16-bit Proprietary Microcontroller

CMOS

F2MC-16L MB90670/675 Series

MB90671/672/673/T673/P673 (MB90670 Series) MB90676/677/678/T678/P678 (MB90675 Series)

■ DESCRIPTION

The MB90670/675 series have been developed as a general-purpose version of the F²MC*¹-16L family consisting of proprietary 16-bit, single-chip microcontrollers. These general-purpose devices are designed for applications that require high-speed real-time processing suitable for process control in a wide variety of industrial and OA equipment.

The instruction set is based on the AT architecture of the F²MC-8 family, with additional high-level language supporting instruction, expanded addressing modes, enhanced multiplication and division instructions, and improved bit processing instructions. In addition, long-word data can now be processed due to the inclusion of a 32-bit accumulator.

The MB90670/675 series includes a variety of peripherals on chip, such as a UART, an SCI, a 10-bit A/D converter, an 8-bit PPG, a 16-bit reload timer, a 24-bit free-run timer, an OCU, an ICU, DTP/external interrupts, and I²C interface*² (675 series only). Furthermore, because the on-chip peripherals, with the aid of intelligent I/O service function, can transfer data without the intervention of the CPU. This microcontroller can be used for applications that require real-time control.

- *1: F2MC stands for FUJITSU Flexible Microcontroller.
- *2: Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

■ FEATURES

- Minimum execution time: 62.5 ns at 4 MHz oscillation (with multiply-by-4 setting)
 PLL clock multiplier system used
- Instruction set optimized for controller applications

Variety of data types: bit, byte, word, long-word

Expanded addressing modes: 23 types

High coding efficiency

Improvement of high-precision arithmetic operations through use of 32-bit accumulator

· Instruction set supports high-level language (C language) and multitasking

Inclusion of system stack pointer

Variety of pointers

High instruction set symmetry

Barrel shift instruction

(Continued)

- Improved execution speed: 4-byte queue
- · Powerful interrupt functions

Priority levels: 8 levels (programmable) External interrupt inputs: 4 channels

· Automatic transfer function independent of CPU

Intelligent I/O Service: max.10 channels

• General-purpose ports: max.65 channels (MB90670 series)

max.84 channels (MB90675 series)

- 18-bit timebase counter
- · Watchdog timer
- UART0: 1 channel

Can be used for either asynchronous transfer or synchronous transfer

• UART1 (SCI): 1 channel

Can be used for either asynchronous transfer or serial transfer with clock (I/O extended serial)

 A/D converter: analog inputs: 8 channels Resolution: 10 bits (switchable to 8 bits) RC-type sequential comparison method

- 24-bit free-run timer: 1 channel
- ICU (input capture): 4 channels
- OCU (output compare): 8 channels
- 8-bit PPG timer: 2 channels
- · 16-bit reload timer: 2 channels
- I2C* interface: 1 channel (only in the MB90675 series)
- Low-power consumption modes

Sleep mode Stop mode

CPU intermittent operation mode

Pseudo-watch mode

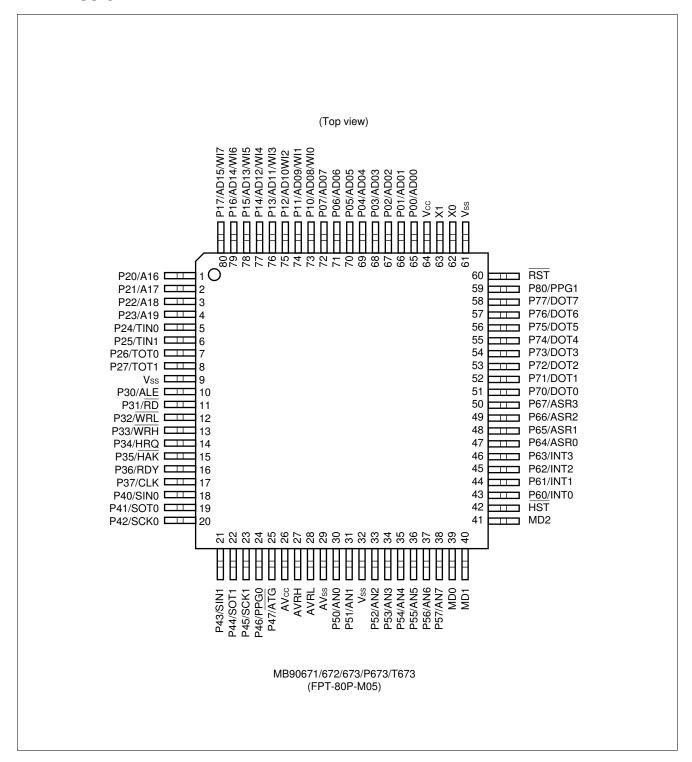
Hardware standby pin

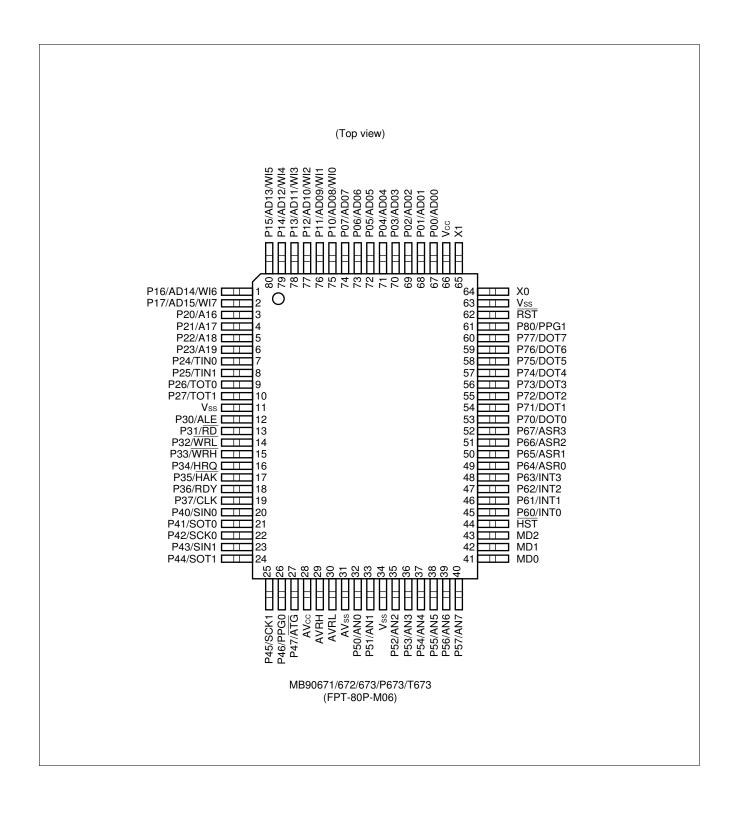
- Packages: LQFP-80, QFP-80, LQFP-100, QFP-100
- CMOS technology
- I2C License

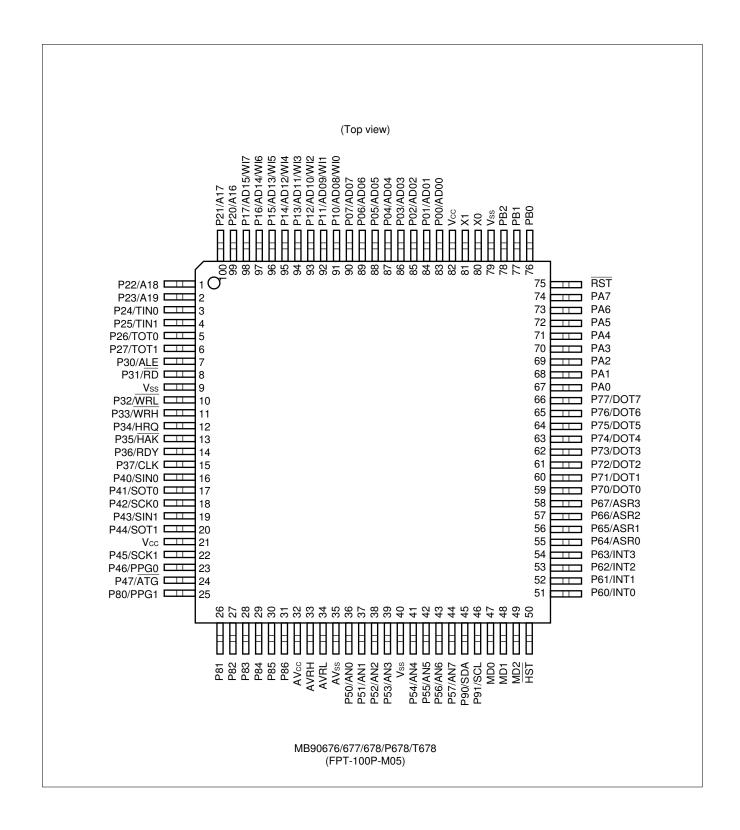
Purchase of I²C components convey the Philips I²C Patent Rights to use these component in an I²C system, provided that the system comforms to the I²C standard specification as defined by Philips.

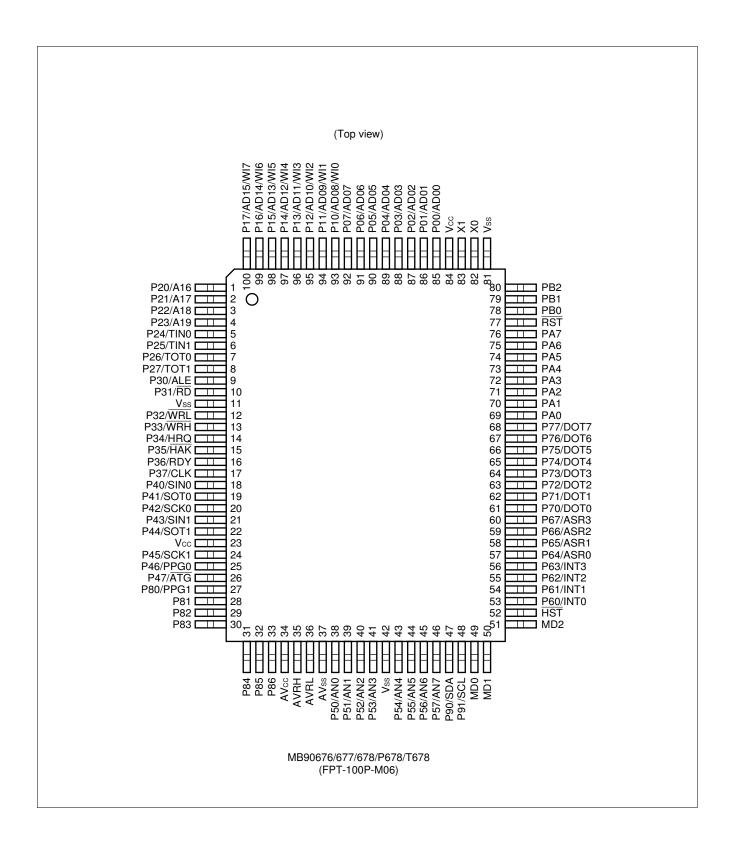
■ PACKAGE

■ PRODUCT LINEUP


• MB90670 Series


Pa	Part number rameter	MB90671	MB90672	MB90673	MB90T673	MB90P673				
Cla	ssification			One-time PROM product						
	Number of instructions			340						
	Minimum execution time		62.5 ns at 4 MHz (PLL: with multiply-by-4 setting)							
	RAM size	640 bytes	1.64 Kbytes		2 Kbytes					
U core	ROM size	16 Kbytes (internal mask ROM)	32 Kbytes (internal mask ROM)	48 Kbytes (internal mask ROM)	None	48 Kbytes (internal OTPROM)				
CPU	System clock oscillation circuit		System	clock/PLL clock	on chip					
	Low-power consumption modes	Sle	eep, stop, CPU ir ł	ntermittent opera nardware standb		tch,				
	Interrupts	Interrup	t sources: 19 cha external in	annels; priority le nterrupt inputs: 4		nmable);				
	Ports Output ports (N-channel open drain): 8 I/O ports (CMOS): 57 Total: 65									
	UART0		}	3 bits × 1 channe	ıl					
	UART1 (SCI)	8 bits × 1 channel								
	A/D converter		10-bit	resolution \times 8 ch	annels					
rces	24-bit free-run timer		2	4 bits × 1 channe	el					
Resources	ICU (input capture)		24	4 bits × 4 channe	els					
۳	OCU (output compare)		24	4 bits \times 8 channe	els					
	8-bit PPG timer		8	bits \times 2 channel	s					
	16-bit reload timer		16	6 bits × 2 channe	els					
	I ² C interface			None						
	Watchdog timer function			On chip						
tics	Power supply voltage			+2.7 V to +5.5 V						
teris	Operating temperature	Operating temperature -40°C to +85°C								
Characteristics	System clock frequency	32 MHz (+5.0 V ± 10%) 16 MHz (+3.0 V ± 10%)								
	Package		FPT-8	0P-M05/FPT-80	P-M06					
Miscellaneous	Process			CMOS						


• MB90675 Series


	Part number	MB90676	MP00677	MP00670	MPOOT670	MP00D679		
Pa	rameter	WID90076	MB90677	MB90678	MB90T678	MB90P678		
Cla	ssification		Mass production products					
	Number of instructions			340				
	Minimum execution time		62.5 ns at 4 MHz	z (PLL: with mult	iply-by-4 setting)		
	RAM size	1.64 Kbytes	2 Kbytes		3 Kbytes			
CPU core	ROM size	32 Kbytes (internal mask ROM)	48 Kbytes (internal mask ROM)	64 Kbytes (internal mask ROM)	None	64 Kbytes (internal OTPROM)		
SPI	System clock oscillation circuit		System	clock/PLL clock	on chip			
	Low-power consumption modes	Sle	eep, stop, CPU ir ł	ntermittent opera nardware standb		itch,		
	Interrupts	Interrup	ot sources: 19 cha external in	annels; priority le nterrupt inputs: 4		mmable);		
	Ports	Output ports (N-channel open drain): 10 I/O ports (CMOS): 74 Total: 84						
	UART0		8	B bits × 1 channe)			
	UART1 (SCI)		8	B bits × 1 channe)			
es	A/D converter		10-bit	resolution \times 8 ch	annels			
Resources	24-bit free-run timer		2	4 bits × 1 channe	el			
Res	ICU (input capture)		24	4 bits × 4 channe	els			
	OCU (output compare)		24	4 bits × 8 channe	els			
	8-bit PPG timer		8 bits × 2 channels					
	16-bit reload timer		16	6 bits × 2 channe	els			
	I ² C interface		3	3 bits × 1 channe	el			
	Watchdog timer function			On chip				
SO	Power supply voltage			+2.7 V to +5.5 V	,			
erist	Operating temperature —40°C to +85°C							
haracteristics	System clock frequency	32 MHz (+5.0 V ± 10%) 16 MHz (+3.0 V ± 10%)						
Miscellaneous	Package		FPT-10	0P-M05/FPT-10	0P-M06			
Miscella	Process			CMOS				

■ PIN ASSIGNMENT

■ PIN DESCRIPTION

	Pin	no.		Din nome	Circuit	Function
LQFP*1	QFP*2	LQFP*3	QFP*4	Pin name	type	Function
62	64	80	82	X0	Α	Crystal oscillator pins
63	65	81	83	X1	(Oscillation)	
65 to	67 to	83 to	85 to	P00 to P07	B (CMOS)	General-purpose I/O ports This function is valid in single-chip mode.
72	74	90	92	AD00 to AD07		I/O pins for the lower 8 bits of the external address/ data bus This function is valid in modes where the external bus is enabled.
73 to	75 to	91 to	93 to	P10 to P17	B (CMOS)	General-purpose I/O ports This function is valid in single-chip mode.
80	80, 1, 2	98	100	AD08 to AD15		I/O pins for the upper 8 bits of the external address/ data bus This function is valid in modes where the external bus is enabled.
				WI0 to WI7		Wake-up interrupt I/O pins This function is valid in single-chip mode. When external interrupts are enabled, external interrupt inputs may be used at any time. It is necessary to stop port output when external interrupt inputs, except using port output deliberately.
1 to 4	3 to 6	99, 100, 1, 2	1 to 4	P20 to P23	B (CMOS)	General-purpose I/O ports This function is valid either in single-chip mode or when the external address output control register specification is "port."
				A16 to A19		External address bus output pins A16 to A19 This function is valid in modes where the external bus is enabled and the upper address control register specification is "address."
5, 6	7, 8	3, 4	5, 6	P24, P25	E (CMOS/H)	General-purpose I/O ports This function is always valid.
				TIN0, TIN1		Reload timer 0 and 1 event input pins During reload timer input operations, reload timer inputs may be used at any time. It is necessary to stop port output when reload timer inputs, except using port output deliberately.
7, 8	9, 10	5, 6	7, 8	P26, P27	E (CMOS/H)	General-purpose I/O ports This function is valid when the reload timer 0 and 1 output is disabled.
				TOT0, TOT1		Reload timer 0 and 1 output pins This function is valid when the reload timer 0 and 1 output is enabled.

*1: FPT-80P-M05

(Continued)

*2: FPT-80P-M06 *3: FPT-100P-M05 *4: FPT-100P-M06

	Pin	no.		D:	Circuit	F	
LQFP*1	QFP*2	LQFP*3	QFP*4	Pin name	type	Function	
10	12	7	9	P30	B General-purpose I/O port (CMOS) This function is valid in single-chip mode.		
				ALE	Address latch enable output pin This function is valid in modes where the externa enabled.		
11	13	8	10	P31	B (CMOS)	General-purpose I/O port This function is valid in single-chip mode.	
				RD		Read strobe output pin for the data bus This function is valid in modes where the external bus is enabled.	
12	14	10	12	P32	B (CMOS)	General-purpose I/O port This function is valid in single-chip mode or when WRL pin output is disabled.	
				WRL		Write strobe output pin for the lower eight bits of the data bus This function is valid in modes where the external bus is enabled and WRL pin output is enabled.	
13	15	11	13	P33	B (CMOS)	General-purpose I/O port This function is valid in single-chip mode, external bus eight-bit mode, or when WRH pin output is disabled.	
				WRH		Write strobe output pin for the upper eight bits of the data bus This function is valid in modes where the external bus 16-bit mode is enabled, and WRH pin output is enabled.	
14	16	12	14	P34	B (CMOS)	General-purpose I/O port This function is valid in single-chip mode and when the hold function is disabled.	
				HRQ		Hold request input pin This function is valid in a mode where the external bus is enabled and the hold function is enabled.	
15	17	13	15	P35	B (CMOS)	General-purpose I/O port This function is valid in single-chip mode and when the hold function is disabled.	
				HAK		Hold acknowledge output pin This function is valid in a mode where the external bus is enabled and the hold function is enabled.	
16	18	14	16	P36	B (CMOS)	General-purpose I/O port This function is valid in single-chip mode and when the external ready function is disabled.	
				RDY		Ready input pin This function is valid in a mode where the external bus is enabled and the external ready function is enabled.	

*1: FPT-80P-M05

*2: FPT-80P-M06

*3: FPT-100P-M05

*4: FPT-100P-M06

	Pin	no.		Pin name	Circuit	Function
LQFP*1	QFP*2	LQFP*3	QFP*4	7 Pin name	type	Function
17	19	15	17	P37	B General-purpose I/O port (CMOS) This function is valid in single-chip mode and when t CLK output is disabled.	
				CLK		CLK output pin This function is valid in a mode where the external bus is enabled and the CLK output is enabled.
18	20	16	18	P40	E (CMOS/H)	General-purpose I/O port This function is always valid.
				SIN0		UART0 serial data input pin During UART0 input operations, UART0 inputs may be used at any time. It is necessary to stop port output when UART0 inputs, except using port output deliberately.
19	21	17	19	P41	E (CMOS/H)	General-purpose I/O port This function is valid when the UART0 serial data output is disabled.
				SOT0		UART0 serial data output pin This function is valid when the UART0 serial data output is enabled.
20	22	18	20	P42	E (CMOS/H) General-purpose I/O port This function is valid when the UART0 clock output is disabled.	
				SCK0		UART0 clock I/O pin This function is valid when the UART0 clock output is enabled. During UART0 input operations, UART0 inputs may be used at any time. It is necessary to stop port output when UART0 inputs, except using port output deliberately.
21	23	19	21	P43	E (CMOS/H)	General-purpose I/O port This function is always valid.
				SIN1	UART1 serial data input pin During UART1 input operations, UART1 inputs ma used at any time. It is necessary to stop port output when UART1 in except using port output deliberately.	
22	24	20	22	P44	E (CMOS/H) General-purpose I/O port This function is valid when the UART1 serial data output is disabled.	
				SOT1		UART1 serial data output pin This function is valid when the UART1 serial data output is enabled.

(Continued)

*1: FPT-80P-M05

*2: FPT-80P-M06

*3: FPT-100P-M05

*4: FPT-100P-M06

	Pin	no.		D :	Circuit	F attau
LQFP*1	QFP*2	LQFP*3	QFP*4	Pin name	type	Function
23	25	22	24	P45	E (CMOS/H)	General-purpose I/O port This function is valid when the UART1 clock output is disabled.
				SCK1		UART1 clock I/O pin During UART1 input operations, UART1 inputs may be used at any time. It is necessary to stop port output when UART1 inputs, except using port output deliberately.
24	26	23	25	P46	E (CMOS/H)	General-purpose I/O port This function is valid when the PPG timer 0 waveform output is disabled.
				PPG0		PPG timer 0 output pin This function is valid when the PPG timer 0 waveform output is enabled.
25	27	24	26	P47	E (CMOS/H)	General-purpose I/O port This function is always valid.
				ATG		A/D converter trigger input pin During A/D converter input operations, A/D converter inputs may be used at any time. It is necessary to stop port output when A/D converter inputs, except using port output deliberately.
26	28	32	34	AVcc	Power supply	Analog circuit power supply pin This power supply must only be turned on or off when electric potential of AVcc or greater is applied to Vcc.
27	29	33	35	AVRH	Power supply	Analog circuit reference voltage input pin This pin must only be turned on or off when electric potential of AVRH or greater is applied to AVcc.
28	30	34	36	AVRL	Power supply	Analog circuit reference voltage input pin
29	31	35	37	AVss	Power supply	Analog circuit power supply (GND) pin
30, 31, 33	32, 33, 35	36 to 39,	38 to 41,	P50 to P57	C (CMOS/N-ch open-drain)	Open-drain type I/O ports The input function is valid when the analog input enable register specification is "port".
to 38	to 40	41 to 44	43 to 46	AN0 to AN7		A/D converter analog input pins This function is valid when the analog input enable register specification is "AD".
39 to 41	41 to 43	47 to 49	49 to 51	MD0 to MD2	F (CMOS)	Operating mode selection input pins Connect directly to Vcc or Vss.
42	44	50	52	HST	G (H)	Hardware standby input pin

*1: FPT-80P-M05 (Continued)

*2: FPT-80P-M06 *3: FPT-100P-M05 *4: FPT-100P-M06

	Pin	no.		Din nome	Circuit	Function	
LQFP*1	QFP*2	LQFP*3	QFP*4	Pin name	type	Function	
43 to	45 to	51 to	53 to	P60 to P63	E (CMOS/H)	General-purpose I/O ports This function is always valid.	
46	48	54	56	INTO to INT3		External interrupt request input pins When external interrupts are enabled, external interrupt inputs may be used at any time. It is necessary to stop port output when external interrupt inputs, except using port output deliberately.	
47 to	49 to	55 to	57 to	P64 to P67	E (CMOS/H)	General-purpose I/O ports This function is always valid.	
50	52	58	60	ASR0 to ASR3	ICU0 to 3 data sample input pins During ICU operations, ICU inputs may be time. It is necessary to stop port output when ICU except using port output deliberately.		
51 to 58	53 to 60	59 to 66	61 to 68	P70 to P77	E (CMOS/H)	General-purpose I/O ports This function is valid when the OCU waveform output is disabled.	
				DOT0 toDOT7		OCU0 and 1 waveform output pins This function is valid when the OCU waveform output is enabled and the port output is set.	
59	61	25	27	P80	E (CMOS/H)	General-purpose I/O port This function is valid when the PPG timer 1 waveform output is disabled.	
				PPG1		PPG timer 1 output pin This function is valid when the PPG timer 1 waveform output is enabled.	
60	62	75	77	RST	H (CMOS/H)	External reset request input pin	
64	66	21, 82	23, 84	Vcc	Power supply	Digital circuit power supply pin	
9, 32, 61	11, 34, 63	9, 40, 79	11, 42, 81	Vss	Power supply	Digital circuit power supply (GND) pin	
_	_	26 to 31	28 to 33	P81 to P86	E (CMOS/H)	General-purpose I/O ports This function is always valid.	
_	_	45	47	P90	D (NMOS/H)	Open-drain type I/O port This function is always valid.	
				SDA		I ² C interface data I/O pin This function is valid when I ² C interface operations are enabled. Set port output to high impedance (PDR = 1) during I ² C interface operations.	

*1: FPT-80P-M05

(Continued)

*2: FPT-80P-M06


*3: FPT-100P-M05

(Continued)

	Pin	no.		Pin name	Circuit	Function
LQFP*1	QFP*2	LQFP*3	QFP*4	Fill Hallie	type	Function
	_	46	48	P91	D (NMOS/H)	Open-drain type I/O port This function is always valid.
				SCL		I ² C interface clock I/O pin This function is valid when I ² C interface operations are enabled. Set port output to high impedance (PDR = 1) during I ² C interface operations.
_	_	67 to 74	69 to 76	PA0 to PA7	E (CMOS/H)	General-purpose I/O ports This function is always valid.
_	_	76 to 78	78 to 80	PB0 to PB2	E (CMOS/H)	General-purpose I/O ports This function is always valid.

*1: FPT-80P-M05 *2: FPT-80P-M06 *3: FPT-100P-M05 *4: FPT-100P-M06

■ I/O CIRCUIT TYPE

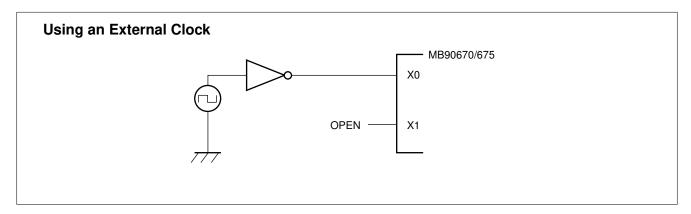
Туре	Circuit	Remarks
E	Digital output Digital output Digital input Standby control signal	 CMOS-level output CMOS-level hysteresis input (with standby control) Pull-up option selectable (with standby control)
F	Digital input	 CMOS-level input (without standby control) Pull-up/pull-down option selectable (without standby control) The MD2 pin has the pull-down resistor selected (this selection is fixed) in the mask ROM version; no option is available for non-mask ROM version.
G	Digital input	CMOS-level hysteresis input (without standby control)
Н	Digital input	 CMOS-level hysteresis input (without standby control) Pull-up option selectable (without standby control)

■ HANDLING DEVICES

1. Preventing Latchup

Latchup may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to the input or output pins other than medium-and high voltage pins or if higher than the voltage which shown on "■ Absolute Maximum Ratings" is applied between Vcc and Vss.

When latchup occurs, power supply current increases rapidly might thermally damage elements. When using, take great care not to exceed the absolute maximum ratings.


In addition, for the same reasons take care to prevent the analog power supply from exceeding the digital power supply.

2. Treatment of Unused Pins

Leaving unused input pins open could cause malfunctions. They should be connected to a pull-up or pull-down resistors.

3. Precautions when Using an External Clock

When an external clock is used, drive X0 only.

4. Power Supply Pins

When there are several V_{CC} and V_{SS} pins, those pins that should have the same electric potential are connected within the device when the device is designed in order to prevent misoperation, such as latchup. However, all of those pins must be connected to the power supply and ground externally in order to reduce unnecessary emissions, prevent misoperation of strobe signals due to an increase in the ground level, and to observe the total output current standards.

In addition, give a due consideration to the connection in that current supply be connected to Vcc and Vss with the lowest possible impedance.

Finally, it is recommended to connect a capacitor of about 0.1 μ F between V_{CC} and V_{SS} near this device as a bypass capacitor.

5. Crystal Oscillation Circuit

Noise in the vicinity of the X0 and X1 pins will cause this device to operate incorrectly. Design the printed circuit board so that the bypass capacitor connecting X0, X1 and the crystal oscillator (or ceramic oscillator) to ground is located as close to the device as possible.

In addition, because printed circuit board artwork in which the area around the X0 and X1 pins is surrounded by ground provides stable operation, such an arrangement is strongly recommended.

6. Sequence for Applying the A/D Converter Power Supply and the Analog Inputs

Always be sure to apply the digital power supply (Vcc) before applying the A/D converter power supply (AVcc, AVRH, and AVRL) and the analog inputs (AN0 to AN7).

In addition, when the power is turned off, turn off the A/D converter power supply and the analog inputs first, and then turn off the digital power supply.

Whether applying or cutting off the power, be certain that AVRH does not exceed AVcc. (Turning on or off the analog and digital power supplies simultaneously will not cause any problems.)

7. "MOV @AL, AH" and "MOVW @AL, AH" Instructions

When the above instructions are used in the I/O space, an unnecessary write (#FF, #FFFF) may be performed on the internal bus. This problem can be avoided by using a function that causes the compiler/assembler to generate an NOP immediately before either the above instructions. This problem does not arise when accessing the RAM space.

■ PROGRAMMING TO THE OTPROM ON THE MB90P673/P678

In EPROM mode, the MB90P673/P678 OTPROM functions equivalent to the MBM27C1000. This allows the PROM to be programmed with a general-purpose EPROM programmer by using the dedicated socket adapter.

However, the MB90P673/P678 does not support electronic signature (device identification code) mode.

1. EPROM Programmer Socket Adapter and Recommended Programmer Manufacturer

Part no.	Package	ckage Compatible socket adapter Sun Hayato Co., Ltd.		Minato Electronics Inc.			Data I/O Co., Ltd.		
Part IIO.	Package	Sun Hayato Co., Ltd.	1890A	1891	1930	UNSITE	3900	2900	
MB90P673PF	QFP-80	ROM-80QF-32DP-16L	<u> </u>			_			
MB90P673PFV	SQFP-80	ROM-80SQF-32DP-16L		_		_			
MB90P678PF	QFP-100	ROM-100QF-32DP-16L	_		_				
MB90P678PFV	SQFP-100	ROM-100SQF-32DP-16L	Recommended		Rec	Recommended			

Inquiry: Sun Hayato Co., Ltd.: TEL: (81)-3-3986-0403 FAX: (81)-3-5396-9106

Minato Electronics Inc.: TEL: USA (1)-916-348-6066

JAPAN (81)-45-591-5611

Data I/O Co., Ltd.: TEL: USA/ASIA (1)-206-881-6444 EUROPE (49)-8-985-8580

19

2. EPROM Mode Pin Assignments

• MBM27C1000 compatible pins

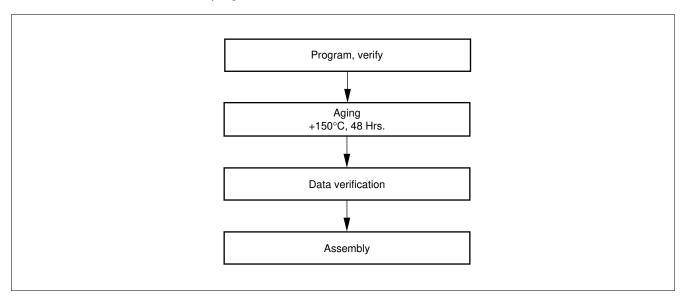
MBM2	7C1000	MB90P673	/MB90P678	MBM2	27C1000	MB90P673/MB90P678															
Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name	Pin no.	Pin name														
1	V _{PP}		MD2	32	Vcc		Vcc														
2	ŌĒ		P32	31	PGM		P33														
3	A15		P17	30	N.C.		_														
4	A12		P14	29	A14		P16														
5	A07	· .	P27	28	A13	· .	P15														
6	A06	ent	P26	27	A08	ent	P10														
7	A05	gnm	P25	26	A09	See "Pin Assignment."	P11														
8	A04	Assi	P24	25	A11		P13														
9	A03	See "Pin Assignment."	See "Pin	P23	24	A16	Pin ,	P30													
10	A02			P22	23	A10	9 "	P12													
11	A01			Š	ď	ŏ	ŏ	ď	Ŏ	Ŏ	Ŏ	Ŏ	Ϊ́	Ŏ	Й) Ŏ	, w	Ø	P21	22	CE
12	A00		P20	21	D07		P07														
13	D00		P00	20	D06		P06														
14	D01		P01	19	D05		P05														
15	D02		P02	18	D04		P04														
16	GND		Vss	17	D03		P03														

Non-MBM27C1000 compatible pins

Pin no. Pin name **Treatment** MD0 Connect a pull-up MD1 resistor of 4.7 k Ω . X0 X1 **OPEN** See "Pin Assignment." **AV**cc **AVRH** P37 P40 to P47 P50 to P57 Connect a pull-up P60 to P67 resistor of about P70 to P77 1 M Ω to each pin. P80 to P86 P90 P91 PA0 to PA7 PB0 to PB2

• Power supply, GND connection pins

Classification	Pin no.	Pin name
Power supply	See "Pin Assignment."	HST Vcc
GND	See "Pin Assignment."	P34 P35 P36 RST AVRL AVss Vss

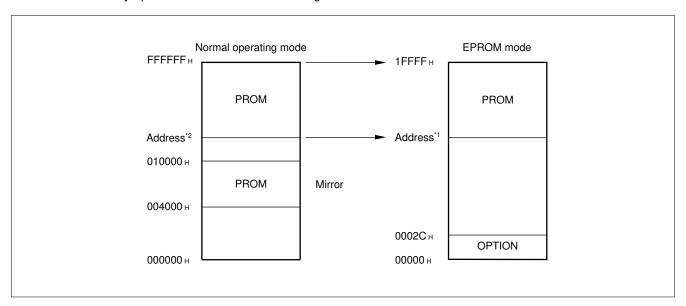

Note: P81 to P86, P90, P91, PA0 to PA7, and PB0 to PB2 are found only in the MB90675 series.

3. Program Mode

In the MB90P673/P678, all of the bits are set to "1" when the IC is shipped from Fujitsu and after erasure. To input data, program the IC by selectively setting the desired bits to "0". Bits cannot be set to "1" electrically.

4. Recommended Screening Conditions

High-temperature aging is recommended as the pre-assembly screening procedure for a product with a blanked OTPROM with microcontroller program.


5. Programming Yield

All bits cannot be programmed at Fujitsu shipping test to a blanked OTPROM microcomputer, due to its nature. For this reason, a programming yield of 100% cannot be assured at all times.

6. Programming Procedure

- (1) Set the EPROM programmer to the MBM27C1000.
- (2) Load the program data into the EPROM programmer at address*1 to 1FFFFH. (The ROM addresses from address*2 to FFFFFFH in normal operating mode correspond to address*1 to 1FFFFH in EPROM mode.) When specifying option data, load the data into the addresses specified "7, PROM Option Bitmap."

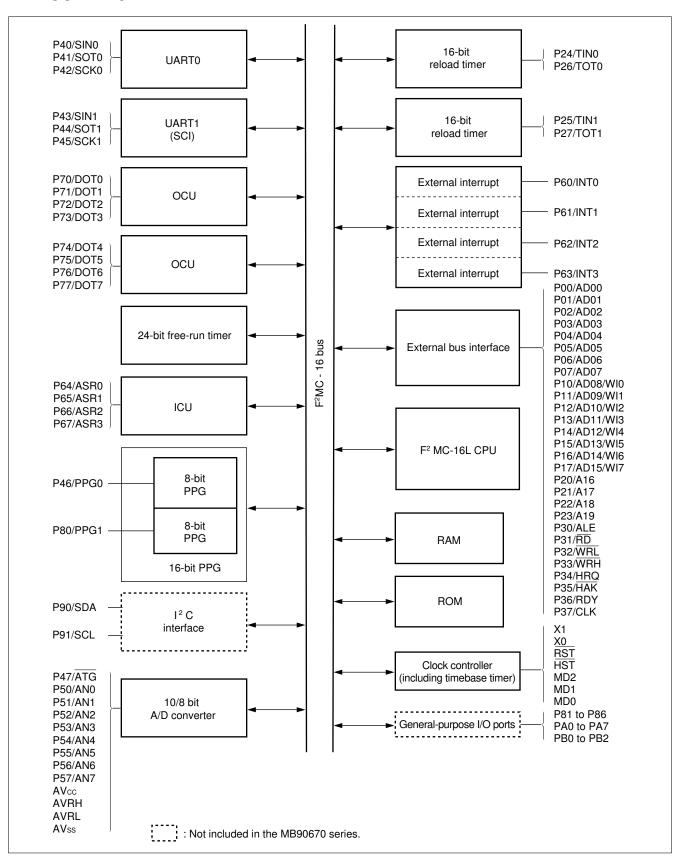
The memory space for EPROM mode is diagrammed below.

Product	Address *1	Address *2	Number of bytes
MB90P673	14000н	FF4000н	48 Kbytes
MB90P678	10000н	FF0000н	64 Kbytes

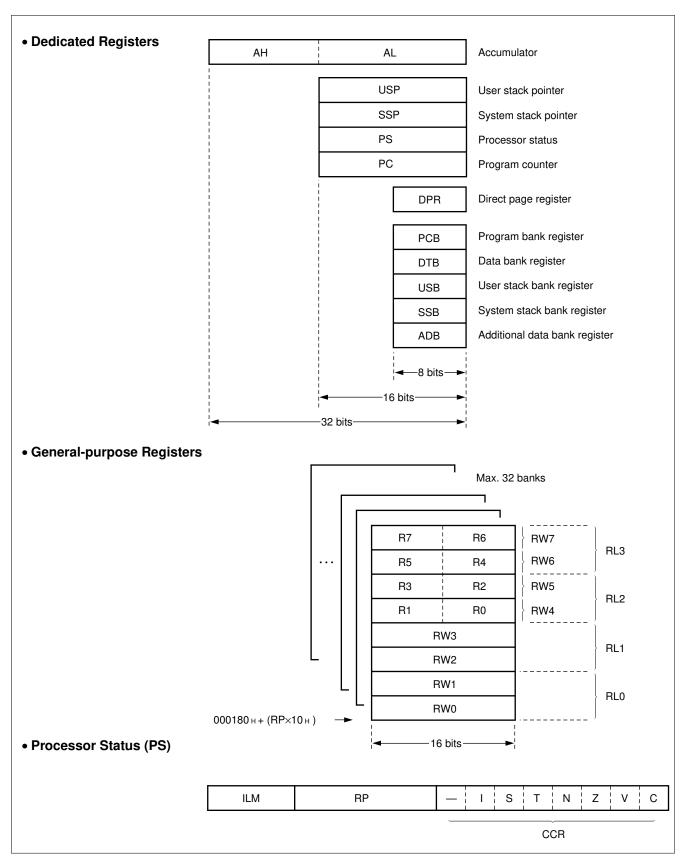
The 00 bank PROM mirror is 48 Kbytes. (This is a mirror for FF4000H to FFFFFFH.)

- (3) Insert the MB90P673/P678 in the socket adapter, and mount the socket adapter on the EPROM programmer. Pay attention to the orientation of the device and of the socket adapter when doing so.
- (4) Activate the programming.

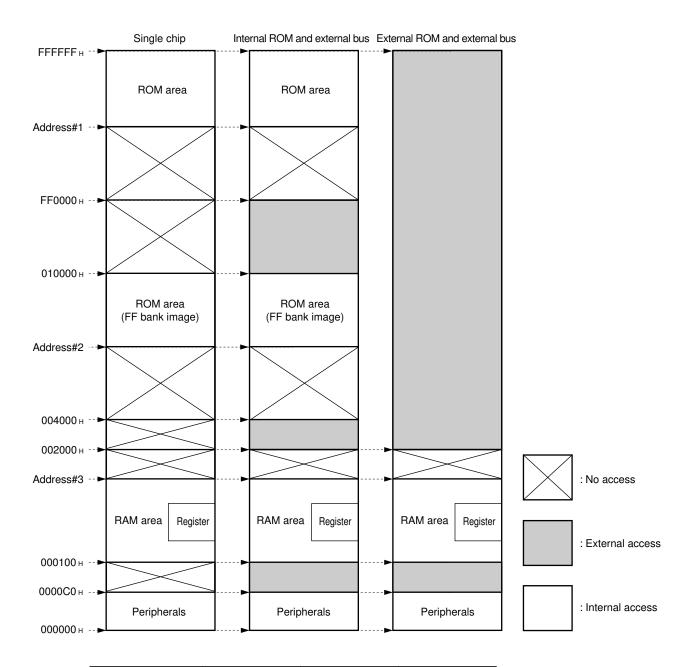
Notes: • Because the mask ROM products (MB90671/672/673/676/677/678) do not have an EPROM mode, they cannot read data from the EPROM programmer.


• Contact the sales department when purchasing an EPROM programmer.

7. OTPROM Option Bitmap


Bit Address	7	6	5	4	3	2	1	0
00000н	Vacancy	RST Pull-up 1: No 0: Yes	Vacancy	MD1 Pull-up 1: No 0: Yes	MD1 Pull-down 1: No 0: Yes	MD0 Pull-up 1: No 0: Yes	MD0 Pull-down 1: No 0: Yes	Vacancy
00004н	P07	P06	P05	P04	P03	P02	P01	P00
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
00008н	P17	P16	P15	P14	P13	P12	P11	P10
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
0000Сн	P27	P26	P25	P24	P23	P22	P21	P20
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
00010н	P37	P36	P35	P34	P33	P32	P31	P30
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
00014н	P47	P46	P45	P44	P43	P42	P41	P40
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
0001Сн	P67	P66	P65	P64	P63	P62	P61	P60
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
00020н	P77	P76	P75	P74	P73	P72	P71	P70
	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up	Pull-up
	1: No	1: No	1: No	1: No				
	0: Yes	0: Yes	0: Yes	0: Yes				
00024н	Vacancy	P86 Pull-up 1: No 0: Yes	P85 Pull-up 1: No 0: Yes	P84 Pull-up 1: No 0: Yes	P83 Pull-up 1: No 0: Yes	P82 Pull-up 1: No 0: Yes	P81 Pull-up 1: No 0: Yes	P80 Pull-up 1: No 0: Yes
00028н	PA5 Pull-up 1: No 0: Yes	PA4 Pull-up 1: No 0: Yes	PA3 Pull-up 1: No 0: Yes	PA2 Pull-up 1: No 0: Yes	PA1 Pull-up 1: No 0: Yes	PA0 Pull-up 1: No 0: Yes	Vacancy	Vacancy
0002Сн	Vacancy	Vacancy	Vacancy	PB2 Pull-up 1: No 0: Yes	PB1 Pull-up 1: No 0: Yes	PB0 Pull-up 1: No 0: Yes	PA7 Pull-up 1: No 0: Yes	PA6 Pull-up 1: No 0: Yes

Notes: • Do not write "0" to the vacant bits and for addresses other than those indicated above.
• The pull-up option for P81 to P86, PA0 to PA7, and PB0 to PB2 exists only for the MB90P678. Write "1" to these bits in the MB90P673.


■ BLOCK DIAGRAM

■ F²MC-16L CPU PROGRAMMING MODEL

■ MEMORY MAP

Product	Address #1	Address #2	Address #3
MB90671	FFC000н	00С000н	000380н
MB90672	FF8000н	008000н	000780н
MB90673/P673	FF4000⊦	004000н	000900н
MB90676	FF8000н	008000н	000780н
MB90677	FF4000н	004000н	000900н
MB90678/P678	FF0000н	004000н	000D00н

- Notes: While the ROM data image of bank FF can be seen in the upper portion of bank 00, this is done only to permit effective use of the C compiler's small model. Because the lower 16 bits are the same, it is possible to reference tables in ROM without declaring the "far" specification in the pointer.

 However, because the ROM area in the MB90678/P678 exceeds 48 Kbytes, the image for FF4000H to FFFFFFH can be seen in bank 00, while FF0000H to FF3FFFH can only be seen in bank FF.
 - In the MB90670/675 series, the upper four bits of addresses are not output to the external bus. As a result, the maximum memory space that can actually be accessed is 1MB. In addition, the same address is accessed by image at the address in a different bank.
 - In order to prevent the contents of memory and I/O from being destroyed when accessed by image, it is recommended that programs be written so that the number of banks accessed by the external bus be limited to 16 with different addresses.
 Note that this same situation arises even when masking upper addresses through the external address output control register.

■ I/O MAP

Address	Register	Register name	Access*7	Resource name	Initial value
000000н	Port 0 data register	PDR0	R/W	Port 0	XXXXXXX
000001н	Port 1 data register	PDR1	R/W	Port 1	XXXXXXX
000002н	Port 2 data register	PDR2	R/W	Port 2	XXXXXXX
000003н	Port 3 data register	PDR3	R/W	Port 3	XXXXXXX
000004н	Port 4 data register	PDR4	R/W	Port 4	XXXXXXX
000005н	Port 5 data register	PDR5	R/W	Port 5	11111111
000006н	Port 6 data register	PDR6	R/W	Port 6	XXXXXXX
000007н	Port 7 data register	PDR7	R	Port 7	XXXXXXX
000008н	Port 8 data register	PDR8	R/W	Port 8*5	-XXXXXX
000009н	Port 9 data register	PDR9	R/W	Port 9*5	11
00000Ан	Port A data register	PDRA	R/W	Port A*5	XXXXXXX
00000Вн	Port B data register	PDRB	R/W	Port B*5	XXX
00000Сн to 0Ен	Vacancy	_	*3	_	_
00000Fн	Wake-up interrupt flag register	EIFR	R/W	Wake-up interrupt	0
000010н	Port 0 direction register	DDR0	R/W	Port 0	00000000
000011н	Port 1 direction register	DDR1	R/W	Port 1	00000000
000012н	Port 2 direction register	DDR2	R/W	Port 2	00000000
000013н	Port 3 direction register	DDR3	R/W	Port 3	00000000
000014н	Port 4 direction register	DDR4	R/W	Port 4	00000000
000015н	Analog input enable register	ADER	R/W	Port 5	11111111
000016н	Port 6 direction register	DDR6	R/W	Port 6	00000000
000017н	Port 7 direction register	DDR7	R/W	Port 7	00000000
000018н	Port 8 direction register	DDR8	R/W	Port 8*5	-0000000
000019н	Vacancy	_	_	_	_
00001Ан	Port A direction register	DDRA	R/W	Port A*5	00000000
00001Вн	Port B direction register	DDRB	R/W	Port B*5	000
00001Сн to 1Ен	Vacancy	_	*3	_	_
00001 Гн	Wake-up interrupt enable register	EICR	W	Wake-up interrupt	00000000
000020н	Mode control register 0	UMC	R/W!		00000100
000021н	Status register 0	USR	R/W!		00010000
000022н	Input data register 0/ output data register 0	UIDR /UODR	R/W	UART0	xxxxxxx
000023н	Rate and data register 0	URD	R/W		00000000

Address	Register	Register name	Access*7	Resource name	Initial value
000024н	Serial mode register 1	SMR	R/W		0000000
000025н	Serial control register 1	SCR	R/W!	UART1	00000100
000026н	Serial input data register 1/ Serial output data register 1	SIDR/ SODR	R/W	(SCI)	xxxxxxx
000027н	Serial status register 1	SSR	R/W!		00001-00
000028н	Interrupt/DTP enable register	ENIR	R/W		00000
000029н	Interrupt/DTP source register	EIRR	R/W	DTP/external interrupt	00000
00002Ан	Request level setting register	ELVR	R/W		00000000
00002Вн	Vacancy	_	_	_	_
00002Сн	A/D converter control status register	ADCS	R/W!		0000000
00002Dн	A/D converter control status register	ADCS	h/vv!	A/D convertor	0000000
00002Ен	A/D converter data register	ADCR	R/W!	A/D converter	XXXXXXX
00002Fн	A/D converter data register	ADON	*4		000000XX
000030н	PPG0 operating mode control register	PPGC0	R/W	PPG0	0-00001
000031н	PPG1 operating mode control register	PPGC1	R/W	PPG1	0000001
000032н to 33н	Vacancy	_	*3	_	_
000034н	DDC0 relead register	PRLL0/	DAM	PPG0	XXXXXXXX
000035н	PPG0 reload register	PRLH0	R/W	PPGU	XXXXXXXX
000036н	PPG1 reload register	PRLL1/	R/W	PPG1	XXXXXXX
000037н	FFGT feload fegister	PRLH1	In/ VV	PFGI	XXXXXXX
000038н	Control status register	TMCSR0	R/W!		00000000
000039н	Control status register	TIVICONU	ID/ VV!	16-bit	0000
00003Ан	16-bit timer register/16-bit reload register	TMR0/	R/W	reload timer 0	XXXXXXX
00003Вн	10-bit timer register/10-bit reload register	TMRLR0	11/ ۷۷		XXXXXXX
00003Сн	Control status register	TMCSR1	R/W!		00000000
00003Dн	Control status register	TWOSITI	11/ 77:	16-bit	0000
00003Ен	16-bit timer register/16-bit reload register	TMR1/	R/W	reload timer 1	XXXXXXX
00003Fн	To-bit timer register/ ro-bit reload register	TMRLR1	IT/ VV		XXXXXXX
000040н	I ² C bus status register	IBSR	R		0000000
000041н	I ² C bus control register	IBCR	R/W		0000000
000042н	I ² C bus clock selection register	ICCR	R/W	I ² C bus IF* ⁶	0XXXXX
000043н	I ² C bus address register	IADR	R/W		-XXXXXX
000044н	I ² C bus data register	IDAR	R/W		XXXXXXXX

Address	Register	Register name	Access*7	Resource name	Initial value
000045н to 4Fн	Vacancy	_	*3	_	_
000050н	Free-run timer control register	TCCR	R/W!	24-bit free-run	11000000
000051н	rree-run timer control register	TOON	IT/ VV !	timer	111111
000052н	ICU control register ICC		R/W	ICU	0000000
000053н	ICU control register	100	In/ VV		00000000
000054н	Free-run timer lower 16-bit data register	TCRL	R		0000000
000055н	rree-run timer lower 10-bit data register	TORL	l n	24-bit free-run	0000000
000056н	Free-run timer upper 16-bit data register	TCRH	R	timer	0000000
000057н	rree-run timer upper ro-bit data register	TONH	l n		0000000
000058н	OCU control register 00	CCR00	R/W		11110000
000059н	OCO control register oo	CCNUU		OCU0	0000
00005Ан	OCU control register 01	CCR01	R/W	0000	0000
00005Вн	OCO control register of	CONUI	In/ VV		0000000
00005Сн	OCIL control register 10	CCR10	R/W		11110000
00005Dн	OCU control register 10	CONTO		OCU1	0000
00005Ен	OCI Locatral register 11	CCR11	R/W	0001	0000
00005Fн	OCU control register 11	CONTI			0000000
000060н	ICU lower data register 0	ICR0L	R		XXXXXXX
000061н	100 lower data register 0	ICHUL	l n		XXXXXXX
000062н	ICU upper data register 0	ICR0H	R		XXXXXXX
000063н	100 upper data register 0	ICHUH	l n		0000000
000064н	ICU lower data register 1	ICR1L	R	-	XXXXXXX
000065н	100 lower data register 1	IONIL			XXXXXXX
000066н	ICU upper data register 1	ICR1H	В	ICH	XXXXXXX
000067н	100 upper data register 1	ICNIH	R	ICU	00000000
000068н	ICU lower data register 2	ICR2L	R		XXXXXXX
000069н	100 lower data register 2	IUNZL			XXXXXXX
00006Ан	ICI Lunnor data register 2	ICDOLL			XXXXXXXX
00006Вн	ICU upper data register 2	ICR2H	R		0000000
00006Сн	ICU lower data register 3	ICD3I	В		XXXXXXX
00006Dн	100 lower data register 3	ICR3L	R		XXXXXXX

Address	Register	Register name	Access*7	Resource name	Initial value
00006Ен	ICI Luppor data ragistar 2	ICR3H	R	ICU	XXXXXXXX
00006Fн	ICU upper data register 3	ICHSH	l n		0000000
000070н	OCU compare lower data register 0	CPR00L	R/W		00000000
000071н	OCO compare lower data register o	CFROOL	In/ v v		0000000
000072н	OCU compare upper data register 0	CPR00H	R/W		0000000
000073н	OCO compare upper data register o	CITIONI	1 1/ V V		0000000
000074н	OCU compare lower data register 1	CPR01L	R/W		0000000
000075н	OOO compare lower data register 1	OFFICIE	1 1/ VV		0000000
000076н	OCU compare upper data register 1	CPR01H	R/W		0000000
000077н	OOO compare apper data register 1	Orrioni	10,00	OCU0	0000000
000078н	OCU compare lower data register 2	CPR02L	R/W	0000	0000000
000079н	OOO compare lower data register 2	OTTIOZE	1 0 00		0000000
00007Ан	OCU compare upper data register 2	CPR02H	R/W		0000000
00007Вн	COO compare apper data register 2	OT TIOZIT	10,44		0000000
00007Сн	OCU compare lower data register 3	<u> </u>	R/W		0000000
00007Dн	Coo compare lower data register o		10,44		0000000
00007Ен	OCU compare upper data register 3		R/W		0000000
00007Fн	COO compare apper data register o	Of Hoori	10,44		0000000
000080н	OCU compare lower data register 4	CPR04L	R/W		0000000
000081н	COO compare lower data register 4	OTTIOTE	10,44		0000000
000082н	OCU compare upper data register 4	CPR04H	R/W		0000000
000083н	COO compare apper data register 4	Of Hoari	10,44		0000000
000084н	OCU compare lower data register 5	CPR05L	R/W		0000000
000085н	OOO compare lower data register 5	OFFICE	1 1/ VV		0000000
000086н	OCU compare upper data register 5	CPR05H	R/W	OCU1	0000000
000087н	ooo compare apper data register o	OFFICOR	1 1/ VV		0000000
000088н	OCU compare lower data register 6	CPR06L	R/W		00000000
000089н	OOO compare lower data register o	OTTIOOL	11/ **		0000000
00008Ан	OCU compare upper data register 6	CPR06H	R/W		0000000
00008Вн	OCO compare apper data register o	OI 110011	1 1/ V V		0000000
00008Сн	OCU compare lower data register 7	CPR07L	R/W		0000000
00008Dн	OGO compare lower data register /	OI 1107L	1 1/ V V		00000000

Address	Register	Register name	Access*7	Resource name	Initial value
00008Ен	OCU compare upper data register 7	CPR07H	R/W	OCU1	00000000
00008Fн		GFN0/H	In/ VV	0001	00000000
000090н to 9Ен	System reserved area	_	*1	_	_
00009Fн	Delayed interrupt source generation/ release register	DIRR	R/W	Delayed interrupt generation module	0
0000А0н	Low power consumption mode control register	LPMCR	R/W!	Low-power consumption	00011000
0000А1н	Clock selection register	CKSCR	R/W!	Low-power consumption	11111100
0000A2н to A4н	Vacancy	_	*3	_	_
0000А5н	Automatic ready function selection register	ARSR	W	External pin	001100
0000А6н	External address output control register	HACR	W	External pin	0000
0000А7н	Bus control signal selection register	EPCR	W	External pin	0000*00-
0000А8н	Watchdog timer control register	WDTC	R/W!	Watchdog timer	XXXXX111
0000А9н	Timebase timer control register	TBTC	R/W!	Timebase timer	100100
0000AAн to AFн	Vacancy	_	*3	_	_
0000В0н	Interrupt control register 00	ICR00	R/W!		00000111
0000В1н	Interrupt control register 01	ICR01	R/W!		00000111
0000В2н	Interrupt control register 02	ICR02	R/W!		00000111
0000ВЗн	Interrupt control register 03	ICR03	R/W!		00000111
0000В4н	Interrupt control register 04	ICR04	R/W!		00000111
0000В5н	Interrupt control register 05	ICR05	R/W!		00000111
0000В6н	Interrupt control register 06	ICR06	R/W!		00000111
0000В7н	Interrupt control register 07	ICR07	R/W!	Interrupt	00000111
0000В8н	Interrupt control register 08	ICR08	R/W!	controller	00000111
0000В9н	Interrupt control register 09	ICR09	R/W!		00000111
0000ВАн	Interrupt control register 10	ICR10	R/W!		00000111
0000ВВн	Interrupt control register 11	ICR11	R/W!		00000111
0000ВСн	Interrupt control register 12	ICR12	R/W!		00000111
0000ВДн	Interrupt control register 13	ICR13	R/W!		00000111
0000ВЕн	Interrupt control register 14	ICR14	R/W!		00000111
0000ВГн	Interrupt control register 15	ICR15	R/W!		00000111
0000С0н to FFн	External area *2	_		_	_

Explanation of initial values

- 0: The initial value of this bit is "0".
- 1: The initial value of this bit is "1".
- *: The initial value of this bit is either "1" or "0". (The value is determined by the level of the MD0 to 2 pins.)
- X: The initial value of this bit is undefined.
- -: This bit is not used. No initial value is defined.
- *1: Access prohibited.
- *2: The only area available for the external access below address 0000FF_H is this area. Accesses to these addresses are handled as accesses to an external I/O area.
- *3: Areas labelled "Vacancy" in the I/O map are reserved areas; accesses to these areas are handled accesses to internal areas. No access signal is generated for the external bus.
- *4: Only bit 15 can be read. Writes to other bits are used for testing. Reading any bit from bit 10 to 15 returns a "0".
- *5: P81 to P86, P90, P91, PA0 to PA7, and PB0 to PB2 do not exist in the MB90670 series. Therefore, the bits corresponding to these pins are unused.
- *6: The I²C bus interface is not included in the MB90670 series. Therefore, this area is treated as "Vacancy" in the MB90670 series.
- *7: Registers for which "R/W!" is indicated in the "Access" column contain some read-only or write-only bits. For details, refer to the "Register configuration" for the resource in question.

Note: For write-only bits, the value to be initialized on reset is described as the initial value. Note that the value of this bit is not the one for reading out.

In addition, the LPMCR, CKSCR, and WDTC may or may not be initialized, depending on the type of reset. The value indicated is the initial value in those cases where the register is initialized.

■ INTERRUPT SOURCES AND THEIR INTERRUPT VECTORS AND INTERRUPT CONTROL REGISTERS

Interview course	El ² OS	Interrupt vector			Interrupt control register		
Interrupt source	support	N	0.	Address	ICR	Address	
Reset	×	# 08	08н	FFFFDC⊦	_	_	
INT9 instruction	×	# 09	09н	FFFFD8 _H	_	_	
Exception	×	# 10	0Ан	FFFFD4 _H	_	_	
External interrupt #0	0	# 11	0Вн	FFFFD0 _H	ICR00	0000В0н	
External interrupt #1	0	# 12	0Сн	FFFFCCH	101100	ООООВОН	
External interrupt #2	0	# 13	0Дн	FFFFC8 _H	ICR01	0000В1н	
External interrupt #3	0	# 14	0Ен	FFFFC4 _H	101101	ООООБТН	
OCU # 0	0	# 15	0Fн	FFFFC0 _H	ICR02	0000В2н	
OCU # 1	0	# 16	10н	FFFFBCH	ICHUZ	0000BZH	
OCU # 2	0	# 17	11н	FFFFB8 _H	ICR03	0000ВЗн	
OCU # 3	0	# 18	12н	FFFFB4 _H	ICHUS	ООООБОН	
OCU # 4	0	# 19	13н	FFFFB0 _H	ICR04	0000В4н	
OCU # 5	0	# 20	14н	FFFFACH	ION04	0000В4н	
OCU # 6	0	# 21	15н	FFFFA8 _H	ICR05	0000В5н	
OCU # 7	0	# 22	16н	FFFFA4 _H			
24-bit free-run timer overflow	0	# 23	17н	FFFFA0 _H	ICR06	0000В6н	
24-bit free-run timer intermediate bit	0	# 24	18н	FFFF9C _H	ICNUO	ООООБОН	
ICU # 0	0	# 25	19н	FFFF98⊦	ICR07	0000В7н	
ICU # 1	0	# 26	1Ан	FFFF94 _H	ICHU/	0000b/H	
ICU # 2	0	# 27	1Вн	FFFF90⊦	ICR08	0000В8н	
ICU # 3	0	# 28	1Сн	FFFF8C _H	ICHUO	ООООВОН	
16-bit reload timer #0/PPG#0	\triangle	# 29	1 Dн	FFFF88⊦	ICR09	0000В9н	
16-bit reload timer #1/PPG#1	\triangle	# 30	1Ен	FFFF84 _H	ICHU9	ООООБЭН	
A/D converter measurement complete	0	# 31	1F _H	FFFF80⊦	ICR10	0000ВАн	
Wake-up interrupt	×	# 33	21н	FFFF78⊦	ICR11	0000ВВн	
Time-base timer interval interrupt	×	# 34	22н	FFFF74 _H	IUNII	UUUUDDH	
UART1 transmission complete	0	# 35	23н	FFFF70⊦	ICP12	0000000	
UART0 transmission complete	0	# 36	24н	FFFF6C _H	ICR12	0000ВСн	
UART1 reception complete	0	# 37	25н	FFFF68⊦	ICR13	0000ВДн	
I ² C interface*	×	# 38	26н	FFFF64 _H	IUNIS	ООООБЫН	

(Continued)

Interrupt source	El ² OS	Interrupt vector			Interrupt control register	
interrupt source	support	N	0.	Address	ICR	Address
UART0 reception complete	0	# 39	27н	FFFF60 _H	ICR14	0000ВЕн
Delayed interrupt generation module	×	# 42	2Ан	FFFF54 _H	ICR15	0000ВFн

^{*:} Because the MB90670 series does not include the I2C interface, this interrupt vector is not used.

- Notes: ○ indicates El²OS support (without stop requests), ◎ indicates El²OS support (with stop requests),
 - imes indicates without El 2 OS support, and riangle indicates that the 16-bit reload timer supports El 2 OS, while the PPG does not.
 - Do not set El²OS startup in an ICRXX that does not support El²OS.
 - Because different interrupt sources share interrupt vector numbers #29 and #30, use the interrupt enable bits in each of the peripherals to select the interrupt source.
 - When El²OS is used for the following sources that share interrupt vector numbers, the interrupt enable bit of each peripheral must be active for only one interrupt source:

Interrupt number

16-bit reload timer #0 and PPG#0: #29 16-bit reload timer #1 and PPG#1: #30

Note that because PPG does not support El²OS, the PPG interrupt must be disabled when using El²OS with the 16-bit reload timer.

■ PERIPHERALS

1. Parallel Ports

(1) I/O Ports

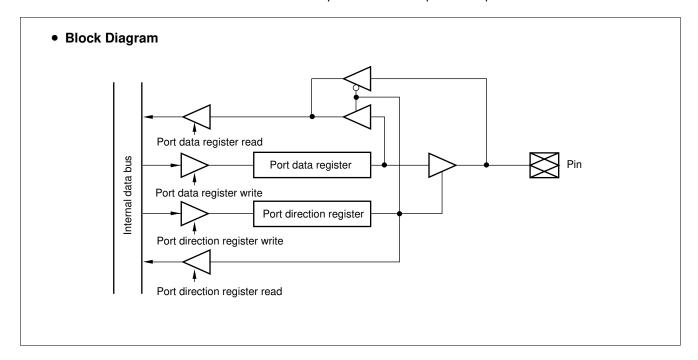
When not being used as output pins by their corresponding peripherals, all pins except for ports 5, 7 and 9 can be individually specified for input or output by setting the corresponding location in the port direction register. When reading a port data register during input, the value is always read as the pin level; when reading a port data register during output, the value latched in the port data register is read. This also applies to the read portion of a read-modify-write operation.

When reading a port data register used as a control output, the data being output as the control output is read, regardless of the value of the port direction register.

If read-modify-write instructions (bit set instruction, etc.) are used to access this register, the bit that is the focus of the instruction is set to the prescribed value, but the contents of the output register corresponding to any other bits for which the input setting has been made are overwritten with the current input value of the corresponding pin. Therefore, when switching a pin that was being used for input over to output, first write the desired value to the port data register, and then write "1" to the port direction register.

Reading and writing an I/O port differs from reading and writing memory as follows:

Input mode


Reads: The read data is the level of the corresponding pin.

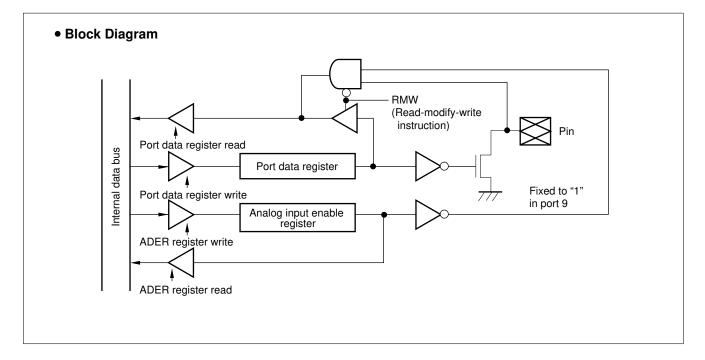
Writes: The write data is stored in the output latch. The data is not output to the pin.

Output mode

Reads: The read data is the value stored in the PDR.

Writes: The write data is both stored in the output latch and output to the pin.

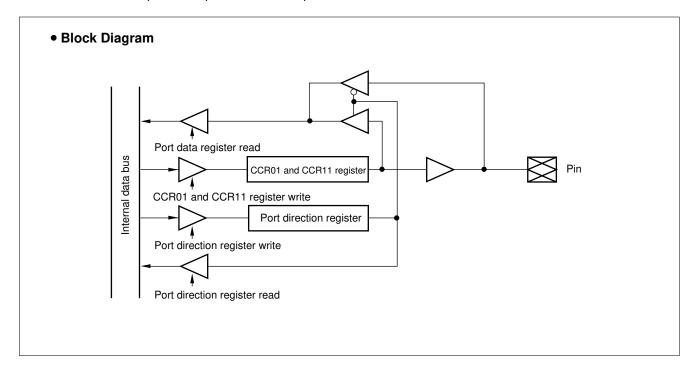
(2) Open-drain Port


Ports 5 and 9 are general-purpose I/O ports with an open-drain output. Port 5 also can serve as an analog input; when port 5 is used as a general-purpose port, always be sure to set the corresponding bits in ADER to "0". Port 9 also serve as an I²C I/O; when port 9 is used as a general-purpose port, be sure to stop I²C operations.

When ports 5 and 9 are used as input ports, it is necessary set the output port data register value to "1" in order to turn off the open drain output transistor; it is also necessary to connect a pull-up resistor to the external pins. In addition, depending on the instruction used to read these bits, one of the following two operations is performed:

- When read by a read-modify-write instruction:
 The contents of the output port data register are read. Even if pins are forcibly set to "0" externally, the contents of the bits not specified by the instruction do not change.
- When read by any other instruction: The pin level can be read.

When used as output ports, the pin values can be changed by writing the desired value to the corresponding output port data register.

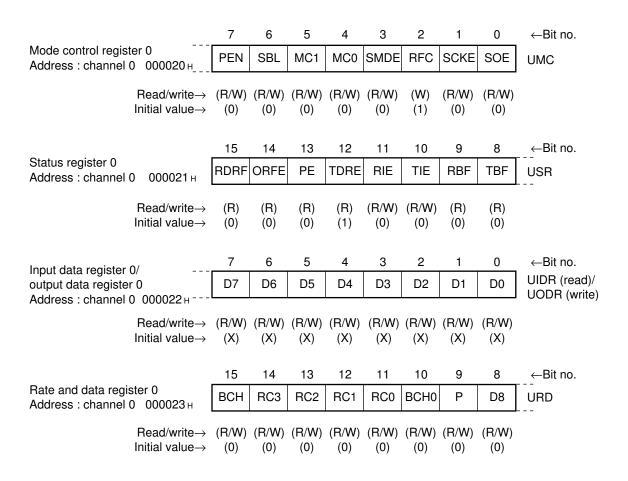

In addition, a "0" is always read when reading pins corresponding to bits for which a "1" is set in the ADER.

(3) Output Ports

For port 7, when the port direction register is set for output, the value set in DOT0 to 3 bits of CCR01 and CCR11 register of the OCU is output. In addition, the data that is read from the data register in this state is the value being output on the pins.

If the port direction register is set for input, the value set in the DOT0 to 3 bits of CCR01 and CCR11 register of the OCU is not output; the input value on the pin is read.

(4) Register Configuration

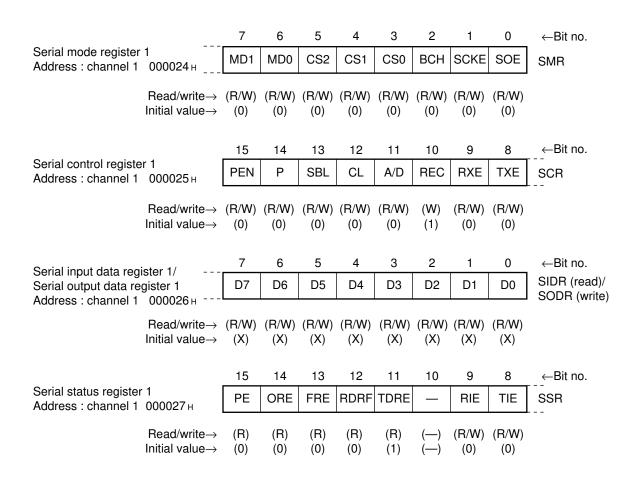

Bit	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0	
Address : 000000 н	P07	P06	P05	P04	P03	P02	P01	P00	Port 0 data register (PDR0)
Address : 000001 н	P17	P16	P15	P14	P13	P12	P11	P10	Port 1 data register (PDR1)
Address: 000002 н	P27	P26	P25	P24	P23	P22	P21	P20	Port 2 data register (PDR2)
Address : 000003 н	P37	P36	P35	P34	P33	P32	P31	P30	Port 3 data register (PDR3)
Address: 000004 н	P47	P46	P45	P44	P43	P42	P41	P40	Port 4 data register (PDR4)
Address : 000005 н	P57	P56	P55	P54	P53	P52	P51	P50	Port 5 data register (PDR5)
Address : 000006 н	P67	P66	P65	P64	P63	P62	P61	P60	Port 6 data register (PDR6)
Address : 000007 н	P77	P76	P75	P74	P73	P72	P71	P70	Port 7 data register (PDR7)
Address : 000008 н	ı	P86	P85	P84	P83	P82	P81	P80	Port 8 data register (PDR8)
Address : 000009 н	-	_	-	1	ı	-	P91	P90	Port 9 data register (PDR9)
Address: 00000A н	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	Port A data register (PDRA)
Address: 00000B н	ı	-	ı	ı	ı	PB2	PB1	PB0	Port B data register (PDRB)
Bit	15/7	14/6	13/5	12/4	11/3	10/2	9/1	8/0	
Address : 000010 н	P07	P06	P05	P04	P03	P02	P01	P00	Port 0 direction register (DDR0)
Address : 000011 н	P17	P16	P15	P14	P13	P12	P11	P10	Port 1 direction register (DDR1)
Address: 000012 н	P27	P26	P25	P24	P23	P22	P21	P20	Port 2 direction register (DDR2)
Address : 000013 н	P37	P36	P35	P34	P33	P32	P31	P30	Port 3 direction register (DDR3)
Address: 000014 н	P47	P46	P45	P44	P43	P42	P41	P40	Port 4 direction register (DDR4)
Address: 000015 н	P57	P56	P55	P54	P53	P52	P51	P50	Analog input enable register (ADER)
Address: 000016 н	P67	P66	P65	P64	P63	P62	P61	P60	Port 6 direction register (DDR6)
Address : 000017 н	P77	P76	P75	P74	P73	P72	P71	P70	Port 7 direction register (DDR7)
Address: 000018 н	-	P86	P85	P84	P83	P82	P81	P80	Port 8 direction register (DDR8)
Address: 00001A н	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	Port A direction register (DDRA)
Address: 00001B н	-	-	-	-	-	PB2	PB1	PB0	Port B direction register (DDRB)

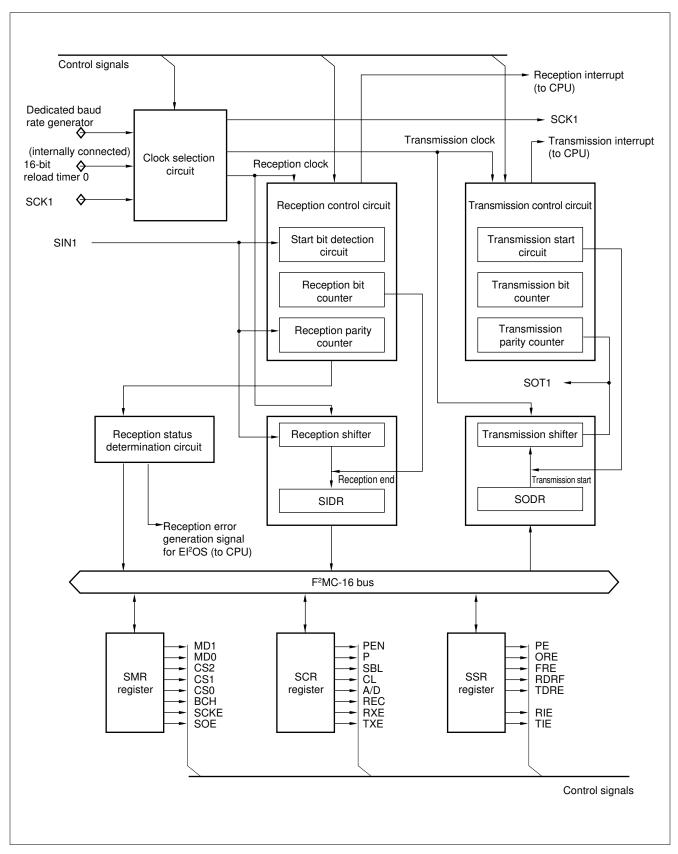

Note: P81 to P86, P90, P91, PA0 to PA7, and PB0 to PB2 are provided only in the MB90675 series; they are not available in the MB90670 series.

2. UARTO

The UART0 is a serial I/O port used for synchronous or asynchronous communications with external devices; the features of this module are as follows:

- Full-duplex double buffer
- CLK synchronous and CLK asynchronous start-stop data transfers capable
- Supports multiprocessor mode (mode 2)
- Built-in dedicated baud rate generator (12 rates)
- · Permits setting of any desired baud rate according to an external clock input or internal timer
- Variable data lengths [7 to 9 bits (no parity), 6 to 8 bits (with parity)]
- Error detection function (framing errors, overrun errors, and parity errors)
- Interrupt functions (two sources: transmission and reception)
- · NRZ system as transfer format

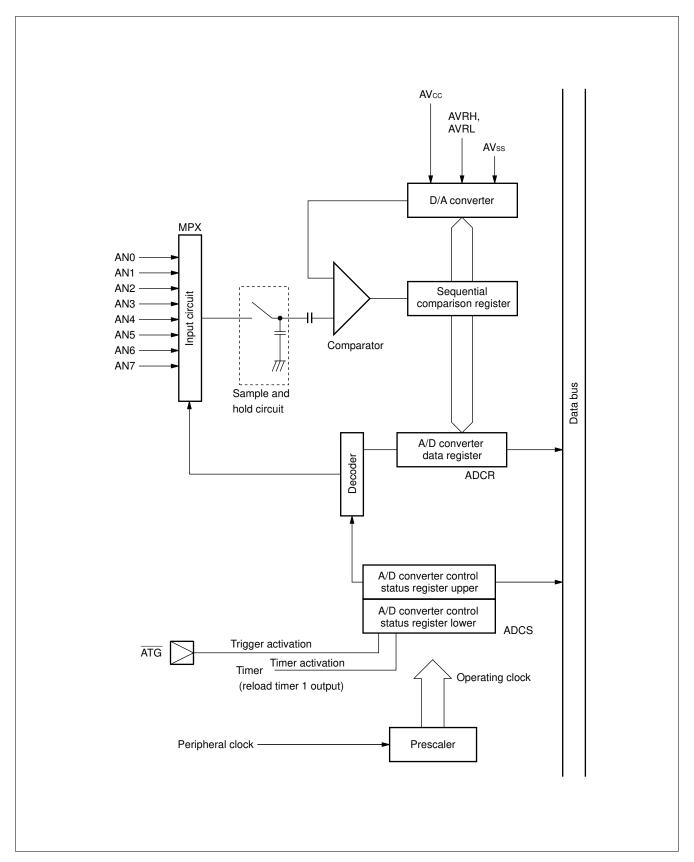




3. UART1 (SCI)

The UART is a serial I/O port used for CLK asynchronous (start-stop synchronization) communications or for CLK synchronous (I/O extended serial) communications. The features of this module are described below:

- Full-duplex double buffer
- CLK asynchronous (start-stop synchronization) communications and CLK synchronous (I/O extended serial) communications capable
- Supports multiprocessor mode
- Built-in dedicated baud rate generator
 CLK asynchronous: 62500, 31250, 19230, 9615, 4808, 2404 and 1202 bps
 CLK synchronous: 2 Mbps, 1 Mbps, 500 Kbps, and 250 Kbps
- · Permits setting of any desired baud rate according to an external clock input
- Error detection function (parity errors, framing errors, and overrun errors)
- · NRZ code as transfer signal
- Supports Intelligent I/O Service

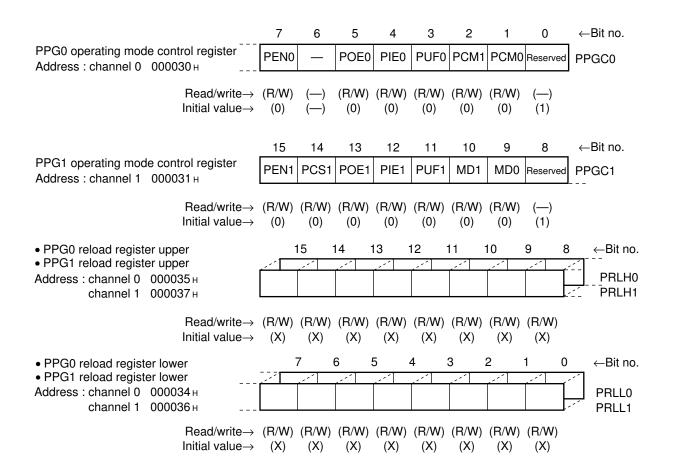


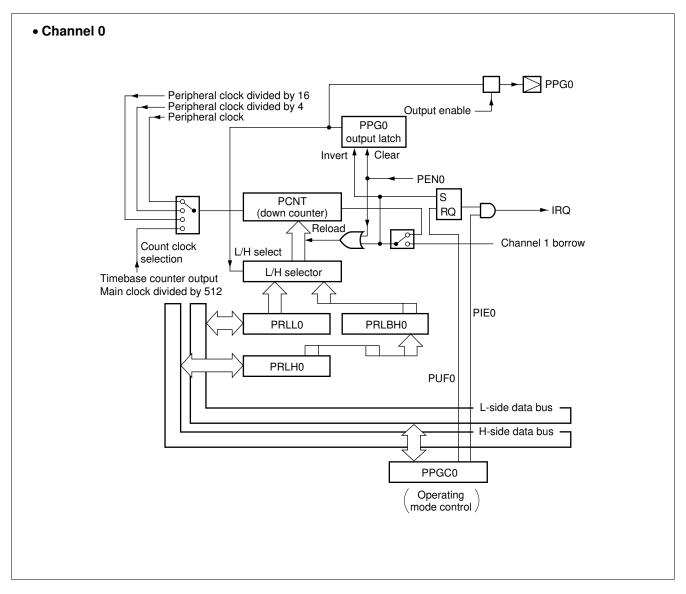
4. 10-bit 8-channel A/D Converter (with 8-bit Resolution Mode)

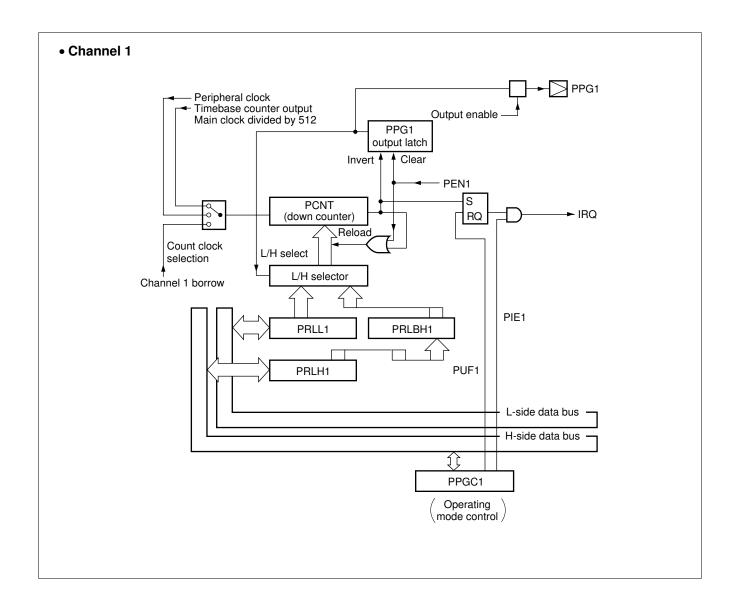
The 10-bit 8-channel A/D converter converts analog input voltage into a digital value. The features of this module are as follows:

- Conversion time: Minimum of 6.13 μs per channel (98 machine cycles/16 MHz machine clock, including sampling time)
- Sampling time: Minimum of 3.75 us per channel (60 machine cycles/16 MHz machine clock)
- RC-type successive approximation conversion method with sample and hold circuit
- 10-bit/8-bit resolution
- Analog input is selectable by software from among 8 channels
 - Single-conversion mode: Selects and converts one channel.
 - Scan conversion mode: Converts several consecutive channels (up to eight channels can be programmed). Continuous conversion mode: Repeatedly converts the specified channel.
 - Stop conversion mode: Pauses after converting one channel and waits until the next activation (permits synchronization of start of conversion).
- When A/D conversion is completed, an "A/D conversion complete" interrupt request can be issued to the CPU.
 Because generating this interrupt can be used to activate the I²OS and transfer the A/D conversion results to memory, this function is suitable for continuous processing.
- Activation sources can be selected from among software, an external trigger (falling edge), and 16-bit reload timer 1 (rising edge).

		15	14	13	12	11	10	9	8	←Bit no.
A/D converter control status Address: 00002D H	register upper	BUSY	INT	INTE	PAUS	STS1	STS0	STRT	Reserved	ADCS
	Read/write→ Initial value→	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(W) (0)	() (0)	
		7	6	5	4	3	2	1	0	←Bit no.
A/D converter control status Address: 00002C H	register lower	MD1	MD0	ANS2	ANS1	ANS0	ANE2	ANE1	ANE0	ADCS
	Read/write→ Initial value→	(R/W) (0)								
		15	14	13	12	11	10	9	8	←Bit no.
A/D converter data register Address: 00002F н	upper	S10	_	_	_	_	_	D9	D8	ADCR
	Read/write→ Initial value→	(R/W) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (X)	(R) (X)	
		7	6	5	4	3	2	1	0	←Bit no.
A/D converter data register Address: 00002E н	lower	D7	D6	D5	D4	D3	D2	D1	D0	ADCR
	Read/write→ Initial value→	(R) (X)								

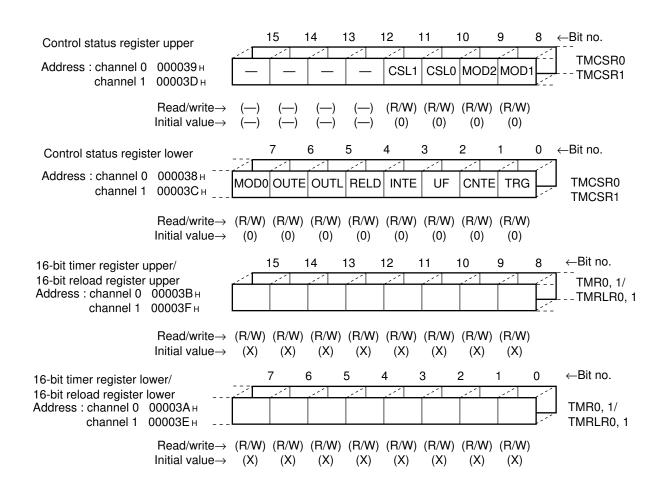


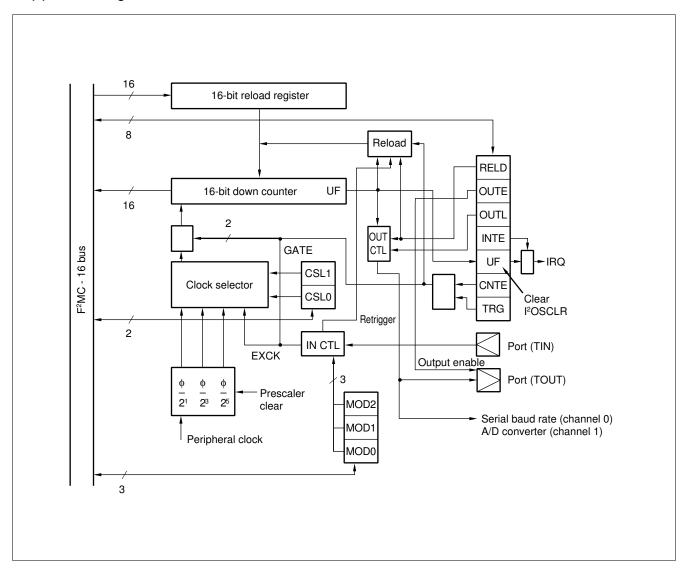

5. PPG


PPG is an 8-bit reload timer module that generates PPG output through pulse output control in accordance with the timer operation.

In terms of hardware, this module consists of two 8-bit down counters, four 8-bit PPG reload registers, one 16-bit PPG operating mode control register, two external pulse output pins, and two interrupt outputs. This hardware is used to implement the following functions:

- 8-bit PPG output two-channel independent operating mode: Permits independent PPG output operation on two channels.
- 16-bit PPG output operating mode: Permits PPG output operations on one 16-bit channel.
- 8 + 8-bit PPG output operating mode: Permits 8-bit PPG output operation with any cycle by using the channel 0 output as the channel 1 clock input.
- PPG output operation: Outputs a pulse waveform with any cycle and any duty ratio. Can also be used as a D/A converter by providing an external circuit.

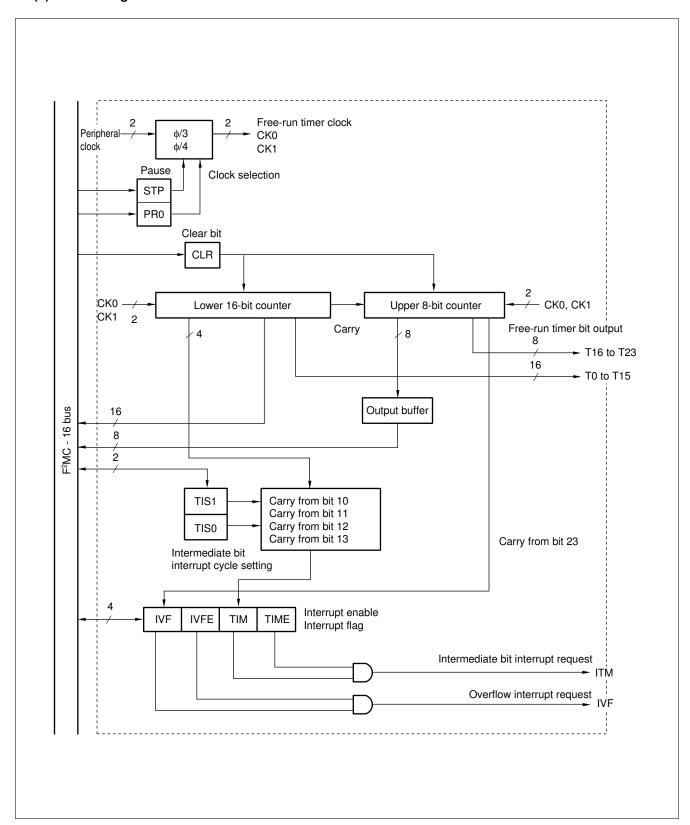




6. 16-bit Reload Timer (with Event Count Function)

The 16-bit reload timer consists of a 16-bit down counter, a 16-bit reload register, one input pin (TIN), one output pin (TOUT), and a control status register. Three internal clocks and an external clock can be selected for the input clock. When in reload mode, a toggled output waveform is output, while in one-shot mode a square wave indicating that the count is in progress is output. The input pin (TIN) serves as an event input in event count mode, and can be used for trigger input or gate input in internal clock mode.

In this product, there are two channels for this timer on chip.

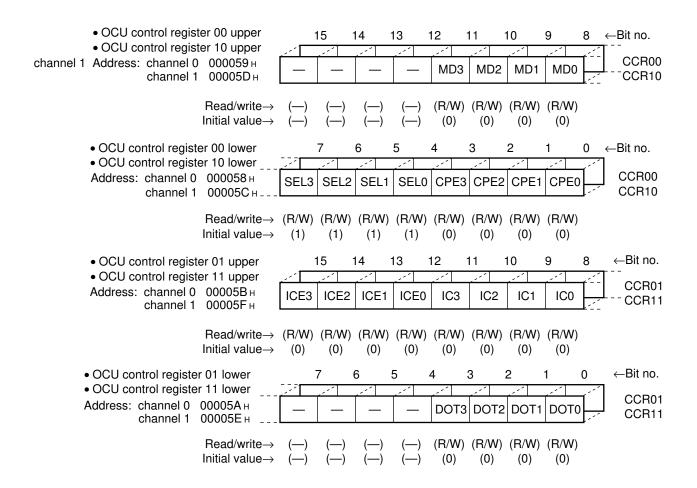

7. 24-bit Free-run Timer

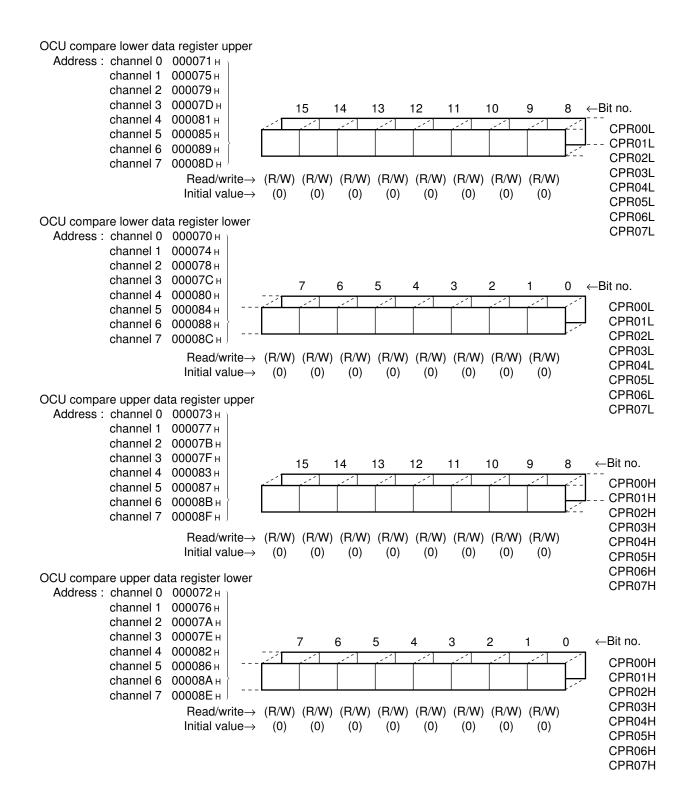
The 24-bit free-run timer consists of a 24-bit up counter, an 8-bit output buffer, and a free-run timer control register. The counter value output from this free-run timer is used for basic time generation by the input capture and output compare units.

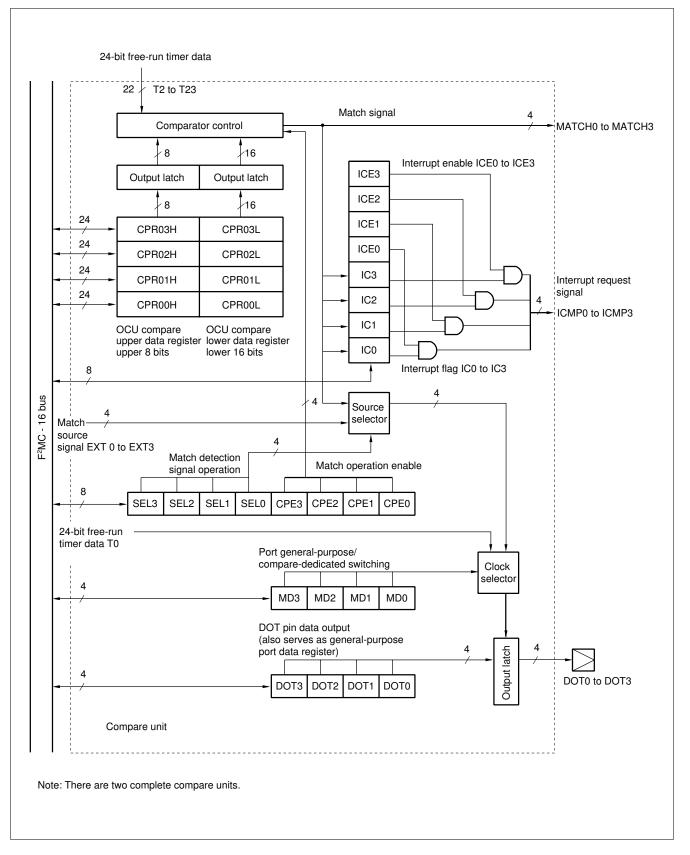
The interrupt functions are the timer overflow interrupt and timer intermediate bit interrupt; four different time settings can be made for the intermediate bit interrupt.

A reset clears the timer counter value for the 24-bit free-run timer to all zeroes.

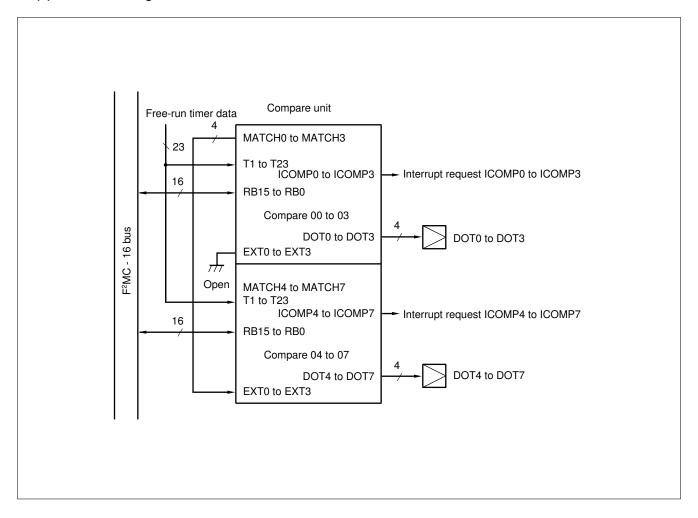
		15	14	13	12	11	10	9	8	←Bit no.
Free-run timer control Address: 000051 H	register upper	_	_	Reserved	Reserved	Reserved	Reserved	Reserved	PR0	TCCR
	$\begin{array}{l} \text{Read/write} \rightarrow \\ \text{Initial value} \rightarrow \end{array}$	(—) (—)	(—) (—)	() (1)	(R/W) (1)					
		7	6	5	4	3	2	1	0	←Bit no.
Free-run timer control Address: 000050 H	register lower	STP	CLR	IVF	IVFE	TIM	TIME	TIS1	TIS0	TCCR
	$\begin{array}{l} \text{Read/write} \rightarrow \\ \text{Initial value} \rightarrow \end{array}$	(W) (1)	(W) (1)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	
Free-run timer lower		15	14	13	12	11	10	9	8	←Bit no.
16-bit data register upp Address: 000055 н	per									TCRL
	$\begin{array}{l} \text{Read/write} \rightarrow \\ \text{Initial value} \rightarrow \end{array}$	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	
Free run timer lower		7	6	5	4	3	2	1	0	←Bit no.
16-bit data register low Address: 000054 н	er									TCRL
	$\begin{array}{l} \text{Read/write} \rightarrow \\ \text{Initial value} \rightarrow \end{array}$	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	
Free-run timer upper		15	14	13	12	11	10	9	8	←Bit no.
8-bit data register uppe Address: 000057 н	er									TCRH
	$\begin{array}{l} \text{Read/write} \rightarrow \\ \text{Initial value} \rightarrow \end{array}$	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	
Free run timer upper		7	6	5	4	3	2	1	0	←Bit no.
8-bit data register lowe Address: 000056 н	er									TCRH
	$\begin{array}{l} \text{Read/write} \rightarrow \\ \text{Initial value} \rightarrow \end{array}$	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	



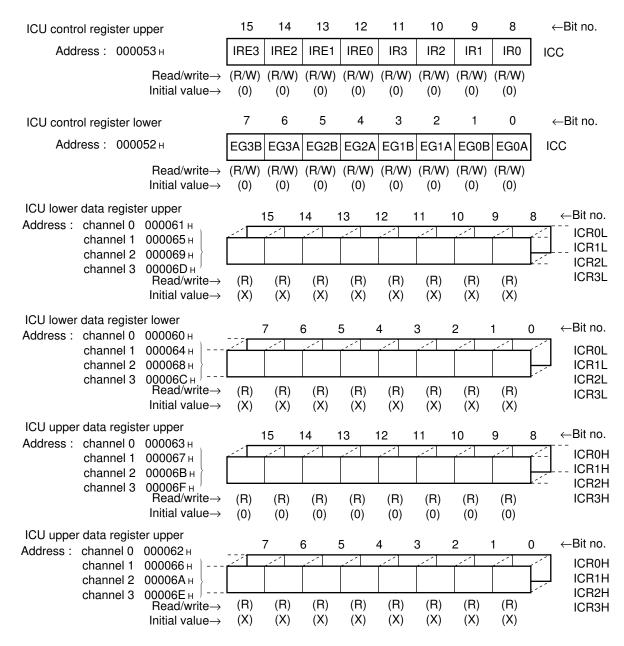

8. OCU (Output Compare)

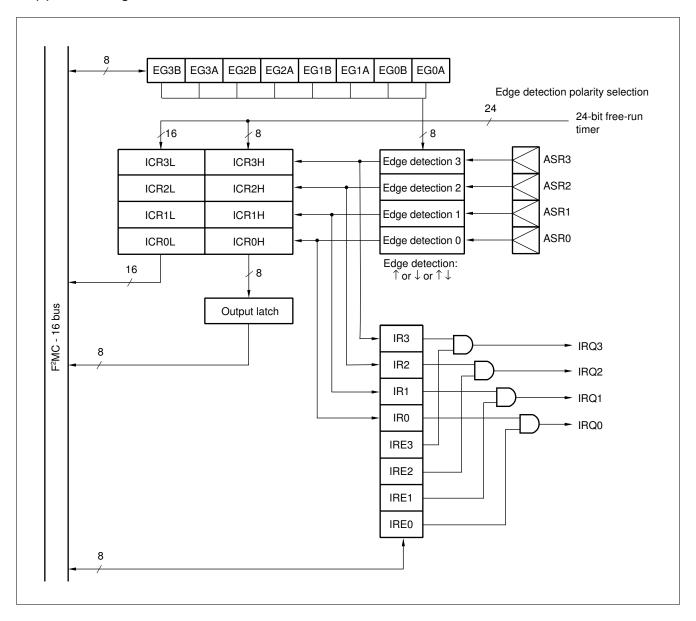

The output compare unit consists of a 24-bit OCU register, a comparator, and an OCU control register. When the contents of the OCU register and the 24-bit timer counter match, the match detection signal is output. This match detection signal can be used to change the output values of the corresponding pins, or else to generate an interrupt. One output compare block consists of four channels, and time division comparisons can be made with one comparator for the four channels.

The compare precision of this OCU is four times the operation cycle of the 24-bit free-run timer; if the 24-bit free-run timer operates at 4 MHz, the compare precision is 1 µs.


The MB90670/675 series has two of these OCUs on chip.

(3) Overall Configuration

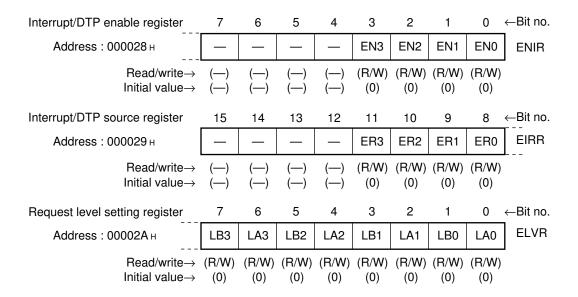


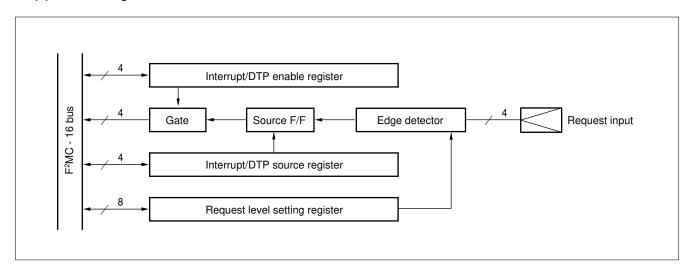

9. ICU (Input Capture)

ICU detects the rising edge, falling edge, or both edges of an externally input waveform and then saves the counter value of the 24-bit free-run timer, while simultaneously generating an interrupt request for the CPU. The module hardware consists of four 24-bit ICU data registers and an ICU control register. There are four external input pins (AS0 to AS3), and each pin is used to implement the operation indicated below.

The capture precision of this ICU is equal to the operation cycle of the 24-bit free-run timer; if the 24-bit free-run timer operates at 4 MHz, the capture precision is 250 ns.

AS0 to AS3: These input pins each have one ICU register; the counter value of the 24-bit free-run timer
can be retained when the specified valid edge (↑, ↓, or ↑ ↓) is generated.

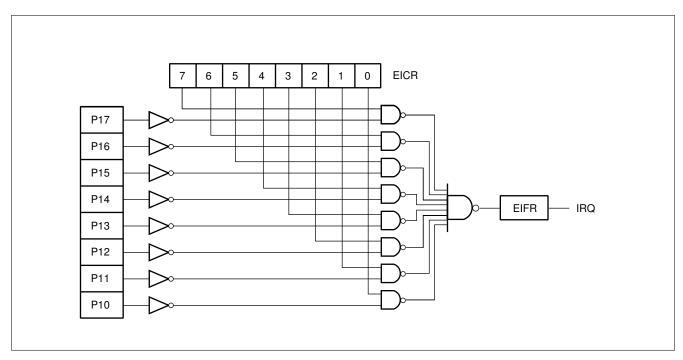




10. DTP/External Interrupt

The DTP (Data Transfer Peripheral) is a peripheral, positioned between peripherals external to the device and the F²MC-16L CPU, that accepts DMA requests or interrupt requests generated by external peripherals and transfers them to the F²MC-16L CPU to activate the Intelligent I/O Service or interrupt processing. In the case of the Intelligent I/O Service, there are two request levels that can be selected: high and low; in the case of an external interrupt request, there are a total of four request levels that can be selected: high, low, rising edge and falling edge.

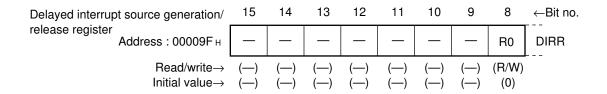
(1) Register Configuration

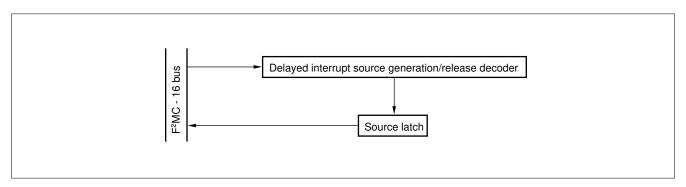

11. Wake-up Interrupt

The wake-up interrupt is a peripheral, positioned between peripherals external to the device and F²MC-16L CPU. This interrupt accepts interrupt requests generated by external peripherals and transfers them to the F²MC-16L CPU to acvitate interrupt processing.

An interrupt request is generated by input signal of "L" level.

(1) Register Configuration

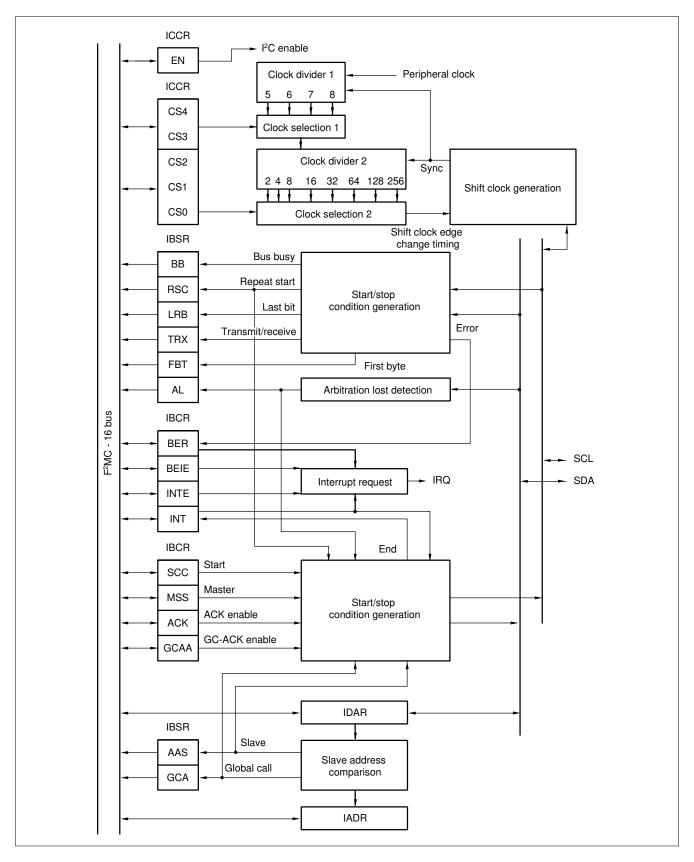

Wake-up interrupt enable re	gister	15	14	13	12	11	10	9	8	←Bit no.
Address: 00001F н		EN7	EN6	EN5	EN4	EN3	EN2	EN1	EN0	EICR
Read/v Initial v		(W) (0)	-							
Wake-up interrupt flag regis	ter	15	14	13	12	11	10	9	8	←Bit no.
Address: 00000	Fн					_			WIF	EIFR
Read/v Initial v		(—) (—)	(R/W) (0)							



12. Delayed Interrupt Generation Module

The delayed interrupt generation module generates task switching interrupts. This module can be used to generate/cancel interrupt requests to the F²MC-16L CPU by software.

(1) Register Configuration

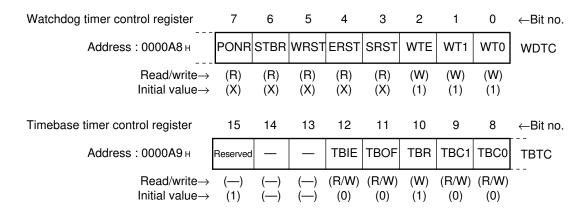

13. I²C Interface

The I²C interface is a serial I/O port that supports the Inter-IC bus and operates as a master/slave device on the I²C bus. This module has the following features:

- Master slave transmission/reception
- · Arbitration function
- · Clock synchronization function
- · Slave address/general call address detection function
- Transfer direction detection function
- Start condition repeat generation ad detection function
- Bus error detection function

The MB90675 series is provided with a single channel of this module. This module has one channel on chip in the MB90675 series.

_		7	6	5	4	3	2	1	0	←Bit no.
I ² C bus status regis Address: 00004		BB	RSC	AL	LRB	TRX	AAS	GCA	FBT	IBSR
	$\begin{array}{c} \text{Read/write} \rightarrow \\ \text{Initial value} \rightarrow \end{array}$	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	(R) (0)	
_		15	14	13	12	11	10	9	8	←Bit no.
I ² C bus control regis Address: 00004		BER	BEIE	scc	MSS	ACK	GCAA	INTE	INT	IBCR
	$\begin{array}{l} \text{Read/write} \rightarrow \\ \text{Initial value} \rightarrow \end{array}$	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	(R/W) (0)	
I ² C bus clock select	ion register	7	6	5	4	3	2	1	0	←Bit no.
Address: 00004	•	_	_	EN	CS4	CS3	CS2	CS1	CS0	ICCR
	$\begin{array}{c} \text{Read/write} \rightarrow \\ \text{Initial value} \rightarrow \end{array}$	(—) (—)	(—) (—)	(R/W) (0)	(R/W) (X)	(R/W) (X)	(R/W) (X)	(R/W) (X)	(R/W) (X)	
	Initial value \rightarrow	` '	. ,	,	` ,	` ,	` ,	` ,	,	←Bit no.
I ² C bus address reg Address: 00004	Initial value→	<u>(</u> —)	(—)	(0)	`(X) ´	(X)	(X)	`(X) ´	`(X) [′]	←Bit no. IADR
	Initial value→	<u>(</u> —)	14	(0) 13 A5	(X) 12	11 A3	10 A2	(X) 9	(X) 8	
Address: 00004	Initial value→ pister 43 н Read/write→ Initial value→	(—) 15 — (—)	14 A6 (R/W)	(0) 13 A5 (R/W)	12 A4 (R/W)	11 A3 (R/W)	10 A2 (R/W)	9 A1 (R/W)	8 A0 (R/W)	
	Initial value→ pister 43 H Read/write→ Initial value→	(—) 15 — (—) (—)	(—) 14 A6 (R/W) (X)	(0) 13 A5 (R/W) (X)	12 A4 (R/W) (X)	11 A3 (R/W) (X)	10 A2 (R/W) (X)	9 A1 (R/W) (X)	8 A0 (R/W) (X)	IADR




14. Watchdog Timer and Timebase Timer Functions

The watchdog timer consists of a 2-bit watchdog counter that uses the carry signal from the 18-bit timebase timer as a clock source, a watchdog timer control register, and a watchdog reset controller.

The timebase timer consists of an 18-bit timer and a circuit that controls interval interrupts. Note that the timebase timer uses the main clock, regardless of the setting of the MCS bit in CKSCR.

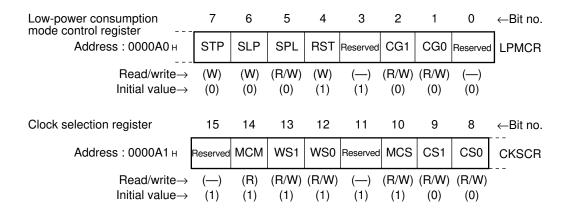
(1) Register Configuration

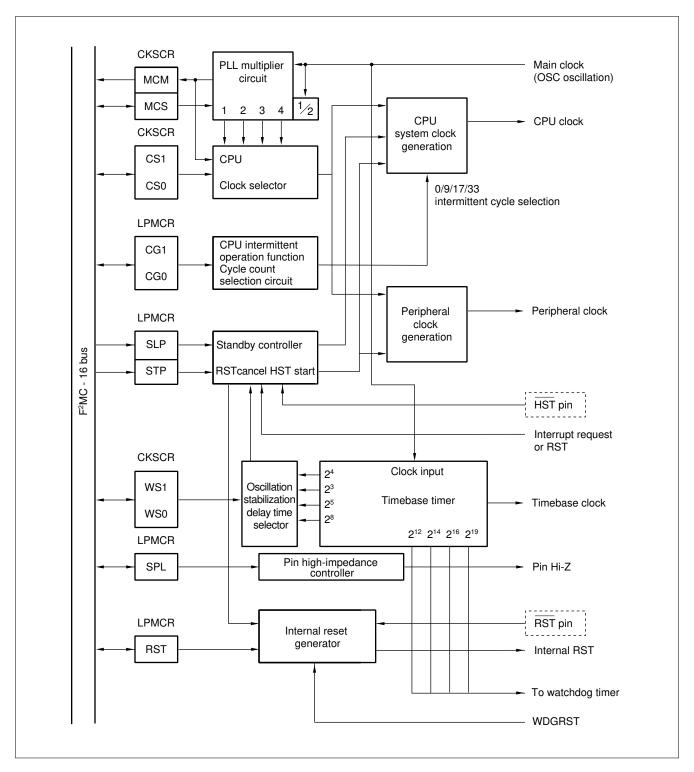
15. Low-power Consumption Controller (CPU Intermittent Operation Function, Oscillation Stabilization Delay Time, Clock Multiplier Function)

The following are the operating modes: PLL clock mode, PLL sleep mode, watch mode, main clock mode, main sleep mode, stop mode, and hardware standby mode. Aside from the PLL clock mode, all of the other operating modes are low power consumption modes.

In main clock mode and main sleep mode, only the main clock (main OSC oscillation clock) operates. In these modes, the main clock divided by 2 is used as the operation clock, and the PLL clock (VCO oscillation clock) is stopped.

In PLL sleep mode and main sleep mode, only the CPU's operation clock is stopped; all clocks other than the CPU clock operate.


In watch mode, only the time-base timer operates.


The stop mode and hardware standby mode stop oscillation, making it possible to retain data while consuming the least amount of power .

The CPU intermittent operation function intermittently runs the clock supplied to the CPU when accessing registers, on-chip memory, on-chip resources, and the external bus. Processing is possible with lower power consumption by reducing the execution speed of the CPU while supplying a high-speed clock and using on-chip resources.

The PLL clock multiplier can be selected as either 1, 2, 3, or 4 by setting the CS1 and CS0 bits.

The WS1 and WS0 bits can be used to set the main clock oscillation stabilization delay time for when stop mode and hardware standby mode are woken up.

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

(Vss = AVss = 0.0 V)

Dovometer	Symbol	Va	lue	Unit	Remarks
Parameter	Syllibol	Min.	Max.	Oill	nemarks
	Vcc	Vss - 0.3	Vss + 7.0	V	
Power supply voltage	AVcc	Vcc-0.3	Vcc + 7.0	V	*1
· · · · · · · · · · · · · · · · · · ·	AVRH AVRL	Vcc - 0.3	Vcc + 7.0	V	
Input voltage	Vı	Vss-0.3	Vcc + 0.3	V	*2
Output voltage	Vo	Vss-0.3	Vcc + 0.3	V	*2
"L" level maximum output current	loL	_	15	mA	*3
"L" level average output current	lolav	_	4	mA	*4
"L" level total maximum output current	ΣΙοι		100	mA	
"L" level total average output current	Σ lolav		50	mA	*5
"H" level maximum output current	Іон	_	-15	mA	*3
"H" level average output current	Іонаv	_	-4	mA	*4
"H" level total maximum output current	ΣІон	_	-100	mA	
"H" level total average output current	ΣΙομαν	_	-50	mA	*5
Power consumption	Po	_	+400	mW	
Operating temperature	TA	-40	+85	°C	
Storage temperature	T _{stg}	- 55	+150	°C	

^{*1:} AVcc, AVRH and AVRL must not exceed Vcc. In addition, AVRL must not exceed AVRH.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

^{*2:} V_1 and V_2 must not exceed $V_{CC} + 0.3 V$.

^{*3:} The maximum output current defines the peak value on one of the pins in question.

^{*4:} The average output current defines the average current over a 100 ms period for the current flowing to one of the pins in question.

^{*5:} The total average output current defines the average current over a 100 ms period for the current flowing to all of the pins in question.

2. Recommended Operating Conditions

(Vss = AVss = 0.0 V)

Daramatar	Symbol	Va	lue	Unit	Remarks
Parameter	Symbol	Min.	Max.	Offic	nemarks
Power supply voltage	Vcc	2.7	5.5	V	Normal operation
Fower supply voltage	V CC	2.0	5.5	V	Maintaining the stop status
	Vıн	0.7 Vcc	Vcc + 0.3	V	Pins other than V _{IHS} and V _{IHM}
"H" level input voltage	VIHS	0.8 Vcc	Vcc + 0.3	V	Hysteresis input pins*
	V _{IHM}	Vcc-0.3	Vcc + 0.3	V	MD pin input
	VıL	Vss-0.3	0.3 Vcc	V	Pins other than VILS and VILM
"L" level input voltage	VILS	Vss-0.3	0.2 Vcc	V	Hysteresis input pins*
	VILM	Vss-0.3	Vcc + 0.3	V	MD pin input
Operating temperature	TA	-40	+85	°C	

^{*:} The hysteresis input pins in the MB90670 series are: P24 to P27, P40 to P47, P60 to P67, P70 to P77, P80, HST, and RST.

The hysteresis input pins in the MB90675 series are: P24 to P27, P40 to P47, P60 to P67, P70 to P77, P80 to P86, HST, RST, P90, P91, PA0 to PA7, and PB0 to PB2.

WARNING: Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representative beforehand.

3. DC Characteristics

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition		Value			Remarks
Parameter	Syllibol	Fill Hallie	Condition	Min.	Тур.	Max.	Ullit	nemarks
"H" level output	Vон	Other than	Vcc = +4.5 V Іон = -4.0 mA	Vcc - 0.5	_	_	V	
voltage	VOH	P50 to P57	Vcc = +2.7 V Іон = -1.6 mA	Vcc - 0.3	_	_	V	
"L" level output	Vol	All output	Vcc = +4.5 V lo _L = 4.0 mA	_	_	0.4	V	
voltage	VOL	pins	Vcc = +2.7 V lo _L = 2.0 mA	_	_	0.4	V	
Input leakage current	Iι∟	Other than P50 to P57, P90 and P91	Vcc = +5.0 V Vss < Vı < Vcc	-10	_	10	μА	
	lcc		Internal 16 MHz operation Vcc = +5.0 V Normal operation*1	_	50	70	mA	
Iccs	Iccs	_	Internal 16 MHz operation Vcc = +5.0 V Sleep mode*1	_	15	30	mA	
Power supply current	Icc		Internal 8 MHz operation Vcc = +3.0 V Normal operation*1	_	10	20	mA	
	Iccs	_	Internal 8 MHz operation Vcc = +3.0 V Sleep mode*1	_	3	10	mA	
	Іссн	_	T _A = +25°C Stop mode and hardware standby mode*1	_	0.1	10	μА	
Input capacitance	Cin	Other than AVcc, AVss Vcc, Vss	_	_	10	_	pF	
Open-drain output leakage current	lleak	P50 to P57 P90, P91*2	_	_	0.1	10	μА	
Pull-up	R	_	Vcc = +5.0 V	25	50	100	kΩ	
resistance	רו	_	Vcc = +3.0 V	40	100	200	kΩ	
Pull-down	R	_	Vcc = +5.0 V	25	50	200	kΩ	
resistance	''		Vcc = +3.0 V	40	100	400	kΩ	

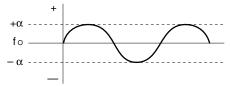
^{*1:} Because the current values are tentative values, they are subject to change without notice due to our efforts to improve the characteristics of these devices.

^{*2:} P90 and P91 are provided only in the MB90675 series.

4. AC Characteristics

(1) Clock Timing

• When $Vcc = +5.0 \text{ V} \pm 10\%$


$$(V_{CC} = +4.5 \text{ V to } +5.5 \text{ V}, V_{SS} = 0.0 \text{ V}, T_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$$

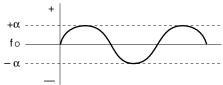
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
Farailleter	Symbol	Fili Haine	Condition	Min.	Max.	Oilit		
Source oscillation frequency	Fc	X0, X1	_	3	32	MHz		
Source oscillation cycle time	tc	X0, X1	_	31.25	333	ns		
Input clock pulse width	Pwh PwL	X0	_	10	_	ns	Use duty ratio 30 to 70% as a guide.	
Input clock rising/falling time	tcr tcr	X0	_		5	ns		
Internal operation clock frequency	fcP	_	_	1.5	16	MHz		
Internal operation clock cycle time	t CP	_	_	62.5	666	ns		
When frequency fluctuation is locked	Δf	P37/CLK	_	_	3	%	*	

*: The frequency fluctuation ratio indicates the maximum fluctuation ratio from the set center frequency while locked when using the PLL multiplier.

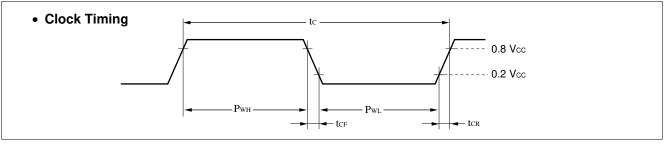
$$\Delta f = \frac{|\alpha|}{f_0} \times 100 \text{ (\%)}$$

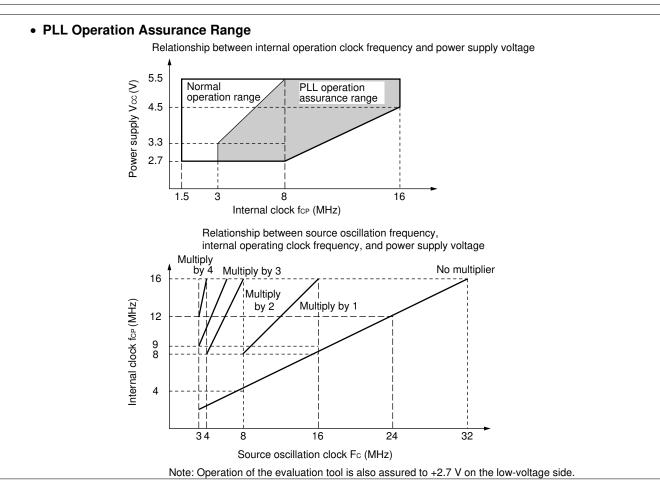
Center frequency

Because the PLL frequency fluctuates around the set frequency with a certain cycle [approximately CLK \times (1 to 50 CYC)], the worst value is not maintained for long. (The pulse, if featured with the long period, would produce practically no error.)

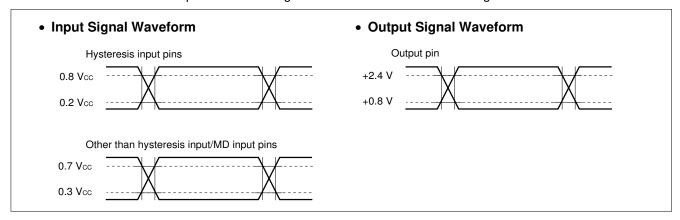

$$(V_{CC} = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$$

			,		,	- ,	,	
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
rai ailletei	Symbol	Finitianie	Condition	Min.	Max.	Oill	Hemarks	
Source oscillation frequency	Fc	X0, X1	_	3	16	MHz		
Source oscillation cycle time	tc	X0, X1	_	62.5	333	ns		
Input clock pulse width	Pwh PwL	X0	_	20	_	ns	Use duty ratio 30 to 70% as a guide.	
Input clock rising/falling time	tcr tcr	X0	_	_	5	ns		
Internal operation clock frequency	fcP	_	_	1.5	8	MHz		
Internal operation clock cycle time	t CP	_	_	125	666	ns		
When frequency fluctuation ratio is locked	Δf	P37/CLK	_	_	3	%	*	

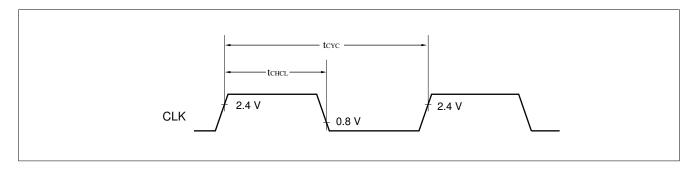

*: The frequency fluctuation ratio indicates the maximum fluctuation ratio from the set center frequency while locked when using the PLL multiplier.


$$\Delta f = \frac{|\alpha|}{f_0} \times 100 (\%)$$

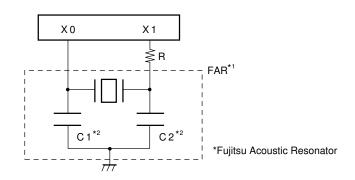
Center frequency



Because the PLL frequency fluctuates around the set frequency with a certain cycle [approximately CLK \times (1 to 50 CYC)], the worst value is not maintained for long. (The pulse, if featured with the long period, would produce practically no error.)

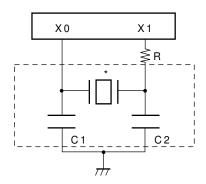

The AC characteristics are stipulated according to the measured reference voltages shown below.

(2) Clock Output Timing


 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol Pin name		Condition	Va	lue	Unit	Remarks
Parameter	Syllibol	Fili liaille	Condition	Min.	Max.	Ullit	neiliaiks
Cycle time	tcyc	CLK	_	t cp	_	ns	
$CLK \uparrow \to CLK \downarrow$	t chcl	CLK	_	tcp/2 - 20	tcp/2 + 20	ns	

(3) Recommended Resonator Manufacturers


• Sample Application of Piezoelectric Resonator (FAR Family)

FAR part number (built-in capacitor type)	Frequency (MHz)	Dumping resistor	Initial deviation of FAR frequency (T _A = +25°C)	Temperature characteristics of FAR frequency (T _A = -20°C to +60°C)	Loading capacitors*2
FAR-C4□C-02000-□20	2.00	5.10 Ω	±0.5%	±0.5%	
FAR-C4□A-04000-□01			±0.5%	±0.5%	
FAR-C4□B-04000-□02	4.00	_	±0.5%	±0.5%	
FAR-C4□B-04000-□00			±0.5%	±0.5%	Built-in
FAR-C4□B-08000-□02	8.00	_	±0.5%	±0.5%	
FAR-C4□B-12000-□02	12.00	_	±0.5%	±0.5%	
FAR-C4□B-16000-□02	16.00	_	±0.5%	±0.5%	

Inquiry: FUJITSU LIMITED

• Sample Application of Ceramic Resonator

Mask Product

Resonator manufacturer *	Resonator	Frequency (MHz)	C1 (pF)	C2 (pF)	R
	KBR-2. 0MS	2.00	150	150	Not required
	PBRC2. 00A	2.00	150	150	Not required
	KBR-4. 0MSA		33	33	680 Ω
	KBR-4. 0MKS	4.00	Built-in	Built-in	680 Ω
	PBRC4. 00A	4.00	33	33	680 Ω
	PBRC4. 00B		Built-in	Built-in	680 Ω
	KBR-6. 0 MSA		33	33	Not required
17	KBR-6. 0MKS	6.00	Built-in	Built-in	Not required
Kyocera Corporation	PBRC6. 00A	0.00	33	33	Not required
Corporation	PBRC6. 00B		Built-in	Built-in	Not required
	KBR-8. 0M		33	33	560 Ω
	PBRC8. 00A	8.00	33	33	Not required
	PBRC8. 00B		Built-in	Built-in	Not required
	KBR-10.0M	10.00	33	33	330 Ω
	PBRC10. 00B	10.00	Built-in	Built-in	680 Ω
	KBR-12.0M	12.00	33	33	330 Ω
	PBRC12. 00B	12.00	Built-in	Built-in	680 Ω
	CSA2. 00MG040	2.00	100	100	Not required
	CST2. 00MG040	2.00	Built-in	Built-in	Not required
	CSA4. 00MG040	4.00	100	100	Not required
	CST4. 00MGW040	4.00	Built-in	Built-in	Not required
	CSA6. 00MG	6.00	30	30	Not required
Murata	CST6.00MGW	0.00	Built-in	Built-in	Not required
Mfg, Co., Ltd.	CSA8. 00MTZ	8.00	30	30	Not required
	CST8. 00MTW	6.00	Built-in	Built-in	Not required
	CSA10. 0MTZ	10.00	30	30	Not required
	CST10.0MTW	10.00	Built-in	Built-in	Not required
	CSA12. 0MTZ	12.00	30	30	Not required
	CST12.0MTW	12.00	Built-in	Built-in	Not required

(Continued)

Resonator manufacturer *	Resonator	Frequency (MHz)	C1 (pF)	C2 (pF)	R
	CSA16. 00MXZ040	16.00	15	15	Not required
Ċ	CST16. 00MXW0C3	16.00	Built-in	Built-in	Not required
	CSA20. 00MXZ040	20.00	10	10	Not required
Murata Mfg, Co., Ltd.	CSA24. 00MXZ040	24.00	5	5	Not required
living, Oo., Ltd.	CST24. 00MXW0H1	24.00	Built-in	Built-in	Not required
	CSA32. 00MXZ040	32.00	5	5	Not required
	CST32. 00MXW040	32.00	Built-in	Built-in	Not required
TDK Corporation	FCR4.0 MC5	4.00	Built-in	Built-in	Not required

• One-time Product

Resonator manufacturer *	Resonator	Frequency (MHz)	C1 (pF)	C2 (pF)	R
Murata Mfg, Co., Ltd.	CSTCS4. 00MG0C5	4.00	Built-in	Built-in	Not required
	CST8. 00MTW	8.00	Built-in	Built-in	Not required
	CSACS8. 00MT	6.00	30	30	Not required
lviig, Oo., Ltd.	CST10.00MTZ	10.00	30	30	Not required
	CSA10.00MTW	10.00	Built-in	Built-in	Not required
TDK Corporation	CCR4. 00MC5	4.00	Built-in	Built-in	Not required

Inquiry: Kyocera Corporation

AVX Corporation

North American Sales Headquarters: TEL 1-803-448-9411

AVX LIMITED

European Sales Headquarters: TEL 44-1252-770000

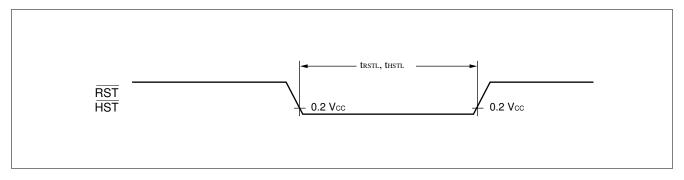
• AVX/Kyocera H.K. Ltd.

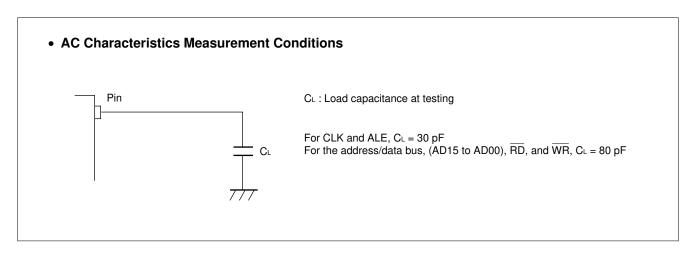
Asian Sales Headquarters: TEL 852-363-3303

Murata Mfg. Co., Ltd.

- Murata Electronics North America, Inc.: TEL 1-404-436-1300
- Murata Europe Management GmbH: TEL 49-911-66870
- Murata Electronics Singapore (Pte.): TEL 65-758-4233

TDK Corporation


- TDK Corporation of America
 Chicago Pagianal Office: TEL
 - Chicago Regional Office: TEL 1-708-803-6100
- TDK Electronics Europe GmbH
 - Components Division: TEL 49-2102-9450
- TDK Singapore (PTE) Ltd.: TEL 65-273-5022
- TDK Hongkong Co., Ltd.: TEL 852-736-2238
- Korea Branch, TDK Corporation: TEL 82-2-554-6636

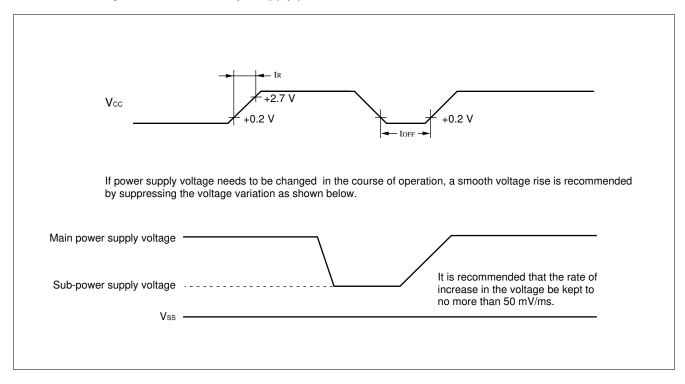

(4) Reset and Hardware Standby Input

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol Pin name		Condition	Val	ue	Unit	Remarks
raidilietei	Oyinboi	1 III IIailie	Condition	Min.	Max.		Hemana
Reset input time	t RSTL	RST	_	16 tcp	_	ns	
Hardware standby input time	t HSTL	HST	_	16 tcp	_	ns	

Note: tcp is the internal operating clock cycle time (unit: ns).

(5) Power-on Reset

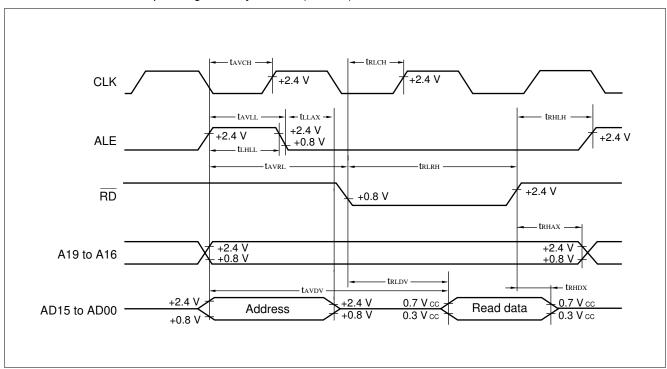

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Doromotor	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
Parameter	Symbol	Fili liaille	Condition	Min.	Max.	Oilit	nemarks	
Power supply rising time	tr	Vcc	_		30	ms	*	
Power supply cut-off time	toff	Vcc	_	1	_	ms	Due to repeat operation	

^{*:} Before the power rising, Vcc must be less than +0.2 V.

Notes: • The above standards are the values needed in order to activate a power-on reset.

- When HST = "L", be sure to turn on the power in accordance with these standards and apply a power-on reset, regardless of whether a power-on reset is needed or not.
- Some of the on-chip registers in a device are initialized only by a power-on reset. In order to initialize these registers, it is necessary to apply power in accordance with these standards.

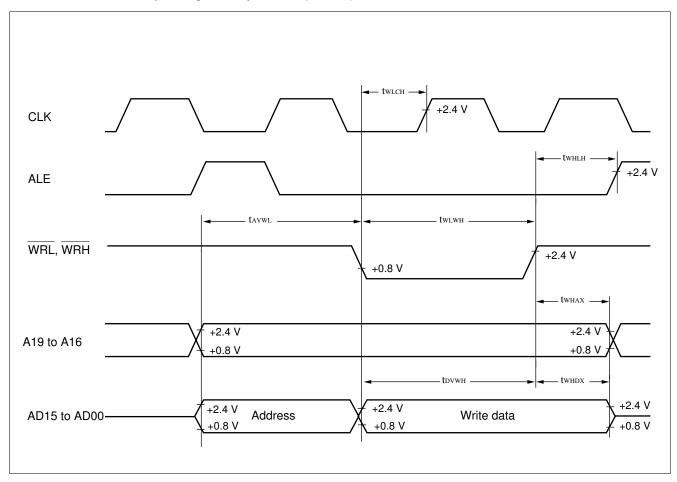


(6) Bus Read Timing

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Davamatar	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Parameter	Symbol	Pili liaille	Condition	Min.	Max.	Ollit	neillaiks
ALE pulse width	t lhll	ALE	$Vcc = +5.0 V \pm 10\%$	tcp/2 - 20		ns	
ALL puise width	L LHLL	ALL	$Vcc = +3.0 V \pm 10\%$	tcp/2 - 35	1	ns	
Valid address → ALE ↓ time	tavll	AD15 to AD00	$Vcc = +5.0 V \pm 10\%$	tcp/2 - 25	1	ns	
Valid address → ALL V time	LAVLL	AD 13 to AD00	$Vcc = +3.0 V \pm 10\%$	tcp/2 - 40	1	ns	
ALE $\downarrow \rightarrow$ address valid time	tLLAX	AD15 to AD00	_	tcp/2 - 15	1	ns	
Valid address \rightarrow \overline{RD} ↓ time	tavrl	AD15 to AD00	_	tcp - 15	1	ns	
Valid address → data read	tavdv	AD15 to AD00	$Vcc = +5.0 V \pm 10\%$	_	5 tcp/2 - 60	ns	
time	LAVDV	AD 13 to AD00	$Vcc = +3.0 \text{ V} \pm 10\%$	_	5 tcp/2 - 80	ns	
RD pulse width	t rlrh	RD	_	3 tcp/2 - 20	_	ns	
$\overline{RD} \downarrow \rightarrow \text{data read time}$	trldv	AD15 to AD00	$Vcc = +5.0 V \pm 10\%$	_	3 tcp/2 - 60	ns	
TID ↓ → data read time	LHLDV	AD 13 to AD00	$Vcc = +3.0 \text{ V} \pm 10\%$	_	3 tcp/2 - 80	ns	
$\overline{RD} \uparrow \to data \; hold \; time$	t RHDX	AD15 to AD00	_	0	_	ns	
$\overline{RD} \uparrow \to ALE \uparrow time$	trhlh	RD, ALE	_	tcp/2 - 15	_	ns	
$\overline{\text{RD}} \uparrow \rightarrow \text{address invalid time}$	t RHAX	RD, A19 to A16	_	tcp/2 - 10	_	ns	
Valid address → CLK ↑ time	tavch	CLK, A19 to A16	_	tcp/2 - 20	_	ns	
RD ↓ → CLK ↑ time	t RLCH	RD, CLK	_	tcp/2 - 20	_	ns	

Note: tcp is the internal operating clock cycle time (unit: ns).

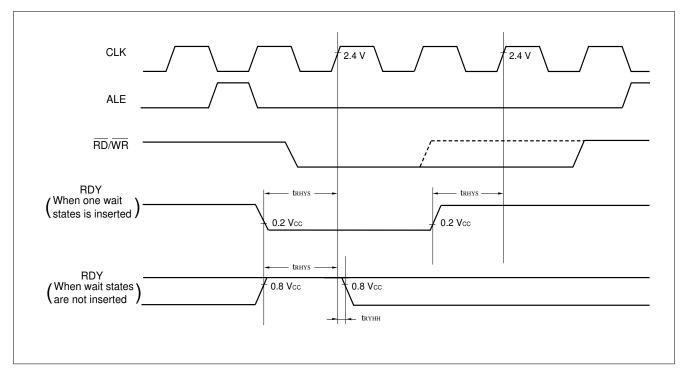


(7) Bus Write Timing

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Val	ue	Unit	Remarks
Farameter	Symbol Fill hame		Condition	Min.	Max.	Oilit	nemarks
Valid address $\rightarrow \overline{WR} \downarrow$ time	tavwl	A19 to A00	_	tcp — 15	_	ns	
WR pulse width	twLwH	WR	_	3 tcp/2 - 20	_	ns	
Write data $\rightarrow \overline{\text{WR}} \uparrow \text{time}$	t DVWH	AD15 to AD00	_	3 tcp/2 - 20	_	ns	
$\overline{WR} \uparrow \to Data \; hold \; time$	twhox	AD15 to AD00	$Vcc = +5.0 V \pm 10\%$	20	_	ns	
Wit 1 → Data Hold time	LWHDX	AD 13 to AD00	$Vcc = +3.0 \text{ V} \pm 10\%$	30	_	ns	
$\overline{\text{WR}} \uparrow \rightarrow \text{Address invalid}$ time	twhax	A19 to A00	_	tcp/2 - 10	_	ns	
$\overline{WR} \uparrow \to ALE \uparrow time$	twhlh	WRL, WRH, ALE	_	tcp/2 - 15	_	ns	
$\overline{WR} \uparrow \to CLK \uparrow time$	twlch	WRL, WRH, CLK	_	tcp/2 - 20	_	ns	

Note: tcp is the internal operating clock cycle time (unit: ns).

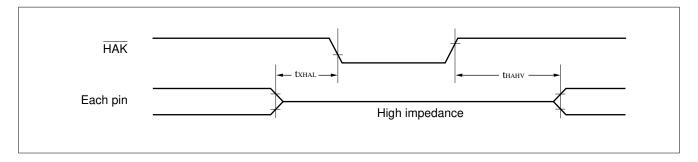


(8) Ready Input Timing

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, Vss = 0.0 \text{ V}, Ta = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name Condition		Va	lue	Unit	Remarks
Parameter	Syllibol	riii iiaiiie	Condition	Min.	Max.	Unit	nemarks
RDY setup time	tryuo	RDY	$Vcc = +5.0 V \pm 10\%$	45	_	ns	
RDY setup time tryns	LHYHS	וטח	Vcc = +3.0 V ±10%	70	_	ns	
RDY hold time	tпунн	RDY	_	0	_	ns	

Note: If the setup time during the fall of RDY is insufficient, use sthe auto ready function.

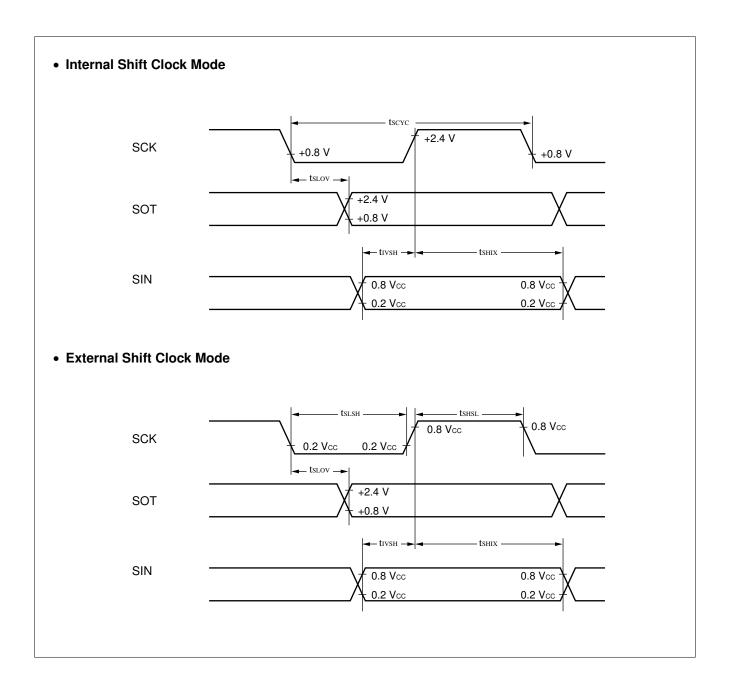


(9) Hold Timing

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ Ta} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol Pin name		Condition	Va	lue	Unit	Remarks
Parameter	Syllibol	Min.		Max.	Oilit	Hemarks	
Pin floating $\rightarrow \overline{\text{HAK}} \downarrow \text{time}$	t xhal	HAK	_	30	t cp	ns	
$\overline{HAK} \uparrow \to Pin \ valid \ time$	thahv	HAK		t CP	2 tcp	ns	

Note: At least one cycle is required from the time when HRQ is fetched until HAK changes.

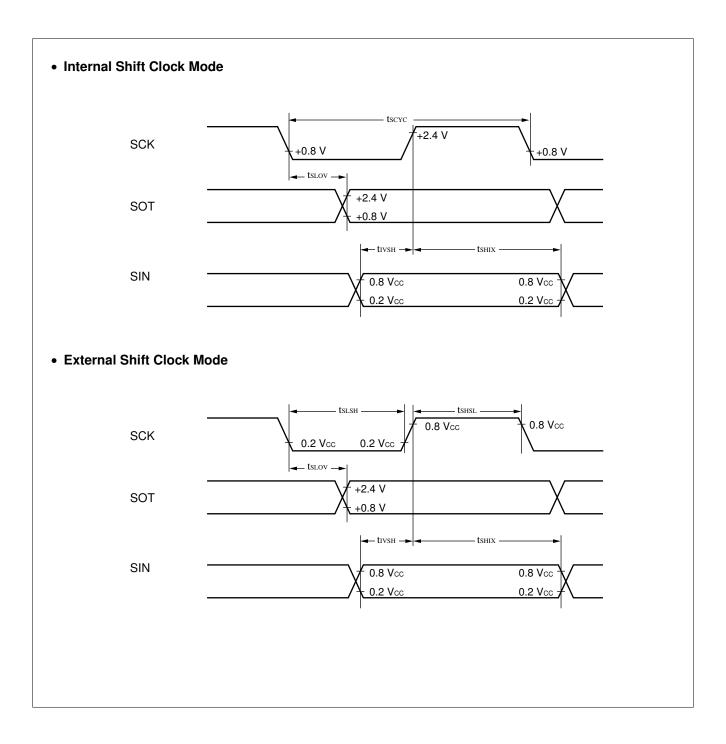

(10) UARTO Timing

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Davamatak	Symbol	Din nome	Condition	Va	lue	Unit	Remarks	
Parameter	Symbol	Pin name	Condition	Min.	Max.	Ullit	nemarks	
Serial clock cycle time	tscyc	_	_	8 tcp	_	ns		
$SCK \downarrow \to SOT delay$	tsLov		$V_{CC} = +5.0 \text{ V} \pm 10\%$	-80	80	ns	For internal shift	
time	islov	_	$Vcc = +3.0 V \pm 10\%$	-120	120	ns	clock mode,	
Valid SIN → SCK ↑	tıvsh		$V_{CC} = +5.0 \text{ V} \pm 10\%$	100	_	ns	output pin, C∟ = 80 pF	
Valid SIN → SCK	LIVSH	_	Vcc = +3.0 V ±10%	200	_	ns	+ 1 TTL	
$\begin{array}{c} SCK \uparrow \to Valid \\ SIN \; hold \; time \end{array}$	t sнıx	_	_	t cp	_	ns	-	
Serial clock "H" pulse width	t shsl	_	_	4 tcp	_	ns		
Serial clock "L" pulse width	t slsh	_	_	4 tcp	_	ns	For outomod abit	
$SCK \downarrow \rightarrow SOT delay$	tsLov		Vcc = +5.0 V ±10%	_	150	ns	For external shift clock mode,	
time	ISLOV	_	Vcc = +3.0 V ±10%		200	ns	output pin, C∟ = 80 pF	
Valid SIN → SCK ↑	t		$V_{CC} = +5.0 \text{ V} \pm 10\%$	60	_	ns	+ 1 TTL	
Valid SIN → SCK 1	t ivsH	_	Vcc = +3.0 V ±10%	120	_	ns		
SCK ↑ → Valid SIN	tsніх		Vcc = +5.0 V ±10%	60	_	ns		
hold time	rohix		Vcc = +3.0 V ±10%	120	_	ns		

Notes: • These are the AC characteristics for CLK synchronous mode.

- C_L is the load capacitance added to pins during testing.
- tcp is the internal operating clock cycle time (unit: ns).

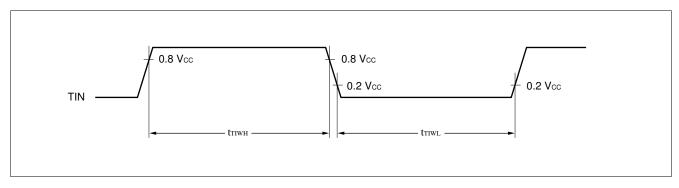

(11) UART1 Timing

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Davamatak	Symbol	Din nome	Condition	Va	lue	Unit	Remarks	
Parameter	Symbol	Pin name	Condition	Min.	Max.	Ullit	nemarks	
Serial clock cycle time	tscyc	_	_	8 tcp	_	ns		
$SCK \downarrow \to SOT$ delay	tsLov		$Vcc = +5.0 V \pm 10\%$	-80	80	ns	For internal shift	
time	islov	_	$Vcc = +3.0 V \pm 10\%$	-120	120	ns	clock mode,	
Valid SIN → SCK ↑	tıvsh		$Vcc = +5.0 V \pm 10\%$	100	_	ns	output pin, C∟ = 80 pF	
Valid SIN -> SON 1	LIVSH	_	$Vcc = +3.0 \text{ V} \pm 10\%$	200	_	ns	+ 1 TTL	
$\begin{array}{c} SCK \uparrow \to Valid \\ SIN \; hold \; time \end{array}$	tsнıх	_	_	t cp	_	ns		
Serial clock "H" pulse width	t sHSL	_	_	4 tcp	_	ns		
Serial clock "L" pulse width	t slsh	_	_	4 tcp	_	ns	Farrantamal alaife	
$SCK \downarrow \to SOT delay$	tsLov		$Vcc = +5.0 \text{ V} \pm 10\%$		150	ns	For external shift clock mode,	
time delay time	ISLOV	_	$Vcc = +3.0 \text{ V} \pm 10\%$	_	200	ns	output pin, C∟ = 80 pF	
Valid SIN → SCK ↑	tıvsh		$Vcc = +5.0 \text{ V} \pm 10\%$	60	_	ns	+ 1 TTL	
Valid SIN → SON 1	LIVSH	_	$Vcc = +3.0 \text{ V} \pm 10\%$	120	_	ns		
SCK ↑ → Valid SIN	tsнıx		$Vcc = +5.0 \text{ V} \pm 10\%$	60	_	ns		
hold time	ISHIX		$Vcc = +3.0 \text{ V} \pm 10\%$	120	_	ns		

Notes: • These are the AC characteristics for CLK synchronous mode.

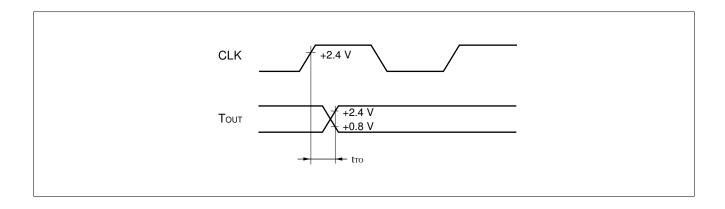
- C_L is the load capacitance added to pins during testing.
- tcp is the internal operating clock cycle time (unit: ns).



(12) Timer Input Timing

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

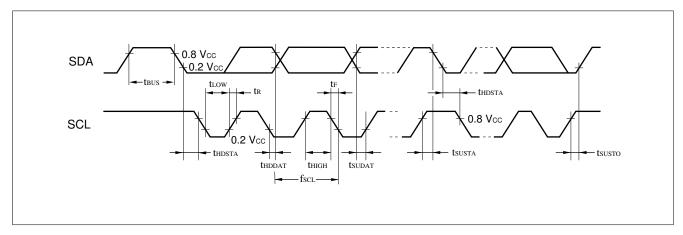
Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Parameter	Symbol Fill hame		Condition	Min.	Max.	Offic	nemarks
Input pulse width	tтıwн tтıwL	TIN0 to TIN1	_	4 tcp	_	ns	


Note: tcp is the internal operating clock cycle time (unit: ns).

(13) Timer Output Timing

 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks	
Parameter	Syllibol	Pili lialile	Condition	Min.	Max.	Oilit	nemarks	
CLK ↑ → Touт change time	tто	TOT0 to TOT1	$Vcc = +5.0 V \pm 10\%$	30	_	ns		
	110	101010101011	$V_{CC} = +3.0 \text{ V} \pm 10\%$	80	_	ns		



(14) I²C Timing

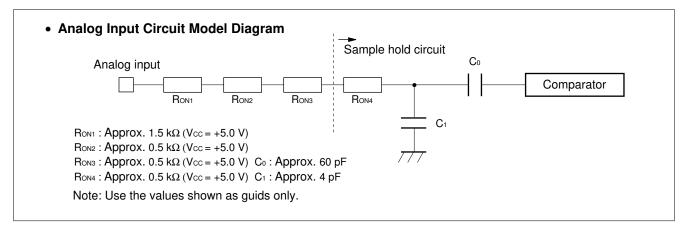
 $(Vcc = +2.7 \text{ V to } +5.5 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ TA} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin name	Condition	Va	lue	Unit	Remarks
Farameter	Symbol	Fili Ilaille	Condition	Min.	Max.	Oilit	nemarks
SCL clock frequency	fscL	_	_	0	100	kHz	
Bus free time between stop and start conditions	tвus	_	_	4.7	_	μs	
Hold time (re-send) start	t hdsta	_	_	4.0	_	μs	The first clock pulse is generated after this period.
SCL clock L state hold time	tLOW	_		4.7		μs	
SCL clock H state hold time	tнісн	_		4.0		μs	
Re-send start condition setup time	t susta	_	_	4.7	_	μs	
Data hold time	thddat	_	_	0	_	μs	
Data setup time	t SUDAT	_	_	250	_	ns	
SDA and SCL signal rising time	tr	_	_	_	1000	ns	
SDA and SCL signal falling time	tF	_	_	_	300	ns	
Stop condition setup time	tsusто	_	_	4.0	_	μs	

Note: The I²C is provided only in the MB90675 series.

5. A/D Converter Electrical Characteristics

 $(AVcc = Vcc = +2.7 \text{ V to } +5.5 \text{ V}, AVss = Vss = 0.0 \text{ V}, +2.7 \text{ V} \le AVRH - AVRL, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$


Parameter	Cymbol	Symbol Pin name Value						
Parameter	Syllibol	Pili lialile	Min.	Тур.	Max.	Unit		
Resolution	_	_	_	10	10	bit		
Total error	_	_	_	_	±3.0	LSB		
Linearity error	_	_	_	_	±2.0	LSB		
Differential linearity error	_	_	_	_	±1.5	LSB		
Zero transition voltage	V от	AN0 to AN7	AVRL – 1.5	AVRL + 0.5	AVRL + 2.5	LSB		
Full-scale transition voltage	VFST	AN0 to AN7	AVRH – 4.5	AVRH – 1.5	AVRH + 0.5	LSB		
Conversion time			6.125*1	_	_	μs		
Conversion time	_	_	12.25*2	_	_	μs		
Analog port input current	Iain	AN0 to AN7	_	0.1	10	μΑ		
Analog input voltage	Vain	AN0 to AN7	AVRL	_	AVRH	V		
Deference voltage	_	AVRH	AVRL + 2.7	_	AVcc	V		
Reference voltage	_	AVRL	0	_	AVRH – 2.7	V		
Dower cumply current	la	AVcc	_	3	_	mA		
Power supply current	Іан	AVcc	_	_	5* ³	μΑ		
Defended veltere aventy avent	IR	AVRH	_	200	_	μΑ		
Reference voltage supply current	IRH	AVRH	_	_	5* ³	μΑ		
Interchannel disparity	_	AN0 to AN7	_	_	4	LSB		

- *1: When $V_{CC} = +5.0 \text{ V} \pm 10\%$, and the machine clock is 16 MHz
- *2: When $Vcc = +3.0 \text{ V} \pm 10\%$, and the machine clock is 8 MHz
- *3: Current when the A/D converter is not operating and the CPU is stopped (when Vcc = AVcc = AVRH = +5.0 V)

Notes: • The smaller | AVRH - AVRL |, the greater the error would become relatively.

• The output impedance of the external circuit for the analog input must satisfy the following conditions: The output impedance of the external circuit should be less than approximately 7 k Ω . When using an external capacitor, it is recommended to have several thousand times the capacitance of the internal capacitor as a guid, if one takes into consideration the effect of the divided capacitance between the external capacitor and the internal capacitor.

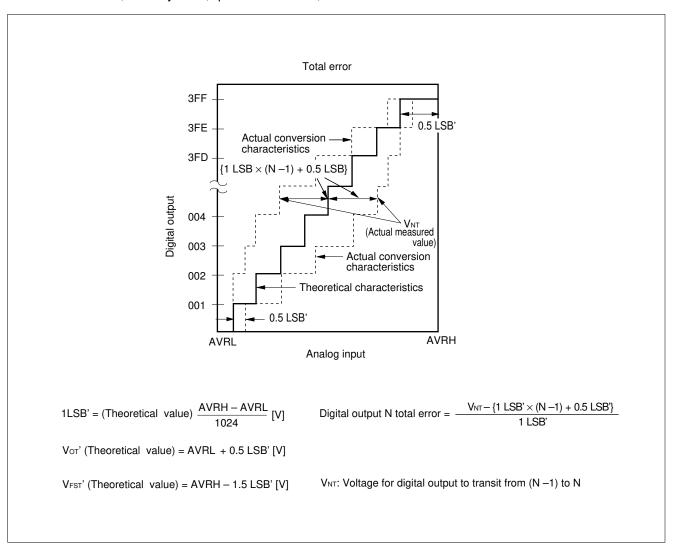
If the output impedance of the external circuit is too high, an analog voltage sampling time might be insufficient (sampling time = $3.75 \mu s$ @ at a machine clock of 16 MHz).

6. A/D Converter Glossary

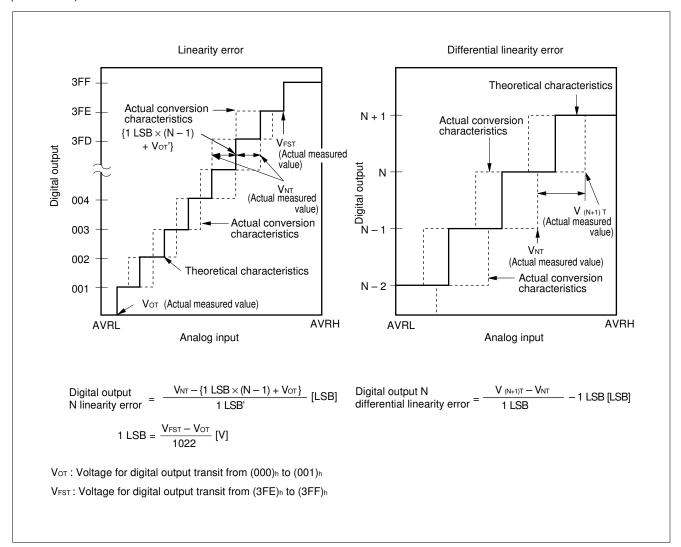
Resolution

Analog changes that are identifiable with the A/D converter.

Linearity error

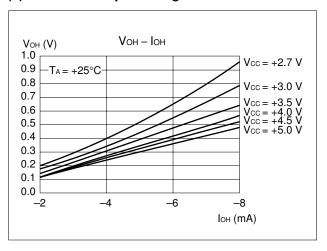

The deviation of the straight line connecting the zero transition point ("00 0000 0000" \leftrightarrow "00 0000 0001") with the full-scale transition point ("11 1111 1110" \leftrightarrow "11 1111 1111") from actual conversion characteristics

Differential linearity error

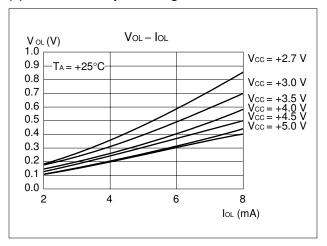

The deviation of input voltage needed to change the output code by 1 LSB from the theoretical value

Total error

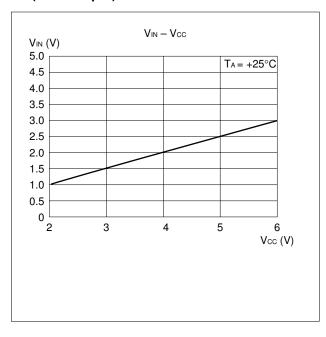
The difference between theoretical and actual conversion values caused by the zero transition error, full-scale transition error, linearity error, quantization error, and noise

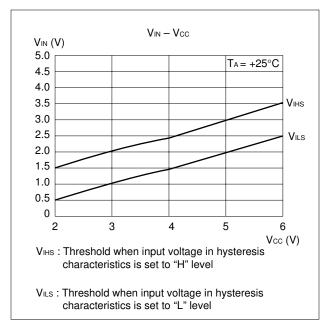


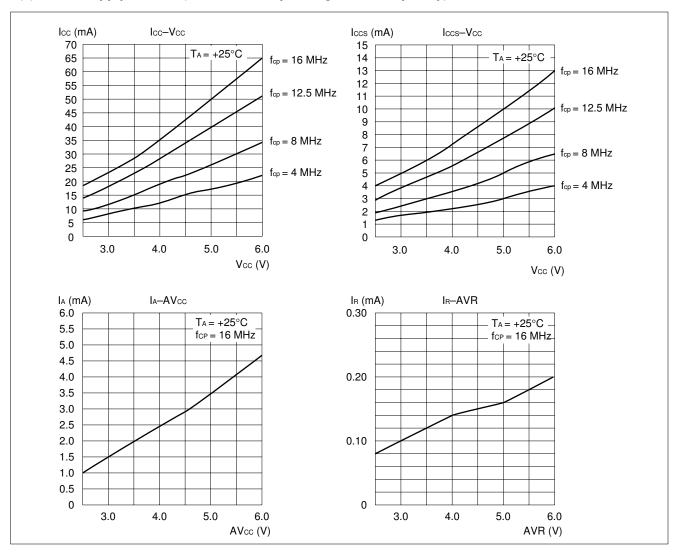
(Continued)

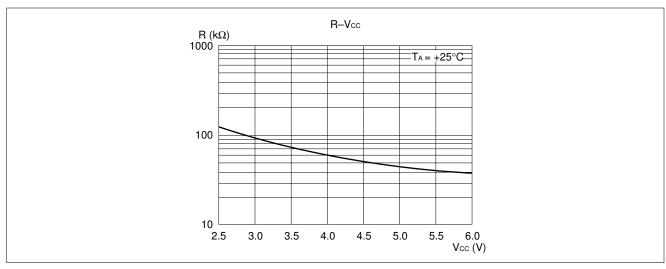


■ EXAMPLE CHARACTERISTICS


(1) "H" Level Output Voltage


(2) "L" Level Output Voltage


(CMOS Input)


(3) "H" Level Input Voltage/"L" Level Input Voltage (4) "H" Level Input Voltage/"L" Level Input Voltage (Hysteresis Input)

(5) Power Supply Current (fcp = Internal Operating Clock Frequency)

(6) Pull-up Resistance

■ INSTRUCTIONS (340 INSTRUCTIONS)

Table 1 Explanation of Items in Tables of Instructions

Item	Meaning
Mnemonic	Upper-case letters and symbols: Represented as they appear in assembler. Lower-case letters: Replaced when described in assembler. Numbers after lower-case letters: Indicate the bit width within the instruction.
#	Indicates the number of bytes.
~	Indicates the number of cycles. m: When branching n: When not branching See Table 4 for details about meanings of other letters in items.
RG	Indicates the number of accesses to the register during execution of the instruction. It is used calculate a correction value for intermittent operation of CPU.
В	Indicates the correction value for calculating the number of actual cycles during execution of the instruction. (Table 5) The number of actual cycles during execution of the instruction is the correction value summed with the value in the "~" column.
Operation	Indicates the operation of instruction.
LH	Indicates special operations involving the upper 8 bits of the lower 16 bits of the accumulator. Z: Transfers "0". X: Extends with a sign before transferring. -: Transfers nothing.
АН	Indicates special operations involving the upper 16 bits in the accumulator. * : Transfers from AL to AH. - : No transfer. Z : Transfers 00H to AH. X : Transfers 00H or FFH to AH by signing and extending AL.
I	Indicates the status of each of the following flags: I (interrupt enable), S (stack), T (sticky bit),
S	N (negative), Z (zero), V (overflow), and C (carry). * : Changes due to execution of instruction.
Т	- : No change.
N	S: Set by execution of instruction. R: Reset by execution of instruction.
Z	
V	
С	
RMW	Indicates whether the instruction is a read-modify-write instruction. (a single instruction that reads data from memory, etc., processes the data, and then writes the result to memory.) * : Instruction is a read-modify-write instruction. - : Instruction is not a read-modify-write instruction. Note: A read-modify-write instruction cannot be used on addresses that have different meanings depending on whether they are read or written.

 Table 2
 Explanation of Symbols in Tables of Instructions

Symbol	Meaning
A	32-bit accumulator The bit length varies according to the instruction. Byte: Lower 8 bits of AL Word: 16 bits of AL Long: 32 bits of AL:AH
AH AL	Upper 16 bits of A Lower 16 bits of A
SP	Stack pointer (USP or SSP)
PC	Program counter
PCB	Program bank register
DTB	Data bank register
ADB	Additional data bank register
SSB	System stack bank register
USB	User stack bank register
SPB	Current stack bank register (SSB or USB)
DPR	Direct page register
brg1	DTB, ADB, SSB, USB, DPR, PCB, SPB
brg2	DTB, ADB, SSB, USB, DPR, SPB
Ri	R0, R1, R2, R3, R4, R5, R6, R7
RWi	RW0, RW1, RW2, RW3, RW4, RW5, RW6, RW7
RWj	RW0, RW1, RW2, RW3
RLi	RL0, RL1, RL2, RL3
dir	Compact direct addressing
addr16 addr24 ad24 0 to 15 ad24 16 to 23	Direct addressing Physical direct addressing Bit 0 to bit 15 of addr24 Bit 16 to bit 23 of addr24
io	I/O area (000000н to 0000FFн)
imm4 imm8 imm16 imm32 ext (imm8)	4-bit immediate data 8-bit immediate data 16-bit immediate data 32-bit immediate data 16-bit data signed and extended from 8-bit immediate data
disp8 disp16	8-bit displacement 16-bit displacement
bp	Bit offset
vct4 vct8	Vector number (0 to 15) Vector number (0 to 255)
()b	Bit address

(Continued)

(Continued)

Symbol	Meaning
rel	Branch specification relative to PC
ear eam	Effective addressing (codes 00 to 07) Effective addressing (codes 08 to 1F)
rlst	Register list

Table 3 Effective Address Fields

Code	N	otation	1	Address format	Number of bytes in address extension *
00 01 02 03 04 05 06 07	R0 R1 R2 R3 R4 R5 R6 R7	RW0 RW1 RW2 RW3 RW4 RW5 RW6 RW7	RL0 (RL0) RL1 (RL1) RL2 (RL2) RL3 (RL3)	Register direct "ea" corresponds to byte, word, and long-word types, starting from the left	
08 09 0A 0B	@RW @RW @RW @RW	V1 V2		Register indirect	0
0C 0D 0E 0F	@RW @RW @RW @RW	V1 + V2 +		Register indirect with post-increment	0
10 11 12 13 14 15 16 17	@RW @RW @RW @RW @RW	V0 + dis V1 + dis V2 + dis V3 + dis V4 + dis V5 + dis V6 + dis	p8 p8 p8 p8 p8 p8 p8	Register indirect with 8-bit displacement	1
18 19 1A 1B	@RW0 + disp16 @RW1 + disp16 @RW2 + disp16 @RW3 + disp16			Register indirect with 16-bit displacement	2
1C 1D 1E 1F	@RW	V0 + RW V1 + RW 5 + disp1 I6	V 7	Register indirect with index Register indirect with index PC indirect with 16-bit displacement Direct address	0 0 2 2

Note: The number of bytes in the address extension is indicated by the "+" symbol in the "#" (number of bytes) column in the tables of instructions.

Table 4 Number of Execution Cycles for Each Type of Addressing

		(a)	Number of register
Code	Operand	Number of execution cycles for each type of addressing	accesses for each type of addressing
00 to 07	Ri RWi RLi	Listed in tables of instructions	Listed in tables of instructions
08 to 0B	@RWj	2	1
0C to 0F	@RWj +	4	2
10 to 17	@RWi + disp8	2	1
18 to 1B	@RWj + disp16	2	1
1C 1D 1E 1F	@RW0 + RW7 @RW1 + RW7 @PC + disp16 addr16	4 4 2 1	2 2 0 0

Note: "(a)" is used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

Table 5 Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles

	(b) l	byte	(c) v	vord	(d) I	ong
Operand	Number of cycles	Number of access	Number of cycles	Number of access	Number of cycles	Number of access
Internal register	+0	1	+0	1	+0	2
Internal memory even address Internal memory odd address	+0 +0	1 1	+0 +2	1 2	+0 +4	2 4
Even address on external data bus (16 bits) Odd address on external data bus (16 bits)	+1 +1	1 1	+1 +4	1 2	+2 +8	2 4
External data bus (8 bits)	+1	1	+4	2	+8	4

Notes: • "(b)", "(c)", and "(d)" are used in the "~" (number of states) column and column B (correction value) in the tables of instructions.

• When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

Table 6 Correction Values for Number of Cycles Used to Calculate Number of Program Fetch Cycles

Instruction	Byte boundary	Word boundary
Internal memory	_	+2
External data bus (16 bits)	_	+3
External data bus (8 bits)	+3	_

Notes: • When the external data bus is used, it is necessary to add in the number of wait cycles used for ready input and automatic ready.

• Because instruction execution is not slowed down by all program fetches in actuality, these correction values should be used for "worst case" calculations.

Table 7 Transfer Instructions (Byte) [41 Instructions]

N	Inemonic	#	~	RG	В	Operation	LH	AH	ı	S	Т	N	Z	٧	С	RMW
MOV	A, dir	2	3	0	(b)	byte (A) ← (dir)	Z	*	_	_	_	*	*	_	_	_
MOV	A, addr16	3	4	0	(b)	byte (A) \leftarrow (addr16)	Z	*	_	_	—	*	*		_	-
MOV	A, Ri	1	2	1	O O	byte (A) ← (Ri)	Ζ	*	_	_	_	*	*	_	_	_
MOV	A, ear	2	2	1	0	byte (A) ← (ear)	Z	*	_	_	_	*	*	_	_	_
MOV	A, eam	2+	3+ (a)	0	(b)	byte (A) ← (eam)	Z	*	_	_	_	*	*	_	_	_
MOV	A, io	2	3 ′	0	(b)	byte $(A) \leftarrow (io)$	Z	*	_	_	_	*	*	_	_	_
MOV	A, #imm8	2	2	0	\o´	byte (A) ← imm8	Z	*	_	_	_	*	*	_	_	_
MOV	A, @A	2	3	Ō	(b)	byte $(A) \leftarrow ((A))$	Z	_	_	_	_	*	*	_	_	_
MOV	A, @RLi+disp8	3	10	2	(b)	byte (A) \leftarrow ((RLi)+disp8)	7	*	_	_	_	*	*	_	_	_
MOVN	A, #imm4	1	1	0	0	byte (A) \leftarrow imm4	Z Z	*	_	_	_	R	*	_	_	_
		_		_			.,									
MOVX		2	3	0	(b)	byte (A) \leftarrow (dir)	X	*	_	_	_	*	*	-	_	-
	A, addr16	3	4	0	(b)	byte (A) ← (addr16)	Χ	*	_	_	-	*	*	-	_	-
MOVX	A, Ri	2	2	1	0	byte (A) \leftarrow (Ri)	Х	*	_	_	-	*	*	-	_	-
	A, ear	2	2	1	0	byte (A) \leftarrow (ear)	Х	*	_	_	-	*	*	-	_	-
	A, eam	2+	3+ (a)	0	(b)	byte (A) \leftarrow (eam)	Х	*	_	_	-	*	*		_	-
MOVX	A, io	2	3	0	(b)	byte (A) \leftarrow (io)	Х	*	_	_	_	*	*		_	_
MOVX	A, #imm8	2	2	0	0	byte (A) ← imm8	Х	*	_	_	—	*	*		_	-
MOVX	A, @A	2	3	0	(b)	byte $(A) \leftarrow ((A))$	Х	_ *	_	_	_	*	*		_	-
MOVX	A,@RWi+disp8	2	5	1	(b)	byte $(A) \leftarrow ((RWi) + disp8)$	Х	*	_	_	_	*	*	_	_	_
MOVX	A, @RLi+disp8	3	10	2	(b)	byte $(A) \leftarrow ((RLi) + disp8)$	Х	*	_	_	_	*	*	_	_	_
MOV	dir, A	2	3	0	(b)	byte (dir) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
MOV	addr16, A	3	4	0	(b)	byte (and \leftarrow (A) byte (addr16) \leftarrow (A)		_		_		*	*		_	
MOV	Ri, A	1	2	1			-		_	_	-	*	*	_	_	_
MOV		2	2	1	0	byte (Ri) \leftarrow (A)	_	_	_	_	_	*	*	_	_	_
	ear, A	l		l .		byte (ear) \leftarrow (A)	_	-	_	_	_	*	*	_	_	_
MOV	eam, A	2+	3+ (a)	0	(b)	byte (eam) \leftarrow (A)	-	-	_	_	_	*	*	-	_	_
MOV	io, A	2	3	0	(b)	byte (io) \leftarrow (A)	-	-	_	_	_	*	*	_	_	_
MOV	@RLi+disp8, A	3	10	2	(b)	byte ((RLi) +disp8) \leftarrow (A)	-	-	_	_	_	*	*	-	_	_
MOV	Ri, ear	2	3	2	0	byte (Ri) ← (ear)	-	-	_	_	-	*	*	-	_	_
MOV	Ri, eam	2+	4+ (a)	1	(b)	byte (Ri) ← (eam)	-	-	_	_	-	*	*	-	_	_
MOV	ear, Ri	2	4	2	0	byte (ear) ← (Ri)	-	-	_	_	_			-	_	-
MOV	eam, Ri	2+	5 + (a)	1	(b)	byte (eam) \leftarrow (Ri)	-	-	_	_	-	*	*	-	_	-
MOV	Ri, #imm8	2	2	1	0	byte (Ri) ← imm8	-	-	_	-	-	*	*	-	_	-
MOV	io, #imm8	3	5	0	(b)	byte (io) ← imm8	-	-	_	_	_	-	-	-	_	_
MOV	dir, #imm8	3	5	0	(b)	byte (dir) ← imm8	-	-	_	_	-	-	-	-	_	-
MOV	ear, #imm8	3	2	1	0	byte (ear) ← imm8	-	-	_	-	-	*	*	-	_	-
MOV	eam, #imm8	3+	4+ (a)	0	(b)	byte (eam) ← imm8	-	-	_	_	-	-	-		_	-
MOV	@AL, AH	2	3	0	(b)	byte $((A)) \leftarrow (AH)$	-	-	_	—	-	*	*	-	_	-
/MOV	@A, T															
XCH	A, ear	2	4	2	0	byte (A) \leftrightarrow (ear)	7	_	_	_	_	_	_	_	_	_
XCH	A, eam	2+	5+ (a)	0		byte (A) \leftrightarrow (eam)	Z Z	_	_	_	_	_	_	_	_	_
XCH	Ri, ear	2	7	4	0	byte (Ri) \leftrightarrow (ear)	_	_	_	_	_	_	_	_	_	_
XCH	Ri, eam	2+	9+ (a)	2	_	byte (Ri) \leftrightarrow (ean)	_	_	_	_	_		_	_	_	<u> </u>
	ııı, c aiii	4	3+ (a)	~	(U) ^2	byte (111) \(\to (call)	-	-	_	_	-	-	_		_	ı – I

Table 8 Transfer Instructions (Word/Long Word) [38 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	ı	S	Т	N	Z	٧	С	RMW
MOVW A, dir MOVW A, addr16 MOVW A, SP MOVW A, RWi MOVW A, ear MOVW A, io MOVW A, io MOVW A, @A MOVW A, #imm16 MOVW A, @RWi+disp8 MOVW A, @RLi+disp8	2 3 1 1 2 2+ 2 2 3 2 3	3 4 1 2 2 3+(a) 3 3 2 5	0 0 0 1 1 0 0 0 0	(c) (c) 0 0 (c) (c) (c) (c) (c)	$\begin{array}{l} \text{word (A)} \leftarrow (\text{dir}) \\ \text{word (A)} \leftarrow (\text{addr16}) \\ \text{word (A)} \leftarrow (\text{SP}) \\ \text{word (A)} \leftarrow (\text{RWi}) \\ \text{word (A)} \leftarrow (\text{ear}) \\ \text{word (A)} \leftarrow (\text{eam}) \\ \text{word (A)} \leftarrow (\text{io}) \\ \text{word (A)} \leftarrow (\text{(A)}) \\ \text{word (A)} \leftarrow (\text{imm16}) \\ \text{word (A)} \leftarrow (\text{(RWi)} + \text{disp8}) \\ \text{word (A)} \leftarrow ((\text{RLi}) + \text{disp8}) \end{array}$		* * * * * * * * * *				* * * * * * * * *	* * * * * * * * *			
MOVW dir, A MOVW addr16, A MOVW SP, A MOVW RWi, A MOVW ear, A MOVW io, A MOVW @RWi+disp8, A MOVW @RLi+disp8, A MOVW RWi, ear MOVW RWi, ear MOVW RWi, eam MOVW ear, RWi MOVW ear, RWi MOVW RWi, #imm16 MOVW io, #imm16 MOVW ear, #imm16 MOVW ear, #imm16	2 3 1 1 2 2+ 2 2 3 2 2+ 2 2+ 3 4 4 4+	3 4 1 2 2 3+(a) 3 5 10 3 4+(a) 4 5+(a) 2 5 2 4+(a)	0 0 0 1 1 0 0 1 2 2 1 1 0 0 1 0		word (dir) \leftarrow (A) word (addr16) \leftarrow (A) word (SP) \leftarrow (A) word (RWi) \leftarrow (A) word (ear) \leftarrow (A) word (eam) \leftarrow (A) word (io) \leftarrow (A) word ((RWi) +disp8) \leftarrow (A) word ((RLi) +disp8) \leftarrow (A) word (RWi) \leftarrow (ear) word (RWi) \leftarrow (ear) word (ear) \leftarrow (RWi) word (eam) \leftarrow (RWi) word (RWi) \leftarrow imm16 word (io) \leftarrow imm16 word (ear) \leftarrow imm16 word (eam) \leftarrow imm16						* * * * * * * * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *			
MOVW AL, AH /MOVW @A, T XCHW A, ear XCHW A, eam XCHW RWi, ear XCHW RWi, eam	2 2+ 2 2+ 2+	3 4 5+ (a) 7 9+ (a)	0 2 0 4 2	(c) 0 2×(c) 0	word ((A)) \leftarrow (AH) word (A) \leftrightarrow (ear) word (A) \leftrightarrow (eam) word (RWi) \leftrightarrow (ear) word (RWi) \leftrightarrow (eam)	_ _ _ _			_ _ _ _	_ _ _ _	*	*	1 111	_ _ _ _	- - - -
MOVL A, ear MOVL A, eam MOVL A, #imm32 MOVL ear, A MOVL eam, A	2 2+ 5 2 2+	4 5+ (a) 3 4 5+ (a)	2 0 0 2 0	0 (d) 0 0 (d)	$long (A) \leftarrow (ear)$ $long (A) \leftarrow (ear)$ $long (A) \leftarrow (eam)$ $long (A) \leftarrow imm32$ $long (ear) \leftarrow (A)$ $long (eam) \leftarrow (A)$	_ _ _ _			_ _ _ _		* * * *	* * * * *			- - - -

Table 9 Addition and Subtraction Instructions (Byte/Word/Long Word) [42 Instructions]

Mnei	monic	#	~	RG	В	Operation	LH	АН	I	S	T	N	Z	٧	С	RMW
ADD	A,#imm8	2	2	0	0	byte (A) \leftarrow (A) +imm8	Z	_	_	_	_	*	*	*	*	_
ADD	A, dir	2	5	0	(b)	byte $(A) \leftarrow (A) + (dir)$	Z	-	_	_	_	*	*	*	*	_
ADD	A, ear	2	3	1	0	byte (A) \leftarrow (A) $+$ (ear)	Z	-	-	_	_	*	*	*	*	_
ADD	A, eam	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) $+$ (eam)	Z	-	-	_	_	*	*	*	*	_
ADD	ear, A	2	_ 3	2	0	byte (ear) \leftarrow (ear) + (A)	_	-	-	_	_	*	*	*	*	_ *
ADD	eam, A	2+	5+ (a)	0	2× (b)	byte (eam) \leftarrow (eam) + (A)	Z	-	-	_	_	*	*	*	*	
ADDC	Α	1	2	0	0	byte (A) \leftarrow (AH) + (AL) + (C)	Z	-	-	_	_	*	*	*	*	_
ADDC	A, ear	2	3	1	0	byte (A) \leftarrow (A) + (ear) + (C)	Z	-	-	_	_	*	*	*	*	_
ADDC	A, eam	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) + (eam) + (C)	Z Z	-	-	-	_	*	*	*	*	_
ADDDC SUB	A, #imm8	1	3	0	0	byte (A) \leftarrow (AH) + (AL) + (C) (decimal)	Z	_	_	_	_	*	*	*	*	_
SUB	,	2 2	2 5	-	(b)	byte (A) \leftarrow (A) -imm8	Z				_	*	*	*	*	
SUB	A, dir A, ear	2	3	0	(b) 0	byte (A) \leftarrow (A) – (dir) byte (A) \leftarrow (A) – (ear)	Z	_	_	_	_	*	*	*	*	_
SUB	A, ean	2+	4+ (a)	0	(b)	byte (A) \leftarrow (A) – (ean)	Z	_	_	_		*	*	*	*	_
SUB	ear, A	2	3	2	0	byte (A) \leftarrow (A) $-$ (earl) byte (ear) \leftarrow (ear) $-$ (A)	_	_	_			*	*	*	*	_
SUB	eam, A	2+	5+ (a)	0	2× (b)	byte (ean) \leftarrow (ean) – (A)	_		_			*	*	*	*	*
SUBC	A A	1	2 · (α)	ő	0	byte (A) \leftarrow (AH) – (AL) – (C)	Z	_	_	_	_	*	*	*	*	_
SUBC	A, ear	2	3	1	ő	byte (A) \leftarrow (A) – (ear) – (C)	Z	_	_	_	_	*	*	*	*	_
SUBC	A, eam	2+	4+ (a)	Ö	(b)	byte (A) \leftarrow (A) $-$ (ear) $-$ (C)	Z	_	_	_	_	*	*	*	*	_
SUBDC		1	3	Ö	0	byte (A) \leftarrow (AH) $-$ (AL) $-$ (C) (decimal)	Ž	-	-	_	_	*	*	*	*	_
ADDW	Α	1	2	0	0	word (A) \leftarrow (AH) + (AL)	_	_	_	_	_	*	*	*	*	_
	A, ear	2	3	1	0	word $(A) \leftarrow (A) + (ear)$	-	-	-	_	_	*	*	*	*	_
	A, eam	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) $+$ (eam)	-	-	-	_	_	*	*	*	*	_
ADDW	A, #imm16	3	2	0	0	word (A) \leftarrow (A) +imm16	-	-	-	_	_	*	*	*	*	_
ADDW	ear, A	2	3	2	0 ,	word (ear) \leftarrow (ear) + (A)	_	-	-	_	_	*	*	*	*	_ *
	eam, A	2+	5+ (a)	0	2× (c)	word (eam) \leftarrow (eam) + (A)	-	-	-	_	_	*	*	*	*	
ADDCW		2	3	1	0	word (A) \leftarrow (A) + (ear) + (C)	-	-	-	_	_	*	*	*	*	_
ADDCW	· ·	2+	4+ (a)	0	(c)	word (A) \leftarrow (A) + (eam) + (C)	_	-	-	_	_	*	*	*	*	_
SUBW	Α	1	2	0	0	word $(A) \leftarrow (AH) - (AL)$	-	_	-	_	_	*	*	*	*	_
	A, ear	2	3	1	0	word (A) \leftarrow (A) \rightarrow (ear)	-	-	_	_	_	*	*	*	*	_
SUBW	A, eam A, #imm16	2+ 3	4+ (a) 2	0	(c)	word (A) \leftarrow (A) \rightarrow (eam)	-	_	_	_	_	*	*	*	*	_
SUBW	ear, A	2	3	2	0	word (A) \leftarrow (A) $-imm16$ word (ear) \leftarrow (ear) $-$ (A)	-		_		_	*	*	*	*	
	eam, A	2+	5+ (a)	0	2× (c)	word (ear) \leftarrow (ear) – (A) word (earn) \leftarrow (earn) – (A)	_	_	_	_		*	*	*	*	*
SUBCW		2	3+ (a)	1	0	word (A) \leftarrow (A) $-$ (ear) $-$ (C)	_	_	_	_		*	*	*	*	_
SUBCW		2+	4+ (a)	0	(c)	word (A) \leftarrow (A) $-$ (ear) $-$ (C) word (A) \leftarrow (A) $-$ (eam) $-$ (C)	_		_	_		*	*	*	*	
	-		. ,		` ′	() () ()		-	_	_		*	*	*	*	
ADDL	A, ear	2	6	2	0	$long (A) \leftarrow (A) + (ear)$	_	-	-	_	_	*	*	*	*	_
ADDL	A, eam	2+	7+ (a)	0	(d)	$long(A) \leftarrow (A) + (eam)$	_	-	-	_	_	*	*	*	*	_
ADDL	A, #imm32	5 2	4 6	0	0	$long (A) \leftarrow (A) + imm32$	-	_	-	_	_	*	*	*	*	_
SUBL SUBL	A, ear	2+		0	0 (d)	$long (A) \leftarrow (A) - (ear)$	-	-	-	_	_	*	*	*	*	_
SUBL	A, eam A, #imm32	2+ 5	7+ (a) 4	0	(a) 0	long (A) \leftarrow (A) – (eam) long (A) \leftarrow (A) –imm32	_		_	_		*	*	*	*	_
CODE	۸, #IIIIIIااا	J	4	U	U											

Table 10 Increment and Decrement Instructions (Byte/Word/Long Word) [12 Instructions]

Mr	nemonic	#	~	RG	В	Operation	LH	AH	ı	S	Т	N	Z	٧	С	RMW
INC INC	ear eam	2 2+	2 5+ (a)	2 0	0 2× (b)	byte (ear) ← (ear) +1 byte (eam) ← (eam) +1	_	-	_ _	_	_	*	*	*	_	*
DEC DEC	ear eam	2 2+	3 5+ (a)	2 0	0 2× (b)	byte (ear) \leftarrow (ear) -1 byte (eam) \leftarrow (eam) -1	 -	_ _	 - -	 -	 - 	*	*	*	_ _	- *
INCW	ear eam	2 2+	3 5+ (a)	2 0	0 2× (c)	word (ear) \leftarrow (ear) +1 word (eam) \leftarrow (eam) +1	_	_	_	_	_	*	*	*	_	*
DECW DECW		2 2+	3 5+ (a)	2 0	0 2× (c)	word (ear) \leftarrow (ear) -1 word (eam) \leftarrow (eam) -1	 -	_ _	 - -	 -	 - 	*	*	*	_ _	- *
INCL INCL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) ← (ear) +1 long (eam) ← (eam) +1	_		_	_	_	*	*	*		*
DECL DECL	ear eam	2 2+	7 9+ (a)	4 0	0 2× (d)	long (ear) ← (ear) -1 long (eam) ← (eam) -1	_ _	_	 - -	_ _	_ _	*	*	*	1 1	<u> </u>

Note: For an explanation of "(a)" to "(d)", refer to Table 4, "Number of Execution Cycles for Each Type of Addressing," and Table 5, "Correction Values for Number of Cycles Used to Calculate Number of Actual Cycles."

Table 11 Compare Instructions (Byte/Word/Long Word) [11 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	ı	S	T	N	Z	٧	С	RMW
CMP	Α	1	1	0	0	byte (AH) – (AL)	_	_	_	_	_	*	*	*	*	_
CMP	A, ear	2	2	1	0	byte (A) ← (ear)	-	_	_	_		*	*	*	*	-
CMP	A, eam	2+	3+ (a)	0	(b)	byte (A) ← (eam)	-	_	_	_		*	*	*	*	-
CMP	A, #imm8	2	2	0	0	byte (A) ← imm8	-	_	_	-	-	*	*	*	*	-
CMPW	Α	1	1	0	0	word (AH) – (AL)	_	_	_	_	_	*	*	*	*	_
CMPW	A, ear	2	2	1	0	word (A) ← (ear)	-	_	_	-	-	*	*	*	*	-
CMPW	A, eam	2+	3+ (a)	0	(c)	word (A) ← (eam)	-	_	_	_		*	*	*	*	-
CMPW	A, #imm16	3	2	0	0	word $(A) \leftarrow imm16$	-	_	_	-	-	*	*	*	*	-
CMPL	A, ear	2	6	2	0	word (A) ← (ear)	_	_	_	_	_	*	*	*	*	_
CMPL	A, eam	2+	7+ (a)	0	(d)	word (A) ← (eam)	-	_	_	-	-	*	*	*	*	_
CMPL	A, #imm32	5	3	0	0	word (A) ← imm32	_	_	_	_	_	*	*	*	*	_

Table 12 Multiplication and Division Instructions (Byte/Word/Long Word) [11 Instructions]

Mnem	onic	#	~	RG	В	Operation	LH	AH	ı	S	T	N	Z	٧	С	RMW
DIVU	Α	1	*1	0	0	word (AH) /byte (AL) Quotient → byte (AL) Remainder → byte (AH)	_	_	_	_	_	_	-	*	*	_
DIVU	A, ear	2	*2	1	0	word (A)/byte (ear)	_	_	_	_	_	_	_	*	*	_
DIVU	A, eam	2+	*3	0	*6	Quotient → byte (A) Remainder → byte (ear) word (A)/byte (eam)	_	_	_	_	_	_	_	*	*	_
DIVUW	A, ear	2	*4	1	0	Quotient → byte (A) Remainder → byte (eam) long (A)/word (ear)	_	_	_	_	_	_	_	*	*	_
DIVUW	A, eam	2+	*5	0	*7	Quotient → word (A) Remainder → word (ear) long (A)/word (eam) Quotient → word (A) Remainder → word (eam)	_	_	_	_	_	_	_	*	*	_
MULU	Α	1	*8	0	0	byte (AH) *byte (AL) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	_
MULU MULU	A, ear A, eam	2 2+	*9 *10	1 0	0	byte (A) *byte (ear) \rightarrow word (A) byte (A) *byte (eam) \rightarrow word (A)	_	_	_	_	_	_	_	_	_	_
		4			` '		_	_	_	_	_	_				_
MULUW MULUW	A A, ear	1 2	*11 *12	0	0	word (AH) *word (AL) \rightarrow long (A) word (A) *word (ear) \rightarrow long (A)	_	_	_	_	_	_	_	_	_	_
MULUW	A, eam	2+	*13	0	(c)	word (A) *word $(eam) \rightarrow long(A)$	_	_	_	_	_	_	_	_	_	_

^{*1: 3} when the result is zero, 7 when an overflow occurs, and 15 normally.

^{*2: 4} when the result is zero, 8 when an overflow occurs, and 16 normally.

^{*3:} 6 + (a) when the result is zero, 9 + (a) when an overflow occurs, and 19 + (a) normally.

^{*4: 4} when the result is zero, 7 when an overflow occurs, and 22 normally.

^{*5: 6 + (}a) when the result is zero, 8 + (a) when an overflow occurs, and 26 + (a) normally.

^{*6: (}b) when the result is zero or when an overflow occurs, and $2 \times (b)$ normally.

^{*7: (}c) when the result is zero or when an overflow occurs, and $2 \times$ (c) normally.

^{*8: 3} when byte (AH) is zero, and 7 when byte (AH) is not zero.

^{*9: 4} when byte (ear) is zero, and 8 when byte (ear) is not zero.

^{*10:} 5 + (a) when byte (eam) is zero, and 9 + (a) when byte (eam) is not 0.

^{*11: 3} when word (AH) is zero, and 11 when word (AH) is not zero.

^{*12: 4} when word (ear) is zero, and 12 when word (ear) is not zero.

^{*13: 5 + (}a) when word (eam) is zero, and 13 + (a) when word (eam) is not zero.

Table 13 Logical 1 Instructions (Byte/Word) [39 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	AH	I	S	T	N	Z	٧	С	RMW
AND AND AND AND AND	A, #imm8 A, ear A, eam ear, A eam, A	2 2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 0 (b) 0 2× (b)	byte (A) \leftarrow (A) and imm8 byte (A) \leftarrow (A) and (ear) byte (A) \leftarrow (A) and (eam) byte (ear) \leftarrow (ear) and (A) byte (eam) \leftarrow (eam) and (A)	_ _ _ _	_ _ _ _			_ _ _ _	* * * *	* * * *	RRRRR	_ _ _ _	_ _ _ _ *
OR OR OR OR OR	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 0 (b) 0 2× (b)	byte (A) \leftarrow (A) or imm8 byte (A) \leftarrow (A) or (ear) byte (A) \leftarrow (A) or (eam) byte (ear) \leftarrow (ear) or (A) byte (eam) \leftarrow (eam) or (A)	_ _ _ _ _	 - - - -		_ _ _ _	_ _ _ _	* * * * *	* * * * *	RRRRR	_ _ _ _	_ _ _ _ *
XOR XOR XOR XOR XOR	A, #imm8 A, ear A, eam ear, A eam, A	2 2+ 2 2+	2 3 4+ (a) 3 5+ (a)	0 1 0 2 0	0 0 (b) 0 2× (b)	byte (A) \leftarrow (A) xor imm8 byte (A) \leftarrow (A) xor (ear) byte (A) \leftarrow (A) xor (eam) byte (ear) \leftarrow (ear) xor (A) byte (eam) \leftarrow (eam) xor (A)	_ _ _ _	_ _ _ _ _		_ _ _ _	_ _ _ _	* * * * *	* * * *	RRRRR	- - - -	- - - *
NOT NOT NOT	A ear eam	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (b)	byte (A) \leftarrow not (A) byte (ear) \leftarrow not (ear) byte (eam) \leftarrow not (eam)	_ _ _	_ _ _		_ _ _	_ _ _	* *	* *	R R R	_ _ _	_ _ *
ANDW ANDW ANDW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2 0	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) and (A) word (A) \leftarrow (A) and imm16 word (A) \leftarrow (A) and (ear) word (A) \leftarrow (A) and (eam) word (ear) \leftarrow (ear) and (A) word (eam) \leftarrow (eam) and (A)	 - - - - -	_ _ _ _ _	1 1 1 1 1	- - - -	_ _ _ _ _	* * * * * *	* * * * * *	RRRRR	- - - - -	_ _ _ _ _ *
ORW ORW ORW ORW ORW ORW	A A, #imm16 A, ear A, eam ear, A eam, A	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) or (A) word (A) \leftarrow (A) or imm16 word (A) \leftarrow (A) or (ear) word (A) \leftarrow (A) or (eam) word (ear) \leftarrow (ear) or (A) word (eam) \leftarrow (eam) or (A)	- - - -	_ _ _ _ _		- - - -	_ _ _ _	* * * * * *	* * * * * *	RRRRRR	_ _ _ _ _	_ _ _ _ _ *
XORW XORW XORW	A, #imm16 A, ear A, eam	1 3 2 2+ 2 2+	2 2 3 4+ (a) 3 5+ (a)	0 0 1 0 2	0 0 (c) 0 2×(c)	word (A) \leftarrow (AH) xor (A) word (A) \leftarrow (A) xor imm16 word (A) \leftarrow (A) xor (ear) word (A) \leftarrow (A) xor (eam) word (ear) \leftarrow (ear) xor (A) word (eam) \leftarrow (eam) xor (A)	- - - -	_ _ _ _		- - - -	_ _ _ _	* * * * *	* * * * * *	RRRRRR	_ _ _ _ _	- - - - - *
NOTW NOTW NOTW	ear	1 2 2+	2 3 5+ (a)	0 2 0	0 0 2× (c)	word (A) \leftarrow not (A) word (ear) \leftarrow not (ear) word (eam) \leftarrow not (eam)	 - - -	_ _ _	_ _ _	_ _ _	_ _ _	* *	* * *	R R R	- - -	_ _ *

Table 14 Logical 2 Instructions (Long Word) [6 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	АН	I	S	Т	N	Z	٧	С	RMW
ANDL ANDL	A, ear A, eam	2 2+	6 7+ (a)	2	0 (d)	long (A) \leftarrow (A) and (ear) long (A) \leftarrow (A) and (eam)	_	_	_	_ _	_	*	*	R R	_	_
ORL ORL	A, ear A, eam	2 2+	6 7+ (a)	2 0	0 (d)	$\begin{array}{c} \text{long (A)} \leftarrow \text{(A) or (ear)} \\ \text{long (A)} \leftarrow \text{(A) or (eam)} \end{array}$	_ _	_ _	_ _	_ _	_ _	*	*	R R	_	_ _
XORL XORL	A, ea A, eam	2 2+	6 7+ (a)	2	0 (d)	$\begin{array}{c} \text{long (A)} \leftarrow \text{(A) xor (ear)} \\ \text{long (A)} \leftarrow \text{(A) xor (eam)} \end{array}$	_	_ _	_ _	_ _	_	*	*	R R	_	_ _

Table 15 Sign Inversion Instructions (Byte/Word) [6 Instructions]

Mn	emonic	#	~	RG	В	Operation	LH	AH	I	S	T	N	Z	٧	С	RMW
NEG	Α	1	2	0	0	byte (A) \leftarrow 0 – (A)	Х	_	_	-	_	*	*	*	*	-
NEG NEG	ear eam	2 2+	3 5+ (a)	2	0 2× (b)	byte (ear) \leftarrow 0 – (ear) byte (eam) \leftarrow 0 – (eam)	 -	_ _	_ _	_ _	_ _	*	*	*	*	*
NEGW	Α	1	2	0	0	word $(A) \leftarrow 0 - (A)$	_	_	_	_	_	*	*	*	*	_
NEGW NEGW		2 2+	3 5+ (a)	2 0	0 2× (c)	word (ear) \leftarrow 0 - (ear) word (eam) \leftarrow 0 - (eam)	_	_ _	_ _	_ _	_	*	*	*	*	<u> </u>

Table 16 Normalize Instruction (Long Word) [1 Instruction]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	S	T	N	Z	٧	С	RMW
NRML A, R0	2	*1	1	0	long (A) ← Shift until first digit is "1" byte (R0) ← Current shift count	_	-	-	_	_	_	*	-	_	_

^{*1: 4} when the contents of the accumulator are all zeroes, 6 + (R0) in all other cases (shift count).

Table 17 Shift Instructions (Byte/Word/Long Word) [18 Instructions]

Mne	emonic	#	~	RG	В	Operation	LH	АН	I	S	T	N	Z	٧	С	RMW
RORC ROLC		2 2	2 2	0	0	byte (A) \leftarrow Right rotation with carry byte (A) \leftarrow Left rotation with carry	_	_			_ _	*	*	_	*	_
RORC RORC ROLC ROLC		2 2+ 2 2+	3 5+ (a) 3 5+ (a)	2 0 2 0	0 2× (b) 0 2× (b)	byte (ear) ← Right rotation with carry byte (eam) ← Right rotation with carry byte (ear) ← Left rotation with carry byte (eam) ← Left rotation with carry	- - -	_ _ _	1 1 1 1		_ _ _	* * *	* * *		* * *	* - *
ASR LSR LSL	A, R0 A, R0 A, R0	2 2 2	*1 *1 *1	1 1 1	0 0 0	byte (A) \leftarrow Arithmetic right barrel shift (A, R0) byte (A) \leftarrow Logical right barrel shift (A, R0) byte (A) \leftarrow Logical left barrel shift (A, R0)	- - -	_ _ _	1 1		*	* *	* *		* *	_ _ _
ASRW LSRW LSLW	A A/SHRW A A/SHLW A	1 1 1	2 2 2	0 0 0	0 0 0	word (A) \leftarrow Arithmetic right shift (A, 1 bit) word (A) \leftarrow Logical right shift (A, 1 bit) word (A) \leftarrow Logical left shift (A, 1 bit)			1 1 1	1 1 1	*	* R *	* *	1 1 1	* *	_ _ _
ASRW LSRW LSLW	A, R0 A, R0 A, R0	2 2 2	*1 *1 *1	1 1 1	0 0 0	$\begin{array}{l} \text{word}(A) \!\leftarrow\! \text{Arithmetic right barrel shift}(A,R0) \\ \text{word}(A) \leftarrow\! \text{Logical right barrel shift}(A,R0) \\ \text{word}(A) \leftarrow\! \text{Logical left barrel shift}(A,R0) \end{array}$	- - -	_ _ _	1 1		*	* *	* *		* *	_ _ _
ASRL LSRL LSLL	A, R0 A, R0 A, R0	2 2 2	*2 *2 *2	1 1 1	0 0 0	$\begin{array}{l} \text{long (A)} \leftarrow \text{Arithmetic right shift (A, R0)} \\ \text{long (A)} \leftarrow \text{Logical right barrel shift (A, R0)} \\ \text{long (A)} \leftarrow \text{Logical left barrel shift (A, R0)} \end{array}$	_ _ _	_ _ _			*	* *	* *		* *	_ _ _

^{*1: 6} when R0 is 0, 5 + (R0) in all other cases.

^{*2: 6} when R0 is 0, 6 + (R0) in all other cases.

Table 18 Branch 1 Instructions [31 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	AH	I	S	T	N	Z	٧	С	RMW
BZ/BEQ rel	2	*1	0	0	Branch when (Z) = 1	_	_	-	_	_	_	_	_	_	_
BNZ/BNE rel	2	*1	0	0	Branch when $(Z) = 0$	_	_	_	_	_	_	_	_	_	_
BC/BLO rel	2	*1	0	0	Branch when $(C) = 1$	_	_	_	_	_	_	_	_	_	_
BNC/BHS rel	2	*1	0	0	Branch when $(C) = 0$	_	_	_	_	_	_	_	_	_	_
BN rel	2	*1	0	0	Branch when $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BP rel	2	*1	0	0	Branch when $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BV rel	2	*1	0	0	Branch when $(V) = 1$	_	_	_	_	_	_	_	_	_	_
BNV rel	2	*1	0	0	Branch when $(V) = 0$	_	_	_	_	_	_	_	_	_	_
BT rel	2	*1	0	0	Branch when $(T) = 1$	_	_	_	_	_	_	_	_	_	_
BNT rel	2	*1	0	0	Branch when $(T) = 0$	_	_	_	_	_	_	_	_	_	_
BLT rel	2	*1	0	0	Branch when (V) xor $(N) = 1$	_	_	_	_	_	_	_	_	_	_
BGE rel	2	*1	0	0	Branch when (V) xor $(N) = 0$	_	_	_	_	_	_	_	_	_	_
BLE rel	2	*1	0	0	Branch when $((V) \times (N)) \times (Z) = 1$	_	_	_	_	_	_	_	_	_	_
BGT rel	2	*1	0	0	Branch when $((V) \times (N))$ or $(Z) = 0$	_	_	_	_	_	_	_	_	_	_
BLS rel	2	*1	0	0	Branch when (C) or $(Z) = 1$	_	_	_	_	_	_	_	_	_	_
BHI rel	2	*1	0	0	Branch when (C) or $(Z) = 0$	_	_	_	_	_	_	_	_	_	_
BRA rel	2	*1	0	0	Branch unconditionally	_	_	_	_	_	_	_	_	_	_
JMP @A JMP addr16	1 3	2	0	0	word (PC) ← (A) word (PC) ← addr16	<u>-</u>	_ _	1 1	<u> </u>	_	 - -	_	 - -	 - -	_ _
JMP @ear	2	3	1	0	word $(PC) \leftarrow (ear)$	_	_	_	_	_	_	_	_	_	_
JMP @eam	2+	4+ (a)	0	(c)	word $(PC) \leftarrow (eam)$	_	_	_	_	_	_	_	_	_	_
JMPP @ear *3	2	5	2) O	word (\overrightarrow{PC}) \leftarrow (ear), (\overrightarrow{PCB}) \leftarrow (ear +2)	_	_	_	_	_	_	_	_	_	_
JMPP @eam '	³ 2+	6+ (a)	0	(d)	word (PC) \leftarrow (eam), (PCB) \leftarrow (eam +2)	_	_	_	_	_	_	_	_	_	_
JMPP addr24	4	4	0)O´	word (PC) ← ad24 0 to 15, (PCB) ← ad24 16 to 23	_	_	-	-	_	_	_	_	_	_
CALL @ear *4	2	6	1	(c)	word (PC) ← (ear)	_	_	_	_	_	_	_	_	_	_
CALL @eam 7		7+ (a)	0	2× (c)	word (PC) ← (eam)	_	_	_	_	_	_	_	_	_	_
CALL addr16		6	0	(c) ´	word (PC) ← addr16	_	_	_	_	_	_	_	_	_	_
CALLV #vct4 *5	1	7	0	2× (c)	Vector call instruction	_	_	_	_	_	_	_	_	_	_
CALLP @ear *6	2	10	2	2× (c)	word (PC) \leftarrow (ear) 0 to 15	_	_	_	_	_	_	_	_	_	_
Or (LL)					(PCB) ← (ear) 16 to 23										
CALLP @eam '	6 2+	11+ (a)	0	*2	word (PC) ← (eam) 0 to 15 (PCB) ← (eam) 16 to 23	_	_	_	_	_	_	_	_	_	_
CALLP addr24	*7 4	10	0	2× (c)	word (PC) \leftarrow addr0 to 15,	_	_	_	_	_	_	_	_	_	_
CALLP addr24	4	10		2× (C)	(PCB) \leftarrow addr16 to 23	_			_		_				

^{*1: 4} when branching, 3 when not branching.

^{*2: (}b) + $3 \times$ (c)

^{*3:} Read (word) branch address.

^{*4:} W: Save (word) to stack; R: read (word) branch address.

^{*5:} Save (word) to stack.

^{*6:} W: Save (long word) to W stack; R: read (long word) R branch address.

^{*7:} Save (long word) to stack.

Table 19 Branch 2 Instructions [19 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	AH	I	S	T	N	Z	٧	С	RMW
CBNE A, #imm8, rel	3	*1	0	0	Branch when byte (A) ≠ imm8	_	_	_	_	_	*	*	*	*	_
CWBNE A, #imm16, rel	4	*1	0	0	Branch when word (A) ≠ imm16	_	_	-	_	-	*	*	*	*	-
CBNE ear, #imm8, rel	4	*2	1	0	Branch when byte (ear) ≠ imm8	_	_	_	_	_	*	*	*	*	_
CBNE eam, #imm8, rel*9	4+	*3	0	(b)	Branch when byte (eam) ≠ imm8	_	-	_	_	—	*	*	*	*	_
CWBNE ear, #imm16, rel	5	*4	1	0	Branch when word (ear) ≠ imm16	_	-	_	_	-	*	*	*	*	-
CWBNE eam, #imm16, rel*9	5+	*3	0	(c)	Branch when word (eam) ≠ imm16	_	-	_	_	-	*	*	*	*	_
DBNZ ear, rel	3	*5	2	0	Branch when byte (ear) = $(ear) - 1$, and $(ear) \neq 0$	_	_	_	_	_	*	*	*	_	_
DBNZ eam, rel	3+	*6	2	2× (b)		_	_	_	_	_	*	*	*	_	*
					$(eam) - 1$, and $(eam) \neq 0$										
DWBNZ ear, rel	3	*5	2	0	Branch when word (ear) =	-	_	_	_	_	*	*	*	_	_
DW/DN/Z	۵.	*6	_	0, , (a)	$(ear) - 1$, and $(ear) \neq 0$						*	*	*		*
DWBNZ eam, rel	3+		2	2× (c)	Branch when word (eam) = $(eam) - 1$, and $(eam) \neq 0$	_	_	_	_	_				_	
INT #vct8	2	20	0	8× (c)	Software interrupt	_	_	R	S	_	_	_	_	_	_
INT addr16	3	16	0	6× (c)	Software interrupt	_		R	S	-	_	_	-	_	_
INTP addr24	4	17	0	6× (c)	Software interrupt	_		R	S	—	_	_	-	_	-
INT9	1	20	0		Software interrupt	_	-	R	S	_	_ *	_ *	-	_ *	-
RETI	1	15	0	6× (C)	Return from interrupt	_	_	_			_	_			_
LINK #local8	2	6	0	(c)	At constant entry, save old frame	_	_	_	_	_	_	_	_	_	_
					pointer to stack, set new frame										
					pointer, and allocate local pointer area										
UNLINK	1	5	0	(c)	At constant entry, retrieve old	_	_	_	_	_	_	_	_	_	_
					frame pointer from stack.										
RET *7	1	4	0	(c)	Return from subroutine	_	_	_	_	_	_	_	_	_	_
RETP *8	1	6	0	(d)	Return from subroutine	_	_	_	_	_	_	_	_	_	-

^{*1: 5} when branching, 4 when not branching

^{*2: 13} when branching, 12 when not branching

^{*3: 7 + (}a) when branching, 6 + (a) when not branching

^{*4: 8} when branching, 7 when not branching

^{*5: 7} when branching, 6 when not branching

^{*6: 8 + (}a) when branching, 7 + (a) when not branching

^{*7:} Retrieve (word) from stack

^{*8:} Retrieve (long word) from stack

^{*9:} In the CBNE/CWBNE instruction, do not use the RWj+ addressing mode.

Table 20 Other Control Instructions (Byte/Word/Long Word) [36 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	АН	I	S	T	N	Z	٧	С	RMW
PUSHW A PUSHW AH PUSHW PS PUSHW rlst	1 1 1 2	4 4 4 *3	0 0 0 *5	(C) (C) (C) *4	$\begin{array}{l} \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{A}) \\ \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{AH}) \\ \text{word (SP)} \leftarrow (\text{SP}) - 2, ((\text{SP})) \leftarrow (\text{PS}) \\ (\text{SP)} \leftarrow (\text{SP}) - 2n, ((\text{SP})) \leftarrow (\text{rlst}) \end{array}$	_ _ _		_ _ _ _		_ _ _ _				_ _ _ _	- - - -
POPW A POPW AH POPW PS POPW rist	1 1 1 2	3 3 4 *2	0 0 0 *5	(C) (C) (C) *4	$\begin{array}{l} \text{word (A)} \leftarrow ((SP)), (SP) \leftarrow (SP) + 2 \\ \text{word (AH)} \leftarrow ((SP)), (SP) \leftarrow (SP) + 2 \\ \text{word (PS)} \leftarrow ((SP)), (SP) \leftarrow (SP) + 2 \\ \text{(rlst)} \leftarrow ((SP)), (SP) \leftarrow (SP) + 2n \end{array}$	_ _ _ _	*	- * -	- * -	- * -	- * -	- * -	- * -	- * -	- - - -
JCTX @A	1	14	0	6× (c)	Context switch instruction	_	_	*	*	*	*	*	*	*	_
AND CCR, #imm8 OR CCR, #imm8	2 2	3	0	0 0	byte (CCR) ← (CCR) and imm8 byte (CCR) ← (CCR) or imm8	_ _	_	*	*	*	*	*	*	*	_ _
MOV RP, #imm8 MOV ILM, #imm8	2 2	2 2	0	0 0	byte (RP) ←imm8 byte (ILM) ←imm8	_ _	_	_	_ _	_ _	_ _	_ _	_	_ _	_ _
MOVEA RWi, ear MOVEA RWi, eam MOVEA A, ear MOVEA A, eam	2 2+ 2 2+	3 2+ (a) 1 1+ (a)	1 1 0 0	0 0 0 0	word (RWi) ←ear word (RWi) ←eam word(A) ←ear word (A) ←eam	_ _ _ _	_ * *	_ _ _ _		_ _ _ _	_ _ _	_ _ _		_ _ _ _	- - - -
ADDSP #imm8 ADDSP #imm16	2	3	0	0 0	word (SP) \leftarrow (SP) +ext (imm8) word (SP) \leftarrow (SP) +imm16	_ _	_ _	_ _	_ _	_ _	_ _	_ _	_ _	_ _	_ _
MOV A, brgl MOV brg2, A	2 2	*1 1	0	0 0	byte (A) \leftarrow (brgl) byte (brg2) \leftarrow (A)	Z -	*	_	_ _	_	*	*	_ _	_	_ _
NOP ADB DTB PCB SPB NCC CMR	1 1 1 1 1 1	1 1 1 1 1 1	0 0 0 0 0	0 0 0 0 0 0	No operation Prefix code for accessing AD space Prefix code for accessing DT space Prefix code for accessing PC space Prefix code for accessing SP space Prefix code for no flag change Prefix code for common register bank			_ _ _ _ _		_ _ _ _ _					- - - - -

^{*1:} PCB, ADB, SSB, USB, and SPB : 1 state DTB, DPR : 2 states

^{*2:} $7 + 3 \times (pop count) + 2 \times (last register number to be popped), 7 when rlst = 0 (no transfer register)$

^{*3:} $29 + (push count) - 3 \times (last register number to be pushed), 8 when rlst = 0 (no transfer register)$

^{*4:} Pop count \times (c), or push count \times (c)

^{*5:} Pop count or push count.

Table 21 Bit Manipulation Instructions [21 Instructions]

Mı	nemonic	#	~	RG	В	Operation	LH	AH	I	S	T	N	Z	٧	С	RMW
MOVB MOVB MOVB	A, dir:bp A, addr16:bp A, io:bp	3 4 3	5 5 4	0 0 0	(b) (b)	byte (A) \leftarrow (dir:bp) b byte (A) \leftarrow (addr16:bp) b byte (A) \leftarrow (io:bp) b	Z Z Z	* *	1 1 1		1 1 1	* *	* *		_ _ _	_ _ _
MOVB MOVB MOVB	dir:bp, A addr16:bp, A io:bp, A	3 4 3	7 7 6	0 0 0	2× (b)	bit (dir:bp) b \leftarrow (A) bit (addr16:bp) b \leftarrow (A) bit (io:bp) b \leftarrow (A)	_ _ _	_ _ _			_ _ _	* *	* *	_ _	- - -	* * *
SETB SETB SETB	dir:bp addr16:bp io:bp	3 4 3	7 7 7	0 0 0	2× (b)	bit (dir:bp) b \leftarrow 1 bit (addr16:bp) b \leftarrow 1 bit (io:bp) b \leftarrow 1	_ _ _	_ _ _			_ _ _	_ _ _	_ _ _	_ 	_ _ _	* * *
CLRB CLRB CLRB	dir:bp addr16:bp io:bp	3 4 3	7 7 7	0 0 0	2× (b)	bit (dir:bp) b \leftarrow 0 bit (addr16:bp) b \leftarrow 0 bit (io:bp) b \leftarrow 0	_ _ _	_ _ _		_ 	- -	_ _ _	_ _ _	_ _ _	- - -	* * *
BBC BBC BBC	dir:bp, rel addr16:bp, rel io:bp, rel	4 5 4	*1 *1 *2	0 0 0	(b) (b)	Branch when (dir:bp) b = 0 Branch when (addr16:bp) b = 0 Branch when (io:bp) b = 0	_ _ _	_ _ _			_ _ _	_ _ _	* *	_ 	_ _ _	 - - -
BBS BBS BBS	dir:bp, rel addr16:bp, rel io:bp, rel	4 5 4	*1 *1 *2	0 0 0	(b) (b)	Branch when (dir:bp) b = 1 Branch when (addr16:bp) b = 1 Branch when (io:bp) b = 1	_ _ _	_ _ _			_ 	_ _ _	* *	_ 	_ _ _	- - -
SBBS	addr16:bp, rel	5	*3	0	2× (b)	Branch when (addr16:bp) b = 1, bit = 1	_	_	_	_	_	_	*	_	_	*
WBTS	io:bp	3	*4	0	*5	Wait until (io:bp) b = 1	_	_	_	_	_	_	_	_	_	-
WBTC	io:bp	3	*4	0	*5	Wait until (io:bp) b = 0	_	_	ı	_	ı	_	_	_	_	_

^{*1: 8} when branching, 7 when not branching

^{*2: 7} when branching, 6 when not branching

^{*3: 10} when condition is satisfied, 9 when not satisfied

^{*4:} Undefined count

^{*5:} Until condition is satisfied

Table 22 Accumulator Manipulation Instructions (Byte/Word) [6 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	AH	I	S	Т	N	Z	٧	C	RMW
SWAP	1	3	0	0	byte (A) 0 to $7 \leftrightarrow$ (A) 8 to 15	_	_	_	_	_	-	_	_	_	_
SWAPW/XCHW AL, AH	1	2	0	0	word $(AH) \leftrightarrow (AL)$	_	*	_	_	-	_	_	_	_	_
EXT	1	1	0	0	byte sign extension	Х		_	_	_	*	*	_	_	_
EXTW	1	2	0	0	word sign extension	_	X	_	_	-	*	*	_	_	_
ZEXT	1	1	0	0	byte zero extension	Ζ		_	_	-	R	*	_	_	_
ZEXTW	1	1	0	0	word zero extension	_	Z	_	_	-	R	*	_	_	-

Table 23 String Instructions [10 Instructions]

Mnemonic	#	~	RG	В	Operation	LH	AH	ı	S	T	N	Z	٧	С	RMW
MOVS/MOVSI	2	*2	*5	*3	Byte transfer @AH+ ← @AL+, counter = RW0	_	_	_	_	_	_	_	_	_	_
MOVSD	2	*2	*5	*3	Byte transfer $@AH-\leftarrow @AL-$, counter = RW0	_	-	-	-	_	_	-	-	-	_
SCEQ/SCEQI	2	*1	*5	*4	Byte retrieval (@AH+) - AL, counter = RW0	_		_	_	_	*	*	*	*	_
SCEQD	2	*1	*5	*4	Byte retrieval (@AH-) - AL, counter = RW0	-	-	-	-	_	*	*	*	*	_
FISL/FILSI	2	6m +6	*5	*3	Byte filling $@AH+ \leftarrow AL$, counter = RW0	_	-	-	_	_	*	*	-	_	_
MOVSW/MOVSWI	2	*2	*8	*6	Word transfer $@AH+ \leftarrow @AL+$, counter = RW0	_	_	_	_	_	_	_	_	_	_
MOVSWD	2	*2	*8	*6	Word transfer @AH \rightarrow @AL \rightarrow , counter = RW0	_	-	-	_	_	_	-	-	-	-
SCWEQ/SCWEQI	2	*1	*8	*7	Word retrieval (@AH+) – AL, counter = RW0	_	_	_	_	_	*	*	*	*	_
SCWEQD	2	*1	*8	*7	Word retrieval (@AH-) - AL, counter = RW0	_	-	-	_	_	*	*	*	*	_
FILSW/FILSWI	2	6m +6	*8	*6	Word filling $@AH+ \leftarrow AL$, counter = RW0	_	_	_	_	_	*	*	_	_	_

m: RW0 value (counter value)

n: Loop count

^{*1: 5} when RW0 is 0, 4 + $7 \times$ (RW0) for count out, and $7 \times$ n + 5 when match occurs

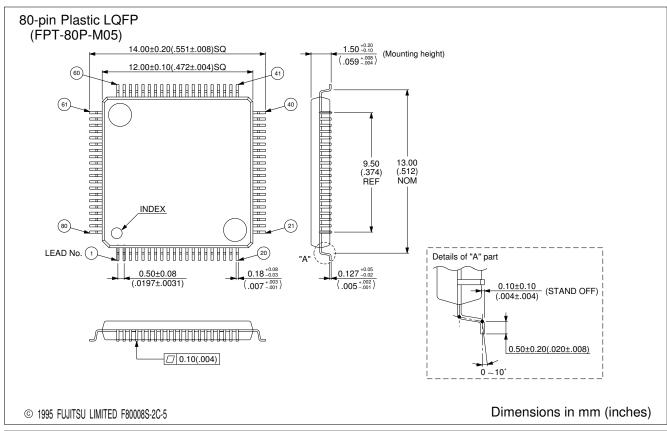
^{*2: 5} when RW0 is 0, $4 + 8 \times (RW0)$ in any other case

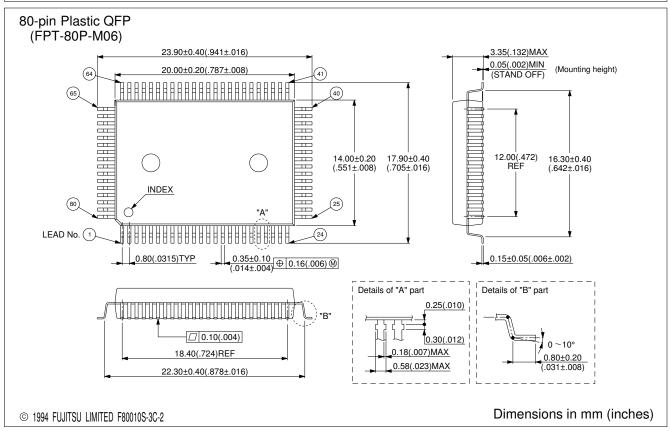
^{*3:} $(b) \times (RW0) + (b) \times (RW0)$ when accessing different areas for the source and destination, calculate (b) separately for each.

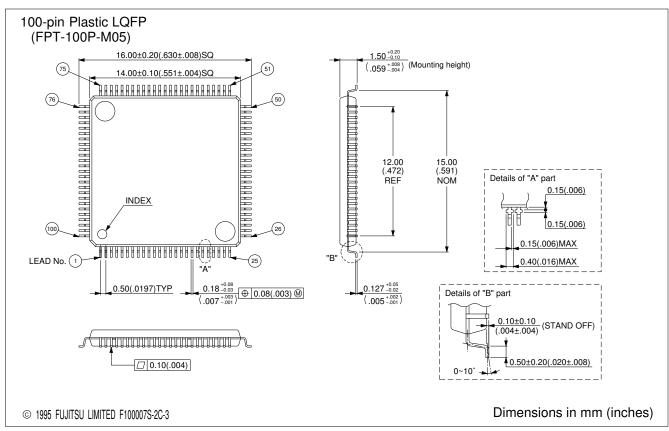
^{*4:} $(b) \times n$

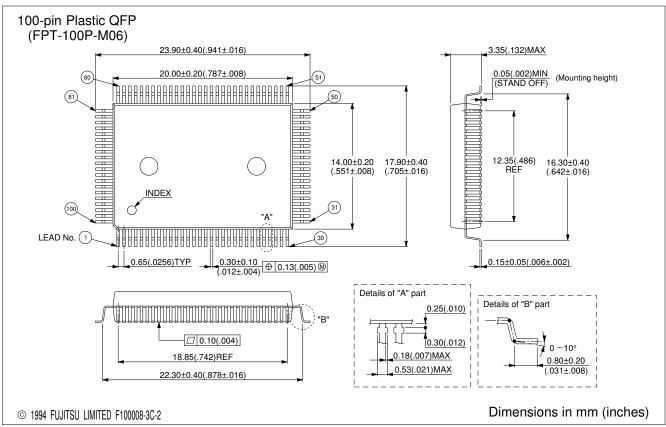
^{*5: 2 × (}RW0)

^{*6:} $(c) \times (RW0) + (c) \times (RW0)$ when accessing different areas for the source and destination, calculate (c) separately for each.


^{*7: (}c) \times n


^{*8: 2 × (}RW0)


■ ORDERING INFORMATION


Part number	Package	Remarks
MB90671PFV MB90672PFV MB90673PFV MB90T673PFV MB90P673PFV	80-pin Plastic LQFP (FPT-80P-M05)	
MB90671PF MB90672PF MB90673PF MB90T673PF MB90P673PF	80-pin Plastic QFP (FPT-80P-M06)	
MB90676PFV MB90677PFV MB90678PFV MB90T678PFV MB90P678PFV	100-pin Plastic LQFP (FPT-100P-M05)	
MB90676PF MB90677PF MB90678PF MB90T678PF MB90P678PF	100-pin Plastic QFP (FPT-100P-M06)	

■ PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Corporate Global Business Support Division Electronic Devices KAWASAKI PLANT, 4-1-1, Kamikodanaka

Nakahara-ku, Kawasaki-shi Kanagawa 211-88, Japan Tel: (044) 754-3763

Fax: (044) 754-3329

http://www.fujitsu.co.jp/

North and South America

FUJITSU MICROELECTRONICS, INC. Semiconductor Division 3545 North First Street

San Jose, CA 95134-1804, U.S.A.

Tel: (408) 922-9000 Fax: (408) 922-9179

Customer Response Center Mon. - Fri.: 7 am - 5 pm (PST)

Tel: (800) 866-8608 Fax: (408) 922-9179

http://www.fujitsumicro.com/

Europe

FUJITSU MIKROELEKTRONIK GmbH Am Siebenstein 6-10 D-63303 Dreieich-Buchschlag Germany

Tel: (06103) 690-0 Fax: (06103) 690-122

http://www.fujitsu-ede.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD #05-08, 151 Lorong Chuan New Tech Park

Singapore 556741 Tel: (65) 281-0770

Fax: (65) 281-0220

http://www.fmap.com.sg/

F9708

© FUJITSU LIMITED Printed in Japan

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.). CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Control Law of Japan, the prior authorization by Japanese government should be required for export of those products from Japan.