA}^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Non-Inverting Input Bias Current Power Supply Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 0.5 & 1 & - & 0.5 & 1 & \(\mu \mathrm{A} V\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 0.8 & 3 & - & 0.8 & 3 & \(\mu \mathrm{A} V\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 0.8 & 3 & - & 0.8 & 3 & \(\mu \mathrm{A} N\) \\
\hline \multirow[t]{3}{*}{Non-Inverting Input Resistance} & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 25 & 0.8 & 1.2 & - & 0.8 & 1.2 & - & \(\mathrm{M} \Omega\) \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 85 & 0.5 & 0.8 & - & 0.5 & 0.8 & - & \(\mathrm{M} \Omega\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 0.5 & 0.8 & - & 0.5 & 0.8 & - & \(\mathrm{M} \Omega\) \\
\hline \multirow[t]{2}{*}{Inverting Input Bias Current} & & A & 25 & - & 2 & 7.5 & - & 2 & 7.5 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 5 & 15 & - & 5 & 15 & \(\mu \mathrm{A}\) \\
\hline Inverting Input Bias Current Drift & & B & Full & - & 60 & 200 & - & 60 & 200 & \(\mathrm{nA}^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Inverting Input Bias Current Common-Mode Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 3 & 6 & - & 3 & 6 & \(\mu \mathrm{A} V\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 4 & 8 & - & 4 & 8 & \(\mu \mathrm{A} N\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 4 & 8 & - & 4 & 8 & \(\mu \mathrm{A} N\) \\
\hline
\end{tabular}

Electrical Specifications \(V_{S U P P L Y}= \pm 5 V, A_{V}=+1, R_{F}=510 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { (NOTE 4) } \\
\text { TEST } \\
\text { LEVEL }
\end{gathered}
\]} & \multirow[b]{2}{*}{TEMP. ( \({ }^{\circ} \mathrm{C}\) )} & \multicolumn{3}{|l|}{HFA1405IB (SOIC)} & \multicolumn{3}{|l|}{HFA1405IP (PDIP)} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{3}{*}{Inverting Input Bias Current Power Supply Sensitivity} & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 25 & - & 2 & 5 & - & 2 & 5 & \(\mu \mathrm{A} N\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.8 \mathrm{~V}\) & A & 85 & - & 4 & 8 & - & 4 & 8 & \(\mu \mathrm{A} V\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & - & 4 & 8 & - & 4 & 8 & \(\mu \mathrm{A} V\) \\
\hline Inverting Input Resistance & & C & 25 & - & 60 & - & - & 60 & - & \(\Omega\) \\
\hline Input Capacitance & & B & 25 & - & 1.4 & - & - & 2.2 & - & pF \\
\hline \multirow[t]{2}{*}{Input Voltage Common Mode Range (Implied by \(\mathrm{V}_{10}\) CMRR, \(+\mathrm{R}_{1 \mathrm{~N}}\), and - IBIAS CMS Tests)} & & A & 25, 85 & \(\pm 1.8\) & \(\pm 2.4\) & - & \(\pm 1.8\) & \(\pm 2.4\) & - & V \\
\hline & & A & -40 & \(\pm 1.2\) & \(\pm 1.7\) & - & \(\pm 1.2\) & \(\pm 1.7\) & - & V \\
\hline Input Noise Voltage Density & \(f=100 \mathrm{kHz}\) & B & 25 & - & 3.5 & - & - & 3.5 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Non-Inverting Input Noise Current Density & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 2.5 & - & - & 2.5 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Inverting Input Noise Current Density & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 20 & - & - & 20 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline \multicolumn{11}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline Open Loop Transimpedance Gain & \(A_{V}=-1\) & C & 25 & - & 500 & - & - & 500 & - & k \(\Omega\) \\
\hline \multicolumn{11}{|l|}{AC CHARACTERISTICS (Note 3)} \\
\hline \multirow[t]{3}{*}{-3dB Bandwidth \(\left(V_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-P }}\right.\), Notes 3,5\()\)} & \(A_{V}=-1\) & B & 25 & - & 420 & - & - & 360 & - & MHz \\
\hline & \(A_{V}=+2\) & B & 25 & - & 560 & - & - & 400 & - & MHz \\
\hline & \(A_{V}=+6\) & B & 25 & - & 140 & - & - & 100 & - & MHz \\
\hline \multirow[t]{3}{*}{Full Power Baridwidth ( \(\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}_{\text {P-P }}\), Notes 3, 5 )} & \(A_{V}=-1\) & B & 25 & - & 260 & - & - & 260 & - & MHz \\
\hline & \(A_{V}=+2\) & B & 25 & - & 165 & - & - & 165 & - & MHz \\
\hline & \(A_{V}=+6\) & B & 25 & - & 140 & - & - & 100 & - & MHz \\
\hline \multirow[t]{8}{*}{Gain Flatness ( \(\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-p }}\), Notes 3,5)} & \(A_{V}=-1\), To 25 MHz & B & 25 & - & \(\pm 0.03\) & - & - & \(\pm 0.04\) & - & dB \\
\hline & \(A_{V}=-1\), To 50 MHz & B & 25 & - & \(\pm 0.04\) & - & - & \(\pm 0.04\) & - & dB \\
\hline & \(A_{V}=-1\), , 100 MHz & B & 25 & - & - & - & - & \(\pm 0.06\) & - & dB \\
\hline & \(A_{V}=+2\), To 25 MHz & B & 25 & - & \(\pm 0.03\) & - & - & \(\pm 0.04\) & - & dB \\
\hline & \(\mathrm{A}_{\mathrm{V}}=+2\), To 50 MHz & B & 25 & - & \(\pm 0.03\) & - & - & \(\pm 0.04\) & - & dB \\
\hline & \(A_{V}=+2\), To 100 MHz & B & 25 & - & - & - & - & \(\pm 0.06\) & - & dB \\
\hline & \(\mathrm{A}_{\mathrm{V}}=+6\), , 015 MHz & B & 25 & - & \(\pm 0.08\) & - & - & \(\pm 0.08\) & - & dB \\
\hline & \(A_{V}=+6\), , 30 MHz & B & 25 & - & \(\pm 0.19\) & - & - & \(\pm 0.27\) & - & dB \\
\hline Minimum Stable Gain & & A & Full & - & 1 & - & - & 1 & - & \(\mathrm{V} N\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Crosstalk \\
( \(\mathrm{A}_{\mathrm{V}}=+2\), All Channels Hostile, \\
Note 5)
\end{tabular}} & 5 MHz & B & 25 & - & -60 & - & - & -55 & - & dB \\
\hline & 10 MHz & B & 25 & \(\bullet\) & -56 & - & - & -52 & - & dB \\
\hline \multicolumn{11}{|l|}{OUTPUT CHARACTERISTICS \(A_{V}=+2\) (Note 3), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{Output Voltage Swing (Note 5)} & \multirow[t]{2}{*}{\(A_{V}=-1, R_{L}=100 \Omega\)} & A & 25 & \(\pm 3\) & \(\pm 3.4\) & - & \(\pm 3\) & \(\pm 3.4\) & - & V \\
\hline & & A & Full & \(\pm 2.8\) & \(\pm 3\) & - & \(\pm 2.8\) & \(\pm 3\) & - & V \\
\hline \multirow[t]{2}{*}{Output Current (Note 5)} & \multirow[t]{2}{*}{\(A_{V}=-1, R_{L}=50 \Omega\)} & A & 25, 85 & 50 & 60 & - & 50 & 60 & - & mA \\
\hline & & A & -40 & 28 & 42 & - & 28 & 42 & - & mA \\
\hline Output Short Circuit Current & & B & 25 & - & 90 & - & - & 90 & - & mA \\
\hline Closed Loop Output Impedance & & B & 25 & - & 0.2 & - & - & 0.2 & - & \(\Omega\) \\
\hline
\end{tabular}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{F}=510 \Omega, R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[t]{2}{*}{(NOTE 4) TEST LEVEL} & \multirow[b]{2}{*}{TEMP.
\[
\left({ }^{\circ} \mathrm{C}\right)
\]} & \multicolumn{3}{|l|}{HFA1405IB (SOIC)} & \multicolumn{3}{|l|}{HFA1405IP (PDIP)} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{2}{*}{Second Harmonic Distortion ( \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\text {P-P }}\), Note 5 )} & 10 MHz & B & 25 & - & -51 & \(\cdot\) & - & -51 & - & dBc \\
\hline & 20 MHz & B & 25 & - & -46 & - & - & -46 & - & dBc \\
\hline \multirow[t]{2}{*}{Third Harmonic Distortion ( \(\mathrm{V}_{\text {OUT }}=2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\), Note 5 )} & 10 MHz & B & 25 & - & -63 & - & - & -63 & - & dBc \\
\hline & 20 MHz & B & 25 & - & -56 & - & - & -56 & - & dBc \\
\hline
\end{tabular}

TRANSIENT CHARACTERISTICS \(A_{V}=+2\) (Note 3), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Rise and Fall Times ( \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\), Note 3)} & \(A_{V}=+2\) & B & 25 & - & 0.8 & - & - & 0.9 & - & ns \\
\hline & \(\mathrm{A}_{\mathrm{V}}=+6\) & B & 25 & - & 2.9 & - & - & 4 & - & ns \\
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
Overshoot \\
\(\left(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{V}_{\text {IN }} t_{\text {RISE }}=1 \mathrm{~ns}\right.\), \\
Notes 3, 6)
\end{tabular}} & \(A_{V}=-1,+O S\) & B & 25 & - & 7 & - & - & 3 & - & \% \\
\hline & \(A_{V}=-1,-O S\) & B & 25 & - & 8 & - & - & 13 & - & \% \\
\hline & \(A_{V}=+2,+O S\) & B & 25 & - & 5 & - & - & 7 & - & \% \\
\hline & \(A_{V}=+2,-O S\) & B & 25 & - & 10 & - & - & 11 & - & \% \\
\hline & \(A_{V}=+6,+O S\) & B & 25 & - & 2 & - & - & 2 & - & \% \\
\hline & \(A_{V}=+6,-O S\) & B & 25 & - & 2 & - & - & 2 & - & \% \\
\hline \multirow[t]{6}{*}{\[
\begin{aligned}
& \text { Slew Rate } \\
& \left(\text { V OUT }^{2}=5 V_{\text {P-P }}, \text { Notes } 3,5\right)
\end{aligned}
\]} & \(A_{V}=-1,+\) SR & B & 25 & - & 2500 & & - & 2500 & & V/ \(/ \mathrm{s}\) \\
\hline & \(A_{V}=-1,-S R\) & B & 25 & - & 1900 & - & - & 1900 & - & V/4s \\
\hline & \(A_{V}=+2,+S R\) & B & 25 & - & 1700 & - & - & 1600 & - & V/ \(/ \mathrm{s}\) \\
\hline & \(A_{V}=+2,-S R\) & B & 25 & - & 1700 & - & - & 1400 & - & V/us \\
\hline & \(A_{V}=+6,+S R\) & B & 25 & - & 1500 & - & - & 1000 & - & V/us \\
\hline & \(A_{V}=+6,-S R\) & B & 25 & - & 1100 & - & - & 1000 & - & V/us \\
\hline \multirow[t]{3}{*}{Settling Time ( \(\mathrm{V}_{\text {OUT }}=+2 \mathrm{~V}\) to OV Step, Note 5)} & To 0.1\% & B & 25 & - & 23 & - & - & 23 & - & ns \\
\hline & To 0.05\% & B & 25 & - & 30 & - & - & 30 & - & ns \\
\hline & To 0.025\% & B & 25 & - & 37 & - & - & 40 & - & ns \\
\hline Overdrive Recovery Time & \(\mathrm{V}_{\mathrm{IN}}= \pm 2 \mathrm{~V}\) & B & 25 & \(\bullet\) & 8.5 & - & - & 8.5 & - & ns \\
\hline \multicolumn{11}{|l|}{VIDEO CHARACTERISTICS \(A_{V}=+2\) (Note 3), Unless Otherwise Specified} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Differential Gain } \\
& (f=3.58 \mathrm{MHz})
\end{aligned}
\]} & \(\mathrm{R}_{\mathrm{L}}=150 \Omega\) & B & 25 & - & 0.02 & - & - & 0.03 & - & \% \\
\hline & \(\mathrm{R}_{\mathrm{L}}=75 \Omega\) & B & 25 & - & 0.03 & - & - & 0.06 & - & \% \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Differential Phase } \\
& (f=3.58 \mathrm{MHz})
\end{aligned}
\]} & \(R_{L}=150 \Omega\) & B & 25 & - & 0.03 & - & - & 0.03 & - & Degrees \\
\hline & \(\mathrm{R}_{\mathrm{L}}=75 \Omega\) & B & 25 & - & 0.06 & - & - & 0.06 & - & Degrees \\
\hline
\end{tabular}

POWER SUPPLY CHARACTERISTICS
\begin{tabular}{|l|l|c|c|c|c|c|c|c|c|c|}
\hline Power Supply Range & & C & 25 & \(\pm 4.5\) & - & \(\pm 5.5\) & \(\pm 4.5\) & - & \(\pm 5.5\) & V \\
\hline \multirow{3}{*}{ Power Supply Current (Note 5) } & & A & 25 & - & 5.8 & 6.1 & - & 5.8 & \begin{tabular}{c}
6.1 \\
\(\mathrm{~mA} / \mathrm{Op}\) \\
Amp
\end{tabular} \\
\cline { 3 - 10 } & & A & Full & - & 5.9 & 6.3 & - & 5.9 & \begin{tabular}{c}
6.3 \\
\(\mathrm{~mA} / \mathrm{Op}\) \\
Amp
\end{tabular} \\
\hline
\end{tabular}

NOTES:
3. The optimum feedback resistor depends on closed loop gain and package type. The following resistors were used for the PDIP/SOIC characterization: \(A_{V}=-1, R_{F}=310 \Omega / 360 \Omega ; A_{V}=+2, R_{F}=402 \Omega / 510 \Omega ; A_{V}=+6, R_{F}=500 \Omega / 500 \Omega\). See the Application Information section for more information.
4. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.
5. See Typical Performance Curves for more information.
6. Undershoot dominates for output signal swings below GND (e.g., \(2 \mathrm{~V}_{\text {P-p }}\) ), yielding a higher overshoot limit compared to the \(\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}\) to 2 V condition. See the "Application Information" section for details.

\section*{Application Information}

\section*{Performance Differences Between PDIP and SOIC}

The amplifiers comprising the HFA1405 are high frequency current feedback amplifiers. As such, they are sensitive to feedback capacitance which destabilizes the op amp and causes overshoot and peaking. Unfortunately, the standard quad op amp pinout places the amplifier's output next to its inverting input, thus making the package capacitance an unavoidable parasitic feedback capacitor. The larger parasitic capacitance of the PDIP requires an inherently more stable amplifier, which yields a PDIP device with lower performance than the SOIC device - see Electrical Specification tables for details.
Because of these performance differences, designers should evaluate and breadboard with the same package style to be used in production.
Note that the "Typical Performance Curves" section has separate pulse and frequency response graphs for each package type. Graphs not labeled with a specific package type are applicable to both packages.

\section*{Optimum Feedback Resistor}

Although a current feedback amplifier's bandwidth dependency on closed loop gain isn't as severe as that of a voltage feedback amplifier, there can be an appreciable decrease in bandwidth at higher gains. This decrease may be minimized by taking advantage of the current feedback amplifier's unique relationship between bandwidth and \(R_{F}\). All current feedback amplifiers require a feedback resistor, even for unity gain applications, and \(R_{F}\), in conjunction with the internal compensation capacitor, sets the dominant pole of the frequency response. Thus, the amplifier's bandwidth is inversely proportional to \(R_{F}\). The HFA1405 design is optimized for \(R_{F}=402 \Omega / 510 \Omega\) (PDIP/SOIC) at a gain of +2 . Decreasing \(R_{F}\) decreases stability, resulting in excessive peaking and overshoot (Note: Capacitive feedback causes the same problems due to the feedback impedance decrease at higher frequencies). However, at higher gains the amplifier is more stable so \(R_{F}\) can be decreased in a trade-off of stability for bandwidth.
The table below lists recommended \(R_{F}\) values for various gains, and the expected bandwidth. For good channel-tochannel gain matching, it is recommended that all resistors (termination as well as gain setting) be \(\pm 1 \%\) tolerance or better.

OPTIMUM FEEDBACK RESISTOR
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
GAIN \\
\(\left(\right.\) ACL) \(^{2}\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{R F}_{\mathbf{F}}(\Omega)\) \\
PDIP/SOIC
\end{tabular} & \begin{tabular}{c} 
BANDWIDTH (MHz) \\
PDIP/SOIC
\end{tabular} \\
\hline-1 & \(310 / 360\) & \(360 / 420\) \\
\hline+2 & \(402 / 510\) & \(400 / 560\) \\
\hline+6 & \(500 / 500(\) Note \()\) & \(100 / 140\) \\
\hline
\end{tabular}

NOTE: \(R_{F}=500 \Omega\) is not the optimum value. It was chosen to match the \(R_{F}\) of the CLC414 and CLC415, for performance comparison purposes. Performance at \(A_{V}=+6\) may be increased by reducing \(R_{F}\) below \(500 \Omega\)

\section*{Non-inverting Input Source Impedance}

For best operation, the DC source impedance seen by the non-inverting input should be \(\geq 50 \Omega\). This is especially important in inverting gain configurations where the noninverting input would normally be connected directly to GND.

\section*{Pulse Undershoot}

The HFA1405 utilizes a quasi-complementary output stage to achieve high output current while minimizing quiescent supply current. In this approach, a composite device replaces the traditional PNP pulldown transistor. The composite device switches modes after crossing OV, resulting in added distortion for signals swinging below ground, and an increased undershoot on the negative portion of the output waveform (see Figure 6 and Figure 9). This undershoot isn't present for small bipolar signals, or large positive signals (see Figure 5 and Figure 8).

\section*{PC Board Layout}

The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!
Attention should be given to decoupling the power supplies. A large value \((10 \mu \mathrm{~F})\) tantalum in parallel with a small value \((0.1 \mu \mathrm{~F})\) chip capacitor works well in most cases.

Terminated microstrip signal lines are recommended at the input and output of the device. Capacitance, parasitic or planned, connected to the output must be minimized, or isolated as discussed in the next section.

Care must also be taken to minimize the capacitance to ground seen by the amplifier's inverting input (-IN). The larger this capacitance, the worse the gain peaking, resulting in pulse overshoot and eventual instability. To reduce this capacitance the designer should remove the ground plane under traces connected to \(-\operatorname{IN}\), and keep connections to \(-\mathbb{N}\) as short as possible.
An example of a good high frequency layout is the Evaluation Board shown in Figure 3.

\section*{Driving Capacitive Loads}

Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor ( \(\mathrm{R}_{\mathrm{S}}\) ) in series with the output prior to the capacitance.
Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the \(R_{S}\) and \(C_{L}\) combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an overdamped response, while points below or left of the curve indicate areas of underdamped performance.

HFA 1405
\(R_{S}\) and \(C_{L}\) form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 560 MHz . By decreasing \(R_{S}\) as \(C_{L}\) increases (as illustrated in the curve), the maximum bandwidth is obtained without sacrificing stability. In spite of this, bandwidth still decreases as the load capacitance increases.


FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs LOAD CAPACITANCE

\section*{Evaluation Board}

The performance of the HFA1405 (PDIP) may be evaluated using the HA5025 Evaluation Board.

The schematic for amplifier 1 and the board layout are shown in Figure 2 and Figure 3. Resistors \(R_{F}\) and \(R_{G}\) may require a change to values applicable to the HFA1405.
To order evaluation boards (part number HA5025EVAL), please contact your local sales office.


FIGURE 2. EVALUATION BOARD SCHEMATIC

TOP LAYOUT


BOTTOM LAYOUT


FIGURE 3. EVALUATION BOARD LAYOUT

Typical Performance Curves \(V_{\text {SuppLY }}=55 V, T_{A}=25^{\circ} \mathrm{C} . \mathrm{R}_{\mathrm{F}}=\) Value From the Optimum Feedback Resistor Table， \(R_{L}=100 \Omega\) ．Unless Otherwise Specified


FIGURE 4．SMALL SIGNAL PULSE RESPONSE


FIGURE 6．LARGE SIGNAL PULSE RESPONSE


FIGURE 8．LARGE SIGNAL PULSE RESPONSE


FIGURE 5．LARGE SIGNAL PULSE RESPONSE


FIGURE 7．SMALL SIGNAL PULSE RESPONSE


FIGURE 9．LARGE SIGNAL PULSE RESPONSE

Typical Performance Curves \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{F}}=\) Value From the Optimum Feedback Resistor Table, \(R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 10. SMALL SIGNAL PULSE RESPONSE


FIGURE 12. FREQUENCY RESPONSE


FIGURE 14. GAIN FLATNESS


FIGURE 11. LARGE SIGNAL PULSE RESPONSE


FIGURE 13. FREQUENCY RESPONSE vs FEEDBACK RESISTOR


FIGURE 15. GAIN FLATNESS vs FEEDBACK RESISTOR

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{F}}=\) Value From the Optimum Feedback Resistor Table, \(R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 16. SMALL SIGNAL PULSE RESPONSE


FIGURE 18. SMALL SIGNAL PULSE RESPONSE


FIGURE 20. SMALL SIGNAL PULSE RESPONSE


FIGURE 17. LARGE SIGNAL PULSE RESPONSE


FIGURE 19. LARGE SIGNAL PULSE RESPONSE


FIGURE 21. LARGE SIGNAL PULSE RESPONSE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{F}}=\) Value From the Optimum Feedback Resistor Table, \(R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 22. SMALL SIGNAL PULSE RESPONSE


FIGURE 24. SMALL SIGNAL PULSE RESPONSE


FIGURE 26. FREQUENCY RESPONSE


FIGURE 23. LARGE SIGNAL PULSE RESPONSE


FIGURE 25. LARGE SIGNAL PULSE RESPONSE


FIGURE 27. FREQUENCY RESPONSE

Typical Performance Curves \(V_{S U P P L Y}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{F}}=\) Value From the Optimum Feedback Resistor Table, \(R_{L}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 28. FULL POWER BANDWIDTH


FIGURE 30. GAIN FLATNESS


FIGURE 32. 3rd HARMONIC DISTORTION vs TEMPERATURE


FIGURE 29. FREQUENCY RESPONSE vs FEEDBACK RESISTOR


FIGURE 31. 2nd HARMONIC DISTORTION vs TEMPERATURE


FIGURE 33. OUTPUT VOLTAGE vs TEMPERATURE

Typical Performance Curves \(\mathrm{V}_{\text {supply }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{F}}=\) Value From the Optimum Feedback Resistor Table, \(R_{L}=100 \Omega\). Unless Otherwise Specified (Continued)


FIGURE 34. SUPPLY CURRENT vs SUPPLY VOLTAGE


FIGURE 36. ALL HOSTILE CROSSTALK


FIGURE 35. SETTLING RESPONSE


FIGURE 37. ALL HOSTILE CROSSTALK

\section*{Die Characteristics}

DIE DIMENSIONS:
79 mils \(\times 118\) mils \(\times 19\) mils \(2000 \mu \mathrm{~m} \times 3000 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)

\section*{METALLIZATION:}

Type: Metal 1: AICu(2\%)/TiW Thickness: Metal \(1: 8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)

Type: Metal 2: AICu(2\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)

SUBSTRATE POTENTIAL (Powered Up):
Floating (Recommend Connection to V -)
PASSIVATION:
Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
320

Metallization Mask Layout


\author{
\title{
Quad, 350MHz, Low Power, \\ \\ Programmable Gain Buffer Amplifier
}
}

\section*{Features}
- User Programmable For Closed-Loop Gains of +1,-1 or +2 Without Use of External Resistors
- Wide -3dB Bandwidth . . . . . . . . . . . . . . . . . . . . 350MHz
- Low Supply Current. . . . . . . . . . . . . . . . . . . . 6mABBuffer
- Excellent Gain Flatness (to \(\mathbf{1 0 0 M H z}\) ) . . . . . . . . \(\pm 0.08 \mathrm{~dB}\)
- Low Differential Gain and Phase . . 0.03\%/0.02 Degree
- Very Fast Slew Rate . . . . . . . . . . . . . . . . . . . . . 1650V/ \(\mu \mathrm{s}\)
- Fast Settling Time (0.1\%) . . . . . . . . . . . . . . . . . . . 28ns
- High Output Current . . . . . . . . . . . . . . . . . . . . . . 55 mA
- Excellent Gain Accuracy. . . . . . . . . . . . . . . . . . . 0.99V/V
- Overdrive Recovery . . . . . . . . . . . . . . . . . . . . . . . <10ns
- Standard Operational Amplifier Pinout

\section*{Applications}
- Video Distribution Amps
- Flash AVD Drivers
- Video Cable Drivers
- Video Switchers and Routers
- Medical Imaging Systems
- RGB Video Processing
- High Speed Oscilloscopes and Analyzers

\section*{Description}

The HFA1412 is a quad closed loop Buffer featuring user programmable gain and high speed video performance.

A unique feature of the HFA1412's pinout allows the user to select a voltage gain of \(+1,-1\), or +2 (see the "Application Information" section). The on-chip gain setting resistors eliminate eight external resistors, thus saving board space or freeing up space for termination resistors. The on-chip feedback resistor is preset at the optimum value, and also eliminates worries about parasitic feedback capacitance. Additionally, the capacitance sensitive summing node is buried inside the package where it is unaffected by PCB parasitics. Compatibility with existing op amp pinouts provides flexibility to upgrade low gain amplifiers, while decreasing component count. Unlike most buffers, the standard pinout provides an upgrade path should a higher closed loop gain be needed at a future date.

The HFA1412 is an excellent choice for component and composite video systems as indicated by the excellent gain flatness, and 0.03\%/0.02 Degree Differential Gain/Phase specifications ( \(R_{L}=150 \Omega\) ). Its ability to deliver a gain of +2 with no external resistors makes it particularly desirable for applications driving double terminated cables.

For Military product, refer to the HFA1412/883 data sheet.

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|}
\hline PART NUMBER & TEMP. RANGE \(\left({ }^{\circ} \mathrm{C}\right)\) & PACKAGE & \[
\begin{aligned}
& \text { PKG. } \\
& \text { NO. }
\end{aligned}
\] \\
\hline HFA1412IP & -40 to 85 & 14 Ld PDIP & E14.3 \\
\hline HFA1412IB & -40 to 85 & 14 Ld SOIC & M14.15 \\
\hline HA5025EVAL & \multicolumn{3}{|l|}{DIP Evaluation Board For Quad Op Amp} \\
\hline
\end{tabular}

\section*{Pinout}

HFA1412
(PDIP, SOIC)
TOP VIEW


\section*{Functional Diagram}
 14 OUT4

\section*{Absolute Maximum Ratings}

Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11V
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V V VUPPLY
Output Current (Note 1) . . . . . . . . . . . . . . . . . Short Circuit Protected
ESD Rating
Human Body Model (Per MIL-STD-883 Method 3015.7) . . . 600V

\section*{Operating Conditions}

Temperature Range
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

\section*{NOTES:}
1. Output is protected for short circuits to ground. Brief short circuits to ground will not degrade reliability, however, continuous (100\% duty cycle) output current should not exceed 30 mA for maximum reliability.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(V_{S U P P L Y}= \pm 5 \mathrm{~V}, \mathrm{~A}_{V}=+1, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Output Offset Voltage} & & A & 25 & - & 2 & 10 & mV \\
\hline & & A & Full & - & 3 & 15 & mV \\
\hline Average Output Offset Voltage Drift & & B & Full & - & 22 & 70 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{Channel-to-Channel Output Offset Voltage Mismatch} & & A & 25 & - & - & 15 & mV \\
\hline & & A & Full & - & - & 30 & mV \\
\hline \multirow[t]{3}{*}{Common-Mode Rejection Ratio} & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 25 & 42 & 45 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 85 & 40 & 44 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.2 \mathrm{~V}\) & A & -40 & 40 & 45 & - & dB \\
\hline \multirow[t]{3}{*}{Power Supply Rejection Ratio} & \(\Delta \mathrm{V}_{\text {PS }}= \pm 1.8 \mathrm{~V}\) & A & 25 & 45 & 49 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\text {PS }}= \pm 1.8 \mathrm{~V}\) & A & 85 & 43 & 48 & - & dB \\
\hline & \(\Delta \mathrm{V}_{\mathrm{PS}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 43 & 48 & - & dB \\
\hline \multirow[t]{2}{*}{Non-Inverting Input Bias Current} & & A & 25 & - & 1 & 15 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & 3 & 25 & \(\mu \mathrm{A}\) \\
\hline Non-Inverting Input Bias Current Drift & & B & Full & - & 30 & 80 & \(\mathrm{nA}^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{Channel-to-Channel Non-Inverting Input Bias Current Mismatch} & & A & 25 & - & - & 15 & \(\mu \mathrm{A}\) \\
\hline & & A & Full & - & - & 25 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Non-Inverting Input Bias Current Power Supply Sensitivity} & \multirow[t]{2}{*}{\(\Delta \mathrm{V}_{\text {PS }}= \pm 1.25 \mathrm{~V}\)} & A & 25 & - & 0.5 & 1 & \(\mu \mathrm{A} V\) \\
\hline & & A & Full & - & - & 3 & \(\mu \mathrm{A} V\) \\
\hline \multirow[t]{3}{*}{Non-Inverting Input Resistance} & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.8 \mathrm{~V}\) & A & 25 & 0.8 & 1.1 & - & M \(\Omega\) \\
\hline & \(\Delta \mathrm{V}_{\text {CM }}= \pm 1.8 \mathrm{~V}\) & A & 85 & 0.5 & 1.4 & - & \(\mathrm{M} \Omega\) \\
\hline & \(\Delta \mathrm{V}_{\mathrm{CM}}= \pm 1.2 \mathrm{~V}\) & A & -40 & 0.5 & 1.3 & - & \(\mathrm{M} \Omega\) \\
\hline Inverting Input Resistance & & C & 25 & - & 425 & - & \(\Omega\) \\
\hline Input Capacitance (either input) & & C & 25 & - & 2 & - & pF \\
\hline \multirow[t]{2}{*}{Input Voltage Common Mode Range (Implied by \(\mathrm{V}_{10}\) CMRR and \(+\mathrm{R}_{\mathbb{I N}}\) tests)} & & A & 25,85 & \(\pm 1.8\) & \(\pm 2.4\) & - & V \\
\hline & & A & -40 & \(\pm 1.2\) & \(\pm 1.7\) & - & V \\
\hline Input Noise Voltage Density (Note 4) & \(f=100 \mathrm{kHz}\) & B & 25 & - & 7 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Non-Inverting Input Noise Current Density (Note 4) & \(\mathrm{f}=100 \mathrm{kHz}\) & B & 25 & - & 3 & - & \(\mathrm{pA} \sqrt{\text { Hz }}\) \\
\hline
\end{tabular}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{L}=100 \Omega\), Unless Otherwise Specified. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & \[
\begin{aligned}
& \text { TEMP } \\
& \left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
\] & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline \multirow[t]{6}{*}{Gain ( \(\mathrm{V}_{\text {IN }}=-1 \mathrm{~V}\) to +1 V )} & \multirow[t]{2}{*}{\(A_{V}=-1\)} & A & 25 & -0.98 & -0.996 & -1.02 & VN \\
\hline & & A & Full & -0.975 & -1.000 & -1.025 & VN \\
\hline & \multirow[t]{2}{*}{\(A_{V}=+1\)} & A & 25 & 0.98 & 0.992 & 1.02 & \(\mathrm{V} N\) \\
\hline & & A & Full & 0.975 & 0.993 & 1.025 & VN \\
\hline & \multirow[t]{2}{*}{\(A_{V}=+2\)} & A & 25 & 1.96 & 1.988 & 2.04 & VN \\
\hline & & A & Full & 1.95 & 1.990 & 2.05 & VN \\
\hline \multirow[t]{6}{*}{Channel-to-Channel Gain Mismatch} & \multirow[t]{2}{*}{\(A_{V}=-1\)} & A & 25 & - & - & \(\pm 0.02\) & \(\mathrm{V} N\) \\
\hline & & A & Full & - & - & \(\pm 0.025\) & \(\mathrm{V} N\) \\
\hline & \multirow[t]{2}{*}{\(A_{V}=+1\)} & A & 25 & - & - & \(\pm 0.025\) & \(\mathrm{V} N\) \\
\hline & & A & Full & - & - & \(\pm 0.025\) & \(\mathrm{V} N\) \\
\hline & \multirow[t]{2}{*}{\(A_{V}=+2\)} & A & 25 & - & - & \(\pm 0.04\) & \(\mathrm{V} N\) \\
\hline & & A & Full & - & - & \(\pm 0.05\) & \(\mathrm{V} N\) \\
\hline \multicolumn{8}{|l|}{AC CHARACTERISTICS} \\
\hline \multirow[t]{6}{*}{-3dB Bandwidth ( \(\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-p }}\), Note 4 )} & \multirow[t]{2}{*}{\(A_{V}=-1\)} & B & 25 & 200 & 320 & - & MHz \\
\hline & & B & Full & 190 & 280 & - & MHz \\
\hline & \multirow[t]{2}{*}{\[
\begin{aligned}
& A_{V}=+1, \\
& +R_{S}=620 \Omega
\end{aligned}
\]} & B & 25 & 160 & 230 & - & MHz \\
\hline & & B & Full & 150 & 210 & - & MHz \\
\hline & \multirow[t]{2}{*}{\(A_{V}=+2\)} & B & 25 & 220 & 350 & - & MHz \\
\hline & & B & Full & 190 & 300 & - & MHz \\
\hline \multirow[t]{3}{*}{Full Power Bandwidth \(\left(V_{\text {OUT }}=5 V_{\text {P-P }}\right.\) at \(A_{V}=+2\) or -1, \(V_{\text {OUT }}=4 V_{\text {P-P }}\) at \(A_{V}=+1\), Note 4)} & \(A_{V}=-1\) & B & 25 & - & 225 & - & MHz \\
\hline & \[
\begin{aligned}
& A_{V}=+1 \\
& +R_{S}=620 \Omega
\end{aligned}
\] & B & 25 & - & 190 & - & MHz \\
\hline & \(A_{V}=+2\) & B & 25 & - & 160 & - & MHz \\
\hline \multirow[t]{10}{*}{Gain Flatness ( \(\mathrm{V}_{\text {OUT }}=0.2 \mathrm{~V}_{\text {P-p }}\), Note 4 )} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{A}_{\mathrm{V}}=+1, \\
& \text { to } 25 \mathrm{MHz}, \\
& +\mathrm{R}_{\mathrm{S}}=620 \Omega
\end{aligned}
\]} & B & 25 & - & \(\pm 0.10\) & \(\pm 0.18\) & dB \\
\hline & & B & Full & - & \(\pm 0.12\) & \(\pm 0.20\) & dB \\
\hline & \multirow[t]{2}{*}{\[
\begin{aligned}
& A_{V}=-1, \\
& \text { to } 50 \mathrm{MHz}
\end{aligned}
\]} & B & 25 & - & \(\pm 0.06\) & \(\pm 0.10\) & dB \\
\hline & & B & Full & - & \(\pm 0.08\) & \(\pm 0.16\) & dB \\
\hline & \multirow[t]{2}{*}{\[
\begin{aligned}
& A_{V}=-1, \\
& \text { to } 100 \mathrm{MHz}
\end{aligned}
\]} & B & 25 & - & \(\pm 0.08\) & \(\pm 0.20\) & dB \\
\hline & & B & Full & - & \(\pm 0.13\) & \(\pm 0.30\) & dB \\
\hline & \multirow[t]{2}{*}{\(A_{V}=+2\), to 50 MHz} & B & 25 & - & \(\pm 0.05\) & \(\pm 0.09\) & dB \\
\hline & & B & Full & - & \(\pm 0.06\) & \(\pm 0.10\) & dB \\
\hline & \multirow[t]{2}{*}{\[
\begin{aligned}
& A_{V}=+2, \\
& \text { to } 100 \mathrm{MHz}
\end{aligned}
\]} & B & 25 & - & \(\pm 0.08\) & \(\pm 0.16\) & dB \\
\hline & & B & Full & - & \(\pm 0.16\) & \(\pm 0.30\) & dB \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Crosstalk \\
(All Channels Hostile, Note 4)
\end{tabular}} & 5 MHz & B & 25 & - & -53 & - & dB \\
\hline & 10MHz & B & 25 & - & -50 & - & dB \\
\hline \multicolumn{8}{|l|}{OUTPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Output Voltage Swing (Note 4)} & \multirow[t]{2}{*}{\(A_{V}=-1\)} & A & 25 & \(\pm 3.0\) & \(\pm 3.2\) & - & V \\
\hline & & A & Full & \(\pm 2.8\) & \(\pm 3.0\) & - & V \\
\hline \multirow[t]{2}{*}{Output Current (Note 4)} & \multirow[t]{2}{*}{\(A_{V}=-1, R_{L}=50 \Omega\)} & A & 25,85 & 50 & 55 & - & mA \\
\hline & & A & -40 & 28 & 42 & - & mA \\
\hline
\end{tabular}

HFA1412

Electrical Specifications \(\quad V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, A_{V}=+1, R_{L}=100 \Omega\), Unless Otherwise Specified. (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 3) TEST LEVEL & TEMP \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline Output Short Circuit Current & & B & 25 & - & 100 & - & mA \\
\hline DC Closed Loop Output Impedance & \(A_{V}=+2\) & B & 25 & - & 0.2 & - & \(\Omega\) \\
\hline \multirow[t]{4}{*}{Second Harmonic Distortion \(\left(A_{V}=+2, V_{\text {OUT }}=2 V_{\text {P-P }}\right.\), Note 4)} & \multirow[t]{2}{*}{10 MHz} & B & 25 & -47 & -50 & - & dBc \\
\hline & & B & Full & -45 & -48 & - & dBc \\
\hline & \multirow[t]{2}{*}{20 MHz} & B & 25 & -40 & -43 & - & dBc \\
\hline & & B & Full & -39 & -41 & - & dBc \\
\hline \multirow[t]{4}{*}{Third Harmonic Distortion \(\left(A_{V}=+2, V_{\text {OUT }}=2 V_{\text {P-P }}\right.\), Note 4\()\)} & \multirow[t]{2}{*}{10MHz} & B & 25 & -55 & -60 & - & dBc \\
\hline & & B & Full & -55 & -60 & - & dBc \\
\hline & \multirow[t]{2}{*}{20 MHz} & B & 25 & -46 & -53 & - & dBc \\
\hline & & B & Full & -46 & -50 & - & dBc \\
\hline Reverse Isolation ( \(\mathrm{S}_{12}\), Note 4) & \(30 \mathrm{MHz}, \mathrm{A}_{V}=+2\) & B & 25 & - & -65 & - & dB \\
\hline
\end{tabular}

TRANSIENT RESPONSE \(A_{V}=+2\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Rise and Fall Times ( \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}_{\text {P-P }}\) )} & Rise Time & B & 25 & - & 1.0 & - & ns \\
\hline & Fall Time & B & 25 & - & 1.25 & - & ns \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Overshoot \\
\(\left(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}_{\text {P-P }}, \mathrm{V}_{\text {IN }} \mathrm{t}_{\text {RISE }}=500 \mathrm{ps}\right.\), Notes 4, 5)
\end{tabular}} & +OS & B & 25 & - & 3 & - & \% \\
\hline & -0s & B & 25 & - & 9 & - & \% \\
\hline \multirow[t]{6}{*}{Slew Rate
\[
\begin{aligned}
& V_{\text {OUT }}=5 V_{\text {P-P }} \text { at } A_{V}=+2 \text { or }-1, \\
& \left.V_{\text {OUT }}=4 V_{\text {P-P }} \text { at } A_{V}=+1\right)
\end{aligned}
\]} & \multirow[t]{2}{*}{\(A_{V}=-1\)} & B & 25 & 1150 & 1700 & - & V/us \\
\hline & & B & Full & 1100 & 1650 & - & V/ \(/ \mathrm{s}\) \\
\hline & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{A}_{\mathrm{V}}=+1, \\
& +\mathrm{R}_{\mathrm{S}}=620 \Omega
\end{aligned}
\]} & B & 25 & 700 & 1000 & - & V/us \\
\hline & & B & Full & 650 & 950 & - & V/us \\
\hline & \multirow[t]{2}{*}{\(A_{V}=+2\)} & B & 25 & 900 & 1250 & - & V/ \(/ \mathrm{s}\) \\
\hline & & B & Full & 800 & 1150 & - & V/ \(/ \mathrm{s}\) \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Settling Time \\
( \(\mathrm{V}_{\text {OUT }}=+2 \mathrm{~V}\) to OV Step, Note 4)
\end{tabular}} & To 0.1\% & B & 25 & - & 28 & - & ns \\
\hline & To 0.05\% & B & 25 & - & 33 & - & ns \\
\hline & To 0.02\% & B & 25 & - & 38 & - & ns \\
\hline Overdrive Recovery Time & \(\mathrm{V}_{\text {IN }}= \pm 2 \mathrm{~V}\) & B & 25 & - & 8.5 & - & ns \\
\hline \multicolumn{8}{|l|}{VIDEO CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Differential Gain ( \(f=3.58 \mathrm{MHz}, \mathrm{AV}^{\text {g }}=+2\) )} & \(\mathrm{R}_{\mathrm{L}}=150 \Omega\) & B & 25 & - & 0.03 & \(\bullet\) & \% \\
\hline & \(R_{L}=75 \Omega\) & B & 25 & - & 0.05 & - & \% \\
\hline \multirow[t]{2}{*}{Differential Phase ( \(\mathrm{f}=3.58 \mathrm{MHz}, \mathrm{A}_{\mathrm{V}}=+2\) )} & \(\mathrm{R}_{\mathrm{L}}=150 \Omega\) & B & 25 & - & 0.02 & - & Degrees \\
\hline & \(\mathrm{R}_{\mathrm{L}}=75 \Omega\) & B & 25 & - & 0.05 & - & Degrees \\
\hline \multicolumn{8}{|l|}{POWER SUPPLY CHARACTERISTICS} \\
\hline Power Supply Range & & C & 25 & \(\pm 4.5\) & - & \(\pm 5.5\) & V \\
\hline \multirow[t]{2}{*}{Power Supply Current (Note 4)} & & A & 25 & - & 5.9 & 6.1 & mA/Op Amp \\
\hline & & A & Full & - & 6.1 & 6.3 & mA/Op Amp \\
\hline
\end{tabular}

\section*{NOTES:}
3. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only.
4. See Typical Performance Curves for more information.
5. Negative overshoot dominates for output signal swings below GND (e.g. \(0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}\) ), yielding a higher overshoot limit compared to the \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) to 0.5 V condition. See the "Application Information" section for details.

\section*{Application Information}

\section*{HFA1412 Advantages}

The HFA1412 features a novel design which allows the user to select from three closed loop gains, without any external components. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space. Implementing a quad, gain of 2 , cable driver with this IC eliminates the eight gain setting resistors, which frees up board space for termination resistors.

Like most newer high performance amplifiers, the HFA1412 is a current feedback amplifier (CFA). CFAs offer high bandwidth and slew rate at low supply currents, but can be difficult to use because of their sensitivity to feedback capacitance and parasitics on the inverting input (summing node). The HFA1412 eliminates these concerns by bringing the gain setting resistors on-chip. This yields the optimum placement and value of the feedback resistor, while minimizing feedback and summing node parasitics. Because there is no access to the summing node, the PCB parasitics do not impact performance at gains of +2 or -1 (see "Unity Gain Considerations" for discussion of parasitic impact on unity gain performance).

The HFA1412's closed loop gain implementation provides better gain accuracy, lower offset and output impedance, and better distortion compared with open loop buffers.

\section*{Closed Loop Gain Selection}

This "buffer" operates in closed loop gains of \(-1,+1\), or +2 , with gain selection accomplished via connections to the \(\pm\) inputs. Applying the input signal to +IN and floating \(-\mathbb{N}\) selects a gain of +1 (see next section for layout caveats), while grounding -IN selects a gain of +2 . A gain of -1 is obtained by applying the input signal to -IN with \(+\mathbb{I N}\) grounded through a \(50 \Omega\) resistor.

The table below summarizes these connections:
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
GAIN \\
( \(\mathbf{A}_{\mathbf{C L}}\) )
\end{tabular}} & \multicolumn{2}{|c|}{ CONNECTIONS } \\
\hline-1 & \(50 \Omega\) to GND & -INPUT \\
\hline+1 & Input & Input \\
\hline+2 & Input & NC (Floating) \\
\hline
\end{tabular}

\section*{Unity Gain Considerations}

Unity gain selection is accomplished by floating the -Input of the HFA1412. Anything that tends to short the -Input to GND, such as stray capacitance at high frequencies, will cause the amplifier gain to increase toward a gain of +2 . The result is excessive high frequency peaking, and possible instability. Even the minimal amount of capacitance associated with attaching the -Input lead to the PCB results in approximately 6 dB of gain peaking. At a minimum this requires due care to ensure the minimum capacitance at the -Input connection.

Table 1 lists five alternate methods for configuring the HFA1412 as a unity gain buffer, and the corresponding performance. The implementations vary in complexity and involve performance trade-offs. The easiest approach to implement is simply shorting the two input pins together, and applying the input signal to this common node. The amplifier bandwidth decreases from 550 MHz to 370 MHz , but excellent gain flatness is the benefit. A drawback to this approach is that the amplifier input noise voltage and input offset voltage terms see a gain of +2 , resulting in higher noise and output offset voltages. Alternately, a 100 pF capacitor between the inputs shorts them only at high frequencies, which prevents the increased output offset voltage but delivers less gain flatness.
Another straightforward approach is to add a \(620 \Omega\) resistor in series with the amplifier's positive input. This resistor and the HFA1412 input capacitance form a low pass filter which rolls off the signal bandwidth before gain peaking occurs. This configuration was employed to obtain the data sheet AC and transient parameters for a gain of +1 .

\section*{Pulse Overshoot}

The HFA1412 utilizes a quasi-complementary output stage to achieve high output current while minimizing quiescent supply current. In this approach, a composite device replaces the traditional PNP pulldown transistor. The composite device switches modes after crossing 0 V , resulting in added distortion for signals swinging below ground, and an increased overshoot on the negative portion of the output waveform (see Figure 5, Figure 7, and Figure 9). This overshoot isn't present for small bipolar signals (see Figure 4, Figure 6, and Figure 8) or large positive signals. Figure 28 through Figure 31 illustrate the amplifier's overshoot dependency on input transition time, and signal polarity.

TABLE 1. UNITY GAIN PERFORMANCE FOR VARIOUS IMPLEMENTATIONS
\begin{tabular}{|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ APPROACH } & PEAKING (dB) & BW (MHz) & SR (V/ \(\mathbf{\mu s}\) ) & \(\pm 0.1 \mathrm{~dB}\) GAIN FLATNESS (MHz) \\
\hline Remove -IN Pin & 5.0 & 550 & 1300 & 18 \\
\hline\(+R_{S}=620 \Omega\) & 1.0 & 230 & 1000 & 25 \\
\hline\(+R_{S}=620 \Omega\) and Remove -IN Pin & 0.7 & 225 & 1000 & 28 \\
\hline Short \(+\mathbb{N}\) to -IN (e.g., Pins 2 and 3) & 0.1 & 370 & 500 & 170 \\
\hline 100pF Capacitor Between \(+\mathbb{N}\) and -IN & 0.3 & 380 & 550 & 130 \\
\hline
\end{tabular}

\section*{PC Board Layout}

This amplifier's frequency response depends greatly on the care taken in designing the PC board (PCB). The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!

Attention should be given to decoupling the power supplies. A large value \((10 \mu \mathrm{~F})\) tantalum in parallel with a small value \((0.1 \mu \mathrm{~F})\) chip capacitor works well in most cases.
Terminated microstrip signal lines are recommended at the input and output of the device. Capacitance directly on the output must be minimized, or isolated as discussed in the next section.

An example of a good high frequency layout is the Evaluation Board shown in Figure 3.

\section*{Driving Capacitive Loads}

Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier's phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor ( \(\mathrm{R}_{\mathrm{S}}\) ) in series with the output prior to the capacitance.
Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the \(R_{S}\) and \(C_{L}\) combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an overdamped response, while points below or left of the curve indicate areas of underdamped performance.
\(R_{S}\) and \(C_{L}\) form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 350 MHz . By decreasing \(R_{S}\) as \(C_{L}\) increases (as illustrated in the curves), the maximum bandwidth is obtained without sacrificing stability. In spite of this, bandwidth decreases as the load capacitance increases. For example, at \(A_{V}=+2\), \(R_{S}=22 \Omega, C_{L}=100 \mathrm{pF}\), the overall bandwidth is 125 MHz , and bandwidth drops to 100 MHz at \(\mathrm{R}_{\mathrm{S}}=12 \Omega, \mathrm{C}_{\mathrm{L}}=220 \mathrm{pF}\).


FIGURE 1. RECOMMENDED SERIES RESISTOR vs LOAD CAPACITANCE

\section*{Evaluation Board}

The performance of the HFA1412 may be evaluated using the HA5025 Evaluation Board, slightly modified as follows:
1. Remove the four feedback resistors, and leave the connections open.
2. a. For \(A_{V}=+1\) evaluation, remove the gain setting resistors \(\left(R_{1}\right)\), and leave pins \(2,6,9\), and 13 floating.
b. For \(A_{V}=+2\), replace the gain setting resistors \(\left(R_{1}\right)\) with \(0 \Omega\) resistors to GND.
The modified schematic for amplifier 1, and the board layout are shown in Figures 2 and 3.

To order evaluation boards (part number HA5025EVAL), please contact your local sales office.


FIGURE 2. MODIFIED EVALUATION BOARD SCHEMATIC


FIGURE 3A. TOP LAYOUT


FIGURE 3B. BOTTOM LAYOUT FIGURE 3. EVALUATION BOARD LAYOUT

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified


FIGURE 4. SMALL SIGNAL PULSE RESPONSE


FIGURE 6. SMALL SIGNAL PULSE RESPONSE


FIGURE 8. SMALL SIGNAL PULSE RESPONSE


FIGURE 5. LARGE SIGNAL PULSE RESPONSE


FIGURE 7. LARGE SIGNAL PULSE RESPONSE


FIGURE 9. LARGE SIGNAL PULSE RESPONSE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 10. FREQUENCY RESPONSE


FIGURE 12. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS


FIGURE 14. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES


FIGURE 11. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS


FIGURE 13. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS


FIGURE 15. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 16. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES


FIGURE 18. -3dB bandwidth vs TEMPERATURE


FIGURE 20. REVERSE ISOLATION ( \(\mathbf{S}_{12}\) )


FIGURE 17. FULL POWER BANDWIDTH


FIGURE 19. GAIN FLATNESS


FIGURE 21. ALL HOSTILE CROSSTALK

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 22. 2nd HARMONIC DISTORTION vs Pout


FIGURE 24. 2nd HARMONIC DISTORTION vs POUT


FIGURE 26. 2nd HARMONIC DISTORTION vs Pout


FIGURE 23. 3rd HARMONIC DISTORTION vs POUT


FIGURE 25. 3rd HARMONIC DISTORTION vs POUT


FIGURE 27. 3rd HARMONIC DISTORTION vs Pout

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 28. OVERSHOOT vs TRANSITION TIME


FIGURE 30. OVERSHOOT vs TRANSITION TIME


FIGURE 32. INTEGRAL LINEARITY ERROR


FIGURE 29. OVERSHOOT vs TRANSITION TIME


FIGURE 31. OVERSHOOT vs TRANSITION TIME


FIGURE 33. SETTLING RESPONSE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=100 \Omega\), Unless Otherwise Specified (Continued)


FIGURE 34. SUPPLY CURRENT vs SUPPLY VOLTAGE


FIGURE 35. OUTPUT VOLTAGE vs TEMPERATURE


FIGURE 36. INPUT NOISE CHARACTERISTICS

\section*{Die Characteristics}

DIE DIMENSIONS:
79 mils \(\times 118\) mils \(\times 19\) mils \(2000 \mu \mathrm{~m} \times 3000 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)

\section*{METALLIZATION}

Type: Metal 1: \(\mathrm{AlCu}(2 \%) / T i W\)
Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)
Type: Metal 2: AICu(2\%)
Thickness: Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)

SUBSTRATE POTENTIAL (Powered Up):
Floating (Recommend Connection to V-)
PASSIVATION:
Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
320

Metallization Mask Layout
HFA1412


November 1996

\subsection*{1.4MHz, Low Power CMOS Operational Amplifiers}

\section*{Features}
- Wide Operating Voltage Range. . . . . . . . . . \(\pm 1 \mathrm{~V}\) to \(\pm 8 \mathrm{~V}\)
- High Input Impedance
- Programmable Power Consumption ... Low as \(20 \mu \mathrm{~W}\)
- Input Current Lower Than BIFETs . . . . . . . . 1pA (Typ)
- Output Voltage Swing . . . . . . . . . . . . . . . . . . . V+ and V-
- Input Common Mode Voltage Range Greater Than Supply Rails (ICL7612)

\section*{Applications}
- Portable Instruments
- Telephone Headsets
- Hearing Aid/Microphone Amplifiers
- Meter Amplifiers
- Medical Instruments
- High Impedance Buffers

\section*{Description}

The ICL761X/762X/764X series is a family of monolithic CMOS operational amplifiers. These devices provide the designer with high performance operation at low supply voltages and selectable quiescent currents, and are an ideal design tool when ultra low input current and low power dissipation are desired.

The basic amplifier will operate at supply voltages ranging from \(\pm 1 \mathrm{~V}\) to \(\pm 8 \mathrm{~V}\), and may be operated from a single Lithium cell.

A unique quiescent current programming pin allows setting of standby current to \(1 \mathrm{~mA}, 100 \mu \mathrm{~A}\), or \(10 \mu \mathrm{~A}\), with no external components. This results in power consumption as low as \(20 \mu \mathrm{~W}\). The output swing ranges to within a few millivolts of the supply voltages.
Of particular significance is the extremely low (1pA) input current, input noise current of \(0.01 \mathrm{pA} \sqrt{\mathrm{Hz}}\), and \(10^{12} \Omega\) input impedance. These features optimize performance in very high source impedance applications.

The inputs are internally protected. Outputs are fully protected against short circuits to ground or to either supply.

AC performance is excellent, with a slew rate of \(1.6 \mathrm{~V} / \mu \mathrm{s}\), and unity gain bandwidth of 1 MHz at \(\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}\).

Because of the low power dissipation, junction temperature rise and drift are quite low. Applications utilizing these features may include stable instruments, extended life designs, or high density packages.

Pinouts (See Ordering Information on Next Page)

> ICL7611, ICL7612 (PDIP, SOIC) TOP VIEW


ICL7611, ICL7612
(METAL CAN) TOP VIEW


\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|}
\hline PART NUMBER & TEMP. RANGE ( \({ }^{\circ} \mathrm{C}\) ) & PACKAGE & PKG. NO. \\
\hline ICL7611ACPA & 0 to 70 & 8 Ld PDIP - A Grade & E8.3 \\
\hline ICL7611BCPA & 0 to 70 & 8 Ld PDIP - B Grade & E8.3 \\
\hline ICL7611DCPA & 0 to 70 & 8 Ld PDIP - D Grade & E8.3 \\
\hline ICL7611ACTV & 0 to 70 & 8 Pin Metal Can - A Grade & T8.C \\
\hline ICL7611BCTV & 0 to 70 & 8 Pin Metal Can - B Grade & T8.C \\
\hline ICL7611DCTV & 0 to 70 & 8 Pin Metal Can - D Grade & T8.C \\
\hline ICL7611AMTV & -55 to 125 & 8 Pin Metal Can - A Grade & T8.C \\
\hline ICL7611BMTV & -55 to 125 & 8 Pin Metal Can - B Grade & T8.C \\
\hline ICL7611DMTV & -55 to 125 & 8 Pin Metal Can - D Grade & T8.C \\
\hline ICL7611DCBA & 0 to 70 & 8 Ld SOIC - D Grade & M8.15 \\
\hline ICL7611DCBA-T & 0 to 70 & 8 Ld SOIC - D Grade - Tape and Reel & M8.15 \\
\hline ICL7612ACPA & 0 to 70 & 8 Ld PDIP - A Grade & E8.3 \\
\hline ICL7612BCPA & 0 to 70 & 8 Ld PDIP - B Grade & E8.3 \\
\hline ICL7612DCPA & 0 to 70 & 8 Ld PDIP - D Grade & E8.3 \\
\hline ICL7612BCTV & 0 to 70 & 8 Ld Metal Can - B Grade & T8.C \\
\hline ICL7612DCTV & 0 to 70 & 8 Ld Metal Can - D Grade & T8.C \\
\hline ICL7612AMTV & -55 to 125 & 8 Ld Metal Can - A Grade & T8.C \\
\hline ICL7612BMTV & -55 to 125 & 8 Ld Metal Can - B Grade & T8.C \\
\hline ICL7612DMTV & -55 to 125 & 8 Ld Metal Can - D Grade & T8.C \\
\hline ICL7612DCBA & 0 to 70 & 8 Ld SOIC - D Grade & M8.15 \\
\hline ICL7612DCBA-T & 0 to 70 & 8 Ld SOIC - D Grade - Tape and Reel & M8.15 \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings}

Supply Voltage \(\mathrm{V}+\) to V -
Input Voltage.
Differential Input Voltage (Note 1) . . . . . . . . . [(V+ +0.3) - (V- -0.3)]V
Duration of Output Short Circuit (Note 2)

\section*{Operating Conditions}

Temperature Range
ICL76XXM
ICL76XXC
\(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

\section*{NOTES:}
1. Long term offset voltage stability will be degraded if large input differential voltages are applied for long periods of time.
2. The outputs may be shorted to ground or to either supply, for \(V_{\text {SUPPLY }} \leq 10 \mathrm{~V}\). Care must be taken to insure that the dissipation rating is not exceeded.
3. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

\section*{Electrical Specifications \(\quad V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}\), Unless Otherwise Specified}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { TEMP } \\
& \left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
\]} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { ICL7611A, } \\
& \text { ICL7612A }
\end{aligned}
\]} & \multicolumn{3}{|c|}{ICL7611B, ICL7612B} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { ICL7611D, } \\
& \text { ICL7612D }
\end{aligned}
\]} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OS}}\)} & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega\)} & 25 & - & - & 2 & - & - & 5 & - & - & 15 & mV \\
\hline & & & Full & - & - & 3 & - & - & 7 & - & - & 20 & mV \\
\hline Temperature Coefficient of \(\mathrm{V}_{\mathrm{OS}}\) & \(\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}\) & \(\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega\) & - & - & 10 & - & - & 15 & - & - & 25 & - & \(\mu \mathrm{V}{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Input Offset Current} & \multirow[t]{3}{*}{los} & & 25 & - & 0.5 & 30 & - & 0.5 & 30 & - & 0.5 & 30 & pA \\
\hline & & & 0 to 70 & - & - & 300 & - & - & 300 & - & - & 300 & pA \\
\hline & & & -55 to 125 & - & - & 800 & - & & 800 & - & & 800 & pA \\
\hline \multirow[t]{3}{*}{Input Bias Current} & \multirow[t]{3}{*}{IBIAS} & & 25 & - & 1.0 & 50 & - & 1.0 & 50 & - & 1.0 & 50 & pA \\
\hline & & & 0 to 70 & - & - & 400 & - & - & 400 & - & - & 400 & pA \\
\hline & & & -55 to 125 & - & - & 4000 & - & - & 4000 & - & - & 4000 & pA \\
\hline \multirow[t]{3}{*}{Common Mode Voltage Range (Except ICL7612)} & \multirow[t]{3}{*}{\(\mathrm{V}_{\text {CMR }}\)} & \(\mathrm{l}^{\mathrm{Q}}=10 \mu \mathrm{~A}\) & 25 & \(\pm 4.4\) & - & - & \(\pm 4.4\) & - & - & \(\pm 4.4\) & - & - & V \\
\hline & & \(\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}\) & 25 & \(\pm 4.2\) & - & - & \(\pm 4.2\) & - & - & \(\pm 4.2\) & - & - & V \\
\hline & & \(\mathrm{l}_{\mathrm{Q}}=1 \mathrm{~mA}\) & 25 & \(\pm 3.7\) & - & - & \(\pm 3.7\) & - & - & \(\pm 3.7\) & - & - & V \\
\hline \multirow[t]{3}{*}{Extended Common Mode Voltage Range (ICL7612 Only)} & \multirow[t]{3}{*}{\(\mathrm{V}_{\text {CMR }}\)} & \(\mathrm{l}^{2}=10 \mu \mathrm{~A}\) & 25 & \(\pm 5.3\) & - & - & \(\pm 5.3\) & - & - & \(\pm 5.3\) & - & - & V \\
\hline & & \(\mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}\) & 25 & \[
\begin{array}{r}
+5.3, \\
-5.1 \\
\hline
\end{array}
\] & - & - & \[
\begin{array}{r}
+5.3, \\
-5.1 \\
\hline
\end{array}
\] & - & - & \[
\begin{gathered}
+5.3, \\
-5.1 \\
\hline
\end{gathered}
\] & - & - & V \\
\hline & & \({ }^{1} \mathrm{Q}=1 \mathrm{~mA}\) & 25 & \[
\begin{array}{r}
+5.3, \\
-4.5
\end{array}
\] & - & - & \[
\begin{array}{|c|}
\hline+5.3, \\
-4.5
\end{array}
\] & - & - & \[
\begin{array}{r}
+5.3, \\
-4.5 \\
\hline
\end{array}
\] & - & - & V \\
\hline \multirow[t]{9}{*}{Output Voltage Swing} & \multirow[t]{9}{*}{\(\mathrm{V}_{\text {OUT }}\)} & \multirow[t]{3}{*}{\(\mathrm{I}^{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega\)} & 25 & \(\pm 4.9\) & - & - & \(\pm 4.9\) & - & - & \(\pm 4.9\) & - & - & V \\
\hline & & & 0 to 70 & \(\pm 4.8\) & - & - & \(\pm 4.8\) & - & - & \(\pm 4.8\) & - & - & V \\
\hline & & & -55 to 125 & \(\pm 4.7\) & - & - & \(\pm 4.7\) & - & - & \(\pm 4.7\) & - & - & V \\
\hline & & \multirow[t]{3}{*}{\(\mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\)} & 25 & \(\pm 4.9\) & - & - & \(\pm 4.9\) & - & - & \(\pm 4.9\) & - & - & V \\
\hline & & & 0 to 70 & \(\pm 4.8\) & - & - & \(\pm 4.8\) & - & - & \(\pm 4.8\) & - & - & V \\
\hline & & & -55 to 125 & \(\pm 4.5\) & - & - & \(\pm 4.5\) & - & - & \(\pm 4.5\) & - & - & V \\
\hline & & \multirow[t]{3}{*}{\(\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\)} & 25 & \(\pm 4.5\) & - & - & \(\pm 4.5\) & - & - & \(\pm 4.5\) & - & - & V \\
\hline & & & 0 to 70 & \(\pm 4.3\) & - & - & \(\pm 4.3\) & - & - & \(\pm 4.3\) & - & - & V \\
\hline & & & -55 to 125 & \(\pm 4.0\) & - & - & \(\pm 4.0\) & - & - & \(\pm 4.0\) & - & - & V \\
\hline
\end{tabular}

ICL7611, ICL7612
Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP
\[
\left({ }^{\circ} \mathrm{C}\right)
\]} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { ICL7611A, } \\
& \text { ICL7612A }
\end{aligned}
\]} & \multicolumn{3}{|c|}{ICL7611B, ICL7612B} & \multicolumn{3}{|l|}{ICL7611D,
ICL7612D} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{9}{*}{Large Signal Voltage Gain} & \multirow[t]{9}{*}{Avol} & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{O}= \pm 4.0 \mathrm{~V}, \\
& R_{L}=1 \mathrm{M} \Omega, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}
\end{aligned}
\]} & 25 & 86 & 104 & - & 80 & 104 & - & 80 & 104 & - & dB \\
\hline & & & 0 to 70 & 80 & - & - & 75 & - & - & 75 & - & - & dB \\
\hline & & & -55 to 125 & 74 & - & - & 68 & - & - & 68 & - & - & dB \\
\hline & & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{\mathrm{O}}= \pm 4.0 \mathrm{~V}, \\
& R_{\mathrm{L}}=100 \mathrm{k} \Omega, \\
& \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}
\end{aligned}
\]} & 25 & 86 & 102 & - & 80 & 102 & - & 80 & 102 & - & dB \\
\hline & & & 0 to 70 & 80 & - & - & 75 & - & - & 75 & - & - & dB \\
\hline & & & -55 to 125 & 74 & - & - & 68 & - & - & 68 & - & \(\cdot\) & dB \\
\hline & & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}= \pm 4.0 \mathrm{~V}, \\
& \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}
\end{aligned}
\]} & 25 & 80 & 83 & - & 76 & 83 & - & 76 & 83 & - & dB \\
\hline & & & 0 to 70 & 76 & - & - & 72 & - & - & 72 & - & - & dB \\
\hline & & & -55 to 125 & 72 & - & - & 68 & - & - & 68 & - & - & dB \\
\hline \multirow[t]{3}{*}{Unity Gain Bandwidth} & \multirow[t]{3}{*}{GBW} & \(\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}\) & 25 & - & 0.044 & - & - & 0.044 & - & - & 0.044 & - & MHz \\
\hline & & \(\mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}\) & 25 & - & 0.48 & - & - & 0.48 & - & - & 0.48 & - & MHz \\
\hline & & \(\mathrm{l}_{\mathrm{Q}}=1 \mathrm{~mA}\) & 25 & - & 1.4 & - & - & 1.4 & - & - & 1.4 & - & MHz \\
\hline Input Resistance & \(\mathrm{R}_{\mathrm{IN}}\) & & 25 & - & \(10^{12}\) & - & - & \(10^{12}\) & - & - & \(10^{12}\) & - & \(\Omega\) \\
\hline \multirow[t]{3}{*}{Common Mode Rejection Ratio} & \multirow[t]{3}{*}{CMRR} & \(\mathrm{R}_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}\) & 25 & 76 & 96 & - & 70 & 96 & - & 70 & 96 & - & dB \\
\hline & & \[
\begin{aligned}
& R_{S} \leq 100 \mathrm{k} \Omega, \\
& l_{Q}=100 \mu \mathrm{~A}
\end{aligned}
\] & 25 & 76 & 91 & - & 70 & 91 & - & 70 & 91 & - & dB \\
\hline & & \(\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}\) & 25 & 66 & 87 & - & 60 & 87 & - & 60 & 87 & - & dB \\
\hline \multirow[t]{3}{*}{Power Supply Rejection Ratio ( \(\mathrm{V}_{\text {SUPPLY }}= \pm 8 \mathrm{~V}\) to \(\pm 2 \mathrm{~V}\) )} & \multirow[t]{3}{*}{PSRR} & \(\mathrm{R}_{S} \leq 100 \mathrm{k} \Omega, \mathrm{l}_{\mathrm{Q}}=10 \mu \mathrm{~A}\) & 25 & 80 & 94 & - & 80 & 94 & - & 80 & 94 & - & dB \\
\hline & & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \\
& \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}
\end{aligned}
\] & 25 & 80 & 86 & - & 80 & 86 & - & 80 & 86 & - & dB \\
\hline & & \(\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}\) & 25 & 70 & 77 & - & 70 & 77 & - & 70 & 77 & - & dB \\
\hline Input Referred Noise Voltage & \({ }^{\mathrm{N}}\) & \(\mathrm{R}_{S}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}\) & 25 & - & 100 & - & - & 100 & - & - & 100 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Referred Noise Current & \(\mathrm{i}_{\mathrm{N}}\) & \(\mathrm{R}_{S}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}\) & 25 & - & 0.01 & - & - & 0.01 & - & - & 0.01 & - & \(\mathrm{pA} \sqrt{ } \sqrt{\mathrm{Hz}}\) \\
\hline \multirow[t]{3}{*}{Supply Current (No Signal, No Load)} & \multirow[t]{3}{*}{ISUPPLY} & \(\mathrm{I}_{\mathrm{Q}} \mathrm{SET}=+5 \mathrm{~V}\), Low Bias & 25 & - & 0.01 & 0.02 & - & 0.01 & 0.02 & - & 0.01 & 0.02 & mA \\
\hline & & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{Q}} \mathrm{SET}=0 \mathrm{~V} \text {, } \\
& \text { Medium Bias }
\end{aligned}
\] & 25 & - & 0.1 & 0.25 & - & 0.1 & 0.25 & - & 0.1 & 0.25 & mA \\
\hline & & \(\mathrm{l}_{\mathrm{Q}} \mathrm{SET}=-5 \mathrm{~V}\), High Bias & 25 & - & 1.0 & 2.5 & - & 1.0 & 2.5 & - & 1.0 & 2.5 & mA \\
\hline Channel Separation & \(\mathrm{V}_{\mathrm{O} 1} \mathrm{~N}_{\mathrm{O} 2}\) & \(A_{V}=100\) & 25 & - & 120 & - & - & 120 & - & - & 120 & - & dB \\
\hline \multirow[t]{3}{*}{Slew Rate
\[
\begin{aligned}
& \left(A_{V}=1, C_{L}=100 \mathrm{pF},\right. \\
& \left.V_{I N}=8 V_{P-P}\right)
\end{aligned}
\]} & \multirow[t]{3}{*}{SR} & \(\mathrm{l}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega\) & 25 & - & 0.016 & - & - & 0.016 & - & - & 0.016 & - & V/ \(/ \mathrm{s}\) \\
\hline & & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \\
& \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega
\end{aligned}
\] & 25 & - & 0.16 & - & - & 0.16 & - & - & 0.16 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline & & \(\mathrm{l}_{\mathrm{Q}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & 25 & - & 1.6 & - & - & 1.6 & - & - & 1.6 & - & V/ \(/ \mathrm{s}\) \\
\hline \multirow[t]{3}{*}{Rise Time
\[
\begin{aligned}
& \left(V_{I N}=50 \mathrm{mV},\right. \\
& \left.C_{L}=100 \mathrm{pF}\right)
\end{aligned}
\]} & \multirow[t]{3}{*}{\(\mathrm{t}_{\mathrm{R}}\)} & \(\mathrm{l}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega\) & 25 & - & 20 & - & - & 20 & - & - & 20 & - & \(\mu \mathrm{s}\) \\
\hline & & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \\
& \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega
\end{aligned}
\] & 25 & - & 2 & - & - & 2 & - & - & 2 & - & \(\mu \mathrm{s}\) \\
\hline & & \(\mathrm{l}_{\mathrm{Q}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & 25 & - & 0.9 & - & - & 0.9 & - & - & 0.9 & - & \(\mu \mathrm{s}\) \\
\hline \multirow[t]{3}{*}{Overshoot Factor
\[
\begin{aligned}
& \left(V_{I N}=50 \mathrm{mV},\right. \\
& \left.C_{L}=100 \mathrm{pF}\right)
\end{aligned}
\]} & \multirow[t]{3}{*}{OS} & \(\mathrm{l}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega\) & 25 & - & 5 & - & - & 5 & - & - & 5 & - & \% \\
\hline & & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \\
& \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega
\end{aligned}
\] & 25 & - & 10 & - & - & 10 & - & - & 10 & - & \% \\
\hline & & \(\mathrm{l}_{\mathrm{Q}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & 25 & - & 40 & - & - & 40 & - & - & 40 & - & \% \\
\hline
\end{tabular}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 1 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { TEMP } \\
& \left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
\]} & \multicolumn{3}{|l|}{ICL7611A, ICL7612A} & \multicolumn{3}{|l|}{ICL7611B, ICL7612B} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & \multirow[t]{2}{*}{Vos} & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega\)} & 25 & - & - & 2 & - & - & 5 & mV \\
\hline & & & Full & - & - & 3 & - & - & 7 & mV \\
\hline Temperature Coefficient of \(\mathrm{V}_{\text {OS }}\) & \(\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}\) & \(\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega\) & - & - & 10 & - & - & 15 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{Input Offset Current} & \multirow[t]{2}{*}{Ios} & & 25 & - & 0.5 & 30 & - & 0.5 & 30 & pA \\
\hline & & & 0 to 70 & - & - & 300 & - & - & 300 & pA \\
\hline \multirow[t]{2}{*}{Input Bias Current} & \multirow[t]{2}{*}{\(\mathrm{I}_{\text {BIAS }}\)} & & 25 & - & 1.0 & 50 & - & 1.0 & 50 & pA \\
\hline & & & 0 to 70 & - & - & 500 & - & - & 500 & pA \\
\hline Common Mode Voltage Range (Except ICL7612) & \(\mathrm{V}_{\text {CMR }}\) & & 25 & \(\pm 0.6\) & - & - & \(\pm 0.6\) & - & - & V \\
\hline Extended Common Mode Voltage Range (ICL7612 Only) & \(\mathrm{V}_{\text {CMR }}\) & & 25 & \[
\begin{gathered}
+0.6 \text { to } \\
-1.1
\end{gathered}
\] & - & - & \[
\left|\begin{array}{c}
+0.6 \text { to } \\
-1.1
\end{array}\right|
\] & - & - & V \\
\hline \multirow[t]{2}{*}{Output Voltage Swing} & \multirow[t]{2}{*}{Vout} & \multirow[t]{2}{*}{\(R_{L}=1 \mathrm{M} \Omega\)} & 25 & \(\pm 0.98\) & - & - & \(\pm 0.98\) & - & - & V \\
\hline & & & 0 to 70 & \(\pm 0.96\) & - & - & \(\pm 0.96\) & - & - & V \\
\hline \multirow[t]{2}{*}{Large Signal Voltage Gain} & \multirow[t]{2}{*}{Avol} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{O}}= \pm 0.1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega\)} & 25 & - & 90 & - & - & 90 & - & dB \\
\hline & & & 0 to 70 & - & 80 & - & - & 80 & - & dB \\
\hline Unity Gain Bandwidth & GBW & & 25 & - & 0.044 & - & - & 0.044 & - & MHz \\
\hline Input Resistance & \(\mathrm{R}_{\mathrm{IN}}\) & & 25 & - & \(10^{12}\) & - & - & \(10^{12}\) & - & \(\Omega\) \\
\hline Common Mode Rejection Ratio & CMRR & \(R_{S} \leq 100 \mathrm{k} \Omega\) & 25 & - & 80 & - & - & 80 & - & dB \\
\hline Power Supply Rejection Ratio & PSRR & \(R_{S} \leq 100 \mathrm{k} \Omega\) & 25 & - & 80 & - & - & 80 & - & dB \\
\hline Input Referred Noise Voltage & \(\mathrm{e}_{\mathrm{N}}\) & \(\mathrm{R}_{\text {S }}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}\) & 25 & - & 100 & - & - & 100 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Referred Noise Current & \(\mathrm{i}_{\mathrm{N}}\) & \(\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}\) & 25 & - & 0.01 & - & - & 0.01 & - & \(\mathrm{pA} \sqrt{\mathrm{Hz}}\) \\
\hline Supply Current & ISUPPLY & No Signal, No Load & 25 & - & 6 & 15 & - & 6 & 15 & \(\mu \mathrm{A}\) \\
\hline Slew Rate & SR & \[
\begin{aligned}
& A_{V}=1, C_{L}=100 \mathrm{pF}, \\
& V_{I N}=0.2 V_{P-P}, R_{L}=1 \mathrm{M} \Omega
\end{aligned}
\] & 25 & - & 0.016 & - & - & 0.016 & - & V/ \(/ \mathrm{s}\) \\
\hline Rise Time & \(t_{\text {R }}\) & \[
\begin{aligned}
& V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF} \\
& R_{L}=1 \mathrm{M} \Omega
\end{aligned}
\] & 25 & - & 20 & - & - & 20 & - & \(\mu \mathrm{s}\) \\
\hline Overshoot Factor & OS & \[
\begin{aligned}
& V_{I N}=50 \mathrm{mV}, C_{L}=100 \mathrm{pF}, \\
& R_{L}=1 \mathrm{M} \Omega
\end{aligned}
\] & 25 & - & 5 & - & - & 5 & - & \% \\
\hline
\end{tabular}

\section*{Schematic Diagram}


\section*{Application Information}

\section*{Static Protection}

All devices are static protected by the use of input diodes. However, strong static fields should be avoided, as it is possible for the strong fields to cause degraded diode junction characteristics, which may result in increased input leakage currents.

\section*{Latchup Avoidance}

Junction-isolated CMOS circuits employ configurations which produce a parasitic 4-layer (PNPN) structure. The 4layer structure has characteristics similar to an SCR, and under certain circumstances may be triggered into a low impedance state resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3V beyond the supply rails may be applied to any pin. In general, the op amp supplies must be established simultaneously with, or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to 2 mA to prevent latchup.

\section*{Choosing the Proper \(\mathbf{l}_{\mathbf{Q}}\)}

The ICL7611 and ICL7612 have a similar \(I_{Q}\) set-up scheme, which allows the amplifier to be set to nominal quiescent currents of \(10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}\) or 1 mA . These current settings change only very slightly over the entire supply voltage
range. The ICL7611/12 have an external \(\mathrm{I}_{\mathrm{Q}}\) control terminal, permitting user selection of quiescent current. To set the \(I_{Q}\) connect the \(\mathrm{I}_{\mathrm{Q}}\) terminal as follows:
\(I_{Q}=10 \mu A-I_{Q}\) pin to \(V_{+}\)
\(I_{Q}=100 \mu A-I_{Q}\) pin to ground. If this is not possible, any voltage from \(V+-0.8\) to \(V-+0.8\) can be used.
\(I_{Q}=1 m A-I_{Q}\) pin to \(V-\)
NOTE: The output current available is a function of the quiescent current setting. For maximum peak-to-peak output voltage swings into low impedance loads, IQ of 1 mA should be selected.

\section*{Output Stage and Load Driving Considerations}

Each amplifiers' quiescent current flows primarily in the output stage. This is approximately \(70 \%\) of the \(I_{Q}\) settings. This allows output swings to almost the supply rails for output loads of \(1 \mathrm{M} \Omega, 100 \mathrm{k} \Omega\), and \(10 \mathrm{k} \Omega\), using the output stage in a highly linear class A mode. In this mode, crossover distortion is avoided and the voltage gain is maximized. However, the output stage can also be operated in Class AB for higher output currents. (See graphs under Typical Operating Characteristics). During the transition from Class A to Class B operation, the output transfer characteristic is non-linear and the voltage gain decreases.

\section*{Input Offset Nulling}

Offset nulling may be achieved by connecting a 25 K pot between the BAL terminals with the wiper connected to \(\mathrm{V}+\). At quiescent currents of 1 mA and \(100 \mu \mathrm{~A}\) the nulling range provided is adequate for all \(V_{O S}\) selections; however with \(I_{Q}=10 \mu \mathrm{~A}\), nulling may not be possible with higher values of Vos.

\section*{Frequency Compensation}

The ICL7611 and ICL7612 are internally compensated, and are stable for closed loop gains as low as unity with capacitive loads up to 100 pF .

\section*{Extended Common Mode Input Range}

The ICL7612 incorporates additional processing which allows the input CMVR to exceed each power supply rail by 0.1 V for applications where \(V_{\text {SUPP }} \geq \pm 1.5 \mathrm{~V}\). For those applications where \(\mathrm{V}_{\text {SUPP }} \leq \pm 1.5 \mathrm{~V}\) the input CMVR is limited in the positive direction, but may exceed the negative supply rail by 0.1 V in the negative direction (e.g., for \(V_{\text {SUPPLY }}= \pm 1 \mathrm{~V}\), the input CMVR would be +0.6 V to -1.1 V ).
Operation At \(\mathbf{V}_{\text {SUPPLY }}= \pm \mathbf{V}\)
Operation at \(V_{\text {SUPPLY }}= \pm 1 \mathrm{~V}\) is guaranteed at \(I_{Q}=10 \mu \mathrm{~A}\) for \(A\) and \(B\) grades only.

Output swings to within a few millivolts of the supply rails are achievable for \(R_{L} \geq 1 \mathrm{M} \Omega\). Guaranteed input CMVR is \(\pm 0.6 \mathrm{~V}\) minimum and typically +0.9 V to -0.7 V at \(\mathrm{V}_{\text {SUPPLY }}= \pm 1 \mathrm{~V}\). For applications where greater common mode range is desirable, refer to the description of ICL7612 above.

\section*{Typical Applications}

The user is cautioned that, due to extremely high input impedances, care must be exercised in layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup.
Note that in no case is \(I_{Q}\) shown. The value of \(I_{Q}\) must be chosen by the designer with regard to frequency response and power dissipation.


FIGURE 1. SIMPLE FOLLOWER (NOTE 4)


NOTE:
4. By using the ICL7612 in this application, the circuit will follow rail to rail inputs.

FIGURE 2. LEVEL DETECTOR (NOTE 4)


NOTE: Low leakage currents allow integration times up to several hours.

FIGURE 3. PHOTOCURRENT INTEGRATOR


NOTE: Since the output range swings exactly from rail to rail, frequency and duty cycle are virtually independent of power supply variations.
FIGURE 4. PRECISE TRIANGLE/SQUARE WAVE GENERATOR


FIGURE 5. AVERAGING AC TO DC CONVERTER FOR A/D CONVERTERS SUCH AS ICL7106, ICL7107, ICL7109, ICL7116, ICL7117


FIGURE 6. BURN-IN AND LIFE TEST CIRCUIT


FIGURE 7. Vos NULL CIRCUIT


NOTES:
5. Note that small capacitors ( 25 pF to 50 pF ) may be needed for stability in some cases.
6. The low bias currents permit high resistance and low capacitance values to be used to achieve low frequency cutoff. \(\mathrm{f}_{\mathrm{C}}=10 \mathrm{~Hz}, \mathrm{~A}_{\mathrm{VCL}}=4\), Passband ripple \(=0.1 \mathrm{~dB}\).

FIGURE 8. FIFTH ORDER CHEBYCHEV MULTIPLE FEEDBACK LOW PASS FILTER

\section*{Typical Performance Curves}


FIGURE 9. SUPPLY CURRENT PER AMPLIFIER vs SUPPLY VOLTAGE


FIGURE 11. INPUT BIAS CURRENT vs TEMPERATURE


FIGURE 13. LARGE SIGNAL FREQUENCY RESPONSE


FIGURE 10. SUPPLY CURRENT PER AMPLIFIER vs FREE-AIR TEMPERATURE


FIGURE 12. LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN vs FREE-AIR TEMPERATURE


FIGURE 14. COMMON MODE REJECTION RATIO vs FREE-AIR TEMPERATURE

Typical Performance Curves (Continued)


FIGURE 15. POWER SUPPLY REJECTION RATIO vs FREE-AIR TEMPERATURE


FIGURE 17. OUTPUT VOLTAGE vs FREQUENCY


FIGURE 19. OUTPUT VOLTAGE vs SUPPLY VOLTAGE


FIGURE 16. EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY


FIGURE 18. OUTPUT VOLTAGE vs FREQUENCY


FIGURE 20. OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

Typical Performance Curves (Continued)


FIGURE 21. OUTPUT SOURCE CURRENT vs SUPPLY VOLTAGE


FIGURE 22. OUTPUT SINK CURRENT vs SUPPLY VOLTAGE


FIGURE 25. VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE \(\left(I_{Q}=100 \mu A\right)\)


FIGURE 24. VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE ( \(\mathrm{l}_{\mathrm{Q}}=1 \mathrm{~mA}\) )


FIGURE 26. VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE \(\left(I_{Q}=10 \mu A\right)\)

\section*{Dual/Quad, Low Power CMOS Operational Amplifiers}

\section*{Features}
- Wide Operating Voltage Range. . . . . . . . . . \(\pm 1 \mathrm{~V}\) to \(\pm 8 \mathrm{~V}\)
- High Input Impedance \(\qquad\) \(10^{12} \Omega\)
- Input Current Lower Than BIFETs \(\qquad\)
- Output Voltage Swing \(\qquad\)
- Available as Duals and Quads (Refer to ICL7611 for Singles)
- Low Power Replacement for Many Standard Op Amps

\section*{Applications}
- Portable Instruments
- Telephone Headsets
- Hearing Aid/Microphone Amplifiers
- Meter Amplifiers
- Medical Instruments
- High Impedance Buffers

\section*{Description}

The ICL761X/762X/764X series is a family of monolithic CMOS operational amplifiers. These devices provide the designer with high performance operation at low supply voltages and selectable quiescent currents. They are an ideal design tool when ultra low input current and low power dissipation are desired.

The basic amplifier will operate at supply voltages ranging from \(\pm 1 \mathrm{~V}\) to \(\pm 8 \mathrm{~V}\), and may be operated from a single Lithium cell. The output swing ranges to within a few millivolts of the supply voltages.

The quiescent supply current of these amplifiers is set to 3 different ranges at the factory. Both amps of the dual ICL7621 are set to an \(\mathrm{I}_{\mathrm{Q}}\) of \(100 \mu \mathrm{~A}\), while each amplifier of the quad ICL7641 and ICL7642 are set to an \(\mathrm{I}_{\mathrm{Q}}\) of 1 mA and \(10 \mu \mathrm{~A}\) respectively. This results in power consumption as low as \(20 \mu \mathrm{~W}\) per amplifier.

Of particular significance is the extremely low (1pA) input current, input noise current of \(0.01 \mathrm{pA} \sqrt{\mathrm{Hz}}\), and \(10^{12} \Omega\) input impedance. These features optimize performance in very high source impedance applications.

The inputs are internally protected. Outputs are fully protected against short circuits to ground or to either supply.

AC performance is excellent, with a slew rate of \(1.6 \mathrm{~V} / \mu \mathrm{s}\), and unity gain bandwidth of 1 MHz at \(\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}\).

Because of the low power dissipation, junction temperature rise and drift are quite low. Applications utilizing these features may include stable instruments, extended life designs, or high density packages.

Pinouts (See Ordering Information on Next Page)


ICL7641 (PDIP) ICL7642 (PDIP) TOP VIEW


\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|}
\hline PART NUMBER & TEMP．RANGE（ \({ }^{\circ} \mathrm{C}\) ） & PACKAGE & PKG．NO． \\
\hline ICL7621ACPA & 0 to 70 & 8 Ld PDIP－A Grade－ \(\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}\) & E8．3 \\
\hline ICL7621BCPA & 0 to 70 & 8 Ld PDIP－B Grade－ \(\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}\) & E8．3 \\
\hline ICL7621DCPA & 0 to 70 & 8 Ld PDIP－D Grade－ \(\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}\) & E8．3 \\
\hline ICL7621BCTV & 0 to 70 & 8 Pin Metal Can－B Grade－ \(\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}\) & T8．C \\
\hline ICL7621DCTV & 0 to 70 & 8 Pin Metal Can－D Grade－ \(\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}\) & T8．C \\
\hline ICL7621AMTV & -55 to 125 & 8 Pin Metal Can－A Grade－ \(\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}\) & T8．C \\
\hline ICL7621BMTV & －55 to 125 & 8 Pin Metal Can－B Grade－\(I_{Q}=100 \mu \mathrm{~A}\) & T8．C \\
\hline ICL7621DMTV & －55 to 125 & 8 Pin Metal Can－D Grade－ \(\mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}\) & T8．C \\
\hline ICL7621DCBA & 0 to 70 & 8 Ld SOIC－D Grade－ \(\mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}\) & M8．15 \\
\hline ICL7621DCBA－T & 0 to 70 & 8 Ld SOIC－D Grade－Tape and Reel－ \(\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}\) & M8．15 \\
\hline ICL7641CCPD & 0 to 70 & 14 Ld PDIP－C Grade－ \(\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}\) & E14．3 \\
\hline ICL7641ECPD & 0 to 70 & 14 Ld PDIP－E Grade－ \(\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}\) & E14．3 \\
\hline ICL7642CCPD & 0 to 70 & 14 Ld PDIP－ C Grade－ \(\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}\) & E14．3 \\
\hline ICL7642ECPD & 0 to 70 & 14 Ld PDIP－E Grade－ \(\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}\) & E14．3 \\
\hline
\end{tabular}

Absolute Maximum Ratings
Supply Voltage \(\mathrm{V}+\) to V -
Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . V- -0.3 to \(\mathrm{V}_{+}+0.3 \mathrm{~V}\)
Differential Input Voltage (Note 1) . . . . . . . . . [(V+ +0.3) - (V- -0.3 ) \(] \mathrm{V}\)
Duration of Output Short Circuit (Note 2).

\section*{Operating Conditions}

Temperature Range
ICL76XXM.
ICL76XXC.
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Long term offset voltage stability will be degraded if large input differential voltages are applied for long periods of time.
2. The outputs may be shorted to ground or to either supply, for \(V_{\text {SUPPLY }} \leq 10 \mathrm{~V}\). Care must be taken to insure that the dissipation rating is not exceeded.
3. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{\begin{tabular}{l}
TEMP. \\
( \({ }^{\circ} \mathrm{C}\) )
\end{tabular}} & \multicolumn{3}{|c|}{ICL7621A} & \multicolumn{3}{|c|}{ICL7621B} & \multicolumn{3}{|c|}{ICL7621D} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OS}}\)} & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega\)} & 25 & - & - & 2 & - & - & 5 & - & - & 15 & mV \\
\hline & & & Full & - & - & 3 & - & - & 7 & - & - & 20 & mV \\
\hline Temperature Coefficient of \(\mathrm{V}_{\mathrm{OS}}\) & \(\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}\) & \(\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega\) & - & - & 10 & - & - & 15 & - & - & 25 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Input Offset Current} & \multirow[t]{3}{*}{los} & & 25 & - & 0.5 & 30 & - & 0.5 & 30 & - & 0.5 & 30 & pA \\
\hline & & & 0 to 70 & - & - & 300 & - & - & 300 & - & - & 300 & pA \\
\hline & & & -55 to 125 & - & - & 800 & - & & 800 & - & & 800 & pA \\
\hline \multirow[t]{3}{*}{Input Bias Current} & \multirow[t]{3}{*}{\({ }^{\text {BIAS }}\)} & & 25 & - & 1.0 & 50 & - & 1.0 & 50 & - & 1.0 & 50 & pA \\
\hline & & & 0 to 70 & - & - & 400 & - & - & 400 & - & - & 400 & pA \\
\hline & & & -55 to 125 & - & - & 4000 & - & - & 4000 & - & - & 4000 & pA \\
\hline Common Mode Voltage Range & \(\mathrm{V}_{\text {CMR }}\) & \(\mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}\) & 25 & \(\pm 4.2\) & - & - & \(\pm 4.2\) & - & - & \(\pm 4.2\) & \(\bullet\) & - & V \\
\hline \multirow[t]{3}{*}{Output Voltage Swing} & \multirow[t]{3}{*}{\(\mathrm{V}_{\text {OUT }}\)} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \\
& \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega,
\end{aligned}
\]} & 25 & \(\pm 4.9\) & - & - & \(\pm 4.9\) & - & - & \(\pm 4.9\) & - & - & V \\
\hline & & & 0 to 70 & \(\pm 4.8\) & - & - & \(\pm 4.8\) & - & - & \(\pm 4.8\) & - & - & V \\
\hline & & & -55 to 125 & \(\pm 4.5\) & - & - & \(\pm 4.5\) & - & - & \(\pm 4.5\) & - & - & V \\
\hline \multirow[t]{3}{*}{Large Signal Voltage Gain} & \multirow[t]{3}{*}{Avol} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}= \pm 4.0 \mathrm{~V}, \\
& \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \\
& \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}
\end{aligned}
\]} & 25 & 86 & 102 & - & 80 & 102 & - & 80 & 102 & - & dB \\
\hline & & & 0 to 70 & 80 & - & - & 75 & - & - & 75 & - & - & dB \\
\hline & & & -55 to 125 & 74 & - & - & 68 & - & - & 68 & - & - & dB \\
\hline Unity Gain Bandwidth & GBW & \(\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}\) & 25 & - & 0.48 & - & - & 0.48 & - & - & 0.48 & - & MHz \\
\hline Input Resistance & \(\mathrm{R}_{\mathrm{IN}}\) & & 25 & - & \(10^{12}\) & - & - & \(10^{12}\) & - & - & \(10^{12}\) & - & \(\Omega\) \\
\hline Common Mode Rejection Ratio & CMRR & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \\
& \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}
\end{aligned}
\] & 25 & 76 & 91 & - & 70 & 91 & - & 70 & 91 & - & dB \\
\hline Power Supply Rejection Ratio ( \(\mathrm{V}_{\text {SUPPLY }}= \pm 8 \mathrm{~V}\) to \(\pm 2 \mathrm{~V}\) ) & PSRR & \(R_{S} \leq 100 \mathrm{k} \Omega\), \(\mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}\) & 25 & 80 & 86 & - & 80 & 86 & - & 80 & 86 & - & dB \\
\hline Input Referred Noise Voltage & \(\mathrm{e}_{\mathrm{N}}\) & \[
\begin{aligned}
& R_{S}=100 \Omega, \\
& f=1 \mathrm{kHz}
\end{aligned}
\] & 25 & - & 100 & - & - & 100 & - & - & 100 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline
\end{tabular}

ICL7621, ICL7641, ICL7642
Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{3}{|c|}{ICL7621A} & \multicolumn{3}{|c|}{ICL7621B} & \multicolumn{3}{|c|}{ICL7621D} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Input Referred Noise Current & \(\mathrm{i}_{\mathrm{N}}\) & \[
\begin{aligned}
& R=100 \Omega, \\
& f=1 \mathrm{kHz}
\end{aligned}
\] & 25 & - & 0.01 & - & - & 0.01 & - & - & 0.01 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Supply Current (Per Amplifier) & ISUPPLY & No Signal, No Load,
\[
\mathrm{I}_{\mathrm{Q}}=100 \mu \mathrm{~A}
\] & 25 & - & 0.1 & 0.25 & - & 0.1 & 0.25 & - & 0.1 & 0.25 & mA \\
\hline Channel Separation & \(\mathrm{V}_{\mathrm{O} 1} \mathrm{~N}_{\mathrm{O} 2}\) & \(A_{V}=100\) & 25 & - & 120 & - & - & 120 & - & - & 120 & - & dB \\
\hline Slew Rate & SR & \[
\begin{aligned}
& A_{V}=1, C_{L}=100 \mathrm{pF} \\
& V_{I N}=8 V_{P . P}, \\
& I_{Q}=100 \mu A, \\
& R_{L}=100 \mathrm{k} \Omega
\end{aligned}
\] & 25 & - & 0.16 & - & - & 0.16 & \(\bullet\) & - & 0.16 & - & V/us \\
\hline Rise Time & \(t_{R}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \\
& \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \\
& \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \\
& \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega
\end{aligned}
\] & 25 & - & 2 & - & - & 2 & - & - & 2 & - & \(\mu \mathrm{s}\) \\
\hline Overshoot Factor & OS & \[
\begin{aligned}
& V_{I N}=50 \mathrm{mV}, \\
& C_{\mathrm{L}}=100 \mathrm{pF} \\
& \mathrm{l}_{\mathrm{Q}}=100 \mu \mathrm{~A}, \\
& R_{\mathrm{L}}=100 \mathrm{k} \Omega
\end{aligned}
\] & 25 & - & 10 & - & - & 10 & - & - & 10 & - & \% \\
\hline
\end{tabular}

Electrical Specifications \(\quad V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{3}{|l|}{ICL7641C, ICL7642C} & \multicolumn{3}{|l|}{ICL7641E, ICL7642E} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OS}}\)} & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega\)} & 25 & - & - & 10 & - & - & 20 & mV \\
\hline & & & Full & - & - & 15 & - & - & 25 & mV \\
\hline Temperature Coefficient of \(\mathrm{V}_{\mathrm{OS}}\) & \(\Delta \mathrm{V}_{\mathrm{OS}} / \Delta \mathrm{T}\) & \(\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega\) & - & - & 20 & - & \(\bullet\) & 30 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{3}{*}{Input Offset Current} & \multirow[t]{3}{*}{los} & & 25 & - & 0.5 & 30 & \(\bullet\) & 0.5 & 30 & PA \\
\hline & & & 0 to 70 & - & - & 300 & - & - & 300 & pA \\
\hline & & & -55 to 125 & - & - & 800 & - & & 800 & pA \\
\hline \multirow[t]{3}{*}{Input Bias Current} & \multirow[t]{3}{*}{\({ }_{\text {IBIAS }}\)} & & 25 & - & 1.0 & 50 & - & 1.0 & 50 & pA \\
\hline & & & 0 to 70 & - & - & 500 & - & - & 500 & pA \\
\hline & & & -55 to 125 & - & - & 4000 & - & - & 4000 & pA \\
\hline \multirow[t]{2}{*}{Common Mode Voltage Range} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {cMR }}\)} & \(\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{ICL} 7642\) & 25 & \(\pm 4.4\) & - & - & \(\pm 4.4\) & - & - & V \\
\hline & & \(\mathrm{l}_{\mathrm{Q}}=1 \mathrm{~mA}, \mathrm{ICL} 7641\) & 25 & \(\pm 3.7\) & - & - & \(\pm 3.7\) & - & - & V \\
\hline \multirow[t]{6}{*}{Output Voltage Swing} & \multirow[t]{6}{*}{V \({ }_{\text {OUT }}\)} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { ICL7642, } I_{Q}=10 \mu A, \\
& R_{L}=1 M \Omega
\end{aligned}
\]} & 25 & \(\pm 4.9\) & - & - & \(\pm 4.9\) & - & - & V \\
\hline & & & 0 to 70 & \(\pm 4.8\) & - & - & \(\pm 4.8\) & - & - & V \\
\hline & & & -55 to 125 & \(\pm 4.7\) & - & - & \(\pm 4.7\) & - & - & V \\
\hline & & \multirow[t]{3}{*}{\[
\begin{aligned}
& I_{C L} 7641, I_{Q}=1 \mathrm{~mA}, \\
& R_{L}=10 \mathrm{k} \Omega
\end{aligned}
\]} & 25 & \(\pm 4.5\) & - & - & \(\pm 4.5\) & - & - & V \\
\hline & & & 0 to 70 & \(\pm 4.3\) & - & - & \(\pm 4.3\) & - & - & V \\
\hline & & & -55 to 125 & \(\pm 4.0\) & - & - & \(\pm 4.0\) & - & - & V \\
\hline
\end{tabular}

ICL7621, ICL7641, ICL7642

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{3}{|l|}{ICL7641C, ICL7642C} & \multicolumn{3}{|l|}{ICL7641E, ICL7642E} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{6}{*}{Large Signal Voltage Gain} & \multirow[t]{6}{*}{Avol} & \multirow[t]{3}{*}{\[
\begin{aligned}
& I_{C L}^{C} 7642, V_{O}= \pm 4 \mathrm{~V}, \\
& R_{L}=1 \mathrm{M} \Omega, I_{Q}=10 \mu \mathrm{~A}
\end{aligned}
\]} & 25 & 80 & 104 & - & 80 & 104 & - & dB \\
\hline & & & 0 to 70 & 75 & - & - & 75 & - & - & dB \\
\hline & & & -55 to 125 & 68 & - & - & 68 & - & - & dB \\
\hline & & \multirow[t]{3}{*}{\[
\begin{aligned}
& I_{L L} 7641, V_{O}= \pm 4 \mathrm{~V}, \\
& R_{L}=10 \mathrm{k} \Omega, I_{Q}=1 \mathrm{~mA}
\end{aligned}
\]} & 25 & 76 & 98 & - & 76 & 98 & - & dB \\
\hline & & & 0 to 70 & 72 & - & - & 72 & - & - & dB \\
\hline & & & -55 to 125 & 68 & - & - & 68 & - & - & dB \\
\hline \multirow[t]{2}{*}{Unity Gain Bandwidth} & \multirow[t]{2}{*}{GBW} & ICL 7642, \(\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}\) & 25 & - & 0.044 & - & - & 0.044 & - & MHz \\
\hline & & ICL \(7641, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}\) & 25 & - & 1.4 & - & - & 1.4 & - & MHz \\
\hline Input Resistance & \(\mathrm{R}_{\mathrm{IN}}\) & & 25 & - & \(10^{12}\) & - & - & \(10^{12}\) & - & \(\Omega\) \\
\hline \multirow[t]{2}{*}{Common Mode Rejection Ratio} & \multirow[t]{2}{*}{CMRR} & ICL7642, \(\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega\), \(\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}\) & 25 & 70 & 96 & - & 70 & 96 & - & dB \\
\hline & & \(\mathrm{ICL}^{\text {c }} 7641, \mathrm{R}_{S} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}\) & 25 & 60 & 87 & - & 60 & 87 & - & dB \\
\hline \multirow[t]{2}{*}{Power Supply Rejection Ratio (VSUPPLY \(= \pm 8 \mathrm{~V}\) to \(\pm 2 \mathrm{~V}\) )} & \multirow[t]{2}{*}{PSRR} & \(1 \mathrm{CL} 7642, \mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}\) & 25 & 80 & 94 & - & 80 & 94 & - & dB \\
\hline & & ICL7641, \(\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}\) & 25 & 70 & 77 & - & 70 & 77 & - & dB \\
\hline Input Referred Noise Voltage & \({ }^{\text {en }}\) & \(\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}\) & 25 & - & 100 & - & - & 100 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Referred Noise Current & \(\mathrm{i}_{\mathrm{N}}\) & \(\mathrm{R}_{\mathrm{S}}=100 \Omega, \mathrm{f}=1 \mathrm{kHz}\) & 25 & - & 0.01 & - & - & 0.01 & - & \(\mathrm{pA} \sqrt{ } \sqrt{\mathrm{Hz}}\) \\
\hline \multirow[t]{2}{*}{Supply Current (Per Amplifier) (No Signal, No Load)} & \multirow[t]{2}{*}{ISUPPLY} & ICL7642, \(\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}\) Low Bias & 25 & - & 0.01 & 0.03 & - & 0.01 & 0.03 & mA \\
\hline & & ICL7641, \(\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}\) High Bias & 25 & - & 1.0 & 2.5 & - & 1.0 & 2.5 & mA \\
\hline Channel Separation & \(\mathrm{V}_{\mathrm{O} 1} \mathrm{~N}_{\mathrm{O} 2}\) & \(A_{V}=100\) & 25 & - & 120 & - & - & 120 & - & dB \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Slew Rate } \\
& \left(A_{V}=1, C_{L}=100 \mathrm{pF},\right. \\
& \left.V_{I N}=8 V_{P-P}\right)
\end{aligned}
\]} & \multirow[t]{2}{*}{SR} & ICL7642, \(\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega\) & 25 & - & 0.016 & - & - & 0.016 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline & & \(1 C L 7641, l_{Q}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & 25 & - & 1.6 & - & - & 1.6 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline \multirow[t]{2}{*}{Rise Time
\[
\left(\mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right)
\]} & \multirow[t]{2}{*}{\(t_{R}\)} & ICL7642, \(\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega\) & 25 & - & 20 & - & - & 20 & - & \(\mu \mathrm{s}\) \\
\hline & & ICL7641, \(\mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & 25 & - & 0.9 & - & - & 0.9 & - & \(\mu \mathrm{s}\) \\
\hline \multirow[t]{2}{*}{Overshoot Factor \(\left(\mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}\right)\)} & \multirow[t]{2}{*}{OS} & ICL7642, \(\mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}, \mathrm{R}_{L}=1 \mathrm{M} \Omega\) & 25 & - & 5 & - & - & 5 & - & \% \\
\hline & & \(1 \mathrm{CL} 7641, \mathrm{I}_{\mathrm{Q}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & 25 & - & 40 & - & - & 40 & - & \% \\
\hline
\end{tabular}

Electrical Specifications \(V_{S U P P L Y}= \pm 1 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=10 \mu \mathrm{~A}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETERS} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { TEMP. } \\
& \left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
\]} & \multicolumn{3}{|c|}{ICL7642C} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OS}}\)} & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega\)} & 25 & - & - & 10 & mV \\
\hline & & & Full & - & - & 12 & mV \\
\hline Temperature Coefficient of \(\mathrm{V}_{\text {OS }}\) & \(\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}\) & \(\mathrm{R}_{\mathrm{S}} \leq 100 \mathrm{k} \Omega\) & - & - & 20 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{Input Offset Current} & \multirow[t]{2}{*}{los} & & 25 & - & 0.5 & 30 & pA \\
\hline & & & 0 to 70 & - & - & 300 & pA \\
\hline \multirow[t]{2}{*}{Input Bias Current} & \multirow[t]{2}{*}{\({ }^{\text {BIAS }}\)} & & 25 & - & 1.0 & 50 & pA \\
\hline & & & 0 to 70 & - & - & 500 & pA \\
\hline Common Mode Voltage Range & \(\mathrm{V}_{\text {CMR }}\) & & 25 & \(\pm 0.6\) & - & - & V \\
\hline
\end{tabular}

ICL7621, ICL7641, ICL7642

Electrical Specifications \(V_{S U P P L Y}= \pm 1 \mathrm{~V}, I_{Q}=10 \mu \mathrm{~A}\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETERS} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{3}{|c|}{ICL7642C} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & \\
\hline \multirow[t]{2}{*}{Output Voltage Swing} & \multirow[t]{2}{*}{VOUT} & \multirow[t]{2}{*}{\(R_{L}=1 \mathrm{M} \Omega\)} & 25 & - & \(\pm 0.98\) & - & V \\
\hline & & & 0 to 70 & - & \(\pm 0.96\) & - & V \\
\hline \multirow[t]{2}{*}{Large Signal Voltage Gain} & \multirow[t]{2}{*}{AVOL} & \multirow[t]{2}{*}{\[
\begin{aligned}
& V_{O}= \pm 0.1 \mathrm{~V} \\
& R_{L}=1 \mathrm{M} \Omega
\end{aligned}
\]} & 25 & - & 90 & - & dB \\
\hline & & & 0 to 70 & - & 80 & - & dB \\
\hline Unity Gain Bandwidth & GBW & & 25 & - & 0.044 & - & MHz \\
\hline Input Resistance & \(\mathrm{R}_{\mathrm{IN}}\) & & 25 & - & \(10^{12}\) & - & \(\Omega\) \\
\hline Common Mode Rejection Ratio & CMRR & \(R_{S} \leq 100 \mathrm{k} \Omega\) & 25 & - & 80 & - & dB \\
\hline Power Supply Rejection Ratio & PSRR & & 25 & - & 80 & - & dB \\
\hline Input Referred Noise Voltage & \(\mathrm{e}_{\mathrm{N}}\) & \(R_{S}=100 \Omega, f=1 \mathrm{kHz}\) & 25 & - & 100 & - & \(n \mathrm{~V} / \sqrt{\mathrm{Hz}}\) \\
\hline Input Referred Noise Current & \(i_{N}\) & \(R_{S}=100 \Omega, f=1 \mathrm{kHz}\) & 25 & - & 0.01 & - & \(\mathrm{pA} \sqrt{\mathrm{Hz}}\) \\
\hline Supply Current (Per Amplifier) & IsUPPLY & No Signal, No Load & 25 & - & 6 & 15 & \(\mu \mathrm{A}\) \\
\hline Channel Separation & \(\mathrm{V}_{\mathrm{O} 1} N_{\mathrm{O} 2}\) & \(A_{V}=100\) & 25 & - & 120 & - & dB \\
\hline Slew Rate & SR & \(A_{V}=1, C_{L}=100 \mathrm{pF}, \mathrm{V}_{1 N}=0.2 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, R_{L}=1 \mathrm{M} \Omega\) & 25 & - & 0.016 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Rise Time & \(\mathrm{t}_{\mathrm{R}}\) & \(\mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega\) & 25 & - & 20 & - & \(\mu s\) \\
\hline Overshoot Factor & OS & \(\mathrm{V}_{\mathrm{IN}}=50 \mathrm{mV}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega\) & 25 & - & 5 & - & \% \\
\hline
\end{tabular}

\section*{Schematic Diagram}

\begin{tabular}{|l|l|l|}
\hline \multicolumn{2}{|c|}{ TABLE OF JUMPERS } & \multicolumn{1}{c|}{\(\mathbf{I}_{\mathbf{Q}}\)} \\
\hline ICL7621 & C, E & \(100 \mu \mathrm{~A}\) \\
\hline ICL7641 & C, G & 1 mA \\
\hline ICL7642 & A, E & \(10 \mu \mathrm{~A}\) \\
\hline
\end{tabular}

\section*{Application Information}

\section*{Static Protection}

All devices are static protected by the use of input diodes. However, strong static fields should be avoided, as it is possible for the strong fields to cause degraded diode junction characteristics, which may result in increased input leakage currents.

\section*{Latchup Avoidance}

Junction-isolated CMOS circuits employ configurations which produce a parasitic 4-layer (PNPN) structure. The 4layer structure has characteristics similar to an SCR, and under certain circumstances may be triggered into a low impedance state resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3 V beyond the supply rails may be applied to any pin. In general, the op amp supplies must be established simultaneously with, or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to \(2 m A\) to prevent latchup.

\section*{Choosing the Proper \(\mathbf{I}_{\mathbf{Q}}\)}

Each device in the ICL76XX family has a similar \(I_{Q}\) setup scheme, which allows the amplifier to be set to nominal quiescent currents of \(10 \mu \mathrm{~A}, 100 \mu \mathrm{~A}\) or 1 mA . These current settings change only very slightly over the entire supply voltage range. The ICL7611/12 have an external \(I_{Q}\) control terminal, permitting user selection of each amplifiers' quiescent current. The ICL7621 and ICL7641/7642 have fixed \(\mathrm{I}_{\mathrm{Q}}\) settings:
ICL7621 (Dual) \(-I_{Q}=100 \mu \mathrm{~A}\)
ICL7641 (Quad) - \(I_{Q}=1 \mathrm{~mA}\)
ICL7642 (Quad) - \(I_{Q}=10 \mu \mathrm{~A}\)
NOTE: The output current available is a function of the quiescent current setting. For maximum peak-to-peak output voltage swings into low impedance loads, \(I_{Q}\) of 1 mA should be selected.

\section*{Output Stage and Load Driving Considerations}

Each amplifiers' quiescent current flows primarily in the output stage. This is approximately \(70 \%\) of the \(I_{Q}\) settings. This allows output swings to almost the supply rails for output loads of \(1 \mathrm{M} \Omega, 100 \mathrm{k} \Omega\), and \(10 \mathrm{k} \Omega\), using the output stage in a highly linear class A mode. In this mode, crossover distortion is avoided and the voltage gain is maximized. However, the output stage can also be operated in Class \(A B\) for higher output currents. (See graphs under Typical Operating Characteristics). During the transition from Class A to Class B operation, the output transfer characteristic is non-linear and the voltage gain decreases.

\section*{Frequency Compensation}

The ICL76XX are internally compensated, and are stable for closed loop gains as low as unity with capacitive loads up to 100pF.
Operation At \(\mathbf{V}_{\text {SUPPLY }}= \pm \mathbf{1 V}\)
Operation at \(V_{\text {SUPPLY }}= \pm 1 \mathrm{~V}\) is guaranteed for the ICL7642C only.

Output swings to within a few millivolts of the supply rails are achievable for \(R_{L} \geq 1 \mathrm{M} \Omega\) Guaranteed input CMVR is \(\pm 0.6 \mathrm{~V}\) minimum and typically +0.9 V to -0.7 V at \(\mathrm{V}_{\text {SUPPLY }}= \pm 1 \mathrm{~V}\). For applications where greater common mode range is desirable, refer to the ICL7612 data sheet.

\section*{Typical Applications}

The user is cautioned that, due to extremely high input impedances, care must be exercised in layout, construction, board cleanliness, and supply filtering to avoid hum and noise pickup.
Note that in no case is \(l_{Q}\) shown. The value of \(l_{Q}\) must be chosen by the designer with regard to frequency response and power dissipation.


FIGURE 1. SIMPLE FOLLOWER


FIGURE 2. LEVEL DETECTOR


NOTE: Low leakage currents allow integration times up to several hours.

FIGURE 3. PHOTOCURRENT INTEGRATOR


FIGURE 5. AVERAGING AC TO DC CONVERTER FOR A/D CONVERTERS SUCH AS ICL7106, ICL7107, ICL7109, ICL7116, ICL7117


NOTE: Since the output range swings exactly from rail to rail, frequency and duty cycle are virtually independent of power supply variations.

FIGURE 4. TRIANGLE/SQUARE WAVE GENERATOR



NOTES:
4. Small capacitors ( \(25-50 \mathrm{pF}\) ) may be needed for stability in some cases.
5. The low bias currents permit high resistance and low capacitance values to be used to achieve low frequency cutoff. \(\mathrm{f}_{\mathrm{C}}=10 \mathrm{~Hz}, \mathrm{~A}_{\mathrm{VCL}}=4\), Passband ripple \(=0.1 \mathrm{~dB}\).

FIGURE 7. FIFTH ORDER CHEBYCHEV MULTIPLE FEEDBACK LOW PASS FILTER

\section*{Typical Performance Curves}


FIGURE 8. SUPPLY CURRENT PER AMPLIFIER vs SUPPLY VOLTAGE


FIGURE 10. INPUT BIAS CURRENT vs TEMPERATURE


FIGURE 12. LARGE SIGNAL FREQUENCY RESPONSE


FIGURE 9. SUPPLY CURRENT PER AMPLIFIER vs FREE-AIR TEMPERATURE


FIGURE 11. LARGE SIGNAL DIFFERENTIAL VOLTAGE GAIN vs FREE-AIR TEMPERATURE


FIGURE 13. COMMON MODE REJECTION RATIO vs FREE-AIR TEMPERATURE

Typical Performance Curves (Continued)


FIGURE 14. POWER SUPPLY REJECTION RATIO vs FREE-AIR TEMPERATURE


FIGURE 16. OUTPUT VOLTAGE vs FREQUENCY


FIGURE 18. OUTPUT VOLTAGE vs SUPPLY VOLTAGE


FIGURE 15. EQUIVALENT INPUT NOISE VOLTAGE vs FREQUENCY


FIGURE 17. OUTPUT VOLTAGE vs FREQUENCY


FIGURE 19. OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

\section*{Typical Performance Curves (Continued)}


FIGURE 20. OUTPUT SOURCE CURRENT vs SUPPLY VOLTAGE


FIGURE 22. OUTPUT VOLTAGE vs LOAD RESISTANCE


FIGURE 24. VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE \(\left(l_{Q}=100 \mu \mathrm{~A}\right)\)


FIGURE 21. OUTPUT SINK CURRENT vs SUPPLY VOLTAGE


FIGURE 23. VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE \(\left(l_{Q}=1 \mathrm{~mA}\right)\)


FIGURE 25. VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE \(\left(l_{Q}=10 \mu A\right)\)

\title{
2MHz, Super Chopper-Stabilized Operational Amplifier
}

\section*{Features}
- Guaranteed Max Input Offset Voltage for All Temperature Ranges
- Low Long-Term and Temperature Drifts of Input Offset Voltage
- Guaranteed Max Input Bias Current. . .10pA
- Extremely Wide Common Mode Voltage Range: +3.5V to -5V
- Reduced Supply Current. . . . . . . . . . . . . . . . . . . . . 2mA
- Guaranteed Minimum Output Source/Sink Current
- Extremely High Gain .150 dB
- Extremely High CMRR and PSRR. . . . . . . . . . . . . 140dB
- High Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . \(2.5 \mathrm{~V} / \mu \mathrm{s}\)
- Wide Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . . 2MHz
- Unity-Gain Compensated
- Clamp Circuit to Avoid Overload Recovery Problems and Allow Comparator Use
- Extremely Low Chopping Spikes at Input and Output
- Characterized Fully Over All Temperature Ranges
- Improved, Direct Replacement for Industry-Standard ICL7650 and other Second-Source Parts

\section*{Description}

The ICL7650S Super Chopper-Stabilized Amplifier offers exceptionally low input offset voltage and is extremely stable with respect to time and temperature. It is a direct replacement for the industry-standard ICL7650 offering improved input offset voltage, lower input offset voltage temperature coefficient, reduced input bias current, and wider common mode voltage range. All improvements are highlighted in bold italics in the Electrical Characteristics section. Critical parameters are guaranteed over the entire commercial, industrial and military temperature ranges.

Harris' unique CMOS chopper-stabilized amplifier circuitry is user-transparent, virtually eliminating the traditional chopper amplifier problems of intermodulation effects, chopping spikes, and overrange lock-up.

The chopper amplifier achieves its low offset by comparing the inverting and non-inverting input voltages in a nulling amplifier, nulled by alternate clock phases. Two external capacitors are required to store the correcting potentials on the two amplifier nulling inputs; these are the only external components necessary.
The clock oscillator and all the other control circuitry is entirely self-contained. However the 14 lead version includes a provision for the use of an external clock, if required for a particular application. In addition, the ICL7650S is internally compensated for unity-gain operation.

Pinouts (See Ordering Information on Next Page)

ICL7650S
(PDIP, SOIC) TOP VIEW


ICL7650S
(METAL CAN) TOP VIEW


ICL7650S
(PDIP, CERDIP, SOIC) TOP VIEW


\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & TEMP. RANGE \(\left({ }^{\circ} \mathrm{C}\right)\) & \multicolumn{1}{|c|}{ PACKAGE } & PKG. NO. \\
\hline ICL7650SCPA-1 & 0 to 70 & 8 Ld PDIP & E8.3 \\
\hline ICL7650SCBD & 0 to 70 & 14 Ld SOIC & M14.15 \\
\hline ICL7650SCPD & 0 to 70 & 14 Ld PDIP & E14.3 \\
\hline ICL7650SCBA-1 & 0 to 70 & 8 Ld SOIC & M8.15 \\
\hline ICL7650SCTV-1 & 0 to 70 & 8 Pin Metal Can & T8.C \\
\hline ICL7650SIPA-1 & -25 to 85 & 8 Ld PDIP & E8.3 \\
\hline ICL7650SIPD & -25 to 85 & 14 Ld PDIP & E14.3 \\
\hline ICL7650SIJD & -25 to 85 & 14 Ld CERDIP & F14.3 \\
\hline ICL7650SITV-1 & -25 to 85 & 8 Pin Metal Can & T8.C \\
\hline ICL7650SMJD & -55 to 125 & 14 Ld CERDIP & F14.3 \\
\hline ICL7650SMTV-1 & -55 to 125 & 8 Pin Metal Can \\
\hline
\end{tabular}

Functional Diagram


\section*{Absolute Maximum Ratings}
\begin{tabular}{|c|c|}
\hline Sup & ............. 18V \\
\hline Input Voltage. & ( \(\mathrm{V}++0.3\) ) to (V- -0.3 ) \\
\hline Voltage on Oscillator Control Pins & \(\mathrm{V}+\) to V - \\
\hline Duration of Output Short Circuit & ndefinite \\
\hline Current to Any Pin & 10 mA \\
\hline While Operating (Not & 100M \\
\hline
\end{tabular}

\section*{Operating Conditions}

Temperature Range


\section*{Thermal Information}
\begin{tabular}{|c|c|c|}
\hline Thermal Resistance (Typical, Note 2) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) & \(\theta_{\mathrm{Jc}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline 8 Lead PDIP Package & 120 & N/A \\
\hline 14 Lead PDIP Package & 80 & N/A \\
\hline 8 Lead SOIC Package & 160 & N/A \\
\hline 14 Lead SOIC Package & 120 & N/A \\
\hline CERDIP Package & 75 & 20 \\
\hline Metal Can Package & 160 & 75 \\
\hline \multicolumn{3}{|l|}{Maximum Junction Temperature (Hermetic Package)} \\
\hline \multicolumn{3}{|l|}{Maximum Junction Temperature (Plastic Package)} \\
\hline \multicolumn{3}{|l|}{Maximum Storage Temperature Range . . . . . . . . \(-55^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)} \\
\hline Maximum Lead Temperature (Soldering (SOIC - Lead Tips Only) & & \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Limiting input current to \(100 \mu \mathrm{~A}\) is recommended to avoid latchup problems. Typically 1 mA is safe, however this is not guaranteed.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(\quad V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}\). See Test Circuit, Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & TEMP. ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{4}{*}{Input Offset Voltage (Note 3)} & \multirow[t]{4}{*}{\(V_{O S}\)} & & 25 & - & \(\pm 0.7\) & \(\pm 5\) & \(\mu \mathrm{V}\) \\
\hline & & & 0 to 70 & - & \(\pm 1\) & \(\pm 8\) & \(\mu \mathrm{V}\) \\
\hline & & & -25 to 85 & - & \(\pm 2\) & \(\pm 10\) & \(\mu \mathrm{V}\) \\
\hline & & & -55 to 125 & - & \(\pm 4\) & \(\pm 20\) & \(\mu \mathrm{V}\) \\
\hline \multirow[t]{3}{*}{Average Temperature Coefficient of Input Offset Voltage (Note 3)} & \multirow[t]{3}{*}{\(\Delta V_{O S} / \Delta T\)} & \multirow[t]{3}{*}{} & 0 to 70 & - & 0.02 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline & & & -25 to 85 & - & 0.02 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline & & & -55 to 125 & - & 0.03 & 0.1 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Change in Input Offset with Time & \(\Delta \mathrm{V}_{\text {OS }} / \Delta \mathrm{T}\) & & 25 & - & 100 & - & \(\mathrm{nV} / \sqrt{\text { month }}\) \\
\hline \multirow[t]{5}{*}{Input Bias Current \(\|(+)\|\), \(\mathrm{I}(-) \|\)} & \multirow[t]{5}{*}{\(I_{\text {BIAS }}\)} & \multirow[t]{5}{*}{} & 25 & - & 4 & 10 & pA \\
\hline & & & 0 to 70 & - & 5 & 20 & pA \\
\hline & & & -25 to 85 & - & 20 & 50 & pA \\
\hline & & & -55 to 125 & - & 20 & 50 & pA \\
\hline & & & 85 to 125 & - & 100 & 500 & pA \\
\hline \multirow[t]{5}{*}{Input Offset Current \(\mathrm{II}(-), \mathrm{II}(+) \mathrm{I}\)} & \multirow[t]{5}{*}{Ios} & \multirow[t]{5}{*}{} & 25 & - & 8 & 20 & pA \\
\hline & & & 0 to 70 & - & 10 & 40 & pA \\
\hline & & & -25 to 85 & - & 20 & 40 & pA \\
\hline & & & -55 to 125 & - & 20 & 40 & pA \\
\hline & & & 85 to 125 & - & 20 & 50 & pA \\
\hline Input Resistance & \(\mathrm{R}_{\mathrm{IN}}\) & & 25 & - & \(10^{12}\) & - & \(\Omega\) \\
\hline \multirow[t]{4}{*}{Large Signal Voltage Gain (Note 3)} & \multirow[t]{4}{*}{Avol} & \multirow[t]{4}{*}{\(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}= \pm 4 \mathrm{~V}\)} & 25 & 135 & 150 & - & dB \\
\hline & & & 0 to 70 & 130 & - & - & dB \\
\hline & & & -25 to 85 & 130 & - & - & dB \\
\hline & & & -55 to 125 & 120 & - & - & dB \\
\hline \multirow[t]{2}{*}{Output Voltage Swing (Note 4)} & \multirow[t]{2}{*}{V OUT} & \(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & 25 & \(\pm 4.7\) & \(\pm 4.85\) & - & V \\
\hline & & \(\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\) & 25 & - & \(\pm 4.95\) & - & V \\
\hline \multirow[t]{4}{*}{Common Mode Voltage Range (Note 3)} & \multirow[t]{4}{*}{CMVR} & & 25 & -5 & -5.2 to +4 & 3.5 & V \\
\hline & & & 0 to 70 & -5 & - & 3.5 & V \\
\hline & & & -25 to 85 & -5 & - & 3.5 & V \\
\hline & & & -55 to 125 & -5 & - & 3.5 & V \\
\hline
\end{tabular}

\section*{ICL7650S}

Electrical Specifications \(\quad V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}\). See Test Circuit, Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{4}{*}{Common Mode Rejection Ratio (Note 3)} & \multirow[t]{4}{*}{CMRR} & \multirow[t]{4}{*}{CMVR \(=-5 \mathrm{~V}\) to +3.5 V} & 25 & 120 & 140 & - & dB \\
\hline & & & 0 to 70 & 120 & - & \(\cdot\) & dB \\
\hline & & & -25 to 85 & 115 & - & - & dB \\
\hline & & & -55 to 125 & 110 & - & - & dB \\
\hline Power Supply Rejection Ratio & PSRR & \(\mathrm{V}_{\mathrm{S}}= \pm 3 \mathrm{~V}\) to \(\pm 8 \mathrm{~V}\) & 25 & 120 & 140 & \(\cdot\) & dB \\
\hline Input Noise Voltage & \({ }_{\mathrm{N}}\) & \[
\begin{aligned}
& R_{S}=100 \Omega, \\
& f=D C \text { to } 10 \mathrm{~Hz}
\end{aligned}
\] & 25 & - & 2 & - & \(\mu \mathrm{V}_{\text {P-P }}\) \\
\hline Input Noise Current & \(\mathrm{i}_{\mathrm{N}}\) & \(f=10 \mathrm{~Hz}\) & 25 & - & 0.01 & - & \(\mathrm{pA} / \sqrt{\mathrm{Hz}}\) \\
\hline Gain Bandwidth Product & GBWP & & 25 & - & 2 & - & MHz \\
\hline Slew Rate & SR & \(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\) & 25 & - & 2.5 & - & V/ \(/ \mathrm{s}\) \\
\hline Rise Time & \(\mathrm{t}_{\mathrm{R}}\) & & 25 & - & 0.2 & - & \(\mu \mathrm{s}\) \\
\hline Overshoot & OS & & 25 & - & 20 & - & \% \\
\hline Operating Supply Range & V + to V- & & 25 & 4.5 & - & 16 & V \\
\hline \multirow[t]{4}{*}{Supply Current} & \multirow[t]{4}{*}{Isupp} & \multirow[t]{4}{*}{No Load} & 25 & - & 2 & 3 & mA \\
\hline & & & 0 to 70 & - & - & 3.2 & mA \\
\hline & & & -25 to 85 & - & - & 3.5 & mA \\
\hline & & & -55 to 125 & - & - & 4 & mA \\
\hline \multirow[t]{4}{*}{Output Source Current} & \multirow[t]{4}{*}{lo source} & & 25 & 2.9 & 4.5 & - & mA \\
\hline & & & 0 to 70 & 2.3 & - & - & mA \\
\hline & & & -25 to 85 & 2.2 & - & - & mA \\
\hline & & & -55 to 125 & 2 & - & - & mA \\
\hline \multirow[t]{4}{*}{Output Sink Current} & \multirow[t]{4}{*}{losink} & & 25 & 25 & 30 & - & mA \\
\hline & & & 0 to 70 & 20 & - & - & mA \\
\hline & & & -25 to 85 & 19 & \(\cdot\) & - & mA \\
\hline & & & -55 to 125 & 17 & - & - & mA \\
\hline Internal Chopping Frequency & \({ }^{\text {f }} \mathrm{CH}\) & Pins 13 and 14 Open & 25 & 120 & 250 & 375 & Hz \\
\hline Clamp ON Current (Note 5) & & \(\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\) & 25 & 25 & 70 & - & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{4}{*}{Clamp OFF Current (Note 5)} & & \multirow[t]{4}{*}{\(-4 \mathrm{~V} \leq \mathrm{V}_{\text {OUT }} \leq+4 \mathrm{~V}\)} & 25 & \(\cdot\) & 0.001 & 5 & nA \\
\hline & & & 0 to 70 & - & - & 10 & nA \\
\hline & & & -25 to 85 & - & - & 10 & nA \\
\hline & & & -55 to 125 & - & - & 15 & nA \\
\hline
\end{tabular}

\section*{NOTES:}
3. These parameters are guaranteed by design and characterization, but not tested at temperature extremes because thermocouple effects prevent precise measurement of these voltages in automatic test equipment.
4. OUTPUT CLAMP not connected. See typical characteristic curves for output swing vs clamp current characteristics.
5. See OUTPUT CLAMP under detailed description.
6. All significant improvements over the industry-standard ICL7650 are highlighted in bold italics.

\section*{Test Circuit}


\section*{Application Information}

\section*{Detailed Description}

\section*{Amplifier}

The functional diagram shows the major elements of the ICL7650S. There are two amplifiers, the main amplifier, and the nulling amplifier. Both have offset-null capability. The main amplifier is connected continuously from the input to the output, while the nulling amplifier, under the control of the chopping oscillator and clock circuit, alternately nulls itself and the main amplifier. The nulling connections, which are MOSFET gates, are inherently high impedance, and two external capacitors provide the required storage of the nulling potentials and the necessary nulling-loop time constants. The nulling arrangement operates over the full commonmode and power-supply ranges, and is also independent of the output level, thus giving exceptionally high CMRR, PSRR, and AVOL.
Careful balancing of the input switches, and the inherent balance of the input circuit, minimizes chopper frequency charge injection at the input terminals, and also the feed forward-type injection into the compensation capacitor, which is the main cause of output spikes in this type of circuit.

\section*{Intermodulation}

Previous chopper-stabilized amplifiers have suffered from intermodulation effects between the chopper frequency and input signals. These arise because the finite AC gain of the amplifier necessitates a small AC signal at the input. This is seen by the zeroing circuit as an error signal, which is chopped and fed back, thus injecting sum and difference frequencies and causing disturbances to the gain and phase vs frequency characteristics near the chopping frequency. These effects are substantially reduced in the ICL7650S by feeding the nulling circuit with a dynamic current, corresponding to the compensation capacitor current, in such a way as to cancel that portion of the input signal due to finite \(A C\) gain. Since that is the major error contribution to the ICL7650S, the intermodulation and gain/phase disturbances are held to very low values, and can generally be ignored.

\section*{Capacitor Connection}

The null/storage capacitors should be connected to the \(\mathrm{C}_{\text {EXTA }}\) and \(\mathrm{C}_{\text {EXTB }}\) pins, with a common connection to the \(C_{\text {RETN }}\) pin. This connection should be made directly by either a separate wire or PC trace to avoid injecting load current IR drops into the capacitive circuitry. The outside foil, where available, should be connected to CRETN.

\section*{Output Clamp}

The OUTPUT CLAMP pin allows reduction of the overload recovery time inherent with chopper-stabilized amplifiers. When tied to the inverting input pin, or summing junction, a
current path between this point and the OUTPUT pin occurs just before the device output saturates. Thus uncontrolled input differentials are avoided, together with the consequent charge buildup on the correction-storage capacitors. The output swing is slightly reduced.

\section*{Clock}

The ICL7650S has an internal oscillator, giving a chopping frequency of 200 Hz , available at the CLOCK OUT pin on the 14 pin devices. Provision has also been made for the use of an external clock in these parts. The INT/EXT pin has an internal pull-up and may be left open for normal operation, but to utilize an external clock this pin must be tied to V - to disable the internal clock. The external clock signal may then be applied to the EXT CLOCK IN pin. An internal divide-bytwo provides the desired \(50 \%\) input switching duty cycle. Since the capacitors are charged only when EXT CLOCK IN is high, a \(50 \%-80 \%\) positive duty cycle is recommended, especially for higher frequencies. The external clock can swing between \(\mathrm{V}_{+}\)and V -. The logic threshold will be at about 2.5 V below \(\mathrm{V}+\). Note also that a signal of about 400 Hz , with a \(70 \%\) duty cycle, will be present at the EXT CLOCK IN pin with INT/EXT high or open. This is the internal clock signal before being fed to the divider.
In those applications where a strobe signal is available, an alternate approach to avoid capacitor misbalancing during overload can be used. If a strobe signal is connected to EXT CLK IN so that it is low during the time that the overload signal is applied to the amplifier, neither capacitor will be charged. Since the leakage at the capacitor pins is quite low at room temperature, the typical amplifier will drift less than \(10 \mu \mathrm{~V} / \mathrm{s}\), and relatively long measurements can be made with little change in offset.

\section*{Component Selection}

The two required capacitors, \(\mathrm{C}_{\text {EXTA }}\) and \(\mathrm{C}_{\text {EXTB }}\), have optimum values depending on the clock or chopping frequency. For the preset internal clock, the correct value is \(0.1 \mu \mathrm{~F}\), and to maintain the same relationship between the chopping frequency and the nulling time constant this value should be scaled approximately in proportion if an external clock is used. A high quality film type capacitor such as mylar is preferred, although a ceramic or other lower-grade capacitor may prove suitable in many applications. For quickest settling on initial turn-on, low dielectric absorption capacitors (such as polypropylene) should be used. With ceramic capacitors, several seconds may be required to settle to \(1 \mu \mathrm{~V}\).

\section*{Static Protection}

All device pins are static-protected by the use of input diodes. However, strong static fields and discharges should be avoided, as they can cause degraded diode junction characteristics, which may result in increased input-leakage currents.


FIGURE 1A. INVERTING AMPLIFIER


FIGURE 1C. NON-INVERTING AMPLIFIER


FIGURE 1B. FOLLOWER


FIGURE 1D. BOARD LAYOUT FOR INPUT GUARDING WITH TO-99 PACKAGE

FIGURE 1. CONNECTION OF INPUT GUARDS

\section*{Latchup Avoidance}

Junction-isolated CMOS circuits inherently include a parasitic 4-layer (PNPN) structure which has characteristics similar to an SCR. Under certain circumstances this junction may be triggered into a low-impedance state, resulting in excessive supply current. To avoid this condition, no voltage greater than 0.3 V beyond the supply rails should be applied to any pin. In general, the amplifier supplies must be established either at the same time or before any input signals are applied. If this is not possible, the drive circuits must limit input current flow to under 1 mA to avoid latchup, even under fault conditions.

\section*{Output Stage/Load Driving}

The output circuit is a high-impedance type (approximately \(18 \mathrm{k} \Omega\) ), and therefore with loads less than this value, the chopper amplifier behaves in some ways like a transconductance amplifier whose open-loop gain is proportional to load resistance. For example, the open-loop gain will be 17 dB lower with a \(1 \mathrm{k} \Omega\) load than with a \(10 \mathrm{k} \Omega\) load. If the amplifier is used strictly for DC, this lower gain is of little consequence, since the DC gain is typically greater than 120 dB even with a \(1 \mathrm{k} \Omega\) load. However, for wideband applications, the best frequency response will be achieved with a load resistor of \(10 \mathrm{k} \Omega\) or higher. This will result in a smooth \(6 \mathrm{~dB} / o c t a v e\) response from 0.1 Hz to 2 MHz , with phase shifts of less than 10 degrees in the transition region where the main amplifier takes over from the null amplifier.

\section*{Thermo-Electric Effects}

The ultimate limitations to ultra-high precision DC amplifiers are the thermo-electric or Peltier effects arising in thermocouple junctions of dissimilar metals, alloys, silicon, etc. Unless all junctions are at the same temperature, thermoelectric voltages typically around \(0.1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\), but up to tens of \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) for some materials, will be generated. In order to
realize the extremely low offset voltages that the chopper amplifier can provide, it is essential to take special precautions to avoid temperature gradients. All components should be enclosed to eliminate air movement, especially that caused by power-dissipating elements in the system. Low thermoelectric-efficient connections should be used where possible and power supply voltages and power dissipation should be kept to a minimum. High-impedance loads are preferable, and good separation from surrounding heatdissipating elements is advisable.

\section*{Guarding}

Extra care must be taken in the assembly of printed circuit boards to take full advantage of the low input currents of the ICL7650S. Boards must be thoroughly cleaned with TCE or alcohol and blown dry with compressed air. After cleaning, the boards should be coated with epoxy or silicone rubber to prevent contamination.

Even with properly cleaned and coated boards, leakage currents may cause trouble, particularly since the input pins are adjaçent to pins that are at supply potentials. This leakage can be significantly reduced by using guarding to lower the voltage difference between the inputs and adjacent metal runs. Input guarding of the 8-pin TO-99 package is accomplished by using a 10 -lead pin circle, with the leads of the device formed so that the holes adjacent to the inputs are empty when it is inserted in the board. The guard, which is a conductive ring surrounding the inputs, is connected to a low impedance point that is at approximately the same voltage as the inputs. Leakage currents from high-voltage pins are then absorbed by the guard.

The pin configuration of the 14 pin dual in-line package is designed to facilitate guarding, since the pins adjacent to the inputs are not used (this is different from the standard 741 and 101A pin configuration, but corresponds to that of the LM108).

\section*{Pin Compatibility}

The basic pinout of the 8 -pin device corresponds, where possible, to that of the industry standard 8 -pin devices, the LM741, LM101, etc. The null-storing external capacitors are connected to pins 1 and 8, usually used for offset null or compensation capacitors, or simply not connected. In the case of the OP-05 and OP-07 devices, the replacement of the offset-null pot, connected between pins 1 and 8 and \(V+\), by two capacitors from those pins to pin 5 , will provide easy compatibility. As for the LM108, replacement of the compensation capacitor between pins 1 and 8 by the two capacitors to pin 5 is all that is necessary. The same operation, with the removal of any connection to pin 5 , will suffice for the LM101, \(\mu \mathrm{A} 748\), and similar parts.

The 14-pin device pinout corresponds most closely to that of the LM108 device, owing to the provision of "NC" pins for guarding between the input and all other pins. Since this device does not use any of the extra pins, and has no provision for offset-nulling, but requires a compensation capacitor, some changes will be required in layout to convert it to the ICL7650S.

\section*{Typical Applications}

Clearly the applications of the ICL7650S will mirror those of other op-amps. Anywhere that the performance of a circuit can be significantly improved by a reduction of input-offset voltage and bias current, the ICL7650S is the logical choice. Basic non-inverting and inverting amplifier circuits are shown in Figures 2 and 3. Both circuits can use the output clamping circuit to enhance the overload recovery performance. The only limitations on the replacement of other op amps by the ICL7650S are the supply voltage ( \(\pm 8 \mathrm{~V}\) Max) and the output drive capability ( \(10 \mathrm{k} \Omega\) load for full swing). Even these limitations can be overcome using a simple booster circuit, as shown in Figure 4, to enable the full output capabilities of the LM741 (or any other standard device) to be combined with the input capabilities of the ICL7650S. The pair form a composite device, so loop gain stability, when the feedback network is added, should be watched carefully.


NOTE: \(R_{1} \| R_{2}\) indicates the parallel combination of \(R_{1}\) and \(R_{2}\).
FIGURE 2. NON INVERTING AMPLIFIER WITH OPTIONAL CLAMP
Figure 5 shows the use of the clamp circuit to advantage in a zero-offset comparator. The usual problems in using a chopper stabilized amplifier in this application are avoided, since
the clamp circuit forces the inverting input to follow the input signal. The threshold input must tolerate the output clamp current \(\approx V_{\mathbb{I}} / R\) without disturbing other portions of the system.

\(\left(R_{1} \| R_{2}\right) \geq 100 \mathrm{k} \Omega\)
FOR FULL CLAMP EFFECT

NOTE: \(R_{1} \| R_{2}\) indicates the parallel combination of \(R_{1}\) and \(R_{2}\).

\section*{FIGURE 3. INVERTING AMPLIFIER WITH (OPTIONAL) CLAMP}

Normal logarithmic amplifiers are limited in dynamic range in the voltage-input mode by their input-offset voltage. The built-in temperature compensation and convenience features of the ICL8048 can be extended to a voltage-input dynamic range of close to 6 decades by using the ICL7650S to offsetnull the ICL8048, as shown in Figure 6. The same concept can also be used with such devices as the HA2500 or HA2600 families of op-amps to add very low offset voltage capability to their very high slew rates and bandwidths. Note that these circuits will also have their DC gains, CMRR, and PSRR enhanced.


FIGURE 4. USING 741 TO BOOST OUTPUT DRIVE CAPACITY


FIGURE 5. LOW OFFSET COMPARATOR


NOTE: For further Applications Assistance, see A053 and R017.
FIGURE 6. ICL8048 OFFSET NULLED BY ICL7650S

\section*{Typical Performance Curves}


FIGURE 7. SUPPLY CURRENT vs SUPPLY VOLTAGE


FIGURE 9. MAXIMUM OUTPUT CURRENT vs SUPPLY VOLTAGE


FIGURE 8. SUPPLY CURRENT vs AMBIENT TEMPERATURE


FIGURE 10. COMMON MODE INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE

Typical Performance Curves (Continued)


FIGURE 11. CLOCK RIPPLE REFERRED TO THE INPUT vs TEMPERATURE


FIGURE 13. INPUT OFFSET VOLTAGE CHANGE vs SUPPLY VOLTAGE


FIGURE 15. OUTPUT WITH ZERO INPUT; GAIN = 1000; BALANCED SOURCE IMPEDANCE \(=10 \mathrm{k} \Omega\)


FIGURE 12. 10 Hz NOISE VOLTAGE vs CHOPPING FREQUENCY


FIGURE 14. INPUT OFFSET VOLTAGE vs CHOPPING FREQUENCY


FIGURE 16. OPEN LOOP GAIN AND PHASE SHIFT vs FREQUENCY

\section*{Typical Performance Curves (Continued)}


FIGURE 17. OPEN LOOP GAIN AND PHASE SHIFT vs FREQUENCY


NOTE: The two different responses correspond to the two phases of the clock.

FIGURE 19. VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE (NOTE)


NOTE: The two different responses correspond to the two phases of the clock.
FIGURE 18. VOLTAGE FOLLOWER LARGE SIGNAL PULSE RESPONSE (NOTE)


FIGURE 20. N-CHANNEL CLAMP CURRENT vs OUTPUT VOLTAGE


FIGURE 21. P-CHANNEL CLAMP CURRENT vs OUTPUT VOLTAGE

\section*{Operational Amplifiers Glossary of Terms}

AVERAGE INPUT OFFSET CURRENT DRIFT - The average change in offset current between room \(\left(25^{\circ} \mathrm{C}\right)\) and high temperature \(\left(125^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C}\right.\) or \(75^{\circ} \mathrm{C}\) ) or between room temperature and low temperature \(\left(0^{\circ} \mathrm{C},-25^{\circ} \mathrm{C}\right.\) or \(\left.-55^{\circ} \mathrm{C}\right)\) divided by the temperature difference.

AVERAGE OFFSET VOLTAGE DRIFT - The average change in offset voltage between room \(\left(25^{\circ} \mathrm{C}\right)\) and high temperature \(\left(125^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C}\right.\) or \(75^{\circ} \mathrm{C}\) ) or between room temperature and low temperature \(\left(0^{\circ} \mathrm{C},-25^{\circ} \mathrm{C}\right.\) or \(\left.-55^{\circ} \mathrm{C}\right)\) divided by the temperature difference.
CHANNEL SEPARATION - The ratio of the output of a driven amplifier to the output (referred to input) of an adjacent undriven amplifier.

COMMON MODE INPUT VOLTAGE ( \(\mathbf{V}_{\mathrm{I}}\) ) - The average of the voltages present at the differential input terminals.

COMMON MODE INPUT VOLTAGE RANGE (VICR) - The range of voltage that if exceeded at either input terminal will cause the amplifier to cease operating properly.
COMMON MODE REJECTION RATIO (CMRR) - The ratio of change in input offset voltage to change in input common mode voltage, expressed in dB .
\[
C M R R=20 \times \log _{10}\left[\frac{V_{1 O}}{V_{C M}}\right]
\]

COMMON MODE RESISTANCE ( \(r_{I C}\) ) - The ratio of change in input common mode voltage to the resulting change in input current.
DIFFERENTIAL INPUT RESISTANCE ( \(r_{\text {ID }}\) ) - The ratio of change in input differential voltage (small signal, assumes amplifier operating linearly) to the resulting change in differential input current.
FULL POWER BANDWIDTH (FPBW) - The maximum frequency at which a full scale undistorted (THD \(<1 \%\) ) sine wave can be obtained at the output of the amplifier.
GAIN BANDWIDTH PRODUCT (GBWP) - The open loop gain of an op amp (in V/V) at a mid-band, linear region frequency (usually between 1 kHz and 10 kHz ) times that frequency (in Hz ). GBWP \(=\left[\mathrm{A}_{\mathrm{VOL}}\right] \bullet \mathrm{f}\).
INPUT BIAS CURRENT (I \({ }_{\text {BIAS }}\) ) - The average of the currents flowing into or out of the input terminals when the output is at zero volts.

INPUT CAPACITANCE ( \(C_{I N}\) ) - The equivalent capacitance seen looking into either input terminal.

INPUT NOISE CURRENT \(\left(\mathbf{i}_{\mathbf{N}}\right)\) - The input noise current that would reproduce the noise seen at the output if all amplifier noise sources were set to zero and the source impedances were large compared to the optimum source impedance.

INPUT OFFSET CURRENT (IOS) - The difference in the currents flowing into the two input terminals when the output is at zero volts.

INPUT OFFSET VOLTAGE \(\left(V_{10}\right)\) - The differential DC voltage required to zero the output voltage with no input signal or load. Input offset voltage may also be defined for the case where two equal resistances are inserted in series with the input leads.

INPUT NOISE VOLTAGE \(\left(\mathbf{e}_{\mathbf{N}}\right)\) - The input noise voltage that would reproduce the noise seen at the output if all the ampli;fier noise sources and source resistances were set to zero.

LARGE SIGNAL VOLTAGE GAIN ( \(A_{V}\) ) - The ratio of the peak to peak output voltage swing (over a specified range) to the change in input voltage required to drive the output.
OUTPUT CURRENT (IOUT) - The output current available from the amplifier at some specified output voltage.

OUTPUT RESISTANCE ( \(\mathbf{R}_{\mathbf{O}}\) ) - The ratio of the change in output voltage to the change in output current.
OUTPUT SHORT CIRCUIT CURRENT ( \(\mathbf{I}_{S C}\) ) - The output current available from the amplifier with the output shorted to ground (or other specified potential).
OUTPUT VOLTAGE SWING ( \(\mathbf{V}_{\text {OUT }}\) ) - The maximum output voltage swing, referred to ground, that can be obtained under specified loading conditions.
OVERSHOOT - Peak excursion above final value of an output step response.

POWER SUPPLY REJECTION RATIO (PSRR) - The ratio of the change in input offset voltage to the change in power supply voltage producing it.
RISE TIME ( \(\mathbf{t}_{\mathbf{R}}\) ) - The time required for an output voltage step to change from \(10 \%\) to \(90 \%\) of its final value, when the input is subjected to a small signal voltage pulse.
SETTLING TIME ( \(\mathbf{t}_{\text {SET }}\) ) - The time required, after application of a step input signal, for the output voltage to settle and remain within a specified error band around the final value.

SLEW RATE (SR) - The rate of change of the output under large signal conditions. Slew rate may be specified separately for both positive and negative going changes.

SUPPLY CURRENT ( \(\mathbf{I}_{\mathbf{S}}\) ) - The current required from the power supply to operate the amplifier with no load and the output at zero volts.
SUPPLY VOLTAGE RANGE - The range of power supply voltage over which the amplifier may be safely operated.
UNITY GAIN BANDWIDTH - The frequency range from DC to that frequency where the amplifier's open loop gain is unity.

\section*{COMPARATORS}
PAGE
SELECTION GUIDE ..... 4-2
COMPARATOR DATA SHEETS
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
CA139, CA139A, CA239, CA239A, СА339, СА339A, LM339, LM339A, \\
LM2901, LM3302
\end{tabular} & Quad Voltage Comparators for Industrial, Commercial and Military Applications. & 4-3 \\
\hline CA3098 & Programmable Schmitt Trigger with Memory, Dual Input Precision Level Detector . & 4-9 \\
\hline САЗ290, САЗ290A & BiMOS Dual Voltage Comparators with MOSFET Input, Bipolar Output & 4-10 \\
\hline \[
\begin{aligned}
& \text { HA-4900, HA-4902, } \\
& \text { HA-4905 }
\end{aligned}
\] & Precision Quad Comparators & 4-18 \\
\hline
\end{tabular}

\section*{Selection Guide}

COMPARATORS: Electrical Characteristics, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline TYPE & \begin{tabular}{l}
\(V_{10}\)
MAX \\
(mV)
\end{tabular} & \begin{tabular}{l}
INPUT CURRENT MAX \\
(nA)
\end{tabular} & SUPPLY CURRENT MAX (mA) & SUPPLY VOLTAGE RANGE V+, VTYP (V) & \begin{tabular}{l}
AOL MIN \\
(dB)
\end{tabular} & \[
\begin{gathered}
\text { RESPONSE } \\
\text { TIME } \\
\text { TYP (ns) }
\end{gathered}
\] & \begin{tabular}{l}
(NOTE 1) \\
LEAD COUNT AND PACKAGE TYPE
\end{tabular} & COMMENTS \\
\hline \multicolumn{9}{|l|}{DUAL UNIT TYPES} \\
\hline САЗ290 & 20 & 50pA & 3 & +5, 0 to \(+18,-18\) & 88 & \multirow[t]{2}{*}{\[
\begin{aligned}
t_{R} & =1200 \\
t_{F} & =200
\end{aligned}
\]} & 8PDIP, 8Can & Low Cost \\
\hline CA3290A & 10 & 40pA & 3 & +5, 0 to \(+18,-18\) & 88 & & 8PDIP, 14PDIP, 8Can & \\
\hline \multicolumn{9}{|l|}{QUAD UNIT TYPES} \\
\hline CA139 & 5 & 100 & 8 & +2.5, 0 to +18, -18 & - & \multirow[t]{10}{*}{\[
\begin{aligned}
t_{R} & =1300 \\
t_{F} & =750
\end{aligned}
\]} & 14PDIP,-14CERDIP, 14SOIC & Mil Temp Range \\
\hline CA139A & 2 & 100 & 8 & +2.5, 0 to \(+18,-18\) & 94 & & 14PDIP, 14SOIC & Mil Temp Range \\
\hline CA239 & 5 & 250 & 2 & +2.5, 0 to +18, -18 & - & & 14PDIP, 14CERDIP, 14SOIC & Ind Temp Range \\
\hline CA239A & 2 & 250 & 2 & +2.5, 0 to +18, -18 & 94 & & 14PDIP, 14CERDIP, 14SOIC & Ind Temp Range \\
\hline СА339 & 5 & 250 & 2 & +2.5, 0 to \(+18,-18\) & - & & 14PDIP, 14SOIC & Low Cost \\
\hline CA339A & 2 & 250 & 2 & +2.5, 0 to +18, -18 & 94 & & 14PDIP, 14SOIC & \\
\hline LM339 & 5 & 250 & 2 & +2.5, 0 to +18, -18 & - & & 14PDIP & Low Cost \\
\hline LM339A & 2 & 250 & 2 & +2.5, 0 to +18, -18 & 94 & & - 14PDIP & \\
\hline LM290.1 & 7 & 250 & 2 & +2.5, 0 to +18, -18 & - & & 14SOIC, 14PDIP & Low Cost, Ind Temp \\
\hline LM3302 & 20 & 500 & 2 & +2.5, 0 to \(+18,-18\) & - & & 14SOIC, 14PDIP & Low Cost, Ind Temp \\
\hline HA-4900 & 2 & 75 & \[
\left\lvert\, \begin{gathered}
+20,-8,+4 \\
\text { (Note 2) }
\end{gathered}\right.
\] & +5, 0 to +16.5, -16.5 & 112 & 130 & 16CERDIP & \multirow[t]{3}{*}{Single or Dual Supply. Analog and Logic Supplies Separated for Easier Interface and Noise Immunity} \\
\hline HA-4902 & 2 & 150 & \[
\begin{gathered}
+20,-8,+4 \\
\text { (Note 2) }
\end{gathered}
\] & +5, 0 to +16.5, -16.5 & 112 & 130 & 16CERDIP & \\
\hline HA-4905 & 4 & 150 & \[
\left|\begin{array}{c}
+20,-8,+4 \\
(\text { Note 2) }
\end{array}\right|
\] & +5, 0 to +16.5, -16.5 & 112 & 130 & 16PDIP, 16CERDIP, 16SOIC ( 300 mil ), 20PLCC & \\
\hline
\end{tabular}

\section*{NOTE:}
1. See Linear Package Selection Guide in Section 11.
2. Positive Supply Current, Negative Supply Current, Logic Supply Current.

\section*{Features}
- Operation from Single or Dual Supplies
- Common Mode Input Voltage Range to GND
- Output Voltage Compatible with TTL, DTL, ECL, MOS and CMOS
- Differential Input Voltage Range Equal to the Supply Voltage
- Maximum Input Offset Voltage ( \(\mathrm{V}_{10}\) )
- CA139A, CA239A, CA339A
- CA139, CA239, CA339
- LM2901
- LM3302 20 mV
- Replacement for Industry Types 139, 239, 339, 139A, 239A, 339A, 2901, 3302

\section*{Applications}
- Square Wave Generator
- Time Delay Generators
- Pulse Generators
- Multivibrators
- High Voltage Digital Logic Gates
- ADD Converters
- MOS Clock Timers

\section*{Description}

The devices in this series consist of four independent single or dual supply voltage comparators on a single monolithic substrate. The common mode input voltage range includes ground even when operated from a single supply, and the low power supply current drain makes these comparators suitable for battery operation. These types were designed to directly interface with TTL and CMOS.
Types CA139A, CA239A, and CA339A have all the features and characteristics of their prototype counterparts CA139, CA239, and CA339 plus an even lower input offset voltage characteristic. All the SOIC parts are available on tape and reel. Replace the \(M\) suffix in the part number with M96 when ordering (e.g. CA0339AM96). The CA339 is also available in chip form (H suffix).

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|}
\hline PART NO. (BRAND) & \[
\begin{gathered}
\text { TEMP. } \\
\text { RANGE }\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & PACKAGE & PKG. NO. \\
\hline CA0139E & -55 to 125 & 14LdPDIP & E14.3 \\
\hline CA0139F & -55 to 125 & 14 Ld CERDIP & E14.3 \\
\hline CA0139M, AM (139, 139A) & -55 to 125 & 14 Ld SOIC & M14.15 \\
\hline CA0239E, AE & -25 to 85 & 14 LdPDIP & E14.3 \\
\hline CA0239F, AF & -25 to 85 & 14 LdCERDIP & E14.3 \\
\hline CA0239M, (239) & -25 to 85 & 14 Ld SOIC & M14.15 \\
\hline CA0339E, AE & 0 to 70 & 14 LdPDIP & E14.3 \\
\hline CA0339M, (339) & 0 to 70 & 14 LdSOIC & M14.15 \\
\hline LM339N, AN & 0 to 70 & 14 LdPDIP & E14.3 \\
\hline LM2901M (2901) & -40 to 85 & 14 LdSOIC & M14.15 \\
\hline LM2901N & -40 to 85 & 14 LdPDIP & E14.3 \\
\hline LM3302M (3302) & -40 to 85 & 14 Ld SOIC & M14.15 \\
\hline LM3302N & -40 to 85 & 14LdPDIP & E14.3 \\
\hline
\end{tabular}

\section*{Schematic Diagram}


COMPARATOR NO 1




Absolute Maximum Ratings
Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V or \(\pm 18 \mathrm{~V}\)
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V
Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -0.3 V to +36 V
Input Current ( \(\mathrm{V}_{1}<-0.3 \mathrm{~V}\), Note 1) . . . . . . . . . . . . . . . . . . . . . . 50 mA
Output Short Circuit Duration (Single Supply, Note 2) . . Continuous

\section*{Operating Conditions}

Temperature Range
\begin{tabular}{|c|c|}
\hline CA139, CA139A & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline CA239, CA239A & \(-25^{\circ} \mathrm{C}\) to \(80^{\circ} \mathrm{C}\) \\
\hline САЗ39, САЗ39А, & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline LM2901, LM3302 & \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Thermal Information}

Thermal Resistance (Typical, Note 3) \(\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\)
CERDIP Package ...................... 90 . 30 PDIP Package . . . . . . . . . . . . . . . . . . . . . . 100 N/A
SOIC Package . . . . . . . . . . . . . . . . . . . . . 175 N/A
Maximum Junction Temperature (Ceramic Package) . . . . . . . \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (Plastic Package) . . . . . . . . \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range \(\ldots . . . . . .-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\)
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Inputs must not go more negative than -0.3 V .
2. Short circuits from the output to \(V+\) can cause excessive heating and eventual destruction. The maximum output current independent of \(\mathrm{V}+\) is approximately 20 mA .
3. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(\quad \mathrm{V}+=5 \mathrm{~V}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{3}{|c|}{CA139} & \multicolumn{3}{|c|}{CA139A} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{10}\)} & \multirow[t]{2}{*}{\[
V_{\mathrm{REF}}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0,
\] Output Switch Point
\[
V \cong 1.4 \mathrm{~V}
\]} & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 2 & 5 & - & 1 & 2 & mV \\
\hline & & & Note 4 & \(\bullet\) & - & 9 & \(\bullet\) & \(\bullet\) & 4 & mV \\
\hline Differential Input Voltage & \(V_{\text {ID }}\) & Keep All Inputs \(\geq 0 \mathrm{~V}\), or V - (if used), (Note 5) & Note 4 & - & - & 36 & - & - & 36 & V \\
\hline \multirow[t]{2}{*}{Saturation Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {SAT }}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{1-}=1 \mathrm{~V}, \mathrm{~V}_{1+}=0 \mathrm{~V}, \\
& \mathrm{I}_{\text {SINK }} \leq 4 \mathrm{~mA}
\end{aligned}
\]} & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 250 & 400 & - & 250 & 400 & mV \\
\hline & & & Note 4 & - & - & 700 & - & - & 700 & mV \\
\hline \multirow[t]{2}{*}{Common Mode Input Voltage Range} & \multirow[t]{2}{*}{\(V_{\text {ICR }}\)} & \multirow[t]{2}{*}{Note 6} & \(\mathrm{T}_{\mathrm{A}}=25\) & 0 & - & \(\mathrm{V}+-1.5\) & 0 & - & \(\mathrm{V}+-1.5\) & V \\
\hline & & & Note 4 & 0 & - & V+-2 & 0 & - & V+-2 & V \\
\hline \multirow[t]{2}{*}{Input Offset Current} & \multirow[t]{2}{*}{110} & \multirow[t]{2}{*}{\(11+-1{ }_{1}\)} & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 3 & 25 & - & 3 & 25 & nA \\
\hline & & & Note 4 & - & - & 100 & - & - & 100 & nA \\
\hline \multirow[t]{2}{*}{Input Bias Current} & \multirow[t]{2}{*}{\({ }_{18}\)} & \multirow[t]{2}{*}{\(I_{1+}\) or \(I_{1}\) - with Output in Linear Range} & \(T_{A}=25\) & - & 25 & 100 & - & 25 & 100 & nA \\
\hline & & & Note 4 & - & - & 300 & - & - & 300 & nA \\
\hline Total Supply Current & \(1+\) & \begin{tabular}{l}
\[
R_{L}=\infty \text { On All }
\] \\
Comparators
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 0.8 & 2 & - & 0.8 & 2 & mA \\
\hline \multirow[t]{2}{*}{Output Leakage Current} & \multirow[t]{2}{*}{} & \[
\begin{aligned}
& V_{1+} \geq 1 \mathrm{~V}, \mathrm{~V}_{1^{-}}=0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}
\end{aligned}
\] & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 0.1 & - & - & 0.1 & - & nA \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{1+} \geq 1 \mathrm{~V}, \mathrm{~V}_{1-}=0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V}
\end{aligned}
\] & Note 4 & - & - & 1 & - & \(\bullet\) & 1 & \(\mu \mathrm{A}\) \\
\hline Output Sink Current & & \[
\left\lvert\, \begin{aligned}
& V_{1-} \geq 1 \mathrm{~V}, \mathrm{~V}_{1+}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}} \\
& \leq 1.5 \mathrm{~V}
\end{aligned}\right.
\] & \(\mathrm{T}_{\mathrm{A}}=25\) & 6 & 16 & - & 6 & 16 & - & mA \\
\hline Voltage Gain & AOL & \(R_{L} \geq 15 \mathrm{k} \Omega, \mathrm{V}+=15 \mathrm{~V}\) & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 200 & \(\bullet\) & 50 & 200 & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline
\end{tabular}

Electrical Specifications \(\quad \mathrm{V}_{+}=5 \mathrm{~V}\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP ( \({ }^{\circ} \mathrm{C}\) )} & \multicolumn{3}{|c|}{CA139} & \multicolumn{3}{|c|}{CA139A} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Large Signal Response Time & & \[
\begin{aligned}
& V_{1}=T T L \text { Logic Swing, } \\
& V_{R E F}=1.4 \mathrm{~V}, V_{R L}=5 \mathrm{~V}, \\
& R_{L}=5.1 \mathrm{k} \Omega
\end{aligned}
\] & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 300 & - & - & 300 & - & ns \\
\hline Response Time (Figures 3, 4) & & \(\mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega\) & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 1.3 & - & - & 1.3 & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

Electrical Specifications \(\quad \mathrm{V}_{+}=5 \mathrm{~V}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP ( \({ }^{\circ} \mathrm{C}\) )} & \multicolumn{3}{|r|}{CA239, CA339, LM339} & \multicolumn{3}{|l|}{CA239A, CA339A, LM339A} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{10}\)} & \multirow[t]{2}{*}{\[
V_{R E F}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0
\] Output Switch Point
\[
V \cong 1.4 \mathrm{~V}
\]} & \(\mathrm{T}_{\text {A }}=25\) & - & 2 & 5 & - & 1 & 2 & mV \\
\hline & & & Note 4 & - & - & 9 & - & - & 4 & mV \\
\hline Differential Input Voltage & \(V_{\text {ID }}\) & \begin{tabular}{l}
Keep All Inputs \(\geq 0 \mathrm{~V}\), or V- (if used), \\
(Note 5)
\end{tabular} & Note 4 & - & - & 36 & - & - & 36 & V \\
\hline \multirow[t]{2}{*}{Saturation Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {SAT }}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{1^{-}}=1 \mathrm{~V}, \mathrm{~V}_{1+}=0 \mathrm{~V}, \\
& \mathrm{I}_{\text {SINK }} \leq 4 \mathrm{~mA}
\end{aligned}
\]} & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 250 & 400 & - & 250 & 400 & mV \\
\hline & & & Note 4 & - & - & 700 & - & - & 700 & mV \\
\hline \multirow[t]{2}{*}{Common Mode Input Voltage Range} & \multirow[t]{2}{*}{VICR} & \multirow[t]{2}{*}{Note 6} & \(\mathrm{T}_{\mathrm{A}}=25\) & 0 & - & \[
\begin{gathered}
V_{+} \\
-1.5
\end{gathered}
\] & 0 & - & \[
\begin{gathered}
V_{+} \\
-1.5
\end{gathered}
\] & V \\
\hline & & & Note 4 & 0 & - & V+-2 & 0 & - & \(\mathrm{V}+-2\) & V \\
\hline \multirow[t]{2}{*}{Input Offset Current} & \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{\(11+-1\).} & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 5 & 50 & - & 5 & 50 & nA \\
\hline & & & Note 4 & - & - & 150 & - & - & 150 & nA \\
\hline \multirow[t]{2}{*}{Input Bias Current} & \multirow[t]{2}{*}{IB} & \multirow[t]{2}{*}{\(1_{1}+\) or \(1_{1}\) - with Output in Linear Range} & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 25 & 250 & - & 25 & 250 & nA \\
\hline & & & Note 4 & - & - & 400 & - & - & 400 & nA \\
\hline Total Supply Current & \(1+\) & \begin{tabular}{l}
\[
\mathrm{R}_{\mathrm{L}}=\infty \text { on All }
\] \\
Comparators
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 0.8 & 2 & - & 0.8 & 2 & mA \\
\hline \multirow[t]{2}{*}{Output Leakage Current} & \multirow[t]{2}{*}{} & \[
\begin{aligned}
& \mathrm{V}_{1+} \geq 1 \mathrm{~V}, \mathrm{~V}_{1^{-}}=0 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}
\end{aligned}
\] & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 0.1 & - & - & 0.1 & - & nA \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{1^{+}} \geq 1 \mathrm{~V}, \mathrm{~V}_{1^{-}}=0 \mathrm{~V} \\
& \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V}
\end{aligned}
\] & Note 4 & - & - & 1 & - & - & 1 & \(\mu \mathrm{A}\) \\
\hline Output Sink Current & & \[
\begin{aligned}
& \mathrm{V}_{1-} \geq 1 \mathrm{~V}, \mathrm{~V}_{1+}=0 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}
\end{aligned}
\] & \(\mathrm{T}_{\mathrm{A}}=25\) & 6 & 16 & - & 6 & 16 & - & mA \\
\hline Voltage Gain & \(\mathrm{A}_{\mathrm{OL}}\) & \(\mathrm{R}_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{V}+=15 \mathrm{~V}\) & \(\mathrm{T}_{\mathrm{A}}=25\) & 50 & 200 & - & 50 & 200 & - & V/mV \\
\hline Large Signal Response Time & & \begin{tabular}{l}
\(\mathrm{V}_{1}=\) TTL Logic Swing, \\
\(V_{\text {REF }}=1.4 \mathrm{~V}\), \\
\(\mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega\)
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 300 & - & - & 300 & - & ns \\
\hline Response Time (Figures 3, 4) & & \(\mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega\) & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 1.3 & - & - & 1.3 & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

\section*{NOTES:}
4. Ambient Temperature \(\left(T_{A}\right)\) applicable over operating temperature range as shown below.

CA139, CA139A \(=-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\); CA239, CA239A \(=-25^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\); CA339, CA339A, LM339, LM339A \(=0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\); LM 2901 , LM \(3302=-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\).
5. The comparator will provide a proper output state even if the positive swing of the inputs exceeds the power supply voltage level, if the other input remains within the common mode voltage range. The low input voltage state must not be less than -0.3 V (or 0.3 V below the magnitude of the negative power supply, if used).
6. The upper end of the common mode voltage range is \((\mathrm{V}+)-1.5 \mathrm{~V}\), but either or both inputs can go to +30 V without damage.

CA139, CA139A, CA239, CA239A, CA339, CA339A, LM339, LM339A, LM2901, LM3302

Electrical Specifications \(\quad \mathrm{V}+=5 \mathrm{~V}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{3}{|c|}{LM2901} & \multicolumn{3}{|c|}{LM3302} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{10}\)} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
V_{\text {REF }}=1.4 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0,
\] \\
Output Switch Point
\[
V \cong 1.4 \mathrm{~V}
\]
\end{tabular}} & \(\mathrm{T}_{\text {A }}=25\) & - & 2 & 7 & - & 1 & 20 & mV \\
\hline & & & Note 4 & - & - & 15 & - & - & 40 & mV \\
\hline Differential Input Voltage & \(\mathrm{V}_{\text {ID }}\) & Keep All Inputs \(\geq 0 \mathrm{~V}\), or V- (if used), (Note 5) & Note 4 & - & - & 36 & - & - & 28 & V \\
\hline \multirow[t]{2}{*}{Saturation Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {SAT }}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{1^{-}}=1 \mathrm{~V}, \mathrm{~V}_{1+}=0 \mathrm{~V}, \\
& \mathrm{I}_{\text {SINK }} \leq 4 \mathrm{~mA}
\end{aligned}
\]} & \(\mathrm{T}_{\text {A }}=25\) & - & 250 & 400 & \(\cdot\) & 250 & 500 & mV \\
\hline & & & Note 4 & - & - & 700 & - & - & 700 & mV \\
\hline \multirow[t]{2}{*}{Common Mode Input Voltage Range} & \multirow[t]{2}{*}{VICR} & \multirow[t]{2}{*}{Note 6} & \(\mathrm{T}_{\mathrm{A}}=25\) & 0 & - & \(\mathrm{V}+-1.5\) & 0 & - & \(\mathrm{V}+-1.5\) & V \\
\hline & & & Note 4 & 0 & - & \(\mathrm{V}+-2\) & 0 & - & \(\mathrm{V}+-2\) & V \\
\hline \multirow[t]{2}{*}{Input Offset Current} & \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{\(11^{+-1} 1^{-}\)} & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 5 & 50 & - & 3 & 100 & nA \\
\hline & & & Note 4 & - & - & 200 & - & - & 300 & nA \\
\hline \multirow[t]{2}{*}{Input Bias Current} & \multirow[t]{2}{*}{\(I_{1 B}\)} & \multirow[t]{2}{*}{II + or \(I_{1}\) - with Output in Linear Range} & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 25 & 250 & - & 25 & 500 & nA \\
\hline & & & Note 4 & - & - & 500 & - & - & 1000 & nA \\
\hline Total Supply Current & \(1+\) & \begin{tabular}{l}
\[
\mathrm{R}_{\mathrm{L}}=\infty \text { on All }
\] \\
Comparators
\end{tabular} & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 0.8 & 2 & - & 0.8 & 2 & mA \\
\hline \multirow[t]{2}{*}{Output Leakage Current} & \multirow[t]{3}{*}{} & \[
\begin{aligned}
& V_{1}+\geq 1 \mathrm{~V}, \mathrm{~V}_{1-}=0 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{O}}=5 \mathrm{~V}
\end{aligned}
\] & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 0.1 & - & - & 0.1 & - & nA \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{1}+\geq 1 \mathrm{~V}, \mathrm{~V}_{l^{-}}=0 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{O}}=30 \mathrm{~V}
\end{aligned}
\] & Note 4 & - & - & 1 & - & - & 1 & \(\mu \mathrm{A}\) \\
\hline Output Sink Current & & \[
\begin{aligned}
& \mathrm{V}_{1} \geq 1 \mathrm{~V}, \mathrm{~V}_{1}+=0 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{O}} \leq 1.5 \mathrm{~V}
\end{aligned}
\] & \(\mathrm{T}_{\mathrm{A}}=25\) & 6 & 16 & - & 6 & 16 & - & mA \\
\hline Voltage Gain & AOL & \(\mathrm{R}_{\mathrm{L}} \geq 15 \mathrm{k} \Omega, \mathrm{V}+=15 \mathrm{~V}\) & \(\mathrm{T}_{\mathrm{A}}=25\) & 25 & 100 & - & 2 & 30 & - & V/mV \\
\hline Large Signal Response Time & & \(\mathrm{V}_{\mathrm{I}}=\) TTL Logic Swing, \(\mathrm{V}_{\text {REF }}=1.4 \mathrm{~V}\), \(\mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega\) & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 300 & - & - & 300 & - & ns \\
\hline Response Time (Figures 3, 4) & & \(\mathrm{V}_{\mathrm{RL}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega\) & \(\mathrm{T}_{\mathrm{A}}=25\) & - & 1.3 & - & - & 1.3 & - & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

\section*{Typical Performance Curves}


FIGURE 1. SUPPLY CURRENT vs SUPPLY VOLTAGE


FIGURE 3. RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES - NEGATIVE TRANSITION


FIGURE 2. INPUT CURRENT vs SUPPLY VOLTAGE


FIGURE 4. RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES - POSITIVE TRANSITION

FIGURE 5. OUTPUT SATURATION VOLTAGE vs OUTPUT SINK CURRENT

\section*{Metallization Mask Layout}


NOTE: Dimensions in parentheses are in mm and are derived from the basic in. dimensions as indicated. Grid graduations are in mils ( \(10^{-3}\) inch).

\section*{Features}
- Programmable Operating Current
- Micropower Standby Dissipation
- Direct Control of Currents Up to 150mA
- Low Input On/Off Current of Less Than inA for Programmable Bias Current of \(1 \mu \mathrm{~A}\)
- Built-in Hysteresis 20 mV (Max)

\section*{Applications}
- Control of Relays, Heaters, LEDs, Lamps, Photosensitive Devices, Thyristors, Solenoids, etc.
- Signal Reconditioning
- Phase and Frequency Modulators
- On/Off Motor Switching
- Schmitt Triggers, Level Detectors
- Time Delays
- Overvoltage, Overcurrent, Overtemperature Protection
- Battery-Operated Equipment
- Square and Triangular-Wave Generators

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{c} 
PART \\
NUMBER
\end{tabular} & \begin{tabular}{c} 
TEMP \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & PKG. NO. \\
\hline CA3098E & -55 to 125 & 8 Ld PDIP & E8.3 \\
\hline
\end{tabular}

\section*{Description}

The CA3098 Programmable Schmitt Trigger is a monolithic silicon integrated circuit designed to control high operating current loads such as thyristors, lamps, relays, etc. The CA3098 can be operated with either a single power supply with maximum operating voltage of 16 V , or a dual power supply with maximum operating voltage of \(\pm 8 \mathrm{~V}\). It can directly control currents up to 150 mA and operates with microwatt standby power dissipation when the current to be controlled is less than 30 mA . The CA3098 contains the following major circuit function features (see Block Diagram):
1. Differential amplifiers and summer: the circuit uses two differential amplifiers, one to compare the input voltage with the "high" reference, and the other to compare the input with the "low" reference. The resultant output of the differential amplifiers actuates a summer circuit which delivers a trigger that initiates a change in state of a flip-flop.
2. Flip-flop: the flip-flop functions as a bistable "memory" element that changes state in response to each trigger command.
3. Driver and output stages: these stages permit the circuit to "sink" maximum peak load currents up to 150 mA at terminal 3.
4. Programmable operating current: the circuit incorporates access at terminal 2 to permit programming the desired quiescent operating current and performance parameters.

\section*{Pinout}


Block Diagram


CA3290, CA3290A

\section*{BiMOS Dual Voltage Comparators with MOSFET Input, Bipolar Output}

\section*{Features}
- MOSFET Input Stage
- Very High Input Impedance ( \(Z_{\mathbb{I N}}\) ). . . . . . . 1.7T \(\Omega\) (Typ)
- Very Low Input Current at \(\mathrm{V}_{+}=5 \mathrm{~V} . \ldots\). . 3.5pA (Typ)
- Wide Common Mode Input Voltage Range (VICR) Can Be Swung 1.5V (Typ) Below Negative Supply Voltage Rail
- Virtually Eliminates Errors Due to Flow of Input Currents
- Output Voltage Compatible with TTL, DTL, ECL, MOS, and CMOS Logic Systems in Most Applications

\section*{Applications}
- High Source Impedance Voltage Comparators
- Long Time Delay Circuits
- Square Wave Generators
- AD Converters
- Window Comparators

\section*{Description}

The CA3290A and CA3290 types consist of a dual voltage comparator on a single monolithic chip. The common mode input voltage range includes ground even when operated from a single supply. The low supply current drain makes these comparators suitable for battery operation; their extremely low input currents allow their use in applications that employ sensors with extremely high source impedances. Package options are shown in the table below.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
PART \\
NUMBER
\end{tabular}} & \multicolumn{1}{c|}{\begin{tabular}{c} 
TEMP \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular}} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{c|}{ PKG. NO. } \\
\hline CA3290AE & -55 to 125 & 8 Ld PDIP & E8.3 \\
\hline CA3290AE1 & -55 to 125 & 14 Ld PDIP & E14.3 \\
\hline CA3290AT & -55 to 125 & 8 Pin Metal Can & T8.C \\
\hline CA3290E & -55 to 125 & 8 Ld PDIP & E8.3 \\
\hline CA3290T & -55 to 125 & 8 Pin Metal Can & T8.C \\
\hline
\end{tabular}

\section*{Pinouts}

CA3290/A (PDIP)
TOP VIEW


CA3290A (PDIP) TOP VIEW


NOTE: Tie to GND or \(\mathrm{V}_{+}\)for best input/Output Isolation.
CA3290A, CA3290 (METAL CAN) TOP VIEW


Schematic Diagram
(ONLY ONE IS SHOWN)


CA3290, CA3290A

Absolute Maximum Ratings
Supply Voltage
Single Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +36 V
Dual Supply . . . . . . . . . . . . . . . . . . . . .
Differential Input Voltage.
36 V or \(\left[\left(\mathrm{V}^{-}-\mathrm{V}_{-}\right)+5 \mathrm{~V}\right]\) (whichever is less)
DC Input Voltage

\section*{.}

Circuit Duration (Note 1) . \(\mathrm{V}++5 \mathrm{~V}\) to \(\mathrm{V}-5 \mathrm{~V}\)
Output to V- Short Circuit Duration (Note 1) . . . . . . . . . . Continuous
Input Current.

\section*{Thermal Information}
\begin{tabular}{|c|c|c|}
\hline 2) & \(\theta_{\mathrm{JA}}\left({ }^{\circ}\right.\) &  \\
\hline 14 Lead PDIP Package & 100 & N/A \\
\hline 8 Lead PDIP Package & 120 & N/A \\
\hline 8 Pin Metal Can Package & 155 & 67 \\
\hline Maximum Junction Temperature (Can) . & & \(175^{\circ} \mathrm{C}\) \\
\hline \multicolumn{3}{|l|}{Maximum Junction Temperature (Plastic Package)} \\
\hline Maximum Storage Temperature Range & & \(0^{\circ} \mathrm{C}\) \\
\hline aximum Lead Temperature (Solde & & \\
\hline
\end{tabular}

\section*{Operating Conditions}

Temperature Range
-55 to \(125^{\circ} \mathrm{C}\)
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Short circuits from the output to \(\mathrm{V}+\) can cause excessive heating and eventual destruction of the device.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications V - \(=0 \mathrm{~V}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { TEMP } \\
& \left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
\]} & \multicolumn{3}{|c|}{CA3290A} & \multicolumn{3}{|c|}{CA3290} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{4}{*}{Input Offset Voltage} & \multirow[t]{4}{*}{\(\mathrm{V}_{10}\)} & \[
\begin{aligned}
& V_{C M}=V_{O}=1.4 \mathrm{~V}, \\
& V_{+}=5 \mathrm{~V}
\end{aligned}
\] & Full & - & 4.5 & - & - & 8.5 & - & mV \\
\hline & & \[
\begin{aligned}
& V_{C M}=V_{O}=0 V \\
& V_{+}=+15 \mathrm{~V}, \mathrm{~V}=-15 \mathrm{~V}
\end{aligned}
\] & Full & - & 8.5 & - & - & 8.5 & - & mV \\
\hline & & \[
\begin{aligned}
& V_{C M}=V_{O}=1.4 \mathrm{~V}, \\
& V_{+}=5 \mathrm{~V}
\end{aligned}
\] & 25 & - & 4.0 & 10 & - & 7.5 & 20 & mV \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CM}}=\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \\
& \mathrm{~V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}
\end{aligned}
\] & 25 & \(\bullet\) & 4.0 & 10 & - & 7.5 & 20 & mV \\
\hline Temperature Coefficient of Input Offset Voltage & \(\Delta V_{10} / \Delta T\) & & & - & 8 & - & - & 8 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{4}{*}{Input Offset Current} & \multirow[t]{4}{*}{110} & \(\mathrm{V}_{C M}=1.4 \mathrm{~V}, \mathrm{~V}_{+}=5 \mathrm{~V}\) & Full & - & 2 & 28 & - & 2 & 32 & nA \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{~V}+=+15 \mathrm{~V}, \\
& \mathrm{~V}-=-15 \mathrm{~V}
\end{aligned}
\] & Full & - & 7 & 28 & - & 7 & 32 & nA \\
\hline & & \[
\begin{aligned}
& V_{C M}=1.4 \mathrm{~V}, \\
& V_{+}=5 \mathrm{~V}
\end{aligned}
\] & 25 & \(\bullet\) & 2 & 25 & - & 2 & 30 & pA \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}, \\
& \mathrm{~V}_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}
\end{aligned}
\] & 25 & \(\bullet\) & 7 & 25 & - & 7 & 30 & pA \\
\hline \multirow[t]{4}{*}{Input Current} & \multirow[t]{4}{*}{1} & \[
\begin{aligned}
& V_{C M}=1.4 \mathrm{~V}, \\
& V_{+}=5 \mathrm{~V}
\end{aligned}
\] & 125 & \(\bullet\) & 2.8 & 45 & - & 2.8 & 55 & nA \\
\hline & & \[
\begin{aligned}
& V_{C M}=0 \mathrm{~V}, \\
& V_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}
\end{aligned}
\] & 125 & - & 13 & 45 & - & 13 & 55 & nA \\
\hline & & \[
\begin{aligned}
& V_{C M}=1.4 \mathrm{~V}, \\
& V_{+}=5 \mathrm{~V}
\end{aligned}
\] & 25 & - & 3.5 & 40 & \(\cdot\) & 3.5 & 50 & pA \\
\hline & & \[
\begin{aligned}
& V_{C M}=0 \mathrm{~V}, \\
& V_{+}=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}
\end{aligned}
\] & 25 & - & 12 & 40 & - & 12 & 50 & pA \\
\hline
\end{tabular}

Electrical Specifications \(\quad \mathrm{V}\) - \(=0 \mathrm{~V}\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP ( \({ }^{\circ} \mathrm{C}\) )} & \multicolumn{3}{|c|}{CA3290A} & \multicolumn{3}{|c|}{CA3290} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{4}{*}{Supply Current} & \multirow[t]{4}{*}{\(1+\)} & \(\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}+=5 \mathrm{~V}\) & -55 & - & 0.85 & 1.0 & - & 0.85 & 1.6 & mA \\
\hline & & \(\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}+=30 \mathrm{~V}\) & -55 & - & 1.62 & 3.0 & - & 1.62 & 3.5 & mA \\
\hline & & \(\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}+=5 \mathrm{~V}\) & 25 & - & 0.8 & 1.4 & - & 0.8 & 1.4 & mA \\
\hline & & \(\mathrm{R}_{\mathrm{L}}=\infty, \mathrm{V}+=30 \mathrm{~V}\) & 25 & - & 1.35 & 3.0 & - & 1.35 & 3.0 & mA \\
\hline \multirow[t]{4}{*}{Voltage Gain} & \multirow[t]{4}{*}{\(\mathrm{AOL}^{\text {L }}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& R_{\mathrm{L}}=15 \mathrm{k} \Omega, \mathrm{~V}+=+15 \mathrm{~V}, \\
& \mathrm{~V}=-15 \mathrm{~V}
\end{aligned}
\]} & \multirow[t]{2}{*}{Full} & - & 150 & - & - & 150 & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline & & & & - & 103 & - & - & 103 & - & dB \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& R_{L}=15 \mathrm{k} \Omega, \\
& \mathrm{~V}+=+15 \mathrm{~V}, \mathrm{~V}=-15 \mathrm{~V}
\end{aligned}
\]} & \multirow[t]{2}{*}{25} & 25 & 800 & - & 25 & 800 & - & \(\mathrm{V} / \mathrm{mV}\) \\
\hline & & & & 88 & 118 & - & 88 & 118 & - & dB \\
\hline \multirow[t]{3}{*}{Saturation Voltage} & \multirow[t]{3}{*}{\(\mathrm{V}_{\text {SAT }}\)} & \[
\begin{aligned}
& I_{\operatorname{SinK}}=4 \mathrm{~mA}, \mathrm{~V}+=5 \mathrm{~V}, \\
& +\mathrm{V}_{1}=0 \mathrm{~V},-\mathrm{V}_{1}=1 \mathrm{~V}
\end{aligned}
\] & 125 & - & 0.22 & 0.7 & - & 0.22 & 0.7 & V \\
\hline & & \[
\begin{aligned}
& \begin{array}{l}
\operatorname{sink}=4 \mathrm{~mA}, V_{+}=5 \mathrm{~V}, \\
+V_{1}=0 V,-V_{1}=1 V
\end{array}
\end{aligned}
\] & -55 & - & 0.1 & - & - & 0.1 & - & V \\
\hline & & \[
\begin{aligned}
& I_{\operatorname{SINK}}=4 \mathrm{~mA}, \mathrm{~V}+=5 \mathrm{~V}, \\
& +\mathrm{V}_{1}=0 \mathrm{~V},-\mathrm{V}_{1}=1 \mathrm{~V}
\end{aligned}
\] & 25 & - & 0.12 & 0.4 & - & 0.12 & 0.4 & V \\
\hline \multirow[t]{4}{*}{Output Leakage .Current} & \multirow[t]{4}{*}{\({ }^{1} \mathrm{OL}\)} & \(\mathrm{V}+=15 \mathrm{~V}\) & Full & - & 65 & - & - & 65 & - & nA \\
\hline & & \(\mathrm{V}+=36 \mathrm{~V}\) & Full & - & 130 & 1k & - & 130 & 1k & nA \\
\hline & & \(\mathrm{V}_{+}=15 \mathrm{~V}\) & 25 & - & 100 & - & - & 100 & - & pA \\
\hline & & \(\mathrm{V}+=36 \mathrm{~V}\) & 25 & - & 500 & - & - & 500 & - & pA \\
\hline \multirow[t]{2}{*}{Common Mode Input Voltage Range} & \multirow[t]{2}{*}{\(V_{\text {ICR }}\)} & \(\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{~V}_{+}=5 \mathrm{~V}\) & 25 & \[
\begin{gathered}
\mathrm{V}+-3.5 \\
\mathrm{~V}-
\end{gathered}
\] & \[
\begin{gathered}
\mathrm{V}+-3.1 \\
\mathrm{~V}--1.5
\end{gathered}
\] & - & \[
\begin{gathered}
v+-3.5 \\
V-
\end{gathered}
\] & \[
\begin{array}{|c}
\mid v+-3.1 \\
V--1.5
\end{array}
\] & - & V \\
\hline & & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}, \\
& \mathrm{~V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}
\end{aligned}
\] & 25 & \[
\begin{gathered}
V+-3.8 \\
V-
\end{gathered}
\] & \[
\begin{gathered}
V+-3.4 \\
V--1.6
\end{gathered}
\] & - & \[
\begin{gathered}
\mathrm{V}+-3.8 \\
\mathrm{~V}-
\end{gathered}
\] & \[
\begin{array}{|c}
\mathrm{V}+-3.4 \\
\mathrm{~V}-1.6
\end{array}
\] & - & v \\
\hline \multirow[t]{2}{*}{Common Mode Rejection Ratio} & \multirow[t]{2}{*}{CMRR} & \(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}\) & 25 & - & 44 & 562 & - & 44 & 562 & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline & & \(\mathrm{V}_{+}=5 \mathrm{~V}\) & 25 & - & 100 & 562 & - & 100 & 562 & \(\mu \mathrm{V} / \mathrm{V}\) \\
\hline Power Supply Rejection Ratio & PSRR & \(\mathrm{V}+=+15 \mathrm{~V}, \mathrm{~V}-=-15 \mathrm{~V}\) & 25 & - & 15 & 316 & - & 15 & 316 & \(\mu \mathrm{V} / \mathrm{N}\) \\
\hline Output Sink Current & & \(\mathrm{V}_{\mathrm{O}}=1.4 \mathrm{~V}, \mathrm{~V}_{+}=5 \mathrm{~V}\) & 25 & 6 & 30 & - & 6 & 30 & - & mA \\
\hline Response Time Rising Edge & \(\mathrm{t}_{\mathrm{r}}\) & \(\mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{V}+=15 \mathrm{~V}\) & 25 & - & 1.2 & - & - & 1.2 & - & \(\mu \mathrm{s}\) \\
\hline Response Time Falling Edge & \(t_{4}\) & \(R_{L}=5.1 \mathrm{k} \Omega, V_{+}=15 \mathrm{~V}\) & 25 & - & 200 & - & - & 200 & - & ns \\
\hline \multirow[t]{2}{*}{Large Signal Response Time} & \multirow[t]{2}{*}{} & \(\mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{V}+=15 \mathrm{~V}\) & 25 & - & 500 & - & - & 500 & - & ns \\
\hline & & \(\mathrm{R}_{\mathrm{L}}=5.1 \mathrm{k} \Omega, \mathrm{V}+=5 \mathrm{~V}\) & 25 & - & 400 & - & - & 400 & - & ns \\
\hline
\end{tabular}

Test Circuits and Waveforms



WITH \(C_{c}\)
Top Trace \(\approx 4.5 \mathrm{mV} /\) Div. \(=\mathrm{V}_{1 \mathrm{~N}}\) Bottom Trace \(=10 \mathrm{~V} /\) Div. \(=\mathrm{V}_{\text {OUT }}\) Time Scale \(=5 \mu \mathrm{~s} /\) Div.


WITHOUT C \(_{C}\)
Top Trace \(\approx 4.5 \mathrm{mV} / \mathrm{Div}\). Bottom Trace \(=10 \mathrm{~V} /\) Div.

Time Scale \(=5 \mu \mathrm{~s} /\) Div.

FIGURE 1. PARASITIC OSCILLATIONS TEST CIRCUIT AND WAVEFORMS


FIGURE 2. NON-INVERTING COMPARATOR RESPONSE TIME TEST CIRCUIT AND WAVEFORMS


FIGURE 3. INVERTING COMPARATOR RESPONSE TIME TEST CIRCUIT AND WAVEFORMS

\section*{Circuit Description}

\section*{The Basic Comparator}

Figure 4 shows the basic circuit diagram for one of the two comparators in the CA3290. It is generically similar to the industry type "139" comparators, with PMOS transistors replacing PNP transistors as input stage elements. Transistors \(Q_{1}\) through \(Q_{4}\) comprise the differential input stage, with \(Q_{5}\) and \(Q_{6}\) serving as a mirror connected active load and differen-tial-to-single-ended converter. The differential input at \(Q_{1}\) and \(Q_{4}\) is amplified so as to toggle \(Q_{6}\) in accordance with the input signal polarity. For example, if \(+V_{I N}\) is greater than \(-V_{I N}, Q_{1}\), \(Q_{2}\), and current mirror transistors \(Q_{5}\) and \(Q_{6}\) will be turned off; Transistors \(Q_{3}, Q_{4}\), and \(Q_{7}\) will be turned on, causing \(Q_{8}\) to be turned off. The output is pulled positive when a load resistor is connected between the output and \(\mathrm{V}+\).

In essence, \(Q_{1}\) and \(Q_{4}\) function as source followers to drive \(Q_{2}\) and \(Q_{3}\), respectively, with zener diodes \(D_{1}\) through \(D_{4}\) providing gate oxide protection against input voltage transients (e.g., static electricity). The current flow in \(Q_{1}\) and \(\mathrm{Q}_{4}\) is established at approximately \(50 \mu \mathrm{~A}\) by constant current sources \(I_{1}\) and \(I_{3}\), respectively. Since \(Q_{1}\) and \(Q_{4}\) are operated with a constant current load, their gate-to-source voltage drops will be effectively constant as long as the input voltages are within the common-mode range.
As a result, the input offset voltage \(\left(\mathrm{V}_{\mathrm{GS}(\mathrm{Q} 1)}+\mathrm{V}_{\mathrm{BE}(\mathrm{Q} 2)}-\right.\) \(V_{\mathrm{BE}(\mathrm{Q} 3)}\) - \(\mathrm{V}_{\mathrm{GS}(\mathrm{Q4})}\) ) will not be degraded when a large differential DC voltage is applied to the device for extended periods of time at high temperatures.

Additional voltage gain following the first stage is provided by transistors \(Q_{7}\) and \(Q_{8}\). The collector of \(Q_{8}\) is open, offering the user a wide variety of options in applications. An additional discrete transistor can be added if it becomes necessary to boost the output sink current capability.
The detailed schematic diagram for one comparator and the common current source biasing is shown on the front page. PMOS transistors \(Q_{9}\) through \(Q_{12}\) are the current source elements identified in Figure 4 as \(I_{1}\) through \(I_{4}\), respectively. Their gate source potentials ( \(\mathrm{V}_{\mathrm{GS}}\) ) are supplied by a common bus from the biasing circuit shown in the right hand portion of the Schematic Diagram. The currents supplied by \(Q_{10}\) and \(Q_{12}\) are twice those supplied by \(Q_{9}\) and \(Q_{11}\). The transistor geometries are appropriately scaled to provide the requisite currents with common \(\mathrm{V}_{\mathrm{GS}}\) applied to \(\mathrm{Q}_{9}\) through \(\mathrm{Q}_{12}\).


FIGURE 4. BASIC CIRCUIT DIAGRAM FOR ONE OF THE TWO COMPARATORS

\section*{Operating Considerations}

\section*{Input Circuit}

The use of MOS transistors in the input stage of the CA3290 series circuits provides the user with the following features for comparator applications:

\section*{1. Ultra high input impedance ( \(\cong 1.7 \mathrm{~T} \Omega\) );}
2. The availability of common mode rejection for input signals at potentials below that of the negative power supply rail;
3. Retention of the in phase relationship of the input and output signals for input signals below the negative rail.

Although the CA3290 employs rugged bipolar (zener) diodes for protection of the input circuit, the input terminal currents should not exceed 1mA. Appropriate series connected limiting resistors should be used in circuits where greater current flows might exist, allowing the signal input voltage to be greater than the supply voltage without damaging the circuit.

\section*{Output Circuit}

The output of the CA3290 is the open collector of an n-p-n transistor, a feature providing flexibility in a broad range of comparator applications. An output ORing function can be implemented by parallel connection of the open collectors. An output pull-up resistor can be connected to a power supply having a voltage range within the rating of the particular CA3290 in use; the magnitude of this voltage may be set at a value which is independent of that applied to the V+ terminal of the CA3290.

\section*{Parasitic Oscillations}

The ideal comparator has, among other features, ultra high input impedance, high gain, and wide bandwidth. These desirable characteristics may, however, produce parasitic oscillations unless certain precautions are observed to minimize the stray capacitive coupling between the input and output terminals. Parasitic oscillations manifest themselves during the output voltage transition intervals as the comparator switches states. For high source impedances, stray capacitance can induce parasitic oscillations. The addition of a small amount ( 1 mV to 10 mV ) of positive feedback (hysteresis) produces a faster transition, thereby reducing the likelihood of parasitic oscillations. Furthermore, if the input signal is a pulse waveform, with relatively rapid rise and fall times, parasitic tendencies are reduced.

When dual comparators, like the CA3290, are packaged in an 8 lead configuration, the output terminal of each comparator is adjacent to an input terminal. The lead-to-lead capacitance is approximately 1 pF , which may be sufficient to cause undesirable feedback effects in certain applications. Circuit factors such as impedance levels, supply voltage, switching rate, etc., may increase the possibility of parasitic oscillations. To minimize this potential oscillatory condition, it is recommended that for source impedances greater than \(1 \mathrm{k} \Omega\) a capacitor ( \(\geq 1 \mathrm{pF}-2 \mathrm{pF}\) ) be connected between the appropriate input terminal and the output terminal. (See Figure 1.)

The CA3290A is also supplied in a 14 lead dual-in-line plastic package. To minimize the possibility of parasitic oscillations the input and output terminals are positioned on opposite sides of the package. In addition, there are two leads between the output terminal of each comparator and its corresponding inverting input terminal, reducing the input/output coupling significantly. These leads (8, 9, 13, 14) should be tied to either the V+ or V- supply rail. If either comparator is unused, its input terminals should also be tied to either the \(\mathrm{V}+\) or V - supply rail.

\section*{Typical Applications}

\section*{Light Controlled One-Shot Timer}

In Figure 5 one comparator \(\left(\mathrm{A}_{1}\right)\) of the CA3290 is used to sense a change in photo diode current. The other comparator \(\left(A_{2}\right)\) is configured as a one-shot timer and is triggered by the output of \(A_{1}\). The output of the circuit will switch to a low state for approximately 60 seconds after the light source to the photo diode has been interrupted. The circuit operates at normal room lighting levels. The sensitivity of the circuit may be adjusted by changing the values of \(R_{1}\) and \(R_{2}\). The ratio of \(R_{1}\) to \(R_{2}\) should be constant to insure constant reverse voltage bias on the photo diode.


FIGURE 5. LIGHT CONTROLLED ONE-SHOT TIMER

\section*{Low-Frequency Multivibrator}

In this application, one half of the CA3290 is used as a conventional multivibrator circuit. Because of the extremely high input impedance of this device, large values of timing resistor \(\left(R_{1}\right)\) may be used for long time delays with relatively small leakage timing capacitors. The second half of the CA3290 is used as an output buffer to insure that the multivibrator frequency will not be affected by output loading. \(R_{p}\) is the parallel combination of the two \(1 \mathrm{M} \Omega\) resistors connected between +15 V and GND.


FIGURE 6. LOW FREQUENCY MULTIVIBRATOR

\section*{Window Comparator}

Both halves of the CA3290 can be used in a high input impedance window comparator as shown in Figure 7. The LED will be turned "on" whenever the input signal is above the lower limit \(\left(V_{\mathrm{L}}\right)\) but below the upper limit \(\left(\mathrm{V}_{\mathrm{U}}\right)\), as determined by the \(R_{1} / R_{2} / R_{3}\) resistor divider.


FIGURE 7. WINDOW COMPARATOR

Typical Performance Curves


FIGURE 8. SUPPLY CURRENT vs SUPPLY VOLTAGE (BOTH AMPLIFIERS)


FIGURE 10. INPUT CURRENT vs INPUT COMMON MODE VOLTAGE


FIGURE 12. NEGATIVE COMMON MODE INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE


FIGURE 9. INPUT CURRENT vs INPUT COMMON MODE VOLTAGE


FIGURE 11. POSITIVE COMMON MODE INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE


FIGURE 13. INPUT CURRENT vs TEMPERATURE

\section*{Typical Performance Curves (Continued)}


FIGURE 14. OUTPUT SATURATION VOLTAGE vs OUTPUT SINK CURRENT

\section*{Metallization Mask Layout}


The photographs and dimensions of each chip represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are \(57^{\circ}\) instead of \(90^{\circ}\) with respect to the face of the chip. Therefore, the isolated chip is actually 7 mils ( 0.17 mm ) larger in both dimensions.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils ( \(10^{-3}\) inch)

NOTE: Numbers in pads are for 8 lead DIP and TO-5 Can and numbers outside of chip are for 14 lead DIP.

\section*{Features}
- Fast Response Time 130ns
- Low Offset Voltage. \(\qquad\) 2.0 mV
- Low Offset Current 10nA
- Single or Dual Voltage Supply Operation
- Selectable Output Logic Levels
- Active Pull-Up/Pull-Down Output Circuit. No External Resistors Required

\section*{Applications}
- Threshold Detector
- Zero Crossing Detector
- Window Detector
- Analog Interfaces for Microprocessors
- High Stability Oscillators
- Logic System Interfaces

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
PART \\
NUMBER
\end{tabular}} & \begin{tabular}{c} 
TEMP RANGE \\
( \(\left.{ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{c|}{ PKG. NO. } \\
\hline HA1-4900-2 & -55 to 125 & 16 Ld CERDIP & F16.3 \\
\hline HA1-4902-2 & -55 to 125 & 16 Ld CERDIP & F16.3 \\
\hline HA1-4905-5 & 0 to 75 & 16 Ld CERDIP & F16.3 \\
\hline HA3-4905-5 & 0 to 75 & 16 Ld PDIP & E16.3 \\
\hline HA4P4905-5 & 0 to 75 & 20 Ld PLCC & N20.35 \\
\hline HA9P4905-5 & 0 to 75 & 16 Ld SOIC & M16.3 \\
\hline
\end{tabular}

\section*{Description}

The HA-4900 series are monolithic, quad, precision comparators offering fast response time, low offset voltage, low offset current and virtually no channel-to-channel crosstalk for applications requiring accurate, high speed, signal level detection. These comparators can sense signals at ground level while being operated from either a single +5 V supply (digital systems) or from dual supplies (analog networks) up to \(\pm 15 \mathrm{~V}\). The HA- 4900 series contains a unique current driven output stage which can be connected to logic system supplies ( \(\mathrm{V}_{\text {LOGIC }}+\) and \(\mathrm{V}_{\text {LOGIC }}{ }^{-}\)) to make the output levels directly compatible (no external components needed) with any standard logic or special system logic levels. In combination analog/digital systems, the design employed in the HA-4900 series input and output stages prevents troublesome ground coupling of signals between analog and digital portions of the system.

These comparators' combination of features make them ideal components for signal detection and processing in data acquisition systems, test equipment and microprocessor/analog signal interface networks.

For military grade product, refer to the HA-4902/883 data sheet.

\section*{Pinouts}


\section*{Absolute Maximum Ratings}

Supply Voltage (Between V+ and V- Terminals) . . . . . . . . . . . . . 33 V
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15V
Voltage Between \(\mathrm{V}_{\text {LOGIC }}{ }^{+}\)and \(\mathrm{V}_{\text {LOGIC }}\). . . . . . . . . . . . . . . . . . . . . 18 V
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Power Dissipation (Notes 1, 2)

\section*{Operating Conditions}

Temperature Range
HA-4900-2, HA-4902-2 . . . . . . . . . . . . . . . . . . . . . . . \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
HA-4905-5. . . . . . . . . . . . . . . . . . . . . . \(75^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\)
\(0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\)

Thermal Information
\begin{tabular}{|c|c|c|}
\hline Thermal Resistance (Typical, Note 3) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) & \(\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline CERDIP Package & 85 & 25 \\
\hline PDIP Package & 90 & N/A \\
\hline SOIC Package. & 100 & N/A \\
\hline PLCC Package & 75 & N/A \\
\hline
\end{tabular}

Maximum Junction Temperature (Ceramic Package) . . . . . . . . \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (Plastic Package) . . . . . . . . \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range ......... . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\)
(PLCC and SOIC - Lead Tips Only)

\section*{Die Characteristics}

Back Side Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V-
Number of Transistors
137
Die Size
95 mils \(\times 105\) mils

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

\section*{NOTES:}
1. Maximum power dissipation, including output load, must be designed to maintain the junction temperature below \(175^{\circ} \mathrm{C}\) for ceramic packages, and below \(150^{\circ} \mathrm{C}\) for plastic packages.
2. Total Power Dissipation (T.P.D.) is the sum of individual dissipation contributions of \(\mathrm{V}_{+}, \mathrm{V}\) - and \(\mathrm{V}_{\text {LOGIC }}\) shown in curves of Power Dissipation vs Supply Voltages (see Performance Curves). The calculated T.P.D. is then located on the graph of Maximum Allowable Package Dissipation vs Ambient Temperature to determine ambient temperature operating limits imposed by the calculated T.P.D. (See Performance Curves). For instance, the combination of \(+15 \mathrm{~V},-15 \mathrm{~V},+5 \mathrm{~V}, 0 \mathrm{~V}\left(\mathrm{~V}+, \mathrm{V}-, \mathrm{V}_{\text {LOGIC }}+\right.\), \(\mathrm{V}_{\text {LOGIC }}{ }^{-}\)) gives a T.P.D. of 350 mW , the combination \(+15 \mathrm{~V},-15 \mathrm{~V},+15 \mathrm{~V}, 0 \mathrm{~V}\) gives a T.P.D. of 450 mW .
3. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }^{-}}=\mathrm{GND}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEMP \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { HA- } 4900-2 \\
-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}
\end{gathered}
\]} & \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { HA-4902-2 } \\
-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}
\end{gathered}
\]} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { HA-4905-5 } \\
& 0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C}
\end{aligned}
\]} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{12}{|l|}{INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Offset Voltage (Note 4)} & 25 & - & 2 & 3 & - & 2 & 5 & - & 4 & 7.5 & mV \\
\hline & Full & - & - & 4 & - & - & 8 & - & - & 10 & mV \\
\hline \multirow[t]{2}{*}{Offset Current} & 25 & - & 10 & 25 & - & 10 & 35 & - & 25 & 50 & nA \\
\hline & Full & - & - & 35 & - & - & 45 & - & - & 70 & nA \\
\hline \multirow[t]{2}{*}{Bias Current (Note 5)} & 25 & - & 50 & 75 & - & 50 & 150 & - & 100 & 150 & nA \\
\hline & Full & - & - & 150 & - & - & 200 & - & - & 300 & nA \\
\hline \multirow[t]{2}{*}{Input Sensitivity (Note 6)} & 25 & - & - & \[
\begin{gathered}
\mathrm{v}_{10}+ \\
0.3
\end{gathered}
\] & \(\bullet\) & - & \[
\begin{gathered}
\mathrm{V}_{10}+ \\
0.5
\end{gathered}
\] & - & - & \[
\begin{gathered}
\mathrm{V}_{10}+ \\
0.5
\end{gathered}
\] & mV \\
\hline & Full & - & - & \[
\begin{gathered}
\mathrm{v}_{10}+ \\
0.4
\end{gathered}
\] & - & - & \[
\begin{gathered}
\mathrm{v}_{10}+ \\
0.6
\end{gathered}
\] & - & - & \[
\begin{gathered}
\mathrm{v}_{10}+ \\
0.7
\end{gathered}
\] & mV \\
\hline Common Mode Range & Full & V- & - & \[
\begin{gathered}
(\mathrm{V}+)- \\
2.4
\end{gathered}
\] & V- & - & \[
\begin{gathered}
(\mathrm{V}+)- \\
2.6
\end{gathered}
\] & V- & - & \[
\begin{gathered}
(\mathrm{V}+)- \\
2.4
\end{gathered}
\] & V \\
\hline Differential Input Resistance & 25 & - & 250 & - & - & 250 & - & - & 250 & - & \(\mathrm{M} \Omega\) \\
\hline \multicolumn{12}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline Large Signal Voltage Gain & 25 & - & 400 & - & - & 400 & - & - & 400 & - & kV/N \\
\hline Response Time (tpD(0)) (Note 7) & 25 & - & 130 & 200 & - & 130 & 200 & - & 130 & 200 & ns \\
\hline Response Time (tpD(1)) (Note 7) & 25 & - & 180 & 215 & - & 180 & 215 & \(\bullet\) & 180 & 215 & ns \\
\hline
\end{tabular}

Electrical Specifications \(\quad \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=\) \(=\) GND (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { TEMP } \\
& \left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
\]} & \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { HA- } 4900-2 \\
-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}
\end{gathered}
\]} & \multicolumn{3}{|c|}{\[
\begin{gathered}
\text { HA-4902-2 } \\
-55^{\circ} \mathrm{C} \text { to } 125^{\circ} \mathrm{C}
\end{gathered}
\]} & \multicolumn{3}{|c|}{\[
\begin{aligned}
& \text { HA-4905-5 } \\
& 0^{\circ} \mathrm{C} \text { to } 75^{\circ} \mathrm{C}
\end{aligned}
\]} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{12}{|l|}{OUTPUT CHARACTERISTICS} \\
\hline Output Voltage Level Logic "Low State" (VOL) (Note 8) & Full & - & 0.2 & 0.4 & - & 0.2 & 0.4 & - & 0.2 & 0.4 & V \\
\hline Logic "High State" ( \(\mathrm{V}_{\mathrm{OH}}\) ) (Note 8) & Full & 3.5 & 4.2 & - & 3.5 & 4.2 & - & 3.5 & 4.2 & - & V \\
\hline Output Current \(I_{\text {SINK }}\) & Full & 3.0 & - & - & 3.0 & - & - & 3.0 & - & - & mA \\
\hline ISOURCE & Full & 3.0 & - & - & 3.0 & - & - & 3.0 & - & - & mA \\
\hline \multicolumn{12}{|l|}{POWER SUPPLY CHARACTERISTICS} \\
\hline Supply Current, IPS (+) & 25 & - & 6.5 & 20 & - & 6.5 & 20 & - & 7 & 20 & mA \\
\hline Supply Current, IPS ( - ) & 25 & - & 4 & 8 & - & 4 & 8 & - & 5 & 8 & mA \\
\hline Supply Current, IPS (Logic) & 25 & - & 3.5 & 4 & - & 3.5 & 4 & - & 3.5 & 4 & mA \\
\hline Supply Voltage Range
\[
\mathrm{V}_{\text {LoGic }}{ }^{+} \text {(Note 2) }
\] & Full & 0 & - & +15.0 & 0 & - & +15.0 & 0 & - & +15.0 & V \\
\hline \(\mathrm{V}_{\text {LoGIC }}\) ( (Note 2) & Full & -15.0 & - & 0 & -15.0 & - & 0 & -15.0 & - & 0 & V \\
\hline
\end{tabular}

NOTES:
4. Minimum differential input voltage required to ensure a defined output state.
5. Input bias currents are essentially constant with differential input voltages up to \(\pm 9 \mathrm{~V}\). With differential input voltages from \(\pm 9 \mathrm{~V}\) to \(\pm 15 \mathrm{~V}\), bias current on the more negative input can rise to approximately \(500 \mu \mathrm{~A}\). This will also cause higher supply currents.
6. \(\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}\). Input sensitivity is the worst case minimum differential input voltage required to guarantee a given output logic state. This parameter includes the effects of offset voltage and voltage gain.
7. For \(t_{p D}(1) ; 100 \mathrm{mV}\) input step, -10 mV overdrive. For \(\mathrm{t}_{\text {PD }}(0) ;-100 \mathrm{mV}\) input step, 10 mV overdrive. Frequency \(\approx 100 \mathrm{~Hz}\); Duty Cycle \(\approx 50 \%\); Inverting input driven. See Figure 1 for Test Circuit. All unused inverting inputs tied to +5 V .
8. For \(\mathrm{V}_{\mathrm{OH}}\) and \(\mathrm{V}_{\mathrm{OL}}: \mathrm{I}_{\text {SINK }}=I_{\text {SOURCE }}=3.0 \mathrm{~mA}\). For other values of \(\mathrm{V}_{\text {LOGIC }} ; \mathrm{V}_{\mathrm{OH}}(\mathrm{Min})=\mathrm{V}_{\mathrm{LOGIC}}+-1.5 \mathrm{~V}\).

\section*{Test Circuit and Waveform}



FIGURE 1.

Schematic Diagram


\section*{Applying the HA-4900 Series Comparators}

\section*{Supply Connections}

This device is exceptionally versatile in working with most available power supplies. The voltage applied to the \(\mathrm{V}+\) and V - terminals determines the allowable input signal range; while the voltage applied to the \(\mathrm{V}_{\mathrm{L}^{+}}\)and \(\mathrm{V}_{\mathrm{L}^{-}}\)determines the output swing. In systems where dual analog supplies are available, these would be connected to \(V+\) and \(V\)-, while the logic supply and return would be connected to \(\mathrm{V}_{\text {LOGIC }}{ }^{+}\)and \(\mathrm{V}_{\text {LOGIC }}{ }^{-}\). The analog and logic supply commons can be connected together at one point in the system, since the comparator is immune to noise on the logic supply ground. A negative output swing may be obtained by connecting \(\mathrm{V}_{\mathrm{L}}+\) to ground and \(\mathrm{V}_{\mathrm{L}}\) - to a negative supply. Bipolar output swings ( \(15 \mathrm{~V}_{\text {P-p }}\), Max) may be obtained using dual supplies. In systems where only a single logic supply is available ( +5 V to 15 V ), \(\mathrm{V}+\) and \(\mathrm{V}_{\text {LOGIC }}+\) may be connected together to the positive supply while V - and \(\mathrm{V}_{\text {LOGIC }}\) are grounded. If an input signal could swing negative with respect the V - terminal, a resistor should be connected in series with the input to limit input current to \(<5 \mathrm{~mA}\) since the C -B junction of the input transistor would be forward biased.

\section*{Unused Inputs}

Inputs of unused comparator sections should be tied to a differential voltage source to prevent output "chatter."

\section*{Crosstalk}

Simultaneous high frequency operation of all other channels in the package will not affect the output logic state of a given channel, provided that its differential input voltage is sufficient to define a given logic state ( \(\Delta \mathrm{V}_{\mathbb{I N}} \geq \pm \mathrm{V}_{\mathrm{OS}}\) ). Low level or high impedance input lines should be shielded from other signal sources to reduce crosstalk and interference.

\section*{Power Supply Decoupling}

Decouple all power supply lines with \(0.01 \mu \mathrm{~F}\) ceramic capacitors to ground line located near the package to reduce coupling between channels or from external sources.

\section*{Response Time}

Fast rise time (<200ns) input pulses of several volts amplitude may result in delay times somewhat longer than those illustrated for 100 mV steps. Operating speed is optimized by limiting the maximum differential input voltage applied, with resistor-diode clamping networks.

\section*{Typical Applications}

\section*{Data Acquisition System}

In this circuit the HA-4900 series is used in conjunction with a D to A converter to form a simple, versatile, multi-channel analog input for a data acquisition system. In operation the processor first sends an address to the \(D\) to \(A\), then the processor reads the digital word generated by the comparator outputs. To perform a simple comparison, the processor sets the D to A to a given reference level, then examines one or more comparator outputs to determine if their inputs are above or below the reference. A window comparison consists of two such cycles with 2 reference levels set by the \(D\) to \(A\). One way to digitize the inputs would be for the processor to increment the \(D\) to \(A\) in steps. The \(D\) to \(A\) address, as each comparator switches, is the digitized level of the input. While stairstepping the \(D\) to \(A\) is slower than successive approximation, all channels are digitized during one staircase ramp.


\section*{Logic Level Translators}

The HA-4900 series comparators can be used as versatile logic interface devices as shown in the circuits above. Negative logic devices may also be interfaced with appropriate supply connections. If separate supplies are used for V - and \(\mathrm{V}_{\text {LOGIC }}\), these logic level translators will tolerate several volts of ground line differential noise.


\section*{RS-232 To CMOS Line Receiver}

This RS-232 type line receiver to drive CMOS logic uses a Schmitt trigger feedback network to give about 1V input hysteresis for added noise immunity. A possible problem in an interface which connects two equipments, each plugged into a different AC receptacle, is that the power line voltage may appear at the receiver input when the interface connection is made or broken. The two diodes and a 3W input resistor will protect the inputs under these conditions.


\section*{Window Detector}

The high switching speed, low offset current and low offset voltage of the HA-4900 series makes this window detector circuit extremely well suited to applications requiring fast, accurate, decision-making. The circuit above is ideal for industrial process system feedback controllers or "out-oflimit" alarm indicators.


\section*{Oscillator/Clock Generator}

This self-starting fixed frequency oscillator circuit gives excellent frequency stability. \(\mathrm{R}_{1}\) and \(\mathrm{C}_{1}\) comprise the frequency determining network while \(R_{2}\) provides the regenerative feedback. Diode \(D_{1}\) enhances the stability by compensating for the difference between \(\mathrm{V}_{\mathrm{OH}}\) and \(\mathrm{V}_{\text {SUPPLY }}\). In applications where a precision clock generator up to 100 kHz is required, such as in automatic test equipment, \(\mathrm{C}_{1}\) may be replaced by a crystal.


\section*{Schmitt Trigger (Zero Crossing Detector With Hysteresis)}

This circuit has a 100 mV hysteresis which can be used in applications where very fast transition times are required at the output even though the signal input is very slow. The hysteresis loop also reduces false triggering due to noise on the input. The waveforms below show the trip points developed by the hysteresis loop.


INPUT TO OUTPUT WAVEFORM SHOWING HYSTERESIS TRIP POINTS

Typical Performance Curves \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=0 \mathrm{~V}\), Unless Otherwise Specified


FIGURE 2. INPUT BIAS CURRENT vs TEMPERATURE


FIGURE 3. INPUT OFFSET CURRENT vs TEMPERATURE


FIGURE 4. INPUT BIAS CURRENT vs COMMON MODE INPUT VOLTAGE ( \(\mathrm{V}_{\text {DIFF }}=0 \mathrm{~V}\) )

Typical Performance Curves \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }^{+}}=5 \mathrm{~V}, \mathrm{~V}_{\text {LOGIC }}=0 \mathrm{~V}\), Unless Otherwise Specified (Continued)


FIGURE 5. SUPPLY CURRENT vs TEMPERATURE (FOR \(\pm 15 \mathrm{~V}\) SUPPLIES AND +5V LOGIC SUPPLY)



FIGURE 6. SUPPLY CURRENT vs TEMPERATURE (FOR SINGLE +5V OPERATION)


FIGURE 7. RESPONSE TIME FOR VARIOUS INPUT OVERDRIVES


FIGURE 8. MAXIMUM PACKAGE DISSIPATION vs AMBIENT TEMPERATURE


FIGURE 9. POWER DISSIPATION vs SUPPLY VOLTAGE (NO LOAD CONDITION)

\section*{SAMPLE AND HOLD AMPLIFIERS}PAGE
SELECTION GUIDE ..... 5-2
SAMPLE AND HOLD AMPLIFIER DATA SHEETS
HA-2420, HA-2425 \(3.2 \mu\) s Sample and Hold Amplifiers ..... 5-3
HA-5320 \(1 \mu \mathrm{~s}\) Precision Sample and Hold Amplifier ..... 5-12
HA-5330 650ns Precision Sample and Hold Amplifier ..... 5-19
HA-5340 700ns, Low Distortion, Precision Sample and Hold Amplifier ..... 5-24
HA5351 64ns Sample and Hold Amplifier ..... 5-32

\section*{Selection Guide}

SAMPLE AND HOLD AMPLIFIERS: Typical Values at \(25^{\circ} \mathrm{C}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TYPE & SAMPLE/HOLD TYPE & TEMP. RANGE \(\left({ }^{\circ} \mathrm{C}\right)\) & \begin{tabular}{l}
(NOTE 1) \\
LEAD COUNT AND PACKAGE TYPE
\end{tabular} & \begin{tabular}{l}
ACQUISITION \\
TIME
(TO 0.01\%)
\end{tabular} & HOLD STEP ERROR & APERTURE TIME & GAIN BANDWIDTH PRODUCT \\
\hline HA1-2420-2 & \multirow[t]{5}{*}{External Hold Cap, Low Cost} & -55 to 125 & 14 CERDIP & \multirow[t]{5}{*}{\(3.2 \mu \mathrm{~s}\)} & \multirow[t]{5}{*}{10 mV} & \multirow[t]{5}{*}{30 ns} & \multirow[t]{5}{*}{\[
\begin{gathered}
2.5 \mathrm{MHz} \\
\left(\mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF}\right)
\end{gathered}
\]} \\
\hline HA1-2425-5 & & 0 to 75 & 14 CERDIP & & & & \\
\hline НАЗ-2425-5 & & 0 to 75 & 14 PDIP & & & & \\
\hline HA4P2425-5 & & 0 to 75 & 20 PLCC & & & & \\
\hline HA9P2425-5 & & 0 to 75 & 14 SOIC & & & & \\
\hline HA1-5320-2 & \multirow[t]{7}{*}{High Speed, Low Charge, Transfer, Precision, Includes Hold Capacitor} & -55 to 125 & 14 CERDIP & \multirow[t]{7}{*}{\[
\begin{gathered}
1 \mu \mathrm{~s} \\
\left(\mathrm{C}_{\mathrm{H}}=\text { Internal }\right)
\end{gathered}
\]} & \multirow[t]{7}{*}{1 mV} & \multirow[t]{7}{*}{25ns} & \multirow[t]{7}{*}{\[
\begin{gathered}
2.0 \mathrm{MHz} \\
\left(\mathrm{C}_{\mathrm{H}}=100 \mathrm{pF}\right)
\end{gathered}
\]} \\
\hline HA1-5320-5 & & 0 to 75 & 14 CERDIP & & & & \\
\hline HA1-5320/883 & & -55 to 125 & 14 CERDIP & & & & \\
\hline НАЗ-5320-5 & & 0 to 75 & 14 PDIP & & & & \\
\hline HA4-5320/883 & & -55 to 125 & 20 CLCC & & & & \\
\hline HA9P5320-5 & & 0 to 75 & 16 SOIC ( 300 mil ) & & & & \\
\hline HA9P5320-9 & & -40 to 85 & 16 SOIC (300 mil) & & & & \\
\hline HA1-5330-5 & \multirow[t]{6}{*}{\begin{tabular}{l}
Very High Speed, \\
Precision, Monolithic, Includes Hold Capacitor
\end{tabular}} & 0 to 75 & 14 CERDIP & \multirow[t]{6}{*}{650ns} & \multirow[t]{6}{*}{0.5 mV} & \multirow[t]{6}{*}{20ns} & \multirow[t]{6}{*}{4.5 MHz} \\
\hline HA1-5330-4 & & -25 to 85 & 14 CERDIP & & & & \\
\hline HA1-5330-2 & & -55 to 125 & 14 CERDIP & & & & \\
\hline HA1-5330/883 & & -55 to 125 & 14 CERDIP & & & & \\
\hline HA3-5330-5 & & 0 to 75 & 14 PDIP & & & & \\
\hline HA4-5330/883 & & -55 to 125 & 20 CLCC & & & & \\
\hline HA1-5340-5 & \multirow[t]{7}{*}{High Speed, Low Distortion, Includes Hold Capacitor} & 0 to 75 & 14 CERDIP & \multirow[t]{7}{*}{700ns} & \multirow[t]{7}{*}{15 mV} & \multirow[t]{7}{*}{15ns} & \multirow[t]{7}{*}{10 MHz} \\
\hline HA1-5340-9 & & -40 to 85 & 14 CERDIP & & & & \\
\hline HA1-5340/883 & & -55 to 125 & 14 CERDIP & & & & \\
\hline НАЗ-5340-5 & & 0 to 75 & 14 PDIP & & & & \\
\hline НАЗ-5340-9 & & -40 to 85 & 14 PDIP & & & & \\
\hline HA4-5340/883 & & -55 to 125 & 20 CLCC & & & & \\
\hline HA9P5340-5 & & 0 to 75 & 16 SOIC (300 mil) & & & & \\
\hline HA5351IP & \multirow[t]{2}{*}{Ultra High Speed and Low Power, Includes Hold Capacitor, Low Pin Count} & -40 to 85 & 8 PDIP & \multirow[t]{2}{*}{64ns} & \multirow[t]{2}{*}{10 mV} & \multirow[t]{2}{*}{10ns} & \multirow[t]{2}{*}{40 MHz} \\
\hline HA5351IB & & -40 to 85 & 8 SOIC & & & & \\
\hline
\end{tabular}

NOTE:
1. See Linear Package Selection Guide in Section 11.

HA-2420, HA-2425

\section*{Features}
- Maximum Acquisition Time
- 10V Step to 0.1\%. . . . . . . . . . . . . . . . . . . . . \(4 \mu \mathrm{~s}\) (Max)
- 10V Step to 0.01\%. . . . . . . . . . . . . . . . . . . . \(6 \mu \mathrm{~s}\) (Max)
- Low Droop Rate ( \(\mathrm{C}_{\mathrm{H}}=\mathbf{1 0 0 0 p F}\) ). . . . . . . . \(5 \mu \mathrm{~V} / \mathrm{ms}\) (Typ)
- Gain Bandwidth Product . . . . . . . . . . . . . 2.5MHz (Typ)
- Low Effective Aperture Delay Time . . . . . . . 30ns (Typ)
- TTL Compatible Control Input
- \(\pm 12 \mathrm{~V}\) to \(\pm 15 \mathrm{~V}\) Operation

\section*{Applications}
- 12-Bit Data Acquisition
- Digital to Analog Deglitcher
- Auto Zero Systems
- Peak Detector
- Gated Operational Amplifier

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HA1-2420-2 & -55 to 125 & 14 Ld CERDIP & F14.3 \\
\hline HA1-2425-5 & 0 to 75 & 14 Ld CERDIP & F14.3 \\
\hline HA3-2425-5 & 0 to 75 & 14 Ld PDIP & E14.3 \\
\hline HA4P2425-5 & 0 to 75 & 20 Ld PLCC & N20.35 \\
\hline HA9P2425-5 & 0 to 75 & 14 Ld SOIC & M14.15 \\
\hline
\end{tabular}

\section*{Description}

The HA-2420 and HA-2425 is a monolithic circuit consisting of a high performance operational amplifier with its output in series with an ultra-low leakage analog switch and JFET input unity gain amplifier.

With an external hold capacitor connected to the switch output, a versatile, high performance sample-and-hold or track-andhold circuit is formed. When the switch is closed, the device behaves as an operational amplifier, and any of the standard op amp feedback networks may be connected around the device to control gain, frequency response, etc. When the switch is opened the output will remain at its last level.
Performance as a sample-and-hold compares very favorably with other monolithic, hybrid, modular, and discrete circuits. Accuracy to better than \(0.01 \%\) is achievable over the temperature range. Fast acquisition is coupled with superior droop characteristics, even at high temperatures. High slew rate, wide bandwidth, and low acquisition time produce excellent dynamic characteristics. The ability to operate at gains greater than 1 frequently eliminates the need for external scaling amplifiers.

The device may also be used as a versatile operational amplifier with a gated output for applications such as analog switches, peak holding circuits, etc. For more information, please see Application Note AN517.

The MIL-STD-883 data sheet for this device is available on request.

\section*{Pinouts}


\section*{Absolute Maximum Ratings}

Voltage Between V+ and V- Terminals . . . . . . . . . . . . . . . . . . . . 40V
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24V
Digital Input Voltage (Sample and Hold Pin) . . . . . . . . . . +8V, -15V
Output Current . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Protected

\section*{Operating Conditions}

Temperature Range
HA-2420-2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
HA-2425-5
\({ }^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
\(0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\)

HA-2425-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\)
Supply Voltage Range (Typical) \(\pm 12 \mathrm{~V}\) to \(\pm 15 \mathrm{~V}\)

\section*{Thermal Information}

Thermal Resistance (Typical, Note 1) \(\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) CERDIP Package ....................... 90 35 PDIP Package . . . . . . . . . . . . . . . . . . . . . . 100 N/A PLCC Package ........................ 75 N/A SOIC Package........................... 120 N/A
Maximum Junction Temperature (Ceramic Packages) . . . . . . . \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (Plastic Package) . . . . . . . . \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range . ......... \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\)
(PLCC and SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Test Conditions (Unless Otherwise Specified) \(\mathrm{V}_{\text {SUPPLY }}= \pm 15.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF}\); Digital Input: \(\mathrm{V}_{\mathrm{IL}}=+0.8 \mathrm{~V}\) (Sample), \(\mathrm{V}_{1 \mathrm{H}}=+2.0 \mathrm{~V}\) (Hold), Unity Gain Configuration (Output tied to Negative Input)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multirow[t]{2}{*}{TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{3}{|c|}{HA-2420-2} & \multicolumn{3}{|c|}{HA-2425-5} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{10}{|l|}{INPUT CHARACTERISTICS} \\
\hline Input Voltage Range & & Full & \(\pm 10\) & - & - & \(\pm 10\) & - & - & V \\
\hline \multirow[t]{2}{*}{Offset Voltage} & & 25 & - & 2 & 4 & - & 3 & 6 & mV \\
\hline & & Full & - & 3 & 6 & - & 4 & 8 & mV \\
\hline \multirow[t]{2}{*}{Bias Current} & & 25 & - & 40 & 200 & - & 40 & 200 & nA \\
\hline & & Full & - & - & 400 & - & - & 400 & nA \\
\hline \multirow[t]{2}{*}{Offset Current} & & 25 & - & 10 & 50 & - & 10 & 50 & nA \\
\hline & & Full & - & - & 100 & - & - & 100 & nA \\
\hline Input Resistance & & 25 & 5 & 10 & - & 5 & 10 & - & \(\mathrm{M} \Omega\) \\
\hline Common Mode Range & & Full & \(\pm 10\) & - & - & \(\pm 10\) & - & - & V \\
\hline \multicolumn{10}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline Large Signal Voltage Gain & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & Full & 25 & 50 & - & 25 & 50 & - & kVN \\
\hline Common Mode Rejection & \(\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}\) & Full & 80 & 90 & - & 74 & 90 & - & dB \\
\hline Hold Mode Feedthrough Attenuation (Note 2) & \(\mathrm{f}_{\mathrm{IN}} \leq 100 \mathrm{kHz}\) & Full & - & -76 & - & - & -76 & - & dB \\
\hline Gain Bandwidth Product (Note 2) & & 25 & - & 2.5 & - & - & 2.5 & - & MHz \\
\hline \multicolumn{10}{|l|}{OUTPUT CHARACTERISTICS} \\
\hline Output Voltage Swing & \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega\) & Full & \(\pm 10\) & - & - & \(\pm 10\) & - & - & V \\
\hline Output Current & & 25 & \(\pm 15\) & - & - & \(\pm 15\) & - & - & mA \\
\hline Full Power Bandwidth (Note 2) & \(\mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}_{\text {P-P }}\) & 25 & - & 100 & - & - & 100 & - & kHz \\
\hline Output Resistance & DC & 25 & - & 0.15 & - & - & 0.15 & - & \(\Omega\) \\
\hline \multicolumn{10}{|l|}{TRANSIENT RESPONSE} \\
\hline Rise Time (Note 2) & \(\mathrm{V}_{\mathrm{O}}=200 \mathrm{mV} \mathrm{P}_{\text {P-P }}\) & 25 & - & 75 & 100 & - & 75 & 100 & ns \\
\hline Overshoot (Note 2) & \(\mathrm{V}_{\mathrm{O}}=200 \mathrm{mV} \mathrm{V}_{\text {P-P }}\) & 25 & - & 25 & 40 & - & 25 & 40 & \% \\
\hline Slew Rate (Note 2) & \(\mathrm{V}_{\mathrm{O}}=10 \mathrm{~V}_{\text {P-P }}\) & 25 & 3.5 & 5 & - & 3.5 & 5 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline \multicolumn{10}{|l|}{DIGITAL INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Digital Input Current} & \(\mathrm{V}_{\text {IN }}=0 \mathrm{~V}\) & Full & - & - & -0.8 & \(\cdot\) & - & -0.8 & mA \\
\hline & \(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}\) & Full & - & - & 20 & - & - & 20 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Digital Input Voltage} & Low & Full & - & - & 0.8 & - & - & 0.8 & V \\
\hline & High & Full & 2.0 & - & - & 2.0 & - & - & V \\
\hline \multicolumn{10}{|l|}{SAMPLE AND HOLD CHARACTERISTICS} \\
\hline Acquisition Time (Note 2) & To 0.1\% 10V Step & 25 & - & 2.3 & 4 & - & 2.3 & 4 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

Electrical Specifications Test Conditions (Unless Otherwise Specified) \(\mathrm{V}_{\text {SUPPLY }}= \pm 15.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF}\); Digital Input: \(\mathrm{V}_{\mathrm{IL}}=+0.8 \mathrm{~V}\) (Sample), \(\mathrm{V}_{\mathrm{IH}} \doteq+2.0 \mathrm{~V}\) (Hold), Unity Gain Configuration (Output tied to Negative Input) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multirow[t]{2}{*}{\begin{tabular}{l}
TEMP. \\
( \({ }^{\circ} \mathrm{C}\) )
\end{tabular}} & \multicolumn{3}{|c|}{HA-2420-2} & \multicolumn{3}{|c|}{HA-2425-5} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Acquisition Time (Note 2) & To 0.01\% 10V Step & 25 & - & 3.2 & 6 & - & 3.2 & 6 & \(\mu \mathrm{s}\) \\
\hline Hold Step Error & \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) & 25 & - & 10 & 20 & - & 10 & 20 & mV \\
\hline Hold Mode Settling Time & To \(\pm 1 \mathrm{mV}\) & 25 & - & 860 & - & - & 860 & - & ns \\
\hline Aperture Time (Note 3) & & 25 & - & 30 & - & - & 30 & - & ns \\
\hline Effective Aperture Delay Time & & 25 & - & 30 & - & - & 30 & \(\bullet\) & ns \\
\hline Aperture Uncertainty & & 25 & - & 5 & \(\cdot\) & - & 5 & - & ns \\
\hline Drift Current (Note 2) & \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) & 25 & \(\cdot\) & 5 & - & - & 5 & - & pA \\
\hline HA1-2420 & & Full & - & 1.8 & 10 & - & - & - & nA \\
\hline HA1-2425 & & Full & - & - & - & - & 0.1 & 1.0 & nA \\
\hline HA3-2425, HA4P2425, HA9P2425 & & Full & - & - & - & - & 7.5 & 10.0 & nA \\
\hline \multicolumn{10}{|l|}{POWER SUPPLY CHARACTERISTICS} \\
\hline Supply Current (+) & & 25 & - & 3.5 & 5.5 & - & 3.5 & 5.5 & mA \\
\hline Supply Current (-) & & 25 & - & 2.5 & 3.5 & - & 2.5 & 3.5 & mA \\
\hline Power Supply Rejection & & Full & 80 & 90 & - & 74 & 90 & - & dB \\
\hline
\end{tabular}

NOTES:
2. \(A_{V}= \pm 1, R_{L}=2 k \Omega, C_{L}=50 p F\).
3. Derived from computer simulation only; not tested.

\section*{Functional Diagram}


\section*{Test Circuits and Waveforms}


FIGURE 1. HOLD STEP ERROR AND DRIFT CURRENT


NOTE: Set rise/fall times of \(\overline{\mathrm{S}} / \mathrm{H}\) Control to approximately 20 ns .

FIGURE 2. HOLD STEP ERROR TEST

Test Circuits and Waveforms (Continued)


NOTE: Measure the slope of the output during hold, \(\Delta \mathrm{V} / \Delta \mathrm{t}\), and compute drift current from: \(I_{D}=C_{H} \Delta V / \Delta t\).

FIGURE 3. DRIFT CURRENT TEST

\[
\text { Feedthrough Attenuation }=20 \log \frac{V_{O U T} H O L D}{V_{I N} H O L D}
\]

Where \(\mathrm{V}_{\text {OUT }}\) HOLD \(=\) Peak-to-Peak value of output sinewave during the hold mode.

FIGURE 4. HOLD MODE FEEDTHROUGH ATTENUATION

\section*{Schematic Diagram}


\section*{Application Information}


FIGURE 5. HOLD STEP vs INPUT VOLTAGE

\section*{Offset Adjustment}

The offset voltage of the HA-2420 and HA-2425 may be adjusted using a \(100 \mathrm{k} \Omega\) trim pot, as shown in Figure 8. The recommended adjustment procedure is:
Apply V to the sample-and-hold input, and a square wave to the \(\overline{\mathrm{S}} / \mathrm{H}\) control.

Adjust the trim pot for OV output in the hold mode.

\section*{Gain Adjustment}

The linear variation in pedestal voltage with sample-and-hold input voltage causes a \(-0.06 \%\) gain error ( \(C_{H}=1000 \mathrm{pF}\) ). In some applications (D/A deglitcher, A/D converter) the gain error can be adjusted elsewhere in the system, while in other applications it must be adjusted at the sample-and-hold. The two circuits shown below demonstrate how to adjust gain error at the sample-and-hold.
The recommended procedure for adjusting gain error is:
1. Perform offset adjustment.
2. Apply the nominal input voltage that should produce a +10 V output.
3. Adjust the trim pot for +10 V output in the hold mode.
4. Apply the nominal input voltage that should produce a -10V output.
5. Measure the output hold voltage ( \(\mathrm{V}_{-10 \mathrm{NOMINAL}}\) ). Adjust the trim pot for an output hold voltage of


FIGURE 6. INVERTING CONFIGURATION


FIGURE 7. NON-INVERTING CONFIGURATION
Figure 8 shows a typical unity gain circuit, with Offset Zeroing. All of the other normal op amp feedback configurations may be used with the HA-2420/2425. The input amplifier may be used as a gated amplifier by utilizing Pin 11 as the output. This amplifier has excellent drive capabilities along with exceptionally low switch leakage.


FIGURE 8. BASIC SAMPLE-AND-HOLD (TOP VIEW)
The method used to reduce leakage paths on the PC board and the device package is shown in Figure 9. This guard ring is recommended to minimize the drift during hold mode.
The hold capacitor should have extremely high insulation resistance and low dielectric absorption. Polystyrene (below \(85^{\circ} \mathrm{C}\) ), Teflon, or Parlene types are recommended.
For more applications, consult Harris Application Note AN517, or the factory applications group.


FIGURE 9. GUARD RING LAYOUT (BOTTOM VIEW)

\section*{Glossary of Terms}

\section*{Acquisition Time}

The time required following a "sample" command, for the output to reach its final value within \(\pm 0.1 \%\) or \(\pm 0.01 \%\). This is the minimum sample time required to obtain a given accuracy, and includes switch delay time, slewing time and settling time.

\section*{Aperture Time}

The time required for the sample-and-hold switch to open, independent of delays through the switch driver and input amplifier circuitry. The switch opening time is that interval between the conditions of \(10 \%\) open and \(90 \%\) open.

\section*{Effective Aperture Delay Time (EADT)}

The difference between the digital delay time from the Hold command to the opening of the S/H switch, and the propagation time from the analog input to the switch.

EADT may be positive, negative or zero. If zero, the \(\mathrm{S} / \mathrm{H}\) amplifier will output a voltage equal to \(\mathrm{V}_{\mathbb{I N}}\) at the instant the Hold command was received. For negative EADT, the output in Hold (exclusive of pedestal and droop errors) will correspond to a value of \(\mathrm{V}_{\mathbb{I N}}\) that occurred before the Hold command.

\section*{Aperture Uncertainty}

The range of variation in Effective Aperture Delay Time. Aperture Uncertainty (also called Aperture Delay Uncertainty, Aperture Time Jitter, etc.) sets a limit on the accuracy with which a waveform can be reconstructed from sample data.

\section*{Drift Current}

The net leakage current from the hold capacitor during the hold mode. Drift current can be calculated from the droop rate using the formula:
\(\mathrm{I}_{\mathrm{D}}(\mathrm{pA})=\mathrm{C}_{\mathrm{H}}(\mathrm{pF}) \times \frac{\Delta \mathrm{V}}{\Delta \mathrm{t}}(\mathrm{V} / \mathrm{s})\)

\section*{Typical Performance Curves}


FIGURE 10. TYPICAL SAMPLE AND HOLD PERFORMANCE AS A FUNCTION OF HOLDING CAPACITOR


FIGURE 12. DRIFT CURRENT vs TEMPERATURE


FIGURE 11. BROADBAND NOISE CHARACTERISTICS


FIGURE 13. OPEN LOOP FREQUENCY RESPONSE

Typical Performance Curves (Continued)


FIGURE 14. HOLD MODE FEED THROUGH ATTENUATION



FIGURE 16. ACQUISITION TIME \(\left(C_{H}=1000 \mathrm{pF}\right)\)


FIGURE 18. ACQUISITION TIME ( \(\mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF}\) )


FIGURE 15. OPEN LOOP PHASE RESPONSE HOLD \(\quad 0 \mathrm{~V}\)


FIGURE 17. ACQUISITION TIME \(\left(C_{H}=1000 \mathrm{pF}\right)\)


FIGURE 19. ACQUISITION TIME \(\left(C_{H}=1000 \mathrm{pF}\right)\)

\section*{Typical Performance Curves (Continued)}


FIGURE 20. ACQUISITION TIME ( \(\mathrm{C}_{\mathrm{H}}=\mathbf{1 0 0 0} \mathbf{p F}\) )


FIGURE 21. ACQUISITION TIME ( \(\mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF}\) )

\section*{Die Characteristics}
```

DIE DIMENSIONS:
102 mils x 61 mils \times }19\mathrm{ mils
2590\mum\times1550\mum\times483\mum
METALLIZATION:
Type: AI, 1% Cu
Thickness: 16k\AÅ +2k\AA
SUBSTRATE POTENTIAL:
V-

```

\section*{BACKSIDE FINISH:}
```

Gold, Nickel, Silicon, etc.

```

\section*{PASSIVATION:}

Type: Nitride \(\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)\) over Silox ( \(\mathrm{SiO}_{2}, 5 \%\) Phos.) Silox Thickness: \(12 \mathrm{k} \AA+2 \mathrm{k} \AA\)
Nitride Thickness: \(3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA\)
TRANSISTOR COUNT: 78

PROCESS:
Bipolar Dielectric Isolation

\section*{Metallization Mask Layout}


OUTPUT

\title{
\(1 \mu\) s Precision Sample and Hold Amplifier
}

\section*{Features}
- Gain, DC . \(.2 \times 10^{6} \mathrm{~V} / \mathrm{V}\)
- Acquisition Time . . . . . . . . . . . . . . . . . . . . \(1.0 \mu \mathrm{~s}\) (0.01\%)
- Droop Rate . . . . . . . . . . . . . . . . . . . . . . \(0.08 \mu \mathrm{~V} / \mu \mathrm{s}\left(25^{\circ} \mathrm{C}\right)\) \(17 \mu \mathrm{~V} / \mu \mathrm{s}\) (Full Temperature)
- Aperture Time .25ns
- Hold Step Error (See Glossary) 1.0 mV
- Internal Hold Capacitor
- Fully Differential Input
- TTL Compatible

\section*{Applications}
- Precision Data Acquisition Systems
- Digital to Analog Converter Deglitcher
- Auto Zero Circuits
- Peak Detector

\section*{Pinouts}


\section*{Description}

The HA-5320 was designed for use in precision, high speed data acquisition systems.

The circuit consists of an input transconductance amplifier capable of providing large amounts of charging current, a low leakage analog switch, and an output integrating amplifier. The analog switch sees virtual ground as its load; therefore, charge injection on the hold capacitor is constant over the entire input/output voltage range. The pedestal voltage resulting from this charge injection can be adjusted to zero by use of the offset adjust inputs. The device includes a hold capacitor. However, if improved droop rate is required at the expense of acquisition time, additional hold capacitance may be added externally.
This monolithic device is manufactured using the Harris Dielectric Isolation Process, minimizing stray capacitance and eliminating SCRs. This allows higher speed and latchfree operation. For further information, please see Application Note AN538. For Military grade product refer to the HA-5320/883 data sheet.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HA1-5320-2 & -55 to 25 & 14 Ld CERDIP & F14.3 \\
\hline HA1-5320-5 & 0 to 75 & 14 Ld CERDIP & F14.3 \\
\hline HA3-5320-5 & 0 to 75 & 14 Ld PDIP & E14.3 \\
\hline HA9P5320-5 & 0 to 75 & 16 Ld SOIC & M16.3 \\
\hline HA9P5320-9 & -40 to 85 & 16 Ld SOIC & M16.3 \\
\hline
\end{tabular}

\section*{Functional Diagram}


\section*{Absolute Maximum Ratings}

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 V
Differential Input Voltage.
24 V
Digital Input Voltage
\(+8 \mathrm{~V},-15 \mathrm{~V}\)
Output Current, Continuous (Note 1)
\(\pm 20 \mathrm{~mA}\)

\section*{Operating Conditions}

Temperature Range
\begin{tabular}{|c|c|}
\hline HA-5320-2 & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline HA-5320-5. & \(0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\) \\
\hline HA-5320-9. & \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) \\
\hline & 13.5 V to \(\pm 20 \mathrm{~V}\) \\
\hline
\end{tabular}

\section*{Thermal Information}
\begin{tabular}{|c|c|c|}
\hline Thermal Resistance (Typical, Note 3) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C}\right.\) & \(\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline CERDIP Package & 66 & 16 \\
\hline PDIP Package & 90 & N/A \\
\hline SOIC Package & 95 & N/A \\
\hline \multicolumn{3}{|l|}{Maximum Junction Temperature (Ceramic Package)} \\
\hline \multicolumn{3}{|l|}{Maximum Junction Temperature (Plastic Package)} \\
\hline \multicolumn{3}{|l|}{Maximum Storage Temperature Range . . . . . . . . \(65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)} \\
\hline Maximum Lead Temperature (Soldering (SOIC - Lead Tips Only) & & \\
\hline
\end{tabular}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Internal Power Dissipation may limit Output Current below 20 mA .
2. Specification based on a one time characterization. This parameter is not guaranteed.
3. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(\quad \mathrm{V}_{\text {SUPPLY }}= \pm 15.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{H}}=\) Internal; Digital Input: \(\mathrm{V}_{\mathrm{IL}}=+0.8 \mathrm{~V}\) (Sample), \(\mathrm{V}_{\mathrm{IH}}=+2.0 \mathrm{~V}\) (Hold), Unity Gain Configuration (Output tied to -Input), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multirow[t]{2}{*}{TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{3}{|c|}{HA-5320-2/-9} & \multicolumn{3}{|c|}{HA-5320-5} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{10}{|l|}{INPUT CHARACTERISTICS} \\
\hline Input Voltage Range & & Full & \(\pm 10\) & - & - & \(\pm 10\) & - & \(\cdot\) & V \\
\hline Input Resistance & & 25 & 1 & 5 & - & 1 & 5 & - & M \(\Omega\) \\
\hline Input Capacitance & & 25 & - & - & 5 & - & - & 5 & pF \\
\hline \multirow[t]{2}{*}{Offset Voltage} & & 25 & - & 0.2 & - & - & 0.5 & - & mV \\
\hline & & Full & - & - & 2.0 & - & - & 1.5 & mV \\
\hline \multirow[t]{2}{*}{Bias Current} & & 25 & - & 70 & 200 & - & 100 & 300 & nA \\
\hline & & Full & - & - & 200 & - & - & 300 & nA \\
\hline \multirow[t]{2}{*}{Offset Current} & & 25 & - & 30 & 100 & - & 30 & 300 & nA \\
\hline & & Full & - & - & 100 & - & - & 300 & nA \\
\hline Common Mode Range & & Full & \(\pm 10\) & - & - & \(\pm 10\) & - & - & V \\
\hline CMRR & \(\mathrm{V}_{\mathrm{CM}}= \pm 5 \mathrm{~V}\) & 25 & 80 & 90 & - & 72 & 90 & - & dB \\
\hline Offset Voltage Temperature Coefficient & & Full & - & 5 & 15 & - & 5 & 20 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{10}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline Gain & DC, (Note 12) & 25 & \(10^{6}\) & \(2 \times 10^{6}\) & - & \(3 \times 10^{5}\) & \(2 \times 10^{6}\) & - & \(\mathrm{V} N\) \\
\hline \multirow[t]{2}{*}{Gain Bandwidth Product ( \(\mathrm{A}_{\mathrm{V}}=+1\), Note 5)} & \(\mathrm{C}_{\mathrm{H}}=100 \mathrm{pF}\) & 25 & - & 2.0 & - & - & 2.0 & - & MHz \\
\hline & \(\mathrm{C}_{\mathrm{H}}=1000 \mathrm{pF}\) & 25 & - & 0.18 & - & - & 0.18 & - & MHz \\
\hline \multicolumn{10}{|l|}{OUTPUT CHARACTERISTICS} \\
\hline Output Voltage & & Full & \(\pm 10\) & - & - & \(\pm 10\) & - & - & V \\
\hline Output Current & & 25 & \(\pm 10\) & - & - & \(\pm 10\) & - & - & mA \\
\hline Full Power Bandwidth & Note 4 & 25 & - & 600 & - & - & 600 & - & kHz \\
\hline Output Resistance & Hold Mode & 25 & - & 1.0 & - & - & 1.0 & - & \(\Omega\) \\
\hline \multirow[t]{2}{*}{Total Output Noise (DC to 10 MHz )} & Sample & 25 & - & 125 & 200 & - & 125 & 200 & \(\mu \mathrm{V}_{\text {RMS }}\) \\
\hline & Hold & 25 & - & 125 & 200 & - & 125 & 200 & \(\mu \mathrm{V}_{\mathrm{RMS}}\) \\
\hline \multicolumn{10}{|l|}{TRANSIENT RESPONSE} \\
\hline Rise Time & Note 5 & 25 & - & 100 & - & - & 100 & - & ns \\
\hline
\end{tabular}

HA-5320

Electrical Specifications \(\quad V_{\text {SUPPLY }}= \pm 15.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{H}}=\) Internal; Digital Input: \(\mathrm{V}_{\mathrm{IL}}=+0.8 \mathrm{~V}\) (Sample), \(\mathrm{V}_{\mathrm{IH}}=+2.0 \mathrm{~V}\) (Hold), Unity Gain Configuration (Output tied to -Input), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP. ( \({ }^{\circ} \mathrm{C}\) )} & \multicolumn{3}{|c|}{HA-5320-2/-9} & \multicolumn{3}{|c|}{HA-5320-5} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Overshoot & Note 5 & 25 & - & 15 & - & - & 15 & - & \% \\
\hline Slew Rate & Note 6 & 25 & - & 45 & - & - & 45 & - & V/ \(/ \mathrm{s}\) \\
\hline \multicolumn{10}{|l|}{DIGITAL INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Input Voltage} & \(\mathrm{V}_{1 \mathrm{H}}\) & Full & 2.0 & - & - & 2.0 & - & - & V \\
\hline & \(\mathrm{V}_{\text {IL }}\) & Full & - & - & 0.8 & - & - & 0.8 & V \\
\hline \multirow[t]{3}{*}{Input Current} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}\)} & 25 & - & - & 4 & - & - & 4 & \(\mu \mathrm{A}\) \\
\hline & & Full & - & - & 10 & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline & \(\mathrm{V}_{\mathrm{IH}}=+5 \mathrm{~V}\) & Fuli & - & - & 0.1 & - & - & 0.1 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

SAMPLE AND HOLD CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Acquisition Time (Note 7)} & To 0.1\% & 25 & - & 0.8 & 1.2 & - & 0.8 & 1.2 & \(\mu \mathrm{s}\) \\
\hline & To 0.01\% & 25 & - & 1.0 & 1.5 & - & 1.0 & 1.5 & \(\mu \mathrm{s}\) \\
\hline Aperture Time (Note 8) & & 25 & - & 25 & - & - & 25 & - & ns \\
\hline Effective Aperture Delay Time & & 25 & -50 & -25 & 0 & -50 & -25 & 0 & ns \\
\hline Aperture Uncertainty & & 25 & - & 0.3 & - & - & 0.3 & - & ns \\
\hline \multirow[t]{2}{*}{Droop Rate} & & 25 & - & 0.08 & 0.5 & - & 0.08 & 0.5 & \(\mu \mathrm{V} / \mu \mathrm{s}\) \\
\hline & & Full & - & 17 & 100 & - & 1.2 & 100 & \(\mu \mathrm{V} / \mathrm{s}\) \\
\hline \multirow[t]{2}{*}{Drift Current} & \multirow[t]{2}{*}{Note 9} & 25 & - & 8 & 50 & - & 8 & 50 & pA \\
\hline & & Full & - & 1.7 & 10 & - & 0.12 & 10 & nA \\
\hline Charge Transfer & Note 9 & 25 & - & 0.5 & 1.1 & - & 0.5 & 1.1 & pC \\
\hline Hold Step Error & Note 9 & 25 & - & 5 & 11 & - & 5 & 11 & mV \\
\hline Hold Mode Settling Time & To 0.01\% & Full & - & 165 & 350 & - & 165 & 350 & ns \\
\hline Hold Mode Feedthrough & \(10 \mathrm{~V}_{\text {P-P }}, 100 \mathrm{kHz}\) & Full & - & 2 & - & - & 2 & - & mV \\
\hline \multicolumn{10}{|l|}{POWER SUPPLY CHARACTERISTICS} \\
\hline Positive Supply Current & Note 10 & 25 & - & 11 & 13 & - & 11 & 13 & mA \\
\hline Negative Supply Current & Note 10 & 25 & - & -11 & -13 & - & -11 & -13 & mA \\
\hline Supply Voltage Range & Note 2 & & \(\pm 13.5\) & - & \(\pm 20\) & \(\pm 13.5\) & - & \(\pm 20\) & V \\
\hline \multirow[t]{2}{*}{Power Supply Rejection} & V+, Note 11 & Full & 80 & - & - & 80 & - & - & dB \\
\hline & V -, Note 11 & Full & 65 & - & - & 65 & - & - & dB \\
\hline
\end{tabular}

NOTES:
4. \(\mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} ; \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\); unattenuated output.
5. \(V_{O}=200 \mathrm{mV} V_{P-P} ; R_{L}=2 k \Omega ; C_{L}=50 \mathrm{pF}\).
6. \(V_{O}=20 \mathrm{~V}\) Step; \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\).
7. \(V_{O}=10 \mathrm{~V}\) Step; \(R_{L}=2 k \Omega ; C_{L}=50 p F\).
8. Derived from computer simulation only; not tested.
9. \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=+3.5 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}<20 \mathrm{~ns}\left(\mathrm{~V}_{\mathrm{IL}}\right.\) to \(\left.\mathrm{V}_{\mathrm{IH}}\right)\).
10. Specified for a zero differential input voltage between \(+\mathbb{N}\) and \(-\mathbb{N}\). Supply current will increase with differential input (as may occur in the Hold mode) to approximately \(\pm 46 \mathrm{~mA}\) at 20 V .
11. Based on a 1 V delta in each supply, i.e. \(15 \mathrm{~V} \pm 0.5 \mathrm{~V}_{\mathrm{DC}}\).
12. \(R_{L}=1 \mathrm{k} \Omega, C_{L}=30 \mathrm{pF}\).

\section*{Test Circuits and Waveforms}


FIGURE 1. CHARGE TRANSFER AND DRIFT CURRENT


NOTES:
15. Observe the voltage "droop", \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{t}\).
16. Measure the slope of the output during hold, \(\Delta \mathrm{V}_{\mathrm{O}} / \Delta \mathrm{t}\), and compute drift current: \(I_{D}=C_{H} \Delta V_{O} / \Delta t\).

FIGURE 3. DRIFT CURRENT TEST


NOTE:
Feedthrough in
\(\mathrm{dB}=20 \log \frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}\) where:
\(V_{\text {OUT }}=V_{\text {P-p }}\), Hold Mode,
\(V_{I N}=V_{P-P}\).

FIGURE 4. HOLD MODE FEEDTHROUGH ATTENUATION

\section*{Application Information}

The HA-5320 has the uncommitted differential inputs of an op amp, allowing the Sample and Hold function to be combined with many conventional op amp circuits. See the Harris Application Note AN517 for a collection of circuit ideas.

\section*{Layout}

A printed circuit board with ground plane is recommended for best performance. Bypass capacitors ( 0.01 mF to 0.1 mF , ceramic) should be provided from each power supply terminal to the Supply Ground terminal on pin 13.

The ideal ground connections are pin 6 (SIG. Ground) directly to the system Signal Ground, and pin 13 (Supply Ground) directly to the system Supply Common.

\section*{Hold Capacitor}

The HA-5320 includes a 100pF MOS hold capacitor, sufficient for most high speed applications (the Electrical Specifications section is based on this internal capacitor).

Additional capacitance may be added between pins 7 and 11. This external hold capacitance will reduce droop rate at the expense of acquisition time, and provide other trade-offs as shown in the Performance Curves.

If an external hold capacitor \(\mathrm{C}_{\mathrm{EXT}}\) is used, then a noise bandwidth capacitor of value \(0.1 \mathrm{C}_{\text {EXT }}\) should be connected from pin 8 to ground. Exact value and type are not critical.

The hold capacitor CEXT should have high insulation resistance and low dielectric absorption, to minimize droop errors. Polystyrene dielectric is a good choice for operating temperatures up to \(85^{\circ} \mathrm{C}\). Teflon \(®\) and glass dielectrics offer good performance to \(125^{\circ} \mathrm{C}\) and above.
The hold capacitor terminal (pin 11) remains at virtual ground potential. Any PC connection to this terminal should be kept short and "guarded" by the ground plane, since nearby signal lines or power supply voltages will introduce errors due to drift current.
®Teflon is a registered Trademark of Dupont Corporation

\section*{Typical Application}

Figure 5 shows the HA-5320 connected as a unity gain noninverting amplifier - its most widely used configuration. As an input device for a fast successive - approximation A/D converter, it offers very high throughput rate for a monolithic IC sample/hold amplifier. Also, the HA-5320's hold step error is adjustable to zero using the Offset Adjust potentiometer, to deliver a 12-bit accurate output from the converter.

The application may call for an external hold capacitor CEXT as shown. As mentioned earlier, \(0.1 \mathrm{C}_{\mathrm{EXT}}\) is then recommended at pin 8 to reduce output noise in the Hold mode.
The HA-5320 output circuit does not include short circuit protection, and consequently its output impedance remains low at high frequencies. Thus, the step changes in load current which occur during an A/D conversion are absorbed at the \(\mathrm{S} / \mathrm{H}\) output with minimum voltage error. A momentary short circuit to ground is permissible, but the output is not designed to tolerate a short of indefinite duration.

\section*{Glossary of Terms}

\section*{Acquisition Time}

The time required following a "sample" command, for the output to reach its final value within \(\pm 0.1 \%\) or \(\pm 0.01 \%\). This is the minimum sample time required to obtain a given accuracy, and includes switch delay time, slewing time and settling time.

\section*{Charge Transfer}

The small charge transferred to the holding capacitor from the inter-electrode capacitance of the switch when the unit is switched to the HOLD mode. Charge transfer is directly proportional to sample-to-hold offset pedestal error, where:

Charge Transfer \((\mathrm{pC})=\mathrm{C}_{\mathrm{H}}(\mathrm{pF}) \times\) Hold Step Error \((\mathrm{V})\)

\section*{Aperture Time}

The time required for the sample-and-hold switch to open, independent of delays through the switch driver and input amplifier circuitry. The switch opening time is the interval between the conditions of \(10 \%\) open and \(90 \%\) open.

\section*{Hold Step Error}

Hold Step Error is the output error due to Charge Transfer (see above). It may be calculated from the specified parameter, Charge Transfer, using the following relationship:

Hold Step (V) \(=\frac{\text { Charge Transfer ( } \mathrm{pC} \text { ) }}{\text { Hold Capacitance }(\mathrm{pF})}\)

\section*{See Performance Curves.}

\section*{Effective Aperture Delay Time (EADT)}

The difference between the digital delay time from the Hold command to the opening of the S/H switch, and the propagation time from the analog input to the switch.
EADT may be positive, negative or zero. If zero, the \(\mathrm{S} / \mathrm{H}\) amplifier will output a voltage equal to \(\mathrm{V}_{\mathbb{I}}\) at the instant the Hold command was received. For negative EADT, the output in Hold (exclusive of pedestal and droop errors) will correspond to a value of \(\mathrm{V}_{\mathbb{I N}}\) that occurred before the Hold command.

\section*{Aperture Uncertainty}

The range of variation in Effective Aperture Delay Time. Aperture Uncertainty (also called Aperture Delay Uncertainty, Aperture Time Jitter, etc.) sets a limit on the accuracy with which a waveform can be reconstructed from sample data.

\section*{Drift Current}

The net leakage current from the hold capacitor during the hold mode. Drift current can be calculated from the droop rate using the formula:
\(I_{D}(p A)=C_{H}(p F) \times \frac{\Delta V}{\Delta t}(V / s)\)


FIGURE 5. TYPICAL HA-5320 CONNECTIONS; NONINVERTING UNITY GAIN MODE

\section*{Typical Performance Curves}


FIGURE 6. TYPICAL SAMPLE AND HOLD PERFORMANCE AS A FUNCTION OF HOLD CAPACITOR


FIGURE 7. DRIFT CURRENT vs TEMPERATURE


FIGURE 8. OPEN LOOP GAIN AND PHASE RESPONSE


FIGURE 9A. HOLD STEP vs INPUT VOLTAGE


FIGURE 9B. HOLD STEP vs LOGIC ( \(\mathrm{V}_{\mathrm{IH}}\) ) VOLTAGE FIGURE 9. TYPICAL SAMPLE-TO-HOLD OFFSET (HOLD STEP) ERROR

\section*{Die Characteristics}

\section*{DIE DIMENSIONS:}

92 mils \(\times 152\) mils \(\times 19\) mils

\section*{METALLIZATION:}

Type: AI, 1\% Cu
Thickness: \(16 k \AA \pm 2 k \AA\)

\section*{PASSIVATION:}

Type: Nitride \(\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)\) over Silox ( \(\mathrm{SiO}_{2}, 5 \%\) Phos) Silox Thickness: \(12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA\)
Nitride Thickness: \(3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
184
SUBSTRATE POTENTIAL:
V-

Metallization Mask Layout
HA-5320


\section*{650ns Precision Sample and Hold Amplifier}

\section*{Features}
- Very Fast Acquisition . . . 500 ns (0.1\%) 650ns (0.01\%)
- Low Droop Rate \(\qquad\)
- Very Low Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . \(0.2 m V\)
- High Slew Rate 90V/ \(\mu \mathrm{s}\)
- Wide Supply Range \(\pm 10 \mathrm{~V}\) to \(\pm 20 \mathrm{~V}\)
- Internal Hold Capacitor
- Fully Differential Input
- TTLCMOS Compatible

\section*{Applications}
- Precision Data Acquisition Systems
- D/A Converter Deglitching
- Auto-Zero Circuits
- Peak Detectors

\section*{Description}

The HA-5330 is a very fast sample and hold amplifier designed primarily for use with high speed A/D converters. It utilizes the Harris Dielectric Isolation process to achieve a 650ns acquisition time to 12 -bit accuracy and a droop rate of \(0.01 \mu \mathrm{~V} / \mu \mathrm{s}\). The circuit consists of an input transconductance amplifier capable of producing large amounts of charging current, a low leakage analog switch, and an integrating output stage which includes a 90pF hold capacitor.

The analog switch operates into a virtual ground, so charge injection on the hold capacitor is constant and independent of \(\mathrm{V}_{\mathbb{I}} \mathrm{N}\). Charge injection is held to a low value by compensation circuits and, if necessary, the resulting 0.5 mV hold step error can be adjusted to zero via the Offset Adjust terminals. Compensation is also used to minimize leakage currents which cause voltage droop in the Hold mode.

The HA-5330 will operate at reduced supply voltages (to \(\pm 10 \mathrm{~V}\) ) with a reduced signal range. The MIL-STD-883 data sheet for this device is available on request.

Ordering Information
\begin{tabular}{|l|c|l|c|}
\hline PART NUMBER & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathbf{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular} \\
\hline HA1-5330-2 & -55 to 125 & 14 Ld CERDIP & F14.3 \\
\hline HA1-5330-4 & -25 to 85 & 14 Ld CERDIP & F14.3 \\
\hline HA1-5330-5 & 0 to 75 & 14 Ld CERDIP & F14.3 \\
\hline HA3-5330-5 & 0 to 75 & 14 Ld PDIP & E14.3 \\
\hline
\end{tabular}

\section*{Pinout}

HA-5330
(PDIP, CERDIP) TOP VIEW
\begin{tabular}{|c|c|}
\hline +IN 1 & 14 - IN \\
\hline NC 2 & 13 NC \\
\hline OFFSET ADJ. 3 & 12 SIGNAL GND \\
\hline OFFSET ADJ. 4 & 11 SUPPLY GND \\
\hline v- 5 & \(10 \mathrm{v}+\) \\
\hline NC 6 & 9 NC \\
\hline OUTPUT 7 & 8 S/H CONTROL \\
\hline
\end{tabular}

\section*{Functional Diagram}


\section*{HA-5330}

\section*{Absolute Maximum Ratings}

Voltage between \(\mathrm{V}+\) and SUPPLY/SIG GND
\(+20 \mathrm{~V}\)
Voltage between V- and SUPPLY/SIG GND
Voltage between SUPPLY GND and SIG GND . . . . . . . . . . . \(\pm 2.0 \mathrm{~V}\)
Voltage between \(\overline{\mathrm{S}} / \mathrm{H}\) Control and SUPPLY/SIG GND . . . . \(+8 \mathrm{~V},-6 \mathrm{~V}\)
Differential Input Voltage.
.. . 24V
Output Current, Continuous (Note 1) . . . . . . . . . . . . . . . . . . \(\pm 17 \mathrm{~mA}\)

\section*{Thermal Information}
\begin{tabular}{|c|c|c|}
\hline Thermal Resistance (Typical, Note 3) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) & \(\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline CERDIP Package & 66 & 16 \\
\hline PDIP Package & 90 & N/A \\
\hline
\end{tabular}

Maximum Junction Temperature (Ceramic Package, Note 2) . . . \(175^{\circ} \mathrm{C}\) Maximum Junction Temperature (Plastic Package) . . . . . . . . \(150^{\circ} \mathrm{C}\) Maximum Storage Temperature Range \(\ldots . . . . . .-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\)

\section*{Operating Conditions}

Temperature Range
\begin{tabular}{|c|c|}
\hline HA-5330-2 & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) \\
\hline HA-5330-4. & \(-25^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) \\
\hline HA-5330-5. & \(0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\) \\
\hline Supply Voltage & \(\pm 10 \mathrm{~V}\) to \(\pm 20 \mathrm{~V}\) \\
\hline
\end{tabular}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Internal Power Dissipation may limit Output Current below \(\pm 17 \mathrm{~mA}\).
2. Maximum power dissipation, including output load, must be designed to maintain the junction temperature below \(175^{\circ} \mathrm{C}\) for the ceramic package, and below \(150^{\circ} \mathrm{C}\) for the plastic package.
3. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(\quad \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V} ; \overline{\mathrm{S}} / \mathrm{H}\) Control \(\mathrm{V}_{\mathrm{IL}}=+0.8 \mathrm{~V}\) (Sample): \(\mathrm{V}_{\mathrm{IH}}=+2.0 \mathrm{~V}\) (Hold); SIG GND \(=\) SUPPLY GND, Unity Gain Configuration (Output tied to -Input), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multirow[t]{2}{*}{\begin{tabular}{l}
TEMP. \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular}} & \multicolumn{3}{|c|}{HA-5330-2, -4} & \multicolumn{3}{|c|}{HA-5330-5} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{10}{|l|}{INPUT CHARACTERISTICS} \\
\hline Input Voltage Range & & Full & \(\pm 10\) & - & - & \(\pm 10\) & - & - & V \\
\hline Input Resistance (Note 4) & & 25 & 5 & 15 & - & 5 & 15 & - & M \(\Omega\) \\
\hline Input Capacitance & & 25 & - & 3 & - & - & 3 & - & pF \\
\hline \multirow[t]{2}{*}{Offset Voltage} & & 25 & - & 0.2 & - & - & 0.2 & - & mV \\
\hline & & Full & - & - & 2.0 & - & - & 1.5 & mV \\
\hline Offset Voltage Temperature Coefficient & & Full & - & 1 & 10 & - & 1 & 10 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{Bias Current} & & 25 & - & \(\pm 20\) & - & - & \(\pm 20\) & - & nA \\
\hline & & Full & - & - & \(\pm 500\) & - & - & \(\pm 300\) & nA \\
\hline \multirow[t]{2}{*}{Offset Current} & & 25 & - & 20 & - & - & 20 & - & nA \\
\hline & & Full & - & - & 500 & - & - & 300 & nA \\
\hline Common Mode Range & & Full & \(\pm 10\) & - & - & \(\pm 10\) & - & - & V \\
\hline CMRR & \(\mathrm{V}_{\mathrm{CM}}= \pm 10 \mathrm{~V}\) & Full & 86 & 100 & - & 86 & 100 & - & dB \\
\hline \multicolumn{10}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline Gain & DC & Full & \(2 \times 10^{6}\) & \(2 \times 10^{7}\) & - & \(2 \times 10^{6}\) & \(2 \times 10^{7}\) & - & \(\mathrm{V} N\) \\
\hline Gain Bandwidth Product & Note 12 & 25 & - & 4.5 & - & - & 4.5 & - & MHz \\
\hline \multicolumn{10}{|l|}{OUTPUT CHARACTERISTICS} \\
\hline Output Voltage & & Full & \(\pm 10\) & - & - & \(\pm 10\) & - & - & \(V\) \\
\hline Output Current & & Full & \(\pm 10\) & - & - & \(\pm 10\) & - & - & mA \\
\hline Full Power Bandwidth (Note 6) & & 25 & - & 1.4 & - & - & 1.4 & - & MHz \\
\hline \multirow[t]{2}{*}{Output Resistance} & Hold Mode & 25 & - & 0.2 & - & - & 0.2 & - & \(\Omega\) \\
\hline & Sample Mode & 25 & - & \(10^{-5}\) & 0.001 & - & \(10^{-5}\) & 0.001 & \(\Omega\) \\
\hline
\end{tabular}

HA-5330

Electrical Specifications \(\quad V_{\text {SUPPLY }}= \pm 15 \mathrm{~V} ; \overline{\mathrm{S}} / \mathrm{H}\) Control \(\mathrm{V}_{\mathrm{IL}}=+0.8 \mathrm{~V}\) (Sample): \(\mathrm{V}_{\mathrm{IH}}=+2.0 \mathrm{~V}\) (Hold); SIG GND \(=\) SUPPLY GND, Unity Gain Configuration (Output tied to -Input), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP. ( \({ }^{\circ} \mathrm{C}\) )} & \multicolumn{3}{|c|}{HA-5330-2, -4} & \multicolumn{3}{|c|}{HA-5330-5} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{2}{*}{Total Output Noise, DC to 4 MHz} & Sample Mode & & - & 230 & - & - & 230 & - & \(\mu \mathrm{V}_{\text {RMS }}\) \\
\hline & Hold Mode & 25 & - & 190 & - & - & 190 & - & \(\mu \mathrm{V}\) RMS \\
\hline
\end{tabular}

\section*{TRANSIENT RESPONSE}
\begin{tabular}{|l|l|c|c|c|c|c|c|c|c|}
\hline Rise Time & Note 5 & 25 & - & 70 & - & - & 70 & - & ns \\
\hline Overshoot & Note 5 & 25 & - & 10 & - & - & 10 & - & \(\%\) \\
\hline Slew Rate & Note 7 & 25 & - & 90 & - & - & 90 & - & \(\mathrm{V} / \mathrm{ms}\) \\
\hline
\end{tabular}

DIGITAL INPUT CHARACTERISTICS
\begin{tabular}{|l|l|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{ Input Voltage } & \(\mathrm{V}_{\mathrm{IH}}\) & Full & 2.0 & - & - & 2.0 & - & - & V \\
\cline { 2 - 10 } & \(\mathrm{V}_{\mathrm{IL}}\) & Full & - & - & 0.8 & - & - & 0.8 & V \\
\hline \multirow{2}{*}{ Input Current } & \(\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}\) & Full & - & 10 & 40 & - & 10 & 40 & \(\mu \mathrm{~A}\) \\
\cline { 2 - 11 } & \(\mathrm{~V}_{\mathrm{IH}}=5 \mathrm{~V}\) & Full & - & 10 & 40 & - & 10 & 40 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

\section*{SAMPLE/HOLD CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{Acquisition Time} & \multirow[t]{2}{*}{To 0.1\%, Note 8} & 25 & - & 500 & - & - & 500 & - & ns \\
\hline & & Full & - & - & 700 & - & - & 700 & ns \\
\hline & \multirow[t]{2}{*}{To 0.01\%, Note 8} & 25 & - & 650 & - & - & 650 & - & ns \\
\hline & & Full & - & - & 900 & - & - & 900 & ns \\
\hline Aperture Time (Note 4) & & 25 & - & 20 & - & - & 20 & - & ns \\
\hline Effective Aperture Delay Time & & 25 & -50 & -25 & 0 & -50 & -25 & 0 & ns \\
\hline Aperture Uncertainty & & 25 & - & 0.1 & - & - & 0.1 & \(\bullet\) & ns \\
\hline \multirow[t]{2}{*}{Droop Rate (Note 9)} & & 25 & - & 0.01 & - & - & 0.01 & - & \(\mu \mathrm{V} / \mathrm{ss}\) \\
\hline & & Full & - & - & 100 & - & - & 10 & \(\mu \mathrm{V} / \mu \mathrm{s}\) \\
\hline Hold Step Error & Note 10 & 25 & - & 0.5 & - & - & 0.5 & - & mV \\
\hline Hold Mode Settling Time & To 0.01\% & 25 & - & 100 & 200 & - & 100 & 200 & ns \\
\hline Hold Mode Feedthrough & \(20 \mathrm{~V}_{\text {P-P, }} 100 \mathrm{kHz}\) & Full & - & -88 & - & - & -88 & - & dB \\
\hline
\end{tabular}

POWER SUPPLY CHARACTERISTICS
\begin{tabular}{|l|l|c|c|c|c|c|c|c|c|}
\hline Positive Supply Current & & Full & - & 18 & 22 & - & 18 & 24 & mA \\
\hline Negative Supply Current & & Full & - & 19 & 23 & - & 19 & 25 & mA \\
\hline Power Supply Rejection & Note 11 & Full & 86 & 100 & - & 86 & 100 & - & dB \\
\hline
\end{tabular}

NOTES:
4. Derived from computer simulation only; not tested.
5. \(\mathrm{V}_{\mathrm{I}}=200 \mathrm{mV}\) Step; \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\).
6. Full power bandwidth based on slew rate measurement using: FPBW \(=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}\). Distortion of wave shape occurs beyond 100 kHz due to slew rate enhancement circuitry.
7. \(\mathrm{V}_{\mathrm{O}}=20 \mathrm{~V}\) Step; \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\).
8. \(V_{O}=10 \mathrm{~V}\) Step; \(R_{L}=2 k \Omega ; C_{L}=50 p F\).
9. This parameter is measured at ambient temperature extremes in a high speed test environment. Consequently, steady state heating effects from internal power dissipation are not included.
10. \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=+3.5 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=22 \mathrm{~ns}\left(\mathrm{~V}_{\mathrm{IL}}\right.\) to \(\left.\mathrm{V}_{\mathrm{IH}}\right)\). See graph .
11. Based on a 3 V delta in each supply, i.e. \(15 \mathrm{~V} \pm 1.5 \mathrm{~V}_{\mathrm{DC}}\).
12. \(\mathrm{V}_{\mathrm{OUT}}=200 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\).

\section*{Application Information}

The HA-5330 has the uncommitted differential inputs of an op amp, allowing the Sample/Hold function to be combined with many conventional op amp circuit ideas. See the Harris Application Note AN517 for a collection of circuit ideas.

\section*{Layout}

A printed circuit board with ground plane is recommended for best performance. Bypass capacitors ( \(0.01 \mu \mathrm{~F}\) to \(0.1 \mu \mathrm{~F}\), ceramic) should be provided from each power supply terminal to the Supply GND Terminal on pin 11.

\section*{Typical Applications}

The HA-5330 is configured as a unity gain noninverting amplifier by simply connecting the output (pin 7) to the inverting input (pin 14). As an input device for a fast successive - approximation A/D converter, it offers an extremely high throughput rate. Also, the HA-5330's pedestal error is adjustable to zero by using an Offset Adjust potentiometer (10K to 50 K ) center tapped to V -.


FIGURE 1. HA-5330 OFFSET ADJUST
The ideal ground connections are pin 11 (Supply Ground) directly to the system Supply Common, and pin 12 (Signal Ground) directly to the system Signal Ground (Analog Ground).

\section*{Hold Capacitor}

The HA-5330 includes a 90pF MOS hold capacitor, sufficient for most high speed applications (the Electrical Specifications section is based on the internal capacitor).


FIGURE 2. MAGNITUDE AND PHASE RESPONSE (CLOSED LOOP GAIN = 100)

\section*{Output Stage}

The HA-5330 output circuit does not include short circuit protection, and consequently its output impedance remains low at high frequencies. Thus, the step changes in load current which occur during an A/D conversion are absorbed at the \(\overline{\mathbf{S}} / \mathrm{H}\) output with minimum voltage error. A momentary short circuit to ground is permissible, but the output is not designed to tolerate a short of indefinite duration.

\section*{Glossary of Terms}

\section*{Acquisition Time}

The time required following a "sample" command, for the output to reach its final value within \(\pm 0.1 \%\) or \(\pm 0.01 \%\). This is the minimum sample time required to obtain a given accuracy, and includes switch delay time, slewing time and settling time.

\section*{Aperture Time}

The time required for the sample-and-hold switch to open, independent of delays through the switch driver and input amplifier circuitry. The switch opening time is that interval between the conditions of \(10 \%\) open and \(90 \%\) open.

\section*{Hold Step Error}

Hold step error is the output shift due to charge transfer from the sample to the hold mode. It is also referred to as "offset step" or "pedestal error".


FIGURE 3. HOLD STEP ERROR vs \(\overline{\mathbf{S}} / \mathrm{H}\) CONTROL RISE TIME

\section*{Effective Aperture Delay Time (EADT)}

The difference between the digital delay time from the Hold command to the opening of the \(\overline{\mathrm{S}} / \mathrm{H}\) switch, and the propagation time from the analog input to the switch.
EADT may be positive, negative or zero. If zero, the \(\overline{\mathrm{S}} / \mathrm{H}\) amplifier will output a voltage equal to \(\mathrm{V}_{\mathbb{I N}}\) at the instant the Hold command was received. For negative EADT, the output in Hold (exclusive of pedestal and droop errors) will correspond to a value of \(\mathrm{V}_{\mathrm{IN}}\) that occurred before the Hold command.

\section*{Aperture Uncertainty}

The range of variation in Effective Aperture Delay Time. Aperture Uncertainty (also called Aperture Delay Uncertainty, Aperture Time Jitter, etc.) sets a limit on the accuracy with which a waveform can be reconstructed from sample data.

\section*{Die Characteristics}

\section*{DIE DIMENSIONS:}

99 mils \(\times 166\) mils \(\times 19\) mils
\(2510 \mu \mathrm{~m} \times 4210 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)

\section*{METALLIZATION:}

Type: AI, 1\% Cu
Thickness: \(16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA\)

\section*{PASSIVATION:}

Type: Nitride \(\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)\) over Silox ( \(\mathrm{SiO}_{2}, 5 \%\) Phos.)
Silox Thickness: \(12 \mathrm{k} \AA+2 \mathrm{k} \AA\)
Nitride Thickness: \(3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA\)

\section*{SUBSTRATE POTENTIAL (Powered Up):}

Signal GND
TRANSISTOR COUNT:
205
PROCESS:
Bipolar Dielectric Isolation

Metallization Mask Layout
HA-5330


\section*{700ns, Low Distortion, Precision Sample and Hold Amplifier}

\section*{Features}
- Fast Acquisition Time (0.01\%)
.700ns
- Fast Hold Mode Settling Time (0.01\%) . . . . . . . . . . 200n
- Low Distortion (Hold Mode) -72dBc
- \(\left(\mathrm{V}_{\mathrm{IN}}=\mathbf{2 0 0 k H z}, \mathrm{f}_{\mathrm{S}}=\mathbf{4 5 0 k H z}, \mathbf{5} \mathrm{V}_{\mathrm{P}-\mathrm{P}}\right)\)
- Bandwidth Minimally Affected By External \(\mathbf{C}_{\mathbf{H}}\)
- Fully Differential Analog Inputs
- Built-In 135pF Hold Capacitor
- Pin Compatible with HA-5320

\section*{Applications}
- High Bandwidth Precision Data Acquisition Systems
- Inertial Navigation and Guidance Systems
- Ultrasonics
- SONAR
- RADAR

\section*{Pinouts}


\section*{Description}

The HA-5340 combines the advantages of two sample/ hold architectures to create a new generation of monolithic sample/hold. High amplitude, high frequency signals can be sampled with very low distortion being introduced. The combination of exceptionally fast acquisition time and specified/characterized hold mode distortion is an industry first. Additionally, the AC performance is only minimally affected by additional hold capacitance.

To achieve this level of performance, the benefits of an integrating output stage have been combined with the advantages of a buffered hold capacitor. To the user this translates to a front-end stage that has high bandwidth due to charging only a small capacitive load and an output stage with constant pedestal error which can be nulled out using the offset adjust pins. Since the performance penalty for additional hold capacitance is low, the designer can further minimize pedestal error and droop rate without sacrificing speed.

Low distortion, fast acquisition, and low droop rate are the result, making the HA-5340 the obvious choice for high speed, high accuracy sampling systems.

For a Military temperature range version request the HA-5340/883 data sheet.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HA1-5340-5 & 0 to 75 & 14 Ld CERDIP & F14.3 \\
\hline HA1-5340-9 & -40 to 85 & 14 Ld CERDIP & F14.3 \\
\hline HA3-5340-5 & 0 to 75 & 14 Ld PDIP & E14.3 \\
\hline HA3-5340-9 & -40 to 85 & 14 Ld PDIP & E14.3 \\
\hline HA9P5340-5 & 0 to 75 & 16 Ld SOIC & M16.3 \\
\hline
\end{tabular}

Functional Diagram


HA-5340
Absolute Maximum RatingsVoltage Between V+ and V- Terminals . . . . . . . . . . . . . . . . . . . . . 36V
Differential Input Voltage. ..... 24 V
Digital Input Voltage ..... \(+8 \mathrm{~V},-6 \mathrm{~V}\)
Output Current, Continuous ..... \(\pm 20 \mathrm{~mA}\)
Operating Conditions
Temperature Range
HA-5340-9 \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)
HA-5340-5. \(0^{\circ} \mathrm{C}\) to \(75^{\circ} \mathrm{C}\)
Supply Voltage Range (Typical) \(\pm 12 \mathrm{~V}\) to \(\pm 18 \mathrm{~V}\)

\section*{Thermal Information}

Thermal Resistance (Typical, Note 2) \(\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) .. 66 16
 SOIC Package. . . . . . . . . . . . . . . . . . 95 N/A Maximum Junction Temperature (Ceramic Package, Note 1) . . \(175^{\circ} \mathrm{C}\) Maximum Junction Temperature (Plastic Package) . . . . . . . \(150^{\circ} \mathrm{C}\) Maximum Storage Temperature Range ......... \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\) (SOIC - Lead Tips Only)
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Maximum power dissipation must be designed to maintain the junction temperature below \(175^{\circ} \mathrm{C}\) for the ceramic package, and below \(150^{\circ} \mathrm{C}\) for the plastic packages.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(V_{S U P P L Y}= \pm 15.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{H}}=\) Internal \(=135 \mathrm{pF}\); Digital Input: \(\mathrm{V}_{\mathrm{IL}}=+0.8 \mathrm{~V}\) (Sample), \(\mathrm{V}_{\mathbb{I H}}=+2.0 \mathrm{~V}\) (Hold). Non-Inverting Unity Gain Configuration (Output tied to -Input), \(R_{L}=2 k \Omega, C_{L}=60 p F\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP. ( \({ }^{\circ} \mathrm{C}\) )} & \multicolumn{3}{|l|}{HA-5340-9, HA-5340-5} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline \multicolumn{7}{|l|}{INPUT CHARACTERISTICS} \\
\hline Input Voltage Range & & Full & -10 & - & +10 & V \\
\hline Input Resistance (Note 3) & & 25 & - & 1 & - & \(\mathrm{M} \Omega\) \\
\hline Input Capacitance & & 25 & - & - & 3 & pF \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & & 25 & - & - & 1.5 & mV \\
\hline & & Full & - & - & 3.0 & mV \\
\hline Offset Voltage Temperature Coefficient & & Full & - & - & 30 & \(\mu \mathrm{V}{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{Bias Current} & & 25 & - & \(\pm 70\) & - & nA \\
\hline & & Full & - & - & \(\pm 350\) & nA \\
\hline \multirow[t]{2}{*}{Offset Current} & & 25 & - & \(\pm 50\) & - & nA \\
\hline & & Full & - & - & \(\pm 350\) & nA \\
\hline Common Mode Range & & Full & -10 & - & +10 & V \\
\hline \multirow[t]{2}{*}{CMRR} & \multirow[t]{2}{*}{\(\pm 10 \mathrm{~V}\), Note 4} & 25 & - & 83 & - & dB \\
\hline & & Full & 72 & - & - & dB \\
\hline \multicolumn{7}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline Gain & DC & 25 & 110 & 140 & - & dB \\
\hline \multirow[t]{3}{*}{Gain Bandwidth Product} & \(\mathrm{C}_{\mathrm{H}}\) External \(=0 \mathrm{pF}\) & Full & - & 10 & - & MHz \\
\hline & \(\mathrm{C}_{\mathrm{H}}\) External \(=100 \mathrm{pF}\) & Fuil & - & 9.6 & - & MHz \\
\hline & \(\mathrm{C}_{\mathrm{H}}\) External \(=1000 \mathrm{pF}\) & Full & - & 6.7 & - & MHz \\
\hline \multicolumn{7}{|l|}{TRANSIENT RESPONSE} \\
\hline Rise Time & 200 mV Step & 25 & - & 20 & 30 & ns \\
\hline Overshoot & 200 mV Step & 25 & - & 35 & 50 & \% \\
\hline Slew Rate & 10 V Step & 25 & 40 & 60 & \(\bullet\) & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline \multicolumn{7}{|l|}{DIGITAL INPUT CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Input Voltage} & \(\mathrm{V}_{\mathrm{IH}}\) & Full & 2.0 & - & \(\cdot\) & V \\
\hline & \(\mathrm{V}_{\mathrm{IL}}\) & Full & - & - & 0.8 & V \\
\hline \multirow[t]{2}{*}{Input Current} & \(\mathrm{V}_{\text {IL }}=0 \mathrm{~V}\) & Full & - & 7 & 40 & \(\mu \mathrm{A}\) \\
\hline & \(\mathrm{V}_{1 \mathrm{H}}=5 \mathrm{~V}\) & Full & - & 4 & 40 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 15.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{H}}=\) Internal \(=135 \mathrm{pF} ;\) Digital Input: \(\mathrm{V}_{\mathrm{IL}}=+0.8 \mathrm{~V}\) (Sample), \(\mathrm{V}_{\mathrm{IH}}=+2.0 \mathrm{~V}\) (Hold). Non-Inverting Unity Gain Configuration (Output tied to -Input), \(R_{L}=2 k \Omega, C_{L}=60 \mathrm{pF}\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{3}{|l|}{HA-5340-9, HA-5340-5} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline \multicolumn{7}{|l|}{OUTPUT CHARACTERISTICS} \\
\hline Output Voltage & & Full & -10 & - & +10 & V \\
\hline Output Current & & Full & -10 & - & +10 & mA \\
\hline Full Power Bandwidth (Note 5) & & Full & 0.6 & 0.9 & - & MHz \\
\hline \multirow[t]{2}{*}{Output Resistance} & \multirow[t]{2}{*}{Hold Mode} & 25 & - & 0.05 & 0.1 & \(\Omega\) \\
\hline & & Full & - & 0.07 & 0.15 & \(\Omega\) \\
\hline \multirow[t]{2}{*}{Total Output Noise DC to 10 MHz} & Sample Mode & 25 & - & 325 & 400 & \(\mu \mathrm{V}_{\text {RMS }}\) \\
\hline & Hold Mode & 25 & - & 325 & 400 & \(\mu \mathrm{V}\) RMS \\
\hline
\end{tabular}

\section*{DISTORTION CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline SAMPLE MODE Signal to Noise Ratio (RMS Signal to RMS Noise) & \(\mathrm{V}_{\mathrm{IN}}=200 \mathrm{kHz}, 20 \mathrm{~V}_{\text {P-P }}\) & Full & - & 115 & - & dB \\
\hline \multirow[t]{4}{*}{Total Harmonic Distortion} & \(\mathrm{V}_{\mathrm{IN}}=200 \mathrm{kHz}, 5 \mathrm{~V}_{\text {P-P }}\) & Full & -90 & -100 & - & dBc \\
\hline & \(\mathrm{V}_{\text {IN }}=200 \mathrm{kHz}, 10 \mathrm{~V}_{\text {P-P }}\) & Full & -76 & -82 & - & dBc \\
\hline & \(\mathrm{V}_{\text {IN }}=200 \mathrm{kHz}, 20 \mathrm{~V}_{\text {P-P }}\) & Full & -70 & -74 & - & dBc \\
\hline & \(\mathrm{V}_{\text {IN }}=500 \mathrm{kHz}, 5 \mathrm{~V}_{\text {P-P }}\) & Full & -66 & -75 & - & dBc \\
\hline Intermodulation Distortion & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{f}_{1}=20 \mathrm{kHz}, \\
& \mathrm{f}_{2}=21 \mathrm{kHz}
\end{aligned}
\] & Full & -78 & -83 & - & dBc \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
HOLD MODE (50\% Duty Cycle S/H) \\
Signal to Noise Ratio (RMS Signal to RMS Noise)
\[
\mathrm{f}_{\mathrm{S}}=450 \mathrm{kHz}
\]
\end{tabular}} & \(\mathrm{V}_{\mathrm{IN}}=200 \mathrm{kHz}, 5 \mathrm{~V}_{\text {P-P }}\) & 25 & - & 76 & - & dB \\
\hline & \(\mathrm{V}_{\text {IN }}=200 \mathrm{kHz}, 10 \mathrm{~V}_{\text {P-P }}\) & 25 & - & 76 & - & dB \\
\hline \multirow[t]{3}{*}{Total Harmonic Distortion \(\mathrm{f}_{\mathrm{S}}=450 \mathrm{kHz}\)} & \(\mathrm{V}_{\text {IN }}=200 \mathrm{kHz}, 5 \mathrm{~V}_{\text {P-P }}\) & 25 & - & -72 & - & dBc \\
\hline & \(\mathrm{V}_{\text {IN }}=200 \mathrm{kHz}, 10 \mathrm{~V}_{\text {P-P }}\) & 25 & - & -66 & - & dBc \\
\hline & \(\mathrm{V}_{\text {IN }}=200 \mathrm{kHz}, 20 \mathrm{~V}_{\text {P-P }}\) & 25 & - & -56 & - & dBc \\
\hline \multirow[t]{3}{*}{\(\mathrm{i}^{\text {s }}=450 \mathrm{kHz}\)} & \(\mathrm{V}_{\mathrm{IN}}=100 \mathrm{kHz}, 5 \mathrm{~V}_{\text {P-P }}\) & 25 & - & -84 & - & dBc \\
\hline & \(\mathrm{V}_{\text {IN }}=100 \mathrm{kHz}, 10 \mathrm{~V}_{\text {P-P }}\) & 25 & - & -71 & - & dBc \\
\hline & \(\mathrm{V}_{\text {IN }}=100 \mathrm{kHz}, 20 \mathrm{~V}_{\text {P-P }}\) & 25 & - & -61 & - & dBc \\
\hline \multirow[t]{3}{*}{\(\mathrm{f}_{\mathrm{S}}=2 \mathrm{f}_{1}(\) Nyquist \()\)} & \(\mathrm{V}_{\text {IN }}=20 \mathrm{kHz}, 5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & 25 & - & -95 & - & dBc \\
\hline & \(\mathrm{V}_{\text {IN }}=50 \mathrm{kHz}, 5 \mathrm{~V}_{\text {P-P }}\) & 25 & - & -91 & - & dBc \\
\hline & \(\mathrm{V}_{\mathrm{IN}}=100 \mathrm{kHz}, 5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & 25 & - & -82 & - & dBc \\
\hline Intermodulation Distortion \(\mathrm{f}_{\mathrm{S}}=450 \mathrm{kHz}\) & \[
\begin{aligned}
& V_{I N}=10 V_{P-P} \\
& \left(f_{1}=20 \mathrm{kHz}, \mathrm{f}_{2}=21 \mathrm{kHz}\right)
\end{aligned}
\] & 25 & - & -79 & - & dBc \\
\hline
\end{tabular}

SAMPLE AND HOLD CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Acquisition Time} & \multirow[t]{2}{*}{10V Step to 0.01\%} & 25 & - & 700 & - & ns \\
\hline & & Full & - & - & 900 & ns \\
\hline & 10V Step to 0.1\% & 25 & - & 430 & 600 & ns \\
\hline \multirow[t]{2}{*}{Droop Rate} & \multirow[t]{2}{*}{\(\mathrm{C}_{\mathrm{H}}=\) Internal} & 25 & - & 0.1 & - & \(\mu \mathrm{V} / \mu \mathrm{s}\) \\
\hline & & Full & - & - & 95 & \(\mu \mathrm{V} / \mathrm{\mu s}\) \\
\hline Hold Step Error & \(\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=4.0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=5 \mathrm{~ns}\) & 25 & - & 15 & - & mV \\
\hline Hold Mode Settling Time & To \(\pm 1 \mathrm{mV}\) & Full & - & 200 & 300 & ns \\
\hline Hold Mode Feedthrough & \(20 \mathrm{~V}_{\text {P-P, }}\) 200kHz, Sine & Full & - & -76 & - & dB \\
\hline EADT (Effective Aperture Delay Time) & & 25 & - & -15 & - & ns \\
\hline
\end{tabular}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 15.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{H}}=\) Internal \(=135 \mathrm{pF}\); Digital Input: \(\mathrm{V}_{\mathrm{IL}}=+0.8 \mathrm{~V}\) (Sample), \(\mathrm{V}_{\mathrm{IH}}=+2.0 \mathrm{~V}\) (Hold). Non-Inverting Unity Gain Configuration (Output tied to -Input), \(\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=60 \mathrm{pF}\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{3}{|l|}{HA-5340-9, HA-5340-5} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline Aperture Uncertainty & & 25 & - & 0.2 & - & ns \\
\hline \multicolumn{7}{|l|}{POWER SUPPLY CHARACTERISTICS} \\
\hline Positive Supply Current & & Full & - & 19 & 25 & mA \\
\hline Negative Supply Current & & Full & - & 19 & 25 & mA \\
\hline PSRR & 10\% Delta & Full & 75 & 82 & - & dB \\
\hline
\end{tabular}

NOTES:
3. Derived from Computer Simulation only, not tested.
4. +CMRR is measured from 0 V to \(+10 \mathrm{~V},-\) CMRR is measured from 0 V to -10 V .
5. Based on the calculation FPBW \(=\) Slew Rate \(/ 2 \pi V_{\text {PEAK }}\left(V_{\text {PEAK }}=10 \mathrm{~V}\right)\).

\section*{Test Circuits and Waveforms}


FIGURE 1. HOLD STEP ERROR AND DROOP RATE


FIGURE 2. HOLD STEP ERROR
FIGURE 3. DROOP RATE TEST


FIGURE 4. HOLD MODE FEED THROUGH ATTENUATION

\section*{Application Information}

The HA-5340 has the uncommitted differential inputs of an op amp, allowing the Sample and Hold function to be combined with many conventional op amp circuits. See the Harris Application Note AN517 for a collection of circuit ideas.

\section*{Layout}

A printed circuit board with ground plane is recommended for best performance. Bypass capacitors \((0.01 \mu \mathrm{~F}\) to \(0.1 \mu \mathrm{~F}\), ceramic) should be provided from each power supply terminal to the Supply Ground terminal on pin 13.
The ideal ground connections are pin 6 (SIG. GND) directly to the system Signal Ground, and pin 13 (Supply Ground) directly to the system Supply Common.

\section*{Hold Capacitor}

The HA-5340 includes a 135 pF MOS hold capacitor, sufficient for most high speed applications (the Electrical Specifications section is based on this internal capacitor). Additional capacitance may be added between pins 7 and 11. This external hold capacitance will reduce droop rate at the expense of acquisition time, and provide other trade-offs as shown in the Performance Curves.
The hold capacitor \(\mathrm{C}_{\mathrm{H}}\) should have high insulation resistance and low dielectric absorption, to minimize droop
errors. Teflon®, polystyrene and polyproplene dielectric capacitor types offer good performance over the specified operating temperature range.

The hold capacitor terminal (pin 11) remains at virtual ground potential. Any PC connection to this terminal should be kept short and "guarded" by the ground plane, since nearby signal lines or power supply voltages will introduce errors due to drift current.

\section*{®Teflon is a registered Trademark of Dupont Corporation.}

\section*{Typical Application}

Figure 5 shows the HA-5340 connected as a unity gain noninverting amplifier - its most widely used configuration. As an input device for a fast successive - approximation A/D converter, it offers very high throughput rate for a monolithic IC sample/hold amplifier. Also, the HA-5340's hold step error is adjustable to zero using the Offset Adjust potentiometer, to deliver a 12-bit accurate output from the converter.
The HA-5340 output circuit does not include short circuit protection, and consequently its output impedance remains low at high frequencies. Thus, the step changes in load current which occur during an A/D conversion are absorbed at the \(\mathrm{S} / \mathrm{H}\) output with minimum voltage error. A momentary short circuit to ground is permissible, but the output is not designed to tolerate a short of indefinite duration.


FIGURE 5. TYPICAL HA-5340 CONNECTIONS; NONINVERTING UNITY GAIN MODE

Typical Performance Curves \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\), Unless Otherwise Specified


FIGURE 6. TACQ POS 0 TO +10 STEP


FIGURE 8. DROOP RATE vs HOLD CAPACITANCE


FIGURE 10. HOLD STEP ERROR vs \(\mathrm{T}_{\text {RISE }}\)


FIGURE 7. \(T_{A C Q}\) vs ADDITIONAL \(C_{H}\)


FIGURE 9. ACQUISITION TIME (0.01\%) vs HOLD CAPACITANCE


FIGURE 11. HOLD STEP ERROR vs TEMPERATURE

Typical Performance Curves \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}\). Unless Otherwise Specified (Continued)


FIGURE 12. HOLD STEP ERROR vs HOLD CAPACITANCE


NOTE: \(\pm 15 \mathrm{~V}\) and \(\pm 12 \mathrm{~V}\) supplies trace the same line within the width of the line, therefore only one line is shown.

FIGURE 14. CLOSED LOOP PHASE/GAIN


FIGURE 16. THD vs FREQUENCY


FIGURE 13. HOLD STEP ERROR vs TEMPERATURE


FIGURE 15. CLOSED LOOP PHASE/GAIN


FIGURE 17. THD vs VOUT

\section*{Die Characteristics}

\section*{DIE DIMENSIONS:}

84 mils \(\times 139\) mils \(\times 19 \mathrm{mils}\)

\section*{METALLIZATION:}

Type: AI, 1\% Cu
Thickness: \(16 \mathrm{k} \AA \pm 2 \mathrm{k} \AA\)

\section*{PASSIVATION:}

Type: Nitride \(\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)\) over Silox ( \(\mathrm{SiO}_{2}, 5 \%\) Phos)
Silox Thickness: \(12 \mathrm{k} \AA \pm 2.0 \mathrm{k} \AA\)
Nitride Thickness: \(3.5 \mathrm{k} \AA \pm 1.5 \mathrm{k} \AA\)
SUBSTRATE POTENTIAL (Powered Up):
V-

TRANSISTOR COUNT:
196

\section*{Metallization Mask Layout}


HARRIS
HA5351

\section*{Features}
- Fast Acquisition to \(0.01 \%\). . . . . . . . . . . . . . . \(70 n \mathrm{~ns}\) (Max)
- Low Offset Error. . . . . . . . . . . . . . . . . . . . . . \(\pm 2 m V\) (Max)
- Low Pedestal Error . . . . . . . . . . . . . . . . . . \(\pm 10 \mathrm{mV}\) (Max)
- Low Droop Rate . . . . . . . . . . . . . . . . . . . . . \(2 \mu \mathrm{~V} / \mu \mathrm{s}\) (Max)
- Wide Unity Gain Bandwidth . . . . . . . . . . . . . . . . 40MHz
- Low Power Dissipation . . . . . . . . . . . . . . 220mW (Max)
- Total Harmonic Distortion (Hold Mode) . . . . . . . -72dBc \(\left(\mathrm{V}_{\mathrm{IN}}=\mathbf{5} \mathrm{V}_{\text {P-P }}\right.\) at \(\left.\mathbf{1 M H z}\right)\)
- Fully Differential Inputs
- On Chip Hold Capacitor

\section*{Applications}
- Synchronous Sampling
- Wide Bandwidth A/D Conversion
- Deglitching
- Peak Detection
- High Speed DC Restore

\section*{Description}

The HA5351 is a fast acquisition, wide bandwidth sample and hold amplifier, built with the Harris HBC-10 BiCMOS process. This sample and hold amplifier offers a combination of desirable features; fast acquisition time (70ns to 0.01\% maximum), excellent DC precision and extremely low power dissipation, making it ideal for use in systems that sample multiple signals and require low power. For systems with multiple channels, consider the Dual HA5352 sample and hold amplifier.
The HA5351 is in an open loop configuration with fully differential inputs providing flexibility for user defined feedback. In unity gain the HA5351 is completely self-contained and requires no external components. The on-chip 15pF hold capacitor is completely isolated to minimizing droop rate and reduce sensitivity to pedestal error. The HA5351 is available in 8 lead PDIP and SOIC packages for minimizing board space and ease of layout.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HA5351IP & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline HA5351IB & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline
\end{tabular}

\section*{Pinout}

HA5351
(PDIP, SOIC)
TOP VIEW)


\section*{Functional Diagram}


\section*{Absolute Maximum Ratings}

Voltage Between V+ and V-Terminals
\(+11 \mathrm{~V}\)
Differential Input Voltage
. 6 V
Voltage Between Sample and Hold Control and Ground . . . . . +5.5 V
Output Current, Continuous \(\pm 37 \mathrm{~mA}\)

\section*{Operating Conditions}

Temperature Range
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications Test Conditions: \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V} ; \mathrm{C}_{\mathrm{H}}=\) Internal \(=15 \mathrm{pF}\), Digital Input: \(\mathrm{V}_{\mathrm{IL}}=+0.0 \mathrm{~V}\) (Sample), \(\mathrm{V}_{\mathrm{IH}}=4.0 \mathrm{~V}\) (Hold). Non-Inverting Unity Gain Configuration (Output Tied to -Input), \(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[t]{2}{*}{TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{3}{|c|}{HA5351I} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline \multicolumn{7}{|l|}{INPUT CHARACTERISTICS} \\
\hline Input Voltage Range & & Full & -2.5 & - & +2.5 & V \\
\hline Input Resistance (Note 2) & & 25 & 100 & 500 & - & k \(\Omega\) \\
\hline Input Capacitance & & 25 & - & - & 5 & pF \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & & 25 & -2 & - & 2 & mV \\
\hline & & Full & -3.0 & - & 3.0 & mV \\
\hline Offset Voltage Temperature Coefficient & & Full & - & 15 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Bias Current & & Full & - & 2.5 & 5 & \(\mu \mathrm{A}\) \\
\hline Offset Current & & Full & -1.5 & - & +1.5 & \(\mu \mathrm{A}\) \\
\hline Common Mode Range & & Full & -2.5 & - & +2.5 & V \\
\hline Common Mode Rejection & \(\pm 2.5 \mathrm{~V}\), Note 3 & Full & 60 & 80 & - & dB \\
\hline \multicolumn{7}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Large Signal Voltage Gain} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}\)} & 25 & 95 & 108 & - & dB \\
\hline & & Full & 85 & - & - & dB \\
\hline Unity Gain -3dB Bandwidth & & 25 & - & 40 & - & MHz \\
\hline \multicolumn{7}{|l|}{TRANSIENT RESPONSE} \\
\hline Rise Time & 200 mV Step & 25 & - & 8.5 & - & ns \\
\hline Overshoot & 200 mV Step & 25 & 0 & - & 30 & \% \\
\hline Slew Rate & 5 V Step & Full & 88 & 105 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline \multicolumn{7}{|l|}{DIGITAL INPUT CHARACTERISTICS} \\
\hline \multirow[t]{3}{*}{Input Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{IH}}\)} & 25, 85 & 2.1 & - & 5.0 & V \\
\hline & & -40 & 2.4 & - & 5.0 & V \\
\hline & \(\mathrm{V}_{\text {IL }}\) & Full & 0 & - & 0.8 & V \\
\hline \multirow[t]{2}{*}{Input Current} & \(\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}\) & Full & -1.0 & - & 1.0 & \(\mu \mathrm{A}\) \\
\hline & \(\mathrm{V}_{\mathrm{IH}}=5 \mathrm{~V}\) & Full & -1.0 & - & 1.0 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{OUTPUT CHARACTERISTICS} \\
\hline Output Voltage & \(\mathrm{R}_{\mathrm{L}}=510 \Omega\) & Full & -3.0 & - & +3.0 & V \\
\hline \multirow[t]{2}{*}{Output Current} & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{L}}=100 \Omega\)} & 25, 85 & 20 & 25 & - & mA \\
\hline & & -40 & 15 & - & - & mA \\
\hline
\end{tabular}

\section*{HA5351}

Electrical Specifications Test Conditions: \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V} ; \mathrm{C}_{\mathrm{H}}=\) Internal \(=15 \mathrm{pF}\), Digital Input: \(\mathrm{V}_{\mathrm{IL}}=+0.0 \mathrm{~V}\) (Sample), \(\mathrm{V}_{\mathrm{IH}}=4.0 \mathrm{~V}\) (Hold). Non-Inverting Unity Gain Configuration (Output Tied to -Input), \(\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{TEMP. ( \({ }^{\circ} \mathrm{C}\) )} & \multicolumn{3}{|c|}{HA5351I} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline Full Power Bandwidth & \(5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{A}_{\mathrm{V}}=+1,-3 \mathrm{~dB}\) & Full & - & 13 & - & MHz \\
\hline Output Resistance & Hold Mode & 25 & - & 0.02 & - & \(\Omega\) \\
\hline \multirow[t]{2}{*}{Total Output Noise (DC to 10 MHz )} & Sample Mode & 25 & - & 325 & - & \(\mu \mathrm{V}_{\text {RMS }}\) \\
\hline & Hold Mode & 25 & - & 325 & - & \(\mu \mathrm{V}_{\text {RMS }}\) \\
\hline
\end{tabular}

\section*{DISTORTION CHARACTERISTICS}

SAMPLE MODE
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline Total Harmonic Distortion & \(\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}\) & 25 & - & -80 & -76 & dBc \\
\cline { 2 - 7 } & \(\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz}\) & 25 & - & -74 & -69 & dBc \\
\cline { 2 - 7 } & \(\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}\) & 25 & - & -57 & -52 & dBc \\
\hline \begin{tabular}{l} 
Signal to Noise Ratio \\
(RMS Signal to RMS Noise)
\end{tabular} & \(\mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}\) & 25 & - & 73 & - & dB \\
\hline
\end{tabular}

HOLD MODE (50\% Duty Cycle S/H)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Total Harmonic Distortion} & \[
\begin{aligned}
& \mathrm{V}_{I N}=4.5 \mathrm{~V}_{\text {P-P }}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}, \\
& \mathrm{fS}_{\mathrm{S}} \cong 100 \mathrm{kHz}
\end{aligned}
\] & 25 & - & -78 & -74 & dBc \\
\hline & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz}, \\
& \mathrm{f}_{\mathrm{S}} \cong 1 \mathrm{MHz}
\end{aligned}
\] & 25 & - & -72 & -67 & dBc \\
\hline & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V}_{\text {P-P }}, \mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}, \\
& \mathrm{f}_{\mathrm{S}} \cong 1 \mathrm{MHz}
\end{aligned}
\] & 25 & - & -51 & -47 & dBc \\
\hline Signal to Noise Ratio (RMS Signal to RMS Noise) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{IN}}=4.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{f}_{\mathrm{IN}}=100 \mathrm{kHz}, \\
& \mathrm{f}_{\mathrm{S}} \cong 100 \mathrm{kHz}
\end{aligned}
\] & 25 & - & 70 & - & dB \\
\hline
\end{tabular}

SAMPLE AND HOLD CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Acquisition Time} & OV to 2.0V Step to \(\pm 1 \mathrm{mV}\) & 25 & - & 53 & - & ns \\
\hline & OV to 2.0V Step to \(0.01 \%\) ( \(\pm 200 \mu \mathrm{~V}\) ) & 25 & - & 64 & 70 & ns \\
\hline & \[
\begin{aligned}
& -2.5 \mathrm{~V} \text { to }+2.5 \mathrm{~V} \text { Step to } 0.01 \% \\
& ( \pm 500 \mu \mathrm{~V})
\end{aligned}
\] & 25 & - & 90 & 100 & ns \\
\hline \multirow[t]{2}{*}{Droop Rate} & & 25 & - & 0.3 & - & \(\mu \mathrm{V} / \mu \mathrm{s}\) \\
\hline & & Full & -2 & - & 2 & \(\mu \mathrm{V} / \mu \mathrm{s}\) \\
\hline Hold Step Error & \(\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=4.0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=5 \mathrm{~ns}\) & Full & -10 & - & +10 & mV \\
\hline Hold Mode Settling Time & To \(\pm 1 \mathrm{mV}\) & 25 & - & 50 & - & ns \\
\hline Hold Mode Feedthrough & \(5 \mathrm{~V}_{\text {P-p, }} 500 \mathrm{kHz}\), Sine & 25 & - & 72 & - & dB \\
\hline EADT (Effective Aperture Delay Time) & & 25 & - & +1 & - & ns \\
\hline Aperture Time (Note 2) & & 25 & - & 10 & \(\cdot\) & ns \\
\hline Aperture Uncertainty & & 25 & - & 10 & 20 & ps \\
\hline
\end{tabular}

\section*{POWER SUPPLY CHARACTERISTICS}
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline Positive Supply Current & & Full & - & 20 & 22 & mA \\
\hline Negative Supply Current & & Full & - & 20 & 22 & mA \\
\hline PSRR & \(10 \%\) Delta & Full & 60 & 74 & - & dB \\
\hline
\end{tabular}

\section*{NOTES:}
2. Derived from Computer Simulation only, not tested.
3. +CMRR is measured from 0 V to \(+2.5 \mathrm{~V},-\mathrm{CMRR}\) is measured from OV to -2.5 V .

\section*{Typical Performance Curves}


FIGURE 1. LARGE SIGNAL RESPONSE


FIGURE 3. UNITY GAIN FREQUENCY RESPONSE


FIGURE 5. 5V P-P FULL POWER FREQUENCY RESPONSE


FIGURE 2. SMALL SIGNAL RESPONSE


FIGURE 4. CLOSED LOOP GAIN/PHASE \(A_{v}=+1000\)


FIGURE 6. -3dB BANDWIDTH vs SUPPLY VOLTAGE

Typical Performance Curves (Continued)


FIGURE 7. DROOP RATE vs TEMPERATURE


FIGURE 9. RISE TIME vs TEMPERATURE


FIGURE 11. PEDESTAL vs \(\overline{\mathbf{S}} / \mathrm{H}\) CONTROL RISE TIME


FIGURE 8. SLEW RATE vs TEMPERATURE


FIGURE 10. HOLD MODE SETTLING vs TEMPERATURE


FIGURE 12. ACQUISITION TIME ( \(0.01 \%\), OV TO 2V STEP)

\section*{Typical Performance Curves (Continued)}


FIGURE 13. HOLD MODE SETTLING TIME ( \(\pm 200 \mu \mathrm{~V})\)

\section*{Die Characteristics}

\section*{DIE DIMENSIONS:}
\(2530 \mu \mathrm{~m} \times 1760 \mu \mathrm{~m} \times 525 \mu \mathrm{~m}\) 100 mils \(\times 69\) mils \(\times 19\) mils

\section*{METALLIZATION:}

Type: Metal 1: AlSiCu/TiW
Thickness: Metal 1: \(6 k \AA \pm 750 \AA\)
Type: Metal 2: AISiCu
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 1.1 \mathrm{k} \AA\)

\section*{PASSIVATION:}

Type: Sandwich Passivation
Nitride - \(4 \mathrm{k} \AA\), Undoped Si Glass (USG) - \(8 \mathrm{k} \AA\),
Total - \(12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA\)

\section*{SUBSTRATE POTENTIAL:}

V-

\section*{TRANSISTOR COUNT:}

156

Metallization Mask Layout


\section*{VIDEO CROSSPOINT SWITCHES}PAGE
SELECTION GUIDE ..... 6-2VIDEO CROSSPOINT SWITCH DATA SHEETS
HA4201 480MHz, \(1 \times 1\) Video Crosspoint Switch with Tally Output ..... 6-3
HA4244 480MHz, \(1 \times 1\) Video Crosspoint Switch with Synchronous Enable ..... 6-10
HA4314B 400MHz, \(4 \times 1\) Video Crosspoint Switch ..... 6-16
HA4344B 350MHz, \(4 \times 1\) Video Crosspoint Switch with Synchronous Controls ..... 6-23
HA4404B \(330 \mathrm{MHz}, 4 \times 1\) Video Crosspoint Switch with Tally Outputs ..... 6-26
HA455 \(130 \mathrm{MHz}, 8 \times 8\) Video Crosspoint Switch ..... 6-33
HA456 80MHz, Low Power, \(8 \times 8\) Video Crosspoint Switch ..... 6-34
HA457 \(170 \mathrm{MHz}, \mathrm{A}_{\mathrm{V}}=+2,8 \times 8\) Video Crosspoint Switch ..... 6-35
HA4600 480MHz, Video Buffer with Output Disable ..... 6-36

\section*{Selection Guide}

VIDEO CROSSPOINT SWITCHES: Typical Values at \(25^{\circ} \mathrm{C}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline (NOTE 2) DEVICE & FEATURES & \begin{tabular}{l}
DIF. \\
GAIN \\
(\%)
\end{tabular} & DIF. PHASE (DEG) & \begin{tabular}{l}
0.1 dB \\
FLAT \\
GAIN \\
(MHz)
\end{tabular} & \[
\begin{gathered}
\text { BW } \\
\text { (MHz) }
\end{gathered}
\] & SLEW RATE ( \(\mathrm{V} / \mu \mathrm{s}\) ) & 10 MHz
CROSSTALK
(dB) & SUPPLY VOLTAGE RANGE \(( \pm \mathrm{V})\) & \[
\begin{aligned}
& \text { SUPPLY } \\
& \text { CURRENT } \\
& \text { (mA) }
\end{aligned}
\] \\
\hline
\end{tabular}

CROSSPOINT SWITCHES
\begin{tabular}{|l|l|c|c|c|c|c|c|c|c|}
\hline HA4600 & \(1 \times 1\) & 0.01 & 0.01 & 250 & 480 & 1700 & \begin{tabular}{c}
-85 \\
\((N o t e ~ 1)\)
\end{tabular} & \(4.5-5.5\) & 10.5 \\
\hline HA4201 & \(1 \times 1\) with Tally Output & 0.01 & 0.01 & 250 & 480 & 1700 & \begin{tabular}{c}
-85 \\
\((N o t e ~ 1)\)
\end{tabular} & \(4.5-5.5\) & 10.5 \\
\hline HA4244 & \begin{tabular}{l}
\(1 \times 1\) with Latched Control \\
Signal
\end{tabular} & 0.01 & 0.01 & 250 & 480 & 1700 & \begin{tabular}{c}
-85 \\
\((N o t e ~ 1)\)
\end{tabular} & \(4.5-5.5\) & 10.5 \\
\hline HA4314B & \(4 \times 1\) & 0.01 & 0.01 & 100 & 400 & 1400 & -90 & \(4.5-5.5\) & 10.5 \\
\hline HA4404B & \(4 \times 1\) with Tally Outputs & 0.01 & 0.01 & 165 & 330 & 1250 & -90 & \(4.5-5.5\) & 10.5 \\
\hline HA4344B & \begin{tabular}{l}
\(4 \times 1\) with Latched Control \\
Signals
\end{tabular} & 0.01 & 0.01 & 150 & 350 & 1400 & -90 & \(4.5-5.5\) & 10.5 \\
\hline HA455 & High Performance 8 \(\times 8\), AV \(=+1\) & 0.02 & 0.02 & TBD & 130 & 250 & -60 & \(4.5-5.5\) & 88 \\
\hline HA456 & Low Power \(8 \times 8\), AV \(=+1\) & 0.04 & 0.20 & TBD & 80 & 170 & -60 & \(4.5-5.5\) & 56 \\
\hline HA457 & High Performance \(8 \times 8, A_{V}=+2\) & 0.01 & 0.02 & TBD & 170 & 350 & -60 & \(4.5-5.5\) & 88 \\
\hline
\end{tabular}

\section*{NOTES:}
1. Off Isolation at 100 MHz .
2. Bold type indicates a new product from Harris.

HA4201

\section*{480MHz, \(1 \times 1\) Video Crosspoint Switch with Tally Output}

\section*{Features}
- Low Power Dissipation 105 mW
- Symmetrical Slew Rates 1700V/ \(\mu \mathrm{s}\)
- 0.1dB Gain Flatness. . . . . . . . . . . . . . . . . . . . . . 250MHz
- Off Isolation (100MHz) . . . . . . . . . . . . . . . . . . . . . . 85dB
- Differential Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.01\%
- Differential Phase. . . . . . . . . . . . . . . . . . . 0.01 Degrees
- High ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . >2000V
- TTL Compatible Enable Input
- Open Collector Tally Output
- Improved Replacement for GX4201

\section*{Applications}
- Professional Video Switching and Routing
- Video Multiplexers
- HDTV
- Computer Graphics
- RF Switching and Routing
- PCM Data Routing

\section*{Description}

The HA4201 is a very wide bandwidth \(1 \times 1\) crosspoint switch ideal for professional video switching, HDTV, computer monitor routing, and other high performance applications. The circuit features very low power dissipation ( 105 mW Enabled, 1 mW Disabled), excellent differential gain and phase, and very high off isolation. When disabled, the output is switched to a high impedance state, making the HA4201 ideal for routing matrix equipment.

The HA4201 requires no external current source, and features fast switching and symmetric slew rates. The tally output is an open collector PNP transistor to \(\mathrm{V}_{\mathrm{CC}}\), and is activated whenever EN = 1 to provide an indication of crosspoint selection.

For applications which don't require a Tally output, please refer to the HA4600 data sheet.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{c} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HA4201CP & 0 to 70 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
HA4201CB \\
(4201CB)
\end{tabular} & 0 to 70 & 8 Ld SOIC & M8.15 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline EN & OUT & TALLY \\
\hline 0 & High Z & Off \\
\hline 1 & Active & On \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Absolute Maximum Ratings} \\
\hline Voltage Between V+ and V- & 12 V \\
\hline Input Voltage. & SUUPPLY \\
\hline Digital Input Current (Note 2) & \(\pm 25 \mathrm{~mA}\) \\
\hline Output Current & 20 mA \\
\hline
\end{tabular}

\section*{Operating Conditions \\ Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)}

\section*{Thermal Information}
\begin{tabular}{|c|c|}
\hline Thermal Resistance (Typical, Note 1) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline PDIP Package & 130 \\
\hline SOIC Package & 170 \\
\hline Maximum Junction Temperature (Die). & \(175{ }^{\circ} \mathrm{C}\) \\
\hline Maximum Junction Temperature (Plastic Package) & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Storage Temperature Range & C to \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Lead Temperature (Soldering 10s). . . (SOIC - Lead Tips Only) & . \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.
2. If an input signal is applied before the supplies are powered up, the input current must be limited to this maximum value.

Electrical Specifications \(V_{S U P P L Y}= \pm 5 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{EN}}=2.0 \mathrm{~V}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{DC SUPPLY CHARACTERISTICS} \\
\hline Supply Voltage & & Full & \(\pm 4.5\) & \(\pm 5.0\) & \(\pm 5.5\) & V \\
\hline \multirow[t]{4}{*}{Supply Current (VOUT \(=0 \mathrm{~V}\) )} & \(\mathrm{V}_{\mathrm{EN}}=2.0 \mathrm{~V}\) & 25, 70 & - & 10.5 & 13 & mA \\
\hline & \(\mathrm{V}_{\mathrm{EN}}=2.0 \mathrm{~V}\) & 0 & - & - & 14.5 & mA \\
\hline & \(\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}\) & 25,70 & - & 100 & 115 & \(\mu \mathrm{A}\) \\
\hline & \(\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}\) & 0 & - & 100 & 125 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|c|c|c|c|c|}
\hline ANALOG DC CHARACTERISTICS \\
\hline Output Voltage Swing without Clipping & \(\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{IN}} \pm \mathrm{V}_{\mathrm{IO}} \pm 20 \mathrm{mV}\) & 25,70 & \(\pm 2.7\) & \(\pm 2.8\) & - & V \\
\hline & & 0 & \(\pm 2.4\) & \(\pm 2.5\) & - & V \\
\hline Output Current & & Full & 15 & 20 & - & mA \\
\hline Input Bias Current & & Full & - & 30 & 50 & \(\mu \mathrm{~A}\) \\
\hline Output Offset Voltage & & 25 & -10 & - & 10 & mV \\
\hline Output Offset Voltage Drift (Note 3) & & Full & - & 25 & 50 & \(\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) \\
\hline SWITCHING CHARACTERISTICS & & & 25 & - & 160 & - & ns \\
\hline Turn-On Time & & 25 & - & 320 & - & ns \\
\hline Turn-Off Time & & & & \\
\hline
\end{tabular}

DIGITAL DC CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Input Logic High Voltage & & Fuil & 2 & - & - & V \\
\hline Input Logic Low Voltage & & Full & - & - & 0.8 & V \\
\hline EN Input Current & \(\mathrm{V}_{\mathrm{EN}}=0\) to 4 V & Full & -2 & - & 2 & \(\mu \mathrm{A}\) \\
\hline Tally Output High Voltage & \(\mathrm{I}^{\mathrm{OH}}=1 \mathrm{~mA}\) & Full & 4.7 & 4.8 & - & V \\
\hline Tally Off Leakage Current & \(\mathrm{V}_{\text {TALLY }}=0 \mathrm{~V},-5 \mathrm{~V}\) & Full & -20 & - & 20 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

AC CHARACTERISTICS
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline Insertion Loss & \(1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & Full & - & 0.04 & 0.05 & dB \\
\hline \multirow{4}{*}{-3dB Bandwidth } & \(\mathrm{R}_{\mathrm{S}}=82 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\) & & - & 480 & - & MHz \\
\cline { 2 - 7 } & \(\mathrm{R}_{\mathrm{S}}=43 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & 25 & - & 380 & - & MHz \\
\cline { 2 - 7 } & \(\mathrm{R}_{\mathrm{S}}=36 \Omega, \mathrm{C}_{\mathrm{L}}=21 \mathrm{pF}\) & 25 & - & 370 & - & MHz \\
\hline
\end{tabular}

Electrical Specifications \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{EN}}=2.0 \mathrm{~V}\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & \begin{tabular}{l}
TEMP. \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{3}{*}{\(\pm 0.1 \mathrm{~dB}\) Flat Bandwidth} & \(\mathrm{R}_{\mathrm{S}}=82 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\) & 25 & - & 2.50 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=43 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & 25 & - & 175 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=36 \Omega, \mathrm{C}_{\mathrm{L}}=21 \mathrm{pF}\) & 25 & - & 170 & - & MHz \\
\hline Input Resistance & & Full & 200 & 400 & \(\bullet\) & \(\mathrm{k} \Omega\) \\
\hline Input Capacitance & & Full & - & 1.0 & - & pF \\
\hline Enabled Output Resistance & & Full & - & 15 & - & \(\Omega\) \\
\hline Disabled Output Capacitance & \(\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}\) & Full & - & 2.0 & - & pF \\
\hline Differential Gain & 4.43MHz, Note 3 & 25 & - & 0.01 & 0.02 & \% \\
\hline Differential Phase & 4.43MHz, Note 3 & 25 & - & 0.01 & 0.02 & Degrees \\
\hline Off Isolation & \(1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, 100 \mathrm{MHz}, \mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega\) & Full & - & 85 & - & dB \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Slew Rate } \\
& \left(1.5 \mathrm{~V}_{\text {P-P, }}+\text { SR/-SR }\right)
\end{aligned}
\]} & \(\mathrm{R}_{\mathrm{S}}=82 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\) & 25 & - & 1750/1770 & - & V/ \(\mu \mathrm{s}\) \\
\hline & \(\mathrm{R}_{S}=43 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & 25 & - & 1460/1360 & - & V/us \\
\hline & \(\mathrm{R}_{\mathrm{S}}=36 \Omega, \mathrm{C}_{\mathrm{L}}=21 \mathrm{pF}\) & 25 & - & 1410/1360 & - & V/us \\
\hline Total Harmonic Distortion (Note 3) & & Full & - & 0.01 & 0.1 & \% \\
\hline Disabled Output Resistance & & Full & - & 12 & - & \(\mathrm{M} \Omega\) \\
\hline
\end{tabular}

NOTE:
3. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.

\section*{AC Test Circuit}


NOTE: \(\mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{X}}+\) Test Fixture Capacitance.

\section*{PC Board Layout}

The frequency response of this circuit depends greatly on the care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!

Attention should be given to decoupling the power supplies. A large value ( \(10 \mu \mathrm{~F}\) ) tantalum in parallel with a small value \((0.1 \mu \mathrm{~F})\) chip capacitor works well in most cases.

Keep input and output traces as short as possible, because trace inductance and capacitance can easily become the performance limiting items.

\section*{Application Information}

\section*{General}

The HA4201 is a \(1 \times 1\) crosspoint switch that is ideal for the matrix element in small, high input-to-output isolation switchers and routers. It also excels as an input buffer for routers with a large number of outputs (i.e. each input must connect to a large number of outputs) and delivers performance superior to most video amplifiers at a fraction of the cost. As an input buffer, the HA4201's low input capacitance and high input resistance provide excellent video terminations when used with an external \(75 \Omega\) resistor. This crosspoint contains no feedback or gain setting resistors, so the output is a true high impedance load when the IC is disabled ( \(\mathrm{EN}=0\) ).

\section*{Frequency Response}

Most applications utilizing the HA4201 require a series output resistor, \(\mathrm{R}_{\mathrm{S}}\), to tune the response for the specific load capacitance, \(C_{L}\), driven. Bandwidth and slew rate degrade as \(C_{L}\) increases (as shown in the Electrical Specification table), so give careful consideration to component placement to minimize trace length. As an example, -3 dB bandwidth decreases to 160 MHz for \(\mathrm{C}_{\mathrm{L}}=100 \mathrm{pF}, \mathrm{R}_{\mathrm{S}}=0 \Omega\). In big matrix configurations where \(C_{L}\) is large, better frequency response is obtained by cascading two levels of crosspoints in the case of multiplexed outputs (see Figure 2), or distributing the load between two drivers if \(C_{L}\) is due to bussing and subsequent stage input capacitance.

\section*{Control Signals}

EN - The ENABLE input is a TTL/CMOS compatible, active high input. When driven low this input forces the output to a true high impedance state and reduces the power dissipation by two orders of magnitude. The EN input has no onchip pull-up resistor, so it must be connected to a logic high (recommend \(\mathrm{V}+\) ) if the enable function isn't utilized.
Tally - The Tally output is an open collector PNP transistor connected to \(\mathrm{V}+\). When EN \(=1\), the PNP transistor is enabled and current is delivered to the load. When the crosspoint is disabled, the Tally output presents a very high impedance to the external circuitry. Several Tally outputs may be wire OR'd together to generate complex control signals, as shown with the HA4404 in the application circuits below. The Tally load may be terminated to GND or to V - as long as the continuous output current doesn't exceed 3 mA ( 6 mA at \(50 \%\) duty cycle, etc.).

\section*{Switcher/Router Applications}

Figure 1 illustrates one possible implementation of a wideband, low power, \(4 \times 4\) switcher/router. A \(4 \times 4\) switcher/router allows any of the four outputs to be driven by any one of the four inputs (e.g. each of the four inputs may connect to a different output, or an input may connect to multiple outputs). This application utilizes the HA4201 for the input buffer, the HA4404 ( \(4 \times 1\) crosspoint switch) as the switch matrix, and the HFA1112 (programmable gain buffer)
as the gain of two output driver. Figure 2 details a \(16 \times 1\) switcher (basically a 16:1 mux) which uses the HA4201 in a cascaded stage configuration to minimize capacitive loading at each output node, thus increasing system bandwidth.

\section*{Power Up Considerations}

No signals should be applied to the analog or digital inputs before the power supplies are activated. Latch-up may occur if the inputs are driven at the time of power up. To prevent latch-up, the input currents during power up must not exceed the values listed in the Absolute Maximum Ratings.

\section*{Harris' Crosspoint Family}

Harris offers a variety of \(1 \times 1\) and \(4 \times 1\) crosspoint switches. In addition to the HA4201, the \(1 \times 1\) family includes the HA4600 which is an essentially similar device but without the Tally output. The \(4 \times 1\) family is comprised of the HA4314, HA4404, and HA4344. The HA4314 is a 14 lead basic \(4 \times 1\) crosspoint. The HA4404 is a 16 lead device with Tally outputs to indicate the selected channel. The HA4344 is a 16 lead crosspoint with synchronized control lines (A0, A1, \(\overline{C S}\) ). With synchronization, the control information for the next channel switch can be loaded into the crosspoint without affecting the current state. On a subsequent clock edge the stored control state effects the desired channel switch.


FIGURE 1. \(4 \times 4\) SWITCHER/ROUTER APPLICATION


FIGURE 2. \(16 \times 1\) SWITCHER APPLICATION

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\), Unless Otherwise Specified


FIGURE 3. LARGE SIGNAL PULSE RESPONSE


FIGURE 4. INPUT CAPACITANCE vs FREQUENCY

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\), Unless Otherwise Specified (Continued)


FIGURE 5. FREQUENCY RESPONSE


FIGURE 6. GAIN FLATNESS


FIGURE 7. OFF ISOLATION

\section*{Die Characteristics}

DIE DIMENSIONS:
51 mils \(\times 36\) mils \(\times 19\) mils \(1290 \mu \mathrm{~m} \times 910 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)

METALLIZATION:
Type: Metal 1: AICu (1\%)/TiW
Thickness: Metal 1: \(6 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)
Type: Metal 2: AICu (1\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 1.1 \mathrm{k} \AA\)

PASSIVATION:
Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
53
SUBSTRATE POTENTIAL (Powered Up):
V-

Metallization Mask Layout


\title{
480MHz, \(1 \times 1\) Video Crosspoint Switch with Synchronous Enable
}

\section*{Features}
- Low Power Dissipation . . . . . . . . . . . . . . . . . . . . 105mW
- Symmetrical Slew Rates . . . . . . . . . . . . . . . . . 1700V/ H
- 0.1dB Gain Flatness. . . . . . . . . . . . . . . . . . . . . . . 250MHz
- -3dB Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . 480 MHz
- Off Isolation (100MHz) . . . . . . . . . . . . . . . . . . . . . . . 85dB
- Differential Gain and Phase . . . . 0.01\%/0.01 Degrees
- High ESD Rating >2000V
- TTL Compatible Control Signals
- Latched Enable Input for Synchronous Switching
- Powers-Up in Disabled State; Avoids Bus Contention

\section*{Applications}
- Professional Video Switching and Routing
- Video Multiplexers
- Computer Graphics
- RF Switching and Routing
- PCM Data Routing

\section*{Description}

The HA4244 is a very wide bandwidth \(1 \times 1\) crosspoint switch ideal for professional video switching, HDTV, computer monitor routing, and other high performance applications. The circuit features very low power dissipation, excellent differential gain and phase, high off isolation, symmetric slew rates, fast switching, and a latched enable signal. When disabled, the output is switched to a high impedance state, making the HA4244 ideal for routing matrix equipment.

The latched enable input allows for synchronized channel switching. When CLK is low the master control latch loads the next EN, while the closed slave control latch maintains the crosspoint in its current state. CLK switching high closes the master latch, loads the now open slave latch, and enables or disables the HA4244 according to the current state of the EN input.

This crosspoint's design ensures that it powers up in the disabled state to eliminate bus contention concerns, and to minimize supply current draw at power up.
For applications requiring an asynchronous crosspoint switch, please refer to the HA4201 and HA4600 data sheets.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|c|}
\hline \begin{tabular}{c} 
PART NUMBER \\
(BRAND)
\end{tabular} & \(\left.\begin{array}{c}\text { TEMP. } \\
\text { RANGE ( }\end{array}{ }^{\circ} \mathrm{C}\right)\) & \multicolumn{1}{c|}{ PACKAGE } & \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular} \\
\hline \begin{tabular}{l} 
HA4244CB \\
(H4244C)
\end{tabular} & 0 to 70 & 8 Ld SOIC & M 8.15 \\
\hline
\end{tabular}

\section*{Pinout}


\section*{Functional Diagram}


Timing Diagram
CLK


EN


OUT


ENABLED

\begin{tabular}{|c|c|}
\hline Absolute Maximum Ratings & \\
\hline Voltage Between V+ and V- & 12 V \\
\hline Input Voltage. & . \(\mathrm{V}_{\text {SUPPLY }}\) \\
\hline Digital Input Current (Note 2) & \(\pm 25 \mathrm{~mA}\) \\
\hline Output Current & 20 mA \\
\hline
\end{tabular}

\section*{Operating Conditions}

Temperature Range
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.
2. If an input signal is applied before the supplies are powered up, the input current must be limited to this maximum value.

Electrical Specifications \(V_{S U P P L Y}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{EN}}=2.0 \mathrm{~V}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { TEMP. } \\
& \left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
\]} & \multicolumn{3}{|c|}{HA4244} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline \multicolumn{7}{|l|}{DC SUPPLY CHARACTERISTICS} \\
\hline Supply Voltage & & Full & \(\pm 4.5\) & \(\pm 5.0\) & \(\pm 5.5\) & V \\
\hline \multirow[t]{4}{*}{Supply Current ( \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) )} & \(\mathrm{V}_{\mathrm{EN}}=2.0 \mathrm{~V}\) & 25,70 & - & 10.5 & 13 & mA \\
\hline & \(\mathrm{V}_{\mathrm{EN}}=2.0 \mathrm{~V}\) & 0 & - & - & 14.5 & mA \\
\hline & \(\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}\) & 25, 70 & - & - & 275 & \(\mu \mathrm{A}\) \\
\hline & \(\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}\) & 0 & - & - & 325 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

ANALOG DC CHARACTERISTICS
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline Output Voltage Swing without Clipping & \(\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{IN}} \pm \mathrm{V}_{1 \mathrm{O}} \pm 20 \mathrm{mV}\) & 25,70 & \(\pm 2.7\) & \(\pm 2.8\) & - & V \\
\hline & & 0 & \(\pm 2.4\) & \(\pm 2.5\) & - & V \\
\hline Output Current & & Full & 15 & 20 & - & mA \\
\hline Input Bias Current & & Full & - & 30 & 50 & \(\mu \mathrm{~A}\) \\
\hline Output Offset Voltage & 25 & -10 & - & 10 & mV \\
\hline Output Offset Voltage Drift (Note 3) & & Full & - & 25 & 50 & \(\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{SWITCHING CHARACTERISTICS}
\begin{tabular}{|l|l|l|l|l|c|c|}
\hline Turn-On Time & & 25 & - & 160 & - & \(n s\) \\
\hline Turn-Off Time & & 25 & - & 320 & - & ns \\
\hline
\end{tabular}

DIGITAL DC CHARACTERISTICS
\begin{tabular}{|l|l|l|l|c|c|c|}
\hline Input Logic High Voltage & & Full & 2 & - & - & V \\
\hline Input Logic Low Voltage & & Full & - & - & 0.8 & V \\
\hline EN Input Current & \(V_{\text {EN }}=0\) to 4V & Full & -2 & - & 2 & \(\mu \mathrm{~A}\) \\
\hline CLK Input Current & \(V_{\text {CLK }}=0\) to 4V & Full & -10 & - & 10 & \(\mu \mathrm{~A}\) \\
\hline EN Setup Time to CLK Rising Edge & & Full & - & 25 & - & ns \\
\hline EN Hold Time after CLKRising Edge & & Full & - & 10 & - & ns \\
\hline
\end{tabular}

AC CHARACTERISTICS
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Insertion Loss & \(1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & Full & - & 0.04 & 0.05 & dB \\
\hline
\end{tabular}

Electrical Specifications \(V_{S U P P L Y}= \pm 5 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, V_{E N}=2.0 \mathrm{~V}\). Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[b]{2}{*}{\begin{tabular}{l}
TEMP. \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular}} & \multicolumn{3}{|c|}{HA4244} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline \multirow[t]{3}{*}{-3dB Bandwidth} & \(\mathrm{R}_{\mathrm{S}}=82 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\) & 25 & - & 480 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=43 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & 25 & - & 380 & - & MHz \\
\hline & \(\mathrm{R}_{S}=36 \Omega, \mathrm{C}_{\mathrm{L}}=21 \mathrm{pF}\) & 25 & - & 370 & - & MHz \\
\hline \multirow[t]{3}{*}{\(\pm 0.1 \mathrm{~dB}\) Flat Bandwidth} & \(\mathrm{R}_{S}=82 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\) & 25 & - & 250 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=43 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & 25 & - & 175 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=36 \Omega, \mathrm{C}_{\mathrm{L}}=21 \mathrm{pF}\) & 25 & - & 170 & \(\bullet\) & MHz \\
\hline Input Resistance & & Full & 200 & 400 & \(\bullet\) & k \(\Omega\) \\
\hline Input Capacitance & & Full & - & 1.0 & \(\bullet\) & pF \\
\hline Enabled Output Resistance & . & Full & - & 15 & \(\bullet\) & \(\Omega\) \\
\hline Disabled Output Capacitance & \(\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}\) & Full & - & 2.0 & - & pF \\
\hline Differential Gain & 4.43MHz, Note 3 & 25 & - & 0.01 & 0.02 & \% \\
\hline Differential Phase & 4.43MHz, Note 3 & 25 & - & 0.01 & 0.02 & Degrees \\
\hline Off Isolation & \(1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, 100 \mathrm{MHz}, \mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega\) & Full & - & 85 & - & dB \\
\hline \multirow[t]{3}{*}{Slew Rate
(1.5VP-P, +SR/-SR)} & \(R_{S}=82 \Omega, C_{L}=10 p F\) & 25 & - & 1750/1770 & - & V/us \\
\hline & \(\mathrm{R}_{S}=43 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & 25 & - & 1460/1360 & - & V/us \\
\hline & \(\mathrm{R}_{\mathrm{S}}=36 \Omega, \mathrm{C}_{\mathrm{L}}=21 \mathrm{pF}\) & 25 & - & 1410/1360 & - & V/us \\
\hline Total Harmonic Distortion & Note 3 & Full & - & 0.01 & 0.1 & \% \\
\hline Disabled Output Resistance & & Full & - & 12 & - & \(\mathrm{M} \Omega\) \\
\hline
\end{tabular}

NOTE:
3. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.

\section*{AC Test Circuit}


NOTE: \(C_{L}=C_{X}+\) Test Fixture Capacitance.

\section*{PC Board Layout}

The frequency response of this circuit depends greatly on the care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!

Attention should be given to decoupling the power supplies. A large value ( \(10 \mu \mathrm{~F}\) ) tantalum in parallel with a small value \((0.1 \mu \mathrm{~F})\) chip capacitor works well in most cases.

Keep input and output traces as short as possible, because trace inductance and capacitance can easily become the performance limiting items.

\section*{Application Information}

\section*{General}

The HA4244 is a synchronous \(1 \times 1\) crosspoint switch that is ideal for the matrix element in small, high input-to-output isolation switchers and routers. The HA4244's low input capacitance and high input resistance provide excellent video terminations when used with an external \(75 \Omega\) resistor. This crosspoint contains no feedback or gain setting resistors, so the output is a true high impedance load when the IC is disabled ( \(\mathrm{EN}=0\) ).

\section*{Synchronizing Latches}

The HA4244 contains two latches which gate the EN input, thereby allowing all the crosspoints in a matrix to switch states synchronously. The latches also allow the EN input to be changed without affecting the current state of the

HA4244. Thus, the next channel switch can be set up, and isn't acted upon until the next rising CLK edge. As long as the EN signals meet a setup and hold time relative to the rising CLK edge, all of the HA4244s will assume their new state at the same time.

\section*{Power-Up Disable Function}

The double latched EN signal, and single CLK input prevent the user from controlling the crosspoint state at power-up. To rectify this situation, the HA4244 incorporates power-up circuitry to ensure that the crosspoint powers up in the disabled state. Disabling the HA4244 prevents bus contention between multiplexed outputs, and minimizes the switching matrix supply current during power-up. Consider, for example, a matrix of 625 crosspoints that power-up randomly. If \(50 \%\) of them power-up enabled, the required matrix supply current is \(3.3 \mathrm{~A}(313 \times 10.5 \mathrm{~mA})\), neglecting output current. If HA4244s are utilized the power-up current is reduced to \(0.125 \mathrm{~A}(625 \times 200 \mu \mathrm{~A})\).

\section*{Frequency Response}

Most applications utilizing the HA4244 require a series output resistor, \(R_{S}\), to tune the response for the specific load capacitance, \(\mathrm{C}_{\mathrm{L}}\), driven. Bandwidth and slew rate degrade as \(C_{L}\) increases (as shown in the Electrical Specification table), so give careful consideration to component placement to minimize trace length. As an example, -3 dB bandwidth decreases to 160 MHz for \(C_{L}=100 \mathrm{pF}, R_{S}=0 \Omega\). In big matrix configurations where \(C_{L}\) is large, better frequency response is obtained by cascading two levels of crosspoints in the case of multiplexed outputs, or distributing the load between two drivers if \(C_{L}\) is due to bussing and subsequent stage input capacitance.

\section*{Control Signals}

EN - The ENABLE input is a TTL/CMOS compatible, active high input. When driven low this input forces the output to a true high impedance state and reduces the power dissipation by two orders of magnitude.
CLK - An active high, TTL/CMOS compatible input that controls the synchronizing latches. When CLK transistions low, the current state of the EN input is latched in the IC. This allows the EN input to be changed to the value correspending to the next channel switch, without affecting the HA4244's current state. The HA4244 assumes the new state on the next rising edge of CLK.

\section*{Power Up Considerations}

No signals should be applied to the digital inputs before the power supplies are activated. Latch-up may occur if the inputs are driven at the time of power up. To prevent latchup, the input currents during power up must not exceed the values listed in the Absolute Maximum Ratings.

\section*{Harris' Crosspoint Family}

Harris offers a variety of \(1 \times 1\) and \(4 \times 1\) crosspoint switches. In addition to the HA4244, the \(1 \times 1\) family includes the HA4600, which is an essentially similar device but without the synchronizing latches, and the HA4201 asynchronous crosspoint with a Tally output (enable indicator). The \(4 \times 1\) family is comprised of the HA4314, HA4404, and HA4344. The HA4314 is a 14 lead basic \(4 \times 1\) crosspoint. The HA4404 is a 16 lead device with Tally outputs to indicate the selected channel. The HA4344 is a 16 lead crosspoint with synchronized control lines (A0, A1, \(\overline{C S}\) ). With synchronization, the control information for the next channel switch can be loaded into the crosspoint without affecting the current state. On a subsequent clock edge the stored control state effects the desired channel switch.


FIGURE 1. LARGE SIGNAL PULSE RESPONSE


FIGURE 2. INPUT CAPACITANCE vs FREQUENCY

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\), Unless Otherwise Specified


FIGURE 3. FREQUENCY RESPONSE


FIGURE 4. GAIN FLATNESS


FIGURE 5. OFF ISOLATION

\section*{Die Characteristics}

DIE DIMENSIONS:
51 mils \(\times 36\) mils \(\times 19\) mils
\(1290 \mu \mathrm{~m} \times 910 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)
METALLIZATION:
Type: Metal 1: AICu (1\%)/TiW
Thickness: Metal 1: \(6 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)
Type: Metal 2: AICu (1\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 1.1 \mathrm{k} \AA\)

\section*{PASSIVATION:}

Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:

SUBSTRATE POTENTIAL (Powered Up):
V-

\section*{Metallization Mask Layout}


\title{
400MHz, \(4 \times 1\) Video Crosspoint Switch
}

\section*{Description}

The HA4314B is a very wide bandwidth \(4 \times 1\) crosspoint switch ideal for professional video switching, HDTV, computer monitor routing, and other high performance applications. The circuit features very low power dissipation (105mW Enabled, 4mW Disabled), excellent differential gain and phase, and very high off isolation. When disabled, the output is switched to a high impedance state, making the HA4314B ideal for routing matrix equipment.

The HA4314B requires no external current source, and features fast switching and symmetric slew rates.

For a \(4 \times 1\) crosspoint with Tally outputs (channel indicators) or with synchronous control signals, please refer to the HA4404B and HA4344B data sheets, respectively.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HA4314BCP & 0 to 70 & 14 Ld PDIP & E14.3 \\
\hline HA4314BCB & 0 to 70 & 14 Ld SOIC & M14.15 \\
\hline
\end{tabular}
- RF Switching and Routing
- PCM Data Routing

\section*{Pinout}

HA4314B
(PDIP, SOIC)
TOP VIEW


\section*{Truth Table}
\begin{tabular}{|c|c|c|c|}
\hline CS & A1 & AO & OUT \\
\hline 0 & 0 & 0 & IN0 \\
\hline 0 & 0 & 1 & IN1 \\
\hline 0 & 1 & 0 & IN2 \\
\hline 0 & 1 & 1 & IN3 \\
\hline 1 & \(X\) & \(X\) & HIGH \(-Z\) \\
\hline
\end{tabular}
```

Absolute Maximum Ratings
Voltage Between V+ and V- . 12V
Input Voltage. VSUPPLY
Digital Input Current (Note 2) . 25mA
Analog Input Current (Note 2) . 5mmA
Output Current
20mA

```

\section*{Operating Conditions}
```

Temperature Range $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

```

\section*{Thermal Information}
```

Thermal Resistance (Typical, Note 1)	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
PDIP Package	100
SOIC Package .	120
Maximum Junction Temperature (Die).	$175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package)	$150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range	${ }^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s). . (SOIC - Lead Tips Only)	$300^{\circ} \mathrm{C}$

```

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.
2. If an input signal is applied before the supplies are powered up, the input current must be limited to these maximum values.

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, \mathrm{V}_{\overline{C S}}=0.8 \mathrm{~V}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & \begin{tabular}{l}
(NOTE 4) \\
TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{DC SUPPLY CHARACTERISTICS} \\
\hline Supply Voltage & & Full & \(\pm 4.5\) & \(\pm 5.0\) & \(\pm 5.5\) & V \\
\hline \multirow[t]{4}{*}{Supply Current ( \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) )} & \(\mathrm{V}_{\text {CS }}=0.8 \mathrm{~V}\) & 25, 70 & - & 10.5 & 13 & mA \\
\hline & \(\mathrm{V}_{\text {CS }}=0.8 \mathrm{~V}\) & 0 & - & - & 15.5 & mA \\
\hline & \(\mathrm{V}_{\overline{\mathrm{CS}}}=2.0 \mathrm{~V}\) & 25, 70 & - & 400 & 450 & \(\mu \mathrm{A}\) \\
\hline & \(\mathrm{V}_{\overline{\mathrm{CS}}}=2.0 \mathrm{~V}\) & 0 & - & 400 & 580 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{ANALOG DC CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Output Voltage Swing without Clipping} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {IN }} \pm \mathrm{V}_{1 \mathrm{O}} \pm 20 \mathrm{mV}\)} & 25, 70 & \(\pm 2.7\) & \(\pm 2.8\) & - & V \\
\hline & & 0 & \(\pm 2.4\) & \(\pm 2.5\) & - & V \\
\hline Output Current & & Full & 15 & 20 & - & mA \\
\hline Input Bias Current & & Full & - & 30 & 50 & \(\mu \mathrm{A}\) \\
\hline Output Offset Voltage & & Full & -10 & - & 10 & mV \\
\hline Output Offset Voltage Drift (Note 3) & & Full & - & 25 & 50 & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{7}{|l|}{SWITCHING CHARACTERISTICS} \\
\hline Turn-On Time & & 25 & - & 160 & - & ns \\
\hline Turn-Off Time & & 25 & - & 320 & - & ns \\
\hline Output Glitch During Switching & & 25 & - & \(\pm 10\) & - & mV \\
\hline \multicolumn{7}{|l|}{DIGITAL DC CHARACTERISTICS} \\
\hline Input Logic High Voltage & & Full & 2 & - & - & V \\
\hline Input Logic Low Voltage & & Full & - & - & 0.8 & V \\
\hline Input Current & OV to 4V & Full & -2 & \(\cdot\) & 2 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{AC CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Insertion Loss} & \multirow[t]{2}{*}{\(1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\)} & 25 & - & 0.055 & 0.063 & dB \\
\hline & & Full & - & 0.07 & 0.08 & dB \\
\hline Channel-to-Channel Insertion Loss Match & & Full & - & \(\pm 0.004\) & \(\pm 0.006\) & dB \\
\hline \multirow[t]{4}{*}{-3dB Bandwidth} & \(\mathrm{R}_{S}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\) & 25 & - & 400 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=20 \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}\) & 25 & - & 280 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=16 \Omega, \mathrm{C}_{\mathrm{L}}=36 \mathrm{pF}\) & 25 & - & 140 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=13 \Omega, \mathrm{C}_{\mathrm{L}}=49 \mathrm{pF}\) & 25 & - & 110 & - & MHz \\
\hline
\end{tabular}

\section*{HA4314B}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \Omega, V_{\overline{\mathrm{CS}}}=0.8 \mathrm{~V}\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & \[
\begin{aligned}
& \text { (NOTE 4) } \\
& \text { TEMP. }\left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
\] & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{4}{*}{\(\pm 0.1 \mathrm{~dB}\) Flat Bandwidth} & \(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\) & 25 & - & 100 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=20 \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}\) & 25 & \(\cdot\) & 100 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=16 \Omega, \mathrm{C}_{\mathrm{L}}=36 \mathrm{pF}\) & 25 & - & 85 & - & MHz \\
\hline & \(\mathrm{R}_{S}=13 \Omega, \mathrm{C}_{\mathrm{L}}=49 \mathrm{pF}\) & 25 & - & 75 & - & MHz \\
\hline Input Resistance & & Full & 200 & 400 & \(\bullet\) & \(\mathrm{k} \Omega\) \\
\hline Input Capacitance & & Full & - & 1.5 & - & pF \\
\hline Enabled Output Resistance & & Full & - & 15 & - & \(\Omega\) \\
\hline Disabled Output Capacitance & \(\mathrm{V}_{\text {CS }}=2.0 \mathrm{~V}\) & Full & - & 2.5 & - & pF \\
\hline Differential Gain & 4.43 MHz , Note 3 & 25 & - & 0.01 & 0.02 & \% \\
\hline Differential Phase & 4.43MHz, Note 3 & 25 & - & 0.01 & 0.02 & Degrees \\
\hline Off Isolation & \[
\begin{aligned}
& 1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, 100 \mathrm{MHz}, \\
& \mathrm{~V}_{\mathrm{CS}}=2.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega
\end{aligned}
\] & Full & - & 70 & - & dB \\
\hline Crosstalk Rejection & \(1 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} 30 \mathrm{MHz}\) & Full & - & 80 & - & dB \\
\hline \multirow[t]{4}{*}{Slew Rate (1.5V \(\mathrm{V}_{\text {P-P, }}+\mathrm{SR} /-\mathrm{SR}\) )} & \(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\) & 25 & - & 1425/1450 & - & V/ \(\mu \mathrm{s}\) \\
\hline & \(\mathrm{R}_{\mathrm{S}}=20 \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}\) & 25 & - & 1010/1010 & - & V/us \\
\hline & \(\mathrm{R}_{\mathrm{S}}=16 \Omega, \mathrm{C}_{\mathrm{L}}=36 \mathrm{pF}\) & 25 & - & 725/750 & - & V/ \(\mu \mathrm{s}\) \\
\hline & \(\mathrm{R}_{\mathrm{S}}=13 \Omega, \mathrm{C}_{\mathrm{L}}=49 \mathrm{pF}\) & 25 & - & 600/650 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline Total Harmonic Distortion & \(10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\), Note 3 & Full & - & 0.01 & 0.1 & \% \\
\hline Disabled Output Resistance & \(\mathrm{V}_{\text {CS }}=2.0 \mathrm{~V}\) & Full & - & 12 & - & M \(\Omega\) \\
\hline
\end{tabular}

NOTES:
3. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.
4. Units are \(100 \%\) tested at \(25^{\circ} \mathrm{C}\); Guaranteed but not tested at \(0^{\circ} \mathrm{C}\) and \(70^{\circ} \mathrm{C}\).

\section*{AC Test Circuit}


NOTE: \(C_{L}=C_{X}+\) Test Fixture Capacitance.

\section*{PC Board Layout}

The frequency response of this circuit depends greatly on the care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!
Attention should be given to decoupling the power supplies. A large value \((10 \mu \mathrm{~F})\) tantalum in parallel with a small value ( \(0.1 \mu \mathrm{~F}\) ) chip capacitor works well in most cases.
Keep input and output traces as short as possible, because trace inductance and capacitance can easily become the performance limiting items.

\section*{Application Information}

\section*{General}

The HA4314B is a \(4 \times 1\) crosspoint switch that is ideal for the matrix element of high performance switchers and routers. This crosspoint's low input capacitance and high input resistance provide excellent video terminations when used with an external \(75 \Omega\) resistor. Nevertheless, if several HA4314B inputs are connected together, the use of an input buffer should be considered (see Figure 1). This crosspoint contains no feedback or gain setting resistors, so the output is a true high impedance load when the IC is disabled ( \(\overline{\mathrm{CS}}=1\) ).

\section*{Ground Connections}

All GND pins are connected to a common point on the die, so any one of them will suffice as the functional GND connection. For the best isolation and crosstalk rejection, however, all GND pins must connect to the GND plane.

\section*{Frequency Response}

Most applications utilizing the HA4314B require a series output resistor, \(\mathrm{R}_{\mathrm{S}}\), to tune the response for the specific load capacitance, \(\mathrm{C}_{\mathrm{L}}\), driven. Bandwidth and slew rate degrade as \(C_{L}\) increases (as shown in the Electrical Specification table), so give careful consideration to component placement to minimize trace length. In big matrix configurations where \(C_{L}\) is large, better frequency response is obtained by cascading two levels of crosspoints in the case of multi-
plexed outputs (see Figure 2), or distributing the load between two drivers if \(C_{L}\) is due to bussing and subsequent stage input capacitance.

\section*{Control Signals}
\(\overline{C S}\) - This is a TTLCMOS compatible, active low Chip Select input. When driven high, \(\overline{\mathrm{CS}}\) forces the output to a true high impedance state and reduces the power dissipation by a factor of 25 . The \(\overline{\mathrm{CS}}\) input has no on-chip pull-down resistor, so it must be connected to a logic low (recommend GND) if the enable function isn't utilized.

A0, A1 - These are binary coded, TTL/CMOS compatible address inputs that select which one of the four inputs connect to the crosspoint output.

\section*{Switcher/Router Applications}

Figure 1 illustrates one possible implementation of a wideband, low power, \(4 \times 4\) switcher/router utilizing the HA4314B for the switch matrix. A \(4 \times 4\) switcher/router allows any of the four outputs to be driven by any one of the four inputs (e.g., each of the four inputs may connect to a different output, or an input may connect to multiple outputs). This application utilizes the HA4600 (video buffer with output disable) for the input buffer, the HA4314B as the switch matrix, and the HFA1112 (programmable gain buffer) as the gain of two output driver. Figure 2 details a \(16 \times 1\) switcher (basically a 16:1 mux) which uses the HA4201 ( \(1 \times 1\) crosspoint) and the

HA4314B in a cascaded stage configuration to minimize capacitive loading at each output node, thus increasing system bandwidth.

\section*{Power Up Considerations}

No signals should be applied to the analog or digital inputs before the power supplies are activated. Latch-up may occur if the inputs are driven at the time of power up. To prevent latch-up, the input currents during power up must not exceed the values listed in the Absolute Maximum Ratings.

\section*{Harris' Crosspoint Family}

Harris offers a variety of \(4 \times 1\) and \(1 \times 1\) crosspoint switches. In addition to the HA4314B, the \(4 \times 1\) family includes the HA4404 and HA4344. The HA4404 is a 16 lead device with Tally outputs to indicate the selected channel. The HA4344 is a 16 lead crosspoint with synchronized control lines (A0, \(\mathrm{A} 1, \overline{\mathrm{CS}})\). With synchronization, the control information for the next channel switch can be loaded into the crosspoint without affecting the current state. On a subsequent clock edge the stored control state effects the desired channel switch.

The \(1 \times 1\) family is comprised of the HA4201 and HA4600. They are essentially similar devices, but the HA4201 includes a Tally output (enable indicator). The \(1 \times\) is are useful as high performance video input buffers, or in a switch matrix requiring very high off isolation.

SWITCH MATRIX


FIGURE 1. \(4 \times 4\) SWITCHER/ROUTER APPLICATION


FIGURE 2. \(16 \times 1\) SWITCHER APPLICATION

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\), Unless Otherwise Specified


FIGURE 3. LARGE SIGNAL PULSE RESPONSE


Figure 4. Channel-to-channel switching response

Typical Performance Curves \(\mathrm{v}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \mathrm{\Omega}\), Unliss Otherwise Specified (Continued)


FIGURE 5. FREQUENCY RESPONSE


FIGURE 7. ALL HOSTILE CROSSTALK REJECTION


FIGURE 9. TOTAL HARMONIC DISTORTION vs FREQUENCY


FIGURE 6. GAIN FLATNESS


FIGURE 8. ALL HOSTILE OFF ISOLATION


FIGURE 10. INPUT CAPACITANCE vs FREQUENCY

\section*{Die Characteristics}

DIE DIMENSIONS:
65 mils \(\times 118\) mils \(\times 19\) mils \(1640 \mu \mathrm{~m} \times 3000 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)

\section*{METALLIZATION:}

Type: Metal 1: AICu (1\%)/TiW
Thickness: Metal 1: \(6 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)
Type: Metal 2: AICu (1\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 1.1 \mathrm{k} \AA\)

\section*{PASSIVATION:}

Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
200
SUBSTRATE POTENTIAL (Powered Up):
V-

\section*{Metallization Mask Layout}

HA4314B


\title{
350MHz, \(4 \times 1\) Video Crosspoint Switch with Synchronous Controls
}

\section*{Features}
- Low Power Dissipation . . . . . . . . . . . . . . . . . . . 105mW
- Symmetrical Slew Rates . . . . . . . . . . . . . . . . . . 1400V/ us
- 0.1dB Gain Flatness. . . . . . . . . . . . . . . . . . . . . . . 100 MHz
- -3dB Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . . 350MHz
- Off Isolation (100MHz) . . . . . . . . . . . . . . . . . . . . . . 70dB
- Crosstalk Rejection (30MHz). . . . . . . . . . . . . . . . . 80dB
- Differential Gain and Phase . . . . . 0.01\%/0.01Degrees
- High ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . >2000V
- TTL Compatible Control Signals
- Latched Control Lines for Synchronous Switching

\section*{Applications}
- Professional Video Switching and Routing
- RGB Video Distribution Systems
- Computer Graphics
- RF Switching and Routing

\section*{Description}

The HA4344B is a very wide bandwidth \(4 \times 1\) crosspoint switch ideal for professional video switching, HDTV, computer display routing, and other high performance applications. This circuit features very low power dissipation, excellent differential gain and phase, high off isolation, symmetric slew rates, fast switching, and latched control signals. When disabled, the output is switched to a high impedance state, making the HA4344B ideal for matrix routers.
The latched control signals allow for synchronized channel switching. When CK1 is low the master control latch loads the next switching address (A0, A1, \(\overline{C S}\) ), while the closed (assuming \(\overline{\text { CK2 }}\) is the inverse of \(\overline{\text { CK1 }}\) ) slave control latch maintains the crosspoint in its current state. CK2 switching low closes the master latch (with previous assumption), loads the now open slave latch, and switches the crosspoint to the newly selected channel. Channel selection is asynchronous (changes with any control signal change) if both \(\overline{\mathrm{CK} 1}\) and \(\overline{\mathrm{CK} 2}\) are low.

\section*{Ordering Information}
\(\begin{array}{|l|c|l|c|}\hline \text { PART NUMBER } & \begin{array}{c}\text { TEMP. } \\ \text { RANGE }\end{array}{ }^{\circ} \mathbf{C} \text { ) }\end{array} \quad\) PACKAGE \(\left.\begin{array}{c}\text { PKG. } \\ \text { NO. }\end{array}\right]\)

\section*{Pinout}

HA4344B
(PDIP, SOIC)
TOP VIEW


Functional Diagram


Timing Diagram

Absolute Maximum Ratings
Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12V
Input Voltage
\(V_{\text {SUPPIY }}\)
Digital Input Current (Note 2) \(\pm 25 \mathrm{~mA}\)
Analog Input Current (Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . \(\pm 5 \mathrm{~mA}\)
Output Current 20 mA

\section*{Operating Conditions}

\section*{Temperature Range}
\(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)

\section*{Thermal Information}
\begin{tabular}{|c|c|}
\hline Thermal Resistance (Typical, Note 1) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline PDIP Package & 90 \\
\hline SOIC Package & 115 \\
\hline Maximum Junction Temperature (Die). & \(.175^{\circ} \mathrm{C}\) \\
\hline Maximum Junction Temperature (Plastic & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Storage Temperature Range & \({ }^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Lead Temperature (Soldering & \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular} (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.
2. If an input signal is applied before the supplies are powered up, the input current must be limited to these maximum values.

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {CS }}=0.8 \mathrm{~V}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & \[
\begin{aligned}
& \text { (NOTE 4) } \\
& \text { TEMP. }\left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
\] & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{DC SUPPLY CHARACTERISTICS} \\
\hline Supply Voltage & & Full & \(\pm 4.5\) & \(\pm 5.0\) & \(\pm 5.5\) & V \\
\hline \multirow[t]{4}{*}{Supply Current ( \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) )} & \(\mathrm{V}_{\overline{\mathrm{CS}}}=0.8 \mathrm{~V}\) & 25, 70 & - & 10.5 & 13 & mA \\
\hline & \(\mathrm{V}_{\text {CS }}=0.8 \mathrm{~V}\) & 0 & - & - & 15.5 & mA \\
\hline & \(\mathrm{V}_{\text {CS }}=2.0 \mathrm{~V}\) & 25, 70 & - & 400 & 450 & \(\mu \mathrm{A}\) \\
\hline & \(\mathrm{V}_{\overline{\mathrm{CS}}}=2.0 \mathrm{~V}\) & 0 & - & 400 & 580 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{ANALOG DC CHARACTERISTICS}
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \begin{tabular}{l} 
Output Voltage Swing Without Clip- \\
ping
\end{tabular} & \multirow{2}{*}{\(\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\mathrm{IN}} \pm \mathrm{V}_{1 \mathrm{O}} \pm 20 \mathrm{mV}\)} & 25,70 & \(\pm 2.7\) & \(\pm 2.8\) & - & V \\
\hline & & 0 & \(\pm 2.4\) & \(\pm 2.5\) & - & V \\
\hline Output Current & & Full & 15 & 20 & - & mA \\
\hline Input Bias Current & & Full & - & 30 & 50 & \(\mu \mathrm{~A}\) \\
\hline Output Offset Voltage & Full & -10 & - & 10 & mV \\
\hline Output Offset Voltage Drift (Note 3) & & Full & - & 25 & 50 & \(\mu \mathrm{~V} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

SWITCHING CHARACTERISTICS
\begin{tabular}{|l|l|l|l|c|c|c|}
\hline Turn-On Time & & 25 & - & 160 & - & ns \\
\hline Turn-Off Time & & 25 & - & 320 & - & ns \\
\hline Output Glitch During Switching & & 25 & - & \(\pm 10\) & - & mV \\
\hline
\end{tabular}

DIGITAL DC CHARACTERISTICS
\begin{tabular}{|l|l|l|l|c|c|}
\hline Input Logic High Voltage & & Full & 2 & - & - \\
\hline Input Logic Low Voltage & & Full & - & - & 0.8 \\
\hline\(\overline{\text { CLK1, CLK2 Input Current }}\) & 0 to 4V & Full & - & 4 \\
\hline\(\overline{\text { CS, A0, A1 Input Current }}\) & 0 to 4V & Full & -2 & - & 50 \\
\hline
\end{tabular}

\section*{AC CHARACTERISTICS}
\begin{tabular}{|l|l|l|c|c|c|c|}
\hline Insertion Loss & \(1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & 25 & - & 0.055 & 0.063 & dB \\
\cline { 3 - 7 } & & Full & - & 0.07 & 0.08 & dB \\
\hline \begin{tabular}{l} 
Channel-to-Channel Insertion Loss \\
Match
\end{tabular} & & Full & - & \(\pm 0.004\) & \(\pm 0.006\) & dB \\
\hline
\end{tabular}

HA4344B

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\overline{\mathrm{CS}}}=0.8 \mathrm{~V}\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & \begin{tabular}{l}
(NOTE 4) \\
TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{4}{*}{-3dB Bandwidth} & \(\mathrm{R}_{\mathrm{S}}=47 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\) & 25 & - & 350 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=29 \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}\) & 25 & - & 300 & - & MHz \\
\hline & \(R_{S}=16 \Omega, C_{L}=33 \mathrm{pF}\) & 25 & - & 220 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=9 \Omega, \mathrm{C}_{\mathrm{L}}=52 \mathrm{pF}\) & 25 & - & 160 & - & MHz \\
\hline \multirow[t]{4}{*}{\(\pm 0.1 \mathrm{~dB}\) Flat Bandwidth} & \(\mathrm{R}_{\mathrm{S}}=47 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\) & 25 & - & 150 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=29 \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}\) & 25 & - & 110 & - & MHz \\
\hline & \(R_{S}=16 \Omega, C_{L}=33 \mathrm{pF}\) & 25 & - & 100 & - & MHz \\
\hline & \(R_{S}=9 \Omega, C_{L}=52 p F\) & 25 & - & 70 & - & MHz \\
\hline Input Resistance & & Full & 200 & 400 & - & \(k \Omega\) \\
\hline Input Capacitance & & Full & - & 1.5 & - & pF \\
\hline Enabled Output Resistance & & Full & - & 15 & - & \(\Omega\) \\
\hline Disabled Output Capacitance & \(\mathrm{V}_{\text {CS }}=2.0 \mathrm{~V}\) & Full & - & 2.5 & - & pF \\
\hline Differential Gain & 4.43 MHz , Note 3 & 25 & - & 0.01 & 0.02 & \% \\
\hline Differential Phase & 4.43 MHz , Note 3 & 25 & - & 0.01 & 0.02 & Degrees \\
\hline Off Isolation & \(1 \mathrm{~V}_{\text {P-P }}, 100 \mathrm{MHz}, \mathrm{V}_{\text {CS }}=2.0 \mathrm{~V}\) & Full & - & 70 & - & dB \\
\hline Crosstalk Rejection & \(1 \mathrm{~V}_{\text {P-P }}, 30 \mathrm{MHz}\) & Full & - & 80 & - & dB \\
\hline \multirow[t]{4}{*}{Slew Rate (1.5V \(\mathrm{P}_{\text {- }}\), +SR/-SR)} & \(R_{S}=47 \Omega, C_{L}=10 \mathrm{pF}\) & 25 & - & 1400/1490 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & \(\mathrm{R}_{\mathrm{S}}=29 \Omega, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}\) & 25 & - & 1200/1260 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & \(R_{S}=16 \Omega, C_{L}=33 p F\) & 25 & - & 870/940 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline & \(\mathrm{R}_{\mathrm{S}}=9 \Omega, \mathrm{C}_{\mathrm{L}}=52 \mathrm{pF}\) & 25 & - & 750/710 & - & V/us \\
\hline Total Harmonic Distortion (Note 3) & & Full & - & 0.01 & 0.1 & \% \\
\hline Disabled Output Resistance & \(\mathrm{V}_{\text {CS }}=2.0 \mathrm{~V}\) & Full & - & 12 & - & \(\mathrm{M} \Omega\) \\
\hline
\end{tabular}

NOTES:
3. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.
4. Units are \(100 \%\) tested at \(25^{\circ} \mathrm{C}\); guaranteed, but not tested at \(0^{\circ} \mathrm{C}\) and \(70^{\circ} \mathrm{C}\).

\section*{AC Test Circuit}


NOTE: \(\mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{X}}+\) Test Fixture Capacitance.

HA4404B

\section*{330MHz, \(4 \times 1\) Video Crosspoint Switch with Tally Outputs}

\section*{Features}
- Low Power Dissipation . . . . . . . . . . . . . . . . . . . 105mW
- Symmetrical Slew Rates . . . . . . . . . . . . . . . . . 1250V/ \(\mu \mathrm{s}\)
- 0.1dB Gain Flatness. . . . . . . . . . . . . . . . . . . . . . 165MHz
- -3dB Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . . 330MHz
- Off Isolation (100MHz) . . . . . . . . . . . . . . . . . . . . . . 70dB
- Crosstalk Rejection (30MHz). . . . . . . . . . . . . . . . . 80dB
- Differential Gain and Phase . . . . . 0.01\%/0.01 Degrees
- High ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . >2000V
- TTL Compatible Control Inputs
- Open Collector Tally Outputs
- Improved Replacement for GX4404

\section*{Applications}
- Professional Video Switching and Routing
- HDTV
- Computer Graphics
- RF Switching and Routing

\section*{Description}

The HA4404B is a very wide bandwidth \(4 \times 1\) crosspoint switch ideal for professional video switching, HDTV, computer monitor routing, and other high performance applications. The circuit features very low power dissipation (105mW Enabled, 4mW Disabled), excellent differential gain and phase, and very high off isolation. When disabled, the output is switched to a high impedance state, making the HA4404B ideal for routing matrix equipment.

The HA4404B requires no external current source, and features fast switching and symmetric slew rates. The tally outputs are open collector PNP transistors to \(\mathrm{V}+\) to provide an indication of crosspoint selection.
For a \(4 \times 1\) crosspoint without Tally outputs or with synchronous control signals, please refer to the HA4314B and HA4344B Data Sheets, respectively.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|c|}
\hline PART NUMBER & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathbf{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HA4404BCP & 0 to 70 & 16 Ld PDIP & E16.3 \\
\hline HA4404BCB & 0 to 70 & 16 Ld SOIC & M16.15 \\
\hline
\end{tabular}

\section*{Pinout}


Functional Diagram


TRUTH TABLE
\begin{tabular}{|c|c|c|c|l|}
\hline\(\overline{\mathbf{C S}}\) & A1 & A0 & OUT & \begin{tabular}{c} 
ACTIVE TALLY \\
OUTPUT
\end{tabular} \\
\hline 0 & 0 & 0 & IN0 & T0 \\
\hline 0 & 0 & 1 & IN1 & T1 \\
\hline 0 & 1 & 0 & IN2 & T2 \\
\hline 0 & 1 & 1 & IN3 & T3 \\
\hline 1 & \(X\) & \(X\) & High - Z & None, All High - Z \\
\hline
\end{tabular}

\section*{HA4404B}
```

Absolute Maximum Ratings
Voltage Between V+ and V- . 12V
Input Voltage. VSUPPLY
Digital Input Current (Note 2) . }\pm25m
Analog Input Current (Note 2) }\pm5m\textrm{m
Output Current . 20mA

```

\section*{Operating Conditions}
```

Temperature Range
$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

```

\section*{Thermal Information}
\begin{tabular}{|c|c|}
\hline Thermal Resistance (Typical, Note 1) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline PDIP Package & 90 \\
\hline SOIC Package . & 115 \\
\hline Maximum Junction Temperature (Die). & \(175^{\circ} \mathrm{C}\) \\
\hline Maximum Junction Temperature (Plastic Package) & . \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Storage Temperature Range & \({ }^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Lead Temperature (Soldering 10s). (SOIC - Lead Tips Only) & \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
```

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:

1. θ_{JA} is measured with the component mounted on an evaluation PC board in free air.
2. If an input signal is applied before the supplies are powered up, the input current must be limited to these maximum values.
```

Electrical Specifications \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, \mathrm{V}_{\overline{C S}}=0.8 \mathrm{~V}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & \begin{tabular}{l}
(NOTE 4) \\
TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{DC SUPPLY CHARACTERISTICS} \\
\hline Supply Voltage & & Full & \(\pm 4.5\) & \(\pm 5.0\) & \(\pm 5.5\) & V \\
\hline \multirow[t]{4}{*}{Supply Current ( \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) )} & \(\mathrm{V}_{\overline{\mathrm{CS}}}=0.8 \mathrm{~V}\) & 25, 70 & - & 10.5 & 13 & mA \\
\hline & \(\mathrm{V}_{\overline{\mathrm{CS}}}=0.8 \mathrm{~V}\) & 0 & - & - & 15.5 & mA \\
\hline & \(\mathrm{V}_{\overline{\mathrm{CS}}}=2.0 \mathrm{~V}\) & 25, 70 & - & 400 & 450 & \(\mu \mathrm{A}\) \\
\hline & \(\mathrm{V}_{\text {CS }}=2.0 \mathrm{~V}\) & 0 & - & 400 & 580 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{ANALOG DC CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Output Voltage Swing without Clipping} & \(\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {IN }} \pm \mathrm{V}_{1 \mathrm{O}} \pm 20 \mathrm{mV}\) & 25, 70 & \(\pm 2.7\) & \(\pm 2.8\) & - & V \\
\hline & & 0 & \(\pm 2.4\) & \(\pm 2.5\) & - & V \\
\hline Output Current & & Full & 15 & 20 & - & mA \\
\hline Input Bias Current & & Full & - & 30 & 50 & \(\mu \mathrm{A}\) \\
\hline Output Offset Voltage & & Full & -10 & - & 10 & mV \\
\hline Output Offset Voltage Drift (Note 3) & & Full & - & 25 & 50 & \(\mu \mathrm{V}{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{7}{|l|}{SWITCHING CHARACTERISTICS} \\
\hline Turn-On Time & & 25 & - & 160 & - & ns \\
\hline Turn-Off Time & & 25 & - & 320 & - & ns \\
\hline
\end{tabular}


DIGITAL DC CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Input Logic Voltage} & High & Full & 2 & - & - & V \\
\hline & Low & Full & - & - & 0.8 & V \\
\hline Input Current & OV to 4V & Full & -2 & - & 2 & \(\mu \mathrm{A}\) \\
\hline Tally Output High Voltage & \(\mathrm{I}_{\mathrm{OH}}=1 \mathrm{~mA}\) & Full & 4.7 & 4.8 & - & V \\
\hline Tally Off Leakage Current & \(\mathrm{V}_{\text {TALLY }}=0 \mathrm{~V}\) & Full & -20 & - & 20 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{7}{|l|}{AC CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Insertion Loss} & \multirow[t]{2}{*}{\(1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\)} & 25 & - & 0.055 & 0.063 & dB \\
\hline & & Full & - & 0.07 & 0.08 & dB \\
\hline Channel-to-Channel Insertion Loss Match & & Full & - & \(\pm 0.004\) & \(\pm 0.006\) & dB \\
\hline \multirow[t]{4}{*}{-3dB Bandwidth} & \(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=11 \mathrm{pF}\) & 25 & - & 330 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=24 \Omega, \mathrm{C}_{\mathrm{L}}=19 \mathrm{pF}\) & 25 & - & 290 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=15 \Omega, \mathrm{C}_{\mathrm{L}}=34 \mathrm{pF}\) & 25 & - & 210 & - & MHz \\
\hline & \(\mathrm{R}_{S}=11 \Omega, \mathrm{C}_{\mathrm{L}}=49 \mathrm{pF}\) & 25 & - & 170 & - & MHz \\
\hline
\end{tabular}

\section*{HA4404B}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{V}_{\overline{\mathrm{CS}}}=0.8 \mathrm{~V}\). Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 4) TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{4}{*}{\(\pm 0.1 \mathrm{~dB}\) Flat Bandwidth} & \(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=11 \mathrm{pF}\) & 25 & - & 165 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=24 \Omega, \mathrm{C}_{\mathrm{L}}=19 \mathrm{pF}\) & 25 & - & 130 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=15 \Omega, \mathrm{C}_{\mathrm{L}}=34 \mathrm{pF}\) & 25 & - & 137 & - & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=11 \Omega, \mathrm{C}_{\mathrm{L}}=49 \mathrm{pF}\) & 25 & - & 100 & - & MHz \\
\hline Input Resistance & & Full & 200 & 400 & \(\bullet\) & k \(\Omega\) \\
\hline Input Capacitance & & Full & - & 1.5 & - & pF \\
\hline Enabled Output Resistance & & Full & - & 15 & - & \(\Omega\) \\
\hline Disabled Output Capacitance & \(\mathrm{V}_{\overline{\mathrm{CS}}}=2.0 \mathrm{~V}\) & Full & - & 2.5 & - & pF \\
\hline Differential Gain & 4.43MHz, Note 3 & 25 & - & 0.01 & 0.02 & \% \\
\hline Differential Phase & 4.43MHz, Note 3 & 25 & - & 0.01 & 0.02 & Degrees \\
\hline Off Isolation & \[
\begin{aligned}
& 1 \mathrm{~V}_{\mathrm{P}-\mathrm{P},}, 100 \mathrm{MHz}, \mathrm{~V}_{\overline{\mathrm{CS}}}=2.0 \mathrm{~V}, \\
& \mathrm{R}_{\mathrm{L}}=10 \Omega
\end{aligned}
\] & Full & - & 70 & - & dB \\
\hline Crosstalk Rejection & \(1 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} 30 \mathrm{MHz}\) & Full & - & 80 & - & dB \\
\hline \multirow[t]{4}{*}{Slew Rate ( \(1.5 \mathrm{~V}_{\text {P-P, }}+\mathrm{SR} /-\mathrm{SR}\) )} & \(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=11 \mathrm{pF}\) & 25 & - & 1280/1260 & - & V/us \\
\hline & \(\mathrm{R}_{\mathrm{S}}=24 \Omega, \mathrm{C}_{\mathrm{L}}=19 \mathrm{pF}\) & 25 & - & 1190/1170 & - & V/us \\
\hline & \(\mathrm{R}_{\mathrm{S}}=15 \Omega, \mathrm{C}_{\mathrm{L}}=34 \mathrm{pF}\) & 25 & - & 960/930 & \(\bullet\) & V/us \\
\hline & \(\mathrm{R}_{\mathrm{S}}=11 \Omega, \mathrm{C}_{\mathrm{L}}=49 \mathrm{pF}\) & 25 & - & 810/790 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline Total Harmonic Distortion & \(10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\), Note 3 & Full & \(\cdot\) & 0.01 & 0.1 & \% \\
\hline Disabled Output Resistance & \(\mathrm{V}_{\overline{\mathrm{CS}}}=2.0 \mathrm{~V}\) & Full & \(\cdot\) & 12 & - & M \(\Omega\) \\
\hline
\end{tabular}

NOTES:
3. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.
4. Units are \(100 \%\) tested at \(25^{\circ} \mathrm{C}\); guaranteed, but not tested at \(0^{\circ} \mathrm{C}\) and \(70^{\circ} \mathrm{C}\).

\section*{AC Test Circuit}


NOTE: \(\mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{X}}+\) Test Fixture Capacitance.

\section*{PC Board Layout}

The frequency response of this circuit depends greatly on the care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!

Attention should be given to decoupling the power supplies. A large value \((10 \mu \mathrm{~F})\) tantalum in parallel with a small value \((0.1 \mu \mathrm{~F})\) chip capacitor works well in most cases.
Keep input and output traces as short as possible, because trace inductance and capacitance can easily become the performance limiting items.

\section*{Application Information}

\section*{General}

The HA4404B is a \(4 \times 1\) crosspoint switch that is ideal for the matrix element of high performance switchers and routers. This crosspoint's low input capacitance and high input resistance provide excellent video terminations when used with an external \(75 \Omega\) resistor. Nevertheless, if several HA4404B inputs are connected together, the use of an input buffer should be considered (see Figure 1). This crosspoint contains no feedback or gain setting resistors, so the output is a true high impedance load when the IC is disabled ( \(\overline{C S}=1\) ).

\section*{Ground Connections}

All GND pins are connected to a common point on the die, so any one of them will suffice as the functional GND connection. For the best isolation and crosstalk rejection, however, all GND pins must connect to the GND plane.

\section*{Frequency Response}

Most applications utilizing the HA4404B require a series output resistor, \(\mathrm{R}_{\mathrm{S}}\), to tune the response for the specific load capacitance, \(\mathrm{C}_{\mathrm{L}}\), driven. Bandwidth and slew rate degrade as \(C_{L}\) increases (as shown in the Electrical Specification table), so give careful consideration to component placement to minimize trace length. In big matrix configurations where \(C_{L}\) is large, better frequency response is obtained by cascading two levels of crosspoints in the case of multiplexed outputs (see

Figure 2), or distributing the load between two drivers if \(C_{L}\) is due to bussing and subsequent stage input capacitance.

\section*{Control Signals}
\(\overline{\mathrm{CS}}\) - This is a TTLCMOS compatible, active low Chip Select input. When driven high, \(\overline{\mathrm{CS}}\) forces the output to a true high impedance state and reduces the power dissipation by a factor of 25 . The \(\overline{\mathrm{CS}}\) input has no on-chip pull-down resistor, so it must be connected to a logic low (recommend GND) if the enable function isn't utilized.

A0, A1 - These are binary coded, TTL/CMOS compatible address inputs that select which one of the four inputs connect to the crosspoint output.

T0-T3 - The Tally outputs are open collector PNP transistors connected to \(\mathrm{V}+\). When \(\overline{\mathrm{CS}}=0\), the PNP transistor associated with the selected input is enabled and current is delivered to the load. When the crosspoint is disabled, or the channel is unselected, the Tally output(s) present a very high impedance to the external circuitry. Several Tally outputs may be wire OR'd together to generate complex control signals, as shown in the application circuits below. The Tally load may be terminated to GND or to V- as long as the continuous output current doesn't exceed 3 mA ( 6 mA at \(50 \%\) duty cycle, etc.).

\section*{Switcher/Router Applications}

Figure 1 illustrates one possible implementation of a wideband, low power, \(4 \times 4\) switcher/router utilizing the HA4404B for the switch matrix. A \(4 \times 4\) switcher/router allows any of the four outputs to be driven by any one of the four inputs (e.g., each of the four inputs may connect to a different output, or an input may connect to multiple outputs). This application utilizes the

HA4600 (video buffer with output disable) for the input buffer, the HA4404B as the switch matrix, and the HFA1112 (programmable gain buffer) as the gain of two output driver. Figure 2 details a \(16 \times 1\) switcher (basically a 16:1 mux) which uses the HA4201 ( \(1 \times 1\) crosspoint) and the HA4404B in a cascaded stage configuration to minimize capacitive loading at each output node, thus increasing system bandwidth.

\section*{Power Up Considerations}

No signals should be applied to the analog or digital inputs before the power supplies are activated. Latch-up may occur if the inputs are driven at the time of power up. To prevent latch-up, the input currents during power up must not exceed the values listed in the Absolute Maximum Ratings.

\section*{Harris' Crosspoint Family}

Harris offers a variety of \(4 \times 1\) and \(1 \times 1\) crosspoint switches. In addition to the HA4404B, the \(4 \times 1\) family includes the HA4314 and HA4344. The HA4314 is a basic 14 lead device without Tally outputs. The HA4344 is a 16 lead crosspoint with synchronized control lines (A0, A1, \(\overline{\mathrm{CS}}\) ). With synchronization, the control information for the next channel switch can be loaded into the crosspoint without affecting the current state. On a subsequent clock edge the stored control state effects the desired channel switch.
The \(1 \times 1\) family is comprised of the HA4201 and HA4600. They are essentially similar devices, but the HA4201 includes a Tally output. The \(1 \times 1\) s are useful as high performance video input buffers, or in a switch matrix requiring very high off isolation.


FIGURE 1. \(4 \times 4\) SWITCHER/ROUTER APPLICATION


FIGURE 2. \(16 \times 1\) SWITCHER APPLICATION
Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\), Unless Otherwise Specified


FIGURE 3. LARGE SIGNAL PULSE RESPONSE


FIGURE 4. CHANNEL-TO-CHANNEL SWITCHING RESPONSE

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\), Unless Otherwise Specified (Continued)


FIGURE 5. FREQUENCY RESPONSE

figure 7. ALL hostile crosstalk rejection


FIGURE 9. TOTAL HARMONIC DISTORTION vs FREQUENCY


FIGURE 6. GAIN FLATNESS


FIGURE 8. ALL HOSTILE OFF ISOLATION


FIGURE 10. INPUT CAPACITANCE vs FREQUENCY

\section*{Die Characteristics}
die dimensions:
65 mils \(\times 118\) mils \(\times 19\) mils \(1640 \mu \mathrm{~m} \times 3000 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)

METALLIZATION:
Type: Metal 1: AICu (1\%)/TiW
Thickness: Metal 1: \(6 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)
Type: Metal 2: AICu (1\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 1.1 \mathrm{k} \AA\)

\section*{PASSIVATION:}

Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
200
SUBSTRATE POTENTIAL (Powered Up):
V-

\section*{Metallization Mask Layout}


HARRIS
SEMICONDUCTOR

\title{
130MHz, \\ 8 x 8 Video Crosspoint Switch
}

\section*{Features}
- Fully Buffered Inputs and Outputs ( \(A_{V}=+1\) )
- Routes Any Input Channel to Any Output Channel
- Switches Standard and High Resolution Video Signals
- Serial or Parallel Digital Interface
- Expandable for Larger Switch Matrices
- Wide Bandwidth

130 MHz
- High Slew Rate \(250 \mathrm{~V} / \mu \mathrm{s}\)
- Low Differential Gain/Phase . . . . . 0.02\%/0.02 Degrees
- Low Crosstalk at 10 MHz -60dB

\section*{Applications}
- Professional Video Switching and Routing
- Security and Video Editing Systems

\section*{Description}

The HA455 is the first \(8 \times 8\) video crosspoint switch suitable for high performance video systems. Its high level of integration significantly reduces component count, board space, and cost. The crosspoint switch contains a digitally controlled matrix of 64 fully buffered switches that connect eight video input signals to any, or all, matrix outputs. Each matrix output connects to an internal, high-speed ( \(250 \mathrm{~V} / \mu \mathrm{s}\) ), unity gain buffer capable of driving \(400 \Omega\) and 20 pF to \(\pm 2 \mathrm{~V}\).

For applications requiring gain or increased drive capability, the HA455 outputs can be connected directly to two HFA1412 quad, gain of two video buffers, which are capable of driving \(75 \Omega\) loads. Another option which also provides gain capability is the HA457 170 MHz , gain of two \(8 \times 8\) crosspoint.

This crosspoint's true high impedance three-state output capability, makes it feasible to parallel multiple HA455s and form larger switch matrices.

\section*{Ordering Information}
\begin{tabular}{|l|c|c|c|}
\hline PART NUMBER & RANGE \(\left({ }^{\circ} \mathbf{C}\right)\) & PACKAGE & PKG. NO. \\
\hline HA455CN & 0 to 70 & 44 Ld MQFP & M \(44.10 \times 10\) \\
\hline
\end{tabular}

\section*{Pinout}


\section*{ADVANCE INFORMATION}

November 1996

\author{
80MHz, Low Power, \(8 \times 8\) Video Crosspoint Switch
}

\section*{Features}
- Fully Buffered Inputs and Outputs ( \(A_{V}=+1\) )
- Routes Any Input Channel to Any Output Channel
- Switches Standard and High Resolution Video Signals
- Serial or Parallel Digital Interface
- Expandable for Larger Switch Matrices
- Wide Bandwidth

80 MHz
- High Slew Rate. \(\qquad\) 170V/ \(\mu \mathrm{s}\)
- Low Differential Gain/Phase . . . . . . 0.04\%/0.2 Degrees
- Low Crosstalk at \(\mathbf{1 0 M H z}\)
-60dB

\section*{Applications}
- Professional Video Switching and Routing
- Security and Video Editing Systems

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|}
\hline PART NUMBER & \begin{tabular}{l}
TEMP. \\
RANGE ( \({ }^{\circ} \mathrm{C}\) )
\end{tabular} & PACKAGE & PKG. NO. \\
\hline HA456CN & 0 to 70 & 44 Ld MQFP & M44.10x10 \\
\hline HA456CM & 0 to 70 & 44 Ld PLCC & N44.65 \\
\hline
\end{tabular}

\section*{Description}

The HA456 is the first \(8 \times 8\) video crosspoint switch suitable for high performance video systems. Its high level of integration significantly reduces component count, board space, and cost. The crosspoint switch contains a digitally controlled matrix of 64 fully buffered switches that connect eight video input signals to any, or all, matrix outputs. Each matrix output connects to an internal, high-speed ( \(170 \mathrm{~V} / \mu \mathrm{s}\) ), unity gain buffer capable of driving \(400 \Omega\) and 20 pF to \(\pm 2 \mathrm{~V}\).

For applications requiring gain or increased drive capability, the HA456 outputs can be connected directly to two HFA1412 quad, gain of two video buffers, which are capable of driving \(75 \Omega\) loads. Another option which also provides gain capability is the HA457 170 MHz , gain of two \(8 \times 8\) crosspoint.

This crosspoint's true high impedance three-state output capability, makes it feasible to parallel multiple HA456s and form larger switch matrices.

\section*{Pinouts}


\section*{Features}
- Fully Buffered Inputs and Outputs ( \(A_{V}=+2\) )
- Routes Any Input Channel to Any Output Channel
- Switches Standard and High Resolution Video Signals
- Serial or Parallel Digital Interface
- Expandable for Larger Switch Matrices
- Wide Bandwidth

170MHz
- High Slew Rate
\(350 \mathrm{~V} / \mu \mathrm{s}\)
- Low Differential Gain/Phase . . . . . 0.01\%/0.02 Degrees
- Low Crosstalk at 10 MHz
\(-60 \mathrm{~dB}\)

\section*{Applications}
- Professional Video Switching and Routing
- Security Systems
- Video Editing

\section*{Ordering Information}
\begin{tabular}{|l|c|c|c|}
\hline PART NUMBER & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & PACKAGE & PKG. NO. \\
\hline HA457CN & 0 to 70 & 44 Ld MQFP & M44.10×10 \\
\hline
\end{tabular}

\section*{Description}

The HA457 is the first \(8 \times 8\) video crosspoint switch suitable for high performance video systems. Its high level of integration significantly reduces component count, board space, and cost. The crosspoint switch contains a digitally controlled matrix of 64 fully buffered switches that connect eight video input signals to any, or all, matrix outputs. Each output connects to eight internal, high-speed ( \(350 \mathrm{~V} / \mu \mathrm{s}\) ), gain of two buffers capable of driving \(150 \Omega\) and 20 pF to \(\pm 2.0 \mathrm{~V}\).

The HI//्LOPOWER lead may be strapped to GND for power critical applications that don't require "broadcast quality" video performance. In this low power mode, power dissipation decreases from 880 mW to 560 mW .

The HA457 will directly drive a double terminated video cable with some degradation of differential gain and phase. Applications demanding the best composite video performance should drive the cable with a unity gain video buffer, such as the HFA1412 quad buffer.

This crosspoint's three-state output capability, makes it feasible to parallel multiple HA457s and form larger switch matrices.

\section*{Pinout}


\title{
480MHz, Video Buffer with Output Disable
}

\section*{Features}
- Low Power Dissipation . . . . . . . . . . . . . . . . . . . 105mW
- Symmetrical Slew Rates . . . . . . . . . . . . . . . . . 1700V/ \(\mu \mathrm{s}\)
- 0.1dB Gain Flatness. . . . . . . . . . . . . . . . . . . . . . 250MHz
- Off Isolation (100MHz) . . . . . . . . . . . . . . . . . . . . . . 85dB
- Differential Gain and Phase . . . . . 0.01\%/0.01 Degrees
- High ESD Rating . . . . . . . . . . . . . . . . . . . . . . . . >2000V
- TTL Compatible Enable Input
- Improved Replacement for GB4600

\section*{Applications}
- Professional Video Switching and Routing
- Video Multiplexers
- HDTV
- Computer Graphics
- RF Switching and Routing
- PCM Data Routing

\section*{Description}

The HA4600 is a very wide bandwidth, unity gain buffer ideal for professional video switching, HDTV, computer monitor routing, and other high performance applications. The circuit features very low power dissipation (105mW Enabled, 1 mW Disabled), excellent differential gain and phase, and very high off isolation. When disabled, the output is switched to a high impedance state, making the HA4600 ideal for routing matrix equipment and video multiplexers.

The HA4600 also features fast switching and symmetric slew rates. A typical application for the HA4600 is interfacing Harris' wide range of video crosspoint switches.

For applications requiring a tally output (enable indicator), please refer to the HA4201 data sheet.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{c} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular} \\
\hline HA4600CP & 0 to 70 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
HA4600CB \\
\((4600 \mathrm{CB})\)
\end{tabular} & 0 to 70 & 8 Ld SOIC & M8.15 \\
\hline
\end{tabular}


\section*{Truth Table}
\begin{tabular}{|c|l|}
\hline EN & \multicolumn{1}{|c|}{ OUT } \\
\hline 0 & High Z \\
\hline 1 & Active \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings}

Voltage Between V＋and V．
Input Voltage．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．VSUPPLY
Digital Input Current（Note 2）．．．．．．．．．．．．．．．．．．．．．．．．．\(\pm 25 \mathrm{~mA}\)
Output Current 20 mA

\section*{Operating Conditions \\ Temperature Range}

\section*{Thermal Information}
\begin{tabular}{|c|c|}
\hline Thermal Resistance（Typical，Note 1） & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline PDIP Package & 130 \\
\hline SOIC Package & 170 \\
\hline Maximum Junction Temperature（Die）． & \(175^{\circ} \mathrm{C}\) \\
\hline Maximum Junction Temperature（Plastic Package） & ． \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Storage Temperature Range & C to \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Lead Temperature（Soldering 10s）．． （SOIC－Lead Tips Only） & ． \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular} （SOIC－Lead Tips Only）

CAUTION：Stresses above those listed in＂Absolute Maximum Ratings＂may cause permanent damage to the device．This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied．

NOTES：
1．\(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air．
2．If an input signal is applied before the supplies are powered up，the input current must be limited to this maximum value．
Electrical Specifications \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{EN}}=2.0 \mathrm{~V}\) ，Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP．\(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{DC SUPPLY CHARACTERISTICS} \\
\hline Supply Voltage & & Full & \(\pm 4.5\) & \(\pm 5.0\) & \(\pm 5.5\) & V \\
\hline \multirow[t]{4}{*}{Supply Current（VOUT \(=0 \mathrm{~V}\) ）} & \(\mathrm{V}_{\text {EN }}=2 \mathrm{~V}\) & 25， 70 & － & 10.5 & 13 & mA \\
\hline & \(\mathrm{V}_{\mathrm{EN}}=2 \mathrm{~V}\) & 0 & － & － & 14.5 & mA \\
\hline & \(\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}\) & 25， 70 & － & 100 & 115 & \(\mu \mathrm{A}\) \\
\hline & \(\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}\) & 0 & － & 100 & 125 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{ANALOG DC CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Output Voltage Swing without Clipping} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OUT }}=\mathrm{V}_{1 \mathrm{~N}} \pm \mathrm{V}_{1 \mathrm{O}} \pm 20 \mathrm{mV}\)} & 25， 70 & \(\pm 2.7\) & \(\pm 2.8\) & － & V \\
\hline & & 0 & \(\pm 2.4\) & \(\pm 2.5\) & － & V \\
\hline Output Current & & Full & 15 & 20 & － & mA \\
\hline Input Bias Current & & Full & － & 30 & 50 & \(\mu \mathrm{A}\) \\
\hline Output Offset Voltage & & 25 & －10 & － & 10 & mV \\
\hline Output Offset Voltage Drift（Note 3） & & Full & － & 25 & 50 & \(\mu \mathrm{V}{ }^{\rho} \mathrm{C}\) \\
\hline \multicolumn{7}{|l|}{SWITCHING CHARACTERISTICS} \\
\hline Turn－On Time & & 25 & － & 160 & － & ns \\
\hline Turn－Off Time & & 25 & － & 320 & － & ns \\
\hline
\end{tabular}

DIGITAL DC CHARACTERISTICS
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline Input Logic High Voltage & & Full & 2 & - & - & V \\
\hline Input Logic Low Voltage & & Full & - & - & 0.8 & V \\
\hline EN Input Current & OV to 4V & Full & -2 & - & 2 & \(\mu \mathrm{~A}\) \\
\hline
\end{tabular}

AC CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Insertion Loss & \(1 \mathrm{~V}_{\text {P－P }}\) & Full & － & 0.04 & 0.05 & dB \\
\hline \multirow[t]{3}{*}{－3dB Bandwidth} & \(\mathrm{R}_{\mathrm{S}}=82 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\) & 25 & － & 480 & － & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=43 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & 25 & － & 380 & － & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=36 \Omega, \mathrm{C}_{\mathrm{L}}=21 \mathrm{pF}\) & 25 & － & 370 & － & MHz \\
\hline \multirow[t]{3}{*}{\(\pm 0.1 \mathrm{~dB}\) Flat Bandwidth} & \(\mathrm{R}_{\mathrm{S}}=82 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\) & 25 & － & 250 & － & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=43 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & 25 & － & 175 & \(\bullet\) & MHz \\
\hline & \(\mathrm{R}_{\mathrm{S}}=36 \Omega, \mathrm{C}_{\mathrm{L}}=21 \mathrm{pF}\) & 25 & － & 170 & － & MHz \\
\hline Input Resistance & & Full & 200 & 400 & － & \(\mathrm{k} \Omega\) \\
\hline Input Capacitance & & Full & － & 1.0 & － & pF \\
\hline Enabled Output Resistance & & Full & － & 15 & － & \(\Omega\) \\
\hline Disabled Output Capacitance & \(\mathrm{V}_{\mathrm{EN}}=0.8 \mathrm{~V}\) & Full & － & 2.0 & － & pF \\
\hline Differential Gain（Note 3） & 4.43 MHz & 25 & － & 0.01 & 0.02 & \％ \\
\hline
\end{tabular}

Electrical Specifications \(V_{S U P P L Y}= \pm 5 \mathrm{~V}, R_{L}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{EN}}=2.0 \mathrm{~V}\). Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline Differential Phase (Note 3) & 4.43MHz & 25 & - & 0.01 & 0.02 & Degrees \\
\hline Off Isolation & \[
\begin{aligned}
& 1 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} 100 \mathrm{MHz}, \\
& \mathrm{~V}_{\mathrm{EN}}=0.8 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \Omega
\end{aligned}
\] & Full & - & 85 & - & dB \\
\hline \multirow[t]{3}{*}{Slew Rate (1.5V \({ }_{\text {P-P }}\), +SR/-SR)} & \(\mathrm{R}_{\mathrm{S}}=82 \Omega, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\) & 25 & - & 1750/1770 & - & V/ \(/\) s \\
\hline & \(\mathrm{R}_{\mathrm{S}}=43 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\) & 25 & \(\cdot\) & 1460/1360 & - & V/ \(/ \mathrm{s}\) \\
\hline & \(\mathrm{R}_{\mathrm{S}}=36 \Omega, \mathrm{C}_{\mathrm{L}}=21 \mathrm{pF}\) & 25 & \(\bullet\) & 1410/1360 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline Total Harmonic Distortion (Note 3) & & Full & - & 0.01 & 0.1 & \% \\
\hline Disabled Output Resistance & & Full & \(\bullet\) & 12 & - & \(\mathrm{M} \Omega\) \\
\hline
\end{tabular}

NOTE:
3. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation.

\section*{AC Test Circuit}


NOTE: \(\mathrm{C}_{\mathrm{L}}=\mathrm{C}_{\mathrm{X}}+\) Test Fixture Capacitance.

\section*{PC Board Layout}

The frequency response of this circuit depends greatly on the care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must!

Attention should be given to decoupling the power supplies. A large value \((10 \mu \mathrm{~F})\) tantalum in parallel with a small value \((0.1 \mu \mathrm{~F})\) chip capacitor works well in most cases.
Keep input and output traces as short as possible, because trace inductance and capacitance can easily become the performance limiting items.

\section*{Application Information}

\section*{General}

The HA4600 is a unity gain buffer that is optimized for high performance video applications. The output disable function makes it ideal for the matrix element in small, high input-to-output isolation switchers and routers. This buffer contains no feedback or gain setting resistors, so the output is a true high impedance load when the IC is disabled ( \(\mathrm{EN}=0\) ). The HA4600 also excels as an input buffer for routers with a large number of outputs (i.e. each input must connect to a large number of outputs) and delivers performance superior to most video amplifiers at a fraction of the cost. As an input buffer, the HA4600's low input capacitance and high input resistance provide excellent video terminations when used with an external \(75 \Omega\) resistor.

\section*{Frequency Response}

Most applications utilizing the HA4600 require a series output resistor, \(R_{\mathrm{S}}\), to tune the response for the specific load capacitance, \(\mathrm{C}_{\mathrm{L}}\), driven. Bandwidth and slew rate degrade
as \(C_{L}\) increases (as shown in the Electrical Specification table), so give careful consideration to component placement to minimize trace length. As an example, -3dB bandwidth decreases to 160 MHz for \(C_{L}=100 \mathrm{pF}, R_{S}=0 \Omega\). In big matrix configurations where \(C_{L}\) is large, better frequency response is obtained by cascading two levels of crosspoints in the case of multiplexed outputs (see Figure 2), or distributing the load between two drivers if \(C_{L}\) is due to bussing and subsequent stage input capacitance.

\section*{Control Signals}

EN - The ENABLE input is a TTL/CMOS compatible, active high input. When driven low this input forces the output to a true high impedance state and reduces the power dissipation by two orders of magnitude. The EN input has no onchip pull-up resistor, so it must be connected to a logic high (recommend \(\mathrm{V}_{+}\)) if the enable function isn't utilized.

\section*{Switcher/Router Applications}

Figure 1 illustrates one possible implementation of a wideband, low power, \(4 \times 4\) switcher/router. A \(4 \times 4\) switcher/router allows any of the four outputs to be driven by any one of the four inputs (e.g. each of the four inputs may connect to a different output, or an input may connect to multiple outputs). This application utilizes the HA4600 for the input buffer, the HA4404 ( \(4 \times 1\) crosspoint switch) as the switch matrix, and the HFA1112 (programmable gain buffer) as the gain of two output driver. Figure 2 details a \(16 \times 1\) switcher (basically a 16:1 mux) which uses the HA4600 in a cascaded stage configuration to minimize capacitive loading at each output node, thus increasing system bandwidth.

\section*{Power Up Considerations}

No signals should be applied to the analog or digital inputs before the power supplies are activated. Latch-up may occur if the inputs are driven at the time of power up. To prevent latch-up, the input currents during power up must not exceed the values listed in the Absolute Maximum Ratings.

\section*{Harris' Crosspoint Family}

Harris offers a variety of \(1 \times 1\) and \(4 \times 1\) crosspoint switches. In addition to the HA4600, the \(1 \times 1\) family includes the HA4201 which is an essentially similar device that includes a Tally output (enable indicator). The \(4 \times 1\) family is comprised of the HA4314, HA4404, and HA4344. The HA4314 is a 14 lead basic \(4 \times 1\) crosspoint. The HA4404 is a 16 lead device with Tally outputs
to indicate the selected channel. The HA4344 is a 16 lead crosspoint with synchronized control lines (AO, A1, CS). With synchronization, the control information for the next channel
switch can be loaded into the crosspoint without affecting the current state. On a subsequent clock edge the stored control state effects the desired channel switch.


FIGURE 1. \(4 \times 4\) SWITCHER/ROUTER APPLICATION


FIGURE 2. \(16 \times 1\) SWITCHER APPLICATION

Typical Performance Curves \(\mathrm{V}_{\text {SUPPLY }}= \pm 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\), Unless Otherwise Specified


FIGURE 3. LARGE SIGNAL PULSE RESPONSE


FIGURE 5. FREQUENCY REPONSE


FIGURE 4. INPUT CAPACITANCE vs FREQUENCY


FIGURE 6. GAIN FLATNESS


FIGURE 7. OFF ISOLATION

\section*{Die Characteristics}

DIE DIMENSIONS:
51 mils \(\times 36\) mils \(\times 19\) mils
\(1290 \mu \mathrm{~m} \times 910 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)
METALLIZATION:
Type: Metal 1: AICu (1\%)/TiW
Thickness: Metal 1: \(6 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)
Type: Metal 2: AICu (1\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 1.1 \mathrm{k} \AA\)

SUBSTRATE POTENTIAL (Powered Up): V-

PASSIVATION:
Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
53

Metallization Mask Layout


\title{
LINEAR
}

\section*{7}

\section*{TRANSISTOR AND DIODE ARRAYS, AND DIFFERENTIAL AMPLIFIERS}
PAGE
SELECTION GUIDE ..... 7-2
TRANSISTOR AND DIODE ARRAY, AND DIFFERENTIAL AMPLIFIER DATA SHEETS
CA3018, CA3018A General Purpose Transistor Arrays ..... 7-5
CA3028A, CA3028B, Differential/Cascode Amplifiers for Commercial and Industrial Equipment CA3053 from DC to 120 MHz ..... 7-6
САЗ039 Diode Array ..... 7-18
САЗ045, CA3046 General Purpose NPN Transistor Arrays ..... 7-22
CA3049, CA3102 Dual High Frequency Differential Amplifiers For Low Power Applications Up to 500 MHz ..... 7-28
CA3054 Dual Independent Differential Amp for Low Power Applications from DC to 120 MHz ..... 7-37
САЗ081, САЗ082 General Purpose High Current NPN Transistor Arrays ..... 7-45
САЗ083 General Purpose High Current NPN Transistor Array ..... 7-48
СА3086 General Purpose NPN Transistor Array ..... 7-52
САЗ096, САЗ096A, NPN/PNP Transistor Arrays ..... 7-57
САЗ096C
CA3127High Frequency NPN Transistor Array7-69
CA3141 High-Voltage Diode Array For Commercial, Industrial and Military Applications ..... 7-75
CA3146, СА3146A, High-Voltage Transistor Arrays ..... 7-76
CA3183, СА3183A
CA3227, CA3246 High-Frequency NPN Transistor Arrays For Low-Power Applications
at Frequencies Up to 1.5 GHz ..... 7-84
HFA3046, HFA3096, Ultra High Frequency Transistor Arrays ..... 7-89
HFA3127, HFA3128
HFA3101 Gilbert Cell UHF Transistor Array ..... 7-98
HFA3102 Dual Long-Tailed Pair Transistor Array ..... 7-110

\section*{Selection Guide}

DIFFERENTIAL AMPLIFIERS: Typical Values, Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline TYPE & DESCRIPTION & (NOTE 4) FEATURES & FREQ. RANGE DC TO (MHz) & \[
\begin{aligned}
& \text { VOLTAGE } \\
& \text { GAIN } \\
& \text { (dB) }
\end{aligned}
\] & \begin{tabular}{l}
BW \\
(3dB POINT)
(MHz)
\end{tabular} & \[
\begin{gathered}
1 / F \\
\mathrm{NF} \\
\text { (dB) }
\end{gathered}
\] & AGC RANGE (dB) & (NOTE 5) LEAD CT AND PKG TYPE \\
\hline CA3028A & \multirow[t]{2}{*}{Differential/ Cascode Amplifiers} & \multirow[t]{6}{*}{\begin{tabular}{l}
- Balanced Differential Amplifier Configuration with Controlled Constant Current Source \\
- RF, IF and Video Frequency Capability \\
- Balanced AGC Capability \\
- Operation from DC to 500 MHz \\
- CA3028B is Controlled for Input Offset Voltage, Current, and Input Bias Current, and is Intended for "Balance" Requirements \\
- Push-Pull Inputs and Outputs \\
- CA3028 and CA3053 are Identical Except for 100 MHz Noise Specification
\end{tabular}} & 120 &  & - & 7.2 & 62 & \multirow[t]{2}{*}{\[
\begin{gathered}
8 \text { PDIP, } 8 \\
\text { SOIC, } \\
8 \text { Metal } \\
\text { Can }
\end{gathered}
\]} \\
\hline CA3028B & & & 120 & 40 & 8 & 7.2 & 62 & \\
\hline CA3049 & Dual High Frequency & & 500 & 22 & \[
\begin{gathered}
1.35 \\
\text { (Note 2) }
\end{gathered}
\] & 4.6 & 75 & 12 Metal Can \\
\hline CA3053 & Differential/Cascode Amplifier & & 120 & 40 & Recomm er Applic & ded for ns & Amplifi- & \begin{tabular}{l}
8 PDIP, \\
8 Metal Can
\end{tabular} \\
\hline CA3054 & Dual Independent & & 120 & 32 & \[
\begin{gathered}
550 \\
(\text { Note 3) }
\end{gathered}
\] & 3.25 & 75 & 14 PDIP, 14 SOIC \\
\hline CA3102 & Dual High Frequency & & 500 & 22 & \[
\begin{gathered}
1.35 \\
\text { (Note } 2)
\end{gathered}
\] & 4.6 & 75 & \begin{tabular}{l}
14 PDIP, \\
14 SOIC
\end{tabular} \\
\hline
\end{tabular}

NOTES:
1. Power Gain \(\left(G_{p}\right)\) Min. at 100 MHz : Cascode \(=16 \mathrm{~dB}\); Differential Amplifier \(=14 \mathrm{~dB}\).
2. GHz .
3. \(\mathrm{f}_{\mathrm{T}}(\mathrm{MHz})\).
4. \(T_{A}\) Range: \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) except for type CA3054 \(\left(0^{\circ} \mathrm{C}\right.\) to \(\left.85^{\circ} \mathrm{C}\right)\).
5. See Linear Package Selection Guide in Section 11.

TRANSISTOR ARRAYS: Electrical Characteristics \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TYPE & DESCRIPTION & \[
\begin{aligned}
& \mathbf{V}_{\text {(BR) CEO }} \\
& \text { (MIN) } \mathrm{V}
\end{aligned}
\] & \[
\begin{aligned}
& V_{(\text {BR }) \text { CBO }} \\
& (\text { MIN }) \mathbf{V}
\end{aligned}
\] & \(\mathrm{h}_{\text {FE }}\) (MIN) & \[
\mathrm{I}_{\mathrm{C}}^{(\text {MAX })}
\] & (NOTE 1) LEAD COUNT AND PACKAGE TYPE \\
\hline CA3045 & \multirow[t]{3}{*}{Three Transistors Plus a Differential Pair} & 15 & 20 & 40 & 50 & 14 CERDIP, 14 SBDIP \\
\hline \multirow[t]{2}{*}{CA3046} & & 15 & 20 & 40 & 50 & \multirow[t]{2}{*}{14 PDIP, 14 SOIC} \\
\hline & & \multicolumn{4}{|l|}{\(\mathrm{f}_{\mathrm{T}}>300 \mathrm{MHz}\). 2 matched pairs \(\pm 5 \mathrm{mV}\)} & \\
\hline \multirow[t]{2}{*}{CA3081} & \multirow[t]{6}{*}{General-Purpose NPN High-Current Transistors} & 16 & 20 & 40 & 100 & \multirow[t]{2}{*}{16 PDIP, 16 CERDIP, 16 SOIC ( 150 mil )} \\
\hline & & \multicolumn{4}{|l|}{Seven Common-Emitter} & \\
\hline \multirow[t]{2}{*}{CA3082} & & 16 & 20 & 40 & 100 & \multirow[t]{2}{*}{16 PDIP, 16 CERDIP, 16 SOIC ( 150 mil )} \\
\hline & & \multicolumn{4}{|l|}{Seven Common-Collector} & \\
\hline \multirow[t]{2}{*}{CA3083} & & 15 & 20 & 40 & 100 & \multirow[t]{2}{*}{\[
\begin{aligned}
& 16 \text { PDIP, } 16 \text { CERDIP, } \\
& 16 \text { SOIC ( } 150 \text { mil) }
\end{aligned}
\]} \\
\hline & & \multicolumn{4}{|l|}{Five independent transistors. \(Q_{1}\) and \(Q_{2}\) matched; \(l_{1 O}\) (at \(1 \mathrm{~mA}) 2.5 \mu \mathrm{~A}\) Max} & \\
\hline \multirow[t]{2}{*}{CA3086} & \multirow[t]{2}{*}{Three Isolated Transistors Plus a Differential Pair} & 15 & 20 & 40 & 50 & \multirow[t]{2}{*}{\[
\begin{gathered}
14 \text { PDIP, } 14 \text { CERDIP, } \\
14 \text { SOIC }
\end{gathered}
\]} \\
\hline & & \multicolumn{4}{|l|}{\(\mathrm{f}_{T}>550 \mathrm{MHz}\) Typ Operation from DC to 120MHz} & \\
\hline \multirow[t]{2}{*}{CA3127} & \multirow[t]{2}{*}{Five Independent Transistors} & 15 & 20 & 40 & 20 & \multirow[t]{2}{*}{\[
\begin{gathered}
16 \text { PDIP, } \\
16 \text { SOIC (150 mil) }
\end{gathered}
\]} \\
\hline & & \multicolumn{4}{|l|}{\(\mathrm{f}_{T}>1 \mathrm{GHz}\). Operation from DC to 500 MHz} & \\
\hline CA3146 & \multirow[t]{3}{*}{Three Transistors Plus a Differential Pair} & 30 & 40 & 30 & 50 & \multirow[t]{3}{*}{14 PDIP, 14 SOIC} \\
\hline \multirow[t]{2}{*}{CA3146A} & & 40 & 50 & 30 & 50 & \\
\hline & & \multicolumn{4}{|l|}{\(\mathrm{f}_{\mathrm{T}}>500 \mathrm{MHz}\) Typ Operation from DC to 120 MHz} & \\
\hline
\end{tabular}

Selection Guide

TRANSISTOR ARRAYS: Electrical Characteristics \(T_{A}=25^{\circ} \mathrm{C}\) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TYPE & DESCRIPTION & \[
\begin{aligned}
& \mathbf{V}_{\text {(BR) CEO }} \\
& (M I N) \mathbf{V}
\end{aligned}
\] & \begin{tabular}{l}
\(V_{\text {(BR) CBO }}\) \\
(MIN) V
\end{tabular} & \(\mathrm{h}_{\text {FE }}\) (MIN) & \[
\begin{gathered}
\mathrm{I}_{\mathrm{c}}^{\mathrm{C}} \text { (MAX)} \\
\hline
\end{gathered}
\] & \begin{tabular}{l}
(NOTE 1) \\
LEAD COUNT AND \\
PACKAGE TYPE
\end{tabular} \\
\hline CA3183 & \multirow[t]{3}{*}{Five High-Current Transistors} & 30 & 40 & 40 & 75 & \multirow[t]{3}{*}{16 PDIP,
16 SOIC (150 mil)} \\
\hline \multirow[t]{2}{*}{CA3183A} & & 40 & 50 & 40 & 75 & \\
\hline & & \multicolumn{4}{|l|}{High-Voltage Versions of CA3083 Transistors \(Q_{1}\) and \(Q_{2}\) Matched at 1 mA} & \\
\hline \multirow[t]{2}{*}{CA3227} & \multirow[t]{2}{*}{Five Independent Transistors} & 8 & 12 & 40 & 20 & \multirow[t]{2}{*}{\[
\begin{gathered}
16 \text { PDIP, } \\
16 \text { SOIC (150 mil) }
\end{gathered}
\]} \\
\hline & & \multicolumn{4}{|l|}{\(\mathrm{f}_{\mathrm{T}}=3 \mathrm{GHz}\) Typ Operation from DC to 1.5 GHz} & \\
\hline \multirow[t]{2}{*}{CA3246} & \multirow[t]{2}{*}{Three Independent Transistors Plus a Differential Pair} & 8 & 12 & 40 & 20 & \multirow[t]{2}{*}{14 PDIP. 14 SOIC} \\
\hline & & \multicolumn{4}{|l|}{\(\mathrm{f}_{\mathrm{T}}=3 \mathrm{GHz}\) Typ Operation from DC to 1.5 GHz} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TYPE & DESCRIPTION & \(V_{\text {(BR) CEO }}\) (MIN) V NPN/PNP & \(V_{\text {(BR) CBO }}\) (MIN) V NPN/PNP & \(h_{\text {FE }}\) (MIN) NPN/PNP & \(I_{C}\) (MAX) NPN/PNP & \begin{tabular}{l}
(NOTE 1) \\
LEAD COUNT AND \\
PACKAGE TYPE
\end{tabular} \\
\hline CA3096 & \multirow[t]{6}{*}{Five Independent Transistors, 3 NPN, 2 PNP} & 35/-40 & 45/-40 & 150/20 & 50/-10 & \multirow[t]{2}{*}{\[
\begin{gathered}
16 \text { PDIP, } \\
16 \text { SOIC (150 mil) }
\end{gathered}
\]} \\
\hline CA3096A & & 35/-40 & 45/-40 & 150/20 & 50/-10 & \\
\hline \multirow[t]{4}{*}{CA3096C} & & 24/-24 & 30/-24 & 100/15 & 50/-10 & \multirow[t]{4}{*}{16 PDIP} \\
\hline & & \multicolumn{2}{|c|}{NPN} & \multicolumn{2}{|c|}{PNP} & \\
\hline & & \multicolumn{2}{|l|}{\(\left|\mathrm{V}_{10}\right|=5 \mathrm{mV}\) Max} & \multicolumn{2}{|c|}{5 mV Max} & \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{H}_{10} \mathrm{I}=0.6 \mu \mathrm{~A} \mathrm{Max}\)} & \multicolumn{2}{|c|}{\(0.25 \mu \mathrm{~A}\) Max} & \\
\hline \multirow[t]{2}{*}{HFA3046} & \multirow[t]{2}{*}{Three 8GHz NPN Transistors Plus an NPN Differential Pair} & 8 & 12 & 40 & 15 & \multirow[t]{2}{*}{14 SOIC} \\
\hline & & \multicolumn{4}{|c|}{\(1 \mathrm{~V}_{1 \mathrm{O}} \mathrm{I}=5 \mathrm{mV}\) Max} & \\
\hline \multirow[t]{2}{*}{HFA3096} & \multirow[t]{2}{*}{Three 8GHz NPN Transistors Plus Two 5.5 GHz PNP Transistors} & 8 & 12/10 & 40/25 & 15 & \multirow[t]{2}{*}{16 SOIC (150 mil)} \\
\hline & & \multicolumn{4}{|c|}{\(\mathrm{NF}=3.5 \mathrm{~dB}\) at 1 GHz} & \\
\hline \multirow[t]{2}{*}{HFA3127} & \multirow[t]{2}{*}{Five Independent 8GHz NPN Transistors} & 8 & 12 & 40 & 15 & \multirow[t]{2}{*}{16 SOIC (150 mil)} \\
\hline & & \multicolumn{4}{|c|}{\(\mathrm{NF}=3.5 \mathrm{~dB}\) at 1 GHz} & \\
\hline \multirow[t]{2}{*}{HFA3128} & \multirow[t]{2}{*}{Five Independent 5.5 GHz PNP Transistors} & 8 & 10 & 25 & 15 & \multirow[t]{2}{*}{16 SOIC (150 mil)} \\
\hline & & \multicolumn{4}{|c|}{\(\mathrm{NF}=3.5 \mathrm{~dB}\) at 1GHz} & \\
\hline
\end{tabular}

NOTE:
1. See Linear Package Selection Guide in Section 11.

DIODE ARRAYS: \(\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\). Apply for Each Diode
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline TYPE & DESCRIPTION & \(V_{(B R) R}\) (MIN) V & \(\mathrm{I}_{\mathrm{R}}(\mathrm{MAX}) \mu \mathrm{A}\) & \(C_{D}\) (TYP) pF & \[
\begin{aligned}
& V_{F_{1}-}-V_{F 2} \\
& (M A X) \mathrm{mV}
\end{aligned}
\] & \begin{tabular}{l}
(NOTE 1) \\
PIN COUNT AND PACKAGE TYPE
\end{tabular} \\
\hline \multirow[t]{2}{*}{CA3039} & \multirow[t]{2}{*}{6 Individual} & 5 & 0.1 & 0.65 & \(5\left(I_{F}=1 \mathrm{~mA}\right)\) & \multirow[t]{2}{*}{14 SOIC, 12 Metal Can} \\
\hline & & \multicolumn{4}{|l|}{ULTRA-FAST LOW-CAPACITANCE MATCHED DIODES} & \\
\hline
\end{tabular}

\section*{NOTES:}
1. See Linear Package Selection Guide in Section 11.
2. Six connected to form 3 common-cathode pairs. Four connected to form 2 common-anode diode pairs.

\section*{Features}
- Matched Monolithic General Purpose Transistors
- \(\mathrm{h}_{\mathrm{FE}}\) Matched \(\pm 10 \%\)
- \(\mathrm{V}_{\mathrm{BE}}\) Matched
- CA3018A
\(\pm 2 \mathrm{mV}\)
- CA3018
- Operation From DC to 120 MHz
- Wide Operating Current Range
- CA3018A Performance Characteristics Controlled from \(10 \mu A\) to 10 mA
- Low Noise Figure . . . . . . . . . . . . . . 3.2dB (Typ) at 1kHz
- Full Military Temperature Range . . . . - \(55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)

\section*{Applications}
- Two Isolated Transistors and a Darlington Connected Transistor Pair for Low Power Applications at Frequencies from DC through the VHF Range
- Custom Designed Differential Amplifiers
- Temperature Compensated Amplifiers
- See Application Note, AN5296 "Application of the CA3018 Integrated Circuit Transistor Array" for Suggested Applications

\section*{Description}

The CA3018 and CA3018A consist of four general purpose silicon NPN transistors on a common monolithic substrate.

Two of the four transistors are connected in the Darlington configuration. The substrate is connected to a separate terminal for maximum flexibility.

The transistors of the CA3018 and the CA3018A are well suited to a wide variety of applications in low power systems in the DC through VHF range. They may be used as discrete transistors in conventional circuits but in addition they provide the advantages of close electrical and thermal matching inherent in integrated circuit construction.
The CA3018A is similar to the CA3018 but features tighter control of current gain, leakage, and offset parameters making it suitable for more critical applications requiring premium performance.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline CA3018 & -55 to 125 & 12 Pin Metal Can & T12.B \\
\hline CA3018A & -55 to 125 & 12 Pin Metal Can & T12.B \\
\hline
\end{tabular}

\section*{Pinout}

\section*{CA3018, CA3018A \\ (METAL CAN)}

TOP VIEW


\title{
Differential/Cascode Amplifiers for Commercial and Industrial Equipment from DC to \(\mathbf{1 2 0 M H z}\)
}

\section*{November 1996}

\section*{Description}

The CA3028A and CA3028B are differential/cascode amplifiers designed for use in communications and industrial equipment operating at frequencies from \(D C\) to 120 MHz .

The CA3028B is like the CA3028A but is capable of premium performance particularly in critical DC and differential amplifier applications requiring tight controls for input offset voltage, input offset current, and input bias current.

The CA3053 is similar to the CA3028A and CA3028B but is recommended for IF amplifier applications.

\section*{Ordering Information}
\begin{tabular}{|l|l|l|l|}
\hline \begin{tabular}{l} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline CA3028A & -55 to 125 & 8 Pin Metal Can & T8.C \\
\hline CA3028AE & -55 to 125 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
CA3028AM \\
(3028A)
\end{tabular} & -55 to 125 & 8 Ld SOIC & M8.15 \\
\hline \begin{tabular}{l} 
CA3028AM96 \\
(3028A)
\end{tabular} & -55 to 125 & \begin{tabular}{l}
8 Ld SOIC Tape \\
and Reel
\end{tabular} & M8.15 \\
\hline CA3028B & -55 to 125 & 8 Pin Metal Can & T8.C \\
\hline CA3028BE & -55 to 125 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
CA3028BM \\
(3028B)
\end{tabular} & -55 to 125 & 8 Ld SOIC & M8.15 \\
\hline CA3053 & -55 to 125 & 8 Pin Metal Can & T8.C \\
\hline CA3053E & -55 to 125 & 8 Ld PDIP & E8.3 \\
\hline
\end{tabular}

\section*{Pinouts}

CA3028A/B, CA3053 (METAL CAN) TOP VIEW

CA3028A/B, (PDIP, SOIC) CA3053 (PDIP) TOP VIEW


\section*{Schematic Diagram}
(Terminal Numbers Apply to All Packages)


\section*{Operating Conditions}

Temperature Range \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)

\section*{Thermal Information}


CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

\section*{Absolute Maximum Voltage Ratings \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)}

The following chart gives the range of voltages which can be applied to the terminals listed horizontally with respect to the terminals listed vertically. For example, the voltage range of the horizontal Terminal 4 with respect to Terminal 2 is -1 V to +5 V .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline TERM NO. & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\hline 1 & & \[
\begin{aligned}
& \hline 0 \text { to }-15 \\
& \text { (Note 4) } \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
0 to -15 \\
(Note 4)
\end{tabular} & 0 to -15 (Note 4) & +5 to -5 & Note 3 & Note 3 & \[
\begin{aligned}
& +20 \text { to } 0 \\
& \text { (Note 5) }
\end{aligned}
\] \\
\hline 2 & & & +5 to -11 & +5 to -1 & +15 to 0 (Note 6) & Note 3 & \[
\begin{aligned}
& +15 \text { to } 0 \\
& \text { (Note 6) }
\end{aligned}
\] & Note 3 \\
\hline \[
\begin{gathered}
3 \\
\text { (Note 2) }
\end{gathered}
\] & & & & +10 to 0 & \[
\begin{aligned}
& +15 \text { to } 0 \\
& (\text { Note } 6)
\end{aligned}
\] & \[
\begin{aligned}
& +30 \text { to } 0 \\
& \text { (Note 7) } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& +15 \text { to } 0 \\
& \text { (Note 6) }
\end{aligned}
\] & \[
\begin{aligned}
& +30 \text { to } 0 \\
& \text { (Note 7) }
\end{aligned}
\] \\
\hline 4 & & & & & \[
\begin{aligned}
& \hline+15 \text { to } 0 \\
& \text { (Note 6) } \\
& \hline
\end{aligned}
\] & Note 3 & Note 3 & Note 3 \\
\hline 5 & & & & & & \[
\begin{aligned}
& +20 \text { to } 0 \\
& \text { (Note 5) }
\end{aligned}
\] & Note 3 & Note 3 \\
\hline 6 & & & & & & & Note 3 & Note 3 \\
\hline 7 & & & & & & & & Note 3 \\
\hline 8 & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
TERM \\
NO.
\end{tabular} & \begin{tabular}{c}
\(\mathbf{I}_{\mathbf{I N}}\) \\
mA
\end{tabular} & \begin{tabular}{c}
\(\mathbf{I O U T}_{\mathrm{mA}}\) \\
\hline 1
\end{tabular} \\
\hline \(\mathbf{0 . 6}\) & 0.1 \\
\hline 2 & 4 & 0.1 \\
\hline 3 & 0.1 & 23 \\
\hline 4 & 20 & 0.1 \\
\hline 5 & 0.6 & 0.1 \\
\hline 6 & 20 & 0.1 \\
\hline 7 & 4 & 0.1 \\
\hline 8 & 20 & 0.1 \\
\hline
\end{tabular}

NOTES:
2. Terminal No. 3 is connected to the substrate and case.
3. Voltages are not normally applied between these terminals. Voltages appearing between these terminals will be safe, if the specified voltage limits between all other terminals are not exceeded.
4. Limit is -12 V for CA3053.

\section*{Absolute Maximum Current Ratings}
5. Limit is +15 V for CA3053.
6. Limit is +12 V for CA3053.
7. Limit is +24 V for CA3028A and +18 V for CA3053.

\section*{Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{CA3028A} & \multicolumn{3}{|c|}{CA3028B} & \multicolumn{3}{|c|}{CA3053} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{13}{|l|}{DC CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Input Offset Voltage (Figures 1, 14)} & \multirow[t]{2}{*}{V 1 O} & \(\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6 \mathrm{~V}\) & - & - & - & - & 0.98 & 5.0 & - & - & - & mV \\
\hline & & \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}\) & - & - & - & - & 0.89 & 5.0 & - & - & - & mV \\
\hline \multirow[t]{2}{*}{Input Offset Current (Figures 2, 14)} & \multirow[t]{2}{*}{10} & \(\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6 \mathrm{~V}\) & - & - & - & - & 0.56 & 5.0 & - & - & - & \(\mu \mathrm{A}\) \\
\hline & & \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}\) & - & - & - & - & 1.06 & 6.0 & - & - & - & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{4}{*}{Input Bias Current (Figures 2, 3, 15, 16)} & \multirow[t]{4}{*}{1} & \(\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6 \mathrm{~V}\) & - & 16.6 & 70 & - & 16.6 & 40 & - & - & - & \(\mu \mathrm{A}\) \\
\hline & & \(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}\) & - & 36 & 106 & - & 36 & 80 & - & - & - & \(\mu \mathrm{A}\) \\
\hline & & \(\mathrm{V}_{\text {CC }}=9 \mathrm{~V}\) & & - & - & - & - & - & - & 29 & 85 & \(\mu \mathrm{A}\) \\
\hline & & \(V_{C C}=12 \mathrm{~V}\) & - & - & - & - & - & - & - & 36 & 125 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

CA3028A, CA3028B, CA3053

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{3}{|c|}{CA3028A} & \multicolumn{3}{|c|}{CA3028B} & \multicolumn{3}{|c|}{CA3053} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{4}{*}{Quiescent Operating Current (Figures 2, 3, 17, \(18,19)\)} & \multirow[t]{4}{*}{\(\mathrm{I}_{6}, \mathrm{I}_{8}\)} & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6 \mathrm{~V}\)} & 0.8 & 1.25 & 2.0 & 1.0 & 1.25 & 1.5 & - & - & - & mA \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}\)} & 2.0 & 3.3 & 5.0 & 2.5 & 3.3 & 4.0 & - & - & - & mA \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CC }}=9 \mathrm{~V}\)} & - & - & - & - & - & - & 1.2 & 2.2 & 3.5 & mA \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\)} & - & - & - & - & - & - & 2.0 & 3.3 & 5.0 & mA \\
\hline \multirow[t]{4}{*}{AGC Bias Current (Into Constant Current Source Terminal 7) (Figures 4, 20)} & \multirow[t]{4}{*}{\({ }_{7}\)} & \multicolumn{2}{|l|}{\[
\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGC}}=9 \mathrm{~V}
\]} & - & 1.28 & - & - & 1.28 & - & - & - & - & mA \\
\hline & & \multicolumn{2}{|l|}{\[
\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{AGC}}=12 \mathrm{~V}
\]} & - & 1.65 & - & - & 1.65 & - & - & - & - & mA \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CC }}=9 \mathrm{~V}\)} & - & - & - & - & - & - & - & 1.15 & - & mA \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=12 \mathrm{~V}\)} & - & - & - & - & - & - & - & 1.55 & - & mA \\
\hline \multirow[t]{2}{*}{Input Current (Terminal 7)} & \multirow[t]{2}{*}{17} & \multicolumn{2}{|l|}{\[
\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6 \mathrm{~V}
\]} & 0.5 & 0.85 & 1.0 & 0.5 & 0.85 & 1.0 & - & - & - & mA \\
\hline & & \multicolumn{2}{|l|}{\[
V_{C C}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}
\]} & 1.0 & 1.65 & 2.1 & 1.0 & 1.65 & 2.1 & - & - & - & mA \\
\hline \multirow[t]{4}{*}{Power Dissipation (Figures 2, 3, 21)} & \multirow[t]{4}{*}{\(\mathrm{P}_{\mathrm{T}}\)} & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6 \mathrm{~V}\)} & 24 & 36 & 54 & 24 & 36 & 42 & - & - & - & mW \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CC }}=12 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=-12 \mathrm{~V}\)} & 120 & 175 & 260 & 120 & 175 & 220 & - & - & - & mW \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\text {CC }}=9 \mathrm{~V}\)} & - & - & - & - & - & - & - & 50 & 80 & mW \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{V}_{C C}=12 \mathrm{~V}\)} & - & - & - & - & - & - & - & 100 & 150 & mW \\
\hline \multicolumn{14}{|l|}{DYNAMIC CHARACTERISTICS} \\
\hline \multirow[t]{4}{*}{Power Gain (Figures 5, \(6,7,22,24,26\) )} & \multirow[t]{4}{*}{Gp} & \multirow[t]{2}{*}{\[
\begin{aligned}
& f=100 \mathrm{MHz} \\
& V_{C C}=9 \mathrm{~V}
\end{aligned}
\]} & Cascode & 16 & 20 & - & 16 & 20 & - & - & - & - & dB \\
\hline & & & Diff. Amp. & 14 & 17 & - & 14 & 17 & - & - & - & - & dB \\
\hline & & \multirow[t]{2}{*}{\[
\begin{aligned}
& f=10.7 \mathrm{MHz} \\
& v_{C C}=9 \mathrm{~V}
\end{aligned}
\]} & Cascode
(Note 8) & 35 & 39 & - & 35 & 39 & - & 35 & 39 & - & dB \\
\hline & & & Diff. Amp. (Note 8) & 28 & 32 & - & 28 & 32 & - & 28 & 32 & - & dB \\
\hline \multirow[t]{2}{*}{Noise Figure (Figures 5, \(6,7,23,25,26\) )} & \multirow[t]{2}{*}{NF} & \multirow[t]{2}{*}{\[
\begin{aligned}
& f=100 \mathrm{MHz}, \\
& V_{C C}=9 V
\end{aligned}
\]} & Cascode & - & 7.2 & 9.0 & - & 7.2 & 9.0 & - & - & - & dB \\
\hline & & & Diff. Amp. & - & 6.7 & 9.0 & - & 6.7 & 9.0 & - & - & - & dB \\
\hline \multirow[t]{2}{*}{Input Admittance (Figures 27, 28)} & \multirow[t]{2}{*}{\(Y_{11}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{f}=10.7 \mathrm{MHz}, \\
& \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}
\end{aligned}
\]} & Cascode & - & \[
\begin{aligned}
& 0.6+ \\
& \mathrm{j} 1.6
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 0.6+ \\
& j 1.6
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 0.6+ \\
& j 1.6
\end{aligned}
\] & - & mS \\
\hline & & & Diff. Amp. & - & \[
\begin{gathered}
0.5+ \\
\mathrm{j} 0.5
\end{gathered}
\] & - & - & \[
\begin{aligned}
& 0.5+ \\
& \mathrm{j} 0.5 \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 0.5+ \\
& j 0.5 \\
& \hline
\end{aligned}
\] & - & mS \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Reverse Transfer Admittance \\
(Figures 29, 30)
\end{tabular}} & \multirow[t]{2}{*}{\(Y_{12}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{f}=10.7 \mathrm{MHz}, \\
& \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}
\end{aligned}
\]} & Cascode & - & \[
\begin{array}{|c|}
\hline 0.0003 \\
-\mathrm{j} 0 \\
\hline
\end{array}
\] & - & - & \[
\begin{array}{|c|}
\hline 0.0003 \\
-j 0 \\
\hline
\end{array}
\] & - & - & \[
\begin{array}{|c|}
\hline 0.0003 \\
-~ j 0 \\
\hline
\end{array}
\] & - & mS \\
\hline & & & Diff. Amp. & - & \[
\begin{array}{|c|}
\hline 0.01- \\
\text { j0.0002 } \\
\hline
\end{array}
\] & - & - & \[
\begin{array}{|c|}
\hline 0.01- \\
\mathrm{j} 0.0002 \\
\hline
\end{array}
\] & - & - & \[
\begin{array}{|c|}
\hline 0.01- \\
\mathrm{j} 0.0002 \\
\hline
\end{array}
\] & - & mS \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Forward Transfer Admittance \\
(Figures 31, 32)
\end{tabular}} & \multirow[t]{2}{*}{\(\mathrm{Y}_{21}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{f}=10.7 \mathrm{MHz}, \\
& \mathrm{~V} \mathrm{CC}=9 \mathrm{~V}
\end{aligned}
\]} & Cascode & - & \[
\begin{aligned}
& 99- \\
& \mathrm{j} 18 \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& \hline 99- \\
& \mathrm{j} 18 \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& \hline 99- \\
& \mathrm{j} 18 \\
& \hline
\end{aligned}
\] & - & mS \\
\hline & & & Diff. Amp. & - & \[
\begin{gathered}
-37+ \\
\mathrm{j} 0.5
\end{gathered}
\] & - & - & \[
\begin{gathered}
-37+ \\
j 0.5
\end{gathered}
\] & - & - & \[
\begin{gathered}
-37+ \\
\text { j0.5 } \\
\hline
\end{gathered}
\] & - & mS \\
\hline \multirow[t]{2}{*}{Output Admittance (Figures 33, 34)} & \multirow[t]{2}{*}{\(\mathrm{Y}_{22}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{f}=10.7 \mathrm{MHz}, \\
& \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}
\end{aligned}
\]} & Cascode & - & \[
\begin{gathered}
0+ \\
\mathrm{j} 0.08 \\
\hline
\end{gathered}
\] & - & - & \[
\begin{gathered}
0+ \\
\mathrm{j} 0.08 \\
\hline
\end{gathered}
\] & - & - & \[
\begin{gathered}
0+ \\
\mathrm{j} 0.08 \\
\hline
\end{gathered}
\] & - & mS \\
\hline & & & Diff. Amp. & - & \[
\begin{array}{|l|}
\hline 0.04+ \\
j 0.23 \\
\hline
\end{array}
\] & - & - & \[
\begin{aligned}
& 0.04+ \\
& \text { j0.23 } \\
& \hline
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 0.04+ \\
& \text { j0.23 } \\
& \hline
\end{aligned}
\] & - & mS \\
\hline Output Power (Untuned) (Figures 8, 35) & Po & \[
\begin{aligned}
& \mathrm{f}=10.7 \mathrm{MHz}, \\
& \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}
\end{aligned}
\] & Diff. Amp., \(50 \Omega\) InputOutput & \(\bullet\) & 5.7 & - & - & 5.7 & - & - & - & - & \(\mu \mathrm{W}\) \\
\hline AGC Range (Maximum Power Gain to Full Cutoff) (Figures 9, 36) & AGC & \[
\begin{aligned}
& \mathrm{f}=10.7 \mathrm{MHz}, \\
& \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}
\end{aligned}
\] & Diff. Amp. & - & 62 & - & - & 62 & - & - & - & - & dB \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Voltage Gain \\
(Figures 10, 11, 37, 38)
\end{tabular}} & \multirow[t]{2}{*}{A} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{f}=10.7 \mathrm{MHz}, \\
& \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}, \\
& \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega \\
& \hline
\end{aligned}
\]} & Cascode & - & 40 & - & - & 40 & - & - & 40 & - & dB \\
\hline & & & Diff. Amp. & - & 30 & - & - & 30 & - & - & 30 & - & dB \\
\hline \multirow[t]{2}{*}{Differential Voltage Gain at \(\mathrm{f}=1 \mathrm{kHz}\) (Figure 12)} & \multirow[t]{2}{*}{A} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6 \mathrm{~V}, \\
& \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega
\end{aligned}
\]} & - & - & - & 35 & 38 & 42 & - & - & - & dB \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}, \\
& \mathrm{R}_{\mathrm{L}}=1.6 \mathrm{k} \Omega
\end{aligned}
\]} & - & - & - & 40 & 42.5 & 45 & - & - & - & dB \\
\hline
\end{tabular}

CA3028A, CA3028B, CA3053
Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multicolumn{3}{|c|}{CA3028A} & \multicolumn{3}{|c|}{CA3028B} & \multicolumn{3}{|c|}{CA3053} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{2}{*}{Max Peak-to-Peak Output Voltage at \(f=1 \mathrm{kHz}\) (Figure 12)} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{O}}(\mathrm{P}-\mathrm{P})\)} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6 \mathrm{~V}, \\
& \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega
\end{aligned}
\]} & - & - & - & 7.0 & 11.5 & - & - & - & - & \(\mathrm{V}_{\mathrm{P}-\mathrm{P}}\) \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}, \\
& \mathrm{R}_{\mathrm{L}}=1.6 \mathrm{k} \Omega
\end{aligned}
\]} & - & - & - & 15 & 23 & - & - & - & - & \(\mathrm{V}_{\mathrm{P}-\mathrm{P}}\) \\
\hline \multirow[t]{2}{*}{Bandwidth at -3dB Point (Figure 12)} & \multirow[t]{2}{*}{BW} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6 \mathrm{~V}, \\
& \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega
\end{aligned}
\]} & - & - & - & - & 7.3 & - & - & - & - & MHz \\
\hline & & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}, \\
& \mathrm{R}_{\mathrm{L}}=1.6 \mathrm{k} \Omega
\end{aligned}
\]} & - & - & - & - & 8.0 & - & - & - & - & MHz \\
\hline \multirow[t]{2}{*}{Common Mode Input Voltage Range (Figure 13)} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {CMR }}\)} & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6 \mathrm{~V}\)} & - & - & - & -2.5 & \[
\begin{gathered}
\hline-3.2 \text { to } \\
-4.5
\end{gathered}
\] & 4 & - & - & - & V \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}\)} & - & - & - & -5.0 & \[
\begin{gathered}
-7 \text { to } \\
-9
\end{gathered}
\] & 7 & - & - & - & V \\
\hline \multirow[t]{2}{*}{Common Mode Rejection Ratio (Figure 13)} & \multirow[t]{2}{*}{CMRR} & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6 \mathrm{~V}\)} & - & - & - & 60 & 110 & - & - & - & - & dB \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}\)} & - & - & - & 60 & 90 & - & - & - & - & dB \\
\hline \multirow[t]{2}{*}{Input Impedance at \(\mathrm{f}=1 \mathrm{kHz}\)} & \multirow[t]{2}{*}{\(\mathrm{Z}_{\text {IN }}\)} & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6 \mathrm{~V}\)} & - & - & - & - & 5.5 & - & - & - & - & \(\mathrm{k} \Omega\) \\
\hline & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-12 \mathrm{~V}\)} & - & - & - & - & 3.0 & - & - & - & - & \(\mathrm{k} \Omega\) \\
\hline \multirow[t]{2}{*}{Peak-to-Peak Output Current} & \multirow[t]{2}{*}{Ip-P} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{f}=10.7 \mathrm{MHz}, \\
& e_{\text {IN }}= \\
& 400 \mathrm{mV}, \\
& \text { Diff. Amp. }
\end{aligned}
\]} & \(\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}\) & 2.0 & 4.0 & 7.0 & 2.5 & 4.0 & 6.0 & 2.0 & 4.0 & 7.0 & mA \\
\hline & & & \(\mathrm{V}_{C C}=12 \mathrm{~V}\) & 3.5 & 6.0 & 10 & 4.5 & 6.0 & 8.0 & 3.5 & 6.0 & 10 & mA \\
\hline
\end{tabular}

NOTE:
8. Does not apply to CA3053.

\section*{Test Circuits}


NOTES:
9. Adjust \(\mathrm{R}_{1}\) for \(\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V} \pm 0.1 \mathrm{~V}\).
10. Record Input Offset Voltage.

FIGURE 1. INPUT OFFSET VOLTAGE TEST CIRCUIT FOR CA3028B


NOTE: Power Dissipation \(=I_{3} V_{E E}+\left(I_{6}+I_{8}\right) V_{C C}\).

FIGURE 2. INPUT OFFSET CURRENT, INPUT BIAS CURRENT, POWER DISSIPATION, AND QUIESCENT OPERATING CURRENT TEST CIRCUIT FOR CA3028A AND CA3028B

\section*{Test Circuits (Continued)}


NOTE: Power Dissipation \(=\mathrm{V}_{\mathrm{CCl}_{3}}\).
FIGURE 3. INPUT BIAS CURRENT, POWER DISSIPATION AND QUIESCENT OPERATING CURRENT TEST CIRCUIT FOR CA3053

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
\(\mathbf{f}\) \\
\((\mathbf{M H z})\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{C}_{1}\) \\
\((\mathbf{p F})\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{C}_{2}\) \\
\((\mathbf{p F})\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{L}_{\mathbf{1}}\) \\
\((\mu \mathrm{H})\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{L}_{\mathbf{2}}\) \\
\((\mu \mathrm{H})\)
\end{tabular} \\
\hline 10.7 & \(20-60\) & \(20-60\) & \(3-5\) & \(3-5\) \\
\hline 100 & \(3-30\) & \(3-30\) & \(0.1-0.25\) & \(0.15-0.3\) \\
\hline
\end{tabular}

NOTES:
11. For Power Gain Test.
12. For Noise Figure Test.
13. 10.7 MHz Power Gain Test Only.

FIGURE 5. POWER GAIN AND NOISE FIGURE TEST CIRCUIT (CASCODE CONFIGURATION) FOR CA3028A, CA3028B AND CA3053 (NOTE 3)


FIGURE 4. AGC BIAS CURRENT TEST CIRCUIT (DIFFERENTIAL AMPLIFIER CONFIGURATION) FOR CA3028A AND CA3028B

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
\(\mathbf{f}\) \\
\((\mathbf{M H z})\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{C}_{1}\) \\
\((\mathrm{pF})\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{C}_{\mathbf{2}}\) \\
\((\mathrm{pF})\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{L}_{\mathbf{1}}\) \\
\((\mu \mathrm{H})\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{L}_{\mathbf{2}}\) \\
\((\mu \mathrm{H})\)
\end{tabular} \\
\hline 10.7 & \(30-60\) & \(20-50\) & \(3-6\) & \(3-6\) \\
\hline 100 & \(2-15\) & \(2-15\) & \(0.2-0.5\) & \(0.2-0.5\) \\
\hline
\end{tabular}

NOTES:
14. For Power Gain Test.
15. For Noise Figure Test.
16. 10.7 MHz Power Gain Test Only.

FIGURE 6. POWER GAIN AND NOISE FIGURE TEST CIRCUIT (DIFFERENTIAL AMPLIFIER CONFIGURATION AND TERMINAL 7 CONNECTED TO VCC) FOR CA3028A, CA3028B AND CA3053 (NOTE 3)

Test Circuits (Continued)

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
\(\mathbf{f}\) \\
\((\mathrm{MHz})\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{C}_{1}\) \\
\((\mathrm{pF})\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{C}_{2}\) \\
\((\mathrm{pF})\)
\end{tabular} & \begin{tabular}{c}
\(\mathrm{L}_{1}\) \\
\((\mu \mathrm{H})\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{L}_{2}\) \\
\((\mu \mathrm{H})\)
\end{tabular} \\
\hline 10.7 & \(30-60\) & \(20-50\) & \(3-6\) & \(3-6\) \\
\hline 100 & \(2-15\) & \(2-15\) & \(0.2-0.5\) & \(0.2-0.5\) \\
\hline
\end{tabular}

NOTES:
17. For Power Gain Test.
18. For Noise Figure Test.

FIGURE 7. POWER GAIN AND NOISE FIGURE TEST CIRCUIT (DIFFERENTIAL AMPLIFIER CONFIGURATION) FOR CA3028A AND CA3028B

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{c}
\(\mathbf{f}\) \\
\((\mathbf{M H z})\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{C}_{1}\) \\
\((p F)\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{C}_{2}\) \\
\((p F)\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{L}_{1}\) \\
\((\mu \mathrm{H})\)
\end{tabular} & \begin{tabular}{c}
\(\mathbf{L}_{2}\) \\
\((\mu \mathrm{H})\)
\end{tabular} \\
\hline 10.7 & \(30-60\) & \(20-50\) & \(3-6\) & \(3-6\) \\
\hline 100 & \(2-15\) & \(2-15\) & \(0.2-0.5\) & \(0.2-0.5\) \\
\hline
\end{tabular}

FIGURE 9. AGC RANGE TEST CIRCUIT (DIFFERENTIAL AMPLIFIER) FOR CA3028A AND CA3028B


FIGURE 8. OUTPUT POWER TEST CIRCUIT FOR CA3028A AND CA3028B

\section*{Test Circuits (Continued)}


FIGURE 11. TRANSFER CHARACTERISTIC (VOLTAGE GAIN) TEST CIRCUIT ( 10.7 MHz ) DIFFERENTIAL AMPLIFIER CONFIGURATION FOR CA3028A, CA3028B AND CA3053


FIGURE 12. DIFFERENTIAL VOLTAGE GAIN, MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE AND BANDWIDTH TEST CIRCUIT FOR CA3028B


NOTES:
19. For CMR test: \(S_{1}\) to GND.
20. For Input Common Mode Voltage Range Test: \(S_{1}\) to \(\mathrm{V}_{\mathrm{X}}\).
21. Common Mode Rejection Ratio \(=20 \log _{10} \frac{(\mathrm{~A})(2)(0.3)}{\mathrm{V}_{\text {DIFF }}}{ }^{\text {(RMS })}\)

A = Single-Ended Voltage Gain.
FIGURE 13. COMMON MODE REJECTION RATIO AND COMMON MODE INPUT VOLTAGE RANGE TEST CIRCUIT FOR CA3028B

\section*{Typical Performance Curves}


FIGURE 14. INPUT OFFSET VOLTAGE AND INPUT OFFSET CURRENT FOR CA3028B vs TEMPERATURE


FIGURE 16. INPUT BIAS CURRENT vs TEMPERATURE FOR CA3053


FIGURE 18. QUIESCENT OPERATING CURRENT vs TEMPERATURE FOR CA3053


FIGURE 15. INPUT BIAS CURRENT vs TEMPERATURE FOR CA3028A AND CA3028B


FIGURE 17. QUIESCENT OPERATING CURRENT vs TEMPERATURE FOR CA3028A AND CA3028B


Figure 19. OPERATING CURRENT vs VEE VOLTAGE FOR CA3028A AND CA3028B

\section*{Typical Performance Curves (Continued)}


FIGURE 20. AGC BIAS CURRENT vs BIAS VOLTAGE (TERMINAL 7) FOR CA3028A AND CA3028B


FIGURE 22. POWER GAIN vs FREQUENCY (CASCODE CONFIGURATION) FOR CA3028A AND CA3028B


FIGURE 24. POWER GAIN vs FREQUENCY (DIFFERENTIAL AMPLIFIER CONFIGURATION) FOR CA3028A AND CA3028B


FIGURE 21. POWER DISSIPATION vs TEMPERATURE FOR CA3028A AND CA3028B


FIGURE 23. 100 MHz NOISE FIGURE vs COLLECTOR SUPPLY VOLTAGE (CASCODE CONFIGURATION) FOR CA3028A AND CA3028B


FIGURE 25. 100 MHz NOISE FIGURE vs COLLECTOR SUPPLY VOLTAGE (DIFFERENTIAL AMPLIFIER CONFIGURATION) FOR CA3028A AND CA3028B

CA3028A, CA3028B, CA3053
Typical Performance Curves (Continued)


FIGURE 26. 100MHz NOISE FIGURE AND POWER GAIN vs BASE-TO-EMITTER BIAS VOLTAGE (TERMINAL 7) FOR CA3028A AND CA3028B


FIGURE 28. INPUT ADMITTANCE \(\left(\mathrm{Y}_{11}\right)\) vs FREQUENCY (DIFFERENTIAL AMPLIFIER CONFIGURATION)


FIGURE 30. REVERSE TRANSADMITTANCE \(\left(\mathrm{Y}_{12}\right)\) vs FREQUENCY (DIFFERENTIAL AMPLIFIER CONFIGURATION)


FIGURE 27. INPUT ADMITTANCE \(\left(\mathrm{Y}_{11}\right)\) vs FREQUENCY (CASCODE CONFIGURATION)
 FREQUENCY (MHz)

FIGURE 29. REVERSE TRANSADMITTANCE \(\left(Y_{12}\right)\) vs FREQUENCY (CASCODE CONFIGURATION)


FIGURE 31. FORWARD TRANSADMITTANCE \(\left(\mathrm{Y}_{21}\right)\) vs FREQUENCY (CASCODE CONFIGURATION)

\section*{Typical Performance Curves (Continued)}


FIGURE 32. FORWARD TRANSADMITTANCE \(\left(\mathrm{Y}_{21}\right)\) vs FREQUENCY (DIFFERENTIAL AMPLIFIER CONFIGURATION)


FIGURE 34. OUTPUT ADMITTANCE \(\left(Y_{22}\right)\) vs FREQUENCY (DIFFERENTIAL AMPLIFIER CONFIGURATION)


FIGURE 36. AGC CHARACTERISTICS FOR CA3028A AND CA3028B


FIGURE 33. OUTPUT ADMITTANCE \(\left(\mathrm{Y}_{22}\right)\) vs FREQUENCY (CASCODE CONFIGURATION)


FIGURE 35. OUTPUT POWER vs FREQUENCY - \(50 \Omega\) INPUT AND 50 2 OUTPUT (DIFFERENTIAL AMPLIFIER CONFIGURATION) FOR CA3028A AND CA3028B


FIGURE 37. TRANSFER CHARACTERISTICS (CASCODE CONFIGURATION)

\section*{Typical Performance Curves (Continued)}


FIGURE 38. TRANSFER CHARACTERISTICS (DIFFERENTIAL AMPLIFIER CONFIGURATION)

\section*{Glossary of Terms}

\section*{AGC Bias Current}

The current drawn by the device from the AGC voltage source, at maximum AGC voltage.

\section*{AGC Range}

The total change in voltage gain (from maximum gain to complete cutoff) which may be achieved by application of the specified range of dc voltage to the AGC input terminal of the device.

\section*{Common Mode Rejection Ratio}

The ratio of the full differential voltage gain to the common mode voltage gain.

\section*{Power Dissipation}

The total power drain of the device with no signal applied and no external load current.

\section*{Input Bias Current}

The average value (one half the sum) of the currents at the two input terminals when the quiescent operating voltages at the two output terminals are equal.

\section*{Input Offset Current}

The difference in the currents at the two input terminals when the quiescent operating voltages at the two output terminals are equal.

\section*{Input Offset Voltage}

The difference in the DC voltages which must be applied to the input terminals to obtain equal quiescent operating voltages (zero output offset voltage) at the output terminals.

\section*{Noise Figure}

The ratio of the total noise power of the device and a resistive signal source to the noise power of the signal source alone, the signal source representing a generator of zero impedance in series with the source resistance.

\section*{Power Gain}

The ratio of the signal power developed at the output of the device to the signal power applied to the input, expressed in dB.

\section*{Quiescent Operating Current}

The average (DC) value of the current in either output terminal.

\section*{Voltage Gain}

The ratio of the change in output voltage at either output terminal with respect to ground, to a change in input voltage at either input terminal with respect to ground, with the other input terminal at \(A C\) ground.

HARRIS

\section*{Features}
- Six Matched Diodes on a Common Substrate
- Excellent Reverse Recovery Time \(\qquad\) 1ns (Typ)
- \(\mathbf{V}_{\mathrm{F}}\) Match 5mV (Max)
- Low Capacitance . . . . . . \(C_{D}=0.65 p F(T y p)\) at \(V_{R}=-2 V\)

\section*{Applications}
- Ultra-Fast Low Capacitance Matched Diodes for Applications in Communications and Switching Systems
- Balanced Modulators or Demodulators
- Ring Modulators
- High Speed Diode Gates
- Analog Switches

\section*{Description}

The CA3039 consists of six ultra-fast, low capacitance diodes on a common monolithic substrate. Integrated circuit construction assures excellent static and dynamic matching of the diodes, making the array extremely useful for a wide variety of applications in communication and switching systems.

Five of the diodes are independently accessible, the sixth shares a common terminal with the substrate.

For applications such as balanced modulators or ring modulators where capacitive balance is important, the substrate should be returned to a DC potential which is significantly more negative (with respect to the active diodes) than the peak signal applied.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline CA3039 & -55 to 125 & 12 Pin Metal Can & T12.B \\
\hline CA3039M & -55 to 125 & 14 Ld SOIC & M14.15 \\
\hline CA3039M96 & -55 to 125 & \begin{tabular}{l} 
14 Ld SOIC Tape \\
and Reel
\end{tabular} & M14.15 \\
\hline
\end{tabular}

\section*{Pinouts}


CA3039
(METAL CAN)
TOP VIEW


Absolute Maximum Ratings


Diode-to-Substrate Voltage ( \(V_{\text {DI }}\) ) for \(D_{1}-D_{5}\). . . . . . . . . . . .20V, -1V
(Terminal 1, 4, 5, 8 or 12 to Terminal 10)
DC Forward Current ( \({ }^{\mathrm{F}}\) ).
.25 mA
Recurrent Forward Current (IF) . . . . . . . . . . . . . . . . . . . . . . . 100mA
Forward Surge Current (IF(SURGE). 100 mA

\section*{Operating Conditions}

Temperature Range
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(\quad T_{A}=25^{\circ} \mathrm{C}\); Characteristics apply for each diode unit, Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{4}{*}{DC Forward Voltage Drop (Figure 1)} & \multirow[t]{4}{*}{\(V_{F}\)} & \(\mathrm{I}_{\mathrm{F}}=50 \mu \mathrm{~A}\) & - & 0.65 & 0.69 & V \\
\hline & & \(\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}\) & - & 0.73 & 0.78 & V \\
\hline & & \(\mathrm{I}_{\mathrm{F}}=3 \mathrm{~mA}\) & - & 0.76 & 0.80 & V \\
\hline & & \(\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}\) & - & 0.81 & 0.90 & V \\
\hline DC Reverse Breakdown Voltage & \(V_{(B R) R}\) & \(I_{R}=-10 \mu \mathrm{~A}\) & 5 & 7 & - & V \\
\hline DC Reverse Breakdown Voltage Between Any Diode Unit and Substrate & \(\mathrm{V}_{(\mathrm{BR}) \mathrm{R}}\) & \(I_{R}=-10 \mu \mathrm{~A}\) & 20 & - & - & V \\
\hline DC Reverse (Leakage) Current (Figure 2) & \(I_{R}\) & \(V_{R}=-4 V\) & - & 0.016 & 100 & nA \\
\hline DC Reverse (Leakage) Current Between Any Diode Unit and Substrate (Figure 3) & \(\mathrm{I}_{\mathrm{R}}\) & \(\mathrm{V}_{\mathrm{R}}=-10 \mathrm{~V}\) & - & 0.022 & 100 & nA \\
\hline Magnitude of Diode Offset Voltage (Note 2) (Figure 1) & \(\left|V_{F 1}-V_{F 2}\right|\) & \(\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}\) & - & 0.5 & 5.0 & mV \\
\hline Temperature Coefficient of \(\mathrm{V}_{\mathrm{F} 1}-\mathrm{V}_{\mathrm{F} 2} \mathrm{I}\) (Figure 4) & \[
\frac{\Delta\left|V_{F 1}-V_{F 2}\right|}{\Delta T}
\] & \(\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}\) & - & 1.0 & \(\bullet\) & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Temperature Coefficient of Forward Drop (Figure 5) & \(\frac{\Delta V_{F}}{\Delta T}\) & \(\mathrm{I}_{\mathrm{F}}=1 \mathrm{~mA}\) & - & -1.9 & - & \(\mathrm{mV}^{\circ} \mathrm{C}\) \\
\hline DC Forward Voltage Drop for Anode-toSubstrate Diode ( \(\mathrm{D}_{\mathrm{S}}\) ) & \(V_{F}\) & \(I_{F}=1 \mathrm{~mA}\) & - & 0.65 & - & V \\
\hline Reverse Recovery Time & tRR & \(I_{F}=10 \mathrm{~mA}, I_{R}=-10 \mathrm{~mA}\) & - & 1.0 & - & ns \\
\hline Diode Resistance (Figure 6) & \(\mathrm{R}_{\mathrm{D}}\) & \(\mathrm{f}=1 \mathrm{kHz}, \mathrm{l}_{\mathrm{F}}=1 \mathrm{~mA}\) & 25 & 30 & 45 & \(\Omega\) \\
\hline Diode Capacitance (Figure 7) & \(\mathrm{C}_{\mathrm{D}}\) & \(\mathrm{V}_{\mathrm{R}}=-2 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0\) & - & 0.65 & - & pF \\
\hline Diode-to-Substrate Capacitance (Figure 8) & \(C_{\text {DI }}\) & \(V_{D I}=4 V, I_{F}=0\) & - & 3.2 & - & pF \\
\hline
\end{tabular}

NOTE:
2. Magnitude of Diode Offset Voltage is the difference in DC Forward Voltage Drops of any two diode units.

\section*{Typical Performance Curves}


FIGURE 1. DC FORWARD VOLTAGE DROP (ANY DIODE) AND DIODE OFFSET VOLTAGE vs DC FORWARD CURRENT


FIGURE 3. DC REVERSE (LEAKAGE) CURRENT BETWEEN \(D_{1}\), \(D_{2}, D_{3}, D_{4}, D_{5}\) AND SUBSTRATE vs TEMPERATURE


FIGURE 5. DC FORWARD VOLTAGE DROP (ANY DIODE) vs TEMPERATURE


FIGURE 2. DC REVERSE (LEAKAGE) CURRENT ( \(\mathrm{D}_{1}-\mathrm{D}_{5}\) ) vs TEMPERATURE


FIGURE 4. DIODE OFFSET VOLTAGE (ANY DIODE) vs TEMPERATURE


FIGURE 6. DIODE RESISTANCE (ANY DIODE) vs DC FORWARD CURRENT

\section*{Typical Performance Curves (Continued)}


FIGURE 7. DIODE CAPACITANCE ( \(D_{1}-D_{5}\) ) vs REVERSE VOLTAGE


FIGURE 8. DIODE-TO-SUBSTRATE CAPACITANCE vs REVERSE VOLTAGE

CA3045, CA3046

\section*{General Purpose NPN Transistor Arrays}

\section*{Features}
- Two Matched Transistors
- VBE Match \(\qquad\) \(\pm 5 \mathrm{mV}\)
- Io Match
\(2 \mu A\) (Max)
- Low Noise Figure 3.2 dB (Typ) at 1 kHz
- 5 General Purpose Monolithic Transistors
- Operation From DC to 120 MHz
- Wide Operating Current Range
- Full Military Temperature Range

\section*{Applications}
- Three Isolated Transistors and One Differentially Connected Transistor Pair for Low Power Applications at Frequencies from DC Through the VHF Range
- Custom Designed Differential Amplifiers
- Temperature Compensated Amplifiers
- See Application Note, AN5296 "Application of the CA3018 Integrated-Circuit Transistor Array" for Suggested Applications

\section*{Description}

The CA3045 and CA3046 each consist of five general purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentially connected pair.

The transistors of the CA3045 and CA3046 are well suited to a wide variety of applications in low power systems in the DC through VHF range. They may be used as discrete transistors in conventional circuits. However, in addition, they provide the very significant inherent integrated circuit advantages of close electrical and thermal matching.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{l} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline CA3045 & -55 to 125 & 14 Ld SBDIP & D14.3 \\
\hline CA3045F & -55 to 125 & 14 Ld CERDIP & F14.3 \\
\hline CA3046 & -55 to 125 & 14 Ld PDIP & E14.3 \\
\hline \begin{tabular}{l} 
CA3046M \\
\((3046)\)
\end{tabular} & -55 to 125 & 14 Ld SOIC & M14.15 \\
\hline \begin{tabular}{l} 
CA3046M96 \\
\((3046)\)
\end{tabular} & -55 to 125 & \begin{tabular}{l}
14 Ld SOIC Tape \\
and Reel
\end{tabular} & M14.15 \\
\hline
\end{tabular}

Pinout


Absolute Maximum Ratings
Collector-to-Emitter Voltage (VCEO) . . . . . . . . . . . . . . . . . . . . . . 15V
Collector-to-Base Voltage ( \(\mathrm{V}_{\mathrm{CBO}}\) ) . . . . . . . . . . . . . . . . . . . . . . . 20 V
Collector-to-Substrate Voltage (VIO, Note 1) . . . . . . . . . . . . . . . 20 V
Emitter-to-Base Voltage (VEBO) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V
Collector Current (IC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50mA

\section*{Operating Conditions}

Temperature Range
\(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)

Thermal Information
\begin{tabular}{|c|c|c|}
\hline Thermal Resistance (Typical, Note 2) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) & \(\theta_{\mathrm{Jc}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline PDIP Package & 180 & N/A \\
\hline CERDIP Package & 150 & 75 \\
\hline SBDIP Package. & 125 & 60 \\
\hline SOIC Package & 220 & N/A \\
\hline
\end{tabular}

Maximum Power Dissipation (Any One Transistor) . . . . . . . . 300 mW
Maximum Junction Temperature (Hermetic Packages) . . . . . . . \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (Plastic Package) . . . . . . . \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range . . . . . . . . \(65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\) (SOIC - Lead Tips Only)
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. The collector of each transistor of the CA3045 and CA3046 is isolated from the substrate by an integral diode. The substrate (Terminal 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\), characteristics apply for each transistor in CA3045 and CA3046 as specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & \multicolumn{2}{|r|}{TEST CONDITIONS} & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{DC CHARACTERISTICS} \\
\hline Collector-to-Base Breakdown Voltage & \(\mathrm{V}_{\text {(BR) }} \mathrm{CBO}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\)} & 20 & 60 & - & V \\
\hline Collector-to-Emitter Breakdown Voltage & \(\mathrm{V}_{\text {(BR) }} \mathrm{VEEO}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\)} & 15 & 24 & - & V \\
\hline Collector-to-Substrate Breakdown Voltage & \(\mathrm{V}_{\text {(BR) }}\) CIO & \multicolumn{2}{|l|}{\(\mathrm{IC}^{\prime}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{Cl}}=0\)} & 20 & 60 & - & V \\
\hline Emitter-to-Base Breakdown Voltage & \(\mathrm{V}_{\text {(BR)EBO }}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\)} & 5 & 7 & - & V \\
\hline Collector Cutoff Current (Figure 1) & I'cbo & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\)} & - & 0.002 & 40 & nA \\
\hline Collector Cutoff Current (Figure 2) & Iceo & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\)} & - & See Fig. 2 & 0.5 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{3}{*}{Forward Current Transfer Ratio (Static Beta) (Note 3) (Figure 3)} & \multirow[t]{3}{*}{\(\mathrm{h}_{\text {FE }}\)} & \multirow[t]{3}{*}{\(V_{C E}=3 V\)} & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\) & - & 100 & - & - \\
\hline & & & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 40 & 100 & - & - \\
\hline & & & \(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}\) & - & 54 & - & - \\
\hline Input Offset Current for Matched Pair \(Q_{1}\) and \(\mathrm{Q}_{2}\). \(\mathrm{llO}_{1 \mathrm{O} 1} \mathrm{I}_{\mathrm{IO}_{2}}\) (Note 3) (Figure 4) & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\)} & - & 0.3 & 2 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Base-to-Emitter Voltage (Note 3) (Figure 5)} & \multirow[t]{2}{*}{\(V_{B E}\)} & \multirow[t]{2}{*}{\(V_{C E}=3 \mathrm{~V}\)} & \(\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}\) & - & 0.715 & - & V \\
\hline & & & \(\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}\) & - & 0.800 & - & V \\
\hline Magnitude of Input Offet Voltage for Differential Pair IV \({ }_{B E 1}\) - \(\mathrm{V}_{\mathrm{BE} 2}\) ( (Note 3) (Figures 5, 7) & & \multicolumn{2}{|l|}{\(\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\)} & - & 0.45 & 5 & mV \\
\hline Magnitude of Input Offset Voltage for Isolated Transistors \(\mathrm{IV}_{\mathrm{BE} 3}-\mathrm{V}_{\mathrm{BE} 4} \mathrm{I}, \mathrm{IV}_{\mathrm{BE} 4}-\mathrm{V}_{\mathrm{BE}} \mathrm{I}\), IV \({ }_{\text {BE5 }}-\mathrm{V}_{\mathrm{BE} 3} \mid\) (Note 3) (Figures 5, 7) & & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\)} & - & 0.45 & 5 & mV \\
\hline Temperature Coefficient of Base-to-Emitter Voltage (Figure 6) & \(\frac{\Delta V_{\text {BE }}}{\Delta T}\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\)} & - & -1.9 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Collector-to-Emitter Saturation Voltage & \(\mathrm{V}_{\text {CES }}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\)} & - & 0.23 & - & V \\
\hline Temperature Coefficient: Magnitude of Input Offset Voltage (Figure 7) & \(\frac{\left|\Delta V_{10}\right|}{\Delta T}\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\)} & - & 1.1 & - & \(\mu \mathrm{V}{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

CA3045, CA3046

Electrical Specifications \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), characteristics apply for each transistor in CA3045 and CA3046 as specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{DYNAMIC CHARACTERISTICS} \\
\hline Low Frequency Noise Figure (Figure 9) & NF & \[
\begin{aligned}
& f=1 \mathrm{kHz}, V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \\
& \text { Source Resistance }=1 \mathrm{k} \Omega
\end{aligned}
\] & - & 3.25 & - & dB \\
\hline \begin{tabular}{l}
Low Frequency, Small Signal Equivalent Circuit Characteristics \\
Forward Current Transfer Ratio (Figure 11)
\end{tabular} & \(h_{\text {FE }}\) & \(f=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & - & 110 & - & - \\
\hline Short Circuit Input Impedance (Figure 11) & \(\mathrm{h}_{\text {IE }}\) & \(\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & - & 3.5 & - & k \(\Omega\) \\
\hline Open Circuit Output Impedance (Figure 11) & \(\mathrm{h}_{\text {OE }}\) & \(f=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & - & 15.6 & - & \(\mu \mathrm{S}\) \\
\hline Open Circuit Reverse Voltage Transfer Ratio (Figure 11) & \(\mathrm{h}_{\text {RE }}\) & \(\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{IC}=1 \mathrm{~mA}\) & - & \(1.8 \times 10^{-4}\) & - & - \\
\hline \begin{tabular}{l}
Admittance Characteristics \\
Forward Transfer Admittance (Figure 12)
\end{tabular} & Y FE & \(\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & - & 31-j1.5 & - & . \\
\hline Input Admittance (Figure 13) & \(Y_{\text {IE }}\) & \(f=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & - & \(0.3+j 0.04\) & - & - \\
\hline Output Admittance (Figure 14) & \(Y_{\text {OE }}\) & \(\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & - & \(0.001+j 0.03\) & - & - \\
\hline Reverse Transfer Admittance (Figure 15) & \(Y_{\text {RE }}\) & \(\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & - & See Fig. 14 & - & - \\
\hline Gain Bandwidth Product (Figure 16) & \(\mathrm{f}_{T}\) & \(\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}\) & 300 & 550 & - & MHz \\
\hline Emitter-to-Base Capacitance & \(\mathrm{C}_{\mathrm{EB}}\) & \(\mathrm{V}_{\mathrm{EB}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & - & 0.6 & - & pF \\
\hline Collector-to-Base Capacitance & \(\mathrm{C}_{C B}\) & \(\mathrm{V}_{C B}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\) & - & 0.58 & - & pF \\
\hline Collector-to-Substrate Capacitance & \(\mathrm{C}_{\mathrm{Cl}}\) & \(\mathrm{V}_{C S}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\) & - & 2.8 & - & pF \\
\hline
\end{tabular}

NOTE:
3. Actual forcing current is via the emitter for this test.

\section*{Typical Performance Curves}


FIGURE 1. TYPICALCOLLECTOR-TO-BASE CUTOFF CURRENT vs TEMPERATURE FOR EACH TRANSISTOR


FIGURE 2. TYPICAL COLLECTOR-TO-EMITTER CUTOFF CURRENT vs TEMPERATURE FOR EACH TRANSISTOR


FIGURE 3. TYPICAL STATIC FORWARD CURRENT TRANSFER RATIO AND BETA RATIO FOR \(Q_{1}\) AND \(Q_{2}\) vs EMITTER CURRENT


FIGURE 5. TYPICAL STATIC BASE-TO-EMITTER VOLTAGE CHARACTERISTICS AND INPUT OFFSET VOLTAGE FOR DIFFERENTIAL PAIR AND PAIRED ISOLATED TRANSISTORS vs EMITTER CURRENT


FIGURE7. TYPICALINPUT OFFSETVOLTAGE CHARACTERISTICS FOR DIFFERENTIAL PAIR AND PAIRED ISOLATED TRANSISTORS vs TEMPERATURE


FIGURE 4. TYPICAL INPUT OFFSET CURRENT FOR MATCHED TRANSISTOR PAIR \(Q_{1} Q_{2}\) vs COLLECTOR CURRENT


FIGURE 6. TYPICAL BASE-TO-EMITTER VOLTAGE CHARACTERISTIC vs TEMPERATURE FOR EACH TRANSISTOR


FIGURE 8. TYPICAL NOISE FIGURE vs COLLECTOR CURRENT

\section*{Typical Performance Curves (Continued)}


FIGURE 9. TYPICAL NOISE FIGURE vs COLLECTOR CURRENT


FIGURE 11. TYPICAL NORMALIZED FORWARD CURRENT TRANSFER RATIO, SHORT CIRCUIT INPUT IMPEDANCE, OPEN CIRCUIT OUTPUT IMPEDANCE, AND OPEN CIRCUIT REVERSE VOLTAGE TRANSFER RATIO vs COLLECTOR CURRENT


FIGURE 13. TYPICAL INPUT ADMITTANCE vs FREQUENCY


FIGURE 10. TYPICAL NOISE FIGURE vs COLLECTOR CURRENT


FIGURE 12. TYPICAL FORWARD TRANSFER ADMITTANCE vs FREQUENCY


FIGURE 14. TYPICAL OUTPUT ADMITTANCE vs FREQUENCY

\section*{Typical Performance Curves (Continued)}


FIGURE 15. TYPICAL REVERSE TRANSFER ADMITTANCE vs FREQUENCY


FIGURE 16. TYPICAL GAIN BANDWIDTH PRODUCT vs COLLECTOR CURRENT

\title{
Dual High Frequency Differential Amplifiers For Low Power Applications Up to 500MHz
}

\section*{Description}

The CA3049T and CA3102 consist of two independent differential amplifiers with associated constant current transistors on a common monolithic substrate. The six transistors which comprise the amplifiers are general purpose devices which exhibit low \(1 / f\) noise and a value of \(f_{T}\) in excess of 1 GHz . These feature make the CA3049T and CA3102 useful from DC to 500 MHz . Bias and load resistors have been omitted to provide maximum application flexibility.
The monolithic construction of the CA3049T and CA3102 provides close electrical and thermal matching of the amplifiers. This feature makes these devices particularly useful in dual channel applications where matched performance of the two channels is required.

The CA3102 is like the CA3049T except that it has a separate substrate connection for greater design flexibility.

Formerly Developmental Type No. TA6228.

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|}
\hline PART NUMBER (BRAND) & TEMP. RANGE ( \({ }^{\circ} \mathrm{C}\) ) & PACKAGE & \begin{tabular}{l}
PKG. \\
NO.
\end{tabular} \\
\hline CA3049T & -55 to 125 & 12 Pin Metal Can & T12.B \\
\hline CA3102E & -55 to 125 & 14 Ld PDIP & E14.3 \\
\hline \[
\begin{aligned}
& \text { CA3102M } \\
& (3102)
\end{aligned}
\] & -55 to 125 & 14 Ld SOIC & M14.15 \\
\hline \[
\begin{aligned}
& \text { CA3102M96 } \\
& (3102)
\end{aligned}
\] & -55 to 125 & 14 Ld SOIC Tape and Reel & M14.15 \\
\hline
\end{tabular}
- Sense Amplifiers

\section*{Pinouts}


CA3049 (METAL CAN)
TOP VIEW


Absolute Maximum Ratings
Collector-to-Emitter Voltage, \(\mathrm{V}_{\text {CEO }}\). . . . . . . . . . . . . . . . . . . . . . . 15 V
Collector-to-Base Voltage, \(\mathrm{V}_{\text {CBO }}\). . . . . . . . . . . . . . . . . . . . . . . . 20 V
Collector-to-Substrate Voltage, \(\mathrm{V}_{\mathrm{CIO}}\) (Note 1) . . . . . . . . . . . . . . . 20 V
Emitter-to-Base Voltage, VEBO . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 V
Collector Current, Ic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA

\section*{Operating Conditions}

Temperature Range

\section*{Thermal Information}
\begin{tabular}{|c|c|}
\hline Thermal Resistance (Typical, Note 2) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline Metal Can Package & 225 \\
\hline PDIP Package & 130 \\
\hline SOIC Package. & 140 \\
\hline Maximum Power Dissipation (Any One Transistor) & 300 mW \\
\hline Maximum Junction Temperature (Can Package). & 175 \\
\hline Maximum Junction Temperature (Plastic Package) & 150 \({ }^{\circ} \mathrm{C}\) \\
\hline Maximum Storage Temperature Range & to \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Lead Temperature (Soldering 10s). (SOIC - Lead Tips Only) & \(.300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

\section*{NOTES:}
1. The collector of each transistor of the CA3049T and CA3102 is isolated from the substrate by an integral diode. The substrate (Terminal 9) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

\section*{Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{TEST CONDITIONS}} & \multicolumn{3}{|c|}{CA3102} & \multicolumn{3}{|c|}{CA3049} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{11}{|l|}{DC CHARACTERISTICS FOR EACH DIFFERENTIAL AMPLIFIER} \\
\hline Input Offset Voltage (Figures 1, 4) & \(\mathrm{V}_{10}\) & & & - & 0.25 & 5.0 & - & 0.25 & \(\bullet\) & mV \\
\hline Input Offset Current (Figure 1) & 10 & \(l_{3}=l_{9}=2\) & & - & 0.3 & 3.0 & - & 0.3 & - & \(\mu \mathrm{A}\) \\
\hline Input Bias Current (Figures 1, 5) & \(\mathrm{IB}_{B}\) & & & - & 13.5 & 33 & - & 13.5 & 33 & \(\mu \mathrm{A}\) \\
\hline Temperature Coefficient Magnitude of Input Offset Voltage & \(\frac{\left|\Delta V_{10}\right|}{\Delta T}\) & & & - & 1.1 & - & \(\bullet\) & 1.1 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{11}{|l|}{DC CHARACTERISTICS FOR EACH TRANSISTOR} \\
\hline DC Forward Base-to-Emitter Voltage (Figure 6) & VBE & \(\mathrm{V}_{\text {CE }}=6 \mathrm{~V}\), & \(=1 \mathrm{~mA}\) & 674 & 774 & 874 & - & 774 & - & mV \\
\hline Temperature Coefficient of Base-to-Emitter Voltage (Figure 6) & \[
\frac{\Delta V_{B E}}{\Delta T}
\] & \(\mathrm{V}_{\text {CE }}=6 \mathrm{~V}\) & 1 mA & - & -0.9 & - & - & -0.9 & \(\bullet\) & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Collector Cutoff Current (Figure 7) & I'bo & \(\mathrm{V}_{\mathrm{CB}}=10\) & 0 & - & 0.0013 & 100 & \(\bullet\) & 0.0013 & 100 & nA \\
\hline Collector-to-Emitter Breakdown Voltage & \(\mathrm{V}_{(\mathrm{BR})}\) CEO & \(\mathrm{I}^{\prime}=1 \mathrm{~mA}\), & & 15 & 24 & - & 15 & 24 & - & V \\
\hline Collector-to-Base Breakdown Voltage & \(\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}\) & \(I_{C}=10 \mu A\), & & 20 & 60 & - & 20 & 60 & - & V \\
\hline Collector-to-Substrate Breakdown Voltage & \(\mathrm{V}_{\text {(BR) }} \mathrm{ClO}\) & \(l_{C}=10 \mu A\), & \(=l_{E}=0\) & 20 & 60 & - & 20 & 60 & - & V \\
\hline Emitter-to-Base Breakdown Voltage & \(\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}\) & \(I_{E}=10 \mu A\), & & 5 & 7 & - & 5 & 7 & - & V \\
\hline \multicolumn{11}{|l|}{DYNAMIC CHARACTERISTICS FOR EACH DIFFERENTIAL AMPLIFIER} \\
\hline 1/f Noise Figure (For Single Transistor) (Figure 12) & NF & \[
\begin{aligned}
& \mathrm{f}=100 \mathrm{kHz} \\
& \mathrm{l}_{\mathrm{C}}=1 \mathrm{~mA}
\end{aligned}
\] & \[
s=500 \Omega,
\] & \(\bullet\) & 1.5 & \(\bullet\) & - & 1.5 & \(\cdot\) & dB \\
\hline Gain Bandwidth Product (For Single Transistor) (Figure 11) & \({ }_{\text {f }}\) & \(\mathrm{V}_{\text {CE }}=6 \mathrm{~V}\), & \(=5 \mathrm{~mA}\) & - & 1.35 & - & \(\bullet\) & 1.35 & - & GHz \\
\hline \multirow[t]{2}{*}{Collector-Base Capacitance (Figure 8)} & \multirow[t]{2}{*}{\(\mathrm{C}_{\mathrm{CB}}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& l_{C=0} \\
& V_{C B}=5 \mathrm{~V}
\end{aligned}
\]} & Note 3 & \(\cdot\) & 0.28 & - & - & 0.28 & - & pF \\
\hline & & & Note 4 & - & 0.15 & - & - & 0.28 & - & pF \\
\hline Collector-Substrate Capacitance (Figure 8) & \(\mathrm{C}_{\mathrm{Cl}}\) & \multicolumn{2}{|l|}{\(\mathrm{I}^{\mathrm{C}}=0, \mathrm{~V}_{\mathrm{Cl}}=5 \mathrm{~V}\)} & - & 1.65 & \(\bullet\) & - & 1.65 & - & pF \\
\hline
\end{tabular}

CA3049, CA3102

Electrical Specifications \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{TEST CONDITIONS}} & \multicolumn{3}{|c|}{CA3102} & \multicolumn{3}{|c|}{CA3049} & \multirow[b]{2}{*}{UNIT} \\
\hline & & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Common Mode Rejection Ratio & CMRR & \multicolumn{2}{|l|}{\(\mathrm{I}_{3}=\mathrm{I}_{9}=2 \mathrm{~mA}\)} & - & 100 & - & - & 100 & - & dB \\
\hline AGC Range, One Stage (Figure 2) & AGC & \multicolumn{2}{|l|}{Bias Voltage \(=-6 \mathrm{~V}\)} & - & 75 & \(\bullet\) & - & 75 & - & dB \\
\hline Voltage Gain, Single-Ended Output (Figures 2, 9, 10) & A & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Bias Voltage }=-4.2 \mathrm{~V}, \\
& \mathrm{f}=10 \mathrm{MHz}
\end{aligned}
\]} & 18 & 22 & - & - & 22 & - & dB \\
\hline Insertion Power Gain (Figure 3) & Gp & \multirow[t]{10}{*}{\(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}\), For Cascode Configuration \(\mathrm{I}_{3}=\mathrm{I}_{9}=2 \mathrm{~mA}\). For Diff. Amp. Configuration \(I_{3}=I_{9}=4 \mathrm{~mA}\) (Each Collector \(\mathrm{I}_{\mathrm{C}} \cong 2 \mathrm{~mA}\) ) \(\mathrm{f}=200 \mathrm{MHz}\)} & Cascode & - & 23 & - & - & 23 & - & dB \\
\hline Noise Figure (Figure 3) & NF & & Cascode & - & 4.6 & - & - & 4.6 & - & dB \\
\hline \multirow[t]{2}{*}{Input Admittance} & \multirow[t]{2}{*}{\(\mathrm{Y}_{11}\)} & & Cascode (Figures 14, 16, 18) & - & \[
\begin{aligned}
& 1.5+ \\
& \mathrm{j} 2.45
\end{aligned}
\] & \(\bullet\) & - & \[
\begin{aligned}
& 1.5+ \\
& \mathrm{j} 2.45 \\
& \hline
\end{aligned}
\] & \(\cdot\) & mS \\
\hline & & & Diff. Amp. (Figures 15, 17, 19) & - & \[
\begin{gathered}
0.878+ \\
j 1.3
\end{gathered}
\] & - & - & \[
\begin{array}{|c|}
\hline 0.878+ \\
j 1.3
\end{array}
\] & \(\cdot\) & mS \\
\hline \multirow[t]{2}{*}{Reverse Transfer Admittance} & \multirow[t]{2}{*}{\(\mathrm{Y}_{12}\)} & & Cascode & - & \[
\begin{gathered}
0.0- \\
\mathrm{j} 0.008
\end{gathered}
\] & \(\bullet\) & - & \[
\begin{gathered}
0.0- \\
\mathrm{j} 0.008 \\
\hline
\end{gathered}
\] & - & ms \\
\hline & & & Diff. Amp. & \(\cdot\) & \[
\begin{gathered}
0.0- \\
j 0.013
\end{gathered}
\] & - & - & \[
\begin{gathered}
0.0- \\
j 0.013
\end{gathered}
\] & - & ms \\
\hline \multirow[t]{2}{*}{Forward Transfer Admittance} & \multirow[t]{2}{*}{\(\mathrm{Y}_{21}\)} & & Cascode (Figures 26, 28, 30) & - & \[
\begin{aligned}
& 17.9- \\
& \mathrm{j} 30.7
\end{aligned}
\] & - & \(\bullet\) & \[
\begin{aligned}
& \hline 17.9- \\
& \mathrm{j} 30.7 \\
& \hline
\end{aligned}
\] & - & mS \\
\hline & & & Diff. Amp. (Figures 27, 29, 31) & - & \[
\begin{gathered}
-10.5+ \\
j 13
\end{gathered}
\] & \(\bullet\) & \(\bullet\) & \[
\begin{gathered}
-10.5+ \\
j 13
\end{gathered}
\] & \(\bullet\) & mS \\
\hline \multirow[t]{2}{*}{Output Admittance} & \multirow[t]{2}{*}{\(\mathrm{Y}_{22}\)} & & Cascode (Figures 20, 22, 24) & \(\bullet\) & \[
\begin{array}{|l|}
\hline-0.503 \\
-j 15 \\
\hline
\end{array}
\] & - & - & \[
\begin{array}{|l|}
\hline-0.503 \\
-j 15 \\
\hline
\end{array}
\] & - & mS \\
\hline & & & Diff. Amp. (Figures 21, 23, 25) & - & \[
\begin{aligned}
& 0.071+ \\
& \mathrm{j} 0.62
\end{aligned}
\] & - & - & \[
\begin{gathered}
0.071+ \\
j 0.62 \\
\hline
\end{gathered}
\] & - & mS \\
\hline
\end{tabular}

NOTES:
3. Terminals 1 and 14 or 7 and 8 (CA3102). Terminals 1 and 12 or 6 and 7 (CA3049T).
4. Terminals 13 and 4 or 6 and 11 (CA3102). Terminals 10 and 11 or 4 and 5 (CA3049T).

\section*{Schematic Diagrams}

CA3102E, CA3102M


CA3049T



\section*{Test Circuits}


FIGURE 1. DC CHARACTERISTICS TEST CIRCUIT FOR CA3102


Figure 2. AGC RANGE AND VOLTAGE GAIN TEST CIRCUIT FOR CA3102

FIGURE 3. 200MHz CASCODE POWER GAIN AND NOISE FIGURE TEST CIRCUIT

\section*{Typical Performance Curves}


FIGURE 4. INPUT OFFSET VOLTAGE vs EMITTER CURRENT


FIGURE 6. BASE-TO-EMITTER VOLTAGE vs COLLECTOR CURRENT


FIGURE 8. CAPACITANCE vs DC BIAS VOLTAGE


FIGURE 5. INPUT BIAS CURRENT vs EMITTER CURRENT


FIGURE 7. COLLECTOR CUTOFF CURRENT vs TEMPERATURE


FIGURE 9. VOLTAGE GAIN vs DC BIAS VOLTAGE

Typical Performance Curves (Continued)


FIGURE 10. VOLTAGE GAIN vs FREQUENCY


FIGURE 12. \(1 / \mathrm{f}\) NOISE FIGURE vs COLLECTOR CURRENT


FIGURE 14. INPUT ADMITTANCE \(\left(Y_{11}\right)\) vs FREQUENCY


FIGURE 11. GAIN BANDWIDTH PRODUCT vs COLLECTOR CURRENT


FIGURE 13. 1/f NOISE FIGURE vs COLLECTOR CURRENT


FIGURE 15. INPUT ADMITTANCE \(\left(Y_{11}\right)\) vs FREQUENCY

CA3049, CA3102
Typical Performance Curves (Continued)


FIGURE 16. INPUT ADMITTANCE \(\left(Y_{11}\right)\) vs COLLECTOR SUPPLY VOLTAGE


FIGURE 18. INPUT ADMITTANCE \(\left(\mathrm{Y}_{11}\right)\) vs EMITTER CURRENT


FIGURE 17. INPUT ADMITTANCE \(\left(\mathrm{Y}_{11}\right)\) vs COLLECTOR SUPPLY VOLTAGE


FIGURE 19. INPUT ADMITTANCE \(\left(Y_{11}\right)\) vs EMITTER CURRENT


FIGURE 21. OUTPUT ADMITTANCE \(\left(\mathrm{Y}_{22}\right)\) vs FREQUENCY


FIGURE 22. OUTPUT ADMITTANCE \(\left(\mathrm{Y}_{22}\right)\) vs COLLECTOR SUPPLY VOLTAGE


FIGURE 24. OUTPUT ADMITTANCE \(\left(Y_{22}\right)\) vs EMITTER CURRENT


FIGURE 26. FORWARD TRANSFER ADMITTANCE \(\left(Y_{21}\right)\) vs FREQUENCY


FIGURE 23. OUTPUT ADMITTANCE \(\left(\mathrm{Y}_{22}\right)\) vs COLLECTOR SUPPLY VOLTAGE


FIGURE 25. OUTPUT ADMITTANCE \(\left(\mathrm{Y}_{22}\right)\) vs EMITTER CURRENT


FIGURE 27. FORWARD TRANSFER ADMITTANCE \(\left(\mathrm{Y}_{21}\right)\) vs FREQUENCY

\section*{Typical Performance Curves (Continued)}


FIGURE 28. FORWARD TRANSFER ADMITTANCE \(\left(\mathrm{Y}_{21}\right)\) vs COLLECTOR SUPPLY VOLTAGE


FIGURE 30. FORWARD TRANSFER ADMITTANCE \(\left(\mathrm{Y}_{21}\right)\) vs EMITTER CURRENT


FIGURE 29. FORWARD TRANSFER ADMITTANCE \(\left(Y_{21}\right)\) vs COLLECTOR SUPPLY VOLTAGE


FIGURE 31. FORWARD TRANSFER ADMITTANCE \(\left(\mathbf{Y}_{\mathbf{2 1}}\right)\) vs EMITTER CURRENT

\section*{Dual Independent Differential Amp for Low Power Applications from DC to \(\mathbf{1 2 0 M H z}\)}

November 1996

\section*{Features}
- Two Differential Amplifiers on a Common Substrate
- Independently Accessible Inputs and Outputs
- Maximum Input Offset Voltage \(\pm 5 \mathrm{mV}\)
- Temperature Range . . . . . . . . . . . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)

\section*{Applications}
- Dual Sense Amplifiers
- Dual Schmitt Triggers
- Multifunction Combinations
- RF/Mixer/Oscillator; Converter/IF
- IF Amplifiers (Differential and/or Cascode)
- Product Detectors
- Doubly Balanced Modulators and Demodulators
- Balanced Quadrature Detectors
- Cascade Limiters
- Synchronous Detectors
- Pairs of Balanced Mixers
- Synthesizer Mixers
- Balanced (Push-Pull) Cascode Amplifiers

\section*{Description}

The CA3054 consists of two independent differential amplifiers with associated constant current transistors on a common monolithic substrate. The six NPN transistors which comprise the amplifiers are general purpose devices which exhibit low \(1 / \mathrm{f}\) noise and a value of \(\mathrm{f}_{\mathrm{T}}\) in excess of 300 MHz . These feature make the CA3054 useful from DC to 120 MHz . Bias and load resistors have been omitted to provide maximum application flexibility.

The monolithic construction of the CA3054 provides close electrical and thermal matching of the amplifiers. This feature makes these devices particularly useful in dual channel applications where matched performance of the two channels is required.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|c|}
\hline \begin{tabular}{l} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular} \\
\hline CA3054 & 0 to 85 & 14 Ld PDIP & E14.3 \\
\hline \begin{tabular}{l} 
CA3054M \\
\((3054)\)
\end{tabular} & 0 to 85 & 14 Ld SOIC & M14.15 \\
\hline \begin{tabular}{l} 
CA3054M96 \\
\((3054)\)
\end{tabular} & 0 to 85 & \begin{tabular}{l}
14 Ld SOIC Tape \\
and Reel
\end{tabular} & M14.15 \\
\hline
\end{tabular}

\section*{Pinout}

CA3054
(PDIP, SOIC)
TOP VIEW

Absolute Maximum Ratings \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)Collector-to-Emitter Voltage, \(\mathrm{V}_{\text {CEO }}\). . . . . . . . . . . . . . . . . . . . . . . 15 V
Collector-to-Base Voltage, \(\mathrm{V}_{\mathrm{CBO}}\) ..... 20 V
Collector-to-Substrate Voltage, \(\mathrm{V}_{\mathrm{CIO}}\) (Note 1) ..... 20 V
Emitter-to-Base Voltage, \(\mathrm{V}_{\mathrm{EBO}}\) ..... 5 V
Collector Current, IC ..... 50 mA

\section*{Operating Conditions}

Temperature Range

\section*{Thermal Information}
\begin{tabular}{|c|c|}
\hline esistance (Typical, Note 2) & \(\theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline PDIP Package & 130 \\
\hline SOIC Package & 140 \\
\hline Maximum Junction Temperature (Die). & \(175^{\circ}\) \\
\hline Maximum Junction Temperature (Plastic Package) & \(\ldots . . .150^{\circ} \mathrm{C}\) \\
\hline Maximum Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Lead Temperature (Soldering 10s) (SOIC - Lead Tips Only) & \\
\hline aximum Power Dissipation (Any & 300 m \\
\hline
\end{tabular}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. The collector of each transistor of the CA3054 is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transistors and provide for normal transistor action. The substrate should be maintained at signal (AC) ground by means of a suitable grounding capacitor, to avoid undesired coupling between transistors.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

\section*{Maximum Voltage Ratings}

The following chart gives the range of voltages which can be applied to the terminals listed vertically with respect to the terminals listed horizontally. For example, the voltage range of the vertical Terminal 2 with respect to Terminal 4 is +15 V to -5 V .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
(NOTE 4) \\
TERM \\
NO.
\end{tabular} & \(\mathbf{1 3}\) & \(\mathbf{1 4}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{6}\) & \(\mathbf{7}\) & \(\mathbf{8}\) & \(\mathbf{9}\) & \(\mathbf{1 1}\) & \(\mathbf{1 2}\) & \(\mathbf{5}\) \\
\hline \(\mathbf{1 3}\) & & \(0,-20\) & Note 3 & \(+5,-5\) & Note 3 & \(+\mathbf{+ 1 5 , - 5}\) & Note 3 \\
\hline \(\mathbf{1 4}\) & & & Note 3 & Note 3 & Note 3 & \(+20,0\) & Note 3 & \(+20,0\) \\
\hline \(\mathbf{1}\) & & & & \(+20,0\) & Note 3 & \(+20,0\) & Note 3 & \(+20,0\) \\
\hline \(\mathbf{2}\) & & & & & Note 3 & \(+15,-5\) & Note 3 \\
\hline \(\mathbf{3}\) & & & & & & \(+1,-5\) & Note 3 \\
\hline \(\mathbf{4}\) & & & & & & & Note 3 \\
\hline \(\mathbf{6}\) & & & & & & & & \(0,-20\) & Note 3 & \(+5,-5\) & Note 3 & \(+15,-5\) & Note 3 3 \\
\hline \(\mathbf{7}\) & & & & & & & & & Note 3 & Note 3 & Note 3 & Note 3 & \(+20,0\) \\
\hline \(\mathbf{8}\) & & & & & & & & & & \(+20,0\) & Note 3 & Note 3 & \(+20,0\) \\
\hline \(\mathbf{9}\) & & & & & & & & & & & Note 3 & \(+15,-5\) & Note 3 \\
\hline \(\mathbf{1 1}\) & & & & & & & & & & & & \(-1,-5\) & Note 3 \\
\hline \(\mathbf{1 2}\) & & & & & & & & & & & & & Note 3 \\
\hline \(\mathbf{5}\) & & & & & & & & & & & & & \begin{tabular}{c} 
Ref. \\
Sub- \\
strate
\end{tabular} \\
\hline
\end{tabular}

\section*{Maximum Current Ratings}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
(NOTE 4 \\
TERM \\
NO.
\end{tabular} & \begin{tabular}{c}
\(I_{\text {IN }}\) \\
mA
\end{tabular} & \begin{tabular}{c} 
IOUT \\
mA
\end{tabular} \\
\hline 13 & 5 & 0.1 \\
\hline 14 & 50 & 0.1 \\
\hline 1 & 50 & 0.1 \\
\hline 2 & 5 & 0.1 \\
\hline 3 & 5 & 0.1 \\
\hline 4 & 0.1 & 50 \\
\hline 6 & 5 & 0.1 \\
\hline 7 & 50 & 0.1 \\
\hline 8 & 50 & 0.1 \\
\hline 9 & 5 & 0.1 \\
\hline 11 & 5 & 0.1 \\
\hline 12 & 0.1 & 50 \\
\hline
\end{tabular}

NOTES:
3. Voltages are not normally applied between these terminals. Voltages appearing between these terminals will be safe if the specified limits between all other terminals are not exceeded.
4. Terminal No. 10 of CA3054 is not used.

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multicolumn{7}{|l|}{DC CHARACTERISTICS For Each Differential Amplifier} \\
\hline Input Offset Voltage (Figure 8) & \(\mathrm{V}_{10}\) & \(\mathrm{V}_{\mathrm{CB}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}(\mathrm{Q} 3)}=\mathrm{I}_{\mathrm{E}(\mathrm{Q4})}=2 \mathrm{~mA}\) & - & 0.45 & 5 & mV \\
\hline Input Offset Current (Figure 9) & 10 & \(\mathrm{V}_{\mathrm{CB}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}(\mathrm{Q} 3)}=\mathrm{I}_{\mathrm{E}(\mathrm{Q} 4)}=2 \mathrm{~mA}\) & - & 0.3 & 2 & \(\mu \mathrm{A}\) \\
\hline Input Bias Current (Figure 5) & 1 & \(\mathrm{V}_{\mathrm{CB}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}(\mathrm{Q} 3)}=\mathrm{I}_{\mathrm{E}(\mathrm{Q4})}=2 \mathrm{~mA}\) & - & 10 & 24 & \(\mu \mathrm{A}\) \\
\hline Quiescent Operating Current Ratio (Figure 5) & \(\frac{{ }^{\mathrm{I}} \mathrm{C}(\text { Q1) }}{}{ }^{\mathrm{C}(\text { Q2) }}\) or \({ }^{\text {I } \mathrm{C}(\text { Q5 })}\) & \(\mathrm{V}_{C B}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}(\mathrm{Q} 3)}=\mathrm{I}_{\mathrm{E}(\mathrm{Q4)}}=2 \mathrm{~mA}\) & - & \[
\begin{gathered}
0.98 \text { to } \\
1.02
\end{gathered}
\] & - & - \\
\hline Temperature Coefficient Magnitude of Input Offset Voltage (Figure 7) & \[
\frac{\left|\Delta \mathrm{V}_{\mathrm{IO}}\right|}{\Delta \mathrm{T}}
\] & \(\mathrm{V}_{C B}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}(\mathrm{Q} 3)}=\mathrm{l}_{\mathrm{E}(\mathrm{Q4})}=2 \mathrm{~mA}\) & - & 1.1 & - & \(\mu \mathrm{V}{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Electrical Specifications \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & \multicolumn{2}{|l|}{TEST CONDITIONS} & MIN & TYP & MAX & UNIT \\
\hline \multicolumn{8}{|l|}{FOR EACH TRANSISTOR} \\
\hline \multirow[t]{4}{*}{DC Forward Base-to-Emitter Voltage (Figure 8)} & \multirow[t]{4}{*}{\(\mathrm{V}_{\mathrm{BE}}\)} & \multirow[t]{4}{*}{\(V_{C B}=3 \mathrm{~V}\)} & \(\mathrm{I}^{\prime} \mathrm{C}=50 \mu \mathrm{~A}\) & - & 0.630 & 0.700 & V \\
\hline & & & \(\mathrm{I}^{\mathrm{C}}=1 \mathrm{~mA}\) & - & 0.715 & 0.800 & V \\
\hline & & & \(\mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}\) & - & 0.750 & 0.850 & V \\
\hline & & & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\) & - & 0.800 & 0.900 & V \\
\hline Temperature Coefficient of Base-toEmitter Voltage (Figure 6) & \[
\frac{\Delta V_{\mathrm{BE}}}{\Delta \mathrm{~T}}
\] & \multicolumn{2}{|l|}{\(\mathrm{V}_{C B}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\)} & - & -1.9 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Collector Cutoff Current (Figure 4) & ICbo & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\)} & - & 0.002 & 100 & nA \\
\hline Collector-to-Emitter Breakdown Voltage & \(\mathrm{V}_{\text {(BR) }}\) CEO & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\)} & 15 & 24 & - & V \\
\hline Collector-to-Base Breakdown Voltage & \(\mathrm{V}_{\text {(BR) }} \mathrm{CBO}\) & \multicolumn{2}{|l|}{\(\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\)} & 20 & 60 & - & V \\
\hline Collector-to-Substrate Breakdown Voltage & \(\mathrm{V}_{\text {(BR) }} \mathrm{ClO}\) & \multicolumn{2}{|l|}{\(\mathrm{I}^{\prime}=10 \mu \mathrm{~A}, \mathrm{ICl}=0\)} & 20 & 60 & - & V \\
\hline Emitter-to-Base Breakdown Voltage & \(\mathrm{V}_{\text {(BR)EBO }}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\)} & 5 & 7 & - & V \\
\hline \multicolumn{8}{|l|}{DYNAMIC CHARACTERISTICS} \\
\hline Common Mode Rejection Ratio for each Amplifier (Figures 1, 10) & CMRR & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{X}}=-3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}
\end{aligned}
\]} & - & 100 & - & dB \\
\hline AGC Range, One Stage (Figures 2, 11) & AGC & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6 \mathrm{~V}, \\
& \mathrm{~V}_{\mathrm{X}}=-3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}
\end{aligned}
\]} & - & 75 & - & dB \\
\hline Voltage Gain, Single Stage Double-Ended Output (Figures 2, 11) & A & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=12 V, V_{E E}=-6 V \\
& V_{X}=-3.3 V, f=1 \mathrm{kHz}
\end{aligned}
\]} & - & 32 & - & dB \\
\hline AGC Range, Two Stage (Figures 3, 12) & AGC & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6 \mathrm{~V}, \\
& V_{X}=-3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}
\end{aligned}
\]} & - & 105 & - & dB \\
\hline Voltage Gain, Two Stage DoubleEnded Output (Figures 3, 12) & A & \multicolumn{2}{|l|}{\[
\begin{aligned}
& V_{C C}=12 \mathrm{~V}, V_{E E}=-6 \mathrm{~V}, \\
& V_{X}=-3.3 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}
\end{aligned}
\]} & - & 60 & - & dB \\
\hline \begin{tabular}{l}
Low Frequency, Small Signal Equivalent Circuit Characteristics (For Single Transistor) \\
Forward Current Transfer Ratio (Figure 13)
\end{tabular} & \(\mathrm{h}_{\text {FE }}\) & \multicolumn{2}{|l|}{\(\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\)} & - & 110 & - & - \\
\hline Short Circuit Input Impedance (Figure 13) & \(\mathrm{h}_{\text {IE }}\) & \multicolumn{2}{|l|}{\(\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\)} & - & 3.5 & - & k \(\Omega\) \\
\hline Open Circuit Output Impedance (Figure 13) & \(\mathrm{h}_{\text {OE }}\) & \multicolumn{2}{|l|}{\[
f=1 \mathrm{kHz}, V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}
\]} & - & 15.6 & - & \(\mu \mathrm{S}\) \\
\hline \[
\begin{aligned}
& \text { Open Circuit Reverse Voitage Transfer } \\
& \text { Ratio (Figure 13) }
\end{aligned}
\] & \(h_{\text {RE }}\) & \multicolumn{2}{|l|}{\[
f=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}
\]} & - & \(1.8 \times 10^{-4}\) & - & - \\
\hline 1/f Noise Figure for Single Transistor & NF & \multicolumn{2}{|l|}{\(\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}\)} & - & 3.25 & - & dB \\
\hline Gain Bandwidth Product for Single Transistor (Figure 14) & \(\mathrm{f}_{\top}\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}\)} & - & 550 & - & MHz \\
\hline Admittance Characteristics; Differential Circuit Configuration (For Each Amplifier) & \(Y_{21}\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CB}}=3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\
& \text { Each Collector } \mathrm{I}_{\mathrm{C}} \approx 1.25 \mathrm{~mA}
\end{aligned}
\]} & - & \(-20+j 0\) & - & mS \\
\hline Input Admittance (Figure 16) & \(Y_{11}\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CB}}=3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\
& \text { Each Collector } \mathrm{I}_{\mathrm{C}} \approx 1.25 \mathrm{~mA}
\end{aligned}
\]} & - & \[
\begin{gathered}
0.22+ \\
\mathrm{j} 0.1
\end{gathered}
\] & - & mS \\
\hline Output Admittance (Figure 17) & \(Y_{22}\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CB}}=3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\
& \text { Each Collector } \mathrm{I}_{\mathrm{C}} \approx 1.25 \mathrm{~mA}
\end{aligned}
\]} & - & \(0.01+\mathrm{j} 0\) & - & ms \\
\hline Reverse Transfer Admittance (Figure 18) & \(\mathrm{Y}_{12}\) & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \mathrm{V}_{\mathrm{CB}}=3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\
& \text { Each Collector } \mathrm{I}_{\mathrm{C}} \approx 1.25 \mathrm{~mA}
\end{aligned}
\]} & - & \[
\begin{gathered}
-0.003+ \\
\mathrm{jo} \\
\hline
\end{gathered}
\] & - & mS \\
\hline
\end{tabular}

Electrical Specifications \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & MIN & TYP & MAX & UNIT \\
\hline \multicolumn{7}{|l|}{Admittance Characteristics; Cascode Circuit Configuration (For Each Amplifier)} \\
\hline \begin{tabular}{l}
Forward Transfer Admittance \\
(Figure 19)
\end{tabular} & \(\mathrm{Y}_{21}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CB}}=3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\
& \text { Total Stage } \mathrm{I}_{\mathrm{C}} \approx 2.5 \mathrm{~mA}
\end{aligned}
\] & - & 68-j0 & - & mS \\
\hline Input Admittance (Figure 20) & \(\mathrm{Y}_{11}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CB}}=3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\
& \text { Total Stage } \mathrm{I}_{\mathrm{C}} \approx 2.5 \mathrm{~mA}
\end{aligned}
\] & - & \(0.55+\mathrm{j} 0\) & - & mS \\
\hline Output Admittance (Figure 21) & \(\mathrm{Y}_{22}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CB}}=3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\
& \text { Total Stage } \mathrm{I}_{\mathrm{C}} \approx 2.5 \mathrm{~mA}
\end{aligned}
\] & - & 0+j0.02 & - & mS \\
\hline Reverse Transfer Admittance (Figure 22) & \(Y_{12}\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CB}}=3 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\
& \text { Total Stage } \mathrm{I}_{\mathrm{C}} \approx 2.5 \mathrm{~mA}
\end{aligned}
\] & - & \[
\begin{aligned}
& 0.004- \\
& \mathrm{j} 0.005 \\
& \hline
\end{aligned}
\] & - & \(\mu \mathrm{S}\) \\
\hline Noise Figure & NF & \(\mathrm{f}=100 \mathrm{MHz}\) & - & 8 & - & dB \\
\hline
\end{tabular}

Test Circuits


FIGURE 1. COMMON MODE REJECTION RATIO TEST SETUP


FIGURE 2. SINGLE STAGE VOLTAGE GAIN TEST SETUP


FIGURE 3. TWO STAGE VOLTAGE GAIN TEST SETUP

\section*{Typical Performance Curves}


NOTE: For CA3054 use data from \(0^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) only.
FIGURE 4. COLLECTOR-TO-BASE CUTOFF CURRENT vs TEMPERATURE FOR EACH TRANSISTOR


NOTE: For CA3054 use data from \(0^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) only.
FIGURE 6. BASE-TO-EMITTER VOLTAGE FOR EACH TRANSISTOR vs TEMPERATURE


FIGURE 8. STATIC BASE-TO-EMITTER VOLTAGE AND INPUT OFFSET VOLTAGE FOR DIFFERENTIAL PAIRS vs EMITTER CURRENT


FIGURE 5. INPUT BIAS CURRENT vs COLLECTOR CURRENT FOR EACH TRANSISTOR


NOTE: For CA3054 use data from \(0^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) only.
FIGURE 7. OFFSET VOLTAGE vs TEMPERATURE FOR DIFFERENTIAL PAIRS


FIGURE 9. INPUT OFFSET CURRENT FOR MATCHED DIFFERENTIAL PAIRS vs COLLECTOR CURRENT

Typical Performance Curves (Continued)


FIGURE 10. COMMON MODE REJECTION RATIO CHARACTERISTIC


FIGURE 12. TWO STAGE VOLTAGE GAIN CHARACTERISTIC


FIGURE 14. GAIN BANDWIDTH PRODUCT (fT) vs COLLECTOR CURRENT


FIGURE 11. SINGLE STAGE VOLTAGE GAIN CHARACTERISTIC


FIGURE 13. FORWARD CURRENT TRANSFER RATIO ( \(\mathrm{h}_{\mathrm{FE}}\) ), SHORT CIRCUIT INPUT IMPEDANCE ( \(h_{I E}\) ), OPEN CIRCUIT OUTPUT IMPEDANCE ( \(\mathrm{h}_{\mathrm{OE}}\) ), AND OPEN CIRCUIT REVERSE VOLTAGE TRANSFER RATIO ( \(h_{\text {RE }}\) ) vs COLLECTOR CURRENT FOR EACH TRANSISTOR


FIGURE 15. FORWARD TRANSFER ADMITTANCE \(\left(\mathrm{Y}_{21}\right)\) vs FREQUENCY

\section*{Typical Performance Curves (Continued)}


FIGURE 16. INPUT ADMITTANCE ( \(\mathrm{Y}_{11}\) )


FIGURE 18. REVERSE TRANSFER ADMITTANCE \(\left(Y_{12}\right)\) vs FREQUENCY


FIGURE 20. INPUT ADMITTANCE \(\left(Y_{11}\right)\) vs FREQUENCY


FIGURE 17. OUTPUT ADMITTANCE ( \(\mathbf{Y}_{\mathbf{2 2}}\) ) vs FREQUENCY


FIGURE 19. FORWARD TRANSFER ADMITTANCE \(\left(\mathrm{Y}_{21}\right)\) vs FREQUENCY


FIGURE 21. OUTPUT ADMITTANCE ( \(\mathbf{Y}_{\mathbf{2} 2}\) ) vs FREQUENCY

\section*{Typical Performance Curves (Continued)}


FIGURE 22. REVERSE TRANSFER ADMITTANCE \(\left(Y_{12}\right)\) vs FREQUENCY

\section*{General Purpose High Current NPN Transistor Arrays}

\section*{Features}
- CA3081 - Common Emitter Array
- CA3082 - Common Collector Array
- Directly Drive Seven Segment Incandescent Displays and Light Emitting Diode (LED) Display
- 7 Transistors Permit a Wide Range of Applications in Either a Common Emitter (CA3081) or Common Collector (CA3082) Configuration
- High IC

100mA (Max)
- Low \(\mathrm{V}_{\text {CESAT }}\) (at 50mA)
0.4 V (Typ)

\section*{Applications}
- Drivers for
- Incandescent Display Devices
- LED Displays
- Relay Control
- Thyristor Firing

\section*{Description}

CA3081 and CA3082 consist of seven high current (to 100 mA ) silicon NPN transistors on a common monolithic substrate. The CA3081 is connected in a common emitter configuration and the CA3082 is connected in a common collector configuration.

The CA3081 and CA3082 are capable of directly driving seven segment displays, and light emitting diode (LED) displays. These types are also well suited for a variety of other drive applications, including relay control and thyristor firing.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{l} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline CA3081 & -55 to 125 & 16 Ld PDIP & E16.3 \\
\hline CA3081F & -55 to 125 & 16 Ld CERDIP & F16.3 \\
\hline \begin{tabular}{l} 
CA3081M \\
(3081)
\end{tabular} & -55 to 125 & 16 Ld SOIC & M16.15 \\
\hline \begin{tabular}{l} 
CA3081M96 \\
(3081)
\end{tabular} & -55 to 125 & \begin{tabular}{l}
16 Ld SOIC Tape \\
and Reel
\end{tabular} & M16.15 \\
\hline CA3082 & -55 to 125 & 16 Ld PDIP & E16.3 \\
\hline CA3082F & -55 to 125 & 16 Ld CERDIP & F16.3 \\
\hline \begin{tabular}{l} 
CA3082M \\
(3082)
\end{tabular} & -55 to 125 & 16 Ld SOIC & M16.15 \\
\hline \begin{tabular}{l} 
CA3082M96 \\
(3082)
\end{tabular} & -55 to 125 & \begin{tabular}{l}
16 Ld SOIC Tape \\
and Reel
\end{tabular} & M16.15 \\
\hline
\end{tabular}

\section*{Pinouts}

CA3081
COMMON EMITTER CONFIGURATION
(PDIP, CERDIP, SOIC) TOP VIEW


CA3082
COMMON COLLECTOR CONFIGURATION (PDIP, CERDIP, SOIC)

TOP VIEW

Absolute Maximum Ratings \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
Collector-to-Emitter Voltage ( \(\mathrm{V}_{\mathrm{CEO}}\) ) . . . . . . . . . . . . . . . . . . . . . . . 16V
Collector-to-Base Voltage ( \(\mathrm{V}_{\mathrm{CBO}}\) ) . . . . . . . . . . . . . . . . . . . . . . . . 20 V
Collector-to-Substrate Voltage ( \(\mathrm{V}_{\mathrm{CIO}}\), Note 1) . . . . . . . . . . . . . . . 20V
Emitter-to-Base Voltage (VEO) . . . . . . . . . . . . . . . . . . . . . . . . . . 5 V
Collector Current (IC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA
Base Current (IB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA

\section*{Operating Conditions}

Temperature Range \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)

\section*{Thermal Information}
\begin{tabular}{|c|c|c|}
\hline 2) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) & ) \\
\hline CERDIP Package & 135 & 65 \\
\hline PDIP Package & 135 & N/A \\
\hline SOIC Package & 200 & N/A \\
\hline \multicolumn{3}{|l|}{Maximum Power Dissipation (Any One Transistor)} \\
\hline \multicolumn{3}{|l|}{Maximum Junction Temperature (Ceramic Package)} \\
\hline \multicolumn{3}{|l|}{Maximum Junction Temperature (Plastic Package)} \\
\hline \multicolumn{3}{|l|}{Maximum Storage Temperature Range . . . . . . . \(6.65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)} \\
\hline Maximum Lead Temperature (Soldering (SOIC - Lead Tips Only) & & \\
\hline
\end{tabular}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

\section*{NOTES:}
1. The collector of each transistor of the CA3081 and CA3082 is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transistors and provide normal transistor action. To avoid undesired coupling between transistors, the substrate terminal (5) should be maintained at either DC or signal (AC) ground. A suitable bypass capacitor can be used to establish a signal ground.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications For Equipment Design at \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Collector-to-Base Breakdown Voltage & \(\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}\) & \(\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\) & 20 & 60 & - & V \\
\hline Collector-to-Substrate Breakdown Voltage & \(\mathrm{V}_{\text {(BR) }} \mathrm{ClO}\) & \(\mathrm{I}_{\mathrm{C}}=500 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0\) & 20 & 60 & - & V \\
\hline Collector-to-Emitter Breakdown Voltage & \(\mathrm{V}_{\text {(BR)CEO }}\) & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\) & 16 & 24 & - & V \\
\hline Emitter-to-Base Breakdown Voltage & \(V_{(B R) E B O}\) & \(\mathrm{IC}_{\mathrm{C}}=500 \mu \mathrm{~A}\) & 5.0 & 6.9 & - & V \\
\hline \multirow[t]{2}{*}{DC Forward Current Transfer Ratio} & \multirow[t]{2}{*}{\(\mathrm{h}_{\text {FE }}\)} & \(\mathrm{V}_{\text {CE }}=0.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}\) & 30 & 68 & - & - \\
\hline & & \(\mathrm{V}_{\text {CE }}=0.8 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}\) & 40 & 70 & \(\bullet\) & - \\
\hline Base-to-Emitter Saturation Voltage (Figure 4) & \(\mathrm{V}_{\text {beSat }}\) & \(\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}\) & - & 0.87 & 1.2 & V \\
\hline Collector-to-Emitter Saturation Voltage САЗ081, САЗ082 & \multirow[t]{3}{*}{\(\mathrm{V}_{\text {CESAT }}\)} & \(\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}\) & - & 0.27 & 0.5 & V \\
\hline CA3081 (Figure 5) & & \(\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}\) & - & 0.4 & 0.7 & V \\
\hline CA3082 (Figure 5) & & \(\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}\) & - & 0.4 & 0.8 & V \\
\hline Collector Cutoff Current & ICEO & \(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & - & \(\bullet\) & 10 & \(\mu \mathrm{A}\) \\
\hline Collector Cutoff Current & ICBO & \(\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & - & - & 1.0 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

\section*{Typical Read - Out Driver Applications}


FIGURE 1. SCHEMATIC DIAGRAM SHOWING ONE TRANSISTOR OF THE CA3081 DRIVING ONE SEGMENT OF AN INCANDESCENT DISPLAY


NOTE: The Resistance for \(R\) is determined by the relationship:
\(R=\frac{V_{P}-V_{B E}-V_{F}(\text { LED })}{l(L E D)}\)
\(R=0\) for \(V_{P}=V_{B E}+V_{F}\) (LED)
Where: \(\mathrm{V}_{\mathrm{P}}=\) Input Pulse Voltage
\(V_{F}=\) Forward Voltage Drop Across the Diode
FIGURE 2. SCHEMATIC DIAGRAM SHOWING ONE TRANSISTOR OF THE CA3082 DRIVING A LIGHT EMITTING DIODE (LED)

\section*{Typical Performance Curves}


FIGURE 3. DC FORWARD CURRENT TRANSFER RATIO vs COLLECTOR CURRENT


FIGURE 5. COLLECTOR-TO-EMITTER SATURATION VOLTAGE vs COLLECTOR CURRENT


FIGURE 4. BASE-TO-EMITTER SATURATION VOLTAGE vS COLLECTOR CURRENT


FIGURE 6. COLLECTOR-TO-EMITTER SATURATION VOLTAGE vs COLLECTOR CURRENT

\title{
General Purpose High Current NPN Transistor Array
}

\section*{Features}
- High lc

100mA (Max)
- Low VCE sat (at 50mA)
0.7V (Max)
- Matched Pair ( \(\mathbf{Q}_{\mathbf{1}}\) and \(\mathbf{Q}_{\mathbf{2}}\) )
- \(\mathrm{V}_{\mathrm{IO}}\) (VBE Match)
\(\pm 5 m V\) (Max)

- 5 Independent Transistors Plus Separate Substrate Connection

\section*{Applications}
- Signal Processing and Switching Systems Operating from DC to VHF
- Lamp and Relay Driver
- Differential Amplifier
- Temperature Compensated Amplifier
- Thyristor Firing
- See Application Note AN5296 "Applications of the CA3018 Circuit Transistor Array" for Suggested Applications

\section*{Description}

The CA3083 is a versatile array of five high current (to 100 mA ) NPN transistors on a common monolithic substrate. In addition, two of these transistors \(\left(Q_{1}\right.\) and \(\left.Q_{2}\right)\) are matched at low current (i.e., 1 mA ) for applications in which offset parameters are of special importance.

Independent connections for each transistor plus a separate terminal for the substrate permit maximum flexibility in circuit design.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{l} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline CA3083 & -55 to 125 & 16 Ld PDIP & E16.3 \\
\hline CA3083F & -55 to 125 & 16 Ld CERDIP & F16.3 \\
\hline \begin{tabular}{l} 
CA3083M \\
\((3083)\)
\end{tabular} & -55 to 125 & 16 Ld SOIC & M16.15 \\
\hline \begin{tabular}{l} 
CA3083M96 \\
\((3083)\)
\end{tabular} & -55 to 125 & \begin{tabular}{l}
16 Ld SOIC Tape \\
and Reel
\end{tabular} & M16.15 \\
\hline
\end{tabular}

\section*{Pinout}


\section*{Absolute Maximum Ratings}

The following ratings apply for each transistor in the device:
Collector-to-Emitter Voltage, \(\mathrm{V}_{\text {CEO }}\). . . . . . . . . . . . . . . . . . . . . . . 15 V
Collector-to-Base Voltage, \(\mathrm{V}_{\mathrm{CBO}}\). . . . . . . . . . . . . . . . . . . . . . . . . 20V
Collector-to-Substrate Voltage, \(\mathrm{V}_{\mathrm{CIO}}\) (Note 1) . . . . . . . . . . . . . . . 20 V
Emitter-to-Base Voltage, VEBO . . . . . . . . . . . . . . . . . . . . . . . . . . . 5V
Collector Current ( \(\mathrm{l}_{\mathrm{C}}\) ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 mA
Base Current ( \(\mathrm{I}_{\mathrm{B}}\) ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA

\section*{Operating Conditions}

Temperature Range \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)

\section*{Thermal Information}

Thermal Resistance (Typical, Note 2) \(\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) CERDIP Package ................... 135 . 65 PDIP Package . . . . . . . . . . . . . . . . . . 135 N/A SOIC Package...................... 200 N/A
Maximum Power Dissipation (Any One Transistor) . . . . . . . . 500 mW
Maximum Junction Temperature (Hermetic Package) . . . . . . . . \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (Plastic Package) . . . . . . . . \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\)
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. The collector of each transistor of the CA3083 is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transistors and provide normal transistor action. To avoid undesired coupling between transistors, the substrate Terminal (5) should be maintained at either DC or signal (AC) ground. A suitable bypass capacitor can be used to establish a signal ground.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications For Equipment Design, \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{FOR EACH TRANSISTOR} \\
\hline Collector-to-Base Breakdown Voltage & \(\mathrm{V}_{\text {(BR) }}\) CBO & \(\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\) & 20 & 60 & - & V \\
\hline Collector-to-Emitter Breakdown Voltage & \(V_{\text {(BR) }}\) CEO & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\) & 15 & 24 & - & v \\
\hline Collector-to-Substrate Breakdown Voltage & \(V_{\text {(BR) }}\) CIO & \(\mathrm{I}_{\mathrm{Cl}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{E}}=0\) & 20 & 60 & - & V \\
\hline Emitter-to-Base Breakdown Voltage & \(\mathrm{V}_{\text {(BR) } \mathrm{EbO}}\) & \(\mathrm{I}_{\mathrm{E}}=500 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\) & 5 & 6.9 & \(\bullet\) & V \\
\hline Collector-Cutoff-Current & ICEO & \(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline Collector-Cutoff-Current & Icbo & \(\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & - & - & 1 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{DC Forward-Current Transfer Ratio (Note 3) (Figure 1)} & \multirow[t]{2}{*}{\(h_{\text {fe }}\)} & \(\mathrm{V}_{\text {CE }}=3 \mathrm{~V}\) & 40 & 76 & - & \\
\hline & & \(\mathrm{IC}_{\mathrm{C}}=50 \mathrm{~mA}\) & 40 & 75 & - & \\
\hline Base-to-Emitter Voltage (Figure 2) & \(V_{B E}\) & \(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\) & 0.65 & 0.74 & 0.85 & V \\
\hline Collector-to-Emitter Saturation Voltage (Figures 3, 4) & \(\mathrm{V}_{\text {CE SAT }}\) & \(\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}\) & - & 0.40 & 0.70 & V \\
\hline Gain Bandwidth Product & \(\mathrm{f}_{\mathrm{T}}\) & \(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\) & \(\bullet\) & 450 & - & MHz \\
\hline \multicolumn{7}{|l|}{FOR TRANSISTORS \(\mathbf{Q}_{1}\) AND \(\mathbf{Q}_{\mathbf{2}}\) (As a Differential Amplifier)} \\
\hline Absolute Input Offset Voltage (Figure 6) & \(\mathrm{IV}_{10} \mathrm{l}\) & \(\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & - & 1.2 & 5 & mV \\
\hline Absolute Input Offset Current (Figure 7) & 11 Ol & \(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & - & 0.7 & 2.5 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

NOTE:
3. Actual forcing current is via the emitter for this test.

Typical Performance Curves


FIGURE 1. \(h_{\text {FE }}\) vs \(I_{C}\)


FIGURE 3. \(\mathbf{V}_{\text {CE SAT }}\) vs \(\mathrm{I}_{\mathrm{C}}\)


FIGURE 5. VBE SAT vs IC


FIGURE 2. \(\mathbf{V}_{\mathrm{BE}}\) vs IC

figure 4. Vce sat vs ic


FIGURE 6. \(V_{10}\) vs \(I_{C}\) (TRANSISTORS \(Q_{1}\) AND \(Q_{2}\) AS A DIFFERENTIAL AMPLIFIER)

\section*{Typical Performance Curves (Continued)}


FIGURE 7. \(I_{10}\) vs \(I_{C}\) (TRANSISTORS \(Q_{1}\) AND \(Q_{2}\) AS A DIFFERENTIAL AMPLIFIER)

The CA3086 consists of five general-purpose silicon NPN transistors on a common monolithic substrate. Two of the transistors are internally connected to form a differentially connected pair.

The transistors of the CA3086 are well suited to a wide variety of applications in low-power systems at frequencies from DC to 120 MHz . They may be used as discrete transistors in conventional circuits. However, they also provide the very significant inherent advantages unique to integrated circuits, such as compactness, ease of physical handling and thermal matching

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{c} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline CA3086 & -55 to 125 & 14 Ld PDIP & E14.3 \\
\hline \begin{tabular}{l} 
CA3086M \\
(3086)
\end{tabular} & -55 to 125 & 14 Ld SOIC & M14.15 \\
\hline \begin{tabular}{l} 
CA3086M96 \\
\((3086)\)
\end{tabular} & -55 to 125 & \begin{tabular}{l}
14 Ld SOIC Tape \\
and Reel
\end{tabular} & M14.15 \\
\hline CA3086F & -55 to 125 & 14 Ld CERDIP & F14.3 \\
\hline
\end{tabular}

\section*{Applications}
- Three Isolated Transistors and One Differentially Connected Transistor Pair For Low-Power Applications from DC to \(\mathbf{1 2 0 M H z}\)
- General-Purpose Use in Signal Processing Systems Operating in the DC to 190 MHz Range
- Temperature Compensated Amplifiers
- See Application Note, AN5296 "Application of the CA3018 Integrated-Circuit Transistor Array" for Suggested Applications \\ \title{
\section*{General Purpose NPN \\ \title{
\section*{General Purpose NPN \\ \\ \\ Transistor Array}
} \\ \\ \\ Transistor Array}
}

\section*{Description}

\section*{Pinout}
CA3086
(PDIP, CERDIP, SOIC)
TOP VIEW

Absolute Maximum Ratings
The following ratings apply for each transistor in the device:
Collector-to-Emitter Voltage, \(\mathrm{V}_{\text {CEO }}\). . . . . . . . . . . . . . . . . . . . . . 15 V
Collector-to-Base Voltage, \(\mathrm{V}_{\mathrm{CBO}}\). . . . . . . . . . . . . . . . . . . . . . . 20 V
Collector-to-Substrate Voltage, \(\mathrm{V}_{\mathrm{CIO}}\) (Note 1) . . . . . . . . . . . . . 20 V
Emitter-to-Base Voltage, VEBO . . . . . . . . . . . . . . . . . . . . . . . . . 5 V
Collector Current, le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA

\section*{Operating Conditions}

Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)

\section*{Thermal Information}
\begin{tabular}{ccc} 
Thermal Resistance (Typical, Note 2) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) & \(\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
CERDIP Package \(\ldots \ldots \ldots \ldots \ldots \ldots\) & 150 & 75 \\
PDIP Package \(\ldots \ldots \ldots \ldots \ldots \ldots \ldots\) & 180 & N/A \\
SOIC Package \(\ldots \ldots \ldots \ldots \ldots \ldots \ldots\) & 220 & N/A
\end{tabular}

Maximum Power Dissipation (Any one transistor) . . . . . . . . . 300mW
Maximum Junction Temperature (Hermetic Packages) . . . . . . . \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (Plastic Package) . . . . . . . . \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\)
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. The collector of each transistor in the CA3086 is isolated from the substrate by an integral diode. The substrate (Terminal 13) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action. To avoid undesirable coupling between transistors, the substrate (Terminal 13) should be maintained at either DC or signal (AC) ground. A suitable bypass capacitor can be used to establish a signal ground.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(\quad T_{A}=25^{\circ} \mathrm{C}\), For Equipment Design
\begin{tabular}{|l|c|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ PARAMETER } & SYMBOL & TEST CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Collector-to-Base Breakdown Voltage & \(\mathrm{V}_{(B R) C B O}\) & \(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\) & 20 & 60 & - & V \\
\hline Collector-to-Emitter Breakdown Voltage & \(\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}\) & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\) & 15 & 24 & - & V \\
\hline Collector-to-Substrate Breakdown Voltage & \(\mathrm{V}_{(\mathrm{BR}) \mathrm{CIO}}\) & \(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{CI}}=0\) & 20 & 60 & - & V \\
\hline Emitter-to-Base Breakdown Voltage & \(\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}\) & \(\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\) & 5 & 7 & - & V \\
\hline Collector-Cutoff Current (Figure 1) & \(\mathrm{I}_{\mathrm{CBO}}\) & \(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\), & - & 0.002 & 100 & nA \\
\hline Collector-Cutoff Current (Figure 2) & \(\mathrm{I}_{\mathrm{CEO}}\) & \(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\), & - & (Figure 2) & 5 & \(\mu \mathrm{~A}\) \\
\hline DC Forward-Current Transfer Ratio (Figure 3) & \(\mathrm{h}_{\text {FE }}\) & \(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 40 & 100 & - & \\
\hline
\end{tabular}

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\), Typical Values Intended Only for Design Guidance
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & \multicolumn{2}{|r|}{TEST CONDITIONS} & TYPICAL VALUES & UNITS \\
\hline \multirow[t]{2}{*}{DC Forward-Current Transfer Ratio (Figure 3)} & \multirow[t]{2}{*}{\(\mathrm{h}_{\text {FE }}\)} & \multirow[t]{2}{*}{\(V_{C E}=3 \mathrm{~V}\)} & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\) & 100 & \\
\hline & & & \(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}\) & 54 & \\
\hline \multirow[t]{2}{*}{Base-to-Emitter Voltage (Figure 4)} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{BE}}\)} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {CE }}=3 \mathrm{~V}\)} & \(\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}\) & 0.715 & V \\
\hline & & & \(\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}\) & 0.800 & V \\
\hline \(\mathrm{V}_{\mathrm{BE}}\) Temperature Coefficient (Figure 5) & \(\Delta \mathrm{V}_{\mathrm{BE}} / \Delta \mathrm{T}\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\)} & -1.9 & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Collector-to-Emitter Saturation Voltage & \(\mathrm{V}_{\text {CE SAT }}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\)} & 0.23 & V \\
\hline Noise Figure (Low Frequency) & NF & \multicolumn{2}{|l|}{\[
\begin{aligned}
& f=1 \mathrm{kHz}, V_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \\
& \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega
\end{aligned}
\]} & 3.25 & dB \\
\hline
\end{tabular}

Electrical Specifications \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Typical Values Intended Only for Design Guidance (Continued)
\begin{tabular}{|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & TYPICAL VALUES & UNITS \\
\hline \begin{tabular}{l}
Low-Frequency, Small-Signal EquivalentCircuit Characteristics: \\
Forward Current-Transfer Ratio (Figure 6)
\end{tabular} & \(h_{\text {fe }}\) & \multirow[t]{4}{*}{\(\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\)} & 100 & - \\
\hline Short-Circuit Input Impedance (Figure 6) & \(h_{\text {IE }}\) & & 3.5 & k \(\Omega\) \\
\hline Open-Circuit Output Impedance (Figure 6) & \(h_{\text {OE }}\) & & 15.6 & \(\mu \mathrm{S}\) \\
\hline Open-Circuit Reverse-Voltage Transfer Ratio (Figure 6) & \(h_{\text {RE }}\) & & \(1.8 \times 10^{-4}\) & - \\
\hline \begin{tabular}{l}
Admittance Characteristics: \\
Forward Transfer Admittance \\
(Figure 7)
\end{tabular} & YfE & \multirow[t]{4}{*}{\(\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\)} & 31-j1.5 & mS \\
\hline Input Admittance (Figure 8) & YIE & & \(0.3+j 0.04\) & ms \\
\hline Output Admittance (Figure 9) & YOE & & \(0.001+j 0.03\) & mS \\
\hline Reverse Transfer Admittance (Figure 10) & YRE & & See Figure 10 & - \\
\hline Gain-Bandwidth Product (Figure 11) & \(\mathrm{f}_{\mathrm{T}}\) & \(\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}\) & 550 & MHz \\
\hline Emitter-to-Base Capacitance & \(\mathrm{C}_{\text {Ebo }}\) & \(\mathrm{V}_{\mathrm{EB}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & 0.6 & pF \\
\hline Collector-to-Base Capacitance & \(\mathrm{C}_{\text {CBO }}\) & \(\mathrm{V}_{C B}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\) & 0.58 & pF \\
\hline Collector-to-Substrate Capacitance & \(\mathrm{C}_{\mathrm{ClO}}\) & \(\mathrm{V}_{\mathrm{CI}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\) & 2.8 & pF \\
\hline
\end{tabular}

\section*{Typical Performance Curves}


FIGURE 1. Icbo vs TEMPERATURE


FIGURE 2. ICEO vs TEMPERATURE

Typical Performance Curves (Continued)


FIGURE 3. \(h_{\text {FE }}\) vs \(I_{E}\)


FIGURE 5. \(V_{\text {BE }}\) vs TEMPERATURE


FIGURE 7. yfe vs FREQUENCY


FIGURE 4. \(\mathrm{V}_{\mathrm{BE}}\) vs \(\mathrm{I}_{\mathrm{E}}\)


FIGURE 6. NORMALIZED \(h_{\text {FE }}, h_{\text {IE }}, h_{\text {RE }}, h_{\text {OE }}\) vs IC


FIGURE 8. yIE vs FREQUENCY

\section*{Typical Performance Curves (Continued)}


FIGURE 9. yoe vs FREQUENCY


FIGURE 10. YRE vs FREQUENCY


FIGURE 11. \(\mathrm{f}_{\mathrm{T}}\) vs \(\mathrm{I}_{\mathrm{C}}\)

\title{
CA3096, CA3096A, CA3096C
}

\section*{Applications}
- Five-Independent Transistors
- Three NPN and
- Two PNP
- Differential Amplifiers
- DC Amplifiers
- Sense Amplifiers
- Level Shifters
- Timers
- Lamp and Relay Drivers
- Thyristor Firing Circuits
- Temperature Compensated Amplifiers
- Operational Amplifiers

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|}
\hline PART NUMBER (BRAND) & \begin{tabular}{l}
TEMP. \\
RANGE ( \({ }^{\circ} \mathrm{C}\) )
\end{tabular} & PACKAGE & PKG. NO. \\
\hline CA3096AE & -55 to 125 & 16 Ld PDIP & E16.3 \\
\hline \[
\begin{aligned}
& \text { CA3096AM } \\
& (3096 A)
\end{aligned}
\] & -55 to 125 & 16 Ld SOIC & M16.15 \\
\hline \[
\begin{aligned}
& \text { CA3096AM96 } \\
& (3096 A) \\
& \hline
\end{aligned}
\] & -55 to 125 & 16 Ld SOIC Tape and Reel & M16.15 \\
\hline САЗ096СЕ & -55 to 125 & 16 Ld PDIP & E16.3 \\
\hline САЗ096E & -55 to 125 & 16 Ld PDIP & E16.3 \\
\hline \[
\begin{aligned}
& \text { CA3096M } \\
& (3096)
\end{aligned}
\] & -55 to 125 & 16 Ld SOIC & M16.15 \\
\hline CA3096M96
(3096) & -55 to 125 & 16 Ld SOIC Tape and Reel & M16.15 \\
\hline
\end{tabular}

\section*{Pinout}


\section*{Description}

The CA3096C, CA3096, and CA3096A are general purpose high voltage silicon transistor arrays. Each array consists of five independent transistors (two PNP and three NPN types) on a common substrate, which has a separate connection. Independent connections for each transistor permit maximum flexibility in circuit design.
Types CA3096A, CA3096, and CA3096C are identical, except that the CA3096A specifications include parameter matching and greater stringency in \(\mathrm{I}_{\mathrm{CBO}}\), \(\mathrm{I}_{\mathrm{CEO}}\), and \(\mathrm{V}_{\mathrm{CE}}(\mathrm{SAT})\). The CA3096C is a relaxed version of the CA3096. To type this body text, simply triple click this paragraph and begin typing. The paragraph tag for this area is called body.

CA3096, СА3096A, СА3096C
Essential Differences
\begin{tabular}{|c|c|c|c|}
\hline CHARACTERISTIC & CA3096A & CA3096 & CA3096C \\
\hline \multicolumn{4}{|l|}{\(\mathrm{V}_{\text {(BR)CEO }}(\mathrm{V})\) (Min)} \\
\hline NPN & 35 & 35 & 24 \\
\hline PNP & -40 & -40 & -24 \\
\hline \multicolumn{4}{|l|}{\(\mathrm{V}_{\text {(BR) } \text { CBO }^{(V)} \text { ( } \mathrm{Min} \text { ) }}\)} \\
\hline NPN & 45 & 45 & 30 \\
\hline PNP & -40 & -40 & -24 \\
\hline \multicolumn{4}{|l|}{\(\mathrm{h}_{\mathrm{FE}}\) at 1 mA} \\
\hline NPN & 150-500 & 150-500 & 100-670 \\
\hline PNP & 20-200 & 20-200 & 15-200 \\
\hline \multicolumn{4}{|l|}{\(h_{\text {FE }}\) at \(100 \mu \mathrm{~A}\)} \\
\hline PNP & 40-250 & 40-250 & 30-300 \\
\hline \multicolumn{4}{|l|}{\(\mathrm{I}_{\text {CBO }}(\mathrm{nA})(\mathrm{Max})\)} \\
\hline NPN & 40 & 100 & 100 \\
\hline PNP & -40 & -100 & -100 \\
\hline \multicolumn{4}{|l|}{ICEO (nA) (Max)} \\
\hline NPN & 100 & 1000 & 1000 \\
\hline PNP & -100 & -1000 & -1000 \\
\hline \multicolumn{4}{|l|}{\(\mathrm{V}_{\text {CE SAT }}(\mathrm{V})\) (Max)} \\
\hline NPN & 0.5 & 0.7 & 0.7 \\
\hline \multicolumn{4}{|l|}{\(\mathrm{IV} \mathrm{V}_{10}(\mathrm{mV})(\mathrm{Max})\)} \\
\hline NPN & 5 & - & - \\
\hline PNP & 5 & - & - \\
\hline \(\mathrm{HIO}^{\mathrm{l}}(\mu \mathrm{A})\) (Max) & & & \\
\hline NPN & 0.6 & - & - \\
\hline PNP & 0.25 & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Absolute Maximum Ratings} \\
\hline & NPN & PNP \\
\hline \multicolumn{3}{|l|}{Collector-to-Emitter Voltage, \(\mathrm{V}_{\text {CEO }}\)} \\
\hline CA3096, CA3096A & 35 V & -40V \\
\hline САЗ096C & 24V & -24V \\
\hline \multicolumn{3}{|l|}{Collector-to-Base Voltage, \(\mathrm{V}_{\text {CBO }}\)} \\
\hline СА3096, СА3096A & 45 V & -40V \\
\hline CA3096C & 30 V & -24V \\
\hline \multicolumn{3}{|l|}{Collector-to-Substrate Voltage, \(\mathrm{V}_{\text {CIO }}\) ( Note 1)} \\
\hline CA3096, CA3096A & 45 V & - \\
\hline CA3096C & 30V & \\
\hline \multicolumn{3}{|l|}{Emitter-to-Substrate Voltage, \(\mathrm{V}_{\text {EIO }}\)} \\
\hline СА3096, САЗ096A & & -40V \\
\hline CA3096C & & -24V \\
\hline \multicolumn{3}{|l|}{Emitter-to-Base Voltage, VEBO} \\
\hline CA3096, CA3096A & 6V & -40V \\
\hline CA3096C & . 6 V & -24V \\
\hline Collector Current, IC (All Types) & 50 mA & -10mA \\
\hline
\end{tabular}
Operating ConditionsTemperature Range\(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
Thermal Information
Thermal Resistance (Typical, Note 2) \(\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\)
PDIP Package ..... 90
SOIC Package ..... 170
Maximum Power Dissipation (Each Transistor, Note 3) ..... 200 mW
Maximum Junction Temperature (Plastic Package) ..... \(.150^{\circ} \mathrm{C}\)Maximum Storage Temperature Range . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\)(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

\section*{NOTES:}
1. The collector of each transistor of the CA3096 is isolated from the substrate by an integral diode. The substrate (Terminal 16) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.
3. Care must be taken to avoid exceeding the maximum junction temperature. Use the total power dissipation (all transistors) and thermal resistances to calculate the junction temperature.

Electrical Specifications For Equipment Design, At \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{CA3096} & \multicolumn{3}{|c|}{CA3096A} & \multicolumn{3}{|c|}{CA3096C} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{12}{|l|}{DC CHARACTERISTICS FOR EACH NPN TRANSISTOR} \\
\hline \({ }^{\text {ICBO }}\) & \[
\begin{aligned}
& V_{C B}=10 \mathrm{~V}, \\
& l_{E}=0
\end{aligned}
\] & - & 0.001 & 100 & - & 0.001 & 40 & - & 0.001 & 100 & nA \\
\hline ICEO & \[
\begin{aligned}
& V_{C E}=10 \mathrm{~V}, \\
& I_{B}=0
\end{aligned}
\] & \(\bullet\) & 0.006 & 1000 & - & 0.006 & 100 & - & 0.006 & 1000 & nA \\
\hline \(\mathrm{V}_{\text {(BR)CEO }}\) & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\) & 35 & 50 & - & 35 & 50 & - & 24 & 35 & - & V \\
\hline \(V_{\text {(BR) }}\) CBO & \[
\begin{aligned}
& I_{C}=10 \mu A, \\
& I_{E}=0
\end{aligned}
\] & 45 & 100 & - & 45 & 100 & - & 30 & 80 & \(\bullet\) & V \\
\hline \(\mathrm{V}_{(\mathrm{BR}) \mathrm{CIO}}\) & \[
\begin{aligned}
& I_{C l}=10 \mu \mathrm{~A}, \\
& I_{\mathrm{B}}=\mathrm{I}_{\mathrm{E}}=0
\end{aligned}
\] & 45 & 100 & - & 45 & 100 & - & 30 & 80 & - & V \\
\hline \(V_{\text {(BR) }{ }^{\text {EBO }}}\) & \[
\begin{aligned}
& I_{E}=10 \mu \mathrm{~A}, \\
& I_{C}=0
\end{aligned}
\] & 6 & 8 & - & 6 & 8 & - & 6 & 8 & - & V \\
\hline \(\mathrm{V}_{\mathrm{Z}}\) & \(\mathrm{I}=10 \mu \mathrm{~A}\) & 6 & 7.9 & 9.8 & 6 & 7.9 & 9.8 & 6 & 7.9 & 9.8 & V \\
\hline \(\mathrm{V}_{\text {CE SAT }}\) & \[
\begin{aligned}
& I_{C}=10 \mathrm{~mA}, \\
& I_{B}=1 \mathrm{~mA}
\end{aligned}
\] & - & 0.24 & 0.7 & - & 0.24 & 0.5 & - & 0.24 & 0.7 & V \\
\hline \(\mathrm{V}_{\text {BE }}\) (Note 4) & \[
I_{C}=1 \mathrm{~mA},
\] & 0.6 & 0.69 & 0.78 & 0.6 & 0.69 & 0.78 & 0.6 & 0.69 & 0.78 & V \\
\hline \(\mathrm{h}_{\text {FE }}\) (Note 4) & \(V_{C E}=5 \mathrm{~V}\) & 150 & 390 & 500 & 150 & 390 & 500 & 100 & 390 & 670 & \\
\hline \(1 \Delta \mathrm{~V}_{\mathrm{BE}} / \Delta \mathrm{TI}\) (Note 4) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \\
& \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}
\end{aligned}
\] & - & 1.9 & - & - & 1.9 & - & - & 1.9 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{12}{|l|}{DC CHARACTERISTICS FOR EACH PNP TRANSISTOR} \\
\hline \({ }^{\text {ICBO }}\) & \[
\begin{aligned}
& V_{C B}=-10 \mathrm{~V}, \\
& I_{E}=0
\end{aligned}
\] & - & -0.06 & -100 & - & -0.006 & -40 & - & -0.06 & -100 & nA \\
\hline
\end{tabular}

CA3096, СА3096A, СА3096C

Electrical Specifications For Equipment Design, At \(T_{A}=25^{\circ} \mathrm{C}\) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{CA3096} & \multicolumn{3}{|c|}{CA3096A} & \multicolumn{3}{|c|}{CA3096C} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \(I_{\text {ceo }}\) & \[
\begin{aligned}
& V_{C E}=-10 \mathrm{~V}, \\
& I_{B}=0
\end{aligned}
\] & - & -0.12 & -1000 & - & -0.12 & -100 & - & -0.12 & -1000 & nA \\
\hline \(\mathrm{V}_{\text {(BR) }}\) CEO & \[
\begin{aligned}
& I_{C}=-100 \mu \mathrm{~A}, \\
& \mathrm{I}_{\mathrm{B}}=0
\end{aligned}
\] & -40 & -75 & - & -40 & -75 & \(\bullet\) & -24 & -30 & - & V \\
\hline \(\mathrm{V}_{\text {(BR) }} \mathrm{CBO}\) & \[
\begin{aligned}
& I_{C}=-10 \mu \mathrm{~A}, \\
& I_{E}=0
\end{aligned}
\] & -40 & -80 & - & -40 & -80 & - & -24 & -60 & - & V \\
\hline \(\mathrm{V}_{\text {(BR)EBO }}\) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \\
& \mathrm{I}_{\mathrm{C}}=0
\end{aligned}
\] & -40 & -100 & - & -40 & -100 & - & -24 & -80 & - & V \\
\hline \(V_{\text {(BR) }}\) EIO & \[
\begin{aligned}
& I_{E I}=10 \mu A, \\
& I_{B}=I_{C}=0
\end{aligned}
\] & 40 & 100 & - & 40 & 100 & - & 24 & 80 & - & V \\
\hline \(\mathrm{V}_{\text {CE SAT }}\) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}, \\
& \mathrm{I}_{\mathrm{B}}=-100 \mu \mathrm{~A}
\end{aligned}
\] & - & -0.16 & -0.4 & - & -0.16 & -0.4 & - & -0.16 & -0.4 & V \\
\hline \(\mathrm{V}_{\text {BE }}\) (Note 4) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \\
& \mathrm{~V}_{\mathrm{CE}}=-5 \mathrm{~V}
\end{aligned}
\] & -0.5 & -0.6 & -0.7 & -0.5 & -0.6 & -0.7 & -0.5 & -0.6 & -0.7 & V \\
\hline \multirow[t]{2}{*}{hFE (Note 4)} & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}, \\
& \mathrm{~V}_{C E}=-5 \mathrm{~V}
\end{aligned}
\] & 40 & 85 & 250 & 40 & 85 & 250 & 30 & 85 & 300 & \\
\hline & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}, \\
& \mathrm{~V}_{\mathrm{CE}}=-5 \mathrm{~V}
\end{aligned}
\] & 20 & 47 & 200 & 20 & 47 & 200 & 15 & 47 & 200 & \\
\hline \(1 \Delta \mathrm{~V}_{\mathrm{BE}} / \Delta \mathrm{TI}\) (Note 4) & \[
\begin{aligned}
& \mathrm{I} \mathrm{C}=-100 \mu \mathrm{~A}, \\
& \mathrm{~V}_{\mathrm{CE}}=-5 \mathrm{~V}
\end{aligned}
\] & - & 2.2 & - & - & 2.2 & - & - & 2.2 & - & \(\mathrm{mV}{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

ICBO Collector-Cutoff Current
ICEO Collector-Cutoff Current
\(\mathrm{V}_{\text {(BR)CEO }}\) Collector-to-Emitter Breakdown Voltage
\(V_{\text {(BR)CBO }}\) Collector-to-Base Breakdown Voltage
\(\mathrm{V}_{\text {(BR)CIO }}\) Collector-to-Substrate Breakdown Voltage
\(V_{(B R) E B O}\) Emitter-to-Base Breakdown Voltage
NOTE:
4. Actual forcing current is via the emitter for this test.

Electrical Specifications For Equipment Design At \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) (CA3096A Only)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{CA3096A} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline \multicolumn{7}{|l|}{FOR TRANSISTORS \(Q_{1}\) AND \(Q_{2}\) (AS A DIFFERENTIAL AMPLIFIER)} \\
\hline Absolute Input Offset Voltage & IV \(\mathrm{IO}^{\prime}\) & \multirow[t]{3}{*}{\(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\)} & - & 0.3 & 5 & mV \\
\hline Absolute Input Offset Current & \(\mathrm{IIO}_{1}\) & & \(\bullet\) & 0.07 & 0.6 & \(\mu \mathrm{A}\) \\
\hline Absolute Input Offset Voltage Temperature Coefficient & \(\frac{\mid \Delta V^{10}}{} \frac{\Delta T}{}\) & & - & 1.1 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multicolumn{7}{|l|}{FOR TRANSISTORS \(Q_{4}\) AND \(Q_{5}\) (AS A DIFFERENTIAL AMPLIFIER)} \\
\hline Absolute Input Offset Voltage & | \(\mathrm{V}_{10}\) I & \multirow[t]{3}{*}{\[
\begin{aligned}
& V_{C E}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A} \\
& \mathrm{R}_{\mathrm{S}}=0
\end{aligned}
\]} & - & 0.15 & 5 & mV \\
\hline Absolute Input Offset Current & \(\mathrm{IIO}_{1}\) & & - & 2 & 250 & nA \\
\hline Absolute Input Offset Voltage Temperature Coefficient & \(\frac{\left|\Delta V_{10}\right|}{\Delta T}\) & & - & 0.54 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Specifications Typical Values Intended Only for Design Guidance At \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & TYPICAL VALUES & UNITS \\
\hline \multicolumn{5}{|l|}{DYNAMIC CHARACTERISTICS FOR EACH NPN TRANSISTOR} \\
\hline Noise Figure (Low Frequency) & NF & \(\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega\) & 2.2 & dB \\
\hline Low-Frequency, Input Resistance & \(\mathrm{R}_{1}\) & \(\mathrm{f}=1.0 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 10 & k \(\Omega\) \\
\hline Low-Frequency Output Resistance & \(\mathrm{R}_{0}\) & \(\mathrm{f}=1.0 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V} \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 80 & \(\mathrm{k} \Omega\) \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Admittance Characteristics \\
Forward Transfer Admittance
\end{tabular}} & \multirow[b]{2}{*}{\(\mathrm{y}_{\mathrm{FE}} \frac{\mathrm{g}_{\text {FE }}}{\mathrm{b}_{\text {FE }}}\)} & \(f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 7.5 & ms \\
\hline & & \(\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & -j13 & mS \\
\hline \multirow[t]{2}{*}{Input Admittance} & \multirow[t]{2}{*}{\(\mathrm{y}_{\text {IE }} \frac{\mathrm{g}_{\text {IE }}}{}\)} & \(f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 2.2 & mS \\
\hline & & \(f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & j3.1 & mS \\
\hline \multirow[t]{2}{*}{Output Admittance} & \multirow[t]{2}{*}{\[
\text { yoe } \frac{\text { gOE }}{b_{O E}}
\]} & \(\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 0.76 & ms \\
\hline & & \(f=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & j2.4 & mS \\
\hline \multirow[t]{2}{*}{Gain-Bandwidth Product} & \multirow[t]{2}{*}{\(\mathrm{f}^{\text {T }}\)} & \(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}\) & 280 & MHz \\
\hline & & \(\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}\) & 335 & MHz \\
\hline Emitter-To-Base Capacitance & \(\mathrm{C}_{\text {EB }}\) & \(\mathrm{V}_{\mathrm{EB}}=3 \mathrm{~V}\) & 0.75 & pF \\
\hline Collector-To-Base Capacitance & \(\mathrm{C}_{C B}\) & \(\mathrm{V}_{C B}=3 \mathrm{~V}\) & 0.46 & pF \\
\hline Collector-To-Substrate Capacitance & \(\mathrm{C}_{\mathrm{Cl}}\) & \(\mathrm{V}_{\mathrm{Cl}}=3 \mathrm{~V}\) & 3.2 & pF \\
\hline \multicolumn{5}{|l|}{DYNAMIC CHARACTERISTICS FOR EACH PNP TRANSISTOR} \\
\hline Noise Figure (Low Frequency) & NF & \(\mathrm{f}=1 \mathrm{kHz}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{S}}=1 \mathrm{k} \Omega\) & 3 & dB \\
\hline Low-Frequency Input Resistance & \(\mathrm{R}_{1}\) & \(f=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}\) & 27 & \(\mathrm{k} \Omega\) \\
\hline Low-Frequency Output Resistance & \(\mathrm{R}_{\mathrm{O}}\) & \(\mathrm{f}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{l}_{\mathrm{C}}=100 \mu \mathrm{~A}\) & 680 & \(\mathrm{k} \Omega\) \\
\hline Gain-Bandwidth Product & \({ }_{\text {f }}\) & \(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}\) & 6.8 & MHz \\
\hline Emitter-To-Base Capacitance & \(\mathrm{C}_{\text {EB }}\) & \(\mathrm{V}_{\mathrm{EB}}=-3 \mathrm{~V}\) & 0.85 & pF \\
\hline Collector-To-Base Capacitance & \(\mathrm{C}_{\mathrm{CB}}\) & \(V_{C B}=-3 \mathrm{~V}\) & 2.25 & pF \\
\hline Base-To-Substrate Capacitance & \(\mathrm{C}_{\mathrm{BI}}\) & \(\mathrm{V}_{\mathrm{BI}}=3 \mathrm{~V}\) & 3.05 & pF \\
\hline
\end{tabular}

\section*{Typical Applications}


FIGURE 1. FREQUENCY COMPARATOR USING CA3096


FIGURE 2. FREQUENCY COMPARATOR CHARACTERISTICS

\section*{Typical Applications (Continued)}


FIGURE 3. LINE-OPERATED LEVEL SWITCH USING CA3096A OR CA3096


FIGURE 4. ONE-MINUTE TIMER USING CA3096A AND A MOSFET
\(v_{T}= \pm \frac{36}{l_{0} R_{L}}\)
\(1 \mathrm{~F} \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}\) AND \(\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\)
\(V_{T}= \pm \mathbf{3 6 m V}\)


FIGURE 5. CA3096A SMALL-SIGNAL ZERO VOLTAGE DETECTOR HAVING NOISE IMMUNITY

Typical Applications (Continued)


FIGURE 6. TEN-SECOND TIMER OPERATED FROM 1.5V SUPPLY USING CA3096


NOTES:
5. Can be operated with either dual supply or single supply.
6. Wide-input common mode range +5 V to -5 V .
7. Low bias current: \(<1 \mu \mathrm{~A}\).

FIGURE 7. CASCADE OF DIFFERENTIAL AMPLIFIERS USING CA3096A


FIGURE 8. FREQUENCY RESPONSE

Typical Performance Curves


FIGURE 9. BASE-TO-EMITTER ZENER CHARACTERISTIC (NPN)


FIGURE 11. COLLECTOR CUT-OFF CURRENT (ICBO) vs TEMPERATURE (NPN)


FIGURE 13. \(\mathrm{V}_{\mathrm{BE}}\) (NPN) vs COLLECTOR CURRENT


FIGURE 10. COLLECTOR CUT-OFF CURRENT (ICEO) vs TEMPERATURE (NPN)


FIGURE 12. TRANSISTOR (NPN) \(h_{F E}\) vS COLLECTOR CURRENT


FIGURE 14. \(\mathrm{V}_{\mathrm{BE}}\) (NPN) vs TEMPERATURE

\section*{Typical Performance Curves (Continued)}


FIGURE 15. VCE SAT (NPN) vs COLLECTOR CURRENT


FIGURE 17. COLLECTOR CUT-OFF CURRENT (Icbo) vs TEMPERATURE (PNP)


FIGURE 19. TRANSISTOR (PNP) \(h_{\text {FE }}\) vs TEMPERATURE


FIGURE 16. COLLECTOR CUT-OFF CURRENT (ICEO) vs TEMPERATURE (PNP)


FIGURE 18. TRANSISTOR (PNP) hFE vs COLLECTOR CURRENT


FIGURE 20. \(\mathrm{V}_{\mathrm{BE}}\) (PNP) vs COLLECTOR CURRENT

Typical Performance Curves (Continued)


FIGURE 21. \(\mathrm{V}_{\mathrm{BE}}\) (PNP) vs TEMPERATURE


FIGURE 23. MAGNITUDE OF INPUT OFFSET VOLTAGE IVIOI vs COLLECTOR CURRENT FOR PNP TRANSISTOR \(\mathbf{Q}_{\mathbf{4}}-\mathbf{Q}_{5}\)


FIGURE 25. NOISE FIGURE vs FREQUENCY FOR NPN TRANSISTORS


FIGURE 22. MAGNITUDE OF INPUT OFFSET VOLTAGE IVIOI vs COLLECTOR CURRENT FOR NPN TRANSISTOR \(\mathbf{Q}_{1}-\mathbf{Q}_{2}\)


FIGURE 24. NOISE FIGURE vs FREQUENCY FOR NPN TRANSISTORS


FIGURE 26. NOISE FIGURE vs FREQUENCY FOR NPN TRANSISTORS


FIGURE 27. NOISE FIGURE vs FREQUENCY FOR NPN TRANSISTORS


FIGURE 29. CAPACITANCE vs BIAS VOLTAGE (NPN)


FIGURE 31. OUTPUT RESISTANCE vs COLLECTOR CURRENT


FIGURE 28. GAIN-BANDWIDTH PRODUCT vs COLLECTOR CURRENT (NPN)


FIGURE 30. INPUT RESISTANCE vs COLLECTOR CURRENT


FIGURE 32. FORWARD TRANSCONDUCTANCE vs FREQUENCY

Typical Performance Curves (Continued)


FIGURE 33. INPUT ADMITTANCE vs FREQUENCY


FIGURE 35. NOISE FIGURE vs FREQUENCY (PNP)


FIGURE 37. NOISE FIGURE vs FREQUENCY (PNP)


FIGURE 34. OUTPUT ADMITTANCE vs FREQUENCY


FIGURE 36. NOISE FIGURE vs FREQUENCY (PNP)


FIGURE 38. GAIN-BANDWIDTH PRODUCT vs COLLECTOR CURRENT (PNP)

\section*{Typical Performance Curves (Continued)}


FIGURE 39. CAPACITANCE vs BIAS VOLTAGE (PNP)

\section*{Metallization Mask Layout}

CA3096H


Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils ( \(10^{-3}\) inch).

The photographs and dimensions represent a chip when it is part of the wafer. When the wafer is cut into chips, the cleavage angles are 57 degrees instead of 90 degrees with respect to the face of the chip. Therefore, the isolated chip is actually 7 mils \((0.17 \mathrm{~mm})\) larger in both dimensions.

High Frequency NPN Transistor Array

\section*{Features}
- Gain Bandwidth Product ( \(\mathbf{f}_{\mathrm{T}}\) ). . . . . . . . . . . . . . . . >1GHz
- Power Gain 30dB (Typ) at 100 MHz
- Noise Figure 3.5dB (Typ) at 100 MHz
- Five Independent Transistors on a Common Substrate

\section*{Applications}
- VHF Amplifiers
- Multifunction Combinations - RF/Mixer/Oscillator
- Sense Amplifiers
- Synchronous Detectors
- VHF Mixers
- IF Converter
- IF Amplifiers
- Synthesizers
- Cascade Amplifiers

\section*{Description}

The CA3127 consists of five general purpose silicon NPN transistors on a common monolithic substrate. Each of the completely isolated transistors exhibits low 1/f noise and a value of \(\mathrm{f}_{\mathrm{T}}\) in excess of 1 GHz , making the CA3127 useful from DC to 500 MHz . Access is provided to each of the terminals for the individual transistors and a separate substrate connection has been provided for maximum application flexibility. The monolithic construction of the CA3127 provides close electrical and thermal matching of the five transistors.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{c} 
PART \\
NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular} \\
\hline CA3127E & -55 to 125 & 16 Ld PDIP & E16.3 \\
\hline \begin{tabular}{l} 
CA3127M \\
\((3127)\)
\end{tabular} & -55 to 125 & 16 Ld SOIC & M16.15 \\
\hline \begin{tabular}{l} 
CA3127M96 \\
\((3127)\)
\end{tabular} & -55 to 125 & 16 Ld SOIC Tape and Reel & M16.15 \\
\hline
\end{tabular}

\section*{Pinout}

CA3127
(PDIP, SOIC)
TOP VIEW


\section*{Absolute Maximum Ratings}

The following ratings apply for each transistor in the device
Collector-to-Emitter Voltage, \(\mathrm{V}_{\text {CEO }}\). . . . . . . . . . . . . . . . . . . . . . 15V
Collector-to-Base Voltage, \(\mathrm{V}_{\text {CBO }}\). . . . . . . . . . . . . . . . . . . . . . . 20 V
Collector-to-Substrate Voltage, \(\mathrm{V}_{\mathrm{CIO}}\) (Note 1). . . . . . . . . . . . . 20V
Collector Current, IC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA

\section*{Operating Conditions}

Temperature Range
\(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)

\section*{Thermal Information}
\begin{tabular}{|c|c|}
\hline ) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline PDIP Package & 90 \\
\hline SOIC Package & 175 \\
\hline Maximum Power Dissipation, \(\mathrm{P}_{\mathrm{D}}\) (Any One Transistor) & . 85 mW \\
\hline Maximum Junction Temperature (Die) & , \\
\hline Maximum Junction Temperature (Plastic Packages). & . \(150^{\circ}\) \\
\hline Maximum Storage Temperature Range & to \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Lead Temperature (Soldering 10s). (SOIC - Lead Tips Only) & \\
\hline
\end{tabular}
\(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) 90 175
Maximum Power Dissipation, \(P_{D}\) (Any One Transistor). . . . . . 85 mW
Maximum Junction Temperature (Die) . . . . . . . . . . . . . . . . . . \(175^{\circ} \mathrm{C}\) Maximum Junction Temperature (Plastic Packages). . . . . . . . \(150^{\circ} \mathrm{C}\) Maximum Storage Temperature Range ......... \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

\section*{NOTES:}
1. The collector of each transistor of the CA3127 is isolated from the substrate by an integral diode. The substrate (Terminal 5) must be connected to the most negative point in the external circuit to maintain isolation between transistors and to provide for normal transistor action.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & \multicolumn{2}{|r|}{TEST CONDITIONS} & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{DC CHARACTERISTICS (For Each Transistor)} \\
\hline Collector-to-Base Breakdown Voltage & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\)} & 20 & 32 & - & V \\
\hline Collector-to-Emitter Breakdown Voltage & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\)} & 15 & 24 & \(\cdot\) & V \\
\hline Collector-to-Substrate Breakdown-Voltage & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{C}_{1}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0, I_{E}=0}\)} & 20 & 60 & - & V \\
\hline Emitter-to-Base Breakdown Voltage (Note 3) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\)} & 4 & 5.7 & - & V \\
\hline Collector-Cutoff-Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{C E}=10 \mathrm{~V} \mathrm{I}_{\mathrm{B}}=0\)} & - & - & 0.5 & \(\mu \mathrm{A}\) \\
\hline Collector-Cutoff-Current & \multicolumn{2}{|l|}{\(\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\)} & - & - & 40 & nA \\
\hline \multirow[t]{3}{*}{DC Forward-Current Transfer Ratio} & \multirow[t]{3}{*}{\(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}\)} & \(\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}\) & 35 & 88 & - & \\
\hline & & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 40 & 90 & - & \\
\hline & & \(\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}\) & 35 & 85 & - & \\
\hline \multirow[t]{3}{*}{Base-to-Emitter Voltage} & \multirow[t]{3}{*}{\(\mathrm{V}_{\text {CE }}=6 \mathrm{~V}\)} & \(\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}\) & 0.71 & 0.81 & 0.91 & V \\
\hline & & \(I_{C}=1 \mathrm{~mA}\) & 0.66 & 0.76 & 0.86 & V \\
\hline & & \(\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}\) & 0.60 & 0.70 & 0.80 & V \\
\hline Collector-to-Emitter Saturation Voltage & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}\)} & - & 0.26 & 0.50 & V \\
\hline Magnitude of Difference in \(\mathrm{V}_{\text {BE }}\) & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(Q_{1}\) and \(Q_{2}\) Matched \(V_{C E}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\)}} & - & 0.5 & 5 & mV \\
\hline Magnitude of Difference in \(\mathrm{I}_{B}\) & & & - & 0.2 & 3 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

DYNAMIC CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Noise Figure & \(f=100 \mathrm{kHz}, \mathrm{R}_{S}=500 \Omega, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & - & 2.2 & - & dB \\
\hline Gain-Bandwidth Product & \(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}\) & - & 1.15 & - & GHz \\
\hline Collector-to-Base Capacitance & \(\mathrm{V}_{C B}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\) & - & \multirow[t]{3}{*}{See Fig. 5} & - & pF \\
\hline Collector-to-Substrate Capacitance & \(\mathrm{V}_{\mathrm{Cl}}=6 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\) & - & & - & pF \\
\hline Emitter-to-Base Capacitance & \(\mathrm{V}_{\mathrm{BE}}=4 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\) & - & & - & pF \\
\hline Voltage Gain & \(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{f}=10 \mathrm{MHz}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & - & 28 & - & dB \\
\hline Power Gain & \multirow[t]{2}{*}{Cascode Configuration \(\mathrm{f}=100 \mathrm{MHz}, \mathrm{V}_{+}=12 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\)} & 27 & 30 & - & dB \\
\hline Noise Figure & & - & 3.5 & - & dB \\
\hline Input Resistance & \multirow[t]{5}{*}{Common-Emitter Configuration \(V_{C E}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, f=200 \mathrm{MHz}\)} & - & 400 & - & \(\Omega\) \\
\hline Output Resistance & & - & 4.6 & - & \(k \Omega\) \\
\hline Input Capacitance & & - & 3.7 & - & pF \\
\hline Output Capacitance & & - & 2 & - & pF \\
\hline Magnitude of Forward Transadmittance & & - & 24 & - & mS \\
\hline
\end{tabular}

NOTE:
3. When used as a zener for reference voltage, the device must not be subjected to more than 0.1 mJ of energy from any possible capacitance or electrostatic discharge in order to prevent degradation of the junction. Maximum operating zener current should be less than 10 mA .

\section*{Test Circuits}


FIGURE 1. VOLTAGE-GAIN TEST CIRCUIT USING CURRENT-MIRROR BIASING FOR \(\mathbf{Q}_{\mathbf{2}}\)


FIGURE 2. 100MHz POWER-GAIN AND NOISE-FIGURE TEST CIRCUIT


FIGURE 3A. POWER GAIN SET-UP


FIGURE 3B. NOISE FIGURE SET-UP
FIGURE 3. BLOCK DIAGRAMS OF POWER-GAIN AND NOISE-FIGURE TEST SET-UPS

\section*{Typical Performance Curves}


FIGURE 4. NOISE FIGURE vs COLLECTOR CURRENT


FIGURE 6. GAIN-BANDWIDTH PRODUCT vs COLLECTOR CURRENT


FIGURE 8A. CAPACITANCE vs BIAS VOLTAGE FOR \(\mathbf{Q}_{\mathbf{2}}\)


FIGURE 5. NOISE FIGURE vs COLLECTOR CURRENT


FIGURE 7. BASE-TO-EMITTER VOLTAGE vs COLLECTOR CURRENT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{TRANSISTOR} & \multicolumn{8}{|c|}{CAPACITANCE (pF)} \\
\hline & \multicolumn{2}{|r|}{\(\mathrm{C}_{\mathrm{CB}}\)} & \multicolumn{2}{|r|}{\(\mathrm{C}_{\text {CE }}\)} & \multicolumn{2}{|r|}{\(C_{E B}\)} & \multicolumn{2}{|r|}{\(\mathrm{C}_{\mathrm{Cl}}\)} \\
\hline & PKG & TOTAL & PKG & TOTAL & PKG & TOTAL & PKG & TOTAL \\
\hline BIAS (V) & - & 6 V & - & 6 V & - & 4V & - & 6 V \\
\hline \(Q_{1}\) & 0.025 & 0.190 & 0.090 & 0.125 & 0.365 & 0.610 & 0.475 & 1.65 \\
\hline \(Q_{2}\) & 0.015 & 0.170 & 0.225 & 0.265 & 0.130 & 0.360 & 0.085 & 1.35 \\
\hline \(Q_{3}\) & 0.040 & 0.200 & 0.215 & 0.240 & 0.360 & 0.625 & 0.210 & 1.40 \\
\hline \(Q_{4}\) & 0.040 & 0.190 & 0.225 & 0.270 & 0.365 & 0.610 & 0.085 & 1.25 \\
\hline \(Q_{5}\) & 0.010 & 0.165 & 0.095 & 0.115 & 0.140 & 0.365 & 0.090 & 1.35 \\
\hline
\end{tabular}

FIGURE 8B. TYPICAL CAPACITANCE VALUES AT \(\mathrm{f}=\mathbf{1 M H z}\). THREE TERMINAL MEASUREMENT. GUARD ALL TERMINALS EXCEPT THOSE UNDER TEST.

\section*{Typical Performance Curves (Continued)}


FIGURE 9. VOLTAGE GAIN vs FREQUENCY


FIGURE 11. DC FORWARD-CURRENT TRANSFER RATIO ( \(\mathrm{h}_{\mathrm{FE}}\) ) vs COLLECTOR CURRENT

FIGURE 13. INPUT ADMITTANCE \(\left(Y_{11}\right)\) vs COLLECTOR CURRENT


FIGURE 10. VOLTAGE GAIN vs FREQUENCY


FIGURE 12. INPUT ADMITTANCE \(\left(Y_{11}\right)\) vs FREQUENCY


FIGURE 14. OUTPUT ADMITTANCE \(\left(\mathrm{Y}_{22}\right)\) vs FREQUENCY

Typical Performance Curves (Continued)


FIGURE 15. OUTPUT ADMITTANCE \(\left(\mathrm{Y}_{22}\right)\) vs COLLECTOR CURRENT


FIGURE 17. FORWARD TRANSADMITTANCE \(\left(Y_{21}\right)\) vs FREQUENCY


FIGURE 16. FORWARD TRANSADMITTANCE \(\left(Y_{21}\right)\) vs COLLECTOR CURRENT


FIGURE 18. REVERSE TRANSADMITTANCE \(\left(Y_{12}\right)\) vs COLLECTOR CURRENT


FIGURE 19. REVERSE TRANSADMITTANCE \(\left(Y_{12}\right)\) vs FREQUENCY

\section*{Features}
- Matched Monolithic Construction
- \(V_{F}\) Match (Each Diode Pair).... 0.55mV At \(I_{F}=1 \mathrm{~mA}\)
- Low Diode Capacitance. . . . . . . 0.3pF (Typ) at \(\mathbf{V}_{\mathrm{R}}=2 \mathrm{~V}\)
- High Diode-to-Substrate Breakdown. . . . . . . . . 30V (Min)
- Low Reverse (Leakage) Current . . . . . . . 100nA (Max)

\section*{Applications}
- Balanced Modulators or Demodulators
- Analog Switches
- High-Voltage Diode Gates
- Current Ratio Detectors

\section*{Ordering Information}
\begin{tabular}{|l|c|l|c|}
\hline PART NUMBER & \(\left.\begin{array}{c}\text { TEMP. } \\
\text { RANGE }\end{array}{ }^{\circ} \mathrm{C}\right)\) & \multicolumn{1}{c|}{ PACKAGE } & \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular} \\
\hline CA3141E & -55 to 125 & 16 Ld PDIP & E16.3 \\
\hline
\end{tabular}

\section*{Description}

The CA3141E High Voltage Diode Array Consists of ten general purpose high reverse breakdown diodes. Six diodes are internally connected to form three common cathode diode pairs, and the remaining four diodes are internally connected to form two common anode diode pairs. Integrated circuit construction assures excellent static and dynamic matching of the diodes, making the CA3141 extremely useful for a wide variety of applications in communications and switching systems.

Pinout


\section*{Features}
- Matched General Purpose Transistors
- VBE Match . \(\qquad\) \(\pm 5 m V\) (Max)
- Operation from DC to 120 MHz (CA3146, CA3146A)
- Low Noise Figure .... 3.2dB (CA3146, CA3146A)
- High IC 75mA (Max) (CA3183, CA3183A)

\section*{Applications}
- General Use in Signal Processing Systems in DC through VHF Range
- Custom Designed Differential Amplifiers
- Temperature Compensated Amplifiers
- Lamp and Relay Drivers (CA3183, CA3183A)
- Thyristor Firing (CA3183, CA3183A)

Ordering Information
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
PART NUMBER \\
(BRAND)
\end{tabular} & TEMP. RANGE \(\left({ }^{\circ} \mathrm{C}\right)\) & PACKAGE & PKG. NO. \\
\hline CA3146AE & -40 to 85 & 14 Ld PDIP & E14.3 \\
\hline \[
\begin{aligned}
& \text { CA3146AM } \\
& (3146 A)
\end{aligned}
\] & -40 to 85 & 14 Ld SOIC & M14.15 \\
\hline \[
\begin{aligned}
& \text { CA3146AM96 } \\
& (3146 A)
\end{aligned}
\] & -40 to 85 & 14 Ld SOIC Tape and Reel & M14.15 \\
\hline CA3146E & -40 to 85 & 14 Ld PDIP & E14.3 \\
\hline \[
\begin{array}{|l}
\hline \text { CA3146M } \\
\text { (3146) } \\
\hline
\end{array}
\] & -40 to 85 & 14 Ld SOIC & M14.15 \\
\hline \[
\begin{aligned}
& \text { CA3146M96 } \\
& (3146)
\end{aligned}
\] & -40 to 85 & 14 Ld SOIC Tape and Reel & M14.15 \\
\hline CA3183AE & -40 to 85 & 16 Ld PDIP & E16.3 \\
\hline \[
\begin{aligned}
& \text { CA3183AM } \\
& \text { (3183A) }
\end{aligned}
\] & -40 to 85 & 16 Ld SOIC & M16.15 \\
\hline \[
\begin{aligned}
& \begin{array}{l}
\text { CA3183AM96 } \\
\text { (3183A) }
\end{array} \\
& \hline
\end{aligned}
\] & -40 to 85 & 16 Ld SOIC Tape and Reel & M16.15 \\
\hline CA3183E & -40 to 85 & 16 Ld PDIP & E16.3 \\
\hline \[
\begin{aligned}
& \text { CA3183M } \\
& (3183)
\end{aligned}
\] & -40 to 85 & 16 Ld SOIC & M16.15 \\
\hline \[
\begin{aligned}
& \text { CA3183M96 } \\
& (3183)
\end{aligned}
\] & -40 to 85 & 16 Ld SOIC Tape and Reel & M16.15 \\
\hline
\end{tabular}

\section*{Description}

The CA3146A, CA3146, CA3183A, and CA3183 are general purpose high voltage silicon NPN transistor arrays on a common monolithic substrate.

Types CA3146A and CA3146 consist of five transistors with two of the transistors connected to form a differentially connected pair. These types are recommended for low power applications in the DC through VHF range. (CA3146A and CA3146 are high voltage versions of the popular predecessor type САЗО46.)
Types CA3183A and CA3183 consist of five high current transistors with independent connections for each transistor. In addition two of these transistors \(\left(\mathrm{Q}_{1}\right.\) and \(\left.\mathrm{Q}_{2}\right)\) are matched at low current (i.e., 1 mA ) for applications where offset parameters are of special importance. A special substrate terminal is also included for greater flexibility in circuit design. (CA3183A and CA3183 are high voltage versions of the popular predecessor type CA3083.)

The types with an "A" suffix are premium versions of their non-"A" counterparts and feature tighter control of breakdown voltages making them more suitable for higher voltage applications.

For detailed application information, see companion Application Note AN5296 "Application of the CA3018 Integrated 'Circuit Transistor Array."

\section*{Pinouts}

CA3146, CA3146A (PDIP, SOIC) TOP VIEW


CA3183, CA3183A (PDIP, SOIC) TOP VIEW
Absolute Maximum RatingsCollector-to-Emitter Voltage ( \(\mathrm{V}_{\mathrm{CEO}}\) ):
CA3146A, CA3183A ..... 40 V
CA3146, CA3183 ..... 30 V
Collector-to-Base Voltage ( \(\mathrm{V}_{\mathrm{CBO}}\) ):
CA3146A, CA3183A ..... 50 V
CA3146, CA3183 ..... 40 V
Collector-to-Substrate Voltage ( \(\mathrm{V}_{\mathrm{CIO}}\), Note 1)
CA3146A, CA3183A ..... 50 V
CA3146, CA3183 ..... 40 V
Emitter-to-Base Voltage ( \(\mathrm{V}_{\mathrm{EBO}}\) ) all types ..... 5V
Collector Current
CA3146A, CA3146 ..... 50 mA
CA3183A, CA3183 ..... 75mA
Base Current ( \(\mathrm{I}_{\mathrm{B}}\) ) - CA3183A, CA3183 ..... 20 mA

\section*{Thermal Information}

Thermal Resistance (Typical, Note 2) \(\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\)
14 Ld PDIP Package ..... 100
14 Ld SOIC Package ..... 185
16 Ld PDIP Package ..... 90
16 Ld SOIC Package ..... 175
Maximum Power Dissipation (Any One Transistor, Note 3 )CA3146A, CA3146300 mW
CA3183A, CA3183 ..... 500 mW
Maximum Junction Temperature (Die) ..... \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (Plastic Package) ..... \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range (all types) . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\)(SOIC - Lead Tips Only)

\section*{Operating Conditions}

Temperature Range

\author{
\(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)
}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. The collector of each transistor is isolated from the substrate by an integral diode. The substrate must be connected to a voltage which is more negative than any collector voltage in order to maintain isolation between transisters, and to provide for normal transistor action. To avoid undesired coupling between transistors, the substrate terminal should be maintained at either DC or signal (AC) ground. A suitable bypass capacitor can be used to establish a signal ground.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.
3. Care must be taken to avoid exceeding the maximum junction temperature. Use the total power dissipation (all transistors) and thermal resistances to calculate the junction temperature.

\section*{Electrical Specifications CA3146 Series}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & TEST CONDITIONS & \multirow[t]{2}{*}{TYPICAL PERF. CURVE FIG. NO.} & \multicolumn{3}{|c|}{CA3146} & \multicolumn{3}{|c|}{CA3146A} & \multirow[b]{2}{*}{UNITS} \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & MN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{11}{|l|}{DC CHARACTERISTICS FOR EACH TRANSISTOR} \\
\hline Collector-to-Base Breakdown Voltage & \(\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}\) & \(I^{\prime} C=10 \mu A, I_{E}=0\) & - & 40 & 72 & - & 50 & 72 & - & V \\
\hline Collector-to-Emitter Breakdown Voltage & \(\mathrm{V}_{\text {(BR)CEO }}\) & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\) & - & 30 & 56 & - & 40 & 56 & - & v \\
\hline Collector-to-Substrate Breakdown Voltage & \(\mathrm{V}_{\text {(BR) }} \mathrm{ClO}\) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{Cl}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0, \\
& \mathrm{I}_{\mathrm{E}}=0
\end{aligned}
\] & - & 40 & 72 & - & 50 & 72 & - & v \\
\hline Emitter-to-Base Breakdown Voltage & \(\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}\) & \(\mathrm{I}_{\mathrm{E}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\) & - & 5 & 7 & - & 5 & 7 & - & V \\
\hline Collector-Cutoff Current & Iceo & \(\mathrm{V}_{C E}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & 1 & - & See Curve & 5 & - & See Curve & 5 & \(\mu \mathrm{A}\) \\
\hline Collector-Cutoff Current & ICBO & \(\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & 2 & - & 0.002 & 100 & - & 0.002 & 100 & nA \\
\hline \multirow[t]{3}{*}{DC Forward-Current Transfer Ratio} & \multirow[t]{3}{*}{\(\mathrm{h}_{\text {FE }}\)} & \(\mathrm{V}_{\text {CE }}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\) & 3 & - & 85 & - & - & 85 & - & - \\
\hline & & \(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 3 & 30 & 100 & - & 30 & 100 & - & - \\
\hline & & \(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}\) & 3 & - & 90 & - & - & 90 & - & - \\
\hline Base-to-Emitter Voltage & \(V_{B E}\) & \(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 4 & 0.63 & 0.73 & 0.83 & 0.63 & 0.73 & 0.83 & V \\
\hline Collector-to-Emitter Saturation Voltage & \(V_{\text {CE SAT }}\) & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}\) & 5 & - & 0.33 & - & - & 0.33 & - & V \\
\hline
\end{tabular}

Electrical Specifications CA3146 Series (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & TEST CONDITIONS & \multirow[t]{2}{*}{TYPICAL PERF. CURVE FIG. NO.} & \multicolumn{3}{|c|}{CA3146} & \multicolumn{3}{|c|}{CA3146A} & \multirow[b]{2}{*}{UNITS} \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & & MN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{11}{|l|}{DC CHARACTERISTICS FOR TRANSISTORS \(Q_{1}\) AND \(Q_{2}\) (AS A DIFFERENTIAL AMPLIFIER)} \\
\hline Magnitude of Input Offset Voltage \(\mathrm{IV}_{\mathrm{BE} 1}\) - \(\mathrm{V}_{\mathrm{BE} 2}{ }^{1}\) & \(\mathrm{IV}_{10} \mathrm{l}\) & \(\mathrm{V}_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}\) & 6, 7 & - & 0.48 & 5 & - & 0.48 & 5 & mV \\
\hline Magnitude of Base-to-Emitter Temperature Coefficient & \(\left|\frac{\Delta V^{\text {BE }}}{}\right|\) & \(\mathrm{V}_{C E}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}\) & - & - & 1.9 & - & - & 1.9 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline \begin{tabular}{l}
Magnitude of \(\mathrm{V}_{10}\) \\
( \(\mathrm{V}_{\mathrm{BE} 1}-\mathrm{V}_{\mathrm{BE} 2}\) ) \\
Temperature Coefficient
\end{tabular} & \(\left|\frac{\Delta \mathrm{V}_{10}}{\Delta \mathrm{~T}}\right|\) & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \\
& \mathrm{I}_{\mathrm{C} 1}=\mathrm{I}_{\mathrm{C} 2}=1 \mathrm{~mA}
\end{aligned}
\] & - & - & 1.1 & - & - & 1.1 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Magnitude of Input Offset Current \(\|_{101}\) - \(\mathrm{I}_{\mathrm{O} 2}\) (CA3146AE and CA3146E Only) & 10 & \[
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \\
& \mathrm{I}_{\mathrm{C} 1}=\mathrm{I}_{\mathrm{C} 2}=1 \mathrm{~mA}
\end{aligned}
\] & 8 & - & 0.3 & 2 & - & 0.3 & 2 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{11}{|l|}{DYNAMIC CHARACTERISTICS} \\
\hline Low Frequency Noise Figure & NF & \[
\begin{aligned}
& f=1 \mathrm{kHz}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \\
& \mathrm{lC}=100 \mu \mathrm{~A}, \text { Source } \\
& \text { Resistance }=1 \mathrm{k} \Omega
\end{aligned}
\] & 10 & - & 3.25 & - & - & 3.25 & - & dB \\
\hline \multicolumn{11}{|l|}{} \\
\hline Short-Circuit Input Impedance & \(h_{\text {IE }}\) & \[
\begin{aligned}
& f=1 \mathrm{kHz}, V_{C E}=5 \mathrm{~V}, \\
& \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}
\end{aligned}
\] & 12 & - & 3.5 & - & - & 2.7 & - & k \(\Omega\) \\
\hline Open-Circuit Output Impedance & hoe & \[
\begin{aligned}
& f=1 \mathrm{kHz}, V_{C E}=5 \mathrm{~V}, \\
& \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}
\end{aligned}
\] & 12 & - & 15.6 & - & - & 15.6 & - & \(\mu \mathrm{S}\) \\
\hline Open-Circuit Reverse Voltage Transfer Ratio & \(\mathrm{h}_{\text {RE }}\) & \[
\begin{aligned}
& f=1 \mathrm{kHz}, V_{C E}=5 \mathrm{~V}, \\
& \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}
\end{aligned}
\] & 12 & - & \[
\begin{aligned}
& 1.8 \mathrm{x} \\
& 10^{-4}
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 1.8 \mathrm{x} \\
& 10^{-4}
\end{aligned}
\] & - & - \\
\hline \begin{tabular}{l}
Admittance Characteristics: \\
Forward Transfer Admittance
\end{tabular} & Y FE & \[
\begin{aligned}
& \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \\
& \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}
\end{aligned}
\] & 13 & - & 31-j1.5 & - & - & 31-j1.5 & - & mS \\
\hline Input Admittance & \(Y_{\text {IE }}\) & \[
\begin{aligned}
& \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \\
& \mathrm{l}=1 \mathrm{~mA}
\end{aligned}
\] & 14 & - & \[
\begin{aligned}
& 0.3+ \\
& \mathrm{j} 0.04
\end{aligned}
\] & - & - & \[
\begin{gathered}
0.35+ \\
\text { j0.04 }
\end{gathered}
\] & - & mS \\
\hline Output Admittance & Y \({ }_{\text {OE }}\) & \[
\begin{aligned}
& \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \\
& \mathrm{l} \mathrm{C}=1 \mathrm{~mA}
\end{aligned}
\] & 15 & - & \[
\begin{aligned}
& 0.001+ \\
& \mathrm{j} 0.03
\end{aligned}
\] & - & - & \[
\begin{aligned}
& 0.001+ \\
& \mathrm{j} 0.03
\end{aligned}
\] & - & mS \\
\hline Reverse Transfer Admittance & \(Y_{\text {RE }}\) & \[
\begin{aligned}
& \mathrm{f}=1 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \\
& \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}
\end{aligned}
\] & 16 & & See Curve & & & See Curve & & ms \\
\hline Gain-Bandwidth Product & \(\mathrm{f}^{\text {T }}\) & \(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}\) & 17 & 300 & 500 & - & 300 & 500 & - & MHz \\
\hline Emitter-to-Base Capacitance & \(\mathrm{C}_{\mathrm{EB}}\) & \(\mathrm{V}_{\mathrm{EB}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & 18 & - & 0.70 & - & - & 0.70 & - & pF \\
\hline Collector-to-Base Capacitance & \(\mathrm{C}_{\mathrm{CB}}\) & \(\mathrm{V}_{C B}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\) & 18 & - & 0.37 & - & - & 0.37 & - & pF \\
\hline Collector-to-Substrate Capacitance & \(\mathrm{C}_{\mathrm{Cl}}\) & \(\mathrm{V}_{\mathrm{Cl}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\) & 18 & - & 2.2 & - & - & 2.2 & - & pF \\
\hline
\end{tabular}

Electrical Specifications CA3183 Series
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multicolumn{3}{|c|}{CA3183} & \multicolumn{3}{|c|}{CA3183A} & \multirow[b]{2}{*}{UNITS} \\
\hline & & \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\) & TYPICAL PERF. CURVE FIG. NO. & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{11}{|l|}{DC CHARACTERISTICS FOR EACH TRANSISTOR} \\
\hline Collector-to-Base Breakdown Voltage & \(\mathrm{V}_{\text {(BR) }{ }^{\text {CBO }}}\) & \(I_{C}=100 \mu A, I_{E}=0\) & - & 40 & - & - & 50 & - & - & V \\
\hline Collector-to-Emitter Breakdown Voltage & \(\mathrm{V}_{\text {(BR) }}\) CEO & \(\mathrm{I}^{\prime} \mathrm{C}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\) & - & 30 & - & - & 40 & - & - & V \\
\hline Collector-to-Substrate Breakdown Voltage & \(\mathrm{V}_{\text {(BR) }} \mathrm{CIO}\) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{Cl}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0, \mathrm{I}_{\mathrm{E}} \\
& =0
\end{aligned}
\] & - & 40 & - & - & 50 & - & - & V \\
\hline Emitter-to-Base Breakdown Voltage & \(\mathrm{V}_{\text {(BR)EBO }}\) & \(\mathrm{I}_{\mathrm{E}}=500 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\) & - & 5 & - & - & 5 & - & - & V \\
\hline Collector-Cutoff Current & ICEO & \(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & 19 & - & - & 10 & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline Collector-Cutoff Current & \(\mathrm{I}^{\text {cbo }}\) & \(\mathrm{V}_{C B}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & 20 & - & - & 1 & - & - & 1 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{DC Forward-Current Transfer Ratio} & \multirow[t]{2}{*}{\(h_{\text {FE }}\)} & \(\mathrm{V}_{C E}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\) & 21, 22 & 40 & - & - & 40 & \(\bullet\) & - & - \\
\hline & & \(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}\) & - & 40 & - & - & 40 & - & - & - \\
\hline Base-to-Emitter Voltage & \(V_{B E}\) & \(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\) & 23 & 0.65 & 0.75 & 0.85 & 0.65 & 0.75 & 0.85 & V \\
\hline Collector-to-Emitter Saturation Voltage & \(V_{\text {CE SAT }}\) (Note 3) & \(\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5 \mathrm{~mA}\) & 24 & - & 1.7 & 3.0 & - & 1.7 & 3.0 & V \\
\hline \multicolumn{11}{|l|}{FOR TRANSISTORS \(Q_{1}\) AND \(Q_{2}\) (AS A DIFFERENTIAL AMPLIFIER)} \\
\hline Absolute Input Offset Voltage & IV101 & \(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 25 & - & 0.47 & 5 & - & 0.47 & 5 & mV \\
\hline Absolute Input Offset Current & 11101 & \(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 26 & - & 0.78 & 2.5 & - & 0.78 & 2.5 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Typical Performance Curves DC Characteristics - CA3146 Series


FIGURE 1. ICEO vs TEMPERATURE FOR ANY TRANSISTOR


FIGURE 2. ICBO vs TEMPERATURE FOR ANY TRANSISTOR

Typical Performance Curves DC Characteristics - CA3146 Series (Continued)


FIGURE 3. \(\mathrm{h}_{\mathrm{FE}}\) vs IC FOR ANY TRANSISTOR


FIGURE 5. \(V_{\text {CE SAT }}\) vs IC FOR ANY TRANSISTOR


FIGURE 7. \(V_{B E}\) AND \(V_{I O}\) vs \(I_{E}\) FOR \(Q_{1}\) AND \(Q_{2}\)


FIGURE 4. \(\mathrm{V}_{\mathrm{BE}}\) vs TEMPERATURE FOR ANY TRANSISTOR


FIGURE 6. \(\mathbf{V}_{10}\) vs TEMPERATURE FOR \(Q_{1}\) AND \(Q_{2}\)


FIGURE 8. \(I_{1 O}\) vs \(I_{C}\) FOR \(Q_{1}\) AND \(Q_{2}\)

CA3146, CA3146A, CA3183, CA3183A

Typical Performance Curves Dynamic Characteristics (For Any Transistor) - CA3146 Series


FIGURE 9. NF vs \(\mathrm{I}_{\mathrm{C}}\) AT \(\mathrm{R}_{\mathrm{S}}=500 \Omega\)


FIGURE 11. NF vs \(\mathrm{I}_{\mathrm{C}}\) AT \(\mathrm{R}_{\mathrm{S}}=10 \mathrm{k} \Omega\)


FIGURE 13. Yfe vs FREQUENCY


FIGURE 10. NF vs IC AT \(\mathrm{R}_{\mathrm{S}}=\mathbf{1 k} \Omega\)


FIGURE 12. \(h_{\text {FE }}, h_{I E}, h_{\text {OE }}, h_{\text {RE }}\) vs \(I_{C}\)


FIGURE 14. yIE vs FREQUENCY

Typical Performance Curves Dynamic Characteristics (For Any Transistor) - CA3146 Series (Continued)


FIGURE 15. FIGURE 15. yoe vs FREQUENCY


FIGURE 17. \(\mathrm{f}_{\mathrm{T}}\) vs \(\mathrm{I}_{\mathrm{c}}\)


FIGURE 16. FIGURE 16. YRE vs FREQUENCY


FIGURE 18. \(\mathrm{C}_{\mathrm{EB}}, \mathrm{C}_{\mathrm{CB}}, \mathrm{C}_{\mathrm{CI}}\) vs BIAS VOLTAGE

Typical Performance Curves DC Characteristics - CA3183 Series


FIGURE 19. Iceo vs TEMPERATURE FOR ANY TRANSISTOR


FIGURE 20. ICBO vs TEMPERATURE FOR ANY TRANSISTOR

Typical Performance Curves DC Characteristics - CA3183 Series (Continued)


FIGURE 21. \(\mathrm{h}_{\mathrm{FE}}\) vs TEMPERATURE FOR ANY TRANSISTOR


FIGURE 23. \(V_{B E}\) vS IC FOR ANY TRANSISTOR


FIGURE 25. IV \({ }_{\text {IO }}\) vs IC \({ }_{\mathrm{IC}}\) FOR DIFFERENTIAL AMPLIFIER ( \(\mathrm{Q}_{1}\) AND \(\mathrm{Q}_{2}\) )


FIGURE 22. \(\mathrm{h}_{\mathrm{FE}}\) vs \(\mathrm{I}_{\mathrm{C}}\) FOR ANY TRANSISTOR


FIGURE 24. \(\mathbf{V}_{\text {CE SAT }}\) vS \(\mathrm{I}_{\mathbf{C}}\) FOR ANY TRANSISTOR


FIGURE 26. \(\|_{\mathrm{IO}} \mathrm{l}\) vs \(\mathrm{I}_{\mathrm{C}}\) FOR DIFFERENTIAL AMPLIFIER \(\left(Q_{1}\right.\) AND \(\left.Q_{2}\right)\)

\section*{Features}
- Gain-Bandwidth Product ( \(\mathbf{f}_{\mathrm{T}}\) )
- Five Transistors on a Common Substrate

\section*{Applications}
- VHF Amplifiers
- VHF Mixers
- Multifunction Combinations - RF/Mixer/Oscillator
- IF Converter
- IF Amplifiers
- Sense Amplifiers
- Synthesizers
- Synchronous Detectors
- Cascade Amplifiers

\section*{Description}

The CA3227 and CA3246 consist of five general purpose silicon NPN transistors on a common monolithic substrate. Each of the transistors exhibits a value of \(f_{T}\) in excess of 3 GHz , making them useful from DC to 1.5 GHz . The monolithic construction of these devices provides close electrical and thermal matching of the five transistors.

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|}
\hline PART NUMBER (BRAND) & \begin{tabular}{l}
TEMP. \\
RANGE ( \({ }^{\circ} \mathrm{C}\) )
\end{tabular} & PACKAGE & PKG. NO. \\
\hline CA3227E & -55 to 125 & 16 Ld PDIP & E16.3 \\
\hline \[
\begin{aligned}
& \text { CA3227M } \\
& \text { (3227) }
\end{aligned}
\] & -55 to 125 & 16 Ld SOIC & M16.15 \\
\hline \[
\begin{aligned}
& \text { CA3227M96 } \\
& \text { (3227) }
\end{aligned}
\] & -55 to 125 & 16 Ld SOIC Tape and Reel & M16.15 \\
\hline CA3246E & -55 to 125 & 14 Ld PDIP & E14.3 \\
\hline \[
\begin{aligned}
& \text { CA3246M } \\
& \text { (3246) }
\end{aligned}
\] & -55 to 125 & 14 Ld SOIC & M14.15 \\
\hline \[
\begin{aligned}
& \text { CA3246M96 } \\
& \text { (3246) }
\end{aligned}
\] & -55 to 125 & 14 Ld SOIC Tape and Reel & M14.15 \\
\hline
\end{tabular}

\section*{Pinouts}

CA3246
(PDIP, SOIC)
TOP VIEW


CA3227
(PDIP, SOIC)
TOP VIEW


\begin{abstract}
Absolute Maximum Ratings
Collector-to-Emitter Voltage ( \(\mathrm{V}_{\text {CEO }}\) ) . . . . . . . . . . . . . . . . . . . . . . . . 8 V
Collector-to-Base Voltage ( \(\mathrm{V}_{\mathrm{CBO}}\) ) . . . . . . . . . . . . . . . . . . . . . . . . 12 V
Collector-to-Substrate Voltage ( \(\mathrm{ClO}_{\mathrm{CIO}}\), Note 1) . . . . . . . . . . . . . . 20 V
Collector Current ( \(\mathrm{I}_{\mathrm{C}}\) ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA

\section*{Operating Conditions}

Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)

\section*{Thermal Information}
\begin{tabular}{|c|c|}
\hline Thermal Resistance (Typical, Note 2) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline 14 Ld PDIP Package & 100 \\
\hline 14 Ld SOIC Package & 185 \\
\hline 16 Ld PDIP Package & 90 \\
\hline 16 Ld SOIC Package & 175 \\
\hline Maximum Power Dissipation (Any One Transistor). & 85 mW \\
\hline Maximum Junction Temperature (Die) & \(175^{\circ} \mathrm{C}\) \\
\hline Maximum Junction Temperature (Plastic Package) & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Storage Temperature Range & \(5^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Lead Temperature (Soldering 10s) & \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

\section*{NOTES:}
1. The collector of each transistor of these devices is isolated from the substrate by an integral diode. The substrate (Terminal 5 (CA3227) and Terminal 13 (CA3246)) must be connected to the most negative point in the external circuit to maintain isolation be tween transistors and to provide for normal transistor action.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.
\end{abstract}

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & \multicolumn{2}{|r|}{TEST CONDITIONS} & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{DC CHARACTERISTICS FOR EACH TRANSISTOR} \\
\hline Collector-to-Base Breakdown Voltage & \(\mathrm{V}_{\text {(BR)CBO }}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{C}}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\)} & 12 & 20 & - & V \\
\hline Collector-to-Emitter Breakdown Voltage & \(\mathrm{V}_{\text {(BR) }{ }^{\text {CEO }}}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\)} & 8 & 10 & - & V \\
\hline Collector-to-Substrate Breakdown Voltage & \(\mathrm{V}_{(\mathrm{BR}) \mathrm{ClO}}\) & \multicolumn{2}{|l|}{\(I_{C 1}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0, I_{E}=0\)} & 20 & - & - & V \\
\hline Emitter-Cutoff-Current (Note 3) & \(\mathrm{I}_{\text {ebo }}\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{EB}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\)} & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline Collector-Cutoff-Current & \(I_{\text {CEO }}\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\)} & - & - & 1 & \(\mu \mathrm{A}\) \\
\hline Collector-Cutoff-Current & \(\mathrm{I}_{\text {cbo }}\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{C B}=8 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\)} & - & - & 100 & nA \\
\hline \multirow[t]{3}{*}{DC Forward-Current Transfer Ratio} & \multirow[t]{3}{*}{\(\mathrm{h}_{\text {FE }}\)} & \multirow[t]{3}{*}{\(\mathrm{V}_{C E}=6 \mathrm{~V}\)} & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\) & - & 110 & - & \\
\hline & & & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 40 & 150 & - & \\
\hline & & & \(\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}\) & - & 150 & - & \\
\hline Base-to-Emitter Voltage & \(\mathrm{V}_{\mathrm{BE}}\) & \(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}\) & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}\) & 0.62 & 0.71 & 0.82 & V \\
\hline Collector-to-Emitter Saturation Voltage & \(\mathrm{V}_{\text {CE SAT }}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}\)} & - & 0.13 & 0.50 & V \\
\hline Base-to-Emitter Saturation Voltage & \(\mathrm{V}_{\text {be SAt }}\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}\)} & 0.74 & - & 0.94 & V \\
\hline
\end{tabular}

NOTES:
3. On small-geometry, high-frequency transistors, it is very good practice never to take the Emitter Base Junction into reverse breakdown. To do so may permanently degrade the \(\mathrm{h}_{\text {FE }}\). Hence, the use of \(\mathrm{I}_{\text {EBO }}\) rather than \(\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}\). These devices are also susceptible to damage by electrostatic discharge and transients in the circuits in which they are used. Moreover, CMOS handling procedures should be employed.

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}, 200 \mathrm{MHz}\), Common Emitter, Typical Values Intended Only for Design Guidance
\begin{tabular}{|c|c|c|c|c|c|}
\hline PARAMETER & \multicolumn{2}{|c|}{SYMBOL} & TEST CONDITION & TYPICAL VALUES & UNITS \\
\hline \multicolumn{6}{|l|}{DYNAMIC CHARACTERISTICS FOR EACH TRANSISTOR} \\
\hline \multirow[t]{2}{*}{Input Admittance} & \multirow[t]{2}{*}{\(\mathrm{Y}_{11}\)} & \(\mathrm{b}_{11}\) & \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\)} & 4 & mS \\
\hline & & \(g_{11}\) & & 0.75 & mS \\
\hline \multirow[t]{2}{*}{Output Admittance} & \multirow[t]{2}{*}{\(\mathrm{Y}_{22}\)} & \(\mathrm{b}_{22}\) & \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\)} & 2.7 & mS \\
\hline & & \(\mathrm{g}_{22}\) & & 0.13 & mS \\
\hline \multirow[t]{2}{*}{Forward Transfer Admittance} & \multirow[t]{2}{*}{\(\mathrm{Y}_{21}\)} & \(\mathrm{Y}_{21}\) & \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\)} & 29.3 & mS \\
\hline & & \(\theta_{21}\) & & -33 & Degrees \\
\hline \multirow[t]{2}{*}{Reverse Transfer Admittance} & \multirow[t]{2}{*}{\(\mathrm{Y}_{12}\)} & \(\mathrm{Y}_{12}\) & \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}\)} & 0.38 & mS \\
\hline & & & & -97 & Degrees \\
\hline \multirow[t]{2}{*}{Input Admittance} & \multirow[t]{2}{*}{\(\mathrm{Y}_{11}\)} & \(\mathrm{b}_{11}\) & \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}\)} & 4.8 & ms \\
\hline & & \(\mathrm{g}_{11}\) & & 2.85 & mS \\
\hline \multirow[t]{2}{*}{Output Admittance} & \multirow[t]{2}{*}{\(\mathrm{Y}_{22}\)} & \(\mathrm{b}_{22}\) & \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\)} & 2.75 & ms \\
\hline & & \(\mathrm{g}_{22}\) & & 0.9 & mS \\
\hline \multirow[t]{2}{*}{Forward Transfer Admittance} & \multirow[t]{2}{*}{\(Y_{21}\)} & \(\mathrm{Y}_{21}\) & \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}\)} & 95 & mS \\
\hline & & \(\theta_{21}\) & & -62 & Degrees \\
\hline \multirow[t]{2}{*}{Reverse Transfer Admittance} & \multirow[t]{2}{*}{\(Y_{12}\)} & & \multirow[t]{2}{*}{\(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\)} & 0.39 & mS \\
\hline & & & & -97 & Degrees \\
\hline \multirow[t]{2}{*}{Small Signal Forward Current Transfer Ratio} & \multirow[t]{2}{*}{\(\mathrm{h}_{21}\)} & & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\) & 7.1 & \\
\hline & & & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\) & 17 & \\
\hline \multicolumn{6}{|l|}{TYPICAL CAPACITANCE AT 1MHz, THREE-TERMINAL MEASUREMENT} \\
\hline Collector-to-Base Capacitance & \(\mathrm{C}_{\mathrm{CB}}\) & & \(\mathrm{V}_{C B}=6 \mathrm{~V}\) & 0.3 & pF \\
\hline Collector-to-Substrate Capacitance & \(\mathrm{C}_{\mathrm{Cl}}\) & & \(\mathrm{V}_{\mathrm{Cl}}=6 \mathrm{~V}\) & 1.6 & pF \\
\hline Collector-to-Emitter Capacitance & \(\mathrm{C}_{\text {CE }}\) & & \(\mathrm{V}_{\text {CE }}=6 \mathrm{~V}\) & 0.4 & pF \\
\hline Emitter-to-Base Capacitance & \(\mathrm{C}_{\mathrm{EB}}\) & & \(\mathrm{V}_{\mathrm{EB}}=3 \mathrm{~V}\) & 0.75 & pF \\
\hline
\end{tabular}

\section*{Spice Model (Spice 2G.6)}
.model NPN
\begin{tabular}{|c|c|c|c|c|}
\hline + & \(B F=2.610 E+02\) & \(B R=4.401 E+00\) & \(I S=6.930 E-16\) & \(R B=130.0 E+00\) \\
\hline + & \(R C=1.000 E+01\) & \(R E=7.396 E-01\) & \(V A=6.300 E+01\) & \(V B=2.208 E+00\) \\
\hline + & \(\mathrm{IK}=1.000 \mathrm{E}-01\) & \(I S E=1.87 E-14\) & \(N E=1.653 E+00\) & \(\mathrm{IKR}=1.000 \mathrm{E}-02\) \\
\hline + & ISC \(=9.25 E-14\) & \(N C=1.333 E+00\) & \(\mathrm{TF}=1.775 \mathrm{E}-11\) & \(\mathrm{TR}=1.000 \mathrm{E}-09\) \\
\hline + & \(C J S=1.800 E-12\) & \(C J E=1.010 E-12\) & \(P E=8.350 \mathrm{E}-01\) & \(M E=4.460 \mathrm{E}-01\) \\
\hline + & \(C J C=9.100 E-13\) & \(\mathrm{PC}=3.850 \mathrm{E}-01\) & \(M C=2.740 E-01\) & \(K F=0.000 E+00\) \\
\hline + & \(A F=1.000 E+00\) & \(E F=1.000 E+00\) & \(F C=5.000 E-01\) & PJS \(=5.410 E-01\) \\
\hline + & \(\mathrm{MJS}=3.530 \mathrm{E}-01\) & \(\mathrm{RBM}=30.00\) & \(R B V=100\) & \(\mathrm{IRB}=0.00\) \\
\hline
\end{tabular}

Please Note: No measurements have been made to model the reverse AC operation (tr is an estimation).

\section*{Typical Performance Curves}


FIGURE 1. \(h_{\text {FE }}\) vs COLLECTOR CURRENT


FIGURE 3. NOISE FIGURE vs COLLECTOR CURRENT


FIGURE 2. \(\mathrm{f}_{\mathrm{T}}\) vs COLLECTOR CURRENT


FIGURE 4. NOISE FIGURE vs COLLECTOR CURRENT


FIGURE 5. CAPACITANCE vs BIAS VOLTAGE

\section*{Die Characteristics}

DIE DIMENSIONS:
46 mils x 32 mils - CA3227
47 mils x 33 mils - CA3246

\section*{Metallization Mask Layout}


CA3246

SUBSTRATE
(13) (
(11)
(10)


\section*{Features}
- NPN Transistor ( \(\mathrm{f}_{\mathrm{T} \text { ) }}\). . . . . . . . . . . . . . . . . . . . . . . . . . 8GHz
- NPN Current Gain ( \(\mathrm{h}_{\mathrm{FE}}\) ) . . . . . . . . . . . . . . . . . . . . . . . 70
- NPN Early Voltage \(\left(\mathrm{V}_{\mathrm{A}}\right)\). . . . . . . . . . . . . . . . . . . . . . . . 50 V
- PNP Transistor ( \(\mathrm{f}_{\mathrm{T})}\). . . . . . . . . . . . . . . . . . . . . . . . . 5.5 FHz
- PNP Current Gain ( \(\mathrm{h}_{\mathrm{FE}}\) ) . . . . . . . . . . . . . . . . . . . . . . . . 40
- PNP Early Voltage \(\left(\mathrm{V}_{\mathrm{A}}\right)\). . . . . . . . . . . . . . . . . . . . . . . . 25 V
- Noise Figure ( \(50 \Omega\) ) at 1.0 GHz . . . . . . . . . . . . . . . . . 3.5dB
- Collector-to-Collector Leakage. . . . . . . . . . . . . . . <1pA
- Complete Isolation Between Transistors
- Pin Compatible with Industry Standard 3XXX Series Arrays

\section*{Applications}
- VHF/UHF Amplifiers
- VHF/UHF Mixers
- IF Converters
- Synchronous Detectors

\section*{Description}

The HFA3046, HFA3096, HFA3127 and the HFA3128 are Ultra High Frequency Transistor Arrays that are fabricated from Harris Semiconductor's complementary bipolar UHF-1 process. Each array consists of five dielectrically isolated transistors on a common monolithic substrate. The NPN transistors exhibit a \(\mathrm{f}_{\mathrm{T}}\) of 8 GHz while the PNP transistors provide a \(f_{\mathrm{T}}\) of 5.5 GHz . Both types exhibit low noise ( 3.5 dB ), making them ideal for high frequency amplifier and mixer applications.
The HFA3046 and HFA3127 are all NPN arrays while the HFA3128 has all PNP transistors. The HFA3096 is an NPNPNP combination. Access is provided to each of the terminals for the individual transistors for maximum application flexibility. Monolithic construction of these transistor arrays provides close electrical and thermal matching of the five transistors.

For PSPICE models, please request AnswerFAX document number 663046. Harris also provides an Application Note illustrating the use of these devices as RF amplifiers (request AnswerFAX document 99315).

\section*{Ordering Information}
\begin{tabular}{|l|c|l|c|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{c|}{ PACKAGE } & \multicolumn{1}{c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HFA3046B & -55 to 125 & 14 Ld SOIC & M14.15 \\
\hline HFA3096B & -55 to 125 & 16 Ld SOIC & M16.15 \\
\hline HFA3127B & -55 to 125 & 16 Ld SOIC & M16.15 \\
\hline HFA3128B & -55 to 125 & 16 Ld SOIC & M16.15 \\
\hline
\end{tabular}

\section*{Pinouts}

HFA3046 TOP VIEW


Absolute Maximum Ratings
Collector to Emitter Voltage (Open Base). . . . . . . . . . . . . . . . . . . . 8 V
Collector to Base Voltage (Shorted Base) . . . . . . . . . . . . . . . . . . 12V
Emitter to Base Voltage (Reverse Bias) . . . . . . . . . . . . . . . . . . . 5.5V
Collector Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15.5mA

\section*{Operating Conditions \\ Temperature Range \\ \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)}

\section*{Thermal Information}

Thermal Resistance (Typical, Note 1) \(\quad \theta_{J A}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) 14 Ld SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . 120
16 Ld SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . 115
Maximum Power Dissipation (Any One Transistor) . . . . . . . . . . . . 0.15W
Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . . . . \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (Plastic Package) . . . . . . . . \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range . . . . . . . . . \(65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\) (SOIC - Lead Tips Only)
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{DIE} & \multicolumn{3}{|c|}{SOIC} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{9}{|l|}{DC NPN CHARACTERISTICS} \\
\hline Collector-to-Base Breakdown Voltage, \(\mathrm{V}_{\text {(BR) }}\) CBO & \(I_{C}=100 \mu A, I_{E}=0\) & 12 & 18 & - & 12 & 18 & - & V \\
\hline Collector-to-Emitter Breakdown Voltage, \(\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}\) & \(I_{C}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0\) & 8 & 12 & - & 8 & 12 & - & V \\
\hline Collector-to-Emitter Breakdown Voltage, \(\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}\) & \(I_{C}=100 \mu \mathrm{~A}\), Base Shorted to Emitter & 10 & 20 & - & 10 & 20 & - & V \\
\hline Emitter-to-Base Breakdown Voltage, \(\mathrm{V}_{\text {(BR)EBO }}\) & \(I_{E}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\) & 5.5 & 6 & - & 5.5 & 6 & \(\bullet\) & V \\
\hline Collector-Cutoff-Current, ICEO & \(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & - & 2 & 100 & - & 2 & 100 & nA \\
\hline Collector-Cutoff-Current, ICBO & \(\mathrm{V}_{\mathrm{CB}}=8 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & - & 0.1 & 10 & - & 0.1 & 10 & nA \\
\hline Collector-to-Emitter Saturation Voltage, \(\mathrm{V}_{\mathrm{CE}}(\mathrm{SAT})\) & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}\) & - & 0.3 & 0.5 & - & 0.3 & 0.5 & V \\
\hline Base-to-Emitter Voltage, \(\mathrm{V}_{\mathrm{BE}}\) & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\) & - & 0.85 & 0.95 & - & 0.85 & 0.95 & V \\
\hline DC Forward-Current Transfer Ratio, \(\mathrm{h}_{\text {FE }}\) & \[
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA} \\
& \mathrm{~V}_{C E}=2 \mathrm{~V}
\end{aligned}
\] & 40 & 70 & - & 40 & 70 & - & \\
\hline Early Voltage, \(\mathrm{V}_{\mathrm{A}}\) & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=3.5 \mathrm{~V}\) & 20 & 50 & - & 20 & 50 & - & V \\
\hline Base-to-Emitter Voltage Drift & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\) & - & -1.5 & - & - & -1.5 & \(\bullet\) & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Collector-to-Collector Leakage & & - & 1 & - & - & 1 & - & pA \\
\hline
\end{tabular}

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{DIE} & \multicolumn{3}{|c|}{SOIC} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{9}{|l|}{DYNAMIC NPN CHARACTERISTICS} \\
\hline Noise Figure & \[
\begin{aligned}
& \mathrm{f}=1.0 \mathrm{GHz}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \\
& \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \mathrm{Z}_{\mathrm{S}}=50 \Omega
\end{aligned}
\] & - & 3.5 & - & \(\bullet\) & 3.5 & \(\bullet\) & dB \\
\hline \multirow[t]{2}{*}{\(\mathrm{f}_{\mathrm{T}}\) Current Gain-Bandwidth Product} & \(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) & - & 5.5 & - & - & 5.5 & - & GHz \\
\hline & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) & \(\bullet\) & 8 & - & - & 8 & - & GHz \\
\hline Power Gain-Bandwidth Product, \(\mathrm{I}_{\mathrm{MAX}}\) & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) & - & 6 & - & - & 2.5 & - & GHz \\
\hline Base-to-Emitter Capacitance & \(V_{B E}=-3 V\) & - & 200 & - & - & 500 & \(\bullet\) & fF \\
\hline Collector-to-Base Capacitance & \(\mathrm{V}_{C B}=3 \mathrm{~V}\) & - & 200 & - & - & 500 & - & fF \\
\hline
\end{tabular}

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{DIE} & \multicolumn{3}{|c|}{SOIC} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{9}{|l|}{DC PNP CHARACTERISTICS} \\
\hline Collector-to-Base Breakdown Voltage, \(\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}\) & \(I^{\prime} C=-100 \mu A, I_{E}=0\) & 10 & 15 & - & 10 & 15 & \(\bullet\) & V \\
\hline Collector-to-Emitter Breakdown Voltage, \(\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}\) & \(I_{C}=-100 \mu A, I_{B}=0\) & 8 & 15 & - & 8 & 15 & \(\bullet\) & V \\
\hline Collector-to-Emitter Breakdown Voltage, \(\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}\) & \(\mathrm{I}_{\mathrm{C}}=-100 \mu \mathrm{~A}\), Base Shorted to Emitter & 10 & 15 & - & 10 & 15 & - & V \\
\hline Emitter-to-Base Breakdown Voltage, \(\mathrm{V}_{(\mathrm{BR}) \text { EBO }}\) & \(\mathrm{I}_{\mathrm{E}}=-10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\) & 4.5 & 5 & - & 4.5 & 5 & - & V \\
\hline Collector-Cutoff-Current, ICEO & \(\mathrm{V}_{\mathrm{CE}}=-6 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=0\) & - & 2 & 100 & - & 2 & 100 & nA \\
\hline Collector-Cutoff-Current, ICBO & \(\mathrm{V}_{C B}=-8 \mathrm{~V}, l_{E}=0\) & - & 0.1 & 10 & - & 0.1 & 10 & nA \\
\hline Collector-to-Emitter Saturation Voltage, \(\mathrm{V}_{\mathrm{CE}}\) (SAT) & \(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=-1 \mathrm{~mA}\) & - & 0.3 & 0.5 & - & 0.3 & 0.5 & V \\
\hline Base-to-Emitter Voltage, \(\mathrm{V}_{\mathrm{BE}}\) & \(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}\) & - & 0.85 & 0.95 & - & 0.85 & 0.95 & V \\
\hline DC Forward-Current Transfer Ratio, \(\mathrm{h}_{\text {FE }}\) & \(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-2 \mathrm{~V}\) & 20 & 35 & - & 20 & 35 & - & \\
\hline Early Voltage, \(\mathrm{V}_{\mathrm{A}}\) & \(\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-3.5 \mathrm{~V}\) & 10 & 25 & - & 10 & 25 & - & V \\
\hline Base-to-Emitter Voltage Drift & \(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}\) & - & -1.5 & - & - & -1.5 & - & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Collector-to-Collector Leakage & & - & 1 & - & - & 1 & - & pA \\
\hline
\end{tabular}

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{DIE} & \multicolumn{3}{|c|}{SOIC} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{9}{|l|}{DYNAMIC PNP CHARACTERISTICS} \\
\hline Noise Figure & \[
\begin{aligned}
& f=1.0 \mathrm{GHz}, \mathrm{~V}_{\mathrm{CE}}=-5 \mathrm{~V}, \\
& \mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}, \mathrm{Z}_{\mathrm{S}}=50 \Omega
\end{aligned}
\] & - & 3.5 & - & - & 3.5 & - & dB \\
\hline \multirow[t]{2}{*}{\(\mathrm{f}_{\mathrm{T}}\) Current Gain-Bandwidth Product} & \(\mathrm{I}_{\mathrm{C}}=-1 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-5 \mathrm{~V}\) & - & 2 & - & - & 2 & - & GHz \\
\hline & \(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=-5 \mathrm{~V}\) & - & 5.5 & - & - & 5.5 & - & GHz \\
\hline Power Gain-Bandwidth Product & \(\mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}, \mathrm{~V}_{C E}=-5 \mathrm{~V}\) & - & 3 & - & - & 2 & - & GHz \\
\hline Base-to-Emitter Capacitance & \(V_{B E}=3 \mathrm{~V}\) & - & 200 & - & - & 500 & - & fF \\
\hline Collector-to-Base Capacitance & \(V_{C B}=-3 \mathrm{~V}\) & - & 300 & - & - & 600 & - & fF \\
\hline
\end{tabular}

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{DIE} & \multicolumn{3}{|c|}{SOIC} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multicolumn{9}{|l|}{DIFFERENTIAL PAIR MATCHING CHARACTERISTICS FOR THE HFA3046} \\
\hline Input Offset Voltage & \({ }^{\mathrm{I}} \mathrm{C}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) & - & 1.5 & 5.0 & - & 1.5 & 5.0 & mV \\
\hline Input Offset Current & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) & - & 5 & 25 & - & 5 & 25 & \(\mu \mathrm{A}\) \\
\hline Input Offset Voltage TC & \(I_{C}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) & - & 0.5 & - & - & 0.5 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

S-Parameter and PSPICE model data is available from Harris Sales Offices.

HFA3046, HFA3096, HFA3127, HFA3128

\section*{Common Emitter S-Parameters of NPN \(3 \mu m \times 50 \mu m\) Transistor}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FREQ. (Hz) & \(\left|S_{11}\right|\) & PHASE \(\left(\mathrm{S}_{11}\right)\) & \(\mathrm{IS}_{12} \mathrm{l}\) & PHASE \(\left(S_{12}\right)\) & \({ }^{\prime} S_{21} \mid\) & PHASE \(\left(\mathrm{S}_{21}\right)\) & \(\mathrm{IS}_{22} \mathrm{I}\) & PHASE( \(\mathrm{S}_{22}\) ) \\
\hline \multicolumn{9}{|l|}{\(\mathrm{V}_{\text {CE }}=5 \mathrm{~V}\) and \(\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}\)} \\
\hline 1.0E+08 & 0.83 & -11.78 & 1.41E-02 & 78.88 & 11.07 & 168.57 & 0.97 & -11.05 \\
\hline \(2.0 \mathrm{E}+08\) & 0.79 & -22.82 & 2.69E-02 & 68.63 & 10.51 & 157.89 & 0.93 & -21.35 \\
\hline \(3.0 \mathrm{E}+08\) & 0.73 & -32.64 & 3.75E-02 & 59.58 & 9.75 & 148.44 & 0.86 & -30.44 \\
\hline \(4.0 \mathrm{E}+08\) & 0.67 & -41.08 & 4.57E-02 & 51.90 & 8.91 & 140.36 & 0.79 & -38.16 \\
\hline \(5.0 \mathrm{E}+08\) & 0.61 & -48.23 & 5.19E-02 & 45.50 & 8.10 & 133.56 & 0.73 & -44.59 \\
\hline \(6.0 \mathrm{E}+08\) & 0.55 & -54.27 & \(5.65 \mathrm{E}-02\) & 40.21 & 7.35 & 127.88 & 0.67 & -49.93 \\
\hline \(7.0 \mathrm{E}+08\) & 0.50 & -59.41 & 6.00E-02 & 35.82 & 6.69 & 123.10 & 0.62 & -54.37 \\
\hline \(8.0 \mathrm{E}+08\) & 0.46 & -63.81 & \(6.27 \mathrm{E}-02\) & 32.15 & 6.11 & 119.04 & 0.57 & -58.10 \\
\hline \(9.0 \mathrm{E}+08\) & 0.42 & -67.63 & 6.47E-02 & 29.07 & 5.61 & 115.57 & 0.53 & -61.25 \\
\hline \(1.0 \mathrm{E}+09\) & 0.39 & -70.98 & 6.63E-02 & 26.45 & 5.17 & 112.55 & 0.50 & -63.96 \\
\hline \(1.1 \mathrm{E}+09\) & 0.36 & -73.95 & 6.75E-02 & 24.19 & 4.79 & 109.91 & 0.47 & -66.31 \\
\hline 1.2E+09 & 0.34 & -76.62 & 6.85E-02 & 22.24 & 4.45 & 107.57 & 0.45 & -68.37 \\
\hline 1.3E+09 & 0.32 & -79.04 & 6.93E-02 & 20.53 & 4.15 & 105.47 & 0.43 & -70.19 \\
\hline \(1.4 \mathrm{E}+09\) & 0.30 & -81.25 & 7.00E-02 & 19.02 & 3.89 & 103.57 & 0.41 & -71.83 \\
\hline \(1.5 \mathrm{E}+09\) & 0.28 & -83.28 & 7.05E-02 & 17.69 & 3.66 & 101.84 & 0.40 & -73.31 \\
\hline \(1.6 \mathrm{E}+09\) & 0.27 & -85.17 & 7.10E-02 & 16.49 & 3.45 & 100.26 & 0.39 & -74.66 \\
\hline \(1.7 \mathrm{E}+09\) & 0.25 & -86.92 & 7.13E-02 & 15.41 & 3.27 & 98.79 & 0.38 & -75.90 \\
\hline \(1.8 \mathrm{E}+09\) & 0.24 & -88.57 & 7.17E-02 & 14.43 & 3.10 & 97.43 & 0.37 & -77.05 \\
\hline \(1.9 \mathrm{E}+09\) & 0.23 & -90.12 & 7.19E-02 & 13.54 & 2.94 & 96.15 & 0.36 & -78.12 \\
\hline 2.0E+09 & 0.22 & -91.59 & 7.21E-02 & 12.73 & 2.80 & 94.95 & 0.35 & -79.13 \\
\hline 2.1E+09 & 0.21 & -92.98 & 7.23E-02 & 11.98 & 2.68 & 93.81 & 0.35 & -80.09 \\
\hline 2.2E+09 & 0.20 & -94.30 & 7.25E-02 & 11.29 & 2.56 & 92.73 & 0.34 & -80.99 \\
\hline 2.3E+09 & 0.20 & -95.57 & 7.27E-02 & 10.64 & 2.45 & 91.70 & 0.34 & -81.85 \\
\hline \(2.4 \mathrm{E}+09\) & 0.19 & -96.78 & 7.28E-02 & 10.05 & 2.35 & 90.72 & 0.33 & -82.68 \\
\hline \(2.5 \mathrm{E}+09\) & 0.18 & -97.93 & 7.29E-02 & 9.49 & 2.26 & 89.78 & 0.33 & -83.47 \\
\hline 2.6E+09 & 0.18 & -99.05 & 7.30E-02 & 8.96 & 2.18 & 88.87 & 0.33 & -84.23 \\
\hline \(2.7 \mathrm{E}+09\) & 0.17 & -100.12 & 7.31E-02 & 8.47 & 2.10 & 88.00 & 0.33 & -84.97 \\
\hline \(2.8 \mathrm{E}+09\) & 0.17 & -101.15 & 7.31E-02 & 8.01 & 2.02 & 87.15 & 0.33 & -85.68 \\
\hline \(2.9 \mathrm{E}+09\) & 0.16 & -102.15 & 7.32E-02 & 7.57 & 1.96 & 86.33 & 0.33 & -86.37 \\
\hline 3.0E+09 & 0.16 & -103.11 & 7.32E-02 & 7.16 & 1.89 & 85.54 & 0.33 & -87.05 \\
\hline \multicolumn{9}{|l|}{\(\mathrm{V}_{\text {CE }}=5 \mathrm{~V}\) and \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\)} \\
\hline 1.0E+08 & 0.72 & -16.43 & 1.27E-02 & 75.41 & 15.12 & 165.22 & 0.95 & -14.26 \\
\hline \(2.0 \mathrm{E}+08\) & 0.67 & -31.26 & \(2.34 \mathrm{E}-02\) & 62.89 & 13.90 & 152.04 & 0.88 & -26.95 \\
\hline \(3.0 \mathrm{E}+08\) & 0.60 & -43.76 & 3.13E-02 & 52.58 & 12.39 & 141.18 & 0.79 & -37.31 \\
\hline \(4.0 \mathrm{E}+08\) & 0.53 & -54.00 & \(3.68 \mathrm{E}-02\) & 44.50 & 10.92 & 132.57 & 0.70 & -45.45 \\
\hline \(5.0 \mathrm{E}+08\) & 0.47 & -62.38 & 4.05E-02 & 38.23 & 9.62 & 125.78 & 0.63 & -51.77 \\
\hline \(6.0 \mathrm{E}+08\) & 0.42 & -69.35 & \(4.31 \mathrm{E}-02\) & 33.34 & 8.53 & 120.37 & 0.57 & -56.72 \\
\hline \(7.0 \mathrm{E}+08\) & 0.37 & -75.26 & \(4.49 \mathrm{E}-02\) & 29.47 & 7.62 & 116.00 & 0.51 & -60.65 \\
\hline \(8.0 \mathrm{E}+08\) & 0.34 & -80.36 & \(4.63 \mathrm{E}-02\) & 26.37 & 6.86 & 112.39 & 0.47 & -63.85 \\
\hline \(9.0 \mathrm{E}+08\) & 0.31 & -84.84 & \(4.72 \mathrm{E}-02\) & 23.84 & 6.22 & 109.36 & 0.44 & -66.49 \\
\hline \(1.0 \mathrm{E}+09\) & 0.29 & -88.83 & \(4.80 \mathrm{E}-02\) & 21.75 & 5.69 & 106.77 & 0.41 & -68.71 \\
\hline
\end{tabular}

HFA3046, HFA3096, HFA3127, HFA3128
Common Emitter S-Parameters of NPN \(3 \mu m \times 50 \mu m\) Transistor (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FREQ. (Hz) & | \(\mathrm{S}_{11}\) | & PHASE( \(\mathrm{S}_{11}\) ) & \(1 \mathrm{~S}_{12} \mathrm{l}\) & PHASE( \(\mathrm{S}_{12}\) ) & \(\mathrm{IS}_{21} \mathrm{l}\) & PHASE( \(\mathbf{S}_{21}\) ) & \(\mathrm{IS}_{22} \mathrm{I}\) & PHASE( \(\mathrm{S}_{\mathbf{2 2}}\) ) \\
\hline 1.1E+09 & 0.27 & -92.44 & 4.86E-02 & 20.00 & 5.23 & 104.51 & 0.39 & -70.62 \\
\hline 1.2E+09 & 0.25 & -95.73 & 4.90E-02 & 18.52 & 4.83 & 102.53 & 0.37 & -72.28 \\
\hline 1.3E+09 & 0.24 & -98.75 & 4.94E-02 & 17.25 & 4.49 & 100.75 & 0.35 & -73.76 \\
\hline \(1.4 \mathrm{E}+09\) & 0.22 & -101.55 & 4.97E-02 & 16.15 & 4.19 & 99.16 & 0.34 & -75.08 \\
\hline 1.5E+09 & 0.21 & -104.15 & 4.99E-02 & 15.19 & 3.93 & 97.70 & 0.33 & -76.28 \\
\hline 1.6E+09 & 0.20 & -106.57 & 5.01E-02 & 14.34 & 3.70 & 96.36 & 0.32 & -77.38 \\
\hline \(1.7 \mathrm{E}+09\) & 0.20 & -108.85 & 5.03E-02 & 13.60 & 3.49 & 95.12 & 0.31 & -78.41 \\
\hline \(1.8 \mathrm{E}+09\) & 0.19 & -110.98 & 5.05E-02 & 12.94 & 3.30 & 93.96 & 0.31 & -79.37 \\
\hline \(1.9 \mathrm{E}+09\) & 0.18 & -113.00 & 5.06E-02 & 12.34 & 3.13 & 92.87 & 0.30 & -80.27 \\
\hline 2.0E+09 & 0.18 & -114.90 & 5.07E-02 & 11.81 & 2.98 & 91.85 & 0.30 & -81.13 \\
\hline \(2.1 \mathrm{E}+09\) & 0.17 & -116.69 & 5.08E-02 & 11.33 & 2.84 & 90.87 & 0.30 & -81.95 \\
\hline 2.2E+09 & 0.17 & -118.39 & 5.09E-02 & 10.89 & 2.72 & 89.94 & 0.29 & -82.74 \\
\hline \(2.3 \mathrm{E}+09\) & 0.16 & -120.01 & 5.10E-02 & 10.50 & 2.60 & 89.06 & 0.29 & -83.50 \\
\hline \(2.4 \mathrm{E}+09\) & 0.16 & -121.54 & 5.11E-02 & 10.13 & 2.49 & 88.21 & 0.29 & -84.24 \\
\hline \(2.5 \mathrm{E}+09\) & 0.16 & -122.99 & 5.12E-02 & 9.80 & 2.39 & 87.39 & 0.29 & -84.95 \\
\hline \(2.6 \mathrm{E}+09\) & 0.15 & -124.37 & 5.12E-02 & 9.49 & 2.30 & 86.60 & 0.29 & -85.64 \\
\hline \(2.7 \mathrm{E}+09\) & 0.15 & -125.69 & 5.13E-02 & 9.21 & 2.22 & 85.83 & 0.29 & -86.32 \\
\hline \(2.8 \mathrm{E}+09\) & 0.15 & -126.94 & 5.13E-02 & 8.95 & 2.14 & 85.09 & 0.29 & -86.98 \\
\hline \(2.9 \mathrm{E}+09\) & 0.15 & -128.14 & 5.14E-02 & 8.71 & 2.06 & 84.36 & 0.29 & -87.62 \\
\hline \(3.0 \mathrm{E}+09\) & 0.14 & -129.27 & 5.15E-02 & 8.49 & 1.99 & 83.66 & 0.29 & -88.25 \\
\hline
\end{tabular}

Common Emitter S-Parameters of PNP \(3 \mu \mathrm{~m}^{2} \times 50 \mu \mathrm{~m}^{2}\) Transistor
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FREQ. (Hz) & \(\left|S_{11}\right|\) & PHASE( \(\mathrm{S}_{11}\) ) & \(\left|S_{21}\right|\) & PHASE \(\left(\mathrm{S}_{21}\right)\) & \(\left|S_{12}\right|\) & PHASE( \(\mathrm{S}_{12}\) ) & \(\left|S_{22}\right|\) & PHASE( \(\mathrm{S}_{22}\) ) \\
\hline \multicolumn{9}{|l|}{\(\mathrm{V}_{\text {CE }}=-5 \mathrm{~V}\) and \(\mathrm{I}_{\mathrm{C}}=-5 \mathrm{~mA}\)} \\
\hline \(1.0 \mathrm{E}+08\) & 0.72 & -16.65 & 10.11 & 166.77 & 1.66E-02 & 77.18 & 0.96 & -10.76 \\
\hline \(2.0 \mathrm{E}+08\) & 0.68 & -32.12 & 9.44 & 154.69 & 3.10E-02 & 65.94 & 0.90 & -20.38 \\
\hline \(3.0 \mathrm{E}+08\) & 0.62 & -45.73 & 8.57 & 144.40 & 4.23E-02 & 56.39 & 0.82 & -28.25 \\
\hline \(4.0 \mathrm{E}+08\) & 0.57 & -57.39 & 7.68 & 135.95 & 5.05E-02 & 48.66 & 0.74 & -34.31 \\
\hline \(5.0 \mathrm{E}+08\) & 0.52 & -67.32 & 6.86 & 129.11 & \(5.64 \mathrm{E}-02\) & 42.52 & 0.67 & -38.81 \\
\hline \(6.0 \mathrm{E}+08\) & 0.47 & -75.83 & 6.14 & 123.55 & 6.07E-02 & 37.66 & 0.61 & -42.10 \\
\hline \(7.0 \mathrm{E}+08\) & 0.43 & -83.18 & 5.53 & 118.98 & 6.37E-02 & 33.79 & 0.55 & -44.47 \\
\hline \(8.0 \mathrm{E}+08\) & 0.40 & -89.60 & 5.01 & 115.17 & 6.60E-02 & 30.67 & 0.51 & -46.15 \\
\hline \(9.0 \mathrm{E}+08\) & 0.38 & -95.26 & 4.56 & 111.94 & 6.77E-02 & 28.14 & 0.47 & -47.33 \\
\hline 1.0E+09 & 0.36 & -100.29 & 4.18 & 109.17 & 6.91E-02 & 26.06 & 0.44 & -48.15 \\
\hline 1.1E+09 & 0.34 & -104.80 & 3.86 & 106.76 & 7.01E-02 & 24.33 & 0.41 & -48.69 \\
\hline 1.2E+09 & 0.33 & -108.86 & 3.58 & 104.63 & 7.09E-02 & 22.89 & 0.39 & -49.05 \\
\hline 1.3E+09 & 0.32 & -112.53 & 3.33 & 102.72 & 7.16E-02 & 21.67 & 0.37 & -49.26 \\
\hline \(1.4 \mathrm{E}+09\) & 0.30 & -115.86 & 3.12 & 101.01 & 7.22E-02 & 20.64 & 0.36 & -49.38 \\
\hline \(1.5 \mathrm{E}+09\) & 0.30 & -118.90 & 2.92 & 99.44 & 7.27E-02 & 19.76 & 0.34 & -49.43 \\
\hline \(1.6 \mathrm{E}+09\) & 0.29 & -121.69 & 2.75 & 98.01 & 7.32E-02 & 19.00 & 0.33 & -49.44 \\
\hline \(1.7 \mathrm{E}+09\) & 0.28 & -124.24 & 2.60 & 96.68 & \(7.35 \mathrm{E}-02\) & 18.35 & 0.32 & -49.43 \\
\hline \(1.8 \mathrm{E}+09\) & 0.28 & -126.59 & 2.47 & 95.44 & \(7.39 \mathrm{E}-02\) & 17.79 & 0.31 & -49.40 \\
\hline \(1.9 \mathrm{E}+09\) & 0.27 & -128.76 & 2.34 & 94.29 & 7.42E-02 & 17.30 & 0.30 & -49.38 \\
\hline
\end{tabular}

HFA3046, HFA3096, HFA3127, HFA3128
Common Emitter S-Parameters of PNP \(3 \mu m^{2} \times 50 \mu m^{2}\) Transistor (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FREQ. (Hz) & \(\left|S_{11}\right|\) & PHASE( \(\mathrm{S}_{11}\) ) & \(\left|S_{21}\right|\) & PHASE( \(\mathbf{S}_{21}\) ) & \(\left|S_{12}\right|\) & PHASE \(\left(\mathrm{S}_{12}\right)\) & \(\mathrm{IS}_{22}{ }^{\text {l }}\) & PHASE( \(\mathbf{S}_{\mathbf{2 2}}\) ) \\
\hline \(2.0 \mathrm{E}+09\) & 0.27 & -130.77 & 2.23 & 93.19 & 7.45E-02 & 16.88 & 0.30 & -49.36 \\
\hline 2.1E+09 & 0.26 & -132.63 & 2.13 & 92.16 & 7.47E-02 & 16.52 & 0.29 & -49.35 \\
\hline \(2.2 \mathrm{E}+09\) & 0.26 & -134.35 & 2.04 & 91.18 & 7.50E-02 & 16.20 & 0.28 & -49.35 \\
\hline 2.3E+09 & 0.26 & -135.96 & 1.95 & 90.24 & 7.52E-02 & 15.92 & 0.28 & -49.38 \\
\hline \(2.4 \mathrm{E}+09\) & 0.25 & -137.46 & 1.87 & 89.34 & 7.55E-02 & 15.68 & 0.28 & -49.42 \\
\hline \(2.5 \mathrm{E}+09\) & 0.25 & -138.86 & 1.80 & 88.48 & 7.57E-02 & 15.48 & 0.27 & -49.49 \\
\hline 2.6E+09 & 0.25 & -140.17 & 1.73 & 87.65 & 7.59E-02 & 15.30 & 0.27 & -49.56 \\
\hline \(2.7 \mathrm{E}+09\) & 0.25 & -141.39 & 1.67 & 86.85 & 7.61E-02 & 15.15 & 0.26 & -49.67 \\
\hline \(2.8 \mathrm{E}+09\) & 0.25 & -142.54 & 1.61 & 86.07 & 7.63E-02 & 15.01 & 0.26 & -49.81 \\
\hline \(2.9 \mathrm{E}+09\) & 0.24 & -143.62 & 1.56 & 85.31 & 7.65E-02 & 14.90 & 0.26 & -49.96 \\
\hline \(3.0 \mathrm{E}+09\) & 0.24 & -144.64 & 1.51 & 84.58 & 7.67E-02 & 14.81 & 0.26 & -50.13 \\
\hline
\end{tabular}
\(\mathrm{V}_{\mathrm{CE}}=-5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-10 \mathrm{~mA}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(1.0 \mathrm{E}+08\) & 0.58 & -23.24 & 13.03 & 163.45 & 1.43E-02 & 73.38 & 0.93 & -13.46 \\
\hline \(2.0 \mathrm{E}+08\) & 0.53 & -44.07 & 11.75 & 149.11 & 2.58E-02 & 60.43 & 0.85 & -24.76 \\
\hline \(3.0 \mathrm{E}+08\) & 0.48 & -61.50 & 10.25 & 137.78 & \(3.38 \mathrm{E}-02\) & 50.16 & 0.74 & -33.10 \\
\hline \(4.0 \mathrm{E}+08\) & 0.43 & -75.73 & 8.88 & 129.12 & 3.90E-02 & 42.49 & 0.65 & -38.83 \\
\hline \(5.0 \mathrm{E}+08\) & 0.40 & -87.36 & 7.72 & 122.49 & 4.25E-02 & 36.81 & 0.58 & -42.63 \\
\hline \(6.0 \mathrm{E}+08\) & 0.37 & -96.94 & 6.78 & 117.33 & 4.48E-02 & 32.59 & 0.51 & -45.07 \\
\hline 7.0E+08 & 0.35 & -104.92 & 6.01 & 113.22 & 4.64E-02 & 29.39 & 0.47 & -46.60 \\
\hline 8.0E+08 & 0.33 & -111.64 & 5.39 & 109.85 & 4.76E-02 & 26.94 & 0.43 & -47.49 \\
\hline \(9.0 \mathrm{E}+08\) & 0.32 & -117.36 & 4.87 & 107.05 & 4.85E-02 & 25.04 & 0.40 & -47.97 \\
\hline 1.0E+09 & 0.31 & -122.27 & 4.44 & 104.66 & 4.92E-02 & 23.55 & 0.37 & -48.18 \\
\hline 1.1E+09 & 0.30 & -126.51 & 4.07 & 102.59 & 4.97E-02 & 22.37 & 0.35 & -48.20 \\
\hline \(1.2 \mathrm{E}+09\) & 0.30 & -130.21 & 3.76 & 100.76 & 5.02E-02 & 21.44 & 0.33 & -48.11 \\
\hline 1.3E+09 & 0.29 & -133.46 & 3.49 & 99.14 & \(5.06 \mathrm{E}-02\) & 20.70 & 0.32 & -47.95 \\
\hline \(1.4 \mathrm{E}+09\) & 0.29 & -136.33 & 3.25 & 97.67 & 5.09E-02 & 20.11 & 0.31 & -47.77 \\
\hline \(1.5 \mathrm{E}+09\) & 0.28 & -138.89 & 3.05 & 96.33 & 5.12E-02 & 19.65 & 0.30 & -47.58 \\
\hline \(1.6 \mathrm{E}+09\) & 0.28 & -141.17 & 2.87 & 95.10 & 5.15E-02 & 19.29 & 0.29 & -47.39 \\
\hline 1.7E+09 & 0.28 & -143.21 & 2.70 & 93.96 & 5.18E-02 & 19.01 & 0.28 & -47.23 \\
\hline \(1.8 \mathrm{E}+09\) & 0.28 & -145.06 & 2.56 & 92.90 & \(5.21 \mathrm{E}-02\) & 18.80 & 0.27 & -47.09 \\
\hline \(1.9 \mathrm{E}+09\) & 0.27 & -146.73 & 2.43 & 91.90 & 5.23E-02 & 18.65 & 0.27 & -46.98 \\
\hline \(2.0 \mathrm{E}+09\) & 0.27 & -148.26 & 2.31 & 90.95 & 5.26E-02 & 18.55 & 0.26 & -46.91 \\
\hline \(2.1 \mathrm{E}+09\) & 0.27 & -149.65 & 2.20 & 90.05 & 5.28E-02 & 18.49 & 0.26 & -46.87 \\
\hline \(2.2 E+09\) & 0.27 & -150.92 & 2.10 & 89.20 & \(5.30 \mathrm{E}-02\) & 18.46 & 0.25 & -46.87 \\
\hline \(2.3 \mathrm{E}+09\) & 0.27 & -152.10 & 2.01 & 88.37 & 5.33E-02 & 18.47 & 0.25 & -46.90 \\
\hline \(2.4 \mathrm{E}+09\) & 0.27 & -153.18 & 1.93 & 87.59 & 5.35E-02 & 18.50 & 0.25 & -46.97 \\
\hline \(2.5 \mathrm{E}+09\) & 0.27 & -154.17 & 1.86 & 86.82 & \(5.38 \mathrm{E}-02\) & 18.55 & 0.24 & -47.07 \\
\hline \(2.6 \mathrm{E}+09\) & 0.26 & -155.10 & 1.79 & 86.09 & \(5.40 \mathrm{E}-02\) & 18.62 & 0.24 & -47.18 \\
\hline \(2.7 \mathrm{E}+09\) & 0.26 & -155.96 & 1.72 & 85.38 & 5.42E-02 & 18.71 & 0.24 & -47.34 \\
\hline \(2.8 \mathrm{E}+09\) & 0.26 & -156.76 & 1.66 & 84.68 & 5.45E-02 & 18.80 & 0.24 & -47.55 \\
\hline \(2.9 \mathrm{E}+09\) & 0.26 & -157.51 & 1.60 & 84.01 & 5.47E-02 & 18.91 & 0.24 & -47.76 \\
\hline \(3.0 \mathrm{E}+09\) & 0.26 & -158.21 & 1.55 & 83.35 & 5.50E-02 & 19.03 & 0.23 & -48.00 \\
\hline
\end{tabular}

\section*{Typical Performance Curves}


FIGURE 1. NPN COLLECTOR CURRENT vs COLLECTOR TO EMITTER VOLTAGE


FIGURE 3. NPN DC CURRENT GAIN vs COLLECTOR CURRENT


FIGURE 5. PNP COLLECTOR CURRENT vs COLLECTOR TO EMITTER VOLTAGE


FIGURE 2. NPN COLLECTOR CURRENT AND BASE CURRENT TO EMITTER VOLTAGE


FIGURE 4. NPN GAIN BANDWIDTH PRODUCT vs COLLECTOR CURRENT (UHF \(3 \times 50\) WITH BOND PADS)


FIGURE 6. PNP COLLECTOR CURRENT AND BASE CURRENT TO EMITTER VOLTAGE

\section*{Typical Performance Curves (Continued)}


FIGURE 7. PNP DC CURRENT GAIN vs COLLECTOR CURRENT


FIGURE 8. PNP GAIN BANDWIDTH PRODUCT vs COLLECTOR CURRENT (UHF \(3 \times 50\) WITH BOND PADS)

\section*{Die Characteristics}

\section*{PROCESS:}

UHF-1
DIE DIMENSIONS:
53 mils \(\times 52\) mils \(\times 19\) mils \(1340 \mu \mathrm{~m} \times 1320 \mu \mathrm{~m} \times 483 \mu \mathrm{~m}\)

METALLIZATION:
Type: Metal 1: \(\operatorname{AlCu}(2 \%) / T i W\)
Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)
Type: Metal 2: AICu(2\%)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)

PASSIVATION:
Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)

Metallization Mask Layout
HFA3096, HFA3127, HFA3128


HFA3046


Pad numbers correspond to SOIC pinout.

\section*{Features}
- High Gain Bandwidth Product ( \(\mathrm{f} T\) ) . . . . . . . . . . . . 10GHz
- High Power Gain Bandwidth Product . . . . . . . . . 5GHz
- Current Gain (hFE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
- Low Noise Figure (Transistor) . . . . . . . . . . . . . . . 3.5dB
- Excellent \(\mathbf{h}_{\text {FE }}\) and \(\mathbf{V}_{\mathbf{B E}}\) Matching
- Low Collector Leakage Current \(\qquad\)
- Pin-to-Pin Compatible to UPA101

\section*{Applications}
- Balanced Mixers
- Multipliers
- Demodulators/Modulators
- Automatic Gain Control Circuits
- Phase Detectors
- Fiber Optic Signal Processing
- Wireless Communication Systems
- Wide Band Amplification Stages
- Radio and Satellite Communications
- High Performance Instrumentation

\section*{Description}

The HFA3101 is an all NPN transistor array configured as a Multiplier Cell. Based on Harris bonded wafer UHF-1 SOI process, this array achieves very high \(\mathrm{f}_{\mathrm{T}}(10 \mathrm{GHz})\) while maintaining excellent \(h_{F E}\) and \(V_{B E}\) matching characteristics that have been maximized through careful attention to circuit design and layout, making this product ideal for communication circuits. For use in mixer applications, the cell provides high gain and good cancellation of 2nd order distortion terms.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|c|}
\hline \begin{tabular}{c} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline \begin{tabular}{l} 
HFA3101B \\
(H3101B)
\end{tabular} & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline \begin{tabular}{l} 
HFA3101B96 \\
(H3101B \()\)
\end{tabular} & -40 to 85 & \begin{tabular}{l}
8 Ld SOIC Tape \\
and Reel
\end{tabular} & M8.15 \\
\hline
\end{tabular}

\section*{Pinout}

HFA3101
(SOIC)
TOP VIEW


NOTE: \(Q_{5}\) and \(Q_{6}-2\) Paralleled \(3 \mu m \times 50 \mu m\) Transistors \(Q_{1}, Q_{2}, Q_{3}, Q_{4}\) - Single \(3 \mu m \times 50 \mu m\) Transistors
Absolute Maximum Ratings
\(\mathrm{V}_{\mathrm{CEO}}\), Collector to Emitter Voltage. . . . . . . . . . . . . . . . . . . . . . . . 8.0 V
\(\mathrm{V}_{\mathrm{CBO}}\), Collector to Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . 12.0 V
VEBO, Emitter to Base Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 V
\({ }^{1}\) C, Collector Current
30 mA

\section*{Operating Conditions}

Temperature Range

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { (NOTE 2) } \\
& \text { TEST } \\
& \text { LEVEL }
\end{aligned}
\]} & \multicolumn{3}{|c|}{ALL GRADES} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & \\
\hline Collector-to-Base Breakdown Voltage, \(\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}, \mathrm{Q}_{1}\) thru \(\mathrm{Q}_{6}\) & \(\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\) & A & 12 & 18 & - & V \\
\hline Collector-to-Emitter Breakdown Voltage, \(\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}\), \(Q_{5}\) and \(Q_{6}\) & \(\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{B}}=0\) & A & 8 & 12 & - & V \\
\hline Emitter-to-Base Breakdown Voltage, \(\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}\), \(Q_{1}\) thru \(Q_{6}\) & \(I_{E}=10 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\) & A & 5.5 & 6 & - & V \\
\hline Collector Cutoff Current, \(\mathrm{I}_{\text {CBO}}, \mathrm{Q}_{1}\) thru \(\mathrm{Q}_{4}\) & \(\mathrm{V}_{\mathrm{CB}}=8 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\) & A & - & 0.1 & 10 & nA \\
\hline  & \(\mathrm{V}_{\mathrm{EB}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\) & A & - & - & 200 & nA \\
\hline DC Current Gain, \(\mathrm{h}_{\mathrm{FE}}, \mathrm{Q}_{1}\) thru \(\mathrm{Q}_{6}\) & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=3 \mathrm{~V}\) & A & 40 & 70 & - & \\
\hline \multirow[t]{2}{*}{Collector-to-Base Capacitance, \(\mathrm{C}_{\text {CB }}\)} & \multirow[t]{2}{*}{\(\mathrm{V}_{C B}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\)} & \multirow[t]{2}{*}{C} & - & 0.300 & - & pF \\
\hline & & & - & 0.600 & - & pF \\
\hline \multirow[t]{2}{*}{Emitter-to-Base Capacitance, \(\mathrm{C}_{\text {EB }} \quad \frac{\mathrm{Q}_{1} \text { thru } \mathrm{Q}_{4}}{\text { and } \mathrm{Q}_{6}} }\)} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{EB}}=0, f=1 \mathrm{MHz}\)} & \multirow[t]{2}{*}{B} & - & 0.200 & - & pF \\
\hline & & & - & 0.400 & - & pF \\
\hline \multirow[t]{2}{*}{Current Gain-Bandwidth Product, \(\mathrm{f}_{\mathrm{T}} \quad \frac{\mathrm{Q}_{1} \text { thru } \mathrm{Q}_{4}}{\mathrm{Q}_{5} \text { and } Q_{6}}\)} & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) & C & - & 10 & - & GHz \\
\hline & \(\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) & C & - & 10 & - & GHz \\
\hline \multirow[t]{2}{*}{Power Gain-Bandwidth Product, \(\mathrm{f}_{\text {MAX }}\)} & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) & C & - & 5 & - & GHz \\
\hline & \(\mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\) & C & - & 5 & - & GHz \\
\hline \multirow[t]{2}{*}{Available Gain at Minimum Noise Figure, \(G_{\text {NFMIN }}\), \(Q_{5}\) and \(Q_{6}\)} & \(\begin{array}{ll}\mathrm{IC}=5 \mathrm{~mA}, & \mathrm{f}=0.5 \mathrm{GHz} \\ \mathrm{V} & \\ \end{array}\) & c & - & 17.5 & - & dB \\
\hline & \(V_{C E}=3 \mathrm{~V} \quad \mathrm{f}=1.0 \mathrm{GHz}\) & C & - & 11.9 & - & dB \\
\hline \multirow[t]{2}{*}{Minimum Noise Figure, \(\mathrm{NF}_{\text {MIN }}, \mathrm{Q}_{5}\) and \(\mathrm{Q}_{6}\)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \\
& \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}
\end{aligned}
\]} & C & - & 1.7 & - & dB \\
\hline & & C & - & 2.0 & - & dB \\
\hline \multirow[t]{2}{*}{\(50 \Omega\) Noise Figure, \(\mathrm{NF}_{50 \Omega}, \mathrm{Q}_{5}\) and \(\mathrm{Q}_{6}\)} & \multirow[t]{2}{*}{\[
\begin{array}{ll}
\mathrm{IC}=5 \mathrm{~mA}, & f=0.5 \mathrm{GHz} \\
\mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V} & \mathrm{f}=1.0 \mathrm{GHz}
\end{array}
\]} & C & - & 2.25 & \(\cdot\) & dB \\
\hline & & C & - & 2.5 & - & dB \\
\hline DC Current Gain Matching, \(h_{\text {FE } 1} / h_{\text {FE2 }}, Q_{1}\) and \(Q_{2}\), \(Q_{3}\) and \(Q_{4}\), and \(Q_{5}\) and \(Q_{6}\) & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=3 \mathrm{~V}\) & A & 0.9 & 1.0 & 1.1 & \\
\hline Input Offset Voltage, \(\mathrm{V}_{\mathrm{OS}},\left(\mathrm{Q}_{1}\right.\) and \(\left.\mathrm{Q}_{2}\right),\left(\mathrm{Q}_{3}\right.\) and \(\left.\mathrm{Q}_{4}\right)\), ( \(\mathrm{Q}_{5}\) and \(\mathrm{Q}_{6}\) ) & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}\) & A & - & 1.5 & 5 & mV \\
\hline Input Offset Current, \(\mathrm{I}_{\mathrm{C}},\left(\mathrm{Q}_{1}\right.\) and \(\left.\mathrm{Q}_{2}\right),\left(\mathrm{Q}_{3}\right.\) and \(\left.\mathrm{Q}_{4}\right)\), ( \(Q_{5}\) and \(Q_{6}\) ) & \(\mathrm{I} C=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}\) & A & - & 5 & 25 & \(\mu \mathrm{A}\) \\
\hline Input Offset Voltage TC, \(\mathrm{dV}_{\mathrm{OS}} / \mathrm{dT}\), (Q1 and Q2, Q3 and \(Q_{4}, Q_{5}\) and \(Q_{6}\) ) & \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}\) & C & - & 0.5 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline Collector-to-Collector Leakage, ITRENCH-LEAKAGE & \(\Delta \mathrm{V}_{\text {TEST }}=5 \mathrm{~V}\) & B & - & 0.01 & - & nA \\
\hline
\end{tabular}

\section*{NOTE:}
2. Test Level: A. Production Tested, B. Typical or Guaranteed Limit Based on Characterization, C. Design Typical for Information Only.

HFA3101

\section*{PSPICE Model for a \(\mathbf{3 \mu m} \times 50 \mu \mathrm{~m}\) Transistor}
.Model NUHFARRY NPN
\begin{tabular}{lll}
\(+(\mathrm{IS}=1.840 \mathrm{E}-16\) & \(\mathrm{XTI}=3.000 \mathrm{E}+00\) & \(\mathrm{EG}=1.110 \mathrm{E}+00\) \\
\(+\mathrm{VAR}=4.500 \mathrm{E}+00\) & \(\mathrm{BF}=1.036 \mathrm{E}+02\) & \(\mathrm{ISE}=1.686 \mathrm{E}-19\) \\
\(+\mathrm{IKF}=5.400 \mathrm{E}-02\) & \(\mathrm{XTB}=0.000 \mathrm{E}+00\) & \(\mathrm{BR}=1.000 \mathrm{E}+01\) \\
\(+\mathrm{NC}=1.800 \mathrm{E}+00\) & \(\mathrm{IKR}=5.400 \mathrm{E}-02\) & \(\mathrm{RC}=1.140 \mathrm{E}+01\) \\
\(+\mathrm{MJC}=2.400 \mathrm{E}-01\) & \(\mathrm{VJC}=9.700 \mathrm{E}-01\) & \(\mathrm{FC}=5.000 \mathrm{E}-01\) \\
\(+\mathrm{MJE}=5.100 \mathrm{E}-01\) & \(\mathrm{VJE}=8.690 \mathrm{E}-01\) & \(\mathrm{TR}=4.000 \mathrm{E}-09\) \\
\(+\mathrm{ITF}=3.500 \mathrm{E}-02\) & \(\mathrm{XTF}=2.300 \mathrm{E}+00\) & \(\mathrm{VTF}=3.500 \mathrm{E}+00\) \\
\(+\mathrm{XCJC}=9.000 \mathrm{E}-01\) & \(\mathrm{CJS}=1.689 \mathrm{E}-13\) & \(\mathrm{VJS}=9.982 \mathrm{E}-01\) \\
\(+\mathrm{RE}=1.848 \mathrm{E}+00\) & \(\mathrm{RB}=5.007 \mathrm{E}+01\) & \(\mathrm{RBM}=1.974 \mathrm{E}+00\) \\
\(+\mathrm{AF}=1.000 \mathrm{E}+00)\) & &
\end{tabular}
\(V A F=7.200 E+01\)
\(N E=1.400 E+00\)
ISC \(=1.605 \mathrm{E}-14\)
\(C J C=3.980 E-13\)
\(C J E=2.400 E-13\)
\(T F=10.51 \mathrm{E}-12\)
\(P T F=0.000 E+00\)
\(M J S=0.000 E+00\)
\(K F=0.000 E+00\)

Common Emitter S-Parameters of \(3 \mu m \times 50 \mu m\) Transistor
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FREQ. (Hz) & \(\left|S_{11}\right|\) & PHASE \(\left(\mathrm{S}_{11}\right)\) & \(\left|S_{12}\right|\) & PHASE \(\left(S_{12}\right)\) & \(\left|S_{21}\right|\) & PHASE \(\left(\mathbf{S}_{\mathbf{2 1}}\right)\) & \(1 S_{22} 1\) & PHASE \(\left(\mathrm{S}_{22}\right)\) \\
\hline \multicolumn{9}{|l|}{\(\mathrm{V}_{\text {CE }}=5 \mathrm{~V}\) and \(\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}\)} \\
\hline \(1.0 \mathrm{E}+08\) & 0.83 & -11.78 & 1.41E-02 & 78.88 & 11.07 & 168.57 & 0.97 & -11.05 \\
\hline \(2.0 \mathrm{E}+08\) & 0.79 & -22.82 & \(2.69 \mathrm{E}-02\) & 68.63 & 10.51 & 157.89 & 0.93 & -21.35 \\
\hline \(3.0 E+08\) & 0.73 & -32.64 & 3.75E-02 & 59.58 & 9.75 & 148.44 & 0.86 & -30.44 \\
\hline \(4.0 \mathrm{E}+08\) & 0.67 & -41.08 & 4.57E-02 & 51.90 & 8.91 & 140.36 & 0.79 & -38.16 \\
\hline 5.0E+08 & 0.61 & -48.23 & 5.19E-02 & 45.50 & 8.10 & 133.56 & 0.73 & -44.59 \\
\hline \(6.0 \mathrm{E}+08\) & 0.55 & -54.27 & 5.65E-02 & 40.21 , & 7.35 & 127.88 & 0.67 & -49.93 \\
\hline \(7.0 \mathrm{E}+08\) & 0.50 & -59.41 & 6.00E-02 & 35.82 & 6.69 & 123.10 & 0.62 & -54.37 \\
\hline \(8.0 \mathrm{E}+08\) & 0.46 & -63.81 & 6.27E-02 & 32.15 & 6.11 & 119.04 & 0.57 & -58.10 \\
\hline \(9.0 \mathrm{E}+08\) & 0.42 & -67.63 & 6.47E-02 & 29.07 & 5.61 & 115.57 & 0.53 & -61.25 \\
\hline \(1.0 \mathrm{E}+09\) & 0.39 & -70.98 & 6.63E-02 & 26.45 & 5.17 & 112.55 & 0.50 & -63.96 \\
\hline 1.1E+09 & 0.36 & -73.95 & 6.75E-02 & 24.19 & 4.79 & 109.91 & 0.47 & -66.31 \\
\hline \(1.2 \mathrm{E}+09\) & 0.34 & -76.62 & 6.85E-02 & 22.24 & 4.45 & 107.57 & 0.45 & -68.37 \\
\hline \(1.3 \mathrm{E}+09\) & 0.32 & -79.04 & 6.93E-02 & 20.53 & 4.15 & 105.47 & 0.43 & -70.19 \\
\hline \(1.4 \mathrm{E}+09\) & 0.30 & -81.25 & 7.00E-02 & 19.02 & 3:89 & 103.57 & 0.41 & -71.83 \\
\hline \(1.5 \mathrm{E}+09\) & 0.28 & -83.28 & 7.05E-02 & 17.69 & 3.66 & 101.84 & 0.40 & -73.31 \\
\hline \(1.6 \mathrm{E}+09\) & 0.27 & -85.17 & 7.10E-02 & 16.49 & 3.45 & 100.26 & 0.39 & -74.66 \\
\hline \(1.7 \mathrm{E}+09\) & 0.25 & -86.92 & 7.13E-02 & 15.41 & 3.27 & 98.79 & 0.38 & -75.90 \\
\hline \(1.8 \mathrm{E}+09\) & 0.24 & -88.57 & 7.17E-02 & 14.43 & 3.10 & 97.43 & 0.37 & -77.05 \\
\hline \(1.9 \mathrm{E}+09\) & 0.23 & -90.12 & 7.19E-02 & 13.54 & 2.94 & 96.15 & 0.36 & -78.12 \\
\hline \(2.0 \mathrm{E}+09\) & 0.22 & -91.59 & 7.21E-02 & 12.73 & 2.80 & 94.95 & 0.35 & -79.13 \\
\hline 2.1E+09 & 0.21 & -92.98 & 7.23E-02 & 11.98 & 2.68 & 93.81 & 0.35 & -80.09 \\
\hline \(2.2 \mathrm{E}+09\) & 0.20 & -94.30 & 7.25E-02 & 11.29 & 2.56 & 92.73 & 0.34 & -80.99 \\
\hline 2.3E+09 & 0.20 & -95.57 & 7.27E-02 & 10.64 & 2.45 & 91.70 & 0.34 & -81.85 \\
\hline \(2.4 \mathrm{E}+09\) & 0.19 & -96.78 & 7.28E-02 & 10.05 & 2.35 & 90.72 & 0.33 & -82.68 \\
\hline \(2.5 \mathrm{E}+09\) & 0.18 & -97.93 & 7.29E-02 & 9.49 & 2.26 & 89.78 & 0.33 & -83.47 \\
\hline \(2.6 \mathrm{E}+09\) & 0.18 & -99.05 & 7.30E-02 & 8.96 & 2.18 & 88.87 & 0.33 & -84.23 \\
\hline
\end{tabular}

Common Emitter S-Parameters of \(3 \mu m \times 50 \mu m\) Transistor (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FREQ. (Hz) & \(\left|S_{11}\right|\) & PHASE \(\left(\mathrm{S}_{11}\right)\) & \(\mathrm{IS}_{12} \mathrm{l}\) & PHASE \(\left(\mathrm{S}_{12}\right)\) & \(\mathrm{IS}_{21} \mid\) & PHASE \(\left(\mathrm{S}_{21}\right)\) & \(1 S_{22} \mid\) & PHASE( \(\mathbf{S}_{22}\) ) \\
\hline 2.7E+09 & 0.17 & -100.12 & 7.31E-02 & 8.47 & 2.10 & 88.00 & 0.33 & -84.97 \\
\hline \(2.8 \mathrm{E}+09\) & 0.17 & -101.15 & 7.31E-02 & 8.01 & 2.02 & 87.15 & 0.33 & -85.68 \\
\hline \(2.9 \mathrm{E}+09\) & 0.16 & -102.15 & 7.32E-02 & 7.57 & 1.96 & 86.33 & 0.33 & -86.37 \\
\hline \(3.0 \mathrm{E}+09\) & 0.16 & -103.11 & 7.32E-02 & 7.16 & 1.89 & 85.54 & 0.33 & -87.05 \\
\hline
\end{tabular}
\(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}\) and \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(1.0 \mathrm{E}+08\) & 0.72 & -16.43 & \(1.27 \mathrm{E}-02\) & 75.41 & 15.12 & 165.22 & 0.95 & -14.26 \\
\hline \(2.0 \mathrm{E}+08\) & 0.67 & -31.26 & 2.34E-02 & 62.89 & 13.90 & 152.04 & 0.88 & -26.95 \\
\hline \(3.0 \mathrm{E}+08\) & 0.60 & -43.76 & 3.13E-02 & 52.58 & 12.39 & 141.18 & 0.79 & -37.31 \\
\hline 4.0E+08 & 0.53 & -54.00 & \(3.68 \mathrm{E}-02\) & 44.50 & 10.92 & 132.57 & 0.70 & -45.45 \\
\hline 5.0E+08 & 0.47 & -62.38 & 4.05E-02 & 38.23 & 9.62 & 125.78 & 0.63 & -51.77 \\
\hline \(6.0 \mathrm{E}+08\) & 0.42 & -69.35 & 4.31E-02 & 33.34 & 8.53 & 120.37 & 0.57 & -56.72 \\
\hline \(7.0 \mathrm{E}+08\) & 0.37 & -75.26 & 4.49E-02 & 29.47 & 7.62 & 116.00 & 0.51 & -60.65 \\
\hline \(8.0 \mathrm{E}+08\) & 0.34 & -80.36 & \(4.63 \mathrm{E}-02\) & 26.37 & 6.86 & 112.39 & 0.47 & -63.85 \\
\hline \(9.0 \mathrm{E}+08\) & 0.31 & -84.84 & 4.72E-02 & 23.84 & 6.22 & 109.36 & 0.44 & -66.49 \\
\hline \(1.0 \mathrm{E}+09\) & 0.29 & -88.83 & 4.80E-02 & 21.75 & 5.69 & 106.77 & 0.41 & -68.71 \\
\hline 1.1E+09 & 0.27 & -92.44 & 4.86E-02 & 20.00 & 5.23 & 104.51 & 0.39 & -70.62 \\
\hline \(1.2 \mathrm{E}+09\) & 0.25 & -95.73 & \(4.90 \mathrm{E}-02\) & 18.52 & 4.83 & 102.53 & 0.37 & -72.28 \\
\hline \(1.3 E+09\) & 0.24 & -98.75 & 4.94E-02 & 17.25 & 4.49 & 100.75 & 0.35 & -73.76 \\
\hline 1.4E+09 & 0.22 & -101.55 & 4.97E-02 & 16.15 & 4.19 & 99.16 & 0.34 & -75.08 \\
\hline 1.5E+09 & 0.21 & -104.15 & 4.99E-02 & 15.19 & 3.93 & 97.70 & 0.33 & -76.28 \\
\hline \(1.6 \mathrm{E}+09\) & 0.20 & -106.57 & 5.01E-02 & 14.34 & 3.70 & 96.36 & 0.32 & -77.38 \\
\hline 1.7E+09 & 0.20 & -108.85 & 5.03E-02 & 13.60 & 3.49 & 95.12 & 0.31 & -78.41 \\
\hline \(1.8 \mathrm{E}+09\) & 0.19 & -110.98 & 5.05E-02 & 12.94 & 3.30 & 93.96 & 0.31 & -79.37 \\
\hline \(1.9 \mathrm{E}+09\) & 0.18 & -113.00 & 5.06E-02 & 12.34 & 3.13 & 92.87 & 0.30 & -80.27 \\
\hline \(2.0 \mathrm{E}+09\) & 0.18 & -114.90 & 5.07E-02 & 11.81 & 2.98 & 91.85 & 0.30 & -81.13 \\
\hline 2.1E+09 & 0.17 & -116.69 & 5.08E-02 & 11.33 & 2.84 & 90.87 & 0.30 & -81.95 \\
\hline 2.2E+09 & 0.17 & -118.39 & 5.09E-02 & 10.89 & 2.72 & 89.94 & 0.29 & -82.74 \\
\hline \(2.3 E+09\) & 0.16 & -120.01 & 5.10E-02 & 10.50 & 2.60 & 89.06 & 0.29 & -83.50 \\
\hline \(2.4 \mathrm{E}+09\) & 0.16 & -121.54 & 5.11E-02 & 10.13 & 2.49 & 88.21 & 0.29 & -84.24 \\
\hline \(2.5 E+09\) & 0.16 & -122.99 & 5.12E-02 & 9.80 & 2.39 & 87.39 & 0.29 & -84.95 \\
\hline \(2.6 \mathrm{E}+09\) & 0.15 & -124.37 & 5.12E-02 & 9.49 & 2.30 & 86.60 & 0.29 & -85.64 \\
\hline 2.7E+09 & 0.15 & -125.69 & 5.13E-02 & 9.21 & 2.22 & 85.83 & 0.29 & -86.32 \\
\hline \(2.8 \mathrm{E}+09\) & 0.15 & -126.94 & 5.13E-02 & 8.95 & 2.14 & 85.09 & 0.29 & -86.98 \\
\hline \(2.9 \mathrm{E}+09\) & 0.15 & -128.14 & 5.14E-02 & 8.71 & 2.06 & 84.36 & 0.29 & -87.62 \\
\hline \(3.0 \mathrm{E}+09\) & 0.14 & -129.27 & 5.15E-02 & 8.49 & 1.99 & 83.66 & 0.29 & -88.25 \\
\hline
\end{tabular}

\section*{Application Information}

The HFA3101 array is a very versatile RF Building block. It has been carefully laid out to improve its matching properties, bringing the distortion due to area mismatches, thermal distribution, betas and ohmic resistances to a minimum.

The cell is equivalent to two differential stages built as two "variable transconductance multipliers" in parallel, with their outputs cross coupled. This configuration is well known in the industry as a Gilbert Cell which enables a four quadrant multiplication operation.
Due to the input dynamic range restrictions for the input levels at the upper quad transistors and lower tail transistors, the HFA3101 cell has restricted use as a linear four quadrant multiplier. However, its configuration is well suited for uses where its linear response is limited to one of the inputs only, as in modulators or mixer circuit applications. Examples of these circuits are up converters, down converters, frequency doublers and frequency/phase detectors.

Although linearization is still an issue for the lower pair input, emitter degeneration can be used to improve the dynamic range and consequent linearity. The HFA3101 has the lower pair emitters brought to external pins for this purpose.

In modulators applications, the upper quad transistors are used in a switching mode where the pairs \(Q_{1} / Q_{2}\) and \(Q_{3} / Q_{4}\) act as non saturating high speed switches. These switches are controlled by the signal often referred as the carrier input. The signal driving the lower pair \(Q_{5} / Q_{6}\) is commonly used as the modulating input. This signal can be linearly transferred to the output by either the use of low signal levels (Well below the thermal voltage of 26 mV ) or by the use of emitter degeneration. The chopped waveform appearing at the output of the upper pair \(\left(Q_{1}\right.\) to \(\left.Q_{4}\right)\) resembles a signal that is multiplied by +1 or -1 at every half cycle of the switching waveform.



FIGURE 1. TYPICAL MODULATOR SIGNALS

Figure 1 shows the typical input waveforms where the frequency of the carrier is higher than the modulating signal. The output waveform shows a typical suppressed carrier output of an up converter or an AM signal generator.
Carrier suppression capability is a property of the well known Balanced modulator in which the output must be zero when one or the other input (carrier or modulating signal) is equal to zero. however, at very high frequencies, high frequency mismatches and AC offsets are always present and the suppression capability is often degraded causing carrier and modulating feedthrough to be present.
Being a frequency translation circuit, the balanced modulator has the properties of translating the modulating frequency \(\left(\omega_{M}\right)\) to the carrier frequency ( \(\omega_{\mathrm{C}}\) ), generating the two side bands \(\omega_{U}=\omega_{C}+\omega_{M}\) and \(\omega_{L}=\omega_{C}-\omega_{M}\). Figure 2 shows some translating schemes being used by balanced mixers.


FIGURE 2A. UP CONVERSION OR SUPPRESSED CARRIER AM


FIGURE 2B. DOWN CONVERSION


FIGURE 2C. ZERO IF OR DIRECT DOWN CONVERSION FIGURE 2. MODULATOR FREQUENCY SPECTRUM

The use of the HFA3101 as modulators has several advantages when compared to its counterpart, the diode doublebalanced mixer, in which it is required to receive enough energy to drive the diodes into a switching mode and has also some requirements depending on the frequency range desired, of different transformers to suit specific frequency responses. The HFA3101 requires very low driving capabilities for its carrier input and its frequency response is limited by the \(\mathrm{F}_{\mathrm{T}}\) of the devices, the design and the layout techniques being utilized.

Up conversion uses, for UHF transmitters for example, can be performed by injecting a modulating input in the range of 45 MHz to 130 MHz that carries the information often called IF (Intermediate frequency) for up conversion (The IF signal has been previously modulated by some modulation scheme from a baseband signal of audio or digital information) and by injecting the signal of a local oscillator of a much higher frequency range from 600 MHz to 1.2 GHz into the carrier input. Using the example of a 850 MHz carrier input and a 70 MHz IF, the output spectrum will contain a upper side band of 920 MHz , a lower side band of 780 MHz and some of the carrier ( 850 MHz ) and IF \((70 \mathrm{MHz})\) feedthrough. A Band pass filter at the output can attenuate the undesirable signals and the 920 MHz signal can be routed to a transmitter RF power amplifier.

Down conversion, as the name implies, is the process used to translate a higher frequency signal to a lower frequency range conserving the modulation information contained in the higher frequency signal. One very common typical down conversion use for example, is for superheterodyne radio receivers where a translated lower frequency often referred as intermediate frequency (IF) is used for detection or demodulation of the baseband signal. Other application uses include down conversion for special filtering using frequency translation methods.

An oscillator referred as the local oscillator (LO) drives the upper quad transistors of the cell with a frequency called \(\omega_{\mathrm{C}}\). The lower pair is driven by the RF signal of frequency \(\omega_{\mathrm{M}}\) to be translated to a lower frequency IF. The spectrum of the IF output will contain the sum and difference of the frequencies \(\omega_{\mathrm{C}}\) and \(\omega_{\mathrm{M}}\). Notice that the difference can become negative when the frequency of the local oscillator is lower than the incoming frequency and the signal is folded back as in Figure 2.

NOTE: The acronyms RF, IF and LO are often interchanged in the industry depending on the application of the cell as mixers or modulators. The output of the cell also contains multiples of the frequency of the signal being fed to the upper quad pair of transistors because of the switching action equivalent to a square wave multiplication. In practice, however, not only the odd multiples in the case of a symmetrical square wave but some of the even multiples will also appear at the output spectrum due to the nature of the actual switching waveform and high frequency performance. By-products of the form \(\mathrm{M}^{*} \omega_{\mathrm{C}}+\mathrm{N}^{*} \omega_{M}\) with M and N being positive or negative integers are also expected to be present at the output and their levels are carefully examined and minimized by the design. This distortion is considered one of the figures of merit for a mixer application.

The process of frequency doubling is also understood by having the same signal being fed to both modulating and carrier ports. The output frequency will be the sum of \(\omega_{\mathrm{C}}\)
and \(\omega_{M}\) which is equivalent to the product of the input frequency by 2 and a zero Hz or DC frequency equivalent to the difference of \(\omega_{\mathrm{C}}\) and \(\omega_{\mathrm{M}}\). Figure 2 also shows one technique in use today where a process of down conversion named zero IF is made by using a local oscillator with a very pure signal frequency equal to the incoming RF frequency signal that contains a baseband (audio or digital signal) modulation. Although complex, the extraction or detection of the signal is straightforward.

Another useful application of the HFA3101 is its use as a high frequency phase detector where the two signals are fed to the carrier and modulation ports and the DC information is extracted from its output. In this case, both ports are utilized in a switching mode or overdrive, such that the process of multiplication takes place in a quasi digital form (2 square waves). One application of a phase detector is frequency or phase demodulation where the FM signal is split before the modulating and carrier ports. The lower input port is always 90 degrees apart from the carrier input signal through a high \(Q\) tuned phase shift network. The network, being tuned for a precise 90 degrees shift at a nominal frequency, will set the two signals 90 degrees apart and a quiescent output DC level will be present at the output. When the input signal is frequency modulated, the phase shift of the signal coming from the network will deviate from 90 degrees proportional to the frequency deviation of the FM signal and a DC variation at the output will take place, resembling the demodulated FM signal.
The HFA3101 could also be used for quadrature detection, (I/Q demodulation), AGC control with limited range, low level multiplication to name a few other applications.

\section*{Biasing}

Various biasing schemes can be employed for use with the HFA3101. Figure 3 shows the most common schemes. The biasing method is a choice of the designer when cost, thermal dependence, voltage overheads and DC balancing properties are taken into consideration.

Figure 3A shows the simplest form of biasing the HFA3101. The current source required for the lower pair is set by the voltage across the resistor \(R_{\text {BIAS }}\) less a \(V_{B E}\) drop of the lower transistor. To increase the overhead, collector resistors are substituted by an RF choke as the upper pair functions as a current source for AC signals. The bases of the upper and lower transistors are biased by \(R_{B 1}\) and \(R_{B 2}\) respectively. The voltage drop across the resistor \(\mathrm{R}_{2}\) must be higher than a \(V_{B E}\) with an increase sufficient to assure that the collector to base junctions of the lower pair are always reverse biased. Notice that this same voltage also sets the \(\mathrm{V}_{C E}\) of operation of the lower pair which is important for the optimization of gain. Resistors \(R_{E E}\) are nominally zero for applications where the input signals are well below 25 mV peak. Resistors \(\mathrm{R}_{\mathrm{EE}}\) are used to increase the linearity of the circuit upon higher level signals. The drop across \(R_{E E}\) must be taken into consideration when setting the current source value.

Figure 3B depicts the use of a common resistor sharing the current through the cell which is used for temperature compensation as the lower pair \(\mathrm{V}_{\mathrm{BE}}\) drop at the rate of \(-2 \mathrm{mV} /{ }^{\circ} \mathrm{C}\).

Figure 3C uses a split supply.


FIGURE 3A.


FIGURE 3B.


FIGURE 3C.

FIGURE 3.

Design Example: Down Converter Mixer
Figure 4 shows an example of a low cost mixer for cellular applications.


FIGURE 4. 3V DOWN CONVERTER APPLICATION
The design flexibility of the HFA3101 is demonstrated by a low cost, and low voltage mixer application at the 900 MHz range. The choice of good quality chip components with their self resonance outside the boundaries of the application are important. The design has been optimized to accommodate
the evaluation of the same layout for various quiescent current values and lower supply voltages. The choice of \(\mathrm{R}_{\mathrm{E}}\) became important for the available overhead and also for maintaining an \(A C\) true impedance for high frequency signals. The value of \(27 \Omega\) has been found to be the optimum minimum for the application. The input impedances of the HFA3101 base input ports are high enough to permit their termination with \(50 \Omega\) resistors. Notice the AC termination by decoupling the bias circuit through good quality capacitors.

The choice of the bias has been related to the available power supply voltage with the values of \(R_{1}, R_{2}\) and \(R_{\text {BIAS }}\) splitting the voltages for optimum \(\mathrm{V}_{\mathrm{CE}}\) values. For evaluation of the cell quiescent currents, the voltage at the emitter resistor \(R_{E}\) has been recorded.

The gain of the circuit, being a function of the load and the combined emitter resistances at high frequencies have been kept to a maximum by the use of an output match network. The high output impedance of the HFA3101 permits broadband match if so desired at \(50 \Omega\left(R_{L}=50 \Omega\right.\) to \(\left.2 k \Omega\right)\) as well as with tuned medium \(Q\) matching networks ( \(\mathrm{L}, \mathrm{T}\) etc.).

\section*{Stability}

The cell, by its nature, has very high gain and precautions must be taken to account for the combination of signal reflections, gain, layout and package parasitics. The rule of thumb of avoiding reflected waves must be observed. It is important to assure good matching between the mixer stage and its front end. Laboratory measurements have shown some susceptibility for oscillation at the upper quad transistors input. Any LO prefiltering has to be designed such the return loss is maintained within acceptable limits specially at high frequencies. Typical off the shelf filters exhibits very
poor return loss for signals outside the passband. It is suggested that a "pad" or a broadband resistive network be used to interface the LO port with a filter. The inclusion of a parallel 2 K resistor in the load decreases the gain slightly which improves the stability factor and also improves the distortion products (output intermodulation or 3rd order intercept). The employment of good RF techniques shall suffice the stability requirements.

\section*{Evaluation}

The evaluation of the HFA3101 in a mixer configuration is presented in Figures 6 to 11, Table 1 and Table 2. The layout is depicted in Figure 5.


FIGURE 5. UP/DOWN CONVERTER LAYOUT, 400\%; MATERIAL G10, 0.031

The output matching network has been designed from data taken at the output port at various test frequencies with the setup as in Table \(1 . \mathrm{S}_{22}\) characterization is enough to assure the calculation of \(L, T\) or transmission line matching networks.

TABLE 1. \(\mathrm{S}_{22}\) PARAMETERS FOR DOWN CONVERSION, \(L_{C H}=10 \mu \mathrm{H}\)
\begin{tabular}{|c|c|c|}
\hline FREQUENCY & RESISTANCE & REACTANCE \\
\hline 10 MHz & \(265 \Omega\) & \(615 \Omega\) \\
\hline 45 MHz & \(420 \Omega\) & \(-735 \Omega\) \\
\hline 75 MHz & \(122 \Omega\) & \(-432 \Omega\) \\
\hline 100 MHz & \(67 \Omega\) & \(-320 \Omega\) \\
\hline
\end{tabular}

TABLE 2. TYPICAL PARAMETERS FOR DOWN CONVERSION, \(L_{C H}=10 \mu \mathrm{H}\)
\begin{tabular}{|l|c|c|}
\hline PARAMETER & LO LEVEL & \begin{tabular}{c}
\(V_{\text {CC }}=3 \mathbf{N}\) \\
IBIAS \(=8 \mathrm{~mA}\)
\end{tabular} \\
\hline Power Gain & -6 dBm & 8.5 dB \\
\hline TOI Output & -6 dBm & 11.5 dBm \\
\hline NF SSB & -6 dBm & 14.5 dB \\
\hline Power Gain & 0 dBm & 8.6 dB \\
\hline TOI Output & 0 dBm & 11 dBm \\
\hline NF SSB & 0 dBm & 15 dB \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline PARAMETER & LO LEVEL & \[
\begin{gathered}
V_{C C}=4 V \\
I_{B I A S}=19 \mathrm{~mA}
\end{gathered}
\] \\
\hline Power Gain & -6dBm & 10 dB \\
\hline TOI Output & -6dBm & 13 dBm \\
\hline NF SSB & -6dBm & 20 dB \\
\hline Power Gain & 0 dBm & 11 dB \\
\hline TOI Output & OdBm & 12.5 dBm \\
\hline NF SSB & OdBm & 24 dB \\
\hline
\end{tabular}

TABLE 3. TYPICAL VALUES OF \(\mathrm{S}_{22}\) FOR THE OUTPUT PORT. \(\mathrm{L}_{\mathrm{CH}}=390 \mathrm{nH} \mathrm{I}_{\mathrm{BIAS}}=8 \mathrm{~mA}\) (SET UP OF FIGURE 11)
\begin{tabular}{|c|c|c|}
\hline FREQUENCY & RESISTANCE & REACTANCE \\
\hline 300 MHz & \(22 \Omega\) & \(-115 \Omega\) \\
\hline 600 MHz & \(7.5 \Omega\) & \(-43 \Omega\) \\
\hline 900 MHz & \(5.2 \Omega\) & \(-14 \Omega\) \\
\hline 1.1 GHz & \(3.9 \Omega\) & \(0 \Omega\) \\
\hline
\end{tabular}

TABLE 4. TYPICAL VALUES OF \(\mathbf{S 2 2} . \mathrm{L}_{\mathrm{CH}}=390 \mathrm{nH}, \mathrm{I}_{\mathrm{BIAS}}=18 \mathrm{~mA}\)
\begin{tabular}{|c|c|c|}
\hline FREQUENCY & RESISTANCE & REACTANCE \\
\hline 300 MHz & \(23.5 \Omega\) & \(-110 \Omega\) \\
\hline 600 MHz & \(10.3 \Omega\) & \(-39 \Omega\) \\
\hline 900 MHz & \(8.7 \Omega\) & \(-14 \Omega\) \\
\hline 1.1 GHz & \(8 \Omega\) & \(0 \Omega\) \\
\hline
\end{tabular}

\section*{Up Converter Example}

An application for a up converter as well as a frequency multiplier can be demonstrated using the same layout, with an addition of matching components. The output port \(\mathrm{S}_{22}\) must be characterized for proper matching procedures and depending on the frequency desired for the output, transmission line transformations can be designed. The return loss of the input ports maintain acceptable values in excess of 1.2 GHz which can permit the evaluation of a frequency doubler to 2.4 GHz if so desired.

The addition of the resistors \(R_{\text {EE }}\) can increase considerably the dynamic range of the up converter as demonstrated at Figure 13. The evaluation results depicted in Table 5 have been obtained by a triple stub tuner as a matching network for the output due to the layout constraints. Based on the evaluation results it is clear that the cell requires a higher Bias current for overall performance.


FIGURE 6. OUTPUT PORT \(\mathbf{S}_{\mathbf{2 2}}\) TEST SET UP


FIGURE 8. RF PORT RETURN LOSS


FIGURE 10. TYPICAL IN BAND OUTPUT SPECTRUM, \(\mathrm{V}_{\mathbf{C C}}=3 \mathrm{~V}\)


FIGURE 7. LO PORT RETURN LOSS


FIGURE 9. IF PORT RETURN LOSS, WITH MATCHING NETWORK


FIGURE 11. TYPICAL OUT OF BAND OUTPUT SPECTRUM

\section*{Design Example: Up Converter Mixer}

Figure 12 shows an example of an up converter for cellular applications.

\section*{Conclusion}

The HFA3101 offers the designer a number of choices and different applications as a powerful RF building block. Although isolation is degraded from the theoretical results for the cell due to the unbalanced, nondifferential input schemes being used, a number of advantages can be taken into consideration like cost, flexibility, low power and small outline when deciding for a design.

TABLE 5. TYPICAL PARAMETERS FOR AN UP CONVERTER EXAMPLE
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{|c|c|}
\hline PARAMETER & \begin{tabular}{c}
\(V_{C C}=3 V\) \\
\(I_{\text {BIAS }}=8 \mathrm{~mA}\)
\end{tabular} \\
\hline Power Gain, LO \(=-6 \mathrm{dBm}\) & 3 dB \\
\(I_{\text {BIAS }}=18 \mathrm{~mA}\)
\end{tabular}} \\
\hline Power Gain, LO \(=0 \mathrm{dBm}\) & 4 dB & 7.5 dBm \\
\hline RF Isolation, LO \(=0 \mathrm{dBm}\) & 15 dBc & 22 dBc \\
\hline LO Isolation, LO \(=0 \mathrm{dBm}\) & 28 dBc & 28 dBc \\
\hline
\end{tabular}


FIGURE 12.

EXPANDED SPECTRUM REE \(=4.7 \Omega\)


OUTPUT WITHOUT EMITTER DEGENERATION OUTPUT WITH EMITTER DEGENERATION REE \(=4.7 \Omega\)

\(\mathrm{RF}=76 \mathrm{MHz}\)
\(L O=825 \mathrm{MHz}\)
SPAN
50 MHz
 50 MHz

FIGURE 13. TYPICAL SPECTRUM PERFORMANCE

\section*{Typical Performance Curves for Transistors}


FIGURE 14. \(\mathrm{I}_{\mathrm{C}}\) vs \(\mathrm{V}_{\mathrm{CE}}\)


FIGURE 16. GUMMEL PLOT


FIGURE 15. \(\mathrm{H}_{\mathrm{FE}}\) vs IC


FIGURE 17. \(\mathrm{f}_{\mathrm{T}}\) vs \(\mathrm{I}_{\mathrm{C}}\)


FIGURE 18. GAIN AND NOISE FIGURE vs FREQUENĊY
NOTE: Figures 14 through 18 are only for \(Q_{5}\) and \(Q_{6}\).

\section*{Die Characteristics}

\section*{PROCESS}

UHF-1
DIE DIMENSIONS:
53 mils x 52 mils \(\times 14\) mils
\(1340 \mu \mathrm{~m} \times 1320 \mu \mathrm{~m} \times 355.6 \mu \mathrm{~m}\)
METALLIZATION:
Type: Metal 1: \(\operatorname{AlCu}(2 \%) / T i W\)
Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
Type: Metal 2: \(\mathrm{AlCu}(2 \%)\)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)

\section*{PASSIVATION:}

Type: Nitride
Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
SUBSTRATE POTENTIAL (Powered Up):
Floating

\section*{Metallization Mask Layout}

HFA3101


\section*{Features}
- High Gain-Bandwidth Product ( \(\mathrm{f}_{\mathrm{T}}\) ) . . . . . . . . . . . . 10GHz
- High Power Gain-Bandwidth Product . . . . . . . . 5GHz
- High Current Gain ( \(h_{\text {FE }}\) ) . . . . . . . . . . . . . . . . . . . . . . 70
- Noise Figure (Transistor) . . . . . . . . . . . . . . . . . . . 3.5dB
- Low Collector Leakage Current \(<0.01 n A\)
- Excellent \(h_{\text {FE }}\) and \(V_{B E}\) Matching
- Pin-to-Pin to UPA102G

\section*{Applications}
- Single Balanced Mixers
- Wide Band Amplification Stages

\section*{Description}

The HFA3102 is an all NPN transistor array configured as dual differential amplifiers with tail transistors. Based on Harris bonded wafer UHF-1 SOI process, this array achieves very high \(\mathrm{f}_{\mathrm{T}}(10 \mathrm{GHz})\) while maintaining excellent \(\mathrm{h}_{\mathrm{FE}}\) and \(\mathrm{V}_{\mathrm{BE}}\) matching characteristics over temperature. Collector leakage currents are maintained to under 0.01 nA .

\section*{Ordering Information}
\begin{tabular}{|l|c|l|c|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HFA3102B & -40 to 85 & 14 Ld SOIC & M14.15 \\
\hline HFA3102B96 & -40 to 85 & \begin{tabular}{l} 
14 Ld SOIC Tape \\
and Reel
\end{tabular} & M14.15 \\
\hline
\end{tabular}
- Differential Amplifiers
- Multipliers
- Automatic Gain Control Circuits
- Frequency Doublers, Tripplers
- Oscillators
- Constant Current Sources
- Wireless Communication Systems
- Radio and Satellite Communications
- Fiber Optic Signal Processing
- High Performance Instrumentation

\section*{Pinout/Functional Diagram}

```

Absolute Maximum Ratings }\mp@subsup{T}{A}{}=2\mp@subsup{5}{}{\circ}\textrm{C
VCEO Collector to Emitter Voltage . 8.0V
V CBO Collector to Base Voltage. 12.0V
VEBO Emitterr to Base Voltage. 12.0V
IC

```

\section*{Operating Conditions}

Temperature Range

\section*{Thermal Information}
\(\begin{array}{cc}\text { Thermal Resistance (Typical, Note 1) } & \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \\ \text { SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . } & 125\end{array}\)
Maximum Power Dissipation at \(75^{\circ} \mathrm{C}\)
Any One Transistor
. 0.25 W
Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . . . . \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (Plastic Package) . . . . . . . \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\)
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOLS} & \multirow[b]{2}{*}{PARAMETER} & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{TEST CONDITIONS}} & \multirow[t]{2}{*}{(NOTE 2) TEST LEVEL} & \multicolumn{3}{|c|}{ALL GRADES} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & & MIN & TYP & MAX & \\
\hline \(\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}\) & Collector-to-Base Breakdown Voltage \(\left(Q_{1}, Q_{2}, Q_{4}\right.\), and \(\left.Q_{5}\right)\) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{E}}=0\)} & A & 12 & 18 & - & V \\
\hline \(\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}\) & Collector-to-Emitter Breakdown Voltage ( \(Q_{1}\) thru \(Q_{6}\) ) & \multicolumn{2}{|l|}{\(I_{C}=100 \mu A, I_{B}=0\)} & A & 8 & 12 & - & V \\
\hline \(\mathrm{V}_{\text {(BR) EBO }}\) & Emitter-to-Base Breakdown Voltage ( \(Q_{3}\) and \(Q_{6}\) ) & \multicolumn{2}{|l|}{\(I_{E}=50 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\)} & A & 5.5 & 6 & - & v \\
\hline I'coo & Collector Cutoff Current \(\left(Q_{1}, Q_{2}, Q_{4}\right.\), and \(\left.Q_{5}\right)\) & \multicolumn{2}{|l|}{\(\mathrm{V}_{C B}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\)} & A & \(\bullet\) & 0.1 & 10 & nA \\
\hline IEBO & Emitter Cutoff Current ( \(Q_{3}\) and \(Q_{6}\) ) & \multicolumn{2}{|l|}{\(\mathrm{V}_{\mathrm{EB}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\)} & A & - & - & 100 & nA \\
\hline \(\mathrm{h}_{\text {FE }}\) & DC Current Gain ( \(Q_{1}\) thru \(Q_{6}\) ) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=3 \mathrm{~V}\)} & A & 40 & 70 & - & - \\
\hline \(\mathrm{C}_{\mathrm{CB}}\) & Collector-to-Base Capacitance & \multicolumn{2}{|l|}{\(\mathrm{V}_{C B}=5 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\)} & B & - & 300 & - & fF \\
\hline \(\mathrm{C}_{\mathrm{EB}}\) & Emitter-to-Base Capacitance & \multicolumn{2}{|l|}{\(V_{E B}=0, f=1 \mathrm{MHz}\)} & B & \(\bullet\) & 200 & - & fF \\
\hline \(\mathrm{f}_{\mathrm{T}}\) & Current Gain-Bandwidth Product & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\)} & c & - & 10 & - & GHz \\
\hline \(f_{\text {MAX }}\) & Power Gain-Bandwidth Product & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=5 \mathrm{~V}\)} & C & - & 5 & - & GHz \\
\hline \multirow[t]{2}{*}{\(\mathrm{G}_{\text {NFMIN }}\)} & \multirow[t]{2}{*}{Available Gain at Minimum Noise Figure} & \multirow[t]{2}{*}{\[
\begin{aligned}
& I_{C}=3 \mathrm{~mA}, \\
& V_{C E}=3 \mathrm{~V}
\end{aligned}
\]} & \(\mathrm{f}=0.5 \mathrm{GHz}\) & C & - & 17.5 & - & dB \\
\hline & & & \(\mathrm{f}=1.0 \mathrm{GHz}\) & C & - & 12.4 & - & dB \\
\hline \multirow[t]{2}{*}{\(\mathrm{NF}_{\text {MIN }}\)} & \multirow[t]{2}{*}{Minimum Noise Figure} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}, \\
& \mathrm{~V}_{\mathrm{CE}}=3 \mathrm{~V}
\end{aligned}
\]} & \(\mathrm{f}=0.5 \mathrm{GHz}\) & C & - & 1.8 & - & dB \\
\hline & & & \(\mathrm{f}=1.0 \mathrm{GHz}\) & C & - & 2.1 & - & dB \\
\hline \multirow[t]{2}{*}{\(\mathrm{NF}_{50 \Omega}\)} & \multirow[t]{2}{*}{\(50 \Omega\) Noise Figure} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{I}_{\mathrm{C}}=3 \mathrm{~mA}, \\
& \mathrm{~V}_{C E}=3 \mathrm{~V}
\end{aligned}
\]} & \(\mathrm{f}=0.5 \mathrm{GHz}\) & C & - & 3.3 & - & dB \\
\hline & & & \(f=1.0 \mathrm{GHz}\) & C & - & 3.5 & - & dB \\
\hline \(\mathrm{h}_{\text {FE1 } 1} / \mathrm{h}_{\text {FE2 }}\) & DC Current Gain Matching \(\left(Q_{1}\right.\) and \(Q_{2}, Q_{4}\) and \(Q_{5}\) ) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=3 \mathrm{~V}\)} & A & 0.9 & 1.0 & 1.1 & - \\
\hline \(\mathrm{v}_{\text {OS }}\) & Input Offset Voltage ( \(Q_{1}\) and \(Q_{2}\) ), ( \(Q_{4}\) and \(Q_{5}\) ) & \multicolumn{2}{|l|}{\(\mathrm{I}^{\prime}=10 \mathrm{~mA}, \mathrm{~V}_{\text {CE }}=3 \mathrm{~V}\)} & A & - & 1.5 & 5 & mV \\
\hline los & Input Offset Current ( \(Q_{1}\) and \(Q_{2}\) ), ( \(Q_{4}\) and \(Q_{5}\) ) & \multicolumn{2}{|l|}{\(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{C E}=3 \mathrm{~V}\)} & A & - & 5 & 25 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{dV}_{\text {OS }} / \mathrm{dT}\) & Input Offset Voltage TC ( \(Q_{1}\) and \(Q_{2}, Q_{4}\) and \(Q_{5}\) ) & \multicolumn{2}{|l|}{\(\mathrm{I}^{\prime} \mathrm{C}=10 \mathrm{~mA}, \mathrm{~V}_{C E}=3 \mathrm{~V}\)} & c & - & 0.5 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\) (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{SYMBOLS} & \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multirow[t]{2}{*}{(NOTE 2) TEST LEVEL} & \multicolumn{3}{|c|}{ALL GRADES} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & & MIN & TYP & MAX & \\
\hline ItrenchLEAKAGE & Collector-to-Collector Leakage (Pin 6, 7, 13, and 14) & \(\Delta \mathrm{V}_{\text {TEST }}=5 \mathrm{~V}\) & B & - & 0.01 & - & nA \\
\hline
\end{tabular}

NOTE:
2. Test Level: A. Production Tested; B. Typical or Guaranteed Limit Based on Characterization; C. Design Typical for Information Only
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{PSPICE Model for a Single Transistor} \\
\hline \multicolumn{4}{|l|}{. Model NUHFARRY NPN} \\
\hline + ( IS \(=1.840 \mathrm{E}-16\) & \(X T 1=3.000 \mathrm{E}+00\) & \(E G=1.110 \mathrm{E}+00\) & \(\mathrm{VAF}=7.200 \mathrm{E}+01\) \\
\hline + VAR \(=4.500 \mathrm{E}+00\) & \(\mathrm{BF}=1.036 \mathrm{E}+02\) & ISE= \(1.686 \mathrm{E}-19\) & \(\mathrm{NE}=1.400 \mathrm{E}+00\) \\
\hline + IKF= 5.400E-02 & XTB \(=0.000 \mathrm{E}+00\) & \(\mathrm{BR}=1.000 \mathrm{E}+01\) & ISC= \(1.605 \mathrm{E}-14\) \\
\hline + \(\mathrm{NC}=1.800 \mathrm{E}+00\) & IKR \(=5.400 \mathrm{E}-02\) & \(R C=1.140 \mathrm{E}+01\) & \(\mathrm{CJC}=3.980 \mathrm{E}-13\) \\
\hline + MJC= \(2.400 \mathrm{E}-01\) & VJC=9.700E-01 & \(\mathrm{FC}=5.000 \mathrm{E}-01\) & CJE \(=2.400 \mathrm{E}-13\) \\
\hline + MJE \(=5.100 \mathrm{E}-01\) & VJE= \(8.690 \mathrm{E}-01\) & TR \(=4.000 \mathrm{E}-09\) & \(\mathrm{TF}=10.51 \mathrm{E}-12\) \\
\hline + ITF= 3.500E-02 & XTF=2.300E+00 & VTF=3.500E+00 & PTF \(=0.000 \mathrm{E}+00\) \\
\hline + XCJC=9.000E-01 & \(1 \mathrm{CJS}=1.689 \mathrm{E}-13\) & \(\mathrm{VJS}=9.982 \mathrm{E}-01\) & MJS \(=0.000 \mathrm{E}+00\) \\
\hline + \(\mathrm{RE}=1.848 \mathrm{E}+00\) & \(\mathrm{RB}=5.007 \mathrm{E}+01\) & RBM \(=1.974 \mathrm{E}+00\) & \(\mathrm{KF}=0.000 \mathrm{E}+00\) \\
\hline + AF= 1.000E+00) & & & \\
\hline
\end{tabular}

Model NUHFARRY NPN

\section*{Common Emitter S-Parameters}
\(\mathbf{V}_{\mathbf{C E}}=5 \mathrm{~V}\) and \(\mathrm{I}_{\mathbf{C}}=5 \mathrm{~mA}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FREQ. (Hz) & \(\left|S_{11}\right|\) & PHASE \(\left(\mathrm{S}_{11}\right)\) & \(1 S_{12}\) | & PHASE \(\left(\mathrm{S}_{12}\right)\) & \(\left|S_{21}\right|\) & PHASE \(\left(\mathbf{S}_{\mathbf{2 1}}\right)\) & \(1 \mathrm{~S}_{22} \mathrm{l}\) & PHASE( \(\mathbf{S}_{22}\) ) \\
\hline 1.0E+08 & 0.833079 & -11.7873 & 1.418901E-02 & 78.8805 & 11.0722 & 168.576 & 0.976833 & -11.0509 \\
\hline \(2.0 \mathrm{E}+08\) & 0.791776 & -22.8290 & 2.695740E-02 & 68.6355 & 10.5177 & 157.897 & 0.930993 & -21.3586 \\
\hline \(3.0 \mathrm{E}+08\) & 0.734911 & -32.6450 & \(3.750029 \mathrm{E}-02\) & 59.5861 & 9.75379 & 148.443 & 0.868128 & -30.4451 \\
\hline \(4.0 \mathrm{E}+08\) & 0.672811 & -41.0871 & 4.572138E-02 & 51.9018 & 8.91866 & 140.361 & 0.799886 & -38.1641 \\
\hline \(5.0 \mathrm{E}+08\) & 0.612401 & -48.2370 & 5.194147E-02 & 45.5043 & 8.10511 & 133.569 & 0.734033 & -44.5998 \\
\hline \(6.0 \mathrm{E}+08\) & 0.557126 & -54.2780 & 5.659943E-02 & 40.2112 & 7.35944 & 127.882 & 0.674392 & -49.9370 \\
\hline \(7.0 \mathrm{E}+08\) & 0.508133 & -59.4102 & 6.009507E-02 & 35.8226 & 6.69712 & 123.102 & 0.622181 & -54.3777 \\
\hline \(8.0 \mathrm{E}+08\) & 0.465361 & -63.8123 & 6.274213E-02 & 32.1594 & 6.11750 & 119.047 & 0.577269 & -58.1022 \\
\hline \(9.0 \mathrm{E}+08\) & 0.428238 & -67.6313 & 6.477134E-02 & 29.0743 & 5.61303 & 115.571 & 0.538952 & -61.2587 \\
\hline \(1.0 \mathrm{E}+09\) & 0.396034 & -70.9834 & 6.634791E-02 & 26.4506 & 5.17405 & 112.556 & 0.506365 & -63.9647 \\
\hline 1.1E+09 & 0.368032 & -73.9591 & 6.758932E-02 & 24.1974 & 4.79104 & 109.913 & 0.478663 & -66.3116 \\
\hline \(1.2 \mathrm{E}+09\) & 0.343589 & -76.6285 & 6.857937E-02 & 22.2441 & 4.45546 & 107.570 & 0.455091 & -68.3702 \\
\hline \(1.3 \mathrm{E}+09\) & 0.322155 & -79.0462 & 6.937837E-02 & 20.5358 & 4.15997 & 105.472 & 0.435008 & -70.1958 \\
\hline \(1.4 \mathrm{E}+09\) & 0.303268 & -81.2548 & 7.003020E-02 & 19.0293 & 3.89845 & 103.576 & 0.417872 & -71.8314 \\
\hline \(1.5 \mathrm{E}+09\) & 0.286542 & -83.2880 & 7.056718E-02 & 17.6908 & 3.66577 & 101.849 & 0.403238 & -73.3108 \\
\hline \(1.6 \mathrm{E}+09\) & 0.271660 & -85.1723 & 7.101343E-02 & 16.4930 & 3.45770 & 100.262 & 0.390735 & -74.6609 \\
\hline \(1.7 \mathrm{E}+09\) & 0.258359 & -86.9292 & 7.138717E-02 & 15.4143 & 3.27074 & 98.7956 & 0.380056 & -75.9030 \\
\hline \(1.8 \mathrm{E}+09\) & 0.246420 & -88.5759 & 7.170231E-02 & 14.4370 & 3.10197 & 97.4307 & 0.370947 & -77.0544 \\
\hline \(1.9 \mathrm{E}+09\) & 0.235659 & -90.1265 & 7.196964E-02 & 13.5469 & 2.94897 & 96.1533 & 0.363195 & -78.1288 \\
\hline \(2.0 \mathrm{E}+09\) & 0.225923 & -91.5925 & 7.219757E-02 & 12.7319 & 2.80969 & 94.9515 & 0.356623 & -79.1377 \\
\hline 2.1E+09 & 0.217085 & -92.9836 & 7.239274E-02 & 11.9824 & 2.68243 & 93.8156 & 0.351081 & -80.0903 \\
\hline \(2.2 \mathrm{E}+09\) & 0.209034 & -94.3076 & 7.256046E-02 & 11.2901 & 2.56573 & 92.7373 & 0.346442 & -80.9942 \\
\hline 2.3E+09 & 0.201678 & -95.5713 & 7.270498E-02 & 10.6480 & 2.45837 & 91.7097 & 0.342599 & -81.8557 \\
\hline \(2.4 \mathrm{E}+09\) & 0.194939 & -96.7803 & 7.282977E-02 & 10.0503 & 2.35928 & 90.7271 & 0.339458 & -82.6802 \\
\hline 2.5E+09 & 0.188747 & -97.9395 & 7.293764E-02 & 9.49212 & 2.26756 & 89.7844 & 0.336942 & -83.4719 \\
\hline \(2.6 \mathrm{E}+09\) & 0.183044 & -99.0530 & 7.303093E-02 & 8.96908 & 2.18243 & 88.8775 & 0.334982 & -84.2347 \\
\hline 2.7E+09 & 0.177780 & -100.124 & 7.311157E-02 & 8.47753 & 2.10322 & 88.0026 & 0.333518 & -84.9716 \\
\hline \(2.8 \mathrm{E}+09\) & 0.172909 & -101.156 & 7.318117E-02 & 8.01430 & 2.02934 & 87.1565 & 0.332499 & -85.6853 \\
\hline \(2.9 \mathrm{E}+09\) & 0.168394 & -102.152 & 7.324107E-02 & 7.57661 & 1.96027 & 86.3366 & 0.331879 & -86.3781 \\
\hline \(3.0 \mathrm{E}+09\) & 0.164200 & -103.114 & 7.329243E-02 & 7.16204 & 1.89556 & 85.5404 & 0.331620 & -87.0518 \\
\hline
\end{tabular}
\(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}\) and \(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline FREQ. (Hz) & \(\mathrm{IS}_{11} \mathrm{l}\) & PHASE \(\left(\mathrm{S}_{11}\right)\) & \(\mathbf{I S}_{12} \mid\) & PHASE \(\left(\mathrm{S}_{12}\right)\) & \(\left|S_{21}\right|\) & PHASE( \(\mathbf{S}_{\mathbf{2 1}}\) ) & \(\mathbf{I S ~}_{22}{ }^{\text {l }}\) & PHASE( \(\mathrm{S}_{22}\) ) \\
\hline 1.0E+08 & 0.728106 & -16.4319 & 1.273920E-02 & 75.4177 & 15.1273 & 165.227 & 0.959692 & -14.2688 \\
\hline \(2.0 \mathrm{E}+08\) & 0.670836 & -31.2669 & \(2.342300 \mathrm{E}-02\) & 62.8941 & 13.9061 & 152.045 & 0.886232 & -26.9507 \\
\hline \(3.0 \mathrm{E}+08\) & 0.600268 & -43.7663 & \(3.132521 \mathrm{E}-02\) & 52.5891 & 12.3970 & 141.185 & 0.796016 & -37.3172 \\
\hline \(4.0 \mathrm{E}+08\) & 0.531768 & -54.0028 & \(3.681579 \mathrm{E}-02\) & 44.5019 & 10.9257 & 132.570 & 0.708892 & -45.4503 \\
\hline \(5.0 \mathrm{E}+08\) & 0.471795 & -62.3880 & \(4.057046 \mathrm{E}-02\) & 38.2308 & 9.62995 & 125.781 & 0.633146 & -51.7704 \\
\hline \(6.0 \mathrm{E}+08\) & 0.421506 & -69.3569 & \(4.316292 \mathrm{E}-02\) & 33.3405 & 8.53559 & 120.378 & 0.570209 & -56.7206 \\
\hline \(7.0 \mathrm{E}+08\) & 0.379961 & -75.2612 & \(4.499071 \mathrm{E}-02\) & 29.4764 & 7.62375 & 116.005 & 0.518803 & -60.6598 \\
\hline \(8.0 \mathrm{E}+08\) & 0.345693 & -80.3608 & \(4.631140 \mathrm{E}-02\) & 26.3755 & 6.86423 & 112.398 & 0.476987 & -63.8540 \\
\hline \(9.0 \mathrm{E}+08\) & 0.317301 & -84.8420 & \(4.728948 \mathrm{E}-02\) & 23.8481 & 6.22797 & 109.365 & 0.442915 & -66.4948 \\
\hline \(1.0 \mathrm{E}+09\) & 0.293608 & -88.8381 & \(4.803091 \mathrm{E}-02\) & 21.7581 & 5.69057 & 106.771 & 0.415044 & -68.7193 \\
\hline \(1.1 \mathrm{E}+09\) & 0.273680 & -92.4452 & \(4.860515 \mathrm{E}-02\) & 20.0070 & 5.23257 & 104.518 & 0.392146 & -70.6269 \\
\hline 1.2E+09 & 0.256782 & -95.7336 & \(4.905871 \mathrm{E}-02\) & 18.5224 & 4.83873 & 102.532 & 0.373261 & -72.2899 \\
\hline \(1.3 \mathrm{E}+09\) & 0.242344 & -98.7555 & \(4.942344 \mathrm{E}-02\) & 17.2505 & 4.49716 & 100.759 & 0.357640 & -73.7620 \\
\hline \(1.4 \mathrm{E}+09\) & 0.229918 & -101.551 & \(4.972158 \mathrm{E}-02\) & 16.1506 & 4.19854 & 99.1602 & 0.344698 & -75.0832 \\
\hline \(1.5 \mathrm{E}+09\) & 0.219152 & -104.150 & \(4.996903 \mathrm{E}-02\) & 15.1915 & 3.93554 & 97.7028 & 0.333974 & -76.2840 \\
\hline \(1.6 \mathrm{E}+09\) & 0.209767 & -106.577 & \(5.017730 \mathrm{E}-02\) & 14.3490 & 3.70234 & 96.3629 & 0.325102 & -77.3877 \\
\hline \(1.7 \mathrm{E}+09\) & 0.201539 & -108.851 & \(5.035491 \mathrm{E}-02\) & 13.6040 & 3.49428 & 95.1215 & 0.317789 & -78.4122 \\
\hline \(1.8 \mathrm{E}+09\) & 0.194288 & -110.988 & \(5.050825 \mathrm{E}-02\) & 12.9411 & 3.30758 & 93.9633 & 0.311800 & -79.3715 \\
\hline \(1.9 \mathrm{E}+09\) & 0.187867 & -113.001 & \(5.064218 \mathrm{E}-02\) & 12.3482 & 3.13919 & 92.8761 & 0.306940 & -80.2768 \\
\hline 2.0E+09 & 0.182157 & -114.902 & 5.076045E-02 & 11.8151 & 2.98658 & 91.8500 & 0.303051 & -81.1365 \\
\hline 2.1E+09 & 0.177056 & -116.698 & \(5.086598 \mathrm{E}-02\) & 11.3338 & 2.84766 & 90.8766 & 0.300003 & -81.9578 \\
\hline 2.2E+09 & 0.172484 & -118.399 & 5.096107E-02 & 10.8974 & 2.72068 & 89.9494 & 0.297686 & -82.7460 \\
\hline 2.3E+09 & 0.168370 & -120.012 & \(5.104755 \mathrm{E}-02\) & 10.5001 & 2.60420 & 89.0626 & 0.296007 & -83.5057 \\
\hline \(2.4 \mathrm{E}+09\) & 0.164656 & -121.542 & \(5.112690 \mathrm{E}-02\) & 10.1373 & 2.49697 & 88.2115 & 0.294889 & -84.2405 \\
\hline \(2.5 \mathrm{E}+09\) & 0.161293 & -122.996 & \(5.120031 \mathrm{E}-02\) & 9.80479 & 2.39793 & 87.3920 & 0.294266 & -84.9533 \\
\hline \(2.6 \mathrm{E}+09\) & 0.158239 & -124.378 & \(5.126876 \mathrm{E}-02\) & 9.49919 & 2.30619 & 86.6007 & 0.294081 & -85.6466 \\
\hline \(2.7 \mathrm{E}+09\) & 0.155458 & -125.694 & \(5.133304 \mathrm{E}-02\) & 9.21750 & 2.22098 & 85.8348 & 0.294285 & -86.3223 \\
\hline \(2.8 \mathrm{E}+09\) & 0.152919 & -126.947 & \(5.139381 \mathrm{E}-02\) & 8.95716 & 2.14162 & 85.0916 & 0.294836 & -86.9822 \\
\hline \(2.9 \mathrm{E}+09\) & 0.150595 & -128.140 & \(5.145164 \mathrm{E}-02\) & 8.71595 & 2.06753 & 84.3690 & 0.295696 & -87.6275 \\
\hline \(3.0 \mathrm{E}+09\) & 0.148463 & -129.279 & \(5.150697 \mathrm{E}-02\) & 8.49194 & 1.99820 & 83.6651 & 0.296834 & -88.2595 \\
\hline
\end{tabular}

\section*{Typical Performance Curves}


FIGURE 1. IC vs \(\mathrm{V}_{\mathrm{CE}}\)


FIGURE 3. GUMMEL PLOT


FIGURE 5. GAIN AND NOISE FIGURE vs FREQUENCY


FIGURE 2. hfe vs ic


FIGURE 4. \(\mathbf{f}_{\mathrm{T}}\) vs Ic


FIGURE 6. \(\mathrm{P}_{1 \mathrm{~dB}}\) AND 3RD ORDER INTERCEPT

\section*{Die Characteristics}

PROCESS:
UHF-1
DIE DIMENSIONS:
53 mils \(\times 52\) mils \(\times 14\) mils \(1340 \mu \mathrm{~m} \times 1320 \mu \mathrm{~m} \times 355.6 \mu \mathrm{~m}\)

METALIZATION:
Type: Metal 1: \(\mathrm{AlCu}(2 \%) / T i W\)
Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
Type: Metal 2: \(\mathrm{AlCu}(2 \%)\)
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)

PASSIVATION:
Type: Nitride Thickness: \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)

SUBSTRATE POTENTIAL (Powered Up):
Floating

Metallization Mask Layout


Pad numbers correspond to the 14 pin SOIC pinout.

\section*{LINEAR \(\quad 8\)}

\section*{SPECIAL ANALOG CIRCUITS}

\section*{PAGE}

\section*{SPECIAL ANALOG CIRCUIT DATA SHEETS}

CA555, CA555C,
LM555, LM555C
CA1391, CA1394
CA2111A
CA3012
CA3088E
CA3089
CA3126
CA3154
CA3189
CA3224E
CA3256
CD22402
HA-2546
HA-2547
HA-2556
HA-2557
HA7210, HA7211
HFA5250
HFA5251
HFA5253
ICL8013
ICL8038
ICM7242
ICM7555, ICM7556

Timers for Timing Delays and Oscillator Application in Commercial, Industrial and Military Equipment8-3
TV Horizontal Processors ..... 8-9
FM IF Amplifier-Limiter and Quadrature Detector ..... 8-13
FM IF Wideband Amplifier. ..... 8-18
AM Receiver Subsystem and General-Purpose Amplifier Array ..... 8-23
FM IF System ..... 8-27
TV Chroma Processor ..... 8-33
TV Sync/AGC/Horizontal Signal Processor ..... 8-42
FM IF System ..... 8-48
Automatic Picture Tube Bias Control Circuit ..... 8-56
25MHz, BiMOS Analog Video Switch and Amplifier ..... 8-61
Sync Generator for TV Applications and Video Processing Systems ..... 8-62
30MHz, Voltage Output, Two Quadrant Analog Multiplier ..... 8-73
100 MHz , Two Quadrant, Current Output, Analog Multiplier ..... 8-87
57 MHz , Wideband, Four Quadrant, Voltage Output Analog Multiplier ..... 8-88
130 MHz , Four Quadrant, Current Output Analog Multiplier ..... 8-102
10 kHz to 10 MHz , Low Power Crystal Oscillator ..... 8-103
500 MHz , Ultra High Speed Monolithic Pin Driver ..... 8-116
800MHz Monolithic Pin Driver ..... 8-117
800 MHz , Ultra High-Speed Monolithic Pin Driver ..... 8-128
1 MHz , Four Quadrant Analog Multiplier ..... 8-145
Precision Waveform Generator/Voltage Controlled Oscillator ..... 8-153
Long Range Fixed Timer ..... 8-163
General Purpose Timers ..... 8-170

\section*{Features}
- Accurate Timing From Microseconds Through Hours
- Astable and Monostable Operation
- Adjustable Duty Cycle
- Output Capable of Sourcing or Sinking up to 200mA
- Output Capable of Driving TTL Devices
- Normally ON and OFF Outputs
- High Temperature Stability . . . . . . . . . . . . . . \(0.005 \% /{ }^{\circ} \mathrm{C}\)
- Directly Interchangeable with SE555, NE555, MC1555, and MC1455

\section*{Applications}
- Precision Timing
- Sequential Timing
- Time Delay Generation
- Pulse Generation
- Pulse Detector
- Pulse Width and Position Modulation

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|}
\hline PART NUMBER (BRAND) & TEMP. RANGE ( \({ }^{\circ} \mathrm{C}\) ) & PACKAGE & PKG. NO. \\
\hline CA0555E & -55 to 125 & 8 Ld PDIP & E8.3 \\
\hline CA0555M (555) & -55 to 125 & 8 Ld SOIC & M8.15 \\
\hline CA0555M96 (555) & -55 to 125 & 8 Ld SOIC \(\dagger\) & M8.15 \\
\hline CA0555T & -55 to 125 & 8 Pin Metal Can & T8.C \\
\hline CA0555CE & 0 to 70 & 8 Ld PDIP & E8.3 \\
\hline CA0555CM (555C) & 0 to 70 & 8 Ld SOIC & M8.15 \\
\hline CA0555CM96 (555C) & 0 to 70 & 8 Ld SOIC \(\dagger\) & M8.15 \\
\hline CA0555CT & 0 to 70 & 8 Pin Metal Can & T8.C \\
\hline LM555N & 0 to 70 & 8 Ld PDIP & E8.3 \\
\hline LM555CN & 0 to 70 & 8 Ld PDIP & E8.3 \\
\hline
\end{tabular}

NOTE: † Denotes Tape and Reel

\section*{Description}

The CA555 and CA555C are highly stable timers for use in precision timing and oscillator applications. As timers, these monolithic integrated circuits are capable of producing accurate time delays for periods ranging from microseconds through hours. These devices are also useful for astable oscillator operation and can maintain an accurately controlled free running frequency and duty cycle with only two external resistors and one capacitor.

The circuits of the CA555 and CA555C may be triggered by the falling edge of the waveform signal, and the output of these circuits can source or sink up to a 200 mA current or drive TTL circuits.

These types are direct replacements for industry types in packages with similar terminal arrangements e.g. SE555 and NE555, MC1555 and MC1455, respectively. The CA555 type circuits are intended for applications requiring premium electrical performance. The CA555C type circuits are intended for applications requiring less stringent electrical characteristics.

Pinouts
CA555, CA555C (PDIP, SOIC) LM555, LM555C (PDIP) TOP VIEW


CA555, CA555C (METAL CAN) TOP VIEW


Functional Block Diagram


\section*{Absolute Maximum Ratings}

DC Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V

\section*{Operating Conditions}

Temperature Range


\section*{Thermal Information}

Maximum Junction Temperature (Hermetic Package) . . . . . . . . \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (Plastic Package) . . . . . . . \(150^{\circ} \mathrm{C}\) Maximum Storage Temperature Range . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\) (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}\) to 15 V Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{CA555, LM555} & \multicolumn{3}{|l|}{CA555C, LM555C} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline DC Supply Voltage & V+ & & 4.5 & - & 18 & 4.5 & - & 16 & V \\
\hline \multirow[t]{2}{*}{DC Supply Current (Low State), (Note 2)} & \multirow[t]{2}{*}{\(1+\)} & \(\mathrm{V}+=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty\) & - & 3 & 5 & - & 3 & 6 & mA \\
\hline & & \(\mathrm{V}+=15 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty\) & - & 10 & 12 & - & 10 & 15 & mA \\
\hline Threshold Voltage & \(\mathrm{V}_{\text {TH }}\) & & - & \((2 / 3) \mathrm{V}+\) & - & - & \((2 / 3) \mathrm{V}+\) & - & V \\
\hline \multirow[t]{2}{*}{Trigger Voltage} & \multirow[t]{2}{*}{} & \(\mathrm{V}+=5 \mathrm{~V}\) & 1.45 & 1.67 & 1.9 & - & 1.67 & - & V \\
\hline & & \(\mathrm{V}+=15 \mathrm{~V}\) & 4.8 & 5 & 5.2 & - & 5 & - & V \\
\hline Trigger Current & & & - & 0.5 & - & - & 0.5 & - & \(\mu \mathrm{A}\) \\
\hline Threshold Current (Note 3) & \({ }^{\text {ITH }}\) & & - & 0.1 & 0.25 & - & 0.1 & 0.25 & \(\mu \mathrm{A}\) \\
\hline Reset Voltage & & & 0.4 & 0.7 & 1.0 & 0.4 & 0.7 & 1.0 & V \\
\hline Reset Current & & & - & 0.1 & - & - & 0.1 & - & mA \\
\hline \multirow[t]{2}{*}{Control Voltage Level} & & \(\mathrm{V}+=5 \mathrm{~V}\) & 2.9 & 3.33 & 3.8 & 2.6 & 3.33 & 4 & V \\
\hline & & \(\mathrm{V}+=15 \mathrm{~V}\) & 9.6 & 10 & 10.4 & 9 & 10 & 11 & V \\
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
Output Voltage \\
Low State
\end{tabular}} & \multirow[t]{6}{*}{\(\mathrm{V}_{\mathrm{OL}}\)} & \(\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=5 \mathrm{~mA}\) & - & - & - & - & 0.25 & 0.35 & V \\
\hline & & \(\mathrm{I}_{\text {SINK }}=8 \mathrm{~mA}\) & - & 0.1 & 0.25 & - & - & - & V \\
\hline & & \(\mathrm{V}+=15 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}\) & - & 0.1 & 0.15 & - & 0.1 & 0.25 & V \\
\hline & & \(\mathrm{I}_{\text {SINK }}=50 \mathrm{~mA}\) & - & 0.4 & 0.5 & - & 0.4 & 0.75 & V \\
\hline & & \({ }^{\text {SINK }}\) = 100 mA & - & 2.0 & 2.2 & - & 2.0 & 2.5 & V \\
\hline & & \(\mathrm{I}_{\text {SINK }}=200 \mathrm{~mA}\) & - & 2.5 & - & - & 2.5 & - & V \\
\hline \multirow[t]{3}{*}{Output Voltage High State} & \multirow[t]{3}{*}{\(\mathrm{V}_{\mathrm{OH}}\)} & \(\mathrm{V}+=5 \mathrm{~V}\), \(\mathrm{I}_{\text {SOURCE }}=100 \mathrm{~mA}\) & 3.0 & 3.3 & - & 2.75 & 3.3 & - & V \\
\hline & & \(\mathrm{V}+=15 \mathrm{~V}\), \(\mathrm{I}_{\text {SOURCE }}=100 \mathrm{~mA}\) & 13.0 & 13.3 & - & 12.75 & 13.3 & - & V \\
\hline & & \(I_{\text {SOURCE }}=200 \mathrm{~mA}\) & - & 12.5 & - & - & 12.5 & - & V \\
\hline Timing Error (Monostable) & \multirow[t]{3}{*}{} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \mathrm{R}_{1}, \mathrm{R}_{2}=1 \mathrm{k} \Omega \text { to } 100 \mathrm{k} \Omega, \\
& \mathrm{C}=0.1 \mu \mathrm{~F} \\
& \text { Tested at } \mathrm{V}+=5 \mathrm{~V}, \mathrm{~V}_{+}=15 \mathrm{~V}
\end{aligned}
\]} & - & 0.5 & 2 & - & 1 & - & \% \\
\hline Frequency Drift with Temperature & & & - & 30 & 100 & - & 50 & - & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline Drift with Supply Voltage & & & - & 0.05 & 0.2 & - & 0.1 & - & \% N \\
\hline
\end{tabular}

CA555, CA555C, LM555, LM555C
Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}+=5 \mathrm{~V}\) to 15 V Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{CA555, LM555} & \multicolumn{3}{|l|}{CA555C, LM555C} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Output Rise Time & \(t_{R}\) & & - & 100 & - & - & 100 & - & ns \\
\hline Output Fall Time & \({ }^{\text {t }}\) F & & - & 100 & - & - & 100 & - & ns \\
\hline
\end{tabular}

NOTES:
2. When the output is in a high state, the DC supply current is typically 1 mA less than the low state value.
3. The threshold current will determine the sum of the values of \(R_{1}\) and \(R_{2}\) to be used in Figure 4 (astable operation); the maximum total \(R_{1}+R_{2}=20 \mathrm{M} \Omega\).

\section*{Schematic Diagram}


NOTE: Resistance values are in ohms.

\section*{Typical Applications}

\section*{Reset Timer (Monostable Operation)}

Figure 1 shows the CA555 connected as a reset timer. In this mode of operation capacitor \(\mathrm{C}_{\mathrm{T}}\) is initially held discharged by a transistor on the integrated circuit. Upon closing the "start" switch, or applying a negative trigger pulse to terminal 2, the integral timer flip-flop is "set" and releases the short circuit across \(C_{T}\) which drives the output voltage "high" (relay ener-
gized). The action allows the voltage across the capacitor to increase exponentially with the constant \(t=\mathrm{R}_{1} \mathrm{C}_{\mathrm{T}}\). When the voltage across the capacitor equals \(2 / 3 \mathrm{~V}+\), the comparator resets the flip-flop which in turn discharges the capacitor rapidly and drives the output to its low state.


NOTE: All resistance values are in ohms.

\section*{FIGURE 1. RESET TIMER (MONOSTABLE OPERATION)}

Since the charge rate and threshold level of the comparator are both directly proportional to \(\mathrm{V}+\), the timing interval is relatively independent of supply voltage variations. Typically, the timing varies only \(0.05 \%\) for a 1 V change in \(\mathrm{V}_{+}\).
Applying a negative pulse simultaneously to the reset terminal (4) and the trigger terminal (2) during the timing cycle discharges \(\mathrm{C}_{\mathrm{T}}\) and causes the timing cycle to restart. Momentarily closing only the reset switch during the timing interval discharges \(\mathrm{C}_{\mathrm{T}}\), but the timing cycle does not restart.
Figure 2 shows the typical waveforms generated during this mode of operation, and Figure 3 gives the family of time delay curves with variations in \(\mathrm{R}_{1}\) and \(\mathrm{C}_{\mathrm{T}}\).


FIGURE 2. TYPICAL WAVEFORMS FOR RESET TIMER


FIGURE 3. TIME DELAY vs RESISTANCE AND CAPACITANCE

\section*{Repeat Cycle Timer (Astable Operation)}

Figure 4 shows the CA555 connected as a repeat cycle timer. In this mode of operation, the total period is a function of both \(R_{1}\) and \(R_{2}\).


FIGURE 4. REPEAT CYCLE TIMER (ASTABLE OPERATION)
\[
\begin{aligned}
T & =0.693\left(R_{1}+2 R_{2}\right) C_{T}=t_{1}+t_{2} \\
\text { where } t_{1} & =0.693\left(R_{1}+R_{2}\right) C_{T} \\
\text { and } t_{2} & =0.693\left(R_{2}\right) C_{T}
\end{aligned}
\]
the duty cycle is:
\(\frac{t_{1}}{t_{1}+t_{2}}=\frac{R_{1}+R_{2}}{R_{1}+2 R_{2}}\)

Typical waveforms generated during this mode of operation are shown in Figure 5. Figure 6 gives the family of curves of free running frequency with variations in the value of \(\left(R_{1}+2 R_{2}\right)\) and \(C_{T}\).


Top Trace: Output voltage ( \(2 \mathrm{~V} / \mathrm{Div}\). and \(0.5 \mathrm{~ms} /\) Div.) Bottom Trace: Capacitor voltage ( \(1 \mathrm{~V} / \mathrm{Div}\). and \(0.5 \mathrm{~ms} /\) Div.)

FIGURE 5. TYPICAL WAVEFORMS FOR REPEAT CYCLE TIMER


FIGURE 6. FREE RUNNING FREQUENCY OF REPEAT CYCLE TIMER WITH VARIATION IN CAPACITANCE AND RESISTANCE

\section*{Typical Performance Curves}


MINIMUM TRIGGER (PULSE) VOLTAGE ( \(\mathrm{x} \mathrm{V}_{+}\)) (NOTE)
NOTE: Where \(x\) is the decimal multiplier of the supply voltage.
FIGURE 7. MINIMUM PULSE WIDTH vs MINIMUM TRIGGER VOLTAGE


FIGURE 9. OUTPUT VOLTAGE DROP (HIGH STATE) vs SOURCE CURRENT


FIGURE 8. SUPPLY CURRENT vs SUPPLY VOLTAGE


FIGURE 10. OUTPUT VOLTAGE LOW STATE vs SINK CURRENT

Typical Performance Curves (Continued)


FIGURE 11. OUTPUT VOLTAGE LOW STATE vs SINK CURRENT


FIGURE 13. DELAY TIME vs SUPPLY VOLTAGE


FIGURE 12. OUTPUT VOLTAGE LOW STATE vs SINK CURRENT


FIGURE 14. DELAY TIME vs TEMPERATURE


NOTE: Where x is the decimal multiplier of the supply voltage.
FIGURE 15. PROPAGATION DELAY TIME vs TRIGGER VOLTAGE

\section*{CA1391, CA1394}

\section*{Features}
- CA1391E - Positive Horizontal Sawtooth Input
- CA1394E - Negative Horizontal Sawtooth Input
- Internal Shunt Regulator
- Linear Balanced Phase Detector
- Preset Hold Control Capability
- Pull-in
\(\pm 300 \mathrm{~Hz}\) (Typ)
- Low Thermal Frequency Drift
- Small Static Phase Error
- Variable Output Duty Cycle
- Adjustable DC Loop Gain

\section*{Description}

The Harris CA1391E and CA1394E are monolithic integrated circuits designed for use in the low-level horizontal section of monochrome or color television receivers. Functions include a phase detector, an oscillator, a regulator, and a pre-driver.
The CA1391E and CA1394E are electrically equivalent and pin compatible with industry types 1391 and 1394 in similar packages.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline CA1391E & 0 to 85 & 8 Ld PDIP & E8.3 \\
\hline CA1394E & 0 to 85 & 8 Ld PDIP & E8.3 \\
\hline
\end{tabular}

Pinout
CA1391, CA1394
(PDIP)
TOP VIEW


Functional Diagram


\section*{Absolute Maximum Ratings}
\begin{tabular}{|c|c|}
\hline DC Supply Current & 40 mA \\
\hline DC Output Voltage & 40 V \\
\hline DC Output Current & 30 mA \\
\hline Sync Input Voltage & \(5 V_{P-P}\) \\
\hline Sawtooth Input Voltag & \(5 \mathrm{~V}_{\text {P-P }}\) \\
\hline
\end{tabular}

DC Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 mA
Sync Input Voltage \(5 V_{P-P}\) \(5 V_{\text {P-P }}\)

\section*{Thermal Information}
\begin{tabular}{|c|c|}
\hline Thermal Resistance (Typical, Note 1) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline PDIP Package & 120 \\
\hline Maximum Junction Temperature (Plastic Package) & \(.150^{\circ} \mathrm{C}\) \\
\hline Maximum Storage Temperature Range & to \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Lead Temperature (Soldering 10s) & 300 \\
\hline
\end{tabular}

\section*{Operating Conditions}

Temperature Range
\(0^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications (See Figure 1)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP. \(\left({ }^{\circ} \mathrm{C}\right.\) ) & MIN & TYP & MAX & UNITS \\
\hline Supply Voltage & \begin{tabular}{l}
\[
S_{1}, S_{5}, S_{6}=2 ; S_{2}, S_{3}, S_{4}, S_{7}, S_{8}=1
\] \\
Measure Terminal 6 to GND
\end{tabular} & 25 & 8 & - & 9 & V \\
\hline \begin{tabular}{l}
Free Running \\
Frequency-1\%
\end{tabular} & \[
s_{1}, s_{5}, s_{6}=2 ; s_{2}, s_{3}, s_{4}, s_{7}, s_{8}=1
\] Counter to Terminal 1 & 25 & 14734 & - & 16734 & Hz \\
\hline Output Leakage & \[
S_{2}, S_{3}, S_{6}, S_{8}=1 ; S_{1}, S_{4}, S_{5}, S_{7}=2
\]
\[
\text { Measure Terminal } 1 \text { to } 25 \mathrm{~V}
\] & 25 & - & 10 & - & mV \\
\hline Output Saturation & \[
S_{2}, S_{3}, S_{5}, S_{6}, S_{8}=1 ; S_{1}, S_{4}, S_{7}=2
\] Measure Terminal 1 to GND & 25 & - & 60 & - & mV \\
\hline Phase Detector Bias & \[
S_{2}, S_{5}, S_{6}, S_{8}=1 ; S_{1}, S_{3}, S_{4}, S_{7}=2
\] Measure Terminal 3 to GND & 25 & - & 1.9 & - & V \\
\hline Phase Detector Leak & \(S_{5}, S_{8}=1 ; S_{1}, S_{2}, S_{3}, S_{4}, S_{6}, S_{7}=2\) Measure Terminal 5 to +4 V & 25 & -2 & - & 2 & mV \\
\hline Phase Detector Low & \[
\begin{aligned}
& S_{1}, S_{5}, S_{8}=1 ; S_{2}, S_{3}, S_{4}, S_{6}, S_{7}=2 \\
& \text { Measure Terminal } 5 \text { to }+4 \mathrm{~V}
\end{aligned}
\] & 25 & \[
\begin{gathered}
-0.55 \\
(\text { Note } 2)
\end{gathered}
\] & \(\bullet\) & - & V \\
\hline Phase Detector High & \[
s_{1}, s_{5}, s_{6}, s_{8}=1 ; s_{2}, s_{3}, s_{4}, s_{7}=2
\] Measure Terminal 5 to \(+4 V\) & 25 & \[
\begin{gathered}
+0.55 \\
\text { (Note 2) }
\end{gathered}
\] & - & - & V \\
\hline Phase Detector Balance & \(V_{\text {DET2 }}+V_{\text {DET3 }}\) & 25 & -100 & - & 100 & mV \\
\hline Sync Diode & \(\mathrm{S}_{1}, S_{2}, S_{3}, S_{4}, S_{6}, S_{7}=1 ; S_{5}, S_{8}=2\) & 25 & 0.3 & - & 1.2 & V \\
\hline Static Phase Error & \multirow[t]{3}{*}{See Figure 3} & \multirow[t]{3}{*}{25} & - & 0.5 & - & \(\mu \mathrm{s}\) \\
\hline Oscillator Pull In Range & & & - & \(\pm 300\) & - & Hz \\
\hline Oscillator Hold In Range & & & - & \(\pm 900\) & - & Hz \\
\hline
\end{tabular}

NOTE:
2. Polarity reversed in the CA1391.

\section*{Test Circuit}


FIGURE 1. DC TEST CIRCUIT

Schematic Diagram


NOTE: All resistances are in ohms.

\section*{Application Information}

\section*{Circuit Operation (See Schematic Diagram)}

The CA1391 and CA1394 contain the oscillator, phase detector, and predriver sections necessary for the television horizontal oscillator and AFC loop.
The oscillator is an RC type with Terminal 7 used to control the timing. If it is assumed that \(Q_{7}\) is initially off, then an external capacitor connected from Terminal 7 to ground charges through an external resistance connected between Terminals 6 and 7. As soon as the voltage at Terminal 7 exceeds the potential set at the base of \(Q_{8}\) by resistors \(R_{11}\) and \(R_{12}, Q_{7}\) turns on, and \(Q_{6}\) supplies base current to \(Q_{5}\) and \(Q_{10}\). Transistor \(Q_{5}\) discharges the capacitor through \(R_{4}\) until the base bias of \(Q_{7}\) falls below that of \(Q_{8}\) at which time, \(Q_{7}\) turns off, and the cycle repeats.

The sawtooth generated at the base of \(Q_{4}\) appears across \(R_{3}\) and turns off \(Q_{3}\) whenever the sawtooth voltage rises to a value that exceeds the bias set at Terminal 8. By adjusting the potential at Terminal 8, the duty cycle at the pre-drive output (Terminal 1) may be changed. The phase detector is isolated from the remainder of the circuit by \(R_{31}, Z_{2}, Q_{15}\) and \(Q_{16}\). The phase detector consists of the comparator \(Q_{22}\) and \(Q_{23}\), and the gated current source \(Q_{18}\). Negative going sync pulses at Terminal 3 turn off \(Q_{17}\), and the current division between \(Q_{22}\) and \(Q_{23}\) is then determined by the phase relationship of the sync and the sawtooth waveform at Terminal 4, which is derived from the horizontal flyback pulse. If there is no phase difference between the sync and sawtooth, equal currents flow in the collectors of \(Q_{22}\) and \(Q_{23}\) during each half of the sync pulse period. The current in \(Q_{22}\) is turned around by current mirror
\(Q_{20}\) and \(Q_{21}\) so that there is no net output current at Terminal 5 for balanced conditions. When a phase offset occurs, current flows either in or out of Terminal 5. In circuit applications, this terminal is connected to Terminal 7 through an external low pass filter, thereby controlling the oscillator.
Shunt regulation for the circuit is obtained by using a \(V_{B E}\) and zener multiplier. Resistors \(R_{13}\) and \(R_{14}\) multiply the \(V_{B E}\) of \(Q_{11}\), and the ratio of \(R_{15}\) and \(R_{16}\) multiplies the voltage of the zener diode \(Z_{1}\).


FIGURE 2. DUTY CYCLE AT THE PRE-DRIVE OUTPUT (TERMINAL 1) AS IT IS AFFECTED BY THE INPUT AT TERMINAL 8


FIGURE 3. TYPICAL CIRCUIT APPLICATION

HARRIS
SEMICONDUCTOR

\section*{FM IF Amplifier-Limiter and Quadrature Detector}

\section*{Features}
- Input Limiting Voltage At 10.7 MHz \(\qquad\) \(400 \mu \mathrm{~V}\)
- Input Limiting Voltage At \(4.5,5.5 \mathrm{MHz}\) \(\qquad\) \(250 \mu \mathrm{~V}\)
- Typical AM Rejection At 10.7 MHz . 45dB
- Provision for Output from 3-Stage IF Amplifier Section
- Low Harmonic Distortion
- Quadrature Detection Permits Simplified Single-Coil Tuning
- Extremely Low AFC Voltage Drift Over Full Operating Temperature Range
- Minimum Number of External Components Required

\section*{Applications}
- FM IF Sound
- TV Sound IF

\section*{Description}

The CA2111A provides a multistage wideband amplifierlimiter, a quadrature detector, and an emitter-follower output stage. This device is designed for use in FM receivers and in the sound IF sections of TV receivers. In addition, an output terminal is provided which allows the use of the amplifierlimiter as a straight 60 dB wideband amplifier.

The amplifier-limiter features the excellent limiting characteristic of 3 cascaded differential amplifiers. The quadrature detector requires only one coil in the associated outboard circuit and therefore, tuning is a simple procedure.

A unique feature of the CA2111A is its exceptionally low AFC voltage drift over the full operating-temperature range.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|c|}
\hline PART NUMBER & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular} \\
\hline CA2111AE & -40 to 85 & 14 Ld PDIP & E14.3 \\
\hline
\end{tabular}

\section*{Pinout}


\section*{Block Diagram}


\section*{Absolute Maximum Ratings \(T_{A}=25^{\circ} \mathrm{C}\) \\ Supply Voltage (V+to V-)}

\section*{Operating Conditions}

Temperature Range Supply Voltage Range (Typical)
\(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\) Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{2}{*}{Terminal 1 DC Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{1}\)} & \(\mathrm{V}+=12 \mathrm{~V}\) & - & 5.4 & \(\bullet\) & V \\
\hline & & \(\mathrm{V}+=8 \mathrm{~V}\) & - & 3.7 & - & V \\
\hline Terminals 4, 5, 6, 10 DC Voltage & \(V_{4,5,6,10}\) & \(\mathrm{V}+=8 \mathrm{~V}\) & - & 1.35 & - & V \\
\hline Terminals 2, 12 DC Voltage & \(\mathrm{V}_{2,12}\) & \(\mathrm{V}+=8 \mathrm{~V}\) & - & 3.5 & - & V \\
\hline \multirow[t]{2}{*}{Supply Current, Pin 13} & \multirow[t]{2}{*}{113} & \(\mathrm{V}+=8 \mathrm{~V}\) & - & 14 & - & mA \\
\hline & & \(\mathrm{V}+=12 \mathrm{~V}\) & - & 16 & - & mA \\
\hline Amplifier Input Resistance & \(\mathrm{R}_{4}\) & \multirow[t]{7}{*}{\(\mathrm{f}_{\mathrm{O}}=10.7 \mathrm{MHz}\)} & - & 7 & - & k \(\Omega\) \\
\hline Amplifier Input Capacitance & \(\mathrm{C}_{4}\) & & - & 11 & - & pF \\
\hline Detector Input Resistance & \(\mathrm{R}_{12}\) & & - & 70 & - & \(\mathrm{k} \Omega\) \\
\hline Detector Input Capacitance & \(\mathrm{C}_{12}\) & & - & 2.7 & - & pF \\
\hline Amplifier Output Resistance & \(\mathrm{R}_{10}\) & & - & 60 & - & \(\Omega\) \\
\hline Detector Output Resistance & \(\mathrm{R}_{1}\) & & - & 200 & - & \(\Omega\) \\
\hline De-emphasis Resistance & \(\mathrm{R}_{14}\) & & - & 8.8 & - & k \(\Omega\) \\
\hline
\end{tabular}

DYNAMIC CHARACTERISTICS \(\mathrm{fo}_{\mathrm{O}}=10.7 \mathrm{MHz}, \Delta \mathrm{f}= \pm 75 \mathrm{kHz}, \mathrm{V}+=8 \mathrm{~V}\), FM Modulation Frequency \(=400 \mathrm{~Hz}\), Source Resistance \(=50 \Omega\)
\begin{tabular}{|l|c|l|c|c|c|c|}
\hline Input Limiting Threshold Voltage & \(\mathrm{V}_{\mathrm{I}(\mathrm{LIM})}\) & & - & 400 & 600 & \(\mu \mathrm{~V}_{\mathrm{RMS}}\) \\
\hline AM Rejection & AMR & \(\mathrm{V}_{\mathrm{I}}=10 \mathrm{~m} \mathrm{~V}_{\mathrm{RMS}}, 100 \% \mathrm{FM}, 30 \% \mathrm{AM}\) & - & 37 & - & dB \\
\hline Amplifier Voltage Gain & \(\mathrm{A}_{\mathrm{V}}\) & \(\mathrm{V}_{\mathrm{I}}=50 \mu \mathrm{~V}_{\mathrm{RMS}}\) & - & 55 & - & dB \\
\hline Detector Recovered Audio Output & \(\mathrm{V}_{\mathrm{O}(\mathrm{AF})}\) & \(\mathrm{V}_{\mathrm{I}}=10 \mathrm{~m} \mathrm{~V}_{\mathrm{RMS}}\) & - & 0.3 & - & \(\mathrm{V}_{\mathrm{RMS}}\) \\
\hline Total Harmonic Distortion & THD & \(\mathrm{V}_{\mathrm{I}}=10 \mathrm{~m} \mathrm{~V}_{\mathrm{RMS}}\) & - & 1 & - & \(\%\) \\
\hline
\end{tabular}

DYNAMIC CHARACTERISTICS \(\mathrm{fo}_{\mathrm{O}}=10.7 \mathrm{MHz}, \Delta \mathrm{f}= \pm 75 \mathrm{kHz}, \mathrm{V}+=12 \mathrm{~V}\), FM Modulation Frequency \(=400 \mathrm{~Hz}\), Source Resistance \(=50 \Omega\)
\begin{tabular}{|l|c|l|c|c|c|c|}
\hline Input Limiting Threshold Voltage & \(\mathrm{V}_{\mathrm{I}(\mathrm{LIM})}\) & & - & 400 & 600 & \(\mu \mathrm{~V}_{\mathrm{RMS}}\) \\
\hline AM Rejection & AMR & \(\mathrm{V}_{1}=10 \mathrm{mV}_{\mathrm{RMS}}, 100 \% \mathrm{FM}, 30 \% \mathrm{AM}\) & - & 45 & - & dB \\
\hline Amplifier Voltage Gain & \(\mathrm{A}_{\mathrm{V}}\) & \(\mathrm{V}_{1}=50 \mu \mathrm{~V}_{\mathrm{RMS}}\) & - & 55 & - & dB \\
\hline Detector Recovered Audio Output & \(\mathrm{V}_{\mathrm{O}(\mathrm{AF})}\) & \(\mathrm{V}_{1}=10 \mathrm{mV}_{\mathrm{RMS}}\) & - & 0.48 & - & \(\mathrm{V}_{\mathrm{RMS}}\) \\
\hline Total Harmonic Distortion & THD & \(\mathrm{V}_{1}=10 \mathrm{mV}_{\mathrm{RMS}}\) & - & 1 & - & \(\%\) \\
\hline
\end{tabular}

DYNAMIC CHARACTERISTICS \(\mathrm{f}_{\mathrm{O}}=4.5 \mathrm{MHz}, \Delta \mathrm{f}= \pm 25 \mathrm{kHz}, \mathrm{V}+=12 \mathrm{~V}\), FM Modulation Frequency \(=400 \mathrm{~Hz}\), Source Resistance \(=50 \Omega\)
\begin{tabular}{|l|c|l|l|l|c|c|}
\hline Input Limiting Threshold Voltage & \(\mathrm{V}_{\text {I(LIM }}\) & & - & 250 & 400 & \(\mu \mathrm{~V}_{\text {RMS }}\) \\
\hline AM Rejection & AMR & \(\mathrm{V}_{1}=10 \mathrm{mV}_{\text {RMS }}, 100 \% \mathrm{FM}, 30 \% \mathrm{AM}\) & - & 36 & - & dB \\
\hline
\end{tabular}

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\) Unless Otherwise Specified (Continued)
\begin{tabular}{|l|c|l|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ PARAMETER } & SYMBOL & \multicolumn{1}{|c|}{ TEST CONDITIONS } & MIN & TYP & MAX & UNITS \\
\hline Amplifier Voltage Gain & \(\mathrm{A}_{\mathrm{V}}\) & \(\mathrm{V}_{1}=50 \mu \mathrm{~V}_{\text {RMS }}\) & - & 60 & - & dB \\
\hline Detector Recovered Audio Output & \(\mathrm{V}_{\mathrm{O}(\mathrm{AF})}\) & \(\mathrm{V}_{1}=10 \mathrm{mV}_{\mathrm{RMS}}\) & - & 0.72 & - & \(\mathrm{V}_{\mathrm{RMS}}\) \\
\hline Total Harmonic Distortion & THD & \(\mathrm{V}_{1}=10 \mathrm{mV}_{\text {RMS }}\) & - & 1.5 & - & \(\%\) \\
\hline
\end{tabular}

DYNAMIC CHARACTERISTICS \(\mathrm{f}_{\mathrm{O}}=5.5 \mathrm{MHz}, \Delta \mathrm{f}= \pm 50 \mathrm{kHz}, \mathrm{V}+=12 \mathrm{~V}\), FM Modulation Frequency \(=400 \mathrm{~Hz}\), Source Resistance \(=50 \Omega\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Input Limiting Threshold Voltage & \(\mathrm{V}_{\text {I(LIM }}\) ) & & - & 250 & 400 & \(\mu \mathrm{V}_{\text {RMS }}\) \\
\hline AM Rejection & AMR & \(\mathrm{V}_{1}=10 \mathrm{mV} \mathrm{RMS}\), \(100 \% \mathrm{FM}, 30 \% \mathrm{AM}\) & - & 40 & - & dB \\
\hline Amplifier Voltage Gain & \(A_{V}\) & \(\mathrm{V}_{1}=50 \mu \mathrm{~V}_{\text {RMS }}\) & - & 60 & - & dB \\
\hline Detector Recovered Audio Output & \(V_{\text {O(AF }}\) & \(\mathrm{V}_{\mathrm{I}}=10 \mathrm{mV}\) RMS & - & 1.2 & - & \(V_{\text {RMS }}\) \\
\hline Total Harmonic Distortion & THD & \(\mathrm{V}_{1}=10 \mathrm{mV}\) RMS & - & 3 & - & \% \\
\hline
\end{tabular}

\section*{Test Circuit}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{} & \multicolumn{5}{c|}{} & \multicolumn{3}{c|}{\(\begin{array}{c}\text { DETECTOR } \\
\text { TRANSFER }\end{array}\)} \\
CHARACTERISTICS
\end{tabular}\(]\)

NOTE: Input to the quadrature coil can be from either terminal 9 or terminal 10. Terminal 9 is normally used because it lessens the possibility of overloads during tuning. The use of terminal 10 increases the limiting sensitivity significantly and has been used successfully in these tests.

\section*{Schematic Diagram}


\section*{Typical Performance Curves}


FIGURE 2. AM REJECTION vs INPUT VOLTAGE (AT 4.5MHz)


FIGURE 3. AM REJECTION vs INPUT VOLTAGE (AT 5.5 MHz )

Typical Performance Curves (Continued)


FIGURE 4. AM REJECTION vs INPUT VOLTAGE (AT 10.7MHz)


FIGURE 6. DETECTED AUDIO OUTPUT vs INPUT VOLTAGE (AT 5.5 MHz )


FIGURE 8. AFC VOLTAGE vs AMBIENT TEMPERATURE


FIGURE 5. DETECTED AUDIO OUTPUT vs INPUT VOLTAGE (4.5MHz)


FIGURE 7. DETECTED AUDIO OUTPUT VOLTAGE vs INPUT VOLTAGE (AT 10.7MHz)


FIGURE 9. SIGNAL-TO-NOISE RATIO vs INPUT VOLTAGE

HEMCONDUCTOR
CA3012

\section*{Features}
- Exceptionally High Amplifier Gain
- Power Gain at \(\mathbf{4 . 5 \mathrm { MHz }}\)

75dB
- Excellent Input Limiting Characteristics
- Limiting Voltage (Knee) at \(10.7 \mathrm{MHz} . . . .600 \mu \mathrm{~V}\) (Typ)
- Wide Frequency Capability:
- Bandwidth

100kHz to 20 MHz

\section*{Applications}
- FM IF Amplifiers
- FM Communication Receivers
- TV IF Amplifiers


\section*{Pinout}

\(\dagger\) Internal connection, do not use.


\section*{Description}

The CA3012 is an FM IF wideband amplifier with 3 limiter gain stages in a bipolar monolithic technology. The pin 1 input is an open base and has a separate feedback bias. The feedback bias pin, DC FB BYPASS, is externally bypassed and provides the means for a tuned coil input to the IF IN pin. The output is a high impedance open collector which may be matched to a tuned transformer, driving an FM detector. Internal regulation circuits provide DC bias to the gain stages and DC feedback circuit.

The CA3012 is intended for FM limiting applications requiring high gain

\section*{Ordering Information}
\begin{tabular}{|l|c|l|c|}
\hline PART NUMBER & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & PACKAGE & \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular} \\
\hline CA3012 & -55 to 125 & 10 Ld Metal Can & T10.C \\
\hline
\end{tabular}

\section*{Schematic Diagram}


Absolute Maximum Ratings \(T_{A}=25^{\circ} \mathrm{C}\)
Maximum Supply Voltage \(\mathrm{V}_{\mathrm{CC}}\), Pin 10. 10V
Maximum Output Voltage, Pin 5 13 V
Maximum Input Signal Voltage between Pin 1 and Pin \(2 \ldots \ldots \pm\) VVV

\section*{Operating Conditions}

Temperature Range \(\qquad\) \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) Supply Voltage Range (Typical) . . 5.5 V to 10 V

\section*{Thermal Information}

Thermal Resistance (Typical, Note 1) \(\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) Metal Can Package . . . . . . . . . . . . . . . 175100
Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . \(175^{\circ} \mathrm{C}\) Maximum Storage Temperature Range . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

\section*{Electrical Specifications}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{4}{|c|}{TEST CONDITIONS} & \multirow[b]{2}{*}{MIN} & \multirow[b]{2}{*}{TYP} & \multirow[b]{2}{*}{MAX} & \multirow[b]{2}{*}{UNITS} \\
\hline & & SETUP AND PROCEDURE (FIGURE) & \[
\begin{gathered}
\text { FREQUENCY } \\
f(\mathbf{M H z}) \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\hline \text { DC SUPPLY } \\
\text { VOLTAGE } \\
\mathbf{V}_{\mathrm{CC}}(\mathrm{~V})
\end{gathered}
\] & \[
\begin{array}{|c}
\text { TEMP } \\
\left({ }^{\circ} \mathrm{C}\right)
\end{array}
\] & & & & \\
\hline \multirow[t]{9}{*}{Total Device Dissipation (Note 2)} & \multirow[t]{9}{*}{\(\mathrm{P}_{\mathrm{T}}\)} & \multirow[t]{9}{*}{1} & \multirow[t]{3}{*}{-} & \multirow[t]{3}{*}{6} & -55 & 66 & 80 & 135 & mW \\
\hline & & & & & 25 & 66 & 90 & 121 & mW \\
\hline & & & & & 125 & 65 & 70 & 121 & mW \\
\hline & & & \multirow[t]{3}{*}{-} & \multirow[t]{3}{*}{7.5} & -55 & 97 & 130 & 190 & mW \\
\hline & & & & & 25 & 97 & 120 & 167 & mW \\
\hline & & & & & 125 & 95 & 100 & 167 & mW \\
\hline & & & \multirow[t]{3}{*}{\(\bullet\)} & \multirow[t]{3}{*}{10} & -55 & 150 & 210 & 275 & mW \\
\hline & & & & & 25 & 150 & 190 & 255 & mW \\
\hline & & & & & 125 & 150 & 160 & 255 & mW \\
\hline \multirow[t]{11}{*}{Voltage Gain (Note 3)} & \multirow[t]{11}{*}{A} & \multirow[t]{3}{*}{3} & \multirow[t]{3}{*}{1} & \multirow[t]{3}{*}{6} & -55 & 50 & 55 & - & dB \\
\hline & & & & & 25 & 60 & 66 & - & dB \\
\hline & & & & & 125 & 50 & 61 & - & dB \\
\hline & & \multirow[t]{3}{*}{3} & \multirow[t]{3}{*}{1} & \multirow[t]{3}{*}{7.5} & -55 & 55 & 59 & - & dB \\
\hline & & & & & 25 & 65 & 70 & - & dB \\
\hline & & & & & 125 & 55 & 65 & - & dB \\
\hline & & \multirow[t]{3}{*}{3} & \multirow[t]{3}{*}{1} & \multirow[t]{3}{*}{10} & -55 & 55 & 61 & - & dB \\
\hline & & & & & 25 & 65 & 71 & - & dB \\
\hline & & & & & 125 & 55 & 66 & - & dB \\
\hline & & \multirow[t]{2}{*}{3} & 4.5 & 7.5 & 25 & 60 & 67 & - & dB \\
\hline & & & 10.7 & 7.5 & 25 & 55 & 61 & - & dB \\
\hline Input Impedance Components Parallel Input Resistance & \(\mathrm{R}_{\mathrm{IN}}\) & 6 & 4.5 & 7.5 & 25 & - & 3 & - & \(\mathrm{k} \Omega\) \\
\hline Parallel Input Capacitance & \(\mathrm{ClN}_{\text {IN }}\) & 6 & 4.5 & 7.5 & 25 & - & 7 & - & pF \\
\hline Output Impedance Components Parallel Output Resistance & Rout & 8 & 4.5 & 7.5 & 25 & - & 31.5 & - & k \(\Omega\) \\
\hline Parallel Output Capacitance & Cout & 8 & 4.5 & 7.5 & 25 & - & 4.2 & - & pF \\
\hline Noise Figure & NF & 10 & 4.5 & 7.5 & 25 & - & 8.7 & - & dB \\
\hline Input Limiting Voltage (Knee) & \(\mathrm{V}_{1(\text { LIM }}\) & 3 & 4.5 & 7.5 & 25 & - & 300 & 400 & \(\mu \mathrm{V}\) \\
\hline
\end{tabular}

\section*{NOTES:}
2. The total current drain may be determined by dividing \(\mathrm{P}_{\mathrm{T}}\) by \(\mathrm{V}_{\mathrm{CC}}\).
3. Recommended minimum DC supply voltage \(\left(\mathrm{V}_{\mathrm{C}}\right)\) is 5.5 V . Nominal load current flowing into terminal 5 is 1.5 mA at 7.5 V .

\section*{Typical Performance Curves and Test Setups}


FIGURE 1. DISSIPATION TEST SETUP



FIGURE 2. DISSIPATION vs TEMPERATURE

\section*{Procedures}
A. Voltage Gain
1.Set input frequency at desired value, \(\mathrm{V}_{\mathrm{I}}=100 \mu \mathrm{~V}_{\mathrm{RMS}}\)
2. Record \(V_{O}\)
3. Calculate Voltage Gain \(A\) from \(A=20 \log _{10} V_{O} V_{1}\)
4. Repeat steps 1,2 and 3 for each frequency and/or for temperature desired
B. Input Limiting Voltage (Knee)
1.Repeat steps \(A 1\) and \(A 2\), using \(V_{1}=100 \mathrm{mV}\)
2. Decrease \(V_{1}\) to the level at which \(V_{O}\) is 3 dB below its value for \(V_{I}=100 \mathrm{mV}\)
3. Record \(V_{1}\) as Input Limiting Voltage (Knee)
figure 3. voltage gain test setup


FIGURE 4. VOLTAGE GAIN AND INPUT LIMITING VOLTAGE vs TEMPERATURE


FIGURE 5. VOLTAGE GAIN AND INPUT LIMITING VOLTAGE vs FREQUENCY

Typical Performance Curves and Test Setups


FIGURE 6. INPUT IMPEDANCE TEST SETUP


FIGURE 8. OUTPUT IMPEDANCE TEST SETUP


FIGURE 10.


FIGURE 7. INPUT IMPEDANCE vs FREQUENCY


FIGURE 9. OUTPUT IMPEDANCE vs FREQUENCY


FIGURE 11. NOISE FIGURE vs DC SUPPLY VOLTAGE

\section*{Typical Application}


FIGURE 12. BLOCK DIAGRAM OF TYPICAL FM RECEIVER USING THE CA3012 INTEGRATED CIRCUIT WIDEBAND AMPLIFIER

SEMICONDUCTOR

\section*{AM Receiver Subsystem and General-Purpose Amplifier Array}

\section*{Features}
- Excellent Overload Characteristics
- AGC for IF Amplifier
- Buffered Output Signal for Tuning Meter
- Internal Zener Diode Provides Voltage Regulation
- Two IF Amplifier Stages
- Low-Noise Converter and First IF Amplifier
- Low Harmonic Distortion (THD)
- Delayed AGC for RF Amplifier
- Terminals for Optional Inclusion of Tone Control
- Operates from Wide Range of Power Supplies: V+ = 6 V to 16 V
- Optional AC and/or DC Feedback on Wide-Band Amplifier
- Array of Amplifiers for General-Purpose Applications
- Suitable for Use With Optional External RF Stage, Either MOS or Bipolar
- Related at:
- Refer to AN6022 for Application Note Information

\section*{Ordering Information}
\begin{tabular}{|l|c|l|c|}
\hline PART NUMBER & \begin{tabular}{c} 
TEMP. \\
RANGE \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular} \\
\hline CA3088E & -40 to 85 & 16 Ld PDIP & E 16.3 \\
\hline
\end{tabular}

\section*{Description}

The CA3088E, a monolithic integrated circuit, is an AM subsystem that provides the converter, IF amplifier, detector, and audio preamplifier stages for an AM receiver.

The CA3088E also provides internal AGC for the first IF amplifier stage, delayed AGC for an optional external RF amplifier, a buffer stage to drive a tuning meter, and terminals facilitating the optional use of a tone control.

Figure 2 is a functional diagram of the CA3088E. The signal from the low-noise converter is applied to the first IF amplifier and is then coupled to the second IF amplifier. This IF signal is then detected and externally filtered. The resultant audio signal is applied to an audio preamplifier. Optionally, a tone control circuit may be connected at the junction of the detector circuit and the audio preamplifier. The gain of the first IF amplifier stage is controlled by an internal AGC circuit. The CA3088E supplies a delayed AGC signal output for use with an external RF amplifier. A buffered output signal is also available for driving a tuning meter. A DC voltage, internally regulated by a Zener diode, supplies the second IF amplifier, the AGC and tuning meter circuits and may also be used with any other stage.

The CA3088E features four independent transistor amplifiers, each incorporating internal biasing for temperature tracking. These amplifiers are particularly useful in generalpurpose amplifier, oscillator, and detector applications in a wide variety of equipment designs.

\section*{Pinout}
\begin{tabular}{|c|c|c|}
\hline & CA3088E (PDIP) TOP VIEW & \\
\hline & & \\
\hline CONV. BYPASS 1 & & \(16 \mathrm{AUDIO} \mathrm{V}_{+}\) \\
\hline CONV. In 2 & & 15 AUDIO OUT \\
\hline CONV. OUT 3 & & 14 audio in \\
\hline 1STIF IN 4 & & 13 rf AGC \\
\hline GND 5 & & 12 TUNING METER \\
\hline 1ST IF OUT 6 & & 11 AGC FILTER \\
\hline 2NDIF FB 7 & & 10 2NDIF V+ \\
\hline 2NDIFIN 8 & & 9 DET . OUT \\
\hline
\end{tabular}
```

Absolute Maximum Ratings }\mp@subsup{T}{A}{}=2\mp@subsup{5}{}{\circ}\textrm{C
Supply Voltage
(Across Term. }5\mathrm{ and Terms. 3, 6, 13, 16, Respectively) 16V
Output Current
Terminals 3, 6, 13, 16, (Respectively). 10mA
Terminal 10... . . 30mA

```

\section*{Thermal Information}
Thermal Resistance (Typical, Note 1) \(\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\)
PDIP Package . ....................................... 110
Maximum Junction Temperature (Plastic Package)

\section*{Operating Conditions}

Temperature Range
\(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}+=12 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{DC CHARACTERISTICS} \\
\hline \multirow[t]{5}{*}{Voltage (Figure 1)} & \(\mathrm{v}_{1}, \mathrm{~V}_{4}, \mathrm{v}_{9}, \mathrm{~V}_{11}\) & Terminals 1, 4, 9, 11 & - & 0.7 & - & V \\
\hline & \(\mathrm{V}_{2}, \mathrm{v}_{7}, \mathrm{~V}_{8}\) & Terminals 2, 7, 8 & - & 1.4 & - & V \\
\hline & \(\mathrm{V}_{10}\) & Terminal 10 & - & 5.6 & - & V \\
\hline & \(\mathrm{V}_{12}\) & Terminal 12 & - & 0 & - & V \\
\hline & \(\mathrm{V}_{15}\) & Terminal 15 & - & 3.5 & - & V \\
\hline \multirow[t]{5}{*}{Current (Figure 1)} & \(I_{3}\) & Terminal 3 & - & 0.35 & - & mA \\
\hline & \(I_{6}\) & Terminal 6 & - & 1.0 & - & mA \\
\hline & \(l_{10}\) & Terminal 10 & - & 20 & - & mA \\
\hline & \(I_{13}\) & Terminal 13 & - & 0 & - & mA \\
\hline & \(\mathrm{l}_{16}\) & Terminal 16 & - & 1.2 & - & mA \\
\hline \multicolumn{7}{|l|}{DYNAMIC CHARACTERISTICS} \\
\hline Detector Output (Figure 2) & & 30\% Modulation & - & 75 & - & \(\mathrm{mV}_{\text {RMS }}\) \\
\hline Audio Amplifier Gain (Figure 2) & \(\mathrm{A}_{\text {AF }}\) & \(\mathrm{f}=1 \mathrm{kHz}\) & - & 30 & - & dB \\
\hline Audio Distortion (Figure 2) & & \(V_{\text {OUT }}=100 \mathrm{mV}\) & - & 0.2 & - & \% \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Sensitivity \\
(fin \(=1 \mathrm{MHz}\), Signal-to-Noise Ratio \((\mathrm{S} / \mathrm{N})=20 \mathrm{~dB})\) )
\end{tabular}} & & At Converter Stage Input (Figure 2) & - & 200 & - & \(\mu \mathrm{V} / \mathrm{m}\) \\
\hline & & At RF Stage Input (Figure 2) & - & 100 & - & \(\mu \mathrm{V} / \mathrm{m}\) \\
\hline Total Harmonic Distortion (Figure 2) & THD & 30\% Modulation & - & 1.0 & - & \% \\
\hline \multirow[t]{2}{*}{Input Resistance (No AGC, \(\mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz}\) )} & \multirow[t]{2}{*}{\(\mathrm{R}_{\mathrm{IN}}\)} & At Transistor \(Q_{1}\) & - & 3500 & - & \(\Omega\) \\
\hline & & At Transistor \(Q_{5}\) & - & 2000 & - & \(\Omega\) \\
\hline \multirow[t]{2}{*}{Input Capacitance (No AGC, \(\mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz}\) )} & \multirow[t]{2}{*}{\(\mathrm{CIN}_{\text {IN }}\)} & At Transistor \(Q_{1}\) & - & 17 & - & pF \\
\hline & & At Transistor \(Q_{5}\) & - & 12 & - & pF \\
\hline \multirow[t]{2}{*}{Feedback Capacitance (No AGC, \(\mathrm{f}_{\mathrm{IN}}=1 \mathrm{MHz}\) )} & \multirow[t]{2}{*}{\(\mathrm{C}_{\text {FB }}\)} & At Transistor \(Q_{1}\) & - & 1.5 & - & pF \\
\hline & & At Transistor \(\mathrm{Q}_{5}\) & - & 1.5 & - & pF \\
\hline
\end{tabular}


FIGURE 1. TEST CIRCUIT FOR DC CHARACTERISTICS


NOTE: Resistance values are in \(\Omega\). Capacitance values in \(\mu \mathrm{F}\), except as noted.
FIGURE 2. FUNCTIONAL BLOCK DIAGRAM OF THE CA3088E


FIGURE 3. SCHEMATIC DIAGRAM OF THE CA3088E

HARRIS
SEMICONDUCTOR

\section*{Features}
- For FM IF Amplifier Applications in High-Fidelity, Automotive, and Communications Receivers
- Includes: IF Amplifier, Quadrature Detector, AF Preamplifier, and Specific Circuits for AGC, AFC, Muting (Squelch), and Tuning Meter
- Exceptional Limiting Sensitivity at -3dB Point. \(12 \mu \mathrm{~V}\) (Typ)
- Low Distortion:
(with Double-Tuned Coil)
\[
0.1 \% \text { (Typ) }
\]
- Single-Coil Tuning Capability
- High Recovered Audio

400mV (Typ)
- Provides Specific Signal for Control of Interchannel Muting (Squelch)
- Provides Specific Signal for Direct Drive of a Tuning Meter
- Provides Delayed AGC Voltage for RF Amplifier
- Provides a Specific Circuit for Flexible AFC
- Internal Supply-Voltage Regulators

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{l} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \begin{tabular}{c} 
PKG. \\
(NO.
\end{tabular} \\
\hline CA3089E & -40 to 85 & 16 Ld PDIP & E 16.3 \\
\hline \begin{tabular}{l} 
CA3089M1 1 \\
(3089M)
\end{tabular} & -40 to 85 & 20 Ld SOIC & M 20.3 \\
\hline
\end{tabular}

\section*{Description}

Harris CA3089 is a monolithic integrated circuit that provides all the functions of a comprehensive FM-IF system. The block diagram shows the CA3089 features, which include a three-stage FM-IF amplifier/limiter configuration with level detectors for each stage, a doubly-balanced quadrature FM detector and an audio amplifier that features the optional use of a muting (squelch) circuit.

The advanced circuit design of the IF system includes desirable deluxe features such as delayed AGC for the RF tuner, and AFC drive circuit, and an output signal to drive a tuning meter and/or provide stereo switching logic. In addition, internal power supply regulators maintain a nearly constant current drain over the voltage supply range of +8.5 V to +16 V .

The CA3089 is ideal for high-fidelity operation. Distortion in a CA3089 FM-IF System is primarily a function of the phase linearity characteristic of the outboard detector coil.

\section*{Pinout}



\section*{Absolute Maximum Ratings}

Supply Voltage
Between V+ and Frame GND . . . . . . . . . . . . . . . . . . . . . . . . . . . 16V
Between V+ and Substrate GND
DC Current (Out of Delayed AGC) 2mA

\section*{Operating Conditions}

Temperature Range

Thermal Information
\begin{tabular}{|c|c|}
\hline Thermal Resistance (Typical, Note 1) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline PDIP Package & 90 \\
\hline SOIC Package . & 80 \\
\hline Maximum Junction Temperature (Plastic Package) & . \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Storage Temperature Range & \({ }^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Lead Temperature (Soldering 10s). . (SOIC - Lead Tips Only) & \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}
\(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) 90 80
Maximum Junction Temperature (Plastic Package) . . . . . . . . \(150^{\circ} \mathrm{C}\) Maximum Storage Temperature Range . . . . . . . . - \(65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. \(\theta_{J A}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(\quad \mathrm{V}+=12 \mathrm{~V}\) (See Figures 3 and 4)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline (NOTE 3) PARAMETER & \multicolumn{2}{|r|}{TEST CONDITIONS} & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{DC CHARACTERISTICS} \\
\hline Quiescent Circuit Current & \multicolumn{2}{|l|}{\multirow[t]{6}{*}{No signal input, Non muted}} & 25 & 16 & 23 & 30 & mA \\
\hline DC Voltages \(\quad\) Terminal 1 (IF Input) & & & 25 & 1.2 & 1.9 & 2.4 & V \\
\hline Terminal 2 (AC Return to Input) & & & 25 & 1.2 & 1.9 & 2.4 & V \\
\hline Terminal 3 (DC Bias to Input) & & & 25 & 1.2 & 1.9 & 2.4 & V \\
\hline Terminal 6 (Audio Output) & & & 25 & 5.0 & 5.6 & 6.0 & V \\
\hline Terminal 10 (DC Reference) & & & 25 & 5.0 & 5.6 & 6.0 & V \\
\hline \multicolumn{8}{|l|}{DYNAMIC CHARACTERISTICS} \\
\hline Input Limiting Voltage (-3dB point), \(\mathrm{V}_{1}\) ( lim ) & - & \multirow[t]{6}{*}{\[
\begin{aligned}
& \mathrm{f}_{\mathrm{O}}=10.7 \mathrm{MHz}, \\
& \mathrm{f}_{\mathrm{MOD}}=400 \mathrm{~Hz}, \\
& \text { Deviation }= \pm 75 \mathrm{kHz}
\end{aligned}
\]} & 25 & - & 12 & 25 & \(\mu \mathrm{V}\) \\
\hline AM Rejection (Terminal 6), AMR & \[
\begin{aligned}
& V_{I N}=0.1 \mathrm{~V}, \\
& A M \text { Mod. }=30 \%
\end{aligned}
\] & & 25 & 45 & 55 & - & dB \\
\hline Recovered AF Voltage (Terminal 6) \(\mathrm{V}_{\mathrm{O}}\) (AF) & \multirow[t]{4}{*}{\(\mathrm{V}_{\mathrm{IN}}=0.1 \mathrm{~V}\)} & & 25 & 300 & 400 & 500 & mV \\
\hline Total Harmonic \({ }^{\text {Single Tuned (Terminal 6) }}\) & & & 25 & - & 0.5 & 1.0 & \% \\
\hline \begin{tabular}{l|l|} 
Distortion, THD \\
(Note 2)
\end{tabular}\(\quad\) Double Tuned (Terminal 6) & & & 25 & - & 0.1 & - & \% \\
\hline Signal Plus Noise to Noise Ratio (Terminal 6) & & & 25 & 60 & 67 & - & dB \\
\hline
\end{tabular}

NOTES:
2. THD characteristics are essentially a function of the phase characteristics of the network connected between Terminals 8,9 , and 10 .
3. Terminal numbers refer to 16 Lead PDIP.

\section*{Application Information}


FIGURE 1. AFC CHARACTERISTICS (CURRENT AT TERMINAL 7) vs CHANGE IN FREQUENCY. (SEE TEST CIRCUIT FIGURE 3.)


FIGURE 2. MUTING ACTION, TUNER AGC, AND TUNING METER OUTPUT vs INPUT SIGNAL VOLTAGE. (SEE TEST CIRCUIT FIGURE 3.)

\section*{Test Circuits}


NOTES:
4. All resistance values are in ohms.
5. L tunes with \(100 \mathrm{pF}(\mathrm{C})\) at 10.7 MHz .
6. \(Q_{0}\) (unloaded) \(\cong 75\) (G.I. Automatic Mfg. Div. EX22741 or equivalent).

FIGURE 3. TEST CIRCUIT FOR CA3089E USING A SINGLETUNED DETECTOR COIL


NOTES:
7. All resistance values are in ohms.
8. TPRI. - \(Q_{0}\) (unloaded) \(\cong 75\) (tunes with \(100 \mathrm{pF}\left(C_{1}\right) 20 \uparrow\) of 34 e on \(7 / 32^{\prime \prime}\) dia. form).
9. SEC. \(-\mathrm{Q}_{0}\) (unloaded) \(\cong 75\) (tunes with \(100 \mathrm{pF}\left(\mathrm{C}_{2}\right) 20 \uparrow\) of 34 e on \(7 / 32^{\prime \prime}\) dia. form).
10. kQ (percent of critical coupling) \(\cong 70 \%\).
(Adjusted for coil voltage \(\mathrm{V}_{\mathrm{C}}\) ) \(=150 \mathrm{mV}\).
Above values permit proper operation of mute (squelch) circuit " \(E\) " type slugs, spacing 4 mm .
FIGURE 4. TEST CIRCUIT FOR CA3089E USING A DOUBLETUNED DETECTOR COIL

\section*{Typical Applications}


NOTES:
11. All resistance values are in ohms.
12. Waller 4SN3FIC or equivalent.
13. Murata SFG 10.7 mA or equivalent.
14. \(L\) tunes with \(100 \mathrm{pF}(\mathrm{C})\) at \(10.7 \mathrm{MHz} Q_{0}\) unloaded \(\cong 75\) (G.I. EX22741 or equivalent).

Performance Data at \(\mathrm{f}_{\mathrm{O}}=98 \mathrm{MHz}, \mathrm{f}_{\mathrm{MOD}}=400 \mathrm{~Hz}\), Deviation \(= \pm 75 \mathrm{kHz}\) :
-3 dB Limiting Sensitivity . . . . . . . . . . . . . . . . . \(2 \mu \mathrm{~V}\) (Antenna Level)
20dB Quieting Sensitivity . . . . . . . . . . . . . . . . . . \(1 \mu \mathrm{~V}\) (Antenna Level)
30dB Quieting Sensitivity . . . . . . . . . . . . . . . . . \(1.5 \mu \mathrm{~V}\) (Antenna Level)

FIGURE 5. TYPICAL FM TUNER USING THE CA3089E WITH A SINGLE TUNED DETECTOR COIL

\section*{Typical Applications (Continued)}


FIGURE 6A. BOTTOM VIEW OF PRINTED CIRCUIT BOARD


FIGURE 6B. COMPONENT SIDE - TOP VIEW

FIGURE 6. ACTUAL SIZE PHOTOGRAPHS OF THE CA3089E AND OUTBOARD COMPONENTS MOUNTED ON A PRINTED-CIRCUIT BOARD

\section*{Block Diagram}


NOTES:
15. All resistance values are in ohms.
16. L Tunes with \(100 \mathrm{pF}(\mathrm{C})\) at 10.7 MHz .
17. \(Q_{O} \cong 75\) (G.I. EX22741 or equivalent).
18. Pin numbers refer to 16 lead DIP.

\section*{Schematic Diagram}


NOTE: Pin numbers refer to 16 lead PDIP.
LEVEL DETECTOR AND METER CIRCUIT

\section*{Schematic Diagram (Continued)}


HARRIS
SEMICONDUCTOR

TV Chroma Processor

\section*{Features}
－Phase Locked Subcarrier Regeneration Utilizes Sample－and－Hold Techniques
－Automatic Chrominance Control（ACC）／Killer Detector Employs Sample－and－Hold Techniques
－Supplementary ACC with an Overload Detector to Prevent Oversaturation of this Picture Tube
－Sinusoidal Subcarrier Output
－Keyed Chroma Output
－Emitter Follower Buffered Outputs for Low Output Impedance

\section*{Description}

The Harris CA3126 is a monolithic silicon integrated circuit designed for TV chroma processing and is ideally suited for NTSC color graphic applications that require subcarrier regeneration of the color burst signal．

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & \multicolumn{1}{|c|}{ TEMP．} & \multicolumn{1}{|c|}{ RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)} & \multicolumn{1}{|c|}{ PACKAGE }
\end{tabular} \begin{tabular}{c}
\multicolumn{1}{c|}{\begin{tabular}{c} 
PKG． \\
NO．
\end{tabular}} \\
\hline CA3126E
\end{tabular}
－Linear DC Saturation Control

\section*{Applications}
－TV／CATV Receiver Circuits
－NTSC Color Decoder／Processor
－Computer Graphics Subcarrier Regenerator
－Timing Reference for Frame Grabbers
－DSP Clock Timing Reference Source

\section*{Pinouts}
CA3126
（PDIP）
TOP VIEW

Absolute Maximum Ratings
DC Supply Voltage ( \(\mathrm{V}+\) to GND) (Note 1). ..... 13.2 V
DC Current:
Into V+ Pin ..... 38 mA
Into Zener Reference Pin ..... 20 mADC Voltage (Horizontal Key In)Negative Rating-5V
Positive Rating ..... 3V
Operating Conditions

Temperature Range \(\qquad\) \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. This rating does not apply when using the internal zener reference in conjunction with an external pass transistor.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Chroma Gain Control at maximum position for all tests except as noted. Electrical specifications referenced to test circuit.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[t]{2}{*}{TERMINAL, MEASUREMENT AND SYMBOL} & \multicolumn{2}{|l|}{SWITCH POS.} & \multirow[b]{2}{*}{\(\mathbf{V}_{\text {CHROMA }}{ }^{\text {INPUT TP }}{ }_{1}\)} & \multirow[b]{2}{*}{MIN} & \multirow[b]{2}{*}{TYP} & \multirow[b]{2}{*}{MAX} & \multirow[b]{2}{*}{UNITS} \\
\hline & & \(\mathrm{S}_{1}\) & \(S_{2}\) & & & & & \\
\hline \multicolumn{9}{|l|}{DC ELECTRICAL SPECIFICATIONS} \\
\hline Voltage Regulator & \(\mathrm{V}_{12}\) & 2 & 2 & 0 & 10.1 & 11.2 & 12.1 & V \\
\hline Supply Current & \(l_{12}\) & 2 & 2 & 0 & 16 & 25 & 38 & mA \\
\hline \multicolumn{9}{|l|}{SWITCHING ELECTRICAL SPECIFICATIONS (Note 3)} \\
\hline Pull-In Range (Note 4) & \(\mathrm{V}_{8}\) & (Note 6) & 2 & \(0.5 \mathrm{~V}_{\text {P-P }}\) & \(\pm 250\) & - & - & Hz \\
\hline Oscillator Output & \(\mathrm{V}_{8}\) & 2 & 2 & 0 & 0.6 & 1.0 & - & \(\mathrm{V}_{\mathrm{P}-\mathrm{P}}\) \\
\hline 100\% Chroma Output & \(\mathrm{V}_{15}\) & 1 & 2 & \(0.5 \mathrm{~V}_{\text {P-P }}\) & 1.4 & 2.7 & - & \(V_{\text {P-P }}\) \\
\hline Overload Detector & \(V_{15}\) & 1 & 1 & \(0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & 0.4 & - & 0.7 & \(V_{P-P}\) \\
\hline Minimum Chroma Output (Note 5) & \(\mathrm{V}_{15}\) & 1 & 2 & \(0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & - & - & 20 & \(\mathrm{mV} \mathrm{P}-\mathrm{P}\) \\
\hline 200\% Chroma Output & \(\mathrm{V}_{15}\) & 1 & 2 & \(1 \mathrm{~V}_{\text {P-P }}\) & 70 & 100 & 140 & \[
\% \text { of }
\]
100\% \\
\hline 20\% Chroma Output & \(V_{15}\) & 1 & 2 & \(0.1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & 40 & - & 105 & \\
\hline Kill Level & \(\mathrm{V}_{\text {TP1 }}\) & 1 & 2 & Vary & 5 & - & 60 & \(\mathrm{mV} \mathrm{PP-P}\) \\
\hline
\end{tabular}

NOTES:
3. Except for pull-in range testing, tune oscillator trimmer capacitor for free running frequency of \(3.579545 \mathrm{MHz} \pm 10 \mathrm{~Hz}\).
4. Set Switch 1 to Position 2, detune oscillator \(\pm 250 \mathrm{~Hz}\), set Switch 1 to Position 1, and check for oscillator pull-in.
5. Set Chroma Gain Control to minimum position (CCW).

Test Circuit


Pin numbers refer to the PDIP package.
(A) Chroma input signal
(B) Key pulse input signal


\section*{Block Diagram}

TV CHROMA PROCESSOR


NOTES:
6. Optional design features.
7. Pinout numbers refer to the PDIP package.

\section*{Schematic Diagram}


NOTE: Pin numbers refer to the PDIP Package. Resistance values are in ohms.

\section*{Schematic Diagram (Continued)}


\section*{Application Information}

Circuit Description (Pin numbers refer to the DIP package.)
The following paragraphs briefly describe the circuit operation of the CA3126 (shown in the Block Diagram and Schematic Diagram). A detailed description of the operation of various portions of the CA3126 is given in AN6247, "Application of the CA3126 Chroma-Processing IC Using Sample-and-Hold Techniques".

The chroma input is applied to Terminal 1 through the desired band-shaping network. A 2,450 \(\Omega\) resistor should be placed in series with Terminal 1 to minimize oscillator pickup in the first chroma amplifier. This amplifier supplies signals to the second chroma amplifier and to the ACC and AFPC detectors. The first chroma amplifier is gain-controlled by the ACC amplifier.
A horizontal keying pulse is applied to Terminal 9. This pulse must be present to ensure proper operation of the oscillator circuit. The subcarrier burst is sampled during the keying interval in the AFPC detector. The error voltage, produced at Terminal 2 and proportional to the burst phase, is compared to the quiescent bias voltage at Terminal 3 by the sample-and-hold circuitry. This "compared" voltage controls the phase- shifting network in the phase-locked loop. The operation of the AFPC loop is independent of any external adjustments or voltages except for an initial capacitor adjustment to set the free-running frequency.

The regenerated oscillator signal at Terminal 8 is applied internally to the AFPC and ACC detectors through +45 and -45-degree phase-shifter networks to establish the proper phase relationship for these detectors. The ACC detector, which also samples the burst during the keying interval, produces a correction voltage proportional to the burst amplitude. The correction voltage is compared to the quiescent bias level using sample-and-hold circuitry similar to that used in the AFPC portion of the circuit. The "compared" voltage is applied internally to the ACC amplifier and killer amplifier. Because the amplifier gains and killer threshold are determined by the ratios of the internal resistors, these functions are independent of external voltages or controls.

The attenuated chroma signal is fed to the second chroma amplifier, where the burst is removed by keyer action. The killer amplifier, the chroma gain control, and the overload detector control the action of the second chroma amplifier, whose gain is proportional to the dc voltage at Terminal 16. The overload detector (Terminal 13) receives a sample of the chroma output (Terminal 15) and detects the peak of the signal. The detected voltage is stored in an external capacitor connected to Terminal 16. This stored voltage on Terminal 16 affects the gain of the second chroma in the same manner as the chroma gain control.

\section*{General Considerations}

The block diagram shown is typical of the type of circuit used in the practical application of the CA3126. Several items are critical for proper operation of the circuit.
1. A series resistor of approximately \(2,450 \Omega\) (or high source impedance) must be used at the chroma input, Terminal 1. This high impedance minimizes pickup of unbalanced currents, particularly of the subcarrier oscillator signal.
2. When the overload detector is used, a large resistor (nominally \(47,000 \Omega\) ) must be placed in series with Terminal 16 to set the required RC time constant. The same RC network series serves to set the killer time constant.
3. The setting of the free-running oscillator frequency requires the presence of the keying pulse. The free-running frequency will be erroneous if Terminal 1 is DC shorted during the setting operation because of the DC offset voltage introduced to the AFPC detector.
4. Care must be taken in PC board designs to provide reasonable isolation between the oscillator portion of the circuit (Terminals 6, 7, and 8) and the chroma input (Terminal 1).

\section*{Overload Detector}

The overload detector accomplishes two purposes:
1. It prevents oversaturation due to low burst-to-chroma ratios.
2. It prevents overload conditions due to noise.

Both of these conditions are discussed in more detail in AN6247. The extent to which the overload detector is used depends upon the individual receiver design goals. If greater than \(0.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) output is desired, the chroma output at Terminal 15 can be tapped to yield any desired degree of overload detector action.

\section*{Chroma Gain Control}

The chroma gain control operates by varying the base bias on current source transistor \(Q_{25}\). To ensure proper temperature tracking of the chroma gain control, it is essential that the control be operated from a supply source derived from the reference voltage at Terminal 12. Because the control operates from a current source, chroma gain is much more predictable and far less temperature sensitive than controls that steer current by means of a differential amplifier. The typical chroma gain characteristic for the CA3126 is shown in Figure 1.


FIGURE 1. CHROMA GAIN CONTROL

\section*{Subcarrier Regenerator Oscillator}

The oscillator filter consists of a 3.579545 MHz crystal, a \(680 \Omega\) resistor, and a 10 pF capacitor connected in series across Terminals 6 and 7. A 33pF capacitor, shunt connected from Terminal 7 to ground, rolls off higher order harmonics, thereby preventing oscillation at the crystal third-harmonic frequency. A
curve of the typical static phase error as a function of the freerunning oscillator frequency is shown in Figure 2. It should be noted that the slope of the curve determines the DC gain of the phase-locked loop, i.e., 40 Hz per degree.


FIGURE 2. STATIC PHASE ERROR

\section*{Thermal Considerations}

The circuit of the CA3126 is thermally compensated to achieve the optimal operating characteristics over the normal operating temperature range of TV receivers. Figures 3 and 4 show the oscillator and chroma-output amplitudes and phases as a function of temperature (Terminals 8 and 15), respectively.
Both the oscillator and chroma-output amplitudes and phases are measured relative to the chroma-input phase. The performance of the oscillator free-running frequency as a function of temperature is shown in Figure 5. All the temperature plots are characteristic of the test circuit with the indicated component types and values given.


FIGURE 3. AMPLITUDE AND PHASE VARIATIONS OF OSCILLATOR OUTPUT vs TEMPERATURE


FIGURE 4. AMPLITUDE AND PHASE VARIATIONS OF CHROMA OUTPUT vs TEMPERATURE


FIGURE 5. VARIATION OF OSCILLATOR FREE RUNNING FREQUENCY vs TEMPERATURE


FIGURE 6. TYPICAL APPLICATION OF THE CA3126 AS A SUBCARRIER REGENERATOR

HARRIS
CA3154

\section*{Features}
- Horizontal Oscillator with AFC
- Sync Separator with Noise Immunity
- Strobed AGC System
- IF AGC Output
- Delayed Outputs for Forward or Reverse AGC Tuners
- Internal Noise Threshold
- High-Impedance Video Input
- Choice of Dual External Time Constants for Sync Separator Noise Immunity
- RF AGC Delay Externally Controlled
- Output Short-Circuit Protection

Ordering Information
\begin{tabular}{|l|c|l|c|}
\hline PART NUMBER & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular} \\
\hline CA3154E & -40 to 85 & 16 Ld PDIP & E16.3 \\
\hline
\end{tabular}

\section*{Description}

The CA3154 is a monolithic integrated circuit TV signal processor designed for use in color or monochrome receivers. Circuit functions include a horizontal oscillator with AFC, a sync separator, and a keyed AGC system. The AGC system provides output signals for IF (reverse) and tuner (forward and/or reverse). The wide frequency-range horizontal oscillator has high stability at 503.5 kHz . When the CA3154 is used in conjunction with horizontal/vertical countdown circuits, the need for horizontal and vertical hold controls is eliminated.

\section*{Pinout}


Absolute Maximum Ratings
DC Supply Voltage（V＋to V－） 15 V

\section*{Operating Conditions}

Temperature Range

\section*{Thermal Information}

Thermal Resistance（Typical，Note 1） PDIP Package \(\qquad\)
\(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\)
Maximum Junction Temperature（Plastic Package）．．．．．．． \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range ．．．．．．．．． \(65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Maximum Lead Temperature（Soldering 10s）．．．．．．．．．．．．． \(300^{\circ} \mathrm{C}\)

CAUTION：Stresses above those listed in＂Absolute Maximum Ratings＂may cause permanent damage to the device．This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied．

NOTE：
1．\(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air．

\section*{Electrical Specifications Terminal 5 to GND，and Terminal 9 to +12 V ，Unless Otherwise Specified}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS （TERMINALS CONNECTED AS SHOWN BELOW） & \[
\begin{gathered}
\text { TEMP } \\
\left({ }^{\circ} \mathrm{C}\right)
\end{gathered}
\] & MIN & TYP & MAX & UNITS \\
\hline Power Supply Current & 19 & Measure（9） & 25 & 10 & － & 22 & mA \\
\hline Video Inverter Voltage & \(\mathrm{V}_{2}\) & （1）to +4 V ，（2） \(12 \mathrm{k} \Omega\) to GND，（3） \(27 \mathrm{k} \Omega\) to GND， Measure（2） & 25 & 5.2 & － & 6.4 & v \\
\hline Sync Separator High Output Voltage & \(\mathrm{V}_{3 \mathrm{H}}\) & （1）to +4 V ，（2） \(12 \mathrm{k} \Omega\) to GND，（3） \(27 \mathrm{k} \Omega\) to GND， Measure（2） & 25 & 10.7 & － & － & V \\
\hline Sync Separator Low Output Voltage & \(V_{3 L}\) & （1）to＋4V，（3） \(27 \mathrm{k} \Omega\) to GND，Measure（3） & 25 & － & － & 1.3 & V \\
\hline Video Noise Clamp Voltage & \(V_{3}\) Clamp & （1）to＋3．1V，（3） \(27 \mathrm{k} \Omega\) to GND，Measure（3） & 25 & 10.7 & － & － & V \\
\hline AGC Discharge Current & \(I_{15}\) Discharge & （1）to +4.4 V ，（2） \(10 \mathrm{k} \Omega\) to GND，（15） \(470 \Omega\) to +6 V ，（16） \(27 \mathrm{k} \Omega\) to 12 V ，Measure（15） & 25 & 0.6 & － & 1.4 & mA \\
\hline AGC Charge Current & \(I_{15}\) Charge & （1）to＋3．45V，Otherwise，Same as Above & 25 & －2．1 & － & －4．8 & mA \\
\hline AGC Comparator Leakage & \(l_{15}\) Leakage & （1）to +3.45 V ，（2） \(10 \mathrm{k} \Omega\) to GND，（15） \(4.7 \mathrm{k} \Omega\) to +6 V ，Measure（15） & 25 & －20 & － & 20 & \(\mu \mathrm{A}\) \\
\hline AGC Threshold Voltage & \(\mathrm{V}_{1 \text { TH }}\) & Adj．（1）for \(\mathrm{I}_{15}=0 \pm 0.1 \mathrm{~mA}\) ，（2） \(10 \mathrm{k} \Omega\) to GND，（15） \(4.7 \mathrm{k} \Omega\) to +6 V ，（16） \(27 \mathrm{k} \Omega\) to +12 V ，Measure（1） & 25 & 3.8 & 4 & 4.3 & V \\
\hline Minimum IF AGC & \(V_{13 L}\) & （11） \(10 \mathrm{k} \Omega\) to GND，（12） \(10 \mathrm{k} \Omega\) to +12 V ，（13） \(22 \mathrm{k} \Omega\) to +5 V ，（14） \(1 \mathrm{k} \Omega\) to +2.95 V ，（16） \(1 \mathrm{k} \Omega\) to +2.2 V ，Measure（13） & 25 & 0.75 & － & 1.25 & V \\
\hline Forward Tuner AGC Leakage Current & \(l_{11}\) Leakage & （11） \(10 \mathrm{k} \Omega\) to GND，（12） \(10 \mathrm{k} \Omega\) to 12 V ，（13） \(2.2 \mathrm{k} \Omega\) to +5 V ，（14） \(1 \mathrm{k} \Omega\) to +2.95 V ，（15） \(1 \mathrm{k} \Omega\) to +5.3 V ， Measure（11） & 25 & －20 & － & 20 & \(\mu \mathrm{A}\) \\
\hline Reverse Tuner AGC Leakage & \begin{tabular}{l}
\(l_{12}\) \\
Leakage
\end{tabular} & Same as Above，but Measure（12） & 25 & －10 & － & 10 & \(\mu \mathrm{A}\) \\
\hline IF AGC High Voltage & \(\mathrm{V}_{13 \mathrm{H}}\) & Same as Above，but Measure（13） & 25 & 3.65 & － & 4.15 & V \\
\hline Forward Tuner AGC Low Voltage & \(\mathrm{V}_{11 \mathrm{~L}}\) & （11） \(3.6 \mathrm{k} \Omega\) to GND，（12） \(3.16 \mathrm{k} \Omega\) to +12 V ，（13） \(2.2 \mathrm{k} \Omega\) to +5 V ，（14） \(1 \mathrm{k} \Omega\) to +2.95 V ，（15） \(1 \mathrm{k} \Omega\) to +7.9 V ，Measure（11） & 25 & 0.8 & － & 3.2 & V \\
\hline Reverse Tuner AGC Low Voltage & \(V_{12 L}\) & Same as Above，but Measure（12） & 25 & 1.65 & － & 3.25 & V \\
\hline Maximum IF AGC Voltage & \(\mathrm{V}_{13 \mathrm{H}}\) & （11） \(10 \mathrm{k} \Omega\) to GND，（12） \(10 \mathrm{k} \Omega\) to +12 V ，（13） \(2.2 \mathrm{k} \Omega\) to +5 V ，（14） \(1 \mathrm{k} \Omega\) to +2.95 V ，（15） \(1 \mathrm{k} \Omega\) to +7.9 V ，Measure（13） & 25 & 4.85 & － & 5.2 & V \\
\hline Phase Detector Leakage Current & \(\mathrm{I}_{10 \mathrm{~L}}\) & （2） \(10 \mathrm{k} \Omega\) to GND ，（3）to GND，（4） \(5 \mathrm{k} \Omega\) to +3.8 V ， （10） \(10 \mathrm{k} \Omega\) to +6 V ，Limit GND at（3）to 10 s ， Measure 10 & 25 & －5 & － & 5 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Electrical Specifications Terminal 5 to GND, and Terminal 9 to +12 V , Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS (TERMINALS CONNECTED AS SHOWN BELOW) & TEMP ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline Phase Detector Bias Voltage & \(V_{4}\) & & 25 & 2.65 & - & 3.1 & \(\checkmark\) \\
\hline Oscillator Output Voltage & \(\mathrm{V}_{6}\) & Connect Oscillator Loop Shown in Test Circuit to (6), (7), (8); (3) to GND for 10s Max, Measure (6) & 25 & 0.6 & - & 1.6 & \(\mathrm{V}_{\mathrm{P}-\mathrm{P}}\) \\
\hline Oscillator Free-Running Frequency & \(\mathrm{f}_{6 \text { FR }}\) & Same as Above & 25 & 475 & - & 535 & kHz \\
\hline Oscillator Frequency High & \({ }_{6}{ }^{\text {H }}\) & Connect Oscillator Circuit Shown in Test Circuit to (10), (7), (8); (2) \(10 \mathrm{k} \Omega\) to GND, (4) \(5 \mathrm{k} \Omega\) to +18 V , Measure (6) & 25 & 520 & - & - & kHz \\
\hline Oscillator Frequency Low & \(\mathrm{f}_{6 \mathrm{~L}}\) & Same as Above, Except (4) \(5 \mathrm{k} \Omega\) to +3.8 V & 25 & - & - & 485 & kHz \\
\hline Sync Separator Short Circuit & \(I_{3}\) Max & (3) \(10 \Omega\) to GND for 10s Max & 25 & - & - & 40 & mA \\
\hline Oscillator Output Short Circuit & \(\mathrm{I}_{8} \mathrm{Max}\) & \begin{tabular}{l}
(8) \(10 \Omega\) to GND for 10 s Max \\
(3) \(10 \Omega\) to GND for 10 s Max
\end{tabular} & 25 & - & - & 130 & mA \\
\hline
\end{tabular}


FIGURE 1. FUNCTIONAL BLOCK DIAGRAM OF CA3154


NOTE: Oscillator loop to be used as indicated in the electrical characteristics chart, with coil adjusted for typical unit to 503.5 kHz for \(\mathrm{f}_{6 \mathrm{FR}}\). FIGURE 2. ELECTRICAL CHARACTERISTICS TEST CIRCUIT


FIGURE 3. TYPICAL OPERATION OF AGC CIRCUITS USING THE CA3154


FIGURE 4. SCHEMATIC OF SYNC SEPARATOR SECTION OF THE CA3154



FIGURE 7. TYPICAL APPLICATION OF THE CA3154

\section*{Features}
- Includes IF Amplifier, Quadrature Detector, AF Preamplifier, and Specific Circuits for AGC, AFC, Tuning Meter, Deviation-Noise Muting, and ON Channel Detector
- FM IF Amplifier Applications in High-Fidelity, Automotive, and Communications Receivers
- Exceptional Limiting Sensitivity -12 V (Typ) at -3 dB Point
- Low Distortion -0.1\% (Typ) (with Double-Tuned Coil)
- Single-Coil Tuning Capability
- Improved S + N/N Ratio
- Externally Programmable Recovered Audio Level
- Provides Specific Signal for Control of Interchannel Muting (Squelch)
- Provides Specific Signal for Direct Drive of a Tuning Meter
- On Channel Step for Search Control
- Provides Programmable AGC Voltage for RF Amplifier
- Provides a Specific Circuit for Flexible Audio Output
- Internal Supply Voltage Regulators
- Externally Programmable "On" Channel Step Width, and Deviation at Which Muting Occurs

\section*{Description}

The Harris CA3189E is a monolithic integrated circuit that provides all the functions of a comprehensive FM-IF system. The block diagram of the CA3189E includes a three-stage FM-IF amplifier/limiter configuration with level detectors for each stage, a doubly-balanced quadrature FM detector and an audio amplifier that features the optional use of a muting (squelch) circuit.

The advanced circuit design of the IF system includes desirable deluxe features such as programmable delayed AGC for the RF tuner, an AFC drive circuit, and an output signal to drive a tuning meter and/or provide stereo switching logic. In addition, internal power-supply regulators maintain a nearly constant current drain over the voltage supply range of +8.5 V to +16 V .

The CA3189E is ideal for high-fidelity operation. Distortion in a CA3189E FM-IF System is primarily a function of the phase linearity characteristic of the outboard detector coil. The CA3189E has all the features of the CA3089E plus additions. See CA3189E features compared to the CA3089E in Table 1.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|c|}
\hline PART NUMBER & \begin{tabular}{c} 
TEMP. \\
RANGE \({ }^{\circ} \mathrm{C}\) )
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular} \\
\hline CA3189E & -40 to 85 & 16 Ld PDIP & E 16.3 \\
\hline
\end{tabular}

\section*{Pinout}
CA3189
(PDIP)
TOP VIEW


4
FRAME 4
MUTE CONTROL 5
AUDIO OUT 6
AFC OUT 7
IF OUT 8
14 SUBSTRATE (GND)
13 tuning
METER OUT
12 MUTE LOGIC
\(11 \mathrm{~V}+\)
10 ref bias
9 QUADRATURE input
Absolute Maximum Ratings
DC Supply Voltage(Between Terminals 11 and 4)16 V
(Between Terminals 11 and 14) ..... 16V
DC Current (Out of Terminal 15) ..... 2mA

\section*{Operating Conditions}

Temperature Range .

................... \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

\section*{NOTE:}
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}+=12 \mathrm{~V}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & \multicolumn{2}{|l|}{TEST CONDITIONS} & CIRCUIT OR FIG. NO. & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{9}{|l|}{DC SPECIFICATIONS} \\
\hline Quiescent Circuit Current & \(I_{11}\) & \multicolumn{2}{|l|}{No Signal Input, Non Muted} & 1, 2 & 20 & 31 & 40 & mA \\
\hline DC Voltages Terminal 1 (IF Input) & \(V_{1}\) & \multicolumn{2}{|l|}{\multirow[t]{5}{*}{No Signal Input, Non Muted}} & 1,2 & 1.2 & 1.9 & 2.4 & V \\
\hline Terminal 2 (AC Return to Input) & \(\mathrm{V}_{2}\) & & & 1,2 & 1.2 & 1.9 & 2.4 & V \\
\hline Terminal 3 (DC Bias to Input) & \(\mathrm{V}_{3}\) & & & 1, 2 & 1.2 & 1.9 & 2.4 & V \\
\hline Terminal 15 (RF AGC) & \(\mathrm{V}_{15}\) & & & 1, 2 & 7.5 & 9.5 & 11 & V \\
\hline Terminal 10 (DC Reference) & \(\mathrm{V}_{10}\) & & & 1, 2 & 5 & 5.6 & 6 & V \\
\hline \multicolumn{9}{|l|}{DYNAMIC SPECIFICATIONS} \\
\hline Input Limiting Voltage (-3dB Point) & \(\mathrm{V}_{1}\) (lim) & \multirow[b]{3}{*}{0\%} & \multirow[t]{6}{*}{\[
\begin{aligned}
& \mathrm{f}_{\mathrm{o}}=10.7 \mathrm{MHz}, \\
& \mathrm{f}_{\text {MOD. }}=400 \mathrm{~Hz}, \\
& \text { Deviation } \pm 75 \mathrm{kHz}
\end{aligned}
\]} & 1, 2 & - & 12 & 25 & \(\mu \mathrm{V}\) \\
\hline AM Rejection (Terminal 6) & AMR & & & 1, 2 & 45 & 55 & - & dB \\
\hline Recovered AF Voltage (Terminal 6) & \(\mathrm{V}_{\mathrm{O}}\) (AF) & & & 1, 2 & 325 & 500 & 650 & mV \\
\hline Total Harmonic Distortion (Note 2) Single Tuned (Terminal 6) & THD & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {IN }}=0.1 \mathrm{~V}\)} & & 1 & - & 0.5 & 1 & \% \\
\hline Double Tuned (Terminal 6) & THD & & & 2 & - & 0.1 & - & \% \\
\hline Signal Plus Noise to Noise Ratio (Terminal 6) & \(\mathrm{S}+\mathrm{N} / \mathrm{N}\) & \multirow[t]{2}{*}{\(V_{I N}=0.1 \mathrm{~V}\)} & & 1, 2 & 65 & 72 & - & dB \\
\hline Deviation Mute Frequency & \(f_{\text {fev }}\) & & \(\mathrm{f}_{\mathrm{MOD}}=0\) & 1, 5, 6 & - & \(\pm 40\) & - & kHz \\
\hline RF AGC Threshold & \(V_{16}\) & & & 1, 2 & - & 1.25 & - & V \\
\hline \multirow[t]{2}{*}{On Channel Step} & \multirow[t]{2}{*}{\(\mathrm{V}_{12}\)} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{IN}}=0.1 \mathrm{~V}\)} & \(\mathrm{f}_{\mathrm{DEV}}< \pm 40 \mathrm{kHz}\) & 1 & - & 0 & - & V \\
\hline & & & \(\mathrm{f}_{\mathrm{DEV}}> \pm 40 \mathrm{kHz}\) & 1 & - & 5.6 & - & V \\
\hline
\end{tabular}

NOTE:
2. THD characteristics are essentially a function of the phase characteristics of the network connected between Terminals 8,9 , and 10 .

TABLE 1. CA3189E FEATURES COMPARED TO CA3089E
\begin{tabular}{|l|c|c|}
\hline \multicolumn{1}{|c|}{ FEATURES } & CA3189E & CA3089E \\
\hline Low Limiting Sensitivity (12 \(\mu \mathrm{V}\) Typ) & Yes & Yes \\
\hline Low Distortion & Yes & Yes \\
\hline Single-Coil Tuning Capability & Yes & Yes \\
\hline Programmable Audio Level & Yes & No \\
\hline S/N Mute & Yes & Yes \\
\hline Deviation Mute & Yes & No \\
\hline Flexible AFC & Yes & Yes \\
\hline Programmable AGC Threshold and Voltage & Yes & No \\
\hline Typical S + N/N > 70 dB & Yes & No \\
\hline Meter Drive Voltage Depressed at Very Low Signal Levels & Yes & \\
\hline On-Channel Step Control Voltage & No & \\
\hline
\end{tabular}

\section*{Test Circuits}


NOTES:
3. All resistance values are in ohms.
4. L tunes with \(100 \mathrm{pF}(\mathrm{C})\) at 10.7 MHz . \(Q_{0}\) (unloaded) \(\cong 75\) (TOKO No. KACS K586HM or equivalent).
5. \(\mathrm{C}=0.01 \mu \mathrm{~F}\) for \(50 \mu \mathrm{~s}\) deemphasis (Europe).
\(C=0.015 \mu \mathrm{~F}\) for \(75 \mu \mathrm{~s}\) deemphasis (USA).
FIGURE 1. TEST CIRCUIT FOR CA3189E USING A SINGLETUNED DETECTOR COIL


NOTES:
6. All resistance values are in ohms.
7. T: PRI. \(-Q_{0}\) (unloaded) \(\cong 75\) (tunes with \(100 \mathrm{pF}\left(C_{1}\right) 20 \uparrow\) of \(34 \theta\) on \(7 / 32\) " dia. form. SEC. \(-Q_{0}\) (unloaded) \(\cong 75\) (tunes with \(100 \mathrm{pF}\left(\mathrm{C}_{2}\right)\) \(20 \uparrow\) of \(34 e\) on \(7 / 32\) " dia. form. kQ (percent of critical coupling) \(\cong\) \(70 \%\) (Adjusted for coil voltage \(\left(\mathrm{V}_{\mathrm{C}}\right)=150 \mathrm{mV}\) ).
8. Above values permit proper operation of mute (squelch) circuit "E" type slugs, spacing 4 mm .
9. \(\mathrm{C}=0.01 \mu \mathrm{~F}\) for \(50 \mu \mathrm{~s}\) deemphasis (Europe) \(\mathrm{C}=0.015 \mu \mathrm{~F}\) for \(75 \mu \mathrm{~s}\) deemphasis (USA).

FIGURE 2. TEST CIRCUIT FOR CA3189E USING A DOUBLETUNED DETECTOR COIL

\section*{Block Diagram}


NOTES:
10. All resistance values are in \(\Omega\).
11. L Tunes with \(100 \mathrm{pF}(\mathrm{C})\) at 10.7 MHz . \(Q_{\mathrm{O}} \cong 75\) (TOKO No. KACS K 586 HM or equivalent).

\section*{Schematic Diagrams}


Schematic Diagrams (Continued)
CA3189E


\section*{Typical Application}


NOTES:
12. All resistance values are in ohms.
13. CF: Ceramic filters, TOKO CSFE or equivalent.
14. L tunes with \(100 \mathrm{pF}(\mathrm{C})\) at 10.7 MHz . \(Q_{0}\) (unloaded) \(\cong 75\) (TOKO No. KACS K586HM or equivalent).

FIGURE 3. COMPLETE FM IF SYSTEM FOR HIGH QUALITY RECEIVERS

\section*{Typical Performance Curves}


FIGURE 4. MUTING ACTION, TUNER AGC, AND TUNING METER OUTPUT vs INPUT SIGNAL VOLTAGE


FIGURE 6. DEVIATION MUTE THRESHOLD vs LOAD RESISTANCE (BETWEEN TERMINAL 7 AND TERMINAL 10)


FIGURE 5. AFC CHARACTERISTICS (CURRENT AT TERMINAL 7 vs CHANGE IN FREQUENCY)


FIGURE 7. TYPICAL LIMITING AND NOISE CHARACTERISTICS

November 1996
Automatic Picture Tube Bias Control Circuit

\section*{Features}
- Automatic Picture Tube Bias Cutoff Control
- Automatic Background Color Balance
- Eliminates Grey Scale Adjustments
- Compensates for Cathode-to-Heater Leakage
- Electrostatic Protection on All Pins
- Servo Loop Design
- Wide Dynamic Range
- Three-Gun Control
- Minimal External Components

\section*{Ordering Information}
\begin{tabular}{|l|c|l|c|}
\hline PART NUMBER & \begin{tabular}{c} 
TEMP. \\
RANGE
\end{tabular}\({ }^{\circ} \mathrm{C}\) )
\end{tabular}\(\quad\) PACKAGE \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}\(|\)

\section*{Description}

The CA3224E is an automatic picture tube bias control circuit used in color TV receiver CRT drive circuits. It is used to provide dynamic bias control of the grey scale both initially and over the CRT operating life, compensating for CRT cutoff changes.

The CA3224E provides automatic continuous control of the cutoff current in each gun of a three-gun color CRT. From an input pulse amplitude proportional to the difference between the desired and the actual CRT cutoff, a gated sample/hold circuit generates a DC correction voltage which correctly biases the CRT driver circuit. The sample/hold bias correction takes place each frame following the vertical blanking. Figure 1 shows a block diagram of the CA3224E. The functions include three identical servo loop transconductance amplifiers with a sample/hold switch and buffer amplifier plus control logic, internal bias and a mode switch.

\section*{Pinout}


Absolute Maximum Ratings \(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\)
Supply Voltage ( \(\mathrm{V}_{\mathrm{CC}}\) )
. 11V
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 to \(\mathrm{V}_{\mathrm{CC}}\)
Output Current . . . . . . . . . . . . . . . . . . . . . . . . Short Circuit Protected

\section*{Operating Conditions}

Temperature Range \(\qquad\)
Supply Voltage Range (Typical)
\(40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(A t T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{BIAS}}=3.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{V}}(\operatorname{Pin} 8)=\mathrm{V}_{\mathrm{H}}(\operatorname{Pin} 10)=6.0 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{A}, \mathrm{S}_{2}=\mathrm{A}\), See Test Circuit and Timing Diagrams
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{PARAMETER} & TEST PIN NO. & SYMBOL & TEST CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{2}{|l|}{Supply Current} & 22 & ICC & & - & - & 65 & mA \\
\hline \multicolumn{2}{|l|}{Reference Voltage} & 2, 4, 6 & \(\mathrm{V}_{\text {REF }}\) & Measure at \(\mathrm{t}_{4}\) & 5.6 & 6.0 & 6.4 & V \\
\hline \multicolumn{2}{|l|}{Input Current} & 2, 4, 6 & 1 & \(\mathrm{V}_{\mathrm{IN}}=7.2 \mathrm{~V}, \mathrm{~S}_{1}=\mathrm{B}\) & - & - & 250 & nA \\
\hline \multirow[t]{2}{*}{Output Current} & Source & \multirow[t]{2}{*}{17,19, 21} & \({ }^{\text {OM }}+\) & \(\mathrm{V}_{\text {BIAS }}=0.5 \mathrm{~V}\), Measure at \(\mathrm{t}_{6}, S_{1}=B\) & - & - & -0.8 & mA \\
\hline & Sink & & 'ОМ- & \(\mathrm{V}_{\text {BIAS }}=7.0 \mathrm{~V}\), Measure at \(\mathrm{t}_{6}, \mathrm{~S}_{1}=\mathrm{B}\) & 0.8 & - & - & mA \\
\hline \multirow[t]{2}{*}{Output Buffer} & Input Current & \multirow[t]{2}{*}{17,19, 21} & 1 & \multirow[t]{2}{*}{\begin{tabular}{l}
\(\mathrm{V}_{\text {OUT }}=6.5 \mathrm{~V}, \mathrm{~V}_{\text {IN }}\) \\
At pins 16, 18, 20, \\
Measure at \(\mathrm{t}_{4}, \mathrm{~S}_{1}=\mathrm{B}\)
\end{tabular}} & - & - & 150 & nA \\
\hline & Voltage Gain & & \(A_{V}\) & & 0.97 & - & 1.07 & - \\
\hline \multicolumn{2}{|l|}{Transconductance} & 17,19, 21 & \(\mathrm{g}_{\mathrm{M}}\) & Measure at \(\mathrm{t}_{6}, \mathrm{~V}_{\mathrm{IN}}=8 \mathrm{mV}_{\mathrm{P}-\mathrm{P}}\) at \(40 \mathrm{kHz}, \mathrm{S}_{1}=\mathrm{B}\) & 50 & - & 100 & mS \\
\hline \multirow[t]{3}{*}{Auto Bias Pulse} & Output Low & \multirow[t]{3}{*}{13} & \(\mathrm{V}_{\mathrm{OL}}\) & Measure at \(\mathrm{t}_{1}\) & - & - & 0.3 & V \\
\hline & High & & \(\mathrm{V}_{\mathrm{OH}}\) & Measure at \(\mathrm{t}_{4}\) & 6.05 & - & - & V \\
\hline & Current Sink & & IOM- & Measure at \(\mathrm{t}_{4}, \mathrm{~S}_{2}=\mathrm{B}\) & 2.5 & - & - & mA \\
\hline \multirow[t]{2}{*}{Grid Pulse Output} & Low & \multirow[t]{2}{*}{11} & \(\mathrm{V}_{\mathrm{OL}}\) & Measure at \(\mathrm{t}_{4}\) & - & - & 0.4 & V \\
\hline & High & & \(\mathrm{V}_{\mathrm{OH}}\) & Measure at \(\mathrm{t}_{1}\) & 4.2 & - & - & V \\
\hline \multirow[t]{2}{*}{Program Pulse Output} & Low & \multirow[t]{2}{*}{12} & \(\mathrm{V}_{\mathrm{OL}}\) & Measure at \(\mathrm{t}_{6}\) & - & - & 0.4 & V \\
\hline & High & & \(\mathrm{V}_{\mathrm{OH}}\) & Measure at \(\mathrm{t}_{1}\) & 8.2 & - & - & V \\
\hline \multicolumn{2}{|l|}{Vertical Input} & 8 & \(\mathrm{V}_{V}\) & See Figure 3 & - & 6.0 & - & V \\
\hline \multicolumn{2}{|l|}{Horizontal Input} & 10 & \(\mathrm{V}_{\mathrm{H}}\) & See Figure 3 & - & 6.0 & - & V \\
\hline \multirow[t]{2}{*}{Auto Bias Pulse Timing} & Start & \multirow[t]{2}{*}{13} & & \(\mathrm{t}_{0}\) to \(\mathrm{t}_{2}\), Note 2 & 835 & - & 842 & \(\mu \mathrm{s}\) \\
\hline & Finish & & & \(\mathrm{t}_{0}\) to \(\mathrm{t}_{7}\), Note 2 & 1270 & - & 1275 & \(\mu \mathrm{s}\) \\
\hline \multirow[t]{2}{*}{Grid Pulse Timing} & Start & \multirow[t]{2}{*}{11} & & \(t_{0}\) to \(t_{3}\), Note 2 & 899 & - & 905 & \(\mu \mathrm{s}\) \\
\hline & Finish & & & \(t_{0}\) to \(t_{5}\), Note 2 & 1080 & - & 1084 & \(\mu \mathrm{s}\) \\
\hline \multirow[t]{2}{*}{Program Pulse Timing} & Start & \multirow[t]{2}{*}{12} & & \(\mathrm{t}_{0}\) to \(\mathrm{t}_{5}\), Note 2 & 1080 & - & 1084 & \(\mu \mathrm{s}\) \\
\hline & Finish & & & \(t_{0}\) to \(t_{7}\), Note 2 & 1270 & - & 1275 & \(\mu \mathrm{s}\) \\
\hline
\end{tabular}

NOTE:
2. All time measurements are made from \(50 \%\) point to \(50 \%\) point.

Test Circuit


\section*{Device Description and Operation}
(See Figures 1, 2, 4 and 5)
During the vertical retrace interval, 13 horizontal sync pulses are counted. On the 14th sync pulse the auto-bias pulse output goes high. This is used to set the RGB drive of the companion chroma/luma circuit to black level. The auto-bias pulse stays high for 7 horizontal periods during the auto-bias cycle.
On the 15th horizontal sync pulse, the internal logic initiates the setup interval. During the setup interval, the cathode current is increased to a reference value ( \(A\) in Figure 5) through the action of the grid pulse. The cathode current causes a voltage drop across \(R_{\text {S }}\). This voltage drop, together with the program pulse output results in a reference voltage at \(\mathrm{V}_{\mathrm{S}}\) (summing point) which causes capacitor \(\mathrm{C}_{1}\) to charge to a voltage proportional to the reference cathode current. The setup interval lasts for 3 horizontal periods.

On the 18th horizontal sync pulse the grid pulse output goes high, which through the grid pulse amplifier/inverter, causes the cathode current to decrease. The decrease in cathode current results in a positive recovered voltage pulse with respect to the setup reference level at the \(\mathrm{V}_{\mathrm{S}}\) summing point. The positive recovered voltage pulse is summed with a negative voltage pulse caused by the program pulse output going low (cutting off Diode \(D_{1}\) and switching in resistors \(R_{1}\) and \(R_{2}\) ). Any difference between the positive and negative pulses is fed through capacitor \(\mathrm{C}_{1}\) to the transconductance amplifier. The difference signal is amplified in the transconductance amplifier and charges the hold capacitor \(\mathrm{C}_{2}\), which, through the buffer amplifier, adjusts the bias on the driver circuit.
Components \(R_{S}, R_{1}\), and \(R_{2}\) must be chosen such that the program pulse and the recovered pulse just cancel at the desired cathode cutoff level.


FIGURE 1. FUNCTIONAL BLOCK DIAGRAM


FIGURE 2. FUNCTIONAL TIMING DIAGRAMS


FIGURE 3. VERTICAL AND HORIZONTAL INPUT SIGNALS


NOTE:
3. One of three identical driver circuits shown.

FIGURE 4. TYPICAL APPLICATION CIRCUIT


FIGURE 5. PICTURE TUBE V-I CURVE


FIGURE 6A.

\section*{Electrostatic Protection (Note)}

When correctly designed for ESD protection, SCRs can be highly effective, enabling circuits to be protected to well in excess of 4 kV . The SCR ESD-EOS protection structures used on each terminal of the CA3224E are shown schematically in either Figures 6A or 6B. Although ESD-EOS protection is included in the CA3224E, proper circuit board layout and grounding techniques should be observed.
NOTE: For further information on CA3224E protection structures refer to: AN7304, "Using SCRs as Transient Protection Structures in Integrated Circuits", by L.R. Avery. Harris AnswerFAX (407-724-7800) document \#97304.


FIGURE 6B.

FIGURE 6. TRANSIENT PROTECTION

CA3256

\section*{Features}
- 5 Multiplex Video Channels
- 1 Independent Channel
- 4 Channels with Enable
- 4 LED Channel Indicator Outputs
- Wideband Video Amplifier
.25MHz Unity Gain
- Adjustable Video Amplifier Gain
- High Signal-Drive Capability

\section*{Applications}
- Video Multiplex Switch
- \(75 \Omega\) Video Amplifier/Line Driver
- Video Signal-Level Control
- Monitor Switching Control
- TV/CATV Audio/Video Switch
- Video Signal Adder/Fader Control

\section*{Ordering Information}
\begin{tabular}{|l|c|l|c|}
\hline PART NUMBER & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathbf{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline CA3256E & -40 to 85 & 18 Ld PDIP & E18.3 \\
\hline CA3256M & -40 to 85 & 20 Ld SOIC & M20.3 \\
\hline
\end{tabular}

\section*{Description}

The CA3256 BiMOS analog video switch has five channels of CMOS multiplex switching for general-purpose videosignal control. One of four CMOS channels may be selected in parallel with channel 5 . The CMOS switches are inputs to the video amplifier but may be used in bilateral switching between channels 1 to 4 and channel 5 . The analog switches of channels 1 to 4 are digitally controlled with logic level conversion and binary decoding to select 1 of 4 channels. The enable function controls channels 1 to 4 but does not affect channel 5. LED output drivers are selected with the channel 1-to-4 switch selection to indicate the ONchannel. Channel 5 may be used as a monitor output for data or signal information on channels 1 to 4. The transmission gate switches shown in the block diagram of the CA3256 are configured in a "T" design to minimize feedthrough. When the switch is off, the shunt or center of the " \(T\) " is grounded.

The amplifier has high input impedance to minimize the \(\mathrm{R}_{\mathrm{ON}}\) transmission gate insertion loss. The amplifier output impedance is typically \(5 \Omega\) in a complementary symmetry output. The amplifier can directly drive a nominal \(75 \Omega\) coaxial cable to provide line-to-line video switching. The gain of the amplifier is programmable by different feedback resistor values between pins 8 and 9 . Compensation may also be used between these pins for an optimally flat frequency response. An internal regulated 5 V bias reference with temperature compensation permits stable direct-coupled output drive and minimizes DC offset during signal switching.

\section*{Pinouts}


CA3256
(SOIC)
TOP VIEW
\begin{tabular}{|c|c|}
\hline IN3 1 & 20 CONTROL B \\
\hline LED4 2 & 19 IN 2 \\
\hline IN4 3 & 18 CONTROL A \\
\hline GND 4 & 17 NC \\
\hline \(v\) - 5 & 16 N1 \\
\hline enable 6 & \(15 \mathrm{~V}+\) \\
\hline CONTROL C 7 & 14 IN/OUT5 \\
\hline Feedback 8 & 13 NC \\
\hline AMP OUT 9 & 12 LED1 \\
\hline Led3 10 & 11 LED2 \\
\hline
\end{tabular}

\title{
Sync Generator for TV Applications and Video Processing Systems
}

\section*{Features}
- Interlaced Composite Sync Output
- Automatic Genlock Capability
- Crystal Oscillator Operation
- 525 or 625 Line Operation
- Vertical Reset Option
- Wide Power Supply Operating Voltage . . . . . 4V to 15V

\section*{Applications}
- Cameras
- Monitors and Displays
- CATV
- Teletext
- Video Games
- Sync Restorer
- Video Service Instruments

\section*{Ordering Information}
\begin{tabular}{|l|c|l|c|}
\hline PART NUMBER & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular} \\
\hline CD22402D & -55 to 125 & 24 Ld SBDIP & D24.6 \\
\hline CD22402E & -40 to 85 & 24 Ld PDIP & E24.6 \\
\hline
\end{tabular}

\section*{Description}

The Harris CD22402 (Note) is a CMOS LSI sync generator that produces all the timing signals required to drive a fully 2 -to-1 interlaced 525 -line 30 -frame/second, or 625 -line 25 -frame/second TV camera or video processing system. A complete sync waveform is produced which begins each field with six serrated vertical sync pulses, preceded and followed by six half-width double frequency equalizing pulses. The sync output is gated by the master clock to preserve horizontal phase continuity during the vertical interval.

The CD22402 can be operated either in "genlock" mode, in which it is synchronized with a reference sync pulse train from another TV camera, or in "stand-alone" mode, in which it is synchronized with a local on-chip crystal oscillator (the crystal and two passive components are off chip). Also, the circuit can sense the presence or absence of a reference sync pulse train and automatically select the "genlock" or "stand-alone" mode.
A frame sync pulse is produced at the beginning of every odd field. The vertical counter can be reset to either the first equalizing pulse or the first vertical sync pulse of the vertical interval. The interlaced sync provided by the CD22402 differs from RS-170 by having slightly narrower sync and equalizing pulses. The clock frequency of 32 times horizontal rate allows for approximately \(4 \mu \mathrm{~s}\) horizontal pulse widths and \(2 \mu \mathrm{~s}\) equalizing pulses. Otherwise operation can be phase locked to a color sub-carrier for a full interlaced operating system.

The CD22402 is operable with a single supply over a voltage range of 4 V to 15 V .


Pin Descriptions
\begin{tabular}{|c|c|c|}
\hline PIN No. & SYMBOL & DESCRIPTION \\
\hline 1 & XRC & Delay, Genlock to Crystal Oscillator. Resistor, diode and capacitor connection for delay that automatically turns on the crystal oscillator when the genlock input is removed. When the signal on Terminal 1 is high the crystal oscillator is inhibited. Typical values for \(R\) and \(C\) are \(1 \mathrm{M} \Omega\) and \(0.001 \mu \mathrm{~F}\). For operation as a crystal controlled stand alone sync generator without genlock, Terminal 1 should be hardwired to \(V_{S S}\). \\
\hline 2 & XTP & Crystal Oscillator Feedback Tap. Feedback connection (tap) for crystal oscillator. When a crystal (shunted by a \(1 \mathrm{M} \Omega\) resistor) is connected between this terminal and Terminal 23 , and a 100 pF capacitor is connected from this terminal to \(\mathrm{V}_{\mathrm{SS}}\), the sync generator creates its own master frequency. For a 525 -line, 30 -frame/second raster, the crystal frequency is 504.000 kHz (Note 1); and for a 625 -line, 25 -frame/second raster, the crystal frequency is 500.000 kHz (Note 1). \\
\hline 3 & \(\mathrm{V}_{S S}\) & Negative Power Supply Voltage. This terminal must be hardwired to Terminal 12 ( \(\mathrm{V}_{\text {SS }}\) ). \\
\hline 4 & HD & Horizontal Drive Output \\
\hline 5 & MS & Mixed Sync Output \\
\hline 6 & C & Capacitor Connection for R-C Genlock Oscillator \\
\hline 7 & MBB & Mixed Beam Blanking Output \\
\hline 8 & VRE & Vertical Counter Reset to First Equalizing Pulse. A low level signal on this terminal resets the vertical counter to the first equalizing pulse of a field. When not in use this terminal should be connected to \(\mathrm{V}_{\mathrm{DD}}\). \\
\hline 9 & VD & Vertical Drive Output \\
\hline 10 & VRV & Vertical Counter Reset to First Vertical Sync Pulse. A low level signal on this terminal resets the sync generator to the first vertical sync pulse of a field. For genlock operation, Terminal 10 is used as a resistor and capacitor connection for an integrator network that detects vertical sync pulses in a master sync waveform to which the sync generator is to be genlocked. R is \(22 \mathrm{k} \Omega\), and C is 0.001 pF . When not in use this terminal should be connected to \(V_{D D}\). \\
\hline 11 & HC & Horizontal Clamp Output \\
\hline 12 & \(\mathrm{V}_{S S}\) & Negative Power Supply Voltage \\
\hline 13 & MPB & Mixed Processing Blanking Output \\
\hline 14 & HPB & Horizontal Processing Blanking Output \\
\hline 15 & FS2 & Frame Sync Output (Odd Field). A pulse coinciding with the first equalizing pulse is produced at the beginning of every odd field. \\
\hline 16 & SVD & Short Vertical Drive Output \\
\hline 17 & VPB & Vertical Processing Blanking Output \\
\hline 18 & SW & Operation Switch for 525-Line or 625-Line Raster. A high level signal on Terminal 18 causes the sync generator to generate a 625 -line raster. An internal pulldown resistor is connected to Terminal 18 , so in the absence of an applied input to this terminal, a 525 -line raster is produced. \\
\hline 19 & \(\mathrm{V}_{\mathrm{DD}}\) & Positive Power Supply Voltage. \(\mathrm{V}_{\text {DD }}\) can be any voltage between +4 and +15 relative to \(\mathrm{V}_{S S}\). \\
\hline 20 & GEN & Genlock Input Composite Sync. A negative going reference mixed sync waveform applied to Terminal 20 disables the crystal oscillator and locks the R-C genlock oscillator to the horizontal pulses of the reference sync waveform. Vertical sync detection is achieved by an R-C integrator connected from Terminal 20 to Terminal 10 (vertical reset to first vertical sync pulse). An internal pull-up resistor is connected to Terminal 20 so that in the absence of an applied input the crystal oscillator is enabled and the R-C genlock oscillator is disabled. \\
\hline 21 & XR & Delay, Genlock to Crystal Oscillator, Resistor and Diode Connection for Delay, Genlock to Crystal Oscillator. Automatically turns on the crystal oscillator when the input to Terminal 20 is removed. \\
\hline 22 & RC & Resistor and Capacitor Connection for Genlock Oscillator. If the genlock oscillator is not used this terminal should be connected to \(\mathrm{V}_{\mathrm{SS}}\). C should be 100 pF , and R should be a \(10 \mathrm{k} \Omega\) potentiometer. \\
\hline 23 & XIN & Master Frequency Input. \\
\hline 24 & R & Resistor Connection for Genlock Oscillator. \\
\hline
\end{tabular}

NOTE: 32 times horizontal frequency.

\section*{Block Diagram}

CD22402 MONOCHROME TV SYNC GENERATOR WITH AUTOMATIC GENLOCK


\section*{Absolute Maximum Ratings}

DC Supply Voltage (Referenced to \(\mathrm{V}_{\text {SS }}\) Terminal) . . . . . . . . . . 15 V Input Voltage Range, All Inputs (Notes 2, 3) ....... \(\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{1} \leq \mathrm{V}_{\mathrm{DD}}\) DC Input Current, Any One Input (Note 2) . . . . . . . . . . . . . . \(\pm 10 \mathrm{~mA}\)

\section*{Operating Conditions}

Temperature Range
```

CD22402D
CD22402E
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
CD22402E $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

```

\section*{Thermal Information}
\(\begin{array}{ccc}\text { Thermal Resistance (Typical, Note 1) } & \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) & \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \\ \text { SBDIP Package } \ldots \ldots \ldots \ldots \ldots \ldots & 50 & 10 \\ \text { PDIP Package } \ldots \ldots \ldots \ldots \ldots \ldots \ldots . & 50 & \text { N/A }\end{array}\)
Maximum Junction Temperature (SBDIP Package) . . . . . . . . \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (PDIP Package) . . . . . . . . \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\)
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied

NOTES:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.
2. To prevent damage to the input protection circuit, input signals should never be greater than \(\mathrm{V}_{\mathrm{DD}}\) nor less than \(\mathrm{V}_{\mathrm{SS}}\). Input currents must not exceed 10 mA even when the power is off.
3. A connection must be provided at every input terminal. All unused inputs must be connected to \(\mathrm{V}_{\mathrm{DD}}\) or \(\mathrm{V}_{\mathrm{SS}}\), whichever is appropriate.

Electrical Specifications Values at \(-55^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 125^{\circ} \mathrm{C}\) Apply to \(D\) Package
Values at \(-40^{\circ} \mathrm{C}, 25^{\circ} \mathrm{C}, 85^{\circ} \mathrm{C}\) Apply to E Package
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multicolumn{2}{|l|}{TEST CONDITIONS} & \multirow[b]{2}{*}{\(-55^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{\(-40^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{\(85^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{\(125^{\circ} \mathrm{C}\)} & \multicolumn{3}{|c|}{\(25^{\circ} \mathrm{C}\)} & \multirow[b]{2}{*}{UNITS} \\
\hline & & \[
\begin{aligned}
& \mathrm{v}_{\mathrm{O}} \\
& \text { (V) }
\end{aligned}
\] & \[
\begin{aligned}
& V_{D D} \\
& (\mathrm{~V})
\end{aligned}
\] & & & & & MIN & TYP & MAX & \\
\hline \multicolumn{12}{|l|}{DC ELECTRICAL SPECIFICATIONS} \\
\hline \multirow[t]{3}{*}{Quiescent Device Current} & \multirow[t]{3}{*}{\({ }^{\text {IDD ( Max) }}\)} & - & 5 & - & - & - & - & 0.5 & 0.75 & 1 & mA \\
\hline & & - & 10 & - & - & - & - & 1.5 & 2 & 2.5 & mA \\
\hline & & - & 15 & - & - & - & - & 3 & 4 & 5 & mA \\
\hline \multirow[t]{4}{*}{Output Low (Sink) Current} & \multirow[t]{4}{*}{\(\mathrm{I}_{\text {OL }}(\mathrm{Min})\)} & 0.5 & 5 & 100 & 96 & 66 & 56 & 80 & 160 & - & \(\mu \mathrm{A}\) \\
\hline & & 5 & 5 & 1200 & 1155 & 787 & 672 & 960 & 1920 & - & \(\mu \mathrm{A}\) \\
\hline & & 0.5 & 10 & 248 & 239 & 164 & 140 & 200 & 400 & - & \(\mu \mathrm{A}\) \\
\hline & & 10 & 10 & 3000 & 2868 & 1968 & 1680 & 2400 & 4800 & - & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{4}{*}{Output High (Source) Current} & \multirow[t]{4}{*}{\(\mathrm{IOH}_{(\mathrm{Min})}\)} & 4.5 & 5 & -100 & -96 & -66 & -56 & -80 & -160 & - & \(\mu \mathrm{A}\) \\
\hline & & 0 & 5 & -1200 & -1155 & -787 & -672 & -960 & -1920 & - & \(\mu \mathrm{A}\) \\
\hline & & 9.5 & 10 & -248 & -239 & -164 & -140 & -200 & -400 & - & \(\mu \mathrm{A}\) \\
\hline & & 0 & 10 & -3000 & -2868 & -1968 & -1680 & -2400 & -4800 & - & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Output Voltage Low Level} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OL }}\) (Max)} & - & 5 & 0.15 & 0.15 & 0.15 & 0.15 & - & - & 0.15 & V \\
\hline & & - & 10 & 0.15 & 0.15 & 0.15 & 0.15 & - & - & 0.15 & V \\
\hline \multirow[t]{2}{*}{Output Voltage High Level} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{OH}}\) (Min)} & - & 5 & 4.85 & 4.85 & 4.85 & 4.85 & 4.85 & - & - & V \\
\hline & & - & 10 & 9.85 & 9.85 & 9.85 & 9.85 & 9.85 & - & - & V \\
\hline \multirow[t]{2}{*}{Input Low Voltage} & \multirow[t]{2}{*}{VIL (Max)} & 0.5, 4.5 & 5 & 1.5 & 1.5 & 1.4 & 1.4 & - & 2.25 & 1.5 & V \\
\hline & & 1, 9 & 10 & 3 & 3 & 2.9 & 2.9 & - & 4.5 & 3 & V \\
\hline \multirow[t]{2}{*}{Input High Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{IH}}(\mathrm{Min})\)} & 0.5, 4.5 & 5 & 3.6 & 3.6 & 3.5 & 3.5 & 3.5 & 2.25 & - & V \\
\hline & & 1, 9 & 10 & 7.1 & 7.1 & 7 & 7 & 7 & 4.5 & - & V \\
\hline Input Current & IIN (Max) & - & - & - & - & - & - & - & 10 & - & pA \\
\hline
\end{tabular}

Refer to the CD4000B Series data book 250.5 for general operating and application considerations.

Switching Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}\) and \(\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}\). Typical Temperature Coefficient for All Values of \(\mathrm{V}_{\mathrm{DD}}=0.3 \% /{ }^{\circ} \mathrm{C}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER (NOTE 4)} & \multirow[b]{2}{*}{SYMBOL} & TEST CONDITIONS & \multirow[b]{2}{*}{MIN} & \multirow[b]{2}{*}{TYP} & \multirow[b]{2}{*}{MAX} & \multirow[b]{2}{*}{UNITS} \\
\hline & & \(\mathrm{V}_{\mathrm{DD}}(\mathrm{V})\) & & & & \\
\hline Output State Propagation Delay Time (50\% to 50\%) Low-to-High Level & tPLH & 5 & - & 40 & 80 & ns \\
\hline High-to-Low Level & \({ }_{\text {tPHL }}\) & 10 & - & 20 & 40 & ns \\
\hline \begin{tabular}{l}
Output State Transition Time ( \(10 \%\) to \(90 \%\) ) \\
Low-to-High
\end{tabular} & \({ }_{\text {t }}^{\text {tLH }}\) & 5 & - & 45 & 90 & ns \\
\hline High-to-Low & \({ }_{\text {t }}^{\text {THL }}\) & 10 & - & 30 & 60 & ns \\
\hline Input Capacitance (Per Input) & \(\mathrm{C}_{1}\) & - & - & 5 & - & pF \\
\hline
\end{tabular}

NOTE:
4. The characteristics given are defined for unbuffered gate in the CMOS process of the CD22402.

\section*{Logic Diagram}


NOTES:
5. Pin 21 high when pin 20 is high (or open).
6. Pin 1 high inhibits clock.

FIGURE 1. DETAIL OF THE OSCILLATOR/GENLOCK PORTION OF THE CD22402

Timing Waveforms


FIGURE 2. SYNC GENERATOR TIMING - \(525 / 60 \mathrm{~Hz}\), HORIZONTAL TIMING WAVEFORMS


FIGURE 3. SYNC GENERATOR TIMING - 525/60Hz, VERTICAL TIMING WAVEFORMS

Timing Waveforms (Continued)


FIGURE 4. SYNC GENERATOR TIMING \(-625 / 50 \mathrm{~Hz}\), HORIZONTAL TIMING WAVEFORMS


Figure 5. SYNC GENERATOR TIMING - 625/50Hz, VERTICAL TIMING WAVEFORMS

Timing Waveforms (Continued)


FIGURE 6. EXPANDED VERTICAL-TIMING WAVEFORM DETAIL OF SYNC GENERATOR TIMING (VERTICAL DRIVE - PIN 9)


FIGURE 7. EXPANDED VERTICAL-TIMING WAVEFORM DETAIL OF SYNC GENERATOR TIMING (VERTICAL PROCESSING BLANKING - PIN 17)

Timing Waveforms (Continued)


FIGURE 8. EXPANDED VERTICAL-TIMING WAVEFORM DETAIL OF SYNC GENERATOR TIMING (MIXED PROCESSSING BLANKING - PIN 13)


FIGURE 9. EXPANDED VERTICAL-TIMING WAVEFORM DETAIL OF SYNC GENERATOR TIMING (SHORT VERTICAL DRIVE - PIN 16)

Timing Waveforms (Continued)


SEE NOTES 7, 8
NOTES:
7. Waveforms shown are for 525 line \(/ 60 \mathrm{~Hz}\), line number in parenthesis are for ( 625 line \(/ 50 \mathrm{~Hz}\) ).
8. Timing widths by clock count; for 525 line, 1 CLK \(=1.98 \mu \mathrm{~s}\); for 625 line, 1 CLK \(=2 \mu \mathrm{~s}\); 1 horizontal period \(=32\) CLKS.

FIGURE 10. EXPANDED VERTICAL-TIMING WAVEFORM DETAIL OF SYNC GENERATOR TIMING (MIXED BEAM BLANKING - PIN 7)

Typical Applications (Refer to Application Note ANB742, for more information)


FIGURE 11. TYPICAL APPLICATION IN A TV CAMERA


NOTE: The genlock input to pins 10 and 20 of the CD22402 are direct coupled to the output from Pins 8 and 14 of the CA5470. Refer to Application Note AN-8742 for additional information.
FIGURE 12. SUGGESTED SYNC-SEPARATOR CIRCUIT USING THE CA5470 BIMOS-E QUAD OP AMP IN THE VDD RANGE OF 4V TO 12V

HARRIS
SEMICONDUCTOR

\section*{30MHz, Voltage Output, Two Quadrant Analog Multiplier}

\section*{Features}
- High Speed Voltage Output. . . . . . . . . . . . . . . . . 300V/ \(\mu \mathrm{s}\)
- Low Multiplication error . . . . . . . . . . . . . . . . . . . . . \(1.6 \%\)
- Input Bias Currents \(1.2 \mu \mathrm{~A}\)
- Signal Input Feedthrough -52dB
- Wide Signal Bandwidth 30 MHz
- Wide Control Bandwidth 17MHz
- Gain Flatness to \(\mathbf{5 M H z}\).
. 0.10dB

\section*{Applications}
- Military Avionics
- Missile Guidance Systems
- Medical Imaging Displays
- Video Mixers
- Sonar AGC Processors
- Radar Signal Conditioning
- Voltage Controlled Amplifier
- Vector Generator

\section*{Description}

The HA-2546 is a monolithic, high speed, two quadrant, analog multiplier constructed in the Harris Dielectrically Isolated High Frequency Process. The HA-2546 has a voltage output with a 30 MHz signal bandwidth, \(300 \mathrm{~V} / \mu\) s slew rate and a 17 MHz control bandwidth. High bandwidth and slew rate make this part an ideal component for use in video systems. The suitability for precision video applications is demonstrated further by the 0.1 dB gain flatness to \(5 \mathrm{MHz}, 1.6 \%\) multiplication error, -52 dB feedthrough and differential inputs with \(1.2 \mu \mathrm{~A}\) bias currents. The HA-2546 also has low differential gain ( \(0.1 \%\) ) and phase ( 0.1 degree) errors.

The HA-2546 is well suited for AGC circuits as well as mixer applications for sonar, radar, and medical imaging equipment. The voltage output simplifies many designs by eliminating the current to voltage conversion stage required for current output multipliers. For MIL-STD-883 compliant product, consult the HA-2546/883 datasheet.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HA1-2546-5 & 0 to 75 & 16 Ld CERDIP & F16.3 \\
\hline HA1-2546-9 & -40 to 85 & 16 Ld CERDIP & F16.3 \\
\hline HA3-2546-5 & 0 to 75 & 16 Ld PDIP & E16.3 \\
\hline HA9P2546-5 & 0 to 65 & 16 Ld SOIC & M16.3 \\
\hline
\end{tabular}

\section*{Pinout}

HA-2546
(PDIP, CERDIP, SOIC)
TOP VIEW


Simplified Schematic


\section*{Absolute Maximum Ratings}
Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35V
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6V
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\pm 60 \mathrm{~mA}\)

\section*{Operating Conditions}
Temperature Range

\(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)
\(0^{\circ} \mathrm{C}\) to \(65^{\circ} \mathrm{C}\)

\section*{Thermal Information}
\(\begin{array}{ccc}\text { Thermal Resistance (Typical, Note 1) } & \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) & \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \\ \text { CERDIP Package } \ldots . . \ldots \ldots . . . & 75 & 20\end{array}\)
\begin{tabular}{|c|c|c|}
\hline CERDIP Package & 5 & 0 \\
\hline IP Package & 86 & \\
\hline
\end{tabular}

SOIC Package . . . . . . . . . . . . . . . . . . . 96 N/A
Maximum Junction Temperature (CERDIP Package) . . . . . . . . \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (Plastic Package) . . . . . . . . \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\)
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(\quad V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, R_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{MULTIPLIER PERFORMANCE} \\
\hline \multirow[t]{2}{*}{Multiplication Error (Note 2)} & & 25 & - & 1.6 & 3 & \% \\
\hline & & Full & - & 3.0 & 7 & \% \\
\hline Multiplication Error Drift & & Full & - & 0.003 & - & \(\%{ }^{\circ} \mathrm{C}\) \\
\hline Differential Gain (Notes 3, 9) & & 25 & - & 0.1 & 0.2 & \% \\
\hline Differential Phase (Notes 3, 9) & & 25 & - & 0.1 & 0.3 & Degrees \\
\hline \multirow[t]{2}{*}{Gain Flatness (Note 9)} & DC to \(5 \mathrm{MHz}, \mathrm{V}_{\mathrm{X}}=2 \mathrm{~V}\) & 25 & - & 0.1 & 0.2 & dB \\
\hline & 5 MHz to \(8 \mathrm{MHz}, \mathrm{V}_{\mathrm{X}}=2 \mathrm{~V}\) & 25 & - & 0.18 & 0.3 & dB \\
\hline Scale Factor Error & & Full & - & 0.7 & 5.0 & \% \\
\hline 1\% Amplitude Bandwidth Error & & 25 & - & 6 & - & MHz \\
\hline 1\% Vector Bandwidth Error & & 25 & - & 260 & - & kHz \\
\hline THD + N (Note 4) & & 25 & - & 0.03 & - & \% \\
\hline \multirow[t]{3}{*}{Voltage Noise} & \(\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{Y}}=0 \mathrm{~V}\) & 25 & - & 400 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline & \(\mathrm{f}_{\mathrm{O}}=100 \mathrm{~Hz}, \mathrm{~V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{Y}}=0 \mathrm{~V}\) & 25 & - & 150 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline & \(\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}, \mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{Y}}=0 \mathrm{~V}\) & 25 & - & 75 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline Common Mode Range & & 25 & - & \(\pm 9\) & - & V \\
\hline \multicolumn{7}{|l|}{SIGNAL INPUT, \(\mathbf{V}_{\mathbf{Y}}\)} \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & & 25 & - & 3 & 10 & mV \\
\hline & & Full & - & 8 & 20 & mV \\
\hline Average Offset Voltage Drift & & Full & - & 45 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{Input Bias Current} & & 25 & - & 7 & 15 & \(\mu \mathrm{A}\) \\
\hline & & Full & - & 10 & 15 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Input Offset Current} & & 25 & - & 0.7 & 2 & \(\mu \mathrm{A}\) \\
\hline & & Full & - & 1.0 & 3 & \(\mu \mathrm{A}\) \\
\hline Input Capacitance & & 25 & - & 2.5 & - & pF \\
\hline Differential Input Resistance & & 25 & - & 720 & - & k \(\Omega\) \\
\hline Small Signal Bandwidth (-3dB) & \(V_{X}=2 \mathrm{~V}\) & 25 & - & 30 & - & MHz \\
\hline
\end{tabular}

HA-2546

Electrical Specifications \(\quad V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, C_{L}=50 \mathrm{pF}\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline Full Power Bandwidth (Note 5) & \(V_{X}=2 \mathrm{~V}\) & 25 & - & 9.5 & - & MHz \\
\hline Feedthrough & Note 11 & 25 & - & -52 & - & dB \\
\hline CMRR & Note 6 & Full & 60 & 78 & - & dB \\
\hline \multicolumn{7}{|l|}{VY TRANSIENT RESPONSE (Note 10)} \\
\hline Slew Rate & \(\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}}=2 \mathrm{~V}\) & 25 & - & 300 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Rise Time & Note 7 & 25 & - & 11 & - & ns \\
\hline Overshoot & Note 7 & 25 & - & 17 & - & \% \\
\hline Propagation Delay & & 25 & - & 25 & - & ns \\
\hline Settling Time (To 0.1\%) & \(\mathrm{V}_{\text {OUT }}= \pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}}=2 \mathrm{~V}\) & 25 & - & 200 & - & ns \\
\hline \multicolumn{7}{|l|}{CONTROL INPUT, \(\mathrm{V}_{\mathbf{X}}\)} \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & \multirow{2}{*}{*} & 25 & - & 0.3 & 2 & mV \\
\hline & & Full & - & 3 & 20 & mV \\
\hline Average Offset Voltage Drift & & Full & - & 10 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{Input Bias Current} & & 25 & - & 1.2 & 2 & \(\mu \mathrm{A}\) \\
\hline & & Full & - & 1.8 & 5 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Input Offset Current} & & 25 & - & 0.3 & 2 & \(\mu \mathrm{A}\) \\
\hline & & Full & - & 0.4 & 3 & \(\mu \mathrm{A}\) \\
\hline Input Capacitance & & 25 & - & 2.5 & - & pF \\
\hline Differential Input Resistance & & 25 & - & 360 & - & k \(\Omega\) \\
\hline Small Signal Bandwidth (-3dB) & \(V_{Y}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}}=-1 \mathrm{~V}\) & 25 & - & 17 & - & MHz \\
\hline Feedthrough & Note 12 & 25 & - & -40 & - & dB \\
\hline Common Mode Rejection Ratio & Note 13 & 25 & - & 80 & - & dB \\
\hline \multicolumn{7}{|l|}{\(\mathbf{V}_{\mathbf{X}}\) TRANSIENT RESPONSE (Note 10)} \\
\hline Slew Rate & Note 13 & 25 & - & 95 & - & \(\mathrm{V} / \mu \mathrm{s}\) \\
\hline Rise Time & Note 14 & 25 & - & 20 & - & ns \\
\hline Overshoot & Note 14 & 25 & - & 17 & - & \% \\
\hline Propagation Delay & & 25 & - & 50 & - & ns \\
\hline Settling Time (To 0.1\%) & Note 13 & 25 & - & 200 & - & ns \\
\hline \multicolumn{7}{|l|}{V \({ }_{\mathbf{Z}}\) CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{Y}}=0 \mathrm{~V}\)} & 25 & - & 4 & 15 & mV \\
\hline & & Full & - & 8 & 20 & mV \\
\hline Open Loop Gain & & 25 & - & 70 & - & dB \\
\hline Differential Input Resistance & & 25 & - & 900 & - & k \(\Omega\) \\
\hline \multicolumn{7}{|l|}{OUTPUT CHARACTERISTICS} \\
\hline Output Voltage Swing & \(\mathrm{V}_{\mathrm{X}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}= \pm 5 \mathrm{~V}\) & Full & - & \(\pm 6.25\) & - & V \\
\hline Output Current & & Full & \(\pm 20\) & \(\pm 45\) & - & mA \\
\hline Output Resistance & & 25 & - & 1 & - & \(\Omega\) \\
\hline
\end{tabular}

Electrical Specifications \(\quad V_{\text {SUPPLY }}= \pm 15 \mathrm{~V}, R_{L}=1 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{POWER SUPPLY} \\
\hline PSRR & Note 8 & Full & 58 & 63 & - & dB \\
\hline Supply Current & & Full & - & 23 & 29 & mA \\
\hline
\end{tabular}

NOTES:
2. Error is percent of full scale, \(1 \%=50 \mathrm{mV}\).
3. \(\mathrm{f}_{\mathrm{O}}=3.58 \mathrm{MHz} / 4.43 \mathrm{MHz}, \mathrm{V}_{\mathrm{Y}}=300 \mathrm{mV} \mathrm{V}_{\mathrm{P}} \mathrm{p}, 0\) to \(1 \mathrm{~V}_{\mathrm{DC}}\) offset, \(\mathrm{V}_{\mathrm{X}}=2 \mathrm{~V}\).
4. \(f_{O}=10 \mathrm{kHz}, \mathrm{V}_{\mathrm{Y}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{V}_{\mathrm{X}}=2 \mathrm{~V}\).
5. Full Power Bandwidth calculated by equation: \(F P B W=\frac{\text { Slew Rate }}{2 \pi V_{\text {PEAK }}}, V_{\text {PEAK }}=5 \mathrm{~V}\).
6. \(\mathrm{V}_{\mathrm{Y}}=0\) to \(\pm 5 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}}=2 \mathrm{~V}\).
7. \(\mathrm{V}_{\text {OUT }}=0\) to \(\pm 100 \mathrm{mV}, \mathrm{V}_{\mathrm{X}}=2 \mathrm{~V}\).
8. \(\mathrm{V}_{\mathrm{S}}= \pm 12 \mathrm{~V}\) to \(\pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{X}}=2 \mathrm{~V}\).
9. Guaranteed by characterization and not \(100 \%\) tested.
10. See Test Circuit.
11. \(\mathrm{f}_{\mathrm{O}}=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{X}}=0, \mathrm{v}_{\mathrm{Y}}=200 \mathrm{mV}_{\mathrm{RMS}}\).
12. \(\mathrm{f}_{\mathrm{O}}=100 \mathrm{kHz}, \mathrm{V}_{\mathrm{Y}}=0, \mathrm{~V}_{\mathrm{X}^{+}}=200 \mathrm{mV} \mathrm{RMS}, \mathrm{V}_{\mathrm{X}^{-}}=-0.5 \mathrm{~V}\).
13. \(V_{X}=0\) to \(2 V, V_{Y}=5 V\).
14. \(V_{X}=0\) to \(200 \mathrm{mV}, V_{Y}=5 \mathrm{~V}\).

\section*{Test Circuits and Waveforms}


FIGURE 1. LARGE AND SMALL SIGNAL RESPONSE TEST CIRCUIT

Test Circuits and Waveforms (Continued)


Vertical Scale: 5V/Div.; Horizontal Scale: 50ns/Div. \(V_{Y}\) LARGE SIGNAL RESPONSE


Vertical Scale: 2V/Div.; Horizontal Scale: \(50 \mathrm{~ns} /\) Div.
\(\mathbf{V}_{\mathbf{X}}\) LARGE,SIGNAL RESPONSE


Vertical Scale: \(100 \mathrm{mV} /\) Div.; Horizontal Scale: \(50 \mathrm{~ns} /\) Div. \(\mathrm{V}_{\mathrm{Y}}\) SMALL SIGNAL RESPONSE


Vertical Scale: \(200 \mathrm{mV} /\) Div.; Horizontal Scale: \(50 \mathrm{~ns} / / D i v\). \(\mathrm{V}_{\mathrm{X}}\) SMALL SIGNAL RESPONSE

\section*{Application Information}

\section*{Theory of Operation}

The HA-2546 is a two quadrant multiplier with the following three differential inputs; the signal channel, \(\mathrm{V}_{\mathrm{Y}^{+}}\)and \(\mathrm{V}_{\mathrm{Y}^{-}}\), the control channel, \(\mathrm{V}_{\mathrm{X}}+\) and \(\mathrm{V}_{\mathrm{X}^{-}}\), and the summed channel, \(\mathrm{V}_{\mathrm{Z}^{+}}\)and \(\mathrm{V}_{\mathrm{Z}^{-}}\), to complete the feedback of the output amplifier. The differential voltages of channel \(X\) and \(Y\) are converted to differential currents. These currents are then multiplied in a circuit similar to a Gilbert Cell multiplier, producing a differential current product. The differential voltage of the Z channel is converted into a differential current which then sums with the products currents. The differential "product/sum" currents are converted to a single-ended current and then converted to a voltage output by a transimpedance amplifier.

The open loop transfer equation for the HA-2546 is:
\[
\mathrm{V}_{\text {OUT }}=\mathrm{A}\left[\frac{\left(\mathrm{~V}_{\mathrm{X}_{+}}-\mathrm{V}_{\mathrm{X}_{-}}\right)\left(\mathrm{V}_{\mathrm{Y}_{+}}-\mathrm{V}_{\mathrm{Y}_{-}}\right)}{\mathrm{SF}}-\left(\mathrm{V}_{\mathrm{Z}_{+}}-\mathrm{V}_{\mathrm{Z}_{-}}\right]\right.
\]
where;
\[
\begin{aligned}
& \quad A=\text { Output Amplifier Open Loop Gain } \\
& S F=\text { Scale Factor } \\
& V_{X}, V_{Y}, V_{Z}=\text { Differential Inputs }
\end{aligned}
\]
A), Gain Adjust B (GA B), and Gain Adjust C (GA C). The scale factor is determined as follows:

SF = 2 , when GA B is shorted to GA C
\(S F \cong 1.2 R_{E X T}\), when \(R_{E X T}\) is connected between GA A and GAC ( \(\mathrm{R}_{E X T}\) is in \(k \Omega\) )
\(S F \cong 1.2\left(R_{E X T}+1.667 \mathrm{k} \Omega\right)\), when \(R_{E X T}\) is connected to GA B and GA C ( \(R_{E X T}\) is in \(k \Omega\) )

The scale factor can be adjusted from 2 to 5 . It should be noted that any adjustments to the scale factor will affect the AC performance of the control channel, \(\mathrm{V}_{\mathrm{X}}\). The normal input operating range of \(V_{X}\) is equal to the scale factor voltage.

The typical multiplier configuration is shown in Figure 2. The ideal transfer function for this configuration is:
\(V_{\text {OUT }}=\left\{\begin{array}{cc}\frac{\left(V_{X_{+}}-V_{X-}\right)\left(V_{Y_{+}}-V_{Y_{-}}\right)}{2}+V_{Z_{-},} & \text {when } V_{X} \geq 0 V \\ 0 & \text { when } V_{X}<0 V\end{array}\right.\)


FIGURE 2.

The \(V_{X}\). pin is usually connected to ground so that when \(\mathrm{V}_{\mathrm{X}_{+}}\)is negative there is no signal at the output, i.e. two quadrant operation. If the \(V_{X}\) input is a negative going signal the \(V_{X_{+}}\)pin maybe grounded and the \(V_{X-}\) pin used as the control input.

The \(\mathrm{V}_{\mathrm{Y}_{-}}\)terminal is usually grounded allowing the \(\mathrm{V}_{\mathrm{Y}_{+}}\)to swing \(\pm 5 \mathrm{~V}\). The \(\mathrm{V}_{\mathrm{Z}+}\) terminal is usually connected directly to VOUT to complete the feedback loop of the output amplifier while \(\mathrm{V}_{\mathrm{Z}}\) - is grounded. The scale factor is normally set to 2 by connecting GA B to GA C. Therefore the transfer equation simplifies to \(\mathrm{V}_{\mathrm{OUT}}=\left(\mathrm{V}_{\mathrm{X}} \mathrm{V}_{\mathrm{Y}}\right) / 2\).

\section*{Offset Adjustment}

The signal channel offset voltage may be nulled by using a \(20 \mathrm{k} \Omega\) potentiometer between \(\mathrm{V}_{\mathrm{YIO}}\) Adjust pins A and B and connecting the wiper to V -. Reducing the signal channel offset will reduce \(V_{X} A C\) feedthrough. Output offset voltage can also be nulled by connecting \(\mathrm{V}_{\mathrm{Z}}\) - to the wiper of a \(20 \mathrm{k} \Omega\) potentiometer which is tied between \(\mathrm{V}+\) and V -.

\section*{Capacitive Drive Capability}

When driving capacitive loads \(>20 \mathrm{pF}\), a \(50 \Omega\) resistor is recommended between \(\mathrm{V}_{\text {OUT }}\) and \(\mathrm{V}_{\mathrm{Z}_{+}}\), using \(\mathrm{V}_{\mathrm{Z}_{+}}\)as the output (see Figure 2). This will prevent the multiplier from going unstable.

\section*{Power Supply Decoupling}

Power supply decoupling is essential for high frequency circuits. A \(0.01 \mu \mathrm{~F}\) high quality ceramic capacitor at each supply pin in parallel with a \(1 \mu \mathrm{~F}\) tantalum capacitor will provide excellent decoupling. Chip capacitors produce the best results due to the close spacing with which they may be placed to the supply pins minimizing lead inductance.

\section*{Adjusting Scale Factor}

Adjusting the scale factor will tailor the control signal, \(\mathrm{V}_{\mathrm{X}}\), input voltage range to match your needs. Referring to the simplified schematic on the front page and looking for the \(\mathrm{V}_{\mathrm{X}}\) input stage, you will notice the unusual design. The internal reference sets up a 1.2 mA current sink for the \(\mathrm{V}_{\mathrm{X}}\) differential pair. The control signal applied to this input will be forced across the scale factor setting resistor and set the current flowing in the \(\mathrm{V}_{\mathrm{X}+}\) side of the differential pair. When the current through this resistor reaches 1.2 mA , all the current available is flowing in the one side and full scale has been reached. Normally the \(1.67 \mathrm{k} \Omega\) internal resistor sets the scale factor to 2 V when the Gain Adjust pins B and C are connected together, but you may set this resistor to any convenient value using pins 16 (GA A) and 15 (GA C) (See Figure 3).


FIGURE 3. SETTING THE SCALE FACTOR

\section*{Typical Applications}

\section*{Automatic Gain Control}

In Figure 4 the HA-2546 is configured in a true Automatic Gain Control or AGC application. The HA-5127, low noise op amp, provides the gain control level to the X input. This level will set the peak output voltage of the multiplier to match the reference level. The feedback network around the HA-5127 provides stability and a response time adjustment for the gain control circuit.

This multiplier has the advantage over other AGC circuits, in that the signal bandwidth is not affected by the control signal gain adjustment.


FIGURE 4. AUTOMATIC GAIN CONTROL

\section*{Voltage Controlled Amplifier}

A wide range of gain adjustment is available with the Voltage Controlled Amplifier configuration shown in Figure 5. Here the gain of the HFA0002 is swept from \(20 \mathrm{~V} / \mathrm{N}\) at a control voltage of 0.902 V to a gain of almost \(1000 \mathrm{~V} / \mathrm{V}\) with a control voltage of 0.03 V .

\section*{Video Fader}

The Video Fader circuit provides a unique function. Here Ch B is applied to the minus Z input in addition to the minus Y input. In this way, the function in Figure 6 is generated. \(\mathrm{V}_{\mathrm{MIX}}\) will control the percentage of Ch A and Ch B that are mixed together to produce a resulting video image or other signal.

Many other applications are possible including division, squaring, square-root, percentage calculations, etc. Please refer to the HA-2556 four quadrant multiplier data sheet for additional applications.



FIGURE 5. VOLTAGE CONTROLLED AMPLIFIER

\(\mathrm{V}_{\text {OUT }}=\mathrm{Ch}\) B \(+(\mathrm{Ch} A-\mathrm{Ch} B) \mathrm{V}_{\text {MIX }} /\) Scale Factor Scale Factor \(=2\)
\(\mathrm{V}_{\text {OUT }}=\) All ChB ; if \(\mathrm{V}_{\text {MIX }}=0 \mathrm{~V}\)
\(\mathrm{V}_{\text {OUT }}=\) All \(\mathrm{Ch} A\); if \(\mathrm{V}_{\text {MIX }}=2 \mathrm{~V}\) (Full Scale)
\(\mathrm{V}_{\text {OUT }}=\mathrm{Mix}\) of Ch A and Ch B ; if \(\mathrm{OV}<\mathrm{V}_{\text {MIX }}<2 \mathrm{~V}\)
FIGURE 6. VIDEO FADER

Typical Performance Curves \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), See Test Circuit For Multiplier Configuration


FIGURE 7. \(V_{Y}\) GAIN AND PHASE vs FREQUENCY


FIGURE 9. VY FEEDTHROUGH vs FREQUENCY


FIGURE 11. VARIOUS \(V_{Y}\) FREQUENCY RESPONSES


FIGURE 8. \(\mathbf{V}_{\mathrm{X}}\) GAIN AND PHASE vs FREQUENCY


FIGURE 10. VX FEEDTHROUGH vs FREQUENCY


FIGURE 12. VARIOUS \(V_{X}\) FREQUENCY RESPONSES

Typical Performance Curves \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Se日 Test Circuit For Multiplier Configuration (Continued)


Figure 13. voltage noise density


Figure 15. offset voltage vs temperature


FIGURE 17. \(\mathbf{V}_{\text {OUT }} \mathbf{v s} \mathbf{V}_{\text {SUPPLY }}\)


FIGURE 14. \(\mathrm{V}_{\mathrm{Y}}\) OFFSET AND BIAS CURRENT vs TEMPERATURE


FIGURE 16. \(\mathbf{V}_{\mathrm{X}}\) OFFSET AND BIAS CURRENT vs TEMPERATURE


FIGURE 18. \(\mathbf{V}_{\mathbf{Y}}\) CMRR vs FREQUENCY

Typical Performance Curves \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), See Test Circuit For Multiplier Configuration (Continued)


FIGURE 19. \(\mathrm{V}_{\mathrm{X}}\) COMMON MODE REJECTION RATIO vs FREQUENCY


FIGURE 21. SUPPLY CURRENT vs TEMPERATURE


FIGURE 23. PSRR vs TEMPERATURE


FIGURE 20. PSRR vs FREQUENCY


FIGURE 22. CMR vs \(\mathrm{V}_{\text {SUPPLY }}\)


FIGURE 24. MULTIPLICATION ERROR vs \(\mathbf{V}_{\mathbf{Y}}\)

Typical Performance Curves \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), See Test Circuit For Multiplier Configuration (Continued)


FIGURE 25.


FIGURE 27.


FIGURE 29. MULTIPLICATION ERROR vs TEMPERATURE


FIGURE 26.


FIGURE 28. WORST CASE MULTIPLICATION ERROR vs TEMPERATURE


FIGURE 30. GAIN VARIATION vs FREQUENCY

Typical Performance Curves \(\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), See Test Circuit For Multiplier Configuration (Continued)


FIGURE 31. SCALE FACTOR vs TEMPERATURE


FIGURE 33. SLEW RATE vs TEMPERATURE


FIGURE 32. OUTPUT VOLTAGE SWING vs LOAD RESISTANCE


FIGURE 34. RISE TIME vs TEMPERATURE


FIGURE 35. SUPPLY CURRENT vs SUPPLY VOLTAGE

\section*{Die Characteristics}

DIE DIMENSIONS:
79.9 mils \(\times 119.7\) mils \(\times 19\) mils

\section*{METALLIZATION:}

Type: AI, 1\% Cul
Thickness: \(16 \mathrm{k} \AA\) +2k \(\AA\)

\section*{Metallization Mask Layout}

\section*{PASSIVATION:}

Type: Nitride \(\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)\) over Silox ( \(\mathrm{SiO}_{2}, 5 \%\) Phos) Silox Thickness: \(12 \mathrm{k} \AA+2 \mathrm{k} \AA\)
Nitride Thickness: \(3.5 \mathrm{k} \AA \pm 2 \mathrm{k} \AA\)
TRANSISTOR COUNT:


\section*{Features}
- Low Multiplication Error
- Input Bias Currents \(1.2 \mu \mathrm{~A}\)
- Signal Input Feedthrough at 5MHz. . . . . . . . . . . . -50dB
- Wide Signal Bandwidth 100 MHz
- Wide Control Bandwidth

22 MHz

\section*{Applications}
- Military Avionics
- Missile Guidance Systems
- Medical Imaging Displays
- Video Mixers
- Sonar AGC Processors
- Radar Signal Conditioning
- Voltage Controlled Amplifier
- Vector Generator

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HA1-2547-5 & 0 to 75 & 16 Ld CERDIP & F16.3 \\
\hline HA1-2547-9 & -40 to 85 & 16 Ld CERDIP & F16.3 \\
\hline
\end{tabular}

\section*{Description}

The HA-2547 is a monolithic, high speed, two quadrant, analog multiplier constructed in Harris' Dielectrically Isolated High Frequency Process. The high frequency performance of the HA-2547 rivals the best analog multipliers currently available including hybrids.

The single-ended current output of the HA-2547 has a 100 MHz signal bandwidth ( \(\mathrm{R}_{\mathrm{L}}=50 \Omega\) ) and a 22 MHz control input bandwidth. High bandwidth and low distortion make this part an ideal component in video systems. The suitability for precision video applications is demonstrated further by low multiplication error ( \(1.6 \%\) ), low feedthrough ( -50 dB ), and differential inputs with low bias currents \((1.2 \mu \mathrm{~A})\). The HA-2547 is also well suited for mixer circuits as well as AGC applications for sonar, radar, and medical imaging equipment.

The current output of the HA-2547 allows it to achieve higher bandwidths than voltage output multipliers. An internal feedback resistor is provided to give an accurate current-to-voltage conversion and is trimmed to give a full scale output voltage of \(\pm 5 \mathrm{~V}\). The HA-2547 is not limited to multiplication applications only; frequency doubling and power detection are also possible.

\section*{Pinout}


Schematic


HA-2556

> 57MHz, Wideband, Four Quadrant, Voltage Output Analog Multiplier

\section*{Features}
- High Speed Voltage Output. . . . . . . . . . . . . . . . . 450V/ \(\mu \mathrm{s}\)
- Low Multiplication Error . . . . . . . . . . . . . . . . . . . . . 1.5\%
- Input Bias Currents . . . . . . . . . . . . . . . . . . . . . . . . . . \(8 \mu \mathbf{A}\)
- 5MHz Feedthrough. . . . . . . . . . . . . . . . . . . . . . . . . -50dB
- Wide Y Channel Bandwidth . . . . . . . . . . . . . . . . 57MHz
- Wide X Channel Bandwidth . . . . . . . . . . . . . . . . 52MHz
- \(V_{Y} 0.1 \mathrm{~dB}\) Gain Flatness . . . . . . . . . . . . . . . . . . . . 5.0MHz

\section*{Applications}
- Military Avionics
- Missile Guidance Systems
- Medical Imaging Displays
- Video Mixers
- Sonar AGC Processors
- Radar Signal Conditioning
- Voltage Controlled Amplifier
- Vector Generators

\section*{Description}

The HA-2556 is a monolithic, high speed, four quadrant, analog multiplier constructed in the Harris Dielectrically Isolated High Frequency Process. The voltage output simplifies many designs by eliminating the current-to-voltage conversion stage required for current output multipliers. The HA-2556 provides a \(450 \mathrm{~V} / \mu\) s slew rate and maintains 52 MHz and 57 MHz bandwidths for the \(X\) and \(Y\) channels respectively, making it an ideal part for use in video systems.

The suitability for precision video applications is demonstrated further by the Y Channel 0.1 dB gain flatness to \(5.0 \mathrm{MHz}, 1.5 \%\) multiplication error, -50 dB feedthrough and differential inputs with \(8 \mu \mathrm{~A}\) bias current. The HA-2556 also has low differential gain ( \(0.1 \%\) ) and phase ( \(0.1^{\circ}\) ) errors.

The HA-2556 is well suited for AGC circuits as well as mixer applications for sonar, radar, and medical imaging equipment. The HA-2556 is not limited to multiplication applications only; frequency doubling, power detection, as well as many other configurations are possible.

For MIL-STD-883 compliant product consult the HA2556/883 datasheet.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline PART NUMBER & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HA3-2556-9 & -40 to 85 & 16 Ld PDIP & E16.3 \\
\hline HA9P2556-9 & -40 to 85 & 16 Ld SOIC & M16.3 \\
\hline HA1-2556-9 & -40 to 85 & 16 Ld CERDIP & F16.3 \\
\hline
\end{tabular}

\section*{Pinout}

HA-2556 (PDIP, CERDIP, SOIC) TOP VIEW


\section*{Functional Block Diagram}


NOTE: The transfer equation for the HA-2556 is:
\(\left(V_{X_{+}}-V_{X_{-}}\right)\left(V_{Y_{+}}-V_{Y_{-}}\right)=S_{F}\left(V_{Z_{+}}-V_{Z_{-}}\right)\),
where \(\mathrm{SF}=\) Scale Factor \(=5 \mathrm{~V} ; \mathrm{V}_{\mathrm{X}}, \mathrm{V}_{\mathrm{Y}}, \mathrm{V}_{\mathrm{Z}}=\) Differential Inputs.
Absolute Maximum Ratings
Voltage Between V+ and V- Terminals . . . . . . . . . . . . . . . . . . . . 35 V
Differential Input Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 V
Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \(\pm 60 \mathrm{~mA}\)

\section*{Operating Conditions}

Temperature Range \(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)

\section*{Thermal Information}
\begin{tabular}{ccc} 
Thermal Resistance (Typical, Note 1) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) & \(\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
PDIP Package . . . . . . . . . . . . . & 77 & N/A \\
SOIC Package . . . . . . . . . . . . . . . . . . . . . . & 75 & N/A \\
CERDIP Package . . . & 70 & 20
\end{tabular}

Maximum Junction Temperature (Ceramic Package) . . . . . . . \(175^{\circ} \mathrm{C}\)
Maximum Junction Temperature (Plastic Packages) . . . . . . \(150^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\) (SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation \(P C\) board in free air.

Electrical Specifications \(\quad V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{F}=50 \Omega, R_{L}=1 \mathrm{k} \Omega, C_{L}=20 \mathrm{pF}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{MULTIPLIER PERFORMANCE} \\
\hline Transfer Function & * & \multicolumn{5}{|l|}{\[
V_{\text {OUT }}=A\left[\frac{\left(V_{X_{+}}-V_{X_{-}}\right) \times\left(V_{Y_{+}}-V_{Y_{-}}\right)}{5}-\left(V_{Z_{+}}-V_{Z_{-}}\right)\right]
\]} \\
\hline \multirow[t]{2}{*}{Multiplication Error} & \multirow[t]{2}{*}{Note 2} & 25 & - & 1.5 & 3 & \% \\
\hline & & Full & - & 3.0 & 6 & \% \\
\hline Multiplication Error Drift & & Full & - & 0.003 & - & \%/ \({ }^{\circ} \mathrm{C}\) \\
\hline Scale Factor & & 25 & - & 5 & - & V \\
\hline Linearity Error & \(\mathrm{V}_{\mathrm{X}}, \mathrm{V}_{\mathrm{Y}}= \pm 3 \mathrm{~V}\), Full Scale \(=3 \mathrm{~V}\) & 25 & - & 0.02 & - & \% \\
\hline & \(V_{X}, V_{Y}= \pm 4 \mathrm{~V}\), Full Scale \(=4 \mathrm{~V}\) & 25 & - & 0.05 & 0.25 & \% \\
\hline & \(\mathrm{V}_{\mathrm{X}}, \mathrm{V}_{\mathrm{Y}}= \pm 5 \mathrm{~V}\), Full Scale \(=5 \mathrm{~V}\) & 25 & - & 0.2 & 0.5 & \% \\
\hline
\end{tabular}

AC CHARACTERISTICS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Small Signal Bandwidth (-3dB)} & \(\mathrm{V}_{Y}=200 \mathrm{~m} \mathrm{~V}_{\mathrm{P}-\mathrm{P}}, \mathrm{V}_{\mathrm{X}}=5 \mathrm{~V}\) & 25 & - & 57 & - & MHz \\
\hline & \(\mathrm{V}_{\mathrm{X}}=200 \mathrm{mV} \mathrm{P}_{\mathrm{P}} \mathrm{P}, \mathrm{V}_{Y}=5 \mathrm{~V}\) & 25 & - & 52 & - & MHz \\
\hline Full Power Bandwidth (-3dB) & \(10 \mathrm{VP-P}\) & 25 & - & 32 & - & MHz \\
\hline Slew Rate & Note 5 & 25 & 420 & 450 & - & \(\mathrm{V} / \mathrm{\mu s}\) \\
\hline Rise Time & Note 6 & 25 & - & 8 & - & ns \\
\hline Overshoot & Note 6 & 25 & - & 20 & - & \% \\
\hline Settling Time & To 0.1\%, Note 5 & 25 & - & 100 & - & ns \\
\hline Differential Gain & Notes 3, 8 & 25 & - & 0.1 & 0.2 & \% \\
\hline Differential Phase & Notes 3, 8 & 25 & - & 0.1 & 0.3 & Degrees \\
\hline \(\mathrm{V}_{\mathrm{Y}} 0.1 \mathrm{~dB}\) Gain Flatness & \(200 \mathrm{mV} \mathrm{V}_{\text {P-p, }} \mathrm{V}_{\mathrm{X}}=5 \mathrm{~V}\), Note 8 & 25 & 4.0 & 5.0 & - & MHz \\
\hline \(V_{X} 0.1 \mathrm{~dB}\) Gain Flatness & \(200 \mathrm{mV} \mathrm{V}_{\mathrm{P}-\mathrm{P}}, \mathrm{V}_{Y}=5 \mathrm{~V}\), Note 8 & 25 & 2.0 & 4.0 & - & MHz \\
\hline THD + N & Note 4 & 25 & - & 0.03 & - & \% \\
\hline 1MHz Feedthrough & 200 mV P-p, Other Ch Nulled & 25 & - & -65 & - & dB \\
\hline 5 MHz Feedthrough & 200 mV P-p, Other Ch Nulled & 25 & - & -50 & - & dB \\
\hline \multicolumn{7}{|l|}{SIGNAL INPUT ( \(\mathrm{V}_{\mathrm{X}}, \mathrm{V}_{\mathrm{Y}}, \mathrm{V}_{\mathrm{Z}}\) )} \\
\hline \multirow[t]{2}{*}{Input Offset Voltage} & & 25 & - & 3 & 15 & mV \\
\hline & & Full & - & 8 & 25 & mV \\
\hline Average Offset Voltage Drift & & Full & - & 45 & - & \(\mu \mathrm{V} /{ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Electrical Specifications \(\quad V_{S U P P L Y}= \pm 15 \mathrm{~V}, R_{F}=50 \Omega, R_{L}=1 \mathrm{k} \Omega, C_{L}=20 p F\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP. ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multirow[t]{2}{*}{Input Bias Current} & & 25 & - & 8 & 15 & \(\mu \mathrm{A}\) \\
\hline & & Full & - & 12 & 20 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Input Offset Current} & & 25 & - & 0.5 & 2 & \(\mu \mathrm{A}\) \\
\hline & & Full & - & 1.0 & 3 & \(\mu \mathrm{A}\) \\
\hline Differential Input Resistance & & 25 & - & 1 & - & \(\mathrm{M} \Omega\) \\
\hline Full Scale Differential Input ( \(\mathrm{V}_{\mathrm{X}}, \mathrm{V}_{\mathrm{Y}}, \mathrm{V}_{\mathrm{Z}}\) ) & & 25 & \(\pm 5\) & - & - & V \\
\hline \(\mathrm{V}_{\mathrm{X}}\) Common Mode Range & & 25 & - & \(\pm 10\) & - & V \\
\hline \(\mathrm{V}_{\mathrm{Y}}\) Common Mode Range & & 25 & - & +9, -10 & - & V \\
\hline CMRR Within Common Mode Range & & Full & 65 & 78 & - & dB \\
\hline \multirow[t]{2}{*}{Voltage Noise (Note 9)} & \(\mathrm{f}=1 \mathrm{kHz}\) & 25 & - & 150 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline & \(\mathrm{f}=100 \mathrm{kHz}\) & 25 & - & 40 & - & \(\mathrm{nV} / \sqrt{\mathrm{Hz}}\) \\
\hline \multicolumn{7}{|l|}{OUTPUT CHARACTERISTICS} \\
\hline Output Voltage Swing & Note 10 & Full & \(\pm 5.0\) & \(\pm 6.05\) & \(\bullet\) & V \\
\hline Output Current & & Full & \(\pm 20\) & \(\pm 45\) & - & mA \\
\hline Output Resistance & & 25 & - & 0.7 & 1.0 & \(\Omega\) \\
\hline \multicolumn{7}{|l|}{POWER SUPPLY} \\
\hline +PSRR & Note 7 & Full & 65 & 80 & - & dB \\
\hline -PSRR & Note 7 & Full & 45 & 55 & - & dB \\
\hline Supply Current & & Full & - & 18 & 22 & mA \\
\hline
\end{tabular}

NOTES:
2. Error is percent of full scale, \(1 \%=50 \mathrm{mV}\).
3. \(\mathrm{f}=4.43 \mathrm{MHz}, \mathrm{V}_{\mathrm{Y}}=300 \mathrm{mV} \mathrm{V}_{\mathrm{P}-\mathrm{P}}, 0\) to \(1 \mathrm{~V}_{\mathrm{DC}}\) offset, \(\mathrm{V}_{\mathrm{X}}=5 \mathrm{~V}\).
4. \(f=10 \mathrm{kHz}, \mathrm{V}_{\mathrm{Y}}=1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{V}_{\mathrm{X}}=5 \mathrm{~V}\).
5. \(V_{\text {OUT }}=0\) to \(\pm 4 \mathrm{~V}\).
6. \(\mathrm{V}_{\text {OUT }}=0\) to \(\pm 100 \mathrm{mV}\).
7. \(\mathrm{V}_{\mathrm{S}}= \pm 12 \mathrm{~V}\) to \(\pm 15 \mathrm{~V}\).
8. Guaranteed by characterization and not \(100 \%\) tested.
9. \(V_{X}=V_{Y}=0 V\).
10. \(\mathrm{V}_{\mathrm{X}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{Y}}= \pm 5.5 \mathrm{~V}\).

\section*{Simplified Schematic}


\section*{Application Information}

\section*{Operation at Reduced Supply Voltages}

The HA-2556 will operate over a range of supply voltages, \(\pm 5 \mathrm{~V}\) to \(\pm 15 \mathrm{~V}\). Use of supply voltages below \(\pm 12 \mathrm{~V}\) will reduce input and output voltage ranges. See "Typical Performance Curves" for more information.

\section*{Offset Adjustment}

X and Y channel offset voltages may be nulled by using a 20K potentiometer between the \(\mathrm{V}_{\mathrm{YIO}}\) or \(\mathrm{V}_{\mathrm{XIO}}\) adjust pin A and B and connecting the wiper to V -. Reducing the channel offset voltage will reduce AC feedthrough and improve the multiplication error. Output offset voltage can also be nulled by connecting \(\mathrm{V}_{\mathrm{Z}^{-}}\)to the wiper of a potentiometer which is tied between \(\mathrm{V}+\) and V -.

\section*{Capacitive Drive Capability}

When driving capacitive loads \(>20 \mathrm{pF}\) a \(50 \Omega\) resistor should be connected between \(\mathrm{V}_{\text {OUT }}\) and \(\mathrm{V}_{\mathrm{Z}^{+}}\), using \(\mathrm{V}_{\mathrm{Z}^{+}}\)as the output (see Figure 1). This will prevent the multiplier from going unstable and reduce gain peaking at high frequencies. The \(50 \Omega\) resistor will dampen the resonance formed with the capacitive load and the inductance of the output at pin 8. Gain accuracy will be maintained because the resistor is inside the feedback loop.

\section*{Theory of Operation}

The HA-2556 creates an output voltage that is the product of the \(X\) and \(Y\) input voltages divided by a constant scale factor of 5 V . The resulting output has the correct polarity in each of the four quadrants defined by the combinations of positive and negative \(X\) and \(Y\) inputs. The \(Z\) stage provides the means for negative feedback (in the multiplier configuration) and an input for summation into the output. This results in the following equation, where \(\mathrm{X}, \mathrm{Y}\) and Z are high impedance differential inputs.


FIGURE 1. DRIVING CAPACITIVE LOAD
\(V_{\text {OUT }}=\frac{X \times Y}{5}-Z\)
To accomplish this the differential input voltages are first converted into differential currents by the X and Y input transconductance stages. The currents are then scaled by a constant reference and combined in the multiplier core. The multiplier core is a basic Gilbert Cell that produces a differential output current proportional to the product of \(X\) and \(Y\) input signal currents. This current becomes the output for the HA-2557.

The HA-2556 takes the output current of the core and feeds it to a transimpedance amplifier, that converts the current to a voltage. In the multiplier configuration, negative feedback is provided with the \(Z\) transconductance amplifier by connecting \(\mathrm{V}_{\text {OUT }}\) to the Z input. The \(Z\) stage converts \(\mathrm{V}_{\text {OUT }}\) to a current which is subtracted from the multiplier core before being applied to the high gain transimpedance amp. The \(Z\) stage, by virtue of it's similarity to the X and Y stages, also cancels second order errors introduced by the dependence of \(V_{B E}\) on collector current in the \(X\) and \(Y\) stages.
The purpose of the reference circuit is to provide a stable current, used in setting the scale factor to 5 V . This is achieved with a bandgap reference circuit to produce a temperature stable voltage of 1.2 V which is forced across a NiCr resistor. Slight adjustments to scale factor may be possible by overriding the internal reference with the \(\mathrm{V}_{\text {REF }}\) pin. The scale factor is used to maintain the output of the multiplier within the normal operating range of \(\pm 5 \mathrm{~V}\) when full scale inputs are applied.

\section*{The Balance Concept}

The open loop transfer equation for the HA-2556 is:
\(\mathrm{V}_{\mathrm{OUT}}=\mathrm{A}\left[\frac{\left(\mathrm{V}_{\mathrm{X}_{+}}-\mathrm{V}_{\mathrm{X}}\right) \mathrm{x}\left(\mathrm{V}_{\mathrm{Y}_{+}}-\mathrm{V}_{\mathrm{Y}_{-}}\right)}{5 \mathrm{~V}}-\left(\mathrm{V}_{\mathrm{Z}_{+}} \mathrm{V}_{\mathrm{Z}^{\prime}}\right)\right]\)
where;
\[
\begin{array}{ll}
\mathrm{A} & =\text { Output Amplifier Open Loop Gain } \\
\mathrm{V}_{\mathrm{X}}, \mathrm{~V}_{\mathrm{Y}}, \mathrm{~V}_{\mathrm{Z}} & =\text { Differential Input Voltages } \\
5 \mathrm{~V} & =\text { Fixed Scaled Factor }
\end{array}
\]

An understanding of the transfer function can be gained by assuming that the open loop gain, A , of the output amplifier is infinite. With this assumption, any value of \(V_{\text {OUT }}\) can be generated with an infinitesimally small value for the terms within the brackets. Therefore we can write the equation:
\(0=\frac{\left(\mathrm{V}_{\mathrm{X}_{+}}-\mathrm{V}_{\mathrm{X}_{-}}\right) \times\left(\mathrm{V}_{\mathrm{Y}_{+}}-\mathrm{V}_{\mathrm{Y}_{-}}\right)}{5 \mathrm{~V}}-\left(\mathrm{V}_{\left.\mathrm{Z}_{+}-\mathrm{V}_{\mathrm{Z}_{-}}\right)}\right.\)
which simplifies to:

This form of the transfer equation provides a useful tool to analyze multiplier application circuits and will be called the Balance Concept.

\section*{Typical Applications}

Let's first examine the Balance Concept as it applies to the standard multiplier configuration (Figure 2).


FIGURE 2. MULTIPLIER

Signals \(A\) and \(B\) are input to the multiplier and the signal \(W\) is the result. By substituting the signal values into the Balance equation you get:
(A) \(\times(B)=5(W)\)

And solving for W :
\(W=\frac{A \times B}{5}\)
Notice that the output (W) enters the equation in the feedback to the \(Z\) stage. The Balance Equation does not test for stability, so remember that you must provide negative feedback. In the multiplier configuration, the feedback path is connected to \(\mathrm{V}_{\mathrm{Z}^{+}}\)input, not \(\mathrm{V}_{\mathrm{Z}^{-}}\). This is due to the inversion that takes place at the summing node just prior to the output amplifier. Feedback is not restricted to the \(Z\) stage, other feedback paths are possible as in the Divider Configuration shown in Figure 3.


FIGURE 3. DIVIDER
Inserting the signal values A, B and W into the Balance Equation for the divider configuration yields:
\[
(-W)(B)=5 V \times(-A)
\]

Solving for \(W\) yields:
\(W=\frac{5 A}{B}\)
Notice that, in the divider configuration, signal B must remain \(\geq 0\) (positive) for the feedback to be negative. If signal \(B\) is negative, then it will be multiplied by the \(\mathrm{V}_{\mathrm{X}}\) - input to produce positive feedback and the output will swing into the rail.
Signals may be applied to more than one input at a time as in the Squaring configuration in Figure 4:
Here the Balance equation will appear as:
(A) \(\times(A)=5(W)\)


FIGURE 4. SQUARE

Which simplifies to:
\(W=\frac{A^{2}}{5}\)
The last basic configuration is the Square Root as shown in Figure 5. Here feedback is provided to both X and Y inputs.


FIGURE 5. SQUARE ROOT (FOR A > 0 )

The Balance equation takes the form:
\((W) \times(-W)=5(-A)\)

Which equates to:
\(W=\sqrt{5 A}\)
The four basic configurations (Multiply, Divide, Square and Square Root) as well as variations of these basic circuits have many uses.

\section*{Frequency Doubler}

For example, if \(A \operatorname{Cos}(\omega \tau)\) is substituted for signal \(A\) in the Square function, then it becomes a Frequency Doubler and the equation takes the form:
\((A \operatorname{Cos}(\omega \tau)) \times(A \operatorname{Cos}(\omega \tau))=5(W)\)
And using some trigonometric identities gives the result:
\(W=\frac{A^{2}}{10}(1+\operatorname{Cos}(2 \omega \tau))\)

\section*{Square Root}

The Square Root function can serve as a precision/wide bandwidth compander for audio or video applications. A compander improves the Signal to Noise Ratio for your system by amplifying low level signals while attenuating or compressing large signals (refer to Figure 17; \(\mathrm{X}^{0.5}\) curve). This provides for better low level signal immunity to noise during transmission. On the receiving end the original signal may be reconstructed with the standard Square function.

\section*{Communications}

The Multiplier configuration has applications in AM Signal Generation, Synchronous AM Detection and Phase Detection to mention a few. These circuit configurations are shown in Figures 6, 7 and 8. The HA-2556 is particularly useful in applications that require high speed signals on all inputs.


FIGURE 6. AM SIGNAL GENERATION


LIke the frequency doubler you get audio centered at dc AND \(\mathbf{2 F C}^{\mathrm{F}}\).

FIGURE 7. SYNCHRONOUS AM DETECTION


DC COMPONENT IS PROPORTIONAL TO COS(f)
FIGURE 8. PHASE DETECTION
Each input \(X, Y\) and \(Z\) has similar wide bandwidth and input characteristics. This is unlike earlier products where one input was dedicated to a slow moving control function as is required for Automatic Gain Control. The HA-2556 is versatile enough for both.
Although the \(X\) and \(Y\) inputs have similar AC characteristics, they are not the same. The designer should consider input parameters such as small signal bandwidth, AC feedthrough and 0.1 dB gain flatness to get the most performance from the HA-2556. The \(Y\) channel is the faster of the two inputs with a small signal bandwidth of typically 57 MHz verses 52 MHz for the X channel. Therefore in AM Signal Generation, the best performance will be obtained with the Carrier applied to the Y channel and the modulation signal (lower frequency) applied to the \(X\) channel.

\section*{Scale Factor Control}

The HA-2556 is able to operate over a wide supply voltage range \(\pm 5 \mathrm{~V}\) to \(\pm 17.5 \mathrm{~V}\). The \(\pm 5 \mathrm{~V}\) range is particularly useful in video applications. At \(\pm 5 \mathrm{~V}\) the input voltage range is reduced to \(\pm 1.4 \mathrm{~V}\). The output cannot reach its full scale value with this
restricted input, so it may become necessary to modify the scale factor. Adjusting the scale factor may also be useful when the input signal itself is restricted to a small portion of the full scale level. Here we can make use of the high gain output amplifier by adding external gain resistors. Generating the maximum output possible for a given input signal will improve the Signal to Noise Ratio and Dynamic Range of the system. For example, let's assume that the input signals are \(1 V_{\text {PEAK }}\) each. Then the maximum output for the HA-2556 will be 200 mV . \((1 \mathrm{~V} \times 1 \mathrm{~V}) /(5 \mathrm{~V})=200 \mathrm{mV}\). It would be nice to have the output at the same full scale as our input, so let's add a gain of 5 as shown in Figure 9.


FIGURE 9. EXTERNAL GAIN OF 5
One caveat is that the output bandwidth will also drop by this factor of 5 . The multiplier equation then becomes:
\(W=\frac{5 A B}{5}=A \times B\)

\section*{Current Output}

Another useful circuit for low voltage applications allows the user to convert the voltage output of the HA2556 to an output current. The HA-2557 is a current output version offering 100 MHz of bandwidth, but its scale factor is fixed and does not have an output amplifier for additional scaling. Fortunately the circuit in Figure 10 provides an output current that can be scaled with the value of RCONVERT and provides an output impedance of typically \(1 \mathrm{M} \Omega\) The equation for lout becomes:
IOUT \(=\frac{A \times B}{5} \times \frac{1}{R_{\text {CONVERT }}}\)

\section*{Video Fader}

The Video Fader circuit provides a unique function. Here Ch B is applied to the minus Z input in addition to the minus Y input. In this way, the function in Figure 11 is generated. \(\mathrm{V}_{\mathrm{MIX}}\) will control the percentage of Ch A and Ch B that are mixed together to produce a resulting video image or other signal.


FIGURE 10. CURRENT OUTPUT

The Balance equation looks like:
\(\left(\mathrm{V}_{\text {MIX }}\right) \times(\mathrm{ChA}-\mathrm{ChB})=5\left(\mathrm{~V}_{\text {OUT }}-\mathrm{ChB}\right)\)
Which simplifies to:
\(\mathrm{V}_{\text {OUT }}=\mathrm{ChB}+\frac{\mathrm{V}_{\text {MIX }}}{5}(\mathrm{ChA}-\mathrm{ChB})\)
When \(\mathrm{V}_{\text {MIX }}\) is \(O V\) the equation becomes \(\mathrm{V}_{\text {OUT }}=\mathrm{Ch} \mathrm{B}\) and Ch \(A\) is removed, conversely when \(V_{M I X}\) is 5 V the equation becomes \(\mathrm{V}_{\text {OUT }}=\mathrm{Ch}\) A eliminating Ch B. For \(\mathrm{V}_{\text {MIX }}\) values \(0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{MIX}} \leq 5 \mathrm{~V}\) the output is a blend of Ch A and Ch B .


FIGURE 11. VIDEO FADER

\section*{Other Applications}

As shown above, a function may contain several different operators at the same time and use only one HA-2556. Some other possible multi-operator functions are shown in Figures 12, 13 and 14.
Of course the HA-2556 is also well suited to standard multiplier applications such as Automatic Gain Control and Voltage Controlled Amplifier.


FIGURE 12. DIFFERENCE OF SQUARES

\(R_{1}\) and \(R_{2}\) set scale to \(1 \mathrm{~V} / \%\), other scale factors possible.
For A OV
FIGURE 13. PERCENTAGE DEVIATION


FIGURE 14. DIFFERENCE DIVIDED BY SUM (For \(A+B \geq 0 V\) )S

\section*{Automatic Gain Control}

Figure 15 shows the HA-2556 configured in an Automatic Gain Control or AGC application. The HA-5127 low noise amplifier provides the gain control signal to the \(X\) input. This control signal sets the peak output voltage of the multiplier to match the preset reference level. The feedback network around the HA-5127 provides a response time adjustment. High frequency changes in the peak are rejected as noise or the desired signal to be transmitted. These signals do not indicate a change in the average peak value and therefore no gain adjustment is needed. Lower frequency changes in the peak value are given a gain of -1 for feedback to the control input. At DC the circuit is an integrator automatically compensating for Offset and other constant error terms.

This multiplier has the advantage over other AGC circuits, in that the signal bandwidth is not affected by the control signal gain adjustment.


FIGURE 15. AUTOMATIC GAIN CONTROL


FIGURE 16. VOLTAGE CONTROLLED AMPLIFIER

\section*{Voltage Controlled Amplifier}

A wide range of gain adjustment is available with the Voltage Controlled Amplifier configuration shown in Figure 16. Here the gain of the HFA0002 can be swept from \(20 \mathrm{~V} / \mathrm{V}\) to a gain of almost \(1000 \mathrm{~V} / \mathrm{V}\) with a DC voltage from 0 V to 5 V .

\section*{Wave Shaping Circuits}

Wave shaping or curve fitting is another class of application for the analog multiplier. For example, where a nonlinear sensor requires corrective curve fitting to improve linearity the HA-2556 can provide nonintegral powers in the range 1 to 2 or nonintegral roots in the range 0.5 to 1.0 (refer to References). This effect is displayed in Figure 17.


FIGURE 17. EFFECT OF NONINTEGRAL POWERS / ROOTS

A multiplier can't do nonintegral roots "exactly", but it can yield a close approximation. We can approximate nonintegral roots with equations of the form:
\(V_{0}=(1-\alpha) V_{\text {IN }}^{2}+\alpha V_{\text {IN }}\)
\(V_{0}=(1-\alpha) V_{N_{N}}^{1 / 2}+\alpha V_{I N}\)
Figure 18 compares the function \(\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {IN }}{ }^{0.7}\) to the approximation \(\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}_{\text {IN }}{ }^{0.5}+0.5 \mathrm{~V}_{\text {IN }}\).


FIGURE 18. COMPARE APPROXIMATION TO NONINTEGRAL ROOT

This function can be easily built using an HA-2556 and a potentiometer for easy adjustment as shown in Figures 19 and 20. If a fixed nonintegral power is desired, the circuit shown in Figure 21 eliminates the need for the output buffer amp. These circuits approximate the function \(V_{\mathbb{N}}^{M}\) where \(M\) is the desired nonintegral power or root.


FIGURE 19. NONINTEGRAL ROOTS - ADJUSTABLE


FIGURE 20. NONINTEGRAL POWERS - ADJUSTABLE


FIGURE 21. NONINTEGRAL POWERS - FIXED
\(v_{\text {OUT }}=\frac{1}{5}\left(\frac{R_{3}}{R_{4}}+1\right) V_{\text {IN }}^{2}+\left(\frac{R_{3}}{R_{4}}+1\right)\left(\frac{R_{2}}{R_{1}+R_{2}}\right) v_{\text {IN }}\)
Setting:
\(1-\alpha=\frac{1}{5}\left(\frac{R_{3}}{R_{4}}+1\right) \quad \alpha=\left(\frac{R_{3}}{R_{4}}+1\right)\left(\frac{R_{2}}{R_{1}+R_{2}}\right)\)
Values for \(\alpha\) to give a desired \(M\) root or power are as follows:
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ ROOTS - FIGURE 19 } & \multicolumn{2}{|c|}{ POWERS - FIGURE 20 } \\
\hline \(\mathbf{M}\) & \(\alpha\) & \(\mathbf{M}\) & \(\alpha\) \\
\hline 0.5 & 0 & 1.0 & 1 \\
0.6 & \(\approx 0.25\) & 1.2 & \(\approx 0.75\) \\
0.7 & \(\approx 0.50\) & 1.4 & \(\approx 0.5\) \\
\hline 0.8 & \(\approx 0.70\) & 1.6 & \(\approx 0.3\) \\
0.9 & \(\approx 0.85\) & 1.8 & \(\approx 0.15\) \\
1.0 & 1 & 2.0 & 0 \\
\hline
\end{tabular}

\section*{Sine Function Generators}

Similar functions can be formulated to approximate a SINE function converter as shown in Figure 22. With a linearly changing ( 0 V to 5 V ) input the output will follow 0 degrees to 90 degrees of a sine function ( 0 V to 5 V ) output. This configuration is theoretically capable of \(\pm 2.1 \%\) maximum error to full scale.

By adding a second HA-2556 to the circuit an improved fit may be achieved with a theoretical maximum error of \(0.5 \%\) as shown in Figure 23 . Figure 23 has the added benefit that it will work for positive and negative input signals. This makes a convenient triangle ( \(\pm 5 \mathrm{~V}\) input) to sine wave ( \(\pm 5 \mathrm{~V}\) output) converter.

\section*{References}
[1] Pacifico Cofrancesco, "RF Mixers and Modulators made with a Monolithic Four-Quadrant Multiplier" Microwave Journal, December 1991 pg. 58-70.
[2] Richard Goller, "IC Generates Nonintegral Roots" Electronic Design, December 3, 1992.


FIGURE 22. SINE-FUNCTION GENERATOR
\(V_{\text {OUT }}=V_{\text {IN }} \frac{\left(1-0.1284 \mathrm{~V}_{\text {IN }}\right)}{\left(0.6082-0.05 \mathrm{~V}_{\text {IN }}\right)} \approx 5 \sin \left(\frac{\pi}{2} \cdot \frac{\mathrm{~V}_{\text {IN }}}{5}\right)\)
for; \(0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5 \mathrm{~V} \quad\) Max Theoretical Error \(=2.1 \% \mathrm{FS}\) where:
\(0.6082=\frac{R_{4}}{R_{3}+R_{4}} ; \quad 5(0.1284)=\frac{R_{2}}{R_{1}+R_{2}}\)
\[
5(0.05)=\frac{R_{6}}{R_{5}+R_{6}}
\]


FIGURE 23. BIPOLAR SINE-FUNCTION GENERATOR
\(\mathrm{V}_{\text {OUT }}=\frac{5 \mathrm{~V}_{\text {IN }}-0.05494 \mathrm{~V}_{\text {IN }}^{3}}{3.18167+0.0177919 \mathrm{~V}_{\text {IN }}^{2}} \approx 5 \sin \left(\frac{\pi}{2} \cdot \frac{\mathrm{~V}_{\text {IN }}}{5}\right)\)
for; \(-5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 5 \mathrm{~V} \quad\) Max Theoretical Error \(=0.5 \%\) FS

\section*{Typical Performance Curves}


FIGURE 24. X CHANNEL MULTIPLIER ERROR


FIGURE 26. Y CHANNEL MULTIPLIER ERROR


FIGURE 28. LARGE SIGNAL RESPONSE


FIGURE 25. X CHANNEL MULTIPLIER ERROR


FIGURE 27. Y CHANNEL MULTIPLIER ERROR


FIGURE 29. SMALL SIGNAL RESPONSE

Typical Performance Curves (Continued)


FIGURE 30. Y CHANNEL FULL POWER BANDWIDTH


FIGURE 32. X CHANNEL FULL POWER BANDWIDTH


FIGURE 34. Y CHANNEL BANDWIDTH vs X CHANNEL


FIGURE 31. Y CHANNEL FULL POWER BANDWIDTH


FIGURE 33. X CHANNEL FULL POWER BANDWIDTH


FIGURE 35. X CHANNEL BANDWIDTH vs Y CHANNEL

Typical Performance Curves (Continued)


FIGURE 36. Y CHANNEL CMRR vs FREQUENCY


FIGURE 38. FEEDTHROUGH vs FREQUENCY


FIGURE 40. OFFSET VOLTAGE vs TEMPERATURE


FIGURE 37. X CHANNEL CMRR vs FREQUENCY


FIGURE 39. FEEDTHROUGH vs FREQUENCY


FIGURE 41. INPUT BIAS CURRENT ( \(\left.\mathrm{V}_{\mathrm{X}}, \mathrm{V}_{\mathbf{Y}}, \mathrm{V}_{\mathbf{Z}}\right)\) vs TEMPERATURE

Typical Performance Curves (Continued)


FIGURE 42. SCALE FACTOR ERROR vs TEMPERATURE


FIGURE 44. INPUT COMMON MODE RANGE vs SUPPLY VOLTAGE


FIGURE 43. INPUT VOLTAGE RANGE vs SUPPLY VOLTAGE

FIGURE 45. SUPPLY CURRENT vs SUPPLY VOLTAGE


FIGURE 46. OUTPUT VOLTAGE vs RLOAD

\section*{Die Characteristics}

DIE DIMENSIONS:
71 mils \(\times 100\) mils \(\times 19\) mils
METALLIZATION:
Type: AI, 1\% Cu
Thickness: \(16 k \AA \pm 2 k \AA\)
PASSIVATION:
Type: Nitride \(\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)\) over Silox ( \(\mathrm{SiO}_{2}, 5 \%\) Phos)
Silox Thickness: \(12 \mathrm{k} \AA \pm 2 \mathrm{k} \AA\)
Nitride Thickness: \(3.5 \mathrm{k} \AA \pm 2 \mathrm{k} \AA\)
Metallization Mask Layout


\section*{Features}
- Low Multiplication Error . . . . . . . . . . . . . . . . . . . . . 1.5\%
- Input Bias Currents . \(.8 \mu \mathrm{~A}\)
- Y Input Feedthrough at 5 MHz . -50dB
- Wide Y Channel Bandwidth 130 MHz
- Wide X Channel Bandwidth 75 MHz

\section*{Applications}
- Military Avionics
- Medical Imaging Displays
- Video Mixers
- Sonar AGC Processors
- Radar Signal Conditioning
- Voltage Controlled Amplifier
- Vector Generator

Ordering Information
\begin{tabular}{|l|c|l|c|}
\hline PART NUMBER & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular} \\
\hline HA3-2557-9 & -40 to 85 & 16 Ld PDIP & E16.3 \\
\hline HA9P2557-9 & -40 to 85 & 16 Ld SOIC & M16.3 \\
\hline
\end{tabular}

\section*{Description}

The HA-2557 is a monolithic, high speed, four quadrant, analog multiplier constructed in Harris' Dielectrically Isolated High Frequency Process. The single-ended current output of the HA-2557 has a 130 MHz signal bandwidth \(\left(R_{L}=50 \Omega\right)\). High bandwidth and low distortion make this part an ideal component in video systems.

The suitability for precision video applications is demonstrated further by low multiplication error (1.5\%), low feedthrough ( -50 dB ), and differential inputs with low bias currents \((8 \mu \mathrm{~A})\). The HA-2557 is also well suited for mixer circuits as well as AGC applications for sonar, radar, and medical imaging equipment.
The current output of the HA-2557 allows it to achieve higher bandwidths than voltage output multipliers. Full scale output current is trimmed to 1.6 mA . An internal \(2500 \Omega\) feedback resistor is also provided to accurately convert the current, if desired, to a full scale output voltage of \(\pm 4 \mathrm{~V}\). The HA- 2557 is not limited to multiplication applications only; frequency doubling and power detection are also possible.

For MIL-STD-883 compliant product consult the HA-2557/883 datasheet.


Schematic


10kHz to 10MHz, Low Power Crystal Oscillator

\section*{Features}
- Single Supply Operation at \(\mathbf{3 2 k H z}\) \(\qquad\)
- Operating Frequency Range. . . . . . . . 10kHz to 10 MHz
- Supply Current at 32kHz \(\qquad\) \(5 \mu \mathrm{~A}\)
- Supply Current at \(\mathbf{1 M H z}\) \(\qquad\) \(130 \mu \mathrm{~A}\)
- Drives 2 CMOS Loads
- Only Requires an External Crystal for Operation
- Two Pinouts Available

\section*{Applications}
- Battery Powered Circuits
- Remote Metering
- Embedded Microprocessors
- Palm Top/Notebook PC
- Related Literature
- AN9334, Improving HA7210 Start-Up Time

\section*{Description}

The HA7210 and HA7211 are very low power crystal-controlled oscillators that can be externally programmed to operate between 10 kHz and 10 MHz . For normal operation it requires only the addition of a crystal. The part exhibits very high stability over a wide operating voltage and temperature range.

The HA7210 and HA7211 also feature a disable mode that switches the output to a high impedance state. This feature is useful for minimizing power dissipation during standby and when multiple oscillator circuits are employed.

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{l} 
PART NUMBER \\
(BRAND)
\end{tabular} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular}} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline HA7210IP & -40 to 85 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
HA7210IB \\
(H7210I)
\end{tabular} & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline HA7210Y & -40 to 85 & DIE & \\
\hline \begin{tabular}{l} 
HA7211IB \\
(H7211I)
\end{tabular} & -40 to 85 & 8 Ld SOIC & M8.15 \\
\hline
\end{tabular}

\section*{Pinouts}


HA7211
(SOIC)
TOP VIEW


\section*{Typical Application Circuits}

32.768 kHz MICROPOWER CLOCK OSCILLATOR

NOTE:
1. Internal pull-up resistors provided for both HA7210 and HA7211.


Simplified Block Diagram (HA7210)


FREQUENCY SELECTION TRUTH TABLE
\begin{tabular}{|c|c|c|c|c|}
\hline ENABLE & FREQ 1 & FREQ 2 & SWITCH & OUTPUT RANGE \\
\hline 1 & 1 & 1 & \(S_{1 A}, S_{1 B}, S_{1 C}\) & \(10 \mathrm{kHz}-100 \mathrm{kHz}\) \\
\hline 1 & 1 & 0 & \(S_{2}\) & \(100 \mathrm{kHz}-1 \mathrm{MHz}\) \\
\hline 1 & 0 & 1 & \(S_{3}\) & \(1 \mathrm{MHz}-5 \mathrm{MHz}\) \\
\hline 1 & 0 & 0 & \(S_{4}\) & \(5 \mathrm{MHz}-10 \mathrm{MHz}+\) \\
\hline 0 & \(X\) & \(X\) & \(H\) & \(H\) Impedance \\
\hline
\end{tabular}

NOTE:
2. Logic input pull-up resistors are constant current source of \(0.4 \mu \mathrm{~A}\).

\section*{Absolute Maximum Ratings}

Supply Voltage
........ 10 V
Voltage (any pin). . . . . . . . . . . . . . . . . . . . . . . \(\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}\) to \(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\)
ESD Rating
Human Body Model (Per MIL-STD-883 Method 3015.7) . . 4000V

\section*{Operating Conditions}

Temperature Range (Note 3)
\(-40^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\)

\section*{Thermal Information}
\begin{tabular}{|c|c|}
\hline Thermal Resistance (Typical, Note 4) & \(\theta_{\text {JA }}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline PDIP Package & 125 \\
\hline SOIC Package & 170 \\
\hline Maximum Junction Temperature (Plastic Package) & \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Storage Temperature Range & \({ }^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Lead Temperature (Soldering 10s) (SOIC - Lead Tips Only) & \(300^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
3. This product is production tested at \(25^{\circ} \mathrm{C}\) only.
4. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(\mathrm{V}_{\mathrm{SS}}=\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{\(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\)} & \multicolumn{3}{|c|}{\(\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}\)} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \(\mathrm{V}_{\text {DD }}\) Supply Range & fosc \(=32 \mathrm{kHz}\) & 2 & 5 & 7 & - & - & - & V \\
\hline \multirow[t]{5}{*}{IDD Supply Current} & \(\mathrm{f}^{\prime} \mathrm{SC}=32 \mathrm{kHz}, \mathrm{EN}=0\) (Standby) & - & 5.0 & 9.0 & - & - & - & \(\mu \mathrm{A}\) \\
\hline & \[
\begin{aligned}
& \mathrm{f}_{\mathrm{OSC}}=32 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \text { (Note 5), } \\
& \mathrm{EN}=1, \text { Freq } 1=1, \text { Freq2 }=1
\end{aligned}
\] & - & 5.2 & 10.2 & - & 3.6 & 6.1 & \(\mu \mathrm{A}\) \\
\hline & \[
\begin{aligned}
& \mathrm{fosC}=32 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, \mathrm{EN}=1, \\
& \text { Freq1 }=1, \text { Freq2 }=1
\end{aligned}
\] & - & 10 & 15 & - & 6.5 & 9 & \(\mu \mathrm{A}\) \\
\hline & \[
\begin{aligned}
& \mathrm{foSC}=1 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}(\text { Note } 5), \\
& \mathrm{EN}=1, \text { Freq1 }=0, \text { Freq2 }=1
\end{aligned}
\] & - & 130 & 200 & - & 90 & 180 & \(\mu \mathrm{A}\) \\
\hline & \[
\begin{aligned}
& \mathrm{fOSC}=1 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, \mathrm{EN}=1, \\
& \text { Freq1 }=0, \text { Freq2 }=1
\end{aligned}
\] & - & 270 & 350 & - & 180 & 270 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{OH}}\) Output High Voltage & IOUT \(=-1 \mathrm{~mA}\) & 4.0 & 4.9 & - & - & 2.8 & - & V \\
\hline \(\mathrm{V}_{\text {OL }}\) Output Low Voltage & IOUT \(=1 \mathrm{~mA}\) & - & 0.07 & 0.4 & - & 0.1 & \(\bullet\) & V \\
\hline \(\mathrm{I}^{\mathrm{OH}}\) Output High Current & \(V_{\text {OUT }} \geq 4 \mathrm{~V}\) & - & -10 & -5 & - & - & - & mA \\
\hline IOL Output Low Current & \(V_{\text {OUT }} \leq 0.4 \mathrm{~V}\) & 5.0 & 10.0 & - & - & - & - & mA \\
\hline \multirow[t]{2}{*}{Three-State Leakage Current} & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C},-40^{\circ} \mathrm{C}\) & - & 0.1 & - & - & - & - & nA \\
\hline & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}, 5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}\) & - & 10 & - & - & - & \(\bullet\) & nA \\
\hline IIN Enable, Freq1, Freq2 Input Current & \(\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {SS }}\) to \(\mathrm{V}_{\mathrm{DD}}\) & - & 0.4 & 1.0 & - & - & - & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\mathrm{IH}}\) Input High Voltage Enable, Freq1, Freq2 & & 2.0 & - & - & - & - & - & V \\
\hline \(\mathrm{V}_{\text {IL }}\) Input Low Voltage Enable, Freq1, Freq2 & & - & - & 0.8 & - & - & - & V \\
\hline Enable Time & \(C_{L}=18 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\) & - & 800 & - & - & - & - & ns \\
\hline Disable Time & \(C_{L}=18 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega\) & - & 90 & - & - & - & - & ns \\
\hline \(t_{R}\) Output Rise Time & \(10 \%-90 \%, \mathrm{f}_{\text {Osc }}=32 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}\) & - & 12 & 25 & - & 12 & - & ns \\
\hline \(\mathrm{t}_{\text {F }}\) Output Fall Time & \(10 \%-90 \%, \mathrm{f}_{\text {OSC }}=32 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}\) & - & 12 & 25 & - & 14 & \(\bullet\) & ns \\
\hline Duty Cycle, Packaged Part Only (Note 6) & \(\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, \mathrm{foSC}=1 \mathrm{MHz}\) & 40 & 54 & 60 & - & - & - & \% \\
\hline Duty Cycle, (See Typical Curves) & \(\mathrm{C}_{\mathrm{L}}=40 \mathrm{pF}, \mathrm{fosc}=32 \mathrm{kHz}\) & - & 41 & - & - & 44 & \(\bullet\) & \% \\
\hline Frequency Stability vs Supply Voltage & \(\mathrm{f}_{\mathrm{OSC}}=32 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\) & - & 1 & - & - & - & - & ppm \(/ \mathrm{N}\) \\
\hline Frequency Stability vs Temperature & \(\mathrm{f}_{\mathrm{OSC}}=32 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\) & - & 0.1 & - & - & - & - & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline Frequency Stability vs Load & \(\mathrm{fOSC}=32 \mathrm{kHz}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}\) & - & 0.01 & - & - & - & - & ppm/pF \\
\hline
\end{tabular}

\section*{NOTES:}
5. Calculated using the equation \(I_{D D}=I_{D D}(N o\) Load \()+\left(V_{D D}\right)\left(f_{O S C}\right)\left(C_{L}\right)\)
6. Duty cycle will vary with supply voltage, oscillation frequency, and parasitic capacitance on the crystal pins.

\section*{Test Circuit}


FIGURE 1.
In production the HA7210 is tested with a 32 kHz and a 1 MHz crystal. However for characterization purposes data was taken using a sinewave generator as the frequency determining element, as shown in Figure 1. The \(1 \mathrm{~V}_{\text {P-p }}\) input is a smaller amplitude than what a typical crystal would generate so the transitions are slower. In general the Generator data will show a "worst case" number for IDD, duty cycle, and rise/fall time. The Generator test method is useful for testing a variety of frequencies quickly and provides curves which can be used for understanding performance trends. Data for the HA7210 using crystals has also been taken. This data has been overlaid onto the generator data to provide a reference for comparison.

\section*{Application Information}

\section*{Theory Of Operation}

The HA7210 and HA7211 are Pierce Oscillators optimized for low power consumption, requiring no external components except for a bypass capacitor and a Parallel Mode Crystal. The Simplified Block Diagram shows the Crystal attached to pins 2 and 3, (HA7210) the Oscillator input and output. The crystal drive circuitry is detailed showing the simple CMOS inverter stage and the \(P\)-channel device being used as biasing resistor \(R_{F}\). The inverter will operate mostly in its linear region increasing the amplitude of the oscillation until limited by its transconductance and voltage rails, \(V_{D D}\) and \(V_{R N}\). The inverter is self biasing using \(R_{F}\) to center the oscillating waveform at the input threshold. Do not interfere with this bias function with external loads or excessive leakage on pin 2 for HA7210, pin 8 for HA7211. Nominal value for \(R_{F}\) is \(17 \mathrm{M} \Omega\) in the lowest frequency range to \(7 \mathrm{M} \Omega\) in the highest frequency range.

The HA7210 and HA7211 optimizes its power for 4 frequency ranges selected by digital inputs Freq1 and Freq2 as shown in the Block Diagram. Internal pull up resistors (constant current \(0.4 \mu \mathrm{~A}\) ) on Enable, Freq1 and Freq2 allow the user simply to leave one or all digital inputs not connected for a corresponding " 1 " state. All digital inputs may be left open for 10 kHz to 100 kHz operation.

A current source develops 4 selectable reference voltages through series resistors. The selected voltage, \(\mathrm{V}_{\mathrm{RN}}\), is buffered and used as the negative supply rail for the oscillator section of the circuit. The use of a current source in the reference string allows for wide supply variation with minimal effect on performance. The reduced operating voltage of the
oscillator section reduces power consumption and limits transconductance and bandwidth to the frequency range selected. For frequencies at the edge of a range, the higher range may provide better performance.
The OSC OUT waveform on pin 3 for HA7210 (pin 1 for HA7211) is squared up through a series of inverters to the output drive stage. The Enable function is implemented with a NAND gate in the inverter string, gating the signal to the level shifter and output stage. Also during Disable the output is set to a high impedance state useful for minimizing power during standby and when multiple oscillators are OR'ed to a single node.

\section*{Design Considerations}

The low power CMOS transistors are designed to consume power mostly during transitions. Keeping these transitions short requires a good decoupling capacitor as close as possible to the supply pins 1 and 4 for HA7210, pins 4 and 6 for HA7211. A ceramic \(0.1 \mu \mathrm{~F}\) is recommended. Additional supply decoupling on the circuit board with \(1 \mu \mathrm{~F}\) to \(10 \mu \mathrm{~F}\) will further reduce overshoot, ringing and power consumption. The HA7210, when compared to a crystal and inverter alone, will speed clock transition times, reducing power consumption of all CMOS circuitry run from that clock.

Power consumption may be further reduced by minimizing the capacitance on moving nodes. The majority of the power will be used in the output stage driving the load. Minimizing the load and parasitic capacitance on the output, pin 5 , will play the major role in minimizing supply current. A secondary source of wasted supply current is parasitic or crystal load capacitance on pins 2 and 3 for HA7210, pins 1 and 8 for HA7211. The HA7210 is designed to work with most available crystals in its frequency range with no external components required. Two 15 pF capacitors are internally switched onto crystal pins 2 and 3 on the HA7210 to compensate the oscillator in the 10 kHz to 100 kHz frequency range.
The supply current of the HA7210 and HA7211 may be approximately calculated from the equation:
\(I_{D D}=I_{D D}(\) Disabled \()+V_{D D} \times f_{O S C} \times C_{L}\)
where: \(I_{D D}=\) Total supply current
\(V_{D D}=\) Total voltage from \(V_{D D}\) (pin1) to \(V_{S S}\) (pin4)
\(\mathrm{f}^{\mathrm{OSC}}=\) Frequency of Oscillation
\(\mathrm{C}_{\mathrm{L}}=\) Output (pin5) load capacitance

\section*{Example \#1:}
\(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=100 \mathrm{kHz}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\)
\(I_{D D}(\) Disabled \()=4.5 \mu \mathrm{~A}\) (Figure 10)
\(I_{D D}=4.5 \mu \mathrm{~A}+(5 \mathrm{~V})(100 \mathrm{kHz})(30 \mathrm{pF})=19.5 \mu \mathrm{~A}\)
Measured \(\mathrm{I}_{\mathrm{DD}}=20.3 \mu \mathrm{~A}\)

\section*{Example \#2:}
\(V_{D D}=5 \mathrm{~V}, \mathrm{f}_{\mathrm{OSC}}=5 \mathrm{MHz}, \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}\)
\(I_{D D}(\) Disabled) \(=75 \mu \mathrm{~A}\) (Figure 9)
\(\mathrm{I}_{\mathrm{DD}}=75 \mu \mathrm{~A}+(5 \mathrm{~V})(5 \mathrm{MHz})(30 \mathrm{pF})=825 \mu \mathrm{~A}\)
Measured \(\mathrm{I}_{\mathrm{DD}}=809 \mu \mathrm{~A}\)

\section*{Crystal Selection}

For general purpose applications, a Parallel Mode Crystal is a good choice for use with the HA7210 or HA7211. However for applications where a precision frequency is required, the designer needs to consider other factors.
Crystals are available in two types or modes of oscillation, Series and Parallel. Series Mode crystals are manufactured to operate at a specified frequency with zero load capacitance and appear as a near resistive impedance when oscillating. Parallel Mode crystals are manufactured to operate with a specific capacitive load in series, causing the crystal to operate at a more inductive impedance to cancel the load capacitor. Loading a crystal with a different capacitance will "pull" the frequency off its value.

The HA7210 and HA7211 has 4 operating frequency ranges. The higher three ranges do not add any loading capacitance to the oscillator circuit. The lowest range, 10 kHz to 100 kHz , automatically switches in two 15pF capacitors onto OSC IN and OSC OUT to eliminate potential start-up problems. These capacitors create an effective crystal loading capacitor equal to the series combination of these two capacitors. For the HA7210 and HA7211, in the lowest range, the effective loading capacitance is 7.5 pF . Therefore the choice for a crystal, in this range, should be a Parallel Mode crystal that requires a 7.5 pF load.
In the higher 3 frequency ranges, the capacitance on OSC IN and OSC OUT will be determined by package and layout parasitics, typically 4 to \(5 p F\). Ideally the choice for crystal should be a Parallel Mode set for 2.5pF load. A crystal manufactured for a different load will be "pulled" from its nominal frequency (see Crystal Pullability).


FIGURE 2.

\section*{Frequency Fine Tuning}

Two Methods will be discussed for fine adjustment of the crystal frequency. The first and preferred method (Figure 2), provides better frequency accuracy and oscillator stability than method two (Figure 3). Method one also eliminates start-up problems sometimes encountered with 32 kHz tuning fork crystals.
For best oscillator performance, two conditions must be met: the capacitive load must be matched to both the inverter and crystal to provide ideal conditions for oscillation, and the frequency of the oscillator must be adjustable to the desired frequency. In Method two these two goals can be at odds with each other; either the oscillator is trimmed to frequency
by de-tuning the load circuit, or stability is increased at the expense of absolute frequency accuracy.

Method one allows these two conditions to be met independently. The two fixed capacitors, \(\mathrm{C}_{1}\) and \(\mathrm{C}_{2}\), provide the optimum load to the oscillator and crystal. \(\mathrm{C}_{3}\) adjusts the frequency at which the circuit oscillates without appreciably changing the load (and thus the stability) of the system. Once a value for \(\mathrm{C}_{3}\) has been determined for the particular type of crystal being used, it could be replaced with a fixed capacitor. For the most precise control over oscillator frequency, \(\mathrm{C}_{3}\) should remain adjustable.

This three capacitor tuning method will be more accurate and stable than method two and is recommended for 32 kHz tuning fork crystals; without it they may leap into an overtone mode when power is initially applied.

Method two has been used for many years and may be preferred in applications where cost or space is critical. Note that in both cases the crystal loading capacitors are connected between the oscillator and \(\mathrm{V}_{\mathrm{DD}}\); do not use \(\mathrm{V}_{\mathrm{SS}}\) as an AC ground. The Simplified Block Diagram shows that the oscillating inverter does not directly connect to \(V_{S S}\) but is referenced to \(V_{D D}\) and \(V_{R N}\). Therefore \(V_{D D}\) is the best \(A C\) ground available.


FIGURE 3.
Typical values of the capacitors in Figure 2 are shown below. Some trial and error may be required before the best combination is determined. The values listed are total capacitance including parasitic or other sources. Remember that in the 10 kHz to 100 kHz frequency range setting the HA7210 switches in two internal 15pF capacitors.
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
CRYSTAL \\
FREQUENCY
\end{tabular} & \begin{tabular}{c} 
LOAD CAPS \\
\(\mathbf{C}_{\mathbf{1}}, \mathbf{C}_{\mathbf{2}}\)
\end{tabular} & \begin{tabular}{c} 
TRIMMER CAP \\
\(\mathbf{C}_{\mathbf{3}}\)
\end{tabular} \\
\hline 32 kHz & 33 pF & 5 pF to 50 pF \\
\hline 1 MHz & 33 pF & 5 pF to 50 pF \\
\hline 2 MHz & 25 pF & 5 pF to 50 pF \\
\hline 4 MHz & 22 pF & 5 pF to 100 pF \\
\hline
\end{tabular}

\section*{CRYSTAL PULLABILITY}

Figure 4 shows the basic equivalent circuit for a crystal and its loading circuit.


FIGURE 4.
Where: \(\quad C_{M}=\) Motional Capacitance
\(L_{M}=\) Motional Inductance
\(\mathrm{R}_{\mathrm{M}}=\) Motional Resistance
\(\mathrm{C}_{0}=\) Shunt Capacitance
\[
C_{C L}=\frac{1}{\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}\right)}=\text { Equivalent Crystal Load }
\]

If loading capacitance is connected to a Series Mode Crystal, the new Parallel Mode frequency of resonance may be calculated with the following equation:
\[
f_{P}=f_{S}\left[1+\frac{C_{M}}{2\left(C_{0}+C_{C L}\right)}\right]
\]

Where: \(f_{P}=\) Parallel Mode Resonant Frequency \(f_{S}=\) Series Mode Resonant Frequency
In a similar way, the Series Mode resonant frequency may be calculated from a Parallel Mode crystal and then you may calculate how much the frequency will "pull" with a new load.

\section*{Layout Considerations}

Due to the extremely low current (and therefore high impedance) the circuit board layout of the HA7210 or HA7211
must be given special attention. Stray capacitance should be minimized. Keep the oscillator traces on a single layer of the PCB. Avoid putting a ground plane above or below this layer. The traces between the crystal, the capacitors, and the OSC pins should be as short as possible. Completely surround the oscillator components with a thick trace of \(\mathrm{V}_{\mathrm{DD}}\) to minimize coupling with any digital signals. The final assembly must be free from contaminants such as solder flux, moisture, or any other potential source of leakage. A good solder mask will help keep the traces free of moisture and contamination over time.

\section*{Further Reading}

Al Little "HA7210 Low Power Oscillator: Micropower Clock Oscillator and Op Amps Provide System Shutdown for Battery Circuits". Harris Semiconductor Application Note AN9317.
Robert Rood "Improving Start-Up Time at 32 KHz for the HA7210 Low Power Crystal Oscillator". Harris Semiconductor Application Note AN9334.
S. S. Eaton "Timekeeping Advances Through COS/MOS Technology". Harris Semiconductor Application Note ICAN-6086.
E. A. Vittoz, et. al. "High-Performance Crystal Oscillator circuits: Theory and Application". IEEE Journal of Solid-State Circuits, Vol. 23, No3, June 1988, pp774-783.
M. A. Unkrich, et. al. "Conditions for Start-Up in Crystal Oscillators". IEEE Journal of Solid-State Circuits, Vol. 17, No1, Feb. 1982, pp87-90.
Marvin E. Frerking "Crystal Oscillator Design and Temperature Compensation". New York: Van Nostrand-Reinhold, 1978. Pierce Oscillators Discussed pp56-75.

\section*{Typical Performance Curves}


FIGURE 5. OUTPUT WAVEFORM ( \(C_{L}=40 \mathrm{pF}\) )
\(C_{L}=18 \mathrm{pF}\), f \(_{\mathrm{OSC}}=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=\mathrm{GND}\)


FIGURE 6. OUTPUT WAVEFORM ( \(C_{L}=18 \mathrm{pF}\) )

NOTE: Refer to Test Circuit (Figure 1).

\section*{Typical Performance Curves (Continued)}


FIGURE 7. SUPPLY CURRENT vs TEMPERATURE


FIGURE 9. DISABLE SUPPLY CURRENT vs TEMPERATURE


FIGURE 11. SUPPLY CURRENT vs FREQUENCY


FIGURE 8. SUPPLY CURRENT vs TEMPERATURE


FIGURE 10. DISABLE SUPPLY CURRENT vs TEMPERATURE


FIGURE 12. SUPPLY CURRENT vs FREQUENCY

NOTE: Refer to Test Circuit (Figure 1).

\section*{Typical Performance Curves (Continued)}


FIGURE 13. SUPPLY CURRENT vs FREQUENCY


FIGURE 15. DISABLED SUPPLY CURRENT vs FREQUENCY


FIGURE 17. DISABLE SUPPLY CURRENT vs FREQUENCY
NOTE: Refer to Test Circuit (Figure 1).


FIGURE 14. SUPPLY CURRENT vs FREQUENCY


FIGURE 16. DISABLE SUPPLY CURRENT vs FREQUENCY


FIGURE 18. DISABLE SUPPLY CURRENT vs FREQUENCY

HA7210, HA7211
Typical Performance Curves (Continued)


FIGURE 19. SUPPLY CURRENT vs FREQUENCY


FIGURE 21. SUPPLY CURRENT vs FREQUENCY


FIGURE 23. DUTY CYCLE vs TEMPERATURE
NOTE: Refer to Test Circuit (Figure 1).


FIGURE 20. SUPPLY CURRENT vs FREQUENCY


FIGURE 22. SUPPLY CURRENT vs FREQUENCY


FIGURE 24. DUTY CYCLE vs TEMPERATURE

\section*{Typical Performance Curves (Continued)}


FIGURE 25. DUTY CYCLE vs FREQUENCY


FIGURE 27. DUTY CYCLE vs FREQUENCY


FIGURE 29. FREQUENCY CHANGE vs \(V_{D D}\)


FIGURE 26. DUTY CYCLE vs FREQUENCY


FIGURE 28. DUTY CYCLE vs FREQUENCY


FIGURE 30. EDGE JITTER vs TEMPERATURE

NOTE: Refer to Test Circuit (Figure 1).

\section*{Typical Performance Curves (Continued)}


FIGURE 31. RISE/FALL TIME vs TEMPERATURE


FIGURE 33. RISE/FALL TIME vs \(\mathbf{C}_{L}\)


FIGURE 35. TRANSCONDUCTANCE vs FREQUENCY


FIGURE 32. RISE/FALL TIME vs TEMPERATURE

FIGURE 34. RISE/FALL TIME vs \(V_{D D}\)


FIGURE 36. TRANSCONDUCTANCE vs FREQUENCY

\section*{Typical Performance Curves (Continued)}


FIGURE 37. TRANSCONDUCTANCE vs FREQUENCY


FIGURE 38. TRANSCONDUCTANCE vs FREQUENCY


NOTE: Figure 39 (Duty Cycle vs \(R_{S}\) at 32 kHz ) should only be used for 32 kHz crystals. R may be used at other frequencies to adjust Duty Cycle but experimentation will be required to find an appropriate value. The \(R_{S}\) value will be proportional to the effective series resistance of the crystal being used.

FIGURE 39. DUTY CYCLE vs \(\mathbf{R}_{\mathbf{S}}\) at \(\mathbf{3 2 k H z}\)
NOTE: Refer to Test Circuit (Figure 1).

\section*{Die Characteristics}

DIE DIMENSIONS:
68 mils \(\times 64\) mils \(\times 14\) mils

\section*{METALLIZATION:}

Type: Si-Al
Thickness: \(10 k \AA \pm 1 k \AA\)

SUBSTRATE POTENTIAL
\(V_{S S}\)

\section*{PASSIVATION:}

Type: Nitride \(\left(\mathrm{Si}_{3} \mathrm{~N}_{4}\right)\) Over Silox \(\left(\mathrm{SiO}_{2}, 3 \%\right.\) Phos) Silox Thickness: \(7 \mathrm{k} \AA \pm 1 \mathrm{k} \AA\)
Nitride Thickness: \(8 \mathrm{k} \AA \pm \pm 1 \mathrm{k} \AA\)

\section*{Metallization Mask Layout}

HA7210


November 1996 Hartis' home page: htp: \(A x\), see Section 12

\section*{Features}
- High Digital Data Rate . 500 MHz
- Very Fast Slew Rate 2500V/ \(\mu \mathrm{s}\)
- Very Fast Rise/Fall Times . . . . . . . . . . . . . . . . . . . 600ps
- Wide Output Range +7 V to \(-\mathbf{2 V}\)
- Precise \(50 \Omega\) Output Impedance
- High Impedance, Three-State Output Control

\section*{Applications}
- IC Tester Pin Electronics
- Pattern Generators
- Pulse Generators
- Built-In Test Equipment (BITE)
- Level Comparator/Translator

\section*{Description}

The HFA5250 is the ideal monolithic pin driver solution for high performance test systems. The device will switch at high data rates between two input voltage levels providing variable amplitude pulses. The output impedance is trimmed to achieve a precision \(50 \Omega\) source for impedance matching. Two differential ECLTTL compatible inputs control the operation of the HFA5250, one controlling the \(\mathrm{V}_{\text {HIGH }} / \mathrm{V}_{\text {LOW }}\) switching and the other controlling the output's high-impedance state. The HFA5250's 500 MHz data rate makes it compatible with today's high speed VLSI test systems and the +7 V to -2 V output swing allows testing of all common logic families.

The HFA5250 is manufactured in the Harris proprietary complementary bipolar process.

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{c} 
PART \\
NUMBER
\end{tabular} & TEMP. RANGE ( \({ }^{\circ} \mathrm{C}\) ) & \multirow{2}{*}{ PACKAGE } & \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular} \\
\hline HFA5250CB & 0 to 50 Without Air Flow & 28 Ld SOIC & M28.3 \\
\cline { 2 - 2 } & 0 to 70 With 400lfpm Air Flow & & \\
\hline
\end{tabular}

\section*{Pinout}


\section*{Features}
- High Digital Data Rate . . . . . . . . . . . . . . . . . . . . 800MHz
- Very Fast Rise/Fall Times . . . . . . . . . . . . . . . . . . . 500ps
- Wide Output Range . . . . . . . . . . . . . . . . . . . . +7V to -2V
- Precise \(50 \Omega\) Output Impedance
- High Impedance, Three-State Output Control

\section*{Applications}
- IC Tester Pin Electronics
- Pattern Generators
- Pulse Generators
- Level Comparator/Translator

\section*{Description}

The HFA5251 is a very high speed monolithic pin driver solution for high performance test systems. The device will switch at high data rates between two input voltage levels providing variable amplitude pulses. The output impedance is trimmed to achieve a precision \(50 \Omega\) source for impedance matching. Two differential ECL/TTL compatible inputs control the operation of the HFA5251, one controlling the \(\mathrm{V}_{\text {HIGH }} / \mathrm{V}_{\text {LOW }}\) switching and the other controlling the output's high-impedance state. The HFA5251's 800 MHz data rate makes it compatible with today's high-speed VLSI test systems and the +7 V to -2 V output swing allows testing of all common logic families.

The HFA5251 is manufactured in Harris' proprietary complementary bipolar UHF-1 process. The HFA5251 is offered in die form. Contact your local sales representative for packaging options.

\section*{Ordering Information}
\begin{tabular}{|c|c|l|}
\hline \begin{tabular}{c} 
PART \\
NUMBER
\end{tabular} & TEMP. RANGE \(\left({ }^{\circ} \mathrm{C}\right)\) & PACKAGE \\
\hline HFA5251Y & TJUNCTION \(^{2} 175\) & Die Form \\
\hline
\end{tabular}

\section*{Pinout}

\(\mathrm{V}_{\text {Low }} \mathrm{V}_{\mathrm{EE} 1}\)

\section*{Functional Diagram}


TRUTH TABLE FOR VOUT
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{2}{|c|}{} & \multicolumn{2}{c|}{ DATA } \\
\cline { 2 - 4 } \multicolumn{2}{|c|}{} & 0 & 1 \\
\hline HiZ & 0 & \(V_{\text {LOW }}\) & \(\mathrm{V}_{\text {HIGH }}\) \\
\cline { 2 - 4 } & 1 & HiZ & HiZ \\
\hline
\end{tabular}

\section*{Pin Descriptions}
\begin{tabular}{|c|c|}
\hline NAME & FUNCTION \\
\hline \(\mathrm{V}_{\mathrm{CC1}}\) & Positive Supply. Nominal value is \(10 \mathrm{~V} \pm 0.2 \mathrm{~V}\). Reducing supply voltage below 9.8 V will reduce positive output voltage swing. The total supply voltage from \(\mathrm{V}_{\mathrm{CC} 1}\) to \(\mathrm{V}_{\mathrm{EE} 1}\) should not exceed 15.6 V for normal operation or exceed 17.0 V to prevent damage. Harris recommends two wire bonds to this pad to provide the lowest possible impedance. In addition, power supply decoupling chip capacitors of \(470 \mathrm{pF}, 0.1 \mu \mathrm{~F}\) and a \(10 \mu \mathrm{~F}\) tantalum are recommended. \\
\hline \(\mathrm{V}_{\mathrm{EE} 1}\) & Negative Supply. Nominal value is \(-5.2 \mathrm{~V} \pm 0.2 \mathrm{~V}\). A supply voltage more positive than -5.0 V will reduce negative output voltage swing. The total supply voltage from \(\mathrm{V}_{\mathrm{CC}}\) to \(\mathrm{V}_{\mathrm{EE} 1}\) should not exceed 15.6 V for normal operation or exceed 17.0 V to prevent damage. Harris recommends two wire bonds to this pad to provide the lowest possible impedance. In addition, power supply decoupling chip capacitors of \(470 \mathrm{pF}, 0.1 \mu \mathrm{~F}\) and a \(10 \mu \mathrm{~F}\) tantalum are recommended. \\
\hline \(\mathrm{V}_{\mathrm{CC} 2}\) & Output Stage Positive Supply. Nominal voltage and cautions are the same as for \(\mathrm{V}_{\mathrm{CC} 1}\). Having decoupling chip capacitors close to \(\mathrm{V}_{\mathrm{CC} 2}\) and \(\mathrm{V}_{\mathrm{EE} 2}\) is essential since large AC current will flow through this pad to the output during transients. Normally \(\mathrm{V}_{\mathrm{CC} 1}\) and \(\mathrm{V}_{\mathrm{CC} 2}\) are connected together close to the die and share decoupling capacitors. Harris recommends two wire bonds for this pad. \\
\hline \(\mathrm{V}_{\mathrm{EE} 2}\) & Output Stage Negative Supply. Nominal voltage and cautions are the same as for \(\mathrm{V}_{\mathrm{EE} 1}\). Having decoupling chip capacitors close to \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{EE} 2}\) is essential since large AC current will flow through this pad to the output during transients. Normally \(\mathrm{V}_{\mathrm{EE} 1}\) and \(\mathrm{V}_{\mathrm{EE} 2}\) are connected together close to the die and share decoupling capacitors. Harris recommends two wire bonds for this pad. \\
\hline \(\mathrm{V}_{\text {HIGH }}\) & Input Voltage High is used to set the output high level \(\mathrm{V}_{\mathrm{OH}} . \mathrm{V}_{\mathrm{HIGH}}\) is sensitive to capacitively coupled AC noise. Protection from high frequency noise can be achieved with a low pass filter consisting of a \(50 \Omega\) chip resistor and a 470 pF chip capacitor. Without this precaution the pin driver may oscillate due to feedback from the output through the PC board ground. \\
\hline VLOW & Input Voltage Low is used to set the output low level \(\mathrm{V}_{\mathrm{OL}} . \mathrm{V}_{\text {LOW }}\) is sensitive to capacitively coupled AC noise. Protection from high frequency noise can be achieved with a low pass filter consisting of a \(50 \Omega\) chip resistor and a 470 pF chip capacitor. Without this precaution the pin driver may oscillate due to feedback from the output through the PC board ground. \\
\hline \(\mathrm{V}_{\text {OUT }}\) & Driver Output. The output impedance has been laser trimmed to match a \(50 \Omega\) transmission line \(\pm 2 \Omega\). Custom output impedance trimming is available (contact sales office for details) to provide the best match possible to your \(50 \Omega\) system. \\
\hline \(\overline{\text { DATA }}\), DATA & Differential Digital Inputs used to switch \(\mathrm{V}_{\text {OUT }}\) to the \(\mathrm{V}_{\text {HIGH }}\) or \(\mathrm{V}_{\text {LOW }}\) level. Harris recommends this input pair be driven by complementary ECL signals to provide optimal switching speeds and timing accuracy. However a large Common Mode and Differential Voltage Range is provided to accommodate a variety of signals including single ended TTL and CMOS. When using single ended signals the other input must be tied to an appropriate threshold. \\
\hline \[
\begin{aligned}
& \overline{\mathrm{HiZ}}, \\
& \mathrm{Hiz}
\end{aligned}
\] & Differential Digital Inputs used to switch \(\mathrm{V}_{\mathrm{OUT}}\) from an Active to a High Impedance State. Harris recommends that this input pair be driven by complementary ECL signals to provide optimal switching speeds and timing accuracy. However a large Common Mode and Differential Voltage Range is provided to accommodate a variety of signals including single ended TTL and CMOS. When using single ended signals the other input must be tied to an appropriate threshold. \\
\hline
\end{tabular}

\section*{HFA5251}Absolute Maximum Ratings
Supply Voltage ..... 17V
Differential Input Voltage (DATA and HiZ) ..... 5 V
Output Current Continuous (Note 1). ..... 160 mA
Input Voltage (Any pin except as specified) ..... \(V_{C C}\) to \(V_{E E}\)
VOUT Voltage ..... 8 V to -5.5V
\(V_{\text {HIGH }}\) Voltage ..... \(V_{C C}\) to \(-3 V\)
\(V_{\text {LOW }}\) Voltage. ..... 8 V to \(\mathrm{V}_{\mathrm{EE}}\)
\(\mathrm{V}_{\text {HIGH }}\) to \(\mathrm{V}_{\text {LOW }}\) Voltage \(\mathrm{V}_{\text {HIGH }}>\mathrm{V}_{\text {LOW }}\)

\section*{Thermal Information}

Maximum Junction Temperature (Die)
\(175^{\circ} \mathrm{C}\)
Maximum Storage Temperature Range
\(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

Electrical Specifications \(\quad \mathrm{V}_{\mathrm{CC}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=-0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=-1.75 \mathrm{~V}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP. ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{InPUT CHARACTERISTICS ( \(\mathrm{V}_{\mathrm{HIGH}}, \mathrm{V}_{\text {LOW }}\) )} \\
\hline \(\mathrm{V}_{\text {HIGH }}\) Input Offset Voltage & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) & 25 & -150 & -50 & +50 & mV \\
\hline \(V_{\text {Low }}\) Input Offset Voltage & \(\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\) & 25 & -150 & -50 & +50 & mV \\
\hline \(\mathrm{V}_{\text {HIGH }}\) Input Bias Current & \(\mathrm{V}_{\text {HIGH }}=-2.25 \mathrm{~V}\) to +7.5 V & 25 & -50 & 110 & 300 & \(\mu \mathrm{A}\) \\
\hline VLow Input Bias Current & \(\mathrm{V}_{\text {LOW }}=-2.5 \mathrm{~V}\) to +7.25 V & 25 & -300 & -110 & 50 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\text {HIGH }}\) Voltage Range & & 25 & -2.25 & - & 7.5 & V \\
\hline VLOW Voltage Range & & 25 & -2.5 & \(\bullet\) & 7.25 & V \\
\hline \(\mathrm{V}_{\text {HIGH }}\) to \(\mathrm{V}_{\text {LOW }}\) Differential Voltage Range & & 25 & 0.25 & \(\bullet\) & 10 & V \\
\hline \(\mathrm{V}_{\text {HIGH }} / \mathrm{V}_{\text {Low }}\) Interaction at 500 mV (Note 11) & & 25 & - & 2 & 4 & mV \\
\hline \(\mathrm{V}_{\text {HIGH }} / \mathrm{V}_{\text {LOW }}\) Interaction at 250 mV (Note 11) & & 25 & - & 20 & 40 & mV \\
\hline
\end{tabular}

LOGIC INPUT CHARACTERISTICS (DATA, \(\overline{\text { DATA }}\), HiZ, \(\overline{\text { HiZ }}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Logic Input Voltage Range & & 25 & -2 & - & 7 & V \\
\hline Logic Differential Input Voltage & & 25 & 0.4 & - & 5 & V \\
\hline DATA/ \(\overline{\text { DATA }}\) Logic Input High Current & \(V_{1 H}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=-2 \mathrm{~V}\) & 25 & -50 & 110 & 300 & \(\mu \mathrm{A}\) \\
\hline DATA/ \(\overline{\text { DATA }}\) Logic Input Low Current & \(\mathrm{V}_{\mathrm{IH}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=-2 \mathrm{~V}\) & 25 & -700 & -300 & 50 & \(\mu \mathrm{A}\) \\
\hline HiZ/FiZ Logic Input High Current & \(\mathrm{V}_{\mathrm{IH}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=-2 \mathrm{~V}\) & 25 & -50 & 70 & 200 & \(\mu \mathrm{A}\) \\
\hline Hiz/HiZ Logic Input Low Current & \(\mathrm{V}_{\mathrm{IH}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=-2 \mathrm{~V}\) & 25 & -300 & -80 & 50 & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

TRANSFER CHARACTERISTICS
\begin{tabular}{|l|l|c|c|c|c|c|}
\hline \(\mathrm{V}_{\text {HIGH }}\) Voltage Gain & \(\mathrm{V}_{\text {HIGH }}=-1 \mathrm{~V}\) to 6.5 V & 25 & 0.95 & - & 1 & \(\mathrm{~V} / \mathrm{V}\) \\
\hline \(\mathrm{V}_{\text {LOW }}\) Voltage Gain & \(\mathrm{V}_{\text {LOW }}=-1.5 \mathrm{~V}\) to 6 V & 25 & 0.95 & - & 1 & \(\mathrm{~V} / \mathrm{V}\) \\
\hline \(\mathrm{V}_{\text {HIGH }} / \mathrm{V}_{\text {LOW }}\) Linearity Error (Note 7) & Fullscale \(=5 \mathrm{~V}\) & 25 & -0.5 & - & 0.5 & \(\%\) \\
\hline \(\mathrm{~V}_{\text {HIGH }} / \mathrm{V}_{\text {LOW }}\) Linearity Error (Note 8) & Fullscale \(=8.5 \mathrm{~V}\) & 25 & -0.75 & - & 0.75 & \(\%\) \\
\hline \(\mathrm{~V}_{\text {HIGH }} / \mathrm{V}_{\text {LOW }}\) End Point Gain Deviation (Notes 10, 13) & 0.5 V Steps & 25 & -2.0 & - & 2.0 & \(\%\) \\
\hline \(\mathrm{~V}_{\text {HIGH }}\) End Point Gain Error (Notes 10 and 14) & \(\mathrm{V}_{\text {OUT }}=6.7 \mathrm{~V}\) to 7.0V & 25 & -20 & - & 20 & mV \\
\hline \(\mathrm{V}_{\text {HIGH }} / \mathrm{V}_{\text {LOW }}\)-3dB Bandwidth & \(200 \mathrm{~m} \mathrm{~V}_{\text {P-P }}\) & 25 & - & 100 & - & MHz \\
\hline
\end{tabular}

HFA5251

Electrical Specifications \(\mathrm{V}_{\mathrm{CC}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=-0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=-1.75 \mathrm{~V}\), Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & TEMP. \(\left({ }^{\circ} \mathrm{C}\right)\) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{7}{|l|}{SWITCHING CHARACTERISTICS ( \(\mathrm{Z}_{\text {LOAD }}=16\) inches of RG-58 Terminated with 50 \({ }^{\text {a }}\) )} \\
\hline Propagation Delay (Notes 2, 17) & & 25 & 0.8 & - & 1.5 & ns \\
\hline Propagation Delay Match (Notes 2, 17) & Rising to Falling Edge & 25 & -100 & - & 100 & ps \\
\hline Rising Edge Propagation Delay vs Duty Cycle (Notes 12, 17) & & 25 & -120 & -20 & 80 & ps \\
\hline Falling Edge Propagation Delay vs Duty Cycle (Notes 12, 17) & & 25 & -80 & 20 & 120 & ps \\
\hline Active to HiZ Delay (Note 17) & & 25 & 1.2 & 1.7 & 2.2 & ns \\
\hline HiZ to Active Delay (Note 17) & & 25 & 2.1 & 2.6 & 3.1 & ns \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Rise/Fall Time (20\%-80\%) & \(1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & 25 & - & 450 & 500 & ps \\
\hline Rise/Fall Time (10\%-90\%) & \(3 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & 25 & - & 890 & 1000 & ps \\
\hline Rise/Fall Time (10\%-90\%) (Note 6) & \(5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & 25 & - & 1.5 & 1.7 & ns \\
\hline Rise/Fall Time Match (Note 6) & & 25 & - & 50 & 150 & ps \\
\hline Minimum Pulse Width (Note 16) & \(1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) & 25 & - & 1.0 & - & ns \\
\hline Minimum Pulse Width (Note 16) & \(3 \mathrm{~V}_{\text {P-P }}\) & 25 & - & 1.2 & - & ns \\
\hline Minimum Pulse Width (Note 16) & \(5 \mathrm{~V}_{\text {P-P }}\) & 25 & - & 2.0 & - & ns \\
\hline Overshoot/Undershoot/Preshoot & \(3 \mathrm{~V}_{\text {P-P }}\) & 25 & - & 5 & - & \(\%\) \\
\hline Data Settling Time to 1\% (Note 3) & & 25 & - & 10 & - & ns \\
\hline
\end{tabular}

\section*{OUTPUT CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Output Voltage Swing (No Load)} & \(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}\) & 25 & -2 & - & 7 & V \\
\hline & At Other Supplies & 25 & \(\mathrm{V}_{\mathrm{EE}}+3.2\) & - & \(V_{C C}-3.0\) & V \\
\hline DC Output Resistance - Active (Note 18) & -2V to 7V & 25 & 45 & 47 & 49 & \(\Omega\) \\
\hline Output Leakage - HiZ & -2 V to 7V & 25 & -100 & \(\pm 10\) & 100 & nA \\
\hline Output Capacitance - HiZ & & 25 & - & 5 & - & pF \\
\hline Output Current - Active & & 25 & 70 & 100 & - & mA \\
\hline \multicolumn{7}{|l|}{POWER SUPPLY CHARACTERISTICS} \\
\hline \multirow[t]{2}{*}{Power Supply Rejection Ratio (Note 4)} & \(\mathrm{V}_{\text {HIGH }}\) & 25 & - & 14 & 40 & \(\mathrm{mV} / \mathrm{V}\) \\
\hline & VLOW & 25 & - & 14 & 40 & \(\mathrm{mV} / \mathrm{V}\) \\
\hline Total Supply Current & & 25 & 90 & 94 & 96 & mA \\
\hline Supply Current ( \({ }^{\text {CC1, }}\), \({ }_{\text {EE1 }}\) ) & & 25 & - & 74 & - & mA \\
\hline Supply Current ( \({ }^{\text {CC2, }}\), \({ }_{\text {EEE }}\) ) & & 25 & - & 20 & - & mA \\
\hline Supply Voltage Range (Note 5) & \(\mathrm{V}_{\text {cc }}\) & 25 & 9.8 & 10 & 10.2 & V \\
\hline Supply Voltage Range (Note 5) & \(\mathrm{V}_{\mathrm{EE}}\) & 25 & -5.4 & -5.2 & -5.0 & V \\
\hline Supply Voltage Differential & \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\) & 25 & 12 & - & 15.6 & V \\
\hline
\end{tabular}

Electrical Specifications \(\quad \mathrm{V}_{\mathrm{CC}}=+10 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=-0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=-1.75 \mathrm{~V}\), Unless Otherwise Specified (Continued)
\begin{tabular}{|l|c|c|c|c|c|c|}
\hline \multicolumn{1}{|c|}{ PARAMETER } & TEST CONDITIONS & \begin{tabular}{c} 
TEMP. \\
\(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & MIN & TYP & MAX & UNITS \\
\hline Power Dissipation & \begin{tabular}{l} 
No Load At \(\mathrm{V}_{\mathrm{CC}}=10 \mathrm{~V}\), \\
\(\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{~V}\)
\end{tabular} & 25 & - & - & 1.46 & W \\
\hline
\end{tabular}

NOTES:
1. Internal Power Dissipation may limit Output Current below 160 mA .
2. 3 V Step, \(50 \%\) duty cycle, 200 ns period.
3. 3 V Step, measured from \(50 \%\) of input to \(\pm 1 \%\) of reference value at 50 ns .
4. \(\mathrm{V}_{\mathrm{HIGH}}=2.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{LOW}}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=9 \mathrm{~V}\) to \(10 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-4.2 \mathrm{~V}\) to -5.2 V
5. Minimum/maximum output swing will vary with supply voltage.
6. 5 V Step, \(50 \%\) duty cycle, 100 ns period.
7. For \(\mathrm{V}_{\text {HIGH }}=0 \mathrm{~V}\) to 5 V , For \(\mathrm{V}_{\text {LOW }}=0 \mathrm{~V}\) to 5 V , Fullscale \(=5 \mathrm{~V}, 0.1 \%=5 \mathrm{mV}\).
8. For \(\mathrm{V}_{\text {HIGH }}=-1.5 \mathrm{~V}\) to 7 V , For \(\mathrm{V}_{\text {LOW }}=-2.0 \mathrm{~V}\) to 6.5 V , Fullscale \(=8.5 \mathrm{~V}, 0.1 \%=8.5 \mathrm{mV}\)
9. Shorting the output to a voltage outside the specified range may damage the output.
10. \(\mathrm{V}_{\mathrm{CC}}=9.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.1 \mathrm{~V}\).
11. \(\mathrm{V}_{\text {HIGH }}\) to \(\mathrm{V}_{\text {LOW }}\) Interaction is measured as the change in \(\mathrm{V}_{\text {OUT }}\) (the active channel) due to a change in the inactive channel. \(\mathrm{V}_{\text {HIGH }}\) Interaction at 250 mV is measured as the deviation from 1 V as \(\mathrm{V}_{\text {LOW }}\) is changed from 0 V to 750 mV (Referred to \(\mathrm{V}_{\text {OUT }}\) ). V \(\mathrm{V}_{\text {Low }}\) Interaction at 250 mV is measured as the deviation from 0 V as \(\mathrm{V}_{\text {HIGH }}\) is changed from 1 V to 250 mV (Referred to \(\mathrm{V}_{\text {OUT }}\) ).
12. 0 V to 3 V Step, 200 ns period, Pulse Width is varied from 5 ns to 195 ns .
13. End Point Gain Deviation is the percent deviation of Gain calculated in 0.5 V steps at the extremes of output voltage range. For example in the \(\mathrm{V}_{\mathrm{HIGH}}\) range 5.7 V to 6.7 V , Gain is calculated for \(\mathrm{V}_{\text {HIGH }}=5.7 \mathrm{~V}\) to 6.2 V (Note 15) and \(\mathrm{V}_{\text {HIGH }}=6.2 \mathrm{~V}\) to 6.7 V (Note 15) the difference in gain is calculated and converted to a percentage. The voltage ranges tested are: \(\mathrm{V}_{\mathrm{HIGH}}=-1.5 \mathrm{~V}\) to -0.5 V (Note 15) and 5.7 V to 6.7 V (Note 15), \(\mathrm{V}_{\text {LOW }}=-2.0 \mathrm{~V}\) to -1.0 V (Note 15) and 5.5V to 6.5V (Note 15).
14. \(\mathrm{V}_{\text {HIGH }}\) End Point Gain Error is the \(\mathrm{V}_{\text {OUT }}\) absolute error from ideal for a \(\mathrm{V}_{\text {HIGH }}\) change from 6.7 V to 7.0 V (Note 15).
15. Input voltages \(\mathrm{V}_{\text {HIGH }}\) and \(\mathrm{V}_{\text {LOW }}\) are corrected for Offset Voltage and 7.5V Full Scale Gain Error.
16. Minimum Pulse Width is measured \(50 \%\) to \(50 \%\) of specified amplitude with pulse peak at \(90 \%\) of amplitude.
17. Test is performed into a \(50 \Omega\) load with a 3 V step. Measurement is made from the \(50 \%\) of input to \(50 \%\) of output.
18. Dynamic Output Resistance will be higher (typical \(48.5 \Omega\) ) than DC Output Resistance.

\section*{Application Information}

The HFA5251 is a pin driver designed for use in automatic test equipment (ATE) and high speed pulse generators. Pin drivers, especially those with very high-speed performance, have generally been implemented with discrete transistors (sometimes GaAs) on a circuit board or in a hybrid. Recent IC process improvements, specifically Harris' UHF1 process [1], have enabled the manufacturing of this 800 MHz silicon monolithic pin driver.

The ultra high speed performance of the HFA5251 is a result of UHF1 process leverages: low parasitic collector-to-substrate capacitance of the bonded wafer, low collector-to-base parasitic capacitance of the self-aligned base/emitter technology and ultra high \(\mathrm{f}_{\mathrm{T}}\) NPN ( 8 GHz ) and PNP \((5.5 \mathrm{GHz})\) poly-silicon transistors.

\section*{Functional Block Diagram}

The HFA5251 functional block diagram is shown in Figure 1.


FIGURE 1. BLOCK DIAGRAM
The control inputs, DATA and DATA, determine the output level. If DATA is at logic " 1 " and DATA is at logic " 0 ", the output level will be the same as \(\mathrm{V}_{\text {HIGH }}\). If DATA is at logic " 0 " and DATA is at logic " 1 ", the output will be the same as \(\mathrm{V}_{\text {LOW }}\). The control inputs, HiZ and \(\overline{\mathrm{HiZ}}\), make the output either active or high-impedance. If HiZ is at logic "1" and HiZ is at logic " 0 ", the output will be in high impedance mode. If HiZ is at logic " 0 " and \(\overline{\mathrm{HiZ}}\) is at logic " 1 ", the output will be enabled. The output impedance in the enabled mode is trimmed to \(50 \Omega\).

\section*{Circuit Schematic}

The Pin Driver circuit consists of a switch, an output buffer, and two differential control elements as shown in Figure 8.
A two stage approach, separating the switch from the output buffer, allows the speed and accuracy requirements of the switch to be de-coupled from the load driving capability of the buffer.

The patent pending switch circuitry[2] uses cascaded emitter followers as input buffers and also to switch the input \(\mathrm{V}_{\text {HIGH }}\) and \(\mathrm{V}_{\text {LOW }}\) to node VSO. Dual differential pairs controlled by the data timing (DATA and DATA) direct current to select either the \(\mathrm{V}_{\text {HIGH }}\) or \(\mathrm{V}_{\text {LOW }}\) switch. Matching transistor types and transdiodes improve linearity and lowers the voltage offset and offset drift. Stacking two emitter-base junctions allows the \(\mathrm{V}_{\text {HIGH }}\) to \(\mathrm{V}_{\text {LOW }}\) range to be extended to two BVebo's of the process. The speed of the pin driver is largely determined by the current flowing through the switch stage and the collector-base capacitance of the output stage transistors connected to the node VSO.

The output stage consists of cascaded emitter followers constructed in a typical push-pull manner as shown in Figure 2. However, transdiodes are added to increase the voltage breakdown characteristics of the output during high impedance mode. HiZ and \(\overline{\mathrm{HiZ}}\) control the mode of the output stage. A trimmed, NiCr resistor is added to provide the \(50 \Omega\) output impedance.

Overall, a symmetry of device types and paths is constructed to improve slew and delay symmetry. Both the \(\mathrm{V}_{\text {HIGH }}\) to \(\mathrm{V}_{\text {OUT }}\) path and the V LOW to V VUT path contain three NPN and three PNP transistors operating at similar collector currents. Thus the transient response of \(\mathrm{V}_{\text {HIGH }}\) to \(\mathrm{V}_{\text {LOW }}\) and \(\mathrm{V}_{\text {LOW }}\) to \(\mathrm{V}_{\text {HIGH }}\) are kept symmetrical. Also, a trimmable current reference (not shown) allows the AC parameters to be adjusted to maintain unit to unit consistency.

\section*{Speed Advantage}

Harris Pin Drivers on bonded-wafer technology definitely have a speed advantage, coming from the low collector-to-substrate capacitance and the high \(\mathrm{f}_{\mathrm{T}}\) of the transistors. In addition, the patent-pending switching stage which fits uniquely to Harris' UHF1 process is another big contributor for the high speed. This switching circuitry requires low series-resistance NPN and PNP transdiodes available in UHF1. The rise and fall times of the pin driver are largely determined by the slew rate at the node VSO in Figure 2. The dominant mechanism for the slew rate is the charging/discharging of the collectorbase capacitors of the transistors connected to the node VSO. The charging/discharging currents are coming from the switching stage current sources. The fast rise and fall times are achieved because of the negligible collector-to-substrate capacitance and the small base-collector capacitance due to the self-aligned recessed oxide [1].


FIGURE 2. CIRCUIT SCHEMATIC


FIGURE 3. OUTPUT RESPONSE WITH VARIOUS VLOW AND \(V_{\text {HIGH }}\) CONDITIONS

The DATA/ \(\overline{D A T A}\) differential stage is not a factor for the speed if its current sources have enough current not to bottleneck the transient. However it should be noted that the propagation delay mismatch is determined by this stage. Sufficient current is allocated to the differential stage current sources to best match the low-to-high and high-to-low transient propagation delays.

Figure 3 shows various output responses, 0 V to \(1 \mathrm{~V}, 0 \mathrm{~V}\) to 3 V , 0 V to 5 V , and -2 V to 7 V (full swing). The load condition is a 16 inch \(50 \Omega\) SMA cable with a 5 pF capacitor at the end of the cable. The rise/fall time with \(5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) is typically 1.45 ns for the HFA5251. Pin drivers, built out of the same circuit structure as shown in Figure 2, can be made faster by trimming for a higher power supply current. Currently the pin driver has rise/fall times of less than 1 ns ( \(10 \%\) to \(90 \%\) of \(5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) ) when \(\mathrm{I}_{\mathrm{CC}}\) is trimmed to 125 mA . Further speed enhancement will be made if there is a market demand.

\section*{Basic ATE System Application}

Figure 3 shows a pin driver in a typical per-pin ATE system. The pin driver works closely with the dual-level comparator and the active load. When the DUT pin acts as an input waiting for a series of digital signals, the pin driver becomes active with a logic " 0 " applied on the HiZ pin and provides the DUT pin with digital signals. When the DUT pin acts as an
output, the pin driver output will be in high impedance mode (HiZ) with a logic " 1 " applied to the "HiZ" pin of the pin driver. During this high impedance mode the pin driver presents a capacitance of less than 5 pF to the DUT. Special care has to be taken to match the impedance (to \(50 \Omega\) ) at the pin driver output to minimize reflections.
The dual level comparator detects the logic levels of the DUT pin when it acts as an output. The comparator has two threshold level inputs, VCH and VCL. The logic level information of DUT pin output is sent to the edge/window comparator through the dual level comparator. The edge/window comparator interprets this information in terms of corresponding transient performance in conjunction with the timing information. Thus it detects any possible failure transients.
The formatter sends a sequence of digital information to the pin driver which contains logic information over time. The active load is enabled when the DUT pin acts as an output. It simulates the load of the DUT pin by sinking or sourcing programmed current. Finally the sequencer controls the overall activities of the automatic testing.

\section*{Decoupling Circuit for Oscillation-Free Operation}

To insure the oscillation-free operation in ATE or pulse generator applications, the pin driver needs an appropriate decoupling circuit on a printed circuit board which consists of chip capacitors and chip resistors. Figures 5 and 6 refer to a proven decoupling circuit currently working in the lab and a 1X scale film of its associated PC board (metal level).

The control pins, DATA, \(\overline{\text { DATA }}, \mathrm{HiZ}\), and \(\overline{\mathrm{HiZ}}\) are fed ECL signals through \(50 \Omega\) micro-strip lines terminated with \(50 \Omega\) for impedance matching since the input impedance at these pins is much higher than \(50 \Omega\). At the end of the micro-strip lines there is usually a high-speed pulse generator with an output impedance of \(50 \Omega\) A \(50 \Omega\) micro-strip line is connected to each of the pins, \(\overline{\text { DATA }}\) and \(\overline{\mathrm{HiZ}}\) through a \(50 \Omega\) chip resistor to monitor the pulse signals.


FIGURE 4. TYPICAL ATE SYSTEM


FIGURE 5. DECOUPLING CIRCUIT OF 28 PIN SOIC HFA5251 FOR OSCILLATION-FREE OPERATION


FIGURE 6. 1 X FILM OF THE EVALUATION BOARD METAL
The two input voltage pins, \(\mathrm{V}_{\text {HIGH }}\) and \(\mathrm{V}_{\text {LOW }}\), need to be protected from any capacitively coupled AC noise. Normally this protection can be achieved by having a low pass filter consisting of a \(50 \Omega\) chip resistor and a 470 pF chip capacitor. Without this protection circuit the pin driver may oscillate due to signals fed back from the output through the PC board ground.

The power supply pins, \(\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC} 2}, \mathrm{~V}_{\mathrm{EE} 1}\), and \(\mathrm{V}_{\mathrm{EE} 2}\), require decoupling chip capacitors of \(470 \mathrm{pF}, 0.1 \mu \mathrm{~F}, 10 \mu \mathrm{~F}\). Having decoupling capacitors close to \(V_{C C 2}\) and \(V_{E E 2}\) is essential since large AC current will flow through either \(\mathrm{V}_{\mathrm{CC} 2}\) or \(\mathrm{V}_{\mathrm{EE} 2}\) during transients.
The output of the pin driver is usually connected to the device-under-test (DUT) through \(50 \Omega\) micro-strip line and coaxial cable which carries the signal to a high input impedance DUT pin.

\section*{References}
1. Chris K. Davis et. al., "UHF1: A High Speed Complementary Bipolar Analog Process on SOI," Bipolar Circuits and Technology Meeting Proceedings, pp260-263, October 1992.
2. Donald K. Whitney Jr., "Symmetrical, High Speed, Voltage Switching Circuit," United States Patent Pending, Filed November 1991.

\section*{Definition of Terms}
\(\mathrm{V}_{\mathrm{OH}}\) and \(\mathrm{V}_{\mathrm{OL}}\)
Output High Voltage and Output Low Voltage. \(\mathrm{V}_{\mathrm{OH}}\) is the voltage at \(\mathrm{V}_{\text {OUT }}\) when the HiZ input is Low and the DATA input is High. \(V_{O L}\) is the voltage at \(V_{\text {OUT }}\) when HiZ is Low and DATA is Low. The \(\mathrm{V}_{\mathrm{OH}}\) and \(\mathrm{V}_{\mathrm{OL}}\) levels are set with the \(\mathrm{V}_{\text {HIGH }}\) and \(\mathrm{V}_{\text {LOW }}\) inputs respectively.

\section*{Offset Voltage}

Offset Voltage is the DC error between the voltage placed on \(V_{\text {HIGH }}\) or \(V_{\text {LOW }}\) and the resulting \(V_{\mathrm{OH}}\) and \(\mathrm{V}_{\mathrm{OL}} . \mathrm{V}_{\mathrm{HIGH}}\) Offset Voltage Error is obtained by measuring \(\mathrm{V}_{\mathrm{OH}}\) with \(\mathrm{V}_{\mathrm{HIGH}}\) set to 0 V and \(V_{\text {LOW }}\) set to -2.5 V to minimize interaction effects. \(V_{\text {LOW }}\) Offset Voltage Error is the measurement of \(\mathrm{V}_{\mathrm{OL}}\) with \(\mathrm{V}_{\text {LOW }}\) set to 0 V and \(\mathrm{V}_{\text {HIGH }}\) set to +7.5 V .

\section*{Gain}

Gain is defined as the ratio of output voltage change to input voltage change for a defined range. \(\mathrm{V}_{\text {HIGH }}\) Gain is calculated with the following equation with \(V_{\text {LOW }}\) fixed at -2.5 V
\(\mathrm{V}_{\mathrm{HIGH}}\) GAIN \(=\frac{\mathrm{V}_{\mathrm{OH}}\left(\mathrm{V}_{\mathrm{HIGH}} \text { at } 6.5 \mathrm{~V}\right)-\mathrm{V}_{\mathrm{OH}}\left(\mathrm{V}_{\mathrm{HIGH}} \text { at }-1 \mathrm{~V}\right)}{7.5}\)

V LOW Gain is calculated in a similar manner.
\(\mathrm{V}_{\text {LOW }}\) GAIN \(=\frac{\mathrm{V}_{\mathrm{OL}}\left(\mathrm{V}_{\text {LOW }} \text { at } 6 \mathrm{~V}\right)-\mathrm{V}_{\mathrm{OL}}\left(\mathrm{V}_{\text {LOW }} \text { at }-1.5 \mathrm{~V}\right)}{7.5}\)
\(\mathrm{V}_{\text {HIGH }}\) is held fixed at 7.5 V . These Gain calculations minimize the effects of Interaction and End Point Nonlinearities.

\section*{Linearity Error}

Linearity Error is a measure of output voltage worst case deviation from a straight line that has been corrected for offset and 7.5V Gain. Linearity Error is given as a percentage of fullscale and is done in two ranges 5 V and 8.5 V . Data is measured at 0.5 V steps from -1.5 V to 7 V for \(\mathrm{V}_{\text {HIGH }}\) and -2 V to 6.5 V for \(\mathrm{V}_{\text {LOW }}\). The Linearity Error equation is as follows for 8.5 V fullscale:
\(\mathrm{V}_{\text {OUT }}(\) IDEAL \()=\frac{\mathrm{V}_{\text {OUT }}}{\text { GAIN }}-\) OFFSET
LINEARITYERROR \(=\frac{\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {OUT }} \text { (IDEAL) }}{8.5}\)

The Linearity Error equation is as follows for 5 V fullscale:
LINEARITY ERROR \(=\frac{\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {OUT }}(\text { IDEAL })}{5}\)
Linearity Error is calculated for every data point in the range and the worst case value is recorded.

\section*{End Point Deviation}

End Point Deviation is the percent change of gain in the 1 V range at the extremes of output voltage. Gain is calculated for each 0.5 V step and then compared to the adjacent step for a percentage change. This specification is designed to quantify the amount of curvature present at the end points of output swing. \(\mathrm{V}_{\text {HIGH }}\) and \(\mathrm{V}_{\text {LOW }}\) inputs are corrected for gain and offset to provide more accurate \(\mathrm{V}_{\mathrm{OH}}\) and \(\mathrm{V}_{\mathrm{OL}}\) levels. For example \(\mathrm{V}_{\mathrm{OH}}\) End Point Deviation is tested in the range 5.7 V to 6.7 V as shown below:
\[
\begin{aligned}
& \mathrm{GAIN}_{6.7-6.2}=\frac{\mathrm{V}_{\mathrm{OH}}\left(\mathrm{~V}_{\mathrm{HIGH}} \text { at } 6.7 \mathrm{~V}\right)-\mathrm{V}_{\mathrm{OH}}\left(\mathrm{~V}_{\mathrm{HIGH}} \text { at } 6.2 \mathrm{~V}\right)}{0.5} \\
& \mathrm{GAIN}_{6.2-5.7}=\frac{\mathrm{V}_{\mathrm{OH}}\left(\mathrm{~V}_{\mathrm{HIGH}} \text { at } 6.2 \mathrm{~V}\right)-\mathrm{V}_{\mathrm{OH}}\left(\mathrm{~V}_{\mathrm{HIGH}} \text { at } 5.7 \mathrm{~V}\right)}{0.5}
\end{aligned}
\]

END POINT DEVIATION \(=\mid\) GAIN \(_{6.7-6.2}-\) GAIN \(_{6.2-5.7} \mid \times 100\)

\section*{End Point Gain Error}

End Point Gain Error (EPGE) is the VOUT absolute error in millivolts for a \(\mathrm{V}_{\mathrm{HIGH}}\) change from 6.7 V to 7 V . The \(\mathrm{V}_{\mathrm{HIGH}}\) input is corrected for gain and offset to provide a more accurate \(\mathrm{V}_{\mathrm{OH}}\) level.
EPGE \(=\mathrm{V}_{\mathrm{OH}}\left(\mathrm{V}_{\mathrm{HIGH}}\right.\) at 7 V\()-\mathrm{V}_{\mathrm{OH}}\left(\mathrm{V}_{\mathrm{HIGH}}\right.\) at 6.7 V\()-0.3\)
\(\mathbf{V}_{\text {HIGH }}\) to \(\mathbf{V}_{\text {LOW }}\) Interaction
\(\mathrm{V}_{\text {HIGH }}\) to \(\mathrm{V}_{\text {LOW }}\) Interaction is the change in \(\mathrm{V}_{\mathrm{OUT}}\) (the active channel) due to the inactive channel. \(\mathrm{V}_{\text {HIGH }}\) Interaction is measured as the change in \(\mathrm{V}_{\mathrm{OH}}\) from 1 V as \(\mathrm{V}_{\text {LOW }}\) is moved from OV to 750 mV ( \(\mathrm{V}_{\text {LOW }}\) is corrected for gain and offset errors). \(\mathrm{V}_{\text {LOW }}\) Interaction is measured as the change in \(\mathrm{V}_{\mathrm{OL}}\) from \(O \mathrm{~V}\) as \(\mathrm{V}_{\text {HIGH }}\) is moved from 1 V to 250 mV (with \(\mathrm{V}_{\mathrm{HIGH}}\) corrected for gain and offset errors). The minimum recommended difference between \(\mathrm{V}_{\text {HIGH }}\) and \(\mathrm{V}_{\text {LOW }}\) for the HFA5251 is 250 mV .

\section*{Typical Performance Curves}


FIGURE 7. LARGE SIGNAL RESPONSE


FIGURE 8. SMALL SIGNAL RESPONSE

\section*{Typical Performance Curves (Continued)}


FIGURE 9. MINIMUM PULSE WIDTH


FIGURE 11. \(\mathbf{V}_{\text {HIGH }} \mathbf{N}_{\text {LOW }}\) INTERACTION, \(\mathbf{V}_{\text {HIGH }}\) ACTIVE (NOMINAL 1.0V)


FIGURE 10. GAIN ERROR (FULLSCALE \(=8.5 \mathrm{~V}\) )


FIGURE 12. \(\mathbf{V}_{\text {High }} \mathbf{N}_{\text {LOW }}\) INTERACTION, \(\mathrm{V}_{\text {Low }}\) ACTIVE (NOMINAL O.OV)

\section*{Die Characteristics}

DIE DIMENSIONS:
\(2670 \mu \mathrm{~m} \times 1730 \mu \mathrm{~m} \times 525 \mu \mathrm{~m}\)
METALLIZATION:
Type: Metal 1: Cu (2\%) SiAl/TiW
Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\)
Backside: Gold
Type: Metal 2: Cu (2\%) Al
Thickness: Metal 2: \(16 \mathrm{k} \AA \pm 0.8 \mathrm{k} \AA\)

PASSIVATION:
Nitride, \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
115
SUBSTRATE POTENTIAL:
Floating

HFA5251
\(\mathbf{V}_{\text {HIGH }} \quad \mathbf{V}_{\mathbf{C C 1}}\)


\section*{Features}
- High Digital Data Rate 800 MHz
- Very Fast Rise/Fall Times . . . . . . . . . . . . . . . . . . . 500ps
- Wide Output Range +8 V to -3 V
- Precise \(50 \Omega\) Output Impedance
- High Impedance, Three-State Output Control
- Slew Rate Control

\section*{Applications}
- IC Tester Pin Electronics
- Pattern Generators
- Pulse Generators
- Level Comparator/Translator

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline PART NUMBER & \begin{tabular}{c} 
TEMP. RANGE \\
\(\left({ }^{\circ} \mathbf{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \begin{tabular}{c} 
PKG. \\
NO.
\end{tabular} \\
\hline HFA5253CB & 0 to 50 & 20 Ld PSOP & M20.3A \\
\hline HFA5253Y & \(T_{\text {JUNCTION }<175}\) & Die Form & N/A \\
\hline
\end{tabular}

\section*{Pinout}

POWER PSOP PACKAGE
(HEAT SLUG SURFACE IS ELECTRICALLY FLOATING)


\section*{Description}

The HFA5253 is a very high speed monolithic pin driver solution for high performance test systems. The device will switch at high data rates between two input voltage levels providing variable amplitude pulses. Slew Rate Control pins provide independent control over positive and negative slew rate allowing the customer to optimize the pin driver speed for their application. The output impedance is trimmed to achieve a precision \(50 \Omega\) source for impedance matching. Two differential ECL/TTL compatible inputs control the operation of the HFA5253, one controlling the \(\mathrm{V}_{\mathrm{HIGH}} / \mathrm{V}_{\text {LOW }}\) switching and the other controlling the output's high-impedance state. The HFA5253's 800 MHz data rate makes it compatible with today's high-speed VLSI test systems and the +8 V to -3 V output swing satisfies the most stringent testing requirements of all common logic families.

The HFA5253 is manufactured in Harris' proprietary complementary bipolar UHF-1 process.

Block Diagram


TRUTH TABLE FOR VOUT


\section*{Pin Descriptions}
\begin{tabular}{|c|c|}
\hline NAME & FUNCTION \\
\hline \(\mathrm{V}_{\mathrm{CC} 1}\) & Positive Supply. Nominal value is \(11.2 \mathrm{~V} \pm 0.2 \mathrm{~V}\). Reducing supply voltage below 11.0 V will reduce positive output voltage swing. The total supply voltage from \(\mathrm{V}_{\mathrm{CC} 1}\) to \(\mathrm{V}_{\mathrm{EE} 1}\) should not exceed 18.0 V for normal operation or exceed 19.0 V to prevent damage. Harris recommends two wire bonds to this pad to provide the lowest possible impedance. In addition, power supply decoupling chip capacitors of \(470 \mathrm{pF}, 0.1 \mu \mathrm{~F}\) and a \(10 \mu \mathrm{~F}\) tantalum are recommended. Do not connect the \(\mathrm{V}_{\mathrm{CC} 1}\) and \(\mathrm{V}_{\mathrm{CC} 2}\) pins together immediately, rather run separate traces until they can be joined at a large by-pass capacitor ( \(0.1 \mu \mathrm{~F} \| 10.0 \mu \mathrm{~F}\) ). \\
\hline \(\mathrm{V}_{\mathrm{EE} 1}\) & Negative Supply. Nominal value is \(-6.4 \mathrm{~V} \pm 0.2 \mathrm{~V}\). A supply voltage more positive than -6.2 V will reduce negative output voltage swing. The total supply voltage from \(\mathrm{V}_{\mathrm{CC}}\) to \(\mathrm{V}_{\mathrm{EE} 1}\) should not exceed 18.0 V for normal operation or exceed 19.0 V to prevent damage. Harris recommends two wire bonds to this pad to provide the lowest possible impedance. In addition, power supply decoupling chip capacitors of \(470 \mathrm{pF}, 0.1 \mu \mathrm{~F}\) and a \(10 \mu \mathrm{~F}\) tantalum are recommended. Do not connect the \(\mathrm{V}_{\mathrm{EE} 1}\) and \(\mathrm{V}_{\mathrm{EE} 2}\) pins together immediately, rather run separate traces until they can be joined at a large by-pass capacitor ( \(0.1 \mu \mathrm{~F} \| 10.0 \mu \mathrm{~F}\) ). \\
\hline \(\mathrm{v}_{\mathrm{CC} 2}\) & Output Stage Positive Supply. Nominal voltage and cautions are the same as for \(\mathrm{V}_{\mathrm{CC}}\). Having decoupling chip capacitors close to \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{EE} 2}\) is essential since large AC current will flow through this pad to the output during transients. Harris recommends two wire bonds for this pad. Do not connect the \(V_{C C 1}\) and \(V_{C C 2}\) pins together immediately, rather run separate traces until they can be joined at a large by-pass capacitor ( \(0.1 \mu \mathrm{~F} \| 10.0 \mu \mathrm{~F})\). \\
\hline \(\mathrm{V}_{\mathrm{EE} 2}\) & Output Stage Negative Supply. Nominal voltage and cautions are the same as for \(\mathrm{V}_{\text {EE1 }}\). Having decoupling chip capacitors close to \(\mathrm{V}_{\mathrm{CC} 2}\) and \(\mathrm{V}_{\mathrm{EE} 2}\) is essential since large AC current will flow through this pad to the output during transients. Harris recommends two wire bonds for this pad. Do not connect the \(\mathrm{V}_{\mathrm{EE} 1}\) and \(\mathrm{V}_{\mathrm{EE} 2}\) pins together immediately, rather run separate traces until they can be joined at a large by-pass capacitor ( \(0.1 \mu \mathrm{~F} \| 10.0 \mu \mathrm{~F})\). \\
\hline \(\mathrm{V}_{\text {HIGH }}\) & Input Voltage High is used to set the output high level \(\mathrm{V}_{\mathrm{OH}} . \mathrm{V}_{\mathrm{HIGH}}\) is sensitive to capacitively coupled AC noise. Protection from high frequency noise can be achieved with a low pass filter consisting of a \(50 \Omega\) chip resistor and a 470 pF chip capacitor. Without this precaution the pin driver may oscillate due to feedback from the output through the PC board ground. \\
\hline VLOW & Input Voltage Low is used to set the output low level \(\mathrm{V}_{\mathrm{OL}}\). \(\mathrm{V}_{\text {LOW }}\) is sensitive to capacitively coupled AC noise. Protection from high frequency noise can be achieved with a low pass filter consisting of a \(50 \Omega\) chip resistor and a 470 pF chip capacitor. Without this precaution the pin driver may oscillate due to feedback from the output through the PC board ground. \\
\hline \(V_{\text {OUT }}\) & Driver Output. The output impedance has been laser trimmed to match a \(50 \Omega\) transmission line \(\pm 2 \Omega\). Custom output impedance trimming is available (contact sales office for details) to provide the best match possible to your \(50 \Omega\) system. \\
\hline \(\overline{\text { DATA, }}\) DATA & Differential Digital Inputs used to switch \(\mathrm{V}_{\text {OUT }}\) to the \(\mathrm{V}_{\text {HIGH }}\) or \(\mathrm{V}_{\text {LOW }}\) level. Harris recommends this input pair be driven by complementary ECL signals to provide optimal switching speeds and timing accuracy. However a large Common Mode and Differential Voltage Range is provided to accommodate a variety of signals including single ended TTL and CMOS. When using single ended signals the other input must be tied to an appropriate threshold voltage. \\
\hline \(\overline{\text { HIZ, HIZ }}\) & Differential Digital Inputs used to switch VOUT from an Active to a High Impedance State. Harris recommends that this input pair be driven by complementary ECL signals to provide optimal switching speeds and timing accuracy. However a large Common Mode and Differential Voltage Range is provided to accommodate a variety of signals including single ended TTL and CMOS. When using single ended signals the other input must be tied to an appropriate threshold voltage. \\
\hline +SRC & The Positive Slew Rate Control Pin adjusts the rising edge slew rate with an external current ISTEAL. ISTEAL draws current ( 0 mA to 10 mA ) from an internal current source limiting the rate of change of the high impedance node. Typically an external resistor to GND is sufficient to set the slew rate at a desired level. Leaving the +SRC Pin open will give the highest speed performance. The external current ISTEAL for a resistor R RTEAL connected from +SRC to GND may be calculated by: \(I_{\text {STEAL }}=\left(\mathrm{V}_{\mathrm{CC}}-0.35\right) / \mathrm{R}_{\text {STEAL }}\). \\
\hline -SRC & The Negative Slew Rate Control Pin adjusts the falling edge slew rate with an external current ISTEAL. ISTEAL supplies current ( 0 mA to 10 mA ) to an internal current source limiting the amount of current being drawn from the circuit and thus limiting the rate of change of the high impedance node. Typically an external resistor to GND is sufficient to set the slew rate at a desired level. Leaving the -SRC Pin open will give the highest speed performance. The external current ISTEAL for a resistor RSTEAL connected from -SRC to GND may be calculated by: \(I_{\text {STEAL }}=\left(V_{E E}+0.35\right) / R_{\text {STEAL }}\). \\
\hline
\end{tabular}

\section*{Absolute Maximum Ratings}

Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 V
Differential Input Voltage (DATA and HIZ) . . . . . . . . . . . . . . . . . . 5 V
Output Current Continuous (Note 1). . . . . . . . . . . . . . . . . . . . . 160 mA
Input Voltage (Any pin except as specified) . . . . . . . . . . . VCC \(\mathrm{V}_{\mathrm{C}}\) to \(\mathrm{V}_{\mathrm{EE}}\)

\(\mathrm{V}_{\text {HIGH }}\) Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V \(_{\text {CC }}\) to \(-4 V\)

\section*{Operating Conditions}

VLow Voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 g to \(\mathrm{V}_{\mathrm{EE}}\)
\(\mathrm{V}_{\text {HIGH }}\) to \(\mathrm{V}_{\text {LOW }}\) Voltage . . . . . . . . . . . . . . 11 V to 0 V ( \(\mathrm{V}_{\text {HIGH }}>\mathrm{V}_{\text {LOW }}\) )
Slew Rate Control Current (+SRC, -SRC) . . . . . . . . . . . . . . . . 12mA
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . . \(0^{\circ} \mathrm{C}\) to \(50^{\circ} \mathrm{C}\)

\section*{Thermal Information}

Thermal Resistance (Typical, Note 2) \(\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) 20 Ld PSOP Package 49

2 ( \(\theta_{\mathrm{JC}}\) Measured At Copper Slug Top Center with Infinite Heat Sink) Maximum Junction Temperature (Die). . . . . . . . . . . . . . . . . . . . \(175^{\circ} \mathrm{C}\) Maximum Junction Temperature (Plastic Package) . . . . . . . . \(150^{\circ} \mathrm{C}\) Maximum Storage Temperature Range . . . . . . . . . \(65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . \(300^{\circ} \mathrm{C}\) (PSOP - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Internal Power Dissipation may limit Output Current below 160mA.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.
3. Shorting the output to a voltage outside the specified range may damage the output.

Electrical Specifications \(\quad \mathrm{V}_{\mathrm{CC}}=+11.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-6.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=-0.9 \mathrm{~V} ; \mathrm{V}_{\mathrm{IL}}=-1.75 \mathrm{~V} ;+\mathrm{SRC}\) and -SRC are Not Connected Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 4) TEST LEVEL & TEMP. ( \({ }^{\circ} \mathrm{C}\) ) & MIN & TYP & MAX & UNITS \\
\hline \multicolumn{8}{|l|}{INPUT CHARACTERISTICS ( \(\mathrm{V}_{\text {HIGH }}, \mathrm{V}_{\text {LOW }}\) )} \\
\hline \(\mathrm{V}_{\text {HIGH }}\) Input Offset Voltage & & A & 25 & -150 & -50 & +50 & mV \\
\hline \(\mathrm{V}_{\text {LOW }}\) Input Offset Voltage & & A & 25 & -150 & -50 & +50 & mV \\
\hline \(\mathrm{V}_{\text {HIGH }}\) Input Bias Current & \(\mathrm{V}_{\text {HIGH }}=-3.25 \mathrm{~V}\) to +8.5 V & A & 25 & -50 & 110 & 400 & \(\mu \mathrm{A}\) \\
\hline V LOW Input Bias Current & \(\mathrm{V}_{\text {LOW }}=-3.5 \mathrm{~V}\) to +8.25 V & A & 25 & -400 & -110 & 50 & \(\mu \mathrm{A}\) \\
\hline \(\mathrm{V}_{\text {HIGH }}\) Voltage Range & & A & 25 & -3.5 & - & 8.5 & V \\
\hline \(\mathrm{V}_{\text {LOW }}\) Voltage Range & & A & 25 & -3.5 & - & 8.5 & V \\
\hline \(\mathrm{V}_{\text {HIGH }}\) to \(\mathrm{V}_{\text {LOW }}\) Differential Voltage Range & \(\mathrm{V}_{\text {HIGH }} \geq \mathrm{V}_{\text {LOW }}\) & A & 25 & 0 & - & 9.5 & V \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\text {HIGH }} / \mathrm{V}_{\text {LOW }}\) Interaction (Notes 5, 17)} & At 500 mV & A & 25 & - & 2 & 4 & mV \\
\hline & At 250 mV & A & 25 & - & 20 & 40 & mV \\
\hline \multicolumn{8}{|l|}{LOGIC INPUT CHARACTERISTICS (DATA, \(\overline{\text { DATA }}\), HIZ, \(\overline{\text { HIZ }}\)} \\
\hline Logic Input Voltage Range & & B & 25 & -3 & - & 8 & V \\
\hline Logic Differential Input Voltage & & B & 25 & 0.4 & - & 5 & V \\
\hline DATA/ \(\overline{\text { DATA }}\) Logic Input High Current & \(\mathrm{V}_{\mathrm{IH}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=-2 \mathrm{~V}\) & A & 25 & -50 & 110 & 700 & \(\mu \mathrm{A}\) \\
\hline DATA/DATA Logic Input Low Current & \(\mathrm{V}_{\mathrm{IH}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=-2 \mathrm{~V}\) & A & 25 & -700 & -300 & 50 & \(\mu \mathrm{A}\) \\
\hline HIZ/HIZ Logic Input High Current & \(\mathrm{V}_{\mathrm{IH}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=-2 \mathrm{~V}\) & A & 25 & -50 & 70 & 400 & \(\mu \mathrm{A}\) \\
\hline HIZ/HIZ Logic Input Low Current & \(\mathrm{V}_{\mathrm{IH}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IL}}=-2 \mathrm{~V}\) & A & 25 & -400 & -80 & 50 & \(\mu \mathrm{A}\) \\
\hline \multicolumn{8}{|l|}{TRANSFER CHARACTERISTICS} \\
\hline \(\mathrm{V}_{\text {HIGH }}\) Voltage Gain & \(\mathrm{V}_{\text {HIGH }}=-1 \mathrm{~V}\) to 6.5 V & A & 25 & 0.95 & 0.97 & 1 & \(\mathrm{V} N\) \\
\hline \(V_{\text {LOW }}\) Voltage Gain & \(\mathrm{V}_{\text {LOW }}=-1.5 \mathrm{~V}\) to 6 V & A & 25 & 0.95 & 0.97 & 1 & \(\mathrm{V} N\) \\
\hline \multirow[t]{2}{*}{\(\mathrm{V}_{\mathrm{HIGH}} / \mathrm{V}_{\text {LOW }}\) Linearity Error} & Fullscale \(=5 \mathrm{~V}\), Note 6 & A & 25 & -0.2 & - & 0.2 & \% \\
\hline & Fullscale \(=10.5 \mathrm{~V}\), Note 7 & A & 25 & -0.4 & - & 0.4 & \% \\
\hline \(\mathrm{V}_{\text {HIGH }} / \mathrm{V}_{\text {LOW }}\)-3dB Bandwidth & 200 mV P-P & B & 25 & - & 100 & - & MHz \\
\hline Typical Slew Rate Control Range & ISTEAL \(=0 \mathrm{~mA}\) to \(10 \mathrm{~mA}, 5 \mathrm{~V}\) Step & B & 25 & 1.0 & - & 2.8 & V/ns \\
\hline +SRC Pin Voltage & & C & 25 & - & \(\mathrm{V}_{\text {CC }}-0.35\) & - & V \\
\hline -SRC Pin Voltage & & C & 25 & - & \(\mathrm{V}_{\mathrm{EE}}+0.35\) & - & V \\
\hline \multicolumn{8}{|l|}{SWITCHING CHARACTERISTICS (Z LOAD \(^{\text {a }}=16\) inches of RG-58 Terminated with 508)} \\
\hline Propagation Delay (Notes 8, 10) & & B & 25 & 1 & - & 2 & ns \\
\hline Propagation Delay Match (Rising to Falling Edge, Notes 8, 10) & & B & 25 & -100 & - & 100 & ps \\
\hline Rising Edge Propagation Delay vs Duty Cycle (Notes 9, 10) & & B & 25 & -120 & -20 & 80 & ps \\
\hline
\end{tabular}

Electrical Specifications \(\quad V_{C C}=+11.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{EE}}=-6.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=-0.9 \mathrm{~V} ; \mathrm{V}_{\mathrm{IL}}=-1.75 \mathrm{~V} ;+\mathrm{SRC}\) and -SRC are Not Connected Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline PARAMETER & TEST CONDITIONS & (NOTE 4) TEST LEVEL & \begin{tabular}{l}
TEMP. \\
( \({ }^{\circ} \mathrm{C}\) )
\end{tabular} & MIN & TYP & MAX & UNITS \\
\hline Falling Edge Propagation Delay vs Duty Cycle (Notes 9, 10) & & B & 25 & -80 & 20 & 120 & ps \\
\hline Active to HIZ Delay (Note 10) & & B & 25 & 1.5 & 2.0 & 2.5 & ns \\
\hline HIZ to Active Delay (Note 10) & & B & 25 & 2.8 & 3.3 & 3.8 & ns \\
\hline \multicolumn{8}{|l|}{TRANSIENT RESPONSE ( \(\mathrm{Z}_{\text {LOAD }}=16\) inches of RG-58 Terminated with 5pF)} \\
\hline \multirow[t]{3}{*}{Rise/Fall Time} & 1V \(\mathrm{P}_{\text {P-P, }}\) 20\% - 80\% (Note 11) & B & 25 & 350 & 450 & 500 & ps \\
\hline & \(3 \mathrm{~V}_{\text {P-P, }} 10 \%\) - \(90 \%\) (Note 11) & B & 25 & 700 & 890 & 1000 & ps \\
\hline & \(5 \mathrm{~V}_{\text {P-P, }} 10 \%\) - 90\% (Note 12) & B & 25 & 1.1 & 1.3 & 1.7 & ns \\
\hline Rise/Fall Time Match (Note 12) & & B & 25 & - & 100 & - & ps \\
\hline \multirow[t]{3}{*}{Minimum Pulse Width (Note 13)} & \(1 \mathrm{~V}_{\text {P-P }}\) & B & 25 & - & 1.0 & - & ns \\
\hline & \(3 V_{P-P}\) & B & 25 & - & 1.2 & - & ns \\
\hline & \(5 \mathrm{~V}_{\text {P-P }}\) & B & 25 & - & 2.0 & - & ns \\
\hline Overshoot/Undershoot/Preshoot & \(3 V_{P-P}\) & B & 25 & - & 5 & - & \% \\
\hline Data Setting Time (Note 14) & To 1\% & B & 25 & - & 10 & - & ns \\
\hline \multicolumn{8}{|l|}{OUTPUT CHARACTERISTICS} \\
\hline Output Voltage Swing & No Load at \(\mathrm{V}_{\mathrm{CC}}=11 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6.2 \mathrm{~V}\) & A & 25 & -3 & \(\cdot\) & 8 & V \\
\hline Output Amplitude Voltage & \(\mathrm{V}_{\mathrm{OH}}-\mathrm{V}_{\mathrm{OL}}\) & A & 25 & 0.25 & \(\cdot\) & 9.0 & V \\
\hline DC Output Resistance (Note 15) & -3 V to 8V & A & 25 & 45 & 47 & 49 & \(\Omega\) \\
\hline Output Leakage - HIZ & -3 V to 8V & A & 25 & -100 & \(\bullet\) & 100 & nA \\
\hline Output Capacitance - HIZ & & C & 25 & - & 5 & - & pF \\
\hline Output Current - Active & & A & 25 & 80 & 100 & - & mA \\
\hline Output Short Circuit Range (Note 3) & & A & 25 & -4.0 & - & 9.0 & V \\
\hline \multicolumn{8}{|l|}{POWER SUPPLY CHARACTERISTICS ( \(\mathrm{V}_{\text {HIGH }}=5 \mathrm{~V}\) Active, No Load)} \\
\hline \(\mathrm{V}_{\text {HIGH }}\) Power Supply Rejection Ratio (Note 16) & & A & 25 & - & 14 & 40 & \(\mathrm{mV} / \mathrm{N}\) \\
\hline V Low Power Supply Rejection Ratio (Note 16) & & A & 25 & - & 14 & 40 & \(\mathrm{mV} / \mathrm{N}\) \\
\hline Total Supply Current & & A & 25 & 90 & 96 & 98 & mA \\
\hline \({ }^{\text {CCC1 }} / \mathrm{IEE1}\) Supply Current & & B & 25 & - & 74 & - & mA \\
\hline \({ }^{\text {ICC2 }}\) / EE2 2 Supply Current & & B & 25 & - & 22 & \(\bullet\) & mA \\
\hline \multirow[t]{3}{*}{Supply Voltage Range} & \(V_{C C}\) & A & 25 & 11.0 & 11.2 & 11.4 & V \\
\hline & \(\mathrm{V}_{\mathrm{EE}}\) & A & 25 & -6.6 & -6.4 & -6.2 & V \\
\hline & \(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\text {EE }}\) & A & 25 & 17.2 & - & 18.0 & V \\
\hline Power Dissipation & \(\mathrm{V}_{\mathrm{CC}}=11.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-6.4 \mathrm{~V}\), No Load & A & 25 & - & - & 1.72 & W \\
\hline
\end{tabular}

\section*{NOTES:}
4. Test Level: \(A=100 \%\) production tested, \(B=\) Typical or limit based on lab characterization of a limited number of lots, \(C=\) Design Information, goal or condition.
5. \(\mathrm{V}_{\text {HIGH }}\) to \(\mathrm{V}_{\text {LOW }}\) Interaction is measured as the change in \(\mathrm{V}_{\text {OUT }}\) (the active channel) due to a change in the inactive channel. \(\mathrm{V}_{\text {HIGH }}\) Interaction at 250 mV is measured as the deviation from 1 V as \(\mathrm{V}_{\text {LOW }}\) is changed from 0 V to 750 mV (Referred to \(\mathrm{V}_{\text {OUT }}\) ). \(\mathrm{V}_{\text {LOW }}\) Interaction at 250 mV is measured as the deviation from 0 V as \(\mathrm{V}_{\text {HIGH }}\) is changed from 1 V to 250 mV (Referred to \(\mathrm{V}_{\text {OUT }}\) ).
6. For \(\mathrm{V}_{\text {HIGH }}=0 \mathrm{~V}\) to 5 V , for \(\mathrm{V}_{\text {LOW }}=0 \mathrm{~V}\) to 5 V , Fullscale \(=5 \mathrm{~V}, 0.1 \%=5 \mathrm{mV}\). Output Amplitude \(\left(\mathrm{V}_{\text {HIGH }}-\mathrm{V}_{\text {LOW }}\right)=1 \mathrm{~V}_{\text {P-P }}\).
7. For \(V_{\text {HIGH }}=-2.5 \mathrm{~V}\) to 8 V , for \(\mathrm{V}_{\text {LOW }}=-3.0 \mathrm{~V}\) to 7.5 V , Fullscale \(=10.5 \mathrm{~V}, 0.1 \%=10.5 \mathrm{mV}\). Output Amplitude \(\left(V_{\text {HIGH }}-V_{\text {LOW }}\right)=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\).
8. 3 V Step, \(50 \%\) duty cycle, 200 ns period.
9. OV to 3 V Step, 200 ns period, Pulse Width is varied from 5 ns to 195 ns .
10. Test is performed into a \(50 \Omega\) load with a 3 V step. Measurement is made from the \(50 \%\) of the input to \(50 \%\) of output.
11. Limit based on calculation. Not \(100 \%\) tested.
12. 5 V Step, \(50 \%\) duty cycle, 100 ns period. \(100 \%\) Tested.
13. Minimum Pulse Width is measured \(50 \%\) to \(50 \%\) of specified amplitude with pulse peak at \(100 \%\) of amplitude.
14. 3 V Step, measured from \(50 \%\) of input to \(\pm 1 \%\) of reference value at 50 ns .
15. Dynamic Output Resistance will be higher (typ \(48.5 \Omega\) ) than DC Output Resistance. DC Output Resistance is measured at OV with lout set from 0 mA to 40 mA .
16. \(\mathrm{V}_{\text {HIGH }}=2.6 \mathrm{~V}, \mathrm{~V}_{\text {LOW }}=2.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=10.2 \mathrm{~V}\) to \(11.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.4 \mathrm{~V}\) to -6.4 V .
17. Input voltages \(\mathrm{V}_{\text {HIGH }}\) and \(\mathrm{V}_{\text {LOW }}\) are corrected for Offset Voltage and Gain Error.

\section*{Functional Block Diagram}

The HFA5253 functional block diagram is shown in on the first page of this data sheet.

The control inputs, DATA and DATA, determines the output level. If DATA is at logic " 1 " and DATA is at logic " 0 ", the output level will be the same as \(\mathrm{V}_{\text {HIGH }}\). If DATA is at logic " 0 " and DATA is at logic "1", the output will be the same as V VOW. The control inputs, HIZ and HIZ , cause the output to become either active or high-impedance. If HIZ is at logic " 1 " and HIZ is at logic " 0 ", the output will be in high impedance mode. If HIZ is at logic " 0 " and HIZ is at logic " 1 ", the output will be enabled. The output impedance in the enabled mode is trimmed to \(50 \Omega\).

\section*{Circuit Schematic}

The Pin Driver circuit consists of a switch, an output buffer, and two differential control elements as shown in the circuit Schematic Diagram.

A two stage approach, separating the switch from the output buffer, allows the speed and accuracy requirements of the switch to be de-coupled from the load driving capability of the buffer.

The patented switch circuitry [3] uses cascaded emitter followers as input buffers and also to switch the input \(\mathrm{V}_{\text {HIGH }}\) and VLOW to node VSO. Dual differential pairs controlled by the data timing (DATA and DATA) direct current to select
either the \(\mathrm{V}_{\text {HIGH }}\) or \(\mathrm{V}_{\text {LOW }}\) switch. Matching transistor types and transdiodes improve linearity and lowers the voltage offset and offset drift. Stacking two emitter-base junctions allows the \(\mathrm{V}_{\text {HIGH }}\) to \(\mathrm{V}_{\text {LOW }}\) range to be extended to two Emitter-Base breakdown voltages of the process. The speed of the pin driver is largely determined by the current flowing through the switch stage and the collector-base capacitance of the output stage transistors connected to the node VSO. The Slew Rate Control Pins, +SRC and -SRC, allow the user to control the amount of current available in the \(\mathrm{V}_{\text {HIGH }}\) and \(\mathrm{V}_{\text {LOW }}\) switch, respectively and thus the slew rate of node VSO.

The output stage consists of cascaded emitter followers constructed in a typical push-pull manner as shown in the Schmatic Diagram. However, transdiodes are added to increase the voltage breakdown characteristics of the output during high impedance mode. HIZ and HIZ control the mode of the output stage. A trimmed, NiCr resistor is added to provide the \(50 \Omega\) output impedance.

Overall, a symmetry of device types and paths is constructed to improve slew and delay symmetry. Both the \(\mathrm{V}_{\text {HIGH }}\) to \(\mathrm{V}_{\text {OUT }}\) path and the V VOW to VOUT path contain three NPN and three PNP transistors operating at similar collector currents. Thus the transient response of \(\mathrm{V}_{\text {HIGH }}\) to \(\mathrm{V}_{\text {LOW }}\) and \(\mathrm{V}_{\text {LOW }}\) to \(\mathrm{V}_{\text {HIGH }}\) are kept symmetrical. Also, a trimmable current reference (not shown) allows the AC parameters to be adjusted to maintain unit to unit consistency.

Schematic Diagram


\section*{Application Information}

The HFA5253 is a pin driver designed for use in automatic test equipment（ATE）and high speed pulse generators．Pin drivers，especially those with very high－speed performance， have generally been implemented with discrete transistors （sometimes GaAs）on a circuit board or in a hybrid．Recent IC process improvements，specifically Harris＇UHF1 process ［2］，have enabled the manufacturing of the 500 MHz and 800 MHz silicon monolithic pin drivers，HFA5250，HFA5251 and now the HFA5253．

The ultra high speed performance of the HFA5253 is a result of UHF1 process leverages：low parasitic collector－to－sub－ strate capacitance of the bonded wafer，low collector－to－base parasitic capacitance of the self－aligned base／emitter tech－ nology and ultra high \(f_{T}\) NPN（ 8 GHz ）and PNP \((5.5 \mathrm{GHz})\) poly－silicon transistors．

\section*{Definition of Terms}

\section*{\(\mathrm{V}_{\mathrm{OH}}\) and \(\mathrm{V}_{\mathrm{OL}}\)}

Output High Voltage and Output Low Voltage． \(\mathrm{V}_{\mathrm{OH}}\) is the voltage at \(V_{\text {OUT }}\) when the HIZ input is low and the DATA input is high． \(\mathrm{V}_{\text {OL }}\) is the voltage at \(\mathrm{V}_{\text {OUT }}\) when HIZ is low and DATA is low．The \(\mathrm{V}_{\mathrm{OH}}\) and \(\mathrm{V}_{\mathrm{OL}}\) levels are set with the \(\mathrm{V}_{\text {HIGH }}\) and \(\mathrm{V}_{\text {LOW }}\) inputs respectively．

\section*{Offset Voltage}

Offset Voltage is the DC error between the voltage placed on \(\mathrm{V}_{\mathrm{HIGH}}\) or \(\mathrm{V}_{\text {LOW }}\) and the resulting \(\mathrm{V}_{\mathrm{OH}}\) and \(\mathrm{V}_{\mathrm{OL}} . \mathrm{V}_{\mathrm{HIGH}}\) Off－ set Voltage Error is obtained by measuring \(\mathrm{V}_{\mathrm{OH}}\) with \(\mathrm{V}_{\mathrm{HIGH}}\) set to \(O \mathrm{~V}\) and \(\mathrm{V}_{\text {LOW }}\) set to -2.5 V to minimize interaction effects．V Low Offset Voltage Error is the measurement of \(\mathrm{V}_{\mathrm{OL}}\) with \(\mathrm{V}_{\text {LOW }}\) set to 0 V and \(\mathrm{V}_{\text {HIGH }}\) set to +7.5 V ．

\section*{Gain}

Gain is defined as the ratio of output voltage change to input voltage change for a defined range． \(\mathrm{V}_{\text {HIGH }}\) Gain is calcu－ lated with the following equation with \(\mathrm{V}_{\text {LOW }}\) fixed at -2.5 V ：
\(V_{H I G H} G A I N=\frac{V_{O H}\left(V_{\text {HIGH }}{ }^{\text {at } 6.5 V}\right)-V_{O H}\left(V_{H I G H}{ }^{\text {at }-1 V}\right)}{7.5}\)
\(V_{\text {LOW }}\) Gain is calculated in a similar manner．
\(V_{\text {LOW }} G A I N=\frac{V_{\text {OL }}\left(V_{\text {LOw }}{ }^{\text {at }} 6 \mathrm{~V}\right)-V_{\text {OL }}\left(V_{\text {LOW }}{ }^{\text {at }-1.5 V}\right)}{7.5}\)
\(\mathrm{V}_{\text {HIGH }}\) is held fixed at 7.5 V ．These Gain calculations minimize the effects of Interaction and End Point Nonlinearities．

\section*{Linearity Error}

Linearity Error is a measure of output voltage worst case deviation from a straight line that has been corrected for off－ set and 7．5V Gain．Linearity Error is given as a percentage of fullscale and is done in two ranges， 5 V and 10.5 V ．DATA is measure at 0.5 V steps from -2.5 V to 8 V for \(\mathrm{V}_{\text {HIGH }}\) and -3 V to 7.5 V for \(\mathrm{V}_{\text {LOW }}\) ．The Linearity Error equation is as follows for 10.5 V fullscale：
\(\mathrm{V}_{\text {OUT }}(\) IDEAL \()=\mathrm{V}_{\text {IN }} \times\) Gain + Offset

Linearity Error \(=\frac{\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {OUT }} \text {（IDEAL）}}{10.5}\)
The Linearity Error equation is as follows for 5 V fullscale：
Linearity Error \(=\frac{V_{\text {OUT }}-V_{\text {OUT }}(\text { IDEAL })}{5}\)
Linearity Error is calculated for every data point in the range and the worst case value is recorded．

\section*{\(\mathbf{V}_{\text {HIGH }}\) to \(\mathbf{V}_{\text {LOW }}\) Interaction}
\(\mathrm{V}_{\text {HIGH }}\) to \(\mathrm{V}_{\text {LOW }}\) Interaction is the change in \(\mathrm{V}_{\text {OUT }}\)（the active channel）due to the inactive channel． \(\mathrm{V}_{\text {HIGH }}\) Interaction is mea－ sured as the change in \(\mathrm{V}_{\mathrm{OH}}\) from 1 V as \(\mathrm{V}_{\mathrm{LOW}}\) is moved from OV to 750 mV （ \(\mathrm{V}_{\text {LOW }}\) is corrected for gain and offset errors）． \(\mathrm{V}_{\mathrm{LOW}}\) Interaction is measured as the change in \(\mathrm{V}_{\mathrm{OL}}\) from OV as \(\mathrm{V}_{\text {HIGH }}\) is moved from 1 V to 250 mV （with \(\mathrm{V}_{\text {HIGH }}\) corrected for gain and offset errors）．The minimum recommended differ－ ence between \(\mathrm{V}_{\text {HIGH }}\) and \(\mathrm{V}_{\text {LOW }}\) for the HFA5253 is 250 mV ．

\section*{Speed Advantage}

Harris Pin Drivers on bonded－wafer technology definitely have a speed advantage，coming from the low collector－to－ substrate capacitance and the high \(\mathrm{f}_{\mathrm{T}}\) of the transistors．In addition，the patented switching stage which fits uniquely to Harris＇UHF1 process is another big contributor for the high speed．This switching circuitry requires low series－resistance NPN and PNP transdiodes available in UHF1．The rise and fall times of the pin driver are largely determined by the slew rate at the node VSO in the Schematic．The dominant mech－ anism for the slew rate is the charging／discharging of the col－ lector－base capacitors of the transistors connected to the node VSO．The charging／discharging currents are coming from the switching stage current sources．The fast rise and fall times are achieved because of the negligible collector－to－ substrate capacitance and the small base－collector capaci－ tance due to the self－aligned recessed oxide［2］．
The DATA／DATA differential stage is not a factor for the speed if its current sources have enough current not to bottleneck the transient．However it should be noted that the propagation delay mismatch is determined by this stage．Sufficient current is allocated to the differential stage current sources to best match the low－to－high and high－to－low transient propagation delays．

The specified load condition is a 16 inch \(50 \Omega\) SMA cable with a 5 pF capacitor at the end of the cable．This load simulates a typ－ ical ATE environment for a DUT（Device Under Test）with high impedance（ \(>1 \mathrm{k} \Omega\) ）digital inputs．The rise／fall time for HFA5253 with \(5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) is typically 1.3 ns ．Pin drivers，built out of the same circuit structure as shown in the Schematic，can be made faster by trimming for a higher power supply current．Currently the pin driver has rise／fall times of less than 1 ns（ \(10 \%\) to \(90 \%\) of \(5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}\) ） when I \(I_{C C}\) is trimmed to 125 mA ．Further speed enhancement will be made if there is a market demand．

\section*{Basic ATE System Application}

Figure 1 shows a pin driver in a typical per－pin ATE system．The pin driver works closely with the Dual－Level Comparator and the Active Load．When the DUT pin acts as an input waiting for
a series of digital signals, the pin driver becomes active with a logic " 0 " applied on the HIZ pin and provides the DUT pin with digital signals. When the DUT pin acts as an output, the pin driver output will be in high impedance mode (HIZ) with a logic " 1 " applied to the "HIZ" pin. During this high impedance mode the pin driver presents a capacitance of less than 5 pF to the DUT. Special care has to be taken to match the impedance (to \(50 \Omega\) ) at the pin driver output to minimize reflections.
The Dual-Level Comparator detects the logic levels of the DUT pin when it acts as an output. The comparator has two threshold level inputs, \(\mathrm{V}_{\mathrm{CH}}\) and \(\mathrm{V}_{\mathrm{CL}}\). The logic level information of the DUT pin output is sent to the edge/window comparator through the Dual-Level Comparator. The edge/window comparator interprets this information in terms of corresponding transient performance in conjunction with the timing information. Thus it detects any possible failure transients.
The formatter sends a sequence of digital information to the pin driver which contains logic information over time. The Active Load is enabled when the DUT pin acts as an output. It simulates the load of the DUT pin by sinking or sourcing programmed current. Finally the sequencer controls the overall activities of the automatic testing.

\section*{Decoupling Circuit for Oscillation-Free Operation}

To ensure oscillation-free operation in ATE or pulse generator applications, the pin driver needs an appropriate decoupling circuit on a printed circuit board which consists of chip capacitors and chip resistors. Figures 2, 3, and 4 refer to a proven decoupling circuit currently working in the lab and a 1X scale film of its associated PC board (metal level). Do not connect the \(\mathrm{V}_{\mathrm{CC}}\) and \(\mathrm{V}_{\mathrm{CC} 2}\) pins or the \(\mathrm{V}_{\mathrm{EE} 1}\) and \(\mathrm{V}_{\mathrm{EE} 2}\) pins together immediately, rather run separate traces until they can be joined at a large by-pass capacitor ( \(0.1 \mu \mathrm{~F} \| 10.0 \mu \mathrm{~F})\).

The control pins, DATA, \(\overline{\text { DATA }}, \mathrm{HIZ}\), and \(\overline{\mathrm{HIZ}}\) are fed ECL signals through \(50 \Omega\) micro-strip lines terminated with \(50 \Omega\) for impedance matching since the input impedance at these pins is much higher than \(50 \Omega\). At the end of the micro-strip lines there is usually a high-speed pulse generator with an output impedance of \(50 \Omega\). A \(50 \Omega\) micro-strip line is con-
nected to each of the pins, \(\overline{\mathrm{DATA}}\) and \(\overline{\mathrm{HIZ}}\) through a \(50 \Omega\) chip resistor to monitor the pulse signals.

PARTS LIST
\begin{tabular}{|c|c|c|}
\hline QTY & VALUE & COMPONENT \\
\hline 6 & 470pF & Chip Cap: 0805 \\
\hline 4 & \(0.1 \mu \mathrm{~F}\) & Chip Cap: 0805 \\
\hline 2 & 10 \(\mu \mathrm{F}\) & Tant. \\
\hline 8 & \(50 \Omega\) & Chip Res: 0805 \\
\hline 2 & \(100 \Omega\) & Chip Res: 0805 \\
\hline 7 & SMA Jacks & Wide Body \\
\hline 1 & 20 Lead PSOP & HFA5253 \\
\hline 4 & 4-40 & 1" Standoff \\
\hline 4 & 4-40 & 1/4" Screws \\
\hline 2 & \multicolumn{2}{|l|}{Twisted Wire Assemblies with 4 Wires Each: One for \(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{HIGH}}\), +SRC, GND; and 1 for \(\mathrm{V}_{\mathrm{EE}}\), VLOW, -SRC, GND.} \\
\hline
\end{tabular}

The input pins, \(\mathrm{V}_{\text {HIGH }}, \mathrm{V}_{\text {LOW }}\), + SRC, and -SRC need to be protected from any capacitively coupled AC noise. Normally this protection can be achieved by having a low pass filter consisting of a \(50 \Omega\) chip resistor and a chip capacitor, 470 pF for \(\mathrm{V}_{\mathrm{HIGH}} / \mathrm{V}_{\text {LOW }}\) and \(0.1 \mu \mathrm{~F}\) for + SRC/-SRC. Without this protection circuit the pin driver may oscillate due to signals fed back from the output through the PC board ground.

The power supply pins, \(\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC} 2}\), \(\mathrm{V}_{\mathrm{EE} 1}\), and \(\mathrm{V}_{\mathrm{EE} 2}\), require decoupling chip capacitors of \(470 \mathrm{pF}, 0.1 \mu \mathrm{~F}, 10 \mu \mathrm{~F}\). Having decoupling capacitors close to \(V_{C C 2}\) and \(V_{E E 2}\) is essential since large AC current will flow through either \(\mathrm{V}_{\mathrm{CC} 2}\) or \(\mathrm{V}_{\mathrm{EE} 2}\) during transients.

The output of the pin driver is usually connected to the device-under-test (DUT) through \(50 \Omega\) micro-strip line and coaxial cable which carries the signal to a high input impedance DUT pin.


FIGURE 1. TYPICAL ATE SYSTEM


FIGURE 2. DECOUPLING CIRCUIT SCHEMATIC


FIGURE 3. 1X PC BOARD LAYOUT (BOTTOM VIEW)
FIGURE 4. 1X PC BOARD LAYOUT (TOP VIEW)

\section*{References}
[1] Taewon Jung and Donald K. Whitney Jr., "A 500MHz ATE Pin Driver," Bipolar Circuits and Technology Meeting Proceedings, pp238-241, October 1992.
[2] Chris K. Davis et. al., "UHF1: A High Speed Complementary Bipolar Analog Process on SOI," Bipolar Circuits and Technology Meeting Proceedings, pp260-263, October 1992.
[3] Donald K. Whitney Jr., "Symmetrical, High Speed, Voltage Switching Circuit," United States Patent Pending, Filed November 1991.

\section*{Typical Performance Curves}


FIGURE 5. 5V STEP RESPONSE vs SLEW RATE CONTROL


FIGURE 6. 5V STEP RESPONSE vs SLEW RATE CONTROL

Typical Performance Curves (Continued)


FIGURE 7. MINIMUM PULSE WIDTH, 1V/DIV.; 500ps/DIV.


FIGURE 8. \(V_{\text {OUT }}\) ERROR vs \(V_{I N}\)

Typical Performance Curves (Continued)


FIGURE 9. \(\mathrm{V}_{\text {HIGH }}\) LINEARITY ERROR 10.5V FULLSCALE


FIGURE 10. VLOW LINEARITY ERROR 10.5V FULLSCALE

\section*{Typical Performance Curves (Continued)}


FIGURE 11. \(\mathbf{V}_{\mathbf{H I G H}} \mathbf{N}_{\text {LOW }}\) INTERACTION


FIGURE 12. \(\mathrm{V}_{\text {HIGH }} \mathrm{N}_{\text {LOW }}\) INTERACTION

\section*{Typical Performance Curves (Continued)}


FIGURE 13. HIZ OUTPUT LEAKAGE


FIGURE 14. (+) SLEW RATE vs ISTEAL

\section*{Typical Performance Curves (Continued)}


FIGURE 15. (-) SLEW RATE vs ISTEAL


NOTE: The family of curves shows slew rate as a function of common mode voltage. A voltage is provided for each trace specifying one level of the voltage step for which slew rate is measured. Example 1: Top Trace \(\left(V_{\text {HIGH }}=8 \mathrm{~V}\right.\), ISTEAL \(\left.=0 \mathrm{~mA}\right)\). A voltage step of 1 V goes from \(\mathrm{V}_{\text {LOW }}=7 \mathrm{~V}\) to \(\mathrm{V}_{\text {HIGH }}=8 \mathrm{~V}\) and a voltage step of 9 V goes from \(\mathrm{V}_{\text {LOW }}=-1 \mathrm{~V}\) to \(\mathrm{V}_{\text {HIGH }}=8 \mathrm{~V}\). Example 2: Trace \(\left(\mathrm{V}_{\text {LOW }}=-3 \mathrm{~V}\right.\), ISTEAL \(\left.=0 \mathrm{~mA}\right) . \mathrm{A}\) voltage step of 1 V goes from \(\mathrm{V}_{\text {LOW }}=-3 \mathrm{~V}\) to \(\mathrm{V}_{\text {HIGH }}=-2 \mathrm{~V}\) and a voltage step of 9 V goes from \(\mathrm{V}_{\text {LOW }}=-3 \mathrm{~V}\) to \(\mathrm{V}_{\text {HIGH }}=6 \mathrm{~V}\).

FIGURE 16. (+) SLEW RATE vs AMPLITUDE

HFA5253

\section*{Typical Performance Curves (Continued)}


NOTE: The family of curves shows slew rate as a function of common mode voltage. A voltage is provided for each trace specifying one level of the voltage step for which slew rate is measured. Example 1: Top Trace \(\left(\mathrm{V}_{\text {HIGH }}=8 \mathrm{~V}\right.\), IsTEAL \(\left.=0 \mathrm{~mA}\right)\). A voltage step of 1 V goes from \(\mathrm{V}_{\text {HIGH }}=8 \mathrm{~V}\) to \(\mathrm{V}_{\text {LOW }}=7 \mathrm{~V}\) and a voltage step of 9 V goes from \(\mathrm{V}_{\text {HIGH }}=8 \mathrm{~V}\) to \(\mathrm{V}_{\text {LOW }}=-1 \mathrm{~V}\). Example 2: Trace \(\left(\mathrm{V}_{\text {LOW }}=-3 \mathrm{~V}\right.\), ISTEAL \(\left.=0 \mathrm{~mA}\right)\). A voltage step of 1 V goes from \(\mathrm{V}_{\text {HIGH }}=-2 \mathrm{~V}\) to \(\mathrm{V}_{\text {LOW }}=-3 \mathrm{~V}\) and a voltage step of 9 V goes from \(\mathrm{V}_{\text {HIGH }}=6 \mathrm{~V}\) to \(\mathrm{V}_{\text {LOW }}=-3 \mathrm{~V}\).

FIGURE 17. (-) SLEW RATE vs AMPLITUDE


FIGURE 18. 0.5 V STEP RESPONSE vs CLOAD

Typical Performance Curves (Continued)


FIGURE 19. 0.5 V STEP RESPONSE vs CLOAD

\section*{Die Characteristics}

DIE DIMENSIONS:
\(2670 \mu \mathrm{~m} \times 1730 \mu \mathrm{~m} \times 525 \mu \mathrm{~m}\)
METALLIZATION:
Type: Metal 1: \(\mathrm{Cu}(2 \%) \mathrm{SiAl/TiW}\) Thickness: Metal 1: \(8 \mathrm{k} \AA \pm 0.4 \mathrm{k} \AA\) Backside: Gold

Type: Metal 2: Cu (2\%) AI Thickness: Metal 2: \(16 \mathrm{k} \AA\)\begin{tabular}{l} 
\\
\hline
\end{tabular} \(.8 \mathrm{k} \AA\)

\section*{PASSIVATION:}

Nitride, \(4 \mathrm{k} \AA \pm 0.5 \mathrm{k} \AA\)
TRANSISTOR COUNT:
113
SUBSTRATE POTENTIAL:
Floating

Metallization Mask Layout
HFA5253


\section*{1MHz, Four Quadrant Analog Multiplier}

\section*{Features}

- Input Voltage Range . . . . . . . . . . . . . . . . . . . . . . . \(\pm 10 \mathrm{~V}\)
- Bandwidth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1MHz
- Uses Standard \(\pm 15 \mathrm{~V}\) Supplies
- Built-In Op Amp Provides Level Shifting, Division and Square Root Functions

\section*{Description}

The ICL8013 is a four quadrant analog multiplier whose output is proportional to the algebraic product of two input signals. Feedback around an internal op amp provides level shifting and can be used to generate division and square root functions. A simple arrangement of potentiometers may be used to trim gain accuracy, offset voltage and feedthrough performance. The high accuracy, wide bandwidth, and increased versatility of the ICL8013 make it ideal for all multiplier applications in control and instrumentation systems. Applications include RMS measuring equipment, frequency doublers, balanced modulators and demodulators, function generators, and voltage controlled amplifiers.

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|c|}
\hline PART NUMBER & MULTIPLICATION ERROR & TEMP. RANGE ( \({ }^{\circ} \mathrm{C}\) ) & PACKAGE & PKG. NO. \\
\hline ICL8013AMTX & \(\pm 0.5 \%\) & -55 to 125 & 10 Pin Metal Can & T10.B \\
\hline ICL8013BMTX & \(\pm 1 \%\) & -55 to 125 & 10 Pin Metal Can & T10.B \\
\hline ICL8013ACTX & \(\pm 0.5 \%\) & 0 to 70 & 10 Pin Metal Can & T10.B \\
\hline ICL8013BCTX & \(\pm 1 \%\) Max & 0 to 70 & 10 Pin Metal Can & T10.B \\
\hline ICL8013CCTX & \(\pm 2 \%\) & 0 to 70 & 10 Pin Metal Can & T10.B \\
\hline
\end{tabular}

\section*{Pinout \\ ICL8013 \\ (METAL CAN) TOP VIEW \\ }

\section*{Functional Diagram}


ICL8013

\section*{Absolute Maximum Ratings}

Supply Voltage Input Voltages ( \(\mathrm{X}_{\mathbb{N}}, \mathrm{Y}_{\mathbb{I N}}, \mathrm{Z}_{\mathbb{I N}}, \mathrm{X}_{\mathrm{OS}}, \mathrm{Y}_{\mathrm{OS}}, \mathrm{Z}_{\mathrm{OS}}\) )

\section*{Operating Conditions}

Temperature Range
ICL8013XC
. \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\)
ICL8013XM

\section*{Thermal Information}

Thermal Resistance (Typical, Note 1) \(\quad \theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right) \quad \theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) Metal Can Package . . . . . . . . . . . . . . . 160 75 Maximum Junction Temperature (Metal Can Package) . . . . . . . \(175^{\circ} \mathrm{C}\) Maximum Storage Temperature Range . . . . . . . . . \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) Maximum Lead Temperature (Soldering 10s) \(300^{\circ} \mathrm{C}\)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

\section*{NOTE:}
1. \(\theta_{J A}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}\), Gain and Offset Potentiometers Externally Trimmed, Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{ICL8013A} & \multicolumn{3}{|c|}{ICL8013B} & \multicolumn{3}{|c|}{ICL8013C} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Multiplier Function & & - & \(\frac{X Y}{10}\) & - & - & \(\frac{X Y}{10}\) & - & - & \(\frac{X Y}{10}\) & - & \\
\hline Multiplication Error & \[
\begin{aligned}
& -10<X<10 \\
& -10<Y<10
\end{aligned}
\] & - & - & 0.5 & - & - & 1.0 & - & - & 2.0 & \% Full Scale \\
\hline Divider Function & & - & \[
\frac{10 z}{x}
\] & - & - & \(\frac{10 Z}{X}\) & - & - & \(\frac{10 Z}{X}\) & - & \\
\hline \multirow[t]{2}{*}{Division Error} & \(x=-10\) & - & 0.3 & - & - & 0.3 & - & - & 0.3 & - & \% Full Scale \\
\hline & \(X=-1\) & - & 1.5 & - & - & 1.5 & - & - & 1.5 & - & \% Full Scale \\
\hline \multirow[t]{2}{*}{Feedthrough} & \(X=0, Y= \pm 10 \mathrm{~V}\) & - & - & 50 & - & - & 100 & - & - & 200 & mV \\
\hline & \(\mathrm{Y}=0, \mathrm{X}= \pm 10 \mathrm{~V}\) & - & - & 50 & - & - & 100 & - & - & 150 & mV \\
\hline Non-Linearity X Input & \[
\begin{aligned}
& X=20 V_{P-P} \\
& Y= \pm 10 V_{D C}
\end{aligned}
\] & - & \[
\pm 0.5
\] & - & - & \(\pm 0.5\) & - & - & \(\pm 0.8\) & - & \% \\
\hline Y Input & \[
\begin{aligned}
& Y=20 V_{P-P} \\
& X= \pm 10 V_{D C}
\end{aligned}
\] & - & \(\pm 0.2\) & - & - & \(\pm 0.2\) & - & - & \(\pm 0.3\) & - & \% \\
\hline Frequency Response Small Signal Bandwidth (-3dB) & & - & 1.0 & - & - & 1.0 & - & - & 1.0 & - & MHz \\
\hline Full Power Bandwidth & & - & 750 & - & - & 750 & - & - & 750 & - & kHz \\
\hline Slew Rate & & - & 45 & - & - & 45 & - & - & 45 & - & V/us \\
\hline 1\% Amplitude Error & & - & 75 & - & - & 75 & - & - & 75 & - & kHz \\
\hline 1\% Vector Error (0.5 \({ }^{\circ}\) Phase Shift) & & - & 5 & - & - & 5 & - & - & 5 & - & kHz \\
\hline Settling Time (to \(\pm 2 \%\) of Final Value) & \(\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}\) & - & 1 & - & - & 1 & - & \(\bullet\) & 1 & - & \(\mu \mathrm{s}\) \\
\hline Overload Recovery (to \(\pm 2 \%\) of Final Value) & \(\mathrm{V}_{\mathrm{IN}}= \pm 10 \mathrm{~V}\) & - & 1 & - & - & 1 & - & - & 1 & - & \(\mu \mathrm{s}\) \\
\hline \multirow[t]{2}{*}{Output Noise} & 5 Hz to 10 kHz & - & 0.6 & - & - & 0.6 & - & - & 0.6 & - & mV RMS \\
\hline & 5 Hz to 5 MHz & - & 3 & - & - & 3 & - & - & 3 & - & mV VMS \\
\hline Input Resistance X Input & \multirow[t]{3}{*}{\(\mathrm{V}_{1 \mathrm{~N}}=0 \mathrm{~V}\)} &  & 10 & - & - & 10 & - & - & 10 & - & M \(\Omega\) \\
\hline Y Input & & - & 6 & - & - & 6 & - & - & 6 & - & \(\mathrm{M} \Omega\) \\
\hline \(Z\) Input & & - & 36 & - & - & 36 & - & - & 36 & - & k \(\Omega\) \\
\hline Input Bias Current \(X\) or \(Y\) Input & \multirow[t]{2}{*}{\(V_{\text {IN }}=0 \mathrm{~V}\)} &  & 2 & 5 & - & - & 7.5 & - & - & 10 & \(\mu \mathrm{A}\) \\
\hline \(Z\) Input & & - & 25 & - & - & 25 & - & - & 25 & - & \(\mu \mathrm{A}\) \\
\hline
\end{tabular}

Electrical Specifications \(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\text {SUPPLY }}= \pm 15 \mathrm{~V}\) ，Gain and Offset Potentiometers Externally Trimmed，Unless Otherwise Specified（Continued）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[t]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{ICL8013A} & \multicolumn{3}{|c|}{ICL8013B} & \multicolumn{3}{|c|}{ICL8013C} & \multirow[b]{2}{*}{UNITS} \\
\hline & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \begin{tabular}{l}
Power Supply Variation \\
Multiplication Error
\end{tabular} & &  & 0.2 & － & － & 0.2 & － & － & \[
0.2
\] & － & \％／\％ \\
\hline Output Offset & & － & － & 50 & － & － & 75 & － & － & 100 & \(\mathrm{mV} / \mathrm{N}\) \\
\hline Scale Factor & & － & 0.1 & － & － & 0.1 & － & － & 0.1 & － & \％／\％ \\
\hline Quiescent Current & & － & 3.5 & 6.0 & － & 3.5 & 6.0 & － & 3.5 & 6.0 & mA \\
\hline
\end{tabular}

THE FOLLOWING SPECIFICATIONS APPLY OVER THE OPERATING TEMPERATURE RANGES
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Multiplication Error & \[
\begin{aligned}
& -10 \mathrm{~V}<X_{I N}<10 \mathrm{~V}, \\
& -10 \mathrm{~V}<\mathrm{Y}_{\text {IN }}<10 \mathrm{~V}
\end{aligned}
\] & － & 1.5 & － & － & 2 & － & － & 3 & － & \％Full Scale \\
\hline Average Temp．Coefficients Accuracy & & － & 0.06 & － & － & 0.06 & － & － & 0.06 & － & \％\({ }^{\circ} \mathrm{C}\) \\
\hline Output Offset & & － & 0.2 & － & － & 0.2 & － & － & 0.2 & － & \(\mathrm{mV} /{ }^{\circ} \mathrm{C}\) \\
\hline Scale Factor & & － & 0.04 & － & － & 0.04 & － & － & 0.04 & － & \％／\({ }^{\circ} \mathrm{C}\) \\
\hline Input Bias Current \(X\) or \(Y\) Input & \(\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}\) & － & － & 5 & － & － & 5 & － & － & 10 & \(\mu \mathrm{A}\) \\
\hline \(\bar{Z}\) Input & & － & － & 25 & － & － & 25 & － & － & 35 & \(\mu \mathrm{A}\) \\
\hline Input Voltage（X，Y，or Z） & & － & － & \(\pm 10\) & － & － & \(\pm 10\) & － & － & \(\pm 10\) & V \\
\hline Output Voltage Swing & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega \\
& \mathrm{C}_{\mathrm{L}}<1000 \mathrm{pF}
\end{aligned}
\] & － & \(\pm 10\) & － & － & \(\pm 10\) & － & － & \(\pm 10\) & － & V \\
\hline
\end{tabular}

\section*{Schematic Diagram}


\section*{Application Information}

\section*{Detailed Circuit Description}

The fundamental element of the ICL8013 multiplier is the bipolar differential amplifier of Figure 1.


FIGURE 1. DIFFERENTIAL AMPLIFIER
The small signal differential voltage gain of this circuit is given by:
\(A_{V}=\frac{V_{\text {OUT }}}{V_{I N}}=\frac{R_{L}}{r_{E}}\)
Substituting \(r_{E}=\frac{1}{g_{M}}=\frac{k T}{q l_{E}}\)
\(V_{\text {OUT }}=V_{I N}\left(\frac{R_{L}}{r_{E}}\right)=V_{I N} \times \frac{q I_{E} R_{L}}{k T}\)
The output voltage is thus proportional to the product of the input voltage \(\mathrm{V}_{\mathbb{N}}\) and the emitter current \(\mathrm{I}_{\mathrm{E}}\). In the simple transconductance multiplier of Figure 2, a current source comprising \(Q_{3}, D_{1}\), and \(R_{Y}\) is used. If \(V_{Y}\) is large compared with the drop across \(D_{1}\), then
\(I_{D} \approx \frac{V_{Y}}{R_{Y}}=2 I_{E}\) and
\(v_{\text {OUT }}=\frac{q R_{L}}{k T R_{Y}}\left(V_{X} \times V_{Y}\right)\)


FIGURE 2. TRANSCONDUCTANCE MULTIPLIER
There are several difficulties with this simple modulator:
1. \(V_{Y}\) must be positive and greater than \(V_{D}\)
2. Some portion of the signal at \(\mathrm{V}_{\mathrm{X}}\) will appear at the output unless \(\mathrm{I}_{\mathrm{E}}=0\).
3. \(V_{X}\) must be a small signal for the differential pair to be linear.
4. The output voltage is not centered around ground.

The first problem relates to the method of converting the \(V_{Y}\) voltage to a current to vary the gain of the \(\mathrm{V}_{\mathrm{X}}\) differential pair. A better method, Figure 3, uses another differential pair but with considerable emitter degeneration. In this circuit the differential input voltage appears across the common emitter resistor, producing a current which adds or subtracts from the quiescent current in either collector. This type of voltage to current converter handles signals from 0 V to \(\pm 10 \mathrm{~V}\) with excellent linearity.


FIGURE 3. VOLTAGE TO CURRENT CONVERTER
The second problem is called feedthrough; i.e., the product of zero and some finite Input signal does not produce zero output voltage. The circuit whose operation is illustrated by Figures 4A, 4B, and 4C overcomes this problem and forms the heart of many multiplier circuits in use today.
This circuit is basically two matched differential pairs with cross coupled collectors. Consider the case shown in Figure 4A of exactly equal current sources basing the two pairs. With a small positive signal at \(V_{I N}\), the collector current of \(Q_{1}\) and \(Q_{4}\) will increase but the collector currents of \(Q_{2}\) and \(Q_{3}\) will decrease by the same amount. Since the collectors are cross coupled the current through the load resistors remains unchanged and independent of the \(V_{I N}\) input voltage.
In Figure 4B, notice that with \(\mathrm{V}_{\mathrm{IN}}=0\) any variation in the ratio of biasing current sources will produce a common mode voltage across the load resistors. The differential output voltage will remain zero. In Figure 4C we apply a differential input voltage with unbalanced current sources. If \(\mathrm{I}_{\mathrm{E} 1}\) is twice \(\mathrm{I}_{\mathrm{E} 2}\) the gain of differential pair \(Q_{1}\) and \(Q_{2}\) is twice the gain of pair \(Q_{3}\) and \(Q_{4}\). Therefore, the change in cross coupled collector currents will be unequal and a differential output voltage will result. By replacing the separate biasing current sources with the voltage to current converter of Figure 3 we have a balanced multiplier circuit capable of four quadrant operation (Figure 5).


FIGURE 4A. INPUT SIGNAL WITH BALANCED CURRENT SOURCES \(\triangle V_{\text {OUT }}=0 V\)


FIGURE 4B. NO INPUT SIGNAL WITH UNBALANCED CURRENT SOURCES \(\triangle V_{\text {OUT }}=0 V\)


FIGURE 4C. INPUT SIGNAL WITH UNBALANCED CURRENT SOURCES, DIFFERENTIAL OUTPUT VOLTAGE

This circuit of Figure 5 still has the problem that the input voltage \(\mathrm{V}_{I N}\) must be small to keep the differential amplifier in the linear region. To be able to handle large signals, we need an amplitude compression circuit.


FIGURE 5. TYPICAL FOUR QUADRANT MULTIPLIERMODULATOR

Figure 2 showed a current source formed by relying on the matching characteristics of a diode and the emitter base junction of a transistor. Extension of this idea to a differential circuit is shown in Figure 6A. In a differential pair, the input voltage splits the biasing current in a logarithmic ratio. (The usual
assumption of linearity is useful only for small signals.) Since the input to the differential pair in Figure 6A is the difference in voltage across the two diodes, which in turn is proportional to the \(\log\) of the ratio of drive currents, it follows that the ratio of diode currents and the ratio of collector currents are linearly related and independent of amplitude. If we combine this circuit with the voltage to current converter of Figure 3, we have Figure 6B. The output of the differential amplifier is now proportional to the input voltage over a large dynamic range, thereby improving linearity while minimizing drift and noise factors.

The complete schematic is shown after the Electrical Specifications Table. The differential pair \(Q_{3}\) and \(Q_{4}\) form a voltage to current converter whose output is compressed in collector diodes \(Q_{1}\) and \(Q_{2}\). These diodes drive the balanced cross-coupled differential amplifier \(Q_{7} / Q_{8} Q_{14} / Q_{15}\). The gain of these amplifiers is modulated by the voltage to current converter \(\mathrm{Q}_{9}\) and \(Q_{10}\). Transistors \(Q_{5}, Q_{6}, Q_{11}\), and \(Q_{12}\) are constant current sources which bias the voltage to current converter. The output amplifier comprises transistors \(Q_{16}\) through \(Q_{27}\).


FIGURE 6A. CURRENT GAIN CELL


FIGURE 6B. VOLTAGE GAIN WITH SIGNAL COMPRESSION

\section*{Definition of Terms}

Multiplication/Division Error: This is the basic accuracy specification. It includes terms due to linearity, gain, and offset errors, and is expressed as a percentage of the full scale output.

Feedthrough: With either input at zero, the output of an ideal multiplier should be zero regardless of the signal applied to the other input. The output seen in a non-ideal multiplier is known as the feedthrough.

Nonlinearity: The maximum deviation from the best straight line constructed through the output data, expressed as a percentage of full scale. One input is held constant and
the other swept through it nominal range. The nonlinearity is the component of the total multiplication/division error which cannot be trimmed out.

\section*{Typical Applications}

\section*{Multiplication}

In the standard multiplier connection, the \(\mathbf{Z}\) terminal is connected to the op amp output. All of the modulator output current thus flows through the feedback resistor \(R_{27}\) and produces a proportional output voltage.

\section*{Multiplier Trimming Procedure}
1. Set \(X_{I N}=Y_{\mathbb{I N}}=O V\) and adjust \(Z_{O S}\) for zero Output.
2. Apply a \(\pm 10 \mathrm{~V}\) low frequency ( \(\leq 100 \mathrm{~Hz}\) ) sweep (sine or triangle) to \(Y_{I N}\) with \(X_{I N}=0 V\), and adjust \(X_{O S}\) for minimum output.
3. Apply the sweep signal of Step 2 to \(X_{I N}\) with \(Y_{I N}=0 V\) and adjust \(\mathrm{Y}_{\text {OS }}\) for minimum Output.
4. Readjust \(Z_{O S}\) as in Step 1, if necessary.
5. With \(X_{I N}=10.0 V_{D C}\) and the sweep signal of Step 2 applied to \(Y_{I N}\), adjust the Gain potentiometer for Output \(=Y_{I N}\). This is easily accomplished with a differential scope plug-in \((A+B)\) by inverting one signal and adjusting Gain control for (Output - \(\mathrm{Y}_{\mathrm{IN}}\) ) = Zero.


FIGURE 7A. MULTIPLIER BLOCK DIAGRAM


FIGURE 7B. MULTIPLIER CIRCUIT CONNECTION

\section*{Division}

If the \(Z\) terminal is used as an input, and the output of the op amp connected to the \(Y\) input, the device functions as a divider. Since the input to the op amp is at virtual ground, and requires negligible bias current, the overall feedback forces the modulator output current to equal the current produced by \(\mathbf{Z}\).

Therefore \(I_{O}=X_{I N} \cdot Y_{I N}=\frac{Z_{I N}}{R}=10 Z_{I N}\)
Since \(Y_{I N}=V_{\text {OUT }}, V_{\text {OUT }}=\frac{10 Z_{I N}}{X_{I N}}\)
Note that when connected as a divider, the X input must be a negative voltage to maintain overall negative feedback.

\section*{Divider Trimming Procedure}
1. Set trimming potentiometers at mid-scale by adjusting voltage on pins 7, 9 and 10 ( \(\mathrm{X}_{\mathrm{OS}}, \mathrm{Y}_{\mathrm{OS}}, \mathrm{Z}_{\mathrm{OS}}\) ) for 0 V .
2. With \(Z_{I N}=O V\), trim \(Z_{O S}\) to hold the Output constant, as \(X_{I N}\) is varied from -10 V through -1 V .
3. With \(Z_{I N}=O V\) and \(X_{I N}=-10.0 \mathrm{~V}\) adjust \(Y_{O S}\) for zero Output voltage.
4. With \(Z_{I N}=X_{I N}\left(\right.\) and \(/\) or \(\left.Z_{I N}=-X_{I N}\right)\) adjust \(X_{O S}\) for minimum worst case variation of Output, as \(X_{I N}\) is varied from -10V to -1V.
5. Repeat Steps 2 and 3 if Step 4 required a large initial adjustment.
6. With \(Z_{I N}=X_{I N}\) (and/or \(\left.Z_{I N}=-X_{I N}\right)\) adjust the gain control until the output is the closest average around +10.0 V \(\left(-10 \mathrm{~V}\right.\) for \(\left.\mathrm{Z}_{I N}=-\mathrm{X}_{I N}\right)\) as \(\mathrm{X}_{I N}\) is varied from -10 V to -3 V .


FIGURE 8A. DIVISION BLOCK DIAGRAM


FIGURE 8B. DIVISION CIRCUIT CONNECTION

\section*{Squaring}

The squaring function is achieved by simply multiplying with the two inputs tied together. The squaring circuit may also be used as the basis for a frequency doubler since \(\cos ^{2} \omega t=1 / 2(\cos 2 \omega t+1)\).


FIGURE 9A. SQUARER BLOCK DIAGRAM


FIGURE 9B. SQUARER CIRCUIT CONNECTION

\section*{Square Root}

Tying the \(X\) and \(Y\) inputs together and using overall feedback from the op amp results in the square root function. The output of the modulator is again forced to equal the current produced by the \(Z\) input.
\(I_{O}=X_{I N} \times Y_{I N}=\left(-V_{O U T}\right)^{2}=10 Z_{I N}\)
\(V_{\text {OUT }}=-\sqrt{10 Z_{I N}}\)

The output is a negative voltage which maintains overall negative feedback. A diode in series with the op amp output prevents the latchup that would otherwise occur for negative input voltages.

\section*{Square Root Trimming Procedure}
1. Connect the ICL8013 in the Divider configuration.
2. Adjust \(Z_{O S}, Y_{O S}, X_{O S}\), and Gain using Steps 1 through 6 of Divider Trimming Procedure.
3. Convert to the Square Root configuration by connecting \(\mathrm{X}_{\text {IN }}\) to the output and inserting a diode between Pin 4 and the output node.
4. With \(Z_{I N}=O V\) adjust \(Z_{O S}\) for zero output voltage.


FIGURE 10A. SQUARE ROOT BLOCK DIAGRAM


FIGURE 10B. ACTUAL CIRCUIT CONNECTION

\section*{Variable Gain Amplifier}

Most applications for the ICL8013 are straight forward variations of the simple arithmetic functions described above. Although the circuit description frequently disguises the fact, it has already been shown that the frequency doubler is nothing more than a squaring circuit. Similarly the variable gain amplifier is nothing more than a multiplier, with the input signal applied at the \(X\) input and the control voltage applied at the Y input.


FIGURE 11. VARIABLE GAIN AMPLIFIER


FIGURE 12. POTENTIOMETERS FOR TRIMMING OFFSET AND FEEDTHROUGH

\section*{Typical Performance Curves}


FIGURE 13. FREQUENCY RESPONSE


FIGURE 14. NONLINEARITY vs FREQUENCY


FIGURE 15. FEEDTHROUGH vs FREQUENCY

\title{
Precision Waveform Generator/ Voltage Controlled Oscillator
}

\section*{Features}
- Low Frequency Drift with Temperature . . . 250ppm \(/{ }^{\circ} \mathrm{C}\)
- Low Distortion \(\qquad\) 1\% (Sine Wave Output)
- High Linearity . . . . . . . . . 0.1\% (Triangle Wave Output)
- Wide Frequency Range \(\qquad\) 0.001 Hz to 300 kHz
- Variable Duty Cycle \(\qquad\) \(2 \%\) to \(98 \%\)
- High Level Outputs TTL to \(\mathbf{2 8 V}\)
- Simultaneous Sine, Square, and Triangle Wave Outputs
- Easy to Use - Just a Handful of External Components Required

\section*{Description}

The ICL8038 waveform generator is a monolithic integrated circuit capable of producing high accuracy sine, square, triangular, sawtooth and pulse waveforms with a minimum of external components. The frequency (or repetition rate) can be selected externally from 0.001 Hz to more than 300 kHz using either resistors or capacitors, and frequency modulation and sweeping can be accomplished with an external voltage. The ICL8038 is fabricated with advanced monolithic technology, using Schottky barrier diodes and thin film resistors, and the output is stable over a wide range of temperature and supply variations. These devices may be interfaced with phase locked loop circuitry to reduce temperature drift to less than \(250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\).

\section*{Ordering Information}
\begin{tabular}{|l|l|c|l|l|}
\hline \multicolumn{1}{|c|}{ PART NUMBER } & STABILITY & TEMP. RANGE \(\left({ }^{\circ} \mathrm{C}\right)\) & PACKAGE & \multicolumn{1}{c|}{ PKG. NO. } \\
\hline ICL8038CCPD & \(250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{Typ})\) & 0 to 70 & 14 Ld PDIP & E14.3 \\
\hline ICL8038CCJD & \(250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\) (Typ) & 0 to 70 & 14 Ld CERDIP & F14.3 \\
\hline ICL8038BCJD & \(180 \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{Typ})\) & 0 to 70 & 14 Ld CERDIP & F14.3 \\
\hline ICL8038ACJD & \(120 \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{Typ})\) & 0 to 70 & 14 Ld CERDIP & F14.3 \\
\hline ICL8038BMJD (Note) & \(350 \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{Max})\) & -55 to 125 & 14 Ld CERDIP & F14.3 \\
\hline ICL8038AMJD (Note) & \(250 \mathrm{ppm} /{ }^{\circ} \mathrm{C}(\mathrm{Max})\) & -55 to 125 & 14 Ld CERDIP & F14.3 \\
\hline
\end{tabular}

NOTE: Add /883B to part number if 883 processing is required.


Functional Diagram


\section*{Absolute Maximum Ratings}

Supply Voltage (V- to V+) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V V + .
Input Voltage (Any Pin) . . . . . . . . . . . . . . . . . . . .
Input Current (Pins 4 and 5) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 mA
Output Sink Current (Pins 3 and 9 ) . . . . . . . . . . . . . . . . . . . . . . 25 mA

\section*{Operating Conditions}

Temperature Range
ICL8038AM, ICL8038BM . . . . . . . . . . . . . . . . . . . \(55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\)
ICL8038AC, ICL8038BC, ICL8038CC
ICL8038AC, ICL8038BC, ICL8038CC ................
CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:
1. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(\quad V_{\text {SUPPLY }}= \pm 10 \mathrm{~V}\) or \(+20 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, R_{L}=10 \mathrm{k} \Omega\), Test Circuit Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{ICL8038CC} & \multicolumn{3}{|l|}{ICL8038BC(BM)} & \multicolumn{3}{|l|}{ICL8038AC(AM)} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & MAX & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline \multirow[t]{2}{*}{Supply Voltage Operating Range} & \begin{tabular}{l}
\(V_{\text {SUPPLY }}\) \\
V+
\end{tabular} & Single Supply & +10 & - & +30 & +10 & - & +30 & +10 & - & +30 & V \\
\hline & V+, V- & Dual Supplies & \(\pm 5\) & - & \(\pm 15\) & \(\pm 5\) & - & \(\pm 15\) & \(\pm 5\) & - & \(\pm 5\) & V \\
\hline Supply Current 8038AM 8038BM & \multirow[t]{2}{*}{Isupply} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{V}_{\text {SUPPLY }}= \pm 10 \mathrm{~V} \\
& \text { (Note 2) }
\end{aligned}
\]} & - & - & & - & 12 & 15 & - & 12 & 15 & mA \\
\hline 8038AC, 8038BC, 8038CC & & & & 12 & 20 & - & 12 & 20 & - & 12 & 20 & mA \\
\hline
\end{tabular}

FREQUENCY CHARACTERISTICS (All Waveforms)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Max. Frequency of Oscillation & \(f_{\text {MAX }}\) & & 100 & - & - & 100 & - & - & 100 & - & - & kHz \\
\hline Sweep Frequency of FM Input & fsweep & & - & 10 & - & - & 10 & - & - & 10 & - & kHz \\
\hline Sweep FM Range & & (Note 3) & - & 35:1 & - & - & 35:1 & - & - & 35:1 & - & \\
\hline FM Linearity & & 10:1 Ratio & - & 0.5 & - & - & 0.2 & - & - & 0.2 & - & \% \\
\hline Frequency Drift with Temperature (Note 5) 8038AC, 8038BC, 8038CC & \(\Delta \mathrm{t} / \Delta \mathrm{T}\) & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) & - & 250 & - & - & 180 & - & - & 120 & & ppm/ \({ }^{\circ} \mathrm{C}\) \\
\hline 8038AM, 8038BM & & \(-55^{\circ} \mathrm{C}\) to \(125^{\circ} \mathrm{C}\) & - & & - & - & - & 350 & - & - & 250 & ppm/ \(/{ }^{\circ} \mathrm{C}\) \\
\hline Frequency Drift with Supply Voltage & \(\Delta \mathrm{f} / \Delta \mathrm{V}\) & Over Supply Voltage Range & - & 0.05 & - & - & 0.05 & & \(\bullet\) & 0.05 & - & \%N \\
\hline
\end{tabular}

\section*{OUTPUT CHARACTERISTICS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Square Wave Leakage Current & IOLK & \(\mathrm{V}_{9}=30 \mathrm{~V}\) & - & - & 1 & - & - & 1 & - & - & 1 & \(\mu \mathrm{A}\) \\
\hline Saturation Voltage & \(\mathrm{V}_{\text {SAT }}\) & \(\mathrm{ISINK}=2 \mathrm{~mA}\) & - & 0.2 & 0.5 & - & 0.2 & 0.4 & - & 0.2 & 0.4 & V \\
\hline Rise Time & \(\mathrm{t}_{\mathrm{R}}\) & \(\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega\) & - & 180 & - & - & 180 & - & - & 180 & - & ns \\
\hline Fall Time & \(\mathrm{t}_{\mathrm{F}}\) & \(\mathrm{R}_{\mathrm{L}}=4.7 \mathrm{k} \Omega\) & - & 40 & - & - & 40 & - & - & 40 & - & ns \\
\hline Typical Duty Cycle Adjust (Note 6) & \(\Delta \mathrm{D}\) & & 2 & & 98 & 2 & - & 98 & 2 & - & 98 & \% \\
\hline Triangle/Sawtooth/Ramp Amplitude & \[
\begin{gathered}
\mathrm{V}_{\text {TRIAN }}- \\
\text { GLE }
\end{gathered}
\] & \(\mathrm{R}_{\text {TRI }}=100 \mathrm{k} \Omega\) & 0.30 & 0.33 & - & 0.30 & 0.33 & - & 0.30 & 0.33 & - & \begin{tabular}{l}
\(\mathrm{xV}_{\text {SUP. }}\) \\
PLY
\end{tabular} \\
\hline Linearity & & & - & 0.1 & - & - & 0.05 & - & - & 0.05 & - & \% \\
\hline Output Impedance & \(\mathrm{Z}_{\text {OUT }}\) & \(\mathrm{l}_{\text {OUT }}=5 \mathrm{~mA}\) & - & 200 & - & - & 200 & - & - & 200 & - & \(\Omega\) \\
\hline
\end{tabular}

\section*{ICL8038}

Electrical Specifications \(V_{\text {SUPPLY }}= \pm 10 \mathrm{~V}\) or \(+20 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}, R_{L}=10 \mathrm{k} \Omega\), Test Circuit Unless Otherwise Specified (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{PARAMETER} & \multirow[b]{2}{*}{SYMBOL} & \multirow[b]{2}{*}{TEST CONDITIONS} & \multicolumn{3}{|c|}{ICL8038CC} & \multicolumn{3}{|l|}{ICL8038BC(BM)} & \multicolumn{3}{|l|}{ICL8038AC(AM)} & \multirow[b]{2}{*}{UNITS} \\
\hline & & & MIN & TYP & max & MIN & TYP & MAX & MIN & TYP & MAX & \\
\hline Output Impedance & \(\mathrm{Z}_{\text {OUT }}\) & lout \(=5 \mathrm{~mA}\) & - & 200 & - & - & 200 & - & - & 200 & - & \(\Omega\) \\
\hline Sine Wave Amplitude & \(V_{\text {SINE }}\) & \(\mathrm{R}_{\text {SINE }}=100 \mathrm{k} \Omega\) & 0.2 & 0.22 & - & 0.2 & 0.22 & - & 0.2 & 0.22 & - & \(\mathrm{xV}_{\text {SUPPLY }}\) \\
\hline THD & THD & \[
\begin{aligned}
& \mathrm{R}_{\mathrm{S}}=1 \mathrm{M} \Omega \\
& \text { (Note 4) }
\end{aligned}
\] & - & 2.0 & 5 & - & 1.5 & 3 & - & 1.0 & 1.5 & \% \\
\hline THD Adjusted & THD & Use Figure 4 & - & 1.5 & - & - & 1.0 & - & - & 0.8 & - & \% \\
\hline
\end{tabular}

NOTES:
2. \(R_{A}\) and \(R_{B}\) currents not included.
3. \(V_{\text {SUPPLY }}=20 \mathrm{~V} ; \mathrm{R}_{A}\) and \(R_{B}=10 \mathrm{k} \Omega, f \cong 10 \mathrm{kHz}\) nominal; can be extended 1000 to 1 . See Figures 5A and 5B.
4. \(82 \mathrm{k} \Omega\) connected between pins 11 and 12 , Triangle Duty Cycle set at \(50 \%\). (Use \(R_{A}\) and \(R_{B}\).)
5. Figure 1 , pins 7 and 8 connected, \(\mathrm{V}_{\text {SUPPLY }}= \pm 10 \mathrm{~V}\). See Typical Curves for T.C. vs \(\mathrm{V}_{\text {SUPPLY }}\).
6. Not tested, typical value for design purposes only.

\section*{Test Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & \(\mathbf{R}_{\mathbf{A}}\) & \(\mathbf{R}_{\mathbf{B}}\) & \(\mathbf{R}_{\mathrm{L}}\) & C & SW 1 & MEASURE \\
\hline Supply Current & \(10 \mathrm{k} \Omega\) & 10k \(\Omega\) & 10k \(\Omega\) & 3.3nF & Closed & Current Into Pin 6 \\
\hline Sweep FM Range (Note 7) & 10k \(\Omega\) & 10k \(\Omega\) & 10k \(\Omega\) & 3.3nF & Open & Frequency at Pin 9 \\
\hline Frequency Drift with Temperature & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & 3.3 nF & Closed & Frequency at Pin 3 \\
\hline Frequency Drift with Supply Voltage (Note 8) & \(10 \mathrm{k} \Omega\) & 10k \(\Omega\) & 10k \(\Omega\) & 3.3nF & Closed & Frequency at Pin 9 \\
\hline Output Amplitude (Note 10) Sine & \(10 \mathrm{k} \Omega\) & 10k \(\Omega\) & 10ks & 3.3nF & Closed & Pk-Pk Output at Pin 2 \\
\hline Triangle & \(10 \mathrm{k} \Omega\) & 10ks & 10k \(\Omega\) & 3.3nF & Closed & Pk-Pk Output at Pin 3 \\
\hline Leakage Current (Off) (Note 9) & \(10 \mathrm{k} \Omega\) & 10k \(\Omega\) & & 3.3nF & Closed & Current into Pin 9 \\
\hline Saturation Voltage (On) (Note 9) & \(10 \mathrm{k} \Omega\) & \(10 \mathrm{k} \Omega\) & & 3.3nF & Closed & Output (Low) at Pin 9 \\
\hline Rise and Fall Times (Note 11) & 10k \(\Omega\) & 10k \(\Omega\) & 4.7k \(\Omega\) & 3.3nF & Closed & Waveform at Pin 9 \\
\hline Duty Cycle Adjust (Note 11) Max & 50k \(\Omega\) & \(\sim 1.6 \mathrm{k} \Omega\) & 10k \(\Omega\) & 3.3nF & Closed & Waveform at Pin 9 \\
\hline Min & -25k \(\Omega\) & \(50 \mathrm{k} \Omega\) & 10k \(\Omega\) & 3.3nF & Closed & Waveform at Pin 9 \\
\hline Triangle Waveform Linearity & 10k \(\Omega\) & 10k \(\Omega\) & 10kS & 3.3nF & Closed & Waveform at Pin 3 \\
\hline Total Harmonic Distortion & 10k \(\Omega\) & 10ks & 10k \(\Omega\) & 3.3nF & Closed & Waveform at Pin 2 \\
\hline
\end{tabular}

\section*{NOTES:}
7. The hi and lo frequencies can be obtained by connecting pin 8 to \(\operatorname{pin} 7\left(\mathrm{f}_{\mathrm{HI}}\right)\) and then connecting pin 8 to pin 6 ( L O ). Otherwise apply Sweep Voltage at pin \(8\left(2 / 3 V_{\text {SUPPLY }}+2 \mathrm{~V}\right) \leq V_{\text {SWEEP }} \leq V_{\text {SUPPLY }}\) where \(V_{\text {SUPPLY }}\) is the total supply voltage. In Figure 5 B , pin 8 should vary between 5.3 V and 10 V with respect to ground.
8. \(10 \mathrm{~V} \leq \mathrm{V}+\leq 30 \mathrm{~V}\), or \(\pm 5 \mathrm{~V} \leq \mathrm{V}_{\text {SUPPLY }} \leq \pm 15 \mathrm{~V}\).
9. Oscillation can be halted by forcing pin 10 to +5 V or -5 V .
10. Output Amplitude is tested under static conditions by forcing pin 10 to 5 V then to -5 V .
11. Not tested; for design purposes only.

Test Circuit


FIGURE 1. TEST CIRCUIT

\section*{Detailed Schematic}


\section*{Application Information (See Functional Diagram)}

An external capacitor \(C\) is charged and discharged by two current sources. Current source \#2 is switched on and off by a flipflop, while current source \#1 is on continuously. Assuming that the flip-flop is in a state such that current source \#2 is off, and the capacitor is charged with a current I, the voltage across the capacitor rises linearly with time. When this voltage reaches the level of comparator \#1 (set at \(2 / 3\) of the supply voltage), the flipflop is triggered, changes states, and releases current source \#2. This current source normally carries a current 21, thus the capacitor is discharged with a net-current I and the voltage
across it drops linearly with time. When it has reached the level of comparator \#2 (set at \(1 / 3\) of the supply voltage), the flip-flop is triggered into its original state and the cycle starts again.
Four waveforms are readily obtainable from this basic generator circuit. With the current sources set at I and 21 respectively, the charge and discharge times are equal. Thus a triangle waveform is created across the capacitor and the flip-flop produces a square wave. Both waveforms are fed to buffer stages and are available at pins 3 and 9.

The levels of the current sources can, however, be selected over a wide range with two external resistors. Therefore, with the two currents set at values different from 1 and 21 , an asymmetrical sawtooth appears at Terminal 3 and pulses with a duty cycle from less than \(1 \%\) to greater than \(99 \%\) are available at Terminal 9.
The sine wave is created by feeding the triangle wave into a nonlinear network (sine converter). This network provides a decreasing shunt impedance as the potential of the triangle moves toward the two extremes.

\section*{Waveform Timing}

The symmetry of all waveforms can be adjusted with the external timing resistors. Two possible ways to accomplish this are shown in Figure 3. Best results are obtained by keeping the timing resistors \(R_{A}\) and \(R_{B}\) separate ( \(A\) ). \(R_{A}\) controls the rising portion of the triangle and sine wave and the 1 state of the square wave.
The magnitude of the triangle waveform is set at \(1 / 3\) \(\mathrm{V}_{\text {SUPPLY; }}\) therefore the rising portion of the triangle is,
\[
t_{1}=\frac{C \times V}{1}=\frac{C \times 1 / 3 \times V_{\text {SUPPLY }} \times R_{A}}{0.22 \times V_{\text {SUPPLY }}}=\frac{R_{A} \times C}{0.66}
\]


FIGURE 2A. SQUARE WAVE DUTY CYCLE - 50\%

The falling portion of the triangle and sine wave and the 0 state of the square wave is:
\(t_{2}=\frac{C \times V}{1}=\frac{C \times 1 / 3 V_{\text {SUPPLY }}}{2(0.22) \frac{V_{\text {SUPPLY }}}{R_{B}}-0.22 \frac{V_{\text {SUPPLY }}}{R_{A}}}=\frac{R_{A} R_{B} C}{0.66\left(2 R_{A}-R_{B}\right)}\)
Thus a \(50 \%\) duty cycle is achieved when \(R_{A}=R_{B}\).
If the duty cycle is to be varied over a small range about \(50 \%\) only, the connection shown in Figure 3B is slightly more convenient. A \(1 \mathrm{k} \Omega\) potentiometer may not allow the duty cycle to be adjusted through \(50 \%\) on all devices. If a \(50 \%\) duty cycle is required, a \(2 \mathrm{k} \Omega\) or \(5 \mathrm{k} \Omega\) potentiometer should be used.
With two separate timing resistors, the frequency is given by: \(f=\frac{1}{t_{1}+t_{2}}=\frac{1}{\frac{R_{A} C}{0.66}\left(1+\frac{R_{B}}{2 R_{A}-R_{B}}\right)}\)
or, if \(R_{A}=R_{B}=R\)
\(f=\frac{0.33}{R C}\) (for Figure 3A)
Neither time nor frequency are dependent on supply voltage, even though none of the voltages are regulated inside the integrated circuit. This is due to the fact that both currents and thresholds are direct, linear functions of the supply voltage and thus their effects cancel.


FIGURE 2B. SQUARE WAVE DUTY CYCLE - 80\%

FIGURE 2. PHASE RELATIONSHIP OF WAVEFORMS


FIGURE 3A.


FIGURE 3B.

FIGURE 3. POSSIBLE CONNECTIONS FOR THE EXTERNAL TIMING RESISTORS

\section*{Reducing Distortion}

To minimize sine wave distortion the \(82 \mathrm{k} \Omega\) resistor between pins 11 and 12 is best made variable. With this arrangement distortion of less than \(1 \%\) is achievable. To reduce this even further, two potentiometers can be connected as shown in Figure 4; this configuration allows a typical reduction of sine wave distortion close to \(0.5 \%\).


FIGURE 4. CONNECTION TO ACHIEVE MINIMUM SINE WAVE DISTORTION

\section*{Selecting \(\mathbf{R}_{\mathbf{A}}, \mathbf{R}_{\mathbf{B}}\) and \(\mathbf{C}\)}

For any given output frequency, there is a wide range of RC combinations that will work, however certain constraints are placed upon the magnitude of the charging current for optimum performance. At the low end, currents of less than \(1 \mu \mathrm{~A}\) are undesirable because circuit leakages will contribute significant errors at high temperatures. At higher currents ( \(I>5 \mathrm{~mA}\) ), transistor betas and saturation voltages will contribute increasingly larger errors. Optimum performance will, therefore, be obtained with charging currents of \(10 \mu \mathrm{~A}\) to 1 mA . If pins 7 and 8 are shorted together, the magnitude of the charging current due to \(R_{A}\) can be calculated from:
\(I=\frac{R_{1} \times(V+-V-)}{\left(R_{1}+R_{2}\right)} \times \frac{1}{R_{A}}=\frac{0.22\left(V_{+}-V_{-}\right)}{R_{A}}\)
\(R_{1}\) and \(R_{2}\) are shown in the Detailed Schematic.

\section*{A similar calculation holds for \(R_{B}\).}

The capacitor value should be chosen at the upper end of its possible range.

\section*{Waveform Out Level Control and Power Supplies}

The waveform generator can be operated either from a single power supply ( 10 V to 30 V ) or a dual power supply ( \(\pm 5 \mathrm{~V}\) to \(\pm 15 \mathrm{~V}\) ). With a single power supply the average levels of the triangle and sine wave are at exactly one-half of the supply voltage, while the square wave alternates between \(\mathrm{V}_{+}\) and ground. A split power supply has the advantage that all waveforms move symmetrically about ground.
The square wave output is not committed. A load resistor can be connected to a different power supply, as long as the applied voltage remains within the breakdown capability of the waveform generator (30V). In this way, the square wave
output can be made TTL compatible (load resistor connected to +5 V ) while the waveform generator itself is powered from a much higher voltage.

\section*{Frequency Modulation and Sweeping}

The frequency of the waveform generator is a direct function of the DC voltage at Terminal 8 (measured from \(V_{+}\)). By altering this voltage, frequency modulation is performed. For small deviations (e.g. \(\pm 10 \%\) ) the modulating signal can be applied directly to pin 8 , merely providing DC decoupling with a capacitor as shown in Figure 5A. An external resistor between pins 7 and 8 is not necessary, but it can be used to increase input impedance from about \(8 \mathrm{k} \Omega\) (pins 7 and 8 connected together), to about ( \(R+8 k \Omega\) ).

For larger FM deviations or for frequency sweeping, the modulating signal is applied between the positive supply voltage and pin 8 (Figure 5B). In this way the entire bias for the current sources is created by the modulating signal, and a very large (e.g. 1000:1) sweep range is created ( \(f=0\) at \(\mathrm{V}_{\text {SWEEP }}=0\) ). Care must be taken, however, to regulate the supply voltage; in this configuration the charge current is no longer a function of the supply voltage (yet the trigger thresholds still are) and thus the frequency becomes dependent on the supply voltage. The potential on Pin 8 may be swept down from \(V+\) by \(\left(1 / 3 V_{\text {SUPPLY }}-2 V\right)\).


FIGURE 5A. CONNECTIONS FOR FREQUENCY MODULATION


FIGURE 5B. CONNECTIONS FOR FREQUENCY SWEEP FIGURE 5.

\section*{Typical Applications}

The sine wave output has a relatively high output impedance ( \(1 \mathrm{k} \Omega\) Typ). The circuit of Figure 6 provides buffering, gain and amplitude adjustment. A simple op amp follower could also be used.


FIGURE 6. SINE WAVE OUTPUT BUFFER AMPLIFIERS
With a dual supply voltage the external capacitor on Pin 10 can be shorted to ground to halt the ICL8038 oscillation. Figure 7 shows a FET switch, diode ANDed with an input strobe signal to allow the output to always start on the same slope.


To obtain a 1000:1 Sweep Range on the ICL8038 the voltage across external resistors \(R_{A}\) and \(R_{B}\) must decrease to nearly zero. This requires that the highest voltage on control Pin 8 exceed the voltage at the top of \(R_{A}\) and \(R_{B}\) by a few hundred mV . The Circuit of Figure 8 achieves this by using a diode to lower the effective supply voltage on the ICL8038. The large resistor on pin 5 helps reduce duty cycle variations with sweep.

The linearity of input sweep voltage versus output frequency can be significantly improved by using an op amp as shown in Figure 9.


GURE 8. VARIABLE AUDIO OSCILLATOR, 20 Hz TO 20kHzY

FIGURE 7. STROBE TONE BURST GENERATOR


FIGURE 9. WAVEFORM GENERATOR USED AS STABLE VCO IN A PHASE-LOCKED LOOP


FIGURE 10. LINEAR VOLTAGE CONTROLLED OSCILLATOR

\section*{Use in Phase Locked Loops}

Its high frequency stability makes the ICL8038 an ideal building block for a phase locked loop as shown in Figure 10. In this application the remaining functional blocks, the phase detector and the amplifier, can be formed by a number of available ICs (e.g., MC4344, NE562, HA2800, HA2820).

In order to match these building blocks to each other, two steps must be taken. First, two different supply voltages are used and the square wave output is returned to the supply of the phase detector. This assures that the VCO input voltage will not exceed the capabilities of the phase detector. If a smaller VCO signal is required, a simple resistive voltage divider is connected between pin 9 of the waveform generator and the VCO input of the phase detector.

Second, the DC output level of the amplifier must be made compatible to the DC level required at the FM input of the waveform generator ( \(\mathrm{pin} 8,0.8 \mathrm{~V}+\) ). The simplest solution here is to provide a voltage divider to \(\mathrm{V}_{+}\left(\mathrm{R}_{1}, \mathrm{R}_{2}\right.\) as shown) if the amplifier has a lower output level, or to ground if its level is higher. The divider can be made part of the low-pass filter.

This application not only provides for a free-running frequency with very low temperature drift, but is also has the unique feature of producing a large reconstituted sinewave signal with a frequency identical to that at the input.

For further information, see Harris Application Note AN013, "Everything You Always Wanted to Know About the ICL8038".

\section*{Definition of Terms}

Supply Voltage (VSUPPLY). The total supply voltage from V+ to V-.
Supply Current. The supply current required from the power supply to operate the device, excluding load currents and the currents through \(R_{A}\) and \(R_{B}\).
Frequency Range. The frequency range at the square wave output through which circuit operation is guaranteed.
Sweep FM Range. The ratio of maximum frequency to minimum frequency which can be obtained by applying a sweep voltage to pin 8. For correct operation, the sweep voltage should be within the range:
\(\left({ }^{2} / 3 V_{\text {SUPPLY }}+2 V\right)<V_{\text {SWEEP }}<V_{\text {SUPPLY }}\)
FM Linearity. The percentage deviation from the best fit straight line on the control voltage versus output frequency curve.

Output Amplitude. The peak-to-peak signal amplitude appearing at the outputs.
Saturation Voltage. The output voltage at the collector of \(Q_{23}\) when this transistor is turned on. It is measured for a sink current of 2 mA .

Rise and Fall Times. The time required for the square wave output to change from \(10 \%\) to \(90 \%\), or \(90 \%\) to \(10 \%\), of its final value.

Triangle Waveform Linearity. The percentage deviation from the best fit straight line on the rising and falling triangle waveform.
Total Harmonic Distortion. The total harmonic distortion at the sine wave output.

\section*{Typical Performance Curves}


FIGURE 11. SUPPLY CURRENT vs SUPPLY VOLTAGE


FIGURE 13. FREQUENCY vs TEMPERATURE


FIGURE 12. FREQUENCY vs SUPPLY VOLTAGE


FIGURE 14. SQUARE WAVE OUTPUT RISE/FALL TIME vs LOAD RESISTANCE

\section*{Typical Performance Curves (Continued)}


FIGURE 15. SQUARE WAVE SATURATION VOLTAGE vs LOAD CURRENT


FIGURE 17. TRIANGLE WAVE OUTPUT VOLTAGE vs FREQUENCY


FIGURE 19. SINE WAVE OUTPUT VOLTAGE vs FREQUENCY


FIGURE 16. TRIANGLE WAVE OUTPUT VOLTAGE vs LOAD CURRENT


FIGURE 18. TRIANGLE WAVE LINEARITY vs FREQUENCY


FIGURE 20. SINE WAVE DISTORTION vs FREQUENCY

HARRIS
ICM7242

\author{
Long Range Fixed Timer
}

\section*{Features}
- Replaces the 2242 in Most Applications
- Timing From Microseconds to Days
- Cascadable
- Monostable or Astable Operation
- Wide Supply Voltage Range

2V to 16 V
- Low Supply Current . . . . . . . . . . . . . . . . . . 115 1 A at 5V

\section*{Ordering Information}
\begin{tabular}{|l|c|l|l|}
\hline \begin{tabular}{c} 
PART NUMBER \\
(BRAND)
\end{tabular} & \begin{tabular}{c} 
TEMP. \\
RANGE \(\left({ }^{\circ} \mathrm{C}\right)\)
\end{tabular} & \multicolumn{1}{|c|}{ PACKAGE } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
PKG. \\
NO.
\end{tabular}} \\
\hline ICM7242IPA & -25 to 85 & 8 Ld PDIP & E8.3 \\
\hline \begin{tabular}{l} 
ICM7242CBA \\
\((7242 \mathrm{CBA})\)
\end{tabular} & 0 to 70 & 8 Ld SOIC & M8.15 \\
\hline
\end{tabular}

\section*{Description}

The ICM7242 is a CMOS timer/counter circuit consisting of an RC oscillator followed by an 8-bit binary counter. It will replace the 2242 in most applications, with a significant reduction in the number of external components.

Three outputs are provided. They are the oscillator output, and buffered outputs from the first and eighth counters.

\section*{Pinout}

ICM7242
(PDIP, SOIC)
TOP VIEW


\section*{Functional Diagram}


\section*{Absolute Maximum Ratings}

Supply Voltage ( \(\mathrm{V}_{\mathrm{DD}}\) to \(\mathrm{V}_{S S}\) )
Input Voltage (Note 1)
Terminals (Pins 5, 6, 7, 8) . . . . . . . . (VSS \(-0.3 \mathrm{~V})\) to ( \(\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}\) )
Continuous Output Current (Each Output) . . . . . . . . . . . . . . . . . 50 mA

\section*{Operating Conditions}
\begin{tabular}{|c|c|}
\hline Temperature Range & \\
\hline ICM72421 & \(-25^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) \\
\hline ICM7242C. & \(.0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

\section*{Thermal Information}
\begin{tabular}{|c|c|}
\hline Thermal Resistance (Typical, Note 2) & \(\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) \\
\hline PDIP Package & 100 \\
\hline SOIC Package . & 160 \\
\hline Maximum Storage Temperature Range & \(-65^{\circ} \mathrm{C}\) to \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Junction Temperature (Plastic & . \(150^{\circ} \mathrm{C}\) \\
\hline Maximum Lead Temperature (Soldering (SOIC - Lead Tips Only) & \[
. .300^{\circ} \mathrm{C}
\] \\
\hline
\end{tabular}

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
1. Due to the SCR structure inherent in the CMOS process, connecting any terminal to voltages greater than \(\mathrm{V}_{D D}\) or less than \(\mathrm{V}_{\mathrm{SS}}\) may cause destructive device latchup. For this reason, it is recommended that no inputs from external sources not operating on the same supply be applied to the device before its supply is established and, that in multiple supply systems, the supply to the ICM7242 be turned on first.
2. \(\theta_{\mathrm{JA}}\) is measured with the component mounted on an evaluation PC board in free air.

Electrical Specifications \(\quad V_{D D}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R}=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}, \mathrm{~V} S=0 \mathrm{~V}\), Unless Otherwise Specified
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PARAMETER & SYMBOL & TEST CONDITIONS & MIN & TYP & MAX & UNITS \\
\hline Guaranteed Supply Voltage & \(V_{D D}\) & & 2 & - & 16 & V \\
\hline \multirow[t]{4}{*}{Supply Current} & \multirow[t]{4}{*}{IDD} & Reset & - & 125 & - & \(\mu \mathrm{A}\) \\
\hline & & Operating, \(\mathrm{R}=10 \mathrm{k} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}\) & - & 340 & 800 & \(\mu \mathrm{A}\) \\
\hline & & Operating, \(\mathrm{R}=1 \mathrm{M} \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}\) & - & 220 & 600 & \(\mu \mathrm{A}\) \\
\hline & & TB Inhibited, RC Connected to \(\mathrm{V}_{\text {SS }}\) & - & 225 & - & \(\mu \mathrm{A}\) \\
\hline Timing Accuracy & & & - & 5 & - & \% \\
\hline RC Oscillator Frequency Temperature Drift & \(\Delta f / \Delta t\) & Independent of RC Components & - & 250 & - & ppm \(/{ }^{\circ} \mathrm{C}\) \\
\hline \multirow[t]{2}{*}{Time Base Output Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {OtB }}\)} & \(I_{\text {SOURCE }}=100 \mu \mathrm{~A}\) & - & 3.5 & - & V \\
\hline & & \(\mathrm{I}_{\text {SINK }}=1.0 \mathrm{~mA}\) & - & 0.40 & - & V \\
\hline Time Base Output Leakage Current & Itblk & RC = Ground & - & - & 25 & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{2}{*}{Trigger Input Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {TRIG }}\)} & \(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\) & - & 1.6 & 2.0 & V \\
\hline & & \(\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}\) & - & 3.5 & 4.5 & V \\
\hline \multirow[t]{2}{*}{Reset Input Voltage} & \multirow[t]{2}{*}{\(\mathrm{V}_{\text {RST }}\)} & \(V_{D D}=5 \mathrm{~V}\) & - & 1.3 & 2.0 & V \\
\hline & & \(V_{D D}=15 \mathrm{~V}\) & - & 2.7 & 4.0 & V \\
\hline Trigger/Reset Input Current & \(I_{\text {TRIG, }} \mathrm{I}_{\text {RST }}\) & & - & 10 & - & \(\mu \mathrm{A}\) \\
\hline \multirow[t]{4}{*}{Max Count Toggle Rate} & \multirow[t]{4}{*}{\({ }_{\mathrm{f}}{ }^{\text {r }}\)} & \multirow[t]{4}{*}{\begin{tabular}{l}
\[
\left.\begin{array}{l}
V_{D D}=2 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\
\mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}
\end{array}\right\} \text { Counter/Divider Mode }
\] \\
\(50 \%\) Duty Cycle Input with Peak to Peak Voltages Equal to \(V_{D D}\) and \(V_{S S}\)
\end{tabular}} & - & 1 & - & MHz \\
\hline & & & 2 & 6 & - & MHz \\
\hline & & & - & 13 & - & MHz \\
\hline & & & & & & \\
\hline Output Saturation Voltage & \(V_{\text {SAT }}\) & All Outputs Except TB Output \(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\), IOUT \(=3.2 \mathrm{~mA}\) & - & 0.22 & 0.4 & V \\
\hline Output Sourcing Current & Isource & \(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\) Terminals 2 and \(3, \mathrm{~V}_{\text {OUT }}=1 \mathrm{~V}\) & - & 300 & - & \(\mu \mathrm{A}\) \\
\hline MIN Timing Capacitor (Note 3) & \(\mathrm{C}_{\text {T }}\) & & 10 & - & - & pF \\
\hline Timing Resistor Range (Note 3) & \(\mathrm{R}_{\mathrm{T}}\) & \(V_{D D}=2-16 \mathrm{~V}\) & 1 K & - & 22M & \(\Omega\) \\
\hline
\end{tabular}

NOTE:
3. For design only, not tested.

\section*{Test Circuit}


NOTE:
4. \(\div 2^{1}\) and \(\div 2^{8}\) outputs are inverters and have active pullups.

\section*{Application Information}

\section*{Operating Considerations}

Shorting the RC terminal or output terminals to \(V_{D D}\) may exceed dissipation ratings and/or maximum DC current limits (especially at high supply voltages).

There is a limitation of 50 pF maximum loading on the TB I/O terminal if the timebase is being used to drive the counter section. If higher value loading is used, the counter sections may miscount.

For greatest accuracy, use timing component values shown in Figure 8. For highest frequency operation it will be desirable to use very low values for the capacitor; accuracy will decrease for oscillator frequencies in excess of 200 kHz .

The timing capacitor should be connected between the RC pin and the positive supply rail, \(\mathrm{V}_{\mathrm{DD}}\), as shown in Figure 1. When system power is turned off, any charge remaining on the capacitor will be discharged to ground through a large internal diode between the RC node and \(\mathrm{V}_{\mathrm{SS}}\). Do NOT reference the timing capacitor to ground, since there is no high current path in this direction to safely discharge the capacitor when power is turned off. The discharge current from such a configuration could potentially damage the device.
When driving the counter section from an external clock, the optimum drive waveform is a square wave with an amplitude equal to the supply voltage. If the clock is a very slow ramp triangular, sine wave, etc., it will be necessary to "square up" the waveform; this can be done by using two CMOS inverters in series, operating from the same supply voltage as the ICM7242.

The ICM7242 is a non-programmable timer whose principal applications will be very low frequency oscillators and long range timers; it makes a much better low frequency oscillator/timer than a 555 or ICM7555, because of the on-chip 8 -bit counter. Also, devices can be cascaded to produce extremely low frequency signals.
Because outputs will not be ANDed, output inverters are used instead of open drain N-Channel transistors, and the external resistors used for the 2242 will not be required for the ICM7242. The ICM7242 will, however, plug into a socket for the 2242 having these resistors.

The timing diagram for the ICM7242 is shown in Figure 1. Assuming that the device is in the RESET mode, which occurs on power up or after a positive signal on the RESET terminal (if TRIGGER is low), a positive edge on the trigger input signal will initiate normal operation. The discharge transistor turns on, discharging the timing capacitor C , and all the flip-flops in the counter chain change states. Thus, the outputs on terminals 2 and 3 change from high to low states. After 128 negative timebase edges, the \(\div 2^{8}\) output returns to the high state.


FIGURE 1. TIMING DIAGRAMS OF OUTPUT WAVEFORMS FOR THE ICM7242 (COMPARE WITH FIGURE 5)


FIGURE 2. USING THE ICM7242 AS A RIPPLE COUNTER (DIVIDER)

To use the 8 -bit counter without the timebase, Terminal 7 (RC) should be connected to ground and the outputs taken from Terminals 2 and 3.
The ICM7242 may be used for a very low frequency square wave reference. For this application the timing components are more convenient than those that would be required by a 555 timer. For very low frequencies, devices may be cascaded (see Figure 3).


FIGURE 3. LOW FREQUENCY REFERENCE (OSCILLATOR)
For monostable operation the \(\div 2^{8}\) output is connected to the RESET terminal. A positive edge on TRIGGER initiates the cycle (NOTE: TRIGGER overrides RESET).


FIGURE 4. MONOSTABLE OPERATION
The ICM7242 is superior in all respects to the 2242 except for initial accuracy and oscillator stability. This is primarily due to the fact that high value \(p\) - resistors have been used on the ICM7242 to provide the comparator timing points.

Comparing the ICM7242 With the 2242
\begin{tabular}{|l|c|c|}
\hline & ICM7242 & 2242 \\
\hline Operating Voltage & \(2 \mathrm{~V}-16 \mathrm{~V}\) & \(4 \mathrm{~V}-15 \mathrm{~V}\) \\
\hline Operating Temperature Range & \(-25^{\circ} \mathrm{C}\) to \(85^{\circ} \mathrm{C}\) & \(0^{\circ} \mathrm{C}\) to \(70^{\circ} \mathrm{C}\) \\
\hline Supply Current, \(\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\) & \(0.7 \mathrm{~mA}(\mathrm{Max})\) & 7 mA (Max) \\
\hline \begin{tabular}{l} 
Pullup Resistors \\
TB Output
\end{tabular} & No & Yes \\
\hline\(\div 2\) Output & No & Yes \\
\hline\(\div 256\) Output & No & Yes \\
\hline Toggle Rate & 3.0 MHz & 0.5 MHz \\
\hline Resistor to Inhibit Oscillator & No & Yes \\
\hline \begin{tabular}{l} 
Resistor in Series with Reset for \\
Monostable Operation
\end{tabular} & No & Yes \\
\hline \begin{tabular}{l} 
Capacitor TB Terminal for HF \\
Operation
\end{tabular} & No & Sometimes \\
\hline
\end{tabular}

By selection of \(R\) and \(C\), a wide variety of sequence timing can be realized. A typical flow chart for a machine tool controller could be as shown in Figure 5.


FIGURE 5. FLOW CHART FOR MACHINE TOOL CONTROLLER
By cascading devices, use of low cost CMOS AND/OR gates and appropriate RC delays between stages, numerous sequential control variations can be obtained. Typical applications include injection molding machine controllers, phonograph record production machines, automatic sequencers (no metal contacts or moving parts), milling machine controllers, process timers, automatic lubrication systems, etc.

\section*{Sequence Timing}
- Process Control
- Machine Automation
- Electro-Pneumatic Drivers
- Multi Operation (Serial or Parallel Controlling)


PUSH \(S_{1}\) TO START SEQUENCE:


NOTE: Select RC values for desired "ON TIME" for each ICM7242.
FIGURE 6. SEQUENCE TIMER

\section*{Typical Performance Curves}


FIGURE 7. SUPPLY CURRENT vs SUPPLY VOLTAGE


FIGURE 9. TIMEBASE FREE RUNNING FREQUENCY vs R AND C


FIGURE 11. MINIMUM RESET PULSE WIDTH vs RESET AMPLITUDE


FIGURE 8. RECOMMENDED RANGE OF TIMING COMPONENT VALUES FOR ACCURATE TIMING


FIGURE 10. MINIMUM TRIGGER PULSE WIDTH vs TRIGGER AMPLITUDE


FIGURE 12. NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE vs SUPPLY VOLTAGE

Typical Performance Curves (Continued)


FIGURE 13. NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE vs TEMPERATURE


FIGURE 15. DISCHARGE OUTPUT CURRENT vs DISCHARGE OUTPUT VOLTAGE


FIGURE 14. MAXIMUM DIVIDER FREQUENCY vs SUPPLY VOLTAGE


FIGURE 16. OUTPUT SATURATION CURRENT vs OUTPUT SATURATION VOLTAGE

\author{
General Purpose Timers
}

\section*{Features}
- Exact Equivalent in Most Cases for SE/NE555/556 or TLC555/556
- Low Supply Current
- ICM7555. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60رA
- ICM7556. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120رA
- Extremely Low Input Currents . . . . . . . . . . . . . . . 20pA
- High Speed Operation . . . . . . . . . . . . . . . . . . . . . . 1MHz
- Guaranteed Supply Voltage Range . . . . . . . 2V to 18V
- Temperature Stability . . . . . . . . . . . \(0.005 \%{ }^{\circ} \mathrm{C}\) at \(25^{\circ} \mathrm{C}\)
- Normal Reset Function - No Crowbarring of Supply During Output Transition
- Can be Used with Higher Impedance Timing Elements than Regular 555/6 for Longer RC Time Constants
- Timing from Microseconds through Hours
- Operates in Both Astable and Monostable Modes
- Adjustable Duty Cycle
- High Output Source/Sink Driver can Drive TTLCMOS
- Outputs have Very Low Offsets, HI and LO

\section*{Applications}
- Precision Timing
- Pulse Generation
- Sequential Timing
- Time Delay Generation
- Pulse Width Modulation
- Pulse Position Modulation
- Missing Pulse Detector

\section*{Description}

The ICM7555 and ICM7556 are CMOS RC timers providing significantly improved performance over the standard SE/NE555/6 and 355 timers, while at the same time being direct replacements for those devices in most applications. Improved parameters include low supply current, wide operating supply voltage range, low THRESHOLD, TRIGGER and RESET currents, no crowbarring of the supply current during output transitions, higher frequency performance and no requirement to decouple CONTROL VOLTAGE for stable operation.
Specifically, the ICM7555 and ICM7556 are stable controllers capable of producing accurate time delays or frequencies. The ICM7556 is a dual ICM7555, with the two timers operating independently of each other, sharing only V+ and GND. In the one shot mode, the pulse width of each circuit is precisely controlled by one external resistor and capacitor. For astable operation as an oscillator, the free running frequency and the duty cycle are both accurately controlled by two external resistors and one capacitor. Unlike the regular bipolar 555/6 devices, the CONTROL VOLTAGE terminal need not be decoupled with a capacitor. The circuits are triggered and reset on falling (negative) waveforms, and the output inverter can source or sink currents large enough to drive TTL loads, or provide minimal offsets to drive CMOS loads.

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|}
\hline PART NUMBER (BRAND) & \[
\begin{aligned}
& \text { TEMP. } \\
& \text { RANGE }\left({ }^{\circ} \mathrm{C}\right)
\end{aligned}
\] & PACKAGE & PKG. NO. \\
\hline ICM7555CBA (7555CBA) & 0 to 70 & 8 Ld SOIC & M18.5 \\
\hline \[
\begin{aligned}
& \text { ICM7555IBA } \\
& \text { (7555IBA) } \\
& \hline
\end{aligned}
\] & -25 to 85 & 8 Ld SOIC & M18.5 \\
\hline ICM7555IPA & -25 to 85 & 8 Ld PDIP & E8.3 \\
\hline ICM7555ITV & -25 to 85 & 8 Pin Metal Can & T8.C \\
\hline ICM7555MTV (Note) & -55 to 125 & 8 Pin Metal Can & T8.C \\
\hline ICM7556IPD & -25 to 85 & 14 Ld PDIP & E14.3 \\
\hline ICM7556MJD (Note) & -55 to 125 & 14 Ld CERDIP & F14.3 \\
\hline
\end{tabular}

NOTE: Add \(/ 883 B\) to part number if 883B processing is desired.

\section*{Pinouts}

ICM7555 (PDIP, SOIC)
TOP VIEW

 TOP VIEW


ICM7556 (PDIP, CERDIP)
TOP VIEW

```

Absolute Maximum Ratings
Supply Voltage . +18 V Input Voltage
Trigger, Control Voltage, Threshold,
$\overline{R e s e t}(N o t e ~ 1)$

``` \(\qquad\)
``` V \(++0.3 V\) to GND -0.3 V
Output Current
.100 mA
```


## Operating Conditions

Temperature Range

ICM7555C	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$
ICM7555I, ICM7556I.	$-25^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
ICM7555M, ICM7556M	$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$

## Thermal Information

| Thermal Resistance (Typical, Note 2) | $\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ | $\theta_{\mathrm{JC}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right.$ |
| :---: | :---: | :---: | :---: |
| CERDIP Package $\ldots \ldots \ldots \ldots \ldots$ | 80 | 24 |
| Metal Can Package $\ldots \ldots \ldots \ldots \ldots$ | 165 | 80 |
| 14 Lead PDIP Package $\ldots \ldots \ldots \ldots$ | 115 | N/A |
| 8 Lead PDIP Package $\ldots \ldots \ldots \ldots$ | 110 | N/A |
| SOIC Package. . . . . . . . . . . . . . . | 170 | N/A |

Maximum Junction Temperature (Hermetic Package) . . . . . . . . $175^{\circ} \mathrm{C}$
Maximum Junction Temperature (Plastic Package) . . . . . . . . $150^{\circ} \mathrm{C}$
Maximum Storage Temperature Range . . . . . . . . . $65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . $300^{\circ} \mathrm{C}$
(SOIC - Lead Tips Only)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

## NOTES:

1. Due to the SCR structure inherent in the CMOS process used to fabricate these devices, connecting any terminal to a voltage greater than $V_{+}+0.3 V$ or less than $V-0.3 V$ may cause destructive latchup. For this reason it is recommended that no inputs from external sources not operating from the same power supply be applied to the device before its power supply is established. In multiple supply systems, the supply of the ICM7555/6 must be turned on first.
2. $\theta_{\mathrm{JA}}$ is measured with the component mounted on an evaluation PC board in free air.

## Electrical Specifications Applies to ICM7555 and ICM7556, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{gathered} \text { (NOTE 4) } \\ -55^{\circ} \mathrm{C} \text { TO } 125^{\circ} \mathrm{C} \end{gathered}$			UNITS
				MIN	TYP	MAX	MIN	TYP	MAX	
Static Supply Current	IDD	ICM7555	$V_{D D}=5 \mathrm{~V}$	-	40	200	-	-	300	$\mu \mathrm{A}$
			$V_{D D}=15 \mathrm{~V}$	-	60	300	-	-	300	$\mu \mathrm{A}$
		ICM7556	$V_{D D}=5 \mathrm{~V}$	-	80	400	-	-	600	$\mu \mathrm{A}$
			$V_{D D}=15 \mathrm{~V}$	-	120	600	-	-	600	$\mu \mathrm{A}$
Monostable Timing Accuracy		$\mathrm{R}_{\mathrm{A}}=10 \mathrm{~K}, \mathrm{C}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$		-	2	-	-	-	-	\%
				-	-	-	858	-	1161	$\mu \mathrm{s}$
Drift with Temperature (Note 3)		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		-	-	-	-	150	-	$\mathrm{ppm}^{\circ} \mathrm{C}$
		$V_{D D}=10 \mathrm{~V}$		-	-	-	-	200	-	ppm/ $/{ }^{\circ} \mathrm{C}$
		$V_{D D}=15 \mathrm{~V}$		-	-	-	-	250	-	ppm/ $/{ }^{\circ} \mathrm{C}$
Drift with Supply (Note 3)		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ to 15V		-	0.5	-	-	0.5	-	\%N
Astable Timing Accuracy		$\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}=10 \mathrm{~K}, \mathrm{C}=0.1 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$		-	2	-	-	-	-	\%
				$\cdot$	-	-	1717	-	2323	$\mu \mathrm{s}$
Drift with Temperature (Note 3)		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		-	-	-	-	150	-	$\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
		$V_{D D}=10 \mathrm{~V}$		-	-	-	-	200	-	ppm $/{ }^{\circ} \mathrm{C}$
		$V_{D D}=15 \mathrm{~V}$		-	-	-	-	250	-	ppm/ ${ }^{\circ} \mathrm{C}$
Drift with Supply (Note 3)		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ to 15 V		-	0.5	-	-	0.5	-	\% N
Threshold Voltage	$\mathrm{V}_{\text {TH }}$	$V_{D D}=15 \mathrm{~V}$		62	67	71	61	-	72	$\% \mathrm{~V}_{\mathrm{DD}}$
Trigger Voltage	$V_{\text {TRIG }}$	$V_{D D}=15 \mathrm{~V}$		28	32	36	27	-	37	$\% \mathrm{~V}_{\mathrm{DD}}$
Trigger Current	ITRIG	$V_{D D}=15 \mathrm{~V}$		-	-	10	-	-	50	nA
Threshold Current	$I_{\text {TH }}$	$V_{D D}=15 \mathrm{~V}$		-	-	10	-	-	50	nA
Control Voltage	$\mathrm{V}_{\mathrm{CV}}$	$V_{D D}=15 \mathrm{~V}$		62	67	71	61	-	72	$\% V_{D D}$
Reset Voltage	$\mathrm{V}_{\text {RST }}$	$\mathrm{V}_{\mathrm{DD}}=2 \mathrm{~V}$ to 15 V		0.4	-	1.0	0.2	-	1.2	V
Reset Current	IRST	$V_{D D}=15 \mathrm{~V}$		-	-	10	-	-	50	nA

ICM7555, ICM7556

Electrical Specifications Applies to ICM7555 and ICM7556, Unless Otherwise Specified

PARAMETER	SYMBOL	TEST CONDITIONS	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			(NOTE 4)$-55^{\circ} \mathrm{C} \text { TO } 125^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Discharge Leakage	IDIS	$V_{D D}=15 \mathrm{~V}$	-	-	10	-	-	50	nA
Output Voltage	$\mathrm{V}_{\mathrm{OL}}$	$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=20 \mathrm{~mA}$	-	0.4	1.0	-	-	1.25	V
		$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$, $\mathrm{I}_{\text {SINK }}=3.2 \mathrm{~mA}$	-	0.2	0.4	-	-	0.5	V
	$\mathrm{V}_{\mathrm{OH}}$	$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$, ISOURCE $=0.8 \mathrm{~mA}$	14.3	14.6	-	14.2	-	-	V
		$\mathrm{V}_{\text {DD }}=5 \mathrm{~V}$, $\mathrm{I}_{\text {SOURCE }}=0.8 \mathrm{~mA}$	4.0	4.3	-	3.8	-	-	V
Discharge Output Voltage	$\mathrm{V}_{\text {DIS }}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=15 \mathrm{~mA}$	-	0.2	0.4	-	-	0.6	V
		$\mathrm{V}_{\text {DD }}=15 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=15 \mathrm{~mA}$	-	-	-	-	-	0.4	V
Supply Voltage (Note 3)	$\mathrm{V}_{\mathrm{DD}}$	Functional Operation	2.0	-	18.0	3.0	-	16.0	V
Output Rise Time (Note 3)	$t_{\text {R }}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{M}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	75	-	-	-	-	ns
Output Fall Time (Note 3)	${ }_{\text {t }} \mathrm{F}$	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{M}, \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	75	-	-	-	-	ns
Oscillator Frequency (Note 3)	${ }_{\text {f max }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{A}}=470 \Omega, \mathrm{R}_{\mathrm{B}}=270 \Omega, \\ & \mathrm{C}=200 \mathrm{pF} \end{aligned}$	-	1	-	-	-	-	MHz

NOTES:
3. These parameters are based upon characterization data and are not tested.
4. Applies only to military temperature range product ( $M$ suffix).

## Functional Diagram



NOTE: This functional diagram reduces the circuitry down to its simplest equivalent components. Tie down unused inputs. $R=100 \mathrm{k} \Omega, \pm 20 \%$ (Typ)

TRUTH TABLE

THRESHOLD VOLTAGE	TRIGGER VOLTAGE	RESET	OUTPUT	DISCHARGE SWITCH
Don't Care	Don't Care	Low	Low	On
$>^{2} / 3(\mathrm{~V}+)$	$>^{1 / 3}(\mathrm{~V}+)$	High	Low	On
$<^{2 / 3}(\mathrm{~V}+)$	$>^{1 / 3}(\mathrm{~V}+)$	High	Stable	Stable
Don't Care	$<1 / 3(\mathrm{~V}+)$	High	High	Off

NOTE: $\overline{R E S E T}$ will dominate all other inputs: $\overline{\text { TRIGGER }}$ will dominate over THRESHOLD.

## Schematic Diagram


$R=100 k \Omega \pm 20 \%$ (TYP)

## Application Information

## General

The ICM7555/6 devices are, in most instances, direct replacements for the NE/SE 555/6 devices. However, it is possible to effect economies in the external component count using the ICM7555/6. Because the bipolar 555/6 devices produce large crowbar currents in the output driver, it is necessary to decouple the power supply lines with a good capacitor close to the device. The 7555/6 devices produce no such transients. See Figure 1.

The ICM7555/6 produces supply current spikes of only 2 mA - 3 mA instead of $300 \mathrm{~mA}-400 \mathrm{~mA}$ and supply decoupling is normally not necessary. Also, in most instances, the CONTROL VOLTAGE decoupling capacitors are not required since the input impedance of the CMOS comparators on chip are very high. Thus, for many applications 2 capacitors can be saved using an ICM7555, and 3 capacitors with an ICM7556.


FIGURE 1. SUPPLY CURRENT TRANSIENT COMPARED WITH A STANDARD BIPOLAR 555 DURING AN OUTPUT TRANSITION

## Power Supply Considerations

Although the supply current consumed by the ICM7555/6 devices is very low, the total system supply current can be high unless the timing components are high impedance. Therefore, use high values for R and low values for C in Fig ures 2 and 3.

## Output Drive Capability

The output driver consists of a CMOS inverter capable of driving most logic families including CMOS and TTL. As such, if driving CMOS, the output swing at all supply voltages will equal the supply voltage. At a supply voltage of 4.5 V or more the ICM7555/6 will drive at least 2 standard TTL loads.

## Astable Operation

The circuit can be connected to trigger itself and free run as a multivibrator, see Figure 2A. The output swings from rail to rail, and is a true $50 \%$ duty cycle square wave. (Trip points and output swings are symmetrical). Less than a $1 \%$ frequency variation is observed, over a voltage range of +5 V to +15 V .

$$
f=\frac{1}{1.4 R C}
$$

The timer can also be connected as shown in Figure 2B. In this circuit, the frequency is:

$$
f=1.44 /\left(R_{A}+2 R_{B}\right) C
$$

The duty cycle is controlled by the values of $R_{A}$ and $R_{B}$, by the equation:

$$
D=\left(R_{A}+R_{B}\right) /\left(R_{A}+2 R_{B}\right)
$$



FIGURE 2A. ASTABLE OPERATION


FIGURE 2B. ALTERNATE ASTABLE CONFIGURATION

## Monostable Operation

In this mode of operation, the timer functions as a one-shot, see Figure 3. Initially the external capacitor (C) is held discharged by a transistor inside the timer. Upon application of a negative TRIGGER pulse to pin 2, the internal flip-flop is set which releases the short circuit across the external capacitor and drives the OUTPUT high. The voltage across the capacitor now increases exponentially with a time constant $t=R_{A} C$. When the voltage across the capacitor equals $2 / 3 \mathrm{~V}+$, the comparator resets the flip-flop, which in turn discharges the capacitor rapidly and also drives the OUTPUT to its low state. TRIGGER must return to a high state before the OUTPUT can return to a low state.


FIGURE 3. MONOSTABLE OPERATION

## Control Voltage

The CONTROL VOLTAGE terminal permits the two trip voltages for the THRESHOLD and TRIGGER internal comparators to be controlled. This provides the possibility of oscillation frequency modulation in the astable mode or even inhibition of oscillation, depending on the applied voltage. In the monostable mode, delay times can be changed by varying the applied voltage to the CONTROL VOLTAGE pin.

## RESET

The RESET terminal is designed to have essentially the same trip voltage as the standard bipolar $555 / 6$, i.e., 0.6 V to 0.7 V . At all supply voltages it represents an extremely high input impedance. The mode of operation of the RESET function is, however, much improved over the standard bipolar 555/6 in that it controls only the internal flip-flop, which in turn controls simultaneously the state of the OUTPUT and DISCHARGE pins. This avoids the multiple threshold problems sometimes encountered with slow falling edges in the bipolar devices.

## Typical Performance Curves



FIGURE 4. MINIMUM PULSE WIDTH REQUIRED FOR TRIGGERING


FIGURE 6. OUTPUT SOURCE CURRENT vs OUTPUT VOLTAGE


FIGURE 8. OUTPUT SINK CURRENT vs OUTPUT VOLTAGE


FIGURE 5. SUPPLY CURRENT vs SUPPLY VOLTAGE


FIGURE 7. OUTPUT SINK CURRENT vs OUTPUT VOLTAGE


FIGURE 9. OUTPUT SINK CURRENT vs OUTPUT VOLTAGE

## Typical Performance Curves (Continued)



FIGURE 10. NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE vs SUPPLY VOLTAGE


FIGURE 12. PROPAGATION DELAY vs VOLTAGE LEVEL OF TRIGGER PULSE


FIGURE 14. FREE RUNNING FREQUENCY vs $R_{A}, R_{B}$ AND $C$


FIGURE 11. DISCHARGE OUTPUT CURRENT vs DISCHARGE OUTPUT VOLTAGE


FIGURE 13. NORMALIZED FREQUENCY STABILITY IN THE ASTABLE MODE vs TEMPERATURE


FIGURE 15. TIME DELAY IN THE MONOSTABLE MODE vs $\mathbf{R}_{\mathrm{A}}$ AND C

## LINEAR

## HARRIS QUALITY AND RELIABILITY

PAGE
Harris Quality ..... 9-3
Introduction ..... 9-3
The Role of the Quality Organization ..... 9-3
The Improvement Process ..... 9-3
ISO 9000 Certification ..... 9-3
Qualified Manufacturing List (QML) ..... 9-3
Designing for Manufacturability ..... 9-3
Special Testing ..... 9-5
Harris Semiconductor Standard Processing Flow ..... 9-6
Controlling and Improving the Manufacturing Process - SPC/DOX. ..... 9-8
Average Outgoing Quality (AOQ) ..... 9-9
Training ..... 9-9
Incoming Materials ..... 9-9
Calibration Laboratory ..... 9-11
Manufacturing Science - CAM, JIT, TPM. ..... 9-11
Harris Reliability ..... 9-12
Introduction ..... 9-12
Reliability Engineering ..... 9-12
Design for Reliability (Wear-Out Characterization) ..... 9-13
Process/Product/Package Qualifications ..... 9-13
Product/Package Reliability Monitors ..... 9-13
Customer Return Services ..... 9-15
Product Analysis Lab. ..... 9-19
Analytical Services Laboratory ..... 9-20
Reliability Fundamentals and Calculation of Failure Rate ..... 9-21
Failure Rate Calculations ..... 9-21
Acceleration Factors ..... 9-22
Activation Energy ..... 9-22
Tech Brief 52 Electrostatic Discharge Control: A Guide To Handling Integrated Circuits ..... 9-23

## Introduction

Success in the integrated circuit industry means more than simply meeting or exceeding the demands of today's market. It also includes anticipating and accepting the challenges of the future. It results from a process of continuing improvement and evolution, with perfection as the constant goal.
Harris Semiconductor's commitment to supply only top value integrated circuits has made quality improvement a mandate for every person in our work force - from circuit designer to manufacturing operator, from hourly employee to corporate executive. Price is no longer the only determinant in marketplace competition. Quality, reliability, and performance enjoy significantly increased importance as measures of value in integrated circuits.
Quality in integrated circuits cannot be added or considered after the fact. It begins with the development of capable process technology and product design. It continues in manufacturing, through effective controls at each process or step. It culminates in the delivery of products which meet or exceed the expectations of the customer.

## The Role of the Quality Organization

The emphasis on building quality into the design and manufacturing processes of a product has resulted in a significant refocus of the role of the Quality organization. In addition to facilitating the development of SPC and DOX, Quality professionals support other continuous improvement tools such as control charts, measurement of equipment capability, standardization of inspection equipment and processes, procedures for chemical controls, analysis of inspection data and feedback to the manufacturing areas, coordination of efforts for process and product improvement, optimization of environmental or raw materials quality, and the development of quality improvement programs with vendors.

At critical manufacturing operations, process and product quality is analyzed through random statistical sampling and product monitors. The Quality organization's role is changing from policing quality to leadership and coordination of quality programs or procedures through auditing, sampling, consulting, and managing Quality Improvement projects.
To support specific market requirements, or to ensure conformance to military or customer specifications, the Quality organization still performs many of the conventional quality functions (e.g., group testing for military products or wafer lot acceptance). But, true to the philosophy that quality is everyone's job, much of the traditional on-line measurement and control of quality characteristics is where it belongs - with the people who make the product. The Quality organization is there to provide leadership and assistance in the deployment of quality techniques, and to monitor progress.

## The Improvement Process



SOPHISTICATION OF QUALITY TECHNOLOGY
FIGURE 1. STAGES OF STATISTICAL QUALITY TECHNOLOGY
Harris Semiconductor's quality methodology is evolving through the stages shown in Figure 1. In 1981 we embarked on a program to move beyond Stage I, and we are currently in the transition from Stage III to Stage IV, as more and more of our people become involved in quality activities. The traditional "quality" tasks of screening, inspection, and testing are being replaced by more effective and efficient methods, putting new tools into the hands of all employees. Table 1 illustrates how our quality systems are changing to meet today's needs.

## ISO 9000 Certification

The manufacturing operations of Harris Semiconductor have all received ISO certification. The ISO 9000 series of standards were very consistent with our goals to build an even stronger quality system foundation.

## Qualified Manufacturing List (QML)

Harris Semiconductor has supplied military grade integrated circuits for over 20 years. The government's certifying body had audited and granted approval to ship JAN, 883 compliant, and Source Military Drawing parts used in ground and space applications. The discipline required to manufacture high reliability components has been beneficial to the commercial product lines. Harris has now taken the next evolutionary step by transitioning into QML as defined in MIL-PRF-38535. These guidelines incorporate the best commercial practices for semiconductor manufacturing.

## Designing for Manufacturability

Assuring quality and reliability in integrated circuits begins with good product and process design. This has always been a strength in Harris Semiconductor's quality approach. We have a very long lineage of high reliability, high performance products that have resulted from our commitment to design excellence. All Harris products are designed to meet the stringent quality and reliability requirements of the most demanding end equipment applications, from military and space to industrial and telecommunications. The application of new tools and methods has allowed us to continuously upgrade the design process.

Harris Quality
TABLE 1. TYPICAL ON-LINE MANUFACTURING/QUALITY FUNCTIONS

AREA	FUNCTION	MANUFACTURING CONTROLS	QA/QC MONITOR AUDIT
Wafer Fab	- Internal Audits   - Environmental   - Room/Hood Particulates   - Temperature/Humidity   - Water Quality   - Product   - Junction Depth   - Sheet Resistivities   - Defect Density   - Critical Dimensions   - Visual Inspection   - Lot Acceptance   - Process   - Film Thickness   - Implant Dosages   - Capacitance Voltage Changes   - Conformance to Specification   - Equipment   - Repeatability   - Profiles   - Calibration   - Preventive Maintenance	X   X   X   $X$   X	X   $X$   X
Assembly	- Internal Audits   - Environmental   - Room/Hood Particulates   - Temperature/Humidity   - Water Quality   - Product   - Documentation Check   - Dice Inspection   - Wire Bond Pull Strength/Controls   - Ball Bond Shear/Controls   - Die Shear Controls   - Post-Bond/Pre-Seal Visual   - Fine/Gross Leak   - PIND Test   - Lead Finish Visuals, Thickness   - Solderability   - Process   - Operator Quality Performance   - Saw Controls   - Die Attach Temperatures   - Seal Parameters   - Seal Temperature Profile   - Sta-Bake Profile   - Temp Cycle Chamber Temperature   - ESD Protection   - Plating Bath Controls   - Mold Parameters		X   X   X   X   X   $X$   X   $X$   X   X   X   X   X   $X$   $X$   X

TABLE 1. TYPICAL ON-LINE MANUFACTURING/QUALITY FUNCTIONS (Continued)

AREA	FUNCTION	MANUFACTURING CONTROLS	$\begin{gathered} \text { QA/QC MONITOR } \\ \text { AUDIT } \\ \hline \end{gathered}$
Test	- Internal Audits   - Temperature/Humidity   - ESD Controls   - Temperature Test Calibration   - Test System Calibration   - Test Procedures   - Control Unit Compliance   - Lot Acceptance Conformance   - Group A Lot Acceptance	$\begin{gathered} x \\ x \\ x \\ x \\ x \\ x \end{gathered}$	$\begin{gathered} \mathrm{X} \\ \hline \end{gathered}$
Probe	- Internal Audits   - Wafer Repeat Correlation   - Visual Requirements   - Documentation   - Process Performance	$\begin{aligned} & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$ $x$
Burn-In	- Internal Audits   - Functionality Board Check   - Oven Temperature Controls   - Procedural Conformance	$\begin{aligned} & x \\ & x \end{aligned}$	$\begin{aligned} & \hline x \\ & x \\ & x \\ & x \end{aligned}$
Brand	- Internal Audits   - ESD Controls   - Brand Permanency   - Temperature/Humidity   - Procedural Conformance	$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$	$\begin{gathered} \hline x \\ x \\ x \\ x \\ x \\ \hline \end{gathered}$
QCI Inspection	- Internal Audits   - Group B Conformance   - Group C and D Conformance		$\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \\ & \mathrm{x} \end{aligned}$

Each new design is evaluated throughout the development cycle to validate the capability of the new product to meet the end market performance, quality, and reliability objectives.

The validation process has four major components:

1. Design simulation/optimization
2. Layout verification
3. Product demonstration
4. Reliability assessment

Harris designers have an extensive set of very powerful Computer-Aided Design (CAD) tools to create and optimize product designs (see Table 2).

## Special Testing

Harris Semiconductor offers several standard screen flows to support a customer's need for additional testing and reliability assurance. These flows include environmental stress testing, burn-in, and electrical testing at temperatures other than $25^{\circ} \mathrm{C}$. The flow shown in Figures 2 and 3 indicates the Harris standard processing flow for a commercial linear part
in a PDIP package. In addition, Harris can supply products tested to customer specifications both for electrical requirements and for nonstandard environmental stress screening. Consult your field sales representative for details

TABLE 2. HARRIS IC DESIGN TOOLS

DESIGN STEP	PRODUCTS	
	ANALOG	DIGITAL
Functional Simulation	Cds Spice	Cds Spice Verilog
Parametric Simulation	Cds Spice Monte   Carlo	Cds Spice
Schematic Capture	Cadence	Cadence
Functional Checking	Cadence	Cadence
Rules Checking	Cadence	Cadence
Parasitic Extraction	Cadence	Cadence

## Harris Semiconductor Standard Processing Flow


(1) Example for a PDIP Package Part

FIGURE 2.



TABLE 3. PROCESS CONTROL APPLICATIONS

FAB		
- Diffusion   - Junction Depth   - Sheet Resistivities   - Oxide Thickness   - Implant Dose Calibration   - Uniformity	- Thin Film   - Film Thickness   - Uniformity   - Refractive Index   - Film Composition   - Particles Added	- Photo Resist   - Measurement   - Critical Dimension   Equipment   - Resist Thickness   - Critical   - Etch Rates   - Energy Monitor ( $\mathrm{E}_{\mathrm{O}}$ )   - Film Thickness   - Resistivity
ASSEMBLY		
- Pre-Seal   - Die Prep Visuals   - Yields   - Die Attach Heater Block   - Die Shear   - Wire Pull   - Ball Bond Shear   - Saw Blade Wear   - Pre-Cap Visuals	- Post-Seal   - Internal Package Moisture   - Tin Plate Thickness   - PIND Defect Rate   - Solder Thickness   - Leak Tests   - Module Rm. Solder Pot Temp.   - Seal   - Temperature Cycle	- Measurement   - XRF   - Radiation Counter   - Thermocouples   - GM-Force Measurement
TEST		
	- Handlers/Test System   - Defect Pareto Charts   - Lot \% Defective   - ESD Failures per Month	- Monitor Failures   - Lead Strengthening Quality   - After Burn-In PDA
OTHER		
- IQC   - Vendor Performance   - Material Criteria   - Quality Levels	- Environment   - Water Quality   - Clean Room Control   - Temperature   - Humidity	- IQC Measurement/Analysis   - XRF   - ADE   - 4 Point Probe   - Chemical Analysis Equipment

## Controlling and Improving the Manufacturing Process - SPC/DOX

Statistical process control (SPC) is the basis for quality control and improvement at Harris Semiconductor. Harris manufacturing people use control charts to determine the normal variabilities in processes, materials, and products. Critical process variables and performance characteristics are measured and control limits are plotted on the control charts. Appropriate action is taken if the charts show that an operation is outside the process control limits or indicates a nonrandom pattern inside the limits. These same control charts are powerful tools for use in reducing variations in processing, materials, and products. Table 3 lists some typical manufacturing applications of control charts at Harris Semiconductor.

SPC is important, but still considered only part of the solution. Processes which operate in statistical control are not always capable of meeting engineering requirements. The conventional way of dealing with this in the semiconductor industry has been to implement $100 \%$ screening or inspection steps to remove defects, but these techniques are insufficient to meet today's demands for the highest reliability and perfect quality performance.
Harris still uses screening and inspection to "grade" products and to satisfy specific customer requirements for burn-in, multiple temperature test insertions, environmental screening,
and visual inspection as value-added testing options. However, inspection and screening are limited in their ability to reduce product defects to the levels expected by today's buyers. In addition, screening and inspection have an associated expense, which raises product cost (see Table 4).

TABLE 4. APPROACH AND IMPACT OF STATISTICAL QUALITY TECHNOLOGY

	STAGE	APPROACH	IMPACT
1	Product Screening	- Stress and Test   - Defective Prediction	- Limited Quality   - Costly   - After-The-Fact
II	Process Control	- Statistical Process Control   - Just-In-Time Manufacturing	- Identifies Variability   - Reduces Costs   - Real Time
III	Process Optimization	- Design of Experiments   - Process Simulation	- Minimizes Variability   - Before-The-Fact
IV	Product Optimization	- Design for Producibility   - Product Simulation	- Insensitive to Variability   - Designed-In Quality   - Optimal Results

Harris engineers are, instead, using Design of Experiments (DOX), a scientifically disciplined mechanism for evaluating and implementing improvements in product processes, materials, equipment, and facilities. These improvements are aimed at upgrading process performance by studying the key variables controlling the process, and optimizing the procedures or design to yield the best result. This approach is a more timeconsuming method of achieving quality perfection, but a better product results from the efforts, and the basic causes of product nonconformance can be eliminated.

SPC, DOX, and design for manufacturability, coupled with our $100 \%$ test flows, combine in a product assurance program that delivers the quality and reliability performance demanded for today and for the future.

## Average Outgoing Quality (AOQ)

Average Outgoing Quality is a yardstick for our success in quality manufacturing. The average outgoing electrical defective is determined by randomly sampling units from each lot and is measured in parts per million (PPM). The current procedures and sampling plans outlined in ANSI/ASQC Z1.4, MIL-STD-883 and MIL-PRF-38535 are used by our quality inspectors.
The focus on this quality parameter has resulted in a continuous improvement to less than 100 PPM, and the goal is to continue improvement toward 0 PPM.

## Training

The basis of a successful transition from conventional quality programs to more effective, total involvement is training. Extensive training of personnel involved in product
manufacturing began in 1984 at Harris, with a comprehensive development program in statistical methods. Using the resources of Harris statisticians, private consultants, and internally developed programs, training of engineers, facilitators, and operators/technicians has been an ongoing activity in Harris Semiconductor.

Over the past years, Harris has also deployed a comprehensive training program for hourly operators and facilitators in job requirements and functional skills. All hourly manufacturing employees participate (see Table 5).

## Incoming Materials

Improving the quality and reducing the variability of critical incoming materials is essential to product quality enhancement, yield improvement, and cost control. With the use of statistical techniques, the influence of silicon, chemicals, gases and other materials on manufacturing is highly measurable. Current measurements indicate that results are best achieved when materials feeding a statistically controlled manufacturing line have also been produced by statistically controlled vendor processes.

To assure optimum quality of all incoming materials, Harris has initiated an aggressive program, linking key suppliers with our manufacturing lines. This user-supplier network is the Harris Vendor Certification process by which strategic vendors, who have performance histories of the highest quality, participate with Harris in a lined network; the vendor's factory acts as if it were a beginning of the Harris production line.

SPC seminars, development of open working relationships, understanding of Harris's manufacturing needs and vendor capabilities, and continual improvement programs are all

TABLE 5. SUMMARY OF TRAINING PROGRAMS

COURSE	AUDIENCE	TOPICS COVERED
SPC, Basic	Manufacturing Operators,   Non-Manufacturing   Personnel	Harris Philosophy of SPC, Statistical Definitions, Statistical Calculations,   Problem Analysis Tools, Graphing Techniques, Control Charts
SPC, Intermediate	Manufacturing Supervisors,   Technicians	Harris Philosophy of SPC, Statistical Definitions, Statistical Calculations,   Problem Analysis Tools, Graphing Techniques, Control Charts, Distributions,   Measurement Process Evaluation, Introduction to Capability
SPC, Advanced	Manufacturing Engineers,   Manufacturing Managers	Harris Philosophy of SPC, Statistical Definitions, Statistical Calculations,   Problem Analysis Tools, Graphing Techniques, Control Charts, Distributions,   Measurement Process Evaluation, Advanced Control Charts, Variance Com-   ponent Analysis, Capability Analysis
Design of Experiments   (DOX)	Engineers, Managers	Factorial and Fractional Designs, Blocking Designs, Nested Models, Analysis   of Variance, Normal Probability Plots, Statistical Intervals, Variance Compo-   nent Analysis, Multiple Comparison Procedures, Hypothesis Testing, Model   Assumptions/Diagnostics
Regression	Engineers, Managers	Simple Linear Regression, Multiple Regression, Coefficient Interval Estima-   tion, Diagnostic Tools, Variable Selection Techniques
Response Surface   Methods (RSM)	Engineers, Managers	Steepest Ascent Methods, Second Order Models, Central Composite   Designs, Contour Plots, Box-Behnken Designs
Capability Studies	Techs, Faciitators,   Engineers	Capability Indices (C ${ }_{P}$ and CPK), Variance Components, Nested Models,   Fixed and Random Effects

Harris Quality
part of the certification process. The sole use of engineering limits no longer is the only quantitative requirement of incoming materials. Specified requirements include centered means, statistical control limits, and the requirement that vendors deliver their products from their own statistically evaluated, in-control manufacturing processes.

In addition to the certification process, Harris has worked to promote improved quality in the performance of all our qualified vendors who must meet rigorous incoming inspection criteria (see Table 6).

TABLE 6. INCOMING QUALITY CONTROL MATERIAL QUALITY CONFORMANCE

MATERIAL	INCOMING INSPECTIONS	VENDOR DATA REQUIREMENTS
Silicon	- Resistivity   - Crystal Orientation   - Dimensions   - Edge Conditions   - Taper   - Thickness   - Total Thickness Variation   - Backside Criteria   - Oxygen   - Carbon	- Equipment Capability Control Charts   - Oxygen   - Resistivity   - Control Charts Related to   - Enhanced Gettering   - Total Thickness Variation   - Total Indicated Reading   - Particulates   - Certificate of Analysis for all Critical Parameters   - Control Charts from On-Line Processing   - Certificate of Conformance
Chemicals/Photoresists/ Gases	- Chemicals   - Assay   - Major Contaminants   - Molding Compounds   - Spiral Flow   - Thermal Characteristics   - Gases   - Impurities   - Photoresists   - Viscosity   - Film Thickness   - Solids   - Pinholes	- Certificate of Analysis on all Critical Parameters   - Certificate of Conformance   - Control Charts from On-Line Processing   - Control Charts   - Assay   - Contaminants   - Water   - Selected Parameters   - Control Charts   - Assay   - Contaminants   - Control Charts on   - Photospeed   - Thickness   - UV Absorbance   - Filterability   - Water   - Contaminants
Thin Film Materials	- Assay   - Selected Contaminants	- Control Charts from On-Line Processing   - Control Charts   - Assay   - Contaminants   - Dimensional Characteristics   - Certificate of Analysis for all Critical Parameters   - Certificate of Conformance
Assembly Materials	- Visual Inspection   - Physical Dimension Checks   - Glass Composition   - Bondability   - Intermetallic Layer Adhesion   - Ionic Contaminants   - Thermal Characteristics   - Lead Coplanarity   - Plating Thickness   - Hermeticity	- Certificate of Analysis   - Certificate of Conformance   - Process Control Charts on Outgoing Product Checks and In-Line Process Controls

## Calibration Laboratory

Another important resource in the product assurance system is a calibration lab in each Harris Semiconductor operation site. These labs are responsible for calibrating the electronic, electrical, electro/mechanical, and optical equipment used in both production and engineering areas. The accuracy of instruments used at Harris is traceable to a national standards. Each lab maintains a system which conforms to the current revision of ANSI/NCSL Z540-1.

Each instrument requiring calibration is assigned a calibration interval based upon stability, purpose, and degree of use. The equipment is labeled with an identification tag on which is specified both the date of the last calibration and of the next required calibration. The Calibration Lab reports on a regular basis to each user department. Equipment out of calibration is taken out of service until calibration is performed. The Quality organization performs periodic audits to assure proper control in the using areas. Statistical procedures are used where applicable in the calibration process.

## Manufacturing Science - CAM, JIT, TPM

In addition to SPC and DOX as key tools to control the product and processes, Harris is deploying other management mechanisms in the factory. On first examination, these tools appear to be directed more at schedules and capacity. However, they have a significant impact on quality results.

## Computer Aided Manufacturing (CAM)

CAM is a computer based inventory and productivity management tool which allows personnel to quickly identify production line problems and take corrective action. In addition, CAM improves scheduling and allows Harris to more quickly respond to changing customer requirements and aids in managing work in process (WIP) and inventories.

The use of CAM has resulted in significant improvements in many areas. Better wafer lot tracking has facilitated a number of process improvements by correlating yields to process variables. In several places CAM has greatly improved capacity utilization through better planning and scheduling. Queues have been reduced and cycle times have been shortened - in some cases by as much as a factor of 2 .

The most dramatic benefit has been the reduction of WIP inventory levels, in one area by $500 \%$. This results in fewer lots in the area and a resulting quality improvement. In wafer fab, defect rates are lower because wafers spend less time in production areas awaiting processing. Lower inventory also improves morale and brings a more orderly flow to the area. CAM facilitates all of these advantages.

## Just In Time (JIT)

The major focus of JIT is cycle time reduction and linear production. Significant improvements in these areas result in large benefits to the customer. JIT is a part of the Total Quality Management philosophy at Harris and includes Employee Involvement, Total Quality Control, and the total elimination of waste.

Some key JIT methods used for improvement are sequence of events analysis for the elimination of non-value added activities, demand/pull to improve production flow, TQC check points and Employee Involvement Teams using root cause analysis for problem solving.

JIT implementations at Harris Semiconductor have resulted in significant improvements in cycle time and linearity. The benefits from these improvements are better on time delivery, improved yield, and a more cost effective operation.

JIT, SPC, and TPM are complementary methodologies and used in conjunction with each other create a very powerful force for manufacturing improvement.

## Total Productive Maintenance (TPM)

TPM or Total Productive Maintenance is a specific methodology which utilizes a definite set of principles and tools focusing on the improvement of equipment utilization. It focuses on the total elimination of the six major losses which are equipment failures, setup and adjustment, idling and minor stoppages, reduced speed, process defects, and reduced yield. A key measure of progress within TPM is the overall equipment effectiveness which indicates what percentage of the time is a particular equipment producing good parts. The basic TPM principles focus on maximum equipment utilization, autonomous maintenance, cross functional team involvement, and zero defects. There are some key tools within the TPM technical set which have proven to be very powerful to solve long standing problems. They are initial clean, P-M analysis, condition based maintenance, and quality maintenance.
Utilization of TPM has shown significant increases in utilization on many tools across the Sector and is rapidly becoming widespread and recognized as a very valuable tool to improve manufacturing competitiveness.

The major benefits of TPM are capital avoidance, reduced costs, increased capability, and increased quality. It is also very compatible with SPC techniques since SPC is a good stepping stone to TPM implementation and it is in turn a good stepping stone to JIT because a high overall equipment effectiveness guarantees the equipment to be available and operational at the right time as demanded by JIT.

## Introduction

At Harris Semiconductor, reliability is built into every product by emphasizing quality throughout manufacturing. This starts by ensuring the excellence of the design, layout, and manufacturing processes. The quality of the raw materials and workmanship is monitored using statistical process control (SPC) to preserve the reliability of the product. The primary and ultimate goal of these efforts is to provide full performance to the product specification throughout its useful life.

## Reliability Engineering

The Reliability Engineering department is responsible for all aspects of reliability assurance at Harris Semiconductor:

## - Charter

- To ensure that Harris is recognized by our customers and competitors as a company that consistently delivers products with high reliability.
- Mission
- To develop systems for assessing, enhancing, and assuring that quality and reliability are integrated into all aspects of our business.
- Vision
- To establish excellence and integrity through all design and manufacturing processes as it relates to quality and reliability.

Values

- To be considered responsive and service oriented by our customers.
- To be acknowledged by Harris as a highly qualified resource for reliability assurance, product analysis, and electronic materials characterization.
- To successfully utilize the organization's talents through trained, empowered employees/employee team participation.
- To maintain an attitude of integrity, dignity and respect for all.


## Strategy

- To provide quantitative assessments of product reliability focusing on the identification and timely elimination of design and processing deficiencies that degrade product performance and operating life expectancy.
- To provide systems for continuous improvement of reliability and quality through the assessment of existing processes, products, and packages.
- To perform product analysis as a means of problem solving and feedback to our customers, both internal and external.
- To exercise full authority over the internal qualifications of new products, processes, and packages.

The reliability organization is comprised of a team that possesses a broad cross section of expertise in these areas:

- Custom Military (Radiation Hardened)
- Automotive ASICs
- Harsh Environment Plastic Packaging
- Advanced Methods for Design for Reliability (DFR)
- Strength in Power Semiconductor
- Chemical/Surface Analysis Capabilities
- Failure Analysis Capabilities

The reliability focus is customer satisfaction (external and internal) and is accomplished through the development of standards, performance metrics, and service systems. These major systems are summarized below:

- A process and product development system known as ACT PTM (Applying Concurrent Teams to Product-ToMarket) has been established. The ACT PTM philosophy is one of new product development through a team that pursues customer involvement. The team has the authority, responsibility, and training necessary to successfully bring the product to market. This not only includes product definition and design, but also all manufacturing capabilities as well.
- Standard test vehicles (over 100) have been developed for process characterization of wear-out failure mechanisms. These vehicles are used for conventional stresses (for modeling failure rates) and for wafer level reliability characterization during development.
- Common qualification standards have been established for all sites.
- A reliability monitoring system (also known as the Matrix monitoring system) is utilized for products in production to ensure ongoing reliability and verification of continuous improvement.
- The field return system is designed to handle a variety of customer issues in a timely manner. Product issues are often handled by routing the product into the PFAST (Product Failure Analysis Solution Team) system. Return authorizations (RAs) are issued where an entire lot of product needs to be returned to Harris. The Customer Return Services (CRS) group is responsible for the administration of this system (see Customer Return Services.)
- The PFAST system has been established to expedite failure analysis, failure root cause determination, and corrective actions for field returns. PFAST is a team effort involving many functional areas at all Harris sites. The purpose of this system is to enable Harris's Field Sales and Quality operations to properly route, track, and respond to our customer's needs as they relate to product analysis.


## Design for Reliability (Wear-Out Characterization)

The concept of "Design for Reliability" focuses on moving reliability assessment away from tests on sample product to a point much earlier in the design cycle. Effort is directed at building in and verifying the reliability of a new process well before manufacture of the first shippable product that uses that technology. This gives these first new products a higher probability of success and achieves reduced product-tomarket cycle times.

In practice, a set of standardized test vehicles containing special test structures are transferred to the new process using the layout ground rules specified for that process. Each test structure is designed for a specific wear-out failure mechanism. Highly accelerated stress tests are performed on these structures and the results can be extrapolated to customer use conditions. Generally, log-normal statistics are used to define wear-out distributions for the life prediction models. The results are used to establish reliability design ground rules and critical node lists for each process. These ground rules and critical nodes ensure that wear-out failures do not occur during the customer's projected use of the product.

## Process/Product/Package Qualifications

Once the new process has successfully completed wear-out characterization, the final qualification consists of more conventional testing (e.g. biased life, storage life, temp cycle etc.). These tests are performed on the first new product designs (sampled across multiple wafer production lots). Successful completion of the final qualification tests concurrently qualifies the new process and the new products that were used in the qualification. Subsequent products designed within the now-established ground rules are qualified individually prior to introduction. New package configurations are also qualified individually prior to being available for use with new products.

Harris's qualification procedures are specified via controlled documentation and the same standard is used at Harris's sites worldwide. Figure 4 gives more information on the new process/product development and life cycle.

## Product/Package Reliability Monitors

Many of the accelerated stress-tests used during initial reliability qualification are also employed during the routine monitoring of standard product. Harris's continuing reliability monitoring program consists of three groups of stress tests, labeled Matrix I, II and III. Table 7 outlines the Matrix tests used to monitor plastic packaged ICs in Harris's off-shore assembly piants, where each wafer fab technology is sampled. Matrix $I$ consists of highly accelerated, short duration (typically 48 hours) tests, sampled biweekly, which provide real-time feedback on product reliability. Matrix II consists of the more conventional, longer term stress-tests, sampled monthly, which are similar to those used for product qualification. Finally, Matrix III, performed monthly on each package style, monitors the mechanical reliability aspects of
the package. Any failures occurring on the Matrix monitors are fully analyzed and the failure mechanisms identified, with containment and corrective actions obtained from Manufacturing and Engineering. This information along with all of the test results are routinely transmitted to a central data base in Reliability Engineering, where failure rate trends are analyzed and tracked on an ongoing basis. These data are used to drive product improvements, to ensure that failure rates are continuously being reduced over time.
Reliability data, including the Matrix Monitor results, can be obtained by accessing our Reliability Engineering WWW Home Page at URL: http://rel.semi.harris.com or by contacting your local Harris sales office.

TABLE 7. PLASTIC PACKAGED IC MONITORING TESTS MATRIX I

TEST	CONDITIONS	DURATION	SAMPLE/   LTPD
Autoclave	$121^{\circ} \mathrm{C}, 100 \% R \mathrm{H}$,   15 PSIG	96 Hours	$45 / 5$
Biased Life	$175^{\circ} \mathrm{C}$	48 Hours	$45 / 5$
Biased Life	$125^{\circ} \mathrm{C}$	48 Hours	$45 / 5$
HAST	$135^{\circ} \mathrm{C}, 85 \%$ RH	48 Hours	$45 / 5$
Thermal Shock	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	200 Cycles	$45 / 5$

MATRIX II

TEST	CONDITIONS	DURATION	SAMPLE/   LTPD
Autoclave	$121^{\circ} \mathrm{C}, 100 \% \mathrm{RH}$,   15 PSIG	192 Hours	$45 / 5$
Biased Humidity	$85^{\circ} \mathrm{C}, 85 \% \mathrm{RH}$	1000 Hours	$45 / 5$
Biased Life	$125^{\circ} \mathrm{C}$	1000 Hours	$45 / 5$
Dynamic Life	$125^{\circ} \mathrm{C}$	1000 Hours	$45 / 5$
Storage Life	$150^{\circ} \mathrm{C}$	1000 Hours	$45 / 5$
Temp. Cycle	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$	1000 Cycles	$45 / 5$

MATRIX III

TEST	CONDITIONS	SAMPLE/LTPD
Brand Adhesion	MIL-STD-883/2015	$15 / 15$
Flammability	(UL-94 Vertical Burn)	$11 / 20$
Lead Fatigue	MIL-STD-883/2004	$15 / 15$
Physical Dimensions	MIL-STD-883/2016	$11 / 20$
Solderability	MIL-STD-883/2003	$45 / 15$

## Harris Reliability



FIGURE 4. NEW PROCESS/PRODUCT DEVELOPMENT AND LIFE CYCLE

## Customer Return Services

Harris places a high priority on resolving customer return issues. The Customer Return Services (CRS) department is responsible for determining the best manner to handle a return issue as illustrated in Figure 5.


FIGURE 5. GENERAL RETURN FLOW
The diversity of return reasons requires that many different organizations be involved to test, analyze, and correct field return issues. The CRS group coordinates the responses from the supporting organizations to drive closure of issues within the customer response time requirements, see Table 7. The results from the work performed on customer returns are used to initiate corrective actions and continuous improvements within the factories. When the work on a return is completed, the customer is contacted to be certain all issues have been satisfactorily resolved.

The two methods used to return devices are by a RA (Return Authorization) request or by a PFAST (Product Failure Analysis Solution Team) request. The main difference between RA and PFAST is that the PFAST requests often require extensive analysis and a more formal response to the customer. All returns follow the same general procedure from the customer's perspective as seen in steps one to five of the customer return procedure.

- Step 1 - Customer or Sales office contacts the Customer Return Services department. If a return is to be routed into the PFAST system, then a PFAST Action Request (see the PFAST form in this section) needs to be completed to understand the customer's issue and direct the analysis efforts.
- Phone Number: (407)-724-7400
- FAX Number: (407)-724-7658
- Internet: creturn@huey.mis.semi.harris.com
- PROFS: CRETURN
- Step 2 - The Customer Return Services department notifies all affected sales, factory, and engineering organizations of the issue.
- Step 3 - When product is received, the issue is verified and any required analysis is performed. Where applicable, a preliminary analysis report is sent to the customer.
- Step 4 - A determination of the root cause of failure initiates the corrective actions to address the source of the problem. A final corrective action report is sent to the customer if requested.
- Step 5 - The Customer Return Services department contacts the customer to confirm that all issues have been handled properly and the customer is satisfied that the return is completed.

The RA request is used to return and replace an entire lot of product. The lot is returned to Harris for replacement or credit. Once the product is received various tests and evaluations will be performed to determine the appropriate actions that should be taken to resolve any problems or issues.

A PFAST request is used to return a small sample for analysis of a problem. The ultimate outcome of both types of requests is to determine corrective actions that would preclude the same problem occurring in the future. Where appropriate, a containment plan is also implemented to prevent a reoccurrence of the problem in the field. The customer return flow diagram (Figure 6) provides the typical activities and cycle times for processing a PFAST request..

Harris Reliability

TABLE 8. CUSTOMER RETURN SERVICES

CHARTER	MISSION	RESPONSIBILITIES
To resolve product quality issues while providing feedback to both external and internal customers to facilitate corrective actions and continuous improvement of the product.	To provide a single point interface between the customer and the factory for resolving technical problems, issues, and field returns.	1. Maintain customer return history.   2. Track returns through the factory.   3. Establish a history library of problems and corrective actions.   4. Ensure closure with customers.



NOTE: The days indicated are the typical number of 'working days' not calendar days. Analysis difficulty and the nature of the corrective actions may either improve or degrade the total cycle time.

FIGURE 6. CUSTOMER RETURN FLOW DIAGRAM
$\qquad$
(Product Failure Analysis Solution Team)
Date: $\qquad$


## INSTRUCTIONS FOR COMPLETING PFAST ACTION REQUEST FORM

The purpose of this form is to help us provide you with a more accurate, complete, and timely response to failures which may occur. Accurate and complete information is essential to ensure that the appropriate corrective action can be implemented. Due to this need for accurate and complete information, requests without a completed PFAST Action Request form will be returned.

## Source of Problem:

This section requests the product flow leading to the failure. Mark an ' X ' in the appropriate boxes up to and including the step which detected the failure. Also mark an ' X ' in the appropriate box under "ARE RESULTS REPRESENTATIVE OF PREVIOUS LOTS?" to indicate whether this is a rare failure or a repeated problem.

Example 1. No incoming electrical test was performed; the units were installed onto boards; the boards functioned correctly for two hours and then 1 unit failed. The customer rarely has a failure due to the Harris device.


Example 2. 100 out of the 500 units shipped were tested at incoming and all passed. The units were installed into boards and the boards passed. The boards were installed into the system and the system failed immediately when turned on. There were 3 system failures due to this part. The customer frequently has failures of this Harris device. The 3 units were not retested at incoming.


## Action Requested by Customer:

This section should be completed with the customer's expectations. This information is essential for an appropriate response.

## Reason for Electrical Reject:

This section should be completed if the type of failure could be identified. If this information is contained in attached customer correspondence there is no need to transpose onto the PFAST Action Request form.

## PFAST REQUIREMENTS

The value of returning failing products is in the corrective actions that are generated. Failure to meet the following requirements can cause erroneous conclusion and corrective action; therefore, failure to meet these requirements will result in the request being returned. Contact the local PFAST Coordinator if you have any questions.
Units with conformal coating should include the coating manufacturer and model. This is requested since the coating must be removed in order to perform electrical and hermeticity testing.

1. Units must be returned with proper ESD protection (ESD-safe shipping tubes within shielding box/bag or inserted into conductive foam within shielding box/bag). No tape, paper bags, or plastic bags should be used. This requirement ensures that the devices are not damaged during shipment back to Harris.
2. Units must be intact (lid not removed and at least part of each package lead present). This is a requirement since the parts must be intact in order to perform electrical test. Also, opening the package can remove evidence of the cause of failure and lead to an incorrect conclusion.
3. Programmable parts (ROMs, PROMs, UVEPROMs, and EEPROMs) must include a master unit with the same pattern. This requirement is to provide the pattern so all failing locations can be identified. A master unit is required if a failure analysis is requested.

FIGURE 7. PFAST ACTION REQUEST (Continued)

## Product Analysis Lab

The Product Analysis Laboratory capabilities and charter encompass the isolation and identification of failure modes and mechanisms, preparing comprehensive technical reports, and assigning appropriate corrective actions. The primary activities of the Product Analysis Lab are electrical verification/characterization of the failure, package inspection/analysis, die inspection/analysis, and circuit isolation/probing. A variety of tools and techniques have been developed to ensure the accuracy and integrity of the product analysis. This section lists some of the tools and techniques that are employed during a typical analysis.

The electrical verification/characterization of devices failing electrical parameters is essential prior to performing an analysis. The information obtained from the electrical verification provides a direction for the analysis efforts. The following electrical verification/characterization equipment may be used to obtain electrical data on a device:

- ASIC Verification System
- Analog Test System
- Curve Tracer
- Mixed Signal/Telecom Test System
- Parametric Analyzer

Prior to die level analysis, package inspection and analysis are performed. These steps are performed routinely since valuable data may not be obtainable once the package is opened. The package inspection and analysis may require the use of some of the following lab equipment:

- X-ray
- C-mode Scanning Acoustic Microscope (C-SAM)
- Optical inspection microscopes
- Package opening tools and techniques

Once the device has been opened, die inspection and analysis can be performed. Depending on the type of failure, several tools and techniques may be used to identify the failure mechanism. Usually the faster and easier to use operations are performed first in an attempt to expedite the analysis. The list of equipment and techniques for performing die inspection and analysis is as follows:

- Optical microscopes
- Liquid crystal
- Emission microscope
- Scanning electron microscopes - SEM

The final step of circuit isolation is ready to be performed when an area of the circuit has been identified as the source of the problem through one of the previous analysis efforts. Circuit analysis is performed using the following probing and isolation tools:

- Mechanical probing
- Laser cutter and isolation
- E-beam probing
- Cross sectioning and chemical deprocessing

A typical analysis flow is shown in the Figure 8 below. The exact analysis steps and sequence are determined as the situation dictates. For the analysis to be conclusive, it is essential that the failure mechanism correlates to the initial product failure conditions. Some failure mechanisms require elemental and chemical analysis to identify the root cause within the manufacturing process. Elemental and chemical analysis tasks are sent to the Analytical Services Lab for further evaluation.

The results of each analysis are entered into a computer data base. This data base is used to search for specific types of problems, to identify trends, and to verify that the corrective actions were effective.


FIGURE 8. ANALYSIS SEQUENCE

## Analytical Services Laboratory

Chemical and physical analysis of materials and processes is an integral part of Harris' Total Quality/Continuous Improvement efforts to build reliability into processes and products. Manufacturing operations are supported with realtime analyses to help maintain robust processes. Analyses are run in cooperation with raw material suppliers to help them provide controlled materials in dock-to-stock procurement programs.

Harris facilities, engineering, manufacturing, and product assurance are supported by the Analytical Services Laboratory. Organized into chemical or microbeam analysis methodology, staff and instrumentation from both labs cooperate in fully integrated approaches necessary to complete analytical studies.

The department also maintains ongoing working arrangements with commercial laboratories, universities, and equipment manufacturers to obtain any materials analysis in cases where instrumental capabilities are not available in our own facility.


FIGURE 9. MICROBEAM LABORATORY

Figures 9 and 10 show the capabilities of each area.


FIGURE 10. CHEMISTRY LABORATORY

## Reliability Fundamentals and Calculation of Failure Rate

Table 9 defines some of the more important terminology used in describing the lifetime of integrated circuits. Of prime importance is the concept of "failure rate" and its calculation.

## Failure Rate Calculations

Since reliability data can be accumulated from a number of different life tests with several different failure mechanisms, a comprehensive failure rate is desired. The failure rate calculation can be complicated if there are more than one failure mechanism in a life test, since the failure mechanisms are thermally activated at different rates The equation below accounts for these considerations along with a statistical factor to obtain the upper confidence level (UCL) for the resulting failure rate.

where,

$$
\begin{aligned}
& \lambda=\text { failure rate in FITs (Number fails in } 10^{9} \text { device hours) } \\
& \beta=\text { number of distinct possible failure mechanisms } \\
& k=\text { number of life tests being combined } \\
& x_{i}=\text { number of failures for a given failure mechanism } \\
& i=1,2, \ldots \beta \\
& T D H_{j}=\text { Total device hours of test time (unaccelerated) for Life Test } \\
& \mathrm{j}, \mathrm{j}=1,2,3, \ldots \mathrm{k} \\
& A F_{i j}=\text { Acceleration factor for appropriate failure mechanism } i=1 \text {, } \\
& 2, \ldots \text { k } \\
& M=X^{2}(\alpha, 2 r+2) / 2 \\
& \text { where, } \\
& X^{2}=\text { chi square factor for } 2 r+2 \text { degrees of freedom } \\
& r=\text { total number of failures }\left(\Sigma x_{i}\right) \\
& \alpha=\text { risk associated with UCL; } \\
& \text { i.e. } \alpha=(100-\mathrm{UCL}(\%)) / 100
\end{aligned}
$$

In the failure rate calculation, Acceleration Factors $\left(\mathrm{AF}_{\mathrm{ij}}\right)$ are used to derate the failure rate from the thermally accelerated life test conditions to a failure rate indicative of actual use temperature. Although no standard exists, a temperature of $55^{\circ} \mathrm{C}$ has been popular. Harris Semiconductor Reliability Reports will derate to $55^{\circ} \mathrm{C}$ and will express failure rates at $60 \%$ UCL. Other derating temperatures and UCLs are available upon request.

TABLE 9. FAILURE RATE PRIMER

TERMS	DEFINITIONS/DESCRIPTION
Failure Rate $\lambda$	$\begin{array}{l}\text { Measure of failure per unit of time. The early life failure rate is typically higher, decreases slightly, } \\ \text { and then becomes relatively constant over time. The onset of wear-out will show an increasing fail- } \\ \text { ure rate, which should occur well beyond useful life. The useful life failure rate is based on the expo- } \\ \text { nential life distribution. }\end{array}$
FIT (Failure In Time)	$\begin{array}{l}\text { Measure of failure rate in } 10^{9} \text { device hours; e.g., } 1 \text { FIT }=1 \text { failure in } 10^{9} \text { device hours, } 100 \mathrm{FITS}= \\ 100 \text { failure in } 10^{9} \text { device hours, etc. }\end{array}$
Device Hours	The summation of the number of units in operation multiplied by the time of operation.
MTTF (Mean Time To Failure)	$\begin{array}{l}\text { Mean of the life distribution for the population of devices under operation or expected lifetime of an } \\ \text { individual, MTTF }=1 / \lambda, \text { which is the time where } 63.2 \% \text { of the population has failed. Example: For } \\ \lambda=10 \text { FITS (or } 10 \mathrm{E}-9 / H r .), ~ M T T F ~\end{array} 1 / \lambda=100$ million hours.

## Acceleration Factors

Acceleration factor is determined from the Arrhenius Equation. This equation is used to describe physiochemical reaction rates and has been found to be an appropriate model for expressing the thermal acceleration of semiconductor failure mechanisms.

$$
A F=\operatorname{EXP}\left[\frac{\mathrm{E}_{\mathrm{a}}}{\mathrm{k}}\left(\frac{1}{\mathrm{~T}_{\text {USE }}}-\frac{1}{T_{\text {STRESS }}}\right)\right]
$$

where,

$$
\begin{aligned}
\mathrm{AF} & =\text { Acceleration Factor } \\
\mathrm{E}_{\mathrm{a}} & =\text { Thermal Activation Energy }(\text { See Table } 10) \\
\mathrm{k} & =\text { Boltzmann's Constant }\left(8.63 \times 10^{-5} \mathrm{eV} /{ }^{\circ} \mathrm{K}\right)
\end{aligned}
$$

Both $T_{\text {use }}$ and $T_{\text {stress }}$ (in degrees Kelvin) include the internal temperature rise of the device and therefore represent the junction temperature.

## Activation Energy

The Activation Energy ( $\mathrm{E}_{\mathrm{a}}$ ) of a failure mechanism is determined by performing at least two tests at different levels of stress (temperature and/or voltage). The stresses will provide the time to failure ( $\mathrm{t}_{\mathrm{f}}$ ) for the two (or more) populations thus allowing the simultaneous solution for the activation energy as follows:

$$
\ln \left(t_{f 1}\right)=C+\frac{E_{a}}{k T_{1}} \quad \ln \left(t_{f 2}\right)=C+\frac{E_{a}}{k T_{2}}
$$

By subtracting the two equations and solving for the activation energy, the following equation is obtained:

$$
E_{a}=\frac{k\left[\ln \left(t_{f 1}\right)-\ln \left(t_{f}\right)\right]}{(1 / T 1-1 / T 2)}
$$

where,
$\mathrm{E}_{\mathrm{a}}=$ Thermal Activation Energy (See Table 10)
$\mathrm{k}=$ Boltzmann's Constant $\left(8.63 \times 10^{-5} \mathrm{eV} /{ }^{\circ} \mathrm{K}\right)$
$T_{1}, T_{2}=$ Life test temperatures in degrees Kelvin

TABLE 10. FAILURE MECHANISM

FAILURE MECHANISM	ACTIVATION ENERGY	SCREENING AND TESTING METHODOLOGY	CONTROL METHODOLOGY
Oxide Defects	$0.3 \mathrm{eV}-0.5 \mathrm{eV}$	High temperature operating life (HTOL) and voltage stress. Defect density test vehicles.	Statistical Process Control of oxide parameters, defect density control, and voltage stress testing.
Silicon Defects (Bulk)	$0.3 \mathrm{eV}-0.5 \mathrm{eV}$	HTOL and voltage stress screens.	Vendor statistical Quality Control programs, and Statistical Process Control on thermal processes.
Corrosion	0.45 eV	Highly accelerated stress testing (HAST)	Passivation dopant control, hermetic seal control, improved mold compounds, and product handling.
Assembly Defects	$0.5 \mathrm{eV}-0.7 \mathrm{eV}$	Temperature cycling, temperature and mechanical shock, and environmental stressing.	Vendor Statistical Quality Control programs, Statistical Process Control of assembly processes, proper handling methods.
Electromigration   - Al Line   - Contact	$\begin{aligned} & 0.6 \mathrm{eV} \\ & 0.9 \mathrm{eV} \end{aligned}$	Test vehicle characterizations at highly elevated temperatures.	Design ground rules, wafer process statistical process steps, photoresist, metals and passivation.
Mask Defects/Photoresist Defects	0.7 eV	Mask FAB comparator, print checks, defect density monitor in FAB, voltage stress test and HTOL.	Clean room control, clean mask, pellicles, Statistical Process Control of photoresist/etch processes.
Contamination	1.0 eV	C-V stress at oxide/interconnect, wafer FAB device stress test and HTOL.	Statistical Process Control of C-V data, oxide/ interconnect cleans, high integrity glassivation and clean assembly processes.
Charge Injection	1.3 eV	HTOL and oxide characterization.	Design ground rules, wafer level Statistical Process Control and critical dimensions for oxides.



# Electrostatic Discharge Control: A Guide To Handling Integrated Circuits 

This paper discusses methods and materials recommended for protection of ICs against ESD damage or degradation during manufacturing operations vulnerable to ESD exposure. Areas of concern include dice prep and handling, dice and package inspection, packing, shipping, receiving, testing, assembly and all operations where ICs are involved.

All integrated circuits are sensitive to electrostatic discharge (ESD) to some degree. Since the introduction of integrated circuits with MOS structures and high quality junctions, safe and effective means of handling these devices have been of primary importance.

If static discharge occurs at a sufficient magnitude, 2 kV or greater, some damage or degradation will usually occur. It has been found that handling equipment and personnel can generate static potentials in excess of 10 kV in a low humidity environment; thus it becomes necessary for additional measures to be implemented to eliminate or reduce static charge. Avoiding any damage or degradation by ESD when handling devices during the manufacturing flow is therefore essential.

## ESD Protection and Prevention Measures

One method employed to protect gate oxide structures is to incorporate input protection diodes directly on the monolithic chip. However, there is no completely foolproof system of chip input protection in existence in the industry.

In areas where ICs are being handled, certain equipment should be utilized to reduce the damaging effects of ESD. Typically, equipment such as grounded work stations, conductive wrist straps, conductive floor mats, ionized air blowers and conductive packaging materials are included in the IC handling environment. Any time an individual intends to handle an IC, in any way, they must insure they have been grounded to eliminate circuit damage.

Grounding personnel can, practically, be performed by two methods. First, grounded wrist straps which are usually made of a conductive material, such as Velostat or metal. A resistor value of 1 megohm ( $1 / 2$ watt) in series with the strap to ground completes a discharge path for ESD when the operator wears the strap in contact with the skin. Another method is to insure direct physical contact with a grounded, conductive work surface.

This consists of a conductive surface like Velostat, covering the work area. The surface is connected to a 1 megohm ( $1 / 2$ watt) resistor in series with ground.

In addition to personnel grounding, areas where work is being performed with ICs, should be equipped with an ionized air blower. lonized air blowers force positive and negative ions simultaneously over the work area so that any nonconductors that are near the work surface would have their static charge neutralized before it would cause device damage or degradation.

Relative humidity in the work area should be maintained as high as practical. When the work environment is less than $40 \%$ RH, a static build-up condition can exist on nonconductors allowing stored charges to remain near the ICs causing possible static electricity discharge to ICs.

Integrated circuits that are being shipped or transported require special handling and packaging materials to eliminate ESD damage. Dice or packaged devices should be in conductive carriers during all phases of transport and handling. Leads of packaged devices can be shorted by tubular metallic carriers, conductive foam or foil.

## Do's and Don'ts for Integrated Circuit Handling

## Do's

Do keep paper, nonconductive plastic, plastic foams and films or cardboard off the static controlled conductive bench top. Placing devices, loaded sticks or loaded burn-in boards on top of any of these materials effectively insulates them from ground and defeats the purpose of the static controlled conductive surface.

Do keep hand creams and food away from static controlled conductive work surfaces. If spilled on the bench top, these materials will contaminate and increase the resistivity of the work area.

Do be especially careful when using soldering guns around conductive work surfaces. Solder spills and heat from the gun may melt and damage the conductive mat.
Do check the grounded wrist strap connections daily. Make certain they are snugly fitted before starting work with the product.
Do put on grounded wrist strap before touching any devices. This drains off any static buildup from the operator.

Do know the ESD caution symbols.
Do remove devices or loaded sticks from shielding bags only when grounded via wrist strap at grounded work station. This also applies when loading or removing devices from the antistatic sticks or the loading on or removing from the burn-in boards.

Do wear grounded wrist straps in direct contact with the bare skin never over clothing.
Do use the same ESD control with empty burn-in boards as with loaded boards if boards contain permanently mounted ICs as part of driver circuits.

Do insure electrical test equipment and solder irons at an ESD control station are grounded and only uninsulated metal hand tools be used. Ordinary plastic solder suckers and other plastic assembly aids shall not be used.

Do use ionizing air blowers in static controlled areas when the use of plastic (nonconductive) materials cannot be avoided.

## Don'ts

Don't allow anyone not grounded to touch devices, loaded sticks or loaded burn-in boards. To be grounded they must be standing on a conductive floor mat with conductive heel straps attached to footwear or must wear a grounded wrist strap.

Don't touch the devices by the pins or leads unless grounded since most ESD damage is done at these points.

Don't handle devices or loaded sticks during transport from work station to work station unless protected by shielding bags. These items must never be directly handled by anyone not grounded.

Don't use freon or chlorinated cleaners at a grounded work area.
Don't wax grounded static controlled conductive floor and bench top mats. This would allow buildup of an insulating layer and thus defeating the purpose of a conductive work surface.

Don't touch devices or loaded sticks or loaded burn-in boards with clothing or textiles even though grounded wrist strap is worn. This does not apply if conductive coats are worn.

Don't allow personnel to be attached to hard ground. There must always be 1 megohm series resistance ( $1 / 2$ watt between the person and the ground).

Don't touch edge connectors of loaded burn-in boards or empty burn-in boards containing permanently mounted driver circuits when not grounded. This also applies to burnin programming cards containing ICs.

Don't unload stick on a metal bench top allowing rapid discharge of charged devices.
Don't touch leads. Handle devices by their package even though grounded.

Don't allow plastic "snow or peanut" polystyrene foam or other high dielectric materials to come in contact with devices or loaded sticks or loaded burn-in boards.

Don't allow rubber/plastic floor mats in front of static controlled work benches.

Don't solvent-clean devices when loaded in antistatic sticks since this will remove antistatic inner coating from sticks.

Don't use antistatic sticks for more than one throughput process. Used sticks should not be reused unless recoated.

## Recommended Maintenance Procedures

## Daily

Perform visual inspection of ground wires and terminals on floor mats, bench tops, and grounding receptacles to ensure that proper electrical connections via 1 megohm resistor (1/2 watt) exist.

Clean bench top mats with a soft cloth or paper towel dampened with a mild solution of detergent and water.

## Weekly

Damp mop conductive floor mats to remove any accumulated dirt layer which causes high resistivity.

## Annually

Replace nuclear elements for ionized air blowers.
Review ESD protection procedures and equipment for updating and adequacy.

## Static Controlled Work Station

The figure below shows an example of a work bench properly equipped to control electrostatic discharge. Note that the wrist strap is connected to a 1 megohm resistor. This resistor can be omitted in the setup if the wrist strap has a 1 megohm assembled on the cable attached.


# LINEAR <br> <br> 10 

 <br> <br> 10}

## APPLICATION NOTES, ABSTRACTS AND SPICE MODEL LISTING

PAGE
APPLICATION NOTE ABSTRACTS ..... 10-3
SPICE MODEL LISTING ..... 10-6
APPLICATION NOTES
AN013.1 Everything You Always Wanted To Know About The ICL8038 ..... 10-7
AN053.1 The ICL7650S: A New Era in Glitch-Free Chopper Stabilized Amplifiers ..... 10-11
AN514.1 The HA-2400 PRAM Four Channel Operational Amplifier. ..... $10-25$
AN519.1 Operational Amplifier Noise Prediction (All Op Amps) ..... 10-32
AN548.1 A Designers Guide for the HA-5033 Video Buffer . ..... 10-35
AN551.1 Recommended Test Procedures for Operational Amplifiers ..... $10-47$
AN6668.1 Applications of the CA3080 and CA3080A High-Performance Operational Transconductance Amplifiers ..... 10-52
AN9202 Using the HFA1100, HFA1130 Evaluation Fixture. ..... 10-69
AN9305 HA5020 Operational Amplifier Feedback Resistor Selection ..... 10-71
AN9313.1 Circuit Considerations In Imaging Applications (HA-2546, HA-5020, HA-5033, HI-5700) ..... 10-73
AN9314.1 Harris UHF Pin Drivers ..... 10-81
AN9315.1 RF Amplifier Design Using HFA3046, HFA3096, HFA3127, HFA3128 Transistor Arrays ..... $10-85$
AN9317.1 Micropower Clock Oscillator and Op Amps Provide System Control for Battery Operated Circuits (HA7210) ..... 10-89
AN9334.1 Improving Start-up Time at 32kHz for the HA7210 Low Power Crystal Oscillator ..... 10-91
AN9415.3 Feedback, Op Amps and Compensation ..... 10-93
AN9420.1 Current Feedback Amplifier Theory and Applications ..... 10-105
AN9502.1 Oscillator Produces Quadrature Waves (HA5025) ..... 10-112
AN9503.1 Low Output Impedance MUX (HA5022) ..... 10-114
AN9507.1 Video Cable Drivers Save Board Space, Increase Bandwidth (HFA1112, HFA1114) ..... 10-115

## Application Notes, Abstracts and Spice Model Listing (continued)

PAGE
AN9508.1 Video Multiplexer Delivers Lower Signal Degradation (HA5024) ..... 10-117
AN9510.1 Basic Analog for Digital Designers ..... 10-118
AN9513 Component Video Sync Formats (HFA1103) ..... 10-124
AN9514 Video Amplifier with Sync Stripper and DC Restore (HFA1103) ..... 10-127
AN9515.1 Multiplier Improves the Dynamic Range of Echo Systems (HA-2556, HA-5177) ..... 10-129
AN9516.1 Adjustable Bandpass or Bandreject Filter (HA-2841) ..... 10-131
AN9523 Evaluation Programs for SPICE Op Amp Models ..... 10-133
AN9524 HFA1212 Dual Video Buffer Forms Differential Line Driver/Receiver ..... 10-143
AN9528.1 900MHz Down Converter Consumes Little Power (HFA3101) ..... 10-144
AN9536.1 PSPICE Performs Op Amp Open Loop Stability Analysis (HA5112) ..... 10-145
AN9621.1 Comparison of Current Feedback Op Amp SPICE Models (HA5013) ..... 10-147
AN9641 High-Frequency VGA Has Digital Control ..... 10-154
AN9653 Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135) ..... 10-156
TECH BRIEF10-161

## Application Note Abstracts

AN \＃	TITLE	ABSTRACT
007	Using the 8048／8049 Monolithic Log－Anti－Log Amplifiers	Describes in detail the operation of the ICL8048 logarithmic amplifier，and its counterpart，the ICL8049 anti－log amp．
013	Everything You Always Wanted to Know About the 8038	This note includes 17 of the most asked questions regarding the use of the ICL8038．
040	A Precision Four Quadrant Multiplier－The 8013	Describes，in detail，the operation of the ICL8013 analog multiplier．Included are multiplication，division，and square root applications．
053	The ICL7650－A New Era in Glitch－Free Chopper Stabilizer Amplifiers	A brief discussion of the internal operation of the ICL7650，followed by an extensive application section including amplifiers，comparators，log－amps，pre－amps，etc．
509	A Simple Comparator Using The HA－2620	Performance characteristics，application schematics，output parameter control methods．
514	The HA－2400 PRAM Four Channel Operational Amplifier	HA－2400 Programmable Analog Microcircuit description，frequency compensation， applications（analog multiplexer，non－inverting programmable gain amplifier，inverting programmable gain amplifier，programmable attenuator，programmable adder－ subtractor，phase selector，phase detector，synchronous rectifier，balanced modulator， integrator，ramp generator，track and hold，sample and hold，sine wave oscillator， multivibrator，active filter，programmable power supply，comparator，multiplying D／A converter）．
515	Operational Amplifier Stability：Input Capacitance Considerations	Input capacitance and stability，capacitive feedback compensation，guidelines for compensation requirements．
517	Applications of a Monolithic Sample and Hold Amplifier	General Sample and Hold information and fourteen specific applications，including filtered Sample and Hold DAC de－glitcher，Integrate－Hold－Reset，gated op amp，etc．
519	Operational Amplifier Noise Prediction	Noise model and equations，procedure for computing total output noise，example， broadband noise measurement，spot noise prediction techniques，typical spot noise curves，popcorn noise discussion．
525	HA－5190／5195 Fast Settling Operational Amplifier	Internal schematic，prototyping considerations，frequency compensation，performance enhancement methods，applications．
526	Video Applications for the HA－5190／5195	Video applications，video response tests， $\mathrm{S} / \mathrm{N}$ ratio measurements，power supply requirements temperature considerations，design hints，prototyping tips，RF AGO amplifier，DC gain controlled video amplifier．
538	Monolithic Sample／Hold Combines Speed and Precision	Description and electrical specifications for the HA－5320 Sample／Hold Amplifier， explanation of errors sources，and HA－5320 applications．
540	HA－5170 Precision Low Noise JFET Input Operation Amplifier	Internal design and technology，JFET noise discussion，trimming of offset voltage， single op amp Instrumentation Amplifier，sine wave oscillator，high impedance transducer interface，current source／sink and current sense circuits．
541	Using HA－2539 or HA－2540   Very High Slew Rate， Wideband Operational Amplifier	Prototyping considerations，output short circuit protection，offset voltage adjustment， frequency compensation，composite amplifier scheme，DC error reduction，boosting output current，increasing output signal swing，cascade amplifier，video gain block，high frequency oscillator，wideband signal splitter．
544	Micropower Op Amp Family， HA－514X	Operation，noise performance，applications（remote sensor loop transmitter，charge pool power supply，low power microphone preamplifier，AGO with squelch control，Wein bridge oscillator，bar code scanner，monostable multivibrator）．
546	A Method of Calculating HA－ 2625 Gain Bandwidth Product vs Temperature	A method of calculating Gain Bandwidth product performance versus temperature for the HA－2625 Op Amp．
548	A Designer＇s Guide for the HA－5033 Video Buffer	Operation，video performance，video parameter specifications，$Y$ parameters， applications（flash converter pre－driver，coaxial line driver，video gain block，high speed sample and hold，audio drivers，crystal oscillator）．


AN \#	TITLE	ABSTRACT
550	Using the HA-2541	Prototyping guidelines, thermal considerations and heat sinking, performance enhancements, applications (Wein bridge oscillator, high power gain stage, video stage with clamp, multiplexer/demultiplexer, disk drive write amplifier, gain programmable amp, composite amp).
551	Recommended Test Procedures for Operational Amplifiers	Operational amplifier test procedures for offset voltage, bias current, offset current, power supply rejection ratio, common mode rejection ratio, output voltage swing, output current, open loop gain, slew rate, full power bandwidth, transient response, settling time, GBP, phase margin, noise voltage and current, and channel separation.
552	Using the HA-2542	Prototyping guidelines, thermal considerations and heat sinking, performance enhancements, applications (multi-channel security system, unbalanced coaxial driver, flash converter driver, programmable power supply, bridge load driver, high current stage, differential line driver, DC motor speed control).
553	Using the HA-5147/5137/ 5127	Construction and operation, low noise design applications (instrumentation amplifier bridge sensor, multiplexer, precision threshold detector, audio driver, NAB amplifier, multivibrator, programmable gain stage, log amp, professional mixer).
554	Low Noise Family HA-5101/5102/5104/5112/ 5114	Low noise design, operation, applications (Electronic scales, programmable attentuator, Baxandal circuit, RIAA amplifier, NAB preamplifier, microphone amplifier, standard and simple biquads, professional mixer.
556	Thermal Safe-OperatingAreas for High Current Op Amps	Thermal management equations and curves indicating areas of $\mathrm{V}_{\mathrm{OUT}}$ and $\mathrm{I}_{\mathrm{OUT}}$ for safe operation. Also, the effects of packaging and heat sinking are examined.
5290	General Purpose Op Amps	Discusses various uses of op amps.
5296	CA3018	Transistor Array
5337	CA3028	RF amplifiers in the HF and VHF ranges.
5766	CA3020	Multipurpose wideband power amplifiers
6048	CA3094	Programmable power switch/amplifier.
6077	CA3094	OTA with power capability.
6247	CA3126	Chroma processing IC using sample and hold circuit techniques.
6257	CA3089	FM IF Subsystem
6386	CA3130	Understanding BiMOS op amps.
6459	CA3130	Why and how to use the BiMOS op amp.
6472	CA3126	A chrominance demodulator IC with dynamic flesh correction.
6668	CA3080 OTA	What is an Operational Transconductance Amplifier (OTA)? Circuit description plus numerous application examples.
6669	CA3240	BiMOS op amp mates directly to system sensors.
6732	Noise Measurement	Measurement of burst noise and "popcorn" noise in ICs.
6818	CA3280 Dual OTA	OTA simplifies complex analog designs.
7127	CA3420	BiMOS amplifier circumvents low voltage limitations.
8636	Video Devices	Discusses advanced video speed switches, multiplexers, cross points and buffer amplifiers.
8707	CA3450	Single chip video line driver-high speed op amp.
8742	CD22402	Sync Generator
8811	CA5470	BiMOS-E process enhances quad op amp.
9202	Using the HFA1100, HFA1130 Evaluation Fixture	Uses for the HFA11XX Evaluation Board, and performance examples.
9305	HA5020 Operational Amplifier Feedback Resistor Selection	Discusses a method for calculating the optimum feedback resistor value when using a current feedback amplifier at closed loop gains grater than 1.
9313	Circuit Considerations In Imaging Applications	Discusses the analog input section of an image processing system. Presents video formats, analog circuit design considerations, etc.
9314	Harris UHF Pin Drivers	Description, use of, and applications for the HFA5250 and HFA5251.

## Application Note Abstracts

AN \＃	TITLE	ABSTRACT
9315	RF Amplifier Design Using HFA3046／3096／3127／3128 Transistor Arrays	Sample RF amplifier designs including layout techniques and performance results．
9317	Micropower Clock Oscillator and OP Amps Provide System Control for Battery Operated Circuits	Using HA7210 in a control circuit to switch a battery powered digital system from sleep mode（ultra low power）to active when an external event（sound，pressure，etc．）is detected．
9334	Improving Start－up Time at 32kHz for the HA7210 Low Power Crystal Oscillator	Techniques to speed up the oscillator start－up time when operating the HA7210 at low power settings．
9415	Feedback，Op Amps，and Compensation	Basic feedback theory and op amp fundamentals．
9420	Current Feedback Amplifier Theory	In depth analysis of Current feedback amplifiers．
9502	Oscillator Produces Quadrature Waves	Using a quad op amp to implement an RC oscillator producing quadrature outputs．
9503	Low Output Impedance MUX	Amplifiers with output disable functions implement muxes to drive low impedance loads．
9507	Video Cable Drivers Save Board Space，Increase Bandwidth	Limitations of long cables on video circuit performance，and use of novel video buffers to counteract cable limitations and save board space．
9508	Video Multiplexer Delivers Lower Signal Degradation	Implementation of a 4：1，cable driving，video mux using quad op amps featuring an output disable function．
9510	Basic Analog for Digital Designers	Analog refresher for engineers who haven＇t worked with analog circuits since college．
9513	Component Video Sync Formats	Discussion of video sync signals and sync formats．
9514	Video Amp with Sync Stripper and DC Restore	Use of the HFA1103 as a component video，sync stripping，amplifier．
9515	Multiplier Improves the Dynamic Range of Echo Systems（HA－2556， HA－5177）	Implementation of a time－gain amplifier using an analog multiplier．
9516	Adjustable Bandpass or Bandreject Filter（HA－2841）	Describes an active filter with easily adjusted center frequency，symmetrical skirts，and 40 dB of attenuation（band reject）or gain（band pass）．
9523	Evaluation Programs for SPICE Op Amp Models	Discussion of standard PSPICE programs for evaluating op amp models．Programs are given to simulate AC and transient responses as well as DC performance．
9524	HFA1212 Dual Video Buffer Forms Differential Line Driver／Receiver	Using a novel dual buffer to implement differential functions minimizes the number of external components required．
9528	900MHz Down Converter Consumes Little Power （HFA3101）	Using the HFA3101 transistor array to implement a battery powered 900 MHz down converter．
9536	PSPICE Performs Op Amp Open Loop Stability Analysis	Using a simulator to perform a stability analysis makes a difficult task easier．
9621	Comparison of Current Feedback Op Amp Spice Models	All op amp macro models aren＇t equal．This Application Note compares models from several vendors．
9641	High－Frequency VGA Has Digital Control	Utilizing the HFA3102 to implement a Variable Gain amplifier with the HI5731 providing digital gain control．
9653	Use and Application of Output Limiting Amplifiers （HFA1115，HFA1130， HFA1135）	Discussion of Input Limiting vs Output Limiting amplifiers．Description of output limiting circuitry and resultant inaccuracies．Application examples：A／D input protection，2ns $T_{R}$ Comparators，AM Modulator，Soft Clipping Circuit．
TB334	Guidelines for Soldering Surface Mount Components to PC Boards	Discussion of the most common techniques for mounting SMDs to PC boards．

SPICE Model Listing

PART NUMBER	DESCRIPTION
САЗ227	3.0GHz NPN Arrays (See Data Sheet for Model)
CA3246	3.0GHz NPN Arrays (See Data Sheet for Model)
HA-2500	Precision, High Slew Rate
HA-2502	Precision, High Slew Rate
HA-2510	High Slew Rate
HA-2512	High Slew Rate
HA-2520	+3 Stable, High Slew Rate
HA-2522	+3 Stable, High Slew Rate
HA-2539	Very High Slew Rate, Wideband, +10 Stable
HA-2540	Wideband, Fast Settling, +10 Stable
HA-2541	Wideband, Fast Settling, Unity Gain Stable
HA-2542	Wideband, High Slew Rate, High Output Current, +2 Stable
HA-2544	Precision, High Slew Rate, Unity Gain Stable
HA-2548	Precision, High Slew Rate, Wideband, +5 Stable
HA-2600	Wideband, High Input Impedance
HA-2602	Wideband, High Input Impedance
HA-2620	Very Wideband, Uncompensated, +5 Stable
HA-2622	Very Wideband, Uncompensated, +5 Stable
HA-2839	Very High Slew Rate, Wideband, +10 Stable
HA-2840	Very High Slew Rate, Wideband, +10 Stable
HA-2841	Wideband, Fast Settling, Unity Gain Stable, Video
HA-2842	Wideband, High Slew Rate, High Drive, Video, +2 Stable
HA-2850	Low Power, High Slew Rate, Wideband, +10 Stable
HA-5002	Wideband, High Slew Rate Buffer


PART NUMBER	DESCRIPTION
HA-5004	100MHz Current Feedback Video Amplifier
HA-5013	Triple, 125MHz Current Feedback Video Amplifier
HA-5020	100MHz Current Feedback Video Amplifier with Output Disable Function
HA-5022	Dual, 125 MHz Current Feedback Video Amplifier, with Output Disable Function
HA-5023	Dual, 125MHz Current Feedback Video Amplifier
HA-5024	Quad, 125MHz Current Feedback Video Amplifier, with Output Disable Function
HA-5025	Quad, 125MHz Current Feedback Video Amplifier
HA-5033	Video Buffer
HA-5101	Low Noise, High Performance
HA-5102	Dual, Low Noise, High Performance
HA-5104	Quad, Low Noise, High Performance
HA-5112	Dual, Low Noise, High Performance, +10 Stable
HA-5114	Quad, Low Noise, High Performance, +10 Stable
HA-5127	Low Noise, Precision, Unity Gain Stable
HA-5137	Low Noise, Precision, +5 Stable
HA-5147	Low Noise, Precision, +10 Stable
HA-5190	Wideband, Fast-settling, +5 Stable
HA-5221	Low Noise, Wideband, Precision
HA-5222	Dual, Low Noise, Wideband, Precision
HFA1100*	850MHz Current Feedback Amplifier
HFA3046, HFA3096, HFA3127, HFA3128	$8 \mathrm{GHz} \mathrm{NPN}, 5.5 \mathrm{GHz}$ PNP Arrays

* Macromodel is on disk but App Note does not exist.



# Everything You Always Wanted To Know About The ICL8038 

Author: Bill O'Neil

## Introduction

The 8038 is a function generator capable of producing sine, square, triangular, sawtooth and pulse waveforms (some at the same time). Since its introduction, marketing and application engineers have been manning the phones explaining the care and feeding of the 8038 to customers worldwide. This experience has enabled us to form articulate responses to the most frequently asked questions. So, with data sheet and breadboard in hand, read on and be enlightened.

## Question 1

I want to sweep the frequency externally but can only get a range of $100: 1$ (or $50: 1$, or $10: 1$ ). Your data sheet says 1000:1. How much sweep range can l expect?

## Answer

Let's look at what determines the output frequency. Start by examining the circuit schematic at pin 8 in the upper left hand corner. From pin 8 to pin 5 we have the emitter-base of NPN $\mathrm{Q}_{1}$ and the emitter-base of PNP $\mathrm{Q}_{2}$. Since these two diode drops cancel each other (approximately), the potential at pins 8,5 , and 4 are the same. This means that the voltage from $\mathrm{V}_{+}$ to pin 8 is the same as the voltage across external resistors $R_{A}$ and $R_{B}$. This is a textbook example of a voltage across two resistors which produce two currents to charge and discharge a capacitor between two fixed voltages. This is also a linear system. If the voltage across the resistors is dropped from 10 V to 1 V , the frequency will drop by $10: 1$. Changing from 1 V to 0.1 V will also change the frequency by $10: 1$. Therefore, by causing the voltage across the external resistors to change from say 10 V to 10 mV , the frequency can be made to vary at least 1000:1. There are, however, several factors which make this large sweep range less than ideal.

## Question 2

You say I can vary the voltage on pin 8 (FM sweep input) to get this large range, yet when I short pin 8 to $V+$ (pin 6), the ratio is only around 100:1.

## Answer

This is often true. With pin 8 shorted to $\mathrm{V}_{+}$, a check on the potentials across the external $R_{A}$ and $R_{B}$ will show 100 mV or more. This is due to the $V_{B E}$ mismatch between $Q_{1}$ and $Q_{2}$ (also $Q_{1}$ and $Q_{3}$ ) because of the geometries and current levels involved. Therefore, to get smaller voltages across these resistors, pin 8 must be raised above $\mathrm{V}+$.

## Question 3

How can I raise pin 8 above $\mathrm{V}+$ without a separate power supply?

## Answer

First of all, the voltage difference need only be a few hundred millivolts so there is no danger of damaging the 8038 . One way to get this higher potential is to lower the supply voltage on the 8038 and external resistors. The simplest way to do this is to include a diode in series with pin 6 and resistors $R_{A}$ and $R_{B}$. See Figure 1. This technique should increase the sweep range to 1000:1.


FIGURE 1. VARIABLE AUDIO OSCILLATOR, 20 Hz TO $\mathbf{2 0 k H z}$

## Question 4

O.K., now I can get a large frequency range, but I notice that the duty cycle and hence my distortion changes at the lowest frequencies.

## Answer

This is caused partly by a slight difference in the $\mathrm{V}_{\mathrm{BE}} \mathrm{S}$ of $\mathrm{Q}_{2}$ and $Q_{3}$. In trying to manufacture two identical transistors, it is not uncommon to get $\mathrm{V}_{\mathrm{BE}}$ differences of several millivolts or more. In the standard 8038 connection with pins 7 and 8 connected together, there are several volts across $R_{A}$ and $R_{B}$ and this small mismatch is negligible. However, in a swept mode
with the voltage at pin 8 near $V_{+}$and only tens of millivolts across $R_{A}$ and $R_{B}$, the $V_{B E}$ mismatch causes a larger mismatch in charging currents, hence the duty cycle changes. For lowest distortion then, it is advisable to keep the minimum voltage across $R_{A}$ and $R_{B}$ around 100 mV . This would of course, limit the frequency sweep range to around 100:1.

## Question 5

I have a similar duty cycle problem when I use high values of $R_{A}$ and $R_{B}$. What causes this?

## Answer

There is another error term which becomes important at very low charge and discharge currents. This error current is the emitter current of $Q_{7}$. The application note on the 8038 gives a complete circuit description, but it is sufficient to know that the current charging the capacitor is the current in $R_{A}$ which flows down through diode $Q_{g}$ and into the external $C$. The discharge current is the current in $R_{B}$ which flows down through diode $Q_{8}$. Adding to the $Q_{8}$ current is the current of $Q_{7}$ which is only a few microamperes. Normally, this $Q_{7}$ current is negligible, but with a small current in $\mathrm{R}_{\mathrm{B}}$, this current will cause a faster discharge than would be expected. This problem will also appear in sweep circuits when the voltage across the external resistors is small.

## Question 6

How can I get the lowest distortion over the largest frequency sweep range.

## Answer

First of all, use the largest supply voltage available ( $\pm 15 \mathrm{~V}$ or +30 V is convenient). This will minimize $\mathrm{V}_{\mathrm{BE}}$ mismatch problems and allow a wide variation of voltage on pin 8 . The potential on pin 8 may be swept from $V_{C C}$ (and slightly higher) to $2 / 3 \mathrm{~V}_{\mathrm{CC}}+2 \mathrm{~V}$ ) where $\mathrm{V}_{\mathrm{CC}}$ is the total voltage across the 8038 . Specifically for $\pm 15 \mathrm{~V}$ supplies ( +30 V ), the voltage across the external resistors can be varied from OV to nearly 8 V before clipping of the triangle waveform occurs.
Second, keep the maximum currents relatively large ( 1 mA or 2 mA ) to minimize the error due to $Q_{7}$. Higher currents could be used, but the small geometry transistors used in the 8038 could give problems due to $\mathrm{V}_{\mathrm{CE}}(\mathrm{SAT})$ and bulk resistance, etc. Third, and this is important, use two separate resistors for $\mathrm{R}_{\mathrm{A}}$ and $R_{B}$ rather than one resistor with pins 4 and 5 connected together. This is because transistors $Q_{2}$ and $Q_{3}$ form a differential amplifier whose gain is determined by the impedance between pins 4 and 5 as well as the quiescent current. There are a number of implications in the differential amplifier connection (pins 4 and 5 shorted). The most obvious is that the gain determines the way the currents split between $Q_{2}$ and $Q_{3}$. Therefore, any small offset or differential voltage will cause a marked imbalance in the charge and discharge currents and hence the duty cycle. A more subtle result of this connection is the effective capacitance at pin 10. With pins 4 and 5 connected together, the "Miller Effect" as well as the compound transistor connection of $Q_{3}$ and $Q_{5}$ can produce several hundred picofarads at pin 10 , seriously limiting the highest frequency of oscillation. The effective capacitance would have to be considered important in determining what value of external C would result in a particular frequency of
oscillation. The single resistor connection is fine for very simple circuits, but where performance is critical, the two separate resistors for $R_{A}$ and $R_{B}$ are recommended.
Finally, trimming the various pins for lowest distortion deserves some attention. With pins 7 and 8 connected together and the pot at pin 7 and 8 externally set at its maximum, adjust the ratio of $R_{A}$ and $R_{B}$ for $50 \%$ duty cycle. Then adjust a pot on pin 12 or both pins 1 and 12 depending on minimum distortion desired. After these trims have been made, set the voltage on pin 8 for the lowest frequency of interest. The principle error here is due to the excess current of $Q_{7}$ causing a shift in the duty cycle. This can be partially compensated for by bleeding a small current away from pin 5. The simplest way to do this is to connect a high value of resistance ( $10 \mathrm{M} \Omega$ to $20 \mathrm{M} \Omega$ ) from pin 5 to V - to bring the duty cycle back to $50 \%$. This should result in a reasonable compromise between low distortion and large sweep range.

## Question 7

This waveform generator is a piece of junk. The triangle wave is non-linear and has large glitches when it changes slope.

## Answer

You're probably having trouble keeping the constant voltage across $R_{A}$ and $R_{B}$ really constant. The pulse output on pin 9 puts a moderate load on both supplies as it switches current on and off. Changes in the supply reflect as variations in charging current, hence non-linearity. Decoupling both power supply pins to ground right at the device pins is a good idea. Also, pins 7 and 8 are susceptible to picking up switching transients (this is especially true on printed circuit boards where pins 8 and 9 run side by side). Therefore, a capacitor ( $0.1 \mu \mathrm{~F}$ or more) from $\mathrm{V}+$ to pin 8 is often advisable. In the case when the pulse output is not required, leave pin 9 open to be sure of minimizing transients.

## Question 8

What is the best supply voltage to use for lowest frequency drift with temperature?

## Answer

The 8038AM, 8038AC, 8038BM and 8038BC are all temperature drift tested at $\mathrm{V}_{\mathrm{CC}}=+20 \mathrm{~V}$ (or $\pm 10 \mathrm{~V}$ ). A curve in the lower right hand corner of Page 4 of the data sheet indicates frequency versus temperature at other supply voltages. It is important to connect pins 7 and 8 together.

## Question 9

Why does connecting pin 7 to pin 8 give the best temperature performance?

## Answer

There is a small temperature drift of the comparator thresholds in the 8038. To compensate for this, the voltage divider at pin 7 uses thin film resistors plus diffused resistors. The different temperature coefficients of these resistors causes the voltage at pins 7 and 8 to vary $0.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ to maintain overall low frequency drift at $\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}$. At higher supply voltages, e.g., $\pm 15 \mathrm{~V}(+30 \mathrm{~V})$, the threshold drifts are smaller compared with the total supply voltage. In this case, an externally applied constant voltage at pin 8 will give reasonably low frequency drift with temperature.

## Question 10

Your data sheet is very confusing about the phase relationship of the various waveforms.

## Answer

Sorry about that! The thing to remember is that the triangle and sine wave must be in phase since one is derived from the other. A check on the way the circuit works shows that the pulse waveform on pin 9 will be high as the capacitor charges (positive slope on the triangle wave) and will be low during discharge (negative slope on the triangle wave).
The latest data sheet corrects the photograph Figure 7 on Page 5 of the data sheet. The $20 \%$ duty cycle square wave was inverted, i.e., should be $80 \%$ duty cycle. Also, on that page under "Waveform Timing" the related sentences should read " $\mathrm{R}_{\mathrm{A}}$ controls the rising portion of the triangle and sine-wave and the 1 state of the square wave." Also, "the falling portion of the triangle and sine wave and the 0 state of the square wave is:"

## Question 11

Under Parameter Test Conditions on Page 3 of your 8038 data sheet, the suggested value for Min and Max duty cycle adjust don't seem to work.

## Answer

The positive charging current is determined by $R_{A}$ alone since the current from $R_{B}$ is switched off. (See 8038 Application Note AN012 for complete circuit description.) The negative discharge current is the difference between the $\mathrm{R}_{\mathrm{A}}$ current and twice the $R_{B}$ current. Therefore, changing $R_{B}$ will affect only the discharge time, while changing $R_{A}$ will affect both charge and discharge times. For short negative going pulses (greater than $50 \%$ duty cycle) we can lower the value of $R_{B}$ (e.g., $R_{A}=50 \mathrm{k} \Omega$ and $R_{B}=1.6 \mathrm{k} \Omega$ ). For short positive going pulses (duty cycles less than $50 \%$ ) the limiting values are reached when the current in $R_{A}$ is twice that in $R_{B}$ (e.g., $R_{B}=50 \mathrm{k} \Omega$ ). This has been corrected on the latest data sheet.

## Question 12

I need to switch the waveforms off and on. What's a good way to strobe the 8038 ?

## Answer

With a dual supply voltage (e.g., $\pm 15 \mathrm{~V}$ ) the external capacitor (pin 10) can be shorted to ground so that the sine wave and triangle wave always begin at a zero crossing point. Random switching has a $50 / 50$ chance of starting on a positive or negative slope. A simple AND gate using pin 9 will allow the strobe to act only on one slope or the other, see Figure 2. Using only a single supply, the capacitor (pin 10) can be switched either to V+ or ground to force the comparator to set in either the charge or discharge mode. The disadvantage of this technique is that the beginning cycle of the next burst will be $30 \%$ longer than the normal cycle.

## Question 13

How can I buffer the sine wave output without loading it down?

## Answer

The simplest circuit is a simple op amp follower as shown in Figure 3A. Another circuit shown in Figure 3B allows amplitude and offset controls without disturbing the 8038. Either circuit can be DC or AC coupled. For AC coupling the op amp non-inverting input must be returned to ground with a $100 \mathrm{k} \Omega$ resistor.

## Question 14

Your 8038 data sheet implies that all waveforms can operate up to 1 MHz . Is this true?

## Answer

Unfortunately, only the square wave output is useful at that frequency. As can be seen from the curves on page 4 of the data sheet, distortion on the sine wave and linearity of the triangle wave fall off rapidly above 200 kHz .

## Question 15

Is it normal for this device to run hot to the touch?

## Answer

Yes. The 8038 is essentially resistive. The power dissipation is then $E^{2} / R$ and at $\pm 15 \mathrm{~V}$, the device does run hot. Extensive life testing under this operating condition and maximum ambient temperature has verified the reliability of this product.

## Question 16

How stable are the output amplitudes versus temperature?

## Answer

The amplitude of the triangle waveform decreases slightly with temperature. The typical amplitude coefficient is $-0.01 \%{ }^{\circ} \mathrm{C}$, giving a drop of about $1 \%$ at $125^{\circ} \mathrm{C}$. The sine output is less sensitive and decreases only about $0.6 \%$ at $125^{\circ} \mathrm{C}$. For the square wave output the $\mathrm{V}_{\mathrm{CE}}(\mathrm{SAT})$ goes from 0.12 V at $25^{\circ} \mathrm{C}$ to 0.17 V at $125^{\circ} \mathrm{C}$. Leakage current in the " 1 " state is less than a few nanoamperes even at $125^{\circ} \mathrm{C}$ and is usually negligible.


FIGURE 2. STROBE-TONE BURST GENERATOR


FIGURE 3A.


FIGURE 3B.

FIGURE 3. SINEWAVE OUTPUT BUFFER AMPLIFIERS

## Schematic Diagram



# The ICL7650S: A New Era in Glitch-Free Chopper Stabilized Amplifiers 

Author: Peter Bradshaw

## Introduction

## Op Amps

Historically, the biggest single problem with the application of op amps has been the input offset voltage. This is indicated by the fact that almost all important op amps from the $\mu \mathrm{A} 741$ and LM101 on have offered offset null adjustment pins, special screening to low offset voltage values, and/or internal $V_{\text {OS }}$ trimming (laser or Zener-zap). Also consider the extensive series of specifications devoted to its variability with temperature, time, common-mode voltage (CMRR), power supply (PSRR), output voltage ( $\mathrm{A}_{\mathrm{VOL}}$ ), and sometimes even down to variation of temperature drift with offset null correction. Contrast this with the treatment afforded one other important (error-causing) input parameter, input bias current, which usually gets lust a specified value under one set of conditions, a variation over temperature, and a term relating to its matching between the two inputs. If variation with com-mon-mode voltage, power supply voltage, etc., is covered, it is generally only in a "typical curve" buried in the middle of the data sheet.

The answers to this concern have been many and varied. Several modules use chopper stabilization to provide very low offset voltages, although most of these do not provide differential inputs and they also have problems with input frequencies near the chopping rate (see Intermodulation Effects). The devices are typically bulky and expensive, and the two-path approach frequently used (Figure 1) tends to adversely affect settling times; the high-speed path and the


FIGURE 1. TYPICAL MODULE CHOPPER-STABILIZED AMPLIFIER
low-speed path will settle to different points unless the polezero pairs are extremely well matched. The only monolithic chopper-stabilized devices previously available are probably best described as disappointing and expensive.

Therefore, considerable effort has been expended to improve the offset and drift characteristics of standard op amp devices, and some very good results have been achieved with several bipolar input devices, such as the OP05 and OP-07. Careful die layout and circuit balance, in many cases combined with internal offset null trimming, bring initial offset voltages under $100 \mu \mathrm{~V}$, and temperature drifts below $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Although this is over an order of magnitude better than a good grade of $\mu \mathrm{A} 741$ or LM101A, there is still much room for, but little realistic hope of, substantial further improvement in this direction. In addition, the requisite screening of parts is expensive, even with currently available levels of automation.

## Technology

In the last few years, a new technology, in the shape of CMOS, has entered the analog field, and has led to the introduction of a range of products previously only dreamed of. Most spectacular, perhaps, has been its rapid dominance of the A/D and D/A converter market (Figures 2 and 3). Today very few converter systems are being designed that don't use CMOS devices specifically intended for this purpose, and in most cases they provide virtually the whole function. More recently, CMOS technology has moved into the more traditional building blocks of analog circuits, so that now CMOS versions of the standard bipolar op amps, regulators, and timers are available, with comparable or better specifications, lower power dissipation, and close to competitive pricing (Figures 4-6). However, although these devices have solved many traditional op amp problems. input offset voltage and low frequency noise voltage were not among them. Using the op amp and analog switch capabilities of this CMOS technology, Intersil introduced in early 1979 a new approach to the low offset voltage requirement, the Commutating Auto-Zero or $\mathrm{C}_{A Z}$ amp, shown in Figure 7.


FIGURE 2. LCD DIGITAL PANEL METER USING THE ICL7136 CMOS A/D CONVERTER

(SWITCHES SHOWN FOR DIGITAL INPUTS "HIGH")
FIGURE 3. CMOS D/A CONVERTER FUNCTIONAL DIAGRAM (AD7541)


FIGURE 4. CMOS OP AMP SChEMATIC (ICL7611 FAMILY)


FIGURE 5. ICM7555/7556 CMOS SINGLE AND DUAL TIMERS


FIGURE 6. FUNCTIONAL DIAGRAM OF THE ICL7663 CMOS REGULATOR


FIGURE 7. ICL7600/CL7601 COMMUTATING AUTO-ZERO ( $C_{A Z}$ ) OPERATIONAL AMPLIFIER SHOWING TWOCYCLE OPERATION

These devices at once became the best monolithic amplifiers available in terms of offset voltage (at $5 \mu \mathrm{~V}$ ) and time and temperature drift. They utilize two internal op amps, one active while the other auto-zeroes itself into an external capacitor. Upon commutation, the roles change and the active op amp uses its capacitor to cancel its offset. Two capacitors are needed, but the values and characteristics are not critical. Although offering three orders of magnitude improvement over the input characteristics of the $\mu \mathrm{A} 741 /$ LM101A type, and nearly two orders of magnitude over the best bipolar devices in offset and drift, the $\mathrm{C}_{A Z}$ principle has some disadvantages. The input current does not exploit the CMOS capability fully, and there is appreciable spiking at both the input and output (Figure 8). This can be largely removed by filtering, but that limits the available bandwidth.


FIGURE 8. OUTPUT SPIKES DUE TO COMMUTATING OPERATION

## Synthesis

Intersil therefore decided to try to overcome all these problems by applying the capabilities of CMOS technology to the principle of the chopper-stabilized amplifier. The result is the ICL7850, whose Functional Diagram is shown in Figure 9. The use of a single full-time main amplifier avoids any output glitches, and input switching glitches are minimized by careful area- and charge-balancing on the network of input switches. The chopping operation is performed by means of a nulling amplifier, which shares one input with the main amplifier. The other input is switched alternately between the two main amplifier inputs (Figure 10). When the inputs are shorted, its output drives a null point on itself, and when the inputs are across those of the main amplifier, it drives a null point on that amplifier. The two null points are the back-gates (often called "body connections") on the mirror transistors of the input stage, and by bypassing these to the equivalent point on the other leg with external capacitors, a simple low-leakage automatic offset null arrangement is achieved. Full differential input capability is retained, and the impedances on the two inputs are well balanced. The input stage legs are merged, as shown in Figure 11, to reduce the input noise and improve balance and high-frequency CMRR, etc.


FIGURE 9. FUNCTIONAL DIAGRAM OF ICL7650S


FIGURE 10A. NULLING ITSELF


FIGURE 10B. NULLING MAIN AMPLIFIER
FIGURE 10. TWO PHASES OF NULLING OPERATION


FIGURE 11. THREE-LEGGED INPUT STAGE (SIMPLIFIED)


FIGURE 12. GAIN ROLL-OFF AND INPUT VOLTAGE (MAIN AMPLIFIER ALONE WITHOUT NULL SYSTEM) VS FREQUENCY

The circuit automatically provides correction (at DC) for CMRR, PSRR, and AVOL, to the same level as for VOS (typically under 1 mV ), and the IB remains in the low pA area, set by the leakage of the input switches (also acting as protection diodes) and the small net charge injection. The latter is doubly-balanced both by careful device matching and by the excellent recovery of any residual injection, due to the equipotential nature of the inputs. The open-loop gainbandwidth product and the slew-rate are set purely by the main amplifier. The null system time constant is controlled by the effective gm to the output of the nulling amplifier and the external capacitors, and is readily controlled to be much longer than the chopping period. In addition, the "injection" of the nulling signal into the first stage of the main amplifier ensures that the pole-zero match at this cross-over point is no problem.

## Intermodulation Effects

Two residual problems remain with the usual chopperstabilized amplifier circuits. One of these is the intermodulation between applied signals and the chopping frequency, as mentioned earlier. This arises because the main amplifier has finite gain near this frequency, and so develops a small differential input signal to sustain the requisite output (distinct from any DC offset voltage). This signal is, of course, at the signal frequency, and has an amplitude determined by the gain roll-off characteristics (Figure 12) and the signal amplitude, and will be seen by the nulling circuit as an error signal equivalent to an input offset voltage. This circuit will then attempt to null out the input signal during the active null time. If the difference in frequency between the signal and the chopping rate is large compared to the null circuit time constant, this attempt will essentially fail, since the proposed direction of change will vary between (or during) each null time in such a way to lead to little net resultant. On the other hand, if the signal and chopping frequencies are close together (in terms of the time constant), the null circuit will respond at the beat frequency, leading to two undesirable results. First, the gain and phase characteristics will be disturbed in the neighborhood of the chopping frequency, since the amplifier input signal will be partially reduced, with some delay. Second, the effective input will include a component at the beat frequency, not present in the true input.

The ICL7850 minimizes this problem by the simple expedient of introducing a compensating dynamic offset voltage in the nulling amplifier. This is possible since, at the frequency range of interest, the AC signal that causes the problem is a function only of the compensation capacitor, the input stage $\mathrm{g}_{\mathrm{m}} \mathrm{s}$, and the output signal amplitude. By adding another capacitor from the output signal of the main amplifier to the corresponding summing point in the nulling amplifier, with a value which is correctly scaled to allow for the ratio of the input stage $g_{m} s$, and connecting it only during the time when the main amplifier is being nulled, the nulling amplifier does not see the input-related signal at the main amplifier. Thus, no nulling signal is generated, and no beat frequency is generated. The required matching of the $g_{m}$ and capacitor values is readily achieved, since they are all on a monolithic die, and the result is a device with virtually no interference between the normal operation of the main amplifier and the chopping action of the nulling amplifier.

## Overload Effects

The second traditional problem with chopper-stabilized amplifiers relates to their behavior under overload. Once again the problem arises through the presence of an input signal on the main amplifier which is not due to the input offset voltage. In this case, the presence of a large signal in the system leads to the output running up against the supply rails. Under these conditions the amplifier no longer has control, and the voltage at its input becomes only a function of the feedback network, the input signal, and the output swing limit of the amplifier, as shown in Figure 13. The nulling amplifier, however, has no means of knowing that this is the problem, and will attempt to "rectify" it by driving the
null network to remove this input signal. This effort cannot succeed, and in fact will increase the depth of overload. If this condition is maintained long enough (compared to the nulling time constant), the null circuit itself will also be driven to its limit. Thus, when the input signal returns to an inrange value, the input offset voltage will be skewed heavily to one side. If the nulling range of the amplifier exceeds the input signal range, frequently the case in the high-gain applications common for such devices, the output will remain stuck at the supply rail until the null circuit has almost recovered. Since the null amplifier driving signal may be quite small, recovery may take a long time.

Several possible methods can be used to combat this effect. One is to detect the output limiting condition, and to stop the chopping operation during the time that this does (or can) occur. This has two disadvantages. It may not be possible to predict such overrange conditions, nor easy to detect their occurrence either. Further, even if this is done successfully, the nulling system will be unable to correct the inevitable loss of true null caused by leakage currents on the null points, etc. Thus, an extended overrange interval with the chopping stopped can leave the null badly disturbed, perhaps as much as when the chopping is active. Nevertheless, in situations where an overrange occurrence is predictable or readily detectable, and lasts only for a limited time, the technique is very useful. The ICL7650 facilitates this form of overload effect amelioration by providing an EXT CLK IN pin (in the 14-pin versions), which can be held "low", stopping the chopping action in a position where no capacitor charging can occur, and by allowing judicious use of the CLAMP pin (see below) as an overload detector.


FIGURE 13. VOLTAGES IN INVERTING AMPLIFIER WITH OVERLOAD INPUT


FIGURE 14. AVOIDING OVERLOAD WITH ZENER CLAMPS
The other technique for avoiding the overload problem involves adding a nonlinear element to the feedback network, so that overrange inputs do not cause the output to limit against the supply rail. One possible way of doing this is to parallel the feedback element with a pair of Zener diodes
which conduct just before the limiting would occur，as shown in Figure 14 for the inverting configuration．The noninverting arrangement is similar，but only reduces the gain to unity after the Zeners conduct．One disadvantage with this circuit is that the Zener voltage is quite critical，especially if the supply voltage variation is significant and the maximum allowable swing is desired．The ICL7850 avoids both of these problems by providing a CLAMP pin which will conduct current in the appropriate direction whenever the output voltage gets within a few hundred mV of either supply．The internal schematic is indicated in Figure 15A，and the output current characteristics as a function of the voltage margin to the supply rails in Figure 15B．The leakage currents due to the small $N$ and $P$ channel MOSFETs are negligible，and they can only be turned on if their common sources，tied to the output，get close to the relevant rail．If this pin is tied to the inverting input to the amplifier，and the impedance at this point is adequate，the desired limiting is readily achieved， with no disturbance to the null network，and usually negligible effect on the input bias current．The only penalties paid for this overload protection are a slight limitation on the output swing，and an increase in the input current on the inverting input when the output swings close to the rail．Also， the input circuit is not quite so easily guarded on a PC board if the CLAMP pin is used．

## Device Characteristics

The net result，then，of all this technical wizardry is an op amp with quite remarkable characteristics．The input error－ related parameters are unprecedented in a monolithic device，and rare indeed against all competitors，with a $\mathrm{V}_{\mathrm{OS}}$ of under $5 \mu \mathrm{~V}$（typically under $1 \mu \mathrm{~V}$ ）and an input bias current of no more than 10pA．The $V_{O S}$ value is maintained over the full range of the power supply，input common－mode，output swing，and temperature ranges．In other words the PSRR， CMRR， $\mathrm{A}_{\mathrm{VOL}}$ ，and $\mathrm{dV}_{\mathrm{OS}} / \mathrm{dT}$ or drift are all virtually unmea－ surable，and well over $120 \mathrm{~dB}, 120 \mathrm{~dB}, 140 \mathrm{~dB}$ ，and under $10 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ ，respectively．The long－term drift，which we can consider to be very low frequency noise（as indeed it is from a device physics point of view），is also undetectable．
The other device characteristics also compare favorably with those of the $\mu \mathrm{A} 741$ and LM101 type．The Gain－Bandwidth product and slew rate are both about 3 times higher，at 2 MHz and $2.5 \mathrm{~V} / \mu \mathrm{s}$ respectively，the supply current is about the same，at 2 mA （ 3.5 mA Max），the stability margin is simi－ lar，and the output swings between the supply rails．The only significant limitations on its use are the reduced supply volt－ age range（ $\pm 8 \mathrm{~V}$ Max）and the $10 \mathrm{k} \Omega$ load limitation．These are becoming less important with the growth of $\pm 5 \mathrm{~V}$ analog systems，and also can be readily side－stepped，as shown in the Applications section below．
And to cap it all，this paragon of op amp virtue is a moder－ ate－sized monolithic die made with a high－yielding mature low－cost process，so the device cost is quite low．


FIGURE 15A．OUTPUT CLAMP CIRCUIT



FIGURE 15B．CONDUCTION CHARACTERISTICS

## Applications

So much has been written about op amp applications over the last few decades that there is little point in trying to reproduce it all, even with revised specifications and capabilities. The most important point to be appreciated is that in any application where the performance of the circuit can be significantly enhanced by a reduction of input offset voltage and/or bias current, the ICL7650S can be put right to work. Further, any circuit using a null-trimming pot is an immediate candidate for replacement, since the cost of purchase, insertion, initial adjustment, and especially periodic readjustment will generally be greater than the initial small premium for this device and two capacitors. Otherwise, the finite space available here will be used to present the particulars of this substitution as germane to the ICL7650S, followed by the details of some circuits that utilize the specific capabilities of the part particularly well, and some combinations with other devices that concatenate their respective features.

The normal substitution requires nothing but the replacement of any null trim pot with two required capacitors. In the case of the 14-pin devices, the pinout corresponds to that of the LM108 type device, so substitution of the ICL7650S for a (rare) 14-pin LM101/A, LM107, $\mu$ A741, OP-05/OP-07, or any similar part, can be done most readily with the 8 -pin version. The alternative involves a minor PC board change. If good overload recovery is a requirement for the application, the connections to the CLAMP pin (see Overload Effects) should be made according to the basic configurations of Figure 16. The impedance at the point of attachment needs to be high enough, at least at DC, to permit the worst case input signal to be accommodated within the capability of the CLAMP pin output current, according to the curve of Figure 15B. Usually this is easily managed in the case of the inverting configuration, but in the non-inverting case, some additional input clamping may be necessary. Some alternatives for doing this are shown in Figure 17.
One frequent use of an op amp is as a comparator. This cannot be done with the usual chopper amplifiers because of their terrible behavior under overload conditions, the normal operating mode for an op amp so used (see Overload Effects). However, the optional overload avoidance feature built-in to the ICL7650 allows its use in many of these applications, as shown in Figure 18. The current from the CLAMP pin forces the inverting input to follow the signal input (within the output swing and input common-mode ranges), and the transfer characteristic is essentially a reflection of the characteristic of Figure 15B. The comparison voltage must be capable of absorbing the CLAMP pin current without distress to itself or other parts of the system. Only one polarity of comparison is possible with a high input impedance, but if a low impedance drive input is available, the roles can be reversed to achieve the other polarity. The speed of the circuit is limited to input ramp rates under $100 \mathrm{~V} / \mathrm{s}$ for the most accurate performance, but above this rate the timing errors of most comparators exceed their input offset errors in any case.


FIGURE 16A. NON-INVERTING AMPLIFIER


FIGURE 16B. INVERTING AMPLIFIER
FIGURE 16. NON-INVERTING AND INVERTING CONFIGURATIONS WITH (OPTIONAL) CLAMP CIRCUIT CONNECTION


FIGURE 17. SOME OTHER CLAMPING CONFIGURATIONS FOR NON-INVERTING AMPLIFIERS


FIGURE 18. LOW OFFSET COMPARATOR
The usual instrumentation amplifier configurations work extremely well with the ICL7650. The standard three op amp configuration (Figure 19) has unbeatable CMRR, a function only of the resistors in practice. With a differential input A/D converter, such as the Intersil ICL71X6, 71X7, 7109 or 7135, just two ICL7650S will maintain high differential gain without any common-mode gain, ideal for pre-amplification of signals from such bridge-type transducers as strain gauges, etc. The arrangement is shown in Figure 20. This also works well with thermocouples whose shielding is grounded at the sensing end, especially in a noisy environment. Note that the offset and drift of the ICL7650 will contribute less than $1^{\circ} \mathrm{C}$ initial error and less than $0.2^{\circ} \mathrm{C}$ drift error to an absolute Platinum - Platinum/Rhodium Type S thermocouple between $0^{\circ} \mathrm{C}$ and $1750^{\circ} \mathrm{C}$, or to a Type B thermocouple between $500^{\circ} \mathrm{C}$ and $1820^{\circ} \mathrm{C}$ (over the operating temperature range of
the ICL7650). This is less than the errors associated with standard thermocouples themselves. Naturally, to realize this performance, all the other little thermocouples between the leads, the PC board, any IC socket, and the other components, etc., will have to be carefully handled. This topic is discussed in Achieving the Full Benefits.


FIGURE 19. 3 OP AMP INSTRUMENTATION AMPLIFIER


FIGURE 20. 2 OP AMP DIFFERENTIAL PREAMP FOR ICL7106/7/9 FAMILIES

Conventional logarithmic amplifiers have very high dynamic ranges in the current input mode, but in the voltage input mode they end up severely limited by errors associated with the input offset voltage of the input op amp. Two methods are available to combat this problem with the ICL7650. The device itself may be used as the main amplifier, as suggested in Figure 21. This will give a wide dynamic range of close to 6 decades. However, this arrangement lacks the built-in temperature compensation and scale factor adjustment of such monolithic log amps as the Intersil ICL8046. These can be combined with the same dynamic range enhancement by using the ICL7650 to offset null an ICL8048, as shown in Figure 22. The time constant of the nulling network needs to be high enough to avoid loop stability problems. The input current of the system will not be degraded by this configuration, so 6 decades of dynamic range will be available in both voltage and current input modes.


FIGURE 21. BASIC LOG AMPLIFIER
Although the overall performance of the ICL7650 is unprecedented, there are some parameters for which other devices remain better, and it does have some limitations. We have already mentioned the supply voltage limitation, for which the promised circumvention appears in Figure 23. The two JFETs have IDSS values well above the supply current requirement of the ICL7650S, and so operate close to "pinch-off". These "pinch-off" voltages constitute the supply voltages to the ICL7650S, and must meet the specifications required, readily done with the parts listed. By bootstrapping the JFET gates to the output, a follower circuit whose input and output can span the full supply range can be constructed. High voltage JFETs would permit even higher supply voltages. A small amount of high-frequency roll-off is usually needed in the boot-strap to prevent RF instability.


FIGURE 22. OPERATING WITH $\pm 15 \mathrm{~V}$ SUPPLIES
The output drive limitations may be readily overcome by buffering the ICL7650S with a device such as the $\mu \mathrm{A} 741$, after the fashion of Figure 24. This has the additional advantage of reducing the dissipation in the ICL7650S due to the load, and the thermal effects associated therewith (see Achieving the Full Benefits). These two circuits may be amalgamated in several ways to combine higher voltage operation with heavy load driving capability, such as those shown in Figure 25. One or more of these can be used to construct a configuration that will act correctly in any inverting or noninverting application, for any gain required. These circuits can be used to substitute for virtually any chopperstabilized module, and most other standard op amps also, with a substantial improvement in input parameters and no loss in output characteristics.


FIGURE 23. USING 741 TO BOOST OUTPUT DRIVE CAPABILITY


FIGURE 24. ICL8048 OFFSET NULLED BY ICL7650S

The high slew-rate and/or bandwidth of devices such as the HA2500/10/20 and the HA2600/20 families is not, of course, preserved by the arrangements of Figure 25. For these types of devices, the concept used in Figure 22 is preferable. Figure 26 shows two methods of doing this for several high speed devices, and Table 1 gives suitable component values. Note that although the input offset voltage is that of the ICL7650S, the input current will generally be dominated by that of the other device. Also, no protection is provided against overload, and intermodulation is back (see Intermodulation Effects and Overload Effects). These three can be reduced or eliminated by extra complexity in the circuits, at the expense of further loss in generality. Figure 27 shows one method of balancing out the intermodulation terms, and a similar clamp circuit to that of the ICL7650S added externally.

A similar combination of the exceptional low noise performance of the OP-05 (and OP-07) with the ICL7650S is also possible, and incidentally gives the lowest available overall noise performance in any bandwidth from true DC to any other frequency of use with op amps. In this case, the roll-off in the external nulling network should be low enough in frequency to ensure that the cross-over between the two devices does not degrade the performance in the bandwidth of concern. The schematic, in Figure 28, is otherwise the same as that of Figure 26, and Table 1 includes the values for this circuit also. Many other combination circuits have been published in the literature, and the ICL7650S can be used to advantage in the majority of them.

TABLE 1.

DEVICE FAMILY	$\begin{aligned} & \text { WORST FAMILY } \\ & V_{\text {OE }}(\mathrm{mV}) \\ & \text { OVER TEMP. } \end{aligned}$	LOWESTSUPPLYVOLTAGE $\pm V$	FIGURE 26A CIRCUIT				FIGURE 26B CIRCUIT		
			$\mathbf{R}_{\mathrm{A}}(\Omega)$	$\mathbf{R}_{\mathbf{S}}(\Omega)$	$\mathrm{V}_{\mathrm{S}}$	$\mathrm{N}_{\text {A }}$ PIN	$\mathbf{R}_{\mathrm{A}}(\Omega)$	$N_{A}$ PIN	$\mathrm{N}_{\mathrm{G}} \mathrm{PIN}$
$\mu$ A741	7.5	3.0	82K	2000	-	1	680K	1	5
LM101	10.0	3.0	2M	1M	-	5	1M	5	1
LM118	15.0	5.0	330K	180K	+	5	150K	5	1
LF155, 6, 7 (Note 1)	13.0	5.0	120K	5.1K	+	1	560K	1	5
HA2500 (Note 2)	14.0	10.0	6.8K	100	+	5	62K	5	1
HA2600	7.0	5.0	620K	18K	+	1	620K	1	5
CA3140	30.0 (Note 3)	4.5	1M	10K	-	5	240K	5	1
ICL8007	50.0 (Note 3)	5.0	100K	1.2K	-	5	150K	5	1
OP-05	1.6	3.0	1.6M	18K	+	8	2.4M	8	1
OP-07	0.25	3.0	10M	150K	+	8	10M	8	1

NOTES:

1. LF 155,155 , 157 require 12 K resistors from pin 1 and 5 to $\mathrm{V}_{+}$, in addition to the resistors mentioned above.
2. ICL7650 supplies are $\pm 8 \mathrm{~V}$ Max; HA2500 is not specified, but will work, with supplies under $\pm 10 \mathrm{~V}$.
3. Unspecified; Value inferred from other data.


FIGURE 25A.


FIGURE 25. SEVERAL HIGH VOLTAGE-HIGH LOAD COMBINATION CIRCUITS

## Achieving the Full Benefits

The ICL7650S brings a new level of accuracy to the analog world, and in doing so exposes a new set of problems and difficulties in the environment of the typical op amp, previously masked by device errors. The standard care taken with ground loops is even more necessary here, and the prevention of PC board leakage is also more important. The pinout on the 14-pin device has been arranged so as to allow easy guarding of the input pins, and the same can be done on the TO-99 device by using a 10-pin outline mounting configuration, as shown in Figure 29. If the CLAMP pin is being used, the configurations of Figure 30 may be found more useful. Careful cleaning with TCE or alcohol, followed by a compressed air blow-dry, is advisable, and an epoxy or silicone rubber coating will prevent subsequent contamination. Careful use of Teflon ${ }^{\circledR}$ or similar standoffs may be helpful in stubborn cases of PC board troubles.
The impedances of the driving nodes for the offset null storage capacitors are quite high, as explained above, and care should be taken in the PC board layout to avoid coupling stray signals into these points. A pseudo guard ring tied to V - could be applied in exceptionally difficult cases. The CAP RETN pin (14-pin parts only) is somewhat less sensitive, but should be treated with respect also.

Some consideration should be given to the capacitors themselves. On initial turn-on, and also if radical changes in common-mode or power supply voltages occur, the voltages on these capacitors must change to the (new) desired values. A capacitor with high dielectric absorption, such as a ceramic type, will absorb back part of the change in charge during the respective holding time during several clock cycles, or even for many seconds, leading to a significant initial (or recovery) settling time. If either of these is critical, a polypropylene capacitor should be used, although in many cases a mylar or similar film capacitor would be adequate. Another disadvantage of ceramic capacitors is that they frequently generate a significant amount of $1 / \mathrm{f}$ or "flicker" noise, which will be fed into the system through the null pins. For this reason, it is recommended that a film type capacitor be used. even though any low-leakage capacitor will "work".

The ultimate limitations to any high accuracy DC amplifier are the thermo-electric or Peltier effects in all the thermocouple junctions between dissimilar materials. The junctions of concern to us here are those between the silicon ( N - or P - type) and the aluminum metallization on the die, the aluminum to bond-wire and bond-wire to header post or lead frame, and the post/lead to PC board junctions. If all these are at the same temperature, then no problems will arise, since an equal number of identical junctions are interposed on the return path. The power dissipation within the IC die is inherently low, and most applications will not add very much to that, so we can consider the die temperature to be fairly uniform. Thus, the thermocouples out to the bondwires can be neglected unless a heavy load resistance is applied. The same is reasonably true for the bond-wire to post/lead junction. However, the post/lead to PC board junction can be a serious problem. The thermo-electric coefficient of the usual Kovar-copper junction present here is of
the order of $30 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$, and the thermal contact between the individual junctions is not very good. A temperature gradient of as little as $0.1^{\circ} \mathrm{C} /$ inch will lead to an error as large as the typical offset voltage of the ICL7650S! A point-source (power transistor, say) with a $10^{\circ} \mathrm{C}$ temperature rise must be kept 5 to 6 inches away, and a similar line-source would need to be many feet away. Even air currents from a standard forced-air heating system can cause gradients approaching this level. Similar effects can occur with other circuit elements, although generally their lead materials have lower thermoelectric coefficients.

The cure for these potential problems lies in exercising care in both the circuit design and the board layout. The power dissipation in the ICL7650S should be kept low (use the circuits of Figures 24-26 for load driving if needed), and power-dissipating components should be kept well away. A cooling fan or blower is undesirable unless an enclosure is used around the op amp and its associated components. and in any case the air flow should not pass over this area after a power-dissipating area. Low thermo-electric coefficient connections should be used wherever possible, and in all cases the PC board layout should emphasize thermal balance in loop paths.

An example of care in the electrical and thermal layout of a board, and appropriate choice of components to complement the performance of the ICL7650 may be found in the ICL7650SEV/Kit, an evaluation kit that includes a test board which can be used to measure most of the critical parameters of the device, and to simulate various possible applications. The kit includes all the necessary passive and active components to build the circuits of Figures 23-25 also, so that they may be substituted for another device in an operating system for checkout.

## Summary

The ICL7650S represents a significant step-function in op amp performance (one that should not have occurred until 1990, according to one recent Wescon presentation). The design brings chopper-stabilized performance to a new level of availability, while making it virtually transparent to the user. Although it is too early to predict the demise of the trimming potentiometer industry, nevertheless this device and its successors can be expected to replace the need for many of them and their periodic re-adjustment, frequently without increasing the initial cost, and certainly with favorable lifetime cost benefits. The combination circuits suggested here allow an even closer approach to the "perfect op amp" than has ever been available before, and at remarkably low cost.

One side-effect of the remarkable performance potential of the ICL7650S is that several subtle error-causing effects that have previously been largely masked by the inherent errors of the available op amps, are now uncovered. Great care must be exercised to achieve the full performance benefits the device can offer. These caveats do not, of course, apply in cases where a simple replacement of a less accurate or less stable device is contemplated. The high degree of "user-transparency" achieved in the chopping operation
promises a minimum of applications problems, borne out by the rapid acceptance of the device in a wide range of applications.
The author would like to acknowledge the design efforts of Lee Evans and Dane Snow in turning the concept of the device into such a magnificent reality, and Andy Wolff for refining, expanding, and testing many of the circuit application ideas presented here. An additional acknowledgment should go to Bob Darling of Rutgers University for the basic concept of Figure 23. A list of relevant application notes and article reprints that may be found helpful in pursuing the ideas opened up in this one follows:
A007 "Using the ICL8046/8049 Monolithic Log-Antilog Amplifier", by Ray Hendry.

A018 "Do's and Don'ts of Applying A/D Converters", by Peter Bradshaw and Skip Osgood.
A020 "A Cookbook Approach to High Speed Data Acquisition and Microprocessor Interfacing", by Ed Sliger.
$R 017$ "CMOS Chopper Op Amp Does Away with Glitches", by Peter Bradshaw, Electronic Design, August 2, 1980.


FIGURE 26A.


FIGURE 26B.
FIGURE 26. HA2500 OR HA2600 OFFSET NULLED BY


FIGURE 27. NULLED HA2500 WITH DYNAMIC CORRENTION AND OVERLOAD CLAMP


FIGURE 28. AUTO-NULLING CIRCUIT FOR OP-05/OP-07


FIGURE 29A. 14-PIN PART


FIGURE 29B. TO-99 PACKAGE
FIGURE 29. BOARD LAYOUTS FOR INPUT GUARDING


FIGURE 30A. NON-INVERTING AMPLIFIER WITH CLAMP


FIGURE 30B. INVERTING AMPLIFIER WITH CLAMP FIGURE 30. INPUT GUARDING WITH CLAMP PIN


# The HA-2400 PRAM Four Channel Operational Amplifier 

Author: Don Jones

## Introduction

Harris Semiconductor has announced a new linear device, the HA-2400/HA-2405 Four Channel Operational Amplifier. This combines the functions of an analog switch and a high performance operational amplifier, and makes practical a large number of new linear circuit applications.


FIGURE 1.
A functional diagram of the HA-2400 is shown above. There are four preamplifier sections, one of which is selected through the DTL/TTL compatible inputs and connected to the output amplifier. The selected analog input terminals and the output terminal form a high performance operational amplifier.
In actuality, the circuit consists of four conventional op amp input circuits connected in parallel to a conventional op amp output circuit. The decode/control circuitry furnishes operating current only to the selected input section.

## Circuit Connections

The digital inputs control the selection of the amplifier input channels in accordance with the following truth table:

$\mathbf{D}_{\mathbf{1}}$	$\mathbf{D}_{\mathbf{0}}$	ENABLE	CHANNEL   $\mathbf{1}$	CHANNEL   $\mathbf{2}$	CHANNEL   $\mathbf{3}$	CHANNEL   $\mathbf{4}$		
L	L	H	ON	OFF	OFF	OFF		
L	H	H	OFF	ON	OFF	OFF		
H	L	H	OFF	OFF	ON	OFF		
H	H	H	OFF	OFF	OFF	ON		
L	L	L	OFF	OFF	OFF	OFF		
OV $\leq$ L $\leq+0.8 V$								

The digital inputs can be driven with any DTL or TTL circuit which uses a standard +5 V supply.

## Compensation

Frequency compensation for closed loop stability is recommended for closed loop gains less than 10. This is accomplished by connection of a single external capacitor from Pin 12 to AC ground (the V+ supply is recommended). The following table shows the minimum suggested compensation for various closed loop gains, with the resultant bandwidth and slew rate. Obviously, when the four channels are connected with different feedback networks, the channel with the lowest closed loop gain will govern the required compensation.

GAIN, V/N		$\underset{\mathrm{pF}}{\mathrm{C}_{\text {COMP }}}$	BANDWIDTH (TYPICAL) (-3dB), MHz	SLEWRATE(TYPICAL)V/ $\mu \mathrm{s}$
NONINVERTING	INVERTING			
1	-	15	8.0	15
2	1	7	8.0	20
3	2	4	8.0	22
5	4	3	6.0	25
8	7	2	5.0	30
>10	>9	0	$40 \div$ GAIN	50

Compensation capacitors of greater value can be used to obtain lower bandwidth, greater phase margin, and reduced overshoot, at the expense of proportionately reduced slew rate.

External lead-lag networks could also be used to optimize bandwidth and/or slew rate at a particular gain.

## Applications

Any circuit function which can be constructed using a conventional operational amplifier can also be constructed using any channel of the HA-2400. Similar or different networks can be wired from the output to each channel input pair. The device can therefore be used to select and condition different input signals, or to select between different op amp functions to be performed on a single input signal.

To wire a particular op amp function to a channel, simply connect the appropriate network between the two inputs for that channel and the common output in the same manner as in wiring a conventional op amp. It is often possible to design with fewer external components than would be required in wiring four separate op amps (see Application Numbers 2 and 3 on the following pages). It should be remembered that the networks for unselected channels may still constitute a load at the amplifier output and the signal input, as if the unselected input terminals were disconnected from the network. .

If offset adjustment is required, it can generally be accomplished by resistive summation at either of the inputs for each channel (see Application Number 8).
The analog input terminals of the OFF channels draw the same bias current as the ON inputs. The maximum differential input voltage of these terminals must be observed and their voltage levels must never exceed the supply voltages.

When the Enable input is held low, all four input channels are disconnected from the output. When this occurs, the output voltage will generally slowly drift towards the negative supply. If a OV output condition is required, one channel should be wired as a voltage follower with its positive input grounded.
The amplifier output impedance remains low, even when the inputs are disabled; so it is not generally practical to wire the outputs of two or more devices directly together. The compensation pins of two devices, however, could be wired together to produce a switch with one output and more than four input channels.

The voltage at the compensation pin is about 0.7 V more positive than the output signal, but has a very high source impedance. Maximum current from this pin is about $300 \mu \mathrm{~A}$, which makes it a convenient point for limiting the output swing through clamping diodes and divider networks (see Application Number 13).
Even if the application only requires a single channel to be switched on and off, it is often more economical to use the HA-2400, rather than a separate analog switch and high performance op amp. Unused analog channel inputs should be grounded. Unused digital inputs may be wired to ground for a permanent "low" input, or either left open or wired to +5 V for a permanent "high" input.

The circuits illustrated on the following pages are a few of the thousands of possible applications for the Four Channel Operational Amplifier. These will give the reader a general impression of how the units can be connected; and probably will help generate many other ideas for applications. Also included are some "challenges" for the reader to modify the illustrated designs to perform different functions.

## Application No. 1



FIGURE 2. ANALOG MULTIPLEXER WITH BUFFERED INPUT AND OUTPUT

This circuit is used for analog signal selection or time division multiplexing. As shown, the feedback signal places the selected amplifier channel in a voltage follower (noninverting unity gain) configuration, and provides very high input impedance and low output impedance. The single package replaces four input buffer amplifiers, four analog switches with decoding, and one output buffer amplifier.

For low level input signals, gain can be added to one or more channels by connecting the (-) inputs to a voltage divider between output and ground. Bandwidth is approximately 8 MHz , and the output will slew from one level to another at about $15 \mathrm{~V} / \mu \mathrm{s}$.

Expansion to multiplex 5 to 12 channels can be accomplished by connecting the compensation pins of two or three devices together, and using the output of only one of the devices. The Enable input on the unselected devices must be low.
Expansion to 16 or more channels is accomplished in a straightforward manner by connecting outputs of 4 fourchannel multiplexers to the inputs of another four-channel multiplexer.
Differential signals can be handled by two identical multiplexers addressed in parallel.

Inverting amplifier configurations can also be used, but the feedback resistors may cause crosstalk from the output to unselected inputs.


FIGURE 3. AMPLIFIER, NON-INVERTING PROGRAMMABLE GAIN

This is a non-inverting amplifier configuration with feedback resistors chosen to produce a gain of $0,1,2,4$, or 8 depending on the Digital Control inputs.

Comparators at the output could be used for automatic gain selection for auto-ranging meters, etc.

CHALLENGE: Design a circuit using only two HA-2400s which can be programmed to any of 16 different gains.
Application No. 3


FIGURE 4. AMPLIFIER, INVERTING PROGRAMMABLE GAIN
The circuit above can be programmed for a gain of $0,-1,-2$, -4 , or -8 .

This could also have been accomplished with one input resistor and one feedback resistor per channel in the conventional manner, but this would require eight resistors rather than five.

Application No. 4


FIGURE 5. PROGRAMMABLE ATTENUATOR
This circuit performs the function of dividing the input signal by a selected constant (1, 2, 4, 8, or $\infty$ as illustrated). To multiply by a selected constant, see circuit No. 2. While T, $\pi$, or $L$ sections could be used in the input attenuator, this is not necessary since the amplifier loading is negligible and a constant input impedance is maintained. The circuit is thus much simpler and more accurate than the usual method of constructing a constant impedance ladder and switching sections in and out with analog switches.
Two identical circuits may be used to attenuate a balanced line.

Application No. 5


FIGURE 6. ADDER/SUBTRACTOR PROGRAMMABLE FUNCTION

The circuit shown above can be programmed to give the output functions $-\mathrm{K}_{1} \mathrm{X},-\mathrm{K}_{2} \mathrm{Y},-\left(\mathrm{K}_{3} \mathrm{X}+\mathrm{K}_{4} \mathrm{Y}\right)$, or $\mathrm{K}_{5} \mathrm{X}-\mathrm{K}_{6} \mathrm{Y}$. Obviously, many other functions of one or more variables can be constructed, including combinations with analog multiplier or logarithmic modules.

This device opens up many new design approaches in digitally controlled analog computation or signal manipulation.

Application No. 6


FIGURE 7. PHASE SELECTOR/PHASE DETECTOR/ SYNCHRONOUS RECTIFIER/BALANCED MODULATOR

This circuit passes the input signal at unity gain, either unchanged, or inverted depending on the Digital control input. A buffered input is shown, since low source impedance is essential. Gain can be added by modifications to the feedback networks. Signals up to 100 kHz can be handled with $20 V_{\text {P-p }}$ output. The circuit becomes a phase detector by driving the Digital Control input with a reference phase at the same frequency as the input signal, the average DC output being proportional to the phase difference, with 0 V at +90 degrees. By connecting the output to a comparator, which in turn drives the Digital Control, a synchronous full-wave rectifier is formed.

With a low frequency input signal and a high frequency digital control signal, a balanced (supressed carrier) modulator is formed.

Application No. 7


FIGURE 8. INTEGRATOR/RAMP GENERATOR WITH INITIAL CONDITION RESET

It is difficult in practice to set the initial conditions accurately in an integrator. This usually requires wiring contacts of a mechanical relay across the capacitor - leakage currents of solid state switches produce integration inaccuracy. The scheme shown above eliminates these reliability and accuracy problems.

Channel 1 is wired as a conventional integrator, Channel 2 as a voltage follower. When Channel 2 is switched on, the output will follow $\mathrm{V}_{\mathrm{IN}}$, and C will discharge to maintain OV across it. When Channel 1 is then switched on the output will initially be at the instantaneous value of $\mathrm{V}_{\mathrm{IN}}$, and then will commence integrating towards the opposite polarity. This circuit is particularly suitable for timing ramp generation using a fixed DC input. Many variations are possible, such as programmable time constant integrators.

## Application No. 8



Channel 1 is wired as a voltage follower and is turned on during the track/sample time. If the product of $R \times C$ is sufficiently short compared to the period of maximum output frequency, or sample time, C will charge to the output level. Channel 2 is an integrator with zero input signal. When Channel 2 is then turned on, the output will remain at the voltage across C .

## Application No. 9

Any oscillator which can be constructed using an op amp, such as the twin-T, phase shift, crystal controlled types, etc. can be made programmable by using the HA-2400. The following illustration is a Wien Bridge type, which is very popular for signal generators, since it is easily tunable over a wide frequency range, and has a very low distortion sine wave output. The frequency determining networks can be designed from about 10 Hz to greater than 1 MHz . Output level is about $6.0 \mathrm{~V}_{\text {RMS }}$. By substituting a programmable attenuator (Circuit No. 4) for the Buffer Amplifier, a very versatile sine wave source for automatic testing, etc. can be constructed.
CHALLENGE: A high Q, narrow band filter can be made by feeding back greater than $1 / 3$ of the output to the negative input. Design a circuit using the HA-2400 and an RC network which can be programmed either to generate or to detect an audio tone of the same frequency. Such a circuit would be quite useful for data communications.


FIGURE 10. SINE WAVE OSCILLATOR PROGRAMMABLE FREQUENCY

An even simpler circuit can be made by wiring one channel as an amplifier, choosing the compensation capacitor to yield the minimum required bandwidth or slew rate. When the Enable input is pulled low, the output will tend to remain at its last level, because of the charge remaining on the compensating capacitor.

Application No. 10


FIGURE 11. MULTIVIBRATOR, FREE RUNNING, PROGRAMMABLE FREQUENCY

This is the simplest of any programmable oscillator circuit, since only one stable timing capacitor is required. The output square wave is about $25 \mathrm{~V}_{\mathrm{P} . \mathrm{p}}$ and has rise and fall times of about $0.5 \mu \mathrm{~s}$. If a programmable attenuator circuit (No. 4) is placed between the output and the divider network, 16 frequencies can be produced with two HA-2400s and still only one timing capacitor.

A precision programmable square-triangle generator can also be constructed by adapting circuit described in Harris Application Note AN507 to the HA-2400.

Application No. 11


FIGURE 12. PROGRAMMABLE ACTIVE FILTER
Shown above is a second order low pass filter with programmable cutoff frequency. This circuit should be driven from a low source impedance since there are paths from the output to the input through the unselected networks.
Virtually any filter function which can be constructed with a conventional op amp can be made programmable with the HA-2400.

A useful variation would be to wire one channel as a unity gain amplifier, so that one could select the unfiltered signal, or the same signal filtered in various manners. These could be cascaded to provide a wide variety of programmable filter functions.

Application No. 12


FIGURE 13. POWER SUPPLY PROGRAMMABLE
Many systems require one or more relatively low current voltage sources which can be programmed to a few predetermined levels. It is no longer necessary to purchase a programmable power supply with far more capability than needed. The circuit shown above produces positive output levels, but could be modified for negative or bipolar outputs. $Q_{1}$ is the series regulator transistor, selected for the required current and power capability. $R_{1}, Q_{2}$ and $Q_{3}$ form an optional short circuit protection circuit, with $\mathrm{R}_{1}$ chosen to drop about 0.7 V at the maximum output current. The compensation capacitor, C, should be chosen to keep the overshoot, when switching, to an acceptable level.

CHALLENGE: Design a supply using only two HA-2400s which can be programmed to 16 binary weighted (or 10 BCD weighted) output levels.

Application No. 13


FIGURE 14. COMPARATOR, FOUR CHANNEL

## Application No. 14

When operated open loop without compensation, the HA-2400 becomes a comparator with four selectable input channels. The clamping network at the compensation pin limits the output voltage to allow DTL or TTL digital circuits to be driven with a fanout of up to ten loads.
Output rise and fall times will be about 100ns for differential input signals of several hundred millivolts, but will be in the microsecond region for small differential signals.

The circuit can be used to compare several signals against each other or against fixed references; or a single signal can be compared against several references. A "window comparator", which assures that a signal is within a voltage range, can be formed by monitoring the output polarity while rapidly switching between two channels with different reference inputs and the same signal input.


FIGURE 15. MULTIPLYING D TO A CONVERTER

## Application Note 514

The circuit above performs the function,
$V_{\text {OUT }}=V_{I N} \times \frac{N}{16}$,
where N is the binary number from 0 to 15 formed by the digital input. If the analog input is a fixed DC reference, the circuit is conventional 4-bit $D$ to $A$. The input could also be a variable or AC signal, in which case the output is the product of the analog signal and the digital signal.

The circuit on the left is a programmable attenuator with weights of $0,1 / 4,1 / 2$, or $3 / 4$. The circuit on the right is a noninverting adder which adds weights to the first output of $0,1 / 6,1 / 8$ or $3 / 16$.
If four quadrant multiplication is required, place the Phase Selector circuit (No. 6) in series with either the analog input or output. The $D_{0}$ input of that stage becomes the + or - sign bit of the digital input.

## More Challenges

One of our favorite college textbooks paused at each climactic point with a statement to the effect that, "Proof of the following theorem is omitted and is suggested as an exercise for the student."
The following is the list of some additional applications in which we believe the HA-2400 will prove very valuable. The "proofs", at present, remain as exercises for our ingenious readers.

- A to D Converter, Dual Slope Integrating
- Active Filter, State Variable Type with Programmable Frequency and/or Programmable "Q"
- Amplifier with Programmable DC Level Shift
- Chopper Amplifiers
- Crossbar Switches
- Current Source, Programmable
- FM Stereo Modulator
- F.S.K. Modem
- Function Generators, Programmable
- Gyrator, Programmable
- Monostable Multivibrator, Programmable
- Multiplier, Pulse Averaging
- Peak Detector with Reset
- Resistance Bridge Amplifier/Comparator with Programmable Range
- Sense Amp/Line Receiver with Programmable Threshold
- Spectrum Analyzer, Scanning Type
- Sweep Generator, Programmable
- Switching Regulator
- Touch-Tone ${ }^{\text {TM }}$ Generator/Detector (Use Harris HD-0165 Keyboard Encoder IC)


## Feedback

We believe we have only scratched the surface of possible applications for a multiple channel operational amplifier.

If you have a solution for any of the previous "challenges" or any new application, please let us know. Anything from a one word description to a tested design will be welcome.

## Operational Amplifier Noise Prediction (All Op Amps)

Author: Richard Whitehead

## Introduction

When working with op amp circuits an engineer is frequently required to predict the total RMS output noise in a given bandwidth for a certain feedback configuration. While op amp noise can be expressed in a number of ways, "spot noise" (RMS input voltage noise or current noise which would pass through 1 Hz wide bandpass filters centered at various discrete frequencies), affords a universal method of predicting output noise in any op amp configuration.

## The Noise Model

Figure 1 is a typical noise model depicting the noise voltage and noise current sources that are added together in the form of root mean square to give the total equivalent input voltage noise (RMS), therefore:
$E_{n i}=\sqrt{e_{n i}{ }^{2+} I_{n i}{ }^{2} R_{G}{ }^{2+4 K T R_{G}}}$ where,
$E_{n i}$ is the total equivalent input voltage noise of the circuit, $e_{n i}$ is the equivalent input voltage noise of the amplifier, and $I_{n i}^{2} R_{G}^{2}$ is the voltage noise generated by the current noise. $4 \mathrm{KTR}_{\mathrm{G}}$ expresses the thermal noise generated by the external resistors in the circuit where $\mathrm{K}=1.38 \times 10^{-23}$ joules $/{ }^{\circ} \mathrm{K}$; $\mathrm{T}=300^{\circ} \mathrm{K}\left(27^{\circ} \mathrm{C}\right)$ and:

$$
R_{G}=\left(\frac{R_{1} R_{3}}{R_{1}+R_{3}}\right)+R_{2}
$$



FIGURE 1.
The total RMS output noise ( $\mathrm{E}_{\mathrm{no}}$ ) of an amplifier stage with gain $=G$ in the bandwidth between $f_{1}$ and $f_{2}$ is:

$$
E_{n o}=G\left(\int_{f_{1}}^{f_{2}}\left(E_{n i}\right)^{2} d f^{1 / 2}\right)
$$

Note that in the amplifier stage shown, G is the non-inverting gain:
$\left(G=1+\frac{R_{3}}{R_{1}}\right)$,
regardless of which input is normally driven.

## Procedure for Computing Total Output Noise

1. Refer to the voltage noise curves for the amplifier to be used.
2. Enter values of $\mathrm{e}_{\mathrm{ni}}{ }^{2}$ line (a) of the table below from the curve labeled "Noise spectral density" (the values must be squared).
3. From the current noise curves for the amplifier, obtain the values of $i_{n i}{ }^{2}$ for each of the frequencies in the table, and multiply each by $\mathrm{R}_{\mathrm{G}}{ }^{2}$, entering the products in line (b) of the table.
4. Obtain the value of $4 K T R_{G}$ from Figure 8, and enter it on line (c) of the table. This is constant for all frequencies. The $4 K T R_{G}$ value must be adjusted for temperatures other than normal room temperature.
5. Total each column in the table on line (d). This total is $\mathrm{E}_{\mathrm{ni}}{ }^{2}$.

	10 Hz	100 Hz	$1 \mathbf{k H z}$	10 kHz	100 kHz
(a) $\mathrm{e}_{\mathrm{n}}{ }^{2}$					
(b) $\mathrm{Ini}^{2} \mathrm{R}_{\mathrm{G}}{ }^{2}$					
(c) $4 K T R_{G}$					
(d) $\mathrm{E}_{\mathrm{ni}}{ }^{2}$					

6. On linear scale graph paper enter each of the values for $\mathrm{E}_{\mathrm{ni}}{ }^{2}$ versus frequency. In most cases, sufficient accuracy can be obtained simply by joining the points on the graph with straight line segments.
7. For the bandwidth of interest, calculate the area under the curve by adding the areas of trapezoidal segments. This procedure assumes a perfectly square bandpass condition; to allow for the more normal -6dB/octave bandpass skirts, multiply the upper (-3dB) frequency by 1.57 to obtain the effective bandwidth of the circuit, before computing the area. The total area obtained is equivalent to the square of the total input noise over the given bandwidth.
8. Take the square root of the area found above and multiply by the gain $(\mathrm{G})$ of the circuit to find the total Output RMS noise.

## A Typical Example

It is necessary to find the output noise of the circuit shown below between 1 kHz and 24 kHz .


FIGURE 2. THE HA-2600 IN A TYPICAL G $=1000$ CIRCUIT
Values are selected from the data sheet and Figure 8 to fill in the table as shown below. An $\mathrm{R}_{\mathrm{G}}$ of $30 \mathrm{k} \Omega$ was selected.

	10 Hz	100 Hz	1 kHz	10 kHz	100 kHz
(a) $\mathrm{e}_{\mathrm{ni}}{ }^{2}$	$3.6 \times 10^{-15}$	$1.156 \times 10^{-15}$	$7.84 \times 10^{-16}$	$7.29 \times 10^{-16}$	$7.29 \times 10^{-16}$
(b) $\mathrm{I}_{\mathrm{ni}}{ }^{2} \mathrm{R}_{\mathrm{G}}{ }^{2}$	$9.9 \times 10^{-16}$	$1.89 \times 10^{-16}$	$3.15 \times 10^{-17}$	$7.2 \times 10^{-18}$	$72 \times 10^{-18}$
(c) $4 \mathrm{KTR}_{\mathrm{G}}$	$4.968 \times 10^{-16}$				
(d) $\mathrm{E}_{\mathrm{ni}}{ }^{2}$	$5.09 \times 10^{-15}$	$1.86 \times 10^{-15}$	$1.31 \times 10^{-15}$	$1.23 \times 10^{-15}$	$1.23 \times 10^{-15}$

The totals of the selected values for each frequency is in the form of $E_{n i}{ }^{2}$. This should be plotted on linear graph paper as shown below:


FIGURE 3. HA-2600 TOTAL EQUIVALENT INPUT NOISE
Since a noise figure is needed for the frequency of 1 kHz to 24 kHz , it is necessary to calculate the effective bandwidth of the circuit. With $A_{V}=60 \mathrm{~dB}$ the upper 3 dB point is approximately 24 kHz . The product of $1.57(24 \mathrm{kHz})$ is 37.7 kHz and is the effective bandwidth of the circuit.
The shaded area under the curve is approximately $45 \times 10^{-12} \mathrm{~V}^{2}$; the total equivalent input noise is $\sqrt{\mathrm{E}}_{\mathrm{in}}{ }^{2}$ or $6.7 \mu \mathrm{~V}$, and the total output noise for the selected bandwidth is ${\sqrt{E_{i n}}}^{2} \times$ (closed loop gain) or $6.7 \mathrm{mV}_{\mathrm{RMS}}$.

## Actual Measurements for Comparison

The circuit shown below was used to actually measure the broadband noise of the HA-2600 for the selected bandwidth:


FIGURE 4. A TYPICAL TEST CIRCUIT FOR BROADBAND NOISE MEASUREMENTS

The frequencies below the f 1 point of the bandwidth selected are filtered out by the RC network on the output of HA-2600. The measurement of the broadband noise is observed on the true RMS voltmeter. The measured output noise of the circuit is $4.7 \mathrm{mV} V_{\text {RMS }}$ as compared to the calculated value of 6.7 mV RMS .

## Acquiring the Data for Calculations

Spot noise values must be generated in order to make the output noise prediction. The effects of "Popcorn" noise have been excluded due to the type of measurement system.
The Quan-Tech Control Unit, Model No. 2283 and Filter Unit, Model No. 2181 were used to acquire spot noise voltage values expressed in $(\mathrm{V} / \sqrt{\mathrm{Hz}})$. The test system performs measurements from 10 Hz by orders of magnitude to 100 kHz with an effective bandwidth of 1 Hz at each tested frequency.
Several source resistance $\left(R_{G}\right)$ values were used in the measuring system to reveal the effects of $R_{G}$ on each type of Harris' op amps and to obtain proper voltage noise values essential for current noise calculations.

## A Discussion On "Popcorn" Noise

"Popcorn" noise was first discovered in early 709 type op amps. Essentially it is an abrupt step-like shift in offset voltage (or current) lasting for several milliseconds and having amplitude from less than one microvolt to several hundred microvolts. Occurrence of the "pops" is quite random - an amplifier may exhibit several pops per second during one observation period and then remain "popless" for several minutes. Worst case conditions are usually at low temperatures with high values of $R_{G}$. Some amplifier designs and some manufacturer's products are notoriously bad in this respect. Although theories of the popcorn mechanism differ, it is known that devices with surface contamination of the semiconductor chip will be particularly bad "poppers". Advertising claims not withstanding, the author has never seen any manufacturer's op amp that was completely free of "popcorn." Some peak detector circuits have been developed to screen devices for low amplitude "pops", but $100 \%$ assurance is impossible because an infinite test time would be required. Some studies have shown that spot noise measurements at 10 Hz and 100 Hz , discarding units that are much higher than typical, is an effective screen for potentially high "popcorn" units.

The vast majority of Harris op amps will exhibit less than $3 \mu \mathrm{~V}_{\text {P-p }}$ "popcorn". Screening can be performed, but it should be noted that the confidence level of the screen could be as low as $60 \%$.

## References

[1] Fitchen, F.C. and Motchenbacker, C.D. Low Noise Electronic Design. New York: John Wiley and Sons, 1973.
[2] Instruction Manual, Model 2173C Transistor Noise Analyzer Control Unit. Quan-Tech, Division of KMS Industries. Whippany, New Jersey.

## Typical Spot Noise Curves Unless Otherwise Noted: $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$



FIGURE 5. HA-2500/2510/2520 INPUT NOISE VOLTAGE


FIGURE 7. HA-4741 INPUT NOISE VOLTAGE


FIGURE 6. HA-2500/2510/2520 INPUT NOISE CURRENT


FIGURE 8. HA-4741 INPUT NOISE CURRENT


FIGURE 9. NOISE vs RESISTOR VALUE


# A Designers Guide for the HA-5033 Video Buffer 

Author: Carl Wolfe

## Introduction

Harris Semiconductor is an industry leader in the high speed, wideband, monolithic operational amplifier market. Due to the high performance of Harris products, designers in the more specialized areas of electronics have shown interest in utilizing these products in their applications. One such area is video design. In an effort to address this market, Harris has introduced the HA-5033 video buffer.

This paper will discuss the HA-5033 design and provide additional performance characteristics not shown in the data sheet.

## HA-5033 Description

The HA-5033 is a unity gain monolithic IC designed for any application requiring a fast wideband buffer. A voltage follower by design, this product is optimized for high speed $50 \Omega$ and $75 \Omega$ coaxial cable driver applications common in color video systems.

Critical performance characteristics are summarized in Table 1. Outstanding differential phase/gain characteristics combined with an output current capability of $\pm 100 \mathrm{~mA}$ makes the HA-5033 an excellent choice for the line driver applications required in video circuit design.

TABLE 1. HA-5033 SPECIFICATIONS: $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$;
$\mathbf{V}_{\text {SUPPLY }}= \pm \mathbf{1 2 V}$ (UNLESS OTHERWISE SHOWN)

PARAMETER	MIN	TYP	MAX	UNITS
Input Offset Voltage			15	mV
Input Bias Current			35	$\mu \mathrm{~A}$
Differential Phase		0.1		Degree
Differential Gain		0.1		$\%$
Slew Rate ( $\pm 15 \mathrm{~V}$ )	1000			$\mathrm{~V} / \mu \mathrm{s}$
Output Current		250		MHz
Bandwidth (Small Signal)		65		MHz
Bandwidth (ViN $\left.=1 \mathrm{~V}_{\text {RMS }}\right)$			20	mA
Supply Current			mA	

Other features, which include a minimum slew rate of $1000 \mathrm{~V} / \mu \mathrm{s}$, make the HA-5033 useful in high speed A/D data conversion and sample/hold circuits.

The HA-5033 is offered in three package configurations: the 12 lead metal can, the 8 lead PDIP, and the 8 lead Power Small Outline Package (PSOP). The pinouts for each package are illustrated in Figure 1.


FIGURE 1. HA-5033 PINOUTS: METAL CAN-PIN COMPATIBLE WITH THE LH0033 HYBRID. 8-LEAD, PDIP-FABRICATED USING A COPPER LEAD FRAME. ADVANTAGES INCLUDE EXCELLENT THERMAL CHARACTERISTICS AND BOARD SPACE SAVINGS.

The high performance of this product (summarized in Table 1) is the result of the Harris High Frequency Dielectric Isolation Process. A major feature of this process is that it provides both PNP and NPN high frequency transistors which make wide bandwidth designs, such as the HA-5033, practical.

## A Closer Look

Most manufacturer's data sheets provide a schematic diagram and depending upon the complexity of the product, this schematic may be comprehensive or possibly a simplified version. Schematics are a visual means of presenting information, ranging from reliability data, such as transistor counts, to circuit information for circuit analysis or computer simulation. But the most important reason for the schematic is to communicate to the customer the internal structure of the product and therefore, some insight into its operation.
At first glance, a schematic may appear as nothing more than a collection of resistors and transistors. But upon closer examination, particular areas of operation should become evident. Using the HA-5033 as an example (Figure 2), it will be shown that the HA-5033 consists of a signal path, bias network, and performance optimization circuitry.

Signal buffering is accomplished by cascading two emitter followers. In order to achieve symmetrical positive and negative output drive capability, two pairs are paralleled. The first pair consists of $Q_{1}$ and $Q_{4}$ for positive drive while the second pair $Q_{2}, Q_{3}$, provide negative drive. The emitter resistors of $Q_{1}, Q_{2}$ ensure stability with respect to load resistance, enhance differential phase/gain performance, and stabilize the quiescent operating point. This signal path has been highlighted on the schematic.

The bias circuitry consists primarily of the diode-biasing located on the left portion of the schematic along with transistors $Q_{5}, Q_{6}$. This circuitry ensures the designed performance of the other active elements.

The performance optimization circuits are a slew enhancement circuit and a bias network buffer circuit. The transistors $Q_{7}, Q_{8}, Q_{9}$ and $Q_{10}$ are for slew enhancement. If the input voltage exceeds the output by one $\mathrm{V}_{\mathrm{BE}}, \mathrm{Q}_{7}$ will turn on $Q_{10}$, which in turn provides extra base drive to $Q_{1}$. Similarly, $Q_{9}$ will supply extra base drive to $Q_{2}$.

Transistors $Q_{11}, Q_{12}, Q_{13}$ and $Q_{14}$ prevent high frequency or transient signals from affecting the bias circuitry. This prevents $C_{C B}$ multiplication of current sources $Q_{5}$ and $Q_{6}$, which also improves differential gain/phase performance.

Note that output current limiting was not designed into the HA-5033. If there is a possibility of the output being shorted to ground or the supplies, external current limiting will be necessary.

Any designer interested in using the HA-5033 should be aware of a characteristic related to output transistor operation. As the data sheet performance curves (reproduced in Figure 3) show, the output swing is a function of frequency. These curves show the point at which observable distortion occurs for a given frequency. However, if the signal amplitude, signal frequency or both are increased beyond the curves shown, thermal "runaway" will occur. This is due to both the NPN and PNP output transistors approaching a condition of being simultaneously on. This condition has been computer simulated and the results are shown in Figure 4.


FIGURE 2. HA-5033 SCHEMATIC: VIDEO BUFFER DESIGN CONSISTS OF THREE OPERATING AREAS; SIGNAL PATH, BIAS NETWORK AND PERFORMANCE OPTIMIZATION CIRCUITRY.


FIGURE 3. OUTPUT SWING vs FREQUENCY PERFORMANCE CURVES: CURVES SHOW POINT OF OBSERVABLE DISTORTION FOR GIVEN FREQUENCY. OPERATION BEYOND THE CURVES SHOWN WILL APPROACH CONDITIONS WHERE OUTPUT TRANSISTORS ARE SIMULTANEOUSLY ON. THE RESULTING INCREASE IN CHIP TEMPERATURE WILL LEAD TO THERMAL RUNAWAY.


FIGURE 4A. $V_{\text {PEAK }}=5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100$


FIGURE 4B. $V_{\text {PEAK }}=7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100$

FIGURE 4. OUTPUT TRANSISTOR COMPUTER SIMULATION RESULTS

This condition occurs if the frequency of the analog signal does not allow sufficient time for the output PNP transistor to turn off. The frequency which causes this "push-push" output stage can be determined by using the following relationship,
Full Power Bandwidth (FPBW) $=\frac{\mathrm{SR}}{2 \pi \mathrm{~V}_{\text {PEAK }}}$
Where: $\mathrm{SR}=$ Slew Rate
$\mathrm{V}_{\text {PEAK }}=$ Analog Signal Peak Voltage
Therefore, the designer can determine the approximate frequency of thermal runaway by supplying the peak analog voltage and measuring the buffer slew rate for a particular application.
For example, the slew rate for the HA-5033 with a load of $R_{L}=1 \mathrm{k} \Omega$ and $C_{L}=1000 \mathrm{pF}$ was measured to be $83 \mathrm{~V} / \mu \mathrm{s}$. The FPBW for a $5 V_{\text {PEAK }}$ analog signal was calculated,

FPBW $=\frac{83 \mathrm{~V} / \mu \mathrm{s}}{2 \pi(5 \mathrm{~V})}=2.6 \mathrm{MHz}$
So the estimated frequency of thermal runaway for the given conditions is 2.6 MHz . Measurements in the lab resulted in a thermal runaway frequency equal to 2.5 MHz .

Although the FPBW relationship gives the designer a method of estimating the frequency of thermal runaway, it is recommended that the HA-5033 be operated to the left of the curves shown in Figure 3. Heat sinking the buffer will not prevent this condition from occurring.
The purpose of heat sinking a semiconductor is to maintain the device junction temperature below a specified maximum limit. This is a thermal problem and can be evaluated using the thermal analog of Ohm's Law illustrated in Figure 5.
Where:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{DMAX}} & =\text { Power Dissipated }\left(\mathrm{P}_{\mathrm{DC}}+\mathrm{P}_{\mathrm{AC}}\right), \text { Watts } \\
\mathrm{T}_{\mathrm{J}} & =\text { Maximum Junction Temperature, }{ }^{\circ} \mathrm{C} \\
\mathrm{~T}_{\mathrm{A}} & =\text { Ambient Temperature, }{ }^{\circ} \mathrm{C} \\
\theta_{\mathrm{JC}} & =\text { Junction to Case Thermal Resistance, }{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\theta_{\mathrm{CS}} & =\text { Case to Heat Sink Thermal Resistance, }{ }^{\circ} \mathrm{C} / \mathrm{W} \\
\theta_{\mathrm{SA}} & =\text { Heat Sink to Ambient Thermal Resistance, }{ }^{\circ} \mathrm{C} / \mathrm{W}
\end{aligned}
$$



FIGURE 5. THERMAL ANALOG OF OHM'S LAW: SEMICONDUCTOR/HEAT SINK SYSTEM

In this thermal system, current is replaced by power, voltage by temperature, and electrical resistance by thermal resistance. By using Figure 5, the following expression is derived,
$P_{D M A X}=\frac{T_{J M A X}-T_{A}}{\theta_{J C}+\theta_{C S}+\theta_{S A}}$
This expression allows the designer to determine the maximum power dissipation of a semiconductor/heat sink system.

The expression for the semiconductor in free air is,
$P_{\text {DMAX }}=\frac{T_{J M A X}-T_{A}}{\theta_{J A}}$
In order to make use of these expressions, the following information is required. $\theta_{J C}$ and $T_{J M A X}$, from the semiconductor manufacturer and $\theta_{\mathrm{CS}}$ and $\theta_{\mathrm{SA}}$, from the heat sink manufacturer.

For the HA-5033, the maximum junction temperature ( $T_{\text {JMAX }}$ ) is $175^{\circ} \mathrm{C}$ for the metal can package, and $150^{\circ} \mathrm{C}$ for the PDIP and PSOP packages. The thermal impedances for the HA-5033 in the metal can package are $\theta_{\mathrm{JA}}=65^{\circ} \mathrm{C} / \mathrm{W}$ and $\theta_{J C}=34^{\circ} \mathrm{C} / \mathrm{W}$. The PDIP thermal resistance is $\theta_{\mathrm{JA}}=96^{\circ} \mathrm{C} / \mathrm{W}$, while the PSOP package has $\theta_{\mathrm{JA}}=129^{\circ} \mathrm{C} / \mathrm{W}$. These values have been used to generate the "Maximum Power Dissipation" graph in Figure 6.

Recommended heat sinks for the HA-5033 in the metal can package are the Thermalloy 2240A [1] and IERC-UP-T0851CB [2] (base), IERC-UP-C7 (top). Thermal impedances
are $\theta_{S A}=27^{\circ} \mathrm{C} / \mathrm{W}$ and $\theta_{S A}=10^{\circ} \mathrm{C} / \mathrm{W}$, respectively. $\theta_{C S}$ is dependent upon the type of insulator or thermal joint compound used. Both products are two piece heat sinks, but differ in design.

By using the given product information and supplying an operating ambient temperature, the designer can determine the maximum power the system will dissipate and not exceed the maximum junction temperature.

For example, Figure 6 shows the maximum power dissipation for the HA-5033 in a metal can package to be 2.31 W at $25^{\circ} \mathrm{C}$.


FIGURE 6. HA-5033 MAXIMUM POWER DISSIPATION VS AMBIENT TEMPERATURE: FREE AIR

The maximum power dissipation of the HA-5033/2240A metal can/heat sink system is calculated to be,
$P_{\text {DMAX }}=\frac{175-25}{34+27}=2.46$
Therefore, the HA-5033 used with the Thermalloy 2240A can dissipate 2.46 W at $25^{\circ} \mathrm{C}$ and not exceed the maximum junction temperature of $175^{\circ} \mathrm{C}$.

The power dissipation limits shown in Figure 6 and those determined with the heat sink apply for both quiescent and load related power. Therefore,

$$
\begin{aligned}
P_{\mathrm{DMAX}} & \leq P_{\mathrm{DC}}+\mathrm{P}_{\mathrm{AC}} \\
P_{\mathrm{DC}} & =(\mathrm{V}+)(+1)+(\mathrm{V}-)(-\mathrm{I}) \\
P_{\mathrm{AC}} & =(1 / \mathrm{T})_{0} \int \mathrm{~T} v(\mathrm{t}) i(\mathrm{t}) \mathrm{dt}
\end{aligned}
$$

## Video Performance

The images which appear on your television picture tube are created by a process called scanning [3]. Scanning is a method of recreating the optical image of a scene one line at a time. Referring to Figure 7A, an electron beam moves or "scans" from left to right and quickly returns to a position below its starting spot. This process continues until the bottom of the picture is reached and the beam returns to the original top left hand position. This method is called sequential scanning.


FIGURE 7A. SEQUENCIAL SCANNING


FIGURE 7. SCANNING SEQUENCE
Incorporated into present television broadcast standards is a technique called interlaced scanning. Interlaced scanning recreates the scene by providing two half scans. As shown in Figure 7B, the first scan traces out the odd numbered lines, the second scan fills in the even numbered lines. This technique avoids the flicker problem and excessive bandwidths required for similar picture definition using sequential scanning.
The United States NTSC (National Television Systems Committee) broadcast standard is a 525 line standard. Each scan consists of 2621/2 lines. The first scan is known as field one, the second, field two. Therefore, the complete picture consists of two fields.

The first 21 lines of each field are blank. Those lines are left open and are not used to broadcast video information. Instead, these lines contain other important information, such as sync pulses, data transmission, and test signals. The test signals contained in these lines are called the Vertical Interval Test Signals (VITS) [4, 5], which allows realtime monitoring of the television broadcast signal quality. These test signals were used to evaluate the video performance of the HA-5033.

Four test signals are commonly used in the vertical interval. They are the multiburst, color bar, composite and vertical interval reference. These test signals are shown in Figures 8 through 11.


FIGURE 8. MULTIBURST SIGNAL (FIELD 1, LINE 17) ALLOWS FREQUENCY RESPONSE CHECKS


FIGURE 10. COMPOSITE SIGNAL (FIELD 1, AND 2, LINE 18) DESIGNED FOR GAIN AND TIME DELAY TESTS

Each test signal was created to allow various distortions to be measured without interfering with the normal video transmission. These signal distortions which exist in television systems are defined as linear or non-linear. Nonlinear distortion, such as differential phase and gain, vary with the amplitude of the picture signal. Linear distortions, usually dependent upon frequency response, are independent of signal level. For example, the multiburst test signal is very useful for frequency response checks, whereas the composite signal contains signals for checking gain error.
Determining the HA-5033's performance level with respect to the NTSC standard required the definition of a measurement method. Test equipment was needed that would produce the necessary NTSC test signals and also monitor the device under test performance. The test configuration, shown in Figure 12 consisted of a Tektronix 149A NTSC [6] generator and Marconi TF 2914A video analyzer [7].


FIGURE 9. COLOR BAR (FIELD 2, LINE 17) ENABLES MONITORING OF COLOR TRANSMISSION QUALITY


FIGURE 11. VERTICALINTERVAL REFERENCE SIGNAL (FIELD 1 AND 2, LINE 19) PROVIDES COLOR AND GAIN REFERENCES


> †TEKTRONIX 1910 NTSC DIGITAL
> GENERATOR RECOMMENDED

FIGURE 12. HA-5033 NTSC PERFORMANCE TEST CONFIGURATION
The TF 2914A has the capability of measuring 24 separate video parameters. Other advantages include direct readout and much more accuracy than possible using scope methods. Table 2 lists the video parameters tested on the HA-5033 along with the particular VITS utilized by the TF 2914A.

## Application Note 548

TABLE 2. TF 2914A VIDEO MEASUREMENT PARAMETERS REFERRED TO VERTICAL INTERVAL TEST SIGNALS

VIDEO PARAMETER	VERTICAL INTERVAL TEST SIGNAL USED
Luminance Bar Amplitude	Luminance Bar, Composite Signal (Figure 10)
Sync Amplitude	Sync Pulse, Composite Signal (Figure 10)
2T Pulse to Bar Ratio	2T Pulse/Luminance Bar, Composite Signal (Figure 10)
Chrominance to Luminance Gain Inequality	Chrominance Component Amplitude of the 12.5T Pulse and Luminance Components of   the 12.5T Pulse, Composite Signal (Figure 10)
Chrominance to Luminance Delay	Time Difference of Chrominance and Luminance Components of the 12.5T Pulse, Com-   posite Signal (Figure 10)
Luminance Non-Linearity	Largest and Smallest Step Amplitude of the Modulated Step Staircase, Composite Signal   (Figure 10)
Signal to Noise Ratio	Luminance Bar Level to Noise Voltage, Composite Signal (Figure 10)
Chrominance to Luminance Crosstalk	Chrominance Component of 3 Step Modulated Pedestal and Luminance Bar, Multiburst   Signal (Figure 8)
Low Frequency Error	Amplitude of Low Frequency Signals
Bar Tilt	Difference of Luminance Bar Amplitude, Composite Signal (Figure 10) ,
2T K Factor	2T Pulse, Composite Signal (Figure 10)
Differential Gain	Amplitude Deviation of Modulated Step Staircase, Composite Signal (Figure 10)
Differential Phase	Phase Deviation of Modulated Step Staircase, Composite Signal (Figure 10)
Flag	Luminance Amplitude, Multiburst Signal (Figure 8)
Multiburst 1-6	Amplitude of Each Frequency Burst, Multiburst Signal (Figure 8)
Color Reference Burst Amplitude	Color Burst Amplitude, Multiburst Signal (Figure 8)

Since the TF 2914A measurement includes any inaccuracies of the NTSC signal generator, a "delta" measurement was neccesary. The NTSC generator was connected directly to the analyzer and the results recorded. Next, the HA-5033 was
inserted and the results recorded. The difference between the two readings was considered the actual HA-5033 performance. Table 3 lists the video performance results of the HA-5033.

## Application Note 548

TABLE 3．HA－5033 NTSC VIDEO PERFORMANCE

VIDEO PARAMETER	HA－5033	UNITS
Luminance Bar Amplitude	93.6	IRE（Note）
Sync Amplitude	37.5	IRE
2T Pulse to Bar Ratio	99.9	IRE
Chrominance to Luminance Gain Inequality	99.9	IRE
Chrominance to Luminance Delay	1.5	ns
Luminance Non－Linearity	0.1	\％
Signal－to－Noise Ratio	66	dB
Chrominance to Luminance Crosstalk	51.6	IRE
Low Frequency Error	0.3	mV
Bar Tilt	0.3	IRE
2T K Factor	0.1	K
Differential Gain	0.1	\％
Differential Phase	0.1	Degree
Flag	99.5	IRE
Multiburst 1 Amplitude	49.2	IRE
Multiburst 2 Amplitude	49.3	IRE
Multiburst 3 Amplitude	51.0	IRE
Multiburst 4 Amplitude	50.4	IRE
Multiburst 5 Amplitude	49.7	IRE
Multiburst 6 Amplitude	50.0	IRE
Color Reference Burst Amplitude	40.4	IRE

NOTE：IEEE Standard 205－1958 defines the levels of television video signal in terms of IRE units． 100 IRE units $=0.714 \mathrm{~V}_{\text {p－p }}$

## Applying the HA－5033

The most important consideration when designing with the HA－5033 is layout．The wide bandwidth of the buffer necessi－ tates that high frequency layout procedures be followed． Recommended procedures include the use of a ground plane，minimization of all lead lengths，avoiding sockets，and proper power supply decoupling．

Standard practice in RF／Video layout is the use of a ground plane．A ground plane minimizes distributed circuit capacitance and inductance which degrade high frequency performance．The ground plane can also incorporate the metal case of the HA－5033，since pin 2 is internally tied to the package．This feature allows the user to make contact between the ground plane and the package which extends shielding，provides additional heat sinking and eliminates the use of a socket．IC sockets contribute bandwidth limiting interlead capacitance and should be avoided．
For the PDIP，additional heatsinking can be derived from sol－ dering the no connection leads 2,3 ，and 7 to the ground plane．Also，lead 6 can be tied to either supply，grounded or left open．But to optimize device performance and improve isolation，it is recommended that this pin be grounded．

Another method of enhancing device performance is power supply decoupling．For the HA－5033，it is recommended that the positive and negative power supplies be bypassed with capacitors to ground．Ceramic capacitors ranging in value from 0.01 to 0.1 mF will minimize high frequency variations in supply voltage．Solid tantalum capacitors 1 mF or larger will optimize low frequency performance．It is also recommended that the bypass capacitors be connected as close to the HA－ 5033 as possible，preferably directly to the supply pins．
Finally，keeping all lead lengths as short as possible will minimize distributed capacitance and reduce board space．It is essential that the guidelines discussed above be followed to avoid marginal performance．
Another consideration when applying the HA－5033 is load capacitance．Although the HA－5033 is designed to handle load capacitance values up to $0.01 \mu \mathrm{~F}$ ，it has a worst case stability region in the area of 50 pF ．The computer simulation of the HA－5033 frequency response in Figure 13 illustrates the gain peaking which occurs in the 150 MHz region．

There are three suggested methods of dealing with this particular characteristic of the HA－5033．Isolating the load capacitance from the buffer output is the object of the first
method. This is accomplished by placing a series resistor between the output and the load.

A second technique utilizes the HA-5033 frequency response with respect to load capacitance. Referring once again to Figure 13, notice that the gain peaking is removed with additional load capacitance. This is the basis of method two, adding additional load capacitance to approach a region of stability.

A drawback to adding more load capacitance is that the buffer's dynamic characteristic will degrade and bandwidth performance will be less than data sheet specifications. The third method solves this trade-off by using a "bootstrap"
technique of adding capacitance from input to output. This method achieves stability without sacrificing performance.
An explanation of why adding capacitance will stabilize the HA-5033 can be found in the Y parameter data shown in Figure 14. The expression for the buffer gain in terms of $Y$ parameter is:
$A_{V}=\frac{V_{\text {OUT }}}{V_{I N}}=\frac{-Y_{21}}{Y_{22}+Y_{L}}$
$Y_{21}=$ Forward Transmittance
$\mathrm{Y}_{22}=$ Output Admittance
$Y_{L}=$ Load Admittance


FIGURE 13. COMPUTER SIMULATION OF HA-5033 GAIN CHARACTERISTICS vs FREQUENCY AND LOAD CAPACITANCE


FIGURE 14. HA-5033 Y PARAMETER DATA

Notice that the output admittance, $\mathrm{Y}_{22}$, phase becomes inductive $\left(-j Y_{L}=-90^{\circ}\right)$ at high frequency. So if the load, $Y_{L}$, is capacitive $\left(+j Y_{C}=+90^{\circ}\right)$ and the sum of $Y_{22}+Y_{L}$, become small, peaking occurs. Adding additional capacitance changes the effective phase angle and peaking can be reduced.

Using the HA-5033 as the analog input buffer of a flash converter is an example of an application where the suggested stabilization methods are useful. Although it has been stressed to keep all distributed capacitance to a minimum to optimize device operation, the load which a flash converter presents to the buffer represents a greater concern.

Flash or parallel converters are a special case, since the analog input circuit must drive a non-linear input impedance [8]. This non-linearity is due to the potential input impedance changes of the 255 parallel comparators which comprise the converter analog input. In addition to the non-
linearity, the input capacitance of these converters tends to be relatively large, 100-300pF.
Examples of the various stabilization methods tested with the TRW 10078 -bit video flash converter are shown in Figure 15. Figure 15A illustrates the series resistor method, Figure 15B is the load capacitance method, and Figure 15C is the bootstrap method. Photographs of the experimental results show the analog input sampling convert signal (pin 30), the MSB digital output (D1, pin 40), and the buffer output (converter input).
It is recommended that a complete evaluation for each method be conducted to determine the optimum component values. The value of the series resistor will depend upon the input capacitance of the particular converter used. A suggested starting value is $50 \Omega$. With the capacitance methods, the distributed capacitance of the layout will affect component values. These experimental results were obtained using $\mathrm{C}=240 \mathrm{pF}$.


FIGURE 15A. ENHANCING 5033 PERFORMANCE IN FLASH CONVERTER APPLICATIONS: SERIES RESISTOR METHOD



FIGURE 15C. BOOTSTRAP CAPACITANCE METHOD


FIGURE 16. VIDEO COAXIAL LINE DRIVER - $50 \Omega$ SYSTEM

The signal levels in most video applications are $1 \mathrm{~V}_{\text {P-p }}$ or less. Although the HA- 5033 was shown with $\pm 15 \mathrm{~V}$ power supplies in the converter applications, lower power supplies will accommodate these video signal levels. For example, at $\pm 5 \mathrm{~V}$ power supplies, the HA-5033 can swing $\pm 2 \mathrm{~V}$ into a $75 \Omega$ load.

The HA-5033 is an excellent high speed line device capable of driving $50 \Omega$ and $75 \Omega$ coaxial cable.
These types of drive requirements are common in video circuit design. Figures 16 and 17 illustrate two typical application examples. Figure 16 is an example of a $50 \Omega$ system using the HA-5033 alone. $\mathrm{R}_{\mathrm{M}}$ matches the buffer output impedance to the cables characteristic impedance. Depending upon the response required, this resistor may not be necessary. If used, the output voltage will be one-half the input voltage.
Figure 17 illustrates the use of the buffer within the feedback loop of an operational amplifier. This configuration provides
additional output current capability for the HA-2539 op amp and gives the designer voltage gain control.


FIGURE 17. VIDEO GAIN BLOCK
Another application which utilizes the HA-5033's output drive capability is the high speed sample and hold circuit shown in Figure 18. The input buffer provides drive current to the hold capacitor while the output buffer functions as a data line
driver. The switching element in this application is the $\mathrm{HI}-201 \mathrm{HS}$ high speed CMOS switch which contributes it's own benefits to the application [9]. Depending upon the application requirements, using the HA-5033 as the output buffer in Figure 18A may not be acceptable. Lab tests have shown that the input bias current of the HA-5033 becomes a factor for low values of hold capacitance ( $<0.01 \mu \mathrm{~F}$ ) during the hold mode.
A solution is to add a low bias current FET input stage, as shown in Figure $18 B . Q_{1}$ acts as a voltage follower and $Q_{2}$ is a current source. Matching $\mathrm{Q}_{1}, \mathrm{Q}_{2}$ and $\mathrm{R}_{1}, \mathrm{R}_{2}$ are important considerations in order to minimize offset voltages.


FIGURE 18A. HIGH SPEED SAMPLE/HOLD


FIGURE 18A. MODIFIED OUTPUT BUFFER

When the drive capability of the HA-5033 is insufficient, consider adding an external output stage. Figure 19A illustrates an example where a push-pull complementary output stage has been added to the HA-5033. Although unable to drive the low impedances of speakers, typically $4 \Omega$ to $8 \Omega$, the buffer can be used to drive audio output transistors. A variation of this configuration is shown in Figure 19B, where separate buffers individually drive each transistor base. A low noise input stage is provided by the HA-5102.

A common method of achieving an audio oscillator circuit is to use a transistor or IC amplifier with LC or RC feedback. An alternative technique of generating sinusoidal waveforms, using the HA-5033, is shown in Figure 20. Crystal oscillators offer improved frequency stability over time and temperature. This particular oscillator configuration [10] produces an $18.18 \mathrm{MHz}, 2.8 \mathrm{~V}_{\text {P-P }}$ sinusoidal waveform into a $1 \mathrm{k} \Omega$ load.


FIGURE 19A.


FIGURE 19B.
FIGURE 19. AUDIO DRIVERS


FIGURE 20. CRYSTAL OSCILLATOR: $\mathrm{V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{C}_{1}=12 \mathrm{pF}$, $\mathrm{C}_{2}=39 \mathrm{pF}, 18 \mathrm{MHz}$ QUARTZ CRYSTAL

## Conclusion

The HA-5033 is a high performance integrated circuit presently being utilized in a wide variety of applications. This paper has provided additional information to aid designers in applying the HA-5033 video buffer in future applications.

## References

[1] Thermalloy Semiconductor Accessories Catalog, Thermalloy Inc.; Dallas, Texas.
[2] Heat Sink/Dissipator Products and Thermal Management Guide, International Electronic Research Corp.: Burbank, California
[3] William L. Hughes, "Television Fundamentals and Standards", Electronic Engineers Handbook ed.; Donald G. Fink (McGraw-Hill, 1975) p. 20-3
[4] "VITS Analysis for TV Screening", Tektronix Application Note \#T900, 1978
[5] "Video Facility Testing/Technical Performance Objectives", NTC Report No. 7, Published by the Public Broadcasting Service for the NTC, 1976.
[6] Tektronix 1984 Product Catalog.
[7] Marconi Instruments 1983-84 Product Catalog.
[8] "Monolithic Video A/D Converter", TRW TDC1007J Data Sheet, 1978.
[9] "New High Speed Switch Offers Sub-50ns Switching Time" Harris Application Note 543,1983.
[10] Tor Hougen, "Keep Your Oscillator Simple", EDN, June, 1984, p. 236-238.

## Further Reading

1. "TV/Video Sync Primer", Hewlett-Packard Product Note 005-1,1981.
2. Stu Rasmussen and Clifford B. Schrock "Television Operational Measurements, Video and RF for NTSC Systems" Tektronix, 1980.
3. "Electrical Performance Standards for Television Relay Facilities" Electronic Industries Association Standard RS-250-B, 1976.
4. L. E. Weaver, Television Video Transmission Measurements, (London, Marconi Instruments, 1971).
5. F. F. Mazda, ed., Electronic Engineers Reference Book, 5th ed. (London Butterworth, 1982).

## Acknowledgments

1. Technical contributions of John Prentice and Robert Junkins.
2. Sales and Technical Staff of Marconi Instruments.

NOTE: Information contained in application notes is intended solely for general guidance; use of the information for user's specific application is at user's risk.

# Recommended Test Procedures for Operational Amplifiers 

Authors: Wes Kilgore and Brian Mathews

## Introduction

The following text describes the basic test procedures that can be used for most Harris Op Amps. Note that all measurement conversions have been taken into account in the equations stated.

## 1. Offset Voltage

The offset voltage ( $\mathrm{V}_{10}$ ) of the amplifier under test (AUT) is measured via Test Circuit 1 as follows:

1. Set $V+$ and $V$ - supplies to values specified in Table 1, Column (1) and $V_{D C}$ to $O V$.
2. Close $S_{1}$ and $S_{2}$, open $S_{3}$.
3. Choose: $R_{F}=50 \mathrm{~K}$ for non-precision amplifiers.
$R_{F}=5 M$ for precision amplifiers.
4. Measure voltage at $E$ in volts (label as $E_{1}$ ).
$V_{I O}=E_{1}(\mathrm{mV})$ for $R_{F}=50 \mathrm{~K}$, or
$V_{I O}=E_{1} * 10(\mu \mathrm{~V})$ for $R_{F}=5 \mathrm{M}$
The gain of this circuit with $R_{F}=50 \mathrm{~K}\left(R_{F}=5 M\right)$ requires the output to be driven to $1000(100,000)$ times the offset voltage necessary to maintain the output of the AUT at OV. Note that the AUT output is always identical to $\mathrm{V}_{\mathrm{DC}}$. Overall circuit stability is maintained by the adjustable feed-back capacitor $\mathrm{C}_{\mathrm{A}}$.

## 2. Input Bias Current

The bias current flowing in or out of the positive terminal of the AUT ( $I_{B^{+}}$) is obtained using Test Circuit 1 by:

1. Measuring $E_{1}$ as in procedure 1 (use $R_{S}=100 \mathrm{~K}$ for JFET input devices).
2. Maintain $\mathrm{V}_{\mathrm{DC}}$ at OV .
3. Close $S_{2}$, open $S_{1}$ and $S_{3}$.
4. Measuring voltage at $E$ in volts (label as $E_{2}$ ).
$I_{B+}=\left(E_{1}-E_{2}\right) \times 100(n A)$ for $R_{F}=50 K, R_{S}=10 K$, or
$I_{B+}=\left(E_{1}-E_{2}\right) \times 10(n A)$ for $R_{F}=50 \mathrm{~K}, R_{S}=100 \mathrm{~K}$
The bias current flowing in or out of the negative terminal ( $I_{B}$ ) is found by:
5. Following steps 1 and 2 for $\mathrm{I}_{\mathrm{B}}+$.
6. Close $S_{1}$, open $S_{2}$ and $S_{3}$.
7. Measuring voltage at $E$ in volts (label as $E_{3}$ ).
$I_{B-}=\left(E_{1}-E_{3}\right) \times 100(n A)$ for $R_{F}=50 K, R_{S}=10 K$, or
$I_{B^{-}}=\left(E_{1}-E_{3}\right) \times 10(n A)$ for $R_{F}=50 K, R_{S}=100 \mathrm{~K}$

## 3. Input Offset Current

Using Test Circuit 1, the input offset current ( $1_{10}$ ) of the AUT is determined by:

1. Measuring $\mathrm{E}_{1}$ as in procedure 1 .
2. Maintaining $V_{D C}$ at $O V$.
3. Open $S_{1}, S_{2}$ and $S_{3}$.
4. Measuring voltage at $E$ in volts (label as $E_{4}$ ).
$I_{I O}=\left(E_{1}-E_{4}\right) \times 100(n A)$ for $R_{F}=50 K, R_{S}=10 K$, or
$I_{1 O}=\left(E_{1}-E_{4}\right) \times 10(n A)$ for $R_{F}=50 \mathrm{~K}, R_{S}=100 \mathrm{~K}$

## 4. Power Supply Rejection Ratio

Both positive and negative PSRRs are measured via Test Circuit 1. For PSRR+:

1. Close $S_{1}$ and $S_{2}$, open $S_{3}$.
2. Choose: $\mathrm{R}_{\mathrm{F}}=50 \mathrm{~K}$
3. Set $V_{D C}=0, V+=10 V$, and $V-=-15 \mathrm{~V}$.
4. Measure voltage at $E$ in volts (label as $E_{5}$ ).
5. Change $V+$ to +20 V .
6. Measure voltage at $E$ in volts (label as $E_{6}$ ).

$$
\text { PSRR }+=20 \log _{10}\left|\frac{10^{4}}{E_{5}-E_{6}}\right|(d B) \text { for } R_{F}=50 K
$$

Similarly for PSRR-:

1. Follow steps 1 and 2 for PSRR+ above.
2. Set $V_{D C}=0 V, V+=+15 \mathrm{~V}, \mathrm{~V}-=-10$.
3. Measure voltage at $E$ in volts (label as $E_{7}$ ).
4. Change V-to -20 V .
5. Measure voltage at $E$ in volts (label as $E_{8}$ ).

PSRR $-=20 \log _{10}\left|\frac{10^{4}}{E_{7}-E_{8}}\right|(d B)$ for $R_{F}=50 \mathrm{~K}$

## 5. Common Mode Rejection Ratio

The CMRR is determined by adjusting Test Circuit 1 as follows:

1. Close $S_{1}$ and $S_{2}$, open $S_{3}$.
2. Choose: $R_{F}=50 \mathrm{~K}$
3. Set $V_{+}=+5 \mathrm{~V}, \mathrm{~V}-=-25 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{DC}}=-10 \mathrm{~V}$,
4. Measure voltage at $E$ in volts (label as $E_{9}$ ).
5. Set $\mathrm{V}+=25 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{DC}}=10 \mathrm{~V}$.
6. Measure voltage at E in volts (label as $\mathrm{E}_{10}$ ).
$C M R R=20 \log _{10}\left|\frac{2 \times 10^{4}}{E_{9}-E_{10}}\right|(d B)$ for $R_{F}=50 K$

## 6. Output Voltage Swing

Test Circuit 2 is adjusted to measure $\mathrm{V}_{\text {OUT }}+$ and $\mathrm{V}_{\text {OUT }}$ - the procedure is:

1. Select appropriate $\mathrm{V}+$ and V - supply values from Table 1, Column 1.
2. Select specified $R_{L}$ from Table 1, Column 2.
3. Set $\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}$.
4. Measure voltage at E in volts. $\mathrm{V}_{\mathrm{OUT}+}=\mathrm{E}(\mathrm{V})$

Similarly $V_{\text {OUT }}$ is found by:

1. Selecting specified $R_{L}$ from Table 1, Column 1.
2. Setting $\mathrm{V}_{\mathbb{I}}=-0.5 \mathrm{~V}$.
3. Measuring voltage at $E$ in volts.
$V_{\text {OUT- }}=E(V)$

## 7. Output Current

The output current corresponding to the output voltage of procedure 6 is found by:

1. Measuring $\mathrm{V}_{\text {OUT- }}$ and $\mathrm{V}_{\text {OUT }+}$ as in procedure 6.
$I_{\text {OUT }}=\frac{V_{\text {OUT+ }}}{R_{L}}$ where $R_{L}$ is from Table 1, Column 2. ${ }^{\text {OUT }}=\frac{V_{\text {OUT- }}}{R_{L}}$ where $R_{L}$ is from Table 1, Column 2.

## 8. Open Loop Gain

Both positive ( $\mathrm{A}_{\mathrm{VOL}}{ }^{+}$) and negative ( $\mathrm{A}_{\mathrm{VOL}}$ ) open loop gain measurements are determined by adjusting Test Circuit 1.

For $\mathrm{A}_{\mathrm{VOL}}+$

1. Close $S_{1}, S_{2}$ and $S_{3}$.
2. Select specified $R_{L}$ from Table 1, Column 3.
3. Set $R_{F}=50 K$.
4. Set $V_{D C}=0 V, V+=+15 V$, and $V-=-15 \mathrm{~V}$.
5. Measure voltage at $E$ in volts (label as $E_{13}$ ).
6. Set $V_{D C}=10 \mathrm{~V}$.
7. Measure voltage at $E$ in volts (label as $E_{14}$ ).

$$
A_{\text {VOL }+}=\frac{10}{E_{14}-E_{13}}(\mathrm{~V} / \mathrm{mV}) \text { for } R_{F}=50 \mathrm{~K}
$$

For $\mathrm{A}_{\mathrm{VOL}}$-:

1. Follow steps $1,2,3,4$, and 5 above.
2. Set $V_{D C}=-10 \mathrm{~V}$.
3. Measure voltage at E in volts (label as $\mathrm{E}_{15}$ ).
$A_{\text {VOL }^{-}}=\frac{10}{E_{13}-E_{15}}(V / \mathrm{mV})$ for $R_{F}=50 \mathrm{~K}$

## 9. Slew Rate

Test Circuit 3 is used for measurement of positive and negative slew rate. For SR+:

1. Select specified $R_{L}, A_{C L}$, and $C_{L}$ from Table 1, Columns 4, 5 and 6.
2. Apply a positive step voltage to $\mathrm{V}_{\mathrm{AC}}$ (refer to data book for test waveform).
3. Observe $\Delta \mathrm{V}$ and $\Delta \mathrm{t}$ at E . A standard approach is to use the $10 \%$ and $90 \%$ points or else the $25 \%$ and $75 \%$ points on the waveform.

$S R=\frac{\Delta V}{\Delta t}$
For SR- repeat above procedure with negative input pulse.
SR- $=\frac{\Delta V}{\Delta t}$

## 10. Full Power Bandwidth

Full power bandwidth is calculated by:

1. Measuring slew rate as above in procedure 9.
2. Measuring $\mathrm{V}_{\text {OUT }+}$ as in procedure 6. (Typically $\mathrm{V}_{\mathrm{OUT}+}$ is assumed to be the guaranteed minimum $\mathrm{V}_{\text {OUT }}$, usually 10V.)

$$
\text { FPBW }=\frac{\mathrm{SR}_{+}}{2 \pi \mathrm{~V}_{\mathrm{OUT}(\text { PEAK })}}
$$

## 11. Rise Time, Fall Time and Overshoot

The small signal step response of the AUT is determined via Test Circuit 3. The procedure requires:

1. Selecting the appropriate $R_{L}, A_{C L}$, and $C_{L}$ from Table 1, Columns 4, 5 and 6.
2. Applying a positive input step voltage for rise time $t_{R}$ and positive overshoot OS+.
Applying a negative input step voltage for fall time $t_{F}$ and negative overshoot OS-.
(Refer to data book for input waveforms.)
3. Observe output of AUT noting the key points as shown.


## 12. Settling Time

Test Circuit 6 is appropriate for settling time ( $\mathrm{t}_{\mathrm{S}}$ ) measurement, the procedure is:

1. Select $R_{1}$ and $R_{2}$ such that AUT is at the $A_{C L}$ stated in Table 1, Column 5.
2. Select $R_{3}$ and $R_{4}$ so that $R_{3} \geq 2 R_{1}$ and $R_{4} \geq 2 R_{2}$ with the condition that the ratio
$\frac{R_{3}}{R_{4}}=\frac{R_{1}}{R_{2}}$ be maintained.
3. Apply step voltage as specified in data book.
4. Measure the time from $t_{1}$ (time input step applied) to $t_{2}$ (the time $E_{S}$ settles to within a specified percentage of $V_{\text {OUT }}$ - see data book). $t_{S}=t_{2}-t_{1}$
NOTE: Clipping diodes of Test Circuit 6 prevent overdrive of oscilloscope. (Recommend fast Schottky diodes.)

## 13. Gain Bandwidth Product

Test Circuit 4 is used for measuring GBP. The procedure is:

1. Sweep $V_{I N}$ thru the required frequency range.
2. With a network analyzer view gain ( dB ) versus frequency as below.

3. At the voltage gain of interest ( $A_{V}$ ) determine the corresponding frequency $f_{C}$. Note that chosen $A_{V}$ must be greater than or equal to that stated in column 5 of Table 1. $G B P=A_{V} \times f_{C}(H z)$ where $A_{V}$ is in $V / V$.

## 14. Phase Margin (Network Analyzer Method)

Test Circuit 4 is used to obtain phase margin measurement. The procedure is:

1. Sweep $V_{\mathbb{I N}}$ thru the required frequency range.
2. Display gain in dB and phase in degrees versus frequency on analyzer as shown.

3. At a gain of 0 dB (if $\mathrm{A}_{\mathrm{CL}}=1$ in Table 1, column 5), record frequency $f_{1}$ and corresponding phase $P_{1}$.
Phase margin $=180$ degrees $-P_{1}$ degrees.

## 15. Input Noise Voltage

Test Circuit 5 is designed for measuring input noise voltage. Use of the Quantec Noise Analyzer is recommended to obtain measurements at 1 Hz bandwidth around a specific center frequency. The procedure is:

1. Set $R_{G}=0$
2. Set circuit card to gain of 10 .
3. Select measurement frequency of interest.
4. Record noise voltage (label as $E_{n 1}$ ). Units are $n V / \sqrt{H z}$.).

## 16. Input Noise Current

Using Test Circuit 5, the input noise current is obtained by:

1. Measure $E_{n 1}$ as above for the desired frequency of interest.
2. Adjust $\mathrm{R}_{\mathrm{G}}$ so that $\mathrm{V}_{\mathrm{O}}>2 \mathrm{E}_{\mathrm{n} 1}$ (label $\mathrm{V}_{\mathrm{O}}$ as $\mathrm{E}_{\mathrm{n} 2}$ ).

$$
\left.I_{n}=\sqrt{\frac{\left(E_{\mathrm{n} 2}\right)^{2}-\left(\mathrm{E}_{\mathrm{n} 1}\right)^{2}-4 \mathrm{kTR}}{\mathrm{G}}} \mathrm{R}_{\mathrm{G}}^{2}{ }^{2}\right)
$$

$$
\text { Where } \begin{aligned}
\mathrm{K} & =1.38 \times 10^{-23} \text { (Boltzmann's Constant) } \\
\mathrm{T} & =300^{\circ} \mathrm{C}\left(27^{\circ} \mathrm{C}\right)
\end{aligned}
$$

## 17. Channel Separation (Crosstalk)

Test Circuit 7 is used to measure channel separation (CS). The procedure is as follows:

1. Apply $V_{I N}$ at the frequency of interest to input of channel 1.
2. Select $R_{L}$ from Table 1, column 4.
3. Measure $V_{O 1}$.
4. Measure $\mathrm{V}_{\mathrm{O} 2}$ of channel 2.

$$
\mathrm{CS}=20 \log _{10}\left|\frac{\mathrm{~V}_{\mathrm{O} 2}}{100 \mathrm{~V}_{\mathrm{O} 1}}\right| \mathrm{dB}
$$

Application Note 551

TABLE 1.

PART NUMBER	(1)   SUPPLY VOLTAGE $\left(\mathbf{V}_{\mathbf{S}}\right)$	PARAMETERS TO MEASURE				
		(2) $V_{\text {Out }}$ $\mathrm{R}_{\mathrm{L}}(\mathrm{k} \Omega)$	(3)   A $_{\text {voL }}$ $R_{L}(k \Omega)$	SLEW RATE, OS, $\mathrm{t}_{\mathrm{R}}, \mathrm{t}_{\mathrm{F}}$		
				$\begin{gathered} (4) \\ \mathbf{R}_{\mathrm{L}}(\mathbf{k} \Omega) \end{gathered}$	(5)   $A_{C L}$	$\stackrel{(6)}{C_{L}(\mathrm{pF})}$
HA-2400/04/05	$\pm 15$	2	2	2	1	50
HA-2500/02/05	$\pm 15$	2	2	2	1	50
HA-2510/12/15	$\pm 15$	2	2	2	1	50
HA-2520/02/05	$\pm 15$	2	2	2	3	50
HA-2539	$\pm 15$	1	1	1	10	10
HA-2540	$\pm 15$	1	1	1	10	10
HA-2541	$\pm 15$	2	2	2	1	10
HA-2542	$\pm 15$	1	1	1	2	10
HA-2600/02/05	$\pm 15$	2	2	2	1	100
HA-2620/02/05	$\pm 15$	2	2	2	5	50
HA-2640/05	$\pm 40$	5	5	5	1	50
HA-4741	$\pm 15$	10	2	2	1	50
HA-5101	$\pm 15$	2	2	2	1	50
HA-5102/04	$\pm 15$	2	2	2	1	50
HA-5111	$\pm 15$	2	2	2	10	50
HA-5112/14	$\pm 15$	2	2	2	10	50
HA-5127	$\pm 15$	0.6	2	2	1	50
HA-5130/05	$\pm 15$	0.6	2	2	1	100
HA-5134	$\pm 15$	2	2	2	1	50
HA-5137	$\pm 15$	0.6	2	2	5	50
HA-5141/12/14	+5/0	50	50	50	1	50
HA-5147	$\pm 15$	0.6	2	2	10	50
HA-5151/12/14	$\pm 15$	10	10	10	1	50
HA-5160/62	$\pm 15$	2	2	2	10	50
HA-5170	$\pm 15$	2	2	2	1	50
HA-5180	$\pm 15$	2	2	2	1	50
HA-5190/95	$\pm 15$	0.2	0.2	2	5	10

## Test Circuits



TEST CIRCUIT 1


TEST CIRCUIT 2


TEST CIRCUIT 4



TEST CIRCUIT 3


# Applications of the CA3080 and CA3080A High-Performance Operational Transconductance Amplifiers 

Author: H.A. Wittlinger

## Introduction

The CA3080 and CA3080A are similar in generic form to conventional operational amplifiers, but differ sufficiently to justify an explanation of their unique characteristics. This new class of operational amplifier not only includes the usual differential input terminals, but also contains an additional control terminal which enhances the device's flexibility for use in a broad spectrum of applications. The amplifier incorporated in these devices is referred to as an Operational Transconductance Amplifier (OTA), because its output signal is best described in terms of the output-current that it can supply:
Transconductance $g_{M}=\frac{\Delta \mathrm{i}_{\mathrm{OUT}}}{\Delta \mathrm{e}_{\mathrm{IN}}}$
The amplifier's output-current is proportional to the voltage difference at its differential input terminals.
This Application Note describes the operation of the OTA and features various circuits using the OTA. For example, communications and industrial applications including modulators, multiplexers, sample-and-hold-circuits, gain control circuits and micropower comparators are shown and discussed. In addition, circuits have been included to show the operation of the OTA being used in conjunction with CMOS devices as post-amplifiers.

Figure 1 shows the equivalent circuit for the OTA. The output signal is a current which is proportional to the transconductance ( $\mathrm{g}_{\mathrm{M}}$ ) of the OTA established by the amplifier bias current ( $\mathrm{I}_{\mathrm{ABC}}$ ) and the differential input voltage ( $\mathrm{e}_{\mathrm{IN}}$ ). The OTA can either source or sink current at the output terminal, depending on the polarity of the input signal.


FIGURE 1. BASIC EQUIVALENT CIRCUIT OF THE OTA

The availability of the amplifier bias current ( $l_{A B C}$ ) terminal significantly increases the flexibility of the OTA and permits the circuit designer to exercise his creativity in the utilization of this device in many unique applications not possible with the conventional operational amplifier.

## Circuit Description

A simplified block diagram of the OTA is shown in Figure 2. Transistors $Q_{1}$ and $Q_{2}$ comprise the differential input amplifier found in most operational amplifiers, while the lettered-circles (with arrows leading either into or out of the circles) denote "current-mirrors". Figure 3A shows the basic type of current-mirror which is comprised of two transistors, one of which is diode-connected. In a current-mirror with similar geometries for $Q_{A}$ and $Q_{B}$, the current l' establishes a second current I whose value is essentially equal to that of $l$ '.


FIGURE 2. SIMPLIFIED DIAGRAM OF THE OTA
This basic current-mirror configuration is sensitive to the transistor beta ( $\beta$ ). The addition of another active transistor, shown in Figure 3B, greatly diminishes the circuit sensitivity to transistor beta and increases the current-source output impedance in direct proportion to the transistor beta. Current-mirror W (Figure 2) uses the configuration shown in Figure 3A, while mirrors $X, Y$, and $Z$ are basically the version shown in Figure 3B. Mirrors $Y$ and $Z$ employ PNP transistors, as depicted by the arrows pointing outward from the mirrors. Appendix 1 describes current-mirrors in more detail.


FIGURE 3A. DIODE-CONNECTED TRANSISTOR PAIRED WITH TRANSISTOR


FIGURE 3B. IMPROVED VERSION: EMPLOYS AN EXTRA TRANSISTOR
FIGURE 3. BASIC TYPES OF CURRENT MIRRORS
Figure 4 is the complete schematic diagram of the OTA. The OTA employs only active devices (transistors and diodes). Current applied to the amplifier-bias-current terminal, $\mathrm{I}_{\mathrm{ABC}}$, establishes the emitter current of the input differential amplifier $Q_{1}$ and $Q_{2}$. Hence, effective control of the differential transconductance $\left(\mathrm{g}_{\mathrm{M}}\right)$ is achieved.


FIGURE 4. SCHEMATIC DIAGRAM OF OTA TYPES CA3080 AND CA3080A

The $\mathrm{g}_{\mathrm{M}}$ of a differential amplifier is equal to:

$$
\frac{q \alpha I_{C}}{2 K T}
$$

(see Reference 2 for derivation) where q is the charge on an electron, $\alpha$ is the ratio of collector current to emitter current of the differential amplifier transistors, (assumed to be 0.99 in this case), $\mathrm{I}_{\mathrm{C}}$ is the collector current of the constantcurrent source ( $l_{A B C}$ in this case), K is Boltzman's constant,
and T is the ambient temperature in degrees Kelvin. At room temperature, $g_{M}=19.2 \times \mathrm{I}_{A B C}$, where $\mathrm{g}_{\mathrm{M}}$ is in mS and $\mathrm{I}_{A B C}$ is in milliamperes. The temperature coefficient of $g_{M}$ is approximately $-0.33 \% /{ }^{\circ} \mathrm{C}$ (at room temperature).

Transistor $Q_{3}$ and diode $D_{1}$ (shown in Figure 4) comprise the current mirror "W" of Figure 2. Similarly, transistors $\mathrm{Q}_{7}, \mathrm{Q}_{8}$ and $Q_{9}$ and diode $D_{5}$ of Figure 4 comprise the generic current mirror " $Z$ " of Figure 2. Darlington-connected transistors are employed in mirrors " $Y$ " and " $Z$ " to reduce the voltage sensitivity of the mirror, by the increase of the mirror output impedance. Transistors $Q_{10}, Q_{11}$, and diode $D_{6}$ of Figure 4 comprise the current-mirror " $X$ " of Figure 2. Diodes $\mathrm{D}_{2}$ and $\mathrm{D}_{4}$ are connected across the base-emitter junctions of $Q_{5}$ and $Q_{8}$, respectively, to improve the circuit speed. The amplifier output signal is derived from the collectors of the " $Z$ " and " $X$ " current-mirror of Figure 2, providing a push-pull Class A output stage that produces full differential $\mathrm{g}_{\mathrm{M}}$. This circuit description applies to both the CA3080 and CA3080A. The CA3080A offers tighter control of $g_{M}$ and input offset voltage, less variation of input offset voltage with variation of $\mathrm{I}_{\mathrm{ABC}}$ and controlled cut-off leakage current. In the САЗ080A, both the output and the input cut-off leakage resistances are greater than $1,000 \mathrm{M} \Omega$.


FIGURE 5. SCHEMATIC DIAGRAM OF OTAS IN A TWOCHANNEL LINEAR TIME-SHARED MULTIPLEXER CIRCUIT

## Applications

## Multiplexing

The availability of the bias current terminal, $I_{A B C}$, allows the device to be gated for multiplexer applications. Figure 5 shows a simple two-channel multiplexer system using two CA3080

OTA devices. The maximum level-shift from input to output is low (approximately 2 mV for the CA3080A and 5 mV for the CA3080). This shift is determined by the amplifier input offset voltage of the particular device used, because the open-loop gain of the system is typically 100 dB when the loading on the output of the CA3080A is low. To further increase the gain and reduce the effects of loading, an additional buffer and/or gainstage may be added. Methods will be shown to successfully perform these functions.
In this example $\pm 5 \mathrm{~V}$ power-supplies were used, with the IC flipflop powered by the positive supply. The negative supply-voltage may be increased to -15 V , with the positive-supply at 5 V to satisty the logic supply voltage requirements. Outputs from the clocked flip-flop are applied through PNP transistors to gate the CA3080 amplifier-bias-current terminals. The grounded-base configuration is used to minimize capacitive feed-through coupling via the base-collector junction of the PNP transistor.
Another multiplexer system using the OTAs clocked by a CMOS flip-flop is shown in Figure 6. The high output voltage capability of the CMOS flip-flop permits the circuit to be driven directly without the need for PNP level-shifting transistors.


FIGURE 6. SCHEMATIC DIAGRAM OF A TWO-CHANNEL LINEAR MULTIPLEXER SYSTEM USING A CMOS FLIP-FLOP TO GATE TWO OTAs

A simple RC phase-compensation network is used on the output of the OTA in the circuits shown in Figures 5 and 6. The values of the RC-network are chosen so that:

$$
\frac{1}{2 \pi R C} \cong 2 \mathrm{MHz}
$$

This RC network is connected to the point shown because the lowest-frequency pole for the system is usually found at this point. Figure 7 shows an oscilloscope photograph of the multiplexer circuit functioning with two input signals. Figure 8 shows
an oscilloscope photograph of the output of the multiplexer with a $6 \mathrm{~V}_{\text {P-p }}$, sine wave signal ( 22 kHz ) applied to one amplifier and the input to the other amplifier grounded. This photograph demonstrates an isolation of at least 80 dB between channels.


Top Trace: Multiplexed Output; 1V/Div., 100 $1 \mathrm{~s} /$ Div. Bottom Trace: Time Expansion of Switching Between Inputs; 2V/Div., $5 \mu \mathrm{~s} /$ Div.

FIGURE 7. VOLTAGE WAVEFORMS FOR CIRCUIT OF FIGURE 6


Top Trace: Output; 1V/Div., 100 1 s/Div.
Bottom Trace: Voltage Expansion of Output; $1 \mathrm{mV} / \mathrm{Div}$., $100 \mu \mathrm{~s} / \mathrm{Div}$.
FIGURE 8. VOLTAGE WAVEFORIMS FOR CIRCUIT OF FIGURE 6

## Sample-and-Hold Circuits

An extension of the multiplex system application is a sample-and-hold circuit (Figure 9), using the strobing characteristics of the OTA amplifier bias-current (ABC) terminal as a means of control. Figure 9 shows the basic system using the CA3080A as an OTA in a simple voltage-follower configuration with the phase-compensation capacitor serving the additional function of sampled-signal storage. The major consideration for the use of this method to "hold" charge is that neither the
charging amplifier nor the signal readout device significantly alter the charge stored on the capacitor. The CA3080A is a particularly suitable capacitor-charging amplifier because its output resistance is more than $1000 \mathrm{M} \Omega$ under cut-off conditions, and the loading on the storage capacitor during the hold-mode is minimized. An effective solution to the read-out requirement involves the use of a 3N138 insulated-gate fieldeffect transistor (MOSFET) in the feedback loop. This transistor has a maximum gate-leakage current of 10pA; its loading on the charge "holding" capacitor is negligible. The open-loop voltage-gain of the system (Figure 9) is approximately 100 dB if the MOSFET is used in the source-follower mode with the CA3080A as the input amplifier. The open-loop output impedance $\left(1 / g_{M}\right)$ of the $3 N 138$ is approximately $220 \Omega$ because its transconductance is about $4,600 \mu \mathrm{~S}$ at an operating current of 5 mA . When the CA3080A drives the 3N138, the closed loop operational-amplifier output impedance characteristic is:
$\mathrm{Z}_{\text {OUT }} \cong \frac{\mathrm{Z}_{\mathrm{O}}(\text { OPEN-LOOP })}{\mathrm{A}(\text { OPEN-LOOP VOLTAGE-GAIN })}$
$\cong \frac{220 \Omega}{100 \mathrm{~dB}} \cong \frac{220 \Omega}{10^{5}} \cong 0.0022 \Omega$


FIGURE 9. SCHEMATIC DIAGRAM OF OTA IN A SAMPLE-AND-HOLD CIRCUIT

Figure 10 shows a "sampled" triangular signal. The lower trace in the photograph is the sampling signal. When this signal goes negative, the CA3080A is cutoff and the signal is "held" on the storage capacitor, as shown by the plateaus on the triangular waveform. The center trace is a time expansion of the top-most transition (in the upper trace) with a time scale of $2 \mu \mathrm{~s} /$ Div.

Once the signal is acquired, variation in the stored-signal level during the hold-period is of concern. This variation is primarily a function of the cutoff leakage current of the CA3080A (a maximum limit of 5 nA ), the leakage of the storage element, and other extraneous paths. These leakage currents may be either "positive" or "negative" and, consequently, the stored-signal may rise or fall during the "hold" interval. The term "tilt" is used to describe this condition. Figure 11 shows the expected pulse "till" in microvolts versus time for various values of the compen-
sation/storage capacitor. The horizontal axis shows three scales representing leakage currents of $50 \mathrm{nA}, 5 \mathrm{nA}, 500 \mathrm{pA}$.


Top Trace: Sampled Signal 1V/Div., 20 $\mu \mathrm{s} /$ Div.
Center Trace: Top Portion of Upper Signal; 1V/Div., $2 \mu \mathrm{~s} /$ Div. Bottom Trace: Sampling Signal; 20V/Div., $20 \mu \mathrm{~s} /$ Div.

FIGURE 10. WAVEFORMS FOR CIRCUIT OF FIGURE 9
Figure 12 shows a dual-trace photograph of a triangular signal being "sampled-and-held" for approximately 14 ms with a 300 pF storage capacitor. The center trace (expanded to $20 \mathrm{mV} / \mathrm{Div}$.) shows the worst-case "tilt" for all the steps shown in the upper trace. The total equivalent leakage current in this case is only $170 \mathrm{pA}(\mathrm{I}=\mathrm{C} \mathrm{dv} / \mathrm{dt})$.

Figure 13 is an oscilloscope photograph of a ramp voltage being sampled by the "sample-and-hold" circuit of Figure 9. The input signal and sampled-output signal are superimposed. The lower trace shows the sampling signal. Data shown in Figure 13 were recorded with supply voltages of $\pm 10 \mathrm{~V}$ and the series input resistor at terminal 5 was $22 \mathrm{k} \Omega$.


FIGURE 11. "TILT" IN "HELD" VOLTAGE vs HOLD TIME


Top Trace: Sampled Signal; 1 V/Div., $20 \mathrm{~ms} /$ Div. Center Trace: Worse Case Tilt; $20 \mathrm{mV} /$ Div., $20 \mathrm{~ms} /$ Div.

FIGURE 12. "TRIANGULAR-VOLTAGE" BEING SAMPLED BY CIRCUIT OF FIGURE 9


Top Trace: Input and Output Superimposed; 1V/Div., $2 \mu \mathrm{~s} /$ Div. Bottom Trace: Sampling Signal; 20V/Div., $2 \mu \mathrm{~s} /$ Div.

FIGURE 13. "RAMP-VOLTAGE" BEING SAMPLED BY CIRCUIT OF FIGURE 9

In Figure 14, the trace of Figure 13 has been expanded ( $100 \mathrm{mV} /$ Div. and $100 \mathrm{~ns} /$ Div.) to show the response of the sample-and-hold circuit with respect to the sampling signal. After the sampling interval, the amplifier overshoots the signal level and settles (within the amplifier offset voltage) in approximately $1 \mu \mathrm{~s}$. The resistor in series with the 300 pF phase-compensation capacitor was adjusted to $68 \Omega$ for minimum recovery time.


Top Trace: Input and Sampled Output Superimposed: $100 \mathrm{mV} / \mathrm{Div}$., 100ns/Div.
Bottom Trace: Sampling Signal; 20V/Div., 100ns/Div.
FIGURE 14. "TRIANGULAR-VOLTAGE" BEING SAMPLED BY CIRCUIT OF FIGURE 9

Figure 15 shows the basic circuit of Figure 9 implemented with a 2N4037 PNP transistor to minimize capacitive feedthrough. Figure 16 shows oscilloscope photographs taken with the circuit of Figure 15 operating in the sampling mode at supply voltage of $\pm 15 \mathrm{~V}$. The $9.1 \mathrm{k} \Omega$ resistor in series with the PNP transistor emitter establishes amplifier-bias-current ( $\mathrm{I}_{\mathrm{ABC}}$ ) conditions similar to those used in the circuit of Figure 9.


FIGURE 15. SCHEMATIC DIAGRAM OF THE OTA IN A SAMPLE-AND-HOLD CONFIGURATION (DTLTTL CONTROL LOGIC)


Top Trace: Input and Sampled Output Superimposed; $100 \mathrm{mV} /$ Div., $100 \mathrm{~ns} /$ Div.
Bottom Trace: Sampling Signal; 5V/Div., 100ns/Div.

## FIGURE 16. CIRCUIT OF FIGURE 15 OPERATING IN SAMPLING MODE

Considerations of circuit stability and signal retention require the use of the largest possible phase-compensation capacitor, compatible with the required slew rate. In most systems the capacitor is chosen for the maximum allowable "tilt" in the storage mode and the resistor is chosen so that $1 / 2 \pi R C \cong 2 \mathrm{MHz}$, corresponding to the first pole in the amplifier at an output current level of $500 \mu \mathrm{~A}$. It is frequently desirable to optimize the system response by the placement of a small variable resistor in series with the capacitor, as is shown in Figures 9 and 15. The 120 pF capacitor shunting the $2 \mathrm{k} \Omega$ resistor improves the amplifier transient response.
Figure 17 shows a multi-trace oscilloscope photograph of input and output signals for the circuit of Figure 9, operating in the linear mode. The lower portion of the photograph shows the input signal, and the upper portion shows the output signal. The amplifier slew-rate is determined by the output current and the capacitive loading: in this case the slew rate $(\mathrm{dv} / \mathrm{dt})=1.8 \mathrm{~V} / \mu \mathrm{s}$.
The center trace in Figure 17 shows the difference between the input and output signals as displayed on a Tektronix 7A13 differential amplifier at $2 \mathrm{mV} / \mathrm{Div}$. The output of the amplifier system settles to within 2 mV (the offset voltage specification for the CA3080A) of the input level in $1 \mu \mathrm{~s}$ after slewing.
Figure 18 is a curve of slew-rate versus amplifier-bias-current ( $I_{A B C}$ ) for various storage/compensation capacitors. The magnitude of the current being supplied to the storage/compensation capacitor is equal to the amplifier-bias-current ( $l_{A B C}$ ) when the OTA is supplying its maximum output current.

## Gain Control - Amplitude Modulation

Effective gain control of a signal may be obtained by controlled variation of the amplifier-bias-current ( $\mathrm{I}_{\mathrm{ABC}}$ ) in the OTA because its $g_{M}$ is directly proportional to the amplifier-bias-current ( $\mathrm{I}_{\mathrm{ABC}}$ ). For a specified value of amplifier-bias-current, the output current ( $\mathrm{I}_{\mathrm{O}}$ ) is equal to the product of $\mathrm{g}_{\mathrm{M}}$ and the input signal magnitude. The output voltage swing is the product of output current $\left(\mathrm{I}_{\mathrm{O}}\right)$ and the load resistance $\left(\mathrm{R}_{\mathrm{L}}\right)$.


Top Trace: Output; 5V/Div., $2 \mu \mathrm{~s} /$ Div.
Center Trace: Differential Comparsion of Input and Output; $2 m V / D i v .$, OV thru Center; $2 \mu \mathrm{~s} /$ Div.
Bottom Trace: Input; 5V/Div., $2 \mu \mathrm{~s} /$ Div.

## FIGURE 17. CIRCUIT OF FIGURE 9 OPERATING IN THE LINEAR SAMPLE MODE

Figure 19 shows the configuration for this form of basic gain control (a modulation system). The output signal current ( $\mathrm{I}_{\mathrm{O}}$ ) is equal to $-g_{M} \times V_{X}$; the sign of the output signal is negative because the input signal is applied to the inverting input terminal of the OTA. The transconductance of the OTA is controlled by adjustment of the amplifier bias current, $\mathrm{I}_{\mathrm{ABC}}$. In this circuit the level of the unmodulated carrier output is established by a particular amplifier-bias-current ( $\mathrm{I}_{\mathrm{ABC}}$ ) through resistor $\mathrm{R}_{\mathrm{M}}$. Amplitude modulation of the carrier frequency occurs because variation of the voltage $\mathrm{V}_{\mathrm{M}}$ forces a change in the amplifier-bias-current ( $\mathrm{I}_{\mathrm{ABC}}$ ) supplied via resistor $\mathrm{R}_{\mathrm{M}}$. When $\mathrm{V}_{\mathrm{M}}$ goes positive, the bias current increases which causes a corresponding increase in the $\mathrm{g}_{\mathrm{M}}$ of the OTA. When the $\mathrm{V}_{\mathrm{M}}$ goes in the negative direction (toward the amplifier-bias-current terminal potential), the amplifier-bias-current decreases, and reduces the $g_{M}$ of the OTA.


FIGURE 18. SLEW RATE vs AMPLIFIER-BIAS-CURRENT (I ${ }_{\text {ABC }}$ )


FIGURE 19. AMPLITUDE MODULATOR CIRCUIT USING THE OTA
As discussed earlier, $g_{M}=19.2 \times \mathrm{I}_{\mathrm{ABC}}$, where $\mathrm{g}_{\mathrm{M}}$ is in millisiemens when $I_{A B C}$ is in milliamperes. In this case, $I_{A B C}$ is approximately equal to:
$\frac{V_{M-(V-)}}{R_{M}}=I_{A B C}$
$I_{0}=-g_{M} V_{X}$
$\mathrm{g}_{\mathrm{M}} \mathrm{V}_{\mathrm{X}}=(19.2)\left(\mathrm{I}_{\mathrm{ABC}}\right)\left(\mathrm{V}_{\mathrm{X}}\right)$
$\mathrm{I}_{\mathrm{O}}=\frac{-19.2\left[\mathrm{~V}_{\mathrm{M}}-(\mathrm{V}-)\right] \mathrm{V}_{\mathrm{X}}}{\mathrm{R}_{\mathrm{M}}}$
$\mathrm{I}_{\mathrm{O}}=\frac{19.2\left(\mathrm{~V}_{\mathrm{X}}\right)(\mathrm{V}-)}{\mathrm{R}_{\mathrm{M}}}-\frac{19.2\left(\mathrm{~V}_{\mathrm{X}}\right)\left(\mathrm{V}_{\mathrm{M}}\right)}{\mathrm{R}_{\mathrm{M}}}$
There are two terms in the modulation equation: the first term represents the fixed carrier input, independent of $V_{M}$ and the second term represents the modulation, which either adds to or subtracts from the first term. When $V_{M}$ is equal to the V - term, the output is reduced to zero.

In the preceding modulation equations the term,
(19.2)( $\left.\mathrm{V}_{\mathrm{X}}\right) \frac{\mathrm{V}_{\mathrm{ABC}}}{\mathrm{R}_{\mathrm{M}}}$
involving the amplifier-bias-current terminal voltage $\left(\mathrm{V}_{\mathrm{ABC}}\right)$ (see Figure 4 for $\mathrm{V}_{\mathrm{ABC}}$ ) was neglected. This term was assumed to be small because $\mathrm{V}_{\mathrm{ABC}}$ is small compared with V - in the equation. If the amplifier-bias-current terminal is driven by a currentsource (such as from the collector of a PNP transistor), the effect of $\mathrm{V}_{\mathrm{ABC}}$ variation is eliminated and transferred to the involvement of the PNP transistor base-emitter junction characteristics. Figure 20 shows a method of driving the amplifier-bias-current terminal to effectively remove this latter variation.

If an NPN transistor is added to the circuit of Figure 20 as an emitter-follower to drive the PNP transistor, variations due to base-emitter characteristics are considerably reduced due to the complementary nature of the NPN base-emitter junctions. Moreover, the temperature coefficients of the two base-emitter junctions tend to cancel one another. Figure 21 shows a configuration using one transistor in the CA3018A NPN transistor-array as an input emitter-follower, with the
three remaining transistors of the transistor-array connected as a current-source for the emitter followers.


FIGURE 20. AMPLITUDE MODULATOR USING OTA CONTROLLED BY PNP TRANSISTOR


FIGURE 21. AMPLITUDE MODULATOR USING OTA CONTROLLED BY PNP AND NPN TRANSISTORS

The $100 \mathrm{k} \Omega$ potentiometer shown in these schematics is used to null the effects of amplifier input offset voltage. This potentiometer is adjusted to set the output voltage symmetrically about zero. Figures 22A and 22B show oscilloscope photographs of the output voltages obtained when the circuit of Figure 19 is used as a modulator for both sinusoidal and triangular modulating signals. This method of modulation permits a range exceeding 1000:1 in the gain, and thus provides modulation of the carrier input in excess of $99 \%$. The photo in Figure 22C shows the excellent isolation (>80dB at $f=100 \mathrm{kHz}$ ) achieved in this modulator during the "gated-off" condition.

## Four-Quadrant Multipliers

A single CA3080A is especially suited for many lowfrequency, low-power four-quadrant multiplier applications. The basic multiplier circuit of Figure 23 is particularly useful for waveform generation, doubly balanced modulation, and other signal processing applications, in portable equipment, where low-power consumption is essential and accuracy
requirements are moderate. The multiplier configuration is basically an extension of the previously discussed gaincontrolled configuration (Figure 19).
To obtain a four-quadrant multiplier, the first term of the modulation equation (which represents the fixed carrier) must be reduced to zero. This term is reduced to zero by the placement of a feedback resistor (R) between the output and the inverting input terminal of the CA3080A, with the value of the feedback resistor ( $R$ ) equal to $1 / \mathrm{g}_{\mathrm{M}}$. The output current is $\mathrm{I}_{\mathrm{O}}=g_{\mathrm{M}}\left(-\mathrm{V}_{\mathrm{X}}\right)$ because the input is applied to the inverting terminal of the OTA. The output current due to the resistor $(R)$ is $V_{X} / R$. Hence, the two signals cancel when $R=1 / g_{M}$. The current for this configuration is:

$$
\mathrm{I}_{\mathrm{O}}=\frac{-19.2 \mathrm{~V}_{\mathrm{X}} \mathrm{~V}_{\mathrm{M}}}{\mathrm{R}_{\mathrm{M}}} \text {, and } \mathrm{V}_{\mathrm{M}}=\mathrm{V}_{\mathrm{Y}}
$$

The output signal for these configurations is a current which is best terminated by a short-circuit. This condition can be satisfied by making the load resistance for the multiplier output very small. Alternatively, the output can be applied to a current-to-voltage converter as shown in Figure 24.
In Figure 23, the current "cancellation" in the resistor R is a direct function of the OTA differential amplifier linearity. In the following example, the signal excursion is limited to $\pm 10 \mathrm{mV}$ to preserve this linearity. Greater signal-excursions on the input terminal will result in a significant departure from linear operation (which may be entirely satisfactory in many applications).


TIME ( $50 \mu \mathrm{~s} / \mathrm{DIV}$.
Top Trace: Modulation Input ( $\cong 20 V_{\text {P-P }}$ )
Center Trace: Amplitude Modulated Output; $500 \mathrm{mV} / \mathrm{Div}$. Bottom Trace: Expanded Output to Show

Depth of Modulation; $20 \mathrm{mV} /$ Div.
FIGURE 22A. RESPONSE FOR SINE WAVE MODULATION


TIME ( $50 \mu \mathrm{~s} / \mathrm{DIV}$.)
Top Trace: Modulation Input (20V) Bottom Trace: Amplitude Modulated Output; 500mV/Div.

FIGURE 22B. RESPONSE FOR TRIANGLE WAVE MODULATION


TIME ( $50 \mu \mathrm{~s} / \mathrm{DIV}$.
Top Trace: Gated Output; 1V/Div.
Bottom Trace: Voltage Expansion Of Above Signal Showing No Residual; 1mv/Div.

FIGURE 22C. RESPONSE FOR SQUARE WAVE MODULATION
FIGURE 22. AMPLITUDE MODULATOR CIRCUIT OF FIGURE 19 WITH $R_{M}=40 \mathrm{k} \Omega, V_{S}= \pm 10 \mathrm{~V}$


FIGURE 23. BASIC FOUR QUADRANT ANALOG MULTIPLIER USING AN OTA


FIGURE 24. OTA ANALOG MULTIPLIER DRIVING A CURRENT-TO-VOLTAGE CONVERTER
Figure 25 shows a schematic diagram of the basic multiplier with the adjustments set-up to give the multiplier an accuracy of approximately $\pm 7$ percent full-scale. There are only three adjustments: 1) one is on the output, to compensate for slight variations in the current-transfer ratio of the current-mirrors (which would otherwise result in a symmetrical output about some current level other than zero); 2) the adjustment of the $20 \mathrm{k} \Omega$ potentiometer establishes the $g_{M}$ of the system equal to the value of the fixed resistor shunting the system when the Y-input is zero; 3) compensates for error due to input offset voltage.

## Procedure for adjustment of the circuit:

1. a) Set the $1 \mathrm{M} \Omega$ output-current balancing potentiometer to the center of its range
b) Ground the $X$ - and $Y$ - inputs
c) Adjust the $100 \mathrm{k} \Omega$ potentiometer until a 0 V reading is obtained at the output.
2. a) Ground the Y-input and apply a signal to the $X$ input through a low source-impedance generator (it is essential that a low impedance source be used; this minimizes any change in the $\mathrm{g}_{\mathrm{M}}$ balance or zero-point due to the $50 \mu \mathrm{~A}$ Y-input bias current).
b) Adjust the $20 \mathrm{k} \Omega$ potentiometer in series with $Y$-input until a reading of $O \mathrm{~V}$ is obtained at the output. This adjustment establishes the $g_{M}$ of the CA3080A at the proper level to cancel the output signal. The output current is diverted through the $510 \mathrm{k} \Omega$ resistor.
3. a) Ground the X -input and apply a signal to the Y -input through a low source-impedance generator.
b) Adjust the $1 \mathrm{M} \Omega$ resistor for an output voltage of 0 V .

There will be some interaction among the adjustments and the procedure should be repeated to optimize the circuit performance.


FIGURE 25. SCHEMATIC DIAGRAM OF ANALOG MULTIPLIER USING OTA


FIGURE 26. SCHEMATIC DIAGRAM OF ANALOG MULTIPLIER USING OTA CONTROLLED BY A PNP TRANSISTOR

Figure 26 shows the schematic of an analog multiplier circuit with a $2 N 4037$ PNP transistor replacing the Y-input "current" resistor. The advantage of this system is the higher input resistance resulting from the current-gain of the PNP transistor. The addition of another emitter-follower preceeding the PNP transistor (shown in Figure 21) will further increase the current gain while markedly reducing the effect of the $\mathrm{V}_{\mathrm{be}}$ temperature-dependent characteristic and the offset voltage of the two base-emitter junctions.

Figures 27A and 27B show oscilloscope photographs of the output signals delivered by the circuit of Figure 26 which is connected as a suppressed-carrier generator. Figures 28A and 28B contain photos of the outputs obtained in signal "squaring" circuits, i.e. "squaring" sine-wave and triangular- wave inputs.
If $\pm 15 \mathrm{~V}$ power supplies are used (shown in Figure 26), both inputs can accept $\pm 10 \mathrm{~V}$ input signals. Adjustment of this multiplier circuit is similar to that already described above.

$500 \mathrm{mV} /$ Div., $200 \mu \mathrm{~s} /$ Div.,
Triangular Input: $700 \mathrm{~Hz} ; 5 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ to $\mathrm{V}_{Y}$ Input Carrier Input: 30 kHz ; $13.5 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ to $\mathrm{V}_{\mathrm{X}}$ Input

FIGURE 27A.


500mV／Div．， $200 \mu \mathrm{~s} /$ Div．，
Modulating Frequency： $700 \mathrm{~Hz} ; 5 \mathrm{~V}_{\text {P－P }}$ to $\mathrm{V}_{Y}$ Input Carrier Input： $21 \mathrm{kHz} ; 13.5 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ to $\mathrm{V}_{\mathrm{X}}$ Input

FIGURE 27B．
FIGURE 27．WAVEFORMS OBSERVED WITH OTA ANALOG MULTIPLIER USED AS A SUPPRESSED CARRIER GENERATOR

The accuracy and stability of these multipliers are a direct function of the power supply－voltage stability because the Y － input is referred to the negative supply－voltage．Tracking of the positive and negative supply is also important because the balance adjustments for both the offset voltage and out－ put current are also referenced to these supplies．

## Linear Multiplexer－Decoder

A simple，but effective system for multiplexing and decoding can be assembled with the CA3080 shown in Figure 29. Only two channels are shown in this schematic，but the number of channels may be extended as desired．Figure 30 shows oscilloscope photos taken during operation of the multiplexer and decoder．A CA3080 is used as a $10 \mu$ s delay－ ＂one－shot＂multivibrator in the decoder to insure that the sample－and－hold circuit can sample only after the input sig－ nal has settled．Thus，the trailing edge of the＂one－shot＂out－ put－signal is used to sample the input at the sample－and－ hold circuit for approximately $1 \mu \mathrm{~s}$ ．Figure 31 shows oscilloscope photos of various waveforms observed during operation of the multiplexer／decoder circuit．Either the Q or $\bar{Q}$ output from the flip－flop may be used to trigger the $10 \mu \mathrm{~s}$ ＂one－shot＂to decode a signal．


Top Trace：Input to X And Y；2V／Div．，1ms／Div．（200Hz） Bottom Trace：Output；500mV／Div．，1ms／Div．（400Hz）

FIGURE 28A．


Top Trace：Input to X And Y；2V／Div．， $1 \mathrm{~ms} /$ Div．（ 200 Hz ） Bottom Trace：Output； $500 \mathrm{mV} /$ Div．， $1 \mathrm{~ms} /$ Div．（ 400 Hz ）

FIGURE 28B．
FIGURE 28．WAVEFORMS OBSERVED WITH OTA ANALOG MULTIPLIER USED IN SIGNAL－SQUARING CIRCUITS


FIGURE 29. TWO-CHANNEL MULTIPLEXER AND DECODER USING OTAs


Top Trace: Input Signal; 1V/Div., 20ms/Div. Center Trace: Recovered Output; 1V/Div., 20ms/Div. Bottom Trace: Multiplexed Signals; 2V/Div., $20 \mathrm{~ms} /$ Div.


Top Trace: Input Signal; 1V/Div., 20ms/Div.
Center Trace: Recovered Output; 1V/Div., 20ms/Div. Bottom Trace: Multiplexed Signals; 1V/Div., 20ms/Div.

FIGURE 30. WAVEFORMS SHOWING OPERATION OF LINEAR MULTIPLEXER/SAMPLE-AND-HOLD DECODE CIRCUITRY (FIGURE 29)


Top Trace: Flip-flop Output; 5V/Div., $20 \mu \mathrm{~s} /$ Div. Center Trace: "One-shot" Output; 5V/Div., $20 \mu \mathrm{~s} /$ Div. Bottom Trace: Strobe Pulse At The Collector of $Q_{1}$; $0.1 \mathrm{~V} /$ Div., $20 \mu \mathrm{~s} /$ Div.

FIGURE 31A. WAVEFORMS CONTROLUNG DECODER ENABLE


Top Trace: Strobe Pulse at $\mathrm{Q}_{1} ; 0.5 \mathrm{~V} /$ Div., $5 \mathrm{~ms} /$ Div. Center Trace: Multiplexed Output With One Input at GND; $0.5 \mathrm{~V} / \mathrm{Div} ., 5 \mathrm{~ms} /$ Div. Bottom Trace: Decoded Output; 0.5V/Div., $5 \mathrm{~ms} /$ Div.

FIGURE 31B. WAVEFORMS SHOWING DECODER OPERATION

$500 \mu \mathrm{~s} / \mathrm{Div}$.

## FIGURE 31C. SAME AS FIGURE 31B BUT WITH EXPANDED TIME SCALE

## FIGURE 31. VARIOUS WAVEFORMS SHOWING THE OPERATION OF LINEAR MULTIPLEXER

## High-Gain, High-Current Output Stages

In the previously discussed examples, the OTA has been buffered by a single insulated-gate field-effect-transistor (MOSFET) shown in Figure 9. This configuration yields a voltage gain equal to the $\left(g_{M}\right)\left(R_{O}\right)$ product of the CA3080, which is typically 142,000 ( 103 dB ). The output voltage and current-swing of the operational amplifier formed by this configuration (Figure 9) are limited by the 3N138 MOSFET performance and its source-terminal load. In the positive direction, the MOSFET may be driven into saturation; the source-load resistance and the MOSFET characteristics become the factors limiting the output-voltage swing in the negative direction. The available negative-going load current may be kept constant by the return of the source-terminal to a constant-current transistor. Phase compensation is applied at the interface of the CA3080 and the 3N138 MOSFET shown in Figure 9.

Another variation of this generic form of amplifier utilizes the CD4007A (CMOS) inverter as an amplifier driven by the CA3080. Each of the three inverter/amplifiers in the CD4007A has a typical voltage gain of 30 dB . The gain of a single CMOS inverter/amplifier coupled with the 100 dB gain of the CA3080 yields a total forward-gain of about 130 dB . Use of a two-stage CMOS amplifier configuration will increase the total open-loop gain of the system to about $160 \mathrm{~dB}(100,000,000)$. Figures 32 through 35 show examples of these configurations. Each CMOS inverter/amplifier can sink or source a current of 6 mA (Typ). In Figures 34 and 35, two CMOS inverter/amplifiers have been connected in parallel to provide additional output current.


FIGURE 32. OTA DRIVING CMOS INVERTER/AMPLIFIER IN OPEN-LOOP MODE

The open-loop slew-rate of the circuit in Figure 32 is approximately $65 \mathrm{~V} / \mu \mathrm{s}$. When compensated for the unity-gain voltage-follower mode, the slew-rate is about $1 \mathrm{~V} / \mu \mathrm{s}$ (shown in Figure 33). Even when the three inverter/amplifiers in the CD4007A are connected as shown in Figure 34, the openloop slew-rate remains at $65 \mathrm{~V} / \mu \mathrm{s}$. A slew-rate of about $1 \mathrm{~V} / \mu \mathrm{s}$ is maintained with this circuit connected in the unity-gain voltage-follower mode, as shown in Figure 35. Figure 36 contains oscilloscope photos of input-output waveforms under small-signal and large-signal conditions for the circuits of Figures 33 and 35. These photos illustrate the inherent stability of the OTA and CMOS circuits operating in concert.


FIGURE 33. OTA DRIVING CMOS INVERTER/AMPLIFIER IN UNITY-GAIN CLOSED-LOOP MODE

## Precision Multistable Circuits

The micropower capabilities of the CA3080, when combined with the characteristics of the CD4007A CMOS inverter/ amplifiers, are ideally suited for use in connection with precision multistable circuits. In the circuits of Figures 32, 33, 34,
and 35, for example, power-supply current drawn by the CMOS inverter/amplifier approaches zero as the output voltage swings either positive or negative, while the CA3080 current-drain remains constant.

Figure 37 shows a variety of circuits that can be assembled using the CA3080 to drive one inverter/amplifier in the CD4007A. For greater output current capability, the remaining amplifiers in the CD4007A may be connected in parallel with the single stage shown. Precise timing and thresholds are assured by the stable characteristics of the input differential amplifier in the CA3080. Moreover, speed vs power consumption trade-offs may be made by adjustment of the $\mathrm{I}_{\mathrm{ABC}}$ current to the CA3080. The quiescent power consumption of the circuits shown in Figure 37 is typically 6 mW , but can be made to operate in the micropower region by suitable circuit modifications.


FIGURE 34. OTA DRIVING TWO-STAGE CMOS INVERTER/ AMPLIFIER IN OPEN-LOOP MODE


FIGURE 35. OTA DRIVING TWO-STAGE CMOS INVERTER/ AMPLIFIER IN UNITY GAIN CLOSED-LOOP MODE

## Application Note 6668



Top Trace: Input; 5V/Div., 100 $\mu \mathrm{s} /$ Div. Bottom Trace: Output; $5 \mathrm{~V} /$ Div., $100 \mu \mathrm{~s} /$ Div.

FIGURE 36A. LARGE SIGNAL RESPONSE FOR CIRCUIT IN FIGURE 33


Top Trace: Input; 5V/Div., $100 \mu \mathrm{~s} /$ Div. Bottom Trace: Output; 5V/Div., $100 \mu \mathrm{~s} /$ Div.
FIGURE 36C. LARGE SIGNAL RESPONSE FOR CIRCUIT IN FIGURE 35


Top Trace: Input; $50 \mathrm{mV} /$ Div., $1 \mu \mathrm{~s} /$ Div. Bottom Trace: Output; $50 \mathrm{mV} /$ Div., $^{1} 1 \mu \mathrm{~s} /$ Div.

FIGURE 36B. SMALL SIGNAL RESPONSE FOR CIRCUIT IN FIGURE 33


Top Trace: Input; $50 \mathrm{mV} /$ Div., $1 \mu \mathrm{~s} /$ Div. Bottom Trace: Output; $50 \mathrm{mV} /$ Div., $1 \mu \mathrm{~s} /$ Div.
FIGURE 36D. SMALL SIGNAL RESPONSE FOR CIRCUIT IN FIGURE 35

FIGURE 36. PERFORMANCE OF OTA DRIVING CMOS INVERTER/AMPLIFIER

## Micropower Comparator

The schematic diagram of a micropower comparator is shown in Figure 38. Quiescent power consumption of this circuit is about $10 \mu \mathrm{~W}$ (Typ). When the comparator is strobed "ON", the CA3080A becomes active and consumes $420 \mu \mathrm{~W}$. Under these conditions, the circuit responds to a differential input signal in about $8 \mu \mathrm{~s}$. By suitably biasing the CA3080A, the circuit response time can be decreased to about 150ns, but the power consumption rises to 21 mW .

The differential amplifier input common-mode range for the circuit of Figure 38 is -1 V to +10.5 V . Voltage gain of the micropower comparator is typically 130 dB . For example, a $5 \mu \mathrm{~V}$ input signal will switch the output.


FIGURE 37A. ASTABLE MULTIVIBRATOR


FIGURE 37B. MONOSTABLE MULTIVIBRATOR


FIGURE 37C. THRESHOLD DETECTOR
FIGURE 37. MULTISTABLE CIRCUITS USING THE OTA AND CMOS INVERTER/AMPLIFIERS


FIGURE 38. SCHEMATIC DIAGRAM OF MICROPOWER COMPARATOR USING THE CA3080A AND CMOS CD4007A

## Appendix I

## Current Mirrors

The basic current-mirror, described in the beginning of this note, in its rudimentary form, is a transistor with a second transistor connected as a diode. Figure A shows this basic configuration of the current-mirror. $Q_{2}$ is a diode connected transistor. Because this diode-connected transistor is not in saturation and is "active", the "diode" formed by this connection may be considered as a transistor with $100 \%$ feedback. Therefore, the base current still controls the collector current as is the case in normal transistor action, i.e., $I_{C}=\beta I_{B}$. If a current $I_{1}$ is forced into the diode-connected transistor, the base-to-emitter voltage will rise until equilibrium is reached and the total current being supplied is divided between the collector and base regions. Thus, a base-to-emitter voltage is established in $Q_{2}$ such that $Q_{2}$ "sinks" the applied current $I_{1}$.


FIGURE 39A. DIODE - TRANSISTOR CURRENT SOURCE

If the base of a second transistor $\left(Q_{1}\right)$ is connected to the base-to-collector junction of $Q_{2}$, shown in Figure $39 A, Q_{1}$ will also be able to "sink" a current approximately equal to that flowing in the collector lead of the diode-connected transistor $\mathrm{Q}_{2}$. This assumes that both transistors have identical characteristics, a prerequisite established by the IC fabrication technique. The difference in current between the input current $\left(I_{1}\right)$ and the collector current $\left(l_{2}\right)$ of transistor $Q_{1}$, is due to the fact that the base-current for both transistors is supplied from $I_{1}$. Figure 39B shows this current division, using a "unit" of base current (1) to each transistor base. This base current causes a collector current to flow in direct proportion to the $\beta$ of each transistor. The ratio of the "sinking" current $\mathrm{I}_{2}$ to the input current $\mathrm{I}_{1}$ is therefore: $\frac{I_{2}}{I_{1}}=\beta /(\beta+2)$.

Thus，as $\beta$ increases，the output current $\left(\mathrm{I}_{2}\right)$ approaches the input current $\left(l_{1}\right)$ ．The curves in Figure 39C show this ratio as a function of the transistor $\beta$ ．When the transistor $\beta$ is equal to 100 ，for example，the difference between the two currents is only two percent．


FIGURE 39B．DIODE－TRANSISTOR CURRENT SOURCE． ANALYSIS OF CURRENT FLOW


FIGURE 39C．CURRENT TRANSFER RATIO $I_{2} / l_{1}$ vs TRANSISTOR BETA

Figure 39D shows a curve－tracer photograph of characteristics for the circuit of Figure 39B．No consideration in this discussion is given to the variation of the transistor $\left(Q_{1}\right)$ collector current as a function of its collector－to－emitter voltage．The output resistance characteristic of $Q_{1}$ retains its similarity to that of a single transis－ tor operating under similar conditions．An improvement in its out－ put resistance characteristic can be made by the insertion of a diode－connected transistor in series with the emitter of $Q_{1}$ ．


Scale：Horizontal $=2 \mathrm{~V} /$ Div．
Vertical＝1mA／Div．
Steps $=1 \mathrm{~mA}$ STEP
FIGURE 39D．PHOTO SHOWING RESULTS OF FIGURE 39B

This diode－connected transistor（ $Q_{3}$ in Figure 39E）may be considered as a current－sampling diode that senses the emit－ ter－current of $Q_{1}$ and adjusts the base current $Q_{1}$（via $Q_{2}$ ）to maintain a constant－current in $\mathrm{I}_{2}$ ．Because all controlling tran－ sistors are operated at relatively fixed voltages，the previously discussed effects due to voltage coefficients do not exist．The curve－tracer photograph of Figure 39F shows the improved output resistance characteristics of the circuit of Figure 39E． （Compare Figure 39D and 39F）．


FIGURE 39E．DIODE－ 2 TRANSISTOR CURRENT SOURCE


Scale: Horizontal = 2V/Div.
Vertical = 1mANDiv.
Steps $=1 \mathrm{~mA}$ STEP
FIGURE 39F. PHOTO SHOWING RESULTS OF FIGURE 39E
Figure 39G shows the current-division within the mirror assuming a "unit" (1) of current in transistors $\left(\mathrm{Q}_{2}\right.$ and $\left.\mathrm{Q}_{3}\right)$.
The resulting current transfer ratio
$I_{2} / I_{1}=\frac{\beta^{2}+2 \beta}{\beta^{2}+2 \beta+2}$.
Figure 39C shows this equation plotted as a function of beta. It is significant that the current transfer ratio $\left(I_{2} / l_{1}\right)$ is improved by the $\beta^{2}$ term, and reduces the significance of the $2 \beta+2$ term in the denominator.


$$
\frac{I_{2}}{I_{1}}=\frac{\beta\left(\frac{\beta+2}{\beta+1}\right)}{\beta+\left(\frac{\beta+2}{\beta+1}\right)}=\frac{\beta^{2}+2 \beta}{\beta^{2}+2 \beta+2}
$$

FIGURE 39G. CURRENT FLOW ANALYSIS OF FIGURE 39E

## Conclusions

The Operational Transconductance Amplifier (OTA) is a unique device with characteristics particularly suited to applications in multiplexing, amplitude modulation, analog multiplication, gain control, switching circuitry, multivibrators, comparators, and a broad spectrum of micropower circuitry. The CA3080 is ideal for use in conjunction with CMOS ICs being operated in the linear mode.

## Acknowledgments

The author is indebted to C. F. Wheatly for many helpful discussions. Valued contributions in circuit evaluation were made by A. J. Visioli Jr. and J. H. Klinger.


## Using the HFA1100, HFA1130 Evaluation Fixture

Author: Jeff Lies

## General Information

The HFA evaluation fixture is a special purpose board which frees users from the time-consuming task of developing their own evaluation hardware. It also serves as an example of the type of high frequency layout required by ultra high speed op amps. The board makes no provision for easy modification to other configurations. Modifications are strongly discouraged, since surface mount printed circuit pads tend to disintegrate after only a few resolderings.

The fixture is wired in a gain of +2 as shown in Figure 1 . It is intended for use in a $50 \Omega$ environment, so input and output ter-
mination resistors have been incorporated. Figure 2 illustrates the typical frequency response of an HFA1100/30 in this fixture.

## Evaluating the HFA1100

As delivered, the fixture is ideal for evaluating the HFA1100. The $V_{H}$ and $V_{L}$ connections have no effect, since pins 5 and 8 are not bonded out on the HFA1100. Figure 3 details a setup for evaluating the amplifier's pulse response, while Figure 4 illustrates the HFA1100 performance in this setup. The scope input trace accurately reflects the amplifier input, but the output trace is one-half the amplifier output voltage.


FIGURE 2. HFA1100/30 FREQUENCY RESPONSE ( $A_{V}=+2$ )

FIGURE 1. SCHEMATIC OF HFA1100/30 EVALUATION BOARD


FIGURE 3. CONNECTION FOR EVALUATING HFA1100 PULSE RESPONSE

## Evaluating the HFA1120

This fixture is not recommended for evaluation of the HFA1120. The HFA1120 incorporates balance pins (pins 1 and 5) which are absent on the HFA1100. Pin 1 is unconnected on this fixture, while pin 5 is connected to the $\mathrm{V}_{\mathrm{L}}$ terminal. The unequal capacitance on these pins may unbalance the amplifier and prevent any meaningful evaluation.

INPUT AND OUTPUT: 100mV/DIV


FIGURE 4. HFA1100 PULSE RESPONSE

## Evaluating the HFA1130

No fixture modifications are necessary when evaluating the HFA1130. When evaluating unclamped performance, the $\mathrm{V}_{\mathrm{H}}$ and $V_{L}$ inputs may be left floating. An unclamped HFA1130 performs like an HFA1100/20 in that the output is clamped to a default value of approximately $\pm 4.2 \mathrm{~V}$. Even though the output swing is less than $\pm 4.2 \mathrm{~V}$, the default clamp provides fast overdrive recovery on the HFA11XX family.

Figure 5 illustrates the HFA1130 clamped pulse response for a positive pulse. The set-up for evaluating the clamped overdrive recovery time is detailed in Figure 6. This set-up uses a slower pulse generator, since input transitions $\geq 2 n s$ yield the best results.

INPUT: $200 \mathrm{mV} / \mathrm{DIV}$
OUTPUT: $100 \mathrm{mV} / \mathrm{DIV}$


FIGURE 5. HFA1130 CLAMPED PULSE RESPONSE


FIGURE 6. CONNECTION FOR EVALUATING HFA1130 OVERDRIVE RECOVERY


# HA5020 Operational Amplifier Feedback Resistor Selection 

Author: Steve Jost

Optimum AC performance of current feedback amplifiers in general and of the HA-5020 in particular depends upon careful selection of the feedback resistor, $\mathrm{R}_{\mathrm{F}}$. The benefit of higher usable bandwidth (compared with conventional voltage feedback amplifiers) and the ability to control the frequency response (by choosing the value of $R_{F}$ ) carries an expense in that the design process becomes more complicated. This is particularly true if an intuitive knowledge of how the device will behave in the end application is lacking. The purpose of this App Note is to provide a conceptual foundation on which this intuitive knowledge can be built.

The choice of the optimum resistor value depends upon design goals for the application subject to conditions of closed loop gain, source impedance, and load. As a point of reference, typical curves are provided in the data sheet that show how the frequency response is affected by closed loop gain, feedback resistor value, and load resistance. Source impedance, if it is large, becomes a factor only in conjunction with capacitance at the inputs. The data sheet curves are all generated with a $50 \Omega$ source impedance.

To illustrate how one might approach the problem of selecting a feedback resistor based on closed loop gain, consider the simple model of Figure 1. Between the inputs is a unity gain voltage buffer with non-zero output impedance indicated by $R_{1}$. The transimpedance gain, $R_{Z}$, is a function of frequency having a high $D C$ value that forces $\mathrm{I}_{\varepsilon}$ to zero. The model's behavior is influenced by external elements consisting of a feedback network ( $\mathrm{R}_{\mathrm{F}}$ and $\mathrm{R}_{\mathrm{G}}$ ), source and load impedances ( $R_{S}$ and $R_{L}$ ), and stray capacitance at the amplifier's inputs $\left(C_{S}\right)$.


FIGURE 1. SIMPLE CURRENT FEEDBACK AMPLIFIER MODEL

Derivation of the transfer function will confirm that the nonzero inverting input impedance, $R_{\text {l }}$, causes the circuit's bandwidth to degrade as the closed loop gain increases, while stray capacitance at the negative input gives rise to gain peaking particularly at low gains (intuitively, $\mathrm{C}_{\mathrm{S}}$ is in parallel with $R_{G}$ causing the gain as determined by the feedback network to increase with frequency).

Gain peaking due to capacitance at the inverting input is most easily dealt with by placing a resistor in series with the positive input. If we assume that the stray capacitance at the positive input equals the stray at the negative input, we can choose $R_{S}$ equal to the parallel combination of $R_{F}$ and $R_{G}$. This introduces a pole at the positive input which cancels the zero at the negative input, thereby eliminating the gain peak. Note that any remaining gain peaking is a result of excessive phase shift around the loop. Excess phase shift around the loop can be reduced by increasing $R_{F}$.

Bandwidth degradation due to non-zero inverting input resistance is also easy to deal with as long as the product of the closed loop gain and the inverting input resistance does not exceed the optimum value for $R_{F}$ in unity gain. By solving the transfer function for constant bandwidth, we arrive at the following equations for $R_{F}$ and $R_{G}$ :

$$
\begin{align*}
& R_{F}=R_{F O}-A_{C L} * R_{I}  \tag{EQ.1}\\
& R_{I}=R_{F} /\left(A_{C L}-1\right) \tag{EQ.2}
\end{align*}
$$

Where,
$R_{F O}$ is the optimum value for unity gain (1000 $\Omega$ ),
$R_{l}$ is the inverting input impedance (75 2 ), and
$A_{C L}$ is the desired closed loop gain.
A comparison between actual measured results in Figures 2 and 3 provides graphic reinforcement for the utility of these equations. Figure 2 illustrates the failure to consider stray input capacitance and inverting input resistance, while Figure 3 incorporates the lessons learned from analyzing our simple model.

In Figure 2, a family of closed loop gain curves was obtained on a representative unit using $R_{S}=50 \Omega$ and constant $R_{F}$ $\left(R_{F}=R_{F O}=1000 \Omega\right)$. The measured stray capacitance at either input was $2 p F$. The results in Figure 3 were obtained from the same unit, except that (within the constraints of available standard resistor values) $R_{F}$ and $R_{G}$ were chosen according to the equations above and $R_{S}$ was chosen to be equal to the parallel combination of $R_{F}$ and $R_{G}$.

One limitation of the above model is that it does not include the effects of the load. In general if $R_{L}$ is $400 \Omega$ or above, the response is independent of the load. If $R_{L}$ is less than $400 \Omega$, the response becomes more damped and the bandwidth degrades. Here again the bandwidth degradation can be compensated for by lowering the value of $R_{F}$.


FIGURE 2. FREQUENCY RESPONSE vs CLOSED LOOP GAIN USING FIXED $R_{F}=1 \mathrm{k} \Omega, R_{S}=50 \Omega, R_{L}=402 \Omega$

TABLE 1. RESISTOR VALUES FOR FIGURE 2

$\mathbf{A}_{\mathbf{V}}$	$\mathbf{R}_{\mathbf{F}}(\Omega)$	$\mathbf{R}_{\mathbf{G}}(\Omega)$	$\mathbf{R}_{\mathbf{S}}(\Omega)$	BW   $(\mathrm{MHz})$	PEAKING   $(\mathrm{dB})$
+1	1 K	-	50	97	1
+2	1 K	1 K	50	84	$<0$
+6	1 K	200	50	22	$<0$
+10	1 K	110	50	16	$<0$



FIGURE 3. FREQUENCY RESPONSE vs CLOSED LOOP GAIN $R_{F}=1000-A_{V}(75 \Omega), R_{S}=R_{F} \| R_{G}, R_{L}=402 \Omega$

TABLE 2. RESISTOR VALUES FOR FIGURE 3

$\mathbf{A}_{V}$	$\mathbf{R}_{\mathrm{F}}(\Omega)$	$\mathbf{R}_{\mathrm{G}}(\Omega)$	$\mathbf{R}_{\mathrm{S}}(\Omega)$	BW   $(\mathrm{MHz})$	PEAKING   $(\mathrm{dB})$
+1	909	-	909	87	2
+2	825	825	422	87	2
+6	562	110	90.9	74	0.5
+10	237	26.1	23.7	62	0.5

NOTE: $R_{F}=1000-A_{V}(75 \Omega), R_{S}=R_{F} \| R_{G}, R_{L}=402 \Omega$

# Circuit Considerations In Imaging Applications (HA-2546, HA-5020, HA-5033, HI-5700) 

## Introduction

Present day image-processing systems perform many functions such as low pass filtering and pattern recognition in the digital domain. However, as shown in the block diagram, the analog input signal must first pass through some signal conditioning and then be digitized by an A/D before it can be manipulated by the Digital Signal Processing (DSP).
It is these front end components that will set the overall dynamic range and resolution of the system and hence the detail that can be resolved in the image. This note will describe the considerations involved in designing and testing the performance of this part of the system.

## Video Format

RS-170 is a standard video format for monochrome television. It was later updated to RS-170A by NTSC to cover the requirements for color television broadcasting in the U.S. The FCC has control over broadcast video standards; but, since imaging processing systems are self contained, they do not have to follow a particular standard. For example, color cameras might provide three RGB outputs (component video) or a composite NTSC color signal. System synchronization schemes could also vary greatly.

A typical RS-170 image, or frame, is made up of two interlaced fields. The first field scanned represents the odd numbered lines; the second is the even numbered lines. A total of 525 lines per frame will be scanned in $1 / 30$ of a second with 485 lines being visible. The number of active elements per line, or pixels, varies from system to system depending on the desired resolution.

The RS-170 monochrome composite video signal is shown in Figure 1 . System timing is controlled by vertical and horizontal sync pulses. Horizontal sync controls the line by line timing and occurs during the $10.9 \mu$ s blanking period. Vertical sync
controls the field timing and occurs at $1 / 60$ of a second rate. The brightness information for the video image is transmitted during the active line time and will vary from the reference black level ( 7.5 IRE) to the reference white level ( 100 IRE).

RS-170 normally has an aspect ratio of $4: 3$. However, because of frame buffer memory and DSP requirements many image-processing applications will use a $1: 1$ aspect ratio. Figure 2 depicts the resulting picture and timing requirements for a RS-170 video with a $1: 1$ aspect ratio. The active line time is $39.44 \mu$ s centered with $6.575 \mu$ s of "inactive" time on either side. Notice that for 512 active pixels per line and 485 lines one frame of digitized video information will fit into 248,320 of memory.


FIGURE 1. STANDARD RS-170 COMPOSITE VIDEO SIGNAL

## Imaging System Block Diagram




FIGURE 2. MODIFIED RS-170 VIDEO

## Circuit Design Considerations

The analog waveforms seen by the signal conditioning front end to an image-processing system can be classified as small signal or large signal. The appropriate analysis should be used in each case. A good rule of thumb is to say any signal of less then a $1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$, like RS-170 video, should be considered as small signal.


FIGURE 3. VIDEO
Figure 3 is an example of a worst case light pattern that might be seen by a small section of a Charge Coupled Device (CCD) array inside a video camera. Each square represents an individual pixel. The rate at which these pixels are scanned will determine the bandwidth requirements. If it takes 39.44 ms to scan the 512 active pixels, then the pixel clock rate would be $12,981,174$ elements per second. The video signal is a squarewave with a fundamental at half the pixel rate of $12,981,174 / 2$ or 6.4 MHz . To pass this signal undistorted would require a great deal of small signal bandwidth however, a bandwidth of 4 MHz has been found to be adequate for video.
Insufficient high frequency response and phase distortion of a video signal will result in blurring of the fine detail in a picture and the overall image will look darker than normal. Therefore, the first requirement for the signal conditioning circuit is that its small signal bandwidth needs to be considerably wider than the bandwidth of the incoming video. This will ensure a constant gain over the frequency band of interest and avoid a loss of dynamic range as the input to the $A / D$ rolls off.
The second requirement is that the system should have zero phase shift over its entire frequency range. Because this is impractical, a realistic goal is a phase shift that is proportional
to frequency. That is, the second harmonic should be delayed twice as much as the fundamental, the third three times as much, and so on. When this occurs all the frequency components will end up having the same amount of time delay resulting in a image that is only delayed slightly in time and can easily be adjusted for.

For a single pole system, the attenuation factor and phase shift at a particular frequency relative to the $f_{-3 \mathrm{~dB}}$ can be calculated from:
$A(f)=\frac{1}{\sqrt{1+\left(\frac{f}{f-3 d B}\right)^{2}}}$
and
$\theta(f)=\operatorname{atan}\left(\frac{f}{f_{-3}-3 B}\right)$
Taking these error terms into account, the complete equation for a sinewave including the effects of the system would now be:
$V(t)=\frac{A}{\sqrt{1+\left(\frac{f}{f_{-}-3 d B}\right)^{2}}} \times \sin \left(\omega t+\operatorname{atan}\left(\frac{f}{f_{-3}}\right)\right)$
In Equation 1, when f equals 4 MHzand the attenuation $\mathrm{A}(\mathrm{f})$ is one 8 -bit LSB ( $0.4 \%$ ) the required small signal bandwidth $f_{3 \mathrm{~dB}}$ would be 40 MHz . The corresponding phase shift at 4 MHz from equation 2 would be 5.7 degrees.
By the time the video has reached the input to the A/D it has been amplified enough so that large signal parameters such as slew rate and full power bandwidth (FPBW) have to be considered. The required slew rate can be found by taking a conservative approach and forcing the video signal to slew through its range in $25 \%$ of the pixel clock. Therefore, if the pixel clock is 12.98 MHz (pixel time is 77 ns ) and the reference for the $A / D$ is 4 V , then the minimum slew rate required would be:

$$
\begin{equation*}
\mathrm{SR}_{\mathrm{MIN}}=\frac{4 \mathrm{~V}}{0.25 \times 77 \mathrm{~ns}}=208 \frac{\mathrm{~V}}{\mu \mathrm{~s}} \tag{EQ.4}
\end{equation*}
$$

Now that the slew rate has been determined the minimum required full power bandwidth of the signal conditioning block and the converter can be calculated from:

$$
\begin{equation*}
\mathrm{FPBW}=\frac{\mathrm{SR}_{\mathrm{MIN}}}{2 \times \pi \times V}=\frac{208}{2 \times \pi \times 4}=8.3 \mathrm{MHz} \tag{EQ.5}
\end{equation*}
$$

Trying to relate the above equation for FPBW to the FPBW quoted for a converter should be done with caution by the user and requires a knowledge of the way it has been defined by the A/D manufacturer. One method used will test for the presence of sparkle codes. These are anomalous codes that show up when the input slew rate exceeds a certain value. The term sparkle code comes from the fact they will cause bright pixels in a video display.
Figure 4 is a plot of a sinewave input to a converter that has been digitally reconstructed and shows evidence of sparkle codes. The FPBW is then determined from the maximum fullscale input frequency that has sparkle free performance.


FIGURE 4．RECONSTRUCTED SINEWAVE
Some manufacturers will quote FPBW as the point in the frequency domain where the fundamental is 3 dB down from the low frequency value．This method will tend to average out sparkle codes．Other A／Ds will have the FPBW specified as the point where a reconstructed sinewave in the time domain is 3 dB down from the low frequency value．The user must determine if the test method used by the manufacturer to determine the quoted FPBW will ensure accurate sparkle free performance at their operating frequencies．
Sparkle codes can also occur if the maximum conversion rate of the A／D is exceeded．For example，the $\mathrm{HI}-5700$ is an 8－bit CMOS flash converter that has datasheet limit for conversion rate of 20 MHz ．However，as is the case for many flash converters，by skewing the duty cycle of the sampling clock the part can be made to operate at 25 MHz and higher．
The theoretical best dynamic range that can be expected from an $A / D$ with $n$ bits of resolution can be calculated from： $\mathrm{DR}(\mathrm{dB})=20 \log \left(2^{n}\right)=6.02(\mathrm{n})$ ．An image－processing system would be expected to have a dynamic range of at least 36 dB or about 6 bits．

In order to make use of the full dynamic range available from the converter，the overall system noise should be less than the theoretical quantization noise of the converter $q /(\sqrt{12})$（ $q$ is the A／D Isb size）．Figure 5 is a typical voltage feedback or current feedback op amp circuit that will be used to illustrate some basic noise calculations．The voltage noise $\left(\mathrm{V}_{\mathrm{N}}\right)$ and noise current（ $\mathrm{I}_{\mathrm{N}}$ ）sources have been modeled，but the Johnson noise of the resistors will be neglected because of the low resistor values normally used in high－speed circuits．


FIGURE 5．OP AMP NOISE MODEL

The equation for the total RMS noise over the bandwidth of interest is：
$v_{\text {TOT }}=\sqrt{1.57 \times \mathrm{f}_{\mathrm{BW}}} \times$
$\sqrt{\left(V_{N}\right)^{2} \times\left(1+\frac{R_{2}}{R_{1}}\right)^{2}+\left(R_{2}\right)^{2} \times\left(1_{N N}\right)^{2}+\left(R_{3}\right)^{2} \times\left(1_{N P}\right)^{2} \times\left(1+\frac{R_{2}}{R_{1}}\right)^{2}}$
Where：
$\mathrm{V}_{\text {TOT }}$ is the total RMS noise voltage．
$R_{1}$ is the feedforward resistor．
$R_{2}$ is the feedback resistor．
$R_{3}$ is the noninverting input resistor．
$V_{N}$ is input voltage noise spectral density．
$I_{\mathrm{NN}}$ is the inverting input current noise spectral density．
$I_{N P}$ is the noninverting input current noise spectral density．
$f_{B W}$ is the bandwidth over the region of interest．
As is normal for current feedback op amps，the HA－5020 has unequal $I_{N N}$ and $I_{N P}$ ．
For the values given in the figure over the 18 MHz FPBW speci－ fied for the HI－5700 8－bit flash A／D the RMS noise $V_{\text {TOT }}$ is found to be equal to 106 mV ．The peak noise value will be about five times this value or 530 mV ．This is significantly less than the 4.5 mV of quantization noise for an 8 －bit ADC with a 4 V range．

This example has shown how to model the noise of a opamp．If there are other noise sources present，then the total noise can be found by taking the RMS sum of all the individual noise sources．
A wide dynamic range is usually required of a signal conditioning block to accommodate large incoming signal variations．Automatic Gain Control（AGC）will compensate for these variations and allow the user to design with a lower resolution A／D．
The AGC circuit should be considered a control loop，and its frequency and phase characteristics plotted．A slow AGC loop could compensate for slow offset or gain changes over temperature while a faster AGC loop could compensate for signal overload conditions．
There are a number of opinions on where the AGC should be applied．An easy way to do it is to vary the reference on the A／D depending on signal strength．This will work fine if the converter has been thoroughly characterized over the range of reference voltages it will see．Unfortunately this is usually not the case． Most datasheets will not specify the performance of the con－ verter versus reference voltage．Therefore，the user is taking a significant chance that the part performance will stay the same over the life of the system for various manufacturing lots of the AVD．The second option is to let the AGC vary the gain of the signal conditioning circuitry while leaving the reference to the $A D D$ at the value where the performance is guaranteed by the datasheet．This approach will guarantee the long term success of a circuit．The design section of this note will discuss a tech－ nique using a multiplier chip to accomplish this．


FIGURE 6. DESIGN FOR VIDEO IMAGING FRONT END

## System Design

Figure 6 is a design for a signal conditioning and A/D front end to an image-processing system. The video input to the system will be assumed to have a positive picture phase. That is, the blanking and sync pulses will be the most negative portion of the video waveform. When the video is ac coupled, the black reference level has to be reinserted prior to the A/D. If this is not done, then, as the amplitude of the video signal is reduced, due to a reduced contrast image, the blanking level moves more positive. The resulting image will now appear a light shade of gray, rather than the preferred black level. Also, the DSP becomes more sensitive to coupled noise and may for example, during edge detect, show an edge where none exists.

Figure 7 is a simple circuit to DC restore the video. This circuit clamps the most negative point of the signal to -0.7 V which can now be offset by the HA-2546 to provide a stable black level during changing contrast. Another 8-bit 20 MSPS converter from Harris Semiconductor, the HI1176, has an internal circuit which will clamp the back porch of a video signal to a voltage input on the reference pin.


FIGURE 7. DC RESTORE CIRCUIT
The HA-2546 is a wideband two quadrant analog multiplier which makes the implementation of AGC offset and gain correction easy. It is configured in this design to give the transfer function:
$\mathrm{V}_{\text {OUT }}=\frac{\left(\mathrm{V}_{\mathrm{X}} \times \mathrm{V}_{\mathrm{Y}}\right)}{2}-\mathrm{V}_{\mathrm{Z}}$
The $\mathrm{V}_{\mathrm{Z}}$ pin can be used to correct for system offset as long as it does not exceed $\pm 5 \mathrm{~V}$. The initial offset adjustment is set by pot $R_{2}$. The $V_{X}$ pin can be used to adjust system gain.

U5 is part of a reference circuit in Figure 6 that provides the 4 V reference required by the $A / D$ and the DAC. It is capable of 8 -bit performance over the industrial temperature range. Pot $R_{12}$ will set the initial overall system gain.

For the reasons outlined above, it was decided to leave the reference to the flash at its nominal datasheet value and let the AGC adjust the gain of the signal conditioning components prior to the converter. A AD7545 12-bit DAC is used as part of a slow AGC loop which uses the $V_{X}$ pin of the HA-2546 to control the gain of the system.

As illustrated in Figure 8, the feedback loop could be closed by a microprocessor using the overflow bit on the HI-5700 and could compensate for light intensity shifts or temperature drift. In order to avoid any glitches the DAC should be updated during the vertical retrace period.


## FIGURE 8. SLOW AGC LOOP

The HA-5177 op amp acts as an I/V converter for the DAC. Its feedback is set so that at all ones to the DAC the output voltage will be -2 V which is the maximum voltage that is allowed on the $\mathrm{V}_{\mathrm{X}}$ pin. At the normal operating point for the system the DAC will be at midscale and the overall system gain will result in a full scale swing to the A/D. Since the DAC is at midscale the system has an equal amount of gain correction range up and down.

The HA-5020 is a high-speed current feedback op amp which provides additional gain so that a nominal $1 \mathrm{~V}_{\text {P-p }}$ signal input to the system the $\mathrm{HI}-5700$ flash will see its full OV to 4 V swing. If the sync has been stripped from the video before it is digitized [8], then the gain could be adjusted so that the video reference black to reference white level will span the full range of the converter.

A high-speed unity gain op amp (HA-5033) buffers the input to the HI-5700 and provides the necessary low output impedance over frequency required by flash converters. Although the HA-5020 can drive the HI-5700 directly, the HA-5033 has superior current drive, lower output impedance, and better bandwidth.

The pixel clock of 12.98 MHz will usually determine the minimum sampling rate of the A/D. In order to relax the filter requirements on the front end to the system the actual sampling rate used in this note is 15 MHz . This will be more than adequate to cover all established sampling rates specified for the various published standards.

Additional timing circuitry might be added to gate the pixel clock so that it is only on during the active line period thereby conserving frame buffer memory size. If the system uses an interlaced video format then the circuitry could also define the even and odd fields of the image frame and update the memory accordingly.

The clock period for the $\mathrm{HI}-5700$ 8-bit flash is made up of an autozero time and sample time. It was found that the autozero time can be reduced down to as little as 15 ns while the sampling time must remain at 24 ns or greater. This timing allows the sparkle free operation of the circuit at pixel rates up to 25 MHz .

There are many considerations which have to be taken into account when using high speed converters. These involve board layout, choosing the right op amp to drive the input, and designing a low drift reference. Refer to references 6 and 7 for a complete discussion of these topics and others.

## Test Results

The IEEE has various standards which address the type of tests that need to be done on a broadcast video system to verify the performance of a video A/D and D/A combination (codec). Among them are DC linearity, Signal-To-Noise Ratio (SNR), bandwidth, and differential phase and gain. Since this note deals only with RS-170 monochrome video signals, the tests that deal with the color information, such as differential phase and gain, are not applicable. Also, adding a DAC on the output of the converter in order to use the IEEE test methods would tend to cloud its overall performance of the system with the errors of the DAC. Therefore, the system will be evaluated using a set of tests that are similar to those recommended by the IEEE but are done by analyzing the digital data out of the converter. These tests can also be found on a datasheet for a typical flash A/D. Hopefully, as a result of this approach the user will now also be able to more intelligently read and compare converter datasheets.

There is a great deal of information in the low frequency $(30 \mathrm{~Hz})$ content of video. Historically, the low frequency performance of an A/D has been evaluated by the Differential (DNL) and Integral (INL) NonLinearity specs. DNL is a measure of the deviation of the code widths from the ideal value of one Least Significant Bit (LSB). INL is the deviation of the code edges from the ideal transfer curve of the A/D. Since the A/D in this system is initially calibrated for offset and gain, the line used as a reference will be one drawn through the first and last transition point.

The DNL and INL errors can not be calibrated out and is the best accuracy that can be expected of the system. Therefore, the INL error should ideally not exceed $1 / 2$ LSB so that when it is combined with the inherent $1 / 2$ LSB quantizing error of an $A / D$ the total error would not exceed 1 LSB. A DNL error of more than -1 LSB means a code is missing from the transfer curve. An INL error of $1 / 2$ LSB will ensure a DNL error of at most 1 LSB.

Figure 9 shows a plot for the transfer function of a converter with DNL and INL errors. The reference curve and the ideal transitions are pointed out. Transition point 3 is offset in the negative direction by $1 / 2$ LSB therefore the ILE at this point is $-1 / 2$ LSB. The ILE of all the other transitions is zero. The DLE of code 2 is $-1 / 2$ LSB and the DLE of code 3 is $+1 / 2$ LSB.

The actual linearity test was done using a histogram approach. A triangle wave is input to the system and the number of occurrences of each code is kept track of. DNL error is then calculated in LSBs from:
$D N L(i)=\frac{\left(P_{m}{ }^{(i))}\right.}{\left(P_{i}(i)\right)}-1$


FIGURE 9. A/D TRANSFER FUNCTION
The ideal probability, $P_{i}$ is a constant and is equal to the average of the number of counts per code divided by the total number of samples. $P_{m}$ is the measured probability and is equal to the total number of counts for a particular code divided by the total number of samples. Once the DNL error has been determined the INL error is calculated from the sum of the DLE errors.

A histogram was done on the design discussed in this note by inputting a $1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}} 5 \mathrm{kHz}$ triangle wave, encoding the H 5700 at 15 MHz , and capturing the digital data. Figure 10 and Figure 11 are plots of the DNL and INL error for the total system indicating an accuracy of better than 7 bits with no missing codes.


FIGURE 10. DIFFERENTIAL LINEARITY ERROR vs CODE


FIGURE 11. INTEGRAL LINEARITY ERROR vs CODE

Due to various dynamic effects such as slew rate limiting and bandwidth rolloff the static DNL and INL will degrade as the input frequency approaches the 4 MHz bandwidth requirement of video. DNL will show up as an increase in the quantization noise which will tend to elevate the noise floor of the A/D. INL is a bend in the transfer curve of the converter and will generate harmonics. Both result in a loss of dynamic range of the system. These effects are usually evaluated in the frequency domain by finding the SIgnal-to-Noise-And-Distortion (SINAD) in dB .

The SINAD test requires performing a fourier transform on the data obtained by sampling a continuous time input waveform. The Discrete Fourier Transform (DFT) can be thought of as a frequency selective filter that calculates the RMS voltage at a particular frequency and will work for any number of samples.
The coefficient for a particular frequency can be found from:

$$
\begin{equation*}
x_{d}(k)=\sum_{n=0}^{N-1} x(n) \times e^{-j 2 \pi k(n / N)} \tag{EQ.10}
\end{equation*}
$$

$N$ is the number of samples.
n is the time sample index $(\mathrm{n}=0,1,2, \ldots, \mathrm{~N}-1)$.
$k$ is the index for the computed frequency components ( $k=0$, $1,2, \ldots, N-1)$.
The Fast Fourier Transform (FFT) is an algorithm that will compute all the DFT coefficients at one time; but, unlike the DFT it will only work for sample sizes that are a power of two. The FFT will output the coefficients for $N / 2$ discrete frequency bins that will have a resolution of $\mathrm{F}_{\text {sample }} / \mathrm{N}$.
Once the FFT has been performed SINAD can be calculated from:

$$
\begin{equation*}
\operatorname{SINAD}_{d B}=20 \times \log \left(\frac{R M S_{\text {SIGNAL }}}{R_{\text {NOISE }}}\right) \tag{EQ.11}
\end{equation*}
$$

Where $\mathrm{RMS}_{\text {SIGNAL }}$ is the measured RMS signal in the fundamental bin and RMS $_{\text {NOISE }}$ is the sum of all other spectral components below the Nyquist frequency excluding DC. It is important that the distortion components be included in this calculation in order to take into account all the system errors.
The Effective Number Of Bits (ENOB) of the system can be found by:

$$
\begin{equation*}
\mathrm{ENOB}=\frac{\mathrm{SINAD}_{\mathrm{dB}}-1.76}{6.02} \tag{EQ.12}
\end{equation*}
$$

ENOB is a global indication of the accuracy of the system and, along with INL and DNL will degrade as the input frequency is increased. The low DNL and INL errors indicate the excellent low frequency performance of the design. This was again verified by inputting a $1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ sinewave at 20 kHz , encoding the part at 15 MHz , and performing an FFT on the data. The SINAD was calculated to be 44.5 dB for an ENOB of 7.1 bits. An indication of the overall low noise in the system.

The high frequency performance of the system was evaluated by changing the input frequency to 4 MHz and again performing an FFT. Figure 12 is a spectrum plot of the system output. The SINAD for this plot was determined to be 38.2 dB for an ENOB of 6.05 bits.


FIGURE 12. HIGH FREQUENCY SPECTRAL PLOT OF SYSTEM $\left(\mathrm{f}_{\mathrm{l}}=\mathbf{4 M H z}\right.$ )

The full power bandwidth and slew rate capability of the system was checked by inputting a fullscale sinewave at 8 MHz and sampling it at a 15 MHz rate. Figure 13 shows the resulting reconstructed waveform. Notice the lack of distortion and sparkle codes.


FIGURE 13. RECONSTRUCTED SINEWAVE ( $f_{\mathrm{l}}=\mathbf{8 M H z}$ )

## Time Division Multiplexed Systems

This note is mainly concerned with RS-170 type video signals. However, it is instructive to briefly discuss the factors to consider when dealing with other time division multiplexed signals that might be seen from some types of CCD arrays, a multiplexed input, or an infrared sensor array.

The output of CCD arrays many times will have the signal of interest riding on a large DC offset. Figure 14 is an example of an inverting buffer that can be used to remove large offsets. Notice that since resistor $R_{3}$ sees a virtual ground Voffset can take on a value much higher than the supply voltage.


FIGURE 14. INVERTING BUFFER
The circuit gain can be calculated from:
$V_{\text {OUT }}=\left(-R_{2} / R_{1}\right) \times V_{I_{N}}-\left(R_{2} / R_{3}\right) \times V_{\text {OFFSET }}$

The circuits that process large signal pulse type waveforms must slew and settle quickly so, as depicted in Figure 15, the A/D can then accurately digitize the pixel information. Given the ever increasing pixel rates this can become quite a challenge.


FIGURE 15. TIME DIVISION MULTIPLEXED SIGNAL
The overall system settling time is made up of two parts. Initially the signal must slew until it enters a region where small signal analysis takes over. Similar slew rate requirements as discussed in the design considerations section apply in this case also. For a single pole system, the error will then decay with a time constant determined by the small signal bandwidth of the system. The settling time in an actual system is very much a function of the circuit parasitics and the overall frequency response of the circuit. As such, it is difficult to calculate an accurate number beforehand. Reference 2 has a more thorough discussion of settling time and the calculations involved.

Additional large signal time domain converter specifications such as overvoltage recovery time and transient response time become important in these types of applications. As in the case of full power bandwidth, there are many ways to define these tests so be aware of the method used on the datasheet and how it applies to a particular application.

Once the circuits have settled then the A/D must digitize the level it sees at its input. The accuracy with which this can be done is a function dynamic range of the system and will be determined by the low frequency accuracy of the converter, the noise generated in the signal conditioning circuits, and the noise added by the converter. The INL, DNL, and low frequency SINAD specifications can be used to predict performance of the system with a particular converter.
The HI5800 is a low noise 12 -bit 3 MSPS converter that is perfect for the applications which require a higher dynamic range at slower pixel rates. It is a complete sampling converter with on board sample and hold and reference. The low frequency ( 20 kHz input) SINAD of typically 70 dB reflects its outstanding low noise performance. The high frequency ( 1 MHz input) SINAD number of 68 dB illustrates how the performance is maintained at higher input frequencies.

## Conclusion

This note has discussed the various considerations involved in designing the analog front end to an image-processing system. A system design was presented and proved to have accurate sparkle free performance at typical video frequencies. The methodology presented could be used to analyze the system requirements for systems with higher pixel rates.

## References

[1] Joey Doernberg, Hae-Seung Lee, David A. Hodges, "Full Speed Testing of A/D Converters," IEEE Journal of Solid State Circuits, Vol. SC-19, No. 6, DEC. 1984.
[2] Fredrickson, Thomas M.,"Intuitive Operational Amplifiers," McGraw-Hill Inc., New York, NY, 1988.
[3] Demler, Michael J., "High-Speed Analog-To-Digital Conversion," Academic Press Inc., 1992.
[4] "IEEE Standard for Performance Measurements of A/D and D/A Converters for PCM Television Video Circuits," IEEE Standard 746-1984.
[5] "High Speed Design Seminar," Published by Analog Devices, 1990.
[6] "High Speed Signal Processing Applications Seminar", Published by Harris Semiconductor, 1992.
[7] "Using Harris High Speed A/D Converters," Application Note AN9214, Published by Harris Semiconductor, 1992.
[8] "Video Amplifier with Sync Stripper and DC Restore," Harris Semiconductor, Application Note AN9514.


# Harris UHF Pin Drivers 

Author: Taewon Jung

## Introduction

The HFA5250 [1] and HFA5251 are pin drivers designed for use in automatic test equipment (ATE) and high speed pulse generators. Pin drivers, especially those with very highspeed performance, have generally been implemented with discrete transistors (sometimes GaAs) on a circuit board or in a hybrid. Recent IC process improvements, specifically Harris' UHF1 process [2], have enabled the manufacturing of the 500 MHz and 800 MHz silicon monolithic pin drivers, HFA5250 and HFA5251.

The ultra-high speed performance of HFA5250 and HFA5251 is a result of UHF1 process leverages: low parasitic collector-to-substrate capacitance of the bonded wafer, low collector-to-base parasitic capacitance of the selfaligned base/emitter technology and ultra-high $\mathfrak{f}_{\top}$ NPN ( 8 GHz ) and PNP ( 5.5 GHz ) poly-silicon transistors.

## Functional Block Diagram

HFA5250 and HFA5251 circuits share the common functional block diagram shown in Figure 1.


FIGURE 1. BLOCK DIAGRAM
The control inputs, D and $\mathrm{D}^{*}$, determine the output level. If D is at logic "1" and $D^{*}$ is at logic " 0 ", the output level will be the same as $V_{\text {HIGH. }}$. If $D$ is at logic " 0 " and $D^{*}$ is at logic " 1 ", the output will be the same as $\mathrm{V}_{\text {Low }}$. The control inputs, HiZ and $\mathrm{HiZ}^{\star}$, make the output either active or high-impedance. If HiZ is at logic " 1 " and $\mathrm{HiZ}^{*}$ is at logic " 0 ", the output will be in high-impedence mode. If HiZ is at logic " $\mathrm{O}^{\prime}$ and $\mathrm{HiZ}^{*}$ is at logic "1", the output will be enabled. The output impedance in the enabled mode is trimmed to $50 \Omega$.

## Circuit Schematic

The Pin Driver circuit consists of a switch, an output buffer, and two differential control elements as shown in Figure 2.
A two stage approach, separating the switch from the output buffer, allows the speed and accuracy requirements of the switch to be decoupled from the load driving capability of the buffer.

The patent pending switch circuitry [3] uses cascaded emitter followers as input buffers and also to switch the input $\mathrm{V}_{\text {HIGH }}$ and $\mathrm{V}_{\text {LOW }}$ to node VSO. Dual differential pairs controlled by the data timing ( D and $\mathrm{D}^{\star}$ ) direct current to select either the $\mathrm{V}_{\text {HIGH }}$ or $\mathrm{V}_{\text {LOW }}$ switch. Matching transistor types and transdiodes improve linearity and lowers the voltage offset and offset drift. Stacking two emitter-base junctions allows the $\mathrm{V}_{\text {HIGH }}$ to $\mathrm{V}_{\text {LOW }}$ range to be extended to two BVebos of the process. The speed of the pin driver is largely determined by the current flowing through the switch stage and the collector-base capacitance of the output stage transistors connected to the node VSO.

The output stage consists of cascaded emitter followers constructed in a typical push-pull manner as shown in Figure 2. However, transdiodes are added to increase the voltage breakdown characteristics of the output during high-impedance mode. HiZ and $\mathrm{HiZ}^{*}$ control the mode of the output stage. A trimmed, NiCr resistor is added to provide the $50 \Omega$ output impedance.

Overall, a symmetry of device types and paths is constructed to improve slew and delay symmetry. Both the $\mathrm{V}_{\text {HIGH }}$ to $\mathrm{V}_{\text {OUT }}$ path and the $\mathrm{V}_{\text {LOW }}$ to $\mathrm{V}_{\text {OUT }}$ path contain three NPN and three PNP transistors operating at similar collector currents. Thus the transient response of $\mathrm{V}_{\text {HIGH }}$ to $\mathrm{V}_{\text {LOW }}$ and $\mathrm{V}_{\text {LOW }}$ to $\mathrm{V}_{\text {HIGH }}$ are kept symmetrical. Also, a trimmable current reference (not shown) allows the AC parameters to be adjusted to maintain unit to unit consistency.


FIGURE 2. CIRCUIT SCHEMATIC

## Speed Advantage

Harris Pin Drivers on bonded wafer technology definitely have a speed advantage, coming from the low collector-to-substrate capacitance and the high fT of the transistors. In addition, the patent-pending switching stage which fits uniquely to Harris' UHF1 process is another big contributor to the high speed. This switching circuitry requires low series resistance NPN and PNP transdiodes available in UHF1. The rise and fall times of the pin driver are largely determined by the slew rate at the node VSO in Figure 2. The dominant mechanism for the slew rate is the charging/discharging of the collectorbase capacitors of the transistors connected to the node VSO. The charging/discharging currents are coming from the switching stage current sources. The fast rise and fall times are achieved because of the negligible collector-to-substrate capacitance and the small base-collector capacitance due to the self-aligned recessed oxide [2].

The $D / D^{*}$ differential stage is not a factor for the speed if its current sources have enough current not to bottleneck the transient. However it should be noted that the propagation delay mismatch is determined by this stage. Sufficient current is allocated to the differential stage current sources to best match the low-to-high and high-to-low transient propagation delays.

Figure 3 shows various output responses, $O \mathrm{~V}$ to $1 \mathrm{~V}, \mathrm{OV}$ to $3 \mathrm{~V}, 0 \mathrm{~V}$ to 5 V , and -2 V to 7 V (full swing). The load condition is a 16 inch $50 \Omega$ SMA cable with a 5 pF capacitor at the end of the cable. The rise/fall time with $5 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ is typically 1.95 ns for the HFA5250 and 1.45 ns for the HFA5251. Pin drivers, built
with the same circuit structure as shown in Figure 2, can be made faster by trimming for a higher power supply current. Currently the pin driver has rise/fall times of less than 1 ns ( $10 \%$ to $90 \%$ of $5 \mathrm{~V}_{\text {P-p }}$ ) when Icc is trimmed to 125 mA . Further speed enhancement will be made if there is a market demand.


FIGURE 3. OUTPUT RESPONSE WITH VARIOUS V Low AND $\mathrm{V}_{\text {HIGH }}$ CONDITIONS

## Basic ATE System Application

Figure 4 shows a pin driver in a typical per-pin ATE system. The pin driver works closely with the dual-level comparator and the active load. When the DUT pin acts as an input waiting for a series of digital signals, the pin driver becomes active with a logic " 0 " applied on the HiZ pin and provides
the DUT pin with digital signals. When the DUT pin acts as an output, the pin driver output will be in high-impedance mode (HiZ) with a logic "1" applied to the "HiZ" pin of the pin driver. During this high impedance mode the pin driver presents a capacitance of less than 5pF to the DUT. Special care has to be taken to match the impedance (to 50 $\Omega$ ) at the pin driver output to minimize reflections.
The dual level comparator detects the logic levels of the DUT pin when it acts as an output. The comparator has two threshold level inputs, $\mathrm{V}_{\mathrm{CH}}$ and $\mathrm{V}_{\mathrm{CL}}$. The logic level information of DUT pin output is sent to the edge/window comparator through the dual level comparator. The edge/window comparator interprets this information in terms of corresponding transient performance in conjunction with the timing information. Thus it detects any possible failure transients.
The formatter sends a sequence of digital information to the pin driver which contains logic information over time. The active load is enabled when the DUT pin acts as an output. It simulates the load of the DUT pin by sinking or sourcing programmed current. Finally the sequencer controls the overall activities of the automatic testing.

## Decoupling Circuit for Oscillation-Free Operation

To insure the oscillation-free operation in ATE or pulse generator applications, the pin driver needs an appropriate decoupling circuit on a printed circuit board which consists of chip
capacitors and chip resistors. Figure 5 and Figure 6 refer to a proven decoupling circuit currently working in the lab and a 1X scale film of its associated PC board (metal level).
The control pins, $\mathrm{D}, \mathrm{D}^{*}, \mathrm{HiZ}$, and $\mathrm{HiZ}^{*}$ are fed ECL signals through $50 \Omega$ micro-strip lines terminated with $50 \Omega$ for impedance matching since the input impedance at these pins is much higher than $50 \Omega$. At the end of the micro-strip lines there is usually a high-speed pulse generator with an output impedance of $50 \Omega$. A $50 \Omega$ micro-strip line is connected to each of the pins, $D^{*}$ and HiZ * through a $50 \Omega$ chip resistor to monitor the pulse signals.
The two input voltage pins, $\mathrm{V}_{\text {HIGH }}$ and $\mathrm{V}_{\text {LOW }}$, need to be protected from any capacitively coupled AC noise. Normally this protection can be achieved by having a low pass filter consisting of a $50 \Omega$ chip resistor and a 470 pF chip capacitor. Without this protection circuit the pin driver may oscillate due to signals fed back from the output through the PC board ground.

The power supply pins, $\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC} 2}, \mathrm{~V}_{\mathrm{EE} 1}$, and $\mathrm{V}_{\mathrm{EE} 2}$, require decoupling chip capacitors of $470 \mathrm{pF}, 0.1 \mu \mathrm{~F}, 10 \mu \mathrm{~F}$. Having decoupling capacitors close to $\mathrm{V}_{\mathrm{CC} 2}$ and $\mathrm{V}_{\mathrm{EE} 2}$ is essential since large $A C$ current will flow through either $\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{V}_{\mathrm{EE} 2}$ during transients.
The output of the pin driver is usually connected to the device-under-test (DUT) through $50 \Omega$ micro-strip line and coaxial cable which carries the signal to a high input impedance DUT pin.


FIGURE 4. TYPICAL ATE SYSTEM


FIGURE 5. DECOUPLING CIRCUIT OF 28 LEAD SOIC HFA5250/ 5251 FOR OSCILLATION-FREE OPERATION


FIGURE 6. 1X FILM OF THE EVALUATION BOARD METAL

## References

[1] Taewon Jung and Donald K. Whitney Jr., "A 500 MHz ATE Pin Driver," Bipolar Circuits and Technology Meeting Proceedings, pp238-241, October 1992.
[2] Chris K. Davis et al, "UHF1: A High Speed Complementary Bipolar Analog Process on SOI," Bipolar Circuits and Technology Meeting Proceedings, pp260263, October 1992.
[3] Donald K. Whitney Jr., "Symmetrical, High Speed, Voltage Switching Circuit," United States Patent Pending, Filed November 1991.


# RF Amplifier Design Using HFA3046, HFA3096, HFA3127, HFA3128 Transistor Arrays 

Author: Sang-Gug Lee

## Introduction

This application note is focused on exploiting the RF design capabilities of HFA3046/3096/3127/3128 transistor arrays. Detailed design procedures, using these transistor arrays, for a matched ( 800 MHz to 2500 MHz ) high-gain low-noise amplifier and a 10 MHz to 600 MHz wideband feedback amplifier are described.
The HFA3046, HFA3096, HFA3127, HFA3128 transistor arrays are fabricated in a complementary bipolar bonded wafer silicon-on-insulator (SOI) technology, dubbed UHF-1 [1]. All four products make use of the same die, which has both NPN and PNP transistors on it. Figure 1 shows the pinouts of the four different products. Typical NPN and PNP transistor characteristics are shown in Table 1.
table 1. UHF-1 DEVICE CHARACTERISTIC

PARAMETERS	NPN	PNP	UNITS
$\mathrm{BV}_{\mathrm{CEO}, \mathrm{MIN}}$	8	8	V
$\mathrm{BV}_{\mathrm{CBO}, \mathrm{MIN}}$	12	10	V
$\mathrm{BV}_{\mathrm{EBO}, \mathrm{MIN}}$	5.5	4.5	V
$\mathrm{I}_{\mathrm{CBO}}$	0.1	0.1	nA
$\mathrm{h}_{\mathrm{FE}}$	70	40	
$\mathrm{C}_{\mathrm{CB}}$	500	600	fF
$\mathrm{f}_{\mathrm{T}}$	9	5.5	GHz
$\mathrm{P}_{1 \mathrm{DB}}\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\right.$,   $\left.\mathrm{f}_{\mathrm{O}}=1 \mathrm{GHz}\right)$	7.6	6.2	dBm
$\mathrm{IP3}\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\right.$,   $\left.\mathrm{f}_{\mathrm{O}}=1 \mathrm{GHz}\right)$	17.6	16.2	dBm
$\mathrm{NF}\left(\mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}\right.$,   $\left.\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{f}_{\mathrm{O}}=1 \mathrm{GHz}\right)$	3.5	3.0	dB

The SOI process has the advantage of lower DC and AC parasitic leakage currents as opposed to junction isolation, which leads to good isolation between transistors. Furthermore, an SOI process provides substantially lower collector to substrate capacitance, immunity to any possible latch-up between the devices, and superior radiation hardness.

The HFA3127 is used for the two stage matched $(800 \mathrm{MHz}$ to 2500 MHz ) high-gain amplifier design, while the HFA3096 is used for the 10 MHz to 600 MHz wideband feedback amplifier.


FIGURE 1. PINOUTS OF HFA3046/3096/3127/3128 SOIC PACKAGED TRANSISTOR ARRAYS

## Circuit Design

## High-Gain Low-Noise Amplifier

One important design requirement for an RF amplifier is the accurate control of input and output impedance levels. This is especially important if the amplifier is to interface with matched source and load impedances.
Based on S-parameter measurements, for a common-emitter configuration, transistors of HFA3127 exhibit a prematched condition on the input side over a wide range of frequencies. The package lead and bond wire inductances for these transistors make the input impedance close to $50 \Omega$. For $\mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}-10 \mathrm{~mA}$, $\mathrm{V}_{\mathrm{CE}}=2 \mathrm{~V}-5 \mathrm{~V}$, the input VSWR of $\mathrm{Q}_{2}$ and $\mathrm{Q}_{5}$ was less than 10 dB for frequencies of 800 MHz to 3000 MHz . Furthermore, for these transistors, a good output match, output VSWR <-10dB
for frequencies 300 MHz to 3000 MHz , could be accomplished through bypassing the collector with a $100 \Omega$ resistor. As the single stage amplifiers built with $Q_{2}$ and $Q_{5}$ both show good input and output matching, they can be cascaded for higher gain without requiring an impedance transforming network. Figure 2 shows the final two stage amplifier. The advantage of this circuit is its simplicity. This design does not use any tuning inductors or capacitors which would tend to increase the cost of the circuit. Furthermore, this circuit accomplishes higher gain by cascading two amplifier stages built with integrated transistors.


FIGURE 2. HIGH-GAIN LOW-NOISE AMPLIFIER REALIZED WITH HFA3127

Figure 3 shows the measured characteristics of the amplifier under two different bias conditions: $\mathrm{V}_{\mathrm{C}}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{C} 2}=\mathrm{I}_{\mathrm{C} 5}=5 \mathrm{~mA}$; and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{C} 2}=\mathrm{I}_{\mathrm{C} 5}=10 \mathrm{~mA}$. As can be seen from Figure 3, the input and output VSWR is less than -10 dB for frequencies greater than 800 MHz . The amplifier shows better performance at the expense of higher power dissipation ( $I_{\mathrm{C}}=10 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{CC}}$ $=5 \mathrm{~V}$ ) except the noise figure. For $\mathrm{I}_{\mathrm{C} 2}=\mathrm{I}_{\mathrm{C} 5}=10 \mathrm{~mA}$, the amplifier gains are $18.7,8.8$, and 6.6 dB at frequencies of 900 MHz , 1800 MHz , and 2200 MHz , respectively.
From Figure 2, the noise figure of the whole circuit is mainly controlled by the noise characteristics of the transistor $Q_{5}$. As shown in Figure 3D, this high-gain amplifier demonstrates good noise performance. For $\mathrm{I}_{\mathrm{C} 2}=\mathrm{I}_{\mathrm{C} 5}=5 \mathrm{~mA}$, the measured noise figure is 3.9 dB at 900 MHz , making this useful as a highgain, low-noise amplifier.
The complete microstrip board layout is shown in Figure 4. A 0.031 inch thick FR-4 (G-10) glass epoxy board is used for the layout. The dielectric constant of the material is 4.7 at 1000 MHz .


FIGURE 3A. GAIN


FIGURE 3B. INPUT VSWR


FIGURE 3C. OUTPUT VSWR


FIGURE 3D. NOISE
FIGURE 3. MEASURED CHARACTERISTICS OF THE HIGH GAIN LOW-NOISE AMPLIFIER


FIGURE 4．MICROSTRIP BOARD LAYOUT FOR THE HIGH－GAIN LOW－NOISE AMPLIFIER

The key rule for the circuit board layout is to make the physi－ cal length of the conductors as short as possible where the RF signal is involved．Although it seems obvious，it is easy to forget that the impedance looking into a microstrip line，that has load attached at the end，can be totally different from the attached load impedance depending on the length of the microstrip line and frequency．Outside the RF signal path，it does not matter．

At RF frequencies，the value of chip resistors，capacitors， and inductors should not be taken for granted．In general， the smaller the size of the component，the better the perfor－ mance．However，it is important to evaluate the components before use．For the RF frequencies，these components can be evaluated easily using a network analyzer by mounting them as shown in Figure 5．The SMA connector itself con－ tributes about 0.7 pF of capacitance between the signal and ground terminals．


FIGURE 5．A CHIP COMPONENT MOUNTED ON AN SMA CONNECTOR

## Wideband Amplifier

A well known simple amplifier configuration which achieves flat gain and broadband matching without losing excessive signal power is shown in Figure 6．The simultaneous use of both shunt and series feedback gives rise to broadband resistive input and output impedances［2，3］．

Figure 7 shows a similar version of the double feedback wideband amplifier circuit realized with the HFA3096．This design takes advantage of the PNP transistors $\left(Q_{4}\right.$ and $\left.Q_{5}\right)$ available on the HFA3096，to bias amplifying transistor $Q_{2}$ for good temperature stability．


FIGURE 6．SINGLE STAGE SHUNT AND SERIES FEEDBACK CIRCUIT


FIGURE 7．WIDEBAND AMPLIFIER REALIZED WITH HFA3096
The frequency response of the wideband amplifier is shown in Figure 8．As can be seen from Figure 8，the amplifier shows 10 dB of flat gain with 600 MHz bandwidth．The input and output matching is very good over the range of fre－ quency where gains are flat．The low frequency performance is limited by the 1000 pF capacitor．

The microstrip board layout for the wideband amplifier is shown in Figure 9．A 0.031 inch thick FR－4（G－10）glass epoxy board is used for the layout．


FIGURE 8A. GAIN


FIGURE 8B. INPUT-OUTPUT VSWR

FIGURE 8. MEASURED CHARACTERISTICS OF THE WIDEBAND AMPLIFIER


FIGURE 9. MICROSTRIP BOARD LAYOUT FOR THE WIDEBAND AMPLIFIER

## Summary

A detailed process of designing a high-gain low-noise and a wideband amplifier using the Harris UHF transistor arrays is summarized.

A two-stage, high-gain, low-noise amplifier built with the HFA3127 demonstrates $50 \Omega$ input and output impedance over a wide frequency range of 800 MHz to 2500 MHz without the use of external matching networks. The gain at 900 MHz is in excess of 17 dB with a noise figure of 3.9 dB .

A wideband amplifier built with the HFA3096 demonstrates excellent input and output matching with 10 dB of constant gain. The -3dB bandwidth of this amplifier is 600 MHz . PNP transistors available on the HFA3096 are used for temperature stable biasing of the amplifying transistor.

## References

[1] C. Davis, et al, "UHF-1: A High Speed Complementary Bipolar Analog Process on SOI," Proceeding of BCTM 92, pp260-263, Oct. 1992.
[2] J. B. Couglin, et al, "A Monolithic Silicon wideband Amplifier from DC to 1 GHz ," IEEE J. Solid-State Circuits, vol. SC-8, pp414-419, Dec. 1973.
[3] R. G. Meyer, et al, "A wideband Ultralinear Amplifier from 3 to 300 MHz ," IEEE J. Solid-State Circuits, vol. SC-9, pp167-175, Aug. 1974.

# Micropower Clock Oscillator and Op Amps Provide System Control for Battery Operated Circuits (HA7210) 

Author: AI Little and James Ho

The HA7210 low power oscillator is ideal for battery powered circuits that require a precision clock. It operates well from a single 3 V to 5 V supply, uses extremely low current, and produces a clock output that is very stable over temperature and supply voltage. In addition, it requires only an external crystal and can operate from under 32 kHz to over 10 MHz .
This application note shows how the HA7210 can be used with a quad CMOS op amp to make a control circuit that will automatically switch a battery-powered digital system into micropower "sleep mode" when not in use and trigger the system on again when an external event (sound, pressure, etc.) is detected. This function is extremely useful for applications like remote metering, where a battery-powered system may need to record occasional events yet remain in a power down state most of the time.
This control circuit can be configured to turn on with an AC or DC coupled event sensor and turn off using either a preset time delay or an external digital system command. When triggered into the power-up mode, it supplies a precision system clock, a buffered analog ground reference and a scaling signal amplifier for an A/D converter. In the power-down mode, it draws less than $50 \mu \mathrm{~A}$ of standby current.

## Circuit Operation

As shown in Figure 1, the control circuit operates from a single 3 V to 5 V battery and uses only a quad CMOS op amp (ICL7642) and a HA7210 low power oscillator chip. Two Power-Down Reset options are available: one for a preset time delay after turn-on, and another for external digital command as explained in the following text.
$R_{1}$ and $R_{2}$ create an analog signal ground reference voltage, $V_{\text {REF }}$, at $1 / 2$ of the battery voltage. $C_{2}$ is used to filter noise from this high impedance point. The analog reference voltage is then buffered by IC1A and output to the other three amplifiers.
Amplifier B is used as a high-pass filter and amplifier such that a fast edge (like a sudden noise into a microphone) will produce a large positive swing at the output. Diode $D_{1}$ prevents the output from moving very much below the analog reference voltage. $\mathrm{C}_{1}$ can be determined experimentally depending on the application, sensor type, and sensitivity required.

Amplifier $C$ is used as a comparator and latch. The inverting terminal is nominally at the analog reference, $\mathrm{V}_{\text {REF }}$, but the non-inverting terminal is lower than $V_{\text {REF }}$ due to the hysteresis of $R_{5}$. In the absence of a microphone/sensor signal, the output of amplifier $B$ is also at $V_{\text {REF }}$, so that $\mathrm{V}_{\mathrm{REF}}\left(\mathrm{R}_{5} /\left(\mathrm{R}_{4}+\mathrm{R}_{5}\right)\right)$ appears at the non-inverting input of amplifier C .
When the output of amplifier B produces a voltage at the non-inverting terminal of amplifier $C$ higher than $\mathrm{V}_{\mathrm{REF}}$, the output of $C$ latches into the high state. This state cannot be changed by any condition at the input of IC1B due to the hysteresis provided by $R_{5}$. Because the output stage of amplifier C is CMOS, it can drive a light load nearly to the positive supply rail.
Voltage from the output of amplifier C is provided to the supply and ENable pins of the HA7210 low power oscillator. When this happens, the oscillator turns on and provides a clock output to the rest of the system. $\mathrm{C}_{3}$ is used as a bypass capacitor for the supply pin. If faster oscillator turn-on is required, the HA7210 supply pin (pin 1) may be tied directly to the battery and the output of amplifier $C$ used to enable the HA7210. In this case, the oscillator will draw some quiescent current when not in use, but significantly lower than when enabled. Capacitance at the output of the HA7210 should be minimized to keep the active supply current as low as possible.
As shown, amplifier $D$ can be used as a scaling amplifier for a system $A / D$ converter. $R_{7}$ and $R_{8}$ are used to scale the gain of the amplifier $\left(G=1+R_{8} / R_{7}\right)$. The input of the amplifier is extremely high impedance, so that any type of high impedance sensor may be used.

## Resetting the System

To put the system back into "sleep mode", two options are available. The digital system can send a logic high state to the Reset input, forcing the IC1C comparator/latch to reset to the low state. Alternatively, if desired, an auto-reset RC timer (shown in the dotted lines) will cause the circuit to automatically reset after a preset time interval. This time is determined by the time it takes for the capacitor at the inverting terminal to charge higher than the voltage at the noninverting terminal of IC1C.


NOTE: Provides Sleep Mode, Power-up Trigger, Optional Auto-reset, Scaling Amp for A/D, Precision System Clock Oscillator, and Analog Ground Reference

FIGURE 1. 2-CHIP MICROPOWER CONTROL CIRCUIT OPERATES FROM 3V BATTERY

TABLE 1. HA7210 OSCILLATOR CONTROL INPUTS

ENABLE	FREQ 1	FREQ 2	OUTPUT RANGE
1	1	1	10 kHz to 100 kHz
1	1	0	100 kHz to 1 MHz
1	0	1	1 MHz to 5 MHz
1	0	0	5 MHz to $10 \mathrm{MHz}+$
0	X	X	High Impedance



# Improving Start-up Time at 32kHz for the HA7210 Low Power Crystal Oscillator 

Author: Robert Rood

The HA7210 is a very low power crystal-controlled oscillator that can be programmed to operate between 10 kHz and 10 MHz . In the lowest frequency range setting (FREQ $1=1$, FREQ $2=1$ ), at 32 kHz with a 5 V supply and a 40 pF load, the HA7210 will draw a mere $10 \mu \mathrm{~A}$. In this range $(10 \mathrm{kHz}$ to 100 kHz ), the low power consumption may result in extended oscillator start-up time. In higher frequency ranges, power consumption gradually increases and start-up time is not an issue. Several approaches to address low frequency start-up time will be presented.

The first approach is to use the Enable/Disable Mode Pin. This pin, when pulled low, will switch the output to a high impedance state while an internal inverter continues to drive the crystal in normal oscillation. This will result in a power savings because very often a majority of the power dissipation is used to drive the output load. In the disabled mode the HA7210 will draw only $5 \mu \mathrm{~A}$ of standby current as compared to $10 \mu \mathrm{~A}$ above. This small amount of standby current gives the benefit of instant start-up of a reliable and stable clock. The Enable Time of the HA7210 is typically 800ns.

For applications where the voltage supply is removed from the circuit or standby mode is not desired, the time from power being applied until a stable square wave is generated can be unexpectedly long. It should be noted that 32 kHz crystal parameters vary significantly from vendor to vendor and can greatly affect the HA7210 (or any Pierce Oscillator) start-up characteristic. Of particular importance is the Effective Series Resistance (ESR) of the crystal, with lower ESR generally
providing faster start-up times $(32 \mathrm{kHz}$ crystals with ESR greater than $50 \mathrm{k} \Omega$ should be avoided). Using the circuit in Figure 1 the start-up characteristic of a 32.768 kHz crystal, set in the recommended lowest frequency range (FREQ $1=1$, FREQ $2=1$ ) has a delay of 1.9 s as shown in Figure 2.


FIGURE 1. TYPICAL APPLICATION CIRCUIT

FREQUENCY SELECTION TRUTH TABLE

ENABLE	FREQ 1	FREQ 2	OUTPUT RANGE
1	1	1	10 kHz to 100 kHz
1	1	0	100 kHz to 1 MHz
1	0	1	1 MHz to 5 MHz
1	0	0	5 MHz to 10 MHz
0	X	X	High-Z



FIGURE 2. START-UP CHARACTERISTIC AT 32 kHz WITH FREQ $1=1$ AND FREQ $2=1$


FIGURE 3. START-UP CHARACTERISTIC AT 32kHz WITH FREQ $1=1$ AND FREQ $2=0$

The start-up time can be improved by switching to the next higher frequency range setting, where FREQ $1=1$ and FREQ $2=0$. In this setting the voltage that is internally applied to the oscillating inverter increases from 1.4 V to 2.2 V providing more power and higher transconductance. This increased power comes at the expense of increased supply current. For a 32 kHz crystal, with $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ and a 40 pF load the FREQ $1=1$, FREQ $2=0$ setting will draw 30MA as compared to 10MA for the FREQ $1=1$, FREQ $2=1$ range setting. Another concern when using the next higher range is that the internal 15 pF crystal loading capacitors are disconnected. This means that the user must provide external crystal loading capacitors for the crystal to start properly in the higher range. The minimum values for $C_{1}$ and $C_{2}$ to provide reliable start-up was found to be 10 pF each. The start-up time in the FREQ $1=1$, FREQ $2=0$ mode is shown in Figure 3 at 528 ms , significantly faster than the FREQ $1=1$, FREQ $2=1$ setting.


FIGURE 4. FAST START-UP AT 32 kHz WITH NO SUPPLY CURRENT PENALTY

How can the benefits of faster start-up be gained without the penalty of increased supply current? A solution to this problem is provided with the addition of a single capacitor $\mathrm{C}_{\mathrm{F} 2}$ as shown in Figure 4.
The digital inputs (ENABLE, FREQ 1, FREQ 2) provide internal pull-up devices. These P-Channel devices provide $0.4 \mu \mathrm{~A}$ of current to insure that an input will go to the " 1 " state if left open. This pull-up current is used to charge a $0.22 \mu \mathrm{~F}$ capacitor ( $\mathrm{C}_{\mathrm{F} 2}$ ) connected to the FREQ 2 pin. At power-up $\mathrm{C}_{\mathrm{F} 2}$ has zero charge and holds FREQ 2 "low", (FREQ $1=1$, FREQ $2=0$ ) so that the HA7210 will give a fast start-up. Then the $0.4 \mu \mathrm{~A}$ pull-up current will slowly charge $\mathrm{C}_{\text {F2 }}$ until it reaches a "high" state (FREQ $1=1$, FREQ $2=1$ ) and the part draws lower supply current. The FREQ 2 pin must be held low until the oscillation has fully started to insure a start-up time improvement. The digital input threshold is about 1.5 V , providing a delay determined by:
$\mathrm{i}=\mathrm{C} \frac{\mathrm{dv}}{\mathrm{dt}} \quad \mathrm{dt}=\frac{(0.22 \mu \mathrm{~F})(1.5 \mathrm{~V})}{0.4 \mu \mathrm{~A}}=0.825 \mathrm{~s}$
The results are shown in Figure 5. Notice that CH 2 doesn't go all the way to 5 V as expected. This is due to the $10 \mathrm{M} \Omega$ scope probe loading the $0.4 \mu \mathrm{~A}$ current source. This probe loading also causes CH 2 (FREQ 2 pin) to have an RC shape rather that the expected linear trace.
In summary, start-up time is an important consideration in the design and crystal selection for low frequency crystal oscillators. This Application Note describes several alternatives to improve start-up time utilizing unique features of the HA7210 while taking advantage of its extremely low supply current.


FIGURE 5. START-UP CHARACTERISTIC AT 32 kHz WITH SPEED-UP CIRCUIT


# Feedback，Op Amps and Compensation 

Ron Mancini

## Introduction

There are many benefits［1］which result from the use of feedback in electronic circuits，but the drawbacks are the increased complexity of the calculations and the opportunity for the resulting circuit to ring or oscillate．This paper employs graphical techniques to simplify stability calculations，thus enabling the designer to achieve a stable，well behaved circuit which meets all reasonable performance criteria．Now the designer can obtain the advantages of feedback without worrying about ringing or oscillation．

## Development of the General Feedback Equation

Referring to the block diagram shown in Figure 1，Equation 1， Equation 2 and Equation 3 can be written by inspection if it is assumed that there are no loading concerns between the blocks．The no loading assumption is implicit in all block dia－ gram calculations，and this requires that the output imped－ ance of a block be much lower than the input impedance of the block it is driving．This is usually true by one or two orders of magnitude．Algebraic manipulation of Equation 1，Equation 2 and Equation 3 yield Equation 4 and Equation 5 which are the defining equations for a feedback system．
$V_{O}=E A$
$E=V_{1}-\beta V_{O}$
$E=V_{O} / A$
$V_{0} / V_{1}=A /(1+A \beta)$
$E / V_{1}=1 /(1+A \beta)$


FIGURE 1．FEEDBACK SYSTEM BLOCK DIAGRAM
The parameter A，which usually includes the amplifier and thus contains active elements，is called the direct gain in this analysis．The parameter $\beta$ ，which normally contains only passive components，is called the feedback factor．Notice that in Equation 4 as the value of A approaches infinity，the
quantity $A \beta$ ，which is called the loop gain，becomes much larger than one；thus，Equation 4 can be approximated by Equation 6． $\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{1}$ is called the closed loop gain，and since the direct gain，or the amplifier response，is not included，the equation for the closed loop gain it is independent of ampli－ fier parameter changes．This is the major benefit of feedback circuits．
$V_{0} / V_{1}=1 / \beta$ for $A \beta \gg 1$
Equation 4 is adequate to describe the stability of any feed－ back circuit because all feedback circuits can be reduced to the this form through block diagram reduction techniques［2］． The stability of the feedback circuit is determined by setting the denominator of Equation 4 equal to zero．
$1+A \beta=0$
$A \beta=-1=|1| /-180$
Referring to Equation 4 and Equation 8，it is observed that if the magnitude of the loop gain，$A \beta$ ，can achieve one while the phase equals -180 degrees，the closed loop gain becomes infinity because of division by zero．Since this state is unstable，the circuit will oscillate，and it will oscillate at the frequency where the phase shift equals to -180 degrees．If the loop gain at the frequency of oscillation is slightly greater than one it will be reduced to one by the reduction in gain suffered by the active elements as they approach the limits of saturation，but if the value of $A \beta$ is much greater than one， gross nonlinearities can occur and the circuit may then cycle between saturation limits．Preventing instability is the essence of feedback circuit design，thus this topic will be touched lightly here and covered in detail later．A good start－ ing point for discussing stability is finding an easy method to calculate it．Figure 2 shows that the loop gain，$A \beta$ ，can be calculated from a block diagram by opening current inputs， shorting voltage inputs，breaking the loop and calculating the response to a test input signal．
$\mathrm{V}_{\mathrm{TO}} / \mathrm{V}_{\mathrm{TI}}=\mathrm{A} \beta$
The block diagram techniques can be applied to op amps thus reducing the stability analysis to a simple task．The schematic for a non－inverting amplifier is shown in Figure 3， and the block diagram equivalent is shown in Figure 4. Equation 10 and Equation 11 are combined to yield Equation 12 which describes the block diagram shown in Figure 4A， while block diagram transformations［3］are employed to get to Figure 4B．


FIGURE 2. BLOCK DIAGRAM FOR COMPUTING THE LOOP GAIN
$V_{O}=a\left(V_{1}-V_{B}\right)$
(EQ. 10)
$V_{B}=V_{O} Z_{1} /\left(Z_{1}+Z_{2}\right), I_{B}=0$
$V_{O}=a V_{1}-a Z_{1} V_{0} /\left(Z_{1}+Z_{2}\right)$


FIGURE 3. NON-INVERTING CIRCUIT
The block diagram shown in Figure 4A is written by inspection of Equation 12. The block diagram shown in Figure 4B is derived from Figure 4A by block diagram manipulations. Equation 13 is derived from Equation 12 by algebraic manipulation, or it can be written by inspection of Figure 4B because the system is shown in standard form.


FIGURE 4A. BLOCK DIAGRAM AS WRITTEN FROM EQUATION 12


FIGURE 4B. AFTER BLOCK DIAGRAM MANIPULATION
FIGURE 4. BLOCK DIAGRAM OF THE NON-INVERTING OP AMP AS SHOWN IN EQUATION 12
$V_{0} V_{1}=a /\left(1+a Z_{1} /\left(Z_{1}+Z_{2}\right)\right)$
(EQ. 13)

The loop gain, $A \beta$, is equal to $a Z_{1} /\left(Z_{1}+Z_{2}\right)$, the closed loop gain, $1 / \beta$, is equal to $\left(Z_{1}+Z_{2}\right) / Z_{1}$, and the direct gain, $A$, is equal to the op amp gain, $a$. The loop gain can be determined from Figure 4B by inspection, or if the system block is not available the loop gain can be obtained directly from the amplifier schematic as shown in Figure 5. First set voltage sources to zero by grounding them, then open current sources, break the feedback loop at any convenient place and then calculate the loop gain. Remember, the output impedance of the op amp must be much lower than the feedback impedance so that block diagram techniques can be used. The test input is $\mathrm{V}_{\mathrm{T}}$, and it is amplified by the op amp gain, a. The op amp output, $a V_{T I}$ is divided by $\beta$ before it is fed back as $V_{\text {TO }}$.


FIGURE 5. NON-INVERTING OP AMP WITH INPUT GROUNDED AND FEEDBACK LOOP BROKEN
$\frac{V_{T O}}{V_{T I}}=\frac{a Z_{1}}{Z_{1}+Z_{2}}=A \beta$
Referring to the inverting op amp configuration shown in Figure 6, the analysis will be performed by working from the amplifier circuit to the block diagram. The closed loop gain equations are derived in references one and six as well as most electronic text books. The closed loop gain which is equal to $1 / \beta$ is known to be $-Z_{2} / Z_{1}$; thus, $\beta$ is calculated as $Z_{1} / Z_{2}$ with the minus sign indicating a negative input. Referring to Figure 6, if $\mathrm{V}_{1}$ is set to zero and the loop is broken at the negative input to the op amp the circuit is identical to that shown in Figure 5.


FIGURE 6. INVERTING OP AMP SCHEMATIC
An examination of Figure 5 and Figure 6 reveals that the loop gain, $A \beta$, is identical for both the inverting and non-inverting circuit configurations. The loop gain is the only parameter that determines stability, and it is not a function of the location of the inputs. Hence the loop gain for the inverting op amp is given to us by Equation 14. Now that $A \beta$ and $1 / \beta$ are both known, $A$ can be determined by multiplication to be $a Z_{2} /$ $\left(Z_{1}+Z_{2}\right)$. Since the direct gain and the loop gain are both known Figure 7 can be constructed from these quantities.


FIGURE 7. BLOCK DIAGRAM OF THE INVERTING OP AMP
Equation 15, which is the closed loop gain equation for an inverting op amp can be written directly from Figure 7. As (a) approaches infinity in Equation 15, the closed loop gain approaches $-Z_{2} / Z_{1}$.
$\frac{V_{0}}{V_{1}}=-\frac{\frac{a Z_{2}}{Z_{1}+Z_{2}}}{1+\frac{a Z_{1}}{Z_{1}+Z_{2}}}$
The closed loop gain for the non-inverting circuit, $V_{d}$ $V_{1}=\left(Z_{1}+Z_{2}\right) / Z_{1}$, is different from the closed loop gain for the inverting circuit, $V_{O} / V_{1}=-Z_{2} / Z_{1}$. It will always be the case that the loop gain, hence the stability, is independent of the location of the inputs, but the closed loop performance is highly dependent on the placement of the input. Many circuits take advantage of this phenomena to gain better performance as will be shown in the benefits section.
$A_{\text {NON-INV }}=a$; which is $\neq$ to $A_{\text {INV }}=a Z_{2} /\left(Z_{1}+Z_{2}\right)$
Comparing the block diagrams of the non-inverting and inverting circuits reveals that their direct gains are different, and this explains why there are some slight performance differences between the configurations. The non-inverting circuit with the higher direct gain has less closed loop error; at a closed loop gain of 2 for both circuits the non-inverting circuit has a 3.5 dB more loop gain. The inverting circuit is more stable for the same magnitude of closed loop gain; i.e., for a closed loop gain of $2, A \beta_{I N V}=0.33 a$ and $A \beta_{N O N-I N V}=0.5 a$. Normally these differences are minor, but they are pointed out because they may be taken advantage of or they can cause very subtle problems in unique situations.

There are many other op amp circuit configurations, but they will all reduce to these two basic forms; each of which is a variation of the basic feedback circuit shown in Figure 1. Letting $Z_{1}$ and or $Z_{2}$ equal various combinations of RLCs will give different closed loop performance, but the analysis techniques remain the same. More complicated circuit configurations can all be reduced to these simple circuits through block diagram reduction techniques and superposition.

## Benefits of Feedback

The tolerances and drift coefficients of passive components are much less than those associated with active components. If the circuit transfer function can be made to be dependent only on the passive component parameters it will be a much more stable circuit; feedback accomplishes this through the direct gain as shown here. Differentiating the closed loop Equation 4, with respect to the direct gain yields

Equations 17 and Equation 18 shown below. Notice that the percentage change in the closed loop gain is the percentage change in the direct gain divided by the loop gain. Thus for very high loop gains the initial accuracy and drift will be a function of the passive components rather than of the direct or amplifier gain. Although the feedback reduces the gain errors, other amplifier errors such as input voltage offset are not affected by the feedback because they occur as an input rather than within the feedback loop.

$$
\begin{align*}
& \frac{d V_{O} N_{1}}{d A}=\frac{1}{(1+A \beta)^{2}}=\frac{1}{(1+A \beta)} \frac{V_{O} N_{1}}{A}  \tag{EQ.17}\\
& \frac{d V_{O} N_{1}}{V_{O} N_{1}}=\frac{d A}{A} \frac{1}{(1+A \beta)}
\end{align*}
$$

All amplifiers have noise and distortion characteristics associated with them, and low noise or low distortion amplifiers command a premium price. Very often feedback can be used at no cost increase to reduce the effects of distortion and noise. Both closed loop and open loop systems are shown in Figure 8 and Figure 9; notice that both systems have the same number of components except for the passive feedback elements.


FIGURE 8. CLOSED LOOP SYSTEM


FIGURE 9. OPEN LOOP SYSTEM
Equation 19 and Equation 20 are derived from the closed loop and open loop systems shown in Figure 8 and Figure 9. If Equation 19 is rewritten as shown in Equation 21 it is obvious that Equation 22 results when the quantity $A_{1} A_{2}$ approaches infinity as it will in an ideal system.
$V_{O}=\frac{A_{1} A_{2}\left(V_{1}+V_{0}\right)}{1+A_{1} A_{2} \beta}+\frac{A_{2} V_{1}}{1+A_{1} A_{2} \beta}+\frac{V_{2}}{1+A_{1} A_{2} \beta}$
$V_{O}=A_{1} A_{2}\left(V_{1}+V_{0}\right)+A_{2} V_{1}+V_{2}$
$V_{O}=\frac{V_{1}+V_{0}}{1 /\left(A_{1} A_{2}\right)+\beta}+\frac{V_{1} / A_{1}}{1 /\left(A_{1} A_{2}\right)+\beta}+\frac{V_{2} / A_{1} A_{2}}{1 /\left(A_{1} A_{2}\right)+\beta}$
$V_{O}=\frac{V_{1}+V_{0}}{\beta}+\frac{V_{1} / A_{1}}{\beta}$ For $A_{1} A_{2}$ approaching infinity

Now let $V_{0}$ and $V_{1}$ represent the amplifier's internal noise referred to the input, and let $\mathrm{V}_{2}$ represent the noise from the any other system components. Notice from Equation 22 that in the closed loop system $\mathrm{V}_{2}$ has disappeared, $\mathrm{V}_{1}$ is decreased proportional to the gain $A_{1}$ and that the input noise has only been multiplied by the closed loop gain, $1 / \beta$. Conversely, Equation 20 indicates that in the open loop system the input noise has been multiplied by $A_{1} A_{2}$ (which would be equivalent to the closed loop gain), that $V_{1}$ is multiplied by $A_{2}$ and that $V_{2}$ is present. The feedback in the closed loop system has dramatically reduced the noise from the sources which follow the amplifier $\mathrm{A}_{1}$ so this can become a big design advantage. In the closed loop system the amplifier $A_{1}$ should be selected for it's excellent noise performance, but the amplifier $A_{2}$ can be selected based on some other criteria such as cost. This option is not available in the open loop system.
Very often when driving low impedances like speakers, the output amplifiers are driven as close to the power supply rails as possible to obtain the maximum dynamic range. One result of this practice is that some distortion of the signal occurs as active device parameters are driven so that they become nonlinear. This and most other sources of distortion usually occur in the output stages of the amplifier. Because the distortion occurs at the output it can be represented by $\mathrm{V}_{2}$ in Equation 19, and this quantity goes to zero as the direct gain approaches infinity, so it is essentially eliminated by feedback. The connection from the speaker driver output to the preamplifier input in audio amplifiers is there to provide the feedback which reduces the amplifier's distortion when the amplifier is driven to its limits. Some amplifiers such as guitar amplifiers purposely introduce distortion into the sound, so open loop amplifiers are used in these cases, but closed loop amplifiers are usually employed in high fidelity applications.

If the noise source, $\mathrm{V}_{1}$, is set to zero in Equation 22, then the amplifier input noise represented by $V_{0}$ is multiplied by the closed loop gain $1 / \beta$. There is a method to further reduce the effects of $V_{0}$ by using frequency discrimination methods. If $V_{0}$ is examined as a function of frequency, it will be noticed that the noise is made up of many different frequency components, see Figure 10.


FIGURE 10. INSERTING AN IDEAL FILTER IN THE TRANSFER FUNCTION REDUCES NOISE

The signal of interest has a finite bandwidth, and if the noise bandwidth is larger than the signal bandwidth, the noise can be reduced by making the loop gain a function of frequency. Assuming that the noise bandwidth is 10 KHz and that the signal bandwidth is 100 Hz , the noise beyond 100 Hz can be reduced to a minimum if $1 / \beta$ is reduced to zero beyond 100 Hz . One method available to accomplish this bandwidth reduction is through the ideal filter inserted in the closed loop, as shown in Figure 10. This filter can be approximated with passive components.

The input and output impedance of the closed loop circuit can be controlled by the amount of feedback and by the circuit configuration [4]. Through the use of feedback it is possible for the same amplifier IC to appear to have an output impedance approaching zero or approaching infinity, depending on the circuit configuration employed.

Another interesting aspect of feedback systems is that if a function is put in the feedback loop, in a manner similar to the feedback factor, $\beta$, the inverse function will appear at the output.

## Graphical Representation of the Feedback Equation

The mathematical manipulations required to analyze a feedback circuit are complicated because they involve multiplication and division; H. W. Bode [5] developed a technique called a Bode plot which simplifies the analysis through the use of graphical techniques. The Bode equations are log equations which take the form of 20LOG(F(t))=20LOG(|F(t)|)+ phase angle. Since these are log equations, the terms which were multiplied and divided can be now added and subtracted; thus, they can easily be solved graphically as will be shown. The transfer function for the integrator shown in Figure 11 is given in Equation 23.


FIGURE 11. INTEGRATOR CIRCUIT
$\frac{V_{O}}{V_{1}}=\frac{1}{(1+R C s)}$
Where $s=j \omega$ and $j=\sqrt{(-1)}$
The magnitude of the transfer function is given by the equation $\left.\left.\left|V_{0} / V_{1}\right|=1 / \sqrt{(1+(R C \omega)}\right)^{2}\right)$. The approximate magnitude or $\left|V_{O} / V_{l}\right|=1$ when $\omega=0.1 / R C,\left|V_{0} / V_{l}\right|=0.707$ when $\omega=1 /$ $R C$ and $\left|V_{O} / N_{1}\right|=0.1$ when $\omega=10 / R C$. These values are plotted in Figure 12 using straight line approximations.


## FIGURE 12. BODE PLOT OF INTEGRATING CIRCUIT TRANSFER FUNCTION

The downward slope of the amplitude curve in Figure 12 is $20 \mathrm{~dB} /$ decade, and the point at which the slope changes, at $\omega$ $=1 / R C$, is termed the breakpoint. Reading the curve, it can be seen that gain initially is one, OdB , at very low frequencies, falling off to $0.707,-3 \mathrm{~dB}$, at the break frequency and decreases at a rate of $-20 \mathrm{~dB} /$ decade for higher frequencies. The phase shift for the integrator is given in Equation 24 and plotted in Figure 12. Notice that the phase shift is -45 degrees at the breakpoint where $\omega=1 / R C$.
$\phi=-$ tangent $^{-1}(1 / \omega R C)$
When the breakpoint occurs in the denominator, its slope is negative and is called a pole. Conversely, when the breakpoint occurs in the numerator, its slope is positive and it is called a zero.

The band reject circuit shown in Figure 13 has two poles, two zeros and a DC gain. Each pole and zero is plotted separately in Figure 14. The DC gain component is plotted as a straight line at -6dB because it is frequency independent. The two zeros in the numerator both occur at $\omega=1 / R C$; thus they are plotted on top of each other, and this results in a positive sloped line rising at $40 \mathrm{~dB} / \mathrm{decade}$. The two poles in the denominator occur at $\omega=0.44 / \mathrm{RC}$ and $\omega=4.56 / \mathrm{RC}$, and they are each plotted with a negative slope of $-20 \mathrm{~dB} /$ decade.


FIGURE 13. BAND REJECT FILTER CIRCUIT
$\frac{V_{O}}{V_{1}}=\frac{(1+R C s)(1+R C s)}{2(1+R C s / 0.44)(1+R C s / 4.56)}$

Where $\mathrm{s}=\mathrm{j} \omega$.


FIGURE 14. BODE PLOT OF THE INDIVIDUAL COMPONENTS OF THE BAND REJECT FILTER

Each of the separate Bode plots shown in Figure 14 are combined into one composite plot in Figure 15. The phase plots are treated much like the amplitude plots because the separate phase responses from the poles and zeros can be combined into one plot such as is shown in Figure 15. Now the complete amplitude or phase response of the circuit can be observed by looking at Figure 15. Although the phase shift at a pole is -45 degrees, the plot indicates -5 degrees at $\omega=0.44 / \mathrm{RC}$ because the double zero located at $\omega=1 / \mathrm{RC}$ has already accumulated significant positive phase shift at the pole frequency. The non-linearity of the phase plot, a result of the tangent function, makes it hard to approximate accurately when several poles and zeros congregate in the same vicinity.


## FIGURE 15. COMPOSITE BODE PLOT FOR THE BAND REJECT FILTER

Spacing the poles and zeros by a decade enables an accurate phase plot using approximate methods, but the circuit performance criteria usually will not allow this luxury. The amplitude plot also becomes smeared by the close proximity of the poles and zeros, but the exact values are not usually plotted because the approximate values usually suffice for analysis [6]. The demand for the phase accuracy stems from the oscillation or stability criteria which is dependent on phase.

Applying logarithms to the system equations will enable a quick and rather complete analysis. Equation 4 is repeated in Equation 26 in log form; i.e., both sides of the equation have been operated on by the function $2^{20 L O G} 10(F(t))$.
$20 L O G\left(V_{O} / V_{1}\right)=20 L O G(A)-20 L O G(1+A \beta)$
As would be expected from the preceding analysis, the shape of the plot will be determined by the breakpoints, if any, contained in A or $\beta$. The magnitude portion of the closed
loop system equation is plotted in Figure 16 for the case where $A$ and $\beta$ are not a function of frequency. Notice that both plots are flat lines, and there is no phase plot. Obviously this case is trivial and of no interest to the circuit designer because it does not represent the real world since the gain of all amplifiers is a function of frequency [7].


FIGURE 16. PLOT OF EQUATION 4 WHEN A AND $\beta$ ARE NOT FREQUENCY DEPENDENT

Most high gain amplifiers such as operational amplifiers have multiple poles, two per transistor, with the amplifier having as many as 20 transistors leading to a potential of 40 or more poles. Normally only a few poles are important because the other poles occur at very high frequencies where the gain is less than one so that they can not cause oscillation. In many amplifiers the manufacturer compensates the amplifier with a single pole usually called a dominant pole ( $f_{\text {AMP }}$ ), and the amplifier's performance can be approximated by the transfer function $A=a /\left(1+j\left(f / f_{\text {AMP }}\right)\right)$. Equation 4 is plotted in Figure 17 with the assumption that $A$ is frequency dependent and $\beta$ is resistive or frequency independent.


FIGURE 17. PLOT OF EQUATION 4 WHEN $A=a /\left(1+j\left(f / f_{\text {AMP }}\right)\right)$ AND $\beta$ IS FREQUENCY INDEPENDENT

The closed loop gain graphical approximation is constant until its projection intersects the amplifier gain at point $X$. The actual closed loop gain starts rolling off prior to point $X$, and it is down -3 dB at point X . If $20 \mathrm{LOG}\left(\mathrm{V}_{\mathrm{O}} / \mathrm{V}_{1}\right)-20 \mathrm{LOG}(\mathrm{A})=-3 \mathrm{~dB}$ then $-20 \operatorname{LOG}(1+A \beta)=-3 \mathrm{~dB}$, and if the magnitude of $(1+A \beta)$ is considered, then the square root of $\left(1+(A \beta)^{2}\right)=1.414$ resulting in $A \beta=1$. In other words, $A=1 / \beta$ at the intersection of the two curves. There is a method [8] of relating the phase shift, and thus the stability, to the slope of the curves at the intersect point, but this method will not be covered here in favor of the Bode $A \beta$ method.

The dominant pole causes the open loop gain to have a breakpoint at the frequency $f_{\text {AMP }}$. The internally compensated op amp acts like a dominant pole characteristic so its AC parameters can be determined by referring to the "Open-Loop Frequency Response" curve contained in the data sheet. Although the curve is called "Open-Loop Frequency Response", it really is the direct gain (A). Notice that the CA158 op amp as shown in the Harris Semiconductor catalog [9] has a breakpoint which
occurs at $f_{\text {AMP }}=5 \mathrm{~Hz}$., and the DC gain is 110 dB . If the transfer function shown in Figure 17 was for the CA158 then the direct gain would be $A=a /\left(1+j\left(f / f_{\text {AMP }}\right)\right)$, or $A=316,227 /(1+j(f / 5))$. Consider for a moment the difficulty and hence the probable error associated with measuring the DC gain and the break point. A popular method of measuring the op amp gain and phase is to configure the op amp in the inverting mode and then measure the error voltage; i.e., the voltage from the inverting input to ground. Then Equation $3, E=V_{O} / A$, is employed to calculate the op amp gain from the measured error. Assume that the op amp is configured in a gain of -100 ; then the direct gain is $A=100 / 101$ times the op amp gain so a small offset must be accounted for because the measurement is not a direct measurement in the inverting circuit configuration. If the output voltage, $\mathrm{V}_{\mathrm{O}}$, is kept small to guarantee small signal accuracy, say one volt, then for the CA158, $\mathrm{V}_{\text {ERROR }}=1 / 316,217=3.16 \mu \mathrm{~V}$. Measuring this small voltage especially considering that noise may be present is a formidable task so designers must assume that there may be a considerable tolerance associated with these measurements. The numbers given in this paper are for explanation purposes; professional test engineers will often configure the op amp with a gain of $A=-10,000$ and then be measuring errors in the nano-volt range. These measurements require considerable skill, and even then there may be a 24 dB difference between the minimum specification point and the typical value such as in the HA5177 data sheet.


## FIGURE 18. OPEN LOOP FREQUENCY RESPONSE OF THE HA2842C

Figure 18 is a plot of the gain phase relationship for a high frequency op amp, the HA2842C. The DC gain is 90 dB , and since the phase shift reaches -45 degrees at 1200 Hz the first pole must occur at approximately 1200 Hz . This is a high frequency op amp so the internal compensation capacitor has been reduced significantly to increase the bandwidth available to the designer, and it is apparent that a second pole exists because the phase shift approaches - 135 degrees at 70 MHz . Looking closely at the point where the gain crosses the 0 dB axis, and then following that constant frequency line, 120 MHz , down to the phase curve indicates that the phase shift is about -165 degrees. This op amp is marginally stable, and the op amp is susceptible to stability problems unless external compensation techniques are employed. The HA2842C can be modeled with a DC gain of

31,623 , the first break point at 1200 Hz and the second breakpoint at 145 MHz . The equation for the HA2842C is then $A=31,623 /(1+j(f / 1200))(1+j(f / 145 E 6))$.

## Stability as Determined from Loop Plots

$A \beta=-1=|1| /-180$
(EQ. 27)
Equation 8 has been repeated above as Equation 27. If the magnitude of the gain is greater than one in Equation 27, the equation will be satisfied because the non-linear effects of the active devices as they enter saturation will reduce the gain to one. This is demonstrated in oscillator design where the designer must design for a worse case gain of at least one, so the circuit will oscillate under all conditions, and the nominal gain usually is much greater than one. The oscillator designers are caught in a trap, for if they design for a worse case low gain greater than one, then the worse case high gain will be much greater than one. In the low gain case, the circuit barely oscillates, but the sinewave is very pure. In the high gain case, the circuit always oscillates, but there is significant distortion in the sinewave. Just as the oscillator designer must make compromises for the sake of instability, so, the analog designer make compromises for the sake of stability. In the case of amplifier design, the phase shift must never become - 180 degrees, at a gain greater than one, or oscillation will occur. The compromise occurs when the amplifier designer trades off gain and/or bandwidth for positive phase shift because the methods which produce a safe phase shift tend to reduce gain or bandwidth, as will be shown later. In many cases oscillation is not the limiting factor because as the phase shift gets much greater than -135 degrees, the amplifier output will have increasing overshoot and ringing. Plotting the loop gain gives great insight into both the stability and closed loop performance; stability will be discussed in this section and closed loop performance predictions from open loop plots will be discussed in the next section.

$$
\begin{equation*}
A \beta=\frac{K}{\left(1+R_{1} C_{1} s\right)\left(1+R_{2} C_{2} s\right)} \tag{EQ.28}
\end{equation*}
$$

where $K=D C$ gain.


FIGURE 19. LOOP PHASE AND GAIN PLOT OF EQUATION 27
Figure 19 is used to help define the industry standard terms, phase margin, $\phi_{M}$, and gain margin, GM. Phase margin is a measure of relative stability, and it is defined as the amount
of phase shift between the point where the loop gain equals 0 dB and -180 degrees. Equation 29 defines the phase margin mathematically.
$\phi_{M}=180$ - tangent $^{-1}(\mathrm{~A} \beta)$
Gain margin is defined as the gain at the point where the phase equals -180 degrees. Gain margin is always a negative (dB), or less than one, in a stable system, and it does not contain much information about stability or closed loop performance. The phase margin shown in Figure 19 is approximately 16 degrees; attempting to measure the phase margin in Figure 19 points out how important it is to plot phase margin accurately. This circuit will be stable since the phase margin is positive; the phase shift cannot ever reach the - 180 degrees required for oscillation if the circuit is to remain stable. Because the phase margin is very small, the overshoot will be very large, and the output will exhibit a damped oscillation commonly known as ringing. If the gain, K , were increased in the loop transfer function until it crossed the OdB axis at -180 degrees phase shift, then the circuit would oscillate; thus, there is a definite limit on the loop gain. The loop transfer function, shown as Figure 19, is repeated in Figure 20 with the gain increased by a factor of C. Notice that indeed the -180 degree phase crossover point occurs prior to the 0 dB crossover point, so the phase margin is negative and the circuit will oscillate. Conversely, the transfer function shown in Figure 20 does not even have enough gain at the -180 degree point to ensure oscillation under production tolerances, so the circuit is good for nothing in its present condition.


FIGURE 20. LOOP PHASE AND GAIN PLOT OF EQUATION 27 WITH ADDED GAIN C
Extremely high gain systems have very low errors, but they are limited in the bandwidth they can obtain without oscillating, so designers resort to other techniques such as nonlinear transfer functions. An example of a high gain, accurate system which employs non-linear techniques to achieve stability, is a gyro stabilization platform which would go into a limit cycle if the gain was not reduced upon start-up.

If the second breakpoint, $1 / R_{2} C_{2}$, were moved closer to the first breakpoint, then the circuit would accumulate phase shift from the breakpoint earlier and it may become unstable. Figure 19 is repeated as Figure 21, where the second breakpoint has been moved closer to the first breakpoint. Notice that the -45 degree phase point is not affected, the -135
degree phase point has moved in towards the -45 degree phase point, and that the -180 degree phase point occurs prior to the OdB crossover point. Generally, moving the two poles closer together can cause instability.


FIGURE 21. LOOP PHASE AND GAIN PLOT OF EQUATION 27 WITH $\mathbf{1 / R} \mathbf{R}_{\mathbf{2}} \mathrm{C}_{\mathbf{2}}$ CLOSER TO $\mathbf{1 / R} \mathbf{R}_{1} \mathrm{C}_{1}$

The single pole system cannot accumulate more than -90 degrees of phase shift so it cannot become unstable; thus single pole systems will not be discussed here. This does not mean that an internally compensated op amp, which acts like a dominant pole, cannot become unstable because all op amps have more than one pole. The proof of this is the data sheet, consider the HA2500 [10] which is internally compensated for unity gain, where the Open Loop Frequency and Phase Response curve shows phase shifts beyond -90 degrees. Lots of good data can be gathered from these curves; i.e., the phase margin for the HA2500 is approximately 30 degrees so there will be some overshoot, and there is a second pole at about 3 MHz . There is no such thing as an unconditionally stable op amp unless it lies on the table with power disconnected, because all op amps are multiple pole devices especially when stray capacitances are considered. This conclusion may lead someone to wonder where to draw the line when doing an analysis, and most engineers draw the line at two poles because the mathematics are easy to handle. If required, they obtain a solution for larger systems through the use of superposition, but usually the poles are separated far enough for some of them to be ignored or the circuit is modified to achieve the separation. The next section will delve into the second order stability analysis more deeply. Poles and zeros always occur in pairs, although sometimes either the pole or zero may be at the origin or infinity, thus they will not always appear in the transfer function. Whenever a pole is referred to, its corresponding zero is also considered.

## Predicting Stability and Performance from Closed Loop Plots

The closed loop AC performance of a feedback circuit is dependent on the order of the denominator equation which is often considered equivalent to the number of poles contained in the circuit. If the circuit has no poles then its AC performance does not vary with frequency. If the circuit has one pole then the closed loop AC performance is rather easy to describe; the gain on a Bode plot will be 20LOG(K) and the amplitude response will start falling off at the breakpoint with a $-20 \mathrm{~dB} /$ decade slope. If the circuit has two or more
poles the closed loop AC response is much more complicated, the circuit can overshoot, then ring and finally oscillate. The second order circuit, which contains two poles, is so popular that it is described extensively in the literature [11], and it is the one that will be dwelled on here. Higher order circuits can usually be reduced to second order for closed loop performance analysis, so this analysis will be restricted to stability and closed loop performance for second order circuits. Equation 7 is written here as Equation 30 with a second order loop transfer function substituted for $A \beta$. Equation 31 is obtained from Equation 30 through algebraic manipulation.
$1+A \beta(s)=1+\frac{K}{\left(1+s \tau_{1}\right)\left(1+s \tau_{2}\right)}=0$
where $\tau=\mathrm{RC}$
$s^{2}+\frac{\tau_{1}+\tau_{2}}{\tau_{1} \tau_{2}} s+\frac{1+K}{\tau_{1} \tau_{2}}=0$
Equation 32 is the standard second order control equation, and it is compared to Equation 31 to obtain Equation 33 and Equation 34 which define the damping ratio, $\zeta$, and undamped natural frequency, $\omega_{N}$.
$s^{2}+2 \zeta \omega_{N} s+\omega_{N}^{2}=0$
$\omega=2 \pi \mathrm{f}$
$\omega_{N}^{2}=\frac{1+K}{\tau_{1} \tau_{2}}$
$2 \zeta \omega_{N}=\frac{\tau_{1}+\tau_{2}}{\tau_{1} \tau_{2}}$
The frequency where the magnitude of the loop transfer function, $A \beta$, is equal to one is defined as the crossover frequency, $\omega_{C}$; this is expressed in Equation 35 with $\omega_{C}$ substituted for $\omega$. Then Equation 35 is algebraically manipulated to obtain Equation 36 from which the phase functions shown in Equation 37 and Equation 38 are obtained.
$\frac{K}{\sqrt{\left(1+\omega_{C}{ }^{2} \tau_{1}{ }^{2}\right)} \sqrt{\left(1+\omega_{C}{ }^{2} \tau_{2}{ }^{2}\right)}}=1$
$\omega_{C}{ }^{4}+2 \zeta \omega_{N}{ }^{2} \omega_{C}{ }^{2}-\omega_{N}{ }^{4}=0$
$\phi_{M}=\operatorname{TAN}^{-1}\left|\frac{\omega_{C}\left(\tau_{1}+\tau_{2}\right)}{1-\omega_{C}{ }^{2} \tau_{1} \tau_{2}}\right|$
$\phi_{M}=\operatorname{TAN}^{-1}\left|2 \zeta \omega_{N} \omega_{C}\right|$
Considering the transfer function shown in Figure 22, if the 0 dB crossover frequency, $\omega=\omega_{\mathrm{C}}$, occurs well after the break frequency, $1 / \tau_{2}$, then Equation 39 can be simplified to Equation 40 . Solving Equation 40 for $\omega_{\mathrm{C}}$ yields Equation 41.
20LOG $(A \beta)=20 \operatorname{LOG}(\mathrm{~K})-20 \operatorname{LOG}\left(1+\omega^{2} \tau_{1}{ }^{2}\right)^{1 / 2}$
$-20 \operatorname{LOG}\left(1+\omega^{2} \tau_{2}^{2}\right)^{1 / 2}$
$20 L O G(A \beta)=20 L O G(K)-20 L O G\left(\omega \tau_{1}\right)$
$-20 L O G\left(\omega \tau_{2}\right)$ for $\omega$ " $1 / \tau_{2}$
$\omega_{C}=\sqrt{\frac{K}{\tau_{1} \tau_{2}}} \approx \omega_{N} \quad$ for $\omega » 1 / \tau_{2}$


FIGURE 22. PHASE MARGIN AND PERCENT OVERSHOOT AS A FUNCTION OF DAMPING RATIO

Figure 22 is a plot of Equation 38; now the phase margin is expressed in terms of known quantities so it can be calculated from a knowledge the pole locations. The estimation procedure is to determine the pole locations from knowing the op amp pole locations and from the external circuitry. Once the pole locations and the gain are known or estimated the phase margin, damping ratio and cutoff frequency can be calculated. Then using Figure 22 yields the percent overshoot. The pole locations and gain can be varied to obtain different solutions to the problem. After all of this data is satisfactory, then the loop transfer function should be plotted to determine stability. While only the poles were used in the estimation procedure, both the poles and zeros must be used to plot the open transfer function. After several iterations a workable solution should pop out if one exists. Remember that this procedure is an approximation, thus it must always be verified in the laboratory.

## Compensation Schemes

All op amps are compensated; some are compensated with internal components thus saving the designer time and money. Many op amps are not compensated internally because leaving out the compensation gives the designer an extra degree of freedom, and these op amps must have some kind of external compensation or they will oscillate. The internally compensated op amps are usually compensated with a method called 'dominant pole' or 'lag' compensation several forms of which are shown in Figure 23.


FIGURE 23. EXAMPLES OF DOMINANT POLE COMPENSATION

Dominant pole compensation circuits tend to be associated with the op amp, and they usually are not part of the feedback circuit. The loop transfer function for an op amp is shown in Figure 24 in solid lines. There are two poles accumulating phase shift prior to the OdB crossover point; thus this circuit may very well be unstable. The first pole, $1 / \tau_{1}$, is the low frequency break point of the op amp, and the second pole, $1 / \tau_{2}$, is the high frequency break point. Since these pole locations are inherent in the op amp design, the circuit designer must live with them, but the effects of these poles can be modified with external feedback components. Locating the dominant pole, $1 / \tau_{\mathrm{DP}}$, so that the OdB crossover point coincides with the first op amp pole, $\tau_{1}$, yields a phase margin of 45 degrees. By locating the dominant pole zero crossing at $1 / \tau_{1}$ the circuit sacrifices significant bandwidth which can be regained by moving the pole further out. The exact pole placement will be a function of the circuit specifications such as the allowed overshoot or the bandwidth required.


FIGURE 24. DOMINANT POLE COMPENSATION PLOT
Because of the loop gain loss and the bandwidth loss dominant pole compensation is only used inside the op amp, when the closed loop bandwidth requirements are not great, or if noise reduction is desired. A simpler method of compensating the op amp is with gain compensation. Consider Equation 14 which is repeated here as Equation 42; this equation is for the loop gain and it is valid for both inverting and non-inverting op amps. If the closed loop inverting gain is increased to 9 , then Equation 42 becomes $\mathrm{A} / 10$ a decrease of 20 dB in the DC intercept. Plotting these results in Figure 25 reveals that the circuit has become stable without much of a bandwidth reduction.
$\frac{V_{\tau O}}{V_{\tau 1}}=\frac{a Z_{1}}{Z_{1}+Z_{2}}=A \beta$


FIGURE 25. GAIN COMPENSATION
The occasion always arises where the closed loop gain must be one or less, thereby precluding the use of gain compensation; thus the designer must resort to other techniques to achieve the circuit performance. An alternate method of
compensation is called lead compensation, and it consists of putting a zero in the loop transfer function to cancel out one of the poles. The best place to locate the zero is on top of the second pole, since this cancels the negative phase shift caused by the second pole. The schematic of a circuit which employs lead compensation is shown in Figure 26, and Equation 43 is for the loop transfer function.


FIGURE 26. LEAD COMPENSATION
The zero in Equation 43 occurs before the pole, so it can be used to cancel out the pole at $1 / \tau_{2}$ by placing the zero on top of the pole. Now the 135 degree phase shift point has moved out to $1 / R_{F} \| R_{\mid}$Cs yielding better phase margin. There are always compromises to be made when designing a feedback circuit, and the one made here is to add external components. If the op amp has additional poles close to $1 / \tau_{2}$, and many op amps do, then the pole placement is critical. Some op amps have so many poles in the area of $1 / \tau_{2}$ that this method of compensation cannot be used.

$$
\begin{equation*}
A \beta=\frac{a R_{1}}{R_{1}+R_{F}} \frac{\left(R_{F} C s+1\right)}{\left(R_{1} \| R_{F} C s+1\right)} \tag{EQ.43}
\end{equation*}
$$

Unless specified otherwise, the amplifier gain (a) will be assumed to have the form $a=K /\left(1+\tau_{1} s\right)\left(1+\tau_{2} s\right)$.


FIGURE 27. LEAD COMPENSATION PLOT
Sometimes a good look at the problem reveals a potential solution, so the case of stray input capacitance will be investigated. An inverting amplifier with a stray input capacitance, $C_{1}$, is shown in Figure 28. Looking at Equation 44 for the open loop transfer function, it is obvious that the stray capacitance adds a pole to the transfer function, and if the added pole is close to $1 / \tau_{2}$ the circuit will become unstable. The capacitor, $\mathrm{C}_{\mathrm{F}}$ shown in dotted lines, is added to the circuit to yield the transfer function shown in Equation 45. Inspection of Equation 45 reveals that if $R_{1} C_{1}=R_{F} C_{F}$, then the poles and zeros in the transfer function will cancel each other, and the transfer function will appear to be independent of frequency. This type of compensation is named after the same idea used in the compensated attenuator, which is an old instrument design trick. Which just proves that little in circuit design is really new.



FIGURE 28. COMPENSATED ATTENUATOR CIRCUIT SCHEMATIC, GAIN PLOT AND PHASE PLOT

No $\mathrm{C}_{\mathrm{F}}$ :

$\mathrm{C}_{\mathrm{F}}$ in circuit:

$$
\begin{equation*}
A \beta=\frac{a \frac{R_{1}}{\left(R_{1} C_{1} s+1\right)}}{\frac{R_{1}}{\left(R_{1} C_{1} s+1\right)}+\frac{R_{F}}{\left(R_{F} C_{F} s+1\right)}} \tag{EQ.45}
\end{equation*}
$$

There are times when an extra degree of freedom is required and the lead-lag, sometimes called the feed-forward, form of compensation yields this freedom. This method of compensation puts a pole and a zero in the loop transfer function. If the pole and zero locations must be independent of each other, then separate compensation networks need to be used. An example of this would be to use a lag circuit similar to that shown in Figure 24, and a lead circuit similar to that shown in Figure 26. The lead and lag would then be independent in the example so they could be placed conveniently for compensation purposes. The circuit shown in Figure 29 has both a pole and a zero, but their placement is not independent.
$A \beta=\frac{a R_{1}}{R_{1}+R_{F}} \frac{(R C s+1)}{\frac{\left(R R_{1}+R_{F} R+R_{F} R_{1}\right)}{R_{F}+R_{I}} C s+1}$


FIGURE 29．LEAD－LAG COMPENSATION SCHEMATIC AND A $\beta$ AMPLITUDE PLOT

Referring to Figure 29，it can be seen that the lead－lag com－ pensated circuit crosses 0 dB at a lower frequency than the uncompensated circuit，thus the compensation has made the circuit more stable．Also，the transfer function of the com－ pensation has been shown in Figure 29 for clarity．There is an additional advantage to lead－lag compensation in that it yields higher gain at high frequencies．The closed loop gain plots，Figure 30，show that the zero precedes the pole；the poles and zeros interchange when the plot changes from the loop gain to the closed loop gain．Also，the high frequency gain is emphasized with lead－lag compensation．The high frequency emphasis may be desirable when a high overall gain is needed，but some unwanted effects，such as DC off－ set，must be minimized．The lead－lag method of compensa－ tion usually requires the precise placement of the poles and zeros so a detailed and accurate［12］phase plot is generally constructed for this case．


FIGURE 30．LEAD－LAG CLOSED LOOP GAIN PLOTS FOR COM－ PENSATED AND UNCOMPENSATED CIRCUITS

## Comparison of Compensation Results

Dominant pole compensation is the easiest method of compensation to implement within an IC，but it rolls off the closed loop gain so quickly that it is seldom used except in op amp design．The circuit resulting from dominant pole design is very well behaved because the phase margin is usually about 45 degrees，but the frequency response is very poor．If the transfer function for the HA2842C shown in Figure 18 is compensated by dominant pole compensation， the pole would be placed at 1200 Hz ；the loop gain when moving to a lower frequency would then rise at a rate of $20 \mathrm{~dB} /$ decade until it hit the 90 dB point at 0.06 Hz ．This is an effective bandwidth reduction of 4.5 decades，from 120 MHz to 1200 Hz ，so this method is only used when no other type of compensation is available，noise reduction is more impor－ tant than bandwidth or bandwidth is not important．

Gain compensation is always the preferred method of compensation if the resulting higher closed loop gain meets the performance criteria，but many times the design specifi－ cations call for a buffer or an inverter both with a gain of one， which precludes gain compensation．Gain compensation does not require any additional external components beyond the gain setting resistors，it preserves the op amp bandwidth and it is easy to implement．In a single pole system，increas－ ing gain will reduce the bandwidth by the same factor．

Lead compensation offers an AC compensation which can function for any DC gain，and it is has a much higher frequency response than dominant pole compensation．One deficiency with lead compensation is that the DC gain，the zero and the pole are all tied together tightly．For example if the HA2842C shown in Figure 18 is lead compensated for a closed loop gain of -1 then $R_{1}=R_{F}$ ．This means that the pole and zero are only separated by an octave so the compensa－ tion must be done in an area of the loop gain plot which is very close to 0 dB ．Observing Figure 18，it can be seen that the best place that lead compensation can improve stability signif－ icantly is at the second pole where the phase equals -135 degrees phase shift and the frequency is 75 MHz ．Placing the zero at 75 MHz yields a phase margin of about 60 degrees resulting a nice stable circuit with 10\％overshoot per Figure 22．The closed loop response equation is $V_{1} / N_{F}=R / R_{1} 1 /$ （ $R_{F} C s+1$ ），and the closed loop gain is -1 until it reaches the frequency $f=1 / 2 \pi R_{F} C, 150 \mathrm{MHz}$ ，where it is down by -3 dB ． Lead compensation rolls off the closed loop frequency response dramatically．

The compensated attenuator approach works well for negat－ ing the effects of an input capacitance because both the open loop and closed loop transfer functions have a flat frequency response．Also，the compensation required is very small．When the output resistance of an op amp gets very high，the stray capacitance seen across the resistor acts like a lead circuit and rolls off the high frequency gain．Adding an input capacitor，the reverse of attenuator compensation， serves to restore the high frequency performance．Both digital－to－analog converters and optical receiving diodes
have large associated capacitances, so when they are put into the input circuit of an op amp, often in an l-to-V converter configuration, the circuit oscillates. The compensated attenuator tames these circuits, but beware, the compensation must consider the worst case especially for current DACs which have a wide range of output capacitance.

The lead-lag compensation scheme is very similar to the lead compensation scheme but it has two advantages. First, setting the DC gain does not fix the pole zero separation, so for low gains the pole and zero could be separated by more than an octave. Second, a zero shows up in the closed loop transfer function where it increases the gain at high frequencies. The combination of these two advantages are great enough to outweigh the cost of the extra components added to the circuit.

The compensation techniques demonstrated here serve as a good foundation for feedback circuit design, but like all foundations it is meant to be built on [13]. There are other methods of treating compensation such as closed loop stability plots, Nichols charts, root locus plots and Nyquist analysis. Each technique offers some advantages and disadvantages; the Bode method simply is the author's personal choice so the other techniques deserve investigation.

## References

[1] Areocentric, Sol, Feedback Amplifier Principles, Macmillan Publishing Company, 1986.
[2] Del Toro, Vincent and Parker, Sydney, Principles of Control Systems Engineering, McGraw-Hill Book Company, 1960.
[3] Del Toro, Vincent and Parker, Sydney, Principles of Control Systems Engineering, McGraw-Hill Book Company, 1960.
[4] DiStefano, Joseph, Stubberud, Allen and Williams, Ivan, Theory and Problems of Feedback and Control Systems, Schaum's Outline Series, McGraw-Hill Book Company, 1967.
[5] Bode H. W., Network Analysis and Feedback Amplifier Design, D. Van Nostrand, Inc., 1945.
[6] D‘Azzo, John and Houpis, Constantine, Feedback Control System Analysis and Synthesis, McGraw-Hill Book Company, 1966.
[7] Frederiksen, Thomas, Intuitive Operational Amplifiers, McGraw-Hill Book Company, 1988.
[8] Bower, J. L. and Schultheis, P. M., Introduction to the Design of Servomechanisms, Wiley, 1961.
[9] Harris Semiconductor, Linear and Telecom ICS for Analog Signal Processing Applications, 1993-94.
[10] Same as above.
[11] Del Toro, Vincent and Parker Sydney, Principles of Control Systems Engineering, McGraw-Hill Book Company, 1960.
[12] Kuo, Benjamin, Automatic Control Systems, PrenticeHall, Inc., 1975.
[13] Bell, Ken, Conversations about feedback circuits while at Charles Stark Draper Labs, 1971.

# Current Feedback Amplifier Theory and Applications 

Authors：Ronald Mancini and Jeffrey Lies

## Introduction

Current feedback amplifiers（CFA）have sacrificed the DC precision of voltage feedback amplifiers（VFA）in a trade－off for increased slew rate and a bandwidth that is relatively independent of the closed loop gain．Although CFAs do not have the DC precision of their VFA counterparts，they are good enough to be DC coupled in video applications without sacrificing too much dynamic range．The days when high fre－ quency amplifiers had to be AC coupled are gone forever， because some CFAs are approaching the GHz gain band－ width region．The slew rate of CFAs is not limited by the lin－ ear rate of rise that is seen in VFAs，so it is much faster and leads to faster rise／fall times and less intermodulation distortion．

The general feedback theory used in this paper is developed in Harris Semiconductor Application Note Number AN9415 entitled＂Feedback，Op Amps and Compensation．＂The approach to the development of the circuit equations is the same as in the referenced application note，and the symbology／terminology is the same with one exception．The impedance connected from the negative op amp input to ground，or to the source driving the negative input，will be called $Z_{G}$ rather than $Z_{1}$ or $Z_{l}$ ，because this has become the accepted terminology in CFA papers．

## Development of the General Feedback Equation

Referring to the block diagram shown in Figure 1，Equation 1， Equation 2 and Equation 3 can be written by inspection if it is assumed that there are no loading concerns between the blocks．This assumption is implicit in all block diagram calcula－ tions，and requires that the output impedance of a block be much less than input impedance of the block it is driving．This is usually true by one or two orders of magnitude．Algebraic manipulation of Equation 1，Equation 2 and Equation 3 yields Equation 4 and Equation 5 which are the defining equations for a feedback system．

$$
\begin{align*}
& V_{O}=E A  \tag{EQ.1}\\
& E=V_{1}-\beta V_{O}  \tag{EQ.2}\\
& E=V_{O} / A  \tag{EQ.3}\\
& V_{O} / V_{1}=A /(1+A \beta  \tag{EQ.4}\\
& E / V_{1}=1 /(1+A \beta)
\end{align*}
$$



FIGURE 1．FEEDBACK SYSTEM BLOCK DIAGRAM
In this analysis the parameter $A$ ，which usually includes the amplifier and thus contains active elements，is called the direct gain．The parameter $\beta$ ，which normally contains only passive components，is called the feedback factor．Notice that in Equa－ tion 4 as the value of $A$ approaches infinity the quantity $A \beta$ ， which is called the loop gain，becomes much larger than one； thus，Equation 4 can be approximated by Equation 6.
$V_{O} / V_{1}=1 / \beta$ for $A \beta \gg 1$
$V_{0} / V_{1}$ is called the closed loop gain．Because the direct gain， or amplifier response，is not included in Equation 6，the closed loop gain（for $A \gg 1$ ）is independent of amplifier parameter changes．This is the major benefit of feedback circuits．

Equation 4 is adequate to describe the stability of any feed－ back circuit because these circuits can be reduced to this generic form through block diagram reduction techniques［1］． The stability of the feedback circuit is determined by setting the denominator of Equation 4 equal to zero．
$1+A \beta=0$
$A \beta=-1=|1| /-180$
Observe from Equation 4 and Equation 8，that if the magni－ tude of the loop gain can achieve a magnitude of one while the phase shift equals -180 degrees，the closed loop gain becomes undefined because of division by zero．The unde－ fined state is unstable，causing the circuit to oscillate at the frequency where the phase shift equals -180 degrees．If the loop gain at the frequency of oscillation is slightly greater than one，it will be reduced to one by the reduction in gain suffered by the active elements as they approach the limits of satura－ tion．If the value of $A \beta$ is much greater than one，gross nonlin－ earities can occur and the circuit may cycle between saturation limits．Preventing instability is the essence of feed－ back circuit design，so this topic will be touched lightly here and covered in detail later in this application note．

A good starting point for discussing stability is finding an easy method to calculate it. Figure 2 shows that the loop gain can be calculated from a block diagram by opening current inputs, shorting voltage inputs, breaking the circuit and calculating the response $\left(\mathrm{V}_{\mathrm{TO}}\right)$ to a test input signal $\left(\mathrm{V}_{\mathrm{T}}\right)$.


FIGURE 2. BLOCK DIAGRAM FOR COMPUTING THE LOOP GAIN
$\mathrm{V}_{\mathrm{TO}} / \mathrm{V}_{\mathrm{TI}}=\mathrm{A} \beta$

## Current Feedback Stability Equation Development

The CFA model is shown in Figure 3. The non-inverting input connects to the input of a buffer, so it is a very high impedance on the order of a bipolar transistor VFA's input impedance. The inverting input ties to the buffer output; $Z_{B}$ models the buffer output impedance, which is usually very small, often less than $50 \Omega$. The buffer gain, $G_{B}$, is nearly but always less than one because modern integrated circuit design methods and capabilities make it easy to achieve. $G_{B}$ is overshadowed in the transfer function by the transimpedance, $Z$, so it will be neglected in this analysis.
The output buffer must present a low impedance to the load. Its gain, GOUT, is one, and is neglected for the same reason as the input buffer's gain is neglected. The output buffer's impedance, $\mathrm{Z}_{\mathrm{OUT}}$, affects the response when there is some output capacitance; otherwise, it can be neglected unless DC precision is required when driving low impedance loads.


FIGURE 3. CURRENT FEEDBACK AMPLIFIER MODEL
Figure 4 is used to develop the stability equation for the inverting and non-inverting circuits. Remember, stability is a function of the loop gain, $A \beta$, and does not depend on the placement of the amplifier's inputs or outputs.


FIGURE 4. BLOCK DIAGRAM FOR STABILITY ANALYSIS
Breaking the loop at point X , inserting a test signal, $\mathrm{V}_{\mathrm{T}}$, and calculating the output signal, $\mathrm{V}_{\text {TO }}$, yields the stability equation. The circuit is redrawn in Figure 5 to make the calculation more obvious. Notice that the output buffer and its impedance have been eliminated because they are insignificant in the stability calculation. Although the input buffer is shown in the diagram, it will be neglected in the stability analysis for the previously mentioned reasons.


FIGURE 5. CIRCUIT DIAGRAM FOR STABILITY ANALYSIS
The current loop equations for the input loop and the output loop are given below along with the equation relating $I_{1}$ to $I_{2}$.
$V_{T I}=I_{2}\left(Z_{F}+Z_{G} \| Z_{B}\right)$
(EQ. 10)
$V_{T O}=l_{1} z$
$I_{2}\left(Z_{G} \| Z_{B}\right)=I_{1} Z_{B}$; For $G_{B}=1$
Equation 10 and Equation 12 are combined to obtain Equation 13.
$V_{T I}=I_{1}\left(Z_{F}+Z_{G} \| Z_{B}\right)\left(1+Z_{B} / Z_{G}\right)=I_{1} Z_{F} \quad\left(1+Z_{B} / Z_{F} \| Z_{G}\right)$
Dividing Equation 11 by Equation 13 yields Equation 14 which is the defining equation for stability. Equation 14 will be examined in detail later, but first the circuit equations for the inverting and non-inverting circuits must be developed so that all of the equations can be examined at once.
$A \beta=V_{T O} / V_{T I}=Z /\left(Z_{F}\left(1+Z_{B} / Z_{F} \| Z_{G}\right)\right)$

## Developing the Non-Inverting Circuit Equation and Model

Equation 15 is the current equation at the inverting input of the circuit shown in Figure 6. Equation 16 is the loop equation for the input circuit, and Equation 17 is the output circuit equation. Combining these equations yields Equation 18, in the form of Equation 4, which is the non-inverting circuit equation.


FIGURE 6. NON-INVERTING CIRCUIT DIAGRAM

$$
\begin{align*}
& I=\left(V_{X} / Z_{G}\right)-\left(V_{O U T}-V_{X}\right) / Z_{F}  \tag{EQ.15}\\
& V_{X}=V_{I N}-I Z_{B}  \tag{EQ.16}\\
& V_{O U T}=I Z  \tag{EQ.17}\\
& \frac{V_{O U T}}{V_{I N}}=\frac{Z\left(1+Z_{F} / Z_{G}\right)}{1+\frac{Z_{F}\left(1+Z_{B} / Z_{F} \| Z_{G}\right)}{Z_{F}\left(1+Z_{B} / Z_{F} \| Z_{G}\right)}} \tag{EQ.18}
\end{align*}
$$

The block diagram equivalent for the non-inverting circuit is shown in Figure 7.


FIGURE 7. BLOCK DIAGRAM OF THE NON-INVERTING CFA

## Developing the Inverting Circuit Equation and Model

Equation 19 is the current equation at the inverting input of the circuit shown in Figure 8. Equation 20 defines the dummy variable $\mathrm{V}_{\mathrm{X}}$, and Equation 21 is the output circuit equation. Equation 22 is developed by substituting Equation 20 and Equation 21 into Equation 19, simplifying the result, and manipulating it into the form of Equation 4.


FIGURE 8. INVERTING CIRCUIT DIAGRAM
$\frac{V_{I N}-V_{X}}{Z_{G}}+I=\frac{V_{X}-V_{O U T}}{Z_{F}}$
$I Z_{B}=-V_{X}$
$I Z=V_{\text {OUT }}$

$$
\begin{equation*}
\frac{V_{O U T}}{V_{I N}}=-\frac{\frac{Z}{Z_{G}\left(1+Z_{B} / Z_{F} \| Z_{G}\right)}}{1+\frac{Z}{Z_{F}\left(1+Z_{B} / Z_{F} \| Z_{G}\right)}} \tag{EQ.21}
\end{equation*}
$$

The block diagram equivalent for the inverting circuit is given in Figure 9.


FIGURE 9. INVERTING BLOCK DIAGRAM

## Stability

Equation 8 states the criteria for stability, but there are several methods for evaluating this criteria. The method that will be used in this paper is called the Bode plot [2] which is a log plot of the stability equation. A brief explanation of the Bode plot procedure is given in "Feedback, Op Amps and Compensation" [3]. The magnitude and phase of the open loop transfer function are both plotted on logarithmic scales, and if the gain decreases below zero dB before the phase shift reaches 180 degrees the circuit is stable. In practice the phase shift should be $\leq 140$ degrees, i.e., greater than 40 degrees phase margin, to obtain a well behaved circuit. A sample Bode plot of a single pole circuit is given in Figure 10.


FIGURE 10. SAMPLE BODE PLOT
Referring to Figure 10 , notice that the $D C$ gain is 20 dB , thus the circuit gain must be equal to 10 . The amplitude is down 3 dB at the break point, $\omega=1 / \mathrm{RC}$, and the phase shift is -45 degrees at this point. The circuit can not become unstable with only a single pole response because the maximum phase shift of the response is -90 degrees.

CFA circuits often oscillate, intentionally or not, so there are at least two poles in their loop gain transfer function. Actually, there are multiple poles in the loop gain transfer function, but the CFA circuits are represented by two poles for two reasons: a two pole approximation gives satisfactory correlation with laboratory results, and the two pole mathematics are well known and easy to understand. Equation 14, the stability equation for the CFA, is given in logarithmic form as Equation 23 and Equation 24.

$$
\begin{align*}
& 20 \operatorname{LOG}|A \beta|=20 \operatorname{LOGI} \mid\left(Z_{F}\left(1+Z_{B} / Z_{F} \| Z_{G}\right)\right)!  \tag{EQ.23}\\
& \phi=\operatorname{TANGENT}^{-1}\left(Z /\left(Z_{F}\left(1+Z_{B} / Z_{F} \| Z_{G}\right)\right)\right) \tag{EQ.24}
\end{align*}
$$

The answer to the stability question is found by plotting these functions on log paper. The stability equation, $20 \log |A \beta|$, has the form $20 \log x / y$ which can be written as $20 \log x / y=20 \log x$ - 20logy. The numerator and denominator of Equation 23 will be operated on separately, plotted independently and then added graphically for analysis. Using this procedure the independent variables can be manipulated separately to show their individual effects. Figure 11 is the plot of Equation 23 and Equation 24 for a typical CFA where $Z=1 \mathrm{M} \Omega /\left(\tau_{1} \mathrm{~s}\right.$ $+1)\left(\tau_{2} s+1\right), Z_{F}=Z_{G}=1 \mathrm{k} \Omega$, and $Z_{B}=70 \Omega$.


FIGURE 11. CFA TRANSIMPEDANCE PLOT
If $20 \log \left|Z_{F}\left(1+Z_{B} / Z_{F} \| Z_{G}\right)\right|$ were equal to $0 d B$ the circuit would oscillate because the phase shift of $Z$ reaches -180 degrees before $20 \log |Z|$ decreases below zero. Since $20 \log \mid Z_{F}\left(1+Z_{B} /\right.$ $\left.Z_{F} \| Z_{G}\right) \mid=61.1 \mathrm{~dB} \Omega$, the composite curve moves down by that amount to $58.9 \mathrm{~dB} \Omega$ where it is stable because it has 120 degrees phase shift or 60 degrees phase margin. If $Z_{B}=0 \Omega$ and $Z_{F}=R_{F}$, then $A \beta=Z / R_{F}$. In this special case, stability is dependent on the transfer function of $Z$ and $R_{F}$, and $R_{F}$ can always be specified to guarantee stability. The first conclusion drawn here is that $Z_{F}\left(1+Z_{B} / Z_{F} \| Z_{G}\right)$ has an impact on stability, and that the feedback resistor is the dominant part of that quantity so it has the dominant impact on stability. The dominant selection criteria for $R_{F}$ is to obtain the widest bandwidth with an accepted amount of peaking; 60 degrees phase margin is equivalent to approximately $10 \%$ or, 0.83 dB , overshoot. The second conclusion is that the input buffer's output impedance, $Z_{B}$, will have a minor effect on stability because it is small compared to the feedback resistor, even though it is multiplied by $1 / Z_{F} \| Z_{G}$ which is related to the closed loop gain. Rewriting Equation 14 as $A \beta=Z\left(Z_{F}+Z_{B}\left(1+R_{F} / R_{G}\right)\right)$ leads to the third conclusion which is that the closed loop gain has a minor effect on stability and bandwidth because it is multiplied
by $Z_{B}$ which is a small quantity relative to $Z_{F}$. It is because of the third conclusion that many people claim closed loop gain versus bandwidth independence for the CFA, but that claim is dependent on the value of $Z_{B}$ relative to $Z_{F}$.
CFAs are usually characterized at a closed loop gain $\left(G_{C L}\right)$ of one. If the closed loop gain is increased then the circuit becomes more stable, and there is the possibility of gaining some bandwidth by decreasing $Z_{F}$. Assume that $A \beta_{1}=A \beta_{N}$ where $A \beta_{1}$ is the loop gain at a closed loop gain of one and $A \beta_{N}$ is the loop gain at a closed loop gain of $N$; this insures that stability stays constant. Through algebraic manipulation, Equation 14 can be rewritten in the form of Equation 25 and solved to yield Equation 27 and a new $Z_{\text {FN }}$ value.

$$
\begin{align*}
& \frac{Z}{Z_{F 1}+Z_{B}\left(1+Z_{F 1} / Z_{G 1}\right)}=\frac{Z}{Z_{F N}+Z_{B}\left(1+Z_{F N} / Z_{G N}\right)}  \tag{EQ.25}\\
& \frac{Z}{Z_{F 1}+Z_{B} G_{C L 1}}=\frac{Z}{Z_{F N}+Z_{B} G_{C L N}}  \tag{EQ.26}\\
& Z_{F N}=Z_{F 1}+Z_{B}\left(G_{C L 1}-G_{C L N}\right) \tag{EQ.27}
\end{align*}
$$

For the HA5020 at a closed loop gain of 1 , if $Z=6 M \Omega$, $Z_{F 1}=1 \mathrm{k} \Omega$, and $Z_{B}=75 \Omega$, then $Z_{F 2}=925 \Omega$. Experimentation has shown, however, that $Z_{F 2}=681 \Omega$ yields better results. The difference in the predicted versus the measured results is that $Z_{B}$ is a frequency dependent term which adds a zero in the loop gain transfer function that has a much larger effect on stability. The equation for $Z_{B}{ }^{[5]}$ is given below.

$$
\begin{equation*}
Z_{B}=h_{I B}+\frac{R_{B}}{\beta_{0}+1}\left(\frac{1+S \beta_{0} / \omega_{T}}{1+S \beta_{0} /\left(\beta_{0}+1\right) \omega_{T}}\right) \tag{EQ.28}
\end{equation*}
$$

At low frequencies $h_{I B}=50 \Omega$ and $R_{B} /\left(\beta_{0}+1\right)=25 \Omega$ which corresponds to $Z_{B}=75 \Omega$, but at higher frequencies $Z_{B}$ will vary according to Equation 28. This calculation is further complicated because $\beta_{0}$ and $\omega_{T}$ are different for NPN and PNP transistors, so $Z_{B}$ also is a function of the polarity of the output. Refer to Figure 12 and Figure 13 for plots of the transimpedance $(Z)$ and $Z_{B}$ for the HA5020 [5]. Notice that $Z$ starts to level off at 20 MHz which indicates that there is a zero in the transfer function. $Z_{B}$ also has a zero in its transfer function located at about 65 MHz . The two curves are related, and it is hard to determine mathematically exactly which parameter is affecting the performance, thus considerable lab work is required to obtain the maximum performance from the device.


FIGURE 12. HA5020 TRANSIMPEDANCE vs FREQUENCY

Equation 27 yields an excellent starting point for designing a circuit, but strays and the interaction of parameters can make an otherwise sound design perform poorly. After the math analysis an equal amount of time must be spent on the circuit layout if an optimum design is going to be achieved. Then the design must be tested in detail to verify the performance, but more importantly, the testing must determine that unwanted anomalies have not crept into the design.


FIGURE 13. HA5020 INPUT BUFFER OUTPUT RESISTANCE vs FREQUENCY

## Performance Analysis

Table 1 shows that the closed loop equations for both the CFA and VFA are the same, but the direct gain and loop gain equations are quite different. The VFA loop gain equation contains the ratio $Z_{F} / Z_{l}$, where $Z_{1}$ is equivalent to $Z_{G}$, which is also contained in the closed loop gain equation. Because the loop gain and closed loop equations contain the same quantity, they are interdependent. The amplifier gain, $a$, is contained in the loop gain equation so the closed loop gain is a function of the amplifier gain. Because the amplifier gain decreases with an increase in frequency, the direct gain will decrease until at some frequency it equals the closed loop gain. This intersection always happens on a constant $-20 \mathrm{~dB} /$ decade line in a single pole system, which is why the VFA is considered to be a constant gain bandwidth device.

TABLE 1. SUMMARY OF OP AMP EQUATIONS

CIRCUIT CONFIGURATION	CURRENT FEEDBACK AMPLIFIER	VOLTAGE FEEDBACK AMPLIFIER	
NON-INVERTING			
Direct Gain	$\frac{Z\left(1+Z_{F} / Z_{G}\right)}{Z_{F}\left(1+Z_{B} / Z_{F} \\| Z_{G}\right)}$	a	
Loop Gain	$Z Z_{F}\left(1+Z_{B} / Z_{F} \\| Z_{G}\right)$	$\mathrm{aZ}_{\mathrm{G}} /\left(\mathrm{Z}_{\mathrm{G}}+\mathrm{Z}_{\mathrm{F}}\right)$	
Closed Loop Gain	$1+Z_{F} / Z_{G}$	$1+Z_{F} / Z_{G}$	
INVERTING			
Direct Gain	$\frac{Z}{Z_{G}\left(1+Z_{B} / Z_{F} \\| Z_{G}\right)}$	$a Z_{F} /\left(Z_{F}+Z_{G}\right)$	
Loop Gain	$Z Z_{F}\left(1+Z_{B} / Z_{F} \\| Z_{G}\right)$	$a Z_{G} /\left(Z_{G}+Z_{F}\right)$	
Closed Loop Gain	$-Z_{F} / Z_{G}$	$-Z_{F} / Z_{G}$	

The CFA's transimpedance, which is also a function of frequency, shows up in both the loop gain and closed loop gain equations, Equations 18 and 22. The gain setting impedances, $Z_{F}$ and $Z_{G}$, do not appear in the loop gain as a ratio unless they are multiplied by a secondary quantity, $Z_{B}$, so $Z_{F}$ can be adjusted independently for maximum bandwidth. This is why the bandwidth of CFA's are relatively independent of closed loop gain. When $Z_{B}$ becomes a significant portion of the loop gain the CFA becomes more of a constant gainbandwidth device.
Equation 5, which is rewritten here as Equation 29, expresses the error signal as a function of the loop gain for any feedback system. Consider a VFA non-inverting configuration where the closed loop gain is +1 ; then the loop gain, $A \beta$, is $a$. It is not uncommon to have VFA amplifier gains of 50,000 in high frequency op amps, such as the HA2841 [6], so the DC precision is then $100 \%(1 / 50,000)=0.002 \%$. In a good CFA the transimpedance is $Z=6 \mathrm{M} \Omega$, but $Z_{F}=1 \mathrm{k} \Omega$ so the DC precision is $100 \%(1075 \Omega / 6 \mathrm{M} \Omega)=0.02 \%$. The CFA often sacrifices DC precision for stability.
Error $=V_{1} /(1+A \beta)$
The DC precision is the best accuracy that an op amp can obtain, because as frequency increases the gain, a, or the transimpedance, $Z$, decreases causing the loop gain to decrease. As the frequency increases the constant gainbandwidth VFA starts to lose gain first, then the CFA starts to lose gain. There is a crossover point, which is gain dependent, where the AC accuracy for both op amps is equal. Beyond this point the CFA has better AC accuracy.

The VFA input structure is a differential transistor pair, and this configuration makes it is easy to match the input bias currents, so only the offset current generates an offset error voltage. The time honored method of inserting a resistor, equal to the parallel combination of the input and feedback resistors, in series with the non-inverting input causes the bias current to be converted to a common mode voltage. VFAs are very good at rejecting common mode voltages, so the bias current error is cancelled. One input of a CFA is the base terminal of a transistor while the other input is the output of a low impedance buffer. This explains why the input currents don't cancel, and why the non-inverting input impedance is high while the inverting input impedance is low. Some CFAs, such as the HFA1120 [7], have input pins which enable the adjustment of the offset current. Newer CFAs are finding solutions to the DC precision problem.

## Stability Calculations for Input Capacitance

When there is a capacitance from the inverting input to ground, the impedance $Z_{G}$ becomes $R_{G} /\left(R_{G} C_{G} s+1\right)$, and Equation 14 can be written in the form of Equation 30. Then the new values for $Z_{G}$ are put into the equation to yield Equation 31. Notice that the loop gain has another pole in it: an added pole might cause an oscillation if it gets too close to the pole(s) included in Z . Since $\mathrm{Z}_{\mathrm{B}}$ is small it will dominate the added pole location and force the pole to be at very high frequencies. When $\mathrm{C}_{\mathrm{G}}$ becomes large the pole will move in towards the poles in Z , and the circuit may become unstable.
$A \beta=Z /\left(Z_{B}+Z_{F} / Z_{G}\left(Z_{G}+Z_{B}\right)\right)$
(EQ. 30)

If $Z_{B}=R_{B}, Z_{F}=R_{F}$ and $Z_{G}=R_{G} \| C_{G}$, Equation 30 becomes:

$$
\begin{equation*}
A \beta=\frac{Z}{R_{F}\left(1+R_{B} / R_{F} \| R_{G}\right)\left(R_{B}\left\|R_{F}\right\| R_{G} C_{G} s+1\right)} \tag{EQ.31}
\end{equation*}
$$

## Stability Calculations for Feedback Capacitance

When a capacitor is placed in parallel with the feedback resistor, the feedback impedance becomes $Z_{F}=R_{F} /\left(R_{F} C_{F} S+1\right)$. After the new value of $Z_{F}$ is substituted into Equation 30, and with considerable algebraic manipulation, it becomes Equation 32.

$$
\begin{equation*}
A \beta=\frac{Z\left(R_{F} C_{F} s+1\right)}{R_{F}\left(1+\left(R_{B} / R_{F} \| R_{G}\right)\left(R_{B}\left\|R_{F}\right\| R_{G} C_{F} s+1\right)\right.} \tag{EQ.32}
\end{equation*}
$$

The new loop gain transfer function now has a zero and a pole; thus, depending on the placement of the pole relative to the zero oscillations can result.


The loop gain plot for a CFA with a feedback capacitor is shown in Figure 14. The composite curve crosses the $0 \mathrm{~dB} \Omega$ axis with a slope of $-40 \mathrm{~dB} /$ decade, and it has more time to accumulate phase shift, so it is more unstable than it would be without the added poles and zeros. If the pole occurred at a frequency much beyond the highest frequency pole in Z then the $Z$ pole would have a chance to roll off the gain before any phase shift from $Z$ could add to the phase shift from the pole. In this case, $\mathrm{C}_{\mathrm{F}}$ would be very small and the circuit would be stable. In practice almost any feedback capacitance will cause ringing and eventually oscillation if the capacitor gets large enough. There is the case where the zero occurs just before the $A \beta$ curve goes through the $0 \mathrm{~dB} \Omega$ axis. In this case the positive phase shift from the zero cancels out some of the negative phase shift from the second pole in Z : thus, it makes the circuit stable, and then the pole occurs after the composite curve has passed through $0 \mathrm{~dB} \Omega$.

## Calculations and Compensation for $\mathrm{C}_{\mathrm{G}}$ and $\mathrm{C}_{\mathrm{F}}$

$Z_{G}$ and $Z_{F}$ are modified as they were in the previous two sections, and the results are incorporated into Equation 30, yielding Equation 33.
$A \beta=\frac{Z\left(R_{F} C_{F} s+1\right)}{R_{F}\left(1+R_{B} / R_{F} \| R_{G}\right)\left(R_{B}\left\|R_{F}\right\| R_{G}\left(C_{F}+C_{G}\right) s+1\right)}$

Notice that if the zero cancelled the pole in equation that the circuit AC response would only depend on Z, so Equation 34 is arrived at by doing this. Equation 35 is obtained by algebraic manipulation.
$\left(R_{F} C_{F} s+1\right)=\left(R_{B}\left\|R_{F}\right\| R_{G}\left(C_{F}+C_{G}\right) s+1\right)$
$R_{F} C_{F}=C_{G} R_{G} R_{B} /\left(R_{G}+R_{B}\right)$
Beware, $R_{B}$ is a frequency sensitive parameter, and the capacitances may be hard to hold constant in production, but the concept does work with careful tuning. As Murphy's law predicts, any other combination of these components tends to cause ringing and instability, so it is usually best to minimize the capacitances.

## Summary

The CFA is not limited by the constant gain bandwidth phenomena of the VFA, thus the feedback resistor can be adjusted to achieve maximum performance for any given gain. The stability of the CFA is very dependent on the feedback resistor, and an excellent starting point is the device data sheet which lists the optimum feedback resistor for various gains. Decreasing $R_{F}$ tends to cause ringing, possible instability, and an increase in bandwidth, while increasing $R_{F}$ has the opposite effect. The selection of $R_{F}$ is critical in a CFA design; start with the data sheet recommendations, test the circuit thoroughly, modify $R_{F}$ as required and then test some more. Remember, as $Z_{F}$ approaches zero ohms, the stability decreases while the bandwidth increases; thus, placing diodes or capacitors across the feedback resistor will cause oscillations in a CFA.

The laboratory work cannot be neglected during CFA circuit design because so much of the performance is dependent on the circuit layout. Much of this work can be simplified by starting with the manufacturers recommended layout; Harris Semiconductor appreciates the amount of effort it takes to complete a successful CFA design so they have made evaluation boards available. The layout effort has already been expended in designing the evaluation board, so use it in your breadboard; cut it, patch it, solder to it, add or subtract components and change the layout in the search for excellence. Remember ground planes and grounding technology! These circuits will not function without good grounding techniques because the oscillations will be unending. Coupled with good grounding techniques is good decoupling. Decouple the IC at the IC pins with surface mount parts, or be prepared to fight phantoms and ghosts.
Several excellent equations have been developed here, and they are all good design tools, but remember the assumptions. A typical CFA has enough gain bandwidth to ridicule most assumptions under some conditions. All of the CFA parameters are frequency sensitive to a degree, and the art of circuit design is to push the parameters to their limit.

Although CFAs are harder to design with than VFAs, they offer more bandwidth, and the DC precision is getting better. They are found in many different varieties; clamped outputs, externally compensated, singles, duals, quads and many special functions so it is worth the effort to learn to design with them.

## References

[1] Del Toro, Vincent and Parker, Sydney, "Principles of Control Systems Engineering", McGraw-Hall Book Company, 1960
[2] Bode H.W., "Network Analysis and Feedback Amplifier Design", D. VanNostrand, Inc., 1945
[3] Harris Semiconductor, Application Note 9415, Author: Ronald Mancini, 1994
[4] Jost, Steve, "Conversations About the HA5020 and CFA Circuit Design", Harris Semiconductor, 1994
[5] Harris Semiconductor, "Linear and Telecom ICs for Analog Signal Processing Applications", 1993-1994
[6] Harris Semiconductor, "Linear and Telecom ICs for Analog Signal Processing Applications", 1993-1994
[7] Harris Semiconductor, "Linear and Telecom ICs for Analog Signal Processing Applications", 1993-1994


## Oscillator Produces Quadrature Waves (HA5025)

Author: Ronald Mancini

By employing a high-frequency quad current-feedback amplifier (the HA5025) as an RC oscillator, four quadrature sine waves can be generated, see Figure 1. The HA5025's four separate amplifiers generate the sine waves, while the quad NAND gate, U2, is biased at its threshold, so it acts as a sine-wave to square-wave converter when the sine waves are AC-coupled into its input.

The criterion for oscillation is that the open-loop gain be $\geq 1$ when the feedback phase shift is zero. In this design, there are three noninverting phase-shifting stages and one inverting phase-shift stage (U1D); thus the phase shift of each stage must equal 45 degrees lag. This phase shift plus the 180 degrees introduced by the phase inversion of U1D equals 360 degrees or 0 degrees, resulting in in-phase feedback at the oscillation frequency.

Because the HA5025 features such high open-loop gainbandwidth characteristics, amplifier phase shift is negligible in the low MHz range. Thus, each stage's phase shift is solely determined by the passive components. At $\phi=45$ degrees, $R_{3} C_{1}=R_{5} C_{2}=1 /(2 \pi f)$; the component values shown for $f=1 \mathrm{MHz}$. The rate of change of phase shift with respect to frequency ( $\mathrm{d} \phi / \mathrm{df}$ ) is maximum at $\phi=45$ degrees for this type RC circuit. Therefore, the stability is highest for the four-RC configuration. The combination of good phase sensitivity with no active amplifier phase shift yields a stable RC oscillator whose temperature performance depends only on passive components.
Most RC oscillators described in the literature employ a lead circuit as the phase-shifting element. While that practice is fine for voltage-feedback amplifiers, it results in multiple


FIGURE 1. FOUR QUADRATURE SINE WAVES CAN BE GENERATED WITH THIS OSCILLATOR DESIGN, WHICH USES THE HA5025 HIGH-FREQUENCY QUAD CURRENT-FEEDBACK AMPLIFIER. THE FOUR SEPARATE AMPLIFIERS PRODUCE THE FOUR SINE WAVES.
frequency oscillations in current－feedback amplifiers because of their ideal gain flatness performance．The volt－ age－feedback amplifier＇s gain rapidly falls off at higher fre－ quencies，preventing oscillation beyond the design frequency．This also is an indicator of the deleterious phase performance associated with the voltage－feedback amplifier．
Because the voltage gain of each RC network is 0.707 ，the noninverting amplifiers are arbitrarily set at gain of 1.6 ；the inverting stage over all gain also is slightly above one at 1 MHz ．By distributing the gain over four amplifiers，the
resultant open－loop gain can be well controlled．As a result， with the aid of $R_{6}, D_{1}$ ，and $D_{2}$ ，the amplitude limiting can be limited to minimize sine－wave distortion．Rather good sine－ wave outputs are available across $\mathrm{C}_{1 \mathrm{~A}}, \mathrm{C}_{1 \mathrm{~B}}, \mathrm{C}_{1 \mathrm{C}}$ ，and the output of U1D．This RC concept can be extended to well above 20 MHz using the HA5025 with just a slight frequency drift．The quadrature sine waves are AC－coupled to a quad CMOS gate biased at its threshold by $R_{7}$ and $R_{8}$ to obtain quadrature square waves．If these square waves aren＇t exactly 45 degrees phase－shifted from each other，adjust the bias circuit or add independent bias networks．

# Low Output Impedance MUX (HA5022) 

Author: Ronald Mancini

Two common problems will surface when trying to multiplex multiple high-speed signals into a low-impedance load, such as an analog-to-digital converter. The first is the low load impedance, which tends to make amplifiers oscillate and thus causes gain errors. The second problem involves the multiplexer, which supplies no gain, introduces distortion, and limits the frequency response.

Using op amps that have an enable/disable function, such as the HA5022, will eliminate the multiplexer problems. That's because the external multiplexer chip isn't needed, and the HA5022 can drive low-impedance (large capacitance) loads if a series isolation resistor is employed.
Looking more closely at the circuit, both inputs are terminated in their characteristic impedance; $75 \Omega$ is typical for video applications, see Figure 1. Because the output cables usually are terminated in their characteristic impedance, the gain is 0.5 . Consequently, amplifiers U2A and U2B are configured in a gain of +2 to set the circuit gain at $1 . R_{2}$ and $R_{3}$ determine the amplifier gain; if a different gain is desired, $\mathrm{R}_{2}$ should be changed according to the equation:
$G=\left(1+R_{3} / R_{2}\right)$.
$\mathrm{R}_{3}$ sets the amplifier's frequency response, so it's best to check the manufacturer's data sheet before changing its value.
$R_{5}, C_{1}$, and $D_{1}$ make up an asymmetrical charge/discharge time circuit that configures U 1 as a break-before-make switch to prevent both amplifiers from being active simultaneously. If this design is extended to more channels, the drive logic must be designed to be break-before-make. Also, the inhibit input is only functional when the channel switch input is high. $\mathrm{R}_{4}$ is enclosed in the feedback loop of the amplifier so that the large open-loop amplifier gain of U2 will present the load with a small closed-loop output impedance while keeping the amplifier stable for all values of load capacitance.

The circuit shown was tested for the full range of capacitor values with no oscillations observed. Thus, the problem is solved. The circuit's frequency and gain characteristics are now those of the amplifier independent of any multiplexing action. This essentially solves the second problem. The multiplexer transition time is approximately $15 \mu$ s with the component values shown.


FIGURE 1. THIS LOW-OUTPUT IMPEDANCE MULTIPLEXER WILL SOLVE PROBLEMS OF OSCILLATION CAUSED BY LOW LOAD IMPEDANCE, AS WELL AS DISTORTION AND LIMITED FREQUENCY RESPONSE INTRODUCED BY THE MULTIPLEXER. THE SECOND PROBLEM IS SOLVED BECAUSE THE FREQUENCY AND GAIN CHARACTERISTICS BECOME THOSE OF THE AMPLIFIER, INDEPENDENT OF THE MULTIPLEXER.


# Video Cable Drivers Save Board Space, Increase Bandwidth (HFA1112, HFA1114) 

Author: Jeff Lies

Designing video cable drivers seems to be a fairly simple task. Just buy an amplifier with enough bandwidth, high output current, a gain of two or greater (eliminating most buffers) to counteract attenuation from back-terminating the cable, and good video specifications (gain flatness if you are designing for component video; differential gain and phase if you are designing for composite video), and you're in business.

Of course, picking a current feedback amplifier adds a few additional worries such as choosing the optimum feedback resistor, and minimizing the capacitance on both the summing node (-Input) and output. Still another problem is achieving the desired performance at typical video loads ( $\leq 75 \Omega$ if driving multiple back-terminated cables).

Choosing dual or quad amplifiers and/or SOIC packaging complicates the equation even further. How does the engineer find a way to optimally place eight gain-setting resistors, not to mention termination resistors, around a quad amplifier in an SOIC package? There is no easy solution. Compromises must be made, which usually result in inadequate terminations or long trace lengths.


FIGURE 1. PERFORMANCE RESULTS INDICATE THAT THE HFA1112 AMPLIFIER'S 550 MHz BANDWIDTH DECREASES TO 40 MHz WHEN DRIVING 100 FEET OF BACK-TERMINATED CABLE. THIS SUPPORTS THE HYPOTHESIS THAT A CABLE DRIVER'S PERFORMANCE DEGRADES WHEN DRIVING LONG CABLES.

Specialized ICs can simplify the task of cable driver design and board layout. However, even the best cable driver can't solve all problems.

A common complaint when working with long cables involves a particular type of image degradation. The display in question exhibits bright horizontal lines but gray vertical lines. Since it is well known that narrow vertical lines require higher bandwidth to be displayed properly, the bandwidth obviously is being limited somewhere in the system. Invariably, substituting a shorter cable dramatically improves the image quality, leading to the hypothesis that the cable driver's performance degrades when driving long cables. This hypothesis requires some scrutiny.

It's true that circuit performance changes when driving cables, but is it really the cable driver that is at fault? Figure 1 illustrates the performance of Harris Semiconductor's HFA1112 amplifier driving 100 feet of back-terminated cable. It shows that the amplifier's 550 MHz bandwidth decreases to 40 MHz over the measured range, lending credence to the previous hypothesis. But what's really happening?


FIGURE 2. ALTHOUGH USUALLY TAKEN FOR GRANTED, LONG CABLES CAN LIMIT SYSTEM BANDWIDTH TO LOW FREQUENCIES, AS IS EVIDENT IN THIS COMPARISON BETWEEN THE FREQUENCY RESPONSE OF THE HFA1112 DRIVING THE CABLE AND THE RESPONSE OF THE CABLE ALONE.

Many engineers forget that all electrical elements have finite bandwidth. Cables are usually taken for granted, but long cables can limit system bandwidth to surprisingly low frequencies. For example, a comparison of the frequency response of the HFA1112 driving the same 100 feet of cable to the response of the cable alone shows that the problem isn't the cable driver, but rather the cable itself (see Figure 2).

It is abundantly clear from Figure 2 that the cable performance itself limits the system performance for most of the frequency range. Throwing a higher bandwidth driver at the cable will, in fact, gain the engineer designing the system nothing, because you can't get more bandwidth than the cable allows.

Upgrading to a higher performance cable, such as a Belden 8281 or equivalent, is one solution to boosting system bandwidth. There are at least two downsides to this option, however. The first is that it introduces significantly higher cable costs. The second is problems presented to technicians who have to work with more rigid cables.

A better solution may be to use a cable driving buffer such as Harris' HFA1114. The driver's frequency response is tunable for a specific cable length via components connected to the summing node (see Figure 3). By shunting $R_{1}, R_{C}$ acts to increase the amplifier's gain while $C_{C}$ controls the cut-in frequency of the compensation.

These three components peak the amplifier's frequency response to counteract the cable's roll-off characteristic. By squeezing more bandwidth out of a given cable, higher-performance cables aren't needed.

An unexpected but welcome side effect of this particular solution is that using the on-chip gain-setting resistors frees up board space for the compensation components.


FIGURE 3. INSTEAD OF UPGRADING TO A HIGHER PERFORMANCE CABLE TO INCREASE SYSTEM BANDWIDTH, A CABLE DRIVER LIKE THE HFA1114 CAN BE EMPLOYED. THE DRIVER'S FREQUENCY RESPONSE IS TUNABLE FOR A SPECIFIC CABLE LENGTH VIA THE COMPONENTS CONNECTED TO THE SUMMING NODE.


# Video Multiplexer Delivers Lower Signal Degradation (HA5024) 

Author: Ronald Mancini

Video multiplexers pose a difficult design challenge. They must perform several functions, such as matching the input line impedance, signal amplification, signal switching, and driving the output line, without degrading or adding noise and transients to the signal. Typically, the signal flows through the multiplexer where it's degraded by the multiplexers errors. In this design, the signal flows through the op amp and thus isn't degraded by the multiplexer.

This circuit can multiplex several sources like VCRs, tuners, or cameras into a single monitor, see Figure 1. The HA5024IP quad op amp performs all of the multiplexer and amplification functions with the aid of the TTL decoder. It exceeds the gain flatness, differential phase, and differential gain specifications for NTSC video, without adding the offset voltages, gain variability, or transients associated with multiplexers.

Turning our attention to op amp U1A, $\mathrm{R}_{1}$ terminates the input cable in its characteristic impedance, which usually is $75 \Omega$ in video systems. $\mathrm{R}_{4}$ back terminates the output cable in its characteristic impedance of $75 \Omega$. Because the cable termination is $75 \Omega$, it forms a voltage divider with $\mathrm{R}_{4}$, which has a gain of 0.5 . The op amp is configured for a gain of two, therefore the circuit has an overall gain of one when driving a double terminated cable. The value of $R_{3}$ can be changed according to the formula $G=0.5\left(1+R_{2} / R_{3}\right)$. $R_{2}$ determines the video performance of the op amp, so it should not be changed. The circuits U1B through U1D, perform similarly.

If more than one video output is needed, $R_{4}, R_{8}, R_{12}$, and $R_{16}$ can be paralleled with $75 \Omega$ resistors. Each resistor is connected from the respective op amp output to a second video output that can drive another $75 \Omega$ cable.

U2 is configured as a two-to-four line decoder, with AO and A1 acting as the select inputs and E3 as the enable input. All of the amplifiers are disabled when E3 is low, so there's no output signal. When E3 is high, the select inputs determine the video input that's connected to the video output. If E3 is used to disable the outputs when the select inputs are changed, there will be minimal bus contention transients during switching. However, if hot switching is desired, a break-before-make delay circuit should be placed in series with the $Y_{X}$ lines. Because all of the signal switching occurs within the HA5024IP, the amplifier's differential phase and gain parameters ( 0.03 degrees and $0.03 \%$, respectively) determine the circuit's performance.

It's easy to multiplex any number of channels with this scheme because the single and dual versions of the op amp help minimize the number of ICs required for a given design.

In addition, the decoder can be easily extended to 3 to 8 using the same IC or 4 to 16 using a different decoder. The circuit given here switches in less than a microsecond.


NOTES:

1. U1 is HA5024IP
2. All resistors in $\Omega$
3. U 2 is CD 74 HC 238
4. Use ground plane

FIGURE 1. SEVERAL DIFFERENT SOURCES, SUCH AS VCRs, TUNERS, OR CAMERAS, CAN BE MULTIPLEXED INTO A SINGLE MONITOR USING THIS VIDEO MULTIPLEXER. WITH THE AID OF TTL DECODER, THE HA5024IP QUAD OP AMP PERFORMS ALL MULTIPLEXER AND AMPLIFICATION FUNCTIONS.


# Basic Analog for Digital Designers 

Authors: Ron Mancini and Chris Henningsen

## What Is This Application Note Trying To Accomplish?

There is a long gap between engineering college and mid career in a non-engineering position, but technology marches on so a simple method of keeping abreast with the latest developments is required. This application note starts with an overview of the basic laws of physics, progresses through circuits 1 and 2, and explains op amp operation through the use of feedback principles. Math is the foundation of circuit design, but it is kept to the simplest level possible in this application note. For more advanced op amp topics please refer to the technical papers listed in references 1 and 2.

## Basic Physics Laws, Circuit Theorems and Analysis

Good news and bad news. The bad news is that it takes a certain amount of dog work, like relearning physics and circuit theorems, before proficiency becomes second nature. The good news is that if you just hang in for a few pages you will experience the joy of analyzing circuits like an expert. You will gain ten years experience in a few hours. You will be able to write op amp equations like a design engineer. You might think this is a worthless effort, but imagine the look on the analog engineer's face, the one who thinks non-analog engineers are as dumb as a box of rocks, when you write your own op amp circuit equations.

## Ohm's and Kirchoff's Laws

Ohm's law states that there is a relationship between the current in a circuit and the voltage potential across a circuit. This relationship is a function of a constant called the resistance.

$\mathrm{V}=\mathrm{IR}$

Kirchoff's voltage law states that the algebraic sum of the voltages around any closed loop equals zero. The sum includes independent voltage sources, dependent voltage sources and voltage drops across resistors (called IR drops).


$$
\begin{equation*}
V-V_{R 1}-V_{R 2}=0 \text { or } V=V_{R 1}+V_{R 2} \tag{EQ.2}
\end{equation*}
$$

$\Sigma$ voltage sources $=\Sigma$ voltage drops
FIGURE 2. ILLUSTRATION OF KIRCHOFF'S VOLTAGE LAW
Kirchoff's current law states that the algebraic sum of all the currents leaving a node equals zero. The sum includes independent current sources, dependent current sources, and component currents.

$I_{1}+I_{2}=I_{3}+I_{4}$
$I_{1}+I_{2}-I_{3}-I_{4}=0$
$\Sigma$ currents into a junction $=0$
FIGURE 3. ILLUSTRATION OF KIRCHOFF'S CURRENT LAW

## Voltage and Current Dividers

Voltage dividers are seen often in circuit design because they are useful for generating a reference voltage, for biasing active devices, and acting as feedback elements. Current dividers are seen less often, but they are still important so we will develop the equations for them. The voltage divider equations, which assume that the load does not draw any current, are developed in Figure 4.

$V=I R_{1}+I R_{2}=I\left(R_{1}+R_{2}\right)$
$I=\frac{V}{\left(R_{1}+R_{2}\right)}$
$V_{D}=I R_{2}=\frac{V}{\left(R_{1}+R_{2}\right)}\left(R_{2}\right)=V \frac{R_{2}}{R_{1}+R_{2}}$
FIGURE 4. DERIVATION OF THE VOLTAGE DIVIDER RULE
The current divider equations, assuming that the only load is $R_{2}$, is given in Figure 5.

$I=I_{1}+I_{2}$
$V=I_{1} R_{1}=I_{2} R_{2}$
$I_{1}=I_{2} \frac{R_{2}}{R_{1}}$
$I=I_{1}+I_{2}=I_{2} \frac{R_{2}}{R_{1}}+I_{2}=I_{2}\left(I+\frac{R_{2}}{R_{1}}\right)=I_{2}\left(\frac{R_{1}+R_{2}}{R_{1}}\right)$
Then: $I_{2}=\frac{R_{1}}{R_{1}+R_{2}}$

## FIGURE 5. DERIVATION OF THE CURRENT DIVIDER RULE

## Thevenin's and Norton's Theorems

There are situations where it is simpler to concentrate on one component rather than write equations for the complete circuit. When the input source is a voltage source, Thevenin's theorem is used to isolate the component of interest, but if the input source is a current source, Norton's theorem is used to isolate the component of interest.

To apply Thevenin's theorem one must look back into the terminals of the component being replaced. Now calculate the open circuit voltage seen at these terminals, and during this calculation consider that there is no load current so the voltage divider rule can be used. Next short independent voltage sources and open independent current sources; now calculate the impedance seen looking into the terminals. The final step is to replace the original circuit with the Thevenin equivalent voltage, $\mathrm{V}_{\mathrm{th}}$, and Thevenin equivalent impedance, $\mathrm{Z}_{\mathrm{th}}$.
Thevenin's theorem is illustrated in Figure 6.


FIGURE 6. THE ORIGINAL CIRCUIT

The open circuit voltage is calculated by looking into the terminals $\mathrm{X}-\mathrm{Y}$, and then calculating the open circuit voltage with the voltage divider rule.

$$
\begin{equation*}
v_{t h}=v_{\frac{R_{2}}{R_{1}+R_{2}}} \tag{EQ.15}
\end{equation*}
$$

The impedance looking back into the terminals $\mathrm{X}-\mathrm{Y}$ with the independent source, V , shorted is given below.

$$
\begin{equation*}
Z_{t h}=Z_{x-y}=\frac{R_{1} R_{2}}{R_{1}+R_{2}} \equiv R_{1} \| R_{2} \tag{EQ.16}
\end{equation*}
$$

The circuit to the left of $X-Y$ is now replaced by the Thevenin equivalents.


$$
\begin{align*}
& V_{0}=V_{\text {th }} \frac{R_{4}}{\mathrm{Z}_{\mathrm{th}}+R_{3}+R_{4}}  \tag{EQ.17}\\
& =V \frac{R_{2}}{R_{1}+R_{2}} \frac{R_{4}}{\frac{R_{1} R_{2}}{R_{1}+R_{2}}+R_{3}+R_{4}}
\end{align*}
$$

## FIGURE 7. THE THEVENIN EQUIVALENT CIRCUIT

The loop equations are worked out below. Notice that not only is the derivation of the equations more laborious, but the labor will get out of hand with the addition of another loop. This is why Thevenin's theorem is preferred over loop equations.

$V=I_{1}\left(R_{1}+R_{2}\right)-I_{2} R_{2}$
$I_{2}\left(R_{2}+R_{3}+R_{4}\right)=I_{1} R_{2}$
$I_{1}=\frac{R_{2}+R_{3}+R_{4}}{R_{2}} I_{2}$
$I_{2} \frac{\left(R_{2}+R_{3}+R_{4}\right)}{R_{2}}\left(R_{1}+R_{2}\right)-I_{2} R_{2}$
$I_{2}=\frac{V}{\frac{R_{2}+R_{3}+R_{4}}{R_{2}}\left(R_{1}+R_{2}\right)-R_{2}}$
$V_{0}=I_{2} R_{4}$
$v_{0}=V \frac{R_{4}}{\frac{\left(R_{2}+R_{3}+R_{4}\right)\left(R_{1}+R_{2}\right)}{R_{2}}-R_{2}}$

FIGURE 8. LOOP EQUATION ANALYSIS OF THE SAME CIRCUIT

The Norton equivalent circuit is seldom used in circuit design, so it's derivation [3] and illustration will be left to the serious student.

## Superposition

The principle of superposition states that the equation for each independent source can be calculated separately, and then the equations (or results) can be added to give the total result. When implementing superposition the equation for each source is calculated with the other independent voltage sources short circuited and the independent current sources open circuited. The equations for all the sources are added together to obtain the final answer.


FIGURE 9. SUPERPOSITION EXAMPLE
$\left.V_{01}\right|_{V_{2}=0}=\left.\frac{R_{2} \| R_{3}}{R_{1}+R_{2} \| R_{3}} V_{1} \quad V_{02}\right|_{V_{1}=0}=\frac{R_{1} \| R_{2}}{R_{3}+R_{1} \| R_{2}} V_{2}$
$v_{0}=v_{01}+v_{02}=V_{1} \frac{R_{2} \| R_{3}}{R_{1}+R_{2} \| R_{3}}+V_{2} \frac{R_{1} \| R_{2}}{R_{3}+R_{1} \| R_{2}}$

## Analysis Tools - Why Do We Need More Than One?

Each one of the analysis tools shown has a place where it is optimal. Later during the op amp analysis the tools will be employed to relieve the burden of detailed calculation. Figures 10 and 11 illustrate an example of the extra calculations caused by using the less optimal tool to perform the analysis.

$v_{t h}=\frac{R_{2}}{R_{1}+R_{2}} V_{1} R_{t h}=R_{1} \| R_{2}$
FIGURE 10. SUPERPOSITION EXAMPLE REDRAW

$$
\begin{equation*}
I=\frac{V_{2}-V_{t h}}{R_{t h}+R_{3}} \quad V_{0}=V_{2}-I R_{3} \tag{EQ.28}
\end{equation*}
$$



FIGURE 11. THEVENIN EQUIVALENT CIRCUIT MODEL
$V_{0}=V_{2}-\frac{V_{2}-V_{t h}}{R_{t h}+R_{3}} R_{3}=V_{2}-\frac{V_{2}-\frac{R_{2} V_{1}}{R_{1}+R_{2}}}{R_{1} \| R_{2}+R_{3}} R_{3}$
Notice that the Thevenin method used twice as many equations to describe the circuit as were required to arrive at the same result with superposition. Also, the form of the final equation arrived at by superposition is much easier to analyze.

## Feedback Principles

This discussion of feedback principles is simple because they are easy to understand. The application of the principles can be very complicated for the design engineer, but we can grasp the principles without understanding all of the nuances. If this material creates a thirst it may be slaked by reading references 2 and 3 .


FIGURE 12. FEEDBACK BLOCK DIAGRAM
$V_{\text {OUT }}=E A$
(EQ. 30)
$E=V_{I N}-\beta V_{\text {OUT }}$
$\frac{V_{O U T}}{V_{I N}}=\frac{A}{1+A \beta}$
Equations 30 and 31 are written on the block diagram, and Equation 32 is obtained by combining them to eliminate the error, $E$. If $\beta=1$ in Equation $32 \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{IN}}$, or the feedback circuit has turned into a unity gain buffer. If $\beta=0$ in Equation $32 \mathrm{~V}_{\text {OUT }}=A \mathrm{~V}_{\text {IN }}$, or there is no feedback. Notice that the direct gain, $A$, does not control the feedback circuit closed loop gain; rather, the feedback factor, $\beta$, controls the closed loop gain in a feedback circuit. This is the essence of a feedback circuit; now the closed loop gain is a function of the feedback factor which is comprised of passive components. The closed loop gain error, stability and drift are now dependent on stable, accurate, and inexpensive passive components. The closed loop gain assumption is valid as long as $A \beta \gg 1$, also $E \Rightarrow 0$ if this assumption is valid.

If $A \beta=-1$ then Equation 32 becomes $V_{O U T} / N_{I N}=1 / 0$, or it is indeterminate. If the energy in the circuit was unlimited the circuit would consume the world, but luckily it is limited, so the circuit oscillates from positive to negative saturation. This is an oscillator, thus the definition of an oscillator is that the gain be $\geq 1$ while the phase shift equals -180 degrees. Now we conclude that the feedback factor controls the closed loop gain, and the direct gain/feedback factor combination determines if the circuit will be stable or will be an oscillator.

## The Op Amp Symbol

It is important to understand the op amp symbol shown in Figure 13. The -input, V-, is the inverting input, and the +input, $\mathrm{V}_{+}$, is the non-inverting input. The point of the triangle is the op amp output, and the op amp multiplies the differential voltage, (V+-V-), by a large gain, a.

## The Inverting Op Amp

Three assumptions are made in the calculation of the inverting op amp circuit equations. First, the current into the op amp inputs, $I_{B}$ in Figure 13, is assumed to be zero; this is a valid assumption because the bias currents are usually much lower than signal currents. The second assumption is that the op amp gain, a, is extremely high, and this is a valid assumption in most situations where the op amp's bandwidth is much greater than the signal bandwidth. The third assumption, which is that the error voltage, $\mathrm{V}_{\mathrm{E}}$, equals zero, is a result of assuming an extremely high op amp gain. When a is very large $\mathrm{V}_{\text {OUT }}$, can assume any value required to drive the inverting input voltage to the non-inverting input voltage, so $\mathrm{V}_{\mathrm{E}}$ will always be forced to zero.


FIGURE 13. INVERTING OP AMP CIRCUIT
Assume $\mathrm{I}_{\mathrm{B}}=0, \mathrm{~V}_{\mathrm{E}}=0, a=\infty$
Then:
$I_{1}=\frac{V_{I N}}{R_{G}}=I_{2}=-\frac{V_{O U T}}{R_{F}}$
$v_{I N} R_{F}=-v_{\text {OUT }} R_{G}$
$\frac{V_{\text {OUT }}}{V_{I N}}=-\frac{R_{F}}{R_{G}}$
Equation 33 is written by applying Kirchoff's current law to the inverting node. Equation 35 is obtained through algebraic manipulation of Equations 33 and 34. Note that the ideal closed loop gain, Equation 33, does not contain the op amp gain, so it is independent of the op amp gain so long as the assumptions are valid.

The inverting op amp can be configured as an inverting adder as shown in Figure 14. The analysis is similar to that shown for the inverting amplifier, but it is easier to understand if the concept of a virtual ground is understood. Virtual is defined as "existing or resulting in effect though not in actual fact". The inverting node acts as a real ground because no voltage is developed across it, but the current path is restricted to the PC traces attached to the node. The non-inverting input of the op amp is connected to ground, thus if the error voltage is to be zero as was assumed, the inverting input functions as though it were tied to ground. Considering the virtual ground, the three currents flowing through $\mathrm{R}_{\mathrm{G} 1}, \mathrm{R}_{\mathrm{G} 2}$, and $\mathrm{R}_{\mathrm{G} 3}$ can be calculated separately.

Now superposition can be applied to the circuit; Equation 36 calculates the gain for each independent source, and Equation 37 recombines the separate gains.


FIGURE 14. THE INVERTING ADDER
$v_{01}=-v_{1} \frac{R_{F}}{R_{G 1}}, v_{02}=-v_{2} \frac{R_{F}}{R_{G 2}}, v_{03}=-v_{3} \frac{R_{F}}{R_{G 3}}$
$V_{\text {OUT }}=V_{01}+V_{02}+V_{03}=-V_{1} \frac{R_{F}}{R_{G 1}}-V_{2} \frac{R_{F}}{R_{G 2}}-V_{3} \frac{R_{F}}{R_{G 3}}$
If $R_{F} / R_{G X}=1$ Then;
$\mathrm{V}_{\text {OUT }}=-\left(\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}\right)$

## The Non-Inverting Op Amp

Referring to Figure 15 , because $\mathrm{V}_{\mathrm{E}}$ is equal to zero the voltage at point $X$ is equal to $V_{I N}$. There is voltage divider formed by the feedback resistor, $R_{F}$, and the gain setting resistor, $\mathrm{R}_{\mathrm{G}}$, and the voltage divider input voltage is the output voltage of the op amp. Equation 39 is written using the voltage divider rule, and Equation 40 is obtained through algebraic manipulation. Notice that the ideal closed loop gain is again independent of the op amp gain.


FIGURE 15. NON-INVERTING OP AMP
$V_{I N}=\frac{V_{O U T} R_{G}}{R_{F}+R_{G}}$
$\frac{V_{\text {OUT }}}{V_{I N}}=\frac{R_{F}+R_{G}}{R_{G}}$

## The Differential Amplifier

The differential amplifier schematic is given in Figure 16, and the analysis will be done in two parts because we will use superposition. Two output voltages, one corresponding to each input voltage source, will be calculated separately and added together. The output from $\mathrm{V}_{1}$ is calculated in Equation 42; V+ is first calculated with the voltage divider rule, and then it is substituted into the non-inverting gain equation yielding Equation 43 . The output from $\mathrm{V}_{2}$ is calculated from the inverting gain equation in Equation 44. The
results of Equations 43 and 44 are added in Equation 45 to obtain the complete circuit equation. Notice that the output is a function of the difference between the two input voltages, this accounts for the name differential amplifier.

If a small signal is riding on a large signal, say 10 mV , 0.001 Hz riding on $5 \mathrm{~V}_{\mathrm{DC}}$, the DC can be stripped off by putting the combined signal into the non-inverting input, and putting $5 \mathrm{~V}_{\mathrm{DC}}$ into the inverting input. The $5 \mathrm{~V}_{\mathrm{DC}}$ becomes a common mode signal (a signal which is common to both inputs), so it is rejected by the differential amplifier if $R_{1}=R_{3}$, and $R_{2}=R_{4}$.


FIGURE 16. THE DIFFERENTIAL AMPLIFIER
$\mathrm{V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{OUT}_{1}}+\mathrm{V}_{\mathrm{OUT}_{2}}$
$V_{\text {OUT }_{1}}=V+\left(1+\frac{R_{4}}{R_{3}}\right) \quad V+=V_{1} \frac{R_{2}}{R_{1}+R_{2}}$
$V_{\text {OUT }_{1}}=V_{1} \frac{R_{2}}{R_{1}+R_{2}}\left(\frac{R_{3}+R_{4}}{R_{3}}\right)$
$\mathrm{V}_{\mathrm{OUT}_{2}}=\mathrm{V}_{2}\left(-\frac{R_{4}}{\mathrm{R}_{3}}\right)$
$V_{\text {OUT }}=V_{1} \frac{R_{2}}{R_{2}+R_{1}}\left(\frac{R_{3}+R_{4}}{R_{3}}\right)-V_{2} \frac{R_{4}}{R_{3}}$
If $R_{1}=R_{3}$ and $R_{2}=R_{4}$
$V_{\text {OUT }}=\left(V_{1}-V_{2}\right) \frac{R_{4}}{R_{3}}$
This effect could be accomplished through the use of a coupling capacitor, but because the frequency of the signal is so low the capacitor value and size would be too big. The differential amplifier also rejects AC common mode signals. Data transmission schemes often use twisted pairs for the interconnections so that any noise coupled on the lines will be common mode. Differential amplifiers are used as receivers in this data transmission scheme because they reject the common mode noise while amplifying the signal.

## T Networks in the Feedback Path

Putting a $T$ network in the feedback path as shown in Figure 17 complicates the analysis, but offers the advantage of high closed loop gain coupled with low value feedback resistors. This configuration is also useful for some filter configurations. Thevenin's theorem is applied as shown in Figure 18. Look into $R_{4}$ from $X, Y$ and calculate the Thevenin
equivalent voltage and resistance, then redraw the circuit as shown in Figure 18. Now the inverting gain can be calculated in the normal manner using the algebraic simplification shown in Equation 48.


FIGURE 17. T NETWORK IN THE FEEDBACK PATH


FIGURE 18. THEVENIN ANALYSIS OF T NETWORKS IN THE FEEDBACK PATH
$V_{t h}=\frac{V_{0} R_{4}}{R_{3}+R_{4}} \quad R_{t h}=R_{3} \| R_{4}-\frac{V_{t h}}{V_{t N}}=\frac{R_{2}+R_{t h}}{R_{1}}$

$$
\begin{align*}
& -\frac{V_{\mathrm{OUT}}}{V_{I N}}=\frac{R_{2}+R_{t h} R_{3}+R_{4}}{R_{1}} \frac{R_{2}+\frac{R_{3} R_{4}}{R_{3}+R_{4}}}{R_{4}}=\frac{R_{3}+R_{4}}{R_{4}}  \tag{EQ.47}\\
& =\frac{R_{2}+R_{3}+\frac{R_{2} R_{3}}{R_{4}}}{R_{1}} \tag{EQ.48}
\end{align*}
$$

## Video Amplifiers

Until now we have implicitly assumed that all op amps are the same. This is not true, but because the ideal closed loop equations are identical, it is a workable assumption. The two big classifications of op amps are voltage feedback and current feedback. The type of feedback is not the only difference between these op amps. The internal circuit configurations are dramatically different, so much so that recommended reference \#1 dwells on voltage feedback while reference \#2 dwells on current feedback. Whenever an op amp is used in a high frequency circuit such as a video amp there is a strong likelihood that it will be a current feedback op amp. Again, because the closed loop ideal gain equations are identical for voltage and current feedback op amps we will not distinguish between them.

In Figure 19, $\mathrm{R}_{\mathbb{I N}}$ is usually the terminating resistance for the input cable, and it is usually $50 \Omega$ or $75 \Omega$. $\mathrm{R}_{\mathrm{M}}$ is the matching resistance for the cable being driven, and $R_{T}$ is the terminating resistance for the driven cable. $R_{T}$ is often shown here for gain calculations while it is physically placed at the cable end. Using Equation 49, we see that when $R_{G}=R_{F}$ and $R_{M}=R_{T}$, the overall circuit gain is one.


FIGURE 19. A TYPICAL VIDEO AMPLIFIER
$\frac{V_{\text {OUT }}}{V_{I N}}=\frac{R_{F}+R_{G}}{R_{G}} \frac{R_{T}}{R_{M}+R_{T}}$

## AC Theory

The emphasis here is on capacitors because they are responsible for the vast majority of AC effects. The capacitor has an impedance and a phase shift both of which are a function of frequency. Although it is paramount in stability calculations, we will neglect the phase shift because you can obtain a reasonable understanding of circuit performance by just considering the impedance. Referring to Equation 50 it is apparent that when the frequency is very high, $s=j \omega$ is very high, so the capacitor impedance, $\mathrm{X}_{\mathrm{C}}$, is very low. The converse happens when the frequency is very low.
The key to this section of AC theory is that high frequency means low capacitive impedance, and low frequency means high capacitive impedance. At $F=\infty, X_{C}=0$, and at $F=0$, $X_{C}=\infty$. At intermediate values of frequency the capacitive impedance must be calculated with the assistance of Equation 50.


FIGURE 20. CAPACITOR IMPEDANCE
$X_{C}=\frac{1}{S C}=\frac{1}{j \omega C} \quad$ where $S=j w$ and $j=\sqrt{-1}$

## Op Amp Circuits Containing Capacitors

Referring to Figure 21, when $F=0, X_{C}=\infty$ so the gain, $\mathrm{G}=-\mathrm{R}_{\mathrm{F}} / \mathrm{R}_{\mathrm{G}}$. When $\mathrm{F}=\infty, \mathrm{X}_{\mathrm{C}}=0$ then $\mathrm{G}=0$. The gain starts off high and decreases to zero at very high frequencies. Very often $C_{F}$ is an unwanted stray capacitor which yields an undesirable effect; namely, the circuit loses high frequency performance.


FIGURE 21. LOW PASS FILTER

A high pass filter is shown in Figure 22. At $F=0$ the gain is $\left(R_{F}+R_{G}\right) / R_{F}$, and at very high frequencies the gain tries to approach the op amp gain, a. Sometimes the stray input capacitance forms this circuit, and the result is unwanted peaking or overshoot because the capacitor phase shift tends to make the circuit unstable.


FIGURE 22. HIGH PASS FILTER
This general method is useful for analyzing the performance of op amp circuits which have capacitors. Depending on where they are connected the capacitors can stabilize or destabilize the op amp, but they always shape the transfer function in the frequency domain.

## Conclusion

Some algebra, the basic laws of physics, and the basic circuit laws are adequate to gain an understanding of op amp circuits. By applying these tools to various circuit configurations it is possible to predict performance. Further in-depth knowledge is required to do op amp design, and there are many sources where this knowledge can be obtained. Don't hesitate to try some of these tricks on your local circuit design engineer, but be aware that it may result in a long lecture about circuit design.

## References

[1] Harris Semiconductor, Application Note 9415, Author: Ronald Mancini, 1994.
[2] Harris Semiconductor, Application Note 9420, Authors: Ronald Mancini and Jeffrey Lies, 1995.
[3] Van Valkenberg, N.E., Network Analysis, Prentice-Hall, 1964.


# Component Video Sync Formats (HFA1103) 

Author: Chris Henningsen

## Introduction

This application note will examine a variety of sync formats and a method for removing the sync pulse from component video signals (see Figure 1). The HFA1103 is a Video Op Amp with an open emitter NPN transistor output stage that is ideal for video signal amplification and sync stripping functions. This product was developed for video design engineers who need to remove sync from component RGB (red, green, blue) and monochrome RS-170 video data (see Figure 7). Recently the term RGB has been turned around and called GBR (green, blue, red) as video distribution systems normally put green on channel 1, blue on channel 2 and red on channel 3. This is consistent with the hook-up of the color difference standards.
TABLE 1. RGB STANDARDS SPECIFICATIONS (BROADCAST
ENGINEERING 11/94)

	SMPTE/   EBU N10	NTSC   (NO SETUP)	NTSC   (SETUP)
Max	700 mV	714 mV	714 mV
Min	0 mV	0 mV	54 mV
Range	700 mV	714 mV	660 mV
Sync	-300 mV	-286 mV	-286 mV
Peak-To-Peak	1 V	1 V	1 V

Table 1 lists standards specifications for SMPTE and NTSC video signals. All have $1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ signals with sync signals ranging from -286 mV to -300 mV . A typical $1 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ video signal consists of up to +700 mV of active video on top of a -300 mV sync pulse. The application circuit shown in Figure 2 will strip off the sync pulse and transmit only the positive video data. See the Harris Application Note AN9514 titled "Video Amplifier with Sync Stripper and DC Restore" for additional details on this circuit. This circuit is useful in a variety of video processing applications such as; RGB video digitizing, RGB video distribution amplifiers for workstations and PC networks, and RGB monitor preamplifiers. When digitizing RGB video it is not necessary to digitize the sync pulse, so removing sync allows the full dynamic range of the A/D converter to be used on just the video data, resulting in a $30 \%$ increase in image resolution. In video distribution amplifiers, which are driving a number of video channels, it is undesirable to require separate switching channels for the
sync signals. Sync is generally combined with the video signal, resulting in lower system costs by minimizing the total number of switching channels required. Certain applications, such as some RGB monitors, can't handle sync on the video signal and it must be stripped off, usually by a stage on the output of the distribution amplifier. Now that we know some of the applications where sync removal is important, let's look at why and where sync signals are used.


FIGURE 1. SYNC STRIPPER WAVEFORMS


FIGURE 2. HFA1103 APPLICATION CIRCUIT VIDEO AMPLIFIER WITH SYNC STRIPPER

Transmitting two-dimensional moving pictures electronically requires the handling of a large amount of information and this is done by slicing the 2-D picture into horizontal strips of video and sending them sequentially. At the receiving end, or video monitor, the video information is recreated in scan lines on the display screen. This process continues until all of the scan lines needed for the picture are complete. Each complete picture refresh is called a frame, and typical frame refresh rates vary from 25 to 30 frames/s for broadcast video up to 72 frames/s in high performance video systems.

Sync signals are used to ensure that the scan lines are correctly placed on the display screen. A horizontal sync pulse is used to indicate the end of each scan line and signals the mon-
itor to return to the left edge of the screen to begin the next scan line, below the one just completed. A vertical sync pulse is used to tell the monitor that the bottom of the picture has been reached, and that the next scan line will start at the top again. This is similar to a carriage return on a typewriter, where a scan line is equivalent to a single line of text and a frame of video is equivalent to a complete page of text (see Figure 3).


## FIGURE 3. HORIZONTAL AND VERTICAL SYNC IS ANALOGOUS TO TEXT CARRIAGE RETURN AND END OF PAGE

The scan lines are formed by moving a spot of light, scanning left to right and top to bottom, in a pattern called a raster. As the spot traces out the raster pattern, it is modulated by the video signal to form the picture. Monochrome (black and white) systems require just one video signal, plus the horizontal (H) and vertical (V) sync pulses, for a total of three signals. Color computer systems require one signal each for red, green and blue, plus $V$ and $H$ sync pulses for a total of five signals. There are a variety of techniques used to reduce the number of wires needed to transmit these five signals.

## Computer Systems

In computer systems the monitor is generally located close to the CPU and separate wires can be used for Red, Green, Blue and Horizontal and Vertical sync signals. It is common for monitors to be hooked up using a single connector housing the five separate wires. This approach is referred to as RGBHV. As the distance between the monitor and the computer increases, it is more convenient and less costly to use fewer wires. Combining both the horizontal and vertical sync into a single composite sync signal results in a four wire system, eliminating one wire. This approach is referred to as RGBS, where $S$ is the composite sync signal. RGBS system monitors contain circuits to recreate the horizontal and vertical sync signals from the composite sync. Another wire can be eliminated by combining sync with a video channel. This is possible because sync pulses only occur between scan lines (horizontal sync) and between frames (vertical sync), when video signals are not present. Typically the composite sync is carried by the green channel and this 3-wire system is referred to as RGsB or SOG for sync-on-green. RGsB system monitors have circuits to identify composite sync from the RGsB video and to separate it into its horizontal and vertical sync components. In some cases sync is combined with all three color channels; red, green and blue, and is referred to as RsGsBs. We have now discussed how to transmit video using 5 wire RGBHV, 4 wire RGBS and 3 wire RGsB approaches (see Figure 4), with the major differences being the way in which the horizontal and vertical sync signals are
handled. Using fewer wires is an obvious advantage in applications with long cable lengths between the computer and monitor. Many multisync monitors accept all three formats of RGB and sync, as they have circuits to adapt automatically to the type of RGB signal present. Other monitors are designed to work specifically with one of the RGB formats and the sync must be removed from green in RGsB or from all three channels in RsGsBs before driving the monitor. This is one of the primary applications for the HFA1103 video op amp with sync stripper.


FIGURE 4. WIRES REQUIRED FOR RGBHV vs RGBS vs RGsB VIDEO

Now let's see if we can further reduce the number of wires by doing something with the way we transmit video. RGB video signals can be color space transformed into a separate black and white (monochrome) picture plus two additional pictures that describe the difference between the monochrome picture and the full color representation. The monochrome picture is called "luminance", and is referred to as " $Y$ ". The pair of color difference pictures are referred to as " U " and " $V$ ". This YUV video signal can be color space transformed back into RGB, if needed. The advantage of the YUV signal is that it reduces the transmission and storage requirements in video transmission and distribution systems, as the total amount of video information is reduced. This is due to the fact that the human eye does not need as much color difference information as it does luminance information. Now the color difference information " $U$ " and " $V$ " can be combined into a single "chrominance" signal, referred to as " $C$ ". We have now reduced the signal total to two wires. A new type of sync signal must be included so the video monitor can separate the two color difference signals again. This new sync information is called color burst, and is added to the chrominance, " $C$ ", just after each horizontal sync pulse. The " $Y$ " channel carries the composite sync information.
S-VHS videotape is the most popular YC format.

## Television Broadcast Systems

Television Broadcast Systems must take the five original signals ( $R, G, B, H$, and $V$ ) and transmit them through a single transmitter. Here luminance " $Y$ " and chrominance " C " are combined into a single video signal called composite video. Broadcast video systems are required to be compatible with monochrome and color receivers, and black and white receivers only need to process the Y portion of the signal. The broadcast standard in North and Central America, Korea, Taiwan and Japan is called NTSC and uses a 3.58 MHz color subcarrier. Europe, Australia and the Middle East use PAL while France and Russia use SECAM, both 4.43 MHz color subcarriers (Figures 5 and 6). Note that the application circuit for video sync stripping, shown in Figure 2,
is not useful for composite video applications, as some of the color information (blue) resides below the black level (Figures 7 and 8) and would be lost by the sync stripping function.


FIGURE 5. NTSC SYSTEM BANDWIDTH


FIGURE 6. PAL SYSTEM BANDWIDTH


FIGURE 7. MONOCHROME VIDEO STANDARD


FIGURE 8. COMPOSITE VIDEO STANDARD

## References

[1] Harris Semiconductor, High Speed Signal Processing Seminar, 1994 (Publication \#BR-043A)
[2] Lies, Jeff and Henningsen, Chris, "Video Amplifier With Sync Stripper and DC Restore", Harris Semiconductor Application Note AN9514 April 1995
[3] Epstein, Steve, Component Analog Video - So Many Standards, Broadcast Engineering, Nov. 1994
[4] Atwood Research Inc., Video Sync Formats, Application Note \#3, 1994

## Video Amplifier with Sync Stripper and DC Restore (HFA1103)

Authors: Jeff Lies and Chris Henningsen

## Introduction

The circuit in Figure 1 transmits 200 MHz ( -3 dB bandwidth) video signals while stripping off the sync pulse and performing DC restoration. It is configured for a typical video cable driver application driving a double-terminated $75 \Omega$ load, where the HFA1103 (IC3) is configured for a gain of +2 to ensure unity gain throughout.

## Sync Stripping

In component video systems it is frequently necessary to remove the sync pulse from an RGB signal. Sync is often combined with one or more of the red, green, and blue video signals in video distribution amplifiers, routers and switchers to decrease the number of input and output channels required in a switching network. In many applications, however, as the video signals exit the switching network the sync pulse must be removed.
The HFA1103 video op amp is specially designed to perform sync stripping. Its open emitter NPN output forms an emitterfollower with the load resistor, and passes the active video
signal while virtually eliminating the negative sync pulse (see Figure 2). Residual sync of the HFA1103, defined as the remainder of the original -300 mV sync puise, referenced to ground, is only 8 mV at the cable output. A particular advantage of sync stripping with the HFA1103 is the resultant larger (by 0.7 V ) output voltage swing, compared to simply using a wideband video op amp with an external emitter-follower.

Because the HFA1103 contains no active pull-down, output linearity degrades as the signal approaches ground. To deal with this a $6.8 \mathrm{k} \Omega$ pull-up resistor $\left(\mathrm{R}_{8}\right)$ and a $75 \Omega$ pull down resistor ( $\mathrm{R}_{10}$ ) on the output ensure a fixed positive voltage offset, in this case +50 mV . This offset was arbitrarily chosen as a good compromise between linearity near the DC level and minimum residual sync. Increasing $R_{8}$ decreases residual sync, at the expense of linearity. Conversely, decreasing $R_{8}$ decreases linearity error, but increases residual sync.
Other applications benefitting from sync removal are HDTV systems and video digitizing circuits. Consider a typical $1 V_{\text {P-p }}$ RGB video signal with a -300 mV sync pulse and +700 mV video data. By stripping off the unwanted sync
pulse and digitizing only the active video, designers can use the full dynamic range of the A/D converter for the +700 mV video data. This results in a 30\% increase in resolution using the same A/D converter.

## DC Restore

Another common video function is DC restoration, used when AC coupled signals have lost their DC reference and must have it periodically reset in order to retain brightness information.

This circuit accomplishes DC restoration using a CA5260 dual op amp (IC1a, IC1b) coupled with a sample-and-hold circuit based on the 74 HC 4053 switch (IC2). $\mathrm{V}_{\text {IN }}$, consisting of the input video signal and a DC offset $\left(V_{D C}\right)$, is routed to the non-inverting input of the HFA1103 (IC3). The HFA1103 is configured in a gain of +2 (to compensate for the attenuation resulting from double terminating the cable), which would result in an output of $2 \times V_{I N}=\left(2 \times\right.$ Video $\left.+2 \times V_{D C}\right)$, if not for the DC restore circuit.
$\mathrm{V}_{\mathrm{IN}}$ also travels through half of the dual CA5260 amplifier to the sample-and-hold circuit, where the $0.1 \mu \mathrm{~F}$ capacitor $\left(\mathrm{C}_{1}\right)$
is the hold capacitor. The sample-and-hold control is triggered by a back-porch pulse from a sync separator or by a horizontal video blanking signal. The DC output signal ( $\mathrm{V}_{\mathrm{DC}}$ ) from the sample-and-hold circuit is then amplified at a gain of +2 by the second op amp (IC1b); the gain is required because $V_{D C}$ is input to the HFA1103s inverting input which provides only a gain of -1 , but as discussed earlier, the output contains a term of $2 \times \mathrm{V}_{\mathrm{DC}}$. Thus $2 \times \mathrm{V}_{\mathrm{DC}}$ is summed into the HFA1103 inverting input, is subtracted from the output signal, and yields a DC restored video signal.

Because the output impedance of IC1b is high, and would affect the gain at the non-inverting input of the HFA1103, a $47 \mu \mathrm{~F}$ capacitor $\left(\mathrm{C}_{2}\right)$ is used to provide an AC ground and to maintain good high-frequency gain accuracy.
A potentiometer $\left(R_{3}\right)$ is used prior to IC1b to null out any offset voltage contributed by the DC restore circuitry.

## Conclusion

The circuit's resultant output is a 200 MHz , DC restored video signal in which the sync pulse has been stripped to a residual level of no more than 8 mV .


FIGURE 2A. VIDEO AND SYNC GO IN


FIGURE 2B. ONLY VIDEO COMES OUT

FIGURE 2. SIGNALS AT HFA1103 INPUT AND CABLE OUTPUT

# Multiplier Improves the Dynamic Range of Echo Systems （HA－2556，HA－5177） 

Author：Ron Mancini

## Introduction

In an echo system the returned signal amplitude is a function of the distance to the target，and it can be expressed mathe－ matically as function of time．An echo system with a fixed gain preamp has poor dynamic range because close targets （short return times）have high signal amplitudes while distant targets（long return times）have much lower signal ampli－ tudes．In fixed gain systems，the biggest signals establish the upper preamp gain limit based on not saturating the sys－ tem，and this gain may not be high enough to process small returns properly．
The solution is a preamplifier which has a gain proportional to time，such that the gain will be small for close targets and large for distant targets．The preamp still has to meet all the other normal preamp criteria such as bandwidth and noise performance，and the added time dependent gain function must not degrade the signal．The circuit shown in the figure implements the variable gain preamp with the Harris Semi－ conductor HA－2556 multiplier．This IC establishes the signal bandwidth and noise figure because it is the only component in the signal path．The equation for the multiplier gain，as shown in the accompanying figure，is given below：
$V_{\text {OUT }}=\frac{V_{X} V_{Y}}{5}\left(\frac{R_{7}}{R_{8}}+1\right)=10 V_{X} V_{Y}$
The HA－5177 and its associated circuitry comprise a con－ stant current source whose current is $V_{D 1} / R_{2}=I=51 \mu A$ ．If $S_{1}$ is in the $L_{I N}$ position with $Q_{2}$＇s gate held high，the current source is shorted to ground by $Q_{2}$ and the multiplier gain is set to zero．When the received signal from the closest target can be present，$Q_{2}$＇s gate is brought low forcing it into a very high drain resistance state（almost an open circuit）allowing the HA－5177 current to charge $\mathrm{C}_{1}$ in a linear manner．The voltage across $C_{1}$ ramps up from $0 V$ to 5 V in 1 ms which is
the time it takes sound to travel approximately one foot through air．During the first portion of the ramp，when the returned signal is very large，the multiplier gain is small because $\mathrm{V}_{\mathrm{X}}$ is small．As time increases $\mathrm{V}_{\mathrm{X}}$ also increases providing more gain through the multiplier as the expected echo decreases in amplitude．Thus，the output voltage swing of the multiplier tends to stay constant for large changes in input signal，and the dynamic range is improved to the amount of the ramp change，which is more than 60 dB with the values shown in Figure 1.
Often the returned signal is a nonlinear function and it may be desirable to linearize it．An inverse nonlinear ramp can be employed to linearize the overall function． $\mathrm{R}_{3}, \mathrm{R}_{4}$ and $\mathrm{C}_{1}$ generate a logarithmic ramp when $S_{1}$ is in the Log position thus yielding a logarithmic gain function adequate for linearizing some transducers．Many other time－gain transfer functions can be generated by employing different types of ramps．
It is important to eliminate the multiplier offsets with the adjustments［1］provided because offsets will appear in the output signal，reduce the dynamic range and contribute errors．As the circuit is configured it will sweep from a gain of 0.01 ，as the ramp begins，to 10 as the ramp ends．Returned signal amplitude is usually small but should not exceed $100 \mathrm{mV}_{\mathrm{P}-\mathrm{P}}$ unless distortion can be tolerated．The circuit bandwidth can be as high as 57 MHz in low gain applications， and is 5 MHz as configured．

## References

［1］Wideband Four Quadrant Voltage Output Analog Multiplier Data Sheet HA－2556，File Number 2477，Harris Semicon－ ductor，Melbourne，Florida


FIGURE 1. MULTIPLIER IMPROVES DUAL RANGE OF ECHO SYSTEMS


# Adjustable Bandpass or Bandreject Filter (HA-2841) 

Author: Ron Mancini

## Introduction

The filter described here has an easily adjustable center frequency, symmetrical skirts and an attenuation (gain) of $-40(+40) \mathrm{dB}$ at an octave either side of the center frequency $\left(f_{C}\right)$. The filter $Q\left(Q=f_{C} / B W 3 d B \cong 250\right)$ does not vary significantly when the center frequency is changed, thus, the shape of the skirts is essentially independent of the pot setting. This feature yields filters that can be adjusted over a much wider frequency range than " $T$ " type filters, the only other type of filter with such a deep notch or narrow bandpass. Now one filter type is useful in many designs. The calculation of the center frequency for the circuits shown in Figure 1 and Figure 2 is given in Equation 1 and Equation 2.

$$
\begin{align*}
& f_{C}=\frac{1}{2 \pi C \sqrt{3 R_{1} R_{2}}}  \tag{EQ.1}\\
& \text { Where } R_{1}=R_{1 A}+\alpha R_{P} \\
& \quad R_{2}=R_{2 A}+(1-\alpha) R_{P} \\
& R_{3}=6\left(R_{1}+R_{2}\right) \tag{EQ.2}
\end{align*}
$$

A basic theorem of feedback circuits is that a function generator included in a negative feedback loop computes the inverse function at the output. This approach has been used to change an excellent bandreject filter into an excellent bandpass filter. The schematic of the bandreject filter, which


FIGURE 1. ADJUSTABLE BANDREJECT FILTER
is passive and comprised of $C, R_{1}, R_{2}$ and $R_{3}$ is shown in Figure 1. The bandpass filter, which includes the passive network in the feedback loop, is shown in Figure 2. The bandpass filter has the advantage of high input impedance and low output impedance because of the location of the op amp. With the values shown the center frequency is adjustable from 55 kHz to 550 kHz producing a decade of frequency adjustment. The Harris Semiconductor HA-2841 op amp is chosen as the amplifier because it has good DC characteristics and has the high gain bandwidth required to achieve the bandpass gain without distorting the filter response. $R_{1}$ should be split into $R_{1 A}$ and $R_{1 B}$ to prevent $R_{1}$ from becoming zero, and the split may be selected to obtain maximum resolution over the desired center frequency range.
A PSPICE ${ }^{\text {TM }}$ plot of the circuit using the SPICE Model for the HA-2841 is shown in Figure 3. The plots are the logarithmic transfer function of both the filters (in dB). Notice that the bandreject filter transfer function, represented by the diamonds, is the mirror image of the bandpass transfer function, represented by the squares. These transfer functions change very little when they are adjusted to 550 kHz center frequency. Bench test results show some deviation from the PSPICE ${ }^{\text {TM }}$ simulations because of component tolerances and layout capacitances, but generally they correlate well with the simulations. The transfer functions change radically and tend to degenerate at high frequencies if low gain bandwidth op amps are used.


FIGURE 2. ADJUSTABLE BANDPASS FILTER

[^6]

FIGURE 3. PSPICE PLOT OF FILTERS TRANSFER FUNCTION


# Evaluation Programs for SPICE Op Amp Models 

Authors: Ron Mancini and Jeff Lies

## Introduction

There is no consistent method for evaluating SPICE models in the industry, so it is hard to reproduce a specific manufacturer's results or to compare models between manufacturers. Furthermore, many of the SPICE models available from vendors do not correlate the vendor's data sheet for the corresponding op amp; hence, there is confusion about the validity of the model, the evaluation program, and/or the data sheet. This paper includes a collection of SPICE programs that have been used to evaluate some of the latest Harris Semiconductor current feedback op amps. The programs illustrated here will be used to evaluate new Harris op amp designs, both current and voltage feedback, so they will serve as a standard until modified by common agreement. These programs have several advantages: they are written, they have been debugged, macros exist to eliminate the plotting effort, they cover the pertinent parameters, and they contain equations to normalize the output for "Bode" type plots.
Six programs which cover 13 parameters including: inverting gain, non-inverting gain, positive power supply current, negative power supply current, positive input bias current, negative input bias current,offset current, positive offset voltage, negative offset voltage, differential offset voltage, non-inverting common-mode voltage, transient response, and enable/ disable response are used to evaluate the op amp. These thirteen parameters are displayed in eight plots which have seventeen curves.

Printed copies of these programs are given here, and electronic copies are available on the "Harris SemiconductorAnalog SPICE Macromodels" disk dated January 1996 or later.

## AC Transfer Function For An Inverting Op Amp

The first program (see Figures 1, 2, and 3) is named cfaig.cir, and it simulates the AC transfer function for an inverting op amp. This program uses three op amps so it computes the transfer function for three different gains in one pass. The program requires the user to supply the feedback resistance values for each gain, the gain settings, the load resistance, the load capacitance, and the power supply voltage in volts. The program assumes that the op amp is run off
two power supplies of equal and opposite polarity each of which is referenced to ground, so it applies the entered voltage to the op amp as a positive and negative supply with equal magnitudes. If a single supply op amp is to be evaluated with these programs just enter half the power supply voltage, and the analysis will be equivalent.

Unless the output is normalized the vertical scale will have to be large enough to accommodate the difference in gains, so small effects such as peaking may be hard to discern or measure. The program configures the load resistor as a voltage divider, and the output is taken at the voltage divider output. If the op amp gain is 10 the load resistor gain will be 0.1 . If a load resistor is not required by the data sheet enter a large value such as $1000 \mathrm{G} \Omega$; the large resistor will not affect the circuit operation while the normalization feature is retained. Now the three curves will plot on top of each other similar to the GBW curves shown in most data books.


FIGURE 1. SCHEMATIC OF INVERTING OP AMP

```
*This program simulates the AC transfer function for an inverting op amp.
*It has three op amps; each with a gain that is specified by the
*user with a .param statement. The user must specify the load R}\mp@subsup{R}{L}{},\mp@subsup{C}{L}{}\mathrm{ , the
*eedback resistors R R }\mp@subsup{F}{1}{},\mp@subsup{R}{F2}{},\mp@subsup{R}{F3}{}\mathrm{ and the corresponding gains }\mp@subsup{G}{1}{},\mp@subsup{G}{2}{},\mp@subsup{G}{3}{}\mathrm{ .
*The power supply voltage is set by the parameter "vsupply". The load resistors
*are automatically split into voltage dividers to normalize the gain plot,
*and the gains can be plotted in dB by calling the macros }\mp@subsup{\textrm{G}}{1}{},\mp@subsup{\textrm{G}}{2}{}\mathrm{ , and }\mp@subsup{\textrm{G}}{3}{}\mathrm{ .
*The inputs are tied together, and the outputs are called OUT1, OUT2, and
*OUT3 corresponding to the respective gains. The op amp model is entered with
*a .lib statement. The model in the subcircuit call (x statement) must correspond to the model
*called in the .lib statement (3 times).
.param C C =10pf
.param R R =400
.param R R F1 =750
.param R RF2=750
.param R R F3}=75
.param G G =1
.param G_ =2
.param G_3}=
.param vsupply=5
.lib b:ha502x.cir
x101134 12 3 ha502x
x2 0213422 3 ha502x
x3 03134323 ha502x
VIN
R}\mp@subsup{F}{F11}{}1112{\mp@subsup{R}{F1}{}
R
R}\mp@subsup{\textrm{F}}{\textrm{F}1}{}3132{\mp@subsup{\textrm{R}}{\textrm{F}3}{}
R
R
R
R
R
R
R
R
R
C
CL21 022 {CL}
C
V CC }30\mathrm{ {vsupply}
V EE 40{-1*vsupply}
.ac dec 50 1meg 3000meg
.probe
.end
```

FIGURE 2. INVERTING OP AMP AC TRANSFER FUNCTION PROGRAM


FIGURE 3. INVERTING OP AMP AC TRANSFER FUNCTION PLOT

## AC Transfer Function for a Non-Inverting Op Amp

The second program (see Figures 4, 5, and 6) is named cfanig.cir, and it simulates the AC transfer function for a noninverting op amp. This program uses three op amps so it can compute the transfer function for three different gains in one pass. The program requires the user to supply the feedback resistance values for each gain, the gain settings, the load resistance, the load capacitance, and the power supply voltage in volts. The program assumes that the op amp is run off two power supplies of equal and opposite polarity each of which is referenced to ground, so it applies the entered voltage to the op amp as a positive and negative supply with equal magnitudes. If a single supply op amp needs to be evaluated just enter half the power supply voltage, and the analysis will be equivalent.

Unless the output is normalized the vertical scale will have to be large enough to accommodate the difference in gains, so small effects such as peaking may be hard to discern or measure. The program configures the load resistor as a voltage divider, and the output is taken at the voltage divider output. If the op amp gain is 10 , the load resistor gain will be 0.1 . If a load resistor is not required by the data sheet enter a large value such as $1000 \mathrm{G} \Omega$; the large resistor will not affect the circuit operation while the normalization feature is retained. Now the three curves will plot on top of each other similar to the GBW curves shown in most data books.


FIGURE 4. NON-INVERTING OP AMP SCHEMATIC


FIGURE 5. NON-INVERTING OP AMP AC TRANSFER FUNCTION PLOT
*This program simulates the transfer function for a non-inverting op amp.
*It has three op amps; each with a gain that is specified by the user
*with a .param statement. The user must specify the load $R_{L}, C_{L}$, the
*feedback resistors $R_{F 1}, R_{F 2}, R_{F 3}$ and the corresponding gains $G_{1}, G_{2}, G_{3}$.
*The power supply voltage is set by the parameter "vsupply". The load resistors
*are automatically split into voltage dividers to normalize the gain plot,
*and they can be plotted in dB by calling the macros $\mathrm{G}_{1}, \mathrm{G}_{2}$ and $\mathrm{G}_{3}$.
*The inputs are tied together, and the outputs are called OUT1, OUT2, and
*OUT3 corresponding to the respective gains. The op amp model is entered with
*a . lib statement. The model in the subcircuit call (x statement) must correspond to the model
*called in the .lib statement ( 3 times).

```
.param C}\mp@subsup{C}{L}{}=10p
.param R R =400
.param R R F1 =1000
.param R R F2 =681
.param R R F3=383
.param G G =1
.param G_ =2
.param G G =10
.param vsupply=5
.lib b:ha502x.cir
x1 in 11 34123 ha502x
x2 in 21 3 4 22 3 ha502x
x3 in 31 34 32 3 has02x
vin in 0 ac 1
R}\mp@subsup{\textrm{F}11}{}{1112{\mp@subsup{R}{F1}{}}
R}\mp@subsup{\textrm{F}21}{2122{\mp@subsup{R}{F2}{}}}{
R
R
R
R
R
R}\mp@subsup{\textrm{A}21}{}{22 OUT2 {R
RA31 32 OUT3 {RL'*(G3-.99999)/G3}
R}\mp@subsup{\textrm{B}11}{}{0}0\mathrm{ OUT1 {R
R
R}\mp@subsup{\textrm{B}31}{}{0}0\mathrm{ OUT3 {RL
C
CL21 022{CL}
CL31 0 32 {CL}
VCC}30\mathrm{ {vsupply}
V EE 40{-1*vsupply}
.ac dec 501meg 3000meg
.probe
.end
```

FIGURE 6. NON-INVERTING OP AMP AC TRANSFER FUNCTION PROGRAM

## DC Parameters For a Non-Inverting Op Amp

The third program (see Figures 7 through 11) is named cfadc.cir, and it simulates the salient DC parameters for a non-inverting op amp. The program requires the user to supply the feedback resistance values, the load resistance, and the power supply voltage in volts. The program assumes that the op amp is run off two power supplies of equal and opposite polarity each of which is referenced to ground, so it applies the entered voltage to the op amp as a positive and negative supply with equal magnitudes. If a single supply op amp needs to be evaluated just enter half the power supply voltage, and the analysis will be equivalent.


FIGURE 7. NON-INVERTING OP AMP SCHEMATIC (DC)


FIGURE 9. NON-INVERTING OP AMP INPUT OFFSET VOLTAGE PLOT

The input signal to the op amp is a DC sweep. The sweep input enables a data analysis at $\mathrm{V}_{\mathbb{N}}=O \mathrm{~V}$ which is often a data book point, and the parameters can be evaluated at various other points of interest. The input currents can be examined by plotting the currents through the feedback resistor, $R_{F}$ and the input resistor, $R_{1}$. The difference between these currents is the input offset current. When the voltage is swept through zero the offset voltage for zero input voltage can be calculated. Either input offset voltage can be plotted by selecting the correct node voltage, or the differential input voltage can be plotted be selecting $\mathrm{V}(11)-\mathrm{V}(13)$. The supply currents are plotted by selecting $\mathrm{I}\left(\mathrm{V}_{\mathrm{EE}}\right)$ or $\mathrm{I}\left(\mathrm{V}_{\mathrm{CC}}\right)$ for the negative and positive power supplies respectively.


FIGURE 8. NON-INVERTING OP AMP INPUT CURRENT PLOT


FIGURE 10. NON-INVERTING OP AMP POWER SUPPLY CURRENT PLOT
*This program simulates the salient DC parameters for a non-inverting op amp.
*The user must specify the feedback and load resistance with a .param *statement. The power supply voltage is set by the parameter "vsupply". Input *currents are measured as $I_{R I}$, the non-inverting input current, $I_{R F}$, the *inverting input current, and ( $l_{R F^{-1}}$ I) the offset current. The offset *voltage is calculated with the equation $\operatorname{Vos}=\mathrm{v}(13)-\mathrm{v}(11)$. The power supply *currents can be determined by looking at the parameter $\mathrm{I}_{\mathrm{CC}}$ and $\mathrm{I}_{\mathrm{EE}}$. The *model is entered with a lib statement. The model in the subcircuit call (x statement) *must correspond to the model called in the .lib statement.
.param $R_{F}=1000$
.param $R_{L}=400$
.param vsupply $=5$
.lib b:ha502x.cir
x1 131134 out 3 ha502x
$\mathrm{V}_{\text {IN }}$ in 0
$R_{F 1} 11$ out $\left\{R_{F}\right\}$
$R_{I}$ in $13\left\{R_{F}\right\}$
$R_{L 1} 0$ out $\left\{R_{L}\right\}$
$\mathrm{V}_{\mathrm{CC}} 30$ \{vsupply\}
$V_{E E} 40\left\{-1^{*}\right.$ vsupply\}
.dc $\mathrm{V}_{\mathrm{IN}}-1$. 1 . 001
.probe
.end
FIGURE 11. NON-INVERTING OP AMP DC TRANSFER FUNCTION PROGRAM

## CMRR For A Non-Inverting Op Amp

The fourth program (see Figures 12, 13, and 14) is called cfacmrr.cir, and it simulates the common mode rejection ratio for a non-inverting op amp. The program uses two identical non-inverting op amps to implement the equation CMRR = change in input offset voltage divided by the common mode input voltage change. The CMRR equation is shown in circuit parameters in Figure 12. Referring to Figure 13, it is seen that the common mode difference voltage is 2 V . The input is a square wave so the measurement should be made
in an area which has settled out. Notice that the worse common-mode input voltage is negative so that value of -1.3 mV was used in the calculation. Using a square wave rather than a DC signal enables the inspection of both quadrants prior to calculating the CMRR. The program requires the user to supply the feedback resistance value, the load resistance, and the power supply voltage in volts.


$$
C M M R=D B \frac{(V(\operatorname{IN} 1)-V(11))-(V(I N 2)-V(21))}{(V(\operatorname{IN} 2)-V(I N 1))}=D B \frac{\Delta V_{1 O}}{\Delta V_{C M}}
$$

FIGURE 12. SCHEMATIC AND EQUATION FOR COMMON-MODE REJECTION CIRCUIT
＊This program simulates the common－mode rejection ratio for a non－inverting op ＊amp．The equation recommended for the calculation is
＊ $\mathrm{CMRR}=\mathrm{dB}((\mathrm{V}(\mathrm{IN} 1)-\mathrm{V}(11))-(\mathrm{V}(\mathrm{IN} 2)-\mathrm{V}(21))) /(\mathrm{V}(\mathrm{IN} 2)-(\mathrm{VIN} 1))$ and this program uses
＊two identical op amps to obtain the calculation data．The user
＊must specify the feedback resistance，$R_{F}$ ，and the load resistance，$R_{L}$ ．
＊The power supply voltage is set by the parameter＂vsupply＂．The op amp model ＊is entered with a ．lib statement．The model in the subcircuit call（x statement）must ＊correspond to the model in the lib statement（2 times）．
．param $R_{F}=1 \mathrm{~K}$
param $R_{L}=400$
．param vsupply＝5
lib b：ha502x．cir
x1 IN1 1134 OUT1 3 ha502x
x2 IN2 2134 OUT2 3 ha502x
$\mathrm{V}_{\text {IN } 1}$ IN1 0 pulse（ 01 m .1 ns .1 ns .1 ns 100 ns 200 ns ）
$V_{\text {IN2 }}$ IN2 0 pulse（ 02.001 ．1ns ．1ns．1ns 100ns 200ns）
$\mathrm{R}_{\mathrm{F} 1} 11$ OUT1 $\left\{\mathrm{R}_{\mathrm{F}}\right\}$
$R_{F 2} 21$ OUT2 $\left\{R_{F}\right\}$
$R_{11}$ OUT1 $0\left\{R_{L}\right\}$
$R_{\text {L2 }}$ OUT2 $0\left\{R_{L}\right\}$
$\mathrm{V}_{\mathrm{CC}} 30$ \｛vsupply\}
$V_{E E} 40\{-1 * v s u p p l y$
．tran 20ns 420ns
probe
end
FIGURE 13．COMMON－MODE REJECTION PROGRAM


FIGURE 14．PLOT OF COMMON－MODE REJECTION PROGRAM OUTPUT

## Transient Response For A Non-Inverting Op Amp

The fifth program (see Figures 15, 16, and 17) is called cfatran.cir, and it simulates the transient response for a noninverting op amp. If the input signal is small, about 100 mv as shown in Figure 16, the analysis will be small signal. Larger input signals will yield a large signal analysis. The program requires the user to supply the feedback resistance, the load


FIGURE 15. TRANSIENT RESPONSE CIRCUIT SCHEMATIC
resistance, the input resistance, and the power supply voltage in volts. The program assumes that the op amp is run off two power supplies of equal and opposite polarity each of which is referenced to ground, so it applies the entered voltage to the op amp as a positive and negative supply with equal magnitudes. If a single supply op amp needs to be evaluated just enter half the power supply voltage, and the analysis will be equivalent. The rise time, fall time, slew rate, and delay time can be read off the plot shown in Figure 16.


FIGURE 16. TRANSIENT RESPONSE PROGRAM OUTPUT PLOT
*This program simulates the time domain response for a non-inverting op amp.
*The response will be small signal or large signal depending on the amplitude *of the input signal. The user must specify the load resistance, $R_{L}$, the *eedback resistance, $R_{F}$, and the input resistance, $R_{I}$. The power supply *voltage is set by the parameter "vsupply". The op amp model is entered with *a .lib statement. The model in the x statement must correspond to the *model called in the lib statement.
.param $R_{I}=50$
.param $R_{F}=1 \mathrm{~K}$
.param $R_{L}=100$
.param vsupply=5
.lib b:ha502x.cir
x1 in 1134 out 3 ha502x
$\mathrm{V}_{\mathrm{IN} 1}$ in 0 PULSE ( -1 .1.1ns .1 ns . 1 ns 100ns 200 ns )
$R_{F 1} 11$ out $\left\{R_{F}\right\}$
$R_{L 1}$ out $0\left\{R_{L}\right\}$
$R_{11} 0$ in $\left\{R_{1}\right\}$
$V_{C C} 30$ \{vsupply\}
$V_{E E} 40$ [-1*vsupply\}
.tran 20ns 420ns
.probe
.end
FIGURE 17. TRANSIENT RESPONSE PROGRAM

Enable Response For A Non-Inverting Op Amp
The Sixth program (see Figures 18, 19, and 20) is called cfaenabl.cir, and it computes the response of a non-inverting op amp to an enable control signal. $\mathrm{A} 2 \mathrm{~V}_{\mathrm{DC}}$ excitation is applied to the positive op amp input, and a square wave is applied to the enable input. The enable signal swings from ground to the positive power supply rail, thus simulating an open collector driver. This signal can be modified as required, but it must be disconnected from the supply voltage by removing the \{vsupply\} term
prior to modification. The program requires the user to supply the feedback resistance, the load resistance, the input resistance, and the power supply voltage in volts. The program assumes that the op amp is run off two power supplies of equal and opposite polarity each of which is referenced to ground, so it applies the entered voltage to the op amp as a positive and negative supply with equal magnitudes. If a single supply op amp needs to be evaluated just enter half the power supply voltage, and the analysis will be equivalent. The enable response times can be read off of Figure 19.


FIGURE 18. ENABLE RESPONSE CIRCUIT SCHEMATIC


FIGURE 19. ENABLE RESPONSE PROGRAM OUTPUT PLOT
*This program simulates the time response of the enable/disable function of
*the non-inverting op amp . The response is obtained with a $2 \mathrm{~V}_{\mathrm{DC}}$
*input signal, while the voltage on the enable pin swings from $V_{C C}$ to ground.
*The user must specify the load resistance, $R_{L}$, the feedback resistance, $R_{F}$, *and the input resistance, $R_{1}$. The power supply voltage is set by a parameter
*"vsupply". The op amp model is entered with a .lib statement. The model in the subcircuit call
*( $x$ statement) must correspond to the model called in the lib statement. If
*the rise and fall times of the enable signal are too fast the program may
*not converge ( 10 ns is optimal).
.param $R_{I}=50$
.param $R_{F}=1 K$
.param $R_{L}=100$
.param vsupply=5
.lib b:ha502x.cir
$x 1$ in 1134 out ena ha502x
$V_{I N}$ in 02
vena ena 0 PULSE (\{vsupply\} 0 Ons 10 ns 10 ns 2000 ns 4000 ns )
$R_{F 1} 11$ out $\left\{R_{F}\right\}$
$R_{L 1}$ out $0\left\{R_{L}\right\}$
$R_{11} 0$ in $\left\{R_{1}\right\}$
$\mathrm{V}_{\mathrm{CC}} 30$ \{vsupply\}
$V_{\text {EE }} 40$ \{-1*vsupply\}
.tran 20ns 4020ns
.probe
.end
FIGURE 20. ENABLE RESPONSE PROGRAM

## Summary

Six programs which compute and plot the response of an op amp are described here. These programs make it easy to complete the SPICE analysis, and by using them the results may be compared to new Harris Semiconductor data sheets. This approach gives the minimum data required to evaluate the model, but the actual evaluation must be made by the design engineer. If the model indicates 2 dB peaking at the -3 dB point while the data sheet shows 3dB peaking at the same point, which does the engineer believe? Since the model is an approximation, the data sheet should be more correct than the model, but because the data sheet is based on "typicals" their curves are sometimes hard to reproduce. This vague area must be resolved through the experience of the design engineer coupled with laboratory data. There is no substitute for accurate measurements! When the data sheet curves, the model curves and the lab curves all fit within a reasonable tolerance the design engineer can begin to trust the models. Keep testing though, because models have been known to be very unpredictable.

Any comments, deletions or additions should be directed to one of the authors for inclusion in revisions on this document.


## HFA1212 Dual Video Buffer Forms Differential Line Driver/Receiver

Author: Mark Amarandos

The HFA1212 Dual Video Buffer can be used to implement differential line drivers and receivers with a minimum of external components (see Figure 2). Common mode rejection is set by the internal matched thin film resistors which are pin strapped to set the various closed loop gains that are required.
$\mathrm{V}_{\mathrm{IN}}$ is terminated into $75 \Omega$ and drives both amplifiers in U 1 . U1A has a gain of -1 while U1B has a gain of +1 . These amplifiers create a differential signal with a gain of 2 . Series $75 \Omega$ resistors provide impedance matching to the transmission line.

The $150 \Omega$ termination resistor on the receive side of the transmission line provides proper impedance matching and attenuation for a gain of one at the receive input. U2 performs differential to single ended conversion and provides common mode rejection.

U2A is configured in a gain of +2 . U2B subtracts out common mode signals and applies a gain of +2 to differential signals. When $V_{\text {OUT }}$ is terminated into $75 \Omega$, the overall gain from $V_{I N}$ to $V_{\text {OUT }}$ is unity. Because of the gain of +2 in U2A, the peak voltage at the receiver may not exceed 1.5 V .

The oscilloscope photograph illustrates the common mode rejection of the receiver. $\mathrm{V}_{\mathrm{IN}}$ is a $10 \mathrm{MHz}, 1.5 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ sine wave. The ground reference of $U 1$ is driven by a $1 \mathrm{MHz}, 1.5 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ common mode signal. The combined signal, seen on the top trace is measured at $R_{X}-V_{\text {OUT }}$, on the bottom trace, is a faithful reproduction of $\mathrm{V}_{\mathrm{IN}}$ with the common mode signal removed.


FIGURE 1. COMMON MODE REJECTION


FIGURE 2. DIFFERENTIAL VIDEO LINE DRIVER/RECEIVER


## 900MHz Down Converter Consumes Little Power (HFA3101)

Authors: Ronald Mancini and Raphael Matarazzo

Most 900 MHz down converter designs are proprietary and, thus, are unavailable to the industry. The designs that are available are usually discrete or require high voltage, which excludes them from the portable market. The down converter in Figure 1 is nonproprietary and suits battery powered applications. Moreover, you can use the IC manufacturer's PC board artwork to get a head start.

The heart of the down converter is a Gilbert cell, which consists of two long-tailed, differential-amplifier stages connected as two variable transconductance amplifiers. Because the cell is constructed from the HFA3101 transistor array, the differential amplifier stages are inherently matched. The inherent matching also reduces distortion resulting from thermal effects and mismatches in transistor beta and ohmic resistances. With the HFA3101 configured as shown, each pair of bases acts as a multiplier input. Thus, if you connect a local oscillator and an RF signal to the two inputs, the circuit generates the sum and difference frequency for the down conversion.
$R_{1}, R_{2}$, and $R_{3}$ form a voltage bias network to bias the longtailed pairs; the circuit holds the bases of the current source, $Q_{5}$, and $Q_{6}$, at $1 V$ and the bases of the inputs, $Q_{1}$ and $Q_{4}$, at 2.5 V . Setting $R_{E}$ at $27 \Omega$ yields emitter currents of approximately 5.5 mA , which is adequate to achieve the required bandwidth. This value of $R_{E}$ is high enough so the quantity $\beta R_{E}$ does not load the RF signal source. $R_{B 1}$ and $R_{B 2}$ terminate the transistor bases with $50 \Omega$ through the $0.01 \mu \mathrm{~F}$ decoupling capacitors, so the capacitors should be of high quality.
All the components should be leadless, with self-resonant frequencies exceeding 1 GHz . The output matching circuit comprising $L_{C}, C_{C}$, and $R_{C}$ maximizes the gain. The selection of these components maximizes gain while allowing a $50 \Omega$ termination; the tuned, medium-Q matching network yields a $50 \Omega$ to $2 \mathrm{k} \Omega$ transformation.

With the component values and frequencies in Figure 1, the circuit down converts 900 MHz to 75 MHz by using an 825 MHz local oscillator signal, and it does so with $50 \Omega$ terminations. The circuit functions with supplies lower than 3 V and draws comparatively low current for a down converter of this frequency. Thus, it's well suited for battery powered systems. You can obtain the PC board artwork from the HFA3101 data sheet; you need no permission from Harris Semiconductor to use the pattern.


FIGURE 1. 3V DOWN CONVERTER APPLICATION


No. AN9536.1
November 1996

# PSPICE Performs Op Amp Open Loop Stability Analysis (HA5112) 

Authors: Ron Mancini and Doug Youngblood

The open loop stability plot of an op amp circuit, which is commonly called a Bode [1] plot, is often difficult to observe in the lab because most op amps saturate when the loop is opened. Since most op amps have a very high open loop gain, one must work with very small signals when attempting to measure the open loop transfer function, so even if an answer is obtained it usually contains a large error. When PSPICE is employed for the open loop analysis an identical saturation problem occurs because the PSPICE model is built to emulate all of the op amp characteristics. The PSPICE saturation will manifest itself in either of two ways: the program will not be able to calculate a DC bias point or the results of any calculations will be in error.

A method of obtaining an accurate open loop PSPICE plot of an op amp is to fool the circuit as shown in Figure 1A. The capacitor, CINV, is added from the inverting node to ground where it acts like an AC short for the feedback signal. There is still DC feedback, so the program will converge to a DC bias point. The plot will show the op amp open loop gain characteristics if the AC output of PSPICE is configured to be a dB plot of the ratio of the output to input voltage. Although the phase characteristic can be plotted by PSPICE, it is simpler to approximate it from the gain plot by noting where the slope changes (the -3 dB breakpoints), and assuming a 45 degree phase shift resulted from the slope change. Several open loop plots are shown in Figure 2. The curve marked with inverted triangles is for the op amp circuit with no feedback resistance (RFT1 and CINV omitted), and it has no relation to the open loop op amp curve shown in the HA-5112 Data Sheet [2] because PSPICE did not calculate the correct bias point. This illustrates the problems that occur when the circuit DC feedback path is broken in an attempt to plot the open loop transfer function. The curve marked with the non-inverted triangles is for the op amp with RFT1 included and CINV connected from the inverting node to ground. Notice that the resulting curve closely approximates the open loop curve shown in the HA-5112 Data Sheet. Also, note that the slope changes to $-40 \mathrm{~dB} / \mathrm{decade}$ (called a -2 slope) before the curve passes through OdB, so the op amp will probably oscillate if it is connected in a gain of one configuration.

Because $C_{I N V}$ grounds the inverting node for $A C, R_{F T 1}$ appears as a small load to the op amp and has negliable effect on the AC performance. The output of the op amp shown in Figure 1A is the op amp open loop transfer function, so when $R_{F 1}$ and $R_{G 1}$ are added as shown in Figure 1B, the circuit calculates the open loop stability equation $A \beta=A\left(R_{G 1}\right) /\left(R_{F 1}+R_{G 1}\right)$.


FIGURE 1A. CIRCUIT FOR DETERMINING THE OP AMP OPEN LOOP TRANSFER FUNCTION


FIGURE 1B. STABILITY ANALYSIS MODEL DESCRIBED IN THE PSPICE LISTING

The curve marked with the diamonds is for $R_{F 1}=10 \mathrm{~K}$ and $\mathrm{R}_{\mathrm{G} 1}=1 \mathrm{~K}$. The closed loop non-inverting gain would be 11, thus it should be stable according to the data sheet. Notice that the slope is -1 when it passes through 0 dB so the closed loop circuit will be stable. The curve marked with the squares is for a closed loop non-inverting gain of 5 with a feedback capacitor, $\mathrm{C}_{\mathrm{F}}$, added in parallel with RF1. Without $\mathrm{C}_{\mathrm{F}}$ the circuit is marginally stable at best because the op amp open loop transfer function (see Figure 2) has a gain of about 9 dB when the slope changes from -1 to -2 , and the attenuation per the stability equation is -13.9 dB . $\mathrm{C}_{\mathrm{F}}$ was added to the circuit to introduce a zero into the open loop transfer function, and the zero cancels out the pole at the second breakpoint causing the curve to pass through 0 dB with a -1 slope. Thus, $\mathrm{C}_{\mathrm{F}}$ stabilizes the circuit for a closed loop gain of 5 .
This analysis does not account for manufacturing tolerances which can be as large as 2 to 1 . There are two factors to keep in mind when considering manufacturing tolerances, and they are the 0 dB frequency intercept tolerance and the open loop gain intercept tolerance.

The gain intercept has a tolerance of $\pm 6 \mathrm{~dB}$, or a factor of two. The gain of the op amp is proportional to $\mathrm{gmR}_{\mathrm{H}}$ where gm is the input transconductance and $R_{H}$ is the effective impedance seen by gm. The first pole frequency is proportional to $1 / R_{H} C$, so the gain bandwidth is constant with respect to variations in $R_{H}$. This means that if the gain intercept has increased by 6 dB the first pole frequency has moved in by an octave, or conversely, if the gain intercept has decreased by 6 dB the first pole has moved out by an octave. The constant gain bandwidth criteria tends to keep the 0 dB intercept constant for a given gain intercept change, but there is enough movement to bear watching.

The value of the op amp's internal compensation capacitor might have a $\pm 15 \%$ tolerance, and the value of this capacitor determines the 0 dB frequency intercept. When this tolerance is added to the $\mathrm{gmR}_{\mathrm{H}}$ error the tolerance may be as much as $\pm 30 \%$. The curve for the op amp open loop gain has a 27 MHz 0 dB frequency intercept, so a prudent design must
be able to function with any OdB frequency intercept from 19 MHz to 35 MHz .

Op amp stability can be modeled quite well with SPICE, and it often obtains excellent stability results, but it is not prudent to neglect the testing. If the closed loop circuit is driven by a step function, the peak of the overshoot [3] is an excellent indicator of the phase margin or stability.

## References

[1] Bode, H.W., Network Analysis and Feedback Amplifier Design, D. Van Nostrand, Inc., 1945.
[2] Harris Semiconductor, Linear and Telecom ICs for Analog Signal Processing Applications, 1993-94.
[3] Mancini, R.A., Feedback, Op Amps and Compensation, Harris Semiconductor, Application Note 9415.


FIGURE 2. TRANSFER FUNCTIONS OF THE OP AMP

```
*ha-5112 open loop parameter circuit
.lib a:HA-5112.cir
x2 31 21714161 ha-5112
vin1 0 31 ac 1
rgt1 0 21 20k
fft1 }2161\mathrm{ 20k
rf1 61 out 10k
rg1 0 out 1k
cinv 0 21 1000Gf
vcc1 71 0 15
vee1 41 0-15
.ac dec 100 10 50meg
.probe
.end
```

FIGURE 3. PSPICE LISTING

# Comparison of Current Feedback Op Amp SPICE Models (HA5013) 

Author: Ron Mancini

## Introduction

Op amp SPICE models are widely used to simulate circuit performance, but there is always the question of how well does the SPICE simulation fit the real world. Bottom line this boils down to another question, "can you bet your design career on $i t "$ ? The answer is an emphatic no! SPICE is an important tool, and it should be used wherever appropriate, but don't begin to trust it unless you have tested it's answers. First, SPICE is a computer program, thus it is subject to all the vagaries of a machine/software package. Second, the SPICE model is an approximation, and you can't trust approximations until you understand them and their limitations. Before a SPICE model can be trusted it must be tested in a known circuit, and it must yield results comparable to the op amp data sheet. This paper tests four SPICE models from four different major current feedback amplifier manufacturers, and presents the results for your perusal. If you are not going to use one of the tested op amps the actual test results will not be as important as the test procedure, programs, and philosophy.

## Model Test Procedure

The model testing was completed using a standard set of PSPICE programs which are contained in Harris Semiconductor Application Note AN9523 titled "Evaluation Programs For SPICE Op Amp Models", AnswerFAX Doc. \# 99523. The inverting gain, non-inverting gain, and transient response programs were selected for the model testing because they yield data adequate for a model/data sheet comparison. The application note contains six programs which cover most op amp parameters. Almost any program can be used for the evaluation, but it must use the op amp in the same configuration as the data sheet.

The program must enable the selection of the pertinent component values, such as the feedback resistor, so that the evaluation can be done at the data sheet conditions. This is required for the comparison to be valid because the op amp must be evaluated at the exact data sheet operating conditions so the SPICE generated data and curves can match the data sheet data and curves. The component values that need to be considered are the feedback resistor, input and/or output terminating resistor, load resistor, load capacitor, gain setting resistor, and power supply voltage.

During the evaluation you must keep in mind that the idea is to determine how closely the model matches the op amp as it is characterized in the manufacturer's data sheet. Remember, you are not trying to characterize the op amp. You may find a better method to characterize the op amp, and this is
good information for future use, but it is not germane for evaluating the model. Application note AN9523 is a handy tool to use for model evaluations because it allows for and encourages the incorporation of the data sheet operating conditions. In addition it runs three parallel circuits and automatically normalizes the data for three different gains, inverting or non-inverting, in one pass of the program. The programs are the closest thing to an industry standard, and they are available in the application note or on the Harris Semiconductor SPICE model disk.

## Comparison Criteria

The comparison criteria results from the distillation of a series of conversations with design engineers. Some might call it an arbitrary or even punitive standard, but it is the only one in existence, so it will be used. When the peaking is within 2dB, this is considered to be good correlation, while peaking in excess of 2 dB is designated as marginal. Although the best case is where the data sheet matches the model results, data sheet peaking less than the model peaking is preferable because it is less likely to lead the designer to optimistic conclusions. Peaking causes the emphasis of the high frequencies contained in the signal so it usually leads to distortion.

Bandwidth correlation of the model to the data sheet within 20 percent is acceptable. Data sheet bandwidth greater than the model bandwidth is preferable because it leads to conservative design.

The transient response correlation should be within 20 percent, but this parameter is secondary to the peaking and bandwidth. It is extremely difficult to get good transient response from a model, so many model designers sacrifice this parameter in favor of the frequency response plots.

The data sheet curves are obtained from measurements made on a "typical" IC, and considering the difficulties encountered when measuring CFAs, these curves are only repeatable to a few percent. The model approximates the IC performance, so it should be expected that there will be some differences between the curves produced by the model and the data sheet curves. The tolerances set out above are meant to account for these differences.

## Op Amps Compared In The Evaluation

The following op amps were selected for evaluation: the Harris Semiconductor HA5013 [1], the Analog Devices
table 1. RESULTS OF THE NON-INVERTING GAIN EVALUATION

OP AMP	GAIN	DATA SHEET PEAKIDIP	MODEL PEAK/DIP	DATA SHEET -3 dB BW	MODEL   -3dB BW
HA5013	1	3.2dB	2.5 dB	125 MHz	120 MHz
	2	3.1 dB	1.9dB	110 MHz	98 MHz
	10	OdB	OdB	70 MHz	58 MHz
AD811	1	OdB	2.3 dB	119 MHz	110 MHz
	2	OdB	0.3dB	115 MHz	115 MHz
	10	OdB	OdB	100 MHz	105 MHz
CLC414	2	OdB	2 dB	70 MHz	210 MHz
	6	OdB	OdB	96 MHz	125 MHz
	10	OdB	OdB	60 MHz	68 MHz
LT1229	2	0.2 dB Peak	0.8 dB Dip	102 MHz	120 MHz
	10	OdB	OdB	60 MHz	70 MHz
	100	OdB	OdB	13 MHz	7MHz

AD811 [2], the Comlinear CLC414 [3], and the Linear Technology LT1229 [4]. These op amps were selected on the following criteria: availability, current feedback architecture, available SPICE models, the bandwidths are similar, and the remaining parameters are similar. No attempt was made to review the model to determine if one model appeared to be superior to another; the only criteria for selection is given above. There are some other companies that might have been included in the comparison, but their models were not on hand when the comparison was done.

## Test Results For Non-Inverting Op Amps

The conditions for each test are exactly the same as those given on the vendor's data sheet. At first glance this may seem unfair because one vendor tests with a 10 pF load and another does not specify a load capacitor (how do they get probes and loads that don't have capacitance?), but because we are evaluating each model against its data sheet, it is a fair comparison. The load conditions for each op amp comparison are given in Table 2. A separate simulation with a small capacitive load was run for each op amp model to check for instability. The results of the non-inverting gain evaluation are summarized in Table 1.

The HA5013 data is shown in Figure 1. The HA5013 model indicates 0.7 dB less peaking than the data sheet, and it indicates 5 MHz less bandwidth than the data sheet. Both of these numbers are well within the comparison criteria so it is safe to assume that the model represents the IC very well for the non-inverting gain configuration.

The AD811 data is shown in Figure 2. The AD811 model has 2.3 dB peaking while the data sheet shows 0 dB peaking. The model bandwidth is 9 MHz less than the data sheet bandwidth. This is marginal performance for the model, but if it is used to evaluate a circuit the results will be pessimistic so the designer should be safe.

This model, see Figure 3, shows a spike in the frequency response at 900 MHz when a 4 pF load capacitor is added to
the circuit. If the spike is just an artifact produced by the model it may have no effect on the actual circuit performance, but if it shows up in the IC transfer function it could cause high frequency oscillation problems. Clearly, the spike needs to be investigated further before the designer can be comfortable with the IC and the model. The data sheet shows quite a bit of difference between the frequency response curves at $\pm 15 \mathrm{~V}$ and $\pm 5 \mathrm{~V}$ power supply operation. The SPICE model analysis shows no difference between these curves, so unless further information comes to light, it must be assumed that the model does not include effects due to power supply variations.

The CLC414 data is shown in Figure 4. The CLC414 model has 2 dB of peaking versus the data sheet peaking of 0 dB , and the model bandwidth is 210 MHz versus the data sheet bandwidth of 70 MHz . The difference in the peaking numbers is within our criteria with the high number being in the model so it is acceptable. The bandwidth difference is so large that the model might be not be usable because it will predict overly optimistic results. Also, the model may need some help; sometimes these models need the addition of external components to aid convergence or measurements. It would be in the designer's best interest to contact the manufacturer's applications department prior to proceeding with a design based on this model.
Figure 5 shows the effect of adding a 4 pF load capacitance. Notice that the peaking increases about 1 dB , and the -3 dB bandwidth increases about 7 percent when the load capacitor is added to the circuit. This is normal operation for a CFA, and it can be countered by increasing the feedback resistor a few percent [5].
The LT1229 data is shown in Figure 6. The LT1229 model has a 0.8 dB dip, while the data sheet shows a 0.2 dB peak. The numbers are small, but they go in opposite directions, so overall it adds up to a 1 dB error which is acceptable. The model bandwidth is 120 MHz , and the data sheet bandwidth is 102 MHz , so this does not meet the evaluation criteria. Furthermore, the model will predict a much better high fre-

TABLE 2. LOAD CONDITION FOR EACH NON-INVERTING GAIN EVALUATION

OP AMP	POWER SUPPLY	LOAD RESISTOR	LOAD CAPACITOR	GAIN	FEEDBACK RESISTOR
HA5013	$\pm 15 \mathrm{~V}$	400 2	10pF	1	$1000 \Omega$
				2	$681 \Omega$
				10	$383 \Omega$
AD811	$\pm 15 \mathrm{~V}$	$150 \Omega$	OpF	1	$750 \Omega$
				2	$649 \Omega$
				10	$511 \Omega$
CLC414	$\pm 5 \mathrm{~V}$	$100 \Omega$	OpF	2	$500 \Omega$
				6	$500 \Omega$
				10	$500 \Omega$
LT1229	$\pm 15 \mathrm{~V}$	$100 \Omega$	OpF	2	$750 \Omega$
				10	$750 \Omega$
				100	$750 \Omega$

quency performance than the IC can deliver, so the designers must factor this into their calculations.

Figure 7 shows the effect of adding a 4 pF load capacitance to the LT1229. The dip decreases about 0.4 dB , while the -3 dB bandwidth increases about 12 percent. Again, this is normal operation for a CFA, and it can be countered by increasing the feedback resistor a few percent.

Figure 8 shows the non-inverting frequency response at $\pm 5 \mathrm{~V}$ power supplies. The data sheet predicts a bandwidth change from 102 MHz to 60 MHz when the power supplies are changed from $\pm 15 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$. The model shows a change from 120 MHz to 60 MHz when the supply voltage is changed. This is an example of why the model needs to be examined before doing any design is with it. At 15 V supplies the designer has to worry about getting optimistic results, while at 5 V supplies the design results should be right on target. This is also a good example of a SPICE model which includes a good supply voltage dependency function.

## Test Results For The Inverting Op Amps

The conditions for each test are exactly the same as those given on the vendor's data sheet. The load conditions for each op amp comparison are given in Table 4. The results of the inverting gain evaluation are summarized in Table 3. The LT1229 data sheet did not include any inverting gain curves, so it was not included in this evaluation.

The HA5013 data is shown in Figure 9. The HA5013 model indicates 1 dB less peaking than the data sheet, and it indicates 15 MHz less bandwidth than the data sheet. Both of these numbers are well within the comparison criteria, so it is safe to assume that the model represents the IC very well for non-inverting gain. The model bandwidth for the gain of 10 configuration is 70 MHz compared to a data sheet bandwidth of 22 MHz , thus this model will yield overly optimistic answers at high inverting gains. If the model designer has to make a compromise, it will usually happen at high inverting gains. The compromises are made at high inverting gains because this is where CFAs are used the least.

The AD811 data is shown in Figure 10. The AD811 model indicates 0.8 dB of peaking, and when this is compared to the data sheet which has no peaking it all looks fine. The model does have 2.3 dB peaking when it is in a gain of -10 configuration, thus, depending on what gain the designer is working at, allowances may have to be made for this error. Again, the compromise has been made at high inverting gains. The model bandwidth matches the data sheet bandwidth very well.

The CLC414 data is shown in Figure 11. The CLC14 model indicates 0.3 dB of peaking, and when this is compared to the 0.8 dB peaking shown on the data sheet it is well within the comparison criteria. The model bandwidth is 180 MHz compared to the data sheet bandwidth of 97 MHz , so the model will predict overly optimistic frequency performance. The -10 dB performance of this model is excellent, which proves that not all model designers push the poorer performance into the high inverting gain configurations.

## Time Domain Testing

Each op amp was evaluated with a $\pm 100 \mathrm{mV}$ square wave input signal to determine the small signal time domain response. If a photograph of this response is in the data sheet, then a comparison can be made to find out how well the PSPICE simulation mirrors the time domain response. If the photograph is not contained in the data sheet, this data still has value because it can be compared to the theoretical time domain response as calculated from the second order transfer function equation [6].

The HA5013 small signal pulse response (equivalent to the time domain response) is shown in Figure 12. The model and the data sheet both show a few percent of overshoot which is very good correlation.

The AD811 small signal pulse response is shown in Figure 13. The PSPICE program was not able to complete the analysis because the time domain response never settled down. The program chooses the time step size according to the activity of the response, and the AD811's very active response dictated a small time step, which resulted in too

## table 3. result of the inverting gain evaluation

OP AMP	GAIN	DATA SHT. PEAKJDIP	MODEL PEAK/DIP	DATA SHT. -3dB BW	$\begin{aligned} & \text { MODEL } \\ & \text {-3dB BW } \end{aligned}$
HA5013	-1	1.5 dB	0.5 dB	100 MHz	85 MHz
	-2	0.4 dBDip	0.6 DipdB	80 MHz	80 MHz
	-10	OdB	OdB	22 MHz	70 MHz
AD811	-1	OdB	0.8 dB	115 MHZ	110 MHZ
	-10	OdB	2.3 dB	95 MHz	105 MHz
CLC414	-1	0.8 dB	0.3 dB	97 MHz	180 MHz
	-5	0.6 dB	OdB	88 MHz	98 MHz
	-10	OdB	OdB	70 MHz	55 MHz

TABLE 4. LOAD CONDITION FOR EACH INVERTING GAIN EVALUATION

OP AMP	POWER   SUPPLY	LOAD   RESISTOR	LOAD   CAPACITOR	GAIN	FEEDBACK   RESISTOR
HA5013	$\pm 15 \mathrm{~V}$	$400 \Omega$	10 pF	-1	$750 \Omega$
				-2	$750 \Omega$
AD811	$\pm 15 \mathrm{~V}$	$150 \Omega$	$0 p F$	-10	$750 \Omega$
				-1	$590 \Omega$

many calculations. The time domain response overshoots the final value by 160 mV for a 200 mV step. This is almost a complete reflection of the input step, and it is very unusual. This phenomena may be related to the spike in the noninverting frequency response curve, but wherever it comes from, it must be investigated and resolved before the model is usable for time domain analysis.
The CLC414 small signal pulse response is shown in Figure 14. The model overshoot is 100 mV , and it settles out in 30 ms . There is no photograph of the small signal pulse response in the data sheet, so the model cannot be compared to the data sheet. How much can the model's transient response be trusted? The only way to determine this is to test the op amp, and then compare the test results to the model results. Considering the large amount of overshoot, and the bandwidth results, this may be a wasted effort.

The LT1229 small signal pulse response is shown in Figure 15. The model overshoot is 85 mV , and it does not settle out for 43 ns . The small signal rise time is shown in the data sheet, and the photograph has very little overshoot. The model overshoot is much more than one would expect from an op amp which has very little peaking in its frequency transfer function,
thus it seems safe to assume that the model adds overshoot to the time domain response. The model is usable for transient analysis, but picking the model artifacts out of the plots will be laborious and possibly misleading.

## Summary

No model meets the evaluation criteria in every case, and this is because the models are approximations of reality. Also, the data sheets, which in this analysis have been considered to be the standard, contain some degree of error. This lack of correlation between the data sheet and the models will always exist; and the proof is that the op amp design engineers always complain that the process models are not accurate enough. The paradox is that when the process models evolve enough to become really accurate the process has usually aged and is becoming obsolete.

The HA5013 model is the most accurate by any standard. It meets all the evaluation criteria except at one point. This is because the model performance standards were set first, and then the model was constructed to meet the performance standards. Designing the model involves a trade-off between complexity, run time, convergence capability and
accuracy. The HA5013 model was able to optimize these parameters through the use of some special techniques.
The LT1229 model is acceptable except for its transient performance. The other models will be hard to use with good accuracy.
The model should be first evaluated against the data sheet. If excellent correlation is obtained, such as the HA5013 gave, then the model results can be trusted. If any doubt exists about the model, then electronic circuit theory, a good calculator and the lab must be employed to settle the questions.
When the model performance matches the data sheet performance, and both match the lab performance the results are trustworthy. This model can be used to predict the performance of any linear circuit configuration which converges.


FIGURE 1. NON-INVERTING FREQUENCY RESPONSE OF THE HA5013


FIGURE 3. UNEXPECTED NON-INVERTING FREQUENCY PLOT FOR THE AD811

## References

[1] Data sheet for HA5013, Harris Semiconductor, 1994. AnswerFAX Document No. 3654
[2] Data sheet for AD811, Analog Devices, 1994
[3] Data sheet for CLC414, Comlinear Corporation, 1993
[4] Data sheet for LT1229, Linear Technology, 1992
[5] Mancini, Ronald, "Converting From Voltage-Feedback To Current-Feedback Amplifiers", Electronic Design, 6/95
[6] Mancini, Ronald, "Feedback, Op Amps And Compensation", Harris Semiconductor 9415, 1995


FIGURE 2. NON-INVERTING FREQUENCY RESPONSE OF THE AD811



FIGURE 5. EFFECT OF 4pF LOAD ON THE CLC414


FIGURE 7. EFFECT OF THE 4pF LOAD ON THE LT1229


FIGURE 9. INVERTING FREQUENCY RESPONSE OF THE HA5013


FIGURE 6. NON-INVERTING FREQUENCY RESPONSE OF THE LT1229


FIGURE 8. NON-INVERTING FREQUENCY RESPONSE OF THE LT1229 AT $\pm 5 \mathrm{~V}$


FIGURE 10. INVERTING FREQUENCY RESPONSE OF THE AD811


FIGURE 11. INVERTING FREQUENCY RESPONSE OF THE CLC414


FIGURE 13. AD811 SMALL SIGNAL PULSE RESPONSE


FIGURE 12. HA5013 SMALL SIGNAL PULSE RESPONSE


FIGURE 14. CLC414 SMALL SIGNAL RESPONSE


FIGURE 15. LT1229 SMALL SIGNAL PULSE RESPONSE

# High-Frequency VGA Has Digital Control 

Author: Ronald Mancini

## Introduction

You can use variable-gain amplifiers (VGAs) in many types of systems, such as radio receivers, in which the input signal voltage depends on an uncontrolled variable, such as distance to the transmitter. In this type of system, you can use a VGA to ensure that the input signal amplitude matches the input voltage range of key components, such as ADCs and DACs, thereby maximizing the converters' dynamic range. The VGA in Figure 1 has high bandwidth, ranging from 115 MHz at high gain to 225 MHz at low gain, so you can use this circuit in the RF-signal path without degrading the signal. You can update the DAC in this circuit at 100 MHz , but the level-shifter op amp limits the speed at which you can update the gain of the VGA to 3 MHz . As configured, this VGA implements a calibration function with a 3 MHz DAC update rate.

The VGA design comprises a three-transistor, long-tailed pair configuration comprising $Q_{1}, Q_{2}$, and $Q_{3}$. By changing the base voltage of $Q_{3}$, the DAC $\left(I_{1}\right)$ varies the emitter currents of the long-tailed pair. Changing $Q_{3}$ 's base voltage controls the gain according to the following equation, where K is a function of the emitter current and $\mathrm{VB}_{3}$ is the base voltage of $Q_{3}$ :

$$
\mathrm{G}=\mathrm{K} \mathrm{~V}_{\mathrm{IN}}\left|\mathrm{~V}_{\mathrm{B} 3}\right| .
$$

The gain control and bias-stability parameters of the circuit depend on transistor matching, so the circuit uses an HFA3102 matched, long-tailed array for $Q_{1}$ through $Q_{3}$. The usable range of $\mathrm{V}_{\mathrm{B} 3}$ is -0.8 to -4.4 V , which corresponds to a gain range of 11.8 to -16.9 dB , respectively. This gain span is a total of 28.7 dB . The gain is proportional to $\mathrm{R}_{4}$. Increasing $\mathrm{R}_{4}$ increases the gain, but the gain span stays constant at approximately 28.7 dB . Increasing the gain causes a corresponding decrease in the frequency response.
$R_{2}, R_{3}$, and the -5 V supply form a bias circuit that sets $V_{B 3}$ to -4.4 V when there is no DAC output current (the voltage across $R_{1}$ is zero), which occurs at a digital input of all ones.

When the digital input is all zeros, the DAC output current is 20 mA , which develops -1 V across $\mathrm{R}_{1}$. $I C_{2}$ level-shifts and amplifies this voltage to yield $\mathrm{V}_{\mathrm{B} 3}=-0.8 \mathrm{~V}$. The CA5160 works well as the level shifter because its low bias currents do not affect the DC performance, and its bandwidth enables the gain to change at a rate as high as 4 MHz .

You should keep the input signal level at about 25 mV to prevent distortion. The signal path has an excellent frequency response because the HFA3102 is the only component in the signal path. A frequency response plot for $V_{B 3}=-3 V$ (gain of 10 dB ) shows that the transfer function is wellbehaved with no peaking and that the frequency response is 131 MHz at the -3 dB point. The DAC transfers the digital input to the internal registers on the rising edge of the clock pulses. This circuit uses the inverting DAC output to yield a positive increasing-transfer function, but you can obtain the inverse-transfer function by using the noninverting input (Table 1).

TABLE 1. VGA PERFORMANCE SUMMARY

PARAMETER	MINIMUM	MAXIMUM
Gain (dB)	-16.9	11.8
$\mathrm{~V}_{\mathrm{B} 3}(\mathrm{~V})$	-4.4	-0.8
$\mathrm{~F}_{-3 \mathrm{~dB}},(\mathrm{MHz})$	225	115
Digital Input/Invelting   Output	000000000000	111111111111
Digital Input/Noninventing   Output	111111111111	000000000000

If fast updates are unnecessary, you can use a slower DAC than IC. However, you may also have to redesign the interface circuit ( $\mathrm{IC}_{2}$ and associated conponents) if the DAC output voltage swing changes (DI \#1895).


NOTE:

1. $Q_{1}, Q_{2}, Q_{3}=H F A 3102$.

FIGURE 1.
This variable-gain amplifier has high bandwidth ranging from 115 MHz at high gain to 225 MHz at low gain, and you can update the gain at a -3 MHz rate.

# Use and Application of Output Limiting Amplifiers (HFA1115, HFA1130, HFA1135) 

## Introduction

Amplifiers with internal voltage clamps, also known as limiting amplifiers, have a wide range of practical uses. They are most commonly used to protect load circuitry that has a limited input range. By connecting the high and low clamp pins to DC levels, the output voltage may be restricted to the desired range. The internal clamp circuitry also avoids saturation of the output stage devices and assures fast overload recovery.

Prior to the introduction of limiting amplifiers, design engineers had to develop their own limiting networks. This network was as simple as two Schottky diodes and a current limiting resistor, or as complicated as an adjustable limiting network that might employ several transistors, resistors and diodes. With limiting amplifiers, adjustable limiting networks are realized with a simple resistor divider network connected to the high and/or low limit pins.

Many other applications exist for limiting amplifiers. Because of their fast response time and flexibility in output voltage range, they make excellent high performance comparators. Several applications make use of the wide bandwidth of the clamp inputs. Through appropriate modulation of the clamp input voltages, an AM modulator, soft clipping circuit and sync stripper can be realized. This application note describes how amplifiers with internal clamps work, the advantages of using these amplifiers for limiting and a number of application circuits.

## Input vs Output Limiting

There are two classes of limiting amplifiers on the market today, those that employ input limiting to constrain the output voltage, and those that utilize output limiting. Each has their own advantages, and users should understand these issues and pick the best one for their application. Advantages of input limiting amplifiers include: better clamp accuracy, continued low closed loop output impedance during limiting, and depending on the implementation, input limiting may or may not prevent input stage saturation.

Input limiting amplifiers have some serious limitations, however, which are not shared by output limiting versions. The input limiting amplifier offers no limiting action when configured in inverting gains, and does not protect against transients introduced at the inverting input, because the input limiting function applies only to the positive input.

Additionally, because the limiting voltages are applied to the input stage, they are amplified by the op amp's gain. This
precludes the use of input limiting amps in open loop configurations (e.g., comparators) and makes the setting of the limit voltages much more critical. Consider a limiting amplifier in a closed loop gain of 10 . A 10 mV error in setting the limit voltage translates into a 100 mV error at the output of an input limiting amplifier, while the output limiting amp delivers only the 10 mV error. If an input limiting amplifier becomes damaged and goes open loop, the rail-to-rail output swing will likely take out the expensive A/D it was designed to protect. Output limiting controls the output excursions as long as the limiting circuitry remains functional. This application note focuses on output limiting amplifiers due to their greater flexibility.

## Output Limiting Current Feedback Amplifiers

Harris Semiconductor's line of output limiting amplifiers are current feedback op amps which feature user programmable output clamps to limit output voltage excursions. Limiting action is obtained by applying voltages to the $\mathrm{V}_{\mathrm{H}}$ and $\mathrm{V}_{\mathrm{L}}$ terminals (pins 8 and 5) of the amplifier. $\mathrm{V}_{\mathrm{H}}$ sets the upper output limit, while $\mathrm{V}_{\mathrm{L}}$ sets the lower clamp level. If the amplifier tries to drive the output above $\mathrm{V}_{\mathrm{H}}$, or below $\mathrm{V}_{\mathrm{L}}$, the clamp circuitry limits the output voltage at $\mathrm{V}_{\mathrm{H}}$, or $\mathrm{V}_{\mathrm{L}}( \pm$ the clamp accuracy) respectively. The output voltage remains at the clamp level as long as the overdrive condition remains.
When the input voltage drops below the overdrive level ( $\mathrm{V}_{\mathrm{CLAMP}} / \mathrm{A}_{\mathrm{VCL}}$ ) the amplifier returns to linear operation. A time delay, known as the Overdrive Recovery Time, is required for this resumption of linear operation. The clamped overdrive recovery time may be an order of magnitude faster than the amplifier's normal saturation recovery time. The low input bias currents of the clamp pins allow them to be driven by simple resistive divider circuits, or active elements such as amplifiers or D/A converters. Because the clamp circuit is part of the amplifier, and the amp has been characterized with the clamp circuit present, the user can be confident that the clamp circuitry will induce minimal performance degradation during normal linear operation.

## Clamp Circuitry

Figure 1 shows a simplified schematic of the HFA1130 input stage, and the high clamp $\left(\mathrm{V}_{\mathrm{H}}\right)$ circuitry. As with all current feedback amplifiers, there is a unity gain buffer $\left(Q_{X 1}-Q_{X 2}\right)$ between the positive and negative inputs. This buffer forces $-\operatorname{IN}$ to track $+\mathbb{I N}$, and sets up a slewing current equal to the
current flowing through the inverting input. This current is mirrored onto the high impedance node $(Z)$ by $Q_{X 3}-Q_{X 4}$, where it is converted to a voltage and fed to the output via another unity gain buffer. If no clamping is utilized, the high impedance node may swing within the limits defined by $\mathrm{Q}_{\mathrm{P} 4}$ and $\mathrm{Q}_{\mathrm{N} 4}$. Note that when the output reaches its quiescent value, the current flowing through -IN is reduced to only that small current ( $-I_{\text {BIAS }}$ ) required to keep the output at the final voltage.


FIGURE 1. HFA1130 SIMPLIFIED V ${ }_{H}$ CLAMP CIRCUITRY
Tracing the path from node $V_{H}$ to node $Z$ illustrates the effect of the clamp voltage on the high impedance node. $\mathrm{V}_{\mathrm{H}}$ decreases by $2 \mathrm{~V}_{\mathrm{BE}}\left(\mathrm{Q}_{\mathrm{N6}}\right.$ and $\left.\mathrm{Q}_{\mathrm{P6}}\right)$ to set up the base voltage on $Q_{P 5}$. Q P5 begins to conduct whenever the high impedance node reaches a voltage equal to $Q_{P 5}$ 's base $+2 V_{B E}$ ( $Q_{P 5}$ and $\left.Q_{N 5}\right)$. Thus, $Q_{P 5}$ clamps node $Z$ whenever $Z$ reaches $V_{H} . R_{1}$ provides a pull-up network to ensure functionality with the clamp input floating. A similar description applies to the symmetrical low clamp circuitry controlled by $\mathrm{V}_{\mathrm{L}}$.

When the output is clamped, the negative input continues to source a slewing current (ICLAMP) in an attempt to force the output to the quiescent voltage defined by the input. $Q_{P 5}$ must sink this current while clamping, because the -IN current is always mirrored onto the high impedance node.

## Clamp Accuracy

The clamped output voltage will not be exactly equal to the voltage applied to $\mathrm{V}_{\mathrm{H}}$ or $\mathrm{V}_{\mathrm{L}}$. Offset errors, mostly due to $\mathrm{V}_{\mathrm{BE}}$ mismatches, cause inaccuracies in the clamping level. Clamp accuracy is a function of the clamping conditions. Referring again to Figure 1, it can be seen that one component of clamp accuracy is the $V_{B E}$ mismatch between the $Q_{X 6}$ transistors, and the $Q_{X 5}$ transistors. If the transistors are run at the same current level there is no $V_{B E}$ mismatch, and no contribution to the inaccuracy. The $Q_{X 6}$ transistors are biased at a constant current, but as described earlier, the current through $Q_{X 5}$ is equivalent to ICLAMP. V $\mathrm{V}_{\mathrm{BE}}$ increases as ICLAMP increases, causing the clamped output voltage to increase as well.
$I_{\text {CLAMP }}$ is a function of the overdrive level and $R_{F}$, so clamp accuracy degrades as the overdrive increases, and as $R_{F}$ decreases. Consideration must also be given to the fact that the clamp voltages have an effect on amplifier linearity. As the output voltage approaches the clamp level the clamp circuitry starts to conduct and linearity degrades. Most limiting amplifier data sheets detail the impact on linearity in a graph entitled: "Non-linearity Near Clamp Voltage".

## Clamp Range

Unlike some limiting amplifiers, both $V_{H}$ and $V_{L}$ of HFA series amplifiers have usable ranges that cross 0 V . While $\mathrm{V}_{\mathrm{H}}$ must be more positive than $\mathrm{V}_{\mathrm{L}}$, both may be positive or negative, within the range restrictions indicated in the specifications. For example, the HFA1130 output could be limited to ECL levels by setting $\mathrm{V}_{\mathrm{H}}=-0.8 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{L}}=-1.8 \mathrm{~V}$.

## Use as a Protection Circuit

Limiting amplifiers are frequently used to protect circuitry that has a limited input range. A classic example is a buffer for an A/D converter. Many A/D converters can be damaged if their input is taken much beyond their specified input range. In addition to providing necessary input voltage clamping, a limiting amplifier can provide the peak currents needed to charge the A/D converter input capacitance and remain stable with step changes in input voltage. Of course, the limiting amplifier can also provide the gain and level shifting frequently required preceding an $A / D$ converter.
In Figure 2, the HFA1135 limiting amplifier is used to drive the HI1175 8-bit, 20 MSPS A/D Converter. The HFA1135 is configured as a level shifting amplifier with an offset of 0.5 V and a gain of 2. This allows a ground referenced, 1V Max signal to span the full 2 V input range of the H 1175 . The HI 1175 is typical of many single supply $A / D$ converters which have an input range that does not include ground. The $\mathrm{V}_{\mathrm{RT}}$ and $\mathrm{V}_{\mathrm{RB}}$ voltages of 2.5 V and 0.5 V respectively set the limits of the H 11175 input range. The $\mathrm{V}_{\mathrm{L}}$ clamp voltage of OV keeps the lower limit of the input to the H 11175 within its absolute maximum range. The 0.5 V difference between the nominal minimum input voltage and the clamp voltage assures that the clamp circuitry does not effect the linearity of the circuit. A voltage divider sets the $\mathrm{V}_{\mathrm{H}}$ voltage to approximately 3 V .


FIGURE 2. HFA1135 DRIVING THE HI1175 ADC


FIGURE 3. HFA1130 DRIVING THE HI1166 ADC
In Figure 3, the HFA1130 is used in a gain of -2 to drive the input of the HI1166 8-bit, 250 MSPS A/D Converter. Typical of A/D converters that operate above 100Msps, the HI1166 is an ECL part that runs from power supplies of GND and -5.2 V . The HFA1130 allows a 0 V to 1 V input to span the OV to -2 V range of the A/D converter. Resistor dividers set the $\mathrm{V}_{\mathrm{H}}$ and $\mathrm{V}_{\mathrm{L}}$ limit levels to 0.5 V and -2.5 V , respectively.

## Using Current Feedback Amplifiers as Comparators

Current feedback amplifiers, especially those with output limiting, make excellent high speed, open loop comparators. Recall that the non-inverting input connects to the input of a unity gain buffer, while the inverting input connects to the buffer output. This buffer sources or sinks current until the error current is minimized, and this buffer current is mirrored onto the high impedance node to provide the slewing current. Since the slewing current is proportional to the current flowing through the amplifier's inverting input, the slew rate may be adjusted by the external resistance on the inverting input.

If a voltage is applied to the non-inverting input, the internal buffer forces the inverting input to the same voltage, the buffer will sink or source current accordingly, and the amplifier output will fall or rise respectively. With no provision for feedback, the buffer's current remains constant, and the output drives into the stops resulting in output saturation with its undesirable effects.
Consider the HFA1130 based inverting comparator circuit (Figure 4). The GND at the HFA1130's non-inverting input forces the internal buffer to output OV at the inverting input. As soon as $\mathrm{V}_{\mathbb{I N}}$ rises above OV , the input buffer begins sinking current, and the output signal falls to its negative stop. When $\mathrm{V}_{\text {IN }}$ returns below GND, the output transitions high.


FIGURE 4. HFA1130 IMPLEMENTED AS AN INVERTING, 2ns, TTL COMPATIBLE OUTPUT COMPARATOR

Because of the HFA1130's relatively small propagation delay of 0.5 ns , the dominant component of the comparator's response time is the op amp's slew rate. Since the slew rate is a function of $\boldsymbol{l}_{\mathbb{N}}$, the response time is strongly influenced by $\mathrm{V}_{\mathrm{IN}}$, and the choice of $\mathrm{R}_{\mathrm{IN}}$. Decreasing $\mathrm{R}_{\mathrm{IN}}$ decreases the response time, with a slight decrease in limiting accuracy, (Figure 5). However, if $\mathrm{R}_{\text {IN }}$ is too small the internal current mirrors can saturate and reverse the effect. To implement a non-inverting comparator, simply ground the outboard side of $\mathrm{RIN}_{\mathrm{I}}$, and apply the input signal to the amplifier's non-inverting input.


FIGURE 5. DECREASING RIN REDUCES THE COMPARATOR RESPONSE TIME FROM 2.5ns TO 1.2ns

## Comparator Benefits From Output Limiting

The HFA1130's open loop response plot (Figure 6) illustrates the key advantages of using output limiting amplifiers for comparator applications. Besides the obvious benefit of constraining the output swing to a defined logic range, limiting the output excursions also keeps the output transistors from saturating which prevents unwanted saturation artifacts from distorting the output signal. Utilizing the output limiting function also takes advantage of the HFA1130's ultra-fast recovery from clamped overdrive ( $<1 \mathrm{~ns}$ ). Instead of the $>10 \mathrm{~ns}$ propagation delay (the HFA1130's normal saturation recovery time) obtained with the unrestricted output, limiting the positive swing to 2.5 V yields a $2 n s$ response time.


FIGURE 6. COMPARISON OF COMPARATOR RESPONSE WITH AND WITHOUT OUTPUT LIMITING

## AM Modulator Circuit

The fast overdrive recovery time and wide bandwidth of the clamp inputs allows these inputs to be driven by high frequency AC as well as DC signals. When driven at the appropriate
levels, the clamp inputs may be used to form an AM modulator. Figure 7 shows a complete AM modulator circuit. The HFA1130 Limiting Amplifier is driven by a $4 \mathrm{~V}_{\text {p-p }}$ carrier signal. The gain of 2 through the HFA1130 insures that the carrier amplitude is sufficient to drive the output over its $\pm 3.3 \mathrm{~V}$ range.


## FIGURE 7. AM MODULATOR UTILIZING THE HFA1130 LIMITING CAPABIILITY

The HFA1212 performs the necessary level shifting and inversion to convert the modulating signal input into a pair of antiphase signals that control the high and low clamp inputs. $U_{1 \mathrm{~A}}$ inverts the signal and level shifts to -1.5 V . $\mathrm{U}_{1 \mathrm{~B}}$ inverts that signal forming a complimentary signal centered at +1.5 V .

With a signal input of $0 \mathrm{~V}, \mathrm{U}_{2}$ produces a $3 \mathrm{~V}_{\mathrm{P}-\mathrm{P}}$ output at the carrier frequency. As the signal input varies, $\mathrm{U}_{2}$ produces a symmetrically modulated carrier with a maximum amplitude of $6 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$. The oscilloscope photograph in Figure 8 shows a 5 MHz carrier AM modulated by a 100 kHz signal. The $2300 \mathrm{~V} / \mu$ s slew rate of the HFA1130 limits $6 \mathrm{~V}_{\mathrm{P}-\mathrm{p}}$ amplitude carrier signals to a frequency of 61 MHz . If adjusted for lower output signal levels, the carrier and modulating frequencies can be increased to well above 100 MHz .


FIGURE 8. A 5 MHz CARRIER IS AM MODULATED BY A 100 kHz SIGNAL

## Soft Clipping Circuit

Any amplifier stage driven to the limit of its linear range will cause signal clipping. The circuit described here establishes a clipping level that is a function of the input signal. The result is a soft clamp function where the amplifier has one gain in its linear operating range and a user programmable lower gain when the output reaches an arbitrary threshold. The circuit may be used in imaging applications to expand the contrast of low level signals. It can be used in audio circuits to avoid generation of objectionable harmonics due to hard clipping. It also has application in control loops that otherwise would become unstable when their error amplifiers saturate. This circuit can be used in a broad range of applications that require a combination of high sensitivity for low level signals and wide dynamic range.

The basic soft clipping circuit, based on the HFA1135, is shown in Figure 9. The nominal value of $R_{1}$ is $1.5 \mathrm{k} \Omega$ which is the optimum feedback resistor for the HFA1135. Hard clamping results with $R_{2}$ and $R_{4}$ shorted, and $R_{3}$ and $R_{5}$ removed. Figure 10 illustrates the hard clamping operation with a 100 kHz input signal and clamp levels set at $\pm 1 \mathrm{~V}$. The circuit has unity gain for inputs that fall between the clamp levels. The addition of $R_{2}$ through $R_{5}$ make the clamp level a function of the input signal. The output for signals in excess of $\mathrm{V}_{\mathrm{CH}}$ (Voltage Clamp High) is given by:
$V_{O}=\left(V_{I N} R_{2}+V_{C H} R_{3}\right) /\left(R_{2}+R_{3}\right)$.


FIGURE 9. HFA1135 OUTPUT LIMITING AMPLIFIER CONFIGURED FOR SOFT LIMITING


FIGURE 10. HARD CLIPPING RESULTS FROM A GAIN OF ZERO ABOVE THE CLAMP LEVEL

Figure 11 shows the result with $R_{2}$ and $R_{4}$ set to $1 \mathrm{k} \Omega$, and $R_{3}$ and $R_{5}$ set to $5 k \Omega$. The gain for signals greater than 1 V is $1 / 6$. In Figure 12, $R_{2}$ through $R_{5}$ have been set to $1 \mathrm{k} \Omega$, and the gain above 1 V is $1 / 2$. Note that the high and low clamp levels need not be symmetrical, and the attenuation factors above and below those levels may be different.
Limiting amplifiers are frequently used at the front end of systems to accommodate wide dynamic range signals that may extend beyond the common mode range of the system.

While the circuit in Figure 9 performs soft clipping, it is restricted to signals within the $\pm 2.4 \mathrm{~V}$ input voltage range of the HFA1135. The circuit in Figure 13 incorporates an additional clamp network that allows the circuit to be used with signals that exceed the input voltage range. Using the values shown, the circuit has unity gain for signals that range between $\pm 1 \mathrm{~V}$. The gain for inputs beyond that range is $1 / 6$. Soft clipping works for signals up to $\pm 9.4 \mathrm{~V}$ which is well in excess of the $\pm 5 \mathrm{~V}$ power supply. levels for the HFA1135.


FIGURE 11. SOFT CLIPPING WITH A GAIN OF $1 / 6$ ABOVE THE CLAMP LEVEL


FIGURE 12. SOFT CLIPPING WITH A GAIN OF $1 / 2$ ABOVE THE CLAMP LEVEL


FIGURE 13. SOFT CLIPPING CIRCUIT WITH EXTENDED INPUT RANGE

## No．TB334 September 1995

# Guidelines for Soldering Surface Mount Components to PC Boards 

Author：Maury Rosenfield

The most commonly used techniques for mounting SMDs （Surface Mounted Devices）to PC boards are Infrared（IR）and Vapor Phase（VP）reflow．IR and VP reflow are preferred over wave soldering．Wave soldering typically involves increased heating rate，higher temperatures and increased flux exposure．
The dynamics of the reflow process are influenced by the type of equipment used．The variables involved must be understood to properly control the board level interconnection of SMDs．
The primary phases of the reflow process are：flux activation， melting the solder particles in the solder paste，wetting the surfaces to be joined，and solidifying the solder into a strong metallurgical bond
Optimum fusing of the component leads with the solder paste on the board is achieved when the leads attain the melting temperature of the plated solder alloy．To avoid thermal shock of the SMDs the maximum heating and cooling rates（i．e．，ramp rate）should be controlled．

## IR Reflow

The IR reflow technique involves thermal energy supplied via lamps radiating at a given range of wavelength．This heating approach in its basic form is essentially a line－of－sight surface－ heating technique．Therefore，the amount of thermal energy absorbed varies with board size，component size，component orientation，and materials used．The surface temperature of the board is not uniform throughout and board edges tend to run $10^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ higher than the center．If not properly planned，component overheating is possible．

## Vapor Phase Reflow

The vapor phase reflow technique uses vapor from a boiling inert fluorocarbon liquid．The heat of condensation provides a thermal constraint dependent on the liquid selected．A typical material in the industry has a boiling point of $215^{\circ} \mathrm{C}$ ．PC board temperature exposure should be very uniform．With essentially no temperature gradient across the surface of the board， component location design rules for even heating is not significant compared to IR reflow．

## Solder Profile Development

Heating Rate－To avoid thermal shock to sensitive components the maximum heating rate should be controlled．It is desirable to hold the heating rate to less than $5^{\circ} \mathrm{C} / \mathrm{s}$ ．
Preheat Zone－Boards should be preheated prior to the reflow step．Over－baking the solder paste and exceeding the glass transition temperature of the epoxy in FR－4 boards should be avoided．Depending on the type of IR or VP equipment，the
temperature of the component and the PC board should be within the range from $105^{\circ} \mathrm{C}$ to $145^{\circ} \mathrm{C}$ ．
Time above Solder Melting Point－It is recommended that the solder at the joint be kept above its melting point for sufficient time to flow and wet the lands and the leads．Depending on type of equipment and component size；time above $180^{\circ} \mathrm{C}$ could range from 10 s to 150 s．Extended duration above the solder melting point may damage the board and sensitive components．This value should be minimized but sufficient to allow for good solder joint formation．
Peak Reflow Temperature－The peak temperature of the solder joint during reflow should be high enough for adequate flux action and solder flow to obtain good wetting．The preferred peak temperatures for IR and VP reflow are $215^{\circ} \mathrm{C}-220^{\circ} \mathrm{C}$ ． Residence time at peak temperatures should be minimized．
Cooling Rate－The cooling rate of the solder joint after reflow is important because the faster the cooling rate，the smaller the grain size of the solder，and the higher the fatigue resistance． However，care should be taken to avoid an excessive temperature gradient resulting in potential damage due to mechanical stress．

## Summary of Soldering Precautions

The soldering process can create a thermal stress on any semiconductor component．The melting temperature of solder is higher than the maximum rated temperature of the device． The amount of time the device is heated to a high temperature should be minimized to assure device reliability．Therefore，the following precautions should always be observed in order to minimize the thermal stress to which the devices are subjected．
1．Always preheat the device．
2．The delta temperature between the preheat and soldering should always be less than $100^{\circ} \mathrm{C}$ ．Failure to preheat the device can result in excessive thermal stress which can damage the device．
3．The maximum temperature gradient should be less than $5^{\circ} \mathrm{C}$ per second when changing from preheating to soldering．
4．The peak temperature in the soldering process should be at least $30^{\circ} \mathrm{C}$ higher than the melting point of the solder chosen．
5．The maximum soldering temperature and time for wave soldering must not exceed $260^{\circ} \mathrm{C}$ for 5 s on the leads and case of the device．
6．After soldering is complete，forced cooling will increase the temperature gradient and may result in latent failure due to mechanical stress．
7．During cooling，mechanical stress or shock should be avoided．

# LINEAR 

## PACKAGING INFORMATION

PAGE
LINEAR PACKAGE SELECTION GUIDE ..... $11-2$
PACKAGE OUTLINES
Dual-In-Line Plastic Packages (PDIP) ..... 11-8
Small Outline Plastic Packages (SOIC) ..... 11-14
Power Small Outline Plastic Packages (PSOP) ..... 11-20
Plastic Leaded Chip Carrier Packages (PLCC) ..... 11-22
Metric Plastic Quad Flatpack Packages (MQFP) ..... 11-24
Ceramic Dual-In-Line Metal Seal Packages (SBDIP) ..... 11-25
Ceramic Dual-In-Line Frit Seal Packages (CERDIP). ..... 11-28
Metal Can Packages (Can) ..... 11-31

## Linear Package Selection Guide

## Using the Selection Guide:

The first character of each entry indicates the package type, while the number preceding the decimal point details the package lead count. Except for Can packages, the decimal point and succeeding numbers specify the package width in inches (e.g. __. $15=150$ mil width). The entire entry indicates the table containing the appropriate package dimensions (e.g. 8 lead PDIP dimensions are detailed in Table E8.3).

PART NUMBER	PDIP	$\begin{aligned} & \text { SOIC, SSOP, } \\ & \text { TSSOP, PSOP } \end{aligned}$	PLCC	$\begin{aligned} & \hline \text { CERDIP (F), } \\ & \text { SBDIP (D) } \end{aligned}$	QUAD FLATPACK	CAN
CA124	E14.3	M14.15	-	-	-	-
CA1391	E8.3	-	-	-	-	-
CA1394	E8.3	-	-	-	-	-
CA139	E14.3	M14.15	-	F14.3	-	-
CA1458	E8.3	-	-	-	-	T8.C
CA1558	E8.3	-	-	-	-	T8.C
CA158	E8.3	M8.15	-	-	-	T8.C
CA224	E14.3	M14.15	-	-	-	-
CA239	E14.3	M14.15	-	F14.3	-	-
CA258	E8.3	M8.15	-	-	-	T8.C
CA2904	E8.3	M8.15	-	-	-	-
СА3018	-	-	-	-	-	T12.B
СА3020	-	-	-	-	-	T12.B
СА3028	E8.3	M8.15	-	-	-	T8.C
САЗ039	-	M14.15	-	-	-	T12.B
CA3045	-	-	-	F14.3, D14.3	-	-
CA3046	E14.3	M14.15	-	-	-	-
CA3049	-	-	-	-	-	T12.B
СА3053	E8.3	-	-	-	-	T8.C
CA3054	E14.3	M14.15	-	-	-	-
CA3060	E16.3	-	-	-	-	-
СА3078	E8.3	M8.15	-	-	-	T8.C
СА3080	E8.3	M8.15	-	-	-	T8.C
САЗ081	E16.3	M16.15	-	F16.3	-	-
САЗ082	E16.3	M16.15	-	F16.3	-	-
СА3083	E16.3	M16.15	-	F16.3	-	-
СА3086	E14.3	M14.15	-	F14.3	-	-
САЗ089	E16.3	M20.3	-	-	-	-
СА3094	E8.3	M8.15	-	-	-	T8.C
СА3096	E16.3	M16.15	-	-	-	-
СА3098	E8.3	-	-	-	-	-
CA3100	E8.3	M8.15	-	-	-	T8.C
CA3102	E14.3	M14.15	-	-	-	-
CA3126	E16.3	M20.3	-	-	-	-

## Linear Package Selection Guide

PART NUMBER	PDIP	SOIC, SSOP, TSSOP, PSOP	PLCC	$\begin{aligned} & \text { CERDIP (F), } \\ & \text { SBDIP (D) } \end{aligned}$	QUAD FLATPACK	CAN
CA3127	E16.3	M16.15	-	-	-	-
CA3130	E8.3	M8.15	-	-	-	T8.C
CA3140	E8.3	M8.15	-	-	-	T8.C
CA3141	E16.3	-	-	-	-	-
CA3146	E14.3	M14.15	-	-	-	-
CA3160	E8.3	-	-	-	-	T8.C
CA3183	E16.3	M16.15	-	-	-	-
CA3189	E16.3	-	-	-	-	-
CA3193	E8.3	-	-	-	-	T8.C
CA3227	E16.3	M16.15	-	-	-	-
CA324	E14.3	M14.15	-	-	-	-
CA3240	E8.3, E14.3	-	-	-	-	-
CA3246	E14.3	M14.15	-	-	-	-
CA3256	E18.3	M20.3	-	-	-	-
CA3260	E8.3	-	-	-	-	T8.C
CA3280	E16.3	-	-	F16.3	-	-
СА3290	E8.3, E14.3	-	-	-	-	T8.C
CA339	E14.3	M14.15	-	-	-	-
CA3420	E8.3	-	-	-	-	T8.C
CA3440	E8.3	M8.15	-	-	-	-
CA3450	E16.3	-	-	-	$\bullet$	-
CA358	E8.3	M8.15	-	$\bullet$	$\bullet$	T8.C
CA5130	E8.3	M8.15	-	-	-	T8.C
CA5160	E8.3	M8.15	-	-	-	T8.C
CA5260	E8.3	M8.15	$\cdot$	-	-	-
CA5420	E8.3	M8.15	-	-	-	T8.C
CA5470	E14.3	M14.15	-	-	-	-
CA555	E8.3	M8.15	-	-	-	T8.C
CA741	E8.3	-	-	-	-	T8.C
CD22402	E24.6	-	$\cdot$	D24.6	-	-
HA-2400	-	-	-	F16.3	-	-
HA-2404	-	-	-	F16.3	-	-
HA-2405	E16.3	-	-	F16.3	-	-
HA-2406	E16.3	M16.3	-	F16.3	$\cdot$	-
HA-2420	-	-	-	F14.3	$\cdot$	$\bullet$
HA-2425	E14.3	M14.15	N20.35	F14.3	-	$\bullet$
HA-2444	E16.3	M16.3	-	-	-	-
HA-2500	-	-	$\cdot$	F8.3A	$\bullet$	T8.C
HA-2502	-	-	-	F8.3A	-	T8.C

EXAMPLE:


Linear Package Selection Guide

PART NUMBER	PDIP	SOIC, SSOP, TSSOP, PSOP	PLCC	$\begin{aligned} & \hline \text { CERDIP (F), } \\ & \text { SBDIP (D) } \end{aligned}$	QUAD FLATPACK	CAN
HA-2505	E8.3	-	-	F8.3A	-	T8.C
HA-2510	-	-	-	F8.3A	-	T8.C
HA-2512	-	-	-	F8.3A	-	T8.C
HA-2515	E8.3	-	-	F8.3A	-	T8.C
HA-2520	-	-	-	F8.3A	-	T8.C
HA-2522	-	-	-	F8.3A	-	T8.C
HA-2525	E8.3	M8.15	N20.35	F8.3A	-	T8.C
HA-2529	E8.3	M8.15	-	F8.3A	-	T8.C
HA-2539	E14.3	M14.15	-	F14.3	-	-
HA-2540	E14.3	M14.15	-	F14.3	-	-
HA-2541	-	-	-	F14.3	-	T12.C
HA-2542	E14.3	-	-	F14.3	-	T12.C
HA-2544	E8.3	M8.15	-	F8.3A	-	T8.C
HA-2546	E16.3	M16.3	-	F16.3	-	-
HA-2547	-	-	-	F16.3	-	-
HA-2548	E8.3	M16.3	-	D8.3	-	T8.C
HA-2556	E16.3	M16.3	-	F16.3	-	-
HA-2557	E16.3	M16.3	-	F16.3	-	-
HA-2600	-	-	-	F8.3A	-	T8.C
HA-2602	-	-	-	F8.3A	-	T8.C
HA-2605	E8.3	M8.15	-	F8.3A	-	T8.C
HA-2620	-	-	-	F8.3A	-	T8.C
HA-2622	-	-	-	F8.3A	-	T8.C
HA-2625	E8.3	M8.15	-	F8.3A	-	T8.C
HA-2640	-	-	-	F8.3A	-	T8.C
HA-2645	-	-	-	F8.3A	-	T8.C
HA-2839	E14.3	-	-	F14.3	-	-
HA-2840	E8.3, E14.3	M8.15	-	F8.3A	-	-
HA-2841	E8.3, E14.3	M8.15	-	-	-	-
HA-2842	E8.3, E14.3	M8.15	-	-	-	-
HA-2850	E8.3, E14.3	M8.15	-	-	-	-
HA4201	E8.3	M8.15	-	-	-	-
HA4244	-	M8. 15	-	-	-	-
HA4314B	E14.3	M14.15	-	-	-	-
HA4344B	E16.3	M16.15	-	-	-	-
HA4404B	E16.3	M16.15	-	-	-	-
HA456	-	-	N44.65	-	Q44.10×10	-
HA457	-	-	-	-	Q44.10×10	-
HA4600	E8.3	M8.15	-	-	-	-

EXAMPLE:


Linear Package Selection Guide

PART NUMBER	PDIP	SOIC, SSOP, TSSOP, PSOP	PLCC	$\begin{aligned} & \text { CERDIP (F), } \\ & \text { SBDIP (D) } \end{aligned}$	QUAD FLATPACK	CAN
HA-4741	E14.3	M16.3	-	F14.3	-	-
HA-4900	-	-	-	F16.3	-	-
HA-4902	-	-	-	F16.3	-	-
HA-4905	E16.3	M16.3	N20.35	F16.3	-	-
HA-5002	E8.3	M8.15	N20.35	F8.3A	-	T8.C
HA-5004	-	-	-	F14.3	-	-
HA5013	E14.3	M14.15	-	-	-	-
HA-5020	E8.3	M8.15	-	F8.3A	-	$\cdot$
HA5022	E16.3	M16.15	-	-	-	-
HA5023	E8.3	M8.15	-	-	-	-
HA5024	E20.3	M20.3	-	-	-	-
HA5025	E14.3	M14.15	-	-	-	-
HA-5033	E8.3	M8.15A	-	-	-	T12.C
HA-5101	E8.3	M8.15	-	F8.3A	-	T8.C
HA-5102	E8.3	M16.3	-	F8.3A	-	T8.C
HA-5104	E14.3	M16.3	-	F14.3	-	-
HA-5111	E8.3	M8.15	-	F8.3A	-	-
HA-5112	E8.3	M16.3	-	F8.3A	-	-
HA-5114	E14.3	M16.3	-	F14.3	-	-
HA-5127	E8.3	M8.15	-	F8.3A	-	-
HA-5130	-	-	-	F8.3A	-	T8.C
HA-5134	-	-	-	F14.3	-	-
HA-5135	-	-	-	F8.3A	-	T8.C
HA-5137	E8.3	M8.15	-	F8.3A	-	-
HA-5142	E8.3	M16.3	-	F8.3A	-	T8.C
HA-5144	E14.3	M16.3	-	F14.3	-	-
HA-5147	E8.3	-	-	F8.3A	-	T8.C
HA-5160	-	-	-	-	-	T8.C
HA-5162	-	-	-	-	-	T8.C
HA-5170	-	-	-	F8.3A	-	T8.C
HA-5177	E8.3	-	-	F8.3A	-	-
HA-5190	-	-	-	F14.3	-	T12.C
HA-5195	-	M14.15	-	F14.3	-	T12.C
HA-5221	E8.3	M8.15	-	F8.3A	-	T8.C
HA-5222	E16.3	M16.3	-	F8.3A	-	-
HA-5320	E14.3	M16.3	-	F14.3	-	$\cdot$
HA-5330	E14.3	-	-	F14.3	-	-
HA-5340	E14.3	M16.3	-	F14.3	-	-
HA5351	E8.3	M8.15	-	-	-	-

EXAMPLE:
PACKAGE TYPE

M 16.15


Linear Package Selection Guide

PART NUMBER	PDIP	$\begin{aligned} & \text { SOIC, SSOP, } \\ & \text { TSSOP, PSOP } \end{aligned}$	PLCC	$\begin{aligned} & \text { CERDIP (F), } \\ & \text { SBDIP (D) } \end{aligned}$	$\begin{aligned} & \text { QUAD } \\ & \text { FLATPACK } \end{aligned}$	CAN
HA7210	E8.3	M8.15	-	-	-	-
HA7211	-	M8.15	-	-	-	-
HFA1100	E8. 3	M8.15	-	F8.3A	-	-
HFA1102	E8.3	M8.15	-	F8.3A	-	-
HFA1103	E8.3	M8.15	-	-	-	-
HFA1105	E8.3	M8.15	$\cdot$	-	-	-
HFA1106	E8.3	M8.15	-	-	-	-
HFA1109	E8.3	M8.15	-	-	-	-
HFA1110	E8.3	M8.15	-	F8.3A	-	-
HFA1112	E8.3	M8.15	-	F8.3A	-	-
HFA1113	E8.3	M8.15	-	F8.3A	-	-
HFA1114	E8.3	M8.15	-	-	-	-
HFA1115	E8.3	M8.15		-	-	-
HFA1118	E8.3	M8.15	-	-	-	-
HFA1119	E8.3	M8.15	-	-	-	-
HFA1120	E8.3	M8.15	-	F8.3A	-	-
HFA1130	E8.3	M8.15	-	F8.3A	-	-
HFA1135	E8.3	M8.15	-	-	-	-
HFA1145	E8.3	M8.15	-	-	-	-
HFA1149	E8.3	M8.15	-	-	-	-
HFA1205	E8.3	M8.15	-	-	-	-
HFA1212	E8.3	M8.15	-	-	-	-
HFA1245	E14.3	M14.15	-	-	-	-
HFA1405	E14.3	M14.15	$\bullet$	-	-	$\cdot$
HFA1412	E14.3	M14.15	-	-	-	-
HFA3046	-	M14.15	-	-	-	-
HFA3096	-	M16.15	-	-	-	$\bullet$
HFA3101	-	M8.15	-	-	-	-
HFA3102	-	M14.15	-	-	-	-
HFA3127	-	M16.15	-	-	-	-
HFA3128	-	M16.15	-	-	-	-
HFA3600	-	M14.15	-	-	-	-
HFA5250	-	M28.3	-	-	-	-
HFA5253	-	M20.3A	$\cdot$	-	-	-
ICL7611	E8.3	M8.15	-	-	$\cdot$	T8.C
ICL7612	E8.3	M8.15	-	-	-	T8.C
ICL7621	E8.3	M8.15	$\cdot$	-	-	T8.C
ICL7641	E14.3	-	*	-	$\cdot$	-
ICL7642	E14.3	-	-	-	-	-

EXAMPLE:


Linear Package Selection Guide

PART NUMBER	PDIP	SOIC, SSOP,   TSSOP, PSOP	PLCC	CERDIP (F),   SBDIP (D)	QUAD   FLATPACK	CAN
ICL7650S	E8.3, E14.3	M8.15, M14.15	-	F14.3	-	T8.C
ICL8013	-	-	-	-	-	T10.C
ICL8038	E14.3	-	-	$F 14.3$	-	-
ICM7242	E8.3	M8.15	-	-	-	-
ICM7555	E8.3	M8.15	-	-	-	-
ICM7556	E14.3	-	-	F14.3	-	T8.C
LM1458	E8.3	-	-	-	-	
LM2901	E14.3	M14.15	-	-	-	
LM2902	E14.3	M14.15	-	-	-	-
LM2904	E8.3	-	-	-	-	-
LM324	E14.3	-	-	-	-	-
LM3302	E14.3	M14.15	-	-	-	-
LM339	E14.3	-	-	-	-	-
LM358	E8.3	-	-	-	-	-
LM555	E8.3	-	-	-	-	-
LM741	E8.3	-	-	-	-	-

EXAMPLE:


## Plastic Packages for Integrated Circuits

## Dual-In-Line Plastic Packages (PDIP)


-B


NOTES:

1. Controlling Dimensions: $\operatorname{INCH}$. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and $L$ are measured with the package seated

E8.3 (JEDEC MS-001-BA ISSUE D) 8 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8,10
C	0.008	0.014	0.204	0.355	-
D	0.355	0.400	9.01	10.16	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
e		SC		BSC	-
$\mathrm{e}_{\mathrm{A}}$		SC		BSC	6
$\theta_{B}$	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	8		8		9

Rev. 0 12/93 in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch ( 0.25 mm ).
6. $E$ and $e_{A}$ are measured with the leads constrained to be perpendicular to datum -C -.
7. $e_{B}$ and $e_{C}$ are measured at the lead tips with the leads unconstrained. $e_{C}$ must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch $(0.25 \mathrm{~mm})$.
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch (0.76-1.14mm).

## Dual-In-Line Plastic Packages (PDIP)



E14.3 (JEDEC MS-001-AA ISSUE D) 14 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8
C	0.008	0.014	0.204	0.355	-
D	0.735	0.775	18.66	19.68	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
e		BSC		BSC	-
$\theta_{\text {A }}$	0.3	SS		BSC	6
$\theta_{B}$	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	14		14		9

Rev. 0 12/93 in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch ( 0.25 mm ).
6. $E$ and $e_{A}$ are measured with the leads constrained to be perpendicular to datum - $\mathrm{C}-$.
7. $\theta_{\mathrm{B}}$ and $\theta_{\mathrm{C}}$ are measured at the lead tips with the leads unconstrained. $e_{C}$ must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch ( 0.25 mm ).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of 0.030-0.045 inch (0.76-1.14mm).

## Dual-In-Line Plastic Packages (PDIP)



E16.3 (JEDEC Ms-001-bB ISSUE D) 16 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8,10
C	0.008	0.014	0.204	0.355	-
D	0.735	0.775	18.66	19.68	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
e	0.10	BSC		BSC	-
$\mathrm{e}_{\mathrm{A}}$	0.30	SC		3SC	6
$e_{B}$	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	16		16		9

Rev. 0 12/93 in JEDEC seating plane gauge GS-3.
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch ( 0.25 mm ).
6. $E$ and $e_{A}$ are measured with the leads constrained to be perpendicular to datum $-\mathrm{C}-$
7. $e_{\mathrm{B}}$ and $\theta_{\mathrm{C}}$ are measured at the lead tips with the leads unconstrained. $\theta_{\mathrm{C}}$ must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch ( 0.25 mm ).
9. N is the maximum number of terminal positions.
10. Corner leads ( $1, \mathrm{~N}, \mathrm{~N} / 2$ and $\mathrm{N} / 2+1$ ) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch (0.76-1.14mm).

## Dual-In-Line Plastic Packages (PDIP)



NOTES:

1. Controlling Dimensions: $\operatorname{INCH}$. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and $L$ are measured with the package seated in JEDEC seating plane gauge GS-3.

E18.3 (JEDEC MS-001-BC ISSUE D) 18 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.210	-	5.33	4
A1	0.015	$\bullet$	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.15	1.77	8, 10
C	0.008	0.014	0.204	0.355	-
D	0.845	0.880	21.47	22.35	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
e	0.10	SC		BSC	-
$\theta_{\text {A }}$	0.30	SC		BSC	6
$e_{B}$	$\bullet$	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	18		18		9

Rev. 0 12/93
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch ( 0.25 mm ).
6. $E$ and $\Theta_{\mathrm{A}}$ are measured with the leads constrained to be perpendicular to datum $-\mathrm{C}-$.
7. $e_{B}$ and $\theta_{C}$ are measured at the lead tips with the leads unconstrained. $e_{C}$ must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch ( 0.25 mm ).
9. N is the maximum number of terminal positions.
10. Corner leads ( $1, \mathrm{~N}, \mathrm{~N} / 2$ and $\mathrm{N} / 2+1$ ) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch (0.76-1.14mm).

## Dual-In-Line Plastic Packages (PDIP)



NOTES:

1. Controlling Dimensions: $\operatorname{INCH}$. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and $L$ are measured with the package seated in JEDEC seating plane gauge GS-3.

E20.3 (JEDEC MS-001-AD ISSUE D)
20 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.210	-	5.33	4
A1	0.015	-	0.39	-	4
A2	0.115	0.195	2.93	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.045	0.070	1.55	1.77	8
C	0.008	0.014	0.204	0.355	-
D	0.980	1.060	24.89	26.9	5
D1	0.005	-	0.13	-	5
E	0.300	0.325	7.62	8.25	6
E1	0.240	0.280	6.10	7.11	5
e	0.1	BC		BSC	-
$\mathrm{e}_{\mathrm{A}}$	0.3	SC		3SC	6
$e_{B}$	-	0.430	-	10.92	7
L	0.115	0.150	2.93	3.81	4
N	20		20		9

Rev. 0 12/93
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch ( 0.25 mm ).
6. $E$ and $e_{A}$ are measured with the leads constrained to be perpendicular to datum -C-.
7. $e_{B}$ and $e_{C}$ are measured at the lead tips with the leads unconstrained. $\theta_{\mathrm{C}}$ must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch ( 0.25 mm ).
9. N is the maximum number of terminal positions.
10. Corner leads ( $1, \mathrm{~N}, \mathrm{~N} / 2$ and $\mathrm{N} / 2+1$ ) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch ( $0.76-1.14 \mathrm{~mm}$ ).

## Dual-In-Line Plastic Packages (PDIP)



NOTES:

1. Controlling Dimensions: $\mathbb{I N C H}$. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and $L$ are measured with the package seated in JEDEC seating plane gauge GS-3.

E24.6 (JEDEC MS-011-AA ISSUE B)
24 LEAD DUAL-IN-LINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.250	-	6.35	4
A1	0.015	-	0.39	-	4
A2	0.125	0.195	3.18	4.95	-
B	0.014	0.022	0.356	0.558	-
B1	0.030	0.070	0.77	1.77	8
C	0.008	0.015	0.204	0.381	-
D	1.150	1.290	29.3	32.7	5
D1	0.005	-	0.13	-	5
E	0.600	0.625	15.24	15.87	6
E1	0.485	0.580	12.32	14.73	5
e	0.1	BSC		BSC	-
$\mathrm{e}_{\mathrm{A}}$	0.60	BSC		BSC	6
$\mathrm{e}_{\mathrm{B}}$	-	0.700	-	17.78	7
L	0.115	0.200	2.93	5.08	4
N	24		24		9

Rev. 0 12/93
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch ( 0.25 mm ).
6. $E$ and $e_{A}$ are measured with the leads constrained to be perpendicular to datum -C .
7. $e_{B}$ and $e_{C}$ are measured at the lead tips with the leads unconstrained. $\theta_{C}$ must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch ( 0.25 mm ).
9. N is the maximum number of terminal positions.
10. Corner leads (1, N, N/2 and N/2 + 1) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch ( $0.76-1.14 \mathrm{~mm}$ ).

Plastic Packages for Integrated Circuits


## Small Outline Plastic Packages (SOIC)



M14.15 (JEDEC MS-012-AB ISSUE C) 14 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS								
	MAX	MIN	MAX	NOTES							
A	0.0532	0.0688	1.35	1.75	-						
A1	0.0040	0.0098	0.10	0.25	-						
B	0.013	0.020	0.33	0.51	9						
C	0.0075	0.0098	0.19	0.25	-						
D	0.3367	0.3444	8.55	8.75	3						
E	0.1497	0.1574	3.80	4.00	4						
e	0.050 BSC		1.27 BSC		-						
H	0.2284	0.2440	5.80	6.20	-						
h	0.0099	0.0196	0.25	0.50	5						
L	0.016	0.050	0.40	1.27	6						
N	14			14		7					
$\alpha$	$0^{\circ}$							$8^{0}$	$0^{\circ}$	$8^{\circ}$	-

Rev. 0 12/93

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " $D$ " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm ( 0.006 inch ) per side.
4. Dimension " $E$ " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm ( 0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " $L$ " is the length of terminal for soldering to a substrate.
7. " $N$ " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " $B$ ", as measured 0.36 mm ( 0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm ( 0.024 inch ).
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

Small Outline Plastic Packages (SOIC)


M16.15 (JEDEC MS-012-AC ISSUE C) 16 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MAX	MIN		MAX	
A	0.0532	0.0688	1.35	1.75	-
A1	0.0040	0.0098	0.10	0.25	-
B	0.013	0.020	0.33	0.51	9
C	0.0075	0.0098	0.19	0.25	-
D	0.3859	0.3937	9.80	10.00	3
E	0.1497	0.1574	3.80	4.00	4
e	0.050 BSC		1.27 BSC		-
H	0.2284	0.2440	5.80	6.20	-
h	0.0099	0.0196	0.25	0.50	5
L	0.016	0.050	0.40	1.27	6
N	16			16	
$\alpha$	$0^{\circ}$		$8^{\circ}$	$0^{\circ}$	$8^{\circ}$

Rev. 0 12/93

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " $D$ " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm ( 0.006 inch) per side.
4. Dimension " $E$ " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm ( 0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " $L$ " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " $B$ ", as measured 0.36 mm ( 0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm ( 0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

## Small Outline Plastic Packages (SOIC)



NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " $D$ " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm ( 0.006 inch) per side.
4. Dimension " $E$ " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm ( 0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " $L$ " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " $B$ ", as measured 0.36 mm ( 0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm ( 0.024 inch )
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

M16.3 (JEDEC MS-013-AA ISSUE C)
16 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE

	INCHES		MILLIMETERS			
SYMBOL	MIN	MAX	MIN	MAX		
A	0.0926	0.1043	2.35	2.65	-	
A1	0.0040	0.0118	0.10	0.30	-	
B	0.013	0.0200	0.33	0.51	9	
C	0.0091	0.0125	0.23	0.32	-	
D	0.3977	0.4133	10.10	10.50	3	
E	0.2914	0.2992	7.40	7.60	4	
e	0.050 BSC		1.27		BSC	-
H	0.394	0.419	10.00	10.65	-	
h	0.010	0.029	0.25	0.75	5	
L	0.016	0.050	0.40	1.27	6	
N	16			16		7
$\alpha$	$0^{0}$	$8^{0}$	$0^{0}$	$8^{\circ}$	-	

Rev. 0 12/93

Plastic Packages for Integrated Circuits

## Small Outline Plastic Packages (SOIC)



NOTES:
M20.3 (JEDEC MS-013-AC ISSUE C) 20 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.0926	0.1043	2.35	2.65	-
A1	0.0040	0.0118	0.10	0.30	-
B	0.013	0.0200	0.33	0.51	9
C	0.0091	0.0125	0.23	0.32	-
D	0.4961	0.5118	12.60	13.00	3
E	0.2914	0.2992	7.40	7.60	4
$\theta$	0.050 BSC		1.27 BSC		-
H	0.394	0.419	10.00	10.65	-
h	0.010	0.029	0.25	0.75	5
L	0.016	0.050	0.40	1.27	6
N	20			20	
$\alpha$	$0^{0}$	$8^{0}$	$0^{0}$	$8^{0}$	-

Rev. 0 12/93

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " $D$ " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm ( 0.006 inch) per side.
4. Dimension " $E$ " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed 0.25 mm ( 0.010 inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " $L$ " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only,
9. The lead width " $B$ ", as measured 0.36 mm ( 0.014 inch ) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm ( 0.024 inch )
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

Small Outline Plastic Packages (SOIC)


M28.3 (JEDEC MS-013-AE ISSUE C) 28 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS			
	MIN	MAX	MIN			NOTES
A	0.0926	0.1043	2.35	2.65	-	
A1	0.0040	0.0118	0.10	0.30	-	
B	0.013	0.0200	0.33	0.51	9	
C	0.0091	0.0125	0.23	0.32	-	
D	0.6969	0.7125	17.70	18.10	3	
E	0.2914	0.2992	7.40	7.60	4	
e	0.05 BSC		1.27 BSC		-	
H	0.394	0.419	10.00	10.65	-	
h	0.01	0.029	0.25	0.75	5	
L	0.016	0.050	0.40	1.27	6	
N	28		28		7	
$\alpha$	$0^{0}$	$8^{0}$	$0^{\circ}$	$8^{0}$	-	

NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm ( 0.006 inch) per side.
4. Dimension " $E$ " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed $0.25 \mathrm{~mm}(0.010$ inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. "L" is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " $B$ ", as measured 0.36 mm ( 0.014 inch ) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm ( 0.024 inch )
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

## Power Small Outline Plastic Packages (PSOP)



M8.15A
8 LEAD POWER SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS				
	MAX	MIN	MAX	NOTES			
A	0.0532	0.0688	1.35	1.75	-		
A1	0.0040	0.0098	0.10	0.25	-		
B	0.0130	0.0200	0.33	0.51	9		
C	0.0075	0.0098	0.19	0.25	-		
D	0.1890	0.1968	4.80	5.00	3		
D1	0.107	0.123	2.72	3.12	10		
E	0.1497	0.1574	3.80	4.00	4		
E1	0.071	0.087	1.80	2.21	10		
e	0.050 BSC		1.27 BSC		-		
H	0.2284	0.2440	5.80	6.20	-		
h	0.0099	0.0196	0.25	0.50	5		
L	0.016	0.050	0.40	1.27	6		
N	8			8			7
$\alpha$	$0^{\circ}$	$8^{0}$	$0^{\circ}$	$8^{\circ}$	-		

Rev. 0 10/96
NOTES:

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension " $D$ " does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm ( 0.006 inch) per side.
4. Dimension "E" does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed $0.25 \mathrm{~mm}(0.010$ inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " $L$ " is the length of terminal for soldering to a substrate.
7. " $N$ " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " $B$ ", as measured 0.36 mm ( 0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm ( 0.024 inch)
10. Exposed copper heat slug flush with bottom surface of package. All other dimensions conform to JEDEC MS-012 Issue C.
11. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

## Plastic Packages for Integrated Circuits

## Power Small Outline Plastic Packages（PSOP）



POWER SOP PACKAGE
（HEAT SLUG SURFACE IS ELECTRICALLY FLOATING）

M20．3A
20 LEAD POWER SMALL OUTLINE PLASTIC PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.0926	0.1043	2.35	2.65	－
A1	0.0040	0.0118	0.10	0.30	－
B	0.013	0.0200	0.33	0.51	9
C	0.0091	0.0125	0.23	0.32	－
D	0.4961	0.5118	12.60	13.00	3
D1	0.325	0.340	8.25	8.63	10
E	0.2914	0.2992	7.40	7.60	4
E1	0.175	0.190	4.44	4.82	10
e	0.05	SC		BSC	－
H	0.394	0.419	10.00	10.65	－
h	0.010	0.029	0.25	0.75	5
L	0.016	0.050	0.40	1.27	6
N	20		20		7
$\alpha$	$0^{0}$	$8^{\circ}$	$0^{0}$	$8^{\circ}$	－

NOTES：
1．Symbols are defined in the＂MO Series Symbol List＂in Section 2.2 of Publication Number 95.

2．Dimensioning and tolerancing per ANSI Y14．5M－1982．
3．Dimension＂D＂does not include mold flash，protrusions or gate burrs．Mold flash，protrusion and gate burrs shall not exceed 0.15 mm （ 0.006 inch）per side．

4．Dimension＂$E$＂does not include interlead flash or protrusions．In－ terlead flash and protrusions shall not exceed 0.25 mm （ 0.010 inch）per side．
5．The chamfer on the body is optional．If it is not present，a visual index feature must be located within the crosshatched area．
6．＂$L$＂is the length of terminal for soldering to a substrate．
7．＂ N ＂is the number of terminal positions．
8．Terminal numbers are shown for reference only．
9．The lead width＂B＂，as measured 0.36 mm （ 0.014 inch ）or greater above the seating plane，shall not exceed a maximum value of 0.61 mm （ 0.024 inch ）

10．Exposed copper heat slug flush with top surface of package．All other dimensions conform to JEDEC MS－013AC Issue C．
11．Controlling dimension：MILLIMETER．Converted inch dimen－ sions are not necessarily exact．

## Plastic Leaded Chip Carrier Packages (PLCC)



NOTES:

1. Controlling dimension: INCH . Converted millimeter dimensions are not necessarily exact.
2. Dimensions and tolerancing per ANSI Y14.5M-1982.
3. Dimensions D1 and E1 do not include mold protrusions. Allowable mold protrusion is 0.010 inch ( 0.25 mm ) per side.
4. To be measured at seating plane -C- contact point.
5. Centerline to be determined where center leads exit plastic body.
6. " N " is the number of terminal positions.

Plastic Leaded Chip Carrier Packages (PLCC)


Metric Plastic Quad Flatpack Packages (MQFP)


Q44.10x10 (JEDEC MO-108AA-2 ISSUE A) 44 LEAD METRIC PLASTIC QUAD FLATPACK PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.093	-	2.35	-
A1	0.004	0.010	0.10	0.25	-
A2	0.077	0.083	1.95	2.10	-
B	0.012	0.018	0.30	0.45	6
B1	0.012	0.016	0.30	0.40	-
D	0.510	0.530	12.95	13.45	3
D1	0.390	0.398	9.90	10.10	4,5
E	0.510	0.530	12.95	13.45	3
E1	0.390	0.398	9.90	10.10	4,5
L	0.026	0.037	0.65	0.95	-
N	44		44		7
e	0.032 BSC		0.80 BSC		-

Rev. 1 1/94
NOTES:

1. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.
2. All dimensions and tolerances per ANSI Y14.5M-1982.
3. Dimensions D and E to be determined at seating plane $-\mathrm{C}-$.
4. Dimensions D1 and E1 to be determined at datum plane $-\mathrm{H}-$.
5. Dimensions D1 and E1 do not include mold protrusion. Allowable protrusion is 0.25 mm ( 0.010 inch ) per side.
6. Dimension B does not include dambar protrusion. Allowable dambar protrusion shall be 0.08 mm ( 0.003 inch ) total.
7. " $N$ " is the number of terminal positions.

## Ceramic Dual-In-Line Metal Seal Packages (SBDIP)



## NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions $b$ and $c$ or $M$ shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension $M$ applies to lead plating and finish thickness.
4. Corner leads ( $1, N, N / 2$, and $N / 2+1$ ) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
5. Dimension $Q$ shall be measured from the seating plane to the base plane.
6. Measure dimension S 1 at all four corners.
7. Measure dimension S2 from the top of the ceramic body to the nearest metallization or lead.
8. $N$ is the maximum number of terminal positions.
9. Braze fillets shall be concave.
10. Dimensioning and tolerancing per ANSI Y14.5M-1982.
11. Controlling dimension: INCH .

## Ceramic Dual-In-Line Metal Seal Packages (SBDIP)



## NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions $b$ and $c$ or $M$ shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension $M$ applies to lead plating and finish thickness.
4. Corner leads ( $1, N, N / 2$, and $N / 2+1$ ) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.
5. Dimension $Q$ shall be measured from the seating plane to the base plane.
6. Measure dimension S1 at all four corners.
7. Measure dimension S2 from the top of the ceramic body to the nearest metallization or lead.
8. N is the maximum number of terminal positions.
9. Braze fillets shall be concave.
10. Dimensioning and tolerancing per ANSI Y14.5M-1982.
11. Controlling dimension: INCH .

## Ceramic Dual-In-Line Metal Seal Packages (SBDIP)



Rev. 0 4/94
5. Dimension $Q$ shall be measured from the seating plane to the base plane.
6. Measure dimension S 1 at all four corners.
7. Measure dimension S2 from the top of the ceramic body to the nearest metallization or lead.
8. N is the maximum number of terminal positions.
9. Braze fillets shall be concave.
10. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
11. Controlling dimension: INCH .

Hermetic Packages for Integrated Circuits
Ceramic Dual-In-Line Frit Seal Packages (CERDIP)


NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions $b$ and $c$ or $M$ shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension $M$ applies to lead plating and finish thickness.
4. Corner leads ( $1, N, N / 2$, and $N / 2+1$ ) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.

F8.3A MIL-STD-1835 GDIP1-T8 (D-4, CONFIGURATION A) 8 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

SYMBOL	INCHES		MILLIMETERS		
	MAX	MIN	MAX	NOTES	
A	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.405	-	10.29	5
E	0.220	0.310	5.59	7.87	5
e	0.100 BSC	2.54 BSC	-		
eA	0.300 BSC	7.62 BSC	-		
eA/2	0.150 BSC	3.81 BSC	-		
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	-	0.13	-	7
$\alpha$	$90^{\circ}$	$105^{\circ}$	$90^{\circ}$	$105^{\circ}$	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
M	-	0.0015	-	0.038	2,3
N		8		8	8

Rev. 0 4/94
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension $Q$ shall be measured from the seating plane to the base plane.
7. Measure dimension S 1 at all four corners.
8. N is the maximum number of terminal positions.
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
10. Controlling dimension: INCH .

## Ceramic Dual-In-Line Frit Seal Packages (CERDIP)



NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension $M$ applies to lead plating and finish thickness.
4. Corner leads ( $1, N, N / 2$, and $N / 2+1$ ) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.

F14.3 MIL-STD-1835 GDIP1-T14 (D-1, CONFIGURATION A) 14 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.785	-	19.94	5
E	0.220	0.310	5.59	7.87	5
e	0.1	BSC			-
eA		BSC		BSC	-
eA/2		SC		BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	$\bullet$	0.13	-	7
$\alpha$	$90^{\circ}$	$105^{\circ}$	$90^{\circ}$	$105^{\circ}$	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	$\bullet$	0.010	-	0.25	-
M	-	0.0015	-	0.038	2,3
N	14		14		8

Rev. 0 4/94
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension $Q$ shall be measured from the seating plane to the base plane.
7. Measure dimension S1 at all four corners.
8. $N$ is the maximum number of terminal positions.
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
10. Controlling dimension: $\operatorname{INCH}$.

## Ceramic Dual-In-Line Frit Seal Packages (CERDIP)



NOTES:

1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
2. The maximum limits of lead dimensions $b$ and $c$ or $M$ shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied.
3. Dimensions b1 and c1 apply to lead base metal only. Dimension $M$ applies to lead plating and finish thickness.
4. Corner leads ( $1, \mathrm{~N}, \mathrm{~N} / 2$, and $\mathrm{N} / 2+1$ ) may be configured with a partial lead paddle. For this configuration dimension b3 replaces dimension b2.

F16.3 MIL-STD-1835 GDIP1-T16 (D-2, CONFIGURATION A) 16 LEAD CERAMIC DUAL-IN-LINE FRIT SEAL PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	-	0.200	-	5.08	-
b	0.014	0.026	0.36	0.66	2
b1	0.014	0.023	0.36	0.58	3
b2	0.045	0.065	1.14	1.65	-
b3	0.023	0.045	0.58	1.14	4
c	0.008	0.018	0.20	0.46	2
c1	0.008	0.015	0.20	0.38	3
D	-	0.840	-	21.34	5
E	0.220	0.310	5.59	7.87	5
e	0.10	SC			-
eA	0.30	BS		BSC	-
eA/2	0.15	BS		BSC	-
L	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	6
S1	0.005	$\cdot$	0.13	-	7
$\alpha$	$90^{\circ}$	$105^{\circ}$	$90^{\circ}$	$105^{\circ}$	-
aaa	-	0.015	-	0.38	-
bbb	-	0.030	-	0.76	-
ccc	-	0.010	-	0.25	-
M	-	0.0015	-	0.038	2, 3
N	16		16		8

Rev. 0 4/94
5. This dimension allows for off-center lid, meniscus, and glass overrun.
6. Dimension $Q$ shall be measured from the seating plane to the base plane.
7. Measure dimension S1 at all four corners.
8. N is the maximum number of terminal positions.
9. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
10. Controlling dimension: $\operatorname{INCH}$.

Metal Can Packages (Can)


NOTES:

1. (All leads) $\varnothing \mathrm{b}$ applies between L1 and L2. Øb1 applies between L 2 and 0.500 from the reference plane. Diameter is uncontrolled in L1 and beyond 0.500 from the reference plane.
2. Measured from maximum diameter of the product.
3. $\alpha$ is the basic spacing from the centerline of the tab to terminal 1 and $\beta$ is the basic spacing of each lead or lead position ( $\mathrm{N}-1$ places) from $\alpha$, looking at the bottom of the package.
4. N is the maximum number of terminal positions.
5. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
6. Controlling dimension: $\operatorname{INCH}$.

T8.C MIL-STD-1835 MACY1-X8 (A1)
8 LEAD METAL CAN PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.165	0.185	4.19	4.70	-
Øb	0.016	0.019	0.41	0.48	1
$\varnothing \mathrm{b} 1$	0.016	0.021	0.41	0.53	1
Øb2	0.016	0.024	0.41	0.61	-
$\varnothing \mathrm{D}$	0.335	0.375	8.51	9.40	-
$\bigcirc \mathrm{D} 1$	0.305	0.335	7.75	8.51	$\bullet$
ØD2	0.110	0.160	2.79	4.06	-
e	0.200 BSC		5.08 BSC		-
e1	0.100 BSC		2.54 BSC		-
F	-	0.040	-	1.02	-
k	0.027	0.034	0.69	0.86	-
k1	0.027	0.045	0.69	1.14	2
L	0.500	0.750	12.70	19.05	1
L1	-	0.050	-	1.27	1
L2	0.250	-	6.35	-	1
Q	0.010	0.045	0.25	1.14	-
$\alpha$	$45^{\circ} \mathrm{BSC}$		$45^{\circ} \mathrm{BSC}$		3
$\beta$	$45^{\circ} \mathrm{BSC}$		$45^{\circ} \mathrm{BSC}$		3
N	8		8		4

Rev. 0 5/18/94

Metal Can Packages (Can)


NOTES:

1. (All leads) $\varnothing \mathrm{b}$ applies between L1 and L2. Øb1 applies between L2 and 0.500 from the reference plane. Diameter is uncontrolled in L1 and beyond 0.500 from the reference plane.
2. Measured from maximum diameter of the product.
3. $\alpha$ is the basic spacing from the centerline of the tab to terminal 1 and $\beta$ is the basic spacing of each lead or lead position ( $N-1$ places) from $\alpha$, looking at the bottom of the package.
4. $N$ is the maximum number of terminal positions.
5. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
6. Controlling dimension: INCH .

T10.C
10 LEAD METAL CAN PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.165	0.185	4.19	4.70	-
øb	0.016	0.019	0.41	0.48	1
Øb1	0.016	0.021	0.41	0.53	1
Øb2	0.016	0.024	0.41	0.61	-
$\varnothing \mathrm{D}$	0.335	0.375	8.51	9.40	-
ØD1	0.305	0.335	7.75	8.51	-
ØD2	-	-	-	-	-
e	0.23	SC		SC	-
e1	0.11			SS	-
F	-	0.040	-	1.02	-
k	0.027	0.034	0.69	0.86	-
k1	0.027	0.045	0.69	1.14	2
L	0.500	0.750	12.70	19.05	1
L1	-	0.050	-	1.27	1
L2	0.250	-	6.35	-	1
Q	-	-	-	-	-
$\alpha$	$36^{\circ} \mathrm{BSC}$		$36^{\circ} \mathrm{BSC}$		3
$\beta$	$36^{\circ} \mathrm{BSC}$		$36^{\circ} \mathrm{BSC}$		3
N	10		10		4

Rev. 0 5/18/94

## Metal Can Packages (Can)



NOTES:

1. (All leads) $\varnothing \mathrm{b}$ applies between L1 and L2. Øb1 applies between L2 and 0.500 from the reference plane. Diameter is uncontrolled in L1 and beyond 0.500 from the reference plane.
2. Measured from maximum diameter of the product.
3. $\alpha$ is the basic spacing from the centerline of the tab to terminal 1 and $\beta$ is the basic spacing of each lead or lead position (N-1 places) from $\alpha$, looking at the bottom of the package.
4. N is the maximum number of terminal positions.
5. Dimensioning and tolerancing per ANSI Y14.5M-1982.
6. Controlling dimension: $\operatorname{INCH}$.

T12.B
12 LEAD METAL CAN PACKAGE

SYMBOL	INCHES		MILLIMETERS		NOTES
	MIN	MAX	MIN	MAX	
A	0.165	0.185	4.19	4.70	-
$\varnothing$ b	0.016	0.019	0.41	0.48	1
Øb1	0.016	0.021	0.41	0.53	1
Øb2	0.016	0.024	0.41	0.61	-
ØD	0.335	0.375	8.51	9.40	-
ØD1	0.305	0.335	7.75	8.51	-
ØD2	-	-	-	-	-
e	0.2	SC		BSC	-
e1	0.1	SC		3SC	-
F	-	0.040	-	1.02	-
k	0.027	0.034	0.69	0.86	-
k1	0.027	0.045	0.69	1.14	2
L	0.500	0.750	12.70	19.05	1
L1	-	0.050	-	1.27	1
L2	0.250	-	6.35	-	1
Q	-	-	-	-	-
$\alpha$	$30^{\circ} \mathrm{BSC}$		$30^{\circ} \mathrm{BSC}$		3
$\beta$	$30^{\circ} \mathrm{BSC}$		$30^{\circ} \mathrm{BSC}$		3
N	12		12		4

Rev. 0 5/18/94

## Metal Can Packages (Can)



NOTES:

1. The reference, base, and seating planes are the same for this variation.
2. Measured from maximum diameter of the product.
3. $N$ is the maximum number of terminal positions.
4. Dimensioning and tolerancing per ANSI Y14.5M - 1982.
5. Controlling dimension: $\operatorname{INCH}$.

T12.C
12 LEAD METAL CAN PACKAGE

	INCHES		MILLIMETERS					
SYMBOL	MIN	MAX	MIN	MAX				
A	0.130	0.150	3.30	3.81	-			
$\varnothing \mathrm{bb}$	0.016	0.019	0.41	0.48	-			
$\varnothing \mathrm{b} 2$	0.016	0.021	0.41	0.53	-			
$\varnothing \mathrm{D}$	0.585	0.615	14.86	15.62	-			
$\varnothing \mathrm{D} 1$	0.540	0.560	13.72	14.22	-			
e	0.400 BSC		10.16 BSC		-			
e 1	0.100 BSC		2.54 BSC		-			
F	0.020	0.040	0.51	1.02	-			
k	0.027	0.034	0.69	0.86	-			
k 1	0.027	0.045	0.69	1.14	2			
L	0.500	0.560	12.70	14.22	-			
N	12				12			3

Rev. 0 5/18/94
See Us on the Net ..... 12-3
How to Use Harris AnswerFAX ..... 12-4
Your Map to Harris AnswerFAX ..... 12-5
Harris AnswerFAX Data Book Request Form ..... 12-6
Linear Product Listing. ..... 12-7

## See Us on the Net

## http://www.semi.harris.com/



WHATS NEW

- Press Releases
- New Services
- New Web Material


## PRODUCT INFORMATION

- Organized by Device Function
- Product Information Page Links to:
- Data Sheets
- >2500 Data Sheets and Application Notes

SEARCH

- Search Based Upon Part Number or Description


## DESIGN SUPPORT

- Application Note Listing
- Tech Brief Listing
- Downloadable Design Software
- Evaluation Boards Listing
- Lexicon
- E-mail To Central Applications Group for Technical Help OTHER LINKS
- Sales Office and Distributor Listing
- Target Application Sites
- Quality/Reliability
- Webmaster E-mail for Site Comments


## What is AnswerFAX?

AnswerFAX is Harris' automated fax response system. It gives you on-demand access to a full library of the latest data sheets, application notes, and other information on Harris products.

## What do I need to use AnswerFAX?

Just a fax machine and a touch-tone phone. You can access it 24 hours a day, 7 days a week.

## How does it work?

You call the AnswerFAX number, touch-tone your way through a series of recorded questions, enter the order numbers of the documents you want, and give AnswerFAX a fax number to send them to. You'll have the information you need in minutes. The chart on the next page shows you how.

How do I find out the order number for the publications I want?
The first time you call AnswerFAX, you should order one or more on-line catalogs of product line information. There are nine catalogs:

- New Products
- Linear/Telecom Products
- Data Acquisition Products
- Digital Signal Processing (DSP) Products
- Discrete \& Intelligent Power Products
- Microprocessor Products
- Rad Hard Products
- CMOS Logic Products
- Application Notes

Once they're faxed to you, you can call back and order the publications themselves by number.

## How do I start?

Dial 407-724-7800. That's it.
OO SEMCONDUCTOR


Please refer to next page for a map to AnswerFAX.

## Your Map to Harris AnswerFAX

CH HEMCONDUCTOR


A complete AnswerFAX catalog listing is available.
Please call 1-800-442-7747 and request extension number 7367.


$\checkmark$	PUB. NUMBER	DATA BOOK/DESCRIPTION
	7004	Complete Set of Commercial Harris Data Books
	7005	Complete Set of Commercial and Military Harris Data Books
	DB223B	POWER MOSFETs (1994: $1,328 \mathrm{pp}$ ) This data book contains detailed technical information including standard power MOSFETs (the popular RF-series types, the IRF-series of industry replacement types, and JEDEC types), MegaFETs, logic-level power MOSFETs (L2FETs), ruggedized power MOSFETs, advanced discrete, high-reliability and radiation-hardened power MOSFETs.
	DB316	POWER MOSFET DATABOOK SUPPLEMENT (1996: 380pp) This data book contains the data sheets of recently introduced products and also updates some of the datasheets in the Power MOSFET Data Book DB223B. These datasheets contain the detailed specification for these products.
	DB235B	RADIATION HARDENED (1993: 2,232pp) The Harris radiation-hardened products include the CD4000, HCS/HCTS and ACS/ ACTS logic families, SRAMs, PROMs, op amps, analog multiplexers, the 80C85/80C86 microprocessor family, analog switches, gate arrays, standard cells and custom devices.
	DB260.2	CDP6805 CMOS MICROCONTROLLERS \& PERIPHERALS (1995: 436pp) This data book represents the full line of Harris Semiconductor CDP6805 products for commercial applications and supersedes previously published CDP6805 data books under the Harris, GE, RCA or Intersil names.
	DB301B	DATA ACQUISITION (1994: 1,104pp) Product specifications on A/D converters (display, integrating, successive approximation, flash); D/A converters, switches, multiplexers, and other products.
	DB302B	DIGITAL SIGNAL PROCESSING (1994: 528pp) Product specifications on one-dimensional and two-dimensional filters, signal synthesizers, multipliers, special function devices (such as address sequencers, binary correlators, histogrammer).
	DB303	MICROPROCESSOR PRODUCTS (1992: 1,156pp) For commercial and military applications. Product specifications on CMOS microprocessors, peripherals, data communications, and memory ICs.
	DB304.1	INTELLIGENT POWER ICs (1994: 946pp) This data book includes a complete set of data sheets for product specifications, application notes with design details for specific applications of Harris products, and a description of the Harris quality and high reliability program.
	DB309.1	MCT/GGBT/DIODES (1995: 706pp) This MCT/IGBT/Diodes Data book represents the full line of these products made by Harris Semiconductor Discrete Power Products for commercial applications.
	DB314	SIGNAL PROCESSING NEW RELEASES (1995: 690pp) This data book represents the newest products made by Harris Semiconductor Data Acquisition Products, Linear Products, Telecom Products and Digital Signal Processing Products for commercial applications.
	DB315	CROSS-REFERENCE GUIDE (1996: 554pp) This guide contains the listing of semiconductor products that are second-sourced by Harris Semiconductor.
	DB317	COMMUNICATIONS HANDBOOK (1997: approx. 700pp) This handbook contains technical information including data sheets and application notes for a variety of Harris Integrated Circuits targeted for the communications industry. These products include the PRISM 2.4GHz DSSS Wireless Transceiver Chip Set, the new HC5517 Ringing SLIC as well as Standard Linear, Data Acquisition, DSP and Power products.
	DB450.4	TRANSIENT VOLTAGE SUPPRESSION DEVICES (1995: 400pp) Product specifications of Harris varistors and surgectors. Also, general informational chapters such as: "Voltage Transients - An Overview," "Transient Suppression - Devices and Principles," "Suppression - Automotive Transients."
	DB500.3	LINEAR ICs (1996/97: 1446pp) Harris offers an extensive line of Linear components including: High Speed and General Purpose Op Amps, Comparators, Sample/Hold Amps, Video Crosspoint Switches, Special Analog Circuits and Transistor Arrays.
	Analog Military	ANALOG MILITARY (1989: 1,264pp) This data book describes Harris' military line of Linear, Data Acquisition, and Telecommunications circuits.
	DB312	ANALOG MILITARY DATA BOOK SUPPLEMENT (1994: 432pp) The 1994 Military Data Book Supplement, combined with the 1989 Analog Military Product Data Book, contain detailed technical information on the extensive line of Harris Semiconductor Linear and Data Acquisition products for Military (MIL-STD-883, DESC SMD and JAN) applications and supersedes all previously published Linear and Data Acquisition Military data books. For applications requiring Radiation Hardened products, please refer to the 1993 Harris Radiation Hardened Product Data Book (document \#DB235B)
	PSG201.23	PRODUCT SELECTION GUIDE (1996: 834pp) Key product information on all Harris Semiconductor devices. Sectioned (Linear, Data Acquisition, Digital Signal Processing, Telecom, Intelligent Power, Discrete Power, Digital Microprocessors and Hi-Rel/ Military and Rad Hard) for easy use and includes cross references and alphanumeric part number index.
	SG103	CMOS LOGIC SELECTION GUIDE (1994: 288pp) This product selection guide contains technical information on Harris Semiconductor High Speed 54/74 CMOS Logic Integrated Circuits for commercial, industrial and military applications. It covers Harris' High Speed CMOS Logic HC/HCT Series, AC/ACT Series, BiCMOS Interface Logic FCT Series and CMOS Logic CD4000B Series.
	BR-057.3	AnswerFAX CATALOG (Fall 1996: 112pp) A Complete AnswerFAX Catalog listing.

NAME:
PHONE:
FAX:
$\qquad$ COMPANY:
ADDRESS:
工 MAIL STOP
CITY, STATE: $\qquad$ ZIP:

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
27007	BR007	Complete Listing of Harris Sales Offices, Representatives and Authorized Distributors World Wide (8 pages)
7031		Harris Semiconductor Part Number Nomenclature Guide (16 pages)
27026	BR026	Linear and Data Acquisition Product Cross Reference (26 pages)
7049	PCS03.1	PRISM ${ }^{\text {™ }}$ Development Kits (2 pages)
LINEAR ARTICLE REPRINTS		
7030	Wireless Design \& Development 6/6/95	System Considerations in Spread-Spectrum Designs (3 pages)
7036	RF Design Cover Story 10/95	Four-Chip Set Supports HighSpeed DSSS PCMCIA Applications (5 pages)
LINEAR PACKAGING INFORMATION		
7014	DB500,   Section 11	Linear and Telecom Packaging Information (19 pages)
LINEAR DATA SHEETS		
796	CA124, CA224, CA324, LM324*, LM2902*	Quad Operational Amplifiers for Commercial, Industrial and Military Applications (7 pages)
795	CA139, CA239, СА339, LM339, LM2901, LM3302	Quad Voltage Comparators for Industrial, Commercial and Military Applications (5 pages)
1019	CA158, CA158A, CA258, CA258A, CA358, CA358A, CA2904, LM358, LM2904	Dual, 1MHz, Operational Amplifiers for Commercial Industrial, and Military Applications (7 pages) FN1019.3
834	CA555, LM555	Timers for Timing Delays and Oscillator Applications in Commercial, Industrial and Military Equipment (6 pages)
531	CA741, CA1458, CA1558, LM741*, LM1458*, LM1558*	High Gain Single and Dual Operational Amplifiers for Military, Industrial and Commercial Applications (6 pages)
981	CA1391, CA1394	TV Horizontal Processors (4 pages)
338	CA3018	General Purpose Transistor Arrays (6 pages)


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
339	CA3020	Multipurpose Wide-Band Power Amps Military, Industrial and Commercial Equipment at Frequency Up to 8 MHz (9 pages)
382	CA3028, СА3053	Differential/Cascode Amplifiers for Commercial and Industrial Equipment for DC to 120 MHz (12 pages)
343	САЗ039	Diode Array (4 pages)
341	CA3045, СА3046	General Purpose N-P-N Transistor Arrays (6 pages)
611	CA3049, CA3102	Dual High Frequency Differential Amplifiers for Low Power Applications Up to 500 MHz (9 pages)
388	CA3054	Transistor Array - Dual Independent Differential Amp for Low Power Applications for DC to 120 MHz (8 pages)
490	CA3059, CA3079	Zero-Voltage Switches for 5060 Hz and 400 Hz Thyristor Control Applications (12 pages)
537	CA3060	Operational Transconductance Amplifier Arrays (12 pages)
535	CA3078	Micropower Operational Amplifier (9 pages)
475	CA3080	Operational Transconductance Amplifier (OTA) (13 pages)
480	CA3081, CA3082	General Purpose High Current N-P-N Transistor Arrays (3 pages)
481	CA3083	General Purpose High Current NPN Transistor Array (4 pages) FN481.3
483	CA3086	General Purpose N-P-N Transistor Array (5 pages)
561	CA3089	FM IF System (7 pages)
598	CA3094	Programmable Power Switch/ Amplifier for Control and General Purpose Applications (15 pages)
595	CA3096, CA3096A, САЗ096C	NPN/PNP Transistor Arrays (12 pages) FN595.3
896	CA3098	Programmable Schmitt Trigger with Memory, Dual Input Precision Level Detector (11 pages) FN896.3

[^7]HARRIS

AnswerFAX   DOCUMENT   NUMBER	PART NUMBER	DESCRIPTION
625	CA3100	Wideband Operational Amplifier (7 pages)
860	CA3126	TV Chroma Processor (9 pages)
662	CA3127	High Frequency NPN Transistor Array (6 pages) FN662.3
817	CA3130	BiMOS Operational Amplifier with MOSFET Input/CMOS Output (15 pages)
957	CA3140	BiMOS Operational Amplifier with MOSFET Input/Bipolar Output (20 pages)
906	CA3141	High-Voltage Diode Array For Commercial, Industrial and Military Applications (4 pages) FN906.3
532	CA3146, CA3146A, CA3183, CA3183A	High-Voltage Transistor Arrays (8 pages) FN532.3
976	CA3160	BiMOS Operational Amplifiers with MOSFET Input/CMOS Output (17 pages)
1046	CA3189	FM IF System (7 pages)
1249	CA3193	BiCMOS Precision Operational Amplifiers (11 pages)
1345	CA3227, CA3246	High-Frequency NPN Transistor Arrays For Low-Power Applications at Frequencies Up to 1.5 GHz (5 pages) FN1345.3
1480	CA3237	IR Remote-Control Amplifier (5 pages)
1050	CA3240	Dual BiMOS Operational Amplifier with MOSFET Input/ Bipolar Output (16 pages)
1769	CA3256	BiMOS Analog Video Switch and Amplifier (12 pages)
1266	CA3260	BiMOS Operational Amplifier with MOSFET Input/CMOS Output (4 pages)
1174	CA3280	Dual Variable Operational Amplifier (11 pages)
1049	CA3290	BiMOS Dual Voltage Comparator with MOSFET Input, Bipolar Output (8 pages)
1320	CA3420	Low Supply Voltage, Low Input Current BiMOS Operational Amplifiers (5 pages)
1318	CA3440	Nanopower BiMOS Operational Amplifier (6 pages)


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
1732	CA3450	Video Line Driver, High Speed Operational Amplifier (8 pages)
1923	CA5130	BiMOS Microprocessor Operational Amplifier with MOSFET Input/CMOS Output (17 pages)
1924	CA5160	BiMOS Microprocessor Operational Amplifiers with MOSFET Input/CMOS Output (20 pages)
1929	CA5260	BiMOS Microprocessor Operational Amplifiers with MOSFET Input/CMOS Output (5 pages)
1925	CA5420	Low Supply Voltage, Low Input Current BiMOS Operational Amplifier (7 pages)
1946	CA5470	Quad Microprocessor BiMOS-E Operational Amplifiers with MOSFET Input/Bipolar Output (5 pages)
1686	CD22402	Sync Generator for TV   Applications and Video   Processing Systems (10 pages)
2891	$\begin{gathered} \text { HA-2400, HA-2404, } \\ \text { HA-2405 } \end{gathered}$	PRAM Four Channel Programmable Amplifiers (6 pages)
3926	HA-2400/883	PRAM Four Channel Programmable Operational Amplifier (11 pages)
2892	HA-2406	Digitally Selectable Four Channel Operational Amplifier (6 pages)
2856	HA-2420, HA-2425	Fast Sample and Hold Amplifiers (9 pages)
2490	HA-2444	Selectable, Four Channel Video Operational Amplifier (3 pages)
3608	HA-2444/883	Selectable, Four Channel Video Operational Amplifier (8 pages)
2890	HA-2500, HA-2502, HA-2505	Precision High Slew Rate Operational Amplifiers (6 pages)
3734	HA-2500/883, HA-2502/883	Precision High Slew Rate Operational Amplifiers (10 pages)
2893	HA-2510, HA-2512, HA-2515	High Slew Rate Operational Amplifiers (5 pages)
3697	HA-2510/883, HA-2512/883	High Slew Rate Operational Amplifiers (11 pages)


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
2894	$\begin{gathered} \text { HA-2520, HA-2522, } \\ \text { HA-2525 } \end{gathered}$	Uncompensated High Slew Rate Operational Amplifiers (7 pages)
3735	HA-2520/883, HA-2522/883	Uncompensated, High Slew Rate Operational Amplifiers (11 pages)
2895	HA-2529	Uncompensated, High Slew Rate High Output Current, Operational Amplifier (7 pages)
3736	HA-2529/883	Uncompensated, High Slew Rate High Output Current, Operational Amplifier (12 pages)
2896	HA-2539	Very High Slew Rate Wideband Operational Amplifier (7 pages)
3927	HA-2539/883	Very High Slew Rate Wideband Operational Amplifier   (11 pages)
2897	HA-2540	Wideband, Fast Settling Operational Amplifier (8 pages)
2898	HA-2541	Wideband, Fast Settling, Unity Gain Stable, Operational Amplifier (8 pages)
3698	HA-2541/883	Wideband, Fast Settling, Unity Gain Stable, Operational Amplifier (11 pages)
2899	HA-2542	Wideband, High Slew Rate, High Output Current Operational Amplifier (10 pages)
3928	HA-2542/883	Wideband, High Slew Rate, High Output Current, Operational Amplifier (12 pages)
2900	HA-2544	Video Operational Amplifier (10 pages)
3699	HA-2544/883	Video Operational Amplifier (13 pages)
2861	HA-2546	Wideband Two Quadrant Analog Multiplier (13 pages)
2444	HA-2546/883	Wideband Two Quadrant Analog Multiplier (19 pages)
2862	HA-2547	Wideband Two Quadrant Analog Multiplier (8 pages)
2901	HA-2548	Precision, High Slew Rate, Wideband Operational Amplifier (10 pages)
2472	HA-2548/883	Precision, High Slew Rate, Wideband Operational Amplifier (14 pages)


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
2477	HA-2556	Wideband Four Quadrant Voltage Output Analog Multiplier (18 pages)
3619	HA-2556/883	Wideband Four Quadrant Analog Multiplier (Voltage Output) (20 pages)
2478	HA-2557	Wideband Four Quadrant Current Output Analog Multiplier (13 pages)
3638	HA-2557/883	Wideband Four Quadrant Analog Multiplier (Current Output) (14 pages)
2902	HA-2600, HA-2602, HA-2605	Wideband, High Impedance Operational Amplifiers   (8 pages)
3700	HA-2600/883, HA-2602/883	Wideband, High Impedance Operational Amplifiers   (11 pages)
2903	$\begin{gathered} \text { HA-2620, HA-2622, } \\ \text { HA-2625 } \end{gathered}$	Very Wideband,   Uncompensated Operational   Amplifiers (7 pages)
3701	HA-2620/883, HA-2622/883	Very Wideband, High Input Impedance Uncompensated Operational Amplifiers (11 pages)
2904	HA-2640, HA-2645	High Voltage Operational Amplifiers (6 pages)
3702	HA-2640/883	High Voltage Operational Amplifier (11 pages)
2841	HA-2839	Very High Slew Rate Wideband Operational Amplifier (8 pages)
3593	HA-2839/883	Very High Slew Rate, Wideband Operational Amplifier (13 pages)
2842	HA-2840	Very High Slew Rate Wideband Operational Amplifier (8 pages)
3594	HA-2840/883	Very High Slew Rate, Wideband Operational Amplifier (13 pages)
2843	HA-2841	Wideband, Fast Settling, Unity Gain Stable, Video Operational Amplifier (9 pages)
3621	HA-2841/883	Wideband, Fast Settling, Unity Gain Stable, Video Operational Amplifier (14 pages)
2766	HA-2842	Wideband, High Slew Rate, High Output Current, Video Operational Amplifier (9 pages)

1-A $\rightarrow$
SEMICONDUCTOR

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
3622	HA-2842/883	Wideband, High Slew Rate, High Output Current, Video Operational Amplifier (14 pages)
2844	HA-2850	Low Power, High Slew Rate Wideband Operational Amplifier (8 pages)
3595	HA-2850/883	Low Power, High Slew Rate, Wideband Operational Amplifier (13 pages)
3680	HA4201	Wideband, $1 \times 1$ Video Crosspoint Switch with Tally Output (7 pages) FN3680.2
4078	HA4244	Wideband, $1 \times 1$ Video Crosspoint Switch with Synchronous Enable (7 pages) FN4078
3679	HA4314B	Wideband, $4 \times 1$ Video Crosspoint Switch (10 pages) FN3679.3
3956	HA4344B	Wideband, $4 \times 1$ Video Crosspoint Switch with Synchronous Controls (3 pages) FN3956
3678	HA4404B	Wideband, $4 \times 1$ Video Crosspoint Switch with Tally Outputs (10 pages) FN3678.3
3990	HA4600	Wideband, Video Buffer with Output Disable (7 pages) FN3990. 1
2922	HA-4741	Quad Operational Amplifier (6 pages)
3704	HA-4741/883	Quad Operational Amplifier (11 pages)
2855	$\begin{gathered} \text { HA-4900, HA-4902, } \\ \text { HA-4905 } \end{gathered}$	Precision Quad Comparator (8 pages)
3929	HA-4902/883	Precision Quad Comparator (10 pages)
2921	HA-5002	Monolithic, Wideband, High Slew Rate, High Output Current Buffer (8 pages)
3705	HA-5002/883	Monolithic, Wideband, High Slew Rate, High Output Current Buffer (15 pages)
2923	HA-5004	100MHz Current Feedback Amplifier (9 pages)
3706	HA-5004/883	100MHz Current Feedback Amplifier (13 pages)
3654	HA5013	Triple 125MHz Video Amplifier (14 pages) FN3654.2


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
2845	HA-5020	100MHz Current Feedback Video Amplifier With Disable (20 pages) FN2845.6
3541	HA-5020/883	100MHz Current Feedback Video Amplifier with Disable (19 pages) FN3541.2
3392	HA5022	Dual 125MHz Video Current Feedback Amplifier with Disable (16 pages) FN3392.3
3729	HA5022/883	Dual 125MHz Video Current Feedback Amplifier with Disable (22 pages)
3393	HA5023	Dual 125 MHz Video Current Feedback Amplifier (14 pages) FN3393.4
3730	HA5023/883	Dual 125MHz Video Current Feedback Amplifier (18 pages)
3550	HA5024	Quad 125MHz Video Current Feedback Amplifier with Disable (16 pages) FN3550.2
3591	HA5025	Quad 125MHz Video Current Feedback Amplifier (14 pages) FN3591.2
2924	HA-5033	Video Buffer (10 pages)
3930	HA-5033/883	Video Buffer (12 pages)
2905	HA-5101, HA-5111	Low Noise, High Performance Operational Amplifiers (10 pages)
3931	HA-5101/883	Low Noise, High Performance Operational Amplifier (13 pages)
2925	HA-5102, HA-5104, HA-5112, HA-5114	Low Noise, High Performance Operational Amplifiers (10 pages)
3709	HA-5102/883	Dual, Low Noise, High Performance Operational Amplifier (13 pages)
3710	HA-5104/883	Low Noise, High Performance, Quad Operational Amplifier (13 pages)
3932	HA-5111/883	Low Noise, High Performance Uncompensated Operational Amplifier (13 pages)
3711	HA-5112/883	Dual, Low Noise, High Performance Uncompensated Operational Amplifier (13 pages)


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
3712	HA-5114/883	Quad, Low Noise, High Performance Uncompensated Operational Amplifier (13 pages)
2906	HA-5127	Ultra-Low Noise Precision Operational Amplifier (9 pages)
3751	HA-5127/883	Ultra Low Noise, Precision Operational Amplifier (13 pages)
2907	HA-5130, HA-5135	Precision Operational Amplifiers (8 pages)
2926	HA-5134	Precision Quad Operational Amplifier (8 pages) FN2926.2
3713	HA-5134/883	Precision Quad Operational Amplifier (13 pages)
3731	HA-5135/883	Precision Operational Amplifier (13 pages)
2908	HA-5137	Ultra-Low Noise Precision Wideband Operational Amplifier (8 pages)
3714	HA-5137/883	Ultra Low Noise, Precision Wideband Operational Amplifier (13 pages)
2909	HA-5142, HA-5144	Dual/Quad Ultra-Low Power Operational Amplifiers (7 pages)
3732	HA-5142/883	Dual, Ultra Low Power Operational Amplifier (12 pages)
3934	HA-5144/883	Quad, Ultra-Low Power Operational Amplifier (12 pages)
2910	HA-5147	Ultra-Low Noise Precision High Slew Rate Wideband Operational Amplifier (8 pages)
3715	HA-5147/883	Ulitra Low Noise, Precision, High Slew Rate Wideband Operational Amplifier (13 pages)
2911	HA-5160, HA-5162	Wideband, JFET Input High Slew Rate, Uncompensated, Operational Amplifiers (8 pages) FN2911.2
2912	HA-5170	Precision JFET Input Operational Amplifier (8 pages) FN2912.2
2913	HA-5177	Ultra-Low Offset Voltage Operational Amplifier (10 pages)


AnswerFAX DOCUMENT NUMBER	PART   NUMBER	DESCRIPTION
3733	HA-5177/883	Ultra Low Offset Voltage Operational Amplifier (14 pages)
2914	HA-5190, HA-5195	Wideband, Fast Settling Operational Amplifiers (8 pages)
2915	HA-5221, HA-5222	Low Noise, Wideband Precision Operational Amplifier   (11 pages)
3716	HA-5221/883	Low Noise, Wideband, Precision Operational Amplifier (12 pages)
3717	HA-5222/883	Dual, Low Noise, Wideband, Precision Operational Amplifier (13 pages) FN3717.1
2857	HA-5320	High Speed Precision Monolithic Sample and Hold Amplifier (10 pages)
2927	HA-5320/883	High Speed Precision Sample and Hold Amplifier (12 pages)
2858	HA-5330	Very High Speed Precision Monolithic Sample and Hold Amplifier (4 pages)
3935	HA-5330/883	Very High Speed Precision Monolithic Sample and Hold Amplifier (9 pages)
2859	HA-5340	High Speed, Low Distortion, Precision Monolithic Sample and Hold Amplifier (8 pages)
2452	HA-5340/883	High Speed, Low Distortion, Precision Monolithic Sample and Hold Amplifier (12 pages)
3690	HA5351	Fast Acquisition Sample and Hold Amplifier (11 pages) FN3690.4
3727	HA-5351/883	Fast Acquisition, Low Power Sample and Hold Amplifier   (1 page)
3389	HA7210, HA7211	Low Power Crystal Oscillator (13 pages) FN3389.5
2945	HFA1100, HFA1120	Ultra High-Speed, Current Feedback Amplifiers (12 pages)
3615	HFA1100/883	850 MHz Current Feedback Amplifier (16 pages)
3597	HFA1102	Ultra High-Speed Current Feedback Amplifier with Compensation Pin (5 pages) FN3597.1

## November 11, 1996 <br> AnswerFAX Technical Support Linear Product Listing

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
3547	HFA1102Y	Ultra High-Speed Current Feedback Amplifier with Compensation Pin (4 pages)
3957	HFA1103	Video Op Amp with High Speed Sync Stripper (6 pages) FN3957.1
3395	HFA1105	High-Speed, Low Power, Current Feedback Video Operational Amplifier (11 pages) FN3395.4
3922	HFA1106	High Speed, Low Power, Video Operational Amplifier with Compensation Pin (14 pages) FN3922
4019	HFA1109, HFA1149	High-Speed, Low Power, Current Feedback Operational Amplifiers (1 page) FN4019
2944	HFA1110	750 MHz Low Distortion Unity Gain, Closed Loop Buffer (9 pages)
3620	HFA1110/883	750 MHz , Low Distortion Unity Gain, Closed Loop Buffer (15 pages)
2992	HFA1112	Ultra High-Speed Programmable Gain Buffer Amplifier (12 pages) FN2992.3
3610	HFA1112/883	Ultra High Speed Programmable Gain Buffer Amplifier (18 pages)
1342	HFA1113	Output Limiting, Ultra High Speed, Programmable Gain, Buffer Amplifier (16 pages) FN1342.2
3618	HFA1113/883	Output Limiting, Ultra High Speed Programmable Gain, Buffer Amplifier (22 pages)
3151	HFA1114	Ultra High Speed Programmable Gain Buffer Amplifier (5 pages) FN3151.2
3606	HFA1115	High-Speed, Low Power, Output Limiting, Closed Loop Buffer Amplifier (7 pages) FN3606.2
3724	HFA1115/883	High Speed, Low Power, Output Limiting Closed Loop Buffer Amplifier (5 pages)
4020	HFA1118, HFA1119	Programmable Gain Video Buffers with Output Limiting and Output Disable (1 page) FN4020


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
3617	HFA1120/883	850MHz Current   Feedback Amplifier with Offset Adjust (17 pages)
3369	HFA1130	Output Clamping, Ultra HighSpeed Current Feedback Amplifier (11 pages)
3625	HFA1130/883	Output Clamping, 850MHz Current Feedback Amplifier (19 pages)
3653	HFA1135	High-Speed, Low Power, Video   Operational Amplifier with   Output Limiting (5 pages)   FN3653.1
3725	HFA1135/883	High Speed, Low Power Current Feedback Amplifier with Programmable Output Limiting (5 pages)
3955	HFA1145	High-Speed, Low Power, Current Feedback Video Operational Amplifier with Output Disable (13 pages) FN3955.1
3726	HFA1145/883	High Speed, Low Power, Current Feedback Video Operational Amplifier with Output Disable (5 pages)
3605	HFA1205	Dual High-Speed, Low Power, Video Operational Amplifier (7 pages) FN3605.3
3607	HFA1212	Dual 350MHz, Low Power Closed Loop Buffer Amplifier (12 pages) FN3607.3
3742	HFA1212/883	Dual, High Speed, Low Power, Video Closed Loop Buffer (5 pages)
3682	HFA1245	Dual, High-Speed, Low Power, Video Operational Amplifier with Disable (6 pages) FN3682.1
3743	HFA1245/883	Dual, High Speed, Low Power, Video Operational Amplifier with Output Disable (6 pages)
3604	HFA1405	Quad, 560 MHz , Low Power, Video Operational Amplifier (15 pages) FN3604.3
4152	HFA1412	Quad, 350 MHz , Low Power, Programmable Gain Buffer Amplifier (15 pages) FN4152.1
3744	HFA1412/883	Quad, High Speed, Low Power, Video Closed Loop Buffer (4 pages)

HARRIS

AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
3076	HFA3046, HFA3096, HFA3127, HFA3128	Ultra High Frequency Transistor Arrays (9 pages) FN3076.8
3663	HFA3101	Gilbert Cell UHF Transistor   Array (12 pages) FN3663.3
3635	HFA3102	Dual Long-Tailed Pair Transistor Array (6 pages) FN3635.2
3967	HFA3127/883	Ultra High Frequency Transistor Array (7 pages)
4131	HFA3424	2.4GHz-2.5GHz Low Noise Amplifier (5 pages) FN4131.1
4062	HFA3524	$2.5 \mathrm{GHz} / 600 \mathrm{MHz}$ Dual Frequency Synthesizer (16 pages) FN4062.3
3655	HFA3600	Low-Noise Amplifier/Mixer (16 pages) FN3655.2
4066	HFA3624	2.4GHz Up/Down Converter (19 pages) FN4066.5
4067	HFA3724	400 MHz Quadrature IF Modulator/Demodulator (23 pages) FN4067.3
4132	HFA3925	$2.4 \mathrm{GHz}-2.5 \mathrm{GHz} 250 \mathrm{~mW}$ Power Amplifier (8 pages) FN4132. 1
2943	HFA5250	Ultra High Speed, Monolithic Pin Driver (5 pages)
3689	HFA5251	Ultra High-Speed Monolithic Pin Driver (10 pages) FN3689.2
4003	HFA5253	Ultra High-Speed Monolithic Pin Driver (19 pages) FN4003.1
2919	ICL7611, ICL7612	ICL76XX Series Low Power CMOS Operational Amplifiers (12 pages)
3403	$\begin{gathered} \hline \text { ICL7621, ICL7641, } \\ \text { ICL7642 } \end{gathered}$	ICL76XX Series Low Power CMOS Operational Amplifiers (12 pages)
2920	ICL7650S	Super Chopper-Stabilized Operational Amplifier (12 pages)
2863	ICL8013	Four Quadrant Analog Multiplier (8 pages)
2864	ICL8038	Precision Waveform Generator/ Voltage Controlled Oscillator (10 pages)
2865	ICL8048, ICL8049	Log/Antilog Amplifiers (10 pages)
2866	ICM7242	Long Range Fixed Timer (6 pages)


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
2867	ICM7555, ICM7556	General Purpose Timers (8 pages)
4063	PRISM ${ }^{\text {TM }} 2.4 \mathrm{GHz}$ Chip Set	Direct Sequence Spread Spectrum Wireless Transceiver Chip Set (2 pages) FN4063.3
4238	PRISM ${ }^{\text {TM }}$   Full Duplex Radio Front End	For Voice and Data (1 page) FN4238
LINEAR APPLICATION NOTES		
9515	(General Op Amps) AN515	Operational Amplifier Stability:   Input Capacitance   Considerations (2 pages)
9519	(General Op Amps) AN519	Operational Amplifier Noise Prediction (4 pages)
9551	(General Op Amps) AN551	Recommended Test Procedures for Operational Amplifiers (6 pages)
9556	(General Op Amps) AN556	Thermal Safe-Operating-Areas for High Current Op Amps (5 pages)
95290	(General Op Amps) AN5290	Integrated Circuit Operational Amplifiers (20 pages)
97304	(General Op Amps) AN7304	SCRs As Transient-Protection Structure in Integrated Circuits (3 pages) AN7304
98743	(General Logic), CD4007B, CD4060 AN8743	Micropower Crystal-Controlled Oscillator Design Using CMOS Inverters (8 pages)
99415	(General Op Amps) AN9415	Feedback, Op Amps and Compensation (12 pages) AN9415.2
99415	(General Op Amps) AN9415	Feedback, Op Amps and Compensation (12 pages)
99420	(General Op Amps) AN9420	Current Feedback Amplifier Theory and Applications (7 pages) AN9420.1
99510	(General Op Amps) AN9510	Basic Analog for Digital Designers ( 6 pages) AN9510
99523	(General Op Amps) AN9523	Evaluation Programs for SPICE Op Amp Models (10 pages) AN9523
96915	CA1524 AN6915	Application of the CA1524 Series Pulse-Width Modulator ICs (18 pages)
96182	CA3058, CA3059, CA3079 AN6182	Features and Applications of Integrated Circuit Zero-Voltage Switches (CA3059 and CA3079) (31 pages)


AnswerFAX   DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
96048	CA3094 AN6048	Some Applications of a Programmable Power Switch/ Amplifier (13 pages)
96077	CA3094, OTA AN6077	An IC Operational-Transcon-ductance-Amplifier (OTA) With Power Capability (12 pages)
96459	CA3130 AN6459	Why Use the CMOS Operational Amplifiers and How to Use it (4 pages)
96386	CA3130   AN6386	Understanding and Using the CA3130, CA3130A and CA3130B BiMOS Operation Amplifiers ( 5 pages)
97326	CA3228 AN7326	Applications of the CA3228 Speed Control System (16 pages)
96669	CA3240 AN6669	FET-Bipolar Monolithic Op Amps Mate Directly to Sensitive Sources (3 pages)
96818	$\begin{aligned} & \text { CA3280 } \\ & \text { AN6818 } \end{aligned}$	Dual Variable Op-Amp IC, the CA3280, Simplifies Complex Analog Designs (5 pages) AN6818
98707	CA3450 AN8707	The CA3450: A Single-Chip Video Line Driver and High Speed Op Amp (14 pages)
98811	CA5470 AN8811	BiMOS-E Process Enhances the CA5470 Quad Op Amp (8 pages)
98742	$\begin{gathered} \text { CD22402 } \\ \text { AN8742 } \end{gathered}$	Application of the CD22402   Video Sync Generator (4 pages)
98823	CD54HC4046A, CD54HC7046A, CD54HCT4046A, CD54HCT7046A, CD74HC7046A, CD74HCT4046A, CD74HCT7046A AN8823	CMOS Phase-Locked-Loop Applications Using the CD54/ 74HC/HCT4046A and CD54/ 74HC/HCT7046A (23 pages)
9514	HA-2400 AN514	The HA-2400 PRAM Four Channel Operational Amplifier (7 pages)
9517	$\begin{gathered} \text { HA-2420, HA-2425, } \\ \text { HA-5330 } \\ \text { AN517 } \end{gathered}$	Applications of Monolithic Sample and Hold Amplifier (5 pages)
662500	$\begin{gathered} \text { HA-2500, HA-2502 } \\ \text { MM2500 } \end{gathered}$	HA2500/02 Spice Operational Amplifier Macro-Model   (5 pages) MM2500.1
662510	HA-2510, HA-2512 MM2510	HA-2510/12 Spice Operational Amplifier Macro-Model   (4 pages)


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
662520	$\begin{gathered} \text { HA-2520, HA-2522 } \\ \text { MM2520 } \end{gathered}$	HA-2520/22 Spice Operational Amplifier Macro-Model (4 pages)
662539	HA-2539 MM2539	HA-2539 Spice Operational Amplifier Macro-Model (4 pages)
9541	$\begin{aligned} & \text { HA-2539, HA-2540 } \\ & \text { AN541 } \end{aligned}$	Using HA-2539 or HA-2540 Very High Slew Rate, Wideband Operational Amplifier (4 pages)
662540	HA-2540 MM2540	HA-2540 Spice Operational Amplifier Macro-Model (4 pages)
662541	HA-2541 MM2541	HA-2541 Spice Operational Amplifier Macro-Model (5 pages)
9550	$\begin{aligned} & \text { HA-2541 } \\ & \text { AN550 } \end{aligned}$	Using the HA-2541(6 pages)
662542	HA-2542 MM2542	HA-2542 Spice Operational Amplifier Macro-Model (5 pages)
9552	$\begin{gathered} \text { HA-2542 } \\ \text { AN552 } \end{gathered}$	Using the HA-2542 (5 pages)
662544	HA-2544 MM2544	HA-2544 Spice Operational Amplifier Macro-Model (5 pages)
99313	$\begin{gathered} \text { HA-2546, HA-5020, } \\ \text { HA-5033, HA-5177, } \\ \text { HI-5700 } \\ \text { AN9313 } \end{gathered}$	Circuit Considerations in Imaging Applications (8 pages)
662548	HA-2548 MM2548	HA-2548 Spice Operational Amplifier Macro-Model (5 pages)
99515	$\begin{gathered} \text { HA-2556, HA-5177 } \\ \text { AN9515 } \end{gathered}$	Multiplier Improves the Dynamic Range of Echo Systems (HA2556, HA-5177) (2 pages) AN9515
662600	$\begin{gathered} \text { HA-2600, HA-2602 } \\ \text { MM2600 } \end{gathered}$	HA-2600/02 Spice Operational Amplifier Macro-Model (5 pages)
9509	HA-2620 AN509	A Simple Comparator Using the HA-2620 (1 page)
662620	$\begin{gathered} \text { HA-2620, HA-2622 } \\ \text { MM2620 } \end{gathered}$	HA-2620/22 Spice Operational Amplifier Macro-Model (5 pages)
9546	$\begin{gathered} \text { HA-2625 } \\ \text { AN546 } \end{gathered}$	A Method of Calculating HA2625 Gain Bandwidth Product vs. Temperature (4 pages)
662839	HA-2839 MM2839	HA-2839 Spice Operational Amplifier Macro-Model (4 pages)


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
662840	HA-2840 MM2840	HA-2840 Spice Operational Amplifier Macro-Model (4 pages)
662841	HA-2841 MM2841	HA-2841 Spice Operational Amplifier Macro-Model (4 pages)
99516	HA-2841 AN9516	Adjustable Bandpass or Bandreject Filter (HA-2841) (2 pages) AN9516.1
662842	HA-2842 MM2842	HA-2842 Spice Operational Amplifier Macro-Model (4 pages)
662850	HA-2850 MM2850	HA-2850 Spice Operational Amplifier Macro-Model (4 pages)
665002	HA-5002 MM5002	HA-5002 Spice Buffer Amplifier Macro-Model (4 pages)
665004	HA-5004 MM5004	HA-5004 Spice Current Feedback Amplifier MacroModel (4 pages)
665013	HA5013 MM5013	HA5013 SPICE Macromodel (CFA) (8 pages) MM5013.1
99305	HA-5020 AN9305	HA-5020 Operational Amplifier Feedback Resistor Selection (2 pages)
665020	$\begin{aligned} & \text { HA-5020 } \\ & \text { MM5020 } \end{aligned}$	HA-5020 SPICE Macromodel (CFA) (7 pages) MM5020
665022	HA5022 MM5022	HA5022 SPICE Macromodel (CFA) (7 pages) MM5022
99503	HA5022 AN9503	Low Output Impedance MUX (1 pages)
665023	HA5023 MM5023	HA5023 SPICE Macromodel (CFA) (8 pages) MM5023
99508	HA5024 AN9508	Video Multiplexer Delivers Lower Signal Degradation (1 pages)
99637	HA5024, HFA3102 AN9637	Simple Phase Meter Operates to 10 MHz (2 pages) AN9637
665024	HA5024 MM5024	HA5024 SPICE Macromodel (CFA) (7 pages) MM5024.1
99502	HA5025 AN9502	Oscillator Produces Quadrature Waves (2 pages)
665025	HA5025 MM5025	HA5025 SPICE Macromodel (CFA) (8 pages) MM5025.1
9548	HA-5033 AN548	A Designers Guide for the HA-5033 Video Buffer (12 pages)


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
665033	HA-5033 MM5033	HA-5033 Spice Buffer Amplifier Macro-Model (4 pages)
665101	HA-5101 MM5101	HA-5101 Spice Operational Amplifier Macro-Model (5 pages)
9554	$\begin{gathered} \text { HA-5101, HA-5102, } \\ \text { HA-5104, HA-5111, } \\ \text { HA-5112, HA-5114 } \\ \text { AN554 } \end{gathered}$	Low Noise Family HA-5101/02/ 04/11/12/14 (7 pages)
665102	HA-5102 MM5102	HA-5102 Spice Operational Amplifier Macro-Model (5 pages)
665104	HA-5104 MM5104	HA-5104 Spice Operational Amplifier Macro-Model (5 pages)
665112	HA-5112 MM5112	HA-5112 Spice Operational Amplifier Macro-Model (5 pages)
99536	HA-5112 AN9536	PSPICE Performs Op Amp Open Loop Stability Analysis (3 pages) AN9536
665114	HA-5114 MM5114	HA-5114 Spice Operational Amplifier Macro-Model (5 pages)
665127	HA-5127 MM5127	HA-5127 Spice Operational Amplifier Macro-Model (4 pages)
9553	$\begin{gathered} \text { HA-5127, HA-5137, } \\ \text { HA-5147 } \\ \text { AN553 } \end{gathered}$	HA-5147/37/27, Ultra Low Noise Amplifiers (8 pages)
665137	HA-5137 MM5137	HA-5137 Spice Operational Amplifier Macro-Model   (4 pages)
665147	HA-5147 MM5147	HA-5147 Spice Operational Amplifier Macro-Model (4 pages)
9544	$\begin{aligned} & \text { HA-514X } \\ & \text { AN544 } \end{aligned}$	Micropower Op Amp Family (6 pages)
9543	$\begin{aligned} & \text { HA-5160, HA-5170 } \\ & \text { AN543 } \end{aligned}$	New High Speed Switch Offers Sub-50ns Switching Times (7 pages)
9540	$\begin{aligned} & \text { HA-5170 } \\ & \text { AN540 } \end{aligned}$	HA-5170 Precision Low Noise JFET Input Operation Amplifier (4 pages)
665190	HA-5190 MM5190	HA-5190 Spice Operational Amplifier Macro-Model (4 pages)
9525	$\begin{gathered} \text { HA-5190, HA-5195 } \\ \text { AN525 } \end{gathered}$	HA-5190/5195 Fast Settling Operational Amplifier (4 pages)


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
9526	$\begin{gathered} \text { HA-5190, HA-5195 } \\ \text { AN526 } \end{gathered}$	Video Applications for the HA-5190/5195 (5 pages)
9538	$\begin{gathered} \text { HA-5320 } \\ \text { AN538 } \end{gathered}$	Monolithic Sample/Hold Combines Speed and Precision (6 pages)
99334	HA7210 AN9334	Improving Start-Up Time at 32 kHz for the HA7210 Low Power Crystal Oscillator (2 pages)
99317	HA7210 AN9317	Micropower Clock Oscillator and Op Amps Provide System Control for Battery Operated Circuits (2 pages)
99202	HFA1100, HFA1130 AN9202	Using the HFA1100, HFA1130 Evaluation Fixture (4 pages)
99513	HFA1103   AN9513	Component Video Sync Formats (HFA1103) (3 pages) AN9513
99514	HFA1103 AN9514	Video Amplifier with Sync Stripper and DC Restore (HFA1103) (2 pages) AN9514
99507	HFA1112, HFA1114 AN9507	Video Cable Drivers Save Board Space, Increase Bandwidth (2 pages)
99524	HFA1212   AN9524	HFA1212 Dual Video Buffer Forms Differential Line Driver/ Receiver (1 page) AN9524
99315	HFA3046, HFA3096, HFA3127, HFA3128 AN9315	RF Amplifier Design Using HFA3046/3096/3127/3128 Transistor Arrays (4 pages)
663046	HFA3046, HFA3096, HFA3127, HFA3128 MM3046	HFA3046/3096/3127/3128 Transistor Array Spice Models (4 pages)
99528	HFA3101 AN9528	900MHz Down Converter Consumes Little Power (HFA3101) (1 page) AN9528
99641	HFA3102, CA5160, HI5731 AN9641	High-Frequency VGA Has Digital Control (2 pages) AN9641
99627	$\begin{gathered} \text { HFA3424 } \\ \text { AN9627 } \end{gathered}$	Using the HFA3424 Evaluation Board (2 pagers) AN9627
99630	HFA3524EVAL PRISM Chip Set AN9630	Using The HFA3524 Evaluation Board (13 pages) AN9630
99618	HFA3624EVAL, PRISM Chip Set AN9618	Using the PRISM ${ }^{\text {TM }}$ HFA3624 Evaluation Board (12 pages) AN9618.2
99638	HFA3925EVAL, PRISM Chip Set AN9638	Using The HFA3925 Evaluation Board (5 pages) AN9638


AnswerFAX DOCUMENT NUMBER	PART NUMBER	DESCRIPTION
99314	$\begin{gathered} \text { HFA5250 } \\ \text { AN9314 } \end{gathered}$	Harris UHF Pin Drivers (4 pages)
9053	$\begin{aligned} & \text { ICL7650 } \\ & \text { ANO53 } \end{aligned}$	The ICL7650 A New Era in Glitch-Free Chopper Stabilized Amplifiers (19 pages)
9040	$\begin{gathered} \text { ICL8013 } \\ \text { AN040 } \end{gathered}$	Using the ICL8013 Four Quadrant Analog Multiplier (6 pages)
9013	$\begin{aligned} & \text { ICL8038 } \\ & \text { AN013 } \end{aligned}$	Everything You Always Wanted to Know About the ICL8038   (4 pages)
9007	$\begin{gathered} \text { ICL8048, ICL8049 } \\ \text { AN007 } \end{gathered}$	Using the 8048/8049 Log/ Antilog Amplifier (6 pages)
99614	PRISM ${ }^{\text {M }}$ Chip Set AN9614	Low Data Rate Applications (3 pages) AN9614
99622	PRISM ${ }^{\text {M }}$ Chip Set AN9622	Using the PRISM ${ }^{\text {M }}$ HFA3724 Evaluation Board (16 pages) AN9622
99633	PRISM Chip Set AN9633	Processing Gain for Direct Sequence Spread Spectrum Communication Systems and PRISM ${ }^{\text {M }}$ (4 pages) AN9633
99639	PRISM Chip Set AN9639	Harris PRISM Wireless LAN Network Connectivity and Utility SW (non IEEE802.11) For the WLAN Evaluation Kit (3 pages) AN9639
LINEAR TECHBRIEFS		
82334	(General Linear, Telecom) TB334	Guidelines for Soldering Surface Mount Components to PC Boards (2 pages) TB334
82337	PRISM ${ }^{\text {™ }}$ Chip Set TB337	A Brief Tutorial on Spread Spectrum and Packet Radio (3 pages) TB337.1

## SALES OFFICES

## North American Sales Offices, Representatives and Authorized Distributors December 5, 1996

```
ALABAMA
 Harris Semiconductor
 6 0 0 \text { Boulevard South}
 Suite }10
 Huntsville, AL 35802
 TEL: (205) 883-2791
 FAX:2058832861
 Giesting & Associates
 Suite 15
 4 8 3 5 \text { University Square}
 Huntsville, AL 35816
 TEL: (205) 830-4554
 FAX: 205 830 4699
 Allied Electronics
 Huntsville
 TEL: (205) 721-3500
 Mobile
 TEL: (334) 476-1875
 Arrow/Schweber
 Huntsville
 TEL: (205) 837-6955
 Hamilton Hallmark
 Huntsville
 TEL: (205) 837-8700
 Newark Electronics
 Birmingham
 TEL: (205) 979-7003
 Huntsville
 TEL: (205) 837-9091
 Mobile
 TEL: (205) 471-6500
 Wyle Electronics
 Huntsville
 TEL: (205) 830-1119
 Zeus, An Arrow Company
 Huntsville
 TEL: (407) 333-3055
 TEL: (800) 52-HI-REL
ALASKA
 Newark Electronics
 Bellevue
 TEL: 800-321-8984
ARIZONA
 Compass Mktg. & Sales, Inc.
 11801 N. Tatum Blvd. #101
 Phoenix, AZ }8502
 TEL: (602) 996-0635
 FAX: 602 996 0586
```

11801 N Tatum Blvd $\# 101$
Phoenix, AZ 85028
TEL: (602) 996-0635
FAX: 6029960586


Ewing Foley, Inc.
185 Linden Avenue
Auburn, CA 95603
TEL: (916) 885-6591
FAX: 9168856594
10495 Bandley Avenue
Cupertino, CA 95014-1972
TEL: (408) 342-1220
FAX: 4083421221
Mesa Components, Inc.
5520 Ruffin Road
Suite 208
San Diego, CA 92123
TEL: (619) 278-8021
FAX: (619) 576-0964
Vision Technical Sales, Inc.

* 26010 Mureau Road

Suite 140
Calabasas, CA 91302
TEL: (818) 878-7955
FAX: 8188787965
16257 Laguna Canyon Road
Suite 150
Irvine, CA 92618
TEL: (714) 450-9050
FAX: (714) 450-9061
Allied Electronics
Irvine
TEL: (714) 727-3010
Rancho Cucamonga TEL: (909) 980-6522
Rocklin
TEL: (916) 632-3104
San Diego
TEL: (619) 279-2550
San Jose
TEL: (408) 383-0366
Torrance
TEL: (310) 540-0039
Woodland Hills
TEL: (818) 598-0130
Arrow/Schweber
Calabasas
TEL: (818) 880-9686

2480 W. Ruthrauff, Suite \#140
Tucson, AZ 85705
TEL: (520) 292-0222
AX. 5202921008

TEL: (602) 483-9400
Allied Electronics
Tempe
TEL: (602) 831-2002
Newark Electronics
TEL: (602) 966-6340
Arrow/Schweber
Tempe
TEL: (602) 431-0030
Hamilton Hallmark
Phoenix
TEL: (602) 437-1200
Wyle Electronics
Phoenix
TEL: (602) 804-7000
Zeus, An Arrow Company
Tempe
TEL: (408) 629-4789
TEL: (800) $52-\mathrm{HI}-$ REL
ARKANSAS
Newark Electronics
Little Rock
TEL: (501) 225-8130
CALIFORNIA
Harris Semiconductor

* 1503 So. Coast Drive

Suite 320
Costa Mesa, CA 92626
TEL: (714) 433-0600
FAX: 7144330682
Harris Semiconductor

* 3031 Tisch Way

Suite 800
San Jose, CA 95128
TEL: (408) 985-7322
FAX: 4089857455

Fremont
TEL: (408) 432-7171
Irvine
TEL: (714) 587-0404
San Diego
TEL: (619) 565-4800
San Jose
TEL: (408) 441-9700
Bell Microproducts
Irvine
TEL: 714-470-2900
San Diego
TEL: 619-597-3010
San Jose
TEL: 408-451-9400
Westlake Village
TEL: 805-496-2606
Hamilton Hallmark
Costa Mesa
TEL: (714) 789-4100
Los Angeles
TEL: (818) 594-0404
Sacramento
TEL: (916) 632-4500
San Diego
TEL: (619) 571-7540
San Jose
TEL: (408) 435-3500
Newark Electronics
Garden Grove
TEL: (714) 893-4909
Riverside
TEL: (909) 784-1101
Santa Fe Springs
TEL: (310) 929-9722
Sacramento
TEL: (916) 565-1760
Chula Vista
TEL: (619) 691-0141
San Diego
TEL: (619) 453-8211
Palo Alto
TEL: (415) 812-6300
Santa Clara
TEL: (408) 988-7300
Thousand Oaks
TEL: (805) 499-1480

North American Sales Offices, Representatives and Authorized Distributors (Continued)

Wyle Electronics Los Angeles	Nepean, Ontario TEL: (613) 596-6980	Allied Electronics Cheshire	Miami   TEL: (954) 484-5482
TEL: (818) 880-9000	Pointe Claire, Quebec	TEL: (203) 272-7730	Newark Electronics
Irvine	TEL.: (514) 697-8149	Arrow/Schweber	Orlando
TEL: (714) 789-9953	Winnipeg, Manitoba	Wallingford	TEL: (407) 896-8350
Sacramento	TEL: (204) 786-2589	TEL: (203) 265-7741	Ft. Lauderdal
TEL: (916) 638-5282	Hamilton Hallmark	Hamilton Hallmark	TEL: (305) 486-1151
San Diego   TEL: (619) 565-9171	Mississagua, Ontario TEL: (905) 564-6060	$\begin{aligned} & \text { Danbury } \\ & \text { TEL: (203) 271-5700 } \end{aligned}$	Tampa   TEL: (813) 287-1578
Santa Clara   TEL: (408) 727-2500	Montreal   TEL: (514) 335-1000	Newark Electronics   Bloomfield   TEL: (203) 243-1731	Jacksonville   TEL: (904) 399-5041
Zeus, An Arrow Company San Jose   TEL: (408) 629-4789   TEL: (800) 52-HI-REL	Ottawa   TEL: (613) 226-1700   Vancouver, B.C.   TEL: (604) 420-4101	Zeus, An Arrow Company   TEL: (914) 937-7400   TEL: (800) 52-HI-REL	Mobile   TEL: (205) 471-6500   Wyle Electronics   Fort Lauderdale
Irvine   TEL: (714) 581-4622   TEL: (800) 52 -HI-REL	$\begin{aligned} & \text { Toronto } \\ & \text { TEL: (905) 564-6060 } \end{aligned}$	FLORIDA   Harris Semiconductor 2401 Palm Bay Rd.	TEL: (954) 420-0500   St. Petersburg TEL: (813) 576-3004
CANADA Blakewood Electronic	London, Ontario   TEL: (519) 685-4280	TEL: (407) 729-4984 FAX: 4077295321	Zeus, An Arrow Company   Lake Mary
Systems, Inc.   \#201-7382 Winston Street Burnaby, BC Canada V5A 2G9	Mississauga, Ontario TEL: (905) 670-2888	Sun Marketing Group 1956 Dairy Rd.	TEL: (407) 333-3055
TEL: (604) 444-3344   FAX: 6044443303	Mount Royal, Quebec TEL: (514) 738-4488	West Melbourne, FL 32904 TEL: (407) 723-0501	GEORGIA Giesting \& Associates
Cee-Jay Microsystems LTD. 5925 Airport Road, Suite 614 Mississauga, Ontario L4V 1W1 TEL: 905-678-3188 FAX: 905-678-3166	COLORADO   Compass Mktg. \& Sales, Inc. 14142 Denver West Pkwy \#200 Golden, CO 80401 TEL: (303) 277-0456 FAX: 303 277-0429	FAX: 4077233845   4175 East Bay Drive, Suite 128 Clearwater, FL 34624   TEL: (813) 536-5771   FAX: 8135366933   600 S. Federal Hwy., Suite 218	* 2434 Hwy. 120, Suite 108   Duluth, GA 30136   TEL: (770) 476-0025   FAX: 7704762405   Allied Electronics   Duluth
Suite 200 Kanata, Ontario   Canada K2B 1A1   TEL: (613) 599-5626   FAX: 6135995707	Allied Electronics Englewood TEL: (303) 790-1664	Deerfield Beach, FL 33441   TEL: (954) 429-1077   FAX: 9544290019   Allied Electronics	Arrow/Schweber Duluth   TEL: (770) 497-1300
78 Donegani, Suite 200 Pointe Claire, Quebec	Englewood   TEL: (303) 799-0258	Ft. Lauderdale TEL: (954) 733-3144	Hamilton Hallmark Atlanta   TEL: (770) 623-4400
Canada H9R 2V4   TEL: (514) 426-0453   FAX: 5144260455	Hamilton Hallmark Denver TEL: (303) 790-1662	Jacksonville   TEL: (904) 739-5920   Maitland	Newark Electronics Norcross
Allied Electronics   Burnaby,BC   TEL: (604) 420-9691	Colorado Springs TEL: (719) 637-0055   Newark Electronics	TEL: (407) 539-0055   Miami Lakes TEL: (305) 558-2511	Wyle Electronics Atlanta   TEL
Nepean, Ontario   TEL: (613) 228-1964	Denver   TEL: (303) 373-4540	St. Petersburg TEL: (813) 579-4660	Zeus, An Arrow Company   TEL: (407) 333-3055
Arrow/Schweber Burnaby, British Columbia TEL: (604) 421-2333	Wyle Electronics Denver   TEL: (303) 457-9953	Arrow/Schweber   Deerfield Beach   TEL: (954) 429-8200	$\frac{\text { TEL: (800) 52-HI-REL }}{\text { IDAHO }}$
Dorval, Quebec   TEL: (514) 421-7411	Zeus, An Arrow Company   TEL: (408) 629-4789   TEL. (800) 52-HI-REL	$\begin{aligned} & \text { Lake Mary } \\ & \text { TEL: (954) 333-9300 } \end{aligned}$	Allied Electronics   Boise   TEL: (208) 331-1414
Nepan, Ontario   TEL: (613) 226-6903   Mississagua, Ontario   TEL: (905) 670-7769	CONNECTICUT   Advanced Tech. Sales, Inc.   Westview Office Park	Bell Microproducts Altamonte Springs   TEL: 407-682-1199   TEL: 800-542-3083	Newark Electronics Boise TEL: (208) 342-4311
Farnell Electronic Services Burnaby, British Columbia TEL: (604) 606-8950   Calgary, Alberta TEL: (403) 273-2780	Bldg. 2, Suite 1C 850 N. Main Street Extension Wallingford, CT 06492 TEL: (508) 664-0888 FAX: 2032848232	Deerfield Beach   TEL: 305-429-1001   Hamilton Halimark   Clearwater   TEL: (813) 507-5000	ILLINOIS   Harris Semiconductor   * 1101 Perimeter Dr., Suite 600 Schaumburg, IL 60173   TEL: (847) 240-3480   FAX: 8476191511
Concord, Ontario TEL: (416) 798-4884	Alliance Electronics, inc.   Milford   TEL: (203) 874-2001	Orlando   TEL: (407) 657-3300	

[^8]
## Oasis Sales

1101 Tonne Road
Elk Grove Village, IL 60007
TEL: (847) 640-1850
FAX: 8476409432
Allied Electronics
Bensenville
TEL: (630) 860-0007
Grayslake
TEL: (847) 548-9330
Loves Park
TEL: (815) 636-1010
Oak Forest
TEL: (708) 535-0038
Arrow/Schweber
Itasca
TEL: (708) 250-0500
Bell Microproducts
Schaumburg
TEL: 708-413-8530
Hamilton Hallmark
Chicago
TEL: (847) 797-7300
Newark Electronics
Rockford
TEL: (815) 229-0225
Springfield
TEL: (217) 787-9972
Schaumburg
TEL: (708) 310-8980
Willowbrook
TEL: (708) 789-4780
Wyle Electronics
Chicago
TEL: (708) 620-0969
Zeus, An Arrow Company
Itasca
TEL: (708) 250-0500
TEL: (800) 52-HI-REL
INDIANA
Harris Semiconductor

* 11590 N. Meridian St.

Suite 100
Carmel, IN 46032
TEL: (317) 843-5180
FAX: 3178435191
Giesting \& Associates
370 Ridgepoint Dr.
Carmel, in 46032
TEL: (317) 844-5222
FAX: 3178445861
Allied Electronics
Carmel
TEL: (317) 571-1880
Arrow/Schweber
Indianapolis
TEL: (317) 299-2071
EMC
Indianapolis
TEL: (317) 484-3050

Hamilton Hallmark
Carmel
TEL: (317) 575-3500
Newark Electronics
Fort Wayne
TEL: (219) 484-0766
Indianapolis
TEL: (317) 844-0047
Zeus, An Arrow Company
TEL: (708) 250-0500
TEL: (800) 52-HI-REL

## IOWA

Oasis Sales
4905 Lakeside Dr., NE
Suite 203
Cedar Rapids, IA 52402
TEL: (319) 377-8738
FAX: 3193778803
Allied Electronics
Cedar Rapids
TEL: (319) 390-5730
Hamilton Hallmark
Cedar Rapids
TEL: (319) 362-4757
Newark Electronics
Cedar Rapids
TEL: (319) 393-3800
West Des Moines
TEL: (515) 222-0700
Bettendorf
TEL: (319) 359-3711
Zeus, An Arrow Company
TEL: (214) 380-4330
TEL: (800) 52 -HI-REL

## KANSAS

L-TECH Marketing, Inc.
1 Kings Court, Suite 115
New Century, KS 66031
TEL: (913) 829-7884
FAX: 913-829-7611
Allied Electronics
Overland Park
TEL: (913) 338-4372
Arrow/Schweber
Lenexa
TEL: (913) 541-9542
Hamilton Hallmark
Kansas City
TEL: (913) 663-7900
Newark Electronics
Overland Park
TEL: (913) 677-0727
Zeus, An Arrow Company
TEL: (214) 380-4330
TEL: (800) 52 -HI-REL

## KENTUCKY <br> Giesting \& Assoclates

339 Arrowhead Springs Lane
Versailles, KY 40383
TEL: (606) 873-2330
FAX: 6068736233

Newark Electronics
Louisville
TEL: (502) 423-0280
LOUISIANA
Allied Electronics
St. Rose
TEL: (504) 466-7575
Newark Electronics
Metairie
TEL: (504) 838-9771

## MARYLAND

New Era Sales, Inc.
890 Airport Pk. Rd, Suite 103
Glen Burnie, MD 21061
TEL: (410) 761-4100
FAX: 410 761-2981
Allied Electronics
Columbia
TEL: (410) 312-0810
Arrow/Schweber
Columbia
TEL: (301) 596-7800
Bell Microproducts
Columbia
TEL: 410-720-5100
Hamilton Hallmark
Columbia
TEL: (410) 720-3400
Newark Electronics
Hanover
TEL: (410) 712-6922
Wyle Electronics
Columbia
TEL: (410) 312-4844
Zeus, An Arrow Company
TEL: (914) 937-7400
TEL: (800) 52-HI-REL
MASSACHUSETTS
Harris Semiconductor

* Six New England Executive Pk. Burlington, MA 01803
TEL: (617) 221-1850
FAX: 6172211866
Advanced Tech Sales, Inc.
348 Park Street, Suite 102
Park Place West
N. Reading, MA 01864

TEL: (508) 664-0888
FAX: 5086645503
Allied Electronics
Norwood
TEL: (617) 255-0361
Peabody
TEL: (508) 538-2401
Arrow/Schweber
Wilmington
TEL: (508) 658-0900
Bell Microproducts Billerica
TEL: 508-667-2400
TEL: 800-552-4305

Gerber Electronics
Norwood
TEL: (617) 769-6000
Hamilton Hallmark
Peabody
TEL: (508) 532-9893
Newark Electronics
Marlborough
TEL: (508) 229-2200
Woburn
TEL: (617) 935-8350
Wyle Electronics
Bedford
(617) 271-9953

Zeus, An Arrow Company
Wilmington, MA
TEL: (508) 658-4776
TEL: (800) HI-REL

## Obsolete/Discontinued

 Products:Rochester Electronics 10 Malcom Hoyt Drive Newburyport, MA 01950
TEL: (508) 462-9332
FAX: 5084629512

## MICHIGAN

Harris Semiconductor

* 27777 Franklin Rd., Suite 460 Southfield, MI 48034
TEL: (810) 746-0800
FAX: 8107460516
Glesting \& Associates
34441 Eight Mile Rd., Suite 113
Livonia, Ml 48152
TEL: (810) 478-8106
FAX: 8104776908
Allied Electronics
Grand Rapids
TEL: (616) 365-9960
Plymouth
TEL: (313) 416-9300
Arrow/Schweber
Livonia
TEL: (313) 462-2290
Hamilton Hallmark
Plymouth
TEL: (313) 416-5800
Newark Electronics
Grand Rapids
TEL: (616) 954-6700
Saginaw
TEL: (517) 799-0480
Oak Park
TEL: (810) 967-0600
Troy
TEL: (810) 583-2899
Zeus, An Arrow Company
TEL: (708) 250-0500
TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$

MINNESOTA   Oasis Sales 7805 Telegraph Road Suite 210 Bloomington, MN 55438 TEL: (612) 941-1917 FAX: 6129415701	Newark Electronics	Allied Electronics	Hauppauge
	Omaha	Albuquerque	TEL: (516) 231-1000
	TEL: (402) 592-2423	TEL: (505) 266-7565	Melville
	NEVADA	Hamilton Hallmark	TEL: (516) 391-1276
	Allied Electronics	Albuquerque	TEL: (516) 391-1300
	Las Vegas	TEL: (505) 293-5119	TEL: (516) 391-1633
	TEL: (702) 258-1087	Newark Electronics	Rochester
Allied Electronics Minnetonka   TEL: (612) 938-5633	NEW HAMPHIRE	Albuquerque	TEL: (716) 427-0300
	Newark Electronics	TEL: (505) 828-1878	Bell Microproducts
	Nashua	Zeus, An Arrow Company	Smithtown
Bell Microproducts   Eden Prairaie   TEL: 612-943-1122	TEL: (603) 888-5790	TEL: (408) 629-4789	TEL: 516-543-2000
	NEW JERSEY	TEL: (800) 52-HI-REL	Hamilton Hallmark
TEL: 612-943-1122	Harris Semiconductor	NEW YORK	Long Island
Hamilton Hallmark   Minneapolis   TEL: (612) 881-2600	* Plaza 1000 at Main Street	Harris Semiconductor	TEL: (516) 737-0600
	Suite 104	Hampton Business Center	Hauppauge
	Voorhees, NJ 08043	1611 Rt. 9, Suite U3	TEL: (516) 434-7470
Newark Electronics   Minneapolis   TEL: (612) 331-6350	TEL: (609) 751-3425	Wappingers Falls, NY 12590	Rochester
	FAX: 6097515911	TEL: (914) 298-0413	TEL: (716) 272-2740
	Harris Semiconductor	FAX: 9142980425	Newark Electronics
St. Paul TEL: (612) 631-2683	* 724 Route 202	Harris Semiconductor	Wappingers Falls
	P.O. Box 591	* 490 Wheeler Rd, Suite 165B	TEL: (914) 298-2810
Wyle Electronics   Minneapolis   TEL: (612) 853-2280	Somerville, NJ 08876	Hauppauge, NY 11788-4365	Latham
	TEL: (908) 685-6150	TEL: (516) 342-0291 Analog	TEL: (518) 783-0983
	FAX: 908 685-6140	TEL: (516) 342-0292 Digital	
Zeus, An Arrow Company   TEL: (214) 380-4330   TEL: (800) 52-HI-REL	Tritek Sales, Inc. One Mall Dr., Suite 410	FAX: 5163420295	Bohemia   TEL: (516) 567-4200
	Cherry Hill, NJ 08002	Foster \& Wager, Inc. 300 Main Street	Williamsville
	TEL: (609) 667-0200	Vestal, NY 13850	TEL: (716) 631-2311
MISSISSIPPI   Newark Electronics   Ridgeland   TEL: (601) 956-3834	FAX: 6096678741	TEL: (607) 748-5963	Pittsford
	Allied Electronics	FAX: 6077485965	TEL.: (716) 381-4244
	E. Brunswick   TEL: (908) 613-0828	2511 Browncroft Blvd.   Rochester, NY 14625	Liverpool
MISSOURI   L-TECH Marketing, Inc. 2414 Hwy. 94 South Outer Rd. Suite A   St. Charles, MO 63303 TEL: (314) 936-2007 FAX: 314-936-1991		TEL: (716) 385-7744	TEL: (315) 457-4873
	TEL: (609) 234-7769	FAX: 7165861359	Wyle Electronics Long Island
	Parsippany	7696 Mountain Ash Liverpool, NY 13090	TEL: (516) 293-8446
	TEL: (201) 428-3350	TEL: (315) 457-7954	Rochester
	Arrow/Schweber	FAX: 3154577076	TEL: (716) 334-5970
	Marton TEL: (609) 596-8000	Parallax, Inc.	Zeus, An Arrow Company   Pt. Chester
Allied Electronics   Earth City   TEL: (314) 291-7031	Pinebrook	734 Walt Whitman Rd.	TEL: (914) 937-7400
	TEL: (201) 227-7880	TEL: (516) 351-1000	TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$
Arrow/Schweber   St. Louis   TEL: (314) 567-6888	Bell Microproducts	FAX: 516-351-1606	NORTH CAROLINA
	Clifton	Alliance Electronics, Inc.	New Era Sales
	TEL: 201-777-4100	Huntington	1215 Jones Franklin Road
Hamilton Hallmark St. Louis TEL: (314) 291-5350	Hamilton Hallmark	TEL: (516) 673-1930	Suite 201
	Cherry Hill	Allied Electronics	Raleigh, NC 27606
	TEL: (609) 424-0110	Amherst	TEL: (919) 859-4400
Newark Electronics   St. Louis   TEL: (314) 453-9400	Parsippany	TEL: (716) 831-8101	FAX: 9198596167
	TEL: (201) 515-1641	Great Neck	Allied Electronics
	Pine Brook	TEL: (516) 487-5211	Charlotte ${ }^{\text {TEL }}$ (704) 525-0300
Zeus, An Arrow Company   TEL: (214) 380-4330   TEL: (800) 52 -HI-REL	TEL: (201) 882-8358 Newark Electronics East Brunswick	Hauppauge   TEL: (516) 234-0485	Raleigh   TEL: (919) 876-5845
NEBRASKA   Advanced Tech. Sales, Inc. 601 North Mur-Len, Suite 8 Olathe, KS 66062 TEL: (913) 782-8702 FAX: 9137828641	TEL: (908) 937-6600	Lagrangevilie TEL: (914) 452-1470	Arrow/Schweber
	Zeus, An Arrow Company   TEL: (914) 937-7400   TEL: (800) $52-\mathrm{HI}-\mathrm{REL}$	Rochester   TEL: (716) 292-1670	Raleigh   TEL: (919) 876-3132   EMC
	NEW MEXICO	Syracuse   TEL: (315) 446-7411	Charlotte ${ }_{\text {TEL: }}(704)$ 394-6195
Allied Electronics Omaha   TEL: (402) 697-0038	4100 Osuna Rd., NE, Suite 109   Albuquerque, NM 87109   TEL: (505) 344-9990   FAX: 5053454848	Arrow/Schweber   Farmingdale   TEL: (516) 293-6363	Hamilton Halimark Raleigh   TEL: (919) 872-0712

[^9]


## North American Authorized Distributors and Corporate Offices

Hamilton Hallmark and Zeus are the only authorized North American distributors for stocking and sale of Harris Rad Hard Space products.

Alliance Electronics
(SAB Status)
7550 E. Redfield Rd.
Scottsdale, AZ 85260
TEL: (602) 483-9400
(800) 608-9494

FAX: (602) 4433898
Allied Electronics
7410 Pebble Dr.
Ft. Worth, TX 76118
TEL: (800) 433-5700
Arrow/Schweber
Electronics
25 Hub Dr.
Melville, NY 11747
TEL: (800) 777-2776

Bell Microproducts
1941 Ringwood Avenue
San Jose, CA 95131
TEL: (408)451-9400
FAX: (408)451-1600
Electronics Marketing
Corporation (EMC)
1150 West Third Avenue
Columbus, OH 43212
TEL: (614) 299-4161
FAX: 6142994121
Farnell Electronic Services 300 North Rivermede Rd.
Concord, Ontario
Canada L4K 3N6
TEL: (416) 798-4884
FAX: 4167984889

Gerber Electronics
128 Carnegie Row
Norwood, MA 02062
TEL: (617) 769-6000, x156
FAX: 6177628931
Hamilton Hallmark 10950 W. Washington Blvd.
Culver City, CA 90230
TEL: (800) 332-8638
Newark Electronics
4801 N. Ravenswood
Chicago, IL 60640
TEL: (312) 784-5100
(800) 367-3673

FAX: 312 275-9596

[^10]| European Sales | EASTERN COUNTRIES | EBV Elektronik |
| :---: | :---: | :---: |
| Headquarters | GRADER Friedhelm | 3 rue del la Renai |
| Harris Semiconductor | Richard-Reitzner-Allee 4 | 92184 Antony cedex |
| Mercure Center | G-85540 Haar | TEL: (33) 140963000 |
| Rue de la Fusee 100 | TEL: 4989 46263-0 | FAX: (33) 140963030 |
| B-1130 Brussels, Belgium | Spoerle Electronic | SEI3D |
| TEL: 3227242111 | Charkovska 24 | Z.I. des Glaises |
| FAX: 322724 2205/... 09 | CZ-10100 Praha 10 | 6/8 Rue Ambroise Croizat |
| AUSTRIA | Czechoslovakia | FL- 331644729 |
| Avnet E2000 | TEL: 422731354 | TEL: 33164472929 |
| Waidhausenstrasse 19 | FAX: 422731355 | FAX: 33164470084 |
| A - 1140 Vienna | Spoerle Electronic | GERMANY |
| TEL: 4319112847 | ul. Domaniewska 41 | Harris Semiconductor |
| FAX: 4319113853 | PL-02672 Warszawa | Richard-Reitzner-Allee 4 |
| EBV Elektronik | Poland | D-85540 Haar |
| * Diefenbachgasse 35 | TEL: 48226400447 | TEL: 4989462630 |
| A - 1150 Vienna | FAX: 48226400348 | FAX: 498946263133 |
| TEL: 4318941774 | FINLAND | Harris Semiconductor |
| FAX: 4318941775 | Arrow Field OY | Kieler Strasse 55-59 |
| Spoerle Electronic | Niittylantie 5 | D-25451 Quickborn |
| Heiligenstädter 52 | FiN-00620 Helsinki | TEL: $4941065002-04$ |
| A - 1190 Vienna | TEL: 3589777571 | : 49410668850 |
| TEL: 431318 7270-0 | FAX: 3589798853 | Harris Semiconductor |
| FAX: 4313692273 | Avnet Nortec OY | Kolumbusstrasse 35/1 |
| BELGIUM | Italahdenkatu, 18 | D-71063 Sindelfingen |
| EBV Spoerle Electronic | FIN-00210 Helsinki | TEL: 49703186940 |
| * Keiberg II | TEL: 3589613181 |  |
| Minervastraat, 14/B2 | FAX: 35896922326 | Ecker Michelstadt |
| B-1930 Zaventem | Harcomp Electronics OY | In den Dorfwiesen 2A |
| TEL: 3227254660 | Syvalahdentie 79 | Postfach 3344 |
| FAX: 3227254511 | SF - 51200 Kangasniemi | D - 64720 Michelstadt |
| EBV Elektronik | TEL: 35859432031 | L: 4960612233 |
| * Excelsiorlaan 35B | FAX: 35859432367 | FAX: 4960615039 |
| B - 1930 Zaventem | FRANCE | Erwin W. Hildebrandt |
| TEL: 3227160010 | Harris Semiconducteurs | Nieresch 32 |
| FAX: 3227208152 | * 2-4, Avenue de l'Europe | D - 48301 Nottuln-Darup |
| ENMARK | F - 78941 Velizy Cedex | TEL: 492502230030 |
| Arrow-Exatec A/S | TEL: 33134654080 (Dist) | FAX: 492502230018 |
| Mileparken 20E | TEL: 33134654000 (Sales) | FINK Handelsvertretung |
| DK-2740 Skovlunde | FAX: 33139464054 | Laurinweg, 1 |
| TEL: 4544927000 | Arrow Electronique | D-85521 Ottobrunn |
| FAX: 4544926020 | 73-79, Rue des Solets | TEL: 49896097004 |
| Avnet Nortec A/S | Silic 585 | FAX: 49896098170 |
| Transformervej, 17 | F-94663 Rungis Cedex | Hans Flogel |
| DK - 2730 Herlev | TEL: 33149784978 | Kielerstrasse 31b |
| TEL: 4544880800 | FAX: 33149780699 | D-25451 Quickborn |
| FAX: 4544880888 | Avnet EMG | TEL: 4941065050207 |
| EBV Elektronik | 79, Rue Pierre Semard | FAX: 49410668850 |
| Ved Lunden 9 | P.B. 90 | Hartmut Welte |
| DK - 8230 Abyhoj | F-92322 Chatillon Sous Bagneux | Traubenweg 7 |
| TEL: 4586250466 | TEL: 33149652700 | D - 88048 Friedrichshafen |
| FAX: 4586250660 | FAX: 33149652539 | TEL: 49754472555 |
| EBV Elecktronik | CCI Electronique | FAX: 49754472559 |
| Gladsaxevej 370 | * 12, Allee de la Vierge | Avnet/E2000 |
| DK - 2860 Soborg | Silic 577 | Stahlgruberring, 12 |
| TEL: 4539690511 | F-94653 Rungis | D - 81829 München |
| FAX: 4539690504 | TEL: 33141807000 | TEL: 49894511001 |
| Independent ElectronicComponents | FAX: 33146753207 | FAX: 498945110129 |
|  |  |  |
| Poppelskellet 2 |  |  |
| DK-2000 Frederiksberg |  |  |
| TEL: 4536451206 |  |  |
| FAX: 4536451205 |  |  |

## European Sales Headquarters

Harris Semiconductor
Mercure Center
Rue de la Fusee 100
B-1130 Brussels, Belgium
TEL: 3227242111
FAX: 322724 2205/... 09
AUSTRIA
Avnet E2000
A - 1140 Vienna
TEL: 4319112847
FAX: 4319113853
EBV Elektronik
Defenbachgasse 35
A
TEL: 431894174
Spoerle Electronic
Heiligenstädter 52
A - 1190 Vienna
TEL: 431318 7270-0
FAX: 4313692273
BELGIUM
Spoerie Electronic

* Keiberg II

Minervastraat, 14/B2
Zaventem

EBV Elektronik

* Excelsiorlaan 35B

和
TEL: 3227160010
FAX: 3227208152
DENMARK
Arrow-Exatec AS
Mileparken 20E
DK-2740 Skovlunde
Ax: 454

Avne
Transformervej, 17
DK - 2730 Herlev
TEL: 4544880800

EBV Elektronik
Ved Lunden 9
DK - 8230 Abyho
FAX: 4586250660
EBV Elecktronik
Gladsaxevej 370
DK - 2860 Soborg
TEL: 4539690511

Independent Electronic
Components
Poppelskellet 2
DK-2000 Frederiksberg
FAX: 4536451205

## 

G-85540 Haar
TEL: 4989 46263-0
poerle Electronic
CZ-10100 Praha 10
Czechoslovakia
TEL: 422731354
FAX:42 2731355
Spoerle Electronic
PL Do 1072 Wa
Poland
TEL: 48226400447
FAX: 48226400348
Arrow Field OY
Niittylantie 5
FIN-00620 Helsinki
TEL: 3589777571
FAX: 3589798853
Avnet Nortec OY
Alahdenkatu, 18
(N-0.210Hel
FAX: 35896922326
Harcomp Electronics OY
Syvalahdentie 79
gasniemi
TEL: 35859432031
FAX: 35859432367
RANCE
ducteurs
部
TEL: 33134654080 (Dist)
TEL: 331346540 00(Sales)

Arrow Electronique
73 -79, Rue des Solets
58


Avnet EMG
Rue Pierre Semara

F-92322 Chatillon Sous Bagneux
EL: 33149652700

CCI Electronique
2, Allee de la Vierge
:
FAX: 33146753207

EBV Elektronik
3 rue del la Renaissance
O2184 An) 40 cedox
FAX: (33) 140963030
SEI/3D
Z.I. des Glaises

Ris Croiza
F
FAX:33 164470084

GERMANY
Harris Semiconductor
Richard-Reitzner-Allee 4

DL: 4989462630
FAX: 498946263133
arris Semiconductor
D-25451 Quickbor
TEL: 49410650 02-04
FAX: 49410668850

Harls Serlconductor
Dolubus Sinding
TEL. 49703186940
FAX: 497031873849
Ecker Michelstadt
In den Dorfwiesen 2A
Postrach 3344
TEL. 490612233
FAX: 4960615039

Nieresch 32
D - 48301 Nottuln-Darup

FAX: 492502230018
INK Handelsvertretung
Laurnan 1
D-8:42 89
FAX: 49896098170
Hans Flogel
Kielerstrasse 31b
D-25:41
TEL: 494106505020

Hartmut Welte
Traubenweg 7
D-88048 Filedrichsharen
FAX: 4975447255

## Avnet/E2000

ruberring, 12

TEL: 49894511001
FAX: 498945110129

[^11]European Sales Offices, Representatives and Authorized Distributors (Continued)

EBV Elektronik

* Via C. Frova, 34

I-20092 Cinisello Balsamo
TEL: 392660961
FAX: 39266017020
Lasi Elettronica
Viale Fulvio Testi 280
I-20126 Milano
TEL: 392661431
FAX: 39266101385
Silverstar
Viale Fulvio Testi 280
I-20126 Milano
TEL: 392661251
FAX: 39266101359
NETHERLANDS
Acal

* Beatrix de Rijkweg, 8

NL - 5657 EG Eindhoven
TEL: 31402502602
FAX: 31402510255
Spoerle Electronic

* Coltbaan 17

NL - 3439 NG Nieuwegein (Utrecht)
TEL: 31306091234
FAX: 31306035924
Spoerle Electronic
Postbus 7139
De Run 1120
NL-5605 JC Eindhoven
TEL: 31402545430
FAX: 31402535540
EBV Elektronik

* Planetenbaan, 2

NL - 3606 AK Maarssenbroek
TEL: 31346562353
FAX: 31346564277
NORWAY
$\quad$ Arrow-Tahonic
Sagveien 17
P.O. Box 4554, Torsh
N-0404 Oslo
TEL: 4722378440
FAX: 4722370720

Avnet Nortec A/S
Box 123
N-1364 Hvalstad
TEL: 4766846210
FAX: 4766846545

## PORTUGAL

Amitron-Arrow
Quinta Grande, Lote 20
Alfragide
P-2700 Amadora
TEL: 351.1.471 4806
FAX: 351.1.471 0802

## SOUTH AFRICA <br> Allied Electronic <br> Components

10, Skietlood Street
Isando, Ext. 3, 1600
P.O. Box 69

Isando, 1600
Transvaal
TEL: 2711392 3804/. . . 19
FAX: 27119749625
FAX: 27119749683
SPAIN
Elcos
c/Avda Europa, 301 B-A
SP 28224 Pozuelo de
Alarcon/Madrid
TEL: 3413523052
FAX: 3413521147
Amitron-Arrow
Albasanz, 75
SP - 28037 Madrid
TEL: 3413043040
FAX:341327 2472
EBV Elektronik

* Centro Empresarial Euronova

Ronda de Poniente,
4 Ala Derecha
1A Planta, Officina A
SP - 28760 Tres Cantos
Madrid
TEL: 3418043256
FAX: 3418044103

## SWEDEN

Harris Semiconductor
Centralvagen, 12
S-17144 Solna
TEL: 468270660
FAX: 468270656
Arrow TH:s
Box 3027
Arrendevagen 36
S - 16303 Spanga
TEL: 468362970
FAX: 4687613065
Avnet Nortec AB
Englundavagen 7
P.O. Box 1830
$S$ : 17127 Solna
TEL: 4686291400
FAX: 4686270280

## SWITZERLAND

Avnet E2000
Boehirainstrasse 11
CH - 8801 Thalwil
TEL: 4117221330
FAX: 4117221340

## Basix

Hardturmstrasse 181
CH - 8010 Zürich
TEL: 4112761111
FAX: 4112761234

## EBV Elektronik

* Vorstadtstrasse 37

CH - 8953 Dietikon
TEL: 4117401090
FAX: 4117415110
Guidici Mauro O\&T GmbH
Florastr 34
CH-8610 Uster
TEL: 4119943290
FAX: 4119943291
Spoerle Electronic
Cherstrasse 4
CH-8152 Opfikon-Glattbrugg
TEL: 4118746262
FAX: 4118746200

## TURKEY <br> EBV Electronik

Bayar Cad. Gulbahar Sok No 17
Perdemsac Plaza D:131-132
TK-81090 Kazyatagl/Istanbul
TEL: 90216463 1352/3
FAX: 902164631355
EMPA
Besyol Londra Asfalti
TK - 34630 Sefakoy/Istanbul
TEL: 902125993050
FAX: 902125993059
UNITED KINGDOM
Harris Semiconductor

* Riverside Way

Watchmoor Park
Camberley
Surrey GU15 3YQ
TEL: 441276686886
FAX: 441276682323
Laser Electronics
Ballynamoney
Greenore
Co. Louth, Ireland
TEL: 3534273165
FAX: 3534273518
Complementary
Technologies
Redgate Road
South Lancashire, Ind. Estate
Ashton-In-Makerfield
Wigan, Lancs WN4 8DT
TEL: 441942274731
FAX: 441942274732

Stuart Electronics
Phoenix House
Bothwell Road
Castlehill, Carluke
Lanarkshire ML8 5UF
TEL: 441555751572
FAX: 441555750028
Arrow Jermyn
St Martins Business Centre
Cambridge Road
Bedford MK42 0LF
TEL: 441234270027
FAX: 441234214674
Avnet Access
Jubilee House
Jubilee Road
Letchworth
Hertfordshire SG6 1QH
TEL: 441462480888
FAX: 441462488567
EBV Elektroik
EBV House
7 Frascati Way
Maidenhead
Berkshire SL6 4UY
TEL: 441628783688
FAX: 441628783811
Farnell Components
Sales, Mktg \& Admin Center
Canal Road, Armley
Leeds LS12 2TU
TEL: 441132790101
FAX: 441132633404
Farnell Electronic Services
Edinburgh Way.
Harlow
Essex CM20 2DF
TEL: 441279626777
FAX: 441279441687
IEC Micromark Electronics
Boyn Valley Road
Maidenhead
Berkshire SL6 4DT
TEL: 44162876176
FAX: 441628783799

## Harris Semiconductor <br> Chip Distributors <br> Die Technology

Corbrook Rd., Chadderton Lancashire OL9 9SD
TEL: 44616263827
FAX: 44616274321
TWX: 668570
Rood Technology
Test House Mill Lane, Alton
Hampshire GU34 2QG
TEL: 4442088022
FAX: 4442087259
TWX: 21137

## AUSTRALIA

Avnet VSI Electronics Pty Ltd.
Unit C 6-8 Lyon Park Road North Ryde NSW 2113
TEL: (612) 878-1299
FAX: (612) 878-1266
BBS Electronics Australia Unit 24, 5-7 Anella Avenue, Castle Hill, NSW, 2154 PO Box 6686 Baulkham Hills, NSW, 2153
TEL: 612-8945244
FAX:612-8945266
CHINA/HONG KONG
Harris Semiconductor China Ltd

* Room 300588 Tong Ren Road Shanghai, 20040 China
TEL: 86-21-6247-7923
FAX: 86-21-6247-7926
Harris Semiconductor China Ltd.
* Unit 1801-2, 18th Floor 83 Austin Road Tsimshatsui, Kowloon TEL: (852) 2723-6339 FAX: (852) 2724-4369

Edal Electronics Co., Ltd. Room 911-913, Chevalier Commercial Centre, 8, Wang Hoi Road, Kowloon Bay, Kowloon TEL: (852) 2305-3863 FAX: (852) 2759-8225
Lucas Trading
Unit A, 8F
88 Hung To Road, Kwun Tong Kowloon, Hong Kong
TEL: 852-3044023
FAX: 852-3040065
Means Come Ltd.
Room 1007, Harbour Centre 8 Hok Cheung Street Hung Hom, Kowloon TEL: (852) 2334-8188
FAX: (852) 2334-8649
Sunnice Electronics Co., Ltd.
Flat $F, 5 / F$, Everest Ind. Cir. 396 Kwun Tong Road Kowloon
TEL: (852) 2790-8073
FAX: (852) 2763-5477
Array Electronics Limited 24/F Wyler Centre, Phase 2 200 Tai Lin Pai Road
Kwai Chung
New Territories, Hong Kong
TEL: (852) 2418-3700
FAX: (852) 2481-5872

Inchcape Industrial
10/F, Tower 2, Metroplaza
223 Hing Fong Road,
Kwai Fong
New Territories, Hong Kong
TEL: 852-2410-6555
FAX: 852-2401-2497
Kingly International Co., Ltd.
Flat 03, 16/F, Block A,
Hi -Tech Ind. Centre
5-21 Pak Tin Par St.,
Tsuen Wan, New Territories, H.K.
TEL: (852) 2499-3109
FAX: (852) 2417-0961

## INDIA

Intersil Private Limited
Plot 54, SEEPZ
Marol Industrial Area
Andheri (E) Bombay 400096
TEL: (91) 22-832-3097
FAX: (91) 22-836-6682

## Graftec Elec

49 J.C. Road
Bangalore 560002
TEL: (91) 802233346
FAX: (91) 802226490
Graftec India
No 143 Lakshmi Building
R.V. Road, V.V. Puram

Bangalore 560004
Karnataka
TEL: (91) 80-661 1095
FAX: (91) 80-222 6490
BBS Electronics (India) Pvt Ltd
309 Richmond Tower
No 12, Richmond Road
Bangalore 560025
TEL: (91) 80-221-7912
FAX: (91) 80-227 8043
S M Creative Electronics Ltd
10 Electronic City
Sector 18, Gurgaon 122015
Haryana
TEL: 91124342 137/237/1551
FAX: 91124236 or 91116228474

## INDONESIA

P.T. Silicontama Jaya

Jalan A.M. Sangaji No 15 B4
Jakarta Pusat
TEL: (62) 21-345 4050
FAX: (62) 21-345 4427
SELC Sumber Elektronic JL Jend A Yani \#298, Bandung 40271
TEL: (62) 22-706-056
FAX: (62) 22-703-622

## JAPAN

Harris K.K.

* Kojimachi-Nakata Bldg. 4F 5-3-5 Kojimachi
Chiyoda-ku, Tokyo, 102 Japan
TEL: (81) 3-3265-7571
FAX: (81) 3-3265-7575
Hakuto Co., Ltd.
1-1-13 Shinjuku Shinjuku-ku Tokyo 160
TEL: 81-3-3355-7615
FAX: 81-3-3355-7680
Jepico Corp.
Shinjuku Daiichi Seimei Bldg.
2-7-1, Nishi-Shinjuku
Shinjuku-ku, Tokyo 163
TEL: 81 3-3348-0611
FAX: 81 3-3348-0623
Macnica Inc.
Hakusan High Tech Park
1-22-2, Hakusan
Midori-ku, Yokohama-shi,
Kanagawa 226
TEL: 81 45-939-6116
FAX: 81 45-939-6117


## Micron, Inc.

DJK Kouenji Bldg. 5F
4-26-16, Kouenji-Minami
Suginami-Ku, Tokyo 166
TEL: 81-3-3317-9911
FAX: 81-3-3317-9917
Okura Electronics Co., Ltd.
Okura Shoji Bldg.
2-3-6, Ginza Chuo-ku,
Tokyo 104
TEL: 81 3-3564-6822
FAX: 81 3-3564-6870
Takumi Shoji Co
3 Maruzen Bld, 6F 6-16-6 Nishi Shinjuku, Shinjuku-Ku, Tokyo 160
TEL: 813-3343-9605
FAX: 813-3343-9624

## AUTOMOTIVE REP/DISTRI

Continental Far East Inc.
3-1-5 Azabudai
Minatoki, Tokyo 106
TEL: 81-3-3584-0339
FAX: 81-3-3588-0930
Mitsuiwa Shojl Co., Ltd.
Namikibashi Bldg.
3-15-8 Shibuya
Shibuya-Ku, Toyko 150
TEL: 81 3-3407-2181
FAX: 81 3-3407-1472

Nissei Electronics Ltd.
Hitachi Atago Bldg.
2-15-12 Nishi-Shimbashi
Minato-Ku, Tokyo 105
TEL: 81 3-3504-7921
FAX: 81 3-3504-7900

## KOREA

Harris Semiconductor YH

* RM \#419-1

Korea Air Terminal Bldg.
159-6, Sam Sung-Dong,
Kang Nam-ku, Seoul
135-728, Korea
TEL: 82-2-551-0931
FAX: 82-2-551-0930
H.B. Corporation

Rm \#1409,
Seocho World Officetel,
1355-3, Seocho-Dong,
Seocho-Ku, Seoul 137-020
TEL: 82-2-3472-3450
FAX: 82-2-3472-3458

## Graftec Korea

Room \#611, Yongsan
Electronic Offetel, 16-548
3-Ga Hankang-Ro, Youngsan-Gu, Seoul
TEL: 822-715-8857
FAX: 822-715-8859
Inhwa Company, Ltd.
Room \#305, Daegyo Bldg., 56-4, Wonhyoro 3GA,
Young San-Ku, Seoul 140-113
TEL: 822-703-7231
FAX: 822-703-8711
Kumoh Electric Co., Ltd. 203-1, Yoido-Dong,
Young Duing Po-Ku, Seoul
TEL: 822-782-9393
FAX: 822-782-9388
Segyung Techcell Co., Ltd.
Dansan Nonhyun Bldg., 270-45 Nonhyun-Dong,
Kangnam-Ku, Seoul 135-010
TEL: 822-515-7477
FAX: 822-515-8889

## MALAYSIA

BBS Electronics (M) Sdn Bhd
Lot 2-01, Wisma Denko
41, Lorong Adu Siti
10400 Penang
TEL: (604) 2280433
FAX: (604) 2281710
NEW ZEALAND
Arrow Components (NZ)
Limited
19 Pretoria Street
PO Box 31186
Lower Hut
TEL: (64) 45702260
FAX: (64) 45662111

* Field Application Assistance Available

```
PHILIPPINES
 Uraco Technologies
 Philippines Inc.
 Unit 12A/310 Project J.P. Rizal
 St. Project }
 Quezon City, }110
 TEL: (632) 922 2250
 FAX: (632) 922 }870
```

SINGAPORE
Harris Semiconductor Pte Ltd.

* \#1, Tannery Road 09-01

Cencon 1, Singapore 347719
TEL: 65-748-4200
FAX: 65-748-0400

BBS Electronics Pte, Ltd.
1 Genting Link \#05-03 Perfect Indust. Bldg. Singapore 1334
TEL: (65) 748-8400
FAX: (65) 748-8466
TAIWAN
Harris Semiconductor

* Room 823, N. 144, Sec. 3 Ming Chuan East Road Taipei 10464, Taiwan, R.O.C. TEL: (886) 2-716-9310
FAX: (886) 2-715-3029

Applied Component Tech.
Corp.
8F No. 233-1, Pao-Chia Road Hsin Tien City, Taipei Hsien, Taiwan, R.O.C.
TEL: (886) 29170858
FAX: (886) 29171895
Galaxy Far East Corporation 8F-6, No. 390, Sec. 1 Fu Hsing South Road Taipei, Taiwan
TEL: (886) 2-705-7266
FAX: (886) 2-708-7901

TECO Enterprise Co., Ltd. 10FL., No. 292, Min-Sheng W. Rd.
Taipei, Taiwan
TEL: (886) 2-555-9676
FAX: (886) 2-558-6006
THAILAND
Electronics Source Co., Ltd. 138 Banmoh Rd.
Pranakorn, Bankok 10200
TEL: 66-2-2264145
FAX: 66-2-2254985

## Have you tried Harris' AnswerFAX 24-Hour On-Demand Product Information Service? (407) 724-7800

GIVE US A CALL . . . Harris' toll-free number is 1-800-4-HARRIS (1-800-442-7747). You can request literature, get information on sales locations, or be connected to our Central Applications Group.

SEE US ON THE NET . . . Harris' home page is http://www.semi.harris.com or E-mail our Central Applications Group at centapp@harris.com for Technical Assistance. You'll find product information, design software, information on what's new and much, much more. There are over 1,000 documents (datasheets, application notes, etc.) loaded with an easy-to-use search engine.


For complete, current and detailed technical specifications on any Harris devices, please contact the nearest Harris sales, representative or distributor office. Literature requests may also be directed to:

Harris Semiconductor Data Services Department<br>P.O. Box 883, MS 53-204<br>Melbourne, FL 32902<br>TEL: 1-800-442-7747 FAX: 407-724-7240

## We're Backing You Up with Products, Support, and Solutions!

Signal Processing

- Linear/ RF
- High Speed Data Converters
- Function Specific DSPs
- Communication ICs
- Telecom Line Card ICs
- Operational Amplifiers
- Multiplexers/Switches
- Sample and Hold
- Data Converters
- PRISM ${ }^{\text {TM }}$ Chipset


## Power Products

- Power MOSFETs
- IGBTs
- MCTs
- MOVs
- Rectifiers
- Surgectors
- MLVs
- Intelligent Discretes


## Intelligent Power

- DC-DC Converters
- Power Drivers
- Automotive Multiplexers
- FET Drivers
- Protection
- Audio
- Motor Control

Digital

- CMOS Microprocessors
- CMOS Microcontrollers
- CMOS Peripherals and Memory
- CMOS Logic


## Multimedia

- Video Decoders
- Video Encoders
- Audio Codecs
- Audio Processors
- Video Processors

Military \& Space IC Products

- Logic
- CD4000
- HCS/HCTS High Speed
- ACS/ACTS Advanced
- Signal Processing
- Multiplexers
- Sample and Hold
- Communication Circuits
- Switches
- Data Converters
- Operational Amplifiers
- Memories
- SRAMs
- PROMs
- Microprocessors and Peripherals
- Microcontrollers
- Discrete Power
- N-Channel MOSFETs
- P-Channel MOSFETs
- Power Controllers and Converters

PRISM ${ }^{\top M}$ is a trademark of Harris Corporation


[^0]:    Primary Pins are pin-to-pin; secondary/optional pins are not.

[^1]:    $\dagger$ Primary Pins are pin-to-pin; secondary/optional pins are not.

[^2]:    Primary Pins are pin-to-pin; secondary/optional pins are not.

[^3]:    6. "Digital-to-Analog Conversion Using the Harris CD4007A COS/MOS IC", Application Note AN6080.
[^4]:    $\dagger$ Pins 9 and 13 internally connected through approximately $3 \Omega$.

[^5]:    NOTE: No Connection (NC) pins may be tied to a ground plane for better isolation and heat dissipation.

[^6]:    PSPICE ${ }^{\text {TM }}$ is a registered trademark of MicroSim Corp.

[^7]:    *Technical Data on LM Branded Types is Identical to the Corresponding CA Branded Types

[^8]:    * Field Application Assistance Available

[^9]:    * Field Application Assistance Available

[^10]:    * Field Application Assistance Available

[^11]:    * Field Application Assistance Available

